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Surprisingly, differentiable functions are able to oscillate arbitrarily faster than their
highest Fourier component would suggest. The phenomenon is calledsuperoscilla-
tion. Recently, a practical method for calculating superoscillatory functions was
presented and it was shown that superoscillatory quantum mechanical wave func-
tions should exhibit a number of counter-intuitive physical effects. Following up on
this work, we here present more general methods which allow the calculation of
superoscillatory wave functions with custom-designed physical properties. We give
concrete examples and we prove results about the limits to superoscillatory behav-
ior. We also give a simple and intuitive new explanation for the exponential com-
putational cost of superoscillations. ©2005 American Institute of
Physics.[DOI: 10.1063/1.1825076]

I. INTRODUCTION

It used to be believed that a function could not oscillate much faster than its highest Fourier
component. Aharonov, Berry and others showed that this is not the case by giving explicit counter-
examples which they named superoscillatory functions, see, e.g., Refs. 1–4. In fact, there are
functions which on arbitrarily long stretches oscillate arbitrarily faster than their highest frequency
Fourier component, see Ref. 5. In other words, the presence of localized fast oscillations in a
continuous function need not be visible at all in the function’s global Fourier transform. In a
function’s global Fourier transform, contributions from regions of fast oscillations can be can-
celled perfectly by contributions from regions where the wave function is oscillating slowly.

In the context of quantum theory, wave functions that superoscillate are able to cause a
number of counter-intuitive effects. Some of these may be of conceptual significance in quantum
gravity, see Refs. 6 and 7. But effects of superoscillations also enter in the low energy realm of
nonrelativistic quantum mechanics. Among such potentially observable low-energy effects is the
counter-intuitive phenomenon that particles with superoscillatory wave functions can be made to
accelerate when passing through a neutral slit.

Consider a particle which possesses a bounded momentum range, i.e., its momentum wave
function vanishes for momenta that are larger than somepmax. As will be explained below, we can
arrange that in a certain region in space the particle’s wave function superoscillates, i.e., that it
oscillates with a much shorter wavelength thanh/pmax. Now let the wave function be incident onto
a screen with a single slit in such a way that it is the superoscillatory part of the wave function
which passes through the slit. Upon emerging from the slit the particle’s wave function will then
oscillate rapidly where the slit is and will be zero elsewhere. The very short wavelengths of the
emerging wave function will be visible in its global Fourier transform. This is because the con-
tributions to the global Fourier transform which come from the fast oscillations in the slit interval
are no longer cancelled by contributions from outside the slit interval. Therefore, the particle will
have gained momentum merely by passing the slit. The momentum gain is determined by the
shortness of the wavelength of the superoscillations and, as explained below, there is no limit, in
principle, to how short that wavelength can be made.

In order to facilitate the design of experiments that can realize the effects of superoscillatory
wave functions it is desirable to possess methods for explicitly calculating superoscillatory wave
functions with predetermined properties. In particular, one may wish to calculate those low-
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momentum but superoscillatory wave functions which after passing through the slit yield wave
functions with a predetermined arbitrarily large momentum and a momentum uncertainty that is as
small as is allowed by the uncertainty relation. Our aim here is to develop methods that allow us
to solve this and other problems.

Our starting point will be the method for calculating superoscillatory wave functions which
was developed in Ref. 6 using results of Refs. 8 and 9. This method allows the construction of
wave functions of arbitrarily low fixed frequency content that pass through an arbitrary finite
number of prespecified points. Figures 1 and 2 show an example.

Our aim is to develop more general methods for designing superoscillatory functions with
generic prespecified properties. We will also ask what the in-principle limits are for the construc-
tion of superoscillatory wave functions.

II. SELF-ACCELERATION THROUGH SINGLE SLIT

In order to motivate and formalize the mathematical problem that we will address, let us
consider the illustrative example of particles that self-accelerate when passing through a slit.

A. Notation

The Fourier transform of a wave functionc will be denoted byc̃,

c̃spd =
1

Î2p"
E

−`

`

csxde−ipx/" dx. s1d

We will often consider particles whose momentum is bounded by a finite valuepmax,

FIG. 1. Example of a superoscillation created by requiring the wave function to pass through certain points. A cosine
function of the minimum wavelength/maximum frequency is shown for comparison.
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csxd =
1

Î2p"
E

−pmax

pmax

c̃spdeipx/" dx. s2d

Borrowing terminology from communication engineering and sampling theory, see, e.g., Ref. 10,
we will speak of such a functioncsxd as having bandwidthpmax, as being band limited, or in this
case as being momentum limited. It will be convenient to define the sinc function as

sincsxd ª 5sinsxd
x

if x Þ 0,

1 if x = 0.
6 s3d

Notice that definitions of the sinc function elsewhere may include a factor ofp.

B. Gedanken experiment

Let us consider a particle in two dimensions which travels along thex1 direction towards a
screen which is parallel to thex2 direction. Assume the particle passes through a slit with
x2-coordinate intervalf−L /2 ,L /2g in the screen. Henceforth, we will assume that the incident
particle’s momentum parallel to the screen,p2, has a finite boundp2max

,

c̃sp1,p2,td = 0 if p2 ¹ f− p2max
,p2max

g. s4d

Our aim is to compare the particle’s momentum parallel to the screen before and after the particle
passes the slit. For simplicity, we will suppress the variablesx1,p1, and t. From now on,x2 is
renamedx andp2 is renamedp. We denote the incident wave function just before passing through
the slit bycsxd and we denote the wave function which emerges from the slit byCsxd. The state
uCl is of course given by projection and renormalization,

FIG. 2. A zoomed-out Fig. 1. Notice that, as is typical, the amplitudes in the superoscillating region are far smaller(here
even unnoticable) than those on either side.
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uCl ª
Psucl

iPsucli
, s5d

wherePs projects onto the slit,

Pscsxd ª 5csxd, if uxu ø
L

2
,

0, otherwise.
6 s6d

Similarly, we definePb as the projector onto a finite momentum interval,

Pbc̃spd ª Hc̃spd, if upu ø pmax,

0, otherwise.
J s7d

While the incident wave function is momentum limited,Pbucl= ucl, the emerging wave function is
position limited, obeyingPsuCl= uCl.

As was shown in Refs. 5 and 6, it is always possible to find incident wave functionscsxd
which obey the momentum boundpmax and which at any finite number of points in the slit interval
take arbitrarily prescribed amplitudes(we will reproduce this result as a special case below). We
will be able to arrange, therefore, that the wave functioncsxd takes, for example, the alternating
valuess−1dn at an arbitrarily large number of points in the slit interval—which enforces sup-
eroscillations. Thesecsxd will be differentiable and square integrable. Then, if the particle passes
the slit, only the superoscillating stretch of the wave function emerges from the slit. Renormalized,

we denote itCsxd. The Fourier transformC̃spd of Csxd will show the presence of small wave-
lengths, implying that the particle emerges from the slit accelerated to a momentum beyondpmax.

C. Template functions

As already mentioned, the results of Refs. 5 and 6 showed that functions of fixed bandwidth
can always be found which at arbitrarily but finitely many points possess predetermined ampli-
tudes. Therefore, the width or narrowness of the slit does not limit how short the wavelength of the
superoscillations can be. As a consequence, there is no slit-dependent limit to the amount of
self-acceleration that can be achieved in this way.

This leads us to ask more generally whether the process of self-acceleration can be designed
virtually at will: is it always possible to construct incident wave functionscsxd of fixed momen-
tum limit pmax which on the slit intervalf−L /2 ,L /2g match any arbitrarily chosen template
function, sayFsxd? This is of interest because, if true, we can optimize the predictability of the
self-acceleration. To this end, we would choose the template functionFsxd to be a wave function
with a fixed arbitrarily large momentum expectationp̄ whose momentum uncertaintyDp is as
small as allowed by the uncertainty relation. If the incident superoscillatory wave function
matched this template function in the slit interval(up to normalization), then the wave function
would merge from the slit with the chosen momentum expectationp̄ and lowest possible momen-
tum uncertainty,Dp, for the given width of the slit. For later use, let us calculate these ideal
template functionsFsxd.

1. Ideal template functions

Our aim is to find ideal template functionsFsxd defined on the slit intervalf−L /2 ,L /2g which
minimize the momentum uncertaintyDp, possess a predetermined momentum expectation
kFupuFl= p̄ and are normalizedkF uFl=1. To this end, we need to solve the constrained varia-
tional problem with the functional
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L = kFup2uFl + m1kFupuFl + m2kuFuFl, s8d

wherem1 andm2 are Lagrange multipliers. Note that minimizingDp is equivalent to minimizing
kFup2uFl becausep̄ is fixed. Hence the Euler–Lagrange equation in position space is

− "2F9sxd − i"m1F8sxd + m2Fsxd = 0. s9d

Since any wave function that emerges from the slit vanishes at the slit boundaries, we require
Fs±L /2d=0. The solution, which is unique up to a phase, is

Fsxd =Î2

L
cosSp

L
xDeixp̄/". s10d

Its uncertainties areDx=Lssp2−6d /12p2d1/2<0.18L and Dp=p" /L. We haveDxDp<0.57"
which is a little larger than what the uncertainty relation allows because our problem requires
template functionsFsxd to be zero outside the slit interval.

2. Superoscillatory wave functions cannot match arbitrary templates

Let us now come back to the question whether it is generally possible to find an incident wave
function csxd which obeys a momentum boundpmax while in the intervalf−L /2 ,L /2g agreeing
completely with an arbitrarily chosen template functionFsxd, such as the functionFsxd just
calculated in Sec. II C 1. Strictly speaking, the answer is no.

As is easily verified, all band-limited functions are entire functions. In particular, any
momentum-limited incident wave functioncsxd is entire and it is, therefore, everywhere differen-
tiable. Now choose, for example, a template functionFsxd which is not differentiable at some
point in the intervalf−L /2 ,L /2g. Thus, there cannot exist a momentum-limited incident wave
function which obeyscsxd=Fsxd for all xP f−L /2 ,L /2g. Nevertheless, a slightly weaker propo-
sition does hold.

3. Convergence towards arbitrary template functions

Let Fsxd be a continuous and square integrable template function. Let us ask whether one can
always find a sequence of wave functionscNsxd of fixed momentum boundpmax which behave
with more and more precision likeFsxd over the region of the slit. To be precise, is it possible to
find a sequence of momentum-limited incident wavesucNl whose emerging wave functionsuCNl
have asymptotically vanishingL2-distanceiuCNl− uFli to an arbitrary template stateuFl? This is
indeed the case.

To see this, consider in the quantum mechanical Hilbert space of statesH with scalar product

kuj1uj2l ª E
−`

`

j1
*sxdj2sxddx, s11d

and the following three subspaces:

Hsª PsH, s12d

Hb ª PbH, s13d

Hsbª PsPbH. s14d

That is,Hs is the subspace of states with position limitation to the slit,Hb is the subspace of states
with fixed momentum limitationpmax, andHsb is the subspace of states obtained after passing the
momentum-limited wave functions through the slit.

Proposition 1:Hsb is dense inHs, i.e.,
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∀ uFl P Hs,« . 0 ∃ uCl P Hsb:iuCl − uFli , «. s15d

Proof: If uFl=0, then takeuCl=0. For uFlÞ0 we must show that

∃” uFl P Hs \ h0j:kuCuFl = 0 ∀ uCl P Hsb. s16d

SinceuFl is position limited, this is equivalent to showing that

∃” uFl P Hs \ h0j:kucuFl = 0 ∀ ucl P Hb. s17d

Assume, for a contradiction, that

∃ uFl P Hs \ h0j:kucuFl = 0 ∀ ucl P Hb. s18d

This implies thatuFl'Hb. Thus,F̃spd=0 onf−pmax,pmaxg. But, sinceF̃spd is entire and zero over

a finite interval,F̃spd=0 everywhere onR, i.e., uFl=0. This is a contradiction. Therefore,Hsb is
dense inHs. h

While this result proves the existence of band-limited functions that are arbitrarily close in the
L2 topology to any template function within the window of the slit, the result does not provide
explicit methods for constructing such band-limited functions.

III. CONSTRUCTIVE METHOD FOR GENERAL LINEAR CONSTRAINTS

We now focus on practical methods for calculating superoscillatory wave functions that ap-
proximate template functions in the slit interval. We begin with the method for constructing
superoscillatory functions presented in Ref. 6. This method allows one to specify that the to-be-
found superoscillatory function takes arbitrarily chosen amplitudesak at any finite numberN of
arbitrarily chosen pointsxk,

csudsxkd = ak for k = 1, . . . ,N. s19d

The superscriptsud is to indicate that the fuction will generally be unnormalized. Equation(19)
specifies a function which possesses a superoscillating stretch. For example, we may choose thexk

spaced closer thanh/pmax and the amplitudes alternating, e.g.,ak=s−1dk. The normalized wave
function csxd=csudsxd / icsudi then possesses superoscillations that are as rapid as those ofcsud but
with a renormalized amplitude. Thus, in order to obtain thecsxd with the most pronounced
superoscillations, i.e., the superoscillations of largest possible amplitude, one needs to find that
function csudsxd whoseL2 norm icsudi is minimal. The method of Ref. 6 solves this optimization
problem.

We now generalize the method of Ref. 6. To this end, we begin by rewriting the requirement
that csudsxd be band limited bypmax and pass through the pointshsxk,akdjk=1

N , namely (19), in
momentum space as

1
Î2p"

E
−pmax

pmax

eisxk/"dpc̃sudspddp = ak. s20d

Our aim is to obtain a method for constructing superoscillatory wave functions which not only
pass through predetermined points but which obey also more generic types of constraints. To this

end, let us allow constraints on the functionc̃sud which are of the general linear form,

ak =
1

Î2p"
E

−pmax

pmax

x̃k
*spdc̃sudspddp ∀ k P h1, . . . ,Nj. s21d

Here, thex̃k are arbitrary linearly independent differentiable functions. By choosing these, we will
be able to prescribe for the superoscillatory wave function not only amplitudes but also arbitrary
derivatives, integrals and any other linear constraint. In order to obtain the most pronounced
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superoscillations in the normalized functionc̃ we minimize the norm ofc̃sud, subject to the
constraints in Eq.(21). The to-be-optimized functional with Lagrange multiplierslk reads

L =E
−pmax

pmax

c̃sud*spdc̃sudspddp − o
k=1

N
lk

*

Î2p"
E

−pmax

pmax

x̃k
*spdc̃sudspddp + c.c., s22d

leading to the Euler–Lagrange equation,

c̃sudspd =
1

Î2p"
o
k=1

N

lkx̃kspd. s23d

Recall thatc̃sud is zero outside the intervalf−pmax,pmaxg by assumption. Thus, using(23) in (21),

ak = o
r=1

N

Tkrlr , s24d

where the Hermitian matrixT is defined by

Tkr ª
1

2p"
E

−pmax

pmax

x̃k
*spdx̃rspddp. s25d

As we will show below,T is invertible. Thus,lW =T−1aW, i.e.,

lk = o
r=1

N

Tkr
−1ar . s26d

Thus, using the Fourier transform of the constraint function

xksxd ª
1

Î2p"
E

−pmax

pmax

x̃kspdeixp/" dp s27d

we obtain from(23) that the desired superoscillatory(still unnormalized) incident wave function
in position space is given by

csudsxd =
1

Î2p"
o
k=1

N

lkxksxd. s28d

Existence of the solution:It remains to be shown thatT is indeed invertible. To see this, letuW
be an arbitrary vector. Then

uW†TuW = o
k,r=1

N

uk
*Tkrur =

1

2p"
E

−pmax

pmax

o
k,r=1

N

uk
* x̃k

*spdx̃rspdur dp =
1

2p"
E

−pmax

pmax Uo
m=1

N

umx̃mspdU2

dp.

Since thex̃k are linearly independent the integrand is positive. Therefore,T is positive definite and
hence invertible.

IV. THE COST OF SUPEROSCILLATIONS

As was shown in Ref. 6, one cost of superoscillations is that requiring more or faster sup-
eroscillations makes the matrixT increasingly difficult to invert numerically, as its smallest and
largest eigenvalues differ by growing orders of magnitude. The condition number was found to
increase exponentially with the number of superoscillations.

We here only remark that, in the sense of computational complexity, this makes it computa-
tionally hard to calculate superoscillations. Interestingly, this also means that any quantum effect
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that naturally produces functions with arbitrarily large superoscillatory stretches constitutes an
example of an exponential speed-up in the sense of quantum computing. Physical occurrences of
superoscillations, e.g., in the context of evanescent waves, have been discussed, e.g., in Refs. 3
and 4. Also, for example(rather speculatively), the possibility of an unbounded production of
superoscillations has been discussed in the context of the trans-Planckian problem of black holes
in Refs. 11 and 12.

Here, we will focus on a more immediate cost of superoscillations, namely the need for an
increasingly large dynamical range, a function’s superoscillations are generally of low amplitude
when compared to the function’s amplitudes to the left and right of its superoscillatory stretch. To
be precise, it was shown in Ref. 6 that theL2 norm of the function increases polynomially with the
frequency of the prescribed superoscillations, for fixed prescribed superoscillating amplitudes. In
particular, it was also shown that the norm increases exponentially with the number of imposed
superoscillations. Correspondingly, in normalized wave functions the amplitudes of superoscilla-
tions decrease exponentially with the number of superoscillations.(Of course, if the superoscil-
lating stretch of the particle’s wave function happens to pass through the slit then its wave
function, however small, is renormalized whereby the superoscillating amplitudes will be restored
to the amplitudes of the template function.)

By making use of the special properties of prolate functions these scaling results were derived
for the type of superoscillations produced with the method of Ref. 6. In the following two sections
we will show more directly the underlying reason for this exponential behavior of the norm of
superoscillatory functions. Our argument will apply more generally to all superoscillatory func-
tions that arise from linear constraints.

A. Derivatives and norms

If a functioncsudsxd is band limited, one would expect that there is a bound on its derivatives.
Applying the Cauchy–Schwarz inequality, consider

U dn

dxncsudsxdU2

=
1

2p"
UE

−pmax

pmax

c̃sudspdS ip

"
Dn

eipx/" dpU2

ø
1

2p"
SE

−pmax

pmax Uc̃sudspdS ip

"
DnU2

dpDSE
−pmax

pmax

1 dpD
ø

1

2p"
Spmax

"
D2n

2pmaxicsudi2.

Thus,

U dn

dxncsudsxdU ø Spmax

"
DnÎpmax

p"
icsudi. s29d

Thus arbitrarily large derivatives, as they can be produced with superoscillations, are consistent
with a finite fixed bandwidth but we see that the cost must be an increase in the norm of the
function icsudi.

B. The norm of superoscillating functions

A precise expression for the normicsudi of the superoscillatory functions obtained by our
method can be derived,

icsudi2 =
1

2p"
E

−pmax

pmax Uo
k=1

N

lkx̃kspdU2

dp =
1

2p"
E

−pmax

pmax

o
k,r=1

N

lk
* x̃k

*spdx̃rspdlr dp = lW†TlW . s30d

Hence,
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icsudi2 = lW†aW = aW†lW = aW†T−1aW . s31d

Note thatT−1 is a positive self-adjoint matrix. We now see that for given constraint functions,xk,
the most norm-expensive superoscillatory functions are obtained if we choose the constraint pa-
rametersak such thataW is the eigenvector ofT−1 with largest eigenvalue. We will arrive at those
extreme superoscillations also from independent momentum space considerations in Sec. VI.

C. Adding successive constraints

Consider a set of constraints, described by a set of functionshx̃kjk=1
N and parametershakjk=1

N and
suppose that, using our method, the momentum-limited wave function which obeys all those
constraints and is of minimum norm has been calculated. Let us ask how the norm of the solution
to this problem changes if we add one additional constraint

aN+1 =
1

Î2p"
E

−pmax

pmax

x̃N+1spdc̃spddp, s32d

wherexN+1 andaN+1 are chosen arbitrarily. Let us denote the solution to the initial problem ofN

constraints byc̃N and let us define,

cª
1

Î2p"
E

−pmax

pmax

x̃N+1spdc̃Nspddp. s33d

Clearly, if we choose thesN+1dst constraint withaN+1ªc then c̃N is also the function of mini-

mum norm obeying theN+1 constraints, i.e.,c̃N+1=c̃N, just as if we had not added a new
constraint, or as if we had set thesN+1dst Lagrange multiplier to zero,lN+1=0.

Now, let us allow the constraint parameteraN+1 to vary away fromc. Correspondingly, our

method will yield a family of functions,c̃N+1 sÞc̃Nd, parametrized byaN+1. We observe from(31)
(letting the sum run toN+1) that the norm squared of these functions is a quadratic(and of course
positive) polynomial inam. Note that its minimum occurs if we choose theaN+1 value,

c = aN+1 = −
1

TsN+1d,sN+1d
−1 o

rÞsN+1d
TsN+1d,r

−1 ar , s34d

because thenosÞsN+1dTsN+1d,s
−1 as=0. Using(24) we see that this choice ofaN+1 leads to the vanish-

ing of the Lagrange multiplierlN+1=0, which is what we expected for if we add a new constraint

that is already satisfied,c̃ will not change.
Crucially, we now see that as we tuneaN+1 away fromc, say in order to enforce an additional

superoscillation twist, the squared norm of the solution increases quadratically. Therefore, if we
keep adding new generic constraints, say in order to implement more and more superoscillations,
this will generally increase the norm of the solution by a factor in each step. Thus, the norm of the
solution will generically scale exponentially with an increase in the number of constraintsN.

This finding widely generalizes the result of Ref. 6 which applied only to constraints of the
special form(19) and among them only to those with equidistant spacings of thexk.

V. APPLICATIONS TO AN IDEAL TEMPLATE FUNCTION

In Sec. II C 1, we asked how the wave functionCsxd that emerges from the slit would have to
look in order to describe a particle with an arbitrarily high predetermined momentum expectation
value p̄ and a momentum uncertaintyDp which is as small as is allowed by the uncertainty
relation. This ideal template function was given in(10).

Let us consider the concrete example,"=1, L=2p, pmax=1, andp̄=2. If the emerging wave
function C can be arranged to be equal or close to this template functionF, this clearly exhibits
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the phenomenon of self-acceleration because the emerging momentum wave function would be
peaked atp< p̄=2, i.e., well outside the original bandwidth ofpmax=1, see Fig. 3.

We had shown that exact matching,Csxd=Fsxd, is generally not possible, but we also saw
that there always exists a sequence of incident wavescN so that for the emerging wavesCN we
haveCN→F in theL2 topology, which is here the only physically relevant topology. Thus, there
are superoscillatory incident wave functions which achieve the prescribed self-acceleration prop-
erties to arbitrary precision. For illustration, let us explicitly calculate such superoscillatory inci-
dent wave functions.

A. Method of matching amplitudes

Let us begin by applying the method presented in Ref. 6, which is a special case of our
method of general linear constraints. In this special case, we require the momentum-limited inci-
dent wavecsudsxd to exactly match the amplitude of the ideal template function at several pointsxk

of the slit intervalf−L /2 ,L /2g. The constraints in the variational problem are then given by the
linearly independent constraint functionsx̃kspdªe−ipxk/" and constraint parametersakªFsxkd.
Thus,

Tkr =
1

2p"
E

−pmax

pmax

esip/"dsxk−xrd dp =
pmax

p"
sincSpmax

"
fxk − xrgD s35d

which leads to the solution

csudsxd =
1

Î2p"
o
k=1

N

lkxksxd, s36d

wherelW =T−1aW and where

FIG. 3. The ideal template’s momentum wave functionuF̃spdu2. Notice that it is centered well outside the original
bandwidthpmax=1.
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xksxd =
1

Î2p"
E

−pmax

pmax

esip/"dsx−xkd dp = pmaxÎ 2

p"
sincSpmax

"
fx − xkgD . s37d

We observe that the wave functioncsudsxd is a linear combination of sinc functions centered at the
xk and we note thatcsxd is square integrable, since the sinc functions are. In general,T is ill
conditioned, i.e., care must be taken to invert it with enough numerical precision so as to satisfy
the constraints with sufficient accuracy.

We used routines in Maple which calculatelW =T−1aW by solvingTlW =aW using Gaussian elimi-
nation. Concretely, we requiredcsudsxd to match the ideal template functionFsxd with p̄=2 at
N=9 equidistantly spaced pointsxk from slit boundary to slit boundary. For example, Fig. 4 shows
the imaginary part of the superoscillatory functioncsud over the slit interval. Figure 5 shows a
zoomed-out view ofucsudsxdu2, displaying the typical big amplitudes to the left and right of the
superoscillating stretch.

The momentum expectation value for the ideal template function that we chose isp̄=2pmax.
Numerically, we found that the strictly momentum-limited incident wave functioncsxd for N=9
yields an emerging wave functionCsxd whose momentum expectation value isp̄<1.92pmax.
Clearly, the momentum of particles which pass through the slit essentially doubles by self-
acceleration, as intended. The momentum uncertainty of the emerging wave function isDp
<1.42pmax.

Recall that for this slit size the momentum uncertainty could be significantly smaller, namely
Dp=1/2, as isprecisely realized in the ideal template function. By increasingN, we can achieve
that the incident wave functioncsudsxd better matches the template, leading to a lowering ofDp
towards that limiting value. For example, forN=15 we find p̄<1.999 47pmax and Dp
<0.500 25pmax. For significantly largerN the exponential computational expense sets in. Our
generalized method for linear constraints allows us to use other linear constraints which we found
to be numerically more efficient in the sense of allowing us to reach larger values ofN. We will
discuss the use of these alternative constraints in Sec. V B.

FIG. 4. Imscsudsxdd over the slit in the example of Sec. V A. The wavelength is about 0.5lmin.

012101-11 Analysis of superoscillatory wave functions J. Math. Phys. 46, 012101 (2005)

                                                                                                                                    



Figure 6 shows the accuracy with which thecsudsxd obtained by matchingN=9 amplitudes of
csudsxd to those ofFsxd agrees with the ideal template functionFsxd for arbitrary x in the slit
interval. The behavior is similar for all values ofN (that we tested). For generalN, there areN
−1 peaks and the height of the highest peak decreases withN.

B. Method of matching derivatives

In order to illustrate the generality of our new method of Sec. III, let us now construct
superoscillatory wave functions by requiring that the wave function matches value and derivatives
of the template at one point, instead of requiring, as we did in Sec. V A, that the wave function
matches only the value of the template function at several points.

Concretely, let us require that the value and firstN−1 derivatives of the to-be-found wave
functioncsud agree atx=0 with those of the ideal template functionF of above. In the equation for
general linear constraints(21), we obtain a constraint on thesk−1dst derivative by choosing for
the constraint function

x̃kspd = S−
ip

"
Dk−1

. s38d

Matching the derivatives to those of the template is to choose the constraint parameters to beak

ªFsk−1ds0d, whereFsk−1d denotes thesk−1dst derivative. Since thex̃k are linearly independent,

Tkr =
1

2p"
E

−pmax

pmax S ip

"
Dk−1S−

ip

"
Dr−1

dp s39d

is invertible, yielding the solution

FIG. 5. ucsudsxdu2 over the slit and surrounding regions in the example in Sec. V A.
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csudsxd =
1

Î2p"
o
k=1

N

lkxksxd, s40d

where

xksxd =
1

Î2p"
E

−pmax

pmax S−
ip

"
Dk−1

eipx/" dp. s41d

Note thatcsxd is a linear combination of derivatives of sinc functions, each of which is band
limited. In this case,T is simpler to invert and we can go, for example, to the caseN=23 before
the exponential computational expense sets in. In this case, for largeN the coefficientslk quickly
grow large and hence the subtle cancellations in the Fourier transform require fast increasing
numerical precision.

We considered the example where the value of the function and its first 22 derivatives is
required to match those of the ideal template function atx=0. We found numerically that the
momentum-limited superoscillating function, after passing through the slit, then exhibits a mo-
mentum expectation value ofp̄<2.0002pmax and momentum uncertaintyDp<0.500 49. Thus we
reach the targeted momentum-doubling self-acceleration, with a momentum uncertainty which is
only marginally above the uncertainty relation limitDp=1/2 for this slit size. Figure 7 displays
the accuracyuCsxd−Fsxdu2.

VI. A MOMENTUM SPACE METHOD

In position space, superoscillatory wave functionscsxd generally possess a characteristic
shape: rapid but small oscillations in the superoscillating stretch and a few large long-wavelength
amplitudes shortly before and after. Do these states also possess a characteristic shape in momen-
tum space?

FIG. 6. uCsxd−Fsxdu2 over the slit in the example in Sec. V A.
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Let us consider, for example, the superoscillations obtained by prescribing oscillating ampli-
tude valuesak at close-by pointsxk. We found that, in momentum space, such a state is a linear
combination of plane waves exps−ixkpd,

c̃spd ª 5 1
Î2p"

o
r=1

N

lre
−isxr/"dp, if upu ø pmax,

0, if upu . pmax.
6 s42d

It appears, see, e.g., Fig. 8, that thesec̃spd generally possess small amplitudes in most of the
momentum intervalf−pmax,pmaxg, except for near the boundaries ±pmax. We calculated the Fourier
transforms of a number of superoscillatory wave functions and observed this as a general feature.

Thus, in momentum space, these superoscillations appear to be a linear combination of plane
waves whose interference is close to being as strong as it can be, with the effect that the resulting
function is of minimized norm.

If this assumption is correct, we should be able to derive superoscillatory wave functions by
calculating that linear combination of plane waves in momentum space whose norm is minimal.
To this end, lethxrjr=1

N be points inf−L /2 ,L /2g. Our aim is to find a coefficient vectorhqrjr=1
N of

fixed length, sayiqWi=1 such that

c̃spd ª 5 1
Î2p"

o
r=1

N

qre
−isxr/"dp, if upu ø pmax,

0, if upu . pmax,
6 s43d

is of minimum norm. The constrained optimization problem with Lagrange multipliern,

L = ici2 + nsiqWi2 − 1d s44d

leads to

FIG. 7. uCsxd−Fsxdu2 over the slit in the example in Sec. V B.
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TqW = nqW . s45d

Thus, the coefficient vectorqW which solves this optimization problem must be eigenvector toT.
From Eq.(30), we obtain the general expression for the norm,ici2=qW†TqW. Thus,qW must be that
eigenvector ofT with the smallest eigenvalue.

Indeed, the position wave function determined by these coefficientsqW is superoscillatory:
already in Sec. IV B, we encountered the wave functions whose coefficient vectorsl are the
eigenvectors ofT−1 of largest eigenvalue. There, we found that these are the superoscillatory wave
functions which for a given set of constraint pointshxkj are most norm expensive and which,
therefore, possesses the most pronounced superoscillations.

VII. OPEN PROBLEMS

We know from Sec. II C 3 that it is always possible to find incident wave functions of fixed
momentum bound that in the slit interval are matching any given template function arbitrarily
closely in theL2 norm topology. Thus, for all practical purposes, the self-acceleration phenomenon
can be tailored at will. Our method of general linear constraints can be used to explicitly construct
a sequence of momentum-limited superoscillatory wave functionscNsxd which more and more
closely match any given template functionF. ThecNsxd approachFsxd in the slit interval in the
sense that they obey more and more linear constraints that tiecNsxd to Fsxd.

In Sec. V A and Sec. V B we showed that a close approach to a fixed template function can
be done numerically efficiently. Clearly, intuition and the easily achieved numerical accuracy lead
us to conjecture that our methods for producing superoscillations, as used in Secs. V A and V B,
do indeed always lead to convergence in theL2 topology towards the template function. So far,
however, we have no proof that our particular method for producing superoscillatory wave func-
tions from linear constraints does indeed realize theL2 convergence to generic template functions.

FIG. 8. Resc̃spdd of the incident superoscillatory wave in the example in Sec. V A.
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A. Quadratic constraints

Let us ask, therefore, if there is a choice of linear constraints that directly targets the area
under the functions and that thereby directly guarantees convergence in theL2 sense.

One may try, for example, constraints which require that the functionscsud and F enclose
equal areas on certain subintervals of the slit. This can be set into the form of a linear constraint:
Let hxkjk=1

N+1 be equidistantly spaced points inf−L /2 ,L /2g. We require the linear constraints of(21)
with the constraint functions

x̃kspd =E
xk

xk+1

e−ipx/" dx s46d

and the constraint parameters

ak =E
xk

xk+1

Fsxddx. s47d

While this can easily be carried out, these constraints are not directly guaranteeingL2 convergence
towards the template function by refining the partition of the slit interval into increasingly smaller
subintervals: in principle, even functions that enclose equal areas on a very small interval may
have very different amplitudes. Let us, therefore, consider to impose constraints which require the
area of the functionuCsxd−Fsxdu2 on small subintervals to be small. It is clear that to this end it
would be necessary to implement also constraints that are quadratic in the fieldCsxd. We will here
not pursue this strategy to the end. As a preliminary step, however, let us generalize our method
for constructing superoscillatory functions to include quadratic constraints.

To this end, we formulate the variational problem of finding the functionc̃sud of smallest norm
and with momentum cutoffpmax which satisfiesN linear andM quadratic constraints that tie it to
a template functionF,

ak =
1

Î2p"
E

−pmax

pmax

c̃sudspdx̃k
*spddp for k = 1, . . . ,N, s48d

bk =
1

Î2p"
E

−pmax

pmax

c̃sud*spdc̃sudspdJ̃k
*spddp for k = 1, . . . ,M . s49d

The to-be-optimized functional with Lagrange multipliershlkjk=1
N and hmkjk=1

M , reads

L =E
−pmax

pmax

c̃sud*spdc̃sudspddp − o
k=1

N
lk

*

Î2p"
E

−pmax

pmax

c̃sudspdx̃k
*spddp

+ o
k=1

N
mk

*

Î2p"
E

−pmax

pmax

c̃sud*spdc̃sudspdJ̃k
*spddp + c.c. s50d

and the Euler–Lagrange equation reduces to

c̃sudspd =

1
Î2p"

o
k=1

N

lkx̃kspd

1 +
1

Î2p"
o
k=1

N

mkJ̃kspd

. s51d
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Although this may be difficult in practice, in principle, the substitution of(51) into (48) and
(49) yields sufficient equations to solve for thehlkjk=1

N and hmkjk=1
M in terms of thehakjk=1

N and

hbkjk=1
M and this yields the solutionc̃sud.

B. A conjecture

Consider the case of a differentiable template functionF whose derivative is bounded,
uF8sxduøK∀xP f−L /2 ,L /2g, for some finiteK. Assume thatcN

sud is a sequence of incident wave
functions, calculated through the method of Sec. V A with the amplitudes ofcN

sudsxd and Fsxd
matched atN equidistantly spaced pointsxk. We conjecture then that the supremumucN8 sxdu for all
x and allN is finite as well,

ucN8 sxdu ø M ∀ x P F−
L

2
,
L

2
G , s52d

for some finiteM. This is plausible because, else,ucN8 sxdu would have to develop arbitrarily sharp
spikes away from the template function in between some two points where its amplitudes are
matched to those of the template function. From Sec. IV C, however, we expect large oscillations
in the superoscillating stretch to be norm expensive and therefore be prevented from occurring,
given that thecN

sud are optimized to possess minimum norm for a given set of constraints.

C. Convergence

Proposition 2: Assume that the conjecture of Sec. VII B holds true. Then, hcNsxdjN converges
uniformly and in the L2 topology over the intervalf−L /2 ,L /2g to Fsxd for N→`.

Proof: Partition the slit into sN−1d equal-length intervals with theN endpoints xk
sNd

ª−sL /2d+sk−1dfL / sN−1dg. DefinehaNsxdjN=2
` by

aNsxd ª maxhxk
sNduk P h1, . . . ,Nj,xk

sNd ø xj. s53d

That is,aNsxd is the closest point in the partition from the left tox. Then,

ucNsxd − Fsxdu ø ucNsxd − FsaNsxddu + uFsaNsxdd − Fsxdu

= ucNsxd − cNsaNsxddu + uFsaNsxdd − Fsxdu

ø Mux − aNsxdu + KuaNsxd − xu ø
sM + KdL

N − 1
, s54d

where we applied the triangle inequality and the mean value theorem. We therefore have uniform
andL2 convergence. h

VIII. SUMMARY

We started with the method for calculating superoscillatory wave functions introduced in Ref.
6 and applied it to concrete examples. We then generalized this method so that it now allows us to
construct superoscillatory low-momentum wave functions with a wide range of predetermined
properties. Namely, we can impose any arbitrary finite number of linear constraints. We calculated
concrete examples.

Further, we addressed the question whether superoscillatory functions can be made to match
any arbitrary continuous function on a finite interval. This would correspond to imposing an
infinite number of constraints. Generally, the answer is no. However, we were able to prove that
there always exists a sequence of superoscillatory wave functions which converges in the physi-
cally relevantL2 topology towards any continuous template function over an arbitrarily large
chosen interval.

This is of interest, for example, in the case of the single slit. We proved that the wave function
of an incident low-momentum particle can be chosen to arbitrary precision such that, if the particle
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passes through the slit, it will emerge with a predetermined arbitrarily large momentum expecta-
tion and with a momentum uncertainty that is as small as permitted by the width of the slit.

Our method for constructing superoscillating wave functions allows us to construct sup-
eroscillatory wave functions which match anyfinite numberN of properties of a given template
function (such as the template function’s amplitudes or derivatives at specified points). This leads
to the question if by letting the number of constraints,N, go to infinity we can obtain one of those
sequences of superoscillatory wave functions which converge towards the template function in the
L2 topology.

We proved that such sequences exist but we have not proved that our particular method
produces such sequences. The numerical evidence certainly suggests that this is the case. In fact,
we found rather fast numerical convergence.

Nevertheless, it would be highly desirable to be able to prove that a given method for pro-
ducing superoscillations can be used to calculate a sequence of superoscillatory functions that
converges in theL2 topology towards any given template function on an interval. An investigation
based on Weierstrass’ approximation theorem is in progress.13

Last, we found a method for identifying a class of superoscillatory functions by looking at
their behavior in momentum space: superoscillatory functions can be viewed as functions which in
momentum space are a linear combination of plane waves with coefficients such that their inter-
ference is maximal, i.e., such that their norm is minimal.
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In this work we build a quantum logic that allows us to refer to physical magni-
tudes pertaining to different contexts from a fixed one without the contradictions
with quantum mechanics expressed in no-go theorems. This logic arises from con-
sidering a sheaf over a topological space associated with the Boolean sublattices of
the ortholattice of closed subspaces of the Hilbert space of the physical system.
Different from standard quantum logics, the contextual logic maintains a distribu-
tive lattice structure and a good definition of implication as a residue of the
conjunction. ©2005 American Institute of Physics.[DOI: 10.1063/1.1819525]

I. INTRODUCTION

Quantum mechanics has profound conceptual difficulties that may be posed in several ways.
Nonetheless, almost every problem in the relation between the mathematical formalism and what
may be called “our experience about the behavior of physical objects” can be encoded in the
question about the possible meaning of the proposition “the physical magnitudeA has a value and
the value is this or that real number.” Already from the first formalizations this point was recog-
nized. For example, Dirac stated in his famous book: “The expression that an observable ‘has a
particular value’ for a particular state is permissible in quantum mechanics in the special case
when a measurement of the observable is certain to lead to the particular value, so that the state is
an eigenstate of the observable. It may easily be verified from the algebra that, with this restricted
meaning for an observable ‘having a value,’ if two observables have values for a particular state,
then for this state the sum of the two observables(if the sum is an observable) has a value equal
to the sum of the values of the two observables separately and the product of the two observables
(if this product is an observable) has a value equal to the product of the values of the two
observables separately.”10 This last point is the requirement of the functional compatibility con-
dition (FUNC), to which we will return later. As long as we limit ourselves to speak about
measuring results and avoid being concerned with what happens to nature when she is not mea-
sured, quantum mechanics carries out predictions with great accuracy. But, if we naively try to
interpret eigenvalues as the possible or actual values of the physical properties of a system, we are
faced with all kinds of no-go theorems that preclude this possibility. Most remarkable is the
Kochen–Specker(KS) theorem, which rules out the noncontextual assignment of values to physi-
cal magnitudes.17 Of course, to restrict the valuation to a subset of observables—typically to a
complete set of commuting observables(CSCO) which constitutes acontext—and refer to values
of physical variables only in the sense allowed by the mathematical formalism, ensures no con-
tradiction. So, a widely accepted position is to abandon seeking to describe what nature at the
quantum level is and use the theory as a mere instrument of prediction. But, there are also different
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proposals to investigate how to assign objective and measurable properties to a physical entity, i.e.,
how far we can refer to physical objects without contradiction with quantum theory. This paper is
framed in that search.

Our proposal is to construct a logic to enable not only a Boolean valuation in each fixed
context but also that, once chosen, certain set of projectors of the spectral decomposition of the
operators(correspondingly, closed subspaces of Hilbert spaceH) that admits a global Boolean
valuation, to make it possible to refer at least partially to projectors pertaining to other contexts
with the least arbitrariness.

Let us be concerned here with the simplest cases: pure states of the system are represented by
normalized vectors ofH and dynamical variablesA by bounded self-adjoint operatorsA with
discrete spectra. The possible results of the measurement of a(sharp) magnitudeA are the eigen-
valuesai pertaining to the spectrumssAd of its associated operatorA. To each of the eigenvalues
ai corresponds a projectorPi and correspondingly a closed subspace ofH. Every A admits a
spectral decomposition

A = o
i

aiPi ,

where the equality is considered as a convergence in norm. So, observables may be discomposed
to give an exhaustive and exclusive partition of the possible alternatives for the results of mea-
surements. The probability to obtain one of them in an experimental procedure is given by the
Born rule.

Now, let us suppose the state of the physical system is an eigenvector of a nondegenerate
observableA (i.e., A constitutes a CSCO) so we know the eigenvalues of all projectors
P1,P2, . . . ,Pn, . . . of A for the system in this state. If anyPi lies in the spectral decomposition of
another observableB, then this “part” ofB can be valued in a Boolean way. It is important to
realize that this allows one to refer to observables pertaining to a CSCO from another CSCO. In
categorical terms, this will be related to the possible local sections of a sheaf satisfying a certain
kind of compatibility with respect to fixed contexts, to be exactly stated in what follows. From this
formal analysis in terms of sheaves, we intend to build the mentioned logic, which we will call
contextual logic. This contextual logicwill allow us to formalize to what extent we can consider
as objective properties of a physical system those properties represented by projectors pertaining
to different contexts without facing no-go theorems. We will use a categorial frame to develop this
logic, as has been the case during the last years, when applications of category theory tools to
logical questions in standard quantum mechanics have begun to appear(for example, Isham and
Butterfield,15,16,13,6also in the consistent histories approach,14 in the interpretation of the Sasaki
hook as an adjunction8 and, in general, in the Geneve–Brussels approach1,2,7).

In Sec. II we introduce basic notions about lattice theory and topics in categories. We devote
Sec. III to the problem of the valuations of physical magnitudes pertaining to different CSCCs. In
Sec. IV we face the same problem from the point of view of sheaves, relating it to the dual spectral
presheaf introduced in Ref. 15. In Sec. V we develop the contextual logic in a Kripke style and
intuitionistic way. Finally, in Sec. VI we outline our conclusions.

II. BASIC NOTIONS

We recall from Refs. 3, 4, 11, and 18 some notions of the lattice theory and categories that will
play an important role in what follows.

First, let sA, ø d be a poset andX#A. X is decreasing setif and only if for all xPX, if a
øx then aPX. For eachaPA we define theprincipal decreasing setassociated witha as sag
=hxPA:xøaj. The set of all decreasing sets inA is denoted byA+, and it is well known that
sA+, # d is a complete lattice; thuskA,A+l is a topological space. We observe that ifGPA+ and
aPG, thensag#G. Therefore,B=hsag :aPAj is a base of the topologyA+, which we will refer to
as thecanonical base. If X#A, we denote by]X the border ofX, CsXd the complement ofX and
X° the interior ofX.
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Let A be a category. We denote byObsAd the class of objects and byArsAd the class of
arrows. Given an arrowf :a→b, a is called domain offsa=domsfdd andb is called codomain of
fscodsfdd. We denote byfa,bgA the class of all arrowsa→b in the category and by 1A the identity
arrow over the objectA. A is said to besmall categoryif and only if ObsAd is a set. A partially
ordered setsP, ø d gives rise to a category with the elements ofP as objects, and with precisely
one arrowp→q if and only if pøq. In this case,sP, ø d is a small category. The category whose
objects are sets and arrows are functions with the usual composition is denoted byEns.

Let I be a topological space. Asheafover I is a pairsA,pd, whereA is a topological space and
p:A→ I is a local homeomorphism. This means that eachaPA has an open setGa in A that is
mapped homeomorphically byp onto psGad=hpsxd :xPGaj, and the latter is open inI. It is clear
that p is a continuous and open map. Ifp:A→ I is a sheaf overI, for eachi P I, the setAi =hx
PA:psxd= ij is called thefiber over i. Each fiber has the discrete topology as subspace ofA. Local
sectionsof the sheafp are continuous mapsn :U→A defined over open proper subsetsU of I such
that the following diagram is commutative:

In particular, we use the termglobal sectiononly whenU= I.
Given the categoryA, one can form a new categoryAop, calleddual category ofA, by taking

the same objects but reversing the directions of all the arrows and the order of all compositions.

EnsA
op

or Â, whereA is a small category, is the category whose objects are functorsF :Aop

→Ens(also calledpresheaves) and whose arrows are natural transformations between presheaves.

Â is a topos, i.e., has terminal object, pullbacks, exponentiation, and subobject classifier. The

terminal object inÂ is the functor1:Aop→Ens such that1sAd=h* j (the singleton) for eachA
PA and for each arrowf, 1sfd=1h* j. For any presheafF :Aop→Ens, the unique arrowF→1 is
the natural transformation whose components are the unique functionsFsAd→ h* j for each object
A in A. Pullbacks, limits, and colimits are defined componentwise.

A local sectionof a presheafF :Aop→Ens is a natural transformationt :U→F such thatU is
a subfunctor of the presheaf1. We only refer toglobal sectionsin the case thatU=1.

III. THE QUESTION OF VALUATION

Let H be the Hilbert space associated with the physical system andLsHd be the set of closed
subspaces onH. If we consider the set of these subspaces ordered by inclusion, thenLsHd is a
complete orthomodular lattice.19 It is well known that each self-adjoint operatorA has an associ-
ated Boolean sublatticeWA of LsHd. More precisely,WA is the Boolean algebra of projectorsPi of
the spectral decompositionA =oi aiPi. We will refer toWA as the spectral algebra of the operator
A. Any proposition about the system is represented by an element ofLsHd which is the algebra of
quantum logic introduced by Birkhoff and von Neumann.5

Assigning values to a physical quantityA is equivalent to establishing a Boolean homomor-
phism v :WA→2,15 2 being the two-element Boolean algebra. So, it is natural to consider the
following definition.

Definition 3.1: LetsWidiPI be the family of Boolean sublattices of LsHd. A global valuation
over LsHd is a family of Boolean homomorphismssvi :Wi →2diPI such that viuWi ùWj

=v juWi ùWj for each i, j P I.
This global valuation would give the values of all magnitudes at the same time maintaining a

compatibility condition in the sense that whenever two magnitudes shear one or more projectors,
the values assigned to those projectors are the same from every context.

But, KS theorem assures that we cannot assign real numbers pertaining to their spectra to
operatorsA in such a way to satisfy the functional composition principle(FUNC), which is the
expression of the “natural” requirement mentioned by Dirac that, for any operatorA representing
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a dynamical variable and any real-valued functionfsAd, the value offsAd is the corresponding
function of the value ofA. This is a very restrictive constraint because it does not allow assign-
ment of values to all possible physical quantities or assignment of true–false as truth values to all
propositions about the system, nor even noncontextual partial ones. KS theorem means that, if we
demand a valuation to satisfy FUNC, then it is forbidden to define it in a noncontextual fashion for
subsets of quantities represented by commuting operators. In the algebraic terms of the previous
definition, KS theorem reads:

Theorem 3.2: If H is a Hilbert space such that dimsHd.2, then a global valuation over
LsHd is not possible. h

Of course, contextual valuations allow us to refer to different sets of actual properties of the
system which define its state in each case. Algebraically, acontextual valuationis a Boolean
valuation over one chosen spectral algebra. In classical particle mechanics it is possible to define
a Boolean valuation of all propositions, that is to say, it is possible to give a value to all the
properties in such a way of satisfying FUNC. This possibility is lost in the quantum case. And, it
is not a matter of interpretation, it is the underlying mathematical structure that enables this
possibility for classical mechanics and forbids it in the quantum case. The impossibility to assign
values to the properties while at the same time satisfying FUNC is a weighty obstacle for almost
any interpretation of the formalism as something more than a mere instrument.

IV. SPECTRAL SHEAF

LsHd being the lattice of closed subspaces of the Hilbert spaceH, we consider the familyW
of all Boolean subalgebras of the latticeLsHd ordered by inclusion and the topological space
kW ,W+l. On the set

E = hsW, fd:WP W, f:W→ 2 is a Boolean homomorphismj,

we define a partial ordering given as

sW1, f1d ø sW2, f2d ⇔ W1 # W2 and f1 = f2uW1.

Thus, we consider the topological spacekE,E+l whose canonical base is given by the principal
decreasing setsssW, fdg=hsG, f uGd :G#Wj. By simplicity ssW, fdg is noted assW, fg.

Proposition 4.1: The map p:E→W such thatsW, fd°W is a sheaf overW.
Proof: Let sW, fdPE. If we consider the open setsW, fg in E, thenpssW, fgd=sWg, and as a

consequencepssW, fgd is an open set inW. If we denote byp8 the restrictionpusW, fg, then from
the definition ofp it is clear thatp8 : sW, fg→ sWg is a bijective map that preserves order inclusion.
Thus,p8 is a continuous map. Finally,p is a local homeomorphism. h

We refer to the sheafp:E→W as thespectral sheaf.
Proposition 4.2: Letn :U→E be a local section of the spectral sheaf p. Then, for each W

PU we have

(1) nsWd=sW, fd for some Boolean homomorphism f:W→2,
(2) if W0#W, thennsW0d=sW0, f uW0d.

Proof: Sincen is a local section we consider the following commutative diagram:

(1) It follows as an immediate consequence of the commutativity of the diagram.
(2) Sincen is continuous,n−1ssW, fgd is an open set inW (i.e., a decreasing set). Consequently,

W0Pn−1ssW, fgd since W0#W and WPn−1ssW, fgd. Thus, nsW0dP sW, fg, resulting in
nsW0d=sW0, f uW0d. h
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From the physical perspective, we may state that the spectral sheaf takes into account the
whole set of possible ways of assigning truth values to the propositions associated with the
projectors of the spectral decompositionA =oi aiPi. The continuity of a local section ofp guar-
antees that the truth value of a proposition is maintained when considering the inclusion of
subalgebras. In this way, thecompatibility conditionof the Boolean valuation with respect of
intersection of pairs of Boolean sublattices ofLsHd is maintained.

A global sectiont :W→E of p is interpreted as follows: the map assigns to everyWPW a
fixed Boolean valuationtw:W→2, obviously satisfying the compatibility condition. So, KS theo-
rem in terms of the spectral sheaf reads:

Theorem 4.3: If H is a Hilbert space such that dimsHd.2, then the spectral sheaf p has no
global sections. h

We may build acontextual valuationin terms of a local section as follows:
Let A be a physical magnitude with known value, i.e., we have been able to establish a

Boolean valuationf :WA→2. It is not very hard to see that the assignment

n:sWg → E such that for eachWi P sWg,nsWid = sWi,uf uWid,

is a local section ofp.
To extend contextual valuations we turn now to consider local sections. To do this we intro-

duce the following definition:
Definition 4.4: Letn be a local section of p and WA the spectral algebra associated with the

operatorA. Then, an extended valuation over A is given by the set

n̄sAd = hWB P domsnd:WB # WAj.

Given the previous definition, it is easy to prove the following proposition:
Proposition 4.5: Ifn is a local section of p and WA the spectral algebra associated to the

operatorA, then

(1) n̄sAd is a decreasing set,
(2) if WAPU then n̄sAd=sWAg. h

We can start from the spectral sheaf to build a representation as presheaf such that local
sections of the former are identifiable to local sections of the latter. When considering the family
W ordered by inclusion,W can be regarded as a small category. Thus, we can take the topos

presheafŴ. DenotingEW the fiber of the spectral sheafp overW for eachWPW, we consider the
following presheaf:

D:Wop → Ens

such that

(i) DsWd=EW for eachWPObsWd;
(ii ) if i :W1#W2 lies in ArsWd, thenDi :DsW2d→DsW1d is such thatDisgd=guW1.

It is clear that the presheaf acting over arrows satisfies the compatibility condition. Denoting
Secp andSecD the sets of(global and local) sections ofp andD, respectively, we can establish the
following proposition:

Proposition 4.6:

Secp . SecD.

Proof: Let n :U→EPSecp and consider the presheafŨ :Wop→Ens, whose action over
ObsWd is given by
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ŨsWd = Hh* j, if W P U

x , otherwise,

and whose action over arrows is immediate. It is clear thatŨ is a subfunctor of the presheaf1.
From U we construct a natural transformation

D

→
Wop tn↑ Ens

→
Ũ

,

such that, for eachWPW, tnsUsWdd=nsWd. Thus, we have a mapSecp→SecD given byn°tn.
It is not hard to see that this is an injective map. To see that it is also a surjective map, we consider

a section of the presheafD, namelyt : Ũ→D, and we prove that there exists a sectionn of the

spectral sheaf such thatn°tn=t. Let U=hWPW : ŨsWd=h* jj. If WPU and Wo#W, then

ŨsWod=h* j, since Ũ is a contravariant subfunctor of1. Thus, Wo lies in U, resulting inU, a
decreasing set(i.e., an open set) in W. Now, we consider the mapn :U→E such that, for each

WPU, nsWd=sW,tsŨsWddd. It is clear that the following diagram is commutative:

Now, we prove thatn is a continuous map. LetsW1, fg be an open set of the canonical base of
E, n−1ssW1, fgd=hWPW :nsWdP sW1, fgj, and we assume thatn−1ssW1, fgd is not the empty set.

Let WPn−1ssW1, fgd and Wx#W. Sincet is a natural transformation, it follows thattsŨsWxdd
=tsŨsWdduWx. SincensWdP sW1, fg, it is clear thatnsWd=sW, f uWd, resulting thatŨsWxd= f uWx

and WxPn−1ssW1, fgd. This proves the continuity of the map. It is not very hard to see thatt
=tn, thus it is proved that it is a surjective map. h

Remark 4.7:The presheafD from the spectral sheaf is the dual spectral presheaf defined in
Ref. 15.

Taking into account the last Proposition, we can write KS theorem in terms of presheaves
from the spectral sheaf:

Theorem 4.8: If H is a Hilbert space such that dimsHd.2, then the dual spectral presheaf
D has no global sections. h

Possible obstructions to the construction of global sections for the case of finite dimensional
H are shown in Ref. 12.

On the other hand, in terms of a local sectionn :U→D of D, extended contextual valuations
over an operatorA may be defined as

n̄sAd = hWB # WA:UsWBd = h* jj.

Valuations are deeply connected to the election of particular local sections of the spectral
sheaf. So, we see here once more that we cannot speak of the value of a physical magnitude
without specifying this election, which clearly means the election of a particular context. This is in
agreement with the statement that contextuality is “endemic” in any attempt to ascribe properties
to quantities in quantum theories.15
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V. CONTEXTUAL LOGIC

We know that ifW is the family of Boolean subalgebras ofLsHd, to take a local sectionn of
the spectral sheaf means an assignment of Boolean valuations to algebras in the proper subfamily
Domsnd maintaining the compatibility condition. Now, an interesting question is to ask whatn can
“tell us” aboutW whenW¹Domsnd. Let us state more accurately this expression to precise our
aim in the search of acontextual logic.

Definition 5.1: Letn be a local section of the spectral sheaf. If WBPDomsnd and WB#WA,
then we will say that WB hasBoolean informationaboutWA.

Clearly, this means that, in a given state of the system, the complete knowledge of the spectral
decomposition ofB lets us know the eigenvalue of one or more projectors in the spectral decom-
position ofA. Contextual logicallows some kind of “paste” among Boolean sublattices ofLsHd
and so among CSCOs. A valuation in terms of decreasing sets maintains it “downstream” with
respect to subalgebras, i.e., when the valuation of a subalgebra is given, all its subalgebras are
automatically valuated. This makes it possible to have Boolean information of different contexts
from the one chosen in the following sense: once fixed a local sectionn, if WBPDomsnd and
WA¹Domsnd then, referring toWA from WB takes into account the Boolean information that
WBùWA has aboutWA.

We will now construct a propositional languageSelf for contextual logic whose atomic for-
mulas refer to the physical magnitudes represented for bounded self-adjoint operators with discrete
spectra. Intuitively, we can consider the set of atomic formulasP as

P = hA:A bounded self− adjoint operatorj.

Then, this language is conformed as follows:

Self= kP, ∨ , ∧ , → ,¬l,

and it is clear that the formulas may be obtained in the usual way.
We will now turn to the use of Kripke models built starting from any local section of the

spectral sheafp because it allows us to naturally adapt the idea of Boolean knowledge. Thus, the
obtained valuation will result in an extended contextual valuation.

Definition 5.2:We consider the posetkW ,#l as aframe for the Kripke model forSelf. Let n
be a local section ofp. Thus, we define the Kripke modelM=kW , n̄l with the following forcing:

(1) Mi=W A if and only if WP n̄sAd with APP;
(2) Mi=W a∨b if and only if Mi=W a or Mi=W b;
(3) Mi=W a∧b if and only if Mi=W a andMi=W b;
(4) Mi=W a→b if and only if ∀B#W, if Mi=B a, thenMi=B b;
(5) Mi=W¬a if and only if ∀B#W MiÞB a.

Given this forcing we can accurately define the idea of extended contextual valuation over
Self.

Definition 5.3: Given a local sectionn over p, an extended contextual valuation is the map
n̄ :Self→W+ defined as

n̄sad = hW:Mi =W aj.

Taking into account thatW+ is a topological space, it is not very hard to see thatn̄sad is an open
set ofW. Now, we can to establish the following proposition:

Proposition 5.4: Leta be a formula in Self and consider the Kripke modelM=kW ,nl. Then

(1) Mi=W¬a if and only if WP sCn̄sadd°,
(2) MiÞW a andMiÞW¬a if and only if WP]n̄sad.

Proof: (1) If Mi=W¬a, then∀B#W, MiÞB a and∀B#W B¹ n̄sad. ThussWg# sCn̄sadd°
andWP sCn̄sadd°. On the other hand, ifWP sCn̄sadd°, then there exists an open setG in W such
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that WPG#Csn̄sadd. Since G is a decreasing set, we have thatsWg#G#Csn̄sadd and Mi

=W¬a. (2) It follows from (1) and the fact thatW= n̄sadø sCn̄sadd° ø]n̄sadd. h

Remark 5.5:Following the usual interpretation of the Kripke model, the frame represents all
possible states of knowledge that are preserved forward in time. In our case, the framekW ,#l, W
represents all states of Boolean knowledge in the sense of all possible Boolean valuations of
spectral algebras, and the usual notion of “preserving knowledge through time” must be under-
stood in terms of# as “preserving valuations in spectral subalgebras.” The forcingKi=W a is
interpreted asthe spectral algebra W has Boolean knowledge abouta, i.e., the complete Boolean
valuation of W is known andW lies in the decreasing set associated with the formulaa. By
Proposition 4.5, to know the eigenvalue ofA is expressed in terms of the forcing asMi=sWAg A.

W+ being a topological space, it is a Heyting algebra with meet and join operations, the
classical ones and implication and negation defined as follows:

S→ T = hP P W: ∀ X # P,if X P S then XP Tj,

¬S= hP P W: ∀ X # P,X ¹ Sj.

Thus, the extended contextual valuation is a Heyting valuation ofSelf from the Heyting algebra
W+ such that

(1) n̄sa∨bd= n̄sadø n̄sbd;
(2) n̄sa∧bd= n̄sadù n̄sbd;
(3) n̄sa→bd= n̄sad→ n̄sbd;
(4) n̄s¬ad= ¬ n̄sad.

Taking into account the restrictions in the valuations imposed by the KS theorem, a Heyting
valuationv :Self→W+ such thatvsAd=sAg for each atomic formulaA is not possible. So, it is
clear that contextual logic is an intuitionistic logic in which not all of the Heyting valuations are
allowed.

VI. CONCLUSIONS

Contextual logic is a formal language to deal with combinations of propositions about physi-
cal properties of a quantum system that are well defined in different contexts. These properties are
regarded from a fixed context, which guarantees the avoidance of no-go theorems. This means that
one can refer to contexts other than the chosen one by building a Kripke model in which each
proposition is given a decreasing set as its truth value.

There are different formal languages on the orthomodular lattice of closed subspaces ofH
(such as orthologic or orthomodular quantum logic), but these logics give rise to different prob-
lems that lack an intuitive understanding, such as the “implication problem”(briefly, eight differ-
ent connectives may represent the material conditional; see Ref. 9). On the contrary, as contextual
logic is an intuitionistic one—with restrictions on the allowed valuations arising from the KS
theorem—it has “good” properties as the distributive lattice structure and a nice definition of the
implication as a residue of the conjunction. The price paid is it being a contextual language. But,
this is not a difficulty, it is a main feature of quantum mechanics.
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Two and three dimensional Hamiltonians with generalized and ordinary shape in-
variance symmetry have been obtained by Fourier transforming over some coordi-
nates of the SU(3) Casimir operator defined on SUs3d /SUs2d symmetric space. It is
shown that the generalized shape invariance of the two dimensional Hamiltonian is
equivalent to SU(3) symmetry while in the three dimensional one, the ordinary
shape invariance is equivalent to contracted SU(3) and there is one to one corre-
spondence between the representations of the generalized shape invariance symme-
try of the two (three) dimensional Hamiltonian and SU(3) [contracted SU(3)]
Verma bases. ©2005 American Institute of Physics.[DOI: 10.1063/1.1827325]

I. INTRODUCTION

Exactly solvable potentials are the central and fundamental problems of mathematical physics,
consequently they have attracted much interest both in theoretical physics and mathematics. There
are many methods of obtaining exactly solvable potentials in quantum mechanics. The most
powerful methods are the algebraic method,1 supersymmetric and shape invariant factorization of
the Schrödinger equation in one and two or three dimensional exactly solvable models.2–5 In all
these works it is shown that there is a close connection between the shape invariance symmetry of
one or higher dimensional Hamiltonians and some rank one semisimple Lie algebra or higher rank
nonsemisimple algebras, where this equivalence between the one dimensional shape invariant and
the rank one semisimple Lie algebra has been shown in Ref. 6.

Here in this work we introduce two and three dimensional Hamiltonians with a new kind of
shape invariance. It is shown that the shape invariance symmetry of the two dimensional Hamil-
tonian is equivalent to SU(3) symmetry where we call it generalized shape invariance while the
shape invariance associated with the three dimensional Hamiltonian is equivalent to contracted
SU(3) ordinary shape invariance and there is one to one correspondence between the representa-
tion of the generalized shape invariance symmetry of two(three) dimensional Hamiltonians and
SU(3) [contracted SU(3)] Verma bases.

The paper is organized as follows: In Sec. II after introducing the parametrization of SU(3)
Lie group we derive its right invariant vector fields and Casimir operator on SUs3d /SUs2d. In Sec.
III, using the Fourier transformation together with the coset reduction we obtain the two dimen-
sional HamiltonianHlsm1,m2d of charged particle onS2 sphere in the presence of an electric field.
Section IV is devoted to SU(3) Verma basis,7 and their connection with eigenspectrum and de-
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b)Electronic mail: jafarizadeh@tabrizu.ac.ir
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generacy of the above Hamiltonian. In Sec. V we talk about the generalized shape invariance of
this Hamiltonian. In Sec. V, through Inonu–Wigner contraction8 of SU(3), we obtain three dimen-
sional ordinary shape invariance Hamiltonians. The paper is ended with a conclusion and one
appendix.

II. THE RIGHT INVARIANT VECTOR FIELDS AND QUADRATIC CASIMIR OPERATOR
OF SU(3) GROUP OVER THE SU„3… /SU„2… COSET MANIFOLD

According to Ref. 9, we can parametrize an arbitrary element of the SUs3d /SUs2d coset
manifolds in the following form:

U = 1 sinsud 0 cossudeish+x1d

− cossudcosswdeisx2−x1d sinswde−ih sinsudcosswdeish+x2d

− cossudsinswde−ix1 − cosswde−ish+x2d sinsudsinswdeih 2 , s2.1d

where 0,u, wøp /2 and 0øh, x1, x2,2p. Now, an arbitrary element of SU(3) group manifold
can be obtained by multiplying the coset element given in(2.1) by an arbitrary elementh of
stability group SU(2) with the parametrizationh=expsil3adexpsil2bdexpsil3gd from left or right,
where 333 Hermitian Gell–Mann matricesli, i =1,2, . . . ,8 aredefined as

l1 = 10 1 0

1 0 0

0 0 0
2, l2 = 10 − i 0

i 0 0

0 0 0
2, l3 = 11 0 0

0 − 1 0

0 0 0
2 ,

l4 = 10 0 1

0 0 0

1 0 0
2, l5 = 10 0 − i

0 0 0

i 0 0
2, l6 = 10 0 0

0 0 1

0 1 0
2 , s2.2d

l7 = 10 0 0

0 0 − i

0 i 0
2, l8 =

1
Î311 0 0

0 1 0

0 0 − 2
2 .

Usually the right invariant vector fields of SU(3) group manifold can be obtained from the right
invariant su(3) Lie algebra valued one forms dG G−1=em

i djm li with G=Uh,10 whereem
i are right

invariant fiel-beins andjm=su ,w ,h ,x1,x2,a ,b ,gd are coordinates of SU(3) group manifold.
Then the right invariant vector field can be written asRi =ei

ms] /]jmd, whereei
m are the inverse of

the right invariant fiel-beinsem
i . Now, the SU(3) right invariant vector fields over the SUs3d /SUs2d

coset manifold11,12 can be obtained simply by projecting the SU(3) right invariant vector fields
over the principal bundle SU(3) to the base manifold SUs3d /SUs2d, where it leads to the vanishing
of the components which are tangent to SU(2) fiber manifold(stability group).

Using the above prescription, after some lengthy and tedious calculation via Maple software
we get the following expressions for the SU(3) right invariant vector fields over the SUs3d /SUs2d
coset manifold:

R± =
1

2
e±isx1−x2dF7cosswd

]

]u
± cotsudsinswd

]

]w
+ i tansudcosswd

]

]x1
+ i

cotsud
cosswd

]

]x2
G , s2.3d

Y± =
1

2
e±ix1F±sinswd

]

]u
± cotsudcosswd

]

]w
− i

cotsud
sinswd

]

]h

+ 2i
cos2sud − sin2sudsin2swd

sins2udsinswd
]

]x1
+ i

cotsud
sinswd

]

]x2
G , s2.4d
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X± =
1

2
e7ix2F7

]

]w
− i cotswdS ]

]h
−

]

]x1
D + 2i cots2wd

]

]x2
G , s2.5d

R3 = −
i

2
S ]

]x1
−

]

]x2
D, R8 =

iÎ3

2
S2

3

]

]h
−

]

]x1
−

]

]x2
D , s2.6d

whereR±= 1
2sR1± iR2d, Y±= 1

2sR47 iR5d, andX±= 1
2sR6± iR7d. After some algebraic calculations one

can show that, the above generators satisfy su(3) Lie algebra commutation relations. Also it is
straightforward to show that the following defined su(3) quadratic Casimir operator commutes
with all of the above generators

C = 1
2sR+R− + R−R+d + 1

2sY+Y− + Y−Y+d + 1
2sX+X− + X−X+d + R3

2 + R8
2, s2.7d

where after calculations, we obtain the following expression(by ignoring the factor14):

C = − F ]2

]u2 +
1

sin2sud
]2

]w2 +
4 − cos2sudsin2swd − cos2swd

3 sin2sudsin2swd
]2

]h2 +
1 − sin2sudcos2swd

sin2sudcos2sudsin2swd
]2

]x1
2

+
1

sin2sudsin2swdcos2swd
]2

]x2
2 −

2

sin2sudsin2swd
S ]2

]h]x1
+

]2

]h]x2
−

]2

]x1]x2
D

+
2s4 cos2sud − 1d

sins2ud
]

]u
+

2 cots2wd
sin2sud

]

]w
G . s2.8d

Similarly we can calculate the SU(3) left invariant vector fields, where its structure constant, is
minus the right invariant ones but its quadratic Casimir operator is the same as the right one. Here
we need only the right invariant vector fields and we do not need to quote the left invariant ones
here. Also one can show that the Casimir operator is the same as Laplace–Beltrami operator of
adjoint invariant metric.

III. REDUCTION OF THE CASIMIR OPERATOR TO TWO-DIMENSIONAL HAMILTONIAN
OF A CHARGED PARTICLE ON S2 SPHERE

In order to reduce the SU(3) Casimir operator together with its right invariant vector fields
defined on SUs3d /SUs2d coset manifold to a two-dimensional operator, first we eliminate the
coordinateh by Fourier transforming over the coordinateh by kerneleihl, where after similarity
transformationR→ f−1su ,wdRfsu ,wd with similarity function f−1su ,wd=sinsudÎcossudsins2wd the
right invariant vector fields and their quadratic Casimir operator take the following form:

R± =
1

2
e±isx1−x2dF7cosswd

]

]u
± cotsudsinswd

]

]w
+ i tansudcosswd

]

]x1

+ i
cotsud
cosswd

]

]x2
±

cos2sud − cos2swdsin2sud
sins2udcosswd G , s3.1d

Y± =
1

2
e±ix1F±sinswd

]

]u
± cotsudcosswd

]

]w
+ 2i

cos2sud − sin2sudsin2swd
sins2udsinswd

]

]x1

+ i
cotsud
sinswd

]

]x2
7

cos2sud − sin2swdsin2sud
sins2udsinswd

+ l
cotsud
sinswdG , s3.2d

X± =
1

2
e7ix2F7

]

]w
+ i cotswd

]

]x1
+ 2i cots2wd

]

]x2
± cots2wd + l cotswdG , s3.3d
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R3 = −
i

2
S ]

]x1
−

]

]x2
D, R8 = −

iÎ3

2
S ]

]x1
+

]

]x2
− 2i

l

3
D . s3.4d

One can straightforwardly show that the above generators satisfy su(3) Lie algebra commutation
relations

fR3,R±g = ± R±, fR3,Y±g = ± 1
2Y±, fR3,X±g = ± 1

2X±,

fR8,Y±g = ±
Î3

2
Y±, fR8,X±g = 7

Î3

2
X±,

fR+,R−g = 2R3, fR±,Y7g = ± X±, fR±,X7g = 7 Y±,

fY+,Y−g = R3 + Î3R8, fX+,X−g = R3 − Î3R8, fY±,X±g = 7 R±. s3.5d

Also the Casimir operator reduces to

C = − F ]2

]u2 + cotsud
]

]u
+

1

sin2sud
]2

]w2 +
1

sin2sudsin2swdS1 − sin2sudcos2swd
cos2sud

]2

]x1
2

+
1

cos2swd
]2

]x2
2 + 2

]2

]x1]x2
− 2ilS ]

]x1
+

]

]x2
D −

l2

3
s4 − cos2sudsin2swd − cos2swddD

+
1

4
tan2sud + cot2sud +

cot2s2wd
sin2sud G . s3.6d

For convenience we have denoted the reduced generators with the same notation of the preceding
section. Now we eliminate the coordinatesx1 and x2 through Fourier transformation over them
with the kerneleism1x1−m2x2d, then Casimir operator(3.6) reduces to the following Hamiltonian:

Hlsm1,m2d = − S 1

sinsud
]

]u
sinsud

]

]u
+

1

sin2sud
]2

]w2D + Vl,m1,m2
su,wd s3.7d

with

Vl,m1,m2
su,wd =

1

sin2sudsin2swd
Sm1

2s1 − sin2sudcos2swdd
cos2sud

+
m2

2

cos2swd
− 2m1m2 − 2lsm1 − m2d

+
l2

3
s4 − cos2sudsin2swd − cos2swddD −

1

4
tan2sud − cot2sud −

cot2s2wd
sin2sud

. s3.8d

On the other hand, the dynamical symmetric of motion of a charged particle in the presence of an
external electromagnetic field on the symmetric spaces can give the following nonrelativistic
Hamiltonian for motion of a charged particle on the two dimensional manifold with metricgmn in

the presence of static electromagnetic fields with vector potentialAW and scalar potentialV as13

H = −
1
Îg

s]m − iAmdsÎggmns]n − iAndd + V, s3.9d

whereg is the determinant of metricgmn. Therefore, the Hamiltonian(2.8) can be interpreted as
the Hamiltonian of a charged particle onS2 sphere with metric
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gmn = S1 0

0 sin2sud
D , s3.10d

in the presence of an electric field with scalar potential(3.8).

IV. THE ALGEBRAIC SOLUTION OF THE HAMILTONIAN BY USING VERMA BASES

Here in this section we try to solve our Hamiltonian algebraically, that is we will obtain its
eigenspectrum by using the Verma bases of su(3) or A2 Lie algebra. According to Ref. 7, Verma
bases of the irreducible representation spaceVsLd of A2 overC Lie algebra, whereL=sp,qd is the
highest weight, consist of all vectors

f1
a3f2

a2f1
a1up,ql, s4.1d

such that

0 ø a1 ø p, 0 ø a2 ø q + a1, 0 ø a3 ø minfq,a2g, s4.2d

whereei, f i, hi, i =1 and 2 are base ofA2 Lie algebra satisfying the commutation relations

fei, f ig = hi, fhi,eig = 2ei, fhi, f ig = − 2f i, i = 1,2 s4.3d

for each simple roota1= s 1
2 ,Î3/2d and a2= s 1

2 ,−Î3/2d. Now, by comparing the commutation
relations

fY+,Y−g = R3 + Î3R8, fR3 + Î3R8,Y±g = ± 2Y±,

fX+,X−g = R3 − Î3R8, fR3 − Î3R8,X±g = ± 2X± s4.4d

with (4.3) we have

h1 = R3 + Î3R8, e1 = Y+, f1 = Y−,

h2 = R3 − Î3R8, e2 = X+, f2 = X−. s4.5d

In an arbitrary representation ofA2 with highest weightLsp,qd, the highest eigenweight satisfies

eiup,ql = 0, i = 1,2. s4.6d

Therefore, the highest eigenfunctionc p,qsu ,w ,x1,x2d=kx2,x1,w ,u up,ql satisfies the following
first order linear differential equations:

Fsinswd
]

]u
+ cotsudcosswd

]

]w
+ 2i

cos2sud − sin2sudsin2swd
sins2udsinswd

]

]x1
+ i

cotsud
sinswd

]

]x2

−
cos2sud − sin2swdsin2sud

sins2udsinswd
+ l

cotsud
sinswdGc p,qsu,w,x1,x2d = 0, s4.7d

F−
]

]w
+ i cotswd

]

]x1
+ 2i cots2wd

]

]x2
+ cots2wd + l cotswdGc p,qsu,w,x1,x2d = 0. s4.8d

On the other hand, the highest eigenweight is the eigenstate of the Cartan subalgebra withR3 and
R8 as its Gell–Mann basis,14 where the basesha1

andha2
are associated with simple rootsa1 and

a2, and they can be written in terms of these bases in the following form:15
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ha1
= R3 + Î3R8, ha2

= R3 − Î3R8. s4.9d

Writing the highest eigenweight in terms of fundamental weights, that ism=pm1+qm2 and con-
sidering the following relation between the simple roots and fundamental weights:

2
smi,a jd
sa j,a jd

= d j
i , s4.10d

we can write

sR3 + Î3R8dc p,qsu,w,x1,x2d = km,R3 + Î3R8lc p,qsu,w,x1,x2d

= km,ha1
lc p,qsu,w,x1x2d = 2

sm,a1d
sa1,a1d

c p,qsu,w,x1,x2d

or

sR3 + Î3R8dc p,qsu,w,x1x2d = pc p,qsu,w,x1,x2d. s4.11d

Similarly by acting out the other basis of Cartan subalgebra on highest eigenweight we obtain

sR3 − Î3R8dc p,qsu,w,x1x2d = qc p,qsu,w,x1,x2d. s4.12d

The above eigenvalue equations imply the followingx1 andx2 dependence of highest eigenweight
c p,qsu ,w ,x1,x2d,

c p,qsu,w,x1,x2d = esi/3ds2p+q+ldx1e−si/3dsp+2q−ldx2f p,qsu,wd. s4.13d

Substituting(4.13) in (4.7) and (4.8), we see that the integrability of the latter equation requires
that p=q+ l, that is for given values of the parameterl, only the representationssq+ l ,qd are
relevant to the eigenspectrum of our Hamiltonian. Hence, integrating Eqs.(4.7) and (4.8) we get
the following expression for the highest eigenweight in these particular representations:

c q,lsu,w,x1,x2d = eissq+ldx1−qx2dscosqswdsinq+1sudcosq+lsudÎcossudsins2wdd. s4.14d

Now, using the formula(4.1) we can obtain the lower eigenweights or Verma bases,

csa3,a2,a1dsu,w,x1,x2d = Y−
a3X−

a2Y−
a1c q,lsu,w,x1,x2d, s4.15d

where 0øa1øq+ l, 0øa2øq+a1, 0øa3øminfq,a2g. In order to obtain eigenspectrum of the
Hamiltonian(3.7), it is sufficient to eliminatex1 andx2 coordinates dependence of SU(3) Verma
basis by Fourier transforming over them. This can be achieved simply by shifting the phase factor
eissq+ldx1−qx2d to the left-hand side of lowering operatorsX− and Y− in the above relation and
integrating over the coordinatesx1 andx2. Hence, we obtain

csa3,a2,a1dsu,w,x1,x2d = eisq+l−a1−a3dx1e−isq−a2dx2xq+l−a1−a3,q−a2

q,l su,wd, s4.16d
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where

xq+l−a1−a3,q−a2

q,l su,wd = Sp
i=1

a3

Y−sq + l − a1 − i + 1,q − a2dDSp
i=1

a2

X−sq + l − a1,q − i + 1dD
3 Sp

i=1

a1

Y−sq + l − i + 1,qdDscosqswdsinq+1sudcosq+lsudÎcossudsins2wdd,

s4.17d

and the operators appear in the products asPi=1
m Ksid=KsmdKsm−1d¯Ks1d also the Fourier trans-

formed operators have the following form:

R±sm1,m2d =
1

2
F7cosswd

]

]u
± cotsudsinswd

]

]w
− m1 tansudcosswd

+ m2
cotsud
cosswd

±
cos2sud − cos2swdsin2sud

sins2udcosswd G , s4.18d

Y±sm1,m2d =
1

2
F±sinswd

]

]u
± cotsudcosswd

]

]w
− 2m1

cos2sud − sin2sudsin2swd
sins2udsinswd

+ m2
cotsud
sinswd

7
cos2sud − sin2swdsin2sud

sins2udsinswd
+ l

cotsud
sinswdG , s4.19d

X±sm1,m2d =
1

2
F7

]

]w
− m1 cotswd + 2m2 cots2wd ± cots2wd + l cotswdG , s4.20d

R3sm1,m2d = 1
2sm1 + m2d, R8sm1,m2d =

Î3

2
Sm1 − m2 −

2

3
lD . s4.21d

Now, by definingm1=q+ l −a1−a3 and m2=q−a2, we see that due to the inequalities(4.2), the
parametersm1 andm2 must satisfy −qøm1øq+ l and −sq+ ldøm2øq. Also it is straightforward
to see that an arbitrary Verma basis is proportional toeism1x1−m2x2d or we can write

cm1,m2

q,l su,w,x1,x2d = eism1x1−m2x2dxm1,m2

q,l su,wd. s4.22d

Now, substituting(4.22) in (3.6) and Fourier transforming over the coordinatesx1 and x2, the
Casimir operator reduces to the required two dimensional HamiltonianHlsm1,m2d given in (3.7).
Therefore, the general eigenfunctions of the above Hamiltonian with eigenvalueEsq, ld= 1

3ssq
+ lds2q+ l +3d+qsq+3dd (for the degeneracy of these eigenvalues see the Appendix) can be written
as

xm1,m2

q,l su,wd = Sp
i=1

a3

Y−sm1 + a3 − i + 1,m2dDS p
i=1

q−m2

X−sm1 + a3,q − i + 1dD
3 S p

i=1

q+l−m1−a3

Y−sq + l − i + 1,qdDscosqswdsinq+1sudcosq+lsudÎcossudsins2wdd .

s4.23d
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V. GENERALIZED SHAPE INVARIANCE SYMMETRY

In this section we show that the HamiltonianHlsm1,m2d possesses a new kind of shape
invariance symmetry, we call it generalized shape invariance. Obviously SU(3) symmetry of the
Casimir operator before the reduction generates this special shape invariance symmetry. Using this
symmetry we will obtain below the eigenspectrum of HamiltonianHlsm1,m2d, that is the eigen-
functionsxm1,m2

q,l su ,wd corresponding to eigenvalueEsq, ld by consecutive application of lowering
operators over the state withm1=q+ l and m2=q. We will also obtain its degeneracy for given
values ofsq+ l ,qd, where it is the same as the one that can be obtained by using the inequalities
(4.2) corresponding to Figs. 1 and 2.

FIG. 1. Diagram of seven possible allowed regions of eigenspectrum of HamiltonianHlsm1,m2d in the sm1,m2d plane for
given values of integer parametersq, l, m1, andm2 with l ù0. Horizontal lines mean application of the lowering operator
Y− while the vertical line indicates the application of the lowering operatorX−.

FIG. 2. Diagram of seven possible allowed regions of eigenspectrum of HamiltonianHlsm1,m2d in the sm1,m2d plane for
given values of integer parametersq, l, m1, andm2 with l ,0. Horizontal lines mean application of the lowering operator
Y− while the vertical line indicates the application of the lowering operatorX−.
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First we write the HamiltonianHlsm1,m2d operator in terms of the Fourier transformed op-
erators given in(4.18)–(4.21),

Hlsm1,m2d =
1

2
fR+sm1 − 1,m2 − 1dR−sm1,m2d + R−sm1 + 1,m2 + 1dR+sm1,m2d

+ Y+sm1 − 1,m2dY−sm1,m2d + Y−sm1 + 1,m2dY+sm1,m2d + X+sm1,m2 − 1dX−sm1,m2d

+ X−sm1,m2 + 1dX+sm1,m2dg +
sm1 + m2d2

4
+

3sm1 − m2 − 2
3ld2

4
. s5.1d

Now, using the following commutation relations,

fR3 + Î3R8,Y±g = ± 2Y±, fR3 − Î3R8,Y±g = 7 Y±,

fR3 − Î3R8,X±g = ± 2X±, fR3 + Î3R8,X±g = 7 X±, s5.2d

we can obtain the following relations:

sR3sm1 ± 1,m2d + Î3R8sm1 ± 1,m2ddY±sm1,m2d − Y±sm1,m2dsR3sm1,m2d

+ Î3R8sm1,m2dd = ± 2Y±sm1,m2d,

sR3sm1 ± 1,m2d − Î3R8sm1 ± 1,m2ddY±sm1,m2d − Y±sm1,m2dsR3sm1,m2d

− Î3R8sm1,m2dd = 7 Y±sm1,m2d,

sR3sm1,m2 ± 1d − Î3R8sm1,m2 ± 1ddX±sm1,m2d − X±sm1,m2dsR3sm1,m2d

− Î3R8sm1,m2dd = ± 2X±sm1,m2d,

sR3sm1,m2 ± 1d + Î3R8sm1,m2 ± 1ddX±sm1,m2d − X±sm1,m2dsR3sm1,m2d

+ Î3R8sm1,m2dd = 7 X±sm1,m2d. s5.3d

The above relations imply that the HamiltonianHlsm1,m2d possesses shape invariance symmetry.
Since, through the left action of the operatorsY±sm1,m2d and X±sm1,m2d on both sides of the
following eigenvalue equations,

Hlsm1,m2dxm1,m2

q,l su,wd = Esq,ldxm1,m2

q,l su,wd,

sR3sm1,m2d + Î3R8sm1,m2ddxm1,m2

q,l su,wd = S2m1 − m2 −
l

2
Dxm1,m2

q,l su,wd, s5.4d

sR3sm1,m2d − Î3R8sm1,m2ddxm1,m2

q,l su,wd = S− m1 + 2m2 +
l

2
Dxm1,m2

q,l su,wd,

we get

xm1±1,m2

q,l su,wd = Y±sm1,m2dxm1,m2

q,l su,wd, s5.5d

xm1,m2±1
q,l su,wd = X±sm1,m2dxm1,m2

q,l su,wd. s5.6d

Therefore, the operatorsY±sm1,m2d shift the parameterm1 by one unit or they push the unrenor-
malized eigenfunctions horizontally in Figs. 1 and 2, while the operatorsX±sm1,m2d shift the
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parameterm2 by one unit or they push the eigenfunctions vertically in Figs. 1 and 2. Obviously the
eigenfunctions vanish in the forbidden regions of Figs. 1 and 2. Using the relations(5.5) and(5.6),
we obtain the following relations:

Y+sm1 − 1,m2dY−sm1,m2dxm1,m2

q,l su,wd . xm1,m2

q,l su,wd,

Y−sm1,m2dY+sm1 − 1,m2dxm1−1,m2

q,l su,wd . xm1−1,m2

q,l su,wd s5.7d

and

X+sm1,m2 − 1dX−sm1,m2dxm1,m2

q,l su,wd . xm1,m2

q,l su,wd,

X−sm1,m2dX+sm1,m2 − 1dxm1,m2−1
q,l su,wd . xm1,m2−1

q,l su,wd, s5.8d

which indicate that the HamiltonianHlsm1,m2d possesses the shape invariance symmetry. Actually
the first pair of equations given in(5.7) imply the horizontal shape invariance while the second
pair of equations given in(5.8) imply the vertical shape invariance symmetry in Figs. 1 and 2,
respectively. Therefore, using this symmetry we can obtain the eigenfunctions of the isospectral
HamiltoniansHlsm1,m2d with the eigenvalueEsq, ld simply by applying the lowering operatorsX−

andY− over the highest weightxq+l,q
q,l su ,wd, namely we obtain all the eigenstates for the values of

parametersm1 andm2 given in the allowed region of Figs. 1 and 2, such that these eigenfunctions
vanish for the values of the parameters corresponding to the forbidden region. Also one can show
that in this way we obtain exactly the same eigenspectrum that we have obtained in Sec. IV by
using the Verma basis.

Therefore, by consecutive application of lowering operators over highest eigenweight
xq+l,q

q,l su ,wd, we can obtain an arbitrary eigenstatexm1,m2

q,l su ,wd, where the existence of different
ordering of lowering operators or the different paths indicate the degeneracy of the Hamiltonian
Hlsm1,m2d. It is straightforward to show that by this method we get exactly the eigenspectrum of
the preceding section. For an illustration we explain below the real representation withq=1 and
l =0 in detail. Using the relation(4.23), we get the following expression for highest eigenweight of
(1,1) representation:

x1,1
1,0su,wd = 2 sin2sudcossudcosswdÎcossudsins2wd, s5.9d

then using(5.5) we get

x0,1
1,0su,wd = Y−s1,1dx1,1

1,0su,wd = − sin3sudsins2wdÎcossudsins2wd. s5.10d

Now, we cannot lower the above eigenstate by acting the operatorY− on it, since the function
x−1,1

1,0 su ,wd corresponds to the values of parameters(m1=−1, m2=1) which is not allowed forq
=1 andl =0. Therefore in order to get lower eigenstates we must act out the operatorX− on it, that
is, we have

x0,0
1,0su,wd = X−s0,1dx0,1

1,0su,wd = 2 sin3sudcoss2wdÎcossudsins2wd. s5.11d

On the other hand, if we act out the lowering operatorX− on the highest eigenstate, we will obtain

x1,0
1,0su,wd = X−s1,1dx1,1

1,0su,wd = − 2 sin2sudcossudsinswdÎcossudsins2wd, s5.12d

where its further action will kill it, since the values of parameters(m1=1, m2=−1) are not allowed,
hence we cannot have the eigenstate corresponding to these values of parameters. Similarly the
action ofY− will shift x1,0

1,0su ,wd state to(m1=0, m2=0) or zero weight eigenstate,
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x̃0,0
1 su,wd = Y−s1,0dx1,0

1,0su,wd = 2scos2sud − sin2swdsin2suddsinsudÎcossudsins2wd. s5.13d

We see that zero weight is degenerate but other eigenvalues are nondegenerate which is in agree-
ment with the results of the preceding section. With the same procedure we can obtain the
remaining part of the spectrum, that is we have

x0,−1
1,0 su,wd = X−s0,0dx0,0

1,0su,wd = − 2 sins2wdsin3sudÎcossudsins2wd,

x−1,0
1,0 su,wd = Y−s0,0dx0,0

1,0su,wd = 2 sinswdsins2udsinsudÎcossudsins2wd, s5.14d

and

x−1,−1
1,0 su,wd = Y−s0,− 1dx0,−1

1,0 su,wd = X−s− 1,0dx−1,0
1,0 su,wd = 2 sins2udcosswdsinsudÎcossudsins2wd.

s5.15d

We should remind that all eigenfunctions associated with the forbidden region ofsm1,m2d plane
vanish. For example, the action of the operatorsX−

3Y− andY−
2X−

2Y− on highest eigenstate leads to
vanishing functionsx0,−2

1 su ,wd andx−2,−1
1 su ,wd, respectively. Also one can show that by acting the

operatorsX−Y−X−Y− andY−X−Y−X− on the highest eigenstate we obtain eigenstates which are both
proportional to Verma basex−1,−1

1,0 su ,wd=Y−X−
2Y−x1,1

1,0su ,wd.

VI. THREE DIMENSIONAL HAMILTONIAN WITH ORDINARY SHAPE INVARIANCE
SYMMETRY

Here in this section we first make Inonu–Wigner contraction8 over the generators of su(3) Lie
algebra given in(2.3)–(2.6), simply by making the change of coordinateu=r /R and relating the
new contracted generators to the old ones byR±

c =s1/RdR±, R3
c=R3, X±

c =X±, Y±
c =s1/RdY±, R8

c

=R8. Then in the limit ofR→` the set of su(3) bases reduces to

R±
c =

1

2
e±isx1−x2dF7cosswd

]

]r
±

sinswd
r

]

]w
+

i

r cosswd
]

]x2
G , s6.1d

Y±
c =

1

2
e±ix1F±sinswd

]

]r
±

cosswd
r

]

]w
+

i

r sinswd
S−

]

]h
+

]

]x1
+

]

]x2
DG , s6.2d

X±
c =

1

2
e7ix2F7

]

]w
− i cotswdS ]

]h
−

]

]x1
D + 2i cots2wd

]

]x2
G , s6.3d

R3
c = −

i

2
S ]

]x1
−

]

]x2
D, R8

c =
iÎ3

2
S2

3

]

]h
−

]

]x1
−

]

]x2
D s6.4d

with the following commutation relations:

fR3
c,R±

cg = ± R±
c, fR3

c,Y±
cg = ± 1

2Y±
c, fR3

c,X±
cg = ± 1

2X±
c ,

fR8
c,Y±

cg = ±
Î3

2
Y±

c, fR8
c,X±

cg = 7
Î3

2
X±

c , s6.5d

fR±
c,X7

c g = 7 Y±
c, fX+

c,X−
cg = R3

c − Î3R8
c, fY±

c,X±
cg = 7 R±

c .

Therefore, the generatorsR−
c, R+

c, Y−
c, andY+

c commute with each other. Also the quadratic Casimir
operator(2.8) reduces to
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− Cc =
]2

]r2 +
1

r2

]2

]w2 +
1

r2 sin2swd
]2

]h2 +
3

r

]

]r
+

2 cots2wd
r2

]

]w
+

1

r2 sin2swd

3S ]2

]x1
2 +

1

cos2swd
]2

]x2
2 + 2

]2

]x1]x2
− 2

]2

]h]x1
− 2

]2

]h]x2
D , s6.6d

where after the similarity transformationC̃c= f−1sr ,wdCcfsr ,wd with fsr ,wd=1/Îr cosswd we get

− C̃c = −
1

2
sR̃−

cR̃+
c + R̃+

cR̃−
c + Y−

cY+
c + Y+

cY−
cd

= +
1

r2

]

]r
r2 ]

]r
+

1

r2 sinswd
]

]w
sinswd

]

]w
+

1

r2 sin2swd
]2

]h2 +
1

4r2 cos2swd

+
1

r2 sin2swdS ]2

]x1
2 +

1

cos2swd
]2

]x2
2 + 2

]2

]x1x2
− 2

]2

]h]x1
− 2

]2

]h]x2
D , s6.7d

whereỸ±
c =Y±

c andR̃±
c =R±

c ± f1/4r cosswdge±isx1−x2d. Now, by Fourier transforming over the coordi-
natesx1 and x2 with the kerneleism1x1−m2x2d, and the similarity transformation with function
eism1−m2dh, the above Casimir operator reduces to

Hsm2d = − F 1

r2

]

]r
r2 ]

]r
+

1

r2 sinswd
]

]w
sinswd

]

]w
+

1

r2 sin2swd
]2

]h2 −
sm2

2 − 1
4d

r2 cos2swd
G . s6.8d

Also after Inonu–Wigner contraction together with the Fourier transformation, the Casimir eigen-
value equationsC/R2dc=fEsq, ld /R2gc reduces toHsm2dcm2

skd =k2cm2

skd provided that for finitel, we
let q→`, R→` such thatq/R=finite=k, therefore, we have a hierarchy of isospectral Hamilto-
nians labeled by the parameterm2 and one can show that this isospectral symmetry comes from
the shape invariance symmetry of these Hamiltonians. To see this we first write the Hamiltonian
Hsm2d in terms of Fourier transformed and similarity transformed lowering and rising operators,

A±sm2d =
1

2
S7cosswd

]

]r
±

sinswd
r

]

]w
+

2m2 − 1

2r cosswdD ,

B+ =
1

2
Ssinswd

]

]r
+

cosswd
r

]

]w
−

i

r sinswd
]

]h
+

1

r sinswdD , s6.9d

B− =
1

2
S− sinswd

]

]r
−

cosswd
r

]

]w
−

i

r sinswd
]

]h
D ,

in the following form:

Hsm2d = A+sm2dA−sm2d + B+B−, s6.10d

Hsm2 − 1d = A−sm2dA+sm2d + B+B−. s6.11d

Now, multiplying the eigenvalue equation

Hsm2dcm2

skd = sA+sm2dA−sm2d + B+B−dcm2

skd s6.12d

from the left-hand side by the operatorA−sm2d and using the fact thatA±sm2d commute withB±,
we obtain
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Hsm2 − 1dsA−sm2dcm2

skdd = sk2sA−sm2ddcm2

skdd, s6.13d

therefore,A−sm2dcm2

skd is the eigenfunction ofHsm2−1d with the same eigenvaluek2, hence the
operatorA−sm2d lowers the indexm2 by one unit. The similarity one shows thatA+sm2d raisesm2

by one unit, respectively. Therefore, the HamiltonianHsm2d possesses ordinary shape invariance
symmetry with respect to parameterm2.

For half-integer value of the parameterm2 we can obtain the continuous eigenspectrum of
these Hamiltonians(since these Hamiltonians are positive definite), simply by acting these low-
ering and raising operators over the eigenfunction of the free particle as follows.

Since for m2= 1
2 the HamiltonianHsm2d reduces toHs 1

2
d=−¹2 with the eigenvalueE=k2

and eigenfunctionc1/2
skWd =eikW.xW and for HamiltonianHsn2+ 1

2
d with non-negative integern2, we

haveHsn2+ 1
2

dcn2

skWd=k2cn2

skWd with

cn2

skWd = p
j=1

n2

A+S j +
1

2
DeikW.xW . s6.14d

VII. CONCLUSION

Here in this work we have generalized the ordinary exactly solvable shape invariance Hamil-
tonians to Hamiltonians with non-Abelian type of shape invariance symmetry and an ordinary
shape invariance one. Again it is shown that the new kind of shape invariance symmetry has its
origin in group theory or better to say, the exact solvability of Hamiltonians are related in some
way to Lie algebras or Lie groups.

APPENDIX: DEGENERACY OF HAMILTONIAN Hl„m1,m2…

In order to determine the degeneracy of HamiltonianHlsm1,m2d for a given value of integer
parametersm1 andm2, we should determine the range of variation of integera3 by imposing the
inequalities(4.2).

For l ù0 and 0øm2øq we have the following three different regions for integer parameter
m1:

(I) −m1øa3øq−m2, m2−m1øq, −qøm1,0, degeneracy=q−m2+m1+1,
(II ) 0øa3øq−m2, 0øm1, l +m2, degeneracy=q−m2+1,
(III ) 0øa3øq+ l −m1, l +m2øm1øq+ l, degeneracy=q+ l −m1+1,
while for −q− l øm2,0 there are another four different regions form1,
(IV ) −m1øa3øq, −qøm1, l +m2,0, −q− l øm2,0, degeneracy=q+m1+1,
(V) −m1øa3øq+ l −m1+m2, l +m2øm1,0, −q− l øm2,−l, degeneracy=q+ l +m2+1,
(VI ) 0øa3øq, 0øm1, l +m2, −l øm2,0, degeneracy=q+1,
(VII ) 0øa3øq+ l −m1+m2, l øm1−m2øq+ l, 0øm1øq+ l, −l −qøm2,0, degeneracy

=q+ l −m1+m2+1.

For l ,0 and 0øm2øq we have the following four different regions for integer parameter
m1:

(I) −m1øa3øq−m2, ul u,m2−m1øq, −qøm1ø0, 0øm2øq, degeneracy=q−m2+m1
+1,

(II ) −m1øa3øq− ul u−m1, m2− ul uøm1,0, 0øm2, ul u, degeneracy=q− ul u+1,
(III ) 0øa3øq−m2, 0øm1øm2− ul u, ul uøm2øq, degeneracy=q−m2+1,
(IV ) 0øa3øq− ul u−m1, 0øm2− ul uøm1øq− ul u, 0øm2øq, degeneracy=q− ul u−m1+1,
while for −q+ ul uøm2,0 there are another three different regions form1,
(V) −m1øa3øq, −qøm1,m2− ul u, degeneracy=q+m1+1,
(VI ) −m1øa3øq− ul u−m1+m2, m2− ul uøm1,0, degeneracy=q− ul u+m2+1,
(VII ) 0øa3øq− ul u−m1+m2, m1−m2øq− ul u, 0øm1,q− ul u, degeneracy=q− ul u−m1+m2

+1.
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For given values of the integer parametersq, l, m1, andm2 the eigenspectrum of Hamiltonian
Hlsm1,m2d exists in the above seven regions of thesm1,m2d plane(see Fig. 1 forl ù0 and Fig. 2
for l ,0). Therefore for given values ofm1 andm2 the eigenspectrum can be obtained simply by
consecutive application of lowering operators over the highest eigenweight according to the paths
shown in Figs. 1 and 2.
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Implementation of group-covariant positive operator
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We consider group-covariant positive operator valued measures(POVMs) on a
finite dimensional quantum system. Following Neumark’s theorem a POVM can be
implemented by an orthogonal measurement on a larger system. Accordingly, our
goal is to find a quantum circuit implementation of a given group-covariant POVM
which uses the symmetry of the POVM. Based on representation theory of the
symmetry group we develop a general approach for the implementation of group-
covariant POVMs which consist of rank-one operators. The construction relies on a
method to decompose matrices that intertwine two representations of a finite group.
We give several examples for which the resulting quantum circuits are efficient. In
particular, we obtain efficient quantum circuits for a class of POVMs generated by
Weyl–Heisenberg groups. These circuits allow to implement an approximative si-
multaneous measurement of the position and crystal momentum of a particle mov-
ing on a cyclic chain. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1827924]

I. INTRODUCTION

General measurements of quantum systems are described by positive operator-valued mea-
sures(POVMs).1,2 For several optimality criteria the use of POVMs can be advantageous as
compared to projector valued measurements. This is true, e.g., for the mean square error, the
minimum probability of error,3 and the mutual information.4 POVMs are more flexible than
orthogonal von Neumann measurements and can consist of finite as well as of an infinite number
of elements. An example for the latter is given in Ref. 5 where a POVM for measuring the spin
direction is proposed. Here we restrict our attention to the finite case where a POVM is described
by a set of positive operators which sum up to the identity. Such a POVM is called group-
covariant if the set is invariant under the action of a group. The example of POVMs for the
Weyl–Heisenberg groups as well as an example given in Ref. 5 show that POVMs are needed to
describe phenomenologically the mesoscopic scale of quantum systems. They allowapproxima-
tively simultaneous measurements of quantum observables which are actually incompatible. For
instance, the classical phase space of a particle can be approximatively reproduced by simulta-
neous measurements of momentum and position. Descriptions of quantum particles which have
strong analogy to the classical phase space are helpful to understand the relations between the
classical and the quantum world.6 Also for several other tasks in quantum information processing
the implementation of POVMs is of interest.7–9

a)Electronic mail: decker@ira.uka.de
b)Electronic mail: janzing@ira.uka.de
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Neumark’s theorem10,11 states that in principle every POVM can be implemented by an or-
thogonal measurement of the joint system consisting of the system and an ancilla system. How-
ever, the orthogonal measurement required by this construction may not be a “natural” observable
of the joint system. One may need an additional unitary transform to obtain a reduction to a more
natural observable which henceforth will be called the measurement in the computational basis of
the quantum system.

Therefore, the question arises how to actually implement a POVM in terms of a quantum
circuit which itself is composed of a sequence of elementary quantum gates.12 So far, only little is
known about the implementation of POVMs even in quantum systems with a small number of
dimensions. While some rather specific single-qubit measurements have been studied,4,13,14 not
much is known about the general problem of how to implement a POVM by a unitary transform
on the quantum register of a possibly larger space followed by an orthogonal measurement in the
computational basis.

When studying quantum circuits for families of POVMs questions about the complexity of the
required unitary transforms arise. In some cases we can exploit the fact that they admit some
additional symmetry. This leads to the study of group-covariant POVMs which has been studied
extensively in the literature.4,15–17As a recent example we mention the construction of symmetric
informationally complete POVMs by means of suitable finite symmetry groups.18

The main contribution of this paper is a general method which computes an embedding of
group-covariant POVMs into orthogonal measurements on a larger Hilbert space. A particular
feature of the computed embedding is that it uses the symmetry. This in turn allows to apply
known techniques for decomposing matrices with symmetry to the unitary matrices obtained by
this embedding. For several cases this leads to families ofefficientquantum circuits implementing
the given POVMs.

Outline: In Sec. II we briefly recall the definition of POVMs. In Sec. III we consider the
decomposition of matrices that have a symmetry with respect to a group. This type of decompo-
sition is a basic tool for our constructions. We also define group-covariance of POVMs with
respect to a symmetry group and a group representation. Furthermore, we explain how POVMs
with this group covariance are related to so-called monomial representations of the symmetry
group. In Sec. IV we explain the general scheme for the construction of a unitary transform that
implements a group-covariant POVM. The basis for this construction is the analysis of the inter-
twining space between the group representation that is given by the group covariance of the
POVM and the monomial representation. This is the starting point for methods using fast quantum
Fourier transforms as described in Sec. V. Finally, in Sec. VI we give several examples of imple-
mentations of group-covariant POVMs.

Notations: We denote the field of complex numbers byC. The group of invertiblen3n
matrices is denoted by GLnsCd and the subgroup consisting of the unitaryn3n matrices is denoted
by Usnd. We denote the identity matrix inUsnd by 1n. If not denoted otherwise all matrices are
matrices over the complex numbers. The cyclic group of ordern is denoted byZn. Representations
are denoted by small greek letters, e. g.,w, c, etc. By abuse of notation we also denote the trivial
representation of dimensionn (i.e., dimensionn) by 1n. The direct sum of matrices and represen-
tations is denoted byA% B and w % c and the tensor product is denoted byA^ B and w ^ c,
respectively. We make frequent use of the Pauli matrices

sx = S0 1

1 0
D, sy = S0 − i

i 0
D, sz = S1 0

0 − 1
D .

A diagonal matrix with diagonal entriesl1, . . . ,ln is abbreviated by diagsl1, . . . ,lnd. We denote
the symmetric group onn symbols bySn. To each permutationsPSn naturally corresponds the
permutation matrixoiussidlki u. By abuse of notation we identifys with the corresponding permu-
tation matrix. We often use the permutation matrixSm which corresponds to them-cycle
s1,2, . . . ,md and the matrixTm=diags1,vm, . . . ,vm

m−1d which contains the eigenvalues ofSm. The
basis states of ann-qubit system correspond to binary strings of lengthn. Quantum circuits are
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written from the left to the right, and the qubits are arranged such that the most significant qubit
(characterizing the left-most symbol of a binary string) is on top. Throughout the paper a matrix
entry “·” stands for zero.

II. POVMs AND ORTHOGONAL MEASUREMENTS

A POVM for a quantum system with Hilbert spaceCd is a setP=hA1, . . . ,Anj#Cd3d of
non-negative operators, whereokAk=1d. For a more general definition for POVMs with an infinite
number of operators we refer to Ref. 19. For example, the set of matrices

P2 = H1

3
S1 1

1 1
D,

1

3
S 1 v

v2 1
D,

1

3
S1 v2

v 1
DJ # C232,

wherev=exps2pi /3d is a third root of unity, defines a POVM on a system with corresponding
Hilbert spaceC2. Suppose that the state of the system is described by the density matrixr
PCd3d. Then for a general POVM the probabilitypk for the resultk is given bypk=trsrAkd. An
orthogonalmeasurement is a POVM with mutually orthogonal operatorsAk, i. e., we have that
AkAl =AlAk=0 for kÞ l.

In the following we restrict ourselves to rank-one operatorsAk= uCklkCku. Note that the
POVM vectorsuCkl need not be normalized and that the restriction to operators of rank one is for
some applications justified by Davies’ theorem.15 It states that we can always find a POVM with
rank-one operators that maximizes the mutual information. The exampleP2, which consists of
three rank-one operators, can be written asP2=huC1lkC1u , uC2lkC2u , uC3lkC3uj, where

uC1l =
1
Î3

S1

1
D, uC2l =

1
Î3

S 1

v2D, anduC3l =
1
Î3

S1

v
D

are the corresponding POVM vectors inC2. Neumark’s theorem11 states that it is possible to
implement a POVM by reducing it to an orthogonal measurement on a larger system. We briefly
recall this construction. LetP=hAkj=huCklkCkuj be a POVM withn operators that acts on the
Hilbert spaceCd. For n.d the vectorsuCkl cannot be mutually orthogonal. Consequently, we
must extend the system by at leastn−d dimensions in order to define an orthogonal measurement

with n different measurement outcomes. We want to implement an orthogonal measurementP̃

=hÃkj=huC̃klkC̃kuj on the system withn dimensions such thatP̃ corresponds to the POVMP on

the subsystem withd dimensions, i.e.,pk=trsrAkd=trsr̃Ãkd. Here we have that the embedding of
the state into the larger system isr̃=r % 0n−dPCn3n where 0n−d denotes the zero matrix of size
n−d.

We write the POVM vectorsuCkl as columns of the matrixM =suC1l¯ uCnldPCd3n. In the

following we refer toM as the defining matrix for the POVMP. Now, the vectorsuC̃kl= uCkl
% uFkl corresponding toÃk= uC̃klkC̃kuPCn3n are the columns of the matrix

M̃ = SuC1l ¯ uCnl
uF1l ¯ uFnl

D P Usnd.

Note thatM̃ can be an arbitrary unitary matrix which containsM as upper part of sized3n. Since

P is a POVM we haveMM†=okuCklkCku=okAk=1d, i. e., finding a suitableM̃ is always possible.
For example, in case ofP2 we obtain the defining matrix

M =
1
Î3

S1 1 1

1 v2 v
D P C233

and one possible choice forM̃ is to add the row given bys1/Î3ds1,v ,v2d. Hence the rank-one

projectors corresponding to the orthogonal measurementM̃ are
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uC̃1l =
1
Î311

1

1
2, uC̃2l =

1
Î31 1

v2

v
2, anduC̃3l =

1
Î31 1

v

v22 .

The probability distributionp̃k=trsr̃Ãkd of the constructed orthogonal measurement equals the
distributionpk of the original POVM since

p̃k = trsr̃Ãkd = trSsr % 0n−ddSuCklkCku uCklkFku
uFklkCku uFklkFku

DD = trsrAkd = pk.

The embedding into a larger system can be realized by using an ancilla register of a quantum
computer. It consists ofl qubits such that 2l ùn−d. They are initially in the stateu0¯0l. Then the
spaceCd ^ u0¯0l is the subspace where the POVM acts on andCd ^ sC2d^ l is the extension. The
density operatorr̃ acts on ann-dimensional subspace of the joint system consisting of the original
system and the ancilla register. In the following we will assume that also the system spaceCd is
embedded into the state space of some qubits.

As explained above, we can implement the POVM with corresponding matrixM by applying

the unitary transformM̃† to the initial stater̃ of the joint system followed by a measurement in the
computational basis. Note that for the special case where the columns ofM are already orthogonal

we have thatM̃ =M. In this case by implementing the matrixM† followed by a measurement in the
computational basis we can perfectly distinguish between the columns ofM.

In principle, the construction of an appropriate matrixM̃ is simple since we just have to find
mutually orthogonal rows that lead to a unitary matrix. However,k qubits allow POVMs withn

=2k operators. Hence the size ofM̃ is exponential ink. The complexity to implement a unitary
matrix onk qubits can be upper bounded20 by Os4kd and a generic element ofUs2kd will indeed
require an exponential number of elementary transforms(e.g., one- and two-qubit gates). There-

fore we are interested in the construction of a matrixM̃ that can be implemented efficiently, if such
a construction exists at all. While finding efficient factorizations is a hard problem in general, the
situation becomes easier in some cases where we are given the additional structure of a group-
covariant POVM. In the following sections we will give a definition of group covariance and the
related notion of symmetry. Later, we exploit the symmetry of the matrixM and give several
examples of POVMs that have efficient quantum circuit implementations.

III. GROUP-COVARIANT POVMs AND MATRICES WITH SYMMETRY

In the following we give a precise mathematical definition of the notion ofsymmetryof a
matrix M PCm3n. Later we define group covariance of a POVM and show that the group covari-
ance in a natural way leads to matrices with symmetry. For the necessary background on finite
groups and representations we refer to standard textbooks such as Refs. 21 and 22.

We start with a finite groupG and a pairsw ,cd of matrix representations ofG which are
compatible with the size ofM, i.e.,w :G→GLmsCd andc :G→GLnsCd. Following Refs. 23 and 24
we call the triplesG,w ,cd a symmetry ofM if the identity wsgdM =Mcsgd holds for allgPG.
Sometimes we abbreviate this by using the shorthand notationwM =Mc. Note that ifM is not a
square matrix the representationsw andc have different dimensions.

To give an example we letv=exps2pi /3d and leta, b, gPC. Then for all j P h0,1,2j we
have that

11 · ·

· v ·

· · v22
j

1a a a

b bv bv2

g gv2 gv
2 = 1a a a

b bv bv2

g gv2 gv
21 · · 1

1 · ·

· 1 ·
2

j

.

Hence we obtain a symmetry which is given by the cyclic groupZ3=h0,1,2j together with the two
representationsw, s :Z3→Us3d given byws1d=diags1,v ,v2d andss1d=s1,3,2d.
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Note that given two representationsw, c of a groupG the set of all matricesM which fulfill
wsgdM =Mcsgd for all gPG is a vector space. It turns out that the matrices in this vector space
have a special form. Hence we explore its structure in more detail in the following.

Definition 1 (intertwining space): Let G be a group and letw, c be representations of G of
dimensions n and m, respectively. Then

Intsw,cd ª hM:wsgdM = Mcsgd, for all g P Gj

with MPCn3m is called the intertwining space ofw and c.
In the following we denote byw1, . . . ,wk a complete list of pairwise inequivalent irreducible

representations ofG. Recall that for any representation of a finite group it is always possible to
find a base change such that the corresponding representation is a direct sum of irreducible
representations.22 For representations which are completely decomposed into a direct sum of
irreducibles the structure of the intertwining space is known. This is the content of the following
theorem which follows directly from Schur’s lemma(see Ref. 26, Sec. 29).

Theorem 2: Let G be a finite group andw= % i=1
k s1ni

^ wid and c= % i=1
k s1mi

^ wid two repre-
sentations of G which have been completely decomposed into pairwise inequivalent representa-
tions wi with i=1, . . . ,k. Then the intertwining space ofw and c has the following structure:

Intsw,cd = sCn13m1 ^ 1degsw1dd % ¯ % sCnk3mk ^ 1degswkdd.

A matrix A is called block permutedif there are permutation matricesP and Q such that
PAQ=B1 % ¯ % Bk, where B1, . . . ,Bk are (rectangular) matrices. For alln,m,kPN there exist
permutation matricesPn,m,k and Qn,m,k such that for allAPCn3m we havePn,m,ksA^ 1kdQn,m,k

=1k ^ A. Hence we have shown that the elements of the intertwining space of completely reduced
representations are block permuted.

We continue with an easy observation which turns out to be essential for the approach of
extending the symmetry of a given group-covariant POVM to a measurement on a larger space.
Suppose thatM P Intsw ,cd and that the matricesU andW decompose the representationsw andc
into the direct sums, i.e.,UwU†=w1 % ¯ % wn and VcV†=c1 % ¯ % cm. Then we can rewrite
wM =Ms as

U†sw1 % ¯ % wndUM = MW†sc1 % ¯ % cmdW.

Multiplying this from the left byU and from the right byW† shows thatCªUMW† is an element
of the intertwining space Intsw1 % ¯ % wn,c1 % ¯ % cmd of two completely reduced representa-
tions. In particular, we can apply Theorem 2 to determine the structure ofC. In particular we
obtain thatC is block permuted and the size of the blocks depend on the multiplicities and
dimensions of the irreducible representations contained inw andc.

Matrices with symmetry arise naturally in context of group-covariant POVMs. We first give a
definition of these POVMs and then establish a connection between the notions of group covari-
ance and symmetry.

Definition 3 (group-covariant POVMs): A POVM P=hA1, . . . ,Anj#Cd3d with AkÞAl for k
Þ l is group-covariant with respect to the group G if there exists a projective unitary representa-
tion w :G→Usdd with wsgdAkwsgd†P P for all gPG and all k.

Note that a group-covariant POVM is also group covariant for all subgroupsHøG and the
restriction of the representationw to H. As a special case, the choice of the trivial subgroupH
=h1j means that we do not use the symmetry of the POVM at all.

A minor complication arises due to the fact that while the notion of symmetry of matrices
relies on ordinary, i.e., nonprojective representations, the definition of group-covariant POVMs
relies on projective representations. Therefore, we need a construction which allows to transform
the projective representation of the symmetry group of a group-covariant POVM into a nonprojec-
tive representation. This connection is established using so-calledcentral extensionswhich is a
method going back to Schur. We briefly recall this construction[see also Ref. 22, Lemma(11.16)].
Let w :G→GLdsCd be a projective representation of the groupG. More precisely, we have

012104-5 Implementation of group-covariant POVMs J. Math. Phys. 46, 012104 (2005)

                                                                                                                                    



wsghd=gghwsgdwshd for g,hPG, whereggh is a factor system. LetH=kggh:g,hPGl be the group

generated by theggh. We consider the groupĜ consisting of the elementssg,hd with gPG and

hPH. The multiplication of two elementssg,hd and sg8 ,h8d of Ĝ is defined bysg,hdsg8 ,h8d
=sgg8 ,ggg8hh8d. Then the mapw̃ssg,hdd=hwsgd is a representation withw̃ssg,1dd=wsgd, i.e., the

representationw̃ equalsw on the elementssg,1d and the groupĜ is a central extension of the
groupG.

In the following we always assumew to be a nonprojective representation of the symmetry
groupG by this construction. This is justified since the set of POVM operators does not change by

switching from G to a central extensionĜ because scalar multiples of the identity transform
trivially under conjugation.

We now analyze the structure of the matrixM corresponding to the group-covariant POVM
P=huCklkCkuj with rank-one operators. Note that the phases of the vectorsuCkl can be chosen
arbitrarily without changing the POVM. Letw :G→Usdd be the representation corresponding to
the symmetry ofP. We then have the equation

wsgduCklkCkuwsgd† = uCpsgdklkCpsgdku,

where p :G→Sn denotes a permutation representation of the groupG. Indeed, the equation
uCpsgd jlkCpsgd ju= uCpsgdklkCpsgdku implies uC jlkC ju= uCklkCku by conjugation withwsgd† sinceAj

ÞAk for j Þk. Therefore, the mappsgd is injective for allgPG. Since an injective map on a finite
set is also surjective the mappsgd defines a permutation.

Next, we consider the action ofw on the columns of the matrixM. As stated above the
columnsuCkl of M can have arbitrary phase factors. The action ofwsgd on the columns ofM can
be described by the equationwsgduCkl=eifsg,kduCpsgdkl wherefsg,kd depends onk, g and the fixed
phase factors of the vectorsuCkl. We identify the columnsuCkl with a basisbk of the vector space
Cn in order to construct a representation that describes the action ofw on the columns ofM. With
this identification the action ofwsgd corresponds to the mapbk°eifsg,kdbpsgdk.

By writing down the matrix corresponding to this map, we see that in each row and each
column there is precisely one entry different from zero. Matrices having a structure like this are
called monomial matrices25 (Ref. 26, Sec. 43). Whenever the images under a representation
consist entirely of monomial matrices, we denote this with a subscript, i.e., we writewmonsgd.
Now, the two representationsw andwmon define the symmetrywM =Mwmon of the matrixM. The
monomial representationwmon acts on the columns ofM. For eachgPG it permutes the columns
of M and multiplies each column with a phase factor.

Example 4:As an example in two dimensions we consider the following POVM:

P =HSuau2 ab̄

āb ubu2
D,S uau2 − ab̄

− āb ubu2
D,Subu2 āb

ab̄ uau2D,S ubu2 − āb

− ab̄ uau2 DJ # C232

with a ,bPC and uau2+ ubu2=1/2.ThenP is covariant with respect toZ23Z2. The corresponding
projective representationw :Z23Z2→Us2d is defined by the equations

ws0,0d = 12, ws0,1d = sz, ws1,0d = sx, ws1,1d = szsx,

where(0,0), (0,1), (1,0), and(1,1) denote the elements of the groupZ23Z2.
For this projective representation ofZ23Z2 a simple computation shows that the central

extensionĜ of Z23Z2 is isomorphic to the dihedral group with eight elements. In the following
it is sufficient to consider the definition of the representation on the elements((0,1),1) and((1,0),1)
since these elements generateĜ=hsg,hd :gPZ23Z2,hP h±1jj. We can choose
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M = Sa a b b

b − b a − a
D P C234

or a matrix with the same columns(up to an arbitrary phase factor for each column). This leads to
a symmetry group given by the monomial representation

wmonss0,1d,1d =1
· 1 · ·

1 · · ·

· · · 1

· · 1 ·
2 andwmonss1,0d,1d =1

· · 1 ·

· · · − 1

1 · · ·

· − 1 · ·
2 .

For a different choice of phase factors we obtain another representationwmon. The modified pair of
representationsw, wmon also defines a symmetry ofM.

An important special case of group-covariant POVMs aregroup-generatedPOVMs which we
describe next. LetG be a group andw :G→Cd3d an (ordinary) unitary representation. A group-
generated POVM is described by the POVM vectorswsgduCl for gPG and an initial vector
uClPCd. The corresponding operators of the POVM are given byAg=wsgduClkCuwsgd† for g
PG. In other words, all POVM vectors are obtained by the initial vectoruCl under the operation
of the groupG, i.e., they form an orbit. Obviously, a group-generated POVM is a group-covariant
POVM with a single orbit under the action of the group. With this construction, the phase factors
of the POVM vectorswsgduCl are fixed by the phase factor of the initial vectoruCl. The phase
factorseifsg,kd of the monomial representationwmon corresponding tow equal 1. As a consequence,
the monomial representationwmon equals the regular representation ofG with respect to a fixed
order of the elements ofG.

Note that the operatorshwsgduClkCuwsgd†j in general do not define a POVM for arbitrary
representationsw and initial vectorsuCl. However, ifw acts irreducibly one has(after appropriate
normalization) for every vectoruCl the equationogPGwsgduClkCuwsgd†=1d.

IV. CONSTRUCTION OF THE ORTHOGONAL MEASUREMENT

Following the preceding section we can arrange the vectors which correspond to the elements
of a POVM with rank-one projectors into the columns of a matrixM. We have seen that in case
of a group-covariant POVM the matrixM PCd3n always has the symmetrywM =Mwmon wherew
is the given representation andwmon is a monomial representation. Both representations are rep-
resentations of the symmetry group of the group-covariant POVM. We know that both represen-
tations are equivalent to direct sums of irreducible representations. Hence we can find unitary
matricesU andW such thatUwU†=w1 % ¯ % wn andWwmonW

†=s1 % ¯ % sm where thewk and
the sl denote irreducible representations of the groupG. In general, we can write the equation
wM =Mwmon as

U†sw1 % ¯ % wndUM = MW†ss1 % ¯ % smdW.

This is equivalent toC=UMW†PTª Intsw1 % ¯ % wn,s1 % ¯ % smd. Conversely, a matrixC
which is contained in this intertwining space and has orthogonal rows defines(up to an appropriate
normalization) a group-covariant POVM with corresponding matrixM =U†CW.

For a given matrixM PCd3n we now consider the construction of a unitary matrixM̃

PUsnd such thatM̃ containsM as the upper part, i.e., we are looking for a matrixM̃ such that

M̃ = SM

N
D ,

whereNPCsn−dd3n. In addition to this we intend to get the symmetrysw % w8dM̃ =M̃wmon with an
appropriate representationw8 :G→Usn−dd. If we succeed in constructing an appropriate repre-

sentationw8 and matrixM̃ then we have the equationw % w8=M̃wmonM̃
†, i.e., the representation
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w % w8 must be equivalent towmon. In other words, each irreducible representation ofG is con-
tained the same number of times inw % w8 and in wmon. Furthermore, from the decompositions
sU % 1n−ddsw % w8dsU† % 1n−dd=sts1d % ¯ % stsmd andWwmonW

†=s1 % ¯ % sm we obtain that

sU % 1dM̃W† P T̃ª Intssts1d % ¯ % stsmd,s1 % ¯ % smd # Cn3n. s1d

The permutationt used in Eq.(1) is a suitable reordering of the irreducible representations. The

structure of the intertwining spaceT̃ is known from Theorem 2 since we can compute the irre-
ducible representationss j from wmon.

In the following discussion we consider the construction ofw8 andM̃. Our goal is to show that
the construction ofw8 that makesUwU† % w8 equal toWwmonW

† up to a permutationt of the
irreducible components is always possible.

Important for the extension ofM to M̃ will be the following theorem which characterizes the
relations of two representations in case there is an intertwiner of maximal possible rank. Recall
that c1 is a constituent ofc2 if and only if there is a base changeU such thatU−1c2sgdU
=c1sgd % c18sgd wherec18 is a representation ofG.

Theorem 5: Let G be a finite group and letc1,c2 be representations of G of dimensions
d1=degsc1d and d2=degsc2d, respectively. Let MPCd13d2 be a matrix withc1sgdM =Mc2sgd for
all gPG and rksMd=degsc1d. Thenc1 is a constituent ofc2.

Proof: Let M be such thatc1sgdM =Mc2sgd and letw1, . . . ,wk be a complete set of pairwise
inequivalent irreducible representations ofG. Sincec1,c2 are representations of a finite group over
the field of complex numbers we find unitary matricesU,W such thatUc1U

†= % i=1
k miwi and

Wc2W
†= % i=1

k niwi, where the multiplicitiesmi andni are non-negative integers. We must show that
actuallymi øni for all i =1, . . . ,k.

From c1M =Mc2 and the choice ofU andW we obtains%miwidsUMW†d=sUMW†ds%niwid,
i.e., we have thatUMW†P Ints% i=1

k miwi , % i=1
k niwid. By the remarks following Theorem 2 we know

that there are permutation matricesP and Q such thatM0ªPsUMW†dQ=s1degsw1d ^ B1d % ¯

% s1degswkd ^ Bkd where eachBi PCmi3ni. Multiplication with invertible matrices preserves the prop-
erty thatM and hence alsoM0 have full rank[given by degsc1d]. On the other hand, we know that
the rank of a block diagonal matrix is given by the sum of the ranks of the blocks. Hence
rksM0d=oi=1

k degswid · rksBid which shows that eachBi must have full rank. SinceBi is anmi 3ni

matrix this in particular implies thatmi øni. This shows thatc1 is a constituent ofc2.

We now use Eq.(1) to construct the matrixM̃ for the implementation of a group-covariant
POVM. Having determined U and W we can compute the matrixC=UMW†

P IntsUwU†,WwmonW
†d. The multiplicity of each irreducible representation inw8 can be com-

puted. Since the structure of the intertwining spaceT̃=IntsUwU† % w8 ,WwmonW
†d is known we can

extendC to an arbitrary unitary matrixC̃ of the intertwining spaceT̃. This extension is always
possible since both representationsUwU† % w8 andWwmonW

† contain each irreducible representa-
tion the same number of times. The matrixC defines some of the rows ofA. SinceM defines a

POVM the rows are mutually orthogonal. Consequently, the matrix components ofC̃ correspond-
ing to an irreducible representation can be chosen under the constraint that they are orthogonal.

We now have that for anyVPUsn−dd the matrixM̃ =sU† % V†dC̃W yields a unitary that extends
the matrixM and has the symmetry we wanted to construct.

Hence, we obtain the following algorithm to construct an orthogonal measurement which
realizes the given POVM and preserves the symmetry.

Algorithm 6: Let P=hA1, . . . ,Anj#Cd3d be a POVM. Then the following steps implementP
by a von Neumann measurement on a larger space.

(1) Write the rank-one operatorsAk= uCklkCku of the POVM as columns of the matrixM
PCd3n.

(2) Determine an appropriate symmetry group with corresponding representationw :G→Usdd.
(3) Compute the monomial representationwmon:G→Usnd.
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(4) Find a matrixUPUsdd that decomposesw into irreducible representations where equivalent
ones are equal.

(5) Find a matrixWPUsnd that decomposeswmon into irreducible representations where equiva-
lent ones are equal.

(6) Construct the representationw8 such thatUwU† % w8 is equal toWwmonW
† up to a permuta-

tion t of the irreducibles.

(7) ConstructC̃PUsnd that containsC=UMW†PCd3n as upper part and is in the intertwining

spaceT̃ of UwU† % w8 andWwmonW
†.

(8) Choose an arbitrary unitary matrixVPUsn−dd.
(9) ComputeM̃ =sU† % V†dC̃WPUsnd.

ThenM̃† implements the POVMP by a von Neumann measurement on a larger space, i.e., for

any stater on the originald-dimensional system we have thatpk=trsr̃Ãkd=kC̃kur̃uC̃kl. Here uC̃kl
denote the rows ofM̃ andr̃=r % 0n−d is the embedding ofr to a state of ann-dimensional system.

Example 7:We consider the example of the preceding section with the matrix

M = Sa a b b

b − b a − a
D P C234

and the groupG=hsg,hd :gPZ23Z2,hP h±1jj which is isomorphic to the dihedral group of order
eight. The representationw :G→Us2d is given bywss0,1d ,1d=sz and wss1,0d ,1d=sx. We have
U=12 andUwU†=w since the representationw is already irreducible. An elementary computation
shows that the corresponding monomial representationwmon is given by

Wwmonss0,1d,1dW† =1
1 · · ·

· − 1 · ·

· · 1 ·

· · · − 1
2, Wwmonss1,0d,1dW† =1

· 1 · ·

1 · · ·

· · · 1

· · 1 ·
2

with the unitary matrix

W=
1
Î21

1 1 · ·

· · 1 − 1

· · 1 1

1 − 1 · ·
2 P Us4d.

Therefore,wmon contains the irreducible representationw twice, i.e.,WwmonW
†=w % w.

With the matricesM PC234, UPUs2d and WPUs4d as above we find thatC=UMW†

=Î2sa bd ^ 12PC234, which is an element of the intertwining space

Intsw,WwmonW
†d = Intsw,w % wd.

Since we haveWwmonW
†=w % w, we must choosew8=w. The intertwining spaceT̃ is given by

T̃ = Intsw % w,w % wd =51
l11 · l12 ·

· l11 · l12

l21 · l22 ·

· l21 · l22

2:li j P C6 # C434.

In our example, the matrixC=UMW† defines the first two rows of the matrixC̃P T̃=Intsw
% w ,w % wd.

In particular, we have the equationsl11=Î2a and l12=Î2b. For example, it is possible to

choosel21=Î2b̄ andl22=−Î2ā for a ,bPC to obtain the unitary matrix
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C̃ = Î21
a · b ·

· a · b

b̄ · − ā ·

· b̄ · − ā
2 P Us4d,

which has the symmetrysw % wdC̃=C̃sw % wd. With M̃ =sU† % V†dC̃W andV=12 we compute the
matrix

M̃ =1
a a b b

b − b a − a

b̄ b̄ − ā − ā

− ā ā b̄ − b̄
2 P Us4d

that containsM as the upper part and has the symmetrysw % wdM̃ =M̃wmon. Note that all unitary

matricesVPUs2d give rise to possible extensionsM̃.

V. EFFICIENT IMPLEMENTATIONS OF GROUP-COVARIANT POVMs

From the general construction of a von Neumann measurement which realizes a given POVM

using the symmetry of the POVM we now turn to the question of decomposing the unitaryM̃ into
gates. This can be seen as a first step towards the more general question of how POVMs can be
implemented efficiently on a quantum computer.

When speaking about the efficiency, we mean the cost of implementing the POVM as a von
Neumann measurement on a larger Hilbert space, i.e., the number of elementary gates we need to
actually implement the necessary unitary operation on this bigger space. First note that the dis-

cussed construction ofM̃ has several degrees of freedom:

(i) The matrixC̃ that containsC as upper part can be chosen arbitrarily. The matrixC̃ has to

be a unitary matrix in the intertwining spaceT̃.
(ii ) The matrixVPUsn−dd can be an arbitrary unitary matrix.
(iii ) The order and phase factors of the POVM vectors in the matrixM can be chosen arbitrarily.

However, it must be possible to deduce the applied POVM operator from the result of the
orthogonal measurement efficiently.

(iv) The permutationt of the irreducible representations inUwU† % w8 can be chosen arbi-
trarily.

(v) The symmetry groupG can be restricted to subgroupsHøG which might lead to different
realizations of the POVM.

The constructions depend on the symmetry groupG we consider for the POVM. Sometimes,
we can obtain simple implementations by restricting the symmetry group to a subgroupHøG. If
we consider a subgroupH of G and construct the POVM with respect toH we have several
changes in the construction compared to the construction with the groupG. On the one hand, the
number of occurrences of the irreducible representations inwmon increase. On the other hand, the
number of inequivalent irreducible representations of the symmetry group decreases. Conse-
quently, the matrices of the intertwining spaces are more complex since there are more irreducible
representations inw andwmon that are equivalent. As a tradeoff we have that the complexity of the
transformW decreases. The circuits constructed in Ref. 14 show that the restriction of the sym-
metry group to a cyclic subgroup can lead to efficient algorithms in some cases.

Let G be a finite group andhw1, . . . ,wkj a system of representatives for the irreducible repre-
sentations of G. Let the coefficients of these representation be indexed by the list
L8ªfsm; i , jd ,1ømøk,1ø i , j ødegswmdg. Furthermore, let the elements ofG be indexed by the
list L. Then the matrix
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1/ÎuGusÎdegswmdwmsgdi jdsm;i,jd,g

is unitary and is called a Fourier transform(or DFT for short) for G (Refs. 27 and 28) (with respect
to L andL8).

For several groups it is known how to realize a DFT efficiently on a quantum computer.29–31

In these cases the symmetrywmon can be decomposed efficiently whenever we have that(i) wmon

is a regular representation ofG and that(ii ) the DFT forG can be computed efficiently. Note that
the computational complexity of this von Neumann measurement depends essentially on the
complexity of implementing DFTG in terms of elementary quantum gates. Hence we obtain sev-
eral families of POVMs for which the monomial representationwmon can be decomposed effi-
ciently. The complexity of the corresponding POVM then depends on the remaining matricesC,
U, andW used in Algorithm 6.

VI. EXAMPLES

In this section we apply the methods discussed in the preceding sections to some examples of
group-covariant POVMs. We exploit the symmetry of group-covariant POVMs with respect to
cyclic groups, dihedral groups, and Weyl–Heisenberg groups in order to construct quantum cir-
cuits for the implementation of these POVMs. Quantum circuits for the implementation of group-
covariant POVMs on a single qubit with respect to the cyclic and dihedral groups are also
discussed in Ref. 14.

A. Cyclic groups

Let Zn=h0,1, . . . ,n−1j be a cyclic group withn elements and letv=exps2pi /nd be a primi-
tive nth root of unity. On ad-dimensional Hilbert space we consider a group-generated POVM
with respect to the representationw :Zn→Usdd that is defined on the generator byws1d
=diags1,v ,v2, . . . ,vd−1d. With an appropriate initial vectoruClPCd the elementswsgduCl for
gPZn define a POVM. In the following, we only consider the vectoruCl=1/Îns1, . . . ,1dTPCd.
This vector leads to the POVM with the defining matrix

M =
1
În1

1 1 1 . . . 1

1 v v2 . . . vn−1

A A A � A
1 vd−1 v2sd−1d . . . vsn−1dsd−1d

2 P Cd3n. s2d

The matrixM PCd3n has the symmetrywM =Mwmon wherewmons1d=s1,2, . . . ,nd. The repre-
sentationwmon is the regular representation of the cyclic group where the elements are ordered as
f0,1, . . . ,sn−1dg. With the Fourier matrix

Fn =
1
În

sv jkd j ,k=0
n−1 P Usnd

we can writeFnwmons1dFn
†=diags1,v ,v2, . . . ,vn−1d. This shows that the Fourier transform decom-

poses the regular representation ofZn into a direct sum of irreducible representations.
According to the preceding discussion(and notation) we have thatU=1d and W=Fn. As a

consequence we have the equationC=UMW†=MFn
†. More precisely, we haveC=MFn

†

=diags1,1, . . . ,1dPCd3n.

We now consider the construction of the matricesC̃ and M̃. The representationw :Zn

→Usdd with ws1d=diags1,v ,v2, . . . ,vd−1d contains the irreducible representations 1° svkd for
all kP h0, . . . ,d−1j. The representation FnwmonFn

†:Zn→Usnd with Fnwmons1dFn
†

=diags1,v ,v2, . . . ,vn−1d contains the irreducible representations 1° svkd for all kP h0,1, . . . ,
n−1j. Following Algorithm 6 from Sec. IV, we choosew8 with w8s1d=diagsvd, . . . ,vn−1d in order
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to obtainw % w8=FnwmonFn
†. Since each irreducible representation 1° svkd with kP h0,1, . . . ,n

−1j has dimension one and the irreducible representations defined by 1° svkd are inequivalent for
different k we have the intertwining space

T̃ = Intsw % w8,FnwmonFn
†d = hdiagsl1, . . . ,lnd:l j P Cj # Cn3n.

We have to find a matrixC̃PUsnd in the intertwining spaceT̃ that has the matrixCPCd3n as

upper part. As stated above, the matrixM PCd3n definesl j =1 for j P h0,1, . . . ,d−1j. SinceC̃ has
to be a unitary matrix we must choosel j with the absolute valueul ju=1 for j P hd, . . . ,n−1j.

In order to simplify the matrices we setl j =1 for all j P hd, . . . ,n−1j. With these elementsl j

we have the equationC̃=1n. Furthermore, we chooseV=1n−d in Algorithm 6 from Sec. IV leading
to U % V=1n. Consequently, we obtain the equation

M̃† = W†C̃†sU % Vd = Fn
†1n1n = Fn

†.

This equation shows that the inverse Fourier transformM̃†=Fn
† is a unitary transform that imple-

ments the group-covariant POVM with defining matrix(2). Recall that forn=2k wherekPN the
Fourier transform can be implemented efficiently on a qubit register.32,33

B. Dihedral groups

Let D2m=kr ,s: rm=1,s2=1,srs−1=r−1l be the dihedral group34 with n=2m=2k+1 elements for
a fixedm=2kù4. The elementr denotes the rotation ands the reflection of the dihedral group. We
consider the irreducible representationw :D2m→Us2d that is defined by

wsrd = Sv 0

0 v−1D andwssd = S0 1

1 0
D .

The elementv=exps2pi /md is anmth root of unity. Fora ,bPC with uau2+ ubu2=1/m we con-
sider the POVM with the corresponding matrix

M = Sa . . . a b . . . b

b . . . bvm−1 a . . . avm−1D P C23n.

The matrix M PC23n has the symmetrywM =Mwmon where wmon is defined by the equations
wmonsrd=12 ^ vSm

−2 andwmonssd=sx ^ Fm
2 Tm. The matricesSm,TmPCm3m are defined by the equa-

tions (indices are taken modulom)

Sm = o
i=0

m−1

ui + 1lki u, Tm = o
i=0

m−1

viuilki u,

and Fm denotes the discrete Fourier transform defined in the preceding section. In order to de-
composewmon into irreducibles the following permutationQk is useful. Denoting byx̄ the binary
complement of the binary vectorx of lengthk we defineQk: ux,0l° ux,0l andQk: ux,1l° ux̄,1l.
Furthermore, we introduce the representationswl defined by

wlsrd = Svl 0

0 v−l D andwlssd = S0 1

1 0
D .

With this notation we havew=w1. The two-dimensional representationswl are irreducible and
inequivalent34 for different l P h1, . . . ,m/2j. Now, using the base changeWªQms12 ^ Fm

† d
PCn3n we obtain that
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WwmonW
† = c % c % c % c,

wherec is a direct sum of all representationsw j with odd j . The first component ofc is w1, the
other componentsw j appear in a specific order which is irrelevant in the sequel. We choose the
representation

w8 = c8 % c % c % c,

where c8 is obtained fromc by droppingw1. This leads tow % w8=WwmonW
†. The matrixC

=MW†=sÎma 0¯0uÎmb 0¯0d ^ 12PC23n defines the first two rows of the intertwining matrix

C̃ we want to construct according to Algorithm 6 from Sec. IV. A possible extension of the

intertwining matrixCPC23n to a unitary matrixC̃PUsnd is C̃=A^ 1m/2 with the matrix

A = ÎmSa b

b̄ − ā
D P Us2d.

According to Algorithm 6 from Sec. IV we must define the matricesUPUs2d andVPUsn−2d.
The equationsw=w1 and WwmonW

†=sw1 % c8d % c % c % c show thatU=12. Furthermore, we
chooseV=1n−2. Then we have the matrixU % V=1n. To summarize, we must implement the
matrix

M̃† = W†C̃† = s12 ^ FmdQksA†
^ 14d P Usnd

in order to measure the POVM corresponding to the dihedral groupDm. The scheme of the circuit

corresponding toM̃† is shown in Fig. 1.

C. Weyl–Heisenberg groups

In the following we introduce the finite Weyl–Heisenberg groups which are matrix groups
acting on a finite-dimensional vector space. For our purposes we consider vector spaces of dimen-
sion m=2k only, wherekù2. Then the Weyl–Heisenberg groupGm is the group generated by the
matricesSm=s1,2, . . . ,md andTm=diags1,v ,v2, . . . ,vm−1d wherev=exps2pi /mdPC is a primi-
tive mth root of unity. It is known thatGm containsm3 elements.35 POVMs that are covariant with
respect to the Weyl–Heisenberg groups have a physical motivation. Since the position and mo-
mentum of a particle cannot be measured simultaneously by any projection-valued measurement
one must construct POVMs which measure both observables with a certain inaccuracy. This idea
has already been described in Ref. 19 starting from a wave packet, i.e., a unit vectorucl
PL2sRd we define a sethMs,tj of operators by

FIG. 1. Quantum circuit for the implementation of the dihedral POVM.
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Ms,t ª
1

2p
eisP+tQuclkcue−isP−tQ,

wheres,tPR andP andQ are the position and momentum operators, respectively. Explicitly, they
are defined bysPcdsxdª−isd/dxdcsxd and sQcdsxdªxcsxd. We then have that

E
s,t

Ms,t dsdt = 1.

The POVM hMs,tj provides an approximative realization of the classical phase space since the
measurement outcomess,td can be interpreted as the pointss,td in the phase space. In the fol-
lowing we are interested in finite-dimensional approximations of this. Assume that we want to
measure the position and crystal momentum of a particle on a lattice withm points form=2k.36

Furthermore, we assume that it is possible to transfer the state of such a system intok qubits of a
quantum register in the sense that one can implement the SWAP operations,

u jl ^ uil ↔ uil ^ u jl.

Here the left-hand vector denotes a joint state of particle and register where the particle is at
position j in the lattice and the register is in itsith canonical basis state. The states corresponding
to the vectorso j=0

m−1e2pil j /mu jl with l =0, . . . ,m−1 are the eigenstates of the crystal momentum.
Explicitly, the crystal momentump can be defined bypª2pl /m−p. With this definition the
values of p are in the intervalf−p ,pg that meets the usual physical intuition of the one-
dimensional Brillouin zone of an infinite one-dimensional crystal. Here we characterize the posi-
tion and momentum simply by the integer valuesj , l =0, . . . ,m−1. The cyclic translation of the
position is given by the action ofSm and a change of crystal momentum by the action ofTm.
Consider a rank-one positive operatoruclkcu with the property that neither the position nor the
momentum of the corresponding state is completely undefined. Set

Mj ,l ª
1

m
Sm

j Tm
l uclkcuTm

−lSm
−j .

Due to irreducible group action the equationo j ,lMj ,l =1m holds and the operatorsMj ,l define a
POVM. For largem we can find states with corresponding state vectorsucl such that both values
j and l are approximately defined. Here the word “approximately” is understood with respect to
the cyclic topology, i.e.,m−1 and 0 are “almost” the same value. A good choice for the POVM
will be the following. Setuclªo jcju jl where the coefficientscj are chosen such that the function
j ° ucju2 has a unique maximum atj0 and the modulus of the valuescj decrease with increasing
distance fromj0 in the cyclic topology. If all valuescj are real and they decrease not too quickly
the momentuml of the state is aroundj0, too. Then the measurement valuesj ,l can directly be
interpreted as a good estimation for the position and momentum values. We will show that an
efficient implementation of the POVM can be found in the case whereuCl
=1/Îks1,a ,a2, . . . ,am/2−2,am/2−1,am/2−1,am/2−2, . . . ,a2,a ,1dTPCm with aPC and an appropri-
ate normalization factor 1/Îk.

In the following we consider the group-generated POVMs with respect toGm and the natural
representationw defined bywsgd=g for all gPGm. This representation is irreducible. Therefore,
following Algorithm 6 from Sec. IV we can setU=1m since1m decomposesw into a direct sum of
irreducible representations. The vectoruCl=sv1, . . . ,vmdTPCm with the normalizationuv1u2+¯

+ uvmu2=1/m leads to the POVM where the defining matrixM PCm3n is given by
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1
v1 v1 . . . v1 vm . . . vm . . . v2 . . . v2

v2 v2v . . . v2vm−1 v1 . . . v1vm−1 . . . v3 . . . v3vm−1

A � � � �

vm vmvm−1 . . . vmv vm−1 . . . vm−1v . . . v1 . . . v1v
2 .

Note that we identify vectorsguCl andhuCl for different g,hPGm that are equal up to a global
phase factor. Consequently, the POVM consists of at mostn=m2 different operators. For example,
when m=4 the vectoruCl=sv1,v2,v3,v4dTPC4 with uv1u2+ uv2u2+ uv3u2+ uv4u2=1/4 leads to the
POVM with n=16 operators and the corresponding matrixM PC4316 whereM is defined by

1
v1 v1 v1 v1 v4 v4 v4 v4 . . . v2 v2 v2 v2

v2 v2i − v2 − v2i v1 v1i − v1 − v1i . . . v3 v3i − v3 − v3i

v3 − v3 v3 − v3 v2 − v2 v2 − v2 . . . v4 − v4 v4 − v4

v4 − v4i − v4 v4i v3 − v3i − v3 v3i . . . v1 − v1i − v1 v1i
2 .

The symmetry ofM PCm3n can be described on the generators by the equationsTmM =Ms1m

^ Smd and SmM =MsSm^ Tm
† d. Therefore the representationwmon:Gm→Usnd is defined by

wmonsTmd=1m^ Sm andwmonsSmd=Sm^ Tm
† . The symmetry ofM can also be written as

TmM = Ms1m ^ TmdFm
†

^Fm and SmM = MsTm
†

^ SmdFm
†

^Fm,

where we use the notationAX=X†AX and the Fourier transformFm as defined in Sec. VI A. We
can writes1m^ Tmd and sTm

†
^ Smd as direct sums

s1m ^ Tmd = Tm % Tm % ¯ % Tm and sTm
†

^ Smd = Sm % vm−1Sm % ¯ % vSm.

By using the equationsTmSmTm
† =vSm ands1m^ SmdZ†

=sTm
†

^ Smd we can conjugate these matrices
with the diagonal matrixZ=1m% Tm

m−1
% Tm

m−2
% ¯ % Tm

2
% Tm in order to obtain the equations

TmM = Ms1m ^ TmdZ†sFm
†

^Fmd and SmM = Ms1m ^ SmdZ†sFm
†

^Fmd.

These equations show that we have the decompositionWwmonW
†=w % ¯ % w with the matrix

W=Z†sFm
†

^ Fmd. The representationWwmonW
† containsm componentsw. Following Algorithm 6

from Sec. IV we must find a representationw8 that leads to the direct sumw % w8=w % ¯ % w with
m componentsw. Consequently, we choosew8=w % ¯ % w with m−1 componentsw. We now

consider the extension of the matrixC=MW†=MsFm^ Fm
† dZPCm3n to a unitary matrix C̃

PUsnd. The matrixC is an element of the intertwining space,

Intsw,w % ¯ % wd = hsa1, . . . ,and ^ 1m:a j P Cj # Cm3n.

More precisely, we haveC=ssÎmv1, . . . ,ÎmvmdFm
† d ^ 1mPCm3n. For example, form=4 we obtain

the groupG4=kS4,T4l with S4=s1,2,3,4d andT4=diags1,i ,−1,−id that contains 64 elements. In
this example we have the equation

C =1sv1,v2,v3,v4d1
1 1 1 1

1 − i − 1 i

1 − 1 1 − 1

1 i − 1 − i
22 ^ 1

1 · · ·

· 1 · ·

· · 1 ·

· · · 1
2 P C4316.

The matrixCPCm3n determines the firstm rows of the matrixC̃ we want to construct. The matrix

C̃ is a unitary matrix of the intertwining space,
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Intsw % ¯ % w,w % ¯ % wd = hA ^ 1m:A P Cm3mj # Cn3n.

When we writeC̃=A^ 1m then the matrixC determines the first row ofA. Explicitly, the first row
of A is

sÎmv1, . . . ,ÎmvmdFm
† . s3d

The operationM̃† for the implementation of the POVM is defined by

M̃† = W†C̃†sU % Vd = sFm ^ Fm
† dZsA†

^ 1md P Usnd.

In this equation we haveV=1n−m leading toU % V=1m% 1n−m=1n. The general scheme for the

implementation of the matrixM̃† is shown in Fig. 2. Form=2k the circuit contains thek controlled
operations

Tm
−1,Tm

−2, . . . ,Tm
−m/4,Tm

−m/2

for the implementation of the matrixZ. The matrixTm=diags1,v ,v2, . . . ,vm−1d can be written as
Kronecker product

Tm = S1 0

0 vm/2D ^ S1 0

0 vm/4D ^ ¯ ^ S1 0

0 v
D P Usmd.

Therefore, the matricesTm
j of the circuit in Fig. 2 can be implemented efficiently on a register of

qubits.
The circuit in Fig. 2 is efficient if the matrixA that contains the vector(3) as the first row can

be implemented efficiently. We can find such a matrix for the POVM with the vector

uCl =
1
Îk

s1,a,a2, . . . ,am/2−2,am/2−1,am/2−1,am/2−2, . . . ,a2,a,1dT P Cm, s4d

where we haveaPC and the normalizationk=2ms1+uau2+ uau4+¯ + uaum−2d. A matrix A
PUsmd that contains the vector(3) as the first row is given by

FIG. 2. Circuit for the implementation of the POVM with respect to the Weyl–Heisenberg group and the vectoruCl
=sv1, . . . ,vmdT. The vectoruCl determines the matrixA†.

012104-16 Decker, Janzing, and Rötteler J. Math. Phys. 46, 012104 (2005)

                                                                                                                                    



A = Jm/2
† sBm/4 ^ Bm/8 ^ ¯ ^ B4 ^ B2 ^ B1 ^ B0dJm/2Fm

† ,

where we use the unitary matrices

Bj =
1

Î1 + uau2jS 1 a j

ā j − 1
D P Us2d.

Here Jk is defined to be the permutation matrix which maps 2i ° i and s2i −1d°−i for i
=0, . . . ,k. In our example withm=4 we have the matrix

J2
†sB1 ^ B0dJ2 =

1
Î2 + 2uau21

1 a a 1

ā − 1 − 1 ā

ā − 1 1 − ā

1 a − a − 1
2 .

The circuit scheme for the implementation of the matrix

A† = FmJm/2
† sBm/4

†
^ Bm/8

†
^ ¯ ^ B4

†
^ B2

†
^ B1

†
^ B0

†dJm/2

is shown in Fig. 3.

VII. CONCLUSIONS AND OUTLOOK

We have shown that a group-covariant POVM can be reduced to an orthogonal measurements
by a unitary transform which is symmetric in the sense that it intertwines two different group
representations. The symmetry of the unitary transform can be used to derive decompositions
which in several cases of interest(as the Weyl–Heisenberg group) leads to an efficient quantum
circuit for the implementation of the POVM.

We have argued that POVMs are often necessary in order to understand why large quantum
systems show typically classical behavior on the phenomenological level. The POVM with Weyl–
Heisenberg symmetry as well as the example in Ref. 5 show that the POVMs which appear in this
context are often covariant with respect to some group.

Besides the physical motivation to study implementations of POVMs by means of orthogonal
measurements in terms of quantum circuits there is also a motivation from computer science. The
so-calledhidden subgroup problem37 is an attractive generalization of the quantum algorithms for
discrete logarithms and factoring.38 The standard approach for the hidden subgroup problem
consists in a Fourier transform for the respective group followed by a suitable post-processing on
the Fourier coefficients.39 For Abelian groups this post-processing consists simply in an orthogo-

FIG. 3. Implementation of the matrixA† whereA is a matrix that contains the vector(3) as the first row. This matrix is part
of the circuit in Fig. 2 for the vectors(4).
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nal measurement in the computational basis. However, for non-Abelian group measurements
which are in fact POVMs are often more advantageous, see, e.g., Ref. 40. The POVMs which
appear to be useful to solve hidden subgroup problems for non-Abelian groups are naturally group
covariant. The methods presented in this paper might be useful to find quantum algorithms for the
hidden subgroup problem for new classes of non-Abelian groups.
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We consider a Schrödinger operator with a constant magnetic field in a one-half
three-dimensional space, with Neumann-type boundary conditions. It is known
from the works by Lu–Pan and Helffer–Morame that the lower bound of its spec-
trum is less thanb, the intensity of the magnetic field, provided that the magnetic
field is not normal to the boundary. We prove that the spectrum underb is a finite
set of eigenvalues(each of infinite multiplicity). In the case when the angle be-
tween the magnetic field and the boundary is small, we give a sharp asymptotic
expansion of the number of these eigenvalues. ©2005 American Institute of
Physics.[DOI: 10.1063/1.1827922]

I. INTRODUCTION

Let us consider, forst ,x,yd in the half-spaceE=R+3R2, the Neumann realization of the
operator with magnetic field

H = sDt − A1d2 + sDx − A2d2 + sDy − A3d2,

whereDs=−is] /]sd.
We will assume that the magnetic fieldB=dA, seen as a three-dimensional vector field, is not

tangent to the boundary]E, and denote byu the angle betweenB and the planet=0 and byb the
norm of B.

This implies that a suitable choice for the gaugeA is the 1-form,

A = bsx sinu − t cosuddy

(so thatA1=A2=0), since the conditionB=dA leads to the 2-form,

B = b sinu dx ∧ dy − b cosu dt ∧ dy Su P F0,
p

2
GD .

Now the operatorH can be written as

Hu = Dt
2 + Dx

2 + sDy − bsx sinu − t cosudd2. s1.1d

The spectrum of the Neumann operatorH0 (corresponding to the caseu=0) is absolutely continu-
ous, as proved by Lu and Pan.10–12 More precisely one has

ssH0d = sacsH0d = fbm0 + `f, s1.2d

a)Electronic mail: morame@math.univ-nantes.fr
b)Electronic mail: francoise.truc@ujf-grenoble.fr
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m0 = inf
jPR

msjd, s1.3d

wheremsjd denotes the first eigenvalue of the Neumann operatorQj=Dt
2+st−jd2 on L2sR+d,

msjd = inf ssQjd = inf
ifiL2sR+d=1

E
R+

fuDtf u2 + st − jd2uf u2gdt. s1.4d

It is also shown in Refs. 10–12 that, ifu=p /2, the spectrum ofHp/2 is absolutely continuous,

ssHp/2d = sac = fb, + `f. s1.5d

WhenuP g0,p /2f, the spectrum ofHu is no longer absolutely continuous(see Refs. 8–12).
We are precisely interested in that case,

0 , u ,
p

2
. s1.6d

First, performing a partial Fourier transform in the variabley we observe that

ssHud = ø
tPR

ssHu,td, s1.7d

whereHu,t denotes the Neumann realization in the half-planeF=R+3R of the operator,

Hu,t = Dt
2 + Dx

2 + st − bsx sinu − t cosudd2. s1.8d

Furthermore, using for anyt the change of coordinatesx→x−st /b sinud, we see thatssHu,td
=ssHu,0d, and then the spectrum ofHu is essential and given by

ssHud = sesssHud = ssHu,0d = b 3 ssPud, s1.9d

if Pu=Dt
2+Dx

2+st cosu−x sinud2 is the Neumann operator on the half-planeF=R+3R.
In Refs. 9 and 12 it was proved that

inf ssPud = nsud , 1 = inf sesssPud, s1.10d

so there exists a countable set of eigenvalues ofPu, sn jsudd jPI, sI ,Nd, in fnsud ,1f. Each eigen-
value is of finite multiplicity, so we will assume that each one is repeated according to its
multiplicity. The associated orthonormalized sequence of eigenfunctions will be denoted by
scu,jd jPI,

Pucu,j = n jsudcu,j ,

kcu,jucu,kl = d jk,

Eg−`,1fsPudf = o
j

kcu,juflcu,j

[kgu fl=eFḡf dt dx and EJsPud denotes the spectral projection ofPu on J]. Coming back to the
operatorsHud we can write

ssHud ù g − `,bf = hbn1sud,bn2sud, . . . ,bn jsud,bn j+1sud, . . . j, s1.11d

where eachbn jsud is now an eigenvalue of infinite multiplicity ofHu.
For anydø1 let us denote byNsd,Pud the number of eigenvalues ofPu in g−` ,df,

Nsd,Pud = TrsEg−`,dfsPud = # h j ;n jsud , dj. s1.12d
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The aim of this work is first to prove that for anyuP g0,p /2f, the number of eigenvalues of
Pu in g−` ,1f is finite. This is the purpose of Sec. II. Another interesting question is to get the
asymptotic behavior ofNsd,Pud asu goes to zero, whend,1. This is done in Sec. IV. Section III
is devoted to a survey of preliminary results about the functionmsjd defined in(1.4), which are
required in the computation of the asymptotics in Sec. IV.

II. FINITENESS OF THE DISCRETE SPECTRUM

The purpose of this section is to prove the following theorem.
Theorem 2.1:There exists a constant Cù1 such that, for anyuP g0,p /2f,

Ns1,Pud ø
C

sinu
. s2.1d

Proof: We have the following conventions.
Convention 2.2:uP g0,p /2f is fixed.
Convention 2.3: From now on, any constant depending only onu will be denoted invariably

as Cu.
If the constant does not depend onu, it will be denoted invariably as C.
Let us denote byqu the quadratic form associated toPu,

qusud =E
F

fuDtuu2 + uDxuu2 + st cosu − x sinud2uuu2gdt dx, s2.2d

∀u P H1sFd ù L2sF;st cosu − x sinud2 dt dxd sF = R+,t 3 Rxd.

There exists a partition of unitysx0std ,x1stdd satisfying

x0std = 1 if t , 1,

x0std = 0 if t . 2, s2.3d

x0
2std + x1

2std = 1.

Let R.1 be fixed. We consider the following covering ofF:

O0,R = hst,xd P R+ 3 R, 0 , t , 2Rj,

O1,R = hst,xd P R+ 3 R, R, tj. s2.4d

We define the partition of unitysx0,Rstd ,x1,Rstdd by

x j ,Rstd = xtS t

R
D . s2.5d

Let us recall that
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qusud = o
j

qusx j ,Rud − o
j

ix j ,R8 ui2. s2.6d

We define the following quadratic forms:

qu,0sud =E
O0,R

fuDtuu2 + uDxuu2 + sst cosu − x sinud2 − VRstdduuu2gdt dx, s2.7d

∀u P H1sO0,Rd ù L2sO0,R;x2 dt dxd, u/ht = 2Rj = 0,

with VRstd=o jux j ,R8 stdu2, and

qu,1sud =E
O1,R

fuDtuu2 + uDxuu2 + sst cosu − x sinud2 − VRstdduuu2gdt dx, s2.8d

∀u P H1sO1,Rd ù L2sO1,R;st cosu − x sinud2 dt dxd, u/ht = Rj = 0.

By min–max principle, we have

Ns1,qud ø Ns1,qu,0d + Ns1,qu,1d. s2.9d

This estimate remains if we changeO1,R into R2 in the definition ofqu,1,

qu,1sud =E
R2

fuDtuu2 + uDxuu2 + sst cosu − x sinud2 − VRstdduuu2gdt dx, s2.10d

∀u P H1sR2d ù L2sR2;st cosu − x sinud2 dt dxd.

The operatorPu,0, associated toqu,0 has compact resolvent, and

qu,0sud ù E
O0,R

FuDtuu2 + uDxuu2 + S1

2
x2 sin2 u − 4R2 cos2 u −

C

R2Duuu2Gdt dx.

So, if we denote byr j
0 the eigenvalues ofuDtuu2 on [0,1] with Neumann conditions on 0 and

Dirichlet conditions on 1, we have

Ns1,qu,0d ø #Hsk; jd P N2;
2k + 1

Î2
sinu +

r j
0

4R2 ø 1 + 4R2 cos2 u +
C

R2J . s2.11d

Using thatr j
0, j2 as j →`, we get easily

Ns1,qu,0d ø
CR

sinu
f1 + R2 cos2 ug3/2. s2.12d

Using the orthonormal change of coordinates,st ,xd→ ss,yd with s= t cosu−x sinu, and
y= t sinu+x cosu, we can take forqu,1 the following expression:

qu,1sud =E
R2

fuDsuu2 + uDyuu2 + ss2 − VRss,ydduuu2gdsdy, s2.13d

∀uPH1sR2dùL2sR2; s2 dsdyd, with

VRss,yd =
1

R2o
j
Ux j8Sscosu + y sinu

R
DU2

. s2.14d
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Let us consider the orthogonal projections

P1sudss,yd = e−s2/2E
R

ust,yde−t2/2 dt

Îp
,

L1u = u − P1u, s2.15d

so that, for anyuPL2sR2d, we getiui2=iP1ui2+iL1ui2.
Writing P1uss,yd=se−s2/2/p1/4dcsyd and

WRsyd =
1

Îp
E

R
e−s2

VRss,ydds,

we obtain that

qu,1sP1ud =E
R

fuDycu2 + s1 − WRsydducu2gdy. s2.16d

We have also

qu,1sL1ud ù E
R2
FuDyL1uu2 + S3 −

C

R2DuL1uu2Gdsdy. s2.17d

But

qu,1sud = qu,1sP1ud + qu,1sL1ud − 2 ReE
R2

VRss,ydP1u · L1u dsdy, s2.18d

so, for anyeP g0,1f,

qu,1sud ù qu,1sP1ud −
1

e
E

R2
VR

2ss,yduP1uu2 dsdy + qu,1sL1ud − eiL1ui2. s2.19d

Thanks to(2.17), we can takee=1 andR large enough such that

qu,1sL1ud − iL1ui2 . iL1ui2, s2.20d

for example,R satisfying 2−sC/R2d.1.
Then, by(2.16), (2.18), and(2.20), we get that

Ns1,qu,1d ø Ns0,qu,1,0d, s2.21d

if

qu,1,0scd =E
R

fuDycu2 − WR,1syducu2gdy, s2.22d

∀cPH1sRd, with

WR,1syd =
1

Îp
E

R
e−s2

fVRss,yd + VR
2ss,ydgds.

From (2.3) and the formula(2.14), the following bound holds:
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0 ø WR,1syd ø
C

R2E
sR−y sin ud/cosu

s2R−y sin ud/cosu

e−s2
ds

[we used the fact that, for any fixedy, VRss,yd=0 for s outside the interval defined byR
,scosu+y sinu,2R], so

0 ø WR,1syd ø
C

R2xfR/2 sin u,3R/sin ugsyd +
C

Rcosu
fe−fsy sin u − Rd2g/cos2 u + e−fsy sin u − 2Rd2g/cos2 ug.

s2.23d

As the operators on L2sRd, 1
3Dy

2−sC/Rcosude−fsy sin u −Rd2g/cos2 u, 1
3Dy

2−sC/Rcosud
3e−fsy sin u −2Rd2g/cos2 u, and ssin2 u /3 cos4 udDy

2−sC/Rcosude−y2
have the same spectrum, we get

from (2.21)–(2.23) that

Ns1,qu,1d ø 2Ns0,qu,1,1d + Ns0,qu,1,2d, s2.24d

if

qu,1,1scd =E
R
F sin2 u

3 cos4 u
uDycu2 −

C

Rcosu
e−y2

ucu2Gdy, s2.25d

and

qu,1,2scd =E
R
F1

3
uDycu2 −

C

R2xfR/2 sin u,3R/sin ugsyducu2Gdy, s2.26d

∀cPH1sRd, for someR.1 independent ofuP g0,p /2f.
It is now possible to deduce from Theorem 1 in the work of Egorov and Kondrat’ev5 the

following estimates:Ns0,qu,1,1døCscos3/2 u /sinud andNs0,qu,1,2døC/sinu, so

Ns1,qu,1d ø
C

sinu
. s2.27d

We conclude from(2.9), (2.12), and(2.27) that the estimate(2.1) is valid.

III. SOME PROPERTIES OF m„j…

The properties of the first eigenvalue,msjd, of the Neumann operator onL2sR+d, Qj=Dt
2+st

−jd2, can be found in Refs. 3, 7, 11, and 13(also see Refs. 2, 4, and 6).
The main ones are

m P C`sRd,

m8sjd Þ 0 if j Þ j0,

msjd . 1 if j , 0, s3.1d

msjd , 1 if j . 0,

limj→−` msjd = + `, limj→+` msjd = 1

[j0.0 is such thatj0
2=msj0d].

Let wj be a normalized eigenfunction associated tomsjd,
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iwjiL2sR+d = 1, wj8s0d = 0, Qjwj = msjdwj, s3.2d

then

m8sjd = − smsjd − j2dwj
2s0d. s3.3d

It is easy to see thatwj is exponentially decreasing. More precisely we have the following.
Lemma 3.1: There exists C0.1 such that

1 − C0e
−uju2/C0 ø msjd. s3.4d

Moreover, ifm2sjd is the second eigenvalue of Qj, then we have also

3 − C0e
−uju2/C0 ø m2sjd. s3.5d

Proof: We proceed as in Ref. 4 to get first the following bound: For anyj.1 and h
P g0,1f,

E
R+

fhst − jd2 − msjdg+es1 − hd1/2st − jd2uwjstdu2 dt ø msjdemsjd/h. s3.6d

For any Lipschitz and real functionF, with compact support,

iDtseFwjdiL2sR+d
2 = kfmsjd − st − jd2 + sF8d2geFwjueFwjl

so

kfst − jd2 − msjd − sF8d2g+eFwjueFwjl ø kfmsjd − st − jd2 + sF8d2g+eFwjueFwjl.

This estimate is still valid forF with noncompact support, provided that the right-hand side of the
inequality is finite; so we can takeFstd=s1−hd1/2st−jd2/2 to get(3.6). Now, let x be a smooth
cutoff function onR,

x P C`sRd,

xstd = 1 if − 1 , t , 1,

s3.7d
xstd = 0 if utu . 2,

0 ø x ø 1.

If j.1, we define the functionw̃1,jstd=xs4fst−jd /jgdwjstd.
So,

iDtw̃1,ji2 + ist − jdw̃1,ji2 = smsjddiw̃1,ji2 +
16

j2 Ix8S4
t − j

j
Dw̃jI2

.

As w̃1,j is of compact support and the first eigenvalue ofDt
2+st−jd2 on L2sRd is 1, then

iw̃1,ji2 ø smsjddiw̃1,ji2 +
16

j2 Ix8S4
t − j

j
DwjI2

,

then we use the estimate(3.6) to see that, for some constantC.1, 1ømsjd+Ce−j2/C, the estimate
(3.4) follows.

If m2sjd is the second eigenvalue ofQj andw2,j the associated normalized eigenfunction, then
we have in the same way, for any real functionF,
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kfst − jd2 − m2sjd − sF8d2g+eFw2,jueFw2,jl ø kfm2sjd − st − jd2 + sF8d2g+eFw2,jueFw2,jl,

so w2,j is exponentially decreasing aswj, and if w̃2,jstd=xs4fst−jd /jgdw2,jstd, then

iDtw̃2,ji2 + ist − jdw̃2,ji2 ø m2sjd + Ce−j2/C

and

uiw̃2,ji − 1u ø Ce−j2/C,

ukw̃1,juw̃2,jlu ø Ce−j2/C. s3.8d

Those estimates,(3.4) and the min–max principle show thatm2sjd+Ce−j2/C is greater than the
second eigenvalue ofDt

2+st−jd2 on L2sRd, so 3øm2sjd+Ce−j2/C. This ends the proof of the
lemma.

IV. THE CASE OF SMALL u

We are still investigating the spectrum of the operatorPu, defined in the Introduction as
follows:

Pu = Dt
2 + Dx

2 + st cosu − x sinud2.

Performing the scalingst ,xd→ stÎcosu ,−x sinu /Îcosud, we observe that this operator has the
same spectrum as

Pu = cosu fDt
2 + st − xd2g +

sin2 u

cosu
Dx

2

(we keep on the same notation for simplification).
It has been proved in Ref. 8 that for small values ofu.0 the following asymptotics hold:

inf ssPud , m0 + o
jù1

cju
j .

Therefore let us consider a set,

Id = g − `,df with d P gm0,1f.

The goal of this section is to get information about

Nsd,Pud = # ssPud ù g − `,df, s4.1d

which denotes the number of eigenvalues ofPu included in the setId.
For a fixeda.1 let us consider the following sets:

J0 =FF f − a, + ` f , J1 = G − `,−
a

2G ,

and a partition of unity

x0
2sxd + x1

2sxd = 1, supportsx jd , Jj, o
j

ux j8sxdu2 , C.

For j =0,1 let usdenote byV j the domainsR+3Jj, V0=R+3 g−a, +`f and V1=R+3 g−` ,
−a/2f. We take now the realization of the operatorsPu

j on each domainV j, associated to
the quadratic formqV j

, with Neumann conditions onGN=h0j3Jj and Dirichlet conditions on
GD=R+3]Jj.
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The quadratic forms are defined as follows:

qV j
sud =E

V j

Hcosu fuDtuu2 + st − xd2uuu2g +
sin2 u

cosu
uDxuu2 −

sin2 u

cosu
o
j=0

1

ux j8sxdu2uuu2Jdt dx.

Let us first explain whyqV1
will not give any contribution to the termNsd,Pud.

According to Sec. III we know thatmsxd, the first eigenvalue ofDt
2+st−xd2 is decreasing on

J1, so we have

qV1
sud ù FmS−

a

2
Dcosu − C

sin2 u

cosu
GiuiL2sV1d

2 .

But ms−a/2d.1, so for smallu the preceding minoring ensues

qV1
sud ù iuiL2sV1d

2 if 0 , u , u0, s4.2d

for someu0P g0,p /4f.
In order to study the formqV0

, it is convenient to use the normalized eigenfunctionwx,
associated tomsxd, in the following way.

Let us denote byP0sud the orthogonal projection on the set

F0 = hwxstdcsxd; c P L2sJ0dj, s4.3d

defined by

P0sud = wxstdSE
R+

uss,xdwxssddsD , s4.4d

and byF1=sF0d' the orthogonal set ofF0. The corresponding orthogonal projection is

P1 = I − P0.

A direct computation gives

]xsP0ud = P0s]xud + Rsud,

whereR is defined by

Rsud = wxstdSE
R+

uss,xd]xwxssddsD + ]xwxstdSE
R+

uss,xdwxssddsD . s4.5d

The additional fact that

]xsP1ud = P1s]xud − Rsud

yields the following bounds:

s1 − edfi]xsP0udiL2sV0d
2 + i]xsP1udiL2sV0d

2 g + 2S1 −
1

e
DiRsudiL2sV0d

2

ø i]xuiL2sV0d
2

ø s1 + edfi]xsP0udiL2sV0d
2 + i]xsP1udiL2sV0d

2 g + 2S1 +
1

e
DiRsudiL2sV0d

2 .

Let us establish now the following lemma.
Lemma 4.1:

∃C0 . 0, s.t. ∀ u P L2sV0d, iRsudiL2sV0d ø C0iuiL2sV0d. s4.6d
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Taking norms in(4.5) we have

iRsudiL2sV0d
2

ø 2E
V0

uuss,xds]xwxssddu2 dsdx + 2 sup
xPJ0

i]xwxstdiL2sR+d
2 iuiL2sV0d

2

ø 4 sup
xPJ0

i]xwxstdiL2sR+d
2 iuiL2sV0d

2 .

The lemma will then be proved if we show that supxPJ0
i]xwxstdiL2sR+d

2 i is finite.

We recall that some elementary technique of perturbation shows that

]

]x
wxstd = 2fQx − msxdg−1cx, s4.7d

with

cxstd = st − xdwxstd − kst − xdwxuwxlwxstd.

Now using

iDt
2wxiL2sR+

2d
2

+ ist − xdwxiL2sR+
2d

2
= msxdiwxiL2sR+

2d
2

= msxd,

we get that

ist − xdwxiL2sR+
2d ø Îmsxd,

and then

ukst − xdwxuwxlL2sR+
2du ø Îmsxd,

so

icxiL2sR+
2d ø 2Îmsxd.

Sincecx lives on the orthogonal space ofwx, let us consider the normNx of the restriction of
fQx−msxdg−1 to this orthogonal space. It is given by

Nx =
1

m2sxd − m1sxd
=

1

m2sxd − msxd
,

wheresm jsxdd j is the increasing sequence of the eigenvalues ofQx.
According to(3.1) and (3.5), msxd and Nx are uniformly bounded onJ0, so there existsC0

.0 such that

sup
xPJ0

i]xwxstdiL2sR+
2d ø 2 sup

xPJ0

Îmsxd
m2sxd − msxd

ø C0, s4.8d

so the Lemma 4.1 follows.
From Lemma 4.1, we see that we can find a constantC1.0, such that, for anyeP g0,1f,

s1 − edfi]xsP0udiL2sV0d
2 + i]xsP1udiL2sV0d

2 g −
C1

e
iuiL2sV0d

2

ø i]xuiL2sV0d
2

ø s1 + edfi]xsP0udiL2sV0d
2 + i]xsP1udiL2sV0d

2 g +
C1

e
iuiL2sV0d

2 .

From that we obtain the corresponding bounds on the quadratic formqV0
,
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qV0

e,−sP0ud + qV0

e,−sP1ud ø qV0
sud ø qV0

e,+sP0ud + qV0

e,+sP1ud, s4.9d

where we used the natural notations

qV0

e,−sud =E
V0

Hcosu fuDtuu2 + st − xd2uuu2g + s1 − ed
sin2 u

cosu
uDxuu2Jdt dx −

sin2 u

cosu
FC +

C1

e
GiuiL2sV0d

2

and

qV0

e,+sud =E
V0

Hcosu fuDtuu2 + st − xd2uuu2g + s1 + ed
sin2 u

cosu
uDxuu2Jdt dx +

sin2 u

cosu

C1

e
iuiL2sV0d

2 .

Writing

h =
sinu

Îcosu
, s4.10d

taking into account(4.3), we define

Wsxd =E
R+

U ]

]x
wxstdU2

dt,

and we get, using(4.4) that

qV0

e,−sP0ud = qe,−scd =E
J0

Hfmsxdcosu + s1 − edh2Wsxdgucsxdu2 + s1 − edh2uDxcsxdu2

− h2FC +
C1

e
Gucsxdu2Jdx.

In the same way we have

qV0

e,+sP0ud = qe,+scd =E
J0

Hfmsxdcosu + s1 + edh2Wsxdgucsxdu2 + s1 + edh2uDxcsxdu2

+ h2C1

e
ucsxdu2Jdx.

Now we must deal with the terms involving the second projectionP1u. But the definition ofP1u,
the min–max principle and the estimate 1−cosuøh2C give the following lower bound:

qV0

e,±sP1ud ù F inf
x[J0

m2sxd − h2SC +
C1

e
DGiP1uiL2sV0d,

wherem2sxd denotes the second eigenvalue defined in the Lemma 3.1. This eigenvalue must be
greater than the first eigenvalue of the corresponding Dirichlet problem, so

m2sxd . 1.

Let us takee=h. We get that

Nsd,qV0

h,±d = Nsd,qh,±d.

Let us take an extensionm̃sxd of msxd outside of
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J0,d = hx P J0, msxd , d + s1 − dd/2j, s4.11d

such that

m̃sxd = msxd if x P J0,d,

m̃sxd ù s1 + dd/2, ∀ x ¹ J0,d, s4.12d

m̃sxd = 1 if uxu . Cd,

for some constantCd.0. Let us define

q0
h,±scd =E

R
fm̃sxducsxdu2 + s1 ± hdh2uDxcsxdu2gdx.

We will need the following lemma.
Lemma 4.2: Let UsxdPC`sR ;Rd, EPR and h.0 such that U−1sg−` ,E+hgd is bounded.
Then for any interval I ofR satisfyingR \ I , fE+sh /2d , +`f, there exists a constant C=Ch

.0 such that

NsE,qh,U,Id ø NsE,qh,Ud ø NsE + h2C,qh,U,Id, s4.13d

if

qh,Uscd =E
R

fh2uDxcsxdu2 + Usxducsxdu2gdx, ∀ c P C0
`sRd,

and

qh,U,Iscd =E
I

fh2uDxcsxdu2 + Usxducsxdu2gdx, ∀ c P C0
`sId.

From the estimate(4.13) we get

Nsd − hC,q0
e,±d ø Nsd,qe,±d ø Nsd + hC,q0

e,±d s4.14d

[we have used thatWsxd is bounded inJ0, thanks to(4.8), then we apply the left-hand side of
(4.13) to Nsd+hC,q0

e,±d and the right-hand side of(4.13) to Nsd−hC,q0
e,±d, both with I =J0].

Applying a classical estimate ofNsd,q0
h,±d (see, for example, Ref. 13, Theorem V-11, p. 263),

we have that, for anyl, s1+dd /2, there existsCl.0 such that, for anyhP g0,1/2f,

UNsl,q0
h,±d −

1

2phÎ1 ± h
E

R
fl − msxdg+

1/2 dxU ø Cl. s4.15d

According to the choice ofd and(3.1), we can use the fact thatm8sxdÞ0 for msxd=d and get from
(4.9)–(4.12), (4.14), and(4.15) with l=d±hC, that there existsCd.0, depending only ond, such
that

UNsd,qV0
d −

1

2p sinu
E

R
fd − msxdg+

1/2 dxU ø Cd. s4.16d

We get easily from the above discussion the following theorem.
Theorem 4.3:For any dP gm0,1f, there exists Cd.0 such that

UNsd,Pud −
1

2p sinu
E

R
fd − msxdg+

1/2 dxU ø Cd. s4.17d
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Sketch of the proof of Lemma 4.2:The min–max principle proves the left-hand side of(4.13).
For the right-hand side, take a partition of unity ofR, x0

2sxd+x1
2sxd=1 such thatx0 is supported in

I andx1 supportedJ,U−1sfE+h0, +`fd, for someh0.0. Thenqh,Uscd=qh,Uh
sx0cd+qh,Uh

sx1cd,
with Uhsxd=Usxd−h2fsx08sxdd2+sx18sxdd2g. From the min–max principle, we get that

NsE,qh,Ud ø NsE,qh,Uh,Id + NsE,qh,Uh,Jd.

If h is small enough, thenNsE,qh,Uh,Jd=0 and we get the right-hand side of(4.13).
Remark 4.4: The conditionu,u0 (4.2) can be removed since Nsd,Pud is finite for fixedu

according to Theorem 2.1.
Remark 4.5: It should be possible to apply the technique of Balazard–Konlein1 to get the

asymptotics of Nsd,Pud, but the result would be rough, compared to our result in Theorem 4.3: our
remainder is anOs1d and the result of Ref. 1 would giveOssin−r ud with r.1/2.

Moreover the assumptions in Ref. 1 are not satisfied in our case.
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counterparts in the familiar Cartesian case. Notable among these is the notion of a
semiquantized phase space, a structure on which the Weyl symbols of operators
turn out to be naturally defined and, figuratively speaking, located midway between
the classical phase spaceT* G and the Hilbert space of square integrable functions
on G. General expressions for the star product for Weyl symbols are presented and
explicitly worked out for the angle-angular momentum case. ©2005 American
Institute of Physics.[DOI: 10.1063/1.1825078]

I. INTRODUCTION

It is well known that the method of Wigner distributions,1 which describes every state of a
quantum mechanical system by a corresponding real quasiprobability density on the classical
phase space, is dual to the Weyl mapping2 of classical dynamical variables to quantum mechanical
operators. Together they provide the Wigner–Weyl isomorphism, whereby both states and opera-
tors in quantum mechanics can be givenc-number descriptions on the classical phase space. The
trace of the product of two operators is then calculable as the integral of the product of the two
corresponding Weyl symbols or phase space functions. Combined with the work of Moyal,3 which
shows how products and commutators of operators are expressed in phase space language, this
entire development may be called the Wigner–Weyl–Moyal or WWM method in quantum me-
chanics and has been instrumental in giving rise to the fertile subject of deformation quantization.4

An important feature of the Wigner distribution is that while it is not by itself a phase space
probability density, its marginals obtained by, respectively, integrating over momenta or over
coordinates do reproduce the quantum mechanical expressions for probability densities in coordi-
nate and in momentum space, respectively.

The WWM method has been studied most extensively in the case of Cartesian systems in
quantum mechanics. By this we mean those systems whose configuration spaceQ is Rn for some
integernù1. The classical phase space is thenT* Q.R2n. While Schrödinger wave functions are
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square integrable functions onRn, both Wigner distributions and Weyl symbols are functions on
R2n. Quantum kinematics can be expressed via the Heisenberg canonical commutation relations
for Cartesian coordinates and their conjugate momenta, or via the exponentiated Weyl form using
families of unitary operators. An important feature in this case is that as far as their eigenvalue
spectra are concerned, the momenta do not experience any quantization on their own; they account
for the second factor inT* Q.R2n.Rn3Rn. Furthermore we have in this case the Stone–von
Neumann theorem on the uniqueness of the irreducible representation of the Heisenberg commu-
tation relations, and the important roles of the groups Sps2n,Rd and Mps2nd corresponding to
linear canonical transformations on coordinates and momenta.

There has been for some time considerable interest in developing the Wigner–Weyl isomor-
phism for other kinds of quantum systems, that is, for non-Cartesian systems.5–16 In these cases,
typically the underlying quantum kinematics cannot be expressed by Heisenberg-type commuta-
tion relations. The situations studied include the quantum mechanics of an angle-angular momen-
tum pair, where the configuration space isQ=S1,17,18and finite state quantum systems correspond-
ing to a finite dimensional Hilbert space.19,20 More recently, the method of Wigner distributions
has been developed for quantum systems whose configuration space is a compact simple Lie
group; and in the discrete case when it is a finite group of odd order.21,22 In all these departures
from the Cartesian situation, an important aspect is the occurrence of new features which do not
show up at all with Cartesian variables.

The aim of the present work is to develop in detail the Wigner–Weyl isomorphism for quan-
tum mechanics on a compact simple Lie group. Here the configuration spaceQ is a (compact
simple) Lie groupG, so the corresponding classical phase space isT* G.G3GI *, where GI * is
the dual to the Lie algebraGI of G. In the quantum situation, Schrödinger wave functions are
complex square integrable functions onG, and observables or dynamical variables are linear
Hermitian operators acting on such functions. The replacements for the canonical Heisenberg
commutation relations are best formulated using the(commutative) algebra of suitable smooth
functions onG, and (say) the left regular representation ofG acting on functions on itself. The
natural question that arises in trying to set up a Wigner–Weyl isomorphism in this case is whether
quantum states and operators are to be described using suitable functions on the classical phase
spaceT* G. In Ref. 21 an overcomplete Wigner distribution formalism for quantum states, which
transforms in a reasonable way under left and right group actions and also reproduces the natural
marginal probability distributions, has been developed. The methods developed there are here
exploited to set up a Wigner–Weyl isomorphism in full detail, disclosing many interesting differ-
ences compared to the Cartesian case. In particular we find that this isomorphism does not directly
utilize c-number functions onT* G at all, but instead uses a combination of functions onG and
operators on a simpler Hilbert space, standing in a sense midway betweenT* G and the Hilbert
space of the quantum system. This feature is traceable to the non-Abelian nature ofG, something
which is absent in the Cartesian case whenQ is the Abelian groupRn.

The material of this paper is organized as follows. In Sec. II we briefly recapitulate key
features of the Wigner–Weyl isomorphism for the Cartesian and angle-angular momentum cases.
This sets the stage for Sec. III where we develop the quantum kinematics for situations where the
configuration space is a compact Lie group and thus go beyond the Abelian cases discussed in Sec.
I. This analysis leads to a proper identification of the analogues of the momenta of the Cartesian
case and helps set up the Wigner distribution for such situations possessing properties expected of
a Wigner distribution. The Wigner distributions so defined have a certain degree of overcomplete-
ness about them, a circumstance forced by the non-Abelian nature of the underlying groupG. A
key ingredient in this construction is the notion of the midpoint of two group elements introduced
in an earlier work.21 In Sec. IV a more compact description in terms of Weyl symbols devoid of
any redundances is developed and correspondences facilitating transition from the Cartesian case
to more general situations are established. The results of Sec. IV are exploited in Sec. V towards
defining a star product between Weyl symbols for operators and the general expression for the star
product is explicitly worked out for the non-Cartesian, albeit Abelian case of angle-angular mo-
mentum. Section VI is devoted to analyzing the minimal structure on which the Weyl symbols for
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operators find their natural definition. This leads to the concept of a noncommutative cotangent
space or a semiquantized phase space the ramifications of which are examined further towards
highlighting the structural similarity between classical phase space functions and the Weyl sym-
bols. A short appendix contains some technical details concerning results used in Sec. V.

II. THE WIGNER–WEYL ISOMORPHISM: CARTESIAN AND ANGLE-ANGULAR
MOMENTUM CASES

In this section we recall briefly the relevant structures needed to set up the Wigner–Weyl
isomorphism for Cartesian quantum mechanics. This is to facilitate comparison with the Lie group
case later on. For simplicity we choose one degree of freedom only, as the extension toQ=Rn is
straightforward. We also recall the angle-angular momentum case,Q=S1, where we already see
significant differences from the Cartesian case; these increase when we go toQ=G.

One-dimensional Cartesian quantum mechanics:The canonical Heisenberg commutation re-
lation between Hermitian coordinate and momentum operatorsq̂ and p̂, fixing the kinematics, is

fq̂,p̂g = i . s2.1d

In the unitary Weyl form this is expressed as follows:

Uspd = expsipq̂d, Vsqd = exps− iqp̂d,

UspdVsqd = VsqdUspdeiqp, q,p [ R. s2.2d

In the Cartesian case the exponentials can be combined to define a phase space displacement
operator

Dsq,pd = UspdVsqde−iqp/2 = VsqdUspdeiqp/2 = expsipq̂ − iqp̂d. s2.3d

However this cannot be done even in the single angle-angular momentum pair case, and also
when we treat the Lie group case. We therefore use expressions in which the exponentials are kept
separate.

The standard form of the unique irreducible representation of Eqs.(2.1) and (2.2) uses the
Hilbert space of square integrable functionscsqd on R. Introducing as usual an ideal basis of
eigenvectors ofq̂ we have

H = L2sRd =Hcsqdu ici2 =E
R

dqucsqdu2 , `J ,

csqd = kqucl, q̂uql = quql, s2.4d

kq8uql = dsq8 − qd.

On suchcsqd (subject to relevant domain conditions) the actions ofq̂, p̂, Uspd, Vsqd are

sq̂cdsqd = qcsqd, sp̂cdsqd = − i
d

dq
csqd,

sUsp8dcdsqd = eip8qcsqd, sVsq8dcdsqd = csq − q8d. s2.5d

The momentum space description ofucl uses the Fourier transform ofcsqd; in terms of the
ideal eigenstatesupl for p̂,

c̃spd = kpucl =E
R

dq
Î2p

exps− ipqdcsqd,
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ici2 =E
R

dpuc̃spdu2. s2.6d

The displacement operators(2.2) form a complete trace orthonormal set(in the continuum
sense) in the space of operators onH,

TrssUsp8dVsq8dd†UspdVsqdd = 2pdsq8 − qddsp8 − pd. s2.7d

The completeness property will be used later.
The definitions of the Wigner distribution for a normalized pure stateuclPH, or more gen-

erally for a mixed state with density operatorr̂, are

Wsq,pd =
1

2p
E

R
dq8 cSq −

1

2
q8DcSq +

1

2
q8D*

expsipq8d,

Wsq,pd =
1

2p
E

R
dq8Kq −

1

2
q8ur̂uq +

1

2
q8Lexpsipq8d. s2.8d

(The dependences onucl, r̂ are left implicit.) While Wsq,pd is real though not always non-
negative, the recovery of the marginal position and momentum space probability densities is
assured by

E
R

dp Wsq,pd = kqur̂uql, E
R

dq Wsq,pd = kpur̂upl. s2.9d

It is possible to expressWsq,pd in a more compact form by introducing a family of Hermitian

operatorsŴsq,pd on H with interesting algebraic properties. They are essentially the double
Fourier transforms of the displacement operators(2.2),

Wsq,pd = Trsr̂Ŵsq,pdd,

Ŵsq,pd = Ŵsq,pd† =
1

s2pd2E
R
E

R
dq8 dp8 Usp8dVsq8deipq8−ip8sq+s1/2dq8d. s2.10d

It has been shown in Ref. 17 that, apart from sharing the trace orthonormality property(2.7)
which is preserved by the Fourier transformation,

TrsŴsq8,p8dŴsq,pdd =
1

2p
dsq8 − qddsp8 − pd, s2.11d

we have the following behaviors under anticommutation withq̂ and p̂:

1
2hq̂,Ŵsq,pdj = qŴsq,pd, 1

2hp̂,Ŵsq,pdj = pŴsq,pd. s2.12d

Thus we may regardŴsq,pd as operator analogues of Dirac delta functions concentrated at
individual phase space points. In Ref. 19 they have been called phase point operators.

Turning to the Weyl map, it takes a general classical dynamical variable, a(square integrable)
functionasq,pd on the classical phase space, to a corresponding(Hilbert–Schmidt) operatorÂ on
H:

012106-4 Mukunda et al. J. Math. Phys. 46, 012106 (2005)

                                                                                                                                    



asq,pd → ãsp8,q8d =E
R
E

R
dq dp asq,pdeispq8−qp8d

→ Â =
1

2p
E

R
E

R
dq8 dp8 ãsp8,q8dUsp8dVsq8de−iq8p8/2. s2.13d

The important property of this map is that traces of operators onH go into integrals over
phase space,

TrsÂ†B̂d =E
R
E

R
dq dp asq,pd * bsq,pd. s2.14d

One can immediately see that the relation betweenasq,pd and Â is given by

Â = 2pE
R
E

R
dq dp asq,pdŴsq,pd, s2.15d

thus establishing that the Wigner and Weyl maps are inverses of one another. Indeed extending the

definition of the Wigner distribution(2.10) to a general operatorÂ on H, we have

asq,pd = TrsÂŴsq,pdd. s2.16d

It is this kind of isomorphism that we wish to develop whenR is replaced by a compact simple Lie
groupG.

The angle-angular momentum case:We now trace the changes which appear if we replace the
Cartesian variableqPR by an angleuP s−p ,pd. The corresponding Hermitian operator is de-

noted by û, with eigenvaluesu; its canonical conjugateM̂ has integer eigenvaluesm

=0, ±1, ±2, . . ..ThusmPZ unlike the Cartesianp, so M̂ is already quantized. The replacements
for Eqs.(2.4) and (2.6) are

H = L2sS1d =Hcsudu ici2 =E
−p

p

duucsudu2 , `J ,

csud = kuucl, ku8uul = dsu8 − ud, ûuul = uuul,

cm = kmucl =
1

2p
E

−p

p

du e−imucsud, s2.17d

ici2 = o
mPZ

ucmu2,

M̂uml = muml, kuuml =
1

Î2p
eimu.

In place of the Heisenberg commutation relation(2.1), we have only the exponentiated Weyl
version,

Usmd = expsimûd, Vsud = exps− iuM̂d,

UsmdVsud = VsudUsmdeimu. s2.18d
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With the actions

sUsm8dcdsud = eim8ucsud,

sVsu8dcdsud = csfu − u8gd, s2.19d

fu − u8g = u − u8 mod 2p,

we have an irreducible system onH=L2sS1d. The analogues of the displacement operators(2.3)
are now

UsmdVsude−imu/2 = VsudUsmdeimu/2, s2.20d

but here the exponents cannot be combined. They do however form a complete trace orthonormal
system,

TrssUsm8dVsu8dd†UsmdVsudd = 2pdmm8dsu8 − ud. s2.21d

With this preparation we can turn to the definition of the Wigner distribution and the Weyl
map. For a given density operatorr̂ on H, the former is

Wsu,md =
1

2p
E

−p

p

du8Ku −
1

2
u8ur̂uu +

1

2
u8Lexpsimu8d. s2.22d

We see immediately that this is not a function on the classical phase spaceT* S1.S13R, which
is a cylinder, but on a partially quantized spaceS13Z. We may regard this space as standing
somewhere in betweenT* S1 and the fully quantum mechanical Hilbert space and operator setup.
The marginals are properly reproduced in the sense that

E
−p

p

du Wsu,md = kmur̂uml,

o
mPZ

Wsu,md = kuur̂uul. s2.23d

We can displayWsu ,md as

Wsu,md = Trsr̂Ŵsu,mdd,

Ŵsu,md = Ŵsu,md† =
1

s2pd2 o
m8PZ

E
−p

p

du8 Usm8dVsu8deimu8−im8su+1/2u8d, s2.24d

and like their Cartesian counterparts these operators form a trace orthonormal system,

TrsŴsu8,m8dŴsu,mdd =
1

2p
dsu8 − uddmm8. s2.25d

In a similar spirit, the Weyl map now takes any classical functionasu ,md on S13Z into an
operator onL2sS1d,
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asu,md → ãsm8,u8d = o
mPZ

E
−p

p

du asu,mdeismu8−m8ud

→ Â =
1

2p
o

m8PZ
E

−p

p

du8 ãsm8,u8dUsm8dVsu8de−im8u8/2. s2.26d

Then the trace operation becomes, as in(2.14),

TrsÂ†B̂d = o
mPZ

E
−p

p

du asu,md * bsu,md. s2.27d

Combining Eqs.(2.24) and (2.26) we are able to get the analogue to(2.15),

Â = 2p o
mPZ

E
−p

p

du asu,mdŴsu,md. s2.28d

In this way the similarities as well as important differences compared to the Cartesian case are
easily seen.

III. QUANTUM KINEMATICS IN THE LIE GROUP CASE AND THE WIGNER DISTRIBUTION

Let G be a(non-Abelian) compact simple Lie group of ordern, with elementsg,g8 , . . . and
composition lawg8 ,g→g8g. To set up the kinematics appropriate for a quantum system with
configuration spaceQ=G, it is simplest to begin with the Hilbert space of Schrödinger wave
functions. The normalized left and right invariant volume element onG is written as dg. For
suitable functionsfsgd on G we have the invariances and normalization condition

E
G

dg fsgd =E
G

dg sfsg8gd or fsgg8d or fsg−1dd,

E
G

dg = 1. s3.1d

Correspondingly we can introduce a Dirac delta function onG characterized by

E
G

dgsdsg8−1gd or dsgg8−1d or dsg−1g8d or dsg8g−1ddfsgd = fsg8d. s3.2d

Thusdsgd is a delta function concentrated at the identity elementePG.
We take the Hilbert spaceH for the quantum system to be made up of all complex square

integrable functions onG:

H = L2sGd =Hcsgd P Cu ici2 =E
G

dgucsgdu2 , `J . s3.3d

A convenient basis of ideal vectorsugl can be introduced such that for a generaluclPH we may
write

csgd = kgucl, kg8ugl = dsg8g−1d. s3.4d

The notion of position coordinates is intrinsically captured by the commutative algebra rep-
resenting real valued smooth functionsfsgd on G, i.e., f PFsGd. To each such function we

associate a Hermitian multiplicative operatorf̂ on H:
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f P FsGd → f̂ =E
G

dg fsgduglkgu,

s f̂cdsgd = fsgdcsgd. s3.5d

Thus all these operators commute with one another, being diagonal in the position description
csgd of ucl.

To complete the kinematics and to obtain an irreducible system of operators onH we have to
adjoin suitable momenta. Here we have two choices, corresponding to the left and right transla-
tions of G on itself by group action. We choose the former, and so define a family of unitary
operatorsVsgd to give the left regular representation ofG:

sVsg8dcdsgd = csg8−1gd,

Vsg8dugl = ug8gl. s3.6d

They obey

Vsg8dVsgd = Vsg8gd,

Vsgd†Vsgd = I . s3.7d

To identify their Hermitian generators, we introduce a basisherj in the Lie algebraGI of G. Using
the exponential mapGI →G, we write a generalgPG as

g = expsarerd, s3.8d

the sum onr being from 1 ton. The generatorsĴr of Vsgd are then identified by

Vsexpsarerdd = exps− iarĴrd. s3.9d

These are Hermitian operators on the Hilbert spaceH, obeying commutation relations involving
the structure constantsCrs

t of G:

fĴr,Ĵsg = iCrs
tĴt. s3.10d

On Schrödinger wave functionscsgd each Ĵr acts as a first order partial differential operator;
indeed if the(right invariant) vector fields generating the left action ofG on itself are written as
Xr, then we have

Ĵrcsgd = iXrcsgd. s3.11d

The commutation relations(3.10) are direct consequences of similar commutation relations among
the vector fieldsXr.

The analogue of the Cartesian Heisenberg–Weyl system(2.1) and (2.2) is now obtained by
setting together the following ingredients:

f1, f2 P FsGd → f̂1f̂2 = f̂2f̂1,

f P FsGd, g8 P G → Vsg8d f̂Vsg8d−1 = f̂8, s3.12d
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f8sgd = fsg8−1gd,

along with the representation property(3.7) for Vsgd. This is in the spirit of the unitary Weyl
system(2.2). In infinitesimal terms we have

fĴr, f̂g = isXr f d̂, s3.13d

combined with(3.10). The spaceH is indeed irreducible with respect to the family of operators

h f̂ ,Vs·dj or equivalentlyh f̂ , Ĵrj.
We can express functions of position also via unitary operators in the Weyl spirit as follows:

for each realf PFsGd, we define the unitary operatorUsfd by

Usfd = eif̂ : sUsfdcdsgd = eif sgdcsgd. s3.14d

It is then easy to see that we have the relations

sUsfdVsg8dcdsgd = eif sgdcsg8−1gd,

sVsg8dUsfdcdsgd = eif sg8−1gdcsg8−1gd, s3.15d

sUsfdVsg8dsVsg8dUsfdd†cdsgd = eif sgd−i f sg8−1gdcsgd,

which is in the spirit of Eqs.(2.2) and (2.18), except thatf is not restricted to be linear in any
coordinate variables.

We see here that unlike in then-dimensional Cartesian case the canonical momenta are a
noncommutative system. Therefore the analogue or generalization of the single momentum eigen-
state upI l in the Cartesian situation will turn out to be a generally multidimensional Hermitian
irreducible representation of(3.10), namely the generators of some unitary irreducible represen-
tation (UIR) of G. We will see this in detail as we proceed.

For completeness we should mention the operators giving the right regular representation of

G. These are, say,Ṽsgd, defined by and obeying

sṼsg8dcdsgd = csgg8d,

Ṽsg8dugl = ugg8−1l,

s3.16d
Ṽsg8dṼsgd = Ṽsg8gd,

Vsg8dṼsgd = ṼsgdVsg8d.

However as is well known their generatorsJ̃
ˆ

r are determined byĴr and the matricessDr
ssgdd of the

adjoint representation ofG, by

J̃
ˆ

r = − Dr
ssgdĴs. s3.17d

Therefore it suffices to regard the collection of operatorsh f̂ ,Vs·dj as providing the replacement for
the Heisenberg–Weyl system in the present case.

Complementary to the position basisugl for H is a momentum basis. This can be set up using
the Peter–Weyl theorem involving all the UIR’s ofG. We denote the various UIR’s byj , with
dimensionNj; we label rows and columns within thej th UIR by magnetic quantum numbersm,n.
Thus the unitary matrix representinggPG in the j th UIR is
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g → sDmn
j sgdd. s3.18d

In general each ofj ,m,n is a collection of several independent discrete quantum numbers, and
there is a freedom of unitary changes in the choice ofm,n. In addition to unitarity and the
composition law,

o
n

Dmn
j sgd * Dm8n

j sgd = dmm8,

o
n

Dmn
j sg8dDnn8

j sgd = Dmn8
j sg8gd, s3.19d

we have orthogonality and completeness properties,

E
G

dg Dmn
j sgdDm8n8

j8 sgd * = d j j 8dmm8dnn8/Nj ,

o
jmn

NjDmn
j sgdDmn

j sg8d * = dsg−1g8d. s3.20d

Then a simultaneous complete reduction of both representationsVs·d, Ṽs·d of G is achieved by
passing to a new orthonormal basisu jmnl for H. Its definition and basic properties are

u jmnl = Nj
1/2E

G

dg Dmn
j sgdugl,

k j8m8n8u jmnl = d j8 jdm8mdn8n,

s3.21d
Vsgdu jmnl = o

m8

Dmm8
j sg−1du jm8nl,

Ṽsgdu jmnl = o
n8

Dn8n
j sgdu jmn8l.

Therefore inu jmnl the indexn counts the multiplicity of occurrence of thej th UIR in the reduction

of Vs·d andm performs a similar function in the reduction ofṼs·d.
We now regard the sets ofNj

2 stateshu jmnlj for each fixedj as momentum eigenstates in the
present context. This means that then-dimensional real momentum eigenvaluepI in Cartesian
quantum mechanics is now replaced by a collection of(discrete) quantum numbersjmn. A vector
uclPH with wave functioncsgd is given in the momentum description by a set of expansion
coefficientsc jmn,

c P H → c jmn = k jmnucl = Nj
1/2E

G

dg Dmn
j sgd * csgd,

ici2 = o
jmn

uc jmnu2. s3.22d

A normalizeducl then determines two complementary probability distributions,ucsgdu2 on G and
uc jmnu2 on momentum space.

In this situation a(provisional and overcomplete) Wigner distributionW̃sg; jmn m8n8d can be
defined for eachuclPH (or for any mixed stater̂ as well). (Here we depart slightly from the
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notation in Ref. 21, so that our later expressions are more concise.) It transforms in a reasonable

manner whenucl is acted upon byVs·d or Ṽs·d; and it reproduces in a simple and direct way the
two probability distributions determined byucl, as marginals. We give only the latter property
here,

o
jmn

W̃sg; jmn mnd = ucsgdu2,

E
G

dg W̃sg; jmn m8n8d = c jm8n8 c jmn
* . s3.23d

The right-hand side of the second relation is a natural generalization ofuc jmnu2, to allow for
freedom in the choice of labelsm,n within each UIRj . The expression for this Wigner distribution
involves a functions, G3G→G obeying certain conditions and is

W̃sg; jmn m8n8d = NjE
G

dg8E
G

dg9 csg9dcsg8d * Dm8n8
j sg9d * Dmn

j sg8ddsg−1ssg8,g9dd.

s3.24d

Reality in the Cartesian or single angle-angular momentum cases is replaced here by Hermiticity,

W̃sg; jmn m8n8d * = W̃sg; jm8n8 mnd. s3.25d

The conditions onssg8 ,g9d to ensure that all the above properties are secured are

g8,g9 P G → ssg8,g9d = ssg9,g8d P G,

ssg1g8g2,g1g9g2d = g1 ssg8,g9dg2, s3.26d

ssg8,g8d = g8.

We can simplify the problem of constructing such a function by exploiting the second of these
relations to write

ssg8,g9d = g8sse,g8−1g9d = g8s0sg8−1g9d, s3.27d

so the functions0sgd of a single group element must satisfy

s0sed = e,

s0sg−1d = g−1s0sgd = s0sgdg−1, s3.28d

s0sg8gg8−1d = g8 s0sgdg8−1.

The solution proposed in Ref. 21 is to takes0sgd to be the midpoint along the geodesic from the
identity ePG to g. These geodesics are determined starting from the invariant Cartan–Killing
metric onG, and have the necessary behaviors under left and right group actions to ensure that all
of Eqs.(3.26) and (3.28) are obeyed. In the exponential notation of Eq.(3.8) we have

s0sexpsar erdd = exps 1
2ar erd, s3.29d

since it is true that geodesics passing through the identity are one parameter subgroups. With this
explicit construction we have the additional relation
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s0sg−1d = s0sgd−1,

i.e.,

s0sgd s0sgd = g. s3.30d

Thuss0sgd is the(almost everywhere unique) square root ofg andssg8 ,g9d is a kind of symmetric
square root ofg8 andg9.

We shall explore the properties ofW̃sg; jmn m8n8d in the next section, especially the sense in
which it contains information aboutuclkcu in an overcomplete manner. This will then lead to the
Wigner–Weyl isomorphism for quantum mechanics on a(compact simple) Lie group.

IV. THE WIGNER–WEYL ISOMORPHISM IN THE LIE GROUP CASE

The definition(3.24) can be immediately extended to associate an objectW̃Âsg; jmn m8n8d
with every linear operatorÂ on H (of Hilbert–Schmidt class). In terms of the integral kernel

kg9uÂug8l of Â we have

W̃Âsg; jmn m8n8d = NjE
G

dg8E
G

dg9kg9uÂug8lDm8n8
j sg9d * Dmn

j sg8ddsg−1ssg8,g9dd. s4.1d

It is indeed the case that this expression describes or determinesÂ completely, however this

happens in an overcomplete manner. There are certain linear relations obeyed byW̃Âsg; jmn m8n8d
which have anÂ independent form. We now obtain these relations, then proceed to construct a

simpler expression which contains complete information aboutÂ without redundancy.
The Dirac delta function in the integral on the right-hand side of Eq.(4.1) means that the only

contributions to the integral are from the points where

ssg8,g9d = g. s4.2d

Writing this as

s0sg8−1g9d = g8−1g, s4.3d

and then using Eq.(3.30), we see that, say, in theg9 integration the delta function picks out the
single point determined by

g8−1g9 = sg8−1gd2,

i.e.,

g9 = gg8−1g. s4.4d

This means thatdsg−1ssg8 ,g9dd is some Jacobian factor timesdsg9−1gg8−1gd. We are therefore
permitted to use this value forg9 elsewhere in the integrand, so

W̃Âsg; jmn m8n8d = NjE
G

dg8E
G

dg9kgg8−1guÂug8lDm8n8
j sgg8−1gd * Dmn

j sg8ddsg−1ssg8,g9dd.

s4.5d

Transferring theg-dependent representation matrices from the right-hand side to the left-hand side
and using unitarity, we get
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o
m8n8

Dm8m9
j sgdDn9n8

j sgdW̃Âsg; jmn m8n8d = NjE
G

dg8E
G

dg9 dsg−1ssg8,g9dd

3kgg8−1guÂug8lDn9m9
j sg8dDmn

j sg8d. s4.6d

It is now clear we have symmetry of the expression on the left-hand side under the simultaneous

interchangesm↔n9, n↔m9, a statement independent ofÂ. This is the sense in which

W̃Âsg; jmn m8n8d contains information aboutÂ in an overcomplete manner, and this happens only
whenG is non-Abelian.

Taking advantage of this, we now associate toÂ the simpler quantity

WÂsg; jmm8d = Nj
−1o

n

W̃Âsg; jmn m8nd =E
G

dg8E
G

dg9kg9uÂug8lDmm8
j sg8g9−1ddsg−1ssg8,g9dd.

s4.7d

We shall call this the Weyl symbol corresponding to the operatorÂ. The passageÂ→ Â† results in

WÂ†sg; jmm8d = WÂsg; jm8md * . s4.8d

It is easy to obtain the transformation properties of the Weyl symbol under conjugation ofÂ by
either the left or the right regular representation,

Â8 = Vsg0dÂVsg0d−1,

WÂ8sg; jmm8d = o
m1m18

Dmm1

j sg0dDm8m18
j sg0d * WÂsg0

−1g; jm1m18d,

s4.9d
Â9 = Ṽsg0dÂṼsg0d−1,

WÂ9sg; jmm8d = WÂsgg0; jmm8d.

Next we can verify that ifÂ andB̂ are any two Hilbert–Schmidt operators onH, then TrsÂB̂d can
be simply expressed in terms of their Weyl symbols,

TrsÂB̂d = o
jmm8

NjE
G

dg WÂsg; jmm8dWB̂sg; jm8md. s4.10d

The proof exploits the completeness relation in(3.20) and the properties(3.26) of ssg8 ,g9d. This

key result proves thatÂ is indeed completely determined by its Weyl symbol:Â is certainly

determined by the values of TrsÂB̂d for all B̂, and the latter are known once the Weyl symbols are
known.

Before expressing the Weyl symbol ofÂ in a form analogous to Eq.(2.16), we give examples

for some simple choices ofÂ,
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Â WÂsg; jmm8d

f̂ =E
G

dg fsgduglkgu fsgddmm8

Vsg0d Dmm8
j sg0

−1d

Ṽsg0d Dmm8
j sgg0g

−1d

f̂Vsg0d fss0sg0dgdDmm8
j sg0

−1d

Vsg0d f̂ fss0sg0d−1gdDmm8
j sg0

−1d

s4.11d

We shall comment later on the structure of these Weyl symbols. However it is already instruc-
tive to compare these results with the Cartesian situation

Â Wsq,pd

f̂ = fsq̂d fsqd

Vsq8d exps− ipq8d

f̂Vsq8d = fsq̂dVsq8d fsq + q8/2dexps− ipq8d

Vsq8dfsq̂d fsq − q8/2dexps− ipq8d
s4.12d

Now we turn to the problem of expressing the Weyl symbol ofÂ in the form

WÂsg; jmm8d = TrsÂŴsg; jmm8dd s4.13d

for a suitable operatorŴsg; jmm8d. This would be the analogue ofŴsq,pd in Eq. (2.10). Since the

kernel kg9uÂug8l is quite general, Eq.(4.13) and Eq.(4.7) imply

kg8uŴsg; jmm8dug9l = Dmm8
j sg8g9−1ddsg−1ssg8,g9dd = Dmm8

j sg8g9−1ddsg−1s0sg9g8−1dg8d.

s4.14d

We shall synthesizeŴsg; jmm8d in steps. We begin by defining a family of commuting operators
Us jmnd in the manner of Eq.(3.5), all of them diagonal in the position basis,

sUs jmndcdsgd = Dmn
j sgdcsgd. s4.15d

These are analogous to the CartesianUsp8d, labeled by a momentum eigenvaluejmn, functions of
position alone. They are unitary in the matrix sense,

o
m

Us jmnd†Us jmn8d = o
m

Us jnmd†Us jn8md = dn8nI . s4.16d

These operators allow us to express the mapf PFsGd→ f̂ of Eq. (3.5) more explicitly as
follows:

fsgd = o
jmn

f jmnDmn
j sgd ⇒ f̂ = o

jmn

f jmnUs jmnd. s4.17d

Upon conjugation byVsgd we have

Vsgd−1Us jmndVsgd = o
m8

Dmm8
j sgdUs jm8nd. s4.18d

Combining Eqs.(3.16), (3.20), and(4.15) we easily obtain the trace orthonormality property
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TrssUs j8m8n8dVsg8dd†Us jmndVsgdd = Nj
−1d j8 jdm8mdn8ndsg−1g8d, s4.19d

analogous to Eqs.(2.7) and (2.5). The action ofUs j8m8n8d on the momentum eigenstatesu jmnl
can be worked out; it involves the Clebsch–Gordan coefficients for the reduction of direct products
of two general UIR’s ofG and reads

Us j8m8n8du jmnl = o
j9m9n9l

Î Nj

Nj9
Cm8mm9

j8 j j 9l * Cn8nn9
j8 j j 9lu j9m9n9l. s4.20d

Herel is a multiplicity index keeping track of the possibly multiple occurrences of the UIRDj9

in the reduction of the direct productDj83Dj. The significance of this relation is similar in spirit
to the statement in the Cartesian case thatUsp8d=expsip8q̂d generates a translation inp̂, in other
words that in the momentum descriptionq̂ is given by the differential operatorisd/dpd. The result
(4.20) however involves discrete labels sinceG is compact, unlike continuous Cartesian variables,
and incorporates non-Abelianness as well. Therefore translating the momentumjmn by the
amountj8m8n8 yields several final momentaj9m9n9 according to the contents of the direct product
Dj83Dj of UIR’s of G.

Now multiply both sides of Eq.(4.14) by Dm1m18
j1 sgd and integrate with respect tog, this is

Fourier transformation with respect tog and gives

kg8uE
G

dg Dm1m18
j1 sgdŴsg; jmm8dug9l = Dmm8

j sg8g9−1dDm1m18
j1 ss0sg9g8−1dg8d. s4.21d

Now perform an inverse Fourier transformation with respect to the momentajmm8 to get

o
jmm8

NjDmm8
j sg1d * kg8uE

G

dg Dm1m18
j1 sgdŴsg; jmm8dug9l

= Dm1m18
j1 ss0sg9g8−1dg8ddsg1g9g8−1d = Dm1m18

j1 ss0sg1
−1dg8ddsg1g9g8−1d

= kg8ug1g9lDm1m18
j1 ss0sg1

−1dg8d = o
m2

kg8uUs j1m2m18dVsg1dug9lDm1m2

j1 ss0sg1
−1dd. s4.22d

Comparing the two sides and peeling offkg8u and ug9l gives

o
jmm8

NjDmm8
j sg1d * E

G

dg Dm1m18
j1 sgdŴsg; jmm8d = o

m2

Dm1m2

j1 ss0sg1
−1ddUs j1m2m18dVsg1d.

s4.23d

Then Fourier inversion twice yields the result

Ŵsg; jmm8d = o
j1m1m2

Nj1E
G

dg1 Us j1m2m1dVsg1dDmm8
j sg1dDm1m2

j1 sg−1s0sg1
−1dd. s4.24d

This may be compared in every detail with the Cartesian result in Eq.(2.10), the correspondence
of arguments and integration/summation variables is(including the factors representing momen-
tum eigenfunctions)

q → g, p → jmm8, q8 → g1, p8 → j1m1m2,

eipq8 → Dmm8
j sg1d, e−ip8sq+q8/2d → Dm1m2

j1 sg−1s0sg1
−1dd. s4.25d

Giving due attention to the new matrix features, the correspondence is quite remarkable.
Combining Eqs.(3.28) and (4.14) we obtain the relation
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Ŵsg; jmnd† = Ŵsg; jnmd. s4.26d

Similarly combining Eqs.(4.24) and(4.19) and carrying out quite elementary operations leads to
analogues to the Cartesian relations(2.11) and (2.15) in the forms

TrsŴsg8; j8m8n8d†Ŵsg; jmndd = Nj
−1d j j 8dmm8dnn8dsg−1g8d,

Â = o
jmn

NjE
G

dg WÂsg; jnmdŴsg; jmnd. s4.27d

We may thus conclude that we have succeeded in setting up a Wigner–Weyl isomorphism for
quantum mechanics on a compact simple Lie group with reasonable properties.

V. THE STAR PRODUCT FOR WEYL SYMBOLS

In this section we sketch the derivation of the expression for noncommutative operator mul-
tiplication in terms of the corresponding Weyl symbols, relegating some details to the Appendix.

Thus, for two operatorsÂ and B̂ we seek an expression for the Weyl symbol ofÂB̂ in terms of

those ofÂ and B̂ in the form

WÂB̂sg; jmnd = sWÂ ! WB̂dsg; jmnd. s5.1d

From Eq.(4.13) we have

sWÂ ! WB̂dsg; jmnd = TrsÂB̂Ŵsg; jmndd, s5.2d

so using Eq.(4.27) for Â as well as forB̂ we have

sWÂ ! WB̂dsg; jmnd = o
j8m8n8

j9m9n9

Nj8Nj9E
G

dg9E
G

dg8 WÂsg9; j9n9m9dWB̂sg8; j8n8m8d

3 TrsŴsg9; j9m9n9dŴsg8; j8m8n8dŴsg; jmndd. s5.3d

We therefore need to compute the trace of the product of threeŴ’s, which is a nonlocal integral
kernel defining the(associative but noncommutative) star product on the left-hand side. The two
ingredients for this calculation are expressions for the productUs jmndVsgd in terms of

Ŵsg8 ; j8m8n8d, and for the productUs j8m8n8dVsg8dUs jmndVsgd in terms of similar productsUV.
These are

Us jmndVsgd = o
j8m8n8

Nj8Dm8n8
j8 sgd * E

G

dg8 Dmn
j ss0sgdg8dŴsg8; j8m8n8d, s5.4ad

Us j8m8n8dVsg8dUs jmndVsgd = o
j9m9n9k

Cm8n8
j8

kn
j

m9n9
j9 Dmk

j sg8−1dUs j9m9n9dVsg8gd. s5.4bd

The derivations are given in the Appendix, and theC-symbol on the right-hand side in the second
equation is a sum of products of Clebsch–Gordan coefficients of the type occurring in Eq.(4.20).

Starting from Eq.(4.24) and using Eq.(5.4b) we have for the product of twoŴ’s,
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Ŵsg8; j8m8n8dŴsg; jmnd

= o
j0,m0,n0

j08m08n08

Nj0
Nj08E

G

dg0E
G

dg08 Dmn
j sg0dDm8n8

j8 sg08d

3Dn0m0

j0 sg−1s0sg0
−1ddD

n08m08
j08 sg8−1s0sg08

−1ddUs j08m08n08dVsg08dUs j0m0n0dVsg0d

= o
j0m0n0k0

j08m08n08

j09m09n09

Nj0
Nj08

C
m08n08
j08

k0n0

j0
m09n09
j09 E

G

dg0E
G

dg08 Dmn
j sg0dDm8n8

j8 sg08d

3Dm0k0

j0 sg08
−1dDn0m0

j0 sg−1s0sg0
−1ddD

n08m08
j08 sg8−1s0sg08

−1dd 3 Us j09m09n09dVsg08g0d. s5.5d

If here we use Eq.(5.4a) and then Eq.(4.27) we obtain for the kernel in Eq.(5.3),

TrsŴsg9; j9m9n9dŴsg8; j8m8n8dŴsg; jmndd

= o
j0m0n0k0

j08m08n08

j09m09n09

Nj0
Nj08

C
m08n08
j08

k0n0

j0
m09n09
j09 E

G

dg0E
G

dg08 Dmn
j sg0dDm8n8

j8 sg08dDn9m9
j9 sg08g0d *

3Dm0k0

j0 sg08
−1dDn0m0

j0 sg−1s0sg0
−1ddD

n08m08
j08 sg8−1s0sg08

−1ddD
m09n09
j09 ss0sg08g0dg9d. s5.6d

The star product of Eq.(5.3) is then obtained by inserting this integral kernel on the right-hand
side.

A slightly simpler expression—which amounts to trading four of theD-functions for Dirac
delta functions—results from direct use of Eq.(4.14),

TrsŴsg9; j9m9n9dŴsg8; j8m8n8dŴsg; jmndd

=E
G

dg0E
G

dg08E
G

dg09kg0uŴsg9; j9m9n9dug08lkg08uŴsg8; j8m8n8dug09lkg09uŴsg; jmndug0l

=E
G

dg0E
G

dg08E
G

dg09 Dm9n9
j9 sg0g08

−1dDm8n8
j8 sg08g09

−1d

3Dmn
j sg09g0

−1ddsg9−1ssg0,g08dddsg8−1ssg08,g09dddsg−1ssg09,g0dd. s5.7d

These expressions for the star product show an unavoidable complexity for general compact
non-AbelianG. In the one-dimensional Abelian(but non-Cartesian) caseQ=S1, there are some
simplifications. Referring to Sec. II, we have the rule for Weyl symbols given by Eq.(2.25) and
(2.28),

asu;md = TrsÂŴsu;mdd,

Â = 2p o
mPZ

E
−p

p

du asu;mdŴsu;md. s5.8d

The star product then appears as
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sa ! bdsu;md = o
m8,m9PZ

E
−p

p

du9E
−p

p

du8 TrsŴsu9;m9dŴsu8;m8dŴsu;mddasu9;m9dbsu8;m8d,

TrsŴsu9;m9dŴsu8;m8dŴsu;mdd =
1

4p2 o
m0,m08PZ

E
−p

p

du08E
−p

p

du0e
i/2sm08u0−m0u08dexpfismu0 − m0u

+ m8u08 − m08u8 + sm0 + m08du9 − m9su0 + u08ddg. s5.9d

This expression for the kernel results from Eq.(5.6) if we first drop the magnetic quantum
numbersm,n,m8 ,n8 ,m9 ,n9 ,m0,n0,k0,m08 ,n08 ,m09 ,n09; then set the dimensionalitiesNj0, Nj08

equal
to unity; next make the replacementsj →m, j8→m8 , j9→m9 , j0→m0, j08→m08 ,g0→u0,g08→u08,
and use for theC coefficient the Kronecker deltad j09,m0+m08

. Even with some simplifications, the
kernel in Eq.(5.9) remains nonlocal because of(among other things) the occurrence of half-angles
in the exponent.

VI. DISCUSSION AND CONCLUDING REMARKS

The characteristic feature revealed by our analysis is that for quantum mechanics on a Lie
groupG as configuration space, the concept of canonical momentum is a collection of noncom-

muting operatorsĴr, in fact constituting the Lie algebra of the left regular representation ofG on
L2sGd. This in itself is known, but it results in the analogues of momentum eigenvalue being a set
of discrete labelsjmn, and the single Cartesian momentum eigenvectorupl being replaced by a

multidimensional set of vectorshu jmnlj. Other consequences of this non-Abelianness should be
noted. One needs to work with both overcomplete and with complete nonredundant Weyl symbols

for general operatorsÂ: the former are useful for reproducing in a simple manner the two comple-
mentary marginal probability distributions associated with a pure or mixed quantum state from its
Wigner distribution as shown in Eq.(3.23); while the latter lead to the Wigner–Weyl isomorphism
in a reasonable manner.

It is interesting that the Weyl symbolsWÂsg; jmm8d are not complex valued functions on the
classical phase spaceT* G. They may be more compactly viewed as follows. Whereas by the
Peter–Weyl theorem the Hilbert spaceH=L2sGd carries each UIRDs jds·d of G as often as its
dimensionNj, the structure of Eq.(4.7) leads us to define a smaller Hilbert spaceH0 carrying each
UIR of G exactly once:

H0 = o
j

% Hs jd,

Hs jd = Sphu jmdj, dimHs jd = Nj , s6.1d

s j8m8u jmd = d j8 jdm8m,

with Hs jd carrying the UIR Ds jds·d of G. Then the Weyl symbol of a general operatorÂ,
WÂsg; jmm8d, may be regarded as a function ofgPG and an operator onH0. This is evident from
the examples of Weyl symbols given in Eq.(4.11); in the Cartesian case in Eq.(4.12) such features
are of course absent. This can be understood also from the following point of view. In the normal

quantum description an operatorÂ on H=L2sGd can be given via its kernelkg9uÂug8l, or via its

complementary diagonal plus off-diagonal matrix elementsk j8m8n8uÂu jmnl. If in the latter we
trade half of the labels for a dependence on a group elementg, we arrive at the Weyl symbol
WÂsg; jmm8d viewed as a block diagonal operator onH0 with simultaneously a dependence ong.
Thus while the Wigner–Weyl isomorphism does not work directly with the true classical phase
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spaceT* G, it seems to use what may be called a noncommutative cotangent space, standing
somewhere betweenT* G and operators onL2sGd.

Nevertheless the link to functions on the classical phase spaceT* G can be established, as we
will see below.

We may use the phrase “semiquantized phase space” for the space on which the Weyl symbols

WÂsg; jmnd of operatorsÂ are defined. It is to be understood that this phrase includes the restric-
tion that only(g-dependent) block-diagonal operators onH0 are encountered. This may be viewed

as a superselection rule. In detail, given an operatorÂ on H=L2sGd, we associate with it the
g-dependent block-diagonal operator,

Ãsgd = o
j

o
m,n

ÎNjWÂsg; jmndu jmds jnu, s6.2d

acting onH0, and we then have the connection

TrHsÂB̂d =E
G

dg TrH0
sÃsgdB̃sgdd. s6.3d

The Weyl symbolÃsgd is simpler thanÂ both in that it acts on the much smaller Hilbert spaceH0,
and in that it is block diagonal.

To finally establish the link to suitable functions on the classical phase spaceT* G, we exploit
both the fact that the representation ofG on H0 has a multiplicity-free reduction into UIR’s, and

the fact thatÃsgd is block diagonal. Let us denote the generators ofG on H0 by Ĵr
s0d, r

=1,2, . . . ,n. The Weyl symbolÃsgd may initially be written as the direct sum of symbolsÃjsgd
acting within each subspaceHs jd in H0,

Ãsgd = o
j

% Ãjsgd,

Ãjsgd = o
m,n

ÎNjWÃsg; jmndu jmds jnu. s6.4d

Next, using the irreducibility ofhĴr
s0dj acting onHs jd, we can expandÃjsgd uniquely as a sum of

symmetrized polynomials inĴr
s0d,

Ãjsgd = o
N=0,1,. . .

o
r1,r2,. . .,rN

ar1. . .rN
sg; jdhĴr1

s0dĴr2

s0d
¯ ĴrN

s0djS
s jd,

hĴr1

s0dĴr2

s0d
¯ ĴrN

s0djS
s jd =

1

N! o
PPSN

sĴrPs1d

s0d
¯ ĴrPsNd

s0d ds jd. s6.5d

Here the upper limit ofN is determined by the UIRDj; SN is the permutation group onN symbols;
and the superscripts jd denotes the restriction toHs jd. The coefficientsar1,. . .,rN

sg; jd arec-number
quantities symmetric inr1, . . . ,rN. If we now replace theirj dependences by dependences on the

independent mutually commuting Casimir operatorsĈ of G, themselves symmetric homogeneous

polynomials inĴr
s0d, we can use(6.5) in (6.4) and write

Ãsgd = o
N=0

`

o
r1,. . .,rN

ar1,. . .,rN
sg; ĈdhĴr1

s0d
¯ ĴrN

s0djS. s6.6d

This expression for the Weyl symbolÃsgd of Â can now be set into one-to-one correspondence
with the classical phase space function
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asg;Jd = o
N=0

`

o
r1,. . .,rN

ar1,. . .,rN
sg;CdJr1

¯ JrN
, s6.7d

where the commuting classical variablesJr are the canonical momentum coordinates of the clas-
sical phase spaceT* G,21 while C are invariant(Casimir) homogeneous polynomials in them. Thus
we have the two-stage sequence of correspondences

Â on H = L2sGd ⇔ Ãsgd = block-diagonal operator onH0 ↔ asg;Jd P FsT * Gd. s6.8d

The importance of the multiplicity-free nature of the representation ofG on H0, and the super-
selection rule, is evident. In contrast to the Cartesian case in Sec. II, the appearance of the
semiquantized phase space as an intermediate step is to be noted. We hope to return to this aspect
in a future publication.

APPENDIX

We indicate here the derivations of Eqs.(5.4a) and(5.4b). For Eq.(5.4a), we begin with Eq.
(4.23) and use the unitarity of theD-matrices to shift theD-matrix on the right-hand side to the
left-hand side. This immediately gives Eq.(5.4a). For Eq.(5.4b) we begin with the decomposition
of the product of twoU’s; from Eq. (4.15), using Eq.(A29) in Ref. 21,

Us j8m8n8dUs jmndugl = Dm8n8
j8 sgdDmn

j sgdugl = o
j9m9n9l

Cm8
j8

m
j

m9
j9l*Cn8

j8
n
j

n9
j9lDm9n9

j9 sgdugl. sA1d

Here theC’s are the usual Clebsch–Gordan coefficients for the decomposition of the direct product
Dj83Dj of two UIR’s into UIR’s Dj9, with a multiplicity index l to keep track of multiple
occurrences of a givenDj9. If we introduce the short-hand notation

Cm8n8
j8

mn
j

m9n9
j9 = o

l

Cm8
j8

m
j

m9
j9l*Cn8

j8
n
j

n9
j9l, sA2d

we get from(A1):

Us j8m8n8dUs jmnd = o
j9m9n9

Cm8n8
j8

mn
j

m9n9
j9 Us j9m9n9d. sA3d

We can now tackle the product of four factors in Eq.(5.4b). First using Eqs.(3.7) and(4.18) and
then using(A3) above gives

Us j8m8n8dVsg8dUs jmndVsgd = Us j8m8n8do
k

Dmk
j sg8−1dUs jkndVsg8gd

= o
j9m9n9k

Dmk
j sg8−1dCm8n8

j8
kn
j

m9n9
j9 Us j9m9n9dVsg8gd, sA4d

which is Eq.(5.4b).
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A set of ordinary differential equations is derived employing the method of differ-
entiable forms so as to describe the quantum mechanics of a particle constrained to
move on a general two-dimensional surface of revolution. Eigenvalues and eigen-
states are calculated quasianalytically in the case of a finite cylinder(finite along
the axis) and compared with the eigenvalues and eigenstates of a full three-
dimensional Schrödinger problem corresponding to a hollow cylinder in the limit
where the inner and outer radii approach each other. Good agreement between the
two models is obtained for a relative difference less than 20% in inner and outer
radii. © 2005 American Institute of Physics.[DOI: 10.1063/1.1829376]

I. INTRODUCTION

With the recent advances in nanotechnology,1 it is now possible to grow quasi-two-
dimensional surfaces of almost arbitrary shape where quantum effects play a major role.2 Ex-
amples include single crystal NbSe3 Möbius strips,3 spherical CdSe–ZnS core-shell quantum
dots,4 and Si nanowire and nanoribbon transistors.5 Due to the confinement of the quantum-
mechanical particle to a two-dimensional surface, differential geometry methods offer certain
advantages above the usual three-dimensional treatment of Schrödinger-equation problems in
determining eigenvalues and eigenstates. Several publications have appeared on the constrainment
of quantum-mechanical particles(with applications in, e.g., standard Schrödinger equation prob-
lems and relativistic Dirac equation problems) to a two-dimensional surface since the original
works by Jensen and Koppe, da Costa6–8 clarified that physical properties of two-dimensional
systems in general depend on the surrounding three-dimensional space.

In the present work, we derive the three-dimensional Schrödinger equation in curvilinear
coordinatesu1, u2, u3 with u3=0 defining the two-dimensional surface to which the particle is
confined. The resulting representation of the Schrödinger equation inu1, u2, u3 can be separated
into three ordinary differential equations(one for eachui, i =1,2,3) for any surface of revolution.
In doing this, simple equations are obtained relevant to the more general case of surfaces than
those considered in Ref. 9 where the surface was restricted to obey the relationz=Ssrd wherez, r
are the axial and radial cylinder coordinates, respectively.

Next, we solve the problem of a particle confined to the surface of a finite cylinder and
determine eigenvalues and eigenstates analytically. The corresponding eigenvalues and eigenstates
of a hollow cylinder in three dimensions is also solved quasianalytically. In particular, we show
that three-dimensional results for a thin hollow cylinder agree very well with results obtained by
performing a quasi-two-dimensional differential form analysis of the Schrödinger equation.

II. SCHRÖDINGER’s EQUATION IN CURVED COORDINATES

Let su1,u2,u3d benormal coordinatesin R3 with respect to a surfaceS embedded inR3, i.e.,
u1,u2 are coordinates on the surface andu3 is the distance to the surface. A simple calculation
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shows that the volume element inR3 is FÎg du1 du2 du3, whereF=1−2Mu3+Ksu3d2, andM and
K denote the mean and Gaussian curvature, respectively. If we letx=ÎFf, then we can write the
Laplacian inR3 acting onc as

ÎFDR3c = sD0 + u3D1 + su3d2D2 + ¯ dx + ]3
2x, s1d

whereDk, k=0,1,2, . . . areoperators onS. In particular,

D0 = DS + sM2 − Kd, s2d

see Ref. 7, whereDS is the Laplace–Beltrami operator onS,

DS = g−1/2]bgabg1/2]b = gab]a]b + Sgab

2

]bg

g
+ ]bgabD]a, s3d

and]a=] /]ua, gab are the components of the metric tensor,g=detfgabg and fgabg=fgabg−1 (see
Ref. 6).

We now specialize to asurface of revolution. It can be parametrized asxsu1,u2d
=srsu1dcosu2,rsu1dsinu2,zsu1dd, wheresrsu1d ,zsu1dd is a curve in thexz plane. The metric tensor
is given by g11=r8su1d2+z8su1d2, g22=rsu1d2, and g12=g21=0, and the principal curvatures are

k1=ksu1d=sr8z9−z8r9d / sr82+z82d3/2 and k2=z8 / rÎr82+z82, see Ref. 10. The mean and Gaussian
curvature are1

2sk1+k2d andk1k2, respectively, soM2−K= 1
4sk1−k2d2 and

D0 =
]1

2

r82 + z82 +
]2

2

r2 + S r8

rsr82 + z82d
−

r8r9 + z8z9

sr82 + z82d2D]1 +
1

4

1

r82 + z82S r8z9 − z8r9

r82 + z82 −
z8

r
D2

. s4d

If the curvesrsu1d ,zsu1dd is parametrized by arc length, i.e.,r82+z82=1, the expression simplifies
to

D0 = ]1
2 +

]2
2

r2 −
r8

r
]1 +

1

4
Sr8z9 − z8r9 −

z8

r
D2

. s5d

For the sake of completeness, let us next write the Schrödinger equation in curved coordinates
for a particle confined to the surfacesu1,u2,u3=0d,

− "2

2m
sD0 + ]3

2dxsu1,u2,u3d + Vsu1,u2,u3dxsu1,u2,u3d = Exsu1,u2,u3d, s6d

where the Laplacian is as given by Eq.(2), and

Vsu1,u2,u3d = H0 if uu3u ø e3,

` otherwise.
J s7d

For a surface of revolution, the Schrödinger equation can be written as three ordinary differential
equations using the separation-of-variables method. Hence, assumingxsu1,u2,u3d
=x1su1dx2su2dx3su3d and inserting into Eq.(6) leads to[by use of the more general expression for
D0 given by Eqs.(4) and (7)]

]1
2x1 + S r8

r
−

r8r9 + z8z9

r82 + z82 D]1x1 + S1

4
S r8z9 − z8r9

r82 + z82 −
z8

r
D2

− Sc1 +
c2

r2Dsr82 + z82dDx1 = 0, s8d

]2
2x2 + c2x2 = 0, s9d

]3
2x3 + S2msE − Vsu3dd

"2 + c1Dx3 = 0. s10d
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III. ENERGY SPECTRUM OF A PARTICLE CONFINED TO THE SURFACE OF A FINITE
CYLINDER

In the following, the possible energy eigenvalues of a particle obeying Schrödinger’s equation
confined to the surface of a finite cylinder with radiusR and lengthL will be determined. First, a
parametrization of the cylinder surface is defined by

srsu1d,zsu1dd = sR,u1d, 0 ø u1 ø L. s11d

Inserting this into Eqs.(8)–(10) immediately yields

]1
2x1 + S 1

4R2 −
c2

R2 − c1Dx1 = 0, s12d

]2
2x2 + c2x2 = 0, s13d

]3
2x3 + S2m

"2 E + c1Dx3 = 0, s14d

wherec1,c2 are separation constants andxsu1,u2,u3d;x1su1dx2su2dx3su3d.
Consider first the equation inu2. The solution satisfying the periodic conditionx2s2pd

=x2s0d, is

x2su2d = exps± iÎc2u
2d = expsilu2d, s15d

wherel is an integer(positive or negative), i.e.,

c2 = l2. s16d

Next, c1 is determined from Eq.(12) by imposing the boundary conditions

x1su1 = 0d = x1su1 = Ld = 0. s17d

The corresponding solution is

x1su1d = sinSÎ−
c2

R2 − c1 +
1

4R2u1D = sinSkp

L
u1D, k = 1,2,3, . . . , s18d

i.e.,

c1 = − Skp

L
D2

−
c2

R2 +
1

4R2 = − Skp

L
D2

−
l2

R2 +
1

4R2 . s19d

The remaining equation inu3 can finally be solved—subject to the boundary conditions
xsu1,u2,u3= ±e3d=0,

x3su3d = sinS np

2e3
su3 − «3dD, n = 1,2,3, . . . . s20d

In other words, the energy spectrum is found from Eqs.(14), (19), and(20) and reads

EDG =
"2

2m
FS np

2e3
D2

+ Skp

L
D2

+
l2

R2 −
1

4R2G , s21d

wheren=1,2,3, . . .,k=1,2,3, . . ., andl =0,1,2,3, . . . arequantum indices.
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IV. ENERGY SPECTRUM OF A PARTICLE CONFINED TO A HOLLOW CYLINDER—
THREE-DIMENSIONAL TREATMENT

The Schrödinger equation in cylindrical coordinates reads

]2c

]r2 +
1

r

]c

]r
+

1

r2

]2c

]u2 +
]2c

]z2 + ksrd2c = 0, s22d

where

ksrd2 =
2m

"2 sE − Vsrdd, s23d

for a potential depending on the radial coordinater only. Here,Vsrd is a step potential confining
the particle to the hollow cylinder, i.e.,

Vsrd = H0 if Ri ø r ø Ro,

` otherwise,
J s24d

andRi sRod is the inner(outer) radius of the hollow cylinder. A separable solution in the region
Ri ø r øRo is sought in the form

csr,u,zd = rsrdQsudZszd, s25d

where

d2Z

dz2 = − kzk
2 Z, s26d

d2Q

du2 = − l2Q, s27d

r2d2r

dr2 + r
dr

dr
+ skln

2 r2 − l2dr = 0, s28d

andk2=kln
2 +kzk

2 . The potentialVsrd in Eq. (24) ensures that the wave function vanishes at the inner
and outer radii positions,csr =Ri ,u ,zd=csr =Ro,u ,zd=0. The solution forZszd amenable with the
boundary conditionsZsz=0d=Zsz=Ld=0, is

Zszd = sinskzkzd = sinSkp

L
zD, k = 1,2,3, . . . . s29d

The general solution to the Bessel equation[Eq. (28)] is

rsrd = AJlsklnrd + BYlsklnrd, s30d

whereA, B are numbers andJl, Yl are Bessel functions of orderl of the first and second kind,
respectively. Hence, the boundary conditions lead to the determinental equation for nontrivial
solutions,

JlsklnRidYlsklnRod − JlsklnRodYlsklnRid = 0. s31d

Equation(31) can be easily solved forkln. Thus, the eigenstates correspond to an energy in the
form,

EHC =
"2skln

2 + kzk
2 d

2m
=

"2

2m
Skln

2 + Skp

L
D2D . s32d
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V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we compare results for eigenstates of electrons confined to a thin cylindrical
shell employing the full three-dimensional Schrödinger equation and the quasi-two-dimensional
Schrödinger equation based on differential-form methods using curvilinear coordinatessu1,u2,u3d
with u3 nearly zero in the cylindrical shell. The energiesEDG andEHC of the two theories are given
by Eqs.(21) and (32), respectively, and we see that they have the terms" /2mdskp /Ld2 in com-
mon. The dominating term in(21) is En=s" /2mdsnp /2ed2 which is order of magnitudes larger
than the other terms so in order to compare the two theories we will considerEn as a reference
energy and define the energy gap

DEDG = EDG − En −
"

2m
Skp

L
D2

=
"

2m

4l2 − 1

4R2 , s33d

DEHC = EHC − En −
"

2m
Skp

L
D2

=
"

2m
Skln

2 − Snp

2e
D2D , s34d

and the relative error

d =
DEHC − DEDG

DEDG
=

EHC − EDG

DEDG
. s35d

The relative errord can now be used to rewrite Eq.(32) so as to obtain the form

EHC =
"

2m
FSnp

2e
D2

+ Skp

L
D2

+ s1 + dd
4l2 − 1

4R2 G , s36d

whereRo=R+e andRi =R−e. Except for the termd, which in most cases can be neglected, this is
the same as Eq.(21). In Table I, we list the energy gapDEDG and the relative errord, as obtained
for a hollow cylinder withR=1 nm ande=10−4R, 10−3R, 10−2R, and 10−1R.

Evidently, the agreement is surprisingly good between the two models even for the case where
e is 10% ofR. The eigenstates for the full three-dimensional problem are

TABLE I. Energy gapsDEDG and the relative errordsed, for a quantum-mechanical particle with massm
confined to a set of hollow cylinders withRi =s1−ed nm andR0=s1+ed nm, as calculated employing Eqs.(33)
and (35), respectively. Length is measured in nm and other units are chosen such that"2/2m;1.

n l DEDG dse=10−4d dse=10−3d dse=10−2d dse=10−1d

0 −0.250 00 3.9310−9 3.9310−7 3.9310−5 3.9310−3

1 0.750 00 3.9310−9 3.9310−7 3.9310−5 3.9310−3

2 3.750 00 3.9310−9 3.9310−7 3.9310−5 3.9310−3

1 3 8.750 00 3.9310−9 3.9310−7 3.9310−5 3.9310−3

4 15.750 00 3.9310−9 3.9310−7 3.9310−5 3.8310−3

5 24.750 00 3.9310−9 3.9310−7 3.9310−5 3.8310−3

6 35.750 00 3.9310−9 3.9310−7 3.9310−5 3.7310−3

0 −0.250 00 8.5310−9 8.5310−7 8.5310−5 8.5310−3

1 0.750 00 8.5310−9 8.5310−7 8.5310−5 8.5310−3

2 3.750 00 8.5310−9 8.5310−7 8.5310−5 8.5310−3

2 3 8.750 00 8.5310−9 8.5310−7 8.5310−5 8.5310−3

4 15.750 00 8.5310−9 8.5310−7 8.5310−5 8.5310−3

5 24.750 00 8.5310−9 8.5310−7 8.5310−5 8.5310−3

6 35.750 00 8.5310−9 8.5310−7 8.5310−5 8.5310−3
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csr,u,zd = sinSkp

L
zDexpsiludSJlsklnrd −

JlsklnRod
YlsklnRod

YlsklnrdD , s37d

corresponding to the energy eigenvalues given by Eq.(32). Similarly, the eigenstates for the
two-dimensional problem are

xsr,u,zd = sinSkp

L
u1Dexpsilu2dx3su3d, s38d

with

x3su3d = sinS np

2e3
su3 − e3dD, n = 1,2,3, . . . , s39d

corresponding to the energy eigenvalues given by Eq.(21). Note that these eigenstates are exactly
the same in theirz and u dependencies(or u1 and u2 dependencies) since u1P f0;Lg, u2

P f0;2pf, uP f0;2pf, andzP f0;Lg with k, l, andn integers. This could in fact have been seen
beforehand. Indeed, for the cylinder we haveu1=z, u2=u, and u3=R−r. So the equationx
=ÎFc=Î1−u3/Rc gives us in the limite3→0 thatx1su1d=Zszd andx2su2d=Qsud. For the sake of
completeness we note that the exact equation forx is

−
"2

2m
S]1

2 +
1

sR− u3d2]2
2 + ]3

2 −
1

4sR− u3d2Dx + Vsu3dx = Ex, s40d

and in Sec. III the factorsR−u3d−2 in Eq. (40) is replaced with the zeroth order termR−2.
We would like to point out that we obtain the same result for an annulus inR2 as for the

hollow cylinder inR3, except that in the former case, theu1 dependence disappears in the eigen-
states as does the termskp /Ld2 in the corresponding energy eigenvalue expressions. However, the
1/4R2 contribution to the energy also appears in the annulus problem as this term reflects radial
confinement of the quantum-mechanical particle.

VI. CONCLUSIONS

The Schrödinger equation in curvilinear coordinatessu1,u2,u3d is derived wheresu1,u2,u3

=0d describes the two-dimensional surface to which a quantum-mechanical particle is confined. In
the case of a surface of revolution it is possible to separate the Schrödinger equation in curvilinear
coordinates so as to obtain three ordinary differential equations. As an example, energy eigenval-
ues and eigenstates are determined quasianalytically for the case of confinement to a finite cylin-
drical surface. Results are in good agreement with corresponding full three-dimensional results of
a hollow cylinder in the case where the inner and outer radii approach each other.
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By using a variant of the quantum inverse scattering method, commutation rela-
tions between all elements of the quantum monodromy matrix of the bosonic mas-
sive Thirring (BMT) model are obtained. Using those relations, the quantum inte-
grability of BMT model is established and theS-matrix of two-body scattering
between the corresponding quasiparticles has been obtained. It is observed that for
some special values of the coupling constant, there exists an upper bound on the
number of quasiparticles that can form a quantum-soliton state of the BMT model.
We also calculate the binding energy for aN-soliton state of the quantum BMT
model. ©2005 American Institute of Physics.[DOI: 10.1063/1.1818722]

I. INTRODUCTION

Quantum integrable field models in 1+1 dimensions are objects of interest due to their close
connections with different areas of physics as well as mathematics.1–10 These integrable theories
have played an important role in understanding the basic nonperturbative aspects of physical
theories relevant in the realistic 3+1 dimensional models. Through quantum inverse scattering
method(QISM) one can establish the integrability property of these models and obtain the spec-
trum as well as different correlation functions of the corresponding models.4

Massive Thirring model in 1+1 dimensions has been widely studied as a toy counterpart to
low energy QCD, since it does not include many of the complications arising in 3+1 dimensions.
The study of a nonlocal massless Thirring model is relevant, not only from a purely field theoret-
ical point of view but also because of its connection with the physics of strongly correlated
systems in one spatial dimension. This model describes an ensemble of nonrelativistic particles
coupled through a two-body forward-scattering potential and displays Luttinger-liquid behavior11

that can play a role in real one-dimensional semiconductors.12

Massive Thirring model in 1+1 dimensions can be treated through QISM for both bosonic
and fermionic field operators.6 In this paper, we shall focus our attention to the bosonic massive
Thirring (BMT) model. The classical version of the BMT model is described by the Hamiltonian

H =E
−`

`

dxF−
i

2
HSf1

* ]f1

]x
−

]f1
*

]x
f1D − Sf2

* ]f2

]x
−

]f2
*

]x
f2DJ − sf1

*f2 + f2
*f1d − 4jf1

*f2
*f2f1G

s1.1d

with the equal time Poisson bracket(PB) relations,

hf1sxd,f1sydj = hf1
*sxd,f1

*sydj = 0, hf1sxd,f1
*sydj = − idsx − yd,

a)Electronic mail: tanaya@theory.saha.ernet.in
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hf2sxd,f2sydj = hf2
*sxd,f2

*sydj = 0, hf2sxd,f2
*sydj = − idsx − yd. s1.2d

It is well known that this BMT model is intimately connected with the derivative nonlinear
Schrödinger(DNLS) model. In fact, one can generate the Lax operator of the BMT model by
“fusing” two Lax operators of DNLS model with different spectral parameters.13 The integrability
of the classical DNLS model, possessing ultralocal PB structure, can be established from the fact
that the corresponding monodromy matrix satisfies the classical Yang–Baxter equation.14 The
quantized version of this DNLS model also preserves the integrability property. By applying
QISM, the quantum integrability of DNLS model is established and the Bethe eigenstates for all
conserved quantities have been constructed.14,15

In an earlier work by Kulish and Sklyanin,6 the Lax operator and the correspondingR-matrix
for the quantum BMT model has been given, though the detailed calculations are not being
explicitly shown. Moreover, the quantum Yang–Baxter equation(QYBE) at the infinite interval
limit and hence the corresponding commutation relation between the creation and annihilation
operators have not been studied. However, it is evident that taking the infinite interval limit of the
monodromy matrix and corresponding QYBE is necessary to get the spectrum for the quantum
version of the Hamiltonian(1.1). In this context it may be mentioned that, by applying a variant
of the QISM3 which is directly applicable to field theoretical models, the quantum DNLS model
has been shown to be integrable.15,16 The infinite interval limit of the corresponding QYBE
enabled us to obtain the spectrum of all the conserved quantities including the Hamiltonian and
also the two-particleS-matrix. Therefore, it is interesting to explore the integrability property of
the quantum BMT model by using the same variant of QISM that we applied for the DNLS model.
It may be noted that the one-dimensional Hubbard model has been treated earlier through alge-
braic Bethe ansatz in the infinite interval limit. As an advantage of taking this infinite interval
limit, the commutation relations among various elements of the corresponding monodromy matrix
are obtained in a much simpler form.17 In this paper our aim is to establish the integrability
property of the quantum BMT model and to obtain the spectrum of all conserved quantities
including the Hamiltonian by using the QISM at an infinite interval limit.

The arrangement of this paper is as follows. In Sec. II, we consider the classical BMT model
and evaluate the PB relations among the various elements of the corresponding monodromy
matrix at the infinite interval limit. Using these PB relations, the integrability of the classical BMT
model can be established in the Liouville sense. In this section we also derive the expressions for
the classical conserved quantities of the BMT model. In Sec. III, we construct the quantum
monodromy matrix of the BMT model on a finite interval and derive the corresponding QYBE. In
Sec. IV, we consider the infinite interval limit of QYBE and obtain the commutation relations
among the various elements of the corresponding quantum monodromy matrix. Such commutation
relations allow us to construct exact eigenstates for the quantum conserved quantities of the BMT
model by using the prescription of algebraic Bethe ansatz. In particular we are able to obtain the
spectrum for the quantum version of the Hamiltonian(1.1). Furthermore we obtain the commu-
tation relation between creation and annihilation operators of quasiparticles associated with the
BMT model and find out theS-matrix of two-body scattering among such quasiparticles. In this
section we also calculate the binding energy for aN-soliton state of the quantum BMT model.
Section V is the concluding section.

II. INTEGRABILITY OF THE CLASSICAL MASSIVE THIRRING MODEL

The classical version of the BMT model is described by the Lax operator,6

Usx,ld = i1jhr1sxd − r2sxdj −
1

4
Hl2 −

1

l2J jHlf1
*sxd −

1

l
f2

*sxdJ
lf1sxd −

1

l
f2sxd − jhr1sxd − r2sxdj +

1

4
Hl2 −

1

l2J 2 , s2.1d

where r1sxd=f1
*sxdf1sxd, r2sxd=f2

*sxdf2sxd, l is the spectral parameter andj is the coupling
constant of the theory. The bosonic fieldsf1sxd, f2sxd satisfy the PB relations(1.2) and vanish at
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uxu→` limit. The monodromy matrix on finite and infinite intervals are defined as

Tx1

x2sld = P expE
x1

x2

Usx,lddx s2.2d

and

Tsld = lim

x1 → − `
x2→+`

es− x2,ldHP expE
x1

x2

Usx,lddxJesx1,ld, s2.3d

respectively, whereP denotes the path ordering andesx,ld=e−si/4dhl2−s1/l2djs3x.
First, we want to investigate the symmetry properties of the monodromy matrix(2.3). It is

easy to check that, the Lax operator(2.1) satisfies the relations

Usx,ld * = KUsx,l * dK, s2.4ad

Usx,− ld = K8Usx,ldK8, s2.4bd

whereK=s 0
1/Î−j

Î−j
0

d andK8= s 1
0

0
−1

d. By using these relations, we find that the symmetries of the
monodromy matrixTsld (2.3) are given by

Tsld * = KTsl * dK, s2.5ad

Ts− ld = K8TsldK8. s2.5bd

Due to the relation(2.5a), Tsld can be expressed in the form

Tsld = Sasld − jb * sld
bsld a * sld

D , s2.6d

wherel is taken as a real parameter. Moreover, by using the symmetry relation(2.5b), it is easy
to see thatas−ld=asld and bs−ld=−bsld. Therefore, it is sufficient to derive the PB relations
among the elements ofTsld only for lù0.

Next, our aim is to calculate the classical conserved quantities of the BMT model by using the
approach described in Ref 2. From(2.2), one obtains the differential equation followed by the
monodromy matrixTx1

x2sld as

]

]x2
Tx1

x2sld = Usx2,ldTx1

x2sld. s2.7d

Now, let us decompose the monodromy matrix in the form

Tx1

x2sld = s1 + Wsx2,lddexpZsx2,x1,lds1 + Wsx1,ldd, s2.8d

whereZsx2,x1,ld is a diagonal matrix andWsx,ld is a nondiagonal one. The Lax operator of the
classical BMT model can be expressed asUsx,ld=Udsx,ld+Undsx,ld, where Udsx,ld is the
diagonal part andUndsx,ld is the nondiagonal part ofUsx,ld. Using the above expression of the
Lax operatorUsx,ld (2.1), the differential equation(2.7) can be decomposed into

dZ

dx
= Ud + UndW, s2.9ad
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dW

dx
− 2UdW− Und + WUndW= 0. s2.9bd

The structure of the Lax operator(2.1) ensures thatWsx2,ld andZsx2,x1,ld can be written in the
form

Wsx2,ld = − jw * sx2,lds+ + wsx2,lds−,

Zsx2,x1,ld = zsx2,x1,lds3.

Substituting Eqs.(2.6) and(2.8) in the expression(2.3), and usingWsx,ld→0 at uxu→` limit, one
obtains

ln asld = lim

x1 → − `
x2→+`

Hzsx2,x1,ld +
il2

4
sx2 − x1dJ .

Substituting the explicit form ofzsx2,x1,ld [as obtained by integrating Eq.(2.9a)] to the above
expression, we get the following form of lnasld:

ln asld = ijE
−`

+`

hf1
*f1 − f2

*f2jdx + ijlE
−`

+`

f1
*wdx −

ij

l
E

−`

+`

f2
*wdx. s2.10d

Next, we expandwsx,ld in inverse powers ofl as

wsx,ld = o
j=0

`
wj

l2j+1 .

Using the differential Eq.(2.9b) followed by Wsx,ld, the expansion coefficientwj’s can be ob-
tained explicitly in a recursive way. The first few nonzerowj’s are given by

w0 = − 2f1, w2 = 4if1x
+ 8jf1sf2

*f2d + 2f2.

Substitutingwj’s in the expression of lnasld (2.10), one gets

ln asld = o
n=0

`
iCn

l2n ,

whereCn’s represent an infinite set of conserved quantities. The first two of them are explicitly
given by

C0 = − jE
−`

+`

hf1
*f1 + f2

*f2jdx, s2.11ad

C1 = 4ijE
−`

+`

f1
*f1x dx + 2jE

−`

+`

hf1
*f2 + f2

*f1jdx + 8j2E
−`

+`

sf1
*f1dsf2

*f2ddx. s2.11bd

Next we expandwsx,ld in powers ofl as

wsx,ld = o
j=0

`

w̃jl
2j+1.

In a similar way as above, using(2.9b), the first few nonzerow̃j’s can be obtained as
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w̃0 = − 2f2, w̃2 = − 4if2x
+ 8jsf1

*f1df2 + 2f1.

Correspondingly, Eq.(2.10) yields

ln asld = o
n=0

`

iC̃nl2n,

whereC̃n’s represent another infinite set of conserved quantities. The first two of them are explic-
itly given by

C̃0 = jE
−`

+`

hf1
*f1 + f2

*f2jdx, s2.12ad

C̃1 = 4ijE
−`

+`

f2
*f2x

dx − 2jE
−`

+`

hf1
*f2 + f2

*f1jdx − 8j2E
−`

+`

sf1
*f1dsf2

*f2ddx. s2.12bd

Now by combining these two sets of conserved quantities, the mass, momentum, and the
Hamiltonian of classical BMT model can be expressed in the following way:

N = −
1

2j
sC0 − C̃0d =E

−`

+`

sf1
*f1 + f2

*f2ddx,

P = −
1

4j
sC1 + C̃1d =E

−`

+`

sf1
*f1x + f2

*f2xddx

H = −
1

4j
sC1 − C̃1d =E

−`

`

f− isf1
*f1x

− f2
*f2x

d − hf1
*f2 + f2

*f1j − 4jf1
*f2

*f2f1gdx.

Next, we want to derive the PB relations among the elements ofTsld (2.6). We apply the
equal time PB relations(1.2) between the basic field variables to evaluate the PB relations among
the elements of the Lax operator(2.1) and find that

hUsx,ld ,
^ Usy,mdj = frsl,md,Usx,ld ^ 1 + l ^ Usy,mdgdsx − yd, s2.13d

where

rsl,md = − jhtcs3 ^ s3 + scss+ ^ s− + s− ^ s+dj s2.14d

with

tc =
l2 + m2

2sl2 − m2d
, sc =

2lm

l2 − m2 .

Now, by using Eqs.(2.13) and (2.3), one obtains

hTsld ,
^ Tsmdj = r+sl,mdTsld ^ Tsmd − Tsld ^ Tsmdr−sl,md, s2.15d

where

r± = − jstcs3 ^ s3 + s±
cs+ ^ s− + s7

c s− ^ s+d,

with s±
c = ±2ipl2dsl2−m2d. By substituting the symmetric form ofTsld (2.6) to Eq. (2.15) and

comparing the individual elements in both sides, we obtain
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hasld,asmdj = 0, s2.16ad

hasld,a * smdj = 0, s2.16bd

hbsld,bsmdj = 0, s2.16cd

hasld,bsmdj = jSl2 + m2

l2 − m2Dasldbsmd − 2ipjl2dsl2 − m2dbsldasmd, s2.16dd

hasld,b * smdj = − jSl2 + m2

l2 − m2Dasldb * smd + 2ipjl2dsl2 − m2db * sldasmd, s2.16ed

hbsld,b * smdj = − 4ipl2dsl2 − m2duasldu2. s2.16fd

From Eq. (2.16a) it follows that all expansion coefficients occurring in the expansions of
ln asld will have vanishing PB relations among themselves. Hence, the following expressions will
hold true

hCm,Cnj = hC̃m,C̃nj = hCm,C̃nj = 0,

for all values ofm andn. Since the mass, momentum, and the Hamiltonian of the classical BMT

model has been expressed in terms of the expansion coefficientsCn andC̃n’s, all of them will have
vanishing PB relations among themselves. Thus the integrability property of the classical BMT
model, described by the Hamiltonian(1.1), is established in the Liouville sense.

III. COMMUTATION RELATIONS FOR THE QUANTUM MONODROMY MATRIX ON A
FINITE INTERVAL

By using a version of QISM which is directly applicable to field models,3 in this section we
shall show that the quantum monodromy matrix of the BMT model on a finite interval satisfies
QYBE. The basic field operators of the quantum BMT model satisfy the following equal time
commutation relations:

ff1sxd,f1sydg = ff1
†sxd,f1

†sydg = 0, ff1sxd,f1
†sydg = "dsx − yd,

ff2sxd,f2sydg = ff2
†sxd,f2

†sydg = 0, ff2sxd,f2
†sydg = "dsx − yd, s3.1d

and the vacuum state is defined through the relationsf1sxdu0l=f2sxdu0l=0.
In analogy with the classical Lax operator(2.1), we assume that the quantum Lax operator of

BMT model is given by

Uqsx,ld = i1 f1r1sxd − f2r2sxd −
l2

4
+

1

4l2 jlf1
†sxd −

j

l
f2

†sxd

lf1sxd −
1

l
f2sxd − g1r1sxd + g2r2sxd +

l2

4
−

1

4l2
2 , s3.2d

wherer1sxd=f1
†sxdf1sxd, r2sxd=f2

†sxdf2sxd and f1, f2,g1,g2 are four parameters which will be
determined later in this section through QYBE. Using the Lax operator(3.2), the quantum mono-
dromy matrix on a finite interval is defined as
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T x1

x2sld ¬ P expE
x1

x2

Uqsx,lddx:, s3.3d

where the symbol< denotes the normal ordering of operators. This quantum monodromy matrix
(3.3) satisfies a differential equation given by

]

]x2
T x1

x2sld ¬ Uqsx2,ldT x1

x2sld: = −
i

4
Hl2 −

1

l2Js3T x1

x2sld + ijlf1
†sx2ds+T x1

x2sld

−
ij

l
f2

†sx2ds+T x1

x2sld + ils−T x1

x2sldf1sx2d −
i

l
s−T x1

x2sldf2sx2d

+ i f 1f1
†sx2de11T x1

x2sldf1sx2d − i f 2f2
†sx2de11T x1

x2sldf2sx2d

− ig1f1
†sx2de22T x1

x2sldf1sx2d + ig2f2
†sx2de22T x1

x2sldf2sx2d, s3.4d

wheree11= 1
2s1+s3d and e22= 1

2s1−s3d. Now, to apply QISM, we must find out the differential
equation satisfied by the productT x1

x2sld ^ T x1

x2smd. By using the basic commutation relations(3.1)
and the method of “extension,”3 we find that the product of two monodromy matrices satisfies the
following differential equation(detail calculations are given in the Appendix):

]

]x2
sT x1

x2sld ^ T x1

x2smdd = A Lsx2;l,mdT x1

x2sld ^ T x1

x2smd A , s3.5d

where

Lsx;l,md = Uqsx,ld ^ 1 + 1 ^ Uqsx,md + LDsx;l,md, s3.6d

with

LDsx;l,md =





 − "f1

2r1sxd − "jmf1f1
†sxd 0 0

− "f2
2r2sxd −

"j

m
f2f2

†sxd

0 "g1f1r1sxd 0 0

+ "g2f2r2sxd

− "lf1f1sxd − "jHlm +
1

lm
J "g1f1r1sxd "jmg1f1

†sxd

−
"f2

l
f2sxd + "g2f2r2sxd +

"jg2

m
f2

†sxd

0 "lg1f1sxd 0 − "g1
2r1sxd

+
"g2

l
f2sxd − "g2

2r2sxd 





.

In the expression(3.5), the sign of normal arrangement of operator factors is taken asAA. The sign
AA, applied to the product of several operator factors(including f1, f2, f1

†, andf2
†), ensures the

arrangement of allf1
†, f2

† on the left, and allf1, f2 on the right,without altering the order of the
remaining factors. For example,
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AXf1f2f1
†f2

†Y A = f1
†f2

†XYf1f2,

whereX andY may in general be taken as some functions of the basic field operators.
Now one can easily check thatLsx;l ,md (3.6) follows an equation given by

Rsl,mdLsx;l,md = Lsx;m,ldRsl,md, s3.7d

whereRsl ,md is a s434d matrix of the form

Rsl,md =1
1 0 0 0

0 ssl,md tsl,md 0

0 tsl,md ssl,md 0

0 0 0 1,
2 , s3.8d

with

tsl,md =
l2 − m2

l2q − m2q−1, ssl,md =
sq − q−1dlm

l2q − m2q−1

andq=e−ia. The above equation(3.7) enables us to determine the exact expressions of the param-
etersf1, f2, g1, g2, a in terms of the coupling constantj. We obtain

"j = − sina, s3.9ad

f1 = g2 =
je−ia/2

cosa/2
, s3.9bd

g1 = f2 =
jeia/2

cosa/2
. s3.9cd

Using Eqs.(3.5) and(3.7), we find that the monodromy matrix(3.3) satisfies QYBE given by

Rsl,mdT x1

x2sld ^ T x1

x2smd = T x1

x2smd ^ T x1

x2sldRsl,md. s3.10d

Using the above QYBE(3.10), the commutation relations among all elements of the quantum
monodromy matrix(3.3) can be obtained easily.

Equations(3.9a), (3.9b), and(3.9c), describing the relations betweenf1, f2, g1, g2, a and the
coupling constantj, provide the necessary conditions for the Lax operator(3.2) to satisfy QYBE
(3.10). From Eq.(3.9a) we can conclude that, the above method of deriving QYBE for quantum
BMT model is applicable only when the coupling constantj lies within the rangeujuø1/". The
parametera has a one-to-one correspondence with the coupling constantj for −p /2øaøp /2.
For the purpose of investigating the classical limit of the quantum Lax operator(3.2), we take the
a→0 limit which is equivalent to the"→0 limit for a fixed value ofj. From Eqs.(3.9b) and
(3.9c), it follows that at this limit f1, f2→j andg1,g2→j. Hence we find that the quantum Lax
operator(3.2) correctly reproduces the classical Lax operator(2.1) at "→0 limit.

IV. ALGEBRAIC BETHE ANSATZ FOR THE QUANTUM MONODROMY MATRIX ON AN
INFINITE INTERVAL

The quantum monodromy matrix in an infinite interval is defined as

012301-8 Tanaya Bhattacharyya J. Math. Phys. 46, 012301 (2005)

                                                                                                                                    



Tsld = lim

x1 → − `
x2→+`

es− x2,ldT x1

x2sldesx1,ld, s4.1d

whereT x1

x2sld is given by Eq.(3.3). Just as in the classical case, the quantum Lax operator(3.2)
also satisfies the symmetry relations

Uqsx,ld * = KUqsx,l * dK, s4.2ad

Uqsx,− ld = K8Uqsx,ldK8, s4.2bd

where K and K8 matrices have appeared earlier in Eq.(2.4). Using Eq. (4.2a), the quantum
monodromy matrix(4.1) can be expressed in a symmetric form given by

Tsld = SAsld − jB†sld
Bsld A†sld

D , s4.3d

wherel is a real parameter. From Eq.(4.2b), it follows thatAs−ld=Asld andBs−ld=−Bsld. So
it is sufficient to obtain the commutation relations among the elements of the quantum mono-
dromy matrix(4.3) only for lù0.

Now we aim to obtain the infinite interval limit of the QYBE satisfied byTsld (4.3). To this
end, we split theLsx;l ,md matrix (3.6) into two parts:

Lsx;l,md = L0sl,md + L1sx;l,md,

whereL0sl ,md is given by

L0sl,md = lim
uxu→`

Lsx;l,md =





 −

i

4
sl2 + m2d 0 0 0

+
i

4
S 1

l2 +
1

m2D
0 −

i

4
sl2 − m2d 0 0

+
i

4
S 1

l2 −
1

m2D
0 − "jlm −

"j

lm

i

4
sl2 − m2d 0

−
i

4
S 1

l2 −
1

m2D
0 0 0

i

4
sl2 + m2d

−
i

4
S 1

l2 +
1

m2D 





,

andL1sx;l ,md is the field dependent part ofLsx;l ,md, which vanishes atx→ ±`. From Eq.(3.7)
we get

Rsl,md«sx;l,md = «sx;m,ldRsl,md, s4.4d

where«sx;l ,md=eL0sl,mdx. By using the above mentioned splitting ofLsx;l ,md, we derive the
integral form of the differential equation(3.5) as
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T x1

x2sld ^ T x1

x2smd = «sx2 − x1;l,md +E
x1

x2

dx «sx2 − x;l,md A L1sx,l,mdT x1

x sld ^ T x1

x smd A .

From this integral relation it is clear that at the asymptotic limitx1,x2→ ±`, T x1

x2sld ^ T x1

x2smd
→«sx2−x1;l ,md, which is an oscillatory term. To get rid of this problem, we define an operator
like

Wsl,md = lim

x1 → − `
x2→+`

«s− x2;l,mdT x1

x2sld ^ T x1

x2smd«sx1;l,md. s4.5d

In the above defined operator, the oscillatory nature ofT x1

x2sld ^ T x1

x2smd has been removed and
Wsl ,md is perfectly well behaved at the limitx1,x2→ ±`. By using(3.10) and(4.4), it is easy to
verify that the operatorWsl ,md (4.5) satisfies an equation given by

Rsl,mdWsl,md = Wsm,ldRsl,md. s4.6d

The above equation represents the QYBE of the BMT model at an infinite interval limit.
Next, we want to express the QYBE(4.6) directly in terms of the monodromy matrices(4.1)

defined in an infinite interval. For this purpose,Wsl ,md (4.5) can be rewritten as

Wsl,md = C+sl,mdTsld ^ TsmdC−sl,md, s4.7d

where

C+sl,md = lim
x→`

«s− x;l,mdEsx;l,md, s4.8ad

C−sl,md = lim
x→−`

Es− x;l,md«sx;l,md, s4.8bd

with Esx;l ,md=esx,ld ^ esx,md. Substituting the explicit forms ofEsx;l ,md and «sx;l ,md to
(4.8a) and (4.8b), and taking the limits in the principal value sense: limx→±` Pseikx/kd= ± ipdskd,
we obtain

C+sl,md =1
1 0 0 0

0 1 0 0

0 r+sl,md 1 0

0 0 0 1
2, C−sl,md =1

1 0 0 0

0 1 0 0

0 r−sl,md 1 0

0 0 0 1
2 , s4.9d

where

r±sl,md = 7

2i"jSlm +
1

lm
D

l2 − m2 −
1

l2 +
1

m2

+ 2p"jSlm +
1

lm
DdSl2 − m2 −

1

l2 +
1

m2D

= 7

2i"jHlm +
1

lm
J

l2 − m2 −
1

l2 +
1

m2 7 ie

. s4.10d

Substituting the expression ofWsl ,md (4.7) in Eq. (4.6), we can express this QYBE for the infinite
interval in the form

Rsl,mdC+sl,mdTsld ^ TsmdC−sl,md = C+sm,ldTsmd ^ TsldC−sm,ldRsl,md. s4.11d
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By inserting the explicit forms ofRsl ,md (3.8), C±sl ,md (4.9), andTsld (4.3) to the above
QYBE (4.11) and comparing the matrix elements from both sides of this equation, we obtain the
following commutation relations:

fAsld,Asmdg = 0, s4.12ad

fAsld,A†smdg = 0, s4.12bd

fBsld,Bsmdg = 0, s4.12cd

AsldB†smd =
m2q − l2q−1

m2 − l2 − ie
B†smdAsld =

m2q − l2q−1

m2 − l2 B†smdAsld − 2p"jlmdsl2 − m2dB†sldAsmd,

s4.12dd

BsmdAsld =
m2q − l2q−1

m2 − l2 − ie
AsldBsmd =

m2q − l2q−1

m2 − l2 AsldBsmd − 2p"jlmdsl2 − m2dAsmdBsld,

s4.12ed

BsmdB†sld = tsl,mdB†sldBsmd + 4p"jlmdsl2 − m2dA†sldAsld, s4.12fd

where

tsl,md = 31 +
8"2j2l2m2

sl2 − m2d2 −

4"2j2Hlm +
1

lm
J2

Sl2 − m2 −
1

l2 +
1

m2 − ieDSl2 − m2 −
1

l2 +
1

m2 + ieD4 .

It is interesting to note that, for the caselÞm, Eq. (4.12f) givesfBsld ,B†smdgÞ0, whereas from
Eq. (2.16f), one obtains thathbsld ,b* smdj=0 for lÞm. Thus the correspondence principle is not
manifest here in a straightforward manner. However the"→0 limit of tsl ,md, gives the correct
classical counterpart of the commutation relation(4.12f).

Due to Eq.(4.12a), all the operator valued coefficients occuring in the expansion of lnAsld
will commute among themselves. As a consequence the BMT model described by the Lax opera-
tor (3.2) turn out to be a quantum integrable system. By applying the method of algebraic Bethe
ansatz, one can also construct the exact eigenstates for all commuting operators which are gener-
ated through the expansion of lnAsld. With the help of Eq.(4.1), it is easy to find thatAsldu0l
= u0l. By using this relation and Eq.(4.12d), it can be shown that

Asldum1,m2, . . . ,mNl = p
r=1

N Smr
2q − l2q−1

mr
2 − l2 − ie

Dum1,m2, . . . ,mNl, s4.13d

where m j’s are all distinct real or complex numbers andum1,m2, . . . ,mNl
;B†sm1dB†sm2d . . .B†smNdu0l represents a Bethe eigenstate. Using the commutation relation
(4.12f) one can also calculate the norm of the eigenstatesB†sm1dB†sm2d¯B†smNdu0l. However, the
commutation relation(4.12f) contains product of singular functions

Sl2 − m2 −
1

l2 +
1

m2 − ieD−1Sl2 − m2 −
1

l2 +
1

m2 + ieD−1

,

which is undefined at the limitl→m. As a result, eigenstates likeB†sm1dB†sm2d¯B†smNdu0l are
not normalized on thed-function. To solve this problem, we consider a reflection operator given
by
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R†sld = B†sldsA†sldd−1 s4.14d

and its adjointRsld. By using Eqs.(4.12a), (4.12b), (4.12c), (4.12d), (4.12e), and(4.12f), we find
that such reflection operators satisfy well-defined commutation relations like

R†sldR†smd = S−1sl,mdR†smdR†sld,

RsldRsmd = S−1sl,mdRsmdRsld, s4.15d

RsldR†smd = Ssl,mdR†smdRsld + 4p"l2dsl2 − m2d,

where

Ssl,md =
l2q − m2q−1

l2q−1 − m2q
. s4.16d

The Ssl ,md defined above represents the nontrivialS-matrix element of two-body scattering
among the related quasiparticles. We find that thisSsl ,md satisfies the following conditions:

S−1sl,md = Ssm,ld = S* sl,md, s4.17d

and remains nonsingular at the limitl→m. Consequently, the action of the operators likeR†sld on
the vacuum would produce well-defined states which can be normalized on thed-function.

The point to be noted here is that in Eq.(4.13), the eigenvalues ofAsld are in general

complex. To get real eigenvalues, we define a new operator lnÂsld through the relation lnÂsld
; ln Asle−ia/2d and expand this operator in inverse powers ofl,

ln Âsld = o
n=0

`
iCn

l2n . s4.18d

Using Eqs.(4.13) and (4.18), it is easy to see thatCn’s satisfy eigenvalue equations like

Cnum1,m2, . . . ,mNl = xnum1,m2, . . . ,mNl,

where the first fewxn’s are explicitly given by

x0 = aN, x1 = 2 sinao
j=1

N

m j
2, x2 = sin 2ao

j=1

N

m j
4. s4.19d

It may be noted that these eigenvalues are all real whenm j’s are taken as real numbers. Next we

expand the operator lnÂsld in powers ofl as

ln Âsld = o
n=0

`

iC̃nl2n, s4.20d

and by using(4.13) we obtain

C̃num1,m2, . . . ,mNl = x̃num1,m2, . . . ,mNl.

The first fewx̃n’s are explicitly given by
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x̃0 = − aN, x̃1 = − 2 sinao
j=1

N
1

m j
2, x̃2 = − sin 2ao

j=1

N
1

m j
4 . s4.21d

In analogy with the classical case, one can now define the momentum and Hamiltonian of the
quantum BMT model as

P = −
1

4j
sC1 + C̃1d, H = −

1

4j
sC1 − C̃1d.

By using (4.19) and (4.21), the eigenvalue equations corresponding to the above momentum and
Hamiltonian are obtained as

Pum1,m2, . . . ,mNl =
"

2o
j=1

N Sm j
2 −

1

m j
2Dum1,m2, . . . ,mNl,

Hum1,m2, . . . ,mNl =
"

2o
j=1

N Sm j
2 +

1

m j
2Dum1,m2, . . . ,mNl. s4.22d

In the above expressions,m j’s are taken as real numbers andum1,m2, . . . ,mNl represents a scatter-
ing state. Now to construct quantumN-soliton states of the BMT model, complex values ofm j can
be chosen in such a way so that the eigenvalues corresponding to different expansion coefficients

of ln Âsld still remains real. Such a choice is given by

m j = m expF− iaSN + 1

2
− jDG , s4.23d

wherem is a real parameter andj P f1,2, . . . ,Ng. For the above choice ofm j, Eq. (4.13) takes the
form

Asldum1,m2, . . . ,mNl = q−NS l2 − m2qN+1

l2 − m2q−N+1Dum1,m2, . . . ,mNl. s4.24d

Consequently, the energy eigenvalue equation corresponding to the quantumN-soliton state can be
obtained asHum1,m2, . . . ,mNl=Eum1,m2, . . . ,mNl, where

E =
"

2
Sm2 +

1

m2DsinaN

sina
. s4.25d

Thus we find that quantumN-soliton states can be constructed for the BMT model forN.1. Now
we assume a particular value of the coupling constantj given by "j=−sina=−sins2pm/nd,
wherem andn are nonzero integers which do not have any common factor. From Eq.(4.23), we
obtainm j =m j+n for the above choice ofj. Since all them j’s must be distinct, we getNøn as a
restriction on the number of quasiparticles that can form a quantum soliton state for the BMT
model whenj=−s1/"dsins2pm/nd.

Next we aim to calculate the binding energy for aN-soliton state of the quantum BMT model.
Substituting the expression ofm j (4.23) to the first relation in Eq.(4.22), the momentum eigen-
value of aN-soliton state is obtained as

P =
"

2
Sm2 −

1

m2DsinaN

sina
. s4.26d

It is interesting to observe that the energy(4.25) and the momentum eigenvalue(4.26) of a
N-soliton state satisfy the dispersion relationE2=P2+m2, wherem=" sinaN/sina. To calculate
binding energy we assume that the momentumP (4.26) is equally distributed amongN number of
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single-particle scattering states. The real wave number associated with each of these single particle
states is denoted bym0. With the help of Eqs.(4.22) and (4.26), we find that

m0
2 −

1

m0
2 = Sm2 −

1

m2D sinaN

N sina
. s4.27d

Using Eq.(4.22), the total energy forN number of such single particle states is obtained as

E8 =
"N

2
Sm0

2 +
1

m0
2D =

"N

2
HSm2 −

1

m2D2 sin2 aN

N2 sin2 a
+ 4J1/2

. s4.28d

SubtractingE (4.25) from E8 (4.28), we obtain the binding energy of the quantumN-soliton
state as

EBsa,Nd = E8 − E =
"N

2
HSm2 −

1

m2D2 sin2 aN

N2 sin2 a
+ 4J1/2

−
"

2
Sm2 +

1

m2DsinaN

sina
. s4.29d

Note that the above expression ofEBsa ,Nd remains invariant under the transformationa→−a. So
it is sufficient to analyze the nature of binding energy within the range 0,aøp /2. Now, for
EBsa ,Nd to represent the energy of a real bound state,E8 must be greater thanE. SinceE8 (4.28)
is always positive, it is evident thatE8.E for E,0. So we will restrict our attention only for the
caseE.0, when the conditionE8.E is equivalent toE82.E2. Substituting the explicit expres-
sions forE8 (4.28) andE (4.25), the above condition takes the form

N sina . sinaN. s4.30d

SubstitutingN=2 in (4.30), we get the trivial inequality 1.cosa for a.0. So the condition
(4.30) is satisfied for theN=2 case within our chosen range ofa. By using the method of
induction, we can easily prove that the condition(4.30) is valid for arbitrary values ofN. Thus we
get anN-soliton bound state whena lies in the range 0, uauøp /2.

V. CONCLUDING REMARKS

In this paper we consider the classical Lax operator of the BMT model and obtain the PB
relations among various elements of the classical monodromy matrix at the infinite interval limit.
By using these PB relations, the classical integrability of the BMT model is established in the
Liouville sense. We also calculate the classical conserved quantities of BMT model. Next, we
quantize the Lax operator of the BMT model. By using a variant of QISM, that can be directly
applied to the field theoretic models, we obtain the QYBE for the quantum monodromy matrix at
a finite interval. This QYBE enables us to determine the various parameters of the quantum Lax
operator in terms of the coupling constantj. Then we take the infinite interval limit of this QYBE
and derive all possible commutation relations among the various elements of the corresponding
quantum monodromy matrix. These commutation relations enable us to establish the quantum
integrability of the BMT model and also to construct the exact eigenstates for the quantum version
of the Hamiltonian(1.1) as well as other conserved quantities by using algebraic Bethe ansatz. We
also obtain the commutation relation between creation and annihilation operators associated with
quasiparticles of the BMT model and find out theS-matrix for two-body scattering.

In this context, we consider the BMT model with some special values of coupling constant
given byj=−s1/"dsina=−s1/"dsins2pm/nd, wherem andn are nonzero integers with no com-
mon factor. It turns out that the number of quasiparticles, which form a bound state for such
quantum BMT model, cannot exceed the value ofn. We have also derived the exact expression of
binding energy for aN-soliton state of the quantum BMT model. The binding energy turns out to
be positive for all allowed values ofa.

The commutation relation between creation and annihilation operators will play an important
role in the future study, since by using it one might be able to calculate the norm of Bethe
eigenstates and various correlation functions of the BMT model. In the future, we would also like
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to obtain the quantum conserved quantities of the BMT model in terms of the field operators by
using a method which was used earlier in the case of the nonlinear Schrödinger model18 and
DNLS model.16
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APPENDIX

Here we give the details of deriving Eq.(3.5). Direct attempt to calculates] /]x2dsT x1

x2sld
^ T x1

x2smdd by using Eq.(3.4), leads to indeterminate expressions of the formfT x1

x2sld ,f1
†sx2dg and

fT x1

x2sld ,f2
†sx2dg. To avoid this problem by using the method of extension,3 we shift the upper limit

of the monodromy matrixT x1

x2sld by a small amounte and takee→0 limit only after differenti-
ating the productT x1

x2+esld ^ T x1

x2smd with respect tox2. So, using Eq.(3.4), we obtain

]

]x2
sT x1

x2+esld ^ T x1

x2smdd = A sUqsx2 + e;ld ^ 1 + 1 ^ Uqsx2;mddT x1

x2+esld ^ T x1

x2smd A + K+ + K−,

sA1d

where

K+ = ijmfT x1

x2+esld,f1
†sx2dg ^ s+T x1

x2smd −
ij

m
fT x1

x2+esld,f2
†sx2dg ^ s+T x1

x2smd + i f 1fT x1

x2+esld,f1
†sx2dg

^ e11T x1

x2smdf1sx2d − i f 2fT x1

x2+esld,f2
†sx2dg ^ e11T x1

x2smdf2sx2d − ig1fT x1

x2+esld,f1
†sx2dg

^ e22T x1

x2smdf1sx2d + ig2fT x1

x2+esld,f2
†sx2dg ^ e22T x1

x2smdf2sx2d,

K− = ils−T x1

x2+esld ^ ff1sx2 + ed,T x1

x2smdg −
i

l
s−T x1

x2+esld ^ ff2sx2 + ed,T x1

x2smdg + i f 1f1
†sx2

+ ede11T x1

x2+esld ^ ff1sx2 + ed,T x1

x2smdg − i f 2f2
†sx2 + ede11T x1

x2+esld ^ ff2sx2 + ed,T x1

x2smdg

− ig1f1
†sx2 + ede22T x1

x2+esld ^ ff1sx2 + ed,T x1

x2smdg + ig2f2
†sx2 + ede22T x1

x2+esld ^ ff2sx2

+ ed,T x1

x2smdg.

Now we consider the case,e.0. Sincef1sx2+ed andf2sx2+ed commute withf1sxd, f1
†sxd,

f2sxd, f2
†sxd for all x lying within x1 andx2, we getff1sx2+ed ,T x1

x2smdg=ff2sx2+ed ,T x1

x2smdg=0.
Thus we can conclude that for a positivee, K−=0. So we must calculate only the nontrivial
commutatorsfT x1

x2+esld ,f1
†sx2dg and fT x1

x2+esld ,f2
†sx2dg appearing in the expression ofK+.

First let us calculate the commutatorfT x1

x2+esld ,f1
†sx2dg. For this purpose, we consider a

“transformation” V, which replaces the classical variablesf1sxd, f2sxd, and f1
*sxd, f2

*sxd by
quantum operatorsf1sxd, f2sxd and f1

†sxd, f2
†sxd, respectively. Next we use a correspondence

principle,3

fT x1

x2+esld,f1
†sx2dg = i":VhTx1

x2+esq;ld,f1
*sx2dj: , sA2d

whereT x1

x2+esq;ld represents a classical monodromy matrix given by
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Tx1

x2+esq;ld = P expE
x1

x2

Uqsx,lddx,

andUqsx,ld=V−1Uqsx,ld. By using the fundamental PB relations(1.2), it is easy to find that

hTx1

x2+esq;ld,f1
*sx2dj =E

x1

x2+e

dx Tx
x2+esq;ldhUqsx,ld,f1

*sx2djTx1

x sq,ld

= Tx2

x2+esq;ldsf1f1
*sx2de11 − g1f1

*sx2de22 + ls−dTx1

x2sq;ld.

Taking e→0 limit of the above expression and substituting it in(A2), we obtain

lim
e→0

fT x1

x2+esld,f1
†sx2dg = i"sf1f1

†sx2de11 − g1f1
†sx2de22 + ls−dT x1

x2sld. sA3d

Next we must calculate the commutatorfT x1

x2+esld ,f2
†sx2dg. Using the same correspondence

principle as before and finally taking thee→0 limit one obtains

lim
e→0

fT x1

x2+esld,f2
†sx2dg = i"S− f2f2

†sx2de11 + g2f2
†sx2de22 −

1

l
s−DT x1

x2sld. sA4d

Taking thee→0 limit of Eq. (A1) and using(A3) and(A4), we finally obtain the differential
equation(3.5). Note that, instead ofe.0, we could have chosene,0 in Eq. (A1). In that case
only the commutatorsff1sx2+ed ,T x1

x2smdg and ff2sx2+ed ,T x1

x2smdg give nontrivial contributions.
However, by repeating similar steps as outlined above and finally taking thee→0 limit, we would
have obtained the same differential equation(3.5).
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We discuss the relativistic top theory from the point of view of the de Sitter(or
anti–de Sitter) group. Our treatment rests on the Hanson–Regge spherical relativ-
istic top Lagrangian formulation. We propose an alternative method for studying
spinning objects via Kaluza–Klein theory. In particular, we derive the relativistic
top equations of motion starting with the geodesic equation for a point particle in
4+N dimensions. We compare our approach with Fukuyama’s formulation of spin-
ning objects, which is also based on Kaluza–Klein theory. We also report a gener-
alization of our approach to a 4+N+D dimensional theory. ©2005 American
Institute of Physics.[DOI: 10.1063/1.1827923]

I. INTRODUCTION

If one compares Regge’s work1,2 published in 1959 and 1960, respectively, with the Hanson–
Regge work of 1974 about the relativistic spherical top theory3 (see also Ref. 4), one gets the
feeling that Regge thought of the trajectory constraint linking mass and the spin of a relativistic
spinning object as a deep physical concept of nature. Through the years it has become clear that
Regge was right. In fact, such a constraint, now called Regge trajectory, plays a fundamental role
not only in the dual string models5 and the relativistic rotator theory,6,7 but also in string theory8

and in the black holes approach.9 It seems that even Regge is in the sky10 in connection with the
mass and the internal angular momentum of celestial objects.

One of the simplest Regge trajectory for a spherical relativistic top is provided by the
expression3,4

H ; PmPm +
1

2r2SmnSmn + m0
2 < 0, s1d

wherePm andSmn=−Snm are the linear momentum and the internal angular momentum, respec-
tively, associated with some spinning object. Here,m0 and r are constants determining the prop-
erties of the system and the symbol “<0” means weakly equal zero in the sense of the terminology
of Dirac’s constraints Hamiltonian formalism.11 (Here the indicesm,n run from 0 to 3.)

One of the interesting aspects of(1) is that it resembles one of the Casimir operator’s of the
de Sitter group,

C1 = 1
2SABSAB, s2d

where the indicesA,B run from 0 to 4. In fact, if classically it is possible to make the identifica-
tions
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S4m → rPm, Smn → Smn, C1 → − r2m0
2, s3d

then the spherical relativistic top may lead naturally to a de Sitter relativistic top and several
properties of the de Sitter group can be applied to such a system. The problem, however, it is not
so simple because the momentaPm and Smn are restricted to satisfy the so-called Tulczyjew
constraint12

SmnPn < 0 s4d

and it seems that there is not a counterpart in the de Sitter group formalism of this constraint. One
of the main goals of this work is to use a Lagrangian analysis of the relativistic top in order to shed
some light on this and other related problems.

As soon as we make the identification(3) the parameterr, measuring the “size” of the top,
may acquire a particular interesting meaning, namely, it can be identified with the Planck length
lP=s"G/c3d1/2 or with the radius of the universeR. In the first case, the relativistic top may have
contact not only with elementary particles through the superstring top theory,13,14 but also with
gravity itself.15 In fact, it has been shown15 that extending the Poincaré group to the de Sitter
group through a Wigner contraction withlP as a parameter one can make sense of a gravitational
theory as a gauge theory. Similar conclusion is provided by the MacDowell–Mansouri
formalism.16

In the second case, one may find a connection between the relativistic top with accelerated
universe via the de Sitter space–time. In some sense, one may say that Regge is not only in the sky
but in the cosmos as well.

The central idea of this work is to develop different aspects of the de Sitter top theory using
the spherical relativistic top theory as a guide. For this purpose in Secs. II and III we show
explicitly how the first order and second order formalisms of a particular spherical top system are
related. In Sec. IV, we show how the Kaluza–Klein formalism may lead to de Sitter top theory. In
Sec. V, we make some final remarks. In Appendix B we report a generalization of our formalism
to 4+N+D dimensions.

II. FROM THE FIRST ORDER TO THE SECOND ORDER LAGRANGIAN

Let us describe the motion of the top by four coordinatesxmstd and a tetradesad
m std wheret is

an arbitrary parameter along the world line of the top. Herexmstd is used to describe the position
of the system, whileesad

m std is attached to the top in order to describe its rotations. We shall assume
that the tetradesad

m std satisfies the orthonormal relations

hmnesad
m esbd

n = hsabd,

hsabdesad
m esbd

n = hmn, s5d

where hmn=diags−1,1,1,1d is the Minkowski metric. We shall associate the canonical linear
momentumPm to the linear velocityum=dxm /dt and the spin tensorSmn=−Snm to the angular
velocity smn=esad

m sdesad
n /dtd.

Consider the first order Lagrangian corresponding to a special type of a relativistic top,3,4

L = umPm +
1

2
smnSmn −

l

2
SPmPm +

1

2r2SmnSmn + m0
2D + jmSmnPn, s6d

wherel andjm are Lagrange multipliers. VaryingL with respect toPm gives

um = lPm + Vm, s7d

where
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Vm = Smnjn, s8d

while varyingL with respect toSmn yields

smn =
l

r2Smn + Pmjn − Pnjm. s9d

Similarly varyingL with respect tojm leads to the constraint

SmnPn = 0, s10d

while varyingL with respect tol one obtains

PmPm +
1

2r2SmnSmn + m0
2 = 0. s11d

SinceSmn is antisymmetric, we observe from(6) that if jm is parallel toPm the last term in(6)
vanishes identically. Therefore, we may set

jmPm = 0. s12d

This condition must be added to the Lagrangian(6) in the form hsjmPmd, whereh is another
Lagrange multiplier. Varying the resultant extended Lagrangian with respect toh leads to(12).
While arbitrary variations with respect tojm leads to the equationSmnPn+hPm=0 which, after
multiplying it by Pm, givesh=0 and therefore one recovers the Lagrangian(6).

Our goal is to derive the second order Lagrangian associated with the Lagrangian(6). Our
proof consists of some elementary algebra and for that reason in this section we shall only mention
the main results. Nevertheless, since in such an algebra there are some key steps, in Appendix A
we present the computation in more detail.

The main idea is to compute from(7)–(12) the combinationussu−r2 dets, where

ussu ; umsmnsn
aua s13d

and

dets =
1

4!
«mnab«tlsrsmtsnlsassbr. s14d

One finds the following result(for details see Appendix A):

ussu − r2 dets =
m0

2

r2 FSu2 +
r2s2

2
Dl2 +

1

r2l4m0
2G , s15d

where we used the notationa2=amam, for any dynamical variableam. Using once again the
constraint(11) we find that(15) leads to the expression

l4 +
l2

m0
2Su2 +

1

2
r2s2D −

r2

m0
4sussu − r2 detsd = 0. s16d

This expression can be solved forl in terms of the Lorentz scalarsu2, s2, ussu, and dets. But
before solving forl, let us show thatl and the LagrangianL are related by the expression

L = − m0
2l. s17d

First using the constraints(10) and (11) the Lagrangian(6) becomes

L = umPm + 1
2smnSmn.

From (7) and (9) we find the results
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umPm = lP2 s18d

and

1

2
smnSmn = l

S2

2r2 . s19d

So, we get

L = umPm +
1

2
smnSmn = lSP2 +

1

2r2S2D . s20d

By using (11) once again, we see that(20) leads to(17).
Thus,(16) and (17) leads to the Lagrangian

L = − m0F− su2 + 1
2r2s2d ± Îsu2 + 1

2r2s2d2 + r2sussu − r2 detsd
2

G1/2

. s21d

Observe that ifs vanishes only the minus sign in the symbol6Î makes sense. In this case(21) is
reduced to

L = − m0f− u2g1/2, s22d

which is the well-known Lagrangian for a relativistic point particle.
Since the Lagrangian(21) is a function of the all Lorentz scalars that can be formed from the

velocities u and s, namely u2, s2, ussu, and dets we observe that such a Lagrangian has
manifest Lorentz invariance. In fact, the Lagrangian(21) has a Poincaré invariance under the
infinitesimal transformationsdxm=am+vn

mxn and desad
m =vn

mesad
n , for arbitrary vmn=−vnm. By ex-

plicit computation, one can show by applying Noether’s procedure to these transformations that
Pm andMmn=xmPn−xnPm+Smn are conserved generators obeying the Poincaré group algebra(see
Refs. 3 and 4 for details).

III. THE CONSTRAINTS FROM THE SECOND ORDER LAGRANGIAN

The central idea in this section is to derive the set of constraints associated with(21) which,
of course, should correspond to(10) and(11). Instead of starting with the Lagrangian given in(21)
we shall take advantage of the formulas(16) and(17). From this perspective one may assume that
l=lsu,sd and define a “linear momentum”pm and an “internal angular momentum”lmn as

pm =
]l

]um s23d

and

lmn =
]l

]smn , s24d

respectively. According to(17) we have the relations:Pm=−m0
2pm and Smn=−m0

2lmn. One of the
reasons to definepm and lmn is to avoid carrying all the time the factorm0

2.
Taking the derivative of(16) with respect toum leads to

Fl3 +
l

2m0
2Su2 +

1

2
r2s2DGpm = −

l2

2m0
2um +

r2

2m0
4uasabsb

m. s25d

Let us define
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A = Fl3 +
l

2m0
2Su2 +

1

2
r2s2DG . s26d

We find

A2p2 =
l4u2

4m0
4 −

l2r2

2m0
6ussu +

r4

4m0
8uasabsb

msm
ts

t
lul. s27d

But the identity(A19) leads to

uasabsb
msm

ts
t
lul = uasabf− 1

2sb
ls2 − 1

4s*b
lss * sdgul s28d

and therefore we have

A2p2 =
l4

4m0
4u2 −

l2r2

2m0
6ussu −

r4

8m0
8ussus2 +

1

64

r4

m0
8u2ss · s * d2, s29d

where we used the fact that

sabs*b
l = − 1

4halss · s * d. s30d

Similarly, applying to(16) the derivative with respect tosmn we obtain

Fl3 +
l

2m0
2Su2 +

1

2
r2s2DGlmn = −

l2r2

2m0
2smn +

r2

2m0
4suasamun − uasanumd +

r4

8m0
4smn

* ss · s * d,

s31d

where we used(A18). This expression yields

A2l2 =
l4r4

4m0
4s2 −

l2r4

m0
6 ussu −

l2r6

8m0
6 ss · s * d2 −

r4

2m0
8ussuu2 −

r6

16m0
8u2ss · s * d2 −

r8s2

64m0
8ss · s * d2,

s32d

where we used the identitiess* s* =−ss and (30).
Adding (29) and (32) leads to

A2Sp2 +
1

2r2l2D =
l4

4m0
4Su2 +

1

2
r2s2D −

l2r2

m0
6 sussu − r2 detsd

−
r4

4m0
8Su2 +

1

2
r2s2Dsussu − r2 detsd, s33d

where we used(A18).
Using (16) and (26) we discover that

p2 +
1

2r2l2 = −
1

m0
2 . s34d

SincePm=−m0
2pm andSmn=−m0

2lmn we finally get from(34) the constraint

P2 +
1

2r2S2 + m0
2 = 0. s35d

Let us now derive from(25) and (31) the constraintSmnPn=0. We have
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A2lmnpn =
l4r2

2m0
2smnun +

l2r2u2

2m0
6 smnun −

l2r4

8m0
6 ss · s * ds*mnun −

l2r4

2m0
6smnsnasabub −

r4sussud
2m0

8 smnun

+
r4um

2m0
8 uts

tnsnasabub +
r6

2m0
8ss · s * ds*mntnsnasabub. s36d

The sixth term on the right-hand side of(36) vanishes due to the identityuts
tnsnasabub;0.

Using (A19) and (30) it is not difficult to show that(36) is reduced to

A2lmnpn =
l4r2

2m0
2smnun +

l2r2

2m0
6Su2 +

r2

2
s2Dsmnun −

r4

2m0
8sussu − r2 detsdsmnun. s37d

Solving the factorsussu−r2 detsd in (16) and substituting the result in(37) we finally discover
that lmnpn=0. This leads to the constraint

SmnPn = 0, s38d

which is the Tulczyjew constraint.
Summarizing, we have shown that the Lagrangian(21) leads to the constraints(35) and(38)

which were the starting point in the first order formalism of Sec. II.

IV. FROM A POINT PARTICLE IN HIGHER DIMENSIONS TO THE DE SITTER
RELATIVISTIC TOP

Let us start writing the higher dimensional metricgMN in terms of the vielbien fieldEM
A ,

gMN = EM
A EN

BhAB, s39d

wherehAB is aflat metric in 4+N dimensions. Here we are considering the vielbien fieldEM
A as a

the function of the coordinatesxM.
The Lagrangian of a point particle moving in a background determined by the metricgMN is

L = − M0s− gMNẋMẋNd1/2, s40d

whereM0 is the analogue of the mass of the object andẋM ;dxM /dt. From this Lagrangian one
gets the Euler–Lagrange equations of motion

DPM

Dt
; ṖM + GRS

M ẋRPS= 0, s41d

where

PM =
]L

]ẋM s42d

andGRS
M are the Christoffel symbols associated withgMN. We can writeEM

A in the form

EM
A = SEm

asx,yd Em
a8sx,yd

Ei
asx,yd Ei

a8sx,yd
D , s43d

where we used the notationxM =sxm ,yid=sx,yd.
Using the Kaluza–Klein mechanism it is well known thatEM

A can be written in the form

EM
A = Sem

asxd vm
a8sxd

0 ei
a8syd

D . s44d

Here, for later convenience, we used the notationvm
a8;Em

a8, em
a ;Em

a , andei
a8;Ei

a8.

012302-6 J. Armenta and J. A. Nieto J. Math. Phys. 46, 012302 (2005)

                                                                                                                                    



Using (44) we can brake the metric(39) in the form

gmn = gmn + vm
a8vn

b8ha8b8,

gmi = vm
a8ei

b8ha8b8, s45d

gi j = ei
a8ej

b8ha8b8 = gijsyd,

wheregmnsxd=em
asxden

bsxdhab.
The line element ds2 associated withgMN is

ds2 = gMN dxM dxN = gmn dxm dxn + 2gmi dxm dyi + gi j dyi dyj . s46d

Substituting(45) within (46) one gets

ds2 = sgmn + vm
a8vn

b8ha8b8ddxm dxn + 2svm
a8ei

b8ha8b8ddxm dyi + sei
a8ej

b8ha8b8ddyi dyj . s47d

This expression can be rewritten in the following form:

ds2 = gmndxm dxn + svm
a8 dxm + ei

a8 dyid2, s48d

which is the Fukuyama starting point in the study of spinning particles.17 If we choose the base18,19

um = dxm s49ad

and

ua8 = vm
a8 dxm + ei

a8 dyi , s49bd

then we have that the line element(48) becomes

ds2 = gmnumun + ha8bua8ub8. s50d

Therefore, in the base(49) the metric takes the form

ĝMM = Sgmn 0

0 ha8b8
D . s51d

The dual base is given by

Dm = ]m − vm
a8ea8

i ]i s52ad

and

Da8 = ea8
i ]i . s52bd

In fact, one can verify that

kum,Dnl = kdxm,]n − vn
a8ea8

i ]il = dn
m s53d

and

kua8,Db8l = kvm
a8 dxm + ei

a8 dxi,ub8
j ] jl = ei

a8eb8
i = db8

a8. s54d

Similarly, one can check that
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kua8,Dnl = kvm
a8 dxm + ei

a8 dxi,]n − vn
b8eb9

j ] jl = vn
a8 − ej

a8ejb8vb8n = vn
a8 − ha8b8vb8n = 0. s55d

Let us compute the commutatorfDm ,Dng. From (52a) we have

fDm,Dng = f]m − vm
a8ea8

i ]i,]n − vn
b8eb9

j ] jg = ]ms]n − vn
b8eb9

j ] jd − vm
a8ea8

i ]is]n − vn
b8eb9

j ] jd

= − ]ns]m − vm
a8ea8

i ]id + vn
b8eb9

j ] js]m − vm
a8ea8

i ]id. s56d

Considering thatf]m ,]ng=0, f]i ,] jg=0 andf]m ,]ig=0 we find that the expression(56) reduces
to

fDm,Dng = s− ]mvn
b8 + ]nvm

b8deb8
j ] j + svm

a8ea8
i

vn
b8 − vn

c8ec8
i

vm
b8ds]ieb8

j d] j . s57d

The second term in(57) can be rewritten as

svm
a8ea8

i
vn

b8 − vn
c8ec8

i
vm

b8ds]ieb8
j d] j = vm

a8vn
b8sea8

i ]ieb8
j − eb9

l ]lea8
j d. s58d

Let us writeea8;ea8
i ]i, thus we have

sea8
i ]ieb8

j − eb9
l ]lea8

j d = fea8,eb8g. s59d

We assume that

fea8,eb8g = − Ca8b8
d8 ed8, s60d

whereCa8b8
d8 are the structure constants associated with some groupG. Substituting(60) into (57)

we find the expression

fDm,Dng = s− ]mvn
b8 + ]nvm

b8deb8 − vm
a8vn

b8Ca8b8
d8 ed8, s61d

which by means of the definition

Rmn
b8 = ]mvn

b8 − ]nvm
b8 + Cc8d8

b8 vm
c8vn

d8 s62d

becomes

fDm,Dng = − Rmn
b8 eb8. s63d

Following similar procedure we find that

fDm,Da8g = 0 s64d

and

fDa8,Db8g = − Ca8b8
d8 ed8. s65d

Thus, from(63)–(65) we see that the only nonvanishing structure constants related to the com-

mutatorfDM ,DNg areCmn
b8 =−Rmn

b8 andCa8b8
d8 .

In general, in a nonbase frame, the connectionGMNP is given by

GMNP = 1
2sDPĝMN + DNĝMP − DMĝNPd + 1

2sCMNP + CMPN − CNPMd. s66d

SinceCmna=0 andĝmn=gmnsxd we get

Gmna = 1
2sDaĝmn + Dnĝna − Dmĝnad = 1

2s]agmn + ]ngna − ]mgnad ; hmnaj. s67d

In the same way, sinceCmna8=−Rmna8 we obtain
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Gmna8 = 1
2sCmna8 + Cma8n − Cna8md = − 1

2Rmna8. s68d

We also get

Gma8b8 = 0 s69d

and

Ga8b8c8 = − 1
2Ca8b8c8. s70d

With these results in hand forGMNP we shall proceed to see their consequences in the equa-
tions of motion(41). Let us start splitting(41) in the following form:

Ṗm + Gna
m ẋnPa + Gna8

m ẋnPa8 + Ga8n
m ẋa8Pn = 0 s71d

and

Ṗa8 + Gb8c8
a8 ẋb8Pc8 = 0, s72d

where we used the fact that the only nonvanishing components ofGMNP are Gmna, Gmna8 and
Ga8b8c8.

Using (67) and (68) we discover that(71) and (72) yields

D̄Pm

D̄t
= Rna8

m ẋnPa8 s73d

and

Ṗa8 = 0, s74d

respectively, whereD̄ / D̄t means covariant derivative in terms of the Christoffel symbolshmnaj.
Here we used the fact that

PM =
M0gMNẋN

s− gPQẋPẋQd1/2, s75d

which means thatPM =lẋM, with l=M0s−gPQẋPẋQd−1/2.
We shall show now that(73) and(74) are equivalent to the relativistic top equations of motion

(RTEM) in a gravitational field.20–25 For that purpose we shall make the indices identification
a8→ sa,bd where the pairsa,bd is antisymmetric. Thus, the equations of motion(73) and (74)
become

D̄Pm

D̄t
=

1

2
Rnab

m ẋnSab s76d

and

Ṡab = 0, s77d

where we used the notationSab; Pab and introduced in(76) the quantity 1
2 in order to avoid

counting twice.
The last step is to writeSab=em

aen
bSmn in order to write(76) and (77) in the form
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D̄Pm

D̄t
=

1

2
Rnab

m ẋnSab s78d

and

D̄Smn

D̄t
= 0, s79d

which are the traditional forms given to the RTEM in a gravitational field.
It is interesting to clarify the meaning of the constantM0. From (75) it follows the constraint

PMPNĝMM = − M0
2, s80d

which in virtue of the form of the metricĝMM, given in (51), we see that(80) can be written as

gmnP
mPn + ha8b8P

a8Pb8 = − M0
2 s81d

or

gmnP
mPn +

1

2r2SmnSmn = − m0
2, s82d

where we used the relationSab=em
aen

bSmn and redefinedPm asrPm andM0 asrm0 with r a constant
of the motion. If we compare the expression(82) with (1) we observe their great similarity.
However, they are not exactly the same because the constraintSmnPn<0 given in (4) is not
satisfied byPm andSmn. Instead of the constraint(4) we can define the vector

Sm = 1
2emnabPnSab s83d

and, as a consequence of this formula, we have

SmPm = 0. s84d

Nevertheless, the relation betweenSmn andSmn is subtle and requires a careful analysis. First of
all, let us write the first order Lagrangian

L = ẋMPM −
l8

2
sPMPM + M0

2d, s85d

corresponding to(40). Using (82) we see that(40) can be written as

L = ẋmPm +
1

2
ẋmnSmn −

l

2
SPmPm +

1

2r2SmnSmn + m0
2D , s86d

where ẋmn=ea
meb

nẋab and l; r2l8. Comparing(86) with (6) one observes the close similarity
between both Lagrangians. We can even try to go from(86) to (6) by using the transformation

Smn = Smn + jmPn − jnPm. s87d

But this implies to redefine the velocitiesum andsmn in terms of the velocitiesẋm andẋmn. This is
related to the fact that the motion of a relativistic top can be described, in an equivalent way, by
two position vectors, namely, the center of mass and the center of charge.(An extensive discussion
about the meaning of these two position vectors of a relativistic top can be found in Ref. 26.) The
center of mass can be associated withSmn via the constraintSmnPn<0, while the center of charge
with Smn. Thus, the transformation(87) suggests to identify the variablejm with the difference
between the center of mass and the center of charge. In fact, multiplying(87) by Pm one gets
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SmnPn = jmPnPn, s88d

where we assumedjmPm=0. Substituting this expression into(87) one discovers thatSmn can be
obtained fromSmn using the projectorhma−s1/P2dPmPa.

Summarizing, we have shown that using the Kaluza–Klein theory it is possible to obtain the
relativistic top theory from a point particle in higher dimensions. This is in fact a very interesting
result because it means that although the top does not follow geodesics in four dimensions, it does
in higher dimensions.

V. FINAL COMMENTS

In this paper we have shown different aspects of a particular relativistic top, namely the top
satisfying (1) and (4). First, we showed the equivalence between the first and second order
Lagrangians(6) and(21). Then, the form of the Lagrangian(6) motivated us to look for a higher
dimensional description of the top, and as a matter of fact we discovered that it is possible to
obtain the relativistic top equations of motion starting from a geodesic equation of motion of a
point particle in higher dimensions. This is an interesting result that deserves to be analyzed in
terms of a fiber bundle scenario.

First we notice that such a result is similar to the case of the Lorentz force associated with a
charged particle which can be obtained from a geodesic in five dimensions. More generally, our
result is similar to the generalized Lorentz force associated with a Yang–Mills gauge field which
can be obtained by a geodesic in 4+D-dimensions. In this case, the traditional method is to
consider a 4+D-dimensional principle fiber bundleP, which locally looks likeM43B, whereM4

is a four-dimensional base space andB is a group manifold whose dimension isD. The key object
to connect the geodesic in 4+D-dimensions with the generalized Lorentz force in four dimensions
is the one-form in the cotangent spaceT* sPd,

v = g−1 dg + g−1Ag, s89d

whereA=Am
aTa dxm can eventually be identified with the Yang–Mills gauge field. Here,Ta are the

generators of some groupG acting transitively onB and having the properties

fTa,Tbg = Cab
c Tc. s90d

In principle, if we consider the fiber spaceM43Q, whereQ corresponds also to a four-
dimensional manifold, one may apply similar description to the case of a spinning object(see Ref.
17). In this case the connection one-form reads as

v = g−1 dg + g−1Vg, s91d

whereV is given by

V = 1
2vm

ABSAB dxm. s92d

Here, we shall assume thatSAB are the generators of the de Sitter group SO(1,4) [or anti–de Sitter
group SO(2,3)]. If we compare(49b) with (91) we observe that both expressions are very similar.
In fact, sinceg is an element of SO(1,4) we can writeg as a matrix in the formLB

A and therefore
the one-form(91) yields

vAB = vi
AB dyi + vm

AB dxm, s93d

wherevi
AB=LCA]iLC

B. This expression can be written as

v5a = vi
5a dyi + vm

5a dxm s94d

and

012302-11 The de Sitter relativistic top theory J. Math. Phys. 46, 012302 (2005)

                                                                                                                                    



vab = vi
ab dyi + vm

ab dxm. s95d

The base(49a) and(49b) arises from(94) and(95) by definingei
a8;vi

ab, em
a ;vm

5a and settingvi
5a

equal to zero. This means that we can write(44) in the following form:

vM
AB = Svm

5asxd vm
absxd

0 vi
absyd

D . s96d

Therefore, the metricgMN in (39) becomes

gMN = 1
2vM

ABvNAB s97d

and consequently the Lagrangian(40) can be written as

L = − M0s− 1
2vM

ABvNABẋ
MẋNd1/2. s98d

Thus, the corresponding line element is

ds2 = 1
2vM

ABvNAB dxM dxN, s99d

which is in agreement with the Fukuyama’s suggestion.17 We shall call the system described by the
Lagrangian(98) with vM

AB given by (96) the de Sitter top.
There are several observations that one can make from our analysis but perhaps one of the

most important is the fact that the top theory leads naturally to consider the de Sitter group
SO(1,4) [or anti–de Sitter group SO(2,3)] via the connectionvM

AB. As it is well known, this group
structure appears in several fronts of current interest, including Maldacena’s conjecture in string
theory, accelerated universe, and the gravitational gauge approach of MacDowell–Mansouri. For
this reason it turns out to be of particular interest for further research to study the possible
connection between the de Sitter top and these lines of research.

On the other hand, since in the Kaluza–Klein 4+N+D-dimensional space the metric gives
gravity, Yang–Mills, and scalar fields, a top moving in this space will be acted on by these fields.
It may be interesting to see how the Yang–Mills field, which can be understood as the field which
generates rotations in the isospace, affects the motion of the top. In Ref. 27 some computations in
this direction were reported. We attach a brief review of such computations as an appendix(see
Appendix B). Part of our task, for further research, is to analyze these computations from the point
of view of the present work.

Finally, the Regge trajectory(1) which lead us to the de Sitter relativistic top concept is a very
particular relation between the mass and the spin of a particle. In general, a singular Lagrangian
can lead to more general Regge trajectories of the form(B5). In particular, by using group
theoretical methods, Atre and Mukunda7 have developed a systematic procedure for other possible
Regge trajectories. In those cases one should expect generalizations or alternatives of the de Sitter
relativistic top which is based in the de Sitter group. From the group theoretical point of view,
however, such a generalization or alternative appears as an intriguing possibility motivating fur-
ther research on the subject.
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APPENDIX A

In this appendix we present the proof of formula(15). From (7) and (10) we get

u2 = l2P2 + V2. sA1d

Similarly, from (9), (10), and(12) we find
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s2 =
l2

r4 S2 + 2j2P2. sA2d

Here we also used the notationb2=bmnbmn, for any tensorbmn.
We shall compute

s4 ; smnsn
asa

bsbm. sA3d

Observe first that

smasa
n =

l2

r4 SmaSa
n −

l

r2sVmPn + VnPmd − j2PmPn − P2jmjn, sA4d

where we used(10) and (12). The expression(A4) leads to

s4 =
l4

r8 S4 + 4
l2

r4 P2V2 + 2j2j2P2P2, sA5d

where once again we used(10) and (12) and antisymmetric properties, such asSmnjmjn;0.
We also need to compute

ussu ; umsmnsn
aua. sA6d

From (7), (9), (10), and(12) we find

smnun =
l

r2SmnVn − lP2jm. sA7d

Therefore, we have

ussu = − l2S−
1

r4VmSmnSn
aVa +

2

r2P2V2 + P2P2j2D sA8d

or

ussu = − l2S 1

r4jaSanSntS
tlSl

bjb +
2

r2P2V2 + P2P2j2D . sA9d

Now, let us define the dual of any antisymmetric tensorAab as

A*mn = 1
2emnabAab, sA10d

where«mnab is the completely antisymmetric Levi–Cività tensor.
It turns out that from the constraint(10) it follows

S*mnSmn = 0. sA11d

Using (A11) it is not difficult to show that

SmnSnaSat = − 1
2SmtsS2d. sA12d

Thus, using(A12) one finds that(A9) becomes

ussu = − l2S 1

2r4V2S2 +
2

r2P2V2 + P2P2j2D . sA13d

On the other hand, from(A2) we obtain
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s2s2 =
l4

r8 S2S2 +
4l2

r4 j2P2S2 + 4j2j2P2P2. sA14d

Therefore,(A5) and (14) imply

s2s2 − 2s4 =
4l2

r4 j2P2S2 −
8l2

r4 P2V2, sA15d

where we used the fact that from(A12) it follows that

2S4 − S2S2 = 0. sA16d

Now, define

dets =
1

4!
«mnab«tlsrsmlsnlsassbr. sA17d

It is not difficult to show that

dets = − 1
16ss * sd2. sA18d

From the identity

smasabsbn = − 1
2smnss2d − 1

4s*mnss * sd, sA19d

we find

s4 = 1
2s2s2 + 1

4ss * sdss * sd. sA20d

Therefore, by combining(A18) and (A20) we obtain

dets = 1
8ss2s2 − 2s4d. sA21d

From (A15) we see that(A21) implies

dets =
l2

2r4j2P2S2 −
l2

r4 P2V2. sA22d

Now, from (A13) and (A22) we see that

ussu − r2 dets = l2F− 1

2r4V2S2 −
2

r2P2V2 − j2r2P2 −
1

2r2j2P2S2 +
1

r2P2V2G = l2Fm0
2

r2 V2 + m0
2j2P2G .

sA23d

Using (A1) and (A2) one finally sees that(A23) leads to(15).

APPENDIX B

In 4+N8 dimensions, withN8=N+D, a top can be described by the variablesxMstd and
EA

Mstd, wherexM are 4+N8 coordinates,EA
Mstd are 4+N8 orthonormal vectors,t is an arbitrary

parameter and the indexA in parentheses labels the name of the vector. The vectorsEA
M satisfy the

condition

gMN = EM
A EN

BhAB, sB1d

wherehAB=diags−1,1, . . . . ,1d is a scalar matrix andgMN is the curved metric generalized to 4
+N8 dimensions.

Define the linear velocityuM and the angular velocitysMN as follows:

012302-14 J. Armenta and J. A. Nieto J. Math. Phys. 46, 012302 (2005)

                                                                                                                                    



uM ;
dxM

dt
= ẋM , sB2d

sMN = hABEA
M D

dt
EB

N = − sNM. sB3d

Here, the symbolD /dt means covariant derivative with respect tot, having the Christoffel
symbols GNP

M as the connection. One sees thatsMN is again antisymmetric by virtue of the
condition (B1).

Consider a top with linear velocityuM, angular velocitysMN, linear momentumPM, and
internal angular momentumSMN. We will assume that the dynamics of the system is generated by
the Lagrangian

L = − uMPM − 1
2sMNSMN + lH + lMHM , sB4d

where

H ; PMPM − fs 1
2SMNSMNd sB5d

and

HM ; SMNPN sB6d

corresponds to the Regge and Tulcyzjew constraints, respectively, generalized to 4+N8 dimen-
sions. Here,l andlM are Lagrange multipliers.

Using the Lagrangian(B4) and assuming the equivalence principle in 4+N8 dimensions leads
to the RTEM equations of motion generalized to higher dimensions,

DPM

dt
= −

1

2
RNPQ

M uNSPQ sB7d

and

DSMN

dt
= PMuN − PNuM . sB8d

Here,DAM /dt=sdAM /dtd+GNP
M ANuP, whereAM is any vector andRNPQ

M is the Riemann tensor.
Using the constraintHM =0 one sees from(B8) thatJ2= 1

2SMNSMN is a constant of the motion.
Using this fact and the constraintH=0 one can show thatPMPM =−M2 is also a constant of the
motion.

We will follow the strategy of doing the computations in thehorizontal lift basedefined by the
commutators18,19

fDm,Dng = − Fmn
a Da,

fDm,Dag = 0, sB9d

fDa,Dbg = fab
c Dc.

Therefore the only nonvanishing commutation coefficients are

Cmn
c = − Fmn

c sB10d

and
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Cab
c = fab

c . sB11d

In the base(B9) the metric associated withM43N8 is

ĝMN = Sgmn 0

0 gab
D , sB12d

with

Dagmn = 0,

Dcgab = fcab+ fcba,

Dmgab = ]mgab − Am
c Dcgab = guabum,

Dagmn = gmn,a. sB13d

The Christoffel symbols are given in a noncoordinate base by

ĜMNP = 1
2sDPĝMN + DNĝMP − DNĝNPd + 1

2sCMNP + CMPN − CNPMd, sB14d

and the Riemann tensor is given by

R̂NPQ
M = DPĜNQ

M − DQĜNQ
M + ĜRP

M ĜNQ
R − ĜRQ

M GNP
R − ĜNR

M CPQ
R . sB15d

The linear velocityuM, angular velocitysMN, linear momentumPM, and internal angular
momentumSMN will be referred to below with respect to the “horizontal lift base” defined in(B9).
By using (B12)–(B15) one may reduce the equations of motion(B7) to four dimensions,

DPm

dt
= − 1

2Rnab
m unSab + QaFn

mun + 1
4Fab

a ;mMa
ab + Zm. sB16d

Here the following definitions were used:

Pm ; Pm − 1
2gabFn

maSnb, sB17d

Qa ; gabP
b + 1

4gabfce
b Sce+ 1

4gabFab
b Sab + 1

2guabuaSab, sB18d

Ma
ab ; gabu

aSab + gabu
bSab − gabu

aSbb, sB19d

and

Zm = fs 1
2uaPb − 1

4Fab
a uaSbb + 1

4Fab
a Sabub − 1

4gafgufeuaueSabd − 1
4gafgufeuauaSeb+ sfec

a + fce
a + fec

a dueScb

− sfec
b uaSecdggab

umu + 1
2gab

umu;aSabua. sB20d

Here, the symbolgab
umu;a means

gab
umu;a = gab

umu
uau + H m

ba
Jgab

ubu,

wheregab
umu is defined in(B13), while the symbolFa

ma;b means

Fa
ma;b = Fa

ma,b + H m

sb
JFa

sa − H s

ba
JFs

ma.
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In terms of the definitions(B17) and (B19) the equation of motion(B8) leads to

DSmn

dt
= Pmun − Pnum +

1

2
sFmaaMaa

n − Ma
maFa

nad + Hmn, sB21d

where

Hmn = Smaubgab
un − Snaubgab

um.

Clearly, Eqs.(B16) and (B21) are generalizations of the usual four-dimensional case. One can
show that the quantityQa given in (B18) is a constant of the motion. It turns out thatQa can be
interpreted as charges of the system. For details the reader is referred to Ref. 27.
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We investigate the problem of introducing consistent self-couplings in free theories
for mixed tensor gauge fields whose symmetry properties are characterized by
Young diagrams made of two columns of arbitrary(but different) lengths. We prove
that, in flat space, these theories admit no local, Poincaré-invariant, smooth, self-
interacting deformation with at most two derivatives in the Lagrangian. Relaxing
the derivative and Lorentz-invariance assumptions, there still is no deformation that
modifies the gauge algebra, and in most cases no deformation that alters the gauge
transformations. Our approach is based on a Becchi-Rouet-Stora-Tyutin(BRST)
-cohomology deformation procedure. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1823032]

I. INTRODUCTION

These last few years, mixed symmetry gauge fields(i.e., that are neither completely symmet-
ric nor antisymmetric) have attracted some renewed attention,1–10 thereby reviving the efforts
made in this direction during the 1980s, under the prompt of string field theory.11–14 Mixed-
symmetry fields appear in a wide variety of higher-dimensionalsD.4d contexts. Indeed, group
theory imposes that first-quantized particles propagating in flat background should provide repre-
sentations of the Poincaré group. The casesD=3,4 arevery particular in the sense that each tensor
irreducible representation(irrep) of the little groups O(2) and O(3) is equivalent to a completely
symmetric tensor irrep(pictured by a one-row Young diagram withS columns for a spin-S
particle). WhenD.4, more complicated Young diagrams are allowed. For instance, all critical
string theory spectra contain massive fields in mixed symmetry representations of the Lorentz
group. In the tensionless limitsa8→`d all these massive excitations become massless. Another
way to generate various mixed symmetry fields is by dualizing totally symmetric fields in higher
dimensions.3,6

An irrep of the general linear group GLsD ,Rd is denoted byfc1,c2, . . . ,cLg, whereci indicates
the number of boxes in theith column of the Young diagram characterizing the corresponding
irrep. We will focus on theories describing gauge fieldsfm1¯mpun1¯nq

whose symmetries corre-
spond to the Young diagramfp,qg formed by two columns of arbitrary(but different) lengthsp
andq sp.qd. The physical degrees of freedom for such theories correspond to a traceless tensor
carrying an irrep of the little group OsD−2d associated with the Young diagramfp,qg. Therefore,
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we will work in space–time dimensionDùp+q+2 so that the field carries local physical degrees
of freedom. Such fields were studied recently at the free level in anti–de Sitter background.9,10 In
the sequel, we will frequently use a loose terminology by referring to a tensor irrep by its Young
diagram.

In the present paper, we address the natural problem of switching on consistent self-
interactions amongfp,qg-type tensor gauge fields in flat background, wherepÞq. As in Refs.
15–20, we use the BRST-cohomological reformulation of the Noether method for the problem of
consistent interactions.21 For an alternative Hamiltonian-based deformation point of view, see Ref.
22. The question of consistent self-interactions in flat background has already been investigated in
the case of vector(i.e., [1,0]) gauge fields in Ref. 15,p-forms (i.e., fp,0g-fields) in Ref. 16,
Fierz–Pauli[1,1]-fields in Ref. 17,fp,1g-fields sp.1d in Ref. 18, [2,2]-fields in Ref. 19, and
fp,pg-fields sp.1d in Ref. 20. Here, we extend and strengthen the results of Ref. 18 by relaxing
some assumptions on the number of derivatives in the interactions. The present work is thus the
completion of the analysis of self-interactions forarbitrary fp,qg-type tensor gauge fields in flat
space.

Our main(no-go) result can be stated as follows, spelling out explicitly our assumptions.
Theorem: In flat space and under the assumptions of locality and translation-invariance,

there is no consistent smooth deformation of the free theory forfp,qg-type tensor gauge fields with
pÞq that modifies the gauge algebra. Furthermore, for q.1, when there is no positive integer n
such that p+2=sn+1dsq+1d, there exists no smooth deformation that alters the gauge transfor-
mations either. Finally, if one excludes deformations that involve four derivatives or more in the
Lagrangian and that are not Lorentz-invariant, then there is no smooth deformation at all.

The paper is organized as follows. In Sec. II, we review the free theory offp,qg-type tensor
gauge fields. In Sec. III, we introduce the BRST construction for the theory. Sections IV–VII are
devoted to the proof of cohomological results. We computeHsgd in Sec. IV, an invariant Poincaré
lemma is proved in Sec. V, the cohomologiesHk

Dsd udd andHk
D invsd udd are computed, respectively,

in Secs. VI and VII. The self-interaction question is answered in Sec. VIII. A brief concluding
section is finally followed by three appendixes containing the proofs of three theorems presented
in the core of the paper.

II. FREE THEORY

As stated above, we consider theories for mixed tensor gauge fieldsfm1¯mpun1¯nq
whose

symmetry properties are characterized by two columns of arbitrary(but different) lengths. In other
words, the gauge field obeys the conditions

fm1¯mpun1¯nq
= ffm1¯mpgun1¯nq

= fm1¯mpufn1. . .nqg,

ffm1¯mpun1gn2¯nq
= 0,

where the square brackets denote strength-one complete antisymmetrization.

A. Lagrangian and gauge invariances

The Lagrangian of the free theory is

L = −
1

2sp + 1d!q!
dfn1¯nqs1¯sp+1g

fr1¯rqm1¯mp+1g]fs1fufs2¯sp+1gu
r1¯rq

]fm1
fufm2¯mp+1gu

n1¯nq,

where the generalized Kronecker delta has strength one. This Lagrangian was obtained for[2,1]-
fields in Ref. 11, forfp,1g-fields in Ref. 12 and, for the general case offp,qg-fields, in the second
paper of Ref. 5.

The quadratic action
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S0ffg =E dDx Ls]fd s1d

is invariant under gauge transformations with gauge parametersas1,0d andas0,1d that have respec-
tive symmetriesfp−1,qg and fp,q−1g. In the same manner asp-forms, these gauge transforma-
tions arereducible, their order of reducibility growing withp. We identify the gauge fieldf with
as0,0d, the zeroth order parameter of reducibility. The gauge transformations and their reducibilities
are (we introduce the short notationmfpg;fm1¯mpg; a comma stands for a derivative,a,n

;]na)

damfp−igunfq−jg

si,jd = ]fm1
afm2¯mp−igunfq−jg

si+1,jd + bi,jsamfp−igufnfq−j−1g,nq−jg
si,j+1d + ai,janfq−jgfmq−j+1¯mp−iumfq−j−1g,mq−jg

si,j+1d d,

s2d

wherei =0, . . . ,p−q and j =0, . . . ,q. The coefficientsai,j andbi,j are given by

ai,j =
sp − id!

sp − i − q + j + 1d!sq − jd!
, bi,j = s− di sp − q + j + 2d

sp − i − q + j + 2d
.

To the above formulas, we must add the convention that, for allj , asp−q+1,jd=0=asi,q+1d. The
symmetry properties of the parametersasi,jd are those of Young diagrams with two columns of
lengthsp− i andq− j . More details on the reducibility parametersam1¯mp−iun1¯nq−j

si,jd will be given in
Sec. III B.

The fundamental gauge-invariant object is the field strengthK, thefp+1,q+1g-tensor defined
as the double curl of the gauge field

Km1¯mp+1un1¯nq+1
; ]fm1

ffm2¯mp+1gufn1¯nq,nq+1g.

By definition, it satisfies the Bianchi(BII ) identities

]fm1
Kfm2¯mp+2gun1¯nq+1

= 0, Km1¯mp+1ufn1¯nq+1,nq+2g = 0. s3d

The field strength tensorK plays a crucial role in the determination of the physical degrees of
freedom described by the actionS0ffg.

B. Equations of motion

The equations of motion are expressed in terms of the field strength,

Gum1. . .mpu
n1. . .nq

;
dL

dfum1. . .mpu
n1. . .nq

=
1

sp + 1d!q!
dfn1¯nqs1¯sp+1g

fr1¯rq+1m1¯mpgKus1¯sp+1u
r1¯rq+1

< 0,

where a weak equality “'” means “equal on the surface of the solutions of the equations of
motion.” This is a generalization of vacuum Einstein equations, linearized around the flat back-
ground. Taking successive traces of the equations of motion, one can show that they are equivalent
to the tracelessness of the field strength,

hs1r1Ks1¯sp+1ur1¯rq+1
< 0. s4d

This equation generalizes the vanishing of the Ricci tensor(in the vacuum), and is nontrivial only
whenp+q+2øD. Together with the “Ricci equation”(4), the Bianchi identities(3) imply3

]s1Ks1¯sp+1ur1¯rq+1u < 0 < ]r1Ks1¯sp+1ur1¯rq+1u. s5d

The gauge invariance of the action is equivalent to the divergenceless of the tensorGumfpgunfqg, that
is, the latter satisfies the Noether identities
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]s1Gs1¯sp+1ur1¯rq+1u = 0 =]r1Gs1¯sp+1ur1¯rq+1u. s6d

These identities are a direct consequence of the Bianchi ones(3). The Noether identities(6) ensure
that the equations of motion can be written as

0 < Gm1¯mpun1¯nqu = ]aHam1¯mpun1¯nqu,

where

Huam1¯mpu
n1¯nq

=
1

sp + 1d!q!
dfn1¯nqbs1¯spg

fr1¯rqam1¯mpg]fbgfufs1¯spgu
r1¯rq

.

The symmetries of the tensorH correspond to the Young diagramfp+1,qg. This property will be
useful in the computation of the local BRST cohomology.

C. Physical degrees of freedom

The “Ricci equation”(4) states that, on-shell, the field strength belongs to the irrepfp+1,q
+1g of OsD−1,1d. The Bianchi identities together with(5) further imply that the on-shell nonva-
nishing components of the field strength belong to the unitary irrepfp,qg of the little group
OsD−2d. Indeed, on-shell, gauge fields in the light-cone gauge are essentially field strengths,13

and the “Ricci equation” takes the form

di1j1fi1¯ipu j1¯ jqu < 0,

wherei and j denote light-cone indicessi , j =1, . . . ,D−2d. As a consistency check, one can note
that the latter equation is nontrivial only whenp+qùD−2. The theory describes the correct
physical degrees of freedom of a first-quantized massless particle propagating in flat space, i.e., the
latter particle provides a unitary irrep of the group IOsD−1,1d.

We should stress that the exact analogue of all the previous properties hold for arbitrary mixed
symmetry fields. This result was obtained by two of us and was mentioned in Ref. 7 but the
detailed proof was not given there.[The proof presented in this paper(Appendix A) provides an
indirect proof that the light-cone gauge is reachable(so that the theory describes the correct
number of physical degrees of freedom). We would like to underline the fact that Refs. 3 and 5
assume(but do not contain any rigorous proof of) this fact. It would not be straightforward to
prove it directly because the tower of ghosts is extremely complicated in the general case.] We
take the opportunity to provide this extremely simple proof in Appendix A for the particular case
of two-column gauge fields, since it already covers all the features of the general case for arbitrary
mixed tensor gauge fields.

III. BRST CONSTRUCTION

A. BRST deformation technique

Once one has a consistent free theory, it is natural to try to deform it into an interacting theory.
The traditional Noether deformation procedure assumes that the deformed action can be expressed
as a power series in a coupling constantg, the zeroth-order term in the expansion describing the
free theoryS0. The procedure is perturbative: one tries to construct the deformations order by
order in the deformation parameterg.

Some physical requirements naturally come out.

(i) Nontriviality: We rejecttrivial deformations arising from field redefinitions that reduce to
the identity at orderg0,

f → f8 = f + gusf,]f, . . . d + Osg2d. s7d

(ii ) Consistency:A deformation of a theory is calledconsistentif the deformed theory pos-
sesses the same number of(possibly deformed) independent gauge symmetries, reducibility
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identities, etc., as the system we started with. In other words, the number of physical
degrees of freedom is unchanged.

(iii ) Locality: The deformed actionSffg must be alocal functional. The deformation of the
gauge transformations, etc., must be local functions, as well as the field redefinitions.

We remind the reader that a local function of some set of fieldswi is a smooth function of the
fields wi and their derivatives]wi, ]2wi , . . . up to some finite order, sayk, in the number of
derivatives. Such a set of variableswi, ]wi , . . . ,]kwi will be collectively denoted byfwig. Therefore,
a local function ofwi is denoted byfsfwigd. A local p-form s0øpøDd is a differentialp-form, the
components of which are local functions,

v =
1

p!
vm1¯mp

sx,ffigddxm1 ∧ ¯ ∧ dxmp.

A local functional is the integral of a localD-form.
As shown in Ref. 21, the Noether procedure can be reformulated in a BRST-cohomological

formalism: the first-order nontrivial consistent local interactions are in one-to-one correspondence
with elements of the cohomologyHD,0ssudd of the BRST differentials modulo the total derivative
d, in maximum form-degreeD and in ghost number 0. That is, one must compute the general
solution of the cocycle condition

saD,0 + dbD−1,1= 0, s8d

whereaD,0 is a top-form of ghost number zero andbD−1,1 a sD−1d-form of ghost number one, with
the understanding that two solutions of(8) that differ by a trivial solution should be identified,

aD,0 , aD,0 + smD,−1 + dnD−1,0,

as they define the same interactions up to field redefinitions(7). The cocycles and coboundariesa,
b, m, n, . . . arelocal forms of the field variables(including ghosts and antifields).

B. BRST spectrum

In the theories under consideration and according to the general rules of the BRST-antifield
formalism, one associates with each gauge parameterasi,jd a ghost, and then to any field(including
ghosts) a corresponding antifield(or antighost) of opposite Grassmann parity. More precisely, the
spectrum of fields(including ghosts) and antifields is given by

(i) the fields, Aumfp−igunfq−jg

si,jd , whereAs0,0d is identified withf;

(ii ) the antifields, A* si,jdumfp−igunfq−jg,

where i =0, . . . ,p−q and j =0, . . . ,q. The symmetry properties of the fieldsAumfp−igunfq−jg

si,jd and anti-

fields A* si,jdumfp−igunfq−jg are those of Young diagrams with two columns of lengthsp− i andq− j . To
each field and antifield are associated a pure ghost number and an antifield(or antighost) number.
The pure ghost number is given byi + j for the fieldsAsi,jd and 0 for the antifields, while the
antifield number is 0 for the fields andi + j +1 for the antifieldsA* si,jd. The Grassmann parity is
given by the pure ghost number(or the antighost number) modulo 2. All this is summarized in
Table I.

TABLE I. Symmetry, pure ghost and antighost numbers, and parity of the
(anti)fields.

Young puregh antigh Parity

Asi,jd fp− i ,q− jg i + j 0 i + j

A* si,jd fp− i ,q− jg 0 i + j +1 i + j +1
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One can visualize the whole BRST spectrum in vanishing antighost number as well as the
procedure that gives all the ghosts starting fromfumfpgunfqg

in Fig. 1, where the pure ghost number

increases from top down, by one unit at each line.
At the top of Fig. 1 lies the gauge fieldfumfpgunfqg

with pure ghost number zero. At the level

below, one finds the pure ghost number one “gauge parameters”Aumfp−1gunfqg

s1,0d andAumfpgunfq−1g

s0,1d whose

respective symmetries are obtained by removing a box in the first(respectively, second) column of
the Young diagramfp,qg corresponding to the gauge fieldfumfpgunfqg

[the rules that give thesi
+1dth generation ghosts from theith generation ones can be found in Refs. 4 and 14],

In pure ghost numberp−q, we obtain a set of ghosts containingAmfqgunfqg

sp−q,0d ,fq,qg. The Young

diagram corresponding to the latter ghost is obtained by removingp−q boxes from the first
column of fp,qg.

If q,p−q, we do not have to reach the pure ghost levelp−q to find the p-form ghost
Amfpg

s0,qd,fp,0g. If 2qùp, we must remove additional boxes from the second column offp,qg in

order to empty it completely and obtain thep-form ghostAmfpg

s0,qd. The Young diagrams of the

remaining ghosts are obtained by further removing boxes from the Young diagram corresponding
to the ghostAmfpg

s0,qd with puregh=q. This procedure will terminate at pure ghost numberp with the

q-form ghostAmfqg

sp−q,qd,fq,0g. It is not possible to find ghostsAumfrgunfsg
with r and s,q, since it

would mean that two boxes from a same row would have been removed fromfp,qg, which is not
allowed.4,14

FIG. 1. Antighost-zero BRST spectrum offp,qg-type gauge field.

012303-6 Bekaert, Boulanger, and Cnockaert J. Math. Phys. 46, 012303 (2005)

                                                                                                                                    



The antighost sector has exactly the same structure as the ghost sector in Fig. 1, where each
ghostAsi,jd is replaced by its antighostA* si,jd.

C. BRST differential

The BRST differentials of the free theory(1) and (2) is generated by the functional

W0 = S0ffg +E dDxFo
i=0

p−q

o
j=0

q

s− di+jA* si,jdm1¯mp−iun1¯nq−j u

3s]fm1gAfm2¯mp−igun1¯nq−j u
si+1,jd − bi+1,jAum1¯mp−iufn1¯nq−j−1,nq−jg

si,j+1d dG ,

with the convention thatAsp−q+1,jd=Asi,q+1d=A* s−1,jd=A* si,−1d=0. More precisely,W0 is the genera-
tor of the BRST differentials of the free theory through

sA= sW0,Ada.b.,

where the antibrackets,da.b. is defined by

sA,Bda.b. =
dRA

dFI

dLB

dFI
* −

dRA

dFI
*

dLB

dFI ,

FI collectively denoting all fields and ghosts, andFI
* the antighosts. The functionalW0 is a

solution of themaster equation

sW0,W0da.b. = 0.

The BRST-differentials decomposes intos=g+d. The first pieceg, the differential along the
gauge orbits, increases the pure ghost number by one unit, whereas the Koszul–Tate differentiald
decreases the antighost(or antifield) number by one unit. AZ-grading calledghost number(or gh)
corresponds to the differentials. We have

gh = puregh − antigh.

The action ofg andd on the BRST variables is zero, except

gAumfp−igunfq−jg

si,jd = ]fm1gAfm2¯mp−igunfq−jgu
si+1,jd + bi,jsAumfp−igufnfq−j−1g,nq−jg

si,j+1d + ai,jAnfq−jgfmq−j+1¯mp−iumfq−j−1g,mq−j ug
si,j+1d d,

dA* s0,0dmfpgunfqgu = Gmfpgunfqgu,

dA* si,jdmfp−igunfq−jgu = s− di+jS]sA* si−1,jdsmfp−igunfq−jgu −
1

p − i + 1
]sA* si−1,jdn1mfp−igusn2¯nq−j uD

+ s− di+j+1bi+1,j−1]sA* si,j−1dmfp−igunfq−jgsu,

where the last equation holds only forsi , jd different from (0, 0).
For later computations, it is useful to define a unique antifield for each antighost number,

Cp+1−j
*m1¯mqun1¯n j u = o

k=0

j

ek,jA
* sp−q−j+k,q−kdm1¯mqfnk+1¯n j un1¯nkug

for 0ø j øp, and, in antighost zero, the following specific combination of single derivatives of the
field:
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C0
*m1¯mqun1¯np+1u = eq,p+1H

m1¯mqfnq+1¯np+1un1¯nqug,

whereek,j vanishes fork.q and for j −k.p−q, and is given in the other cases by

ek,j = s− dpk+jsk+p+qd+fksk+1d/2g
S k

p + 1
DSk

j
D

Sk

q
D ,

where s m
n

d are the binomial coefficientssnùmd. Some properties of the new variablesCk
* are

summarized in Table II.
The symmetry properties ofCk

* are denoted by

fqg ^ fp + 1 −kg − fp + 1g ^ fq − kg

which means that they have the symmetry properties corresponding to the tensor product of a
column fqg by a columnfp+1−kg from which one should substract(when køq) all the Young
diagrams appearing in the tensor productfp+1g ^ fq−kg.

The antifieldsC
k
*mfqgunfp+1−kg have been defined in order to obey the following relations:

dCp+1−j
*m1¯mqun1¯n j = ]sCp−j

*m1¯mqun1¯n js for 0 ø j ø p,

dC0
*m1¯mqun1¯np+1 = 0. s9d

If we further define the inhomogeneous form

H̃m1¯mq ; o
j=0

p+1

Cp+1−j
*D−jm1¯mq,

where

Cp+1−j
*D−jm1¯mq ; s− d jp+js j+1d/2 1

j !sD − jd!
Cp+1−j

*m1¯mqun1¯n jen1¯nD
dxn j+1

¯ dxnD,

then, as a consequence of(9), any polynomialPsH̃d in H̃m1¯mq will satisfy

sd + ddPsH̃d = 0. s10d

The polynomialH̃ is not invariant under gauge transformations. It is therefore useful to still

introduce another polynomial,H̃, with an explicitx dependence, thatis invariant.H̃ is defined by

H̃mfqg
; o

j=1

p+1

Cjmfqg

*D−p−1+j + ãefmfqgsfp+1gtfD−p−q−1gg
Kq+1sfp+1gxt1 dxt2

¯ dxtD−p−q−1,

whereã=s−dfpsp−1d+qsq−1d/2gf1/q!q!sp+q+1d!sp+1−qd!sD−p−q−1d!g. One can check thatH̃=H̃

+dm0
D−p−2. This fact has the consequence that polynomials inH̃ also satisfysd+ddPsH̃d=0.

TABLE II. Young representation, pure ghost and antighost numbers, and
parity of Ck

* .

Young diagram puregh antigh Parity

Ck
* fqg ^ fp+1−kg−fp+1g ^ fq−kg 0 k k
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IV. COHOMOLOGY OF g

We hereafter give the content ofHsgd. Subsequently, we explain the procedure that we
followed in order to obtain that result.

Theorem 4.1:The cohomology ofg is isomorphic to the space of functions depending on

(i) the antifields and their derivativesfA* si,jdg,
(ii ) the curvature and its derivativesfKg,
(iii ) the pth generation ghost Asp−q,qd, and
(iv) the curl Dm1¯mp+1

0 ;s−dq]fm1gAfm2¯mp+1g
s0,qd of the qth generation ghost As0,qd,

Hsgd . hfsfA* si,jdg,fKg,Asp−q,qd,Dm1¯mp+1

0 dj.

Proof: The antifields and all their derivatives are annihilated byg. Since they carry no pure
ghost degree by definition, they cannot be equal to theg-variation of any quantity. Hence, they
obviously belong to the cohomology ofg.

To compute theg-cohomology in the sector of the field, the ghosts and all their derivatives,
we split the variables into three sets ofindependentvariables obeying, respectively,gu,=v,,
gv,=0, andgwi =0. The variablesu, andv, form so-called “contractible pairs” and the cohomol-
ogy of g is therefore generated by the variableswi (see, e.g., Ref. 23, Theorem 8.2).

We decompose the spaces spanned by the derivatives]m1¯mk
Asi,jd, kù0, 0ø i øp−q, 0ø j

øq, into irreps of GLsD ,Rd and use the structure of the reducibility conditions(see Figs. 2 and 3)
in order to group the variables into contractible pairs.

We use the differential operatorsdhij, i =1,2, . . .(see Ref. 4 for a general definition) which act,
for instance, on Young-symmetry-type tensor fieldsTf2,1g, as follows:

For fixed i and j the set of ghostsAsi,jd and all their derivatives decompose into three types of
independent variables,

fAsi,jdg ↔ OAsi,j+1d,Odh1jAsi,j+1d,Odh2jAsi,j+1d,Odh1jdh2jAsi,j+1d,

whereO denotes any operator of the typepmù3d
hmj or the identity.

Different cases arise depending on the position of the fieldAsi,jd in Fig. 1. We must consider
fields that sit in the interior, on a border or at a corner of the diagram.

Interior: In this case, all the ghostsAsi,jd and their derivatives formu, or v, variables. Indeed,
we have the relations

FIG. 2. GhostAsi,jd appearing in only one reducibility relation.

FIG. 3. GhostAsi,jd the reducibility relation of which involves only one ghost.
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gAsi,jd ~ fdh1jAsi+1,jd − dh2jAsi,j+1dg,

gfdh1jAsi+1,jd − dh2jAsi,j+1dg = 0,

gfdh1jAsi+1,jd + dh2jAsi,j+1dg ~ dh1jdh2jAsi+1,j+1d,

gfdh1jdh2jAsi,j+1dg = 0,

andO commutes withg. From which we conclude that one can perform a change of variable from
the setsfAsi,jdg to the contractible pairs

u, ↔ OAsi,jd,Ofdh1jAsi+1,jd + dh2jAsi,j+1dg,

v, ↔ Ofdh1jAsi+1,jd − dh2jAsi,j+1dg,Odh1jdh2jAsi+1,j+1d,

so that the ghostsAsi,jd in the interior and all their derivatives do not appear inHsgd.
Border: If a ghostAsi,jd stands on a border of Fig. 1, it means that either(i) its reducibility

relation involves only one ghost(see, e.g., Fig. 3), or (ii ) there exists only one field whose
reducibility relation involvesAsi,jd (see, e.g., Fig. 2).

(i) SupposeAsi,jd stands on the left-hand(lower) edge of Fig. 1. We have the relations

gAsi,jd ~ dh2jAsi,j+1d,

gfdh2jAsi,j+1dg = 0,

gfdh1jAsi,jdg ~ dh1jdh2jAsi,j+1d,

gfdh1jdh2jAsi,j+1dg = 0,

so that the corresponding setsfAsi,jdg on the left-hand edge do not contribute toHsgd. We
reach similar conclusion ifAsi,jd lies on the right-handshigherd border of Fig. 1, substituting
dh1j for dh2j when necessary.

(ii ) Since, by assumption,Asi,jd does not sit in a corner of Fig. 1(but on the higher left-hand or
lower right-hand border), its reducibility transformation involves two ghosts, and we pro-
ceed as if it were in the interior. The only difference is thatOdh1jdh2jAsi,jd will be equal to
eithergOdh1jAsi,j−1d or gOdh2jAsi−1,jd, depending whether the field aboveAsi,jd is Asi−1,jd or
Asi,j−1d.

Lower corner:On the one hand, we havegAfq,0g
sp−q,qd=0. As the operatorg introduces a deriva-

tive, Afq,0g
sp−q,qd cannot beg-exact. As a result,Afq,0g

sp−q,qd is awi-variable and thence belongs toHsgd. On

the other hand, we find]nAm1¯mq

sp−q,qd =gfAnm1¯mq

sp−q−1,qd+s−dp−qfq/ sp+1dgAm1¯mqun
sp−q,q−1dg, which implies that all

the derivatives ofAsp−q,qd do not appear inHsgd.
Left-hand corner:In this case, the ghostAsi,jd is characterized by a squared-shape Young

diagram(it is the only one with this property). Its reducibility transformation involves only one
ghost and there exists only one field whose reducibility transformation involvesAsi,jd. Because of
its symmetry properties,dh2jAsi,jd,dh1jAsi,jd. Better,dh2j is not well-defined onAsi,jd, it is only well
defined ondh1jAsi,jd. Therefore, the derivatives]m1¯mk

Asi,jd decompose intoOAsi,jd, Odh1jAsi,jd, and
Odh1jdh2jAsi,jd. The first setOAsi,jd forms u,-variables associated withOdh2jAsi,j+1d. The second set
is grouped withOdh1jdh2jAsi,j+1d, and the third one formsv,-variables withOdh2jAsi−1,jd.

Upper corner:In the case whereAsi,jd is the gauge field, we proceed exactly as in the “inte-
rior” case, except that the variablesOdh1jdh2jAs0,0d=0 are not grouped with any other variables any
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longer. They constitute truewi-variables and are thus present inHsgd. Recalling the definition of
the curvatureK, we haveOdh1jdh2jAs0,0d~ fKg.

Right-hand corner:In this case, the fieldAsi,jd is the p-form ghost Afpg
s0,qd. We have the

su,vd-pairs sOdh2jAs0,qd ,Odh1jdh2jAs1,qdd, sOdh1jAs0,q−1d ,Odh1jdh2jAs0,qdd.
The derivativedh1jAfpg

s0,qd
~Dfp+1g

0 is a wi-variable since it is invariant and no other variable

]m1¯mk
Asi,jd possesses the same symmetry. h

In the sequel, the polynomialsasfKg ,fA* gd in the curvature, the antifields and all their
derivatives will be called “invariant polynomials.” We will denote byN the algebra generated by
all the ghosts and the noninvariant derivatives of the fieldf. The entire algebra of the fields and
antifields is then generated by the invariant polynomials and the elements ofN.

V. INVARIANT POINCARÉ LEMMA

The space ofinvariant local forms is the space of(local) forms that belong toHsgd. The
algebraic Poincaré lemma tells us that any closed form is exact(except top forms and constants).
However, if the form is furthermore invariant, it is not guaranteed that the form is exact in the
space of invariant forms. The following lemma tells us more about this important subtlety, in a
limited range of form degree.

Lemma 5.1 (invariant Poincaré lemma in form degree k,p 11): Let ak be an invariant local
k-form, k,p+1,

if dak = 0, thenak = QsKm1¯mp+1

q+1 d + dbk−1,

where Q is a polynomial in thesq+1d-forms,

Km1¯mp+1

q+1 ; Km1¯mp+1un1¯nq+1
dxn1

¯ dxnq+1,

while bk−1 is an invariant local form.
A closed invariant local form of form-degree k,p+1 and of strictly positive antighost number

is always exact in the space of invariant local forms.
The proof is directly inspired from the one given in Ref. 24(Theorem 6).

A. Beginning of the proof of the invariant Poincaré lemma

The second statement of the lemma[i.e., the case antighsakdÞ0] is part of a general theorem
(see, e.g., Ref. 25) which holds without any restriction on the form degree. It will not be reviewed
here.

We will thus assume that antighsakd=0, and prove the first part of Lemma 5.1 by induction.
Induction basis:For k=0, the invariant Poincaré lemma is trivially satisfied, da0=0 implies

that a0 is a constant by the usual Poincaré lemma.
Induction hypothesis:The lemma holds in form degreek8 such that 0øk8,k,p+1.
Induction step:We will prove in the sequel that under the induction hypothesis, the lemma

holds in form degreek.
Because dak=0 andgak=0, we can build a descent as follows:

dak = 0 ⇒ ak = dak−1,0, s11d

0 = gak−1,0+ dak−2,1, . . . , s12d

0 = gak−j ,j−1 + dak−j−1,j , s13d
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0 = gak−j−1,j , s14d

wherear,i is a r-form of pure ghost numberi. The pure ghost number ofar,i must obey 0ø i
øk−1. Of course, since we assumek,p+1, we havei ,p. The descent stops at(14) either
becausek− j −1=0 orbecauseak−j−1,j is invariant. The casej =0 is trivial since it gives immedi-
ately ak=dbk−1, where bk−1;ak−1,0 is invariant. Accordingly, we assume from now on thatj
.0.

Since we are dealing with a descent, it is helpful to introduce one of its building blocks, which
is the purpose of the next section. We will complete the induction step in Sec. V C.

B. A descent of g modulo d

Let us define the following differential forms built up from the ghosts:

Dm1¯mp+1

l ; s− dlsq+1d+q]fm1gAfm2¯mp+1gun1¯nlu
s0,q−ld dxn1

¯ dxnl ,

for 0ø l øq. It is easy to show that these fields verify the following descent:

gsDm1¯mp+1

0 d = 0, s15d

gsDm1¯mp+1

l+1 d + dDm1¯mp+1

l = 0, 0ø l ø q − 1,

dDm1¯mp+1

q = Km1¯mp+1

q+1 . s16d

It is convenient to introduce the inhomogeneous form

Dm1¯mp+1
= o

l=0

q

Dm1¯mp+1

l

because it satisfies a so-called “Russian formula,”

sg + ddDm1¯mp+1
= Km1¯mp+1

q+1 , s17d

which is a compact way of writing the descent(15) to (16).
Let vsn,md be a homogeneous polynomial of degreem in D and of degreen in K. Its decom-

position is

vsn,mdsK,Dd = vnsq+1d+mq,0 + ¯ + vnsq+1d+j ,mq−j + ¯ + vnsq+1d,mq,

wherevnsq+1d+j ,mq−j has form degreensq+1d+ j and pure ghost numbermq− j . Due to (17), the
polynomial satisfies

sg + ddvsn,md = Km1¯mp+1

q+1
]Lvsn,md

]Dm1¯mp+1

, s18d

the form-degree decomposition of which leads to the descent

gsvnsq+1d,mqd = 0,

gsvnsq+1d+j+1,mq−j−1d + dvnsq+1d+j ,mq−j = 0, 0ø j ø q − 1,
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gsvnsq+1d+q+1,sm−1dq−1d + dvnsq+1d+q,sm−1dq = Km1¯mp+1

q+1 F ]Lv

]Dm1¯mp+1

Gnsq+1d,sm−1dq

, s19d

wheref]v /]Dgnsq+1d,sm−1dq denotes the component of form degreensq+1d and pure ghost equal to
sm−1dq of the derivative]v /]D. This component is the homogeneous polynomial of degreem
−1 in the variableD0,

F ]v

]Dm1¯mp+1

Gnsq+1d,sm−1dq

= U ]v

]Dm1¯mp+1

U
D=D0

.

The right-hand side of(19) vanishes if and only if the right-hand side of(18) does.
Two cases arise depending on whether the right-hand side(rhs) of (18) vanishes or not.

(i) The rhs of(18) vanishes, then the descent is said not to be obstructed in any strictly positive
pure ghost number and goes all the way down to the bottom equations

gsvnsq+1d+mq,0d + dvnsq+1d+mq+1,1= 0, 0ø j ø q − 1,

dsvnsq+1d+mq,0d = 0.

(ii ) The rhs of(18) is not zero, then the descent is obstructed afterq steps. It is not possible to
find an ṽnsq+1d+q+1,sm−1dq−1 such that

gsṽnsq+1d+q+1,sm−1dq−1d + dvnsq+1d+q,sm−1dq = 0,

because the rhs ofs19d is an element ofHsgd. This element is called theobstructionto the
descent. One also says that this obstruction cannot be lifted more thanq times, and
vnsq+1d,mq is the top of the ladderfin this case it must be an element ofHsgdg.

This covers the general type of ladder(descent as well as lift) that does not contain thepth
generation ghostAsp−q,qd.

C. End of the proof of the invariant Poincaré lemma

As j ,p, Theorem 4.1 implies that the equation(14) has nontrivial solutions only whenj
=mq for some integerm

ak−mq−1,mq= o
I

aI
k−mq−1vI

0,mq, s20d

up to someg-exact term. TheaI
k−mq−1’s are invariant forms, andhvI

0,mqj is a basis of polynomials
of degreem in the variableD0. The ghostAsp−q,qd is absent since the pure ghost number isj
=mq,p.

The equation(13) implies daI
k−mq−1=0. Together with the induction hypothesis, this implies

aI
k−mq−1 = PIsKm1¯mp+1

q+1 d + dbI
k−mq−2, s21d

where the polynomialsPI of ordern are present iffk−mq−1=nsq+1d. Inserting(21) into (20) we
find that, up to trivial redefinitions,ak−j−1,j is a polynomial inKm1¯mp+1

q+1 andDm1¯mp+1

0 .
From the analysis performed in Sec. V B, we know that such anak−j−1,j can be lifted at most

q times. Therefore,ak−j−1,j belongs to a descent of type(11)–(14) only if j =q. Without loss of
generality we can thus takeak−q−1,q=PsKm1¯mp+1

q+1 ,D0d whereP is a homogeneous polynomial with
a linear dependence inD0 (sincem=1). In such a case, it can be lifted up to(11). Furthermore,
becauseak−1,0 is defined up to an invariant formbk−1,0 by the equation(12), the term dak−1,0 of
(11) must be equal to the sum
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of a homogeneous polynomialQ in Kq+1 (the lift of the bottom) and a form d-exact in the
invariants. h

VI. COHOMOLOGY OF d MODULO d: Hk
D
„d zd…

In this section, we compute the cohomology ofd modulo d in top form degree and antighost
numberk, for kùq. We will also restrict ourselves tok.1. The groupH1

Dsd udd describes the
infinitely many conserved currents and will not be studied here.

Let us first recall a general theorem(Theorem 9.1 in Ref. 26).
Theorem 6.1:For a linear gauge theory of reducibility order p−1,

Hk
Dsdudd = 0 for k . p + 1.

The computation of the cohomology groupsHk
Dsd udd for qøkøp+1 follows closely the

procedure used forp-forms in Ref. 24. It relies on the following theorems.
Theorem 6.2: Any solution ofdaD+dbD−1=0 that is at least bilinear in the antifields is

necessarily trivial.
The proof of Theorem 6.2 is similar to the proof of Theorem 11.2 in Ref. 26 and will not be

repeated here.
Theorem 6.3: A complete set of representatives of Hp+1

D sd udd is given by the antifields
Cp+1m1¯mq

*D , i.e.,

dap+1
D + dap

D−1 = 0 ⇒ ap+1
D = lmfqgCp+1mfqg

*D + dbp+2
D + dbp+1

D−1,

where thelfm1¯mqg are constants.
Proof: Candidates: any polynomial of antighost numberp+1 can be written

ap+1
D = Lfm1¯mqgCp+1fm1¯mqg

*D + mp+1
D + dbp+2

D + dbp+1
D−1,

whereL does not involve the antifields and wheremp+1
D is at least quadratic in the antifields. The

cocycle conditiondap+1
D +dap

D−1=0 then implies

− Lfm1¯mqg dCpfm1¯mqg
*D−1 + dsmp+1

D + dbp+1
D−1d + dap

D−1 = 0.

By taking the Euler–Lagrange derivative of this equation with respect toCpfm1¯mqgun
* , one gets the

weak equation]nLfm1¯mqg<0. Consideringn as a form index, one sees thatL belongs toH0
0sdudd.

The isomorphismH0
0sdudd /R>HD

Dsd udd (see Ref. 26) combined with the knowledge of
HD

Dsd udd>0 (by Theorem 6.1) implies Lfm1¯mqg=lfm1¯mqg+dn1
fm1¯mqg where lfm1¯mqg is a con-

stant. The termdn1
fm1¯mqgCp+1fm1¯mqg

*D can be rewritten as a term at least bilinear in the antifields up
to a d-exact term. Insertingap+1

D =lfm1¯mqgCp+1m1¯mq

*D +mp+1
D +dbp+2

D +dbp+1
D−1 into the cocycle condi-

tion, we see thatmp+1
D must be a solution ofdmp+1

D +dbD−1=0 and is therefore trivial by Theorem
6.2.

Nontriviality: It remains to show that the cocyclesap+1
D =lCp+1

*D are nontrivial. Indeed one can
prove thatlCp+1

*D =dup+2
D +dvp+1

D−1 implies thatlCp+1
*D vanishes. It is straightforward whenup+2

D and
vp+1

D−1 do not depend explicitly onx: d and d bring in a derivative whilelCp+1
*D does not contain any.

If u andv depend explicitly onx, one must expand them and the equationlCp+1
*D =dup+2

D +dvp+1
D−1

according to the number of derivatives of the fields and antifields to reach the conclusion. Explic-
itly, up+2

D =up+2,0
D +¯ +up+2,l

D and vp+1
D−1=vp+1,0

D−1 +¯ +vp+1,n
D−1 . If n. l, the equation in degreen+1

reads 0=d8vp+1,n
D−1 where d8 does not differentiate with respect to the explicit dependence inx. This

in turn implies thatvp+1,n
D−1 =d8ṽp+1,n−1

D−1 and can be removed by redefiningvp+1
D−1:vp+1

D−1→vp+1
D−1

−dṽp+1,n−1
D−1 . If l .n, the equation in degreel +1 is 0=dup+2,l

D and implies, together with the acy-
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clicity of d, that one can removeup+2,l
D by a trivial redefinition ofup+2

D . If l =n.0, the equation in
degreel +1 reads 0=dup+2,l

D +d8vp+1,l
D−1 . Since there is no cohomology in antighost numberp+2, this

implies thatup+2,l
D =dūp+3,l−1

D +d8ũp+2,l−1
D−1 and can be removed by trivial redefinitions:up+2

D →up+2
D

−dūp+3,l−1
D and vp+1

D−1→vp+1
D−1−dũp+2,l−1

D−1 . Repeating the steps above, one can remove allup+2,l
D and

vp+1,n
D−1 for l ,n.0. One is left withlCp+1

*D =dup+2,0
D +d8vp+1,0

D−1 . The derivative argument used in the
case without explicitx dependence now leads to the desired conclusion. h

Theorem 6.4: The cohomology groups Hk
Dsd udd sk.1d vanish unless k=D−rsD−p−1d for

some strictly positive integer r. Furthermore, for those values of k, Hk
Dsd udd has at most one

nontrivial class.
Proof: We already know thatHk

Dsd udd vanishes fork.p+1 and thatHp+1
D sd udd has one

nontrivial class. Let us assume that the theorem has been proved for allk’s strictly greater thanK
(with K,p+1) and extend it toK. Without loss of generality we can assume that the cocycles of
HK

Dsd udd take the form(up to trivial terms) aK
D=lm1¯mp+1−Kun1¯nqCK n1¯nqum1¯mp+1−K

*D−p−1+K +mK
D, wherel

does not involve the antifields andm is at least bilinear in the antifields. Taking the Euler–
Lagrange derivative of the cocycle condition with respect toCK−1

* implies that ln1¯nq

p+1−K

;lum1¯mp+1−Kun1¯nq
dxm1

¯ dxmp+1−K defines an element ofH0
p+1−Ksdudd. If l is d-trivial modulod,

then it is straightforward to check thatlCK
*D−p−1+K is trivial or bilinear in the antifields. Using the

isomorphismH0
p+1−Ksdudd>HD−p−1+K

D sd udd, we see thatl must be trivial unlessD−p−1+K=D
−rsD−p−1d, in which caseHD−p−1+K

D sd udd has one nontrivial class. SinceK=D−sr +1dsD−p
−1d is also of the required form, the theorem extends toK. h

Theorem 6.5:Let r be a strictly positive integer. A complete set of representatives of Hk
Dsd udd

fk=D−rsD−p−1dùqg is given by the terms of form-degree D in the expansion of all possible

homogeneous polynomials PsH̃d of degree r in H̃[or equivalently PsH̃d of degree r inH̃].
The proof of this theorem is given in Appendix B.
These theorems give us a complete description of all the cohomology groupsHk

Dsd udd for k
ùq (with k.1).

VII. INVARIANT COHOMOLOGY OF d MODULO d, Hk
inv
„d zd…

In this section, we compute the set of invariant solutionsak
D skùqd of the equationdak

D

+dbk−1
D−1=0, up to trivial termsak

D=dbk+1
D +dck

D−1, wherebk+1
D andck

D−1 are invariant. This space of
solutions is the invariant cohomology ofd modulo d,Hk

invsd udd. We first compute representatives
of all the cohomology classes ofHk

invsd udd, then we find out the cocycles without explicitx
dependence.

Theorem 7.1: For kùq, a complete set of invariant solutions of the equationdak
D+dbk−1

D−1

=0 is given by the proper component in the expansion of the polynomials in the curvature Kq+1

and in H̃ (modulo trivial solutions),

dak
D + dbk−1

D−1 = 0 ⇒ ak
D = uPsKq+1,H̃duk

D + dmk+1
D + dnk

D−1,

wheremk+1
D and nk

D−1 are invariant forms.
Proof: From the preceding section, we know that forkùq the general solution of the equation

dak
D+dbk−1

D−1=0 is ak
D= uQsH̃duk

D+dmk+1
D +dnk

D−1 whereQsH̃d is a homogeneous polynomial of de-

greer in H̃ [it exists only whenk=D−rsD−p−1d]. Note thatmk+1
D andnk

D−1 are not necessarily
invariant. However, one can prove the following theorem(the lengthy proof of which is given in
Appendix C).

Theorem 7.2:Let ak
D be an invariant polynomialskùqd. If ak

D=dmk+1
D +dnk

D−1, then

ak
D = uRss,rdsKq+1,H̃duk

D + dmk+1
D + dnk

D−1,

where Rss,rdsKq+1,H̃d is a polynomial of degree s in Kq+1 and r in H̃, such that the strictly positive
integers s, r satisfy D=rsD−p−1d+k+ssq+1d and mk+1

D and nk
D−1 are invariant forms.

As ak
D and uQsH̃duk

D are invariant, this theorem implies that
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ak
D = uPss,rdsKq+1,H̃duk

D + dmk+1
D + dnk

D−1,

where Pss,rdsKq+1,H̃d is a polynomial of non-negative degrees in Kq+1 and of strictly positive

degreer in H̃. Note that the polynomials of nonvanishing degree inKq+1 are trivial inHk
Dsd udd but

not necessarily inHk
D invsd udd. h

Part of the solutions found in Theorem 7.1 depend explicitly on the coordinatex, becauseuH̃u0
does. Therefore the question arises whether there exist other representatives of the same nontrivial

equivalence classfPss,rdusKq+1,H̃duk
DgPHk

D invsd udd thatdo notdepend explicitly onx. The answer
is negative whenr .1. In other words, we can prove the general theorem.

Theorem 7.3: When r.1, there is no nontrivial invariant cocycle in the equivalence class

fPss,rdusKq+1,H̃duk
DgPHk

D invsd udd without explicit xdependence.
To do so, we first prove the following lemma.

Lemma 7.1: Let PsKq+1,H̃d be a homogeneous polynomial of order s in the curvature Kq+1

and r in H̃. If r ù2, then the component PusKq+1,H̃duk
D always contains terms of order r−1sÞ0d in

uH̃u0.
Proof: Indeed,PsKq+1,H̃d can be freely expanded in terms ofuH̃u0 and the undifferentiated

antighost forms. The Grassmann parity is the same for all terms in the expansion ofH̃, therefore
the expansion is the binomial expansion up to the overall coefficient of the homogeneous poly-
nomial and up to relative signs obtained when reordering all terms. Hence, the component

PusKq+1,H̃duk
D always contains a term that is a product ofsr −1duH̃u0

D−p−1’s, a single antighost
Ck

*D−p−1+k and s curvatures, which possesses the correct degrees as can be checked straightfor-
wardly. h

Proof of Theorem 7.3:Let us assume that there exists a nonvanishing invariantx-independent

representativeak
D,inv of the equivalence classfPss,rdusKq+1,H̃duk

DgPHk
D invsd udd, i.e.,

uPss,rdsKq+1,H̃duk
D + drk+1

D + dsk
D−1 = ak

D,inv, s22d

whererk+1
D andsk

D−1 are invariant and allowed to depend explicitly onx.
We define the descent mapf :am

n →am−1
n−1 such thatdam

n +dam−1
n−1 =0, for nøD. This map is well

defined on equivalence classes ofHinvsd udd whenm.1. Hence, going downk−1 steps, it is clear
that the equation(22) implies

uPss,rdsKq+1,H̃du1
D−k+1 + dr2

D−k+1 + ds1
D−k = a1

D−k+1,inv,

with a1
D−k+1,invÞ0.

We can decompose this equation in the polynomial degree in the fields, antifields, and all their
derivatives. Sinced and d are linear operators, they preserve this degree; therefore

uPss,rdsKq+1,H̃du1,r+s
D−k+1 + dr2,r+s

D−k+1 + ds1,r+s
D−k = a1,r+s

D−k+1,inv, s23d

wherer +s denotes the polynomial degree. The homogeneous polynomiala1,r+s
D−k+1,inv of polynomial

degreer +s is linear in the antifields of antighost number equal to one, and depends on the fields
only through the curvature.

Finally, we introduce the number operatorN defined by
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N = r]r1
¯ ]rr

fum1¯mpun1¯nq

]

]s]r1
¯ ]rr

fum1¯mpun1¯nq
d

+ sr + 1d]r1
¯ ]rr

FA
* ]

]s]r1
¯ ]rr

FA
* d

− xm ]

]xm ,

wherehFA
* j denotes the set of all antifields. It follows immediately thatd and d are homogeneous

of degree one and the degree ofH̃ is also equal to one,

Nsdd = Nsdd = 1 =NsH̃d.

Therefore, the decomposition inN-degree of the equation(23) reads inN-degree equal ton=r
+2s,

uPss,rdsKq+1,H̃du1,r+s
D−k+1 + dr2,r+s,r+2s−1

D−k+1 + ds1,r+s,r+2s−1
D−k = a1,r+s,r+2s

D−k+1,inv s24d

and, inN-degree equal ton. r +2s,

dr2,r+s,n−1
D−k+1 + ds1,r+s,n−1

D−k = a1,r+s,n
D−k+1,inv.

The componenta1,r+s,r+2s
D−k+1,inv of N-degree equal tor +2s is x-independent, depends linearly on the

(possibly differentiated) antighost of antifield number 1, and is of orderr +s−1 in the (possibly
differentiated) curvatures. Direct counting shows that there is no polynomial ofN-degree equal to
r +2s satisfying these requirements whenr ù2. Thus forr ù2 the componenta1,r+s,r+s

D−k+1,inv vanishes,

and then the equation(24) implies thatPss,rdusKq+1,H̃du1,r+s
D−k+1 is trivial (and even vanishes when

s=0, by Theorem 6.5).
In conclusion, ifPsKq+1,H̃d is a polynomial that is quadratic or more inH̃, then there exists

no nontrivial invariant representative without explicitx dependence in the cohomology class

fPsKq+1,H̃dg of Hinvsd udd. h

This leads us to the following theorem.
Theorem 7.4: The invariant solutions ak

D skùqd of the equationdak
D+dbk−1

D−1=0 without
explicit x dependence are all trivial in Hk

invsd udd unless k=p+1−ssq+1d for some non-negative
integer s. For those values of k, the nontrivial representatives are given by polynomials that are
linear in Ck

*D−p−1+k and of order s in Kq+1.
Proof: By Theorem 7.1, invariant solutions of the equationdak

D+dbk−1
D−1=0 are polynomials in

Kq+1 andH̃ modulo trivial terms. When the polynomial is quadratic or more inH̃, then Theorem
7.3 states that there is no representative without explicitx dependence in its cohomology class,
which implies that it should be rejected. The remaining solutions are the polynomials linear in

uH̃uk=Ck
*D−p−1+k and of arbitrary order inKq+1. They are invariant andx independent, they thus

belong to the set of looked-for solutions. h

VIII. SELF-INTERACTIONS

As explained in Sec. III, the nontrivial first order deformations of the free theory are given by
the elements ofHD,0ssudd, the cohomological group of the BRST differentials in the space of local
forms in top form degree and in ghost number zero. The purpose of this section is to compute this
group. As the computation is very similar to the computation of similar groups in the case of
p-forms,16 gravity,17 dual gravity,18 and fp,pg-fields,20 we will not reproduce it here entirely and
refer to the works just cited(e.g., Ref. 17) for technical details. We just present the main steps of
the procedure and the calculations that are specific to the case offp,qg-fields.

The proof is given for a singlefp,qg-field f but extends trivially to a sethfaj containing a
finite numbern of them (with fixed p and q) by writing some internal indexa=1, . . . ,n every-
where.
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The groupHssudd is the group of solutionsa of the equationsa+db=0, modulo trivial
solutions of the forma=sm+dn. The basic idea to compute such a group is to use homological
perturbation techniques by expanding the quantities and the equations according to the antighost
number.

Let aD,0 be a solution ofsaD,0+dbD−1,1=0 with ghost number zero and top form degree. For
convenience, we will frequently omit to write the upper indices. One can expandas=aD,0d as a
=a0+a1+¯ +ak whereai has antighost numberi. The expansion can be assumed to stop at some
finite value of the antighost number under the sole hypothesis that the first-order deformation of
the Lagrangian has a finite derivative order.27 Let us recall21 that(i) the antifield-independent piece
a0 is the deformation of the Lagrangian;(ii ) the terms linear in the ghosts contain the information
about the deformation of the reducibility conditions;(iii ) the other terms give the information
about the deformation of the gauge algebra.

Under the assumption of locality, the expansion ofb also stops at some finite antighost
number. Without loss of generality, one can assume thatbj =0 for j ùk. Decomposing the BRST
differential ass=g+d, the equationsa+db=0 is equivalent to

da1 + ga0 + db0 = 0,

da2 + ga1 + db1 = 0, . . . ,

s25d
dak + gak−1 + dbk−1 = 0,

gak = 0.

The next step consists in the analysis of the termak with highest antighost number and the
determination of whether it can be removed by trivial redefinitions or not. We will see in the
sequel under which assumptions this can be done.

A. Computation of ak for k >1

The last equation of the descent(25) is gak=0. It implies thatak=aJv
J where aJ is an

invariant form andvJ is a polynomial in the ghosts ofHsgd: Amfqg

sp−q,qd and Dmfp+1g

0 . Inserting this

expression forak into the second to last equation leads to the result thataJ should be an element
of Hk

D,invsd udd. Furthermore, ifaJ is trivial in this group, thenak can be removed by trivial
redefinitions. The vanishing ofHk

D,invsd udd is thus a sufficient condition to remove the component
ak from a. It is however not a necessary condition, as we will see in the sequel.

We showed that nontrivial interactions can arise only if someHk
D,invsd udd do not vanish. The

requirement that the Lagrangian should not depend explicitly onx implies that we can restrict
ourselves tox-independent elements of this group. Indeed, it can be shown23 that, whena0 does
not depend explicitly onx, the whole cocyclea=a0+a1+¯ +ak satisfyingsa+db=0 is x inde-
pendent (modulo trivial redefinitions). By Theorem 7.4, Hk

D,invsd udd contains nontrivial
x-independent elements only ifk=p+1−ssq+1d for some non-negative integers. The form of the
nontrivial elements is thenak

D=Ck
*D−p−1+ksKq+1ds. In order to be(possibly) nontrivial, ak must thus

be a polynomial linear inCk
*D−p−1+k, of orders in the curvatureKq+1 and of appropriate orders in

the ghostsAmfqg

sp−q,qd andDmfp+1g

0 .

As ak has ghost number zero, the antighost number ofak should match its pure ghost number.
Consequently, as the ghostsAmfqg

sp−q,qd andDmfp+1g

0 have puregh=p andq, respectively, the equation

k=np+mqshould be satisfied for some positive integersn andm. If there is no couple of integers
n, m to matchk, then noak satisfying the relevant equations of the descent(25) can be constructed
andak thus vanishes.

In the sequel, we will consider the case wheren andm satisfyingk=np+mqcan be found and
classify the different cases according to the following values ofn andm: (i) nù2, (ii ) n=1, (iii )
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n=0, m.1, and(iv) n=0, m=1. We will show that the corresponding candidatesak are either
obstructed in the lift toa0 or that they are trivial, except in the case(iv). In this case,ak can be
lifted but a0 depends explicitly onx and contains more than two derivatives.

(i) Candidates withnù2: The constraintskøp+1 andk=np+mqhave no solutions.(There is
a solution in the case previously considered in Ref. 17, wherep=q=1, n=2. As shown in Ref. 17,
this solution gives rise to Einstein’s theory of gravity.)

(ii ) Candidates withn=1: The conditionsk=mq+pøp+1 are only satisfied forq=1=m. As
shown in Ref. 18, the lift of these candidates is obstructed after one step without any additional
assumption.

(iii ) Candidates withn=0, m.1: For a nontrivial candidate to exist atk=mq, Theorem 7.4
tells us thatp andq should satisfy the relationp+1=mq+ssq+1d for some positive or null integer
s. The candidate then has the form

amq
D = Cmqnfqg

*D−p−1+mqvss,md
nfqg sK,Dd,

where what is meant by a polynomialvss,md is explained in Sec. V B.
We will show that these candidates are either trivial or that there is an obstruction to lift them

up to a0
D after q steps.

It is straightforward to check that, for 1ø j øq, the terms

amq−j
D = Cmq−j

*D−p−1+mq−jvssq+1d+j ,mq−j

satisfy the descent equations, since, asm.1, all antifieldsCmq−j
*D−p−1+mq−j are invariant. The set of

summed indicesnfqg is implicit as well as the homogeneity degree of the generating polynomials
vss,md. We can thus liftamq

D up to asm−1dq
D . As m.1, this is not yeta0.

There is however noasm−1dq−1
D such that

gsasm−1dq−1
D d + dasm−1dq

D + dbsm−1dq−1
D−1 = 0. s26d

Indeed, we have

dasm−1dq
D = − gsCsm−1dq−1

*D−ss+1dsq+1dvss+1dsq+1d,sm−1dq−1d + s− dD−mqCsm−1dq−1
*D−ss+1dsq+1dKq+1F ]Lv

]D
Gssq+1d,sm−1dq

.

Without loss of generality, we can suppose that

asm−1dq−1
D = Csm−1dq−1

*D−ss+1dsq+1dā0
ss+1dsq+1d + āsm−1dq−1

D ,

where there is an implicit summation over all possible coefficientsā0
ss+1dsq+1d, and most importantly

the two ā’s do not depend onCsm−1dq−1
* . (This is not true in the case—excluded in this paper—

wherep=q=1 andm=2: sinceCsm−1dq−1
* ;C0

* has antighost number zero, the antighost number
counting does not forbid that theā’s depend onC0

* . Candidates arising in this way are treated in
Ref. 28 and give rise to a consistent deformation of the Fierz–Pauli theory inD=3.) Taking the
Euler–Lagrange derivative of(26) with respect toCsm−1dq−1

* yields

gsā0
ss+1dsq+1d − vss+1dsq+1d,sm−1dq−1d ~ Kq+1F ]Lv

]D
Gssq+1d,sm−1dq

.

The product of nontrivial elements ofHsgd in the rhs is notg-exact and constitutes an obstruction
to the lift of the candidate, unless it vanishes. The latter happens only when the polynomialvss,md
can be expressed as
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vss,md
nfqg sK,Dd = Kq+1mfp+1g

]Lṽss−1,m+1d
nfqg sK,Dd

]Dmfp+1g
,

for some polynomialṽss−1,m+1d
nfqg sK ,Dd of orders−1 in Kq+1 andm+1 in D. However, in this case,

amq
D can be removed by the trivial redefinition

aD → aD + ssuH̃nfqg
ṽss−1,m+1d

nfqg uDd.

This completes the proof that these candidates are either trivial or that their lift is obstructed.
As a consequence, they do not lead to consistent interactions and can be rejected. Let us stress that
no extra assumptions are needed to get this result. In the particular caseq=1, this had already been
guessed but not proved in Ref. 18.

(iv) Candidates withn=0, m=1: These candidates exist only when the conditionp+2=ss
+1dsq+1d is satisfied, for some strictly positive integers. It is useful for the analysis to write the
indices explicitly,

aq
D = ginfqgimfp+1g

1 u¯umfp+1g
s+1

Cqnfqg

*D−p−1+qSp
i=1

s

K
mfp+1g

i
q+1 DD

mfp+1g
s+1

0 ,

whereg is a constant tensor.
We can split the analysis into two cases:(i) g→ s−dqg under the exchangemfp+1g

s ↔mfp+1g
s+1 , and

(ii ) g→ s−dq+1g under the same transformation.
In the case(i), aq

D can be removed by adding the trivial terms mD wheremD=o j=q
2q mj

D and

mj
D = s− dD−q1

2
ginfqgimfp+1g

1 u¯umfp+1g
s+1

Cjnfqg
*D−p−1+jSp

i=1

s−1

K
mfp+1g

i
q+1 DfDmfp+1g

s Dmfp+1g
s+1 g2q+1−j .

This construction does not work in the case(ii ) where the symmetry ofg makesmD vanish.
In the case(ii ), the candidateaq

D can be lifted up toa0
D,

a0
D ~ f

tfD−p−q−1g

isfp+1gimfp+1g
1 u¯umfp+1g

s+1

xt1 dxt2
¯ dxtD−p−q−1 Ksfp+1g

q+1 Sp
i=1

s

K
mfp+1g

i
q+1 DDmfp+1g

s+1
q ,

where the constant tensorf is defined by

f
tfD−p−q−1g

isfp+1gimfp+1g
1 u¯umfp+1g

s+1

; ginfqgimfp+1g
1 u¯umfp+1g

s+1
e

sfp+1g
nfqgtfD−p−q−1g

.

Let us first note that this deformation does not affect the gauge algebra, since it is linear in the
ghosts.

The Lagrangian deformationa0
D depends explicitly onx, which is not a contradiction with

translation invariance of the physical theory if thex dependence of the Lagrangian can be removed
by adding a total derivative and/or ad-exact term. If it were the case,a0

D would have the form
a0

D=xGs¯d+xads¯da. We have no complete proof thata0
D does not have this form, but we think

it very unlikely. In any case, this deformation is ruled out by the requirement that the deformation
of the Lagrangian contains at most two derivatives.

To summarize the results obtained in this section, we have proved that, under the hypothesis
of translation invariance of the first-order vertexa0

D, all ak
D sk.1d can be removed by trivial

redefinitions ofa, except whenp+2=ss+1dsq+1d for some positive integers. In that case, the
supplementary assumption that the deformed Lagrangian contains no more than two derivatives is
needed to reach the same conclusion, and the only possible deformation(without the latter as-
sumption) does not modify the gauge algebra.
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B. Computation of a1

The terma1 vanishes without any further assumption whenq.1. Indeed, whenq.1, the
vanishing of the cohomology ofg in puregh 1 implies that there is no nontriviala1.

This is not true whenq=1, as there are some nontrivial cocycles with pure ghost number
equal to one. However, it can be shown18 that any nontriviala1

D leads to a deformation of the
Lagrangian with at least four derivatives.

C. Computation of a0

This leaves us with the problem of solving the equationga0
D+db0

D−1=0 for a0
D. Such solutions

correspond to deformations of the Lagrangian that are invariant up to a total derivative. Proceed-
ing as in Ref. 20 and asking for Lorentz invariance and thata0

D should not contain more than two
derivatives leaves only(when p=q, there exists also a cosmological-like term,20 a0

=Lhm1n1
¯hmpnp

fm1¯mpun1¯np) the Lagrangian itself. This deformation is of course trivial.

IX. CONCLUSIONS

Assembling the results of the present paperspÞqd with those previously obtained in Ref. 20
sp=qÞ1d, we can state general conclusions forfp,qg-tensor gauge fields wherep andq are now
arbitrary but not both equal to one. Under the hypothesis of locality and translation invariance,
there is no smooth deformation of the free theory that modifies the gauge algebra, which remains
Abelian. This result strengthens the conclusions of Ref. 18 as no condition on the number of
derivative is needed any longer. Furthermore, forq.1, when there is no positive integers such
that p+2=ss+1dsq+1d, there exists also no smooth deformation that alters the gauge transforma-
tions. Finally, if one excludes deformations that involve more than two derivatives in the Lagrang-
ian and are not Lorentz invariant, then the only smooth deformation of the free theory is a
cosmological-like term forp=q.20

These no-go results complete the search for self-interactions offp,qg-tensor gauge fields. It is
still an open question whether interactions are possible betweenN different fp,qg-type fields
(where “different” meansfp1,q1gÞ fp2,q2g for N=2), or with other types of fields.

As a conclusion, one can reformulate the results in more physical terms by saying that no
analogue of Yang–Mills nor Einstein theories seems to exist for more exotic fields(at least not in
the range of local perturbative theories).
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APPENDIX A: GOING TO THE LIGHT CONE

Theorem A.1: Let K be a tensor in the irreducible representationfp+1,q+1g of OsD
−1,1d. The space of such harmonic multiforms K, i.e., solutions of

H]fm0gKfm1¯mp+1gun1¯nq+1u = 0 =Kum1¯mp+1ufn1¯nq+1,n0g sclosedd

]m1Kum1¯mp+1un1¯nq+1
= 0 =]n1Kum1¯mp+1un1¯nq+1

scoclosedd J⇒ hK = 0

is a unitary irreducible module of OsD−2d associated to the Young diagramfp,qg.
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Proof: Since hKsxd=0 then, after Fourier transform,KspdÞ0 iff p2=0. In the light-cone
frame, the lightlike momentumpm decomposes into

(i) The condition thatK is closed implies

pm«mn1¯nD−p−2m1¯mp+1Km1¯mp+1ua1¯aq+1u = 0,

pm«mn1¯nD−q−2m1¯mq+1Ka1¯ap+1um1¯mq+1u = 0,

i.e.,

«−n1¯nD−p−2m1¯mp+1Km1¯mp+1ua1¯aq+1u = 0,

«−n1¯nD−q−2m1¯mq+1Ka1¯ap+1um1¯mq+1u = 0.

The italic indices will run over theD−2 transverse values. Assigningn1=+, n2
= j2, . . ., nD−,−2= jD−,−2 swhere,=p or q, respectivelyd, one finds

Ki1¯ip+1ua1¯aq+1u = 0 =Ka1¯ap+1ui1¯iq+1
.

In other words,K vanishes whenever one of its columns contains only transverse
indices.

(ii ) The fact thatK is coclosed on-shell implies

pf−gKf+m2¯mp+1gua1¯aq+1u = 0 =Kua1¯ap+1uf+m2¯mq+1gpf−g,

i.e.,

K+m2¯mp+1ua1¯aq+1u = 0 =Ka1¯ap+1u+m2¯mq+1
.

In other words,K vanishes whenever one of its columns contains a “+” index.

Once it has been observed that each column ofK must contain at least one “2” index and no
“1” index, one finds that the tensor

fi1¯ipu j1¯ jqu ;
sp + 1dsq + 1d

p−
2 K−i1¯ipu j1¯ jq−u

obeys

0 =
p + 2

p−
2 Kf−i1¯ipu j1ug¯ jq− = ffi1¯ipu j1ug¯ jq

,

0 = hm1n1Km1m2¯mp+1un1¯nq+1u ⇒ 0 =
sp + 1dsq + 1d

p−
2 di1j1K−i1i2¯ipu j1¯ jq−u = di1j1fi1i2¯ipu j1¯ jqu.

h

APPENDIX B: PROOF OF THEOREM 6.5

In this appendix, we give the proof of Theorem 6.5.
Let r be a strictly positive integer. A complete set of representatives of Hk

Dsd udd [k.1 and
k=D−rsD−p−1dùq] is given by the terms of form-degree D in all homogeneous polynomials
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PsrdsH̃d of degree r in H̃[or equivalently PsrdsH̃d of degree r inH̃].

It is obvious from the definition ofH̃ and from Eq.(10) that the term of form-degreeD in

PsrdsH̃d has the right antighost number and is a cocycle ofHk
Dsd udd. Furthermore, asH̃=H̃

+ds¯d, PsrdsH̃d belongs to the same cohomology class asPsrdsH̃d and can as well be chosen as a
representative of this class. To prove the theorem, it is then enough, by Theorem 6.4, to prove that

the cocycleuPsrdsH̃duk
D is nontrivial. The proof is by induction: we know the theorem to be true for

r =1 by Theorem 6.3, supposing that the theorem is true forr −1 [i.e., fPsr−1dsH̃dgk+D−p−1
D is not

trivial in Hk+D−p−1
D sd udd] we prove thatfPsrdsH̃dgk

D is not trivial either.

Let us assume thatfPsrdsH̃dgk
D is trivial: fPsrdsH̃dgk

D=dsuk+1 dDxd+dvk
D−1. We take the Euler–

Lagrange derivative of this equation with respect toCk,mfqgunfp+1−kgu
* . For k.q, it reads

aumfqgunfp+1−kg
= s− dkdsZ1umfqgunfp+1−kg

d − Z0umfqgufnfp−kg,np+1−kg, sB1d

where

aumfqgunfp+1−kg
dDx ;

dLfPsrdsH̃dgk
D

dCk
* umfqgunfp+1−kg

,

Zk+1−j umfqgunfp+1−jg
;

dLuk+1

dCj
* umfqgunfp+1−jg

for j = k,k + 1.

For k=q, there is an additional term,

aumfqgunfp+1−qg
= s− dqdsZ1umfqgunfp+1−qg

d − sZ0umfqgufnfp−qg,np+1−qg − Z0fumfqgunfp−qg,np+1−qgd. sB2d

The origin of the additional term lies in the fact thatC
q
*mfqgunfp+1−qgu does not possess all the irre-

ducible components offqg ^ fp+1−qg: the completely antisymmetric componentfp+1g is miss-
ing. Taking the Euler–Lagrange derivative with respect to this field thus involves projecting out
this component.

We will first solve the equation(B1) for k.q, then come back to(B2) for k=q.
Explicit computation ofamfqgunfp+1−kgu

for k.q yields

aumfqgunfp+1−kg
= fH̃rfqg

1
g0,sfD−p−1g

1 ¯ fH̃rfqg
r−1

g0,sfD−p−1g
r−1 amfqgurfqg

1 u¯urfqg
r−1udnfp+1−kg

fsfD−p−1g
1

¯sfD−p−1g
r−1 g

,

wherea is a constant tensor and the notationfAgk,nfpg
means the coefficientAk,nfpg

, with antighost

numberk, of the p-form component ofA=ok,lAk,nflg
dxn1

¯ dxnl. Considering the indicesnfp+1−kg

as form indices,(B1) reads

amfqg

p+1−k = fH̃rfqg
1

g0
D−p−1

¯ fH̃rfqg
r−1

g0
D−p−1amfqgurfqg

1 u¯urfqg
r−1u

= F p
i=1

sr−1d

H̃rfqg
i G

0

p+1−k

amfqgurfqg
1 u¯urfqg

r−1u = s− dkdsZ1mfqg

p+1−kd + s− dp−k+1 dZ0mfqg

p−k .

The latter equation is equivalent to

F p
i=1

sr−1d

H̃rfqg
i G

D−p−1+k

D

amfqgurfqg
1 u¯urfqg

r−1u = ds¯d + ds¯d,

which contradicts the induction hypothesis. The assumption thatfPsrdsH̃dgk
D is trivial is thus wrong,

which proves the theorem fork.q.
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The philosophy of the resolution of(B2) for k=q is inspired by the proof of Theorem 3.3 in
Ref. 20 and goes as follows: first, one must constrain the last term of(B2) in order to get an
equation similar to the equation(B1) treated previously, then one solves this equation in the same
way as fork.q.

Let us constrain the last term of(B2). Equation(B2) and explicit computation ofamfqgunfp+1−kgu

imply

]fnp+1−qgafumfqgunfp−qggl
= s− dqds]fnp+1−qgZ1fumfqgunfp−qggl

d − b]fnp+1−qgZ0fumfqgunfp−qgg,l

< b]lsfH̃rfqg
1

g0,sfD−p−1g
1 ¯ fH̃rfqg

r−1
g0,sfD−p−1g

r−1 dfnfp+1−kgg
fsfD−p−1g

1
¯sfD−p−1g

r−1 g
afmfqggurfqg

1 u¯urfqg
r−1ud,

whereb=q/ sp+1dsp+1−qd. By the isomorphismH0
0sdudd /R>HD

Dsd udd>0, the latter equation
implies

Z0fmfqgunfp−qgu,np+1−qg < − fH̃rfqg
1

g0,sfD−p−1g
1 ¯ fH̃rfqg

r−1
g0,sfD−p−1g

r−1 amfqgurfqg
1 u¯urfqg

r−1udnfp+1−kg

fsfD−p−1g
1

¯sfD−p−1g
r−1 g

(the constant solutions are removed by considering the equation in polynomial degreer −1 in the
fields and antifields). Inserting this expression forZ0fmfqgunfp−qgu,np+1−qg into (B2) and redefiningZ1 in

a suitable way yields(B1) for k=q. The remaining proof is then the same as fork.q. h

APPENDIX C: PROOF OF THEOREM 7.2

In this appendix, we give the complete(and lengthy) proof of Theorem 7.2.
Let ak

D be an invariant polynomial. If ak
D=dbk+1

D +dck
D−1, then

ak
D = Pss,rdusKq+1,H̃duk

D + dmk+1
D + dnk

D−1,

where Pss,rdsKq+1,H̃d is a polynomial of degree s in Kq+1 and r in H̃, such that the integers s,r
ù1 satisfy D=rsD−p−1d+k+ssq+1d and mk+1

D and nk
D−1 are invariant polynomials.

The proof is by induction and follows closely the steps of the proof of similar theorems in the
case of 1-forms,26,27 p-forms,24 gravity17 or fp,pg-fields.20

There is a general procedure to prove that Theorem 7.2 holds fork.D, that can be found,
e.g., in Ref. 17 and will not be repeated here. We assume that the theorem has been proved for any
k8.k, and show that it is still valid fork.

The proof of the induction step is rather lengthy and is decomposed into several steps.

(i) The Euler–Lagrange derivatives ofak with respect to the fieldsf andCj
* s1ø j øp+1d are

computed in terms of the Euler–Lagrange derivatives ofbk+1 (Appendix C 1).
(ii ) It is shown that the Euler–Lagrange derivatives ofbk+1 can be replaced by invariant quan-

tities in the expression for the Euler–Lagrange derivative ofak with the lowest antighost
number, up to some additional terms(Appendix C 2).

(iii ) The preceding step is extended to all the Euler–Lagrange derivatives ofak (Appendix C 3).
(iv) The Euler–Lagrange derivative ofak with respect to the fieldf is re-expressed in terms of

invariant quantities(Appendix C 4).
(v) A homotopy formula is used to reconstructak from its Euler–Lagrange derivatives(Appen-

dix C 5).

1. Euler–Lagrange derivatives of ak

We define

Zk+1−j umfqgunfp+1−jg
=

dLbk+1

dCj
* umfqgunfp+1−jg

, 1 ø j ø p + 1,
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Yk+1
umfpgunfqg =

dLbk+1

dfumfpgunfqg

.

Then, the Euler–Lagrange derivatives ofak are given by

dLak

dCp+1
*mfqg

= s− dp+1dZk−pmfqg
, sC1d

dLak

dCj
* umfqgunfp+1−jg

= s− d jdZk+1−j umfqgunfp+1−jg
− Zk−j umfqgufnfp−jg,np+1−jg

, q , j ø p,

dLak

dCj
* umfqgunfp+1−jg

= s− d jdZk+1−j umfqgunfp+1−jg
− uZk−j umfqgufnfp−jg,np+1−jg

usym of Cj
* , 1 ø j ø q,

dLak

dfumfpgunfqg
= dYk+1umfpgunfqg

+ bDumfpgunfqgurfpgusfqg
Zk

usfqgurfpg, sC2d

where

b ; s− dsq+1dfp+sq/2dg sp + 1d!
q!sp − q + 1d!

and

Dunfqgu
rfpgumfpgu

sfqg ;
1

sp + 1d!q!
dfnfqgbrfpgg

fsfqgamfpgg]a]b

is the second-order self-adjoint differential operator defined byGmfpgunfqgu
;Dmfpgunfqguurfpguusfqgu

3Crfpgusfqgu.
As in Appendix B, the projection on the symmetry of the indices ofCj

* is needed whenj
øq, since in that case the variablesCj

* do not possess all the irreducible components offqg
^ fp+1− jg, but only those where the length of the first column is smaller or equal top. When
j .q, the projection is trivial.

2. Replacing Z by an invariant in the Euler–Lagrange derivative of ak with the lowest
antighost number

We should first note that, whenk,p+1, some of the Euler–Lagrange derivatives ofak vanish
identically: indeed, as there is no negative antighost-number field,ak cannot depend onCj

* if j
.k. Some terms on the right-hand side of(C1) and (C2) also vanish,Zk+1−j vanishes whenj
.k+1. This implies that thep+1−k top equations of(C1) and (C2) are trivially satisfied, thep
−k first equations involve only vanishing terms, and thesp−k+1dth involves in addition thed of
an antighost-zero term, which also vanishes trivially. The first nontrivial equation is then

dLak

dCukmfqgunfp+1−kg

* = s− dkdsZu1mfqgunfp+1−kg
d − uZu0mfqgufnfp−kg,np+1−kgusym of Ck

* . sC3d

Let us now definefTrfp+1g
q gnfqg

;s−dq]fr1gfur2¯frp+1gunfqg
. We will prove the following lemma for

kùq.
Lemma C.1: In the first nontrivial equation of the system (C1) to (C2) [i.e., (C1) when k

ùp+1 and (C3) when p+1.kùq], respectively, Zk−p or Z1 satisfies
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Zulmfqgunfp+l−kg
= Zulmfqgunfp+l−kg

8 + s− dk−ldbul+1mfqgunfp+l−kg
+ ubulmfqgufnfp+l−k−1g,np+l−kgusym of Ck−l+1

*

+ Al3Pmfqg
snd sH̃d +U 1

s
Trfp+1g

q
]LRmfqg

ss,rdsKq+1,H̃d

]Krfp+1g

q+1 G
l,nfp+l−kg

*
sym of Ck−l+1

*

, sC4d

where Zl8 is invariant, thebl ’ s are at least linear inN and possess the same symmetry of indices

as Zl−1, Al ;s−dlp+p+1+flsl+1d/2g, Psnd is a polynomial of degree n inH̃ and Rss,rd is a polynomial of

degree s in Kq+1 and r in H̃. The polynomials are present only when p−k=nsD−p−1d or p+1
−k=ssq+1d+rsD−p−1d, respectively.

Moreover, when p+1.kùq, the first nontrivial equation can be written

dLak

dCukmfqgunfp+1−kg

* = s− dkdZu1mfqgunfp+1−kg
8 − uZu0mfqgufnfp−kg,np+1−kg8 usym of Ck

*

+ usfQmfqg
smd sKq+1dgnfp+1−kg

+ s− dkfRmfqg

ss,rdsKq+1,H̃dg0,nfp+1−kg
dusym of Ck

* ,

where Z08 is an invariant and Qmfqg

smd sKq+1d is a polynomial of degree m in Kq+1, present only when

p+1−k=msq+1d.
The lemma will be proved in this Appendix Secs. C 2 a–C 2 c, respectively, for the casesk

ùp+1, q,k,p+1, andk=q.

a. Proof of Lemma C.1 for k Ðp +1

As k−p.0, there is no trivially satisfied equation and we start with the top equation of(C1)
to (C2).

The Lemma C.1 is a direct consequence of the well-known Lemma C.2(see, e.g., Ref. 17).
Lemma C.2: Leta be an invariant local form that isd-exact, i.e., a=db. Thenb=b8+ds,

whereb8 is invariant and we can assume without loss of generality thats is at least linear in the
variables ofN.

b. Proof of Lemma C.1 for q <k <p +1

The first nontrivial equation is(ask.q)

dLak

dCukmfqgunfp+1−kg

* = s− dkdsZu1mfqgunfp+1−kg
d − Zu0mfqgufnfp−kg,np+1−kg. sC5d

We will first prove thatZ1 has the required form, then we will prove the first nontrivial equation
can indeed be re-expressed as stated in Lemma C.1.

First part: Defining

au0mfqgunfp+1−kg
;

dLaq

dCuqmfqgunfp+1−qg

* ,

the above equation can be written as

a0
p+1−k = s− dkdsZ1

p+1−kd + s− dp+1−k dZ0
p−k, sC6d

where we consider the indicesnfp+1−kg as form indices and omit to write the indicesmfqg. Acting
with d on this equation yields da0

p+1−k=s−dk+1dsdZ1
p+1−kd. Due to Lemma C.2, this implies that
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a1
p+2−k = dZ1

p+1−k + dZ2
p+2−k, sC7d

for some invarianta1
p+2−k and someZ2

p+2−k. These steps can be reproduced to build a descent of
equations ending with

aD−p−1+k
D = dZD−p−1+k

D−1 + dZD−p+k
D ,

whereaD−p−1+k
D is invariant. AsD−p−1+k.k, the induction hypothesis can be used and implies

aD−p−1+k
D = dZD−p−1+k8D−1 + dZD−p+k8D + fRsKq+1,H̃dgD−p−1+k

D ,

whereZD−p+k8D andZD−p−1+k8D−1 are invariant, andRsKq+1,H̃d is a polynomial of orders in Kq+1 andr

in H̃ (with r ,s.0), present whenp+1−k=ssq+1d+rsD−p−1d. This equation can be lifted and
implies that

a1
p+2−k = dZ18

p+1−k + dZ28
p+2−k + fRsKq+1,H̃dg1

p+2−k,

for some invariant quantitiesZ18
p+1−k andZ28

p+2−k. Substracting the last equation from(C7) yields

dSZ1
p+1−k − Z18

p+1−k −
1

s
TqF ]LRsKq+1,H̃d

]Kq+1 G
1

p+1−k−qD + ds¯d = 0.

As H1
p+1−ksdudd>HD−sp−kd

D sd udd, by Theorem 6.5 the solution of this equation is

Z1
p+1−k = Z18

p+1−k +
1

s
TqF ]LRsKq+1,H̃d

]Kq+1 G
1

p+1−k−q

+ db1
p−k + db2

p+1−k + fPsndsH̃dg1
p+1−k,

where the last term is present only whenp−k=nsD−p−1d.
This proves the first part of the induction basis, regardingZ1.

Second part:We insert the above result forZ1 into (C6). Knowing that dsfPsH̃dg1
p+1−kd

+dsfPsH̃dg0
p−kd=0 and defining

W0
p−k = s− dk+1Ss− dpZ0

p−k + db1
p−k + fPsndsH̃dg0

p−k +
1

s
TqF ]LRsKq+1,H̃d

]Kq+1 G
0

p−k−qD ,

we get

a0
p+1−k = s− dkdsZ18

p+1−kd + dsW0
p−kd + s− dkfRsKq+1,H̃dg0

p−k.

Thus dsW0
p−kd is an invariant and the invariant Poincaré Lemma 5.1 then states that

dsW0
p−kd = dsZ08

p−kd + QsKq+1d

for some invariantZ08
p−k and some polynomial inKq+1, QsKq+1d. This straightforwardly implies

a0
p+1−k = s− dkdsZ18

p+1−kd + dsZ08
p−kd + QsKq+1d + s− dkfRsKq+1,H̃dg0

p−k,

which completes the proof of Lemma C.1 forq,k,p+1. h

c. Proof of Lemma C.1 for k =q

The first nontrivial equation is
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dLaq

dCuqmfqgunfp+1−qg

* = s− dqdsZu1mfqgunfp+1−qg
d − sZu0mfqgufnfp−qg,np+1−qg − Z0fumfqgunfp−qg,np+1−qgd. sC8d

This equation is different from the equations treated in the previous cases because the operator
acting onZ0 cannot be seen as a total derivative, since it involves the projection on a specific
Young diagram. The latter problem was already faced in thefp,pg case and the philosophy of the
resolution goes as follows:20

(1) one first constrains the last term of(C8) to get an equation similar to Eq.(C3) treated
previously,

(2) one solves it in the same way as forq,k,p+1.

We need the useful Lemma C.3, proved in Ref. 20.
Lemma C.3: Ifa0

1 is an invariant polynomial of antighost number 0 and form degree 1 that
satisfiesa0

1=dZ1
1+dW0

0, then, for some invariant polynomials Z18
1 and W08

0, Z1
1=Z18

1+df2
1+dx1

0 and
W0

0=W08
0+dx1

0

As explained above, we now constrain the last term of(C8). Equation(C8) implies

]frgau0mfqgufnfp−qggnp+1−q
= s− dqds]frgZu1mfqgufnfp−qggnp+1−q

d − b]frgZu0mfqgufnfp−qgg,np+1−q
,

whereb;q/ sp+1dsp+1−qd. Defining

ã0frmfqgnfp−qgg
1 = ]frgau0mfqgufnfp−qggnp+1−q

dxnp+1−q,

Z̃1frmfqgnfp−qgg
1 = s− dq]frgZu1mfqgufnfp−qggnp+1−q

dxnp+1−q,

W̃0frmfqgnfp−qgg
0 = − a]fruZu0mfqgufnfp−qgg

,

and omitting to write the indicesfrmfqgnfp−qgg, the above equation readsã0
1=dZ̃1

1+dW̃0
0. Lemma

C.3 then implies thatW̃0
0= I08

0+dm1
0 for some invariantI08

0. By the definition ofW̃0
0, this statement

is equivalent to

]frgZu0mfqgufnfp−qgg
= I0fmfqgnfp−qgrg8 + dm1fmfqgnfp−qgrg.

Inserting this result into(C8) yields

au0mfqgunfp+1−qg
− I0fmfqgnfp+1−qgg

8 = dss− dqZu1mfqgunfp+1−qg
+ m1fmfqgnfp+1−qgg

d − Zu0mfqgufnfp−qg,np+1−qg.

This equation has the same form as(C5) and can be solved in the same way to get the following
result:

Zu1mfqgunfp+1−qg
= s− dq+1m1fmfqgnfp+1−qgg

+ Zu1mfqgunfp+1−qg
8 + bu1mfqgufnfp−qg,np+1−qg + dbu2mfqgunfp+1−qg

+
1

sFTrfp+1g
q

]LRmfqg
sKq+1,H̃d

]Krfp+1g

q+1 G
1,nfp+1−qg

+ fPsH̃dg1,nfp+1−kg
,

au0mfqgunfp+1−qg
= I0fumfqgunfp+1−qgg

8 + s− dqdsZu1mfqgunfp+1−qg
8 d + Zu0mfqgufnfp−qg,np+1−qg8 + fQmfqg

sKq+1dgnfp+1−qg

+ s− dkfRsKq+1,H̃dg0,nfp+1−qg
.

Removing the completely antisymmetric parts of these equations yields the desired result.h
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This ends the proof of Lemma C.1 forkùq.

3. Replacing all Z and Y by invariants

We will now prove the following lemma.
Lemma C.4: The Euler–Lagrange derivatives of ak can be written

dLak

dCp+1
*mfqg

= s− dp+1dsZk−pmfqg
8 d,

dLak

dCj
u*mfqgunfp+1−jg

= s− d jdsZuk+1−jmfqgunfp+1−jg
8 d − Zuk−jmfqgufnfp−jg,np+1−jg

8 , q , j ø p,

dLak

dCj
u*mfqgunfp+1−jg

= s− d jdsZuk+1−jmfqgunfp+1−jg
8 d − uZuk−jmfqgufnfp−jg,np+1−jg

8 usym of Cj
* , 1 ø j ø q,

dLak

dfumfqgunfqg
= dsYk+1umfqgunfqg

8 d + bDumfqgunfqgurfpgusfqg
Z8k

usfqgurfpg,

where Zl8 sk−pø l økd and Yk+18 are invariant polynomials, except in the following cases. When
k=p+1−msq+1d for some strictly positive integer m, there is an additional term in the first
nontrivial equation,

dLak

dCk
u*mfqgunfp+1−kg

= s− dkdZu1mfqgunfp+1−kg
8 − Zu0mfqgufnfp−kg,np+1−kg8 + ufQmfqg

sKq+1dgnfp+1−kg
usym of Ck

* ,

where Q is a polynomial of degree m in Kq+1. Furthermore, when k=p+1−rsD−p−1d−ssq+1d
for a couple of integer r,s.0, then there is an additional term in each Euler–Lagrange deriva-
tive,

dLak

dCj
u*mfqgunfp+1−jg

= s− d jdsZuk+1−jmfqgunfp+1−jg
8 d − uZuk−jmfqgufnfp−jg,np+1−jg

8 usym of Cj
*

+ s− dk+p+1Ak−jufRmfqg
sKq+1,H̃dgk−jnfp+1−jg

usym of Cj
* ,

dLak

dfumfqgunfqg
= dsYuk+1mfqgunfqg

8 d + bDumfqgunfqgurfpgusfqg
Z8k

usfqgurfpg + Adfnfqgbrfp+1gg
fsfqgamfpgjg ]a]bsxjfRsfqg

sKq+1,H̃dgk
rfp+1gd,

where

A = b
p + q + 2

sD − p − q − 1dsp + 1d!q!
Aks− dp+k+1.

Proof: By Lemma C.1, we know that theZ’s involved in the first nontrivial equation satisfy
(C4) and that this equation has the required form. We will proceed by induction and prove that
whenZk−j (wherek− j ù1) satisfies(C4), then the equation fordLak/dCj

* also has the desired form
andZk−j+1 also satisfies(C4).

Let us assume thatZk−j satisfies(C4) and consider the following equation:
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dLak

dCjmfqgunfp+1−jg

* = s− d jdsZk+1−j
mfqgunfp+1−jgd − uZk−j

mfqgufnfp−jg,np+1−jgusym of Cj
* . sC9d

Inserting(C4) for Zk−j into this equation yields

dLak

dCjmfqgunfp+1−jg

* = s− d jdsZk+1−j
mfqgunfp+1−jg − ubk−j+1

mfqgufnfp−jg,np−j+1gusym of Cj
*d

+ s− dk+pak−jdFPmfqgsH̃d +
1

s
Trfp+1g

q
]LRmfqgsKq+1,H̃d

]Krfp+1g

q+1 G
k−j+1

nfp+1−jg

sym of Cj
*

+ us− Zk−j
8mfqgufnfp−jg,np+1−jg + s− dp+k+1Ak−jfRmfqgsKq+1,H̃dgk−j

nfp+1−jgdusym of Cj
* . sC10d

Note that one can omit to project on the symmetries ofCj+1
* when inserting(C4) into (C9). Indeed

the Young components that are removed by this projection would be removed later anyway by the
projection on the symmetries ofCj

* .
Defining the invariant

Zk+1−j
8mfqgunfp+1−jg ; uZk+1−j

mfqgunfp+1−jguN=0 + s− dk+p+jAk−j

3UUFPmfqgsH̃d +
1

s
Trfp+1g

q
]LRmfqgsKq+1,H̃d

]Krfp+1g

q+1 G
k−j+1

nfp+1−jgU
sym of Cj

*

U
N=0

and settingN=0 in the last equation yields, asbk−j+1 is at least linear inN,

dLak

dCjmfqgunfp+1−jg

* = s− d jdsZk+1−j
8mfqgunfp+1−jgd − uZk−j

8mfqgufnfp−jg,np+1−jgusym of Cj
*

+ s− dp+k+1Ak−jufRmfqgsKq+1,H̃dgk−j
nfp+1−jgusym of Cj

* . sC11d

This proves the part of the induction regarding the equations for the Euler–Lagrange derivatives.
We now prove thatZk−j+1 verifies (C4).

Substracting(C11) from (C10), we get

0 = s− d jdSZk+1−j
mfqgunfp+1−jg − Zk+1−j

8mfqgunfp+1−jg − ubk+1−j
mfqgufnfp−jg,np+1−jgusym of Cj

*

+ s− d j+k+pAk−jFPmfqgsH̃d +
1

s
Trfp+1g

q
]LRmfqgsKq+1,H̃d

]Krfp+1g

q+1 G
k+1−j

nfp+1−jgU
sym of Cj

*

.

As k+1− j .0, this implies

Zk+1−j
mfqgunfp+1−jg = Zk+1−j

8mfqgunfp+1−jg + s− d j−1dbk−j
mfqgunfp+1−jg + ubk−j+1

mfqgufnfp−jg,np+1−jgusym of Cj
*

+ Ak+1−jUFPmfqgsH̃d +
1

s
Trfp+1g

q
]LRmfqgsKq+1,H̃d

]Krfp+1g

q+1 G
k+1−j

nfp+1−jgU
sym of Cj

*

,

which is the expression(C4) for Zk+1−j.
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Assuming thatZk−j satisfies(C4), we have thus proved that the equation fordLak/dCj
* has the

desired form and thatZk+1−j also satisfies(C4). Iterating this step, one shows that allZ’s satisfy
(C4) and that the equations involving onlyZ’s have the desired form.

It remains to be proved that the Euler–Lagrange derivative with respect to the field takes the
right form. Inserting the expression(C4) for Zk into (C2) and some algebra yield

dLak

dfmfqgunfqg
= dsuỸk+1mfqgunfqg

usym of fd + bDmfqgunfqgurfpgusfqg
Z8k

sfqgurfpg

+ Adfnfqgbrfp+1gg
fsfqgamfpgjg ]a]busxjfRsfqg

sKq+1,H̃dgk
rfp+1gdusym of f,

where

Ỹk+1mfqgunfqg
; Yk+1mfqgunfqg

+ bDmfqgunfqgurfpgusfqg
bk+1

sfqgurfpg

+ cdfnfqgbrfpgg
fsfqgamfpgg]aFPsfqg

sH̃d +
1

s
Tlfp+1g

q
]LRsfqgsKq+1,H̃d

]Klfp+1g

q+1 G
k+1

frfpgbg

+ s− dk+q+1Adfnfqgbrfp+1gg
fsfqgamfpgjg ]asxjfRsfqg

sKq+1,H̃dgk+1
frfp+1gbgd

and c;bf1/sp+1d!q!gAks−dp+k+1. Defining Yk+1mfpgunfqg
8 ;uuỸk+1mfqgunfqg

usym of fuN=0 and settingN
=0 in the above equation completes the proof of Lemma C.4. h

4. Euler–Lagrange derivative with respect to the field

In this section, we manipulate the Euler–Lagrange derivative ofak with respect to the fieldf.
We have proved in the preceding section that it can be written in the form

dLak

dfmfpgunfqg
= dsYk+1mfpgunfqg

8 d + bDmfpgunfqgurfpgusfqg
Zk
8sfqgurfpg

+ Adfnfqgbrfp+1gg
fsfqgamfpgjg ]a]busxjfRsfqg

sKq+1,H̃dgk
rfp+1gdusym of f.

As ak is invariant, it can depend onfmfpgunfqg
only through Kmfpgaunfqgb

, which implies that

dLak/dfmfpgunfqg=]abXfmfpgagufnfqgbg, whereX has the symmetry of the curvature. This in turn implies

that dsYk+1mfpgunfqg
8 d=]abWmfpgaunfqgb

for some W with the Young symmetryfp+1,q+1g. Let us

consider the indicesmfpg as form indices. AsHk+1
D−psd udd>Hp+1+k

D sd udd>0 for k.0, the last equa-
tion implies

Yk+1mfpgunfqg
8 = dAk+2mfpgunfqg

+ ]lTk+1flmfpggunfqg
. sC12d

By the induction hypothesis forp+1+k, we can takeAk+2 andTk+1 invariant. Antisymmetrizing
(C12) over the indicesmq¯mpn1¯nq yields

0 = dAk+2m1¯mq−1fmq¯mpun1¯nqg + ]lTk+1lm1¯mq−1fmq¯mpun1. . .nqg.

The solution of this equation forTk+1 is

Tk+1m0¯mq−1fmq¯mpun1¯nqg = dQk+2m0¯mq−1ufmq¯mpn1¯nqg + ]aSk+1am0¯mq−1ufmq¯mpn1¯nqg

+ fUfmq¯mpn1¯nqg
sud sH̃dgk+1

rfD−qgem0¯mq−1rfD−qg
,

whereUsud is a polynomial of degreeu in H̃, present whenk+q+1=D−usD−p−1d for some
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strictly positive integeru. As T andUsudsH̃d are invariant, we can use the induction hypothesis for
k8=k+1+q. This implies

Tk+1m0¯mq−1fmq¯mpun1¯nqg = dQk+2m0¯mq−1ufmq¯mpn1¯nqg8 + ]aSk+1am0¯mq−1ufmq¯mpn1¯nqg8

+ fUfmq¯mpn1¯nqg
sud sH̃d + Vfmq¯mpn1¯nqg

sv,wd sKq+1,H̃dgk+1
rfD−qgem0¯mq−1rfD−qg

,

sC13d

whereQk+28 and Sk+18 are invariants andVsv,wd is a polynomial of orderv and w in Kq+1 and H̃,
respectively, present whenD−q=vsq+1d+wsD−p−1d+k+1 for some strictly positive integers
v ,w.

We define the invariant tensorEamfpgubnfqg
with Young symmetryfp+1,q+1g by

Eamfpgubnfqg
= o

i=0

q+1

aiSk+1r0¯ri−1fni¯nqubn1¯ni−1gri¯rp
8 dfamfpgg

fr0¯rpg,

where ai =a0fsq+1d! / sq+1−id! i!g and a0=s−dpqhssp+1d!d2/ sp−qd!sq!d2sp−q+1dsp+2do j=0
q fsp

− jd! / sq− jd!gj.
Writing ]abEk+1amfpgubnfqg

in terms ofSk+18 and using(C13) and (C12) yields

Yk+1mfpgunfqg
8 = ]abEk+1amfpgubnfqg

+ dFk+2mfpgunfqg
+ ]ao

i=0

q

bifVfanfigmi+1¯mpg
sv,wd sKq+1,H̃dgk+1

rfD−qgemfigni+1¯nqrfD−qg
,

sC14d

where Fk+2 is invariant,bi ;a0fsp+2dq! / sp+1di!sq− id!g and v is allowed to take the valuev
=0 to cover also the case of the polynomialUswdsH̃d.

5. Homotopy formula

We will now use the homotopy formula to reconstructak from its Euler–Lagrange derivatives,

ak
D =E

0

1

dtFfmfpgunfqg

dLak

dfmfpgunfqg

+ o
j=1

p+1

Cjmfqgunfp+1−jg

* dLak

dCjmfqgunfp+1−jg

* GdDx.

Inserting the expressions for the Euler–Lagrange derivatives given by Lemma C.4 yields

ak
D =E

0

1

dtFdsfmfpgunfqg
Yk+1

8mfpgunfqgd + o
j=1

p+1

dsCjmfqgunfp+1−jg

* Zk+1−j
8mfqgunfp+1−jgd + o

j=1

k

Cjmfqgunfp+1−jg

*

3s− dk+p+1Ak−jfRmfqgsKq+1,H̃dgk−j
nfp+1−jg + fmfpgunfqg

Adfnfqgbrfp+1gg
fsfqgamfpgjg ]a]bsxjfRsfqg

sKq+1,H̃dgk
rfp+1gd

+ Ckmfqgunfp+1−kg

* fQsmdmfqgsKq+1dgnfp+1−kgGdDx + dnk
D−1.

Using the result(C14) for Yk+18 and some algebra, one finds
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ak
D =E

0

1

dtFdsKmfp+1gunfq+1g
Ek+1

mfp+1gunfq+1g dDxd + avKmfp+1g

q+1 fVsv,wdmfp+1gsKq+1,H̃dgk
D−q−1

+ o
j=1

p+1

dsCjmfqgunfp+1−jg

* Zk+1−j
8mfqgunfp+1−jg dDxd + arfH̃sfqgRsfqg

sKq+1,H̃dgk
D

+ aqfH̃sfqggk
D−msq+1dQsfqg

smd sKq+1dG + dn̄k
D−1,

whereav=s−dksq+1doi=0
q bifi!sp− id! / p!g, ar =s−dDsp+k+1d+hfpsp+1d+ksk+1dg/2j andaq=s−dkar. In short,

ak
D = fPsKq+1,H̃dgk

D + dmk+1
D + dn̄k

D−1

for some invariantmk+1
D , and some polynomialP of strictly positive order inKq+1 andH̃.

We must still prove thatn̄k
D−1 can be taken invariant.

Acting with g on the last equation yields dsgn̄k
D−1d=0. By the Poincaré lemma,gn̄k

D−1

=dsrk
D−2d. Furthermore, a well-known result onHsg udd for positive antighost numberk (see e.g.,

Appendix A.1 of Ref. 17) states that one can redefinen̄k
D−1 in such a way thatgn̄k

D−1=0. As the
pure ghost number ofn̄k

D−1 vanishes, the last equation implies thatn̄k
D−1 is an invariant polynomial.

This completes the proof of Theorem 7.2 forkùq. h
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We investigate the critical behavior of theN-component Euclideanlf4 model, in
the largeN limit, in three situations: confined between two parallel planes a dis-
tanceL apart from one another; confined to an infinitely long cylinder having a
square transversal section of areaL2; and to a cubic box of volumeL3. Taking the
mass term in the formm0

2=asT−T0d, we retrieve Ginzburg–Landau models which
are supposed to describe samples of a material undergoing a phase transition,
respectively, in the form of a film, a wire and of a grain, whose bulk transition
temperaturesT0d is known. We obtain equations for the critical temperature as
functions of L and of T0, and determine the limiting sizes sustaining the
transition. ©2005 American Institute of Physics.[DOI: 10.1063/1.1828589]

I. INTRODUCTION

Models with fields confined in spatial dimensions play important roles both in field theory and
in quantum mechanics. Relevant examples are the Casimir effect and superconducting films,
where confinement is carried on by appropriate boundary conditions. For Euclidean field theories,
imaginary time and the spatial coordinates are treated exactly on the same footing, so that an
extended Matsubara formalism can be applied for dealing with the breaking of invariance along
any one of the spatial directions.

Relying on this fact, in the present work we discuss the critical behavior of the Euclideanlw4

model compactified in one, two, and three spatial dimensions. We implement the spontaneous
symmetry breaking by taking the bare mass coefficient in the Lagrangian parametrized asm0

2

=asT−T0d, with a.0 and the parameterT varying in an interval containingT0. With this choice,
considering the system confined between two parallel planes a distanceL apart from one another,
in an infinitely long square cylinder with transversal section areaA=L2, and in a cube of volume
V=L3, in dimensionD=3, we obtain Ginzburg–Landau models describing phase transitions in
samples of a material in the form of a film, a wire and a grain, respectively,T0 standing for the
bulk transition temperature. Such descriptions apply to physical circumstances where no gauge
fluctuations need to be considered.

We start recapitulating the general procedure developed in Ref. 1 to treat the massiveslw4dD

theory in Euclidean space, compactified in ad-dimensional subspace, withdøD. This permits to
extend to an arbitrary subspace some results in the literature for finite temperature field theory2

and for the behavior of field theories in the presence of spatial boundaries.3,4 We shall consider the
vectorN-componentslw4dD Euclidean theory at leading order in 1/N, thus allowing for nonper-

a)Permanent address: Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA, Brazil.
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turbative results, the system being submitted to the constraint of compactification of a
d-dimensional subspace. After describing the general formalism, we readdress the renormalization
procedure we use treating the simpler situation ofd=1, which corresponds to the system confined
between parallel planes(a film), analyzed in Ref. 5 for the case of two components,N=2. We then
focus on two other particularly interesting cases ofd=2 andd=3, in the three-dimensional Eu-
clidean space, corresponding, respectively, to the system confined to an infinitely long cylinder
with square transversal section(a wire) and to a finite cubic box(a grain). Extending the inves-
tigation to these new cases demands further developments in the subject of multidimensional
Epstein functions.

For these situations, in the framework of the Ginzburg–Landau model we derive equations for
the critical temperature as a function of the confining dimensions. For a film, we show that the
critical temperature decreases linearly with the inverse of the film thickness while, for a square
wire and for a cubic grain, we obtain that the critical temperatures decrease linearly with the
inverse of the side of the square and with the inverse of the edge of the cube, respectively, but with
larger coefficients. In all cases, we are able to calculate the minimal system size(thickness,
transversal section area, or volume) below which the phase transition does not take place.

II. THE COMPACTFIED MODEL

In this section we review the analytical methods of compactification of theN-component
Euclideanlw4 model developed in Ref. 1 We consider the model described by the Hamiltonian
density,

H =
1

2
]mwa]

mwa +
1

2
m̄0

2wawa +
l

N
swawad2, s1d

in EuclideanD-dimensional space, confined to ad-dimensional spatial rectangular box of sidesLj,
j =1,2, . . . ,d. In the above equationl is the renormalizedcoupling constant,m̄0

2 is a boundary-
modified mass parameter depending onhLij i =1,2, . . . ,d, in such a way that

lim
hLij→`

m̄0
2sL1, . . . ,Ldd = m0

2sTd ; asT − T0d, s2d

m0
2sTd being the constant mass parameter present in the usual free-space Ginzburg–Landau model.

In Eq. (2), T0 represents the bulk transition temperature. Summation over repeated “color” indices
a is assumed. To simplify the notation in the following we drop out the color indices, summation
over them being understood in field products. We will work in the approximation of neglecting
boundary corrections to the coupling constant. A precise definition of the boundary-modified mass
parameter will be given later for the situation ofD=3 with d=1, d=2, andd=3, corresponding,
respectively, to a film of thicknessL1, to a wire of rectangular sectionL13L2 and to a grain of
volumeL13L23L3.

We use Cartesian coordinatesr =sx1, . . . ,xd,zd, wherez is a sD−dd-dimensional vector, with
corresponding momentumk =sk1, . . . ,kd,qd, q being asD−dd-dimensional vector in momentum
space. Then the generating functional of correlation functions has the form

Z =E Dw† Dw expS−E
0

L

ddr E dD−dz Hsw, ¹ wdD , s3d

where L =sL1, . . . ,Ldd, and we are allowed to introduce a generalized Matsubara prescription,
performing the following multiple replacements(compactification of ad-dimensional subspace):
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E dki

2p
→ 1

Li
o

ni=−`

+`

, ki →
2nip

Li
, i = 1,2, . . . ,d. s4d

A simpler situation is the system confined simultaneously between two parallel planes a distance
L1 apart from one another normal to thex1 axis and two other parallel planes, normal to thex2 axis
separated by a distanceL2 (a “wire” of rectangular section).

We start from the well-known expression for the one-loop contribution to the zero-
temperature effective potential,6

U1sw0d = o
s=1

`
s− 1ds+1

2s
f12lw0

2gsE dDk

s2pdD

1

sk2 + m2ds , s5d

wherem is the physical mass andw0 is the normalized vacuum expectation value of the field(the
classical field). In the following, to deal with dimensionless quantities in the regularization pro-
cedures, we introduce parameters

c =
m

2pm
, bi =

1

Lim
, g =

l

4p2m4−D , f0
2 =

w0
2

mD−2 , s6d

wherem is a mass scale. In terms of these parameters and performing the replacements(4), the
one-loop contribution to the effective potential can be written in the form

U1sf0,b1, . . . ,bdd = mDb1 ¯ bdo
s=1

`
s− 1ds

2s
f12gf0

2gs o
n1,. . .,nd=−`

+` E dD−dq8

sb1
2n1

2 + ¯ + bd
2nd

2 + c2 + q82ds ,

s7d

whereq8=q /2pm is dimensionless. Using a well-known dimensional regularization formula7 to
perform the integration over thesD−dd noncompactified momentum variables, we obtain

U1sf0,b1, . . . ,bdd = mDb1 ¯ bdo
s=1

`

fsD,d,sdf12gf0
2gsAd

c2Ss−
D − d

2
;b1, . . . ,bdD , s8d

where

fsD,d,sd = psD−dd/2s− 1ds+1

2sGssd
GSs−

D − d

2
D s9d

and

Ad
c2

sn;b1, . . . ,bdd = o
n1,. . .,nd=−`

+`

sb1
2n1

2 + ¯ + bd
2nd

2 + c2d−n

=
1

c2n + 2o
i=1

d

o
ni=1

`

sbi
2ni

2 + c2d−n

+ 22 o
i, j=1

d

o
ni,nj=1

`

sbi
2ni

2 + bj
2nj

2 + c2d−n + ¯

+ 2d o
n1,. . .,nd=1

`

sb1
2n1

2 + ¯ + bd
2nd

2 + c2d−n. s10d
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Next we can proceed generalizing to several dimensions the mode-sum regularization pre-
scription described in Ref. 8. This generalization has been done in Ref. 1 and we briefly describe
here its principal steps. From the identity

1

Dn =
1

GsndE0

`

dt tn−1e−Dt, s11d

and using the following representation for Bessel functions of the third kind,Kn,

2sa/bdn/2Kns2Îabd =E
0

`

dx xn−1e−sa/xd−bx, s12d

we obtain after some rather long but straightforward manipulations,1

Ad
c2

sn;b1, . . . ,bdd =
2n−sd/2d+1p2n−sd/2d

b1 ¯ bdGsnd F2n−sd/2d−1GSn −
d

2
Ds2pcdd−2n

+ 2o
i=1

d

o
ni=1

` S ni

2pcbi
Dn−sd/2d

Kn−sd/2dS2pcni

bi
D + ¯

+ 2d o
n1,. . .,nd=1

` S 1

2pc
În1

2

b1
2 + ¯ +

nd
2

bd
2Dn−sd/2d

Kn−sd/2dS2pcÎn1
2

b1
2 + ¯ +

nd
2

bd
2DG .

s13d

Takingn=s−sD−dd /2 in Eq.(13) and inserting it in Eq.(8), we obtain the one-loop correction to
the effective potential inD dimensions with a compactifiedd-dimensional subspace in the form
(recovering the dimensionful parameters)

U1sw0,L1, . . . ,Ldd = o
s=1

`

f12gf0
2gshsD,sdF2s−sD/2d−2GSs−

D

2
DmD−2s

+ o
i=1

d

o
ni=1

` S m

Lini
DsD/2d−s

KsD/2d−ssmLinid

+ 2 o
i, j=1

d

o
ni,nj=1

` S m

ÎLi
2ni

2 + Lj
2nj

2DsD/2d−s

KsD/2d−ssmÎLi
2ni

2 + Lj
2nj

2d + ¯

+ 2d−1 o
n1,. . .,nd=1

` S m

ÎL1
2n1

2 + ¯ + Ld
2nd

2DsD/2d−s

KsD/2d−ssmÎL1
2n1

2 + ¯ + Ld
2nd

2dG ,

s14d

with

hsD,sd =
1

2D/2+s−1pD/2

s− 1ds+1

sGssd
. s15d

Criticality is attained when the inverse squared correlation length,j−2sL1, . . . ,Ld,w0d, vanishes
in the large-N gap equation,
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j−2sL1, . . . ,Ld,w0d = m̄0
2 + 12lw0

2 +
24l

L1 ¯ Ld
o

n1,. . .,nd=−`

` E dD−dq

s2pdD−d

3
1

q2 + S2pn1

L1
D2

+ ¯ + S2pnd

Ld
D2

+ j−2sL1, . . . ,Ld,w0d
, s16d

where w0 is the normalized vacuum expectation value of the field(different from zero in the
ordered phase). In the disordered phase,w0 vanishes and the inverse correlation length equals the
physical mass, given below by Eq.(18). Recalling the condition,

U ]2

]w0
2UsD,L1,L2dU

w0=0

= m2, s17d

whereU is the sum of the tree-level and one-loop contributions to the effective potential(remem-
bering that at the large-N limit it is enough to take the one-loop contribution to the mass), we
obtain

m2sL1, . . . ,Ldd = m̄0
2sL1, . . . ,Ldd +

24l

s2pdD/2Fo
i=1

d

o
ni=1

` S m

Lini
DsD/2d−1

KsD/2d−1smLinid

+ 2 o
i, j=1

d

o
ni,nj=1

` S m

ÎLi
2ni

2 + Lj
2nj

2DsD/2d−1

KsD/2d−1smÎLi
2ni

2 + Lj
2nj

2d + ¯

+ 2d−1 o
n1,. . .,nd=1

` S m

ÎL1
2n1

2 + ¯ + Ld
2nd

2DsD/2d−1

KsD/2d−1smÎL1
2n1

2 + ¯ + Ld
2nd

2dG .

s18d

Notice that, in writing Eq.(18), we have suppressed the parcel 2−sD/2d−1Gf1−sD /2dgmD−2 from its
square brackets, the parcel that emerges from the first term in the square bracket of Eq.(14). This
expression, which does not depend explicitly onLi, diverges forD even due to the poles of the
gamma function; in this case, this parcel is subtracted to get a renormalized mass equation. ForD
odd,Gf1−sD /2dg is finite but we also subtract this term(corresponding to a finite renormalization)
for sake of uniformity; besides, forDù3, the factormD−2 does not contribute in the criticality.

The vanishing of Eq.(18) defines criticality for our compactified system. We claim that,
taking d=1, d=2, andd=3 with D=3, we are able to describe, respectively, the critical behavior
of samples of materials in the form of films, wires, and grains. Notice that the parameterm on the
right-hand side of Eq.(18) is the boundary-modified massmsL1, . . . ,Ldd, which means that Eq.
(18) is a self-consistency equation, a very complicated modified Schwinger–Dyson equation for
the mass, not soluble by algebraic means. Nevertheless, as we will see in the next sections, a
solution is possible at criticality, which allows us to obtain a closed formula for the boundary-
dependent critical temperature.

III. CRITICAL BEHAVIOR FOR FILMS

We now consider the simplest particular case of the compactification of only one spatial
dimension, with the system confined between two parallel planes a distanceL apart from one
another. This case, which has already been considered in Ref. 5 concerning with the two-
component model, is reanalyzed here to set the required renormalization procedure in the proper
large-N grounds and, also, for the sake of completeness. Thus, from Eq.(18), takingd=1, we get
in the disordered phase
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m2sLd = m̄0
2sLd +

24l

s2pdD/2o
n=1

` S m

nL
DsD/2d−1

KsD/2d−1snLmd, s19d

whereL s=L1d is the separation between the planes, the film thickness. If we limit ourselves to the
neighborhood of criticalitysm2<0d and considerL finite and sufficiently small, we may use an
asymptotic formula for small values of the argument of Bessel functions,

Knszd <
1

2
GsunudS z

2
D−unu

sz< 0d, s20d

and Eq.(19) reduces, forD.3, to

m2sLd < m̄0
2sLd +

6l

pD/2LD−2GSD

2
− 1DzsD − 2d, s21d

wherezsD−2d is the Riemannzeta-function, defined for RehD−2j.1 by the series

zsD − 2d = o
n=1

`
1

nD−2 . s22d

It is worth mentioning that forD=4, taking m2sLd=0 and making the appropriate changessL
→b ,l→l /4 ! d, Eq. (21) is formally identicalto the high-temperature(low values ofb) critical
equation obtained in Ref. 9, thus providing a check of our calculations.

For D=3, Eq. (21) can be made physically meaningful by a regularization procedure as
follows. We consider the analytic continuation of thezeta-function, leading to a meromorphic
function having only one simple pole atz=1, which satisfies the reflection formula

zszd =
1

Gsz/2d
GS1 − z

2
Dpz−1/2zs1 − zd. s23d

Next, remembering the formula

lim
z→1

Fzszd −
1

z− 1
G = g, s24d

whereg<0.5772 is the Euler–Mascheroni constant, we define theL-dependent bare mass forD
<3, in such a way that the pole atD=3 in Eq. (21) is suppressed, that is we take

m̄0
2sLd < M −

1

sD − 3d
6l

pL
, s25d

whereM is independent ofD. To fix the finite term, we make the simplest choice satisfying(2),

M = m0
2sTd = asT − T0d, s26d

T0 being the bulk critical temperature. In this case, using Eq.(25) in Eq. (21) and taking the limit
asD→3, theL-dependent renormalized mass term in the vicinity of criticality becomes

m2sLd < asT − TcsLdd, s27d

where the modified,L-dependent, transition temperature is given by

TcsLd = T0 − C1
l

aL
, s28d

L being the thickness of the film, with the constantC1 given by
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C1 =
6g

p
< 1.1024. s29d

From this equation, we see that forL smaller than

Lmin = C1
l

aT0
, s30d

TcsLd becomes negative, meaning that the transition does not occur.5

IV. CRITICAL BEHAVIOR FOR WIRES

We now focus on the situation where two spatial dimensions are compactified. From Eq.(18),
taking d=2, we get(in the disordered phase)

m2sL1,L2d = m̄0
2sL1,L2d +

24l

s2pdD/2Fo
n=1

` S m

nL1
DsD/2d−1

KsD/2d−1snL1md

+ o
n=1

` S m

nL2
DsD/2d−1

KsD/2d−1snL2md

+ 2 o
n1,n2=1

` S m

ÎL1
2n1

2 + L2
2n2

2DsD/2d−1

KsD/2d−1smÎL1
2n1

2 + L2
2n2

2dG . s31d

If we limit ourselves to the neighborhood of criticality,m2<0, and taking bothL1 andL2 finite and
sufficiently small, we may use Eq.(20) to rewrite Eq.(31) as

m2sL1,L2d < m̄0
2sL1,L2d +

6l

pD/2GSD

2
− 1DFS 1

L1
D−2 +

1

L2
D−2DzsD − 2d + 2E2SD − 2

2
;L1,L2DG ,

s32d

whereE2fsD−2d /2 ;L1,L2g is the generalized(multidimensional) Epsteinzeta-function defined by

E2SD − 2

2
;L1,L2D = o

n1,n2=1

`

fL1
2n1

2 + L2
2n2

2g−fsD−2d/2g, s33d

for RehDj.3.
As mentioned before, the Riemannzeta-function zsD−2d has an analytical extension to the

whole complexD-plane, having a unique simple pole(of residue 1) at D=3. One can also
construct analytical continuations(and recurrence relations) for the multidimensional Epstein
functions which permit to write them in terms of Kelvin and Riemannzeta-functions. To start one
considers the analytical continuation of the Epstein–Hurwitzzeta-function given by8

o
n=1

`

sn2 + p2d−n = −
1

2
p−2n +

Îp

2p2n−1GsndFGSn −
1

2
D + 4o

n=1

`

sppndn−1/2Kn−1/2s2ppndG . s34d

Using this relation to perform one of the sums in(33) leads immediately to the question of which
sum is first evaluated. As it is done in Ref. 10, whatever the sum one chooses to perform first, the
manifestL1↔L2 symmetry of Eq.(33) is lost; to overcome such an obstacle, in order to preserve
this symmetry, we adopt here a symmetrized summation generalizing the prescription introduced
in Ref. 1 for the case of many variables.

To derive an analytical continuation and symmetrized recurrence relations for the multidimen-
sional Epstein functions, we start by taking these functions defined as the symmetrized summa-
tions
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Edsn;L1, . . . ,Ldd =
1

d! os
o
n1=1

`

¯ o
nd=1

`

fs1
2n1

2 + ¯ + sd
2nd

2g−n, s35d

wheresi =ssLid, with s running in the set of all permutations of the parametersL1, . . . ,Ld, and the
summations overn1, . . . ,nd being taken in the given order. Applying(34) to perform the sum over
nd, one gets

Edsn;L1, . . . ,Ldd = −
1

2d
o
i=1

d

Ed−1sn; . . . ,Lî, . . . d +
Îp

2 dGsnd
GSn −

1

2
Do

i=1

d
1

Li
Ed−1Sn −

1

2
; . . . ,Lî, . . .D

+
2Îp

dGsnd
WdSn −

1

2
,L1, . . . ,LdD , s36d

where the hat over the parameterLi in the functionsEd−1 means that it is excluded from the set
hL1, . . . ,Ldj (the others being thed−1 parameters ofEd−1), and

Wdsh;L1, . . . ,Ldd = o
i=1

d
1

Li
o

n1,. . .,nd=1

` S pni

Li
Îs¯ + Li

2ni
2̂ + ¯ d

Dh

KhS2pni

Li

Îs¯ + Li
2ni

2̂ + ¯ dD ,

s37d

with s¯+Li
2ni

2̂+¯ d representing the sumo j=1
d Lj

2nj
2−Li

2ni
2. In particular, noticing thatE1sn ;Ljd

=Lj
−2nzs2nd, one finds

E2SD − 2

2
;L1

2,L2
2D = −

1

4
S 1

L1
D−2 +

1

L2
D−2DzsD − 2d +

ÎpGSD − 3

2
D

4GSD − 2

2
D S 1

L1L2
D−3 +

1

L1
D−3L2

DzsD − 3d

+
Îp

GSD − 2

2
DW2SD − 3

2
;L1,L2D , s38d

which is a meromorphic function ofD, symmetric in the parametersL1 and L2 as Eq. (33)
suggests.

Using the above expression, Eq.(32) can be rewritten as

m2sL1,L2d < m̄0
2sL1,L2d +

3l

pD/2FS 1

L1
D−2 +

1

L2
D−2DGSD − 2

2
DzsD − 2d

+ ÎpS 1

L1L2
D−3 +

1

L1
D−3L2

DGSD − 3

2
DzsD − 3d + 2ÎpW2SD − 3

2
;L1,L2DG . s39d

This equation presents no problems for 3,D,4 but, forD=3, the first and second terms between
the square brackets of Eq.(39) are divergent due to thez-function andG-function, respectively.
We can deal with divergences remembering the property in Eq.(24) and using the expansion of
GfsD−3d /2g aroundD=3,

GSD − 3

2
D <

2

D − 3
+ G8s1d, s40d

G8szd standing for the derivative of theG-function with respect toz. For z=1 it coincides with the
Euler digamma-functioncs1d, which has the particular valuecs1d=−g. We notice however, that
differently from the case treated in the preceding section, where a renormalization procedure was
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needed, here the two divergent terms generated by the use of formulas(24) and(40) cancel exactly
between them. No renormalization is needed. Thus, forD=3, taking the bare mass given by
m̄0

2sL1,L2d=asT−T0d, we obtain the renormalized boundary-dependent mass term in the form

m2sL1,L2d < asT − TcsL1,L2dd, s41d

with the boundary-dependent critical temperature given by

TcsL1,L2d = T0 −
9lg

2pa
S 1

L1
+

1

L2
D −

6l

pa
W2s0;L1,L2d, s42d

where

W2s0;L1,L2d = o
n1,n2=1

` H 1

L1
K0S2p

L2

L1
n1n2D +

1

L2
K0S2p

L1

L2
n1n2DJ . s43d

The quantityW2s0;L1,L2d, appearing in Eq.(42), involves complicated double sums, very
difficult to handle forL1ÞL2; in particular, it is not possible to take limits such asLi →`. For this
reason we will restrict ourselves to the caseL1=L2. For a wire with the square transversal section,
we haveL1=L2=L=ÎA and Eq.(42) reduces to

TcsAd = T0 − C2
l

aÎA
, s44d

whereC2 is a constant given by

C2 =
9g

p
+

12

p
o

n1,n2=1

`

K0s2pn1n2d < 1.6571. s45d

We see that the critical temperature of the square wire depends on the bulk critical temperature
and the Ginzburg–Landau parametersa and l (which are characteristics of the material consti-
tuting the wire), and also on the area of its cross section. SinceTc decreases linearly with the
inverse of the side of the square, this suggests that there is a minimal area for whichTcsAmind
=0,

Amin = SC2
l

aT0
D2

; s46d

for square wires of the transversal section areas smaller than this value, in the context of our model
the transition should be suppressed. On topological grounds, we expect that(apart from appropri-
ate coefficients) our result should be independent of the transverse section shape of the wire, at
least for transversal sectional regular polygons.

V. CRITICAL BEHAVIOR FOR GRAINS

We now turn our attention to the case where all three spatial dimensions are compactified,
corresponding to the system confined in a box of sidesL1,L2,L3. Taking d=3 in Eq. (18) and
using Eq.(20), we obtain(for sufficiently smallL1,L2,L3 and in the neighborhood of classicality,
m2<0)
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m2sL1,L2,L3d < m̄0
2sL1,L2,L3d +

6l

pD/2GSD − 2

2
DFo

i=1

3
zsD − 2d

Li
D−2 + 2 o

i, j=1

3

E2SD − 2

2
;Li,LjD

+ 4E3SD − 2

2
;L1,L2,L3DG , s47d

whereE3sn ;L1,L2,L3d=on1,n2,n3=1
` fL1

2n1
2+L2

2n2
2+L3

2n3
2g−n and the functionsE2 are given by Eq.(38).

The analytical structure of the functionE3fsD−2d /2 ;L1,L2,L3g can be obtained from the
general symmetrized recurrence relation given by Eqs.(36) and (37); explicitly, one has

E3SD − 2

2
;L1,L2,L3D = −

1

6 o
i, j=1

3

E2SD − 2

2
;Li,LjD +

ÎpGSD − 3

2
D

6GSD − 2

2
D o

i,j ,k=1

3
s1 + «i jkd

2

1

Li

3E2SD − 2

2
;Lj,LkD +

2Îp

3GSD − 2

2
DW3SD − 3

2
;L1,L2,L3D , s48d

where«i jk is the totally antisymmetric symbol and the functionW3 is a particular case of Eq.(37).
Using Eqs.(38) and (48), the boundary dependent mass can be written as

m2sL1,L2,L3d < m̄0
2sL1,L2,L3d +

6l

pD/2F1

3
GSD − 2

2
Do

i=1

3
1

Li
D−2zsD − 2d +

Îp

6
zsD − 3d

3 o
i, j=1

3 S 1

Li
D−3Lj

+
1

Lj
D−3Li

DGSD − 3

2
D +

4Îp

3 o
i, j=1

3

W2SD − 3

2
;Li,LjD

+
p

6
zsD − 4dGSD − 4

2
D o

i,j ,k=1

3
s1 + «i jkd

2

1

Li
S 1

Lj
D−4Lk

+
1

Lk
D−4Lj

D
+

2p

3 o
i,j ,k=1

3
s1 + «i jkd

2

1

Li
W2SD − 4

2
;Lj,LkD +

8Îp

3
W3SD − 3

2
;L1,L2,L3DG .

s49d

The first two terms in the square brackets of Eq.(49) diverge asD→3 due to the poles of theG
andz-functions. However, as it happens in the case of wires, using Eqs.(24) and (40) it can be
shown that these divergences cancel exactly one another. After some simplifications, forD=3, the
boundary dependent mass(49) becomes

m2sL1,L2,L3d < m̄0
2sL1,L2,L3d +

6l

p
Fg

2o
i=1

3
1

Li
+

4

3 o
i, j=1

3

W2s0;Li,Ljd +
p

18 o
i,j ,k=1

3
s1 + «i jkd

2

Li

LjLk

+
2Îp

3 o
i,j ,k=1

3
s1 + «i jkd

2

1

Li
W2S−

1

2
;Lj,LkD +

8

3
W3s0;L1,L2,L3dG . s50d

As before, since no divergences need to be suppressed, we can take the bare mass given by
m̄0

2sL1,L2,L3d=asT−T0d and rewrite the renormalized mass asm2sL1,L2,L3d<asT
−TcsL1,L2,L3dd. The expression ofTcsL1,L2,L3d can be easily obtained from Eq.(50), but it is a
very complicated formula, involving multiple sums, which makes almost impossible a general
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analytical study for arbitrary parametersL1,L2,L3; thus, we restrict ourselves to the situation
whereL1=L2=L3=L, corresponding to a cubic box of volumeV=L3. In this case, the boundary
dependent critical temperature reduces to

TcsVd = T0 − C3
l

aV1/3, s51d

where the constantC3 is given by[using thatK−1/2szd=Îp /2ze−z]

C3 = 1 +
9g

p
+

12

p
o

n1,n2=1

`
e−2pn1n2

n1
+

48

p
o

n1,n2=1

`

K0s2pn1n2d +
48

p
o

n1,n2,n3=1

`

K0s2pn1
În2

2 + n3
2d < 2.7657.

s52d

One sees that the minimal volume of the cubic grain sustaining the transition is

Vmin = SC3
l

aT0
D3

. s53d

VI. CONCLUSIONS

In this paper we have discussed the spontaneous symmetry breaking of theslf4dD theory
compactified indøD Euclidean dimensions, extending some results of Ref. 1. We have param-
etrized the bare mass term in the formm0

2sT−T0d, thus placing the analysis within the Ginzburg–
Landau framework. We focused on the situations withD=3 andd=1,2,3,corresponding(in the
context of condensed matter systems) to films, wires, and grains, respectively, undergoing phase
transitions which may be described by(mean-field) Ginzburg–Landau models. This generalizes to
more compactified dimensions of previous investigations on the superconducting transition in
films, both without5 and in the presence of a magnetic field.11 In all cases studied here, in the
absence of gauge fluctuations, we found that the boundary-dependent critical temperature de-
creases linearly with the inverse of the linear dimensionL: TcsLd=T0−Cdl /aL, wherea andl are
the Ginzgurg–Landau parameters,T0 is the bulk transition temperature, andCd is a constant equal
to 1.1024, 1.6571, and 2.6757 ford=1 (film), d=2 (square wire), andd=3 (cubic grain), respec-
tively. Such behavior suggests the existence of a minimal size of the system below which the
transition is suppressed. It is worth mentioning that having the transition temperature scaling with
the inverse of the relevant lengthL for all the cases analyzed(films, wires, and grains) is in
accordance with what one learns from finite-size scaling arguments.12

These findings seems to be inqualitativeagreement with results for the existence of a minimal
thickness for disappearance of superconductivity in films.13–16 Experimental investigations in
nanowires searching to establish whether there is a limit to how thin a superconducting wire can
be, while retaining its superconducting character, have also drawn the attention of researchers; for
example, in Ref. 17 the behavior of nanowires has been studied. Similar questions have also been
raised concerning the behavior of superconducting nanograins.18,19 Nevertheless, an important
point to be emphasized is that our results are obtained in a field-theoretical framework and do not
depend on microscopic details of the material involved nor account for the influence of manufac-
turing aspects of the sample; in other words, our results emerge solely as a topological effect of the
compactification of the Ginzburg–Landau model in a subspace. Detailed microscopic analysis is
required if one attempts to account quantitatively for experimental observations which might
deviate from our mean field results.
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Uniqueness of the topological multivortex solution
in the self-dual Chern–Simons theory
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We establish a uniqueness result for the topological multivortex solution to the
self-dual equations of the Abelian relativistic self-dual Chern–Simons–Higgs
model. We prove that the topological multivortex solution is unique if the Chern–
Simons coupling parameterk.0 is sufficiently small. We also establish a unique-
ness result fork.0 sufficiently large. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1834694]

I. INTRODUCTION

Chern–Simons theories have attracted much attention as they are believed relevant to physical
phenomena such as high-temperature superconductivity and anyon physics. In particular,
Hong–Kim–Pac18 and Jackiw–Weinberg19 proposed an Abelian Chern–Simons–Higgs model
whose dynamics is governed only by the Chern–Simons term. This model is given in the(211)-
dimensional Minkowski space with metricgmn=diags1,−1,−1d. When a suitable Higgs potential
is chosen, this model admits a self-dual structure which enables us to study the static solutions
rigorously.

The Lagrangian density18,19 is given by

L =
k

4
«mnrFmnAr + gmnDmfDnf −

1

k2ufu2s1 − ufu2d2,

where Am sm=0,1,2d is a real gauge field onR3, f is the complex-valued Higgs field,Fmn

=]mAn−]nAm is the curvature tensor,Dm=]m−Î−1Am is the gauge covariant derivative,«mnr is
totally skew symmetric tensor with«012=1, andk.0 is the Chern–Simons coupling constant.
Hereafter, we leti =Î−1.

The Euler–Lagrange equations corresponding toL are given by

k

2
«mnrFmn = isfDrf − f̄Drfd,

s1.1d

DmDmf = −
1

k2sufu2 − 1ds3ufu2 − 1df.

We seek the static configuration of(1.1). Then, ther=0 component of(1.1) yields kF12

=−2A0ufu2, which in turn implies that the corresponding static energy density is given by

a)Electronic mail: kschoe@math.snu.ac.kr
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E =
k2F12

2

4ufu2
+ uD1fu2 + uD2fu2 +

1

k2ufu2s1 − ufu2d2

= UkF12

2ufu
±

1

k
ufusufu2 − 1dU2

+ uD1f ± iD2fu2 ± F12 7 i« jk] jsf̄Dkfd.

By taking the conjugatesf̄ ,−Amd of sf ,Amd if necessary, we may choose the upper sign in the
above formula. IfufuuDfu=osuxu−1d as uxu→`, thenE=eR2 EdxùeR2 F12dx, and the minimum is
saturated if and only ifsf ,Amd satisfies the following self-dual equations:

D1f + iD2f = 0,

F12 +
2

k2ufu2sufu2 − 1d = 0, s1.2d

kF12 + 2A0ufu2 = 0.

In order to make the total energyE finite, we impose a suitable boundary condition onf;
either limuxu→`ufsxdu=1 or limuxu→`ufsxdu=0. The former boundary condition is called topological,
the latter one nontopological.

In this paper, we prove that the self-dual equations(1.2) admit a unique topological solution
if k.0 is sufficiently small. As(1.2) admits the invarianceAm→Am+]mh andf→feih for any
smooth functionh=hsx1,x2d, our uniqueness result is established in the sense of equivalence
class.(See Main Theorem below.)

It follows from the argument of Jaffe–Taubes20 thatf admits a discrete set of zeros. Then, we
can establish existence results for the self-dual equations(1.2) such thatf vanishes at any pre-
scribed pointsp1, . . . ,pmPR2 with multiplicities n1, . . . ,nmPZ+, respectively. For this purpose,
we follow the argument in Ref. 20 to reduce the self-dual equations(1.2) to a single elliptic
equation. Introduce a real-valued functionu by

f = expFu

2
+ o

j=1

m

i argsz− pjdG . s1.3d

Then,u satisfies

Du =
4

k2euseu − 1d + 4po
j=1

m

njdpj
, R2. s1.4d

Once a solutionu of (1.4) is found, we can construct a solutionsf ,Amd by (1.3) and

A1 = − Resi]* ln fd, A2 = − Imsi]* ln fd with ]* = ]1 + i]2. s1.5d

A solution u of (1.4) is topological if limuxu→`usxd=0, and nontopological if limuxu→`usxd=−`. In
both cases, it turns out thatufuuDfu=osuxu−2d as uxu→`. In the sequel, we let

N = o
j=1

m

nj .

Then, it is well knownE=eR2 F12 dx=2pN if u=lnufu2 is topological. However, ifu is nontopo-
logical, E may take all the values in an interval(see, e.g., Lemma 2.2 below). Moreover, it is also
well known that the magnetic fluxF and electric chargeQ are given byF=eF12 dx=E and Q
=keF12 dx, respectively. We refer to the books Refs. 15 and 31 for detailed description of self-
dual Chern–Simons theories.
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Several existence results are now available for the equation(1.4). The existence result for a
topological solution was first established by Wang.30 Spruck–Yang28 constructed a topological
solution via the iterative method, which is an efficient algorithm for a numerical solution.

For a nontopological solution, Spruck–Yang27 constructed a radially symmetric solution for
the special casep1=¯ =pm=0. The result in Ref. 27 was refined by Chenet al.10 and later by
Chan et al.8 In Ref. 8, they have established a uniqueness result for radial solutions: Ifp1

=¯ =pm=0 and a constantb.2N+4 is given,(1.4) admits a unique radial solutionusrd such that
usrd=−b ln r +Os1d near`. The existence result for the general case wherep1, . . . ,pm is arbitrary
was established by Chae–Imanuvilov.7 It also turns out in Ref. 7 that ifN.0, (1.4) admits a
one-parameter family of nonradial solutions even if the vortex pointspj’s are located at the origin.
Hence, we cannot expect the uniqueness of nontopological solutions of(1.4) for N.0. It is
believed that multiple existence for nontopological solutions depends on the total vortex numberN
and the location of vortex pointspj. If N=0, for instance, it can be proved by the method of
moving planes27 that every nontopological zero-vortex solution is radially symmetric with respect
to some point inR2. If N.0, we cannot expect such symmetry any longer. Moreover, Chanet al.8

recently constructed a nontopological solution concentrating at each vortex pointhp1, . . . ,pmj if
P jÞkupj −pku is independent ofk.

Then, it is quite natural to ask if Eq.(1.4) admits a unique topological solution for eachk
.0. The uniqueness of a radial topological solution has been proved in Ref. 10. Ifp1=¯ =pm

=0 in (1.4), it has been proved by Han17 that every topological solution is radially symmetric.
Therefore, the uniqueness for the special casep1=¯ =pm=0 has been established.

In this paper, we establish uniqueness for a topological solution fork.0 sufficiently small.
Theorem 1.1: Let p1, . . . ,pmPR2 and n1, . . . ,nmPZ+ be given. Then, there is a constant

k0=k0sp1, . . . ,pm,n1, . . . ,nmd.0 such that for0,k,k0, Eq. (1.4) admits a unique topological
solution.

Given p1, . . . ,pmPR2 and n1, . . . ,nmPZ+, we also establish a uniqueness result fork.0
sufficiently large.

Theorem 1.2: There is a constantk1=k1sp1, . . . ,pm,n1, . . . ,nmd.0 such that fork.k1 Eq.
(1.4) admits a unique topological solution.

Once Theorem 1.1 is proved, we can state the uniqueness result for a solutionsf ,Amd of the

self-dual equations(1.2). Assume thatsf ,Amd and sf̂ ,Âmd are two solutions subject to the topo-

logical boundary condition limuxu→`ufsxdu=limuxu→`uf̂sxdu=1. Then, it is obvious thatÂ0=A0. Since

¹3 sÂ−Ad=0 with Â−A=sÂ1−A1,Â2−A2d, there is a smooth functionh such thatÂ−A= ¹h. Let

a=A1+ iA2 and â=Â1+ iÂ2 for simplicity. Then, we can rewrite the first equation of the self-dual
equations(1.2) as

]*f = iaf and ]*f̂ = iâf̂.

Then, we obtain that]*sf̂e−ihd= iaf̂e−ih, which in turn implies that]*sf̂e−ih /fd=0. If f and f̂

have zeros in common, we conclude thatf̂=feih+h for some holomorphic functionh. Due to the
topological boundary condition,h must be a constant. Then, we have the uniqueness result for the
topological solutions of the self-dual equations(1.2).

Main Theorem: Given a topological solution uk of (1.4), let sfskd ,Am
skdd be given by (1.3) and

(1.5) and A0
skd=s1/kdufskdu2s1−ufskdu2d. Then, there are constantsk0,k1.0 such that if k

P s0,k0dø sk1,`d then any topological solutionsf̃skd ,Ãm
skdd of (1.2) satisfies A˜

0
skd=A0

skd, Ãskd

−Askd= ¹hk and f̃skd=fskdeihk for a real-valued smooth functionhk.
We will prove Theorem 1.1 in Sec. III, but we sketch the proof here. We first prove that if

k.0 is sufficiently small, then any topological solutionuk is approximated by the sum of rescaled
radial topological solutions. More precisely, givennj PZ+, we let f j be the radial topological
solution of (1.4) k=2. Then, we will show that if we definezk by
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zksxd =
1

k3Fuksxd − o
j=1

m

x jsxdf jS2sx − pjd
k

DG, x P R2,

then izkiH2sR2d=os1d ask→0+. Here,x j PC0
`sR2d is a cutoff function which is identically 1 near

the vortex pointpj. Then, we will construct a functionalFk :H2sR2d→H2sR2d in such a way that
zk is a fixed point ofFk for k.0 sufficiently small. Indeed, it will turn out thatFk is a well-
defined contraction mapping on a suitable closed subsetB of H2sR2d, andzkPB for k.0 suffi-
ciently small. Then, Theorem 1.1 immediately follows from uniqueness of a fixed point inB.
Thus, it is a crucial step to obtain the asymptotic behavior of a topological solutionuk as k
→0+.

It has been proved by Tarantello29 that the “maximal” topological solutionūk satisfies

4

k2eūks1 − eūkd → 4po
j=1

m

njdpj
in the measure sense ask → 0+.

Thus, given any topological solutionuk, we need to look into the concentration phenomena foruk

near eachpj for k.0 sufficiently small. For this purpose, we divideR2 into two disjoint sets,
Vd=ø jBdspjd and the complement ofVd, and apply well-known arguments for uniform estimates
and concentration phenomena touk in Vd. (See, e.g., Refs. 5, 23, 22, 9, and 3, and references
therein.)

Instead of typical topological/nontopological boundary conditions, one may impose the
’t Hooft periodic boundary condition on the static configuration of(1.1) and study the equation on
a flat torus,V=R2/ saZ3bZd with a,b.0. We can also derive self-dual equations(1.2) under the
periodic boundary condition, and study the following equation for an unknownu=lnufu2:

Du =
4

k2euseu − 1d + 4po
j=1

m

njdpj
in V. s1.6d

An existence result for(1.6) was established by Caffarelli–Yang6 (type I below), and later refined
by Tarantello.29 Tarantello, among other things, established multiple existence results for(1.6). In
particular, Tarantello proved that ifN=1 then the self-dual equations admit at least two solutions

sfskd ,Askdd and sf̃skd ,Ãskdd such that

(a) ufskdu→1 a.e. ask→0+ (type I),
(b) ∀qù0, s1/k2dif̃skdiCqsVdøCq for some constantCq.0 (type II).

If Nù2, the situation becomes more delicate, and it requires a different approach to establish
such multiple existence results. In this case, Eq.(1.4) may admit bubble solutionsfskd such
that

(c) F12sfskd ,Askdd→ok=1
l mkdqk

ask→0+ in the sense of measure for somemk.0 andqkPV.
Moreover, 1/k2ifskdiC0sKd→0 for anyK, ,V \ hq1, . . . ,qlj (type III).

Many experts have pointed out29,25,12,13that it is related to the concentration phenomena for a
mean-field equation to classify and construct solutions of type II and type III. Recently, it was
reported by Nolasco24 that Eq.(1.4) admits a solution concentrating at the vortex points fork
.0 sufficiently small. We also refer to Refs. 5, 23, 22, 9, and 3 for the concentration phenomena
for a mean-field equation.

We are interested in the solution of type I. In the following theorem we establish uniqueness
result for the solution of type I.

Theorem 1.3: Let V=R2/ saZ3bZd be a flat 2-torus. Then, there exists a constantk1

=k1sp1, . . . ,pm,n1, . . . ,nmd.0 such that for0,k,k1 Eq. (1.6) admits unique periodic solution
u=ln ufu2 which satisfies u→0 a.e. ask→0+.

From the mathematical point of view, it would be interesting to consider the general situation
where Eq.(1.6) is given on a Riemannian 2-manifoldsV ,gd without boundary.(See Ref. 14.) In
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Sec. IV, we will consider such a general situation and establish uniqueness result fork.0 suffi-
ciently small. See Theorem 4.1. Theorem 1.3 is indeed a direct consequence of Theorem 4.1. The
proof of Theorem 4.1 is similar to that of Theorem 1.1, and we will sketch the proof in Sec. IV.

Theorem 1.3 shows that ifk.0 is sufficiently small, any solutionuk of type I is indeed the

maximal solution constructed by Caffarelli–Yang.6 Moreover, the second solutionsf̃skd ,Ãskdd
found by Tarantello29 satisfiesuf̃skdu→0 a.e. ask→0+. Theorems 1.1, 1.2, and 1.3 give a partial
affirmative answer to the questions raised by Yang31 and Dinget al.14 The above uniqueness result
would also be useful when we classify the solutions of(1.4) or (1.6) for k.0 sufficiently small.

This paper is organized as follows. In Sec. II, we collect some well-known results on the
solutions of Eq.(1.4). Section III is devoted to the proof of Theorem 1.1 and Theorem 1.2. In Sec.
IV, we will sketch the proof of Theorem 1.3.

II. PRELIMINARIES

Hereafter, we lete=k /2 for the sake of simplicity, and rewrite Eq.(1.4) as

Du =
1

e2euseu − 1d + 4po
j=1

m

njdpj
, R2 s2.1d

usxd → 0 as uxu → `. s2.2d

We will prove that given p1, . . . ,pmPR2 and n1, . . . ,nmPZ+, there is a constante0

=e0sp1, . . . ,pm,n1, . . . ,nmd.0 such that for 0,e,e0, Eqs.(2.1) and (2.2) admit a unique solu-
tion.

We begin this section by recalling some useful lemmas. Lemma A below is found in Ref. 16.
Lemma A: Given a domainV,R2, let dx=distsx,]Vd for xPV. Then, uPC2sVd satisfies the

estimate

sup
V

dxu¹usxdu ø Cssup
V

uuu + sup
V

dx
2uDusxdud.

In the following two lemmas we collect well-known results for the special case wherep1

=¯ =pm=0 in Eq.(2.1). Instead of the topological boundary condition(2.2), we impose a weaker
condition on(2.1).

Lemma 2.1: Let n be a non-negative integer, and u be a solution of the following equation:

5Du = euseu − 1d + 4pndp=0, R2

E
R2

eus1 − euddxø C,
s2.3d

for some constant C.0. Then, either

lim
uxu→`

usxd = 0

or

lim
uxu→`

usxd = − `.

Moreover, we have

(i) if u →0 near` , then u is radially symmetric. Moreover, for each R.1 there is a constant
CR.0 such thatuusxdu+ u¹usxduøCRe−uxu for uxu.R.

(ii) if u →−` near `, theneR2 eus1−euddx.8ps1+nd.

Proof: The proof may be well known to many experts, but we sketch it for completeness. It
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follows from the argument of Spruck–Yang27 that u,0 in R2. Hence, either limuxu→`usxd=0 or
lim inf uxu→` usxd,0. In the latter case, we claim lim infuxu→` usxd=−`. Otherwise, Lemma A
would imply thateR2 eus1−euddx=`, which yields a contradiction.

Moreover, it follows from the argument of Chen–Li11 that there is a constantb=bsud.2 such
that usxd=−b lnuxu+Os1d near`. Therefore, we conclude that if lim infuxu→` usxd,0 thenusxd
=−b ln uxu +Os1d near` for some constantb.2.

(i) If lim uxu→`usxd=0, it follows from the method of moving planes thatu is radially
symmetric.17 Moreover, it is well known thatusxdøCRe−s2/3duxu for uxuùR, with R.0 suffi-
ciently large. Notice thatDu−u=Osu2d near`. Comparingu with the comparison function
e−uxu, we can verify by maximum principle thatuusxduøCRe−uxu for uxuùR with R.0 suffi-
ciently large. The estimate foru¹usxdu follows from Lemma A.

(2) If lim uxu→`usxd=−`, then we haveeR2seu−e2uddx=ps4n+2bd. The inequality in(ii ) follows
from the Pohozaev identity. Indeed, multiplying(2.1) by x·¹u and integrating by parts on
the domainSd,R=hxud, uxu,Rj with d ,R.0, we obtain

E
]Sd,R

F1

2
sx · ndu¹uu2 − sx · ¹ udsn · ¹ ud +

1

2
sx · nde2u − sx · ndeuGds =E

Sd,R

se2u − 2euddx,

wheren is the outward normal vector on]Sd,R. Since¹usxd=bx/ uxu2+osuxu−1d near`, andusxd
=2n ln uxu+v neary=0 for some smooth functionv, we obtain

E
uxu=d

1

uxu
sx · ¹ ud2ds =

1

d
E

uxu=d

s2n + x · ¹ vd2ds = 8pn2 + Osdd,

E
uxu=d

1

2
uxuu¹uu2ds =

d

2
E

uxu=d
S4n2

d2 + OS1

d
DDds = 4pn2 + Osdd,

asd→0, and

E
uxu=R

F1

2
sx · ndu¹uu2 − sx · ¹ udsn · ¹ udGds = − pb2 + os1d as R→ `.

Letting d→0+ and R→`, we obtain ps4n2−b2d=eR2se2u−2euddx. Then, we haveeR2 e2udx
=pssb−2d2−4sn+1d2d.0. Hence,b.2n+4 and the desired inequality immediately follows.h

Remark:The Pohozaev identity also implies that ifu→0 near` theneR2 seu−1d2dx=4pn2.
Indeed, proceeding as above, we obtain

E
]Sd,R

S1

2
sx · ndu¹uu2 − sx · ¹ udsn · ¹ ud +

1

2
sx · ndseu − 1d2Dds =E

]Sd,R

seu − 1d2dy.

Letting d→0 andR→`, we obtain the desired result.
Spruck–Yang27 proved that ifn=0 then every nontrivial solution of(2.3) is radially symmetric

with respect to some point. However, ifn.0, it has been proved by Chae–Imanuvilov7 that Eq.
(2.3) admits a nonradial solution. If we limit our attention to the radial solutions of(2.3) for n
ù0, we have the uniqueness result(2.3) established by Chenet al.10 and Chanet al.;8 the
topological radial solution is unique. Moreover, given a constantb.2n+4, (2.3) admits a unique
radial solutionusrd such thatusxd−2n lnuxu is smooth, andusrd=−b ln r +Os1d as r →`. More
precisely, we have

Lemma 2.2 (Chen et al.10): Given a non-negative integer n, let usr ;n,sd be the radial solution
of (2.3) such thatlimr→0susr ;n,sd−2n ln rd=s and limr→0sursr ;n,sd−2n/ rd=0. Then, there is a
constant snPR such that

(i) usr ;n,snd→0 as r→`,
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(ii) If s ,sn, usr ;n,snd→−` as r→`,
(iii) If s .sn, usr ;n,snd blows up at some r=rssd.

Moreover, if we define a functionbn: s−` ,snd→R+=s0,`d by

bnssd =E
0

`

eusr;n,sds1 − eusr;n,sddr dr , s2.4d

then lims→sn
bnssd=`, lims→−`bnssd=2n+4, and hbnssdus,snj=s2n+4,`d.

(Chan et al.8): bn is differentiable and strictly increasing in the intervals−` ,snd.
Remark:It is obvious thatsn=0 if n=0 in (2.3).
Before proceeding, we fix some notations. For simplicity, we letZ=hp1, . . . ,pmj be the set of

vortex points. Given a positive constantr .0, we let

Vr = ø
j=1

m

Brspjd.

Hereafter, we denote byx a cutoff function such that 0øxø1, xsxd=1 for uxuø1, andxsxd=0 for
uxuù2. Given a setS, we denote bySc the complement ofS. C,c0, . . . will denote constants
independent ofe. Throughout this paper,d is a fixed constant such that 0,d,

1
4minhupk−pju1

øk, j ømj.
Denote byf j the radial topological solution of the equation

Df j = ef jsef j − 1d + 4pnjdp=0,

f j → 0 near `. s2.5d

We will prove in the following section that any solutionue of (2.1) and(2.2) is “close” to the
rescaled radial solutionf jse−1sx−pjd+pjd near each vortex pointpj. Then, we need an estimate for
the linearized operator atf j in order to obtaina priori estimates forue nearx=pj.

Lemma 2.3: Let Lj :H
2sR2d→L2sR2d be the linearized operator

Lj = D − ef js2ef j − 1d.

Then, Lj :H
2sR2d→L2sR2d is one-to-one, and moreover, there is a constant c.0 such that

iLjuiL2sR2dùciuiH2sR2d for all uPH2sR2d.
Proof: We first show thatLj :H

2sR2d→L2sR2d is one-to-one. Assume thatuPH2sR2d satisfies
Lju=0. By Fourier expansion, it suffices to study the following eigenvalue problem:

uk9 +
uk8

r
−

k2

r2uk = ef js2ef j − 1duk,

uksrd = rks1 + Osrdd near r = 0, k = 0,1, . . . .

We first claim thatuk is positive inR+ for all kù0. Letcsrd=rf j8srd. Then,c is positive inR+, and
csrd=2N+Osr2nj+2d nearr =0. By comparingc with u0, we obtain thatu0.0 in R+. Indeed, it is
easily checked that

c9 +
c8

r
= ef js2ef j − 1dc + 2ef jsef j − 1d.

Suppose thatu0 has a first zero atr =r0.0, namely,u0sr0d=0 andu0.0 in the intervals0,r0d.
Then, integration by parts gives that
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0 , E
0

r0

2ef js1 − ef jdu0 rdr = frcu08 − ru0c8g0
r0 ø 0,

which yields a contradiction. Hence,u0 is positive inR+. A comparison lemma also shows that
uk.0 in R+ for eachkù1. Indeed, if we suppose thatuk has a first zero atr =rk.0, then we
obtain

0 , E
0

rk k2

r
u0uk dr = fru0uk8 − ruku08g0

rk ø 0,

which leads to a contradiction. Then, it is easily checked that limr→`fuksrd / rg=`. Therefore, we
conclude thatker Lj ùH2sR2d=h0j.

We now prove the second part. We argue by contradiction and suppose that there exists a
sequencehunj,H2sR2d such thatiuniH2sR2d=1 while iLjuniL2sR2d=os1d as n→`. Passing to a
subsequence, we may assume that there existsu* PH2sR2d such thatun⇀ u* weakly in H2sR2d
and strongly inW1,psVd for 1,p,` and any bounded domainV. It is obvious thatLju* =0, and
henceu* ;0. Consequently,iuniH1sVd=os1d asn→` for each bounded domainV,R2.

Fix a constantR.0 such thatef jsRdù2/3. Let Br
c=huxuù rj and Ar =hr ø uxuø r +1j for a

constantr .0. Choose a cutoff functions such that 0øsø1, s;1 in BRs0d, andssxd=0 for
uxuùR+1. Let u1n=sun andu2n=s1−sdun. Then, it is easy to check that

Lju2n = s1 − sdLjun − 2 ¹ un · ¹ s − unDs, s2.6d

and iu1niH1sBR+1s0dd=os1d asn→`. Multiplying (2.6) by u2n, and integrating by parts, we obtain

i¹u2niL2sBR
c d + iu2niL2sBR

c d ø CsiuniH1sARd + iLjuniL2sBR
c dd = os1d.

In particular,iuniH1sBR+1
c d=os1d, which in turn implies thatiuniH1sR2d=os1d asn→`. Consequently,

we obtain

iD2uniL2sR2d = iDuniL2sR2d ø iuniL2sR2d + iLjuniL2sR2d = os1d,

which yields a contradiction. The proof of Lemma 2.3 is complete. h

Remark:SinceLj :H
2sR2d→L2sR2d is self-adjoint, it follows from Lemma 2.3 thatLj is an

isomorphism fromH2sR2d onto L2sR2d.

III. UNIQUENESS OF A TOPOLOGICAL SOLUTION

We first prove Theorem 1.1. To this end, we first obtain thea priori estimates for a solutionue

of (2.1) and (2.2) ase→0+. Those estimates will be given in the following two lemmas.
Lemma 3.1: Let ue be any topological solution of(2.1). Then, there is a constante0=e0sdd

.0 such that if0,e,e0 then

iueiH2sVd
cd ø c0 expf− c1/eg, s3.1d

for some positive constants c0,c1 depending only on d.
Proof: We divide the proof into three steps.
Step 1:We claim that for each compact subsetK,R2\Z, there are constantse* .0 and

g0sKd,0 such thatg0sKdøue,0 in K for 0,e,e* .
Let

u*sxd = o
j

2nj lnux − pju,

and ve=ue−u* . Fix a constantR.supjupju. Then, it suffices to prove that ife.0 is sufficiently
small then infBRs0dveùg0 for some constantg0sRd,0.
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We argue by contradiction and suppose that there are sequenceshenj andhxnj,BRs0d such that
en→0+ andven

sxnd=infBRs0dven
→−`. For simplicity, we letvn: =ven

.
Decomposevn=v1n+v2n, where

5Dv1n =
1

en
2eu*+vnseu*+vn − 1d, BRs0d

v1n = 0, ] BRs0d

and

HDv2n = 0, BRs0d
v2n = vn, ] BRs0d.

By the Harnack inequality, we may assumev2n→−` uniformly on BRs0d.
On the other hand, following the argument of Tarantello,29 we can verify thatv1n is bounded

in W0
1,qsBRs0dd for each 1,q,2. By passing to a subsequence, we may assume thatv1n⇀v`

weakly in W0
1,qsBRs0dd, and strongly inLpsBRs0dd for 1øp,2q/ s2−qd. Consequently,vn→−`

almost everywhere onBRs0d.
Consider the functionb0ssd defined in(2.4), and fix a constants0,0 such thatb0ss0d.2N.

Let un=vn+u* . For eachn, chooseynPR2 such that

unsynd = s0 and uynu = suphuxuuunsxd = s0.

Notice that infuxuùrunsxd=infuxu=runsxd for eachr .supjupju. Sinceun→−` almost everywhere on
each compact subset,uynu→`.

Let ūnsxd=unsenx+ynd. Then,ūn satisfies

5Dūn = eūnseūn − 1d, Vn: = huxu , uynu/2enj

E
Vn

eūns1 − eūnddxø 4pN.

Sinceūns0d=s0 andūn,0, the argument of Brezis–Merle5 implies thatūn is bounded inCloc
0 sVnd.

Then, we may assume thatūn converges inCloc
2 sR2d to ū* which is a solution of

5Dū* = eū*seū* − 1d, R2,

E
R2

eū*s1 − eū*ddxø 4pN.

Sinceū*s0d=s0,0, Lemma 2.1 implies thatū* is radially symmetric with respect to some point in
R2. Consequently

E
R2

eū*s1 − eū*ddxù 2pb0ss0d . 4pN,

which yields a contradiction.
Step 2:Recall thatVd=ø jBdspjd. We claim thatue→0 in C0sVd

cd ase→0+. Moreover, ife
.0 is sufficiently small, then

iueiL`sVd
cd ø c2 expf− c3/eg s3.2d

for some constantsc2sdd ,c3sdd.0. We note that for eachd.0, iueiL`sVd
cd is attained on]Vd.

Thus, it suffices to proveiueiL`s]Vddøexpf−c3/eg.
The second claim follows from the maximum principle. Indeed, fix two constantse* .0 and

m,0 such thatueùm on Vd/2
c for 0,e,e* . Then, it follows that
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− e2Due + e2mue ù 0 on Vd/2
c .

For eachx0P] Vd, we define a comparison functionwe by

wesxd = s1 − mdexpF em

2de
sux − x0u2 − d2/4dG for ux − x0u ø d/2.

It is easy to check that ife.0 is sufficiently small

− e2Dsue + wed + e2msue + wed . 0 on Bd/2sx0d.

Then, the maximum principle implies thatsue+wedsxd. sue+weduux−x0u=d/2.0 for ux−x0uød/2. In
particular, there is a constantc.0 such thatuesxd.−expf−c/eg for ux−x0uød/4. Since the
constantc is indepedent of the choice ofx0P]Vd, (3.2) immediately follows.

Step 3:We now prove(3.1). Notice thatiueiL`sVd/2
c døc2expf−c3/eg, and

e2Due − ue = Os1duueu2 in Vd/2
c , s3.3d

where Os1d denotes a quantity which is uniformly bounded inC0sVd/2
c d. Let s be a smooth

function such that 0øsø1, ssxd=1 for xPV3d/4
c , andssxd=0 for xPVd/2. Multiplying (3.3) by

sue and integrating by parts, we obtain

e2i¹ueiL2sV3d/4
c d

2
+ iueiL2sV3d/4

c d
2

ø CsddFE
Vd\Vd/2

se2uDsuue
2 + suueu3ddx+E

Vd
c

uueu3dxG
ø Csddfexps− c/ed + iueiL`sVd

cdiueiL2sVd
cd

2 g,

which in turn implies that ife.0 is sufficiently small

ei¹ueiL2sV3d/4
c d + iueiL2sV3d/4

c d ø Csdde expf− c3/eg. s3.4d

Choose a smooth functions̃ such that 0øs̃ø1, s̃sxd=1 for xPVd
c ands̃sxd=0 for xPV3d/4. We

note that

iD2ss̃uediL2sR2d = iDss̃uediL2sR2d ø CsiDueiL2sV3d/4
c d + iueiH1sV3d/4

c dd. s3.5d

Then, Lemma 3.1 is an immediate consequence of(3.4) and (3.5). h

We now investigate the asymptotic behavior ofue in each ballBdspjd. For each 1ø j øm, let
ûe,jsxd=uesex+pjd for uxuø2d/e. Then,ûe,j satisfies

Dûe,j = eûe,jseûe,j − 1d + 4pnjdp=0 for uxu ø 2d/e, s3.6d

and uûe,jsxdu=Ose−c/ed for uxu=2d/e. It follows from the Pohozaev identity that

E
uyuø2d/e

s1 − eûe,jd2dy= 4pnj
2 + ose−c/ed, s3.7d

for some constantc.0.
The following lemma shows the asymptotic behavior ofûe,j in the ballBd/es0d.
Lemma 3.2: There is a constante1=e1sdd.0 such that if0,e,e1, then

sup
j

iûe,j − f jiH2suxuød/ed ø C0 expf− C1/eg, s3.8d

for some positive constants C0 and C1 depending only on d.
Proof: It follows from Lemma 3.1 that ife.0 is sufficiently small, then there are positive

constantsc0,c1 such thatiûe,jiH2sd/eøuxuø2d/edøc0 expf−c1/eg. The proof of Lemma 3.2 will be
given in three steps.
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Step 1:We claim thatûe,j −f j →0 in Cloc
2 sR2d ase→0+.

Let v̂e,j = ûe,j −2nj lnuxu. Then,v̂e,j satisfies

Dv̂e,j = uxu2njev̂e,jsuxu2njev̂e,j − 1d for uxu ø 2d/e,

E
uxuø2d/e

uxu2njev̂e,js1 − uxu2njev̂e,jddx= 4pnj + ose−c/ed.

We claim thatv̂e,j is bounded inCloc
0 sR2d.

Indeed, sinceuxu2njev̂e,j ø1, it follows from the Harnack inequality that eitherv̂e,j is bounded in
ClocsR2d, or v̂e,j →−` uniformly on any compact subset ofR2. If v̂e,j →−` on any compact subset,
then it follows thateuyuøRs1−eûe,jd2dy=pR2+os1d as e→0+ for eachR.0, which contradicts
(3.7). Therefore,v̂e,j is bounded inCloc

0 sR2d.
By passing to a subsequence, we may assume thatv̂e,j converges uniformly inCloc

2 sR2d to a
function v* PC2sR2d, which satisfies

Dv* = uxu2njev*suxu2njev* − 1d in R2,

E
R2

uxu2njev*s1 − uxu2njev*ddxø 4pnj .

Let u*sxd=v*sxd+2nj lnuxu. Then, Lemma 2.1 implies thatu*sxd→0 as uxu→`, and henceu* is
radially symmetric. It follows from the uniqueness of radial topological solution10 that u* =f j.

Step 2:We claim supuxuø2d/eusûe,j −f jdsxdu→0 ase→0+.
For simplicity, we let

ŵe,j = ûe,j − f j ,

and fix a constantR0.0 such thatef jsR0dù2/3. We argue by contradiction and suppose that there
exist sequenceshenj and hxnj,B2d/en

s0d such thaten→0+ and

uŵen,jsxndu = sup
uxuø2d/en

uŵen,jsxdu ù g0

for some constantg0.0. It follows from the previous step thatuxnu→`, and we may assume that
R0, uxnu,2d/en. Let ŵn=ŵen,j for simplicity.

If ŵnsxnd.0, then we have

0 ù Dŵnsxnd = ef jsxnd+ŵnsxndsef jsxnd+ŵnsxnd − 1d − ef jsxndsef jsxnd − 1d . 0,

which yields a contradiction. Consequently,ŵnsxnd,0. SinceDŵnsxndù0, we have

ef jsxnd+ŵnsxnd + ef jsxnd ø 1.

Then, it follows from Lemma 2.1 thatŵnsxndø lnse−f jsxnd−1dø−uxnu+C for some constantC. In
particular,ŵnsxnd→−` asn→`.

Sincef j ,0 andf j +wn,0, it follows from the Harnack inequality thatf j +ŵn→−` uni-
formly onBRsxnd. Then, it follows thateux−xnu,Rs1−ef j+ŵnd2dx=pR2+os1d, which contradicts(3.7).

Step 3:We are now ready to prove the inequality(3.8). Recall thatx is a cutoff function such
that 0øxø1, x;1 on B1s0d andx;0 outsideB2s0d. Let sesxd=xsex/dd.

Since 0øet−1−tø st2/2demaxh0,tj for tPR, we haveLjŵe,j =Os1duŵe,ju2 pointwise for uxu
ø2d/e. Then, it is easy to check that

Ljsseŵe,jd = 2 ¹ ŵe,j · ¹ se + ŵe,jDse + Os1dseuŵe,ju2.

Let Âe=hd/eø uxuø2d/ej. Then, Lemma 2.3 implies that
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iseŵe,jiH2sR2d ø Csei¹ŵe,jiL2sÂed + e2iŵe,jiL2sÂed + sup
uxuø2d/e

uŵe,jsxduiseŵe,jiL2sR2dd

for some constantC=Csdd.0. Since supuxuø2d/euŵe,jsxdu=os1d ase→0+, we obtain

iŵe,jiH2suxuød/ed ø iseŵe,jiH2sR2d ø Csei¹ŵe,jiL2sÂed + e2iŵe,jiL2sÂedd

ø Ceiŵe,jiH2sd/eøuxuø2d/ed ø C0 expf− C1/eg

for some constantsC0,C1.0 if e.0 is sufficiently small. The proof of Lemma 3.2 is complete.h

For each 1ø j øm, let x jsxd=xssx−pjd /dd. Given a solutionue of (2.1) and (2.2), let

zesxd =
1

e3Fuesxd − o
j=1

m

x jsxdf jSx − pj

e
DG, x P R2. s3.9d

For the sake of simplicity, we letf j ,esxd=f jssx−pjd /ed for 1ø j øm and e.0. Then, ze

PH2sR2d satisfies

Dze =
1

e5expFo
j

x jf j ,e + e3zeGSexpFo
j

x jf j ,e + e3zeG − 1D −
1

e5o
j

x je
f j ,esef j ,e − 1d

−
1

e3o
j

f2 ¹ x j · ¹ f j ,e + f j ,eDx jg in R2, s3.10d

and, moreover, it follows from Lemma 3.1 and Lemma 3.2 thatizeiH2sR2d=os1d ase→0+.
Given a solutionue of (2.1) and(2.2), we construct a functionalFe :H2sR2d→H2sR2d in such

a way thatze defined in(3.9) is a fixed point ofFe. For this purpose, we define an auxiliary
functionalFe :H2sR2d→L2sR2d by

Fesvd = Dv −
1

e5expFo
j

x jf j ,e + e3vGSexpFo
j

x jf j ,e + e3vG − 1D
+

1

e5o
j

x je
f j ,esef j ,e − 1d +

1

e3o
j

f2 ¹ x j · ¹ f j ,e + f j ,eDx jg. s3.11d

Indeed,Fe will be defined in terms ofFe andDFes0d. In order to prove thatFe has a unique
fixed point in H2sR2d, we show thatFe is a well-defined contraction mapping on a suitable
bounded subsetB of H2sR2d. Thus, we need to obtain some estimates forFe andDFes0d. We prove
in the following lemma useful properties ofFe for e.0 sufficiently small.

Lemma 3.3: Ife.0 is sufficiently small, we have

(a) iFes0diL2sR2døc0 expf−c1/eg for some constants c0,c1.0.
(b) DFes0d is an isomophism from H2sR2d onto L2sR2d, and there is a constant C.0 such that

iDFes0dhiL2sR2d ù CihiH2sR2d for all h P H2sR2d. s3.12d

(c) iDFeszdh−DFes0dhiL2sR2døCeihiH2sR2d for iziH2sR2dø1.

Proof:

(a) Estimate forFes0d: We note thatFes0d;0 both onVd=ø jBdspjd and onV2d
c . Moreover, if

we setS j =B2dspjd \Bdspjd for each 1ø j øm, it follows from Lemma 2.1 that

sup
1ø jøm

sif j ,eiL`sS jd
+ i¹f j ,eiL`sS jd

d ø c0 expf− c1/eg

for some constantsc0,c1.0. Thensad follows from the inequalityuet−1uø utueutu.
(b) Estimate foriDFes0di: Notice that forhPH2sR2d

012305-12 Kwangseok Choe J. Math. Phys. 46, 012305 (2005)

                                                                                                                                    



DFes0dh = Dh −
1

e2expFo
j

x jf j ,eGS2 expFo
j

x jf j ,eG − 1Dh.

The proof ofsbd is essentially similar to that of Lemma 2.3. We argue by contradiction and
suppose there are sequenceshenj and hhnj,H2sR2d such thaten→0+, ihniH2sR2d=1, and
iDFen

s0dhniL2sR2d=os1d asn→`.

For each 1ø j øm, we let s̃ jsxd=xs4sx−pjd /dd and h̃n=s1−o j s̃ jdhn. Then,h̃n satisfies

Dh̃n −
1

en
2expFo

j

x jf j ,enGS2 expFo
j

x jf j ,enG − 1Dh̃n

= − o
j

2 ¹ hn · ¹ s̃ j − o
j

hnDs̃ j + S1 −o
j

s̃ jDDFen
s0dhn. s3.13d

Recall Vr
c=fø jBrspjdgc for a constantr .0. Multiplying s3.13d by h̃n and integrating by

parts, we obtain forn sufficiently large

i¹h̃ni
L2sVd/4

c d
2

+
1

en
2ih̃ni

L2sVd/4
c d

2
ø Cih̃niL2sVd/4

c dsihniH1sVd/4
c d + iDFen

s0dhniL2sVd/4
c dd s3.14d

for some constantC=Csdd.0. Then, it follows from the assumption that

i¹hniL2sVd/2
c d +

1

en
ihniL2sVd/2

c d ø i¹h̃niL2sVd/4
c d +

1

en
ih̃niL2sVd/4

c d

ø CensihniH1sVd/4
c d + iDFen

s0dhniL2sVd/4
c dd ø Cen. s3.15d

Let s j
*sxd=xs2sx−pjd /dd andhn

* =s1−o j s j
*dhn. By repeating the above arguments3.13d and

s3.14d on Vd/2
c , we obtain

i¹hn
*iL2sVd/2

c d +
1

en
ihn

*iL2sVd/2
c d ø CensihniH1sVd/2

c d + iDFen
s0dhniL2sVd/2

c dd = osend as n → `.

s3.16d

Then, it follows that ihn
*iL2sVd/2

c d=osen
2d and hence iDhn

*iL2sVd/2
c d=os1d. Consequently,

ihniH2sVdd=1+os1d asn→`.
On the other hand, for eachj =1, . . . ,m, let x jsxd=xssx−pjd /dd and hjn=x jhn. Let

ĥnsxd=hnsenx+pjd, x̂ jsxd=x jsenx+pjd, and ĥjn= x̂ jĥn. We also letS j =hdø ux−pjuø2dj and

Ŝ0=hd/enø uxu ø2d/enj.
Then it is easily checked thatĥjn satisfies

Ljĥjn = 2 ¹ ĥn · ¹ x̂ j + ĥnDx̂ j + en
2x̂ jsxdfDFen

s0dhngsenx + pjd

+ fex̂ jf js2ex̂ jf j − 1d − ef js2ef j − 1dgĥjn for uxu ø 2d/en. s3.17d

Notice that the last term ins3.17d vanishes outsideŜ0. Then, it follows froms3.16d and
Lemma 2.3 that

iĥjniH2sR2d ø Cseni¹ĥniL2sŜ0d + iĥniL2sŜ0d + eniDFen
s0dhniL2sBdspjdd

d

ø Cseni¹hniL2sS jd
+ en

−1ihniL2sS jd
+ eniDFen

s0dhniL2sBdspjddd = osend as n → `.

Consequently,ihniH2sBdspjddø ihjniH2sR2d=os1d for each 1ø j øm, which yields a contradic-
tion. Therefores3.12d is proved.
SinceDFes0d :H2sR2d→L2sR2d is self-adjoints3.12d implies thatDFes0d is indeed an iso-
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morphism fromH2sR2d onto L2sR2d, and moreover,ifDFes0dg−1iøC for e.0 sufficiently
small.

(c) Estimate foriDFeszd−DFes0di: Notice that

DFeszdh − DFes0dh = −
2

e2expFo
j

2x jf j ,eGsexpf2e3zg − 1dh +
1

e2

3expFo
j

x jf j ,eGsexpfe3zg − 1dh.

Then scd immediately follows from the embeddingH2sR2d�L`sR2d. h

We are now in a position to prove Theorem 1.1
Proof of Theorem 1.1:Following Ref. 24, we define a functionalFe :H2sR2d→H2sR2d by

Fesvd = v − fDFes0dg−1Fesvd. s3.18d

Then, it suffices to prove thatFe admits a unique fixed point inH2sR2d for e.0 sufficiently small.
Let B=huPH2sR2d u iuiH2sR2dø1j. Then, it follows from Lemma 3.1 and Lemma 3.2 that for each
topological solutionue of (2.1), zePH2sR2d defined in(3.9) is a fixed point ofFe, and moreover,
zePB for e.0 sufficiently small.

We claim thatFe :B→B is a well-defined contraction mapping fore.0 sufficiently small.
Observe that

DFeszdh = − fDFes0dg−1sDFeszd − DFes0ddh for zP B, h P H2sR2d.

Then, it follows from Lemma 3.3 that ife.0 is sufficiently small

iDFeszdhiL2sR2d ø ifDFes0dg−1i isDFeszd − DFes0ddhiL2sR2d ø CeihiL2sR2d

for zPB. Moreover, it also follows from Lemma 3.3 that

iFes0diH2sR2d ø CiFes0diL2sR2d ø C expf− c/eg.

Assume thatv ,v1,v2PB are given. Ife.0 is sufficiently small we obtain

iFesvdiH2sR2d ø iFes0diH2sR2d + iFesvd − Fes0diH2sR2d

ø iFes0diH2sR2d + ssup
zPB

iDFeszdidiviH2sR2d ø Csexpf− c/eg + ed,

and

iFesv1d − Fesv2diH2sR2d ø ssup
zPB

iDFeszdidiv1 − v2iH2sR2d ø Ceiv1 − v2iH2sR2d.

Therefore, ife.0 is sufficiently small,Fe :B→B is well-defined contraction mapping, which in
turn implies thatFe has the unique fixed pointvePB.

On the other hand, recall the functionze defined in(3.9) is also the fixed point of the mapping
Fe and izeiH2sR2d=os1d as e→0+. Therefore, by the uniqueness of the fixed point,ze=ve for e

.0 sufficiently small.
The proof of Theorem 1.1 is complete. h

We will prove Theorem 1.2 in the rest of this section.
For simplicity, we leta=2/k. Then, it suffices to prove that the following equation:

012305-14 Kwangseok Choe J. Math. Phys. 46, 012305 (2005)

                                                                                                                                    



Du = euseu − 1d + 4po
j=1

m

njdapj
, R2, s3.19d

admits a unique topological solution ifa.0 is sufficiently small. To this end, we follow the
argument in the proof of Theorem 1.1, and show that any topological solution of(3.19) satisfies a
specific asymptotic behavior fora.0 sufficiently small. Throughout the rest of this section,ūa

will denote a topological solution of(3.19).
The following lemma will be very useful when we prove Lemma 3.5.
Lemma 3.4: Leta.0. There is a constant C=Cshpjj ,hnjjd.0 such that

E
R2

seūa − 1d2dxø C.

Proof: Let v̄a,jsxd= ūasxd−2nj lnux−apju for xPR2 and j =1, . . . ,m. Then, we claim that

E
R2

seūa − 1d2dx= 4po
j=1

m

snj
2 + anjpj · ¹ v̄a,jsapjdd. s3.20d

Indeed,(3.20) follows from the Pohozaev identity. Choose a small constant«.0 such that«
, s1/2dinfhuapj −apkuu j Þkj. Multiplying both sides of(3.19) by x·¹ ūa and integrating on the
domainR2\ø jBesapjd, we obtain

o
j=1

m E
ux−apj u=«

F1

«
sx · ¹ ūadssx − apjd · ¹ ūad −

1

2«
sx · sx − apjddu¹ūau2Gds

=E
R2\ø jB«sapjd

seūa − 1d2dx+
1

2«
o
j=1

m E
ux−apj u=«

sx · sx − apjddseūa − 1d2ds. s3.21d

Sinceūasxd= v̄a,jsxd+2nj lnux−apju for each 1ø j øm, it is easily checked that forux−apju=«

1

«
sx · ¹ ūadssx − apjd · ¹ ūad −

1

2«
sx · sx − apjddu¹ūau2

=
2nj

2

«
+

2nj

«
apj · ¹ v̄a,jsapjd +

2nj
2

«3 apj · sx − apjd + Os1d as « → 0+. s3.22d

Then (3.20) is an immediate consequence of(3.21) and (3.22).
Let w̄asxd= ūasxd−o j=1

m 2nj lnux−apju. We note that

¹w̄asxd =
1

2p
E

R2

x − y

ux − yu2
eūasydseūasyd − 1ddy for x P R2.

If uxuø1, then we obtain that

2pu¹w̄asxdu ø E
uyuø2

1

ux − yu
eūasyds1 − eūasydddy+E

uyuù2

1

ux − yu
eūasyds1 − eūasydddy

ø E
uyuø2

1

ux − yu
dy+E

uyuù2

2

uyu
eūasyds1 − eūasydddyø C s3.23d

for some constantC depending ono j=1
m nj. We also note that
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¹ v̄a,jsapjd = o
kÞ j

2nkspj − pkd
aupj − pku2

+ ¹ w̄asapjd for j = 1, . . . ,m.

Then, Lemma 3.4 immediately follows from(3.20) and (3.23). h

Before we proceed, we fix some notations. FormPR, we let

fmsxd = o
j=1

m

nj lnS ux − mpju2

1 + ux − mpju2
D, gmsxd = o

j=1

m
4nj

s1 + ux − mpju2d2 .

Let f be the unique(radial) topological solution of

Df = efsef − 1d + 4pSo
j=1

m

njDdp=0 in R2.

Then, it is easily checked thatūa− faPH2sR2d andf− f0PH2sR2d. The following lemma shows
the asymptotic behavior ofūa for a.0 sufficiently small.

Lemma 3.5: Fora.0 sufficiently small, ūa can be decomposed as

ūa = fa − f0 + f + za, za P H2sR2d, s3.24d

whereizaiH2sR2d=Osad as a→0+.
Proof: The proof of Lemma 3.5 is similar to that of Lemma 3.2, and we just sketch the proof.

Let va= ūa− fa for simplicity.
Step 1:va→f− f0 in Cloc

2 sR2d asa→0+.
Indeed, sinceeūa ø1, it follows from Harnack’s inequality(see, e.g., Ref. 5) that eitherhvaj is

bounded inCloc
0 sR2d or va→−` uniformly on any compact subset asa→0+. By Lemma 3.4, we

conclude thathvaj is bounded inCloc
0 sR2d. Then, the standard diagonal process, Lemma 3.4, and

the uniqueness of a radial topological solution imply thatva→f− f0 in Cloc
2 sR2d asa→0+.

Step 2:supuxuù1uūasxd−fsxdu→0 asa→0+.
Indeed, we note that ifa.0 is sufficiently small

ufasxd − f0sxdu ø Cas1 + uxud−3 for uxu ù 1.

Consequently, it follows from Step 1 that supuxu=1uūasxd−fsxdu→0 asa→0+. Moreover, the maxi-
mum principle implies that infuxuù1ūa is bounded below by a fixed constant fora.0 sufficiently
small. Therefore, Step 2 follows from Lemma 3.4 and the argument in the proof of Lemma 3.2.

Step 1 and Step 2 imply thativa−sf− f0diL`sR2d→0 asa→0+. Since

uefasxd − ef0sxdu + ugasxd − g0sxdu ø Cas1 + uxud−3 for x P R2, s3.25d

it follows that

usD − efs2ef − 1ddsva − sf − f0ddu ø Csuva − sf − f0du2 + as1 + uxud−3d.

Consequently, Lemma 2.3 implies that

iva − sf − f0diH2sR2d ø Ca

for a.0 sufficiently small. Lemma 3.5 is proved. h

We are now in a position to prove Theorem 1.2.
Proof of Theorem 1.2:Fix a small constantm0.0 and define a mappingP:H2sR2d

3 s−m0,m0d→L2sR2d by

Psc,md = Dc − efm−f0+f+csefm−f0+f+c − 1d + efsef − 1d − gm + g0.

Then, it is easily checked that(3.19) admits a solutionūm of the form (3.24) if and only if
Pszm ,md=0.
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Lemma 2.3 implies thatDcPs0,0d is an isomorphism fromH2sR2d onto L2sR2d. Since
Ps0,0d=0, it follows from the implicit function theorem that there is a positive constantm1

,m0 such that for each −m1,m,m1 the mappingPs· ,md admits a unique zerov=vsmd in
H2sR2d. In other words, ifa.0 is sufficiently small then Eq.(3.19) admits a unique solution
which takes the form(3.24) with izaiH2sR2d→0 asa→0+.

The proof of Theorem 1.2 is complete. h

IV. UNIQUENESS RESULT FOR COMPACT DOMAINS

In the previous section, we obtaineda priori estimates for the topological solutionue for e
.0 sufficiently small by dividingR2 into two disjoint sets,Vd=UjBdspjd and Vd

c. Actually, by
making use of the topological boundary condition(2.2), we have proved thatue is bounded below
on Vd

c, which is the first step for the proof of Lemma 3.1 and Lemma 3.2.
In this section, we consider a general situation for(2.1), and study(2.1) on a compact

Riemannian 2-manifoldsV ,gd without boundary

D0u =
1

e2eueseue − 1d + 4po
j=1

m

njdpj
in V, s4.1d

whereD0 is the Laplace–Beltrami operator onsV ,gd. In this case, every solution of(4.1) is not
bounded below on a compact subsetK of V \ hp1, . . . ,pmj because we do not have the topological
boundary condition(2.2) anymore. Indeed, it has been proved by Dinget al.14 that for e.0
sufficiently small(4.1) admits at least two solutionsue,1 andue,2 such that

(a) ue,1→0 a.e. ase→0+ (type I);
(b) ue,2→−` a.e. ase→0+.

In what follows, we will callue a type-I solution ifue satisfies(4.1) and the above-mentioned
asymptotic behavior(a).

Let Gsx,yd be the Green function which satisfies

DxGsx,yd = dy −
1

uVu
, V

E
V

Gsx,yddVgsxd = 0.

Then, it follows from the arguments in Refs. 29 and 14 thatue is a type-I solution of(4.1) if and
only if ue−o j 4pnjGsx,pjd is bounded below by a constant fore.0 sufficiently small.

We limit our attention to the type-I solutions, and establish a uniqueness result fore.0
sufficiently small. More precisely, we have

Theorem 4.1: Fix any constant C* , infxPVs−o j 4pnjGsx,pjdd. Then, there is a constante*

.0 such that for each0,e,e* (4.1) admits a unique solution ue which satisfies ue
−o j 4pnjGsx,pjdùC* .

Remark:The constante* in Theorem 4.1 depends onC* , hpjj, hnjj and the Riemannian
manifold sV ,gd.

Theorem 1.3 is a direct consequence of Theorem 4.1. We can prove Theorem 4.1 by making
use of the argument used in Sec. III. Indeed, every crucial estimate in the previous section is
essentially local. We will choose a suitable atlashsUl ,wldjl=1

k on V, and repeat the proof of
Theorem 1.1 on each local chartsUl ,wld.

Theorem 4.1 will be proved in several steps, and we will just present the outline of the proof.
To this end, we choose an atlashsUl ,xldjl=1

k on V with the property that

(i) For 1ø l øk, xlsUld is an open neighborhood of the origin inR2. Moreover,pj PUj and
xjspjd=0 for each 1ø j øm.
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(ii ) For 1ø l øk, sUl ,xld is an isothermal coordinate, and there is a smooth functionjl such that
jls0d=0, ¹jls0d=0 andds2=ejlsxdudxu2 on sUl ,xld.

(iii ) For 1ø j øm, there is a constant 0,d,1/2 such thathxPR2uxuø2dj,xjsUjd and
i¹j jiL`suxuø2ddø1. Moreover, we assume thatxj

−1shuxuø2djdùUl =x for l Þ j .

In what follows, we let

Vd = ø j=1
m xj

−1shx P R2uuxu ø dj.

We first present the following lemma similar to Lemma 3.1.
Lemma 4.1: Fore.0 sufficiently small, there are constants C,c.0 such that

iueiH2sVd
cd ø Ce−c/e.

Proof: On eachsUl ,xld, Eq. (4.1) can be written as

Due =
1

e2ejleueseue − 1d, uxu Þ 0,

whereD=]1
2+]2

2 stands for a Laplacian inR2. Then, the proof is similar to that of Lemma 3.1
(Steps 2, 3). We skip the details. h

We now investigate the asymptotic behavior ofue near eachpj PV. For each 1ø j øm (4.1)
may be written as

Du =
1

e2ej jeuseu − 1d + 4pnjdp=0, for uxu ø 2d. s4.2d

For each 1ø j øm, let ĵ jsxd=j jsexd for uxu,2d/e, and

f̂ j ,esxd =Heĵ jef js2ef j − 1d, uxu ø 2d/e,

ef js2ef j − 1d, uxu . 2d/e.

The following corollary is the direct consequence of Lemma 2.3.
Corollary 4.1: For 1ø j øm, there are constants c.0 and e1.0 such that

isD − f̂ j ,edviL2sR2d ù civiH2sR2d

for all vPH2sR2d and 0,e,e1. Therefore, D− f̂ j ,e is an isomorphism from H2sR2d onto L2sR2d
for 0,e,e1.

For each 1ø j øm and 0,e,e1, let ĉ j ,ePH2sR2d be the unique solution of

sD − f̂ j ,edĉ j ,e = gj ,e in R2, s4.3d

wheregj ,ePL2sR2d is defined by

gj ,esxd =Hseĵ j − 1def jsef j − 1d, uxu ø 2d/e

0, uxu . 2d/e.

Let

a jsed = igj ,eiL2sR2d.

Sincej js0d=0 and¹j js0d=0, it follows thata jsedøCe2 for all 1ø j øm.
Lemma 4.2: There are positive constants C,e1, and c1 such that for0,e,e1

uĉ j ,esxdu ø Ca jsede−c1uxu, x P R2. s4.4d
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Proof: Corollary 4.1 implies thatiĉ j ,eiL` øCiĉ j ,eiH2sR2døCa jsed. Choose two constantsR0

and 0,c0,1 such thatf̂ j ,esxdù2c0
2 for uxuùR0. Consider a comparison function

wsxd = C0a jsede−c0uxu, x P R2.

Sinceuf jsxduøCe−uxu for xPR2, there are constantsR.R0 ande0.0 such that

sD − f̂ j ,edsĉ j ,e − wd . 0 for uxu . R and 0, e , e1.

Fix a constantC0.0 such thatĉ j ,e−w,0 for uxu=R. Then, the weak maximum principle implies

that ĉ j ,eøw for uxu.R.

Similarly, we can choose positive constantsR1 andC1 such thatĉ j ,e.−C1a jsede−c0uxu for uxu
.R1 and 0,e,e1. h

Let ue,j be a solution of(4.2) such that supuxu=2duue,jsxdu→0 ase→0+. Let ûe,jsxd=ue,jsexd for
uxuø2d/e.

Lemma 4.3: Fore.0 sufficiently small, there are constants C,c.0 such that

iûe,j − f j − ĉ j ,eiH2suxuød/ed ø Cse−c/e + e2a jsedd. s4.5d

Proof: It follows from the Pohozaev identity and the gradient estimate(Lemma A) that

1

e2E
uxu,2d

S1 +
1

2
sx · ¹ j jdDej jseue,j − 1d2dx= 4pnj

2 + ose−c/ed

for some constantc.0. Sinceix·¹j jiL`suxu,2ddø1, it follows that

E
uxu,2d/e

eĵ jseûe,j − 1d2dxø C. s4.6d

Step 1:We claim supuxuø2d/euûe,jsxd−f jsxdu→0 ase→0+.
Indeed, it follows from the argument in Lemma 3.2(Step 1) and (4.6) that ûe,j −f j →0 in

Cloc
2 sR2d. For the sake of simplicity, we letŵe,j = ûe,j −f j. Suppose that there are sequenceshenj and

hxnj such thaten→0, uxnu,2d/en, and

uŵen,jsxndu = sup
uxuø2d/en

uŵen,jsxdu ù g0

for some constantg0.0. It is easy to check thatuxnu→` andenuxnu→0. Sinceĵ jsxnd=os1d, we can
follow the argument in Lemma 3.2(Step 2) and conclude thatŵen,jsxnd→−`. Then it follows from
the Harnack inequality thatŵen,j →−` uniformly onBRsxnd for any constantR.0, which contra-
dicts (4.6). Therefore, our claim is proved.

Step 2:We now prove(4.5). Making use of the inequality 0øet−1−tø t2eutu, tPR, we can
verify that

sD − f̂ j ,edsĉe,j − ĉ j ,ed = Os1duŵe,ju2 for uxu ø 2d/e. s4.7d

Consider a cutoff functionsPC0
`sR2d such that 0øsø1, s;1 for uxuød, and s;0 for uxu

ù2d. Let sesxd=ssexd. Then, we obtain

sD − f̂ j ,edssesŵe,j − ĉ j ,edd = sessD − f̂e,jdsŵe,j − ĉ j ,edd + fD,segŵe,j − fD,segĉe,j ,

wherefD ,segf = fDse+2¹se ·¹ f. Corollary 4.1 and(4.7) imply that
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isesŵe,j − ĉ j ,ediH2sR2d ø CsifD,segŵe,jiL2sR2d + ifD,segĉ j ,eiL2sR2d + iĉ j ,eiL4sR2d
2 d

+ Ciŵe,j + ĉ j ,eiL`isesŵe,j − ĉ j ,ediL2sR2d. s4.8d

Moreover, it follows from elliptic estimates that

i¹ĉ j ,eiL`sd/eøuxuø2d/ed ø Ce−c/e.

Then (4.5) is an immediate consequence of(4.4) and (4.8), and Lemma 4.1. h

Recall thatf j is the(unique) radial solution of(2.5). Let sPC0
`sR2d be a cutoff function such

that 0øsø1, s;1 onBds0d, ands;0 onB2d
c s0d. Let c j ,esxd=ĉ j ,esx/ed andf j ,e

* sxd=f jsx/ed for
xPR2.

For each 1ø j øm, we let

s̄ j = s + xj, f̄ j ,e = f j ,e
* + xj and c̄ j ,e = c j ,e + xj .

Then, Lemma 4.1 and Lemma 4.3 imply that
Proposition 4.1: Let ue be a type-I solution of(4.1). For e.0 sufficiently small, ue is decom-

posed as

ue = o
j=1

m

s̄ jsf̄ j ,e + c̄ j ,ed + e5/2ve s4.9d

for somevePH2sVd such thativeiH2sVd=os1d as e→0+.
In what follows, we prove that(4.1) admits a unique solution of the form(4.9) if e.0 is

sufficiently small.
Construction of a contraction mapping
DefineFe :H2sVd→L2sVd by

Fesvd = D0v −
1

e9/2expFe5/2v + o
j=1

m

s̄ jsf̄ j ,e + c̄ j ,edGSexpFe5/2v + o
j=1

m

s̄ jsf̄ j ,e + c̄ j ,edG − 1D
+

1

e5/2o
j=1

m

ss̄ jD0f̄ j ,e − 4pnjdpj
d +

1

e5/2o
j=1

m

s̄ jD0c̄ j ,e +
1

e5/2o
j=1

m

fD0,s̄ jgsf̄ j ,e + c̄ j ,ed,

wherefD0,s̄ jgf = fD0s̄ j +2¹ f ·¹ s̄ j. It is easily checked that(4.1) admits a solutionue of the form
(4.9) if and only if Fesved=0.

We have the following lemma similar to Lemma 3.3.
Lemma 4.4: There is a constante1.0 such that if0,e,e1 then we have

(a) iFes0diL2sVdøCse−3/2max1ø jøma jsed+e−c/ed for some constants C,c.0.
(b) DFes0d is an isomophism from H2sVd onto L2sVd, and there is a constant C.0 such that

iDFes0dhiL2sVd ù CihiH2sVd for all h P H2sVd. s4.10d

(c) iDFeszdh−DFes0dhiL2sVdøCe1/2ihiH2sVd for iziH2sVdø1.

Proof: The proof of Lemma 4.4 is similar to that of Lemma 3.3, and we sketch it in brief.
Lemma 4.2 implies that there are some constantsC,c.0 such thatuFes0duøCe−c/e on Vd

c. For
each 1ø j øm, it follows that on each local coordinate chartsUj ,xjd
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Fes0d = −
1

e9/2ef j ,e
* +c j ,esef j ,e

* +c j ,e − 1d +
1

e9/2e−j jef j ,e
*

sef j ,e
*

− 1d +
1

e9/2ef j ,e
*

s2ef j ,e
*

− 1dc j ,e

+
1

e9/2s1 − e−j jdef j ,e
*

sef j ,e
*

− 1d =
1

e9/2Os1duc j ,eu2 for uxu ø d.

Sincea jsedøCe2, we obtain

iFes0diL2sxj
−1sBds0ddd ø Ce−7/2iĉ j ,eiL4sBd/es0dd

2
ø Ce−3/2a jsed.

Therefore(a) is proved. In particular,iFes0diL2sVd=Ose1/2d ase→0+.
Making use of(4.4) and the argument in the proof of Lemma 3.3, we can also prove(b) and

(c). We skip the details. See Refs. 1, 2, 4, 21, and 26. h

We are now in a position to prove Theorem 4.1.
Proof of Theorem 4.1:Let B=hvPH2sVduiviH2sVdø1j, and define a mappingFe :H2sVd

→H2sVd by

Fesvd = v − fDFes0dg−1Fesvd.

It is easily checked that(4.1) admits a solutionue of the form(4.9) if and only if vePH2sVd is a
fixed point ofFe.

It follows from Lemma 4.4 thatFe is a well-defined contraction mapping fromB into B if
e.0 is sufficiently small. Therefore, ife.0 is sufficiently small thenFe admits a unique fixed
point in B.

On the other hand, Proposition 4.1 implies thatve defined in(4.9) is a fixed point ofFe, and
moreover,vePB if e.0 is sufficiently small. Therefore,ve in (4.9) is the unique fixed point ofFe

for e.0 sufficiently small.
The proof of Theorem 1.3 is complete. h
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The teleparallel coframe gravity may be viewed as a generalization of the standard
GR. A coframe(a field of four independent 1-forms) is considered, in this approach,
to be a basic dynamical variable. The metric tensor is treated as a secondary
structure. The general Lagrangian, quadratic in the first order derivatives of the
coframe field is not unique. It involves three dimensionless free parameters. We
consider a weak field approximation of the general coframe teleparallel model. In
the linear approximation, the field variable, the coframe, is covariantly reduced to
the superposition of the symmetric and antisymmetric field. We require this reduc-
tion to be preserved on the levels of the Lagrangian, of the field equations, and of
the conserved currents. This occurs if and only if the pure Yang–Mills-type term is
removed from the Lagrangian. The absence of this term is known to be necessary
and sufficient for the existence of the viable(Schwarzschild) spherical-symmetric
solution. Moreover, the same condition guarantees the absence of ghosts and ta-
chyons in particle content of the theory. The condition above is shown recently to
be necessary for a well-defined Hamiltonian formulation of the model. Here we
derive the same condition in the Lagrangian formulation by means of the weak field
reduction. ©2005 American Institute of Physics.[DOI: 10.1063/1.1819523]

I. INTRODUCTION

Einstein’s general relativity(GR) is very successful in describing the long distance(macro-
scopic) gravity phenomena. This theory, however, encounters serious difficulties on microscopic
distances. So far essential problems appear in all attempts to quantize the standard GR(for recent
review, see, e.g., Ref. 1). Also, the Lagrangian structure of GR differs, in principle, from the
ordinary microscopic gauge theories. In particular, a covariant conserved energy-momentum ten-
sor for the gravitational field cannot be constructed in the framework of GR. Consequently, the
study of alternative models of gravity is justified from the physical as well as from the mathemati-
cal point of view. Even in the case when GR is unique true theory of gravity, consideration of
close alternative models can shed light on the properties of GR itself.

Among various alternative constructions, the Poincaré gauge theory of gravity, see Refs. 2–11,
is of a special interest. This theory proposes a natural bridge between gauge and geometrical
theories. Moreover, it has a straightforward generalization to the metric-affine theory of gravity,5

which involves a wide spectra of space–time geometries. However, it was elucidated recently that
even the restriction of the Poincaré gauge theory to the teleparallel model provides a reasonable
alternative to GR.

a)Electronic mail: itin@math.huji.ac.il
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A. Coframe (teleparallel ) gravity—basic facts and notations

We start with a brief account of the coframe(teleparallel) model of gravity and establish the
notations used in this paper. Details, different approaches, and additional references can be found
in Refs. 12–28.

Let a four-dimensional(4D) differential manifoldM be endowed with two smooth fields: a
frame fieldea and a coframe fieldqa. In a local coordinate chart,

ea = ea
msxd ] /] xm, qa = qm

asxddxm, a,m = 0,1,2,3. s1.1d

These fields allow to compare two vectors(more generally, two tensors) attached to different
points of the manifold. It is referred to as theteleparallel structureon M. The two basic fields are
assumed to fulfill the dual relation:eacqb=da

b. We denote byc the interior product operator
X3Lp→Lp−1 that, for an arbitrary vector fieldXPX and a p-form field wPLp, Xcw:
=wsX, . . .d. So only one of the fields,ea or qa, is independent. Thus, two alternative(but, prin-
ciple, equivalent) representations of the teleparallel geometry are possible.

The frame representationis based on a complexhM ,eaj and applies the tensorial calculus as
the main mathematical tool similar to the Einstein tensorial representation of GR.

The coframe representation, which deals with a complexhM ,qaj, applies the exterior form
technique. In the present paper, we use this approach and call it thecoframe gravity, in contrast to
the metric gravity of GR.

In a wider context, the coframe field appears as one of the basic dynamical variables in the
Poincaré gauge gravity and in the metric-affine gravity. To extract the pure coframe sector, in these
theories, one must require vanishing of the curvature. Here, we treat the coframe field as a
self-consistent dynamical variable with its own covariant operators: wedge product, Hodge map
and exterior derivative. These two approaches(one with a trivial connection and the other without
explicit exhibition of a connection) are principally equivalent.

The indices in(1.1) are basically different. The greek indices refer to the coordinate space and
describe the behavior of tensors under the group of diffeomorphisms of the manifoldM. The
italic indices denote different 1-forms of the coframe. The corresponding group of transforma-
tions, SOs1,3d, comes together with its natural invarianthab=diags1,−1,−1,−1d.

The metric tensor onM is expressed via the coframe as

g = habq
a

^ qb, s1.2d

i.e., the coframe is postulated to be pseudo-orthonormal. The coframe field and all the objects
constructed from it are assumed to be global(rigid) covariant. In other words, all the constructions
are required to be covariant under the global transformationsqa→Aa

bqb with a constant matrix
Aa

bPSOs1,3d. The metric tensor(1.2) is invariant under a wider group of transformation: local
(pointwise) transformations of the coframe withAa

b=Aa
bsxd.

Consider a Lagrangian density, which is(i) diffeomorphism invariant,(ii ) invariant under
global SOs1,3d transformations of the coframe, and(iii ) quadratic in the exterior derivatives of the
coframe. The most general Lagrangian of this form is a linear combination,23,26

L =
1

2o
i=1

3

ri
sidL, s1.3d

wherer1,r2,r3 are free dimensionless parameters. The linear independent 4-forms appearing here
are expressed via the coframefield strength, Ca: =dqa,

s1dL = Ca ∧ * Ca, s1.4d

s2dL = sCa ∧ qad ∧ * sCb ∧ qbd, s1.5d
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s3dL = sCa ∧ qbd ∧ * sCb ∧ qad. s1.6d

The Hodge dual operator * is defined by the pseudo-orthonormal coframeqa or, equivalently, by
the metric(1.2). One may try to include in the Lagrangian some invariant expressions of the
second order(similarly to the Hilbert–Einstein Lagrangian). Such terms, however, are reduced to
total derivatives and do not affect the field equations and the Noether conserved currents. So(1.3)
is the most general Lagrangian that generates the field equations of the second order.

Let us introduce the notion of thefield strength

Fa: = s1dFa + s2dFa + s3dFa, s1.7d

with

s1dFa: = sr1 + r3dCa, s1.8d

s2dFa: = r2bea c sqm ∧ Cmd, s1.9d

s3dFa: = − r3qa ∧ sbem c Cmd. s1.10d

Such separation of the strengthFa involves two scalar-valued formsqm∧Cm andem c Cm. So some
calculations are simplified. For irreducible decomposition ofFa, see Refs. 5 and 23.

In the notations(1.8)–(1.10), the coframe Lagrangian(1.3) takes a form similar to the Max-
well Lagrangian,

L = 1
2Ca ∧ * Fa. s1.11d

The free variation of(1.11) relative to the coframeqa must take into account also the variation of
the Hodge dual operator, which implicitly depends on the coframe. It yields the field equation of
the form23

d * Fa = Ta, s1.12d

where the 3-formTa is the energy-momentum current of the coframe field

Ta = sbea c Cmd ∧ * Fm − bea c L. s1.13d

The conservation law for this 3-form: dTa=0 is a straightforward consequence of(1.12).

B. Viable models—a problem of physical motivation

A general quadratic coframe model, which is global SOs1,3d invariant, involves three param-
eters,

r1, r2, r3 — free. s1.14d

The ordinary GR is extracted from this family by requiring of thelocal SOs1,3d invariance, which
is realized by the following restrictions of the parameters:

r1 = 0, 2r2 + r3 = 0. s1.15d

The analysis of exact solutions28 to the field equation(1.12) shows that the Schwarzschild solution
appears even for a wider set of parameters(viable set),

r1 = 0, r2, r3 — free. s1.16d

Moreover, forr1Þ0, spherical-symmetric static solutions to(1.12) do not have the Newtonian
behavior at infinity.28
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So a problem arises:Which physical motivated requirement extracts the viable set of param-
eters?

The quantum-theory solution to this problem is known for a long time. In Refs. 29–33 it was
shown that the requirement(1.16) is necessary and sufficient for the absence of ghosts and
tachyons in particle content of the theory. Another motivation for(1.16) comes from the require-
ment that the theory must have a well-defined Hamiltonian formulation(Ref. 34).

In this paper we look for a motivation of(1.16) on a classical Lagrangian level. We deal with
linear approximation of the general coframe model. The coframe variable can be treated, in this
approximation, as a regular 434 matrix. Consequently, it reduced to a composition of two inde-
pendent variables: the symmetric and the antisymmetric fields.

Our main result is as follows: Only for(1.16), the coframe model is reduced to two indepen-
dent models, every one with its own Lagrangian, field equation, and conserved current. In other
words, the viable model is exactly this one that approaches thefree-field limit, i.e., any interaction
between the approximately independent fields appears only in higher orders.

Linear approximation of coframe models was usually applied for studying the deviation of
teleparallel gravity from the standard GR, and for comparison with the observation data, see Refs.
3, 4, 30, and 31. In our approach the reduction of the lower order terms is used as a theoretical
device. We show that this condition is enough to distinguish the set of viable models. The relation
between these two approaches requires a further consideration.

II. WEAK FIELD REDUCTION

A. Linear approximations

To study the approximate solutions to(1.12), we start with a trivial exact solution, aholo-
nomic coframe, for which,

dqa = 0. s2.1d

Consequently,Fa=Ca=0, so both sides of Eq.(1.12) vanish. By Poincaré’s lemma, the solution of
(2.1) can be locally expressed asqa=dx̃asxd, wherex̃asxd is a set of four smooth functions defined
in some neighborhoodU of a pointxPM. The functionsx̃asxd, being treated as the components
of a coordinate mapx̃a:U→R4, generate a local coordinate system onU. The metric tensor(1.2)
reduces, in this coordinate chart, to the flat Minkowskian metricg=habdx̃a ^ dx̃b. Thus the holo-
nomic coframe plays, in the teleparallel background, the same role as the Minkowskian metric in
the (pseudo-)Riemannian geometry. Moreover, a manifold endowed with a(pseudo-)orthonormal
holonomic coframe is flat. The weak perturbations of the basic solutionqa=dxa are

qa = dxa + ha = sdb
a + ha

bddxb. s2.2d

“Weak” means

iha
bi = e = os1d, iha

b,ci = Osed, iha
b,c,di = Osed, s2.3d

wherei¯ i denotes the maximal tensor norm. We accept that the coframeqa and the holonomic
coframe dxa have the same physical dimension of[length]. Thus, the components of the matrixha

b
and the parametere are dimensionless. Consequently, the approximation conditions(2.3) are
invariant under rescaling of the coordinates.

In this paper we will take into account only the first order approximation in the perturbations
ha

b and in their derivatives(i.e., in the parametere). Note that, in this approximation, the differ-
ence between coframe and coordinate indices completely disappears. This justifies our choice, in
(2.2) and in the sequel, of the same notation for these(basically different) indices.

In accordance with(2.3), only weak coordinate transformations are considered. Under a shift

xa ° xa + jasxd, s2.4d

the components of the coframe are transformed as
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ha
b ° ha

b − ja
,b. s2.5d

Thus, in order to preserve the weakness of the fluctuation, it is necessary to require
ja

,b=Osiha
bid. We will use the termapproximately covariant35 for the expressions which are

covariant only to the first order of the perturbations. Observe that this assumption restricts only the
amplitudes of the perturbations and of their derivatives. It does not restrict, however, the local
freedom to transform the coordinates. An appropriative coordinate system can still be chosen in a
small neighborhood of the identity transformation in order to simplify the(local) field equations.

Similarly, in order to be in agreement with the approximation condition(2.3), the global
SOs1,3d transformations of the coframe field,qa°Aa

bqb, must also be restricted. It is enough to
require the transformations to be in a small neighborhood of the identity

Aa
b = db

a + ab
a, iab

ai = os1d. s2.6d

B. Reduction of the field

In (2.2), ha
b is a perturbation of the flat coframe. Thus we have the following.

(i) To the first order, the holonomic coframe is expressed by the unholonomic one as

dxa = sdb
a − ha

bdqb. s2.7d

(ii ) The indices inha
b can be lowered and raised by the Minkowskian metric,

hab: = hamhm
b, hab: = hbmha

m. s2.8d

The first operation is exactscovariant to all orders of approximationsd, while the second is
covariant only to the first order, whengab<hab.

(iii ) The symmetric and the antisymmetric combinations of the perturbations,

uab: = hsabd = 1
2shab + hbad and wab: = hfabg = 1

2shab − hbad s2.9d

as well as the traceu : =hm
m=um

m are covariant to the first order.
(iv) The components of the metric tensor, in the linear approximation, involve only the sym-

metric combination of the coframe perturbations,

gab = hab + 2uab. s2.10d

(v) Under the transformations(2.4), two covariant pieces of the fluctuation change as

uab ° uab − jsa,bd and wab ° wab − jfa,bg. s2.11d

Thus the approximately covariant irreducible decomposition of the dynamical variable

hab = uab + wab s2.12d

is obtained. Thus, instead of one fieldhab, we have, in this approximation, two independent fields:
a symmetric fielduab and an antisymmetric fieldwab.

C. Gauge conditions

The actual values of the components of the fieldsuab and wab depend on a choice of a
coordinate system. Thus four arbitrary relations between the components(equal to the number of
coordinates) may be imposed. We require these relations to be Lorentz invariant, i.e., covariant in
the first order approximation. Thus the most general form of constraints(gauge conditions) that
involve the first order derivatives is
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auam
,m + bu,a + gwam

,m = 0, s2.13d

wherea ,b ,g are dimensionless parameters.
Certainly, for some special values of the parameters, these conditions cannot be realized.

Indeed, under the coordinate transformations(2.4), Eq. (2.13) changes, in the lowest order, to

aũam
,m + bũ,a + gw̃am

,m = sajsa,md + bjm,a + gjfa,mgd,m. s2.14d

Thus the conditions(2.13) can be realized, by the coordinate transformations(2.4), if and only if
the system of PDE(2.14) has a solutionjsxd for a given left-hand side(LHS).

Let us check the integrability of this system. Equation(2.14) results in

sajsa,md,b + bjm,a,b + gjfa,mg,bd,m = aũam,b
,m + bũ,a,b + gw̃am,b

,m. s2.15d

Commuting the indicesa andb, we obtain

sa + gd h jfa,bg = 2saumfa,bg − gwmfa,bgd,m. s2.16d

Thus, the gauge condition(2.13) with a=−gÞ0 cannot be realized by any change of the coordi-
nate system. Now, take the trace of(2.15),

sa + bd h jm
,m = aumn

,m,n + b h u. s2.17d

Thusa=−bÞ0 is also forbidden.
We will apply, in the sequel, two separate gauge conditions: for the symmetric field

uam
,m − 1

2u,a = 0, s2.18d

and for the antisymmetric field

wam
,m = 0. s2.19d

Observe, that(2.18) and (2.19) cannot be realized simultaneously by the same coordinate trans-
formation. Indeed, for this, the coordinate functions must satisfy

hja = 2uam
,m − u,a and h ja − sjm

,md,a = wam
,m. s2.20d

The integrability conditions for these equations yield

hjfa,bg = 2umfa,bg
,m = − wmfa,bg

,m. s2.21d

For arbitrary independent fieldsuab andwab, these conditions are not satisfied.
Certainly, the conditions(2.18) and(2.19) can be realized, separately, by transformation of the

coordinates.

D. Reduction of the field strengths

By (2.3), let us decompose the field strengths(1.8)–(1.10). The 2-formCa is approximated by

Ca = hab,c dxc ∧ dxb = − hafb,cgq
b ∧ qc = − suafb,cg + wafb,cgdqb ∧ qc. s2.22d

Consequently, the first part of the field strength(1.8), takes the form

s1dFa = − sr1 + r3dsuafb,cg + wafb,cgdqb ∧ qc. s2.23d

As for the second part(1.9), it involves only the antisymmetric field,

s2dFa = − 3r2wfab,cg qb ∧ qc. s2.24d

The third part(1.10), takes the form
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s3dFa = r3hacshmb
,m − h,bd qb ∧ qc = r3hacsubm

,m − u,b − wbm
,mdqb ∧ qc. s2.25d

Therefore, the field strength is reduced to the sum of two independent strengths—one defined by
the symmetric fielduab and the second one defined by the antisymmetric fieldwab,

Fasumn,wmnd=ssymdFasumnd+santdFaswmnd, s2.26d

where

ssymdFa = − fsr1 + r3duafb,cg + r3hafbgufcgm
,m − r3hafbgu,fcggqb ∧ qc s2.27d

and

santdFa = − fsr1 + r3dwafb,cg + 3r2wfab,cg − r3hafbgwfcgm
,mgqb ∧ qc. s2.28d

Hence, for arbitrary values of the parametersri, the field strengths are independent.

E. Reduction of the field equations

The field equation(1.12) includes the second order derivatives of the perturbations on its LHS
and the squares of the first order derivatives on both sides. In the linear approximation(2.3), the
quadratic terms can be neglected. Thus,(1.12) is approximated by

d * Fa = 0. s2.29d

The covector valued 2-formFa can be expressed in the unholonomic basis as
Fa=Fabcq

b∧qc/2. Accordingly, we derive

d * Fa = 1
2Fabc,m dxm ∧ * sqb ∧ qcd = − 1

2Fabc
,m * fbem c sqb ∧ qcd c = 1

2Fafbcg
,c * qb.

Consequently, Eq.(2.29) reads

Fafbcg
,c = 0. s2.30d

Applying the antisymmetrization of the corresponding indices to the expression(2.26) we derive
the linearized field equation

sr1 + r3dshuab − uam,b
,md + r3s− hab h u − umb

,m
,a + u,a,b + habumn

,m,nd

+ sr1 + 2r2 + r3dshwab − wam,b
,md + s2r2 + r3dwbm,a

,m = 0. s2.31d

Proposition 1: For the caser1=0, the linearized coframe field equation (2.31), in arbitrary
coordinates, splits into two independent systems,

ssymdEsabdsumnd = 0 and santdEfabgswmnd = 0.

If r1Þ0, Eq. (2.31) does not split in any coordinate system.
Proof: The equation(2.31) is tensorial to the first order. Thus, by applying symmetrization and

antisymmetrization operations, it is reduced covariantly to a system of two independent tensorial
(to the first order) equations. The symmetrization yields a system of 10 independent equations,

hfsr1 + r3duab − r3habug − sr1 + 2r3dumsa,bd
,m + r3su,a,b + habumn

,m,nd + r1wmsa,bd
,m = 0.

s2.32d

The antisymmetrization yields a system of six independent equations,
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sr1 + 2r2 + r3d h wab + sr1 + 4r2 + 2r3dwmfa,bg
,m − r1umfa,bg

,m = 0. s2.33d

Evidently, the conditionr1=0 removes the “mixed terms” and yields the separation of the system.
Such splitting holds in arbitrary system of coordinates.

Suppose nowr1Þ0. Thus, the “mixed terms” remain in both equations—thew term in (2.32)
and theu term in (2.33). Let us try to remove these terms by an appropriative choice of a
coordinate system. For this we must require the equations

umfa,bg
,m = 0 and wmsa,bd

,m = 0

to hold simultaneously. These equations can be satisfied only if

uma
,m = 0 and wma

,m = 0. s2.34d

The actual values of the variablesuab andwab depend on a choice of a coordinate system. Recall
that the approximation conditions(2.3) do not restrict the freedom to choose the local coordinate
transformations. Therefore, by(2.4), four additional conditions(equal to the number of coordi-
nates), can still be applied to the perturbations in order to satisfy(2.34). We need, however, to
eliminate eight independent expressionswma

,m anduma
,m. This cannot be done by four independent

functions of the coordinates. Indeed, under the transformations(2.4),

uma
,m ° uma

,m − jsm,ad
,m, s2.35d

wma
,m ° wma

,m − jfm,ag
,m. s2.36d

Hence the coordinate transformations must satisfy

jsm,ad
,m = uma

,m and jfm,ag
,m = wma

,m s2.37d

simultaneously. Therefore,

jm,a
,m = hma

,m. s2.38d

The consistency condition for(2.38) is

hma,b
,m = hmb,a

,m,

which it is not satisfied in general. j

Consequently, forr1=0 and generic values of the parametersr2,r3, the field equation of the
coframe field is reduced to two independent field equations for independent field variables.

(i) The symmetric fielduab of 10 independent variables satisfies the system of 10 inde-
pendent equations,

ssymdEsabdsumnd: = r3fhsuab − habud − umsa,bd
,m + u,a,b + habumn

,m,ng = 0. s2.39d

We rewrite it as

hsuab − habud − suam
,m − 1

2u,ad,b − subm
,m − 1

2u,bd,a + habumn
,m,n = 0. s2.40d

Substituting here the conditions2.18d and its consequence

umn
,m,n = 1

2 h u s2.41d

we obtain

hsuab − 1
2habud = 0. s2.42d

Equations2.42d results inhu=0. Then it is equivalent to
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huab = 0. s2.43d

Consequently, in the coordinates associated withs2.18d, the symmetric field satisfied
the wave equation.

(ii ) The antisymmetric system of six independent equations for six independent variables,

santdEfabgswmnd: = s2r2 + r3dshwab + 2wmfa,bg
,md = 0. s2.44d

In the coordinates associated withs2.19d it is reduced to the wave equation,

hwab = 0. s2.45d

F. Reduction of the Lagrangian

In the sequel of this paper, we consider the models with parameterr1=0. Let us examine now
the reduction of the Lagrangian(1.3).

Proposition 2: For r1=0, the Lagrangian of the coframe field is reduced, up to a total
derivative term, to the sum of two independent Lagrangians,

Lsuab,wabd = ssymdLsuabd + santdLswabd. s2.46d

Proof: With r1=0 the terms1dL does not appear in the Lagrangian. Calculate in the linear
approximation(we use the abbreviationqab̄ =qa∧qb∧¯),

s2dL = sdqa ∧ qad ∧ * sdqb ∧ qbd = ham,nhbp,qqnma∧ * qqpb. s2.47d

Applying the formula

qabc∧ * qa8b8c8 = 6da
fa8gdb

b8dc
fc8g * 1 s2.48d

we derive

s2dL = 2wab,cswab,c + wca,b + wbc,ad * 1. s2.49d

So s2dL depends only on the antisymmetric field. Consider now the linear approximation to the
term s3dL,

s3dL = sdqa ∧ qbd ∧ * sdqb ∧ qad = ha
m,nhb

p,qqnmb∧ * qqpa. s2.50d

Use (2.48) to get

s3dL = fhab,cshab,c − hac,bd − hab
,ahcb

,c + u,as2hba
,b − u,adg * 1. s2.51d

Insert here the splitting(2.12). It follows that the Lagrangian(2.51) is reduced to the sum

s3dL = s3dLsud + s3dLswd + s3dLsu,wd, s2.52d

where

s3dLsud = fuab,csuab,c − uac,bd − uab
,aucb

,c + u,as2uba
,b − u,adg * 1, s2.53d

s3dLswd = fwab,cswab,c − wac,bd − wab
,awcb

,cg * 1, s2.54d

s3dLsu,wd = 2f− uab,cw
ac,b + u,awba

,b − uab
,awcb

,cg * 1. s2.55d

Extracting the total derivatives in the mixed term(2.55) we obtain
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s3dLsu,wd = suabswac,b − wbc,ad,c − uwba
,a,bd * 1 + exact terms. s2.56d

The terms in the square brackets vanish identically as a product of symmetric and antisymmetric
tensors. Thus the mixed terms3dLsu ,wd is a total derivative. Consequently, desired reduction of the
Lagrangian is obtained. j

The Lagrangian of the symmetric fieldssymdL= s3dLsud may be rewritten in a more compact
form. Observing the identity

uab
,aucb

,c = uab
,cucb

,a + exact terms, s2.57d

and extracting the total derivatives, we obtain

ssymdL = 1
2r3fuab,csuab,c − 2uac,bd + u,as2uba

,b − u,adg * 1. s2.58d

This form of the Lagrangian is acceptable in arbitrary coordinates. In the coordinates associated
with the condition(2.18), the last parentheses in(2.58) vanish. In the first parentheses, we extract
the total derivatives and use(2.18) to derive(symbol< used here for equality up to total deriva-
tives)

uab,cu
ac,b = suabu

ac,bd,c − uabu
ac,b

,c < − 1
2uabu

,a,b < 1
2uab

,bu,a < 1
4u,au,a.

Consequently the symmetric field Lagrangian(2.53) is reduced to

ssymdL = 1
2ksuab,cu

ab,c − 1
2u,au,ad * 1. s2.59d

Analogously, for the Lagrangian of the antisymmetric fieldsantdL= s2dL+ s3dLswd, we use the
identity

wab
,awcb

,c = wab,cw
ac,b + exact terms s2.60d

and rewrite it, in an arbitrary system of coordinates, as

santdL = 1
2s2r2 + r3dfwab,cswab,c − 2wac,bdg * 1, s2.61d

or, equivalently, as

Lswd = 1
2s2r2 + r3dswab,cswab,c − wac,bd − wab

,awcb
,cd * 1.

The gauge condition(2.19) removes the last term while the second term is rewritten as

wab,cw
ac,b < − wabw

ac,b
,c < 0.

Thus, the Lagrangian of the antisymmetric field is

L̃swd = 1
2s2r2 + r3dwab,cw

ab,c * 1. s2.62d

G. Reduction of the energy-momentum current

The Lagrangian of the coframe field is decomposed, in the first order approximation, to a sum
of two independent Lagrangians for two independent fields. The Noether current expression, being
derivable from the Lagrangian, must have the same splitting.

Proposition 3: The coframe energy-momentum current is reduced, on shell, in the first order
approximation, as

Tasumn,wmnd = ssymdTasumnd + santdTaswmnd, s2.63d

up to a total derivative.
Proof: The coframe energy-momentum current is of the form
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Ta = sbea c Cmd ∧ * Fm − bea c L. s2.64d

Due to Proposition 2, the second term, in the first order approximation, does not contain the mixed
termsu8 ·w8. Hence, it already has the reduced form. To treat the first term, we write the strengths
in the component

Cm = Cmfbcgq
b ∧ qc, Fm = Fm

fpqgq
p ∧ qq. s2.65d

Thus, the first term of(2.64) is approximated by

sbea c Cmd ∧ * Fm = CmfbcgF
m

fpqgsbea c qbcd ∧ * qpq = 4CmfangF
mfbng * qb = 4hmfa,ngF

mfbng * qb.

s2.66d

The 3-form *qb, in the lowest order approximation, is an exact form. Thus, it is enough to show
that the scalar factor, on the right-hand side(RHS) of (2.66), has the desired splitting. This
expression is a sum of two terms. The first one is proportional to

hma,nF
mfbng = − hmaF

mfbng
,n + total derivatives,

i.e., it is, on shell, an exact form. Now we must show that the second term, which is proportional
to hma,nF

mfbng, does not involve the mixed products of a typeu ·w. The mixed product expression
in the latter term is proportional to

umn,aswmb,n + 2hmfngwfbgk
,kd + wmn,asumb,n + hmbunk

,k − hmbu,nd. s2.67d

By recollection of the terms, we rewrite this expression as

sumn,aw
mb,n + umn

,nwbm
,ad + su,aw

bm
,m − u,mwbm

,ad + sumb,nwmn,a − ubm
,awmn

,nd. s2.68d

The three brackets above are total derivatives, namely,

fsumn,aw
mbd,n + sumn

,nwbmd,ag + fsuwbm
,md,a − suwbm

,ad,mg + fsumb,nwmnd,a − subm
,awmnd,ng.

s2.69d

Thus, (2.66) and, consequently,(2.64) do not involve the mixed terms. The desired splitting is
proved. j

The energy-momentum tensorTa
b can be derived from the Noether currentTa by applying the

relations

Ta = Ta
b * qb, Tab = bebc * Ta. s2.70d

Proposition 4: For the fielduab in the coordinate system associated with the gauge condition

uam
,m − 1

2u,a = 0, s2.71d

the energy-momentum tensor is

Tab = 1
2kfsumn,aumn

,b − 1
4habulm,nulm,nd − 1

2su,au,b − 1
4habu,mu,mdg. s2.72d

This tensor is symmetric and traceless.
Proof: We start with the energy-momentum current for the coframe field

Ta = sbea c Cmd ∧ * Fm − bea c L.

Due to Proposition 3, in the first order approximation, this current is decomposed to two indepen-
dent currents. Thus we may assumewab=0 in order to derive the expression forTasud.

In the coordinates associated with the gauge condition(2.71), by (2.59),
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eaL = 1
2r3sumn,pumn,p − 1

2u,mu,md * qa.

The first term ofTa is derived from(2.64),

sbea c Cmd ∧ * Fm = 4umfa,ngF
mfbng * qb = 2suma,nF

mfbng * qb − umn,aF
mfbng * qbd.

Observe that, on shell, up to a total derivative

uma,nF
mfbng < − umaF

mfbng
,n = 0.

Thus,

sbea c Cmd ∧ * Fm = − 2umn,aF
mfbng * qb.

Applying the gauge condition to(2.26) we get

Fa = − r3fuafb,cg + hafbgsufcgm
,m − u,fcgdqbc = − r3suafb,cg − 1

2hafbgu,fcgdqbc.

Consequently,

sbea c Cmd ∧ * Fm = 2r3umn,asumfb,ng − 1
2hmfbgu,fngd * qb.

Extracting the total derivatives

umn,aumb,n < umn
,numb

,a < 1
2u,mumb

,a < 1
4u,au,b,

umn,ahmbu,n < umn
,nu,a < 1

4u,au,b,

it follows that

sbea c Cmd ∧ * Fm = r3s− 2umn,aumn,b + u,au,bd * qb.

Collecting the terms intoTa and extracting the energy-momentum tensorTa
b from the currentTa

by Tab=ebc* Ta we get the desired expression. It is clear that energy-momentum tensor is sym-
metric and traceless. j

In GR, the behavior of small perturbations of the metric tensor is managed by the wave
equation. Thus, for a wave propagating in the positive direction of thex axis, only two indepen-
dent components of the matrixuab remain,

u23 = mstd, u22 = − u33 = nstd, where t = t − x. s2.73d

The calculation of the energy-momentum tensor for the symmetric field by use of the tensor(2.72)
yields

Tab = ksm,am,b + n,an,bd. s2.74d

The energy flux reads

T01 = − r3su̇23
2 + 1

4su̇22 − u̇33d2d. s2.75d

Observe that the expressions(2.74) and (2.75) are the same as the expressions obtained in GR
from the energy-momentum pseudotensors.

Let us turn now to the antisymmetric field.
Proposition 5: In the coordinate system associated with the gauge condition

wam
,m = 0, s2.76d

the energy-momentum tensor of the antisymmetric field is
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Tab = − s2r2 + r3dswmn,aw
mn

,b − 1
4habwmn,pw

mn,pd. s2.77d

This tensor is traceless and symmetric.
Proof: The current of the symmetric and of the antisymmetric fields are decoupled. Thus we

may assumeuab=0. In the coordinates associated with the gauge condition(2.76),

bea c L = 1
2s2r2 + r3dwab,cw

ab,c * qb.

As for the first term ofTaswd we derive from(2.66),

sbea c Cmd ∧ * Fm = 4wmfa,ngF
mfbng * qb = 2swma,nF

mfbng − wmn,aF
mfbngd * qb.

The first term vanishes, on shell, up to a total derivative,

wma,nF
mfbng < − wmaF

mfbng
,n = 0.

Thus,

sbea c Cmd ∧ * Fm = − 2wmn,aF
mfbng * qb.

Inserting the gauge condition(2.76) into (2.26) we derive

Fa = − sr3wafb,cg + 3r2wfab,cgdqbc.

Hence,

sbea c Cmd ∧ * Fm = 2sr3wma,nw
mfb,ng + 3r2wma,nw

fmb,ngd * qb.

Extract the total derivatives and use the gauge condition to get

wmn,aw
mb,n < wmn

,nwmb
,a < 0,

wmn,aw
bn,m < wmn

,mwbn
,a < 0.

Consequently,

sbea c Cmd ∧ * Fm = − s2r2 + r3dwmn,aw
mn,b.

The desired expression(2.77) is obtained now by collecting the terms. j

III. THE ROLE OF THE PARAMETERS r1

The caser1=0 is extracted in coframe models by existence of a unique spherical symmetric
static solution. Since the exact solution yields the Schwarzschild metric this condition generates a
viable subclass of gravity coframe models.

We have involved an independent criteria. Namely, we have shown that only in the case
r1=0 the weak perturbations of the coframe reduce to two independent fields with their own
Lagrangian dynamics. Consequently the models have a free field limit. This effect is correlated to
the recently obtained result34 concerning the Hamiltonian dynamics behavior.

It is interesting to note that in the two-dimensional coframe gravity only one term in the
Lagrangian preceded byr1 appears. Thus the corresponding reduction of fields is impossible.
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Odd-type spin-2 perturbations of Einstein’s equation can be reduced to the scalar
Regge–Wheeler equation. We show that the weighted norms of solutions are inL2

of time and space. This result uses commutator methods and applies uniformly to
all relevant spherical harmonics. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1824211]

I. INTRODUCTION

Recently, it has been shown that the wave equation for a scalar field on the exterior part of the
Schwarzschild manifold satisfies local decay estimates useful for scattering theory and global
existence.2 The extension for the linearized Einstein equation is considered here. In 1957, Regge
and Wheeler investigated spin-2 tensor fields on the Schwarzschild manifold.4 They classified
such fields into two types, which they called even and odd. For the odd fields, they were able to
reduce the problem to an equation for a scalar field very similar to the wave equation for scalar
fields on the Schwarzschild manifold. In 1970, Zerilli extended their results to include the even
case; although, the equation for the even case is significantly more complicated and shows less
resemblance to the wave equation for a scalar field.9 Teukolsky has done a related reduction for
the rotating Kerr black hole6 which has been used to investigate the stability of the black holes.8

This paper extends the local decay estimate for the scalar wave equation of Ref. 2 to the
Regge–Wheeler equation. Many of the proofs used here follow Ref. 2. We obtain the following:
for r* the standard Regge–Wheeler coordinate andb.

3
2, there is a constantC, depending on the

initial condition through the energy norm, so that

E
0

` IS1 +S r*

2M
D2D−b/2

uI2

dt , C.

II. COORDINATES AND EQUATIONS

The Schwarzschild manifold describes a static black hole solution to the Einstein equation.
The exterior of the black hole is most easily described byst ,r ,u ,fdPR3 s2M ,`d3S2 with the
metric

ds2 = S1 −
2M

r
Ddt2 − S1 −

2M

r
D−1

dr2 − r2 dsS2
2 . s2.1d

To simplify the analysis of linear stability, Regge and Wheeler4 introduced a new radial
coordinate,r* , satisfying
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]r

]r*
= S1 −

2M

r
D . s2.2d

This allows the definition of a spacelike manifold

M = R 3 S2. s2.3d

The old coordinater is now treated as a function ofr* .
In these new coordinates, the Regge–Wheeler equation for a scalar fieldu:R3M→R which

determines the behavior of the odd-type tensor fields is

ü + Hu = 0, s2.4d

where

H = o
j=1

3

Hj , s2.5d

H1 = −
]2

]r*
2 , s2.6d

H2 = s1 − s2dV, s2.7d

V =
2M

r3 S1 −
2M

r
D , s2.8d

H3 = VLs− DS2d = VLo
l=0

`

lsl + 1dPl , s2.9d

VL =
1

r2S1 −
2M

r
D s2.10d

and wheres=2 for the case of the tensor field andPl is projection onto spherical harmonics with
total angular momentuml. The cases=0 is the scalar field previously considered ands=1 is for
the odd-type vector(Maxwell) fields.

Because of the way the scalar fieldu is defined it is not possible for it to have any component
with spherical harmonic componentl =0. It has also been shown that thel =1 component corre-
sponds to changing the nonrotating Schwarzschild background to a rotating Kerr solution and to
gauge transformations.3,5 For this reason, we only consideru with no l =0 or l =1 spherical
harmonic component. This provides a lower bound on the spherical Laplace–Beltrami operator,

− DS2 ù 2s2 + 1d = 6. s2.11d

For the scalar wave equation, Bachelot and Nicolas have proven global existence1 in both an
energy space and inC`. The assumption of global existence inC` greatly simplifies all the
following arguments and will be assumed; although, we are not yet aware of a published paper.
However, the method of Bachelot and Nicolas should extend to the Regge–Wheeler equation
without difficulty. The assumption of global existence inC` means that all solutions are assumed
to be C`sMdùH1sM ,dr* d2vS2d, are infinitely differentiable int and have time derivative in
C`sMdùL2sM ,dr* d2vS2d. The notationustd denotes the function fromM→R corresponding to
u evaluated at timet. The measure dr* d2vS2 is used for all norms and inner products unless
otherwise specified, and the normi ·i refers to theL2 norm.
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III. THE HEISENBERG-TYPE RELATION AND PRELIMINARY ESTIMATES

For the Schrödinger equation, the Heisenberg relation describes the time evolution of expec-
tation values for an operator and gives conserved quantities from symmetries of the Hamiltonian.
A similar relation exists for the wave equation.2

Theorem III.1 (Heisenberg-type relation): For a time independent operator A and a solu-
tion to the linear wave equation u¨ +Hu=0 such that u and Hu are in the domain of A, and u and
Au are in the domain of H,

d

dt
sku,Au̇l − ku̇,Auld = ku,fH,Agul. s3.1d

Proof: The proof is found in Theorem 1 of Ref. 2.
The first and most important application of Theorem III.1 is conservation of energy. As usual

it is generated by time translation symmetry. This result is already well known.7

Theorem III.2 (energy conservation): The Regge–Wheeler equation, Eq. (2.4), has a con-
served quantityiuiH

2 which we call the energy.

iuiH2 = ku̇,u̇l + ku8,u8l + ku,− 3Vul + o
l=2

`

kPlu,lsl + 1dVLPlul. s3.2d

This acts as a metric on the spaceH=huPLloc
2 : iuiH,`j.

Proof: The conservation of energy follows from the Heisenberg-type relation with the multi-
plier A=d/dt. This acts as a metric because theku,sH2+H3dul term is positive. The positivity of
this potential was known to Regge and Wheeler4 and is verified here.

Since only functions orthogonal to the spherical harmonics withl =0 andl =1 are considered

ku,− 3Vul + o
l=2

`

kPlu,lsl + 1dVLPlul ù ku,− 3Vul + ku,6VLul ù Ku,S− 6M

r3 +
6

r2DS1 −
2M

r
DuL

ù Ku,
6

r2S1 −
M

r
DS1 −

2M

r
DuL .

Since

6

r2S1 −
M

r
DS1

2M

r
D

is always positive,ku,sH2+H3dul is positive definite. Sinceku̇,u̇l, ku8 ,u8l, andku,sH2+H3dul are
all positive each is defined ifiuiH is finite, andiuiH is a metric. h

As stated in the proof of energy conservation, the energy controls certain derivative norms and
this can be used to control the growth of theL2 norm.

Theorem III.3: If u is a real valued solution of the Regge–Wheeler equation [Eq. (2.4)] and
iustdiL2 is the norm of u at time t, then for tù0,

iu̇iL2 ø iuiH,

iustdi ø tiuiH + ius0diL2.

Proof: Sinceku8 ,u8l andku,sH2+H3dul are strictly positive,iu̇stdi is controlled by the energy.
This is used to control the growth rate ofiustdiL2,

d

dt
iustdiL2

2 =
d

dt
ku,ul = 2ku,u̇l,
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2iuiL2
d

dt
iuiL2 ø 2iuiL2iu̇iL2,

d

dt
iuiL2 ø iu̇iL2 ø iuiH.

h

IV. LOCAL DECAY

For the scalar wave equation, a radial differential operatorg was introduced to prove the local
decay estimate.2 It is used here for the same purpose. This multiplier is centered at the peak of the
angular potentialVL. To simplify calculations the standardr* coordinate is translated to a new one,
r* =r* −a* , so thatr* =0 at the peak ofVL. This centrifugal tortoise coordinate satisfies the same
differential definition asr* , Eq. (2.2).

Definition IV.1: The centrifugal origina, centrifugal tortoise origina* , and centrifugal tor-
toise radiusr* are defined by

a ; 3M , s4.1d

a* ; ur* ur=a=3M , s4.2d

r* ; r* − a* . s4.3d

Definition IV.2: GivensP s 1
2 ,1g, the Morawetz-type multipliergs is defined by

gssr*d ; E
0

sr*−a* d/2M

s1 + t2d−s dt, s4.4d

gs ; −
i

2
Sgs

]

]r*
+

]

]r*
gsD . s4.5d

As before, C` solutions are assumed so that there are no domain issues. In all cases, the value of
s will be fixed and the notation g=gs and g=gs will be used.

Theorem IV.3: If uPH1sMd and sP s 1
2 ,1g, then

ku,gsul = 0 s4.6d

and there is a constant Cs=limr*→` gsr*d such that

igui ø CsiuiH +
1

2
IS1 +S r* − a*

2M
D2D−s

uI
L2

. s4.7d

Proof: Equation(4.6) is proven in Theorem 16 of Ref. 2(the statement of which includes the
additional, but unnecessary, assumption thatu satisfy the scalar wave equation). For Eq. (4.7),
Theorem 17 of Ref. 2 does not directly apply since the spaceH defined there involves different
potentials. However, the same argument applies. It is first noted that sinces.

1
2 and the integrand

in the definition ofg is positive and even,ugu is bounded byCs=limr*→` gsr*d. Now, by direct
computation,

igui = Igu8 +
1

2
g8uI ø igu8i +

1

2
ig8ui ø CsiuiH +

1

2
IS1 +S r* − a*

2M
D2D−s

uI
L2

.

h
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The Heisenberg-type relation will be applied to the multiplierg. To do this it is necessary to
estimate the commutatorfo j=1

3 Hj ,gg.
Lemma IV.4: ForsP s 1

2 ,1g,

iF− 1

r2 S1 −
2M

r
DDS2,gG = − gsr*dF3M

r
− 1G 2

r3S1 −
2M

r
DDS2 ù 0. s4.8d

Proof: The proof is found in Lemma 18 of Ref. 2.
Lemma IV.5: ForsP s 1

2 ,1g and u in the domain ofg and H,

Ku,iF−
]2

]r*
2,gGuL ù 7u,

s

S1 +S r* − a*

2M
D2Ds+2

1

s2Md3F5 + s3 − 2sdS r* − a*

2M
D2Gu8 . s4.9d

Proof: The proof is found in Lemma 20 of Ref. 2.
Lemma IV.6: ForsP s 1

2 ,1g and u in the domain of H andg, there is a constant cs so that

Ku,iFo
i=j

3

Hj,gGuL ù 7u,
cs

S1 +S r* − a*

2M
D2Ds+1u8 . s4.10d

Proof: Sincesø1,

s

S1 +S r* − a*

2M
D2Ds+2

1

s2Md3F5 + s3 − 2sdS r* − a*

2M
D2G ,

s

S1 +S r* − a*

2M
D2Ds+1 .

In the proof of Lemma 21 of Ref. 2 it is shown that

ifV,gg = gS3 −
8M

r
D2M

r4 S1 −
2M

r
D . s4.11d

Sinceg,0 for r ,3M andg.0 for r .3M, ifH2,gg=−3ifV,gg is negative forr ,8M /3, positive
for 8M /3, r ,3M, and negative for 3M , r. In the region 8M /3, r ,3M, all the terms of the
form ifHj ,gg are positive so an estimate of the form(4.10) holds. The otherr values are now
treated.

It is useful to note that a term relatingH2 to H3 is decreasing since

d

dr

3 −
8M

r

1 −
3M

r

= −
M

sr − 3Md2 , 0.

At r =2M, 3−s8M / rd=−1=2f1−s3M / rdg. Therefore in 2M , r ø8M /3 and forl ù2,

U3 −
8M

r
U , 2U1 −

3M

r
U ,

Ug
1

r3S1 −
2M

r
DS2M

r
DS3 −

8M

r
DU , Ug

1

r3S1 −
2M

r
D2S1 −

3M

r
DU ,
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uifH2,ggu ,
3

6
ifH3,gg.

The 3
6 factor is present due to the restriction thatl ù2 and hence that −DS2ù6 and to the factor of

−3 relatingV to H2.
At r =3.3M,

* 2S1 −
3M

r
D6

− 3S3 −
8M

r
D* =

12

19
.

2M

3.3M
.

Therefore forr .3.3M and l ù2

U− 3S3 −
8M

r
D 2M

3.3M
U , 2S1 −

3M

r
D6,

U g

r3S1 −
2M

r
Ds− 3dS3 −

8M

r
D2M

r
U ,

g

r3S1 −
2M

r
DS1 −

3M

r
Ds− DS2d,

uifH2,ggu , ifH3,gg.

Finally for 3M ø r ø3.3M, sinceifH3,gg vanishes quadratically insr −3Md where asifH2,gg
vanishes only linearly it is necessary to boundifH2,gg by ifH1,gg. On this intervalF−1,3, r*

,0.9M, andg,0.9M. Again, assumingl ù2,

uifH2,ggu = 3gS3 −
8M

r
DS2M

r
D4 1

s2Md3S1 −
2M

r
D

, s3ds0.9dS19

33
DS2

3
D4S13

33
D 1

s2Md3 , 0.121
1

s2Md3 ,

ifH1,gg .
5s

S1 +S r*

2M
D2Ds+2

1

s2Md3 .
5s

s1.2025ds+2

1

s2Md3 . 1.43
1

s2Md3 .

In summary, forr ,3M and for r .3.3M, ifH2+H3,gg.0, and for 3M ø r ø3.3M, ifH1

+H2,gg is strictly positive. Since forr ,3M and for r .3.3M, ifH ,gg. ifH1,gg.Cs1
+sr* /2Md2d−s−1 and since for 3M ø r ø3.3M, ifH ,gg is strictly positive, there is a constantC so
that

ku,ifH,ggul ù 7u,
C

S1 +S r* − a*

2M
D2Ds+1u8 .

h

It is now possible to apply the Heisenberg-type relation tog and integrate the result to prove
local decay.

Theorem IV.7 (local decay): If u is a solution to the Regge–Wheeler equation [Eq. (2.4)],
iuiH

2 =E, us0d= f, and b.
3
2, then there is a constant Ds such that

E
0

` IS1 +S r*

2M
D2D−b/2

uI2

dt ø DsE1/2sE1/2 + ifiL2d. s4.12d
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Proof: Initially the result will be proven withb=s+1 andsP s 1
2 ,1g andr* in place ofr* . By

integrating Lemma IV.6 and applying the Heisenberg-type relation, Theorem III.1, it is possible to
bound the time integral of the local decay term by an inner product evaluated at timeT. Despite
the explicit factors ofi appearing in the following, all terms are real valued:

E
0

T IS1 +S r* − a*

2M
D2D−ss+1d/2

uI2

dt ø E
0

T

ku,ifH,gguldt ø E
0

T d

dt
sku,igu̇l − ku̇,igulddt

ø E
0

T

i
d

dt
S d

dt
ku,gul − 2ku̇,gulDdt ø E

0

T

− 2i
d

dt
ku̇,guldt

ø u2siu̇i iguidut=T + u2siu̇i iguidut=0

ø E1/2S4CsE1/2 + IS1 +S r* − a*

2M
D2D−s

fID
+ E1/2IS1 +S r* − a*

2M
D2D−s

usTdI . s4.13d

Sinces.
1
2, q can be chosen so thats1/2sd+ 1

2 ,q,
3
2. If p is the conjugate exponent toq and

k;2/p, then

1

p
, 1 −

2

3
=

1

3
,

2 − k

2
q = 1, qs .

s + 1

2
.

Hölder’s inequality can now be applied to the last norm in line(4.13),

IS1 +S r* − a*

2M
D2D−s

uI2

=E
M

uuukuuu2−k

S1 +S r*

2M
D2D2sdr* d2vS2

ø SE
M

uuupk dr* d2vS2D1/p

1EM

uuus2−kdq

S1 +S r*

2M
D2D2sqdr* d2vS22

1/q

,

IS1 +S r* − a*

2M
D2D−s

uI ø iui1/p( uuu

S1 +S r*

2M
D2Dsq(

1−s1/pd

ø sE1/2T + ifid1/p( u

S1 +S r*

2M
D2Dss+1d/2(

1−s1/pd

.

For sufficiently largeT, there is a constantF so that

IS1 +S r* − a*

2M
D2D−s

uI ø FT1/p( u

S1 +S r*

2M
D2Dss+1d/2(

1−s1/pd

,

s4.14d

E
0

T IS1 +S r*

2M
D2D−ss+1d/2

uI2

dt ø E1/2s4CsE1/2 + ifid + FT1/p( u

S1 +S r*

2M
D2Dss+1d/2(

1−s1/pd

.
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This establishes an integral relation between the local decay norm and its square integral. The
local decay norm has bounded derivative since

d

dt( u

S1 +S r*

2M
D2Dss+1d/2(

2

= 27 u

S1 +S r*

2M
D2Dss+1d2,

u̇

S1 +S r*

2M
D2Dss+1d28

ø 2( u

S1 +S r*

2M
D2Dss+1d/2(E1/2. s4.15d

These two conditions are sufficient to apply Lemma 25 of Ref. 2. That lemma states that for
u :R→R+ with uniformly bounded derivative,eP s0, 1

3
d, if e0

t ustd2 dtøC1+C2t
eu1−e thenteustd1−e

goes to zero sequentially and hencee0
t ustd2 dtøC1. The lemma can be applied withu as the local

decay norm, 1/p=e, andC1 andC2 as in (4.14).
This proves the result forbP s 3

2 ,2g and for r* instead ofr* . Since s1+sr* /2Md2d−b is a
decreasing function ofb, the result holds for allb.

3
2. Finally since for anyb there is a constant

so that for allr* , s1+fsr* −a*d /2Mg2d−bøCs1+sr* /2Md2d−b the statement of the theorem holds.
h
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FIG. 1. Plot of a lower bound forifH ,gg as a function ofr.
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APPENDIX: NUMERICAL VERIFICATION OF THE POSITIVITY OF THE COMMUTATOR

The key step in proving the local decay estimate is the lower bound for the commutator
ifH ,gg proven in Lemma IV.6. From the asymptotics ofifH2,gg< r−4 andifH3,gg< r−3 it is clear
that the negative contributions fromifH2,gg will be dominated eventually and it is sufficient to
show ifH ,gg is positive in some finite domain. To verify positivity of the commutator, the sum of
the exact form forifH2,gg from Eq. (4.11), the lower bounds forifH1,gg from Eq. (4.9), and the
lower bound forifH3,gg from Eq.(4.8) with l =2 is plotted forM =1 ands=1 in Fig. 1. From the
graph it is clear that the total commutator is positive. The graph decays because all the terms
involved decay. This provides an alternate, numerical verification of the result proven in Lemma
IV.6.
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conformal Einstein spaces via dimensionally dependent
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Listing has recently extended results of Kozameh, Newman, and Tod for four-
dimensional space–times and presented a set of necessary and sufficient conditions
for a metric to be locally conformally equivalent to an Einstein metric in all semi-
Riemannian spaces of dimensionnù4—subject to a nondegeneracy restriction on
the Weyl tensor. By exploiting dimensionally dependent identities we demonstrate
how to construct two alternative versions of these necessary and sufficient condi-
tions which we believe will be useful in applications. The four-dimensional case is
discussed in detail and examples are also given in five and six dimensions. ©2005
American Institute of Physics.[DOI: 10.1063/1.1823011]

I. INTRODUCTION

Kozameh, Newman, and Tod7 have shown that a certain pair of necessary conditions are also
sufficient for afour-dimensional space–timeto be conformal to an Einstein space–time—with the
exception of those space–times whose complex Weyl scalar invariantJ=0. (In the conformal
Einstein space with metricgab, Rab

cd represents the Riemann tensor,Cab
cd represents the Weyl

conformal tensor,Rab
cd represents the Ricci tensor,R=Ra

a the Ricci scalar, andR̃ab=Rab

−Rgab/n the trace-free Ricci tensor where2¹fag¹fbgV
c=−RabcdV

d for an arbitrary vectorVa. I ,J are
the usual complex Weyl scalar invariants in four dimensions, andC

2
;Cab

cdC
cd

ab. More details of

the notation are given in the next section.) Implicit in their paper was another result: afour-
dimensional space–timewith metricgab can be transformed into an Einstein space by a conformal
transformation if and only if the vectorKa given by

Ka = 4Cac
ij¹

kCij
ck/C

2
s1ad

satisfies(the n=4 dimension version of)

R̃ab + sn − 2ds¹aKb − KaKb − s¹cKc − KcKcdgab/nd = 0 s2ad

for the class of space–times whereC
2

Þ0. The essential ideas in Ref. 7 were to exploit the

properties that Einstein spaces are a subset ofC spaces(spaces whose Weyl tensor is divergence
free,¹aC

ab
cd=0) and that spaces conformal toC spaces satisfy(the n=4 dimension version of)

¹kCab
ck + sn − 3dCab

ckK
k = 0 s3d

and hence to extract the explicit expression(1a) for Ka by using thefour-dimensionaldimension-
ally dependent identity

a)Electronic mail: bredg@mai.liu.se
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Ccj
abC

ab
ck = dk

j C
2
/4. s4ad

The principles underlying the techniques used in Ref. 7 originated in a study of conformal trans-
formations by spinor methods by Szekeres,12 and although most of the work in Ref. 7 was tensor
based, some lemmas were proven by spinor methods; this is probably why Kozameh, Newman,
and Tod have commented that their method in Ref. 7 does not seem to be extendible to higher
dimensionsn.4. However, recently Listing8 has exploited the same principles more generally
and shows that the condition that a particular vectorTa obtained from(3) satisfies(2a) is a
necessary and sufficient condition for conformal Einstein spaces inall semi-Riemannian spaces
with dimensions nù4—subject to a nondegenerate determinant condition on a matrix representa-
tion of the Weyl tensor. On the other hand, when the four-dimensional results from Ref. 8 are
compared with Ref. 7, the explicit form of the vectorTa in Ref. 8 differs considerably from its
counterpartKa used in Ref. 7 and quoted above in(1a); furthermore, the nondegenerate determi-
nant condition in Ref. 8 is not easily translated into a condition on the real Weyl invariant scalars
in the n-dimensional case, although Listing states that this condition is equivalent in four dimen-
sions to the complex scalar invariant Weyl scalarJÞ0.

It is well known that we can writeCA
C;Cab

cd where A;fabg, C;fcdg so that A,C
=1,2, . . . ,Ns=nsn−1d /2d and so considerC as anN3N trace-free matrix.(Note that we are not
making use of the symmetries,Cabcd=CcdabandCafbcdg=0, and in fact this construction is valid for
any trace-free double 2-form; also, we are not defining a metric for theN-dimensional space, nor
even making use of then-dimensional space metricgab in this construction.)

Instead of exploiting higher dimensional counterparts of identities such as(4a), Listing’s
result and proof8 assumed detsCdÞ0 and then used the inverse matrixC−1 to solve(3) for Ka;
howeverC−1 cannot be easily interpreted in tensor notation without some translation and, in that
form, does not seem to be very useful in practical applications. In the illustrative example in Ref.
8 Listing restricted himself tofour-dimensional Riemann space, where he followed the technique
in Ref. 7 of using thefour-dimensionalidentity (4a) to extract Ka, and also used properties
dependent on thepositive definite metric; this avoided having to deal withC−1 directly.

Although the four-dimensional identity(4a) is well known, the existence of higher dimen-
sional analogues(Ref. 2) seems less well known and one purpose of this paper is to draw attention
again to the power and usefulness of such dimensionally dependent tensor identities.2 (See also
Refs. 9, 3, and 13.)

We shall show in this paper how to exploit dimensionally dependent identities2 to obtain
results valid in all dimensionsnù4 and automatically in all signatures; in particular we will

(i) reformulate Listing’s results in Ref. 8, and in particular, detsCdÞ0 and the inverse matrix
C−1 in the tensor notation of Ref. 7;

(ii ) obtain explicit solutions forKa which avoid the use ofC−1 altogether.

We shall also show explicitly how the four-dimensional results implicit in Ref. 7 can be seen
as special cases of this formulation of Listing’s result, and are valid for all signatures.

To demonstrate the usefulness of our versions, we will consider the four-, five-, and six-
dimensional cases, independent of signature. The higher dimensional analogues2 of the four-
dimensional identity(4a) will be the basis for our applications in five and six dimensions.

II. NOTATION

We begin with some notation which we will use to link algebraic and tensor notation, and
prove a simple lemma. Let us define, forpù1 Weyl tensors, achain of the zeroth kind,13

C
p

ab
cd ; Cab

i1j1
Ci1j1

i2j2
Ci2j2

i3j3
¯ Cip−2jp−2

ip−1jp−1
Cip−1jp−1

cd,

noting thatC
1

ab
cd;Cab

cd.

A useful relation is
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C
p

ab
cdC

q

cd
ef = C

p+q

ab
ef

and the following scalar invariants arise naturally:

C
p

; C
p

ab
ab.

Of course there are other Weyl scalar invariants(e.g.,Ca
b
c
dC

b
e
d

fC
e
a

f
c) which do not fall into this

pattern. The simple obvious identifications which we will exploit are

Cp = C
p

ab
cd,

kCpl = C
p

, s5d

wherek l denotes the trace of a matrix; but note that expressions likeC
2

cj
ci have no such obvious

identification in the matrix notation.
The Cayley–Hamilton theorem for the trace-freeN3N matrix C is given by

c0C
N + c2C

N−2 + c3C
N−3 + ¯ + cN−2C

2 + cN−1C + cNI = 0, s6d

whereI is theN3N identity matrix, and

c0 = 1, c2 = − 1
2kC2l, c3 = − 1

3kC3l, c4 = − 1
4skC4l − 1

2kC2l2d ,

c5 = − 1
5skC5l − 5

6kC2lkC3ld ,

c6 = − 1
6skC6l − 3

4kC2lkC4l − 1
3kC3l2 + 1

8kC2l3d, . . . ,

cN = −
1

N
skCNl + ¯ + ¯ d s7d

are the usual characteristic coefficients; sinceC is trace free,c1=0. This theorem can easily be
rewritten in chain notation as

c0C
N

ab
cd + c2 C

N−2

ab
cd + c3 C

N−3

ab
cd + ¯ + cN−2C

2

ab
cd + cN−1C

1

ab
cd + cNdfcg

a dfdg
b = 0, s68d

where the characteristic coefficients are now given in terms of Weyl scalar invariants by

c0 = 1, c2 = − 1
2C

2
, c3 = − 1

3C
3
, c4 = − 1

4sC
4

− 1
2C

2

2d,

c5 = − 1
5sC

5
− 5

6C
2
C
3

d,

c6 = − 1
6sC

6
− 3

4C
2
C
4

− 1
3C

3

2 + 1
8C

2

3d, . . . ,

cN = −
1

N
sC

N
+ ¯ + ¯ d. s78d

From the well-known results−1dN detsCd=cN the required translation of detsCdÞ0 into tensor
language follows immediately:
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0 Þ s− 1dN+1N detsCd = C
N

+ ¯ + ¯ . s8d

Lemma:In n-dimensional spaces, the inhomogeneous algebraic equation for the vectorVd,

Cab
cdV

d = Hab
c,

has a unique solution when condition(8) holds; the solution is given by

Va =
2

sn − 1dcN
Hij

bsc0 C
N−1

ab
ij + c2 C

N−3

ab
ij + c3 C

N−4

ab
ij + ¯ + cN−2C

ab
ijd,

whereN=ns−1d /2 The coefficientsc0,c2,c3, . . . ,cN−2,cN are the usual characteristic coefficients
of the Cayley–Hamilton theorem given in(78).

Proof: We consider the Cayley–Hamilton theorem for theN3N trace-free matrixC in tensor
notation in(68), with characteristic coefficients given by(78).

Multiplying by Va gives

0 = Vasc0C
N

ab
cd + c2 C

N−2

ab
cd + c3 C

N−3

ab
cd + c4 C

N−4

ab
cd + ¯ + cN−2C

2

ab
cd + cN−1C

1

ab
cdd + cNVfcgdfdg

b

= VaC
1

ab
ijsc0 C

N−1

i j
cd + c2 C

N−3

i j
cd + c3 C

N−4

i j
cd + c4 C

N−5

i j
cd + ¯ + cN−2C

1

i j
cdd + cN−1VaC

1

ab
cd + cNVfcgdfdg

b .

From which, by taking the trace and rememberingC
1

ab
cd;Cab

cd is trace free, we obtain

0 = VaC
ab

ijsc0 C
N−1

i j
cb + c2 C

N−3

i j
cb + c3 C

N−4

i j
cb + c4 C

N−5

i j
cb + ¯ + cN−2C

ij
cbd +

n − 1

2
cNVc.

Rearranging gives the solution in the lemma. h

For future reference, we note that thefour-dimensional identity(4a) can be written in the
chain notation as

C
2

cj
ck = dk

j C
2
/4

and this is actually a special case of the more general identity13 in four dimensions only

C
p

cj
ck = dk

j C
p
/4, p = 2,3,4, . . . . s4bd

We have preferred the notationC
2

,C
3

, . . . ,C
p

, . . . to the (possibly confusing) notation

C2,C3, . . . ,Cp, . . . used in Refs. 7 and 8 and elsewhere for these Weyl scalar invariants.
Finally we note a very useful dimensionallyindependentidentity (a direct consequence of the

first Bianchi identity),

4Cafi j gbC
cijd = CabijC

cdij.

III. REFORMULATING LISTING’s RESULT AND REDERIVING THE IMPLICIT RESULTS
IN REF. 7

With this lemma we determine the vectorKa from (3),

Ka =
2

sn − 3dsn − 1dcN
¹kCij

kbsc0 C
N−1

ab
ij + c2 C

N−3

ab
ij + c3 C

N−4

ab
ij + ¯ + cN−2C

ab
ijd s9d

providing restriction(8) holds, whereN=nsn=1d /2.
Substituting this value forKa back into(2a) gives necessary and sufficient conditions defined

only in terms of the geometry.
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We can therefore reformulate Theorem 4.5 in Ref. 8 as follows.
Theorem 1: A semi-Riemannian manifold, with a Weyl tensor subject to the restriction (8), is

locally conformally related to an Einstein space if and only if the vector field Ka given in (9)
satisfies (2a).

Four dimensions:We now will retrieve the four-dimensional results implicit in Ref. 7 from
this theorem in a signature independent manner. Instead of substituting forKa with the expression
(1a) as used in Ref. 7, or the four-dimensional version of the expression involvingC−1 in Ref. 8,
we can now use then=4 version of(9),

Ka =
2

3c6
¹kCij

kbsc0C
5

ab
ij + c2C

3

ab
ij + c3C

2

ab
ij + c4C

ab
ijd s10d

providing c6Þ0 with the characteristic coefficients given by(78) in terms of Weyl scalars. How-
ever, since the solution forKa is unique we should be able to see precisely the links between these
two expressions in(1a) and (10). To retrieve the result(1a) from (10) we simply substitute(3)
back into the right-hand side of(a slightly rearranged) (10), for all terms except the last one, and
use identity(4a) on each of these terms,

3c6K
a = − 2KkCij

kbsC
5

ab
ij + c2C

3

ab
ij + c3C

2

ab
ijd + 2c4C

ab
ij¹

kCij
kb

= − 2KksC
6

cb
kb + c2C

4

cb
kb + c3C

3

cb
kbd + 2c4C

ab
ij¹

kCij
kb

= − 1
2KasC

6
+ c2C

4
+ c3C

3
d + 2c4C

ij
cb¹

kCij
kb

which rearranges to

s6c6 + C
6

+ c2C
4

+ c3C
3

dKc = 4c4C
ij

cb¹kC
kb

ij

and via(78) to

c4C
2
Ka = − 4c4C

ab
ij¹

kCij
kb

and hence to(1a)—providing C
2

Þ0ÞC
4

−C
2

2/2.

Kozameh, Newman, and Tod7 have shown that it is possible to obtain three alternative ver-
sions to(1a) for Ka consisting of

Ka = 4C
2

ac
ij¹

kCij
ck/C

3
for C

3
Þ 0

together with two other similar expressions with invariants involving the dual of the Weyl tensor.
We do not wish to depend on expressions with duals in this work since we wish to generalize the
four-dimensional case to all higher dimensions. Instead, from the general identity(4b) we see that
we can obtain the various expressions forKa for all integerspù2,

Ka = 4 C
p−1

ac
ij¹

kCij
ck/C

p
for C

p
Þ 0. s1bd

So, in an analogous manner to which we retrieved(1a) from (10), we can also retrieve(1b) for
p=3, 4, 6; by use of the Cayley–Hamilton theorem we could also retrieve the results forp=5 and
pù7, although afterp=6 these expressions are not independent precisely because of the Cayley–
Hamilton theorem. We note that we cannot retrieve the version of(1b) directly with p=5 from
(10) due to the fact that the relevant term involved the coefficientc1 which is identically zero,
being the trace ofCab

cd.
It is well known that in four dimensions there exist only four algebraically independent Weyl

scalar invariants: these are usually given in terms of the well-known complex invariantsI andJ,
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which come naturally from considerations in terms of spinors or complex Weyl tensors(which
exploit the very simple and unique structure of the Weyl dual in four dimensions). If we wish to
only employ structures which can be exploited in higher dimensions, we would consider instead
the four algebraically independent scalarsC

1
, C

2
, C

3
, C

4
(or any four fromC

1
, C

2
, C

3
, C

4
, C

5
)10 (see also

Refs. 11 and 5); and providing there is at least one Weyl scalar invariant which is nonzero, we can
calculateKa explicitly.

Higher dimensions:Theorem 1 gives an explicit tensor expression forKa for all dimensions.
So, for example, infive dimensions, N=10 and we obtain

Ka =
1

4c10
¹kCij

kbsc0C
9

ab
ij + c2C

7

ab
ij + c3C

6

ab
ij + ¯ + c7C

2

ab
ij + c8C

ab
ijd

providingc10Þ0 with the characteristic coefficients given by(78) in terms of Weyl scalars. Clearly
this expression involves quite high order terms in the Weyl tensor, and we note that in the
four-dimensional case, we were able to get lower order expressions forKa by exploiting the
individual dimensionally dependent identities(4b) rather than the Cayley–Hamilton theorem im-
plicit in Theorem 1. So, in higher dimensions, we would also expect to exploit individual dimen-
sional identities, analogous to the four-dimensional identities(4b), in order to obtain alternative
lower order forms in the Weyl tensor forKa in n dimensions.

IV. LOWER ORDER VERSIONS OF Ka IN n-DIMENSIONS

In four dimensions, providing we pay the price that at least one scalar invariant is nonzero, we
are able to solve the four-dimensional version of(3), and obtainKa. The versions from the
individual identities(4b) are more concise and manageable than the versions from the Cayley–
Hamilton theorem; on the other hand, in four dimensions, the latter include all the simpler results
as special cases, and are more general, in the sense of weaker restrictions on the Weyl scalar
invariants. Of course also the Cayley–Hamilton approach is applicable in all dimensions. How-
ever, we now will show how to obtain alternative simpler versions forKa in dimensions other than
four, by direct application of dimensionally dependent identities analogous to those used in four
dimensions in Ref. 7.

The set of identities(4b) are all consequences of the well-known four-dimensional identity[it
is interesting to note, in this notation, that the underlying identity for the Cayley–Hamilton theo-
rem for the trace-free 636 matrix C is CfAg

fPgdfQRSTUg
fBCDEFg=0 (Ref. 2)],3

Cfabg
fcdgdffg

feg = 0, s11d

and we shall now exploit their higher dimensional analogues in the same way as in Ref. 7 for the
four-dimensional case. For five dimensions we have

Cfabg
fcdgdfhig

fefg = 0, s12d

and for six dimensions,

Cfabg
fcdgdfhijg

fefgg = 0, s13d

and so on.2

These lead to

Ccd
peC

ph
abC

fabg
fcdgdfhig

fefg = 0 s14d

for five dimensions, and

012503-6 S. Brian Edgar J. Math. Phys. 46, 012503 (2005)

                                                                                                                                    



Ccd
efC

hi
abC

fabg
fcdgdfhijg

fefgg = 0 s15d

for six dimensions, and so on. Of course, these are just representative for each dimension of the
various identities that can be created; but it is of interest to note that for the lowest order in Weyl
in each dimension—in five dimensions cubic, in six dimensions cubic, in seven dimensions quar-
tic, and so on—there is only one possibility, but as we look at higher orders—in five dimensions
quartic, in six dimensions quartic, in seven dimensions quintic, and so on—there will be many
more possibilities. Unfortunately, when expanded, such two-index identities in higher dimensions
will not have such a simple form as the four-dimensional identities(4b).

In higher dimensions there exist greater numbers of algebraically independent Weyl scalar
invariants, and so there will be greater numbers of two-index tensor identities analogous to(4b)
for each dimensionn.4; furthermore, the tensor identities analogous to(4b) will be based on(14)
and (15), … and so will also require more Weyl tensors as the dimension increases. Since, in
higher dimensions, a product of three or more Weyl tensors yields more than one Weyl scalar
algebraically independent of each other and of invariants of lower order(e.g., in general,C

3
and

Ca
i
b

jC
i
c
j
dC

c
a
d
b are algebraically independent innù6 dimensions), and more than one algebra-

ically independent two-index tensor, we expect the higher dimensional analogues of identities(4b)
to consist of linear combinations of Weyl tensors on both sides of the identity.

However, it is important to note that, although these higher order two-index identities will
have more terms, and higher products, they will have the same crucial structure, which we can
represent by

LhC
p

j j
k = dk

j LhC
p

j/n, s16d

whereLhC
p

j j
k represents a two-index tensor consisting of a linear combination of products ofp

Weyl tensors, andLhC
p

j;LhC
p

ji
i represents a linear combination of scalar products ofp Weyl

tensors.(Note that each term is unlikely to be just a simple chain.) It follows, for LhC
p

jÞ0 from

(16),

Kj = nLhC
p

j j
kK

k/LhC
p

j, s17d

and hence all the terms involving the vectorKk on the right-hand side—which will each contain a
factor of the formC..

.kK
k—can be replaced using(3) by

C..
.kK

k = −
1

n − 3
¹kC..

.k. s18d

We can summarize these new results as follows.
Theorem 2: An n-dimensional semi-Riemannian manifold with a nondegenerate Weyl tensor

restricted by LhC
p

jÞ0 [where LhC
p

j is associated with an identity of the form (16)] is locally

conformally related to an Einstein space if and only if the vector field Ka given in (17), with the
appropriate substitutions (18), satisfies (2a).

Clearly from Theorem 2 we will obtain forKa much lower order expressions in the Weyl
tensor than from Theorem 1; for example, in five dimensions using Theorem 1 will require terms
involving products of 10 Weyl tensors, whereas if we use Theorem 2 it looks possible to use terms
with only three Weyl tensors, from(14).

V. FIVE- AND SIX-DIMENSIONAL SPACES

For higher dimensional spaces we can use Theorem 1 with the respective substitutionsn
=5,6, . . .into (9). But for spaces where we know dimensionally dependent identities of the form
(14) and (15), etc., we can use Theorem 2.
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So for spaces with dimensionn.4 there is the need to systematically write out explicitly the
two-index identities such as(14) and(15), etc., forn=5,6, . . . . Inthis section we give just a few
examples in five and six dimensions as illustrations.

Five dimensions:After a straightforward calculation we find that(14) expands as follows:

Caj
bcC

bc
deC

de
ak − 2Caj

bkC
bc

deC
de

ac − 4Caj
bcC

bd
ekC

ce
ad = 1

5sCab
cdC

cd
efC

ef
ab − 4Cab

cdC
ce

afC
df

beddk
j .

s19d

Although this appears to have the structure of(16), unfortunately when we also consider the scalar
identity closely related to(14),

Ccd
abC

ki
ejC

fabg
fcdgdfkig

fejg = 0

we find

Cab
cdC

cd
efC

ef
ab = 4Cab

cdC
ce

afC
df

be. s20d

(This five-dimensional scalar identity was also noted in Ref. 6, where it was obtained from the
five-dimensionalidentity Cab

fcdgC
cd

efC
ef

fabg;0.) This means that(19) does not have the structure
of (16) as we hoped, since its right-hand side is identically zero. However, we do have an
interesting two-indexfive-dimensionalidentity which will be useful in other contexts,

Caj
bcC

bc
deC

de
ak − 2Caj

bkC
bc

deC
de

ac − 4Caj
bcC

bd
ekC

ce
ad = 0. s21d

On the other hand, if we consider one(of a number of) quartic identity in five dimensions,

Cqg
ipCip

qeC
ab

cdC
fcdg

fabgdfghg
fefg = 0 s22d

we obtain

5Cqj
ipCip

qkC
ab

cdC
cd

ab − 8Cqg
ipCip

qkC
ab

cgC
cj

ab + 8Cqg
ipCip

qeC
be

agC
aj

bk − 4Cqg
ipCip

qeC
ab

gkC
ej

ab

− 8Cqg
ipCip

qeC
ae

bkC
bj

ag = sCqg
ipCip

qgC
ab

cdC
cd

ab − 4Cqg
ipCip

qdC
ab

cgC
cd

abddk
j s23d

which again appears to have the structure of(16). [The use of the identity(21) does not give any
simplification.] We need to determine whether the right-hand side of(23) is nonzero. Unlike in the
cubic case where there was only one possible scalar identity(20), there will be a number of quartic
scalar identities in five dimensions; so although we will return to examine these another time, for
now we simply note, via a counterexample, that the right-hand side cannot be identically zero.14

Hence, via the substitution(18), we obtain the following form forKj:

Kj = − s5Cqj
ipCab

cdC
cd

ab¹
kCip

qk − 8Cqg
ipCab

cgC
cj

ab¹
kCip

qk + 8Cqg
ipCip

qeC
be

ag¹
kCaj

bk

− 4Cqg
ipCip

qeC
ej

ab¹
kCab

gk − 8Cqg
ipCip

qeC
bj

ag¹
kCae

bkd/2sCqg
ipCip

qgC
ab

cdC
cd

ab

− 4Cqg
ipCip

qeC
ab

cgC
ce

abd. s24d

We can then substitute this value forKj into the five-dimension version of(2a),

R̃ab + 3s¹aKb − KaKb − s¹cKc − KcKcdgab/5d = 0 s2bd

to obtain the required necessary and sufficient condition.
Six dimensions:When we expand(15) we obtain

Cak
bcCaj

deCbc
de− 2Cak

bjCac
deCbc

de− 4Cak
bcCdj

beCcd
ae= 1

6sCab
cdCcd

efCef
ab − 4Cab

cdCae
cfCde

bfddk
j .

s25d

Unlike for the case of the five-dimensional two-index identity(19), there is no related scalar
identity cubic in Weyl tensors, analogous to(20). So therefore we do not need to worry about the
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possibility of the right-hand side of(25) being zero, and so we have an identity which has
precisely the structure(16).

Hence, via the substitution(18), we obtain the following form forKj:

Kj = − 2sCaj
deCbc

de¹kCak
bc − 2Cac

deCbc
de¹kCak

bj − 4Cdj
beCcd

ae¹kCak
bcd/sCab

cdCcd
efCef

ab

− 4Cab
cdCae

cfCde
bfd. s26d

We can then substitute this value forKj into the six-dimensional version of(2a),

R̃ab + 4s¹aKb − KaKb − s¹cKc − KcKcdgab/6d = 0, s2cd

to obtain the required necessary and sufficient condition.
There do not seem to be many explicit examples of identities for the Weyl tensor in higher

dimensions in the literature. However, there does exist a six-dimensional two-index tensor identity
quartic in the Weyl tensor which was identified some time ago by Lovelock.9 A double three-form
with the antisymmetric and trace-free properties, respectively,

Habk
def = Hfabkg

fdefg,

Habi
dei = 0 s27d

in six dimensions(and lower) satisfies the identity

Habk
defHdef

abj = 1
6dk

j Habc
defHdef

abc. s28d

This then becomes a quartic identity for Weyl with the choice

Hijk
abc= Aijk

abc− 9
8Arf jkg

rfbcgdfig
fag + 3Arsfig

rsfcgdi
adfkg

fbg − 1
4Arst

rstdfig
fagd j

bdfkg
fcg, s29d

where

Aijk
abc= 4Cfi j g

hfagCfkgh
fbcg. s30d

By substituting(29) into (28) we obtain

Aabk
cdeAcde

abj + 3Aabk
abcAcde

dej + 6Aabk
acdAcde

bej − 3Aabc
adeAdek

bcj − Aabc
abcAdek

dej + 6Aabc
abd

= dk
j sAabc

abcAdef
def + 9Aabc

adeAdef
bcf − 9Aabc

abdAdef
cef − Aabc

defAdef
abcd/6, s31d

which is precisely the structure of(16). Hence, we obtain the following form forKj,

Kj = − 6sKkAkab
cdeAcde

abj + 3KkAkab
abcAcde

dej + 6KkAkab
acdAcde

bej − 3Aabc
adeKkAkde

bcj

− Aabc
abcKkAkde

dej + 6Aabc
abdKkAkde

cejd/sAabc
abcAdef

def + 9Aabc
adeAdef

bcf − 9Aabc
abdAdef

cef

− Aabc
defAdef

abcd, s32d

where all terms involvingKk on the right-hand side are replaced via the substitution

KkAkab
cde= ¹kCkfag

pfcgCfbgp
fdeg − ¹kCkp

fdegCab
fcgp s33d

and all other terms replaced with(30). We then substitute the value forKj from (32) into (2c) to
obtain the required necessary and sufficient condition. It is of course necessary to check that the
right-hand side of (32) is not identically zero; this can be confirmed with a simple
counterexample.14
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VI. SUMMARY AND DISCUSSION

We have demonstrated the power of dimensionally dependent identities[either as the Cayley–
Hamilton theorem, or as individual identities in specific dimensions such as(4b), (23), (25), and
(31)] to translate the existence result of Listing8 into versions which can be applied directly;
furthermore, these applications are completely independent of signature. Theorem 1 gives a gen-
eral reformulation of Listing’s result on the existence of necessary and sufficient conditions in a
form which can be directly exploited. So if one wishes to test if a particular metric is conformally
Einstein, then it is a simple procedure to find its Weyl and trace-free Ricci tensor and to test
directly—for instance, using GRTENSOR II(Ref. 14)—if condition (2a) is satisfied.

We have drawn attention to the higher dimensional analogues(23), (25), and (31), etc., of
identities (4b), which are the basis for Theorem 2; for applications, Theorem 2 would seem to
provide a simpler and more manageable tool—providing the appropriate identities are known.

A major complication when we move to dimensionsn.4 is that there are many more Weyl
invariant scalars, and of course they cannot all be written in the formC

p
. The same sort of detailed

analysis of the Weyl invariant scalars forn=5,6. . . , as hasbeen(partly) carried out forn=4, as
well as a systematic presentation of two-index identities, is a necessary prerequisite for a system-
atic examination of all possible versions of the vectorKa. As Bonanos has pointed out,1 existing
detailed studies such as Ref. 4 do not take into account invariants formed from duals, or identities
from the Cayley–Hamilton theorem. There are still a number of interesting issues to be investi-
gated further.

There appears to be an important difference between even and odd dimensions: for even
dimensionsn=4,6,8, . . . thesimplest two-index identity involves products of 2,3,4,… Weyl ten-
sors, respectively, such as(4a) and (25), with a “delta term” on the right-hand side; for oddn
=5,7, . . . thesimplest two-index identity involves products of 3, 4,… Weyl tensors, respectively,
such as(19), but it would seem likely that as in(21) the “delta term” on the right-hand side
disappears because of an identically zero coefficient. For the investigations in this paper we need
an identity of the former type, so in general it appears that for even dimensionsn=2m we will be
able to exploit comparatively simple identities involving products ofm Weyl tensors, while for
odd dimensionsn=2m−1 we will only have more complicated identities involving products of
m+1 Weyl tensors. On the other hand, we anticipate that in other investigations the simple
identities such as(21) will be very useful.

Listing8 has stated that the condition detCÞ0 in four dimensionsis equivalent to the complex
Weyl invariant scalarJÞ0; by a little manipulation this can be shown to be equivalent to at least
one ofC

3
andC

5
being nonzero. It would be useful to know this condition in higher dimensions in

terms of the real Weyl invariant scalars, and hence understand it better. The fact that the right-hand
side of identity(19) is identically zero should alert us to the possibility of identically zero scalars
arising in some situations.

The use of the dual Weyl tensor makes work in four dimensions comparatively easy—for
instance there is a basis of four Weyl scalar invariants none of which is higher than cubic in Weyl,
compared to having a basis with invariants up to fifth order in Weyl if the dual tensor is not used;
in higher dimensions the major advantage(the dual Weyl tensor is also a double two form) does
not apply, and work gets more complicated. However, we believe that it is still possible to take
advantage of other benefits of the dual tensor, and we will discuss this possibility, together with
the other points mentioned here, elsewhere.

Finally, we note that the necessary and sufficient conditions investigated by Listing8 and in
this paper were different from the necessary and sufficient conditions investigated explicitly in
Ref. 7 in four dimensions. In Ref. 7 these conditions involved the Bach tensor which of course is
only defined in four dimensions. It will be shown elsewhere how the techniques in Ref. 8 and in
this paper can be used to investigate these alternative conditions as well as to generate an
n-dimensional generalization of the Bach tensor.
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In this paper we study for a given azimuthal quantum numberk the eigenvalues of
the Chandrasekhar–Page angular equation with respect to the parametersmªam
andnªav, wherea is the angular momentum per unit mass of a black hole,m is
the rest mass of the Dirac particle andv is the energy of the particle(as measured
at infinity). For this purpose, a self-adjoint holomorphic operator familyAsk ;m ,nd
associated to this eigenvalue problem is considered. At first we prove that for fixed
kPR \ s−1

2 , 1
2

d the spectrum ofAsk ;m ,nd is discrete and that its eigenvalues depend
analytically onsm ,ndPC2. Moreover, it will be shown that the eigenvalues satisfy
a first order partial differential equation with respect tom andn, whose character-
istic equations can be reduced to a Painlevé III equation. In addition, we derive a
power series expansion for the eigenvalues in terms ofn−m andn+m, and we give
a recurrence relation for their coefficients. Further, it will be proved that for fixed
sm ,ndPC2 the eigenvalues ofAsk ;m ,nd are the zeros of a holomorphic functionQ
which is defined by a relatively simple limit formula. Finally, we discuss the prob-
lem if there exists a closed expression for the eigenvalues of the Chandrasekhar–
Page angular equation. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1818720]

I. INTRODUCTION

The angular eigenvalue problem of a spin-1
2 particle in the Kerr–Newman geometry is given

by the Chandrasekhar–Page angular equation

L1/2
+ S+1/2 = sam cosu − ldS−1/2, s1d

L1/2
− S−1/2 = sam cosu + ldS+1/2, s2d

see Chandrasekhar(1998, Chap. 10, Sec. 104), where the Kerr parametera is the angular mo-
mentum per unit mass of a black hole andm is the rest mass of the Dirac particle. Moreover, the
differential operatorsL1 / 2

± are defined by

L1/2
± = ]u ± Qsud +

cot u

2
, Qsud ª av sin u +

k

sin u
, u P s0,pd,

where v is the energy of the particle(as measured at infinity) and k is a half-integer, i.e.,
k=k− 1

2 with somekPZ. A parameterlPR is called aneigenvalueof this spectral problem if the
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system given by(1)-(2) has a nontrivial solution which is square-integrable ons0,pd with respect
to the weight function sinu. In this paper we study for fixedk the eigenvalues of the
Chandrasekhar–Page angular equation as a function of the parametersmªam andnªav. As a
main result, we will prove that the eigenvalues satisfy a first order quasilinear partial differential
equation, and we will derive a power series expansion for the eigenvalues in terms ofn−m and
n+m.

For this purpose it is necessary to consider the system(1)-(2) in a more general context where
k is real, uk u ù

1
2, and m, n are complex numbers. At first we rewrite this system for fixedk

PR \ s−1
2 , 1

2
d as an eigenvalue problem for some self-adjoint holomorphic operator family

A=Ask ;m ,nd depending on the parameterssm ,ndPC2. In the special case wheresm ,ndPR2 the
differential operatorAsk ;m ,nd is self-adjoint and has purely discrete spectrum. In Sec. II we prove
that for a givenk the eigenvaluesl jsk ;m ,nd of A are holomorphic functions insm ,nd, and we
derive some basic estimates for them. Furthermore, we transform the system(1)-(2) to a matrix
differential equation

y8sxd = F1

x
B0 +

1

x − 1
B1 + CGysxd s3d

on the intervals0,1d with coefficient matrices

B0 =1−
k

2
−

1

4
m − l

0
k

2
+

1

4
2, B1 =1

k

2
+

1

4
0

m − l −
k

2
−

1

4
2, C = S− 2n − 2m

2m 2n
D ,

which can be extended to the complex domainC \ h0,1j. In this way we obtain a further charac-
terization of the eigenvalues ofA and some useful estimates for the corresponding eigenfunctions.
Applying analytic perturbation theory, we show in Sec. III that the eigenvaluesl jsk ;m ,nd satisfy
the partial differential equation

sm − 2nld
] l

] m
+ sn − 2mld

] l

] n
+ 2km + 2mn = 0. s4d

In particular, this result can be used to obtain a recurrence relation for the coefficientscm,n of a
power series expansion

l jsk;m,nd = o
m,n=0

`

cm,nsn − mdmsn + mdn.

In Sec. IV we solve the PDE(4) by the method of characteristics. First, we derive an explicit
formula for the eigenvalues in the caseum u = unu. Moreover, in the regions whereum u Þ unu we
reduce the characteristic equations of(4) to a Painlevé III equation

vv8 + tvv9 − tsv8d2 − 2ksv2 ± 1dv − tsv4 − 1d = 0

with parametersa= ±b=2k and g=−d=1 according to the notation in Milneet al. (1997) and
Mansfield and Webster(1998). As this differential equation is in general not solvable in terms of
elementary functions, we cannot expect a closed expression for the eigenvalues of the
Chandrasekhar–Page angular equation for allsm ,ndPR2. However, if k is a half-integer, i.e.,
k=k− 1

2 with some positive integerk, thena±b=2s2k−1d, and there are integrals of polynomial
type for the third Painlevé equation in this special case, cf. Milneet al. (1997). Hence, if
k= ± 1

2 , ± 3
2 , . . . , there exist algebraic solutions of the partial differential equation(4), and the

question arises if these explicit solutions are in fact eigenvalues of the Chandrasekhar–Page
angular equation. It turns out that there is another type of “special values” associated to the
operatorA, calledmonodromy eigenvalues, which belong to the algebraic solutions of the PDE
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(4). For a half-integerk, the monodromy eigenvalues are introduced in Sec. V by requiring that
the system(3) has a fundamental matrix of the form

fxs1 − xdg−sk/2d−1/4Hsxd

with an entire matrix functionH :C→M2sCd. This property turns out to be equivalent to the
existence of special solutions of the form

fxs1 − xdg−sk/2d−1/4p±sxde±2tx,

wherep± :C→C2 are polynomials andt= ±În2−m2. For comparison purposes, an eigenvalue ofA
can be characterized by the property that(3) possesses a nontrivial solution of the form

fxs1 − xdgsk/2d+1/4hsxd

with some entire vector functionh :C→C2. We prove that the monodromy eigenvalues are zeros
of a polynomial with degree 2k−1 whose coefficients are polynomials inm andn. Moreover, it
can be shown that monodromy eigenvalues and “classical” eigenvalues are distinct at least in a
neighborhood ofsm ,nd=s0,0d. Nevertheless, they are both characterized by the fact that certain
monodromy data of the system(3) are preserved for all parameterssm ,nd. In fact, l is a mono-
dromy eigenvalue ofA if and only if the monodromy matrices of(3) at the regular-singular points
0 and 1 are diagonal, whereasl is a classical eigenvalue ofA if and only if a certain nondiagonal
entry of the connection matrix for the fundamental matrices at 0 and 1 vanishes. Hence, for the
Chandrasekhar–Page angular equation the monodromy as well as the classical eigenvalue problem
is closely related to the isomonodromy problem for the differential equation(3). Monodromy
preserving deformations for such a system were studied by Jimboet al. (1981), but only if the
eigenvalues ofB0 and B1 do not differ by an integer, i.e.,k+ 1

2 ¹Z. In Sec. VI we consider the
isomonodromy problem for(3) in the case thatk is a half-integer. As a consequence, we show that
the monodromy eigenvalues ofA satisfy the partial differential equation(4), and we obtain an
alternative derivation of(4) for the classical eigenvalues ofA. Unlike the proof in Sec. III, which
relies on the particular structure of the Chandrasekhar–Page angular equation, the method pre-
sented in Sec. V is more general and based on finding suitable deformation equations for
parameter-dependent differential equations. Thus, we expect that this technique is applicable to
other eigenvalue problems as well.

II. A SELF-ADJOINT HOLOMORPHIC OPERATOR FAMILY ASSOCIATED TO THE
CHANDRASEKHAR–PAGE ANGULAR EQUATION

By introducing the notations

m ª am, n ª av, Ssud ª Îsin u SS+1/2sud
S−1/2sud

D, u P s0,pd,

the Chandrasekhar–Page angular equation(1)-(2) takes the form

sASdsud ª S 0 1

− 1 0
DS8sud +1 − m cosu −

k

sin u
− n sin u

−
k

sin u
− n sin u m cosu 2Ssud = lSsud s5d

with fixed kPR \ s−1
2 , 1

2
d and parameterssm ,ndPC2. We can associate the so-called minimal

operator A0 to the formal differential expressionA, which acts in the Hilbert space
HªL2ss0,pd ,C2d of square integrable vector functions with respect to the scalar product
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sS1,S2d ª E
0

p

S2sud*S1suddu, S1,S2 P H. s6d

The operatorA0 given byDsA0d=C0
`ss0,pd ,C2d and A0SªAS for SPDsA0d is densely defined

and closable. Foruk u ù
1
2 andsm ,ndPR2 the formal differential operator in(5) is in the limit point

case at 0 andp, henceA0 is even essentially self-adjoint. In the following we denote the closure
of A0 by A=Ask ;m ,nd. According to Weidmann(1987, Theorem 5.8) the domain ofAsk ;0 ,0d is
given by

DsAd = hSP H : S is absolutely continuous andAsk;0,0dSP Hj.

SinceAsk ;m ,nd=Ask ;0 ,0d+Tsm ,nd with the bounded multiplication operator

Tsm,nd = S− m cosu − n sin u

− n sin u m cosu
D ,

its domain of definitionDsAd is independent ofsm ,ndPC2, see Kato(1966, Chap. IV, §1, Theo-
rem 1.1). Moreover, if sm ,ndPR2, then Tsm ,nd is a symmetric perturbation ofAsk ;0 ,0d, and
Theorem 4.10 in Kato(1966, Chap. V, §4) yields thatAsk ;m ,nd is self-adjoint. Thus, according to
the classification in Kato(1966, Chap. VII, §3), Ask ;m ,nd forms a self-adjoint holomorphic
operator family of type(A) in the variablessm ,ndPC2. Further, the spectrum ofAsk ;0 ,0d is
discrete and consists of simple eigenvalues given by

l jsk;0,0d = sgns jdsuku− 1
2 + u j ud, j P Z \ h0j s7d

(for the details we refer to Appendix A). This means, in particular, thatAsk ;0 ,0d has compact
resolvent, and from Theorem 2.4 in Kato(1966, Chap. V, §2) it follows that Ask ;m ,nd has
compact resolvent for allsm ,ndPC2. As a consequence, the spectrum ofAsk ;m ,nd, sm ,ndPC2, is
discrete, and sinceAsk ;m ,nd is in the limit point case atu=0 andu=p, its spectrum consists of
simple eigenvalues forsm ,ndPR2. Now, Theorem 3.9 in Kato(1966, Chap. V, §3) implies that the
eigenvaluesl j =l jsk ;m ,nd, j PZ \ h0j, of Ask ;m ,nd are simple and depend holomorphically on
sm ,nd in a complex neighborhood ofR2. Moreover, the partial derivatives ofA with respect tom
andn are given by

] A

] m
= S− cosu 0

0 cosu
D,

] A

] n
= S 0 − sin u

− sin u 0
D ,

which yields the following estimates for the growth rate of the eigenvalues, compare Kato(1966,
Chap. VII, §3, Sec. 4):

U ] l j

] m
U ø I ] A

] m
I ø 1, U ] l j

] n
U ø I ] A

] n
I ø 1.

Here i ·i denotes the operator norm of as232d matrix. In addition, by Theorem 4.10 in Kato
(1966, Chap. V, §3), we have

min
jPZ\h0j

ul − l jsk;0,0du ø iTsm,ndi ø maxhumu,unuj s8d

for each eigenvaluel of Ask ;m ,nd. Finally, by interchanging the components ofSsud, we obtain
that a pointl is an eigenvalue ofAsk ;m ,nd if and only if −l is an eigenvalue ofAs−k ;m ,−nd.
Since the eigenvalues depend holomorphically onm andn, the identity
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l jsk;m,nd = − l−js− k;m,− nd

holds for all sm ,nd in a neighborhood ofR2. Therefore, we restrict our attention to the case
kPf 1

2 ,`d. Note thatlPC is an eigenvalue ofAsk ;m ,nd if and only if the system(5) has a
nontrivial solutionSsud satisfying

E
0

p

uSsudu2 du , `. s9d

By means of the transformation

Ssud =1Îtan
u

2
0

0 Îcot
u

2
2ySsin2u

2
D, u P s0,pd, s10d

the differential equation(5) is equivalent to the system

y8sxd = F1

x
B0 +

1

x − 1
B1 + CGysxd s11d

on the intervals0,1d with coefficient matrices

B0 ª1−
k

2
−

1

4
m − l

0
k

2
+

1

4
2, B1 ª1

k

2
+

1

4
0

m − l −
k

2
−

1

4
2, Cª S− 2n − 2m

2m 2n
D , s12d

and the normalization condition(9) becomes

E
0

1

ysxd* 1
1

1 − x
0

0
1

x
2 ysxddx , `. s13d

If we consider the differential equation(11) for a fixedkP s0,`d in the complex plane, then it has
two regular singular points, one atx=0 and one atx=1 with characteristic values ±fsk /2d+ 1

4
g.

From the theory of asymptotic expansions[see Wasow(1965), for example], it follows that for
eachlPC there exists a nontrivial solution

y0sx,ld = xsk/2d+1/4hsx,ld, x P B0 s14d

of (11) in the open unit diskB0,C with center 0, wherehs· ,ld :B0→C2 is a holomorphic
function,

hsx,ld = o
n=0

`

xnhnsld, h0sld ª Sm − l

k + 1
2
D . s15d

Hereh0sld is an eigenvector ofB0 for the eigenvaluesk /2d+ 1
4, and the coefficientshnsld, n.1,

are uniquely determined by the recurrence relation

sB0 − a − ndhnsld = sB0 + B1 − C + 1 −a − ndhn−1sld + C hn−2sld s16d

with aª sk /2d+ 1
4 andh−1sldª0. Since the matricesB0 andB1 depend holomorphically onl, the

coefficientshn:C→C2 are holomorphic functions. By slightly modifying the proof of Theorem 5.3
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in Wasow (1965), it can be shown that the series(15) converges uniformly in every compact
subset ofB03C. Thus, by a theorem of Weierstrass,h:B03C→C2 is a holomorphic vector
function in the variablessx,ld. Now, let

hS1

2
,lD¬ S fsld

gsld
D ,

and we define the holomorphic functionD :C→C by

Dsld ª fsld2 − gsld2, l P C. s17d

The following lemma provides a connection between the eigenvalues ofA and the zeros ofD.
Lemma 1: For fixedkPf 1

2 ,`d and sm ,ndPC2, a point lPC is an eigenvalue of Ask ;m ,nd if
and only ifl is a zero of the functionD given by (17). This is equivalent to the statement that the
differential equation (11) has a nontrivial solution of the form

ysxd = fxs1 − xdgsk/2d+1/4hsxd, x P C \ h0,1j, s18d

where h :C→C2 is an entire vector function. As a consequence, if S is an eigenfunction of
Ask ;m ,nd for some eigenvaluel, then

uSsudu ø C sink u, u P s0,pd, s19d

with some constant C.0.
Proof: Defining

K ª S0 1

1 0
D , s20d

we haveK−1=K andKB0K=B1, KCK=−C. Hence,y is a solution of the system(11) if and only
if the functionKys1−xd satisfies(11). In particular,y1sxdªKy0s1−xd is a solution of(11) in the
unit disk B1,C with center 1, andy1 has the form

y1sx,ld = s1 − xdsk/2d+1/4Khs1 − x,ld, x P B1.

Moreover, by the Levinson theorem, see Eastham(1989, Theorem 1.3.1), any solution of(11)
which is linearly independent ofy0 in s0,1d behaves asymptotically likex−sk/2d−1/4fv0+os1dg as
x→0, wherev0 is an eigenvector ofB0 for the eigenvalue −sk /2d− 1

4. Similarly, any solution of
(11) which is linearly independent ofy1 in s0,1d has the asymptotic behaviorsx−1d−sk/2d−1/4

3fv1+os1dg asx→1 with an eigenvectorv1 of B1 for the eigenvalue −sk /2d− 1
4. Now, if l is an

eigenvalue ofAsk ;m ,nd, then the system(11) has a nontrivial solutiony satisfying(13), and it
follows that ysxd=yasx,ldca holds in s0,1d with some constantscaPC \ h0j, aP h0,1j. Thus,y0

and y1 are linearly dependent, and the WronskianWsx,ldªdetsy0sx,ld ,y1sx,ldd vanishes iden-
tically for all xP s0,1d. In particular, 0=Ws 1

2 ,ld=2−k−1/2Dsld. Conversely, if Dsld=0, then
Ws 1

2 ,ld=0, which implies thaty0 andy1 are linearly dependent. Hence,y0sxd=y1sxdc with some
constantcPC \ h0j, and thereforey0 is a solution of(11) satisfying the condition(13) on the
interval s0,1d. Moreover, we immediately obtain thaty0 has the form(18) with a holomorphic
vector functionh :B0øB1→C2, and since(11) is regular inC \ h0,1j, we can extendh :C→C2 to
an entire function by the existence and uniqueness theorem. Finally, by means of the transforma-
tion (10), an eigenfunctionS of Ask ;m ,nd has to be a constant multiple of
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sink u 1sin
u

2
0

0 cos
u

2
2hSsin2u

2
D, u P s0,pd,

and this yields the estimate(19). h

Lemma 2: For fixedkPf 1
2 ,`d and jPZ \ h0j, the jth eigenvaluel jsk ;m ,nd of Ask ;m ,nd has

a power series expansion of the form

l jsk;m,nd = o
m,n=0

`

lm,nmmnn, l0,0= l jsk;0,0d, s21d

which is uniformly convergent in the polydiscCªhsm ,ndPC2: umu , unuø 1
2j. Moreover, for all

integers m and n, the following estimate holds:

ulm,nu ø suku + u j ud2n+m. s22d

Proof: Since the coefficient matrices in(11) depend holomorphically onsl ,m ,ndPC3, we can
modify Theorem 5.3 in Wasow(1965) appropriately in order to obtain thath in (14) and therefore
D=Dsl ,m ,nd as given by(17) are holomorphic functions onC3. By a similar reasoning as in the
proof of Lemma 1, we can show that for fixedsm ,ndPC2 the eigenvalues ofAsk ;m ,nd coincide
with the zeros of the functionl°Dsl ,m ,nd. In particular for the casesm ,ndPR2 these zeros are
simple becauseAsk ;m ,nd has only simple eigenvalues. Hence, by solving the equation
Dsl ,m ,nd=0 and using the implicit function theorem, an eigenvaluel jsk ;m ,nd of the operator
Ask ;m ,nd depends holomorphically onsm ,nd in a complex neighborhood ofR2. Furthermore, the
estimate(8) implies that the sethlPC :minjÞ0ul−l jsk ;0 ,0d u ù

1
2j contains no eigenvalues of

Ask ;m ,nd for all sm ,ndPC. Thus there exists a holomorphic solutionl :C→C of the equation
Dsl ,m ,nd=0, which is uniquely determined byls0,0d=l jsk ;0 ,0d. Consequently,l jsk ;m ,nd is
holomorphic inC, and therefore it has a power series expansion inC of the form(21). In addition,
by Cauchy’s formula,

lm,n = −
1

4p2R
]C

l jsk;m,nd
mm+1nn+1 dm dn,

and applying(8) and (7), it follows that

ul jsk;m,ndu ø ul jsk;0,0du + maxhumu,unuj ø uku + u j u,

which gives the estimate(22). h

According to Lemma 1, for fixed parameterssm ,ndPC2 the eigenvalues ofAsk ;m ,nd are
exactly the zeros of the functionDsld given by (17). In principle, this result can be used for
numerical computation of the eigenvalues. However, in order to calculateDsld at some point
lPC, we first have to determine the coefficientshnsld with the help of the recurrence relation(16)
and subsequently we need to evaluatehsx,ld at x= 1

2 by means of the power series expansion(15).
Unfortunately, this method requires the calculation of two consecutive limits, making things rather
complicated. In the remaining part of this section we show that there is yet another functionQ
which encodes the eigenvalues ofAsk ;m ,nd. The main advantage ofQ is, that it can be obtained
by only one limit process.

By settingysxdªxas1−xd1−aŷsxd with aª sk /2d+ 1
4, the system(11) becomes

ŷ8sxd = F1

x
B̂0 +

1

x − 1
B̂1 + CGŷsxd s23d

with the coefficient matrices
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B̂0 ª S− k − 1
2 m − l

0 0
D, B̂1 ª Sk − 1

2 0

m − l − 1
D, C = S− 2n − 2m

2m 2n
D .

Now, there exists a holomorphic solution of(23) in B1 given by

ŷsx,ld = o
n=0

`

xndnsld, d0sld ª Sm − l

k + 1
2
D , s24d

whered0sld is an eigenvector ofB̂0 for the eigenvalue 0. In addition, the coefficientsdnsld, n
.1, are uniquely determined by the recurrence relation

dnsld = sB̂0 − nd−1fsE − nddn−1sld + Cdn−2sldg

with

Eª S 2n 3m − l

− m − l − 2n
D, d−1sld ª 0.

Finally, we denote byQnsld the second component ofdnsld.
Lemma 3: LetkPf 1

2 ,`d and sm ,ndPC2 be fixed. Then, for eachlPC, the limit

Qsld ª lim
n→`

Qnsld s25d

exists, andQ :C→C is a holomorphic function. Moreover, a pointlPC is an eigenvalue of
Ask ;m ,nd if and only if Qsld=0.

Proof: For fixedlPC, the differential equation(23) has a regular singular point atx=1 with
characteristic values −1 andk− 1

2. First, let us assume that their differencek+ 1
2 is not an integer.

In this case the system(23) has a fundamental system of solutions in a complex neighborhood of
x=1, which can be written as

ŷ1sx,ld = s1 − xd−1o
n=0

`

s1 − xdndn
1sld, ŷ2sx,ld = s1 − xdk−1/2o

n=0

`

s1 − xdndn
2sld, s26d

where

d0
1sld = S0

1
D¬ e2, d0

2sld = Sk + 1
2

m − l
D

are eigenvectors ofB̂1 for the eigenvalues −1 andk− 1
2, respectively. Now,ŷ can be written as a

linear combination

ŷsx,ld = g1sldŷ1sx,ld + g2sldŷ2sx,ld

with connection coefficientsg1sld ,g2sldPC. Applying Corollary 1.6 in Schäfke and Schmidt
(1980) to the system(23) gives

lim
n→`

dnsld = g1slde2, s27d

and therefore the limit(25) exists. Furthermore,l is an eigenvalue ofAsk ;m ,nd if and only if
g1sld=0, i.e., if and only ifQsld becomes zero. Finally, it can be shown that the functionsdn

converge uniformly in every compact subset ofC, and Weierstrass’ theorem implies thatQ is an
entire function.

Now, suppose thatkªk+ 1
2 is a positive integer. In this case, a fundamental system of the

form (26) may not exist. Nevertheless, it can be proved(see Lemma 6 in Sec. VI) that the system
(23) has a fundamental matrix,
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Ŷsx,ld = Gsldo
n=0

`

Hnslds1 − xdns1 − xdDs1 − xdJsld,

in a complex neighborhood ofx=1, whereDªdiags−1,k−1d, H0sld= I, and

Gsld = S0 k + 1
2

1 m − l
D, Jsld = S 0 0

qsld 0
D

with someqsldPC. In particular, we can writeŶ in the form

Ŷsx,ld = Ĥsx,lds1 − xdJ̃sld, Ĥsx,ld = o
n=0

`

s1 − xdnDnsld,

where

D0sld = S0 0

1 0
D, J̃sld = S − 1 0

qsld − 1
D .

Sinceŷ solves the system(23), there exists a vectorcsldPC2 such thatŷsx,ld=Ŷsx,ldcsld, and
Theorem 1.1 in Schäfke(1980) implies

dnsld = D0sld
1

G
s− J̃slddGsn + 1d

1

G
sn − J̃slddcsld + Osnd−1d s28d

for arbitraryd.0. For the definition and discussion of the reciprocal gamma function for matrices

we refer to the Appendix in Schäfke(1980). Particularly, for the Jordan-type matrices −J̃sld and

n− J̃sld we obtain

1

G
s− J̃sldd = S1 0

* 1
D,

1

G
sn − J̃sldd =1

1

Gsn + 1d
0

*
1

Gsn + 1d
2 .

Now, if g1sld denotes the first component ofcsld, then(28) implies (27). Sincel is an eigenvalue
of Ask ;m ,nd if and only if g1sld=0, the proof of Lemma 3 is complete. h

III. A PARTIAL DIFFERENTIAL EQUATION FOR THE EIGENVALUES

Theorem 1: For fixed kPf 1
2 ,`d and jPZ \ h0j, the jth eigenvaluel=l jsk ;m ,nd of A is an

analytical function insm ,ndPR2 satisfying the first order quasilinear partial differential equation

sm − 2nld
] l

] m
+ sn − 2mld

] l

] n
+ 2km + 2mn = 0, s29d

wherel jsk ;0 ,0d is given by(7).
Proof: Let

Ssud ¬ SS1sud
S2sud

D, u P s0,pd,

be that eigenfunction ofAsk ;m ,nd for the eigenvaluel=l jsk ;m ,nd which is normalized by the
condition sS,Sd=1. Introducing the functions
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Usud ª S1sud2 + S2sud2, Vsud ª S2sud2 − S1sud2, Wsud ª 2S1sudS2sud,

a straightforward calculation shows thatU, V, andW are solutions of the system of differential
equations

U8sud = 2Sn sin u +
k

sin u
DVsud + 2m cosuWsud, s30d

V8sud = 2Sn sin u +
k

sin u
DUsud + 2lWsud, s31d

W8sud = 2m cosuUsud − 2lVsud. s32d

Now, from analytic perturbation theory, compare Kato(1966, Chap. VII, §3, Sec. 4), it follows
that

] l

] m
= S ] A

] m
S,SD =E

0

p

Ssud*S− cosu 0

0 cosu
DSsuddu =E

0

p

cosuVsuddu, s33d

] l

] n
= S ] A

] n
S,SD =E

0

p

Ssud*S 0 − sin u

− sin u 0
DSsuddu = −E

0

p

sin uWsuddu. s34d

In addition, from(19) we obtain the estimates

uUsudu,uVsudu,uWsudu ø C sin2k u

with some constantC.0. Sincek is positive, U, V, and W vanish atu=0 and u=p. If we
integrate(33) by parts and replaceV8sud with the right-hand side(rhs) of (31), then we get

] l

] m
= −E

0

p

sin uV8suddu = −E
0

p

s2n sin2 u + 2kdUsud + 2l sin uWsuddu

= − s2n + 2kdE
0

p

Usuddu − 2lE
0

p

sin uWsuddu + 2nE
0

p

cos2 uUsuddu.

Taking into account that

E
0

p

Usuddu = sS,Sd = 1, E
0

p

sin uWsuddu = −
] l

] n
,

we have

m
] l

] m
= − ms2n + 2kd + 2ml

] l

] n
+ 2mnE

0

p

cos2 uUsuddu. s35d

Moreover, Eq.(32) implies

2m cos2 uUsud = cosuW8sud + 2l cosuVsud,

and integration by parts gives
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2mnE
0

p

cos2 uUsuddu = nE
0

p

cosuW8suddu + 2nlE
0

p

cosuVsuddu

= nE
0

p

sin uWsuddu + 2nlE
0

p

cosuVsuddu = − n
] l

] n
+ 2nl

] l

] m
. s36d

Replacing the last term on the rhs of(35) with (36), we obtain exactly the partial differential
equation(29). h

The PDE(29) can be used in order to derive a power series expansion forl j with respect to
m andn. For this purpose we introduce the new coordinates,

a ª n − m, b ª n + m,

compare Suffernet al. (1983). Thenl̂sa ,bdªl jsk ; sb−ad /2 ,sb+ad /2d is a solution of the trans-
formed partial differential equation

as1 + 2l̂d
] l̂

] a
+ bs1 – 2l̂d

] l̂

] b
= ksa − bd +

1

2
sa2 − b2d, s37d

wherel̂s0,0d=l jsk ;0 ,0d is given by(7). As l̂ depends analytically onsa ,bd, there exists a series

expansion forl̂ of the form

l̂sa,bd = o
m,n=0

`

cm,nambn s38d

(for clarity, the indicesk and j in the coefficientscm,n and in the functionl̂ have been omitted).
Furthermore,(37) is equivalent to

aS ] l̂

] a
+

] l̂2

] a
D + bS ] l̂

] b
−

] l̂2

] b
D = ksa − bd +

1

2
sa2 − b2d, s39d

and since

l̂sa,bd2 = o
m,n=0

` So
r=0

m

o
s=0

n

cr,scm−r,n−sDambn,

we obtain the identity

o
m,n=0

` Ssm+ ndcm,n + sm− ndo
r=0

m

o
s=0

n

cr,scm−r,n−sDambn = ksa − bd +
1

2
sa2 − b2d.

Comparing the terms of equal order ina andb, it follows that

c0,0= l jsk;0,0d ¬ c0, c1,0=
k

2c0 + 1
, c0,1=

k

2c0 − 1
,

c2,0=
s2c0 + 1d2 − 4k2

4s2c0 + 1d3 , c1,1= 0, c0,2=
s2c0 − 1d2 − 4k2

4s2c0 − 1d3 ,

and form+n.2 the coefficientscm,n satisfy
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ssm+ nd + 2c0sm− nddcm,n = sn − md o
sr,sdPvm,nb

cr,scm−r,n−s, s40d

wherevm,nb denotes the set of all pairssr ,sdPZ2 with 0ø r øm, 0øsøn and 0, r +s,m+n. In
particular, ifm=n.0, then we get 2n cn,n=0, which implies

cn,n = 0 for all n . 0. s41d

Moreover, ifk is not a rational number, i.e.,kPf 1
2 ,`d \Q, then the initial valuec0 is not a rational

number, and we havesm+nd+2c0sm−ndÞ0 for all sm,ndPZ2 with m+n.2. In this case(40)
gives a recurrence formula for all coefficients of the power series expansion(38).

Now, suppose thatkPf 1
2 ,`dùQ. Then c0 is a rational number withuc0u ù1, and we get

s2c0−1d / s2c0+1d=p/q with some coprime integersp andq. Now, the prefactor on the left-hand
side(lhs) of (40) becomes zero if and only ifm=,p, n=,q with some positive integer,, and thus
the coefficientsc,p,,q are not determined by(40). However, we can by-pass this problem if we
regardk as an additional parameter in our eigenvalue problem. Since the coefficient matrix of(11)
depends holomorphically onkPC+

ª hzPC :Re z.0j and sl ,m ,ndPC3, we obtain in a similar
way as described in Sec. I thath in (14) and thereforeD=Dsk ;l ;m ,nd given by (17) is a
holomorphic function onC+3C3. Moreover, in the same way as in the proof of Lemma 1, we can
show that for fixedkPf 1

2 ,`d andsm ,ndPC2 the eigenvalues ofAsk ;m ,nd coincide with the zeros
of the functionl°Dsk ;l ;m ,nd. In the casesk ,m ,ndPf 1

2 ,`d3R2 these zeros are simple, since
Ask ;m ,nd has only simple eigenvalues. Hence, by solving the equationDsk ;l ;m ,nd=0,
we find that an eigenvaluel jsk ;m ,nd is a holomorphic function in a complex neighborhood of
f 1

2 ,`d3R2. In particular,l̂ depends holomorphically onsk ;a ,bd, and for a givenkPf 1
2 ,`d, there

exists a power series expansion of the form

l̂sk + «;a,bd = o
l,m,n=0

`

cm,n
sld «lambn

in a neighborhood ofsk ,0 ,0d. In the following we derive a recurrence relation for the coefficients
cm,n

sld . Since

l̂sk + «;a,bd2 = o
l,m,n=0

` So
t=0

l

o
r=0

m

o
s=0

n

cr,s
stdcm−r,n−s

sl−td D«lambn,

from (39) it follows that

o
l,m,n=0

` Ssm+ ndcm,n
sld + sm− ndo

t=0

l

o
r=0

m

o
s=0

n

cr,s
stdcm−r,n−s

sl−td D«lambn = ksa − bd + «sa − bd +
1

2
sa2 − b2d.

s42d

Moreover,(7) implies that

c0,0
sld =

1

l!

] ll

] kl sk;0,0d = 5sgns jdsk − 1
2 + u j ud, if l = 0,

sgns jd, if l = 1,

0, if l . 1.

Comparing the terms of equal order in(42), we obtain

c0,0
s0d = l jsk;0,0d ¬ c0, c1,0

s0d =
k

2c0 + 1
, c0,1

s0d =
k

2c0 − 1
,
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c2,0
s0d =

s2c0 + 1d2 − 4 k2

4s2c0 + 1d3 , c1,1
s0d = 0, c0,2

s0d =
s2c0 − 1d2 − 4 k2

4s2c0 − 1d3 ,

c1,0
s1d =

2c0 + 1 – 2 sgns jdk
s2c0 + 1d2 , c0,1

s1d =
2c0 − 1 – 2 sgns jdk

s2c0 − 1d2 ,

while the remaining coefficients are determined by the identity

ssm+ nd + 2c0sm− nddcm,n
sld + sm− nd o

st,r,sdPvl,m,nb
cr,s

stdcm−r,n−s
sl−td = 0, l + m+ n . 2. s43d

Here vl ,m,nb denotes the set of all triplesst ,r ,sdPZ3 with 0ø tø l, 0ø r øm, 0øsøn, and 0
, t+r +s, l +m+n. In the casesm+nd+2c0sm−nd=0, the prefactor ofcm,n

sld in (43) vanishes, and
sincem−nÞ0, we get forl .0

0 = o
st,r,sdPvl,m,nb

cr,s
stdcm−r,n−s

sl−td = 2c0,0
s1dcm,n

sl−1d + o
st,r,sdPvl,m,nb*

cr,s
stdcm−r,n−s

sl−td , s44d

wherevl ,m,nb*
ª vl ,m,nb \ hs1,0,0d ,sl −1,m,ndj. Now, for all coefficientscm,n

sld with l +m+n.2,
(43) implies

cm,n
sld =

n − m

sm+ nd + 2c0sm− nd o
st,r,sdPvl,m,nb

cr,s
stdcm−r,n−s

sl−td if sm+ nd + 2c0sm− nd Þ 0,

whereas(44) andc0,0
s1d =sgns jd yield

cm,n
sl−1d = −

sgns jd
2 o

st,r,sdPvl,m,nb*
cr,s

stdcm−r,n−s
sl−td if sm+ nd + 2c0sm− nd = 0 andl . 1.

These recurrence relations can be used to determine all the coefficientscm,n=cm,n
s0d of the power

series expansion(38) in the case thatk is a rational number.

Remark 1: A series expansion for the eigenvaluesl̂ with respect tosa ,bd has been given by
Suffern et al. (1983, Sec. 8), however, only the coefficients cm,n with m+nø5 have been deter-
mined. Furthermore, Kalnins and Miller (1992) studied a series expansionl=on=0

` lna
n for the

eigenvalues in terms of the Kerr parameter a, but also in this paper only a finite number of
coefficientsl0, . . . ,l3 have been explicitly computed. A general recurrence relation for the coef-
ficients of (38) could not be found in the literature. Moreover, the problem of dividing by numbers
which may be zero has not been noticed in Suffern et al. (1983) and Kalnins and Miller (1992).
Finally, it should be noted that some of the diagonal entries cn,n for n.0 in Suffern et al. (1983,
Table I) are not equal to zero, in contrast to our result (41).

IV. SOLUTION OF THE PDE BY THE METHOD OF CHARACTERISTICS

In this section the PDE(29) for real parameterssm ,ndPR2 and fixedkPf 1
2 ,`d is studied by

the method of characteristics. In particular, we obtain an exact formula for the eigenvalues in the
caseum u = unu, and forum u Þ unu, it turns out that the characteristic equations can be reduced to the
third Painlevé equation.

Theorem 2: Let kPf 1
2 ,`d, j PZ \ h0j and tP h−1, +1j be fixed. Then

l jsk;m,tmd =
t

2
+ sgns jdÎSl jsk;0,0d −

t

2
D2

+ 2tkm + m2, s45d

wherel jsk ;0 ,0d=sgns jdsk− 1
2 + u j ud. In particular, if j =t, then

l jsk;m,tmd = tsk + 1
2d + m.
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Proof: According to Theorem 1, the functionlsm ,ndªl jsk ;m ,nd solves the partial differen-
tial equation(29). Definingwsmdªlsm ,tmd, mPR, for some fixedtP h−1, +1j, we obtain

w8smd =
] l

] m
sm,tmd + t

] l

] n
sm,tmd,

and with the help of(29) it can be shown that

mw8smd − 2tmwsmdw8smd = − 2km − 2tm2.

Dividing the above differential equation by −tm and integrating gives

Swsmd −
t

2
D2

= C + 2tkm + m2, m P R, s46d

where the constant of integrationC is uniquely determined by

C = Sws0d −
t

2
D2

= Sl jsk;0,0d −
t

2
D2

.

Now, from (46) it follows that

wsmd =
t

2
+ «ÎSl jsk;0,0d −

t

2
D2

+ 2tkm + m2 s47d

with some«P h−1, +1j and the square root assumed to be non-negative. We have to take the sign
of « such that the lhs of(47) is analytic and coincides withl jsk ;0 ,0d at the pointm=0. If j =t,
thenl jsk ;0 ,0d=tsk+ 1

2
d, and(47) implies wsmd=st /2d+«stk+md. Insertingm=0, it follows that

«=t, i.e., wsmd=tsk+ 1
2

d+m. In the casej Þt we haveul jsk ;0 ,0d−st /2duùk+1 and thus the
radicand in(47) is positive for allmPR. Moreover, by means of

l jsk;0,0d = ws0d =
t

2
+ «ÎSl jsk;0,0d −

t

2
D2

=
t

2
+ «Ul jsk;0,0d −

t

2
U

and (7), we get«=sgnsl jsk ;0 ,0d−st /2dd=sgns jd, which completes the proof. h

Remark 2: For a given half-integerk and m=n, this result has been shown by Suffern,
Fackerell, and Cosgrove using a power series expansion for the eigenfunctions of (1) and (2) in
terms of hypergeometric functions, see Suffern et al. (1983, Secs. 3–5). Here, we obtained the
formula for l jsk ;m , ±md as an immediate consequence of the partial differential equation (29).
Moreover, it should be noted that the formula (54) in Chakrabarti (1984) is not correct.

Now, let us consider the caseum u Þ unu. To this purpose, we introduce new coordinates
st ,vdP s0,`d3 sR \ h0jd by

mst,vd =
t

2
Sv +

s

v
D, nst,vd =

t

2
Sv −

s

v
D s48d

with some fixedsP h−1, +1j [note thats= ±1 corresponds to the casesum u . unu and um u , unu,
respectively; moreover, this transformation mapsv=const onto lines in thesm ,nd-plane starting at
the origin, while the curvest=const are mapped onto hyperboles]. By settingwst ,vd=lsm ,nd, we
have

] w

] t
=

1

2
Sv +

s

v
D ] l

] m
+

1

2
Sv −

s

v
D ] l

] n
=

1

t
Sm

] l

] m
+ n

] l

] n
D ,
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] w

] v
=

t

2
S1 −

s

v2D ] l

] m
+

t

2
S1 +

s

v2D ] l

] n
=

1

v
Sn

] l

] m
+ m

] l

] n
D ,

and (29) becomes

] w

] t
−

2vw

t

] w

] v
+ kSv +

s

v
D +

t

2
Sv2 −

1

v2D = 0. s49d

The characteristic equations of this PDE are given by

v8std = −
2vstdwstd

t
, s50d

w8std = − kSvstd +
s

vstd
D −

t

2
Svstd2 −

1

vstd2D . s51d

From (50) we obtain thatwstd=−tv8std /2vstd, and(51) implies

v8std
2vstd

+
tv9std
2vstd

−
tv8std2

2vstd2 = kSvstd +
s

vstd
D +

t

2
Svstd2 −

1

vstd2D .

Multiplying the above differential equation with 2vstd2, we get the following third Painlevé equa-
tion:

tvv9 − tsv8d2 + vv8 − 2ksv2 + sdv − tsv4 − 1d = 0, s52d

with parametersa=sb=2k and g=−d=1 [see Milneet al. (1997) or Mansfield and Webster
(1998), for example]. For further details on the Painlevé III we refer to, e.g., McCoyet al. (1977),
Widom (2000), and Iwasakiet al. (1991).

In general, Painlevé III is not solvable in terms of elementary functions, and therefore we
cannot expect a closed expression for the eigenvalues ofAsk ;m ,nd in the caseum u Þ unu. On the
other hand, for particular values ofk there exist so-called special integrals of polynomial type for
this equation, i.e., polynomialsQ in t, v, and v8 with the property that every solution of the
differential equationQst ,v ,v8d=0 satisfies(52). As it will be shown below, such special integrals
are related to algebraic solutions of the PDE(29), i.e., solutions, which are zeros of a polynomial
in l with rational coefficients inm and n. Moreover, taking into account that the eigenvalues
l jsk ;m ,tmd, tP h−1,1j, of Ask ;m ,tmd satisfy the quadratic equation

Sl −
t

2
D2

= C + 2tkm + m2 with Cª Sl jsk;0,0d −
t

2
D2

,

the question arises if such an algebraic expression for the eigenvalues ofAsk ;m ,nd exists in the
caseum u Þ unu. A first step towards the answer of this problem is given by the next lemma.

Lemma 4: Suppose that there exists a polynomial

Psl;m,nd = o
n=0

N

Pnsm,ndln, PN ; 1,

of degree N.0 in l with rational coefficients Pn in m and n such that the zeros zjsm ,nd, j
=1, . . . ,N, of Ps· ;m ,nd are simple, and that the functionsl=zj are solutions of the partial differ-
ential equation (29). Then k is a half-integer. Moreover, if N=1 or N=2, then k= 1

2 and
Psl ;m ,nd=sl+mdN.

Proof: Let Qst ,v ,v8d=on=0
N Qnst ,vdsv8dn be the polynomial inv8 with coefficients
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Qnst,vd ª S−
2v
t
DN−n

Pnsmst,vd,nst,vdd, n = 0, . . . ,N,

wheremst ,vd andnst ,vd are given by(48). Note that theQn are again rational functions int and
v. Moreover, letv :D→R \ h0j be any solution of the first order ODEQst ,v ,v8d=0 on some
interval D,R \ h0j. For the function

wstd = −
tv8std
2vstd

, t P D, s53d

we obtain

0 = Qst,vstd,v8stdd = o
n=0

N

Qnst,vstddS−
2vstdwstd

t
Dn

= S−
2vstd

t
DN

Pswstd;mst,vstdd,nst,vstddd,

and thuswstd is a zero ofPs· ;mst ,vstdd ,nst ,vstddd for eachtPD. Since the zeros of this polyno-
mial depend analytically on the parametert according to the implicit function theorem, there exists
an index j P h1, . . . ,Nj such thatwstd=zjsmst ,vstdd ,nst ,vstddd for all tPD. Furthermore, aszj

solves the PDE(29), it follows thatst ,vstd ,wstdd, tPD, is a characteristic curve of(49), and thus
v is a solution of(52). Hence,Qst ,v ,v8d=0 implies(52), and thereforeQ is a special integral of
rational type for this Painlevé III. MultiplyingQst ,v ,v8d by an appropriate polynomialrst ,vd in t

andv, we obtain that the functionQ̃st ,v ,v8dª rst ,vdQst ,v ,v8d is a special integral of polynomial
type of degreeN with respect tov8. Now, Theorem 2 in Mansfield and Webster(1998) yields that
such a special integral exists if and only if 2k±2sk=2s2k−1d with some integerk, i.e.,
k=k− 1

2 is a half-integer. In addition, by Lemma 3 in Mansfield and Webster(1998), the relation
ssq−pdk=N must be satisfied for some integersp,qP h−N,−N+2, . . . ,N−2,Nj. In the case
N=1 or N=2, these conditions implyk= 1

2, and the corresponding special integrals of polynomial
type are explicitly known, namelyrstdvssv8+v2+sdN, wherer is some polynomial int, ands is an
integer, compare Sec. II in Mansfield and Webster(1998). Hence,Qst ,v ,v8d=sv8+v2+sdN and

Pswstd;mst,vstdd,nst,vstddd = S−
t

2vstdD
N

Qst,vstdd = swstd + msst,vstddddN, t P D,

which yieldsPsl ;m ,nd=sl+mdN if N=1 or N=2. h

As a consequence of this lemma, if a solutionlsm ,nd of the PDE(29) is a zero of a linear or
quadratic polynomial with rational coefficients inm andn, thenk= 1

2 andlsm ,nd=−m. In fact, the
function lsm ,nd=−m solves(29) for k= 1

2, but sincels0,0d=0 and the spectrum ofAs 1
2 ;0 ,0d is

given byZ \ h0j, it is not an eigenvalue ofAs 1
2 ;m ,nd for any sm ,ndPR2. The following consider-

ations show that this solution is nevertheless of interest.

V. MONODROMY EIGENVALUES

In this section we consider the case thatk is a positive half-integer, i.e.,k=k− 1
2 with some

positive integerk, and we assume that the matrixC defined in(12) has distinct eigenvalues, i.e.,
m2Þn2. For suchk andsm ,nd there is in addition to the classical eigenvalues ofAsk ;m ,nd another
type of “special values” which we call monodromy eigenvalues. In order to introduce this concept,
we first recall the characterization of eigenvalues according to Lemma 1: A pointl is an eigen-
value ofAsk ;m ,nd if and only if the system(11) has a nontrivial solution of the form

ysxd = fxs1 − xdgsk/2d+1/4hsxd, s54d

whereh :C→C2 is an entire vector function. Now, as the difference of the characteristic values
±fsk /2d+ 1

4
g at 0 and 1 is an integer, the differential equation(11) has a fundamental matrix of the

form
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Ysxd = fxs1 − xdg−sk/2d−1/4Hsxd, s55d

where Hsxd=Hasxdsx−adJa holds in Ba, aP h0,1j, with some holomorphic function
Ha:Ba→M2sCd and a Jordan matrixJa, see Theorem 5.6 in Wasow(1965). Hence, the matrix
function H is in general not holomorphic inB0øB1 since it involves logarithmic terms. In the
following, a pointlPC is calledmonodromy eigenvalueof Ask ;m ,nd if and only if the system
(11) has a fundamental matrix of the form(55) with the property thatH :C→M2sCd is an entire
matrix function. Monodromy eigenvalues are characterized by the following lemma.

Lemma 5: For a given half-integerk.0 and sm ,ndPC2 with m2Þn2, a point lPC is a
monodromy eigenvalue of Ask ;m ,nd if and only if the system (11) has a nontrivial solution of the
form

fxs1 − xdg−sk/2d−1/4psxde2tx, s56d

where p:C→C2 is a polynomial vector function and t= ±În2−m2.
Proof: By means of the transformationysxd=xas1−xdaỹsxd with aª sk /2d+ 1

4, the differential
equation(11) is equivalent to the system

ỹ8sxd = F1

x
B̃0 +

1

x − 1
B̃1 + CGỹsxd, s57d

where

B̃0 = S0 m − l

0 k
D, B̃1 = S k 0

m − l 0
D . s58d

Now, if l is a monodromy eigenvalue ofAsk ;m ,nd, then the system(57) has a holomorphic
fundamental matrixH :C→M2sCd. Since the coefficient matrix of(57) is a rational matrix function
which is bounded at infinity, an extension of Halphen’s theorem, see Theorem 2.4 in Gesztesyet
al. (2000), implies that the system(57) has a fundamental matrix of the formRsxdeDx with some
rational matrix functionR andDªdiags−2t ,2td (note that ±2t are the eigenvalues ofC). More-
over,RsxdeDx=HsxdQ with some invertible matrixQ, and thereforeRsxd=HsxdQe−Dx is an entire
matrix function inC. This implies thatR:C→M2sCd is a polynomial. Vice versa, suppose that the
system(11) has a nontrivial solutionysxd=fxs1−xdg−apsxde2tx with some polynomial vector func-
tion p:C→C2. Defining

ỹsxd ª e−2tKys1 − xd = fxs1 − xdg−aKps1 − xde−2tx

with K given by (20), it follows that ỹ is a solution of(11) which is linearly independent ofy.
Therefore,(11) has a fundamental matrix of the type(55), whereH is the entire matrix function
Hsxd=spsxde2tx,Kps1−xde−2txd. h

Theorem 3: For fixedk=k− 1
2 with a positive integer k there exists a polynomial Psk ;l ;m ,nd

of degree2k−1 in l with polynomial coefficients inm and n such that for eachsm ,ndPC2 with
m2Þn2 a point lPC is a monodromy eigenvalue of Ask ;m ,nd if and only if l is a zero of
Psk ; · ;m ,nd. Moreover, the integers1−k, . . . ,k−1 are the zeros of Psk ; · ;0 ,0d, and for k= 1

2 we
obtain Ps 1

2 ;l ;m ,nd=l+m.
Proof: A point l is a monodromy eigenvalue ofAsk ;m ,nd if and only if the differential

equation(57) has a nontrivial solutionpsxde2tx, wherepsxd=on=0
N pnx

n, pNÞ0, is a polynomial

vector function, andt= ±În2−m2. In the following we assumet=În2−m2 (the main branch of the
square root) but all considerations remain valid if we replacet with −t. If we setLªl−m and

C̃ªC− t, then the polynomialp satisfies the differential equation
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p8sxd = F1

x
B̃0 +

1

x − 1
B̃1 + C̃Gpsxd, s59d

where the coefficient matrices take the form

B̃0 = S0 − L

0 k
D, B̃1 = S k 0

− L 0
D, C̃ = S− 2n − 2t − 2m

2m 2n − 2t
D .

It is easy to see that the coefficientspnPC2, n=0, . . . ,N, form a nontrivial solution of the linear
system of equations

B̃0p0 = 0, sB̃0 − 1dp1 + S̃p0 = 0, s60d

sB̃0 − ndpn + sS̃+ n − 1dpn−1 − C̃pn−2 = 0 sn = 2, . . . ,Nd, s61d

sS̃+ NdpN − C̃pN−1 = 0, −C̃pN = 0, s62d

where

S̃ª C̃ − B̃0 − B̃1 = S− 2n − 2t − k − 2m + L

2m + L 2n − 2t − k
D .

Multiplying the first equation in(62) from the left with the matrixC̃+4t and observing that

sC̃+4tdC̃=0, we get

0 = sC̃ + 4tdsS̃+ NdpN = SN − k − L

− L N − k
DC̃pN + 4tsN − kdpN = 4tsN − kdpN.

SincetÞ0 andpNÞ0, it follows thatN=k. Due to technical reasons we must distinguish between
the caseskù2 andk=1. We will proceed at first with a detailed proof for the more complicated
casekù2. Adding the second equation in(62) to the first one and then both equations in(62) to
(61) for n=N, we obtain

B̃0p0 = 0, sB̃0 − 1dp1 + S̃p0 = 0, s63d

sB̃0 − ndpn + sS̃+ n − 1dpn−1 − C̃pn−2 = 0 sn = 2, . . . ,k − 1d, s64d

− B̃1pk + S− 1 L

L − 1
Dpk−1 − C̃pk−2 = 0, s65d

S0 L

L 0
Dpk − C̃pk−1 = 0, −C̃pk = 0. s66d

The system above consists of 2k+6 linear equations for 2k+2 unknowns. In the following we
prove that only 2k+2 of these equations are linearly independent. Summation of all equations

(60)–(62) yields −B̃1on=0
k pn=0. Because of ranksB̃1d=1, it is possible to eliminate the second line

of the first equation in(65) by means of line transformations, and since also ranksB̃0d=1, we can
delete the first line of the first equation in(63). Thus, the system(63)–(66) consists of at most
2k+4 linearly independent equations. In order to reduce the equations(66) further, we must
consider the casesn− tÞ0 andn− t=0 separately. First, let us assume thatn− tÞ0. Multiplying
the equations in(66) from the left by the invertible matrix
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Tª Sn − t m

0 1
D ,

it follows that (66) is equivalent to

S0 0

L 0
Dpk − S 0 0

2m 2n − 2t
Dpk−1 = 0, S 0 0

2m 2n − 2t
Dpk = 0. s67d

Now, we can represent the system of the linear equations(63)–(65), (67) as a matrix equation

G̃p̃=0 with p̃=sp0, . . . ,pkdPC2k+2 and thes2k+2d3 s2k+2d matrix

Let Ĝ be thes2k+1d3 s2k+1d-matrix obtained fromG̃ by deleting the last row and column. Then

l is a monodromy eigenvalue ofAsk ;m ,nd if and only if 0=detG̃=s2t−2nddetĜ, i.e., detĜ=0
sincen− tÞ0. Now, suppose thatn− t=0. We will prove that also in this casel is a monodromy

eigenvalue if and only if detĜ=0. Note thatn= t impliesm=0, and therefore the equations in(66)
are equivalent to

S0 L

L 0
Dpk + S4t 0

0 0
Dpk−1 = 0, S− 4t 0

0 0
Dpk = 0. s68d

If l is a monodromy eigenvalue ofAsk ;m ,nd, then the vectorp̃=sp0, . . . ,pkd is a nontrivial

solution of the matrix equationG̃p̃=0 even thoughT is not invertible forn− t=0. If we assume

detĜÞ0, it follows thatLÞ0 and the first 2k+1 components ofp̃ must be zero. In particular,
p1=¯ =pk−1=0, and the first equation in(68) yields pk=0. Thus p̃=0, and this contradiction

implies detĜ=0. Conversely, if detĜ=0, then eitherL=0, andp̃ª s0, . . . ,0 ,1dPC2k+2 is a non-
trivial solution of (63)–(65) and(68), or LÞ0. In the latter case, there exists a vectorp̂Þ0 with

componentsp̂1, . . . ,p̂2k+1PC such thatĜp̂=0. Definingqª s4t /Ldp̂2k−1, thenp̃ª sp̂,qdPC2k+2 is
a nontrivial solution of the equations(63)–(65) and (68), i.e., l is a monodromy eigenvalue.
Hence, we have shown that for allsm ,ndPC2 with m2Þn2 a pointlPC is a monodromy eigen-

value ofAsk ;m ,nd if and only if detĜ=0. In order to prove that detĜ is a polynomial inL of

degree 2k−1, we apply once more appropriate line transformations toĜ. Adding successively
the second to the fourth line, the fourth to the sixth line and so on up to the 2kth line, then

detĜ=detG with the s2k+1d3 s2k+1d-matrix
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where

Q̃ª S− k 0

0 0
D, R̃ª S k 0

2m 2n − 2t
D ,

S̃n ª S− 2n − 2t − k − 2m

2m + L 2n − 2t + n − k
D, n = 0, . . . ,k − 2.

Now, L appears at most once in each row and each column, whereas only the first and the 2kth
line contain no entry involvingL. It is easy to verify that detGsL ;m ,n ; td has the form
±k2L2k−1+sterms of lower order inLd, and therefore detGsL ;m ,n ; td is a polynomial inL with
polynomial coefficients inm, n, and t. Moreover, for allsm ,ndPC2 with m2Þn2 a point l is a
monodromy eigenvalue ofAsk ;m ,nd if and only if the determinant ofGsk ;L ;m ,n ; td vanishes. As
mentioned at the beginning of the proof, this result remains valid if we replacet with −t. Hence,
the zeros of the polynomials detGsk ;L ;m ,n ; td and detGsk ;L ;m ,n ;−td coincide, which implies
that detGsk ;L ;m ,n ; td=detGsk ;L ;m ,n ;−td. Consequently, the polynomialPsk ;l ;m ,nd
ªdet Gsk ;L ;m ,n ; td contains no terms int of odd order, and the terms of even order int depend
only on t2=n2−m2. It follows that P is a polynomial of degree 2k−1 in l with polynomial
coefficients inm andn, and the zeros ofP are exactly the monodromy eigenvalues ofAsk ;m ,nd.

Next, we prove that the integers 1−k, . . . ,k−1 are the zeros of the polynomialPsk ;l ;0 ,0d.
To this aim, letG0 be thes2k32kd matrix obtained fromĜ for sm ,nd=s0,0d by deleting the last
row and column. Then

Qª S− k l

l − k
D ,

and detĜ=l det G0. Moreover, detG0=0 if and only if the equationG0spndn=0
k−1=0 has a nontrivial

solution. Such a nontrivial solution is a constant multiple of the vector given by the recurrence
formula

012504-20 Batic, Schmid, and Winklmeier J. Math. Phys. 46, 012504 (2005)

                                                                                                                                    



p0 ª Ssk − 1d!
0

D ,

pn = sn − B̃0d−1sQ + n − 1dpn−1 = −
1

nsk − nd
Ssk − ndsk + 1 −nd − l2 l

nl − nsk + 1 −nd
Dpn−1

for n=1, . . . ,k−1. By induction, it can be shown that

pn = s− 1dnsk − n − 1d!
n! p

j=1

n−1

fsk − jd2 − l2gSksk − nd − l2

nl
D .

Multiplying the vectorspndn=0
k−1 from the left by the last line ofG0, we get

0 = s− 1dk−1 1

sk − 1d! pj=1

k−2

fsk − jd2 − l2gs− k + l2 + sk − 1dl2d =
ks− 1dk

sk − 1d! pj=1

k−1

fsk − jd2 − l2g.

Hence, detG0=0 if and only if l2P h1, . . . ,sk−1d2j, and therefore 1−k, . . . ,k−1 are the zeros of
Psk ; · ;0 ,0d.

It remains to deal with the casek=1, where we must consider only the equations(60) and
(62). Adding both equations in(62) to the second equation in(60) gives(65) with p−1ª0. Hence,
we can replace(60)–(62) with the linear system of equations consisting of the first equation in(63)
and Eqs.(65) and (66). Now, by applying a similar reduction procedure as in the casekù2, we
obtain the polynomial

Ps 1
2 ;l;m,nd = det1 0 1 0

− 1 L − 1

− 2m 2t − 2n L
2 = L + 2m = l + m,

whose zerol=−m is the uniquely determined monodromy eigenvalue ofAs 1
2 ;m ,nd for each

sm ,ndPC2, m2Þn2. h

Corollary 1: For a fixed half-integerk=k− 1
2 with a positive integer k, there exists a neigh-

borhoodU,C2 of s0,0d such that Ask ;m ,nd has exactly2k−1 many monodromy eigenvalues
l0

j sk ;m ,nd , j =1−k, . . . ,k−1, for all sm ,ndPU with m2Þn2 . Moreover,l0
j sk ;m ,nd depends ho-

lomorphically onsm ,nd, and limsm,nd→s0,0d l0
j sk ;m ,nd= j . In particular, monodromy eigenvalues

and classical eigenvalues are distinct nearsm ,nd=s0,0d.
Remark 3: Monodromy eigenvalues also appear in the context of spheroidal wave equations.

In Sec. 3.54 in Meixner and Schäfke (1954) they are characterized by a similar property as given
in Lemma 5, but they are not specified in detail.

In view of Theorem 3 and Corollary 1 we could alternatively define the monodromy eigen-
values ofAsk ;m ,nd to be the zeros of the polynomialPsk ; · ;m ,nd for eachsm ,ndPC2 (without
the restrictionm2Þn2). Then the monodromy eigenvaluesl0

j sk ;0 ,0d= j , j =1−k, . . . ,k−1, fill in
the gap of integers appearing in the spectrum ofAsk ;0 ,0d. Moreover,Ps 1

2 ;l ;m ,nd=l+m is just
the polynomial given by Lemma 4 in the caseN=1, and its zerol0

0s 1
2 ;m ,nd=−m satisfies the

partial differential equation(29) for k= 1
2. In the next section we prove that the monodromy

eigenvalues ofAsk ;m ,nd are solutions of the PDE(29) for each half-integerkP h 1
2 , 3

2 , 5
2 , . . .j.

VI. MONODROMY PRESERVING DEFORMATIONS

In Jimbo et al. (1981), Jimbo and Miwa(1981a, 1981b), these authors developed a general
theory for monodromy preserving deformations of linear ordinary differential equations with
rational coefficients. As a main result, they proved that the monodromy data(Stokes multipliers,
connection matrices, and exponents of formal monodromy) do not depend on the deformation
parameters if and only if certain nonlinear differential equations, the so-called deformation equa-
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tions, are satisfied. This result, however, was proved under the restriction that the characteristic
values at regular singular points do not differ by an integer. On the other hand, in the theory of
special functions and in many physical applications the case where the characteristic values differ
by an integer is of great significance. In this section we consider the isomonodromy problem for
linear systems with two fixed regular singular points and coefficients which depend on one pa-
rametert. Assuming that the characteristic values at the singular points are distinct and indepen-
dent oft, we will show that certain components of the monodromy data are constant with respect
to t if a deformation equation of the type(1.18) in Jimbo et al. (1981) is satisfied. Since the
monodromy components in question determine the existence of solutions of the form(54) and
(55), they are relevant to monodromy and classical eigenvalue problems. Applying the results to
the system(11) with an eigenvaluet of C as deformation parameter, it finally turns out that the
deformation equation is in principle the characteristic equation of the partial differential equation
(29).

We start with some basic facts about parameter-dependent regular singular systems. At first,
let us consider a family ofs232d systems of differential equations

] y

] x
sx,td = Fsx,tdysx,td, sx,td P sB \ h0jd 3 D, s69d

in an open diskB,C with center 0 that depends on a parametert varying in some real or complex
domainD. It is assumed that(69) has a regular singular point at 0 for alltPD. More precisely,
we suppose that the coefficient matrixF of (69) has the following properties:

(a) Fsx,td=s1/xdCsx,td, whereC :B3D→M2sCd is an analytical matrix function.
(b) The eigenvaluesa and b of Cs0,td are distinct and independent oftPD;

ReaøReb.
(c) There is an analytical functionG:D→M2sCd such thatGstd is invertible and

Gstd−1Cs0,tdGstd = diagsa,bd ¬ D, t P D,

Note that such a matrix functionG always exists since the eigenvalues ofCs0,td are distinct,
see Theorem 25.1 in Wasow(1965, Chap. VII, Sec. 25).

Lemma 6: If the conditions (a)–(c) are satisfied, then the system (69) has a fundamental matrix
of the form

Ysx,td = GstdHsx,tdxDxJstd,

where H:B3D→M2sCd is analytic, Hs0,td= I for all t PD, and

Jstd = S 0 0

pstd 0
D s70d

with some analytical function p:D→C . Moreover, ifb−a is not an integer, then p;0.
Proof: If b−a is not an integer, the existence of such a fundamental matrix withJ;0 is well

known, cf. Schäfke(1951). Hence, we have to consider only the case thatkªb−a is a positive
integer. By the transformation

ysx,td = xaGstdy0sx,td, s71d

the system(69) is equivalent to the differential equation

x
] y0

] x
sx,td = C0sx,tdy0sx,td, sx,td P sB \ h0jd 3 D, s72d

whereC0sx,tdªGstd−1Csx,tdGstd−a is an analytical matrix function,
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C0sx,td = o
n=0

`

xnC0,nstd, sx,td P B 3 D,

with C0,0std=diags0,kd for all tPD. Now, for j =1, . . . ,k−1 we recursively apply the transfor-
mations

yj−1sx,td = 1 1 0

x

j − k
c j−1std x2 yjsx,td, s73d

wherec j−1 denotes the(2,1)-coefficient of the matrixC j−1,1. At each step,yjsx,td is a solution of
a system

x
] yj

] x
sx,td = C jsx,tdyjsx,td, sx,td P sB \ h0jd 3 D, s74d

where the coefficient matrixC j is analytic inB3D,

C jsx,td = o
n=0

`

xnC j ,nstd, sx,td P B 3 D,

with C j ,0std=diags0,k− jd for all tPD, and C j ,nstd ,n=1, . . . ,j −1, are lower triangular matrix
functions[that means, the(1,2) component is identically zero]. Finally, by the shearing transfor-
mation

yk−1sx,td = S1 0

0 x
Dyksx,td, s75d

we obtain a differential equation

x
] yk

] x
sx,td = Cksx,tdyksx,td, sx,td P sB \ h0jd 3 D, s76d

whereCk:B3D→M2sCd is an analytical matrix function,

Cksx,td = o
n=0

`

xnCk,nstd, sx,td P B 3 D,

satisfying

Ck,0std = S 0 0

pstd 0
D¬ Jstd, t P D,

with some analytical functionp:D→C. Note thatp is just thes2,1d-component ofCk−1,1. More-
over, Ck,nstd ,n=0, . . . ,k, are lower triangular matrices for alltPD. Now, the system(76) has a
fundamental matrix of the form

Ỹsx,td = H̃sx,tdxJstd

provided thatH̃ is a solution of the matrix differential equation
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x
] H̃

] x
sx,td = Cksx,tdH̃sx,td − H̃sx,tdJstd, sx,td P B 3 D, s77d

such that for eachtPD the matrixH̃sx,td is invertible for some, and hence all,xPB. Obviously,
(77) has a formal solution

H̃sx,td = o
n=0

`

xnH̃nstd, sx,td P B 3 D, s78d

whereH̃0std= I and the coefficientsH̃n, n.0, are uniquely determined by the recurrence relation

sJstd − ndH̃nstd − H̃nstdJstd = − o
j=0

n−1

Ck,n−jstdH̃jstd. s79d

Following the proof of Theorem 5.3 in the book of Wasow(1965), it can be shown that the series
(78) converges uniformly in every compact subset ofB3D. Thus, a Weierstrass theorem implies

that H̃ is analytic inB3D, and thereforeH̃ is an actual solution of(77). Further, sinceJstd has
the special form(70) andCk,jstd , j =0, . . . ,k, are lower triangular matrices, it is easy to verify that

H̃jstd are lower triangular matrices forj =0, . . . ,k. Now, by combining the transformations(71),
(73), and(75), it follows that the differential equation(69) has a fundamental matrix of the form

Ysx,td = xaGstdS 1 0

xqsx,td xkDH̃sx,tdxJstd, s80d

whereqsx,td is a polynomial inx of degreen−1 with coefficients depending analytically ont, and

H̃sx,td is an analytical matrix function of the type

H̃sx,td = Sh11sx,td xk+1h12sx,td
h21sx,td h22sx,td

D
satisfyingh11s0,td=h22s0,td=1. Now, if we define

Hsx,td ª S h11sx,td xh12sx,td
xqsx,tdh11sx,td + xk+1h21std x2qsx,tdh12sx,td + h22sx,td

D ,

thenH :B3D→M2sCd is analytic,Hs0,td= I for all tPD, and

S 1 0

xqsx,td xkDH̃sx,td = Hsx,tdS1 0

0 xkD .

Hence, we can write the fundamental matrix(80) in the formYsx,td=GstdHsx,tdxDxJstd, whereH
has the properties stated in the lemma. h

Now, we consider a family ofs232d differential systems,

] y

] x
sx,td = Fsx,tdysx,td, sx,td P sG \ h0,1jd 3 D, s81d

in a domainG, B0øB1,G,C, with regular singular points atx=0 andx=1 and a parametert
varying in some domainD,R or D,C. Further, we assume that the coefficient matrixF in (81)
has the form

Fsx,td =
1

xsx − 1d
Csx,td, sx,td P sG \ h0,1jd 3 D,

whereC :G3D→M2sCd is an analytical matrix function with the following properties.
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(I) The eigenvaluesa, b of Csa,td are distinct and independent oftPD and aP h0,1j; in
addition, ReaøReb.

(II ) There are analytical functionsGa:D→M2sCd, aP h0,1j, such thatGastd is invertible for all
tPD and

Gastd−1Csa,tdGastd = s− 1da diagsa,bd.

From Lemma 6 it follows that the system(81) possesses a fundamental matrix of the form

Yasx,td = GastdHasx,tdsx − adDsx − adJastd s82d

in the unit diskBa,G with centeraP h0,1j, whereHa:Ba3D→M2sCd is an analytical matrix
function satisfyingHas0,td= I for all tPD, D=diagsa ,bd, and

Jastd = S 0 0

pastd 0
D s83d

with some analytical functionpa:D→C. By analytic continuation along curves, we can assume
that Ya is defined on the universal coveringR of the setG \ h0,1j. SinceYasxe2ip+a,td=Yasx
+a,tde2ipDfI +2piJastdg for all sx,tdP sB0\ h0jd3D, the diagonal matrixD and the Jordan-type
matrix Jastd represent the monodromy behavior ofYa corresponding to a circuit arounda
P h0,1j. Moreover, asY0 andY1 are both fundamental matrices of the same differential equation
(81), there exists an analytical matrix functionQ:D→M2sCd such thatY0sx,td=Y1sx,tdQstd for
all sx,tdP sG \ h0,1jd3D, which is called the connection matrix forY0 and Y1. The next result
gives a sufficient condition that certain components of the monodromy dataJa andQ are constant
in D. For this reason, we establish in addition to(I) and (II ) the following assumptions on the
coefficient matrixF.

(III ) There exists an analytical functionV :G3D→M2sCd such that

] F

] t
sx,td + Fsx,tdVsx,td = Vsx,tdFsx,td +

] V

] x
sx,td, sx,td P sG \ h0,1jd 3 D. s84d

(IV ) The matrix functionsGa, aP h0,1j, satisfy the linear differential equations

] Ga

] t
std = Vsa,tdGastd, t P D. s85d

Theorem 4: If the conditions (I)–(IV) are satisfied, then

] Ja

] t
;

] Q21

] t
; 0 in D, s86d

where the Jordan matrices Ja, aP h0,1j, are given by (83) and Q12:D→C denotes the (1,2)-
component of the connection matrix Q for Y0 and Y1.

Proof: Let gªb−a, and for fixedaP h0,1j we define

Zasx,td ª
] Ya

] t
sx,td − Vsx,tdYasx,td, sx,td P R 3 D.

From (81) and the deformation equation(84) it follows that
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] Za

] x
=

]2Ya

] x ] t
−

] V

] x
Ya − V

] Ya

] x
=

] sFYad
] t

−
] V

] x
Ya − VFYa

= F
] Ya

] t
+ S ] F

] t
−

] V

] x
− VFDYa = FS ] Ya

] t
− VYaD = FZa,

and thereforeZa is a matrix solution of the differential equation(81) in R. Hence, there exists an
analytical functionCa:D→M2sCd such that

Zasx,td = Yasx,tdCastd, sx,td P R 3 D.

Now, by means of the differential equation(85), we get

] Ya

] t
=

] Ga

] t
Hasx − adDsx − adJa + Ga

] Ha

] t
sx − adDsx − adJa + logsx − adGaHasx − adD] Ja

] t
sx − adJa

= SVsa, · dGaHa + Ga
] Ha

] t
+ sx − adg logsx − adGaHa

] Ja

] t
Dsx − adDsx − adJa,

and sinceCa=Ya
−1Za, it results that

sx − adDsx − adJaCasx − ad−Jasx − ad−D

= sx − adDsx − adJaYa
−1S ] Ya

] t
− VYaDsx − ad−Jasx − ad−D

= Ha
−1Ga

−1sVsa, · d − VdGaHa + Ha
−1] Ha

] t
+ sx − adg logsx − ad

] Ja

] t

= sx − adFa + sx − adg logsx − ad1 0 0

] pa

] t
02 s87d

with some analytical functionFa:G3D→M2sCd. Further, by setting

Castd ¬ SC11std C12std
C21std C22std

D, t P D

(for clarity, we omit the indexa in the entries ofCa), we have

sx − adDsx − adJaCasx − ad−Jasx − ad−D

= S 1 0

sx − adg logsx − adpa sx − adg DSC11 C12

C21 C22
DS 1 0

− logsx − adpa sx − ad−g D
= SC11 − logsx − adpaC12 sx − ad−gC12

* C22 + logsx − adpaC12
D . s88d

Comparing(87) to (88), it follows that C12;0 in D since the function in(87) is bounded at
x=a. This in turn impliesC11;C22;0 as the diagonal entries in(87) have a zero atx=a for all
tPD. Finally, we obtain that

sx − adDsx − adJaCasx − ad−Jasx − ad−D = S 0 0

sx − adgC21 0
D s89d

has no logarithmic singularity atx=a and therefore the last term(87) vanishes identically. Hence,
]Ja/]t;0 in D.

Next, we prove that]Q12/]t;0. SinceY0sx,td=Y1sx,tdQstd, it follows that
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] Y0

] t
=

] Y1

] t
Q + Y1

] Q

] t
. s90d

Further, fromZasx,td=Yasx,tdCastd we get

] Y0

] t
Y0

−1 − V = Y0C0Y0
−1,

] Y1

] t
Y1

−1 − V = Y1C1Y1
−1. s91d

By means of(90) andY0
−1=Q−1Y1

−1, the first equation in(91) becomes

] Y1

] t
Y1

−1 − V = Y1QC0Q
−1Y1

−1 − Y1
] Q

] t
Q−1Y1

−1. s92d

Now, (92) and the second equation in(91) imply

Y1C1Y1
−1 = Y1QC0Q

−1Y1
−1 − Y1

] Q

] t
Q−1Y1

−1

and therefore

] Q

] t
= QC0 − C1Q. s93d

Note that the matrix functionCa has the form

Castd = S 0 0

castd 0
D, a P h0,1j.

Hence, if we set

Qstd ¬ SQ11std Q12std
Q21std Q22std

D, t P D,

then (93) is equivalent to the system

]

] t
SQ11 Q12

Q21 Q22
D = S c0Q12 0

c0Q22 − c1Q11 c1Q12
D ,

and we immediately obtain that]Q12/]t;0 in D. h

In the following we apply the results of Lemma 6 and Theorem 4 to a family ofs232d
differential systems

] y

] x
sx,td = F1

x
B0std +

1

x − 1
B1std + CstdGysx,td, sx,td P sC \ h0,1jd 3 D, s94d

where tPD with some domainD,R or D,C, and we suppose that the coefficients
B0,B1,C:D→M2sCd are analytical functions. Further, we assume that the following conditions
hold.

(i) The eigenvaluesa, b of B0std are distinct and independent oftPD. Moreover, they coin-
cide with the eigenvalues ofB1std, and ReaøReb.

(ii ) There are analytical functionsGa:D→M2sCd, aP h0,1j, such thatGastd is invertible and

G0std−1B0stdG0std = − G1std−1B1stdG1std = diagsa,bd ¬ D, t P D.

Let Ya, aP h0,1j, be fundamental matrices of(94) in the open diskBa,C with centera and
radius 1 having the form(82), whereHa:B3D→M2sCd is analytical,Has0,td= I for all tPD,
andJastd is given by(83) with some analytical functionpa:D→C. Again, by analytic continua-
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tion, we assume thatYa is defined on the universal coveringR of C \ h0,1j, and we denote by
Q:D→M2sCd the connection matrix forY0 andY1. In the sequel we are looking for conditions
such that for fixedtPD the system(94) has one of the following properties.

(P) There exists a fundamental matrixY of the form

Ysxd = fxs1 − xdgaPsxdeCstdx, x P C \ h0,1j, s95d

whereP:C→M2sCd is a polynomial matrix function.
(H) There exists a nontrivial solutiony of the form

ysxd = fxs1 − xdgbhsxd, x P C \ h0,1j, s96d

whereh:C→C2 is an entire vector function.
Lemma 7: Suppose that the conditions (i) and (ii) are satisfied, and let tPD. Then the system

(94) has the property (P) if and only ifb−a is an integer and p0std=p1std=0, and it has the
property (H) if and only if Q21std=0.

Proof: By means of the transformationysxd=xasx−1daỹsxd, the differential equation(94) is
equivalent to the system

] ỹ

] x
sx,td = F1

x
B̃0std +

1

x − 1
B̃1std + CstdGỹsx,td, sx,td P sC \ h0,1jd 3 D, s97d

whereB̃0stdªB0std−a and B̃1std : =B1std−a. Moreover,

Ỹasx,td = GastdHasx,tdS1 0

0 sx − adb−a Dsx − adJastd s98d

are fundamental matrices of(97) in a neighborhood ofaP h0,1j. First, suppose thatb−a is an
integer and thatp0std=p1std=0 holds. In this caseJ0std=J1std=0, and the system(97) has a

holomorphic fundamental matrix sincesx−adb−a is holomorphic andỸ0s· ,td, Ỹ1s· ,td contain no
logarithmic terms. Moreover, as the coefficient matrixFs· ,td of (94) is a rational function which
is bounded at infinity, the extension of Halphen’s theorem, Theorem 2.4 in Gesztesyet al. (2000),
implies that the system(97) has a fundamental matrix of the formỸsxd=RsxdeCstdx with some
rational (and hence polynomial) matrix functionR:C→M2sCd. Conversely, if(94) has a funda-

mental matrix of the form(95), thenỸ0s· ,td andỸ1s· ,td are holomorphic matrix functions, which
givesb−aPZ andJ0std=J1std=0.

Next, let us assume thatQ12std=0. If we define

ysxd ª Y0sx,tdS0

1
D = xbG0stdH0sx,tdS0

1
D ,

then y is a nontrivial solution of (94), and x−bysxd is analytic at x=0. Since Y0sx,td
=Y1sx,tdQstd andQ12std=0, we obtain

ysxd = Y1sx,tdQstdS0

1
D = sx − 1dbG1stdH1sx,tdS 0

Q22std
D ,

and therefores1−xd−bysxd is analytic in a neighborhood ofx=1. Now, by the existence and
uniqueness theorem,hsxdª fxs1−xdg−bysxd can be extended to an entire vector function. Con-
versely, suppose that(94) has a nontrivial solution of the form(96). Then

ysxd = Y0sx,tdS 0

c0
D = Y1sx,tdS 0

c1
D

with some constantsc0,c1PC \ h0j. SinceY0sx,td=Y1sx,tdQstd, it follows that
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QstdS 0

c0
D = S 0

c1
D ,

which givesQ21std=0.
Now, in addition to(i) and(ii ), we assume that the coefficients of(94) satisfy the following

conditions.

(iii ) There exists an analytical functionV :C3D→M2sCd such that the deformation equation
(84) holds in sC \ h0,1jd3D, whereF is given by

Fsx,td ª
1

x
B0std +

1

x − 1
B1std + Cstd, sx,td P sC \ h0,1jd 3 D.

(iv) The matrix functionsGa, aP h0,1j, satisfy the differential equations

] Ga

] t
std = Vsa,tdGastd, t P D.

The next result is an immediate consequence of Theorem 4 and Lemma 7.
Corollary 2: Suppose that the conditions (i)–(iv) are satisfied. If (P) holds for one t0PD, then

(94) has the property (P) for all tPD, and if (H) holds for one t0PD, then (94) has the property
(H) for all t PD.

Finally, we apply the results of this section to prove that the classical as well as the mono-
dromy eigenvalues of the Chandrasekhar–Page angular equation in dependence ofsm ,ndPR2 are
(locally) solutions of the partial differential equation(29).

Lemma 8: LetkPf 1
2 ,`d and sP h−1, +1j be fixed. Moreover, suppose that the functions

v :D→R \ h0j and w:D→R are solutions of the system (50) and (51) on some intervalD, s0,`d.
Finally, let

mstd ª
t

2
Svstd +

s

vstd
D, nstd ª

t

2
Svstd −

s

vstd
D, t P D, s99d

and t0PD. If wst0d is an eigenvalue of Ask ;mst0d ,nst0dd, then wstd is an eigenvalue of
Ask ;mstd ,nstdd for each tPD. Furthermore, if k is a half-integer and wst0d is a monodromy
eigenvalue of Ask ;mst0d ,nst0dd, then wstd is a monodromy eigenvalue of Ask ;mstd ,nstdd for each
tPD.

Proof: In terms of(99) andlstdªwstd, the coefficient matrices(12) of the system(11) take
the form

B0std =1−
k

2
−

1

4

t

2
Svstd +

s

vstd
D − wstd

0
k

2
+

1

4
2 ,

B1std =1
k

2
+

1

4
0

t

2
Svstd +

s

vstd
D − wstd −

k

2
−

1

4
2 ,
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Cstd =
t

vstd
S− svstd2 + 1d − svstd2 − 1d

svstd2 − 1d svstd2 + 1d
D ,

where the condition(i) is satisfied witha=−sk /2d− 1
4 and b=sk /2d+ 1

4. Now, if we define the
matrix function

Vsx,td ª
1

vstd1svstd2 − sdS1

2
− xD svstd2 + sds1 − xd

svstd2 + sdx svstd2 − sdSx −
1

2
D 2, sx,td P C 3 D,

then, by a straightforward calculation using the characteristic equations(50) and (51), it follows
that the deformation equation in(iii ) holds. Finally, by setting

G0std ª 1efstd F t

2
Svstd +

s

vstd
D − wstdGe−fstd

0 sk + 1
2de−fstd 2, G1std ª KG0stdK,

whereK is the matrix(20) and

fstd ª E
t0

t vstd2 − s

2vstd
dt, t P D,

the conditions(ii ), (iv) are satisfied. Sincewstd is a monodromy eigenvalue ofAsk ;mstd ,nstdd if
and only if (11) has the property(P), andwstd is a classical eigenvalue ofAsk ;mstd ,nstdd if and
only if (11) has the property(H), the assertion follows from Corollary 2. h

Theorem 5: For a fixedk=k− 1
2 with a positive integer k, let s0,0dPS,R2 be a simply

connected domain such that for eachsm ,ndPS all monodromy eigenvaluesl0
j sk ;m ,nd, j =1

−k, . . . ,k−1, of Ask ;m ,nd are simple zeros of the polynomial Psk ; · ,m ,nd given by Theorem 3.
Then each functionl=l0

j , j =1−k, . . . ,k−1, satisfies the partial differential equation (29) inS.
Proof: Let j P h1−k, . . . ,k−1j be fixed. The monodromy eigenvalues ofAsk ;m ,nd are exactly

the zeros of the polynomialPsk ; · ;m ,nd, and since all zeros ofPsk ; · ;m ,nd are simple, the
implicit function theorem implies thatl0

j sk ;m ,nd depends analytically onsm ,nd in S. In order to
show that the functionl=l0

j satisfies the PDE(29), we make use of the unique continuation
property of analytical functions. That means, it suffices to prove that(29) holds for l=l0

j in a
neighborhood of some pointsm ,nd=st ,0dPS, t.0. Now, in view of the coordinate transforma-
tion (99), we must verify that the functionl0

j sk ;mst ,vd ,nst ,vdd is a solution of the partial differ-
ential equation(49) in a neighborhood of the pointst ,vd=st ,1d. To this end, let us consider the
characteristic equations of(49),

] v
] t

st,ud = −
2vst,udwst,ud

t
,

] w

] t
st,ud = − kSvst,ud +

1

vst,udD −
t

2
Svst,ud2 −

1

vst,ud2D
together with the initial values

vst,ud = u, wst,ud = l0
j sk;mst,ud,nst,udd,

which depend analytically on the parameteruP s0,`d. The solutionsvst ,ud and wst ,ud of
this initial value problem are analytical functions in a neighborhood ofst ,1d, and since
s]v /]udst ,ud=1, they form locally an integral surface for the PDE(49), compare John(1982,
Chap. 1, Sec. 5). More precisely, there exists an analytical functionU defined on a neighborhood
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V of st ,vd=st ,1d such thatUst ,vd=v, andWst ,vdªwst ,Ust ,vdd is a solution of(49) in V. Now,
Lemma 8 implies thatWst ,vd is a monodromy eigenvalue ofAsk ;mst ,vd ,nst ,vdd for all st ,vd
PV, and sinceWst ,vd=l0

j sk ;mst ,vd ,nst ,vdd, it follows thatWst ,vd=l0
j sk ;mst ,vd ,nst ,vdd holds

identically onV. This completes the proof of the theorem. h

In a similar way we can apply Lemma 8 to prove that for fixedkP s0,`d the zeros of the
functionl°Dsk ;l ,m ,nd defined in Sec. II and therefore the eigenvalues ofAsk ;m ,nd satisfy the
partial differential equation(29). This alternative proof of Theorem 1 is based on monodromy
preserving deformation—a general technique, which should be applicable to other eigenvalue
problems as well. Potential candidates and associatedV-matrices for solving the deformation
equations can be found in Jimbo and Miwa(1981a, Appendix C).

Finally, as a consequence of Theorem 5, the zeros of the polynomialPsk ; · ;m ,nd given by
Theorem 3 satisfy the PDE(29) and do not coincide with any eigenvalue ofAsk ;m ,nd in a
neighborhood ofsm ,nd=s0,0d. Moreover(see the proof of Lemma 4), Psk ; · ;m ,nd gives rise to a
special integral of polynomial type for the Painlevé III(52). Now, the results of Mansfield and
Webster(1998) suggest that these special integrals are unique in some sense, which in turn implies
that classical eigenvalues of the Chandrasekhar–Page angular equation are not algebraic.
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APPENDIX A: EIGENVALUES AND EIGENFUNCTIONS IN THE CASE m=n=0

For fixedkPf 1
2 ,`d, a pointlPC is an eigenvalue ofAsk ;0 ,0d if and only if the system(5)

with sm ,nd=s0,0d has a nontrivial solutionSsud satisfying

E
0

p

uSsudu2 du , `. sA1d

Introducing the functionsu,v : s−1,1d→C by

Ssud ¬ sink+1/2 u 1Îtan
u

2
uscosud

Îcot
u

2
vscosud 2 , sA2d

then (5) with sm ,nd=s0,0d is transformed into

s1 − xdu8sxd = sk + 1
2dusxd + lvsxd, s1 + xdv8sxd = − lusxd − sk + 1

2dvsxd, sA3d

and the normalization condition(A1) is equivalent to

E
−1

1

usxd2s1 − xdk+1/2s1 + xdk−1/2 dx , `, E
−1

1

vsxd2s1 − xdk−1/2s1 + xdk+1/2 dx , `. sA4d

If l=0, then the differential equations(A3) imply that there are constantsc1,c2PC such that
usxd=c1s1−xd−k−1/2 and vsxd=c2s1+xd−k−1/2, and from the condition(A4) it follows that c1=c2

=0. Hence,l=0 is not an eigenvalue ofAsk ;0 ,0d, and we assume in what follows thatlÞ0. In
this case, the second equation in(A3) gives
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usxd = −
1 + x

l
v8sxd −

k + 1
2

l
vsxd, sA5d

and forv we obtain the second order differential equation

s1 − x2dv9sxd + f1 – 2sk + 1dxgv8sxd + Fl2 − Sk +
1

2
D2Gvsxd = 0.

If we setaªk− 1
2, bªk+ 1

2, andLªl−k− 1
2, this differential equation becomes

s1 − x2dv9sxd + fb − a − sa + b + 2dxgv8sxd + LsL + a + b + 1dvsxd = 0, sA6d

and the second condition in(A4) takes the form

E
−1

1

vsxd2s1 − xdas1 + xdb dx , `. sA7d

Note that(A6) and (A7) is the eigenvalue problem associated to the Jacobi polynomials. More
precisely, the solutions of the differential equation(A6) which are square integrable with respect
to the weight functions1−xdas1+xdb are constant multiples of the Jacobi polynomialsPn

sa,bd with
some non-negative integern, and the corresponding eigenvaluesln

± are determined by the equa-
tion l2− sk+ 1

2
d2=nsn+a+b+1d, i.e., ln

±= ± sk+ 1
2 +nd. Now, if we define vsxdª−Pn

sa,bdsxd,
xP s−1,1d, then(A5) yields

ln
±usxd = s1 + xd

d

dx
Pn

sa,bd + bPn
sa,bd =

a + b + n + 1

2
s1 + xdPn−1

sa+1,b+1d + bPn
sa,bd

=
a + b + n + 1

a + b + 2n + 1
fsb + ndPn−1

sa+1,bd + nPn
sa+1,bdg + bPn

sa,bd

= sa + b + n + 1dPn
sa+1,bd − sa + n + 1dPn

sa,bd

= sb + ndPn
sa+1,b−1d = uln

±uPn
sa+1,b−1d,

where we applied the differentiation formulas and contiguous relations for Jacobi polynomials, see
Magnuset al. (1966, Sec. 5.2). Hence,usxd= ±Pn

sa+1,b−1dsxd, xP s−1,1d, and sinceu satisfies the
first condition in(A4), the numbersln

± are in fact eigenvalues ofAsk ;0 ,0d. Moreover, the corre-
sponding eigenfunctions are constant multiples of

sink u 1±Îtan
u

2
Pn

sk+1/2,k−1/2dscosud

−Îcot
u

2
Pn

sk−1/2,k+1/2dscosud 2, u P s0,pd,

which form a complete orthogonal set inL2ss0,pd ,C2d. In particular, the spectrum ofAsk ;0 ,0d is
given by hln

± :n=0,1,2, . . .j.

APPENDIX B: A NUMERICAL EXAMPLE

As a numerical example, we have computed the coefficientscm,n of the power series expan-
sion(38) up to and includingm+n=8 for k= 1

2 and j =1 using the recurrence relation given in Sec.
III. The coefficients have been rounded to six significant figures and listed in Table I. It should be
noted that they are to some extent different from the coefficients displayed in Suffernet al. (1983,
Table I). Evaluating the power series expansion(38) at a=0.01 and b=0.02, i.e., sm ,nd
=s0.005,0.015d, yields l̃1=1.011 67 as a numerical approximation for the eigenvaluel1, and this
result coincides with the value given in Suffernet al. (1983, Table II). For a second pair of
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parameterssa ,bd=s0.5,1.0d, i.e., sm ,nd=s0.25,0.75d, we obtain l̃1=1.597 45, which differs

slightly from the valuel̂1=1.597 64 listed in Suffernet al. (1983, Table II). In order to test the
reliability of our numerical result, we can use the statement of Lemma 3. That means, we approxi-
mateQsld defined in(25) by the second componentQnsld of dnsld for n=8, and we compare

Q8sl̃1d and Q8sl̂1d with the theoretical resultQsl1d=0. As Q8sl̃1d=3.608 82e−05 andQ8sl̂1d
=−2.511 64e−04, our result seems to be more trustworthy. Finally, letsm ,nd=s0.02,0.1d. The
coefficients of the polynomialQ8 are given in Table II. For these parameters, our power series

approximation givesl̃1=1.073 79 which differs significantly from the valuel̂1=1.061 04 given
by Chakrabarti(1984, Table I). Despite his claiming of an accuracy of six decimals, the evaluation

of Q8 at the eigenvalues in question givesQ8sl̃1d=5.688 99e−12 andQ8sl̂1d=1.527 70e−02 in
favor of our result. Thus, Chakrabarti’s calculations should be taken with some caution.

APPENDIX C: EIGENFUNCTIONS IN THE CASE zmzÅ znz

Eliminating the second component ofy in the system(11), we get a linear second-order
differential equation for the first componenty1 given by

d2y1

dx2 sxd + S1

x
−

1

x − b
Ddy1

dx
sxd + St0 +

t1

x
+

t2

x2 +
t3

x − 1
+

t4

sx − 1d2 +
t5

x − b
Dy1sxd = 0

with

bª

m − l

2m
, t0 ª 4sm2 − n2d,

TABLE II. The coefficientsdn of the polynomialQ8sld=on=0
16 dnl

n for k
= 1

2, m=0.02,n=0.1.

n=0 1.221 51e+00 n=9 4.911 51e−06
1 1.443 47e−02 10 −4.220 48e−04
2 −1.705 25e+00 11 −9.466 10e−08
3 −7.922 97e−03 12 1.026 43e−05
4 6.721 14e−01 13 6.889 33e−10
5 1.460 03e−03 14 −1.264 70e−07
6 −1.123 51e−01 15 −1.000 00e−26
7 −1.210 28e−04 16 6.151 19e−10
8 9.396 64e−03

TABLE I. The coefficientscm,n, 0øm+nø8, of the power series expansion(38) in the casek= 1
2 and j =1.

m= 0 1 2 3 4 5 6 7 8

n=0 1.000 00e+00 5.000 00e−01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00

1 1.666 67e−01 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00

2 7.407 41e−02 −1.481 48e−02 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00

3 −8.230 45e−03 3.292 18e−03 −4.703 12e−04 0.000 00 0.000 00 0.000 00

4 −9.144 95e−04 5.486 97e−04 −1.222 81e−04 1.358 68e−05 0.000 00

5 5.080 53e−04 −4.064 42e−04 1.417 90e−04 −2.670 91e−05

6 −3.387 02e−05 3.387 02e−05 −1.633 51e−05

7 −2.634 35e−05 3.161 22e−05

8 7.108 56e−06
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t1 ª l2 − 2a2 + 2n + a − m2 − 4an +
2am

m − l
, a ª

k

2
+

1

4
,

t2 ª − a2, t3 ª
4am2

m2 − l2 + 2n − t1, t4 ª as1 − ad, t5 ª
2snm2 + 2am2 − nl2d

l2 − m2 .

Now by means of the transformation

y1sxd ª xasx − 1dacsxde2tx, t = ± În2 − m2,

we find thatcsxd satisfies the generalized Heun equation,

d2csxd
dx2 + S1 − m0

x
+

1 − m1

x − 1
+

1 − m2

x − b
+ 4tDdcsxd

dx
+

b0 + b1x + b2x
2

xsx − 1dsx − bd
csxd = 0, sC1d

where

m0 = − 2a, m1 = 1 – 2a, m2 = 2, b2 ª 8at,

and

b1 = m2 − l2 − 2tfb + 2as1 + 2bdg + 2asa − 1d + 2ns2a − bd −
2amsb − 1d

l + m
+

2amb

m − l
,

b0 = bsl2 − m2d + bf2sn + td − 4asn − td − 4a2g + a −
2mab

l − m
.

We observe that 0, 1, andb are simple singularities with characteristic exponentss0,m0d, s0,m1d,
and s0,m2d, respectively, whilè is (at most) an irregular singularity of rank 1. To stress the
importance of Eq.(C1), it is sufficient to remark that it contains the ellipsoidal wave equation as
well as Heun’s equation and thus the Mathieu, spheroidal, Lamé, Whittaker-Hill, and Ince equa-
tions as special cases.
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We investigate integrable two-dimensional Hamiltonian systems with scalar and
vector potentials, admitting second invariants which are linear or quadratic in the
momenta. In the case of a linear second invariant, we provide some examples of
weakly integrable systems. In the case of a quadratic second invariant, we recover
the classical strongly integrable systems inCartesian and polar coordinatesand
provide some new examples of integrable systems inparabolic and elliptical
coordinates. © 2005 American Institute of Physics.[DOI: 10.1063/1.1818721]

I. INTRODUCTION

The direct approach to investigate integrable Hamiltonian systems is a very classical
subject.1,2 It consists in determining the class of potentials supporting additional invariants within
some specified family of phase-space functions. This method produced several interesting results
in the 1980s, as illustrated in the review by Hietarinta.3 Recently4–6 the approach has been applied
to treat in a unified way both invariants at arbitrary and fixed energy, where the second possibility
is related to the existence of additional “weak” invariants only on given energy hypersurfaces.

Many results are known for natural reversible Hamiltonians. One of the reasons for this is that
the search for additional invariants can be restricted to functions with a definite parity in the
momenta. This property leads to a substantial reduction in the usually very complicated set of
equations. Much less is known in the case of Hamiltonians with vector potentials. For a long time,
the only systematic attempt to cope with this case was that of Dorizziet al.7 providing a set of
solutions in Cartesian coordinates. Recently, McSween and Winternitz8 obtained some new solu-
tions in polar coordinates and Bérubé and Winternitz9 extended the results to the corresponding
quantum problem. In both works the authors also identify the subset of superintegrable systems. In
an attempt to extend these results to include weak integrability, we have provided10 a general
solution for linear invariants and analyzed some new classes of weakly integrable systems.

The physical applications of Hamiltonians with terms linear in the momenta are of great
relevance. Just to mention one of the most important, we recall the ubiquitous role of rotation in
astrophysical problems like those of galactic dynamics. The purpose of the present paper is to
reinvestigate Hamiltonian systems with both scalar and vector potentials, trying to identify those
admitting the existence of a second invariant which is a quadratic polynomial in the momenta. We
state the general approach at arbitrary and fixed value of the first invariant(Jacobi constant) and
show that, in the case of strong integrability, it is possible to get a general formal solution. This is
valid for every standard coordinate systems which are the same as the separable ones in the purely
scalar case. Therefore, in addition to the above-mentioned Cartesian and polar case, solutions in
parabolic and elliptical coordinates can be looked for. In all cases, the potentials are defined in
terms of a pair of scalar functions for which we get the integrability conditions: solving them
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determines the vector potential, whereas the scalar potential is subject to an additional linear
differential equation. We provide some new examples of integrable systems with a vector potential
whose existence can be discovered working in parabolic and elliptical coordinates. The case of
quadratic invariants was also addressed by Yehia11,12 who obtained integrable systems with Rie-
mannian configuration space and applications to rigid body dynamics: the examples with a flat
configuration space can be reproduced with the procedure devised here. The issue of separation of
the Hamilton–Jacobi equation in presence of a vector potential has been recently faced by Benenti,
Chanu, and Rastelli.13 Their general approach requires an extended configuration space, prevent-
ing the application of the approach adopted here which heavily resides on the use of conformal
coordinate transformation in two dimensions.

The plan of the paper is as follows: in Sec. II we recall the structure of Hamiltonian systems
with terms linear in the velocities; in Sec. III we illustrate a version of the direct approach to find
polynomial invariants which is particularly efficient in treating two-dimensional systems; in Sec.
IV, for the sake of completeness, we recall systems admitting a second invariant which is a linear
polynomial in the momenta; in Sec. V we treat the case of the quadratic second invariant; in Sec.
VI we illustrate all known strongly integrable solutions in the quadratic case; and in Sec. VII we
conclude.

II. HAMILTONIANS WITH SCALAR AND VECTOR POTENTIALS

We are interested in finding integrable examples of systems generated by a Hamiltonian
function of the type

H = 1
2spx

2 + py
2d + A1sx,ydpx + A2sx,ydpy + Vsx,yd, s1d

where the functionV is the ordinary “scalar” potential andA1 and A2 are the components of a
“vector” potentialA in two dimensions. Under the canonical transformation

px → px + ]xF, py → py + ]yF, s2d

whereFsx,yd is an arbitrary function, the Hamiltonian remains invariant ifA andV are changed
according to

A → A + ¹ F, s3d

V → V + A · ¹ F + 1
2u ¹ Fu2. s4d

However, the two quantities

Vsx,yd = 1
2s]yA1 − ]xA2d s5d

and

Wsx,yd = V − 1
2uA u2 s6d

are “gauge invariants” and can therefore be used to uniquely characterize the model system. The
Hamiltonian to be worked on becomes then

H = 1
2spx + A1sx,ydd2 + 1

2spy + A2sx,ydd2 + Wsx,yd. s7d

V, the “curl” of the vector potential, has several physical interpretations: in astrophysical and
celestial mechanical applications, it usually denotes an angular velocity field; it is a magnetic field
in electrodynamics and plasma physics and so on. We remark that in general it is easier to attempt
to solve directly forV andW. To recover the scalarV, one must haveA1 andA2 and this can be
another difficult problem.3

We can first write the canonical equations provided by(1),
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ẋ = px + A1, s8d

ẏ = py + A2, s9d

ṗx = − ]xA1px − ]xA2py − ]xV, s10d

ṗy = − ]yA1px − ]yA2py − ]yV, s11d

and then simplify them by exploiting the functions introduced above to get the equations of
motion

ẍ − 2Vẏ = − ]xW, s12d

ÿ + 2Vẋ = − ]yW. s13d

It is readily verified that under the phase-space flow generated by(12) and (13), there exists a
conserved function that is the first invariant of the system(Jacobi constant),

J = 1
2sẋ2 + ẏ2d + W. s14d

In the investigation of the integrability properties of Hamiltonian(7), it turns out to be very
helpful to work with complex variables. We perform then the canonical point transformation given
by

z= x + iy, pz = p = 1
2spx − ipyd, s15d

z̄= x − iy, pz̄ = p̄ = 1
2spx + ipyd, s16d

so that Hamiltonian(7) turns out to be

H = 2sp + Fdsp̄ + F̄d + Wsz,z̄d, s17d

where the complex function

F = 1
2sA1 − iA2d s18d

has been introduced. In these variables,V is given by

V = 2Jh]z̄Fj, s19d

whereJ denotes the imaginary part. Equations(15) and(16) display a nice space-saving feature of
using complex variables: even if an expression is not real, it is enough to write a single relation
between complex functions[like, e.g.,(15)]. The remaining information is provided by the corre-
sponding complex conjugate expression, which we therefore do not write explicitly. For example,
the canonical equations given by(17) are

ż= 2sp̄ + F̄d, s20d

ṗ = − 2sp̄ + F̄d]zF − 2sp + Fd]zF̄ − ]zW, s21d

and the equations of motion corresponding to(12) and (13) are

z̈+ 2iVż= − 2]z̄W. s22d

The Jacobi constant now is
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J = 1
2żż̄+ W. s23d

III. POLYNOMIAL INVARIANTS

We are working with a Hamiltonian system with two degrees of freedom of which we already
know an invariant, the Jacobi constant. In order to identify integrable systems in the usual
Liouville–Arnold sense, we must find a second independent phase-space function conserved along
the flow. The standard direct method to solve the problem consists in making a suitable ansatz
about this function and trying to solve the system of differential equations ensuing by the conser-
vation condition. For several reasons, the ansatz of a polynomial in the generalized momenta is the
most common.3 It is well suited from the mathematical point of view, since it allows one to get a
system of PDEs in the coordinates only and is also well grounded on the basis of experience with
already known integrable systems.

Since we are looking for a real function, we make the following assumption:

I sMd = o
k=0

M

sDksp + Fdk + D̄ksp̄ + F̄dkd. s24d

Although it is common, in the vector potential case, to see the invariant written in terms of the
velocities, this is the correct interpretation ofI sMd as a phase-space function of the canonical
variables. In order to satisfy the conservation of function(24), we impose that its Poisson bracket
with the Hamiltonian vanishes,

hI sMd,Hj = 0, s25d

and try to solve for the complex functionsDksz, z̄d. In the presentation of the results, for easy
comparisons with existing works, we will revert to the usual expressions in terms of the velocities,
replacing the momenta in(24) according to(20). In this case, conservation of the invariant can be
checked by means of the condition

dI sMd

dt
= 0, s26d

along the solution of the equations of motion(22).
Following the approach already used in the scalar case,4–6 we consistently apply the trick of

the energy constraint even in the present case. Here, with energy, we mean the Jacobi constant
(23). This method has the advantage of allowing the simultaneous treatment of “strong” invariants
(the usual ones which are conserved for arbitrary values of the energy) and “weak” invariants
(functions which are conserved only on some energy surfaces). In the papers cited above, we have
moreover shown how the energy constraint simplifies the structure of the system of PDEs that
must be solved. The essential remark is that, to identify the cases of strong integrability, it is
sufficient that in the final results a subset can be isolated which is independent of the energy
parameter, in the present situation the given value of the first invariant, let us sayC. If we are
interested in a “strongly integrable system,” in the end we must get a solution independent ofC.
The procedure may appear more involute, but, at least in the scalar case, it reveals to be very
effective.

Formally, the idea of operating with the energy constraint is very simple. It consists first in
introducing the “null” Hamiltonian,

H0 = H − C ; 0, s27d

or, on the same footing, the “null” Jacobi invariant,
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J0 = J − C = 1
2żż̄− G ; 0, s28d

whereC as usual denotes the given fixed value of the Jacobi constant and

G = C − W s29d

is the so-called “Jacobi potential.” Second, using in a consistent way the constraint

2sp + Fdsp̄ + F̄d = G, s30d

wherever it appears in the computations. This essentially occurs when, implementing the conser-
vation condition(25), a polynomial relation in the generalized momenta appears and the constraint

(30) is used to eliminate powers of the mixed variablessp+Fdsp̄+F̄d in favor of powers ofG.
One minor shortcoming of this approach is that, in view of the explicit appearance of the function
G, rather than simply the potentialW, some of the coefficients of the invariant in general depend
on the energy parameter too,

Dj = Djsz,z̄;Cd, 0 ø j ø M − 2. s31d

Therefore, to obtain the standard expression in terms of phase-space coordinates only, in the end
we must remember to perform the substitution

C → Hsp,p̄,z,z̄d, s32d

wherever the parameterC appears. In view of(31), we see that this replacement does not affect the
degree of the polynomial in the momenta.

In practice, computing the Poisson bracket(25), using the constraint, collecting the coeffi-
cients of the various powers ofp+F (they are accompanied by their complex conjugates) and
imposing their vanishing, we get the system

]z̄Dk−1 + ikVDk +
1

2Gk]zsGk+1Dk+1d = 0, k = 0,1, . . . ,M , s33d

where it is implicitly assumed thatDj =0 for j ,0 and forj .M. The set of equation(33) must be
supplemented by the closure equations

]z̄DM = 0 s34d

and

Rh]zsGD1dj = 0, s35d

whereR denotes the real part. For sake of space, we do not write the expressions of the standard
direct approach in real coordinates and without the energy constraint. To compare with, we refer
to Sec. IV of Hietarinta3 and recall the work of Hall,14 where the study of weak invariants was first
addressed and of Sarletet al.,15 where some wrong deductions contained in Hall’s work were
corrected. A systematic analysis of the cases withM =1 (linear invariant) and M =2 (quadratic
invariant) was started in Ref. 7 and recently taken up again in Ref. 8. A more general version of
the problem concerned with quadratic invariants is mentioned in a different context in Ref. 16.

The first result one easily gets with this approach is that Eq.(34) is readily solved as

DM = DMszd, s36d

that is, the leading order coefficient in the invariant is anarbitrary analytical function. This result,
already known in the inertial case, still holds here. In Ref. 4 it was shown how, in the purely scalar
case, the strong conservation condition restricts the form of this function. In what follows we will
get analogous results when also a vector potential is present.
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One fundamental difference with what happens in the scalar case, is that equations for coef-
ficients with even and odd indexes do not decouple. This fact is due to the Hamiltonian not being
reversible in the present instance. System(33) is therefore very awkward to solve in the general
case. In the next two sections we present the solutions in the linear and quadratic cases at fixed and
arbitrary values of the Jacobi constant.

IV. LINEAR INVARIANTS

We start the investigation looking for systems admitting a second invariant which is a linear
function in the momenta. The ansatz is

I s1d = Ssp + Fd + S̄sp̄ + F̄d + K, s37d

where for the three coefficients we have used a notation which conforms with that in previous
works. The system of equations ensuing from the conservation condition is the following:

Sz̄ = 0, s38d

Kz̄ + iVS= 0, s39d

RhsGSdzj = 0. s40d

In order to compactify formulas, from hereinafter with the subscript we denote the partial deriva-
tive with respect to the corresponding variable.

A. The general solution for linear invariants

Equation(38) agrees with(34), confirming thatS can be an arbitrary analytic function,

S= Sszd. s41d

To complete the treatment, given an arbitrarySszd, we must solve(39) and(40). This task is more
efficiently achieved by performing a coordinate transformation that trivializes the differential
equations. Let us consider a conformal transformationz=Fswd to the new complex variablew
=X+ iY given by

dz

dw
= F8swd ; Sszswdd. s42d

The explicit form of the transformation is then

w =E dz

Sszd
s43d

and we have the relation between the differential operators

d

dw
= F8swd

d

dz
= S

d

dz
. s44d

Multiplying (40) by the real factorSS̄, the content of the curly brackets can be modified in the
following way:

SS̄sSGdz = SsSS̄Gdz = sSS̄Gdw. s45d

Introducing the “conformal” potential
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G̃ = uF8u2G = uSu2G = SS̄G, s46d

Eq. (40) reduces to

RhG̃wj = 0, s47d

which is readily solved in

G̃ = gsYd, s48d

whereg is an arbitrary real function and, according to the definition of the coordinate transfor-
mation,Y is the imaginary part ofw.

In the new variablesw, Eq. (39), together with its complex conjugate, can be rewritten as

Kw = iṼ, s49d

Kw̄ = − iṼ, s50d

where the conformal field

Ṽ = uSu2V s51d

has been introduced. The integrability condition for the real functionK is

RhKwj = 0, s52d

with solution

K = ksYd, s53d

wherek is another arbitrary real function. The conformal vector potential is then given by

Ṽ = −
k8sYd

2
. s54d

An inversion of the coordinate transformation allows one to express the solution in the original
variables. The second invariant can be expressed as

I s1d = RhSjẋ + JhSjẏ + K. s55d

B. Linear invariants at arbitrary energy

Equation(40), in view of (41) and recalling the definition ofG in (29), can be rewritten as

RhS8sC − Wd − SWzj = 0. s56d

If we are interested in strong integrability, namely in an invariant which is conserved for arbitrary
values of the Jacobi constant, Eq.(56) must be independent ofC. Therefore, it decouples in two
independent equations: the first is

RhS8szdj = 0. s57d

The second turns out to be
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RhsSWdzj = 0. s58d

Equation(57) means that at arbitrary energy, we are no longer free in the choice of the coordinate
transformation: we must comply with this condition which actually imposes very strong limita-
tions. It can be integrated to give

Sszd = ikz+ a, s59d

wherek is a real constant anda a complex constant. We can prove that it essentially allows only
two kinds of new coordinates,(a) polar coordinates,(b) rotated Cartesian coordinates. To show
this, we first observe that we can exploit translations and scaling of the complex plane to further
reduce the freedom contained in(59). If k is not zero, a translation allows us to seta=0. A scaling
allows us then to setk=1. We have then the two possibilities,

sad Sszd = iz, Fswd = eiw, x = e−Y cosX, y = e−Y sinX, s60d

sbd Sszd = a, Fswd = aw, x = aX− bY, y = bX+ aY. s61d

Case(a) can be recognized as the transformation topolar coordinates. In fact, with the usual
notation, they are defined as

r = e−Y, u = X. s62d

Solutions(48)–(54), in view of (28), are

W= Wsrd =
gsrd
r2 , K = ksrd, V =

k8srd
2r

, s63d

and the second invariant turns out to be

I s1d = iszż− z̄ ż̄d + K = r2u̇ + ksrd. s64d

The problem is rotationally symmetric and the corresponding invariant is a generalization of the
angular momentum.

Case(b) can be recognized as the transformation torotated Cartesiancoordinates. Solutions
(48)–(54), in view of (28), then give

W= Wsay− bxd, K = ksay− bxd, V = −
k8say− bxd

2
. s65d

The second invariant now is

I s1d = ż+ ż̄+ K = aẋ+ bẏ+ ksay− bxd. s66d

The problem is invariant under translation along the family of straight linesax+by=const. These
two solutions are already well known,7 and the above procedure can be appreciated in its effec-
tiveness.

C. Examples of weakly integrable systems with linear invariants

We may provide two interesting classes of weakly integrable systems admitting linear invari-
ants.

The first is obtained by the simple observation that, if we choose the level surfaceC=0, it is
no longer necessary that condition(57) be satisfied.Any analytic functionS=Sszd provides a
solution through the corresponding conformal transformation. IfY, as above, denotes the new
coordinate
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Y = JHE dz

SszdJ , s67d

then the solution is given by

W=
gsYsx,ydd

uSu2
, K = ksYsx,ydd, V = −

k8sYsx,ydd
2uSu2

, s68d

with g andk arbitrary real functions.
The second class of weakly integrable systems is obtained with the following trick. Let us

consider the analytic functionfszd and consider then the conformal transformation(42) with Sszd
given by

S=
1

c + f8szd
, s69d

with c constant. Recalling definition(46), let us consider the “flat” conformal potentialG̃=1. In
this case, relation(46), using(69), gives

G = C − W=
1

uSu2
= c2 + csf8 + f̄8d + uf8u2. s70d

We can therefore interpretc2 as the fixed value of the Jacobi constant,

c2 ; C, s71d

and get as a consequence the family of potentials,

Wsz,z̄;cd = − csf8szd + f̄8sz̄dd − uf8szdu2. s72d

We remark that the dynamics given by potentials(72) is defined for arbitrary values ofC, but it
happens to be integrable only on the surface singled out by condition(71).

To complete the solution, we must write explicitly the coordinate transformation generated by
(69), that is

w =E dz

Sszd
= cz+ fszd. s73d

Again, an arbitrary functionksYd, with

Y = Jhcz+ fszdj, s74d

will do the work. For further details on these systems we refer to Ref. 10.

V. QUADRATIC INVARIANTS

We now look for systems admitting a second invariant which is a quadratic function in the
momenta. The ansatz is

I s2d = Ssp + Fd2 + S̄sp̄ + F̄d2 + Rsp + Fd + R̄sp̄ + F̄d + K, s75d

where, besidesS and the real functionK, we now must determine the complex functionR. The
system of equations ensuing from the conservation condition is the following:

Sz̄ = 0, s76d

Rz̄ + 2iVS= 0, s77d
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Kz̄ + SGz + 1
2S8G + iVR= 0, s78d

RhsRGdzj = 0, s79d

where, in (78) we have already exploited(76), that, as usual, embodies the fact thatS is an
arbitrary analytic function.

A. Towards a general solution for quadratic invariants

System(76)–(79) is much more difficult to solve than the previous linear case. Indeed we lack
a general solution. The main reason for this difficulty is that the coupling betweenG, R, andV
produces an integrability condition forK, through Eq.(78) and its complex conjugate, that is a
nonlinearPDE. However, we can implement the strategy to arrive as close as possible to a general
solution and, what is of great importance, we can solve the problem in the strongly integrable case,
developing an effective way to construct solutions.

This time we use a conformal transformation to the complex variablew=X+ iY given by

dz

dw
= F8swd ; ÎSszswdd, s80d

so that the explicit form of the transformation is

w =E dz
ÎSszd

. s81d

Introducing the conformal potential

G̃ = uF8u2G = uSuG = ÎSS̄G, s82d

and the new complex function

R̃=
R
ÎS

, s83d

Eq. (79) keeps its form in the transformed coordinates

RhsR̃G̃dwj = 0. s84d

The solution of this equation is

R̃G̃ = iKw̄, s85d

whereK is an arbitrary real function.
Let us now multiply both sides of(77) by

ÎS̄

S
. s86d

Using (83) and introducing the conformal field

Ṽ = uSuV, s87d

Eq. (77) transforms into

R̃w̄ + 2iṼ = 0. s88d

Since the conformal field is real, the solution of(88) is
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R̃= − 4ijw, s89d

wherej is another arbitrary real function. The factor −4 appears for later convenience. In this way,
the conformal field is given by

Ṽ = 2jww̄. s90d

At this point, to get the general solution of the unified treatment of weak and strong integra-
bility, one should try to solve the integrability condition for Eq.(78) in the light of the results
(85)–(89). Let us write the integrability condition forK which, computingKzz̄=Kz̄z from (78), is

JhS9G + 3S8Gz + 2SGzz+ 2isVRdzj = 0. s91d

In the transformed coordinates, this becomes

JhG̃wwj + RhsR̃Ṽdwj = 0. s92d

From (85) and (88) we have

R̃Ṽ =
i

2
R̃R̃w̄ =

i

4
sR̃2dw̄ = −

i

4
sG̃−2Kw̄

2dw̄ s93d

so that(92) can be rewritten as

JhG̃wwj = 1
4RhisG̃−2Kw̄dw̄wj. s94d

We can try to solve this equation after specifyingK. Unfortunately, the equation is highly non-
linear except in the rather trivial case whenK is constant, so it appears to be very difficult to solve
it in the general case. We direct our attention attempting to solve the more limited but fundamental
case of strong integrability.

B. Quadratic invariants at arbitrary energy

Starting again with(79), we see that, in view of definition(29), it can be rewritten as

RhRzsC − Wd − RWzj = 0. s95d

If R is independent ofC, as is the case under study, in order to satisfy this equation at arbitrary
values of the energy, it decouples in two independent equations, the first is

RhRzj = 0, s96d

the second is

RhRWzj = 0. s97d

Equation(96) is solved by introducing the arbitrary real functionh so that

R= − 4ihz̄. s98d

This allows us to solve equation(97) for W in the form

W= Wshd, s99d

that isW is, at this stage, an arbitrary function of the argument.
Comparing(98) with (89) and taking into account definition(83), we get the relation
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ÎSS̄jw = uSujw = hw̄. s100d

Solving the integrability condition forh with a given form ofS allows us to findj (and vice
versa): Eq. (100) is deceivingly simple; we will see later that it is of some concern. Here we
remark that the route followed to treat Eq.(79) reverted to the original physical coordinatesz, z̄,
since they lead to the simple result in(98). However, Eq.(90) is valid in general, it is the simplest
way in which we can solve for the vector potential and is expressed in the new coordinatesw, w̄.
This result and the development below show how working in the new coordinates is advantageous
in this context too.

In the meantime we must determine the forms ofS imposed by strong integrability. Examining
the integrability condition(91), the usual condition of independence of the results fromC imposes
the following constraints on the form ofS:

JhS9szdj = 0. s101d

This result, which is valid in the scalar case also, is a natural extension of what was found in the
linear case.

Coming back to Eq.(100), we note that, using real coordinates, we have

uSujX = hX, s102d

uSujY = − hY. s103d

It can be proven17 that condition(101) is equivalent to

uSuXY = 0, s104d

so that we can also write

uSu = AsXd + BsYd, s105d

with A andB determined by the specific form ofS. Therefore, Eqs.(102) and(103) generate the
following differential equations for the functionsh andj:

A8hY + B8hX − 2sA + BdhXY = 0, s106d

A8jY + B8jX + 2sA + BdjXY = 0. s107d

In view of (98), that can be rewritten as

uSuR̃= − 4ihw̄ s108d

and of (87), integrability condition(92) can be written in the form

JhG̃wwj + uSuRhR̃Vwj = 0, s109d

or, in real coordinates,

G̃XY + 2shXVY − hYVXd = 0. s110d

If we want to exploit the result established by(99), we must resume the physical potentialW
through

G̃ = uSusC − Wd. s111d

Using (105) we have
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G̃XY = − A8WY − B8WX − sA + BdWXY s112d

and so(110) is

sA + BdWXY + A8WY + B8WX = 2shXVY − hYVXd. s113d

But (99) tells us that

WX = hXW8shd, WY = hYW8shd, WXY = hXhYW9 + hXYW8, s114d

so that(113) becomes

W9shd + 3
hXY

hXhY
W8shd =

2

A + B
SVY

hY
−

VX

hX
D . s115d

This is the best form we attain to express the integrability condition for the potential: we see that
in general it implies that

hXY

hXhY
= Fshd, s116d

whereF is arbitrary.
Therefore, the strategy to find strongly integrable systems with scalar and vector potentials

supporting quadratic invariants is to choose a suitableS in the class determined by condition(101)
(and thereforeA andB) and solve(106) and(107) to find hsX,Yd andjsX,Yd; to solve(90) to find

Ṽ = 1
2sjXX + jYYd s117d

and use(87) to find

VsX,Yd =
Ṽ

A + B
s118d

and, finally, try to solve(115) for

W= WshsX,Ydd s119d

taking into account(116).

C. General form of the quadratic invariant

In the next section we apply the strategy delineated above illustrating how already known and
new integrable systems are determined. We end this section with a closer look at the structure of
the quadratic invariant.

In the new variables,w, w̄, together with the conformal transformation, it is natural to intro-
duce the new time variablet such that

dt =
dt

uF8u2
. s120d

We can use the apex to also denote the derivative with respect tot without risk of confusion with
other derivatives with respect to coordinates. Equations of motion(22) then assume the following
form:

w9 + 2iṼw8 = 2G̃w̄. s121d

In view of the above positions, the quadratic invariant is most simply expressed as
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I s2d = Rh 1
2sw8d2 + R̃w̄8j + K, s122d

or, in terms of real variables,

I s2d = 1
2fsX8d2 − sY8d2g − 2sjXY8 + jYX8d + K. s123d

We recall that the scalarK, to be found by integrating the transformed version of(78), namely

Kw̄ + G̃w + iṼR̃= 0, s124d

is a function of the form

K = Ksw,w̄;Cd. s125d

In the present case of strong integrability, in view of(105), it turns out that this function can be
expressed as

K = k + CsB − Ad, s126d

andk can be found by integrating the system

kX − W̃X + 4ṼjX = 0, s127d

kY + W̃Y − 4ṼjY = 0, s128d

whereW̃=sA+BdW. From (123), using(126) and

C =
1

2

sX8d2 + sY8d2

A + B
+ W, s129d

the general form of the invariant is then

I s2d =
1

A + B
fBsX8d2 − AsY8d2g − 2sjXY8 + jYX8d + sB − AdW+ k. s130d

Observing that the relations between velocities in the two gauges are given by

X8 = RhF8jẋ + JhF8jẏ, s131d

Y8 = − JhF8jẋ + RhF8jẏ, s132d

we can eventually transform the invariant in Cartesian coordinates. Transformation rules automati-
cally account also for the change of the time variable according to(120).

VI. SOLUTIONS WITH QUADRATIC INVARIANTS

Let us recall the coordinate systems given by the condition for the existence of strong qua-
dratic invariants. We observe that the functionS we must use is obtained by integrating(101) so
that

Sszd = cz2 + bz+ a, s133d

wherec is a real constant andb, a complex constants. Exploiting the freedom of making trans-
lations, rotations and scaling in the complex plane, we have the following four inequivalent cases
(for further details we refer to Refs. 4 and 18):

sad Sszd = a, Fswd = aw, x = aX− bY, y = bX+ aY, s134d
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sbd Sszd = z2, Fswd = ew, x = eX cosY, y = eX sinY, s135d

scd Sszd = 4z, Fswd = w2, x = X2 − Y2, y = 2XY, s136d

sdd Sszd = z2 + D2, Fswd = D sinhw, s137d

x = D sinhX cosY, y = D coshX sinY. s138d

Case(a) gives the rotated Cartesian coordinates(standard Cartesian coordinates ifa=1). Case
(b) gives again the polar coordinates. Case(c) gives the parabolic coordinates which are also
referred to asLevi–Cività coordinates(the factor 4 in the definition ofS appears just for this
reason). Finally, case(d) produces the elliptical coordinates. For the sake of completeness, we list,
for each of the four cases, the conformal factor and functionsA andB introduced in(105):

sad uSu = 1, A = B = 1
2 , s139d

sbd uSu = e2X, A = e2X, B = 0, s140d

scd uSu = 4sX2 + Y2d, A = 4X2, B = 4Y2, s141d

sdd uSu = D2ssinh2 X + cos2 Yd, s142d

A = D2 sinh2 X, B = D2 cos2 Y. s143d

A. Cartesian coordinates

Let us start with the simplest case(a), the Cartesian one. As the structure of the solution will
show in the end, there is no need to work with rotated coordinates, therefore we can seta=1 and
make the trivial identificationX=x andY=y. Equations(102) and (103) are

hx = jx, s144d

hy = − jy. s145d

The solution is

j = fsxd + gsyd, s146d

h = fsxd − gsyd, s147d

with f andg arbitrary. From(117) and (118), the vector field is

V = 1
2sf9 + g9d s148d

and theR function

R= − 2sg8 + i f 8d. s149d

Equation(113) is

Wxy − sg8f- + f8g-d = 0. s150d

From (99) we have thatW=Wsfsxd−gsydd, so that
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Wxy = − f8g8W9 s151d

and (150) becomes

W9 +
f-
f8

+
g-
g8

= 0. s152d

A further differentiation byx andy gives

1

f8

d

dx

f-
f8

= −
1

g8

d

dy

g-
g8

= 2a = − W- s153d

with a real constant. We then get two equations forf andg,

f9 = af2 + bf + c, s154d

g9 = − ag2 + dg + e, s155d

in agreement with the work of Dorizziet al.,7 that can be integrated for various choices of the
constantsa, b, c, d, e. The potentials in terms off andg are

W=
a

3
sg − fd3 −

b + d

2
sg − fd2 + sc − e+ mdsg − fd, s156d

2V = asf2 − g2d + bf + dg + c + e, s157d

wherem is another constant. Integrating Eqs.(127) and (128) gives then

K = afgsf + gd + sb − ddfg − asf3 + g3d − 1
2s3b + ddf2 + 1

2s3d + bdg2 − s3c + m+ edf + sc − m+ 3edg.

s158d

The fundamental example of the harmonic oscillator is obtained with the choice

a = b = d = 0, s159d

so that

f = 1
2cx2, s160d

g = 1
2ey2, s161d

and the potentials are

W= 1
2sc − e+ mdsey2 − cx2d, s162d

2V = c + e. s163d

We remark that, in this case, the vector field is aconstant angular velocityand that the isotropic
oscillator only exists when the angular velocity vanishes. The second invariant in this case is

I s2d = 1
2sẋ2 − ẏ2d − 2scxẏ+ eyẋd + 1

2fsc − m+ 3edey2 − s3c + m+ edcx2g. s164d

B. Polar coordinates

In case(b), the polar coordinates, we recall that now
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r = eX, u = Y s165d

and remark the difference of this relation with respect to(62) obtained in the linear case. We have

uSu = A = e2X = r2, B = 0. s166d

Equation(106) becomes

2e2XshXY − hYd = 0, s167d

which is solved by

h = eXgsYd + fsXd, s168d

with f andg arbitrary. From(100) we then have

j = − eXg +E e−2Xf8sXddX. s169d

From (117) and (118), the velocity field is

2V = e−2XDj = e−4Xsf9 − 2f8d − e−3Xsg9 + gd. s170d

Condition (116) says that

hX = eXgsYd + f8sXd = FseXgsYd + fsXdd. s171d

There are two ways in which(171) can be accomplished: the first isg=const and it is easy to see
that in this way we are actually taken back to the spherically symmetric case to which actually a
linear invariant is associated. We can takehsXd andWsXd arbitrarily whereas, to find the vector
field, we observe that

j8sXd = e−2Xh8sXd, s172d

so that

2V = e−2Xj9 = e−4Xsh9 − 2h8d = e−2Xse−2Xh8d8. s173d

To show that this solution is equivalent to that obtained in the linear case, we compute the scalar
k by integrating(127) to get

ks2dsXd = e2XW− se−2Xh8d2. s174d

Observing that, in polar coordinates, relation(120) between old and new time is

dt =
dt

r2 s175d

and using

Y8 = r2u̇, s176d

expression(130) becomes

I s2d = − r4u̇2 − 2h8u̇ −
sh8d2

r4 . s177d

In the linear case, recalling solution(64), we obtain
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I s1d = r2u̇ + ks1dsrd, s178d

where, from(63),

ks1dsrd = 2E rV dr = 2E e2XV dX. s179d

Using (173) this becomes

ks1dsrd = e−2Xh8 = r−2h8, s180d

so that, comparing(177) with (178), we see that

I s2d = − sI s1dd2. s181d

The second possibility of satisfying condition(171) is to have f =const and the constant,
without any loss of generality, can be set equal to zero. Therefore, we have

h = eXgsYd s182d

and

j = − e−Xg. s183d

To find the potential, we must solve(115) which, using(182) and (170), is

W9shd +
3

h
W8shd = −

1

e6Xgg8
sg-g + 3g9g8 + 4g8gd. s184d

The simplest way in which the right-hand side is also a function ofh is given by the condition

g-g + 3g9g8 + 4g8g = a
g8

g5 , s185d

with a constant, so that(184) becomes

W9shd +
3

h
W8shd +

a

h6 = 0 s186d

with solution

W=
b

h2 −
a

8h4 . s187d

To find explicit solution we must determine the possible forms ofg which can be obtained by
integrating(185) twice,

sg8d2 + g2 +
a

4g4 +
g

g2 = d, s188d

with g andd constants. All this is in agreement with the results in McSween and Winternitz8 to
which we refer.

Since in the approach with the energy constraint, the coefficients appearing in the invariant
must be supplemented by a further substitution in order to get the final physical expression, for the
sake of completeness, we work out a specific example. To ease the comparison with the results in
Ref. 8, we use explicitly polar coordinates as in(165). The simplest case in the solution above is
given by the choicea=0. Equation(188) has the solution
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gsud = Îa + b cos 2u s189d

with the constantsa andb given by

g = a2 − b2, d = 2a. s190d

From (187) and (170), the potential and velocity field are given, respectively, by

W=
b

r2sa + b cos 2ud
s191d

and

V =
b2 − a2

2r3sa + b cos 2ud3/2. s192d

To find the invariant, we can use(130). Equations(127) and(128) can easily be integrated to get

k = − r2W− r−2gsg + g9d. s193d

so that expression(130) becomes

I s2d = r4u̇2 + 2srgu̇ − ṙg8d +
2b

g2 +
gsg + g9d

r2 . s194d

In the specific example of(189) we get

I s2d = r4u̇2 +
2b sinu

Îa + b cos 2u
ṙ + 2Îa + b cos 2ur u̇ +

1

a + b cos 2u
Sa2 − b2

r2 + 2bD . s195d

We remark that the small discrepancy in(195) with respect to the analogous expression reported
in Ref. 8 is due to a difference of a factor of 2 in the definition ofV as can be seen from Eq.(192).

C. Parabolic coordinates

We use the Levi–Cività representation of the parabolic coordinates introduced in case(c)
above and mostly used in celestial mechanical applications. As a first step, the general strategy we
depicted at the end of Sec. V B prescribes to determine the functionsh andj satisfying equations
(106) and (107). According to(141), we have

A = 4X2, B = 4Y2, s196d

so that Eq.(106) becomes

XhY + YhX − sX2 + Y2dhXY = 0. s197d

A fairly general solution of this PDE can be represented in the following form:

hsX,Yd =E FsadÎsX2 + adsY2 − adda +E Gsad
sX2 + Y2d2

ssX2 + adsY2 − add3/2da, s198d

wherea is an arbitrary real parameter andF andG two arbitrary smooth functions.
The subsequent steps should consist in determining the functionsj andV and finally to solve

for the potentialWshd. However, we observe that it is not easy to satisfy the constraint(116) with
a too general expression forh: therefore, we first find a suitable form of this function and then
proceed as above. A simple but nontrivial possibility is that given by the position
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F = cdsa − bd, G = 0 s199d

in (198), wheredsad is the Dirac function. This choice gives the simplest separable solution of the
differential equation(197). Therefore, we have

hsX,Yd = cÎsX2 + bdsY2 − bd, s200d

which is easily shown to satisfy condition(116) in the form

hXY

hXhY
=

1

h
. s201d

With solution (200), Eqs.(106) and (107) are readily solved forj,

jsX,Yd =
c

4
arctanÎX2 + b

Y2 − b
, s202d

so that, from(117), the conformal vector field is

Ṽ =
bc

8

X2 + Y2

ssX2 + bdsY2 − bdd3/2. s203d

From this, Eq.(118) gives

V =
Ṽ

4sX2 + Y2d
=

c4b

32

1

h3 . s204d

This result suggests to set

c = 2 s205d

in order to simplify formulas and we have the physical vector field from

2V =
b

h3, hsX,Yd = 2ÎsX2 + bdsY2 − bd. s206d

An important consequence of this result is that, together withW, V too depends on the coordinates
only throughh. This implies that the right-hand side of Eq.(115) for W vanishes, so that, taking
into account(201), we get simply

W9shd +
3

h
W8shd = 0. s207d

The solution for the scalar potential is then

W=
b

h2 s208d

and we are actually led to a situation analogous to that encountered above in the example exam-
ined in polar coordinates. It is interesting to remark that potential(208) is separable if considered
in the purely scalar situation, since, using(200), we get

W=
b

4sX2 + Y2dS 1

X2 + b
+

1

Y2 − b
D . s209d

Reverting to Cartesian coordinates through
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X =Îr + x

2
, Y =Îr − x

2
, s210d

the scalar and vector potentials are, respectively, given by

W=
b

y2 − 4bsx + bd
s211d

and

V =
b

2sy2 − 4bsx + bdd3/2. s212d

The second invariant using parabolic coordinates is

I s2d =
1

X2 + Y2fY2sX8d2 − X2sY8d2g +
YsX2 + bdX8 − XsY2 − bdY8

sX2 + Y2dÎsX2 + bdsY2 − bd
+

b + 8bsY2 − X2 − bd
4sX2 + bdsY2 − bd

,

s213d

where thet time variable is used and, therefore, it is conserved along the solution of the trans-
formed equations of motion of the form(121). Using relations(131) and(132) between velocities
in the two gauges,

X8 = Î2sr + xdẋ + Î2sr − xdẏ, s214d

Y8 = Î2sr + xdẏ − Î2sr − xdẋ, s215d

we can transform the invariant into Cartesian coordinates,

I s2d = syẋ− xẏdẏ +
yẋ+ 2bẏ

2Îy2 − 4bsx + bd
+

b − 8bsx + bd
4sy2 − 4bsx + bdd

. s216d

D. Elliptical coordinates

It turns out that even in elliptical coordinates it is possible to find nontrivial solutions with a
structure closely related to that seen in the examples detailed above in polar and parabolic coor-
dinates. In addition, in elliptical coordinates, a solution with a constant vector field also exists
(constant angular velocity), whereas this possibility appears to be absent in parabolic coordinates.

A common feature of all these cases is that both the scalar and vector potentials,W andV, can
be expressed only in terms ofh. This implies that the right-hand side of Eq.(115) for W vanishes,
so that, taking into account(116), this common feature is embodied in the equation

W9shd + FshdW8shd = 0, s217d

with suitableF. Analogously to what is seen in the polar cases, other solutions may very well exist
but they are not so easy to find.

According to(143), we now have

A = D2 sinh2 X, B = D2 cos2 Y. s218d

In this case Eq.(106) becomes

sinhX coshXhY − sinY cosYhX − ssinh2 X + cos2 YdhXY = 0. s219d

A simple solution of this PDE is the following:
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hsX,Yd = aD2ssinh2 X − cos2 Yd + bD4ssinh2 X + cos2 Yd2, s220d

with a andb constants. Using this solution, Eqs.(106) and (107) give for j,

jsX,Yd = a lnfD2ssinh2 X + cos2 Ydg + 1
2bD2scosh 2X − cos 2Yd. s221d

Computing the conformal vector potential from(117), we see that the first solution is trivial since
its Laplacian vanishes giving a null vector field. We remark that the analogous phenomenon also
occurs in the parabolic coordinates case, where it is possible to find several additional solutions of
Eq. (197) generating a vanishing vector field.

The second solution appearing in(221) instead gives

Ṽ = bD2scosh 2X + cos 2Yd = 2bD2ssinh2 X + cos2 Yd. s222d

We get that the conformal field is proportional to the conformal factoruSu so that, from(118), we
have that the vector field is constant

V = 2b ; V0. s223d

Condition (116) for the nontrivial solution(220) with a=0 is

hXY

hXhY
=

1

2h
, s224d

so that Eq.(115) for W is

W9shd +
3

2h
W8shd = 0, s225d

whose solution is

W=
a

Îh
, s226d

or, using again(220),

WsX,Yd =
b

uSu
=

b

D2ssinh2 X + cos2 Yd
, s227d

wherea andb are arbitrary constants. This solution is the simplest separable scalar potential in
elliptical coordinates, which is therefore shown to be integrable also in a uniformly rotating
system: this result is already known for its application in the modeling of rotating galaxies.19 The
second invariant(130) using elliptical coordinates is

I s2d =
1

sinh2 X + cos2 Y
fcos2 YsX8d2 − sinh2sY8d2g +

1

2
V0ssin 2YX8 − sinh 2XY8d

− b
sinh2 X − cos2 Y

sinh2 X + cos2 Y
− V0

2ssinh2 X + cos2 Yd2. s228d

Reverting to Cartesian coordinates through

2D2 sinh2 X = r2 − D2 + Îsr2 + D2d2 − 4D2y2, s229d

2D2 sin2 Y = r2 + D2 − Îsr2 + D2d2 − 4D2y2, s230d

the scalar potential becomes
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Wsx,yd =
b

Îr4 + 2D2sx2 − y2d + D4
s231d

and, using relations(131) and (132) between velocities in the two gauges, we can transform the
invariant into Cartesian coordinates,

I s2d = syẋ− xẏd2 − D2ẋ2 + sD2 − r2ds2V0yẋ− Wsx,ydd

+ 2V0sD2 + r2dxẏ+ V0
2sr4 + 2D2sx2 − y2d + D4d. s232d

We pass now to investigate a more complex class of systems. A general solution of Eq.(219)
is

hsX,Yd =E FsadÎsD2 sinh2 X + adsa − D2 cos2 Ydda

+E Gsad
sD2 sinh2 X + D2 cos2 Yd2

ssD2 sinh2 X + adsa − D2 cos2 Ydd3/2da, s233d

wherea is an arbitrary real parameter andF andG are two arbitrary smooth functions. Comparing
this solution with that of(198) we can guess analogous developments. Therefore we try with the
simple solution

F = dsa − bd, G = 0, s234d

which corresponds to the simplest separable solution of the differential equation(219). Therefore,
we have

hsX,Yd = ÎsD2 sinh2 X + bdsb − D2 cos2 Yd, s235d

which satisfies condition(116) in the same form as in(201). With solution(235), Eqs.(106) and
(107) give the following expression forj:

jsX,Yd = − arctanhÎb + D2 sinh2 X

b − D2 cos2 Y
, s236d

so that, from(117), the conformal vector field is

Ṽ =
bD2sb − D2dssinh2 X + cos2 Yd

ssD2 sinh2 X + bdsb − D2 cos2 Ydd3/2. s237d

From this, Eq.(118) gives

V =
Ṽ

D2ssinh2 X + cos2 Yd
=

bsb − D2d
2h3 . s238d

As remarked above, from this result it follows that the right-hand side of Eq.(115) for W vanishes,
so that, taking into account(201), we get again(207) so that the solution for the scalar potential
is

W=
b

h2 =
b

sD2 sinh2 X + bdsb − D2 cos2 Yd
. s239d

Even potential(239) is separable if considered in the purely scalar situation, since it can be written
in the form
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W=
b

D2ssinh2 X + cos2 YdS 1

b − D2 cos2 Y
−

1

D2 sinh2 X + b
D . s240d

Using the explicit coordinate transformation(229) and(230), the scalar and vector potentials are,
respectively, given by

W=
b

by2 + sb − D2dsx2 + bd
s241d

and

V =
bsb − D2d

2sby2 + sb − D2dsx2 + bdd3/2. s242d

Finally, the second invariant using elliptical coordinates is

I s2d =
cos2 YsX8d2 − sinh2sY8d2

sinh2 X + cos2 Y
+

1

sinh2 X + cos2 Y
Ssin 2YÎb + D2 sinh2 X

b − D2 cos2 Y
X8

− sinh 2XÎ b − D2 cos2 Y

b + D2 sinh2 X
Y8D +

bsD2 − bd + 2bsD2scos2 Y − sinh2 Xd − bd
sD2 sinh2 X + bdsb − D2 cos2 Yd

,

whereas using Cartesian coordinates is given by

I s2d = syẋ− xẏd2 − D2ẋ2 + 2
byẋ+ sD2 − bdxẏ

Îby2 + sb − D2dsx2 + bd
+

bsb − D2d + 2bsb − D2 + x2 + y2d
by2 + sb − D2dsx2 + bd

.

s243d

VII. CONCLUDING REMARKS

We have investigated Hamiltonian systems with vector potentials admitting a second invariant
which is linear or quadratic in the momenta. In our approach, weak and strong invariants are
treated in a unified setting where the strong invariants emerge as special cases. As for scalar
potentials, the integrable systems can be greatly simplified by introducing certain standardized
coordinates, as given in(134)–(138). It is a striking result that these standardized coordinate
systems for systems with strong invariants exactly coincide with the classical separable coordi-
nates for scalar potentials.

This work is an extension and improvement of the approach to integrable vector potential
Hamiltonians which was proposed in Ref. 10. However, there still remain issues which need
clarification. In particular, it should be possible to obtain a better understanding of the integrability
conditions, especially the role of the condition(116) for the structure of the strongly invariant
case.
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The difficulty of symplectic analysis with second class
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Using the basic concepts of the chain by chain method we show that the symplectic
analysis, which was claimed to be equivalent to the usual Dirac method, fails when
second class constraints are present. We propose a modification in symplectic
analysis that solves the problem. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1828588]

I. INTRODUCTION

There are some attempts to study a constrained system in the framework of first order
Lagrangian.1,2 The coordinates appearing in a first order Lagrangian are in fact the phase space
coordinates. The Euler–Lagrange equations of motion of a first order Lagrangian in an ordinary
(nonconstrained) system are the same as the canonical equations of motion. The kinetic term in a
first order Lagrangian constitutes of a one-form whose exterior derivative appears in the equations
of motion. The resulted two-form, called the symplectic tensor, is singular for a constrained
system. If the system is not constrained, usually the inverse of the symplectic tensor exists and
provides the fundamental Poisson brackets(we exclude degenerate systems discussed in Refs. 3
and 4 in which the symplectic tensor may have a lower rank in some regions of the phase space).

The properties of a constrained system can be determined by trying to overcome the singu-
larity of the symplectic tensor. Faddeev and Jackiw5 used the Darboux theorem to separate ca-
nonical and noncanonical coordinates. They solved the equations of motion for noncanonical
coordinates either to decrease the degrees of singularity of the symplectic tensor or to find the next
level constraints.

Then using a special system of coordinates, the authors of Ref. 6 showed that the Faddeev–
Jackiw approach is essentially equivalent to the usual Dirac method.7 In a parallel approach,
known as symplectic analysis8–11one extends the phase space to include the Lagrange multipliers.
In this approach the consistency of constraints at each level adds some additional elements to the
symplectic tensor. In other words, the kinetic part of the(first order) Lagrangian is responsible to
impose the consistency conditions.

The important point in most papers written in the Faddeev–Jackiw method or symplectic
analysis is that they often show their results for the constraints in the first level and thendeduce
that the same thing would be repeated at any level. However, the whole procedure of studying the
singularities of symplectic tensor, demonstrates some global aspects. For example, some questions
that may arise are as follows:

What happens, after all, to the symplectic tensor? Is it ultimately singular? How many degrees
of singularity may it have? What is the relation of ultimate singularities with the gauge symmetries
of the system and so on? In Ref. 12 we showed that the symplectic analysis gives, at each step, the
same results as the traditional Dirac method(in the framework ofthe level by level approach). The

a)Electronic mail: shirzad@ipm.ir
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symplectic analysis may also be studied in the framework ofthe chain by chain approach13 to
obtain the Dirac constraints.

Meanwhile, some recent observation14 shows that in some examples the result of symplectic
analysis and the well-established method of Dirac are not the same. This creates serious doubt
about the validity of the symplectic analysis. Therefore, it is worth studying the origin of the
difference between this approach and that of Dirac.7 This is the aim of this paper. In the next
section we first review the basic concept of symplectic approach as given in Ref. 12. As we will
show the symplectic analysis is equivalent to a special procedure in the Dirac approach in which
one uses the extended Hamiltonian at each level of consistency. In Sec. III we will show that in the
framework of the Dirac method one is not allowed to use an extended Hamiltonian when there
exist second class constraints. The important point to be emphasized is that this result can be
understood more clearly in the framework of the chain by chain method. In Sec. IV we show that
for a one chain system with second class constraints the symplectic analysis as proposed in the
literature fails. This result can be simply generalized to the general case of a multichain system.
When recognizing the origin of the problem, we give our prescription to solve it in Sec. V. Finally
in Sec. VI we give an example.

The last point to be noticed is that the problem would not show itself for systems with two
levels of constraints. As we will show, this is the case for second class systems with at least four
levels of constraints. That is the reason for the fact that the problem does not appear if one
considers just first level constraints.

II. REVIEW OF SYMPLECTIC APPROACH

Consider a phase space with coordinatesyi si =1, . . . ,2Kd specified by the first order Lagrang-
ian,

L = aisydẏi − Hsyd, s1d

whereHsyd is the canonical Hamiltonian of the system. The equations of motion read

f ij ẏ
j = ]iH, s2d

where]i ;] /]yi and the presymplectic tensorf ij is defined as

f ij ; ]iajsyd − ] jaisyd. s3d

We denote it in matrix notation asf. This matrix is invertible for a regular system. Letf ij be the
components of the inverse,f−1. From (2) we have

ẏi = hyi,Hj, s4d

where the Poisson brackets{,} are defined as

hFsyd,Gsydj = f ij]iF] jG. s5d

If f is singular, then using the Darboux theorem, as shown in Ref. 5, one can choose the indepen-
dent coordinatessy8a ,lld such that

L = aa8 ẏ8a − llFlsy8d − Hsy8d, s6d

where fab8 =]aab8 −]baa8 is invertible. This shows that one can consider a system with a singular
tensorf ij , as a regular one described by

L = aa8 ẏ8a − Hsy8d s7d

together with the primary constraintsFlsy8d. In other words, without losing the generality one can
assume that one is at first given the first order Lagrangian(1) with a regular presymplectic
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two-form (3), and then the set of primary constraintsFm
s1d sm=1, . . . ,Md are applied to the system.

In this way the system is described by the Lagrangian,

L = aiẏ
i − lmFm

s1d − Hsyd, s8d

in the extended spacesyi ,lmd. The equations of motion(2) should be replaced in matrix form by

S f 0

0 0
DS ẏ

l̇
D = S ]H

Fs1d D , s9d

which is equivalent to Eq.(2) together with the constraint equationsFm
s1d=0 sm=1, . . . ,Md.

Now one should impose the consistency conditionsḞm
s1d=0. To do this, one should extend the

space to include new variableshm and add the termhmḞm
s1d (or equivalently −ḣmFm

s1d) to the
Lagrangian(8). This leads in the extended spacesy,l ,hd to the equations

1 f 0 A

0 0 0

− Ã 0 0
21 ẏ

l̇

ḣ
2 = 1 ]H

Fs1d

0
2 , s10d

where the elements of the rectangular matrixA are given by

Ami = ]iFm
s1d. s11d

However, nothing would be lost if one forgets about the variableslm and reduces the system to the
Lagrangian

Ls1d = aiẏ
i − ḣmFm

s1d − Hsyd. s12d

This leads to the symplectic two-form,

F = S f A

− Ã 0
D , s13d

in the s2K+Md-dimensional space of variablesY;syi ,hmd. It should be noted that the Lagrangian
Ls1d in Eq. (12) is the same as Eq.(8) in which lm is replaced byḣm. This means that the
derivativesḣm have the same role as Lagrangian multiplierslm corresponding to primary con-
straints in the total Hamiltonian

HT = H + lmFm
s1d. s14d

In other words, if some ofḣm’s are found by the dynamical equations of the system, then the
corresponding Lagrange multipliers are obtained. In the Dirac approach15 this would be the case if
there exist some second class constraints.

The equations of motion due to the LagrangianLs1d can be written in matrix notation as

FẎ = ]H. s15d

Using operations that keep the determinant invariant, it is easy to show that

detF = detS f A

0 Ãf−1A
D = sdet fdsdetÃf−1Ad. s16d

Since detf Þ0, F would be singular ifC; Ãf−1A is singular. Using(5) and (11) we have
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Cmn = hFm
s1d,Fn

s1dj. s17d

Suppose ranksCd=M9 where M9øM. This means thatF possessesM8=M −M9 null-
eigenvectors. One can, in principle, divideFm

s1d’s in two setsF
m8
s1d andF

m9
s1d such that

hFm8
s1d,Fn

s1dj < 0,

hFm9
s1d,Fn9

s1dj < Cm9n9, detCm9n9 Þ 0, s18d

where the weak equality symbol' means equality on the surface of the constraints already known
(here, the primary constraints). The matrixA can be decomposed toA8 andA9 such that

Am8i = ]iFm8
s1d,

Am9i = ]iFm9
s1d. s19d

Accordingly the symplectic tensorF can be written as

F = 1 f A9 A8

− Ã9 0 0

− Ã8 0 0
2 . s20d

Consider the rectangular matrix

sÃ8f−1,0,1d, s21d

which hasM8 rows and 2K+M columns. Using(18) one can show that its rows are left null-
eigenvectors ofF. Multiplying (21) with the equations of motion(15) gives the second level
constraints as

Fm8
s2d < hFm8

s1d,Hj = 0. s22d

On the other hand,F in (20) has an invertible sub-block

Finv = S f A9

− Ã9 0
D s23d

with the inverse

Finv
−1 = S f−1 − f−1A9C9−1Ã9f−1 − f−1A9C9−1

C9−1Ã9f−1 C9−1 D . s24d

This can solve the equations of motion(15) for variablesḣm9 to give

ḣm9 = − Cm9n9hFn9
s1d,Hj, s25d

whereCm9n9 is the inverse ofCm9n9. Inserting this in the Lagrangian(12) gives

Ls1d = aisydẏi − ḣm8Fm8
s1d − Hs1dsyd, s26d

where

Hs1d = H − hH,Fm9
s1djCm9n9Fn9

s1d. s27d
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In this way a number of Lagrange multipliers corresponding to the second class constraints are
derived whose effect is only replacing the canonical HamiltonianH with Hs1d. Now we can forget
about them and suppose that we are given the primary constraintsFm

s1d and the second level
constraintsfm

s2d. Next, we should consider the consistency ofFm
s2d and add the term −ḣ2

mFm
s2d to the

LagrangianLs1d. Renaming the previoushm8’s ash1
m, the new Lagrangian would be

Ls2d = aisydẏi − ḣ1
mFm

s1d − ḣ2
mFm

s2d − Hs1dsyd s28d

this gives the symplectic two-form

Fs2d = 1 f As1d As2d

− Ãs1d 0 0

− Ãs2d 0 0
2 s29d

in the spacesy,h1,h2d. Assuming that the composed matrixA;sAs0d ,As1dd, Fs2d has the same form
as (13). One should again proceed in the same way to find the null-eigenvectors as well as the
invertible sub-block ofFs2d. The process goes on in this and the subsequent steps as explained in
more detail in Ref. 12.

The important point to be emphasized is that the Lagrangian,

Lsnd = aisydẏi − o
k=1

n

ḣk
mFm

skd − Hsndsyd, s30d

at thenth level, say, is equivalent to a system with extended Hamiltonian,

HE
snd = Hsn−1d + o

k=1

n

lk
mFm

skd, s31d

at that level. In other words, the symplectic analysis is equivalent to the Dirac approach in the
context of the level by level method provided that at each level one adds the new constraints with
the corresponding Lagrange multipliers to the Hamiltonian. In fact this slight difference with the
standard Dirac method may lead to some difficulties as we will see in the following section.

III. THE PROBLEM WITH EXTENDED HAMILTONIAN

The extended Hamiltonian formalism is well known in the context of first class
constraints.15,16 In fact, it can be shown that the dynamical equation

ġ = hg,HEj, s32d

leads to the correct equation of motion provided thatg is a gauge invariant quantity. In Eq.(32)
the extended HamiltonianHE is defined as

HE = H + lmFm, s33d

where Fm are only first class constraints(primary or secondary). For a first class system, the
extended Hamiltonian can also be used step by step during the process of producing the con-
straints. In other words, when all of the constraints are first class, there is no difference whether

one usesḞ=hF ,HTj or Ḟ=hF ,HEj.
Now we show that the extended Hamiltonian formalism in the Dirac approach is not suitable

when second class constraints are present. We show this point for a system with only one primary
constraint, i.e., a one-chain system in the language of chain by chain method. We remember that
for such a system level by level and chain by chain methods coincide.

Consider a system with the canonical HamiltonianHsyd and one primary constraintFs1d. The
total Hamiltonian reads
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HT = H + lFs1d. s34d

Suppose the consistency ofFs1d leads toFs2d=hFs1d ,Hj. ThenFs3d emerges ashFs2d ,Hj, and so
on. The iterative process that produces the constraints is described by

Fsn+1d = hFsnd,Hj. s35d

The above procedure progresses unlesshFsNd ,HTj<0 or hFsNd ,Fs1djÞ0 at the last stepN. In the
former case the constraints in the chain are first class, i.e., commute with each other;13 while in the
latter all the constraints are second class which means that the matrix

Cnm= hFsnd,Fsmdj s36d

is invertible. In this case the Lagrange multiplierl would finally be determined as

l =
hFsNd,Hj

hFsNd,Fs1dj
. s37d

Using the Jacobi identity, it is shown in Ref. 13 that the matrixCnm in Eq. (36) has the following
form:

C <1
0 0 ¯ 0 C1N

0 0 ¯ C2sN−1d C2N

] ] ] ¯

0 CsN−1d2
¯ CsN−1dsN−1d CsN−1dN

CN1 CN2
¯ CNsN−1d CNN

2 . s38d

In other words,

hFsid,Fs jdj < 0 if i + j ø N. s39d

Moreover using the Jacobi identity one can show from(35) that

hFs1d,FsNdj < − hFs2d,FsN−1dj < ¯ < s− 1dfsN/2d−1ghFN/2,FfsN/2d+1gj Þ 0. s40d

Remember thatN is the number of second class constraints and necessarily should be even.
Now suppose that in order to define the dynamics of the system at some leveln, one wishes

to use the extended Hamiltonian,

HE
snd = H + o

k=1

n

lkF
skd. s41d

If nøN/2 then from(38) the consistency of the constraintFsnd gives

Ḟsnd = hFsnd,HE
sn+1dj < hFsnd,Hj, s42d

which by(35), is the same asFsn+1d. However at levelsN/2d+1 the consistency ofFfsN/2d+1g, using
HE

fsN/2d+1g gives

ḞfsN/2d+1g = hFfsN/2d+1g,Hj + lN/2hFfsN/2d+1g,FN/2j. s43d

As is apparent from(40) the above equation solves the Lagrange multiplierlN/2. There is no
justification to keephFfsN/2d+1g ,Hj as the next constraintFfsN/2d+2g. In order to knit the second class
chain up to the last elementFsNd, one is just allowed to use the total Hamiltonian(34). In other
words, the second half of the chain can be derived if only the primary constraintFs1d is present in
the corresponding Hamiltonian. As explained in the preceding section, using the standard sym-
plectic analysis is equivalent to using the extended Hamiltonian formalism described above. So
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one should expect some contradiction in symplectic analysis when second class constraints are
present. In the next section we will show the essence of this contradiction for a one chain system
and propose a method to resolve it.

IV. SECOND CLASS ONE CHAIN IN SYMPLECTIC ANALYSIS

According to the algorithm given in Sec. II, given the canonical HamiltonianHsyd and the
primary constraintFm

s1d, at the first step of consistency one should consider the Lagrangian(see
Ref. 14)

Ls1d = aiẏ
i − ḣ1Fs1d − Hsyd. s44d

The equations of motion can be written in matrix form as

S f As1d

− Ãs1d 0
DS ẏ

ḣ1
D = S]H

0
D . s45d

It is easy to see that

u1 ; sÃs1df−1,1d s46d

is the null-eigenvector of the matrix

F = S f As1d

− Ãs1d 0
D . s47d

Implying u1 on both sides of(45) and using(5) gives the new constraint

Fs2d = hFs1d,Hj. s48d

Adding the term −ḣ2Fs2d to the Lagrangian(to perform consistency) gives

Ls2d = aiẏ
i − ḣ1Fs1d − ḣ2Fs2d − Hsyd. s49d

The equations of motion are

1 f As1d As2d

− Ãs1d 0 0

− Ãs2d 0 0
21 ẏ

ḣ1

ḣ2
2 = 1]H

0

0
2 . s50d

AssuminghFs1d ,Fs2dj<0, one can find the new null-eigenvector,

u2 ; sÃs2df−1,0,1d. s51d

Multiplying u2 by (50) gives the new constraintFs3d=hFs2d ,Hj, and so on.
Suppose one wishes to proceed in this way to find the constraints of the chain discussed in the

preceding section, i.e., the second class chainFs1d , . . . ,FsNd with the algebra given in(38)–(40).
Suppose the above procedure has been proceeded up to the stepsN/2d+1 where the equations of
motion are

1
f As1d

¯ AfsN/2d+1g

− Ãs1d 0 ¯ 0

] ] ] ]

− ÃfsN/2d+1g 0 ¯ 0
21

ẏ

ḣ1

]

ḣsN/2d+1

2 =1
]H

0

]

0
2 . s52d
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Clearly no more null-eigenvector can be found. In fact adding the column and row corre-
sponding to the constraintFfsN/2d+1g has increased the rank of the matrixF by two. This means that
the equations of motion can be solved to findḣN/2 andḣfsN/2d+1g. There is no way in the context of
symplectic analysis to proceed further to find the remaining constraintsFfsN/2d+1g , . . . ,FsNd of the
chain. This is really the failure of traditional symplectic analysis. In fact this is the reason why the
symplectic analysis has failed in the example given in Ref. 14(particle in hypersphere). We will
discuss this example in Sec. VI.

What we showed here is the failure of symplectic analysis for a second class system with only
one primary constraint(i.e., a one chain system). However, one can easily observe that for an
arbitrary system with several primary constraints again the symplectic analysis would fail. The
reason is that for such a system some of the constraints driven at leveln, i.e., Fm

snd, may have
nonvanishing Poisson brackets with constraints of previous levels while commuting with primary
constraints. As we know from the Dirac approach, in such a case the Poisson brackets of these
constraints with Hamiltonian give the next level constraints. Meanwhile, a little care on symplectic
analysis shows that in this case a number of Lagrange multipliers corresponding to nonprimary
constraints would be determined and there is no way to find the next level constraints. In this way,
we conclude thatthe symplectic analysis would fail whenever second class constraints emerge at
third level or higher.

V. HOW TO SOLVE THE PROBLEM

In this section we try to find a way to maintain the symplectic analysis by imposing some
modifications. The origin of the problem is the fact thatFfsN/2d+1g has nonvanishing Poisson
brackets withFN/2. As a result, the symplectic two-form on the left-hand side of Eq.(52), i.e.,

F =1
f As1d

¯ AfsN/2d+1g

− Ãs1d 0 ¯ 0

] ] ] ]

− ÃfsN/2d+1g 0 ¯ 0
2 , s53d

does not possess a new null-eigenvector. If one could consider the vector

ufsN/2d+1g ; sÃfsN/2d+1gf−1,0, . . . ,0,1d s54d

as a null-eigenvector, then by multiplyingufsN/2d+1g on the right-hand side of(52), one would
obtain the next constraint as

FfsN/2d+2g = hFfsN/2d+1g,Hj. s55d

To reach this goal one should truncate those columns ofF which are located afterAs1d. In
other words, instead ofF in Eq. (53) one should consider the rectangular matrix

F̃ =1
f As1d

− Ãs1d 0

] ]

− ÃfsN/2d+1g 0
2 . s56d

Clearly ufsN/2d+1g in Eq. (54) is the null-eigenvector ofF̃. It is obvious that if one does the same
thing in the subsequent steps, one can produce all the remaining constraints of the chain, i.e.,
FfsN/2d+1g , . . . ,FsNd. In the last step the chain terminates, sincehFsNd ,Fs1djÞ0.

But what is the justification to find the null-eigenvectors ofF̃, i.e., thetruncated F. In fact
using Eq.(5) the set of equations
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1
f As1d

− Ãs1d 0

] ]

− ÃsNd 0
2S ẏ

ḣ1
D =1

]H

0

]

0
2 s57d

is equivalent to

ẏi = hyi,H + ḣ1Fs1dj, i = 1, . . . ,2K,

Ḟs jd = 0, j = 1, . . . ,N. s58d

Remembering thatḣ1 has the same role as the Lagrange multiplierl1 corresponding to the
primary constraintFs1d, we see that Eq.(58) is the correct equation of motion

ẏi = hyi,HTj. s59d

On the other hand, it is easy to see that the equations of motion resulting from Eq.(52) can be
written as

ẏi = hyi,HEj, s60d

whereHE contains all derived constraints(including second class ones). In fact as we explained
before, the correct equations of motion are(58) and not(60).

Therefore, if one wishes to proceed in the context of symplectic analysis, one should consider
Eq. (57) instead of Eq.(52).

VI. EXAMPLE

Consider the Lagrangian

L = 1
2q̇2 + vsq2 − 1d, s61d

whereq;sq1, . . . ,qnd. The primary constraint isPv. The corresponding Hamiltonian is

H = 1
2p2 − vsq2 − 1d, s62d

wherep;sp1, . . . ,pnd. In the usual Dirac approach, using the total HamiltonianHT=H+lPv, the
consistency ofFs1d=Pv gives the following chain of constraints

Fs1d = Pv,

Fs2d = q2 − 1,

Fs3d = 2q ·p,

Fs4d = 2sp2 + 2vq2d. s63d

As is apparent,Fs4d andFs3d are conjugate toFs1d andFs2d, respectively. It is worth remembering
that althoughFs3d is second class, when reaching at third level, the process of consistency should
not stop, i.e., it should be proceeded one level more to findFs4d which is conjugate to the primary
constraintFs1d. In the symplectic approach the corresponding first order Lagrangian is

L = pq̇ + Pvv̇ − 1
2p2 + vsq2 − 1d − lPv. s64d

This gives the singular presymplectic tensor
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F = S f 0

0 0
D , s65d

where f is the usuals2n+2d3 s2n+2d symplectic tensor,

f = S0 − 1

1 0
D . s66d

The equations of motion foryi =sq ,v ,p ,Pv ,ld are f ij ẏ
j =]iHT whereHT=H+lPv. Clearly this

gives the canonical equation of motion with HamiltonianHT, together with the constraint equation
Pv=0. Adding the consistency term −ḣ1Pv to the Lagrangian(64), whereh1 is a new variable and
forgetting about the term proportional tol (which just reproduces the primary constraint) one
finds

Ls1d = pq̇ + Pvv̇ − ḣ1Pv − 1
2p2 + vsq2 − 1d. s67d

This gives the equations of motion

Fij
s1dẎj = ]iH, s68d

whereYi ;sq ,v ,p ,Pv ,h1d. In the matrix form we have

Fs1d = S f As1d

− Ãs1d 0
D , s69d

whereÃs1d=s0,0 ,0,1d. Here, bold zeros0d means a row vector withn zero components. Clearly
us1d=s0,−1,0,0 ,1d is the left null-eigenvector ofFs1d. Multiplying the equations of motion(68)
from the left byus1d gives the constraintFs2d=q2−1.

In the next level we have the Lagrangian

Ls2d = L − ḣ1Pv − ḣ2sq2 − 1d s70d

written in the spaceYi ;sq ,v ,p ,Pv ,h1,h2d. The corresponding symplectic tensor reads

Fs2d = 1 f As1d As2d

− Ãs1d 0 0

− Ãs2d 0 0
2 , s71d

whereÃs2d=s2q ,0 ,0,0d. Clearlyus2d=s0,0 ,2q ,0 ,0 ,1d is the null-eigenvector ofF2. Multiplying

the equations of motionFij
s2dẎj =]iHT from the left by us2d gives the next level constraintFs3d

=2q ·p. Again considering another variableh3, the third level Lagrangian would be

Ls3d = L − ḣ1Pv − ḣ2sq2 − 1d − ḣ3s2q ·pd. s72d

This gives the following symplectic tensor:

Fs3d =1
f As1d As2d As3d

− Ãs1d 0 0 0

− Ãs2d 0 0 0

− Ãs3d 0 0 0
2 , s73d

where Ãs3d=s2p ,0 ,2q ,0d. Now the crucial point appears. That is,Fs3d has no new null-
eigenvector. In fact one expects that multiplyingus3d=s−2q ,0 ,2p ,0 ,0 ,0,1d by the equations of
motion due toLs3d gives the next constraintFs4d=2sp2+2vq2d. However, it can be easily checked
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that us3dFs3dÞ0. Moreover,us2d (with one additional zero as the last element) is no more the
null-eigenvector ofFs3d. This means that adding thes2n+5dth row and columns toFs2d has led to
increasing the rank ofFs3d by two. In other words, the equations of motion forḣ2 and ḣ3 can be
solved. Unfortunately without any modification there is no way to find the Lagrangian,

Ls4d = L − ḣ1Pv − ḣ2sq2 − 1d − ḣ3s2q ·pd − ḣ4s2sp2 + 2vq2dd. s74d

If we could findLs4d, then we would be able to have

Fs4d =1
f As1d As2d As3d As4d

− Ãs1d 0 0 0 0

− Ãs2d 0 0 0 0

− Ãs3d 0 0 0 0

− Ãs4d 0 0 0 0
2 , s75d

whereÃs4d=s8vq ,4q2,4p ,0d. If we had somehow derived(74) and (75), then the singularity of
symplectic tensor would completely disappear andḣ1, . . . ,ḣ4 would be obtained. However, using
the truncated symplectic tensorat the second step as

F̃s2d = 1 f As1d

− Ãs1d 0

− Ãs2d 0
2 s76d

and similarlyF̃s3d at the third level as

F̃s3d =1
f As1d

− Ãs1d 0

− Ãs2d 0

− Ãs3d 0
2 s77d

makes it possible to introduce againus2d andus3d as the corresponding left null-eigenvectors ofF̃s2d

andF̃s3d, respectively. This makes us able to findFs4d as explained before. It should be noted that
one can after all write the complete symplectic tensorFs4d.

This example has also been discussed in Ref. 14, where some other reason is proposed as the
origin of failure of the symplectic analysis. The same results as what we derived here can be found
in every second class system possessing at least four levels of constraints. For example, one can
study the simpler LagrangianL= ẋẏ−zsx+yd as well as the more complicated example of the
bosonized Schwinger model ins1+1d dimensions17,18 given by

L = 1
2]mf]mf + sgmn − «mnd]mfAn − 1

4FmnF
mn + 1

2AmAm. s78d

One can see that the main feature of the above calculations will more or less appear in all such
examples.
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We construct static and time dependent exact soliton solutions for a theory of scalar
fields taking values on a wide class of two dimensional target spaces, and defined
on the four dimensional space–timeS33R. The construction is based on an ansatz
built out of special coordinates onS3. The requirement for finite energy introduce
boundary conditions that determine an infinite discrete spectrum of frequencies for
the oscillating solutions. For the case where the target space is the sphereS2, we
obtain static soliton solutions with nontrivial Hopf topological charges. In addition,
such Hopfions can oscillate in time, preserving their topological Hopf charge, with
any of the frequencies belonging to that infinite discrete spectrum. ©2005
American Institute of Physics.[DOI: 10.1063/1.1829911]

I. INTRODUCTION

In this paper we consider a nonlinear theory of a complex scalar fieldu, on the space–time
S33R. Our considerations apply to a wide class of target spaces, but the case of most interest is
that of the sphereS2, in which case the fieldu parametrizes a plane corresponding to the stereo-
graphic projection ofS2. The action is the integral of the square of the pull-back of the area form
on the target space. Therefore, it is quartic in derivatives, but only quadratic in time derivatives.
The theory is integrable in the sense that it possesses a generalized zero curvature representation
of its equations of motion and an infinite number of local conservation laws.1,2 The conserved
currents are associated to the invariance of the theory under the area preserving diffeomorphisms
on the target space.

We construct an infinite number of static and time dependent exact soliton solutions using an
ansatz2,3 that reduces the four dimensional nonlinear equations of motion into linear ordinary
differential equations for the profile function. In the case of the target spaceS2 the solitons carry
nontrivial Hopf topological charges. Although the topology is the same as that of other models
possessing Hopfion solutions,3–5 the Derrick’s scaling argument is circumvented in a different
manner. The stability of the static three dimensional solutions comes from the fact that the physi-
cal space isS3 and that introduces a length scale given by its radius. A model in Euclidean space
where a similar stability mechanism occurs is discussed in Ref. 6.

The requirement for finite energy leads to boundary conditions that determine an infinite
discrete set of allowed frequencies for the oscillations of the solutions. Those solutions can be
linearly superposed since the profile function satisfies a linear equation. It turns out that the energy
of the superposed solution is the sum of the energies of the modes, and in this sense the modes are
decoupled. However, the profile function can take values only on some intervals on the real line,
which depend on the choice of the target space. Therefore, not all superpositions are allowed and
that introduces some sort of coupling among the modes. The allowed superpositions for the case
of the target spaceS2 are discussed in detail. One of the most interesting superpositions corre-
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sponds to oscillating Hopfion solutions. We show that it is possible to superpose to the static
Hopfion soliton any number of oscillating modes with any of the frequencies belonging to that
infinite discrete spectrum. Although the solution oscillates in time, its topological Hopf charge is
preserved. The only constraint on such superposition appears on the intensity of each mode.

The paper is organized as follows: in Sec. II we introduce the model and discuss its integra-
bility properties, in Sec. III we propose the ansatz and construct the exact soliton solutions, in Sec.
IV we discuss the energy, boundary conditions and allowed frequencies. The case of the target
spaceS2 is discussed in Sec. V.

II. THE MODEL

The metric on the space–timeS33R is given by

ds2 = dt2 − r0
2S dz2

4zs1 − zd
+ s1 − zddw1

2 + zdw2
2D , s1d

where t is the time,z, and wi, i =1, 2, are coordinates on the sphereS3, and 0øzø1, 0øwi

ø2p, and r0 is the radius of the sphereS3. EmbeddingS3 on R4 we get that the Cartesian
coordinates of the points ofS3 are

x1 = r0
Îzcosw2, x3 = r0

Î1 − zcosw1,

x2 = r0
Îzsinw2, x4 = r0

Î1 − zsinw1. s2d

The model is defined by the action

S=E dtE
S3

dS
hmn

2

g2 , s3d

where the volume element onS3 is dS=sr0
3/2ddzdw1 dw2, and

hmn ; ]mu]nu
* − ]nu]mu* , s4d

where]m denotes partial derivatives with respect to the four coordinates onS33R, namelyzm

;st ,z,w1,w2d, u is a complex scalar field, andg;gsuuu2d, is a real functional of the squared
modulus ofu, and it defines the geometry of the target space. The metric on target space is given
by

ds2 =
du du*

g
. s5d

Some cases of interest are the following:(a) g=1 corresponding to the plane with coordinates
being the real and imaginary parts ofu, (b) g=s1−uuu2d2, with uuu2,1, corresponding to the
Poincaré hyperbolic disc, and(c) g=s1+uuu2d2 corresponding to the sphereS2. In such case,u is
related to the three dimensional unit vectornW snW2=1d defining the sphere, through the stereo-
graphic projection

nW =
1

1 + uuu2
su + u* ,− isu − u*d,uuu2 − 1d. s6d

Notice that in the case of the target space beingS2, the action(3) corresponds to the quartic term
of the Skyrme–Faddeev action4 which has been studied on the space–timeS33R in Ref. 7.

The Euler–Lagrange equations following from(3) are given by
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]mSKm

g
D = 0 s7d

together with its complex conjugate, and where

Km = hmn]
nu = s]u]u*d]mu − s]ud2]mu* . s8d

The model(3) possesses an infinite number of local conserved currents given by

Jm =
Km

g

dG

du
−

Km
*

g

dG

du* , s9d

whereG is a function ofu andu* but not of its derivatives. Using the equations of motion(7) and
the identities

Km]mu = 0, Km]mu* − Km
* ]mu = 0 s10d

one can check that(9) is indeed conserved, i.e.,]mJm=0. The symmetries associated to such
conservation laws are the area preserving diffeomorphisms of the target manifold. Indeed, the
tensorhmn /g is the pull-back of the area form on the target space

dA = i
du ∧ du*

g
. s11d

Therefore, the action(3) is invariant under diffeomorphisms preserving the area(11) and (9) are
the corresponding Noether currents.2,8

III. THE ANSATZ

Following Refs. 2 and 3 we introduce the ansatz

u = fst,zdeism1w1+m2w2d, s12d

where mi, i =1, 2, are arbitrary integers, andf is a real profile function. Replacing it into the
equation of motion(7) one gets

]tS ]t f
2

g
D −

4zs1 − zd
r0

2V
]zSV

]zf
2

g
D = 0, s13d

where

V ; m1
2z+ m2

2s1 − zd. s14d

We now make a change of variable in the profile function, introducing a functiong by

dg ,
df2

g
. s15d

For instance, in the particular cases discussed below(5) we get that(a) for the plane whereg
=1 one hasg= f2, andgù0; (b) for the Poincaré hyperbolic disk whereg=s1−uuu2d2, one hasg
=1/s1− f2d, andgù1; (c) for the sphereS2 whereg=s1+uuu2d2 one hasg=1/s1+ f2d, and 0øg
ø1.

So, with the change(15) one gets that(13) becomes a linear partial differential equation ing

]t
2g −

4zs1 − zd
r0

2V
]zsV]zgd = 0. s16d

The solutions can be obtained by separation of variables introducing

012703-3 A model for Hopfions on the space–time S33R J. Math. Phys. 46, 012703 (2005)

                                                                                                                                    



gst,zd = JstdHszd s17d

and thenJ andH must satisfy

]t
2J + v2J = 0 s18d

and

zs1 − zd]zfsq2z+ s1 − zdd]zHg +
r0

2v2

4
sq2z+ s1 − zddH = 0, s19d

wherev2 is the separation of variables constant, and whereq is

q ;
um1u
um2u

. s20d

Equation(19) is what is called a Heun equation.9 It is a generalization of Gauss hypergeo-
metric equation in the sense that it has one extra regular singular point. Indeed,(19) reduces to the
hypergeometric equation forq=1. Notice that(19) is invariant under the joint transformations
q↔1/q andz↔1−z. Therefore, ifHq,vszd is a solution of(19) for some value ofq, so is

H1/q,vszd = Hq,vs1 − zd s21d

for the inverse value 1/q. One can obtain solutions of(19) in powers series aroundz=0 and for
0øqø1. The solutions forqù1, are then obtained from those using the above symmetry. The
power series solutions are given by

Hq,vszd =
1

vq,v
Sz+ o

n=2

`

cnz
nD , s22d

where the positive constantsvq,v are chosen such that the maximum absolute value ofHq,vszd in
the interval 0øzø1, is unity. The coefficients, fornù2, are determined by the recursion relation
(with c0=0, andc1=1)

cn =
− 1

nsn − 1dFsq2 − 1dSv2r0
2

4
− sn − 2d2Dcn−2 + Sv2r0

2

4
− sn − 1dsn − 2d + sq2 − 1dsn − 1d2Dcn−1G .

s23d

We will be interested in solutions withv real, and therefore the solutions of(18) are trigonometric
functions. Of course, ifg is a solution of(16), so isag+b, with a andb constants. We will then
use the following normalization for the solutions of(16):

gq,v = 1
2fsinsvt + ddHq,vszd + 1g, v Þ 0 s24d

with Hq,vszd given by (22). The advantage of such normalization is that the solutions(24) take
values on the real line from zero to unity only. Therefore, they are admissible solutions for the case
where the target space is the sphereS2 [see discussion below(15)].

We normalize the static solutions of(16) as

gq,0 =
lnsq2z+ 1 −zd

ln q2 . s25d

So,gq,0 is a monotonic function varying from zero atz=0 to unity atz=1. Notice thatgq,0→z as
q→1. A decreasing function can be obtained by the interchangegq,0→1−gq,0. Therefore,(25) are
also admissible solutions for the case where the target space is the sphereS2.

The admissible solutions for the cases of the plane or the Poincaré hyperbolic disk can then be
written as
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gq,v
plane= agq,v, gq,v

Poinc.disk= agq,v + 1 s26d

with a being a real and positive constant, andgq,v being given either by(24) or (25) (see Tables
I–III ).

IV. THE ENERGY AND BOUNDARY CONDITIONS

The energy for the solutions obtained through the ansatz(12) and (15) is given by

E =E
S3

dS H = 16p2r0E
0

1

dz VS s]tgd2

4zs1 − zd
+

1

r0
2s]tgd2D , s27d

whereH is the Hamiltonian density associated to(3). Using the equation of motion(16) one gets
that the energy of static configurations is

Estatic= U16p2

r0
sVg]zgduz=0

z=1. s28d

Therefore, the energy of the static solutions(25) is

Esgq,0d =
16p2

r0
um1m2u

sq − 1/qd
ln q2 . s29d

Notice that the solutions of(19), for vÞ0, which do not vanish atz=0 or z=1, have a
logarithmic divergence on its first derivative, at those points. We then observe from(27) that such
solutions do not have finite energy. Consequently, we shall impose the following boundary con-
ditions:

Hq,vs0d = Hq,vs1d = 0 for v Þ 0. s30d

In addition, using the equation of motion(16) one obtains that

TABLE I. The first three frequencies leading to solutions(22) satisfying the
boundary conditions(30) for some chosen values ofq. Due to the symmetry
(21) the frequencies are invariant under the interchangeq↔1/q.

q v1
2r0

2/4 v2
2r0

2/4 v3
2r0

2/4

1 2 6 12
3/4 1.983 765 266 031 5.987 866 563 654 11.988 820 961 965
1/2 1.913 643 550 920 5.923 271 548 463 11.930 495 946 441
1/4 1.733 644 829 967 5.672 599 570 202 11.668 111 143 086
1/10 1.517 649 738 276 5.238 029 617 258 11.066 608 078 277

TABLE II. Numerical values ofLq,vi
, as defined in(34), for some chosen

values ofq and for the three frequencies given in Table I. Due to(21), Lq,v

is invariant under the interchangeq↔1/q.

q Lq,v1
Lq,v2

Lq,v3

1 4/3 27/5 64/7
3/4 1.362 643 4.693 750 9.501 984
1/2 1.505 658 4.275 566 9.428 440
1/4 2.065 180 4.819 658 8.855 009
1/10 3.739 188 7.930 185 13.004 162
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dE

dt
=

32p2

r0
usV]tg]zgduz=0

z=1 . s31d

Therefore, the energy is conserved for the static solutions, and for those solutions(24) satisfying
the boundary conditions(30).

Multiplying (19) by Hq,v and integrating inz, one gets that

E
0

1

dz
v2V

4zs1 − zd
Hq,v

2 −
1

r0
2E

0

1

dz V sHq,v8 d2 = −
1

r0
2usVHq,v Hq,v8 duz=0

z=1. s32d

Consequently, the energy(27) for the solutions(24) satisfying(30) is

Esgq,vd =
16p2

r0
um1 m2uLq,v , s33d

where

Lq,v = L1/q,v =
v2r0

2

16
E

0

1

dz S q

1 − z
+

1

qz
D Hq,v

2 =
1

4
E

0

1

dz Sqz+
1 − z

q
DsHq,v8 d2. s34d

The fact thatLq,v is invariant underq↔1/q, follows from the symmetry(21). In Table II we give
the values ofLq,v for some chosen values ofq and some allowed frequenciesv. So, the energies
(29) and(33) do not depend upon the signs of the integersm1 andm2 and it is invariant under the
interchangem1↔m2 [see(20)].

Multiplying (19) by Hq,v, subtracting from the same relation withv interchanged withv, and
integrating inz, one gets that

sv2 − v2dE
0

1

dz
V

4zs1 − zd
Hq,vHq,v =

1

r0
2usVsHq,vHq,v8 − Hq,v8 Hq,vdduz=0

z=1. s35d

Similarly, differentiating(19) with respect toz once, multiplying byHq,v8 , subtracting from the
same relation withv interchanged withv, and integrating inz, one gets that

sv2 − v2dE
0

1

dz VHq,v8 Hq,v8 =
1

r0
2us4zs1 − zdVsHq,v8 Hq,v9 − Hq,v9 Hq,v8 dduz=0

z=1. s36d

Consequently, for the solutions(24) satisfying(30), and having finite first and secondz-derivatives
at z=0 andz=1, one gets the orthogonality relations

TABLE III. Numerical values of the normalization constantvq,vi
, as defined

in (22), for some chosen values ofq and for the three frequencies given in
Table I. Due to(21), vq,v is invariant under the interchangeq↔1/q.

q vq,v1
vq,v2

vq,v3

1 1/4 1/6Î3 1/16

3/4 0.285 189 93 0.119 156 83 0.070 789 33
1/2 0.332 611 65 0.152 779 52 0.087 010 28
1/4 0.409 991 03 0.204 149 92 0.126 957 32
1/10 0.502 749 25 0.256 726 47 0.167 310 92
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E
0

1

dz
V

4zs1 − zd
Hq,vHq,v =E

0

1

dz VHq,v8 Hq,v8 = 0 for v Þ v. s37d

It then follows that the energy(27) of a linear combination of solutions(24) satisfying(30), is just
the sum of the energies of each solution, i.e.,

EsAgq,v + Bgq,vd = A2Esgq,vd + B2Esgq,vd for v Þ v. s38d

Therefore, in that sense, the modes for the same value ofq are decoupled. However, the intensities
in which they enter in the superposition are not independent. As discussed below(15) the real
values that the profile functiong can take depend on the target space under consideration. So,
when we take linear combinations of the solutions we have to respect those constraints. In Sec V
we discuss those constrained linear combinations in detail in the case where the target space is the
sphereS2.

The boundary conditions(30) lead to a discrete spectrum of allowed frequenciesv. Indeed,
for the case whereq=1 the series(23) truncates whenever

r0
2v2

4
= nsn + 1d, n = 1,2,3,… , s39d

and the corresponding polynomials satisfy the boundary conditions(30). The first four of those
polynomials are given by[with the normalization as in(22)]

H1,2= 4sz− z2d,

H1,6= 6Î3sz− 3z2 + 2z3d,

H1,12= 16sz− 6z2 + 10z3 − 5z4d,

H1,20=
2450sz− 10z2 + 30z3 − 35z4 + 14z5d

Î7s3Î5 + 5Î6dÎ15 − 2Î30
, s40d

where the first index refers toq=1 and the second tonsn+1d as given by(39).
For qÞ1 the series(22) does not truncate, and the frequenciesv leading to solutions satis-

fying (30) can be found numerically. We give in Table I the first three frequencies for some chosen
values ofq. In addition, the same frequencies hold true under the exchangeq↔1/q due to the
symmetry (21). Therefore, the frequencies become smaller asq departs from unity, either to
smaller or greater values than unity.

In Fig. 1 we exemplify the shape of the functionsHq,v, by plotting the first three modesHq,vi
,

for q=3/4 andq=1/10 and thefrequenciesvi, i =1,2,3,given in Table I. Due to the symmetry
(21), H1/q,vi

can be obtained by reflecting the plots aroundz=1/2. Notice that the polynomial
solutions forq=1, given in(40), are invariant under(21). One observes that asq decreases, the
functionsHq,v get deformed in a way that their first derivatives atz=1 increase. Forq.1, it
follows, due to(21), that the first derivative ofHq,v at z=0 increases asq increases.

V. THE CASE OF S2 AS TARGET SPACE

According to the comments below(15), in the case where the target space is the two dimen-
sional sphereS2, we have thatg=s1+uuu2d2, and sog=1/s1+ f2d and 0øgø1. The ansatz(12)
becomes

u =Î1 − g

g
eism1w1+m2w2d. s41d
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As we have discussed, the solutions(24) and(25) are admissible solutions for the case where
the target space isS2. However, one can construct more admissible solutions, i.e., with 0øg
ø1, by taking linear combinations of the solutions(24) and(25). An interesting case corresponds
to linear combinations of the static solutiongq,0 given by(25), with one or more time dependent
solutions of the type(24). It leads to oscillating(in time) Hopfion solutions. Let us consider the
caseqø1 first. The static solutiongq,0 vanishes atz=0, and hasz-derivative equals tosq2

−1d / ln q2 there. The functionfqszd;fsq2−1d / ln q2gvq,vHq,vszd, with Hq,v given by (23) and sat-
isfying (30), has the same behavior atz=0 asgq,0. In addition,c2 given by(23), is negative for the
case ofHq,v satifying (30), and sofqszd grows slower thangq,0 for small z. We do not have
rigorous proof, but by careful direct inspection we found that, asz increases from zero to unity the
absolute value offqszd never exceeds the value ofgq,0, which is a positive monotonic function of
z. It then follows that the combination

gq,0 + a
sq2 − 1d

ln q2 vq,v sinsvt + ddHq,vszd s42d

with 0øaø1, takes values between zero and unity only, and so it is an admissible time dependent
solution for the target spaceS2. Therefore, by adding up such types of solutions and dividing by
their number, one gets that the time dependent solutions

FIG. 1. Plots ofHq,vi
szd, i =1, 2, 3, as normalized in(22), for q=3/4 (top) and q=1/10 (bottom) and for the three

frequencies given in Table I. The number of zeroes increase with the increase ofvi. The plots ofHq,v andH1/q,v are related
by reflection aroundz=1/2 due to the symmetry (21).
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gq
sNdst,zd =

lnsq2z+ 1 −zd
ln q2 +

1

N

sq2 − 1d
ln q2 o

vi

aivq,vi
sinsvit + didHq,vi

szd, s43d

whereN is the number of modes(frequencies) entering into the sum, andai’s are real coefficients
satisfying 0øai ø1, are admissible solutions for the target spaceS2. The energy of such solutions,
according to(24), (25), (29), (33), and(38), is given by

E =
16p2

r0
um1m2u

sq − 1/qd
ln q2 S1 + 4

q2

N2

sq − 1/qd
ln q2 o

vi

ai
2vq,vi

2 Lq,viD s44d

with Lq,vi
given by (34).

Solutions of the type(43) for qù1 can be obtained using the symmetry(21), i.e., g1/q
sNdst ,zd

=gq
sNdst ,1−zd. Solutions that decrease from unity atz=0 to zero atz=1 can be obtained by the

symmetrygq
sNdst ,zd→1−gq

sNdst ,zd. The energy(44) is invariant under those two types of transfor-
mations. As we now show, all these solutions correspond to oscillating Hopfions, i.e., solutions
that oscillate in time and have a constant(in time) nontrivial Hopf number.

For any fixed timet our solutions define a map from the physical spaceS3 to the target space
S2, and so it is a Hopf map.10 We now show that the Hopf invariant(the linking number) is
independent of time for the admissible solutions we have constructed. In order to calculate the
Hopf index of the solution we introduce

F1 = Îg cossm2w2d, F3 = Î1 − g cossm1w1d,

F2 = − Îg sinsm2w2d, F4 = Î1 − g sinsm1w1d, s45d

which defines another 3-sphereSF
3 , sinceF1

2+F2
2+F3

2+F4
2=1. The fieldu in (41) can be written

as

u =
F3 + iF4

F1 + iF2
. s46d

Sinceu parametrizes the sphereS2 through the stereographic projection(6), we have that(46)
gives the mapSF

3 →S2. So, the Hopf index is in fact evaluated through the mapS3→SF
3 →S2, as

we now explain. We introduce the potential

AW −
i

2
sZ†¹W Z − ¹W Z†Zd, s47d

where

Z = SZ1

Z2
D, Z1 = F3 + iF4, Z2 = F1 + iF2 s48d

and the differential operator¹W is the gradient on the physical spaceS3. The Hopf index is defined
by the integral10

QH =
1

4p2 E dS AW ·curlAW , s49d

where dS is the volume element on the physical spaceS3. Evaluating we get

AW = − m1
s1 − gd
Î1 − z

êw1 + m2
g
Îz

êw2 s50d

and
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curl AW = 2]zgs− m2
Î1 − zêw1 + m1

Îzêw2d. s51d

Consequently we get that

QH = m1m2fgst,z= 1d − gst,z= 0dg. s52d

Therefore, the solutions(25) have Hopf index

QHsgq,0d = m1m2 s53d

and so they are static Hopfion soliton solution. The time dependent solutions(24) are constant at
z=0 andz=1 due to the boundary condition(30), i.e., gqvst ,0d=gqvst ,1d=1/2. Therefore, they
carry no Hopf number

QHsgq,vd = 0, v Þ 0. s54d

The solutions(43) although time dependent, also have contant values atz=0 andz=1, determined
by their static component. It then follows that

QHsgq
sNdd = m1m2 s55d

and so they do correspond to oscillating Hopfion soliton solutions.
The Hopf index can also be calculated as the linking number of the preimages of two points

of S2.10 Notice, from(6), that the north pole ofS2, nW =s0,0,1d, corresponds tou→`, and so from
(41) to g=0. On the other hand, the south pole ofS2, nW =s0,0,−1d, corresponds tou=0, and so to
g=1. Therefore, from(45) and (48), we see that the pre-image onSF

3 of the north pole ofS2

correponds toZ1=eim1w1 and Z2=0, while the preimage of the south pole toZ1=0 and Z2

=e−im2w2. For the static solution(25) and the time dependent solutions(43), the preimages in the
spacialS3 of these two circles inSF

3 are constant in time. In addition, those two circles inSF
3 pass

through each otherm1m2 times asw1 andw2 varies from 0 to 2p in S3. So their linking number is
m1m2, and that is the Hopf index. For the time dependent solutions(24) it is not possible to have
g=0 andg=1 on different points on the spatialS3 at the same timet. Therefore, the preimages of
the north and south poles ofS2 never link, and so the Hopf index of such solutions vanishes.
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We analyze the canonical treatment of classical constrained mechanical systems
formulated with a discrete time. We prove that under very general conditions, it is
possible to introduce nonsingular canonical transformations that preserve the con-
straint surface and the Poisson or Dirac bracket structure. The conditions for the
preservation of the constraints are more stringent than in the continuous case and as
a consequence some of the continuum constraints become second class upon dis-
cretization and need to be solved by fixing their associated Lagrange multipliers.
The gauge invariance of the discrete theory is encoded in a set of arbitrary func-
tions that appear in the generating function of the evolution equations. The result-
ing scheme is general enough to accommodate the treatment of field theories on the
lattice. This paper attempts to clarify and put on sounder footing a discretization
technique that has already been used to treat a variety of systems, including Yang–
Mills theories, BF theory, and general relativity on the lattice. ©2005 American
Institute of Physics.[DOI: 10.1063/1.1823030]

I. INTRODUCTION

We have recently introduced1,2 a technique for treating the theories that arise when one
discretizes(space)–time in a constrained mechanical system or a continuum field theory. We have
shown that this technique works for Yang–Mills and BF theories and implemented it for the
gravitational case. Previous attempts to studying systems with discrete time had concentrated
mostly on systems without constraints or with holonomic constraints only(for a review with a
comprehensive reference list see Ref. 3).

The idea consists on starting from a discretized action, constructing discrete Lagrange equa-
tions and introducing a symplectic structure in the discrete space. The evolution is implemented
via canonical transformations and the consistency of the discrete theory determines in part the
Lagrange multipliers. In some totally constrained systems, like general relativity, the resulting
discrete theories are constraint-free since the constraints are solved for the Lagrange multipliers.
This makes the quantization of the discrete theories considerably simpler than the continuum
cases. This was exploited to make progress in solving the problem of time in quantum gravity4,5

and to implement the Page–Wootters relational time5,6 and show that a fundamental decoherence
arises in quantum mechanics from quantum gravity.

In this paper, we want to address in a more systematic way the issue of the canonical formu-
lation of discrete constrained systems. Up to now, most of the analysis has been made on specific
examples, and a canonical analysis, à la Dirac,7,8 is still lacking. In particular, the technique relied
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heavily on defining a canonical transformation that was initially singular(and therefore not a true
canonical transformation) and showing that one could eliminate variables and end up with a true
canonical transformation. Up to now this was shown in a case by case basis. This paper determines
the general conditions needed for the construction of a proper canonical transformation by fol-
lowing a close analogue of the Dirac procedure, adapted to the discrete case. In particular, we note
that there are several ways to proceed that yield equivalent results, but that may offer different
advantages for particular systems.

In Sec. II we will lay out the framework of how to deal with mechanical systems where time
is discrete, including singular and nonsingular systems. In Sec. III we will develop a classification
of constraints into first and second class suitable for the discrete context. In Sec. IV we work out
a specific example that exhibits the details of the formalism. In Sec. V we discuss an alternative
formulation of the formalism and we end with conclusions and discussion.

II. MECHANICS WITH DISCRETE TIME

We start by considering a continuum theory representing a mechanical system. Its Lagrangian

will be denoted byL̂sqa,q̇ad, a=1, . . . ,M. This setting is general enough to accommodate, for
instance, totally constrained systems. In such caseq̇ will be the derivative of the canonical
variables with respect to the evolution parameter. It is also general enough to include the systems
that result from formulating on a discrete space–time lattice a continuum field theory.

We discretize the evolution parameter in intervals(possibly varying upon evolution) tn+1− tn
=en and we label the generalized coordinates evaluated attn as qn. We define the discretized
Lagrangian as

Lsn,n + 1d ; Lsqn
a,qn+1

a d ; enL̂sqa,q̇ad, s1d

where

qa = qn
a and q̇a ;

qn+1
a − qn

a

en
. s2d

Of course, one could have chosen to discretize things in a different fashion, for instance using
a different approximation for the derivative, or by choosing to write the continuum Lagrangian in
terms of different variables. The resulting discrete theories generically will be different and will
approximate the continuum theory in different ways. However, given a discrete theory, the treat-
ment we outline in this paper is unique. For instance, in the method we introduce in order for
constraints to be preserved we will fix the values of the Lagrange multipliers. However, if one has
constraints that are only function of either the configuration or the momentum variables(but not
mixed) the method preserves the constraints automatically. Therefore the determination of the
Lagrange multipliers will depend on the particular form chosen for the continuum theory. If one
can find a canonical transformation that makes all the constraints only dependent on configuration
variables, for example, then the Lagrange multipliers will not be determined and the symmetries
implemented by the constraints will be preserved automatically without the need to determine the
Lagrange multipliers.

The action can then be written as

S= o
n=0

N

Lsn,n + 1d. s3d

It should be noted that in previous treatments1,2 we have written the Lagrangian in first order
form, i.e.,L=edtspq̇−Hsp,qdd. It should be emphasized that this is contained as a particular case
in the treatment we are presenting in this paper. In this case one takes bothq and p to be
configuration variables, and one is faced with a Lagrangian that involvesqn, pn, and qn+1 as
variables, being independent ofpn+1. In Sec. IV we discuss an example where in fact we apply the
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technique to a Lagrangian of this type. Although in simple examples as these the first order form
may appear as a bit of an overkill, since dynamical variables and constraints proliferate, it never-
theless shows that the method is applicable as outlined without problems.

If the continuum theory is invariant under reparametrizations of the evolution parameter, one
can show that the information about the intervalsen may be absorbed in the Lagrange multipliers.
In the case of standard mechanical systems it is simpler to use an invariant intervalen=e.

The Lagrange equations of motion are obtained by requiring the action to be stationary under
variations of the configuration variablesqa fixed at the endpoints of the evolution intervaln=0,
n=N+1,

] Lsn,n + 1d
] qn

a +
] Lsn − 1,nd

] qn
a = 0. s4d

These equations define a unique evolution if the determinant is

U ]2Lsn,n + 1d
] qn+1

b ] qn
a U Þ 0. s5d

We will refer to this case as the nonsingular case. When the determinant vanishes, one must
analyze the situation differently. Let us start with the nonsingular case.

A. Nonsingular case

In this case one can solve the Lagrange equations explicitly and theqn+1 are uniquely given as
a function of qn and qn−1. This is the equivalent of the Hessian condition for the nonsingular
Lagrangian theories in the continuum. The resulting equations are “second order” in the sense that
the qn’s are determined provided one knows two previous time levels. One can introduce a “first
order” formulation by introducing canonically conjugate variables as is usually done when intro-
ducing a Hamiltonian formulation in the continuum theories.

We introduce the following definition of variables that we will later show end up being
canonically conjugate momenta of the configuration variables:

pn+1
a ;

] Lsn,n + 1d
] qn+1

a , s6d

pn
a ;

] Lsn − 1,nd
] qn

a = −
] Lsn,n + 1d

] qn
a , s7d

where we have used Eq.(4). Equations(6) and (7) define a canonical transformation for the
variablesqn,pn to qn+1,pn+1 with the type 1 generating functionF1=−Lsqn

a,qn
a+1d provided that

condition (5) is fulfilled. Notice that the evolution scheme is implicit, one can use the bottom
equation(since we are in the nonsingular case) to give an expression forqn+1 in terms ofqn,pn,
which in turn can be substituted in the top equation to get an equation forpn+1 purely in terms of
qn,pn.

It should be noted that there are several other possible choices, when going from the set of
equations(6) and(7) to an explicit evolution scheme. For example, one can choose to do things in
a way that yields a closer analogy with the standard Hamiltonian description in the continuum by
introducing type 2 canonical transformations. To do this, we choose to invert Eq.(6) for qn+1

a

;qn+1
a sqn

b,pn+1
b d, which is possible only if

U ]2Lsn,n + 1d
] qn+1

a ] qn+1
b U Þ 0. s8d

We can now introduce a Legendre transform and define
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F2sqn,pn+1d ; o
a

qn+1
a pn+1

a − Lsqn,qn+1d. s9d

From here it is immediate to obtain

qn+1
b =

] F2

] pn+1
b , s10d

] F2

] qn
b =

− ] Lsn,n + 1d
] qn

b = pn
b, s11d

where we have used the Lagrange equation in order to obtain the last equality. We easily recognize
from here thatF2 behaves as a type 2 generating function of the canonical transformation con-
necting leveln with level n+1.

We may define now a sort of “type 2” Hamiltonian[in the sense that it depends onpn+1 and
qn, H2spn+1,qnd] given by

H2sqn,pn+1d ; o
a

pn+1
a sqn+1

a − qn
ad − Lsqn,qn+1d = F2sqn,pn+1d − o

a

pn+1
a qn

a, s12d

which leads to the discrete Hamilton equations,

qn+1
b = qn

b +
] H2

] pn+1
b , s13d

pn
b = pn+1

b +
] H2

] qn
b . s14d

It should be noted that although this formulation has a degree of analogy with the traditional
Hamiltonian formulation, there are significant differences due to the fact that the conjugate vari-
ables live at different time slices. It would not be possible therefore to use this formulation to
attempt to construct a Schrödinger equation starting from the above Hamiltonian.

Provided that the canonical map defined byF2 is invertible we end up with a discrete evolu-
tion implemented by a canonical transformation. It can be easily seen by using the Legendre
transform thatF2 will be invertible if and only if

U ]2F2sn,n + 1d
] qn

apn+1
b U = − U ]2Lsn,n + 1d

] qn
aqn+1

b U 3 U ]2Lsn,n + 1d
] qn+1

a qn+1
b U−1

Þ 0. s15d

Thus, in order to have canonical transformations generated by type 2 functions, the Hessian
condition in the continuum time mechanics leads to two independent conditions in the discrete
theory given by Eqs.(5) and (8). Notice however that(8) is not necessary for introducing a
symplectic structure.

It is clear that when one builds a canonical discrete theory there are four possibilities depend-
ing on which pair of variables one chooses to construct the generating functional of the canonical
transformation, eitherqn,qn+1, qn,pn+1, pn,qn+1, pn,pn+1. In this section we considered only two,
but the others can be easily generalized from the discussion here.

B. The singular case

Let us consider as before the generic discrete LagrangianLsn,n+1d=Lsqn
a,qn+1

a d with a
=1, . . . ,M. It leads to the equations we already discussed,

pn+1
a =

] Lsn,n + 1d
] qn+1

a , s16d
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pn
a = −

] Lsn,n + 1d
] qn

a . s17d

If u]2Lsn,n+1d /]qn+1
a ]qn

bu vanishes and its rank isK, the system is singular and hasM −K
constraints of the form

FAsqn
a,pn

ad = 0 s18d

that result from Eq.(17), andM −K constraints,

CAsqn+1
a ,pn+1

a d = 0, s19d

resulting from Eq.(16). The evolution of the configuration variables from leveln to n+1 is given
by solving for qn+1

a the equation(17). As the system is singular the evolution depends onsM
−Kd arbitrary functionsVn

A,

qn+1
a = fasqn

b,pn
b,Vn

Ad. s20d

We shall follow closely the standard Dirac canonical procedure of continuum mechanics. In
this case, the analysis of a constraint system goes through two steps. The first step consists in the
definition of a set of evolution equations that weakly preserve the constraints and the Poisson
symplectic structure. To do that one defines the total HamiltonianHT=H0+Vafa, wherefa are
the primary constraints, and theVa are partially determined in order to preserve all the constraints
of the system. Even though some of theV’s may be arbitrary functions, once they are specified, the
evolution generated byHT preserves the Poisson brackets and the dynamical evolution is consis-
tent at the classical level with the constraint structure. The second step is only required to quantize
the system and consists in the identification of the first and second class constraints and the
introduction of the Dirac brackets that enforce strongly the second class constraints.

As we shall see, the same procedure may be followed in the discrete case. The main difference
is the implementation of the canonical transformation that is not generated by a Hamiltonian but
by a canonical transformation of types 2, 3, or 4.

Let us start by completing the evolution equations. We need to add to Eq.(20) an equation for
pn+1,

pn+1
a = U ] Lsqn,qn+1d

] qn+1
a U

qn+1
a =fasqn

b,pn
b,Vn

Ad
. s21d

We now impose the preservation of the constraints

FAsqn+1
a ,pn+1

a d = FAS fa
n,

] Lsqn, fn
ad

] qn+1
a D = 0. s22d

Furthermore, we need to impose then+1 level constraints at leveln, CAsqn
a,pn

ad=0 and impose the
consistency conditions

CAS fa
n,

] Lsqn, fn
ad

] qn+1
a D = 0. s23d

Three different cases may occur.

(a) Equations(22) and (23) vanish automatically, and therefore we are not led to new condi-
tions.

(b) They lead to inconsistencies, and the dynamical system is inconsistent.
(c) New secondary constraintsCsqn

a,pn
ad appear or/and some of the arbitrary functionsVn

A are
determined, that isVn

A=VAsqn
a,pn

a,vn
ad with a=1, . . . ,Rø sN−Kd, andvn

a arbitrary functions.
The process is repeated until consistency is achieved. That is, until the consistency condi-
tions are automatically satisfied without further constraints and conditions forV.
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SubstitutingVn
A in (20) and (21) we get the evolution equations that preserve all the con-

straints: primary, secondary, tertiary, and so on,

qn+1
a = fasqn

b,pn
b,VAsq,p,vdd = f̃ asqn

b,pn
b,vad, s24d

pn+1
a = gasqn

b,pn
b,vad. s25d

Initial values need to be restricted by then=0 level constraints,

FAsq0
a,p0

ad = CAsq0
a,p0

ad = 0. s26d

In order to have a complete analogy with the continuum case, we still need to analyze under
what conditions this evolution also preserves the Poisson bracket structure. As in the continuum
case we assume that the arbitrary functionsv have been fixed. Three different cases may arise
depending on if one chooses to implement things in terms of a canonical transformation of types
2, 3 or 4.

Case I:Equation(24) is invertible forqn
a, that is,u]qn+1

a /]qn
buÞ0 and therefore one can write

qn
a = hasqn+1

b ,pn
bd. s27d

Notice that, under these hypotheses, there are no pseudoconstraints of the formGsqn+1
a ,pn

ad
=0. We call these pseudoconstraints because they involve variables at different instants of time.

We may define a type 3 generating function of canonical transformations,

F3sqn+1
b ,pn

bd = ufpn
bqn

b + Lsqn,qn+1dguqn
b=hb. s28d

Then we have

] F3sqn+1
a ,pn

ad
] pn

b = qn
b = hbsqn+1

a ,pn
ad s29d

and

] F3sqn+1
a ,pn

ad
] qn+1

b = U ] Lsqn
a,qn+1

a d
] qn+1

b U
qn=h

= pn+1
b . s30d

Notice that in the last equality there are also contributions coming from the dependence on
qn+1 of the leveln variablesqn, but these contributions cancel because of the definition of the
canonical momenta. The information about the momenta is completely encoded in the evolution
equationsqn+1

a =ha and the constraints. As the first equation is equivalent to(24) one ends up
recovering the fundamental evolution equations as a canonical transformation generated byF3.
Furthermore,

U ] F3sqn+1
a ,pn

ad
] pn

b ] qn+1
a U = U ] qn

b

] qn+1
a U Þ 0 s31d

due to the fact that we have assumed thatu]qn+1
b /]qn

auÞ0, and consequentlyF3 is a nonsingular
generating function and therefore the resulting canonical transformation preserves the Poisson
bracket structure.

Case II: Equation(25) is invertible forpn
a, that isu]pn+1

a /]pn
buÞ0 and therefore one can write

pn
a = gasqn

b,pn+1
b d. s32d

Notice that, under these hypotheses, there are no pseudoconstraints of the formGsqn
a,pn+1

a d
=0. By substituting(32) in (24), one gets
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qn+1
a = kasqn

b,pn+1
b d, s33d

which allows one to introduce a type 2 generating function,

F2sqn
b,pn+1

b d = ufpn+1
b qn+1

b − Lsqn,qn+1dguqn+1
b =kb. s34d

One can now easily check that this generating function reproduces the evolution equations
(24) and(25) and defines a nonsingular canonical transformation that preserves the Poisson brack-
ets in the evolution.

Case III: Even when the system has pseudoconstraints of the formGsqn+1
a ,pn

ad=0 and
Fsqn

a,pn+1
a d=0 one may be able to find a canonical transformation provided that the system does

not have pseudoconstraints of the formFspn
a,pn+1

a d=0.
In fact, by using Eq.(25) one can invert for

qn
a = laspn

b,pn+1
b d, s35d

and substituting in(24) get

qn+1
a = maspn

b,pn+1
b d. s36d

A generating function of type 4 that does the same job as the two previous ones may now be
introduced,

F4spn
b,pn+1

b d = uf− pn+1
b qn+1

b + pn
bqn

b + Lsqn,qn+1dguqn
b=lb

qn+1
b =mb

. s37d

All of the discrete systems that have been treated up to now in the literature may be analyzed by
following this canonical procedure, allowing one to preserve the constraints and the Poisson
bracket structure. Later on we will show an example of a system of this type in order to analyze
how this procedure works in a concrete case.

It should be noted that there may exist mechanical systems that do not fall into any of the
above classifications. For instance, a system could have pseudoconstraints of all the types listed
above. In such cases one will need to develop further techniques to treat them. For instance one
could introduce canonical transformations of a given type for some of the variables and of a
different type for other variables. This would require further study and it does not appear neces-
sary for the systems that have been analyzed up to present.

III. CLASSIFICATION OF THE CONSTRAINTS

At this point we have a set of constraints primary, secondary, tertiary, etc., of the form
xZsqa,pad=0 with Z=1, . . . ,A with A the total number of independent constraints, that are pre-
served under the evolution given by Eqs.(24) and (25) provided part or all of the arbitrary
functionsV are conveniently fixed.

As in the continuum case it is convenient to introduce the notion of first and second class
constraints, in order to quantize the theory. A constraint is of first class if it commutes with all the
constraints, if that is not the case it is of second class. As in the continuum case one can define first
class functions of the canonical variablesfsq,pd that are not necessarily constraints. Such a
function will be first class if it commutes with all the constraints. Second class constraints may be
imposed strongly by introducing Dirac brackets. As the evolution equations preserve the Poisson
structure, they will preserve the Dirac structure because Dirac brackets are defined in terms of
Poisson brackets. One ends up with a theory with a set of evolution equations that preserve the
symplectic structure of the system, and therefore may be quantized by describing the evolution in
terms of unitary operators.

In the discrete case there is not a straightforward relation between the number of first and
second class constraints and the number of phase space degrees of freedom. This is due to the fact
that now the evolution of the constraints is not directly related with their Poisson brackets with a
total Hamiltonian. Thus, the fact that a constraint does not commute with others is not easily
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related with the determination of an arbitrary function. It is still very easy to determine the number
of phase space degrees of freedom. In fact this number is given by two times the number of
configuration variables minus the total number of constraints minus the number of arbitrary func-
tions v.

IV. AN EXAMPLE OF CONSTRAINED SYSTEM WITH SECOND CLASS CONSTRAINTS

To illustrate the techniques elaborated above, we would like to discuss a model that is simple,
yet addresses in a nontrivial way the main points we discussed. This example had been treated
using ad-hoc techniques in Ref. 4. The model consists of a parametrized free particle in a two-
dimensional space–time under the influence of a linear potential. The discrete Lagrangian is given
by

Ln ; Lsqn
a,pn

a,Nn,qn+1
a ,pn+1

a ,Nn+1d = pn
asqn+1

a − qn
ad − Nnfpn

0 + 1
2spn

1d2 + aqn
1g. s38d

We have chosen a first order formulation for the particle. However, this Lagrangian is of the type
we considered in this paper, one simply needs to consider all variables,qa,pa,N as configuration
variables. The system is clearly singular since thep’s and N only appear at leveln (or in the
continuum Lagrangian, their time derivatives are absent). When considered as a type I generating
function, the above Lagrangian leads to the equations

pp,n+1
a =

] Ln

] pn+1
a = 0, s39d

pq,n+1
a =

] Ln

] qn+1
a = pn

a, s40d

pN,n+1 =
] Ln

] Nn+1
= 0, s41d

and

pp,n
a = −

] Ln

] pn
a = − sqn+1

a − qn
ad + pn

1Nnd1
a + Nnd0

a, s42d

pq,n
a = −

] Ln

] qn
a = pn

a + d1
aaNn, s43d

pN,n = −
] Ln

] Nn
= pn

0 +
1

2
spn

1d2 + aqn
1. s44d

One can easily recognize that the system has six constraints: three at then+1 level, and three
at then level. They are

c1
a ; pp,n+1

a = 0, s45d

c2 ; pN,n+1 = 0, s46d

F1
a ; pq,n

a − spn
a + d1

aaNnd, s47d
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F2 ; pN,n − fpn
0 + 1

2spn
1d2 + aqn

1g. s48d

Therefore the evolution depends on three arbitrary functionsVN,n,Vp,n
a ,

qn+1
a = qn

a + pn
1Nnd1

a + Nnd0
a − pp,n

a , s49d

pn+1
a = pn

a + Vp,n
a , s50d

Nn+1 = Nn + VN,n. s51d

The preservation of thec constraints from leveln to leveln+1 is automatically ensured from
(23). Now we impose the preservation of theF constraints upon evolution. Let us begin withF1

0,

F1
0
n+1 ; pq,n+1

0 − pn+1
0 = pq,n

0 − pn
0 − Vp,n

0 = 0, s52d

which taking into account the constraintF1
0
n implies Vp,n

0 =0.
For theF2 one gets the equation

F2n+1 = pn
0 + asqn

1 + pn
1Nnd + spn

1 + Vn
p1d2/2 = 0, s53d

that taking into account the constraintF2n implies that

Vp,n
1 = − pn

1 + eÎspn
1d2 − 2pn

1Nna, s54d

wheree= ±1.
Finally we have

F1
1
n+1 = pq,n

1 − Nna − pn
1 − Vp,n

1 − asNn + VN,nd = 0, s55d

that after imposing the constraint at leveln leads to

VN,n = −
1

a
Vp,n

1 − Nn. s56d

Thus, the evolution equations for the configuration variables are

qn+1
a = qn

a + pn
1Nnd1

a + Nnd0
a, s57d

pn+1
0 = pn

0, s58d

pn+1
1 = eÎspn

1d2 − 2pn
1Nna, s59d

Nn+1 =
1

a
fpn

1 − eÎspn
1d2 − 2pn

1Nnag. s60d

We are now ready to define an invertible canonical transformation with the help of a type 3
generating function. Notice that these evolution equations are invertible forqn

a, and therefore we
are in the case I. The inverse is given by a set of equations of the formqnsqn+1d, explicitly given
by

qn
1 = qn+1

1 − pn+1
1 Nn+1 −

a

2
sNn+1d2, s61d
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qn
0 = qn+1

0 −

pn+1
1 Nn+1 +

a

2
sNn+1d2

pn+1
1 + aNn+1

, s62d

pn
0 = pn+1

0 , s63d

pn
1 = pn+1

1 + aNn+1, s64d

Nn =

pn+1
1 Nn+1 +

a

2
sNn+1d2

pn+1
1 + aNn+1

. s65d

Recalling thatF3 is given by Eq.(28) we obtain

F3 = pp,n
0 pn+1

0 + pp,n
1 saNn+1 + pn+1

1 d + pq,n
0 qn+1

0 +
1

2
Nn+1fa2Nn+1

2 + 3aNn+1pn+1
1 + 2spn+1

1 d2g

−
Nn+1saNn+1 + 2pn+1

1 d
2saNn+1 + pn+1

1 d
Fpq,n

0 − pN,n +
1

2
spn+1

1 d2 + aqn+1
1 G + pq,n

1 Sqn+1
1 −

a

2
Nn+1

2 − Nn+1pn+1
1 D .

s66d

One can check that Eqs.(61)–(65) are easily recovered by taking the partial derivative with
respect topn

a. By differentiating with respect toqn+1
a one gets

pq,n+1
0 = pq,n

0 , s67d

pq,n+1
1 = pq,n

1 −
a

2
AnNn+1saNn+1 + 2pn+1

1 d, s68d

pp,n+1
0 = pp,n

0 , s69d

pp,n+1
1 = pp,n

1 +
Nn+1

2
f3aNn+1 − 2pq,n

1 + 4pn+1
1 + 2BnAn − Anspn+1

1 + BnAndsaNn+1 + 2pn+1
1 dg,

s70d

pN,n+1 = 3
2a2Nn+1

2 + app,n
1 − pq,n

1 pn+1
1 + spn+1

1 d2 + Bn

+ aNn+1f− pq,n
1 + 3pn+1

1 − 1
2BnAn

2saNn+1 + 2pn+1
1 dg, s71d

where we have introduced

An ; saNn+1 + pn+1
1 d−1, s72d

Bn ; pN,n − pq,n
0 − 1

2spn+1
1 d2 − aqn+1

1 . s73d

By substituting in Eqs.(67)–(71) the variablesqn+1 and using the leveln constraints one gets
Eqs.(39)–(41), which is a canonical transformation that reproduces, on the constraint surface, the
evolution equations of the discrete particle.

What remains to be done is to identify the second class constraints and impose them strongly.
The complete set of six constraints of this modelc andF are second class and allow one to solve
for pa andN and eliminate completely these variables and their complex conjugatesPp andPN.
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One can proceed in two different ways. The first alternative is to start by observing thatPp

andPN vanish strongly, and then to solve forp andN in terms of then+1 level variables, leading
to

pn
0 = pq,n+1

0 , s74d

pn
1 = pq,n+1

1 , s75d

Nn =
Cn+1

apq,n+1
1 , s76d

whereCn+1=pq,n+1
0 +spq,n+1

1 d2/2+aqn+1
1 . The relevant evolution equations are obtained from(57),

(67), and(68), and are given by

qn+1
0 = qn

0 + Nn = qn
0 +

Cn+1

apq,n+1
1 , s77d

qn+1
1 = qn

1 + Nnpn
1 = qn

1 +
Cn+1

a
, s78d

pq,n
0 = pq,n+1

0 , s79d

pq,n
1 = pq,n+1

1 + aNn = pq,n+1
1 +

Cn+1

pq,n+1
1 , s80d

and we recover the evolution equations obtained in Ref. 4.
The second alternative consists in solving forp and N in terms of then level variables,

leading to

pn
0 = pq,n

0 , s81d

pn
1 = eÎ− 2spq,n

0 + aqn
1d, s82d

Nn =
1

a
spq,n

1 − eÎ− 2spq,n
0 + aqn

1dd, s83d

and from here, computing the evolution equations by using(57), (67), and(68). The two methods
yield evolution schemes of different functional form since one propagates “forward” in time and
the other “backward.” The inequivalence in the functional form stems from the fact that the
discretization of the time derivatives chosen in the Lagrangian is not centered. It should be
emphasized that if one starts from given initial data and propagates forward with the first system
of equations and then backward using the second, one will return to the same initial data.

Notice that we have six second class constraints, and the initial number of phase space degrees
of freedom was 10. By noticing that there are no arbitrary functions left, one is left with four
degrees of freedom on the constraint surface. The continuum model had two degrees of freedom.

The procedure we have followed here is completely general and may be simplified when one
is treating specific cases. For instance, as it happens in the continuum theory8 it is sometimes
possible to implement the canonical analysis by first solving the constraints for the unphysical
degrees of freedomN,p ,pN,pp and then introducing a generating functional on the physical
degrees of freedom by following the procedure of the preceding sections. In this particular case it
is easy to show that, forpq1

Þ0, u]qn+1
a /]qn

buÞ0, whereqa;sq1,q0d, and thus it is possible to
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construct anF3 generating functional. In all the models treated up to now in the literature the
unphysical degrees of freedom were eliminated before obtaining the canonical transformation for
the evolution of the physical degrees of freedom. In order to keep the analysis general in a simple
model, here we have kept all the variables involved in this approach.

V. TREATMENT IN TERMS OF TYPE II GENERATING FUNCTIONS

Up to now, we have taken as the starting point a singular type I generating function given by
F1=−Lsqn

a,qn+1
a d. It is interesting to analyze how singular systems may be described in terms of

other types of generating functions.
Let us assume that neither condition(8) nor condition(5) are fulfilled by the discrete system

and, therefore, we are in the singular case. Then, it may be immediately seen, by using(16), and
taking into account that the determinant that appears in(8) now vanishes, that singular systems
with first order Lagrangians in the continuum lead to the presence of pseudoconstraints
fasqn,pn+1d=0, in the theory. Recall that these pseudoconstraints are similar to the constraints that
arise in the continuum case, but mixing configuration variables at one level with momenta in the
next level. As in the continuum case, one can then introduce the pseudoconstraint surfaceSf

which we shall assume has well-defined functions,

¹̃fa = S¯ ] f

] qn
a ¯ , ¯

] f

] pn+1
a ¯D , s84d

where a vectort̃ in the tangent space ofSf, Tsq,pdSf, is such that

t̃ · ¹̃fa = 0 ∀ a. s85d

Let us introduce now as before the type 2 Hamiltonian(12),

H2 ; o
a

pn+1
a sqn+1

a − qn
ad − Lsqn,qn+1d. s86d

It is easy to see, using the pseudoconstraints, that Eq.(86) is a function ofqn,pn+1. Let us
consider now an infinitesimal variation ofH2 along the pseudoconstraint surface,

dH2 = o
a
Fsqn+1

a − qn
addpn+1

a + Spn+1
a −

] L

] qn+1
a Ddqn+1

a − Spn+1
a +

] L

] qn
aDdqn

aG
= o

a
Fsqn+1

a − qn
addpn+1

a − Spn+1
a +

] L

] qn
aDdqn

aG , s87d

where in the last step we used(6). H2 is well defined inSf but can be extended to the whole phase
space as it is done in the case of constraints in the continuum theory. In order to obtain the
canonical equation of motion we start from the identity,

dH2sqn,pn+1d = o
a
S ] H2

] qn
a dqn

a +
] H2

] pn+1
a dpn+1

a D , s88d

and evaluating it for an infinitesimal displacementsdq,dpd in Tsq,pdSf, we can use(87) and the
Lagrangian equations of motion(7) to obtain

o
a
FSpn+1

a − pn
a +

] H2

] qn
a Ddqn

a + Sqn
a − qn+1

a +
] H2

] pn+1
a Ddpn+1

a G = 0. s89d

Sincesdq,dpd is an arbitrary tangent vector toSf, following (85) we obtain that the coeffi-
cient must be proportional to the gradient. Introducing therefore the Lagrange multipliersla as the
proportionality factors, we will end with the set of equations,
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qn+1
a = qn

a +
] H2

] pn+1
a + ln

a ] fa

] pn+1
a , s90d

pn+1
a = pn

a −
] H2

] qn
a − ln

a] fa

] qn
a , s91d

fasqn,pn+1d = 0. s92d

This system is similar to the continuum set of equations with the inclusion of pseudocon-
straints, which have the same functional form as the continuum constraints, but involve configu-
ration variables at leveln and momenta at leveln+1, instead ofn level variables. From this initial
evolution equations one may follow a procedure similar to the one developed in the preceding
section in order to study the consistency of the(primary) constraints and pseudoconstraints.

VI. DISCUSSION AND CONCLUSIONS

We have provided a canonical procedure for the introduction of a preserved symplectic struc-
ture in discrete constrained systems. The analogy with Dirac’s procedure in the continuum is quite
remarkable. It is possible to define a notion of discrete evolution that weakly preserves constraints
and Poisson brackets. The distinction between first and second class constraints is still useful and
when second class constraints are imposed strongly the resulting Dirac brackets are preserved.

A feature of the discretized theories is that they may have a smaller number of first class
constraints, and consequently more degrees of freedom than the continuum counterparts. The extra
degrees of freedom come from the fact that the discrete theories may not necessarily have the
same symmetries as the continuum theories. For instance, in the case of homogeneous cosmolo-
gies studied in Ref. 9 the extra pair of phase space degrees of freedom are associated with the fact
that in the discrete theory different choices of refinements in the discretization in time correspond
to different solutions in the discrete theory that nevertheless approximate the same solution in the
continuum theory.

An open question at present is if it is possible in cases of interest, like general relativity, to
find discretizations in which the symmetries of the continuum are automatically preserved(as is,
for instance, the case in discretizations of Yang–Mills theories1). At the moment the only way in
which this seems possible would be to cast the theory in terms of action-angle variables. There the
dynamics simplifies to the point where a discretization preserving the constraints is available. It is
not known how to write the theory in this way in general, although one can see this mechanism in
action, for instance, in Bianchi models,9 or in linearized theory.10

This is only a first step for a complete understanding of the dynamics of discrete gauge
systems. The relation between the number of constraints of first and second class and the number
of degrees of freedom, and the connection between the first class constraints and the gauge
invariance of the discrete dynamical system need to be further studied. Moreover, as discussed in
the body of the paper, if one wishes to consider more pathological systems than the ones consid-
ered here, more elaborate canonical transformations may need to be introduced.

The issue of the continuum limit is well understood in the nonsingular case, where there is an
external step parameter that controls the approximation. However, it needs further study in the
case of singular systems, particularly in the case of totally constrained systems where the step of
the approximation is encoded in the additional degrees of freedom of the discrete theory. This
issue has been studied in several models4,9 but a complete characterization of the possible behav-
iors is still lacking. A similar comment applies to the role of spatial discretizations when one is
considering lattice field theories.
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Rather general mean field theory of heteropolymer liquids developed earlier re-
duces the problem of the phase diagram construction to the determination of extre-
mals of the free energy functional. These should be subsequently analyzed for their
local and global stability. Tackling of this problem traditionally involves the exami-
nation of the behavior of the solutions of a set of nonlinear algebraic and partial
differential equations at various values of the control parameters. Besides, the ne-
cessity arises here to construct in space of these parameters the lines where a
polymer system loses the thermodynamic stability. To overcome mathematical dif-
ficulties encountered we employed a complex approach that combines analytical
and numerical methods. A two-step procedure constitutes the essence of such an
approach. First, the bifurcation analysis is invoked to find the asymptotics of the
extremals in the vicinity of bifurcation points. Then these asymptotics are used as
an initial approximation for the numerical continuation of specific lines, where the
stability loss occurs, into regions of the parametric space far removed from bifur-
cation values. We realized this approach for the melt of linear binary copolymers of
various chemical structure with macromolecules having a pattern of arrangement of
monomeric units describable by a Markov chain. Bifurcation and phase diagrams
for some of these copolymers have been constructed within a wide range of tem-
peratures and volume fractions of a polymer. ©2005 American Institute of
Physics.[DOI: 10.1063/1.1827323]

I. INTRODUCTION

The theoretical physics of polymers in its current state suggests the application of a rather
sophisticated mathematical method(see, for instance, Ref. 1). This is because the majority of
differential and integral equations which describe polymer systems are nonlinear admitting there-
fore several physically meaningful solutions.2 Consequently, problems of nonlinear analysis of
these equations based on the approaches of the theory of bifurcations, typical for the mathematical
physics, are usually encountered here. One of such nontrivial problems particularly important for
the thermodynamics of polymers is attacked in the present paper. The methods of its solution may
be of interest for the physicist–theorists dealing with the Landau theory of phase transitions and
the statistical physics of disordered systems. The experts in the field of the applied mathematics
may also benefit from getting familiar with the solution of this problem, that may prompt them to
look for new possible applications of the contemporary methods of the nonlinear analysis in the
theoretical physics of polymers.
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The calculation of a phase diagram belongs to the most challenging theoretical problems of
the thermodynamics of melts and solutions of polymers.3 Having constructed such a diagram one
might judge about the phase state of a polymer liquid under thermodynamic equilibrium at given
values of external parameters. A crucial feature of polymer systems stipulating their qualitative
distinction from low-molecular ones is the possibility of the existence of mesophases. Each of
them represents such an equilibrium state of the liquid of macromolecules comprising more than
one type of elementary units where the density of these latter periodically changes in space at
scales lying between atomic and macroscopic length scales. Depending on this density profile
dimensionalityd a mesophase spatially periodic structures can vary in symmetry. The most inves-
tigated among them are lamellarsd=1d, hexagonalsd=2d, and body centered cubicsd=3d struc-
tures. They have been found experimentally and scrutinized theoretically.4 The type of a het-
eropolymer equilibrium structure as well as its period and amplitude are controlled along with
temperature and pressure also by architecture, composition, and structure of macromolecules.
Most theoretical and experimental research addressed monodisperse block copolymers, in which
all molecules being identical consist of two or three sufficiently long blocks of elementary units.5

However, synthetic polymers represent as a rule a mixture of macromolecules markedly distin-
guishing in the content of various units and in the pattern of their arrangement along polymer
chains. Thus the number of types of macromolecules in a real polymer is virtually infinite for any
polymer specimen. That is why the description of its chemical structure suggests the recourse to
some statistic approach. By the most general of them the set of macromolecules constituting a
linear copolymer specimen is presumed to be mapped onto the set of realizations of a stochastic
process.6 It implies the transition from a particular monomeric unit of a macromolecule to the next
one at every unit interval of “time.” The role of the regular stateSa sa=1, . . . ,md is played here
by ath type unit while the transition into absorbing stateS0 corresponds to going out of a mac-
romolecule. Such a stochastic process with discrete time and finite number of states is referred to
as a stochastic chain. The best known among them is the Markov chain where the probability to
fall into any state at a certain step is exclusively controlled by the type of the state at the preceding
step.7 This absorbing chain is characterized by the matrix of transition probabilities

Qab = F 1 0

n0 Q
G .

The elementnab of matrix Q equals the probability of the transition from regular stateSa into
regular stateSb whereas row vector0 and column vectorn0 have componentsn0a=0 andna0,
respectively. Probability of the absorptionna0 can be expressed through elements of matrixQ
from the normalization conditionna0=1−sna1+¯ +namd. Hence matrixQ and vector of initial
statesv with componentsva completely specifies a Markov chain.

Nowadays it is established that the chemical structure of many synthetic copolymers is de-
scribed by a Markov chain. This stipulates practical importance of the investigation of their
thermodynamic behavior. Besides, relationships have been derived that express the matrix of
transitionsQ and vectorv through kinetic parameters of a reaction system where copolymers are
synthesized.6,8 Because these parameters are reported for a great number of particular copolymer-
ization processes,8 an opportunity opens up to calculate phase diagrams of real copolymers formed
in the course of these processes. In the last decade a number of theoretical works have been
published devoted to the description of spatially periodic structures formed in melts of binary
Markovian copolymers.9–16 The approach employed in these papers is a variation of the Landau
theory of the phase transitions. This is based on the expansion of a system free energy in powers
of the order parameter and on cutting off all terms whose power is more than four. Evidently, such
a procedure is correct only in the vicinity of the critical point where the order parameter is
sufficiently small. Thus the region of applicability of the phase diagrams presented earlier9–16 is
restricted just to this narrow range of the copolymer melt parameters.

To have phase diagrams constructed within the whole range of external parameters an original
approach was put forward which relies on the description of the nuclei of the incipient phase.17

This approach enabling one to relax the Landau theory restrictions suggests finding nontrivial
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solutions of a set of either integral or differential equations with the subsequent analysis of their
stability. A major task of this paper is to elucidate the potentialities of the practical implementation
of this approach for the construction of the phase diagram of the Markovian copolymer melt using
mathematical apparatus of the bifurcation theory. Bifurcation analysis was earlier used for the
construction of nonhomogeneous unstable structures occurring in the polymer blends.18,19

The efficiency of the bifurcation analysis as applied to the theory of polymer liquids has been
demonstrated earlier when describing the dynamics of the phase transitions in a mixture of two
homopolymers,18,19each consisting of the identical molecules. This system essentially differs from
that addressed in the present paper. Qualitative distinction between these two systems lays in the
fact that the first of them is a two-component one unlike the second system that comprises
virtually infinite number of components. The last circumstance appreciably complicates the ther-
modynamic description of heteropolymer liquids considered in the present work as compared to
the homopolymer ones.

II. PHASE DIAGRAM

We consider the melt of a binary copolymer whose macromolecules have chemical structure
described by a Markov chain. This is completely specified by five independent parametersn11, n12,
n21, n22, andv1 or v2, through which any statistical characteristic of a copolymer primary structure
is expressed. In particular, fractionsX1

0 andX2
0 of the first and the second type units as well as their

average number in a macromolecule,PN
0, can be calculated by formulas

X1
0 =

D1

D
, X2

0 =
D2

D
; D = D1 + D2, Y0 ;

1

PN
0 =

D

D
, s1d

where the following designations are used:

D1 = n21 + v1n20, D2 = n12 + v2n10, D = n12n20 + n21n10 + n10n20. s2d

Along with “chemical” parametersnab andva a copolymer melt is characterized by a set of
“physical” parameters. Among the latter in the framework of the model in hand are temperatureT,
pressureP, and parametersgab sa ,b=1,2d of pair interaction betweenath andbth type units.
With bifurcation analysis in mind it is more convenient to use parameterF0, equal to the volume
fraction occupied by monomeric units in principal phase, rather than the pressure. This parameter
is simply expressedF0=M0v /V through volumev of a monomeric unit, their numberM0 in a
system and its volumeV. Quantity F0 occurring in most theories of polymer liquid3,20,21 is
uniquely related toP by the equation of state.

Key elements of the phase diagram of such a liquid are two curves, each representing a
two-dimensional section of the hypersurface(whose codimension is 1) in the space of external
parameters. The first of them, cloud point curve(CPC), is a locus of points where nuclei of
incipient phase or mesophase become globally thermodynamically stable. According to which of
these cases takes place the CPC branch is said to be trivial or nontrivial. At the second of the
above-mentioned curves, termed spinodal, the spatially homogeneous state loses local thermody-
namic stability. The spinodal curve(SC) can contain trivial and nontrivial branches depending on
the spatial scale(wave vectorqW=qW* ) of the density fluctuations at which the loss of the above
stability happens. To a trivial branch there corresponds macroscopic scalesqW* =0d while to non-
trivial one mesoscopic scalesqW* Þ0d conforms. Provided they coexist, these two branches are
tangent at the Lifshitz point. A domain of a phase diagram located in between CPC and SC
corresponds to the metastable state of the principal phase. The density of each type of units in the
incipient phase nuclei has at critical point(where CPC and SC have common tangent) the same
value as in the principal phase.

In order to construct the phase diagram of a copolymer melt we will proceed from the general
thermodynamic theory of heteropolymer liquids.17,22According to this theory the thermodynamic
description of a polymer liquid is performed in terms of density functional
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DFfFg ; FfFg − FfF0g = TM0hGf1g − Gfsgj +E drWhf * sFd − f * sF0dj +
1

v
E drWhH0F0 − HFj.

s3d

Eachath component of vectorsF ,H, ands, entering into the right-hand part of this expression
refers to theath type monomeric unit. SoFa denotes the volume fraction of these units in nuclei
while Ha is the component of external fieldH acting upon them. Superscript “0” means that the
values of these quantities are taken in the principal phase. As for the argument of generating
functionalGfsg it has componentssa=exphsHa

0 −Had /Tj. For the case of Markovian copolymers
this functional can be presented as follows:

Gfsg =
1

V
E drWss1U1n10 + s2U2n20d =

Y0

V
E drWss1V1v1 + s2V2v2d, s4d

where dependence ofU andV on s is found from the set of four equations,

KUa − sU1s1n1a + U2s2n2ad = vaY0 sa = 1,2d,

s5d
KVa − sna1s1V1 + na2s2V2d = na0.

Linear operatorK in the left-hand side of Eqs.(5) is inverse to the integral operator with
kernellsrW−rW8d which has the sense of the conditional probability for the neighbor of unit situated
at point rW8 to be at pointrW. Kernel l is a rapidly decreasing function which vanishes at distance
urW−rW8u comparable with a monomeric unit sizea. Since essentially larger spatial scales are of
actual practical interest, any normalized function satisfying the above condition might be chosen

asl. Its Fourier transformx; l̃sqd is governed exclusively by the wave vector modulusq;uqWu.
Being positive quantityx turns into unity at q=0 and vanishes atq→`. Function l̃sqd
=exps−a2q2/6d, traditionally employed for numerical calculations, meets these conditions.

Functional(3) is controlled by dimensionless units’ densitieshFaj both explicitly and implic-
itly through fieldH. Its dependence onF is determined from expressions

F1 = F0s1U1V1, F2 = F0s2U2V2, s6d

which are obtained from the conditions of vanishing of the first order variational derivatives of
functional (3) with respect toH1 andH2. As for the explicit dependence ofDF (3) on F, this is
specified by functionf * sFd having the following appearance:17,21

f * sFdv
T

= s1 − Fdlns1 − Fd + F −
1

T
sg11F1

2 + g22F2
2 + 2g12F1F2d, s7d

whereF=F1+F2. Hence, expressions(4) and (7) along with equations(5) and (6) completely
define density functional(3) defined on the set of smooth functionsF1srWd ,F2srWd lying within
region 0øF1,F2,1,F1+F2,1.

Equilibrium spatial distributionsF1
esrWd andF2

esrWd of the units’ volume fractions in nuclei are
found by the minimization of the density functional. Necessary conditions of its minimum are

vdFfFg

dFasrWd
= − HasrWd + ma

* sFsrWdd = 0 sa = 1,2d, s8d

where the following designation is used:
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ma
* sFd ;

v]f *

]Fa

= − T lns1 − Fd − 2sga1F1 + ga2F2d. s9d

Expression(8) establishes the relation betweenHsrWd andFsrWd taken on functionalDF extremal.
With this relation in mind one can find dimensionless equilibrium densities of units in nuclei from
the solutionF1=F1

e,F2=F2
e of equations(5) and (6), where vectors components read as

sa = exphfma
* sF0d − ma

* sFdg/Tj. s10d

These equations at any values of external parameters have the trivial solution

UasrWd ; Ua
0 = Xa

0, VasrWd ; Va
0 = 1, FasrWd ; Fa

0 = Xa
0F0, sasrWd ; 1 s11d

describing spatially homogeneous state of a system. It becomes thermodynamically absolutely
unstable on the spinodal, whose mathematical condition is the loss of the positive definiteness by
matrix

M 0sxd = fF0X0sxdg−1 − C0v−1, s12d

wherex is a dummy variable laying within the interval between 0 and 1. The right-hand side of
this expression comprises copolymer structure matrixX0sxd and matrix of direct correlation func-
tions C0;CsF0d describing the melt of monomeric units. In the framework of the simplest
“lattice liquid” model21 elements of the latter matrix look as

CabsFd
v

; −
v]2f * sFd
T]Fa]Fb

= −
1

1 − F
+

2gab

T
. s13d

As for the structure matrix its elements in a simple way17

Xab
0 sxd = Xa

0dab + Wab
0 sxd + Wba

0 sxd s14d

are related to the elements of matrixW0sxd of generating functions of two-point chemical corr-
elators of macromolecules in the principal monophase system. For a Markovian copolymer the
following expressions hold:

Wab
0 sxd = Xa

0Lab
0 sxd, whereL 0sxd = sE − xQd−1xQ, s15d

which in combination with expressions(13) and(14) completely define matrix(12). This loses the
positive definiteness when its minimal eigenvalue vanishes. If it happens at pointx=1 or at any
other point within interval 0,x,1 we are dealing with trivial or nontrivial branch of SC, respec-
tively. The explicit equations enabling one to find both branches of the spinodal of a binary
Markovian copolymer in terms of the elements of matricesX0sxd andC0 have been presented and
analyzed earlier.9,10

At some values of the input parameters, the set of equations(5), (6), and (10) can have
solutions differing from the trivial one(11). Among these nontrivial solutionsF=Fe correspond-
ing to the density functional extremals only those have physical meaning on which this functional
has a minimum. Just such solutions describe the nuclei of the incipient phase.

A necessary and sufficient condition for a spatially homogeneous nontrivial solution of Eqs.
(5), (6), and (10) to provide a minimum of the density functional is the positive definiteness of
matrix

M esxd = fF0Xesxdg−1 − Cev−1, s16d

whereCe;CsFed while elements of matrixXesxd are defined by the following expression:

Xab
e sxd = fFa

e/F0gdab + Wab
e sxd + Wba

e sxd s17d

and the designation is employed
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Wab
e sxd = sa

esb
eUa

eLab
e sxdVb

e . s18d

Heresa
e is found by formulas(9) and(10) via substitution of quantitiesFa

e for Fa whereas given
Fa

e values ofUa
e andVa

e represent the solution of a set of four linear algebraic equations(5). As
for matrix L esxd whose elements areLab

e sxd it has the following appearance:

L esxd = sE − xQSd−1xQ, s19d

whereS is the diagonal matrix with elementssadab. Because Eqs.(5), (6), and(10) are nonlinear
they can have more than one solutionFe at the same values of external parameters. Among these
extremals only those have physical meaning which provide positive definiteness of matrix(16).
Each such solution,Fi, specifies volume fractionsF1

i andF2
i of monomeric units of theith phase

nuclei.
Equations(5), (6), and (10) can have solutionsFesrWd taking on different values at different

points rW of the Euclidean space. Among these extremals those should be chosen which minimize
the density functional. To make this choice it is convenient to consider its second variation
represented as a quadratic functional with respect to variations of volume fractions of monomeric
units. Such a treatment will be realized in the next section. Having found all local minima of the
density functional it is necessary to reveal among them the global one. Equating the value of the
above functional in this minimum to its value in the minimum at the trivial solution we will get the
condition for finding the cloud point hypersurface. This may be formulated mathematically in
terms of the functional

RfFig =E drWHTF0Y0o
a=1

2

Vas1 − sa
i na

i d + vfP * sF0d − P * sFidgJ , s20d

where the following designation is used:

vP * sFd = − Tflns1 − Fd + Fg − sg11F1
2 + g22F2

2 + 2g12F1F2d. s21d

Conditions for determining CPC are evident,

RfFIg = 0, RfFig . 0 at i Þ I , s22d

where superscriptI specifies the global minimum of the density functional. Depending on whether
FI is homogeneous or spatially periodical solution of Eqs.(5), (6), and(10) the conditions(22)
refer to the trivial or nontrivial CPC branch, respectively. For the first of them, functionalRfFIg
reduces to functionRsFId vanishing when the pressure in nuclei and the principle phase is the
same.

All mathematical formulas presented in the foregoing are valid for copolymers whose mac-
romolecules are described by an arbitrary Markov chain. When it is symmetric these formulas
become noticeably simpler. The condition of such a symmetry is

v1n12n20 = v2n21n10. s23d

For statistically symmetric Markovian copolymers the following expressions hold:

v1 =
n21n10

n21n10 + n12n20
, v2 =

n12n20

n21n10 + n12n20
, s24d

X1
0 =

n21

n12 + n21
, X2

0 =
n12

n12 + n21
, Y0 = X1

0n10 + X2
0n20. s25d

Interestingly, the composition vectorX0 of such copolymers coincides with the stationary vectorp
of the nonabsorbing ergodic Markov chain7 describing macromolecules of infinite length. From
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the symmetry condition(23) there follows the proportionality of the components of vectorsU and
V:

U1srWd = p1V1srWd, U2srWd = p2V2srWd. s26d

Consequently, in case of symmetric Markovian copolymers the first pair of equations(5) may be
omitted when finding the density functional extremals. Besides, the matrix of the generating
functions of the two-point chemical correlators of such copolymers is symmetric so that equalities
Wba

0 sxd=Wab
0 sxd andWba

e sxd=Wab
e sxd may be taken into account when considering relationships

(14) and (17), respectively.
Once the mathematical problem of a phase diagram construction is completely formulated let

us address the bifurcation analysis of the above nonlinear equations. Of prime interest here is the
behavior of their solutions at scales essentially larger than monomeric unit sizea, which is the
scale where functionl vanishes. With this in mind the integral operator in Eqs.(5) may be
replaced by the differential one as it is customary in statistical physics of polymers.23 Thus, the
first term in the second pair of equations(5) will read

KVa ;E ls−1dsrW − rW8dVasrW8ddrW8 → VasrWd −
a2

6
DVasrWd, s27d

whereD is the Laplace operator. Below, for convenience sake, instead ofrW we will use dimen-
sionless variableÎ6rW /a.

III. THE BIFURCATION ANALYSIS

Construction of phase diagrams for heteropolymer liquids is a rather complicated global
nonlinear problem. It is a reason why only Landau theory of phase transitions has been still
applied to this problem, so only the vicinity of critical point could be correctly treated. In order to
go beyond the Landau theory we have replaced the solution of global nonlinear problem by
subsequent solution of local problems using nonlinear bifurcation analysis and continuation pro-
cedure by parameters fixing the temperature and characteristic size of the nonhomogeneous struc-
ture.

We start with a determination of nontrivial solutions of the equations(5), (6), and (10)
branching from trivial solution in vicinity of the spinodal points. For that we consider the nonlin-
ear operatorAsU ,V ,s,F ,hd, which is defined by the left-hand sides of equations(5), (6), and(10)
depending on vector functionsU, V, s, F as well as parameterh=2g12/T. Let the vectorsz
=fUshd ,Vshd ,sshd ,Fshdg and z0=fU0shd ,V0shd ,s0shd ,F0shdg correspond to the spatially homo-
geneous solution of these equations andh* to be a critical value of parameterh, corresponding to
spinodal point. Linear operatorL fz0,hg being a differential of operatorA with eigenvalue van-
ishing at h=h*, may be determined by the following relations[where vectors dz
=sdU ,dV ,ds,dFd, a ,b=1,2,]:

L sz0,hddz:3
¹2dUa − dUa + o

b

QbassbdUb + Ubdsbd

¹2dVa − dVa + o
b

QabssbdVb + Vbdsbd

sa
−1dsa − o

b

s− 1/s1 − Fd + hgab/g12ddFb

dFa − F0sdsaUaVa + saVadUa + saUadVad

4 . s28d

The components of the vectorz0 determines in particular the trivial solution with relations
(11).

The systems of equations(5), (6), and (10) may be represented in the vicinity ofz0 in the
following form:
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Asz,hd = L sz0,hdsz − z0d + Fsz0,z − z0,hd, s29d

where normF sz0,z−z0,hd is Ossnormsz−z0dd2d. One can introduce matrixJsqd,

Jsqd = 3
− sq2 + 1dE + Q * s 0 Q * U 0

0 − sq2 + 1dE + Qs QV 0

0 0 s−1 − C

− F0sV − F0sU − F0UV E
4 s30d

containing the two-dimensional blocks,sU, sV, UV being the products of diagonal matrixes with
elementssa, Ua, Va. The elements of matrixC are determined by relations(21), E is unit matrix.

The trivial spinodalhsF0d is determined by the equation detJs0d=0, nontrivial one by two
equations, detJsqd=0, ]sdetJsqd /]q2d=0, and condition]2 detJsqd / s]q2d2.0. In the case of
trivial spinodal the eigenfunctiongsr d of the operatorL corresponding to vanishing eigenvalue is
the eigenvectorg1 of matrix Js0d. In the case of nontrivial spinodal similar eigenfunction is the
product of eigenvectorg1 of matrix Jsqd (with eigenvalue which is equal to zero) and eigenfunc-
tion of the Laplace operator under periodic boundary conditions with eigenvalue −q2. This eigen-
value in general is degenerate, i.e., the dimension of proper subspace is greater than 1 and depends
on the symmetry of the considered domain. We will consider below the one-dimensional case and
denote the first component of vectorr by x. In this case the dimension of proper subspace is 2 and

gsxd = g1sa cossqxd + b sinsqxdd, s31d

where a and b are the arbitrary constants. In this case the degeneracy is the consequence of
invariance of the periodic solutions with respect to translation. Later on for the componentU1 we
change the periodic conditions from]U1/]x=0 to x=0 andx=2p /q. Then it is possible to set
b=0.

Dealing with bifurcation analysis we introduce the auxiliary parameter« and represent the
solutionz=sU ,V ,s,Fd of the equation

AsU,V,s,F,hd = 0 s32d

and parameterh in vicinity of its critical value h* as asymptotic power series by subsidiary
parameter«, which characterizes the amplitude deviation as the unknown solution from the initial

h = h * + « ·hs1d + «2hs2d + «3hs3d + ¯ ,

z = zs0d + «zs1d + «2zs2d + «3zs3d + ¯ . s33d

We present the left-hand side of Eq.(32) as the Taylor series in the vicinity of valueh=h* and
vectorzs0d,

zs0d = U0sh * d, V0sh * d, s0sh * d, F0sh * d.

Then we select the terms of identical order with respect to« and equate them to zero. The
equations forzs1d can be written as follows:

L szs0d,h * dzs1d = 0. s34d

Consequently,zs1d is eigenfunction of operatorL szs0d ,h* d corresponding to zero eigenvalue.
The following equations can be found recursively:

L szs0d,h * dzsid = wiszs1d, . . . ,zsi−1d,hsi−1dd. s35d

The vector functionwi on the right-hand side of Eq.(35) is the linear function byh si−1d and
the degreei polynomial of the components of vectorszskd sk, id. The functionwi for i =2,3, can
be presented as
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w2szs1d, . . . ,zsi−1d,hsi−1dd = − 1/2o
k,j

]2F

]zk]zj
zk

s1dzj
s1d − o

j

]2F

]zj]h
zj

s1dhs1d, s36d

w3szs1d, . . . ,zsi−1d,hsi−1dd = − S1/2o
k,j

]2F

]zk]zj
szk

s1dzj
s2d + zk

s2dzj
s1dd + o

j

]2F

]h]zj
szj

s2dhs1d + zj
s1dhs2dd

+ 1/6o
j ,k,l

]3F

]zj]zk]zl
zj

s1dzk
s1dzl

s1dD . s37d

The operatorL is Fredholm operator of index 0. Therefore the condition of the solution
existence for Eq.(35) is the orthogonality of the vector functionwi to the eigenfunction corre-
sponding to zero eigenvalue of operator conjugate toL szs0d ,h* d This condition determines the
value ofhsi−1d. Such a procedure corresponds to Lyapunov–Shmidt method.24

In the case of multiple zero eigenvalues,zs1d is linear combination of linear independent
eigenfunctions of operatorL . Therefore it is necessary to require the orthogonalitywi to all
independent eigenfunctions corresponding to vanishing eigenvalue of operator conjugate to
L szs0d ,h* d. These conditions determinehsi−1d and the coefficients of the linear combination of
independent eigenfunctions.

IV. BIFURCATION OF NONHOMOGENEOUS STRUCTURE FROM HOMOGENEOUS
SOLUTIONS

Let detJsq* d=0 for the functionzs0d, which is the trivial or nontrivial homogeneous solution
of the equation(32). We consider further the one-dimensional symmetrical case form=2. This
case corresponds to the relations(23) and (24) and it is possible to consider the equation forV
only. Thenzsid=sV ,s,Fd and in the first approximationzs1d=g cossq* xd, whereg is the eigenvec-
tor corresponding to the zero eigenvalue of the matrixJsq* d. The functionw2 can be written as
follows:

w2 = 3
Qss1dV s1d

− 1/2sss0dd−2sss1dd2 − hs1dgFs1d + SF1
s1d + F2

s1d

1 − Fs0d D2

− 2Fs0dss1dV s0dV s1dP − Fs0dss0dsV s1dd2
4 ,

where the following designations are used:

P = diagfp1,p2g, ss1d = diagfs1
s1d,s2

s1dg, V = diagfV1
s1d,V2

s1dg, Fs1d = diagfF1
s1d,F2

s2dg.

The orthogonality condition leads to the relationhs1d=0. The vectorzs2d in the second approxi-
mation has the form

zs2d = a + b coss2q * xd + ahh
s2d. s38d

The vectorsa, b, ah are determined from the following equations:

Js0da = r 0, Js2q * db = r 0, Js0dah = r h. s39d

The expressions for vectorsr 0 andr h are presented in Appendix A. The vectorr h is zero for
bifurcation from trivial solution, thereforeah also is zero. The valuehs2d can be determined from
the orthogonality conditionw3 with respect to the eigenfunction corresponding to the zero eigen-
value of the operator conjugate toL szs0d ,h* d. Its expression is also presented in Appendix A.

The type of bifurcation is determined by signhs2d. If hs2d.0, then the bifurcation is super-
critical and pair of nontrivial solutions exists forh.h*. For hs2d,0 the bifurcation is subcritical,
so that pair of nontrivial solutions exists forh,h*. When dealing with supercritical bifurcation in
the point of nontrivial spinodal, nontrivial solution is stable; in the case of subcritical bifurcation
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it is unstable. The disposition of the trivialshstd and nontrivial spinodalsshsnd is determined by the
type of bifurcation in the point of trivial spinodal. Ifhst,hsn, a transcritical nontrivial homoge-
neous solution branches from trivial spinodal. Ifhst.hsn, the equationJsqd=0 has two rootsql and
qr sql ,qrd, between the pointsh=hsn and h=hst and, respectively, two pairs of branches of
nongomogeneous extremals appear. Ath=hst is ql =0, and both nontrivial nonhomogeneous and
nontrivial homogeneous solutions can branch from trivial spinodal. This case will be considered
below.

V. BIFURCATION IN THE SPINODAL POINT

Let hsn,hst, then zero is a multiple eigenvalue of the operatorL szs0d ,h* d. Simultaneously,
detJs0d and detJ sq* d are equal to zero andgs0d, gsq* d are eigenvectors of matrixesJ s0d and
J sq* d corresponding to zero eigenvalues. The first approximation can be expressed as follows:

zs1d = ags0d + bgsq * dcossq * xd.

The constantsa andb are found from the orthogonality condition of the right-hand side ofw2

in (35) with respect to two eigenfunctionsgs0dT, gTsq* dcossq* xd of operator conjugate to
L szs0d ,q* d. The equations for determination of the ratioa /b andhs1d are written as

a2sgs0dT,r 00d + b2sgs0dT,r 22d = − ahs1dzh0,

absgTsq * d,r 02d = − hs1dzh2b.

Heresfsxd ,gsxdd is the scalar product vector function inL2 f0,lg, the formulas for vectorsr 00,
r 02, r 22 are presented in Appendix A,

zh0 = sgg̃,g̃Td, zh2 = sgg̃sq * d,g̃Tsq * dd,

where

g̃ = fgs0df5g,gs0df6gg, g̃T = fgs0dTf3g,gs0dTf4gg,

g̃sq * d = fgsq * df5g,gsq * df6gg, g̃Tsq * d = fgTsq * df3g,gTsq * df4gg.

The system( ) has several solutions,

(1) b=0, hs1d=−asgs0dT,r 00d /zh0,
(2) bÞ0, hs1d=−sgs0dT,r 02d /zh2,

sb/ad2 = szho/zh2 · sgTsq * d,r 02d − sgs0d,r 00dd/sgs0dT,r 22d = c.

If c.0, then two nonhomogeneous solutions and one homogeneous solutionsb=0d exist in
vicinity h=h*, otherwise only homogeneous solution exists forb=0.

If hns.hst (or if hns does not exist), only the solution forb=0 exists. Fromhs1dÞ0 it follows
that the bifurcation is transcritical. The conditionhs1d=0 in spinodal point corresponds to the
critical point in Landau theory.

VI. ANALYSIS OF THE STABILITY

The stability condition for the extremals is positive definiteness of the second variation of the
free energy, which is the squared functional with respect to variationdFa, and may be written as

d2F = 1YVE So
a

o
b

s− dHa + dma
* ddFbDdx. s40d

The variationsdHa are coupled with the variationsdFa by the conditions(5) and (6),
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dHa = Ts− dFa/Fa
e + dUa/Ua

e + dVa/Va
ed, s41d

¹2dUa − dUa − o
i

Qiasi
eUi

e/Vi
edVi = − 1/F0o

i

Qia/Vi
edFi ,

s42d
¹2dVa − dVa − o

i

Qaisi
eVi

e/Ui
edUi = − 1/F0o

i

Qai/Ui
edFi .

The coefficients of the linear equations(41) and (42) are determined on the extremal
sUi

e,Vi
e,si

eFi
ed. It is necessary to convert the operator, which is defined by the left-hand sides of

Eqs.(42) for obtaining the explicit form of the functional(40) via dFa dFb. Because it is a rather
unsolvable problem, for direct calculations we restrict ourselves by the set of periodic fluctuations
dFa, dFb with wave numbersq* and introduce Fourier expansions fordFa, dFb,

dFa = o
k

dFk
sacd cosskq* xd + dFk

sasd sinskq* xd.

The system of Eqs.(41) and (42) is linear with respect todU, dV, dF, therefore its solution
can be presented in the form

dUa = o
k,i

sUak
ic sxddFk

sicd + Uak
is sxddFk

sisdd, s43d

dVa = o
k,i

sVak
ic sxddFk

sicd + Vak
is sxddFk

sisdd, s44d

where the functionsUak
ic sxd, Vak

ic sxd are solutions of the system of nonhomogeneous equations,

¹2dUak
ic − dUak

ic − o
j

Qjasj
eUj

e/Vj
edVjk

ic = − 1/F0Qai/Vi
e cosskq* xd,

¹2dVak
ic − dVak

ic − o
j

Qa jsj
eVj

e/Uj
edUjk

ic = − 1/F0Qai/Ui
e cosskq* xd, s45d

and the functionsUak
is sxd, Vak

is sxd are solutions of the same systems with substitution cosskq* xd by
sinskq* xd. Using the relations(41), (43), and (44), the functional(40) may be presented in the
matrix form regardingdFk

sicd, dFk
sisd with elements,

sd2Fdi j ,kl
cc ,sd2Fdi j ,kl

cs ,sd2Fdi j ,kl
sc ,sd2Fdi j ,kl

ss .

Their expressions are presented in Appendix B. Thus, the analysis of stability can be reduced
to determination of the spectrum of matrix. When usingkm harmonics, the dimension of this
matrix is m·s2km+1d.

VII. NUMERICAL CALCULATIONS

While calculating the phase diagrams, the basic difficulty is the solution of nonlinear systems
(5), (6), and(10) for extremals. We used for this goal the iterated Newton method requiring a good
starting approximation near bifurcation points if dealing with bifurcation analysis. Then we used
a continuation procedure by parameterh with motion along tangent to curvezshd. Periodic bound-
ary problem for linearized systems on every iteration was solved by the periodic sweep method.25

Similar procedure was used for the solution of the systems of equation for]z/]h by the method of
tangents. The operatorL determined by(28) has zero eigenvalue in the turn point of curvezshd
and method of tangents cannot be used. In this case a change of the sign of step for parameterh
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and starting approximation were provided by extrapolation using two previous points. The calcu-
lations were performed for different copolymer systems and corresponding phase and bifurcation
diagrams are presented in Figs. 1–5.

Melt of diblock copolymers with structural matrix,Q= s 0.9
0

0.1
0.95

0
0.05

d, and matrix of interaction
g /g12s1;1;1.5d.

In this system only the trivial spinodal exists for valuesF0,0.4, and both the trivial and
nontrivial spinodals exist forF0.0.4. The birth of nonhomogeneous structures in all points of
nontrivial spinodals is subcritical by parameterh (and they are unstable). The starting appoxima-
tion for nonhomogeneous structures was obtained by formulas(38) and(39), and has continued by
parameterh,h* sF0d with help of the solutions of Eqs.(5), (6), and(10) up to the coups point
h=ht. In this point the operatorL sU ,V ,s,F ,htd has vanishing eigenvalue, and couple of struc-
tures(stable and unstable) appeared ath=h* on the nontrivial spinodal disappear. Forh.ht the
structures obtained by continuation procedure are stable up to valueh=hb whereRfFIg=0. We
calculate the spectrum of matrix(40) in every point of the curvezsh,F0d. Every branchzsh,F0d

FIG. 1. Phase diagram for system(1). The curves(1), (2) are spinodal and binodal, respectively[for F0 changing from 0
to 0.4 they are trivial ones, forF0.0.4, curves18d, nontrivial spinodal], F0>0.38 is the critical point(marked bys),
F0>0.4 is the Lifshitz point(marked by3).

FIG. 2. The spatial distributionF2sx/ ld for F0=0.99 for the system(1) bold curve, for l =260; next curve, forl
=2p /q* =78.248 and valueh, corresponding to binodal; dotted line, forh=hsn. The curves are plotted in the scale
smaxx F2−minx F2d.
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may be continued by parameterq (or l =2p /q) for hÞh* . The value of functionalFfzg and
magnitudehb decrease with increasingl. In these calculations thehb change was very small. It
should be noted that the valuehb for the homogeneous extremal arised transcritically in the
spinodal point was practically the same as the valuehb for the branch of nonhomogeneous struc-
tures by l →`. In Fig. 1 the phase diagrams are plotted,Q= s 0.99

0
0.01
0.95

0
0.05

d, and the matrix of
interactiong /g12s1.2;1;1.2d.

The phase and bifurcation(for F0=0.5) diagrams for this system are shown in Figs. 3 and 4.
For the nonhomogeneous structuresDF=maxx F2−minx F2, and for the homogeneous solution
one deviation from the trivial one.

FIG. 3. Phase diagram for system(2). The curve(1), trivial spinodal, the curve(2) is nontrivial spinodal,(3) is the trivial
binodal,F0>0.28 is the Lifshitz point(marked by3), F0>0.099 is the critical point(marked bys).

FIG. 4. The bifurcation diagram for the system(2) at F0=0.5. The curve(1) is the unstable nonhomogenous branch,(2)
is the stable one,(3) the stable part of the branch appeared transcritically from the spinodal point,(4) is the unstable part
of the same branch,(5) is the stable homogeneous nontrivial branch rigidly arising in couple with branch(4).
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The nonlinear problem at hand can have far more complicated bifurcation diagrams than those
described above. For example, let us consider the system, characterized by a set of input param-
eters,Q= s 0.15

0.84
0.84
0.15

0.01
0.01

d, and the matrix of interactiong /g12s0.08;1;1.5d.
The bifurcation behavior in the vicinity of the Lifshitz point(F0=0.745,h=4.0857) is of

particular interest from the physical standpoint. The periodic solutions of the set of equations(5),
(6), and(10) have periods substantially exceeding the size of a monomeric unit. To carry out the
bifurcation analysis with a single controlled parameterh we have chosen the valueF0=0.760 at
which the above condition holds. For this value the bifurcation diagram is plotted in Fig. 5.

As depicted in this picture the loss of the thermodynamic stability of the homogeneous state
with the temperature decay is observed for the first time at pointhsn=4.3043 of the nontrivial
spinodal. At this point the Turing subcritical bifurcation happens leading to the loss of stability of
the nontrivial solution accompanied by the disappearance of the pair of unstable periodic solutions
with q* =0.5958. Ash subsequently increases the instability interval of wave vectorsql ,q,qr

broadens up to the moment whenh attains the valuehst=4.3185, corresponding to the trivial
spinodal.

At point h=hst, whereql =0, qr =0.986 the transcritical bifurcation takes place. Then the trivial
extremal loses its stability with respect to homogeneous fluctuations whereas the upper part of
nontrivial homogeneous extremal acquires it. Both of them, however, are unstable with respect to
nonhomogeneous fluctuations in the vicinity of pointh=hst. Interesting peculiarity of the bifurca-
tion at this specific point is a splitting off from the nontrivial extremal of a pair of periodic ones
corresponding to the wave vectorq* unstable with respect to both types of fluctuations. The
reason of such bifurcation behavior at pointh=hst is that the zero eigenvalue of linear operator at
this point has the multiplicity two, corresponding to the two-dimensional proper subspace(this
bifurcation was described above).

Apart from the primary bifurcations(pointshsn, hst) in Fig. 5 some secondary ones(pointsh*,
h** ) are also depicted which we managed to reveal numerically. When moving from pointh
=hst along the homogeneous nontrivial extremal the region of unstable wave vectors was found to
reduce with the growth of control parameterh to contract to pointq=q* * =0.63 at h=h* *
=4.3365. As the result of this Turing supercritical bifurcation at pointh** the nontrivial extremal
becomes absolutely stable giving birth to a couple of periodic structures with wave vectorq**.
The free energy density of homogeneous nuclei described by this extremal turns out to be lower
than that in the principal phase.

When moving from pointh=hst along the homogeneous nontrivial extremal in the direction of
decreasing parameterh the wave vector valueqr, bounding from the right-hand side of the interval
of the instability of this extremal gets smaller to reach at pointh* just that valueq=q*, at which
the stability loss by the trivial extremal happens at pointhsn. The amplitude of the pair of periodic

FIG. 5. The bifurcation diagram atF0=0.76 for the system(3).
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structures with wave vectorq* emerging at pointhsn as parameterh decreases, first increases to
decay up to zero at the point whenh=h*. At this point the Turing subcritical bifurcation occurs
resulting in the disappearance of the pair of unstable periodic extremals. Simultaneously, the
nontrivial homogeneous extremal, remaining in general unstable, acquires stability with respect to
the fluctuations withq=q*. Under further decay of parameterh in the region to the left from the
secondary bifurcation point the valuesF1 andF2 tend to zero at this extremal.

Returning to the instability interval one can find, that in every point of the intervalhsn,h
,hst one can also observe the bifurcations of trivial solution. Type of these bifurcations will be
different to the left and to the right of a certain specific pointh−=4.308,ql =0.393 362, where
qr =2ql. To the left of this point both branches corresponding toql andqr arise subcritically, each
of them attaining the nontrivial homogeneous branch at corresponding points. To the right of point
h− one branch remains subcritical, while the other becomes supercritical. Such a situation persists
under changes ofh up to a certain valueh* **, where coefficientshs2d andhs3d in the expansion
(33) vanish. Subcritical branches reach at the bottom part of the nontrivial branch of the homo-
geneous extremal to the left of pointhst, whereas the supercritical ones reach the upper part of this
curve. Whenh.h* ** bifurcations of both branches again become subcritical and corresponding
branches attain the bottom part of the nontrivial extremal. Specific pointh− corresponds to the
degenerate case since null space of the operatorL at this point consists of two eigenvectors.
Consequently the first approximation reads

zs1d = agl cosqlx + bgr cos 2qlx.

Constantsa andb are determined from the orthogonality conditions for two eigenfunctions
gl

T cossqlxd andgr
T coss2qlxd to the operator conjugate toL . The equations for determination of the

ratio a /b andhs1d are written as

1/2a2sgr
T,B2sgl,gldd + bhs1dsgr

T,B2sgr,hdd = 0,

s46d
1/2absgl

T,B2sgr,gldd + ahs1dsgl
T,B2sgl,hdd = 0,

where

B2sy1,y2d = 1/2o
i,j

s]2F/]yi
1]yj

2dyi
1yj

2, B2sy,hd = o
j

s]2F/]yj]hdyj .

This system has several solutions

(1) a=0, hs1d=0,
(2) aÞ0, hs1d=−b /2sgl

T,B2sgr ,gldd / sgl
T,B2sgl ,hdd,

sa/bd2 = sgl
T,B2sgr,gldd/sgr

T,B2sgl,gldd · sgr
T,B2sgr,hd/sgl

T,B2sgl,hdd = c.

If c.0 (in our case this condition is actually satisfied). The comparison of formulas(46) and
(40) leads one to the conclusion that(with substitutiona by b) their second equations are identical
while the first ones differ by the term proportional tob2 that is missing in set(46) by virtue of the
orthogonality condition of functions coss2qlxd and cos2s2qlxd. The solution of set(46) (wherea
=0) describes the subcritical Turing bifurcation with two branches arising at the homogeneous
nontrivial branch ath=h2ql

. The second solution(whereaÞ0) describes the transcritical bifurca-
tion. Two unstable branches with period 2p /ql arise whenh−=2.24 at the nontrivial homogeneous
extremal to the left of pointh=hst, then one branch transcritically continues whenh=hst in the
direction of increasing of the parameterh to terminate ath=4.33 at the homogeneous extremal.

The bifurcation diagram presented in Fig. 5 is obviously incomplete. This statement is par-
ticularly evidenced by the absence in the intervalhsn,h,h** of extremals at which the Landau
free energy functional has local minimum. Apparently, in this region of parameterh the nuclei of
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mesophases with two- or three-dimensional spatial periodicity must be stable. We have in mind to
perform a theoretical analysis of the existence and stability of such nuclei in the subsequent
publications.26–28
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APPENDIX A

The components of vectorsr 0 and r h in the formulas(39) are

r 0fig = − 1/2o
j

ni jgf jggf j + 2g,

r 0fi + 2g = − 1/s4dssgfi + 2g/sid2 − H1sgf5g + gf6gd2d,

r 0fi + 4g = 1/2F0pis2Vigfiggfi + 2g + sigfig2d,

r hfig = 0, for i Þ 3,4,

r hfi + 2g = − o
j

gi jsF0p j − F jd,

wheresi =1,2d the vectorg is the eigenvector of the matrixJsq* d and

H1 = 1/s1 − F1 − F2d2, H2 = 2H1/s1 − F1 − F2d.

The expressionhs2d in the formulas(31) has the following form:hs2d=−oiPsid /oiPhsid, where
the denotations are accepted,

absid = afig + 1/2bfig, ngTfig = ni1g
Tf1g + ni2g

Tf2g,

ahgfig = gfigahfi + 2g + ahfiggfi + 2g,

Ps1d = 1/2o
1

2

ngTfigsabsidgfi + 2g + absi + 2dgfigd,

Ps2d = 1/2H1sgTf3g + gTf4gdsgTf5g + gTf6gdsabs5d + abs6dd,

Ps3d = 1/16H2sgTf3g + gTf4gdsgf5g + gf6gd3,

Ps4d = − 1/2o
1

2T

gfi + 2ggfi + 2g/si
2sabsi + 2d − 1/s4Sidgfi + 2g2d,

Ps5d = − F0o
1

2

pi
Tgfi + 4ggfigss3/8gfi + 2ggfig + absi + 2dVid + absidsVigfi + 2g + Sigfigdd,
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Phs1d = 1/2o
1

2

ngTfigahgfig,

Phs2d = H1/2sahf5g + ahf6gdsgTf3g + gTf4gdsgf5g + gf6gd, Phs3d = 0,

Phs4d = − 1/2o
1

2

gTfi + 2gs1/si
e2gfi + 2gahsi + 2d − sgi1gf5g + gi2gf6gdd,

Phs5d = − F0so
1

2

pig
Tfi + 4gssSigfig + Vigfi + 2gdahsid + ahsi + 2dVigfigdd.

Let

n0sid = sni1g
s0df1ggs0df3g + ni2g

s0df2ggs0df4gd,

n2sid = sni1gsq * df1ggsq * df3g + ni2gsq * df2ggsq * df4gd,

VSsid = s2Vig
s0dfiggfi + 2g + sisgs0dfigd2d,

SSsid = 1/2ssgs0dfi + 2gd/sid2 − H1ssgs0df5g + gs0df6gd2d,

n02sid = o
1

2

ni jsgs0df j + 2ggsq * df jg + gs0df jggsq * df j + 2gd,

S02sid = 1/2sgs0dfi + 2ggsq * dfi + 2g/si
2 − H1sgs0df5g + gs0df6gdsgsq * df5g + gsq * df6gdd,

VS02sid = Visgs0dfi + 2ggsq * dfig + gs0dfiggsq * dfi + 2gd + sig
s0dfiggsq * dfig,

SS2sid = 1/2ssgsq * dfi + 2g/sid2 − H1sgsq * df5g + gsq * df6gd2d,

VS2sid = 2Visgsq * dfi + 2ggsq * dfigd + Sisgsq * dfigd2.

Then the vectorsr 00, r 01, r 22 have the following form:

r00 = f− n0s1d,− n0s2d,SSs1d,SSs2d,F0p1VSs1d,F0p2VSs2dg,

r02 = f− 1/2n02s1d,− 1/2n02s2d,S02s1d,S02s2d,F0p1VS02s1d,F0p2VS02s2dg,

r22 = f− 1/2n2s1d,− 1/2n2s2d,1/2SSs1d,1/2SSs2d,1/2F0p1VSs1d,1/2F0p2VSs2dg.

APPENDIX B

The matrix elements of the functional second variation are written as

sd2Fdi j ,kl
cc = mij ,kl

cc + hij ,kl
cc , sd2Fdi j ,kl

cs = mij ,kl
cs + hij ,kl

cs ,

sd2Fdi j ,kl
sc = mij ,kl

sc + hij ,kl
sc , sd2Fdi j ,kl

ss = mij ,kl
ss + hij ,kl

ss ,
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mij ,kl
cc =

T

L
E

0

L

s− cij + 1/Fidi jdcosskqxdcosslqxddx,

mij ,kl
cs =

T

L
E

0

L

s− cij + 1/Fidi jdcosskqxdsinslqxddx,

mij ,kl
sc =

T

L
E

0

L

s− cij + 1/Fidi jdsinskqxdcosslqxddx,

mij ,kl
ss =

T

L
E

0

L

s− cij + 1/Fidi jdsinskqxdsinslqxddx,

hij ,kl
cc = −

T

L
E

0

L

s1/UisxddUj ,k
ic sxd + 1/VisxddVj ,k

ic sxddcosslqxddx,

hij ,kl
cs = −

T

L
E

0

L

s1/UisxddUj ,k
ic sxd + 1/VisxddVj ,k

ic sxddsinslqxddx,

hij ,kl
sc = −

T

L
E

0

L

s1/UisxddUj ,k
is sxd + 1/VisxddVj ,k

is sxddcosslqxddx,

hij ,kl
ss = −

T

L
E

0

L

s1/UisxddUj ,k
is sxd + 1/VisxddVj ,k

is sxddsinslqxddx.

Here the valuesUisxd, Visxd are given on the extremal, anddUj ,k
is sxd, dUj ,k

is sxd, dUj ,k
ic sxd dVj ,k

ic sxd
are determined by Eq.(45), andL=2p /q*.
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We extend a recent diffusion model, in which the continuous time dynamics of the
K-scattering process have been proposed, to include the effect of the presence of a
coherent offset in the scattering amplitude. The weak scattering amplitudes are
characterized in terms of continuous time biased random walk models, and the
corresponding stochastic dynamics derived. The stochastic differential geometry of
the resultant amplitude fluctuations is derived in relation to that of pure
K-scattering. Asymptotic distributions of amplitude, intensity, and phase are pro-
vided, and the condition for detailed balance shown to hold. ©2005 American
Institute of Physics.[DOI: 10.1063/1.1811787]

I. INTRODUCTION

Significant progress has recently been made in our understanding of the dynamics of models
of electromagnetic scattering in the context of diffusion processes. Deviations from Rayleigh
(Gaussian) scattering have been successfully formulated in the context ofK-distributed scattering
processes(Field and Tough, 2003b) and have formed the basis of an anomaly detection technique
that has been successfully applied to maritime radar scattering and laser propagation experiments
(Field and Tough, 2003a).

The models considered previously assume a uniform(asymptotic) distribution of phase. In
this paper we consider how anisotropic phase distributions can be accommodated within the
framework provided by stochastic differential equations(SDEs) that has proved to be useful in
K-scattering. We have seen how a simple random walk model provides a physically motivated
description of the scattering process(Jakeman and Tough, 1988) that at the same time makes
useful contact with the SDE formulation of the problem(Field and Tough, 2003a, 2003b). In
earlier work, unbiased random walk models have provided useful insight into the Gaussian and
non-Gaussian statistics of radiation scattered sufficiently strongly for its phase to be effectively
randomized, and to take a uniform asymptotic distribution. A biased random walk model of weak
scattering has been discussed in detail in Jakeman and Tough(1987). Their analysis led to the
so-called generalizedK-scattering model. The present paper re-addresses this problem, replacing
the static, characteristic function approach with one in which the dynamics is captured by a set of
coupled SDEs. A fairly complete analysis is possible that also makes contact with the Rice and
homodynedK descriptions of weak scattering(Jakeman, 1980). This allows for a detailed descrip-
tion of the geometry of the resultant amplitude fluctuations, which is shown to be different in some
significant respects from that encountered in theK-distributed case(Field and Tough, 2003b). In
addition to developing this SDE description we study the phase distributions implicit in these
models in more detail than has been reported previously.

Throughout we shall consistently adopt the notation for the decomposition of a general Ito
processqt into drift and volatility terms, respectively, as dqt=bt

sqd dt+st
sqd dWt

sqd, with respect to
some(fixed) probability measure on the space of paths, and define the diffusion coefficientsSs·d by
dqt dpt=St

sq,pd dt and abbreviate via dqt
2=St

sqd dt. The error surfaceSq of a vector processqi is then
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defined by the(inverse) quadratic form relationSsqd−1sdqd=1. We shall adopt the Einstein sum-
mation convention throughout(e.g., Penrose and Rindler, 1984), unless explicitly indicated oth-
erwise.

II. K-SCATTERING

We review the results of Field and Tough(2003b) that are necessary in the present context for
the treatment of weak scattering. The random walk model with step number fluctuations, due to
Jakeman(Jakeman, 1980; Jakeman and Tough, 1988), accounts for certain statistical properties of
K-scattering. The extension to a complete dynamical description, in terms of continuous time
diffusion processes, is provided in Field and Tough(2003b), the necessary results of which we
review in this section. It is shown in the Rayleigh case of a fixed step number that the amplitude
obeys a complex Ornstein–Uhlenbeck equation, and a corresponding SDE in theK-distributed
case is derived.

(i) Rayleigh scattering:In the Rayleigh case consider the random walk model for the scattered
electric field(cf. Jakeman, 1980; Tough, 1987; Jakeman and Tough, 1988) with stepss jd,

s2.1d

for constant population sizeN. Since Maxwell’s equations for the electromagnetic field possess
U(1) gauge invariance with respect to duality rotations, i.e., multiplication by expsiLd for constant
L (cf. Penrose and Rindler, 1984), the assumption of independence ofhws jdj implies that these
phases are uniformly distributed. Accordingly in(2.1) the phase factorshexpfiwt

s jdgj are indepen-
dent and uniformly distributed on the unit circle inC. Our (phase) diffusion model therefore takes
hwt

s jdj as a collection of(displaced) Wiener processes on a suitable time scale,wt
s jd=Ds jd

+B1/2Wt
s jd, with the random initializationshDs jdj a set of independent random variables uniformly

distributed on the intervalf0,2pd, and thus dwt
s jd=B1/2 dWt

s jd, dwt
s jd2=B dt. From Ito’s formula

(e.g., Oksendal, 1998; Karatzas and Shreve, 1988) the Ito differential of(2.1) is

dEt
sNd = o

j=1

N Si dwt
s jd −

1

2
dwt

s jd2Dexpfiwt
s jdg. s2.2d

The first termo j=1
N i dwt

s jd expfiwt
s jdg on the right-hand side of(2.2) consists of a sum of independent

randomly phased Wiener processes, with variance equal toBN dt, while the second term is inde-
pendent of the scatterer labelj . Thus from(2.2) we can write

dEt
sNd = − 1

2BEt
sNd dt + sBNd1/2 djt, s2.3d

wherejt is a complex Wiener process satisfyingudjtu2=dt, djt
2=0. The processjt is adapted to the

filtration Fswd=ø jFs jd, whereFs jd is the filtration appropriate to the component scatterer phasewt
s jd.

The (normalized) amplitude processEt is then defined byEt=limN→`fEt
sNd / N̄1/2g and satisfies the

SDE,

dEt = − 1
2BEt dt + sBxd1/2 djt, s2.4d

where the continuous valued random variablex, the average scattering power, arises from an

asymptotically large population viax=limN→`fN/ N̄g.
(ii ) K-distributed noise:In the case of step number fluctuations in the random walk model

(2.1), we define theK-amplitudect as a modification to the Rayleigh amplitude, such that we

employ a time dependentNt with xt=limNt→`fNt / N̄g. Thus
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ct = lim
Nt→`

H 1

N̄1/2
o
j=1

Nt

expfiwt
s jdgJ s2.5d

= lim
Nt→`

HSNt

N̄
D1/2 1

Nt
1/2o

j=1

Nt

expfiwt
s jdgJ s2.6d

=xt
1/2gt, s2.7d

wheregt=limN→`fEt
sNtd /Nt

1/2g. Thus the intensity has the compound representationzt=xtut where
ut= ugtu2 is the (instantaneous) intensity of the component Rayleigh process. According to the
arguments given in the Rayleigh case above,gt is a complex Ornstein–Uhlenbeck process which
obeys the SDE,

dgt = − 1
2Bgt dt + B1/2djt. s2.8d

Observe from(2.4), therefore, thatgt is a unit power Rayleigh process. The above equation forgt

can be solved by considering the stochastic differential dfexps 1
2Btdgtg, which leads to the solution

gt = expS−
1

2
BtDHg0 + B1/2E

0

t

expS1

2
BsDdjsJ . s2.9d

We deduce the expectation formulas,

Efgtg = exps− 1
2Btdg0, s2.10d

Efugtu2g = 1 + exps− Btdsug0u2 − 1d. s2.11d

From (2.11) it follows that limt→`Efugtu2g=1 and so from(2.7) we find the intensity process,
defined byzt= uctu2, satisfiesEfztg=xt. The SDE forct can then be derived by applying the Ito
product formula to(2.7). This requires the SDE for the scattering cross section to be specified. In
accordance with the birth–death–immigration(BDI) model (Bartlett, 1966), we shall take the
rescaled population variatex°ax to satisfy the SDE,

dxt = Asa − xtddt + s2Axtd1/2 dWt
sxd, s2.12d

for an independent Wiener processWt
sxd (Field and Tough, 2003a). (In terms of the underlying

population parameters of the BDI model,a=n /l, the ratio of the immigration to birth rate, the
birth and death rates coinciding for an infinite sized population.) Accordinglyxt has an asymptotic
G-distribution,

Gasxd =
xa−1 exps− xd

Gsad
, s2.13d

with the first two moments Varfxg=kxl=a. These preliminaries enable us to provide the dynamics
of the amplitude, intensity, and phase of theK-scattering process as follows(cf. Field and Tough,
2003b for a detailed treatment).

A. Amplitude

Proposition 2.1: The K-amplitude is governed by the SDE,

dct

ct
= AS2sa − xtd − 1

4xt
Ddt + S A

2xt
D1/2

dWt
sxd −

1

2
B dt +

B1/2

gt
djt. s2.14d
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This evolution is invariant under the Us1d gauge transformationct°expsiLdct, for constantL.

B. Intensity

Proposition 2.2: The K-intensity SDE is given by

dzt = FAztsa − xtd
xt

+ Bsxt − ztdGdt + S2Azt
2

xt
+ 2BxtztD1/2

dWt
szd s2.15d

in which Wt
szd is correlated with Wt

sxd of (2.12), and satisfies

S2Azt
2

xt
+ 2BxtztD1/2

dWt
szd = S2A

xt
D1/2

zt dWt
sxd + s2Bxtztd1/2 dWt

srd s2.16d

and Wt
srd is a real-valued Wiener process defined by

gt
* djt + gt djt

* ; S2zt

xt
D1/2

dWt
srd. s2.17d

C. Phase

Proposition 2.3: The resultant phaseut of the K-amplitude process satisfies the SDE,

dut = SBxt

2zt
D1/2

dWt
sud, s2.18d

where the distinct (real-valued) Wiener process Wt
sud is defined according to

1

i
sgt

* djt − gt djt
*d ; S2zt

xt
D1/2

dWt
sud. s2.19d

These various relations allow theK-amplitude dynamics to be recast in terms ofWsxd, Wsud,
Wsrd as follows.

Corollary 2.4: The K-amplitude satisfies the SDE,

dct

ct
= FAS2sa − xtd − 1

4xt
D −

1

2
BGdt + SAzt + Bxt

2

2xtzt
D1/2

dWt
szd + iSBxt

2zt
D1/2

dWt
sud, s2.20d

in which, alternatively, the Wiener terms can be expressed as

S A
2xt

D1/2

dWt
sxd + SBxt

2zt
D1/2

sdWt
srd + i dWt

sudd. s2.21d

The following result, implied by(2.14) and the identities djt
2=djt dWt

sxd=0, will be useful in
connection with the geometry of fluctuations for weak scattering processes discussed in Sec. V.

Corollary 2.5: The product cross-section/K-amplitude stochastic differentials satisfy

dxt
2 = 2Axt dt, s2.22d

dxt dct = Act dt, s2.23d

dct
2 = SAct

2

2xt
Ddt, s2.24d
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udctu2 = SAzt

2xt
+ BxtDdt. s2.25d

D. Geometry of fluctuations

Observe from Propositions 2.2 and 2.3 that dWt
szd dWt

sud=0, so the fluctuations inRt, ut are
statistically independent. The relative magnitude of the radial and orthogonal(phase) fluctuations
is determined by

St
szd

St
sud = 4zt

2 +
4Azt

3

Bxt
2 , s2.26d

which exceeds the quotient obtained in the Rayleigh case,A=0. These relations can be used to
characterize the geometry of theK-scattering amplitude fluctuations as follows. We shall refer to
the real and imaginary parts of the resultant amplitudeI, Q as the in-phase and quadrature-phase
components, respectively(Helmstrom, 1960).

Proposition 2.6: In the K-distributed case, AÞ0, the amplitude diffusion tensor is nondegen-
erate, and the fluctuations in the in-phase and quadrature phase componentsdI t, dQt are corre-
lated. The (comoving) error surfaceS of dct is an ellipse whose major axis lies in the instanta-
neous radial direction defined byct. Degeneracy occurs in the Rayleigh caseA=0, for which S
is a circle, i.e., the fluctuations inct are isotropic.

For a complete account of the dynamical properties ofK-scattering see Field and Tough
(2003b).

III. WEAK SCATTERING AMPLITUDES

In situations of strong backscattering, such as occur, e.g., in radar applications, the phases of
the back-scattered components are taken to be uniformly randomized and correspondingly the
dynamics and asymptotic distributions of the resultant amplitude processCt are invariant under
Ct°eiLCt. This is no longer the case for weak scattering however, i.e., situations where the
Rayleigh component of the scatter is weak in comparison to some coherent offset contribution. In
these cases the mean amplitude is offset from zero, and the asymptotic resultant phase distribution
is anisotropic. We have seen in theK-distributed case thatct=xt

1/2gt where gt describes the
(unit-power) Rayleigh process(Field and Tough, 2003b) according to(2.8). When this process lies
in superposition with a coherent offset amplitude%t, the resultant amplitude processCt depends
on the relative scalings of the offset and(modulated) Rayleigh components with respect to popu-
lation size. There are essentially three cases to consider, each of which can be understood in terms
of the random walk model(2.1) by imposing abiason each stepss jd, whose physical origin is the
coherent offset contribution. We shall describe these cases in the order of Rice, homodyned and
generalizedK-scattering, thus introducing physical features(noise,K-noise, fluctuating coherently
scattered beam) in a natural order that is mirrored in the increasing complexity of the calculations.

A. Rice model

We assume that the number of scatterers is constant in time, with a constant offset contribution
%t=a. Thus modifying the random walk model(2.1) we write

s3.1d

Scaling by 1/N, 1 /N1/2 for the respective terms under the summation, in thext-continuum limit
sN→`d this becomes

Ct
R = a + gt. s3.2d
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B. Homodyned K-scattering

The situation here is the same as forK-scattering with the superposition of a constant offset
%t=a that does not fluctuate withNt. In the continuum limit this amounts to adding a constant to
the K-amplitude, thus

Ct
HK = a + ct. s3.3d

C. Generalized K-scattering

In a similar fashion(2.1) is modified to become

s3.4d

in which thet-dependence of the limit of summation is to be observed, i.e., the step number of the
biased random walk has fluctuations. Scaling by the reciprocal mean and root mean populations,
respectively, the offset becomes%t=axt and we have

Ct
GK = axt + ct s3.5d

in the continuum limit.
Observe with respect to scaling in the continuum population limit that, in each case, we have

divided by the(unique) length scale factors, appropriate to the relevant terms inss jd separately, that
yield finite nonzero resultant amplitudes.

IV. STOCHASTIC DYNAMICS

The stochastic dynamics of the weak scattering amplitudes described above can be calculated
from the underlyingK-scattering dynamics presented in Sec. II. We shall make use of the identi-
ties for the(resultant) intensity and phase stochastic differentials in terms of the(resultant) am-
plitude,

dZt ; Ct
* dCt + Ct dCt

* + udCtu2,

dQt ;
1

2i
FSdCt

Ct
−

1

2
SdCt

Ct
D2D − SdCt

*

Ct
* −

1

2
SdCt

*

Ct
* D2DG , s4.1d

and their products

St
sZd ; Ct

2St
sC* d + Ct

*2St
sCd + 2ZtSt

sC,C* d,

St
sZ,Qd ; IFSCt

*

Ct
DSt

sCdG , s4.2d

St
sQd ;

1

4
F2St

sC,C* d

Zt
−

St
sCd

Ct
2 −

St
sC* d

Ct
*2 G .

In combination with(3.2), (3.3), (3.5), and(2.12) and the results of Corollary 2.5 these identities
enable us to derive the SDEs satisfied byZt, Qt in terms of the component Wiener processes
hWt

srd ,Wt
sud ,Wt

sxdj encountered in Sec. II. The dynamics are the most simple for Rice scattering
owing to the differential of(3.2). In the context of radar applications, the Rice model is referred
to as a Swerling zero target in Rayleigh clutter, where the target strength is represented by%
(assumed constant over the time scale of interest) and the Rayleigh processgt represents back-
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ground clutter. More care is required in the calculations for the homodyned and generalized
K-scattering processes owing to certain cross terms that arise. Nevertheless the strategy is the
same for each case, and we are led to the dynamical characterizations of the vector scattering
process St=sxt ,Zt ,Qtdtr according to the scheme

dSt
i = bt

i dt + st
i dWt

i s4.3d

(no summation overi) for a collection of Wiener processeshWt
i u ∀ ij (not necessarily independent)

with respective drift and diffusion coefficientsbi, Si j determined by

bt
i =

EfdSt
ig

dt
,

dSt
i dSt

j = St
i j dt. s4.4d

The corresponding Fokker–Planck equation(e.g., Risken, 1989) for the joint probability density
rtsx,Z,Qd is then

]tr + ]isrVid = 0, s4.5d

where the vector scattering currentVi is defined by

Vi = bi − 1
2r−1] jsSi jrd. s4.6d

A. Rice

The amplitude dynamics of the Rice process is identical to that of the Rayleigh process and
the cross section is constant and equal to unity, as evident from(3.2). We deduce from the
identities above that, in terms of the geometry of the underlying Rayleigh process, the resultant
intensity satisfies the SDE,

dZt = Bf1 − ut − aut
1/2 cosutgdt + s2Bd1/2fsut

1/2 + a cosutddWt
srd − a sinut dWt

sudg. s4.7d

Likewise the resultant phase satisfies

dQt =

−
1

2
Baut

1/2 sinut dt + SB
2
D1/2

fa sinut dWt
srd + sut

1/2 + a cosutddWt
sudg

sa2 + ut + 2aut
1/2 cosutd

. s4.8d

This leads to the following result.
Proposition 4.1: The Rice vector scattering processSt has drift

bi = SBf1 − Z + aZ1/2 cosQg

− sBa sinQd/2Z1/2 D , s4.9d

and diffusion tensor

Si j = S2BZ 0

0 B/2Z
D . s4.10d

B. Homodyned K

From (3.3) the amplitude dynamics is identical to that of theK-process. Thus for the intensity,
in terms of the underlyingK-scattering geometry, we find
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dZt = FAztsa − xtd
xt

+ Bsxt − ztd + azt
1/2 cosutSAFa − xt − 1

2

xt
G − BDGdt

+ s2Bxtd1/2fa cosut + zt
1/2gdWt

srd − s2Bxtd1/2fa sinutgdWt
sud

+ S2A
xt
D1/2

fazt
1/2 cosut + ztgdWt

sxd. s4.11d

Likewise for the resultant phase we find

dQt =
azt

1/2 sinut

Zt
HAFS2sa − xtd − 1

4xt
D −

zt
1/2

2xtZt
szt

1/2 + a cosutdG −
1

2
BJdt + SBxt

2
D1/2a sinut

Zt
dWt

srd

+ SBxt

2
D1/2zt

1/2 + a cosut

Zt
dWt

sud + SAzt

2xt
D1/2a sinut

Zt
dWt

sxd. s4.12d

Thus in terms of the resultantssZ,Qd we deduce that the vector homodynedK-processsxt ,Zt ,Qtd
has the following structure.

Proposition 4.2: The drift vector is given by

bi =1
Asa − xd

A
x
Fsa − xdZ + aSx − a −

1

2
DZ1/2 cosQ +

1

2
a2G + Bsx − Z + aZ1/2 cosQd

a sinQ

Z1/2 HAFS2sa − xd − 1

4x
D −

1

2xZ1/2sZ1/2 − a cosQdG −
1

2
BJ 2 . s4.13d

The (symmetric) diffusion tensor is

Si j =1
2Ax 2AsZ − aZ1/2 cosQd

Aa sinQ

Z1/2

¯ 2ZFAsZ1/2 − a cosQd2

x
+ BxG sAa sinQdsZ1/2 − a cosQd/x

¯ ¯

1

2Z
FAa2 sin2 Q

x
+ BxG 2 . s4.14d

C. Generalized K

The differential of the amplitude(3.5) contains both aK-scattering component and an explicit
fluctuating part from the cross section, i.e., dCt=a dxt+dct. This leads, in terms of the
K-geometry, to the intensity SDE,

dZt = AFztsa − xtd
xt

+ 2a2xtsa − xt + 1d + 3azt
1/2Sa − xt +

1

2
DcosutGdt + Bsxt − zt − axtzt

1/2 cosutddt

+ s2Bxtd1/2szt
1/2 + axt cosutddWt

srd − s2Bxtd1/2axt sinut dWt
sud

+ s2Axtd1/2S zt

xt
+ 2a2xt + 3azt

1/2 cosutDdWt
sxd. s4.15d

Likewise for the phase we find
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dQt =
azt

1/2 sinut

2Zt
FASzt + 2a2xt

2 + 3axtzt
1/2 cosut

Zt
+ xt − a −

1

2
D − BxtGdt + SBxt

2
D1/2axt sinut

Zt
dWt

srd

+ SBxt

2
D1/2zt

1/2 + axt cosut

Zt
dWt

sud − SAxtzt

2
D1/2a sinut

Zt
dWt

sxd. s4.16d

Combining these results we obtain the following.
Proposition 4.3: The vector generalized K-scattering process has drift

bi =1
Asa − xd

AFZsa/x − 1d +
1

2
a2x + aZ1/2Sa − x +

3

2
DcosQG + Bsx − Z + aZ1/2x cosQd

a sinQHAFsZ1/2 + axcosQd/Z1/2 − Sa − x +
1

2
DG − BxJY 2Z1/2 2

s4.17d

and (symmetric) diffusion tensor

Si j = 12Ax 2AsZ + axZ1/2 cosQd − AaxsinQ/Z1/2

¯ 2AsZ + axZ1/2 cosQd2/x + 2BxZ − AasZ1/2 + axcosQdsinQ

¯ ¯ sB + Aa2 sin2 Qdx/2Z
2 . s4.18d

V. GEOMETRY OF AMPLITUDE FLUCTUATIONS

We begin with some purely geometrical results concerning the correlation structure in the
amplitude fluctuations. Combining drift terms as quantities ofosdt1/2d, we write the amplitude
stochastic differential as

dCt = iRt expsiQtddQt + expsiQtddRt + osdt1/2d = at expfisQt + ftdg + ibt expfisQt + ftdg + osdt1/2d,

s5.1d

where at, bt are real valued Ito differentials andft is chosen so that their Ito productatbt

vanishes, i.e., the Wiener components ofat, bt are statistically independent(see, e.g., Karatzas and
Shreve, 1988). Comparing the two decompositions of dCt above, it follows that[neglecting terms
of osdt1/2d]

at cosft − bt sinft = dRt,

at sinft + bt cosft = Rt dQt. s5.2d

Therefore

sat
2 − bt

2dsin 2ft = 2Rt dRt dQt,

sat
2 − bt

2dcos 2ft = dRt
2 − Rt

2dQt
2 s5.3d

up to osdtd. From (4.1)

sSt
sad − St

sbdd sin 2ft =
1

2i
FSCt

*

Ct
DSt

sCd − S Ct

Ct
* DSt

sC* dG ,
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sSt
sad − St

sbdd cos 2ft =
1

2
FSCt

*

Ct
DSt

sCd + S Ct

Ct
* DSt

sC* dG . s5.4d

Also, from (5.2) we find at
2+bt

2=dRt
2+Rt

2 dQt
2 so that

St
sad + St

sbd = St
sC,C* d. s5.5d

We deduce from(5.3) that

St
sad − St

sbd = ± ÎSt
sCdSt

sC* d s5.6d

which, combining with(5.5), yields the following result.
Lemma 5.1:

St
sad = 1

2sSt
sC,C* d ± ÎSt

sCdSt
sC* dd,

St
sbd = 1

2sSt
sC,C* d 7 ÎSt

sCdSt
sC* dd. s5.7d

with 6 corresponding to the major/minor axes of the error surface of the resultant amplitude,
respectively.

Observe that(5.6) and (5.7) have the appropriate symmetry under interchangea↔b. The
angleft represents a rotation in the geometry of the resultant amplitude fluctuations relative to the
case of pureK-scattering, for whichf=0. From(5.4) this angle is determined as follows.

Lemma 5.2: The phase rotationft, that yields an orthogonal dyad (Fig. 1) associated with
independent Wiener increments in the resultant amplitude processCt, satisfies the geometrical
identity

tan 2ft =
4ZtSt

sZ,Qd

St
sZd − 4Zt

2St
sQd . s5.8d

Equivalently, in terms of the resultant complex amplitude process, we have the geometrical iden-
tity

FIG. 1. Geometry of fluctuations for weak scattering processes depicting orthogonal dyad with respect to which resultant
amplitude fluctuations decorrelate.

013302-10 T. R. Field and R. J. A. Tough J. Math. Phys. 46, 013302 (2005)

                                                                                                                                    



tan 2ft = −
IfCt

2 dCt
*2g

RfCt
2 dCt

*2g
, s5.9d

whereR, I denote the real and imaginary parts, respectively.
Before applying this geometry to the weak scattering processes described earlier, as a prelimi-

nary we give a result which provides the relationship between the structure of the diffusion tensor
that arises in the cases of homodyned and generalizedK-scattering.

Proposition 5.3: The transformation a°−axt maps the homodyned to the generalized
K-scattering diffusion tensor of the vector scattering processsxt ,Zt ,Qtd.

Proof: Choose an arbitrary instant of time, labeledt=0. Define

Ct
sGKd = axt + ct,

Ct
sHKd = − ax0 + ct8, s5.10d

for all tù0, coincident att=0. Thusc08=2ax0+c0 and otherwisect, ct8 are considered indepen-
dentK-scattering processes. The result is equivalent to the corresponding(complex-valued) vector
processessxt ,Ct

s·dd having the same diffusion tensor, at the chosen instant. The amplitude compo-
nents are best computed using the complex polarization, i.e.,

Si īdt = SdCt
2 dCt dCt

*

¯ dCt
*2 D . s5.11d

The results of Corollary 2.5 and the above relation betweenct, ct8 at t=0 imply that dC0
s·d2 are

identical. Likewise the expressions forudC0
s·du2 coincide, by virtue of the cosine rule applied to

DPRR8 of Fig. 1. The same method shows that dxt dCt
s·d are identical at the chosen instant.h

The image pointR8 has the physical interpretation of a fluctuating cancelling beam,p out of
phase with the original%t sRd. A result corresponding to Proposition 5.3 does not hold for the
vector scattering drift however, as evident from comparing Propositions 4.2 and 4.3.

A. Rice

The situation here is straightforward since the resultant amplitude dynamics is identical to that
of Rayleigh scattering. Thus, as we have seen in Proposition 4.1, the cross termSsZ,Qd vanishes, so
that Wt

sZd, Wt
sQd are independent. The error surfaceS at P of Fig. 1 is circular, i.e., the amplitude

fluctuations are isotropic andft can take any value[both the numerator and denominator in(5.8)
are identically zero].

B. Homodyned K

Using Lemma 5.2 and(4.14) we find

tanft =
a sinQt

Zt
1/2 − a cosQt

s5.12d

and minus its reciprocal for the perpendicularf°f+p /2. Thus, in terms of the geometry of Fig.

1 (e.g., by drawing a perpendicular fromR to the lineOP) we see thatft=ut−Qt sOP̂Rd, i.e., the
(major) axis ofSHK coincides with that of the underlyingK-scattering process, as anticipated from
the differential of(3.3). The radial and angular components of the resultant amplitude fluctuations
decorrelate[the diffusion coefficientSsZ,Qd of (4.14) vanishes] if the major/minor axis of the error
ellipse of theK-amplitude fluctuations is aligned with the resultant amplitude(respectively, the
first/second factor inSsZ,Qd vanishes). In the latter caseP lies on the boundary]D andOP, PRare
perpendicular. Inside the domainD the error surfaceS rotates(anticlockwise forP shown in the
upper half plane in Fig. 1) andSsZ,Qd+0 according asP lies in the upper/lower half-plane, while

the opposite situation holds for the complementD̄.
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C. Generalized K

Perhaps the most interesting geometrical features emerge for generalizedK-scattering. In this
case the coherent offset(e.g., a fluctuating beam) %t=axt has intrinsic fluctuations, arising from
those in the scattering population(cf. in Fig. 1 the boundaries]D and]D8 fluctuate in time). Using
Lemma 5.2, Proposition 5.3 and the homodyned result(5.12) it is immediate that, for generalized
K-scattering,

tanft = −
axt sinQt

Zt
1/2 + axt cosQt

s5.13d

(and minus the reciprocal). The above tangent corresponds to an axis ofSGK alongR8P (as seen,
e.g., by drawing a perpendicular fromR8 to the continuation in Fig. 1 ofOP). In contrast to
homodynedK-scattering, the symmetry axes of the error surfaceSGK of the resultant amplitude
are no longer aligned to those of the underlyingK-amplitude. For alignment of the axes ofSGK

and SK to occur, we require the above tangent to coincide with tanf0=axsinQ / sZ1/2

−axcosQd, or minus the reciprocal, which occurs ifZ=0 or Z1/2=ax. In the latter caseP lies on
the circleC shown, consistently on whichPR, PR8 are perpendicular. The major axis ofSGK at a
generalP can be identified by writing

dCt = sAt + iBtdẑt + osdt1/2d, s5.14d

whereAt, Bt are independent real-valued(Wiener components of) Ito differentials, andẑt=sCt

+axtd / uCt+axtu corresponding to a unit vector in the axial directionR8P. Then we have the
squared relation dCt

2=sAt
2−Bt

2dẑt
2. Comparing with the expression for dCt

2 derived from Corollary
2.5 and(3.5) we find

St
sAd − St

sBd =
AuCt + axtu2

2xt
, s5.15d

soSt
sAdùSt

sBd with equality if and only ifA=0 or Ct+axt=0, i.e.,P=R8. Strict inequality implies
R8P is the major axis ofSGK with (circular) degeneracy otherwise. From the expression forSt

sZ,Qd

in (4.18), decorrelation of the radial and angular components ofCt occurs ifP lies on theI axis
or boundary]D8. In the latter caseR8P is the major axis ofSGK andOP, PR8 are perpendicular
sPÞR8d. InsideD8 in the upper/lower half-plane,SsZ,Qd_0 andS rotates with a corresponding
orientation.

A measure of the total uncertaintyet in the resultant amplitudeCt is provided by the eigen-
value productSt

sadSt
sbd=detfSt

i jg. For homodynedK-scattering, Corollary 2.5 and(5.7) imply

s5.16d

so thatet=
1
4BsAzt+Bxt

2d. SettingA=0, xt=1 for Rice and using Proposition 5.3 and(5.16) for
generalizedK-scattering we deduce the hierarchy of increasing uncertainties(in the sense of the
proliferation of terms that arise)

et = 5
1
4B2 sRiced,
1
4BsAzt + Bxt

2d sHKd,
1
4BsAzt + Bxt

2d + ABZt
1/2axt cosQt sGKd.

6 s5.17d
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We remark that these geometrical properties of the amplitude fluctuations should provide
various means for anomaly detection, through the observability of the squared volatilities(cf.
Field and Tough, 2003a) and their departure, foraÞ0, from the pureK-scattering values.

VI. ASYMPTOTIC BEHAVIOR

The effect of the offset in the mean amplitudekClÞ0 for aÞ0 is that the resulting
(asymptotic) phase distributions are nonuniform. Expressions for these distributions can be calcu-
lated for the various processes we have described. We begin by deriving the joint asymptotic
probability distribution functions(pdf) for the cross section, modulus amplitude and phase, and
from these deduce the marginal pdf’s of these quantities by integration.

A. Rice

Noting thatct is a complex Gaussian process, we see that the familiar Rice process(Rice,
1954) emerges as the model for weak scattering. If we write the amplitude and phase of the
scattered field assE,Qd their joint distribution takes the form

PsE,Qd =
E exps− sE2 + a2 − 2EacosQdd

p
. s6.1d

From this we can derive the familiar result for the marginal pdf of the field amplitude

PsEd = 2E exps− sE2 + a2ddI0s2Ead, s6.2d

whereI0 is the modified Bessel function of the first kind. The phase distribution associated with
the Rice model can be obtained from(6.1) by integration overE. The result can be expressed in
a reasonable closed form in terms of the error function,

PsQuad =E
0

`

PsE,QddE =
exps− a2 sin2 Qd

p
E

0

`

E exps− sE − a cosQd2ddE

=
exps− a2 sin2 Qd

p
E

−a cosQ

`

sE + a cosQd exps− E2ddE

=
1

2p
exps− a2d +

a cosQ

2Îp
s1 + erfsa cosQdd exps− a2 sin2 Qd. s6.3d

Figure 2 shows the behavior of this function, for differing values ofa, whose square can be

FIG. 2. Phase pdf for the Rice model,a=0,1
2 ,1 ,3

2 ,2 ,5
2.
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interpreted as a signal to noise power ratio.

B. Homodyned K

In the case of the homodynedK-scattering process, which can be represented through(3.3),
the joint pdf of the cross section, field amplitude and phase is

Psx,E,Qd =
Eba

pGsad
xa−2 exps− bxdexps− sE2 + a2d/xd exps2EacosQ/xd. s6.4d

The field amplitude pdf associated with the homodynedK-scattering model cannot be rendered in
a simple closed form for general values of the shape parametera. Its compound representation
takes the form

PsEd =
2EbaE

Gsad E0

`

xa−2 exps− bxd exps− sE2 + a2d/xdI0s2Ea/xddx. s6.5d

The asymptotic phase distribution for the homodynedK-scattering model cannot be evaluated in
closed form. The compound representation of the process indicates that the phase pdf can be
written as

PsQua,b,ad =
ba

GsadE0

`

PsQua,xd exps− bxdxa−1 dx, s6.6d

where we define

PsQua,xd =
1

2p
exps− a2/xd +

a cosQ

2Îpx
s1 + erfsa cosQ/Îxdd exps− a2 sin2 Q/xd. s6.7d

This can be recast in the form

PsQua,b,ad =
sa2bda/2

pGsad
Kas2Îba2d +

a cosQbsa/2d−1/4sa2 sin2 Qdsa/2d+1/4

ÎpGsad
Ka−1/2s2Îba2 sin2 Qd

+ 2
aa+1bsa+1d/2 cos2 Q

pGsad E
0

1

Ka−1s2Îba2ssin2 Q + t2 cos2 Qdd

3ssin2 Q + t2 cos2 Qdsa−1d/2 dt s6.8d

by using the integral representation of the error function

erfsaÎx cosQd =
2aÎx cosQ

Îp
E

0

1

exps− s2a2x cos2 Qdds. s6.9d

The representation(6.8) while a little arcane appears, when implemented inMathematica
(Wolfram, 1999), to be more stable and efficient than a direct numerical integration of(6.6). The
corresponding plots of the phase pdf for the homodynedK-scattering model are shown in Figs. 3
and 4.

C. Generalized K

To generalize the weak scattering model to the non-Gaussian regime we allow the number of
steps in the biased random walk to fluctuate according to(3.4). The joint distribution of the
cross-section, field amplitude, and phase now takes the form
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Psx,E,Qd =
Eba

pGsad
xa−2 exps− bxd exps− sE2 + a2x2d/xd exps2EacosQd. s6.10d

(Here we have introduced the scale parameterb to relax the condition that the power in the
complex Ornstein–Uhlenbeck process is taken as unity.) This provides us with the compound
representation of the generalizedK-scattering process in accordance with(2.7). This is to be
contrasted with the corresponding result for the homodynedK-scattering process above. Thus by
integration we have the field amplitude pdf given by

PsEd =
4Eba

Gsadsa2 + bdsa−1d/2I0s2EadKa−1s2EÎa2 + bd, s6.11d

which is essentially the result obtained in Jakeman and Tough(1987) using the method of char-
acteristic functions. The calculation of the asymptotic phase distribution for Rice scattering can be
extended straightforwardly to the generalized and homodynedK-scattering models, essentially by
exploiting the compound representation(2.7). Thus using(6.7) we construct

FIG. 3. Phase pdf’s derived from the homodynedK-scattering model,a=0.1, 1.0, 10.0.

FIG. 4. Phase pdf’s derived from the homodynedK-scattering model,a=0.5,1.0, 1.5, 2.0.
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PsQua,b,ad =
ba

GsadE0

`

PsQuax,xd exps− bxdxa−1 dx. s6.12d

This consists of three terms; two are straightforward while the third can be expressed in terms of
a hypergeometric function. To this end we have

ba

Gsad
1

2p
E

0

`

xa−1 exps− sb + a2dxddx =
1

2p
S b

b + a2Da

,

s6.13d
ba

Gsad
1

2Îp
a cosQE

0

`

xa−1/2 exps− sb + a2 sin2 Qdxddx

=
a cosQ

Îsb + a2 sin2 Qd
Gsa + 1/2d
2GsadÎp

1

s1 + a2 sin2 Q/bda .

The third term can be evaluated by substituting(6.9) and integrating overx, thus

E
0

`

exps− sa2 sin2 Q + bdxdxa−1aÎx cosQ erf saÎx cosQddx

=
2Gsa + 1d

Îp
a2 cos2 QE

0

1

sb + a2 sin2 Q + a2s2 cos2 Qd−sa+1d ds

=
2Gsa + 1d

Îp

a2 cos2 Q

sa2 sin2 Q + bda+1 2F1s1/2,a + 1;3/2;−a2 cos2 Q/sa2 sin2 Q + bdd. s6.14d

On bringing these results together we obtain

PsQua,b,ad =
1

2p
S b

b + a2Da

+
a cosQ

Îsb + a2 sin2 Qd
Gsa + 1/2d
2GsadÎp

1

s1 + a2 sin2 Q/bda +
a

p

3
a2 cos2 Q

sa2 sin2 Q + bd
1

s1 + a2 sin2 Q/bda 2F1s1/2,a + 1;3/2;−a2 cos2 Q/sa2 sin2 Q + bdd.

s6.15d

It is interesting to compare this result with that derived in an analysis of the performance of
interferometric synthetic aperture radar[Eq. (53) in Tough, 1991], to which the above result
reduces when the shape parametera takes integer values. Figure 5 shows the phase pdf derived
from the generalizedK-scattering model. We have chosena=1, kxl=1, anda=0.1, 1, 10. Spikier
noise, associated with lower values ofa, results in a broader distribution of phase. In Fig. 6 we
show the variation in the phase distribution with the parametera, keeping the mean noise power
kxl=1 anda=1. The phase distribution becomes narrower as the parametera increases. Compari-
son with Fig. 2 shows that, while the mean noise power is the same in each, the more spiky nature
of the noise is manifest in a broader phase distribution.

The most marked difference between the phase pdf’s derived from the homodyned and gen-
eralizedK-scattering models is evident at small values ofa (i.e., less than unity), where a singular
behavior is observed at the origin. This can be seen quite clearly in Fig. 4. Whena takes larger
values a behavior more reminiscent of that seen in Fig. 2 emerges, as the noise becomes more
Gaussian in character. In the case wherea=1, the phase pdf displays a cusp at the origin,
irrespective of the value ofa; this can be seen in Fig. 4. The differences between the phase pdf’s
derived from the homodyned and generalized models can be understood qualitatively in terms of
the signal fluctuating withxt in the latter, but remaining constant in the former. Jakeman and
Tough (1987) discuss the implications of this difference between the models in some detail,
without making explicit reference to the asymptotic phase pdf’s.
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D. Detailed balance

The detailed balance condition holds(asymptotically) for each of the weak scattering pro-
cesses we have described. This result follows essentially from the condition being satisfied in the
case of pureK-scattering, and the ways in which the weak scattering processes can be represented
as functions of an underlyingK-scattering process. To complete the analysis we shall need the
following result.

Lemma 6.1: If a (complexvalued/n-dimensional) Ito diffusion process xt
i satisfies detailed

balance (at time t ) then so does the transformed process xt
î = fsxt

id, i.e. (in contrast to the drift), if

xt
i has vanishing current then so does xt

î.

Proof: Applying Ito’s formula to the componentsxî we find

bî = Pi
îbi + 1

2Pij
î Si j , Sî ĵ = Pi

îPj
ĵSi j , s6.16d

wherePi
î denotes the transition matrix of partial derivatives]xî /]xi, with a corresponding notation

for second derivatives. Attention should be paid to the nontensorial nature of the second term in
the drift transformation, which is characteristic of the Ito calculus. The probability density trans-

forms asr̂J=r whereJ is the Jacobian ofP, i.e., «î1î2¯înJ=«i1i2¯inPi1
î1Pi2

î2
¯Pin

în. Using the identity

FIG. 5. Phase pdf’s derived from the generalizedK-scattering model,a=0.1, 1.0, 10.0.

FIG. 6. Phase pdf’s derived from the generalizedK-scattering model,a=0.5, 1.0, 1.5, 2.0.
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] j log J; P
ĵ
k
Pjk

ĵ and the relation(4.6) we deduce the current transformationVî =Pi
îVi, i.e., the

current transforms as a vector. The equivalent holomorphic/antiholomorphic representation fol-
lows, via a complex change of coordinates.[Compare Field(2003) for an account of the geometri-
cal structure of the transformations in drift and current involved here.] h

It is known that theK-scattering amplitudect (asymptotically) satisfies detailed balance, as
evident from the compound representation(2.7) and the equilibrium condition(Field and Tough,
2003b). As a consequence of Lemma 6.1, the relations(3.2), (3.3), (3.5) and the independence of
the processesxt, gt we obtain the following result.

Corollary 6.2: The vector scattering processessxt ,Zt ,Qtd in cases (a)–(c) each satisfy the
condition of detailed balance, asymptotically.

Alternatively, detailed balance can be shown by explicit calculation using(4.6) and the ex-
pressions for the asymptotic distributions given above. In the presence of Doppler(Field and
Tough, 2003b) detailed balance is no longer satisfied, and the currentV amounts to a(rigid)
rotation of the ArgandC-plane at a corresponding angular frequency.

VII. DISCUSSION

TheK-distribution provides a useful model of the non-Gaussian statistics of strongly scattered
radiation with a uniform distribution of phase. In recent work(Field and Tough, 2003a, 2003b) a
description of theK-scattering process in terms of SDEs has been developed that makes direct
contact with a simple underlying random walk model of scattering. In this paper we have extended
this analysis to models of weak scattering, in which the distribution of phase is nonuniform.

The K-scattering process can be derived from an isotropic random walk with a fluctuating
number of steps. To incorporate a nonuniform distribution of phase we consider a random walk on
which a preferred direction or bias has been imposed. In the case where the random walk has a
large, but fixed, number of steps the Rice process emerges as a model for weak scattering. We
have analyzed the phase distribution associated with this model, and established the connection
between its random walk formulation and a description in terms of SDEs.

The extension of the Rice model to the non-Gaussian regime is effected when we allow the
number of steps in the biased random walk to fluctuate. We have shown how this leads to the
generalizedK-scattering process discussed in Jakeman and Tough(1987) and have made contact
between this model and the homodynedK-scattering process. In each case we have characterized
the associated distribution of phase in detail, and have developed a description in terms of SDEs
and their equivalent Fokker–Planck equations. This complements the earlier dynamical description
of K-scattering(Field and Tough, 2003a, 2003b).

The results have implications for detection schemes where the signal behavior(represented by
the coherent offset in the resultant amplitude) can, to a reasonable extent, be modeled in the
context of ambientK-distributed noise(cf. the results reported in Sec. IV of Field and Tough,
2003a). The results of Sec. V indicate a method for anomaly detection based on departures in the
geometry of the resultant amplitude fluctuations from that expected in the pureK-scattering case.
The results should find application in adaptive imaging problems, in the denoising of optical
images(signal separation from noise, i.e., extraction of%t from Ct) and anomaly detection in radar
backscatter where a(coherent) reflection contribution is involved(cf. Jakeman and Tough, 1987).
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The generalized Stieltjes transform and its inverse
John H. Schwarz
California Institute of Technology, Pasadena, California 91125

(Received 3 June 2004; accepted 16 September 2004; published online 23 December 2004)

The generalized Stieltjes transform(GST) is an integral transform that depends on
a parameterr.0. In previous work a convenient form of the inverse transforma-
tion was derived for the caser=3/2. This paper generalizes that result to allr
.0. It is a well-known fact that the GST can be formulated as an iterated Laplace
transform, and that therefore its inverse can be expressed as an iterated inverse
Laplace transform. The form of the inverse transform derived here is a one-
dimensional integral that is considerably simpler. ©2005 American Institute of
Physics.[DOI: 10.1063/1.1825077]

I. INTRODUCTION

In Ref. 1 we encountered the integral equation

gszd =E
0

`

sz2 + m2d−3/2fsmddm, uargzu , p/2, s1d

wheregszd was a known function, and we needed to solve forfsmd. That paper proved that ifg has
suitable analyticity and asymptotic properties, which were satisfied for the specific function of
interest, then

fsmd = −
im2

p
E

0

p

cosugs− im cosuddu. s2d

This result is reviewed in Ref. 2.
By a change of variables, Eq.(2) can be rewritten in the form

fsmd =
m

pi
E

−im

im z

Îm2 + z2
gszddz. s3d

Then lettingy=m2 andz=z2, as well asFsyd=s1/2mdfsmd andGszd=gszd, we obtain

Gszd =E
0

`

sy + zd−3/2Fsyddy, uargzu , p s4d

and

Fsyd =
1

4pi
E

Cy

Gszd
Îy + z

dz. s5d

The contourCy starts and ends at −y and encloses the origin in the counterclockwise sense.
It is convenient to have ay-independent contour, so lettingz=wy we obtain
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Fsyd =
1

4pi
ÎyE

C

Gsywd
Î1 + w

dw, s6d

whereC is a contour that starts and ends at the pointw=−1 enclosing the origin in the counter-
clockwise sense. It could be chosen to be the unit circle, for instance. Note that it is not really a
closed contour, sinceGszd has a branch cut running along the negative real axis. An integration by
parts allows this to be rewritten in the form

Fsyd = −
1

2pi
y3/2E

C
Î1 + wG8sywddw. s7d

In this paper, we will formulate and prove a one-parameter generalization of the preceding
result. Specifically, we claim that the integral transform

Gszd =E
0

`

sy + zd−rFsyddy, uargzu , p s8d

has as its inverse transform

Fsyd = −
1

2pi
yrE

C
s1 + wdr−1G8sywddw. s9d

This integral converges forr.0. The special case discussed above corresponds tor=3/2. The
counterpart of Eq.(6), obtained by integration by parts, namely

Fsyd =
1

2pi
sr − 1dyr−1E

C
s1 + wdr−2Gsywddw, s10d

is less general, since it is only valid forr.1. This is allowed in ther=3/2 case, of course.
We should note for the record what is being assumed aboutF andG. Specifically,Fsyd, which

is only defined on the positive real axis, is allowed to be an arbitrary distribution(or “generalized
function”). We require that there exists a numbera with 0,a,r such thatuey1

y2ya−rFsyd dyu is
bounded by a number independent ofy1 and y2 for all 0,y1,y2. The functionGszd is then
holomorphic throughout the cut planeuargzu ,p, and there exists a positive real numberb such
that uzb Gszdu is bounded at infinity.

The r=1 case of Eq.(8), known as the Stieltjes transform, is discussed in Widder’s classic
treatise on the Laplace transform.3 The only other cases considered by Widder are positive integer
values ofr, which are related to ther=1 case by differentiation. Following Ref. 4, we refer to the
case of arbitraryr as the generalized Stieltjes transform(GST). (In Ref. 5 it is called a Stieltjes
transform of indexr.) The formula for the inverse GST in Eq.(9) does not seem to have been
found previously. Certainly, it does not appear in Refs. 3–5 or 6.

Much of the literature on the GST is concerned with the asymptotic behavior ofGszd for large
uzu.7 We will not address that topic here. As it happens, in Ref. 1 we were interested in deducing
the asymptotic behavior ofF associated with a givenG.

In the special caser=1 the transform in Eq.(8) reduces to the Stieltjes transform

Gszd = SzfFg =E
0

` Fsyd
y + z

dy. s11d

Since the Stieltjes transform is well understood, this case provides an instructive test of the
proposed inverse transform. Settingr=1 in Eq. (9) gives an expression that can be integrated
explicitly to give
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Fsyd = lim
e→0+

1

2pi
sGs− y − ied − Gs− y + iedd . s12d

Given the stated analytic and asymptotic properties ofGszd, it is a simple consequence of
Cauchy’s theorem that this is the correct solution of Eq.(11) for y.0.

In order to convince oneself that Eqs.(8) and(9) are plausible for allr.0, it is instructive to
consider a simple example. Specifically, if one chooses

Fsyd = yn−1, s13d

then the integral in Eq.(8) converges for 0,n,r and gives

Gszd = zn−rBsn,r − nd, s14d

whereBsu,vd is the Euler beta function. It is straightforward to verify that this pair of functions
also satisfies Eq.(9).

II. OTHER VERSIONS OF THE INVERSE TRANSFORM

The change of variablesz=wy allows us to rewrite Eq.(9) in the alternative form

Fsyd = −
1

2pi
E

Cy

sy + zdr−1G8szddz. s15d

As before, the contourCy starts and ends at the pointz=−y, encircling the origin in the counter-
clockwise sense. Ifr.1, an integration by parts brings Eq.(15) to the form

Fsyd =
1

2pi
sr − 1dE

Cy

sy + zdr−2Gszddz. s16d

Since this is only well-defined forr.1, Eqs.(9) and (15) are more general than Eq.(16).
Let us define the quantity that appears on the right-hand side of Eq.(12) to be

Dstd =
1

2pi
lim

e→0+
sGs− t − ied − Gs− t + iedd, t . 0. s17d

We showed thatFsyd=Dsyd whenr=1, but this is not the case for other values ofr. By shrinking
the contourCy down to the cut, Eq.(16) takes the form

Fsyd = sr − 1dE
0

y

sy − tdr−2Dstddt. s18d

In similar fashion, Eq.(15) gives rise to

Fsyd =E
0

y

sy − tdr−1D8stddt. s19d

However, these formulas are only correct if the behavior ofGstd near the origin is such that these
integrals exist. The contour integral versions of these formulas are more general, since they do not
have this restriction.

Equations(18) and(19) have the structure of Abel transforms. The inverse Abel transform is
well known and can be used to give a formula for the discontinuity across the cut,Dstd, in terms
of the original(generalized) function Fsyd. A version that is suitable ifr,2 andFs0d=0 is
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Dstd =
sinpr

ps1 − rdE0

t

st − yd1−rF8syddy. s20d

This gives the known result forr=1, namelyDstd=Fstd. It can be checked for the simple example
Fsyd=yn−1 discussed earlier.

III. PROOF OF THE MAIN RESULT

Let us review how the GST is related to the Laplace transform, for which we use the follow-
ing notation:

LxfFg =E
0

`

e−xyFsyddy. s21d

Inserting the identity

sy + zd−r =
1

GsrdE0

`

xr−1e−xsy+zd dx s22d

into Eq. (8) gives

Gszd =
1

GsrdE0

`

xr−1e−xzLxfFgdx =
1

Gsrd
Lzfxr−1LxfFgg. s23d

This recasts Eq.(8) as a Laplace transform of a Laplace transform. In particular, settingr=1, this
gives the well-known result that the Stieltjes transform is the square(in the operator sense) of the
Laplace transform, i.e.,S=L2.

Equation(23) implies that

LxfFg = Gsrdx1−rLx
−1fGg, s24d

whereL−1 denotes an inverse Laplace transform. A second inverse Laplace transform gives the
formal inversion of Eq.(23),

Fsyd = GsrdLy
−1fx1−rLx

−1fGgg. s25d

This can be made very explicit by using the standard contour integral realization of the inverse
Laplace transformation.5 The new claim is that Eq.(25) can be simplified to take the form of Eq.
(9).

Let us now carry out some similar manipulations of Eq.(9). Substituting

G8sywd = −E
0

`

dt e−tywtLt
−1fGg s26d

into Eq. (9) and taking the Laplace transform of both sides recasts Eq.(9) in the form

LxfFg = Gsr + 1d
1

2pi
E

C
dws1 + wdr−1E

0

`

dtsx + twd−r−1tLt
−1fGg. s27d

Comparing Eqs.(24) and (27), we see that their equivalence requires the identity

tr

2pi
E

C
dws1 + wdr−1sx + twd−r−1 = x−1−rdsx − td, s28d

or equivalently
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r

2pi
E

C
dws1 + wdr−1sx + twd−r−1 = x−rdsx − td. s29d

Another way of understanding the necessity of Eq.(29) is to consider the special caseFsyd
=dsy− td. In this case the GST isGszd=st+zd−r. The inverse transform Eq.(9) for this choice of
Gszd corresponds precisely to Eq.(29). This remarkable equation, which is required to hold forx,
t.0, is the heart of the matter. Its proof, which is rather nontrivial, is presented in the next section.

IV. REPRESENTATION OF A DELTA FUNCTION

This section proves the key formula, namely Eq.(29). Consider the left-hand side of Eq.(29),

xrsx,td =
r

2pi
E

C
dws1 + wdr−1sx + twd−r−1, s30d

wherex,t.0 andC is the contour shown in Fig. 1. By making the change of variablesw→1/w,
it is easy to prove thatxrsx,td=xrst ,xd. For t.x the singularity structure is shown in Fig. 1(a),
and the contour can be pushed off to infinity, giving zero for the integral. Fort,x, the contour
encloses no singularity[see Fig. 1(b)], so the result is again zero, as required byx↔ t symmetry.

Sincexrsx,td vanishes fortÞx, it must be some sort of distribution concentrated att=x. If we
assume that it is proportional to a delta function, i.e.,fsxddsx− td, it is easy to derivefsxd. Inte-
grating overt from 0 to y, gives

fsxdusy − xd =
1

2pi
E

C

dw

w
s1 + wdr−1fx−r − sx + ywd−rg . s31d

The first term on the right-hand side is an elementary contour integral and givesx−r. The second
term is also easily evaluated by Cauchy’s theorem. It gives −x−r if x.y and zero ify.x. Thus we
deduce thatfsxd=x−r, and hence

xrsx,td = x−rdsx − td = t−rdsx − td. s32d

Equation(32) is the correct result, but the derivation given above is not rigorous. It assumes
that the distribution is proportional to a delta function, and that it does not involve any derivatives
of delta functions. A more careful analysis that is sensitive to such terms if they are present
involves checking the proposed answer by integrating both sides against the test functione−ty, i.e.,
comparing the Laplace transform of both sides of the equation. Thus we need to show that

E
0

`

dt xrsx,tde−ty = x−re−xy. s33d

Evaluating the Laplace transform of Eq.(30) gives (after some simple manipulations)

E
0

`

dt xrsx,tde−ty =
r

2pi
yrE

C
dws1 + wdr−1Isxywd, s34d

where

FIG. 1. The contourC starts and ends at the pointw=−1 enclosing the origin in the counterclockwise sense. Three possible
branch cut configurations are depicted.
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Isud = euE
u

`

e−vv−r−1 dv. s35d

In order to re-express this function in a more convenient form, we first note that

I8sud = Isud − u−r−1. s36d

Let us now assume thatr is not an integer, which is the case of most interest. This equation
is then solved by an expression of the form

Isud = I1sud + u−rI2sud, s37d

whereI1sud and I2sud are regular atu=0. The first term isI1sud=Gs−rdeu. Its contribution to Eq.
(34) is zero, since there is no singularity inside the contour. The function that matters isI2, which
satisfies the differential equation

uI28sud − su + rdI2sud + 1 = 0. s38d

Substituting a power series expansion,

I2sud = o
n=0

`

cnu
n, s39d

one obtains the recursion relationsn+1−rdcn+1=cn. Thus, sincec0= I2s0d=1/r, we conclude that

cn =
Gs1 − rd

rGsn + 1 −rd
. s40d

To determine the contribution of each term in Eq.(39) to Eq. (34), we need to evaluate

1

2pi
E

C
dws1 + wdr−1wn−r = −

sinpsn − rd
p

Bsn − r + 1,rd =
s− 1dn

rcnn!
. s41d

Combining these results, thecn factors cancel, and we learn that

E
0

`

dt xrsx,tde−ty = x−ro
n=0

`
s− xydn

n!
= x−re−xy, s42d

which is the result we set out to prove. Even though this derivation needs to be modified whenr
is a positive integer, the result clearly is valid in that case as well. This completes the proof of Eq.
(33) and hence of the inverse transform Eq.(9).

The derivation of Eq.(32) (and hence of the inverse GST) can be simplified considerably by
using the alternative representation of the inversion formula presented in Eq.(19) together with
well-known properties of hypergeometric functions. Specifically, using

Isz,r,r8d =E
−1

0

dws1 + wdr−1s1 + zwd−p8 =
1

r
s1 − zdr−r8

2F1sr,r − r8 + 1;r + 1;zd s43d

one can show that

xrsx,td =
1

2pi
rx−r−1 lim

e→0+
FISr,r + 1,

t

x
+ ieD − ISr,r + 1,

t

x
− ieDG =

1

p
x−r lim

et

sx − td2 + setd2

= x−rdsx − td. s44d

The restriction on the behavior ofGszd at the origin mentioned previously can be circumvented by
introducing a modified functionGdszd=Gsz+dd, d.0, and lettingd→0 in the final result. The
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advantage of this approach is that it is applicable to a wider class of distributions on the real line,
namely those that can be written as the difference of the limiting values on the real axis from
above and below of two functions, holomorphic in the upper and lower half-plane, respectively.8,9

V. AN ALTERNATIVE DERIVATION

In this section we present a simpler, though less general, derivation of the inverse transform.
It follows from Cauchy’s theorem and the required analytic and asymptotic properties ofGszd that

Gszd =E
0

` Dstd
z+ t

dt, s45d

whereDstd is defined in Eq.(17). The validity of this formula requires thatDstd is not too singular
ast→0, so that the integral exists. This is a significant restriction, since ifF,yn−1 with n.0 for
smally, thenGszd,zn−r for smallz. Thus one would need thatr,n+1. No such assumption has
been made previously, which is why the derivation in this section is less general.

Equation (45) is precisely a Stieltjes transform,G=SfDg. We noted earlier that this is an
iterated Laplace transform,S=L2. Therefore,

Lx
−1fGg = LxfDg. s46d

Comparing this with Eq.(24), which we obtained from Eq.(8), we learn that

LxfFg = Gsrdx1−rLxfDg. s47d

Now usingLxftn−1g=Gsnd x−n, this becomes

LxfFg = sr − 1dLxftr−2gLxfDg. s48d

By the convolution theorem, this implies that

Fsyd = sr − 1dE
0

y

sy − tdr−2Dstddt, s49d

which is Eq.(18). The alternative form in Eq.(19) extends the range of validity forr, but is even
more restricted in its requirements for the behavior ofDstd at the origin. As we pointed out in Sec.
II, there is no such issue for the corresponding contour integrals.

VI. CONCLUSION

In this paper we considered the generalized Stieltjes transform

Gszd =E
0

`

sy + zd−rFsyddy, uargzu , p s50d

for r.0 and proved that it has as its inverse transform

Fsyd = −
1

2pi
yrE

C
s1 + wdr−1G8sywddw. s51d

The integration contour is described in the text.

ACKNOWLEDGMENTS

The author is grateful to Y. H. He, M. Spradlin, and A. Volovich for their collaboration in Ref.
1, which contains ther=3/2 case of the result described here. This work was supported in part by
the U.S. Department of Energy under Grant No. DE-FG03-92-ER40701.

013501-7 The generalized Stieltjes transform J. Math. Phys. 46, 013501 (2005)

                                                                                                                                    



1Y. H. He, J. H. Schwarz, M. Spradlin, and A. Volovich, Phys. Rev. D67, 086005(2003).
2J. H. Schwarz, hep-th/0312283, to appear in a memorial volume for Ian Kogan.
3D. V. Widder,The Laplace Tansform(Princeton University Press, Princeton, NJ, 1946).
4A. Erdelyi, Tables of Integral Transforms(McGraw-Hill, New York, 1954), Vol. 2.
5A. I. Zayed,Handbook of Function and Generalized Function Transformations(CRC Press, New York, 1996).
6O. P. Misra and J. L. Lavoine,Transform Analysis of Generalized Functions(North-Holland, Amsterdam, 1986).
7P. D. Tuan and D. Elliott, Math. Comput.26, 213 (1972); J. P. McClure and R. Wong, J. Inst. Math. Appl.22, 129
(1978); R. Wong, J. Math. Anal. Appl.72, 740(1979); J. L. Lopez, and C. Ferreira, Stud. Appl. Math.108, 187(2002).

8H. J. Bremermann,Distributions, Complex Variables, and Fourier Transforms(Addison-Wesley, Reading, MA, 1965).
9H. G. Tillmann, Math. Z.77, 106 (1961).

013501-8 John H. Schwarz J. Math. Phys. 46, 013501 (2005)

                                                                                                                                    



Nonlinear dissipative eigenvalue problems with large
initial conditions

Vassilis G. Papanicolaoua)

Department of Mathematics, National Technical University of Athens, Zografou Campus,
157 80, Athens, Greece

Paul K. Newtonb)

Department of Aerospace Engineering and Center for Applied Mathematical Sciences,
University of Southern California, Los Angeles, California 90089-1191

(Received 11 June 2004; accepted 24 September 2004; published online 3 January 2005)

We consider the initial value problemu9+fstdu8+B2u2p+1=0, t.0, us0d=g,
u8s0d=0, wherep is a positive integer,B, g are positive parameters, andfstd is a
positive function. The differential equation describes a(dissipative) oscillatory sys-
tem whose amplitudeAstd decreases in time. For a given timeb.0, our task is to
compute the asymptotics ofAsbd, as g→`. In the case where
f[C1s0,`dùL1s0,«d, we give an explicit answer. We also discuss the case where
fstd=2/t. This case is of particular interest since it is related to the nonlinear
Schrödinger equation in three dimensions. ©2005 American Institute of
Physics.[DOI: 10.1063/1.1829154]

I. INTRODUCTION

Before introducing our main problem, let us first consider the system

u9std + B2ustd2p+1 = 0, t . 0, s1.1d

us0d = g, u8s0d = 0, s1.2d

wherepù1 is an integer, andB, g.0. This is a Hamiltonian system since we have conservation
of energy, namely

Estd =
def

ustd2p+2 +
p + 1

B2 u8std2 = g2p+2. s1.3d

Henceustd oscillates with constant amplitudeg. From(1.3) we get that the periodT of oscillation
is (notice thatusT/4d=us3T/4d=0 andusT/2d=−g)

T = Tsgd =
cp

B

1

gp , s1.4d

where
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cp = 4Îp + 1E
0

1 dx
Î1 − x2p+2

=
2Îp

Îsp + 1d

GS 1

2p + 2
D

GS p + 2

2p + 2
D s1.5d

(Gs·d is, of course, the Gamma function). We see thatT depends ong, in contrast to the linear case
p=0, whereT=2p /B. Here we are interested in

u9 + fstdu8 + B2u2p+1 = 0, s1.6d

where

fstd ù 0.

Problems of this general type arise when asking about the long time effects of dissipation on
Hamiltonian systems. Radially symmetric standing wave solutions to the nonlinear Schrödinger
equation arising from hydrodynamic stability theory fall in this category after the time-oscillations
are factored out and one is left with a spatial eigenvalue problem with a nonconstant coefficient.
In this case, the radial variable plays the role of time. Now(1.3) becomes

Estd = ustd2p+2 +
p + 1

B2 u8std2 = g2p+2 −
2sp + 1d

B2 E
0

t

fssdu8ssd2ds, s1.7d

which, of course, implies loss of energy. In fact, one can define the amplitude of oscillation as

Astd = Estd1/s2p+2d, s1.8d

so that we can say that Eq.(1.6) describes an oscillatory system with decreasing amplitudeAstd,
as shown in Fig. 1 for a symmetric single well potential of the type considered in this paper.
Assuming the initial conditions(1.2) (in the sense thatus0+d=g, u8s0+d=0, sincefstd may not be
defined att=0), we have

Es0d = g2p+2, As0d = g. s1.9d

If 0= t08, t18, t28,¯ are the(positive) zeros ofu8std, then

Astn8d = uustn8du = s− 1dnustn8d.

From the analysis done in the authors’ earlier work,1 it follows that, if N is a fixed integer, then,
asg→`,

FIG. 1. Energy decay in a single well potential.
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utn8 − nTsgd/2u , Cg−2p, n = 0,1,2,…,N, s1.10d

whereC.0 is a constant andTsgd is the period of the conservative case, as given in(1.4) and
(1.5). Hence, for a fixednù0,

tn+18 − tn8 =
cp

2B

1

gp + Osg−2pd asg → `. s1.11d

The problem considered in this article can now be stated. For the system(1.6) and (1.2), if
b.0 is a given time, determine the(leading) asymptotic behavior ofAsbd, asg→`. In Sec. II we
assume thatf[C1s0,`dùL1s0,«d, for «.0 (i.e., f is locally integrable), and we show that

Asbd = g expF−
1

p + 2
E

0

b

fstddtG + osgd asg → `.

In Sec. III we examine the case of a nonintegrablefstd, namely

fstd =
2

t
.

Here the formula of Sec. II reduces toAsbd=osgd, asg→`. Hence one expects that the analysis
of this case, in order to determine the exact asymptotics ofAsbd, is more challenging than the one
needed in Sec. II. Furthermore this case has a particular interest since it is related to the radial
nonlinear Schrödinger equation. The results presented in this section are based on the Wentzel–
Kramer–Brillouin (WKB) approximation.2

II. THE CASE OF A LOCALLY INTEGRABLE f„t…

As already mentioned, in this section we consider the initial value problem

u9 + fstdu8 + B2u2p+1 = 0, t . 0, s2.1d

us0d = g, u8s0d = 0, s2.2d

wherepù1 is an integer,B.0, andfstdù0 is continuously differentiable in(0, `) and locally
integrable, i.e., integrable near 0. Notice that the(global) existence and uniqueness ofustd follows
easily from(1.7) (see, e.g., Ref. 3).

Differentiating the two sides of the first equation of(1.7) and using(2.1) we obtain

E8std =
2sp + 1d

B2 su8u9 + B2u2p+1u8d = −
2sp + 1d

B2 fstdsu8d2, s2.3d

hence

E8std ù −
2sp + 1d

B2 fstdsu8d2 − 2fstdu2p+2 = − 2fstdEstd,

or

E8std + 2fstdEstd ù 0.

Thus

d

dt
fe2FstdEstdg ù 0,

where
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Fstd =E
0

t

fstddt, s2.4d

and therefore by integrating and using(1.9)

Estd ù g2p+2e−2Fstd, s2.5d

which in view of (1.8) can be also written as

Astd ù ge−Fstd/sp+1d s2.6d

(independently ofB).
We are now ready for the main result:
Theorem 1: For the initial value problem (2.1) and (2.2) we have

Asbd = ge−Fsbd/sp+2d + osgd as g → `, s2.7d

where b.0 is a fixed number, Astd is defined in (1.7) and (1.8), andFstd is defined in (2.4).
Proof: Let 0=t08, t18, t28,¯ be the(positive) zeros ofu8std. For anyg.0 there is ann

=nsgdù0 such that

t2n8 ø b , t2n+28 ,

wheret2n+28 ø` (here the convention is that ift2n8 or t2n+18 , then we sett2n+28 =`). If g is sufficiently
large, it follows from(1.10) that t2n+28 ,`. We set

b* = t2n8 s2.8d

(b* depends ong andb; in particularb* øb). Thususb*d is a local maximum ofustd and

usb*d = Asb*d.

For the sake of completeness we set 0* =0. Notice that(1.11) implies that, asg→`,

b − b* = Osg−pd, s2.9d

which, in turn gives(see(1.7), (1.8), and(2.3))

Asbd − Asb*d = Osg1−pd. s2.10d

Formula(2.6) suggests that we should look at the limit

lim
g→`

usb*d
g

.

But, since we do not even know whether this limit exists or not, we start with the upper and lower
limits

lmaxsbd = limsup
g→`

usb*d
g

, lminsbd = lim inf
g→`

usb*d
g

.

Of course(since 0* =0),

lmaxs0d = lmins0d = 1

and, furthermore, sinceb1,b2 impliesusb1
*dùusb2

*d, we have thatlmaxsbd ,lminsbd are decreasing
functions ofb. Using (2.6) and (2.9), and the fact thatEstd is decreasing, we get
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e−Fsbd/sp+1d ø lminsbd ø lmaxsbd ø 1.

Now let Q+=hq1,q2,q3,…j be the set of positive rationals. We choose a sequencehgnjnù1 such
that us0d=gn (see(2.1) and (2.2)), gn→`, and the limit

lsq1d = lim
n

usq1
*d

gn
s2.11d

exists. By choosing a subsequence ofhgnjnù1 (which we also denote bygn) we can make the limit

lsq2d = lim
n

usq2
*d

gn

exist too. We can continue taking subsequences, and finally use a standard diagonal process, to
conclude that there is a sequencehgnjnù1, gn→`, such that the limits

lsqd = lim
n

usq*d
gn

, q [ Q+, s2.12d

exist.
We, next, want to estimateusq1

*d−usq2
*d, whenq1 andq2 are given rationals with

0 ø q1 , q2 ø M s2.13d

(without loss of generalityM can be assumed rational). Let t2m8 ,t2m+18 ,t2m+28 be consecutive zeros of
u8std such that

q1
* ø t2m8 , t2m+28 ø q2

* . s2.14d

We set

Tm = t2m+28 − t2m8

(Tm is the temporal duration of thesm+1dth “cycle”; in the Hamiltonian casefstd;0, Tm is, of
course, the period). We need upper and lower bounds forTm, valid for largeg. We can consider the
solutionvstd=ust+ t2m8 d of

v9 + fst + t2m8 dv8 + B2v2p+1 = 0,

so thatvs0d[ fusq2
*d ,usq1

*dg. Thanks to(2.6), formula (1.11) is valid for vstd. Using these obser-
vations we get that

Tmin ø Tm ø Tmax, s2.15d

where

Tmin =
cp

B

1

usq1
*dp + Osgn

−2pd, Tmax=
cp

B

1

usq2
*dp + Osgn

−2pd. s2.16d

We also need to estimate the “drop” ofustd on each “cycle,” namely the quantity

Dm = ust2m8 d − ust2m+28 d.

A slight adaptation of the analysis done in Ref. 1 gives(since fst2m+28 d=fst2m8 d+f8st2m8 d
3st2m+28 − t2m8 d+ost2m+28 − t2m8 d)
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ust2m+28 d = ust2m8 dF1 −
fst2m8 dAp

B
ust2m8 d−p + Osust2m8 d−2pdG asg → `, s2.17d

where

Ap =
4

Îp + 1
E

0

1
Î1 − x2p+2dx =

Îp

sp + 1d3/2 ·

GS 1

2p + 2
D

GS3p + 4

2p + 2
D . s2.18d

Hence, invoking(2.6), (2.13), (2.14), and(2.17) gives

Dm =
fst2m8 dAp

B
ust2m8 d1−p + Osg1−2pd asg → `,

and, therefore

Dmin ø Dm ø Dmax, s2.19d

where

Dmin = ApB
−1usq1

*d1−p min
q1

*øtøq2
*
fstd + Osgn

1−2pd,

Dmax= ApB
−1usq2

*d1−p max
q1

*øtøq2
*
fstd + Osgn

1−2pd. s2.20d

Finally, let N=Nsq1,q2d be the number of “cycles” fromt=q1
* to t=q2

* . We have

q2
* − q1

*

Tmax
=
def

Nmin ø N ø Nmax=
defq2

* − q1
*

Tmin
, s2.21d

where, by(2.16) and (2.9),

Nmin =
Bsq2 − q1d

cp
usq2

*dpf1 + Osgn
−pdg, Nmax=

Bsq2 − q1d
cp

usq1
*dpf1 + Osgn

−pdg. s2.22d

We are now ready to estimateusq1
*d−usq2

*d. We have

NminDmin ø usq1
*d − usq2

*d ø NmaxDmax,

and thus, by(2.20) and (2.22), and the fact thatAp/cp=sp+2d−1 (this follows from (1.5) and
(2.18))

fst2m8 dsq2 − q1d
p + 2

usq2
*dp

usq1
*dp−1f1 + Osgn

−pdg ø usq1
*d − usq2

*d ø
fst2m8 dsq2 − q1d

p + 2

usq1
*dp

usq2
*dp−1f1 + Osgn

−pdg

(notice that this estimate isB-free). If we divide the above inequality bygn and then take limits,
asn→`, we obtain(see(2.12))

minq1øtøq2
fstd

p + 2

lsq2dp

lsq1dp−1sq2 − q1d ø lsq1d − lsq2d ø
maxq1øtøq2

fstd

p + 2

lsq1dp

lsq2dp−1sq2 − q1d,

s2.23d

whereq1 andq2 are rationals inf0,Mg. Since
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e−FsMd/sp+1d ø lsq2d ø lsq1d ø 1,

one consequence of(2.23) is that there is a constantC.0 such that

ulsq1d − lsq2du ø Cuq1 − q2u. s2.24d

Now let bP f0,Mg be a real number andq1,q2 rationals so thatq1øjøq2. Then

lsq2d ø lim inf
n

usb*d
gn

ø lim sup
n

usb*d
gn

ø lsq1d.

But (2.24) implies thatulsq1d−lsq2du can be made as small as we wish. Therefore the limit

lim
n

usb*d
gn

exists and the function

lsbd = lim
n

usb*d
gn

is decreasing and continuous for allb[ s0,`d. Furthermore(2.23) is also valid for irrational
numbersq1,q2.0. If we divide all terms of(2.23) by q2−q1 and let q2→q1, we obtain the
surprising formula

l8sbd = −
fsbd
p + 2

lsbd,

and this, together with the equationls0d=1, give

lsbd = e−Fsbd/sp+2d.

In particular,

lsq1d = e−Fsq1d/sp+2d.

Sinceq1 and hgnjnù1 of (2.11) are arbitrary, it follows that,

lim
g→`

usb*d
g

= e−Fsbd/sp+2d,

and the proof is finished in view of(2.10) and the fact thatAsb*d=usb*d.
Remarks:
1. The statement of the theorem is quite surprising. Note that the result is independent ofB,

hence one expects that the theorem should extend to the case

u9 + fstdu8 + rstd2u2p+1 = 0, t . 0,

us0d = g, u8s0d = 0,

where rstdùB.0. Notice that if p=0 (linear case) and rstd is, e.g., periodic, then, even for
fstd;0, we have exponential decay if 0 is in theL2sRd-spectrum of the operatorL defined by
Lu=−u9−rstd2u.

2. The theorem remains true if instead of(2.21) we had

u9 + fstdu8 + B2u2p+1 + Psud = 0,

whereP is a polynomial of degreeø2p.
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3. It is interesting to attempt a comparison of the statement of Theorem 1 with the linear case
sp=0d:

u9 + fstdu8 + B2rstd2u = 0, t . 0,

us0d = g, u8s0d = 0.

Here we assume thatrstd.0 and thatB is a large(positive) parameter. Then the WKB approxi-
mation (see, e.g., Ref. 2 or 4) implies that generically

Asbd = ge−Fsbd/2 + os1d asB → `,

which mirrors the statement of Theorem 1.5

III. A PARTICULAR CASE OF SPECIAL INTEREST

Consider now the initial value problem

u9 +
2

t
u8 + B2u2p+1 = 0, t . 0, s3.1d

us0d = g, u8s0d = 0, s3.2d

where, as before,pù1 is an integer andB.0 (notice that,u9+s2/tdu8 is the three-dimensional
radial Laplacian ofu). Again the boundary conditions must be interpreted in the right way, i.e., as
limits when t→0+. In comparison with(1.6) we have that

fstd =
2

t
s3.3d

and, hence

Fstd =E
0

t

fstddt = 2E
0

t dt

t
= `.

Proposition 1:The problem (3.1) and (3.2) has a unique solution for all t.0.
Proof: We first notice that(3.1) and (3.2) is equivalent to the integral equation

ustd = g − B2E
0

t

tf1 − st/tdgustd2p+1dt. s3.4d

We must, therefore, look at the map

Ffugstd = g − B2E
0

t

tf1 − st/tdgustd2p+1dt,

mappingCf0,«g into itself, for any given«.0. It is easy to see that, if« is chosen sufficiently
small, thenF is a contraction, namely

iFfug − Ffvgi` ø ciu − vi`,

wherec,1. HenceF has a unique fixed pointu in Cf0,«g which is the unique solution of(3.4)
in f0,«g (and it is automatically smooth). Then the global existence and uniqueness follows by the
fact that the energy is decreasing(see(1.7)). j

In view of Theorem 1 one can infer that, ifb.0 is a fixed number, then
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Asbd = osgd asg → `. s3.5d

This estimate is somehow vague. Thus, we would like to get a more precise estimate forAsbd or
equivalently(see(2.8)) usb*d. This question requires an approach very different from the one
presented in Sec. II.

Let us first look at the linear problem

w9 +
2

t
w8 + L2rstd2w = 0, t . 0, s3.6d

ws0d = 1, w8s0d = 0, s3.7d

whererstdù0, such that the zeros ofrstd form a discrete set andrs0dÞ0 (if rstd;1, the solution
of the above problem isLt−1 sinsLtd). We are interested in the behavior ofwstd, asL→`.

We set

wstd =
vstd

t
, s3.8d

so that

v9 + L2rstd2v = 0, t . 0. s3.9d

Furthermore the initial conditions(3.7) become

vs0d = 0, v8s0d = 1. s3.10d

The WKB approximation(see, e.g., Ref. 2 or 4) implies that generically

vstd ,

sinFLE
0

t

rstddtG
Lrs0d1/2rstd1/2 , asL → `, s3.11d

hence(see(3.8))

wstd ,

sinFLE
0

t

rstddtG
Lrs0d1/2rstd1/2t

, asL → `, s3.12d

wherewstd is the solution of(3.6) and (3.7).
Now, by setting

ustd = gu1std, s3.13d

(3.1) and (3.2) can be written as

u19 +
2

t
u18 + B2g2pu1

2p+1 = 0, t . 0, s3.14d

u1s0d = 1, u8s0d = 0. s3.15d

If we apply (3.12) to (3.14) and (3.15), we obtain
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u1std ,

sinFBgpE
0

t

uu1stdupdtG
Bgpuu1stdup/2t

, asg → `,

or, due to(3.13),

ustd ,

sinFBE
0

t

uustdupdtG
Bgsp−2d/2uustdup/2t

asg → `, s3.16d

but it should be kept in mind that(3.16) is valid as long as

Astd → ` asg → `. s3.17d

Formula(3.16) implies that, under(3.17),

uustdusp+2d/2 ,
UsinFBE

0

t

uustdupdtGU
Bgsp−2d/2t

asg → `,

or

uustdu ,
UsinFBE

0

t

uustdudtGU2/sp+2d

B2/sp+2dgsp−2d/sp+2dt2/sp+2d asg → `.

Therefore

Asbd ,
gs2−pd/s2+pd

B2/sp+2d ·
1

b2/sp+2d asg → `, s3.18d

as long asAsbd→`, asg→`. We thus have, for example:(a) If p=1, then

Asbd ,
g1/3

B2/3 ·
1

b2/3 asg → `.

(b) If pù2, then

Asbd = Os1d asg → `.

It is worth mentioning that one can arrive at the statement of Theorem 1 by applying the above
WKB analysis to(2.1) and (2.2).
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The paper raises the question of posing the quasiperiodic boundary condition in the
Cauchy problem of partial differential equations. Using the one-dimensional cubic
nonlinear Schrödinger as a simple example, we illustrated the various types of
questions including global well-posedness, spectra of linear operators, and
foliations. © 2005 American Institute of Physics.[DOI: 10.1063/1.1832754]

I. INTRODUCTION

The quasiperiodic boundary condition problem can be posed for a variety of partial differen-
tial equations(PDE) including, e.g., parabolic and hyperbolic equations. Questions that can be
asked include local and global well-posedness, dynamics in phase spaces, and asymptotics, etc.
Here we take a simple PDE–one-dimensional cubic nonlinear Schrödinger equation(NLS), to
study its phase space foliations.

Typical fluid flows are defined on unbounded domain with nondecaying boundary conditions.
For example, the Poiseuille flow or the boundary layer flow has nondecaying boundary conditions
along the longitudinal direction. In fact, turbulence develops along this longitudinal direction. In
many cases, turbulent fluid flows contain both temporal and spatial randomness. Temporal ran-
domness is often caused by temporal chaotic motions. Spatial randomness is often caused by
vortex (energy) cascade or inverse cascade. In such cases, periodic boundary conditions put too
much constraint. Quasiperiodic or more general boundary conditions are more relevant.

The one-dimensional(1D) cubic NLS under periodic boundary conditions is well understood.
It is globally well-posed. Under quasiperiodic boundary conditions, global well-posedness is not
known. Under periodic boundary conditions, Stokes wave solution has a finite number of unstable
eigenvalues. On the other hand, under quasiperiodic boundary conditions, it has infinitely many
unstable eigenvalues dense on an interval. There is no spectral gap. But explicit expressions of the
foliation in phase space can be obtained via a Darboux transformation.

II. FORMULATION OF THE PROBLEM

Consider the 1D cubic nonlinear Schrödinger equation

iqt = qxx + 2uqu2q, s2.1d

whereq is a complex-valued function of two real variablesst ,xd , i =Î−1. We pose a quasiperi-
odic boundary condition with two base frequenciesb1 andb2, b1/b2 is irrational. That is,

q = qst,u1,u2d, u1 = b1x, u2 = b2x,

andq is periodic in bothu1 andu2 with period 2p. Thus

a)Electronic mail: cli@math.missouri.edu
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q = qst,ud = o
k[Z2

qkstdeik·u, u = Su1

u2
D, k = Sk1

k2
D .

It seems that the more natural norm is

iqissd
2 = o

k[Z2

s1 + uku2dsuqku2,

rather than

iqifsg
2 = o

k[Z2

f1 + sk · bd2gsuqku2, b = Sb1

b2
D .

In terms of Fourier transforms,(2.1) can be rewritten as

i
dqk

dt
= −

] H

] qk

,

s2.2d

i
dqk

dt
=

] H

] qk
,

where

H = o
k[Z2

sk · bd2uqku2 − o
k[Z2 U o

k̂[Z2

qk̂qk−k̂U2
s2.3d

= lim
a→+`

1

2a
E

−a

a

fuqxu2 − uqu4gdx. s2.4d

Using (2.4), the NLS(2.1) can be rewritten as

iqt = −
dH

dq
,

s2.5d

iqt =
dH

dq
.

Obviously,

I = o
k[Z2

uqku2 = lim
a→+`

1

2a
E

−a

a

uqu2 dx

is an invariant.

III. WELL-POSEDNESS

Explicitly (2.2) can be written as

iq̇k = − sk · bd2qk + 2 o
k̂,k̃[Z2

qk̂qk̃+k̂qk−k̃. s3.1d

The method of variation of parameters leads to the integral equation
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qkstd = eisk · bd2tqks0d − 2iE
0

t

eisk · bd2st−td o
k̂,k̃[Z2

qk̂qk̃+k̂qk−k̃ dt. s3.2d

Notice that(3.1) bears more resemblance to two-dimensional(2D), rather than 1D, NLS under the
periodic boundary condition. Local well-posedness can be easily established,1 since the nonlinear
term is still locally Lipschitz.

Theorem 3.1 (Local well-posedness):For any q0 [Hssd, sù2, there exists a unique solution
qstd[C0sf0,tg ,Hssdd where t=tsiq0issdd, to the Cauchy problem of (3.1) with initial condition
qs0d=q0. For any fixed t[ f0,tg, qstd is C` in q0.

The interesting open problem is whether or not(3.1) has global well-posedness. On the one
hand, it resembles 2D NLS under periodic boundary condition, therefore, it may not have global
well-posedness. In fact, the first term in the Hamiltonian(2.3) is weaker thanok[Z2uku2uqku2 of the
2D NLS periodic case. Thus the Hamiltonian cannot bound theHs1d norm. On the other hand, it is
still an integrable system, therefore, an infinite sequence of invariants is at one’s disposal.

IV. THE SPECTRUM OF A LINEAR NLS OPERATOR

Setting]x=0 in (2.1), one gets an ODE defined on the invariant complex plane

iqt = 2uqu2q

with all periodic solutions(the so-called Stokes waves)

q = ce−if2c2t+gg. s4.1d

Linearize the NLS in the manner

q = sc + q̂de−if2c2t+gg,

one has

iq̂t = q̂xx + 2c2sq̂ + q̂d.

Let

q̂ = o
k[Z2

q̂kstdeik·u, s4.2d

one gets

i
d

dtS q̂k

q̂−k

D = S2c2 − sk · bd2 2c2

− 2c2 sk · bd2 − 2c2
DS q̂k

q̂−k

D . s4.3d

Let

S q̂k

q̂−k

D = eltSA

B
D , s4.4d

wherel, A, andB are complex constants, then

l = ± sk · bdÎs2cd2 − sk · bd2. s4.5d

Lemma 4.1: The sethk·bjk[Z2 is dense inR.
Proof: This proof is furnished by Banks.2 For any real numberz, let fzg denote the greatest

integer less than or equal toz, and lethzj=z−fzg be the fractional part ofz; then 0ø hzjø1. For
any irrational numbera, it is known that the fractional partshnajn[Z are uniformly distributed over
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the unit interval[0,1]. For any fixedb[R, given anye.0, let k2 be chosen such that

uhk2sb2/b1dj − hb/b1ju , e/b1,

and choosek1=fb/b1g−fk2sb2/b1dg, then

uk1 + k2sb2/b1d − b/b1u = uk1 + fk2sb2/b1dg − fb/b1g + hk2sb2/b1dj − hb/b1ju = uhk2sb2/b1dj − hb/b1ju

, e/b1.

Multiplying by b1, one obtainsuk·bu,e. This proves the lemma. j

Theorem 4.2:The spectrum of the linear NLS operator in Hssd, sù0 is

s = sp ø sc = f− 2c2,2c2g ø iR

wheresp is given by (4.5) and is everywhere dense ins.
Proof: The maximum of the function

z2ss2cd2 − z2d, z[ R

is 4c2. By Lemma 4.1 and the fact that the spectrums is a closed set, we have that

f− 2c2,2c2g ø iR , s.

In terms of the Fourier transform(4.2), the linear NLS operator has the representation given by
(4.3),

Lk = − iS2c2 − sk · bd2 2c2

− 2c2 sk · bd2 − 2c2D .

If l¹ f−2c2,2c2gø iR, then there is an absolute constantC such that

isLk − ld−1i ø C, ∀ k

and this is true even for somek, sk·bd2 might be equal tos2cd2. Thus suchl belongs to the
resolvent set, and

s = f− 2c2,2c2g ø iR.

Let l[s /sp wheresp is the point spectrum given by(4.5), then there is a sequencel j [sp such
that l j →l, and

isLkj
− ld−1i ù 1/ul j − lu → + `;

thusl[sc is the continuous spectrum. This proves the theorem. j

Remark 4.3: For NLS under periodic boundary condition, the spectrum of the linear NLS
operator consists of only discrete point spectrum given by

l = ± kbÎs2cd2 − skbd2,

wherek[Z, andb is a positive constant. For any fixedc.0, there is a finite number of unstable
modes. There are gaps among the unstable, center, and stable spectra. As shown above, under
quasiperiodic boundary condition, the point spectrum is dense, and there is also a continuous
spectrum. For any fixedc.0, there are infinitely many unstable modes. There is no gap among
the unstable, center, and stable spectra.

013503-4 Y. Charles Li J. Math. Phys. 46, 013503 (2005)

                                                                                                                                    



V. FOLIATIONS

Although there is no spectral gap in this quasiperiodic setting, foliations can still be estab-
lished via explicit expressions. The tool used is the so-called Darboux transformation. The NLS
(2.1) has the Lax pair,

cx = Uc, ct = Vc,

where

U = iSl q

q − l
D ,

V = iS2l2 − uqu2 2lq − iqx

2lq + iqx − 2l2 + uqu2
D .

Theorem 5.1: Let qst ,xd be a solution, and let f be an eigenfunction of the Lax pair at
l=n for any n[C. Usef to define a matrix,

G = GSl − n 0

0 l − n
DG−1,

where

G = Sf1 − f2

f2 f1
D .

We define Q andC by

Q = q + 2sn − nd
f1f2

uf1u2 + uf2u2
, C = Gc, s5.1d

wherec solves the Lax pair at (q,l). ThenC solves the Lax pair at (Q,l) and Q solves the NLS.
This is a well-known theorem in the integrable theory, see, e.g., Ref. 3. The transformation

(5.1) is called a Darboux transformation.
For example, let

q = aeiustd, ustd = − f2a2t + gg,

wherea is the amplitude andg is the phase. The eigenfunctions of the Lax pair are

f± = S aeiustd/2

s±b − lde−iustd/2De±i2lbt±ibx, l = Îb2 − a2.

In order to have temporal growth,b2,a2. For b=b1, l=n= is, let

f = c+f+ + c−f−,

wherec± are two arbitrary complex constants. Forb=b2, l= n̂= iŝ, let

f̂ = ĉ+f+ + ĉ−f−,

whereĉ± are two arbitrary complex constants. By iterating the Darboux transformation(5.1) at n
and n̂, one gets
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Q = q + 2sn − nd
f1f2

uf1u2 + uf2u2
+ 2sn̂ − n̂d

F̂1F̂2

uF̂1u2 + uF̂2u2
,

where

F̂1 =
1

uf1u2 + uf2u2
hfsn̂ − nduf1u2 + sn̂ − nduf2u2gf̂1 + sn − ndf1f2f̂2j,

F̂2 =
1

uf1u2 + uf2u2
hsn − ndf1f2f̂1 + fsn̂ − nduf1u2 + sn̂ − nduf2u2gf̂2j.

Explicitly, one has

Q = Q̃ + q sin q̂0 p
2
Yp

1
, s5.2d

where

Q̃ = qf1 + sinq0 secht cosXg−1fcos 2q0 − i sin 2q0 tanht − sinq0 secht cosXg,

p
1

= Fssin q̂0d2s1 + sinq0 secht cosXd2 +
1

8
ssin 2q0d2ssechtd2s1 − cos 2XdG

3s1 + sinq̂0 secht̂ cosX̂d −
1

2
sin 2q0 sin 2q̂0 secht secht̂s1 + sinq0 secht cosXd

3sinX sin X̂ + ssinq0d2f1 + 2 sinq0 secht cosX + fscosXd2 − scosq0d2gssechtd2g

3s1 + sinq̂0 secht̂ cosX̂d − 2 sinq̂0 sinq0fcosq̂0 cosq0 tanht̂ tanht

+ ssinq0 + secht cosXdssin q̂0 + secht̂ cosX̂dgs1 + sinq0 secht cosXd,

p
2

= F− 2ssin q̂0d2s1 + sinq0 secht cosXd2 +
1

4
ssin 2q0d2ssechtd2s1 − cos 2XdG

3ssin q̂0 + secht̂ cosX̂ + i cosq̂0tanht̂d + 2ssinq0d2s− cosq0 tanht + i sinq0

+ i secht cosXd2ssinq̂0 + secht̂ cosX̂ − i cosq̂0 tanht̂d + 2 sinq0ssinq0 + secht cosX

+ i cosq0 tanhtdf2sinq̂0s1 + sinq0 secht cosXds1 + sinq̂0 secht̂ cosX̂d

− sin 2q0 cosq̂0 secht secht̂ sinX sin X̂g,

and

b1 + n = aeiq0, b2 + n̂ = aeiq̂0,

c+/c− = er+iq, ĉ+/ĉ− = er̂+iq̂,

t = 4sb1t − r, t̂ = 4ŝb2t − r̂,
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X = 2b1x + q − q0 + p/2, X̂ = 2b2x + q̂ − q̂0 + p/2.

The foliation here is with respect to the two linear unstable modes(2b1,0) and (0,2b2) in (4.5).
The temporal growth conditionb1

2,a2 or b2
2,a2 is in agreement with(4.5). Thus(5.2) represents

a class of solutions with quasiperiodic boundary condition. For fixeda, b1, andb2, the parameters

areg, r, r̂, q, andq̂. As t→ ±`, e.g.,b1, b2, s, andŝ are all positive,

Q → qe7i2sq0+q̂0d.

VI. CONCLUSION AND DISCUSSION

From the presentation in this paper, one can see that the first interesting question on such
quasiperiodic boundary condition problem is the global well-posedness. In terms of Fourier trans-
forms, one can see that the integrable NLS resembles the 2D more than the 1D periodic problem.
I tend to believe that it may have finite-time blow-up solutions, which will be truly interesting.
Also linearization in the quasiperiodic case often leads to a linear operator with continuous spec-
trum and with no spectral gap. Therefore, the phase space foliation is a challenging and interesting
problem. In this paper, through Darboux transformation, such foliation can still be established.

1A. Pazy,Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. Vol. 44
(Springer Verlag, New York, 1983).

2V. Banks(private communication).
3Y. Li, Chaos in Partial Differential Equations(International Press, Somerville, MA, 2004).
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The fundamental solution for time- and space-fractional partial differential operator
Dt

l+a2s−n dg/2sl ,g.0d is given in terms of the Fox’sH-function. Here the time-
fractional derivative in the sense of generalized functions(distributions) Dt

l is
defined by the convolutionDt

lfstd=F−lstd* fstd, whereFlstd= t+
l−1/Gsld and fstd

;0 ast,0, and the fractionaln-dimensional Laplace operators−ndg/2 is defined
by its Fourier transform with respect to spatial variableFfs−n dg/2gsxdg
= uvugFfgsxdg. The solutions for initial value problems for time- and space-
fractional partial differential equation in the sense of Caputo and Riemann–
Liouville time-fractional derivatives, respectively, are obtained by the fundamental
solution. ©2005 American Institute of Physics.[DOI: 10.1063/1.1819524]

I. INTRODUCTION

In recent years interest of some scholars has been shown in research on the problems involv-
ing the fractional integrodifferential equations applied to physics, mechanics, and other disci-
plines. For example, Schneider and Wyss,20 Rangarajan and Ding,19 and Fujita7 have studied the
integrodifferential equations with time-fractional integral; the partial differential equations with
time-fractional derivative have been treated by Wyss,23 Metzler et al.,17 Buckwar and Luchko,2

Gorenfloet al.,10 Henry and Wearne,12 Mainardi,14,15 Hilfer,13 and Podlubny.18

Compte4 and Westet al.22 derived a hyperdiffusion(Lévy-flight diffusion) equation]P/]t
=Ds−ndg/2P, where the fractionaln-dimensional Laplace operators−ndg/2 is defined by its Fou-
rier transform with respect to spatial variableFfs−ndg/2gsxdg= uvugFfgsxdg, and Westet al.22 gave
the solution in the one-dimensional case.

In this paper the fundamental solution for the time- and space-fractional partial differential
operatorDt

l+a2s−n dg/2sl ,g.0d is considered and is given in terms of Fox’sH-function. Here
the time-fractional derivative in the sense of generalized functions8,18 (distributions) Dt

l is defined
by the convolutionDt

lfstd : =F−lstd* fstd, whereFlstd : = t+
l−1/Gsld, Gszd is the gamma function,

and fstd;0 ast,0. The solutions for initial value problems for time- and space-fractional partial
differential equation in the sense of Caputo and Riemann–Liouville, respectively, time-fractional
derivatives are obtained by the fundamental solution.

Throughout this paper functions of timet are assumed to be causal, i.e., vanishing fort,0. In
Sec. II the time-fractional derivatives in the sense of generalized functions are adopted and we do
not bother to give descriptions of sets of admissible functions and use, when necessary, formal
expressions of generalized functions. In Sec. III the time-fractional derivatives in the Caputo and
the Riemann–Liouville sense are defined within the framework of classical functions.

II. FUNDAMENTAL SOLUTION FOR TIME- AND SPACE-FRACTIONAL PARTIAL
DIFFERENTIAL OPERATOR

We consider the time- and space-fractional partial differential equation
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sDt
l + a2s− n dg/2dG = dsxddstd sl,g . 0d, s1d

whered is the Dirac delta function,a is a positive constant, and the time-fractional derivative
operatorDt

l and the fractionaln-dimensional Laplace operators−n dg/2 are defined as in Sec. I.
The solutionG=Gsx,t ;g ,ld of Eq. (1) is said to be a fundamental solution for the operatorDt

l

+a2s−n dg/2.
If l=1 andg=2 the operator in(1) becomes the diffusion operator, while it is a wave operator

if l=2 andg=2.
Applying the Fourier transform with respect to spatial variablex and the Laplace transform

with respect to timet (Fourier–Laplace transform) to Eq. (1) yields

Ḡsv,p;g,ld =
1

pl + a2uvug
. s2d

Here the Fourier transform is defined by

Ffgsxd,vg =E gsxdeiv·x dnx, s3d

whose inverse transform reads

F−1fgsxd,vg =
1

s2pdn E gsxde−iv·x dnx, s4d

and the Laplace transform is

Lffstd,pg =E
0

`

fstde−pt dt. s5d

Using the Mellin transform

f̂ssd = Mffstd,sg =E
0

`

fstdts−1 dt s6d

and the relation

Mffstd,sg =
1

Gs1 − sd
MfLffstd,pg,1 −sg s7d

connecting Laplace and Mellin transforms we obtain the Fourier–Mellin transform ofGsx,t ;g ,ld,

G̃sv,s;g,ld =
1

lGs1 − sd
sa2uvugdfs1−sd/lg−1BS1 − s

l
,
l − 1 +s

l
D , s8d

whereBsu,vd is the beta function.
In order to obtain inverse Fourier transform to(8) introducingn-dimensional spherical coor-

dinates in the inverse Fourier integral to(8) leads to the Mellin transform ofGsx,t ;g ,ld with
respect tot,

Ĝsx,s;g,ld =

uxu1−sn/2dBS1 − s

l
,
l − 1 +s

l
D

ls2pdn/2Gs1 − sdaf2ss−1d/lg+2E
0

`

rsn/2d+fgs1−sd/lg−gJsn/2d−1sruxuddr, s9d

wherer= uvu andJmszd is the Bessel function of the first kind. Using the Mellin transform of the
Bessel function,5
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MfJmszd,sg =

2s−1GSm + s

2
D

GSm − s

2
+ 1D , − m , Rssd , m + 2, s10d

we obtain

Ĝsx,s;g,ld =
uxufgss−1d/lg+g−n

l2fgss−1d/lg+gpn/2a2sl+s−1d/lQssd, s11d

where

Qssd =

GSnl − gl + g − gs

2l
DGS1 − s

l
DGSl − 1 +s

l
D

GSgl − g + gs

2l
DGs1 − sd

. s12d

Taking the inverse Mellin transform yieldsGsx,t ;g ,ld in terms of theH-function, and by its
properties we have

Gsx,t;g,ld =
tl−1

pn/2uxun
H2,3

2,1SU uxug

2ga2tlU
s1,1d,sn/2,g/2d;s1,g/2d

s1,1d;sl,ld D . s13d

If g=2 andl=1, (13) degenerates to the Gaussian distribution16,21

Gsx,t;2,1d =
1

s4pa2tdn/2expS−
uxu2

4a2t
D . s14d

If g=l=1 using the definition and properties of theH-function and the relation

ÎpGs2zd = 22z−1GszdGsz+ 1
2d, s15d

(13) is simplified to

Gsx,t;1,1d =
a2t

psn+1d/2uxun+1H1,1
1,1SUa4t2

uxu2
U

s0,1d

s1/2−sn/2d,1dD . s16d

Expanding theH-function in (16) into the series according to(A4) and (A5), respectively, we
obtain the Cauchy distribution

Gsx,t;1,1d =

GSn + 1

2
D

psn+1d/2
a2t

ssa2td2 + uxu2dsn+1d/2 . s17d

Similarly if g=l=2 (13) is simplified to

Gsx,t;2,2d =
t

2psn−1d/2satdnH1,1
1,0SU uxu2

a2t2
U

s0,1d

ss3−nd/2,1dD . s18d

According to(A4) we expand theH-function in (18) and obtain
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Gsx,t;2,2d =
1

2apsn−1d/2GS3 − n

2
Dsa2t2 − uxu2dsn−1d/2

, uxu , at. s19d

If n is odd and more than 1 the right-hand side of(19) equals zero while ifn is evensn=2kd (19)
becomes

Gsx,t;2,2d =
s− 1dk−11 · 3 · 5 ·¯ · s2k − 1d

as2k − 1ds2pdksa2t2 − uxu2dsn−1d/2, uxu , at, s20d

which corresponds to the results of the wave equation.3

The solution of the equation

sDt
l + a2s− n dg/2dusx,t;g,ld = hsx,td s21d

may be expressed formally by the fundamental solution

usx,t;g,ld =E dnjE
0

t

Gsx − j,t − t;g,ldhsj,tddt. s22d

III. SOLUTION FOR INITIAL VALUE PROBLEM FOR TIME- AND SPACE-FRACTIONAL
PARTIAL DIFFERENTIAL EQUATION IN THE CAPUTO AND THE
RIEMANN–LIOUVILLE SENSE

In this section we assume the functions appeared to be locally absolutely integrable at least
with respect to timet. The functionFbstd : = t+

b−1/Gsbd is locally integrable asb.0 and thus the
fractional integral of orderbsb.0d,

I t
bfstd = Dt

−bfstd: = Fbstd * fstd =E
0

t st − tdb−1

Gsbd
fstddt s23d

makes sense in the framework of classical functions. We supplementI t
0fstd= fstd reasonably.11,18

The fractional derivatives of orderlsl.0d in the Caputo and the Riemann–Liouville sense,
respectively, are defined by

CDt
lfstd: = I t

m−lsf smdstdd, t Þ 0, m− 1 , l ø m s24d

and

RDt
lfstd: =

dm

dtm
sI t

m−lfstdd, t Þ 0, m− 1 , l ø m, s25d

wherem is positive integer and the derivatives of orderm on the right-hand side of(24) and(25)
are classical ones, and we always assume that the two kinds of fractional derivatives that occurred
make sense in the framework of classical functions.

A. Solution in the caputo sense

The initial value problem for time- and space-fractional partial differential equation in the
Caputo sense reads

sCDt
l + a2s− ndg/2dusx,t;g,ld = 0, t . 0, g . 0, 0ø m− 1 , l ø m, s26d

]ku

] tk
sx,0 + ;g,ld = fksxd, k = 0,1, . . . ,m− 1. s27d
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The relation between the derivative of orderm in the sense of distributions,Dt
mu, and the one

in the classical sense,]mu/]tm, is

Dt
mu =

]mu

] tm
+ o

k=0

m−1

fksxddsm−1−kdstd. s28d

Inserting Dt
lu=Dt

l−msDt
mud and using the fractional integrals of Dirac delta function and its

derivatives18 I t
mdskdstd=Fm−kstd we obtain

Dt
lu = CDt

lu + o
k=0

m−1

fksxdF1−l+kstd. s29d

Thus in the sense of distributionsu satisfies the equation

sDt
l + a2s− n dg/2dusx,t;g,ld = o

k=0

m−1

fksxdF1−l+kstd. s30d

Utilizing (22) we obtain

usx,t;g,ld = o
k=0

m−1 E fksjdGk
Csx − j,t;g,lddnj, s31d

whereGk
Csx,t ;g ,ld=Dt

l−1−kGsx,t ;g ,ld.
With the Mellin transform we may verify the fractional derivative of theH-function9,16,21(in

the sense of distributions),

Dz
nfzaHp,q

m,nsusazdbusbj,b jd
saj,a jddg = za−nHp+1,q+1

m,n+1 susazdbusbj,b jd,sn−a,bd
s−a,bd,saj,a jd d, s32d

wherea.0, b.0 anda+b min1ø jømRsbj /b jd.−1. Calculating the fractional derivative of the
H-function we have

Gk
Csx,t;g,ld =

tk

pn/2uxun
H3,2

1,2SU2ga2tl

uxug U
s0,1d;s−k,ld

s0,1d,s1−sn/2d,g/2d;s0,g/2dD . s33d

If g=2 (33) is simplified to Schneider’s result,20

Gk
Csx,t;2,ld =

uxus2k/ld−n

2pn/2s2ad2k/lH1,2
2,0SU uxu

2atl/2U
s1−sk/ld,1/2d,ssn/2d−sk/ld,1/2d

s1,l/2d D , s34d

where we confinelø2 in order to ensure theH-function makes sense. Whenn=1 by the defini-
tion of H-function and the relation(15) we may rewrite(34) to

uGk
Csx,t;2,ldun=1 =

1

2uxu
S uxu

a
D2k/l

H1,1
1,0SU uxu

atl/2U
s1−s2k/ld,1d

s1,l/2d D , s35d

which is proved, with the series expression of theH-function, to be a Wright function10 also,

uGk
Csx,t;2,ldun=1 =

1

2atsl/2d−kW−l/2,1−sl/2d+kS−
uxu

atl/2D . s36d

Whenk=0 the result is consistent with Mainardi.14,15

If l=1 (thus m=1), n=1 andusx, +0;g ,1d= f0sxd=dsxd the solution of problems(26) and
(27) is G0

Csx,t ;g ,1d and by the equality(15) and definition and properties of theH-function it can
be rewritten as
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G0
Csx,t;g,1d =

1

guxu
H2,2

1,1SU uxu
sa2td1/gU

s1,1d,s1,1/2d

s1,1/gd,s1,1/2dD , s37d

which is obtained by Westet al.22 (where factorp is superfluous).

B. Solution in the Riemann–Liouville sense

The initial value problem for time- and space-fractional partial differential equation in the
Riemann–Liouville sense reads

sRDt
l + a2s− ndg/2dusx,t;g,ld = 0, t . 0, g . 0, 0ø m− 1 , l ø m, s38d

RDt
l−kusx,0 + ;g,ld = gksxd, k = 1,2, . . . ,m, s39d

whereRDt
l−mu=Dt

l−mu. We consider the derivative of orderl in the sense of generalized functions
Dt

lu. It can be decomposed toDt
lu=Dt

msDt
l−mud, whereDt

m denotes the generalized derivative of
orderm. Using the relation between generalized derivatives and classical derivatives we obtain

Dt
lu = RDt

lu + o
k=1

m

gksxddsk−1dstd. s40d

Inserting(38) yields the equation in the sense of generalized functions,

sDt
l + a2s− ndg/2dusx,t;g,ld = o

k=1

m

gksxddsk−1dstd. s41d

Utilizing (22) we obtain

usx,t;g,ld = o
k=1

m E gksjdGk
Rsx − j,t;g,lddnj, s42d

whereGk
Rsx,t ;g ,ld=Dt

k−1Gsx,t ;g ,ld. Calculating the derivative of theH-function we have

Gk
Rsx,t;g,ld =

tl−k

pn/2uxun
H3,2

1,2SU2ga2tl

uxug
U

s0,1d;sk−l,ld

s0,1d,s1−sn/2d,g/2d;s0,g/2dD . s43d

As g=2, m=1, andg1sxd=Adsxd the solution of the problems(38) and(39) may be simplified
as Hilfer’s result,13

G1
Rsx,t;2,ld =

Atl−1

pn/2uxun
H1,2

2,0SU uxu2

4a2tlU
s1,1d,sn/2,1d

sl,ld D . s44d

We note that directly calculating the Laplace transforms of the Caputo and the Riemann–
Liouville derivatives also involves the initial values of integer-order derivatives and fractional-
order derivatives, respectively.18 Here we reveal it in the distribution sense.

IV. CONCLUSIONS

The partial differential equation with both the time-fractional derivative and the space-
fractional Laplace operator is considered and solved in terms of the FoxH-function. The time-
fractional derivatives in the sense of generalized functions, Caputo and Riemann–Liouville are
considered, respectively. The initial value problems in the Caputo sense and the Riemann–
Liouville sense have unified form in the sense of generalized functions although Caputo’s frac-
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tional derivatives involve the initial values of derivatives of integer order while the Riemann–
Liouville involve the initial values of derivatives and integral of fractional order. Some previous
results are contained in our results.
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APPENDIX: FOX’S H-FUNCTION

Fox’s H-function is defined by the contour integral,1,6,16,21

Hp,q
m,nszd = Hp,q

m,nszusb1,b1d,. . .,sbq,bqd
sa1,a1d,. . .,sap,apdd: =

1

2pi
E

L

hssdzsds, sA1d

wherehssd is given by

hssd =

p
j=1

m

Gsbj − b jsdp
j=1

n

Gs1 − aj + a jsd

p
j=m+1

q

Gs1 − bj + b jsd p
j=n+1

p

Gsaj − a jsd

. sA2d

Here m,n,p,q are integers satisfyingm2+n2Þ0, 0ønøp,0ømøq and empty products are
interpreted as unity. The parametersajs j =1, . . . ,pd andbjs j =1, . . . ,qd are complex numbers and
a js j =1, . . . ,pd and b js j =1, . . . ,qd are positive numbers satisfyingPaù Pb=x, where Pa=hs
=sbj +kd /b j , j =1,2, . . . ,m;k=0,1,2, . . .j and Pb=hs=saj −1−kd /a j , j =1,2, . . . ,n;k=0,1,
2, . . .j. The integration contourL runs froms=c− i` to s=c+ i` such thatPa lies to the right ofL
andPb to the left ofL.

Let

m = o
j=1

q

b j − o
j=1

p

a j, b = p
j=1

p

a j
a jp

j=1

q

b j
−b j . sA3d

Whenmù0 andmù1, theH-function can be expanded to

Hp,q
m,nszd = − o

sPPa

Resshssdzsd, sA4d

which exists for allzÞ0 if m.0 and for 0, uzu,b−1 if m=0.
Whenmø0 andnù1, theH-function can be expanded to

Hp,q
m,nszd = o

sPPb

Resshssdzsd, sA5d

which exists for allzÞ0 if m,0 and foruzu.b−1 if m=0.
We list some properties of theH-function,

Hp,q
m,nszusb1,b1d,. . .,sbq,bqd

sa1,a1d,. . .,sap,apdd = Hq,p
n,mSU1

z
U

s1−a1,a1d,. . .,s1−ap,apd

s1−b1,b1d,. . .,s1−bq,bqdD . sA6d

Hp,q
m,nsuzusb1,b1d,¯,sbq−1,bq−1d,sa1,a1d

sa1,a1d,¯,sap,apd d = Hp−1,q−1
m,n−1 suzusb1,b1d,¯,sbq−1,bq−1d

sa2,a2d,¯,sap,apd d, n . 0, q . m, sA7d
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1

k
Hp,q

m,nsuzusb1,b1d,. . .,sbq,bqd
sa1,a1d,. . .,sap,apdd = Hp,q

m,nsuzkusb1,kb1d,. . .,sbq,kbqd
sa1,ka1d,. . .,sap,kapdd, k . 0, sA8d

zsHp,q
m,nsuzusb1,b1d,. . .,sbq,bqd

sa1,a1d,. . .,sap,apdd = Hp,q
m,nsuzusb1+sb1,b1d,. . .,sbq+sbq,bqd

sa1+sa1,a1d,. . .,sap+sap,apdd. sA9d

Property(A6) enables us to transform anH-function withm=o j=1
q b j −o j=1

p a j ,0 to one with
m.0 and vice versa.

1Braaksma, B. L. J., “Asymptotic expansions and analytic continuations for a class of Barnes-integrals,” Compos. Math.
15, 239–341(1964).

2Buckwar, E. and Luchko, Y., “Invariance of a partial differential equation of fractional order under the Lie group of
scaling transformations,” J. Math. Anal. Appl.227, 81–97(1998).

3Chazarain, J. and Piriou, A.,Introduction to the Theory of Linear Partial Differential Equations(North-Holland, Am-
sterdam, 1982).

4Compte, A., “Stochastic foundations of fractional dynamics,” Phys. Rev. E53, 4191–4193(1996).
5Davies, B.,Integral Transform and Their Applications(Springer, New York, 1978).
6Fox, C., “The G and H functions as symmetrical Fourier kernels,” Trans. Am. Math. Soc.98, 395–429(1961).
7Fujita, Y., “Integrodifferential equation which interpolates the heat equation and the wave equation,” Osaka Math. J.27,
309–321(1990).

8Gel’fand, I. M. and Shilov, G. E.,Generalized Functions(Academic, New York, 1964), Vol. I.
9Glöckle, W. G. and Nonnenmacher, T. F., “Fox function representation of Non-Debye relaxation processes,” J. Stat.
Phys. 71, 741–757(1993).

10Gorenflo, R., Luchko, Y., and Mainardi, F., “Wright functions as scale-invariant solutions of the diffusion-wave equa-
tion,” J. Comput. Appl. Math.118, 175–191(2000).

11Gorenflo, R. and Vessella, S.,Abel Integral Equations(Springer-Verlag, Berlin, 1991).
12Henry, B. I. and Wearne, S. L., “Fractional reaction-diffusion,” Physica A276, 448–455(2000).
13Hilfer, R., “Fractional diffusion based on Riemann–Liouville fractional derivatives,” J. Phys. Chem. B104, 3914–3917

(2000).
14Mainardi, F., “The fundamental solutions for the fractional diffusion-wave equation,” Appl. Math. Lett.9, 23–28(1996).
15Mainardi, F., “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solitons Fractals7,

1461–1477(1996).
16Mathai, A. M. and Saxena, R. K.,The H-function with Applications in Statistics and Other Disciplines(Wiley, New

Delhi, 1978).
17Metzler, R., Glockle, W. G., and Nonnenmacher, T. F., “Fractional model equation for anomalous diffusion,” Physica A

211, 13–24(1994).
18Podlubny, I.,Fractional Differential Equations(Academic, San Diego, 1999).
19Rangarajan, G. and Ding, M., “First passage time distribution for anomalous diffusion,” Phys. Lett. A273, 322–330

(2000).
20Schneider, W. R., and Wyss, W., “Fractional diffusion and wave equations,” J. Math. Phys.30, 134–144(1989).
21Srivastava, H. M., Gupta, K. C., and Goyal, S. P.,The H-functions of One and Two Variables with Applications(South

Asian Publishers, New Delhi/Madras, 1982).
22West, B. J., Grigolini, P., Metzler, R., and Nonnenmacher, T. F., “Fractional diffusion and Lévy stable processes,” Phys.

Rev. E 55, 99–106(1997).
23Wyss, W., “The fractional diffusion equation,” J. Math. Phys.27, 2782–2785(1986).

013504-8 Jun-Sheng Duan J. Math. Phys. 46, 013504 (2005)

                                                                                                                                    



A unified and complete construction of all finite
dimensional irreducible representations of gl „2 z2…

Yao-Zhong Zhang and Mark D. Gould
Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia

(Received 4 May 2004; accepted 7 September 2004; published online 3 January 2005)

Representations of the non-semisimple superalgebra gls2u2d in the standard basis
are investigated by means of the vector coherent state method and boson-fermion
realization. All finite-dimensional irreducible typical and atypical representations
and lowest weight(indecomposable) Kac modules of gls2u2d are constructed ex-
plicitly through the explicit construction of all gls2d % gls2d particle states(multi-
plets) in terms of boson and fermion creation operators in the super-Fock space.
This gives a unified and complete treatment of finite-dimensional representations of
gls2u2d in explicit form, essential for the construction of primary fields of the
corresponding current superalgebra at arbitrary level. ©2005 American Institute of
Physics.[DOI: 10.1063/1.1812829]

I. INTRODUCTION

Recently there is much research interest in superalgebras and their corresponding nonunitary
conformal field theories(CFTs), because of their applications in high energy and condensed matter
physics including topological field theory,1,2 logarithmic CFTs(see, e.g., Ref. 3, and references
therein), disordered systems, and the integer quantum Hall effects.4–11 In such contexts, the van-
ishing of superdimensions and Virasoro central charges and the existence of primary fields with
negative dimensions are crucial.5,6 The most interesting algebras with such properties are ospsnund
and glsnund.

In most physical applications, one needs the explicit construction of finite-dimensional repre-
sentations of a superalgebra. This is particularly the case in superalgebra CFTs. To construct
primary fields of such CFTs in terms of free fields, one has to construct the finite-dimensional
representations of the superalgebras explicitly. The explicit construction of the primary fields is
essential in the investigation of disordered systems by the supersymmetric method.

Unlike ordinary bosonic algebras, there are two types of representations for most superalge-
bras. They are the so-called typical and atypical representations. The typical representations are
irreducible and are similar to the usual representations that appear in ordinary bosonic algebras.
The atypical representations have no counterpart in the bosonic algebra setting. They can be
irreducible or not fully reducible(i.e., reducible or indecomposable). This makes the study of
representations of superalgebras very difficult.

Representations of osps2u2d were investigated in Refs. 12 and 13. A unified construction of
finite-dimensional typical and atypical representations of osps2u2d were given in Refs. 14 and 15
by means of the vector coherent state method. This enabled the explicit construction of all primary
fields of the osps2u2d CFT16,14 in terms of free fields.17,18

In this paper we investigate finite-dimensional representations of the non-semisimple super-
algebra gls2u2d. All finite-dimensional irreducible typical and atypical representations and lowest
weight (indecomposable) Kac modules of gls2u2d are constructed explicitly through the explicit
construction of all gls2d % gls2d particle states(multiplets) in terms of the boson and fermion
creation operators in the super-Fock space. This we believe gives a unified and complete treatment
of all finite-dimensional irreducible representations of gls2u2d in explicit form.

Let us point out that the finite-dimensional representations of gls2u2d have also been investi-
gated in Refs. 19,20 using the GT basis. Our method is completely different from and in our
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opinion is simpler than the method used in these two references. Moreover, our results can be used
to construct primary fields of the corresponding gls2u2d CFTs at arbitrary level, which is the
subject of a separate work.

This paper is organized as follows. In Sec. II, we introduce our notations and derive a free
boson-fermion realization of gls2u2d by means of the vector coherent state method. In Sec. III, we
describe the explict construction of independent gls2d % gls2d particle states in the super-Fock
space. We derive the actions of odd simple generators of gls2u2d on these multiplets. The 16
independent multiplets constructed span all finite-dimensional irreducible typical representations
of gls2u2d. In Sec. IV, we deduce and construct all four types of finite-dimensional irreducible
atypical representations and lowest weight(indecomposable) Kac modules of gls2u2d.

II. BOSON-FERMION REALIZATION OF gl „2 z2…

In this section, we obtain a boson-fermion realization of the superalgebra gls2u2d in the
standard basis.

This superalgebra is non-semisimple and can be written as gls2u2d=gls2u2deven% gls2u2dodd,
where

gls2u2deven= gls2d % gls2d = hIj % hhE12,E21,H1j % hE34,E43,H2j,Nj,

gls2u2dodd= hE13,E31,E23,E32,E24,E42,E14,E41j. s2.1d

In the standard basis,E12,E34,E23 sE21,E43,E32d are simple raising(lowering) generators,
E13,E14,E24 sE31,E41,E42d are non-simple raising(lowering) generators andH1,H2,I ,N are ele-
ments of the Cartan subalgebra. We have

H1 = E11 − E22, H2 = E33 − E44,

I = E11 + E22 + E33 + E44, s2.2d

N = E11 + E22 − E33 − E44 + bI

with b being an arbitrary parameter. ThatN is not uniquely determined is a consequence of the
fact that gls2u2d is non-semisimple. The generators obey the following(anti)commutation rela-
tions:

fEij ,Eklg = d jkEil − s− 1dsfig+f jgdsfkg+flgddilEkj, s2.3d

where fEij ,Eklg;EijEkl−s−1dsfig+f jgdsfkg+flgdEklEij is a commutator or an anticommutator,f1g=f2g
=0, f3g=f4g=1, andEii , i =1, 2, 3, 4 are related toH1,H2,I ,N via (2.2). The quadratic Casimir of
the algebra is given byC2=SABs−1dfBgEABEBA.

Let uhwl be the highest weight state of highest weightsJ1,J2,q,pd of gls2u2d defined by

H1uhwl = 2J1uhwl, H2uhwl = 2J2uhwl,

I uhwl = 2quhwl, Nuhwl = 2puhwl, s2.4d

E12uhwl = E34uhwl = E23uhwl = E13uhwl = E14uhwl = E24uhwl = 0.

HereJ1,J2 are positive integers and half-integers andq,p are arbitrary complex numbers. Define
the coherent state21,22

eE21a12+E43a34+E31a13+E32a23+E42a24+E41a14uhwl.

Then state vectors are mapped into functions
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cJ1,J2,q,p = khwuea13
† E13+a23

† E23+a24
† E24+a14

† E14+a12
† E12+a34

† E34uclu0l, s2.5d

and operatorsA are mapped as follows

Aucl → GsAdcJ1,J2,q,p = khwuea13
† E13+a23

† E23+a24
† E24+a14

† E14+a12
† E12+a34

† E34Auclu0l. s2.6d

Hereai j
† sai jd are fermion operators with number operatorsNai j

andaij
† saijd are boson operators

with number operatorsNaij
. They obey relations

hai j ,akl
† j = dikd jl , sai jd2 = sai j

†d2 = 0,

fNai j
,aklg = − dikd jlakl, fNai j

,akl
† g = dikd jlakl

† ,

faij ,akl
† g = dikd jl ,

fNaij
,aklg = − dikd jlakl, fNaij

,akl
† g = dikd jlakl

† , s2.7d

and all other(anti-)commutators vanish. Moreover,a12u0l=a34u0l=a23u0l=a13u0l=a14u0l=a24u0l
=0.

Taking E12,E34, etc. in turn and after long algebraic computations, we find the following
representation of simple generators in terms of the boson and fermion operators:

GsE12d = a12 − 1
2a23

† a13 + 1
2s 1

6a34
† a23

† − a24
† da14,

GsE34d = a34 + 1
2a23

† a24 + 1
2s 1

6a12
† a23

† + a13
† da14,

GsE23d = a23 + 1
2a12

† a13 − 1
2a34

† sa24 + 1
3a12

† a14d,

GsH1d = 2J1 − 2Na12
+ Na23

− Na13
+ Na24

− Na14
,

GsH2d = 2J2 − 2Na34
+ Na23

+ Na13
− Na24

− Na14
,

s2.8d
GsId = 2q,

GsNd = 2p − 2sNa23
+ Na13

+ Na24
+ Na14

d,

GsE21d = a12
† f2J1 − Na12

+ 1
2sNa23

− Na13
+ Na24

− Na14
dg − a13

† a23 − a14
† a24 − 1

4sa12
† d2a23

† a13

+ 1
12a12

† a34
† a23

† a24 − 1
4a12

† sa12
† a24

† + 1
3a34

† a13
† da14,

GsE43d = a34
† f2J2 − Na34

+ 1
2sNa23

+ Na13
− Na24

− Na14
dg + a24

† a23 + a14
† a13 + 1

4sa34
† d2a23

† a24

− 1
12a12

† a34
† a23

† a13 + 1
4sa34

† a12
† + 1

3a12
† a24

† da34
† a14,

GsE32d = a23
† fq − J1 + J2 + 1

2sNa12
− Na34

+ Na13
− Na24

dg + a13
† a12 + a24

† a34

+ 1
6a23

† sa12
† a24

† + a34
† a13

† da14,

and the representation for non-simple generators is easily obtained from that of simple generators
above by means of the commutation relations. Equation(2.8) gives a boson-fermion realization of
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the non-semisimple superalgebra gls2u2d in the standard basis. In this realization, the Casimir
takes a constant value:C2=2fsJ1−J2dsJ1+J2+1d+qsp−2dg.

III. TYPICAL REPRESENTATIONS OF gl „2 z2…

Representations of gls2u2d are labeled bysJ1,J2,q,pd with J1,J2 being positive integers or
half-integers andq,p being arbitrary complex numbers. Consider a particle state in the super-Fock
space, obtained by acting the creation operators on the vacuum vectoru0l. We call such a state a
level-x state ifGsH1d ,GsH2d ,GsId ,GsNd have eigenvalues 2sm1+xd ,2sm2+xd ,2q,2sp−xd, respec-
tively. Obviously, a level-x state is a product ofx number of fermion creation operators and boson
creation operators of the formsa12

† dJ1−m1−ysa34
† dJ2−m2−ȳ acting onu0l, wherey, ȳ are certain integers

or half-integers, depending on the values ofx. It is easy to see that there are 16 independent such
states obtained from 16 independent combinations of the creation operators. This includes one
level-0 state, four level-1 states, six level-2 states, four level-3 states and one level-4 state. Thus
each gls2u2d representation decomposes into at most 16 representations of the even subalgebra
gls2d % gls2d. Let us construct representations for gls2d % gls2d out of the above states. First the
level-0 and level-4 states are already representations of gls2d % gls2d with highest weights
sJ1,J2,q,pd and sJ1,J2,q,p−4d, respectively. We denote these two multiplets by
uJ1,m1,J2,m2,q;pl and uJ1,m1,J2,m2,q;p−4l, respectively. So

uJ1,m1,J2,m2,q;pl = sa12
† dJ1−m1sa34

† dJ2−m2u0l,

m1 = J1,J1 − 1,…,− J1, m2 = J2,J2 − 1,…,− J2,

s3.1d
uJ1,m1,J2,m2,q;p − 4l = a23

† a13
† a24

† a14
† sa12

† dJ1−m1−4sa34
† dJ2−m2−4u0l,

m1 = J1 − 4,J1 − 5,…,− sJ1 + 4d, m2 = J2 − 4,J2 − 5,…,− sJ2 + 4d.

Both multiplets have dimensions2J1+1ds2J2+1d.
It can be shown that other level-x states can be combined into independent level-x multiplets

of gls2d % gls2d with certain highest weights. The procedure is the following. For a given levelx,
one considers a combinationCJ1,m1,J2,m2

of all level-x states. The combination coefficients are in
general functions ofJ1,m1,J2,m2. We require thatCJ1,m1,J2,m2

be a representation of gls2d
% gls2d. In order for the representation to be finite-dimensional, the actions of the gls2d % gls2d
generators onCJ1,m1,J2,m2

must have the following form:

GsE12dCJ1,m1,J2,m2
= sJ1 − m1 − zdCJ1,m1+1,J2,m2

,

GsE21dCJ1,m1,J2,m2
= sJ1 + m1 + z̄dCJ1,m1−1,J2,m2

,

s3.2d
GsE34dCJ1,m1,J2,m2

= sJ2 − m2 − udCJ1,m1,J2,m2+1,

GsE43dCJ1,m1,J2,m2
= sJ2 + m2 + ūdCJ1,m1,J2,m2−1,

wherez, z̄,u,ū are some integers or half-integers to be determined together with the combination
coefficients. These requirements give rise to difference equations for the combination coefficients.
Solving these difference equations simutaneously for each levelx, we determine the combination
coefficients andz, z̄,u,ū. The procedure of solving the difference equations for each levelx is
nontrivial and requires long algebraic manipulations. Here we omit the details and only list the
results as follows.
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The four level-1 states can be combined into four independent multiplets of gls2d % gls2d with
highest weightssJ1− 1

2 ,J2− 1
2 ,q,p−1d ,sJ1+ 1

2 ,J2− 1
2 ,q,p−1d ,sJ1+ 1

2 ,J2+ 1
2 ,q,p−1d and sJ1− 1

2 ,J2

+ 1
2 ,q,p−1d, respectively:

uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 1l = sa14
† + 1

2a12
† a24

† − 1
2a13

† a34
† − 1

3a12
† a23

† a34
† d

3 sa12
† dJ1−m1−3/2sa34

† dJ2−m2−3/2u0l, J1,J2 ù
1
2 ,

m1 = J1 − 3
2,J1 − 5

2, . . . ,−sJ1 + 1
2d, m2 = J2 − 3

2,J2 − 5
2, . . . ,−sJ2 + 1

2d,

uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 1l = f 1
2s3J1 + m1 + 5

2da12
† a24

† − 1
3s2J1 + m1 + 2da12

† a23
† a34

† − sJ1 − m1 − 1
2d

3sa14
† − 1

2a13
† a34

† dgsa12
† dJ1−m1−3/2sa34

† dJ2−m2−3/2u0l, J2 ù
1
2 ,

m1 = J1 − 1
2,J1 − 3

2, . . . ,−sJ1 + 3
2d, m2 = J2 − 3

2,J2 − 5
2, . . . ,−sJ2 + 1

2d,

s3.3d
uJ1 + 1

2,m1,J2 + 1
2,m2,q;p − 1l = f− 1

4ss3J1 + m1 + 5
2ds3J2 + m2 + 5

2d + 1
3sJ1 − m1 − 1

2dsJ2 − m2 − 1
2dd

3a12
† a23

† a34
† + 1

2sJ1 − m1 − 1
2ds3J2 + m2 + 5

2da13
† a34

†

− 1
2s3J1 + m1 + 5

2d

3sJ2 − m2 − 1
2da12

† a24
† + sJ1 − m1 − 1

2dsJ2 − m2 − 1
2da14

† g

3sa12
† dJ1−m1−3/2sa34

† dJ2−m2−3/2u0l,

m1 = J1 − 1
2,J1 − 3

2, . . . ,−sJ1 + 3
2d, m2 = J2 − 1

2,J2 − 3
2, . . . ,−sJ2 + 3

2d,

uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 1l = f 1
2s3J2 + m2 + 5

2da13
† a34

† + 1
3s2J2 + m2 + 2da12

† a23
† a34

† + sJ2 − m2 − 1
2d

3sa14
† − 1

2a12
† a24

† dgsa12
† dJ1−m1−3/2sa34

† dJ2−m2−3/2u0l, J1 ù
1
2 ,

m1 = J1 − 3
2,J1 − 5

2, . . . ,−sJ1 + 1
2d, m2 = J2 − 1

2,J2 − 3
2, . . . ,−sJ2 + 3

2d.

The dimensions for these multiplets ares2J1ds2J2d ,s2J1+2ds2J2d ,s2J1+2ds2J2+2d and s2J1ds2J2

+2d, respectively.
The six level-2 states can be combined into six independent multiplets of gls2d % gls2d

with highest weights sJ1,J2−1,q,p−2d ,sJ1−1,J2,q,p−2d ,sJ1+1,J2,q,p−2d ,sJ1,J2+1,q,p
−2d ,sJ1,J2,q,p−2d and sJ1,J2,q,p−2d, respectively:

uJ1,m1,J2 − 1,m2,q;p − 2l = a24
† a14

† sa12
† dJ1−m1−2sa34

† dJ2−m2−3u0l + 1
2f− a23

† a14
† + 1

6a23
† a24

† a12
† + a13

† a24
†

+ 1
2a23

† a13
† a34

† gsa12
† dJ1−m1−2sa34

† dJ2−m2−2u0l,

J2 ù 1, m1 = J1 − 2,J1 − 3, . . . ,−sJ1 + 2d, m2 = J2 − 3,J2 − 4, . . . ,−sJ2 + 1d,

uJ1 − 1,m1,J2,m2,q;p − 2l = a13
† a14

† sa12
† dJ1−m1−3sa34

† dJ2−m2−2u0l + 1
2fa23

† a14
† + 1

6a23
† a13

† a34
† + a13

† a24
†

+ 1
2a23

† a24
† a12

† gsa12
† dJ1−m1−2sa34

† dJ2−m2−2u0l,

J1 ù 1, m1 = J1 − 3,J1 − 4, . . . ,−sJ1 + 1d, m2 = J2 − 2,J2 − 3, . . . ,−sJ2 + 2d,
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uJ1 + 1,m1,J2,m2,q;p − 2l = f 1
2fJ1 − m1 − 1 + s3J1 + m1 + 3ds3J1 + m1 + 5dga23

† a24
† sa12

† d2

+ sJ1 − m1 − 1dsJ1 − m1 − 2dsa13
† a14

† + 1
12a12

† a23
† a13

† a34
† d − 1

2sJ1 − m1 − 1d

3s3J1 + m1 + 4da12
† sa13

† a24
† + a23

† a14
† dgsa12

† dJ1−m1−3sa34
† dJ2−m2−2u0l,

m1 = J1 − 1,J1 − 2, . . . ,−sJ1 + 3d, m2 = J2 − 2,J2 − 3, . . . ,−sJ2 + 2d,

s3.4d
uJ1,m1,J2 + 1,m2,q;p − 2l = f 1

4fJ2 − m2 − 1 + s3J2 + m2 + 3ds3J2 + m2 + 5dga23
† a13

† sa34
† d2

+ 1
2sJ2 − m2 − 1ds3J2 + m2 + 4dsa23

† a14
† − a13

† a24
† da34

† + sJ2 − m2 − 1d

3sJ2 − m2 − 2dsa24
† a14

† + 1
12a23

† a24
† a12

† a34
† dgsa12

† dJ1−m1−2sa34
† dJ2−m2−3u0l,

m1 = J1 − 2,J1 − 3, . . . ,−sJ1 + 2d, m2 = J2 − 1,J2 − 2, . . . ,−sJ2 + 3d,

fJ1,m1,J2,m2,q;p − 2lI = sJ2 − m2 − 2da24
† a14

† sa12
† dJ1−m1−2sa34

† dJ2−m2−3u0l

+ f 1
2sJ2 + m2 + 2dsa23

† a14
† − a13

† a24
† d + 1

12sJ2 − m2 − 2da23
† a24

† a12
†

− 1
4s3J2 + m2 + 2da23

† a13
† a34

† gsa34
† dJ1−m1−2sa34

† dJ2−m2−2u0l,

m1 = J1 − 2,J1 − 3, . . . ,−sJ1 + 2d, m2 = J2 − 1,J2 − 2, . . . ,−sJ2 + 2d,

fJ1,m1,J2,m2,q;p − 2lII = sJ1 − m1 − 2da13
† a14

† sa12
† dJ1−m1−3sa34

† dJ2−m2−2u0l

+ f− 1
2sJ1 + m1 + 2dsa13

† a24
† + a23

† a14
† d + 1

12sJ1 − m1 − 2da23
† a13

† a34
†

− 1
4s3J1 + m1 + 2da23

† a24
† a12

† gsa12
† dJ1−m1−2sa34

† dJ2−m2−2u0l,

m1 = J1 − 2,J1 − 3, . . . ,−sJ1 + 2d, m2 = J2 − 1,J2 − 2, . . . ,−sJ2 + 2d.

Notice that the last two multiplets, which have been denoted above byuJ1,m1,J2,m2,q;p−2lI and
uJ1,m1,J2,m2,q;p−2lII , respectively, have the same highest weightsJ1,J2,q,p−2d. This means
that multiplicity will in general appear in the gls2u2d↓gls2d % gls2d branching rule. It is easy to see
from the above expressions thatuJ1,m1,J2,m2,q;p−2lI ;0 when J2=0 and uJ1,m1,J2,m2,q;p
−2lII ;0 whenJ1=0.

The dimensions for the first four multiplets ares2J1+1ds2J2−1d ,s2J1−1ds2J2+1d ,s2J1+3d
3s2J2+1d and s2J1+1ds2J2+3d, respectively. The dimension foruJ1,m1,J2,m2,q;p−2lI is s2J1

+1ds2J2+1d if J2Þ0 and zero ifJ2=0. Similarly, the dimension foruJ1,m1,J2,m2,q;p−2lII is
s2J1+1ds2J2+1d if J1Þ0 and zero ifJ1=0.

Finally, the four level-3 states are combined into four independent multiplets of gls2d
% gls2d with highest weightssJ1− 1

2 ,J2− 1
2 ,q,p−3d ,sJ1+ 1

2 ,J2− 1
2 ,q,p−3d ,sJ1− 1

2 ,J2+ 1
2 ,q,p−3d

and sJ1+ 1
2 ,J2+ 1

2 ,q,p−3d, respectively:

uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 3l = fsa13
† + 1

2a12
† a23

† da24
† a14

† + 1
2a23

† a13
† sa14

† a34
† + 1

3a12
† a24

† a34
† dg

3sa12
† dJ1−m1−7/2sa34

† dJ2−m2−7/2u0l,

J1,J2 ù
1
2, m1 = J1 − 7

2, . . . ,−sJ1 + 5
2d, m2 = J2 − 7

2, . . . ,−sJ2 + 5
2d,
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uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 3l = f− 1
2s3J1 + m1 + 9

2da23
† a24

† a14
† a12

† + sJ1 − m1 − 5
2ds− a24

† + 1
2a23

† a34
† d

3a13
† a14

† − 1
6s5J1 + m1 + 11

2 da23
† a13

† a24
† a12

† a34
† g

3sa12
† dJ1−m1−7/2sa34

† dJ2−m2−7/2u0l,

J2 ù
1
2, m1 = J1 − 5

2, . . . ,−sJ1 + 7
2d, m2 = J2 − 7

2, . . . ,−sJ2 + 5
2d,

s3.5d
uJ1 − 1

2,m1,J2 + 1
2,m2,q;p − 3l = f− 1

2s3J2 + m2 + 9
2da23

† a13
† a14

† a34
† + sJ2 − m2 − 5

2dsa13
† + 1

2a23
† a12

† d

3a24
† a14

† − 1
6s5J2 + m2 + 11

2 da23
† a13

† a24
† a12

† a34
† g

3sa12
† dJ1−m1−7/2sa34

† dJ2−m2−7/2u0l,

J1 ù
1
2, m1 = J1 − 7

2, . . . ,−sJ1 + 5
2d, m2 = J2 − 5

2, . . . ,−sJ2 + 7
2d,

uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 3l = f 1
4ss3J1 + m1 + 9

2ds3J2 + m2 + 9
2d − 1

3sJ1 − m1 − 5
2dsJ2 − m2 − 5

2dd

3a12
† a23

† a13
† a24

† a34
† − 1

2sJ1 − m1 − 5
2ds3J2 + m2 + 9

2da23
† a13

† a14
† a34

†

− 1
2s3J1 + m1 + 9

2dsJ2 − m2 − 5
2da12

† a23
† a24

† a14
† + sJ1 − m1 − 5

2d

3sJ2 − m2 − 5
2da13

† a24
† a14

† gsa12
† dJ1−m1−7/2sa34

† dJ2−m2−7/2u0l,

m1 = J1 − 5
2, . . . ,−sJ1 + 7

2d, m2 = J2 − 5
2, . . . ,−sJ2 + 7

2d.

The dimensions for these multiplets ares2J1ds2J2d ,s2J1+2ds2J2d ,s2J1ds2J2+2d and s2J1+2ds2J2

+2d, respectively.
The actions of the odd generators of gls2u2d on the gls2d % gls2d multiplets (3.1) and (3.3)–

(3.5) can be computed by means of the free boson-fermion realization of the generators. In the
following we list the actions of the odd simple generators. The actions of odd non-simple genera-
tors can be easily obtained using the commutation relations.

First for the level-0 multiplet, we have the actions of the odd simple generators

GsE23duJ1,m1,J2,m2,q;pl = 0,

GsE32duJ1,m1,J2,m2,q;pl =
1

s2J1 + 1ds2J2 + 1d

3f− sq + J1 − J2dsJ1 − m1dsJ2 − m2duJ1 − 1
2,m1 − 1

2,J2 − 1
2,

m2 − 1
2,q;p − 1l

− sq − J1 − J2 − 1dsJ2 − m2duJ1 + 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 1l

− sq − J1 + J2duJ1 + 1
2,m1 − 1

2,J2 + 1
2,m2 − 1

2,q;p − 1l

+ sq + J1 + J2 + 1dsJ1 − m1duJ1 − 1
2,m1 − 1

2,J2 + 1
2,m2 − 1

2,q;p − 1lg.

s3.6d

From (3.6) we see that whenq=J1−J2 (resp., −J1+J2) the third(resp., first) term vanishes and, if
q=J1+J2+1 (resp., −J1−J2−1), then the second(resp., fourth) term disappears. This indicates that
whenq= ± sJ1−J2d , ±sJ1+J2+1d atypical representations arise(see the next section for details).

For the four level-1 multiplets, we obtain the following actions of the odd simple generators,
after long algebraic manipulations,
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GsE23duJ1 − 1
2,m1,J2 − 1

2,m2,q,p − 1l = − uJ1,m1 + 1
2,J2,m2 + 1

2,q;pl,

GsE23duJ1 + 1
2,m1,J2 − 1

2,m2,q,p − 1l = − sJ1 + m1 + 3
2duJ1,m1 + 1

2,J2,m2 + 1
2,q;pl,

GsE23duJ1 + 1
2,m1,J2 + 1

2,m2,q,p − 1l = − sJ1 + m1 + 3
2dsJ2 + m2 + 3

2duJ1,m1 + 1
2,J2,m2 + 1

2,q;pl,

GsE23duJ1 − 1
2,m1,J2 + 1

2,m2,q,p − 1l = − sJ2 + m2 + 3
2duJ1,m1 + 1

2,J2,m2 + 1
2,q;pl,

s3.7d
GsE32duJ1 − 1

2,m1,J2 − 1
2,m2,q,p − 1l

= −
J2 − m2 − 3/2

2J2
sq − J1 − J2 − 1duJ1,m1 − 1

2,J2 − 1,m2 − 1
2,q;p − 2l

+
q − J1 + J2 − 1

2J2
uJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 2lI

−
q − J1 + J2 + 1

2J2
uJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 2lII

+
J1 − m1 − 3/2

2J1
sq + J1 + J2 + 1duJ1 − 1,m1 − 1

2,J2,m2 − 1
2,q;p − 2l,

GsE32duJ1 + 1
2,m1,J2 − 1

2,m2,q,p − 1l

=
sJ1 − m1 − 1/2dsJ2 − m2 − 3/2d

2J2
sq + J1 − J2duJ1,m1 − 1

2,J2 − 1,m2 − 1
2,q;p − 2l

−
J1 − m1 − 1/2

2J2
sq + J1 + J2duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 2lI

−
sJ1 − m1 − 1/2

2sJ1 + 1d
sq + J1 + J2 + 2duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 2lII

+
q − J1 + J2

2sJ1 + 1d
uJ1 + 1,m1 − 1

2,J2,m2 − 1
2,q;p − 2l,

GsE32duJ1 + 1
2,m1,J2 + 1

2,m2,q,p − 1l

= −
sJ1 − m1 − 1/2dsJ2 − m2 − 1/2d

2sJ2 + 1d
sq + J1 − J2 − 1duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 2lI

+
sJ1 − m1 − 1/2dsJ2 − m2 − 1/2d

2sJ1 + 1d
sq + J1 − J2 + 1duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 2lII

−
sJ2 − m2 − 1/2

2sJ1 + 1d
sq − J1 − J2 − 1duJ1 + 1,m1 − 1

2,J2,m2 − 1
2,q;p − 2l

+
J1 − m1 − 1/2

2sJ2 + 1d
sq + J1 + J2 + 1duJ1,m1 − 1

2,J2 + 1,m2 − 1
2,q;p − 2l,
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GsE32duJ1 − 1
2,m1,J2 + 1

2,m2,q,p − 1l

= −
J2 − m2 − 1/2

2sJ2 + 1d
sq − J1 − J2 − 2duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 2lI

−
J2 − m2 − 1/2

2J1
sq − J1 − J2duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 2lII

+
sJ1 − m1 − 3/2dsJ2 − m2 − 1/2d

2J1
sq + J1 − J2duJ1 − 1,m1 − 1

2,J2,m2 − 1
2,q;p − 2l

+
q − J1 + J2

2sJ2 + 1d
uJ1,m1 − 1

2,J2 + 1,m2 − 1
2,q;p − 2l.

Similar to the level-1 case, we find after long algebraic computations that the actions of the
odd simple generators on the six level-2 multiplets are given by

GsE23duJ1,m1,J2 − 1,m2,q;p − 2l = −
J1 + m1 + 2

2J1 + 1
uJ1 − 1

2,m1 + 1
2,J2 − 1

2,m2 + 1
2,q,p − 1l

+
1

2J1 + 1
uJ1 + 1

2,m1 + 1
2,J2 − 1

2,m2 + 1
2,q,p − 1l,

GsE23duJ1 − 1,m1,J2,m2,q;p − 2l =
J2 + m2 + 2

2J2 + 1
uJ1 − 1

2,m1 + 1
2,J2 − 1

2,m2 + 1
2,q,p − 1l

+
1

2J1 + 1
uJ1 − 1

2,m1 + 1
2,J2 + 1

2,m2 + 1
2,q,p − 1l,

GsE23duJ1 + 1,m1,J2,m2,q;p − 2l =
sJ1 + m1 + 3dsJ2 + m2 + 2d

2J2 + 1
uJ1 + 1

2,m1 + 1
2,J2 − 1

2,m2 + 1
2,q,p − 1l

−
J1 + m1 + 3

2J2 + 1
uJ1 + 1

2,m1 + 1
2,J2 + 1

2,m2 + 1
2,q,p − 1l,

GsE23duJ1,m1,J2 + 1,m2,q;p − 2l =
J2 + m2 + 3

2J1 + 1
uJ1 + 1

2,m1 + 1
2,J2 + 1

2,m2 + 1
2,q,p − 1l

+
sJ1 + m1 + 2dsJ2 + m2 + 3d

2J1 + 1

3uJ1 − 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q,p − 1l,

GsE23duJ1,m1,J2,m2,q;p − 2lI =
1

s2J1 + 1ds2J2 + 1d
fsJ2 + 1dsJ1 + m1 + 2dsJ2 + m2 + 2d

3uJ1 − 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q,p − 1l

− sJ2 + 1dsJ2 + m2 + 2duJ1 + 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q,p − 1l

− J2uJ1 + 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q,p − 1l − J2sJ1 + m1 + 2duJ1

− 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q,p − 1lg, s3.8d
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GsE23duJ1,m1,J2,m2,q;p − 2lII =
1

s2J1 + 1ds2J2 + 1d
f− sJ1 + 1dsJ1 + m1 + 2dsJ2 + m2 + 2d

3uJ1 − 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q,p − 1l

− J1sJ2 + m2 + 2duJ1 + 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q,p − 1l

+ J1uJ1 + 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q,p − 1l

− sJ1 + 1dsJ1 + m1 + 2duJ1 − 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q,p − 1l,

GsE32duJ1,m1,J2 − 1,m2,q;p − 2l =
J1 − m1 − 2

2J1 + 1
sq + J1 + J2 + 1d

3uJ1 − 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l

−
q − J1 + J2

2J1 + 1
uJ1 + 1

2,m1 − 1
2,J2 − 1

2,m2 − 1
2,q;p − 3l,

GsE32duJ1 − 1,m1,J2,m2,q;p − 2l =
J2 − m2 − 2

2J2 + 1
sq − J1 − J2 − 1d

3uJ1 − 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l

−
q − J1 + J2

2J2 + 1
uJ1 − 1

2,m1 − 1
2,J2 + 1

2,m2 − 1
2,q;p − 3l,

GsE32duJ1 + 1,m1,J2,m2,q;p − 2l =
sJ1 − m1 − 1dsJ2 − m2 − 2d

2J2 + 1
sq + J1 − J2d

3uJ1 + 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l

−
J1 − m1 − 1

2J2 + 1
sq + J1 + J2 + 1d

3uJ1 + 1
2,m1 − 1

2,J2 + 1
2,m2 − 1

2,q;p − 3l,

GsE32duJ1,m1,J2 + 1,m2,q;p − 2l =
sJ1 − m1 − 2dsJ2 − m2 − 1d

2J1 + 1
sq + J1 − J2duJ1 − 1

2,m1 − 1
2,J2 + 1

2,m2

− 1
2,q;p − 3l −

J2 − m2 − 1

2J1 + 1
sq − J1 − J2 − 1duJ1 + 1

2,m1 − 1
2,J2

+ 1
2,m2 − 1

2,q;p − 3l,

GsE32duJ1,m1,J2,m2,q;p − 2lI =
1

s2J1 + 1ds2J2 + 1d
fsJ2 + 1dsJ1 − m1 − 2dsJ2 − m2 − 2d

3sq + J1 − J2 + 1duJ1 − 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l − sJ2 + 1d

3sJ2 − m2 − 2dsq − J1 − J2duJ1 + 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l

+ J2sJ1 − m1 − 2dsq + J1 + J2 + 2duJ1 − 1
2,m1 − 1

2,J2 + 1
2,

m2 − 1
2,q;p − 3l

− J2sq − J1 + J2 + 1duJ1 + 1
2,m1 − 1

2,J2 + 1
2,m2 − 1

2,q;p − 3lg,
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GsE32duJ1,m1,J2,m2,q;p − 2lII =
1

s2J1 + 1ds2J2 + 1d
fsJ1 + 1dsJ1 − m1 − 2dsJ2 − m2 − 2d

3sq + J1 − J2 − 1duJ1 − 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l

+ J1sJ2 − m2 − 2d

3sq − J1 − J2 − 2duJ1 + 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l − sJ1 + 1d

3sJ1 − m1 − 2dsq + J1 + J2duJ1 − 1
2,m1 − 1

2,J2 + 1
2,m2 − 1

2,q;p − 3l

− J1sq − J1 + J2 − 1duJ1 + 1
2,m1 − 1

2,J2 + 1
2,m2 − 1

2,q;p − 3lg.

The actions of the odd simple generators on the four level-3 multiplets can be obtained in a
similar way. We list the results as follows:

GsE23duJ1 − 1
2,m1,J2 − 1

2,m2,q,p − 3l =
J2 + m2 + 5/2

2J2
uJ1,m1 + 1

2,J2 − 1,m2 + 1
2,q;p − 2l

+
1

2J2
uJ1,m1 + 1

2,J2,m2 + 1
2,q;p − 2lI

+
1

2J1
uJ1,m1 + 1

2,J2,m2 + 1
2,q;p − 2lII

+
J1 + m1 + 5/2

2J1
uJ1 − 1,m1 + 1

2,J2,m2 + 1
2,q;p − 2l,

GsE23duJ1 + 1
2,m1,J2 − 1

2,m2,q,p − 3l = −
sJ1 + m1 + 7/2dsJ2 + m2 + 5/2d

2J2

3uJ1,m1 + 1
2,J2 − 1,m2 + 1

2,q;p − 2l

+ sJ1 + m1 + 7
2dF−

1

2J2
uJ1,m1 + 1

2,J2,m2 + 1
2,q;p − 2lI

+
1

2sJ1 + 1d
uJ1,m1 + 1

2,J2,m2 + 1
2,q;p − 2lIIG

+
1

2sJ1 + 1d
uJ1 + 1,m1 + 1

2,J2,m2 + 1
2,q;p − 2l,

GsE23duJ1 − 1
2,m1,J2 + 1

2,m2,q,p − 3l = sJ2 + m2 + 7
2dF 1

2sJ2 + 1d
uJ1,m1 + 1

2,J2,m2 + 1
2,q;p − 2lI

−
1

2J1
uJ1,m1 + 1

2,J2,m2 + 1
2,q;p − 2lIIG

−
sJ1 + m1 + 5/2dsJ2 + m2 + 7/2d

2J1

3uJ1 − 1,m1 + 1
2,J2,m2 + 1

2,q;p − 2l

+
1

2sJ2 + 1d
uJ1,m1 + 1

2,J2 + 1,m2 + 1
2,q;p − 2l,
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GsE23duJ1 + 1
2,m1,J2 + 1

2,m2,q,p − 3l = − sJ1 + m1 + 7
2dsJ2 + m2 + 7

2d

3F 1

2sJ2 + 1d
uJ1,m1 + 1

2,J2,m2 + 1
2,q;p − 2lI

+
1

2sJ1 + 1d
uJ1,m1 + 1

2,J2,m2 + 1
2,q;p − 2lIIG

−
J2 + m2 + 7/2

2sJ1 + 1d
uJ1 + 1,m1 + 1

2,J2,m2 + 1
2,q;p − 2l

−
J1 + m1 + 7/2

2sJ2 + 1d
uJ1,m1 + 1

2,J2 + 1,m2 + 1
2,q;p − 2l,

s3.9d
GsE32duJ1 − 1

2,m1,J2 − 1
2,m2,q,p − 3l = sq − J1 + J2duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 4l,

GsE32duJ1 + 1
2,m1,J2 − 1

2,m2,q,p − 3l = sq + J1 + J2 + 1dsJ1 − m1 − 5
2duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 4l,

GsE32duJ1 − 1
2,m1,J2 + 1

2,m2,q,p − 3l = sq − J1 − J2 − 1dsJ2 − m2 − 5
2duJ1,m1 − 1

2,J2,m2 − 1
2,q;p − 4l,

GsE32duJ1 + 1
2,m1,J2 + 1

2,m2,q,p − 3l = sq + J1 − J2dsJ1 − m1 − 5
2dsJ2 − m2 − 5

2d

3uJ1,m1 − 1
2,J2,m2 − 1

2,q;p − 4l.

Finally, the actions of the odd simple generators on the level-4 multiplet are

GsE23duJ1,m1,J2,m2,q;p − 4l =
1

s2J1 + 1ds2J2 + 1d
fsJ1 + m1 + 4dsJ2 + m2 + 4d

3uJ1 − 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q,p − 3l

+ sJ2 + m2 + 4duJ1 + 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q,p − 3l

+ sJ1 + m1 + 4duJ1 − 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q,p − 3l

+ uJ1 + 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q,p − 3lg,

GsE32duJ1,m1,J2,m2,q;p − 4l = 0. s3.10d

Summarizing, we have obtained 16 independent multiplets,(3.1), (3.3), and (3.4), of gls2d
% gls2d which span finite-dimensional representations of gls2u2d. For genericq, these multiplets
span irreducible typical representations of gls2u2d of dimension 16s2J1+1ds2J2+1d. Denote by
psJ1,J2,q,pd and ssJ1,J2,q,pd the gls2u2d and gls2d % gls2d representations with highest weight
sJ1,J2,q,pd, respectively. Then the gls2u2d↓gls2d % gls2d branching rule for genericq is given by

psJ1,J2,q,pd = ssJ1,J2,q,pd % ssJ1−1/2,J2−1/2,q,p−1d % ssJ1+1/2,J2−1/2,q,p−1d % ssJ1+1/2,J2+1/2,q,p−1d

% ssJ1−1/2,J2+1/2,q,p−1d % ssJ1,J2−1,q,p−2d % ssJ1−1,J2,q,p−2d % ssJ1+1,J2,q,p−2d % ssJ1,J2+1,q,p−2d

% 2 3 ssJ1,J2,q,p−2d % ssJ1−1/2,J2−1/2,q,p−3d % ssJ1+1/2,J2−1/2,q,p−3d % ssJ1−1/2,J2+1/2,q,p−3d

% ssJ1+1/2,J2+1/2,q,p−3d % ssJ1,J2,q,p−4d. s3.11d

Some remarks are in order. First, irreducible representations are obtained as submodules(not
subquotients) of the super-Fock space generated byhaij ,aij

† ,ai j ,ai j
†j. This is because the

gls2u2d-module structure of the super-Fock space is the contragredient dual of the Verma model
over gls2u2d. Second, asuJ1,m1,J2,m2,q;p−2lI ;0 whenJ2=0 anduJ1,m1,J2,m2,q;p−2lII ;0
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whenJ1=0, thus if J1=0 or J2=0 only one copy ofssJ1,J2,q,p−2d remains in the above branching
rule. In particular, whenJ1=0=J2 which corresponds to the 16-dimensional typical representation
of gls2u2d , ssJ1,J2,q,p−2d disappears and the branching rule becomes

ps0,0,q,pd = ss0,0,q,pd % ss1/2,1/2,q,p−1d % ss1,0,q,p−2d % ss0,1,q,p−2d % ss1/2,1/2,q,p−3d % ss0,0,q,p−4d

s3.12d

or 16I=1I % 4I % 3I % 3I % 4I % 1I.

IV. ATYPICAL REPRESENTATIONS OF gl „2 z2…

We have different types of atypical representations of gls2u2d. From the actions of the odd
generators on the gls2d % gls2d multiplets, we see that whenq= ± sJ1−J2d , ±sJ1+J2+1d, the rep-
resentations become atypical. The Casimir for such representations vanishes, and yet they are not
the trivial one-dimensional representation.

A. Atypical representation corresponding to q =J1−J2

Case 1.q=J1−J2, J1ÞJ2: Let us introduce the following independent combinations:

uJ1,m1,J2,m2,q,p − 2lsym1= J1uJ1,m1,J2,m2,q,p − 2lI + J2uJ1,m1,J2,m2,q,p − 2lII ,

uJ1,m1,J2,m2,q,p − 2lasym1= J1uJ1,m1,J2,m2,q,p − 2lI − J2uJ1,m1,J2,m2,q,p − 2lII s4.1d

for J1Þ0,J2Þ0. WhenJ1=0 or J2=0, we letuJ1,m1,J2,m2,q,p−2lsym1;0 and

uJ1,m1,J2,m2,q,p − 2lasym1= HuJ1,m1,J2,m2,q,p − 2lI if J1 = 0,

uJ1,m1,J2,m2,q,p − 2lII if J2 = 0.
J s4.2d

It can be shown from the actions of odd generators that whenq=J1−J2,

GsE23duJ1,m1,J2,m2,q,p − 2lsym1=
1

s2J1 + 1ds2J2 + 1d

3fsJ1 − J2dsJ1 + m1 + 2dsJ2 + m2 + 2d

3uJ1 − 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q;p − 1l

− J1s2J2 + 1dsJ2 + m2 + 2duJ1 + 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q;p − 1l

− s2J1 + 1dJ2sJ1 + m1 + 2duJ1 − 1
2,m1 + 1

2,

J2 + 1
2,m2 + 1

2,q;p − 1lg, s4.3d

which does not contain the multipletuJ1+ 1
2 ,m1,J2+ 1

2 ,m2,q;p−1l, and

GsE32duJ1,m1,J2,m2,q,p − 2lsym1=
sJ1 − J2ds4J1J2 + 2J1 + 2J2 + 1d

s2J1 + 1ds2J2 + 1d
sJ1 − m1 − 2dsJ2 − m2 − 2d

3uJ1 − 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l. s4.4d

Thus whenq=J1−J2, if one starts with the level-0 stateuJ1,m1,J2,m2,q;pl then we find using the
actions(3.6)–(3.10) that the following gls2d % gls2d multiplets,

uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 1l,

uJ1 + 1,m1,J2,m2,q,p − 2l, uJ1,m1,J2 + 1,m2,q,p − 2l,
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uJ1,m1,J2,m2,q,p − 2lasym1, uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 3l, s4.5d

uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 3l, uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 3l,

uJ1,m1,J2,m2,q,p − 4l

disappear, and only the following multiplets

uJ1,m1,J2,m2,q,pl,

uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 1l, uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 1l,

uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 1l,

uJ1,m1,J2,m2,q,p − 2lsym1, uJ1 − 1,m1,J2,m2,q,p − 2l,

uJ1,m1,J2 − 1,m2,q,p − 2l, uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 3l s4.6d

remain. They form irreducible atypical representations of gls2u2d of dimension 8fs2J1+1dJ2

+J1s2J2+1dg. So the gls2u2d↓gls2d % gls2d branching rule forq=J1−J2 is given by

psJ1,J2,q,pd = ssJ1,J2,q,pd % ssJ1−1/2,J2−1/2,q,p−1d % ssJ1+1/2,J2+1/2,q,p−1d % ssJ1−1/2,J2+1/2,q,p−1d % ssJ1,J2,q,p−2d

% ssJ1−1,J2,q,p−2d % ssJ1,J2−1,q,p−2d % ssJ1−1/2,J2−1/2,q,p−3d. s4.7d

It should be understood here thatssJ1,J2,q,p−2d disappears whenJ1=0 or J2=0.
Case 2. q=J1−J2,J1=J2 so thatq=0: In this case, we define the independent combinations:

uJ1,m1,J2,m2,q,p − 2lsym18 = uJ1,m1,J2,m2,q,p − 2lI + uJ1,m1,J2,m2,q,p − 2lII ,

uJ1,m1,J2,m2,q,p − 2lasym18 = uJ1,m1,J2,m2,q,p − 2lI − uJ1,m1,J2,m2,q,p − 2lII . s4.8d

Both uJ1,m1,J2,m2,q,p−2lsym18 and uJ1,m1,J2,m2,q,p−2lasym18 vanish if J1=0=J2. Then it is
easily shown thatGsE23duJ1,m1,J2,m2,q,p−2lsym18 does not containuJ1− 1

2 ,m1,J2− 1
2 ,m2,q;p

−1l and uJ1+ 1
2 ,m1,J2+ 1

2 ,m2,q;p−1l, and GsE32duJ1,m1,J2,m2,q,p−2lsym18=0. Thus only the
following multiplets

uJ1,m1,J2,m2,q,pl,

uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 1l, uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 1l, s4.9d

uJ1,m1,J2,m2,q,p − 2lsym18,

survive, and they give irreducible atypical representations of dimension 4fs2J1+1ds2J2+1d− 1
2
g if

J1=J2Þ0 and the trivial one-dimensional representation ifJ1=0=J2 [for which the last three
multiplets in (4.9) disappear].

Case 3. Lowest weight (indecomposable) Kac modules: Other types of atypical representations
whenq=J1−J2 are not irreducible. One such type of representation is obtained by starting with the
level-4 stateuJ1,m1,J2,m2,q;p−4l. These representations contain all 16 multiplets and a nonsepa-
rable invariant subspace provided by the multiplets(4.6) [or (4.9) whenJ1=J2]. These represen-
tations are not fully reducible(i.e., indecomposable) and have dimension 16s2J1+1ds2J2+1d.
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B. Atypical representations corresponding to q =−J1+J2

The case whereJ1=J2 so thatq=0 is the same as case 2 of the last subsection. So in this
subsection we only consider theJ1ÞJ2 case.

1. Irreducible representations

Let us introduce the following independent combinations:

uJ1,m1,J2,m2,q,p − 2lsym2= sJ1 + 1duJ1,m1,J2,m2,q,p − 2lI + sJ2 + 1duJ1,m1,J2,m2,q,p − 2lII ,

uJ1,m1,J2,m2,q,p − 2lasym2= sJ1 + 1duJ1,m1,J2,m2,q,p − 2lI − sJ2 + 1duJ1,m1,J2,m2,q,p − 2lII

s4.10d

for J1Þ0,J2Þ0, and let

uJ1,m1,J2,m2,q,p − 2lsym2= HuJ1,m1,J2,m2,q,p − 2lI if J1 = 0,

uJ1,m1,J2,m2,q,p − 2lII if J2 = 0,
J s4.11d

and uJ1,m1,J2,m2,q,p−2lasym2=0 if J1=0 or J2=0.
Similar to theq=J1−J2 case, we may show that whenq=−J1+J2,

GsE23duJ1,m1,J2,m2,q,p − 2lsym2=
1

s2J1 + 1ds2J2 + 1d
f− s2J1 + 1dsJ2 + 1dsJ2 + m2 + 2d

3uJ1 + 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q;p − 1l + sJ1 − J2d

3uJ1 + 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q;p − 1l − sJ1 + 1ds2J2 + 1d

3sJ1 + m1 + 2duJ1 − 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q;p − 1lg,

s4.12d

which is independent ofuJ1− 1
2 ,m1,J2− 1

2 ,m2,q;p−1l and

GsE32duJ1,m1,J2,m2,q,p − 2lsym2=
sJ1 − J2ds4J1J2 + 2J1 + 2J2 + 1d

s2J1 + 1ds2J2 + 1d
sJ1 − m1 − 2dsJ2 − m2 − 2d

3uJ1 + 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q;p − 3l. s4.13d

Thus whenq=−J1+J2, if one starts with the level-0 state, then by the actions(3.6)–(3.10) one
finds that the following gls2d % gls2d multiplets,

uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 1l,

uJ1,m1,J2 − 1,m2,q,p − 2l, uJ1 − 1,m1,J2,m2,q,p − 2l,

uJ1,m1,J2,m2,q,p − 2lasym2, uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 3l, s4.14d

uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 3l, uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 3l,

uJ1,m1,J2,m2,q,p − 4l,

drop out of the basis, and only the following multiplets,

uJ1,m1,J2,m2,q,pl,
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uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 1l, uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 1l,

uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 1l, s4.15d

uJ1,m1,J2,m2,q,p − 2lsym2, uJ1 + 1,m1,J2,m2,q,p − 2l,

uJ1,m1,J2 + 1,m2,q,p − 2l, uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 3l,

survive. They form irreducible atypical representations of gls2u2d of dimension 8fsJ1+1ds2J2

+1d+s2J1+1dsJ2+1dg. The branching rule in this case(i.e., q=−J1+J2) becomes

psJ1,J2,q,pd = ssJ1,J2,q,pd ^ ssJ1+1/2,J2+1/2,q,p−1d ^ ssJ1+1/2,J2−1/2,q,p−1d ^ ssJ1−1/2,J2+1/2,q,p−1d

^ ssJ1,J2,q,p−2d ^ ssJ1+1,J2,q,p−2d ^ ssJ1,J2+1,q,p−2d ^ ssJ1+1/2,J2+1/2,q,p−3d. s4.16d

2. Lowest weight (indecomposable ) Kac modules

If one starts with the level-4 state, then one gets atypical representations which are not
irreducible. In such representations, all 16 multiplets appear but there exists a nonseparable in-
variant superspace generated by multiplets(4.15). These representations are indecomposable and
have dimension 16s2J1+1ds2J2+1d.

C. Atypical representations corresponding to q =J1+J2+1

1. Irreducible representations

Let us introduce the following independent combinations forJ1Þ0,J2Þ0,

uJ1,m1,J2,m2,q,p − 2lsym3= J1uJ1,m1,J2,m2,q,p − 2lI + sJ2 + 1duJ1,m1,J2,m2,q,p − 2lII ,

uJ1,m1,J2,m2,q,p − 2lasym3= J1uJ1,m1,J2,m2,q,p − 2lI − sJ2 + 1duJ1,m1,J2,m2,q,p − 2lII .

s4.17d

We let

uJ1,m1,J2,m2,q,p − 2lsym3= HuJ1,m1,J2,m2,q,p − 2lI if J1 = 0,

0 if J2 = 0,
J

s4.18d

uJ1,m1,J2,m2,q,p − 2lasym3= H0 if J1 = 0,

uJ1,m1,J2,m2,q,p − 2lII if J2 = 0.
J

It can be seen from the actions of odd generators that whenq=J1+J2+1,

GsE23duJ1,m1,J2,m2,q,p − 2lasym3=
1

s2J1 + 1ds2J2 + 1d
fs2J1 + 1dsJ2 + 1dsJ2 + m2 + 2dsJ2 + m2 + 2d

3uJ1 − 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q;p − 1l − J1s2J2 + 1d

3uJ1 + 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q;p − 1l

+ sJ1 + J2 + 1dsJ1 + m1 + 2d

3uJ1 − 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q;p − 1lg, s4.19d

which does not contain the multipletuJ1+ 1
2 ,m1,J2− 1

2 ,m2,q;p−1l and
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GsE32duJ1,m1,J2,m2,q,p − 2lasym3=
sJ1 + J2 + 1ds4J1J2 + J1 + J2d + sJ1 + J2d2

s2J1 + 1ds2J2 + 1d

3sJ1 − m1 − 2duJ1 − 1
2,m1 − 1

2,J2 + 1
2,m2 − 1

2,q;p − 3l.

s4.20d

Then similar to previous cases, whenq=J1+J2+1, the following gls2d % gls2d multiplets,

uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 1l,

uJ1,m1,J2 − 1,m2,q,p − 2l, uJ1 + 1,m1,J2,m2,q,p − 2l,

uJ1,m1,J2,m2,q,p − 2lsym3, uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 3l, s4.21d

uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 3l, uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 3l,

uJ1,m1,J2,m2,q,p − 4l

disappear, and only the following multiplets,

uJ1,m1,J2,m2,q,pl,

uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 1l, uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 1l,

uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 1l, s4.22d

uJ1,m1,J2,m2,q,p − 2lasym3, uJ1 − 1,m1,J2,m2,q,p − 2l,

uJ1,m1,J2 + 1,m2,q,p − 2l, uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 3l

remain. They constitute irreducible atypical representations of gls2u2d of dimension 8fs2J1+1d
3sJ2+1d+J1s2J2+1dg. The branching rule in this case(i.e., q=J1+J2+1) reads

psJ1,J2,q,pd = ssJ1,J2,q,pd % ssJ1−1/2,J2−1/2,q,p−1d % ssJ1+1/2,J2+1/2,q,p−1d % ssJ1−1/2,J2+1/2,q,p−1d % ssJ1,J2,q,p−2d

% ssJ1−1,J2,q,p−2d % ssJ1,J2+1,q,p−2d % ssJ1−1/2,J2+1/2,q,p−3d. s4.23d

Here one should keep in mind thatssJ1,J2,q,p−2d disappears ifJ1=0.

2. Lowest weight (indecomposable ) Kac representations

Similar to the previous cases, if one retains all 16 multiplets, then one gets lowest weight
(indecomposable) Kac representations of 16s2J1+1ds2J2+1d which contain an invariant but non-
separable subspace provided by multiplets(4.22).

D. Atypical representations corresponding to q =−J1−J2−1

1. Irreducible representations

In this case, we introduce the following independent combinations forJ1Þ0,J2Þ0,

uJ1,m1,J2,m2,q,p − 2lsym4= sJ1 + 1duJ1,m1,J2,m2,q,p − 2lI + J2uJ1,m1,J2,m2,q,p − 2lII ,
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uJ1,m1,J2,m2,q,p − 2lasym4= sJ1 + 1duJ1,m1,J2,m2,q,p − 2lI − J2uJ1,m1,J2,m2,q,p − 2lII

s4.24d

and let

uJ1,m1,J2,m2,q,p − 2lsym4= H0 if J1 = 0,

uJ1,m1,J2,m2,q,p − 2lII if J2 = 0,
J

s4.25d

uJ1,m1,J2,m2,q,p − 2lasym4= HuJ1,m1,J2,m2,q,p − 2lI if J1 = 0,

0 if J2 = 0.
J

It can be seen from the actions of odd generators that whenq=−J1−J2−1,

GsE23duJ1,m1,J2,m2,q,p − 2lasym4=
1

s2J1 + 1ds2J2 + 1d
fsJ1 + 1ds2J2 + 1dsJ2 + m2 + 2dsJ2 + m2 + 2d

3uJ1 − 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q;p − 1l − sJ1 + J2 + 1d

3sJ2 + m2 + 2duJ1 + 1
2,m1 + 1

2,J2 − 1
2,m2 + 1

2,q;p − 1l

− s2J1 + 1dJ2uJ1 + 1
2,m1 + 1

2,J2 + 1
2,m2 + 1

2,q;p − 1lg, s4.26d

which has no dependence on the multipletuJ1− 1
2 ,m1,J2+ 1

2 ,m2,q;p−1l and

GsE32duJ1,m1,J2,m2,q,p − 2lasym4= −
sJ1 + J2 + 1ds4J1J2 + J1 + J2d + sJ1 + J2d2

s2J1 + 1ds2J2 + 1d

3sJ2 − m2 − 2duJ1 + 1
2,m1 − 1

2,J2 − 1
2,m2 − 1

2,q;p − 3l.

s4.27d

Thus whenq=−J1−J2−1, the following gls2d % gls2d multiplets

uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 1l,

uJ1 − 1,m1,J2,m2,q,p − 2l, uJ1,m1,J2 + 1,m2,q,p − 2l,

uJ1,m1,J2,m2,q,p − 2lsym4, uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 3l, s4.28d

uJ1 − 1
2,m1,J2 + 1

2,m2,q;p − 3l, uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 3l,

uJ1,m1,J2,m2,q,p − 4l

drop out, and only the following multiplets

uJ1,m1,J2,m2,q,pl,

uJ1 − 1
2,m1,J2 − 1

2,m2,q;p − 1l, uJ1 + 1
2,m1,J2 + 1

2,m2,q;p − 1l,

uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 1l, s4.29d

uJ1,m1,J2,m2,q,p − 2lasym4, uJ1,m1,J2 − 1,m2,q,p − 2l,
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uJ1 + 1,m1,J2,m2,q,p − 2l, uJ1 + 1
2,m1,J2 − 1

2,m2,q;p − 3l

remain. They give irreducible atypical representations of gls2u2d of dimension 8fsJ1+1ds2J2+1d
+s2J1+1dJ2g. In this case the branching rule becomes

psJ1,J2,q,pd = ssJ1,J2,q,pd % ssJ1−1/2,J2−1/2,q,p−1d % ssJ1+1/2,J2+1/2,q,p−1d % ssJ1+1/2,J2−1/2,q,p−1d % ssJ1,J2,q,p−2d

% ssJ1,J2−1,q,p−2d % ssJ1+1,J2,q,p−2d % ssJ1+1/2,J2−1/2,q,p−3d. s4.30d

Here it should be understood thatssJ1,J2,q,p−2d is not in the branching rule ifJ2=0.

2. Lowest weight (indecomposable ) Kac representations

As before, other types of atypical representations are not irreducible. These representations
contain all 16 multiplets which contain a nonseparable invariant subspace generated by multiplets
(4.29). They are lowest weight(indecomposable) Kac representations of dimension 16s2J1+1d
3s2J2+1d.

V. CONCLUSIONS AND DISCUSSIONS

In this article we have applied the supercoherent state method to the construction of the free
boson-fermion realization and representations of the non-semisimple superalgebra gls2u2d in the
standard basis. The representations are constructed out of the gls2d % gls2d particle states in the
super-Fock space.

As mentioned in the Introduction, superalgebras and their corresponding nonunitary CFTs
emerge in the supersymmetric treatment to disordered systems and the integer quantum Hall
plateaus. In such a treatment, primary fields play an important role in the computation of critical
properties of the disordered systems. The results obtained in this paper now make possible the
construction of all primary fields of the gls2u2d nonunitary CFT in terms of free fields.23 This is
under investigation and results will be presented elsewhere.
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E6 is an attractive group for unification model building. However, the complexity
of a rank 6 group makes it nontrivial to write down the structure of higher dimen-
sional operators in anE6 theory in terms of the states labeled by quantum numbers
of the standard model gauge group. In this paper, we show the results of our
computation of the Clebsch–Gordan coefficients for the products of the27 with
irreducible representations of higher dimensionality:78, 351, 3518, 351, and3518.
Application of these results toE6 model building involving higher dimensional
operators is straightforward. ©2005 American Institute of Physics.
@DOI: 10.1063/1.1448134#

I. INTRODUCTION

E6 is the minimal simple gauge group which could accommodate one family of the observed
fermions, and a family of Higgs states, into a single gauge multiplet.1 Therefore, unification
models based onE6 can provide relationships for the measured charged fermion masses and quark
mixing angles: 13 unrelated independent parameters of the standard model of elementary particles,
and at the same time a small set ofE6 symmetric operators may relate the charged fermion data
both to the masses and mixings in the neutrino sector and to the parameters of the Higgs sector. In
this respect,E6 provides a framework for the most economic unified supersymmetric theories.

As is well known the key feature among the observed masses of the three generations of
fermions is the intergenerational hierarchy. Any unified model has to explain the origin of the
hierarchy in terms of the dynamics of the underlying theory. InE6 models, the hierarchy can
follow from the pattern of the symmetry breaking as the rank 6 group is broken down to the
standard model gauge group, possibly in a succession of steps. The hierarchy may be explicitly
realized in terms of higher dimensional operators containing the light states after the superheavy
degrees of freedom are integrated out of the effective theory generated below theE6 breaking
scaleM6 .2 From the technical point of view, the construction of higher dimensionalE6 symmetric
operators and their structure in terms of the standard model states is a nontrivial task. Assuming
that the light states occupy the fundamental 27-dimensional irreducible representation~irrep!, a
complete knowledge of the tensor products of the27 irrep with larger irreps is required. For
instance, theE6 symmetry allows for a higher dimensional operator containing the product of
three 27’s and a78, suppressed by some heavy scaleMH>M6 . If the 78 acquires a vacuum
expectation value~vev! v6'M6 and all three27’s contain light states, such an operator contributes
to the generation of fermion mass matrices. In particular, for the first two families it may generate
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entries suppressed byv6 /MH . Yet, the predictivity ofE6 can only be utilized if the exact form of
the singlet in27^ 27^ 27^ 78 in terms of the standard model states is known. If two of the27’s
are contracted antisymmetrically, one needs to know the Clebsch–Gordan decomposition of the
351 in the tensor product27^ 78, then the decomposition of the27 in the product27^ 351, and,
lastly, the decomposition of the singlet in the product27^ 27. However, complete information on
general tensor products of the exceptional groupE6 is difficult to obtain.3 As for particular
computations, to our knowledge only the Clebsch–Gordan decompositions of27^ 27, 27^ 27,
and78^ 78 are presently available in the literature.4–6. ~We note in passing that a separate paper7

obtains a subset of the results needed for the operator27378 by studying a branching chain ofE6 .
The results presented in this paper are relevant for the case when the vev is acquired by a zero
weight state of the78.!

In this paper, we continue in our earlier work5,6 and provide basic group-theoretical tools for
a construction of higher-dimensionalE6 symmetric operators. In particular, we present the results
of our computation of the Clebsch–Gordan coefficients~CGCs! for the tensor products involving
27-, 78-, and 351-dimensional representations, the lowest dimensional irreps inE6 . Section II
contains some necessary mathematical background for our study, mostly concerned with lowering
in the weight system of these irreps. Our main results can be found in Sec. III, where we also
comment on the construction and properties of the weight systems of the resulting irreps. Section
IV contains the summary, while the appendix provides details on the lowering relations in the
presence of degenerate weights.

II. MATHEMATICAL PRELIMINARIES

In this work we consider tensor products of the fundamental 27-dimensional irrep with higher
dimensional 78- and 351-dimensional representations ofE6 . In particular, we compute the
Clebsch–Gordan coefficients for the products

27^ 7851728% 351% 27, ~1a!

27^ 35157371% 1728% 351% 27, ~1b!

27^ 351857722% 1728% 27, ~1c!

27^ 35155824% 2925% 650% 78, ~1d!

27^ 351853003% 5824% 650. ~1e!

Before we discuss the construction of the weight systems of the irreps on the right-hand side of
these relations let us start first with the rules for the construction of the irreps on the left.

The key ingredient of our procedure is the lowering operation which is used to construct a
complete weight system by successive application of generatorsE2a1

,...,E2a6
. These are the

generators which lie outside of the diagonal Cartan subalgebra and correspond to the six simple
roots ofE6 . ~Our choice of generators is described in more detail in Ref. 6, and basically follows
the standard conventions of Ref. 8.! The six generators act as ladder operators—at each level the
weight of the new state is obtained from the weight at the previous level by subtracting~in the
weight space! the respective simple root:

E2a i
uw&5N2a i ,wuw2a i&. ~2!

For the weight systems of the27 and78 constantsN2a i ,w satisfy @see Eq.~12! in Ref. 6#

uN2a i ,(w) j
u25^a i uw&1u^~w! j u~w! i&u2uN2a i ,w1a i

u2. ~3!
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It is understood that the new stateuw2a i& does not exist ifN2a i ,w50 or the right-hand side of
~3! turns out to be negative. The subscript on the weight~w! is only relevant for the six degenerate
zero weight states of the78 and is to be ignored for nondegenerate weights. In fact, the second
term on the right-hand side of~3! never contributes when one constructs the weight system of the
27 as there are no higher multiplets than doublets for any SU(2) subgroup.

We remark that throughout this work, and consistent with our previous studies,5,6 the lowering
phase convention which always fixes constantsN to be real and non-negative

N2a i ,w>0 ~4!

is adopted for any simple roota i and any weight system. Then for the zero weight states of the78
the inner product in~3! can be expressed as

^~w! i u~w! j&5uAi j u/2, ~5!

whereAi j [^a i ua j& are the elements of the Cartan matrix ofE6 .8,6 This result follows from the
decomposition of the78 weight states into the states of the fundamental representations in the
tensor product27^ 27.5

In the appendix, we derive a generalized relation forN2a i ,w for a weight system with multiple
degenerate weights at different levels. We now discuss how to apply general formula~A8! to the
weight systems of the 351-dimensional representations which appear on the left in Eqs. 1~b!–1~e!.
These irreps, although already rather large, are still special because for each weight subspace a
basis can be defined such that the application of a lowering ladder operator results in a single basis
state, as indicated in Eq.~2!. ~For larger irreps, there are lowerings which lead to a linear combi-
nation of the basis states regardless of the basis definition.! Moreover, if weight~w! is degenerate
and a state with weight (w2a) exists, then the (w1a) weight state is either nondegenerate or
does not exist at all. Thus for the weight system of the3518 or 351, Eq. ~A8! reduces to a simple
form

uN2a,(w)a→(w2a)Aa
u25^auw&1u^~w!au~w!c&u2uN2a,(w1a)→(w)c

u2, ~6!

where, formally, the summation overc is assumed in the last term, but no more than one state
actually contributes. Concrete applications of this formula are provided at the end of the section.

Compared to Eq.~3! both weights~w! and (w2a) can now be degenerate. We find, however,
that in the3518 or 351 the (w1a) weight state does not exist if (w2a) is a degenerate weight.
Hence if both~w! and (w2a) are degenerate,Aa can be set toa by definition and~6! can be
simplified even further:

uN2a,(w)a→(w2a)a
u25^auw&, for both ~w! and ~w2a! degenerate. ~7!

This shows that the definition of the basis states~and their subscript labeling! in the degenerate
subspaces of the3518 or 351can be induced from the basis states at the previous level. However,
once~w! is found degenerate, how do we know if (w2a) is going to be degenerate and what the
dimensionality of this subspace is going to be? Similar to the case of the78 weight system6 the
decomposition of the 351-dimensional irreps into the states of the fundamental representations can
be recalled. The product27^ 2753518% 351% 27 is conjugated to the product studied in Ref. 4.
We refer to this work to claim that all degenerate weight subspaces in the3518 ~or 351! are of the
same dimensionality and that the degenerate weights follow the weight system of the27. In the
end it thus turns out that complete bases in the degenerate weight subspaces of the3518 can be
obtained starting from the four~100000! weight states at level 8 of the3518:9

u~100000!3&5E2a3
u~11̄21̄01̄!& /&,
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u~100000!4&5E2a4
u~101̄21̄0!&/&,

~8!
u~100000!5&5E2a5

u~1001̄20!&/&,

u~100000!6&5E2a6
u~101̄002!&/&.

With lowering convention~4! the remaining 26 degenerate weight subspaces at lower levels can
be specified asu(w)a&5E2aA

¯E2aB
u(100000)a&, a53,4,5,6, whereE2aA

¯E2aB
is the lower-

ing path leading to stateu(w)& in the 27. For the351 the only difference is that the degenerate
weight subspaces are five-dimensional and the relations analogous to~8! also include

u~100000!2&5E2a2
u~021̄000!&/& ~9!

when computing the~100000! states at level 7 of this irrep. We note that with this notation the
inner product in any degenerate weight subspace of both the3518 and351 satisfies

^~w!au~w!b&5uAabu/2, ~10!

~wherea,b53,4,5,6 for the3518, and a,b52,3,4,5,6 for the351!, in a close similarity to the
degenerate zero weight subspace of the78, Eq. ~5!.

As an example of the application of formula~6! consider all possible lowerings of the state
uF5& in the3518 where, for brevity,F stands for the~100000! weight. Three different states at the
next level can be obtained:E2a1

uF5&5N1 u(1̄10000)5&, E2a4
uF5&5N4 u1012̄10&, and

E2a5
uF5&5N5 u10012̄0&. Based on~6! the constants are

uN1u2511051,

uN4u2501S 1

2D 2

~& !25
1

2
,

uN5u250112~& !252,

as we have already shown in the second and third equations of~8! that

N2a4 ,(F1a4)→(F)4
5N2a5 ,(F1a5)→(F)5

5&.

Implicitly, we also used the fact that~8! represents the only way the~100000! weight states can be
obtained from the states at the previous level. Note that~7! could be used to computeN1 since
both ~100000! and (1̄10000) are degenerate weights.

Finally, we remark that the properties of the3518 and351 are easily derived from the prop-
erties of the3518 and351 after the Dynkin coordinates@and any other indices in Dynkin formal-
ism, like e.g., the labeling of states in Eq.~8!# 1 and 2 are exchanged with 5 and 4, respectively.

III. CONSTRUCTION OF CLEBSCH–GORDAN COEFFICIENTS

Tensor products in Eq.~1! can be expressed in terms of the highest weights as

~100000! ^ ~000001!5~100001! % ~000100! % ~100000!, ~11a!

~100000! ^ ~000100!5~100100! % ~000011! % ~010000! % ~000010!, ~11b!

~100000! ^ ~000020!5~100020! % ~000011! % ~000010!, ~11c!
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~100000! ^ ~010000!5~110000! % ~001000! % ~100010! % ~000001!, ~11d!

~100000! ^ ~200000!5~300000! % ~110000! % ~100010!. ~11e!

For each product we start with the construction of the weight system of the first irrep on the
right-hand side. The highest weight state of this irrep is nondegenerate and can always be ex-

TABLE I. Bases in the dominant weight subspaces of the 1728-dimensional~100001! irrep.

Weight state Lowering path Weight state Lowering path

u0001006& 6321 u1000006& 65324436321
u0001003& 3621 u1000007& 64534236321
u0001002& 2361 u1000008& 63214534236
u0001001& 1236 u1000009& 63243654321

u10000010& 53624436321
u10000011& 54321634236

u1000001& 12364534236 u10000012& 32164534236
u1000002& 21364534236 u10000013& 32643654321
u1000003& 25364436321 u10000014& 32643254361
u1000004& 24534636321 u10000015& 45346236321
u1000005& 23643254361 u10000016& 45321634236

TABLE II. Bases in the dominant weight subspaces of the~100100! irrep, the7371. u000010n& states are markeduF̄n& for
brevity.

Weight state Lowering path Lowering paths to~000010! weight states

u0000114& 4321 uF̄1& 514362236434321 uF̄23& 645342136234321

u0000113& 3421 uF̄2& 563214436234321 uF̄24& 643452136234321

u0000112& 2341 uF̄3& 536214436234321 uF̄25& 643621345234321

u0000111& 1234 uF̄4& 523614436234321 uF̄26& 636231245434321

uF̄5& 145362236434321 uF̄27& 633221143645234

uF̄6& 146234536234321 uF̄28& 632145364234321

u2000006& 6345234 uF̄7& 143621236345234 uF̄29& 344523126634321

u2000003& 3645234 uF̄8& 143622336435421 uF̄30& 343221166345234

u2000004& 4365234 uF̄9& 162363245434321 uF̄31& 345234126634321

u2000005& 5436234 uF̄10& 162332143645234 uF̄32& 345216321436234

u2000002& 2364534 uF̄11& 162332435644321 uF̄33& 342231166345234

uF̄12& 134562236434321 uF̄34& 342345126634321

uF̄13& 134632364523421 uF̄35& 342312632645341

u0100001& 23645341 uF̄14& 134621236345234 uF̄36& 342163423546321

u0100002& 32645341 uF̄15& 134622336435421 uF̄37& 245134326634321

u0100003& 31645234 uF̄16& 121364236345234 uF̄38& 241345326634321

u0100004& 35644321 uF̄17& 122334546634321 uF̄39& 241332166345234

u0100005& 36435421 uF̄18& 123456321436234 uF̄40& 213245346634321

u0100006& 61345234 uF̄19& 624134536234321 uF̄41& 213243632645341

u0100007& 65434321 uF̄20& 621363245434321 uF̄42& 213456321436234

u0100008& 64534321 uF̄21& 621332143645234 uF̄43& 453423126634321

u0100009& 63245341 uF̄22& 621332435644321 uF̄44& 432163423546321

u01000010& 41365234
u01000011& 43265341
u01000012& 43546321
u01000013& 51436234
u01000014& 54326341
u01000015& 12364534
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pressed as a trivial combination of the highest weight states of the two irreps on the left-hand side,
with the CGC being equal to11. In the absence of a simple method to determine the bases in the
degenerate weight subspaces which follow at lower levels for each of these irreps, we compute
directly the complete weight system in each case. However, note that simple lowering~2! does not
necessarily hold for weights with multiple degeneracies, as discussed in the appendix. States at
lower levels are then computed by successive lowerings applied to the states of the27, and78 in
case~a! or one of the 351-dimensional irreps in cases~b!–~e!. These lowerings were described in
detail in Sec. II. The computed state is accepted and kept as a new basis state if it cannot be
expressed as a linear combination of the previously obtained basis states with the same weight.

It is not necessary to show the Clebsch–Gordan coefficients for every linearly independent
state, since there are many states with the same CGCs. Instead, we present the results just for the
dominant weight states. Dominant weights are weights with all Dynkin coordinates non-negative.
The CGCs for the remaining states can then be determined using the charge conjugation
operators,10,11 or in a straightforward way by direct lowering. In Tables I–V we present lowering
paths for the dominant weight states of the1728, 7371, 7722, 5824, and 3003 irreps. In our
abbreviated notation, lowering path, let’s say, 3421 stands forE2a3

E2a4
E2a2

E2a1
applied~from

the right! to the highest weight state. The lowering paths in Tables I–V actually specify our choice
of bases for particular dominant weight subspaces. Explicit Clebsch–Gordan decomposition of the
dominant weight states is important because, typically, the multiplicity of degeneracy~i.e., the
dimensionality of the weight subspace! changes compared to the degeneracy at the previous level.
Clearly, that is why these states cannot be obtained by generalized charge conjugation from the

TABLE III. Bases in the dominant weight subspaces of the~100020! irrep, the7722. ~100100! weight is left out as trivial.

u000010n& states are markeduF̄n& for brevity.

Weight state Lowering path Lowering paths to~000010! weight states

u0000115& 54321 uF̄1& 5632144362345321 uF̄21& 3164213623452345

u0000114& 45321 uF̄2& 5362144362345321 uF̄22& 3164223645345321

u0000113& 34521 uF̄3& 5236144362345321 uF̄23& 3445231266345321

u0000112& 23451 uF̄4& 5123644362345321 uF̄24& 3452341266345321

u0000111& 12345 uF̄5& 5432163452364321 uF̄25& 3452163452364321

uF̄6& 6421345362345321 uF̄26& 3452163421362345

uF̄7& 6412345362345321 uF̄27& 3422636345123451

u2000006& 63452345 uF̄8& 6453421362345321 uF̄28& 3423451266345321

u2000003& 36452345 uF̄9& 6434521362345321 uF̄29& 3423126633454521

u2000004& 43652345 uF̄10& 6212363343454521 uF̄30& 2451343266345321

u2000005& 54362345 uF̄11& 6213632343454521 uF̄31& 2411363623452345

uF̄12& 6213321436452345 uF̄32& 2413453266345321

uF̄13& 6213324356454321 uF̄33& 2413322663453451

u0100001& 263453451 uF̄14& 6136232343454521 uF̄34& 2132453466345321

u0100002& 163452345 uF̄15& 6134522363454321 uF̄35& 2136453421362345

u0100003& 136452345 uF̄16& 6134213623452345 uF̄36& 1453622363454321

u0100004& 143652345 uF̄17& 6334542361234521 uF̄37& 1423453266345321

u0100005& 154362345 uF̄18& 6321453623454321 uF̄38& 1236453421362345

u0100006& 653454321 uF̄19& 3164362123452345 uF̄39& 4534231266345321

u0100007& 645345321 uF̄20& 3164522363454321 uF̄40& 4532163452364321

u0100008& 633454521
u0100009& 326453451
u01000010& 356454321
u01000011& 344655321
u01000012& 455364321
u01000013& 453263451
u01000014& 543263451
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states at the previous levels. Moreover, it is important to check the completeness of a reducible
dominant weight subspace. If it is impossible to complete its basis by lowering the states at the
previous level, new weight systems open up and the remaining basis vectors are their highest
weight states. This is what happens for every dominant weight in the tensor products78^ 78,6

27^ 27,5 or 27^ 275 studied in the earlier work. However, this property of the dominant weights is
no longer true for the products studied here. We now briefly discuss the dominant weights in each
of the products in~11!.

~a! (100000)̂ (000001)5(100001)% (000100)% (100000). At level 4 of the 1728-dimensional
~100001! irrep we find four states with weight~000 100!. This weight space, however, is five-
dimensional, and the computation of the state orthogonal to the previous four yields the highest
weight state of the351 irrep. ~See Table VI.! Similarly, at level 11 we find 16-fold degenerate
weight ~100000!, while this reducible subspace unfolds to be 22-dimensional. Since there are five
distinct states of the same weight in the351, there is room for one extra state. Once computed as
orthogonal to all the other 21 states it becomes the highest weight state of the fundamental
27-dimensional~100000! irrep. Because the subsequent tables of CG coefficients become too
unwieldy to print, we have deposited electronic versions with the electronic Physics Auxiliary

TABLE IV. Bases in the dominant weight subspaces of the~110000! irrep, the5824.

Weight state Lowering path Lowering paths to zero weight states

u0010002& 21 u01& 65241364345236342133221 u033& 51453643212233664433221
u0010001& 12 u02& 65241363344521322364321 u034& 51436213452233664433221

u03& 65142364345236342133221 u035& 51436213422334566321432
u04& 65142363344521322364321 u036& 53623124536436214433221

u1000101& 1236432 u05& 65362312453436214433221 u037& 53621453623436214433221
u1000102& 2136432 u06& 65321453623436214433221 u038& 53621443632314521236432
u1000103& 2364321 u07& 65321443632314521236432 u039& 53621443632314522364321
u1000104& 6433221 u08& 65321443632314522364321 u040& 54433221166345322364321
u1000105& 6321432 u09& 62451364345236342133221 u041& 24512345632133664433221
u1000106& 4321632 u010& 62451363344521322364321 u042& 24513245632133664433221
u1000107& 3216432 u011& 62113344223366554433221 u043& 24513246321334566321432
u1000108& 3264321 u012& 62136324436321554433221 u044& 24513213466345321236432

u013& 62133221443366554433221 u045& 24513213466345322364321
u014& 62133214432635544321632 u046& 23312435454634216633221

u0000011& 653214433221 u015& 64152364345236342133221 u047& 23245341166345321236432
u0000012& 645342133221 u016& 64152363344521322364321 u048& 23245341166345322364321
u0000013& 536214433221 u017& 64536421345236342133221 u049& 23611435422334566321432
u0000014& 532144321632 u018& 64536213344521322364321 u050& 23612344321635544321632
u0000015& 523614433221 u019& 64534532364312364232121 u051& 41534563212233664433221
u0000016& 523144321632 u020& 61236324436321554433221 u052& 41534632122334566321432
u0000017& 512364433221 u021& 61233221443366554433221 u053& 41536213452233664433221
u0000018& 512344321632 u022& 61233214432635544321632 u054& 41536213422334566321432
u0000019& 544362133221 u023& 63623124436321554433221 u055& 45334221166345321236432
u00000110& 415321236432 u024& 63322114432635544321632 u056& 45334221166345322364321
u00000111& 415322364321 u025& 52331266453436214433221 u057& 45345632364312364232121
u00000112& 425132136432 u026& 52361236453436214433221 u058& 45346323465121322364321
u00000113& 425132364321 u027& 52361234536436214433221 u059& 13456342122334566321432
u00000114& 433654232121 u028& 52361453623436214433221 u060& 13456213452233664433221
u00000115& 436542133221 u029& 52361443632314521236432 u061& 13456213422334566321432
u00000116& 364354232121 u030& 52361443632314522364321 u062& 13456223645363214433221
u00000117& 314521236432 u031& 51362362453436214433221 u063& 36231244332166554433221
u00000118& 314522364321 u032& 51362324536436214433221 u064& 36231244321635544321632
u00000119& 322436543121
u00000120& 321432654321
u00000121& 211342365432
u00000122& 213243654321
u00000123& 213645321432
u00000124& 123645321432
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Publication Service.14 Note that in Table VII14 we keep the labeling of the five~100000! states of
the 351 consistent with the notation introduced in Eqs.~8! and ~9!.

~b! (100000)̂ (000100)5(100100)% (000011)% (010000)% (000010). Lowering down to
level 4 of the 7371-dimensional~100100! irrep we obtain four distinct~000011! weight states
spanned over a five-dimensional reducible subspace. The last basis state in this subspace, orthogo-
nal to the four from the7371, becomes the highest weight state of the1728. ~See Table VIII.! This
is a conjugate irrep to the1728described in~a!. The lowering paths to the dominant weights in its
weight system can be obtained from Table I~replacing 1 and 2 with 5 and 4, andvice versa.
Proceeding to level 7 a fivefold degenerate~200000! dominant weight is found:

u200000a&5u100000&u100000a&, a52,...,6 ~12!

TABLE V. Bases in the dominant weight subspaces of the 3003-dimensional~300000! irrep. ~110000! weight is left out as
trivial.

Weight state Lowering path Weight state Lowering path

u001000& 211 u0000001& 652413643453323643222111
u0000002& 651423643453323643222111
u0000003& 653623124536444333222111

u1000106& 64332211 u0000004& 653214436323145236432211
u1000103& 36432211 u0000005& 624513643453323643222111
u1000102& 23643211 u0000006& 621134342362365544332211
u1000101& 12364321 u0000007& 621332243643655443322111

u0000008& 641523643453323643222111
u0000009& 645364332345221236432111

u0000011& 6544333222111 u00000010& 612332243643655443322111
u0000012& 5364433222111 u00000011& 524536361236444333222111
u0000013& 5236443322111 u00000012& 524133214663452364332211
u0000014& 5123644332211 u00000013& 524133245434666333222111
u0000015& 4251364332211 u00000014& 513645236236444333222111
u0000016& 4152364332211 u00000015& 514362134523623644332211
u0000017& 4536433222111 u00000016& 536214436323145236432211
u0000018& 3145236432211 u00000017& 245133214663452364332211
u0000019& 3452364322111 u00000018& 245133245434666333222111
u00000110& 2345123643211 u00000019& 213216324364365544332211

u00000020& 415345234234666333222111
u00000021& 415362134523623644332211
u00000022& 453342211663452364332211
u00000023& 134562134523623644332211
u00000024& 345634234653221236432111

TABLE VI. CG coefficients for~000100! dominant weight in (100000) ^ (000001). Each entry should be divided by the
respective number in the last row to keep the states normalized to 1.

(100001) (000100)

u0001006& u0001003& u0001002& u0001001& u000100&

u000101̄&u000001& 1 1

u001̄101&u001001̄& 1 1 21

u01̄1000&u011̄100) 1 1 1

u1̄10000&u11̄0100& 1 1 21

u100000&u1̄00100& 1 1

& & & & A5
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which, obviously, does not leave any extra space for states outside of the7371. This is consistent
with no observation in~a! of a dominant weight~000020! in the weight system of the1728, and
also with the fact that there is no~200000! irrep on the right-hand side of~11b!. The charge
conjugation operators can be used to show that a fivefold degenerate weight subspace with CGCs
equal to 1 is then present at odd levels of the7371from this level down until subspace (000020̄)
emerges at level 39. Next, at level 8 fifteen linearly independent~010000! weight states are
present, while the weight subspace turns out to be 20-dimensional~Table IX!.14 Not surprisingly
there are four states which belong to the weight system of the1728 @compare with~a!#, and the
remaining basis state, orthogonal to the previous 19, represents the highest weight state of the351.
Last, at level 15 we get the reducible~000010! weight subspace, which is 66-dimensional. That
makes room for the highest weight of the27, since there are 44 basis states present in the7371
together with 16 states of the1728. An additional five states of the351should be expected based
on Eqs.~8! and ~9!. The CGCs for this subspace are presented in Tables X and XI.14

~c! (100000)̂ (000020)5(100020)% (000011)% (000010). In the construction of the 7722-
dimensional~100020! irrep one finds a dominant weight already at level 1,

u100100&5u100000&u000100&. ~13!

It occupies a one-dimensional subspace, which is consistent with the absence of the~100100! irrep
in product ~11c!. The first degenerate dominant weight is obtained at level 5. There, a six-
dimensional~000011! weight subspace contains five linearly independent states of the7722. The
basis in this reducible subspace is completed by the highest weight state of the1728~Table XII!.
Proceeding further, there is no room for the highest weight state of a new irrep when dominant
weights ~200000! and ~010000! are encountered at levels 8 and 9, respectively. The~200000!

TABLE XII. CG coefficients for~000011! dominant weight in (100000) ^ (000020). Each entry should be divided by the
respective number in the last row to keep the states normalized to 1.

(100020) (000011)

u0000115& u0000114& u0000113& u0000112& u0000111& u000011&

u00001̄1&u000020& 1 2&

u0001̄11&u000100& & 1 1

u001̄101&u0011̄10& 1 1 21

u01̄1000&u011̄011& 1 1 1

u1̄10000&u11̄0011& 1 1 21

u100000&u1̄00011& 1 1

) & & & & A7

TABLE VIII. CG coefficients for~000011! dominant weight in (100000) ^ (000100). Each entry should be divided by the
respective number in the last row to keep the states normalized to 1.

(100100) (000011)

u0000114& u0000113& u0000112& u0000111& u000011&

u0001̄11&u000100& 1 1

u001̄101&u0011̄10& 1 1 21

u01̄1000&u011̄011& 1 1 1

u1̄10000&u11̄0011& 1 1 21

u100000&u1̄00011& 1 1

& & & & A5
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subspace is four-dimensional and its basis can be specified as in Eq.~12!. ~The states are now
numbered asa53,4,5,6.! The CGC decomposition of the~010000! subspace can be found in
Table XIII.14 Finally, at level 16 the last dominant weight in this product is unveiled. The reducible
~000010! weight subspace turns out to be 57-dimensional, with 40 basis states coming from the
7722and 16 states from the1728. The remaining state, orthogonal to them, becomes the highest
weight state of the27 ~see Tables XIV and XV!.14

~d! (100000)̂ (010000)5(110000)% (001000)% (100010)% (000001). In this product, we find
the dominant weight states encountered already in the decomposition of78^ 78 and27^ 27. At
level 2 of the ~110000! weight system~i.e., the 5824 irrep! we reach the three-dimensional
~001000! subspace, with two states in the5824and the third one being the highest weight state of
the2925, as shown in Table XVI. Then following the lowering paths in Table IV, Table II in Ref.
6, and Table I in Ref. 5 the dominant weights~100010!, ~000001!, and~000000! follow at levels
7, 12, and 23, respectively. The CGCs for these dominant weights can be found in Tables
XVII–XXIII. 14 The reducible~000000! subspace is 135-dimensional and represents the most
~technically! involved computation in this study. Obviously, it cannot~and does not! leave any
room for the singlet since the two representations in the product are not conjugate to each other.

~e! (100000)̂ (200000)5(300000)% (110000)% (100010). The 3003-dimensional~300000! ir-
rep contains a dominant weight already at level 1:

u110000&5~ u1̄10000&u200000&1&u100000&u010000&)/). ~14!

The orthogonal combination

u110000&5~&u1̄10000&u200000&2u100000&u010000&)/) ~15!

forms the highest weight state of the5824. Since then, the same dominant weights occur as in the
weight system of the5824described under~d!. There are, however, no2925and78 irreps in this
product~see Tables XXIV–XXVI14!, just the highest weight state of the650 completes the 13-
dimensional~100010! subspace at level 8~Table XXVII14!. The reducible~000000! weight sub-
space is 108-dimensional and its decomposition can be found in Tables XXVIII–XXXI.14

IV. SUMMARY

We have presented the Clebsch–Gordan decomposition of theE6 tensor products of the
fundamental27 irrep with the 78- and 351-dimensional irreps. Analogous products involving the
27 instead of the27 can now be obtained trivially by charge conjugation. It is straightforward to
apply these results to the construction of higher dimension operators inE6 model building.12

TABLE XVI. CG coefficients for~001000! dominant weight in (100000) ^ (010000). Each entry should be divided by the
respective number in the last row to keep the states normalized to 1.

(110000) (001000)

u0010001& u0010002& u001000&

u01̄1000&u010000& 1 1

u1̄10000&u11̄1000& 1 1 21

u100000&u1̄01000& 1 1

& & )
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APPENDIX THE PROBLEM OF DEGENERATE WEIGHTS

Rules~2,3! are insufficient for representations with degenerate weights at successive levels.
For degenerate weights we must first identify a particular basis. Label the degenerate basis states
of weights (w1a), (w), and (w2a) as

u~w1a!G&, where G51,...Dw1a ,

uwc&, where c51,...Dw ,

and

u~w2a!C&, where C51,...Dw2a .

Dw stands for the degeneracy of (w). The basis states are in general nonorthogonal. In our
notation, they are always normalized to unity:^wcuwc&51. The identity operator in the degenerate
subspace is

I 5Gabuwa&^wbu,
~A1!

Gab5~M 21!ab , where Mab5^wauwb&.

Although the basis is nonorthogonal, we can construct state vectors which are orthogonal to
any state except the state we are interested in

uŵb&5uwa&Gab ,
~A2!

^ŵau5Gab ^wbu,

which satisfy

^wcuŵa&5^ŵauwc&5dac . ~A3!

A general raising or lowering of a degenerate weight state can be written as

Ea i
uwc&5Na i ,wc→(w1a i )G

u~w1a i !G&, ~A4!

E2a i
uwc&5N2a i ,wc→(w2a i )C

u~w2a i !C&, ~A5!

where there is a possible sum over the states on the right-hand side@compare~A5! with ~2!#. The
lowering normalization constant can then be expressed only as a sum of matrix elements
N2a i ,wa→(w2a i )A

5GAB
(w2a i )^(w2a i)BuE2a i

uwa&.
13 UsingEa5E2a

† and the defining relation~A5!

we derive

N2a,wa→(w2a)A
N2a,wb→~w2a!B

* ^~w2a!Bu~w2a!A&

5^wbuEaE2auwa&

5^wbu@Ea ,E2a#1E2aEauwa&

5^wbuwa&^a,w&1GGD
w1a^wbuE2au~w1a!G&^~w1a!DuEauwa&

5^wbuwa&^a,w&1GGD
w1aN2a,(w1a)G→wc

^wbuwc&N2a,~w1a!D→wd
* ^wduwa&. ~A6!

Hence
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~Gw2a!AB
21N2a,wa→(w2a)A

N2a,wb→~w2a!B
*

5~Gw!ab
21^a,w&1GGD

w1a~Gw!bc
21~Gw!da

21N2a,(w1a)G→wc
N2a,~w1a!D→wd

* . ~A7!

For a5b we get

~Gw2a!AB
21N2a,wa→(w2a)A

N2a,wa→~w2a!B
*

5^a,w&1GGD
w1a~Gw!ac

21~Gw!ad
21N2a,(w1a)G→wc

N2a,~w1a!D→wd
* . ~A8!

Another useful expression can be found by contracting relation~A7! with Gab
w :

~Gw!ab~Gw2a!AB
21N2a,wa→(w2a)A

N2a,wb→~w2a!B
*

5^a,w&Dw1GGD
w1a~Gw!cd

21N2a,(w1a)G→wc
N2a,~w2a!D→wd

* . ~A9!

This expression is easily iterated along a sequence of lowerings with the same ladder operator:

~Gw!ab~Gw2a!AB
21N2a,wa→(w2a)A

N2a,wb→~w2a!B
*

5^a,w&Dw1^a,w1a&Dw1a1Ggd
w12a~Gw1a!GD

21N2a,(w12a)g→(w1a)G
N2a,~w12a!d→~w1a!D

*

5^a,w&Dw1^a,w1a&Dw1a1¯1^a,w1ka&Dw1ka , ~A10!

where (w1ka) is the highest weight in the SU(2) subgroup chain (w), (w1a), (w12a),...
present in the weight system.

Finally, for completeness, when raising operators are applied, Eq.~A8! can be written as

~Gw1a!GD
21Na,wa→(w1a)G

Na,wa→~w1a!D
*

52^a,w&1GCD
w2a~Gw!ac

21~Gw!ad
21Na,(w2a)C→wc

Na,~w2a!D→wd
* . ~A11!

Special Cases: Lowering within basis states. Consider a series of states connected by repeated
application of the same lowering operatorE2a . Choose any states with degenerate weights
obtained in this series as part of the basis for the degenerate weights and label these states byi .
For the sequence:...,(w1a) i ,wi ,(w2a) i ,... thegeneralized recursion relation~A8! reduces to

uN2a,wi→(w2a) i
u25^a,w&1GGD

w1a~Gw! ic
21~Gw! id

21N2a,(w1a)G→wc
N2a,~w1a!D→wd

* . ~A12!

When (w1a) i is the only state which can be lowered byE2a to obtain a state of weightw we get

uN2a,wi→(w2a) i
u25^a,w&1Gii

(w1a)uN2a,(w1a) i→wi
u2. ~A13!

This includes the case of a nondegenerate (w1a) weight subspace. When (w1a) is nondegen-
erateGii

(w1a)51, which further simplifies the above-given relation.
A special case of interest is lowering the degenerate zero weight states of the adjoint repre-

sentation which correspond to the Cartan subalgebra. These degenerate weight states can be
labeledu(0)i& where thei th degenerate weight is obtained byE2a i

ua i&}u(0)i&. This basis, how-
ever, is not orthogonal. When lowering such a basis state the general formula~A8! reduces to

uN2a i ,(0)j→(2a i )
u25@~G(0)! j i

21#2uN2a i ,(a i )→(0)i
u25^~0! j u~0! i&

2uN2a i ,(a i )→(0)i
u2. ~A14!

This result is consistent with formula~3! in Sec. II when applied to the zero weight states of the
78 in E6 .
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Erratum: Inequalities for quantum entropy: A review with
conditions for equality [J. Math. Phys. 43, 4358 (2002)]

Mary Beth Ruskaia)

Department of Mathematics, Tufts University, Medford, Massachusetts 02155

(Received 14 September 2004; accepted 22 September 2004;
published online 3 January 2005)
[DOI: 10.1063/1.1824214]

There is a subtle error in the sketch of Epstein’s proof1 as presented in the Appendix of this
paper. This can be corrected by replacing each inequality forJvsCd in the chain of implications
between(A2) and(A3) by an analogous operator inequality forJC whereC is one of the operators
that appears in these expressions. However, as this paper was intended to be expository, we give
a fuller explanation of the difficulty and its resolution.

Any bounded operatorC can be written in the formC=RC+ iJC whereRC= 1
2sC+C†d and

JC=−is 1
2

dsC−C†d are both self-adjoint. Since we are interested in operators on a finite dimen-
sional Hilbert space, we can assume thatJC has only discrete spectrum and definevmax andvmin

to be, respectively, the largest and smallest eigenvalues ofJC. Then vminI øJCøvmaxI. Let
UHP=hz:Jz.0j denote the upper half plane.

Now consider the exampleC= s 0 2
0 0

d=sx+ isy. ThenJC=sy satisfies −I øJCø I. Since 0 is the
only eigenvalue ofC, its spectrum is{0} which lies in the closure of the UHP. ButC−sx= isy has
eigenvalues ±i so that its spectrum contains a point −i that is not even close to the UHP. By
perturbing this example slightly so thatC= ieI +sx+ isy with e.0, we find that the spectrum of
C,UHP, but the spectrum ofC+K does not lie in the UHP whenK=K†=−sx. This shows that
the third implication in the sequence need not necessarily hold.

However, in this proof,C=logszA+Bd is not arbitrary, but satisfies 0,JC,pI. If K=K†,
thenJC=JsK+Cd so that 0,JsK+Cd,pI.

Therefore, the sequence of implications between(A2) and (A3) should be replaced by the
following valid implications:

Jz. 0 ⇒ JszA+ Bd . 0

⇒pI .J logszA+Bd.0

⇒pI .JfK+logszA+Bdg.0 for K=K†

⇒JseK+logszA+Bdd.0

⇒JTreK+logszA+Bd.0.

The author is grateful to Professor E. Lieb and Professor R. Seiringer for pointing out the error
in this appendix. This work was partially supported by the National Security Agency(NSA) and
Advanced Research and Development Activity(ARDA) under Army Research Office(ARO)
Contract No. DAAD19-02-1-0065, and by the National Science Foundation under Grant No.
DMS-0314228.

1Epstein, H., “Remarks on two theorems of E. Lieb,” Commun. Math. Phys.31, 317–325(1973).
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optimal control problem in holonomic quantum
computation
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The isoholonomic problem in a homogeneous bundle is formulated and solved
exactly. The problem takes a form of a boundary value problem of a variational
equation. The solution is applied to the optimal control problem in holonomic
quantum computer. We provide a prescription to construct an optimal controller for
an arbitrary unitary gate and apply it to ak-dimensional unitary gate which operates
on an N-dimensional Hilbert space withNù2k. Our construction is applied to
several important unitary gates such as the Hadamard gate, theCNOT gate, and the
two-qubit discrete Fourier transformation gate. Controllers for these gates are ex-
plicitly constructed. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1835545g

I. INTRODUCTION

In this paper we solve the isoholonomic problem in a homogeneous bundle and apply this
result to the optimal control problem in holonomic quantum computation. In other words, this
paper has two purposes; first, we solve a mathematical problem which has been unsolved for more
than a decade since it was initially proposed by Montgomery.1 Second, we provide a scheme to
construct explicitly an optimal controller for arbitrary unitary gate in holonomic quantum
computation.2,3

The isoholonomic problem is one of generalizations of the isoperimetric problem. The isope-
rimetric problem, also known as Dido’s problem, is originally proposed in the context of plane
geometry; what is the shape of a domain with the largest area surrounded by a string of a fixed
length? The solution is a circle. The isoperimetric problem has a long history and various gener-
alizations thereof have been proposed.

The isoholonomic problem is formulated as follows. Assume that we have a principal fiber
bundlesP,M ,p ,Gd with a connection. The base spaceM is assumed to be a Riemannian mani-
fold. The isoholonomic problem asks to find the shortest possible piecewise smooth loop inM
with a given base pointx0PM, that produces a given elementg0 of the structure groupG as its
associated holonomy.

Holonomic structures naturally appear in a mechanical system and have been studied from
various interests.4–8 Montgomery faced this problem when physical chemists attempted to observe

adAuthor to whom correspondence should be addressed; electronic mail: tanimura@mech.eng.osaka-cu.ac.jp
bdElectronic mail: nakahara@math.kindai.ac.jp
cdPresent address: Fuji Photo Film Co. Ltd., Asaka Technology Development Center, Asaka, Saitama 351-8585, Japan;
electronic mail: daisukeIhayashiI0102@nifty.com
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the non-Abelian Berry phasesthe Wilczek–Zee holonomyd9–12 by nuclear magnetic resonance
sNMRd experiment. Montgomery1 presented various formulations of the problem, clarified their
relations, and gave partial answers. However, even in such an idealized case like a homogeneous
bundle, it was difficult to obtain a complete solution to the problem, which remained as an open
problem to date.

A decade later after Montgomery’s work, the notion of holonomic quantum computation was
proposed by Zanardi, Rasetti, and Pachos,2,3 in which the Wilczek–Zee holonomy is utilized to
implement unitary gates necessary to execute a quantum algorithm. Since then, a large number of
researchers13–16 have been interested in finding control parameters that implement a desired gate.
Optimization of the control has been an active area of research in view of the decoherence issue.
The problem to find the optimal control is nothing but a typical isoholonomic problem and its
solution for an arbitrary gate must be urgently provided.

Let us briefly review the idea of quantum computation. Quantum computation, roughly speak-
ing, consists of the following three ingredients:s1d an n-qubit register to store information,s2d a
unitary matrixUPUs2nd which implements a quantum algorithm, ands3d measurements to extract
information from the register. In an ordinary implementation of a quantum algorithm, we take a
system whose HamiltonianHsld depends on external control parametersl=sl1, . . . ,lmd. We then
properly arrange the parameter sequencelstd as a function of timet so that the desired unitary
matrix U is generated as a time-evolution operator

U = T expF−
i

"
E

0

T

HslstdddtG , s1.1d

whereT stands for the time-ordered product.
Holonomic quantum computing,2 in contrast, makes use of the holonomy associated with a

loop lstd in the parameter space. It has been demonstrated17 that an arbitrary unitary matrix can be
implemented as a holonomy by choosing an appropriate loop in the parameter space. In fact, there
are infinitely many loops that produce a given unitary matrix. Here we consider the isoholonomic
problem, namely, to find the shortest possible loop in the parameter space that yields the given
holonomy. This problem has been already analyzed previously in Ref. 18, where various penalty
functions useful for numerical search for the optimal loop have been employed. Our strategy here
is purely geometrical in nature and no intense numerical computations are required. In the previ-
ous work19 we found exact optimal loops to produce several unitary gates. In the present paper we
extend the method of optimal loop construction to implement arbitrary gates.

This paper is organized as follows. In Sec. II we briefly review the Wilczek–Zee holonomy to
make this paper self-contained and to establish notation conventions. In Sec. III we introduce the
geometrical setting for the problem and use it to formulate the isoholonomic problem in a varia-
tional form. We derive the associated Euler–Lagrange equation and solve it explicitly. The solution
thus obtaineds3.37d, which we call the horizontal extremal curve, is one of the main results in the
first half of the paper. The remaining problem is to adjust the solution to satisfy the boundary
conditions, namely the closed loop conditions4.1d and the holonomy conditions4.2d. This prob-
lem is solved in Sec. IV explicitly and we obtain a set of equationss4.19d–s4.22d, which we call
the constructing equations of the controller. These are the main results of this paper and are
machinery to construct a controller for an arbitrary unitary gate. In Sec. V this machinery is
applied to several well-known important unitary gates to demonstrate its power. Section VI is
devoted to summary and discussions.

II. WILCZEK–ZEE HOLONOMY AS A UNITARY GATE

A. Wilczek–Zee holonomy

Here we briefly review the Wilczek–ZeesWZd holonomy10 associated with an adiabatic
change of the control parameters along a loop in the control manifold. We consider a quantum
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system that has a finite numberN of states. LethHsldj be a family of Hamiltonians parametrized
smoothly by l=sl1, . . . ,lmdPM, where the set of control parametersM is called a control
manifold. Eignevalues and eigenstates ofHsld are labeled as

Hsldul,a;ll = «lsldul,a;ll sl = 1, . . . ,L; a = 1, . . . ,kld, s2.1d

where thelth eigenvalue«lsld is kl-fold degenerate. Assume that no level crossings take place,
namely,«lsldÞ«l8sld for arbitrary l if l Þ l8. Then it follows thatol=1

L kl =N. The eigenvectors
satisfy the orthonormal condition,kl ,a ;l u l8 ,b ;ll=dll8dab. It is important to note that there is
Uskld gaugefreedom in the choice ofhul ,a ;ll ua=1, . . . ,klj at eachl and l. Namely, we may
redefine the eigenvectors by any unitary matrixhPUskld as

ul,a;ll ° o
b=1

kl

ul,b;llhbasld s2.2d

without violating the orthonormal condition.
We adiabatically change the parameterslstd as a function of timet along a closed loop in the

control manifold so thatlsTd=ls0d. It is assumed that theadiabaticity is satisfied, namely,

h«lslstdd − «l8slstddjT @ 2p" s2.3d

is satisfied forl Þ l8 during 0ø tøT. In other words, we change the parameters so slowly that no
resonant transitions take place between different energy levels.20

We will concentrate exclusively on the ground state of the system and drop the indexl s=1d in
the following. Accordingly, the basis vectors that span the ground state eigenspace are written as
ua ;ll, sa=1, . . . ,kd and arranged in anN3k matrix form as

Vsld = su1;ll,u2;ll, . . . ,uk;lld, s2.4d

which is called an orthonormalk frame atlPM. The system evolves, with a givenlstd, according
to the Schrödinger equation

i"
d

dt
ucastdl = Hslstdducastdl. s2.5d

Suppose the initial condition isls0d=l0 anducas0dl= ua ;l0l. The adiabatic theorem20 tells us that
the stateucastdl remains in the ground state eigenspace during the time evolution. Therefore
ucastdl is expanded as

ucastdl = o
b=1

k

ub;lstdlcbastd. s2.6d

By substitutings2.6d into s2.5d, we find

d

dt
cbastd = −

i

"
«sgstddcbastd − o

g=1

k Kb;lstdU d

dt
Ug;lstdLcgastd, s2.7d

whose formal solution is

cbastd = expS−
i

"
E

0

t

«ssddsDT expS−E
0

t

AssddsD
ba

s2.8d

with the matrix-valued function

022101-3 Exact solutions of the isoholonomic problem J. Math. Phys. 46, 022101 ~2005!

                                                                                                                                    



Abastd =Kb;lstdU d

dt
Ua;lstdL = o

m=1

k Kb;lU ]

]lmUa;lLdlm

dt
. s2.9d

It is easily verified thatAba
* =−Aab sincehua ;lstdlj is orthonormal. We introduce auskd-valued

one-form fwe denote the Lie algebra of the Lie group Uskd by uskd, which is the set of
k-dimensional skew-Hermite matricesg

Abasld = o
m=1

k Kb;lU ]

]lmUa;lLdlm, s2.10d

which is called the Wilczek–ZeesWZd connection. Then the unitary matrix appearing ins2.8d is
rewritten as

Gstd = P expS−E
ls0d

lstd

AD , s2.11d

whereP stands for the path-ordered product. As noted ins2.2d the frames2.4d can be redefined by
a family of unitary matriceshsldPUskd. The WZ connection transforms under the change of
frame as

A ° A8 = h†Ah + h† dh. s2.12d

This is nothing but the gauge transformation rule of a non-Abelian gauge potential.21

We assumed that the control parameterlstd comes back to the initial pointlsTd=ls0d=l0.
However, the stateucasTdl fails to assume the initial state and is subject to a unitary rotation as

ucasTdl = expS−
i

"
E

0

T

«ssddsDo
b=1

k

ucbs0dlGbasTd. s2.13d

The unitary matrix

Gflg ª GsTd = P expS−R
l

AD P Uskd s2.14d

is called the holonomy matrix associated with the looplstd. It is important to realize thatGflg is
independent of the parametrization of the looplstd, namely, it is independent of how fast the loop
l is traversed, so long as the adiabaticity is observed, and that it depends only on the geometrical
image ofl in M.

B. Quantum computation with holonomy

In quantum computation one implements a quantum algorithm by a product of various unitary
gates. It is a natural idea to use the WZ holonomy to produce unitary gates necessary for quantum
computation. Zanardi and Rasetti2 were the first who proposed this holonomic quantum compu-
tation sHQCd. To implement ann-qubit resistor we take a quantum system whose ground state is
k-fold degenerate wherek=2n. We call theN-dimensional Hilbert space a working space and call
the k-dimensional subspace a qubit space. Then by changing the control parameter adiabatically
we will obtain any unitary gate as a resultant holonomys2.14d. Of course we need to design an
appropriate control loopl to implement a particular unitary gate. It is easy, in principle, to
compute the holonomy for a given loop. In contrast, to find a loopl which produces a specified
unitary matrix G as its holonomy is far from trivial. Moreover, to build a working quantum
computer it is strongly desired to reduce the time required to manipulate the computer since a
sequence of operations should be carried out before decoherence extinguishes quantum informa-
tion from the system. At the same time, the control parameter must be changed as slowly as
possible to keep adiabaticity intact. Therefore our task is to find a control loop as short as possible
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to fulfill these seemingly opposed conditions. This is a typical example of the so-called isoholo-
nomic problem, which is first formulated by Montgomery.1 In the next section we introduce a
geometric setting in a form suitable for our expositions.

III. FORMULATION OF THE PROBLEM AND ITS SOLUTION

A. Geometrical setting

The WZ connection is identified with the canonical connection22 of the homogenous bundle,
as pointed out by Fujii.23 While precise definitions of these terms can be found in Refs. 21 and 22,
we outline the geometrical setting of the problem here to make this paper self-contained.

Suppose that the system has a family of Hamiltonians acting on the Hilbert spaceCN and that
the ground state of each Hamiltonian isk-fold degeneratesk,Nd. The most natural mathematical
setting to describe this system is the principal bundlesSN,ksCd ,GN,ksCd ,p ,Uskdd, which consists of
the Stiefel manifoldSN,ksCd, the Grassmann manifoldsGN,ksCd, the projection mapp :SN,ksCd
→GN,ksCd, and the unitary group Uskd as explained below.

The Stiefel manifold is the set of orthonormalk frames inCN,

SN,ksCd = hV P MsN,k;CduV†V = Ikj, s3.1d

whereMsN,k;Cd is the set ofN3k complex matrices andIk is thek-dimensional unit matrix. The
unitary group Uskd acts onSN,ksCd from the right,

SN,ksCd 3 Uskd → SN,ksCd, sV,hd ° Vh s3.2d

by means of matrix product. It should be noted that this action is free. In other words,h= Ik if there
exists a pointVPSN,ksCd such thatVh=V.

The Grassmann manifold is defined as the set ofk-dimensional hyperplanes inCN,

GN,ksCd = hP P MsN,N;CduP2 = P, P† = P, tr P = kj, s3.3d

whereP is a projection operator to a hyperplane inCN and the condition trP=k guarantees that the
hyperplane is indeedk dimensional.

The projection mapp :SN,ksCd→GN,ksCd is defined as

p:V ° Pª VV†. s3.4d

It is easily proved that the mapp is surjective. Namely, for anyPPGN,ksCd, there is V
PSN,ksCd such thatpsVd=P. The right action ofhPUskd sends a pointVPSN,ksCd to a pointVh
on the same fiber since

psVhd = sVhdsVhd† = Vhh†V† = VV† = psVd. s3.5d

Thus the Stiefel manifoldSN,ksCd becomes a principal bundle overGN,ksCd with the structure
group Uskd.

Moreover, the group UsNd acts on bothSN,ksCd andGN,ksCd as

UsNd 3 SN,ksCd → SN,ksCd, sg,Vd ° gV, s3.6d

UsNd 3 GN,ksCd → GN,ksCd, sg,Pd ° gPg† s3.7d

by matrix product. It is easily verified thatpsgVd=gpsVdg†. This action is transitive, namely, there
is gPUsNd for any V,V8PSN,ksCd such thatV8=gV. There is alsogPUsNd for any P,P8
PGN,ksCd such thatP8=gPg†. The stabilizer group of each point inSN,ksCd is isomorphic to
UsN−kd while that of each point inGN,ksCd is isomorphic to Uskd3UsN−kd. Thus, they are
homogeneous spaces and the fiber bundle
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p:SN,ksCd > UsNd/UsN − kd → GN,ksCd > UsNd/sUskd 3 UsN − kdd s3.8d

is called a homogeneous bundle.
The canonical connection form onSN,ksCd is defined as auskd-valued one-form,

A = V† dV, s3.9d

which is a generalization of the WZ connections2.10d. This is characterized as the unique con-
nection that is invariant under the actions3.6d. The associated curvature two-form is then defined
as

F = dA + A ∧ A = dV† ∧ dV + V†dV ∧ V† dV = dV† ∧ sIN − VV†ddV. s3.10d

These manifolds are equipped with Riemannian metrics. We define a metric

idVi2 = trsdV† dVd s3.11d

for the Stiefel manifold and

idPi2 = trsdP dPd s3.12d

for the Grassmann manifold.

B. The isoholonomic problem

Here we reformulate the WZ holonomy in terms of the geometric terminology introduced
above. The state vectorcstdPCN evolves according to the Schrödinger equation,

i"
d

dt
cstd = Hstdcstd. s3.13d

The Hamiltonian admits a spectral decomposition,

Hstd = o
l=1

L

«lstdPlstd, s3.14d

with projection operatorsPlstd. Therefore, the set of energy eigenvaluess«1, . . . ,«Ld and orthogo-
nal projectorssP1, . . . ,PLd constitutes a complete set of control parameters of the system. Now we
concentrate on the eigenspace associated with the lowest energy, which is assumed to be identi-
cally zero,«1;0. We write P1std as Pstd for simplicity. Suppose that the degree of degeneracy
k=tr Pstd is constant. For eacht, there existsVstdPSN,ksCd such thatPstd=VstdV†std. By adiabatic
approximation we mean substitution ofcstdPCN by a reduced state vectorfstdPCk as

cstd = Vstdfstd. s3.15d

SinceHstdcstd=«1cstd=0, the Schrödinger equations3.13d becomes

df

dt
+ V†dV

dt
fstd = 0 s3.16d

and its formal solution is written as

fstd = P expS−E V† dVDfs0d. s3.17d

Thereforecstd is written as
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cstd = VstdP expS−E V† dVDV†s0dcs0d. s3.18d

In particular, when the control parameter comes back to the initial point asPsTd=Ps0d, the
holonomyGPUskd is defined via

csTd = Vs0dGfs0d s3.19d

and it is given explicitly as

G = Vs0d†VsTdP expS−E V† dVD . s3.20d

sThe definition of the holonomy presented here is slightly different from the one given in the
previous Letter.19 To make correct sense as a unitary gate the holonomy is to be defined in the
present form.d If the condition

V†dV

dt
= 0 s3.21d

is satisfied, the curveVstd in SN,ksCd is called a horizontal lift of the curvePstd=psVstdd in
GN,ksCd. Then the holonomys3.20d is reduced to

G = V†s0dVsTd P Uskd. s3.22d

Now we are ready to state the isoholonomic problem in the present context; given a specified
unitary gateUgatePUskd and a fixed pointP0PGN,ksCd, find the shortest loopPstd in GN,ksCd with
the base pointsPs0d=PsTd=P0 whose horizontal liftVstd in SN,ksCd produces a holonomyG that
coincides withUgate. This problem was first motivated from experimental study of geometric phase
and investigated in detail from a mathematician’s viewpoint by Montgomery.1

We now formulate the isoholonomic problem as a variational problem. The length of the
horizontal curveVstd is evaluated by the functional

SfV,Vg =E
0

THtrSdV†

dt

dV

dt
D − trSVV†dV

dt
DJdt, s3.23d

whereVstdPuskd is a Lagrange multiplier to impose the horizontal conditions3.21d on the curve
Vstd. Note that the value of the functionalS is equal to the length of the projected curvePstd
=psVstdd,

S=E
0

T 1

2
trSdP

dt

dP

dt
Ddt. s3.24d

Thus the problem is formulated as follows; find a curveVstd that attains an extremal value of the
functional s3.23d and satisfies the boundary conditions3.22d.

C. The solution: horizontal extremal curve

Our task is to find a solution of the variational problem of the functionals3.23d. Now we
derive the associated Euler–Lagrange equation and solve it explicitly. A variation of the curveVstd
is defined by an arbitrary smooth functionhstdPusNd such thaths0d=hsTd=0 and an infinitesi-
mal parameterePR as

Vestd = s1 + ehstddVstd. s3.25d

By substitutingVestd into s3.23d and differentiating with respect toe, the extremal condition yields
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0 =UdS

de
U

e=0
=E

0

T

trhḣsVV̇† − V̇V† − VVV†djdt

= ftrhhsVV̇† − V̇V† − VVV†djgt=0
t=T −E

0

1

trHh
d

dt
sVV̇† − V̇V† − VVV†dJdt.

s3.26d

Thus we obtain the Euler–Lagrange equation

d

dt
sV̇V† − VV̇† + VVV†d = 0. s3.27d

We reproduce the horizontal equationV†V̇=0 from the extremal condition with respect toVstd.
Finally, the isoholonomic problem is reduced to the set of equationss3.21d ands3.27d, which we
call a horizontal extremal equation. It may be regarded as a homogeneous-space version of the
Wong equation.24

Next, we solve the equationss3.21d and s3.27d. The equations3.27d is integrated to yield

V̇V† − VV̇† + VVV† = const =X P usNd. s3.28d

Conjugation of the horizontal conditions3.21d yields V̇†V=0. Then, by multiplyingV on s3.28d
from the right we obtain

V̇ + VV = XV. s3.29d

By multiplying V† on s3.29d from the left we obtain

V = V†XV. s3.30d

The equations3.29d implies V̇=XV−VV, and hence the time derivative ofVstd becomes

V̇ = V†XV̇+ V̇†XV= V†XsXV− VVd + s− V†X + VV†dXV= fV,Vg = 0. s3.31d

Therefore,Vstd is actually a constant. Thus the solution ofs3.29d and s3.30d is

Vstd = etXV0e
−tV, V = V0

†XV0. s3.32d

We call this solution the horizontal extremal curve. Thens3.28d becomes

sXV− VVdV† − Vs− V†X + VV†d + VVV† = X,

which is arranged as

X − sVV†X + XVV† − VV†XVV†d = 0, s3.33d

where we useds3.30d. We may take, without loss of generality,

V0 = SIk

0
D P SN,ksCd s3.34d

as the initial point. We can parametrizeXPusNd, which satisfiess3.30d, as

X = S V W

− W† Z
D s3.35d

with WPMsk,N−k;Cd andZPusN−kd. Then the constraint equations3.33d forces us to choose

Z = 0. s3.36d
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Finally, we obtained a complete set of solutions3.32d of the horizontal extremal equations
s3.21d and s3.27d. When we take the initial pointV0 as s3.34d, the solutions are parametrized by
constant matricesVPuskd andWPMsk,N−k;Cd. For definiteness we write down the complete
solution

Vstd = etXV0e
−tV, X = S V W

− W† 0
D . s3.37d

This is one of our main results. We call the matrixX a controller. At this time the holonomys3.22d
is expressed as

G = V†s0dVsTd = V0
†eTXV0e

−TV P Uskd. s3.38d

These resultss3.37d and s3.38d have been also given in Montgomery’s paper.sIn this paper1

Montgomery cited Bär’s theorem to complete the proof. However, Bär’s paper being a diploma
thesis, it is not widely available. Therefore we took a more direct approach to justify them.d In the
present paper we took a different approach from his. Here we wrote down the Euler–Lagrange
equation and solved it directly.

We evaluate the length of the extremal curve for later convenience by substitutings3.37d into
s3.24d as

S=E
0

T 1

2
trSdP

dt

dP

dt
Ddt = trsW†WdT. s3.39d

IV. SOLUTION TO THE INVERSE PROBLEM

Once the solutions3.37d of the horizontal extremal equation is obtained, the remaining prob-
lem is to find the matricesV andW that satisfy the closed loop condition

VsTdV†sTd = eTXV0V0
†e−TX = V0V0

† s4.1d

and the holonomy condition

V0
†VsTd = V0

†eTXV0e
−TV = Ugate s4.2d

for a specific unitary gateUgatePUskd. Montgomery1 presented this inverse problem as an open
problem. In this section we give a scheme to construct systematically a series of solutions to this
problem and in the next section we will apply it to implement various important unitary gates.

A. Equivalence class

There is a class of equivalent solutions with a given initial conditionV0 and a given final
conditionVsTd=V0Ugate. Here we clarify the equivalence relation among solutionshVstdj that have
the form s3.37d and satisfys4.1d and s4.2d.

We say that two solutionsVstd and V8std are equivalent if there are elementsgPUsNd and
hPUskd such thatVstd and

V8std = gVstdh† s4.3d

satisfy the same boundary conditions

gV0h
† = V0 s4.4d

and
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hUgateh
† = Ugate. s4.5d

For the initial points3.34d, the conditions4.4d states thatgPUsNd must have a block-diagonal
form

g = Sh1 0

0 h2
D, h = h1 P Uskd, h2 P UsN − kd. s4.6d

The controllerX8 of V8std are then found from

V8std = gVstdh† = getXg†gV0h
†he−tVh† = etgXg†

gV0h
†e−thVh†

= etgXg†
V0e

−thVh†
. s4.7d

In summary, two controllersX andX8 are equivalent if and only if there are unitary matricesh1

PUskd andh2PUsN−kd such that

X = S V W

− W† 0
D, X8 = S h1Vh1

† h1Wh2
†

− h2W
†h1

† 0
D, h1Ugateh1

† = Ugate. s4.8d

B. U„1… holonomy

Here we calculate the holonomy for the caseN=2 andk=1. In this case the homogeneous
bundlep :S2,1sCd→G2,1sCd is the Hopf bundlep :S3→S2 with the structure group Us1d and the
WZ holonomy reduces to the Berry phase. In the subsequent section we will generalize this result
to a non-Abelian holonomy. We normalize the cycle time asT=1 in the following. Using real
numbersw1,w2,w3PR we parametrize the controller as

X = S 2iw3 iw1 + w2

iw1 − w2 0
D = iw3I + iw1s1 + iw2s2 + iw3s3, s4.9d

wherehs jj are the Pauli matrices. Its exponentiation is

etX = eitw3sI cosrt + in · s sinrtd, s4.10d

wherer andn are defined as

r ª iwi = Îsw1d2 + sw2d2 + sw3d2, w = iwin. s4.11d

The associated horizontal extremal curves3.32d then becomes

Vstd = etXV0e
−tV = e−itw3Scosrt + in3 sinrt

sin1 − n2dsinrt
D s4.12d

and the projected curve inS2 becomes

Pstd = VstdV†std = 1
2I + 1

2s · fnsn ·e3d + se3 − nsn ·e3ddcos 2rt − sn 3 e3dsin 2rtg, s4.13d

wheree3=s0,0,1d. We see froms4.13d that the pointPstd in S2 starts at the north polee3 of the
sphere and moves along a small circle with the axisn in the clockwise sense by the angle 2rt. The
point Pstd comes back to the north pole whent satisfies 2rt=2pn with an integern. To make a
closed loop, namely, to satisfy the loop conditions4.1d at t=T=1, the control parameters must
satisfy

r = iwi = np sn = ± 1, ± 2, . . .d. s4.14d

Then, the pointPstd travels the same small circlen times during 0ø tø1. Therefore, the integer
n counts the winding number of the loop. Att=1, cosr=s−1dn and the holonomys4.2d is evalu-
ated as
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V0
†eXV0e

−V = eiw3s− 1dne−2iw3 = e−isw3−npd = Ugate= eig. s4.15d

Thus, to generate the holonomyUgate=eig, the controller parameters are fixed as

w3 = np − g, w1 + iw2 = e−ifÎsnpd2 − snp − gd2. s4.16d

This is the solution to the inverse problem defined bys4.1d and s4.2d. Here the nonvanishing
integern must satisfysnpd2−snp−gd2.0. The real parameterf is not fixed by the loop condition
and the holonomy condition. The phaseh2=eif parametrizes solutions in an equivalence class as
observed ins4.8d. The integern classifies inequivalent classes.

The length of the loop,s3.39d, is now evaluated as

S= trsW†WdT = snpd2 − snp − gd2. s4.17d

For a fixedg in the range 0øg,2p, the simple loop withn=1 is the shortest one among the
extremal loops. Thus, we conclude that the controller ofUgate=eig is

X = S 2isp − gd ieifÎp2 − sp − gd2

ie−ifÎp2 − sp − gd2 0
D . s4.18d

We call this solution a small circle solution because of its geometric picture mentioned above.

C. U„k… holonomy

Here we give a prescription to construct a controller matrixX that generates a specific unitary
gateUgate. In other words, we give a systematic method to solve the inverse problems4.2d. It turns
out that the working space should have a dimensionNù2k to apply our method. In the following
we assume thatN=2k. The time interval is normalized asT=1 as before.

Our method consists of the following three steps: first, diagonalize the unitary matrixUgate to
be implemented; second, construct a diagonal controller matrix by combining small circle solu-
tions; third, undo diagonalization of the controller.

In the first step, we diagonalize a given unitary matrixUgatePUskd as

R†UgateR= Udiag= diagseig1, . . . ,eigkd s4.19d

with RPUskd. Each eigenvalueg j is taken in the range 0øg j ,2p. In the second step, we
combine single loop solutions associated with the Berry phase to construct twok3k matrices

Vdiag= diagsiv1, . . . ,ivkd, v j = 2sp − g jd, s4.20d

Wdiag= diagsit1, . . . ,itkd, t j = eif jÎp2 − sp − g jd2. s4.21d

Then we obtain a diagonal controller

Xdiag= S Vdiag Wdiag

− Wdiag
† 0

D .

In the third step, we construct the controllerX as

X = SR 0

0 Ik
DS Vdiag Wdiag

− Wdiag
† 0

DSR† 0

0 Ik
D = SRVdiagR

† RWdiag

− Wdiag
† R† 0

D , s4.22d

which is a 2k32k matrix. We call the set of equations,s4.19d–s4.22d, constructing equations of the
controller. This is the main result of this paper.

It is easily verified that the controllerX constructed above satisfies the holonomy condition
s4.2d. The diagonal controllerXdiag is actually a direct sum of controllerss4.18d, which generate
Berry phasesheig jj. Hence, its holonomy is also a direct sum of the Berry phasess4.15d as
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V0
†eXdiagV0e

−Vdiag= Udiag

and hence we have

V0
†eXV0e

−V = RV0
†eXdiagV0R

†Re−VdiagR† = RUdiagR
† = Ugate.

V. OPTIMIZING HOLONOMIC QUANTUM COMPUTATION

Now we apply the prescription developed so far to construct controllers of several specific
unitary gates, which are fundamental ingredients of quantum computation. Our examples are the
Hadamard gate, theCNOT gate, and the two-qubit discrete Fourier transformationsDFTd gate. For
each unitary gateUgate, we need to calculate the diagonalizing matrixR. Then the constructing
equations of the controller,s4.19d–s4.22d, provide the desired optimal controller matrices.

A. Hadamard gate

The Hadamard gate is a one-qubit gate defined as

UHad=
1
Î2

S1 1

1 − 1
D . s5.1d

It is diagonalized by

R=1cos
p

8
− sin

p

8

sin
p

8
cos

p

8
2 s5.2d

as

R†UHadR= S1 0

0 − 1
D . s5.3d

Needless to say,

cos
p

8
=

Î2 +Î2

2
, sin

p

8
=

Î2 −Î2

2
. s5.4d

Therefore, we haveg1=0 andg2=p. We may setf1=f2=0. The ingredients of the constructing
equations of the controller,s4.19d–s4.22d, are calculated as

Vdiag= diags2ip,0d, Wdiag= diags0,ipd, s5.5d

and hence

RVdiagR
† =

ip
Î2
SÎ2 + 1 1

1 Î2 − 1
D, RWdiag=

ip

2
S0 − Î2 −Î2

0 Î2 +Î2
D . s5.6d

Substituting these intos4.22d, we obtain the optimal controller of the Hadamard gate.

B. CNOT gate

One of the most important 2-qubit gates is theCNOT gate defined as
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UCNOT =1
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
2 . s5.7d

It is diagonalized by

R=
1
Î21

Î2 0 0 0

0 Î2 0 0

0 0 1 − 1

0 0 1 1
2 s5.8d

as

R†UCNOTR=1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
2 . s5.9d

Therefore, we haveg1=g2=g3=0 andg4=p. The ingredients of the controller are

Vdiag= diags2ip,2ip,2ip,0d, Wdiag= diags0,0,0,ipd, s5.10d

and hence

RVdiagR
† = ip1

2 0 0 0

0 2 0 0

0 0 1 1

0 0 1 1
2, RWdiag=

ip
Î21

0 0 0 0

0 0 0 0

0 0 0 − 1

0 0 0 1
2 . s5.11d

Substituting these intos4.22d, we obtain the optimal controller of theCNOT gate.

C. DFT2 gate

Discrete Fourier transformationsDFTd gates are important in many quantum algorithms in-
cluding Shor’s algorithm for integer factorization. The two-qubit DFTsDFT2d is a unitary trans-
formation

UDFT2 =
1

21
1 1 1 1

1 i − 1 − i

1 − 1 1 − 1

1 − i − 1 i
2 . s5.12d

It is diagonalized by

R=
1

21
1 Î2 − 1 0

1 0 1 − Î2

− 1 Î2 1 0

1 0 1 Î2
2 s5.13d

as
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R†UDFT2R=1
1 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 i
2 . s5.14d

Therefore, we haveg1=g2=0, g3=p, andg4=p /2. Thus the ingredients of the controller are

Vdiag= diags2ip,2ip,0,ipd, Wdiag= diags0,0,ip,ipÎ3/2d, s5.15d

and hence

RVdiagR
† =

ip

2 1
3 1 1 1

1 2 − 1 0

1 − 1 3 − 1

1 0 − 1 2
2, RWdiag=

ip

2 1
0 0 − 1 0

0 0 1 − Î3/2

0 0 1 0

0 0 1 Î3/2
2 . s5.16d

Substituting these intos4.22d, we finally obtain the optimal controller of the DFT2 gate.

VI. SUMMARY AND DISCUSSIONS

Let us summarize our argument. We briefly reviewed the WZ holonomy and discussed that it
may be utilizable for implementation of quantum computation. The WZ holonomy is neatly
described in terms of differential geometry of a homogeneous bundle, which consists of Stiefel
and Grassmann manifolds and is equipped with the canonical connection. We formulated the
optimization problem of control in holonomic quantum computation in a form of the isoholonomic
problem in the homogenous bundle. We would like to emphasize that it had been left unsolved for
more than a decade after the first proposal. We derived a set of equations,s3.21d ands3.27d, that
characterizes the optimal control and solved it to obtain the horizontal extremal curves3.37d. The
curve must satisfy two boundary conditions,s4.1d and s4.2d, to be a closed loop in the control
manifold and to produce a specified unitary gate as a holonomy. We solved this inverse problem
by combining small circle solutionss4.18d to Us1d holonomy into a direct sum. We provided a
prescriptions4.19d–s4.22d to construct exactly an optimal controller for any unitary gate. Finally
we applied our prescription to several important quantum gates.

We would like to discuss prospective development of the results presented above. Although
our prescription is applicable to arbitrarily large qubit gates, the homogeneous bundle seems rather
over-idealized for practical applications. A realistic quantum system may have smaller control
manifold M than the Grassmann manifold. The restricted control manifoldM is embedded in the
Grassmann manifold by an embedding mapf :M→GN,ksCd and we need to study the isoholo-
nomic problem in the pullbacked bundlef * SN,ksCd. Furthermore, the available working Hilbert
space in a realistic system may not have dimensions as large asNù2k. Actually, even whenN
,2k, sequential operations of single loop solutions can generate any unitary gate. However, such
a patched solution could not be optimal. These problems will be treated separately in our future
publications.
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We present and investigate a new class of quantum channels, what we call “uni-
versal collective rotation channels,” that includes the class of collective rotation
channels as a special case. The fixed point set and noise commutant coincide for a
channel in this class. Computing the precise structure of thisC* -algebra is a core
problem in a particular noiseless subsystem method of quantum error correction.
We prove that there is an abundance of noiseless subsystems for every channel in
this class and that the Young tableaux combinatorial machine may be used to
explicitly compute these subsystems. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1824213g

I. INTRODUCTION

The study of quantum channels is a central theme in quantum computing and quantum infor-
mation theory.27 A fundamental class of quantum channels is known as the class ofcollective
rotation channels.3–5,11,12,15,16,18,20,29–35,37This class has its roots in the postulates of quantum
mechanics and has recently played a key role in experimental efforts towards realizing certain
quantum error correction methods.12,33 Of particular interest in the current study is thenoise
commutant method of noiseless subsystems. This is a recently developed paradigm for passive
quantum error correction.10,12,16,19,20,26,36In this method, the noise commutant is used as a vehicle
for encoding states that are left immune to the noise of a given channel. The operator algebras
generated by such states are called noiseless subsystems.

In this paper, we present a new class of quantum channels and investigate them in the context
of quantum error correction, with specific reference to the noiseless subsystem method. This class
is a generalization of the collective rotation class, which arises as an important special case, hence
we use the appellation universal collective rotation channels to describe this class. We prove that
the noise commutant for every channel in this class has rich structure and hence contains an
abundance of noiseless subsystems. To accomplish this, we use operator algebra techniques to
make an explicit connection with representation theory of the symmetric group and, as a conse-
quence, the Young tableaux combinatorial machine13,17 may be used to explicitly compute these
noiseless subsystems.
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bdElectronic mail: pkim@uoguelph.ca
cdElectronic mail: dkribs@uoguelph.ca
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The paper is organized as follows. Section II contains introductory material on quantum
channels and quantum error correction. In Sec. III we define and establish basic properties of the
class of universal collective rotationsUCRd channels. We make the connection with representation
theory of the symmetric group in Sec. IV and show that the noise commutant for UCR channels
is determined by a particular representation of the symmetric group. In Secs. V and VI we collect
well-known facts from representation theory of the symmetric group, with emphasis on Young
tableaux combinatorics, and work through some low-dimensional examples. We finish with a
concluding remark in Sec. VII and discuss possible avenues of further research.

II. QUANTUM CHANNELS AND NOISELESS SUBSYSTEMS

Let H be ascomplexd Hilbert space and letBsHd be the set of bounded operators onH. When
a basis forH is fixed and dimH=k,`, the algebraBsHd may be identified with the set of all
complex k3k matricesMk=MksCd. Throughout the paper, if we are given positive integersn
ù1 anddù2, we lethu0l , u1l ,… , ud−1lj be a fixed orthonormal basis ford-dimensional Hilbert
space Hd=Cd and let hui1i2¯ inl : i j PZdj be the corresponding orthonormal basis forHdn

=sCdd^n.
A linear mapE :BsHd→BsHd is completely positiveif for all kù1 the ampliation maps1k

^ E :Mk ^ BsHd→Mk ^ BsHd are positive. See Refs. 21 and 28 for introductions to the study of
completely positive maps from different perspectives. Aquantum channelis a mapE :BsHd
→BsHd that is completely positive and trace preserving. GivenE, there issRefs. 7 and 22d a set
of noise operators, or errors, hEkj on H such that

Esrd = o
k

EkrEk
† for r P BsHd. s1d

Trace preservation means that the noise operators satisfy

o
k

Ek
†Ek = 1,

where1 is the identity operator onH. The channel is unital if also,

Es1d = o
k

EkEk
† = 1.

We will denote the fixed point set forE by

FixsEd = hr P BsHd:Esrd = rj.

Further letA be the algebra generated byhEkj from s1d. This is called theinteraction algebrain
quantum computing.20 It is a relic of the channel in the sense that the same algebra is obtained
whatever the choice of noise operators ins1d. This is most succinctly seen in the case of a unital
channel. In general, FixsEd is just a †-closed subspace ofBsHd, but in the case of a unital channel
E, the so-callednoise commutant

A8 = hr P BsHd:rEk = Ekr, ∀ kj

coincides with the fixed point set6,24

FixsEd = A8.

In particular, FixsEd=A8 is a †-closed operator algebrasa finite dimensionalC* -algebra1,9,31d. In
this case the von Neumann double commutant theorem from operator algebras shows how the
algebraA=A9=FixsEd8 only depends on the channel.

Every finite dimensionalC* -algebra is unitarily equivalent to an orthogonal direct sum of
ampliated full matrix algebras; i.e., there is a unitary operatorU such that
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UAU† = %
k=1

r

s1mk
^ Mnk

d.

From the representation theory perspective, a factor1mk
^ Mnk

corresponds to annk-dimensional
irreducible representation appearing with multiplicitymk. With this form forA given, the structure
of the commutant up to unitary equivalence is easily computed by

U FixsEdU† = UA8U† = %
k=1

r

sMmk
^ 1nk

d. s2d

sSee Refs. 12,16,18,23,32,34,35 for more detailed discussions in connection with quantum infor-
mation theory.d

Given a quantum channelE with noise operatorshEkj, the structure of the noise commutantA8
can be used to prepare density operators for use in the noiseless subsystem method of error
correction. This is a passive method of quantum error correction, in the sense that such operators
will remain immune to the effects of the noise of the channel, without active intervention. Thus,
computing the precise structure ofA8 as in s2d is of fundamental importance in this method. We
mention that for experimental reasons,25 only one matrix algebraMmk

^ 1nk
may be used at a time

in this manner. Hence it is also desirable to find the largest full matrix algebra which is a
subalgebra of the noise commutant.

III. UNIVERSAL COLLECTIVE ROTATION CHANNELS

For the rest of the paper, given a positive integerdù2 we writeMd for the operator algebra
BsCdd represented asd3d complex matrices with respect to the standard basishu0l ,… , ud−1lj for
Cd. Further letMd,sa be the subset of self-adjoint matrices insideMd.

Fix nù1. Given 1økøn we define a representation ofMd on Hdn by

for all xPMd. Then we may define sums of independent copies ofx by

unsxd = o
k=1

n

vksxd for x P Md.

Definition 3.1:Given a finite subsetS,Md,sa, we define auniversal collective rotation (UCR)
channelES by

ESsrd =
1

uSu oxPS
eiuxunsxdr e−iuxunsxd for r P BsHdnd,

wherehux:xPSj are nonzero angles.
Given a set of operatorsR, define AlgR to be the operator algebra generated byR. This is

the set of all polynomials in the elements ofR. When R is a self-adjoint set, AlgR is a
C* -algebra. Through a standard functional calculus argument from operator theory, it follows that
the interaction algebraAS for ES is obtained asAS;Algheiuxunsxd :xPSj=Alghunsxd :xPSj. Thus
by von Neumann’s double-commutant identity we have

AS = heiuxunsxd:x P Sj9 = hunsxd:x P Sj9.

Notice thatAS is independent of the choice ofsnonzerod anglesux. As an application of the fixed
point theorem from Refs. 6 and 24 we obtain the following.

Theorem 3.2: If S is a finite subset ofMd,sa, then the UCR-channelES satisfies

FixsESd = AS8 .
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Observe that1d belongs toAS from its characterization as a bicommutant. Sinceuns1dd
=n1dn, we may always add1d to S without changing the properties of FixsESd. This motivates the
following definition.

Definition 3.3:We will say thatS is maximal if spanhx:xPSj contains all matricesxPMd

with trsxd=0.
It turns out that for maximalS the algebraAS is a well-known object in representation theory.
Remark 3.4:To place the class of UCR-channels in context, we note that the UCR-channels

for d=2 and generaln are the class of two-level collective rotation channels from quantum
computing.3–5,11,12,15,16,18,20,32–35,37The noise operators in this case are also denoted byJx,Jy,Jz and
they arise in quantum mechanics as the canonical representation of the angular momentum
relations.8 From the noiseless subsystem/quantum error correction perspective, the algebra
FixsESd=AS8 for this subclass of UCR-channels, and naturald-dimensional representations of the
Jk operators, has been analyzed in Ref. 16 from an operator theory quantum mechanics point of
view.

IV. REPRESENTATION THEORY AND THE NOISE COMMUTANT

In this section we identify the structure of the noise commutant in terms of representation
theory for the symmetric group. We begin with some notation. We shall denote then-fold tensor
product ofMd by

Let SymnMd be the subalgebra ofMdn generated by the symmetric tensor products; that is,
SymnMd is the algebra generated by the operators

Fnsx1 ^ ¯ ^ xnd =
1

n! o
pPSn

xps1d ^ ¯ ^ xpsnd,

where eachxi PMd andSn is the permutation group onn letters.
In terms of representation theory, we may equally well consider the representation

p , GLsdd→GLsdnd given bypsud=u^ ¯ ^ u, and then we have

SymnMd = psGLsddd9,

whereGLsdd is the group ofd3d nonsingular complex matrices. This tensor product representa-
tion of GLsdd is in duality with the representation of the symmetric groupSn defined on vector
tensors by

pssdsh1 ^ ¯ ^ hnd = hss1d ^ ¯ ^ hssnd,

for sPSn andh1,… ,hnPHd. In this context, Schur’s classical duality theorem reads as follows.
Theorem 4.1: psSnd8=SymnMd.
We use the following characterization of SymnMd below.
Lemma 4.2: For positive integers d and n, we have

SymnMd = hx^n:x P Mdj9 = hunsxd:x P Mdj9.

Proof: It is clear that SymnMd contains theC* -algebra,

B = hx^n:x P Mdj9 = spanhx^n:x P Mdj = Alghx^n:x P Mdj

as a subalgebra. For the converse inclusion, letx1,… ,xnPMd and consider the complex matrix
integral
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E
z1,…,znPT

So
j=1

n

zjxjD^n
dz1

z1
¯

dzn

zn
= o

j1,…,jn=1

n SE
z1,…,znPT

p
r=1

n

zjr

dz1

z1
¯

dzn

zn
Dsxj1

^ ¯ ^ xjn
d

= o
j1,…,jn=1

n Sp
s=1

n E
zPT

zuhr: j r=sjudz

z
Dsxj1

^ ¯ ^ xjn
d

= s2pidn o
pPSn

xps1d ^ ¯ ^ xpsnd,

whereT denotes the unit circle in the complex plane. It follows thatFnsx1 ^ ¯ ^ xnd belongs to
B for any choice ofx1,… ,xn, and henceB coincides with SymnMd.

On the other hand, it is clear by definition that SymnMd contains the algebrahunsxd :x
PMdj9 generated by theunsxd. Moreover, a consideration of the expansion forunsxdn shows that
x^n belongs to this double commutant for allxPMd. For the sake of brevity let us observe this fact
for n=2 andn=3,

x ^ x =
1

2!
su2sxd2 − u2sx2dd,

x ^ x ^ x =
1

3!
su3sxd3 − 3u3sx2du3sxd − 2u3sx3dd.

In fact, for all xPMd, the tensor productx^n belongs to the algebra Alghunsxpd :1øpønj. Thus
the second characterization of SymnMd follows. h

Observe that as a consequence of this proof, we also have SymnMd=hunsxd :xPMd,saj9. We
can now explicitly link the noise commutant for these channels with representation theory of the
symmetric group.

Theorem 4.3:Let S,Md,sa be a maximal system, then

FixsESd = AS8 = psSnd9.

Moreover, for an arbitrary finite setS,Md,sa, we have

FixsESd $ psSnd9.

Proof: If S is maximal, then the interaction algebra FixsESd8=AS=hunsxd :xPSj9=hunsxd :x
PMdj9 coincides withpsSnd8 by Lemma 4.2. For the second assertion, a given finite subset
S,Md,sa is contained inside a maximal systemSmax. HenceAS#ASmax

and

FixsESd = AS8 $ ASmax
8 = psSnd9.

h

V. COMPUTING NOISELESS SUBSYSTEMS VIA YOUNG TABLEAUX

In this section, we collect well-known facts from the representation theory ofSn that allow us
to describe FixsESd=psSnd9 in an explicit manner. Recall that this is imperative for using the
structure of the noise commutant to produce noiseless subsystems.

For the discussion in this section, we shall fix positive integersdù2 and nù2. Let
hu0l ,… , ud−1lj be the orthonormal basis forHd corresponding to a givend-level quantum system,
and let
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hui1 ¯ inl:0 ø i j , d,1 ø j ø nj

be the corresponding basis forHdn. Observe that the set ofn-tuples hi1,… , inj is in one-to-one
correspondence with the set of functionsf : h1,… ,nj→ h0,… ,d−1j. So we may define functions
kl for 0ø l ,d by

klsi1,… . ,ind = #h1 ø j ø nui j = lj for 0 ø i j , d,

and we haveol=0
d−1klsi1,… , ind=n.

Now, given positive integersk0,… ,kd−1 with each 0økl øn, we define a corresponding
subspace ofHdn by

Hk0,….,kd−1
= spanhui1 ¯ inl:klsi1,…,ind = kl,0 ø l , dj.

Notice thatHdn= % Hk0,…,kd−1
, where the direct sum runs over all choices ofk0,… ,kd−1. Clearly,

Hk0,….,kd−1
is an invariantshence reducingd subspace for the action of the symmetric groupSn.

More importantly, the irreducible subspaces, or equivalently the decomposition factors of
Hk0,…,kd−1

are completely characterized. The key ingredient in this characterization is the notion of
Young tableaux.

Given l1ùl2ù¯ùlr, a nonincreasing sequence of positive integers withoili =n, set l
=sl1,… ,lrd. Then the associatedl-diagram is defined as

flg = hcij :1 ø i ø r,1 ø j ø lij,

wherecij denotes a cell inflg. Simply put,flg is a diagram withd rows of cells which are left
justified andli cells in theith row. A l-tableauis a bijective functiont : flg→ h1,… ,nj. Clearly,
Sn acts by compositionst=s + t on l-tableaux. Given al-tableau, thecolumn stabilizer Ct is the
subgroup ofSn which leaves the columns ofl setwise fixed. Similarly, therow stabilizer Rt is the
subgroup ofSn which leaves the rows ofl setwise fixed. Two tableauxt1 and t2 areequivalentif
there exists a permutationsPRt1

such thatst1= t2. In particular, this means that the set oftabloids
Tabl=hhtj : t a l-tableauj of equivalence classes is indexed by all partitionssA1,… ,Ard of
h1,… ,nj such that the cardinalitiesuA1u=l1,… , uAru=lr. Given a l-diagram flg, consider the
si , jd-cell cij in flg. Thehook length hsi , jd for cij is the number of cells directly belowcij in the
ith column offlg plus the number of cells to the right ofcij in the ith row of flg plus onesfor the
cell cij itselfd. Formally,

hsi, jd = li + l j8 + 1 − i − j ,

where l j8 is the number of elements in thej th column. Also recall that a tableaut : flg
→ h1,… ,nj is standard if the numbers increase along rows and increase down columns. The
abstractSn-module that has an orthonormal basis in bijective correspondence with elements of
Tabl is denoted byMl, so that

Ml = spanhehtj:htj P Tablj.

The Specht moduleSl is the submodule ofMl generated by the polytabloids

et ; o
sPCt

ssinsdeshtj P Ml.

Let us summarize the following factsssee Chap. 7 in Ref. 17d.
Theorem 5.1: Let k0,… ,kd−1 be positive integers and consider a partition ofh1,… ,nj into

sets A0,… ,Ad−1 with uAlu=kl. Let l be the nonincreasing rearrangement ofsk0,… ,kd−1d. Then
Hk0,…,kd−1

is isomorphic as an Sn-module to Ml.
Every polytabloid et is a cyclic vector for the irreducible moduleSl. The dimension ofSl is

given by the hook length formula
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dim Sl =
n!

p hook lengths inulu
,

and a basis forSl is given by

het:t standardl-tableauj.

Finally, every finite-dimensional irreducible representation of Sn is unitarily equivalent to a
Specht module representationpl, wherepl is the representation of Sn on Sl defined byplssdet

;est.
For the next discussion let us fix numberssk0,… ,kd−1d and let us denote bym

=sm0,… ,md−1d the nonincreasing rearrangement ofsk0,… ,kd−1d. The Sn-moduleHk0,…,kd−1
de-

composes into a direct sum of irreducible submodules. Fortunately, these submodules and their
multiplicity are completely characterized by Young’s rule. Moreover, below we shall describe how
the decomposition into irreducible submodules ofHk0,…,kd−1

is related to, and determined by, the
decomposition ofHm;Hm0,…,md−1

. sThis allows us to explicitly identify links between irreducible
subspaces for the representationp.d Here the key combinatorial tool is the notion of a semistan-
dard tableau.

We generalize the notion ofl-tableau, by saying thatT: flg→N is a l-tableau of typem
=sm0,… . ,md−1d if

#hcij :Tscijd = lj = ml for l = 0,…,d − 1.

ThenT is calledsemistandardif the numbers thatT assigns to the cells of the diagram determined
by l are nondecreasing along rows and strictly increasing down columns. Let us fix a bijection
t0: flg→ h1,… ,nj. ThenSn acts on the setsIsl ,md, the set ofl-tableau of typem, via

ssTd = T t0
−1st0 for s P Sn.

Given t0, we will say thatT1 and T2 are row scolumnd equivalent, and writeT1,t0
r T2, if

sT1=sT2 holds for all permutationss in the row srespectively, columnd stabilizer oft0. In par-
ticular, this means thatT1 and T2 are row equivalent if and only ifT2 is obtained fromT1 by
permuting the entries in each row accordingly.

In order to define the linking module maps we first need an appropriate bijection. We denote
by Pm0,…,md−1

the set of partitionssA0,… ,Ad−1d of h1,… ,nj such thatuAlu=ml. ThenPm0,…,md−1
induces a natural relabeling of the standard basis forHm by

fA0,…,Ad−1
= ui1 ¯ inl, s3d

where Al =h1ø j ønu i j = lj for 0ø l ,d. fEvery n-tuple si1,… , ind is associated with a unique
d-tuple of setssA0,… ,Ad−1d defined in this way.g

Next we definegt0
: Isl ,md→Pm0,…,md−1

by

gt0
sTd = sA0,…,Ad−1d,

where

Al = h1 ø j ø nuT t0
−1s jd = lj for 0 ø l , d.

Every l-tableauT of type m induces anSn-module mapQT:Ml→Mm by

QTseht0jd = o
T8,t0

r T,gt0
sT8d=sA0,…,Ad−1d

fA0,…,Ad−1
.

Clearly this extends to anSn-module homomorphism by defining
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QTsehsst0djd = ssQTseht0jdd.

This rather abstract description is in fact very concrete. Given indicesi1,… , inP h0,… ,d
−1j and al-tableaut : ulu→ h1,… ,nj we form the generalized tableautui1¯inl : flg→ h0,… ,d−1j
by

tui1¯inlscijd = i t0scij d
.

This means we write the entriesi1,… , in into l following the order given byt0. Then we say that

si1,…,ind,t0
si l8,…,in8d

if there exists a permutationsPSn such thati j8= iss jd for 1ø j øn andt0
−1st0 leaves the rows ofl

invariant. Therefore, we obtain

QTseht0jd = o
si1,…,ind,t0

gt0
sTd

ui1 ¯ inl,

where here we identifygt0
sTd with then-tuple determined by the partitiongt0

sTd=sA0,… ,Ad−1d as
in s3d.

For example, letd=3,n=5 and lett0: flg→ h1,… ,5j be given by

andT: flg→ h0,1,2j be given by

This yields, by reading off the entries from the corresponding position in the diagram,

gt0
sTd = sA0,A1,A2d = sh1,3j,h2,4j,h5jd.

Following s3d, gt0
sTd is identified withsi1, i2, i3, i4, i5d=s0,1,0,1,2d. Moreover, the list of equiva-

lent indices is

hs0,1,0,1,2d,s0,1,1,0,2d,s0,0,1,1,2d,s1,0,0,1,2d,s1,0,1,0,2d,s1,1,0,0,2dj.

Indeed, according tot0 we have to fix the fifth coordinate and the other four vary in all possible
ways. Thus we have

QTsehtjd = o
si1,…,ind,tgtsTd

ui1 ¯ inl for ehtj P Ml.

Following Young’s rulessee Chap. 2, Ref. 17d we obtain the following.
Theorem 5.2: Let m=sk0

* ,… ,kd−1
* d be the nonincreasing rearrangement ofsk0,… ,kd−1d. Let

l=sl1,… ,lrd be such thatl1ù¯ùlr and oili =n. Then

Hk0,…,kd−1

l ; spanHQTS o
sPCt

ssgnsdeshtjD:T P Isl,md,t l-tableauJ
is an irreducible Sn-submodule. The restriction of the representationp to Hk0,…,kd−1

l is equivalent
to the irreducible representationpm of Sn on Sm and has-multiplicity

m= #hT:T semistandardl-tableau of typemj.
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If we collect all this information for allsk0,… ,kd−1d, we can describe the full representation
p of CfSng:

Corollary 5.3: Let l=sl1,… ,lrd be such thatl1ù ¯ ùlr and oili =n, and let Pl be the
projection ofHdn onto

Hl ; %
k0,…,kd−1

Hk0,…,kd−1

l ,

where the sum indexes over all k0,… ,kd−1 such thatol=0
d−1kl =n.

Then Pl is the minimal central projection forpsSnd9 which supports the irreducible submod-
ule Sl. Moreover, PlpPl is equivalent to the representationpl on Sl with multiplicity

ml,d = o
m0ù¯ùmd−1

ArrsmdSSTsmd,

where

Arrsmd = #hsk0,…,kd−1d:sk0
* ,…,kd−1

* d = sm0,…,md−1dj

and

SSTsmd = #hT:flg → h0,…,d − 1juT semistandardl-tableau of typemj.

In particular, for a maximal systemS,

FixsESd = AS8 = psSnd9 > o
ml,dÞ0

MdimsSld ^ 1ml,d

describes the representation in irreducible parts with multiplicity.
Corollary 5.4: LetS be a maximal system, themAS is isomorphic to

AS > o
ml,dÞ0

Mml,d
^ 1dim Sl

and the multiplicity of the componentMml,d
is given bydim Sl.

Let us mention thatHl may also be described by the so-called Garnier relations. Givenl
=sl1,… ,lrd, we fix the tableauTl such thatTlsckjd=k for all cellsckj in flg. It follows that every
index i =si1,… , ind defines a tableauTi : flg→ h0,… ,d−1j given by Tisckjd= iTlsckjd

. Let GsJd be
the collection of coset representativeshnX:nPYj, whereY is the subgroup ofSn which fixes every
element outside bothChsTldøJ and Y=XùCsTd. Then as is proved in Ref. 14sp. 66, 5.2bd,
uclPHl if and only if

s1d kc i il=0 for all i such thatTi has equal entries in two distinct places in the same column,
s2d pssdsucld=sgnssducl for all s in the column stabilizer ofTl,
s3d onPGsJdsgnsndpsn−1ducl=0 for any nonempty set in the column stabilizer ofCh+1sTld.

VI. EXAMPLES

A. The case d =2 and general n

As mentioned above, the case ofd=2 and generaln was extensively examined in Ref. 15. Let
us indicate how this can be accomplished with Young tableaux.

When d=2, we have the pairssk1,k2d given by sn−k,kd where k=0,… ,n. In terms of
l-tableau we have to calculateml,2. In terms of types we must only consider diagramsmk=sn
−k,kd where 0økø2n. But we must be aware that every type allows combinationssn−k,kd and
sk,n−kd. Given l=sl1,… ,lrd, we observe that to obtain a semistandard tableau, we must have
r =2. Indeed, we are forced to set 0’s in the first row on the firstl2 positions and 1’s in the second
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row. Thus for fixedk, j with 2køn and 2j øn, we needkø j in order to produce al-tableau of
type m. Since, we also know that there aren−k 0’s, we do not have a choice and we have to put
them all in the first row one after another. Thus for a fixedl, we find

msn−j ,jd,2 = o
kø j

bn/2c
2 + 1 = 2sbn/2c − jd + 1

if n is even and

msn−j ,jd,2 = 2sbn/2c − jd

if n is odd, whereb·c denotes the greatest integer part of some number.
We also have to understand dimsSld. If l=0, we get dimsSsn,0dd=1. If 1ø j ,n/2, we see for

cells c1l with l ø j the hook length is 1+sn− j +1−id. This yieldsnsn−2j +1d / j ! sn− j +1d! and
hence

dimsSsn−j ,jdd = 51 if j = 0,

n − 2j + 1

n + 1
Sn+1

j
D if 1 , j ø

n

2
.6

Let us consider the examplesn=4 andn=5. Then

dim Ss4,0d = 1, dimSs3,1d = 3, dimSs2,2d = 2

and

ms4,0d,2 = 5, ms3,1d,2 = 3, ms2,2d,2 = 1.

In the casen=5, we have

dim Ss5,0d = 1, dimSs4,1d = 4, dimSs3,2d = 5

and

ms5,0d,2 = 6, ms4,1d,2 = 4, ms3,2d,2 = 2.

Bases forH2n which yield the associated algebra decompositions may be computed as well. Below
we do this for a more intricate example.

B. The case d =3 and n =4

If d=3 andn=4, then the set ofl-diagrams which admit semistandard tableaux is given by

In this case, s3dpsS4d acts onHdn=H81. As in Theorem 5.1,Ms4d is isomorphic toH4,0,0,H0,4,0,
andH0,0,4;M

s2,2d is isomorphic toH2,2,0,H2,0,2, andH0,2,2; Ms2,1,1d is isomorphic toH2,1,1,H1,2,1,
andH1,1,2 etc., so that the multiplicities for theMl are 3 forMs4d ,Ms2,2d and Ms2,1,1d and 6 for
Ms3,1d. The dimensions of the Specht modulesSl using the hook length formula are given by

dim Ss4d = 1, dimSs3,1d = 3, dimSs2,2d = 2, dimSs2,1,1d = 3.

Now, we have to compute the multiplicities ofSl in Mm. If m=s4df=s4,0,0dg, then the only
semistandard tableau of typem is l=s4d with 0 in each cell. ThusMs4d>Ss4d. Further, everyMm
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supports a single copy ofSs4d via thel=s4d-tableau with cell entries given bym. Form=s3,1d, the
possible semistandard tableaux are

This gives

Ms3,1d > Ss4d
% Ss3,1d.

For m=s2,2d, we have

Thus we obtain

Ms2,2d > Ss4d
% Ss3,1d

% Ss2,2d.

Finally, for m=s2,1,1d we find

This means

Ms2,1,1d > Ss4d
% sSs3,1d

^ 12d % Ss2,2d
% Ss2,1,1d.

Setting this all together, we find the module decomposition ofpsS4d is given by

psS4d = sMs4d
^ 13d % sMs3,1d

^ 16d % sMs2,2d
^ 13d % sMs2,1,1d

^ 13d

= sSs4d
^ 13d % ssSs4d

% Ss3,1dd ^ 16d s4d

% ssSs4d
% Ss3,1d

% Ss2,2dd ^ 13d s5d

% ssSs4d
% sSs3,1d

^ 12d % Ss2,2d
% Ss2,1,1dd ^ 13d s6d

=sSs4d
^ 115d % sSs3,1d

^ 115d % sSs2,2d
^ 16d % sSs2,1,1d

^ 13d. s7d

The direct sums ins4d–s6d are understood to be linked, as reflected ins7d. It now follows that

FixsESd = psS4d9 > sC ^ 115d % sM3 ^ 115d % sM2 ^ 16d % sM3 ^ 13d. s8d

Notice also thatM3 is the largest full matrix algebra which can be injected into FixsESd as a
subalgebra.

Let us now describe the bases for the decomposition

H34 = sH4,0,0 % H0,4,0 % H0,0,4d % sH2,1,1 % H1,2,1 % H1,1,2d

% sH3,1,0 % H3,0,1 % H0,3,1 % H1,3,0 % H0,1,3 % H1,0,3d

which yields this algebra decomposition. This is easy forl=s4d. Indeed, for everyHk0,k1,k2
this is

given by the invariant average vector
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hs4d = o
k0si1,i2,i3,i4d=k0,…,k2si1,i2,i3,i4d=k2

ui1i2i3i4l.

In the following we will only discuss the case wherek0ùk1ùk2 si.e., H4,0,0,H3,1,0,H2,1,1d. For
l=m, we have a natural embeddingSl#Ml>Hk0,k1,k2

given by

ht = o
sPCt

sgnssd o
si1,…,i4d,tsi1

t ,…,i4
t d

ui1i2i3i4l, s9d

for all l-tableaut of type m. Let us illustrate this in our examples. Ifl=s3,1d, we have three
standard tableaux

The column stabilizer oft0,t1,t2 is Ct0
=h1,s14dj ,Ct1

=h1,s13dj ,Ct2
=h1,s12dj. The spaceHs3,1d

has the basis

u0001l, u0010l, u0100l, u1000l.

Now, we define onHs3,1d

Ati
= o

sPCti

sgnssdpssd.

The range ofAti
is given by the vectors

ht0
= u0001l − u1000l,

ht1
= u0010l − u1000l,

ht2
= u0100l − u1000l.

This provides us with the basis for

Ms3,1d > Hs3,1d = spanhhs4dj % spanhht0
,ht1

,ht2
j.

Now, we considerHs2,2,0d spanned by

u0011l, u0110l, u0101l, u1100l, u1010l, u1001l.

For l=s3,1d we have the following list ofl-tableaux of types2,2d:

Here we usedt0= Only the first tableaux is semistandard and yields an injection

with
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Qseht0jd = o
si1,…,i4d,t0

s0,0,1,1d
ui1i2i3i4l.

This means

Qseht0jd = u0011l + u0101l + u1001l.

sSee the example in the last section forn=5.d Further, this vector is a cyclic vector for the image
of Ss3,1d in Hs2,2d. The polytabloid is

et0
= o

sPCt0

sgnssdseht0j = eht0j − s14deht0j.

ThereforeQsSs3,1dd is the module generated by

Qset0
d = ht0

= u0011l − u1010l + u0101l − u1100l.

Equivalently,

QsSs3,1dd = spanhht0
,s12dht0

,s13dht0
j = spanhu0011l − u1010l + u0101l − u1100l,u1100l − u1001l

+ u0110l − u0011l,u0110l − u0101l + u1010l − u1001lj.

Another way to find a basis is to considert1= In this case,Ct1=h1,s13dj,

Qseht1jd = u0011l + u0110l + u1010l

and

ht1
= Qseht1jd − s13dQseht1jd = u0011l − u1001l + u0110l − u1100l.

Similarly for t2= we haveCt1=h1,s12dj and

Qseht2jd = u0101l + u0110l + u1100l

and

ht2
= Qseht2jd − s12dQseht2jd = u0101l − u1001l + u0110l − u1010l.

The copy ofSs2,2d in Hs2,2d is again easy to find. We recall thatSs2,2d is spanned by the
standard tableauxhes0

,es1
j where

The column stabilizers are given byCs0
=h1,s13d ,s24d ,s13ds24dj and byCs1

=h1,s12d ,s34d ,s12d
3s34dj. This yields operators onHs2,2d,

As0
= 1 −pss13dd − pss24dd + pss13ds24dd

and

As1
= 1 −pss12dd − pss34dd + pss12ds34dd.

Applied to the unit vectors, we find the ranges
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RansAs0
d = u0110l − u1010l − u0101l + u1001l

and

RansAs1
d = u0011l − u1001l − u0110l + u1100l.

Finally, we considerHs2,1,1d with basis

hu0012l,u0021l,u0102l,u0120l,u0201l,u0210l,u1002l,u1020l,u1200l,u2001l,u2010l,u2100lj.

The representation ofSs4d is one-dimensional, given by the average of all these vectors. There are
two copies ofSs3,1d corresponding to the twos3,1d-tableaux of types2,1,1d,

The basis forSs3,1d is given byhet0
,et1

,et2
j where

Following the definition ofQTsetj
d, we get

gt0
sTd = s0,0,1,2d, gt1

sTd = s0,0,2,1d, gt2
sTd = s0,2,0,1d.

Using row equivalence, we are allowed to permute the entriesh1,2,3j for t0, the entriesh1,2,4j
for t1 and h1,3,4j for t2 and thus

QTseht0jd = u0012l + u0102l + u1002l,

QTseht1jd = u0021l + u0120l + u1020l,

QTseht2jd = u0201l + u0210l + u1200l.

For t0,t1,t2 we have to apply, respectively,AT,t0
=1−ps14d ,AT,t1

=1−ps13d andAT,t2
=1−ps12d in

order to obtain the image of the polytabloids,

hT,t0
= u0012l − u2010l + u0102l − u2100l + u1002l − u2001l,

hT,t1
= u0021l − u2001l + u0120l − u2100l + u1020l − u2010l,

hT,t2
= u0201l − u2001l + u0210l − u2010l + u1200l − u2100l.

This is our first copy ofSs3,1d. For the second, we exercise the same procedure in the case ofT8,

QT8seht0jd = u0021l + u0201l + u2001l,

QT8seht1jd = u0012l + u0210l + u2010l,

QT8seht2jd = u0102l + u0120l + u2100l.

This provides us with

hT8,t0
= u0021l − u1020l + u0201l − u1200l + u2001l − u1002l,
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hT8,t1
= u0012l − u1002l + u0210l − u1200l + u2010l − u1020l,

hT8,t2
= u0102l − u1002l + u0120l − u1020l + u2100l − u1200l.

We have one copy ofSs2,2d which is spanned by

Qsehs0jd = u0012l + u0021l andQsehs1jd = u0102l + u0201l.

The operator is1−ps13d−ps24d+pss13ds24dd, determined byCs0
=h1,s13d ,s24d ,s13ds24dj, and

thus

hs0
= u0012l − u1002l − u0210l + u1200l + u0021l − u2001l − u0120l + u2100l

and similarly fors1 we apply1−ps12d−ps34d+pss12ds34dd to obtain

hs1
= u0102l − u1002l − u0120l + u1020l + u0201l − u2001l − u0210l + u2010l.

Finally we consider the copy ofSs2,1,1d, which has basisher0
,er1

,er2
j where

QTsehr0jd = u0012l, QTsehr1jd = u0102l, QTsehr2jd = u0120l.

The column stabilizer ofr2 is given by all permutations which leaveh1,2,3j invariant. This yields

hr2
= u0120l − u0210l − u1020l + u1200l + u2010l − u2100l.

Similarly, we must look for all permutations ofh1,3,4j in the column stabilizer ofr0 and we
obtain

hr0
= u0012l − u0021l − u1002l + u1020l + u2001l − u2010l.

For the column stabilizer ofr1, we may permuteh1,2,4j and hence
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hr1
= u0102l − u0201l − u1002l + u1200l + u2001l − u2100l.

QT8sehr0jd = u0112l + u1012l,

QT8sehr1jd = u0112l + u1102l,

QT8sehr2jd = u0121l + u1120l.

Thus we have

hr0
8 = u0112l − u0121l − u1102l + u1120l + u2101l − u2110l,

hr1
8 = u0112l − u0211l − u1012l + u1210l + u2011l − u2110l,

hr2
8 = u0121l − u0211l − u1021l + u1201l + u2011l − u2101l.

QT9sehr0jd = u0212l + u2012l,

QT9sehr1jd = u0122l + u2102l,

QT9sehr2jd = u0122l + u2120l.

Thus we have

hr0
9 = u0212l − u0221l − u1202l + u1220l + u2201l − u2210l,

hr1
9 = u0122l − u0221l − u1022l + u1220l + u2021l − u2120l,

hr2
9 = u0122l − u0212l − u1022l + u1202l + u2012l − u2102l.

Let Ps2,1,1d be the projection ofH onto the span ofhhri
,hr j

8 ,hrk
9 :0ø i , j ,kø2j. ThenPs2,1,1d is

a minimal central projection forAS8 and the compression subalgebraPs2,1,1dAS8Ps2,1,1d
=AS8Ps2,1,1d,AS8 is unitarily equivalent to13 ^ M3. In fact, with respect to the ordered basis

hhr0
,hr1

,hr2
,hr0

8 ,hr1
8 ,hr2

8 ,hr0
9 ,hr1

9 ,hr2
9 j

for Ps2,1,1dH, we have the matrix representations
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AS8Ps2,1,1d = 51A 0 0

0 A 0

0 0 A
2:A P A36 .

Note that the subspaces spanned by the setshhri
j ,hhri

8 j, andhhri
9 j are perpendicular, but the vectors

within each of these sets do not form an orthogonal basis for the corresponding subspace.

VII. CONCLUSION

We have investigated the operator algebras of fixed points for a class of quantum channels we
call universal collective rotation channelsES. This class includes as a subclass the well-known
class of collective rotation channels. We showed that such channels always have an abundance of
noiseless subsystems and gave a method for explicitly computing them. In particular, the Young
tableaux machine gives a clean approach for this process. In lower dimensional casesse.g., when
d=2d, our approach is more technical when compared to others in the literaturesfor instance, Ref.
15d. However, an important advantage of the Young tableaux approach for higher dimensional
cases is that it is particularly amenable to computations.

An issue we have not pursued here concerns the channels generated by nonmaximal setsS.
Thedn-dimensional representations ofJx,Jy,Jz considered in Ref. 15 provide such an example, but
we would expect there to be other interesting nontrivial examples of channelsES for nonmaximal
S. We emphasize that even for nonmaximalS there is an abundance of noiseless subsystems
because FixsESd containspsSnd9.

We also wonder what other representations ofSn correspond to physically meaningful unital
channels, beyondp and its subrepresentationsswhich correspond to the compressions of UCR-
channelsd. The recent paper2 of Baconet al., appears to present further insights into this topic, and
also shows how the unitary base change from the standard basis to the basis given by the Young
tableaux can be efficiently computed using quantum circuits.
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For the radial Dirac equation, a countably additive path space measure on the space
of continuous paths living on the real half-line is constructed to give a path integral
representation of its Green function. ©2005 American Institute of Physics.
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I. INTRODUCTION

In this paper we want to make a mathematical rigorous approach to the path integral for the
radial Dirac equation, namely, the radial part of the Dirac equation in spherical coordinates. The
equation is given, forC2-valued functionscsr ,td= tsc1sr ,td ,c2sr ,tdd, by

]

]t
csr,td = − iftk + Vsrdgcsr,td, s1.1d

with a real-valued spherically symmetric potentialV=Vsrd, i.e., a function in the real half-line
R+ªs0,`d, where the variablessr ,td lie in radial space–timeR+3R. Heretk is the free radial
Dirac operator with massm defined fork= ±1, ±2, . . ., by

tk:f ° FS0 − 1

1 0
D ]

]r
+ S m − k/r

− k/r − m
DGS f1srd

f2srd
D s1.2ad

for suitably smoothC2-valued functionsf = tsf1, f2d in R+, in short,

tk = − is2
]

]r
− s1

k

r
+ ms3, s1.2bd

with the Pauli matrices

s1 = S0 1

1 0
D, s2 = S0 − i

i 0
D, s3 = S1 0

0 − 1
D .

The free radial Dirac operatortk arises from the spin-angular momentum decomposition of the
free Dirac operator in three space dimensions. The nonzero integerk represents an eigenvalue of
the “spin–orbit operator”fsee Bjorken and Drells1964d, Thaller s1992d, Weidmanns1987dg.

The operatortk is a symmetric operator with domainDftkg=C0
`sR+;C2d in L2sR+;C2d. Here

L2sR+;C2d is the Hilbert space of theC2-valued square-integrable functions inR+ with respect to
the Lebesgue measure dr, andC0

`sR+;C2d the locally convex space of theC2-valuedC` functions
in R+ with compact support. It has a singularity atr =0 as ins1.2ad and s1.2bd. This is indeed
harmless if we consider it as an operator in theL2 space, but is a problem to construct a path space
measure, for we need to consider it as an operator in theL` spaceffor this see Ichinose and
Tamuras1984, 1987, 1988dg. In this context, in Ichinose and Jefferiess2002d, we have made an
explicit construction of the free propagator, namely, the integral kernelKtsr ,rd of e−ittk for k=1,
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and shown that, though it turns out to be a distributionof order zeroin the variablessr ,rdPR+

3R+=R+
2, there exists no countably additive path space measure to give a path integral repre-

sentation to the solution of the Cauchy problem for the radial Dirac equations1.1d.
The aim of this paper is to construct a countably additive path space measure to represent by

path integral, though not the propagator, the Green function for the radial Dirac equations1.1d.
The main idea is to combine our method of constructing a path space measure developed for the
one-dimensional Dirac equation in the papersfIchinoses1982, 1984d, Ichinose and Tamuras1984,
1987, 1988dg, in particular, in their a little more refined reviewfIchinoses1993dg, with the follow-
ing simple but intriguing procedure of dealing with the singularity, which was invented by Duru
and Kleinerts1979d and has since been employed by many physicistsfsee Kleinerts1995, Chaps.
12 and 14d, Inomata, Katsuraji, and Gerrys1992, p. 6d, Grosche and Steiners1998, pp. 77–83dg to
perform space–time transformations in path integrals.

The free radial Dirac operatortk has a singularity atr =0. However, if we multiply this
operatortk by somesnon-negatived functionsasrd andbsrd from the left and right sides, respec-
tively, then asrdtkbsrd becomes no more singular. Let us takeasrd=bsrd=r1/2, and setTk

=r1/2tkr
1/2. Then −iTk becomes

− iTk = − ir 1/2tkr
1/2 = − s2r

1/2S ]

]r
Dr1/2 + isks1 − mrs3d

= − iS0 − 1

1 0
Dr1/2S ]

]r
Dr1/2 + iS− mr k

k mr
D = :− iTk0 − iTk1. s1.3d

We also consider the operator

Hsk,rVd ª Tk + rVsrd, s1.4d

relevant to the radial Dirac operator ins1.2ad and s1.2bd. ThenTk is a symmetric operator with
domainDfTkg=C0

`sR+;C2d in L2sR+;C2d. For the potentialsVsrd we are concerned with, we can
show Hsk,rVd is essentially self-adjoint onC0

`sR+;C2d, as well asTk. We shall denote their
closures or unique selfadjoint extensions again by the sameHsk,rVd andTk.

Then consider, forHsk,rVd instead oftk+Vsrd, the Cauchy problem

]

]t
usr,td = − iHsk,rVdusr,td, usr,0d = gsrd = tsg1srd,g2srdd s1.5d

for tPR or the solutionusr ,td=se−itHsk,rVdgdsrd. SinceTk has no more singularity atr =0, we
expect to be able to construct a path space measure associated with the semigroupe−itHsk,rVd. Since
the resolvent is expressed by the Laplace transform of the semigroup, we shall find the following
relation between the desired resolvent kernel oftk+V and the semigroupe−itHsk,rVd, though a little
formally expressed:

fstk + V − ld−1gsr,rd = r1/2fsHsk,rVd − lrd−1gsr,rdr1/2 = iE
0

`

r1/2e−itsHsk,rVd−lrdr1/2 dt,

for suitable real or complex numbersl. In this way, we might get, for the original radial Dirac
operatortk+Vsrd, a path integral representation of the resolvent kernel and the Green function if
l might be taken to be zero, though we were unable to find such a representation for the propa-
gatore−itstk+Vd itself.

For the potential Vsxd, we assume that it is a real-valued function inR+ such that Vsrd
=V1srd+V2srd, where V1srd=e/ r with a real constant e satisfyingueuøÎk2− 1

4 and V2srd is a
locally square-integrable function inR+ which is bounded near r=0.

Note that this class of potentialsVsrd contains the Coulomb potential.
In this case it can be shown that the radial Dirac operatortk+V in s1.1d is essentially self-

adjoint onC0
`sR+;C2d. We denote its unique self-adjoint extension inL2sR+;C2d also by the same
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tk+V. Thus this operator has a real spectrum. Further, as to its spectrum, for instance, the follow-
ing results are knownfWeidmann s1987d, Thaller s1992, Theorems 4.18, 4.19dg. If
V2srdªV21srd+V22srd satisfies for somer0.0 thatV21PL1ssr0,`dd andV22 is of bounded varia-
tion in fr0,`d with limr→` V22srd=0, then the operatortk+V has a purely absolutely continuous
spectrum in the real lineR outside the closed intervalf−m,mg. If V1srd is absentsi.e., e=0d and if
limr→`uV2srdu=` ander0

` uV28srd /V2srd2udr ,` for somer0.0, thentk+V has the whole real line
R as a purely absolutely continuous spectrum.

We will show the following path integral representation for the resolvent kernelfstk

+V7 i«d−1gsr ,rd for «.0 and the Green function for the radial Dirac operatortk+Vsrd in s1.1d.
The set of all complex 232-matrices is denoted byM2sCd=C2 ^ sC2d8. With f0,`d=R+

being the closed real half-line, letC00
` sf0,`d2;M2sCdd be the locally convex space of the

M2sCd-valued C` functions Msr ,rd in f0,`d3 f0,`d which have compact support and whose
derivatives]rm]rnMsr ,rd, for all non-negative integersm andn, vanish atsr ,0d ands0,rd for all
r ù0 andrù0. Let C00

` sf0,`d2;M2sCdd8 be its dual space. AsC0
`sR+

2;M2sCdd is a subspace of
C00

` sf0,`d2;M2sCdd, so C00
` sf0,`d2;M2sCdd8 is a subspace of the spaceD8sR+

2;M2sCdd of the
M2sCd-valued distributions inR+3R+. By s·,·d and k·,·l we denote, respectively, the sesquilinear
and bilinear inner products of a dual pairing.

The main result of this note is the following theorems. The notationu0,tu stands for the
interval 0øsø t or 0ùsù t according ast.0 or t,0.

Theorem 1.1:Let Vsrd be a potential mentioned above.
sid For every «.0, there exists a232-matrix distribution-valued, precisely speaking,

C00
` sf0,`d2;M2sCdd8-valued, countably additive path space measuremt,0 on the Banach space

Csu0,tu→ f0,`dd of the continuous paths R: u0,tu→ f0,`d such that the resolvent kernelfstk

+V7 i«d−1gsr ,rd for the radial Dirac operatortk+V in (1.1) admits a path integral representa-
tion: for every pairsf ,gdPC00

` sf0,`d ;C2d3C00
` sf0,`d ;C2d,

sf,stk + V 7 i«d−1gd =E
0

` E
0

`
t fsrdfstk + V 7 i«d−1gsr,rdgsrddr dr

= iE
0

±`

dtE
Csu0,tu→f0,̀ dd

kt fsRstdd,dmt,0sRdgsRs0ddlRstd1/2Rs0d1/2

3expF−E
0

t

siVsRssddRssd ± «RssdddsG . s1.6d

In particular, the resolvent kernelfstk+V7 i«d−1gsr ,rd is a distribution of order zero inR+3R+.
sii d The measuremt,0 is concentrated on the set of the continuous paths R: u0,tu→ f0,`d for

which there exists a finite partition: 0=t0+ t1+ ¯ + tn+1= t of the interval u0,tu such that for
th−1ŒsŒth, 1øhøn+1,

Rssd = Rs0de±fop=1
h−1s− 1dp−1stp−tp−1d+s− 1dh−1ss−th−1dg. s1.7d

Therefore each of these continuous paths Rs·d is, for some finite n, an n-vertex piecewise smooth
curve in radial space–time, starting from Rs0d at time0 and reaching Rstd at time t, and expo-
nentially growing or decreasing in each partioned short time interval.

We denote byG±sr ,rd the Green function for the radial Dirac operatortk+V to be given as the
limit of the integral kernel of the resolventstk+V7 i«d−1 as«→ +0, if this limit exists.

Theorem 1.2: For the same potential Vsrd as in Theorem 1.1, suppose that0 is not an
eigenvalue of the radial Dirac operatortk+V. Suppose that the Green function G±sr ,rd for the
radial Dirac operator tk+V in (1.1) exists. Then it is a distribution of order zero insr ,rdPR+

3R+, and admits a path integral representation: for every pair sf ,gdPC00
` sf0,`d ;C2d

3C00
` sf0,`d ;C2d,

sid
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E
0

` E
0

`
t fsrdG±sr,rdgsrddr dr = i lim

«→+0
E

0

±`

dtE
Csu0,tu→f0,̀ dd

ktfsRstdd,dmt,0sRdgsRs0ddl

3 Rstd1/2Rs0d1/2 expF−E
0

t

siVsRssddRssd ± «RssdddsG;

s1.8d

sii d

E
0

` E
0

`
t fsrdG±sr,rdgsrddr dr = i lim

«→+0
E

0

±`

dtE
Csu0,tu→f0,̀ dd

ktfsRstdd,dmt,0sRdgsRs0ddl

3 Rstd1/2Rs0d1/2 expF− iE
0

t

VsRssddRssdds7 «tG .

s1.9d

If we formally take the delta functions at the two pointsr .0 andr.0, respectively, forf and
g, the formulas1.8d/s1.9d looks like

G±sr,rd = iE
0

±`

dtE
Csu0,tu→f0,̀ dd,Rs0d=r,Rstd=r

r1/2r1/2 expF− iE
0

t

VsRssddRssddsGdmt,0sRd.

s1.10d

It should be emphasized that our path integral concerns the three-dimensional Dirac equation,
though in the spherical coordinates. For the Dirac equation in the one-dimensional space, i.e., the
whole real lineR, a path integral measure to represent the propagator was constructed first in
Ichinose s1982, 1984d, Ichinose and Tamuras1984d and then further studied in Ichinose and
Tamuras1987, 1988d and Ichinoses1993d. The problem was treated in Blanchardet al. s1985d
from a different point of view based on Poisson process, and there are further related works
Gaveaus1984d, Gaveauet al. s1984d, Combe, Sirugue, and Sirugue-Collins1987d, and Zastawniak
s1988d on the subject. The method used in the present paper is also connected with the Poisson
process, though we do not explicitly appeal to it. This paper is only to give the first step to
describe the idea, and application to some problem in quantum field theory will be discussed
elsewhere.

To prove the theorems, we investigate, in Sec. II, the Cauchy problems1.5d in theL` norm for
the relevant operator to our radial Dirac operator, and also show essential self-adjointness of both
the radial Dirac operators1.2ad ands1.2bd and its relevant operators1.4d. In Sec. III, we construct,
by means of the Riesz representation theorem, a countably additive path space measure associated
with the semigroup for the Cauchy problems1.5d, on a big space of paths living on the closed real
half-line over each finite time intervalf0,tg. Then it is shown that this measure is in fact concen-
trated on the set of continuous, piecewise smooth paths with a finite number of vertices in radial
space–time. In Sec. IV, we shall show, together with this measure constructed, a path integral
representation of Feynman–Kac type first for this semigroup associated withs1.5d and then
through the procedure mentioned for the resolvent kernel and the Green function for the radial
Dirac operator we are concerned with.

II. THE RADIAL DIRAC OPERATOR AND ITS RELEVANT OPERATOR

To construct our path measure, we need to investigate the Cauchy problemss1.1d for the radial
Dirac operatortk+V and s1.5d for its relevant operatorHsk,rVd=r1/2stk+Vdr1/2=Tk+rV in s1.4d.

For the potential Vsrd, it is assumed throughout this section that Vsrd is a real-valued function
in R+ such that Vsrd=V1srd+V2srd, where V1srd=e/ r with ueuøÎk2− 1

4 and V2srd is a function in
Lloc

2 sR+d which is bounded near r=0.
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We have so far taken for granted that the radial Dirac operatortk+V in s1.1d and its relevant
operatorHsk,rVd in s1.4d are essentially selfadjoint onC0

`sR+;C2d. We will confirm these facts
here. For some related results on the formertk+V, we refer also to Weidmanns1987d and Arnold,
Kalf, and Schneiders1997d. TheL2-norm in L2sR+;C2d is denoted byi ·i2.

First consider the radial Dirac operatortk+V in s1.1d. There exists a unique solution of the
Cauchy problems1.1d.

Proposition 2.1: The operatortk+V is essentially self-adjoint on C0
`sR+;C2d.

Proof: SetD1ªtk+V1, so thattk+V=D1+V2. It is known by Weidmanns1987d, D1 is essen-
tially self-adjoint onC0

`sR+;C2d. So we considerV2 is a perturbation fromD1. We are going to use
the method by Jörgenss1972, Theorem 5.6d. To show essential self-adjointness ofD1+V2, we
need to show the following conditions.

sid For eachwPC0
`sR+d, the commutatorfD1,wg=D1w−wD1 is a bounded operator on

L2sR+;C2d.
sii d For every nonempty bounded open intervalsr1,r2d#R+, there exist constantsa.0 and

0øb,1 such that

iV2viL2ssr1,r2d;C2d ø aivi2 + biD1vi2, v P C0
`sR+;C2d.

siii d Let xsrd be aC`-function in R+ with 0øxsrdø1 such thatxsrd=1, 0, r ø1 andxsrd
=0, r ù2. Setwnsrd=xsr /nd, so thatwnsrd converges to 1 pointwise asn→`. Then ifD1,wngv
+fV2,wngvi2 is bounded for everyvPDfsD1+V2d* g.

But these conditions can be checked as follows.
Indeed,sid is clear becausefD1,wg=−is2w8srd.
To seesii d, let sr1,r2d be a bounded open interval inR+. By assumption,V2srd is bounded for

r ø r0 for somer0.0. First suppose thatr1ù r0, so thatsr1,r2d# sr0,r2d, andV2 is in L2ssr0,r2dd
as well as inL2ssr1,r2dd. Then forvPC0

`sR+;C2d, we have by the Schwarz inequality

iV2viL2ssr1,r2d;C2d ø iV2viL2ssr0,r2d;C2d ø iV2iL2ssr0,r2dd sup
r0ørør2

uvsrdu.

On the other hand, for every«.0 there exists a constantCs«d.0 such that

sup
r0ørør2

uvsrdu ø «iv8iL2ssr0,`d;C2d + Cs«diviL2ssr0,r2d;C2d.

Moreover we have withs1.2bd,

iv8iL2ssr0,`d;C2d = I− is2
]

]r
vI

L2ssr0,`d;C2d

= IFtk + Ss1
k

r
− ms3DGvI

L2ssr0,`d;C2d

= IFD1 + Ss1
k

r
− ms3D − V1GvI

L2ssr0,`d;C2d

ø iD1viL2ssr0,`d;C2d + ISs1
k

r
− ms3DvI

L2ssr0,`d;C2d

+ iV1viL2ssr0,`d;C2d ø iD1vi2 + Sm+
uku + ueu

r0
Divi2.

It follows that
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iV2viL2ssr1,r2d;C2d ø «iV2iL2ssr0,r2ddiD1vi2 + F«Sm+
uku + ueu

r0
D + Cs«dGiV2iL2ssr0,r2ddivi2.

So choose« so small that

b¬ «iV2iL2ssr0,r2dd , 1

and then set

aª F«Sm+
uku + ueu

r0
D + Cs«dGiV2iL2ssr0,r2dd

to get sii d. Next supposer1ø r0, so thatsr1,r2d=sr1,r0gø sr0,r2d, thoughsr0,r2d is empty if r0

ù r2. We need to seesii d on sr1,r0g, since we can see similarly to the above onsr0,r2d. On the
interval sr1,r0g, we haveiV2viL2ssr1,r2d;C2døsupr1ørør2

uV2srduivi2. Thus in either case we have
shownsii d.

siii d holds becausefV2,wng=0 and

ifD1,wngvi2 = i− is2wn8vi2 ø
1

n
sup

1ørø2
ux8srduivi2

for everyvPL2sR+;C2d. This proves Proposition 2.1.
Next, consider the Cauchy problem fors1.5d with Tk in s1.3d andVsrd;0,

]

]t
usr,td = − iTkusr,td = F− s2Sr

]

]r
+

1

2
D + isks1 − mrs3dGusr,td, usr,0d = gsrd, s2.1d

where the initial datag= tsg1,g2d is a C2-valued continuous function inf0,`d with compact
support. This equation is a hyperbolic system with local propagation speedcsrd=r. We can easily
show that the solutionus· ,td satisfies for everytPR,

ius·,tdi2 = igi2. s2.2d

Moreover, this Cauchy problem isL` well-posed with the estimate to be given below. It is this
fact that plays a crucial role in this paper.

To describe it, set

Nª

1
Î2

S1 i

i 1
D =

1
Î2

ss0 + is1d,

wheres0 is the 232-identity matrix.N is a unitary matrix such thatNs2N
−1=−s3. Note also that

Ns1N
−1=s1 andNs3N

−1=s2. Then there exists a unique solutionusr ,td of s2.1d, which is given as
the solution of the integral equation

usr,td = se−itTk0gdsr,td − iE
0

t

se−ist−sdTk0sTk1uds·,sddsrdds. s2.3d

Solving the equations2.3d, we shall show the following proposition.
Proposition 2.2: If g= tsg1,g2d is a C2-valued continuous function inf0,`d with compact

support, e.g., support in a bounded closed intervalf0,Sg for S.0, then the solution us· ,td has
support in the bounded intervalfe−utu inf suppg,eutu sup suppgg, and satisfies

iNus·,tdi` = iexpf− itTkgNgi` ø eutusmSeutu+uku+1/2diNgi`. s2.4d

Proof: We may assume thatt.0. With s1.3d in mind, set for notational simplicity
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Aª − iNTk0N
−1 = s3r

1/2S ]

]r
Dr1/2,

Bª − iNTk1N
−1 = iks1 + s− imrds2 ¬ B1 + B2, s2.5d

Cª − iNTkN
−1 = s3r

1/2S ]

]r
Dr1/2 + siks1 − imrs2d = A + B.

Here and in the following, keep in mind thatB2 and henceB are matrices dependent on the
variabler.

Then we haveNusr ,td=setCNgdsrd, ands2.3d becomes

etC = etA +E
0

t

est−sdABesC ds, s2.6d

these operators being applied toNg. Then for the first term on the right-hand side ofs2.6d, it is
easy to see that, for aC2-valued continuousf = tsf1, f2d on f0,`d with support in the bounded
closed intervalf0,Sg,

setAfdsrd = Est/2dS f1sretd
f2sre−td

D, Estd = Set 0

0 e−t D , s2.7d

so thatetAf has support inf0,etSg. We shall have withf =Ng

ietANgi` ø et/2iNgi`,

ietCNgi` ø etsmSet+uku+1/2diNgi`, s2.8d

if g is continuous inf0,`d and has support in the bounded closed intervalf0,Sg for S.0.
We have only to prove the latter ofs2.8d, which amounts to the same thing ass2.4d. It will be

seen from the integral equations2.6d for etC. Iteration of the equations2.6d yields the Dyson series
expansion

etC = etA + o
n=1

` E
0

t

dtnE
0

tn

dtn−1¯ E
0

t2

est−tndABestn−tn−1dAB¯ Bet1A dt1. s2.9d

We shall see below that this expansion, if applied to aC2-valued bounded continuous functionf
with support in the bounded intervalf0,Sg, is convegent in theL` norm.

We want to rewrite the integrand of the aboven-ple integral ins2.9d.
First we observe that, since the Pauli matricess1, s2, ands3 anticommute with one another,

namely,s jsk+sks j =2d jk for j ,k=1,2,3, wehave withEstd in s2.7d,

etAB1 = B1e
−tA, etAB2 = B2Es− tde−tA. s2.10d

It follows that

etAB = etAsB1 + B2d = fB1 + B2Es− tdge−tA. s2.11d

Here we shows2.10d. The first equation is seen becauseetAs1=s1e
−tA. The second one is

because bys2.7d,
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setAB2fdsrd = − imsetAsrs2fddsrd

= − ims2se−tAsrfddsrd

= − imE
0

` Se−t/2dsr − re−td 0

0 et/2dsr − retd
DrS f1srd

f2srd
Ddr

= − imrs2Se−3t/2f1sre−td
e3t/2f2sretd

D = FB2Se−t 0

0 et De−tAfGsrd = fB2Es− tde−tAfgsrd.

To treat the integrand of then-ple integral on the right-hand side ofs2.9d, we setDtj = tj

− tj−1 with tn+1= t and t0=0. Then we have

eDtn+1ABeDtnAB¯ BeDt1A = fB1 + B2Es− Dtn+1dge−Dtn+1AeDtnAB¯ BeDt1A

= fB1 + B2Es− Dtn+1dge−sDtn+1−DtndAB¯ BeDt1A

= fB1 + B2Es− Dtn+1dgfB1 + B2EsDtn+1 − DtndgesDtn+1−Dtn+Dtn−1dAB¯ BeDt1A

= p
←

p=2

n+1

FB1 + B2ESs− 1dpo
q=p

n+1

s− 1dq−1DtqDGeoh=1
n+1s− 1dh−1DthA, s2.12d

wherepQ p=2
n+1Mp=Mn+1Mn¯M2. Hence the expansions2.9d becomes

etC = etA + o
n=1

` E
0

t

dtnE
0

tn

dtn−1¯ E
0

t2

dt1 3 p
←

p=2

n+1

FB1 + B2ESs− 1dpo
q=p

n+1

s− 1dq−1DtqDG
3expFSo

h=1

n+1

s− 1dh−1DthDAG¬ o
n=0

`

Cnstd. s2.13d

For Cnstd in the expansions2.13d we have the following lemma.
Lemma 2.3:sid The integral kernel Cnstdsr ,rd of Cnstd has support on the set ofsr ,rd

P f0,`d3 f0,`d with r=re±foh=1
n+1s−1dh−1Dthg.

sii d If f srd= tsf1srd , f2srdd is continuous inf0, `d and has support inf0,Sg, each Cnstdf has
support in the bounded intervalfe−utu inf suppf ,eutu sup suppfg. It holds that

iCnstdfi` ø
smSeutu + ukudn

n!
utuneutu/2ifi`. s2.14d

Proof of Lemma 2.3:We may assume thatt.0. Note bys2.7d that the integral kernel ofetA is
given by

etAsr,rd = Set/2dsr − retd 0

0 e−t/2dsr − re−td
D = Est/2dSdsr − retd 0

0 dsr − re−td
D , s2.15d

so that the integral kernel ofe−itTk0;N−1etAN becomes

K0st;r,rd = N−1Set/2dsr − retd 0

0 e−t/2dsr − re−td
DN = N−1Est/2dSdsr − retd 0

0 dsr − re−td
DN.

s2.16d

By s2.15d with the expression ofCnstd in s2.13d, we have the assertionsid and the first half ofsii d,
becauseuoh=1

n+1s−1dh−1Dthuøoh=1
n+1sth− th−1d= t.

Now we show the second half ofsii d. We can show fornù1,
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iCnstdfi` ø E
0

t

dtnE
0

tn

dtn−1¯ E
0

t2

dt1Ip
←

p=2

n+1

FB1 + B2ESs− 1dpo
q=p

n+1

s− 1dq−1DtqDG
3expFSo

h=1

n+1

s− 1dh−1DthDAG fI
`

=E
0

t

dtnE
0

tn

dtn−1¯ E
0

t2

dt1sup
r.0
Ip

←

p=2

n+1

FB1 + B2srdESs− 1dpo
q=p

n+1

s− 1dq−1DtqDG
3ES1

2o
h=1

n+1

s− 1dh−1DthDS f1sreoh=1
n+1s− 1dh−1Dthd

f2sre−oh=1
n+1s− 1dh−1Dthd

DI
,`

ø
smSet + ukudn

n!
tnet/2ifi`.

s2.17d

Here the,`-norm of a vectorz= tsz1,z2dPC2 is denoted byizi,`=maxhuz1u , uz2uj, and we have used

Ip
←

p=2

n+1

FB1 + B2ESs− 1dpo
q=p

n+1

s− 1dq−1DtqDGI ø suku + mretdn, s2.18d

anduoh=1
n+1s−1dh−1Dthuø t andiB1+B2Ess−1dpoq=p

n+1s−1dq−1Dtqdiø uku+mret. This provess2.14d, end-
ing the proof of Lemma 2.3.

Now we are in a position to finish the proof of Proposition 2.2. By Lemma 2.3,s2.14d, we can
conclude the expansions2.9d or s2.13d is convergent inL` norm, which yields the latter half of
s2.8d or the estimates2.4d, as well as the support property of the solutionus· ,td. This completes the
proof of Proposition 2.2.

Proposition 2.4: Let Wsrd=rVsrd with Vsrd as in Proposition 2.1. Then the operator
Hsk,Wd=Tk+Wsrd in s1.4d (as well as Tk alone) is essentially self-adjoint on C0

`sR+;C2d.
Proof: We use the method of “invariance of domain” by Chernoffs1973, 1977d.
In order to make the notations clearer, inside this proof, we denote the closure of the sym-

metric operatorHsk,Wd with domain C0
`sR+;C2d by H̃sk,Wd. H̃sk,Wd is also symmetric, and

evidently its domainDfH̃sk,Wdg includes the spaceC0
`sR+;C2d.

To show thatHsk,Wd is essentially selfadjoint onC0
`sR+;C2d or its closureH̃sk,Wd is self-

adjoint, we need to prove that iffPDfHsk,Wd* g satisfiesHsk,Wd* f= ± if, thenf=0. Consider
the caseHsk,Wd* f=−if. This means thatf is in L2sR+;C2d and, in view ofs1.3d, as a distri-
bution

0 = Hsk,Wd * f + if = − is2Sr
]

]r
+

1

2
Df + Tk1f + Wsrdf + if.

Let D be the subspace of the members ofDfH̃sk,Wdg with compact support inR+, so that

C0
`sR+;C2d#D. Take anyg in D and consider the Cauchy problem forH̃sk,Wd,

]

]t
usr,td = − iH̃sk,Wdusr,td, usr,0d = gsrd. s2.19d

Taken into account thatH̃sk,Wd#Hsk,Wd* = H̃sk,Wd*, this means in view ofs1.2bd ands1.3d that

the solutionusr ,td in DfH̃sk,Wdg and so inL2sR+;C2d satisfies, as a distribution, the differential
equation
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]

]t
usr,td = − iF− is2Sr

]

]r
+

1

2
D + s− ks1 + mrs3d + WsrdDusr,td.

Then by the analogous arguments used to prove Lemma 2.3, we can see that there exists a unique
solutionus· ,td of s2.19d, which belongs to the spaceD. In the same reason as we saws2.2d, we
also haveius· ,tdi2=igi2 in L2-norm.

SetFstd=sf ,us· ,tdd. ThenFstd is bounded intPR, because

uFstdu ø ifi2ius·,tdi2 = ifi2igi2.

SinceHsk,Wd* = H̃sk,Wd*, we find by differentiating int,

F8std = sf,− iH̃sk,Wdus·,tdd = sHsk,Wd * f,− ius·,tdd = sf,us·,tdd = Fstd.

It follows thatFstd=Fs0det. SinceFstd is bounded, we must haveFs0d=0, that is,sf ,gd=0. Since
D is dense, we can conclude thatf=0. A similar argument can be made for the case
Hsk,Wd* f= if. This proves Proposition 2.4.

III. CONSTRUCTION OF THE PATH SPACE MEASURE

We consider only the caset.0; the caset,0 will be treated similarly. We want to construct
our path space measuremt,0 on the space of the one-dimensional continuous pathsR: f0,tg
→ f0,`d living on the closed half-linef0,`d=R+, by modifying the method Nelsons1964d used to
construct the Wiener measure. The argument will go analogously with that employed in Ichinose
and Tamuras1987, 1988d, in particular, in Ichinoses1993d for the Dirac equation in one-
dimensional spaceR.

We write the integral kernel of the unitary groupe−itTk;N−1etCN with generators1.3d or s2.5d
asKst ; r ,rdªe−itTksr ,rd.

Though in this paper we have meantR+=s0,`d, the open real half-line, we will denote by

Ṙ+=f0,`dø h`j the one-point compactification of the closed half-linef0, `d. For each fixedt

.0 let Rt,0=pf0,tgṘ+=sṘ+df0,tg be the uncountably many copies ofṘ+. By the Tychonoff theorem
Rt,0 is a compact Hausdorff space in the product topology. It may be regarded as the space of all

pathsR: f0,tg→ Ṙ+, possibly discontinuous and possibly passing through zero and/or the infinity
`. Let CsRt,0d be the Banach space of the complex-valued continuous functions onRt,0 with the
maximum normi·i, andCfinsRt,0d the subspace of thoseC in CsRt,0d for which there exist a finite
partition of the intervalf0,tg,

0 = s0 , s1 , ¯ , s, = t, s3.1d

and a complex-valued bounded continuous functionFsx0,x1, . . . ,x,d on sṘ+d,+1 such that

CsRd = FsRss0d,Rss1d, . . . ,Rss,dd. s3.2d

Define, for each fixedt.0, a functionalLt,0sC ; f ,gd which is linear inCPCfinsRt,0d and
sesquilinear insf ,gdPC00

` sf0,`d ;C2d3C00
` sf0,`d ;C2d, f = tsf1, f2d ,g= tsg1,g2d, by

Lt,0sC; f,gd =E
0

`

dr,E
0

`

dr,−1¯ E
0

`

dr0
t fsr,dKss, − s,−1;r,,r,−1d

3Kss,−1 − s,−2;r,−1,r,−2d ¯ Kss1 − s0;r1,r0dFsr0,r1, ... ,r,dgsr0d. s3.3d

The integral on the right-hand side of this equation is equal to

022103-10 T. Ichinose J. Math. Phys. 46, 022103 ~2005!

                                                                                                                                    



E
0

`

dr,E
0

`

dr,−1¯ E
0

`

dr0
tNfsr,dsNKss, − s,−1;r,,r,−1dN−1d

3sNKss,−1 − s,−2;r,−1,r,−2dN−1d ¯ sNKss1 − s0;r1,r0dN−1d

3Fsr0,r1, ... ,r,dNgsr0d.

Therefores3.3d can also be written by definition ofetC as

Lt,0sC; f,gd =E
0

` E
0

`
tNfsr,deDs,CeDs,−1C

¯ eDs1CFsr0, . . . ,r,−1,r,dNgsr0ddr, dr0,

s3.4d
Dsj = sj − sj−1, 1 ø j ø ,,

whereeDsjC is a linear operator with kernelNKssj −sj−1; r j ,r j−1dN−1 transforming functions ofr j−1

to functions ofr j. SubstitutingetC in s2.13d with t replaced byDsj into s3.4d, we get

Lt,0sC; f,gd = o
n=0

`

o
n1+¯+n,=n

E
0

` E
0

`
tNfsr,dCn,

sDs,d ¯ Cn2
sDs2dCn1

sDs1d

3 fFsr0,r1, . . . ,r,dNgsr0dgdr, dr0 ¬ o
n=0

`

Lt,0
n sC; f,gd. s3.5d

To construct the measuremt,0 on Rt,0, the following lemma is of crucial importance.
Lemma 3.1:sid For each t.0, Lt,0sC ; f ,gd and Lt,0

n sC ; f ,gd are independent of the choice of
F corresponding toCPCfinsRt,0d.

sii d If one of f and g in C00
` sf0,`d ;C2d has support in the bounded intervalf0,Sg, then the

following inequalities hold:

uLt,0sC; f,gdu ø iNi1iNi`etsmSet+uku+1/2diCiifi1igi`, s3.6d

uLt,0
n sC; f,gdu ø iNi1iNi`

smSet + ukudn

n!
tnet/2iCiifi1igi`, s3.7d

for all n=0,1,2. . ..Here iNi1 and iNi` are the norms of the unitary matrix N, respectively, as a
linear operator onC2 with ,1-norm and,`-norm, which are less than or equal toÎ2.

Proof: The first assertionsid is due to the semigroup property ofe−itTk or etC. The proof of the
second onesii d will make use of the inequality forCnj

sDsjd to be obtained froms2.14d with nj, Dsj

in place ofn, t to get

uLt,0
n sC; f,gdu ø o

n1+¯+n,=n
p
p=1

, F smSeDsp + ukudnp

np!
sDspdnpeDsp/2GiFi`iNfi1iNgi`

ø smSet + ukudn

So
p=1

,

DspDn

n!
es1/2doq=1

, DsqiFi`iNfi1iNgi`

=
smSet + ukudn

n!
tnet/2iCiiNfi1iNgi`.

Here we have used that for 1ø j ø,, Dsj øop=1
, Dsp= t, and that
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o
n1+¯+n,=n

sDs1dn1sDs2dn2
¯ sDs,dn,

n1!n2! ¯ n,!
=

So
p=1

,

DspDn

n!
=

tn

n!
.

Since iNfi1ø iNi1ifi1 and iNgi`ø iNi`igi`, this yields s3.7d. Hence by summing up, we also
obtain s3.6d from s3.5d. This proves Lemma 3.1.

A consequence of this lemma is the following. SinceCfinsRt,0d is dense inCsRt,0d by the
Stone–Weierstrass theorem, the inequalitiess3.6d ands3.7d are also valid for allCPCsRt,0d. This
means that for each fixed pairsf ,gd, Lt,0s· ; f ,gd and Lt,0

n s· ; f ,gd are complex-valued continuous
linear functional onCsRt,0d. By the Riesz representation theorem, there exist complex-valued
regular Borel measuresmt,0;f,g and mt,0;f,g

n on Rt,0 for all n=0,1,2, . . ., such that for allC
PCsRt,0d,

Lt,0sC; f,gd =E
Rt,0

dmt,0;f,gsRdCsRd, s3.8d

Lt,0
n sC; f,gd =E

Rt,0

dmt,0;f,g
n sRdCsRd. s3.9d

Hence, since the left-hand sides ofs3.8d ands3.9d are continuous sesquilinear forms insf ,gd
in the product spaceC00

` sf0,`d ;C2d3C00
` sf0,`d ;C2d, we can also see, withM2sCd being the set

of all 232-matrices, that there exist 232-matrix distribution-valued, precisely,
C00

` sf0,`d2;M2sCdd8-valued, regular Borel measuresmt,0s·d andmt,0
n s·d on Rt,0 such that for every

pair sf ,gdPC00
` sf0,`d ;C2d3C00

` sf0,`d ;C2d,

kt f̄,mt,0s·dgl = mt,0;f,gs·d, s3.10d

kt f̄,mt,0
n s·dgl = mt,0;f,g

n s·d. s3.11d

Here we note that we have

C00
` sf0,`d2;M2sCdd = C00

` sf0,`d;C2d^̂ C00
` sf0,`d;C2d,

and the space of the continuous sesquilinear forms on the product spaceC00
` sf0,`d ;C2d

3C00
` sf0,`d ;C2d coincides with the dual space

C00
` sf0,`d2;M2sCdd8 = C00

` sf0,`d;C2d8^̂ C00
` sf0,`d;C2d8.

Here the tensor products on the right-hand side are completed in thep- or «-tensor product
topology, becauseC00

` sf0,`d ;C2d andC00
` sf0,`d ;C2d8 are nuclear spaces, since they are subspaces

of the nuclear spacesC0
`sR ;C2d and D8sR ;C2d, respectivelyfe.g., Pietschs1970, Chaps. 5, 6d,

Trèvess1967, Chap. 50dg.
It follows from the expansions3.5d that

mt,0;f,gs·d = o
n=0

`

mt,0;f,g
n s·d s3.12d

in the sense of the expansion of the measure or

mt,0s·d = o
n=0

`

mt,0
n s·d s3.13d

in the sense of the expansion of the 232-matrix distribution-valued measure.
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Finally we shall observe on which set of the paths the measuresmt,0 andmt,0
n are concentrated.

Lemma 3.2: For each n=0,1,2, . . .,the measuremt,0
n is concentrated on the set of the con-

tinuous, exactly n-vertex piecewise smooth paths R: f0,tg→ f0,`d, in fact, with each of their
segments being a particular smooth curve such that for an n-partition: 0=t0, t1, ¯ , tn+1= t of
the intervalf0,tg and for th−1øsø th, 1øhøn+1,

Rssd = Rs0de±fop=1
h−1s− 1dp−1stp−tp−1d+s− 1dh−1ss−th−1dg.

Therefore in each n-partitioned short intervalstp−1,tpd each segement is exponentially growing or
decreasing.

Consequently, the measuremt,0 is concentrated on the union of these sets of paths on which
the mt,0

n are concentrated.
Proof: This basically follows from the very expressions2.15d and s2.16d that the integral

kernel ofetA or e−itTk0 has. Inspecting through the expression ofCnj
sDsjd in s2.13d with nj, Dsj in

place ofn, t what is the support of the integral kernel ofCnj
sDsjd, we shall be able to see through

Lt,0
n sC ; f ,gd andLt,0sC ; f ,gd in s3.5d the statement of this lemma.

We will sketch how it goes. We must investigate what the product operator

Cn,
sDs,d ¯ Cn2

sDs2dCn1
sDs1d

in the integrand in the second member ofs3.5d is. This operator corresponds to the partitions3.1d
of the intervalf0,tg. Each factorCnj

sDsjd, 1ø j ø,, is, as seen from thenth term the expansion
s2.9d/s2.13d, annj-ple integral withnj, Dsj in place ofn, t, and withnj integration variablestj ,q sin
place oftqd, moving in thenj-plex,

sj−1 ; tj ,0 ø tj ,1 ø ¯ ø tj ,nj
ø tj ,nj+1 ; sj . s3.14d

Then we have froms2.13d, with Dtj ,qª tj ,q− tj ,q−1, 1øqønj +1,

Cn,
sDs,d ¯ Cn2

sDs2dCn1
sDs1d

=E
s,−1

s, E
s,−1

t,,n,

¯ E
s,−1

t,,2

dt,,n,
dt,,n,−1 ¯ dt,,1E

s,−2

s,−1E
s,−2

t,−1,n,−1−1

¯

3E
s,−2

t,−1,2

dt,−1,n,−1
dt,−1,n,−1−1 ¯ dt,−1,1¯ 3 E

s1

s2E
s1

t2,n2

¯

3E
s1

t2,2

dt2,n2
dt2,n2−1 ¯ dt2,1E

s0

s1E
s0

t1,n1

¯ E
s0

t2,2

dt1,n1
dt1,n1−1 ¯ dt1,1

3p
←

p,=2

n,+1

FB1 + B2ESs− 1dp, o
q=p,

n,+1

s− 1dq−1Dt,,qDGexpFS o
h=1

n,+1

s− 1dh−1Dt,,hDAG
3 p

←

p,−1=2

n,−1+1

FB1 + B2ESs− 1dp,−1 o
q=p,−1

n,−1+1

s− 1dq−1Dt,−1,qDGexpFS o
h=1

n,−1+1

s− 1dh−1Dt,−1,hDAG 3 ¯

3p
←

p2=2

n2+1

FB1 + B2ESs− 1dp2 o
q=p2

n2+1

s− 1dq−1Dt2,qDGexpFS o
h=1

n2+1

s− 1dh−1Dt2,hDAG
3p

←

p1=2

n1+1

FB1 + B2ESs− 1dp1 o
q=p1

n1+1

s− 1dq−1Dt1,qDGexpFS o
h=1

n1+1

s− 1dh−1Dt1,hDAG . s3.15d
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Here note that this integrals3.15d is a justn-ple integral withn=n1+¯ +n,, and there are no
integrations in the variables

s,−1 ; t,,0 ; t,−1,n,−1+1, s,−2 ; t,−1,0; t,−2,n,−2+1, . . . ,s1 ; t1,0 ; t0,n1+1.

Applying the formulas2.11d to the first product of the integrand on the right-hand side of this
equations3.15d, we see the integrand on the right-hand side ofs3.15d is equal to

p
←

p,=2

n,+1

FB1 + B2ESs− 1dp, o
q=p,

n,+1

s− 1dq−1Dt,,qDG p
←

p,−1=2

n,−1+1

FB1 + B2E

3Ss− 1dn,−1+2−p,−1 o
h=1

n,+1

s− 1dh−1Dt,,h + s− 1dp,−1 o
q=p,−1

n,−1+1

s− 1dq−1Dt,−1,qDG
3expFSs− 1dn,−1 o

h=1

n,+1

s− 1dh−1Dt,,h + o
h=1

n,−1+1

s− 1dh−1Dt,−1,hDAG 3 ¯

3p
←

p2=2

n2+1

FB1 + B2ESs− 1dp2 o
q=p2

n2+1

s− 1dq−1Dt2,qDGexpFS o
h=1

n2+1

s− 1dh−1Dt2,hDAG
3p

←

p1=2

n1+1

FB1 + B2ESs− 1dp1 o
q=p1

n1+1

s− 1dq−1Dt1,qDGexpFS o
h=1

n1+1

s− 1dh−1Dt1,hDAG .

Then by repeated use ofs2.11d we reach

Cn,
sDs,d ¯ Cn2

sDs2dCn1
sDs1d

=E
s,−1

s, E
s,−1

t,,n,

¯ E
s,−1

t,,2 E
s,−2

s,−1E
s,−2

t,−1,n,−1−1

¯ E
s,−2

t,−1,2

3 ¯ 3 E
s1

s2E
s1

t2,n2

¯ E
s1

t2,2E
s0

s1E
s0

t1,n1

¯

3E
s0

t1,2

dt,,n,
dt,,n,−1 ¯ dt,,1 dt,−1,n,−1

dt,−1,n,−1−1 ¯ dt,−1,13 ¯ 3 dt2,n2
dt2,n2−1 ¯

3dt2,1 dt1,n1
dt1,n1−1 ¯ dt1,1Bst;n1,n2, . . . ,n,d

3expFSs− 1dn1+n2+¯+n,−1 o
h=1

n,+1

s− 1dh−1Dt,,h + s− 1dn1+n2+¯+n,−2

3 o
h=1

n,−1+1

s− 1dh−1Dt,−1,h + ¯ + s− 1dn1+n2 o
h=1

n3+1

s− 1dh−1Dt3,h + s− 1dn1

3 o
h=1

n2+1

s− 1dh−1Dt2,h + o
h=1

n1+1

s− 1dh−1Dt1,hDAG , s3.16d

where

022103-14 T. Ichinose J. Math. Phys. 46, 022103 ~2005!

                                                                                                                                    



Bst;n1,n2, . . . ,n,d

= p
←

p,=2

n,+1

FB1 + B2ESs− 1dp, o
q=p,

n,+1

s− 1dq−1Dt,,qDG
3 p

←

p,−1=2

n,−1+1

FB1 + B2ESs− 1dn,−1+2−p,−1 o
h=1

n,+1

s− 1dh−1Dt,,h + s− 1dp,−1 o
q=p,−1

n,−1+1

s− 1dq−1Dt,−1,qDG
3 p

←

p,−2=2

n,−2+1

FB1 + B2ESs− 1dn,−2+2−p,−2+n,−1 o
h=1

n,+1

s− 1dh−1Dt,,h + s− 1dn,−2+2−p,−2

3 o
h=1

n,−1+1

s− 1dh−1Dt,−1,h + s− 1dp,−2 o
q=p,−2

n,−1+1

s− 1dq−1Dt,−2,qDG 3 ¯

3p
←

p1=2

n1+1

FB1 + B2ESs− 1dn1+2−p1+n2+¯+n,−1 o
h=1

n,+1

s− 1dh−1Dt,,h + s− 1dn1+2−p1+n2+¯+n,−2

3 o
h=1

n,−1+1

s− 1dh−1Dt,−1,h + ¯ + s− 1dn1+2−p1+n2 o
h=1

n3+1

s− 1dh−1Dt3,h + s− 1dn1+2−p1

3 o
h=1

n2+1

s− 1dh−1Dt2,h + s− 1dp1 o
q=p1

n1+1

s− 1dq−1Dt1,qDG . s3.17d

In the exponential power of the second factor on the right-hand side ofs3.16d above, observe
the neighboring summations to find the first term in each summation and the last term in its next
summation have the same sign, so that for eachj with 1ø j ø,,

s− 1dn1+¯+nj−1Dtj ,1 + s− 1dn1+¯+nj−2s− 1dnj−1Dtj−1,nj−1+1

= s− 1dn1+¯+nj−1sDtj ,1 + Dtj−1,nj−1+1d

= s− 1dn1+¯+nj−1sstj ,1 − tj ,0d + stj−1,nj−1+1 − tj−1,nj−1
dd

= s− 1dn1+¯+nj−1stj ,1 − tj−1,nj−1
d,

becausetj ,0= tj−1,nj−1+1=sj. The same is true for the neighboring summations in the variables of the
matrix Es·d on the right-hand side ofs3.17d. We see by the partitions3.1d with s3.14d the n=n1

+¯ +n, integration variables move in the set of, nj-pleces:

Dss1,s2, . . . ,s,d: 0 ; s0 ; t1,0 ø t1,1 ø t1,2 ø ¯ ø t1,n1
ø t1,n1+1 ; s1 ; t2,0 ø t2,1 ø t2,2

ø ¯ ø t2,n2
ø t2,n2+1 ; s2 ; t3,0 ø t3,1 ø ¯ ø t,−1,n,−1

, t,−1,n,−1+1 ; s,−1

; t,,0 ø t,,1 ø t,,2 ø ¯ ø t,,n,
ø t,,n,+1 ; s, ; t. s3.18d
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So, we change then integration variableshtj ,q;1øqønj ,1ø j ø,j to ht1,t2, . . . ,tnj, namely, set
0øhøn1+n2+¯ +n,+1=n+1,

th =5
t1,0= s0 = 0, h = 0,

t1,h, 1 ø h ø n1,

t2,h−n1
, n1 + 1 ø h ø n1 + n2,

t3,h−sn1+n2d, n1 + n2 + 1 ø h ø n1 + n2 + n3,

... ,

tj ,h−sn1+n2+¯+nj−1d, n1 + n2 + ¯ + nj−1 + 1 ø h ø n1 + n2 + ¯ + nj ,

... ,

t,−1,h−sn1+n2+¯+n,−2d, n1 + n2 + ¯ + n,−2 + 1 ø h ø n1 + n2 + ¯ + n,−1,

t,,h−sn1+n2+¯+n,−1d, n1 + n2 + ¯ + n,−1 + 1 ø h ø n1 + n2 + ¯ + n,,

t,,n,+1 = s, = t, h = n1 + n2 + ¯ + n, + 1 =n + 1.

6 s3.19d

Then we see froms3.18d the new integration variablest1,t2, ... ,tn move in the set

Dss1,s2, . . . ,s,d: 0 ; s0 ; t0 ø t1 ø t2 ø ¯ ø tn1
ø s1 ø tn1+1 ø ¯ ø tn1+n2

ø s2 ø tn1+n2+1

ø ¯ ø tn1+¯+n,−1
ø s,−1 ø tn1+¯+n,−1+1 ø ¯ ø tn ø s, ; t. s3.20d

Thus

Cn,
sDs,d ¯ Cn2

sDs2dCn1
sDs1d =E ¯ E

Dss1,s2,. . .,s,d
dtn dtn−1 ¯ dt2 dt1

3 Bst;n1,n2, . . . ,n,dexpFSo
h=1

n+1

s− 1dh−1sth − th−1dDAG ,

s3.21d

wheres3.17d turns out to be, withDthª th− th−1,

Bst;n1,n2, . . . ,n,d = p
←

p,=2

n,+1

FB1 + B2ESs− 1dn1+¯+n,−1+p, o
h=n1+¯+n,−1+p,

n+1

s− 1dh−1DthDG
3 p

←

p,−1=2

n,−1+1

FB1 + B2ESs− 1dn1+¯+n,−2+p,−1 o
h=n1+¯+n,−2+p,−1

n+1

s− 1dh−1DthDG
3 p

←

p,−2=2

n,−2+1

FB1 + B2ESs− 1dn1+¯+n,−3+p,−2 o
h=n1+¯+n,−3+p,−2

n+1

s− 1dh−1DthDG 3 ¯

3p
←

p1=2

n1+1

FB1 + B2ESs− 1dp1 o
h=p1

n+1

s− 1dh−1DthDG . s3.22d

We can see by this expressions3.21d with s3.22d through s3.5d that the measuremt,0
n is

concentrated on those paths mentioned in the statement of Lemma 3.2. This ends the proof of this
lemma.
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IV. PATH INTEGRAL REPRESENTATION

We first establish the path integral representation to the solutionusr ,td of the Cauchy problem
s1.5d for the operatorHsk,rVd in s1.4d, and next give the proof of Theorems 1.1 and 1.2.

We begin with showing the following path integral representation of Feynman–Kac type for
the semigroupe−itHsk,rVd.

Theorem 4.1:For e−itHsk,rVd it holds that

sf,e−itHsk,rVdgd =E
Csf0,tg→f0,̀ dd

kt fsRstdd,dmt,0sRdgsRs0ddlexpF− iE
0

t

VsRssddRssddsG . s4.1d

Proof: For s.0, define a linear operator Ussd by

sUssdgdsrd = se−isTke−isWgdsrd =E
0

`

Kss;r,rde−isVsrdrgsrddr s4.2d

with Wsrd=Vsrdr for gPC00
` sf0,`d ;C2d; recall Kss; r ,rd is the integral kernel of the semigroup

e−isTk;N−1esCN for Tk in s1.3d. Ussd is a contraction operator onL2sR+;C2d becausee−isTk is a
unitary operator, and also bounded inL` operator norm because ofs2.4d/s2.8d.

Let n be an arbitrary positive integer and setth−1=sh−1dt /n, h=1,2, ... ,n+1. Then we find,
with rn=r

s4.3d

Then the left-hand side converges, by the Trotter product formulafe.g., Reed and Simons1980dg,
to e−itHsk,rVdg in L2sR+;C2d, since we have seen in Proposition 2.4 thatHsk,rVd=Tk+rV is essen-
tially self-adjoint. For the right-hand side, we find bys3.3d and s3.8d that taking the sesquilinear
inner product ofs4.3d with f PC00

` sf0,`d ;C2d yields

sf,Ust/ndngd =E
Csf0,tg→f0,̀ dd

kt fsRstdd,dmt,0sRdgsRs0ddlexpF− io
h=1

n

VsRsth−1ddRsth−1dst/ndG ,

s4.4d

the right-hand side of which converges by the Lebesgue bounded convergence theorem, asn
→`, to

E
Csf0,tg→f0,̀ dd

kt fsRstdd,dmt,0sRdgsRs0ddlexpF− iE
0

t

VsRssddRssddsG .

Thus we have shown Theorem 4.1.
Now, we prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1:In Theorem 4.1, considering, instead ofe−itHsh,rVd, e−itsHsk,rVd−lrd, where

l= ± i« with « being a nonzero real number, so thatl is not in the spectrum of the operatortk

+V, we can get by Theorem 4.1 the expressions4.1d corresponding to this case. Then taking into
account the relation between the radial Dirac operatortk+Vsrd concerned andHsk,rVd in s1.4d,
we have only to take the Laplace transform of both sides to gets1.6d in Theorem 1.1.

Proof of Theorem 1.2:The casesid, s1.8d, is an immediate consequence of Theorem 1.1. As for
the casesii d, multiply both sides of Eq.s4.1d by e7«t with the same« as above. Then we find the
expression fore−itHsk,rVd7«t. Note thatHsk,rVd has also a real spectrum, since by Proposition 2.4,
it is a self-adjoint operator. Then taking the Laplace transform and letting«→0, we have the
formula s1.9d.

This completes the proof of the main theorems in Sec. I.
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A simple and efficient variational method is introduced to accelerate the conver-
gence of the eigenenergy computations for a HamiltonianH with singular poten-
tials. Closed-form analytic expressions inN dimensions are obtained for the matrix
elements ofH with respect to the eigenfunctions of a soluble singular problem with
two free parametersA and B. The matrix eigenvalues are then optimized with
respect toA andB for a givenN. Applications, convergence rates, and comparisons
with earlier work are discussed in detail. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1836014g

I. INTRODUCTION

Sources of ongoing interest1–66 in the study of singular potentials are at least threefold,sid
regular Rayleigh–Schrödinger perturbation theory can fail badly for such potentials,sii d in physics,
it is quite common to encounter phenomenological potentials that are strongly singular at the
origin, andsiii d because of the intrinsically interesting mathematical problems that arise in their
study. A specific family of singular quantum Hamiltonians that has found widespread application
in many areas of atomic, molecular, nuclear physics, are the so-called anharmonic singular Hamil-
tonians given by

H = −
d2

dr2 + r2 + o
n=0

N
ln

ran
, s1.1d

where r P s0,`d and an and ln are positive real numbers. A particular and important special
subclass ofs1.1d that has been a subject of intensive studies is the set of spiked harmonic oscillator
Hamiltonians9

H = −
d2

dr2 + r2 +
l

ra , a . 0, l . 0 s1.2d

acting in the Hilbert spaceL2s0,`d with eigenfunctionscPL2s0,`d of H satisfying the
Schrödinger equation −c9+sr2+lr−adc=Ec with cs0d=0. The functionc is an eigenfunction
corresponding to the eigenvalueE and the conditioncs0d=0 is theDirichlet boundary condition
we impose. The coupling parameterl determines the strength of the perturbative potential and the
positive constanta represents the type of singularity at the origin. Thanks to the pioneering work
of Detwiler and Klauder8 and of Harrell,9 remarkable progress has been made over the past three
decades in the field of spectral calculations for the spiked harmonic oscillator Hamiltonians1.2d.
Other interesting subclasses ofs1.1d which have been used in atomic, molecular, and nuclear
physics are the anharmonic singular Hamiltonians47–61
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H = −
d2

dr2 + ar2 + br−4 + cr−6, a . 0, b . 0, c . 0, s1.3d

and the positive-parameter singular even-power Hamiltonians62–66

H = −
d2

dr2 + a1r
2 +

a2

r2 +
a3

r4 +
a4

r6 . s1.4d

Several numerical and analyticalsboth variational and perturbatived techniques are avaliable in the
literature for the exact and approximate eigenvalue calculations for these families of Hamiltonians.
Some of these techniques were devoted to particular classes of singular Hamiltonians and some
others were restricted to specific values of the potential parameters. It is of great interest to have
a successful method valid for the study all of these classes without the need for major adjustment
as one goes from class to class. The purpose of this paper is to provide such technique and to
present a rigorous variational approach for the accurate calculation of the energy levels of the
singular Hamiltonianss1.1d. Our method is very simple and yet accurate enough to determine the
entire spectrum in arbitrary dimensions of anharmonic singular Hamiltonianss1.1d. It can be
viewed as an extension of the earlier variational approach to the study of the spiked Harmonic
oscillator potentials.44 The principal ingredients aresad the use of a special basis comprising the
exact solutions of a singular problem,sbd the determination of exact analytical expressions for the
matrix elements with respect to this basis, andscd the retention of two parameters from the basis
problem that can be used as additional variational parameters. These optimizations are made
possible because of the progress in the establishment and simplification of closed-form analytic
expressions for the matrix elements.

The paper is organized as follows. In Sec. II, we introduce our variational technique: the
method is discussed in a general setting with no reference to particular application. In Sec. III, we
introduce the Gol’dman and Krivchenkov Hamiltonian as a solvable model. Thereafter, we use its
eigensolutions to compute the matrix elements for more general singular operatorsr−a ,a.0.
Closed analytical expressions in terms of single finite sums are obtained for the matrix elements of
the power-law potentialsrq,q=2,4,6, . . . . InSec. IV, the applications to singular potentials are
discussed. Special attention is paid to spiked harmonic oscillators1.2d where we compared our
results with other techniques avaliable in the literature. Thereafter, we study various higher-order
anharmonic singular potentials, such ass1.3d and s1.4d, using the approach discussed in Sec. II.
The convergence problem of the variational approach is studied in some detail. Comparisons with
different methods for special classes of anharmonic singular potentials are also studied.

II. METHODOLOGY

In this section, we develop a detailed variational method for studying the family of Hamilto-
nianss1.1d. The variational function is taken as a linear combination of orthonormal functions of
an exactly solvable model which itself has a singular potential. LethEnsVd ,cn

Vj be the eigenvalues
and the eigenfunctions of an exactly solvable HamiltonianHV=−D+vVsrd acting on separable
Hilbert spaceL2sD ,dmd such that

HVcn
V = EnsVdcn

V,

s2.1d

icn
ViD

2 = kcn
Vucn

Vl =E
D

ucn
Vsrdu2 dmsrd = 1.

HerevVsrd is taken as a function ofr and depends on the parameters in the setV. Let HL=−D
+VLsrd be the quantum Hamiltonian under investigation, whereL is a fixed set of parameters, and
we let esLd be the associated exact eigenvalues ofHL. By writing the HamiltonianHL in the
extended form
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HL = HV + VLsrd − vVsrd, s2.2d

we have that if the integrals

kcn
VuVLs·ducn

Vl =E
D

cn
VVLcn

V dm are finite, s2.3d

then the matrix elements of the HamiltonianHL can be written, form,n=0,1,2, . . . as

Hmn
L ; kcm

VuHucn
Vl = EmnsVddmn+ kcm

VuVLs·ducn
Vl − kcm

VuvVs·ducn
Vl, s2.4d

or in compact form as

Hmn
L = kcn

Vu− Ducn
Vl + kcn

VuVLs·ducn
Vl. s2.5d

Our variational technique is based on forming trial wave functions from a linear combination of
D-orthonormal functionscn

Vsrd, n=0,1,2, . . . ,D−1,

Csrd = o
n=0

D−1

cncn
Vsrd. s2.6d

The linear parameterscn that optimize the energy are determined by the following system of
equations:

o
n=0

D−1

sHmn
L − esLddmndcn = 0, m= 0,1,2, . . . ,D − 1. s2.7d

The necessary and sufficient condition for a nontrivial solution ofs2.7d is the vanishing of the
secular determinant

detuHmn
L − esLddmnu = 0. s2.8d

The conditions2.8d yields upper bounds to the exact eigenvaluesesLd by means of the inequality

esLd ø min
V

diag1
H00

L H01
L

¯ H0D−1
L

H10
L H11

L
¯ H1D−1

L

¯ ¯ ¯ ¯

HD−10
L HD−11

L
¯ HD−1D−1

L
2 , s2.9d

whereHmn
L =kcm

VuHLucn
Vl=Hmn

V +Vmn
L srd−vmn

V srd, for fixed L, are functions of the parameter setV.
Note that the equality ins2.9d holds if VLsrd=vVsrd, for all r. The computation of the right-hand
side ofs2.9d requires a diagonalization of the matrix over theD-dimensional subspace spanned by
orthonormal functionscn

V followed subsequently by a minimization over the parametersV. The
advantages of this method aresid only a few matrix elements are needed to achieve accurate
bounds to the eigenvalues;sii d the exact eigenvalues are approached monotonically asD is in-
creased;siii d the minimization over a set of parametersV accelerates the convergence of the
energy bounds more rapidly than any standard minimization over a single variable;sivd the
optimization ofs2.9d for D3D matrix gives upper bounds to the energy eigenvalues of the lowest
D states;svd the diagonalization of such a matrix also produces the coefficients required for the
corresponding eigenvectors determined variationally.

III. EXACTLY SOLVABLE MODEL AND ASSOCIATED MATRIX ELEMENTS

The accuracy and the computational simplicity of the variational method depends greatly on
the analytic structure of the wave functions that we use, in particular, their behavior in the
neighborhood of the singularity. Many different forms of trial wave function have been explored
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in the literature to solve the spiked harmonic oscillator problems1.2d. The rate of convergence for
a variational calculation depends on the ability of the basis functions used in the variational
calculation to approximate the behavior of the exact wave function in the neighborhood of the
singularity. Recently, Hallet al. have pointed out the advantages of basing the variational analysis
of singular potentials on an exact soluble model which itself has a singular potential term. They
have suggested and used trial wave functions constructed by means of the superposition of the
orthonormal functions of the exact solutions of the Gol’dman and Krivchenkov Hamiltonian,

H0 = −
d2

dr2 + Br2 +
A

r2 . s3.1d

It was shown that this orthonormal basis serves as an effective starting point for the variational
analysis of the Hamiltonians1.2d. In this paper we use these solutions ofH0 to provide systematic
variational solutions for the singular Hamiltonianss1.1d. The Gol’dman and Krivchenkov Hamil-
tonian s3.1d is one of the few that admit exact analytical solutions. The Hamiltonian is the
generalization of the familiar harmonic oscillator in three-dimensional −d2/dr2+Br2+ lsl +1d / r2

where the generalization lies in the parameterA ranging overf0,`d instead of only values deter-
mined by the angular momentum quantum numbersl =0,1,2, . . . . Thebackground on Gol’dman
and Krivchenkov potentialVsrd=Br2+Ar−2 relevant to the following discussion can be found in
Ref. 44. In particular, the energy spectrum of the Schrödinger HamiltonianH0 is given, in terms of
parametersA andB, by

En = 2bs2n + gd, n = 0,1,2, . . . , s3.2d

in which b=ÎB andg=1+ÎA+ 1
4 and the normalized wave functions are

cnsrd = s− 1dnÎ2bgsgdn

n ! Gsgd
rg−1/2e−s1/2dbr2

F1s− n;g;br2d. s3.3d

Here1F1 is the confluent hypergeometric function

1F1s− n;b;zd = o
k=0

n
s− ndkz

k

sbdkk!
sn-degree polynomial inzd s3.4d

and the shifted factorialsadn defined by

sad0 = 1, sadn = asa + 1dsa + 2d ¯ sa + n − 1d, for n = 1,2,3, . . . s3.5d

may be expressed in terms of the gamma function bysadn=Gsa+nd /Gsad, whena is not a negative
integer −m, and, in these exceptional cases,s−mdn=0 if n.m and otherwise s−mdn

=s−1dnm! / sm−nd!.
An important observation regarding the solvable modelH0 is the existence of theA term

which has the dimensions of kinetic energy such as the term that appears in higher-dimensional
systems. This observation allows us to extends3.2d and s3.3d to the exact solutions of
N-dimensional Gol’dman and Krivchenkov Hamiltonian, namely,

−
d2

dr2 +
LsL + 1d + A

r2 + Br2 sA ù 0,B . 0d, s3.6d

whereL= 1
2sM −3d, andM =N+2l. The exact solution ofs3.6d can be easily found by replacingA

in s3.2d and s3.3d with

A → LsL + 1d + A. s3.7d

This particular observation can be extended to any three-dimensional exact solvable quantum
model. Indeed, if Schrödinger’s equation can be solved for arbitrary angular momentum numberl,
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then the extension to theN-dimensional case can be obtained by replacingl with L. It should be
also noted thatN and l enter into the Hamiltonians3.6d in the form of combinationN+2l. Hence,
the energy for a spherically symmetric potentialVsrd are the same as long asM is not altered. We
now summarize the exact eigenvalues ofN-dimensional Schrödinger equation with the Gol’dman
and Krivchenkov potential as

Enl
N = 2bs2n + gNd, n,l = 0,1,2, . . . , s3.8d

whereb=ÎB andgN=1+ÎA+ sL+ 1
2

d2, while the exact eigenfunctions are given explicitly by

cnl
Nsrd = s− 1dnÎ2bgNsgNdn

n ! GsgNd
rgN−1/2e−s1/2dbr2

1F1SU− n

gN
Ubr2D sn,l = 0,1,2, . . . ,N ù 1d.

s3.9d

In the next section all our results are formulated in arbitrary dimensionNù1.

A. Matrix elements of the singular operator r−a

The effectiveness of the variational method relies on finding a basis that allows for easy
calculation of the matrix elements of the given Hamiltonian. An important advantage of the
orthonormal wave functionss3.3d is the existence of closed-form formulas for the singular poten-
tial integralskcmur−aucnl. These closed form expressions are achieved by means of the following
identity: Form andn non-negative integers and 2g.a,

E
0

`

r2g−a−1e−br2

1F1SU− n

g
Ubr2D 1F1SU− m

g
Ubr2Ddr

=
Sa

2
D

n

GSg −
a

2
D

2bg−sa/2dsgdn
3F21*− m,g −

a

2
,1 −

a

2

g,1 −
a

2
− n *12 , s3.10d

where the Clausen hypergeometric function3F2 is defined by the series representation

3F2SU− m,a,b

c,d
U1D = o

k=0

m
s− mdksadksbdk

scdksddkk!
sm-degree polynomiald.

The proof of this identity and some relevant integrals can be found in Ref. 44. Thus the matrix
elementsrmn

−a =kcnur−aucnl of the singular operatorr−a have the explicit forms

rmn
−a = s− 1dn+mba/2

Sa

2
D

n

sgdn

GSg −
a

2
D

Gsgd
Îsgdnsgdm

n ! m! 3F21*− m,g −
a

2
,1 −

a

2

g,1 −
a

2
− n *12 . s3.11d

In the case ofa being a non-negative even numbersa=2,4,6, . . .d, the Clausen hypergeometric
function 3F2 in s3.11d may be looked upon as a polynomial of degreesa /2d−1 instead of an
m-degree polynomial. This is, of course, not the case for 0,aÞ2,4,6, . . . inwhich case the
numerical computation would have to be done directly using the expressions3.11d. For nùm and
a=2,4,6, . . . wehave by means of the series representation of the hypergeometric function3F2
that
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3F21*− Sa

2
− 1D,g −

a

2
,− m

g,1 −
a

2
− n *12 = o

s=0

sa/2d−1 s− mdsSg −
a

2
D

s
S1 −

a

2
D

s

s ! sgdsS1 −
a

2
− nD

s

. s3.12d

As a result, the matrix elementss3.11d further simplify into the closed form expressions immedi-
ately appearing. These are most suitable for computational purposes as for the case ofg.1 and
a=2, we indeed have

rmn
−2 =5s− 1dm+n b

g − 1
În ! sgdm

m ! sgdn

if n . m,

b

g − 1
if n = m,

s− 1dm+n b

g − 1
Îm ! sgdn

n ! sgdm

if n , m.
6 s3.13d

On the other hand, forg.2 anda=4, we have froms3.11d and s3.12d that

rmn
−4 =5

s− 1dm+nb2

gsg − 1dsg − 2d
În ! sgdm

m ! sgdn
fgsn − m+ 1d + 2mg if n . m,

b2

gsg − 1dsg − 2d
fg + 2ng if n = m,

s− 1dm+nb2

gsg − 1dsg − 2d
Îm ! sgdn

n ! sgdm
fgsm− n + 1d + 2ng if n , m.

6 s3.14d

We also point out, forg.3 anda=6, Eq.s3.12d lets us deduce

rmn
−6 =5

s− 1dm+nb3

2sg + 1dgsg − 1dsg − 2dsg − 3d
În ! sgdm

m ! sgdn
fs2 + nds1 + ndgsg + 1dg

f − 2ms1 + ndsg − 3dsg + 1d − ms1 − mdsg − 2dsg − 3dg if n . m,

b3

sg + 1dgsg − 1dsg − 2dsg − 3d
sg + g2 + 6gn + 6n2d if n = m,

s− 1dm+nb3

2sg + 1dgsg − 1dsg − 2dsg − 3d
Îm ! sgdn

n ! sgdm
fs2 + mds1 + mdgsg + 1dg

f − 2ns1 + mdsg − 3dsg + 1d − ns1 − ndsg − 2dsg − 3dg if n , m.

6
s3.15d

We can derive similar expressions for all even integers beyond 6, i.e.,a=8,10, . . . ,where we
have, fornùm, that

rmn
−a = s− 1dn+mba/2

Sa

2
D

n

sgdn

GSg −
a

2
D

Gsgd
Îsgdnsgdm

n ! m! o
s=0

sa/2d−1 s− mdsSg −
a

2
D

s
S1 −

a

2
D

s

s ! sgdsS1 −
a

2
− nD

s

, s3.16d

and the matrix elements with 0øn,m are incorporated by using the symmetry property, i.e.,
rmn

−a =rnm
−a. For theN-dimensional case, the matrix elements of the singular operatorr−a can be

easily found in analogy withs3.10d,
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rmn
−a = s− 1dn+mba/2

Sa

2
D

n

sgdn

GSgN −
a

2
D

GsgNd
ÎsgNdnsgNdm

n ! m! 3F21*− m,gN −
a

2
,1 −

a

2

gN,1 −n −
a

2
*12 .

s3.17d

The results for the special casesa=2,4,6, . . . can beobtained in a similar fashion tos3.14d–s3.16d
through the substitution ofg by gN=1+ÎA+fl +sN/2d−1g2.

B. Matrix elements of the power-law potentials rq

We now use the orthonormal eigenfunctionss3.3d to compute the matrix elements for the
power-law potential operatorsrq, q=2,4,6, . . . . Inanalogy withs3.10d, this can be achieved by
means of the identity, form andn non-negative integers and 2g+q.0,

E
0

`

r2g+q−1e−br2

1F1SU− n

g
Ubr2D 1F1SU− m

g
Ubr2Ddr

=
S−

q

2
D

n

GSg +
q

2
D

2bg+sq/2dsgdn
3F21*− m,g +

q

2
,1 +

q

2

g,1 +
q

2
− n *12 . s3.18d

In the case ofq being a positive even numbersq=2,4,6, . . .d, the Clausen hypergeometric func-
tion 3F2 in s3.18d can be further simplified. Indeed in this case, we prove the following result.

Theorem 1: For t=0,1,2, . . . ,q/2 andq=2,4,6, . . ., thematrix elements of the power-law
potentialrq, q=2,4,6, . . . interms of the orthonormal functionss3.3d are

rmn
q = 0 if n . m+

q

2
,

=
s− 1dq

bq/2
ÎSg +

a

2
D

m

GSg +
q

2
DSm+

q

2
D!

sgdmGsgdm!
if n = m+

q

2
,

=

GSg +
q

2
Dsg + m− tdq/2sm− t + 1dq/2

s− 1dt−qbq/2t ! Gsgdsgdq/2
Î m ! sgdm

sgdm+sq/2d−tfm+ sq/2d − tg!

3o
j=0

t s− td jSg + m+
q

2
− tD

j
Sq

2
+ m− t + 1D

j

sg + m− td jsm+ 1 − td j j !
if n = m+

q

2
− t,

=

GSg +
q

2
Ds1 − g − mdq/2s− mdq/2

s− bdq/2Gsgd
q

2
! sgdq/2

o
j=0

q/2 S−
q

2
D

j

sg + md jsm+ 1d j

Sg + m−
q

2
D

j
Sm+ 1 −

q

2
D

j

j !

if m= n,
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=

GSg +
q

2
Dsg + n − tdq/2sn − t + 1dq/2

s− 1dt−qbq/2t ! Gsgdsgdq/2 Î n ! sgdn

sgdn+sq/2d−tSn +
q

2
− tD!

3o
j=0

t s− td jSg + n +
q

2
− tD

j
Sq

2
+ n − t + 1D

j

sg + n − td jsn + 1 − td j j !
if m= n +

q

2
− t,

=
s− 1dq

bq/2
ÎSg +

a

2
D

n

GSg +
q

2
DSn +

q

2
D!

sgdnGsgdn!
if m= n +

q

2
,

=0 if m. n +
q

2
. s3.19d

Proof: From s3.18d, we have

rmn
q = s− 1dm+nb−q/2

GSg +
q

2
D

Gsgdsgdn
Îsgdnsgdm

n ! m!
S−

q

2
D

n
3F21*− m,g +

q

2
,1 +

q

2

g,1 +
q

2
− n *12

and the problem is now reduced to the simplification of the product

S−
q

2
D

n
3F21*− m,g +

q

2
,1 +

q

2

g,1 +
q

2
− n *12 .

Using the series representation for3F2, we can write

I = S−
q

2
D

n
3F21*− m,g +

q

2
,1 +

q

2

g,1 +
q

2
− n *12 = o

k=0

m s− mdkSg +
q

2
D

k
S−

q

2
− kD

n

sgdkk!
,

where we have used the identitysa−ndk=s1−adnsadk/ s1−a−kdn. From the definition of the Poch-
hammer symbols−sq/2d−kdn we have thatI =0 for n.m+sq/2d and forn=sq/2d+m we have

I =

s− 1dq/2Sg +
q

2
D

m
Sm+

q

2
D!

sgdm
.

Finally, for n=m+sq/2d− t, t=0,1,2, . . . ,q/2,

I = o
k=0

m s− mdkSg +
q

2
D

k
S−

q

2
− kD

m+sq/2d−t

sgdkk!
= o

k=m−t

m s− mdkSg +
q

2
D

k
S−

q

2
− kD

m+sq/2d−t

sgdkk!
.

The completion of the proof then follows by shifting the indexj =k−m+ t of the finite sum. h
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As consequence of Theorem 1, forq=2 andg.−1 we have that

rmn
2 =5

0 if n . m+ 1,

b−1Îsm+ 1dsg + md if n = m+ 1,

b−1sg + 2nd if n = m,

b−1Îsn + 1dsg + nd if m= n + 1,

0 if m. n + 1.
6 s3.20d

Furthermore, the explicit formula for the matrix elements of the operatorr4 now reads

rmn
4 =5

0 if n . m+ 2,

b−2Îsm+ 1dsm+ 2dsg + mdsg + m+ 1d if n = m+ 2,

2b−2sg + 2m+ 1dÎsm+ 1dsg + md if n = m+ 1,

b−2sg + 6m2 + 6gm+ g2d if n = m,

2b−2sg + 2n + 1dÎsn + 1dsg + nd if m= n + 1,

b−2Îsn + 1dsn + 2dsg + ndsg + n + 1d if m= n + 2,

0 if m. n + 1.

6 s3.21d

IV. APPLICATIONS AND NUMERICAL RESULTS

A. Spiked harmonic oscillator Hamiltonians

There are several reasons for the interest in the spiked harmonic oscillator Hamiltonians1.2d
and its extension, the so-called generalized spiked harmonic oscillator,

H = −
d2

dr2 + Br2 +
A

r2 +
l

ra . s4.1d

First, it represents the simplest model of certain realistic interaction potentials in atomic, molecu-
lar, and nuclear physics, and second, its interesting intrinsic properties from the viewpoint of
mathematical physics are as follows:s1d an eigenvalue of the perturbed operator may not converge
to the original one asl→0 sthe Klauder phenomenond and s2d the perturbation series is ordered
in fractional powers ofl, and in the casesa.5/2 the regular Rayleigh–Schrödinger perturbation
theory fails badly.

We shall consider the problem initially inN=3 spatial dimensions. It was proven earlier44 that
the set ofL2f0,`d-functionshcnsrdjn=0

` as defined bys3.3d, is a complete orthonormal basis for the
Hilbert spaceL2f0,`d. This basis was the starting point for perturbative expansions and varia-
tional analysis of the Hamiltonianss1.2d and s4.1d. The main approach of the earlier variational
investigation ofs1.2d was the rewriting of the Hamiltonian as

H ; −
d2

dr2 + r2 +
A

r2 + S l

ra −
A

r2D . s4.2d

The parameterA serves as an extra degree of freedom that can be used to accelerate the conver-
gence to the exact eigenvalues through the minimization of the eigenvalues of the diagonalizable
D3D symmetric matrix. Straightforward calculations usings3.11d ands3.13d show that the matrix
elementsHmn of the Hamiltonians4.2d are sm,n=0,1,2, . . . ,D−1, nùmd
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Hmn= 2s2n + gddnm+ s− 1dn+ml

Sa

2
D

n

sgdn

GSg −
a

2
D

Gsgd
Îsgdnsgdm

n!m! 3F21*− m,g −
a

2
,1 −

a

2

g,1 −n −
a

2
*12

− s− 1dm+n
sg − 3

2dsg − 1
2d

g − 1
În!sgdm

m!sgdn
, s4.3d

where 2g.a and the matrix elements with 0øn,m are incorporated by using the symmetry
property of the matrix. In order to apply the method discussed in Sec. II, we writes1.2d in more
extended form,

H ; −
d2

dr2 + Br2 +
A

r2 + s1 − Bdr2 + S l

ra −
A

r2D . s4.4d

In this case, the matrix elements of the Hamiltonians4.4d assume the form

Hmn= 2bs2n + gddmn+ s1 − b2drmn
2 + lrmn

−a − Armn
−2 sb = ÎB,m,n = 0,1,2, . . . ,D − 1d,

s4.5d

where rmn
2 is given by s3.20d, rmn

−a is given by s3.11d, and rmn
−2 is given by s3.13d. In order to

illustrate the difference between using the expressionss4.3d and s4.5d, we restrict our calculation
to a=4. The first variational approximationssubspace of dimension 1d of the ground-state eigen-
values of the spiked harmonic oscillator Hamiltonian yields by means ofs4.3d the approximation

e0 = min
A.0.75

Hg + 1 +
l

sg − 1dsg − 2d
+

1

4sg − 1dJ Sg = 1 +
1

2
Î1 + 4A . 2D s4.6d

while the matrix elementss4.5d yield the approximation

e0 = min
A.0.75,B.0

H g

b
+ b +

lb2

sg − 1dsg − 2d
+

b

4sg − 1dJ Sg = 1 +
1

2
Î1 + 4A . 2,b = ÎBD .

s4.7d

The minimization ofs4.6d over the parameterA yields

e0 = 5
2 + 3

2s8l − 1 + 4Î4l2 − ld1/3 + s6l − 3
4 − 3Î4l2 − lds8l − 1 + 4Î4l2 − ld2/3

which implies the upper bounde0=21.427 793 forl=1000; while the minimization ofs4.7d over
A andB yieldse0=21.374 087 with first decimal place exact. In Table I, we present a comparison
between eigenvalues computation usings4.6d and s4.7d for l=0.1 to illustrate the increase in the
rate of convergence obtained when using our new approach. It should be noted that the optimi-
zation over the parameterA of the 100031000-diagonalizable matrix yields an upper bound of
EA=3.575 557 withA<6.076, while the minimization and diagonalization of the symmetric ma-
trix over the parametersA andB greatly reduce the number of the matrix elements needed by a
ratio of approximately 10:1. As shown in Table I, 1003100 matrix is sufficient to achieve an exact
eigenvalue ofEA,B=3.575 552. Because we have established simple formulas for the matrix ele-
ments in the casesa=4 anda=6 fgiven bys3.14d ands3.15d, respectivelyg, the determination of
the energy values to any desired accuracy reduced to an easy task as indicated in Table II where
we report our eigenvalue computation for the casea=6 and for different values of the parameter
l. A heuristic scheme for ascertaining the eigenvalues to any required number of digits is as
follows. The eigenvalues obtained from successive levels, such ass131,232, . . .d, of the trun-
cated matrix are compared, and the calculation ceases when the successive eigenvalues agree with
each other up to the prescribed decimal place. Further advantage of the variational approach
presented here is the amount of information that we get about the spectrum of the Hamiltonian
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every time we compute the eigenvalues via the diagonalization and minimization. Indeed, we
obtain, forD3D-matrix, a set of upper bounds for the eigenvaluesE0,E1, . . . ,ED−1. Each can be
improved by either an increase in the dimension of the matrix, or by extracting the desired level
through the diagonalization and subsequent minimization with respect to parametersA andB. For
the N-dimensional case, the matrix elements of the singular operatorr−a turn out to be

kcml
N ur−aucnl

Nl = s− 1dn+mba/2
Sa

2
D

n

sgdn

GSgN −
a

2
D

GsgNd
ÎsgNdnsgNdm

n!m! 3F21*− m,gN −
a

2
,1 −

a

2

gN,1 −
q

2
− n *12 .

s4.8d

Matrix elements for the special cases ofa=2,4,6, . . . areobtained by substituting in Eqs.
s3.13d–s3.15d for g the expressiongN, wheregN=1+ÎA+ sL+ 1

2
d2. The matrix elements of the

TABLE I. Upper boundsEA for H=−D+r2+s1/10r4d are obtained by diagonalization then minimization of theD3D
matrix, only over the parameterA. EA,B are the corresponding values minimized over bothA and B. The eigenvalue
3.575 552sexact to seven placesd can be easily verified by direct numerical integration of Schrödinger’s equation.

D3D EA EA,B

131 3.745 811 3.664 281

sA<1.52d sA<1.92,B<1.62d
10310 3.602 189 3.582 194

sA<2.84d sA<4.75,B<11.66d
20320 3.588 143 3.576 773

sA<3.68d sA<8.14,B<32.22d
1003100 3.577 007 3.575 552

sA<7.44d sA<9.73,B<297.23d
2003200 3.576 015 3.575 552

sA<10.39d sA<3.76,B<873.58d

TABLE II. Upper boundsEA for H=−D+r2+sl / r6d obtained by diagonalization followed by minimization of theD3D
matrix, only over the parameterA. EA,B are the corresponding values minimized over bothA and B. The results are
displayed for different values of the potential couplingl. The eigenvalues are correct for the seven digits, as can be easily
verified by direct numerical integration of Schrödinger’s equation.

l EA EA,B

1000 12.718 617 12.718 617

s32332,A<20.52d s15315,A<54.41,B<4.51d
100 8.413 358 8.413 358

s65365,A<19.61d s22322,A<8.88,B<9.76d
10 6.003 209 6.003 209

s1503150,A<9.71d s30330,A<9.66,B<21.41d
1 4.659 940 4.659 940

s3503350,A<17.79d s45345,A<18.34,B<56.77d
0.1 3.915 665 3.915 665

s100031000d s80380,A<4.47,B<176.63d
0.01 3.505 492 3.505 455

s100031000d s1003100,A<20.88,B<348.92d
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spiked harmonic oscillator Hamiltonian now turn out to be very similar to those in Eq.s4.5d,
namely

Hmn= 2bs2n + gNddmn+ s1 − Bdrmn
2 + lrmn

−a − Armn
−2 . s4.9d

In Table III, upper boundsE00
N , obtained by the optimization of the eigenvalues of a 10310-matrix

over the parametersA andB, are shown. The results are reported for the Hamiltonian

H = −
d2

dr2 +
LsL + 1d

r2 + r2 +
1000

r4

whereL= 1
2sN+2l −3d for dimensionN=2–10with the angular momentuml =0.

B. Anharmonic singular Hamiltonian

The higher-order anharmonic singular Hamiltonianss1.3d have attracted much attention
recently.47–66 This is in part because the study of the relevant Schrödinger equation with anhar-
monic potentials provides understanding and insight for the corresponding physical problems, and
also because the determination of its energy is itself a challenging problem. In three-dimensional
space, there are two main methods for dealing with the anharmonic potentialsVsrd=ar2+br−4

+cr−6. A method due to Varshni56 is based on an ansatz for the eigenfunctions, sufficient condi-
tions on parameters to yield exact solutions, and a limit from initial box confinement. The other
method, mainly proposed by Znojil,47,48 relies on a Laurent series ansatz for the eigenfunctions,
which converts the Schrödinger equation into a difference equation which is solved by the use of
continued fractions. An interesting study related to Varshni’s idea56 for the potentialVsrd in two
dimensions was proposed recently by Dong and Ma.60

The method discussed in Sec. II of the present paper provides a uniformly simple, straight-
forward and very efficient way of yielding accurate energies of the entire spectrum of the anhar-
monic potentialsVsrd not only in one or two dimensions but actually in arbitrary dimensions with
arbitrary angular momentum numberl =0,1,2, . . .. Westart with a wider class of anharmonic
singular Hamiltonian given by

H = −
d2

dr2 +
LsL + 1d

r2 + a1r
2 +

a2

r2 +
a3

r4 +
a4

r6 , s4.10d

whereL= 1
2sM −3d, and M =N+2l. Clearly, the caseVsrd=a1r

2+a3r
−4+a4r

−6 appears as special
case witha2=0. Following the procedure discussed in Sec. II, we write the Hamiltonian as

TABLE III. Upper bounds E00
N for H=−sd2/dr2d+fLsL+1d / r2g+r2

+s1000/r4d for dimensionN=2–10, obtained by diagonalization then mini-
mization of the 10310 matrix overA andB.

N E00
N

2 21.350 246sA<71.44,B<1.775d
3 21.369 463sA<71.27,B<1.774d
4 21.427 056sA<70.79,B<1.772d
5 21.522 860sA<69.96,B<1.769d
6 21.656 596sA<68.82,B<1.764d
7 21.827 883sA<67.34,B<1.757d
8 22.036 232sA<65.45,B<1.749d
9 22.281 057sA<63.35,B<1.740d
10 22.561 680sA<60.81,B<1.726d
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H = −
d2

dr2 + Br2 +
LsL + 1d + A

r2 + sa1 − Bdr2 +
sa2 − Ad

r2 +
a3

r4 +
a4

r6 . s4.11d

The matrix elements of the Hamiltonians4.11d take the formsm,n=0,1,2, . . .d

Hmn= 2ÎBs2n + gNddmn+ sa1 − Bdrmn
2 + sa2 − Adrmn

−2 + a3rmn
−4 + a4rmn

−6 s4.12d

for g.3. To analyze the precision of the method proposed here, we compare our results with
some special cases for which the exact eigenvalues are known. The case ofa1=a3=a4=1, a2

=0, which yields the ground-state energyE=5 has been analyzed by Znojil,49 Guardiola and
Ros,54 and Buendíaet al.51 by different techniques. Table IV shows the exact eigenvalues ofE
=5 can be reached with the diagonalization of 50350 matrix. It should be noted however that we
have fixed the dimension of the matrix to 50350, but the particular valueE=5 can be reached
with far fewer matrix elements, indeed a 30330 matrix is sufficient to achieve such accuracy.
Further, the exact energies of 7,7,11 corresponding tosa1,a3,a4d=s1,9,9d ,s1,−7,49d, and
s1, 45, 225d, respectively, follow simply with the optimization of the diagonalizable 40340 matrix
with sA,Bd=s17.47, 5.69d, s18.86, 5.53d, ands17.92, 5.40d. These results simply indicate the gen-
erality and the efficiency of our approach. Note, the case ofsa1,a3,a4d=s1,−7,49d also demon-
strates the applicability of the method in the case of the parametera3 is negative. It is quite clear
from Tables IV and V the generality of the method proposed here. In Table V, we illustrate the
applicability of the method to the problem of obtaining the energies in different dimensions.

TABLE IV. Upper bounds for the HamiltonianVsrd=ar2+br−4+cr−6 for different values of the parametersa, b, andc. The
eigenvalues are exact for the seven digits shown, as confirmed numericallysor, for the first row, known exactlyd.

a b c EU

1 1 1 5.000 000
s50350,A<25.51,B<54.35d

1 10 1 6.679 054
s50350,A<9.65,B<32.24d

1 1 10 6.140 123
s50350,A<5.56,B<38.67d

1 10 10 7.138 261
s50350,A<7.83,B<31.94d

1 100 100 11.791 771
s50350,A<5.15,B<5.00d

1 1000 1000 21.885 192
s50350,A<19.42,B<5.00d

TABLE V. Upper boundsEN for H=−sd2/dr2d+fLsL+1d / r2g+r2+s1/r4d
+s1000/r6d for dimensionN=2–10, obtained by diagonalization then mini-
mization with respect toA andB of a 30330 matrix.

N EN

2 12.704 404sA<5.05,B<5.53d
3 12.735 264sA<11.73,B<6.40d
4 12.827 666sA<5.05,B<7.82d
5 12.981 081sA<5.97,B<7.26d
6 13.194 635sA<6.25,B<7.28d
7 13.467 115sA<6.12,B<7.35d
8 13.796 990sA<6.16,B<7.46d
9 14.182 423sA<6.31,B<7.32d
10 14.621 300sA<3.11,B<7.23d
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Similar results for different excited states can be easily reproduced. All the eigenvalues quoted in
Tables I–V agree with the numerical solutions of the corresponding Schrödinger equation. Gen-
erally speaking, the precision of the energies to any number of decimal places can be easily
achieved by increasing the dimension of the matrix.

V. CONCLUSION

We have developed an effective variational method to study a large family of singular Hamil-
tonians. A key feature of this work is the establishment and simplification of closed-form analyti-
cal expressions for the matrix elements with respect to a basis derived from a soluble singular
problem. These formulas are general in the sense that they include two parameters from the basis
which can then be used to optimize the matrix eigenvalues obtained for the problem at hand. The
improved variational approach yields faster energy convergence than was possible earlier.
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This paper develops perturbative and nonperturbative master equations for open
quantum systems based on time-dependent variational functionals. The perturbative
equations are more concise and suitable for dealing with cases of weak system-
environment coupling for short evolution time scales. The nonperturbative equa-
tions are valid for all time and appropriate to treat cases of strong system-
environment coupling. When a system contains an external control field, both the
perturbative and nonperturbative master equations reveal the embedded control
field dependence upon the system decoherence, which provides a basis for deco-
herence management. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1839275g

I. INTRODUCTION

Open quantum systems have been the focus of extensive studies with many applications
ranging from quantum control to quantum computing.1–4 To describe the dynamics of the reduced
system of interest, a master equation based on second order perturbation theory with respect to the
environmental interaction is the conventional approach.5 However, in some cases the coupling
between the reduced system and the environment is quite strong, and the equations based on
perturbative dynamics are no longer appropriate. Some nonperturbative work has been done to
treat specific strong coupling cases, for example, spin-boson problems,6 high-Q cavities,7 and
coupled linear systems.8 The purpose of this paper is to develop a nonperturbative framework to
treat general open quantum systems.

The Liouville equation describes the dynamics of an arbitrary quantum system in terms of the
density operatorrstd:

i
] rstd

] t
= fHstd,rstdg, s1d

whereHstd is the Hamiltonian, andfHstd ,rstdg;Hstdrstd−rstdHstd. Solving Eq.s1d generally is
not an easy task for complicated Hamiltonians with added difficulty arising from the commutative
structure of the operator equation. A polynomial basis function expansion of the propagator is a
common method employed in practice.9,10 Variational tools provide an attractive means to treat
Eq. s1d and they have been applied in various contexts such as laser cooling and quantum
control.11–13One of the earliest examples was put forward by Balian and Veneroni14 for evaluating
the expectation value of an observableA utilizing the following variational functional:

Āstd = TrhAr̃stdj −E
0

t

TrHL̃stdS ] r̃std
] t

+ ifHstd,r̃stdgDJdt, s2d

where Trh·j denotes the trace operation, andL̃std=A, r̃s0d=r0 are imposed conditions. Throughout
the paper, operators with the tilde symbol represent trials in a variational functional. With respect

to the first order variationsr̃std=rstd+drstd and L̃std=Lstd+dLstd, where bothrstd and Lstd
satisfy the Liouville equation in Eq.s1d, the expectation valueĀstd is stationary up to the first

order variations such thatdĀ=0.
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II. TIME-DEPENDENT OPERATOR VARIATIONAL PRINCIPLE

In open quantum systems, partial trace operations often emerge in considering system dynam-
ics in the presence of an environment. The variational principle of the expectation value of the

complete trace of an observablefe.g., Āstd in Eq. s2dg is not convenient in the analysis of the
reduced system dynamics. Therefore, it is worthwhile to develop a variational principle for the
operator itself. For the evolution operator associated with Eq.s1d,

Ustd = expWS− iE
0

t

HstddtD , s3d

where the symbol→ indicates the time ordering operation, the following operator functional,

Ustd = ŨstdF1 −E
0

t

Ũ†stdS ]

] t
+ i HstdDŨstddtG s4d

forms a variational principle. In Eq.s4d, 1 is the unit operator and † denotes the adjoint operation.

With respect to the first order variationŨstd=Ustd+dUstd, whereUstd is defined in Eq.s3d, it can
be verified that

dUstd = dUstd − ŨstdE
0

t

Ũ†stdS ]

] t
+ i HstdDdUstddt = dUstd − dUstd = 0. s5d

Here integration by parts has been applied; it is assumed that the Hamiltonian is Hermitian and the

trial evolution operator always satisfiesŨstdŨ†std=1. The variational evolution operator in Eq.s4d
forms the basis for a number of functionals in the framework of the Schrödinger equation in terms
of the wave function and the Liouville equation in terms of the density operator. Below we
construct a variational functional for the density operator.

Based on Eq.s1d, the density operatorrstd can be written as

rstd = Ustdrs0dU†std. s6d

WhenUstd is replaced by its variational form in Eq.s4d, Eq. s6d will also become a variational
form for the density operator,

%std = Ustdrs0dU†std. s7d

Namely, inserting Eq.s4d into Eq. s6d, and retaining terms up to second order produces the final
variational functional for the density operator as

%std = r̃std − ŨstdE
0

t

Ũ†stdS ] r̃std
] t

+ ifHstd,r̃stdgDŨstddt Ũ†std

= r̃std −E
0

t

Ũst,tdS ] r̃std
] t

+ ifHstd,r̃stdgDŨst,tddt, s8d

where Ũst ,td; ŨstdŨ†std. With respect to the first order variationsŨstd=Ustd+dUstd and r̃std
=rstd+drstd whereUstd is defined in Eq.s3d andrstd satisfies Eq.s1d, it can be verified from Eq.
s8d that

d%std = drstd −E
0

t

Ũst,tdS ] drstd
] t

+ ifHstd,drstdgDŨst,tddt

= drstd −E
0

t ]

] t
fŨst,tddrstdŨst,tdgdt = 0. s9d

The variational functional in Eq.s8d for the density operator itself will straightforwardly lead to
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the variational functional in Eq.s2d for an expectation value of an observable. But, the former
functional is more basic and is more suitable for partial trace processes.

A feature of the variational density operator%std in Eq. s8d is that the trace of%std is invariant,

Trh%stdj = TrHr̃std −E
0

t

Ust,tdS ] r̃std
] t

+ ifHstd,r̃stdgDUst,tddtJ = Trhrs0dj = 1, s10d

regardless of the trial density operatorr̃std chosen in Eq.s8d as long as it satisfies the initial
condition. Unlike the preservation property Trh%stdj=1 of the variational functional in Eq.s8d, the
variational evolution operatorUstd in Eq. s4d usually is not unitary, as a second order term survives

UstdU†std = S1 −E
0

t

Ũst,tdS ] Ũst,td
] t

+ iHstdŨst,tdDdtD
3S1 −E

0

t S ] Ũ†st,td
] t

− iŨ†st,tdHstdDŨst,tddtD = 1 + W̃2std, s11d

whereW̃std is a Hermitian operator defined by

W̃std = W̃†std =E
0

t

Ũst,tdSi
]

] t
− HstdDŨst,tddt. s12d

Thus, if necessary, a further step is needed to assure complete unitarity ofUstd. For example, when
an eigendecomposition is applied toUstd, and a renormalization condition on each eigenvalue is
imposedsi.e., replacingli by li8=li / uliud, then a unitary evolution operatorU8std will be obtained.
It might be also important to preserve the positivity of the density operator as

kcu%stducl ù 0, s13d

wherec is an arbitrary function in the full space. Assuring positivity calls for retaining the second
order term when inserting Eq.s4d into Eq.s6d. In this case the variational functional for the density
operator becomes

%8std = S1 −E
0

t

Ũst,tdS ] Ũst,td
] t

+ iHstdŨst,tdDdtDŨstdrs0dŨ†std

3S1 −E
0

t S ] Ũ†st,td
] t

− iŨ†st,tdHstdDŨst,tddtD
= r̃std + ifW̃std,r̃stdg + W̃stdr̃stdW̃std, s14d

where the operatorW̃std is defined in Eq.s12d. The positivity of%8std can be verified as

kcu%8stducl = kcus1 + iW̃stddŨstdrs0dŨ†stds1 − iW̃stdducl = kc8urs0duc8l ù 0, s15d

wherec8=Ũ†stds1− iW̃stddc, and the initial density operator is defined to be positive. However,
due to the nonunitary feature of the variational evolution operatorUstd, the variational density
operator%8std in Eq. s14d generally will not preserve the unit trace property. If both positivity and
unit trace invariance are required, then the following variational functional can be employed:

%9std =
r̃std + ifW̃std,r̃stdg + W̃stdr̃stdW̃std

Trhr̃stdf1 + W̃2stdgj
. s16d
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The above considerations about the unit trace invariance and positivity could be important
when the ultimate goal is to evaluate the density operator itself. However, if the variational density
operator is only utilized for a partial or full trace with some other operators, a small deviation from
unit trace invariance or positivity of the density operator might not be significant for the ultimate
goal.

III. DYNAMICS OF AN OPEN QUANTUM SYSTEM

An open quantum system generally refers to one which is of primary interest while being
coupled to the environment. The dynamics of the environment is not fully or explicitly treated due
to the extreme complexity of describing the dynamical details of the environment. The validity of
such a treatment rests on the fact that the environment is assumed to be very large and has many
degrees of freedom. Thus, the dynamics of the quantum system of interest can be described by
isolated unitary evolution along with a dissipative part resulting from the interaction with the
environment. In general, the Hamiltonian for the full systemsi.e., the open quantum system plus
the environmentd can be written as

Hstd = HS8std + HE + HI8std, s17d

whereHS8std, HE, andHI8std describe the system, the environment, and their interaction, respec-
tively. As the environment is assumed to be a large reservoir, its HamiltonianHE is treated as time
independent. In some quantum control systems, the control field may also explicitly couple with
the environment, for example, through an environmental dipole interaction,

HE8std = HE − mW E · «Wstd. s18d

When the situation in Eq.s18d occurs, it is convenient to treat the stationary partHE as the
environmental Hamiltonian, while the coupling part is included in the interaction Hamiltonian,

HI8st,h«Wstdjd = HI8std − mW E · «Wstd. s19d

Thus the time dependence of the HamiltoniansHS8std and HI8std in Eq. s17d can be viewed as
general, including the presence of the control fieldsas a function of timed in both pieces, which
could be important in the treatment of control issues. Throughout the paper, no coupling is
assumed between the system and environment at the initial time,

rs0d = rSs0d ^ rE, s20d

where the initial system density operatorrSs0d is considered to be a pure state, and the initial
environmental density operatorrE is a mixed state. As long as no confusion arises, the tensor
product symbol̂ will be omitted afterwards. The reduced density operatorrSstd associated with
the system is defined as the trace of the full density operator over the environmental variables or
states,

rSstd = TrEhrstdj. s21d

Since it is reasonable to treat the environment as being in statistical equilibrium, the environ-
mental density operator may be approximated as time independent. Therefore it is rational to
repartition the entire Hamiltonian in Eq.s17d as

Hstd = HS8std + TrEhHI8stdrEj + HE + HI8std − TrEhHI8stdrEj = HSstd + HE + HIstd, s22d

whereHSstd;HS8std+TrEhHI8stdrEj andHIstd;HI8std−TrEhHI8stdrEj. Equations22d implies that the
repartitioned interaction Hamiltonian satisfies

TrEhHIstdrEj = 0. s23d

The repartitioned system Hamiltonian is assumed to have the following form:
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HSstd = HS
0 − mW · «Wstd, s24d

whereHS
0 represents the field-free system Hamiltonian,mW is the system electric dipole moment

vector, and«Wstd is the control electric field vector.
Taking a partial trace over the environmental variables on both sides of Eq.s1d will produce

the reduced system dynamical equation

i
] rSstd

] t
= TrEhfHstd,rstdgj = fHSstd,rSstdg + TrEhfHIstd,rstdgj. s25d

Equations25d is an exact expression, but it is not in closed form for the reduced system. Various
approximations could be applied to the last term in Eq.s25d to achieve a closed form master
equation. The treatment below will start with this equation.

IV. VARIATIONAL FUNCTIONALS FOR AN OPEN QUANTUM SYSTEM

The dynamical equation of the reduced density operator in Eq.s25d contains the full density
operatorrstd. Since in practice obtainingrstd from solving Eq.s1d is not feasible, a variational
approach provides an attractive means to deal with this problem. When the variational functional
%std in Eq. s8d is introduced into Eq.s25d, we obtain

i
] rSstd

] t
= fHSstd,rSstdg + TrEHFHIstd,r̃std −E

0

t

Ũst,tdS ] r̃std
] t

+ ifHstd,r̃stdgDŨst,tddtGJ .

s26d

Besides the differential form forrSstd in Eq. s26d, an integral variational functional form forrSstd
also can be constructed. The system density operatorrSstd in Eq. s25d can be formally solved for
as

rSstd = USstdrSs0dUS
†std − iE

0

t

USst,tdTrEhfHIstd,rstdgjUSst,tddt, s27d

whereUSstd is the system evolution operator. Then the following variational functional can be
introduced to evaluaterSstd:

rSstd = USstdrSs0dUS
†std − iE

0

t

USst,tdTrEhfHIstd,r̃stdgjUSst,tddt

+E
0

t

TrEHUSst,tdS ] r̃std
] t

+ ifHstd,r̃stdgDUSst,tdJdt

−E
0

t

TrEHŨst,tdS ] r̃std
] t

+ ifHstd,r̃stdgDŨst,tdJdt

= USstdrSs0dUS
†std +E

0

t

TrEHUSst,tdS ] r̃std
] t

+ ifHSstd,r̃stdgDUSst,tdJdt

−E
0

t

TrEHŨst,tdS ] r̃std
] t

+ ifHstd,r̃stdgDŨst,tdJdt. s28d

Equations28d will reduce to Eq.s27d when the trial density operator is exact. Also we can verify
that the first order variationdrS vanishes with respect to consideringr̃=r+dr. As a variational
functional, Eq.s28d is suitable for numerical implementation by basis expansion or proper param-
etrization of the trial inputs which will not be explored further in this paper. Equations26d is
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especially suitable for theoretical analysis, as will be evident in the following sections which
derive suitable master equations.

V. PERTURBATIVE MASTER EQUATIONS FROM VARIATIONAL FUNCTIONALS

The conventional master equation readily can be obtained starting from Eq.s25d and applying
a perturbation expansionsor a weak coupling assumptiond.5 Briefly, from Eq. s1d, we have the
following exact expression:

rstd = USstdrSs0dUS
†stdrE − iE

0

t

USE
† st,tdfHIstd,rstdgUSEst,tddt, s29d

whereUSEst ,td;USst ,tdUEst ,td and UE is the environmental evolution operator. Applying the
perturbation approximationrstd<rSstdrE on the right-hand side of Eq.s29d leads to

rstd = USstdrSs0dUS
†stdrE − iE

0

t

USE
† st,tdfHIstd,rSstdrEgUSEst,tddt. s30d

Inserting Eq.s30d into Eq. s25d yields

i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

TrEhfHIstd,USE
† st,tdfHIstd,rSstdrEgUSEst,tdgjdt. s31d

Equations31d is a premaster equation which finally will lead to the conventional master equation
by proper expansion of the interaction Hamiltonian and tracing out the environmental variables. In
this paper the pre-master equation will be simply called the master equation without confusion.

For the variational functional involving reduced density operator dynamics in Eq.s26d, if the
trial evolution operator is exact, then Eq.s26d becomes exact no matter what trial density operator
r̃std is chosen as long as the initial condition is satisfied. Thus, the following equation,

i
]rSstd

]t
= fHSstd,rSstdg + TrEHFHIstd,r̃std −E

0

t

U†st,tdS ] r̃std
]t

+ ifHstd,r̃stdgDUst,tddtGJ ,

s32d

exactly holds for anyr̃std with r̃s0d=rs0d. Since the full evolution operator appears in Eq.s32d, it
is suggestive to start with the simpler equation,

i
] rSstd

] t
= fHSstd,rSstdg + TrEhfHIstd,Ustdrs0dU†stdgj, s33d

which can be obtained by directly inserting Eq.s6d into Eq. s25d. However, Eq.s33d is only
formally useful. Eventually the full evolution operator needs to be introduced with some suitable
approximation. The variational principle in Eq.s32d will result an automatic correction for small
deviations on the full evolution operator, while there is no such benefit from using Eq.s33d. As an
illustration, upon applying the approximation

Ust,td < USEst,td, s34d

Eq. s33d becomes

i
] rSstd

] t
= fHSstd,rSstdg s35d

whose form is unacceptable, as no decoherence is retained. But under the same approximation,
generally decoherence is properly retained using Eq.s32d, which will be shown below.
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As a first example, consider the trial full density operator of the formr̃std
=USstdrSs0dUS

†stdrE swheretP f0,tgd. Then Eq.s32d becomes

i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

TrEhfHIstd,U†st,tdfHIstd,USstdrSs0dUS
†stdrEgUst,tdgjdt.

s36d

Equations36d is exact and can be used as a basis for further approximation to solve forrSstd.
However, it is often more useful to have a “homogeneous” differential equation forrSstd without
explicitly involving its initial conditionrSs0d. This can be done by replacingrSs0d as a functional
of rSstd as follows.

Inserting the same trial density operatorr̃std=USstdrSs0dUS
†stdrE into Eq. s28d will yield

another exact formula:

USstdrSs0dUS
†std = rSstd + iE

0

t

TrEhU†st8,tdfHIst8d,USst8drSs0dUS
†st8drEgUst8,tdjdt8.

s37d

Recursively inserting Eq.s37d into Eq. s36d will generate a hierarchical series,

i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

TrEhfHIstd,U†st,tdfHIstd,rSstdrEgUst,tdgjdt

+E
0

t E
0

t

TrEhfHIstd,U†st,tdfHIstd,TrEhU†st8,td

3fHIst8d,rSst8drEgUst8,tdjrEgUst,tdgjdt8dt + ¯ . s38d

This series will converge under the weak coupling assumptionfi.e., the norm ofHIstd is suffi-
ciently smallg. If only the leading term of the hierarchical series is kept, Eq.s38d will be

i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

TrEhfHIstd,U†st,tdfHIstd,rSstdrEgUst,tdgjdt. s39d

Equation s39d is similar, but not identical, to the well-known perturbation result in Eq.s31d.
Equations31d can be obtained from Eq.s39d by using the approximation in Eq.s34d. Equations39d
is more flexible than Eq.s31d, as the full evolution operator can be approximated in various ways
other than Eq.s34d, even by basis set expansion via a variational procedure.

Like the conventional non-Markovian master equation in Eq.s31d, Equations39d is also an
integro-differential equation forrSstd. It is worthwhile to search for a perturbative master equation
for rSstd only involving a differential form. With this goal in mind, Eq.s37d also can be written as

rSs0d = US
†stdrSstdUSstd + iE

0

t

TrEhUS
†stdU†st,tdfHIstd,USstdrSs0dUS

†stdrEgUst,tdUSstdjdt.

s40d

Recursively inserting Eq.s40d into Eq. s36d will generate the hierarchical series,
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i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

TrEhfHIstd,U†st,tdfHIstd,USst,tdrSstdUS
†st,tdrEgUst,tdgjdt

+E
0

t E
0

t

TrEhfHIstd,U†st,tdfHIstd,TrEhUSst,tdU†st8,td

3fHIst8d,USst8,tdrSstdUS
†st8,tdrEgUst8,tdUS

†st8,tdjrEgUst,tdgjdt8dt + ¯ . s41d

The leading term in Eq.s41d is

i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

TrEhfHIstd,U†st,tdfHIstd,USst,tdrSstdUS
†st,tdrEgUst,tdgjdt.

s42d

The structure of Eq.s42d is distinct from that of the conventional result in Eq.s31d, as the former
one only involves the differential form ofrSstd and no longer has time integration over the system
density operator. Equations42d can be further expanded into

i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

sTrEhHIstdU†st,tdHIstdUSst,tdrErSstdUS
†st,tdUst,tdj

+ TrEhU†st,tdUSst,tdrSstdrEUS
†st,tdHIstdUst,tdHIstdj

− TrEhHIstdU†st,tdUSst,tdrSstdrEUS
†st,tdHIstdUst,tdj

− TrEhU†st,tdHIstdUSst,tdrErSstdUS
†st,tdUst,tdHIstdjddt. s43d

Equations43d has the following form of a general master equation:

i
] rSstd

] t
= fHSstd,rSstdg −E

0

t

o
jk

sAjkst,tdrSstdBjk
† st,td − Bjkst,tdrSstdAjk

† st,td + Cjkst,tdrSstdDjk
† st,td

− Djkst,tdrSstdCjk
† st,tdddt. s44d

The operatorsAjk ,Bjk ,Cjk ,Djk in Eq. s44d are defined as follows:

Ajkst,td = iÎwk kf juHIstdU†st,tdHIstduFklUSst,td, s45d

Bjkst,td = Îwk kf juU†st,tduFklUSst,td, s46d

Cjkst,td = Îwk kf juHIstdU†st,tduFklUSst,td, s47d

Djkst,td = iÎwk kf juU†st,tdHIstduFklUSst,td, s48d

where hf jj is the basis of the environment space, and a general initial environmental density
operator,

rE = o
k

wkuFklkFku, s49d

is applied. It can be verified that an identity exists among the operatorsAjk ,Bjk ,Cjk ,Djk in Eq.
s44d,

o
j

Bjk
† st,tdAjkst,td = o

j

Cjk
† st,tdDjkst,td. s50d
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If necessary, the time integration in Eq.s44d can be removed by expanding the operators
Ajk ,Bjk ,Cjk ,Djk in shifted Legendre polynomial15 hP,st / td ,t / tP f0,1gj, and utilizing the orthogo-
nality relationship

E
0

1

P,st/tdP,8st/tddt/t =
1

2, + 1
d,,8. s51d

As an illustration, the operatorAjk can be expanded into

Ajkst,td = o
,=0

` S2, + 1

t
D1/2

Ajk,8 stdP,st/td, s52d

where the operatorAjk,8 std is determined by

Ajk,8 std = Îs2, + 1dtE
0

1

Ajkst,tdP,st/tddt/t s53d

for all tÞ0, and fort=0 it is simply thatAjk,8 s0d=0. For the other operatorsBjk ,Cjk ,Djk, similar
expansions can be produced. Thus, Eq.s44d can be expressed as

i
] rSstd

] t
= fHSstd,rSstdg − o

jk,

sAjk,8 stdrSstdBjk,8† std − Bjk,8 stdrSstdAjk,8† std + Cjk,8 stdrSstdDjk,8† std

− Djk,8 stdrSstdCjk,8† stdd, s54d

where the operatorsBjk,8 std ,Cjk,8 std ,Djk,8 std are defined similarly toAjk,8 std in Eq. s53d.
Equations44d is fully general, yet somewhat complex to deal with. Below a further simplified

version is presented. From the relation

i
]

] t
sU†st,tdUSst,tdrSstdUS

†st,tdUst,tdd = f− U†st,tdHIstdUst,td,U†st,tdUSst,tdrSstdUS
†st,tdUst,tdg

s55d

we have the formal solution

U†st,tdUSst,tdrSstdUS
†st,tdUst,td = expWSi E

t

t

U†st8,tdHIst8dUst8,tddt8DrSstd

3expWS− iE
t

t

U†st8,tdHIst8dUst8,tddt8D
= rSstd + iFE

t

t

U†st8,tdHIst8dUst8,tddt8,rSstdG + ¯ ,

s56d

where the generalized Baker-Hausdorff formula16 is applied to produce the expansion in the last
step. Inserting Eq.s56d into Eq. s43d and taking the leading term yields
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i
]rSstd

]t
= fHSstd,rSstdg − iSTrEHHIstdE

0

t

U†st,tdHIstdrEUst,tddtJrSstd

+ rSstd TrEHE
0

t

U†st,tdrEHIstdUst,tddt HIstdJ
− TrEHHIstdrSstdE

0

t

U†st,tdrEHIstdUst,tddtJ
− TrEHE

0

t

U†st,tdHIstdrEUst,tddt rSstdHIstdJD . s57d

Similar to Eq.s8d, we have

U†st,tdrEUst,td = rE − iE
t

t

U†st8,tdfHIst8d,rEgUst8,tddt8. s58d

Inserting Eq.s58d into Eq. s57d and taking the leading term produces

i
] rSstd

] t
= fHSstd,rSstdg − iSTrEHHIstdE

0

t

U†st,tdHIstdUst,tddt rEJrSstd

+ rSstd TrEHrEE
0

t

U†st,tdHIstdUst,tddt HIstdJ
− TrEHHIstdrSstdrEE

0

t

U†st,tdHIstdUst,tddtJ
− TrEHE

0

t

U†st,tdHIstdUst,tddt rErSstdHIstdJD . s59d

Defining

H̄Istd =E
0

t

U†st,tdHIstdUst,tddt, s60d

Eq. s59d can be simplified into the master equation

i
] rSstd

] t
= fHSstd,rSstdg − ihTrEsHIstdH̄IstdrEdrSstd + rSstd TrEsrEH̄IstdHIstdd

− TrEsHIstdrSstdrEH̄Istdd − TrEsH̄IstdrErSstdHIstddj. s61d

Equations61d has a similar but not identical structure as the Lindblad equation,17

i
] rSstd

] t
= fHSstd,rSstdg − io

hnj
S1

2
Lhnj

† LhnjrSstd +
1

2
rSstdLhnj

† Lhnj − LhnjrSstdLhnj
† D . s62d

In fact, the Lindblad version of Eq.s61d can be derived by further approximation. A simple way
to reveal the connection between Eqs.s61d ands62d is evident at small time or for the interaction
Hamiltonian having a slowly varying profile. Then Eq.s60d can be expressed as
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H̄Istd =E
0

t

U†st,tdHIstdUst,tddt =E
0

t SHIstd + iFE
t

t

Hst8ddt8,HIstdG + ¯ Ddt < astdHIstd,

s63d

whereastd is an appropriate function of time. Inserting Eq.s63d into Eq. s61d will result in

i
] rSstd

] t
= fHSstd,rSstdg − ia2stdhTrEsHI

2stdrEdrSstd + rSstd TrEsrEHI
2stdd − 2 TrEsHIstdrSstdrEHIstddj.

s64d

By comparing Eq.s64d to the standard Lindblad equation in Eq.s62d the equivalent Lindblad
operator in Eq.s64d can be identified as

Ljk = astdÎ2wkkf juHIstduFkl, s65d

wherewk,f j, andFk are defined before in Eqs.s45d–s49d.
Unlike the Lindblad operator in Eq.s62d which usually can only be assigned phenomenologi-

cally, Eq. s61d fully specifies each operator involved, which provides the means to map out a
deeper relationship between the action of a control field and the system decoherence. In particular,
the linear entropy measure of decoherence18

SLstd = 1 − TrShrS
2stdj s66d

can be evaluated through Eq.s61d as

SLstd = 2E
0

t

TrhsrS
2stdHIstdH̄Istd + rS

2stdH̄IstdHIstd − rSstdH̄IstdrSstdHIstd

− rSstdHIstdrSstdH̄IstddrEj, s67d

where bothrSstd andH̄Istd depend on the control field. In contrast, the similar formula through the
Lindblad equation is

SLstd = 2E
0

t

TrSHo
k

srS
2stdLk

†Lk − rSstdLkrSstdLk
†dJ , s68d

in which only rSstd shows an explicit dependence on the control field.

VI. A VARIATIONALLY BASED NONPERTURBATIVE MASTER EQUATION

The master equation in Eq.s42d arises from the leading term in a hierarchical perturbation
expansion. Its validity is based on the assumption of a weak coupling approximation in terms of
HI. If the coupling is sufficiently strong, the hierarchical series expansion in Eq.s41d may not
converge. If the coupling is relatively weak but acting for a sufficiently long time, then truncation
of the expansion in Eq.s41d to low order can produce significant discrepancies in the decoherent
aspects of the system dynamics. In the case of a convergent hierarchical expansion, including
higher order terms in Eq.s41d in principle will produce better results, but the complex nature of
the higher order terms will prevent any practical implementation. Therefore, a perturbation expan-
sion is likely not the best foundation for developing an ultimate master equation that is valid for
all time. In the following material, a nonperturbative formulation of decoherent dynamics will be
explored.

Consider once again Eq.s32d as a variational formulation involving the full density operator.
In order to derive a nonperturbative master equation, a trial for the full density operator has to be
introduced in a nonperturbative fashion. There are many possible choices, and a convenient one is

022105-11 Perturbative and nonperturbative master equations J. Math. Phys. 46, 022105 ~2005!

                                                                                                                                    



r̃std = USst,tdrSstdUS
†st,tdrEs1 − e−ctd + rSstdrEe−ct, s69d

wheretP f0,tg, andc is a large positive constant. It is evident thatr̃std in Eq. s69d satisfies the
initial condition asr̃s0d=rSs0drE. Inserting Eq.s69d into Eq. s32d will yield

s70d

In Eq. s70d, the termsid will have its major contribution at longer times, while the termssii d and
siii d will dominate at short times. But, the contribution of the termsivd can be neglected for all the
time. The reason is that at longer times, the exponentiale−ct quickly decreases toward zero, while
at short times, the full density operator can be well approximated as a tensor product of the
uncoupling system and environmental density operators, and TrEhfHIstd ,rSstdrEgj=0. Thus, the
dynamical equation reduces to

i
] rSstd

] t
= fHSstd,rSstdg −E

0

t

TrEhfHIstd,U†st,tdsifHIstd,USst,tdrSstdUS
†st,tdrEs1 − e−ctd

+ rSstdrEe−ctg + USst,tdrSstdUS
†st,tdrEce−ct − rSstdrEce−ctdUst,tdgjdt. s71d

Equations71d can be expanded into

i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

sTrEhHIstdU†st,tdHIstdUSst,tdrErSstdUS
†st,tdUst,td

+ U†st,tdUSst,tdrSstdrEUS
†st,tdHIstdUst,tdHIstd

− HIstdU†st,tdUSst,tdrSstdrEUS
†st,tdHIstdUst,td

− U†st,tdHIstdUSst,tdrErSstdUS
†st,tdUst,tdHIstdjds1 − e−ctddt

− iE
0

t

sTrEhHIstdU†st,tdHIstdrErSstdUst,td + U†st,tdrSstdrEHIstdUst,tdHIstd

− HIstdU†st,tdrSstdrEHIstdUst,td − U†st,tdHIstdrErSstdUst,tdHIstdjde−ct dt

−E
0

t

sTrEhHIstdU†st,tdUSst,tdrSstdrEUS
†st,tdUst,td

− U†st,tdUSst,tdrSstdrEUS
†st,tdUst,tdHIstdjdce−ct dt

+E
0

t

sTrEhHIstdU†st,tdrSstdrEUst,td − U†st,tdrSstdrEUst,tdHIstdjdce−ct dt.

s72d

Evaluating the trace over the environmental variables, Eq.s72d can be written as
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i
] rSstd

] t
= fHSstd,rSstdg −E

0

t

o
jk

hsAjkst,tdrSstdBjk
† st,td − Bjkst,tdrSstdAjk

† st,td + Cjkst,tdrSstdDjk
† st,td

− Djkst,tdrSstdCjk
† st,tdds1 − e−ctd + sAjkst,tdUS

†st,tdrSstdUSst,tdBjk
† st,td

− Bjkst,tdUS
†st,tdrSstdUSst,tdAjk

† st,td + Cjkst,tdUS
†st,tdrSstdUSst,tdDjk

† st,td

− Djkst,tdUS
†st,tdrSstdUSst,tdCjk

† st,tdde−ct + sBjkst,tdUS
†st,tdrSstdUSst,tdCjk

† st,td

− Cjkst,tdUS
†st,tdrSstdUSst,tdBjk

† st,tddce−ct + sCjkst,tdrSstdBjk
† st,td

− Bjkst,tdrSstdCjk
† st,tddce−ctjdt. s73d

The operatorsAjk ,Bjk ,Cjk ,Djk in Eq. s73d are defined in Eqs.s45d–s48d. Compared to the pertur-
bative counterpart in Eq.s44d, the general nonperturbative master equation in Eq.s73d is valid for
all time. If the timet is small, or if the system is in the weak coupling regime, then all terms
associated with the exponentiale−ct will cancel each other under the perturbation approximation of

rSstd < US
†st,tdrSstdUSst,td, s74d

and Eq.s73d will become identical to the nonperturbative version in Eq.s44d. If the time t is quite
large, usually the perturbation approximation in Eq.s74d is not satisfied so that Eq.s73d will be
different from Eq.s44d.

It should be pointed out that the trial full density operator in Eq.s69d is just one choice, and
therefore the nonperturbative formulation in Eq.s73d is not unique. There is much freedom to
chooser̃std, and another simple form is

r̃std = rSstdrEe−ct. s75d

Following a procedure similar to that above, with this choice the resultant non-perturbative master
equation is

i
] rSstd

] t
= fHSstd,rSstdg − iE

0

t

TrEhfHIstd,U†st,tdfHIstd,rSstdrEgUst,tdgje−ct dt

+E
0

t

TrEhfHIstd,U†st,tdrSstdrEUst,tdgjce−ct dt. s76d

Each variationally derived nonperturbative equation has second order error, but a different choice
of trial density operator in practice will produce distinct levels of error. For example, in practice
the implementation of Eq.s76d likely will be less favorable than Eq.s71d, since the trial density
operator in Eq.s75d will have significant deviations from the exact one at longer times. In contrast,
the trial density operator in Eq.s69d is more likely to remain in the vicinity of the true density
operator thereby improving the reliability of the variational estimate forrS coming from Eq.s71d.
A suitable approximation is necessary for evaluating the operatorsAjk ,Bjk ,Cjk ,Djk to solve the
master equation, and additional approximation can be employed to simplify the time integration in
Eqs. s73d based on the rapidly decaying factore−ct. Further implementation details will not be
explored here.

VII. MODEL ANALYSIS

The purpose of developing nonperturbative master equations is for better treatment of prob-
lems with strong system-environment coupling. In such cases, the resultant system dynamics using
the perturbative approach may produce significant distortion. To obtain proper physical conclu-
sions, the nonperturbative approach is necessary. This point will be evident from a model analysis
below.

The model system is defined to initially be in a pure state,
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rSs0d = uc0lkc0u, s77d

wherec0 is the ground eigenstate of the system. The environment is in a mixed state as

rE = o
k

wkuFklkFku, s78d

wherehFkj is a set of orthonormal statessnot necessary being the environment eigenstatesd, and
the unit trace ofrE implies thatok wk=1. The system HamiltonianHS8std and the environmental
HamiltonianHE are treated implicitly. The coupling HamiltonianHI8std is modeled as

HI8std = isuc1lkc0u − uc0lkc1ud ^ suF1lkF0u + uF0lkF1ud − HSstd ^ 1E − 1S ^ HE, s79d

where1S and1E are the unit operators of the system and environment spaces, respectively. The
coupling Hamiltonian in Eq.s79d indicates that the total Hamiltonian would be

H = isuc1lkc0u − uc0lkc1ud ^ suF1lkF0u + uF0lkF1ud, s80d

which might be considered as two coupled spin or multilevel systems. The model system shown
here is for the purpose demonstrating the failure of the perturbative master equations when dealing
with cases of strong system-environment coupling. No control field is present in the Hamiltonians.

Before implementing the dynamical equation, we first perform the repartitioning of the system
and coupling Hamiltonians following the procedure described in Sec. III. The repartitioned Hamil-
tonians become

HIstd = HI8std − TrEhHI8stdrEj, s81d

HSstd = HS8std + TrEhHI8stdrEj. s82d

In order to obtain the nonperturbative results, we can evaluate the operatorsAjk ,Bjk ,Cjk ,Djk in Eq.
s73d by their definitions in Eqs.s45d–s48d, and numerically solve the nonperturbative master
equation in Eq.s73d; this would be a very tedious task. For this model, an alternative can be
employed. Since the nonperturbative master equation in Eq.s73d is very close to the exact dy-
namical equation, the exact solution can represent the nonperturbative result very well. From the
exact dynamical equation in Eq.s25d, the system density operator can be obtained as

FIG. 1. Comparison of the decoherence degrees from perturbative and nonperturbative approaches. It is a weak coupling
case such thatw0+w1=0.05 wherew0,w1 are defined in Eq.s78d.
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rSstd = uc0lkc0u + suc1lkc1u − uc0lkc0udsw0 + w1dsin2 t. s83d

The linear entropy measure of decoherence then becomes

1 − TrShrS
2stdj = 2sw0 + w1dsin2 t − 2sw0 + w1d2 sin4 t. s84d

For comparison, a perturbative approach will be analyzed. All the aforementioned perturbative
master equations in Eqs.s31d, s39d, ands44d are truncated to second order in terms of the coupling
Hamiltonian. We pick Eq.s44d as it is a natural perturbative version of the nonperturbative master
equation in Eq.s73d. Once again, we can go back to Eqs.s45d–s48d and map out the operators
Ajk ,Bjk ,Cjk ,Djk explicitly. Then the perturbative master equation in Eq.s44d can be solved nu-
merically. Fortunately, for this model, numerical implementation is not necessary since Eq.s44d
has an analytic solution for the density operatorrSstd.

As an equivalence to Eq.s44d, Eq. s42d can be further rewritten,

i
] rSstd

] t
= fHSstd,rSstdg + TrEhfHIstd,UstdUS

†stdrSstdUSstdrEU†stdgj, s85d

as long as the assumption of a near equilibrium environment is valid such thatfHE,rEg=0.
Specifically for the current model, Eq.s85d reduces to

i
] rSstd

] t
= TrEhfHIstd,UstdrSstdrEU†stdgj. s86d

Comparing to the exact dynamics equation for this model,

i
] rSstd

] t
= TrEhfHIstd,UstdrSs0drEU†stdgj, s87d

we can solve for the analytic perturbative system density operatorfdenoted asr̄sstd afterwards to
distinguish from the exact oneg from Eq. s86d as

r̄Sstd = uc0lkc0u + suc1lkc1u − uc0lkc0ud 1
2s1 − expf− 2sw0 + w1dsin2 tgd. s88d

The corresponding linear entropy measure of decoherence then becomes

1 − TrShr̄S
2stdj = 1 − expf− 2sw0 + w1dsin2 tg +

1

2
s1 − expf− 2sw0 + w1dsin2 tgd2. s89d

For comparison of the perturbative and nonperturbative results, the decoherences in Eqs.s84d
and s89d give a simple and clear picture. Figure 1 displays the results for a weak coupling case,
w0+w1=0.05. The perturbative decoherence degree follows the nonperturbative result quite well.
Figure 2 shows the results for a strong coupling case,w0+w1=0.95. Overall, in the latter case the
perturbative decoherence is very different from the nonperturbative result. Thus, the illustration
shows how conclusions drawn from a perturbative treatment could be misleading or distorted. This
example clearly demonstrates that nonperturbative approaches are necessary for cases with strong
coupling.

VIII. SUMMARY

In this paper, new variational functionals to evaluate the system density operator in the
presence of an environment are developed. Both perturbative and nonperturbative master equa-
tions for the open quantum system are derived. The perturbative master equation is similar to the
conventional one, but without introducing an explicit Markovian approximation. The nonpertur-
bative master equation is attractive because it is valid for all time. What lies ahead are explicit
numerical applications of these formulations.
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In a quantum system having a finite numberN of orthogonal states, two orthonor-

mal baseshaij and hbjj are called mutually unbiased if all inner productskai ubjl
have the same modulus 1/ÎN. This concept appears in several quantum informa-
tion problems. The number of pairwise mutually unbiased bases is at mostN+1
and various constructions of suchN+1 bases have been found whenN is a power
of a prime number. We study families of formulas that generalize these construc-
tions to arbitrary dimensions using finite rings. We then prove that there exists a set
of N+1 mutually unbiased bases described by such formulas, if and only ifN is a
power of a prime number. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1829153g

I. INTRODUCTION

A. Definitions and previous results

In the N-dimensional Hilbert spaceCN, two orthonormal baseshaij1øiøN and hbjj1ø jøN are

calledmutually unbiasedif all inner productskai ubjl have the same modulusukai ubjlu=1/ÎN. A set
of mutually unbiased bases is a set of orthonormal bases which are pairwise mutually unbiased. In
various physical situationsssee Sec. I Bd, the problem is to find the maximal number of mutually
unbiased bases. The following result is due to Wootters and Fields but it has been obtained
independently by Calderbanket al.

Theorem 1.1 (Refs. 16 and 4):

• In dimension Nù2, the number of mutually unbiased bases is at most N+1.
• If N is a power of a prime number then there exist N+1 mutually unbiased bases.

In dimensionN, a set of mutually unbiased bases is calledcompleteif it containsN+1 bases.
If N is not a prime power, it is not known whether such a complete set exists, even forN=6.
Originally, constructions ofN+1 mutually unbiased bases in dimensionN were based on the
arithmetic of a field, where addition and multiplication are invertible.16 There exists a field withN
elements if and only ifN is a power of a prime number. Nevertheless, new constructions have been
recently obtainedssee Ref. 8d using the arithmetic of rings, where multiplication is not invertible.
Since there exist rings ofN elements for anyN, is it possible to use finite rings to construct
N+1 mutually unbiased bases for arbitrary dimensions? We will address this issue here. First we
will generalize known constructions from Refs. 16 and 8 to any finite ring. Then we will prove
that for dimensionsN that are not prime powers, there does not exist a complete set of mutually
unbiased bases described by this generalization.
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B. Applications to quantum information

Mutually unbiased basessMUBsd have recently been considered with increasing interest be-
cause of the central role they play in specific quantum information tasks such as state estimation
or Quantum Key Distribution.

1. State estimation

Mutually unbiased bases play an important role in state estimation. Consider asrelativelyd
large ensemble ofN-dimensional quantum systems identically prepared in some unknown stater.
How can one estimater using projective individual measurements? Sincer is a trace one Her-
mitian matrice, it is specified byN2−1 real parameters. Now imagine performing a nondegenerate
measurement on a subensemble of the quantum systems. Such a measurement will yieldN−1
independent real numbers, i.e., the probabilities associated toN−1 of the possible outcomes. So,
in order to reconstuct the stater, we need at leastN+1 different sorts of measurements. As argued
in Ref. 7,N+1 measurements are sufficient when they correspond to MUBs. The reason is that if
the basis are MUBs, then the information gained aboutr when performing a measurement in a
basisBi is independent of the information gained when performing a measurement in another basis
Bj, for all couple of basesBi , Bj. So, pooling the data obtained by each of theseN+1 measure-
ments, one indeed gets information aboutsN+1dsN−1d independent parameters characterizing the
stater, and full reconstruction thus becomes possibleswe note however that it is not always
necessary to invoke MUBs to fully reconstruct a stater with N+1 different measurementsd. An
explicit formula to estimate the state from these mutually unbiased measurements is given in Ref.
7. Other optimality properties of MUBs with respect to state estimation are described in Ref. 16.

2. Quantum cryptography

The concept of MUBs is also relevant to Quantum Key DistributionsQKDd. In the BB84
QKD protocol,3 two authorized parties, Alice and Bob, use two 2-dimensional MUBs to generate
a secret key. MUBs are the basic algebraic structure underlyingd-dimensional generalizations of
the BB84 protocol.5 It is precisely the use of such bases which allows these protocols to make the
intervention of a potential eavesdropper detectable. Wiesner14 also introduced several ideas that
later grew into quantum cryptography. Assessing the security of the BB84 protocol and its gen-
eralizations is a highly nontrivial matter.13,10However, considering the simple intercept and resend
eavesdropping strategy, it is possible to give a heuristic argument of why the use of MUBs makes
such protocols secure. In thed-dimensional generalization, Alice prepares each random key ele-
ment as follows. She chooses randomly a valuei P1, . . . ,d, chooses randomly a basisA taken
amongt MUBs, prepares theith state ofA, uail, and sends it to Bob. Bob chooses a basis among
the t MUBs to measure the stateuail, and get the value of the key element. With probability 1/t,
Bob will choose the basisA and should then get the measurement outcomei. Now suppose that a
potential eavesdropper, Eve, applies a strategy where she also measures the key element sent by
Alice in either of thet MUBs and sends Bob a state corresponding to her measurement outcome
sintercept and resend attackd. With probablity 1/t, Eve’s and Bob’s choice of basis will not match.
Thus, in those events where Bob happens to choose his measurement basis correctly, Eve will with
probability st−1d / t, produce a state that will give Bob a wrong result with probability
sd−1d /d, i.e., the use of MUBs allows one to make the intervention of a potential eavesdropper
detectable. It is also known that a protocol using a larger number of mutually unbiased bases can
tolerate a higher error level in the channelssee Ref. 5d.

3. MUBs and some discrete Wigner functions

Pure or mixed quantum states are usually represented by the density matrix. However, there is
an alternative description in terms of the Wigner function. Several authors have proposed to define
a Wigner function for discrete systems havingN degrees of freedom.12,9,15 It turns out that the
discrete Wigner function defined in Ref. 15 requires the existence ofN+1 mutually unbiased
bases.
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Finally, MUBs have also been shown to be relevant to the mean king’s problem, see Ref. 1
and references therein. An interested reader will find recent results and further references on
MUBs in Ref. 17, the problem page in Quantum Information at TU Braunschweig.

II. FORMULAS FOR MUTUALLY UNBIASED BASES

A unitary transformation maps a set of MUBs to a set of MUBs. Hence, it is not restrictive to
consider only setsX of MUBs containing the standard basishekj1økøN since it is always possible
to choose a unitary transformationU that maps a given orthonormal basis inX to hekj so thatUsXd
is a set of MUBs containinghekj. If a basishvkj is unbiased with respect to the standard basishekj
si.e., ukei uv jlu=1/ÎNd then usvkdlu= ukel uvklu=1/ÎN. Hence the coordinates of its vectors must be
expressed assvkdl =seiUsk,ldd /ÎN whereUsk, ld belongs tof0,2pg.

For N=pn where p is a prime number andn a positive integer, there always existN+1
mutually unbiased bases. We describe here the constructions from Refs. 16 and 8 for these
dimensions.

A. Odd prime powers dimensions

Let the superscriptr denote the basis,k the vector in the basis, andl the component. The
standard basis issvk

s0ddl =dkl for k, l =0,1, . . . ,N−1. If N=pn for a prime numberpÞ2, the other
suchN=pn bases given in Ref. 16 are

svk
srddl =

1
ÎN

es2pi/pdTrsrl 2+kld, r,k,l P Fpn, s1d

whereFpn is the finite field withpn elements and where Tr denote the trace map fromFpn into the
prime fieldFp. For pù5 odd, a new formula has been proposed in Ref. 8 where the polynomial
rl 2+kl is replaced bysl +rd3+ksl +rd. The trace map is a linear map fromFpn, regarded as a vector
space, intoFp. In the language of group theory, linear maps are group homomorphismssi.e., maps
that preserve sumsd. The trace map induces a homomorphism from the additive group ofFpn into
the multiplicative groupC* of complex numbers, defined byx→es2pi/pdTrsxd.

B. Even prime powers dimensions

For N=2n, Wootters and Fields16 have used anad hocconstruction that may be reformulated
in a finite ringR whose 4n elements are sequencessx1, . . . ,xnd with xi PZ4. A much easier con-
struction has been found recently by Klappenecker and Roetteler8 using the Galois ring
R=GRs4,nd. Let Tr denotes the trace map fromGRs4,nd into Z4. Once againT:x→es2pi/4dTrsxd is
a group homomorphism fromGRs4,nd,1into C*. The 2n indexes are the elements ofTn, the
Teichmüllerset ofGRs4,nd and the 2n bases described by

svk
srddl =

1
Î2n

es2pi/4dTrssr+2kdld, r,k,l P Tn , GRs4,nd s2d

together with the standard basis, form a complete set of mutually unbiased bases ofC2n
ssee

Ref. 8d.

C. How to generalize these formulas?

Formulass1d ands2d as well as others in Ref. 8, share many common characteristics. First of
all, the indexesl, k, r, respectively, for components, vectors, and bases are taken in a finite ringR.
Both formulas link the indexes inR to complex coordinates by a functionf : sr ,k, ld
→TsPsr ,k, ldd whereP is a polynomial andT is a homomorphism fromR,1 into C*. We will
generalize these characteristics as follows:
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1. The functions f: sr ,k, ld→TsPsr ,k, ldd. We consider a much larger class of functions that we
call functions preserving a direct sum decomposition of Rssee Sec. IVd.

2. The set S of indexes. For formulas1d the set of indexes is the wholeR while for formulas2d,
it is a remarkable subset ofR. We will see in Sec. II E that these subsets may be defined for
every ringR as sets closed under multiplication and transversal to a nilpotent ideal ofR.

3. Distinguish the index r. In formulass1d ands2d, the nonstandard bases are indexed byr that
takes all possible values of a set of sizeN. This can only be done for dimensionsN for which
there existN+1 mutually unbiased bases. However, there is, up to now, no result showing
that this is true ifN is not a prime power. Therefore, we propose to give up formulas that are
uniform with respect tor and to consider that each basisr may be described by a different
formula. This means that for eachr, we choose a different functionfr : sk, ld→ f rsk, ld into C*
such that the vectors in basisr are described by

svk
srddl = f rsk,ld, k,l P S, s3d

where eachf r preserves a given decompositionR1 % R2 and S, is as described in the
previous paragraph. For the case of polynomialsP and homomorphismsT, it amounts to
choosing for eachr, different polynomialsPr and homomorphismTr.

D. Properties of rings

In the following we recall various properties of rings that are needed for this paper.

1. Direct sums of rings

Let R+ be a ring where addition is commutative but where multiplication is not necessarily
commutative. If the additive groupR+ is the direct sumR1 % R2 of two subgroups then every
elementr of R can be written in a unique way asr =r1+r2 wherer i PRi andR1ùR2 is reduced to
the zero element. An elementr PR may be represented as a couplesr1,r2d and addition inR
corresponds to componentwise addition of couples. If, moreover,R1 andR2 are two-sided ideals of
R si.e., r ·Ri =Ri =Ri ·r for everyr in Rd, then multiplication inR is also reduced to componentwise
multiplication of couples. Indeed, forr i PRi, r1.r2 belongs to bothR1 and R2 since these are
two-sided ideals and thusr1.r2=0=R1ùR2. For two ring elementsx and y, we obtain for their
product x.y=sx1+x2d .sy1+y2d=x1.y1+x1.y2+x2.y1+x2.y2 and sincexi .yj =0 for i Þ j , we get
x.y=x1.y1+x2.y2. Thussx.ydi =xi .yi as expected. Observe also thata.x1=sa1+a2d .x1=a1.x1 for
everyaPR. We say that the ringR is the direct sum of its idealsR1 andR2. These properties also
hold whenR is the direct sum of more than two ideals.

2. Polynomial functions in a ring

If a ring is a direct sum, then let us show that polynomial functions inR may be evaluated
componentwise. A monomial on the set of variableshx,y, . . .j is a finite product of elements of this
set. In a commutative ringR, a polynomialPsx,y, . . .d+r0 is defined as a linear combinationP of
monomialsson hx,y, . . .jd with coefficients inR and of r0PR. A polynomial P+r0 defines a
polynomial functionsx,y, . . .d→Psx,y, . . .d+r0 that mapsn-uples ofRn to elements ofR. In the
noncommutative case, this definition is not very convenient since generallyx.r .yÞ r .x.y, so that
products of polynomials would not in general be polynomials. Hence we define more generally a
noncommutative polynomial function asP: sx,y, . . .d→ r0+okmksx,y, . . .d, where mksx,y, . . .d
=wksx,y, . . . ;a,b, . . .d is a finite product of noncommuting variables inhx,y, . . .j and of coeffi-
cients from a setha,b, . . .j,R.

Assume now that the ringR is a direct sumR=R1 % R2 and for r PR, let r =r1+r2 be the
corresponding decomposition. We have shown in the previous paragraph that products inR may
be performed componentwise. Thus, for each termwk of a polynomial function
wksx,y, . . . ;a,b, . . .d is equal to wksx1,y1, . . . ;a1,b1, . . .d+wksx2,y2, . . . ;a2,b2, . . .d. As x1.a1

=x1.a and a1.x1=a.x1 for a,xPR we may conclude thatwksxi ,yi , . . . ;ai ,bi , . . .d is equal to
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wksxi ,yi , . . . ;a,b, . . .d, for i =1,2, sothatmksx,y, . . .d=mksx1,y1, . . .d+mksx2,y2, . . .d. Hence, for a

polynomial functionP̄=P+r0 on R1 % R2, we havePsx,y, . . .d=Psx1,y1, . . .d+Psx2,y2, . . .d and

thus forl=−r0= P̄s0,0, . . .d,

P̄sx,y, . . . d = l + P̄sx1,y1, . . . d + P̄sx2,y2, . . . d.

3. The Sylow decomposition of a finite ring

Let R be a finite ring and letuRu=pipi
ei be the factorization of its order into powers of distinct

prime numbers. The additive groupR,1 is a finite commutative group. Hence, it is equal to the
direct product% i Sylspid of its Sylow subgroups and thus every elementr of R,1 can be written
in a unique way asr =or i wherer i PSpi

ªSylspid. We call the elementr i, the pi-component of r
and it is the unique element contained in the intersectionSpi

ù hr +s% jÞi Spj
dj ssee Ref. 6, Chap. 3d.

These subgroups may be defined asSpi
ª hx:pi

eix=0j wherepi
eix is the repeated sum ofpi

ei termsx.
The subgroupsSpi

are two-sided ideals of the ringR, i.e., r .Spi
=Spi

.r =Spi
for everyr PR. This is

due to the right and left distributive property of a ring since

if xPSpi
so thatr .xPSpi

and similarlyx.r PSpi
. Hence every finite ring is the direct sum of its

Sylow ideals and a finite ring that is not decomposable as a nontrivial direct sum must be of prime
power order. Moreover, ifuRu=d1.d2 is the product of two coprime numberssù2d then R=R1

% R2 whereRiª%pudi
Sylspd.

4. Ring with unity

From now on, we mainly consider ringsR containing a multiplicative unity 1 such thatx.1
=x=1.x for every xPR. If R= % iPIRi has a unity 1 andRi Þ h0j then 1i is the unity ofRi. An
elementx has a left inversexL srespectively, right inversexRd if xL .x=1 srespectivelyx.xR=1d. An
element that has both a left and a right inverse is called aunit. If x is a unit, then the inversex−1

is unique sincexL=xL .sx.xRd=sxL .xd .xR=xR. The setUsRd of all units of R is a multiplicative
group and by the componentwise multiplicationUsR1 % R2d=UsR1d % UsR2d. A field is a ring
where every nonzero element is a unit.

5. Nilpotency

An elementn of a ringR is called nilpotent ifnt=0 for some positive integert. The set NilsRd
of all nilpotent elements ofR is called theNilpotent radicalof R. Once again, by the component-
wise multiplication NilsR1 % R2d=NilsR1d % Nil sR2d. We say that an idealN is nilpotent provided
that everynPN is nilpotent. For everyr PR, if we havesr .ndt=0 thensn.rdt+1=n.sr .ndt .r =0 and
thus every nilpotent ideal is two-sided. In every ring with unity, a nilpotent element cannot be a
unit but if n is nilpotent snt=0d then 1+n is a unit. To show this, considerutsnd=1+n+ . . .
+nt−1; then since 1=1−nt=s1−ndutsnd=utsnds1−nd, the elementuts−nd is the inverse of
1+n=1−s−nd.

Let us show that in a commutative ring, NilsRd is an ideal. Ifxn=0 thensr .xdn=rn.xn=0 and
if moreoverym=0 thensx+ydn+m=0 sincesx+ydn+m is a sum of termsxn+m−k.yk which are zero for
køm and forkùm. In a noncommutative ringR, NilsRd is not necessarily an ideal. For instance,
a sum of nilpotent matrices may be invertiblesand thus non-nilpotentd as shown by
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S0 1

1 0
D = S0 0

1 0
D + S0 1

0 0
D .

Thus for the ringM2sRd of 232 matrices over a ringR with unity, the nilpotent radical is not an
ideal. However, the subring of upper triangular matrices is also noncommutative but it contains the
nilpotent ideal

HS0 r

0 0
D:r P RJ .

E. Generalizing Teichmüller sets

For every ringR we would like to define a subsetSR,R for the indexesk, l of vectors and
components, in such a way that for a Galois ringR=GRs4,nd, the setSR is theTeichmüllersetTn

as in formulas2d, while for a finite fieldR=Fpn we haveSR=R as in formulas1d.
The setTn,GRs4,nd has remarkable properties that are used over and over to compute easily

in GRs4,nd ssee Ref. 11d.

s1d The idealNª h2t1: t1PTnj is the nilpotent radical ofGRs4,nd sN2=0d.
s2d Every r PGRs4,nd can be written in a unique way asr = t0+2t1 for somet0, t1 in Tn. ThusTn

contains exactly one representative of each cosethr +NjrPR of N in R; it is a transversal to the
ideal N.

s3d Tn is closed under multiplication. Therefore a product of elements written ast+n for
tPTn andnPN is still written in this way since

This may be generalized to every ringR as follows. We require that the set of indexesSR is
closed under multiplication and that it is a transversal to a nilpotent idealN. Trivially, if R is a field
sas in formulas1dd or even a division ring, thenN=h0j is the only nilpotent ideal,SR=R is the only
transversal toN and it is closed under multiplication.

A commutative local ring is a ring that has a unique maximal idealM and the Galois ring
R=GRs4,nd is local. In a finite commutative local ringR, the unique maximal ideal is NilsRd and
the units ofR are exactly the non-nilpotent elementsssee Ref. 2d. Hence in a local ring every ideal
sÞRd is nilpotent. Every finite commutative ring with unity is a direct sum of local ringsssee Ref.
2, Proposition 8.7d.

F. Functions preserving a direct sum decomposition

Let R=R1 % R2 be a direct sum decomposition of a ringR and letr =r1+r2 be the correspond-
ing decomposition forr PR. Let G,! be a commutative group with an operation! s either “1” or
“·” in this paperd. For a finite set of variableshx,y, . . .j belonging toR, we say that a function
f : sx,y, . . .d→ fsx,y, . . .dPG,! preserves the decomposition R1 % R2 if for a constantlPR,

fsx,y, . . . d = l ! fsx1,y1, . . . d ! fsx2,y2, . . . d for everyx,y, . . . P R. s4d

Observe thatl=sfs0,0, . . .dd−1 becausesx1d2=sy1d2= . . . =0 implies fsx1,y1, . . .d= fsx1+0,y1

+0, . . .d=l! fsx1,y1, . . .d! fs0,0, . . .d. If f i is the restriction of f to Ri then fsx,y, . . .d
=l! f1sx1,y1, . . .d! f2sx2,y2, . . .d. Conversely, for arbitrary functionsf i from Ri into G and
lPG, this last equation defines a function that preservesR1 % R2. It may happen thatf preserves
R1 % R2 but does not preserve another decomposition ofR.

We have seen in Sec. II D that polynomial functionsP on a ringR preserves every direct sum
decomposition ofR sand in this casel=−Ps0,0, . . .dd. Thus, since group homomorphisms pre-
serve sums, ifT is a group homomorphism fromR+ into a commutative groupG! and if
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Psx,y, . . .d is a polynomial function onR, thensx,y, . . .d→TsPsx,y, . . .dd preserves every direct
sum decomposition ofR. Hence, these functions generalize formulass1d and s2d for mutually
unbiased bases since those rely on expressions of types1/ÎNdTsPsk, ldd for k, l PR whereG! is
the multiplicative group of unitary complex number. This is also true for the other formulas
proposed in Ref. 8.

More such sophisticated functions may be constructed by products. Iff ·g is a product of
functions into a commutative groupG that both preserve a direct sum decompositionR=R1

% R2 then it is easy to show thatf ·g also preservesR1 % R2. We have sf ·gdsx,y, . . .d
=l f ·pi=1,2fsxi ,yi , . . .d ·lgpi=1,2gsxi ,yi , . . .d and since the elements ofG commute, we may rear-
range the factors assf ·gdsx,y, . . .d=l f ·lgpi=1,2sf ·gdsxi ,yi , . . .d.

III. SUCH SETS OF MUB CANNOT BE COMPLETE

In this section we prove that even with all these generalizations, it is not possible to construct
complete sets ofN+1 mutually unbiased bases forNÞpn.

Theorem 3.1:Let R=R1 % R2 be a decomposition of a ring R. For i =1,2 let Si be a nonempty
subset of Ri and let N= uS1uuS2u. For each1øcøm, let fc:R+→C* , · be a two variable function
that preserves the decomposition R1 % R2 and let us define N vectorshvk

scdj of CN as

svk
scddl = fcsk,ld k,l P S1 % S2.

Assume that, together with the standard basis, the sets of vectorshvk
scdj1øcøm form a set X of

m+1 mutually unbiased bases. If uSiui=1,2Þ1, then

mø min
i

uSiu , N and the set X is not complete.

Proof: The functionfc preserves the decompositionR1 % R2 so there is a constantlc such that
fcsk, ld=lcfcsk1, l1dfcsk2, l2d. For eachc, let us defineuS1u vectorshak1

scdjk1PS1
of CuS1u anduS2u vectors

hbk2

scdjk2PS2
of CuS2u as

sak1

scddl1
= lc fcsk1,l1d, sbk2

scddl2
= fcsk2,l2d for ki,l i P Sisi = 1,2d.

Hence svk
scddl = fcsk, ld=lcsak1

scddl1
sbk2

scddl2
and since l takes all value in S1 % S2, the vector

vk
scd=vsk1,k2d

scd is equal to the tensor productak1

scd
^ bk2

scdPCuS1uuS2u. If we denote byhvk
s0djkPS1%S2

,

hak1

s0djk1PS1
, hbk2

s0djk2PS2
the standard bases, respectively, inCN, CuS1u, and CuS2u then alsovk

s0d

=vsk1,k2d
s0d =ak1

s0d
^ bk2

s0d.

Therefore if the setshvk
scdj0øcøm form a set X of m+1 mutually unbiased bases in

CN=CuS1uuS2u, then by Proposition A.1 in the Appendix, there existm+1 mutually unbiased bases in
both CuS1u and CuS2u. By Theorem 1.1, if eachuSiui=1,2 is at least 2 thenm+1ø uSiu+1 and
møminiuSiu, uS1uuS2u=N thus uXu=m+1,N+1 andX is not complete. h

Theorem 3.1 requires that the index setS is a product of two subsets. We now prove that this
is always the case ifS,R is closed under multiplication and is transversal to a nilpotent idealN
of R.

Proposition 3.1: In a ring R with1, let S,R be a set closed under multiplication that is a
transversal to a nilpotent ideal N of R.

1. If R=R1 % R2 is a sum of rings with1 then

S= sSù R1d % sSù R2d

and for i=1,2,each Ri, SùRi is closed under multiplication and is a transversal to NùRi.
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2. If uSu is a product d1·d2 of two coprime numbersù2 and if R is finite, then R is a sum
R1 % R2 of rings with1 such thatuSùR1u=d1 and uSùR2u=d2.

Proof: s1d R=R1 % R2 has unitys11,12d. Every idealI of R is equal toI1 % I2 whereI j is an
ideal ofRj andN is the sumN1 % N2 of two nilpotent idealsssee Ref. 2d. Let x̃=s11,0d+N. Since
S is a transversal toN, it contains a unique elementxP x̃ùS where x=s11+n1,n2d for some
sn1,n2dPN1 % N2. SinceN is a nilpotent ideal, it is two-sided and we may consider the quotient
ring R/N where multiplication of cosets is defined assx+Ndsy+Nd=x·y+N. Thus, inR/N we
havex̃2= x̃ whencex2P x̃. Also, x2PSbecauseS is closed under multiplication. Therefore we have
x2=Sù x̃=x and we have

s11 + n1d2 = s11 + n1d s1d, n2
2 = n2 s2d.

By nilpotencyn2
t =0 for some positive integert and bys2d, n2

t =n2 whencen2=0. By nilpotency of
n1, s1+n1d has an inverses11+n1d−1 in R1. Multiplying both sides ofs1d by s11+n1d−1 gives
s11+n1d=1 whencen1=0. Finally x=s11,0dPS and the symmetric argument forSù hs0,12d+Nj
shows thats0,12d also belongs toS.

As hs11,0d ,s0,12djPS, for every ss1,s2dPS, ss1,0d=s·s11,0dPSùR1 and s0,s2d=s·s0,12d
PSùR2. Conversely, it remains to show that for everyss1,0dPSùR1 ands0,s2dPSùR2 we also
have ss1,s2dPS. SinceS is a transversal toN, it contains a unique elementy=ss1+n1,s2+n2d
PSù hss1,s2d+Nj andy·s11,0d=ss1+n1,0d in S. As ss1+n1,0d andss1,0d are inS and belong to
the same coset ofN, these must be equal andn1=0. Similarlyn2=0 so thaty=ss1,s2dPS whence
S=sSùR1d % sSùR2d. Finally, let us show thatsSùRid is a transversal toNi =NùRi in Ri. Every
cosetsr1,0d+N1 is embedded insr1,0d+N which contains a unique elements=sr1+n1,n2d of S.
Then s·s11,0d=sr1+n1,0d is in SùR1 and in sr1,0d+N1 and so,SùR1 contains at least one
representative of each coset. If two elements ofSùR1 belong to the same coset ofN1 then these
belong to the same coset ofN.N1 and thus are equal. The proof is similar forsSùR2d.

s2d Let psdd denote the set of prime divisors of an integerd. For a finite ringR and a divisor
d of uRu, let us define Sylspsdddª%pPpsddSylspd. SinceS is a transversal to the idealN in R then
d1·d2= uSu= uRu / uNu is a divisor ofuRu. If p1=psd1d andp2=psuRud \psd1d, we know from Sec. II D
that R=Sylsp1d % Sylsp2d and sinceR has unity 1, Sylspid has unity 1i. Thus, as proven ins1d,
S=sSùSylsp1dd % sSùSylsp2dd and

d1 ·d2 = uSu = uSù Sylsp1du · uSù Sylsp2du. s5d

As SùSylspid is a transversal to the idealNùSylspid then uSùSylspidu divides Sylspid and so is
coprime todj s j Þ id. Thus, by equalitys5d, uSùSylspidu must dividedi and symmetricallydi

divides uSùSylspidu so thatdi = uSùSylspidu. h

Finally, we obtain our main result: complete sets of MUBs described by generalizations of
known formulas only exist for prime power dimensions. Moreover, we provide an upper bound for
the number of MUBs described by such formulas.

Theorem 3.2: Let R be a finite ring with unity. Let S,R be a subset of N elements that is
closed under multiplication and transversal to a nilpotent ideal. For1øcøN, let Tc:R+→C*,· be
a group homomorphism and let Pc:R2→R be a two variables polynomial function. Let us define
N sets of vectorshvk

scdj1øcøN in CN by

svk
scddl =

1
ÎN

TcsPcsk,ldd, k,l P S,

and let the set XhTcjhPcj be the union of the standard basis withhvk
scdj1øcøN.

1. A set XhTcjhPcj contains at most1+minihpi
eij mutually unbiased bases where N=pipi

ei is the
factorization of N into powers of distinct prime numbers.

2. There exists a complete set XhTcjhPcj of N+1 mutually unbiased bases if and only if N is a
power of a prime number.
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Proof:

1. We prove that the conditions of Theorem 3.1 apply here. First we show that every vectorvk
scd

is unbiased with the standard basishekj. Everyr PR has finite additive ordernr snr ·r =0d. By
the homomorphism property

and asTcs0d=1 we must haveuTcsrdun=1 whenceuTcsrdu=1 for everyr in R. Thus for every
vector vk

scd we obtainukel uvk
scdlu= usvk

scddlu= uTcsPcsk, lddu /ÎN=1/ÎN as announced. Letm+1
be the maximal number of mutually unbiased bases contained inXhTcjhPcj and let
Y,XhTcjhPcj be a set ofm+1 mutually unbiased bases. Since we have shown that
Yø hhekjj is also a set of MUBs, the standard basishekj must be inY.
As uSu=N=pi pi

ei we may use Proposition 3.1s2d to show that there is a ring decompo-
sition R= % i Ri such thatS= % i SùRi and uSùRiu=pi

ei. Finally, since the functionssk, ld
→TcsPcsk, ldd preserve every direct sum decomposition ofR ssee Sec. II Dd, we may
apply Theorem 3.1 toY to show that for everyi we must havemøpi

ei. Hence 1+m
ø1+minihpi

eij.
2. If we have N+1 such MUBs, then bys1d, pipi

ei =Nøminihpi
eij, which implies that

N=minihpi
eij and thusN is a prime power. Conversely ifN=pi

ei, we have shown in Sec. II that
the sets ofN+1 MUBs given by formulass1d and s2d may be described as setsXhTcjhPcj. h

The bound 1+minihpi
eij can be easily reached for dimensionN=pi pi

ei. It suffices to viewCN

as ^ iCpi
ei
. As kbi ^ ckubj ^ cll=kbi ubjl .kckucll we may conclude that a tensor product of two sets

with t MUBs is a set oft MUBs in the product space. Since there exist at least 1+minihpi
eij MUBs

in eachC pi
ei

we may construct by tensor product of these, a set of 1+minihpi
eij MUBs in the

product spaceCN.

IV. DISCUSSION ON LARGER GENERALIZATIONS AND CONCLUSION

In order to further generalize formulas3d it could be tempting to allow the index setS to be
any subset of a finite ring. Unfortunately, this leads to a situation where any set of vectors could
be described by such a formula. To see this, let us recall that functionsf that preserve a decom-
position of a ringR are arbitrary functions on each componentRi. If we choose a ringR that has
no decompositionsa field, for instanced then such anf is arbitrary onR. If S is a subseths1, . . . ,sNj
of N elements, then we may associate an arbitrary set of vectorshvkj1økøN in CN to the couples in
S3S by ssk,sld→ svkdl.

This may be extendedsin many waysd to a two variable function fromR3R into C that
preserves every decomposition ofR ssinceR cannot be decomposedd. One cannot expect to reach
algebraic conclusions that are valid for allN3N arrays with arbitrary complex entriessvkdl.

For these reasons, it is difficult to generalize formulas3d much more. It indicates that for
dimensions that are not prime powers, algebraic formulas providing complete sets of MUBs
should have a radically new structure. However, do these complete sets exist for any dimension?
Mathematicians are used to properties that behave differently for some particular dimensions but
such an answer is unsatisfactory from a physical point of view. Wooters has shown that the
absence ofN+1 MUBs for a dimensionN would be problematic for defining his discrete Wigner
function in systems havingN degrees of freedomssee Ref. 15d.
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APPENDIX

In what follows, kul denotes the classical Hermitian productka,bl=Sisaid* bi. The tensor
productv ^ w is defined bysv ^ wdsi,jd=ai .bj and thuskv1 ^ w1uv2 ^ w2l=kv1uv2l .kw1uw2l.

Proposition A.1: Let N=N1.N2 be a product of positive integers and lethvi,j
s1dj¯ hvi,j

srdj be r

mutually unbiased bases ofCN>CN1 ^ CN2 sfor si , jdP N̄ª h1¯N1j3 h1¯N2jd. Assume that for
each1ø tø r there are N1 vectorshai

stdj and N2 vectorshbj
stdj such that

vi,j
std = ai

std
^ bj

std

for everysi , jdP N̄, then for1ø tø r, hai
std / iai

stdij and hbj
std / ibj

stdij are r mutually unbiased bases,
respectively, inCN1 and CN2.

Proof: First we show thathai
stdj and hbj

stdj are orthogonal bases. Since othonormality ofhvi,j
stdj

implies kvi,j
std uvk,l

stdl=dhsi,jd,sk,ldj=dikd jl , we havedikd jl =kai
std

^ bj
std uak

std
^ bl

stdl=kai
std uak

stdlkbj
std ubl

stdl. For

every j , bj
stdÞ 0̄ sotherwisevi,j

std=0̄d so thatkai
std uak

stdlkbj
std ubj

stdl=dikd j j =dik implies thatkai
std uak

stdl=0
for i Þk. Hencehai

stdj is a set ofN1 mutually orthogonal vectors, thus an orthogonal basissnot
necessarily orthonormald of CN1. Permuting the role ofa andb gives the same result forhbj

stdj in
CN2. Furthermore if we fix 1ø j øN2, the equalities 1=kvi,j

std uvi,j
stdl=kai

std uai
stdlkbj

std ubj
stdl may be di-

vided by the constantkbj
std ubj

stdl so that for every 1ø i øN1, Lastdª kai
std uai

stdl is constant with
respect toi and equal to 1/kbj

std ubj
stdl. Symmetrically,Lbstdª kbj

std ubj
stdl is also constant for every

1ø j øN2 and

Lastd ª kai
stduai

stdl =
1

kbj
stdubj

stdl
=

1

Lbstd
for every si, jd P N̄. sA1d

Now, it is sufficient to prove the MUB property for each couple of bases among ther, in CN1

and CN1. For instance let us considerhvi,j
s1dj and hvk,l

s2dj. We define Ai,kª ukai
s1d uak

s2dlu and
Bj ,lª ukbj

s1d ubl
s2dlu. The equality

sA2d

implies thatAi,k and Bj ,l are nonzero. Therefore ifsi ,kd is fixed ands j , ld varies, Ai,k can be
simplified and all theBj ,l are equal to a common valueKB. Symmetrically, theAi,k are equal to a
common valueKA.

In basishai
s1dj we haveak

s2d=Siliai
s1d for li =kai

s1d uak
s2dl / kai

s1d uai
s1dl. Now, equalitiessA1d and

sA2d prove thatuliu=KA/Las1d whence it is constant for everysi ,kd. Therefore

Las2d = ukak
s2duak

s2dlu = UKUoi

liai
s1dUo

i8
LU

= o
i

N1

uliu2ukai
s1duai

s1dlu = N1uliu2Las1d = N1S KA

Las1d
D2

Las1d =
N1sKAd2

Las1d
, sA3d

that isLas1dLas2d=N1sKAd2.
Finally, we show thathai

s1d / iai
s1dij andhak

s2d / iak
s2dij are mutually unbiased bases inCN1. Indeed

UKU ai
s1d

iai
s1di
U ak

s2d

iak
s2diLU2

=
ukai

s1duak
s2dlu2

iai
s1di2iak

s2di2 =
sKAd2

Las1dLas2d
=

1

N1

sby Eq. sA3dd.
The result for CN2 is obtained in the same way, usingbl

s2d=S jm jbj
s1d for m j

=kbj
s1d ubl

s2dl / kbj
s1d ubj

s1dl, to giveLbs1dLbs2d=N2sKBd2. h
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This proposition can immediately be extended as follows toCN>CN1 ^ ¯ ^ CNs for dimen-
sion N=N1. . .Ns. Under assumption that each of thek bases is a tensor product, we may use
induction to conclude to the existence ofk mutually unbiased bases in eachCNi.
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We develop an approximate second quantization method for describing the many-
particle systems in the presence of bound states of particles at low energiessthe
kinetic energy of particles is small in comparison to the binding energy of com-
pound particlesd. In this approximation the compound and elementary particles are
considered on an equal basis. This means that creation and annihilation operators of
compound particles can be introduced. The Hamiltonians, which specify the inter-
actions between compound and elementary particles and between compound par-
ticles themselves, are found in terms of the interaction amplitudes for elementary
particles. The nonrelativistic quantum electrodynamics is developed for systems
containing both elementary and compound particles. Some applications of this
theory are considered. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1812359g

I. INTRODUCTION

The second quantization is the effective method, which is used for description of physical
processes in quantum theory of many-particle systems. The key role of this method consists in
introduction of creation and annihilation operators of particles in a certain quantum state. The
operators of physical quantities are constructed in terms of creation and annihilation operators.
Such a description of quantum many-particle systems implies the particles to be elementarysnot
consisting of other particlesd. Moreover, it is absolutely accurate despite of the possible existence
of compound particles. Since the interactions between particles may lead to formation of bound
states, the standard second quantization method becomes too cumbersome. For this reason the
construction of approximate quantum-mechanical theory for many-particle systems consisting of
elementary particles and their bound states represents an actual problem. In this theory it is
necessary to introduce the creation and annihilation operators of bound states as the operators of
elementary objectssnot compoundd. In addition we should preserve the required information
concerning internal degrees of freedom for bound states. Such an approach may be actually
realized in the approximation in which the binding energy of compound particles is much greater
in comparison to their kinetic energy.

The problems leading to the necessity of accounting for compound particles along with el-
ementary ones are typical in studying of the interaction of irradiation with mattersthe matter
consists of neutral atoms or moleculesd. The atoms or molecules may be both in the ground and
excited states when it is necessary to take into account their internal structure retaining the
convenience and simplicity of the second quantization method. Such a situation should take place
in describing the experiments on laser cooling of atoms1–3 or experiments on observation of
Bose–Einstein condensates in magnetic traps, where a condensate temperature is reached by laser
cooling of gases of alkali atoms.4 The similar problem of accounting for the bound states occurs
also in quantum chemistry, for example, in studying of chemical reactions.
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Thus, the construction of the quantum theory of many-particle systems in the presence of
bound states of particles within the second quantization method represents not only academic but
also applied interest. The formulation of the quantum theory itself is to be done so that the
operators of physical quantities are constructed through the creation and annihilation operators of
elementary particles and their bound states.

In this paper we demonstrate a possibility of construction of the above-mentioned quantum-
mechanical theory by considering a system of two kinds of charged fermions. In this theory the
compound particlessatomsd consist of two fermions of various kinds. The choice of such model is
not associated with principle difficulties and makes it possible to simplify calculations and to
obtain the visual results.

As applications of the developed theory we study a spontaneous radiation of two-component
excited atom and obtain the expression for its probabilityssee, e.g., Ref. 5d. We also investigate
the attractive forces acting between neutral atoms at long distancessthe van der Waals forcesd and
derive the expression for the potential of the van der Waals forces.6 Finally we consider a question
concerning the scattering of photons and elementary particles by bound states.7

II. CREATION AND ANNIHILATION OPERATORS OF BOUND STATES OF PARTICLES

Consider a system consisting of two kinds of fermions with massesm1 and m2. As was
mentioned in the Introduction this case is more visual in order to demonstrate the procedure for
obtaining the operators of basic physical quantities within the second quantization method in the
presence of bound states of particles. We shall see that the developed methodology does not
contain any difficulties for its generalizationsthe bound states of more than two particles, the
presence of bosons in the system, the bound states of bosons and boson–fermion bound statesd.
For simplicity we do not take into account a spin variablesthis can be done without any difficul-
tiesd.

Let ĉ1sxd, ĉ2sxd be the annihilation operators of two kinds of fermions at the pointx,

ĉ1sxdu0l = ĉ2sxdu0l = 0,

whereu0l is a vacuum state vector. Then the state vectors

ux1, . . . ,xn,y1, . . . ,yml = ĉ1
+sx1d ¯ ĉ1

+sxndĉ2
+sy1d ¯ ĉ2

+symdu0l s1d

sn,m=0,1,2, . . .d form a basis in the space of statesH. In these states the particles are at the
certain pointsx1, . . . ,xn;y1, . . . ,ymPR of the coordinate space. The state vectorss1d satisfy the
orthogonality and normalization relations and form a complete set of state vectors.

We assume that the particles of two different kinds form a bound state specified by the wave
function

wasx1,x2,xd = wasx1 − x2ddsx − Xd, X =
m1x1 + m2x2

m1 + m2
, s2d

wherex is the space coordinate anda are the quantum numbers of the bound statesatomd swe
suppose that the particles of the same kind do not form the bound statesd. The corresponding state
vector has the form

ua,xl =E dx1 dx2 wasx1 − x2ddsx − Xdĉ1
+sx1dĉ2

+sx2du0l.

For this reason the operators

ŵa
+sxd =E dx1 dx2 wasx1 − x2ddsx − Xdĉ1

+sx1dĉ2
+sx2d s3d

we shall call as the creation operators of the bound statessatomsd, so that
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ŵa
+sxdu0l = ua,xl, ŵasxdu0l = 0.

If the atom has a certain momentum, then its state vector is given by

ua,pl =
1

ÎV E dx1 dx2 wasx1 − x2deipXĉ1
+sx1dĉ2

+sx2du0l,

whereV is the volume of the system. The corresponding creation operatorŵa
+spd of the atom in the

state with momentump is defined by

ua,pl = ŵa
+spdu0l, ŵa

+sxd =
1

ÎVo
p

ŵa
+spde−ipx.

Taking into account that

E dy1 wa
* sy1 − y2dwbsy1 − y2d = dab,

it is easy to find the following commutation relations:

fŵasxd,ŵa8
+ sx8dg = daa8dsx − x8d + x̂aa8sx,x8d, fŵasxd,ŵa8sx8dg = 0,

where

x̂aa8sx,x8d =E dy dy8 wa
* sydwa8sy8dHĉ1

+Sx +
m2

M
yDĉ1Sx8 +

m2

M
y8DdSy − y8 −

m1

M
sx − x8dD

+ ĉ2
+Sx8 −

m1

M
y8Dĉ2Sx −

m1

M
yDdSy − y8 +

m2

M
sx − x8dDJ, M = m1 + m2,

moreover,x̂aa8sx ,x8du0l=0. The vectors

s4d

have an obvious physical meaning under the following conditions:

uxi − x ju * a, uyi − y ju * a, uzi − zju * a,

s5d
uxi − y ju * a, uxi − zju * a, uyi − zju * a

sx ,y ,zPRa, a@ r0, r0 is the radius of the bound state; the definition ofa see belowd. In this case
the elementary particles and their bound states are at the certain space points.

Notice that the state vectorss4d do not form a basis in the Gilbert spaceH if s5d are valid.
However, their linear span, which is a totality of the following vectors:

s6d

form a subspaceHa of the spaceH. Let us show that the state vectorss4d fwith conditionss5dg
form an orthonormalized basis in the subspaceHa. To this end it is necessary to take into account
that in calculating of the following vacuum averages:

k0uĉ1sx1d ¯ ĉ2sx2d ¯ ŵasxdŵa8
+ sx8d ¯ ĉ2

+sx28d ¯ ĉ1
+sx18d ¯ u0l

we can use the Wick theorem with the following contractions:
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ĉi
a

sxdĉi8
+

a

sx8d = k0uĉisxdĉi8
+ sx8du0l = dii8dsx − x8d, ĉi

a
sxdĉi8

a
sx8d = 0,

if to consider the operatorsĉ1, ĉ2, ŵ referred to the moment of time +0, and operatorsŵ+, ĉ2
+, ĉ1

+

to the moment of time −0. In addition, we should remember that the creation and annihilation

operatorsŵa, ŵa8
+ depend onĉi, ĉi8 fsees3dg. We also assume that the wave functions2d of the

atom differs from zero forux1−x2u, r0. Taking into accounts3d and noting that forux18−x28u.a,

ŵa
ab

szdĉ2
+

b
sx28dĉ1

+

a
sx18d =E dz1 dz2wa

* sz1 − z2ddsz − Zdĉ1
a

sz1dĉ2
b

sz2dĉ2
+

b
sx28dĉ1

+

a
sx18d

= wa
* sx18 − x28ddsz − X8d = 0,

X8 =
m1x18 + m2x28

m1 + m2

and also

ŵa
ab

szdŵa8
+

ba

sz8d =E dz1dz2dz18dz28wa
* sz1 − z2ddsz − Zdwa8sz18 − z28ddsz8

− Z8dĉ1
a

sz1dĉ2
b

sz2dĉ2
+

b
sz28dĉ1

+

a
sz18d

=E dz1 dz2wa
* sz1 − z2ddsz − Zdwa8sz1 − z2ddsz8 − Zd = daa8dsz − z8d

sthe double contractions correspond to the operatorsŵa, ŵa
+d we get

s7d

This relation shows that the vectorss6d form the orthonormalized basis in the subspaceHa if to
consider the creation and annihilation operatorsŵa

+szd, ŵaszd as the Bose operators, which com-

mute withĉisxd, ĉi
+sxd. The quantityPx8 in s7d is equal to +1 if the number of permutations of the

argumentsx18¯xn8 is even and it is equal to −1 if the number of these permutations is odd. The
quantityPy8 is defined similarly. However, the case when it is necessary to take into account a
more complicated arrangement of the contractions betweenŵa, ŵa

+:

x4
a

x48
b
¯ x2

c
x28
d
¯

e
x1
e

x18
d
¯ x3

c
x38
b
¯

a

can take placesthe odd indices correspond to the creation operators and even to annihilation
operatorsd. Sincex18=x28, x2=x3, x48=x38,

ux1 − x18u & r0, ux18 − x2u & r0, ux38 − x2u & r0, ux4 − x38u & r0,

whence ux4−x1u&4r0. Therefore, ifaø4r0, then the above contractions are to be taken into
account. If however, we consider then-particle states, then the discussed arrangements of the
contractions are not to be taken into account forn&a/ r0 fwe emphasize thatr0/a is a small
parameter in our problem, sees11dg. The above mentioned concerns the majority of problems in
nonrelativistic quantum theory, where a finite number of particles is usually studiedssee Secs. V
and VId.
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With the use ofs7d it is easy to find the projection operatorPHa
onto the subspaceHa,

such that the operatorsAI acting in the subspaceHaPH correspond to the operators of physical
quantitiesA that act inH shereinafter the sums of1,2, . . . ,n-particle subspaces over the bound
states are considered;n<a/ r0@1d,

AI = PHa
APHa

. s8d

Let us introduce now an auxiliary spaceH̃ with the Fermi creation and annihilation operators
x̂1

+sxd, x̂2
+sxd, x̂1sxd, x̂2sxd and Bose creation and annihilation operatorsĥa

+sxd, ĥasxd and take the
vectors

ux1, . . . ,y1, . . . ,z1, . . . d = x̂1
+sx1d ¯ x̂2

+sy1d ¯ ĥa
+sz1d ¯ u0d,

as a basis of this space, whereu0d is a vacuum vector inH̃. Then the linear span of the vectors

ux1, . . . ,y1, . . . ,z1, . . . d P H̃a, x,y,z P Ra

determines the subspaceH̃a of the spaceH̃.

Now we can easily establish the isomorphic correspondence betweenHa and H̃a:

ux1, . . . ,y1, . . . ,z1, . . . l ⇔ ux1, . . . ,y1, . . . ,z1, . . . d,

which preserves the scalar product

kx8, . . . ,y8, . . . ,z8, . . . ux, . . . ,y, . . . ,z . . . l

= sx8, . . . ,y8, . . . ,z8, . . . ux, . . . ,y, . . . ,z . . . d, x,y,z;x8,y8,z8 P Ra.

We can also establish the isomorphism between the operatorsAI ⇔ Ã, acting in the spacesHa and

H̃a according to the formula:

sx8, . . . ,y8, . . . ,z8, . . . uAI ux, . . . ,y, . . . ,z . . . d = kx8, . . . ,y8, . . . ,z8, . . . uÃux, . . . ,y, . . . ,z . . . l.

s9d

This isomorphic correspondence is remained after the multiplication of the operator by a number,
after addition of operators, and after multiplication of operators:

lAI ⇔ lÃ, AI + BI ⇔ Ã + B̃, AI BI ⇔ ÃB̃.

The formulass8d and s9d lead to

sx8, . . . ,y8, . . . ,z8, . . . uÃux, . . . ,y, . . . ,z . . . d = kx8, . . . ,y8, . . . ,z8, . . . uAux, . . . ,y, . . . ,z . . . l.

s10d

This relation determines the operators of various physical quantitiesÃ acting in H̃a and, hence,
transfers the quantum theory in which the compoundsthe bound statesd and elementary particles

exist on an equal basis from the space of statesH onto the space of statesH̃a. We would like to
remind here thatŵa

+ enterings4d is determined bys3d.
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The relations10d defines the operatorÃ in H̃a uniquely, but it does not define it uniquely inH̃.

It is evident that the operatorÃ acting in H̃ scontinued fromH̃a to the whole spaceH̃d is deter-

mined up to the termÃ8, the matrix elements of which are zero in the spaceH̃asÃ=Ã8+Ã9d. If to

introduce the projection operatorPH̃a
onto the subspaceH̃a and to require that the operatorÃ has

no nonzero matrix elements in the orthogonal subspace, then the operatorÃ will be defined inH̃

uniquely,Ã=PH̃a
Ã9PH̃a

. We will omit the projection operatorPH̃a
when constructing the operator

Ã acting inH̃. The reason for this is the assumption that the matrix elements of the operatorssin
the position spaced, corresponding to a quite large external parameterR,uxi −x ju give a dominant
contribution to the quantum-mechanical processes. Further we will assume thatR@ r0 susually in
case of particle collisionsR−1,ÎmE, whereE is the particle kinetic energyd. The latter inequality
makes it possible to choose parametera fsees5dg as follows:8

R@ a @ r0. s11d

The matrix elements of the operators should not depend on parametera chosen by this way. Let us
mentally decrease the radius of a bound state,r0→0. Then the whole written scheme, as we have

already noted, does not depend ona up to the valuesa=r0. Therefore, the subspaceH̃a can be

identified with H̃ due to the inequalityR@a. In other words, one can consider thatPH̃a
→1 for

a→0. At the same time we do not break the quantum-mechanical description of bound states in
virtue of the inequalitya@ r0. From the physical point of view the inequalityr0!R gives the
stability domain for the bound states considered as elementary particles. The calculation of the
following approximation is to be associated with accounting of the difference of the subspaceHa

from the spaceH.

Finally we note that for an arbitrary vectoru dP H̃a the following evident relations are valid:

ẑsxdĵsx8du d = 0, s uẑ+sxdĵ+sx8d = 0, ux − x8u , a, s12d

or

ẑsxdĵsx8dH̃a = 0, H̃aẑ+sxdĵ+sx8d = 0, ux − x8u , a,

whereẑ and ĵ are any of the annihilation operatorsx̂1, x̂2, ĥ.

III. THE STRUCTURE OF Â
˜
„u,v … OPERATORS

Here we consider the method for obtaining the operatorsÂ
˜

. Let the operatorÂ represent a

normal-ordered production ofĉisvd, ĉi
+sud si =1,2d,

Âsu,vd = ĉ1
+su1d ¯ ĉ2

+su2dĉ1sv1d ¯ ĉ2sv2d ¯ . s13d

The operators of such type are the particle density operatorr̂isxd,

r̂isxd = ĉi
+sxdĉisxd,

the momentum density operatorp̂isxd,

p̂isxd = −
i

2
Sĉi

+sxd
]ĉisxd

]x
−

]ĉi
+sxd
]x

ĉisxdD ,

a Hamiltonian of the system, etc.
The matrix element on the right-hand side ofs10d may be written as the following vacuum

average:
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k0uĉ1sx1d ¯ ĉ2sx2d ¯ ŵasxd ¯ Âsu,vdŵa8
+ sxd ¯ ĉ2sx28d ¯ ĉ1sx18d ¯ u0l.

Let us note that when calculating this average by using Wick’s theorem, the quantity, which is
averaged over the vacuum state has the meaning of a mixedT-product if to consider the operators

ĉ1, . . . ,ĉ2, . . . ,ŵ , . . . referring to the moment of time +0, the operatorsĉ1
+, . . . ,ĉ2

+,ŵ+, . . . to −0,

and the normal-ordered operatorÂsu ,vd referring to the moment of time 0. Thus, there is no need

to place the contractions inside the expression forÂsu ,vd. Let

Absy;y8;u,vd ; Absy1, . . . ,y2, . . . ,y, . . . ;y18, . . . ,y28, . . . ,y8, . . . ;u,vd s14d

be the analytic expression that corresponds to the diagram “b.” For this diagram the operators with
the argumentsu are related to the operators with the argumentsy1, . . . ,y2, . . . ,y , . . . . In addition,
the latter arguments are spaced apart by the distances greater thana and coincide with some of the
argumentsx1, . . . ,x2, . . . ,x , . . . . The similar statement should be also made concerning the argu-

mentsy18 , . . . ,y28 , . . . ,y8 , . . . . Then, the operatorÂ
˜ su ,vd acting inH̃ is given, according tos5d, by

Â
˜ su,vd = o

b
E R̂1R̂2R̂Absy;y8;u,vdR̂18R̂28R̂8, s15d

where

R̂1 = p x̂+sy1ddy1, R̂2 = p x̂+sy2ddy2, R̂= p ĥ+syddy,

R̂18 = p x̂sy18ddy18, R̂28 = p x̂sy28ddy28, R̂8 = p ĥsy8ddy8.

Here the summation is taken over all diagrams of the described type.

If Âsvd=1 fsee the proof ofs7dg, then Â
˜ svd=1 on the subspaceH̃a. Let now Âsu ,vd=ĉ1svd.

Then the only diagrams of the described type for the vacuum averagek0u¯ ĉ1svd¯ u0l are the
following diagrams:

Ab1
= ĉ1

a
svd . . . ĉ1

+

a
sy8d, Ab2

= ĉ2
a

sy2d ¯ ĉ1
b

svd ¯ ŵa
+

ba
sy8d.

The expressions

Ab1
sy18;vd = dsv − y18d,

Ab2
sy2;y8,vd =E dx1 dx2 wasx1 − x2ddsy8 − Xddsv − x1ddsx2 − y2d = wasv,y2,y8d,

correspond to the above-mentioned diagrams. Herewasv ,y2,y8d is defined in accordance withs2d.
Therefore, according tos15d we have

ĉ
˜

1svd =E dy18 Ab1
sy18,vdx̂1sy18d +E dy2 dy8 Ab2

sy2;y8,vdx̂2
+sy2dĥsy8d = x̂1svd + Ô1svd,

s16d

where

Ô1svd =E dy ŵsv,ydx̂2
+syd, ŵsx1,x2d = wasxdĥasXd s17d

andX is given bys2d, x=x1−x2. Similarly, one finds
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ĉ
˜

2svd = x̂2svd + Ô2svd, s18d

where

Ô2svd =E dy x̂1
+sydŵsy,vd.

When derivings16d and s18d, we have essentially used the inequalitiess5d.
Now let us considerÂsu ,vd=ĉ1

+sudĉ1svd. In this case the following five diagrams

A1 = ĉ
a
¯ ĉ1

+

a
sudĉ1

b
svd ¯ ĉ+

b
, A2 = ĉ

a
¯ ĉ

b
¯ ĉ1

+

b
sudĉ1

c
svd ¯ ŵ+

ca
,

A3 = ŵ
ab
¯ ĉ1

+

b
sudĉ1

c
svd ¯ ĉ+

c
¯ ĉ+

a
,

A4 = ŵ
ab
¯ ĉ1

+

b
sudĉ1

c
svd ¯ ŵ+

ca
, A5 = ĉ

a
¯ ŵ

bd
¯ ĉ1

+

d
sudĉ1

c
svd ¯ ŵ+

ca
¯ ĉ+

b

correspond to this operatorsthe indices 1 and 2 forĉ andĉ+ can be easily restored if we take into
accounts3d and the definition of contractionsd. The analytic expressions for these diagrams have
the form

Â
˜

1 = x̂1
+su1dx̂1sv1d, Â

˜
2 =E dz1 dz2 ŵsz1,z2ddsz1 − v1dx̂1

+su1dx̂2
+sz2d =E dz2 ŵsv1,z2dx̂1

+su1dx̂2
+sz2d,

Â
˜

3 =E dz1 dz2 ŵ+sz1,z2ddsz1 − u1dx̂2sz2dx̂1sv1d =E dz2 ŵ+su1,z2dx̂2sz2dx̂1sv1d,

Â
˜

4 =E dz1 dz2 dz18 dz28 ŵ+sz1,z2dŵsz18,z28ddsz1 − u1ddsv1 − z18ddsz2 − z28d =E dz2 ŵ+su1,z2dŵsv1,z2d,

Â
˜

5 = −E dz1 dz2 dz18 dz28 ŵ+sz1,z2dŵsz18,z28ddsz1 − u1ddsv1 − z18dx̂2
+sz28dx̂2sz2d

= −E dz2 dz28 ŵ+su1,z2dŵsv1,z28dx̂2
+sz28dx̂2sz2d,

whence, we find the operatorss15d corresponding to the diagramss14d,

Â
˜

1 = x̂1
+su1dx̂1sv1d, Â

˜
2 = x̂1

+su1dÔ1sv1d, Â
˜

3 = Ô1
+su1dx̂1sv1d, Â

˜
4 + Â

˜
5 = Ô1

+su1dÔ1sv1d.

In obtaining the latter expression, we have taken into account the anticommutative relations forx̂,

x̂+. Next bearing in minds16d and s18d we obtain the final expression forÂ
˜ su ,vd=ĉ1

+su1dĉ1
˜ sv1d

that corresponds toÂsu ,vd=ĉ1
+su1dĉ1sv1d:

ĉ1
+su1dĉ1sv1d → ĉ1

+su1dĉ1
˜ sv1d = ĉ

˜
1
+su1dĉ˜ 1sv1d. s19d

Similarly, one gets
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ĉ1su1dĉ1sv1d → ĉ1su1dĉ1
˜ sv1d = ĉ

˜
1su1dĉ˜ 1sv1d,

s20d

ĉ1
+su1dĉ2sv1d → ĉ1

+su1dĉ2
˜ sv1d = ĉ

˜
1
+su1dĉ˜ 2sv1d, . . . .

In the general case the following formula is valid:

ĉi1
+ sui1

d ¯ ĉin
+ suin

dĉ j1
sv j1

d ¯ ĉ jm
sv jm

d → ĉi1
+ sui1

d¯ĉ jm
˜ sv jm

d = ĉ
˜

i1
+ su1d ¯ ĉ

˜
jm

sv jm
d. s21d

To explain this formula we note that each ofĉ jsv jd for ĉi
+suidg enteringÂsu ,vd fsees13dg is related

to other operatorsĉ+ sor ĉd not enteringÂsu ,vd only by unique way, which leads to the binary

relations s19d and s20d. Therefore, we come tos21d by sorting out all the operatorsĉi, ĉi8
contained inÂsu ,vd.

The operatorsĉisxd, ĉ jsx8d are anticommutative. For this reason there is a question concern-

ing the consistency ofs20d and s21d. The anticommutativity ofĉ
˜

isxd, ĉ
˜

jsx8d fand alsoĉ
˜

i
+sxd,

ĉ
˜

j
+sx8dg represents the consistency condition of these formulas,

hĉ˜ isxd,ĉ˜ jsx8dj = hĉ˜ i
+sxd,ĉ˜ j

+sx8dj = 0.

The validity of these anticommutative relations can be easily proved if to use the definitions

s16d–s18d for ĉ
˜

, ĉ
˜ + and the commutative relations forx̂, x̂+ and ĥa, ĥa

+.

IV. THE OPERATORS OF BASIC PHYSICAL QUANTITIES

In this section we consider the operators of basic physical quantities, which act in the Hilbert

spaceH̃. Let us start from the density operator for particles of the first kind. The corresponding
operator acting in the original Hilbert spaceH is of the form

r̂1sxd = ĉ1
+sxdĉ1sxd.

Hence, in accordance withs20d, one finds

r̃̂1sxd = ĉ
˜

1
+sxdĉ˜ 1sxd = x̂1

+sxdx̂1sxd + Ô1
+sxdx̂1sxd + x̂1

+sxdÔ1sxd + Ô1
+sxdÔ1sxd.

Note that the operators with zero matrix elements in the subspaceH̃a appear on the right-hand side
of s19d because of pointsu1 andv1 are close to each other. Since

Ô1
+sxdx̂1sxd =E dy ŵ+sx,ydx̂2sydx̂1sxd, x̂1

+sxdÔ1sxd =E dy x̂1
+sxdx̂2

+sydŵsx,yd

andŵsx ,yd differs from zero only forux−yu&a, these operators according tos12d do not have the

matrix elements in the subspaceH̃a and therefore can be omitted. Using the permutation relation

hx̂2
+sz1d ,x̂2sz2dj=dsz1−z2d the operatorÔ1

+sxdÔ1sxd is written as

Ô1
+sxdÔ1sxd =E dz ŵ+sx,zdŵsx,zd +E dz1 dz2 ŵ+sx,z2dŵsx,z1dx̂2

+sz1dx̂2sz2d.

The matrix element of the second term is zero in the subspaceH̃a because ofz1<z2<x fsees12dg.
For this reason this term can be omitted. Thus, with the use of the method that was described in
preceding section we have
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r̃̂1sxd = x̂1
+sxdx̂1sxd +E dz ŵ+sx,zdŵsx,zd. s22d

Similarly, if r̂2sxd=ĉ2
+sxdĉ2sxd represents the density operator for particles of the second kind,

then r̂2sxd→ r̃̂2sxd, where

r̃̂2sxd = x̂2
+sxdx̂2sxd +E dz ŵ+sz,xdŵsz,xd. s23d

Bearing in minds16d and the assumption concerning the “small radius” of the bound state, one
gets the following formulas:

E dz ŵ+sx,zdŵsx,zd < ĥa
+sxdĥasxd, E dz ŵ+sz,xdŵsz,xd < ĥa

+sxdĥasxd,

which allow us to obtain the densities operators for particles of the first and second kinds,

r̃̂1sxd = x̂1
+sxdx̂1sxd + ĥa

+sxdĥasxd, r̃̂2sxd = x̂2
+sxdx̂2sxd + ĥa

+sxdĥasxd. s24d

Thus, the operatorsĥa
+sxd, ĥasxd can be interpreted as the creation and annihilation operators of

the bound states with quantum numbersa at the pointx, andĥa
+sxdĥasxd as the density operator

of the bound states. For example, the first formula froms24d has a simple physical meaning: the
density of particles of the first kind is equal to the sum of densities for free particles of the same
kind and bound statesseach bound state contains one particle of the first kindd.

Consider a state vectorFsXd=ĥa
+sXdu0l, which specifies a compound particle at the pointX

sthis state vector corresponds to continuous spectrumd. Then, in accordance withs24d, we have

sFsXd,r̂1sx1dFsX8dd = dsX − X8dS M

m2
D3UwaS M

m2
sx1 − XdDU2

.

For a wave packet

CX0
=E dX fX0

sXdFsXd, E dX ufX0
sXdu2 = 1

the quantity

sCX0
,r̂1sx1dCX0

d = S M

m2
D3E dX ufX0

sXdu2UwaS M

m2
sx1 − XdDU2

should be treated as the probability density to find the first particle at the pointx1 if the atom is in
a stateCX0

. If the bound state is localized near a pointX0 si.e., ufx0sXdu2→dsX −X0dd, then

sCX0
,r̂1sx1dCX0

d → S M

m2
D3UwaS M

m2
sx1 − X0dDU2

.

SincesM /m2dsx1−X0d=x=x1−x2, we comesas it should bed to the probability distribution for the
space coordinate of the first particle in the atomsthe atom is at the pointX0d.

Let us find now the momentum density operator in the spaceH̃. In original Hilbert space, the
momentum density operatorp̂1sxd for particles of the first kind is defined as

p̂1sxd = −
i

2
Sĉ1

+sxd
]ĉ1sxd

]x
−

]ĉ1
+sxd
]x

ĉ1sxdD .

Then according tos20d,
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p̂1sxd → p̃̂1sxd = −
i

2
Sĉ
˜

1
+sxd

]ĉ
˜

1sxd
]x

−
]ĉ
˜

1
+sxd
]x

ĉ
˜

1sxdD .

Following the derivation ofs22d and s23d for r̃̂1sxd and r̃̂2sxd we obtain

p̃̂1sxd = −
i

2
Sx̂1

+sxd
]x̂1sxd

]x
−

]x̂1
+sxd
]x

x̂1sxdD −
i

2
E dySŵ+sx,yd

]ŵsx,yd
]x

−
]ŵ+sx,yd

]x
ŵsx,ydD ,

s25d

p̃̂2sxd = −
i

2
Sx̂2

+sxd
]x̂2sxd

]x
−

]x̂2
+sxd
]x

x̂2sxdD −
i

2
E dySŵ+sy,xd

]ŵsy,xd
]x

−
]ŵ+sy,xd

]x
ŵsy,xdD .

s26d

It is convenient for our further consideration to rewrites25d ands26d in terms of the center of mass
variablesy=y1−y2 andY =sm1y1+m2y2d / sm1+m2d,

p̃̂1sxd = −
i

2
Sx̂1

+sxd
]x̂1sxd

]x
−

]x̂1
+sxd
]x

x̂1sxdD −
i

2
E dy dY dSx − Y −

m2

M
yDHŵ+sy,Yd

]ŵsy,Yd
]y

−
]ŵ+sy,Yd

]y
ŵsy,Yd +

m1

M
Sŵ+sy,Yd

]ŵsy,Yd
]Y

−
]ŵ+sy,Yd

]Y
ŵsy,YdDJ ,

p̃̂2sxd = −
i

2
Sx̂2

+sxd
]x̂2sxd

]x
−

]x̂2
+sxd
]x

x̂2sxdD −
i

2
E dy dY dSx − Y +

m1

M
yDH− ŵ+sy,Yd

]ŵsy,Yd
]y

+
]ŵ+sy,Yd

]y
ŵsy,Yd +

m2

M
Sŵ+sy,Yd

]ŵsy,Yd
]Y

−
]ŵ+sy,Yd

]Y
ŵsy,YdDJ , s27d

whereŵsy1,y2d; ŵsy ,Yd. Note that in terms of these variables the operatorsr̃̂1sxd andr̃̂2sxd have
the form

r̃̂1sxd = x̂1
+sxdx̂1sxd +E dy dY dSx − Y −

m2

M
yDŵ+sy,Ydŵsy,Yd,

s28d

r̃̂2sxd = x̂2
+sxdx̂2sxd +E dy dY dSx − Y +

m1

M
yDŵ+sy,Ydŵsy,Yd.

It is clear thats27d and s28d can be expressed through the creation and annihilation operators
ĥa

+sxd, ĥasxd of atoms if to employs17d. Taking into accounts27d it is easy to find the operator

p̃̂= p̃̂1sxd+ p̃̂2sxd of the total momentum density of the system in the approximation, where the
radius of bound state is small,

p̃̂ = −
i

2
Sx̂1

+sxd
]x̂1sxd

]x
−

]x̂1
+sxd
]x

x̂1sxdD −
i

2
Sx̂2

+sxd
]x̂2sxd

]x
−

]x̂2
+sxd
]x

x̂2sxdD
−

i

2
Sĥa

+sxd
]ĥasxd

]x
−

]ĥa
+sxd
]x

ĥasxdD .

The third term in this formula is in accordance with interpretation ofĥa
+sxd, ĥasxd as the creation

and annihilation operators of the bound state with quantum numbersa at the pointx.

Finally let us consider a Hamiltonian in the spaceH̃. We suppose that this Hamiltonian has a
standard form in the Hilbert spaceH and can be written as
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Ĥ = Ĥ0 + V̂,

whereĤ0 and V̂ are the operators of kinetic energy and potential energy given by

Ĥ0 = o
i=1

2
1

2mi
E dx

]ĉi
+sxd
]x

]ĉisxd
]x

,

s29d

V̂ =
1

2 o
i,j=1

2 E dx dx8 ĉi
+sxdĉ j

+sx8dni jsx − x8dĉ jsx8dĉisxd,

andni jsx−x8d is a potential energy of interaction for particles of the kindsi and j . After the similar

calculations that led us to the expressions forr̃̂, p̃̂, we obtain

Ĥ0 → Ĥ˜ 0 = o
i=1

2
1

2mi
SE dx

]x̂i
+sxd
]x

]x̂isxd
]x

+E dx1 dx2
]ŵ+sx1,x2d

]xi

]ŵsx1,x2d
]xi

D . s30d

Next changing to the center of mass variablesfsees17dg and noting that

]

]x1
=

]

]x
+

m1

M

]

]X
,

]

]x2
= −

]

]x
+

m2

M

]

]X
,

one gets

Ĥ˜ 0 = o
i=1

2
1

2mi
E dx

]x̂i
+sxd
]x

]x̂isxd
]x

−
1

2m
E dx dXĥa

+sXdĥbsXd
]wa

* sxd
]x

]wbsxd
]x

+
1

2M
E dX

]ĥa
+sXd
]X

]ĥasXd
]X

, s31d

wherem=m1m2/ sm1+m2d is a reduced mass.

Let us find nowV̂
˜ sV̂→ V̂

˜ d. According tos20d we have

V̂
˜

=
1

2 o
i,j=1

2 E dx dx8ĉ
˜

i
+sxdĉ˜ j

+sx8dni jsx − x8dĉ
˜

jsx8dĉ
˜

isxd,

whereĉ
˜

isxd= x̂isxd+Ôisxd fsees20dg. Thus,V̂
˜

can be represented in the form

V̂
˜

= V̂
˜

0 + V̂
˜

1 + V̂
˜

2 + V̂
˜

3 + V̂
˜

4,

where V̂
˜

k sk=0, . . . ,4d containsk multipliers of type x̂ and 4−k multipliers of type Ô. The

operatorsÔisxd have, according tos16d and s18d, the form

Ôisxd =E dy ŵisx,ydx̂i8
+ syd,

s32d
ŵ1sx,yd = ŵsx,yd, ŵ2sx,yd = ŵsy,xd,

where indexi8 is defined as 18=2, 28=1. ThenV̂
˜

0 is of the form
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V̂
˜

0 =
1

2 o
i,j=1

2 E dx1 dx2 ni jsx1 − x2d

3E dy1 dy2 dy3 dy4 ŵi
+sx1,y1dŵ j

+sx2,y2dŵ jsx2,y3dŵisx1,y4dx̂i8sy1dx̂ j8sy2dx̂ j8
+ sy3dx̂i8

+ sy4d.

s33d

Note that the operatorsŵ andŵ+ in s33d are normally ordered, whereasx̂ andx̂+ are not normally
ordered. Therefore, we put them in order using Wick’s theorem,

x̂i8sy1dx̂ j8sy2dx̂ j8
+ sy3dx̂i8

+ sy4d

¬ x̂i8sy1dx̂ j8sy2dx̂ j8
+ sy3dx̂i8

+ sy4d: + :x̂i8
a

sy1dx̂ j8sy2dx̂ j8
+

a

sy3dx̂i8
+ sy4d:

+ :x̂i8
a

sy1dx̂ j8sy2dx̂ j8
+ sy3dx̂i8

+

a

sy4d: + :x̂i8sy1dx̂ j8
a

sy2dx̂ j8
+

a

sy3dx̂i8
+ sy4d:

+ :x̂i8sy1dx̂ j8
a

sy2dx̂ j8
+ sy3dx̂i8

+

a

sy4d: + :x̂i8
a

sy1dx̂ j8
b

sy2dx̂ j8
+

a

sy3dx̂i8
+

b

sy4d:

+ :x̂i8
a

sy1dx̂ j8
b

sy2dx̂ j8
+

b

sy3dx̂i8
+

a

sy4d: . s34d

The operator ŵsx ,yd;wasx−ydĥafsm1x+m2yd / sm1+m2dg differs from zero only for x<y
sux−yu,ad. Thus, only those ofŵi, for which uy1−y4u,a contribute to the integral overy in s33d.
This means that the first term ins34d in virtue of s12d does not contribute to the matrix element of

V̂
˜

0 taken between the states belonging toH̃a because ofŵisx1,y4dx̂isy1dF=0. Similarly, one can
prove that the terms, which contain the single contractions ins34d do not give a contribution to the

matrix element ofV̂
˜

0 taken between the states inH̃a. The penultimate term ins34d containing the
double contractions does not also contribute to the above-mentioned matrix element. Indeed, the
penultimate term ins34d equalsdsy1−y3ddsy2−y4d. In this case the nonzero matrix element exists
for x1<x2 and ŵ jsx2,y3dŵisx1,y4dF=0 in virtue of s12d. Thus, only the latter term ins34d equal

to dsy2−y3ddsy1−y4d can give the contribution to the matrix element ofV̂
˜

0. Therefore, not chang-

ing the matrix elements inH̃a, the operatorV̂
˜

0 can be represented in the form

V̂
˜

0 =
1

2 o
i,j=1

2 E dx1 dx2 dy1 dy2 ŵi
+sx1,y1dŵ j

+sx2,y2dni jsx1 − x2dŵ jsx2,y2dŵisx1,y1d,

or, according tos32d,

V̂
˜

0 =
1

2
E dx1 dx2 dy1 dy2 ŵ+sx1,y1dŵ+sx2,y2d

3 hn11sx1 − x2d + n22sy1 − y2d + n12sx1 − y2d + n21sy1 − x2djŵsx2,y2dŵsx1,y1d.

Similarly, noting that

V̂
˜

1 =
1

2 o
i,j=1

2 E dx1 dx2 dy ni jsx1 − x2dhŵi
+sx1,ydx̂i8sydx̂ j

+sx2dx̂ jsx2dx̂isx1d

+ ŵ j
+sx2,ydx̂isx1dx̂ j8

+ sydx̂ jsx2dx̂isx1d + H.c.j,
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V̂
˜

3 =
1

2 o
i,j=1

2 E dx1 dx2 dy1 dy2 dy3 ni jsx1 − x2d

3hŵi
+sx1,y1dŵ j

+sx2,y2dŵ jsx2,y3dx̂i8sy1dx̂ j8sy2dx̂ j8
+ sy3dx̂isx1d

+ ŵi
+sx1,y1dŵ j

+sx2,y2dŵisx1,y3dx̂i8sy1dx̂ j8sy2dx̂ jsx2dx̂i8
+ sy3d + H.c.j

and performing the same derivation as forV̂
˜

0, it is easy to verifyfusing the anticommutative

relations forx̂, x̂+ ands34dg that we can considerV̂
˜

1=V̂
˜

3=0 not changing the matrix elements of

V̂
˜

1 and V̂
˜

3 in the subspaceH̃a. Next it is evident that the following formula is valid:

V̂
˜

4 =
1

2 o
i,j=1

2 E dx1 dx2 x̂i
+sx1dx̂ j

+sx2dni jsx1 − x2dx̂ jsx2dx̂isx1d. s35d

Finally let us findV̂
˜

2,

V̂
˜

2 =
1

2 o
i,j=1

2 E dx1 dx2 ni jsx1 − x2dhÔi
+sx1dÔj

+sx2dx̂ jsx2dx̂isx1d + Ôi
+sx1dx̂ j

+sx2dÔjsx2dx̂isx1d + h.c.

+ Ôi
+sx1dx̂ j

+sx2dx̂ jsx2dÔisx1d + x̂i
+sx1dÔj

+sx2dÔjsx2dx̂isx1dj.

It can be easily seen that the first two terms and the corresponding Hermitian conjugate terms do

not give a contribution to the matrix element ofV̂
˜

2 in the subspaceH̃a. Therefore, we can consider

V̂
˜

2 =
1

2 o
i,j=1

2 E dx1 dx2 dy1 dy2 ni jsx1 − x2dhŵi
+sx1,y1dŵisx1,y2dx̂i8sy1dx̂ j

+sx2dx̂ jsx2dx̂i8
+ sy2d

+ ŵ j
+sx2,y1dŵ jsx2,y2dx̂i

+sx1dx̂ j8sy1dx̂ j8
+ sy2dx̂isx1dj.

The first and second terms in this expression contribute to the matrix element ofV̂
˜

2 in H̃a under the
following arrangements of contractions:

:x̂i8
a

sy1dx̂ j
+

a
sx2dx̂ j

b
sx2dx̂i8

+

b

sy2d: + :x̂i8
a

sy1dx̂ j
+sx2dx̂ jsx2dx̂i8

+

a

sy2d:

= d ji8dsy1 − x2ddsy2 − x2d + dsy1 − y2dx̂ j
+sx2dx̂ jsx2d,

:x̂i
+sx1dx̂ j8

a
sy1dx̂ j8

+

a

sy2dx̂isx1d ª dsy1 − y2dx̂i
+sx1dx̂isx1d.

Thus, we have

V̂
˜

2 =E dx1 dx2 n12sx1 − x2dŵ+sx1,x2dŵsx1,x2d +E dx1 dx2 ŵ+sx2,y2dŵsx2,y2dhn11sx1

− x2dx̂1
+sx1dx̂1sx1d + n21sx1 − y2dx̂1

+sx1dx̂1sx1d + n22sx1 − y2dx̂2
+sx1dx̂2sx1d + n12sx1

− x2dx̂2
+sx1dx̂2sx1dj. s36d

The first term in this formula quadratic in field operators can be combined with the latter term in
s31d. As a result we obtain
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E dx1 dx2 n12sx1 − x2dŵ+sx1,x2dŵsx1,x2d −
1

2m
E dx dX ĥa

+sXdĥasXd
]wa

* sxd
]x

]wasxd
]x

=E dx dX ĥa
+sXdĥbsXdwa

* sxdH−
1

2m
Dx + n12sxdJwbsxd.

Sincewbsxd satisfies the Schrödinger equation

H−
1

2m
Dx + n12sxdJwbsxd = «bwbsxd,

where«b are the atomic energy levels, the latter formula takes the form

E dXo
a

«aĥa
+sXdĥasXd.

Hence, taking into accounts30d, s31d, ands36d, the Hamiltonian of the systemĤ˜ is of the form

Ĥ˜ = Ĥ˜ 0 + Ĥ˜ int
1 + Ĥ˜ int

2 + Ĥ˜ int
3 ,

where

Ĥ˜ 0 = o
j=1

2
1

2mj
E dx

]x̂ j
+sxd
]x

]x̂ jsxd
]x

+ o
a
E dXH 1

2M

]ĥa
+sXd
]X

]ĥasXd
]X

+ «aĥa
+sXdĥasXdJ

s37d

is the Hamiltonian for free particles and bound states, and

Ĥ˜ int
1 =E dx1 dx2 dy2 ŵ+sx2,y2dŵsx2,y2dhsn11sx1 − x2d + n21sx1 − y2ddx̂1

+sx1dx̂1sx1d + sn22sx1 − y2d

+ n12sx1 − x2ddx̂2
+sx1dx̂2sx1dj, s38d

Ĥ˜ int
2 =

1

2
E dx1 dx2 dy1 dy2 ŵ+sx1,y1dŵ+sx2,y2dŵsx2,y2dŵsx1,y1dhn11sx1 − x2d + n22sy1 − y2d

+ n12sx1 − y2d + n21sy1 − x2dj, s39d

Ĥ˜ int
3 =

1

2
E dx1 dx2hn11sx1 − x2dx̂1

+sx1dx̂1
+sx2dx̂1sx2dx̂1sx1d + n22sx1 − x2dx̂2

+sx1dx̂2
+sx2dx̂2sx2dx̂2sx1d

+ 2n12sx1 − x2dx̂1
+sx1dx̂1sx1dx̂2

+sx2dx̂2sx2dj s40d

are the Hamiltonians of interaction. The HamiltonianĤ˜ int
1 corresponds to scattering of particles of

the first and second kinds by bound states; the HamiltonianĤ˜ int
2 corresponds to scattering of bound

states by bound states; finally, the HamiltonianĤ˜ int
3 corresponds to scattering of particles of the

first and second kinds by particles of the same kinds. The Hamiltonians of interactions38d and
s39d may be written through the creationĥa

+sxd and annihilationĥasxd operators of atoms by using
s17d. We emphasize that the obtained Hamiltonians of interaction do not lead to decay processes
and formation of compound particles as it should be in the low-energy approximation. This fact
reflects that atoms are absolutely stable in the main approximation.
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In conclusion of this section we address to the Galilean invariance of the developed theory.

We suppose that the initial theory based only on the field operatorsĉisxd ,ĉi
+sxd si =1,2d is

Galilean invariant. This means that under the following transformations:

ĉisxd → ĉi8sxd = eimivxĉisxd

the operators for particles numberN̂i, momentumP̂k, and energyĤ transform as follows:

N̂i → N̂i8 = N̂i, i = 1,2,

P̂k → P̂k8 = P̂k + vksN̂1 + N̂2d, Ĥ → Ĥ8 = Ĥ + vkP̂k + 1
2m1v

2N̂1 + 1
2m2N̂2v

2.

Sinceĉisxd andĉi8sxd meet the same commutation relations, they are related to each other by the
unitary transformation

ĉi8sxd = UvĉisxdUv
+,

where the unitary operatorUv, is defined by9

Uv = expS− ivm1E dx xr̂1sxd − ivm2E dx xr̂2sxdD . s41d

Let us show that

Ũv = expS− ivm1E dx xr̃̂1sxd − ivm2E dx xr̃̂2sxdD
defines the Galilei transformations in the presence of bound states of particlesfcompare tos41dg.
To this end we note that this operator can be written, according tos28d, in the form

Ũv = expS− ivo
i=1

2

mi E dx x̂i
+sxdx̂isxd − ivŝD ,

where

ŝ= m1E dx1 dx2 x1ŵ+sx1,x2dŵsx1,x2d + m2E dx1 dx2 x1ŵ+sx2,x1dŵsx2,x1d

=E dx1 dx2sm1x1 + m2x2dŵ+sx1,x2dŵsx1,x2d.

Since

ŵsx1,x2d = wasxdĥasXd, E dx wa
* sxdwbsxd = dab,

changing to the center of mass variables one finds

ŝ= sm1 + m2d E dX Xo
a

ĥa
+sXdĥasXd.

Therefore, just as we expected
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Ũv = expS− ivo
i=1

2

mi E dx x̂i
+sxdx̂isxd − ivsm1 + m2d E dX Xo

a

ĥa
+sXdĥasXdD .

The employment of this formula and the canonic permutation relations result in

Ũvx̂isxdŨv
+ = eimivxx̂isxd ; x̂i8sxd, ŨvĥasXdŨv

+ = eism1+m2dvXĥasXd ; ĥa8sXd. s42d

Since the quantityŵ+sx ,Xdŵsx ,Xd is not changed under such transformation, the Hamiltonians of

interactionĤ˜ int
1 , Ĥ˜ int

2 , Ĥ˜ int
3 fsees38d–s40dg are invariant with respect tos42d. It is easy to verify that

the HamiltonianĤ˜ 0 for free particles and bound states transforms according to the law

ŨvĤ˜ 0Ũv
+ = Ĥ

˜
0 + vP̂˜ +

m1v
2

2
N̂
˜

1 +
m2v

2

2
N̂
˜

2 +
sm1 + m2dv2

2
N̂
˜

b.

Hence,

ŨvĤ˜ Ũv
+ = Ĥ˜ + vP̂˜ +

m1v
2

2
N̂
˜

1 +
m2v

2

2
N̂
˜

2 +
sm1 + m2dv2

2
N̂
˜

b,

ŨvP̂˜ Ũv
+ = P̂˜ + m1vN̂

˜
1 + m2vN̂

˜
2 + sm1 + m2dvN̂

˜
b,

where P̂˜ , N̂
˜

1, N̂
˜

2, N̂
˜

b are the momentum operator and the particle number operatorssfor free
particles of the first and second kinds and their bound statesd. These formulas prove the Galilean
invariance of the developed theory. Finally we note the validity of the following formula:

Ũvp̃̂isxdŨv
+ = p̃̂isxd + mivr̃̂isxd,

which follows from s27d and s28d by usings42d.

V. ELECTROMAGNETIC INTERACTION

Here we consider the electromagnetic interaction assuming that the formation of bound states
of particles is caused by Coulomb’sselectromagneticd forces. Therefore, the potential energy
ni jsx−x8d enterings38d–s40d should be written as

ni jsx − x8d =
eiej

ux − x8u
, i, j = 1,2. s43d

We also introduce the additional interactions of particlesssee belowd with an external electromag-
netic field A sedsx ,td, wsedsx ,td and quantized electromagnetic field specified by a potentialâsxd
sCoulomb’s gauged

Âsx,td = âsxd + A sedsx,td,

where9

âsxd = o
k

o
l=1

2 S 2p

Vvk
D1/2

seklĈkleikx + H.c.d

sĈkl is the annihilation operator of a photon with momentumk and polarizationekld. As in Sec.

II, we identify the subspaceH̃a to H̃ assuming that the matrix elements of the operators in
coordinate representation give the main contribution to the quantum electrodynamics processes
and correspond to the space scaleDx*a sa→0, a@ r0d.
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The density«̂sxd of a Hamiltonian in the second quantization representation has the well-
known form

«̂sxd = «̂ fsxd + «̂Csxd + o
i=1

2

eiĉi
+sxdĉisxdwsedsx,td

+ o
i=1

2
1

2mi
S ]

]x
− ieiÂsx,tdDĉi

+sxdS ]

]x
+ ieiÂsx,tdDĉisxd,

where «̂ fsxd is the energy density of a free electromagnetic field,«̂Csxd is the energy density of
Coulomb’s interaction, the third term describes the interaction between the particles and external
scalar potential. This formula leads to the following Hamiltonian of the system:

Ĥstd = Ĥ0 + Ĥint + V̂std, Ĥ0 = Ĥ f + Ĥp, s44d

where

Ĥ f ;E dx «̂ fsxd = o
k,l

vkĈkl
+ Ĉkl, s45d

Ĥp = o
i=1

2
1

2mi
E dx

]ĉi
+sxd
]x

]ĉisxd
]x

, s46d

Ĥint =E dx «̂Csxd s47d

are the Hamiltonians for free photons, free particles, and Coulomb’s interaction, respectively. The

operatorV̂std represents a Hamiltonian that describes the interaction of particles with the electro-

magnetic fieldsÂsx ,td, wsedsx ,td

V̂std = −E dx Âsx,tdĴsx,td −
1

2
E dx Â2sx,tdo

i=1

2
ei

mi
ŝisxd +E dx wsedsx,tdŝ, s48d

Ĵsx,td = − Âsx,tdo
i=1

2
ei

mi
ŝisxd + ĵ 0sxd, ĵ 0sxd = o

i=1

2
ei

mi
p̂isxd, s49d

whereŝisxd=eir̂isxd is the charge density for particles of the kindi, ŝ=ŝ1+ŝ2. This Hamiltonian
is exact and describessin this sensed the processes in which the bound states of particles are

involved. Sinceâsxd commute among themselves and withĉisxd, ĉi
+sxd, in order to find the

effective HamiltonianĤ˜ std that describes electrodynamic processes at low energies in the presence

of bound states of particles we need, in accordance with Sec. IV, to replace the operatorsĉi, ĉi
+,

â by ĉ
˜

i, ĉ
˜

i
+, ã̂:

Ĥ˜ std = uĤstduĉ1→ĉ
˜

1,ĉ2→ĉ
˜

2,â→ã̂,

where
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ĉ
˜

1sxd = x̂1sxd +E dy ŵsx,ydx̂2
+syd, ĉ

˜
2sxd = x̂2sxd +E dy ŵsy,xdx̂1

+syd, ã̂ = â

fã̂sxd coincides withâsxd and acts in the spaceH̃g. As a result the effective Hamiltonian is defined
by s44d–s49d, in which

ŝisxd → s̃̂isxd = ei r̃̂isxd, p̂isxd → p̃̂isxd, ĉisxd → ĉ
˜

isxd, s50d

moreover, the operatorsr̃̂isxd, p̃̂isxd, ĉ
˜

isxd containing the creationĥa
+ and annihilationĥa opera-

tors of bound states are determined bys27d, s28d, ands16d–s18d.
Let us define the operator of magnetic field

Ĥsx,td = ĥsxd + H sedsx,td, s51d

where

ĥsxd = rot âsxd, H sedsx,td = rot A sedsx,td,

and the operator of electric field

Êsx,td = êsxd + Esedsx,td,

where

êsxd = êtsxd + êlsxd, Esedsx,td = −
]

]t
A sedsx,td −

]

]x
wsedsx,td.

The transverseêtsxd and longitudinalêlsxd components of the electric field created by particles are
defined as follows:

êlsxd = −
]

]x
â0sxd, êtsxd = − ȧ̂sxd ; − ifĤ˜ std,âsxdg. s52d

Here â0sxd represents the operator of the scalar potential,

â0sxd =E dx8
s̃̂sx8d

ux − x8u
. s53d

Next it is easy to verify that

fĥasXd,ĥb
+sX8dg = dabdsX − X8d, o

a

wa
* sxdwasx8d = dsx − x8d

lead to the following commutation relation:

fŵsx,Xd,ŵ+sx8,X8dg = dsx − x8ddsX − X8d, s54d

whereŵsx ,Xd; ŵsx1,x2d is determined bys17d. Hereinafter we assume that a set of wave func-
tions wasx8d is complete. Therefore this set accounts for the wave functions of continuous spec-
trum. In addition, if we introduce the operator

n̂sx,Xd = ŵ+sx,Xdŵsx,Xd,

then
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fn̂sx,Xd,n̂sx8,X8dg = 0.

Thus, it is clear that the HamiltonianĤ˜ int, which describes the Coulomb interaction between
particles and bound states meets the commutation relation

fĤ˜ int, r̃̂isxdg = 0.

Let us find now a commutatorfr̃̂isxd ,Ĥ˜ 0g si =1,2d, wherer̃̂isxd andĤ˜ 0 are defined bys28d, s45d,
and s46d. In order to do this we considerr̃̂1sxd in the form

r̃̂1sxd = r̃̂18sxd + r̃̂19sxd,

where

r̃̂18sxd = x̂1
+sxdx̂1sxd, r̃̂19sxd =E dy dY dSx − Y −

m2

M
yDŵ+sy,Ydŵsy,Yd.

Then in accordance with the commutation relations for the field operatorsx̂isxd,

fx̂isxd,x̂ j
+sx8dg = di jdsx − x8d,

one gets

F r̃̂18sxd,E dx8o
j=1

2
1

2mj

]x̂ j
+sx8d
]x8

]x̂ jsx8d
]x8

G = −
i

2m1

]

]xk
Sx̂1

+sxd
]x̂1sxd

]xk
−

]x̂1
+sxd

]xk
x̂1sxdD .

Next according tos30d we have

ifr̃̂19sxd,Ĥ˜ 0g =
1

2m
E dy dY dSx − Y −

m2

M
yD ]

]yk
S− ŵ+sy,Yd

]ŵsy,Yd
]yk

+
]ŵ+sy,Yd

]yk
ŵsy,YdD

+
1

2M
E dy dY dSx − Y −

m2

M
yD ]

]Yk
S− ŵ+sy,Yd

]ŵsy,Yd
]Yk

+
]ŵ+sy,Yd

]Yk
ŵsy,YdD .

Bearing in mind

−
]

]yk
dSx − Y −

m2

M
yD =

m2

M

]

]xk
dSx − Y −

m2

M
yD, −

]

]Yk
dSx − Y −

m2

M
yD =

]

]xk
dSx − Y −

m2

M
yD

and taking into account the definitions ofr̃̂i, p̃̂i si =1,2d, one finds

ifr̃̂1sxd,Ĥ˜ 0 + Ĥ˜ intg =
1

m1
div p̃̂1sxd. s55d

Similarly,

ifr̃̂2sxd,Ĥ˜ 0 + Ĥ˜ intg =
1

m2
div p̃̂2sxd. s56d

Let us find now a commutatorfr̃̂isx8d , p̃̂ksxdg si ,k=1,2d. With the use ofs27d we have

fr̃̂i9sx8d,p̃̂ksxdg = idikr̃̂i9sxd
]

]x
dsx − x8d.

Noting also that
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fr̃̂i8sx8d,p̃̂ksxdg = idikr̃̂i8sxd
]

]x
dsx − x8d,

we get finally

fr̃̂isx8d,p̃̂ksxdg = idikr̃̂isxd
]

]x
dsx − x8d.

These commutation relations along withs49d result in

fj̃̂ 0sxd,s̃̂sx8dg = − io
i=1

2
ei

mi
s̃̂isx8d

]

]x
dsx − x8d.

Thus, according tos52d, s55d, ands56d we have

s̃̂
˙ sxd = ifĤ˜ std,s̃̂sxdg = div Ĵ

˜sx,td.

The definitionss52d and s53d of the longitudinal component of the electric field along with the
above formula give

ė̂lsxd ; ifĤ˜ std,êlsxdg =
]

]x
divE dx8

Ĵ
˜sx8,td
ux − x8u

. s57d

Let us find the equation of motion forêt. The use of commutation relations for creationĈkl
+

and annihilationĈkl operators of photons,

fĈkl,Ĉk8l8
+ g = dkk8dll8

lead to

êtsxd = − ifĤ˜ std,âsxdg = io
k

o
l=1

2 S2pvk

V D1/2

sek
sldĈkleikx − H.c.d, s58d

ė̂tsxd = − ifĤ˜ std,êtsxdg = rot ĥsxd + ifV̂˜ std,êtsxdg,

and also

fâisxd,ês
tsx8dg = − 4pidisdsx − x8d − i

]2

]xi]xs

1

ux − x8u
.

This formula and the definition ofV̂
˜ std allows us to find the commutator:

ifV̂˜ std,êtsxdg = − 4pĴ
˜sx,td −

]

]x
divE dx8

Ĵ
˜sx8,td
ux − x8u

.

Therefore, it follows froms57d and s58d that

ė̂sxd = rot ĥsxd − 4pĴ
˜sx,td, ĥ

˙ sxd ; ifĤ˜ std,ĥsxdg = ifĤ f,ĥsxdg. s59d

Upon calculating this commutator with the use ofs51d, one obtains
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ĥ
˙ sxd = − rot êsxd. s60d

In addition,s51d ands52d give div ĥsxd=0, div êsxd=4ps̃̂sxd. These equations along withs59d and
s60d represent the Maxwell–Lorentz equations for the operators of electromagnetic field

2ė̂sxd = rot ĥsxd − 4pĴ
˜sx,td, div êsxd = 4ps̃̂sxd,

ĥ
˙ sxd = − rot êsxd, div ĥsxd = 0.

Notice thats46d, s51d, ands58d result in

Ĥf = o
k

o
l=1

2

vkĈkl
+ Ĉkl =

1

8p
E dxset2 + h2d,

where we neglect the unessential termokl
1
2vk.

Up to now we used the Schrödinger representation, in which the Schrödinger equation has the
form

i
]Fstd

]t
= Ĥ˜ stdFstd.

In this representation a dot above the certain operatorb̂
˙ sxd fsees52dg does not mean the differen-

tiation with respect to time. It means the following:

b̂
˙ sxd = ifĤ˜ sx̂I sx8d,td,b̂sxdg. s61d

Here the HamiltonianĤ˜ depends on dynamic variablesx̂Isx8d sthese variables unitex̂ andĥd and

time t. Introducing the unitary operatorŜst ,0d,

i
]Ŝst,0d

]t
= Ĥ

˜ sx̂I sx8d,tdŜst,0d, Ŝs0,0d = 1,

we can write the solution of the equation forFstd in the form,

Fstd = Ŝst,0dFs0d.

In the Heisenberg representation the vectorFs0d=C is taken as a time-independent state
vector. Then, the time-dependent Heisenberg operators

x̂I sx,td ; x̂I sxd = Ŝ+st,0dx̂I sxdŜst,0d

satisfy the equation

i
]x̂I sxd

]t
= fx̂I sxd,Ĥ˜ sx̂I sxd,tdg. s62d

Since the external fieldsH sed ,Esed satisfy the Maxwell equations,

]H sed

]t
= − rotEsed, div H sed = 0,
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]Esed

]t
= rot H sed − 4pJsed, div Esed = 4pssed,

the operators of total fieldsÊ ,Ĥ in the Heisenberg representation satisfy, in accordance withs62d,
the equations

]Ĥ

]t
= − rot Ê, div Ĥ = 0,

]Ê

]t
= rot Ĥ − 4psĴ˜ + Jsedd, div Ê = 4pss̃̂ + ssedd, s63d

whereJsed andssed are the extrinsic current and charge densities.

Let us write out the expressions for the charge density operators̃̂ and current density operator

Ĵ
˜

in terms of creation and annihilation operators of particles and bound states. Bearing in mind
s50d we have

s̃̂sxd = o
i=1

2

ei r̃̂isxd,

s64d

Ĵ
˜sxd = − Âsxdo

i=1

2
ei

2

mi
r̃̂isxd + o

i=1

2
ei

mi
p̃̂isxd,

where the particle density operatorsr̃̂isxd are defined bys28d and the momentum density operators

p̃̂isxd by s27d. The first terms in expressions forr̃̂isxd and p̃̂isxd define the contribution of par-
ticles, whereas the second terms define the contribution of bound statesfsees27d and s28dg.

Let us find now the equations of motion for the field operators of particlesx̂isxd and bound
statesŵsx ,yd. In the Heisenberg representation these equations are obtained from the general
formulass62d. Indeed, it follows froms38d–s40d that

fx̂1sxd,Ĥ˜ intsx̂sx8ddg = HE dx2 n11sx − x2dr̃̂1sx2d +E dx2 n12sx − x2dr̃̂2sx2dJx̂1sxd,

fx̂2sxd,Ĥ˜ intsx̂sx8ddg = HE dx1 n22sx − x1dr̃̂2sx1d +E dx2 n21sx − x1dr̃̂1sx1dJx̂2sxd,

fŵsx,yd,Ĥ˜ intsx̂sx8ddg = HE dx2sn11sx − x2d + n12sy − x2ddr̃̂1sx2d +E dx2sn22sy − x2d

+ n21sx − x2ddr̃̂2sx2dJŵsx,yd.

These formulas allow us to find the equations of motions62d for x̂1sxd, x̂2sxd in the Heisenberg
representation,

i ẋ̂1sx,td = H−
1

2m1
S ]

]x
− ie1Âsx,tdD2

+ e1wsedsx,td + ŷ1sx,tdJx̂1sx,td,
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i ẋ̂2sx,td = H−
1

2m2
S ]

]x
− ie2Âsx,tdD2

+ e2wsedsx,td + ŷ2sx,tdJx̂2sx,td.

It is easy to find also the equation of motion for the field operatorsŵsx ,yd of bound states,

i ẇ̂sx1,x2,td = o
a

«aĥasX,tdwasxd + H−
1

2m1
S ]

]x1
− ie1Âsx1,tdD2

−
1

2m2
S ]

]x2
− ie2Âsx2,tdD2

+ e1wsedsx1,td + e2wsedsx2,td + ŷsx1,x2,tdJŵsx1,x2,td. s65d

Here

ŷ1sx,td =E dx2 n11sx − x2dr̃̂1sx2,td +E dx2 n12sx − x2dr̃̂2sx2,td,

ŷ2sx,td =E dx1 n22sx − x1dr̃̂2sx1,td +E dx1 n21sx − x1dr̃̂1sx1,td,

ŷsx1,x2,td =E dx8sn11sx1 − x8d + n12sx2 − x8ddr̃̂1sx8,td +E dx8sn22sx2 − x8d + n21sx1 − x8ddr̃̂2sx8,td.

The operatorsĥasX ,td related toŵsx1,x2,td by ŵsx1,x2,td=wbsxdĥbsX ,td.
The equations of motions63d and s65d are gauge invariant. Indeed, under the following

transformations of fieldsx̂i, ŵ:

x̂1sx,td → x̂18sx,td = eie1asx,tdx̂1sx,td, x̂2sx,td → x̂28sx,td = eie2asx,tdx̂2sx,td,

ŵsx,y,td → ŵ8sx,y,td = eie1asx,td+ie2asy,tdŵsx,y,td, s66d

and electromagnetic field,

Âsx,td → Â8sx,td = Âsx,td −
]

]x
asx,td, wsedsx,td → wsed8sx,td = wsedsxd −

]asx,td
]t

the operatorsr̃̂isxd are invariant,

r̃̂isx,td → r̃̂i8sx,td = r̃̂isx,td,

whereasp̃̂isxd transformfsees65dg, by the law

p̃̂isx,td → p̃̂i8sx,td = p̃̂isx,td + ei r̃̂isx,td
]

]x
asx,td.

As a result we havefsees64dg

Ĵ
˜sx,td → Ĵ

˜
8sx,td = Ĵ

˜sx,td, Ĥ˜ → Ĥ˜ 8 = Ĥ˜

that provides a gauge invariance of the Maxwell–Lorentz equationss63d. Next noting that

S ]

]x
− ieiÂsx,tdDx̂isx,td → S ]

]x
− ieiÂ8sx,tdDx̂i8sx,td = eieiasx,tdS ]

]x
− ieiÂsx,tdDx̂isx,td,

we make sure of gauge invariance of the equations of motion for the field operators of particles
x̂isxd. Taking into account the transformation law for the field operators of bound statesŵsx ,yd, it
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is easy to prove a gauge invariance of the equation of motion forŵsx ,yd.
Sinceŵsx1,x2,td=wasxdĥasX ,td, we have under the gauge transformations66d,

ŵ8sx1,x2,td = wasxdĥa8sX,td,

where x1=X +sm2/Mdx, x2=X −sm1/Mdx. Hence, we come to the transformation law for the
operatorsĥasXd:

ĥasX,td → ĥa8sX,td = o
b

LabsX,tdĥbsX,td,

LabsX,td =E dx wa
* sxdeie1afX+sm2/Mdx,tg+ie2afX−sm1/Mdx,tgwbsxd.

In conclusion of this section let us note thatĉ
˜

isxd transform under the gauge transformation as
well as x̂isxd:

ĉ
˜

isx,td → ĉ
˜

i8sx,td = eieiasx,tdĉ
˜

isx,td.

VI. THE PROCESS OF SPONTANEOUS RADIATION BY ATOM

In this section we employ the obtained formulas in order to find the probability distribution of
spontaneous radiation of an excited atom. To this end we use the general formulas for the scat-

tering matrixŜ in terms of theT operator,

Ŝ= 1 − 2piE
−`

`

dE dsE − Ĥ0dT̂s+dsEddsE − Ĥ0d,

T̂s+dsEd = lim
h→+0

T̂sE + ihd, s67d

whereT̂szd is found from the equation

T̂szd = V̂ + V̂R̂0T̂szd, R̂0 =
1

z− Ĥ0

. s68d

In the first order of the perturbative approach over charge we have

kf uT̂szduil < kf uV̂uil,

where

uil = ĥap
+ u0l, ufl = Ĉkl

+ ĥap
+ u0l.

Here uil is the initial statesin which atom is in the statea, pd and ufl is the final statesin which
atom is in the statea8, p8 and photon is in the statel, kd. According tos48d ands50d we can take

V̂ in the following form:

V̂
˜

= −E dx âsxdj̃̂ sxd,

where the current of bound states is defined by
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j̃̂ sxd =
e1

m1
p̃̂1sxd +

e2

m2
p̃̂2sxd. s69d

By using s48d and s50d we find

kf uV̂˜ uil = − S 2p

Vvk
D1/2

ek
sld* E dx e−ikxka8p8uj̃̂ sxduapl.

The formulass69d and s27d lead to

j̃̂ skd ; E dx e−ikxj̃̂ sxd = o
p1,p2

o
a1,a2

ĥa1p1

+ ĥa2p2
Sga1a2

skd +
p1 + p2

2M
ga1a2

skdDDsp1 − p2 + kd

and, consequently,

kf uV̂˜ uil = − S 2p

Vvk
D1/2

ek
sld*Sgaa8skd +

p + p8

2M
gaa8skdDDsp − p8 − kd, k = p − p8,

whereDspd=dp0, and

gabskd =E dyse1e
ikysm2/Md + e2e

−ikysm1/Mddwa
* sydwbsyd,

gabskd = −
i

2
E dyS e1

m1
eikysm2/Md −

e2

m2
e−ikysm1/MdDSwa

* syd
]wbsyd

]y
−

]wa
* syd
]y

wbsydD . s70d

The matrix element ofŜ-matrix is defined, in accordance withs67d, by

kf uŜuil = − 2pikf uV̂˜ uilds«spd − «sp8d − vkd.

Next using the standard method we obtain the following expression for the probability of transi-

tion per unit time from the initial stateĥap
+ u0l into the final stateĥbp8

+ Ĉkl
+ u0l:

dwi→f =
2p

vk
Uek

sldSgabskd +
p + p8

2M
gabskdDU2

dsvk + «bsp8d − «aspdddk .

In the domain of smallk skr0!1, see Sec. IId the Fourier-components ofgabsxd, gabsxd can be
written in the form

gabs0d = S e1

m1
−

e2

m2
D E dy wa

* sydp̂wbsyd = S e1

m1
−

e2

m2
Dkaup̂ubl, gabs0d = se1 + e2ddab.

s71d

If e2=−e1=−e sthis case corresponds to the hydrogen atomd, thengabs0d=0, gabs0d=se/md
3kaup̂ubl. The Schrödinger equation for the wave functionwasyd gives

kaup̂ubl = ims«a − «bd E dy wa
* sydywbsyd.

Therefore,

gabs0d = is«a − «bdkaud̂ubl,

whered̂=eŷ is the dipole moment of the atom. Hence,
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dwi→f = 2pvkukauek
sldd̂ublu2dsvk + «bsp8d − «aspdddk .

Since«aspd=«a+p2/2M, we have for the atom of infinite masssm2→`, M→`d,5

dwi→f =
2p

vk
uek

sldgabskdu2dsvk + «b − «addk ,

where

gabskd = −
ie

2m1
E dy eikySwa

* syd
]wbsyd

]y
−

]wa
* syd
]y

wbsydD
sm1 is the mass of light fermiond.

VII. SCATTERING OF PHOTONS AND FERMIONS BY ATOMS

Here we study the scattering process of long-wave photons by atoms. For this purpose let us
use the general formulass67d and s68d, where the Hamiltonian of free particles is defined by

Ĥ˜ 0 = o
i=1

2 E dx ¹ x̂i
+sxd ¹ x̂isxd + o

k
o
l=1

2

vkĈkl
+ Ĉkl

+ o
a
E dxS 1

2m
¹ ĥa

+sxd ¹ ĥasxd + «aĥa
+sxdĥasxdD ,

and the Hamiltonian associated with electromagnetic interaction by

V̂
˜

= V̂
˜

8 + V̂
˜

9.

In accordance withs48d and s50d,

V̂
˜

8 =
1

2
E dx â2sxdS e2

m1
r̃̂1sxd +

e2

m2
r̃̂2sxdD, V̂

˜
9 = −E dx âsxdj̃̂ sxd,

j̃̂ sxd =
e

m1
p̃̂1sxd +

e

m2
p̃̂2sxd s72d

sfurther we assumee1=−e2=ed. SinceV̂
˜

8,e2, V̂
˜

9,e, in the second order in chargee, theT-matrix
can be written as

T̂szd = V̂
˜

8 + V̂
˜

9R̂0szdV̂˜ 9, R̂0 =
1

z− Ĥ˜ 0

swithin the considered approximation it is not necessary to take into account the fieldsx̂isxdd.

Bearing in minds72d and s28d, the operatorV̂
˜

8 can be written as

V̂
˜

8 =
1

2V o
p1,p2

ĥa
+sp1dĥbsp2dqabsp1 − p2d E dx â2sxdeixsp2−p1d,

where
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qabskd =E dyH e2

m1
eikysm2/Md +

e2

m2
e−ikysm1/MdJwa

* sydwbsyd.

Similarly,

V̂
˜

9 = −
1

V o
p1,p2

ĥa
+sp1dĥbsp2dI absp1 + p2,p1 − p2d E dx âsxdeixsp2−p1d,

where

I absp1 + p2,p1 − p2d = gabsp1 − p2d +
p1 + p2

2M
gabsp1 − p2d, p1 − p2 = k, p1 + p2 = p,

moreover,gabskd, gabskd are defined bys70d.
Let Ĉkl

+ ĥa
+spdu0l and Ĉk8l8

+ ĥa8
+ sp8du0l be the initial and final states of the system,

uil = Ĉkl
+ ĥa

+spdu0l, uil = Ĉk8l8
+ ĥa8

+ sp8du0l.

Then the matrix elementkf uT̂szduil can be represented in the form

kf uT̂szduil = kf uV̂˜ 8uil + kf uV̂˜ 9R̂0szdV̂˜ 9uil,

where

kf uV̂˜ 8uil = −
4p2i

V
1

Îvv8
Ra8a

8 Dsp + k − p8 − k8d,

kf uV̂˜ 9R̂0szdV̂˜ 9uil = −
4p2i

V
1

Îvv8
Ra8a

9 Dsp + k − p8 − k8d, Dskd = dk0,

and the matricesRa8a
8 , Ra8a

9 are given by

Ra8a
8 = ek

sldek
sld*qaa8skd, k = p8 − p,

Ra8a
9 = o

b
H se8I ba8sp8,k8dd * seIbasp,kdd

v + «aspd − «bsp + kd
+

se8I absp,− k8dd * seIa8bsp8,− kdd

− v8 + «aspd − «bsp − k8d
J .

Here we have taken into account thatv+«aspd=v8+«bsp8d is a consequence ofs67d and assumed
E=v+«aspd. According to our approximationkr0!1 sl@ r0d we have

qabskd <
e2

m
dab, gab < 0,

gabskd < −
ie

m
E dy wa

* syd
]wbsyd

]y
=

e

m
kaup̂ubl,

whence
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Ra8a
8 <

e2

m
ek

sldek8
sl8d*daa8, I absp,kd < gabskd <

e

m
kaup̂ubl, s73d

wherep̂=−i¹ is the momentum operator. Noting that«aspd=«a+sp2/2Md we neglect the kinetic
energy in denominators ofRa8a

9 sthe kinetic energy is small in comparison to binding energy of
bound states; see Sec. IId. The result is

Ra8a
9 =

e2

m2o
b
H ka8ue8* p̂ublkbuep̂ual

v + «a − «b

+
ka8uep̂ublkbue8* p̂ual

− v8 + «a − «b
J .

Let us express this formula through the matrix elements of the dipole moment of the atom. It is
easy to verifyfby using of Eq.s71dg that

ka8ue8* p̂ublkbuep̂ual
v + «a − «b

= m2S«a − «b − v8 +
vv8

v + «a − «b
Dka8ue8* ŷublkbueŷual,

ka8uep̂ublkbue8* p̂ual
− v8 + «a − «b

= m2S«a8 − «b + v8 +
vv8

− v8 + «a − «b
Dka8ueŷublkbue8* ŷual.

Therefore, the quantityRa8a
9 is of the form

Ra8a
9 = Qa8a + vv8o

b

Hka8ued̂ublkbue8* d̂ual
− v8 + «a − «b

+
ka8ue8* d̂ublkbued̂ual

v + «a − «b
J ,

whered̂=eŷ is the dipole moment of the atom, and

Qa8a = m2o
b

hs«a − «b − v8dka8ue8* ŷublkbueŷual + sv8 + «a8 − «bdka8ueŷublkbue8* ŷualj.

Next, using that

Fŷe,
p2

2m
+ V̂G = Fŷe,

p2

2m
G =

i

m
ep̂,

one finds

Qa8a = −
e2

m
e8*edaa8.

According to s73d, the quantityRa8a
8 is equal toRa8a

8 =se2/mde8* edaa8. Thus, the matrixR=R8
+R9 takes the form

Ra8a = vv8o
b

Hka8ued̂ublkbue8* d̂ual
− v8 + «a − «b

+
ka8ue8* d̂ublkbued̂ual

v + «a − «b
J

and the amplitude of transition from the initial state into the final state is given byssee Ref. 5d

Si→f = −
4p2i

V
1

Îvv8
Ra8ads«aspd + v − «a8sp8d − v8dDsp + k − p8 − k8d.

The differential scattering cross section is of the form

dsi→f =
1

vv8
uRa8au2ds«aspd + v − «a8sp8d − v8ddk8.
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Let us consider the scattering of an elementary particle by compound particlesthe scattering
of an electron by atomd. Due to the structure of the Hamiltonian of interactions38d it is sufficient
to study the scattering of particle of the first kind by bound state. The matrix element of the

Ŝ-matrix in the first nonvanishing approximation over interaction is defined by

Si→f = − 2pikf uĤ˜ int
1 uilds«i − « fd,

whereĤ˜ int
1 is given bys38d and consequently,

kf uĤ˜ int
1 uil =

1

V2 E dx1 dx2 dy wasx2 − ydeipXwa8sx2 − yde−ip8Xsn11sx1 − x2d − n21sx1 − yddeix1sk1−k18d.

Here kf u=k0uĥa8sp8dx̂1sk18d and uil= x̂1
+sk1dĥa

+spdu0l. The simple calculations lead to

kf uĤ˜ int
1 uil =

1

VDsp + k − p8 − k8d E dx wa8
* sxdwasxdhn11sqde−iqxsm2/Md

+ n21sqdeiqxsm1/Mdj, q = k8 − k .

For Coulomb’s interaction of particles we have

n11sqd = − n21sqd ; nsqd =
4pe2

q2 .

Therefore, in the long-wave approximationsqr0!1d, one gets

kf uĤ˜ int
1 uil = 4pie

1

VDsp + k − p8 − k8d
1

q2qda8a, s74d

whered̂=ex̂ is the dipole moment of atomfda8a=edx wa8
* sxdxwasxdg. Note that the Hamiltonian

V̂
˜

=E dx1 dx2 x̂+sx1dx̂sx1dva8asx1 − x2dĥa8
+ sx2dĥasx2d,

which describes the interaction between particles and bound states leads to the same result. Here
x̂, ĥa are the field operators of particles and bound states, respectively, andva8asxd
=se/x3dxda8a. The relations74d defines the interaction energy of the dipole momentd and electric
chargee, which are at the distancex from each other.

VIII. THE VAN DER WAALS FORCES

In this section we investigate the forces acting between neutral atoms being in the ground state
sthe van der Waals forcesd on the basis of the developed formalism. In order to solve this problem
let us address the Schrödinger equation that determines the energy spectrum of the system,

Ĥ˜ F = EF, Ĥ˜ = Ĥ˜ 0 + V̂
˜

. s75d

HereĤ˜ 0 andV̂
˜

=Ĥ˜ int
1 +Ĥ˜ int

2 +Ĥ˜ int
3 are defined bys37d–s40d. Since the system in question consists of

two atoms, we should seek the solution ofs75d in the form

FabsX,X8d = o
lr
E dY dY8 Kab;lrsX,X8;Y,Y8dĥl

+sYdĥr
+sY8dF0. s76d

The Hamiltonian of interactionV̂
˜

is equal, in accordance withs38d–s40d, to

022301-30 S. V. Peletminskii and Y. V. Slyusarenko J. Math. Phys. 46, 022301 ~2005!

                                                                                                                                    



V̂
˜

=
1

2
E dX dYĥa

+sXdĥb
+sYdĥgsYdĥdsXdGdg;absX − Yd, s77d

where

Gdg;absX − Yd =E dx dy wa
* sxdwb

* sydwgsydwdsxdHn12SX − Y −
m1x + m2y

M
D + n21SX − Y

+
m1y + m2x

M
D + n11SX − Y +

m2

M
sx − ydD + n22SX − Y −

m1

M
sx − ydDJ .

We suppose that the kinetic energy of atoms is small in comparison to the energy levelsu«au

s«a,0d. In this case, according tos37d, the operatorĤ˜ 0 can be represented in the form

Ĥ˜ 0 = o
a
E dX «aĥa

+sXdĥasXd.

It can be easily seen that

Ĥ˜ 0ĥl
+sZdĥr

+sZ8dF0 = s«l + «rdĥl
+sZdĥr

+sZ8dF0,

s78d

V̂
˜

ĥl
+sZdĥr

+sZ8dF0 = o
ab

Glr;absZ − Z8dĥa
+sZdĥb

+sZ8dF0.

These formulas show that we can seek the solution ofs75d in a more simple, rather thans76d, form

FabsX,X8d = o
lr

Kab;lrsX,X8dĥl
+sXdĥr

+sX8dF0,

so that the coordinates of atoms have the definite values in the stateFabsX ,X8d. Upon substituting
this expression intos75d and usings78d, one finds

Kab;gds«g + «dd + o
lr

Kab;lrGlr;gdsZ − Z8d = EabKab;gd.

A perturbative approach for this equation can be easily developed in the domain of great
uZ −Z8u when the quantityGlr;gdsZ −Z8d becomes smallfsees77dg. ExpandingKab;gd in G,

Kab;gd = Kab;gd
0 + Kab;gd

1 + Kab;gd
2 + ¯ ,

Eab = Eab
0 + Eab

1 + Eab
2 + ¯ ,

one obtains in the zeroth order

Kab;gd
0 s«g + «dd = Eab

0 Kab;gd
0 ,

whence

Kab;gd
0 = Kab

0 dagdbd, Eab
0 = «a + «b.

Taking into account this result we have in the first approximation,

Kab;gd
1 s«g + «dd + Kab

0 Gab;gdsZ − Z8d = s«a + «bdKab;gd
1 + Eab

1 Kab
0 dagdbd.

By setting herea=g, b=d, one gets
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Eab
1 = Gab;absZ − Z8d, s79d

and fora ,bÞg ,d,

Kab;gd
1 = Kab

0 Gab;gdsZ − Z8d
s«a + «b − «g − «dd

, a,b Þ g,d. s80d

The second order of the perturbative approach gives

Kab;gd
2 s«g + «dd + o

lr

Kab;lr
1 Glr;gdsZ − Z8d = s«a + «bdKab;gd

2 + Eab
1 Kab;gd

1 + Eab
2 Kab;gd

0 .

Taking herea=g, b=d, one finds

o
lr

Kab;lr
1 Glr;absZ − Z8d = Eab

1 Kab;ab + Kab
0 Eab

2 ,

whence, according tos79d and s80d, we have

Eab
2 = o

lr

8
Gab;lrsZ − Z8dGlr;absZ − Z8d

s«a + «b − «l − «rd
. s81d

The prime above the sum means that the terms withl=a, r=b are omitted. The state vector
FabsX ,X8d in the main approximation of the perturbative approach is determined by

FabsX,X8d = Kab
0 ĥa

+sXdĥb
+sX8dF0 + ¯

fthe constantKab
0 may be found from the normalization relation,sFab ,Fabd=1g. Formulass79d

ands81d for Eab
1 andEab

2 give us the corrections to the energy levelsEab
0 =«a+«b. It follows from

the obtained formulas that the energy of two atoms being in the ground statea and spaced apart
for sufficiently long distances is defined by

Eaa = 2«a + Gaa;aasZ − Z8d + o
lr

8
Gaa;lrsZ − Z8dGlr;aasZ − Z8d

s2«a − «l − «rd
+ ¯ . s82d

Let us prove now thatGaa;aasZ −Z8d;0. In doing so we use the following formula:10

1
ÎR2 − 2Rrx + r2

=
1

uR − ru
=

1

R
+ o

n=1

` S r

R
Dn

Pnsxd,

wherex=cosq, q is the angle between vectorsR andr, andPnsxd are the Legendre polynomials.
Noting thatfsees77dg

Gaa;aasZ − Z8d =E dx dyuwasxdu2uwasydu2Hn12SZ − Z8 −
m1x + m2y

M
D + n21SZ − Z8 +

m1y + m2x

M
D

+ n11SZ − Z8 +
m2

M
sx − ydD + n22SZ − Z8 −

m1

M
sx − ydDJ ,

we come, taking into account the spherical symmetry ofuwasxdu2, to

Gaa;aasZ − Z8d = 0. s83d

We have also employed here that according tos43d,
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nabsZ − Z8d =
eaeb

uZ − Z8u
, e1 = − e2 = e.

Let us find nowGaa;lrsZ −Z8d,

Gaa;lrsZ − Z8d =E dx dy wr
*sxdwl

* sydwasydwasxdHn12SZ − Z8 −
m1x + m2y

M
D + n21SZ − Z8

+
m1y + m2x

M
D + n11SZ − Z8 +

m2

M
sx − ydD + n22SZ − Z8 −

m1

M
sx − ydDJ .

The presence of multiplierswasyd andwasxd makes it possible to expand the expression in braces
in powers ofx, y. As a result we have

Gaa;blsZ − Z8d =
1

uZ − Z8u3
s− 3sndbadsndlad + sdbadladd,

where

n =
Z − Z8

uZ − Z8u
, dba = e E dx xwb

* sxdwasxd

sdba are the matrix elements of the dipole moment of atomd. Thus, the potential energy of
interaction between atoms,VsZ −Z8d is defined by6

VsZ − Z8d ; Eaa
2 − 2«a =

1

uZ − Z8u6obl

8
u− 3sndbadsndlad + sdbadladu2

2«a − «b − «l

, 0.

Since «b ,«l.«a, VsZ −Z8d,0. Therefore, the attractive forcessthe van der Waals forcesd act
between the neutral atoms at long distances.

Consider now the scattering of a compound particle by compound particle, which are in the
ground state. We start from the scattering matrix representation in terms ofT-operatorss67d.

Accurate to the terms, which are of the second order in interactionV̂
˜

between the atomsfsees68dg,
one gets

Ŝ= 1 − 2piE
−`

`

dE dsE − Ĥ˜ 0dV̂˜dsE − Ĥ˜ 0d − 2piE
−`

`

dE dsE − Ĥ˜ 0dV̂˜
1

E − Ĥ˜ 0 + ih

V̂
˜

dsE − Ĥ˜ 0d.

s84d

Neglecting the kinetic energy of atoms we replace in the resolventsE−Ĥ˜ 0+ ihd−1 the Hamiltonian

of free particlesĤ˜ 0 by the HamiltonianĤ
˜

0 of atoms in the restfsees37dg,

Ĥ˜ 0 → Ĥ
˜

0 = o
a
E dx «aĥa

+sxdĥasxd

sin the low-energy limit we cannot do this under the argument of thed-functiond.
Since we study the collision of two atoms and the number of atoms is conserved during the

process of collision, we can restrict ourselves by considering this process in the two-particle
subspace with the following completeness condition:
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1

2
E dx1 dx2 o

a1,a2

ĥa1

+ sx1dĥa2

+ sx2du0lk0uĥa2
sx2dĥa1

sx1d = 1. s85d

In this case formulass78d are true. Since the atoms are in the ground state,s83d is also valid and,

therefore, the matrix element ofŜ-matrix turns to zero in the first approximation of the perturba-
tion theory.

The second approximation of the perturbation theory is defined, according tos84d ands85d, by
the formula

V̂
˜ 1

E − Ĥ
˜

0 + ih

V̂
˜

=
1

2 o
a1,a2

o
b1,b2

o
g1,g2

E dx1dx2
1

E − «a1
− «a2

+ ih
Ga1a2;b1b2

sx1 − x2dĥb1

+ sx1dĥb2

+ sx2du0l

3k0uĥg1
sx1dĥg2

sx2dGg1g2;a1a2

+ sx1 − x2d.

In the two-particle subspace this formula is equivalent to

V̂
˜ 1

E − Ĥ
˜

0 + ih

V̂
˜

=E dx1 dx2 o
b1,b2

o
g1,g2

ĥb1

+ sx1dĥb2

+ sx2dVb1b2;g1g2
sx1 − x2;Edĥg1

sx1dĥg2
sx2d,

where

Vb1b2;g1g2
sx1 − x2;Ed = o

a1a2

1

E − «a1
− «a2

+ ih
Gg1g2;a1a2

+ sx1 − x2dGa1a2;b1b2
sx1 − x2d.

Since the initial and final states of a particle are the ground states, the scattering matrix in the
two-particle subspace can be represented in the form

Ŝ= − 2piE
−`

`

dE dsE − Ĥ˜ 0dV̂effdsE − Ĥ˜ 0d,

where

V̂eff =
1

2
E dx1E dx2 ĥa1

+ sx1dĥa2

+ sx2dVeffsx1 − x2dĥa2
sx2dĥa1

sx1d,

Veffsx1 − x2d = o
b1b2

Gaa;b1b2

+ sx1 − x2dGb1b2;aasx1 − x2d

2«a − «b1
− «b2

.

We can see that the second order inV̂
˜

of perturbation theory forŜ-matrix is equivalent to the first

order of perturbation theory over effective interactionV̂eff. This effective interaction is determined
by van der Waals forcesfsee formulas82dg.

It follows from s39d, that the Hamiltonian of interaction of atoms at low energies is defined by

V̂
˜

=E dx1 dx2 vab;gdsx1 − x2dĥa
+sx1dĥb

+sx2dĥgsx2dĥdsx1d,

where

vab;gdsxd =
1

x5sx2sdaddbgd − 3sxdaddsxddgdd.

This Hamiltonian corresponds to the dipole–dipole interaction of atoms.
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IX. CONCLUSION

The goal of this paper was to develop a microscopic approach for describing the physical
processes in many-particle systems in the presence of bound states of particles. To achieve this
goal we developed an approximate second quantization method for systems with bound states of
particles.

The basic results obtained in this paper are the following:
s1d The Fock space was introduced in the second quantization formalism. In this space the

creation and annihilation operators of elementary particlesx̂+, x̂ and their bound statesĥ+, ĥ were
introduced on an equal status.

s2d The operators of basic physical quantities acting in this space were constructed. These
operators include the Hamiltonians of interaction between elementary particles and their bound
states.

s3d It was shown that in the approximation when the radius of interaction is small the above-
mentioned Hamiltonians transform into the well-known Hamiltonians for Coulomb’s and dipole
interactions between the particles of various kinds.

s4d The nonrelativistic quantum electrodynamics of charged and neutralsthe bound statesd
particles was constructed.

s5d The various physical effects including the theory of the van der Waals forces acting
between atoms were considered as the approbation of the developed formalism. The description of
such effects within the usual formalism requires more considerable efforts associated with intro-
duction of the interaction between neutral currents of bound states and electromagnetic field.

s6d More detailed calculations, which fall out of the limits of our approximation should result
in appearance of three- and many-body interactions between unbound particles and two-body
bound states. These many-body interactions should be consistent with pair interaction of original
particles. The appearance of these many-body terms is analogous to the origin of the terms with
photon–photon scattering in transition from the usual standard Lagrangian to the effective low-
energy Euler–Heisenberg Lagrangian of quantum electrodynamics.

Especially we would like to emphasize a role of the obtained Hamiltonians, which describe
the interaction of quasineutral particlessthe bound states of charged fermionsd with electromag-
netic field, the elementary particles with bound states, and also the bound states with bound states.
On the basis of these Hamiltonians one can study such phenomena as Bose–Einstein condensation
in a gas of excited atoms, the interaction of condensates with an electromagnetic field in Bose and
Fermi systems. These Hamiltonians can be also the basis of the kinetic theory for systems with
bound states of particles.

Finally we would like to stress that the developed method can be easily generalized to the case
of bound states consisting of more than two particles. The generalization of the offered method for
describing the systems with bound states of bosons and also of bosons and fermions taking into
account the spin of particles can be also performed without principal difficulties.
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Using the Iqbal–Netzike–Vafa dictionary giving the correspondence between the
H2 homology of del Pezzo surfaces andp-branes, we develop a way to approach
the system of brane bounds in M-theory onS1. We first review the structure of
10-dimensional quantum Hall solitonsQHSd from the view of M-theory onS1.
Then, we show how theD0 dissolution inD2-brane is realized in M-theory lan-
guage and derive thep-brane constraint equations used to define appropriately the
QHS. Finally, we build an algebraic geometry realization of the QHS in type IIA
superstring and show how to get its type IIB dual. Other aspects are also
discussed. ©2005 American Institute of Physics.fDOI: 10.1063/1.1834695g

I. INTRODUCTION

A few years ago, it has been conjectured in Ref. 1, see also Ref. 2, that a specific assembly of
a system ofKD0, D2 andN D6 branes andN fundamentalF1 strings, stretching betweenD2 and
D6, has a low energy dynamics similar to the fundamental state of fractional quantum HallsFQHd
systems. There, the boundary states of theF1 strings ending on theD2 brane are interpreted as the
FQH particles moving in theD2-brane world volume. The external strong magnetic fieldB is
represented by a large number ofD0 branes dissolved inD2 and the dynamics of these particles
is modeled by a noncommutative Chern–SimonssNCCSd Us1d gauge field theory.3 Soon after this
proposal, several constructions were considered pushing forward this analogy.4–12 Susskindet al.
idea was also extended to quantum Hall solitons that are not of Laughlin type,13 in particular the
quantum Hall solitons modeling Haldane hierarchy and multilayer systems as proposed in Ref. 14.

On the other hand, it has been observed recently by Iqbal–Neitzke–VafasINV d15 that there is
remarkable correspondence betweenp-branes in M-theory on torii and holomorphic curves in del
Pezzo surfaces. A dictionary characterizing this correspondence was given. The result of this work
was particularly focused on the study of a mysterious duality in the toroidal compactification of
M-theory, for other applications see also Refs. 16 and 17. But here we will use differently the INV
link between del Pezzo and M-theory by developing a new method to approach brane systems.
The originality of our construction rests on the fact that INV correspondence can be also used to
study geometric aspects of brane physics using the power of algebraic geometry and homology.
Among our results, we quote the derivation of new representations ofp-brane systems using the
H2 homology of algebraic curves in del Pezzo surfaces.

To fix the idea on the way we will be doing things, we focus, in a first step, on a special
system of branes and show how new representations can be built. The system we will be dealing
with here concerns mainly the usual quantum Hall solitonsQHSd we have introduced in the
beginning of this introduction. But in the discussion section, we will also draw the lines of other
constructions, in particular the way QHS is realized in type IIB superstring onS1 as well as higher
dimensional extensions.
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The principal aim of this work is then to use results on 10-dimensional QHS, the INV
correspondence as well as string theory and mathematical results to develop new realizations of
quantum Hall solitons using algebraic geometry curves in del Pezzo surfaces. For simplicity, we
will give here the main lines of the method on Susskindet al. QHS. A detailed analysis and
applications dealing with other types of brane systems will be given in Ref. 18.

The presentation of this paper is as follows. In Sec. II, we describe briefly the quantum Hall
soliton in type IIA superstring. We first review the structure of the 10-dimensional QHS as
formulated in the literature and then give its representation in the language of the 11-dimensional
M-theory onS1. This change from type IIA to M-theory allows us to reach the two remarkable
points:sid give a geometric realization of the standard idea of dissolutionD0 branes inD2 andsii d
derive the appropriate geometric constraint equations that define QHS. In Sec. III, we review the
homology of del Pezzo surfaces as it is one of the basic tools in construction and in Sec. IV we
describe the INV correspondence. In Sec. V we first identify the constraint equations for QHS
using the H2 homology of del Pezzo. Then we develop a realization of the Hall soliton using
intersecting classes of complex curves in del Pezzo. In Sec. VI, we give our conclusion and make
a discussion.

II. QUANTUM HALL SOLITONS

One remarkable observation of Susskind and collaborators in the derivation of the quantum
Hall soliton is that the usuals1+2d dimensional condensed matter fractional quantum HallsFQHd
phase has a striking similarity with a specificp-brane configuration in type IIA superstring theory.
Following Refs. 1 and 2, see also Ref. 19, there is a one to one correspondence between the
three-dimensionals3Dd FQH systems of condensed matter physics and the low energy dynamics
of brane bounds involvingD0,D2, andD6 branes of the 10-dimensional uncompactified type IIA
superstring. There is alsoF1 strings stretching betweenD2 andD6 branes,F1 ends onD2 have
an interpretation in terms of FQH particlessHall electronsd. Let us comment briefly on this
configuration to which we shall refer hereafter as the type IIA stringy representation of the
quantum Hall soliton. Denoting the usual IIA stringsbosonicd coordinate field variablesXmst ,sd
by the following equivalent and appropriate ones

htstd, %st,sd, qst,sd, wst,sd, hyist,sdj4øiø9;j, s2.1d

wheret and s are the usual string world sheet variables, the above mentionedp-brane bound
system, called also quantum Hall solitonsQHSd, is built as follows, see Fig. 1 for illustration.

FIG. 1. This figure represents the type IIA stringy representation of a fractional quantum Hall soliton.
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A. Brane configuration

If forgetting about edge excitations which may be modeled byNS5 branes, the simplest
structure of QHS is parametrized in terms of the above 10-dimensional string coordinates as
follows.

sad One two space dimensional sphericalD2 brane; it plays a role of the world volume in FQH
systems of condensed matter physics and is parametrized by the spherical coordinates,

ht, % = R; 0 ø q ø p; 0 ø w ø 2p; 06j. s2.2d

At fixed time, thisD2 brane is embedded inR3,R+3S2 and for large values of the radius,D2
may be thought of locally asR1,2 which is also interpreted as the space–time of the three-
dimensional Chern–Simons gauge theory.

sbd N coincident flat six-dimensional spaceD6 branes located at the origin ofD2 and param-
etrized collectively by theyi internal Euclidean coordinates as

ht, 03, sy4, . . . ,y9dj. s2.3d

It can be thought of as an external source of charge densityJ0~Nd3sxd at the originsx1,x2,x3d
=s0,0,0d of the sphericalD2 brane.

scd N fundamental stringsF1 stretching betweenD2 andD6 branes and parametrized by

ht, 0 ø % ø R, 02, 06j. s2.4d

The F1 string ends on theD2 brane are associated to the electrons of the three-dimensional
condensed matter FQH fluids.

sdd K D0 branes dissolved into theD2 brane; they define the flux quanta associated to the
external magnetic fieldB of FQH systems. Recall also thatD0 andD6 are the electric–magnetic
dual.

B. Methods

Since the original work linking fractional quantum Hall fluids and NC Chern–Simons gauge
theory,3 several methods have been developed to deal with such kinds of systems.5,9–20 Matrix
model approach from Polychronakos21 is one of these methods which has been getting a particular
interest in the literature. In this matrix model formulation, the FQH particles in the Laughlin state
are described by twoN3N Hermitian matricesXij

1std and Xij
2std fin our coordinate choiceXij

1std
,R sin qi jstdcoswi jstd andX2std,R sin qi jstdsin wi jstdg. For large radiusR, the two spheres can
be locally approximated by a flat patch of theR2 plane and so one can neglect, in a leading
approximation, the curvature effect. In the infinite limit ofN and M sstrong external magnetic
fieldd, the one-dimensional matrix fieldsXij

1std andX2std are mapped to the usuals2+1d fields, a
behavior which is nicely given by the Susskind map,

Xist,yd = yi + u«i jAjst,yd s2.5d

as discussed in Refs. 3 and 10. In this relation, one recognizes thes1+2d Chern–Simons gauge
field Ajst ,yd and the noncommutativity parameteru induced by the presence of externalB.

In our present work, we will use a completely different approach to deal with the QHS. This
method is based on algebraic geometry of del Pezzo surfaces and too particularly on their H2

homology. In our way, one may naturally define all physical quantities one encounters in type IIA
stringy representation of QHS and condensed matter FQH fluids. For the present presentation
however and for the purpose of illustration of the technique, we will simplify the construction. We
skip unnecessary details and essentially focus on the path towards the algebraic geometry realiza-
tion of QHS.

To proceed, let us say some words on our strategy towards the algebraic geometry realization
of QHS. This will be done in four principal steps:sid In step one, we reformulate the type IIA
stringy representation of QHS as a constrained system ofp branes. Here we show that the
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appropriate way to do it is in fact from the view of M-theory onS1. In this case, we give a
geometric realization of the idea of dissolution ofD0 branes inD2 and show that QHS particles,
namely electrons and flux quanta, can be treated in a quite similar manner. This step permits us to
identify the appropriate geometric constraint equations that define QHS.sii d In step two, we
review the INV correspondence and describe howp branes are represented in algebraic geometry
of del Pezzo surfaces. We take this opportunity to draw the main lines of a method of representing
homology classes in the del Pezzo surfaceB1 by usingF1 strings andD2 branes. This method
uses triangulation property of surfaces and is also motivated from formal similarities with Feyn-
man rules in quantumF3 theory. siii d In step three, we reformulate the structure of the stringy
QHS into the language of homology of del Pezzo surfaces. We first give the translation of con-
straint equations in terms of H2 homology ofB1, then we study necessary conditions for their
solutions.sivd In the last step, we develop a class of solutions of the homological constraint
equations giving an algebraic geometry realization of QHS.

We begin by noting thatp branes involved in the above QHS may, roughly speaking, be
thought of as sets of points inp+1 dimensions. As far as brane links are concerned, we clearly see
that intersections between the QHS branes may be naively defined as set intersections as follows:

D2 ù F1 = 1, D2 ù D6 = 0, D6 ù F1 = 1. s2.6d

For the case ofN fundamental strings, the first equation of the above relations extends as
D2ù sNF1d=N and so on. In 10-dimensional type IIA stringy representation, these relations are
natural identities that characterize the QHS and so they should be fulfilled in any other represen-
tation of QHS including the algebraic geometry one we are after. However to have a consistent
description, we still need information about theK D0 branes of the QHS and which have no
reference in Eq.s2.6d. This brings us to our first comment regarding this special property, which
to our knowledge have not been sufficiently explored in the literature. The idea ofD0 dissolution
in D2 is in fact strongly related with type IIA representation of QHS requiring that the total
space–time dimension of the soliton should be equal to 10. However in 11-dimension M-theory on
S1, we have an extrascompactd dimension which allows us to engineer in a nice geometric way the
D0 branes in perfect agreement with INV correspondence. The key idea of our representation is
summarized as follows: TheD0 branessflux quantad dissolved inD2 are treated in M-theory onS1

on equal footing as the electrons in the sense that they will be also viewed as ends ofF18 strings,
but this time, stretching betweenD2 and K D0 branes, see Fig. 2 for illustration. From this
representation, one can clearly see that the total space–time dimension of the QHS is as in the
M-theory on S1. One can also see thatD0 particles in QHS are associated with the compact
directionS1 and moreover has much to do with the homological class of curveEM in del Pezzo
surfaceB1 considered in Ref. 15. As such we have, in addition to Eq.s2.6d, the following
constraint equations of QHS formulated in the language of M-theory on circleS1,

FIG. 2. This figure represents the type IIA stringy representation of a fractional quantum Hall soliton. The ends ofF81
strings onD2 are theD0 branes appearing in the Susskindet al. QHS. They are in one to one with theK D0’s associated
with the eleventhscompactd dimension.
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F81 ù D2 = 1, F81 ù D6 = 0,

D0 ù F81 = 1, F81 ù F1 = 0,

D0 ù D2 = 0, D0 ù D6 = 0, s2.7d

where, leaving apart the brane dimension and their charge, there is a quite similar analogy between
the role ofD0 andD6 branes. With this reformulation of QHS in M-theory onS1 and to which we
shall continue to refer to it as type IIA stringy representation, we end step one and are now in
position to go ahead by following the drawn path. In the second step, we describe briefly some
useful tools on the H2 homology of del Pezzo surfaces and the INV correspondence betweenp
branes and complex curves.

III. DEL PEZZO SURFACES

In this section, we focus on two basic aspects. First we give some useful tools on del Pezzo
surfacesBk, k=1,2, . . . , andparticularly on the H2 homology of their class of curves. Then we
consider the main lines of the toric representation ofB1 as this will be also relevant for later
analysis.

A. General on Bk

del Pezzo surfacesBk are complex dimension two compact manifolds that are obtained by
blowing up to eight pointsskø8d in complex projective spaceP2.22,23TheseBk complex surfaces
are simply laced manifolds and their homologyH2sBk,Zd is generated by the line classH of P2

and the exceptional curvesEi generating thek blow ups ofP2. The use of this line’s homology
turns out to be very helpful in the present study. It offers a powerful tool to study holomorphic
curves in del Pezzo and has the advantage of giving a quite complete characterization of analytic
curves without the need to specify the explicit form of complex algebraic geometry equations.

Recall that on a compact algebraic and projective varietyX, a generic divisorD=oiniDi is a
finite formal linear combination of complex codimension one analytic subvarietiesDi. An instruc-
tive illustration of this construction is given by the special case of a holomorphic functionF
=Fsx1,x2, . . .d on X,

F = p
j=1

s

Fj
nj s3.1d

with Fj =Fjsx1,x2, . . .d being the irreducible components of F, they are holomorphic polynomials.
Here the aboveD j’s are the prime divisors associated with the zeros ofFj. The divisorD, which
is called principal, reads assFd=o jnjsFjd with nj positive integers. The support of the divisor is
the varietyVsFd=D1øD2ø ¯ øDs. Similar relations are also valid for meromorphic functions
with zeros and poles. Now, we turn to del Pezzo surfaces and their homology.

In a given del Pezzo surfaceBk, eachEi is associated with aP1 holomorphic curve and the
class systemhH ,Eij satisfies the following pairing:

H2 = 1, H ·Ei = 0, Ei ·Ej = − di j , i, j = 1, . . . ,k. s3.2d

In terms of these basic classes of curves, one defines all the tools we need for the present study.
First, note that the generic class of holomorphic curves inBk are given by the linear combination
type,
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Ca = naH − o
i=1

k

maiEi , s3.3d

with na andma as integers. These classes of curves are characterized by two basic parameterssad
The self-intersection numberCa

2, which by help of Eq.s3.2d is given by

Ca
2 = na

2 − o
i=1

k

mai
2 , s3.4d

and sbd the degreedCa
which, as we shall see, is linked to the space–time dimension of thep

branes. Since theCa
2 and the degree play a crucial role in the algebraic geometry realization of

QHS we are considering in this paper, it is interesting to note that among the above classes of
curves, there is a particular class of curves with a special property. This concerns the canonical
classVk of the Bk surface which is given by minus the first Chern classc1sBkd of the tangent
bundle. It reads as

Vk = − S3H − o
i=1

k

EiD , s3.5d

and has a self-intersection numberVk
2=9−k whose positivity requireskø9. Obviously k=0

corresponds just to the case where we have no blow up; i.e., theP2 complex surface. With the
above relation, we are now in position to define the degreedC of a given curve classC=nH
−oi=1

k miEi in Bk. It is the intersection number between the classC with the anticanonical class
s−Vkd,

dC = − C · Vk = 3n − o
i=1

k

mi . s3.6d

Positivity of this integer puts a constraint equation on the allowed values of then andmi integers
which should be likeoi=1

k mi ø3n. Note that there is a relation between the self-intersection num-
berC2 of the classes of holomorphic curves and their degreesdC. This relation, which is known as
the adjunction formula, is given by

C2 = 2g − 2 +dC, s3.7d

it allows us to define the genusg of the curve classC asg=s2+nsn−3d−oi=1
k mismi −1dd /2 where

we have also used the expansionC=nH−oi=1
k miEi. Fixing the genusg to given positive number

puts then a second constraint equation onn andmi integers. For the interesting example of rational
curves withg=0, we have thenC2=dC−2 or equivalently

o
i=1

k

mismi − 1d = 2 +nsn − 3d. s3.8d

For k=1, this relation reduces tomsm−1d=2+nsn−3d, its leading solutionsn=1,m=0 and n
=0,m=−1 give just the classesH andE, respectively. Typical solutions for this constraint equation
are given by the generic classCn,n−1=nH−sn−1dE which is more convenient to rewrite it as
follows:

Cn,n−1 = H + sn − 1dsH − Ed. s3.9d

In this case the degree of these rational curves inB1 is equal todC=2n+1, it deals then withp
branes in type IIA strings. However along with the above solution, there is also configurations
with even degree. These solutions concernsNS branes given by the classesCn,2−n=C=nH−s2
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−ndE with n=1,2 andwrappedp branes in type IIB representation. The second issue will be
discussed later on.

B. Toric representation of B1

We need this toric representation to draw pictures for realizations of QHS in terms of classes
of curves inB1. To that purpose recall first that toric representation is a tricky graphic represen-
tation that concerns complex manifolds.24,25The latter can be usually imagined as given by a real
baseB with toric fibers on it. The simplest examples of toric manifolds are naturally the complex
projective spacesPn where the real dimensionn basesBn are given by the usualn-simplex and
fibers aren-dimensional toriiTn. Therefore in toric representationP1 is an interval of a straight
line with a S1 circle on top and shrinking at the boundaries. SimilarlyP2 is a triangle with three
vertices capturing toric singularities. The blow up of one of these three toric singularities ofP2 is
just B1 and is given by a rectangle with four vertices but only two toric singularities. The corre-
sponding toric pictures of these three kinds of toric varieties are shown in Fig. 3. In theH2

homology of del Pezzo surfaces where line classes inB1 are of two types, theH standard hyperline
and theE exceptional one, we have a nice description of these figures. Figures 3sbd and 3scd are,
respectively, given by the following canonical lines ofP2 andB1:

− 3H; − s3H − Ed = − fH + 2sH − Ed + Eg. s3.10d

Naively, these canonical classes may be thought of as representing the boundaries of these com-
plex surfaces, the triangle forP2 and rectangle forB1. Viewed in that way, these boundary lines are
genus one classes having degreesd−3H=9 andd−3H+E=8, respectively, see Eq.s3.7d. Moreover, the
three edges ofP2 srespectively, four for the case ofB1d correspond just to the number of replica-
tion smultiplicityd of the classH srespectively,H and E for B1d of the basis of theH2sBk,Zd
homology. In other words the threesrespectively, fourd edges for the toric graph ofP2 srespec-
tively, B1d correspond to the splitting the multiplicity −3H as −H−H−H. The same is also valid
for the threesfourd vertices of the trianglesrectangled, they correspond to the intersection points of
the classes of curves.

Along with these figures, one may also draw the pictures associated with the rational curve
classes of Eq.s3.9d inside the complex surfaces. Let us give some illustrating examples which will
be used later on.

FIG. 3. Three toric diagrams:sad Diagram ofP1 with two S1 singularities on borders of the interval.sbd Toric graph ofP2

with threeT2 toric singularities at the vertices, andscd toric diagram ofB1 with two toric singularities and a blown one.

FIG. 4. The graph of the classH in B1, it looks like the italic letterY. But as the 3-vertex can be everywhereB1, it can have
different representations. In what follows, we will use the block representation given on right-hand side.
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1. Graphs of the classes H and E in B1 „Fig. 4 …

The hyperline classH has a self-intersection onesH2=1d and a degreedH=3 giving the
number of points on the boundary ofB1. It looks like a three point Feynman diagram with three
external legs and a three point vertex. The unique self-intersection point we have here belongs to
the interior of theB1 surface and may be interpreted as a signature of theH class inB1, it is the
3-vertex of the triangulation of the surface. For the exceptional curveE, one may be interested to
do the same asH. However, this is not possible inH homological representation sinceE has a
negative self-interactionsE2=−1d. This means thatE cannot be drawn inside of the rectangle. This
is why we will avoid this behavior by changing the orthogonal basishH ,Ej of the H2sB1,Zd
homology into the following equivalent one:

H, H − E, s3.11d

where the previous difficultyE2=−1 is now solved assH−Ed2=0. The class ofH−E is a line in
B1 with its two ends on the boundary. Note that contrary to the old basishH ,Ej which involvesD0
andD2 branes, the new one implies insteadF1 strings andD2 branes. Note in passing thatB1 may
be also defined using the following basis:

l i · l j = 1 −di j , i, j = 1,2. s3.12d

In this basis, the canonical class reads as −2l1−2l2 and genus zero curves of degree 2n+2 are
given by Cn,1=nl1+ l2 or C1,n= l1+nl2. They will be used later on when we consider type IIB
stringy representation of QHS.

2. Graph of the class H −E in B1 „Fig. 5 …

In the new basis Eq.s3.11d and thinking about the canonical classV−3H+E of B1 as −H
−2sH−Ed−E, the classH−E inside ofB1 is given by a line stretching between the basicH andE
classes ofV−3H+E. This goes in the same manner as do the two boundarysexternald lines 2sH
−Ed of the “line frontier” classV−3H+E. TheH−E class has no self-intersectionsno vertexd.

FIG. 5. The internal line crossing the surface of rectangle defines the classH−E. It may be viewed as a string stretching
between two boundary points onB1.

FIG. 6. Graph representing the class 2H=H+H. The diagrams on the left- and right-hand sides describe, respectively, the
class 2H before and after triangulation. In type IIA string language, this corresponds toNS5.
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3. Graph of the class 2H in B1 „Fig. 6 …

This is a genus zero class and has a degree equal to 6 and four self-interaction points, its
picture is immediately obtained by summing the graphs of two classes as 2H=H+H. By super-
position, we get in a first step the Fig. 6sleftd, which involves two kinds of internal vertices, a
three vertex and a four one. However splitting the four vertex into two three-vertices using the
following triangulation rule, we get the figure on the right-hand side with the appropriate number
of internal three-vertices. This property, which is general, is also valid for any sum of class of
curves.

4. Graph of the class 2H−E in B1 „Fig. 7 …

Thinking about 2H−E asH+sH−Ed and following the same lines as before, it is not difficult
to show that Fig. 8 represents five external legs and the three self-intersection points.

5. Graph of the class 3H−2E in B1 „Fig. 8 …

Repeating the same process, we get for this class of curve, thought of as the superposition of
the following three basic curvesH+sH−Ed+sH−Ed, the graph of Fig. 9. Such a procedure is
general and applies for all classes of the H2 homology of del Pezzo. Details will be given in Ref.
18.

IV. BRANES AND HOLOMORPHIC CURVES

Following Ref. 15, there is a remarkable correspondence between del Pezzo surfacesBk and
M-theory onTk. Generally speaking an elementv of the real cohomology of del Pezzo associates
the basic classessH ,E1, . . . ,Ekd of the surfaceBk with the point slp,R1, . . . ,Rkd, in the moduli
space of M-theory onTk. In practice, this means thatv is a kind of generalizedsv has an
indefinite signd Kahler acting as

vsHd = − 3 ln lp, vsEid = − lns2pRid, s4.1d

wherelp is the Planck scale and whereRi’s are the torus radii. Equations4.1d is in fact a special
one, it happens that INV correspondence is more general than given in Eq.s4.1d. We have also the
following correspondences:sad Global diffeomorphisms preserving the canonical classVk of the
del Pezzo surfaces corresponds precisely to the U duality group of the M-theory onTk. sbd
Rational curvessreal two spheresd C with volume VC=vsCd and degreedC=sp+1d are in one to
one with 1

2BPSp-brane states with tensionTp=2p exp VC. scd Two classes of rational curvesC1

andC2 related asC1+C2=−Vk corresponds just to the usual electric-magnetic duality linkingDp1

andDp2 with p1+p2=6.

FIG. 7. These figures show the triangulation of four vertexA into two three vertices A1 and A2.

FIG. 8. Building block of the homology class 2H−E. It represents aD4 brane in type IIA stringy description.
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Thereforep branes of 10-dimensional IIA superstring can be realized as H2sBk,Zd homology
classes of holomorphic rational curves inBk. Of particular interest for our present study is the
realization ofp branes in terms of H2sB1,Zd classes. More precisely, given a genericB1 rational
curve Cn,m=nH−mE with a positive degree 3n−m and integersn and m constrained asmsm
−1d=2+nsn−3d, we can work out allp branes of type IIA superstring with space dimensionp
equal to 3n−m−1. The result is reported in the following table:

Classes C0=E C1=H−E C2=H C4=2H−E C5=2H C6=3H−2E C8=4H−3E

Branes D0 F1 D2 D4 NS5 D6 D8

s4.2d

where now on the subindex carried by theCp’s refers to the real space dimension of thep branes.
From this correspondence, one sees that previous figures we have drawn give indeed an algebraic
geometry realization ofp-branes in terms of classes of holomorphic rational curves inB1. With
these tools in mind, we are now ready to consider the main topic of this paper.

V. REALIZATION OF QHS

To build a QHS representation using homology cycles ofB1, we start by recalling that from
the type IIA string representation of QHS we have the following first result:

p-branes D0 F81 D2 F1 D6

Their realization in terms of classes C0 C18 C2 C1 C6

s5.1d

It gives thep branes involved in QHS and their realization in terms of classes of holomorphic
curves in del PezzoB1. HereC18 refers to the class associated with fundamental strings stretching
betweenD0 andD2 andC1 to thoseF1 strings stretching betweenD2 andD6.

The next thing is to note that the problem of building algebraic geometry realizations of QHS
reduces then to the finding of explicit forms of theseCp class of curves in terms of theH andH−E
fundamental classes,

Cp = CpsH,Ed. s5.2d

To do so, we first must derive the appropriate constraint equations that should be obeyed by these
Cp’s, then solve them. We will see that a solution of the form, Eq.s5.2d, that satisfies the QHS
constraint equations is not possible, one needs many more ingredients to which we describe at the
proper time.

FIG. 9. Building block of the complex curve 3H−2E where one recognizes the five self-intersection points. It represents
a D6 brane in type IIA stringy description.
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A. Constraint equations and solution

By identifying the notion of a set intersection in real geometry with the usual intersection of
classes in H2 homology ofB1, the constraint relationss2.6d ands2.7d of type IIA string represen-
tation of QHS translate in H2sB1,Zd homology language as follows:

C0 ·C2 = 0, C0 ·C6 = 0, C2 ·C6 = 0,

C0 ·C18 = 1, C18 ·C2 = 1, C18 ·C6 = 0,

C2 ·C1 = 1, C2 ·C6 = 0, C1 ·C6 = 1,

C0 ·C1 = 0, C18 ·C1 = 0, C2 ·C1 = 1. s5.3d

At first sight, solving these constraint equations for rational curves in del PezzoB1 seems a simple
matter. However, this is not so trivial. While the intersection of classes typeC2·C1=1 or C6·C1

=1 do not cause a problem, the situation is not so obvious for the constraint equationsC2·C6

=0, C0·C2=0, andC0·C6=0. The point is that there are no class of curves inB1 with such a
feature. This is easily seen by directly computing the corresponding products. For instance the
product betweenC2=H andC6=3H−2E, using Eqs.s3.2d, gives

C2 ·C6 = 3, s5.4d

and the same thing for the other relations, which are not as required by the structure of the QHS
we are after. A way to overcome this difficulty is to think about the three classesC0, C2, andC6

as belonging to three independent del Pezzo surfacesB1
s−1d, B1

s0d, andB1
s1d as

C0
s−1d = E−1, C2

s0d = H0, C6
s1d = 3H1 − 2E1, s5.5d

where in addition to Eq.s3.2d, we also haveH0·H±1=H0·E±1=H±1·E0=0, see also Fig. 10. In this
case, it is not difficult to check that the intersection productsC0

s−1d ·C2
s0d, C0

s−d ·C6
s1d, andC2

s0d ·C6
s1d are

identically zero. The introduction of theB1
s−1d, B1

s0d, andB1
s1d surfaces is the price one should pay

for getting solutions of QHS constraint equations. As such one can think about these three surfaces
as three special submanifolds of the blown up of three differentP2’s embedded inP8. The two
extra dimensions inP8 deal with the curvesC18 and C1 associated withF81 and F1 strings

FIG. 10. In this figure, we give a configuration of the homological representation of the QHS involving classesC0, C2, and
C6, respectively, associated with oneD0, oneD2, and oneD6 branes. We also represent the curvesC1 illustrating strings
stretching between the branes.
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stretching between the two pairsB1
s−1d−B1

s0d andB1
s0d−B1

s1d, respectively. Therefore a simple solu-
tion for the constraint equationss5.3d reads as follows:

C0
s−1–1d = E−1,

C1
s−10d = H−1 − E0, C1

s0–1d = H0 − E−1,

C2
s00d = H0,

C1
s01d = H0 − E1, C1

s10d = H1 − E0,

C6
s11d = 3H1 − 2E1, s5.6d

where the upper indexsi j d refers to thesi , jd pair of the involved del Pezzo. The couples00d
frespectively,s±1±1dg means that we are dealing with classes of curves inB1

s0d srespectively,B1
s±1dd

and s0±1d or s±10d with rational curves stretching betweenB1
s0d and B1

s±1d. Naturally, the full
solution for stretchedF1 strings is given by the sumC1

s0±1d+C1
s±10d which is equal tosH0−E±1d

+sH±1−E0d.
In the above solutions5.6d of the constraint equations for QHS we have considered oneD6

brane and oneD0 brane and the same for theF1 string stretching betweenD0–D2 andD2–D6.
Thesep branes are represented byH2sB1

s0,±1d ,Zd classes describing rational holomorphic curves. In
what follows, we derive the general solution of Eqs.s5.3d involving ND6 branes andKD0 ones,
N andK are arbitrary positive integers.

B. Quantum Hall soliton

The algebraic geometry realization of QHS built in terms of a system of intersecting curves is
as follows: see Fig. 10 for illustration.

s1d A simple rational curve classC2
s00d=H0 belonging to a basic of del Pezzo copy denoted as

B1
s0d and generated byH0 and E0 basic classes with the same properties as above. This class of

curve is associated with theD2 brane in type IIA stringy representation.
s2d A class of curve with a multiplicityN given by the classC68=Ns3H1−2E1d. This is a

nonzero genus classf2g=Ns5N−7d+2g that corresponds to theN coincidentD6 branes in the IIA
string representation of QHS. To see where this result comes from, it is interesting to recall that in
the case where theN D6 branes are not coincident, the previous degenerate class split intoN
simple classes of curvesC6

sii d given by

C6
sii d = 3Hi − 2Ei, i = 1, . . . ,N. s5.7d

Each one of theseN C6
sii d’s belongs to one of theN del Pezzo copiesB1

sid. The latter have basis
hHi ,Eij with the same properties as before but orthogonal to thehHj ,Ejj wheneveri Þ j . This
means that in H2 homology, theN D6 branes involveN copies of del Pezzo surfacesB1

s1d , . . . ,B1
sNd

and so requires a larger embedding projective space. To have an idea on the dimension of this
space, note that, in addition toF1 string loopsC1

sii d=sHi −Eid emanating and ending on the same
C6

sii d copy, we have moreover otherF1 strings stretching between the D6 branes. In H2 homology,
this corresponds to curvesC1

si j d andC1
s ji d stretching betweenB1

sid andB1
s jd. The explicit expression

of these classes is given by

C1
si j d = sHi − Ejd, C6

sii d ·C1
si j d = 1, C1

si j d ·C6
s j j d = 1,
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C1
s ji d = sHj − Eid, C1

s ji d ·C6
sii d = 1, C6

s j j d ·C1
s ji d = 1. s5.8d

From these relations, one can clearly see that theC1
si j d andC1

s ji d classes are stretching between the
C6

sii d and C6
s j j d. Since theseC1

si j d and C1
s ji d classes require at least one complex dimension, the

embedding projective space should be at leastP3N−1. In type IIA stringy representation, this
situation describes the case where the gauge symmetry is Us1dN. For the case of UsNd gauge
symmetry, theD6 branes should be coincident and so the corresponding curve classesC6

sii d must be
degenerate curves inB1. This corresponds to

NC6 = C68 = Ns3H1 − 2E1d, s5.9d

whereH1 andE1 stand for the basic classes of the del Pezzo surfaceB1 where the degenerateNC6

live.
s3d N holomorphic curvesC1

s0id+C1
si0d solved assH0−Eid+sHi −E0d and stretching between

C2
s00d andC6

sii d. For the case ofN coincidentD6 branes Eq.s5.9d, theN classesC1
s0id+C1

si0d fuse and
give

C1
s01d = NH0 − E1,

C1
s10d = H1 − NE0, s5.10d

where obviously theF1 strings stretching betweenC2
s00d and theNC6

sii d are collectively described
by the sumsNH0−E1d+sH1−NE0d. From these solutions, it not difficult to check that the con-
straint equationss5.10d are exactly fulfilled.

s4d Finally for theK D0 branes describing the quantum flux, the construction is quite similar
to what we have done for the case of coincidentD6 branes. The homology class describing theK
D0 branes isC0

s−1–1d=kE−1 and theF ’1 strings stretching between thekD0 andD2 realized as
C0

s−1–1d andC2
s00d are given by

C1
s−10d = skH0 − E−1d + sH−1 − kE0d, s5.11d

The quantum fluxes are naturally given by the ends of theF81 strings onC2
s00d and so are

associated with the intersection numberC1
s−10d ·C2

s00d=k in agreement with the constraint equations.

VI. CONCLUSION AND DISCUSSION

Using a recent result linkingp branes and holomorphic curves in del Pezzo surfaces, we have
developed a new way to deal with brane bounds of M-theory onS1. To illustrate our idea in an
explicit manner, we have considered the usual type IIA stringy representation of the quantum Hall
soliton sQHSd and derived its realization by using the H2 homology of del Pezzo surfaces. In our
representation, QHS is described by a system of intersecting classes of holomorphic curves as
given by Eqs.s5.7d–s5.11d, see also Fig. 10.

The idea developed here can be used to derive new solutions for QHS but also for studying
general branes systems. The development of these issues seems to us important, it offers another
way to approachp-brane bounds and uses the powerful tools of homology groups and algebraic
geometry that may allow to open new horizons. In particular, one may derive new representations
of higher dimensional quantum Hall solitons involving twoD4 branes andF1 strings stretching
between them in the same spirit as in Refs. 26–28. One may also consider QHS usingp branes of
type IIB superstring that are dual to the previous type IIA ones. In the algebraic geometry of QHS
we have been considering, this configuration can be obtained without major difficulty. It consists
of the systemD3/S1, D7/S1, F1, D1, and D1/S1 and satisfy similar constraint equations to
relationss5.3d. The correspondence between the two representations is as follows:
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Type IIA D2 F1 D0 D4 D6

Curves inB1 H H−E E 2H−E 3H−2E

Type IIB D3/S1 F1, D1 F1/S1, D1/S1 D5/S1 D7/S1

Curves inB2 l1+ l2−e l1, l2 l1−e, l2−e 2l1+ l2−e 3l1+ l2−e

s6.1d

wherel i ·l j =1−di j , l i ·e=0 ande·e=−1. In order to algebraic geometry engineer the corresponding
QHS dual to the type IIA one, all one must do is, instead of the surfaceB1 generated byl1 and l2,
consider rather the del Pezzo surfaceB2, see Fig. 11.

The extra blow up described by the exceptional classe deals with the brane wrapping cycle
S1. The solution to the constraint equations may be obtained without difficulty by using the
mapping

e= H − E1 − E2, l1 = H − E1, l2 = H − E2. s6.2d

Applying the rules we have used in elaborating the type IIA stringy realization of the quantum
Hall soliton, we can draw here also the graphs of theF1, D1 strings and the wrappedD-branes
D3/S1 andD7/S1 involved in the type IIB stringy representation of QHS.

Using these graphs, one can also build the QHS diagram similar to that given by Fig. 12.
Details on this issue as well as other aspects dealing with the derivation of new solitons including
higher dimensional QHS with a configuration typeD4–F1–D4–D0 will be presented elsewhere.

FIG. 11. This graph represents the toric diagram of the del Pezzo surfaceB2.

FIG. 12. These are three graphs of curves in the del Pezzo surfaceB2, they are involved in the type IIB stringy represen-
tation of QHS. These classes are associated with branes in type IIB string onS1. sad gives a representation of theF1 string.
sbd represents a wrappedD3 brane on a circle andscd describes a wrappedD7 brane on a circle.
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Casimir energy calculations for the conformally coupled massless scalar field for a
wedge defined by three intersecting planes and for a pyramid with four triangular
surfaces are presented. The group generated by reflections are employed in the
formulation of the required Green functions and the wave functions. ©2005
American Institute of Physics.fDOI: 10.1063/1.1835546g

I. INTRODUCTION

Having new geometries in hand for which we can evaluate the Casimir energies is of interest:
We learn more about the phenomena itself, and hope that experimentalists may realize some of the
geometries to measure the effect. At this point we like to emphasize that all experiments so far
performed are of two body ones, a single cavity measurement has not been done.1

For geometries with planar boundaries, if the planes are parallel or perpendicular to each
other, the method of images is easily applicable. The parallel plates and in general rectangular
prisms of any dimensions are of that type.2 For these geometries the groups generated by reflec-
tions are Abelian. If the walls of the cavity are not perpendicularly intersecting, the reflection
groups are not commutative. This was the case for a previously studied triangular region.3 If the
reflections in the geometry we consider generate a non-Abelian group, one must study the struc-
ture of this group, for it is essential in the construction of the required Green functions and wave
functions. For example, in the present study the octahedral group provides the basic tools for the
calculations.

In the coming section we first calculate the Casimir energy density for the massless scalar field
for a wedge with three boundary surfaces.

Section III is devoted to the calculation of the Casimir energy in a pyramidal cavity with four
triangular surfaces. We get a positive result.

The corresponding groups generatedsrelated to the octahedral groupd by reflections play a
vital role in the construction of the Green function and the wave functions. The required group
theoretical details are given in the appendixes.

II. PYRAMIDAL WEDGE

Consider the region in the first quadrantsx1.0, x2.0 x3.0d inside the following three
planessFig. 1d:

P1:x1 = x3, P2:x2 = 0, P3:x1 = x2. s1d

Reflection operators with respect to these planes are

adElectronic mail: hagi@gursey.gov.tr
bdElectronic mail: duru@gursey.gov.tr
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q1 = 10 0 1

0 1 0

1 0 0
2, q2 = 11 0 0

0 − 1 0

0 0 1
2, q3 = 10 1 0

1 0 0

0 0 1
2 . s2d

A group G of order 48 is generated by the above reflections. It’s elements aregj and igj; j
=0, . . . ,23. Here 24 elements ofgj form the octahedral groupssee Appendix Ad and i =−1 is the
generator of the inversion group.

Consider the function

Ksx,yd = o
j=0

23

fGsgjx,yd − Gsigjx,ydg, s3d

whereGsx,yd is the Green function for the massless scalar field in the Minkowski space,

Gsx,yd =
1

4p2

1

ux − yu2
. s4d

Here x and y are four vectors with intervalux−yu2= uxW −yWu2−sx0−y0d2; and, gj act only on the
spatial components. To check the boundary conditions let us considerswith q1= ig21d

Ksq1x,yd = o
j=0

23

fGsigjg21x,yd − Gsgjg21x,ydg. s5d

Since for anyj we have the elementgk=gjg21 in G, s5d is equal to

Ksq1x,yd = o
k=0

23

fGsigkx,yd − Gsgkx,ydg, s6d

which implies

Ksq1x,yd = − Ksx,yd. s7d

In a similar fashion one can verify the antisymmetry property for the elementsq2 andq3. There-
fore the functionKsx,yd satisfies Dirichlet boundary conditions on the planes ofs1d.

Note that in order the equationfwith h=diags−1,1,1,1dg

FIG. 1. Planes of Eq.s1d.
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hmn ]2

]xm]xnKsx,yd = dsx − yd s8d

to be satisfied bys3d, every point in the region between the planesP1, P2, andP3 must represent
different orbits under the action of the groupG, which is indeed the case. In other words the region
we consider is the fundamental domain of the groupG ssee Appendix Bd.

To obtain the energy momentum tensor for the conformally coupled massless scalar field we
employ the well-known coincidence limit formula4

Tmn = lim
x→y

F2

3
]m

y ]n
x −

1

6
s]m

x ]n
x + ]m

y ]n
yd −

hmn

6
hsr]s

y]r
x +

hmn

24
hsrs]s

x]r
x + ]s

y]r
ydGKsx,yd. s9d

The energy densityTsxd=T00 is given by

Tsxd =
1

12p2o
j=1

23

fTsgjd − Tsigjdg, s10d

where

Tsgd = S trsgd − 1

uhW u4
− 2

uss1 + gdhW du2

uhW u6
D s11d

and

hW = s1 − gdxW s12d

with g standing forgj and igj.
Using the invariance ofTsgd under theg→g−1 we have

Tsg1d = Tsg3d,

Tsg4d = Tsg6d,

Tsg7d = Tsg9d,

Tsg10d = Tsg11d, s13d

Tsg12d = Tsg13d,

Tsg14d = Tsg15d,

Tsg16d = Tsg17d.

The same is true for elementsigj, with j running the same values ass13d.
sid For g1 which is rotation by anglep /2 around thex2 axis we have

Tsg1d = −
1

sx1
2 + x3

2d2 , s14d
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Tsig1d = −
3sx1

2 + x3
2d + 2x2

2

2sx1
2 + x3

2 + 2x2
2d3 . s15d

g4 and g6 are the rotations by the same angle around thex1 axis andx3 axis, respectively.
Therefore,Tsg4d, Tsig4d andTsg6d, Tsig4d are obtained froms14d ands15d with the cyclic replace-
ments of coordinatessx1,x2,x3d→ sx3,x1,x2d and sx1,x2,x3d→ sx2,x3,x1d, respectively.

sii d For the rotationg12 by angle 2p /3 around the line passing through the origin and the point
s1,−1,1d we have

Tsg12d = −
3

ssx1 + x2d2 + sx2 + x3d2 + sx3 − x1d2d2 , s16d

Tsig12d = −
6uxWu2 + 2sx1x3 − x1x2 − x2x3d

ssx1 − x2d2 + sx2 − x3d2 + sx3 + x1d2d3 . s17d

Sinceg14 and g16 are rotation matrices by the same angle around the axis passing through the
origin and the pointss−1,1,1d ands1,1,−1d we conclude thatTsg14d, Tsig14d andTsg16d, Tsig16d
are given bys16d ands17d with the cyclic replacements of coordinatessx1,x2,x3d→ sx3,x1,x2d and
sx1,x2,x3d→ sx2,x3,x1d, respectively.

siii d We also have

Tsg10d = −
3

ssx1 − x2d2 + sx2 − x3d2 + sx3 − x1d2d2 , s18d

Tsig10d = −
6uxWu2 − 2sx1x2 + x1x3 + x2x3d

ssx1 + x2d2 + sx1 + x3d2 + sx2 + x3d2d3 . s19d

sivd For elements satisfying the conditiong2=1 the second expression ins11d vanishes. These
are the elementsgj, j =2,5,8, and 18, . . . ,23.Since trsigjd=1 we haveTsigjd=0. Nonzero one is

Tsid = −
1

4uxWu4
. s20d

For rotationsg20, g21, andg2 we get

Tsg20d = −
1

2ssx1 − x3d2 + 2x2
2d2 , s21d

Tsg21d = −
1

2ssx1 + x3d2 + 2x2
2d2 , s22d

and

Tsg2d = −
1

8sx1
2 + x3

2d2 . s23d

Remaining six termsTsg18d, Tsg19d, Tsg22d, Tsg23d, Tsg5d, andTsg8d are obtained from the above
three equations by the cyclic replacements of coordinates.

Energy densitys10d is given by
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Tsxd =
1

12p2fTsg10d − Tsig10d − Tsidg +
1

12p2F17

8
Tsg1d − 2Tsig1d

+ 2Tsg12d − 2Tsig12d + Tsg20d + Tsg21d + c.p.G , s24d

where c.p. stands for cyclic permutations of coordinates. The system we consider is the intersec-
tion region of three wedgessP1,P2d, sP2,P3d, andsP1,P3d. For x3@1 andÎx1

2+x2
2!x3 our result

should reduce to the wedge problemsP2,P3d. Recall, that energy density in the wedge between
two inclined planes is5

TW = −
1

1440p2r4Sp4

a4 − 1D , s25d

wherea is the angle between two planes andr is the minimal distance to the axis which is the
intersection of two planes. For the systemsP2,P3d we havea=p /4 andr2=x1

2+x2
2, that is s25d

takes the form

TP2P3
= −

255

1440p2sx1
2 + x2

2d2 . s26d

Coming to our densitys24d for x3@1 andÎx1
2+x2

2!x3 all terms except the one withTsg6d are
negligibly small; thus, we have

Tsxd . −
17

12p2 · 8
Tsg6d = −

17

96p2sx1
2 + x2

2d2 , s27d

which is the same ass26d. In a similar fashion, termsTsg20d andTsg10d correspond in the suitable
limits to the wedge problemssP1P2d and sP1P3d.

III. PYRAMID

We add to the planesP1,P2,P3 the fourth oneP4:x3=a. Reflection with respect to theP4

plane is given by

q41x1

x2

x3
2 = 1 x1

x2

2 − x3
2 . s28d

The group generated byqj, j =1,2,3,4 is thesemidirect product of the groupG defined in the
preceding section and the translation groupZ3. The Green function vanishing on the planesPa,
=1, . . . ,4 is given by

Ksx,yd = o
n,m,k=−`

`

o
j=1

23

fGsgjx + j,yd − Gsigjx + j,ydg, s29d

where

j =1
0

2na

2ma

2ka
2 . s30d

The energy momentum density is
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Tsxd =
1

6p2 o
n,m,k=−`

`

o
j=1

23

fTsgjd − Tsigjdg, s31d

whereTsgd is given by s14d with the replacementhW →hW +jW, wherejW is the spatial part of the
four-dimensional vectorj. We calculate explicitly the total vacuum energy of the pyramid. For the
geometry in hand it is reasonable to use another representation for the Green function related to
the wave function and the spectra of the quantum mechanical system inside the pyramid. The
wave function which vanishes on the planesP1, P2, andP3 can be obtained in a similar fashion as
the Green function,

CsxWd = Vo
j=1

23

feispW ,gjxWd − eispW ,igjxWdg s32d

or

CpWsxWd = − 8iVfsinp1x1 sinp2x2 sinp3x3 − sinp1x1 sinp2x3 sinp3x2 + c.p.g, s33d

whereV is the normalization.
The condition uCpWsxWduP4

=0 implies that the componentspj are proportional to the nonzero
positive integers

p1 =
p

a
n, p2 =

p

a
m, p3 =

p

a
k. s34d

The properties

CgjpW
sxWd = CpWsxWd, CipWsxWd = CpWsxWd s35d

imply that the spectrum takes its values in the quotient space

Z3/G = hnW P Z3:k ù n ù mù 0j s36d

which is the discrete analog of the pyramidal region considered in the preceding section. The wave
function s33d vanishes on the boundaryB of A=Z3/G. The boundary ofA is the union of three
regions,kùnùm=0, kùn=mù0, andk=nùmù0. We must drop these values from the spectra.
Physical spectra is given bys34d with k.n.m.0 or nW PA/B.

The Green function can be written as

Gsx,yd = o
k=3

`

o
n=2

k−1

o
m=1

n−1
eipupW usx0−y0d

2upW u
CpWsxWdCpWsyWd, s37d

which implies

Tsxd =
p

2a
o
k=3

`

o
n=2

k−1

o
m=1

n−1

În2 + m2 + k2uCpWsxWdu2. s38d

After integratione0
adx3e0

x3dx1e0
x1dx2 we havefwith nW =sn,m,kdg

E =
p

2a
o

nWPA/B

unW u =
p

96a
o

nWPA/B
o
gPG

ugnW u =
p

96a
o

nWPøgsA/Bd
unW u. s39d

SinceA is the quotient spaceZ3/G we have
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ø
gPG

gsA/Bd = Z3/C, C = ø
gPG

gB, s40d

which implies

E =
p

96aS o
nWPZ3

unW u − o
nWPC

unW uD . s41d

C is the union of nine planes,m=0, n=m, n=k, and six other planes are obtained by cyclic
permutations ofn, m, andk,

o
nWPC

unW u = 3 o
n,mPZ

În2 + m2 + 6 o
n,mPZ

Î2n2 + m2. s42d

The Casimir energy is

E =
1

6
E1 −

1

2
E2 −

6 + 4Î2

16
E3 .

0.069

a
. s43d

HereE1, E2, andE3 are the Casimir energies for the cube with sidesa, for the rectangle with sides

a, a/Î2 and for the one dimensional system of lengtha ssee Ref. 2 and references thereind,

E1 =
p

2a
o

n,m,k=1

`

În2 + m2 + k2 . −
0.015

a
, s44d

E2 =
p

2a
o

n,m=1

`

În2 + 2m2 .
0.045

a
, s45d

E3 =
p

2a
o
n=1

`

n . −
0.131

a
. s46d

The positive result ofs43d is about the same magnitude as the other well known positive Casimir
energy example of the spherical cavity with radiusa,6

Eball .
0.045

a
. s47d

For nanometer size, that is fora=10−7 cm, the energys43d is sin "=c=1 unit, 1 eV>0.5
^ 105 cm−1d E.35 eV which is of considerable magnitude.
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APPENDIX A

Octahedral groupO is the group of transformations which transforms the cube into itself. The
order of this group is 24. We denote the identity element byg0. g1, g2, andg3 are rotations onp /2,
p, and 3p /2 around they axis,
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g1 = 10 0 − 1

0 1 0

1 0 0
2, g2 = 1− 1 0 0

0 1 0

0 0 − 1
2, g3 = 1 0 0 1

0 1 0

− 1 0 0
2 . sA1d

g4, g5, andg6 are rotations byp /2, p, and 3p /2 around thex axis,

g4 = 11 0 0

0 0 − 1

0 1 0
2, g5 = 11 0 0

0 − 1 0

0 0 − 1
2, g6 = 11 0 0

0 0 1

0 − 1 0
2 . sA2d

g7, g8, andg9 are rotations byp /2, p, and 3p /2 around thez axis,

g7 = 10 − 1 0

1 0 0

0 0 1
2, g8 = 1− 1 0 0

0 − 1 0

0 0 1
2, g9 = 1 0 1 0

− 1 0 0

0 0 1
2 . sA3d

g10 andg11 are rotations by 2p /3 and 4p /3 around the axis passing through the origin and the
point s1,1,1d,

g10 = 10 0 1

1 0 0

0 1 0
2, g11 = 10 1 0

0 0 1

1 0 0
2 . sA4d

g12 andg14 are rotations by 2p /3 and 4p /3 around the axis passing through the origin and the
point s1,−1,1d,

g12 = 1 0 0 1

− 1 0 0

0 − 1 0
2, g13 = 10 − 1 0

0 0 − 1

1 0 0
2 . sA5d

g14 andg15 are rotations by 2p /3 and 4p /3 around the axis passing through the origin and the
point s−1,1,1d,

g14 = 1 0 0 − 1

− 1 0 0

0 1 0
2, g15 = 1 0 − 1 0

0 0 1

− 1 0 0
2 . sA6d

g16 andg17 are rotations by 2p /3 and 4p /3 around the axis passing through the origin and the
point s1,1,−1d,

g16 = 10 0 − 1

1 0 0

0 − 1 0
2, g17 = 1 0 1 0

0 0 − 1

− 1 0 0
2 . sA7d

g18 andg19 are rotations byp around the axis passing through the origin and the pointss1,1,0d and
s1,−1,0d, respectively,

g18 = 10 1 0

1 0 0

0 0 − 1
2, g19 = 1 0 − 1 0

− 1 0 0

0 0 − 1
2 . sA8d

g20 andg21 are rotations byp around the axis passing through the origin and the pointss1,0,1d and
s1,0,−1d, respectively,
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g20 = 10 0 1

0 − 1 0

1 0 0
2, g21 = 1 0 0 − 1

0 − 1 0

− 1 0 0
2 . sA9d

g22 andg23 are rotations byp around the axis passing through the origin and the pointss0,1,1d and
s0,1,−1d, respectively,

g22 = 1− 1 0 0

0 0 1

0 1 0
2, g23 = 1− 1 0 0

0 0 − 1

0 − 1 0
2 . sA10d

The tetrahedral groupT is the subgroup ofO of order 12 with elementsg0.g2, g5, g8, and
g10, . . . ,g17. For more details we refer to Ref. 7.

APPENDIX B

Let G be a point group acting in the Euclidean spaceR3. A closed subsetS of R3 is called a
fundamental domain ofG if R3 is the union of conjugates ofS, i.e.,

R3 = ø
gPG

gS sB1d

and the intersection of any two conjugates has no interior.
The fundamental domain of the group generated by the reflectionsig2, ig5, and ig8 with

respect toy=0, x=0, andz=0 planes is the first quadrant inR3. This is group of order 8 and
dividesR3 into eight equal parts. If one adds to this group the elementg10 we arrive at the group
of order 24 which is the direct product of the tetrahedral groupT and inversion oneI generated by
i. Rotationg10 is threefold rotation. It divides the first quadrant into three equal parts. Therefore
the fundamental domain forT3 I is the region in the first quadrant between three planesP2, P3,
and P5=hx2=x3j. In T3 I there is the reflection operatorig2 with respect to theP2 plane. The
Green function constructed from the groupT3 I will vanish on P2. For P3 and P5 there is no
reflection operators.g10 rotatesP3 into P5. If we add toT3C the reflection operator with respect
to theP3 plane we arrive at the groupO3 I which is of order 48. The corresponding fundamental
domain can be obtained from that ofT3C by dividing it into two equal parts, that is the region
between three planesP2, P3, andP1. There are reflections with respect to these planes. The Green
function will vanish on these planes.

1For a very short review of the experimental situation see, for example, the book by K. A. Milton,Physical Manifestations
of Zero-Point Energy, the Casimir EffectsWorld Scientific, Singapore, 2001d.

2See, for example, the monograph by V. M. Mostepanenko and N. N. Trunov,The Casimir Effect and its Applications
sOxford University Press, New York, 1997d, and references therein.

3H. Ahmedov and I. H. Duru, J. Math. Phys.45, 965 s2004d.
4N. D. Birrel and P. C. V. Davies,Quantum Fields in Curved SpacessCambridge University Press, Cambridge, 1982d.
5D. Deutsch and P. Candelas, Phys. Rev. D20, 3063s1979d; J. S. Dowker and G. Kennedy, J. Phys. A11, 895 s1978d.
6T. H. Boyer, Phys. Rev.174, 1764s1968d; B. Davies, J. Math. Phys.13, 1324s1972d; R. Balian and B. Duplantier, Ann.
Phys.sN.Y.d 104, 300 s1978d; J. Schwinger, L. L. De Raad, and K. A. Milton,ibid. 115, 1 s1978d; 115, 388 s1978d.

7See, for example, T. Janssen,Crystallographic GroupssNorth-Holland, Elsevier, Amsterdam, 1973d.
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Casimir energy in a conical wedge and a conical cavity
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Casimir energies for a massless scalar field for a conical wedge and a conical cavity
are calculated. The group generated by the images is employed in deriving the
Green function as well as the wave functions and the energy spectrum. ©2005
American Institute of Physics.fDOI: 10.1063/1.1835547g

I. INTRODUCTION

Image method is one of the best tools in the calculation of the Casimir energies for the
polygonal regions. One can use discrete group generated by the reflections with respect to the
boundaries of the polygon under consideration to obtain the Green function, wave functions, and
spectra of the system. The method is trivially applicable to the cavities or the given regions of
space if the following conditions are fulfilled: Surfaces of the region are planar; and, they are
parallel or perpendicular to each other. The discrete groups generated by reflections with respect to
the planar boundaries appears to be the direct product of the translationZ and the cyclicC2

groups. The number of copies ofZ and C2 depend on the dimension of the rectangle. For the
parallel plate system and two dimensional rectangle we have the groupsC23Z and sC23Zd2,
respectively.sFor a Casimir calculation in rectangular region we refer to the monograph1 and
references therein.d

Recently we tried to extend the image method to a set of geometries with planar boundaries
without rectangular angles.sTo our knowledge, the only previous example without rectangular
angles was the wedge problem.2d For a class of cavities with triangular cross sections, making use
of the tools of the group of reflections from the walls one can obtain the Green function satisfying
the Dirichlet boundary conditions, then calculate the Casimir energy.3 Point groups and crystallo-
graphic point groups play important roles in constructing the Green functions and the wave
functions if the region we consider is the fundamental domain of the one of those groups. In other
words, if every point in the region represents different orbits of the group, the satisfaction of the
required wave equation by the Green function is achieved.3,4

In this work the example we present is the application of the image method to a geometry with
nonplanar boundary. The surface of the cone we deal with is obtained from a geometry with planar
surfaces, by identifying two of these surfaces. In fact if there is an element of the point group
which maps one planar boundary onto another one, we can obtain volumes with nonplanar bound-
aries. The simple example we can think of is the wedge inR2 with the angle 2p /N. By identifying
two lines which are the boundaries of the wedge we arrive at the conic surface with the opening
angle 2 arcsins1/Nd. The corresponding point group is the cyclic oneCN, that is generated by the
elementq which identifies two boundaries of the wedge. It is clear thatqN=1.

In the next section we first consider a conical wedge inR3 with the opening angle 2 arcsin13.
The region is the fundamental domain of the tetrahedral group which hasC3 as a subgroup. We
construct the Green function, then calculate the Casimir energy density for the massless scalar
field.

adElectronic mail: hagi@gursey.gov.tr
bdElectronic mail: duru@gursey.gov.tr
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In Sec. III making use of the group of the preceding section we construct the wave function
and calculate the energy spectrum for the conical wedge.

Section IV is devoted to the closed cone, i.e., conical cavity for which we calculate the
Casimir energy which is positive.

In the last section we briefly review the known Casimir energy results for three-dimensional
cavities.

The required group theoretical details are given in the Appendix.

II. GREEN FUNCTION AND CASIMIR ENERGY IN A CONICAL WEDGE

Consider the following three planes in the first quadrantsx1.0, x2.0, x3.0d sFig. 1d

P1:x1 = x2, P2:x2 = 0, P3:x2 = x3. s1d

We are interested in the Green function for the massless scalar field satisfying the boundary
conditions

uKsx,yduxWPP2
= 0 s2d

and

uKsx,yduxWPP1
= uKsx,ydugxWPP3

, s3d

where

g = 10 0 1

1 0 0

0 1 0
2 s4d

is the rotation matrix aroundnW =s1,1,1d; i.e., the intersection ofP1 and P3, by angle 2p /3. It
transformsP1 into P3. The region under consideration

S= hx1 ù x2 ù 0, x3 ù x2 ù 0j s5d

is the fundamental domainS=R3/G of the groupG=T3 I, whereT is the tetrahedral group andI
is the inversion group generated byi =−1 ssee the Appendixd. Identifying planesP1 andP3 in the
manner described ins3d we arrive at the space which is topologically equivalent to a cone with the
planeP2 being the boundarysFig. 2d. Bringing xW1 onto xW3 axis requires a rotation by the angle
2p /3 aroundnW. Thus the cone we obtained has an opening angle 2b=2 arcsin1

3 >39°. Therefore
the problem in hand is equivalent to the study of the cone with the Dirichlet boundary condition.

FIG. 1. Planes defined bys1d.
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The desired Green function is of the form

Ksx,yd = o
j=0

11

fGsgjx,yd − Gsigjx,ydg, s6d

where summation runs over the 12 elements of the tetrahedral group. HereGsx,yd is the free
Green function for the massless scalar field in the Minkowski spacesin "=c=1 unitsd

Gsx,yd =
1

4p2

1

ux − yu2
. s7d

To check the boundary conditions, we observe that for any elementgj PT there exists an element
gaPT such thatga=gjg. Therefore

Ksgx,yd = Ksx,yd, s8d

which implies that the boundary conditions3d is fulfilled. To show the boundary conditions2d we
first define the reflection operator with respect toP2,

q = 11 0 0

0 − 1 0

0 0 1
2 . s9d

For any elementgj PT there exists an elementgbPT such thatigb=gjq. Therefore

Ksqx,yd = − Ksx,yd, s10d

which implies that the boundary conditions2d is fulfilled.
To obtain the energy momentum tensor for the conformally coupled massless scalar field we

employ the well-known coincidence limit formula5

Tmn = lim
x→y

F2

3
]m

y ]n
x −

1

6
s]m

x ]n
x + ]m

y ]n
yd −

hmn

6
hsr]s

y]r
x +

hmn

24
hsrs]s

x]r
x + ]s

y]r
ydGKsx,yd. s11d

The energy densityTsxd=T00 is given by

FIG. 2. Cone corresponding to the boundary conditions3d.
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Tsxd =
1

12p2o
j=1

11

fTsgjd − Tsigjdg, s12d

where

Tsgd = S trsgd − 1

uhW u4
− 2

uss1 + gdhW du2

uhW u6
D s13d

and

hW = s1 − gdxW s14d

with g standing forgj and igj.
Using the invariance ofTsgd underg→g−1 we have

Tsg4d = Tsg5d,

Tsg6d = Tsg7d,

s15d
Tsg8d = Tsg9d,

Tsg10d = Tsg11d.

The same equalities are true for elementsigj, with j running the same values ass15d.
sid For the rotationg6 by angle 2p /3 around the line passing through the origin and the point

s1,−1,1d we have

Tsg6d = −
3

ssx1 + x2d2 + sx2 + x3d2 + sx3 − x1d2d2 , s16d

Tsig6d = −
6uxWu2 + 2sx1x3 − x1x2 − x2x3d

ssx1 − x2d2 + sx2 − x3d2 + sx3 + x1d2d3 . s17d

Sinceg8 andg10 are rotation matrices by the same angle around the axis passing through the origin
and the pointss−1,1,1d ands1,1,−1d we conclude thatTsg8d, Tsig8d andTsg10d, Tsig10d are given
by s16d and s17d with the cyclic replacements of coordinatessx1,x2,x3d→ sx3,x1,x2d and
sx1,x2,x3d→ sx2,x3,x1d, respectively.

sii d We also have

Tsg4d = −
3

ssx1 − x2d2 + sx2 − x3d2 + sx3 − x1d2d2 , s18d

Tsig4d = −
6uxWu2 − 2sx1x2 + x1x3 + x2x3d

ssx1 + x2d2 + sx1 + x3d2 + sx2 + x3d2d3 . s19d

siii d For elements satisfying the conditiong2=1 the second expression ins13d vanishes. These
are the elementsgj, j =1,2,3.Since trsigjd=1 we haveTsigjd=0. Nonzero ones are then

Tsid = −
1

4uxWu4
s20d

and
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Tsg1d = −
1

8sx2
2 + x3

2d2 . s21d

The remaining two termsTsg2d, Tsg3d are obtained from the above equation by the cyclic replace-
ments of coordinates.

Inserting the results froms16d to s21d into s12d we arrive at the energy density

Tsxd =
1

12p2fTsg4d − Tsig4d − Tsidg +
1

12p2F1

8
Tsg1d + 2Tsg6d − 2Tsig6d + c.p.G . s22d

Here c.p. stands for cyclic permutations of coordinates.

III. WAVE FUNCTION AND THE SPECTRUM IN THE CONICAL WEDGE

In this section we briefly present the derivation of the wave function and the spectrum. We
write the wave function in a similar fashion as the Green function as

CpWsxWd = Vo
j=0

11

feispW ,gjxWd − eispW ,igjxWdg s23d

or

CpWsxWd = − 8iVfsinp1x1 sinp2x2 sinp3x3 + c.p.g s24d

with V being the normalization. To obtain the spectrum we first observe that

CgjpW
sxWd = CpWsxWd, CipWsxWd = − CpWsxWd, s25d

which imply that the momentumpW takes its values in the quotient spaceR3/G which is exactly the
region S of s5d. In other words, the geometry in the momentum space is the replica of the
geometry in the configuration space, the fact that can be used in deriving the spectra. Since

uCpWsxWdupWPP2
= 0 s26d

we must drop the values ofpW on the planeP2 sp2=0d. The condition

uCpWsxWdupWPP1
= uCpWsxWdugpWPP3

s27d

implies that momenta on the planeP1 sp1=p2d are equivalent to the ones on the planeP3 sp2

=p3d. It is sufficient to take into account momenta on one of these planesstake, for example,
values onP1d and drop the ones on the other. Therefore the spectrum in the conical wedge is

S0 = S\ sA ø Bd = hp1 ù p2 . 0, p3 . p2 . 0j, s28d

whereA andB are the boundaries ofS corresponding toP2 andP3 planes,

A = hp1 ù 0, p2 = 0 p3 ù 0j, s29d

B = hp1 ù p2 ù 0, p3 = p2 ù 0j. s30d

IV. CONICAL CAVITY

In addition to the planes ofs1d consider two additional ones,

P4:x1 = a, P5:x3 = a. s31d

The region we consider is then given by

022304-5 Casimir Energy. II J. Math. Phys. 46, 022304 ~2005!

                                                                                                                                    



H = ha ù x1 ù x2 ù 0, a ù x3 ù x2 ù 0j. s32d

Boundary conditionss26d and s27d and the new Dirichlet conditions onP4 andP5,

uCpWsxWdupWPP4
= uCpWsxWdupWPP5

= 0, s33d

imply that the geometry in hand is a conical cavity with the opening angleb=arcsin1
3 and height

h=a cosb=s2Î2/3da. The Dirichlet boundary conditionss33d quantize the momenta,

p1 =
p

a
n, p2 =

p

a
m, p3 =

p

a
k, s34d

wheren, m, andk are integers which subject to the conditions28d fwith nW =sn,m,kdg

S = S0 ù Z3 = HpW =
p

a
nW: n ù m. 0, k . m. 0J . s35d

The Green function can be written as

Gsx,yd = o
m=1

`

o
k=m+1

`

o
n=m

`
eipupW usx0−y0d

2upW u
CpWsxWdCpWsyWd. s36d

The energy density we obtain is

Tsxd =
p

2a
o
m=1

`

o
k=m+1

`

o
n=m

`

În2 + m2 + k2uCpWsxWdu2. s37d

After integratione0
adx2ex2

a dx3ex2

a dx1 over the conical cavityH we get the total energy

E =
p

2a
o
nWPS

unW u =
p

48a
o
nWPS

o
gPG

ugnW u =
p

48a
o

nWPøgS

unW u. s38d

SinceS=sS\ sAøBddùZ3 andS=R3/G we have

ø
gPG

gS = Z3 \ C, s39d

where

C = s ø
gPG

gsA ø Bdd ù Z3 s40d

is the union of six planes inZ3: m=0, k=m and other four planes are obtained by cyclic permu-
tations ofn, m, andk,

o
nWPC

unW u = 3 o
n,mPZ

În2 + m2 + 3 o
n,mPZ

Î2n2 + m2, s41d

s38d and s39d imply

E =
p

48aS o
nWPZ3

unW u − o
nWPC

unW uD s42d

or
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E =
1

3
E1 −

1

2
E2 −

2 +Î2

4
E3 .

0.085

a
. s43d

HereE1, E2, andE3 are the Casimir energies for the cube with sidesa, for the rectangle with sides

a anda/Î2; and, for the one-dimensional system of lengtha, respectively,6

E1 =
p

2a
o

n,m,k=1

`

În2 + m2 + k2 . −
0.015

a
, s44d

E2 =
p

2a
o

n,m=1

`

În2 + 2m2 .
0.045

a
, s45d

E3 =
p

2a
o
n=1

`

n . −
0.131

a
. s46d

V. DISCUSSION

Examples of the Casimir energy calculations for three-dimensional cavities are not plenty. The
cubical1,6 and the spherical7 cavities have been studied rather extensively. In this work we have
studied a conical cavity with a particular opening angle. Similar restriction is true for the recently
studied pyramidal geometry for which the angles at the vertices are not arbitrary.4 We do not have
results in hand for the last two kinds of geometries with arbitrary angles. Nevertheless, it may be
of interest to briefly review the known Casimir energy calculationssfor the massless scalar fieldsd
for the above-mentioned geometries. To have a better idea of the magnitudes we consider the
cavities of comparable sizes.

For cube of sides 2b, we have negative value for the energy:Ecub.−0.007/b.1,6

For spherical cavity of radiusb the Casimir energy is positiveEsph.0.046/b.7

Coming to the recently studied pyramidal cavity, let us first describe its position with respect
to the above cube. One of the four vertices is located at the center of the cube, the remaining three
at the center of a surface, and at the closest vertex and at the middle of the closest edge to this
vertex.4 The volume of this cavity isb3/6 and the Casimir energy is again positive,Epyr

.0.069/b.
For the present conical cavity of opening angle 2b=2 arcsin1

3 and height b fi.e., b
=s2Î2/3dag which has the positive energy ofs43d is Econ.0.080/b.

To see the dependence of the magnitudes of the positive Casimir energies on the “shapes” of
the cavities, let us compare the last three results for the “equal” volumes. If we consider the
spherical, pyramidal, and conical cavities with equal volumes we have the following ratios:

Econ. 0,54Esph, s47d

Epyr . 0,51Esph. s48d

It is not surprising that the conical and pyramidal geometries are very close to each other.
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APPENDIX

Tetrahedral groupT is the group of transformations which transforms cube into itself. The
order of this group is 12. We denote the identity element byg0. g1, g2, andg3 are rotations onp
aroundx, y, andz axis,

g1 = 11 0 0

0 − 1 0

0 0 − 1
2, g2 = 1− 1 0 0

0 1 0

0 0 − 1
2, g3 = 1− 1 0 0

0 − 1 0

0 0 1
2 . sA1d

g4 andg5 are rotations by 2p /3 and 4p /3 around the axis passing through the origin and the point
s1,1,1d,

g4 = 10 0 1

1 0 0

0 1 0
2, g5 = 10 1 0

0 0 1

1 0 0
2 . sA2d

g6 andg7 are rotations by 2p /3 and 4p /3 around the axis passing through the origin and the point
s1,−1,1d,

g6 = 1 0 0 1

− 1 0 0

0 − 1 0
2, g7 = 10 − 1 0

0 0 − 1

1 0 0
2 . sA3d

g8 andg9 are rotations by 2p /3 and 4p /3 around the axis passing through the origin and the point
s−1,1,1d,

g8 = 1 0 0 − 1

− 1 0 0

0 1 0
2, g9 = 1 0 − 1 0

0 0 1

− 1 0 0
2 . sA4d

g10 andg11 are rotations by 2p /3 and 4p /3 around the axis passing through the origin and the
point s1,1,−1d,

g10 = 10 0 − 1

1 0 0

0 − 1 0
2, g11 = 1 0 1 0

0 0 − 1

− 1 0 0
2 . sA5d

Let G be a point group acting in the Euclidean spaceR3. A closed subsetS of R3 is called a
fundamental domain ofG if R3 is the union of conjugates ofS, i.e.,

R3 = ø
gPG

gS sA6d

and the intersection of any two conjugates has no interior.
The fundamental domain of the group generated by the reflectionsig1, ig2, and ig3 with

respect tox1=0, x2=0, andx3=0 planes is the first quadrant inR3. This is group of order 8 and
dividesR3 into eight equal parts. If one adds to this group the elementg4 we arrive at the group
of order 24 which is the direct product of the tetrahedral groupT and inversion oneI generated by
i. Rotationg4 is threefold rotation. It divides the first quadrant into three equal parts. Therefore the
fundamental domain forT3 I is the region in the first quadrant between three planess1d.

For more details concerning finite groups we refer to Ref. 8.
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Necessary and sufficient conditions for a static space–time to be locally confor-
mally flat are obtained, showing some significant restrictions on the possible warp-
ing functions of the space–times. This occurs in opposition to cosmological models,
where Robertson–Walker space–times are locally conformally flat for any warping
function. © 2005 American Institute of Physics.fDOI: 10.1063/1.1832755g

I. INTRODUCTION

For many years a considerable interest has been shown to the study of physical properties of
space–times which are conformal to certain well-known gravitational fields. In locally conformally
flat space–times the number of unknown functions is reduced in contrast with general space–times
and thus locally conformally flat metrics are of particular interest. A number of locally confor-
mally flat physically significant space–times are known among cosmological models and station-
ary axisymmetric space–times. Indeed, conformally flat stationary metrics have been recently
studied in Refs. 1 and 9ssee also Ref. 10d. Summarizing those results it follows that conformally
flat stationary circular axisymmetric space–times are necessarily static.sAlso, all conformally flat
pure radiation metrics are determined in Refs. 6 and 7.d We refer to Ref. 14 for some partial results
on locally conformally flat static space–times with perfect fluid energy momentum tensor. How-
ever locally conformally flat static space–times are rare in the literature besides the Einstein static
Universe or the Schwarzschild interior solution.3,22

A Lorentzian manifoldsM, gd is called a space–time if there exists a timelike vector field on
sM, gd. Moreover a future directed unit timelike vector fieldU is called an observer field. When-
ever it is possible to integrate the infinitesimal rest spaces ofU to obtain a rest space,U is called
irrotational. A space–timeM is static relative to an observer fieldU if U is irrotational and there
is a smooth functionh.0 on M such thathU is a Killing vector field.sU is called stationary if
there ish.0 such thathU is Killing, but not necessarily irrotational.d If M is a static space–time
with static reference frameU, then M is locally a warped productN3h I, where I ,R is an
interval andN is a Riemannian manifold. Thus, in opposition to cosmological space–times, space
remains the same but time is warped in static space–times. The fact that only space is warped in
Robertson–Walker space–times has important implications as concerns conformal flatness, for
instance Robertson–Walker space–times are locally conformally flat for any possible warping
function.

By using the warped product structure of static space–times, a direct approach to investigate
their conformal properties was based on the fact that the local geometry of the warped product is
entirely expressible in terms of the geometry of the rest space and some equations involving the
warping functions.11,12,20Unfortunately such approach led to some PDE’s on the warping function
which are difficult to analyze and their geometrical significance remains somehow obscure.
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The approach we have followed in investigating locally conformally flatness of warped prod-
uct metrics essentially differs from previous ones, since it relies on the fact that any warped
product metric is in the conformal class of a suitable direct product metric. This presents a main
advantage with respect to previous studies: the necessary and sufficient conditions for a warped
product metric to be locally conformally flat become more tractable and it is possible to investi-
gate the existence of suitable warping functions which make a standard static space–time locally
conformally flat. This is due to the fact that the geometrical significance of the warping function
of the productB3 f F is clearer, since it expresses analytically thats1/ f2dgB is a metric of constant
sectional curvature on the baseB. Furthermore, the local existence of solutions of the PDE’s
defining the warping function for any locally conformally flat basesB, gBd and any fibersF, gFd of
constant sectional curvature is guaranteed by the existence of local Möbius transformations among
the different spaces of constant sectional curvature, thus showing the richness of the local structure
of locally conformally flat warped product metrics. Up to our knowledge, the fact that any warped
product metric is in the conformal class of a suitable product metric has not been exploited
previously. Since many important properties of space–times like causality conditions, null pregeo-
desics, null cut points, etc., are conformally invariant, it seems the approach we have followed in
investigating conformally flat structures is susceptible to be applied in some other problems.

The paper is organized as follows. Since the geometric construction beside static space–times
are warped products, we first obtain a criteriascf. Theorem 1d for locally conformal flatness of
such manifolds in Sec. II. As a consequence, the local structure of locally conformally flat warped
product metrics is easily obtained. A commonly used generalization of warped product metrics is
that of twisted product metrics, which is investigated in Sec. III, showing that locally conformally
flat twisted product metrics are warped product metrics in most cases. In Sec. IV, we study the
existence and uniqueness of warping functions in locally conformally flat warped products. All
warping functions over a base of constant sectional curvature makingB3 fR locally conformally
flat are determinedsTheorem 10d, which is a consequence of the fact that all such warping
functions define Möbius transformations on the basesB,gBd scf. Lemma 9d. As a uniqueness result
on the warping function we show that the existence of two warping functions makingB3 f1

F1 and
B3 f2

F2 locally conformally flat for a compact basesB,gBd forces it to be conformal to the
Euclidean sphereSn sTheorem 13d. Finally, some remarks on Riemannian warped products of
negative curvature are given in Sec. V.

II. CONFORMALLY FLAT WARPED PRODUCT METRICS

Let sB,gBd and sF,gFd be semi-Riemannian manifolds and letp :B3F→B ands :B3F→F
be the canonical projections. Also letf :B→R+ be a smooth function. Then thewarped product
B3 f F of sB,gBd and sF,gFd with warping function f is defined to be the product manifoldM
=B3F with the metric tensorg=p*gB % sf +pd2s*gF. For simplicity g will be denoted byg=gB

% f2gF from now on, and we refer tosB,gBd and sF,gFd as thebaseand thefiber of the product,
respectively.2

Recall that a semi-Riemannian manifoldsM,gd is locally conformally flat if and only if every
point in M admits a coordinate neighborhoodU which is conformal to the semi-Euclidean space
Rn

n, i.e., there is a diffeomorphismF :V,Rn
n→U such thatF*g=C2gR

n
n for some positive function

C. Note that any surface is locally conformally flat, but not every higher dimensional semi-
Riemannian manifold admits a locally conformally flat structure. Necessary and sufficient condi-
tions for the existence of such a structure are given by the nullity of the Weyl tensorsif dim M
ù4d and the fact that the Schouten tensor is a Codazzi tensor in dimension three. Locally con-
formally flat warped product spaces have been investigated by several authorsssee, for example,
Refs. 11, 12, and 20d who obtained necessary and sufficient conditions forM =B3 f F to be locally
conformally flat in terms of both the curvatures of the basesB,gBd and the fibersF,gFd and some
PDE’s involving the warping functionf. Those results have been obtained as the necessary and
sufficient conditions for the vanishing of the Weyl tensor onB3 f F.

The next theorem is a fundamental observation for our purposes since it gives a criterion for
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locally conformally flatness of a warped product which enables us to understand the geometrical
meaning of the PDE’s involving the warping function in Refs. 11 and 20.

Theorem 1: Let M=B3 f F be a semi-Riemannian warped product. Then the following hold:

sid If dim B=1, then M=B3 f F is locally conformally flat if and only ifsF, gFd is a space of
constant curvature.

sii d If dim B.1 and dim F.1, then M=B3 f F is locally conformally flat if and only if

siiad sF, gFd is a space of constant curvature cF.
siibd The function f:B→R+ defines a global conformal deformation on B such thatsB,

s1/ f2dgBd is a space of constant curvature c˜B=−cF.

siii d If dim F=1, then M=B3 f F is locally conformally flat if and only if the function f:B
→R+ defines a conformal deformation on B such thatsB, s1/ f2dgBd is a space of constant
curvature.

Proof: Let g=gB+ f2gF be the warped product metric onM =B3F and setg= f2s1/ f2gB

+gFd. Since locally conformally flatness is a conformally invariant property,g is a locally confor-
mally flat metric onM if and only if so isg̃=s1/ f2dgB+gF. Now, after observing thatg̃ is nothing
but the product metric ofsB, s1/ f2dgBd and sF, gFd, the result follows from Ref. 25, Theorem 4.
fNote that the warping function of a warped product is only defined on the base, and thuss1/ f2dgB

is a conformal deformation ofgB.g j

Note here that for a given fibersF, gFd there is no restriction for the warping functionf if the
baseB is one dimensional. Thus, Robertson–Walker space–times are locally conformally flat
independently of the warping function, since previous theorem reduces tosid if dim B=1. How-
ever as soon as dimB.1, there are strong limitations on the possible warping functions, as shown
in the next section.

Corollary 2: Let M=B3 f F be a locally conformally flat semi-Riemannian warped product.
ThensB, gBd is locally conformally flat andsF, gFd is of constant sectional curvature.

Remark 3:Now, as a consequence of previous results, the local structure of locally confor-
mally flat warped product metrics can be given as follows as a local converse to Corollary 2.Let
sB, gBd be a locally conformally flat manifold andsF, gFd a space of constant sectional curvature.
Then there exist locally defined warping functions fU :U,B→R+ such that the warped product
manifoldU3 fU

F is locally conformally flat. Indeed, note thatfU is defined in terms of the local
conformal factor and some appropriate Möbius transformations in order to adjust the sectional
curvatures ofsF, gFd and sU, g̃d.

Note that the vanishing of the Weyl tensor is a local property. Indeed,M =B3 f F is locally
conformally flat if and only if for each pointp[M there exist functionsC defined in a neigh-
borhood ofp such that the restriction ofC2·g to the defining neighborhood is flat. Since all spaces
of constant curvature are locally conformally flat, we have plenty of functionsC as before in any
locally conformally flat manifold.

However, the implication in Theorem 1 is on the whole baseB, since the warping function is
globally defined. Therefore, two basic problems arise from the above, when is it possible to extend
the locally defined warping functions to the whole baseB and, in such case, is there any kind of
uniqueness on the warping functions?

Remark 4:As an application of Theorem 1siii d, a four-dimensional static space–timeB
3 f R is locally conformally flat if and only ifsB,s1/ f2dgBd is Einstein. Therefore, any conformal
Einstein 3-manifold gives rise to a suitable defined locally conformally flat static space–time.sSee
Refs. 15 and 17 and the references therein for more information on conformal Einstein equations.d

Remark 5:As a generalization of the warped product structure, adoubly warped product Bb
3 f F of sB, gBd andsF, gFd with warping functionsf andb is the product manifoldM =B3F with
metric tensorg=b2gB % f2gF, where f andb only depend on the points ofB andF, respectively.
Now, proceeding as above, one can express the double warped metricg as
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g = b2gB + f2gF = b2SgB + f2S 1

b2gFDD = f2Sb2S 1

f2gBD + gFD = b2f2SS 1

f2gBD + S 1

b2gFDD ,

which shows that the doubly warped product is in the conformal class of a certain warped product
sindeed the conformal class of a direct productd. Thus previous Theorem 1 applies to show that
Bb3 f F is locally conformally flat if and only ifsB, s1/ f2dgBd and sF, s1/b2dgFd have constant
sectional curvatures, which are necessarily of opposite sign if bothB and F have dimension
greater than one, thus giving a geometrical meaning to the PDE’s systems in Ref. 12.

III. CONFORMALLY FLAT TWISTED PRODUCT METRICS

The twisted product B3 f F of sB,gBd and sF,gFd with twisting function f is the product
manifold B3F with metric tensorg=gB % f2gF, where f depends both on the points ofB andF,
i.e., f :B3F→R+.

A curvature condition, called the mixed Ricci flatness was stated in terms of the product
manifold structure in Ref. 8 in order to relate the twisted and warped product structures. Such
conditionswhich essentially means that the Ricci tensor vanishes when it is applied to vector fields
on the base and the fiber simultaneouslyd is satisfied in most physically realistic space–times, such
as Kruskal and Robertson–Walker space–times, because of the physical requirements induced by
the stress-energy tensor on these space–times. Observing that these space–times are warped prod-
ucts, roughly speaking, the main result in Ref. 8, Theorem 1 allows us to observe that this is the
maximal generality for these space–times since they cannot be further generalized to twisted
products in a nontrivial way. As an application of such criteria, we have the following theorem.

Theorem 6: Let M=B3 f F be a semi-Riemannian twisted product withdim Bù2 and
dim Fù2. If M is locally conformally flat then it can be expressed as a warped product.

Proof: First of all, recall that asnù4d-dimensional semi-Riemannian manifold is locally
conformally flat if and only if its Weyl tensorW vanishes, whereW is defined as follows:

WsX,Y,Z,Td = RsX,Y,Z,Td +
Sc

sn − 1dsn − 2d
hkX,ZlkY,Tl − kY,ZlkX,Tlj

−
1

n − 2
hRicsX,ZdkY,Tl − RicsY,ZdkX,Tl + kX,ZlRicsY,Td − kY,ZlRicsX,Tdj

for all vector fieldsX,Y,Z,T on M. Further the curvature tensorR is the s1,3d-tensor field onM
defined byRsX,YdZ=¹fX,YgZ−f¹X,¹YgZ, for all vector fieldsX, Y, Z[XsMd. The Ricci tensor is
the contraction of the curvature tensor given by RicsX,Yd=tracehU RsX,UdYj, for all X,
Y[XsMd, and the scalar curvature is obtained by contracting the Ricci tensor, Sc=tracesRicd.

Let X and V denote two non-null vector fields onB and F, respectively. Since dimBù2,
chooseY a non-null vector field onB in the orthogonal space toX; Y[ ,X.'. After some
straightforward calculations, it follows that the Weyl tensor ofM =B3 f F satisfiesscf. see, for
example, Ref. 8, Proposition 2, 3, 4 for the expressions of the curvature tensor, the Ricci and scalar
curvature of a twisted productd

WsY,X,Y,Vd = −
1

n − 2
gsY,YdRicsX,Vd.

Therefore, ifM =B3 f F is locally conformally flat, then RicsX,Vd=0 for all vector fieldsX andV
on the base and the fiber, which shows thatM =B3 f F is mixed Ricci flat, and thus a warped
product if dimFù2. j

Remark 7:Following the same idea behind Theorem 1, for the metric tensor of any twisted
productB3 f F, set
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gB + f2gF = f2S 1

f2gB + gFD .

This shows thatB3 f F is locally conformally flat if and only if so isF31/f B. But this timegF

+s1/ f2dgB is still a twisted product metric, since the twisting functionf depends both onB andF.
However previous relation preserves thespossibled reduction of the twisted product to a warped
one, sincef decomposes as a product of two functionsfB and fF defined onB andF, respectively,
if and only if so does 1/f, just observing thatXUslog fd=−XUflogs1/ fdg for all vector fieldsX, U
on B andF, respectively.sSee Ref. 8 for more details on the condition for a twisted product to be
a warped product.d

Remark 8:The duality condition in the previous remark justifies the symmetry on the condi-
tions dimBù2, dimFù2 in Theorem 6.

In order to show the necessity of those restrictions, we construct some simple examples
showing the necessity of the assumptions on dimBù2, dimFù2 as follows. LetI ,R be an open
interval and takeU,R3 an open set such thatfst ,x,y,zd=1/st+zd is positive onI 3U. Then the
twisted product manifoldI3fU is locally conformally flat.sThe vanishing of the Weyl tensor is
obtained after some tedious calculations that we omit.d Furthermore, note thatI3 f U cannot be
reduced to a warped product structure since Rics] /]t ,] /]zd=−2/st+zd2, which shows that it is not
mixed Ricci flat.

Locally conformally flat twisted product metrics with one-dimensional fiber are easily ob-
tained from Remark 7 just consideringU31/f I.

IV. LOCALLY CONFORMALLY FLAT STATIC SPACE–TIMES

Since static space–times are locally warped products with one-dimensional fiber, from now on
we will restrict to standard static space–times, thus assuming the structure of a warped product
B3 fR for some positive functionf on B.

As a consequence of Theorem 1, a product manifoldB3R is locally conformally flat if and
only if sB, gBd is a space of constant curvature. This occurs, for instance in the Einstein static
universeSn3R. It is obvious that for any constant functionf on B, the warped productB3 f R is
also locally conformally flat. Therefore, it seems natural to wonder whether there are nonconstant
warping functions onB defining a locally conformally flat static space–time.

In order to understand the question above, we first introduce some notation as follows. Let¹
denote both the Levi–Cività connection associated to the given metric and thegradient operator
on a generic semi-Riemannian manifoldsM, gd. The Hessian tensor hf of a real-valued function
f :M→R is defined byhfsXd=¹X¹ f, whereX is a vector field onM. Also the symmetrics0,2d-
tensor fieldHf defined onsM, gd by HfsX,Yd=gshfsXd ,Yd is called theHessian formof f. We
define theLaplacian Df of a function f on sM, gd by Df =tracehf s=div ¹ fd, where div is the
divergence.

It follows from Remark 3 the local existence of warping functions makingsU,Bd3 fU
R

locally conformally flat. However, global existence of such functions is not clear. Next, in order to
understand the simplest cases, we consider static space–times with basesB, gBd of constant sec-
tional curvature and dimB=n. Then we have the following analytical characterization of the
warping function.

Lemma 9: Let M=B3 f R be a locally conformally flat static space–time. ThensB,gBd is of
constant sectional curvature if and only if the warping function f defines a solutionf=−ln f of the
Möbius equation BgB

sfd=0, where

BgB
sfd = Hf − df ^ df −

1

n
hDf − i ¹ fi2jgB. s1d

Moreover, for any basesB, gBd of constant sectional curvature and any positive solutionf of s1d,
the warped product B3 f R is locally conformally flat.

Proof: SincesB,gBd is locally conformally flat by Corollary 2, then it is of constant sectional
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curvature if and only if it is Einstein. On the other hand,sB, s1/ f2dgBd is a space of constant
sectional curvature by Theorem 1, and thus Einstein. ThereforesB,gBd is of constant sectional
curvature if and only if the conformal deformationgB° s1/ f2dgB preserves the Einstein property,
which occurs if and only iff is a solution of the Möbius equation.21 Now, the second part of the
lemma follows from Theorem 1 and the above considerations. j

It is shown in Ref. 21 that, iff :B→R satisfies the Möbius equation onsB,gBd then the
function c=exps−fd satisfiesHc=s1/ndDcgB on sB,gBd, sinceHexpsfd=expsfdhHf+df ^ dfj. In
what follows we will refer toHc=s1/ndDcgB as the linearized Möbius equation onsB,gBd.

From the previous lemma, the following description of the possible warping functions on a
locally conformally flat static space–time with base ascomplete and simply connectedd space of
constant sectional curvature is obtained.

Theorem 10: Let sB, gBd be a complete and simply connected Riemannian manifold of con-
stant sectional curvature. Then the static space–time B3 f R is locally conformally flat if and only
if one of the following occurs:

sid If B;Rn, whereRn denotes the Euclidean space, then all possible warping functions are
given by

fsxWd = aixWi2 + kbW ,xWl + c, bW [ Rn, a,c [ R, s2d

where the coefficients a, bW andc satisfy4ac−ibW i2.0, a.0 and k,l is the Euclidean inner
product inRn.

sii d If B;Hn, whereHn denotes the Poincaré half-space model of the hyperbolic geometry,
then all possible warping functions are given by

fsxWd =
aixWi2 + kbW ,xWl + c

xn
, bW [ Rn,a,c [ R, s3d

where the coefficients a.0, bW and c satisfy either of

s1d 4ac−ibW i2.0, or
s2d 4ac−sb1

2+b2
2+¯+bn−1

2 dù0 and bnù0.

siii d If B;Sn, whereSn denotes the Euclidean sphere, then all possible warping functions are
given by

f = −
n − 1

Sc
c + k, s4d

where c is an eigenfunction for the largest eigenvalue of the Laplacian,Dc=−fSc/sn
−1dgc, and k is a real constant making f positive.

Proof: We analyze each case above separately.
sid It follows from Lemma 9 that a functionf :Rn→R defines a locally conformally flat static

space–timeRn3 f R if and only if f=−ln f is a solution of the Möbius equation onsRn, g0d. By
consideringu=exps−fd, one gets thatf is indeed a positive solution of the linearized Möbius
equationHf =s1/ndDfg0. Now it follows easily from the linearized Möbius equation that any such
function f must be of the form

fsxWd = aixWi2 + kbW ,xWl + c, a,c [ R,bW [ Rn.

Moreover, sincef is required to be strictly positive in order to be a warping function, we have the
following. First observe thata.0, otherwisef is negative outside a compact set. Now, assuming

a.0, fsxWd=aixWi2+kbW ,xWl+c attains its minimum atxW =−s1/2adbW and ff−s1/2adbW g=−s1/4adibW i2

+c, which must be positive, from wheresid is obtained.
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sii d Let sUn, g0d denote the Euclidean upper-half-space and consider the Poincarè half-space
modelsHn, gHd as a conformal deformationgH=q*g0=s1/xn

2dg0 of the Euclidean metric. Letw be
a Möbius transformation from the hyperbolic spacesHn, gHd into sUn,s1/ f2dgHd and consider the
following diagram:

w

SHn, gH =
1

xn
2 g0D → SUn,

1

f2 gHD
q ↓ ↗

sUn, g0d

Note that the set of conformal transformations forms a group with composition and moreover that
the Möbius transformations is a proper subgroup.21 Further, sinceq is a Möbius transforma-
tion, thenw is a Möbius transformation if and only if so isw +q−1, which is defined insUn, g0d.
Now, it follows from sid that s1/ f2dgH=f1/saixWi2+kbW ,xWl+cdg2g0 from where it follows that

fsxWd =
aixWi2 + kbW ,xWl + c

xn
.

Sincexn.0 we only have to consider the numerator in the above definition off in order to

analyze its positivity. Now note thataixWi2+kbW ,xWl+c defines a convex paraboloidsconsidered as a
function inRnd which is positive onU if and only if a.0 and it does not intersect the domainU.
Thus two different possibilities may occur. The minimum of the paraboloid is positive and the

required condition is 4ac−ibW i2.0, which showssii d s1d as in the previous casesid. The other
possibility occurs if the minimum is nonpositive but it is realized on the down-half-spacefi.e.,
s−bn/2adø0g. In this case the desired condition is obtained by the positivity of the intersection of

the paraboloid defined byaixWi2+kbW ,xWl+c and the hyperplanexn=0, which gives 4ac−sb1
2+b2

2

+¯+bn−1
2 dù0, thus showingsii d s2d.

siii d As in the previous cases, it follows from Lemma 9 that a functionf :Sn→R defines a
locally conformally flat static space–timeSn3 f R if and only if f=−ln f is a solution of the
Möbius equation onsSn,gSnd. By consideringu=exps−fd, one gets thatf is indeed a positive
solution of the linearized Möbius equation and thusHf =s1/ndDfgSn.

Next, consider the gradient vector field¹f on Sn. SincesL¹fgdsY,Zd=2HfsY,Zd, it follows
from the linearized Möbius equation that¹f is a conformal vector field onSn, and then

− Dsdiv ¹ fd =
Sc

n − 1
div s¹ fd, s5d

where Sc denotes the scalar curvature ofsSn,gSnd scf. Ref. 24d. HenceDsDfd=−fSc/sn−1dgDf,
which shows thatDf is an eigenfunction for the largest eigenvaluel1=−fSc/sn−1dg of the La-
placian in sSn,gSnd. Further, it also follows froms5d that DsDf +fSc/sn−1dgfd=0 and thus that
Df +fSc/sn−1dgf is a constant function. Therefore, ifc denotes al1-eigenfunction for the La-
placian insSn,gSnd, then the desired warping functions are given byf =f−sn−1d /Scgc+k, for some
constantk which makesf positive. j

Remark 11:Note that the eigenspace corresponding to the largest eigenvaluel1=−Sc/sn
−1d of the Laplacian inSn is generated by the restriction toSn of the homogeneous polynomials of
degree one inRn+1 ssee, for example, Ref. 4, Chap. 3d. Thus any suchl1-eigenfunction is the
restriction toSn of someC defined onRn+1 by CsxWd=kaW ,xWl for 0ÞaW [Rn+1.

Remark 12:The conformal deformations of the model spaces defined by the different func-
tions s2d–s4d in the previous theorem affect the sectional curvature as follows:

sid The sectional curvature ofsRn, s1/ f2dg0d is constant 4ac−ibW i2.0, wheref is defined by
s2d.
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sii d The sectional curvature ofsHn, s1/ f2dgHnd is constant 4ac−ibW i2, where f is given bys3d.

Note that the metricss1/ f2dg0 and s1/ f2dgHn above need not be complete, since otherwise
sRn, s1/ f2dg0d andsHn, s1/ f2dgHnd should be compact by Bonnet-Myers’ theorem.18 sThis lies on
the fact that completeness is not a topological property, but a uniform one.d

siii d The sectional curvature ofsSn, s1/ f2dgSnd is constantsk2−fsn−1d2/Sc2giaWi2d, where f is
given by s4d and c= uCuSn is the restriction toSn of CsxWd=kaW ,xWl. Note here thatk2−fsn
−1d2/Sc2giaWi2 is positive, sincek is greater thanfsn−1d /ScgiaWi in order to makef positive.

For a given manifoldsB, gBd, to be the base of two different locally conformally flat warped
products is a very restrictive fact, as shown in the next results, which give some partial answers on
the uniqueness of the warping function of a locally conformally flat warped product.

Theorem 13: Let sB, gBd be a compact Riemannian manifold admitting two-distinct (i.e., f

Þcf̂) warping functions such that both B3 fR and B3 f̂R are locally conformally flat static space–
times. ThensB, gBd is conformal to the Euclidean sphere by means of the conformal deformation

s1/ f2dgB and f̂/ f is one of the functions in Theorem 1: (iii).

Proof: Let f and f̂ be warping functions such thatB3 fR andB3 f̂R are locally conformally

flat static space–times. Then id:sB,s1/ f2dgBd→ sB,s1/ f̂2dgBd is a conformal transformation be-
tween two compact spaces of constant sectional curvature. Proceeding as in casesiii d of the

previous theorem, it follows thatf̂ / f is a solution of the linearized Möbius equation onsB,
s1/ f2dgBd

Hf̂/f =
1

n
Ds f̂/fdg

and thus¹s f̂ / fd is a conformal vector field onsB, s1/ f2dgBd. Then it follows from s5d that

DsDs f̂ / fd+fSc/sn−1dg f̂ / fd=0 and thusDs f̂ / fd+fSc/sn−1dg f̂ / f is a constant function onsB,
s1/ f2dgBd.

Next, using the linearized Möbius equation, compute the Hessian ofDs f̂ / fd to obtain

HDs f̂/fd +
Sc

nsn − 1d
Ds f̂/fdg = 0. s6d

Now, if Sc.0, thens6d is Obata’s equation forDs f̂ / fd. Since f Þcf̂ and for some constantC,

Ds f̂ / fd=−fSc/sn−1dg f̂ / f +C, then it follows thatDs f̂ / fd is not constant and hencesB,s1/ f2dgBd is
isometric to an Euclidean sphere.19

Finally note that Scø0 leads to some contradiction as follows. Indeed, if Sc,0, then the

existence of a nonconstant solutionDs f̂ / fd of s6d is characteristic of warped product structures
R3jN, where N is a complete Riemannian manifold and the warping function satisfiesj9
+fSc/nsn−1dgj=0, j.0 among complete Riemannian manifoldssRef. 13, Theorems C, Dd. This

is clearly a contradiction with the compactness ofB. The case Sc=0 impliesDs f̂ / fd is constant and
thus it follows from the linearized Möbius equation thatHf̂/f =ss /ndg for some constants. This

shows thatf̂ / f is a special concircular function onsB, s1/ f2dgBd and hence it follows from Ref. 23,
Theorem 2 thatsB, s1/ f2dgBd is isometric to the Euclidean space, which is also a contradiction.j

Remark 14:The previous theorem shows the nonexistence of nonconstant globally defined
warping functions on flat toriTn which make the static space–timeTn3 fR locally conformally
flat. However note that such warping functions always exist locallyscf. Remark 3d.

The result of Theorem 13 can be extended to static space–times with noncompact base under
some completeness assumptions as follows.
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Theorem 15:Let M=B3 fR be a locally conformally flat static space–time withsB, s1/ f2dgBd
geodesically complete. If there exists a warping function fˆ Þcf on B such that B3 f̂R is also
locally conformally flat, then one of the following holds:

s1d sB, s1/ f2dgBd is a complete and simply connected space of constant sectional curvature and

the warping functions fˆ / f are given by Theorem 10, or otherwise.
s2d sB, s1/ f2dgBd is a warped productR3a expsat+bdN, wheresN, gNd is a complete flat Riemann-

ian manifold and the warping functions satisfy

f̂/f = expsat + bd + k

for some real constantsa.0, b, kù0, wherea2=−fSc/nsn−1dg andScdenotes the scalar
curvature ofsB, s1/ f2dgBd.

Proof: Let f Þcf̂ be two warping functions onB such thatB3 f̂R and B3 fR are locally

conformally flat. Then, by Theorem 1 it follows thats1/ f̂2dgB ands1/ f2dgB are constant sectional
curvature metrics onB and thus the identity is a conformal diffeomorphism between two Einstein

metrics onB. SincesB, s1/ f2dgBd is assumed to be complete andf̂ Þcf, then eithersB, s1/ f2dgBd
is a complete and simply connected space of constant sectional curvature, and thus isometric to
one of the model spaces in Theorem 10, or otherwisesB, s1/ f2dgBd is a warped productR
3a expsat+bdN, wheresN, gNd is a complete Ricci flatsn−1d-dimensional Riemannian manifold and

the warping functions satisfyf̂ / f =expsat+bd+k, for some constantsa, b, k.16 Next, by Corollary
2 it follows thatR3a expsat+bdN is locally conformally flat and thussN, gNd is of constant sectional
curvature by Theorem 1, which shows thatsN, gNd is flat. Moreover, it follows after some standard
calculations that the scalar curvature ofsB, s1/ f2dgBd is Sc=−nsn−1da2, which proves the result.

j

V. COMPLETE LOCALLY CONFORMALLY FLAT RIEMANNIAN MANIFOLDS OF
NONPOSITIVE CURVATURE

Recall here that the universal cover of a complete locally conformally flat Riemannian mani-
fold with non-negative Ricci curvatures is conformally equivalent toSn, Rn or R3Sn−1, whereSn

andSn−1 are spheres of constant sectional curvature.26 Henceforth we will pay special attention to
the construction of complete locally conformally flat manifolds with nonpositive Ricci curvatures.
Also note that warped products are a basic tool in constructing manifolds of nonpositive curvature,
which are complete if and only if both factors are complete Riemannian manifolds.5 For our
purposes in this section, write the sectional curvature of a warped productB3 f F as follows:5,18

KXY = KXY
B ,

KXU = −
HfsX,Xd

fiXi2 ,

s7d

KUV =
1

f2KUV
F −

i ¹ fi2

f2 ,

whereKB andKF denote the sectional curvatures on the baseB and the fiberF, respectively.
Observe that all the results in the preceding section remain true in the Riemannian setting,

since the base of a static space–time has induced positive definite metric, and the fiber plays only
a very limited role in the construction of locally conformally flat warped productsscf. Theorem 1d.

Let M =B3 f F be a locally conformally flat Riemannian warped product with baseB a model
spaceRs, Ss or Hs. If M is assumed to be complete, we have the following consequences of
previous results:
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sid If B;Rs, thenRs3 f F is of nonpositive sectional curvature for any warping functionf as
in Theorem 10.

sii d If B;Ss, then no locally conformally flat warped productSs3 f F may be of nonpositive
sectional curvature. Indeed, no locally conformally flat warped product with compact base
may have nonpositive sectional curvature, unless it is a direct product since it follows from
s7d that the warping function of a warped productB3 f F of nonpositive sectional curvature
satisfiesHf ù0, and thusDf ù0. Now, sinceB is compact without boundary and dimB
ù2, it follows thatDf =0, and thusf is constant.

siii d If B;Hs, then the necessary and sufficient condition for a locally conformally flat warped
productHs3 f F to be of nonpositive sectional curvature is given in terms of the warping

function fsxWd=saixWi2+kbW ,xWl+cd /xs by f ù2bs, whenever dimFù2.

We finish with some simple examples which illustrate the previous situation.

sad Let M be the product manifoldM =H23H2 equipped with the warped metric defined by the
warping function

fsxWd =
1
2ixWi2 + x2 + 1

x2
.

sbd Let M be the product manifoldM =H23R2 equipped with the warped metric defined by the
warping function

fsxWd =
1
4ixWi2 + x1 + 1

x2
.

After some straightforward calculations we get that the sectional curvature is nonpositive in
any of these particular examples.

Next, note that simplest examples of complete locally conformally flat Riemannian manifolds
with nonpositive Ricci curvature are warped products as follows:

s1d H23 fH2 with warping function

fsxWd =
3
2ixWi2 + x1 + 4x2 + 3

x2
.

s2d H23 fS2 with warping function

fsxWd =
ixWi2 + 3x2 + 2

x2
.

A long but straightforward calculation shows that the Ricci curvatures are nonpositive in
previous examples. Moreover, note that the sectional curvature ofH23 fS2 has no sign.
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We introduce the method of topological quantization for gravitational fields in a
systematic manner. First we show that any vacuum solution of Einstein’s equations
can be represented in a principal fiber bundle with a connection that takes values in
the Lie algebra of the Lorentz group. This result is generalized to include the case
of gauge matter fields in multiple principal fiber bundles. We present several ex-
amples of gravitational configurations that include a gravitomagnetic monopole in
linearized gravity, the C-energy of cylindrically symmetric fields, the Reissner–
Nordström and the Kerr–Newman black holes. As a result of the application of the
topological quantization procedure, in all the analyzed examples we obtain condi-
tions implying that the parameters entering the metric in each case satisfy certain
discretization relationships. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1828586g

I. INTRODUCTION

Dirac’s original idea1 of determining the phase acquired by a charge when moving along a
closed path in the field of a magnetic monopole gave as a result that the product of the electric
charge times the monopole charge is an integer. Today, this result is known as Dirac’s quantization
of the electric charge. In a previous work,2 we introduced a phaselike object which depends on the
field strength so that it can be used to investigate any field theory based on a connection. In the
special case of the Levi–Cività connection, the field strength is given by the Riemann tensor and
the phaselike object can formally be used to investigate the properties of gravitational configura-
tions that satisfy Einstein’s equations. Using only the symmetry properties of the Riemann tensor
and assuming a quite general symmetry property for the gravitational field, we have shown that
this phaselike object for vacuum gravitational configurations behaves under rotations either as a
bosonic or a fermionic phase. It was also shown that a certain combination of the eigenvalues of
the Riemann tensor can become “quantized” in a fashion similar to that obtained from Dirac’s
quantization procedure in the system composed of an electric charge and a magnetic monopole.

From the geometric point of view,3 Dirac’s quantization is interpreted as a consequence of the
existence of a nontrivial principal fiber bundle of Us1d over the sphereS2, with a us1d connection,
for the system composed of an electric chargeq and a magnetic monopole with magnetic charge
g. The Chern numbers associated with this nontrivial fiber bundle turn out to be given as the
productqg which, therefore, becomes quantized.

In this work, we introduce the method of topological quantization which can be applied to any
field configuration whose geometrical structure allows the existence of a principal fiber bundle.
We show that any solution of Einstein’s equations minimally coupled to any gauge matter field can
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be represented geometrically as a principal fiber bundle with space–time as the base space. The
structure groupsisomorphic to the standard fiberd follows from the invariance of the orthonormal
frame with respect to Lorentz transformations, in the case of a vacuum solution, or with respect to
a transformation of the gauge group, in the case of a gauge matter field. If the bundle turns out to
be sgloballyd nontrivial, the conditions under which this construction becomes well defined in all
the points where the field configuration exists, manifest themselves in the transition functions
between different but intersecting open subsets of the base manifold of the bundle. These condi-
tions on the transition functions turn out to depend on the parameters which determine the physical
structure of the field configuration. Consequently, the conditions that arise in the construction of a
fiber bundle lead to conditions on the physical parameters which, in turn, implies that a particular
combination of those parameters can take onlydiscretevalues. This discretization can be derived
also from the topological invariants of the corresponding nontrivial fiber bundle. This is what we
call thequantization conditionsfor a given field configuration. Furthermore, we will see that even
in the case of a globally trivial principal fiber bundle certain quantization conditions may appear
as a result of demanding regularity of the connection.

In Sec. II, we introduce the method of topological quantization in a systematic manner and
briefly discuss the general cases in which nontrivial quantization conditions may appear. In Sec. III
we analyze the sos1,3d connection of cylindrically symmetric gravitational fields and show that the
corresponding C-energy can take only discrete values. In Sec. IV we present the example of a
gravitomagnetic monopole in linearized Einstein’s theory which can be investigated by means of
a us1d connection. Section V contains the topological quantization with respect to the electromag-
netic connection of gravitational fields which represent electrovacuum black holes. Section VI is
devoted to discussions and remarks about future investigations.

II. THE METHOD OF TOPOLOGICAL QUANTIZATION

Consider a Riemannian manifoldsM ,gd, whereM is a four-dimensional differential manifold
andg is a bilinear form, the metric, onM. For the purpose of analyzing field equations we choose
in M a set of local orthonormal 1-formsea, a=0,1,2,3. Theorthonormality condition can be
expressed in terms of the local Minkowski metric asgsea,ebd=hab, wherehab=diags+,−,−,−d.
On a torsion free manifold we can introduce a connection 1-formv by means of the Cartan first
structure equation

Dea
ª dea + va

b ∧ eb = 0, s1d

where d is the exterior derivative and D the covariant exterior derivative. We demand thatv be a
metric connection, i.e., locally Dhab=dhab+vab+vba=0, a condition which implies the antisym-
metry of the connection components. Furthermore, we use the Cartan second structure equation to
introduce the curvature 2-formV as

Dva
b ª Va

b = dva
b + va

c ∧ vc
b, s2d

whose components in terms of the local orthonormal frame,Va
b=s1/2dRa

bcde
c∧ed, determine the

Riemann curvature tensorRa
bcd. Einstein’s gravity theory follows from the variation, with respect

to the orthonormal frameea of the action

S= −
1

32pG
E

M

Vab ∧ ec ∧ edeabcd+E
M

Lm, s3d

wheree0123=1 andLm is the matter Lagrangian which depends one, v, and the matter fields. The
field equations areVab∧eceabcd=−16pGTc, where Tc is the energy-momentum 3-form which
follows from the variation of the matter action.

The advantage of using a local orthonormal framee is that the gauge charactersat the level of
the connection and curvatured of Einstein’s theory becomes more plausiblessee, for instance, Refs.
3 and 4 for a more detailed discussiond. Indeed, the diffeomorphism invariance of the theory is
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now reduced to the invariance with respect to the Lorentz group SOs1,3d. The change to a different
framee8=Le is represented by means of a matrixLPSOs1,3d. The connection 1-form and the
curvature 2-form take values in the corresponding Lorentz algebra sos1,3d, and under a change of
frame they transform as

v8 = LvL−1 + L dL−1, V8 = LVL−1, s4d

respectively. It is in this sense that Einstein’s theory can be considered as a gauge theory with
respect to the Lorentz group. However, it is at the level of the action that Einstein’s theory
tremendously differs from pure Yang–Mills gauge theories.

Let us now consider the matter action. As we have mentioned before the matter Lagrangian
can depend on the framee, the connectionv, and the matter fields. We will assume that the matter
fields are gauge fields, that is, there exists a connection 1-formA, with values in the Lie algebra
of a Lie groupG, which generates the gauge field strengthF in the standard manner,F=dA
+A∧A. Under a gauge transformationgPG, these quantities behave asswe assume that the gauge
group is a matrix groupd

A → A8 = gAg−1 + g dg−1, F → F8 = gFg−1. s5d

A vacuum space–time in general relativity is a solution of Einstein’s vacuum equations,
represented by an orthonormal framee. Since we assume that the compatibility condition between
the local metric and the connection is satisfied, we can use the connectionv, instead of the
orthonormal frame. Moreover, if we adopt the Palatini approach, the connectionv can be consid-
ered as the “primary” variable, whereas the orthonormal framee can be derived from the metricity
condition. In the presence of a matter field, one needs additionally the “matter” connectionA
which satisfies Einstein’s equations, with the corresponding energy-momentum 3-form, and the
matter field equations that follow from the variation of the matter action with respect to the
connectionA. For a particular space–time to be well defined we must guarantee thatv andA are
well defined everywhere inM. This is a nontrivial remark for the analysis of gravitational fields
we want to perform. Indeed, the fact that the connection is demanded to be well defined every-
where inM implies in general certain conditions that we will investigate for explicit fields and
which are the fundamental of what we will call topological quantization.

Let us be more specific. The idea behind the introduction of a differentiable manifold as the
underlying geometric structure of space–time is that in this way one can guarantee the existence of
coordinate sets which cover the entire manifold. For the approach we are using here, this is
equivalent to having a finite number of sets of orthonormal frames covering the manifold. LethUaj
be an open covering ofM, i.e.,øaUa=M. By definition, a differential manifold of dimensionn is
equipped with an atlassUa ,fad, wherefa is a homeomorphism fromUa onto an open subset of
the Euclidean spaceRn. If we consider two arbitrary open subsetsUi ,Uj P hUaj such that
Ui ùUj Þx, then in the intersection region the mapfi +f j

−1 is a C` homeomorphism ofsopen
subsets ofd Rn. Let f̃i be the map fromUi into the vector space of 1-formsL1sUi ,sos1,3dd that
allows us to introduce the orthonormal frameei in Ui. Notice that the indexi labels different sets
of orthonormal frames and does not refer to any specific component of the frame. The orthonormal
frameej attached toUj by means off̃ j, is related toei through an SOs1,3d matrix, ei =Li jej. It is
clear that in the intersection region the compatibility conditionf̃i + f̃ j

−1=Li j must be satisfied. On
Ui we can also introduce a spin connection 1-formvi and a curvature 2-formVi, according to Eqs.
s1d ands2d, respectively. These are related to the connection and curvature inUj by means ofsno
summation over repeated indicesd

vi = Li jv jLi j
−1 + Li j dLi j

−1, Vi = Li jV jLi j
−1. s6d

Consider now a third open subsetUkP hUaj such thatUi ùUj ùUkÞx. Accordingly, in the
intersection region we have thatf̃i + f̃k

−1=Lik and f̃ j + f̃k
−1=L jk. Then, it follows that
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Li jL jk = Lik. s7d

This allows us to formulate the following.
Theorem 1: A solution of Einstein’s vacuum field equations can be represented by a unique

10-dimensional principal fiber bundleP with the space–timeM as the base space, the Lorentz
group as the structure groupsisomorphic to the standard fiberd and a connection with values in the
Lie algebra of the Lorentz group.

Proof: A standard theoremsthe reconstruction theoremd in differential geometry5,6 states that
a fiber bundle is uniquely specified by the base space, the standard fiber, a structure group which
is effectively represented on the fiber and a family of transition functions, with values in the
structure group, satisfying the cocycle condition. In the case of a principal fiber bundleP, the fiber
is isomorphic to the structure group which is naturally represented on itself by left translations. For
a solution of the vacuum field equations, given by an orthonormal framee, we can take the
space–time manifoldM described above as the base space. The structure group is identified as
SOs1,3d. The transition functions are given by the elementsLi j :Ui ùUj →SOs1,3d and satisfy the
cocycle condition which is given above in Eq.s7d. Finally, one can show that it is possible to
construct the projectionp :P→M6, once the transition functions are given. This shows that all the
elements of a principle fiber bundle exist and they can be “glued” together to form the desired
bundle by means of the transition functions and the projectionp.

Finally, we must show that there exists a connectionv in P. By construction, we do have a
connection 1-formv on M, which is the connection associated with the vacuum solution. We will
see that it determines a unique connection inP. To this end, we use the following theorem4 valid
for principal fiber bundles.

Theorem 2: Given an open coveringhUaj of M, a structure Lie groupG with Lie algebrag,
a family of localg-valued 1-formsvi PL1sUi ,gd which fulfill the compatibility condition

vi = gji
−1v jgji + gji

−1 dgji , s8d

wheregji :Ui ùUj →G are elements ofG, and a set of local sectionssi :Ui →p−1sUid satisfying
s j =sigij on Ui ùUj, then there is a unique connectionv on P such thatvi =si

*v, wheresi
* is the

pull-back induced bysi.
In the case we are considering, the structure group is SOs1,3d, the family of 1-formsvi is

determined by the connectionv defined on eachUi P hUaj. The compatibility conditions8d coin-
cides with the transformation propertys6d, oncegji

−1 is identified withLi j . It remains to show the
existence of local sections. Since any fiber bundle accepts a local trivialization which can be
defined asCi :p−1sUid→Ui 3G, we can introduce a local canonical section onUi by transferring
back top−1sUid the section ofUi 3G, i.e., by definingsi :Ui →p−1sUid by ssxd=Ci

−1sx,ed, where
xPUi ande=giisxd is the identity element ofG. It is then possible to show6 that this canonical
section satisfiess j =sigij as required. Thus, according to Theorem 2, there exists a unique con-
nectionv on P. This ends the proof of Theorem 1.

We have shown that a vacuum solution can naturally be represented as a principal fiber
bundle. In all steps of the proof, the local connectionvi plays an important role and we have
assumed that it satisfies the continuity and differentiability conditions onUi. The question arises
whether this assumption can be realized in concrete examples of gravitational configurations. This
is exactly the question that we want to address in this work by constructing explicitly the elements
of the principal fiber bundles that correspond to given solutions of Einstein’s equations. This is
what we call the method of “topological quantization.” This concept has been used before in the
context of diverse monopole configurations.7 We will see that in the process of constructing a
suitable coveringhUaj of M, certain “quantization” conditions appear that imply restrictions on
the parameters entering the components of the connection.

If it turns out that the constructed principal fiber bundle admits a global section, the bundle is
globally trivial and a single connection can be defined everywhere onP. This could happen, for
instance, when the base spacesspace–time manifoldd is contractible. We will see that even in this
simple case nontrivial conditions arise from the requirement that the connection is regular on all
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points of the base space. More general cases can be obtained from noncontractible manifolds
which are very common in general relativity. Explicit solutions of Einstein’s equations are usually
characterized by the existence of singularities, i.e., regions that cannot be described within the
formalism of general relativity. In order to properly describe the space–time manifold we need to
“remove” those singular regions from the manifold. This procedure can be used to obtain non-
contractible base spaces for which we can expect that nontrivial conditions arise from the appli-
cation of the method of topological quantization. In fact, noncontractible base spaces can give rise
to globally nontrivial principal fiber bundles. In this case one needs more than one open subset to
cover the base space and, consequently, transition functions appear that turn out to generate
nontrivial “quantization” conditions.

Thus, topological quantization is closely related to the problem of determining whether a
principal fiber bundle is globally trivial or not. This is a task that involves the relation between the
global topological structure of the base space and the fiber, an issue that is used to perform the
classification of bundles and is related to the theory of characteristic classes and topological
invariants. Consequently, the method of topological quantization is closely related to the study of
the topological structure of the underlying bundle.

From the discussion above it follows that one hassat leastd two ways to perform the topo-
logical quantization of a given solution of Einstein’s equations. The first one consists in using
Theorem 1 to construct the corresponding principal fiber bundleP and the connectionv. Then,
one can analyze the topological invariants of the bundle. The second method consists in construct-
ing explicitly the coveringhUaj of M and the family of connection 1-formshvaj on M for the
given solution and extracting from there the quantization conditions. Obviously, both methods
must yield the same results. When analyzing explicit examples, however, it is not always easy to
construct the unknown principal fiber bundle, whereas the second method is straightforward be-
cause we know the connectionv explicitly. For this reason, in this work we will apply mainly the
second approach for explicit calculations.

All of the above discussion involves only the sos1,3d connection associated to the gravitational
action. If an additional matter action is considered, the results can be formulated in the following
form.

Theorem 3: A solution of Einstein’s field equations coupled to a matter gauge field can be
represented by a unique principal fiber bundle with the space–timeM as the base space, the gauge
group as the structure groupsisomorphic to the standard fiberd and a connection with values in the
Lie algebra of the gauge group.

The proof of this theorem is similar to that of Theorem 1. Indeed, for each open subsetUi

P hUaj we can calculate the corresponding gauge connectionAi with values in the Lie algebra of
G. The proof can then be carried out in a similar manner withvi replaced byAi, Li j replaced by
gi j PG, andgji

−1=gi j . Consequently, in the case of additional matter gauge fields we can construct
on M a principal fiber bundle for each additional gauge connection. So we are lead to the concept
of “multiple” principal fiber bundles that can be constructed on the same base spaceM. Since the
method of topological quantization can be applied to each bundle separately, one could expect
different sets of quantization conditions from each bundle. The compatibility of these sets is an
issue that can be treated at the level of explicit gravitational configurations.

In the following sections we will apply Theorems 1 and 3 to different gravitational configu-
rations.

III. CYLINDRICALLY SYMMETRIC GRAVITATIONAL FIELDS

Cylindrically symmetric vacuum gravitational configurations can be described by means of
the Einstein–Rosen line element which in an orthormal frame can be written as8

e0 = expsg − cddt, e1 = expsg − cddr, e2 = expscddz, e3 = r exps− cddw, s9d

wheret, r, z, andw are cylindrical coordinates and the functionsc andg depend ont andr only.
For the sake of simplicity, here we restrict ourselves to the case in which the Killing vector fields
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]z and]w are hypersurface orthogonal. The corresponding vacuum field equations can be reduced
to a second-order differential equation for the functionc,

c9 +
1

r
c8 − c̈ = 0, s10d

and two first-order differential equations forg,

g8 = rsċ2 + c82d, ġ = 2rċc8, s11d

whereċ=]c /]t, c8=]c /]r, etc. The orthonormal frames9d is defined up to an arbitrary trans-
formation of the Lie group SOs1,3d. If we envision the space–time as the four-dimensional base
manifold and attach a copy of SOs1,3d at each point of the base manifold, we obtain the 10-
dimensional principal fiber bundle considered in Theorem 1. Using the first structure equations1d
it is straightforward to calculate the components of the connection 1-formva

b which can be
decomposed asva

b=va
bm dxm. It is in this decomposition that the endomorphic character of the

connectionfa 1-form with values in the Lie algebra sos1,3dg becomes plausible.9 From Eq.s9d we
obtain

v0
1t = g8 − c8, v0

1r = ġ − ċ,

v0
2z = ċ exps2c − gd, v1

2z = − c8 exps2c − gd, s12d

v0
3w = − rċ exps− gd, v1

3w = − s1 − rc8dexps− gd.

As described in the last section, we must demand the regularity of this connection as a
condition for constructing the corresponding principal fiber bundle. It is well known8 that solu-
tions to the field equations can be generated which are everywhere regular with the symmetry axis
sr=0d as the only possible hypersurface where curvature singularities may appear. Let us suppose
that the symmetry axis is free of curvature singularities. Then, there must exist an atlas where the
connection is also regular. The field equationss11d imply that at the axisġsr→0d= ġ0=0 and

g8sr→0d=g08=0, if ċsr→0d=ċ0 andc8sr→0d=c08 do not diverge. On the other hand, Eq.s10d
implies that near the axisc8~ra with a.1, i.e.,c08=0, and, consequently,c̈sr→0d~ra−1. Then,

ċ0 is at most a constant that can be set equal to zero by means of a coordinate transformation.

Thus we have that the regularity condition at the axis implies thatġ0=g08=ċ0=c08=0. The same
result can be obtained by analyzing the behavior of the curvature Kretschman scalar near the axis.
Hence, from Eq.s13d it follows that at the axisuva

bur=0= uva
bwur=0 dw with

uva
bwur=0 = exps− g0dTw, s13d

whereTw is one of the generators of the Lie algebra sos1,3d,

Tw =1
0 0 0 0

0 0 0 − 1

0 0 0 0

0 1 0 0
2 . s14d

If we demand that exps−g0d does not diverge, the componentsuva
bwur=0 are regular, but we still

have a singularity in the 1-form dw=sexpscd /rde0. Therefore, the only possibility to get rid of this
singularity is to find a gauge transformation such that the new componentsuv8a

bwur=0 vanish
identically on the axis. To this end, let us consider the SOs1,3d transformation
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L = expsw̃Twd, w̃ = exps− g0dw. s15d

From Eq.s4d we have that the gauge-transformed 1-form connection is given by

v8 = expsw̃Twdv exps− w̃Twd − exps− g0dTw dw, s16d

where

exps± w̃Twd = 1434 ± sin w̃Tw + s1 − cosw̃dTw
2 , s17d

where 1434 is the 434 unit matrix. The explicit calculation of the components can be carried out
in a straightforward manner and leads to

v80
1t = sg8 − c8dcosw̃, v80

3t = sg8 − c8dsin w̃,

v80
1r = sġ − ċdcosw̃, v80

3r = sġ − ċdsin w̃,

v80
2z = ċ exps2c − gd, v81

2z = − c8 exps2c − gdcosw̃, s18d

v82
3z = c8 exps2c − gdsin w̃, v80

1w = rċ exps− gdsin w̃,

v80
3w = − rċ exps− gdcosw̃, v81

3w = exps− g0df1 − s1 − rc8dexpsg0 − gdg.

From the last expression it can easily be seen that the gauge-transformed connection vanishes
identically on the symmetry axis and no new singularities appear. This has been achieved by
means of the gauge transformations15d which is single-valued only if exps−g0d=n, wheren is an
integer. This, in turn, implies that the gauge-transformed connection is single valued. Conse-
quently, the condition exps−g0d=n needs to be satisfied for the connection to be well defined. This
is an interesting result that can be interpreted as a “quantization” of the energy of cylindrically
symmetric gravitational fields. Indeed, the concept of C-energy was introduced by Thorne10 for
gravitational fields described by the Einstein–Rosen line elements9d. The quantityEc=g0 has been
shown to represent thesnormalizedd C-energy density per length unit along the symmetry axis at
a given time. In terms of the “quantization” derived above this means thatEc=−ln n, i.e., the
C-energy is a discrete quantity. The fact that it is a negative quantity is interpreted by Thorne as
an indication of its “nonclassical” origin. A second expression that can be considered as asnor-
malizedd C-energy density has been introduced by Thorne asEc=1−exps−2g0d. In this case, the
quantization condition leads toEc=1−n2, an expression that again indicates the discrete character
of the C-energy.

We have shown that it is possible to define just one single connection 1-form on the entire
Einstein–Rosen space–time. This means that the base manifold of the principal fiber bundle can be
covered by a single open setU and, therefore, can be considered asR4 which is a contractible
manifold. This implies that the corresponding 10-dimensional principal fiber bundle is globally
trivial. This is so because we have demanded that the gravitational field be regular at all points of
space–time, including the symmetry axis. If, instead, we would allow singularities on the axis, it
would be necessary to “remove” the axis from the base manifold. This would open the possibility
of obtaining a nontrivial bundle, an issue that would require an analysis different from the one
presented in this section.

IV. THE WEAK GRAVITATIONAL FIELD

Consider the following line element in spherical coordinatest, r, u, w:
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ds2 = s1 − 2fddt2 − 2x dt dw − s1 + 2fdfdr2 + r2sdu2 + sin2 u dw2dg, s19d

where f and x are functions of the spatial coordinates. We assume thatf!1 and x!1 and
consider the weak field limit of Einstein’s equations in vacuum. An orthonormal frame appropriate
for the line elements19d can be written as

e0 = s1 − fddt + x dw, e1 = s1 + fddr, e2 = s1 + fddu, e3 = s1 + fdr sinu, s20d

where we have neglected all the second order perturbations inc andx.
It is well known11 that the weak field equations in the Lorentz gauge can be expressed as the

Maxwell equationsÃm,n
n=0 for the Maxwell potential

Ãm = − 1
4s4f,xd, s21d

which is invariant with respect to the transformationÃ→ Ã8=Ã+dfsxmd, where fsxmd is an arbi-
trary smooth function. This indicates that the weak field approximation can be interpreted as

Us1d-gauge theory. To see this explicitly, we introduce the us1d connection 1-formA=−iÃ. Then,
the transformation laws5d is identically satisfied for the Us1d-gauge transformationg
=expsi f sxmdd.

From the Maxwell equations for this case we see that the functionsf andx are decoupled. Let
us consider the following special solution:

A = iFf dt +
g

2
s1 + cosuddwG , s22d

where f satisfies the differential equationf,j
j =0 s j =1,2,3d, and g is a constant. This is the

connection defined on the base manifold. To investigate the singularities of the connections22d, it
is convenient to represent it in the orthonormal frames20d. Neglecting all the second order
perturbations we obtain

A1 = iFfe0 +
g

2

s1 + cosud
r sinu

e3G , s23d

where we have introduced the subscript “1” to identify it as the connection on the open subsetU1

that will be determined below. We can see that there is a first singularity atr =0 which, however,
is a true curvature singularity as can be seen by analyzing the corresponding curvature. A second
singularity is situated atu=0 which does not appear at the level of the curvature. We “eliminate”
the true curvature singularity by removing the originr =0 from the space–time. Hence, the base
manifold M4 becomesM4=R4−hworld line of 0j. The second singularity atu=0, which corre-
sponds to the positive sector,z+, of the axisz, implies that the connectionA1 is regular onU1

=M4−hz+j. This apparent singularity can be eliminated by means of the gauge transformationg
=expsigwd which leads to the new connectionsup to first order in the perturbationd

A2 = iFfe0 +
g

2

s− 1 + cosud
r sinu

e3G . s24d

In fact, the singularity atu=0 has been removed, but a new singularity has appeared atu=p.
Consequently, the connectionA2 is regular only in the open subsetU2=M4−hz−j, where hz−j
denotes the negativez axis.

The subsetsU1 and U2 define a covering of the base manifold. In the intersection region
U1ùU2 the two connections are related by means of the transition functiong12=expsigwd which
is single valued only ifg=n, wheren is an integer. To interpret this result we must find out the
physical significance of the parameterg. This can be done, for instance, by calculating the mul-
tipole moments of this solution.12 To do this, it is necessary to specify the functionf and we chose
the simple solutionf=m/ r, wherem is a constant. Then, it can be shown that the parameterm
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represents the monopole moment of a mass distribution andgm corresponds to the monopole
moment of an angular momentum distribution. This implies thatg represents the gravitomagnetic
monopole per mass unit which, according to the quantization condition obtained above, can take
only discrete values.

This example reminds us of the case of a magnetic monopole in electrodynamics. Indeed, we
have chosen the functionx in the connections22d as the Maxwell potential for Dirac’s magnetic
monopole. The rest of the analysis is then carried out in a similar way as in standard electrody-
namics, due to the analogy between the field equations for the weak field approximation and the
Maxwell equations. The result obtained here by analyzing the behavior of the us1d connection can
be reproduced in terms of the topological invariants. The corresponding principal fiber bundle is a
five-dimensional Us1d bundle for which the Chern invariants can be calculated. The result is again
that the constantg becomes quantized.

V. THE REISSNER–NORDSTROM BLACK HOLE

Let us consider the following orthonormal frame for the Reissner–Nordstrom metric:

e0 =
fsr − r−dsr − r+dg1/2

r
dt, e1 =

r

fsr − r−dsr − r+dg1/2dr, e2 = r du, e3 = r sinu dw,

s25d

with

r± = m± Îm2 − e2, s26d

wherem is the mass,e is the net electric charge of the source, and the radial valuesr± correspond
to the horizons of the Reissner–Nordstrom black hole. This is a solution of the Einstein–Maxwell

equations with the potentialÃ=−se/ rddt. The corresponding us1d connectionA=−iÃ behaves
under a gauge transformation as in Eq.s5d. According to the discussion of Sec. II and Theorem 3,
there exists a principal fiber bundle which can be constructed by attaching at each point of the
space–time the fiber Us1d.

In this section we will explore the conditions that must be satisfied on the base manifold for
constructing that bundle. To investigate the critical points of the connection 1-form we represent it
in the orthonormal frames25d. Then

A = iefsr − r−dsr − r+dg−1/2e0. s27d

This connection diverges atr =r− andr =r+, whereas the corresponding field strength is regular at
those hypersurfaces. To remove these singularities, we first apply the gauge transformationg1

=expsiet/ r−d on s27d and obtain

A1 = − i
e

r−
S r − r−

r − r+
D1/2

e0, s28d

a us1d connection which is regular atr =r−, but diverges atr =r+. On the other hand, we can also
apply the transformationg2=expsiet/ r+d on s27d. The resulting connection

A2 = − i
e

r+
S r − r+

r − r−
D1/2

e0 s29d

is regular atr =r+, but diverges atr =r−. Thus, we have obtained two different connections with
different divergences. Let us choose the open subsetsU1=s0,r+d andU2=sr−,`d. This set of open
subsets covers the radial coordinater completely so that the subsetsU13R3 andU23R3 are a
covering of the base manifoldM4. Then, the connectionsA1 andA2 are well defined onU1 andU2,
respectively. In the intersection regionU1ùU2=sr−,r+d, the connectionsA1 and A2 must be
related by means of the transition functiong12PUs1d which can easily be calculated as
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g12 = expFieS 1

r−
−

1

r+
DtG . s30d

The important point about this transition function is that it depends only on the time coordi-
natet and is defined only on the region contained between the horizonsr− and r+. On the other
hand, it is well known13 that in this region the coordinatet is not timelike but spacelike. Indeed,
one of the interesting aspects of the regionsr−,r+d is that the coordinatest andr interchange their
role: what was the radial direction becomes timelike, and the timelike direction becomes space-
like. Therefore, we are allowed to considert as an angle coordinate 0ø tø2p inside the horizons.
This is a consistent procedure that can be carried out explicitly for all black hole vacuum station-
ary solutions14,15 and can easily be generalized to the case of electrovacuum stationary axisym-
metric solutions. Therefore, ift is a compact and periodic coordinate inside the horizons, the
transition functions30d is single-valued only if the coefficient in front oft is an integer, i.e.,

eS 1

r−
−

1

r+
D =

2

e
Îm2 − e2 = n. s31d

This represents a relationship between the physical parameters which describe the black hole. This
specific combination ofm ande can take only discrete values. Notice that in the special case of an
extreme black hole,e=m, the only allowed value isn=0. Moreover, the limiting casee→0 is not
allowed. This is due to the fact that in order to perform this “quantization” we have used the
us1d-electromagnetic connection which does not exist in the casee=0.

Since the space–time possesses a curvature singularity atr =0, we must remove the world line
of this event from the base space. This implies that the corresponding principal fiber bundle is not
globally trivial. This can be seen explicitly by calculating the topological invariant, which in this
case is given in terms of the Chern formc=−se/ r2ddt∧dr. The Chern number is obtained by
integrating the Chern form inside the horizon. As expected, we get the value of 4pn, wheren is an
integer related to the parameters of the Reissner–Nordstrom black hole as given ins31d. This
represents an alternative derivation of the quantization condition. To verify that this result is also
independent of the coordinates, we have performed a similar analysis of the Reissner–Nordstrom
metric in Kruskal-type coordinates. As expected, the quantization conditions31d appears in a
similar manner.

To conclude this section, it is worth mentioning that a similar analysis can be performed for
the Kerr–Newman black hole. It turns out that in this case it is necessary to introduce again two
open subsets in order to cover the entire space–time manifold. The transition function is defined in
the region contained between the horizons, where the coordinatet is spacelike, and the quantiza-
tion condition can be written as

2e3Îm2 − a2 − e2

e4 + 4a2m2 = n, s32d

where a represents the angular moment per unit mass of the black hole. As expected, in the
limiting casea=0 we recover the expressions31d for the Reissner–Nordstrom black hole.

VI. CONCLUSIONS

In this paper we have developed the method of topological quantization for gravitational field
configurations. First, we have shown that for any vacuum solution of Einstein’s field equations
there exists a natural unique principal fiber bundle with an sos1,3d connection. If the gravitational
field is minimally coupled to a gauge matter field, there exists also a principal fiber bundle with a
matter connection.

This procedure has been carried out explicitly for the gravitational configurations described by
cylindrically symmetric space–times, the gravitomagnetic monopole in linearized gravity and
electrovacuum black holes. In all the cases we have analyzed, the result of the topological quan-
tization is a relationship that indicates the discretization of the parameters entering the correspond-
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ing metrics. We have shown that the quantization conditions arise as the result of demanding a
regular behavior of the connection on the base manifold. Quantization conditions can appear in
globally trivial and nontrivial principal fiber bundles. In the latter case, equivalent results can be
obtained from the analysis of the corresponding topological invariants.

In this work, we do not analyze the physical significance of the resulting discretization. In
particular, it would be interesting to perform the topological quantization of black holes with
respect to the sos1,3d connection which would complement the result of the us1d connection
analyzed here. Preliminary calculations show that the complete quantization of black holes metrics
leads to a discretization of the horizon area. This task is currently under investigation.16

Moreover, in all the examples analyzed in this work we have restricted ourselves to the
investigation of the regularity conditions of the connection on the base manifolds. Nevertheless,
Theorems 1 and 3 show that there exists an additional connection on the bundle which reduces to
the connection on the base manifold, when projected by means of the pull-back of local trivial-
izations. It would be interesting to construct explicitly the connection on the bundle and investi-
gate its properties.

Finally, we should mention that although the term “topological quantization” could be very
suggestive, it is by no means a procedure that pretends to compete with already existing and
well-developed procedures like canonical quantization. Nevertheless, it is interesting to see that
the mere existence of relatively simple geometric structures in gravitational field configurations
leads to a discretization of physical parameters, a property that is usually associated with quanti-
zation. A much more detailed and deep investigation is necessary in order to establish if topologi-
cal quantization could be an alternative method to obtain at least partial “quantum” information
from a physical system.
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We give a general geometric definition of asymptotic flatness at null infinity in
d-dimensional general relativitysd evend within the framework of conformal infin-
ity. Our definition is arrived at via an analysis of linear perturbations near null
infinity and shown to be stable under such perturbations. The detailed falloff prop-
erties of the perturbations, as well as the gauge conditions that need to be imposed
to make the perturbations regular at infinity, are qualitatively different in higher
dimensions; in particular, the decay rate of a radiating solution at null infinity
differs from that of a static solution in higher dimensions. The definition of
asymptotic flatness in higher dimensions consequently also differs qualitatively
from that ind=4. We then derive an expression for the generator conjugate to an
asymptotic time translation symmetry for asymptotically flat space–times in
d-dimensional general relativitysd evend within the Hamiltonian framework, mak-
ing use especially of a formalism developed by Wald and Zoupas. This generator is
given by an integral over a cross section at null infinity of a certain local expression
and is taken to be the definition of the Bondi energy ind dimensions. Our definition
yields a manifestly positive flux of radiated energy. Our definitions and construc-
tions fail in odd space–time dimensions, essentially because the regularity proper-
ties of the metric at null infinity seem to be insufficient in that case. We also find
that there is no direct analog of the well-known infinite set of angle dependent
translational symmetries in more than four dimensions. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1829152g

I. INTRODUCTION

Theories attempting to unify the forces often require a higher dimensional space–time, and
accordingly have different properties than four-dimensional theories. Still important and funda-
mental even in higher dimensional theories are the notion of an isolated system and associated
conserved quantities, such as the total energy of the system.

In four-dimensional general relativity, there exist two satisfactory notions of the total energy
of a space–time representing an isolated system, namely the “Arnowitt–Deser–Misner”sADM d
energy1 and the “Bondi” energy.2–4 The ADM energy represents the energy of the system “once
and for all” and is mathematically given by an integral of a quantity associated with the gravita-
tional field, over a sphere at spatial infinity. The Bondi energy measures the total energy of the
system “at an instant of time,” and is mathematically given by an integral over a spacelike cross
section at null infinity. Thus, while the ADM energy is just a number, the Bondi energy is in
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general a function of time in the sense that it depends on the chosen cross section at null infinity.
The difference between the Bondi energies at two different times represents the flux of gravita-
tional radiation through the portion of null infinity bounded by the corresponding two cross
sections.

While the expression for the ADM energy of a space–time is readily generalized to an arbi-
trary number of space–time dimensions, this is not so for the Bondi energy. To our knowledge, no
expression for the Bondi energy or other quantities associated with the group of asymptotic
symmetries has been given in the literature for more than four dimensions, let alone a systematic
derivation.21 This is maybe not so surprising since constructions associated with null infinity tend
to be more complicated in nature than corresponding constructions at spatial infinity, which may,
e.g., be appreciated from the fact that a completely satisfactory definition of quantities associated
with asymptotic symmetries in four dimensions was not given as late as the early 1980s.6 The
purpose of the present paper is to derive an expression for the Bondi energy and momentum
sBondi energy, for shortd in space–times of arbitrarysevend dimension.

The basic issue that needs to be settled in order to even get started on a definition of Bondi
energy in higher dimensions is to specify what exactly one means by the statement that a space–
time represents an “isolated system.” Roughly speaking, an isolated system is a space–time that
looks like Minkowski space “far away.”sOther, less restrictive notions of an isolated system may
also be considered, for example, systems that look like a Kaluza–Klein space far out in the
“noncompact directions.” However, the analysis of such metrics and of the associated conserved
quantities would be substantially different from the ones studied in the present paper.d Of course,
one must explain exactly what one means by “far away,” and one must determine the precise
asymptotics that should reasonably be imposed on the gravitational field at null infinity. What are
the asymptotics for the gravitational field ind dimensions? For the sake of definiteness, suppose
one would attempt to define an isolated system to be a space–time whose metric has the form of
the Schwarzschild metricsin suitable coordinatesd, plus higher order terms in 1/r as one goes off
to infinity along a null direction. In other words, suppose one were to define asymptotic flatness at
null infinity in the same way which works at spatial infinity. Then one would effectively eliminate
from consideration all space–times that contain gravitational radiation through null infinity, which
are of course precisely the space–times that one wants to describe in the first place. On the other
hand, if one imposes drop off conditions that are too weak, then it will in general be impossible to
define a notion of radiated energy of such a space–time in a meaningful way. Thus, the task is to
find a definition of asymptotic flatness that is both general enough so as to allow sufficiently many
physically interesting radiating space–times, and stringent enough so as to allow one to derive
meaningful expressions for the energy, as well as possibly other quantities associated with
asymptotic symmetries.

The original definition of asymptotic flatness in four dimensions proposed by Bondi and
collaborators2,4 was formulated in terms of detailed conditions on the metric components in a
preferred coordinate frame and was arrived at via a study of gravitational waves near infinity.
Their definition was later elegantly recast into the language of “conformal infinity” following the
work of Penrose.7–11 In this language, a space–time is said to be asymptotically flat, if it can be
conformally embedded into a smooth “unphysical” space–time via a conformal transformation
with conformal factorV, so that the points at infinity are at the “finite” locationV=0 in the
unphysical space–time, and so that the gradient of the conformal factorV is null there. The main
arguments that have been advanced in favor of this definition are that it covers the known exact
solutions of Einstein’s equation that one intuitively thinks of as representing isolated systems, and
that the definition can be proven to be stable under linear perturbations,12 in the sense that any
compactly generated solution to the linearized equations of motion around an asymptotically flat
solution satisfies the linearized version of the above definition of asymptotic flatness in a suitable
gauge.sBy contrast, if one were to adopt the, e.g., same definition of asymptotic flatness at null
infinity as one has at spatial infinity, then such a definition would not be stable under linear
perturbations.d

Thus, the first task of our paper is to obtain an appropriate generalization of asymptotic
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flatness to higher dimensions. This definition will be motivated as in four dimensions by a detailed
analysis of the decay properties of linear perturbations at null infinity. We show that perturbations
typically drop off as 1/r sd−2d/2 as one approaches null infinity, which, as we note, differs from the
drop off rate of the Schwarzschild metric, 1 /rd−3, when the space–time dimensions are greater
than 4. The appearance of half-odd integer powers of 1/r in the tail of the metric at null infinity
in oddd implies in particular that the unphysical metric will not be smooth at null infinity. It turns
out that, for this reason, a geometrical definition of null infinity as given above ford=4 does not
appear to be possible in odd space–time dimensions. We will therefore restrict our attention to
space–times of even dimension in this paper. We will also see that the detailed behavior of the
perturbations near null infinity differs qualitatively from that in four dimensions in that the trace of
the metric perturbation drops off one power in 1/r faster than the perturbation itself.sAs we will
show, this phenomenon is closely related to the fact that the transverse traceless gauge is regular
at null infinity in d.4, whereas this is not the case ind=4, where the so-called “Geroch–
Xanthopoulos” gauge has this property.d Consequently, our definition of asymptotic flatness ind
.4 dimensions also differs qualitatively from that in four dimensions in that it involves, for
example, additional conditions on the metric volume element as one approaches null infinity.

The mathematical expression for the ADM energy, including the correct normalization, can be
derivedsin arbitrary dimensiond in a simple and straightforward manner within the Hamiltonian
framework of general relativity where it is seen to represent the “charge” conjugate to an infini-
tesimal asymptotic time translation at spatial infinity.13 It was shown by Wald and Zoupas14 sbased
on earlier work by Ashtekar and Streubel,11 see also Ref. 15d that an expression for the Bondi
energy in four-dimensional general relativity can also be arrived at within a Hamiltonian frame-
work as the quantity conjugate to an asymptotic time translation at null infinity, although the
situation is certainly considerably more complicated compared to spatial infinity. This expression
was shown to be unique under some natural assumptions and agrees with the previously known
one.10,6 The formalism of Ref. 14 is in fact capable of dealing with arbitrary diffeomorphism
covariant theories of gravitysin arbitrary dimensiond in the presence of boundary conditions at
null surfaces. We employ it here to establish the existence and uniqueness of a generator conjugate
to an asymptotic time translation ind-dimensional vacuum general relativitysd an even numberd
within the context of our asymptotic flatness condition, and we take this generator as the definition
of the Bondi energy ind dimensions. The algorithm by Wald and Zoupas specifies this generator
only indirectly via its variation under a suitable variation of the space–time metric, so further work
is required to actually find a local expression for this quantity. Such an expression is provided in
Eq. s100d. As in four dimensions, our definition of the Bondi energy has the property that it yields
a manifestly positive flux of energy given by the square of a suitably defined “news tensor.”

We emphasize that the issue of existence of a generator conjugate to an asymptotic time
translation symmetrysor a more general other asymptotic symmetryd is by no means automatic but
rather depends crucially on the nature of the boundary conditions. As a rule, boundary conditions
that are “too weak” will prohibit the existence of a generator. In our case, the boundary conditions
are independently determined by a perturbation analysis, and therefore not put in “by hand” in
order to guarantee the existence of a generator. That we find existence of a generator is therefore
a consistency check.

The cased=4 seems to be “exceptional” with regard to many of our constructions from the
point of view of generald. For example, the definition of the news tensor differs in dimensions
greater than 4. Also, while the unphysical Weyl tensor can be proven to vanish one order faster
than the unphysical Ricci tensor ind=4, this does not appear to be the case in higher dimensions.
On the other hand, the unphysical Ricci scalar vanishes one order faster than the unphysical Ricci
tensor itself ind.4, while both quantities generically have the same drop off behavior ind=4. In
d=4, it is well known that the asymptotic symmetries form an infinite dimensional group which
comprises, besides the transformations corresponding to the usual symmetries of Minkowski
space–time, an additional infinite set ofsmutually commutingd “angle dependent translations,”
sometimes called “supertranslations.”sThere is no relation with supersymmetry.d We find that
there is no direct analog of the supertranslations ind.4. Another curious feature, which is of a
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more technical nature but nevertheless seems to underlie many of the differences betweend=4
and higher dimensions is that, while linear perturbations can be proven to be regular at null infinity
in the transverse traceless gauge ind.4, this is not so ind=4, where one must choose the
ssomewhat complicatedd Geroch–Xanthopoulos gauge.12

The contents and main results of this paper may now be summarized. In Sec. II we present our
definition of asymptotic flatness in arbitrary dimension and define the notion of an asymptotic
symmetry. In Sec. III we show that our definition of asymptotic flatness is stable under linear
perturbations, provided that the perturbations are in a suitable gauge. In Sec. IV we recall the
general formalism of Ref. 14 for defining generators associated with asymptotic symmetries, and
in Sec. V we derive our formula for the Bondi energy. We also verify that our expression for the
Bondi energy agrees with the expected onesi.e., the ADM energyd in thed-dimensional analogue
of the Schwarzschild metric. We draw our conclusions in Sec. VI. For simplicity, we restrict
attention to the case of vacuum general relativity throughout this paper. Some remarks concerning
the incorporation of matter fields are also given in Sec. VI.

Our conventions are the same as in Ref. 16: The signature of the metric iss−+ +¯ d, the
convention for the Riemann tensor is¹fag¹fbgkc=s1/2dRabc

dkd andRab=Racb
c for the Ricci tensor.

Indices in parentheses are symmetrized and indices in square brackets are antisymmetrized.

II. ASYMPTOTIC FLATNESS IN d DIMENSIONS

Asymptotic conditions in field theory require the specification of a background configuration
and the precise rate at which this background is approached. In the case of asymptotic flatness in
higher dimensional general relativity, the background is the Minkowski metric.sOther asymptotic
conditions would of course require a different background.d In order to specify the precise rate at
which Minkowski space–time is approached at null infinity, it is of great technical advantage to
work within a framework in which “infinity” is attached as additional points to the space–time

manifold, M̃ sthereby obtaining an “unphysical” space–time manifoldMd, and in which these
points are brought metrically to a finite distance by rescaling the physical metric,g̃ab, by a
conformal factorV2 with suitable properties. The asymptotic flatness conditions are then formu-
lated in terms of this rescaled “unphysical metric,”

gab = V2g̃ab, s1d

and its relation to the likewise conformally rescaled version of Minkowski space–time,

ḡab = V2h̃ab. s2d

We will refer to sM̄ ,ḡabd as the “background geometry.” As it is well known, Eq.s2d can be
realized, e.g., by conformally embedding Minkowski space–time into a patch of the Einstein static
universeR3Sd−1 with line element ds̄2=−dT2+dc2+sin2 c ds2. Here, ds2 is the line element of
a roundsd−2d-dimensional sphere, andc is the azimuthal angle ofSd−1. In these coordinates,

Minkowski space–time corresponds to the regionM̄ =h−p,T±c,p ,c.0j of R3Sd−1, see
Appendix B for further details of this conformal embedding, as well as the specific form ofV.

The conformal infinity of Minkowski space–time is the boundary of the regionM̄ in the
Einstein static universe. It is divided into the following five parts:s1d future timelike infinitysthe
point T=p ,c=0d, s2d past timelike infinitysthe point T=−p ,c=0d, s3d spacelike infinitysthe
point c=p ,T=0d, s4d past null-infinity sthe pointsT=−p+c for 0,c,pd, and s5d future null
infinity sthe pointsT=p−c for 0,c,pd. The conformal factorV is smooth in a neighborhood
of null infinity and vanishes there, and the gradient ofV is nonvanishing and null there.

Our definition of asymptotic flatness consists in specifying the precise rate at whichgab

approachesḡab as one approaches the boundary]M̄. To quantify how various tensors behave at
that boundary, we introduce the following notion: We will say that a tensor field,Lab̄ c, is “of
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orderVs” with sPR, written Lab̄ c=OsVsd, if the tensor fieldV−sLab̄ c is smooth at the bound-
ary. It is a consequence of this definition that ifLab̄ c is of order s then VrLab̄ c is of order

s+r, and that¹̄d1
¯ ¹̄dk

Lab̄ c is of orders−k.
We now state our definition of asymptotic flatness in even space–time dimensionsd.4.

sFrom now on,d is taken to be an even number unless stated otherwise.d Let sM̄ ,ḡabd be the

background geometry described above. Ad-dimensional space–timesM̃ ,g̃abd will be said to be
weakly asymptotically simple at null infinityif the following is true:

s1d It is possible to attach a boundaryI to M̃ such thatM =M̃ øI is locally diffeomorphic to

the manifoldM̄ near its boundary.
s2d One has, relative to our background metricḡab, that

ḡab − gab = OsVsd−2d/2d, ēab̄ c − eab̄ c = OsVd/2d, s3d

whereēab̄ c andeab̄ c denote the volume elementsviewed asd-formsd associated with the
metricsḡab, respectively,gab, as well as

sḡab − gabdsdVda = OsVd/2d, sḡab − gabdsdVdasdVdb = OsVsd+2d/2d, s4d

wheregab is the inverse ofgab and whereḡab is the inverse ofḡab.

It is important to note that, while our definition of an asymptotically flat space–time is
formulated relative to a specific background geometry, our definition is actually independent of the
precise way in which the Minkowski metrich̃ab is written asV−2ḡab in terms of a background
metric ssmooth atI d, and correspondingly the way in which the physical metricg̃ab is written as
V−2gab in terms of an auxiliary unphysical metric. In other words, ifk is a smooth function defined

in a neighborhood of the boundary ofM̄ such thatkÞ0 at null infinity, then our definition of an
asymptotically flat metric is unchanged if we change the conformal factor toV8=kV, the back-
ground metric toḡ8ab=k2ḡab, and the unphysical metric tog8ab=k2gab.

As in four space–time dimensions, the notion of weak asymptotic simplicity can be strength-

ened by requiring in addition that every inextendible null geodesic insM̃ ,g̃abd has precisely two
end points onI. Such a space–time is then simply calledasymptotically simple. This additional
condition, combined with the fact thatI is null, makes it possible to divideI into disjoint sets,
I + andI −, on which future, respectively, past directed null geodesics have their end points. These
sets are referred to as future, respectively, past null infinity. This condition also implies that

sM̃ ,g̃abd necessarily must be globally hyperbolic, by a straightforward generalization of Proposi-
tion 6.9.2 of Ref. 17 tod dimensions.sWe also note that, by a straightforward generalization of
Proposition 6.9.4 of Ref. 17 tod dimensions, the additional condition is in fact only consistent
with I having topologyR3Sd−2. This agrees with the topology of the boundary of our back-
ground geometry.d

Item s1d of our definition is essentially the statement that, as a manifold,M looks nearI like

the background manifoldM̄ looks near its null boundary. Items2d of the definition involves three
different metrics: The physicalg̃ab, unphysicalgab, and the background metricḡab. The physical
and unphysical metric are related by the conformal factor,V, which makes the unphysical metric
smooth and at the same time brings null infinity,I, to a “finite location,” and the background
metric is likewise related to Minkowski space–time. The relation between the unphysical and
background metric is given by the above set of equations in items2d, which specify the precise
manner in which the unphysical metric approaches the background metric, and thus the precise
sense in which our space–time is required to flatten out at null infinity. Since¹aV is null relative
to the background metric, it is also null relative to the metricgab, showing thatI is a null surface
in the unphysical space–timesM ,gabd. Since V2 times Minkowski space–time is isometric to

sM̄ ,ḡabd, our definition of asymptotic flatness trivially covers Minkowski space–time.
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Since we will be working with different metrics in this paper—physical and unphysical—it is
necessary to specify a rule for raising and lowering indices of tensors. Our rule is that indices on
tensor fields onM without a “tilde” are raised and lowered with the unphysical metric,gab and its

inverse, whereas indices on tensor fields onM̃ with a “tilde” are raised and lowered with the
physical metric,g̃ab, and its inverse.sNote that this rule is consistent with our notationgab andg̃ab

for the inverse of the metricsgab and g̃ab.d
Let us compare the above definition of asymptotic flatness with the behavior of the

d-dimensional analog of the Schwarzschild metric, given by the line element

ds̃2 = − s1 − cr−sd−3dddt2 + s1 − cr−sd−3dd−1 dr2 + r2 ds2, c . 0, s5d

where ds2 is the line element of a roundsd−2d-dimensional sphere. Introducing a coordinateu by
the relation du=dt−s1−cr−sd−3dd−1 dr, the line element takes the form

ds̃2 = − 2 du dr − du2 + r2 ds2 + cr−sd−3d du2, s6d

where the first three terms on the right-hand side are recognized as the Minkowski line element.
Multiplying by our conformal factorV2, usingr−1=OsVd, and using thatV2 times the Minkowski
metric is equal to our background metric ds̄2 by construction, it follows that the unphysical
Schwarzschild metric can be written as ds2=ds̄2+OsVd−1ddu2 snoting thatu is a good coordinate
at infinityd. It follows that Schwarzschild space–time is asymptotically flat in the sense of our
definition, but it becomes flat at null infinity at a faster rate than that specified above in Eqs.s3d
ands4d in d.4. fIn d=4, the relevant components drop off at the same rate, as specified in Eqs.
s3d and s4d.g

The above definition of asymptotic flatness in even dimensionsd.4 is not appropriate in odd
space–time dimension, since conditions3d in item s2d now says that the unphysical metricgab

differs from the smooth background metricḡab by a half-odd integer power ofV, and thereby
manifestly contradicts the assumption in items1d that gab is smooth at the boundary. The powers
of V appearing in Eqs.s3d and s4d reflect the drop off behavior of a linearized perturbationssee
Sec. IIId, and it is hard to see how these powers could be essentially different from the ones in the
full nonlinear theory. It therefore appears that the unphysical metric is generically at most
sd−3d /2 times differentiable at the boundary in odd dimensions. We note that it is also inconsis-
tent in odd dimensions to postulate that the quantityV−sd−2d/2sgab− ḡabd is smooth at the boundary
as we did above in Eq.s3d of item s2d in the even dimensional case, because the unphysical
Schwarzschild metricgab differs from the backgroundḡab by terms of orderVd−1, i.e., by an even
power ofV. Therefore, Eq.s3d is definitely false for the Schwarzschild metric in odd dimensions.
For the Schwarzschild metric,V−sd−1dsgab− ḡabd is smooth at the boundarysin even and odd
dimensionsd, so one might be tempted to try this condition, together with suitable other conditions,
as the definition of asymptotic flatness. However, this would eliminate from consideration all
radiating space–times and is therefore not acceptable. One may try to bypass these problems by
requiring appropriate lower differentiability properties of the corresponding quantities, but these
seem neither to lead to a definition of asymptotic flatness that is stable under perturbations, as we
briefly discuss in Sec. III, nor do those weaker conditions seem to be able to guarantee the
existence of conserved quantities such as Bondi energy. Thus, it seems that a sensible definition of
asymptotic simplicity at conformal infinity in odd space–time dimensions would have to differ
substantially from the one given above for even dimensions, and it is doubtful that such a defini-
tion can be cast into the framework of conformal infinity. For the rest of this paper, we will restrict
attention to even space–time dimensions.

We finally comment on how the above definition of asymptotic flatness in even space–time
dimensionsd.4 compares to the usual definition10 in four dimensions. In this definition, one
simply demands that there existssomeconformal factor,V, such that the corresponding unphysi-
cal metric is smooth atI and such that¹aV is nonvanishing and null there.sThe nullness of¹aV
follows from the first condition if Einstein’s equations with vanishing stress energy at null infinity
are assumed.d This definition is different in appearance from that given above and avoids in
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particular the introduction of a background geometry. Nevertheless, the definition of asymptotic
flatness ind=4 as just stated can be brought into a form that is very similarsbut not identicald to
the one given above ford.4. sWe emphasize, however, that an analogous statement is not true in
d.4. Namely, it is not true that our definition of asymptotic flatness in higher dimensions is
equivalent to the statement that there exists some conformal factor,V, such that the corresponding
unphysical metric is smooth atI and such that¹aV is nonvanishing and null there.d To see this
in more detail, we recall that the usual definition of asymptotic flatness in four dimensions is
equivalent18 to the statement that the physical metric can be cast into “Bondi form”fit is assumed
in the derivation of Eq.s7d that the vacuum Einstein equations are satisfiedg, see Eqs.s14d and
s31d–s34d of Ref. 2,

ds̃2 = − 2 du dr − du2 + r2 ds2 + Osrddsanglesd2 + Os1ddu dsanglesd + Osr−1ddu2 + Osr−2ddu dr

s7d

in suitable coordinates near null infinity, where the first line is recognized as the Minkowski line
element, and where “angles” stands for the usual polar angles ofS2. In d.4 space–time dimen-
sions our asymptotic flatness conditions Eqs.s3d and s4d in effect state that the physical line
element can be written in the form

ds̃2 = − 2 du dr − du2 + r2 ds2 + Osr−sd−4d/2ddsanglesd2 + Osr−sd−4d/2ddu dsanglesd

+ Osr−sd−2d/2ddu2 + Osr−d/2ddu dr , s8d

where “angles” now stands for the polar angles ofSd−2. One notices that the Bondi forms8d in
d.4 does not reduce to Eq.s7d whend is set to 4. The difference between the two expressions
arises from the dsanglesd2 term, which quantifies the perturbations in the size of the cross sections
of a light cone relative to Minkowski space–time. According to Eq.s7d, this term is of orderOs1d
in d=4 for a radiating metric, whereas Eq.s8d would say that it should be of orderOsr−1d. The
latter is simply wrong for a radiating metric in four dimensions. This difference can be traced back
to the last of conditionss3d in d.4 dimensions, which therefore does not hold ind=4. This
special feature of four dimensions will be reflected in corresponding differences in our discussion
of the Bondi energy in dimensionsd.4. We will therefore, for the rest of this paper, keep the case
d=4 separate and assume throughout thatd.4 sand evend. Our formulas will not be valid in
d=4 unless stated otherwise.

A diffeomorphismf such thatf* g̃ab is asymptotically flat wheneverg̃ab is asymptotically flat
is called anasymptotic symmetry. It is clear that the asymptotic symmetries form a group under the
composition of two diffeomorphisms. Clearly, the property of being an asymptotic symmetry is
only related to the behavior off near the boundary. An infinitesimal asymptotic symmetry is a

smooth vector fieldja on M̃ that has a smooth extensionsdenoted by the same symbold to the
unphysical manifold,M, and which generates a one-parameter group of asymptotic symmetries. It
is a direct consequence of our definitions that the quantity

xab = V−sd−6d/2£jg̃ab = 2V−sd−2d/2s¹sadjsbd − V−1ncjcgabd s9d

then must satisfy

xab = Os1d, xa
a = OsVd, xabn

a = OsVd, xabn
anb = OsV2d, jana = OsVd, s10d

where here and in the following we are using the abbreviation

na = ¹aV. s11d

Conversely, if the above relations are satisfied forsomeasymptotically flat space–time, thenja is
an infinitesimal asymptotic symmetry. The classification of asymptotic symmetries ind.4 differs
from that in four dimensions. We will discuss this issue in some detail below in Sec. V and in
Appendix C, as well as in a forthcoming paper.19
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III. STABILITY OF ASYMPTOTIC FLATNESS TO LINEAR ORDER

In this section we justify the definition of asymptotic flatness for evend given in the preceding
section by showing that it is stable under linear perturbations. What we mean by this is the

following. Suppose thatsM̃ ,g̃abd is an asymptotically flat space–time that is also a solution to the

vacuum Einstein equation,R̃ab=0. Consider a solution,dg̃ab, to the linearized equations of motion
around this background,

0 = dR̃ab = 1
2s− ¹̃m¹̃mdg̃ab − ¹̃a¹̃bdg̃m

m + 2¹̃m¹̃ saddg̃sbdmd, s12d

which has the property that the restriction ofdg̃ab to a Cauchy surface has compact support.fIn
this section, by “background” we mean the “unperturbed” physical space–timesM̃ ,g̃abd, unless
otherwise stated. This should not be confused with the backgrounds2d, which is our reference
space–time for defining asymptotic flatness.g We will show in this section that there exists a gauge
sthe transverse traceless gauge worksd such that, settingdgab=V2dg̃ab,

dgab = OsVsd−2d/2d, dgabn
a = OsVd/2d, dgabn

anb = OsVsd+2d/2d, gabdgab = OsVd/2d,

s13d

at I for all evend.4. These conditions are recognized as the linearized version of our definition
of asymptotic flatness, Eqs.s3d ands4d, about an asymptotically flat background. Our definition of
asymptotic flatness is therefore stable to linear order.

We have emphasized above that our decay properties of the metric perturbations are valid only

in a particular gauge. Indeed, since the linearized equations of motion,dR̃ab=0, are invariant under

a gauge transformationdg̃ab→dg̃ab+£jg̃ab with ja an arbitrary smooth vector field onM̃, Eq. s13d
cannot possibly be true in an arbitrary gauge. For if it were to hold in one gauge, it would certainly
not hold in a gauge with aja that is very badly behaved atI. Thus, the specification of an
admissible gauge choice for the metric perturbation is an important part of the demonstration of
Eq. s13d.

A proof that asymptotic flatness is stable to linear order in four dimensions was given by
Geroch and Xanthopoulos.12 Their argument consists of the following two steps: One first writes
the linearized equations of motionss12d in terms of the unphysical metric and derivative operator
and introduces new field variables such that Eq.s12d is transformed into a hyperbolic system of
partial differential equations whose coefficients are either manifestly regular functions as one
approachesI or can be made to vanish by a suitable gauge choice. One then argues, using
standard existence and uniqueness results for solutions of hyperbolic partial differential equations,
that the new variables therefore have a smooth extension to the unphysical space–time.sHere one
needs to use that the perturbation has compactly supported initial data.d Translating this statement
about the new variables back into a statement about the metric perturbation, one finds the decay
properties of the metric perturbation atI.

We here use this basic strategy to analyze the decay atI of metric perturbations in even
dimensionsd.4. The second step does not depend on the dimension of the space–time, since it
only involves general properties of hyperbolic differential equations. By contrast, the first step,
i.e., the actual choice of variables and gauge conditions, is different in nature ind.4 dimensions
as compared tod=4. Finding the appropriate variables and gauge conditions that do the job is, of
course, the hard part of the analysis. It needs to be done before writing down any decay properties
of the perturbations, which are then supposed to follow from the precise form of the new variables
and gauge conditions. We here present things in the opposite order in order to simplify the
exposition.sThroughout the rest of this section,d.4 and even will be assumed.d

Concerning the proper choice of gauge, we consider the 1-form
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ṽa = g̃bc¹̃cdg̃ab − g̃bc¹̃adg̃bc, s14d

which is equal tosdual ofd the integrand of the surface term arising when varying the Einstein–
Hilbert action. Under a gauge transformation,dg̃ab→dg̃ab+£jg̃ab, this quantity is seen to trans-
form as

ṽa → ṽa + 2¹̃b¹̃
fbgjfag, s15d

where the vacuum Einstein equationsR̃ab=0 have been used. On the other hand, the variation of
the Ricci tensor can be seen to satisfy

g̃abdR̃ab = ¹̃aṽa, s16d

so that we have¹̃aṽa=0 when the linearized Einstein equations hold. Thus, by Eq.s15d, we can set

ṽa=0 throughoutM̃ by a choice of gauge transformation when the linearized Einstein equations

hold. sNote that 0=ṽa+2¹̃b¹̃
fbgjfag has the same form as Maxwell’s equation for a vector potential,

with a divergence free source. A solution therefore exists by the same arguments as for Maxwell’s
equations.d This gauge choice is invariant under further gauge transformations of the formdg̃ab

→dg̃ab+£jg̃ab, with ja=¹̃aj andj as any smooth function onM̃, which can be used, for example,
to impose a gauge condition on the trace of the perturbation. We impose

dg̃a
a = 0, s17d

which can always be realized since the trace transforms as

dg̃a
a → dg̃a

a + 2¹̃a¹̃aj s18d

under the remaining gauge transformations. Thus, our gauge conditions are Eq.s17d and ṽa=0.

Together, they are equivalent to the transverse traceless gauge condition,¹̃adg̃ab=dg̃m
m=0.

Concerning the proper choice of field variables whend.4, we consider

tab ; V−sd−2d/2dgab, ta ; V−1tabn
b, u ; ¹ata. s19d

We substitute the definitionss19d into the linearized Einstein equation, and use the background

Einstein equation,R̃ab=0, as well as the well-known relations between the physical and unphysi-
cal derivative operator and Ricci tensor,

¹̃akb = ¹akb + V−1s2dc
sadnsbd − gabn

cdkc, s20d

R̃ab = Rab + V−1fsd − 2d¹anb + s¹mnmdgab − sd − 1dfgabg. s21d

A lengthy calculation shows that the result can be written in the form

0 = 2V−sd−2d/2dR̃ab = − ¹c¹ctab + ¹a¹bt + 4¹sadtsbd + 2¹sadysbd − 2ugab − 2Racbdt
cd −

sd − 6d
2sd − 2d

Rabt

+
sd − 2d
4sd − 1d

Rtab +
sd − 6d

4sd − 1dsd − 2d
gabRt + V−1sd − 2dnsadysbd

+ V−1gabSsd − 2dnct
c + nc¹ct +

s3d − 10d
4

ftD + sd − 4dV−1nsad¹sbdt

+
sd − 6dsd − 4d

4
V−2nanbt, s22d

where we have used the shorthand notation
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t = ta
a, ya = V−sd−2d/2ṽa = ¹ctca − ¹at −

sd + 2d
2

ta −
sd − 4d

2
V−1nat, s23d

as well as

f = V−1nan
a. s24d

We now substitute our gauge conditions,ya=t=0, using in particular that

0 = naya =
1

2
Su +

1

sd − 2d
RabtabD −

d

4
V−1nata, s25d

which follows by combining our gauge condition with the background Einstein equation, to get rid
of the V−1nata term in Eq.s22d. Then Eq.s22d reduces to

¹c¹ctab = 4¹sadtsbd −
4

d
ugab +

sd − 2d
4sd − 1d

Rtab +
2

d
Rcdtcdgab − 2Racbdt

cd, s26d

where all singular terms now have dropped out due to our choice of variables and gauge condition.
We are, however, not done yet since we also need appropriate equations for the remaining vari-
ables,ta, u.

In order to get an equation forta, we take the divergence of Eq.s26d with respect to the
unphysical metric and use again the transverse traceless gauge condition,ya=t=0. This gives

sd − 2d¹c¹cta =
4sd − 2d

d
¹au +

4

d
Rbc¹atbc − 2Rbc¹btca + S sd + 2dsd − 2d

4sd − 1d
Rgab + 4RabDtb

+ 2S¹bRca −
sd − 2d

d
¹aRbc −

d

4sd − 1d
s¹cRdgabDtbc. s27d

Finally, in order to get an equation foru, we take a further divergence of Eq.s27d. We use Eq.s26d
and the divergence of the transverse traceless gauge condition¹aya=t=0 to eliminate second
derivatives oftab, giving

sd − 2dsd − 4d¹c¹cu = − 2sd + 2dsd − 4dRab¹
atb − 2sd − 4d¹aRbc¹atbc

+
sd − 4dsd3 + 4d2 + 12d − 16d

4dsd − 1d
Ru−

dsd − 2dsd − 4d
2sd − 1d

s¹cRdtc

+ Sdsd − 2d
2sd − 1d

¹a¹bR− 2sd − 2d¹c¹cRab − 8RcdRacbd+
d2 + 6d − 8

dsd − 1d
RRabDtab.

s28d

Equationss26d, s27d, and s28d form a system of linear partial differential equations for the vari-
ablestab, ta, u in the unphysical space–timeM, with coefficients that are given in terms of the
unphysical Riemann and Ricci tensor and its first and second derivatives. No terms containing
explicitly inverse powers ofV appear due to our particular choice of variables and gauge condi-
tions. Introducing the shorthand notationfa=stab,ta,ud, this system can be rewritten more com-
pactly as

gab¹a¹bfa = Aa
ba¹afb + Ba

bfb. s29d

It follows from our definition of an asymptotically flat space–time that the coefficientsAa
ba, Ba

b

in this system are smooth tensor fields up to and on the boundary. Equations29d therefore forms
a hyperbolic system of partial differential equations with coefficients that are smooth functions up
to and onI. sMeaning, roughly speaking, that it does not contain any second derivatives other than
the wave operator. Such terms could have arisen via expressions such asRabcd¹a¹ctbd which, as
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we note, could not be eliminated in favor of first derivative terms via our gauge condition,
¹mym=0. Fortunately, these terms happen to cancel.d Hence, this system possesses a well-posed
initial value formulation17 in the unphysical space–time. Iffa has compactly supported initial data
as we have assumed, then we conclude by the general argument given in Ref. 12 thatfa and hence
tab, ta and u, extend to smooth tensor fields atI. In combination with Eq.s25d, this implies
moreover thatV−1nata is smooth atI in the transverse traceless gauge, and hence thatnata

=OsVd. Substituting back the definitions19d of tab andta and the gauge conditiont=0 in terms
of dgab, we altogether find that the desired drop off propertiess13d hold for the linearized pertur-
bation atI. Thus, we have shown that our definition of asymptotic simplicity given in the pre-
ceding section is stable under linear perturbations whend.4 and even.

For completeness, we now comment upon the status of the above argument in the case when
d.4 and odd. In that case, the algebra leading to Eq.s29d is identical as in the cased.4 and
even, but the coefficientsgab, Aa

ba, Ba
b in this system now cannot be assumed to be smooth at the

boundary, since the unphysical metricgab itself does not have this propertyssee the discussion in
Sec. IId. Instead, sincegab can at best be expected to be of differentiability classCs, s=sd−2d /2 at
the boundary, we can at best expect thatAa

baPCs−3, Ba
bPCs−4 at the boundary. On the other

hand, the standard existence and uniqueness results for linear hyperbolic equations of the form
s29d require a higher degree of regularity for the coefficients and therefore do not guarantee the
existence of a solution tos29d. fIn order to guarantee existence and uniqueness of a solution in the
class faPWd/2+2+A, Aù0 swe mean the Sobolev spaced, one needsgabPWd/2+2+A, Aa

ba

PWd/2+1+A, andBa
bPWd/2+1+A. This is stronger than what we know.g Thus, unlike in the case of

evend.4, we now cannot conclude thatfa and hencetab, ta andu, extend to, say continuous,
tensor fields atI, and we therefore also cannot conclude that, e.g.,dgab is given byVsd−2d/2 times
a continuous function. Thus, our stability proof breaks down in odd dimensions. We believe that
this is an indication that a geometric definition of asymptotic simplicity that is stable against
perturbations is not possible in odd dimensions.

In d=4 space–time dimensions, the above system of equations fortab, ta, u fails to be even
hyperbolic, since the “box term” drops out in Eq.s28d for u. Thus, the above choice of variables
and gauge does not work ind=4. A set of variables and gauge conditions that works in four
dimensions has been found by Geroch and Xanthopoulos:12 These variables aretab, tb and s
=V−1sna¹at+ 1

2nata+ 1
4 ftd. The gauge condition is chosen to beya=0, together with a certain

complicated gauge condition on the trace of the perturbation instead oft=0. With this choice of
variables and gauge conditions in place, it is then shown thattab, tb, s satisfy a system of
hyperbolic equations with coefficients that are smooth atI sassuming that the unphysical metric is
smooth atI d. It follows now that the metric perturbation has the fall-off rate

dgab = OsVd, dgabn
b = OsV2d, dgabn

anb = OsV3d, gabdgab = OsVd s30d

in this gauge. This differs from the corresponding result Eq.s13d d.4 in that the trace of the
perturbation is now only falling off as fast as the metric perturbation itself,dgm

m=OsVd, rather
than one power faster as ind.4. This confirms the observation already made in the preceding
section that we cannot impose the second of Eqs.s4d in four dimensions, which, as we note, would
be the nonlinear analog of the conditiondgm

m=OsV2d. Hence, it is seen that the definition of
asymptotic flatness is qualitatively different ind.4 dimensions. As we will see, this has conse-
quences for our analysis of the Bondi energy ind.4 dimensions.

IV. GENERAL STRATEGY FOR DEFINING “CONSERVED” QUANTITIES AT INFINITY

In this section, we review the general algorithm given by Wald and Zoupas14 for defining
“charges” associated with symmetries preserving a given set of “boundary conditions” in the
context of theories derived from a diffeomorphism covariant Lagrangian. This will then be used to
define the Bondi energy ind-dimensional general relativity as the generator conjugate to a time
translation symmetry.
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The algorithm14 applies to arbitrary theories derived from a diffeomorphism covariant La-
grangian. We will focus here on vacuum general relativity ind dimensions, defined by the La-
grangian densitysviewed as ad-formd

L =
1

16pG
R̃ẽ, s31d

and the boundary conditions specified in our definition of asymptotic flatness.
One considers the variation ofL, which can always be written in the form

dL = E + du, s32d

whereE are the equations of motion; in our case

Ea1¯ad
=

1

16pG
SR̃bc −

1

2
R̃g̃bcDdg̃bcẽa1¯ad

; s33d

and where du is the exterior differential of asd−1d-form u, given in our case by

ua1¯ad−1
=

1

16pG
ṽcẽca1¯ad−1

, s34d

where ṽa is given in terms ofdg̃ab by Eq. s14d. The antisymmetrized second variationv of u
defines thesdualizedd symplectic current,

vsg̃;d1g̃,d2g̃d = d1usg̃;d2g̃d − d2usg̃;d1g̃d, s35d

so thatv depends on the unperturbed metric and is skew in the pair of perturbationssd1g̃ab,d2g̃abd
fhere, and in similar other formulas involving second variations, we assume without loss of
generality that the variations commute, i.e., thatd1sd2g̃d−d2sd1g̃d=0g. It is given in our case by

va1¯ad−1
=

1

16pG
w̃cẽca1¯ad−1

, s36d

wherew̃c is the symplectic current vector

w̃a = P̃abcdefsd1g̃bc¹̃dd2g̃ef − d2g̃bc¹̃dd1g̃efd s37d

with

P̃abcdef= g̃aeg̃fbg̃cd − 1
2g̃adg̃beg̃fc − 1

2g̃abg̃cdg̃ef − 1
2g̃bcg̃aeg̃fd + 1

2g̃bcg̃adg̃ef. s38d

The integral of the symplectic current over an achronalsd−1d-dimensional submanifoldS̃ of M̃
defines the symplectic structure,s, of general relativity

ssg̃;d1g̃,d2g̃d =E
S̃

v. s39d

It can be shown that, when bothd1g̃ab andd2g̃ab satisfy the linearized equations of motions12d,
then dv=0, or, what is the same thing, that the symplectic currents37d is conserved,¹̃aw̃a=0.
Consequently, the symplectic structures does not depend on the choice ofS, when d1g̃ab and
d2g̃ab satisfy the linearized equations of motion with compactly supported initial data.

The algorithm14 for defining generators associated with asymptotic symmetries now consists
of the following steps. First, check whether the symplectic current formvsg̃;d1g̃,d2g̃d has a
well-definedsi.e., finited extension toI for all asymptotically flat metrics satisfying Einstein’s
equation and all metric perturbations preserving asymptotic flatness to first order, i.e., for all linear
perturbations satisfying the linearized equations of motion and Eqs.s13d. If this is the case, one
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secondly seeks asd−1d-form Qsg̃;dg̃d on I which is linear in the perturbation,dg̃ab, which is
locally constructed out of the metricg̃ab and its derivatives at the boundary and any further
quantities arising in the specification of the boundary condition, and which has the property that
the pull back of the symplectic currentv to I can be written as the antisymmetrized variation of
Q,

vsg̃;d1g̃,d2g̃d = d1Qsg̃;d2g̃d − d2Qsg̃;d1g̃d. s40d

If such a symplectic potentialQ existsswhich is by no means guaranteed and depends crucially on
the precise form of the boundary conditions under considerationd, then a generator conjugate to an

asymptotic symmetry can be defined as follows: Ifja is a vector field onM̃ representing an
infinitesimal asymptotic symmetry, define the associated chargeHj by the formula

dHj =E
B

sdQj − j · ud +E
B

j · Q, s41d

whereB is the cross section ofI at which the generator is to be evaluated and whereQj is the
Noether-chargesd−2d-form, given in the present case by

Qa1¯ad−2
= −

1

16pG
s¹̃bjcdẽbca1¯ad−2

. s42d

In these formulas, the notation “j ·A” means that the vector fieldja is contracted into the first
index of a differential formA.

It is not immediately evident from what we have said so far that Eq.s41d actually defines a
generatorsup to an arbitrary constantd, i.e., that the right-hand side of Eq.s41d is indeed the “d”
of some quantityHj. To see this, one first verifies that the right-hand side of Eq.s41d has a
vanishing antisymmetrized second variation.sThis would not be so if we had not added the
Q-term to the expression fordHj!d This is certainly a necessary condition for it to arise as the
“d” of some quantityHj, for we always havesd1d2−d2d1dHj=0. As argued in Ref. 14, this is also
a sufficient condition if one assumes that the space of asymptotically flat metrics is simply con-
nected.sNote the analogy to “Poincare’s lemma” which says that every closed 1-form on a simply
connected space is exact, i.e., the “d” of some scalar function.d For the cases considered in this
paper, we will prove existence of anHj and provide an explicit expression solving Eq.s41d. The
arbitrary constant is fixed by settingHj equal to 0 on Minkowski space–time.

The “flux” through a segmentS of I bounded by two cross sectionsB1 and B2 associated
with the infinitesimal symmetryja is defined to be the difference

Fj = HjsB2d − HjsB1d. s43d

One finds the simple formula14

Fj =E
S

Qsg̃;£jg̃d. s44d

We finally comment on the meaning of the integrals in Eq.s41d. The second integral on the
right-hand side ofs41d has a straightforward meaning since it has been assumed that the integrand,
Q, is well defined and smooth onI. This is, however, not so for the first integral on the right-hand
side ofs41d, because the integrand is defined only in the interior of the space–time. This integral
is to be understood instead as the limit of the corresponding integrals for a sequence of closed,

smoothsd−2d-surfacesBi in the interior of the physical space–timeM̃ that smoothly approach the
cross sectionB of I as i →`. The following argument14 shows that this limit indeed exists under
the assumptions that have been made: LetI i =eBi

fdQj−j ·ug. Then, since
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dfdQjsg̃,dg̃d − j · usg̃;dg̃dg = vsg̃;dg̃,£jg̃d, s45d

we have, by Stoke’s theorem

I i − I j =E
S̃i j

vsg̃;dg̃,£jg̃d, s46d

where S̃i j is a smooth spacelikesd−1d-surface bounded byBi and Bj. But v has a smooth
extension toI by assumption, so the right-hand side of this equation goes to 0 asi , j →`.

V. THE BONDI ENERGY FORMULA

The aim of this section is to implement the strategy of the preceding section for an asymptotic
translation symmetry in even space–time dimensionsd.4, i.e., to show that a generatorHj exists
for such a symmetry, and to derive an expression for this generator. We will take thisHj as the
definition of the Bondi energy momentumsBondi energy, for shortd in space–times of even
dimensiond.4.

The crucial issue regarding the existence of a generator conjugate to asymptotic symmetries is
whether the symplectic currentv has asfinited restriction toI and whether there exists, under our
choice of boundary conditions, a potentialQ for the pull-backs50d of the symplectic current
density toI, i.e., aQ satisfyings40d. We now examine these issues.

We fix the conformal factorV once and for all, so that, ifsM̃ ,g̃abd is an asymptotically flat
space–time, thengab=V2g̃ab satisfies Eqs.s69d with this fixed choice ofV. Consider a solution
dg̃ab of the linearized field equations that preserves asymptotic flatness to first order. Then the
quantitiestab=V−sd−6d/2dg̃ab, ta=V−1tabn

b are finite and smooth atI andta
a andnata vanish atI.

We substitute these relations into the definition of the symplectic current, use the relations20d
between the physical and unphysical derivative, the relation

ẽs1¯sd
= V−des1¯sd

s47d

between the physical and unphysical volume element, and evaluate atI. After some algebra, we
find the simple result

vs1¯sd
=

1

32pG
st1

bc¹mt2bc − t2
bc¹mt1bcdema1¯ad−1

+ OsVd, s48d

noticing that this is finite atI sthis formula is valid only ind.4d. This expression can be
rewritten somewhat more conveniently introducing asd−1d-form sd−1de by the formula

sddema1¯ad−1
= d ·nfmg

sd−1desa1¯ad−1g = sn ∧ sd−1dedma1¯ad−1
, s49d

where we have set a superscript on the quantities in order to indicate the degree of the form.fNote
that sd−1de is only defined up to the addition of asd−1d-form of the formn∧ sd−2df, wheresd−2df
is arbitrary. The addition of such a form does however not make any difference in the formulas
given above.g The pull-back toI of the symplectic currentsd−1d-form v can then be written as

z * va1¯ad−1
=

1

32pG
st1

bcnm¹mt2bc − t2
bcnm¹mt1bcdea1¯ad−1

, s50d

wherez* denotes the pull-back of a covariant tensor field toI. Thus, it follows from this expres-
sion that the pull-back of the symplectic current form toI is finite and smooth for any linear
perturbation preserving our asymptotic flatness condition.

We next look for a potentialQ for s50d. The subsequent calculations are somewhat simplified
using the tensorSab defined by the equation
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Rabcd= Cabcd+ gafcgSfdgb − gbfcgSfdga s51d

in terms of the unphysical Riemann tensor and Weyl tensor. It can be expressed in terms of the
unphysical Ricci tensor by

Sab =
2

sd − 2d
Rab −

1

sd − 1dsd − 2d
Rgab. s52d

Using the relations21d between the physical and unphysical Ricci tensor, we find that Einstein’s
equation for the physical Ricci tensor takes the form

VSab + 2¹anb − fgab = 0 s53d

in terms of the tensorSab, where we remember the shorthandf =V−1nana=Os1d. We now take the
variation of Eq.s53d with respect to a linearized solution of the field equations that preserves
asymptotic flatness to first ordersrememberingdV=0 sinceV is rigidly fixedd and substitute the
definition of tab andtb. Using the formulas

df = − Vsd−2d/2tan
a, s54d

ds¹anbd = Vsd−2d/2S−
d

2
nsadtsbd +

d

4
ftab +

1

2
nc¹ctab − V¹sadtsbd −

1

2
VScsadtsbd

cD , s55d

we find the result

V−sd−4d/2dSab = d ·nsadtsbd − nc¹ctab −
sd − 2d

2
ftab + Vs2¹sadtsbd + Scsadtsbd

c − V−1tcn
cgabd,

s56d

and we note that the right-hand side of this equation is manifestly finite atI and that the fourth
term on the right side is of orderV. It follows from this relation, together with the relation
tabn

b=OsVd, that the pull-back of the symplectic current density atI, Eq. s50d, can be written as

z * va1¯ad−1
=

1

32pG
V−sd−4d/2st2

cdd1Scd − t1
cdd2Scddea1¯ad−1

. s57d

To construct the desired potential,Q, for Eq. s57d, we note that our asymptotic flatness conditions
s3d and s4d imply that swe note that the second relation is in general false ind=4d

Sab − S̄ab = OsVsd−4d/2d, Sm
m − S̄m

m = OsVsd−2d/2d, f − f̄ = OsVd/2d. s58d

By construction, the restriction of the symplectic form toI, Eq.s57d, only depends on the physical
metric g̃ab and its variations, but not on how we have chosen to write them in terms of an
unphysical metricgab and a conformal factorV, as long asgab and ḡab are smooth atI. We now
take advantage of this fact by choosing a conformal factor so that the background metrics2d is flat

in a neighborhood ofI, i.e., S̄ab=0, and such thatf̄ =const there. This is possible, at least locally
in a neighborhood of any open subset ofI +, respectively,I − with compact closure not intersect-
ing spatial infinityssee Appendix B for detailsd. Consequently, by Eq.s58d, in such a gauge we
have

Sab = OsVsd−4d/2d, Sm
m = OsVsd−2d/2d, f = const +OsVd/2d. s59d

Choose any smooth covector fieldla on M with the property thatlal
a=0, nala= +1 at I, set

qab = gab − 2nsadl sbd s60d

and define the “news tensor” by
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Nab = z * sV−sd−4d/2qm
aq

n
bSmnd sassumingd . 4d, s61d

wherez* denotes the pull-back toI. By definition,Nab is a well-defined smooth tensor field atI

with vanishing trace. Using the identity

Sabn
b + ¹af = 0, s62d

one sees thatNab is independent of the particular choice ofla. A symplectic potentialQ at I with
the desired properties is now given by

Qa1¯ad−1
;

1

32pG
tcdNcdea1¯ad−1

. s63d

While the restriction of the symplectic formv to I fsee Eq.s57dg only depends on the physical
metric and its perturbation, but not on the particular choice of the conformal factorV and un-
physical metricsalthough the latter were used to obtain a convenient form forvd, this need not be
the case forQ, as the latter is a potential forv and therefore only unique up to a “total variation”
dP. We therefore must investigate the behavior ofQ under “conformal gauge changes.” If we
change the conformal factor toV8=kV with some smoothk, then, since the physical metric is to
remain unchanged, the unphysical metric changes byg8ab=k2gab, and likewise the background
metric changes asḡ8ab=k2ḡab. The quantitiesSab, na, f change in the following way:

na8 = k−1na + k−2V¹ak,

Sab8 = Sab + 2k−1¹a¹bk − k−2gabs¹mkd¹mk, s64d

f8 = k−1f + 2k−2na¹ak + k−3s¹akd¹ak s65d

with similar formulas for the background quantitiesS̄ab, n̄a, f̄. In order to arrive at the above

formula forQ, we assumed that we were in a gauge such thatS̄ab=0, and such thatf̄ =const. Since
we have thereby already partially fixed the gauge, we need to demand thatk be such that

S̄ab8 =0 and such thatf̄8=const. Inserting these formulas, we find that for suchk,

Q8 = Q + dP, s66d

whereP is the sd−1d-form on I defined by

Pa1¯ad−1
=

sd − 2d
26pG

V−sd−2dk−1nbs¹bkdsg − ḡdcdq
ceqdfsg − ḡdefea1¯ad−1

. s67d

SincedP is not vanishing atI, this means that the definition ofQ is not completely independent
upon how the physical metric is written asV2g̃ab=gab, respectively, how the Minkowski metric is

written asV2h̃ab= ḡab in terms of a conformal background metric, withS̄ab=0 and f̄ =const. We
resolve this gauge ambiguity by choosing a representerḡab in the conformal class of the Einstein
static universe which has

f̄ = 0, ¹̄an̄
b = 0, S̄ab = 0 nearI, s68d

where ¹̄a denotes the derivative operator associated withḡab. It can be seen thatP=0 for any
further gauge change preserving this gauge condition, i.e., thatQ is now defined in a gauge
invariant way. We will stick with this gauge choice for the remainder of the paper. It follows from
these gauge conditions that

f = OsVd/2d, ¹anb = OsVsd−2d/2d. s69d

Some further explanations concerning this gauge choice are provided in Appendix B.
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By the general analysis reviewed in the last section we infer that generatorsHj associated
with asymptotic symmetriesja exist in d-dimensional general relativity with our choice of
asymptotic flatness conditions, and that analysis instructs us to defineHj by

dHj =E
B

sdQj − j · ud +
1

32pG
E

B

tabNabj · sd−1de, s70d

whereQj andu were defined in Eqs.s42d and s34d.
Formulass70d and s63d are also correct ind=4 sfor a derivation, see Ref. 14d, provided that

Nab is given by the usual definition of the news tensor in four dimensions,Nab=z* sqm
aq

n
bSmnd

−rab, instead of Eq.s61d. Here,rab is the uniquely determined symmetric tensor onI provided by
Theorem 5 of Ref. 10, whose precise form depends on the chosen gauge.

Plugging the expressions63d for the symplectic potential into the flux formula, Eq.s44d, and
setting as abovexab=V−sd−6d/2£jg̃ab we get the following expression for the flux associated with an
asymptotic symmetryja through a segmentS of I :

Fj =
1

32pG
E

S
xcdNcd

sd−1de, s71d

noting that this is finite on account of our definition of an asymptotic symmetry, see Eqs.s10d.
Having established the existence of a generatorHj, we now discuss its uniqueness. The

definition of Hj depends on the choice ofQ, which is itself only unique up to the addition of a
sd−1d-form on I of the form dW, where W is an arbitrarysd−1d-form on I that is locally
constructed out of the physical metric, the physical Riemann tensor and its derivatives, andV. The
changeV→lV andgab→l2gab with l a constant will keep the physical metric fixed and preserve
s69d, so gauge invariance requires thatW→W under this change of the unphysical metric and the
conformal factor.fThis requirement is met by our definitions63d of Q.g Moreover, the symplectic
potential Q defined in s63d has the property that it vanishes whenever the news tensor,Nab,
vanishes. A vanishing news tensor indicates the absence of radiationsat least in four dimensionsd,
and our definitions63d for Q has the property that it vanishes whenNab=0, thereby implying by
Eq. s44d that the flux also vanishes whenever the news vanishes. It is natural to demand that any
reasonable definition ofQ, and hence the flux, vanishes when the news is zero, which in turn leads
to the requirement thatW=0 wheneverNab=0. If W has furthermore an analytic dependence on
the sphysicald metric, then we claim that these requirements imply thatW=0, and hence thatQ is
unique.

In order to see that this is indeed true, it is useful to introduce the “scaling dimension”10 of a
tensorLa¯b

c¯d with u upper indices andl lower indices that is constructed out of the unphysical
metric andV. We say that such a tensor has scaling dimensions if La¯b

c¯d→ls−u+lLa¯b
c¯d under

a changeV→lV andgab→l2gab. It follows from this definition that the scaling dimension does
not depend on the position of the indices and is additive under the tensor product. The dimension
of gab is 0, the dimension ofV is +1, the dimension of the Riemann tensor is −2 and each
derivative decreases the dimension by 1, which implies that the dimension ofna is 0. By assump-
tion, thesd−1d form

Wab̄ c = YsV,gab,na, . . . ,s¹mdrna,Rabcd, . . . ,s¹mdtRabcdd
sd−1deab̄ c s72d

has scaling dimension −sd−1d. Therefore, sincesd−1de has scaling dimension 0,Y must have
scaling dimension −sd−1d. Using Einstein’s equation to eliminate covariant derivatives ofna in
terms of covariant derivatives orSab, and using Eq.s51d to eliminate the Riemann tensor in favor
of Cabcd andSab, we can write a term inY schematically in the form
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Vvsnadlp
i=1

r

s¹mdsisV−sd−4d/2Sabdp
j=1

u

s¹mdt jsV−sd−6d/2Cabcdd, s73d

where we have suppressed contractions with the metricgab to lighten the notation. The scaling
dimension of this term must be equal to −sd−1d, which implies that

o
i

si +
d

2
r + o

j

t j +
sd − 2d

2
u − v = d − 1. s74d

Since the expressionsV−sd−4d/2Sab and V−sd−6d/2Cabcd are smooth atI as a consequence of our
definition of asymptotic flatness, the expressions73d can be nonvanishing atI if and only if
vø0 snote thatv,0 is allowed, since the other terms appearing in the above expression could
vanish atI d. Furthermore,V−sd−4d/2Sab vanishes atI if and only if the news vanishes atI.
Therefore, since we wantY to vanish wheneverNab=0, we must haver .0. On the other hand,
Eq. s74d implies thatr ø1, so r =1. We now analyze the remaining cases: Whenr =1 andu=0,
then the terms73d looks schematically like

Vvsnadls¹mdssV−sd−4d/2Sabd, s75d

with s−v=sd−2d /2. This term must vanish when the news vanishes and hence whenV−sd−4d/2Sab,
but not necessarily its derivatives, vanishes atI. This impliess=0 and hencev=−sd−2d /2, so we
need contractions ofna with itself to get a term that is finite atI. But contractions ofna with itself
give a power of at leastVsd+2d/2, therefore terms of the form Eq.s75d cannot occur. The only
remaining nontrivial case isr =1 andu=1. In this case, we must havesi = tj =v=0 and the term
s73d must take the formV−sd−5dCabcdS

acnbnd. But this term vanishes atI, by Eq. sA14d in the
appendix. We have therefore shown thatW=0 and hence that the symplectic potentialQ given by
Eq. s63d is unique under the above assumptions.

We now consider the flux for the special case of “translational” asymptotic symmetriesja.
These are distinguished by the fact that the restriction ofja to I is proportional tona, i.e.,
ja=ana+Vka, for someka, smooth atI. A vector fieldja is an asymptotic symmetry if and only
if the tensorxab=V−sd−6d/2£jg̃ab satisfies Eqs.s10d. If we substitute this form ofja into Eqs.s10d,
we see thatka=−¹aa at I. Let us therefore make the ansatz

ja = ana − V¹aa. s76d

For whicha is this an asymptotic symmetry? Insertings76d into xab, we find that

xab = 2V−sd−4d/2s− ¹a¹ba + V−1a¹anb + V−1gabn
c¹cad. s77d

Using that¹anb=OsVsd−2d/2d in our gauge choicefsee Eq.s69dg we see thatxab is finite atI if and
only if a satisfies

¹a¹ba − V−1gabn
c¹ca = OsVsd−4d/2d. s78d

Dotting na into Eq. s77d, and using thatf =OsVd/2d in our gauge choice, we see thatxabn
b

=OsVd if and only if

¹bsV−1na¹aad = OsVsd−4d/2d. s79d

Contracting this once more intona, we see thatxabn
anb=OsV2d if

V−1nb¹bsV−1na¹aad = OsVsd−4d/2d. s80d

In d.4, an asymptotic symmetry must furthermore satisfyxa
a=OsVd. However, this condition

actually automatically follows for any asymptotic symmetryja once xab=Os1d , xabn
b

=OsVd , xabn
anb=OsV2d are satisfied. To see this, we note that sincedg̃ab=£jg̃ab satisfies the

linearized Einstein equation, the tensorxab satisfies Eq.s22d swith tab=xab in that equationd.
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Multiplying Eq. s22d by V, we see that the only remaining singular term on the right-hand side is
given by a constant that is nonzero fordÞ4, timesV−1nanbxc

c, which implies thatxa
a=OsVd

when d.4. Thus, if Eqs.s78d, s79d, and s80d hold, then the vector fieldja=ana−V¹aa is an
symptotic symmetry.

The above conditions ona can be understood as follows. Ind=4 dimensions, conditionss78d
ands79d together imply thata must be constant along the null generators ofI, whereas condition
s80d gives a restriction on howa is defined off ofI. Hence,a is essentially an arbitrary function
on a given cross section ofI, which is propagated along the null generator to the other cross
sections. The corresponding symmetries are commonly referred to as “supertranslations.” They
comprise the ordinary “pure” translations, as well as an additional infinite set of mutually com-
muting so-called “angle dependent” translations. Ind.4, the above conditions are more restric-
tive than ind=4 and are analyzed in Appendix C. There are now onlyd linearly independent
admissible functionsa up to correction terms which essentially do not affect the restriction ofxab

to I, in the sense that the correction terms do not make a contribution to the flux. The translational
asymptotic symmetries associated with these choices ofa correspond to thed translational Killing
fields in Minkowski space–time. There is no direct analog of the angle dependent translations in
higher dimensions. The asymptotic translations withaù0 correspond precisely to the future
directedsaù0 means thatja=ana is the future pointing nearI +d timelike or null translational
Killing fields in Minkowski space–time.

Let us calculate the flux whenja=ana−V¹aa is an asymptotic future directed time transla-
tion, i.e.,aù0. Using Einstein’s equations53d to eliminate the term proportional to¹anb in Eq.
s77d in favor of Sab, we can bringxab into the form

xab = − V−sd−4d/2s2¹a¹ba + aSab − 2V−1gabn
c¹ca − aV−1fgabd. s81d

Substituting it into the flux formula, Eq.s71d, one finds

Fj = −
1

32pG
E

S
aNcdNcd

sd−1de ø 0. s82d

This shows that the flux of energysdefined viaany future directed asymptotic time translationd
throughI is always negative, i.e., that the energy radiated away by the system is always positive.

The generatorsHj are determined, in principle, by the defining relation Eq.s70d and the
requirement thatHj=0 on Minkowski space–time. Ifja is not a translation, i.e., ifja is tangent to
some cross sectionB of I, then the term involvingQ vanishes in the expression for the variation
of Hj, Eq. s70d, and an explicit expression forHj can be derived in basically the same manner as
in four dimensions, see Ref. 14. We will not discuss this case here but focus on the case whenja

is a translation for the rest of this section.
In that case, the defining relations70d is not useful to actually find the expression for the

generatorsHj, although the right-hand side of that equation is, of course, explicitly known.
Indeed, in Ref. 14, an explicit expression forHj in d=4 was found by verifying that relations70d
is satisfied by a known expression for the Bondi energy previously given by Geroch.10 Such a
candidate expression is, of course, not available ind.4, since this is precisely what we are
actually looking for in the first place. We therefore proceed by a different route, restricting our-
selves for simplicity first to the case of the asymptotic translationja=ana, with a a constant.

Consider thesd−1d-form Qsg̃;£ang̃d on I that is given by the integrand of the flux integral,
Eq. s82d. We extend this to asd−1d-form that is defined on the entire unphysical space–timeM by
setting

Qs1¯sd−1
=

1

32pG
aV−sd−4dsSabScdq

acqbddes1¯sd−1
. s83d

Define the vector field
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Pa ;
a

8sd − 3dpG
V−sd−4dsSdeq

ceqdfbgnfag¹blc − V−1Cabcdnblcndd, s84d

in the interior of the space–time, wherela is any smooth vector field such thatlal
a=0 and

nala=1 on I and such that relationssA2d are satisfied. We show in the Appendix that

¹aPa =
1

32pG
aV−sd−4dSabScdq

acqbd + OsVd, s85d

and it can be verified directly from the definition ofPa that Pana=OsV2d. Next, define the
sd−2d-form m by22

ma1¯ad−2
= ea1¯ad−2cdl

cPd = 1
2f* sl ∧ Pdga1¯ad−2

. s86d

Then it follows that

sdmda1¯ad−1
= 2¹msPfmgl fngdena1¯ad−1

= 2nn¹msPfmgl fngdea1¯ad−1
− 2sd − 1d¹msPfmgl fngdnfa1gefunua2¯ad−1g

= s¹mPmdea1¯ad−1
− 2sd − 1d¹msPfmgl fngdnfa1gefunua2¯ad−1g + OsVd

= sQ + dV ∧ wda1¯ad−1
+ OsVd, s87d

whereea1¯ad−1
is as in Eq.s49d, where it has been used thatPana=OsV2d, and where we have set

wa1¯ad−2
=2¹msPfmgl fngdena1¯ad−2

.
Consider now a segmentS of I bounded by cross sectionsB1 and B2, and a sequence of

smoothsd−1d-surfacesSi of constantV that approachS. Using Eqs.s44d ands87d, we can write
the flux through the segmentS as follows:

Fan = lim
i→`
E

Si

Qsg̃,£ang̃d = lim
i→`
E

Si

sdm − dV ∧ wd = lim
i→`

SE
s]Sid2

m −E
s]Sid1

mD , s88d

where we have used Stoke’s theorem and where we have writtens]Sid1 for the connected com-
ponent of the boundary approachingB1 and s]Sid2 for the connected component of the boundary
approachingB2. (A subtlety arises from the fact that the gauge that we are working infchosen such
that Eq.s69d holdsg is actually not defined on all ofI, but only onI minus a single generator, see
Appendix B. Therefore, there also should appear another “boundary term” in Eq.s88d correspond-
ing to that single generator. However, it can be seen that this term does not make a contribution by
passing to a suitable gauge which is defined on all ofI, and by transforming the expression form
accordingly using formulas very similar to those given on pp. 50 and 51 of Ref. 9. An example is
worked out in Appendix B. Similar remarks apply to other formulas below.) Now take the varia-
tion of this equation and substitute the variation of the flux formulas43d, dFan=dHansB1d
−dHansB2d. This gives

dHansB1d − dHansB2d = lim
i→`

SdE
s]Sid2

m − dE
s]Sid1

mD . s89d

Consider a variation of the metric that vanishes in a neighborhood ofsomecross section ofI, in
addition to satisfying the linearized equations of motion and the linearized conditions of
asymptotic flatness. Then it follows from Eq.s89d that for such a variation,

dHansBd = dE
B

m s90d

for anycross sectionB of I, where the integral on the right-hand side is defined by the limit of the
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corresponding integrals oversd−2d-surfaces of constantV that smoothly approachB from the
interior of the space–time.fThis shows in particular that the right-hand side of Eq.s90d sdefined
via this limiting procedured is actually finite. This is not obvious from the definition sincePa as
well as its variation isnot manifestly finite atI in d.4. Indeed, the Weyl term in the definition
of Pa can only be shown to make a contribution of orderOsV−sd−4d/2d using our asymptotic flatness
conditions.g Next, consider a variation that is pure gauge,dg̃ab=£hg̃ab, for some asymptotic sym-
metry ha. For such a variation, we have

dE
B

m =E
B

£hm =E
B

fdsh · md + h · dmg =E
B

h · Qsg̃;£ang̃d, s91d

where the integrals are defined by a limiting procedure as above. We now show thatdHansBd for
this variation is also given by the right-hand side of the above equation. For this, we consider the
one-parameter family of diffeomorphismsFt generated byha which maps points inI to points in
I . If Ft

*B is the cross section ofI obtained fromB by applying this diffeomorphism, and ifSt is
the segment ofI bounded by these two cross sections, then we have

dHansBd = lim
t→0

1

t
fHansBd − HansFt

*Bdg = lim
t→0

1

t
E

St

Qsg̃;£ang̃d =E
B

h · Qsg̃;£ang̃d, s92d

for the variationdg̃ab=£hg̃ab, where we have used the flux formula Eq.s44d in the second line, and
where we have used thatQsg̃;£ang̃d is smooth atI in the third line. Hence, we conclude that Eq.
s90d also holds for any variation of the formdg̃ab=£hg̃ab. Consider now a variation with compact
supportK on some Cauchy surface which satisfies the linearized field equations and the linearized
conditions of asymptotic flatness. Then it follows from the arguments given in Sec. III that such a
variation can be written as a sumdg̃ab+£hg̃ab, whereha is some asymptotic symmetry and where
dg̃ab has support inJ+sKdøJ−sKd. It follows that there exist cross sectionsB+ of I + andB− of I −

such thatdg̃ab vanishes in a neighborhood ofB+ andB−. By the arguments already given, Eq.s90d
therefore holds for any variation which has compact support on some Cauchy surface. Conse-
quently, Eq.s90d will also hold for any variation such that the corresponding fieldstab,ta and their
first sunphysicald derivatives can be approximated nearB by the corresponding fields for a se-
quence of variations that have compact support on a Cauchy surface. We believe that all variations
that satisfy the linearized equations of motion and the linearized conditions of asymptotic flatness
can be approximated in this way. Assuming that this is true, it follows that Eq.s90d holds for all
variations.

We haveeBm̄=0 for our background geometry, since we are in a gauge in whichḡab is flat in
a neighborhood ofI, thereforem̄=0 in a neighborhood ofI. Therefore, modulo the proof of the
approximation property mentioned in the last paragraph, we have shown that

Hj =E
B

m =
1

2
E

B

p sl ∧ Pd s93d

for asymptotic time translations,ja=ana, wherePa is given by Eq.s84d. This is our expression for
the Bondi energy of an asymptotically flat space–time ind dimensions.

Our expression for the Bondi energy is independent of the particular choice ofla with the
propertiessA2d: Consider anotherla8 with the same properties asla, and setxa= la− la8. Then xa

satisfies the relations¹bxa=OsVsd−4d/2d, nax
a=OsVd/2d, and laxa=OsVsd−2d/2d. Consider the anti-

symmetric tensor fieldXab defined by

Xab =
1

8sd − 3dpG
aV−sd−4dSefq

edqffagnfbgxd. s94d

Then it can be seen, using formulassA2d, s69d, andsA6d, thatXabnb=OsVd, and
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P8a = Pa + ¹bX
ab + OsVd. s95d

Consider now a sequence of embeddedsd−2d-surfaces that are smoothly embedded intoM and
which approach a cross sectionB of I as i →`. Without loss of generality we may assume that
V=const on each of these surfaces, so thatna is one of the normals to the surfaces. Letua be
another normal so that the fieldnfagufbg is a binormal, meaning thatea1¯ad−2
=zi

*snfmgufngemna1¯ad−2
d is equal to thesd−2d-volume form induced bygab on each of these sur-

faces, wherezi
* denotes the pull-back toBi. Then from Eq.s95d, we get

zi
*sm − m8da1¯ad−2

= 3
2zi

*¹qsXfqmgl fngdemna2¯ad−2
− zi

*s 3
2Xfmqg¹ql

fng + 1
2lq¹qX

mn

+ P8fmgxfngdnmunea1¯ad−2
. s96d

But the terms in the last line are all ofOsVd, since Xab=OsVsd−4d/2d, Xabnb=OsV2d, Pana

=OsV2d, and sincexana=OsVd/2d, nb¹alb=OsVsd−2d/2d by Eqs.sA2d. This shows that, in differen-
tial forms notation,

zi
*sm − m8d = − 1

3zi
*hdfpsX ∧ ldgj + OsVd, s97d

and therefore, by Stoke’s theorem, that

E
B

m −E
B

m8 = lim
i→`
E

Bi

s− 1
3dfpsX ∧ ldg + OsVdd = 0, s98d

sinceBi has no boundary. Thus, our definitions93d of the Bondi energy does not depend on our
choice ofla.

Substituting our expressions84d for Pa into Eq.s93d, using the definition ofSab together with
the fact thatSm

m=OsVsd−2d/2d, we can expressHj by the final formula

Hj =
1

8sd − 3dpG
E

B

aV−sd−4dS 1

sd − 2d
Rabq

acqbds¹clddnel f − V−1l fegCffgbcdnblcndDeefa1¯ad−2
.

s99d

This formula holds for the special translationja=ana, with a=const. The above arguments and
calculations can be generalized to arbitrarysnulld translations,ja=ana−V¹aa. One now finds the
formula

Hj =
1

8sd − 3dpG
E

B

V−sd−4dS 1

sd − 2d
Rabq

acqbds¹clddjel f

− V−1a−1sl feg − va−1¹fegadCffgbcdjbslc − va−1¹cadjdDeefa1¯ad−2
, s100d

wherev is a function such that¹av= la. It can be verified again that this expression does not
depend on the particular choice ofla. Formulas100d can alternatively be derived by noting that
any null translationja can be obtained fromna by applying an asymptotic symmetryf to the
latter, ja=f* na. Since the Bondi energy for the vector fieldja and metricg̃ab evaluated atB is
equal to the Bondi energy forna=ja8=f−1* ja and metricg̃8ab=f−1* g̃ab evaluated at the cross
sectionB8=fsBd, one can obtain the Bondi energy forja by applying Eq.s99d to the metricg̃8ab
and the cross sectionB8. The above expressions100d is then obtained using the formulas
f* g8ab=a−2gab, f* V=a−1V, f* la8=ala−v¹aa, f* na8=ana−V¹aa, as well as our asymptotic
flatness conditions.

Equations100d is the main result of our paper. It holds in the gauge defined ins68d. The
corresponding formula for other choices of the background geometryḡab can be obtained by
applying the corresponding gauge transformation to our formula. In the cased=4, formulas100d
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is not correct. An expression ind=4 has been given by Geroch.10 It involves, among other things,
the news tensorsgiven byNab=Sab−rab in d=4d, instead of the unphysical Ricci tensor.

The first and second term in the integrand ofs100d can be roughly interpreted as follows: the
second term is the “Coulomb part” of the Weyl tensorsmultiplied by suitable powers ofVd, and
represents the “pure Coulomb contribution” to the Bondi energy. The first term represents contri-
butions from gravitational radiation; it follows from Eq.sA2d given in Appendix A that it vanishes
if and only if the news tensor,Nab, and hence the flux, vanishes. In four dimensions, it can be
proven10 that the news tensor, and hence the radiative contribution to the Bondi energy, always
vanishes in stationary space–times. It would be interesting to see whether an analog of this result
holds ind dimensions.

In the d-dimensional analog of Schwarzschild space–time given by the line elements5d, the
Bondi energy is evaluated as follows. The term involvingRab in our expressions100d for the
Bondi energy does not contribute, showing that there is no radiative contribution to the Bondi
energy. The Coulomb contribution is found to beV−sd−3dCabcdlanblcnd=csd−2dsd−3d /4 at I. Nor-
malizing a so thatana−V¹aa is equal to the timelike Killing fieldta of the metrics5d at infinity
gives

Han =
csd − 2dAd−2

16pG
S=

c

2G
in four dimensionsD , s101d

whereAd−2 is the area of the unit sphereSd−2. This coincides with the ADM mass of the space–
time s5d sgiven, e.g., in Ref. 20d, as we expect.

VI. CONCLUSIONS

We have given a geometrical definition of the asymptotic flatness at null infinity in space–
times of even dimensiond greater than four within the framework of conformal infinity. Our
definition was shown to be stable against perturbations to linear order and was shown to be
stringent enough to allow one to define the total energy of the system viewed from null infinity as
the generator conjugate to an asymptotic time translation. We proposed to take this notion of
energy as the natural generalization of the Bondi energy to higher dimensions. Our definitions of
asymptotic flatness and the Bondi energy differ qualitatively from the corresponding definitions in
d=4; although the asymptotic structure of null infinity in higher dimensions parallels that in four
dimensions in some ways, the latter seems to be a rather special case on the whole compared to
generald.4.

Our definitions and constructions related to asymptotic flatness and Bondi energy do not work
in odd space–time dimensions, essentially because the unphysical metric seems to have insuffi-
cient regularity properties at null infinity in that case. The case of odd dimensional theories of
gravity therefore remains open. Apart from this issue, the analysis given in this paper could be
generalized in two obvious ways:s1d by including matter fields, ands2d by admitting higher
derivative terms such as the square of the scalar curvature in the gravitational action.

With regard to the first possibility, one would first have to formulate appropriate asymptotic
conditions on the matter fields, which in practice would presumably be found by performing a
perturbation analysis. We expect the analysis given in Sec. III of this paper to generalize straight-
forwardly to include conformally invariant fields such as a conformally coupled scalar field, or an
Abelian p-form gauge fieldA fwith Lagrangian densityL=dA∧ p sdAdg in d=2p+2 space–time
dimensions. This kind of analysis should also still work for othersnonconformally invariantd
massless fields. For massive fields a different kind of analysis is probably needed, although we
expect on physical grounds that these fields have the bestsi.e., exponentiald drop off behavior at
null infinity. Altogether, we expect that the asymptotic conditions for the combined metric and
matter fields are given by the conditions given in Sec. II for the metric, plus a condition of the
form Tab=OsVsd for the stress energy of the matter fields, wheres is a suitable number. With these
conditions in place, a derivation of the Bondi energy can presumably be given in close parallel to
our analysis in Sec. V.
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With regard to the second possibility, it is much less clear to us what the likely asymptotic
conditions on the gravitational fields might be in that case, or even how they depend on the actual
form of the Lagrangian. In fact, it is not even clear to us that there will generically beany
reasonable definition of asymptotic flatness that is stable under linear perturbations. Moreover, the
linearized equations will now have more derivatives and are therefore presumably harder to
analyze than the linearized Einstein’s equations. One may ignore the issue of stability and simply
try to repeat the analysis of this paper and Ref. 14 using the asymptotic flatness conditions of Sec.
II which have been shown to work for general relativity. However, even though an expression for
the Bondi energy might be found in this way, its physical significance would be far from clear
under these circumstances.
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APPENDIX A: DERIVATION OF EQUATION „84…

In this appendix we derive expressions84d for Pa as a solution to the equation

¹aPa =
1

32pG
aV−sd−4dSabScdq

acqbd + OsVd. sA1d

It follows from Eqs.s3d and s4d that the covectorla can be chosen in such a way that the
following conditions are satisfied:

¹alb = OsVsd−4d/2d, lala = OsVsd−2d/2d, lan
a = 1 +OsVd/2d sA2d

ffor example, takela=gabl̄
b, where l̄ a is a vector field onM̄ such thatḡabl̄

al̄b=¹̄al̄
b=0 and

l̄ asdVda=1 in a neighborhood of]M̄g. We assume from now on thatla has been chosen in this way.
From the defining relation forSab, together with Eq.s62d, we have

2na¹fag¹fbglc = Rabcdn
ald = Cabcdn

ald + 1
2Sdbncl

d − 1
2Scb − 1

2lb¹cf + 1
2gbcl

d¹df . sA3d

Contracting this equation withSdeq
bdqce, and making use of the relationsSabn

b=−¹af, ¹af =kna,
k=OsVsd−2d/2d and Eq.sA2d, gives

V−sd−4dSabScdq
acqbd = − 4V−sd−4dnas¹fag¹fbglcdSdeq

bdqce+ 2V−sd−4dCabcfn
al fSdeq

bdqce+ OsVd.

sA4d

Thus, the task is to show that the right-hand side of this equation can be written as a constant times
the divergence ofPa, plus terms of orderV.

We now evaluate the right-hand side of Eq.sA4d up to orderV, proceeding term by term and
make heavy use of the drop-off conditions, Eq.sA2d and s69d. For the second term in Eq.sA4d
containing the Weyl tensor, we have, using the symmetry of the Weyl tensorCabcd=Ccdab,

022503-24 S. Hollands and A. Ishibashi J. Math. Phys. 46, 022503 ~2005!

                                                                                                                                    



2V−sd−4dCabcfn
al fSdeq

bdqce= 2V−sd−4d+1s¹fcgSffgbdl fSdeq
bdqce

= 2V¹fcgsV−sd−4d/2Sffgbdl fqcdqbesV−sd−4d/2Sded

+ sd − 4dV−sd−4dnfcgSffgbl
fqcdqbeSde

= −
sd − 4d

2
V−sd−4dSabScdq

acqbd + OsVd, sA5d

where the identityfcompare Eq.s9d of Ref. 10g

V¹fagSfbgc + Cabcdn
d = 0 sA6d

has been used in the first line. Note that the termsA5d is of order V in four dimensions, in
accordance with the fact that by Theorem 11 of Ref. 10, the unphysical Weyl tensor vanishes atI

in four dimensions. We next turn to the first term on the right-hand side of Eq.sA4d. This can be
written as

− 4V−sd−4dnas¹fag¹fbglcdSdeq
bdqce= − 4¹asV−sd−4dSdeq

ceqdfbgnfag¹blcd

+ 4V−sd−4ds¹aSdedqceqdfbgnfag¹blc + OsVd. sA7d

In the second term on the right-hand side, we may replace¹aSed by the expression 2¹fagSfegd,
because

V−sd−4ds¹eSaddqceqdfbgnfag¹blc = 1
2V−sd−4dfs¹e¹dfdqdbqce− s¹eSm

mdqcenb

− 2¹esla¹afdqcenbg¹blc + OsVd = OsVd, sA8d

where we have used that

¹aSm
m = ¹mSa

m sA9d

by the Bianchi identities, thatSm
m=OsVsd−2d/2d and that¹af =kna, k=OsVsd−2d/2d. We can now

apply the identitysA6d to write the right-hand side of Eq.sA7d as

=− 4¹asV−sd−4dSdeq
ceqdfbgnfag¹blcd − 8V−sd−3dCaedfq

ceqdfbgnfagnf¹blc + OsVd

= − 4¹asV−sd−4dSdeq
ceqdfbgnfag¹blcd − 4V−sd−3dCaedfn

anf¹dle

+ 4V−sd−3dCaedfn
anflenc¹dlc + OsVd

= − 4¹asV−sd−4dSdeq
ceqdfbgnfag¹blcd

+ 4¹dsV−sd−3dCdfean
flenad + 4V−sd−3dCaedfn

anflenc¹dlc

+ 4V−sd−3dCaedfl
enf¹dna + OsVd, sA10d

where we have used the tracelessness and symmetries of the Weyl tensor and Eqs.sA2d ands69d
in the second line, and where we have usedfcompare Eq.s12d of Ref. 10g

V¹dCabcd+ Cabcdn
d = 0 sA11d

in the third line. Using Einstein’s equations53d, the last term in the last line of Eq.sA10d is seen
to be equal to +2V−sd−4dCadefn

al fSde, up to terms of orderV. Using Eqs.sA5d andsA6d, this term
can be further rewritten as
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2V−sd−4dCadefn
al fSde= 2V−sd−4dCadefn

al fSbcq
bdqec+ 2V−sd−4d+1s¹fegSffgddl fnelcqbdSbc

− 2V−sd−4d+1s¹fegSffgddl fldqec¹cf

= −
sd − 4d

2
V−sd−4dSabScdq

acqbd + V−sd−4d+1sne¹eSdfdl flcqbdSbc

− V−sd−4d+1s¹ fSdednel flcqbdSbc + OsVd

= −
sd − 4d

2
V−sd−4dSabScdq

acqbd + V−sd−4d+1s¹ f¹df + Sde¹ fn
edl flcqbdSbc + OsVd

= −
sd − 4d

2
V−sd−4dSabScdq

acqbd + OsVd. sA12d

The term +4V−sd−3dCaedfn
anflenc¹dlc on the right-hand side of Eq.sA10d can be seen to be of order

V by using the identities

nc¹dlc = ¹dsnclcd − s¹dncdlc = OsVsd−2d/2d, sA13d

Caedfn
anf = −

V

2
sna¹aSed+ ¹e¹df + s¹en

adSadd = OsVsd−2d/2d. sA14d

Substituting now Eqs.sA10d and sA5d back into Eq.sA4d, we obtain

− sd − 3dV−sd−4dSabScdq
acqbd = 4¹afV−sd−4dsSdeq

ceqdfbgnfag¹blc − V−1Cabcdnblcnddg + OsVd,

sA15d

from which Eq.sA1d follows immedliately.

APPENDIX B: CONFORMAL GAUGE CHOICES

In this appendix we review transformations related to the conformal completion of Minkowski
space–time, thereby eludicating our gauge choices68d for the background geometry. Let us denote
by xm the usual Cartesian coordinates of Minkowski space–timesRd,h̃abd. Introducing the radial
coordinate

r =Îo
m=1

d−1

sxmd2 sB1d

and t=x0, the Minkowski metric can be rewritten as

ds̃2 = − dt2 + dr2 + r2 ds2 = V−2h− dT2 + dc2 + sin2 c ds2j, sB2d

where ds2 is the line element of the unit sphereSd−2, and where

V = 2 cos
T + c

2
cos

T − c

2
. sB3d

The coordinatesT,c are defined by

T + c

2
= tan−1st + rd,

T − c

2
= tan−1st − rd. sB4d

We view these relations as a mapl from the portionM̄ =h−p,T±c,p ,cù0j of the Einstein
static universeR3Sd−1 to Minkowski space–timeRd. In other words,
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ḡab = V2l * h̃ab, sB5d

where ḡab is the metric of the Einstein static universe. The boundary ofM̄ corresponds to the
conformal infinity of Minkowski space–time. It is naturally divided into future/past timelike in-
finity, future/past null infinityI ±, and spatial infinity. The conformal factorV is well defined and
smooth in a neighborhood of the null infinitiesI, and vanishes there. The metricḡab is confor-

mally flat simplying C̄abcd=0d, but not flat,S̄abÞ0.
If we change

ḡab → k2ḡab, V → kV, sB6d

with k a nonvanishing smooth scalar function defined in a neighborhood ofM̄ in the Einstein static
universe which does not vanish atI, then the physical metric remains unchanged, and the un-
physical metric and the conformal factor remain smooth atI. One may use this gauge freedom to
make suitable “gauge choices” for the unphysical metric, and we will now discuss some of the
choices that are being made in the main part of the paper. LetB be a cross section of, say future,
null infinity which does not intersect spatial infinity. Then it is possible to chooseV so thatḡab is
Minkowskian in an open neighborhood ofB not intersecting spatial infinity. This can be seen as
follows.

Any neighborhood of the indicated form is contained in the causal future of some point in the
interior of the space–time, which of course, corresponds to the interior of a future directed light
coneV+, whose apex we may assume to be at the origin,

V+ = hxmuxmxm,0,x0.0j. sB7d

A conformal factor,V, defined onV+ such thatḡab is flat and Minkowskian and such that the
gauge conditions68d is satisfied can be constructed as follows. Consider the mapf,

f:xm → x8m =
am + bmxlxl + 2qmnxn

2bnxn

,

am = s1,− 1,0, . . . ,0d, bm = s1,1,0, . . . ,0d, qmn = hmn + asmdbsnd, sB8d

which maps points of the interior ofV+ bijectively into points in the “right wedge”W of
Minkowski space–time

W= hxmux1 ù ux0uj. sB9d

The portion ofI + lying in the causal future ofV+ corresponds, under the mapf, to the “upper
horizon” of W, defined by]W+=hxm ubmxm=0,x0.0j. The cross section ofI + corresponding to
the light rays outgoing from the apex ofV+ corresponds to the “edge”sx0=0=x1d of the wedge,
whereas the light rays themselves are represented by the null curves generated byams] /]xmda on
the “lower horizon” of W, given by ]W−=hxm uamxm=0,x0,0j. We find that this mapf is a
conformal isometry of Minkowski space–time with conformal factor

V = bmxm, sB10d

i.e., the background metricḡab=V2f* h̃ab is Minkowskian. The quantitiesf̄ ,n̄a associated with
this choice of conformal factor are

f̄ = 0, n̄a = bmS ]

]xmDa

, ¹̄an̄
b = 0. sB11d

Thus, the conformal transformationsB8d with conformal factorsB10d satisifies our gauge condi-
tion s68d.
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An awkward feature of the mapf is that it is not globally defined on the boundary ofV+, for
the single null generator corresponding tox8m=lbm , l.0 of the boundary ofV+ is mapped to
infinity. Consequently, there is also a single corresponding generator ofI + which is not repre-
sented as a corresponding generator of]W+, or, stated differently, is mapped to the null generator
at infinity of the upper horizon]W+ scorresponding tobmxm=0, x0.0 but xm=2,. . .,d−1→ ±`d.
Consequently, the cross sections ofI + within the causal future ofV+ now correspond to noncom-
pact cross sections of the upper horizon ofW sof topolgy Rd−2d. This feature of the conformal
embeddingf has the undesirable consequence that the integrals in Sec. V over cross sections of
I + insideV+ are now integrals over a noncompact set and therefore the convergence issue must be
addressed. An example of such an integral iseSQ, whereQ is the symplectic potentialsd−1d-form
introduced in Eq.s63d, and whereS is a segment ofI +. We will now explain how the convergence
issue is dealt with in this example.

For this purpose, it is useful to introduce another conformal transformation:

c:xm → x8m =
sx + tdnsx + tdnt

m + 2sx + tdm

sx − tdlsx − tdl

, tm = s1,0,0, . . . ,0d, sB12d

which maps points inV+ into points of the interior of a double coneK of Minkowski space–time,

K = huxmuux0u + r ø 1j. sB13d

This map also provides a conformal isometry of Minkowski space–time with conformal factor

V8 = − sx − tdmsx − tdm, sB14d

rendering the metricḡ8ab=V82c* h̃ab Minkowskian in the portion of space–time corresponding to

the interior of the future light coneV+. The derivative operator¹̄8a compatible with ḡ8ab
=V82c* h̃ab is simply equal to the coordinate derivative operator] /]xm associated with Cartesian
coordinates. The portion ofI + that can be reached from withinV+ corresponds precisely to the
points xm in K such thatV8=0, i.e., the “upper cap” of the double coneK, defined by]K+

=hxm ux0+r =1,x0.0j. Future timelike infinity corresponds to the apexxm= tm of the upper cap.
The apex ofV+ corresponds to the apex of the lower cap ofK given byxm=−tm, and the light rays
going out from the apex ofV+ correspond to the null generators of the lower cap,]K−, of K. We
should note that this choice of conformal factorV8 does not satisfy our gauge conditions68d, as

the quantitiesn̄8a, f̄8 associated withV8 satisfy

f̄8 = 4, n̄8a = − 2sx − tdmS ]

]xmDa

, ¹̄8an̄8b = − 2da
b. sB15d

The advantage of the conformal transformationsB12d with conformal factorV8 is however that it
preserves the compactness of cross sections ofI +. In fact, the cross section ofI + corresponding
to the outgoing light rays from the apex ofV+ is represented by the “belt” ofK sx0=0,r =1d, and
all other cross sections to the future of this particular one are given by cross sections of the upper
cap, and are therefore topological spheres.

We compose the two mapsf andc to the maps=f +c−1:K→W. Under the maps the set
]W+ is identified with the upper cap]K+ of the double coneK. If we denoteḡab the Minkowskian
metric of W, then under this map,ḡab gets mapped to the metrick−2ḡ8ab, where ḡ8ab is the
Minkowskian metric onK, and wherek is calculated to be

k = sx − t + bdmsx − t + bdm. sB16d

The conformal factork vanishes on the single null generator emanating from future timelike
infinity srepresented by the pointxm= tm of ]K+d parallel tobm. This generator corresponds to the
generator at infinity in]W+ under the maps, and the vanishing ofk on this generator is a
reflection of this fact.sIn other words,]K+ is the comactification of]W+d.
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Returning to the example integral, letS be a segment ofI +, viewed as a subset of the upper
horizon ]W+ of W, with noncompact cross sections, i.e.,S has topologyRd−23 I, where I is a
compact interval. LetS8 be the segment of]K+ corresponding toS unders, i.e., ssS8d=S. Then
S8 has compact cross sections homeomorphic toSd−2 as ]K+ does. By Eq.s66d the symplectic
form satisfies

E
S

Q =E
S8

Q8 + dE
S8

P8, sB17d

whereQ8 is given in terms ofV8=k−1s* V, g8ab=k2s* gab, andt8ab=ksd−2d/2s* tab by a formula
analogous tos63d, and whereP8 is given by Eq.s67d. Using thatn8a=−2sxm− tmds] /]xmda by Eq.
sB15d, as well as the above expressionsB16d for the conformal factork, one immediately finds
that

k−1n8a¹a8k = − 2 sB18d

at points of]K+. Inserting this into the definition ofP8, one gets

P8 =
sd − 2d
25pG

V8−sd−2dsg8 − ḡ8dcdq8ceq8dfsg8 − ḡ8def
sd−1de8. sB19d

Now P8 andQ8 are finite atI as a result of our asymptotic flatness conditions, and the integrals
on the right-hand side of Eq.sB17d are over a compact set,S8 of I sviewed as a subset of the
upper cap]K+ via the mapsd. This shows that the integral of the symplectic potential overS
appearing on the left-hand side of Eq.sB17d is convergent. The same kind of argument can be
made for other integrals appearing in Sec. V.

APPENDIX C: ASYMPTOTIC TRANSLATIONS

We finally discuss the space of translational asymptotic symmetriesja of the form ja=ana

−V¹aa in d.4 dimensions. As discussed in Sec. V, in order for such a vector field to be an
asymptotic symmetry, we must satisfy Eqs.s78d, s79d, ands80d which we here repeat for conve-
nience,

¹a¹ba − V−1gabn
c¹ca = OsVsd−4d/2d, sC1d

¹bsV−1na¹aad = OsVsd−4d/2d, sC2d

V−1nb¹bsV−1na¹aad = OsVsd−4d/2d. sC3d

These equations hold in any conformal gauge choice satisfying Eq.s68d. Actually, by our
asymptotic flatness conditions, if these conditions are satisfied for one given asymptotically flat
metric, they are satsified for any asymptotically flat metricfsatisfying our gauge choices68dg. In
order to analyze these equations, we may therefore choosegab to be equal to our Minkowskian
background metricḡab=V2f* h̃ab, wheref is the conformal mapV+→W defined in Eq.sB8d, and

where the conformal factor is defined in Eq.sB10d. The derivative operator¹̄a is then given by the
coordinate derivative operator] /]xm, and the associated quantityn̄a is given bybm in Cartesian
coordinates. Inserting these expressions and going to Cartesian coordinates, Eqs.sC1d, sC2d, and
sC3d become, respectively,

]m]na + 2hmnw
−1]va = Oswsd−4d/2d, sC4d

]msw−1]vad = Oswsd−4d/2d, sC5d
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w−1]vsw−1]vad = Oswsd−4d/2d, sC6d

where we have now setw=x0−x1 andv=x0+x1, and where we remember that the location of null
infinity corresponds toV=−w=0 in our gauge.

Let us first check that the timelike translational Killing vector fields

ta = tmS ]

]xmDa

, tm = st0,t1, . . . ,td−1d = const sC7d

in Minkowski space–time give rise to solutions of Eqs.sC4d. Under the identification provided by
the mapf, these vector fields correspond to

ja = f * ta = sabm − V]madS ]

]xmDa

= an̄a − V¹̄aa, sC8d

where

a = 1
2sbltlxmxm + 2qmntmxn + amtmd. sC9d

By construction, sincef is a conformal isometry of Minkowski space–time, we must have

]m]na + 2hmnw
−1]va = 0, sC10d

which can also be verified explicitly. This shows Eq.sC4d, and the other equationssC5d andsC6d
follow by dotting bm into this equation. It is not difficult to see thatsin d.4d, any other solution
a to Eqs.sC4d, sC5d, andsC6d is given by

a = a0 + OsVd/2d, sC11d

wherea0 is given by Eq.sC9d. Inserting this into the definition ofxab, Eq. s77d, we see that

xab = x0ab + Os1dnanb + OsVd, sC12d

wherex0ab is defined by Eq.s77d, with a replaced bya0. Now the integrand of the flux associated
with an asymptotic symmetry is given byfsee Eq.s71dg Nabx

ab up to numerical factors, and
Nabn

b=0. Thus, the second term in Eq.sC12d does not contribute to the flux. This shows that the
a0 given by Eq.sC9d are essentially the only solutions to Eqs.sC4d, in the sense that any other
solution will give rise to the same flux. Hence, the vector space of infinitesimal asymptotic
translations isd dimensional ind.4, consists of the vector fieldsja=ana−V¹aa, with a given
by Eq. sC9d in the gauge that we are working in.

Let us finally characterize thea corresponding to a future directed timelike translational
Killing fields tm of Minkowski space–time. A pointxm of I + corresponds to a point on]W+ under
the mapf, so we havebmxm=0 andxlxl=qmnx

mxn for such points. Also, sincetm is future pointing
timelike, we haveamtmbntn.qmntmtn. Using this, and the inequality obtained by expanding out
the relation

0 ø qmnfsbltld−1/2tm + sbltld1/2xmgfsbstsd−1/2tn + sbstsd1/2xng, sC13d

one easily finds thata.0 on ]W+. Conversely, iftm is such thata.0 on ]W+, then one sees by
the same argument that it must be future directed timelike. Thus, future directed timelike transla-
tional Killing fields correspond to asymptotic symmetriesja with a.0 on I +.
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We investigate conserved quantities of periodic box-ball systemssPBBSd with ar-
bitrary kinds of balls and box capacity greater than or equal to 1. We introduce the
notion of nonintersecting paths on the two dimensional array of boxes, and give a
combinatorial formula for the conserved quantities of the generalized PBBS using
these paths. ©2005 American Institute of Physics.fDOI: 10.1063/1.1842354g

I. INTRODUCTION

The box-ball systemsBBSd is a reinterpretation of a soliton cellular automaton proposed by
Takahashi–Satsuma1 as a dynamical system of balls in a one dimensional array of boxes.2 Hence,
the BBS shows both a feature of cellular automatasCAd and that of solitons.

CAs are mathematical idealizations of physical systems in which space and time are discrete,
and physical quantities take on a finite set of discrete values. The CAs were originally introduced
by von Neumann and Ulam as a possible idealization of biological systems, with the particular
purpose of modeling biological self-reproduction. Physical systems containing many discrete el-
ements with local interactions are often conveniently modeled as the CAs. Many biological sys-
tems have been modeled by the CAs. The CAs have also been used to study problems in number
theory and their applications to tapestry design. The CAs play an important role in various fields
like these.

On the other hand, the notion of a soliton arose from a peculiar solution of partial differential
equations.3,4 Actually, the system in which solitons exist has continuous and smooth mathematical
structures, such as an inverse scattering method, a pseudodifferential operator, an algebraic mani-
fold, an infinite-dimensional Lie group and so on. Because of these rich structures, the soliton
systems play an important role in various fields of mathematics and physics.

The reason why the BBS has these two completely different features is well explained by the
notion of ultradiscretization.5 Ultradiscretization is a limiting procedure through which we can
construct piecewise linear equations or CAs from continuous equations. By taking the ultradiscrete
limit, the rich mathematical structures of soliton systems are introduced to the CAs. On the other
hand, the useful properties of the CAs for computer simulation are introduced to the continuous
systems by inverse ultradiscretization. Using this limiting procedure, the BBSs are obtained from

adElectronic mail: mada@ms.u-tokyo.ac.jp
bdElectronic mail: idzumi@edu.shimane-u.ac.jp
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the soliton equationssthe KdV equation and the Toda equationd.6,7 Thus the BBS hasN soliton
solutions and an infinite number of conserved quantities and the BBS is called an “integrable” CA.

The periodic box-ball systemsPBBSd is the BBS in which the updating rule is extended to be
compatible with a periodic boundary condition.8 Let us consider a one-dimensional array ofN
boxes. A periodic boundary condition is imposed by assuming that theNth box is adjacent to the
first one. sWe may imagine that the boxes are arranged in a circle.d In the generalized PBBS
sgPBBSd, the capacity of thenth s1ønøNd box is denoted by a positive integerun, and we
suppose that there areM kinds of balls distinguished by an integer indexj s1ø j øMd. When
∀nun=1 andM =1, the gPBBS coincides with the PBBS. Then, the rule for the time evolution of
the gPBBS from time stept to t+1 is given as follows:

s1d At each box, create the same number of copies of the balls with index 1.
s2d Choose one of the copies arbitrarily and move it to the nearest box with an available space

to the right of it.
s3d Choose one of the remaining copies and move it to the nearest available box on the right of

it.
s4d Repeat the above procedure until all the copies have been moved.
s5d Delete all the original balls with index 1.
s6d Perform the same procedure for the balls with index 2.
s7d Repeat this procedure successively until all of the balls are moved.

An example of the time evolution of the gPBBS according to this rule is shown in Fig. 1.
In Ref. 9, we have established an algorithm to construct the conserved quantities of the

gPBBS by means of the ultradiscretization of the nonautonomous discrete KPsndKPd equation.10

Using this algorithm, we obtain an expression for the conserved quantities of the gPBBS in the

FIG. 1. Time evolution rule for the PBBS.
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case of one kind of ballssM =1d. We have also proved that, when box capacities are all one, our
conserved quantities forM =1 coincide with those described by the Young diagram.11

In this paper, using a path description and the results obtained in Ref. 9, we investigate the
conserved quantities of the gPBBS for arbitraryM. In Sec. II, we derive the path description of the
characteristic polynomial of a particular matrix. In Sec. III, we briefly summarize the results of
Ref. 9, which we will use in the subsequent sections. In Sec. IV, we treat the ndKP equation which
corresponds to the gPBBS. We shall obtain an explicit expression for the conserved quantities of
the ndKP equation. Using the results in Sec. IV, we construct the conserved quantities of the
gPBBS in Sec. V. In Sec. VI, we discuss algebraic aspects of the gPBBS with respect to the affine
Weyl group and the crystals of quantum affine algebra. Section VII is devoted to concluding
remarks.

II. PATH DESCRIPTION OF CHARACTERISTIC POLYNOMIAL FOR A PARTICULAR
MATRIX

For a particular matrixA which contains a parameterm in the upper half elements, we give a
combinatorial description for coefficients of the characteristic polynomial detslI −Ad in l andm in
terms of nonintersecting pathssTheorem II.1d. The result will be used in the subsequent sections
to obtain a combinatorial formula for conserved quantities of the gPBBS.

We denote bySX the set of all permutations of elements inX, h1,2, . . . ,Nj. Let A be an
arbitraryN3N matrix, andAn,m denote thesn,md element ofA. The characteristic polynomial of
A is

detslI − Ad = o
sPSh1,2,. . .,Nj

sgnssdp
i=1

N

sldi,ssid − Ai,ssidd

= o
k=0

N

s− 1dN−klk o
X,h1,2,. . .,Nj

]X=N−k

o
sPSX

sgnssdp
iPX

Ai,ssid,

wheredn,m is Kronecker’s delta. ForJ,X, we set

SX
J
ª Hs P SXUi , ssid si P Jd,

i ù ssid si P X − Jd.
J .

Since

SX = ø
j=0

N

ø
J,X

]J=j

SX
J sdisjointd,

we have

detslI − Ad = o
k=0

N

s− 1dN−klk o
X,h1,2,. . .,Nj

]X=N−k

o
j=0

N−k

o
J,X

]J=j

o
sPSX

J

sgnssdp
iPX

Ai,ssid

= o
k=0

N

s− 1dN−klko
j=0

N−k

o
X,h1,2,. . .,Nj

]X=N−k

o
J,X

]J=j

o
sPSX

J

sgnssdSp
iPJ

Ai,ssidDS p
iPX−J

Ai,ssidD . s1d

Now we assume
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A = sD0 − YdsD1 − Yd ¯ sDM − Yd, s2d

whereDi =diagsx1,i ,x2,i , . . . ,xN,id si =0,1, . . . ,Md and

Y ª 3
m

1

1

�

1
4 .

If we setDi
s0d
ªDi andDi

srd
ªdiagsxN−r+1,i ,xN−r+2,i , . . . ,xN,i ,x1,i , . . . ,xN−r,id for 0, r ,N, we have

Di
sr+1dY=YDi

srd. Hereafter, fori =0, we defineoc1,c2,¯,ci
¯ª1. Then

A = o
,=0

M+1

s− 1d,S o
0øh1,h2,¯

¯,hM−,+1øM

Dh1

sh1dDh2

sh2−1d
¯ DhM−,+1

shM−,+1−M+,dDY,.

We assumeM +1,N. The sn,md element ofA is the following.

sid if m=n, xn,0xn,1¯xn,M;
sii d if m=N+n−, s,=1,2, . . . ,Md,

s− 1d,m o
0øh1,h2,¯

¯,hM−,+1øM

p
i=1

M−,+1

xn−hi+i−1,hi
;

sii 8d if m=n−, s,=1,2, . . . ,Md,

s− 1d, o
0øh1,h2,¯

¯,hM−,+1øM

p
i=1

M−,+1

xn−hi+i−1,hi
;

siii d if m=N+n−M −1, s−1dM+1m;
siii 8d if m=n−M −1, s−1dM+1;
sivd otherwise, 0.

Hence, froms1d, we have

detslI − Ad = o
k=0

N

s− 1dN−klko
j=0

N−k

m j o
X,h1,2,. . .,Nj

]X=N−k

o
J,X

]J=j

o
sPSX

J

sgnssd

31p
nPJ 1 o

0øh1,h2,¯

¯,hM−N−n+ssnd+1øM

p
i=1

M−N−n+ssnd+1

xn−hi+i−1,hi22
31 p

nPX−J 1 o
0øh1,h2,¯

¯,hM−n+ssnd+1øM

p
i=1

M−n+ssnd+1

xn−hi+i−1,hi22 . s3d

A combinatorial description of the coefficients is possible.
By CN,M+1 we denote theN3 sM +1d boxes in Fig. 2 and bysn,md-box the box at thenth

column in thesm+1dth row. We assume that theNth column is adjacent to the first one.
Let a andb be column indicessa,b=1,2, . . . ,Nd. A pathconnecting theinitial point a and the
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end point bis a scontinuousd polygonal line from the initial pointa to the end pointb which
consists ofsid, sii d or siii d in Fig. 3 locally; here by the initial pointa we mean the middle point of
the south edge ofsa,0d-box and by the end pointb the middle point of the north edge of
sb,Md-box. For example, the left-hand part in Fig. 4 shows a path connecting the initial point 1
and the end point 1, and the right-hand part shows a path from 5 to 2.

There is a natural correspondence betweenpi=1
M−,+1xn−hi+i−1,hi

s0øh1,h2, ¯ ,hM−,+1øMd
and a path onCN,M+1. To put it concretely, we draw the linesid on sn−hi + i −1,hid-box si
=1,2, . . . ,M −,+1d; for eachr, hi , r ,hi+1, we draw the linesii d on sn+ i −r ,rd-box and the line
siii d on sn+ i −r −1,rd-box whereh0=−1 andhM−,+2=M +1; then we obtain a path. For example,
for N=8 andM =5, x1,0x1,1x1,2x1,3x1,4x1,5 andx5,0x4,2x2,5 correspond to paths in Fig. 4, respectively.

Let X=hd1,d2, . . . ,dN−kj s1ød1,d2, ¯ ,dN−køNd; we denote byPsd;sd the set of all
paths which connect the initial pointd and the end pointssdd sdPX, sPSX; cf. Fig. 5d. Define
jn,m:Psd;sd→ hxn,m,1j as

jn,msPd ª Hxn,m sP has the vertical line on thesn,md-box of CN,M+1d,

1 sotherwised,
J s4d

wherePPPsd;sd. Then, we obtain

FIG. 2. N3 sM +1d boxes.

FIG. 3. A line can pass through a box in three possible ways.
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o
X,h1,2,. . .,Nj

]X=N−k

o
J,X

]J=j

o
sPSX

J

sgnssd1p
nPJ 1 o

0øh1,h2,¯

¯,hM−N−n+ssnd+1øM

p
i=1

M−N−n+ssnd+1

xn−hi+i−1,hi22
3 1 p

nPX−J 1 o
0øh1,h2,¯

¯,hM−n+ssnd+1øM

p
i=1

M−n+ssnd+1

xn−hi+i−1,hi22
= o

1ød1,d2,¯

¯,dN−køN

o
J,X

]J=j

o
sPSX

J
o

P1PPsd1;sd
¯ o

PN−kPPsdN−k;sd
sgnssdp

i=1

N−k

p
n=1

N

p
m=0

M

jn,msPid. s5d

If we draw N−k pathsP1PPsd1;sd , . . . ,PN−kPPsdN−k;sd on CN,M+1, some paths may go

FIG. 4. Paths corresponding tox1,0x1,1x1,2x1,3x1,4x1,5 andx5,0x4,2x2,5.

FIG. 5. A pathPPPsd;sd.
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through the same boxscf. Fig. 6d. When two paths pass through a single box, there are six possible
states as shown in Fig. 6. Except for the statescd in Fig. 6, the lines touch each other. When the
lines touch each other, we say that the linesintersect.

Now we show that, ins5d, terms corresponding to intersecting paths cancel out. LetPi1
PPsdi1

;sd and Pi2
PPsdi2

;sd be paths which intersectsi1, i2d. Then at some box, the statesad
occurs as in the left-hand part of Fig. 7. LetPi1

8 andPi2
8 denote new paths constructed fromPi1

and
Pi2

by exchanging lines in the box as shown in Fig. 7, wherePi1
8 PPsdi1

;s8d, Pi2
8 PPsdi2

;s8d and

s8 = S d1 ¯ di1 ¯ di2 ¯ dN−k

ssd1d ¯ ssdi2
d ¯ ssdi1

d ¯ ssdN−kd
D .

Since sgnssd=−sgnss8d and jn,msPi1
8 djn,msPi2

8 d=jn,msPi1
djn,msPi2

d for any Pi PPsdi ;sd si Þ i1, i2d,
the terms corresponding tosP1, . . . ,Pi1

, . . . ,Pi2
, . . . ,PN−kd andsP1, . . . ,Pi1

8 , . . . ,Pi2
8 , . . . ,PN−kd can-

cel each other out ins5d.
If any two of P1, . . . ,PN−k do not intersect, we say that the paths are nonintersecting. Hence

only terms corresponding to nonintersecting paths contribute tos5d.

FIG. 6. Two lines can pass through a box in six possible ways.

FIG. 7. Definition ofPi1
8 andPi2

8 .
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When P1, . . . ,PN−k are nonintersectingfP1PPsd1;sd , . . . ,PN−kPPsdN−k;sd and sPSX
J ,]J

= jg,

ssdid = Hdi−j si − j ù 1d,

dN+i−j si − j ø 0d J
scf. Fig. 8 and Fig. 9d, and therefore sgnssd=s−1d jsN−k−1d.

In s3d, the upper bound of the summation overj is hfsN−kd /NgsM +1dj wheref,g denotes the
largest integer which does not exceed,.

From s3d and s5d, we obtain the following theorem.
Theorem II.1: For A defined in (2), it holds that

detslI − Ad

= o
k=0

N

s− 1dN−klk o
j=0

fsN−kdsM+1d/Ng

s− 1d jsN−k−1dm j o
1ød1,d2,¯

¯,dN−køN

o
sP1,. . .,PN−kd

PPs jdsd1,. . .,dN−kd

p
i=1

N−k

p
n=1

N

p
m=0

M

jn,msPid,

wherejn,m are defined in (4) and

Ps jdsd1, . . . ,dN−kd ª 5sP1, . . . ,PN−kd*
Pi connects the initial point di and the

end point dN+i−js1 ø i ø jd;Pi

connects di and di−js j , i ø N − kd.

Any two of them are nonintersecting
6 . s6d

j

FIG. 8. Nonintersecting pathsP1, . . . ,PN−k.
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III. gPBBS AND ndKP EQUATION

We briefly summarize the results obtained in Ref. 9 to fix the notations used in the subsequent
sections.

A. gPBBS and its equation of motion

In order to describe the dynamics of the gPBBS, we introduce a new independent variables
ssPZd. As any integers can be uniquely expressed ass=Mt+ j stPZ ,1ø j øMd, we denote byun

s

the number of balls with indexj ;smodM in the nth box at time stept=fss−1d /Mg, wherefxg
denotes the largest integer which does not exceedx. In other words, the newtime variables is a
refinement of the original time, indicating explicitly when balls with indexj move.

We assume thatun andun
s satisfy the relation

o
n=1

N

un − o
j=1

M

o
n=1

N

un
j ù o

n=1

N

un
k sk = 1,2, . . . ,Md. s7d

The first and second terms of the left-hand side ofs7d represent the number of spaces and the
number of balls in the gPBBS, respectively, hence the left-hand side is the total number of free
spaces of the gPBBS. The right-hand side ofs7d is the number of balls with indexk. Thus s7d
requires the total number of free spaces of the gPBBS to be larger than the number of copies of
any type of ball in the time evolution process.

Let us consider the process at times, i.e., the movement of the balls with indexj at time step
t wheres=Mt+ j ; we often uses instead ofj , i.e., we treat the indices moduloM. If we definekn

s,
which denotes the number of spaces of thenth box ats, by

kn
s
ª un − sun

s + un
s−1 + ¯ + un

s−M+1d,

condition s7d is rewritten as

FIG. 9. A pathPPPsdi ;sd, sPSX
J , ]J= j , which connectsdi andssdid=di−j.
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o
n=1

N

kn
s ù o

n=1

N

un
s−M+k sk = 1,2, . . . ,Md.

Theorem III.1 (Ref. 9): The time evolution of the gPBBS is described by an ultradiscrete
equation,

un
s+1 − kn

s = max
k=1,. . .,N

Fo
j=1

k

un−j
s−M+1 − kn−j+1

s G − maxF0, max
k=1,. . .,N−1

Fo
j=1

k

un−j
s−M+1 − kn−j+1

s GG . s8d

j

B. From ndKP equation to gPBBS

The ndKP equation is obtained from the generating formula of the KP hierarchy.12,13 It is
given as

sbsmd − csnddtsl + 1,m,ndtsl,m+ 1,n + 1d + scsnd − aslddtsl,m+ 1,ndtsl + 1,m,n + 1d + sasld

− bsmddtsl,m,n + 1dtsl + 1,m+ 1,nd = 0, s9d

wherel, m, nPZ are independent variables, the tau functiont :Z3Z3Z→R sor Cd is dependent
variable and the coefficientsasld, bsmd, csnd are arbitrary functions which depend on the indepen-
dent variablesl, m, n, respectively.

In order to relate the ndKP equation to the gPBBS, we takeasld=0, bsmd=1, csnd=1+dn and
impose the following constraint ontsl ,m,nd:

tsl,m,nd = tsl − M,m− 1,nd.

If we definesn
s
ªtss−1,0,nd, s9d turns into

sn+1
s+M−1sn+1

s

sn+1
s+Msn+1

s−1 − s1 + dn+1d
sn

s−1sn+1
s

sn+1
s−1sn

s = − dn+1
sn

s+Msn+1
s

sn
ssn+1

s+M . s10d

Furthermore, we defineUn
s andKn

s as

Un
s
ª

sn+1
s sn

s+1

s1 + dn+1dsn
ssn+1

s+1 ,
1

Kn
s = dn+1 ·p

j=1

M

Un
s−j+1

and impose the following periodic condition onUn
s:

Un
s = Un+N

s . s11d

Then, froms10d, we have

Un
s+1

Kn
s =

o
k=1

N

p
j=1

k
Un−j

s−M+1

Kn−j+1
s

1 + o
k=1

N−1

p
j=1

k
Un−j

s−M+1

Kn−j+1
s

. s12d

To take the ultradiscrete limit, we setUn
s=eun

s/e, Kn
s=ekn

s/e, 1 /dn+1=eun/e. Then, we found the
following.

Theorem III.2 (Ref. 9): The ultradiscrete limit of the constrained ndKP equation with the
periodic boundary condition [i.e., (11) and (12)] coincides with the time evolution equation of the
gPBBS (8). j
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IV. CONSERVED QUANTITIES OF ndKP EQUATION

In Ref. 9 we derived the Lax representation for the ndKP equation when it has periodN in the
spatial variablen. In short, the equations12d is equivalent to the matrix equation

M̃ssdLsM ;sd = LsM ;s− 1dM̃ssd,

whereM̃ssd=GU;s−Ỹ,

LsM ;sd = s− GK;s + ỸdsGU;s−M+1 − ỸdsGU;s−M+2 − Ỹd ¯ sGU;s − Ỹd, s13d

GK;s=diags1/K1
s ,1 /K2

s , . . . ,1 /KN
s d, GU;s=diags1/U1

s ,1 /U2
s , . . . ,1 /UN

s d, and

Ỹ ª 3
s1 + dNd · h

1 + d1

1 + d2

�

1 + dN−1

4;

here,h is an arbitrary parameter.
This means

detslI + LsM ;sdd = detslI + LsM ;s− 1dd;

therefore, the coefficientsek of the characteristic polynomial

detslI + LsM ;sdd = lN + eN−1l
N−1 + eN−2l

N−2 + ¯ + e1l + e0

are conserved in times. Furthermore, sinceh is arbitrary andek containh, if we defineek
f jg by

ek = o
j

ek
f jgh j , s14d

thenek
f jg are also conserved.

Let Dªpi=1
N s1+did,

Y ª 3
hD

1

1

�

1
4 ,

andDdªdiags1,1+d1,s1+d1ds1+d2d , . . . ,pi=1
N−1s1+didd. SinceY=sDdd−1ỸDd we havesRef. 9d

detslI + LsM ;sdd = detslI + L0sM ;sdd, s15d

where

L0sM ;sd ª s− GK;s + YdsGU;s−M+1 − YdsGU;s−M+2 − Yd ¯ sGU;s − Yd.

From Theorem II.1, we obtain a combinatorial formula forek
f jg immediately.

Theorem IV.1: Set

xn,0 =
1

Kn
s , xn,m =

1

Un
s−M+m smÞ 0d

in (4) and setm=hD. Then, for k=0,1, . . . ,N and j=0,1, . . . ,fsN−kdsM +1d /Ng, it holds that
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ek
f jg = s− 1d,sk,jdD j o

1ød1,d2,¯

¯,dN−køN

o
sP1,. . .,PN−kd

PPs jdsd1,. . .,dN−kd

p
i=1

N−k

p
n=1

N

p
m=0

M

jn,msPid,

where,sk, jdª s j +1dN−sk+ j +kjd. j

V. CONSERVED QUANTITIES OF gPBBS

Using the results in Sec. IV, we construct the conserved quantities of the gPBBS.
For k=0,1, . . . ,N and j =0,1, . . . ,fsN−kdsM +1d /Ng, the ultradiscrete limit ofek

f jg is

uek
f jg
ª − lim

e→+0
e logss− 1d,sk,jdek

f jgd = − lim
e→+0

e log1D j o
1ød1,d2,¯

¯,dN−køN

o
sP1,. . .,PN−kd

PPs jdsd1,. . .,dN−kd

p
i=1

N−k

p
n=1

N

p
m=0

M

jn,msPid2 .

Sinceun is the capacity of thenth box,

lim
e→+0

e log D j = j · lim
e→+0

e log p
j=1

N

s1 + e−u j/ed = j ·o
j=1

N

maxf0,−u jg = 0.

Therefore, from Theorem IV.1,uek
f jg is given by the following.

Theorem V.1: Set

xn,0 = kn
s, xn,m = un

s−M+m smÞ 0d

in (4). Then, for k=0,1, . . . ,N and j=0,1, . . . ,fsN−kdsM +1d /Ng, it holds that

uek
f jg = min

1ød1,d2,¯

¯,dN−køN
3 min

sP1,. . .,PN−kd

PPs jdsd1,. . .,dN−kd

Fo
i=1

N−k

o
n=1

N

o
m=0

M

jn,msPidG4 .

j

Remark V.1: The conserved quantity uek
f0g s0økøNd is trivial. Since j=0, all paths are

vertical lines. Hence we have

uek
f0g = min

1ød1,d2,¯

¯,dN−køN

Fo
i=1

N−kSkdi

s + o
m=1

M

udi

s−M+mDG = min
1ød1,d2,¯

¯,dN−køN

Fo
i=1

N−k

udiG .

As un is the capacity of the nth box, uek
f0g does not depend on the time steps. So we are not

interested in them.
Remark V.2: Once we obtain all quantities that are conserved in variable s, we are to have all

quantities that are conserved in the original time variable t. The reasoning is as follows: Assume
that A1 is a conserved quantity of the gPBBS; this means A1=A1ssd has period M in s. fSince
equation of motion (8) is Mth order in s, A1ssd is written as

A1ssd = Fsu1
s, . . . ,uN

s ,u1
s−1, . . . ,uN

s−1, . . . ,u1
s−M+1, . . . ,uN

s−M+1d

by some function F.g Let Ajssd=A1ss+ j −1d s j =2,3, . . .d; they all have period M in s. By definition
Ajss+1d=Aj+1ssd s j =1,2, . . .d, and, since A1ssd has period M, AMss+1d=A1sss+1d+M −1d
=A1ss+Md=A1ssd; hence, symmetric polynomials of A1ssd , . . . ,AMssd are conserved in s. More
explicitly, let Skssd be the kth elementary symmetric polynomial of A1ssd , . . . ,AMssd; then, we have
M quantities S1ssd , . . . ,SMssd that are conserved in s. Conversely, once we know the elementary
symmetric polynomials S1ssd , . . . ,SMssd of A1ssd , . . . ,AMssd, we can obtain A1ssd , . . . ,AMssd.
Therefore, the statement follows.
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An easy way to read offoi=1
N−kon=1

N om=0
M jn,msPid is as follows: Associate valueskn

s,
un

s , . . . ,un
s−M+1 with boxes ofCN,M+1 as shown in Fig. 10. ForsP1, . . . ,PN−kdPPs jdsd1, . . . ,dN−kd,

summing up the values corresponding to the vertical lines of the paths, we get the value
oi=1

N−kon=1
N om=0

M jn,msPid.
Example V.1: For a state in Fig. 11sN=10,M =5d, we obtain a table in Fig. 12. For paths

shown in Fig. 13,

o
i=1

N−k

o
n=1

N

o
m=0

M

jn,msPid = s0 + 0 + 1d + s0 + 1 + 0 + 0d + s0 + 0 + 0 + 0d + s0 + 1 + 0d + s0 + 0 + 1d

+ s0 + 1 + 0d + s1 + 0d = 6.

Occasionally these paths minimizeoi=1
N−kon=1

N om=0
M jn,msPid; thus, ue3

f2g is 6.

FIG. 10. Associate valueskn
s, un

s , . . . ,un
s−M+1 with boxes ofCN,M+1.

FIG. 11. A state of the gPBBS.
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VI. DISCUSSION

In this section we discuss some algebraic aspects of the gPBBS. The time evolution of the
gPBBS is decomposed into a product of transformations, each of which is a representation of the

generators of the affine Weyl groupW̃sAM
s1dd. Furthermore a state of the gPBBS is naturally

identified with a vector of a tensor product of the crystalsUq8sAM
s1dd, and a time evolution pattern is

interpreted as twisted lattices of the crystalsUq8sAN−1
s1d d whose Boltzmann weights are determined

by the combinatorialR matrices.

A. Affine Weyl group and gPBBS

Let T be the set ofN3 sM +1d rectangular tableaux with integer entries, ands,s,PZ / sM
+1dZd andp be mappings:T→T. For a tableau

these mappings are given as

where

FIG. 12. A table obtained for a state in Fig. 11sN=10,M =5d.
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s,syn,md = yn,m+1 + Qn,m − Qn−1,m sm; , modM + 1d,

s,syn,m+1d = yn,m + Qn−1,m − Qn,m sm; , modM + 1d,

s,syn,md = yn,m smÞ ,,, + 1 modM + 1d,

psyn,md = yn,m+1,

and

Qn,m = max
1øhøN

Fo
k=1

h−1

yn+k,m+1 + o
k=h+1

N

yn+k,mG .

Here we extend the indicesn,m of yn,m for n,mPZ by the conditionyn+N,m=yn,m+M+1=yn,m.
The following theorem is proved by direct calculations.
Theorem VI.1 (Refs. 14 and 15):The mappings s, s,PZ / sM +1dZd andp defined as above

give a realization of the affine Weyl group W˜ sAM
s1dd. j

Remark VI.1: The affine Weyl group W˜ sAn−1
s1d d is defined as the group generated by the simple

reflections s0,s1, . . . ,sn−1 and diagram rotationp subject to the fundamental relations

si
2 = 1,

sisj = sjsi s j Þ i,i ± 1 modnd,

sisjsi = sjsisj s j ; i ± 1 modnd,

psi = si+1p,

where we understand the indices for si as elements ofZ / sM +1dZ.
When we set

yn,0 = kn
s, yn,m = un

s−M+m smÞ 0d, s16d

we get the following theorem which gives a relation between the gPBBS and the affine Weyl
group.

Theorem VI.2: psM−1sM−2¯s0 gives the time evolution which concerns the original time

FIG. 13. Pathsssee textd.
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variable t, i.e.,

. j

The proof goes as follows.
The equation of motions8d is

un
s+1 = un

s−M+1 + Qn−1,0− Qn,0.

This means

s0skn
sd = un

s+1,

and

s0sun
s−M+1d = kn

s + Qn−1,0− Qn,0 = kn
s + un

s+1 − un
s−M+1;

in the gPBBS,kn
s denotes the number of spaces of thenth box ats, andun

s+1, un
s−M+1 denote the

numbers of balls which come in thenth box and get out thenth box from time steps to s+1,
respectively; hence

s0sun
s−M+1d = kn

s+1.

Therefore

Repeating the above procedure, we obtain
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Finally, applyingp upon it immediately gives Theorem VI.2.

B. gPBBS as twisted crystal lattice

The BBSs can be reformulated as integrable lattice models at temperature zero from view-
point of the crystal theory and the combinatorialR matrix.16,17 The PBBS with one kind of ball
and box capacity one has also been reformulated into two types of lattice models, a periodicA1

s1d

crystal lattice and a twistedAN−1
s1d crystal chain, whereN denotes the number of the boxes in the

system.8 It is straightforward to extend this result to the case of the gPBBS. In this section, we will
briefly show how the gPBBS is reinterpreted as some integrable lattice systems. Since the proofs
for the statements below are almost the same as those in Ref. 8, we will omit them here.

Let Bk be the classical crystal ofUq8sAM
s1dd corresponding to thek-fold symmetric tensor

representation ofUqsAMd. As a set it consists of the single row semistandard tableaux of lengthk
on lettersh1,2, . . . ,M +1j,

An elementb

is also denoted as a series ofM +1 integersb;sxsM+1d ,xsMd , . . . ,xs2d ,xs1dd, wherexs jd is the number
of letters j in b. A stateuclt of the gPBBS is naturally identified with

uclt > b1
t

^ b2
t

^ ¯ ^ bN
t P Bu1

^ Bu2
^ ¯ ^ BuN

,

where

bn
t = skn

s,un
s−M+1,un

s−M+2, . . . ,un
sd sn = 1,2, . . . ,Nd.

For the BBS without the periodic boundary condition, time evolution is given by the isomorphism
induced by the combinatorialR matrices,

T:B` ^ sBu1
^ Bu2

^ ¯ ^ BuN
d → sBu1

^ Bu2
^ ¯ ^ BuN

d ^ B`,

T:uh0jl ^ uclt → uclt+1 ^ uh0jl,

whereuh0jl is the highest weight vector ofB`. For the gPBBS, by taking the trace of the auxiliary
state inB`, TªTrB` T, we have the time evolution

T:Bu1
^ Bu2

^ ¯ ^ BuN
→ Bu1

^ Bu2
^ ¯ ^ BuN

,

T:uclt → uclt+1.

As theA1
s1d crystal, the operatorT mapsuclt to the unique tensor product ofAM

s1d crystal that exactly
corresponds to the state of the gPBBS att+1.

The gPBBS is also reformulated as a twisted lattice ofM vertical axes in terms ofAN−1
s1d

crystals. In this case, a stateuclt is identified

uclt > bk
t

^ sbu1

t
^ bu2

t
^ ¯ ^ buM

t d P Bk ^ sBn1
^ Bn2

^ ¯ ^ BnM
d,

where

bk
t = skN

s ,kN−1
s , . . . ,k1

sd,
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buj

t = suN
s−M+j,uN−1

s−M+j, . . . ,u1
s−M+jd s j = 1,2, . . . ,Md,

kªon=1
N kn

s andnjªon=1
N un

s−M+j. The time evolution is determined by the isomorphism induced by
the combinatorialR-matrix for AN−1

s1d crystal,

bk
t

^ sbu1

t
^ bu2

t
^ ¯ ^ buM

t d > sbu1

t+1
^ bu2

t+1
^ ¯ ^ buM

t+1d ^ bk
t+1.

In Fig. 14, we schematically show the twisted crystal lattice associated with the gPBBS.

VII. CONCLUDING REMARKS

In this paper, using a path description of the characteristic polynomial of particular matrices
and an algorithm to construct the conserved quantities using the Lax representation of the ndKP
equation, we showed explicit form of the conserved quantities of the gPBBS. Relations to the
affine Weyl group action and the crystal theory were also clarified. An advantage to reformulate
the PBBS as crystal lattices is that we can extend it to the crystals associated with other root
systems.

Since the gPBBS is composed of a finite number of boxes and balls, it can only take on a finite
number of patterns. Hence its trajectory is always periodic and a fundamental cycle, i.e., the
shortest period of the periodic motion, exists for any given initial state. In the case where the box
capacity is one everywhere and only one kind of ball exists, the formula used to calculate the
fundamental cycle is explicitly obtained using the conserved quantities and some rescaling prop-
erties of the states.18 Hence, using the results in this paper, we may get the formula to calculate the
fundamental cycle for the gPBBS, which is a problem we wish to address in the future.
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A mathematical model for chalcopyrite disease within sphalerite is developed. As
one main result, by analyzing the system enthalpy, correct expressions for the
reaction terms in a system undergoing phase transitions are worked out. For the
resulting equations, the thermodynamical validity is shown and the existence of a
unique solution is proved. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1840292g

I. INTRODUCTION

In the present work we are concerned with diffusion-induced segregationsDISd phenomena.
This class is characterized by segregation processes that can only take place after a sufficient
amount of a diffusor has penetrated the crystal. We will exemplary study the so-called chalcopyrite
disease within sphalerite, which is a well-known and extensively discussed problem arising in
geology and a particular example of DIS, but the techniques developed here apply as well for
other DIS phenomena.

In Ref. 3 a first model for chalcopyrite disease has been developed, Ref. 4 discusses related
ternary systems. Reference 3 also provides references to the mineralogical experiments and illu-
minates the physical background. But as a deeper thermodynamical analysis in this paper reveals,
the reaction terms chosen in this first model are only approximately true and will in general
depend on the phase parametersthe functionx introduced later ond. The principles worked out are
quite general and will apply whenever reactions and phase transitions take place simultaneously.
The presentation is completed by showing existence and uniqueness of the solutions.

II. DERIVATION OF THE REVISED MODEL

Let us consider the following reaction diffusion equations:

]tci = divsJid + r i = So
l

]

]xl
Ji,lD + r i, i = 1, . . . ,4. s1d

In s1d, ci =cisx,td denotes the relative number of speciesi, i =1, . . . ,4 per available lattice point at
time t and space pointxPV, V a stime-independentd domain inRD, 1øDø3. By T0.0 we
denote a stop time and byVT0

ªV3 s0,T0d a cylinder in space–time.
We introduce the notations

c1 < Fe3+, c2 < Fe2+, c3 < Cu+, c4 < Zn2+, c5 < vacancies.

c1 satisfiesc1=NFe
3+/NMe, whereNFe3+ is the number of Fe3+ atoms andNMe is the number of metal

ion sites. Similar relationships hold forc2, c3, andc4. It is an essential property of this formulation
that there is no equation forc5, but the vacancy concentration is obtained implicitly by the
conservation of mass

adElectronic mail: blesgen@mis.mpg.de
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c5 = 1 −o
i=1

4

ci .

In s1d, r i denote the reaction terms andJi the fluxes of metal ions of speciesi. The reaction
terms model the jumps of the electrons. A first ansatz isr =sr1,−r1,0 ,0d and fsees22d below for
explanationg

r1 = ksc2
2 − kc1ced,

where k.0 and kk.0 are the reaction rates andce denotes the electron concentration. If we
assume that all sulfur places are occupied by S2−, by the condition of electric neutrality we can
compute

ce = 2 − 3c1 − 2c2 − c3 − 2c4 = 2 − 2sc1 + c2 + c3 + c4d − c1 + c3 = 2c5 − c1 + c3. s2d

In the presence of phase transitions the reaction rates may not be chosen to be constants, as we
shall see below.

Onsager’s postulate,11,12 states that each thermodynamic flux is linearly related to every ther-
modynamic force. Since in our case the thermodynamic forces are the negative chemical potential
gradients, we obtain the phenomenological equations, see Ref. 9, p. 137,

Ji = o
j=1

4

Lij ¹ m j, 1 ø i ø 4, s3d

with a constant mobility matrixL. The Onsager reciprocity law,9,11,12states thatL must be sym-
metric which we assume in the following. To simplify the existence theory we will further assume
in the sequel thatL is positive definite. By

m j =
]f

]cj

we denote the chemical potential.
In this work the temperatureT is held constant reflecting the situation of the mineralogical

experiments. Letf denote the Helmholtz free energy density of the system, which is the convex
hull of the free energy density off1, f2 with f1 for chalcopyrite,f2 for sphalerite. Hence, the two
different phases or lattice orders are characterized by two different free energies, andf is the
convex hull of f1 and f2.

For order-disorder phase transitions, we make the first ansatz

f l = f lscd = kBTo
i=1

5

bi
lci ln ci + o

i=1

3

Eici + So
i=1

4

aiciD2

, l = 1,2. s4d

The elastic coefficientsai do not change for both phases, only thebi
l differ. The convex terms

ci ln ci are motivated by considerations from statistical mechanics on the system entropy by count-
ing the different configurations. The termoi=1

3 Eici refers to the system enthalpy and is a conse-
quence of the presence of the Fe reaction. It will be discussed in the subsequent section.

The expressionsoi=1
4 aicid2 is a consequence of Hooke’s law. The constantsai correspond to

the ion radii and measure the volume response when replacing Zn2+ by other metal ions. Ins4d, the
bi

1, bi
2 are positive constants andkB is the Boltzmann constant.

Equations4d is a very reasonable term for a numerical computation, sinces4d implies infinite
slope ofDfl if one componentcj approaches 0 or 1. This guarantees, see Ref. 13,
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cj P s0,1d in V,t . 0 s5d

andcj has physical meaning. As there is no maximum principle for systems of equations, without
the logarithmic terms ins4d, Conditions5d may be violated even ifcj P s0,1d holds for t=0.

At this stage, a control mechanism for the segregation process is introduced. The following
principle is well known. Letx=xsx,tdP f0,1g be a function that measures the volume fraction of
the chalcopyrite phase; e.g.,xsx0,t0d=0 means that fort= t0 in x0PV only the sphalerite phase is
present,xsx0,t0d= 1

2 that the system is inx0 in an intermediate state with no dominant phase.
Let g.0 be a small constant, denoting the square of the thickness of the interface between the

sphalerite and chalcopyrite phase. We define the density of the mixing entropysM by

sMsxd = Wsxd +
g

2
u ¹ xu2, s6d

with the double-well potential

Wsxd ª x ln x + s1 − xdlns1 − xd. s7d

Since fªconvsf1, f2d, we will considerf as the convex combination off1 and f2. BecausesM is
subtracted from the entropy densitys, the thermodynamic relationf =e−Ts thus implies

fsc,xd ª xf1scd + s1 − xdf2scd + TsMsxd. s8d

The phase parameterx is governed by the modified Allen–Cahn equation

t]tx = − ]xS f

T
D = gDx − vsc,xd, s9d

wheregDx comes from the first variation of −eVsg /2du¹xu2 with respect tox andt is a scaling
parameter to adjust the different time scales between mass diffusion and growing of the chalcopy-
rite phase. The driving forcev in s9d is given by

vsc,xd ª lnS x

1 − x
D + mscd. s10d

The valuemscd accounts for the growing of chalcopyrite in copper rich regions and is gained
implicitly by t]tx=−]xsf /Td. Since so far the final formula forf has not been derived, we will
postpone the discussion of this term and of the mechanism responsible for the growing of chal-
copyrite in copper rich regions. The final definition ofv is given in s29d.

III. AN ENTHALPY PRINCIPLE FOR A PURELY REACTIVE SYSTEM

We want to incorporate the electron jumps by including reaction terms in the model. The
reactions are represented in the free energy by enthalpic terms. To understand the nature of these
enthalpic terms, we consider a purely reactive system without diffusion and derive general prop-
erties of reactive systems.

Let the domainV comprise of substancesA, B, C, andD subject to the reactions

A + B→
r+

C + D,

A + B←
r−

C + D.

Let c̃1, c̃2, c̃3, and c̃4 denote the concentration of substancesA, B, C, andD where we assume
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o
i=1

4

c̃i = 1. s11d

In the language of partial differential equations, these reactions can be written as, see Ref. 8,

]tc̃1 = ]tc̃2 = − r+c̃1c̃2 + r−c̃3c̃4,

]tc̃3 = ]tc̃4 = + r+c̃1c̃2 − r−c̃3c̃4. s12d

From statistical mechanics we infer

r+ = expS Ẽ1 + Ẽ2 − ẼS

kBT
D ,

r− = expS Ẽ3 + Ẽ4 − ẼS

kBT
D , s13d

whereẼ1+Ẽ2 is the energy level before the reactionA+B→C+D, Ẽ3+Ẽ4 the energy level after

the reaction.ẼS is the activation energy or sattle point energy that must be exceeded to start the
reaction.

For the free energy we make the ansatz

F̃sc̃d =E
V

kBTo
i=1

4

c̃iSln c̃i +
Ẽi

kBT
D . s14d

Now we will show the following properties ofF̃:

]tF̃sc̃stdd = 0 iff ]tc̃i = 0, 1ø i ø 4, s15d

]tF̃sc̃stdd ø 0, s16d

F̃sc̃stdd is critical iff ]tc̃std = 0. s17d

In order to shows15d and s16d, after setting

Rª − r+c̃1c̃2 + r−c̃3c̃4 = ]tc̃1 = ]tc̃2 = − ]tc̃3 = − ]tc̃4,

elementary computations yield

]tF̃sc̃d =E
V

kBTRFlnS c̃1c̃2

c̃3c̃4
D +

Ẽ1 + Ẽ2 − ẼS

kBT
−

Ẽ3 + Ẽ4 − ẼS

kBT
G =E

V

kBTR lnFS c̃1c̃2

c̃3c̃4
DS r+

r−
DG .

s18d

We observe

lnS c̃1c̃2r+

c̃3c̃4r−
D = 0 iff c̃1c̃2r+ = c̃3c̃4r−

and together withs18d we find s15d. Equations18d directly implies the free energy inequalitys16d.
To see this, let us consider the following two mutual exclusive cases:
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sAd Rù 0 ⇔ c̃3c̃4r− ù c̃1c̃2r+ ⇔ lnS c̃1c̃2r+

c̃3c̃4r−
D ø 0,

sBd R, 0 ⇔ c̃3c̃4r− , c̃1c̃2r+ ⇔ lnS c̃1c̃2r+

c̃3c̃4r−
D . 0.

This discussion reveals the natural structure of the problem,

flnsc̃1c̃2r+d − lnsc̃3c̃4r−dgsc̃3c̃4r− − c̃1c̃2r+d ø 0, s19d

from which we unconditionally infer]tF̃sc̃stddø0. We see that the canonical structure of the
problem goes along with the ansatz of the free energy.

A critical point c̃ of F̃ is characterized by

ln c̃l +
Ẽl

kBT
+ 1 = 0 for 1ø l ø 4. s20d

This implies]tc̃i =0, 1ø i ø4 because froms20d it follows with s13d

lnsc̃1c̃2r+d = − 2,

lnsc̃3c̃4r−d = − 2,

and when subtracting the last two identities we find

lnS c̃1c̃2r+

c̃3c̃4r−
D = 0.

This implies at once]tc̃i =0, 1ø i ø4. The other implication ins17d is shown similarly.

IV. DERIVATION OF THE COMPLETE MODEL

Equations19d reveals the underlying structure of reaction–diffusion equations which allows to
discuss the reaction terms and give a complete description of the model. The swift jumps of the
electrons are integrated into the model by two reactions,

Fe2+→
k

Fe3+ + e−,

Fe2+←
kk

Fe3+ + e−. s21d

Here,e− is a free lattice electron andk, kk are reaction rates. A formula force has already been
found with s2d.

The standard approach to model reactionss21d analogous to Eq.s12d is

r1 = ksc2
2 − kc1ced. s22d

The principles leading tos22d are carefully explained in Ref. 8. But as we will show,s22d is wrong
in our case as the rates will depend onx! With the knowledge ofs19d we can obtain a consistent
formulation of r that generalizess22d. In this generalization, the rates will depend onx.

To perfectly adjust the model, we first remind that the oxidation of Fe is caused by swift shifts
of the electrons and occurs thus much faster than any other process, i.e., faster than diffusion.
Hence, it is reasonable to assume that this oxidation is instantaneous. Thus we will replace the
equation forc1 by a stationary elliptic equation.

Second, due to electric neutrality, we postulate
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c5 = 1
2c1. s23d

This condition was found experimentally in Ref. 2 long before a mathematical model had been
developed. Equations23d is the key to finding a consistent formulation for the reaction term. There
is one difficulty here becauses23d tells us that the movement of the vacancies is on the same fast
time scale as the movement of the free electrons. We will bypass this problem by demanding
]tc5=0 in the derivation of the reaction term ins27d. All crystallographic measurements verify
relation s23d, but the quick electron jumps are beyond the resolution horizon of todays methods

As the main consequence ofs2d and s23d we find

ce = c3. s24d

To end up with the reaction terms having the structure ofs19d, the logarithms must have the same
factors. Hence we assume

b1
l +

b5
l

2
= b2

l = b3
l = b4

l
¬ bl, l = 1,2.

The final form of the free energys4d is thus

f lscd = kBTblo
i=1

4

ci ln ci + o
i=1

3

ciEi + So
i=1

4

aiciD2

, l = 1,2. s25d

Combined,s8d and s25d define the free energy,

Fsc,xd =E
V

fsc,xd =E
V
FkBTbxSo

i=1

4

ci ln ciD + o
i=1

3

ciEi + So
i=1

4

aiciD2

+
gT

2
u ¹ xu2 + TWsxdG .

s26d

Here we introduced the abbreviationbxªxb1+s1−xdb2. The rates fulfill

r+ = kk = expSE1 + E3 + ES

kBT
D, r− = k = expS2E2 − ES

kBT
D .

We can give a quick motivation for the correct reaction term by considering again a purely
reactive system, this time with phase changes. If we consider the oxidation process aloneswithout
diffusiond we have

]tc4 = ]tc5 = 0 s27d

and from ]tc1=]tc3 and oi=1
5 ci =1 we infer ]tc2=−2]tc1. With these constraints we compute

]tFscstd ,xstdd for the free energys26d, where we can dropsoi=1
4 aicid2 sthe estimation of this term

is possible as in Sec. Vd. We find

]tFscstd,xstdd =E
V
FkBTbx]tc1 lnSc1c3

c2
2 D +

E1 + E3 − ES

kBT
−

2E2 − ES

kBT
− s]txd2G

=E
V
FkBTbx]tc1 lnSc1c3sr+d1/bx

c2
2sr−d1/bx

D − s]txd2G .

The consistent form of the reaction term that replacess22d is hence

r1 = r3 = − 1
2r2 = skd1/bxsc2

2 − k1/bxc1c3d, r4 = 0. s28d

b1 andb2 should be in the magnitude of 1 and forb1=b2 there would be nox dependence. For
b1=b2=1 we fall back to standard formulas ofr.
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It remains to discuss the control mechanism for the chalcopyrite phase. Equations26d together
with t]tx=−]xsf /Td=gDx−vsc,xd gives rise to setting

vsc,xd = W8sxd + kBsb2 − b1dSo
i=1

4

ci ln ci + āD . s29d

Here,ā.0 is a temperature-dependent constant. Additive constants occur ins26d because one can
only measure the changedF of F when varying a quantityq, commonly temperature or volume,
within some intervalsq0,q1d, finding the expressioneq0

q1dF for F. Frequently, we will setā
ª ln 3.

To understand the principle of the control mechanism, we first freezec1, c2, and c4 and
consider for constantsa.0, b.0, see Fig. 1,

vsc3,xd = W8sxd + msc3d,

msc3d = bc3 ln c3 + a.

The mechanism thus obtained is similar to the one commonly used in phase field models, where
c3 plays the role of temperature. From convexity ofmsc3d and from the magnitude ofa andb, we
get the existence ofx1, x2P s0,1d, x1,x2 with msc3d.0 for c3P s0,x1dø sx2,1d andmsc3d,0 for
c3P sx1,x2d. Consequently forc3,x1, the sphalerite phase is preferred, whereas forx1,c3,x2,
chalcopyrite can form. In practice, the branchc3.x2 is never reached, and the chalcopyrite phase
once it has formed does not destabilize at a later time.

Expressions29d is symmetric with respect to the variablesc1, . . . ,c4 and so the mechanism
just explained also applies for the other variables. Yet there is unsymmetry which comes from the
initial values forc. If we consider Fig. 1 again, this time imagining it as a function ofc1, then due
to c1st=0d one will stay in the parts0,x1d. Hence, the reason whyc3 is mainly responsible for
controlling the chalcopyrite disease is caused by the size of initial valuescst=0d. Now, the
derivation of the model is complete.

Find for tù0 the vectorsc1,c2,c3,c4d, x such that inV,RD for t.0,

0 = divSo
j=1

4

L1j ¹ m jD + k1/bxsc2
2 − skd1/bxc1c3d,

FIG. 1. Plot ofmsc3d.
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]tci = divSo
j=1

4

Lij ¹ m jD + r isc,xd, i = 2,3,4,

mi =
]f

]ci
sc,xd, 1 ø i ø 4,

t]tx = gDx − vsc,xd,

and for t=0, xPV,

cisx,0d = c0isxd, i = 2,3,4,

xsx,0d = x0sxd,

and for t.0, xP]V,

ci = gi, 1 ø i ø 4,

mi = hi, 1 ø i ø 4 s30d

with given Dirichlet data g=sg1, . . . ,g4d and h=sh1, . . . ,h4d defined on]V.

V. THE FREE ENERGY INEQUALITY

We will show the thermodynamical correctness of systems30d under isothermal conditions,
where the approximating elliptic equation is replaced by the original time-dependent formulation.
It is suitable to reformulates30d,

]tc + divsJd = r , s31d

t]tx = −
]f

]x
, s32d

where

J = − L ¹ m

and r is defined bys28d. An application of the chain rule yields

d

dt
fsc,xd = o

j=1

4
]f

]cj
]tcj +

]f

]x
]tx. s33d

From s33d we learn that we must test the equation forci with ]f /]ci =mi, 1ø i ø4 and Eq.s32d
with ]f /]x. After integrating overV, one integration by parts we obtain

d

dt
E

V

fsc,xd −E
V
So

j=1

4

m jr j + o
j=1

4

¹ m j ·Jj +
]f

]x
]txD +E

]V
o
j=1

4

m jJj · nW = 0. s34d

This is the constitutive equality for the Helmholtz free energy densityf.
To recasts34d as an inequality, we have that the matrixL is positive definite,
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o
j=1

4

¹ m j ·Jj = − L ¹ m: ¹ m ø 0. s35d

Additionally, by s32d, we haves]f /]xd]tx=−ts]txd2ø0. It remains to show

E
V
o
j=1

4

m jr j ø 0. s36d

We exploit the particular form ofr and f and structures19d. Let Qscdªoi=1
4 aici. Since r1=r3

=−1
2r2, r4=0 we have

E
V
o
j=1

4

m jr j =E
V

sm1 − 2m2 + m3dr1

=E
V
HkBTbxFlnSc1c3

c2
2 D +

E1 + E3 − ES

kBTbx

−
2E2 − ES

kBTbx
G + 2sa1 − 2a2 + a3dQscdJr1

=E
V
FkBTbx lnSc1c3sr+d1/bx

c2
2sr−d1/bx

D + 2sa1 − a2 + a3dQscdGr1.

The first term can be estimated analogous tos19d,

E
V

kBTbx lnSc1c3sr+d1/bx

c2
2sr−d1/bx

Dr1 ø 0 s37d

but to estimateeV2sa1−2a2+a3dQscdr1 additional considerations are necessary. The logarithmic
form s26d of the free energy guaranteesci .0 in VT0

for t.0 if this is true fort=0. In Sec. VI a
rigorous proof of this statement will be given. Hence we obtainQscd.0 in VT0

. Let

s1 ª sup
xPV̄

c1sx,0d, s2 ª inf
xPV̄

c02sxd, s3 ª sup
xPV̄

c03sxd, s38d

wheres1, s2, s3 are positive constants. By the parabolic maximum principle,13 as for fixedc2, c3,
x the mappingc1° r1sc,xd decreases asc1 increases, andsnow for fixedc1, c3, xd c2° r1sc,xd
increases and finallyc3° r1sc,xd decreases, we haves1=supVT0

c1, s2= infVT0
c2, and s3

=supVT0
c3.

Now a sufficient condition forr1.0 in VT0
is

k1/bx ,
s2

2

s1s3
. s39d

We remark that in the crystallographic measurements, the ratio constantk never exceeded a value
of 0.07 sotherwise the matrix becomes unstabled. For an estimate of the volume term we require

a1 − 2a2 + a3 , 0. s40d

This is a condition on the ion radii of Fe3+, Fe2+, and Cu+ and fulfilled in nature, see Table I.
Together withr1.0 and the above estimate this showseV2sa1−2a2+a3dQscdr1,0. Hence,

s36d is proved and we have shown theconstitutive free energy inequality

d

dt
E

V

fscstd,xstdd +E
]V

o
j=1

4

m jJj · nW ø 0. s41d

In a thermodynamically closed system the fluxes on]V disappear. Hence we impose as condition
on the Dirichlet data,
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hi = 0, 1ø i ø 4.

Instead we could impose the Neumann boundary conditions]nm j =0, 1ø j ø4 on ]V.

VI. EXISTENCE OF WEAK SOLUTIONS FOR POLYNOMIAL FREE ENERGY

The rest of the paper is devoted to the proof of global existence and uniqueness of a solution
to the sharp interface models30d with classical Dirichlet boundary conditions, i.e.,g=h=0, and
with the elliptic equation ins30d replaced by the original parabolic equation. The proof of exis-
tence is done in three steps. An additionalsand artificiald surface energy termeVsl /2du¹cu2 is
added to the free energy functional leading to a diffuse interface model. This term is necessary to
guarantee the existence of a minimizersLemma 1d. The first part is contained in Secs. VII–XIII
and discusses the case of polynomial free energies for this diffuse interface model. Then we
generalize to logarithmic free energies and finally the limitl↘0 is carried out. Some of the
techniques used in the following sections were developed for the Cahn–Hilliard model, we mainly
refer to Refs. 5, 6, and 1, and in particular Ref. 7.

VII. PRELIMINARIES

In what follows, f = fsc,xd denotes the free energy density without the surface energy terms
sg /2du¹xu2+sl /2du¹cu2. C will denote generic constants that can change from estimate to esti-
mate. With the additional surface term the model is the following.

Find for tù0 the vectorsc,m ,xd such that inVT0
ªV3 s0,T0d,

]tc = divsL ¹ md + rsc,xd,

msc,xd =
]f

]c
sc,xd − lDc,

t]tx = gDx − vsc,xd

and for t=0 in V,

cs·,0d = c0s·d, xs·,0d = x0s·d

and for t.0 in ]V,

ci = mi = 0, 1ø i ø 4. s42d

T0.0 denotes the stop time,v=]xf, andrsc,xd is given bys28d.
Now, let us collect general properties of the model and some necessary tools that will be

needed in the sequel. As a consequence of the assumed relations23d the concentration vectorc lies
in the simplex

TABLE I. Values of sulfide crystal radii taken from Ref. 10.

Symbol Species Ion radius

a1 Fe3+ 0.555 Å
a2 Fe2+ 0.660 Å
a3 Cu+ 0.635 Å
a4 Zn2+ 0.640 Å
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c P S ª hd = sd1, . . . ,d4d P R4u 3
2d1 + d2 + d3 + d4 = 1j. s43d

We do not propose 0øci ø1 in V because for the polynomial free energies considered here this is
simply not true. This is one of the reasons why logarithmic free energies are introduced later on.
Let

X1 ª hc P H0
1,2sV;R4dic P S almost everywherej,

X2 ª H1,2sV;Rd.

Since we havesclassicald Dirichlet boundary conditions for the equations of conservation of mass,
we consider the space of test functions,

Yª H0
1,2sV;R4d

and its dual

D ª sH0
1,2sV;R4dd8 = H−1,2sV;R4d.

Let us now consider the mappingLsmd :Y→D corresponding tom°−divsL¹md with Dirichlet
boundary conditions, defined by

Lsmdszd ª E
V

L ¹ m: ¹ z.

To simplify the argumentation later we will need the inverseG of L. The existence ofG is derived
from the Poincaré inequality and the Lax-Milgram theorem, sinceL is positive definite. From this
we find thatG is positive definite, self-adjoint, injective, and compact. Hence we have

sL ¹ Gv, ¹ zdL2 = sz,vd for all z P Y andv P D.

We define forv1, v2PD the L scalar product by

sv1,v2dL ª sL ¹ Gv1,L ¹ Gv2dL2

with the corresponding norm

iviL ª
Îsv,vdL.

FunctionsvPY canonically define an element inY and consequentlys· , ·dL and i ·iL are as well
defined for elements inY.

With the help of Young’s inequality we find ford.0 and alldPY,

idiL2 = sL ¹ Gd, ¹ ddL2 ø iL1/2 ¹ GdiL2iL1/2 ¹ diL2 ø
CL

d
idiL

2 + di ¹ diL2
2 , s44d

whereCL is a positive constant depending onL.
The Green’s functionG allows to rewrite the conservation of mass equations as

Gs]tc − rsc,xdd = m ª S ]f

]cj
D

1ø jø4
. s45d

VIII. THE WEAK FORMULATION OF THE PROBLEM

We call a triple sc,m ,xdPL2s0,T0;H0
1,2sV ;R4dd3L2s0,T0;H0

1,2sV ;R4dd
3L2s0,T0;H1,2sV ;Rdd with rsc,xd, vsc,xdPL1sVT0

d a weak solutionof s42d if
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−E
VT0

]tj · sc − c0d +E
VT0

L ¹ m: ¹ j −E
VT0

rsc,xdj = 0 s46d

for all jPL2s0,T0;H0
1sV ;R4dd with ]tjPL2sVT0

d, jsT0d=0, and

E
VT0

m · h =E
VT0

S ]f

]c
scd · h + l ¹ c · ¹ hD s47d

for all hPL2s0,T0;H0
1sV ;R4ddùL`sVT0

;R4d, and

−E
VT0

t]tzsx − x0d +E
VT0

g ¹ x · ¹ z −E
VT0

vsc,xdz = 0 s48d

for all zPL2s0,T0;H1sV ;Rdd with ]tzPL2sVT0
d, zsT0d=0.

IX. A SEMI-IMPLICIT TIME DISCRETIZATION

We fix an M PN and sethªT0/M. For mù1 and givenscm−1,mm−1,xm−1dPH0
1,2sV ;R4d

3H0
1,2sV ,R4d3H1,2sV ;Rd,

cm − cm−1

h
= divsL ¹ mmd + rscm−1,xm−1d,

mm =
]f

]c
scm,xmd − lDcm, s49d

t
xm − xm−1

h
= gDxm + vscm,xmd

defines the implicit time discretization of systems42d except for the reaction termr that has been
treated explicitly. Therefore, we call the resulting scheme semi-implicit. Ins49d, vsc,xd
=]xfsc,xd and for the subsequent sections, letrm−1

ª rscm−1,xm−1d.

X. STRUCTURAL ASSUMPTIONS

In order to be able to establish the existence of weak solutions in the sense of Sec. VIII, the
following assumptions are made.

sA1d V,RD is a bounded domain with Lipschitz boundary.
sA2d The free energy densityf can be written as

fsc,xd = f1sc,xd + f2sc,xd for all c P R4, x P R

with f1, f2PC1sR43R ;Rd and f1s· ,xd convex for everyxPR, f1sc, ·d convex for everycPR4.
Furthermore, we have the following:

sA2.1d f1ù0.
sA2.2d There exists a constantC1.0 such that

u]cf
2sc,xdu ø C1sucu + 1d for all c P S,x P R,

u]xf2sc,xdu ø C1suxu + 1d for all c P S,x P R.

sA2.3d For all d.0 there exists a constantCd.0 such that

u]cf
1sc,xdu + u]xf1sc,xdu ø df1sc,xd + Cd for all c P S, x P R.
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sA3d The initial datasc0,x0d fulfills

fsc0,x0d , `, vsc0,x0d , `.

sA4.1d The diffusion tensorL is symmetric and positive definite.
sA4.2d g.0 is a constant, 0,l,l0 where l0 is a small constant such that the estimate

]tFø0 is valid.
sA5d The reaction termr is chosen in correspondence tof such that

E
V

m · r ø 0. s50d

sA6d The coefficientsai .0 satisfy conditions40d. Furthermore 0,kø1, k.0 and 0,b1,
b2ø1. The initial valuesc0 of c andk, b1, b2 fulfill fcompare withs39dg.

k1/maxsb1,b2d ,
s2

2

s1s3
. s51d

By assumptionsA2d any polynomial growth is allowed forf1, whereas exponential growth is
not. For the nonconvex part, sublinear growth of]cf

2 in c and]xf2 in x is prescribed.
If we approximate a logarithmic free energy functionf by a polynomial, we also must replace

the reaction term by a suitable approximation. This is the gist ofsA5d. In Sec. XV it is shown how
a suitabler can be constructed for approximationsfd of f.

If one choosesl.0 small enough, one can guarantee]tFscstd ,xstddø0 because then the term
with the possibly wrong signlDcr1 can be compensated bysa1−2a2+a3dQscdr1scd,0. From
now on we assume without further stating that the assumptionssA1d–sA6d hold.

XI. EXISTENCE OF SOLUTIONS TO THE TIME DISCRETE SCHEME

For the treatment of the diffuse interface model we introduce the energy functional

Fsc,xd ª E
V

S fsc,xd +
l

2
u ¹ cu2 +

g

2
u ¹ xu2D . s52d

Additionally, for each time stepm in the semi-implicit time discretizations49d, given step size
h.0 and givenscm−1,xm−1d we define the discrete energy functional

Fm,hsc,xd ª Fsc,xd +
1

2h
ic − cm−1 − hrm−1iL

2 +
t

2h
ix − xm−1iL2

2 . s53d

Lemma 1: Letscm−1,xm−1dPX13X2 be given. Then for0,h,minht /2C1,l /8C1
2CLj the

functional Fm,h possesses a minimizer in X13X2.
Proof: We will show thatFm,h is coercive and weakly lower semicontinuous. Using assump-

tions sA2.1d and sA2.2d we find

Fm,hsc,xd

ù
l

2
i ¹ ciL2

2 +
g

2
i ¹ xiL2

2 − C1siciL2
2 + ixiL2

2 d − C +
1

2h
sic − cm−1 − hrm−1iL

2 + tix − xm−1iL2
2 d

ù Sl

2
− dC1Di ¹ ciL2

2 + S 1

2h
−

C1CL

d
Dic − cm−1 − hrm−1iL

2 +
g

2
i ¹ xiL2

2

3S t

2h
− C1Dix − xm−1iL2

2 − C,

where in the second estimates44d was used andC=Cscm−1,xm−1,rd. Now, for 0,h
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,minht /2C1,l /8C1
2CLj by choosingd=l /4C1, we conclude with the help of the Poincaré in-

equality thatFm,h is coercive onX13X2. Let

dª infhFm,hsc,xduc P X1, x P X2j, d , `.

If we now consider a minimizing sequencescl ,xldlPN,X13X2 with Fm,hscl ,xld→d, the coerciv-
ity of Fm,h implies the boundedness ofscl ,xld uniformly in l. Passing to a subsequence if neces-
sary, by the reflexivity ofX13X2 we may assume

scl,xld → sc,xd P X1 3 X2 for l → `

and by Rellich’s theorem or Sobolev’s imbedding theorem,

scl,xld → sc,xd P L2sV,R4d 3 L2sV,Rd for l → `

and scl ,xld→ sc,xd a.e. inV.
To verify the weak lower semicontinuity ofFm,h in X13X2 we first remark that this is true for

all convex terms. ForeVf1sc,xd this follows from assumptionsA2d and foreVf2sc,xd from sA2.2d
and the dominated convergence theorem of Lebesgue. This impliesFm,hsc,xd
ø lim inf l→` Fm,hscl ,xld. j

Lemma 2: The minimizerscm,xmd of Fm,h fulfills

E
V

cm − cm−1

h
· j +E

V

L ¹ mm: ¹ j =E
V

rm−1j for all j P Y, s54d

E
V

sl ¹ cm · ¹ h + ]cfscm,xmd · hd =E
V

mm · h for h P Y ù L`sV;R4d, s55d

E
V
Ft

xm − xm−1

h
+ vscm,xmdGz +E

V

g ¹ xm · ¹ z = 0 for z P H1sVd. s56d

Here,

mm = GScm − cm−1

h
− rm−1D .

Proof: We choose directionsjPYùL`sV ;R4d, zPX2ùL`sV ;Rd and determine the varia-
tions ofFm,hsc,xd with respect toc andx for j, z. We start with the variation with respect toc, i.e.,

lim
s→0

ssFm,hscm + sj,xmd − Fm,hscm,xmdds−1d. s57d

Since f1 is convex inc, we have

f1scm,xmd ù f1scm + sj,xmd − s]cf
1scm + sj,xmd · j.

This implies

f1scm + sj,xmd ø f1scm,xmd + us]cf
1scm + sj,xmduijiL` ø f1scm,xmd + usuf1scm + sj,xmdijiL` + Cusu.

The last is by assumptionsA2.3d with d=1. Hence, fors small enough,

U f1scm + sj,xmd − f1scm,xmd
s

U ø Csf1scm,xmd + 1d.

AssumptionsA2.2d and Lebesgue’s dominated convergence theorem imply
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lim
s→0

1

sSEV

fscm + sj,xmd − fscm,xmdD =E
V

]cfscm,xmd · j.

The variation of the quadratic formc° s1/2hdicm−cm−1−hrm−1iL
2 yields

lim
s→0

fs−1s2hd−1sicm + sj − cm−1 − hrm−1iL
2 − icm − cm−1 − hrm−1iL

2dg

= Scm − cm−1 − hrm−1

h
,jD

L
= SGScm − cm−1

h
− rm−1D,jD

L2
= smm,jdL2

and finally

l

2
lim
s→0

hs−1fs¹sc + sjd, ¹ sc + sjddL2 − s¹c, ¹ cdL2gj = ls¹c, ¹ jdL2 = − lsDc,jdL2.

Hence we obtains54d. The equalitys55d follows becausescm,xmd is a minimizer and thus the
variation ins57d is 0. To derives56d, we consider the variation ofFm,hscm,xmd with respect tox.
As before,

lim
s→0

fts−1s2hd−1sixm + sz − xm−1iL2
2 − ixm − xm−1iL2

2 dg = St
xm − xm−1

h
,zD

L2
.

It remains to prove

lim
s→0

E
V

sfscm,xm + szd − fscm,xmdd =E
V

]xfscm,xmdz.

This limit can be justified in the same way ass57d and identitys56d follows. j

XII. UNIFORM ESTIMATES

In the preceding sections we proved the existence of a discrete solutionscm,mm,xmd for 1
ømøM and arbitraryM PN. We define the piecewise constant extensionscM ,mM ,xMd of
scm,mm,xmd1ømøM by

scMstd,mMstd,xMstdd ª scM
m,mM

m,xM
md ª scm,mm,xmd for t P ssm− 1dh,mhd

andcMs0d=c0, xMs0d=x0, mMs0d obtained from Eq.s55d.
The piecewise linear extensionsc̄M ,m̄M ,x̄Md for t=fbm+s1−bdsm−1dgh with appropriateb

P f0,1g is given by the interpolation

sc̄M,m̄M,x̄Mdstd ª bscM
m,mM

m,xM
md + s1 − bdscM

m−1,mM
m−1,xM

m−1d.

Lemma 3: For sufficiently small h the following a priori estimates are valid.

sad For all M PN and all tP f0,T0g we have the dissipation inequality

FscM,xMdstd +
1

2
E

Vt

sL ¹ mM: ¹ mM + u]txMu2d ø Fsc0,x0d.

sbd There exists a constant C.0 such that

sup
0øtøT0

hicMstdiH1 + ixMstdiH1j ø C, s58d

sup
0øtøT0

E
V

f1scMstd,xMstdd + i ¹ mMiL2sVT0
d + i]txMiL2sVT0

d ø C. s59d
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Proof: The idea of the proof is to use the decay oft°Fscstd ,xstdd. Here, a modification of the
standard proof becomes necessary which reveals that the treatment of the reaction term ins49d is
natural.

As scm,xmd is minimizer ofFm,h,

Fscm,xmd +
1

2h
icm − cm−1 − hrm−1iL

2 +
t

2h
ixm − xm−1iL2

2
ø Fscm−1 + hrm−1,xm−1d. s60d

A direct calculation yields

1

2h
icm − cm−1 − hrm−1iL

2 =
h

2
s¹mm,L ¹ mmdL2.

To bring the right-hand side ofs60d in a form suitable for recursion, we remark that for sufficiently
small h,

Fscm−1 + hrm−1,xm−1d ø Fscm−1,xm−1d.

This is equivalent to

Fscm−1 + hrm−1,xm−1d − Fscm−1,xm−1d
h

ø 0 for all h . 0.

By Lebesgue’s dominated convergence theorem, a sufficient condition for the last inequality is
]cFscm−1,xm−1d ·rm−1ø0 which holds due tosA5d.

By iterating s60d with the estimated right-hand side, we find

FscM
m,xM

md +
1

2
E

0

mh

ss¹mM
m,L ¹ mM

mdL2 + s]txM
m,]txM

mdL2ddt ø Fsc0,x0d.

Using the assumptions and with the help of the Poincaré inequality this proves the lemma.j

We extendcM by the initial valuec0 of c for tP s−h,0g. Now, for the linear interpolationc̄M

of cM
m, the Euler–Lagrange equations54d can be rewritten as

E
V

]tc̄Mstd · j +E
V

L ¹ mMstd: ¹ j =E
V

rscMst − hd,xMst − hdd · j for all j P Y s61d

which holds for almost alltP s0,T0d. Together with the uniform estimates of Lemma 3,s61d
allows to show compactness in time.

Lemma 4: There exists a constant C.0 such that for all t1, t2P f0,T0g,

ic̄Mst2d − c̄Mst1diL2 ø Cut2 − t1u1/4.

Furthermore, there is a subsequencescMdMPN and a subsequencesmMdMPN with N,N and there
are cPL`s0,T0;Yd, mPL2s0,T0;Yd such that

sid c̄M→c in C0,asf0,T0g ;L2sV ;R4dd for all aP s0, 1
4

d,
sii d cM→c in L`s0,T0;L2sV ;R4dd,
siii d cM→c almost everywhere inVT0

,

sivd cM⇀* c in L`s0,T0;H0
1sV ;R4dd,

svd mM⇀m in L2s0,T0;H0
1sV ;R4dd

asM PN tends to infinity.
Proof: We test Eq.s61d with jª c̄Mst2d− c̄Mst1d, wheret1, t2P f0,T0g with t1, t2. After inte-

gration in time fromt1 to t2, we obtain
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ic̄Mst2d − c̄Mst1diL2
2 +E

t1

t2E
V

L ¹ mMstd: ¹ sc̄Mst2d − c̄Mst1dddt

=E
t1

t2E
V

rscMst − hd,xMst − hddsc̄Mst2d − c̄Mst1dddt.

ThecM
m are uniformly bounded inY, therefore the linear interpolantsc̄M are uniformly bounded in

L`s0,T0;Yd. Thus we obtain

ic̄Mst2d − c̄Mst1diL2
2

ø Cic̄MiL`sH1dE
t1

t2

si ¹ mMstdiL2 + irscMst − hd,xMst − hddiL2ddt

ø Cic̄MiL`sH1dfst2 − t1d1/2i ¹ miL2sVT0
d + st2 − t1dirscM,xMdiL`sL2dg.

Employing thea priori estimatess58d and s59d we have shown

ic̄Mst2d − c̄Mst1diL2 ø Cut2 − t1u1/4 for all t1,t2 P f0,T0g

for a positive constantC. This is the equicontinuity ofsc̄MdMPN. The boundedness ofsc̄Md in
L`s0,T0;H0

1,2sVdd and the fact thatH1 is compactly imbedded inL2 yields sid as a consequence of
the Arzelà–Ascoli theorem. The claimssii d, siii d, andsivd follow exactly as in Ref. 7. We choose
for tP f0,T0g valuesmP h1, . . . ,Mj and bP f0,1g such thatt=fbm+s1−bdsm−1dgh. From the
definition of c̄ we get at once

ic̄Mstd − cMstdiL2 = ibcM
m + s1 − bdcM

m−1 − cM
miL2 = s1 − bdicM

m − cM
m−1iL2 ø Ch1/4.

This tends to zero asM becomes infinite. With the help ofsid, this provessii d. Since for a
subsequence we have convergence almost everywhere,siii d is proved, too. Claimsivd is a direct
consequence of estimates58d which gives the boundedness ofcM in L`s0,T0;Yd.

For the proof ofsvd we notice that due to estimates59d, the s¹mMd are uniformly bounded in
L2sVT0

d. By the Poincaré inequality thesmMd are uniformly bounded inL2s0,T0;H0
1sVdd. With the

Banach–Alaoglu theoremsvd follows. j

Lemma 5: For a suitable subsequenceN,N, we have

sid x̄M→x in C0,asf0,T0g ;L2sVdd for all aP s0, 1
2

d,
sii d xM→x in L`s0,T0;L2sVdd,
siii d xM→x almost everywhere inVT0

,

sivd xM⇀* x in L`s0,T0;H1sVdd,
svd ]cfscM ,xMd→]cfsc,xd in L1sVT0

d,
svid ]xfscM ,xMd→]xfsc,xd in L1sVT0

d

as MPN tends to infinity.
Proof: Similar to Eq.s61d we can reformulate identitys56d to

tE
V

]tx̄Mstdz +E
V

g ¹ xMstd · ¹ z +E
V

vscMstd,xMstddz = 0 for all z P H1sVd s62d

which holds for almost alltP f0,T0g.
We tests62d with zª x̄Mst2d− x̄Mst1d, wheret1, t2P f0,T0g, t2. t1. After integration in time

from t1 to t2 we get
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tix̄Mst2d − x̄Mst1diL2
2 +E

t1

t2E
V

g ¹ xMstd · ¹ sx̄Mst2d − x̄Mst1dddt +E
t1

t2

vscMstd,xMstddsx̄Mst2d

− x̄Mst1dddt = 0.

From the uniform boundedness ofx̄M in L`s0,T0;H1sVdd and inL`sVT0
d we obtain

E
t1

t2E
V

g ¹ xMstd · ¹ sx̄Mst2d − x̄Mst1dddt ø cix̄MiL`sH1dE
t1

t2

i ¹ xMstdiL2dt,

E
t1

t2

vscMstd,xMstddsx̄Mst2d − x̄Mst1dddt ø cix̄MiL`sVT0
dE

t1

t2

vscMstd,xMstdddt.

With the continuity ofv, these estimates imply

ix̄Mst2d − x̄Mst1diL2 ø Cut2 − t1u1/2 for all t1,t2 P f0,T0g

and exactly as in Lemma 4 this yields statementssid–sivd.
In order to provesvd and svid, we first notice that by assumptionsA2d, ]cf and ]xf are

continuous functions. Hence, bysiii d and Lemma 4siii d,

]cfscM,xMd → ]cfsc,xd almost everywhere inVT0
,

]xfscM,xMd → ]xfsc,xd almost everywhere inVT0
.

The growth condition of assumptionsA2.3d on f1 now yields that for arbitraryd.0 and all
measurableE,V,

E
E

u]cf
1scM,xMdu ø dE

E

f1scM,xMd + CduEu ø dC + CduEu.

Therefore,eEu]cf
1scM ,xMdu→0 as uEu→0 uniformly in M and by Vitali’s theorem,f1scM ,xMd

→ f1sc,xd in L1sVT0
d as M PN tends to infinity. The same result forf2 follows directly from

sA2.2d and the dominated convergence theorem of Lebesgue. The proof of]xfscM ,xMd
→]xfsc,xd exploiting sA2.3d and sA2.2d is similar. j

XIII. GLOBAL EXISTENCE OF SOLUTIONS FOR POLYNOMIAL FREE ENERGY

We are now in the position to state one of the main results.
Theorem 1: Let the assumptions of Sec. X hold. Then, there exists a weak solutionsc,m ,xd of

the diffuse interface equations in the sense of (46)–(48) such that

sid cPC0,1/4sf0,T0g ;L2sV ;R4dd,
sii d ]tcPL2s0,T0; sH0

1sV ;R4dd8d,
siii d xPC0,1/2sf0,T0g ;L2sVdd,
sivd ]txPL2s0,T0; sH0

1sVdd8d.

Proof: We are going to prove thatsc,m ,xd introduced in Lemmata 4 and 5 is the desired weak
solution in the sense ofs46d–s48d. From Eq.s61d we learn

−E
VT0

]tjsc̄M − c0d +E
VT0

L ¹ mM: ¹ j +E
VT0

rscM,xMd = 0

for all jPL2s0,T0;Yd with ]tjPL2sVT0
d andjsT0d=0. Passing to the limitM→` together with

Lemma 4 this impliess46d. Now we shows47d. From s55d we see
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E
V

l ¹ cM · ¹ h + ]cfscM,xMd · h =E
V

mM · h for all h P Y ù L`sV;R4d.

The convergence of

E
V

lcM · ¹ h → E
V

lc · ¹ h

asM→` is clear by linearity and the convergence

E
V

]cfscM,xMd · h → E
V

]cfsc,xd · h

is again evident by Vitali’s theorem similar to the proof of Lemma 5 by using the almost every-
where convergence ofcM and xM, the growth conditionsA2.3d, estimates59d on f1 and the
boundedness ofh.

In the same way, we obtains48d from s62d. j

XIV. UNIQUENESS OF THE DIFFUSE INTERFACE MODEL

To show uniqueness ofs42d, we use an integration in time method. The proof requires the
validity of the free energy inequality and the validity ofsA6d.

Theorem 2: The solutionsc,m ,xd of the diffuse interface equations obtained in Theorem 1 is
unique in the spaces stated in this theorem.

Proof: Assume thatsci ,xi ,mid, i =1,2 are twosolutions of systems42d. Now, let cªc2−c1,
xªx2−x1, mªm2−m1, rª rsc2,x2d−rsc1,x1d, vª]xfsc2,x2d−]xfsc1,x1d. The difference
sc,x ,md solves the weak formulation

−E
VT0

]tj ·c +E
VT0

L ¹ m: ¹ j −E
VT0

r · j = 0, s63d

E
VT0

fs]cfsc2,x2d − ]cfsc1,x1dd · h + l ¹ c · ¹ hg =E
VT0

m · h, s64d

−E
VT0

t]tzx +E
VT0

g ¹ x · ¹ z −E
VT0

v · z = 0. s65d

For givenhPL2s0,T0;H0
1sV ,R4dd and t0P s0,T0d we define

js·,td ª 5Et

t0

hs·,sdds if t ø t0,

0 if t . t0.
6 s66d

Using this test function ins63d we find after integration by parts in time

0 =E
Vt0

c · h +E
Vt0

L ¹ m: ¹ SE
t

t0

hssddsD −E
Vt0

r ·SE
t

t0

hssddsD
=E

Vt0

c · h +E
Vt0

L ¹ SE
0

t

mssddsD: ¹ h −E
Vt0

SE
0

t

rssddsD · h. s67d

This implies
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GSc −E
0

t

rssddsD = −E
0

t

mssdds and]tGSc −E
0

t

rssddsD = − m.

By choosinghªm in s67d we obtain

0 =E
Vt0

c · m +E
Vt0

L ¹ SGSE
0

t

rssdds− cDD: ¹ S]tGSE
0

t

rssdds− cDD −E
Vt0

SE
0

t

rssddsD · m

and consequently

0 =E
Vt0

c · m +E
V

L ¹ GSE
0

t0

rssdds− cst0dD: ¹ GSE
0

t0

rssdds− cst0dD −E
Vt0

SE
0

t

rssddsD · m.

s68d

In Eq. s64d we test withhªxf0,t0gc. Hence we have

E
Vt0

c · m =E
Vt0

lu ¹ cu2 + s]cfsc2,x2d − ]cfsc1,x1dd ·c. s69d

From s68d and s69d we learn

ISE
0

t0

rD − cst0dI
L

2

+E
Vt0

lulcu2 −E
Vt0

SE
0

t

rssddsD · m = −E
Vt0

s]cfsc2,x2d − ]cfsc1,x1dd ·c.

s70d

From the free energy estimate we infer that if conditionss40d and s51d and sA4.2d hold si.e., if
l,l0d, then

E
Vt0

SE
0

t

rssddsD · m ø 0. s71d

This holds because rstd ·mstd=r1stdsm1std−2m2std+m3stdd and sm1std−2m2std+m3stdd,0,
e0

Lrssddsù r1std.0 for almost everytPVT0
, see Sec. V. Therefore we obtain as a consequence of

s70d

lE
Vt0

u ¹ cu2 ø −E
Vt0

s]cfsc2,x2d − ]cfsc1,x1dd ·c. s72d

In s65d we choose the test functionXf0,t0gx analogous tos66d. This leads to

t

g
E

Vt0

xh +E
Vt0

¹ SE
0

t

xssddsD: ¹ hstd −
1

g
E

Vt0

hstdE
0

t

vssdds= 0. s73d

This implies because ofxs0d=0,

s− Dd−1S t

g
x −

1

g
E

0

t

vssddsD = −E
0

t

xssdds,

]ts− Dd−1S t

g
x −

1

g
E

0

t

vssddsD = − xstd.

We sethªx in s73d. As in the treatment of Eq.s63d this yields
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0 = gtE
Vt0

uxu2 + Itxst0d − SE
0

t0

vssdDI
L2

2

− gE
Vt0

xstdE
0

t

vssdds

and consequently with Young’s inequality

tE
Vt0

uxu2 ø dE
Vt0

uxu2 +
C

d
E

Vt0

SE
0

t

vssddsD2

. s74d

Now we adds72d and s74d and find

lE
Vt0

u ¹ cu2 + tE
Vt0

uxu2 ø dCE
Vt0

sucu2 + uxu2d +
C

d
E

Vt0

SE
0

t

vssddsD2

+ u]cfsc2,x2d − ]cfsc1,x1du2.

For d small the first integral on the right-hand side can be absorbed on the left. As

u]cfsc2,x2d − ]cfsc1,x1du2 + u]xfsc2,x2d − ]xfsc1,x1du2 ø C0sucu2 + uxu2d,

where C0 depends on the Lipschitz constant of]cf and ]xf, we find at last by exploiting the
Poincaré inequality

E
Vt0

su ¹ cu2 + uxu2d ø CE
Vt0

su ¹ cu2 + uxu2d +E
0

t E
Vt0

su ¹ cu2 + uxu2d.

With Gronwall’s inequality this finally meansc=x=0 in Vt0
and with s64d m=0 in Vt0

. By
repeating the argument, ast0.0, this holds in the whole ofVT0

. j

XV. LOGARITHMIC FREE ENERGY

In the following four sections we are going to extend Theorem 1 to logarithmic free energies.
The results will in particular be taylor made for the free energy functional considered in definition
s8d,

fsc,xd = xb1o
j=1

4

cj ln cj + s1 − xdb2o
j=1

4

cj ln cj + o
i=1

3

ciEi + So
j=1

4

a jcjD2

+ TWsxd. s75d

We will use the statements proved for polynomial free energies that can be regarded as a Taylor
expansion.

For the proof of 0,cj ,1, 1ø j ø4, we approximatef for d.0 by somefd that fulfills the
requirements of Sec. X and find suitablea priori estimates that put us in the position to pass to the
limit d→0.

The logarithmic form of the free energy guarantees that the concentration vectorc lies inside
the transformed Gibbs simplex,

Gª S ù hc P R4ucj ù 0 for 1ø j ø 4j

and thatxP s0,1d. Thereforesc,xd is physically meaningful.
The assumptionssA2d and sA3d of Sec. X are replaced by the following:
sA28d f is of the forms75d with constantsa j .0, b1.0, b2.0, T.0.
sA38d The initial valuesc0PX1, x0PX2 fulfill c0PG, xP f0,1g almost everywhere and

E
V

c0l . 0 for 1ø l ø 4, E
V

x . 0, E
V

s1 − xd . 0.

sA68d Additional to the conditions insA6d we demand
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k1/maxsb1,b2d ,
1

e2 . s76d

The assumptionssA1d and sA4d remain unchanged and continue to hold.
To proceed, we define ford.0 the convex function

csdd ª d ln d

and ford.0 its regularizationsdefined fordPRd

cdsdd ª 5d ln d for d ù d,

d ln d −
d

2
+

d2

2d
for d , d.6

The regularized free energy functional is defined such thatcdPC2 and the derivativescdd8 is
monotone increasing. This ansatz goes back to Ref. 5.

The free energy of the regularizedd-problem is found by replacingoici ln ci by oic
dscid in

s26d. Since the convex combination

f̄sc,xd ª xf1scd + s1 − xdf2scd

would define a nonconvex functional inc if x¹ f0,1g, we consider the following penalization
ffd= f1,d+ f2, see assumptionsA2dg:

f1,dsc,xd ªHxb1o
j

cdscjd + s1 − xdb2o
j

cdscjd + Tfcdsxd + cds1 − xdg if x P s0,1d,

+ ` else,
J

f2sc,xd ª So
j=1

4

a jcjD2

.

Due to the expressioncdsxd+cds1−xd in the definition offd it is obvious that every minimizerx
fulfills 0 ,x,1. This is proved rigorously in Lemma 8.

It can be easily checked that the functionalFm,h of Sec. XI still has a minimizerscm,xmd for
everym and sufficiently smallh. For xP s0,1d, f1,d is still continuously differentiable. Sincef1,d,
f2 fulfill the assumptions of Sec. X the earlier existence results can be carried over.

The regularizationfd of f also implies thatvscd ,xdd=]xfdscd ,xdd depends ond and therefore
we will replacevscm,xmd in the implicit time discretizations49d by vdscm,xmd and the weak
formulation s48d by

−E
VT0

t]tzsxd − x0d +E
VT0

g ¹ xd · ¹ z −E
VT0

vdscd,xddz = 0 s77d

for all zPL2s0,T0;H1sV ;Rdd with ]tzPL2sVT0
d, zsT0d=0. Later we will show thatvdscd ,xdd

→vsc,xd in L1sVT0
d asd↘0.

The only assumption that needs further clarification issA5d. In order to verifys50d, we must
construct an approximationrd=sr1

d ,−r1
d ,r1

d ,0d of r and must check that

E
V

kBTbxFscdd8sc1d − 2scdd8sc2d + scdd8sc3d +
E1 − 2E2 + E3

kBTbx
Gr1

d ø 0.

We claim that a good choice forr1
d is
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r1
dsc,xd ª k1/bxsmaxsc2,dd2 − k1/bx maxsc1,ddmaxsc3,ddd. s78d

To illustrates78d, let us consider three characteristic cases.
Case 1: c1ùd, c2ùd, c3ùd. Apparentlyrd=r, ands50d follows verbatim as in the proof of

the free energy inequality in Sec. V.
Case 2: c1,d, c2ùd, c3ùd. From the definition ofcd we find that we must estimate

E
V

kBTbxSln d +
c1

d
− 2 ln c2 − 2 + lnc3 + 1 +

E1 + E3 − 2E2

kBTbx
Dr1

d

=E
V

kBTbxFlnSdc3k1/bx

c2
2 D +

c1

d
− 1Gr1

d.

The estimate follows now fromflnsdc3k1/bxd−lnsc2
2dgr1

d,0 and because ofsc1/dd−1,0 and r1
d

=k1/bxsc2
2−k1/bxdc3d.0 for d sufficiently small. We emphasize that we needr1

d.0 in order to have
eVsa1−2a2+a3dQscddr1

d,0 which allows to compensate the surface energy term for sufficiently
small l.

Case 3: c1,d, c2,d, c3,d. Here we must estimate

E
V

kBTbxFlnSd2

d2D +
c1

d
− 2

c2

d
+

c3

d
+

E1 − 2E2 + E3

kBTbx
Gr1

d.

We observer1
d=k1/bxd2s1−k1/bxd.0 due to assumptionsA6d. Finally

E
V

SE1 − 2E2 + E3

kBTbx

+
c1 − 2c2 + c3

d
D ø E

V

flnsk1/bxd + 2g , 0

if k satisfiess76d. The remaining cases can be treated similar to case 2.

XVI. UNIFORM ESTIMATES

The following lemma was first stated and proved in Elliott and Luckhaus5 for logarithmic free
energies typical for the Cahn–Hilliard system.

Lemma 6: Ford0=1/e there exists a K.0 such that for alldP s0,d0d,

fdsc,xd ù − K for all c P S, x P f0,1g.

Proof: For d0,1/e one hascdsddù−1/e for all d,d0. As bl, T.0, the proof is complete.j

Lemma 7: (a) FordP s0,d0d there exists a weak solutionscd ,md ,xdd of (42) with a logarith-
mic free energy that satisfies (A28)–(A68) in the sense of Sec. VIII with (48) replaced by (77).

(b) There exists a constant C.0 independent ofd such that for alldP s0,d1d with some
constantd1ød0

sup
tPf0,T0g

hicdstdiH1 + ixdstdiH1j ø C,

sup
tPf0,T0g

E
V

f1,dscdstd,xdstdd + i ¹ mdiL2sVT0
d ø C

and

icdst2d − cdst1diL2 ø Cut2 − t1u1/4,

ixdst2d − xdst1diL2 ø Cut2 − t1u1/2

for all t1, t2P f0,T0g.
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(c) One can extract subsequencesscdddPR, smdddPR andsxdddPR whereR, s0,d1d is a count-
able set with zero as the only accumulation point such that

sid cd→c in C0,asf0,T0g ;L2sV ;R4dd for all aP s0, 1
4

d,
sii d cd→c almost everywhere inVT0

,

siii d cd⇀* c in L`s0,T0;H0
1sV ;R4dd,

sivd xd→x in C0,asf0,T0g ;L2sVdd for all aP s0, 1
2

d,
svd xd→x almost everywhere inVT0

and 0øxd, xø1 a.e. inVT0
,

svid xd⇀* x in L`s0,T0;H1sVdd,
svii d md⇀m in L2s0,T0;H0

1sV ;R4dd

as dPR tends to zero.
Proof: Using Lemma 6, the regularized problem satisfies the assumptions of Sec. X and by

Theorem 1, a weak solution for fixeddP s0,d0d exists. This provessad. The estimates insbd are a
direct consequence of Lemma 3 and Lemma 4, where due to assumptionsA4.2d we must choose
d small enough for Lemma 3 to hold. From Lemma 3, it follows thatFdsc0,x0d does not depend
on d, hence the constant on the right-hand side does not depend ond. scd is proved by Lemmata
4 and 5. j

XVII. HIGHER INTEGRABILITY FOR THE LOGARITHMIC FREE ENERGY

Sincewd
ª scdd8 will be singular asd→0 we introduce forr .0

wr
dsdd ª Hwdsdduwdsddur−1 if wdsdd Þ 0,

0 if wdsdd = 0.
J

By definition, wr
dPC0sRd.

For 0, r ,1, wr
d is not differentiable at the zero point ofwd. To overcome this difficulty, for

%.0 introduce the functionwr
d,% with wr

d,%=wr
d in R \ f0,1g and definewr

d,% in f0, 1g such thatwr
d,%

is a C1 function, monotone increasing andwr
d,%→wr

d in C0sRd as%↘0.
For the approximation ofwdsxdd in the modified Allen–Cahn equation it is more suitable to

introduce the Dirac sequence

wd,«sxd ª swd p J«dsxd ª «−DE
RD

wdsxdJssx − yd/«ddy,

where the kernalJPC`sB1s0dd is a positive smooth polynomialfsee assumptionsA2dg. As is well
known, wd,«PC` andwd,«→wd in LpsVd as«↘0 for anypù1.

Even though by construction 0,xd,1 almost everywhere, it might still happen that for the
limit the setshxPV uxsxd=0j and hxPV uxsxd=1j have nonzero Lebesgue measure and that the
entropic terms in the free energy density become singular. Now we will show that this is not the
case.

Lemma 8: There exists a constant C.0 such that for alldP s0,d0d,

sid iwdscl
ddiLqsVT0

døC for a suitable q.1 and all 1ø l ø4,

sii d iwdsxdd+wds1−xddiL2sVT0
døC.

Proof: The weak formulations47d for the generalized chemical potential is
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E
VT0

md · h =E
VT0

Hlo
l=1

4

¹ cl
d · ¹ hl + 2Falo

j=1

4

a jcj
dG

1ølø4

· h + o
l=1

3

ElhlJ
+E

VT0

sxdb1 + s1 − xddb2dfwdscl
ddg1ølø4 · h s79d

for all hPL2s0,T0;H1sV ;R4ddùL`sVT0
,R4d. We choosehª fwr

d,%scl
ddg1ølø4 in s79d which is an

admissible test function because of the Sobolev imbedding theorem and becausewr
d,%PC1. We

obtain

E
VT0

o
l=1

4

ml
dwr

d,%scl
dd = +E

VT0

o
l=1

4

wr
d,%scl

ddS2alo
j=1

4

a jcj
d + ElD +E

VT0

lo
l=1

4

¹ cl
d · ¹ wr

d,%scl
dd

+E
VT0

o
l=1

4

sxdb1 + s1 − xddb2dwdscl
ddwr

d,%scl
dd.

In the last formula we set for simplicityE4ª0. Due toswr
d,%d8ù0 we find

E
VT0

lo
l=1

4

¹ cl
d · ¹ wr

d,%scl
dd ù 0.

This implies

E
VT0

o
l=1

4

sxdb1 + s1 − xddb2dswdscl
dddwr

d,%scl
dd

ø E
VT0

o
l=1

4

ml
dwr

d,%scl
dd −E

VT0

o
l=1

4

wr
d,%scl

ddS2alo
j=1

4

a jcj + ElD
ø C max

1ølø4
iwr

d,%scl
ddiL2sVT0

dsimdiL2sVT0
d + icdiL2sVT0

dd

where the constantC in the last line depends ona1, . . . ,a4 and onE1, . . . ,E3. For %↘0 employ-
ing Lemma 6 and Lemma 7 this proves

E
VT0

o
l=1

4

sxdb1 + s1 − xddb2dwdscl
ddwr

dscl
dd ø C. s80d

A direct computation finally yields

E
VT0

o
l=1

4

sxdb1 + s1 − xddb2dswdscl
dddwr

dscl
dd ù E

VT0

max
1ølø4

sxdb1 + s1 − xddb2duwdscl
ddur+1

ù E
VT0

C max
1ølø4

uwdscl
ddur+1

for a constantC=Csb1,b2d. The last is possible becausexdb1+s1−xddb2.0 almost everywhere in
VT0

. Together withs80d this provessid.
Next we consider the weak formulations77d,
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−E
VT0

t]tzsxd − x0d +E
VT0

g ¹ xd · ¹ z −E
VT0

sb2 − b1do
j=1

4

cdscj
ddz +E

VT0

Tswdsxdd + wds1 − xdddz

= 0 s81d

of the Allen–Cahn equation. We want to test Eq.s81d with zªwd,«sxd+wd,«s1−xd. Since by
Theorem 1xdPC0,1/2s0,T0;L2sVT0

dd, we can use Fourier theory to formally shift a half-time
derivative fromz to xd−x0. After this procedure we find with Lemma 7,

E
VT0

t]t
1/2swd,«sxdd + wd,«s1 − xddd]t

1/2sxd − x0d ø C.

To estimate the second integral ins81d, we notice

E
VT0

g ¹ xd · ¹ swd,«sxdd + wd,«s1 − xddd =E
VT0

gu ¹ xdu2fswd,«d8sxdd − swd,«d8s1 − xddg.

By Lemma 7,xd is bounded inL`s0,T0;H1sVdd which implies the boundedness of the integral.
If we choosed sufficiently small insid we find cj P s0,1d for 1ø j ø4, see also the proof of

Theorem 3. This guarantees thatcdscjd does not become singular and thus proves the boundedness
of the third integral ins81d independently ofd. Finally, we have

0 ø E
VT0

swdsxdd + wds1 − xdddswd,«sxdd + wd,«s1 − xddd → iwdsxdd + wds1 − xddiL2sVT0
d as« ↘ 0.

By combining these results,sii d follows. j

XVIII. GLOBAL EXISTENCE OF SOLUTIONS FOR LOGARITHMIC FREE ENERGIES

Theorem 3: Let the assumptions of Sec. XV hold. Then there exists a weak solutionsc,m ,xd
in the sense of Sec. VIII of the diffuse interface equations (42) with logarithmic free energy such
that

sid cPC0,1/4sf0,T0g ;L2sV ;R4dd,
sii d ]tcPL2s0,T0; sH0

1sV ;R4dd8d,
siii d xPC0,1/2sf0,T0g ;L2sVdd,
sivd ]txPL2s0,T0; sH0

1sVdd8d,
svd there exists a q.1 such thatln cj PLqsVT0

d for 1ø j ø4, ln x, lns1−xdPL2sVT0
d and in

particular 0,x, cj ,1 a.e.

Proof: We pass to the limitd↘0 in the weak formulations46d–s48d with f defined bys75d and
must show thatsc,m ,xd found in Lemma 7 is a solution.

For the limit in s47d, the argumentation is an extension to Ref. 7. In particular we must take
care of the term

xdb1o
j=1

4

wdscj
dd + s1 − xddb2o

j=1

4

wdscj
dd. s82d

From the almost everywhere convergence ofcl
d to cl, Lemma 8sid and the Lemma of Fatou we find

E
VT0

lim inf
d↘0

uwdscl
dduq ø lim inf

d↘0
E

VT0

uwdscl
dduq ø C.

Next we will show that
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lim
d↘0

wdscl
dd = Hwscld if lim d↘0 cl

d = cl . 0

` if lim d↘0 cl
d = cl ø 0

J , s83d

almost everywhere inVT0
. For a pointsx,tdPVT0

with limd↘0 cl
dsx,td=clsx,td.0, we obtain from

wdsdd=wsdd for dùd that wdscdsx,tdd→wscsx,tdd. In the second case of a pointsx,tdPVT0
with

limd↘0 cl
dsx,td=clsx,tdø0, we have ford small enough

uwdscl
dsx,tddu ù wsmaxhd,cl

dsx,tdjd → ` for d ↘ 0.

This provess83d. A similar statement holds forcdsxdd.
From s83d and Lemma 8sid we deduce 0,cl ,1 a.e.,eVT0

uwsclduqøC andwdscl
dd→wscld a.e.

With Vitali’s theorem we find

wdscl
dd → wscld in L1sVT0

d.

This allows to pass to the limit ins47d.
Let us now consider the limit ins77d. The relation 0,cj ,1 almost everywhere implies

blo j=1
4 cdscj

dd→blo j=1
4 cscjd, l =1,2 almost everywhere inVT0

like in the first case ofs83d. From
wdscj

ddPLqsVT0
d, the uniform boundedness ofxd and Vitali’s theorem we obtain

xdb1o
j=1

4

cdscj
dd → xb1o

j=1

4

cscjd, s1 − xddb2o
j=1

4

cdscj
dd → s1 − xdb2o

j=1

4

cscjd

in L1sVT0
d such that

vdscd,xdd → vsc,xd in L1sVT0
d for d ↘ 0.

By repeating the argumentation from above forwdsxdd+wds1−xdd we deduce 0,x,1 almost
everywhere inVT0

which again with the help of Vitali’s theorem and Lemma 8sii d yields

wdsxdd + wds1 − xdd → wsxd + ws1 − xd in L1sVT0
d.

So we can also pass to the limit ins77d. The limit for s46d can be justified in the same way as in
the proof of Theorem 1 if we additionally show

rdscd,xdd → rsc,xd in L1sVT0
d. s84d

From the almost everywhere convergence ofcl
d to cl and cl .0 almost everywhere inVT0

we
obtain

maxscl
d,dd → cl almost everywhere inVT0

, d ↘ 0, 1ø l ø 3.

Since the functionsx°k1/bx andx°k1/bx are inC1, we find

k1/bxdsmaxsc2
d,dd2 − k1/bxd maxsc1,ddmaxsc3,ddd → k1/bxsc2

2 − k1/bxc1c3d

almost everywhere inVT0
asd↘0. By Lebesgue’s dominated convergence theorem we finds84d,

becausek1/bxd øk1/minsb1,b2d almost everywhere inVT0
if kù1, respectively,k1/bxd øk1/maxsb1,b2d

almost everywhere ifk,1 and the analogous estimate for thek-term, hence

E
VT0

ur1
du ø CE

VT0

suc2
2u + uc1c3ud

for a constantC that depends onk andk. j

Uniqueness of the solution to Theorem 3 can be obtained in exactly the same way as in
Theorem 2 if we replacesA6d by sA68d.
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XIX. THE SHARP INTERFACE MODEL

It remains to perform the limitl→0. This limit is carried out in the same way as before by
showinga priori estimates and compactness results.

Lemma 9: (a) ForlP s0,l0d there exists a weak solutionscl ,ml ,xld of (42) with a logarith-
mic free energy that satisfies (A28)–(A68).

(b) There is a constant C.0 independent ofl such that for alllP s0,l0d,

sup
tPf0,T0g

hiclstdiH1 + ixlstdiH1j ø C,

sup
tPf0,T0g

E
V

f1sclstd,xlstdd + i ¹ mliL2sVT0
d ø C

and for all t1,t2P f0,T0g

iclst2d − clst1diL2 ø Cut2 − t1u1/4,

ixlst2d − xlst1diL2 ø Cut2 − t1u1/2.

(c) One can extract subsequencesscldlPR, smldlPR, and sxldlPR where R, s0,l0d is a
countable set with zero as the only accumulation point such that

sid cl→c in C0,asf0,T0g ;L2sV ;R4dd for all aP s0, 1
4

d,
sii d cl→c almost everywhere inVT0

,

siii d cl⇀* c in L`s0,T0;H0
1sV ;R4dd,

sivd xl→x in C0,asf0,T0g ;L2sVdd for all aP s0, 1
2

d,
svd xl→x almost everywhere inVT0

and 0øxl, xø1 a.e. inVT0
,

svid xl⇀* x in L`s0,T0;H1sVdd,
svii d ml⇀m in L2s0,T0;H0

1sV ;R4dd

as lPR tends to zero.
Proof: By Theorem 3, a weak solution for fixedlP s0,l0d exists. This provessad. The

estimates insbd are a direct consequence of Lemma 7, where due to assumptionsA4.2d we must
choosel,l0 for Lemma 3 to hold. SinceFlsc0,x0d can be estimated independently ofl, the
constantC on the right-hand side does not depend onl. scd is proved by Lemma 7. j

We make precise what we mean by a weak solution to the sharp interface model. We call a
triple sc,m ,xdPL2s0,T0;H0

1,2sV ;R4dd3L2s0,T0;H0
1,2sV ;R4dd3L2s0,T0;H1,2sV ;Rdd with

rsc,xd, vsc,xdPL1sVT0
d a weak solutionof the sharp interface models30d if

−E
VT0

]tj · sc − c0d +E
VT0

L ¹ m: ¹ j −E
VT0

rsc,xdj = 0 s85d

for all jPL2s0,T0;H0
1sV ;R4dd with ]tjPL2sVT0

d, jsT0d=0, and

E
VT0

m · h =E
VT0

]f

]c
scd · h s86d

for all hPL2s0,T0;H0
1sV ;R4ddùL`sVT0

;R4d, and

−E
VT0

t]tzsx − x0d +E
VT0

g ¹ x · ¹ z −E
VT0

vsc,xdz = 0 s87d

for all zPL2s0,T0;H1sV ;Rdd with ]tzPL2sVT0
d, zsT0d=0.
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Theorem 4: Let the assumptions of Sec. XV hold. Then, there exists a weak solutionsc,m ,xd
in the sense of (85) of the sharp interface equations (30) with a logarithmic free energy that
satisfies (A28)–(A68) such that

sid cPC0,1/4sf0,T0g ;L2sV ;R4dd,
sii d ]tcPL2s0,T0; sH0

1sV ;R4dd8d,
siii d xPC0,1/2sf0,T0g ;L2sVdd,
sivd ]txPL2s0,T0; sH0

1sVdd8d,
svd there exists a q.1 such thatln cj PLqsVT0

d for 1ø j ø4, ln x, lns1−xdPL2sVT0
d and in

particular 0,x ,cj ,1 a.e.

Proof: We pass to the limitl↘0 in the weak formulation. In order to show that the limit
sc,m ,xd found in Lemma 9 is a solution we must only observe that ins47d lDm→0 in H0

1,2sVd as
l↘0. j

Theorem 5: If ]cf, ]xf are Lipschitz continuous, the solutionsc,m ,xd of the sharp interface
equations obtained in Theorem 4 is unique in the spaces stated in this theorem.

Proof: The proof of Theorem 2 can be reused after sharpening estimates71d. We have accord-
ing to sA4.2d,

−E
Vt0

SE
0

t

rssddsD · m ù E
Vt0

r1stdsm1std − 2m2std + m3stdd

ù E
Vt0

sa1 − 2a2 + a3dQscdr1 ù lE
Vt0

u ¹ cu2

for an arbitrary constantl,l0. Then one can proceed with the proof. j
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Shock waves in the Tamm problem and the possibility
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G. N. Afanasieva! and V. M. Shilov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, Moscow District, 141980, Russia

Yu. P. Stepanovsky
Institute of Physics and Technology, Kharkov, Ukraine

sReceived 11 February 2004; accepted 1 November 2004; published online 18 January 2005d

The position of the singular electromagnetic shock waves arising in the smooth
Tamm problem is found. They consist of the Cherenkov shock wave and shock
waves arising when the charge velocity coincides with the velocity of light in
medium. In the limit of small intervals of accelerated and decelerated motion they
are not transformed into the singular electromagnetic shock waves of the original
Tamm problem. The reasons for this and the relation of the arising electromagnetic
shock waves to the experimental situation are discussed. ©2005 American Insti-
tute of Physics.fDOI: 10.1063/1.1836013g

I. INTRODUCTION

Usually, the radiation of a charge moving uniformly in medium, in a finite space interval is
described in the framework of the so-called Tamm problem.1 In it, a charge being initially at rest
exhibits instantaneous acceleration acquiring the velocityv with which it moves uniformly in a
finite space interval. Later, a charge exhibits instantaneous deceleration coming to the permanent
state of rest. Using some approximations Tamm obtained a remarkably simple formula having a
sharp maximum at the Cherenkov angleuc defined by cosuc=1/bn sb=v /c, n is the medium
refractive indexd. This formula is frequently used for identification of the charge velocity.2,3 Ana-
lytic formulas and numerical results presented in Ref. 4 demonstrate that in realistic conditions the
Tamm formula does not work properly. The radiation intensity has a form of plateaufFig. 1sadg
with intensity bursts at the ends of this plateaufFig. 1sbdg. It was shown in Ref. 4 that this plateau
is the Cherenkov shock wave of finite extension while the intensity bursts weread hocassociated
with the shock waves arising when the charge velocity coincides with the velocity of lightcn

=c/n in medium. On the other hand, the experimental intensity presented in Ref. 4 had a triangle
form sFig. 2d. When evaluating the radiation intensities in the spectral representationsFigs. 1, 5,
and 7d we omit the overall factorsZed2/c. Thus obtained intensities have the dimension cm−1. The
Tamm approximate radiation intensities are highly oscillating functions. To make them more
visible, we draw them through their maxima.

The goal of this consideration is to analyze the following questions:s1d how are the shock
waves distributed in the original and smooth Tamm problems;s2d how are they manifested in
experimental data.

The plan of our exposition is as follows. The mathematical preliminaries are collected in Sec.
II. For the pedagogical purposes the derivation of the position of the electromagnetic shock waves
in the original Tamm problem is presented in Sec. III. The method for finding the electromagnetic
field singularities accompanying the moving charge is exposed in Sec. IV. In Sec. V, the electro-
magnetic fieldsEMFd singularities arising in the smooth Tamm problem are found. To our sur-
prise, in the limit of small acceleration and deceleration intervals, the resulted configuration of the

adAuthor to whom correspondence should be addressed. Electronic mail: afanasev@thsun1.jinr.ru
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electromagnetic shock waves does not coincide with that of the original Tamm problem. The
reason for this and the relation of the arising electromagnetic shock waves to the experimental
radiation intensities are presented in Sec. VI. In the same section, the physical meaning of the
smooth Tamm problem and the recommendations for the experimental search of the shock waves
associated with the overcoming the light velocity barrier are given. A short resume of the results
obtained is given in Sec. VII.

FIG. 1. Spectral radiation intensities corresponding to the charge motion in a finite spatial intervalL=2z0=2.95 cm in the
plane perpendicular to the motion axis in logarithmicsad and linearsbd scales. The distance from the end point of the
motion interval to the observation plane is 0.3 cm. The dotted curve passes through the peaks of the Tamm approximate
intensity. The refractive index of the medium is 1.505, the observed wavelengthl=4310−5 cm, the charge velocityb
<0.81. The plateau corresponds to the Cherenkov shock wave, the intensity bursts at its ends correspond to the shock
waves arising at the beginningsright peakd and the endsleft peakd of the charge motion.

FIG. 2. The experimental radiation intensitysin arbitrary unitsd for the same parameters as in Fig. 1. One observes the
increment of the radiation intensity atr<2.25 cm which corresponds to the Cherenkov ray emitted from the initial point
of the charge motion. No frequency filters were used in this experiment.
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II. MATHEMATICAL PRELIMINARIES

Let a pointlike charge move inside the nondispersive medium with polarizabilitiese and m

along the given trajectoryjWstd. Then its EMF potentials at the observational pointsr ,zd are given
by

FsrW,td =
e

e

1

uRu
, AW srW,td =

em

c

vW

uRu
, div AW +

em

c
Ḟ = 0, cn = c/n. s2.1d

Here

vW = USdjW

dt
DU

t=t8
, R= urW − jWst8du − vW isrW − jWst8dd/cn.

The proper or retarded timet8 satisfies the equation

cnst − t8d = urW − jWst8du. s2.2d

To preserve the causality, the timet8 of the radiation should be smaller than the observational time
t. Obviously,t8 depends on the coordinatesrW, t of the pointP at which the EMF is observed. If
there are fewt8 satisfyings2.2d, the electromagnetic potentialss2.1d should involve the sum over
all theset8.

III. PEDAGOGICAL EXAMPLE: THE ORIGINAL TAMM PROBLEM IN THE ABSENCE OF
DISPERSION

In this problem, a charge is at rest at the pointz=−z0 of the motion axis up tot8=−t0 st0
=z0/vd. At this instant it exhibits instantaneous acceleration acquiring the velocityv0. With this
velocity the charge moves uniformly up to reaching the pointz=z0 at t8= t0. At this instant it
exhibits instant deceleration coming to the permanent state of rest. Fort8,−t0 andt8. t0 a charge
is at rest at thez= 7z0 points, respectively. The corresponding electric scalar potentials are given
by

F1 =
e

r1
Qfr1 − cnst + t0dg, F2 =

e

r2
Qfcnsst − t0d − r2dg. s3.1d

Here r1,2=Îr2+sz±z0d2. It is seen thatF1 describes the electrostatic field of charge at rest atz
=−z0. It differs from zero outside the sphere BS1 defined byr1;Îr2+sz+z0d2=cnst+ t0d. Infor-
mation on the beginning of motion does not reach the points lying outside BS1. Correspondingly,
F2 describes the electrostatic field of charge at rest atz=z0. It differs from zero inside the sphere
BS2 defined byr2;Îr2+sz−z0d2=cnst− t0d. Information on the end of the charge motion does not
reach the points lying inside BS2.

There are two roots ofs2.2d for −t0, t8, t0,

t1,28 =
1

cnsb0n
2 − 1d

sb0nz− cnt ± rmd, s3.2d

whererm=Îsz−v0td2+s1−b0n
2 dr2 sb0n=b0n, b0=v0/cd. Imposing the condition−t0, t8, t0 one

finds space–time regions wheret18 and t28 exist. However, at first we define the straight linesL1

sz=−z0+rg0n, g0n=1/Îb0n
2 −1d and L2 sz=z0+rg0nd fFig. 3sadg. They originate from the7z0

points and are inclined at the angleuc scosuc=1/b0nd towards the motion axis. Then, to the left
of L1 sz,−z0+rg0nd, t18 exists between BS1 and BS2 s−t0+r1/cn, t, t0+r2/cnd. BetweenL1 and
L2 s−z0+rg0n,z,z0+rg0nd, t18 exists in the space–time regionsz+r /g0nd /v, t, t0+r2/cn which
lies between BS2 and the straight-line segmentz+r /g0n=vt enclosed betweenL1 and L2 and
perpendicular to them. Its normal is inclined at the angleuc towards the motion axis. This segment
is a piece of the Cherenkov shock wave enclosed betweenL1 andL2.

4,5 We refer to it as CSW. It
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corresponds to the plateau shown in Fig. 1. As tot28, it exists between BS1 and BS2 st0+r2/cn

, t,−t0+r1/cnd to the right ofL2 sz.z0+rg0nd. BetweenL1 andL2 s−z0+rg0n,z,z0+rg0nd, t28
differs from zero in the space–timesz+r /g0nd /v, t,−t0+r1/cn region surrounded by BS1 and
CSW. The space–time region where botht18 andt28 differ from zero lies betweenL1 andL2, outside
BS1 and BS2 and below the CSW. Substituting eithert18 or t28 into the denominatorR entering into
s3.1d one finds thatuRu=rm. With the account of all this, one finds for the electromagnetic poten-
tials

F = F1 + F2 + F3, Az = mbeF3,

s3.3d

F3 =
e

erm
hQsrg0n − z− z0dQfcnst + t0d − r1gQfr2 − cnst − t0dg + Qsz− z0 − rg0nd

3Qfcnst − t0d − r2gQfr1 − cnst + t0dg + Qsz+ z0 − rg0nd

3Qsz0 + rg0n − zdQsvt − z− r/g0nd 3 fQsr2 − cnst − t0dd + Qsr1 − cnst + t0ddgj.

It is seen thatrm=0 on the CSW defined byz+r /g0n=vt while the electromagnetic potentials are
infinite there. There are no other singularities of electromagnetic potentials. However, the EMF
strengths have additional delta-type singularities. They are due to the discontinuities of electro-
magnetic potentials at the boundaries of the BS1, BS2, and CSW surfaces.

IV. MOVING SINGULARITIES OF THE ELECTROMAGNETIC FIELD

With the account ofs2.2d one finds forR

R= cnst − t8d − vWsrW − jWst8dd/cn. s4.1d

We seek the singularities of the EMF potentials for which the denominatorsR entering intos3.1d
disappear,

cnst − t8d − vWsrW − jWst8dd/cn = 0.

In what follows we limit ourselves to the one-dimensional motion in the positive direction of the
z axis. Then

cnst − t8d = vsz− jst8dd/cn = 0. s4.2d

For this motionz−jst8d.0. We rewrites4.1d and s4.2d in the following form:

FIG. 3. sad The position of the shock waves in the original Tamm problem. BS1 and BS2 are the bremsstrahlung shock
waves emitted at the beginning and the end of motion; CSWsstraight thick lined is the finite Cherenkov shock wave;sbd
the position of the shock waves in the limiting case of the smooth Tamm problemssee Fig. 4d when the lengths of
accelerated and decelerated parts of the charge trajectory tend to zero. The thick curves SW1 and SW2 are the shock waves
arising at the accelerated and decelerated parts of the charge trajectory, respectively. Due to the instantaneous velocity
jumps, SW1 and SW2 partly coincide with the BS1 and BS2 shock waves, respectively.
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z= jst8d +
cn

2

v
st − t8d, r =

cn
2st − t8d

vgn
. s4.3d

Heregn=1/Îb2n2−1, b=vst8d /c.
Our procedure reduces to the following one. For the fixed observation timet, we varyt8 over

the motion interval, evaluatezst8d andrst8d and draw the dependencerszd for the fixedt. Due to
the axial symmetry of the problem, this curve is in fact the surface on which the electromagnetic
potentials are singular. It follows froms4.3d that these singular surfaces exist only ifv.c/n, that
is if the charge velocity is greater than the light velocity in medium. There are other surfaces on
which the EMF strengths are singular and which are not described bys4.3d. For example, on the
surfaces of the bremsstrahlungsBSd shock waves arising at the start or the end of motion, the
electromagnetic potentials exhibit finite jumps. The corresponding EMF strengths haved singu-
larities on these surfaces. In the next section, we demonstrate that for the Tamm problem thus
obtained singularities coincide with those found in Sec. III.

Moving singularity of the original Tamm problem: In the time interval −t0, t8, t0,
st0=z0/v0d where a charge moves uniformly with the velocityv0 equationss4.3d look like

r =
cn

2

v0g0n
st − t8d, z= v0t8 +

cn
2

v0
st − t8d. s4.4d

Hereg0n=1/Îv0
2/cn

2−1. Excludingt8 from these equations one finds

r = sv0t − zdg0n, s4.5d

wherer andz are changed in the intervals

z1
0 , z, v0t, 0 , r ,

cn
2

v0g0n
st + t0d

for −t0, t, t0 and

z1
0 , z, z2

0, r2 , r , r1

for t. t0. Here

z1
0 =

c2

v0n
2st + t0d − z0, r1 =

c2

v0n
2g0n

st + t0d,

z2
0 =

cn
2

v0
st − t0d + z0, r2 =

cn
2

v0g0n
st − t0d.

It is seen that for eacht. t0 the singular segments4.5d enclosed between the straight linesL1

andL2 is perpendicular to both of them and coincides with the CSW defined in Sec. III. Its normal
is inclined at the angleuc towards the motion axis. As time goes, it propagates betweenL1 andL2.
For −t0, t, t0 the CSW is enclosed between the moving charge and the straight lineL1.

V. SMOOTH TAMM PROBLEM

A. Motivation for the smooth Tamm problem

Usually the measurements of the Cherenkov radiation are made in the plane perpendicular to
the motion axis. Numerical and analytical calculations4 made in the framework of the original
Tamm problem showed that the spectral radiation intensity has a plateaur2,r,r1 with sharp
bursts at the end of this plateau. They weread hocassociated with the shock waves arising when
the charge velocity coincides with the velocity of lightcn in medium. Since in the original Tamm
problem the charge velocity changes instantaneously at the start and the end of motion, the above
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shock waves coincide with bremsstrahlungsBSd shock waves arising at the start and the end of
motion. Because of this, we consider the smooth Tamm problemsFig. 4d in which a charge is at
rest up to some instant of timest,−t0d, moves with constant acceleration up to reaching some
velocity v0 s−t0, t,−t1d, moves with this velocitys−t1, t, t1d and, finally, decelerates down
st1, t, t0d to reaching the permanent state of restst. t0d. Since the points where these shock
waves are created are separated in space and time, the space–time separation of the resulting shock
waves is also to be expected. It was shown in Ref. 6 analytically and numerically that for the
semi-infinite accelerated charge motion the resulting configuration of shock waves consists of the
BS shock wave and of the indivisible complex consisting of the finite Cherenkov cone and the
shock wave closing this cone. Time evolution of the shock waves in the framework of the smooth
Tamm problem was studied numerically in Ref. 7. After the termination of the charge motion the
resulting configuration of the shock waves presented itself an indivisible complex having the
sickle moon form and consisting of two shock waves intersecting the motion axis at the right
angle. The following paradoxical result was obtained there: the arising configuration of shock
waves does not tend to that of the original Tamm problem when the length along which a charge
moves nonuniformly tends to zero. Therefore, a qualitative analysis of the arising situation is
needed. In the spectral representation, the smooth Tamm problem was studied in Ref. 8 on the
observational sphere of an infinite radius. It was shown that the radiation intensity suddenly drops
for the angle greater than the Cherenkov angleuc corresponding to the velocityb0. For u,uc, the
radiation intensity falls more slowly. It was suggested there that such behavior of the radiation
intensity in theu,uc angular region is due to the shock waves arising when the charge velocity
coincides withcn.

We intend to study the radiation intensities in thez=const plane. The typical spectral radiation
intensities shown in Fig. 5 have a plateau with a sudden drop at the right of this plateau and with
moderate amplitude oscillations at its left. Below, in the framework of the exactly solvable model
we show that to the right of this plateau only the nonsingular BS shock wavessassociated with the
beginning and the end of motiond contribute to the radiation intensity while 2 singular shock
wavessarising at the accelerated and decelerated parts of the charge trajectoryd contribute to the
radiation intensity to the left of this plateau. The intensity oscillations in this region are due to the
interference of these shock waves.

B. Analytical consideration

In the smooth Tamm problem a charge is at rest at the spatial pointz=−z0 up to an instant
t8=−t0. In the space–time interval −t0, t8,−t1, −z0,z,−z1 swe refer to this interval as to
region 1d it moves with constant accelerationa,

jst8d = − z0 + 1
2ast8 + t0d2, vst8d = ast8 + t0d.

In the space–time interval −t1, t8, t1, −z1,z,z1 sregion 2d it moves with the constant velocity
v0,

FIG. 4. Schematic presentation of the smooth Tamm problem.
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jst8d = v0t8, vst8d = v0.

In the space–time intervalt1, t8, t0, z1,z,z0 sregion 3d a charge moves with constant decel-
erationa down reaching the state of rest att= t0,

jst8d = z0 − 1
2ast8 − t0d2, vst8d = ast0 − t8d.

The matching conditions ofjst8d andvst8d at thez= ±z1 points definea, t0, andt1,

a =
v0

2

2sz0 − z1d
, t0 =

2z0 − z1

v0
, t1 =

z1

v0
.

1. Space region 1

In the space region 1 equationss4.3d are

z= − z0 +
1

2
ast8 + t0d2 +

cn
2

v
st − t8d, r =

cn
2st − t8d

vgn
, s5.1d

wherev=ast8+ t0d. It follows from this that the charge velocity coincides with the velocity of light
in mediumcn=c/n at t8=−tc, tc; t0−cn/a. At this instant

FIG. 5. Spectral radiation intensities for the smooth Tamm problem for various lengthsLu of the charge uniform motion.
The total motion interval is 1 cm, the observed wavelengthl=5.893310−5 cm, the medium refractive indexn=1.512, the
uniform charge velocityb0=v0/c=1. The plateau in the radiation intensity corresponds to the CSW in Fig. 6sdd. The
sudden drop of the radiation intensity to the right of this plateau is due to the absence of the singular shock waves above
L1 fsee Fig. 6sddg. The oscillations of the radiation intensities to the left of the plateau are due to the interference of SW1

and SW2 shock waves in the region belowL2. The dotted curves are the Tamm approximate radiation intensities corre-
sponding to the charge uniform motion on the intervalLu.
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rc = rst8 = − tcd = 0, zc
s1d = zst8 = − tcd = cnt − S1 −

1

b0n
DFz0 −

1

nb0
sz0 − z1dG . s5.2d

For the observation timet smaller than the time −t1 corresponding to the right boundary of the
motion interval 1,rst8d has two zeroessat t8= tc and t8= td. There is a maximum between them
fFig. 6sadg at

t8 = tm8 ; − t0 + Scn

a
D2/3

st + t0d1/3. s5.3d

Obviously,tc, tm8 , t. The correspondingr andz are equal to

rm =
cn

2

a
HFast + t0d

cn
G2/3

− 1J3/2

, zm = − z0 +
cn

2

a
H3

2
Fast + t0d

cn
G2/3

− 1J . s5.4d

This solution coincides with the analytical solution found in Ref. 6 for the semi-infinite motion
beginning from the state of rest. The dependencerszd has a moon sicklelike formfFig. 6sadg. This
complex arises when the charge velocity coincides with the velocity of lightcn in medium. It
consists of the curvilinear Cherenkov shock wave CSW attached to a moving charge and the shock

FIG. 6. Shock waves in the smooth Tamm problem.sad, sbd, scd For small and moderate observation times the singularity
complex consists of the finite Cherenkov shock wavesCSWd attached to a moving charge and the shock wave SW1 closing
the Cherenkov cone and inclined at the right angle towards the motion axis;sdd for large observation times this complex
detaches from a moving charge and propagates with the velocity of lightcn in medium. It consists of the finite CSW and
the shock waves SW1 and SW2 perpendicular to the motion axis and arising at the accelerated and decelerated parts of the
charge trajectory.
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wave closing the Cherenkov cone. As time goes, the dimensions of this complex risessince a
charge moves with the velocityv while SW1 propagates with the velocitycnd.

For the observation timet greater than the time −t1, r has only one zero. It has a maximum if
−t1, t,−t0+2sz0−z1dv0/cn

2. The correspondingtm8 , rm, andzm are given bys5.3d ands5.4d. In the
interval tm8 , t8,−t1, r decreases reaching the value

r1 = rst8 = − t1d =
cn

2

v0gn
st + t1d s5.5d

at the boundary point of the motion interval. The correspondingz is equal to

z̃1 = zst8 = − t1d =
cn

2

v0
st + t1d − z1. s5.6d

It is easy to check thatz as a function oft8 has a minimum att8= tm8 : it decreases fromzc
s1d at t8

=−tc down to

zm = − z0 +
cn

2

a
HFast + t0d

cn
G2/3

− 1J s5.7d

at t8= tm8 and then increases up toz̃1 for t8=−t1 fe.g., Fig. 6sbd, dotted lineg. For t.−t0+2sz0

−z1dv0/cn
2 there is no maximum ofrst8d in the space region 1. It rises steadily from 0 fort8= tc up

to r1 given by s5.5d for t8=−t1 fe.g., Fig. 6scd, dotted lineg. In particular,rm=r1, zm= z̃1 for
t=−t0+2sz0−z1dv0/cn

2.

2. Space region 2

In the time interval −t1, t8, t1 st1=z1/v0d where a charge moves uniformly with the velocity
v0 equationss4.3d look like

r =
cn

2

v0g0n
st − t8d, z= v0t8 +

cn
2

v0
st − t8d. s5.8d

Hereg0n=1/Îv0
2/cn

2−1. Excludingt8 from these equations one finds

r = sv0t − zdg0n, s5.9d

wherer andz change in the intervals

z̃1 , z, v0t, 0 , r ,
cn

2

v0g0n
st + t1d

for −t1, t, t1 and

z̃1 , z, z2, r2 , r , r1

for t. t1. Here z̃1 andr1 are the same as above, and

z2 =
cn

2

v0
st − t1d + z1, r2 =

cn
2

v0g0n
st − t1d. s5.10d

It is seen that for eacht. t1 the singular segments5.9d is enclosed between the straight lines
L1 fr=sz+z1d /g0ng andL2 fr=sz−z1d /g0ng originating from the boundary points of the interval 2
and inclined at the angleuc scosuc=1/b0nd towards the motion axisfFig. 6sdd, solid lineg. The
singular segments5.9d is a piece of the Cherenkov shock wave which is enclosed betweenL1 and
L2 and perpendicular to both of them. Its normal is inclined at the angleuc towards the motion
axis. As time goes, it propagates betweenL1 andL2. For −t1, t, t1 the singular segments5.9d is
enclosed between the moving charge and the straight lineL1 fFig. 6scd, solid lineg.
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3. Space region 3

In the time intervalt1, t8, t0 where a charge moves with decelerationa, equationss4.3d look
like

z= z0 −
1

2
ast8 − t0d2 +

cn
2

v
st − t8d, r =

cn
2st − t8d

vgn
, s5.11d

wherev=ast0− t8d. The charge velocity changes steadily fromv0 at t8= t1 down to 0 att= t0. The
above singularity surfaces exist only ifcn,v,v0. The charge velocity coincides with the velocity
of light in mediumcn=c/n at t8= tc,

rc = rst8 = tcd = 0, zc
s2d = zst8 = tcd = cnt + S1 −

1

b0n
DFz0 −

1

b0n
sz0 − z1dG . s5.12d

The radiusrst8d vanishes at the position of a moving chargest8= td for t, tc and att8= tc for t
. tc. It is maximal at the start of the third motion intervalst8= t1d where

rst8 = t1d = r2, zst8 = t1d = z2

fr2 andz2 are the same as ins5.10dg.

C. Discussion of the results obtained in this section

A complete singular contour composed of its singular pieces defined in the regions 1, 2, and
3 is always closed for the fixed observation timet. In fact, for −tc, t,−t1 the singular contour lies
completely in the region 1. It begins at the pointz=zc

s1d, r=0 and ends at the pointr=0, z=−z0

+ast+ t0d2/2 coinciding with the current charge positionfFig. 6sadg. For −t1, t, t1 the singular
contour lies in the regions 1 and 2fFigs. 6sbd and 6scdg. Its branch lying in the region 1 begins at
the pointz=zc

s1d, r=0 and ends at the pointz= z̃1, r=r1. Its branch lying in the region 2 begins at
the pointz= z̃1, r=r1 and ends at the pointz=v0t, r=0 coinciding with the current charge position.
For t. t1 the singular contour lies in the regions 1, 2, and 3fFig. 6sddg. Its branch in region 1 is
the same as above. Its branch lying in the region 2 begins at the pointz= z̃1, r=r1 and ends at the
point z=z2, r=r2. Its branch lying in the region 3 begins at the pointz=z2, r=r2 and ends at the
point z=zc

s2d, r=0.

D. Transition to instantaneous velocity jumps

It is instructive to consider the limitz1→z0 corresponding to the instantaneous velocity jumps
at the start and the end of the charge motion. Intuitively it is expected that the original Tamm
problem should appear in this limit. Turning tos5.1d we observe that the second term entering into
z equals zero in this limit. In fact, it equals

1

2
ast8 + t0d2 =

z0 − z1

b2n2

at t8=−tc and

1

2
ast8 + t0d2 =

z0 − z1

b2n2

at t8=−t1. Therefore, in the limitz1→z0 it disappears at the boundaries of the charge motion
interval and, therefore, inside this interval since the above term is a monotone function oft8. Then,
s5.1d reduces to

z= − z0 +
2sz0 − z1d

b0
2n2

t − t0
t8 + t0

,
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r =
2sz0 − z1d

b0
2n2

t − t0
t8 + t0

HFnb0
2cst8 + t0d

2sz0 − z1d G2

− 1J1/2

. s5.13d

On the other hand, we cannot drop the terms withsz0−z1d in s5.13d since the denominatorst8
+ t0d is of the same order of smallness. It is seen thatz=zc

s1d, r=rc
s1d=0 at t8=−tc and z= z̃1, r

=r1 at t8=−t1. Here

zc
s1d = cnt − z0S1 −

1

b0n
D, z̃1 =

cn
2

v0
t − z0S1 −

1

b0n
2 D, r1 =

cn
2

v0g0n
st + t0d.

It follows from s5.13d that

r2 + sz+ z0d2 = cn
2st + t0d2 s5.14d

coincides with the equation of the BS shock wave arising at the beginning of the charge motion
sBS1, for shortd. This singular contourfSW1 in Fig. 3sbdg begins at the pointz=zc

s1d, r=rc
s1d=0 and

ends at the pointz= z̃1, r=r1. It represents the shock wave arising when the charge velocity
coincides with the velocity of light in medium at the accelerated part of the charge trajectory.

The fact that SW1 and BS1 are described by the same equations5.14d is physically under-
standable since both these waves, due to the instantaneous velocity jump, are created at the same
instantt=−t0, at the same space pointz=−z0, and propagate with the same velocitycn. It should
be noted that the BS1 shock wave is distributed over the whole spheres5.14d while the singular
shock wave SW1 fills only its part.

The second part of the singular contour is the Cherenkov shock wavefCSW in Fig. 3sbdg
extending from the pointz= z̃1, r=r1 to the pointz=z2, r=r2. Here

z2 =
cn

2

v0
t + z0S1 −

1

b0n
2 D, r2 =

cn
2

v0g0n
st − t0d.

The third part of the singularity contourfSW2 in Fig. 3sbdg begins at the pointz=z2, r=r2 and
ends atz=zc

s2d, r=rc
s2d=0. Here

zc
s2d = cnt + z0S1 −

1

b0n
D .

This part of the singularity contour represents the shock wave arising at the decelerated part of the
charge trajectory. It is described by the equation

r2 + sz− z0d2 = cn
2st − t0d2 s5.15d

coinciding with the equation of the BS2 shock wave emitted at the endst= t0, z=z0d of a charge
motion. Again, the singularity fills only part of the spheres5.15d.

VI. DISCUSSION

Turning to Fig. 5 we observe the existence of the radiation intensity plateau, its sudden drop
to the right of the plateau and its moderate decreasing to the left of the plateau. The sudden drop
of the radiation intensity to the right of the plateau takes place in the space region where only the
nonsingular BS shock waves associated with the beginning and the end of a charge motion exist.
In Fig. 6sdd, this space region lies aboveL1. The plateau corresponds to the space region lying
betweenL2 andL1 fFig. 6sddg where the singular wave CSWsCherenkov shock waved and SW1

ssingular shock wave associated with the transition of the light velocity barrier at the accelerated
part of the charge trajectoryd exist. The moderate decrease in the radiation intensity to the left of
the plateau is due to the existence of SW1 and SW2 shock wavessthe latter arises at the deceler-
ated part of the charge trajectoryd. The oscillations of the radiation intensity in this region are due

022901-11 Shock waves in the Tamm problem J. Math. Phys. 46, 022901 ~2005!

                                                                                                                                    



to the interference of SW1 and SW2. The smallness of oscillations inside the plateau indicates that
the contribution of the CSW to the radiation intensity is much larger than that of SW1.

Now we discuss why the configuration of the shock waves in the limiting case of the smooth
Tamm problemfFig. 3sbdg does not coincide with that of the original Tamm problemfFig. 3sadg.
It was shown in Ref. 9 that in the spectral representation the radiation intensitysfor the fixed
observation wavelengthd of the smooth Tamm problem transforms into the radiation intensity of
the original Tamm problem when the length of the trajectory along which a charge moves non-
uniformly tends to zero. Figure 5 supports this claim. However, Figs. 3sad and 3sbd describe the
position of the EMF singularities at the fixed moment of the observational timefor, in other words,
Figs. 3sad and 3sbd correspond to the time representationg. The time and spectral representations of
the EMF are related by the Fourier transformation. For an arbitrary small but finite lengthl of the
charge nonuniform motion in the smooth Tamm problem, the contribution of the nonuniform
motion to the radiation intensity becomes essential and comparable with the contribution of the
uniform motion for high frequencies. This is clearly shown in the last of Refs. 5 and in Ref. 8 and
in Fig. 7. Thus, the appearance of additional shock waves in Fig. 3sbd is due to the contribution of
high frequencies.

Turning to Fig. 3sbd describing the position of the shock waves in the limiting case of the
smooth Tamm problem, we see that three shock wavessBS1, SW1, and CSWd are intersected on
the straight lineL1. Therefore, the radiation intensity should be large there. AboveL1 sthis corre-
sponds to the region lying to the right of the plateau in Fig. 5d only the nonsingular shock waves
BS1 and BS2 contribute to the radiation intensity. Therefore, the radiation intensity should be very
small there. The experimental curve shown in Fig. 2 partly supports these claims.

However, the experimental intensity decreases smoothly in the space region where the theory
predicts the existence of plateau. The picture similar to Fig. 2 might be possible if the focusing

FIG. 7. Spectral radiation intensities for the smooth Tamm problem for the uniform motion intervalLu=0.98 cm and
various wavelengthsl. Other parameters are the same as in Fig. 5. The radiation intensities rise with the diminishing ofl
to the left of the plateau and are very small to the right of the plateau.
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devicesstheir use is wide-spread in the Cherenkov-type experimentsd projecting theg rays emitted
at the Cherenkov angle into the narrow Cherenkov ringsand transforming the plateau of the
radiation intensity into this ringd were used. However, no focusing lens was used in the experi-
ments discussed in which the Cherenkov light left the radiator along the direction perpendicular to
the radiator surface.

There are two possible reasons for the deviation of the theoretical data from the experimental
ones. The first of them is the medium dispersion. A charge moving uniformly in medium, in a
finite spatial interval, emits all frequenciesfcontrary to the unbounded charge motion when only
the frequencies satisfying the Tamm–Frank radiation conditionbnsvd.1 ssee, e.g., Ref. 10d are
emittedg. In the experiment treated, where no frequency filters were used, the dependence on the
frequency enters through the refractive indexn of the sampleswhere a charge movesd and through
the spectral sensitivity of the photographic film placed in the observational plane perpendicular to
the motion axis. Let the intervals where a charge is accelerated and decelerated be arbitrarily small
but finite. For large frequencies the radiation intensity in the space region to the left of the plateau
shown in Fig. 7 begins to rise. The resulting radiation intensities are obtained from those presented
in Fig. 7 by convoluting them with the spectral sensitivity of the photofilm and integrating over all
v. If the integrand differs from zero for large frequencies, then the arising radiation intensity will
resemble the experimental curve of Fig. 2. However, to perform concrete calculations the knowl-
edge of the frequency dependence of the refractive index and the spectral sensitivity of the
photofilm is needed. The second reason is due to the finite diameters0.5 cmd of the proton beam
used in experiments described in Ref. 4. The averaging of the radiation intensities over the proton
beam diameter leads to their smoothingsand, in particular, to the disappearance of the pronounced
peaks at the ends of the Cherenkov plateaud.

The transition from the time representation to the spectral one involves the time integration.
Since the space regions to which the above shock waves are confined do not depend on timese.g.,
CSW is always betweenL1 andL2, etc.d, the shock waves are in the same space regions in both
representations.

A. The physical meaning of the smooth Tamm problem

Before discussing how the smooth Tamm problem is related to the experimental situation, we
recall the usual physical interpretation of the original Tamm problemssee, e.g., Ref. 11d. Let the
uniformly moving charge move consecutively in vacuum, in dielectric sample and again in
vacuum. Since the charge uniformly moving in medium does not radiate ifbn,1 and radiates if
bn.1, the charge passing through the sample is interpreted as a charge instantaneous acceleration
at one side of the sample, the instantaneous deceleration at its other side and uniform motion
inside the sample. Turning to the physical justification of the smooth Tamm problem, we observe
that according to Born,12 “The assumption on the jump-like transition from one substance to
another is a far-reaching idealization. One substance is separated from another by some transition
layer in which the dielectric constant changes continuously frome1 to e2.” Let a charge move
uniformly consecutively in vacuum, in a dielectric sample and again in vacuum. A charge begins
to radiate with increasing intensity as it moves through the above layer wheree changes frome1

to e2. Then, in the spirit of the standard interpretation11 of the original Tamm problem we suggest
that the charge uniform motion through this layer is equivalent to its smooth acceleration inside
the samplesin both casesbn varies frombn,1 to bn.1d. That is, the charge passage through the
sharp and diffused boundaries is effectively described by its instantaneous and smooth accelera-
tions, respectively.

B. Reflections on the experimental setup

The experiments described in Ref. 4sperformed by Zrelov more than 40 years agod were not
especially designated for the discovering of the shock waves associated with the overcoming of
the light velocity barrierstheir existence was predicted much laterd. The following experimental
conditions should be fulfilled for the reliable identification of the above shock waves.
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s1d The frequency filter should be used. This permits one to escape complications and uncer-
tainties associated with the integration over the frequency spectrum.

s2d The diameter of the charged particles beam should be as small as possible. The radiation
intensity peaks associated with the above shock waves will be more pronounced for the thin beam
ssince the averaging over the beam diameter leads to their smoothingd.

s3d No focusing devicessthey are frequently used in the Cherenkov-type experimentsd pro-
jecting the extended Cherenkov radiation into the thin Cherenkov ring should be used.

When these conditions are fulfilled, the observed spectral radiation intensity should resemble
those shown in Fig. 7. The peaks of the radiation intensity at the boundaries of the Cherenkov
plateaussimilar to those shown at the right part of Fig. 1d will certainly indicate the existence of
shock waves arising at the light velocity barrier.

VII. CONCLUSION

We briefly summarize the main results obtained.
s1d The position and the time evolution of the electromagnetic singular shock waves in the

smooth Tamm problem are found. They consist of the Cherenkov shock wave and the shock waves
arising at the accelerated and decelerated parts of the charge trajectory. Theory predicts the exis-
tence of the plateau in the spectral radiation intensitysassociated with the finite Cherenkov shock
waved, its sudden drop to the right of this plateausassociated with the absence of the singular
shock waves in this spatial regiond, and small oscillations to its leftsassociated with the interfer-
ence of the shock waves arising at the accelerated and decelerated parts of the charge trajectoryd.

s2d In the limiting case of the smooth Tamm problemswhen the lengths along which a charge
moves nonuniformly tend to zerod, the resulting configuration of the electromagnetic singular
shock waves does not coincide with that of the original Tamm problemscorresponding to the
instantaneous velocity jumps at the beginning and the end of the charge motiond. This is due to the
contribution of high frequencies.

s3d It is studied how the electromagnetic shock waves occurring in the original and smooth
Tamm problems reproduce the experimental situation. The recommendations on the performance
of experiments aiming to discover shock waves associated with the overcoming of the light
velocity barrier are given.

Recently we were aware of the interesting paper13 in which the Cherenkov waves of the finite
width were observed. We associate their finite width with the plateau of the radiation intensities
shown in Figs. 1, 5, and 7.
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The number of percolation clusters for configurations of the Ising model at zero
external field and ferromagnetic first neighbors interaction on a general finite graph
is considered. The mean number of clusters with respect to the Gibbs measure at
any inverse temperatureb is proved to be smaller or equal than the one atb=0.
© 2005 American Institute of Physics.fDOI: 10.1063/1.1845972g

I. INTRODUCTION

Let G=sV,Ed be a finite connected graph, of vertexes setV and edges setE. The Gibbs
measure onG is the probability measuremb on S=h−1,1jV of weight

ebShi,jjPE ssidss jd, s P S.

We denote byEmb

G the mean with respect to this measure. The measuremb describes an Ising
model with spin variables on vertexes, ferromagnetic interaction on edges, zero external field, and
inverse temperatureb. Given any configurationsPS, the + s−d clusters ofs are the maximal
connected components ofs−1s+1d ss−1s−1dd. We denote byC+s−dssd the set of +s−d clusters ofs;
the number of +s−d clustersN+s−dssd is the cardinality ofC+s−dssd, also denoteduC+s−dssdu. The
number of clusters ofs, denotedNssd, is defined asNssd=N+ssd+N−ssd and obviously one has
by symmetry

Emb

G sN+d = Emb

G sN−d.

It is useful to consider the familymb, bP f0,`g. One easily recognizes thatm0 is a Bernoulli

measure of parameter1
2 and thatm`= 1

2d++ 1
2d−, whered+sd−d is the point mass concentrated on the

constant +s−d configuration. Consequently one hasEm`

G sNd=1, while the value ofEm0

G sNd depends
on the graph.

The random variable number of clusters plays a central role in percolation theory, and in the
case of Bernoulli percolation it has been extensively studiedsfor a general reference see Ref. 7d.
We are interested in monotonicity properties with respect tob of the mean number of clusters
Emb

G sNd, as a particular case of the general problem of monotonicity inb for variables used in
percolation theory. As an example, it is an open problem to extend the coexistence of + and −
infinite clusters proved in the cubic lattice for the Ising model atb close to 0sRef. 5d to a larger
range of temperatures.

The Gibbs measure is FKG for fixed temperaturesfor instance see Ref. 8d, but there is not a
satisfactory notion of stochastic ordering with respect to temperature. To circumvent this problem
one method is to represent the measure on spins by means of a measure on edges configurations.
A widespread approach is the random cluster model given by the Fortuin–Kasteleyn representa-
tion. For a review we refer to Ref. 8. Since random cluster measures are stochastically ordered in
temperature, it is enough to prove that a particular observable in edge representation is monotonic
in the partial ordering of these configurations. Using this method some observables related to
percolation can be proved to have monotonicity properties.3,10
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However other approaches have been used, and in particular we refer to the group represen-
tation of the Ising model, for which a basic reference is Ref. 9. Combining this representation and
the notion of stochastic order has been fruitful. In particular some monotonicity properties of local
observables can be re-obtained and new ones are proved.4,6 The main idea is that the Gibbs
measure on spins configurations is represented by a measure on edges configurations conditioned
to a group, and that conditioned measures are stochastically ordered.

Despite some evident similarities with the random cluster model, one advantage of this ap-
proach is that the measure atb=0 is a delta mass concentrated on the empty configuration on
edges. This feature can be exploited to treat a simpler type of problem, i.e., the inequality between
the means atb.0 and atb=0. In Ref. 2 the mean number of clusters was proved to be smaller
at b.0 than atb=0, if the graph has degree not greater than 3. In the present paper we prove an
extension of this inequality for any degree.

Proposition 1.1: For any graph G the mean number of clusters with respect to the Gibbs
measure at inverse temperatureb.0 is less or equal to the one atb=0,

Emb

G sNd ø Em0

G sNd.

The main contribution of the present paper essentially consists in reducing the problem for a
general graphG to the one for a graphG8 with degree not greater than 3. This is achieved using
a vertex resolution procedure, similar to the one used in Ref. 11, and conditioning the measuremb

to a suitable configurations subsetD. Hence the main ingredients of our proof can be summarized
by the following equations:

Emb

G sNd = Emb

G8sNuDd ø Em0

G8sNuDd = Em0

G sNd. s1d

The inequality in the middle is an extension of the one proved in Ref. 2 and the external equalities
are the result of the resolution procedure. In the present paper we also provide an exposition of the
basic elements of the group representation, in order to make the paper self-consistent.

II. VERTEX RESOLUTION

In this section we prove the following lemma.
Lemma 2.1: There is a graph G8=sV8 ,E8d with degree not greater than 3 and a subsetD of

S8=h−1,1jV8 such that for the number of clusters N the following equation holds:

Emb

G sNd = Emb

G8sNuDd.

On the right-hand side there is the conditional expectation with respect toD, and the Gibbs
measure onG8 is defined as the one onG.

Proof: Given a vertexi PV we denote]i the set of the vertexes adjacent toi sfirst neighborsd:
the degree ofi, denoted degsid, is the cardinality of]i. For eachi we define a setBi, the resolution
of the vertexi, as follows. If degsidø3, we setBi =hij: if degsid.3, the setBi is defined as a
replica of]i, and we denotej8 the element ofBi which corresponds toj . The new vertexes set is

V8 = øiPVBi .

In order to defineE8, we first replace the edgeshi , jjPE, j P]i, by the edgesh j , j8j, j P]i. This
defines a set of edges onV8, called “conduction” edges and denotedEC8 , which are in one to one
correspondence withE. We then put in each of theBi’s having cardinality greater than 3 edges
such that make it connected; ifBi =hk1,k2,… ,knj, for instance we choose the edges
hk1,k2j ,… ,hkn,k1j, forming a loop onBi. We call these ‘‘identification’’ edges and denote them
EC8 . The setE8 can now be defined as a union of conduction edgesEC8 and identification edgesEI8.
The vertexes with degree not greater than 3 keep unchanged their degree; the other ones have
exactly one conduction edge and two identification edges; hence the degree ofG8 is at most 3.
This formal definition can be made more transparent with the help of Fig. 1.
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For the graphG8 the Gibbs measure onS8=h−1,1jV8 is formally defined as the one onG, and
we use the same notation. We define the identification subsetD,S8 as the intersection overi
PV of the identification event which forces all spins inBi to be equal:s8sk1d=¯ =s8sknd. There
is a trivial one to one map between configurations spins inS and D, such that ifsPS and s8
PD one hasssid=s8skd, kPBi. An important consequence of the above definitions is that the
number of clusters satisfies the equation

Nssd = Nss8d. s2d

Furthermore the interactions that define the Gibbs weights differ for a constant depending only on
the graph,

o
hi,jjPE8

s8sids8s jd = o
hi,jjPEC8

s8sids8s jd + o
hi,jjPEI8

s8sids8s jd = o
hi,jjPE

ssidss jd + o
iPV,degsid.3

uBiu,

where we have used that conduction edges reproduce exactlyE and that each identification edge
gives a constant contribution of value 1. This suffices to conclude that conditioned toD the mean
number of clusters onG8 has the same value as the one onG. j

Remark1: Identification edges onBi can be chosen in several ways, subject to the condition
that they makeBi connected and that degs jdø3; for instance one of the edges of the loop above
defined can be dropped.

Remark2: Equations2d may not be true for other percolation variables. Let us consider the
cardinality of thessay +d cluster containing a fixed vertex: ifWk

+ss8d denotes the + cluster onG8
containing the vertexkPV8, wherekPBi and s8PD, and if Wk

+ss8d denotes the corresponding
cluster onG, they are related by the nontrivial relationship

uWk
+ss8du = o

jPWi
+ssd

uBju.

III. GROUP REPRESENTATION OF CONDITIONED GIBBS MEASURES

We first discuss the representation of unconditioned Gibbs measures following Ref. 6. Given
sPS we associate to it the edge configurationvPV=h0,1jE, defined asvsi , jd=0 if ssid
=ss jd andvsi , jd=1 if ssidÞss jd. This defines a mapc from spins to edges configurations; by
symmetry one hascssd=cs−sd. The range of this map, denotedG, can be characterized as the set

FIG. 1. Resolution procedure applied to the graph on the left, having one vertex of degree 4, of coordinatess3, 6d, and one
of degree 5, of coordinatess3, 4d; on the right the graph obtained after resolution of these vertexes.
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of edges configurations such that any loop contains an even number of 1’ssthis was noticed, for
instance, in Ref. 10, but with the opposite codingd. A next step is to recognize that this set has a
group structure, as a subgroup ofV.1 Actually in V there is a product defined as

v1v2sed = v1sed + v2sed mod 2, eP E

and the identity is the null element 0sed=0, ePE. We call G the “parity” group.
The Gibbs weight can be written as

ebuv−1s0du−buv−1s1du, v P G.

This is the same as the one of a Bernoulli product measurenp of parametersp for the 1’s and 1
−p for the 0’s, wherep=e−b / seb+e−bd, conditioned toG. Since we are interested in variables
invariant with respect to total spin flip, their means with respect to the measuremb can be written
in terms of means with respect to the Bernoulli measurenp conditioned to the subgroupG. If X
denotes such a variable, both as a function of spins configurations and of edges configurations, we
have

Emb
sXd = Enp

sXuGd. s3d

We now consider the general problem of representing the Bernoulli measurenp conditioned to
a subgroupQ. We need some definitions. The cylinder of baseA,E, given aP h0,1jA, is

Ka
A = hv P Vuvsed = ased,eP Aj.

We include the caseA=0” settingK~
0” =V. In particular one has thatK0

A is a subgroup andKa
A is a

coset for anya. If X is a function onV andQ is a subgroup, we define a function on the subsets
of E,

XQsAd = uQ ù K0
Au−1 o

vPQùK0
A

Xsvd. s4d

We also introduce a probability measurelp
U on the subsets ofE,

lp
UsAd = npsUd−1s1 − 2pduAupuE\AuuU ù K0

Au. s5d

With these notation we have the following.
Proposition 3.1 (Ref. 6): The mean of X with respect to the Bernoulli measurenp conditioned

to a subgroupU can be represented by

Enp
sXuUd = o

A,E

XUsAdlp
UsAd. s6d

Proof: Denoting for brevityv=v−1s1d andvc=v−1s0d and consideringv as a subset ofE, one
has

npsvd = puvus1 − 2p + pduvcu = o
A,vc

s1 − 2pduAupuE\Au.

Hence

o
vPU

npsvdXsvd = o
A,E

s1 − 2pduAupuE\Au o
vPUùK0

A

Xsvd

and this concludes the proof. j

We can now discuss the representation of conditioned Gibbs measures; in particular we are

looking for a suitable representation ofEmb

G8sNuDd. We first notice that the image ofD on edges

configurations is a subgroup ofV8. In particular it is the cylinderK0
EI8 obtained setting 0’s on
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identification edges ofE8; we use the same notationD and call it “identification” group. We shall
use the following property. Since the representation of the Gibbs measure requires conditioning to
the parity groupG, the representation of the Gibbs measure conditioned to identification groupD
can be achieved conditioning to the intersection of these two groups. We can write

Emb

G8sNuDd = Enp

G8sNuG ù Dd. s7d

SinceU=GùD is a group, we can apply Eq.s6d and get

Emb

G8sNuDd = o
A,E

NUsAdlp
UsAd. s8d

We now remark that forb=0, i.e., p=1/2, thecorresponding measurel1/2
U is a delta mass

concentrated on the empty set. Hence,

Em0

G8sNuDd = NUs0”d. s9d

Hence in order to have

Emb

G8sNuDd ø Em0

G8sNuDd s10d

it is sufficient the condition

NQsAd ø NQs0”d, A , E8. s11d

The next section is devoted to prove this inequality.

IV. A PRUNING TREE ARGUMENT

We shall prove that the functionNQ over the subsets ofE8 has the following weak monoto-
nicity property.

Proposition 4.1: For any A,E8, AÞ0” , there is ePA such that

NQsAd ø NQsA \ ed. s12d

One easily recognizes that this property is sufficient to give Eq.s11d. The case thatQ is the
parity group was considered in Ref. 2. Here we recall that proof, adapting it to the present context.

Proof: Equations12d is equivalent to

uQ ù K0
A\eu o

vPQùK0
A

Nsvd ø uQ ù K0
Au o

vPQùK0
A\e

Nsvd. s13d

We use

uQ ù K0
A\eu = uQ ù K0 0

A\eeu + uQ ù K0 1
A\eeu

and

o
vPQùK0

A\e

Nsvd = o
vPQùK0 0

A\ee

Nsvd + o
vPQùK0 1

A\ee

Nsvd,

and so Eq.s13d is equivalent to

uQ ù K0 1
A\eeu o

vPQùK0 0
A\ee

Nsvd ø uQ ù K0 0
A\eeu o

vPQùK0 1
A\ee

Nsvd, s14d

where we have usedQùK0 0
A\ee=QùK0

A.
If the setQùK0 1

A\ee is empty, we define zero the sum extended to it and we have by definition
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NQsAd = NQsA \ ed.

SinceQ=DùG, the setQùK0 1
A\ee is empty if the value 1 on the edgee violates the identification

or the parity condition. The first case happens ife is an identification edge; the second one ife
belongs to a loop ofA, since any loop must contain an even numbers of 1’s.

If the setQùK0 1
A\ee is nonempty, it is a coset of the groupQùK0 0

A\ee and so it has the same
cardinality. Hence Eq.s12d is equivalent to

o
vPQùK0 0

A\ee

Nsvd ø o
vPQùK0 1

A\ee

Nsvd. s15d

From the previous argument we can now suppose thatA does not contain loops, i.e., it is union of
disjoint trees and we shall prove that pruning any end linee preserves Eq.s12d, since Eq.s15d
holds. It is convenient to rewrite this equation in spins language, getting

o
sPDùK= =

A\ee

Nssd ø o
sPDùK= Þ

A\ee

Nssd, s16d

where the setK= Þ
A\ee is the spin version ofK0 1

A\ee. If e=hi , jj wherej is an endpoint of the treeTø h jj
of A, in order to get Eq.s15d it is sufficient that

Nss++
Tj d + Nss−−

Tj d ø Nss+−
Tj d + Nss−+

Tj d, s P h− 1,1jV8\Tøh jj, s17d

where for instances+−
Tj denotes the completion ofs with +’s on T and − onj .

We denote for instance byCT
+ssd andCj

+ssd, respectively, the set of + clusters ofs adjacent
to T and j . We have

Nss++
Tj d = Nssd − uCT

+ssd ø Cj
+ssdu + 1, s18d

Nss+−
Tj d = Nssd − uCT

+ssdu + 1 − uCj
+ssdu + 1, s19d

Nss−−
Tj d = Nssd − uC T

−ssd ø C j
−ssdu + 1, s20d

Nss−+
Tj d = Nssd − uC T

−ssdu + 1 − uCj
+ssdu + 1. s21d

The first equation, for instance, uses the fact that if one turns on +’s overT and j , the + clusters
adjacent toT or to j become a unique cluster. Using in Eq.s17d the above equations we get

uCT
+ssd ù Cj

+ssdu + uC T
−ssd ù C j

−ssdu ø 2. s22d

The left-hand side is bounded by the number of vertexes that are simultaneously adjacent toT and
j . SinceT and j are adjacent and degs jdø3, this number is not greater than 2. This proves Eq.s22d
and completes the proof of the proposition. j

1Biggs, N. L.,Discrete MathematicssOxford University Press, Oxford, 1993d.
2Cammarota, C., “On the temperature dependence of the mean number of clusters,” J. Stat. Phys.63, 783–790s1991d.
3Cammarota, C., “Stochastic order and monotonicity in temperature for Gibbs measures,” Lett. Math. Phys.29, 287–295
s1993d.

4Cammarota, C., “Positive and negative correlations for conditional Ising distributions,” Rev. Math. Phys.14, 1099–1113
s2002d.

5Campanino, M. and Russo, L., “An upper bond on the critical percolation probability for the three-dimensional cubic
lattice,” Ann. Prob.13, 478–491s1985d.

6Cammarota, C. and Russo, L., “Bernoulli and Gibbs probabilities of subgroups ofh0,1jS,” Forum Math. 3, 401–414
s1991d.

7Grimmett, G.,PercolationsSpringer, New York, 1999d.

023301-6 Camillo Cammarota J. Math. Phys. 46, 023301 ~2005!

                                                                                                                                    



8Grimmett, G., “The random-cluster model,” inEncyclopaedia of Mathematical Sciences: Probability on Discrete Struc-
tures, edited by H. KestensSpringer, New York, 2004d.

9Gruber, C., Hintermann, A., and Merlini, D.,Group Analysis of Lattice Systems, Lecture Notes in Physics 60sSpringer-
Verlag, Berlin, 1977d.

10Haggstrom, O., “A note onsnon-dmonotonicity in temperature for the Ising model,” Markov Processes Relat. Fields2,
529–537s1996d.

11Meyer-Ortmanns, H., “Functional complexly measure for networks,” Physica A337, 679–690s2004d.

023301-7 Number of clusters J. Math. Phys. 46, 023301 ~2005!

                                                                                                                                    



On the monotonicity of scalar curvature in classical
and quantum information geometry

Paolo Gibiliscoa!

Dipartimento di Studi Economico-Finanziari e Metodi Quantitativi, Facoltà di Economia,
Università di Roma “Tor Vergata,” Via Columbia 2, Rome 00133, Italy and Centro
“Vito Volterra,” Università di Roma “Tor Vergata,” Via Columbia 2, Rome 00133, Italy

Tommaso Isolab!

Dipartimento di Matematica, Università di Roma “Tor Vergata,” Via della Ricerca
Scientifica, 00133 Rome, Italy

sReceived 30 June 2004; accepted 5 October 2004; published online 18 January 2005d

We study the monotonicity under mixing of the scalar curvature for the
a-geometries on the simplex of probability vectors. From the results obtained and
from numerical data, we are led to some conjectures about quantuma-geometries
and Wigner–Yanase–Dyson information. Finally, we show that this last conjecture
implies the truth of the Petz conjecture about the monotonicity of the scalar curva-
ture of the Bogoliubov–Kubo–Mori monotone metric. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1834693g

I. INTRODUCTION

The Bogoliubov–Kubo–MorisBKM d metric is a distinguished element among the monotone
metrics which are the quantum analog of Fisher information on the quantum state space.35,36 In a
definite sense BKM metric is the geometry on the state space that is related to von Neumann
entropyssay, Umegaki relative entropyd. Other well-known elements of this family are the right
logarithmic derivativesRLDd metric, the symmetric logarithmic derivativesSLD or Buresd metric,
and the Wigner–Yanase–DysonsWYDd metrics. In Ref. 34 Petz made a conjecture on the scalar
curvature of the BKM metric. Many arguments and numerical calculations suggest that the con-
jecture is true; nevertheless, a complete proof is still missingssee Refs. 3, 4, 12, 24, and 32d.

One can state this conjecture in the following way: the BKM scalar curvature is a quantitative
measure of symmetryslike entropyd, namely it is increasing under mixing. Let us emphasize that
it is also possible to relate the conjecture to quantities with direct physical meaning. An equivalent
formulation, still due to Petz,34 is that “…the scalar curvature is an increasing function of the
temperature….” Moreover, the asymptotic relation between volume and curvature in Riemannian
geometry and Jeffrey’s approach to priors in statistics induced Petz to interpret the scalar curvature
as the average statistical uncertaintysthat should increase under coarse graining; see Ref. 36d.

The original motivations given by Petz for the conjecture rely on the truth of the 232 case
and on some numerical results for the general case. Petz and Sudar observed in Ref. 38 that
“…monotonicity of Kubo metric is not surprising because this result is a kind of reformulation of
Lieb convexity theorem.30 However the monotonicity of the scalar curvature seems to be an
inequality of new typesprovided the conjecture is really trued….” A recent clear reference for
Lieb’s result and related inequalities can be found in the paper by Ruskai.40

The goals of the present paper are the following.

s1d We want to look at “higher mathematics from an elementary point of view.” This means that
we want to furnish an elementary motivation for the Petz conjecture. We do this by studying
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the monotonicity of the curvature fora-geometries in the plane. The results obtained in this
case are very intuitive if one looks at the unit sphere of theLp spaces. We conjecture that a
similar behavior occurs fora-geometries in higher dimensions and in the noncommutative
case, too.

s2d On the basis of the results of points1d we make a conjecture about the monotonicity of scalar
curvature for the WYD metrics. Further, we show that, using a continuity argument, this
WYD conjecture would imply the Petz conjecture as a limit casesTheorem 8.1d.

s3d We review what is known about monotonicity of scalar curvature for quantum Fisher infor-
mation. In particular, we emphasize a result on the Bures metric, attributed to Dittmann,
according to which the scalar curvature, in this case, is neither Schur-increasing nor Schur-
decreasingssee Sec. II for precise definitionsd. This implies that an example of a monotone
metric for which the scalar curvaturesor its opposited is strictly increasing under mixing does
not exist yet. Note that Andaisusing an integral decomposition of Ref. 15d proved that also
in the 232 case there exist monotone metrics whose scalar curvature is not monotone.3

Finally, let us note that, related to this area, there exist other interesting papers. Some authors
have suggested that, when statistical mechanics is geometrized, then the scalar curvature should
have important physical meaningsfor example, it should be proportional to the inverse of the free
energy; see Refs. 8, 9, 25–27, and 39d.

II. MAJORIZATION AND SCHUR-INCREASING FUNCTIONS

For the content of this section we refer to Refs. 1, 5–7, and 31.

A. Commutative case

We shall denote byPn the manifold of positive vectors ofRn, and byPn
1,Pn the submanifold

of density vectors, namely
Definition 2.1:

Pn
1: = Hr P Rnuo

i

ri = 1, ri . 0J .

We sete: =s1, . . . ,1d. The trace of a vector is Trsvd=oi=1
n vi. For ann3n real matrix, consider

the following properties:

sId tij ù0 i , j =1, . . . ,n,
sII d oi=1

n tij =1 j =1, . . . ,n,
sIII d o j=1

n tij =1 i =1, . . . ,n.

Definition 2.2:

sad T is said to be stochastic if (I),(II) hold;
sbd T is said to be doubly stochastic if (I),(II),(III) hold.

WhenT is seen as an operatorT:Rn→Rn sby sTvd j =oi=1
n tjivid, then the propertiessId,sII d,sIII d

can be written as

sId8 spositivity preservingd Tvù0 if vù0;
sII d8 strace-preservingd TrsTvd=Trsvd ∀vPRn;
sIII d8 sunitald Te=e.

Let xPRn be a vector. We definex↓ as a vector with the same components in a decreasing
order so that

x1
↓ ù x2

↓ ù ¯ ù xn
↓.

Definition 2.3: x is more mixed (more chaotic,…) than y (denoted by xsy ) if and only if
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x1
↓ ø y1

↓,

x1
↓ + x2

↓ ø y1
↓ + y2

↓,

¯ ,

x1
↓ + ¯ + xn−1

↓ ø y1
↓ + ¯ + yn−1

↓ ,

x1
↓ + ¯ + xn

↓ = y1
↓ + ¯ + yn

↓.

For example, ifsr1, . . . ,rnd is a density vector then

S1

n
,
1

n
, . . . ,

1

n
D s sr1, . . . ,rnd s s1,0, . . . ,0,0d.

The relations is a preordering but not a partial ordering. Ifxsy and ysx then x=Ty for
some permutation matrixT.

Theorem 2.1:

x s y ⇔ x = Ty where T is doubly stochastic.

Definition 2.4 (see Ref. 31 pp. 14 and 54): A real-valued function f defined on a setA,Rn is
said to be Schur-increasing onA if

x s y onA ⇒ fsxd ù fsyd.

If, in addition, fsxd. fsyd whenever xsy but x is not a permutation of y, then f is said to be
strictly Schur-increasing. Similarly f is said to be Schur-decreasing onA if

x s y onA ⇒ fsxd ø fsyd,

and f is strictly Schur-decreasing if strict inequality fsxd, fsyd holds when x is not a permutation
of y.

Of course,f is Schur-increasing if and only if −f is Schur-decreasing.
Remark 2.1 (see Ref. 31, p. 54):A,Rn is symmetric ifxPA⇒PxPA for all permutations

P. A function f is symmetric onA if fsxd= fsPxd for all permutationsP. Let D : =hxux1ù ¯

ùxnj. If f is symmetric on a symmetric setA and Schur-increasing onDùA, then f is Schur-
increasing onA.

Remark 2.2:Let us consider the following identificationI : s0,p /2d→P2
1 defined by Isud

: =scos2u ,sin2ud. Evidently, if u1,u2øp /4, then

u1 ø u2 ⇔ Isu1d a Isu2d.

Any function onP2
1 can be seen as a function ons0,p /2d. By abuse of language we shall use the

same symbols to denote the two functions. SinceP2
1 is symmetric we have, because of Remark 2.1

Proposition 2.2:A symmetric functionf on P2
1 is Schur-increasing if and only iff is increas-

ing as a function ons0,p /4d.

B. Noncommutative case

Let Mn be the space of complexn3n matrices. We shall denote byHn the real subspace of
Hermitian matrices, byDn the manifold of strictly positive elements ofMn, and byDn

1,Dn the
submanifold of density matrices, namely

Definition 2.5:

Dn
1: = hr P MnuTr r = 1, r . 0j.
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If APMn, let lsAd be then-vector of its eigenvalues, arranged in any order with multiplicities
counted. IfA is Hermitian thenlsAd is a realn-vector. LetA,B be Hermitian.

Definition 2.6:

A s B ⇔ lsAd s lsBd.

Definition 2.7: A linear mapF on Mn is doubly stochastic if it is positive-preserving, trace-
preserving, and unital.

Theorem 2.3:

A s B ⇔ A = FsBd,whereF is doubly stochastic.

Definition 2.8: A real-valued function f defined on a setA,Hn is said to be Schur-increasing
on A if

A s B ⇒ fsAd ù fsBd.

Similarly, f is said to be Schur-decreasing onA if

A s B ⇒ fsAd ø fsBd.

Of course,f is Schur-increasing if and only if −f is Schur-decreasing.

III. PULL-BACK OF DUALITY PAIRINGS

To make the paper self-contained, we recall some constructions from Ref. 18.
Let V,W be vector spaces overR sor Cd. One can say that there is a duality pairing if there

exists a separating bilinear form

k·, ·l:V 3 W→ R.

Let M ,N ,Ñ be differentiable manifolds.
Definition 3.1: Suppose we have a pair of immersionssw ,xd, wherew :M→N and x :M

→Ñ, such that a duality pairing exists between TwsrdN and TxsrdÑ for anyrPM. Then, we may
pull-back this pairing onM by defining

ku,vlr
w,x: = kDrwsud,Drxsudl, u,v P TrM.

The most elementary example is given by the case whereN=Ñ is a Riemannian manifold,
w=x, and the duality pairing is just given by the Riemannian scalar product onTwsrdN sthis is the
pull-back metric induced by the mapwd.

A nontrivial example is the following. LetX be a uniformly convex Banach space such that

the dualX̃ is uniformly convex. We denote byk· , ·l the standard duality pairing betweenX andX̃.

Let J:X→ X̃ be the duality mapping, that isJ is the differential of the mapv→ 1
2ivi2. Jsvd is the

unique element of the dual such thatkv ,Jsvdl=ivi2=iJsvdi2.
Definition 3.2: LetM be a manifold. If we have a mapw :M→X we can consider a dualized

pull-back that is a bilinear form defined on the tangent space ofM by

kA,Blr
w: = kA,Blr

w,J+w = kDrwsAd,DrsJ + wdsBdl.

Example 3.1:For X a Hilbert space,J is the identity, and this is again the definition of
pull-back metric induced by the mapw.

In what follows, if pPR \ h0j then p̃ is defined bys1/pd+s1/p̃d=1. If p=1 thenp̃= +`.
Example 3.2:Let sX,F ,md be a measure space. Iff is a measurable function andpP s1,

+`d then ifip: =seuf updmd1/p. Set
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Lp = LpsX,F,md = hf is measurable andifip , `j.

DefineNp asLp with the norm

ifiNp: =
ifip

p
.

ObviouslyNp˜ sthe dual ofNpd can be identified withNp̃.
Now, suppose thatr.0 is measurable ander=1, namelyr is a strictly positive density. Then,

v=pr1/p is an element of the unit sphere ofNp and it is easy to see thatJsvd= p̃r1/p. The family of
mapsr→pr1/p is known as Amari embeddings.

Let X=h1, . . . ,nj and letm be the counting measure. In this caseNp is justRn with the norm
i ·ip/p.

Proposition 3.1: Consider the Amari embeddingw :rPPn
1→pr1/pPNp for an arbitrary p

P s1, +`d. Then, the bilinear form

kA,Blr
w: = kA,Blr

w,J+w = kDrwsAd,DrsJ + wdsBdl, A,B P TrPn
1,

is just the Fisher information.
Proof:

kDrwsAd,DrsJ + wdsBdl =E srs1/pd−1Adsrs1/pd−1Bd =E AB

r
.

h

The above result can be stated in much greater generality using the machinery of Refs. 19 and
14.

IV. SCALAR CURVATURE OF a-GEOMETRIES

The a-geometries are one of the fundamental objects of information geometryssee Refs. 2
and 20d. The study of the monotonicity of their curvatures does not appear in the literature as far
as we know. In this section we start such an investigation.

A. The plane case

Definition 4.1: Thea-geometry onP2
1 is the pull-back geometry induced by the map

Apsrd :P2
1→R2 defined by

Apsrd: = Hpr1/p, p P R \ h0j ,

logsrd, p = `,

where p=2/s1−ad.
Definition 4.2: We denote by cpsrd the curvature of thea-geometryfwith p=2/s1−adg at the

point rPP2
1.

Remark 4.1:For the curvaturecps·d there are two easy cases:
—if p=1 thencps·d=const=0;
—if p=2 thencps·d=const=1

2.
Taking a look at the unit sphere ofR2 with respect to theLp-norm, one can easily understand

the following general result.
Theorem 4.1:For the function cps·d :P2

1→R one has the following properties:
—if pP s1,2d then cps·d is a strictly Schur-decreasing function;
—if pP s2, +`g then cps·d is a strictly Schur-increasing function.
Proof: Let us first considerpP s1,`d. Then, thea-geometry,a=sp−2d /p, on P2

1 is the
geometry of the set
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B: = Hsx,yd P R2:S x

p
Dp

+ S y

p
Dp

= 1, x . 0, y . 0J .

Let us introduce the parametrization

x = pscosqd2/p, y = pssin qd2/p, 0 , q ,
p

2
.

Then

x8 = 2scosqds2/pd−1s− sin qd, y8 = 2ssin qds2/pd−1cosq,

x9 = 2scosqds2/pd−2S2

p
sin2 q − 1D, y9 = 2ssin qds2/pd−2S2

p
cos2 q − 1D .

Let us parametrize density vectors asscos2 u ,sin2 qd. In this way the curvature ofa-geometry at
the pointr, namelycpsrd, is

cpsqd: =
ux8y9 − x9y8u

fsx8d2 + sy8d2g3/2 =
p − 1

p

ssin q cosqds2/pd+2

fssin qscosqd1/pd4 + sssin qd1/pcosqd4g3/2

=
p − 1

p
S1

2
D2f1−s2/pdg

·
ssin 2qd2f1−s2/pdg

fscosqd4/p̃ + ssin qd4/p̃g3/2 = Ap ·
gpsqd

fpsqd
3
2

,

where we set

Ap: =
p − 1

p
S1

2
D2f1−s2/pdg

,

gpsqd: = ssin 2qd2−s4/pd,

fpsqd: = scosqd4/p̃ + ssin qd4/p̃.

We want to compute the monotonicity properties ofcp with respect to the preorderings. We have

gp8sqd: = 4ssin 2qd1−s4/pd · scosq + sin qdS1 −
2

p
Dscosq − sin qd;

since 0,q,p /2, then

4ssin 2qd1−s4/pd · scosq + sin qd . 0,

and therefore

gp8sqd . 0 ⇔ S1 −
2

p
Dscosq − sin qd . 0.

Moreover

fp8sqd =
4

p̃
sin q cosqsssin qds2/p̃d−1 + scosqds2/p̃d−1dsssin qds2/p̃d−1 − scosqds2/p̃d−1d;

again, since 0,q,p /2, then

4 sin q cosqsssin qds2/p̃d−1 + scosqds2/p̃d−1d . 0,

and therefore
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fp8sqd . 0 ⇔
1

p̃
sssin qds2/p̃d−1 − scosqds2/p̃d−1d . 0.

cps·d is evidently symmetric onP2
1 and thereforesbecause of Proposition 2.2d the fact that the

curvature is strictly Schur-increasingsdecreasingd is equivalent to the fact thatcpsqd is strictly
increasingsdecreasingd for 0,q,p /4.

We have the following cases:
Case:1,p,2.
This implies 1−s2/pd,0,s2/p̃d−1,0, and therefore

gp8sqd . 0 ⇔ cosq , sin q ⇔
p

4
, q ,

p

2
,

fp8sqd . 0 ⇔ ssin qds2/p̃d−1 . scosqds2/p̃d−1 ⇔ sin q , cosq ⇔ 0 , q ,
p

4
.

Therefore, for 0,q,p /4, g is decreasing,f is increasing, and 1/f3/2 is decreasing. This implies
that

cp = Ap
gp

fp
3/2

is strictly decreasing for 0,q,p /4.
Case:2,p,`.
This implies 1−s2/pd.0,s2/p̃d−1.0, and therefore

gp8sqd . 0 ⇔ cosq . sin q ⇔ 0 , q ,
p

4
,

fp8sqd . 0 ⇔ ssin qds2/p̃d−1 . scosqds2/p̃d−1 ⇔ sin q . cosq ⇔
p

4
, q ,

p

2
.

Therefore, for 0,q,p /4, g is increasing,f is decreasing, and 1/f3/2 is increasing. This implies
that

cp = Ap
gp

fp
3/2

is strictly increasing for 0,q,p /4.
Case: p=`.
Use now the following parametrization:

x = 2 logscosud, y = 2 logssin ud,

for the curveex+ey=1.Then

x8 = − 2
sin u

cosu
, y8 = 2

cosu

sin u
,

x9 =
− 2

cos2 u
, y9 =

− 2

sin2 u
,
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c`sqd: =
ux8y9 − x9y8u

fsx8d2 + sy8d2g3/2 =
ssin u cosud2

fscosud4 + ssin ud4g3/2

= lim
p→+`

p − 1

p
S1

2
D2f1−s2/pdg

·
ssin 2qd2f1−s2/pdg

fscosqd4/p̃ + ssin qd4/p̃g3/2.

Note that

c`sqd = lim
p→+`

cpsud.

If we set

g`sqd: = ssin u cosud2, f`sqd: = scosud4 + ssin ud4,

then

g8̀ sqd = 2 sinq cosqscosq + sin qdscosq − sin qd,

f 8̀ sqd = 4 sinq cosqscosq + sin qdssin q − cosqd.

This implies

g8̀ sqd . 0 ⇔ cosq . sin q,

f 8̀ sqd . 0 ⇔ sin q . cosq.

We have the same situation of the case 2,p,` and therefore the same conclusion.
This ends the proof. h

Note that we have also
Proposition 4.2: For the function cps·d :P2

1→R one has the following properties: if p
P s−` ,0d then cps·d is strictly Schur-increasing.

Proof: Since

1 −
2

p
. 0,

2

p̃
− 1 . 1 . 0, 0, p̃ , 1,

we have the same situation of the case 2,p,` in the preceding Theorem 4.1 and therefore the
same conclusion. h

If pP s0,1d then cps·d can have an arbitrary behaviorsSchur-increasing, Schur-decreasing,
neither of the twod.

B. The general case

Definition 4.3: Thea-geometry onPn
1 is the pull-back geometry induced by the map

Apsrd :Pn
1→Rn defined by

Apsrd: = Hpr1/p, p P R \ h0j,

logsrd, p = `,

where p=2/s1−ad.
Definition 4.4: We denote byScalpsrd the scalar curvature of thea-geometry fwith p

=s2/s1−addg at the pointrPPn
1.

Of course the casesp=1 sflat geometryd andp=2 sgeometry of asn−1d-dimensional sphere
with radius 2d are easy to study. One has

—if p=1 then Scalps·d=const=0;
—if p=2 then Scalps·d=const=1

4sn−1dsn−2d.
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Again taking a look at the unit sphere ofRn equipped withLp-norm, one can easily understand
the following conjecture.

Conjecture 4.1: Suppose n.2. For the functionScalps·d :Pn
1→R one has the following prop-

erties:
—if pP s1,2d thenScalps·d is a strictly Schur-decreasing function;
—if pP s2, +`g thenScalps·d is a strictly Schur-increasing function.

C. Non-commutative case

Definition 4.5: Thea-geometry onDn
1 is the geometry induced by the pull-back of the map

Apsrd :Dn
1→Mn defined by

Apsrd: = Hpr1/p, p P R \ h0j,

logsrd, p = `,

wherep=2/s1−ad.
Since the commutativity or noncommutativity of the context will always be clear, we perform

a little abuse of language in the following definition.
Definition 4.6: We denote byScalpsrd the scalar curvature of thea-geometry fwith p

=s2/s1−addg at the pointrPDn
1.

Again, the casep=1 sflat geometryd is obvious. The casep=2 is knownssee Refs. 16 and 17
or Theorem 7.2 belowd, and we have

—if p=1 then Scalps·d=const=0;
—if p=2 then Scalps·d=const=1

4sn2−1dsn2−2d.
Motivated by the commutative plane case we formulate the following conjecture.
Conjecture 4.2: Suppose nù2. For the functionScalps·d :Dn

1→R one has the following prop-
erties:

—if pP s1,2d thenScalps·d is a strictly Schur-decreasing function;
—if pP s2, +`g thenScalps·d is a strictly Schur-increasing function.

V. MONOTONE METRICS AND THEIR SCALAR CURVATURES

A commutative Markov morphismT:Rn→Rm is a stochastic map. A noncommutative Mar-
kov morphism is a linear mapT:Mn→Mm that is completely positive and trace-preservingsnote
that in the commutative case complete positivity is equivalent to positivity; see, for example, Ref.
41d.

In the commutative case a monotone metric is a family of Riemannian metricsg=hgnj on
hPn

1j, nPN such that

gTsrd
m sTX,TXd ø gr

nsX,Xd

holds for every Markov morphismT:Rn→Rm and allrPPn
1 andXPTrPn.

In perfect analogy, a monotone metric in the noncommutative case is a family of Riemannian
metricsg=hgnj on hDn

1j, nPN such that

gTsrd
m sTX,TXd ø gr

nsX,Xd

holds for every Markov morphismT:Mn→Mm and allrPDn
1 andXPTrDn

1.
Let us recall that a functionf : s0,`d→R is called an operator monotone if for anynPN, any

A, BPMn such that 0øAøB, the inequalities 0ø fsAdø fsBd hold. An operator monotone func-
tion is said to be symmetric iffsxd=xfsx−1d and normalized iffs1d=1. In what follows, by
operator monotone we mean normalized symmetric operator monotone. With each operator mono-
tone functionf one associates also the so-called Chentsov–Morotzova function
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cfsx,yd: =
1

yfSx

y
D for x,y . 0.

DefineLrsAd : =rA, andRrsAd : =Ar. SinceLr ,Rr commute we may definecsLr ,Rrd. Now, we can
state the fundamental theorems about monotone metricssuniqueness and classification are up to
scalarsd.

Theorem 5.1 (Ref. 10):There exists a unique monotone metric onPn
1 given by the Fisher

information.
Theorem 5.2 (Ref. 35):There exists a bijective correspondence between monotone metrics on

Dn
1 and operator monotone functions given by the formula

kA,Blr,f: = TrsA ·cfsLr,RrdsBdd.

To state the general formula for the scalar curvature of a monotone metric we need some
auxiliary functions. In what followsc8 ,slog cd8 denote derivatives with respect to the first vari-
able, andc=cf.

h1sx,y,zd: =
csx,yd − zcsx,zdcsy,zd

sx − zdsy − zdcsx,zdcsy,zd
,

h2sx,y,zd: =
scsx,zd − csy,zdd2

sx − yd2csx,ydcsx,zdcsy,zd
,

h3sx,y,zd: = z
sln cd8sz,xd − sln cd8sz,yd

x − y
,

h4sx,y,zd: = zsln cd8sz,xdsln cd8sz,yd,

h: = h1 − 1
2h2 + 2h3 − h4. s5.1d

The functionshi have no essential singularities if arguments coincide.
Note thatkA,Blr

f : =TrsA·cfsLr ,RrdsBdd defines a Riemannian metric also overDn sDn
1 is a

submanifold of codimension 1d. Let Scalfsrd be the scalar curvature ofsDn,k· , ·lr
f d at r and

Scalf
1srd be the scalar curvature ofsDn

1,k· , ·lr
f d.

Theorem 5.3 (Ref. 12):Let ssrd be the spectrum ofr. Then

Scalfsrd = o
x,y,zPssrd

hsx,y,zd − o
xPssrd

hsx,x,xd,

Scalf
1srd = Scalfsrd + 1

4sn2 − 1dsn2 − 2d.

These results have the following form in the simplest cases232 matricesd. From Theorem 5.3
it follows that ssee Ref. 3d

Corollary 5.4: If rPD2 has eigenvaluesl1,l2, one has

Scalsrd = hsl1,l1,l2d + hsl1,l2,l1d + hsl2,l1,l1d + hsl2,l2,l1d

+ hsl2,l1,l2d + hsl1,l2,l2d + 3
2 .

Theorem 5.5 (Ref. 3):If rPD2 has eigenvaluesl1,l2, and a=2l1−1, then
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r fsad: = Scalfsrd =

14sa − 1dF f8S1 − a

1 + a
DG2

s1 + ad3F fS1 − a

1 + a
DG2

+

2sa2 + 7a − 6df8S1 − a

1 + a
D

s1 + ad2afS1 − a

1 + a
D +

8s1 − adf9S1 − a

1 + a
D

s1 + ad3fS1 − a

1 + a
D

+

2s1 + adfS1 − a

1 + a
D

a2
+

3a3 + 5a2 + 8a − 4

2s1 + ada2
.

VI. THE WYD METRICS

We are going to study a particular class of monotone metrics.
Definition 6.1:

fpsxd: =
1

pp̃
·

sx − 1d2

sx1/p − 1dsx1/p̃ − 1d
, p P R \ h0,1j,

f1sxd = f`sxd: =
x − 1

logsxd
, p = 1,`.

Obviously fp= f p̃ and

f1 = lim
p→1

fp = lim
p→`

fp = f`.

Theorem 6.1 (Refs. 22 and 23):The function fp is operator monotone if and only if pPA
: =s−` ,−1gøf 1

2 , +`g.
Note thatpPA if and only if aP f−3,3g.
Definition 6.2: The WYDspd metric of parameter p is the monotone metric associated with fp

(where pPA).
We have thatf−1 is the function of the RLD-metric,f1= f` is the function of the BKM-metric,

and f2 is the function of the Wigner–Yanase metric.
In what followspP s1, +`d and we use again the symbolNp to denoteMn with the norm

iAiNp = p−1sTrsuAupdd1/p.

All the commutative construction of Example 3.2 goes through. The following Proposition is the
noncommutative analogous of Proposition 3.1ssee also Refs. 16, 21, 23, 28, and 37d.

Proposition 6.2 (Ref. 18): Letw :rPDn
1→pr1/pPNp be the Amari embedding. The dualized

pull-back

kA,Blr
w: = kA,Blr

w,J+w = kDrwsAd,DrsJ + wdsBdl

coincides with the Wigner–Yanase–Dyson information.

VII. KNOWN RESULTS ON MONOTONICITY

In this short section we review what is known about monotonicity of scalar curvature for
monotone metrics. This is useful to emphasize that, up to now, no examples exist of a monotone
metrics with Schur-increasingsor Schur-decreasingd scalar curvature.

The Bures or SLD metric is the monotone metric associated with the functionf =s1+xd /2.
Theorem 7.1 (Refs. 11 and 13):The scalar curvature of SLD metric is neither Schur-

increasing nor Schur-decreasing.
Proof: By Ref. 11 the SLD-metric has a global minimum at the most mixed state for anyn. On
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the other handsthis is due to Ref. 13d, if s=diags 2
9 , 1

9 , 2
3

d and r=diags 1
6 , 1

6 , 2
3

d then rss. Using
Theorem 5.3 one can calculate Scalssd=3078/25.3447/28=Scalsrd and so the conclusion fol-
lows. h

Theorem 7.2 (Ref. 17):The scalar curvature of WY metric is a constant equal to1
4sn2−1d

3sn2−2d.

VIII. A CONJECTURE ON THE WYD SCALAR CURVATURE AND ITS RELATION TO
PETZ CONJECTURE

In this section we want to suggest that a whole family of monotone metrics with Schur-
increasing scalar curvature may exist.

Conjecture 8.1: There exist«.0 such that for p in the interval I: =s1,1+«d the scalar
curvature of theWYDspd metrics is a Schur-increasing function.

Conjecture 8.2 (Petz conjecture): The scalar curvature of BKM metric is a Schur-increasing
function. This can be rephrased as

r s s ⇒ Scalf1srd ù Scalf1ssd.

The motivations for Conjecture 8.1 are the following. The WYDspd metrics come from the
dualized pull-back of Proposition 6.2. This means that the WYDspd metrics depend, indeed, on the
pair sp, p̃d. Note that whenp is in the Schur-decreasing regions1,2d we have thatp̃ is in the
Schur-increasing regions2, +`d sTheorem 4.1, Conjectures 4.1, 4.2d. Whenp approaches 1 then
p̃ goes to infinity. Near the boundary valuesh1, +`j the increasing–decreasing “symmetry” should
be broken: in this case WYDspd geometry comes from a geometry converging to a flat limitsp
→1d and a geometry converging to asconjecturedd Schur-increasing scalar curvaturesp̃→`d.

Theorem 8.1: If Conjecture 8.1 is true then Conjecture 8.2 (Petz conjecture) is true.
Proof: For an arbitrary manifoldM let us denote byMsMd the manifold of Riemannian

metrics of M. If rPM is fixed andgPMsMd then the functionFrs·d :MsMd→R defined by
Frsgd : =Scalgsrd is a smooth functionssee Refs. 29 and 33d. Identifying fp with the metric

kA,Blr,fp
: = TrsAcfp

sLr,RrdsBdd,

we may consider the functionp→ fp as a continuous curve inMsDn
1d. This implies that, by

composition, the functionp→Scalfp
srd is a real, continuous function for eachrPDn

1. Suppose
now that Conjecture 8.1 is true.

We have for arbitraryr ,sPDn
1, such thatrss

Scalf1srd = lim
p→1

Scalfp
srd ù lim

p→1
Scalfp

ssd = Scalf1ssd.

But, this is precisely the Petz conjecture. h

FIG. 1. Casep=1+10−1.
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A. Numerical results

Conjecture 8.1 would have many consequences. An example is the following theorem.
Theorem 8.2: Conjecture 8.1 implies that there exists«.0 such that for pP s1,1+«d the

functions rp: =r fp
of Theorem 5.5 are concave and have their maximum at zero.

Proof: It follows immediately by Theorem 5.5. h

Using MATHEMATICA , one has the following graphs for the functionrp:
Casep=1+10−1; see Fig. 1;
Casep=1+10−6; see Fig. 2.
Let us emphasize what we said in the Introduction: a recent result of Andai3 shows the

nontriviality of the above behavior. Indeed, also in the 232 case there exist many monotone
metrics with nonincreasing scalar curvature.
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In this paper we investigate the large-time behavior of solutions to the first initial-
boundary value problem for the nonlinear diffusionut=sumdxx, m.0. In particular,
we prove exponential decay ofusx,td towards its own steady state inL1-norm for
long times and we give an explicit upper bound for the rate of decay. The result is
based on a new application of entropy estimates, and on detailed lower bounds for
the entropy production in this situation. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1828587g

I. INTRODUCTION

In recent years, entropy dissipation methodssalso calledentropy–entropy productionmethodsd
have been successfully applied to reckon decay rates towards equilibrium of weak solutions to
Cauchy problems for nonlinear second- and fourth-order parabolic equations and their
systems.1,3,8–10,13,18

However only rarely, at least to our knowledge, such strategies have been applied to the study
of initial-boundary value problems with nonhomogeneous or nonperiodic boundary conditions.17

The main reason for this fact relies in the lack of mass conservation, which is one of the main
ingredients to handle the problem and to obtainL1 estimates from the entropy decay by means of
Csiszár–Kullback inequalities.2,12

An entropy dissipation method to handle almost general Dirichlet boundary conditions will be
developed in this paper. Our results show that entropy methods can be fruitfully applied also to
initial-boundary value problems with nonhomogeneous Dirichlet boundary conditions.

In more details, we will be concerned with the large-time behavior of the solution to the
initial-boundary value problem,

utsx,td = fumsx,tdgxx, sx,td P V 3 s0, +`d, s1d

us− L,td = w−, usL,td = w+, s2d

usx,0d = u0sxd s3d

in V=s−L ,Ld , L.0, with m.0. The initial datau0sxd and the boundary conditionsw+ andw− are
non-negative real constants satisfying the hypotheses stated in the following definition.

Definition 1.1: The initial and boundary conditions of problem (1)–(3) are said to be admis-
sible if and only if

(1) w+ and w− are non-negative andsw++w−d.0;
(2) u0sxdPCsf−L ,Lgd is a non-negative function which satisfies the compatibility conditions

u0s−Ld=w− and u0sLd=w+.

While the large-time behavior of solutions to the Cauchy problem for the nonlinear equation
s1d was intensively studied for many yearsscf. the excellent survey paper of Vázquez19 and the
references thereind, the behavior of solutions to the initial-boundary value problem with nonho-
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mogenous Dirichlet boundary conditions was less studiedssee Refs. 4 and 7; results on the
logarithmic nonlinearity can however be found in Ref. 6d. Other related results in bounded do-
mains deserve to be referred in. A complete study of the asymptotic behavior of solutions to the
initial-Dirichlet problem with homogeneous boundary condition has been recently presented by
Vázquez.20 However, the techniques used there are different from ours. The question of the
possible application of the entropy method to the study of the problem treated in Ref. 20 is to our
knowledge open in higher dimensions. In dimension one, the analysis of the asymptotic behavior
with homogeneous boundary conditionssnamely whenw+=w−=0d can be performed, by means of
the entropy dissipation method, in a rather standard way. We focus therefore our attention only to
the case when at least one of the boundary conditions does not vanish.

As we will discuss later on, our method works in the whole rangem.0, covering both the
fast diffusion equationsm,1d and the porous media equationsm.1d.

In order to study the large-time behavior, we shall analyze the time-decay of a suitable relative
entropy, where the word “relative” meansrelative to the steady stateof Eqs.s1d–s3d.

The method introduced in this work, useful to handle second-order diffusions in one dimen-
sion, cannot be easily generalized due to a main fact. The entropy associated to the steady state is
explicit as the steady state is; in the general caseshigher dimensions or higher order diffusionsd,
the steady states are not explicit nor are the entropy functionals. Therefore, the application of the
entropy–entropy production method based on the knowledge of the derivative in time of the
functional becomes rather difficult.

The results on the large-time behavior will be reached by steps.
The existence and uniqueness theorem for Eqs.s1d–s3d will be stated in Sec. II.
Section III deals with the study of the entropy functional for the same initial-boundary value

problem. The sublinear casesi.e., 0,mø1d and the superlinear casesm.1d lead to different
relative entropies, and are treated in a slightly different way. It is interesting to remark that, in the
limit m→1, the entropy functionals of both the superlinear case and the sublinear cases coincide,
but the rate of convergence obtained in the linear case as limit of the nonlinear case is worse than
the rate obtained from a direct inspection.

The case of strictly positive initial-boundary conditions is considered in Sec. IV, where the
rate of decay of the solution towards the steady state is discussed, both in the sublinear case and
in the superlinear one.

Finally, the general case of non-negative initial-boundary conditions, obtained by removing
the limitation on the data, is studied in Sec. V.

II. MAIN PROPERTIES OF THE SOLUTION

We will start the study of our problem by discussing the well posedness of equationss1d–s3d
and the main properties of the solution. Following Ref. 14, the precise characterization of a weak
solution to problems1d–s3d is obtained by the following definition.

Definition 2.1: A function usx,td defined onV̄3 f0,Tg is a weak solution of problem (1)–(3) if
and only if

(1) usx,td is real, non-negative and continuous onV̄3 f0,Tg;
(2) us−L ,td=w− and usL ,td=w+ for all t P f0,Tg;
(3) umsx,td has a square-integrable generalized derivative with respect to x inV3 f0,Tg;
(4) usx,td satisfies the identity

E
0

TE
V

fsumdxfx − uftgdx dt =E
V

fsx,0du0sxddx, s4d

for all fPCsV̄3 f0,TgdùH1sV3 s0,Tdd which vanish foruxu=L and for t=T.

The main result of this section is due to Gilding.14–16 We remark that, as far as the well-
posedness ofs1d–s3d is concerned, more recent contributions are present in the literature. We refer
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in particular to the paper of Bénilan and Touré,5 where well-posedness is investigated in the
framework of the nonlinear semigroup theory. Gilding provedsin a more general formd the fol-
lowing theorem.

Theorem 2.1:Let us consider the initial-boundary value problem (1)–(3) with admissible (in

the sense of Definition 1.1) non-negative initial data usx,0d=u0sxdPCsV̄d and boundary condi-
tions us−L ,td=w− and usL ,td=w+.

Then problem (1)–(3) has exactly one and only one non-negative weak solution usx,td.
Moreover, usx,td is a classical solution in a neighborhood of any pointsx0,t0dPV̄3 f0,Tg

where usx0,t0d.0.
Finally, if we denote with u1sx,td and u2sx,td two solutions of Eq. (1) with initial and bound-

ary conditions u0,1sxd , w−
s1d , w+

s1d and u0,2sxd , w−
s2d , w+

s2d, respectively,

u0,1sxd ø u0,2sxd for all x P V̄

and

w−
s1d ø w−

s2d, w+
s1d ø w+

s2d,

imply u1sx,tdøu2sx,td for all sx,tdPV̄3 f0,Tg.
The stationary state for problems1d–s3d can be easily found. We have the following lemma.
Lemma 2.1: Problem (1)–(2) admits one and only one stationary solution. This solution is

given by

ūmsxd = ax+ b, s5d

where

a =
1

2L
fw+

m − w−
mg, b =

1

2
fw+

m + w−
mg.

Proof: The stationary solution of Eqs.s1d–s3d satisfies

ūmsxdxx = 0 in V, s6d

ūs− Ld = w−, ūsLd = w+. s7d

Integration ofs6d, together with the use of boundary conditionss7d gives s5d. h

Obviously, whenw+=w−=0, we have thatūsxd=0 for all xPV̄. Since this case can be easily
solved directly, from now on we will suppose that at least one of the boundary conditionsw+ or w−

does not vanish.

III. THE ENTROPY FUNCTIONAL

In order to prove the exponential decay of the solution of problems1d–s3d, we will consider an
auxiliary problem and use an entropy monotonicity approach.

We suppose from now on and until the end of Sec. IV that both the initial and boundary
conditions are not allowed to take the value zero. If it were the case, we would consider a modified
problem, obtained by lifting up the data in a suitable way, as we will see in Sec. V.

Let us definef =u/ ū; by the hypotheses onw+ and w−, ūsxdÞ0 for all xPV, so that f is
always well defined.

It is immediate to show thatf satisfies the initial-boundary value problem,

ūf t = 2asfmdx + sax+ bdsfmdxx, s8d

fs− L,td = 1, fsL,td = 1, s9d
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fsx,0d = u0sxd/ūsxd s10d

in V.
It will be clear later on that it is convenient to consider separately the two cases 0,mø1 and

m.1, respectively. Both cases, however, can be treated by studying the time decay of a suitable
entropy, defined by the convex functional,

Hsfd =E
V

Fsfdū dx, s11d

where the convex functionF, which is defined in the next sections, depends on the case we are
considering.

A. The sublinear case

In the sublinear casesi.e., 0,mø1d we consider the convex functionF given by

Fsfd = F 1

ms2 − mds3 − md
f3−m −

1

ms2 − md
f +

1

ms3 − mdG . s12d

Note that the linear part ofF is chosen so thatFs1d=F8s1d=0.
We prove the following lemma.
Lemma 3.1: Let u0sxd , w−, w+ be admissible initial-boundary conditions, and moreover be

such thatw−, w+.0 and u0sxd is strictly positive for all xPV. Then, if0,mø1, the functional
Hsfd, with Fsfd given by (12), is an entropy for problem (8)–(10), that is

dHsfd
dt

= − Isfd,

where the (non-negative) entropy production Isfd is

Isfd =E
V

ūmsfxd2 dx. s13d

Proof: Let us multiply both sides of Eq.s8d by F8sfd. Integrating overV with respect tox, we
obtain

E
V

ūF8sfd
] f

] t
dx =E

V

F8sfdsax+ bdsfmdxx dx.

Let us integrate by parts the right-hand side. Thanks to the boundary conditionss9d and to the
propertyF8s1d=0 we obtain

d

dt
E

V

ūFsfddx = −E
V

fūmF8sfdgxsfmdx dx = − mE
V

ūmF9sfdfm−1sfxd2 dx.

SincemF9sfdfm−1=1, the lemma is fully proven. h

B. The superlinear case

In the superlinear caseswhich corresponds to the choicem.1d, we introduce the functionF
given by

Fsfd = Fm+ fm+1

m+ 1
− fG . s14d

As in the previous case,Fs1d=F8s1d=0.
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We prove the following lemma.
Lemma 3.2: Let u0sxd , w−, w+ be admissible initial-boundary conditions, and moreover be

such thatw−, w+.0 and u0sxd is strictly positive for all xPV.
Then, if m.1, the functional

Hsfd =E
V

Fsfdū dx, s15d

whereFsfd is given in (14), is an entropy for problem (8)–(10), that is

dHsfd
dt

= − Isfd,

and the (non-negative) entropy production is

Isfd =E
V

ūmsfmdx
2 dx. s16d

Proof: Let us multiply both sides of Eq.s8d by F8sfd=sfm−1d and integrate overV with
respect tox,

E
V

ūF8sfd
] f

] t
dx =E

V

F8sfdf2asfmdx + sax+ bdsfmdxxgdx.

Integrating by parts on the right-hand side, taking into account the boundary conditionss9d and the
propertyF8s1d=0 we obtain

d

dt
E

V

ūFsfddx = 2aE
V

sfm − 1dsfmdx dx +E
V

ūmsfm − 1dsfmdxx dx

= −E
V

sfmdxfūmsfm − 1dgxdx = −E
V

ūmsfmdx
2 dx, s17d

which is the thesis of the lemma. h

IV. CONVERGENCE FOR STRICTLY POSITIVE INITIAL DATA

In order to investigate the entropy decay rate, we look now for lower bounds to the entropy
production functional

Isfd =E
V

ūmsfndx
2 dx,

with m.0 andnù1. In order to achieve this goal, we prove the following Lemma.
Lemma 4.1: Let f belong to H1sVd, and let ūsxd be the stationary solution of problem (6)–(7).

Then, for any m.0 and nù1,

E
V

ūmfsfndxg2 dx ù
1

16L2Jsw+,w−dSE
V

uu − ūudxD2

,

where
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Jsw+,w−d =5
1

mL
Fw+

m − w−
m

w+
2 − w−

2 G if w+ Þ w−,

1

2L
wm−2 if w+ = w− = w. 6

Proof: Let us first suppose thatūm is nondecreasing. The opposite case can be treated in the
same way.

Given any functiongPH1sVd, such thatgsLd=1,

iūsg − 1diL1 ø E
−L

L

ūsxdE
x

L

ug8sydudy dx ø E
−L

L

ūsxds2−md/2E
x

L

ūsydm/2ug8sydudy dx

ø E
−L

L

ūsxds2−md/2SE
x

L

ūsydmug8sydu2 dyD1/2

sL − xd1/2 dx

ø iūm/2g8iL2SE
−L

L

ūsxd2−m dxD1/2SE
−L

L

sL − xddxD1/2

. s18d

For anym.0, the functionū2−m=sax+bd2/m−1 is integrable onV. If we denote

Jsw+,w−d = SE
V

sax+ bd2/m−1 dxD−1

,

we have in fact that

Jsw+,w−d =5
1

mL
Fw+

m − w−
m

w+
2 − w−

2 G if w+ Þ w−,

1

2L
wm−2 if w+ = w− = w. 6

Hence,s18d implies

E
V

ūsxdmug8sxdu2 dx ù
Jsw+,w−d

2L2 iūsg − 1diL1
2 . s19d

Next, if nù1, we haveurn−1uù ur −1u for r ù0. Consequently,

Jsw+,w−d
2L2 iūsf − 1diL1

2
ø

Jsw+,w−d
2L2 iūsfn − 1diL1

2
ø E

V

ūsxdmfsfnsxddxg2 dx. s20d

h

Remark 4.1: We remark that Jsw+,w−d is monotone decreasing with respect to m. This is
consistent with the fact that we expect a faster convergence towards equilibrium in the fast
diffusion case.

Remark 4.2: The proof of Lemma 4.1, which is nothing but the proof of a weighted Poincaré
inequality, takes essential advantage from the simple form of the steady state u.̄ Of course, other
proofs can be found in the literature, and the constant could be improved. Recent results on
weighted Poincaré inequalities are due to Chua and Wheeden.11

In order to obtain a proof of the exponential convergence of the solutionusx,td to problem
s1d–s3d towards its stationary stateūsxd whenu0sxd.0, it remains to show that the relative entropy
satisfies an inequality of the Csiszár–Kullback type.12 This result is contained in the following
lemma.

Lemma 4.2: Let fsx,td be the solution of problem (8)–(10), ūsxd the solution of problem
(6)–(7). Let
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jsmd = min
0øaø1

1 − a

Fsad
+

2

F9sad
, s21d

whereF is given by (12) if m,1, or by (14) if mù1. Then the following Csiszár–Kullback-type
inequality holds:

E
V

Fsfdū dx ù
jsmd

E
V

ū dx
SE

V

uu − ūudxD2

. s22d

Proof: First, we note that the function

Csrd =
Fsrd
1 − r

, 0 ø r ø 1,

is nonincreasing. Since

C8srd =
F8srd
1 − r

+
Fsrd

s1 − rd2 =
1

s1 − rd2fF8srds1 − rd + Fsrdg,

it is enough to show that the functionzsrd=F8srds1−rd+Fsrd is nonpositive in the set 0ø r ø1.
This follows easily considering thatFs1d=0, while the convexity ofF implies

z8srd = F9srds1 − rd ù 0.

Fix aP s0,1d. SinceC is nonincreasing, and

E
hf,aj

ūuf − 1udx ø SE
hf,aj

ūuf − 1udxD1/2SE
V

ū dxD1/2

,

we obtain

E
hf,aj

ūFsfddx ù CsadE
hf,aj

ūuf − 1udx ù
Csad
iūiL1

SE
hf,aj

ūuf − 1udxD2

. s23d

On the other hand, since bothFs1d=0 andF8s1d=0, by the monotonicity ofF9 we have

E
hfùaj

ūFsfddx =E
hfùaj

ū
sf − 1d2

2
F9s1 + qsfdsf − 1dddx ù

F9sad
2

E
hfùaj

ūsf − 1d2 dx

ù
F9sad
2iūiL1

SE
hfùaj

ūuf − 1udxD2

. s24d

Grouping together inequalitiess23d and s24d we finally obtain

iu − ūiL1
2

ø 2SE
hf,aj

ūuf − 1udxD2

+ 2SE
hfùaj

ūuf − 1udxD2

ø 2iūiL1S1 − a

Fsad
+

2

F9sad
DE

V

ūFsfddx.

s25d

Optimizing with respect toa we conclude the proof. h

The previous results are at the basis of the following theorem.
Theorem 4.3: Let usx,td be the solution of problem (1)–(3), where u0sxd , w− and w+ are

strictly positive, and Hsu0/ ūd is bounded. Then usx,td decays exponentially fast towards the
stationary solution ūsxd in L1-norm, and the following bound holds:

023502-7 Asymptotics for nonlinear diffusions J. Math. Phys. 46, 023502 ~2005!

                                                                                                                                    



SE
V

uu − ūudxD2

ø

E
V

ū dx

jsmd
Hsu0/ūdexp3−

E
V

ū dx

16L2jsmdSEV

ū2/m−1 dxD−1

t4 . s26d

Proof: In consequence of Lemmas 3.1, 3.2, 4.1, and 4.2 we deduce that

SE
V

uu − ūudxD2

ø

E
V

ū dx

jsmd FHsu0/ūd −
1

16L2SE
V

ū2/m−1 dxD−1E
0

t SE
V

uu − ūudxD2

dt8G .

s27d

Gronwall’s lemma then impliess26d. h

V. NON-NEGATIVE INITIAL-BOUNDARY CONDITIONS

In this section we briefly sketch the procedure to adopt when the initial and boundary condi-

tions are non-negative only, provided that the stationary solutionūsxd is not identically zero onV̄.
This corresponds to suppose thatsw++w−d.0.

We consider two cases. In the first one, the boundary conditions are strictly positive, but the
initial data can vanish somewhere onV. In the second one we admit the possibility of a vanishing
boundary condition inx=−L or in x=L.

We note that, while in the former case the result is a simple corollary of Theorem 4.3, in the
latter the regularity of the initial data plays an important role.

A. Non-negative initial data

Let usx,td be the solution of Eqs.s1d–s3d, with admissible non-negative initial datumusx,0d,
and boundary conditionsus−L ,td=w− and usL ,td=w+ for all t.0, such thatu0s−Ld=w− and
u0sLd=w+, wherew+ andw− are strictly positive.

To prove the exponential decay also in this case, we lift up the initial data of a small quantity,
depending on a parameter«.0 and vanishing as«→0, and then pass to the limit.

We denote byu«sx,td the solution of the lifted problem, where the initial data are

u«sx,0d = u0,«sxd = u0sxd + « cosS p

2L
xD .

The corresponding stationary solutions remains unchanged. Thanks to Theorem 4.3,

iu«sx,td − ūsxdi1
2 ø

E
V

ū dx

jsmd
Hsu0,«/ūdexp3−

E
V

ū dx

16L2jsmdSEV

ū2/m−1 dxD−1

t4 .

In the sublinear case,

Hsu0,«/ūd =E
V
F 1

ms2 − mds3 − md
f«
3−m −

1

ms2 − md
f« +

1

ms3 − mdGū dx,

with f«=u0,«sxd / ū.

Since f« decreases as«→0+, and the integrand is continuous and well defined onV̄, we can
apply the monotone convergence theorem to obtain
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lim
«→0+

E
V

f«
3−mū dx =E

V
Fu0sxd

ū
G3−m

ū dx.

The same argument shows that also

lim
«→0+

E
V

f«ū dx =E
V

u0 dx.

Hence,

lim
«→0

Hsu0,«/ūd = Hsu0/ūd.

The superlinear case can be equally treated. We proved the following theorem.
Theorem 5.1:Let usx,td be the solution of problem (1)–(3), where the initial data are admis-

sible, w− and w+ are strictly positive, and Hsu0/ ūd is bounded. Then usx,td decays exponentially
fast towards the stationary solution us̄xd in L1-norm, and bound (26) holds.

B. Non-negative initial-boundary conditions

More involved is the case when we allow that a boundary condition can be zero, which is the
most general situation taken into account in the paper.

In what follows, we will suppose that the vanishing boundary condition is inx=−L si.e., w−

=0d; the other case is specular.
Denote byusx,td the solution of Eqs.s1d–s3d, with admissible initial datausx,0d=u0sxdù0

and boundary conditionsus−L ,td=0 andusL ,td=w+ for all t.0, such thatu0s−Ld=0 andu0sLd
=w+, wherew+.0.

Given a positive constant«,w+, we introduce a lifted problem wherew−=«. The correspond-
ing stationary solutions are given by

ūmsxd = ax+ b and ū«
msxd = a«x + b«,

respectively, where

a« =
1

2L
fw+

m − «mg, b« =
1

2
fw+

m + «mg.

Moreover, we lift the initial valueu0sxd in the following way:

u0,«sxd = ū«sxd if − L ø x , − L + «,

u0,«sxd = u«
*sxd if − L + « ø x , − L + « + «m+1.

In the above formula 0øu«
*sxdøC is any function inCsV̄d which connects continuouslyū«s−L

+«d with u0s−L+«+«m+1d. Finally

u0,«sxd = u0sxd if − L + « + «m+1 ø x ø L.

Let u«sx,td be the solution of the lifted problem, with initial datau«sx,0d=u0,«sxd and bound-
ary conditionsu«s−L ,td=« andu«sL ,td=w+, where«.0. Sinceu«sx,td satisfies the conditions of
Theorem 5.1, we have immediately that
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iu«sx,td − ū«sxdi1
2 ø

E
V

ū« dx

jsmd
Hsu0,«/ū«dexp3−

E
V

ū« dx

16L2jsmdSEV

ū«
2/m−1 dxD−1

t4 .

Since all integrals containingū« converge to the right limit as«→0, the only problem comes out
from the limit of the lifted entropy, which in the superlinear case reads

Hsu0,«/ū«d =
1

m+ 1
E

V
Su0,«

ū«
Dm+1

ū« dx −E
V

u0,« dx +
m

m+ 1
E

V

ū« dx.

The linear part converges to the right limit as«→0. For the nonlinear term, by construction we
have the bounds

E
−L

−L+« Su0,«

ū«
Dm+1

ū« dx =E
−L

−L+«

ū« dx ø w+«,

and

E
−L+«

−L+«+«m+1 Su0,«

ū«
Dm+1

ū« dx ø Cm+1E
−L+«

−L+«+«m+1 1

ū«
mdx ø Cm+1«,

where the last inequality follows considering thatū«sxdmù«m. Finally, sinceū«ù ū,

E
−L+«+«m+1

L Su0,«

ū«
Dm+1

ū« dx =E
−L+«+«m+1

L Su0

ū
Dm+1

ūS ū

ū«

Dm

dx ø E
−L+«+«m+1

L Su0

ū
Dm+1

ū dx

øE
−L

L Su0

ū«
Dm+1

ū dx.

Grouping these inequalities together we obtain the bound

Hsu0,«/ū«d ø Hsu0/ūd + os«d. s28d

On the other hand, Fatou’s lemma implies

Hsu0/ūd ø lim
«→0

Hsu0,«/ū«d.

Hence we proved that, for the superlinear case

Hsu0/ūd = lim
«→0

Hsu0,«/ū«d. s29d

Since the sublinear case can be equally treated, the following theorem holds.
Theorem 5.2: Let usx,td be the solution of problem (1)–(3), where the initial data u0 is

admissible,w−+w+.0 and Hsu0/ ūd is bounded. Then usx,td decays exponentially fast towards the
stationary solution ūsxd in L1-norm, and bound (26) holds.
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We consider a perturbation of the Fitzhugh–Nagumo equation. The perturbation is
proportional to the electric potential across the cell membrane. The purpose of this
investigation is to determine the effects of a change in electric potential across the
cell membrane. Exact solutions of the perturbed equation are easily obtained from
the well-known solutions of the unperturbed Fitzhugh–Nagumo equation. The
method of approximate conditional symmetries is used to obtain first-order approxi-
mate solutions of the perturbed Fitzhugh-Nagumo equation. The approximate so-
lutions are compared with the exact solutions of the perturbed equation. The exact
solutions of the perturbed equation do not indicate a change in the wave front
connecting one constant state to another. There is only a proportional increase or
decrease in the constant nonzero state. The approximate solutions do show a
change in the shape of the wave front connecting two constant states as well as a
proportional increase or decrease in the constant nonzero state. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1839276g

I. INTRODUCTION

The Hodgkin–HuxleysHHd8 model describes the ionic current flows for axonal membranes.
The equation is based on data obtained by experimenting on the giant axon of a squid. The HH
equation is intractable for analytic investigation. The Fitzhugh–NagumosFNd model reduces the
complexity of the HH model while maintaining many excitation–propagation phenomena. This FN
model is a two variable reaction–diffusion system for nerve-impulse propagation. One variable
corresponds to the electric voltage across the cell membrane, also called the fast variable; the other
variable corresponds to ion concentration, called the slow variable. The slow variable changes
slowly and its coefficient is small. The small variable is set to zero and only the behavior of the
fast variables are considered. The resulting model is then described by the nonlinear diffusion
equation,

ut = uxx + usu − ads1 − ud, 0 , a , 1, s1d

whereust ,xd is the electric potential across the cell membrane. The interested reader is referred to
the papers of Fitzhugh7 and Nagumo13 for more information on the derivation ofs1d. The FN
equation has also been used in mathematical models in the area of population genetics.1

Exact solutions of the unperturbed FN equations1d are given by

ust,xd =
ak1e

s1/2dsÎ2ax+a2td + k2e
s1/2dsÎ2x+td

k1e
s1/2dsÎ2ax+a2td + k2e

s1/2dsÎ2x+td + k3e
at

, s2d
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ust,xd =
1

1 + C̄1e
fs2a−1dt/2g+sx/Î2d

, s3d

ust,xd =
a

1 + aC̄3e
fs2a−a2dt/2g+sax/Î2d

, s4d

ust,xd =
efs1+adt/2g+sax/Î2d+C̄5 − aesx/Î2d+asfs1+adt/2g+C̄5d

efs1+adt/2g+sax/Î2d+C̄5 − esx/Î2d+asfs1+adt/2g+C̄5d
, s5d

whereki, i =1,2,3;C̄1, C̄3, andC̄5 are constants. These exact solutions have been determined by
Kawahara and Tanaka.10 These results are also obtained in a more systematic way by Nucci and
Clarkson14 using the nonclassical symmetry method introduced by Bluman and Cole.3 Further
discussions on the use of the nonclassical symmetry method on determining exact solutions ofs1d
are presented by Clarkson and Mansfield.5 The nonclassical symmetry approachsalso known as
the conditional symmetry approachd has been used with much success in obtaining new solutions
for differential equations, see, e.g., Refs. 6, 11, and 15–17. These solutions have not been found
using Lie’s classical approachssee, e.g., Bluman and Kumei4 and Ibragimov9d. The solutions
s2d–s4d show a wave front connecting two constant statessfor the model under consideration in
this paper states and electric potentials may be used interchangeablyd. These states ares0, 1d, s1,
0d, andsa, 0d, respectively. The solutions5d has a singularity at

x = x * =
2C̄5 + tsa + 1d

Î2
. s6d

In this paper we consider a perturbation of the FN equation where the perturbation is propor-
tional to the electric potential across the cell membrane. The resulting equation is given by

ut = uxx + usu − ads1 − ud + eu, 0 , a , 1, e ! 1. s7d

The approximate equations7d is solved using the approximate conditional symmetry method of
Mahomed and Qu.12

II. EXACT SOLUTIONS

We note that the perturbed FN equations7d can be written in the form

ut = uxx + usu − a + kds1 − u + kd, 0 , a , 1, e ! 1, s8d

where

k = 1
2ssa − 1d ± Îsa − 1d2 + 4ed. s9d

The expression of the cubic nonlinearity ins8d is not unique. However, the form used is beneficial
in this analysis as it indicates the effect of the perturbation on the constant solutionsu=a andu
=1 of the unperturbed FN equations7d. From s8d we note that the stable solution atu=0 remains
unchanged while two new constant solutions are found, viz.,

u = a − k, u = 1 +k. s10d

Analytical solutions admitted bys8d are easily found from the solutionss2d–s5d by making the
transformations
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a → a − k, 1→ 1 + k. s11d

These transformations do not affect the shape of the wave front connecting two constant states. We
will show in the next section that this is not the case when one considers approximate conditional
symmetries. The solutions obtained indicate a change in the shape of the wave front. The singu-
larity s6d admitted bys5d is transformed in a similar way. To first order ine we find that the two
new constant states are given by

u < a +
e

a − 1
, u < 1 +

e

1 − a
. s12d

III. APPROXIMATE CONDITIONAL SYMMETRIES

The unperturbed FN equations1d, as is well known, admits the classical Lie point symmetries,

Z1 = ]t, Z2 = ]x s13d

while it is easy to show that the perturbed FN equations7d admits the approximate Lie point
symmetriessin the sense of Baikovet al.2d

W1 = ]t, W2 = e]t, W3 = ]x, W4 = e]x. s14d

The approximate Lie point symmetriess14d of the perturbed FN equation are not true approximate
symmetries as they are just a constant multiple of the classical Lie point symmetries of the exact
equation. Both the classical and approximate Lie point symmetries lead to the standard traveling
wave solutions. Nontrivial symmetries are obtained via the conditional and approximate condi-
tional symmetry approaches.

The conditional symmetries admitted bys1d have been determined by Nucci and Clarkson14

ssee also Clarkson and Mansfield5d and are presented in Table I. The generator of these conditional
symmetries is written as

Y = t0
]

]t
+ j0

]

]x
+ h0

]

]u
, s15d

where the coefficientst0, j0, andh0 are presented in Table I. Solutions admitted bys1d of the form
u=Fst ,xd are determined from these conditional symmetries by solving the first-order quasilinear
partial differential equation,

uYsu − Fst,xdduu=Fst,xd = 0. s16d

These solutions are given by Eqs.s2d–s5d.
Using the approach presented by Mahomed and Qu12 we find the approximate conditional

symmetries admitted bys7d. The main features of this approach as utilized here can be summa-
rized as follows. An operatorX=X0+eX1 with

TABLE I. Symmetries of unperturbed Fitzhugh–Nagumo equation.

t0st ,x,ud j0st ,x,ud h0st ,x,ud

Case 1 1 3/Î2su− a+1/3d −3
2su3−sa+1du2+aud s1ad

Case 2 0 1 1/Î2usu−1d s2ad
0 1 1/Î2usu−ad s2bd
0 1 1/Î2su−1dsu−ad s2cd
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Xb = jb
i sx,ud/]xi + hb

asx,ud/]ua, b = 0,1,

is a first-order approximate symmetry generator of anrth-order partial differential equation system
fFg perturbed up to order one in the small parametere, viz.,

Fb = F0
bsx,u,us1d, . . . ,usrdd + eF1

bsx,u,us1d, . . . ,usrdd = Ose2d,

in which x=sx1,x2, . . . ,xnd, u=su1,u2, . . . ,umd, us1d ,us2d , . . . ,usrd are the collections of partial de-
rivatives up to orderr, if

uXfrgsFbdufWgùfFg = Ose2d,

where

Xfrg = X0
frg + eX1

frg,

Xb
frg = Xb + o

s=1

r

Di1
¯ Dis

sWb
ad + jb

j uji 1¯is
a ]

]ui1¯is
a , b = 0,1,

Wb
a = hb

a − jb
j uj

a, a = 1, . . . ,m,

and fWg is the surface given by the invariant surface conditionsW0
a+eW1

a=Ose2d together with

Di1
¯ Dis

fW0
a + eW1

ag = Ose2d, s= 1, . . . ,r − 1.

The first order ine approximate conditional symmetries ofs7d, using the above approach, are
presented in Table II.

The generators of the approximate conditional symmetries are written as follows:

X = t
]

]t
+ j

]

]x
+ h

]

]u
, s17d

where the coefficientst, j, and h are presented in Table II. We note from Table II that the
perturbation affects only theh terms. To determine approximate solutions,

ust,xd = u0st,xd + eu1st,xd, e ! 1, s18d

corresponding to the approximate conditional symmetries indicated in Table II we solve the
first-order quasilinear partial differential equation12

uXsu − u0st,xd − eu1st,xdduu=u0st,xd+eu1st,xd = 0. s19d

The resulting first-order quasilinear partial differential equation is separated to first order in
the small parameter ine. For each of the cases indicated in Table II we choose the appropriateu0

from s2d–s5d.

TABLE II. Approximate conditional symmetries of perturbed Fitzhugh–Nagumo equation.

tst ,x,u;ed jst ,x,u;ed hst ,x,u;ed

Case 1 1 3/Î2su− a+1/3d −3
2su3−sa+1du2+aud+es 3

2ud s1bd

Case 2

s2ad 0 1 1/Î2usu−1d+e1/Î2sa−1du s2dd
s2bd 0 1 1/Î2usu−ad−e1/Î2sa−1du s2ed
s2cd 0 1 1/Î2su−1dsu−ad−e1/Î2 s2fd
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For cases1bd, we obtain the system of partial differential equations,

u0t
+

3
Î2

Su0 −
sa + 1d

3
Du0x

= −
3

2
su0

3 − sa + 1du0
2 + au0d, s20d

u1t
+

3
Î2

Su0 −
sa + 1d

3
Du1x

= −
3

2
s3u0

2u1 − 2sa + 1du0u1 + au1 − u0d −
3
Î2

u1u0x
, s21d

where the exact solution ofs20d is given bys2d. We substitutes2d for u0 into s21d. Unfortunately,
we cannot determine an analytical solution tos21d. Instead we solve the systems20d and s21d
numerically. The characteristic equations for the systems20d and s21d are given by

dt

ds
= 1, s22d

dx

ds
=

3
Î2

Su0 −
a + 1

3
D , s23d

du0

ds
= −

3

2
su0

3 − sa + 1du0
2 + au0d, s24d

du1

ds
= −

3

2
s3u0

2u1 − 2sa + 1du0u1 + au1 − u0d −
3
Î2

u1u0x
. s25d

We solve the systems22d–s25d numerically subject to

ts0,qd = 0, xs0,qd = q, u0s0,qd = Fsqd, u1s0,qd = 0. s26d

Fsqd is the initial profile and is obtained froms2d by settingt=0. We find that

Fsqd =
ak1e

s1/2dsÎ2aqd + k2e
s1/2dsÎ2qd

k1e
s1/2dsÎ2aqd + k2e

s1/2dsÎ2qd + k3

. s27d

The numerical solution for the perturbed equation and the exact solution for the unperturbed
equation are plotted in Fig. 1.

FIG. 1. Plot of the numerical solutionu=u0+eu1 for cases1bd obtained from the numerical solution of the characteristic
equationss22d–s25d and the exact solutions2d s-·-·-·-d of the unperturbed equation on the same system of axes. We have
chosene=0.05,a=0.5, andk1=k2=k3=1.
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From Fig. 1 we observe that the perturbation has no effect on the zero constant state. The
shape of the wave front connecting the zero constant state to the nonzero constant state has
changed. The wave front is now steeper and has a pronounced hump. In terms of our model, the
hump is indicative of the membrane trying to correct for the perturbation to bring the potential
back down to the constant state one. However, the cell is only able to correct this perturbation to
a average slightly higher than one.

The system of equations we are required to solve for cases2dd is given by

e0:u0x −
1
Î2

u0
2 +

1
Î2

u0 = 0, s28d

e1:u1x − Î2u0u1 +
1
Î2

u1 −
1

Î2sa − 1d
u0 = 0. s29d

Substituting in the solutions3d for u0 we can solves29d to find that

u1st,xd =
e−t/2s− 2et/2 + eat+sx/Î2ds2sa − 2dC̄1t + Î2C̄1x + 2sa − 1dC̄2dd

2sa − 1ds1 + C̄1e
sa−s1/2ddt+sx/Î2dd2

. s30d

The approximate solutions18d is plotted in Fig. 2 whereu0 is given bys3d andu1 is given bys30d.
From the solutionu0 given by s3d andu1 given by s30d we find that

lim
x→−`

u0st,xd = 1, lim
x→`

u0st,xd = 0 s31d

while

lim
x→−`

su0st,xd + eu1st,xdd = 1 +
e

1 − a
,

lim
x→`

su0st,xd + eu1st,xdd = 0. s32d

The system of equations we are required to solve for cases2ed is given by

e0:u0x −
1
Î2

u0
2 +

1
Î2

au0 = 0, s33d

FIG. 2. Plot of the approximate solutionu=u0+eu1 whereu0 is given bys3d and u1 is given bys30d. The unperturbed

solution s3d s-·-·-·-d is plotted on the same system of axes. We have chosene=0.1, a=0.3, C̄1=4, andC̄2=5.
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e1:u1x − Î2u0u1 +
1
Î2

au1 +
1

Î2sa − 1d
u0 = 0. s34d

Substituting in the solutions4d for u0 we can solves34d to find that

u1st,xd =
1

2sa − 1ds1 + aC̄3e
fs2a−a2dt/2g+sax/Î2dd2

s2 −Î2a2efs2a−a2dt/2g+sax/Î2dxC̄3 + 2ef−ss−2+adatd/2g+sax/Î2d

3s− a2tC̄3 + 2a3tC̄3 − C̄4 + aC̄4dd. s35d

The approximate solutions18d is plotted in Fig. 3 whereu0 is given bys4d andu1 is given bys35d.
From the solutionu0 given by s4d andu1 given by s35d we find that

lim
x→−`

u0st,xd = a, lim
x→`

u0st,xd = 0 s36d

while

lim
x→−`

su0st,xd + eu1st,xdd = a +
e

a − 1
,

s37d
lim
x→`

su0st,xd + eu1st,xdd = 0.

From Figs. 2 and 3 we observe that the gradient of the wave front has increased. Also, as is
indicated ins32d ands37d there is a slight change in the nonzero constant state. In the case of Fig.
2 the potential tends to a nonzero constant state of one asx→−` for the exact solutions3d and
1+e / s1−ad for the perturbed case. While from Fig. 3 we observe that the potential tends to a
constant nonzero state ofa asx→−` for the exact solutions4d anda+e / sa−1d for the perturbed
case. The zero states are unaffected. We observe the formation of a hump in the wave front. The
hump is indicative of the cell membrane trying to correct for the perturbation to bring the potential
down to one from 1+e / s1−ad in Fig. 2 and up toa from a+e / sa−1d in Fig. 3. We note that in
Fig. 2 the hump in the perturbed solution grows much larger in size than the unperturbed solution.
Also, in Fig. 3, for the parameters given, the perturbed solution becomes negative for larger values
of t.

The system of equations we are required to solve for cases2fd is given by

e0:u0x −
1
Î2

u0
2 +

1
Î2

sa + 1du0 −
1
Î2

a = 0, s38d

FIG. 3. Plot of the approximate solutionu=u0+eu1 whereu0 is given bys4d and u1 is given bys35d. The unperturbed

solution s4d s-·-·-·-d is plotted on the same system of axes. We have chosene=0.1, a=0.3, C̄3=4, andC̄4=5.
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e1:u1x − Î2u0u1 +
1
Î2

sa + 1du1 +
1
Î2

= 0. s39d

Substituting in the solutions5d for u0 we can solves39d to find that

u1st,xd =
1

sa − 1dsefs1+adt/2g+sax/Î2d+C̄5 − esx/Î2d+asfs1+adt/2g+C̄5dd2
fes1 + ad2t/2s− efst−a2t+2Î2ax+4C̄5d/2g

+ efsa2−1dt/2g+Î2x+2aC̄5 − sa2 − 1defs1+adx/Î2g+s1+adC̄5t + Î2s− 1 +ades1+adsÎ2x+2C̄5d/2x

+ sa − 1defs1+adx/Î2gC̄6dg. s40d

We note thats40d also has a singularity atx=x* where x* is given by s6d. The approximate
solutions18d is plotted in Figs. 4 and 5 whereu0 is given bys5d andu1 is given bys40d on either
side of the singularityx=x*.

From the solutionu0 given by s5d andu1 given by s40d we find that

FIG. 4. Plot of the approximate solutionu=u0+eu1 whereu0 is given bys5d and u1 is given bys40d on the intervalx

P f−20,x* g. The unperturbed solutions5d s-·-·-·-d is plotted on the same system of axes. We have chosenC̄5=4, C̄6=5,
a=0.3, ande=0.1.

FIG. 5. Plot of the approximate solutionu=u0+eu1 whereu0 is given bys5d and u1 is given bys40d on the intervalx

P fx* ,30g. The unperturbed solutions5d s-·-·-·-d is plotted on the same system of axes. We have chosenC̄5=4, C̄6=5, a
=0.3, ande=0.1.
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lim
x→−`

u0st,xd = 1, lim
x→`

u0st,xd = a, s41d

while

lim
x→−`

su0st,xd + eu1st,xdd = 1 +
e

1 − a
,

s42d

lim
x→`

su0st,xd + eu1st,xdd = a +
e

a − 1
.

The singular behavior of the solutions for cases2fd destroys the wave front connecting two
constant states. However, we note from Figs. 4 and 5 that both the exact and perturbed solutions
tend to constant behavior asx→ ±`. This solution is not physical in terms of our model of electric
potential across a cell membrane.

IV. DISCUSSION

In this paper we have determined approximate solutions for a perturbed Fitzhugh–Nagumo
equation where the perturbation is proportional to the electric potential across the cell membrane.
This choice of perturbation allows us to write the perturbed equation in an exact form given bys8d.
The transformationss11d allow us to convert the known solutions of the Fitzhugh–Nagumo equa-
tion into exact solutions of the perturbed equation. The physically meaningful solutions represent
wave fronts connecting the constant statess0,1+kd, s1+k,0d, andsa+k,0d.

Approximate solutions determined from the approximate conditional symmetries admitted by
the perturbed equations7d were then investigated. The approximate solutions are stablesby the
definition of Mahomed and Qu12d with one of the solutions having singular behavior. The physi-
cally meaningful approximate solutions represent wave fronts joining the constant statess0,1
+e / s1−add, s1+e / s1−ad ,0d, andsa+e / sa−1d ,0d. These constant states are just a first-order ap-
proximation to the constant states indicated above.

For our investigation into the behavior of the cell membrane it is appropriate to consider only
short-time behavior as signals move across the cell membrane in a very short period of time. Over
a short time period the difference in the constant states for each of the physically meaningful
solutions is given byuk−e / s1−adu anduk−e / sa−1du. We also note a difference in the shape of the
wave front connecting the constant states. The approximate solution shows the formation of a
hump while the exact solution of the approximate equation shows a smooth transition from one
constant state to another.

The difference in the constant state could be used to explain some of the experimental error
found when measuring nerve conductivityssee, e.g., Refs. 7 and 13d. Also, the formation of the
hump is indicative of the cell membrane trying to get down to a constant state given bys12d.
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A new method of constructing structure equations of Lie symmetry pseudogroups
of differential equations, dispensing with explicit solutions of thesinfinitesimald
determining systems of the pseudogroups, is presented, and illustrated by the ex-
amples of the Kadomtsev–Petviashvili and Korteweg–de Vries equations. ©2005
American Institute of Physics.fDOI: 10.1063/1.1836015g

I. INTRODUCTION

The theory of continuous groups of transformations created by Sophus Lie in the late nine-
teenth century has evolved to become one of the most important tools for geometric and algebraic
study of general nonlinear partial differential equations. Lie himself made no essential distinction
between finite-dimensional Lie group actions and infinite-dimensional pseudogroup actions. How-
ever, since his time, the two subjects have developed in very different directions. The theoretical
foundations of finite-dimensional Lie groups and Lie algebras were well-established in the early
twentieth century. In contrast, despite its evident importance in both mathematics and applications,
the basic theory for infinite-dimensional Lie pseudogroups remains in relatively primitive shape.
Unlike Lie groups, to this day, there is no generally accepted abstract object that represents an
infinite-dimensional pseudogroup, and so, like Lie and Cartan,3 we can only study them in the
context of their action on a manifold. This makes the subject considerably more difficult than the
finite-dimensional case, and a significant effort has been made in establishing a proper rigorous
foundation for pseudogroups.8,11–13,24,27

Lie pseudogroups appear in gauge theories, Hamiltonian mechanics, symplectic and Poisson
geometry, conformal geometry of surfaces, conformal field theory, and geometry of real hypersur-
faces, as symmetry groups of both linear and nonlinear partial differential equations arising in
fluid mechanics, solitons, relativity, etc., and as foliation-preserving groups of transformations. In
general, a Lie pseudogroupG is defined in terms of a systemR of stypically nonlineard differential
equations, called itsdetermining system, whose solutions are the local diffeomorphisms constitut-
ing the pseudogroup. One immediate issue is to determine their local structure, which is usually
expressed in the form of Maurer–Cartan structure equations, as in the case of finite-dimensional
Lie groups. Both Lie’s attempt to use his infinitesimal method based on the infinitesimal deter-
mining system obtained by linearizing the determining system, and Cartan’s method using intri-
cate recursive prolongation of exterior differential systems are either limited in scope or imprac-
tical from the standpoint of applications. Along this line of research in the last decade, Reidet
al.,14–16,25,26developed methods for determining Cartan structure equations of Lie pseudogroups,
which depended only on algebraic and differential manipulation, without any integration, of in-
finitesimal determining systems, hence increasing the feasibility of their computer algebra imple-
mentation. Their algorithms were successfully applied to certain types of Lie symmetry pseudo-
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cdElectronic mail: juha@math.oregonstate.edu; URL:http://www.oregonstate.edu/˜pohjanpp/
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groups of differential equations. A major drawback, however, is that their methods were based on
ad hocseries expansions and became significantly more complicated, requiring more case-by-case
analyses, if they worked at all, when it came to intransitive pseudogroup actions.

More recently, Olver and Pohjanpelto developed a theory22 where the invariant contact forms
on the diffeomorphism jet bundle were interpreted as the Maurer–Cartan forms of the Lie pseudo-
group. sFor finite-dimensional symmetry groups, Morozov20 has introduced a related approach
based on the method of moving coframes.7d As a result, a very efficient method for constructing
the structure equations of the Maurer–Cartan forms was discovered. This method bypasses the
troublesome process of integrating either the determining systemR or its linearization, or the
complicated Cartan prolongation process. Moreover, the algorithm directly applies to completely
general Lie pseudogroup actions, whether finite or infinite dimensional, transitive or intransitive,
and can be easily implemented in computer algebra systems.

The goal of this paper is to show how to use the method to directly construct structure
equations for Liespointd symmetry pseudogroups of differential equations. Our algorithm works
for any general Lie symmetry pseudogroup, and it will also give us better understanding of known
local symmetry structures, as well as revealing those of a wide range of differential equations that
still wait to be investigated. We also wrote some Mathematica routines to facilitate the computa-
tions needed for the implementation of our method on specific differential equations. To illustrate
our algorithm, we will use the Kadomtsev–PetviashvilisKPd equation

sut + 3
2uux + 1

4uxxxdx + 3
4euyy = 0, e = ± 1, s1d

and the Korteweg–de VriessKdVd equation

ut + uxxx+ uux = 0, s2d

both of which are integrable soliton equations, possessing, respectively, infinite- and finite-
dimensional Lie symmetry pseudogroups.1,4–6,17–19

Let us recall how the classical Lie symmetry method21 works in the context of the KP
equation. LetM =R4 with coordinatest ,x,y,u given by the independent and dependent variables
in the differential equation, and letJ`sM ,3d stand for the jet bundle of equivalence classes of
three-dimensional submanifoldsu= fst ,x,yd of M under the equivalence relation of infinite-order
contact. The infinitesimal symmetry algebrag of the KP equation consists of the local vector fields

v = t]t + j]x + h]y + f]u s3d

on M such that their prolongationsvs`d are tangent to the variety inJ`sM ,3d defined by Eq.s1d.
This characterizing condition yields the system of partial differential equations

hu = 0, hx = 0, ju = 0, ht + 3
2ejy = 0, 3jx − tt = 0,

3
2f − jt + utt = 0, 3

2hy − tt = 0, tu = 0, tx = 0, ty = 0, s4d

tt + 3
2fu = 0, 2

3ttt − 3fx = 0, ftx + 3
2ufxx + 1

4fxxxx+ 3
4efyy = 0,

for the coefficient functions of the infinitesimal symmetriesv. These equations are the minimal
infinitesimal sor linearizedd determining systemof the Lie symmetry pseudogroupG of the KP
equation. Once the systems4d is completed to involution, all the higher order equations are
obtained by differentiation with respect tot ,x,y,u. The key point of this paper is to determine the
local structure ofG directly from its infinitesimal determining systems4d. This setup has an
obvious counterpart for the KdV equations2d, too, which, for brevity, we will not elaborate on
until the end of the paper.

Our subsequent discussions in the paper are organized in such a way that the results of each
section are applied to the case of the KP equation within that section, and, starting from the current
section, consistent notation without further comment will be used for the examples. It is worth
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emphasizing that both finite-dimensional and infinite-dimensional symmetry pseudogroups are
handled, on an equal footing, by precisely the same algorithms to be presented here.

II. MAURER–CARTAN FORMS FOR THE PSEUDOGROUP OF LOCAL
DIFFEOMORPHISMS

Let M be a smooth manifold of dimensionm, andD=DsMd the pseudogroup of local diffeo-
morphisms onM. For each 0ønø`, let Dsnd=DsndsMd be the bundle ofn-jets of maps inD. The
bundleDsnd is double-fibered overM with fibrations being the source projection

ssnd:Dsnd → M, ssnds jz
nfd = z,

and the target projection

tsnd:Dsnd → M, tsnds jz
nfd = fszd,

wherezPM and fPD. Composition of local diffeomorphisms turnsDsnd into a Lie groupoid
with multiplication law

s jz
nfd · s jw

ncd ª jw
nsf + cd provided ssnds jz

nfd = z= cswd = tsnds jw
ncd.

Local coordinates of the base spaceM and the total spaceDsnd are denoted byz=szid and
sz,Zsndd=szi ,ZJ

ad, respectively, whereZ=sZad andZJ
a, with J a symmetric multi-index, represents

the derivative]JZa/]zJ. The natural identification, obtained by viewing maps in terms of their
graphs, ofDs`d with an open subbundle of the jet bundleJ`sM 3Md of infinite jets of local
sections of the trivial bundle

M 3 M → M, sz,Zd ° z,

induces a variational bicomplex structure2,9,10 on the cotangent bundleT* Ds`d, where the hori-
zontal subbundle is spanned by the horizontal forms dz1, . . . ,dzm, and the vertical subbundle is
spanned by the basic contact forms

YJ
a
ª dZJ

a − o
i=1

m

ZJ,i
a dzi, a = 1, . . . ,m, #J ù 0.

Accordingly, the exterior differential d=dM +dG on Ds`d splits into the horizontal differential28 dM

and the contactsor verticald differential dG, so that

dF = dMF + dGF = o
i=1

m

sDziFddzi + o
a=1

m

o
#Jù0

s]ZJ
aFdYJ

a,

for any smooth functionF :Ds`d→R. Here,Dzi is the total differential operator with respect to the
base coordinate functionzi, and ]ZJ

a is the partial differential operator with respect to the fiber
coordinate functionZJ

a.
Let

Rcs jz
nfd ª s jz

nfd · s jz
ncd−1 = jcszd

n sf + c−1d

denote the right action of the diffeomorphism pseudogroup on its jets. A differential formm on
Dsnd is said to beright-invariant if Rc

* m=m, whenever defined, for allcPD. In particular, the
target coordinate functionsZa are right invariant. Since the right action preserves the splitting of
T* Ds`d, the horizontal and contact differentials of invariant forms are invariant. Thus,

sa
ª dMZa = o

i=1

m

Zi
a dzi, ma

ª dGZa = Ya, a = 1, . . . ,m,
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are, respectively,invariant horizontal formsandinvariant contact forms. Theinvariant differential
operators, denotedDZa, are dual to the invariant horizontal formssa, so

dMF = o
a=1

m

sDZaFdsa for all F P C`sDs`dd.

Lie derivatives of invariant differential forms with respect to the invariant differential operators
are invariant. Thus, thehigher order invariant contact forms,

mJ
a
ª DZ

Jma
ª DZj1DZj2 ¯ DZjkm

a,

are obtained by repeated Lie differentiation. As argued in earlier papers,22,23 these invariant con-
tact forms play the role of theMaurer–Cartan formsfor D.

Let us present the explicit formulas in the case relevant to the KP equation. Since the KdV
case is completely similar, except with one fewer independent variable, it will not be explicitly
presented.

KP equation 1:The KP equation has independent variablest ,x,y and dependent variableu,
which we regard as coordinates on the total spaceM =R4. We denote the corresponding local
coordinates of the diffeomorphism groupoidDs`d by

st,x,y,u,T,X,Y,U,Tt,Tx,Ty,Tu,Xt,Xx,Xy,Xu, . . . d.

The horizontal forms onDs`d are dt ,dx,dy,du, and the contact forms are

Yt
ª dGT = dT − Tt dt − Tx dx − Ty dy − Tu du,

Yx
ª dGX = dX − Xt dt − Xx dx − Xy dy − Xu du,

Yy
ª dGY = dY − Yt dt − Yx dx − Yy dy − Yu du,

Yu
ª dGU = dU − Ut dt − Ux dx − Uy dy − Uu du,

Yt
t
ª DtY

t = dGTt = dTt − Ttt dt − Ttx dx − Tty dy − Ttu du,

. . . and, in general, Yh,k,l,n
a

ª Dt
hDx

kDy
l Du

nYa,

where we usea to signify eithert, x, y or u, andh,k, l ,nù0, with Dt ,Dx,Dy,Du denoting the total
differential operators. The invariant horizontal forms are

st
ª dMT = Tt dt + Tx dx + Ty dy + Tu du,

sx
ª dMX = Xt dt + Xx dx + Xy dy + Xu du,

sy
ª dMY = Yt dt + Yx dx + Yy dy + Yu du,

su
ª dMU = Ut dt + Ux dx + Uy dy + Uu du,

and the invariant contact forms are

mt
ª dGT = Yt, mx

ª dGX = Yx, my
ª dGY = Yy, mu

ª dGU = Yu,

023504-4 Cheh, Olver, and Pohjanpelto J. Math. Phys. 46, 023504 ~2005!

                                                                                                                                    



mT
t
ª DTmt, mX

t
ª DXmt, . . . and, in general,mh,k,l,n

a
ª DT

hDX
kDY

l DU
n ma,

wherea= t, x, y or u, and

3
DT

DX

DY

DU

4 = 3
Tt Xt Yt Ut

Tx Xx Yx Ux

Ty Xy Yy Uy

Tu Xu Yu Uu

4
−1

3
Dt

Dx

Dy

Du

4 s5d

are the invariant differential operators.

III. STRUCTURE EQUATIONS OF THE DIFFEOMORPHISM PSEUDOGROUP

The invariant coframe for the diffeomorphism pseudogroup are the invariant horizontal and
contact formssa, mJ

a. The structure equations amount to writing their differentials dsa, dmJ
a as

linear combinations of wedge products of the invariant differential forms. A concise way to write
down the structure equations, as first described in an earlier paper,22 rests on a formal power series
expansion.29 To this end, we define the vector-valued formal power series

mvHb ª smavHbd = S o
#Jù0

1

J!
mJ

aHJD s6d

whose coefficients are the invariant contact forms onDs`d. In particular, if we setH=sHad=0 in
s6d, thenmv0b=mª smad. The key result, proved in an earlier paper,22 is that the structure equa-
tions of the invariant coframe can be read off from certain matrix identities.

Lemma III.1: Let

¹mvHb ª S ]mavHb
]Hb D

denote the Jacobian matrix of the vectormvHb of power series in the variables H=sHad. Then

dmvHb = ¹ mvHb ∧ smvHb − dZd. s7d

The structure equations of the invariant horizontal forms are given by

ds = − dm, s8d

wheresª ssad.
The coefficients of the powersHJ in Eq. s7d, along with s8d, form the complete system of

structure equations for the diffeomorphism pseudogroupD.
KP equation 2:We use the capital lettersH ,K ,L ,NPR to denote variables for power series.

The structure equations for the invariant contact forms onDs`d are given by the identity

dmvH,K,L,Nb = ¹ mvH,K,L,Nb ∧ smvH,K,L,Nb − dZd, s9d

where

dmvH,K,L,Nb = o
h,k,l,nù0

HhKkLlNn

h! k! l! n! 3
dmh,k,l,n

t

dmh,k,l,n
x

dmh,k,l,n
y

dmh,k,l,n
u

4 ,
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¹mvH,K,L,Nb = o
h,k,l,nù0

HhKkLlNn

h! k! l! n! 3
mh+1,k,l,n

t mh,k+1,l,n
t mh,k,l+1,n

t mh,k,l,n+1
t

mh+1,k,l,n
x mh,k+1,l,n

x mh,k,l+1,n
x mh,k,l,n+1

x

mh+1,k,l,n
y mh,k+1,l,n

y mh,k,l+1,n
y mh,k,l,n+1

y

mh+1,k,l,n
u mh,k+1,l,n

u mh,k,l+1,n
u mh,k,l,n+1

u
4 ,

mvH,K,L,Nb − dZ = −3
st

sx

sy

su
4 + o

h,k,l,nù0

h+k+l+nù1

HhKkLlNn

h! k! l! n! 3
mh,k,l,n

t

mh,k,l,n
x

mh,k,l,n
y

mh,k,l,n
u

4 .

Once the structure equations for the invariant contact forms are established, those for the
invariant horizontal forms are immediately obtained by

3
dst

dsx

dsy

dsu
4 = −3

dmt

dmx

dmy

dmu
4 .

IV. MAURER–CARTAN EQUATIONS FOR LIE SYMMETRY PSEUDOGROUPS

Let X=XsMd denote the space of locally defined vector fields

v = o
a=1

m

za]za

on M, i.e., the space of local sections of its tangent bundleTM. Given a sub-pseudogroupG,D,
let g,X denote its local Lie algebra of infinitesimal generators, andgsnd their jets. With each
sufficiently largen, the subbundlegsnd,JnTM is characterized by the linearizedsor infinitesimald
determining equations

Lsndszi,zJ
ad = 0 s10d

for the pseudogroupG. Here zJ
a=]z

Jza are the jet coordinates of a vector fieldv. If G is the
symmetry group of a system of differential equations, thens10d aresthe involutive completion ofd
the usual determining equations obtained through Lie’s infinitesimal symmetry method.

A complete, though certainly not minimal, system of invariant differential one-forms forG is
obtained by restricting the invariant coframehsa,mJ

aj to the Lie subgroupoidGs`d,Ds`d given by
the jets of pseudogroup diffeomorphisms. For simplicity, we will not explicitly employ the pull-
back notation on these restricted forms. The resulting dependencies among the restricted forms are
elucidated by the following theorem.22

Theorem IV.1: The invariant formsmJ
a on Gsnd satisfy the linear system

LsndsZi,mJ
ad = 0 s11d

obtained by replacing zi by Zi and zJ
a by mJ

a in the linearized determining equations (10).
In accordance with an earlier paper,22 we refer tos11d as thelifted determining equationsfor

the pseudogroup.
Theorem IV.2: The structure equations of the invariant coframe for a Lie pseudogroupG are

obtained by restricting the diffeomorphism structure equations (7) and (8) to the space of solutions
of the lifted determining equations (11).

Since the target coordinatesZ=sZad are right invariant, the individual fibers of the target
fibration tsnd :Gsnd→M are invariant under the right-action ofG and, for that matter,Gsnd. The
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Cartan structure equations of a Lie pseudogroup,3 are obtained by restricting the invariant coframe
to a single fiberuGsnduZ=stsndd−1sZd, whereZPM is fixed. Since 0=dZa=sa+ma when restricted to
a fiber uGsnduZ, we can replacesa by −ma, and hence only the independent invariant contact forms
mJ

a will appear in the resulting structure equations. For example, if the pseudogroup is defined by
the slocald action of a finite-dimensional Lie transformation groupG on M, then, under some mild
regularity assumptions,Gsnd→M has the structure of a principalG-bundle forn sufficiently large.
Each fiber can be identified with a copy of the Lie group, and the restrictions of the independent
invariant contact forms touGsnduZ.G are a system of classicalsright-invariantd Maurer–Cartan
forms for the groupG.

These results form the foundation for a general, intrinsic algorithm for directly determining
the structure of the symmetry group of a system of differential equations, as well as the structure
of its algebra of differential invariants, as fixed by a choice of a moving frame.7,9 The key point is
that the required computations rely exclusively on linear differential algebra, and so can be readily
implemented in any standard symbolic computation package. In this paper, we have concentrated
on the first part of the method, the determination of the structure of the symmetryspseudodgroup.
The second part, on the structure of the differential invariant algebra and the invariant variational
bicomplex9,10 will be explained in more detail in a subsequent publication.

KP equation 3:Let G denote the infinite-dimensional symmetry pseudogroup of the KP
equations1d. We begin by writing out the lifted determining equations

mU
y = 0, mX

y = 0, mU
x = 0, mT

y + 3
2emY

x = 0, 3mX
x − mT

t = 0,

3
2mu − mT

x + UmT
t = 0, 3

2mY
y − mT

t = 0, mU
t = 0, mX

t = 0, mY
t = 0, s12d

mT
t + 3

2mU
u = 0, 2

3mTT
t − 3mX

u = 0, mTX
u + 3

2UmXX
u + 1

4mXXXX
u + 3

4emYY
u = 0,

and so on, which are obtained from the KP symmetry determining equationss4d by replacing
t ,x,y,u by T,X,Y,U and t ,j ,h ,f by the invariant contact formsmt ,mx,my,mu, respectively.
These and their higher order counterparts obtained by Lie differentiation with respect to the
invariant differential operatorss5d form a complete system of linear dependencies among the
invariant contact forms when restricted to the symmetry groupoidGs`d.

We solve the lifted system of equationss12d for, equivalently, the original systems4d of
infinitesimal determining equations prior to the liftingg through cross-differentiations and Gaussian
elimination to determine the following basis of linearly independent Maurer–Cartan forms,

v1
ª mt, v2

ª mx, v3
ª my, v4

ª mu, v5
ª mT

t = m1,0,0,0
t ,

v6
ª mT

y = m1,0,0,0
y , ai

ª mi,0,0,0
u , bi

ª mi−1,1,0,0
u , gi

ª mi−1,0,1,0
u , s13d

for i =1,2,3, . . . . Forexample,

mT
x = 3

2v4 + Uv5, mX
t = 0, mX

x = 1
3v5,

mX
y = 0, mY

t = 0, mY
x = − 2

3ev6, mY
y = 2

3v5,

mU
t = 0, mU

x = 0, mU
y = 0, mU

u = − 2
3v5, s14d

mTT
t = 9

2b1, mTT
x = 3

2a1 + 9
2Ub1, mTT

y = − 9
4eg1,

mTX
t = 0, mTX

x = 3
2b1, mTX

y = 0, mTY
t = 0, . . . .
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The independent invariant contact formss13d together with the restricted invariant horizontal
forms hst ,sx,sy,suj form an invariant coframe on the Lie groupoidGs`d. The structure equations
of this coframe are obtained by imposing the dependence relations14d on the structure equations
s9d for the full diffeomorphism groupoidDs`d. The resulting structure equations are

dst = v5 ∧ st,

dsx = 3
2v4 ∧ st + Uv5 ∧ st + 1

3v5 ∧ sx − 2
3ev6 ∧ sy,

dsy = 2
3v5 ∧ sy + v6 ∧ st,

dsu = − 2
3v5 ∧ su + a1 ∧ st + b1 ∧ sx + g1 ∧ sy,

dv1 = − v5 ∧ st,

dv2 = − 3
2v4 ∧ st − Uv5 ∧ st − 1

3v5 ∧ sx + 2
3ev6 ∧ sy,

dv3 = − 2
3v5 ∧ sy − v6 ∧ st,

dv4 = 2
3v5 ∧ su − a1 ∧ st − b1 ∧ sx − g1 ∧ sy,

dv5 = − 9
2b1 ∧ st,

dv6 = − 1
3v5 ∧ v6 − 3b1 ∧ sy + 9

4eg1 ∧ st,

da1 = − 3
2v4 ∧ b1 − 5

3v5 ∧ a1 − Uv5 ∧ b1 − v6 ∧ g1 + 3b1 ∧ su − a2 ∧ st − b2 ∧ sx − g2 ∧ sy,

db1 = − v5 ∧ b1 − b2 ∧ st,

dg1 = − 4
3v5 ∧ g1 + 2

3ev6 ∧ b1 + 4
3eb2 ∧ sy − g2 ∧ st,

da2 = − 3v4 ∧ b2 − 8
3v5 ∧ a2 − 2Uv5 ∧ b2 − 2v6 ∧ g2 + 9a1 ∧ b1 + 3b2 ∧ su − a3 ∧ st − b3 ∧ sx

− g3 ∧ sy,

db2 = − 2v5 ∧ b2 − b3 ∧ st,

dg2 = − 7
3v5 ∧ g2 + 2ev6 ∧ b2 − 9

2b1 ∧ g1 − g3 ∧ st + 4
3eb3 ∧ sy, . . . . s15d

After restricting the equationss15d to a target fibersts`dd−1sT,X,Y,Ud, i.e., fixing the values of the
target coordinatesT,X,Y,U, we find the Maurer–Cartan equations for the KP symmetry pseudo-
groupG to be

dv1 = − v1 ∧ v5,

dv2 = − 3
2v1 ∧ v4 − Uv1 ∧ v5 − 1

3v2 ∧ v5 + 2
3ev3 ∧ v6,
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dv3 = − v1 ∧ v6 − 2
3v3 ∧ v5,

dv4 = − v1 ∧ a1 − v2 ∧ b1 − v3 ∧ g1 + 2
3v4 ∧ v5,

dv5 = − 9
2v1 ∧ b1,

dv6 = 9
4ev1 ∧ g1 − 3v3 ∧ b1 − 1

3v5 ∧ v6,

da1 = − v1 ∧ a2 − v2 ∧ b2 − v3 ∧ g2 + 3
2v4 ∧ b1 − 5

3v5 ∧ a1 − Uv5 ∧ b1 − v6 ∧ g1,

db1 = − v1 ∧ b2 − v5 ∧ b1,

dg1 = − v1 ∧ g2 + 4
3ev3 ∧ b2 − 4

3v5 ∧ g1 + 2
3ev6 ∧ b1,

da2 = − v1 ∧ a3 − v2 ∧ b3 − v3 ∧ g3 − 8
3v5 ∧ a2 − 2Uv5 ∧ b2 − 2v6 ∧ g2 + 9a1 ∧ b1,

db2 = − v1 ∧ b3 − 2v5 ∧ b2,

dg2 = − v1 ∧ g3 + 4
3ev3 ∧ b3 − 7

3v5 ∧ g2 + 2ev6 ∧ b2 − 9
2b1 ∧ g1, . . . .

The structure equations for a slightly different variant of the KP equation obtained by Reidet
al.,14–16involve nine basic Maurer–Cartan formshvi u i =1,2, . . . ,9j. The Maurer–Cartan equations
that our algorithm finds for the particular target fiberU=0 can be mapped to theirs by the scaling
correspondence

v3 = my ° pv1, v2 = mx °
p2

q
v2, v1 = mt ° qv3,

v4 = mu ° −
p2

q2v4, g1 = mY
u ° −

p

q2v5, b1 = mX
u ° −

1

q
v6,

a1 = mT
u ° −

p2

q3v7, v5 = mT
t ° −

3

2
v8, v6 = mT

y ° −
2p

q
v9,

b2 = mTX
u °

1

q2p1, g2 = mTY
u ° −

p

q3p2, a2 = mTT
u ° −

p2

q4p3,

wherep,q are any nonzero constants. Moreover, the other invariant formshp1,p2,p3j appearing
in their list of structure equations will correspond to rescalings of our next three second-order
Maurer–Cartan formsa2,b2,g2.

KdV equation:Now letG denote the symmetry group of the KdV equations2d. Applying Lie’s
algorithm, the infinitesimal symmetriesv=t]t+j]x+f]u must satisfy thesminimald determining
equations

ju = 0, 3jx − tt = 0, f − jt + 2
3utt = 0, tu = 0,
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tx = 0, fuu = 0, fxu = 0, ft + ufx + fxxx= 0.

When this system is completed to involution, all the higher order equations are obtained by
differentiation. The corresponding lifted determining equations are

mU
x = 0, 3mX

x − mT
t = 0, mu − mT

x + 2
3UmT

t = 0, mU
t = 0,

mX
t = 0, mUU

u = 0, mXU
u = 0, mT

u + UmX
u + mXXX

u = 0,

and so on, where the higher-order equations are obtained by repeated Lie differentiation with
respect toDT,DX,DU. Restricting to the symmetry groupoidGs`d, there are precisely four inde-
pendent invariant contact forms,

v1
ª mt, v2

ª mx, v3
ª mu, v4

ª mT
t ,

which reflects the fact that the symmetry group of the KdV equation is a four-dimensional Lie
group. The structure equations of the coframe are

dst = v4 ∧ st,

dsx = v3 ∧ st + 2
3Uv4 ∧ st + 1

3v4 ∧ sx,

dsu = − 2
3v4 ∧ su,

dv1 = − v4 ∧ st,

dv2 = − v3 ∧ st − 2
3Uv4 ∧ st − 1

3v4 ∧ sx,

dv3 = 2
3v4 ∧ su,

dv4 = 0,

where st ,sx,su are the invariant horizontal forms. The Maurer–Cartan equations for the Lie
symmetry groupG are obtained by restricting to a target fiber whereT,X,U are fixed, whence

dv1 = − v1 ∧ v4,

dv2 = − v1 ∧ v3 − 2
3Uv1 ∧ v4 − 1

3v2 ∧ v4,

dv3 = 2
3v3 ∧ v4,

dv4 = 0.

V. DISCUSSION

An efficient method for finding the local structure of Lie symmetry pseudogroups of differ-
ential equations was explained, and was demonstrated for the particular cases of the KP and KdV
equations. The algorithm can be straightforwardly applied to any system of differential equations,
irrespective of whether its symmetry group is finite dimensional or infinite dimensional. To apply
our method to other more complicated differential equations, we should optimize our computa-
tional procedure and develop more efficient symbolic algebra routines.
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The next stage of applications of our method is to develop the moving frame algorithms for
pseudogroup actions on submanifolds,23 which will construct complete systems of differential
invariants and invariant differential forms, classify their syzygies and recurrence relations, analyze
invariant variational principles,9,10 and solve equivalence and symmetry problems arising in ge-
ometry and physics.
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In this paper, local and nonlocal symmetry classifications are considered for four
equivalent nonlinear telegraph equations. A complete potential symmetry classifi-
cation of a scalar nonlinear telegraph equation is given through the point symmetry
classification of a related potential system. Six new classes of equations are shown
to admit potential symmetries. The relationships between localsincluding contactd
and nonlocalspotentiald symmetries of these equations are explored. A physical
example is considered for possible applications of the obtained potential
symmetries. ©2005 American Institute of Physics.fDOI: 10.1063/1.1841481g

I. INTRODUCTION

In Refs. 1–4, an algorithmic procedure has been developed to find nonlocal symmetries
spotential symmetriesd of partial differential equationssPDEsd to extend the classes of symmetries
admitted by PDEs. Various researchers have found examples of PDEs that admit potential sym-
metries or extended the procedure to find potential systems.5

In recent years, there have been several investigationssRefs. 6–8d to find symmetries for
nonlinear telegraph equations of the form

utt = fFsuduxgx + fGsudgx. s1d

PDE s1d is equivalent to the potential system

vx = ut,

vt = Fsudux + Gsud. s2d

In particular, if su,vd=sUsx,td ,Vsx,tdd solvess2d, thenu=Usx,td solvess1d. Conversely, for
anyu=Usx,td solving s1d, there exists a pair of functionssu,vd=sUsx,td ,Vsx,tdd solving s2d with
Vsx,td unique to within a constant.

Similarly, the potential systems2d is equivalent to the potential system

wt = v,

wx = u, s3d
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vt = Fsudux + Gsud,

and hence to the potential equation

wtt = Fswxdwxx + Gswxd. s4d

In particular, if u=Usx,td solvess1d, then from the integrability conditions associated withs3d
there exists a tripletsu,v ,wd=sUsx,td ,Vsx,td ,Wsx,tdd solving systems3d with w=Wsx,td solving
s4d. Conversely, if w=Wsx,td solves s4d, then su,vd=sWxsx,td ,Wtsx,tdd solves s2d and u
=Wxsx,td solvess1d.

Consequently, a symmetry of any one of the PDE systemss1d–s4d defines a symmetry of the
remaining three equivalent systems. Moreover, due to the relationship connecting these four
equivalent systems, it is possible for a local symmetry of any one of these systems to yield a
nonlocal symmetry of another one.9

Equations related tos1d include the nonlinear heat conduction equation whenFsud=0, and the
nonlinear inhomogeneous vibrating string equation whenGsud=0.

The group properties of the nonlinear heat equation for both the scalar forms1d and the
potential systems2d are presented in Ref. 2. The point symmetry classification of the nonlinear
wave equations1d with Gsud=0 andFsud replaced byFsx,ud is discussed in Ref. 6. The complete
point symmetry classifications of equations1d and the equivalent potential equations4d are given
in Refs. 7 and 8, respectively. Some exact solutions of systems2d are given in Ref. 10 for special
forms of Fsud andGsud.

Among the equivalent systemss1d–s4d, it appears that the potential systems2d arises most
directly in physical situations. One physical example directly related to systems2d is represented
by the equations of telegraphy of a two-conductor transmission line withv as the current in the
conductors,u as the voltage between the conductors,Gsud as the leakage current per unit length,
Fsud as the differential capacitance,t as a spatial variable andx as time.11 Another physical
example related to systems2d is the equation of motion of a hyperelastic homogeneous rod whose
cross-sectional area varies exponentially along the rod. Hereu is the displacement gradient related
to the difference between a spatial Eulerian coordinate and a Lagrangian coordinatex, v is the
velocity of a particle displaced by this difference,Gsud is essentially the stress tensor,Fsud
=lG8sud for some constantl, andt is time ssee Refs. 12 and 13d.

In this paper we give the complete point symmetry classification of the potential systems2d
and compare our results with the complete point symmetry classification of the scalar equations1d
included in Ref. 7 and the complete point symmetry classification of the potential equations4d
given in Ref. 8. In particular, we will show the following.

sId The point symmetry classifications of the scalar equationss1d ands4d are identical, i.e., for
any Fsud andGsud, a point symmetry admitted bys1d induces a point symmetry admitted bys4d
and vice versa.

sII d For wide classes ofFsud andGsud, there exist point symmetries of the potential systems2d
which are nonlocal symmetries of the scalar equations1d.

sIII d Each point symmetry of the potential systems2d which is a nonlocal symmetry ofs1d
yields a contact symmetry of the potential equations4d that isnot a point symmetry ofs4d.

sIV d For all but one particular class ofFsud andGsud, a point symmetry of the scalar equation
s1d is a point symmetry ofs2d.

In Sec. II, we give the set of determining equations for point symmetries of the potential
systems2d and the complete potential symmetry classification of the scalar equations1d related to
s2d. In Secs. III and IV, we present the complete point symmetry classifications of the scalar
equationss1d and s4d given in Refs. 7 and 8, respectively. In Sec. V, we compare the point
symmetry classifications of the systemss1d, s2d, ands4d by proving theorems that yield statements
sId–sIV d. The second physical example is considered in Sec. VI. Further comments are given in
Sec. VII.
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II. POTENTIAL SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION „1…

Consider the potential systems2d.
The point symmetry

x * = x + «jsx,t,u,vd + Os«2d,

t * = t + «tsx,t,u,vd + Os«2d,

u * = u + «hsx,t,u,vd + Os«2d,

v * = v + «fsx,t,u,vd + Os«2d, s5d

is admitted by systems2d if and only if it satisfies the determining equations,

Xs1dsvx − utd = 0,

Xs1dsvt − Fsudux − Gsudd = 0, s6d

for any su,vd that solves systems2d;

X = jsx,t,u,vd
]

]x
+ tsx,t,u,vd

]

]t
+ hsx,t,u,vd

]

]u
+ fsx,t,u,vd

]

]v

is the infinitesimal generator of the point symmetrys5d;

Xs1d = X + hs1d ]

]ux
+ hs2d ]

]ut
+ fs1d ]

]vx
+ fs2d ]

]vt
,

with

hs1d =
Dh

Dx
−

Dj

Dx
ux −

Dt

Dx
ut, hs2d =

Dh

Dt
−

Dj

Dt
ux −

Dt

Dt
ut,

fs1d =
Df

Dx
−

Dj

Dx
vx −

Dt

Dx
vt, fs2d =

Df

Dt
−

Dj

Dt
vx −

Dt

Dt
vt,

is the first extensionsprolongationd of X;

D

Dx
=

]

]x
+ ux

]

]u
+ vx

]

]v
+ uxx

]

]ux
+ uxt

]

]ut
+ vxx

]

]vx
+ vxt

]

]vt
,

D

Dt
=

]

]t
+ ut

]

]u
+ vt

]

]v
+ uxt

]

]ux
+ utt

]

]ut
+ vxt

]

]vx
+ vtt

]

]vt

are total derivative operators. Note thathsid ,fsid are functions ofx,t ,u,v ,ux,ut ,vx,vt, i =1,2.
The global one-parameters«d Lie group of point symmetries associated withs5d is obtained by

solving the initial value problem for the first order system of ordinary differential equations
sODEsd

dx*

d«
= jsx * , t * , u * , v * d,
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dt*

d«
= tsx * , t * , u * , v * d,

du*

d«
= hsx * , t * , u * , v * d,

dv*

d«
= fsx * , t * , u * , v * d, s7d

with x* = x, t* = t, u* = u, v* = v at «=0.
A point symmetrys5d yields anonlocal symmetryof the scalar equations1d if and only if

jv
2+tv

2+hv
2Þ0, i.e., if and only if the infinitesimalsj ,t, andh have an essential dependence on the

potential variablev. Such a nonlocal symmetry is called apotential symmetryof scalar equation
s1d related to the potential systems2d sfor details, see Ref. 3d.

The determining equationss6d simplify to

jv − tu = 0,

hu − fv + jx − tt = 0,

Gsudhv + ht − fx + Gsudtx = 0,

ju − Fsudtv = 0,

fu − Gsudtu − Fsudhv = 0,

Gsudjv + jt − Fsudtx = 0,

ffv − tt − 2Gsudtv − hu + jxgFsud − F8sudh = 0,

ffv − tt − GsudtvgGsud − Fsudhx − G8sudh + ft = 0. s8d

We now consider the classification problem of finding allFsud, Gsud such that the potential
systems2d yields a potential symmetry ofs1d.

If

Fsud =
c

sau+ bd2, Gsud =
d

au+ b
+ f s9d

for arbitrary constantsa,b,c,d, f, or if

Fsud is arbitrary, Gsud = const,

then through the potential systems2d, the scalar equation admits an infinite number of potential
symmetries and the potential systems2d is linearizable by a point transformationssee Refs. 3 and
4d.

Various symbolic manipulation algorithms exist to solve the set of determining equationss8d
sfor example, see Refs. 14 and 15d. Using the symmetry manipulation algorithm presented in Ref.
15, one can prove the following results.

Theorem 1: The scalar equation (1) admits a potential symmetry related to potential system
(2) if and only if the functions Fsud and Gsud, with G8sudÞ0, satisfy the system of ODEs,
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sc4u + c5dF8sud − 2sc1 − c3 − c2GsuddFsud = 0, s10d

sc4u + c5dG8sud + c2G
2sud − sc1 − 2c3 + c4dGsud − c6 = 0, s11d

for any fixed constants c1,c2, . . . ,c6 with c2Þ0.
In the linearizable cases9d,

c1 = 0, c6 =
c3sc4 − c3d

c2
.

Theorem 2: For any Fsud, Gsud satisfying the system of ODEs (10) and (11) with c2Þ0, the
potential system (2) admits the point symmetry (5) with

j = c1x + c2E Fsuddu,

t = c3t + c2v,

h = c4u + c5,

f = c6t + sc1 − c3 + c4dv, s12d

and hence the scalar equation (1) admits the corresponding potential symmetry.
Now we find the functionsFsud andGsud satisfyings10d, s11d and the corresponding potential

symmetriess12d.
Note that the point transformation

x̄ = ax+ b, t̄ = ct + d, ū = au + b, v̄ = gv + rt

for any constantsa, b, c, d, a, b, g, and r such thatacagÞ0 andaa=cg is an equivalence
transformation for systems2d. Under this transformation, systems2d becomes the equivalent
system

v̄x̄ = ūt̄, v̄t̄ = F̄sūdūx̄ + Ḡsūd,

where

F̄sūd =
ag

ca
FS ū − b

a
D

and

Ḡsūd =
g

c
GS ū − b

a
D +

r

c
.

We use such equivalence transformations to simplify the analysis. For example, ifGsud=a0sb0u
+c0dd0+ f0, without loss of generality we can assume thatGsud=ud0.

Modulo translations and scalings inu andG, we obtain six distinct classes of ODEs forFsud
andGsud where scalar equations1d admits potential symmetries. These six classes of ODEs and
their solutionsfmodulo equivalence classes ofFsud andGsudg are presented in Table I. In Table II
for each class we display the corresponding infinitesimalssj ,t ,h ,fd and global group
sx* , t* , u* , v* d obtained from solving the corresponding ODEss7d.

All symmetries presented in Tables I and II are new for each of the equivalent systemss1d–s4d.
Note that classes 1 and 6 are linearizable4 if b=0 anda=1/2.
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III. POINT SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION „1…

In Ref. 7, Kingston and Sophocleous considered the classification problem of finding allFsud,
Gsud such that the scalar equations1d admits a point symmetry. The point symmetry

x * = x + «jsx,t,ud + Os«2d,

TABLE I. Classes ofFsud andGsud yielding potential symmetries ofs1d.

Class
ODEs satisfied by

Fsud andGsud Gsud Fsud
Relationship between

Fsud andGsud

1 uG8−as1−G2d=0
uF8−sb−1−2aGdF=0

su2a−1d / su2a+1d
su2a+1d / su2a−1d

4u2a+b−1/ su2a+1d2

−4u2a+b−1/ su2a−1d2
Fsud=sub /adG8sud

2 uG8−as1+G2d=0
uF8+s1−b−2aGdF=0

tansa ln ud ub−1 sec2sa ln ud ’’

3 uG8+G2=0
uF8−sb−1−2GdF=0

sln ud−1 −ub−1sln ud−2 ’’

4 G8−G2−1=0
F8−2sb+GdF=0

tanu e2bu sec2 u Fsud=e2buG8sud

5 G8+G2−1=0
F8−2sb−GdF=0

tanhu
cothu

e2bu sech2 u
−e2bu csch2 u

’’

6 G8+G2=0
F8−2sb−GdF=0

u−1 −u−2e2bu ’’

TABLE II. Potential symmetries of s1d for each class fGsb ,F ,«d=eue2«
s−s1+bdsesFsxddxdds, Vsb ,F ,«d

=eu+«e−2bssesFsxddxddsg.

Class
Infinitesimals

j ,t ,h ,f Global group

1 Fsud=4u2a+b−1/ su2a+1d2

Gsud=su2a−1d / su2a+1d or
Fsud=−4u2a+b−1/ su2a−1d2

Gsud=su2a+1d / su2a−1d

j=2sbx+aeFsuddud
t=sb+1dt+2av

h=2u
f=2at+sb+1dv

x* = e2b«fx+aubsGsb ,F ,«d−Gsb ,F ,0ddg
t* = s1/2desb+1d«fst+vde2a«+st−vde−2a«g

u* = ue2«

v* = s1/2desb+1d«fst+vde2a«−st−vde−2a«g
2 Fsud=ub−1 sec2sa ln ud

Gsud=tansa ln ud
j=2sbx−aeFsuddud

t=sb+1dt−2av
h=2u

f=2at+sb+1dv

x* = e2b«fx−aubsGsb ,F ,«d−Gsb ,F ,0ddg
t* = esb+1d«ft cos 2a«−v sin 2a«g

u* = ue2«

v* = esb+1d«fv cos 2a«+ t sin 2a«g
3 Fsud=−ub−1sln ud−2

Gsud=sln ud−1
j=2sbx+e Fsuddud

t=sb+1dt+2v
h=2u

f=sb+1dv

x* = e2b«fx+ubsGsb ,F ,«d−Gsb ,F ,0ddg
t* = esb+1d«s2v«+ td

u* = ue2«

v* = vesb+1d«

4 Fsud=e2bu sec2 u
Gsud=tanu

j=2bx−eFsuddu
t=bt−v

h=1
f= t+bv

x* = e2b«fx−e2busVsb ,F ,«d−Vsb ,F ,0ddg
t* = eb«st cos«−v sin«d

u* = u+«

v* = eb«sv cos«+ t sin«d
5 Fsud=e2bu sech2 u

Gsud=tanhu or
Fsud=−e2bu csch2 u

Gsud=cothu

j=2bx+eFsuddu
t=bt+v

h=1
f= t+bv

x* = e2b«fx+e2busVsb ,F ,«d−Vsb ,F ,0ddg
t* = s1/2deb«sst+vde«+st−vde−«d

u* = u+«

v* = s1/2deb«sst+vde«−st−vde−«d
6 Fsud=−u−2e2bu

Gsud=u−1
j=2bx+eFsuddu

t=bt+v
h=1

f=bv

x* = e2b«fx+e2busVsb ,F ,«d−Vsb ,F ,0ddg
t* = eb«st+v«d

u* = u+«

v* = veb«
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t * = t + «tsx,t,ud + Os«2d,

u * = u + «hsx,t,ud + Os«2d, s13d

is admitted by the scalar equations1d if and only if it satisfies the determining equation

Xs2dsutt − sFsuduxdx − Gsudxd = 0 s14d

for any u solving the scalar equations1d;

X = jsx,t,ud
]

]x
+ tsx,t,ud

]

]t
+ hsx,t,ud

]

]u
,

is the infinitesimal generator of the point symmetrys13d; Xs2d is the second extension ofX.
From s14d, the determining equations forjsx,t ,ud, tsx,t ,ud, andhsx,t ,ud are given by

ju = tx = tu = huu = 0,

jt − Fsudtx = 0,

2Fsudsjx − ttd − F8sudh = 0,

htt − Fsudhxx − G8sudhx = 0,

2htu − ttt + Fsudtxx + G8sudtx = 0,

2Fsudhxu + jtt − Fsudjxx + 2F8sudhx − G8sudsjx − 2ttd + G9sudh = 0.

For arbitraryFsud andGsud, clearly each of the equivalent systemss1d–s4d admits translations
in xsj=1,t=0d and tsj=0,t=1d. For specificFsud and Gsud with G8sudÞ0, the results are
summarized in Table III.

Note that the classes presented in Ref. 7 whereFsud=1, Gsud=elu as well asFsud=1, Gsud
=ul+1 can be obtained, respectively, by appropriately scalingu in class A and settinga=0 in class
B.

IV. POINT SYMMETRY CLASSIFICATION OF THE SCALAR EQUATION „4…

In Ref. 8, the authors considered the classification problem of finding allFsud, Gsud such that
the scalar equations4d admits a point symmetry. The point symmetry

x * = x + «jsx,t,wd + Os«2d,

TABLE III. Classes ofFsud andGsud yielding point symmetries ofs1d.

Class Gsud Fsud Infinitesimalsj ,t ,h

A eu esa+1du j=2ax,t=sa−1dt ,h=2

B ua+b+1 ua j=2bx,t=sa+2bdt ,h=−2u

C u−1 u−2 Those in class B and
j=ex,t=0,h=−uex

D ln u ua j=2sa+1dx,t=sa+2dt ,h=2u

E u eau j=2ax,t=at ,h=2

F u−3 u−4 Those in class B and
j=0,t= t2,h=ut

023505-7 Local and nonlocal symmetries J. Math. Phys. 46, 023505 ~2005!

                                                                                                                                    



t * = t + «tsx,t,wd + Os«2d,

w * = w + «Vsx,t,wd + Os«2d, s15d

is admitted by the scalar equations4d if and only if it satisfies the determining equation

Xs2dswtt − Fswxdwxx − Gswxdd = 0

for any w solving the scalar equations4d;

X = jsx,t,wd
]

]x
+ tsx,t,wd

]

]t
+ Vsx,t,wd

]

]w
,

is the infinitesimal generator of the point symmetrys15d; Xs2d is the second extension ofX.
Modulo equivalence transformations, the results presented in Ref. 8 are summarized in Table

IV.

V. DISCUSSION OF THE SYMMETRY CLASSIFICATIONS

In this section we prove the statementssId–sIV d presented in the Introduction through proofs
of the following four theorems.

Theorem 3: The point symmetry classifications of the scalar equations (1) and (4) are iden-
tical, i.e., for any Fsud and Gsud a point symmetry admitted by (1) induces a point symmetry
admitted by (4) and vice versa.

Proof: The infinitesimals of a point symmetry of the scalar equations1d are of the form

j = jsxd, t = tstd, h = sfstd − j8sxddu + b

for some functionsjsxd, tstd, fstd and constantb. A corresponding point symmetry of the potential
scalar equations4d swith u=wxd must havej=jsxd, t=tstd, V=Vsx,t ,wd with Vsx,t ,wd satisfying

Vxs1d = h

in terms of its first extended infinitesimalVxs1d, i.e.,

Vxs1d =
DV

Dx
−

Dj

Dx
wx −

Dt

Dx
wt = Vx + Vwwx − j8sxdwx = sfstd − j8sxddwx + b. s16d

Hence from Eq.s16d, we must have

Vx = b, Vw = fstd.

Then it is necessary that

TABLE IV. Classes ofFsud andGsud yielding point symmetries ofs4d.

Class Gsud=Gswxd Fsud=Fswxd Infinitesimalsj ,t ,h

A eu esa+1du j=2ax,t=sa−1dt ,V=2saw+xd
B ua+b+1 ua j=2bx,t=sa+2bdt ,V=2sb−1dw
C u−1 u−2 Those in class B and

j=ex,t=0,V=0

D ln u ua j=2sa+1dx,t=sa+2dt ,V=2sa+2dw+ t2

E u eau j=2ax,t=at ,V=2aw+ t2+2x

F u−3 u−4 Those in class B and
j=0,t= t2,V= tw
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V = bx+ fstdw + gstd, s17d

for somegstd in order that a point symmetry of the scalar equations1d yields a point symmetry of
the scalar equations4d. From Tables III and IV, it is easy to check that conditions17d is satisfied
for each point symmetry of the scalar equations4d.

Conversely, the infinitesimals of a point symmetry ofs4d are of the form

j = jsxd, t = tstd, V = fstdw + bsx,td

for some functionsjsxd, tstd, fstd, and bsx,td. A corresponding point symmetry of the scalar
equations1d with u=wx must have

j = jsxd, t = tstd, h = hsx,t,ud.

In terms of the first extended infinitesimalVxs1d, the infinitesimalhsx,t ,ud must satisfy

h = Vxs1d =
DV

Dx
−

Dj

Dx
wx −

Dt

Dx
wt = Vx + Vwwx − j8sxdwx = bx + sfstd − j8sxddwx. s18d

From Tables III and IV, it is easy to check that conditions18d is satisfied for each point symmetry
of s1d. j

Theorem 4: For each of the six classes of Fsud and Gsud listed in Table I, there exist point
symmetries of the potential system (2) which are nonlocal symmetries of the scalar equation (1).

Proof: Since each point symmetry in Table II hastvÞ0, it follows that for all classes ofFsud
andGsud listed in Table Isalso repeated in Table IId there exist point symmetries of the potential
systems2d which are nonlocalspotentiald symmetries of the scalar equations1d. j

Note that only the classFsud=u−2, Gsud=u−1 is common for Tables I and III. This class is
linearizable since it admits potential symmetries leading to the linearization ofs2d by a point
transformation.4

Theorem 5: Each point symmetry of the potential system (2) which is a nonlocal symmetry of
the scalar equation (1) yields a contact symmetry of the potential equation (4) that isnot a point
symmetry of (4).

Proof: A contact symmetryof a PDE with dependent variablew and independent variablesx
and t is defined by

x * = x + «jsx,t,w,wx,wtd + Os«2d,

t * = t + «tsx,t,w,wx,wtd + Os«2d,

w * = w + «Vsx,t,w,wx,wtd + Os«2d, s19d

if and only if

]V

]wx
=

]j

]wx
wx +

]t

]wx
wt,

]V

]wt
=

]j

]wt
wx +

]t

]wt
wt. s20d

Let characteristic functionW=V−jwx−twt. A contact symmetrys19d is a point symmetry if and
only if

]2W

]swxd2 =
]2W

]swtd2 =
]2W

]wx]wt
= 0. s21d

For details, see Chap. 5 of Ref. 3.
A point symmetry of potential systems2d which is a nonlocal symmetry of the scalar equation

s1d ssee Table IId is of the form
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j = ax+ bEu

Fssdds, t = ct + dv,

h = fu + g, f = ht + kv, s22d

for some constantsa, b, c, d, f, g, h, andk with dÞ0, a+ f =c+k.
Solving s20d, after using the substitutions22d, we find that

Vsx,t,w,wx,wtd = bEwx

sFssdds+
d

2
wt

2 + Asx,t,wd s23d

yields a contact symmetry for an arbitrary functionAsx,t ,wd.
Now we findAsx,t ,wd so thats23d yields a contact symmetry of the potential equations4d.

Sinceu=wx, v=wt, it follows that we must have

h = Vxs1d =
DV

Dx
−

Dj

Dx
wx −

Dt

Dx
wt,

f = Vts1d =
DV

Dt
−

Dj

Dt
wx −

Dt

Dt
wt, s24d

in terms of first extended infinitesimalsVxs1d andVts1d. After solving the equationss24d, we find
that Asx,t ,wd=gx+sa+ fdw+ 1

2ht2 and hence

j = ax+ bEwx

Fssdds, t = ct + dwt,

V = bEwx

sFssdds+
d

2
wt

2 + gx+ sa + fdw +
1

2
ht2, s25d

defines a contact symmetry of the scalar potential equations4d. Using conditions21d, it is clear
that s25d is not a point symmetry ofs4d sincedÞ0. j

Theorem 6: A point symmetry of the scalar equation (1) yields a point symmetry of the
potential equation (2) if and only if the infinitesimals for Fsud and Gsud belong to classes A–E in
Table III.

Proof: A point symmetrysjsx,t ,ud ,tsx,t ,ud ,hsx,t ,udd of the scalar equations1d yields a
point symmetry ofs2d if and only if the set of determining equationss8d has a solution for
fsx,t ,u,vd. A solution of s8d exists if and only if the six integrability conditions involving the
second order mixed partial derivatives offsx,t ,u,vd are satisfied. Consequently, it is easy to show
that a point symmetry ofs1d yields a point symmetry ofs2d if and only if it satisfies the additional
conditions

ttt = 0, hxu + jxx = 0, htt = 0, F8sudhx − 2Fsudjxx = 0. s26d

The infinitesimals for classes A–E in Table III satisfys26d but those for class F do not since here
tttÞ0. j

As a consequence of Theorem 6, we see that the point symmetryX= t2s] /]td+uts] /]ud for
Gsud=u−3, Fsud=u−4 yields anonlocal symmetryof the potential systems2d.
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VI. A PHYSICAL EXAMPLE

We now specialize to the situation for the second physical example mentioned in the Intro-
duction. HereFsud=lG8sud. Consequently, in Tables I and II, we haveb=0 and eFsuddu
=Gsud. In Table V, we give the corresponding global group for each of the six classes yielding
potential symmetries of the scalar equations1d.

After translations and scalings ofu andG, class 5 includes bounded monotonic stress tensor
functionsGsud=a tanhsbu+gd for arbitrary constantsa, b, g, andd.

VII. FURTHER DISCUSSION

In this paper we found new symmetries for equivalent telegraph equationss1d–s4d. These
symmetries can be used to find families of solutions from any given solution and to construct
invariant solutions from the invariants of the symmetries or through the direct method discussed in
Ref. 3.

In future papers, we will find conservation laws fors1d–s4d through techniques introduced in
Refs. 16–18. Systemss1d–s4d are not self-adjoint. Hence a symmetry ofs1d–s4d does not yield a
conservation law through Noether’s theorem.

For the physical caseFsud=G8sud, the second equation in the potential systems2d becomes

TABLE V. Physical examplesfFsud=G8sudg yielding potential symmetries ofs1d.

Class
Infinitesimals

j ,t ,h ,f Global group

1.1 Gsud=su2a−1d / su2a+1d j=2assu2a−1d / su2a+1dd
t= t+2av

h=2u
f=2at+v

x* = x+lnssu2ae4a«+1d / su2a+1dd−2a«

t* = 1
2e«fst+vde2a«+st−vde−2a«g

u* = ue2«

v* = 1
2e«fst+vde2a«−st−vde−2a«g

1.2 Gsud=su2a+1d / su2a−1d j=2assu2a+1d / su2a−1dd
t= t+2av

h=2u
f=2at+v

x* = x+lnusu2ae4a«−1d / su2a−1du−2a«

t* = 1
2e«fst+vde2a«+st−vde−2a«g

u* = ue2«

v* = 1
2e«fst+vde2a«−st−vde−2a«g

2 Gsud=tansa ln ud j=−2a tansa ln ud
t= t−2av

h=2u
f=2at+v

x* = x+lnucossasln u+2«dd /cossa ln udu
t* = e«ft cos 2a«−v sin 2a«g

u* = ue2«

v* = e«fv cos 2a«+ t sin 2a«g
3 Gsud=sln ud−1 j=2sln ud−1

t= t+2v
h=2u
f=v

x* = x+lnu1+2« / ln uu
t* = e«s2v«+ td

u* = ue2«

v* = ve«

4 Gsud=tanu j=−tanu
t=−v
h=1
f= t

x* = x+lnucossu+«d /cosuu
t* = t cos«−v sin«

u* = u+«

v* = v cos«+ t sin«

5.1 Gsud=tanhu j=tanhu
t=v
h=1
f= t

x* = x+lnsse2su+«d+1d / se2u+1dd−«

t* = 1
2sst+vde«+st−vde−«d

u* = u+«

v* = 1
2sst+vde«−st−vde−«d

5.2 Gsud=cothu j=cothu
t=v
h=1
f= t

x* = x+lnuse2su+«d−1d / se2u−1du−«

t* = 1
2sst+vde«+st−vde−«d

u* = u+«

v* = 1
2sst+vde«−st−vde−«d

6 Gsud=u−1 j=u−1

t=v
h=1
f=0

x* = x+lnu1+« /uu
t* = t+v«

u* = u+«

v* = v
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sexvdt = sexGsuddx.

This leads to another equivalent potential system

vx = ut, wx = exv, wt = exGsud.

The problem of finding equivalent potential systems for a given PDE is considered in Refs. 4 and
5.
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We prove that any classical solution of the Camassa–Holm equation will have
compact support if its initial data has this property. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1845603g

I. INTRODUCTION

The Camassa–Holm equation

mt + 2mux + mxu = 0, x P R, t . 0, s1d

with m=u−uxx, was first derived by Fokas and Fuchssteiner18 as a bi-Hamiltonian system, and
then as a model for shallow water waves by Camassa and Holm;2 see also Refs. 6 and 22 for
alternative derivations within the shallow water regime. Equations1d was also obtained as a model
for wave propagation in hyperelastic rods,16 and shown to describe geodesic flow on the diffeo-
morphism group of the circle;24 see also Refs. 11 and 12. The Camassa–Holm equation satisfies
the least action principle11,12 and is an integrable infinite-dimensional Hamiltonian systemsfor
various aspects of the direct/inverse scattering approach and of the direct/inverse spectral problem
we refer to Refs. 7, 13, 17–19, 21, and 23d. It has both classical solutions that exist for all times
as well as smooth solutions which develop singularities in finite time.3,5,8–10Note that we can write
s1d as

ut − utxx + 3uux = 2uxuxx + uuxxx, t ù 0, x P R. s2d

The solitary wave solutions ofs2d are the peaked waves

ucsx,td = ceux−ctu, t ù 0, x P R,

traveling at constant speedc.0, cf. Ref. 2. These peaked waves, calledpeakons, are not classical
solutions ofs2d. They satisfy the conservation law form of the Camassa–Holm equation

ut + uux + ]xs1 − ]x
2d−1su2 + 1

2ux
2d = 0 s3d

ssee Refs. 9 and 14d. The peakons are solitons, retaining their form and speed through the non-
linear interaction with other peakonsssee Refs. 1 and 2d. Moreover, the peakons are orbitally
stable,15 i.e., their shape is stable even under perturbations of a more general nature than those
occuring through the interaction with other peakons.

This paper is concerned with establishing the finite propagation speed property for the
Camassa–Holm equations1d. Due to the nonlocal nature of the conservation law forms3d of the
equation, it is nota priori clear that a localized initial datamsx,0d sthat is, of compact supportd
will not spread out instantly to the whole spatial domain. Below we will give a simple proof of this
property.
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II. MAIN RESULTS

Let us first prove the following.
Theorem: Assume that m0:R→R is a smooth function with compact support. If T.0 is the

maximal existence time of the smooth solution msx,td to (1) with initial data m0sxd, then for any
tP f0,Td the smooth function x°msx,td has compact support.

Before proceeding with the proof, a few comments are in order. First of all, the restriction to
smooth functions is just for convenience since the same approach will worksthe local well-
posedness of solutions and other technicalities needed to pursue our approach within this setting
are available from the considerations made in Refs. 5 and 9d for initial data in the Sobolev space
H1sRd of square integrable functions with square integrable distributional derivative. It is also well
known that the solution of the Camassa–Holm equation inherits at any later time the spatial
smoothness of the initial data, measured on a Sobolev space scale with integer indexssee Refs. 4
and 9d. Finally, we would like to point out that smooth initial data with compact support develop
into solutions that might exist for all times or could exhibit singularities in finite time cf. Refs. 3,
5, and 8.

Proof of the theorem: We associate to the solutionm with initial datamsx,0d=m0sxd the family
hws· ,tdjtPf0,Td of smooth diffeomorphisms of the line defined by

wtsx,td = uswsx,td,td, t P f0,Td, s4d

with

wsx,0d = x, x P R. s5d

Using s1d, s4d, ands5d, is easy to check the following identity:

mswsx,td,td · wx
2sx,td = msx,0d, x P R, t P f0,Td. s6d

On the other hand, froms4d and s5d we infer

wxsx,td = expSE
0

t

uxswsx,sd,sddsD, x P R, t P f0,Td. s7d

If m0 is supported in the compact intervalfa,bg, sincewxsx,td.0 onR3 f0,Td in view of s7d,
we deduce froms6d thatmsx,td has its support in the intervalfwsa,td ,wsb,tdg. This completes the
proof. j

We established that the solutions to the Camassa–Holm equations1d have finite propagation
speed. Sinces1d is equivalent tos2d, the natural question arises whether this property is captured
by the time evolution of the functionu. We will now show that this is not the case.

Proposition: Assume that u0:R→R is a smooth function with compact support. Let T.0 be
the maximal existence time of the smooth solution usx,td to (2) with initial data u0sxd. If at every
tP f0,Td the smooth function x°usx,td has compact support, then u is identically zero.

Proof: For sx,tdPR3 f0,Td, let msx,td=s1−]x
2dusx,td. Clearly msx,0d has compact support

since u0 does. From our theorem we deduce that for everytP f0,Td the smooth function
x°msx,td is also of compact support. Recall that by the Paley–Wiener theorem,20,25 an entire
analytic functiongsjd of the complex variablej=h+ iz swith h ,zPRd is the Fourier transformF f

of a smooth functionf :R→R with compact support in the ballhxPR : uxuøRj, where Ffsjd
=eRe−ijxfsxddx for jPC, if and only if for every integernù0 there is a constantcn.0 so that
ugsjduøcne

Ruzu / s1+ujudn for all jPC. Notice that

Fmsjd = s1 + j2dFusjd, j P C, t P f0,Td. s8d

By assumptionus· ,td has compact support at everytP f0,Td. Hence the Paley–Wiener theorem
ensures thatFu andFm are entire functions. Thens8d forcesFms−

+id=0 at any fixedtP f0,Td, or
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E
R

exmsx,tddx =E
R

e−xmsx,tddx = 0, t P f0,Td. s9d

However, we infer froms1d that for all tP s0,Td,

d

dt
E

R
exmsx,tddx =E

R
exmt dx = − 2E

R
exmux dx −E

R
exmxu dx

= −E
R

exmux dx +E
R

exmudx

= −E
R

exuux dx +E
R

exuxuxx dx +E
R

exu2 dx −E
R

exuuxx dx

= −E
R

exuux dx −
1

2
E

R
exux

2 dx +E
R

exu2 dx +E
R

exux
2 dx

+E
R

exuux dx

since all boundary terms obtained after integration by parts vanish asus· ,td has compact support
for every tP f0,Td. Hence

d

dt
E

R
exmsx,tddx =E

R
exSu2 +

1

2
ux

2Ddx, t P s0,Td. s10d

But s9d and s10d can hold simultaneously if and only ifu;0. The proof is complete. j

Remark: If u0ò0 is smooth, the corresponding solution us· ,td of the Camassa–Holm equation
(2) loses instantly the property of having compact support. To prove this statement, we just go
through the previous argumentation restricting our attention to an arbitrarily small time interval
f0,«d.
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We set up a method for a recursive calculation of the effective potential which is
applied to a cubic potential with imaginary coupling. The result is resummed using
variational perturbation theory, yielding an exponentially fast convergence. ©2005
American Institute of Physics.fDOI: 10.1063/1.1824212g

I. INTRODUCTION

Perturbation theory is the most commonly used technique for an approximate description of
nonexactly solvable systems. However, most perturbation series are divergent and yield acceptable
results only after resummation. In recent years, based on a variational approach due to Feynman
and Kleinert,1 a systematic and uniformly convergentvariational perturbation theorysVPTd has
been developed.2–5 It permits the conversion of divergent weak-coupling into convergent strong-
coupling expansions and has been applied successfully in quantum mechanics, quantum statistics,
condensed matter physics, and the theory of critical phenomena.

The convergence of VPT has been proved to be exponentially fast,3,4 and this has been
verified for the ground-state energy of different quantum mechanical model systems. If the under-
lying potential is mirror symmetric, one introduces a trial oscillator whose frequencyV is re-
garded as a variational parameter and whose influence is minimized according to theprinciple of
minimal sensitivity.6 In this way, the ground-state energy of the quartic anharmonic oscillator was
analyzed up to very high orders in Refs. 7 and 8.

If the potential is not mirror symmetric, the center of fluctuations no longer lies at the origin
but at some nonzero placeX. In VPT, this situation is accounted for by regarding the nonvanishing
center of fluctuationsX as a second variational parameter. An extreme example is a complete
antisymmetric potential, such asVsxd=Ax3, which for real A does not correspond to a stable
system. Interestingly, if the parameterA is chosen to be imaginary, so that there does not exist a
classical system at all, the quantum-mechanical system turns out to be well defined, and the
spectrum of the Hamilton operator

H = −
1

2

]2

]x2 + ix3 s1d

is real and positive. This remarkable property of the non-Hermitian Hamilton operator, found in
Refs. 9–13, can be attributed to the fact that it possesses a different symmetry: it is invariant under
the combined application of the parity and the time-reversal operation.

In this paper, we apply VPT to thePT-symmetric Hamilton operators1d. In a first naive
approach, we ignore the necessary shiftX of the center of fluctuations and resum the weak-
coupling series of the ground-state energy for the anharmonic oscillator
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Vsxd =
v2

2
x2 + igx3 s2d

in the strong-coupling limit. In this limit, the potentials2d reduces to the purely cubic potential of
s1d. It turns out that the VPT results approach the corresponding numerical value for the ground-
state energy ofs1d with increasing order, but the rate of convergence is not satisfactory. After-
wards, we allow for a nonvanishing center of fluctuationsX by using the effective potential, whose
calculation is accomplished by an efficient recursion scheme. This refined approach improves the
convergence of the results drastically.

In Sec. II, we derive the weak-coupling series for the ground-state energy ofs2d by evaluating
connected vacuum diagrams. In Sec. III, we show how this perturbation series can be obtained
more efficiently by means of the Bender–Wu recursion method.14 In Sec. IV, we resum the
weak-coupling series for the ground-state energy ofs2d by applying VPT and examine the result-
ing convergence. In Sec. V, we determine the effective potential with thebackground method15,16

from one-particle irreducible vacuum diagrams. In Sec. VI, we set up new recursion relations for
a more efficient calculation of the effective potential. In Sec. VII, we finally treat the resulting
expansion with VPT and examine the improved convergence.

II. PERTURBATION THEORY

The perturbation series for the ground-state energy of the anharmonic oscillators2d can be
calculated from connected vacuum diagrams. Up to the fourth order in the coupling constantg, the
ground-state energy is given by the Feynman diagrams

s3d

with the propagator

s4d

and the vertices

s5d

Evaluating the Feynman diagramss3d leads to the following analytical expression for the ground-
state energy:

E = "vF1

2
+

11g2"

8v5 −
465g4"2

32v10 + Osg6dG . s6d

Since evaluating Feynman diagrams of higher orders is cumbersome, only low perturbation orders
are feasible by this procedure. If we want to study higher orders, we better use the Bender–Wu
recursion relations.14
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III. BENDER–WU RECURSION RELATIONS

The Schrödinger eigenvalue equation for the anharmonic oscillators2d,

−
"2

2
c9sxd + Sv2

2
x2 + igx3Dcsxd = Ecsxd, s7d

is solved as follows: We write the wave functioncsxd as

csxd = S v

p"
D1/4

expF−
x̂2

2
+ fsx̂dG , s8d

with the abbreviationx̂=xÎv /", and expand the exponent in powers of the dimensionless cou-
pling constantĝ=gÎ" /v5 by using

fsx̂d = o
k=1

`

ĝkfksx̂d. s9d

The fksx̂d are expanded in powers of the rescaled coordinatex̂,

fksx̂d = o
m=1

k+2

cm
skdx̂m. s10d

For the ground-state energy we make the ansatz

E = "vS1

2
+ o

k=1

`

ĝkekD . s11d

Insertings8d–s11d into s7d, we obtain to first order

c1
s1d = − i, c2

s1d = 0, c3
s1d = −

i

3
, e1 = 0. s12d

For kù2, we find the following recursion relation for the expansion coefficients ins10d:

cm
skd =

sm+ 2dsm+ 1d
2m

cm+2
skd +

1

2m
o
l=1

k−1

o
n=1

m+1

nsm+ 2 −ndcn
sldcm+2−n

sk−ld , s13d

with cm
skd;0 for m.k+2. The expansion coefficients of the ground-state energy follow from

ek = − c2
skd −

1

2o
l=1

k−1

c1
sldc1

sk−ld. s14d

Table I shows the coefficientsek up to the 10th order. We observe that all odd orders vanish for

TABLE I. Expansion coefficients for the ground-state energy of the anhar-
monic oscillators2d up to the 10th order.

k 1 2 3 4 5

«k 0 11
8 0 −465

32 0

k 6 7 8 9 10

«k
39709

128 0 −19250 805
2048 0 2 944 491 879

8192
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symmetry reasons and that the first two even orders agree, indeed, with the earlier results6d.

IV. RESUMMATION OF GROUND-STATE ENERGY

In this section, we consider the strong-coupling limit of the perturbation seriess11d. Rescaling
the coordinate according tox→xg−1/5, the Schrödinger equations7d becomes

−
"2

2

]2

]x2csxd + S1

2
g−4/5v2x2 + ix3Dcsxd = g−2/5Ecsxd. s15d

Expanding the wave function and the energy in powers of the coupling constant yields

csxd = c0sx̂d + ĝ−4/5c1sx̂d + ĝ−8/5c2sx̂d + ¯ s16d

and

E = "vĝ2/5sb0 + ĝ−4/5b1 + ĝ−8/5b2 + ¯ d. s17d

By considerings15d in the limit g→`, we find that the leading strong-coupling coefficientb0

equals the ground-state energy associated with the Hamilton operators1d. A precise numerical
value for this ground-state energy was given by Bender,9,18

b0 = 0.762 851 773 . . . . s18d

The weak-coupling seriess11d is of the form

EsNdsa,vd = "vF1

2
+ o

k=1

N S"a

v5Dk

e2kG , s19d

with the abbreviationa=g2. Table I suggests thats19d represents a divergent Borel series which is
resummable by applying VPT.2–5 To this end, an artificial parameter is introduced in the pertur-
bation series, which is most easily obtained by Kleinert’s square-root trick,

v → VÎ1 + ar , s20d

with

r =
v2 − V2

aV2 . s21d

Thus, one replaces the frequencyv in the weak-coupling seriess19d according tos20d and re-
expands the resulting expression in powers ofa up to the orderaN. Afterwards, the auxiliary
parameterr is replaced according tos21d. The ground-state energy thus becomes dependent on the
variational parameterV, EsNdsa ,vd→EsNdsa ,v ,Vd. The influence ofV is then optimized accord-
ing to the principle of minimal sensitivity,6 i.e., one approximates the ground-state energy toNth
order by

EsNd = EsNdsa,v,VsNdd, s22d

whereVsNd denotes that value of the variational parameter for whichEsNdsa ,v ,Vd has an extre-
mum or a turning point.

Consider, as an example, the weak-coupling seriess19d to first order,

Es1dsa,vd =
"v

2
+ a

11"2

8v4 . s23d

Insertings20d, re-expanding ina to first order, and taking into accounts21d, we obtain
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Es1dsa,v,Vd =
"V

4
+

"v2

4V
+ a

11"2

8V4 . s24d

Extremizing this and going to large coupling constants, we obtain the strong-coupling behavior of
the variational parameter,

Vs1d = vâ1/5sV0
s1d + V1

s1dâ−2/5 + V2
s1dâ−4/5 + ¯ d, s25d

with the abbreviationâ= ĝ2 and the coefficients

V0
s1d = Î5 22, V1

s1d =
1

5Î5 22
, V2

s1d =
1

25Î5 10 648
, . . . . s26d

Inserting the results25d and s26d into s24d, we obtain the strong-coupling seriess17d with the
first-order coefficients

b0
s1d =

5Î5 22

16
, b1

s1d =
4

Î5 22
, b2

s1d =
− 1

100Î5 22
, . . . . s27d

The numerical value of the leading strong-coupling coefficient isb0
s1d<0.5799. Thus, to first order,

the relative deviation of the result from the precise values18d is

ub0
s1d − b0u

b0
< 24%. s28d

Despite this relatively poor agreement, it turns out that the VPT results forb0
sNd in higher orders

converge towards the exact values18d. In Refs. 3 and 4 it is proved that VPT in general yields
approximations whose relative deviation from the exact value vanishes exponentially. In our case
we have

ub0
sNd − b0u

b0
~ exps− CN3/5d, s29d

where the exponent 3/5 is determined by the structure of the strong-coupling seriess17d.
In Fig. 1 the exponential convergence of our variational results is shown up to the 20th order.

Fitting the logarithm of the relative deviation to a straight line yields

FIG. 1. Convergence of the results for the strong-coupling coefficientb0 obtained from resummation of the weak-coupling
series of the ground-state energyscirclesd. The resummation involving a variational path averageX converges much faster
strianglesd. The lines represent fits of the respective data to straight lines.
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ln
ub0

sNd − b0u
b0

= − 0.96s11dN3/5 − 1.83s44d. s30d

In the following, we show how this exponential convergence is improved drastically by allowing
for a shift of the center of fluctuations.

V. DIAGRAMMATIC APPROACH TO EFFECTIVE POTENTIAL

In the presence of a constant external currentj , the quantum statistical partition function reads

Zs jd ª R Dx expH−
1

"
Afxgs jdJ , s31d

whereAfxgs jd is the Euclidean action,

Afxgs jd =E
0

"b

dtF1

2
ẋ2std + Vsxstdd − jxstdG . s32d

The free energy thus becomes a function of the external current,

Fs jd = −
1

b
ln Zs jd. s33d

The path average,

X =
1

Zs jd R DxFE
0

"b dt

"b
xstdGexpH−

1

"
Afxgs jdJ , s34d

then follows from the first derivative of the free energy with respect to the external current:

X = −
]Fs jd

] j
. s35d

Assuming that the last identity can be inverted to yield the currentj as a function of the average
X, one defines the effective potentialVeffsXd as the Legendre transform of the free energy with
respect to the external current:

VeffsXd = Fs jsXdd + jsXdX. s36d

Furthermore, the first derivative of the effective potential gives back the external currentj :

]VeffsXd
]X

= jsXd. s37d

Thus, the free energyF;Fs j =0d can be obtained by extremizing the effective potential,

F = VeffsXed, s38d

with

U ]VeffsXd
]X

U
X=Xe

= 0. s39d

In the zero-temperature limit, extremizing the effective potential then yields the ground-state
energy.
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The effective potential is usually not calculated by performing explicitly the Legendre trans-
formations36d but by a diagrammatic technique derived via the so-called background method.15,16

There, the effective potential is expanded in powers of the Planck constant", and the expansion
terms are one-particle irreducible vacuum diagrams. The result is

VeffsXd = VsXd +
"

2
Tr ln G−1 + VsintdsXd, s40d

where the trace-log term is given by the ground-state energy of a harmonic oscillator of
X-dependent frequencyṽ=ÎV9sXd,

"

2
Tr ln G−1 =

"ṽ

2
. s41d

The interaction termVsintdsXd contains the sum of all one-particle irreducible vacuum diagrams.
For the anharmonic oscillators2d, the relevant subset of the diagrams ins3d is

s42d

These one-particle irreducible vacuum diagrams are derived most easily by an efficient graphical
recursion method.17 The frequency of the propagators is now given by

ṽ = Îv2 + 6igX. s43d

By evaluating the diagramss42d we obtain

VeffsXd =
v2

2
X2 + igX3 +

"

2
Îv2 + 6igX +

"2g2

4sv2 + 6igXd2 −
51"3g4

32sv2 + 6igXd9/2 + Os"4d. s44d

The ground-state energy of the anharmonic oscillators2d is found by extremizing the effective
potentials44d. To this end, we expand the extremal background according to

Xe = isX0 + "X1 + "2X2 + "3X3d + Os"4d. s45d

Insertings45d into the vanishing first derivative ofs44d and re-expanding in", we obtain a system
of equations which are solved by

X0 = 0, X1 = −
3g

2v3, X2 =
33g3

2v8 . s46d

Insertings45d and s46d into s44d and re-expanding in" yields again the ground-state energys6d.
In order to go to higher orders, we shall now develop a recursion relation for the effective

potential.

VI. RECURSIVE APPROACH TO EFFECTIVE POTENTIAL

In the presence of a constant external currentj , the Schrödinger eigenvalue equation for the
anharmonic oscillators2d reads

−
"2

2
c9sxd + Sv2

2
x2 + igx3 − jxDcsxd = Ecsxd. s47d

Taking into account the Legendre identitiess36d and s37d, Eq. s47d becomes
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−
"2

2
c9sxd + Sv2

2
x2 + igx3 − Veff8 sXdxDcsxd = fVeffsXd − Veff8 sXdXgcsxd. s48d

If the coupling constantg vanishes, Eq.s48d is solved by

csxd = N expSX̂x̂ −
x̂2

2
D , s49d

VeffsXd = "vS1

2
+

X̂

2
D , s50d

where the path average has been rescaled by the oscillator length,X̂=XÎv /". For a nonvanishing
coupling constantg, we solve the differential equations48d by the expansions

csxd = N expFX̂x̂ −
x̂2

2
+ fsx̂dG , s51d

VeffsXd = "vF1

2
+

X̂2

2
+ o

k=1

`

ĝkVksX̂dG . s52d

For the correction to the wave function,fsx̂d, we make again the ansatzs9d and s10d. Thus, we
obtain froms48d for k=1,

c1
s1d =

i

2
+ 2iX̂2, c2

s1d = −
iX̂

2
, c3

s1d = −
i

3
, V1sX̂d =

3iX̂

2
+ iX̂3. s53d

For kù2 one finds formù2 the following recursion relation for the expansion coefficients of the
wave function:

cm
skd =

sm+ 2dsm+ 1d
2m

cm+2
skd +

X̂sm+ 1d
m

cm+1
skd +

1

2m
o
l=1

k−1

o
n=1

m+1

nsm+ 2 −ndcn
sldcm+2−n

sk−ld , s54d

with cm
skd;0 for m.k+2. Form=1, we have

c1
skd = 3c3

skd + 2X̂c2
skd + Vk8sX̂d + o

l=1

k−1

sc2
sk−ldc1

sld + c1
sk−ldc2

sldd. s55d

The expansion coefficients of the effective potential follow from

VksX̂d = − c2
skd − 3X̂c3

skd − 2X̂2c2
skd − X̂o

l=1

k−1

sc2
sk−ldc1

sld + c1
sk−ldc2

sldd −
1

2o
l=1

k−1

c1
sldc1

sk−ld. s56d

Using these results, the effective potential can be determined recursively, yielding an expansion in
the coupling constantg,

VeffsXd =
"v

2
+

v2

2
X2 + igS3"X

2v
+ X3D + g2"s" + 9vX2d

4v4

− ig33"Xs4" + 9vX2d
4v6 − g43"s17"2 + 288"X2 + 270X4v2d

32v9 + Osg5d. s57d

This result is in agreement with the expansion ofs44d in powers ofg and can be carried to higher
orders without effort. The expansion coefficients for the"-expansion
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VeffsXd = o
l=0

N

"lVsldsXd + Os"N+1d s58d

can then be obtained easily.19 Iterating the recursion relationss54d–s56d up to the orderg8, we
obtain the effective potential up to five loops as shown in Table II.

VII. RESUMMATION OF EFFECTIVE POTENTIAL

We now apply VPT to the loop expansion of the effective potentials58d. Since the Planck
constant" is now the expansion parameter rather than the coupling constantg, Kleinert’s square-
root trick will be modified accordingly,

v → VÎ1 + "r , s59d

with

r =
v2 − V2

"V2 . s60d

As an example, we consider again the first order

Veff
s1dsXd =

v2

2
X2 + igX3 +

"

2
Îv2 + 6igX. s61d

After substitutingv according tos59d, re-expanding in", and taking into accounts60d, we obtain

Veff
s1dsX,Vd =

v2

2
X2 + igX3 +

"

2
ÎV2 + 6igX. s62d

In order to calculate an approximation for the ground-state energy, we now optimize inV and
extremize inX, yielding

U ]

]V
Veff

s1dsX,VdU
X=Xs1d,V=Vs1d

= 0, s63d

U ]

]X
Veff

s1dsX,VdU
X=Xs1d,V=Vs1d

= 0. s64d

Equations63d is solved by

Vs1d = 0. s65d

Afterwards, we obtain froms64d,

TABLE II. Expansion coefficients for the effective potential ofs2d up to five
loops.

l 0 1 2

VsldsXd v2X2/2+igX3 ṽ /2 g2/4ṽ4

l 3 4 5

VsldsXd −51g4/32ṽ9 3331g6/128ṽ14 −1 371 477g8/2048ṽ19
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Xs1d +
v2

3ig
+

"

2Î6igsXs1dd3/2
= 0. s66d

This equation allows us to determine the strong-coupling behavior ofX,

Xs1d = − iĝ−1/5Î"

v
sX0

s1d + X1
s1dĝ−4/5 + X2

s1dĝ−8/5 + ¯ d, s67d

where the coefficients read

X0
s1d =

1
Î5 24

, X1
s1d = −

2

15
, X2

s1d =
Î5 24

75
, . . . . s68d

Inserting the resultss65d, s67d, and s68d into s62d yields the strong-coupling behavior of the
ground-state energys17d, with the new coefficients

b0
s1d =

5

2Î5 432
, b1

s1d = −
1

4Î5 18
, b2

s1d =
1

15Î5 24
, . . . . s69d

The new numerical value of the leading strong-coupling coefficient isb0
s1d<0.7428, which is in

much better agreement withs18d than the previous value ofs27d,

ub0
s1d − b0u

b0
< 3%. s70d

Thus, the variational path average has led to a significant improvement of the first-order result.
Table III summarizes our results forb0

sNd up to the fifth order.
Figure 1 shows the much faster exponential convergence up to the fifth order. A least square

fit of the data yields

ln
ub0

sNd − b0u
b0

= − 5.8s1.6dN3/5 + 3.0s3.0d s71d

which is to be compared withs30d.

VIII. CONCLUSION AND OUTLOOK

We have developed a recursive technique to determine the effective potential, which is far
more efficient than diagrammatic methods. In combination with VPT, this leads to a fast converg-
ing determination of the ground-state energy of quantum-mechanical systems with nonmirror
symmetric potentials. It will be interesting to analyze in a similar way systems with a coordinate
dependent mass term, where only a lowest order effective potential has been calculated so far.20

Interesting future applications will address the effective potential off4 theories in 4−e dimen-
sions to obtain equations of state near to a critical point. A first attempt in this direction is Ref. 21.

TABLE III. Variational results for the ground-state energy ofs1d compared
to the numerical results18d of Refs. 9 and 18.

1-loop VPT 0.742 751 023
2-loop VPT 0.764 570 478
3-loop VPT 0.758 783 545
4-loop VPT 0.762 843 684
5-loop VPT 0.762 849 959
Numerical 0.762 851 773
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By applying the higher order Darboux algorithm to an exactly solvable non-
HermitianPT symmetric potential, we obtain a hierarchy of new exactly solvable
non-HermitianPT symmetric potentials with real spectra. It is shown that the
symmetry underlying the potentials so generated and the original one isnonlinear
pseudosupersymmetry.We also show that this formalism can be used to generate a
larger class of new solvable potentials when applied to non-Hermitian systems.
© 2005 American Institute of Physics.fDOI: 10.1063/1.1843273g

I. INTRODUCTION

There are not many exactly solvable potentials in quantum mechanics. As a result there have
always been efforts to enlarge the class of exactly solvable potentials. Some of the different
methods which have been used time and again to generate a hierarchy of isospectral potentials are
the factorization method of Infeld and Hull,1 the Darboux algorithm,2 the method of super-
symmetric quantum mechanicssSUSY QMd,3 or the integral transformations of
Abraham–Moses–Pursey,4 etc. Among these methods the Darboux algorithm and the SUSY QM
are closely related and these methods have found numerous applications in different areas of
theoretical and mathematical physics.3

At the same time, the scheme is still narrow as conventional SUSY fails to explain certain
phenomena, e.g., the disappearance of the leading Borel singularity of the perturbation correction
for the ground state energy of a SUSY theory.5 In order to explain such behavior and also to widen
the scope of SUSY QM, an idea was put forward to extend SUSY to higher orders.6 We recall that
in the conventional intertwining technique, two one-dimensional Schrödinger HamiltoniansH and

H̃ are intertwined by means of differential operatorsL as

H̃L = LH, HL† = L†H̃. s1d

If L is of the first order in derivatives, the standard SUSY QM, with supercharges built of first
order Darboux transformation operators, and the factorization method are recovered. On the other
hand, if higher order differential operators are involved in the construction ofL, it is variously
referred to aspolynomial SUSY,6 or nonlinear SUSY,7 or higher order SUSYsn-SUSYd,8,9 or
N-fold SUSY,5,10 the study of which has attracted the attention of a lot of researchers in recent
times.5–10 Contrary to standard SUSY, anticommutator of the supercharges no longer coincides
with the Hamiltonian in general. Instead, it becomes a polynomial of the Hamiltonian in degreeN,
and is sometimes referred to as theMother Hamiltonian.5,10

adElectronic mail: anjana23@rediffmail.com
bdElectronic mail: pinaki@isical.ac.in
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Furthermore, the equivalence between anNth order Darboux transformation and a chain ofN
first order Darboux transformation is well established.9 Every chain ofN first order Darboux
transformation creates a chain of exactly solvable Hamiltoniansh0→h1→¯→hN. Hence the
intertwining operatorLsNd between the initial Hamiltonianh0 and the final HamiltonianhN can
always be presented as a product ofN first order Darboux transformation operators between every
two juxtaposed Hamiltoniansh0,h1,… ,hN,

LsNd = LNLN−1¯L2L1, hpLp = Lphp−1, p = 1,2,…,N. s2d

In conventional higher order SUSY,h0 andhN are essentially self-adjoint Hermitian operators in a
Hilbert space, with square integrable eigenfunctions. If all the intermediate potentialsV1sxd,
V2sxd ,… ,VN−1sxd are real valued functions in their common domain of definitionsa,bd, the chain
is calledreducible, and theNth order Darboux transformation is calledreducibleas well. Addi-
tionally, if all the intermediate potentials are free of singularities insa,bd, the chain and the
corresponding transformation are calledcompletely reducible. When at least one intermediate
potential is a complex valued function, the chain and the corresponding transformation are called
irreducible.

At the same time, non-Hermitian Hamiltonians have made an important place for themselves
in the recent development of quantum mechanics, because of their intrinsic interest11 and possible
applications.12 It is well known by now that a non-HermitianPT symmetric Hamiltonian admits
real eigenvalues if the eigenfunctions, too, respect thePT invariancesthe so-called unbrokenPT
symmetryd, whereas the eigenvalues occur as complex conjugate pairs ifPT symmetry is sponta-
neously brokensin this case the eigenfunctions are no longerPT invariantd. For such non-
HermitianPT symmetric Hamiltonians,

PTH = HPT, s3d

whereP stands for thespace inversionoperator andT denotestime reversal,

P: x → − x, p → − p,

s4d
T: x → x, p → − p, i → − i

The reality of the spectrum may be attributed to the so-calledh-pseudo Hermiticity of the non-
Hermitian Hamiltonian13

H† = hHh−1, s5d

whereh is a linear, invertible, Hermitian operator. Several non-Hermitian Hamiltonians, whether
possessingPT invariance or not, have been identified ash pseudo-Hermitian underh=e−up, where
u is real, andp=−isd/dxd, or h=e−fsxd, wherefsxd is some gaugelike transformation. We note that
for PT symmetric Hamiltonians,h may simply be taken as the parity operatorP, whereas for
conventional Hermitian Hamiltonians,h=1.

Moreover, the square integrability of the wave functions is no longer a prerequisite for non-
Hermitian Hamiltonians. Instead, the orthonormalization of the wave function for Hermitian quan-
tum mechanics

E Cm
* Cn dx = dm,n s6d

is replaced by14

E fCPTCmgCn dx = dm,n, s7d

whereC plays the role of a linear charge operator, obeying the relationship
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fC,Hg = 0, fC,PTg = 0 s8d

and has the propertyC2=1. In the position representationC is given as

Csx,yd = o
n

cnsxdcnsyd s9d

and the completeness relation gets modified to

o
n

fCPTcnsxdgcnsyd = dsx − yd. s10d

While nonlinear SUSY forN=2 has been investigated widely for Hermitian Hamiltonians,5–10

such studies have not been carried out as yet for non-Hermitian Hamiltonians. Motivated by the
importance of such systems in the recent development of quantum mechanics, our aim in the
present work is to generalize the concept of nonlinear SUSY to include non-Hermitian quantum
systems. In analogy with the first order systems, where the partner HamiltoniansH± of non-
Hermitian systems were found to be related throughpseudosupersymmetry,13,15 it will be shown
that the underlying symmetry between the isospectral partnersh0 andhN is a generalization ofN
SUSY and may be callednonlinear pseudosupersymmetry.The nature of the intermediate Hamil-
tonians as well as the corresponding wave functions will also be investigated.

The organization of the paper is as follows. For the sake of completeness, in Sec. II we briefly
outline conventional nonlinear SUSY for Hermitian quantum mechanics. In Sec. III we describe a
similar framework for non-Hermitian Hamiltonians and show that the underlying symmetry for the
potentials produced by higher order Darboux algorithm is nonlinear pseudosupersymmetry. Some
explicit examples are given in Secs. IV and V, while Sec. VI is devoted to a conclusion.

II. NONLINEAR SUSY FOR HERMITIAN HAMILTONIANS

In the conventional first order supersymmetric quantum mechanics, if a given solvable Hamil-
tonian

H = −
d2

dx2 + Vsxd s11d

possesses a discrete spectrum of bound statesEn, n=0,1,2,…, together with the square-
integrable eigenfunctionscnsxd, then a pair of first-order operatorsL0 andL0

† can be constructed
from the ground statec0, given by

L0 =
d

dx
+ W0sxd, L0

† = −
d

dx
+ W0sxd, s12d

where

W0sxd = − fln c0sxdg8 s13d

such thatL0 andL0
† play the role of intertwining operators for the initial and final HamiltoniansH

and H̃, respectively,

H̃L0 = L0H, HL0
† = L0

†H̃ s14d

with

H = L0
†L0, H̃ = L0L0

†. s15d

Simple straightforward algebra shows that the partner potentialsVsxd andṼsxd can be expressed as
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Vsxd = W0
2sxd − W08sxd, s16d

Ṽsxd = W0
2sxd + W08sxd = Vsxd + 2W08sxd. s17d

The eigenfunctionscsxd and c̃sxd of H and H̃ are interrelated throughL0 andL0
† :

L0c0sxd = 0, L0sxdcisxd =
W0,isxd
c0sxd

a c̃isxd, L0
†c̃isxda cisxd, i = 1,2,… , s18d

whereW0,isxd=hc0sxdci8sxd−c08sxdcisxdj is the Wronskian ofc0sxd and cisxd. The concise alge-

braic form of spectral equivalence is given by the superalgebra for the partnersH andH̃, and the
superchargesQ andQ†,

Q = S0 L0

0 0 D, Q† =S 0 0

L0
† 0D , s19d

H = hQ,Q†j =SH 0

0 H̃D =SL0
†L0 0

0 L0L0
†D s20d

satisfying the relations

hQ,Qj = hQ†,Q†j = 0, fQ,Hg = fQ†,Hg = 0. s21d

ThusH andH̃ are isospectral except for the lowest eigenvalueE0 which is missing inH̃, asc̃0 is
not normalizable.

To generalize standard SUSY to higher order, the supercharges are built of higher order
intertwining operators.9 The two Hamiltoniansh0 and hN are intertwined through anNth order
differential operatorLsNd, as

LsNdh0 = hNLsNd, h0L
sNd† = LsNd†hN, s22d

whereh0 and hN are self-adjoint operators. The proper eigenfunctionsci of the original Hamil-
tonian h0 are known exactly,h0ci =Eici. Any such operatorLsNd can always be presented in the
form known as Crum–Krein formula16

LsNd = W−1su1,u2,…,uNd*
u1 u2 ¯ 1

u81 u82 ¯

d

dx

] ] � ]

u1
sNd u2

sNd …
dN

dxN

* , s23d

whereW su1,u2,… ,uNd stands for the usual symbol for the Wronskian of the functionsu1,u2, …,
uN. The functionsui si =1,2,… ,Nd called the transformation functions are eigenfunctions ofh0,
h0ui =aiui, and they need not necessarily satisfy any physical boundary condition. The final po-
tential has the form
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VNsxd = Vsxd − 2
d2

dx2ln Wsu1,u2,…,uNd s24d

and will be free of singularities whenever the Wronskian is nodeless, which in turn requires that

only consecutive eigenfunctions ofh0 must be considered.9 The eigenfunctionscsxd and c̃sxd of
h0 andhN are connected by the intertwinersLsNd andLsNd† as

c̃isxd = LsNdcisxd =
Wj ,j+1,…,j+N,isxd
Wj ,j+1,…,j+Nsxd

, s25d

whereWj ,j+1,…,j+N,isxd andWj ,j+1,…,j+Nsxd are the Wronskians of the eigenfunctions ofh0 associ-
ated with the corresponding subindices. Thus ifcisxd is an eigenfunction ofh0 with energyEi, then

c̃isxd is an eigenfunction ofhN with the same energyEi. Evidently

LsNdci = 0, i = 1,2,…,N. s26d

However, for energiesEi si =1,2,… ,Nd, the corresponding eigenfunctions ofhN,

c̃sxda
csxd

Wj ,j+1,…,j+Nsxd
,

have growing asymptotics at both infinities. Consequently, these are not physically acceptable
solutions ofhN, and the corresponding eigenvaluesEi si =1,2,… ,Nd are excluded from the spec-
trum of hN. Thus

hNc̃E = Ec̃E s27d

with the exception of the levelsE=Ei, i =1,2,… ,N, which will be absent in the spectrum of the
new HamiltonianhN, as the corresponding eigenfunctions are not square integrable.

It has already been shown17 that the operatorLsNd can always be presented as a product ofN
first order Darboux transformation operators between every two Hamiltoniansh0,h1,… ,hN ,

LsNd = LNLN−1¯L1, hpLp = Lphp−1, p = 1,2,…,N. s28d

We note that the final HamiltonianhN is Hermitian, although some of the intermediate Hamilto-
nianshi could be unphysical, e.g., their associated potentials might contain extra singularities that
were not present in the initial one. The superchargesQN andQN

† are constructed as

QN = S0 LsNd

0 0
D, QN

† = S 0 0

LsNd† 0
D . s29d

Evidently,QN andQN
† are nilpotent

hQN,QNj = hQN
†,QN

†j = 0. s30d

The super-Hamiltonian

HN =Sh0 0

0 hND s31d

satisfies the relations

fQN,HNg = fQN
†,HNg = 0. s32d

The anticommutator can be generally expressed by aNth order polynomialPN of the Hamiltonian
HN,
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HN = hQN
†,QNj =SLsNd†LsNd 0

0 LsNdLsNd†D = p
k=1

N

sHN − akId, s33d

whereI is the 232 unit matrix, and

LsNd†LsNd = p
k=1

N

sh0 − akd, s34d

LsNdLsNd† = p
k=1

N

shN − akd. s35d

Since the right-hand side ofs33d is a polynomial inHN, it is called nonlinear SUSY orN-fold
SUSY. The operatorHN is termed as theMother Hamiltonianand satisfies the commutation
relations9

fQN,HNg = fQN
↑ ,HNg = 0. s36d

For N=1, N-fold SUSY reduces to standard SUSY.
The most widely studied higher order SUSY is forN=2,8,9 where the formalism reduces to

Ls2d = L2L1, s37d

where

L1 = − ]x + sln u1d8, L2 = − ]x + sln vd8, v = L1u2, s38d

and the isospectral potential turns out to be

Ṽ2sxd = Vsxd − 2
d2

dx2ln Wj ,j+1sxd. s39d

III. NONLINEAR PSEUDO-SUSY FOR NON-HERMITIAN HAMILTONIANS

In this section we extend the concept of nonlinear orN-fold supersymmetry to non-Hermitian
quantum mechanics. Though the Darboux algorithm andsnonlineard supersymmetric quantum
mechanics are equivalent for Hermitian Hamiltonians, the situation is different for non-Hermitian
Hamiltonians. However, intertwining operatorsAsNd andBsNd can still be constructed with the help
of Darboux transformation. Analogous to the case of Hermitian quantum mechanics, it will be
shown that once a non-Hermitian Schrödinger potentialVsxd is exactly solvable, one can construct

an isospectral partnerṼNsxd from s24d,

ṼNsxd = Vsxd − 2
d2

dx2ln Wsu1,u2,…,uNd, s40d

whereW stands for the usual symbol for the Wronskian of the functionsu1,u2,… ,uN, which are
eigenfunctions ofh0, h0ui =aiui. As before the functionsuisxd may be just formal eigenfunctions.
Our aim will be to study the spectrum of the new Hamiltonian in detail, to investigate the nature
of the potential and the eigenfunctions, and to determine the symmetry which connects the original
Hamiltonian h0 and the transformed onehN. For this purpose, we look for two intertwining
operatorsAsNd andBsNd such that
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AsNdh0 = hNAsNd, h0B
sNd = BsNdhN, s41d

whereh0 andhN are no longer self-adjoint operatorssh0,sNdÞh0,sNd
† d; on the contrary, to ensure the

reality of the spectrum, they areh pseudo-Hermitian,

hh0,sNdh
−1 = h0,sNd

† , s42d

whereh is a linear, invertible, Hermitian operator. However, the choice ofh is not unique. ForPT
invariant potentials, a simple representation ofh may be given by the parity operator,

h = P, Pfsxd = fs− xd. s43d

It follows that for real potentials,s43d leads toh=1 so thatBsNd=AsNd†, thus reproducing the
standard result of supersymmetry.

It follows from Eqs.s41d and s42d that the operatorsAsNd andBsNd are pseudo-adjoint:

BsNd = AsNd# = h−1AsNd†h. s44d

Considering first order Darboux transformation between every two juxtaposed Hamiltonians
h0,h1,… ,hN, each pair intertwined by first order operatorsLk sk=1,2,… ,Nd

hkLk = Lkhk−1, k = 1,2,3,…,N, s45d

Lk
#hk = hk−1Lk

#, k = 1,2,3,…,N, s46d

where

Lk
# = h−1Lkh s47d

then, analogous to the Hermitian case, the final HamiltonianhN is found to be related to the initial
sor startingd Hamiltonianh0 through

hN = LNLN−1¯L2L1 h0 L1
#L2

#
¯LN

# s48d

so that the operatorAsNd can be represented as a product of theN first order Darboux transforma-
tions

AsNd = LNLN−1¯L2L1 s49d

with its pseudo-adjoint

BsNd = AsNd# = h−1L1L2¯LNh=L1
#
¯LN−1

# LN
# . s50d

It is worth mentioning here that in contrast to Hermitian quantum mechanics, all the intermediate
Hamiltonianshk are physically acceptable as their associated potentials contain no extra singulari-
ties which are not present in the initial potentialVsxd. This is essentially because the associated
eigenfunctions do not have nodes on the real line, and they are normalizable in the sense of Eq.
s7d.

Thus the initial and the transformed Hamiltoniansh0 and hN are related bynonlinear pseu-
dosupersymmetry. The super-Hamiltonian of this system consists of the pseudosupersymmetric
pair of Hamiltoniansh0 andhN as

HN =Sh0 0

0 hND . s51d

The supercharges generating this form of pseudosupersymmetry are constructed in the following
way:
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QN = S0 AsNd

0 0 D, QN
# = h−1QN

†h = S 0 0

BsNd 0D = S 0 0

AsNd# 0D s52d

so that the superchargeQN and its pseudoadjointQN
† of standard Hermitian quantum mechanics are

replaced byQN and its pseudoadjointQN
# for non-Hermitian Hamiltonians. Obviously,QN andQN

#

are nilpotent

hQN,QNj = hQN
#,QN

#j = 0 s53d

and satisfy the following closed algebra:

fQN,HNg = fQN
#,HNg = 0, s54d

HN ; hQN
#,QNj =SAsNd#AsNd 0

0 AsNdAsNd#D = p
k=1

N

sHN − akId, s55d

i.e.,

AsNd#AsNd = p
k=1

N

sh0 − akd, s56d

AsNdAsNd# = p
k=1

N

shN − akd, s57d

andI is the 232 unit matrix. Evidently, ifcisxd is an eigenfunction ofh0 with energy eigenvalue

Ei, then c̃isxd=AsNdcisxd is an eigenfunction ofhN with the same energyEi. However, for i
=1,2,… ,N,

c̃sxda
csxd

Wsc1,c2,…,cNd
. s58d

Clearly, the eigenfunctionsc̃isxd si =1,2,…Nd of hN corresponding to the eigenvaluesEi si
=1,2,… ,Nd grow asymptotically, and so cannot be included in the set of solutions ofhN. Con-
sequently,Ei si =1,2,… ,Nd are excluded from the spectrum ofhN.

Next we note two interesting results which are in contrast to the Hermitian case.

s1d For ṼNsxd to be free of singularities, the WronskianW sc1,c2,… ,cNd=Wc1,c2,…,cN
sxd

must be nodeless. In the case of Hermitian potentials, this is guaranteed only whenci , i
=1,2,… ,N representN consecutive eigenfunctions. However, in the case of generic non-
Hermitian potentials, the eigenfunctionscnsxd sn=0,1,2,…d have no nodes on the real line.
Consequently, the Wronskian is free of real singularities for any value ofi , j ,k,…, and thus can be
used to generate a wider class of isospectral Hamiltonians.

s2d The intermediate Hamiltonians are also physically acceptable, as the corresponding poten-
tials are free of singularities, for the same reason as given above. For example, the first intertwin-
ing gives

V1sxd = Vsxd − 2
d2

dx2ln cisxd s59d

which is well defined. However, this may not always be true for Hermitian potentials due to the
presence of additional singularities inV1sxd, which are not present inVsxd.
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For the sake of simplicity, in the present work we shall restrict ourselves to second order
nonlinear pseudosupersymmetry. Thus if an intertwining operatorA=L2L1 is constructed from the
two first order Darboux transformation operatorsL1 andL2, given by

L1 = − ]x + sln uid8, L2 = − ]x + sln vd8, v = L1uj , s60d

whereui anduj are any two eigenfunctions of the non-Hermitian Hamiltonianh0, then the trans-
formed isospectral Hamiltonian,

h2 = −
d2

dx2 + Ṽi,jsxd s61d

has eigenfunctions

c̃nsxd =
Wsci,c j,cnd

Wsci,c jd
= − Encn + Eici

Wscn,c jd
Wsci,c jd

+ Ejc j
Wsci,cnd
Wsci,c jd

, s62d

where

Ṽi,jsxd = Vsxd − 2
d2

dx2ln Wsui,ujd. s63d

The mother HamiltonianH2 is constructed from the anticommutator by

H2 = hQ2
#,Q2j = SA#A 0

0 AA#D = Ssh0 − a1Idsh0 − a2Id 0

0 sh2 − a1Idsh2 − a2Id D , s64d

whereI is 232 unit matrix andH2 is given bys51d.
In the following sections we shall investigate this formalism further with the help of explicit

examples.

IV. PT SYMMETRIC OSCILLATOR

In this section we shall apply our formalism to the well-known example of thePT symmetric
oscillator18

Vsxd = sx − ied2 +
a2 − 1

4

sx − ied2 s65d

with eigenfunctions

cnsxd = e−s1/2dsx − ied2sx − ied−qa+1/2Ln
−qassx − ied2d s66d

and eigenvalues

En = 4n − 2qa + 2, n = 0,1,2,… , s67d

whereq= ±1 is called the quasiparity.
In this study we shall restrict ourselves toN=2 only. If one performs Darboux transformations

with two eigenfunctionscisxd andc jsxd of the potentialVsxd, corresponding to energiesEi andEj

si and j need not be consecutived, then the intertwining operators take the form

L1 = −
d

dx
+

ci8

ci
, L1

# =
d

dx
+

ci8

ci
, s68d
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L2 = −
d

dx
+

Wi,j8

Wi,j
−

ci8

ci
, L2

# =
d

dx
+

Wi,j8

Wi,j
−

ci8

ci ,
s69d

whereWi,j is the usual Wronskian given by

Wi,j = Wsci,c jd = cisxdc j8sxd − ci8sxdc jsxd s70d

andh has been taken as ins43d. Replacing the intertwining operatorsAs2d sandBs2dd by A sandBd
for simplicity, we obtain

A = L2L1 =
d2

dx2 + bi,j
d

dx
− bi,j

ci8

ci
−

ci9

ci
, s71d

B = A# = h−1A†h =
d2

dx2 − bi,j
d

dx
− bi,j

ci8

ci
−

ci9

ci
− bi,j8 , s72d

where

bi,j = −
Wi,j8

Wi,j
s73d

and h is simply the parity operatorP for PT symmetric potentials. The new exactly solvable
non-Hermitian potential, which is isospectral to thePT symmetric oscillator ins65d, is obtained
from

Ṽi,jsxd = Vsxd − 2
d2

dx2ln Wi,j s74d

with solutions

c̃ksxd = Acksxd. s75d

Thus for each setsi , jd, one obtains two sets ofṼi,jsxd because of the presence of quasiparityq.

Obviously, c̃ksxd=0 for k= i , j . Thus the new potential so constructed ins74d above, has all the
eigenenergies of the originalPT symmetric oscillator except for the levelsi , j , which are missing
from the spectrum ofs74d.

For the simplicity of calculations we shall now construct and examine some potentials using
low values ofi and j in further detail.

A. New potential for i =1, j =2

Applying the above formalism with the two eigenstatesc1sxd and c2sxd of the potential in
s65d, the Wronskian is found to be

Wsc1,c2d = c12e
−sx − ied2sx − ied2−2qag, s76d

wherec12 is some real constant and

g = s1 − qads2 − qad − 2s1 − qadsx − ied2 + sx − ied4. s77d

The intertwining operatorsA andA# are obtained fromA=L2L1, A#=L1
#L2

#, where

L1 = −
d

dx
+

c18

c1
= −

d

dx
− sx − ied +

− qa + 1
2

sx − ied
−

2sx − ied
1 − qa − sx − ied2 , s78d
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L2 = −
d

dx
+

d

dx
lnsL1c2d = −

d

dx
− sx − ied +

− qa + 3
2

sx − ied
+

2sx − ied
1 − qa − sx − ied2 +

g8

g
, s79d

so that

A =
d2

dx2 − H− 2sx − ied +
2s1 − qad
sx − ied

+
g8

g
J d

dx
+ sx − ied2 +

s− qa + 1
2ds− qa + 5

2d
sx − ied2 + 2qa − 1

+ H− sx − ied +
− qa + 1

2

sx − ied
−

2sx − ied
1 − qa − sx − 1ed2Jg8

g
, s80d

A# =
d2

dx2 + H− 2sx − ied +
2s1 − qad
sx − ied

+
g8

g
J d

dx
+ sx − ied2 +

s− qa + 3
2ds− qa − 1

2d
sx − ied2 + 2qa − 3

+ H− sx − ied +
− qa + 1

2

sx − 1ed
−

2sx − ied
1 − qa − sx − ied2Jg8

g
+

g9

g
− Sg8

g
D2

. s81d

Applying Eq. s74d, the new potential isospectral to the one ins65d except for the states
corresponding toc1sxd andc2sxd, comes out as

Ṽ1,2sxd = sx − ied2 +
s− qa + 3

2ds− qa + 5
2d

sx − ied2 − 2
g9

g
+ 2Sg8

g
D2

+ 4 s82d

which has solutions

c̃nsxd = − En+2cn+2 + E1c1
Wscn+2,c2d
Wsc1,c2d

+ E2c2
Wsc1,cn+2d
Wsc1,c2d

s83d

with energy eigenvalues

Ẽn = En+2 = 4n + 10 − 2qa, n = 1,2,3,… . s84d

The ground state is given by

c̃0sxd = e−s1/2dsx − ied2sx − ied−qa+1/2HB1 +
B2sx − ied2

g
J s85d

with eigenvalue

Ẽ0 = E0 = 2 − 2qa, s86d

whereB1 and B2 are somex, e independent constants. Thus the energiesE1 and E2 of Vsxd are

absent in the spectrum ofṼ1,2sxd. It can be verified that the eigenfunctionsc̃ are alsoPT invariant,
and can be normalized usings7d. Furthermore, the superchargesQ2 and Q2

#, generated from the
operatorsA andA#, satisfy the following algebra :

H2 = hQ2,Q2
#j = H2

2 − 4s4 − qadH2 + s6 − 2qads10 − 2qad, s87d

whereH2 is given bys51d. The intermediate potential given by
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V1sxd = Vsxd − 2
d2

dx2ln c1sxd=sx − ied2 +
s− qa + 1

2ds− qa + 3
2d

sx − ied2 +
12

1 − qa − sx − ied2

−
8s1 − qad

h1 − qa − sx − ied2j2 + 4 s88d

does not have any singularity on the real line, and hence is physically acceptable as well. By
arguments similar to those given above, its ground state eigenfunction is given by

f0 =
1

1 − qa − sx − ied2e−s1/2dsx − ied2sx − ied−qa+s3/2d s89d

with energy

e0 = E0 = 2 − 2qa s90d

and the excited states

fn =
Wscn+1,c1d

c1
s91d

with corresponding energies

en = En+1 = 4n + 6 − 2qa, n = 1,2,3,… . s92d

It is easy to observe that applyings4d, both the intermediate and the final potentialssas well as
their eigenfunctionsd satisfy s3d, and hence arePT invariant, having real spectra.

B. New potentials for i =0, j =2

In a similar manner, the expressions for the different quantities are obtained as follows:

Wsc0,c2d = c02e
−sx − ied2sx − ied−2qa+2H sx − ied2

2 − qa
− 1J s93d

with c02 some real constant

L1 = −
d

dx
− sx − ied +

s− qa + 1
2d

sx − ied
, s94d

L2 = −
d

dx2 − sx − ied +
s− qa + 3

2d
sx − ied

+
2sx − ied

fsx − ied2 − s2 − qadg , s95d

A =
d2

dx2 + 2Hsx − ied +
sqa − 1d
sx − ied

−
sx − ied

sx − ied2 − s2 − qadJ d

dx
+ sx − ied2 +

s− qa + 1
2ds− qa + 5

2d
sx − ied2

−
3

sx − ied2 − s2 − qad
+ 2qa − 3, s96d

A# = −
d

dx2 − 2Hsx − ied +
sqa − 1d
sx − ied

+
sx − ied

sx − ied2 − s2 − qadJ d

dx
+ sx − ied2 +

s− qa − 1
2ds− qa + 3

2d
sx − ied2

−
5

hsx − ied2 − s2 − qadj −
4s− qa + 2d

hsx − ied2 − s2 − qadj2 + 2qa − 5. s97d

The new potential
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Ṽ0,2sxd = sx − ied2 +
sss − 1d
sx − ied2 +

4

sx − ied2 − s2 − qad
+

8s2 − qad
hsx − ied2 − s2 − qadj2 + 4, s98d

where

s = − qa + 5
2 s99d

is totally different from the initial potential of thePT symmetric oscillator, yet shares the same
spectrum except for the statesn=0, 2 of the original potential, which are missing in the partner.

The ground state wave function of the Hamiltonian ins98d is given by

c̃0sxd = HA1sx − ied2 + A2 +
A3

sx − ied2 − s2 − qadJe−s1/2dsx − ied2sx − ied−qa+s1/2d s100d

with ground state energy

Ẽ0 = E1 = 6 − 2qa, s101d

whereA1, A2, A3 arex-independent constants, while the excited states are obtained froms62d

c̃n = Acn+2=− En+2cn+2 + E0c0
Wscn+2,c2d
Wsc0,c2d

+ E2c2
Wsc0,cn+2d
Wsc0,c2d

s102d

with energies

Ẽn = En+2 = 4n + 10 − 2qa, n = 1,2,… . s103d

It can also be verified that eigenfunctionsc̃nsxd have correct asymptotic behavior and are alsoPT
invariant. Consequently, they also satisfy Eq.s7d. The intermediate potential is given by

V1sxd = sx − ied2 +
s− qa + 1

2ds− qa + 3
2d

sx − ied2 + 2 s104d

which is also physically acceptable. By arguments similar to those given above, its ground state
eigenfunction is given by

f0 = e−s1/2dsx − ied2sx − ied−qa+s3/2d s105d

with energy

e0 = 6 − 2qa s106d

and excited states

fn =
Wscn+1,c0d

c0
s107d

with energies

en = En+1 = 4n + 6 − 2qa, n = 1,2,3,… . s108d

Once again, both the intermediate and the final potentialssas well as their eigenfunctionsd arePT
invariant, having real spectra.

The superchargesQ2 andQ2
† generated from the intertwining operatorsA andA# can be shown

to satisfy the following algebra:

H2 = hQ2,Q2
#j = H2

2 − 4s3 − qadH2 + s2 − qads10 − 2qad s109d

whereH2 is given bys51d.
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We note that the potentials obtained in this section are unique in the sense that they do not
have any counterpart in standard quantum mechanicssi.e., in the Hermitian cased.

V. PT SYMMETRIC SCARF II POTENTIAL

We note that the generalized oscillator problem considered in the last section was made
non-Hermitian by an imaginary displacement of the coordinate variablex. However, there are
other methods of constructing non-Hermitian models. To see how the formalism described in Sec.
III works with such models, in this section we shall study an example, viz., thePT symmetric
non-Hermitian Scarf II potential, which has beenPT symmetrized in a different way. This exactly
solvable potential, given by

Vsxd = − l sech2 x − im sechx tanhx, l . 0, m Þ 0 s110d

has a discrete spectrum that admits both real as well as complex conjugate energies, depending on
the relative strengths of its parametersl andm. For um u øl+ 1

4, the system possesses a real and
discrete bound state spectrum, whereas forum u .l+ 1

4, the system exhibits spontaneousPT sym-
metry breaking, with complex conjugate pairs of energies. The normalized wave functions for this
potential are well known, being given by15,19

cnsxd =
Gsn − 2p + 1

2d

n!Gs 1
2 − 2pd

z−psz*d−qPn
−2p−1/2,−2q−1/2si sinhxd, s111d

wherePn
a,b are the Jacobi polynomials,20

Pn
a,bsi sinhxd =

Gsn + a + 1d
Gsn + 1dGsa + 1d

Fs− n,n + a + b + 1;a + 1;zd s112d

and

z=
1 − i sinhx

2
, s113d

p = −
1

4
±

1

2
Î1

4
+ l + m = −

1

4
±

t

2
, s114d

q = −
1

4
±

1

2
Î1

4
+ l − m = −

1

4
±

s

2
. s115d

However, for normalization of the wave functions, only the positive sign is allowed inp. The
energy spectrum

En = − sn − p − qd2, n = 0,1,2,… , Ss+ t − 1

2
D s116d

is real and bound forum u øl+ 1
4, i.e., for realp andq, with two towers characterized by the two

values ofq.
If the formalism developed above is applied to this example forN=2, with statesc0sxd and

c2sxd, then the Wronskian is calculated to be

Wsc0,c2d = s1 − i sinhxd−2ps1 + i sinhxd−2q coshxh− isp − qd + sp + q − 3
2dsinhxj s117d

and the intertwining operatorsA andA# are given by
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A = L2L1, A# = L1
#L2

#, s118d

whereL1 andL2 take the form

L1 = −
d

dx
+

c08

c0
=

d

dx
+ isp − qdsechx − sp + qdtanhx, s119d

L2 = −
d

dx
+

W0,28

W0,2
−

c08

c0
=

d

dx
+ isp − qdsechx − sp + qdtanhx

+
s− p − q + 3

2d + isp − qdsinhx + s− 2p − 2q + 3dsinh2 x

isp − qdcoshx + s− p − q + 3
2dsinhx coshx

. s120d

Now usings40d the new potential is found to be

Ṽ0,2sxd = − l̃ sech2 x − im̃ sechx tanhx − 2Ss2 sech2 x − irs sechx tanhx

sr sechx − is tanhxd2 D , s121d

where

l̃ = l − 4p − 4q + 2, s122d

m̃ = m − 4p + 4q, s123d

l = 2sp2 + q2d + sp + qd, s124d

m = 2sp2 − q2d + sp − qd, s125d

r = p − q, s126d

s = − p − q + 3
2 . s127d

Once again, the final potentialṼ0,2sxd is alsoPT invariant. The eigenfunctions are obtained from
s62d, with the ground state as

c̃0 = sE0 − E1dc1 + sE2 − E0dc2
P18

P28
s128d

and excited states

c̃n = sE0 − En+2dcn+2 + sE2 − E0dc2
Pn+28

P28
s129d

wherePn denotes the Jacobi polynomialPn
−2p−1/2−2q−1/2si sinhxd andPn8 denotes its derivative with

respect tox. It can be shown that forumuøl+ 1
4, the wave functionsc̃ are alsoPT invariant, and

can be normalized followings7d. The new potentialṼ0,2sxd has real bound state spectrum given by

Ẽ0 = − s1 − p − qd2, s130d

Ẽn = − sn + 2 − p − qd2, n = 1,2,…, , Ss+ t − 5

2
D , s131d

and the algebra satisfied by the supercharges turns out to be
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H2 = hQ2,Q2
#j = H2

2 + s2 − 2p − 2qdH2 + sp + qdsp + q − 2d, s132d

whereH2 is given bys51d.
The intermediate potential takes the form

V1sxd = − ṽ1 sech2 x − iṽ2 sechx tanhx, s133d

where

ṽ1 = l − 2sp + qd, s134d

ṽ2 = m − 2sp − qd s135d

with eigenfunctions

fn =
Wscn+1,c0d

c0
s136d

and the corresponding energies

en = En+1 = − sn + 1 − p − qd2, n = 0,1,…, , Ss+ t − 3

2
D . s137d

ThusV1sxd and the corresponding wave functionss136d are also physically acceptable as well as
PT invariant.

VI. CONCLUSIONS

In this paper we have suggested an application of higher order Darboux algorithm to non-
HermitianPT symmetric potentials. For the sake of definiteness the method has been applied to
two specific potentials, namely, the generalized oscillator and the Scarf II potentials and a number
of new potentials having nearly the same spectrum as the original ones have been obtained. It may
be noted that in each of these cases, starting from aPT symmetric potential we have obtained new
potentials which are againPT symmetric. In other words the higher order Darboux algorithm does
not induce spontaneousPT symmetry breaking. Among the different cases considered here the one
involving nonconsecutive levels deserves special mention. The potentials thus obtained have no
Hermitian analogues. Also the intermediate potentials in all the cases are perfectly well behaved
since the Darboux algorithm does not introduce any new singularity or breakPT symmetry.
Furthermore it has been shown that the symmetry underlying the original and the new potentials
is a fusion ofnonlinear SUSYandPT symmetry which we callnonlinear pseudosupersymmetry.
Finally we note that analogous to the study of breakingN-fold supersymmetry,21 it would be of
interest to examine breaking of this new symmetry.
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For a very large class of potentials,VsxWd ,xW PR2, we prove the universality of the
low-energy scattering amplitude,fskW8 ,kWd. The result is f =Îp /2s1/ log kd
+os1d / flogs1/kdg. The only exceptions occur ifV happens to have a zero-energy
bound state. Our new result includes as a special subclass the case of rotationally
symmetric potentials,VsuxWud. © 2005 American Institute of Physics.
fDOI: 10.1063/1.1843274g

I. INTRODUCTION

In a recent paper we proved an interesting universality property for the low-energy scattering
limit in two space dimensions.1 This was done both for massive quantum field theory in 2+1
dimensions, and for nonrelativistic quantum mechanics in two space dimensions for a centrally
symmetric force.

The result briefly stated that theS-wave phase shift,d0skd, k being the c.m. momentum,
vanishes asd0→c/ logsk/md as k→0, or in exceptional cases,d0=Osk2d. The constant,c, is
universal,c=p /2 independent of the dynamics. For potential scattering this kind of universality
was first noted in Ref. 2, albeit with an incomplete proof which missed among other things the
exceptional class of potentials. For the field theoretic case the result can be found in an earlier
paper.3 But it is buried in a much more general context and its physical significance was not
discussed.

Physics in two space dimensions was initially mostly of theoretical and mathematical interest.
However, especially in the 5 years since Ref. 1 appeared, we have had several physical, experi-
mentally accessible systems which have two space dimensions. These systems appear in con-
densed matter physics, and a recent review is given in Ref. 4. We also note more recent theoretical
papers by Lieb and Yngvasson5 and also by Ren.6 It is important to note that in the condensed
matter systems the forces are often not rotationally symmetric and in some cases they are also
nonlocal.

In the present paper we return to the nonrelativistic case but treat potentials which have no
rotational symmetry,V;VsxWd, xW PR2. In this case there are no phase shifts, but we obtain the
corresponding low-energy result for the full amplitude which agrees with that obtained in the
rotationally symmetric case. This is obtained under very general and “reasonable” conditions on
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VsxWd which have the following three properties:sad they are linear inV; sbd they are invariant
under a shift of origin; andscd they include the previously studied case of Ref. 1.

Section II is devoted to preliminaries and definitions, including the Green’s function inR2 and
the scattering integral equation.

In Sec. III we study the Fredholm integral equation with the two-dimensionals2Dd zero-
energy Green’s function,G0=s1/2pdloguxW −yWu. The main task in this section is to define the
general class of potentials,VsxWd, to be considered.

In Sec. IV, we consider the Lippmann–Schwinger equation fork.0. We prove that, given our
class of potentials, then for any real fixedk with k.0, this equation has a unique solution,cskW ,xWd,
with cPC, whereC is the Banach space of continuous functions onR2 with a sup norm. We also
obtain ak-dependent upper bound forici, which will prove useful in the succeeding sections.

Section V is devoted to proving that the zero-energy kernel defines a compact operator onC.
We also show that even in the case where there exist nontrivial solutions of the homogeneous
integral equation with a zero-energy kernel, one still has solutions of the inhomogeneous equation.
However these are not unique. This helps in solving the “exceptional case” wheref j , j =1. . . ,N,
are solutions of the homogeneous equation but withed2x f jsxWdVsxWd=0.

We end up with two cases to consider. Case A is where the solutionssd of the inhomogeneous
equation,f̃, are such thated2xf̃sxWdVsxWdÞ0. Case B is where the solutions of the inhomogeneous
equations satisfyed2xf̃sxWdVsxWd=0.

In Sec. VI we prove the universality of the low-energy scattering amplitude for case A. The
result for the full scattering amplitudefskW8 ,kWd is f =−Îp /2flogs1/kdg−1+os1d / slog kd. This agrees
with our result for the symmetric case given in Ref. 1.

In Sec. VII, we treat the “exceptional case,” i.e., mainly case B, and obtain the resultf
=os1d / flogs1/kdg. Finally in Sec. VIII we discuss two additional exceptional cases, AII and BI.

We briefly discuss the case of nonlocal potentials in Sec. IX. This is limited to giving the class
of nonlocal potentials,WsxW ,yWd, that can be studied by our methods.

Finally, in the last section we give a series of comments and conclusions related to issues
raised by this work.

II. NONRELATIVISTIC SCATTERING IN 2D

The free Green’s function in two dimensions is given by

GsxW,yWd ;
1

4i
H0

s1dskuxW − yWud, s2.1d

where

s¹2 + k2dGsxW,yWd = d2sxW − yWd, s2.2d

with xW ,yW PR2, andH0
s1d is the standard Hankel function.

The scattering integral equation is

cskW,xWd = eikW·xW +
1

4i
E d2y H0

s1dskuxW − yWudVsyWdcskW,yWd. s2.3d

The class of noncentral potentials,V, will be specified in the next section.
The asymptotic behavior ofc for large uxWu is given by

cskW,xWd →
uxWu→`

eikW·xW +
i

Îk
fskW8,kWd

eiskr−p/4d

Îr
, r = uxWu, kW8 = k

xW

uxWu
. s2.4d

Here we have used the largeuzu behavior ofH0
s1dszd. This leads to
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G →
uxW−yWu→`

1

i
Î 1

8pkuxW − yWu
eiskuxW−yWu−p/4d. s2.5d

Equations2.4d defines the scattering amplitude,fskW8 ,kWd. One should note that in Eq.s2.4d we
have chosen a center, i.e., the pointxW =0. Unlike the rotationally symmetric case, the definition of
f is only unique up to a phase. Shifting the center byaW ,xW→xW +aW, the new amplitude differs by a
factor expfiskW8−kWd ·aWg. One should note that the forward scattering amplitude is invariant under
this shift, as one would expect from the optical theorem. In this paper, we are only interested in the
k→0 limit, which is clearly independent of the choice of a center.

From Eqs.s2.2d and s2.4d we have the standard expression forf,

fskW8,kWd = −
1

Î8p
E d2x e−ikW8·xWVsxWdcskW,xWd, s2.6d

whereukW8u= ukWu.
The problem we face in this paper originates from the logarithmic singularity ofH0

s1dszd at
z=0.

We defineRszd by the following:

H0
s1dszd ; C0 +

2i

p
log z+ Rszd, s2.7d

where

C0 ; 1 +
2i

p
fg − log 2g, s2.8d

andg is Euler’s constant. For smalluzu we have

Rszd = Osuzu2uloguzuud. s2.9d

Substituting Eq.s2.7d in s2.3d, we obtain

cskW,xWd = eikW·xW +E d2yF log kuxW − yWu
2p

+
C0

4i
+

RskuxW − yWud
4i

GVsyWdcskW,yWd. s2.10d

From Eq.s2.7d we also have

RskuxWud = H0
s1dskuxWud −

log kuxWu
2p

−
C0

4i
. s2.11d

Using this result, we obtain

cskW,xWd = eikW·xW + FskWdFH0
s1dskuxWud

4i
−

loguxWu
2p

G +
1

2p
E d2ysloguxW − yWudVsyWdcskW,yWd

−
1

4i
E fRskuxWud − RskuxW − yWudgVsyWdcskW,yWd, s2.12d

whereF is defined as

FskWd ; E d2y VsyWdcskW,yWd. s2.13d

We stress that in going from Eq.s2.3d–s2.12d we have made no approximations. We will show
in Appendix B that the last term ins2.12d is, for small k, proportional to fos1d / ulog kug
3 ssupyWucskW ,yWdud, and is thus small compared to the preceding term.
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It is clear then from Eq.s2.12d that our first task is to study the zero-energy kernel,KsxW ,yWd
=fs1/2pdloguxW −yWugVsyWd, which is the main term ins2.12d. This analysis will also give us the
definition of the broadest class ofV’s that we will investigate.

III. THE ZERO-ENERGY KERNEL AND THE CLASS OF POTENTIALS

In this section we consider the integral equation with the zero-energy Green’s function,G0

=s1/2pdloguxW −yWu. We use it to define our class of potentialsVsxWd, essentially as those that lead to
a kernel,K, which is bounded on a Banach space of continuous functions onR2.

We start with

fsxWd = 1 +
1

2p
E d2yfloguxW − yWugVsyWdfsyWd. s3.1d

It is more convenient to deal with functions that have a finite sup norm. We define

usxWd =
fsxWd

logs2 + uxWud
, s3.2d

u0sxWd =
1

logs2 + uxWud
. s3.3d

The resulting integral equation is

usxWd = u0sxWd +E d2y KsxW,yWdusyWd, s3.4d

with

KsxW,yWd =
1

2p
sloguxW − yWudVsyWd

logs2 + uyWud
logs2 + uxWud

. s3.5d

The objective is to study Eq.s3.4d for uPC, the Banach space of all bounded continuous
functions onR2. The norm onC is

iui = sup
xWPR2

uusxWdu. s3.6d

C is complete and convergence in the norm is uniform convergence.
Our task in this section is to define suitable conditions onVsxWd that are needed to guarantee

thatKsxW ,yWd is a bounded operator onC, i.e., we seek some sufficient conditions onVsxWd such that

E d2yuloguxW − yWuVsyWdu
logs2 + uyWud
logs2 + uxWud

, M , s3.7d

for all xW PR2.
By suitable conditions we mean the following:

sid the conditions are linear inuVsxWdu;
sii d the conditions are invariant under a shift of origin;
siii d the conditions are invariant under a scale change;
sivd the previous symmetrical case of Ref. 1 is included.

Here siii d implies thatk can be replaced by any positive multiple ofk. In particular, thek of
Sec. II can be replaced by any positive number, an especially convenient choice being 1. To show
this explicitly, note that, fork.0, there is the following inequality:
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2 + kuxWu
2 + uxWu

ø maxs1,kd. s3.8d

This inequality implies immediately

logs2 + kuxWud − logs2 + uxWud ø maxs0,log kd

and

logs2 + kuxWud − logs2 + uxWud ø maxSlog k, log
1

k
D . s3.9d

We prove that the following two conditions are sufficient to guarantee the validity of Eq.s3.7d and
hence the boundedness ofK,

sAd E d2yuVsyWduslogs2 + uyWudd2 , M s3.10d

and

sBd E
0

1

y dyulog yuuVsyWduR , M , s3.11d

whereuVsyWduR is the rearrangement ofuVsyWdu.
We remind the reader that the circular decreasing rearrangement of a non-negative function,

fsxWd, is a decreasing function,fRsuxWud, such that

mffRsuxWud ù Ag = mffsxWd ù Ag, ∀ A, s3.12d

wherem is the Lebesgue measure.
For the proof, we introduce for positiver,

log+ r = maxslog r,0d,

log− r = maxs− log r,0d. s3.13d

Hence we have

log r = log+ r − log−r ,

ulog r u = log+ r + log− r . s3.14d

This splits Eq.s3.7d into two inequalities,

E d2y log+uxW − yWuuVsyWdu
logs2 + uyWud
logs2 + uxWud

, M s3.15d

and

E d2y log−uxW − yWuuVsyWdu
logs2 + uyWud
logs2 + uxWud

, M . s3.16d

We consider Eq.s3.15d first. Fixing yW, we have

032103-5 Universality of low-energy scattering in 2+1D J. Math. Phys. 46, 032103 ~2005!

                                                                                                                                    



max
xW

log+uxW − yWu
logs2 + uxWud

= max
xW

loguxW − yWu
logs2 + uxWud

= max
xW

logsx + yd
logs2 + xd

. s3.17d

But, for fixed y, the last expression above is monotonic inx. Therefore we obtain

max
xW

log+uxW − yWu
logs2 + uxWud

ø
logs2 + yd

log 2
. s3.18d

Hence the inequalitys3.15d is satisfied provided that the conditionsAd, given in Eq.s3.10d, is true.
One should note that conditionsAd is invariant under a change of origin.

Next, we go to the inequalitys3.16d. Because of the factor log−uxW −yWu, we know that the
integrand ins3.15d is zero if uxW −yWu.1. Hence our domain of integration is such that

x − 1 , y , x + 1. s3.19d

This gives

logs2 + yd , logs3 + xd. s3.20d

But sinceflogs3+xd / logs2+xdgø log 3/ log 2, the validity of Eq.s3.16d reduces to

E d2y log−uxW − yWu · uVsyWdu ,
log 3

log 2
M . s3.21d

For any fsrWd we denote byfRsrd the rearrangement ofufsrWdu. One has the inequality

E d2yufsyWdu · ugsyWdu øE d2y fRsydgRsyd, s3.22d

and using this result

E d2y log−uxW − yWu · uVsyWduøE d2yslog−uxW − yWudR · uVsyWduRøE d2yslog− ydR · uVsyWduR

øE d2yslog− yduVsyWduR. s3.23d

But log− y=0 for y.1, and thus

E
0

1

y dyulog yuuVsyWduR ø
log 3

log 2
M . s3.24d

This establishes Eq.s3.16d, and completes our proof that for potentials,VsxWd, satisfying conditions
sAd and sBd, K is a bounded operator onC.

In Sec. V we prove thatK is compact onC, and also prove other important properties of the
zero-energy integral equation.

IV. SOLUTIONS OF THE LIPPMANN–SCHWINGER EQUATION FOR k >0

We shall now proceed to prove that for our class of potentials the integral equations2.3d, for
any fixed realk with k.0, has a unique solution,cskW ,xWd, with cPC. The norm ofc, ici, will
depend onk, but it is bounded for any fixedk.0.

The integral equations2.3d can be written as
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cskW,xWd = eikW·xW +E d2yK̃sk;xW,yWdcskW,yWd, s4.1d

where

K̃sk;xW,yWd ;
1

4i
H0

s1dskuxW − yWudVsyWd. s4.2d

We first prove the boundedness ofK̃.

Lemma 4.1: For any realk, k.0, K̃ is a bounded operator onC, with

iK̃skdi , Mskd , `, s4.3d

whereMskd=M1f1+logs1/kdg.
Proof: We use the bound onH0

s1dsld,

uH0
s1dsldu ø uH0

s1dsl0du + log+Sl0

l
D . s4.4d

This is proved in Appendix A. Hence we have

uH0
s1dskuxW − yWudu , uH0

s1dsk0uxW − yWudu + log
k0

k
. s4.5d

For our case we can setk0=1.
Next, we need the following bounds onH0

s1dsuxW −yWud:

uH0
s1dsuxW − yWudu , HC1 + C2uloguxW − yWuu for uxW − yWu , 1,

C3 for uxW − yWu ù 1.
s4.6d

Hence, for anyxPC, we get

1

4
E uH0

s1dsuxW − yWuduuVsyWdxsyWdud2yøixiFC1E
uxW−yWu,1

d2yuVsyWdu + C2E
uxW−yWu,1

d2yuloguxW − yWuuuVsyWdu

+ C3E
uxW−yWu.1

d2yuVsyWduG . s4.7d

But in the preceding section we proved that the middle integral above is bounded.
Hence we have

iK̃i = sup
xPC

iK̃xi
ixi

ø M1S1 + log
1

k
D . s4.8d

The theorems in textbooks for compact bounded operators onC are usually given for finite
domainsuxWu,`. We use the following lemma which is a generalization of the ones in the text-
books.

Lemma 4.2:Let B be the Banach space of bounded continuous functions onRm smù1d andB0

the subset ofB formed by functions which tend to 0 at infinity.B0 is a closed subspace ofB.
Let Q denote an operator onB satisfying the following three conditions.
s1d For anygPB,

sQgdsxd =E qsx,ydgsyddmy, s4.9d

whereq is anL1 function onRm3Rm.
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s2d euqsx,ydudmy exists and is bounded from above byhsxd, whereh is a continuous positive
function which tends to 0 at infinity.

s3d There exists a functionh on f0,ag sfor somea.0d such thathsrd→0 whenr →0, and
such that, for everygPB and everysx,x8dPRm3Rm satisfyingux−x8uøa,

uQgsxd − Qgsx8du , igihsux − x8ud. s4.10d

ThenQ is compact fromB to B, and in fact fromB to B0.
A proof of this lemma will be given in Appendix B.7

Next, we will use Lemma 4.2 to prove the compactness of the operatorK̃skd.
Lemma 4.3:For any fixed realk, k.0, the operatorK̃skd defined by the kernel in Eq.s4.2d is

compact onC.

Proof: From Lemma 4.1 the operators,K̃skd, defined by the kernel

K̃sk;xW,yWd ;
1

4i
H0

s1dskuxW − yWudVsyWd, s4.11d

are, for fixed nonzerok, also bounded operators onC. In addition for anyxW PR2 we have

E d2yuK̃sk;xW,yWdu ø M , `, s4.12d

which follows from the boundedness onC. But for largeuxWu, uxWu@1/k, we have

E d2yuK̃sk;xW,yWdu = OS 1

ÎuxWu
D . s4.13d

This is due to the asymptotic behavior ofH0
s1dszd. Hence, we can always find a constant,Mskd,

such that

E d2yuK̃sk;xW,yWdu ø
Mskd

Î1 + uxWu
, s4.14d

for all xW PR2.

Thus K̃skd satisfies the first condition, i.e.,s4.10d, of Lemma 4.2 with

h̃suxWud =
Mskd

Î1 + uxWu
. s4.15d

To establish the uniform continuity offsxWd, with f ;sK̃gdsxWd, we note that, as given in Eq.s2.7d,

H0
s1dskuxW − yWud = C0 +

2i

p
log kuxW − yWu + RskuxW − yWud, s4.16d

and uniform continuity for the kernel loguxW −yWuVsyWd will be established in the next section. The
same result for the operatorsRVd will be given in Appendix C. Hence, the conditions of Lemma

4.2 are satisfied and thereforeK̃skd is compact onC for any fixed nonzerok. This completes the
proof of Lemma 4.3.

Using the Fredholm alternative we can now assert that a unique solution,cskW ,xWd, of Eq. s4.1d
exists for any fixedk.0, unless the homogeneous equation,

c0skW,xWd = sK̃skdc0skWddsxWd, s4.17d

has a nontrivial solution,c0. But one can easily prove that this leads to a contradiction.
Lemma 4.4:For any real fixedk, k.0, there is no nontrivial solution,c0skW ,xWd, of the equation
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c0skW,xWd =E d2yK̃sk;xW,yWdc0skW,yWd. s4.18d

Proof: SinceK̃=s1/4idH0
s1dskuxW −yWudVsyWd, we get for largekuxWu, uxWu@1/k,

c0skW,xWd = ieiskx−p/4dF f̃0

Îkx
+ OS 1

skxd3/2DG , s4.19d

where

f̃0 = −
1

Î8p
E d2y e−ikW·yWVsyWdc0skW,yWd, s4.20d

with kW8 / ukWu=xW / uxWu, and ukW8u= ukWu=k.
Next, c0skW ,xWd satisfies the Schrödinger equation

− ¹2c0 + Vc0 = k2c0. s4.21d

This leads to

c0
*¹2c0 − c0¹

2c0
* = 0, s4.22d

sinceV is real. Integrating Eq.s4.22d over a large diskA, we get

E
]A

sc0
*¹W c0 − c0¹W c0

*d · deW = 0, eW = xW/uxWu. s4.23d

We note that

¹W Seiskx−p/4d

Îkx
D =

ikeiskx−p/4d

Îkx
·

xW

uxWu
+

xW

uxWuÎkx
Os1/xd, s4.24d

where theOs1/xd factor has nok dependence.
Using the asymptotic expressions4.24d for c0, and substituting in Eq.s4.23d, we finally obtain

as uxWu→`,

2pE duu f̃0sk,udu2 = 0. s4.25d

This leads to a contradiction and completes the proof of Lemma 4.4.
In conclusion, for our class of potentials, and anyk.0, a unique solution,cskW ,xWd, of Eq.s4.1d

exists and is inC, i.e.,

ici = sup
xW

ucskW,xWdu ø M1skd , `. s4.26d

The normici of course depends onk, and in principle could grow ask→0.

V. COMPACTNESS OF THE ZERO-ENERGY OPERATOR

We consider the integral equations3.4d,

u = u0 + Ku, s5.1d

with uPC, u0sxd=1/ logs2+uxWud, and

KsxW,yWd =
1

2p
sloguxW − yWud

logs2 + uyWud
logs2 + uxWud

VsyWd. s5.2d
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It is easy to check that Lemma 4.2 does not apply toKsxW ,yWd because of the largeuxWu behavior
of KsxW ,yWd. This difficulty can be bypassed by writing

K ; Ks1d + B, s5.3d

where

Ks1dsxW,yWd =
1

2p
hloguxW − yWu − logs2 + uxWudj

logs2 + uyWud
logs2 + uxWud

VsyWd, s5.4d

andB is a separable kernel

BsxW,yWd =
1

2p
logs2 + uyWudVsyWd. s5.5d

Lemma 5.1: Ks1d defines a compact operator onC.
Proof: The first condition of Lemma 4.2 applies toKs1d. Indeed we have

E uKs1dsxW,yWdud2y ø h̃sxWd. s5.6d

Hereh̃suxWud=os1d for largex, andh̃→0 asuxWu→`. This can be easily shown using the methods of
Sec. III.

Next, we must establish uniform continuity as given in inequalitys4.10d in Lemma 4.2.
We have, for anyusxWdPC, the imagewsxWd given by

wsxWd =
1

logs2 + uxWud
E d2yfloguxW − yWu − logs2 + uxWudglogs2 + uyWudVsyWdusyWd. s5.7d

For anyxW0, d.0, we take the disks,

uxW − xW0u ø 2d and uxW8 − xW0u ù 2d. s5.8d

We want to find a uniform bound onuwsxWd−wsxW8du which depends only ond and not onxW8 or xW.
Clearly, the second term in the square brackets ins5.7d presents no difficulty and we only need to
bounduw̃sxWd−w̃sxW8du, where

w̃sxWd =
1

2p

1

logs2 + uxWud
E d2ysloguxW − yWudVsyWdlogs2 + uyWudusyWd. s5.9d

We can now write

w̃sxWd − w̃sxW8d =
1

2p
F 1

logs2 + uxWud
−

1

logs2 + uxW8ud
GE d2ysloguxW − yWudVsyWdlogs2 + uyWudusyWd

+
1

2p

1

logs2 + uxW8ud
E d2ySlogU xW − yW

xW8 − yW
UDVsyWdlogs2 + uyWudusyWd. s5.10d

We treat the two terms ins5.10d separately,

w̃sxWd − w̃sxW8d ; I1 + I2. s5.11d

It follows immediately that

uI1u ø
uxW8u − uxWu

s2 + uzWudflogs2 + uxWudg2uE d2y loguxW − yWuVsyWdlogs2 + uyWudusyWdu, s5.12d

where we have assumeduxW8u. uxWu, and
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uxWu , uzWu , uxW8u. s5.13d

The integral ins5.12d is bounded foruPC, since it is almost identical to the integrals studied in
Eqs.s3.7d and s3.10d. Thus we have

uI1u ø
uxW − xW8u

2 logs2 + uxWud
C

2 + uxWu
. s5.14d

For I2 we introduce two potentials,Vx0,dsxWd andWx0,dsxWd, such that

Vx0,d = HV for uxW − xW0u ø 2d,

0 for uxW − xW0u . 2d
s5.15d

and

Wx0,d = H0 for uxW − xW0u , 2d,

V for uxW − xW0u . 2d.
s5.16d

In terms of these potentials, let

I2 = I2
s1d + I2

s2d, s5.17d

where

I2
s1d =

1

2p

1

logs2 + uxW8ud
E d2ySlogU xW − yW

xW8 − yW
UDWx0,dsyWdlogs2 + uyWudusyd s5.18d

and

I2
s2d =

1

2p

1

logs2 + uxW8ud
E d2ySlogU xW − yW

xW8 − yW
UDVx0,dsyWdlogs2 + uyWudusyWd. s5.19d

First, we have

uI2
s1du ø

iui

logs2 + ux8W ud
E d2yUlog

uxW − yWu
uxW8 − yWu

UuWx0,dsyWdulogs2 + uyWud

ø
iui

logs2 + ux8W ud
E d2yUFlog

uxW8 − yWu + uxW − xW8u
uxW8 − yWu

+ log
uxW8 − yWu + uxW − xW8u

uxW − yWu GUuWx0,dsyWdulogs2 + uyWud.

s5.20d

But in this integralWxW0,dsyWd vanishes foruyW −xW0uø2d. Hence it follows from Eq.s5.9d that our
region of integration overyW is such that

uxW8 − yWu . 2d − d . d,

uxW − yWu . 2d . d. s5.21d

Hence

uI2
s1du ø

C2

logs2 + uxW8ud
·

uxW − xW8u
d

E d2yuVNsyWdulogs2 + uyWudø
C2uxW − xW8u

d
iui. s5.22d

Next, we estimateI2
s2d,
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uI2
s2du ø

iui
logs2 + uxW8ud

E d2yUlog
uxW − yWu
uxW8 − yWu

UuVx0,dsyWdulogs2 + uyWud. s5.23d

If we taked,
1
3, then uxW −yWu and ux8W −yWu in this integral are both less than 1, and hence

uI2
s2du ø CE d2yfuloguxW − yWuu + uloguxW8 − yWuuguVx0,dsyWduiui. s5.24d

We can replace loguxW −yWu and logux8W −yWu by log−uxW −yWu and log−ux8W −yWu. Following the same argu-
ments as in Sec. III, we get

uI2
s2du ø C3iuiE

0

1

y dyulog yuuVx0,dsyWduR. s5.25d

Now, Vx0,dsyWd vanishes outside a disk of radius 2d. Thus,uVx0,dsyWduR=0 for y.2d. Note also that
uVx0,dsyWduø uVsxWdu which implies that

0 ø uVx0,dsyWduR ø uVsyWduR. s5.26d

We finally get

uI2
s2du ø E

0

2d

y dyulog yuuVsyWduRiui. s5.27d

The consequence of the above integral allows us to choosed such that for any smalle,

E
0

2d

y dyulog yuuVsyWduR , e. s5.28d

Adding up I1, uI2
s1du, and uI2

s2du, we obtain

uw̃sxWd − w̃sxW8du ø H uxWu − uxW8u
logs2 + uxWuds2 + uxWud

C1 +
C2uxW − xW8u

logs2 + uxW8udd
+

C3e

logs2 + uxW8ud
Jiui. s5.29d

We can choose nowuxW −xW8u,minse /d ,d,1d, and hence

uw̃sxWd − w̃sxW8du ,
C4eiui

logs2 + uxW8ud
. s5.30d

This proves the uniform continuity ofw̃sxWd and hence ofwsxWd. Thus by Lemma 4.2,Ks1d is
compact. The separable kernelB is compact for our class ofV. Hence, sinceK=Ks1d+B, the
operator,K, is compact onC.

The Fredholm alternative thus holds forK, i.e., either a unique solution of the inhomogeneous
equation,s5.1d, exists withuPC, andu0=1/ logs2+uxWud, or there must be at least one solution of
the homogeneous equation

u1 = Ku1. s5.31d

fFrom the compactness it follows that, when we haveuj, j =1, . . . ,N satisfying Eq.s5.31d, N is
finite.g

Returning to the notation of Eq.s3.1d with u=f / logs2+uxWud, we have two cases to consider.

sId A unique solution for Eq.s3.1d exists,

f = 1 +K,f, s5.32d

with

032103-12 Khuri et al. J. Math. Phys. 46, 032103 ~2005!

                                                                                                                                    



K, =
1

2p
sloguxW − yWudVsyWd s5.33d

and

ufsxWdu ø C loguxWu, asuxWu → `, C Þ 0. s5.34d

Otherwise we have the following.
sII d There exist nontrivial, linearly independent,f jsxWd, j =1, . . . ,N, such that

f j = K,f j . s5.35d

CasesII d can be divided into two subcases:

E VsxWdf jsxWdd2x = Vj Þ 0. s5.36d

In this case it is easy to see that if we define

fasxd ; −
f jsxWd

Vj log k1
, s5.37d

then

fasxWd = 1 +
1

2p
E d2yflog k1uxW − yWugVsyWdfasyWd, s5.38d

which, except for the change of scale, 1→k1, is essentially the same as Eq.s5.32d.
For the second subcase a finite set off j’s exist, each satisfying the homogeneous equation

s5.36d and, in addition,

E d2x VsxWdf jsxWd = 0, j = 1, . . . ,N. s5.39d

In Appendix D we give a proof of the following theorem.
Theorem 5.1: If the homogeneous equation,

fsxWd =
1

2p
E d2ysloguxW − yWudVsyWdfsyWd, s5.40d

has nontrivial solutions,f j, which satisfy

E VsxWdf jsxWdd2x = 0, j = 1, . . . ,N, s5.41d

then the inhomogeneous integral equation has nonunique solutions,fa,

fasxWd = 1 +
1

2p
E d2ysloguxW − yWudVsyWdfasyWd, s5.42d

where Eq.s5.41d is a necessary and sufficient condition for Eq.s5.42d to hold. Note that this
theorem holds whether or noted2x VsxWdfasxWd is zero.

With this last theorem it becomes clear that we have four cases to consider: AI, AII, BI, BII.
These are defined as follows.

Case AI: f=1+K,f has a unique solution, anded2x VsxWdfsxWdÞ0.
Case AII : There existN linearly independent solutions,f jsxWd, j =1, . . . ,N, for the homoge-

neous equation,f j =K,f j. But all thef j satisfyeVsxWdf jsxWdd2xÞ0.
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Case BI: f=1+K,f has a unique solution buted2xVsxWdfsxWd=0.
Case BII : The homogeneous equation,f=K,f, hasN linearly independent solutions,f j, j

=1, . . . ,N, but ed2x VsxWdf jsxWd=0.
One should note that the trivial caseV;0 belongs to case BI, sincef=1 is a unique solution

of f=1+K,f whenV;0. One should also note that in both cases AI and AII we have the bound

ufsxWdu ø const logs2 + uxWud, s5.43d

while in cases BI and BII we have stronger results. In Appendix E we prove that for these two
casesufsxWdu is bounded for allxW PR2, and more preciselyufu→0 asuxWu→` in the case BII.

We have referred to these cases as “zero-energy bound states.” They are the limits, for a

potentialV=gṼ, of the trajectories of negative-energy bound statesEnsgd, wheng decreases to a
critical valuegn, whereEnsgnd=0. ForE,0, the wave functions decrease exponentially, and they
cannot approach a solution growing like loguxWu for g=gn.

For anyk.0, k= ik, there is a discrete set of couplings,gnskd, such that a physical bound
state exists atE=−k2. Heres1/gnskdd is an eigenvalue of the homogeneous Lippmann-Schwinger
equations2.3d. The discrete nature ofgnskd follows from the compactness of the operator ins2.3d,
as does the fact that at eachE the degeneracy is finite. But in addition to these general properties,
two of the authorssA.M. and T.T.W.d have shown8 that there exists an explicit bound on the
number of zero-energy bound states.

VI. UNIVERSALITY FOR CASE A I: ed2x V„x¢…f„x¢…Å0

Without introducing any approximations we can rewrite our original integral equation fork
.0, i.e., Eq.s2.3d, in the form of Eq.s2.12d,

cskW,xWd = eikW·xW + FskWdFH0
s1dskuxWud

4i
−

loguxWu
2p

G + K,c + DRc, s6.1d

whereF is given in Eq.s2.13d,

K,sxW,yWd =
1

2p
sloguxW − yWudVsyWd s6.2d

and

DRsk;xW,yWd = −
1

4i
hRskuxWud − RskuxW − yWudjVsyWd. s6.3d

A unique solution for Eq.s6.1d, c, exists andcPC, with k.e.0. This was proved in Sec. IV, for
our class of potentials.

We now introduce a new Banach space,B, with a norm given by

ifi, ; sup
xWPR2

U fsxWd
logs2 + xd

U , s6.4d

wheref is a continuous function onR2.
Our first task is to estimate the norm of the operator,DR for small k, where DR is now

considered as an operator onB.
In Appendix C, the following is proved.
Theorem 6.1: As a bounded operator on the Banach spaceB, we have forDR,

iDRi, = eskd, eskd = os1d, 0 , k ! 1. s6.5d
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One should note at this stage the cancellations that occur in Eq.s6.1d for both x→` and x
→0. First, thes1/2pdloguxWu term in the square brackets is, forx→`, exactly cancelled by the
contribution ofK,c. Second, forx→0, the loguxWu in the square brackets is cancelled by a loguxWu
coming fromH0

s1dskuxWud /4i for small uxWu.
Our second task is to get a bound onicskW ,xWdi,.
Lemma 6.1: For anyk.0, we have the bound

icskW,xWdi, ø C1 + C2uFskWduSlog
1

k
D . s6.6d

Proof: Equations6.1d may be rearranged as

s1 − K, − DRdc = eikW·xW + FskWdBskW,xWd, s6.7d

with

B ;
H0

s1dskuxWud
4i

−
loguxWu
2p

. s6.8d

Define I,;s1−K,d−1. Then,

I,sI ,
−1 − DRdc = I,heikW·xW + FskWdBj, s6.9d

or

s1 − I,DRdc = I,heikW·xW + FskWdBj. s6.10d

We finally obtain

c = s1 − I,DRd−1I,heikW·xW + FskWdBj=sI, + I,DRI,dheikW·xW + FskWdBj + OsiDRi,
2d. s6.11d

But, iI,i,øM and

iBi, ø C2Slog
1

k
D + C0, s6.12d

so that

ici, ø C1 + C2Slog
1

k
DuFskWdu, s6.13d

which completes the proof.
Next, we obtain the universal behavior ofFskWd for smallk. We take,fsxd, the solution of the

zero-energy integral equation,

f = 1 +K,f, s6.14d

which in the case AI is such that

V0 ;E d2x VsxWdfsxWd Þ 0, s6.15d

and thusfsxd=Oslog xd for large uxWu. We multiply both sides of Eq.s6.1d by fsxWdVsxWd and
integrate over d2x obtaining
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E fsxWdVsxWdcskW,xWdd2x = V0 +E d2xseikW·xW − 1dVsxWdfsxWd+ FskWd E d2x fsxWdVsxWdBskW,xWd

+
1

2p
E d2xE d2y fsxWdVsxWdloguxW − yWuVsyWdcskW,yWd

+E d2xE d2y fsxWdVsxWdDRsk;xW,yWdcskW,yWd, s6.16d

whereBskW ,xWd is given by Eq.s6.8d.
Using the integral equation forfsxWd, we obtain

FskWdf1 − X2g = V0 + X1 + X3, s6.17d

where

X1skWd ; E d2xseikW·xW − 1dVsxWdfsxWd,

X2skWd ; E d2x BskW,xWdVsxWdfsxWd,

X3skWd ; E d2xE d2y fsxWdVsxWdDRsk;xW,yWdcskW,yWd. s6.18d

Lemma 6.2: The following estimates hold for smallk,

X1skWd = os1dYSlog
1

k
D , s6.19d

X2skWd =
1

2p
V0 log k +

C0

4i
V0 + os1d, s6.20d

and

uX3skWdu = os1dFuFskWduSlog
1

k
D + C4G . s6.21d

Proof: We definex0skd as

x0skd =
1

kSlog
1

k
Dp, p . 2. s6.22d

From Eq.s6.18d it follows that

uX1skWdu , C1I fsxd
logs2 + xdI3Ex,x0skd

d2xuVsxWdulogs2 + xd1 1

Slog
1

k
Dp24 + 2E

x.x0skd
d2xuVsxWduufsxWdu.

s6.23d

Thus,
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uX1skWdu ø O1 1

Slog
1

k
Dp2 + 2E

uxWu.x0skd
d2xuVsxWduufsxWdu. s6.24d

But, ufsxWdu,C logs2+uxWud, and we get

E
x.x0skd

d2xuVsxWduufsxWdu ø CE
x.x0

d2xuVsxWdulogs2 + xd

ø
C

logs2 + x0skddEx.x0

d2xuVsxWduflogs2 + xdg2ø
os1d

log
1

k

. s6.25d

Hence Eq.s6.19d holds.
The estimate ofX2 follows again by splitting the region of integration into two parts. For

uxWu,x0skd,

BskW,xWd =
H0

s1dskuxWud
4i

−
log x

2p

=−
1

2p
Slog

1

k
D +

C0

4i
+ os1d; s6.26d

and that gives the main part of the estimates6.20d. The integration over the domainuxWu.x0skd is
obviouslyos1d.

Finally, Lemma 6.1 gives us a boundici, given in Eq.s6.6d. This leads to

ucsyWdu , FC1 + C2uFskWduSlog
1

k
DGlogs2 + yd. s6.27d

From Appendix C, we have

uDRsxW,yW,kWdu , C logs1 + kyduVsyWdu. s6.28d

Substituting these last two equations in the formulas6.18d for X3skWd, we get

uX3skWdu ø C̃1FuFuSlog
1

k
D + C̃2GE d2xE d2y logs2 + xduVsxduuVsydulogs1 + kydlogs2 + yd.

s6.29d

By splitting they integration into two regions,uyWu,x0skd and uyWuùx0skd, with x0skd given in Eq.
s6.22d, one can easily show that

E d2yuVsyWdulogs1 + kyd · logs2 + yd = os1d. s6.30d

The result given in Eq.s6.21d now follows immediately and Lemma 6.2 is proved.
We now insert our estimates of theXj, j =1,2,3, in Eq.s6.15d and obtain

FskWdF1 −
1

2p
V0 log k −

C0

4i
V0 + os1dG=V0 +

os1d

log
1

k

+ os1dFuFskduSlog
1

k
D + C4G . s6.31d

We write
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uFu = Feisarg Fd, s6.32d

and obtain

F =
V0 + os1d

FS 1

2p
V0 + os1dDSlog

1

k
D + S−

C0V0

4i
+ 1D + os1dG . s6.33d

Hence, we finally have for smallk,

FskWd = −
2p

log k
+

os1d

log
1

k

. s6.34d

The first important consequence of this result onF is to give a bound onici, which is
independent ofk and finite. Indeed from Lemma 6.1 and the bound results6.34d, we obtain

ici, ø M ø `. s6.35d

The definition of the scattering amplitude,fskW8 ,kWd, is given in Eq.s2.6d, and using the defi-
nition of F in Eq. s2.12d, we have

fskW8,kWd = −
1

Î8p
FskW8d −

1
Î8p

E d2xseikW8·xW − 1dVsxWdcskW,xWd. s6.36d

But

U 1
Î8p

E d2xseikW8·xW − 1dVsxWdcskW8,xWdUøC1ici,E
uxWuøx0skd

d2xueikW8·xW − 1uuVsxWdulogs2 + xd

+ 2ME
xùx0skd

d2xuVsxWdulogs2 + xd

øO1 1

Slog
1

k
Dp2 +

os1d

log
1

k

, p . 2. s6.37d

This leads to

f = −
1

Î8p
F +

os1d
log k

, s6.38d

and hence froms6.28d our final universal result,

f = −Îp

21 1

log
1

k
2 +

os1d
log k

, s6.39d

which agrees with our result for the symmetric casessee Sec. IXd.
In closing we prove that in this case

lim
k→0

cskW,xWd ; 0. s6.40d

To prove this we return to the rewritten integral equations6.1d,
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cskW,xWd = eikW·xW + FskWdFH0
s1dskuxWud

4i
−

loguxWu
2p

G + K,c + DRc. s6.41d

The last term vanishes ask→0. For smallkuxWu,

H0
s1d =

2i

p
log kuxWu + C0 + Osukxu2 log kuxWud. s6.42d

Hence

lim
k→0

FskWdFH0
s1dskuxWud

4i
−

loguxWu
2p

G = lim
k→0

FskWdS log k

2p
D , s6.43d

and given the universality forF, i.e., Eq.s6.28d, we get

lim
k→0

FskWdFH0
s1dskuxWud

4i
−

loguxWu
2p

G = − 1. s6.44d

Thus in the limit we get

cs0,xWd =
1

2p
E d2y loguxW − yWuVsyWdcs0,yWd. s6.45d

But we are in the case where no homogeneous solutions exist ands6.45d leads to a contradiction
unless

cs0,xWd ; 0. s6.46d

VII. UNIVERSALITY FOR CASE B II: ed2x V„x¢…f„x¢…=0

In this section we consider the case BII. This BII case is quite exceptional. As stressed before,
if we introduce a coupling parameter replacingV by lV, we have this case for a discrete infinite
set of coupling values,lq, q=1,2, . . . . Themultiplicity of homogeneous solutions for eachlq is
finite. This follows from the compactness of the zero-energy kernel.

In case BII the homogeneous zero-energy equation hasN solutionssNù1d, f j,

f jsxWd =
1

2p
E d2y loguxW − yWuVsyWdf jsyWd, j = 1, . . . ,N, s7.1d

all with

E d2x VsxWdf jsxWd = 0. s7.2d

From Theorem 5.1, proved in Appendix D, we know that nonunique solutions,fasxWd, of the
inhomogeneous equation exist, i.e.,

fasxWd = 1 +
1

2p
E d2ysloguxW − yWudVsyWdfasyWd. s7.3d

Here there are two possibilities,

E d2x VsxWdfa = 0 s7.4d

or
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E d2x VsxWdfa Þ 0. s7.5d

We consider the cases7.4d first.
For smallk, 0,k!1, the solutionscskW ,xWd exist and we can write Eq.s6.1d formally as

c = feikW·xW + FskWdBskW,xWdg + fK, + DRgc. s7.6d

HereB is given in s6.28d. K, andDR are operators on the Banach spaceB, defined in Sec. VI.
We now follow a procedure analogous to that used in Ref. 1, and first introduced by Pais and

Wu. The idea is to split Eq.s7.6d into two equations with the same kernel but different inhomo-
geneous terms. We definecaskW ,xWd andcbskW ,xWd as follows:

cskW,xWd ; caskW,xWd −
FskWd
2p

Slog
1

k
DcbskW,xWd, s7.7d

where now we have two integral equations definingca andcb,

c = eikW·xW + sK, + DRdca s7.8d

and

cb = −
2pBskW,xWd

log
1

k

+ sK, + DRdcb. s7.9d

These last two equations are equivalent to Eq.s7.6d.
Note first that both inhomogeneous terms are inB,

ieikW·xWi, =
1

log 2
, s7.10d

and froms6.26d,

(2pBskW,xWd

log
1

k
(

,

ø 1. s7.11d

The operatorsK, and DR act onB, and we have shown in Sec. VI and Appendix C that
iDRi,=eskd=os1d ask→0. Thus for smallk, we have

iK, + DRi, = iK,i, + os1d s7.12d

and also

lim
k→0

iK, + DRi, = iK,i,. s7.13d

We can now see the power and significance of the theorem proved in Appendix D. As an
operator onB, sK,+DRd→K, as k→0. Thus if cask,xd, which for k.0 is an element ofB,
remains inB ask→0, we will have

cas0,xWd = 1 +K,cas0,xWd. s7.14d

But without the results of Appendix D, this will be puzzling. However, with those results it follows
that, if cas0,xWd exists,
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cas0,xWd = fasxWd + o
j=1

N

cjf jsxWd, s7.15d

wherefa=1+K,fa andf j =K,f j. At this stage thecj’s are arbitrary, but we will sketch later how
they can be fixed by a perturbative argument.

For anyk.0, we know thatcskW ,xWd exists and is bounded for allxW. It is easy to show that the
same holds for bothcaskW ,xWd andcbskW ,xWd. Next, we assert that in any interval 0,køs!1, and
with a fixedxW, thec, ca, andcb are continuous functions ofk. We now assume thatcs0,xWd exists.
This leads to bothcas0,xWd andcbs0,xWd being finite.

With this physical assumption, we now get

ucaskW,xWdu ø CasxWd = sup
0økøs

ucaskW,xWdu s7.16d

and

ucbskW,xWdu ø CbsxWd = sup
0økøs

ucbskW,xWdu. s7.17d

Both Ca andCb are finite for anyxW, since there can be nok0, 0øk0øs, such that the sup above
is infinite. That will lead to a contradiction with the statements of the previous paragraph, espe-
cially continuity.

It now follows that for anyxW,

lim
k→0

u¹Rcau = 0,

lim
k→0

u¹Rcbu = 0. s7.18d

Hence we obtain

cas0,xWd = f̃asxWd = fa + o
j=1

N

cj
sadf j ,

cbs0,xWd = f̃bsxWd = fa + o
j=1

N

cj
sbdf j . s7.19d

From Appendix E we have the result that bothf̃a andf̃b are bounded by constants for allxW
including xW→`. This fact plus continuity leads to the result that bothCasxWd and CbsxWd in Eqs.
s7.16d and s7.17d are bounded for allxW. Thus for a closed interval 0økøs!1, we have

ucaskW,xWdu ø C̃a = sup
xWPR2

CasxWd,

ucbskW,xWdu ø C̃b = sup
xWPR2

CbsxWd. s7.20d

From Eq.s7.7d we have

FskWd =E d2x VcaskW,xWd −
1

2p
Slog

1

k
DFskWd E d2x VsxWdcbskW,xWd. s7.21d

Denoting the integrals above byFa andFb, respectively, we get
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FskWd =
FaskWd

1 +
1

2p
Slog

1

k
DFbskWd

. s7.22d

We now multiply both sides of Eq.s7.8d, i.e., thea-equation, byf̃aV, and integrate. After
using the fact thatf̃a=1+K,f̃a, and thateVsxWdf̃asxWdd2x=0, we obtain as before

FaskWd =E seikW·xW − 1dVsxWdf̃sxWdd2x + YaskWd, s7.23d

with

YaskWd =E d2xE d2y f̃sxWdDRsxW,yW,kWdcaskW,yWd. s7.24d

Given the fact thatuf̃au is boundedsAppendix Ed, we get

UE d2xseikW·xW − 1dVsxWdf̃sxWdU =
os1d

Slog
1

k
D2 . s7.25d

Using the bound given in Appendix C,

uDRsxW,yW,kWdu ø CuVsyWdulogs1 + kyd, s7.26d

and the fact thatucaskW ,xWdu is bounded for smallk, we get

YaskWd ø CE d2xE d2yuVsxWdiVsyWdlogs1 + kyd

ø.9C8E d2yuVsyWdulogs1 + kyd =
os1d

log
1

k

. s7.27d

We obtain the last equality by subdividing the d2y integration intoy,x0skd andy.x0skd, as done
previously. We finally obtain, ask→0,

FaskWd =
os1d

log
1

k

. s7.28d

Next, we apply the same trick to Eq.s7.9d. We obtain

Fb = −
2p

log
1

k

E d2x f̃bsxWdVsxWdBskW,xWd + YbskWd, s7.29d

whereYb is given by Eq.s7.24d with ca→cb.
The estimate of the first integral in Eq.s7.29d is given by
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2p

log
1

k

E d2x f̃bsxWdVsxWdBskW,xWd=
2p

log
1

k

E d2x f̃bsxWdVsxWdFBskW,xWd +
1

2p
log

1

k
−

C0

4i
G . s7.30d

But from Eq.s6.28d we get

FBskW,xWd +
1

2p
Slog

1

k
D −

C0

4i
G = os1d, uxWu , x0skd, s7.31d

wherex0skd is given in Eq.s6.24d. On the other hand, foruxWu.x0skd we have froms6.28d,

UBskW,xWd +
1

2p
Slog

1

k
DU , C logs2 + xd. s7.32d

Splitting the integration domain ins7.30d, we finally obtain

2p

log
1

k

E d2x f̃bsxWdVsxWdBskW,xWd =
os1d

log
1

k

. s7.33d

Hence we get

Fb =
os1d

log
1

k

+ YbskWd. s7.34d

But again, as in Eq.s7.27d, we have

Yb =
os1d

log
1

k

, s7.35d

and hence finally

Fb =
os1d

log
1

k

ask → 0. s7.36d

Substituting our results forFa andFb in Eq. s7.22d, we get

F =
os1d

log
1

k

ask → 0, s7.37d

and a similar result holds forf.
We are left with the case of Eq.s7.5d, when

Va ;E d2x fasxWdVsxWd Þ 0. s7.38d

It is easy to see that in this case we obtain the result of Sec. VI.
Using the same method as above, we get ask→0,

Fa = Va + os1d,

032103-23 Universality of low-energy scattering in 2+1D J. Math. Phys. 46, 032103 ~2005!

                                                                                                                                    



Fb = Va + os1d, s7.39d

and finally

FskWd =
Va + os1d

1 +
Va

2p
log

1

k

=
2p

log
1

k

+
os1d

log
1

k

. s7.40d

This is the same leading term as in the standard case of Sec. VI.
In closing this section we sketch how the coefficientscj

sad and cj
sbd can be determined. We

write Eq. s7.8d as

ca = fa + K,ca, s7.41d

where

fa ; eikW·xW + DRca. s7.42d

From Appendix D we see that a necessary and sufficient condition fors7.42d to have a solution is

E f jsxWdVsxWdfasxWdd2x = 0, j = 1, . . . ,N. s7.43d

Settingca=f̃a+os1d=fa+ok=1
N ck

sadfk+os1d in Eq. s7.43d, and using Eq.s7.44d, we obtain

o
k=1

N

Ajkck
sad = v j +E d2x f jsxWdVsxWdseikW·xW − 1d, s7.44d

with

Ajk ; −E f jsxWdVsxWdfDRfkgsxWdd2x,

v j =E f jsxWdVsxWdfDRfagsxWdd2x. s7.45d

The integral ins7.44d is os1d / flogs1/kdg2, while bothAjk andv j areOsiDRi,d=os1d. Thus to
first order iniDRi,, the degeneracy can be removed if the matrixAjk has an inverse, andA−1vW will
then giveck

sad for k=1, . . . ,N.

VIII. THE CASES A II AND B I

We recall that under case AII, we haveN solutions,f j, j =1, . . . ,N, of the homogeneous
equationf j =K,f j, with ed2x VsxWdf jsxWdÞ0. This case depends critically on whetherN=1 or N
ù2.

For N=1, we can carry out a rescaling off j, and definef̂1 as

f̂1 = −
2pf1

V1 log k1
, V1 ;E d2x VsxWdf1sxWd. s8.1d

Then f̂1sxWd is a solution of the inhomogeneous equation
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f̂1sxWd = 1 +
1

2p
E d2yslog k1uxW − yWudVsyWdf̂syWd. s8.2d

Hence, forN=1, case AII will lead to the same result forfskW8 ,kWd that was obtained in Sec. VI for
the case AI.

However, forNù2, we can always take linear combinations of thef j’s, such that

E d2x VsxWdSo
j=1

N

bjf jD = 0. s8.3d

This reduces case AII for Nù2 to the case BII treated in Sec. VII.
In the case BI one has a unique solution of the inhomogeneous equation,f=1+K,f, but with

ed2x VsxWdfsxWd=0. In Appendix E we show that in this caseufsxWdu is bounded for allxW. The result
for F can now be obtained by settingV0=0 in Eq. s6.35d, and noting that sinceufu is bounded,

X1skWd =E d2xseikW·xW − 1dVsxWdfsxWd =
os1d

Slog
1

k
D2 , s8.4d

with an additional power offlogs1/kdg than in Eq.s6.21d.
In addition in this case we have

X3skWd = os1dYSlog
1

k
D . s8.5d

The final result forF is then

FskWd =

os1dYSlog
1

k
D2

1 + os1d
=

os1d

Slog
1

k
D2 . s8.6d

IX. NONLOCAL POTENTIALS

This is the case where the interaction term in the Schrödinger equation is of the form
ed2y WsxW ,yWdcsyWd, replacing the standard local term,VsxWdcsxWd.

Due to the length of this paper we shall only deal now with the definition of the class of
nonlocal potentials,WsxW ,yWd. More detailed results will be given elsewhere.

The zero-energy integral equation in this case is

fsxWd = 1 +
1

2p
E d2yE d2zsloguxW − yWudWsyW,zWdfszWd, s9.1d

where the norm is given by

ufu = sup
xWPR2

ufsxWdu
logs2 + uxWud

. s9.2d

As in the local case we write

u ;
ufsxWdu

logs2 + uxWud
, s9.3d

and obtain
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usxWd = u0sxWd +
1

2p logs2 + uxWud
E d2yE d2z loguxW − yWuWsyW,zWdlogs2 + uzWuduszWd. s9.4d

We need conditions onW to guarantee the boundedness of the double integral,

I =
1

logs2 + uxWud
E d2yE d2zsloguxW − yWudWsyW,zWdlogs2 + uzWuduszWd. s9.5d

Using again logA=log+ A−log−A, we write forA= uxW −yWu,

I = I+ − I−. s9.6d

We now have

uI+u ø
iui

logs2 + uxWud
E d2yE d2z log+uxW − yWuuWsyW,zWdulogs2 + uzWud. s9.7d

But

log+uxW − yWu ø logs2 + uxWud + logs2 + uyWud. s9.8d

Hence

uI+u ø iuiE d2yE d2zuWsyW,zWdulogs2 + uzWud +
iui

logs2 + uxWud
d2yE d2z logs2 + uyWudlogs2 + uzWuduWsyW,zWdu.

s9.9d

This leads to our first condition onW, namely,

sAd E d2yE d2z logs2 + uyWudlogs2 + uzWuduWsyW,zWdu , `. s9.10d

For I− we have

uI−u ø
iui

logs2 + uxWud
E d2yE d2zulog−uxW − yWuiWsyW,zWdulogs2 + uzWud. s9.11d

Next, one uses the inequality

logs2 + uzWud ø logs2 + uyWud + logs1 + uyW − zWud, s9.12d

and notes that whenuxW −yWu.1, log−uxW −yWu=0. This allows us to write logs2+uyWudøC logs2+uxWud in
Eq. s9.12d when substituted ins9.11d. We obtain

uI−u ø
iui

logs2 + uxWud
E d2yE d2zulog−uxW − yWiWsyW,zWdulogsu1 + yW − zWud

+ CiuiE d2yE d2zulog−uuxW − yWuiWsyW,zWdu. s9.13d

We define two decreasing rearrangements,

RW
s1dsyd ; fE d2zuWsyW,zWdulogs1 + uyW − zWudgR s9.14d

and
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RW
s2dsyd ; FE d2zuWsyW,zWduG

R

. s9.15d

This leads us to two conditions onRs1d andRs2d, namely,

Bs1d, E
0

1

y dyulog yuRW
s1dsyd , ` s9.16d

and

Bs2d, E
0

1

y dyulog yuRW
s2dsyd , `. s9.17d

X. MISCELLANEOUS REMARKS

Remark 1:In Ref.1, the next to leading term for the low-energy behavior of the phase shift,
d0skd, was given asOsk2d, i.e.,d0=sp /2dslog kd−1+Osk2d. This is true for massive relativistic field
theories. It is also certainly true in nonrelativistic potential scattering for rotationally symmetric
potentials that areOse−mrd for large r with somem.0. For potentials that saturate the condition
e1

`r dr uVsrduslog rd2,`, theOsk2d above should be replaced byos1d / flogs1/kdg. This will remove
the inconsistency between Ref. 1 and the present paper.

A similar remark holds for the results in the exceptional case whered0=Osk2d is only neces-
sarily true for massive or exponentially decreasing potentials. Otherwise one hasd0

=os1d / slog kd, as in the present case for the fullf.
Remark 2:This paper could be significantly shortened and simplified if we were willing to

strengthen the conditionsAd on VsxWd given by ed2xuVsxWduflogs2+uxWudg2,`. Even changing the
power of the log from 2 to 2+e will simplify the proof somewhat. We are however convinced that
this condition is the critical one, and in a certain sense we have the optimal result. The difference
between theV’s for which the slogd2 integral is convergent and those for which it diverges is
apparent in our paper on the number of bound states.9

Remark 3:Finally, and indirectly related to the above remark, we must answer the question
why we chose to work on a Banach space of wave functions,f, instead of working on a Hilbert

space where the elements of the space areÎṼf, andṼ=V whereVsxWd.0, andṼ=−V otherwise.
In fact it can be shown that the nonlinear condition introduced and studied in detail by one of the
authorssP.C.S.d,

E d2xE d2yuVsxWdusloguxW − yWud2uVsyWdu , ` s10.1d

swhich gives anL2 kernel for the zero-energy integral equationd, follows from our linear condi-
tions sAd and sBd given in Sec. III, i.e.,ed2xuVsxWduflogs2+uxWudg2,`, anded2xuVsxWduR log−uxWu,`.
Thus conditionssAd and sBd together give a smaller class of potentials.8

The reason we use the Banach space approach is also apparent if one reads Sec. VII dealing
with the exceptional case, and especially Appendix D.
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APPENDIX A

In this appendix we prove the bound

uH0
s1dsxdu , uH0

s1dsx0du + log+Sx0

x
D . sA1d

First we prove

uH0
s1dsxdu ,Î 2

p
S 1

Îx
D . sA2d

From Nicholson’s formulasRef.10, p.31d,

uH0
s1dsxdu2 =

8

p2E
0

`

K0s2x sinh tddt, sA3d

we have

uH0
s1dsxdu2 ,

8

p2E
0

`

K0s2x sinh tdcosht dt =
8

p2S 1

2x
DE

0

`

K0suddu. sA4d

But, from Ref.10, p.33,e0
`K0suddu=p /2, and this proves the inequalitysA2d.

Now using the notation of Abramovitz and Stegun,11

uH0
s1dsxdu ; M0sxd, sA5d

M0 satisfies a nonlinear differential equation,

x2M09 + xM08 + x2M0 −
4

p2M0
3 = 0. sA6d

From sA2d it follows that

x2M0 −
4

p2M0
3 , 0. sA7d

Hence,

x2M09 + xM08 . 0, sA8d

or

d

dx
sxM08d . 0. sA9d

This leads to

xM08sxd ù lim
y→0

syM08sydd = − 1, sA10d

sinceM0sxd,−log x asx→0.
For 0,x,x0,

M0sx0d − M0sxd = −E
x0

x

M08syddy = −E
x0

x

syM08sydd
dy

y
. −E

x0

x dy

y
= − log

x0

x
. sA11d

Thus forx,x0,

032103-28 Khuri et al. J. Math. Phys. 46, 032103 ~2005!

                                                                                                                                    



uH0
s1dsxdu , uH0

s1dsx0du + log
x0

x
. sA12d

But uH0
s1dsxdu is decreasing. This follows from Nicholson’s formula sinceK0 is also decreasing.

Thus we finally obtain the resultsA1d.

APPENDIX B

A proof of Lemma 4.2 follows.
We use Ascoli’s theorem:7 Any bounded equicontinuous set of functions on a compact metric

space is relatively compact in the sup norm topology.
SinceB is a metric space, it suffices to prove that any sequencehgnjn=1,2,. . . in B satisfying

igniøM, ∀n, contains a subsequencehgnk
jk=1,2,. . . such thathQgnk

jk=1,2,. . . converges in norm, i.e.,
such that, for every integer,ø1 there exists a constantL,ù0 such that

k,k8 ù L, ⇒ iQgnk
− Qgnk8

i , 2,. sB1d

Let hgnjn=1,2,. . . be a sequence inB satisfyingigniøM for everyn. Then uQgnsxduøMhsxd for all
n and allxPRm.

Let R1.0 be such thatuxuùR1⇒Mhsxd,1/8. Since the ballB1=hxPRm: uxuøR1j is com-
pact, and the sequence of the restrictions of theQgn to B1 are equicontinuous, there exists a
subsequencehgn

s1dj of hgnj and a constantL1.0 such that

n,n8 ù L1 ⇒ uQgn
s1dsxd − Qgn8

s1dsxdu , 1/4, ∀ x P B1, sB2d

and hence

n,n8 ù L1 ⇒ uQgn
s1dsxd − Qgn8

s1dsxdu , 1/2, ∀ x. sB3d

Suppose we have defined, for every integerpP f1,,−1g, a subsequencehgn
spdj of hgnj and a

constantLp.0 such that,
if b.1, hgn

spdj is a subsequence ofhgn
sp−1dj, and for allp,

n,n8 ù Lp ⇒ uQgn
spdsxd − Qgn8

spdsxdu , 2−p, ∀ x. sB4d

We can then definehgn
,j in the same way as in the first step: letR, be such thatuxu

ùR,⇒Mhsxd,1/22+,, and B,=hxPRm: uxuøR,j. Let hgn
s,dj be a subsequence ofhgn

,−1j which
converges uniformly onB,, andL, be a constant such that

n,n8 ù L, ⇒ uQgn
s,dsxd − Qgn8

s,dsxdu , 1/22+,, ∀ x P B,, sB5d

and hence

n,n8 ù L, ⇒ uQgn
s,dsxd − Qgn8

s,dsxdu , 1/2,, ∀ x. sB6d

The sequencehQgn
sndj is uniformly convergent on the whole space.

APPENDIX C

In this appendix we give a proof of Theorem 6.1 regarding the norm of the operatorDR, where

DRsk;xW,yWd ; −
1

4i
hRskuxWud − RskuxW − yWudjVsyWd, sC1d

andRszd is defined by
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Rszd = H0
s1dszd − C0 −

2i

p
log z, sC2d

with C0 given in Eq.s2.8d. We want to prove that, as an operator on the Banach spaceB, iDRi, has
a bound for smallk, 0,k!1,

iDRi, = os1d. sC3d

At the end of this appendix, in Lemma C.1, we will prove the following inequality:

uRskuxWud − RskuxW − yWudu , C1 logs1 + kuyWud. sC4d

From Eq.sC1d, we have

iDRi, ø sup
x
E d2yuRskuxWud − RskuxW − yWuduuVsyWdulogs2 + yd. sC5d

Using sC4d we obtain

iDRi, ø C1E d2y logs1 + kuyWuduVsyWdulogs2 + yd. sC6d

We set

y0skd =
1

kslog kd2 , sC7d

and write

iDRi, ø C1HE
uyWu,y0

d2y logs1 + kuyWuduVsyWdulogs2 + yd +E
uyWu.y0

d2y logs1 + kuyWuduVsyWdulogs2 + ydJ .

sC8d

This leads to

iDRi, ø C1H 1

slog kd2E
uyWu,y0

logs2 + yduVsyWdud2y+ C2E
uyWu.y0

flogs2 + uyWudg2uVsydud2yJ .

sC9d

Since the last integral is convergent over all ofR2, andy0skd→` ask→0, we finally obtain

iDRi, ø os1d, sC10d

which proves Theorem 6.1.
This result is, in a certain sense, optimal since if we take the special casexW =0, we get for any

cPC,

sDRcds0d = −
1

4i
E d2y RskuyWudVsyWdcsyWd. sC11d

By taking a specialVsyWd,

uVsyWdu = 50, y ø 1,

1

y2ulog yu3+e , y . 1,
sC12d

we can easily show that
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usDRcds0du = O1 1

Slog
1

k
D1+e2ici, sC13d

for any e.0.
We now prove Eq.sC4d.
Lemma C.1:

uRskuxWud − RskuxW − yWudu , C logs1 + kuyWud. sC14d

Proof: The bound given in Eq.sA2d for uH0
s1dszdu and the definition ofRszd given in sB2d lead

us immediately to the following bound onuRszdu:

uRszdu øÎ 2

pz
+ uC0u +

2

p
ulog zu. sC15d

For smalluzu the behavior of the Hankel function gives us

uRszdu ø Cuzu2fulog zu + 1g. sC16d

CombiningsC15d and sC16d, we get for realz.0,

uRszdu , C logs1 + uzud, ∀ z. 0. sC17d

Next, we want to prove that, foru.0 andv.0,

uRsud − Rsvdu , C logf1 + uu − vug. sC18d

We shall do this in two steps. First we will prove that

uRsud − Rsvdu , constuu − vu; sC19d

then we prove that

uRsud − Rsvdu , C1 + C2 logs1 + uu − vud. sC20d

On taking the best ofsC19d and sC20d, and using the fact that

logs1 + xd .
x logs1 + x0d

x0
for 0 , x , x0,

sC18d follows.
To provesC19d we proceed as follows. Assuming, without loss of generality, thatv.u.0,

we have,

uRsvd − Rsudu = UH0
s1dsud − H0

s1dsvd +
i

2p
log

v
u
U ø E

u

v UH1
s1dsxd +

i

2px
Udx, sC21d

where we used the property

dH0
s1dsxd
dx

= − H1
s1dsxd.

The expansion ofH1
s1dsxd nearx=0 is
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H1
s1dsxd = J1sxd + iF 2

p
J1sxdlog

gx

2
−

x

2p
o
,=0

`

c,x
2, −

1

2px
G , sC22d

whereoc,x
2, is an entire function withc0=1. We thus get

UH1
s1dsxd +

i

2px
U , Ax+ Bxulog xu, x , 1. sC23d

On the other hand, we have also the bound

uH1
s1dsxdu , CF1

x
+

1
Îx
G , sC24d

which follows from Nicholson’s formula forn=1. CombiningsC23d and sC24d, we get

UH1
s1dsxd +

i

2px
U ø const, ∀ x . 0. sC25d

Thus, by integration ofsC21d,

uRsuuud − Rsuvudu , constuu − vu. sC26d

Finally, we need to provesC20d. Here, we distinguish three cases withv.u.0.

sid v.2, u.1. From Eq.sC21d and from the boundsA2d, we obtain

uRsud − Rsvdu ø const +
1

2p
logSv

u
D ø const +

1

2p
logs1 + v − ud. sC27d

sii d v.2,u,1,

uRsud − Rsvdu ø C1 + C2 logs1 + vd, sC28d

which follows from sC17d. Hence we have

uRsud − Rsvdu ø C1 + C2 logs1 + v − ud
log 3

log 2
. sC29d

siii d v,2. Here we get fromsC26d

uRsuuud − Rsuvudu ø C1 + C2 logs1 + v − ud
2

log 2
. sC30d

Finally, we stress thatsC19d is exactly sufficient to establish the uniform continuity of the full
kernel of the Lippmann–Schwinger equation given in Eq.s6.1d. The uniform continuity for
loguxW −yWuVsyWd has already been established in the main text. It remains to prove thatDRsk;xW ,yWd
operating on anyxPC leads to asDRxdsxWd which is uniformly continuous inxW. From sC19d we
have

ufRskuxWud − RskuxW − yWudg − fRskuxW8ud − RskuxW8 − xWudgu ø constkuxW − xW8u, sC31d

which is what we need.

APPENDIX D

In this appendix we give a proof of Theorem 5.1 stated in Sec. V. This theorem starts with the
case where the zero-energy homogeneous integral equation,
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fsxWd =
1

2p
E d2y loguxW − yWuVsyWdfsyWd, sD1d

hasN nontrivial solutions,f jsxWd, j =1, . . . ,N, which all satisfy the condition

E d2x VsxWdf jsxWd = 0. sD2d

It then follows that the inhomogeneous integral equation,

fsxWd = 1 +
1

2p
E d2y log uxW − yWuVsyWdfsyWd, sD3d

has a solution,fa. This solution is of course not unique.
To establishsD3d, we first show thatsD1d and sD2d imply that

E d2x VsxWdff jsxWdg2 Þ 0. sD4d

This result will be proved at the end of this appendix.
The number,N, of linearly independent solutions ofsD1d is finite. This follows from Fred-

holm theory and the compactness of the operatorK. We use the notation

f0sxWd = o
j=1

N

cjf jsxWd. sD5d

Next, we generalize Eq.sD3d slightly, replacing 1 byfsxd,

fsxWd = fsxWd +
1

2p
E d2y loguxW − yWuVsyWdfsyWd. sD6d

We multiply by f0sxWdVsxWd and integrate overxW,

E f0sxWdVsxWdfsxWdd2x −E f0sxWdVsxWdfsxdd2x =
1

2p
E d2xE d2y f0sxWdVsxWdlog uxW − yWuVsyWdfsyWd

=
1

2p
E d2y fsyWdVsyWdf0syWd. sD7d

Therefore ifsD1d has a solution, it follows that

E d2x fsxWdVsxWdf0sxWd = 0. sD8d

In other words,sD2d is a necessary condition.
We proceed to show thatsD2d is also sufficient. Of course,sD2d is satisfied for allf0sxWd, and

for this purpose, we have to be more careful.
EquationsD6d is defined on a Banach space,B. Thus

f P B andf P B. sD9d

We define
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sKfdsxWd =
1

2p
E d2y loguxW − yWuVsyWdfsyWd. sD10d

The Banach spaceB is chosen such thatK is a compact operator fromB to B. Thus we writesD1d
and sD6d as

f = Kf, sD11d

f = f + Kf. sD12d

Starting withB, we want to define a second Banach space as follows. The elements ofB1 are
the equivalence classes,hf +o j=1

N cjf jj in B, where thecj run over all real numbers. We denote this
equivalence class byF, andFPB1. We verify thatB1 is indeed a Banach space under the norm

iFi1 = min
cj
I f + o

j=1

N

cjf jI . sD13d

Because thef j satisfy sD1d, K is also an operator fromB1 to B1. The point is that

Ks f + o cjf jd = Kf + o
j=1

N

cjKf j = Kf + o
j=1

N

cjf j , sD14d

which satisfies the definition of being an equivalence class. In the second Banach spaceB1, sD3d
takes the form

F = F + KF. sD15d

We verify thatK is a compact operator fromB1 to B1. ThussD15d is a Fredholm equation inB1.
Next, we apply the Fredholm alternative tosD15d. The Banach spaceB1 is constructed such

that the homogeneous equation,

F = KF, sD16d

has no nontrivial solutions inB1. To show this we assume the contrary, i.e., that there is a
nontrivial F. Translated back to the original Banach space,B, sD16d is

f = f0 + Kf, sD17d

wheref0 satisfiessD1d and sD2d. By sD8d, the existence of a solution implies that

E f0sxWdVsxWdf0sxWdd2x = 0, sD18d

i.e.,

E d2x VsxWdff0sxWdg2 = 0. sD19d

But this contradictssD4d. ThereforesD16d cannot have a nontrivial solution.
From the Fredholm alternative, we know thatsD15d always has a solution in the Banach space

B1. Translated back to the original spaceB, this means that

f = f + o
j=1

N

cjf j + Kf sD20d

has a solution inB for a suitably chosen set of coefficientscj.
It therefore remains to show that
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cj = 0, j = 1, . . . ,N. sD21d

To prove this, we again assume the opposite, i.e., not allcj are zero, orf0=o j=1
N cjf j is nontrivial.

Then we have both

E ffsxWd + f0sxWdgVsxWdf0sxWdd2x = 0 sD22d

and

E fsxWdVsxWdf0sxWdd2x = 0. sD23d

The latter is justsD8d. SubtractingsD23d from sD22d, we obtain

E VsxWdff0sxWdg2 d2x = 0. sD24d

But this again contradictssD4d.
The conclusion is therefore reached that the necessary and sufficient condition forsD6d to

have a solution issD8d, or

E fsxWdVsxWdf jsxWdd2x = 0, j = 1, . . . ,N. sD25d

It only remains to specializesD6d to the casef =1. Thus the necessary and sufficient condition for
sD3d to have a solution ised2x VsxWdf jsxWd=0, j =1, . . . ,N.

We are now only left with the task of provingsD4d, i.e., thateVsxWdff0sxWdg2 d2xÞ0. A zero-
energy bound state is characterized by the solution,f0sxWd, of the equation

f0sxWd =
1

2p
E d2y log k0uxW − yWuVsyWdf0syWd, sD26d

with the condition

E d2x VsxWdf0sxWd = 0. sD27d

From sD26d we see thatsD27d is independent of the scalek0. We setk0=1. Then, using the
Schrödinger equation

− ¹2f0 + VsxWdf0 = 0, sD28d

we get, after multiplication byf0 and integration,

−E
uxWuøR

d2x f0¹
2f0 +E

uxWuøR

d2xVsuxWudf0sxWd2 = 0. sD29d

Integrating by parts, we get

FsRd =E
uxWu,R

u¹f0u2d2x +E
uxWu,R

VsxWdf0
2sxWdd2x =E

uxWu=R

dss¹W f0df0. sD30d

Using polar coordinates, we have
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FsRd
R

=E du f0sR1dU ] f0sr,ud
] r

U
r=R

. sD31d

Taking R1øRøR2, we obtain

E
R1

R2 FsRd
R

d R=
1

2
E duff0

2sR2,ud − f0
2sR1,udg. sD32d

In Appendix E we prove that ifsD26d andsD27d hold, thenedu f0
2sR,ud→0 asR→`. If this

result is true, we then have

E
R1

R2 FsRd
R

d Rø const, ∀ R2 . R1 @ R0. sD33d

Hence using the mean-value theorem, there exists aR̄, R1, R̄,R2, such that

FsR̄d ø
C

logsR2/R1d
. sD34d

Therefore there is a sequence,R̄1,R̄2, . . . ,R̄j, such thatFsR̄jd→0 as j →`.
But ed2xuVuff0sxWdg2 is convergent sinceuf0u,const logs2+uxWud for large uxWu. Potentials with

ed2xuVuflogs2+uxW u dg2,` belong to our class. Hence we conclude thateuxWu,R Vf0
2 d2x has a limit

asR→`.

On the other hand, the first term on the right-hand side ofsD29d, i.e., euxWu,Ru¹W f0u2d2x, is a
monotonically increasing function ofR, so it either has a limit asR→` or it tends to +̀ . The

latter case is in contradiction with the fact thatFsR̄jd→0 as j →`. Therefore,euxWuøR d2xu¹W fu2 has

a limit asR→`, andFsRd has a limit which is identically zero. But,ed2xu¹W f0u2.0 strictly, and
therefore

E Vff0g2d2x , 0. sD35d

APPENDIX E

In this appendix we prove the following: GivenfsxWdPB which satisfies the integral equation

fsxWd = c0 +
1

2p
E d2ysloguxW − yWudVsyWdfsyWd, sE1d

with c0 finite or zero, then if

E d2x VsxWdfsxWd = 0, sE2d

ufsxWdu is uniformly bounded for allxW PR2.
We stress first that, as in Appendix D, thefsxWd considered here are all in the Banach spaceB,

and henceifi,øconst. This means that we haveab initio the bound

ufsxWdu ø C logs2 + uxWud. sE3d

Thus to complete the task of this appendix we only have to study the largeuxWu behavior ofufu.
Using again the notation logA=log+ A−log− A, we set
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1

2p
E d2ysloguxW − yWudVsyWd ; I+sxWd − I−sxWd. sE4d

First we prove that

I+sxWd → 0, as uxu → `. sE5d

Given sE2d we can writeI+ as

I+sxWd =
1

2p
E d2yflog+uxW − yWu − logs2 + uxWudgVsyWdfsyWd. sE6d

We definey0sxd as

y0 ;
x

logs2 + xd
. sE7d

Next, we split the integration insE6d,

uI+u ø
1

2p
E

y,y0sxd
d2yuloguxW − yWu − logs2 + xduuVsyWdfsyWdu

+
1

2p
E

y.y0sxd
d2yf2 logs2 + xd + logs2 + ydguVsyWdfsyWdu. sE8d

In the first integral, forx large enough,

uloguxW − yWu − logs2 + xdu ,
2

logs2 + xd
. sE9d

But asx→`,

E
y,y0sxd

d2yuloguxW − yWu − logs2 + xduuVsyWduufsyWdu ø
C

logs2 + xdEy,y0sxd
d2yiVsydilogs2 + yd.

sE10d

Hence the first integral vanishes asx→`. The second integral,I2
+, satisfies

uI2
+sxWdu ø CE

y.y0sxd
d2yuVsyduflogs2 + ydg2 = os1d, sE11d

asx→`. Thus Eq.sE5d is proved.
At this stage we have

ufsxWdu ø C +
1

2p
E d2yslog−uxW − yWuduVsyWduufsyWdu. sE12d

Next, we defineMsrd andBsrd as follows:

Msrd = sup
uxWuør

ufsxWdu, sE13d
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Bsrd = r sup
rør

Msrd
r

ù Msrd. sE14d

Bsrd exists becauseMsrdøC logs2+rd. If ufsxWdu grows to infinity asuxWu→`, there must exist a
sequencexW1,xW2, . . . ,xWn, uxWnu→` asn→`, whereMsuxWnud= ufsxWndu, and there must be a subsequence
xW18 ,xW28 , . . . ,xWN8 , where

BsuxWN8 ud = MsuxWN8 ud = ufsxWN8 du. sE15d

We take such anxWN8 , and obtain

BsuxWN8 ud ø C +
1

2p
E d2yslog−uxWN8 − yWuduVsyWduBsuxWN8 udS uxWN8 u + 1

uxWN8 u
D , sE16d

where we recall that in the integral

uxWN8 u − 1 ø uyWu ø uxWN8 u + 1. sE17d

Now we obtain

E d2y log−uxWN8 − yWuVsyWd

ø E
uzWu,D

slog−uzWuduVszWduR d2z+ ulog DuE
uyWu.uxWN8 u−1

uVsyWdud2y. sE18d

The first integral can be made arbitrarily small by takingD small enough. OnceD is fixed we can
make the second integral as small as we please by takinguxWN8 u large enough. Hence we finally have

BsuxWN8 ud ø C + eBsuxWN8 ud, sE19d

with e,1/2 for uxWN8 u large enough.
ThereforeB is bounded, and it follows thatufu is bounded. From this it is easy to see that

E d2yslog−uxW − yWuduVsyWduufsyWdu → 0, sE20d

as uxW u →`, because fromsE18d,

E d2yslog−uxW − yWuduVsyWdu → 0 asuxWu → `. sE21d

As a consequence, if in Eq.sE1d, C0=0, thenuf u →0 asuxW u →`.
In the case whereed2x VsxWdfsxWdÞ0, we have

UE dy log−uxW − yWuVsyWdfsyWdU ø C logs2 + xd E d2y log−uxW − yWuiVsyWdi. sE22d

Combining this withsE2d and using Eq.sE21d, we get

ufu >
1

2p
logs2 + xdUE d2y VsyWdfsyWd + os1dU for uxWu → `. sE23d
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A quantum mechanical version of the Lax–Phillips scattering theory was recently
developed. This theory is a natural framework for the description of quantum
unstable systems. However, since the spectrum of the generator of evolution in this
theory is unbounded from below, the existing framework does not apply to a large
class of quantum mechanical scattering problems. It is shown in this work that the
fundamental mathematical structure underlying the Lax–Phillips theory, i.e., the
Sz.-Nagy–Foias theory of contraction operators on Hilbert space, can be used for
the construction of a formalism in which models associated with a semibounded
spectrum may be accomodated. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1849831g

I. INTRODUCTION

The Lax–Phillips scattering theory22 was originally devised for the analysis of the scattering
of electromagnetic or acoustic waves off compact obstacles; it is most sutible for handling hyper-
bolic wave equations in which the generator of evolution, or wave group, naturally has a continu-
ous specrum on the whole real line. More recently Sjöstrand and Zworski33 extended the scope of
the Lax–Phillips theory to include more general cases of semibounded, compactly supported,
perturbations of the Laplacian in the wave equation. The extended version of the theory plays a
role in the ongoing effort in recent years to obtain various upper and lower bounds on the number
of resonances.33,27 The Lax–Phillips theory also plays an important role in geometric analysis
where certain problems can be naturally formulated as scattering problemsssee Ref. 40 and
references thereind.

The description of resonances in the framework of the Lax–Phillips theory possess certain
properties which may be considered as defining properties of an appropriate description of these
objects. Resonances are identified according to their evolution in time under the action of a
dynamical semigroup, i.e., the Lax–Phillips semigroup. Specifically, resonances are identified as
eigenvalues of the generator of the Lax–Phillips semigroup. In fact, Sjöstrand and Zworski prove
in Ref. 33 that in the case of the Lax–Phillips theory, the eigenvalues of the generator of the
Lax–Phillips semigroup coincide with the generally accepted identification of resonances with
poles ofsa generalized form ofd the resolvent.

Many recent studies indicate that resonances should formally be treated in the same way as
eigenvaluesssee Refs. 24 and 40 and references thereind. Taking the analogy a step forward it is
natural to ask whether it is possible to show that resonances are indeed eigenvalues of an operator
closely related to the generator of evolution. This is known to be the case in the procedure of
complex scaling2,4,14,20,31,30,32,15and the method of rigged Hilbert space.5,3,19,26,6 For a recent
abstract treatment of the problem of resonances along these lines see Ref. 1. The structure of the
Lax–Phillips theory is again very appealing in this respect since the Lax–Phillips semigroup is just
the projection of the evolution into a subspace of the Hilbert space for the scattering problem.
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If we require that the description of resonances would have the properties mentioned above,
i.e.,

sId the time evolution of resonances is given in terms of a continuous, one parameter, contrac-
tive semigroup,

Zst1dZst2d = Zst1 + t2d, t1,t2 ù 0; s1.1d

sII d a resonance is assigned, for each timet, a pure state in a Hilbert space;

then for most scattering problems in quantum mechanics the situation is not as favorable as in the
Lax–Phillips theory. In fact, the standard treatment of the time evolution of resonances through the
notion of the survival amplitude does not generically yield a semigroup law of evolution even in
the pole approximation in which the propagator is approximated by taking only the contributions
coming from the scattering poles. This fact becomes evident in the case of multiple scattering
poles where the residues of the resolvent at different points in the complex plane are not orthogo-
nal to each other and generate interference effects which destroy the semigroup property.17 In
particular, it is interesting to relate the statements made here to some recent efforts to obtain
resonance expansions of propagators24 and to recent work on time dependent theory of
resonances.23,34,8

There has been some recent work on a quantum mechanical adaptation of the Lax–Phillips
theory. Some progress has been made in Refs. 11, 18, and 10, and in Ref. 37 a general formalism
was developed which was subsequently applied to certain simple Lee–Friedrichs type models in
relativistic quantum field theory.35,36 More recently, the general formalism developed in Ref. 37
has been used for the analysis of the Stark effectfBen Ari and Horwitz, Stark effect in the
Lax–Phillips scattering theorysin preparationdg. However, the formalism developed in Ref. 37
essentially retains the original structure of the Lax–Phillips theory and hence it is not suitable for
the analysis of a large class of quantum mechanical problems, since the generator of evolution is
required to have an unbounded spectrum from below as well as from above. A natural question
then arises whether this situation can be amended. One of the goals of this paper is to show that,
in a sense, the answer to this question is in the affirmative. More specifically, it is shown that the
fundamental mathematical theory underlying the Lax–Phillips structure, i.e., the Sz.-Nagy–Foias
theory of contraction operators on Hilbert space,38 can be used in the description of resonances for
problems for which the generator of evolution has a semibounded spectrum.

The purpose of this paper is twofold. First, it is shown in Sec. II below that a formalism
analogous to that of the Lax–Phillips scattering theory may be constructed for the description of
resonances in scattering problems for which the generator of evolution has a semibounded spec-
trum. Thus, two “representations” of the problem are defined, analogous to the Lax–Phillips
translation representations, in which the evolution of the scattering system is transformed into the
analogue of translation, i.e., into a translation semigroup of Toeplitz operators on Hardy space. It
is also possible to define anS-matrix, analogous to the Lax–PhillipsS-matrix, mapping the in-
coming “representation” onto the outgoing “representation.” Beyond mere analogy, in the formal-
ism developed in Sec. II scattering resonances are defined exactly as in the Lax–Phillips theory,
i.e., as eigenvalues of the generator of a Lax–Phillips type semigroup.

The second goal of this paper is to suggest that the tool box of methods available for the
analysis of resonance phenomena should include the Sz.-Nagy–Foias theory of contraction opera-
tors on Hilbert space and, more generally, the part of operator theory dealing with model operators
and decompositions.21 The Sz.-Nagy–Foias theory of contractions is an important part of the
subject of model operators. LetBsHd be the space of bounded linear operators on a Hilbert space
H. An operator is amodel operatorfor a class of operators inBsHd if every operator in that class
is similar to a multiple of a part of itsa part of an operator is defined to be the restriction of the
operator to an invariant subspaced. In the case of contractions on Hilbert space the model operator
is the backward shiftssee Refs. 28 and 21d. If a resonance is characterized by conditionssId and
sII d above it is then quite natural that its description will eventually be given in terms of the model
for contractions, i.e., essentially by the restriction of the backward shift to an invariant subspace.
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Taking this point of view, the role of the Sz.-Nagy–Foias theory in the structures developed in Sec.
II is not surprising and in fact unavoidable.

The rest of this paper is organized as follows: The Lax–Phillips scattering theory is briefly
reviewed in Sec. I A. Section I B provides a self-contained, but rather restricted in scope, expo-
sition of the parts of the Sz.-Nagy–Foias theory which are relevant to the rest of the paper. The
Sz.-Nagy–Foias theory is thoroughly discussed in Ref. 38. Section I B also describes the way that
the Lax–Phillips semigroup can be naturally understood in the context of the Sz.-Nagy–Foias
theory. Section II contains the main results in this paper. After a preliminary discussion in Sec.
II A, concerning Hilbert space nesting, a formalism enabling the use of the Sz.-Nagy–Foias theory
for the description of resonances is developed in Sec. II B. Section III contains some comments on
the framework introduced in Sec. II and concluding remarks are found in Sec. IV.

A. The Lax–Phillips scattering theory

This section provides a brief review of the Lax–Phillips scattering theory and establishes some
of the notation which is used throughout the rest of this paper.

Consider a Hilbert spaceH and an evolution group of unitary operatorshUstdjtPR on H.
Suppose that there exists two distinguished subspacesD− andD+ which have the properties that
D− is orthogonal toD+ and

UstdD− , D−, t ø 0,

UstdD+ , D+, t ù 0,

s1.2.d
ùtUstdD± = h0j,

øtUstdD± = H.

We call D− the incoming subspaceandD+ the outgoing subspace. D− corresponds to incoming
waves which do not interact with the target prior tot=0 andD+ corresponds to outgoing waves
which do not interact with the target aftert=0. These properties are reflected in the stability
properties ofD− andD+ in Eq. s1.2d.

Let LN
2 sRd be the space ofL2 functions defined onR and taking their values in a Hilbert space

N. Sinai7 proved the following theorem.
Theorem 1.1 (Sinai): If D+ is an outgoing subspace with respect to a group of unitary

operatorsUstd, then the Hilbert spaceH can be represented isometrically as the Hilbert space of
functions LN

2 sRd for some auxiliary Hilbert spaceN so thatUstd goes into translation to the right
by t units, andD+ is mapped onto LN

2 sR+d. This representation is unique up to an isomorphism of
N.

A representation of this kind is calledoutgoing translation representation. An analogous
representation theorem holds for an incoming subspaceD−, i.e., there is a representation in which
H is mapped onto the Hilbert spaceLN

2 sRd, D− is mapped ontoLN
2 sR−d andUstd acts as translation

to the right byt units. This representation is called theincoming translation representation.
For most purposes it is more convenient not to work with the translation representations but

with two different representations, called spectral representations. By Fourier transformation of
the incoming translation representation and the outgoing translation representation we obtain the
incoming spectral representationandoutgoing spectral representation, respectively. According to
the Paley–Wiener theorem25 in the incoming spectral representation, the subspaceD− is repre-
sented by the Hilbert space of functionsHN

+ sRd consisting of boundary values onR of functions in
the Hardy spaceHN

2 sPd. Denoting the upper half of the complex plane byP, the spaceHN
2 sPd is

characterized as the space of analytic vector valued functions onP, taking their values in the
auxiliary Hilbert spaceN, and such that for any functionf PHN

2 sPd we have

032104-3 Sz.-Nagy–Foias theory and Lax–Phillips type J. Math. Phys. 46, 032104 ~2005!

                                                                                                                                    



sup
y.0
E

−`

+`

ifsx + iydiN2 dx , C

for some constantC.0. In the outgoing spectral representation the subspaceD+ is represented,
according to the Paley–Wiener theorem, by the function spaceHN

− sRd consisting of boundary

values of functions inHN
2 sP̄d, a Hardy space of vector valued functionsstaking values inNd on

the lower half-planeP̄. In the case of scalar valued functions used in the sequel in Sec. II below
the same notation will be used but the subscriptN for the auxiliary Hilbert space is omitted.

Let W+ andW− denote the operators that map elements ofH to their outgoing, respectively,
incoming, translation representers. We call the operator

SL.P ; W+W−
−1 s1.3d

theabstract scattering operatorassociated with the groupUstd and the pair of spacesD− andD+.
It was proved by Lax and PhillipssLPd that SLP is equivalent to the standard definition of the
scattering operator. The abstract scattering operator has the following properties:

sad SLP is unitary,
sbd SLP commutes with translations,
scd SLP mapsLN

2 sR−d into itself.

Propertysbd is due to the fact thatSLP is a map between two translation representations. One
can understand propertyscd by noting that in the incoming translation representation the subspace
D− is identified with the space of functionsLN

2 sR−d and in the outgoing translation representation
D+ is represented asLN

2 sR+d. The orthogonality ofD− andD+ then implies that in the outgoing
translation representationD− is represented by a subspace ofLN

2 sR−d and propertyscd above
follows.

Going over to the spectral representations the scattering operator transforms intoSLP

;FSLPF−1, whereF is the Fourier transform operator. Propertiessad–scd above then imply corre-
sponding properties forSLP,

sa8d SLP is unitary,
sb8d SLP commutes with multiplication by scalar functions,
sc8d SLP mapsHN

+ sRd into itself.

According to a special case of a theorem of Foures and Segal,12 an operator satisfying prop-
erties sa8d–sc8d can be realized as a multiplicative, operator valued functionS, such thatSssd
mapsN into N for eachsPR. This operator valued function satisfies

sa9d Sssd is the boundary value of an operator valued functionSszd analytic for Imz.0,
sb9d iSszdiNø1 for Im z.0,
sc9d Sssd, sPR is, pointwise, a unitary operator on the auxiliary Hilbert spaceN.

Consider the familyhZstdjtù0 of operators onH defined by

Zstd ; P+UstdP− st ù 0d. s1.4d

HereP+ is the orthogonal projection ofH onto the orthogonal complement ofD+ andP− is the
orthogonal projection ofH onto the orthogonal complement ofD−. Lax and Phillips prove the
following theorem.

Theorem 1.2:The operatorshZstdjtù0 annihilateD+ andD−, map the orthogonal complement
K=H * sD− % D+d into itself, and form a strongly continuous semigroupfi.e. Zst1dZst2d=Zst1
+ t2dg of contraction operators onK. Furthermore, Zstd tends strongly to zero as t→`: s
−limt→` Zstdx=0 for every x inK.

The family of operatorshZstdjtù0 is called the Lax–Phillips semigroup. The operator valued
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function S, with propertiessa9d–sc9d above, is called the Lax–PhillipsS-matrix. Properties
sa9d–sc9d characterize the Lax–PhillipsS-matrix as an analytic function on the upper half-plane.
The analytic continuation ofS to the lower half-plane is given by

Sszd ; fS*sz̄dg−1, Im z, 0. s1.5d

One of the main results of the Lax–Phillips scattering theory is the following theorem.
Theorem 1.3:Let B denote the generator of the semigroupZstd. If Im m,0, thenm belongs

to the point spectrum ofB if and only if S*sm̄d has a nontrivial null space.
This theorem establishes a very important relation between the eigenvalues of the generatorB

of the Lax–Phillips semigroup and zeros of the Lax–PhillipsS-matrix S in the upper half-plane or
poles of the analytic continuation ofS to the lower half-plane.

B. Lax–Phillips theory and Sz.-Nagy–Foias theory of contractions

In this section the structure of the Lax–Phillips theory is put into the context of the more
general theory of Sz.-Nagy and Foias concerning contraction operators on Hilbert space.38

Consider the Lax–Phillips semigrouphZstdjtù0. According to Theorem 1.2 this semigroup acts
nontrivially on the subspaceK=H*sD− % D+d. For a vectorf PK and for t1,t2ù0 we have

Zst1dZst2df = P+Ust1dP−Zst2df = P+Ust1dZst2df = P+Ust1dP+Ust2df . s1.6d

The stability properties of the subspaceD+ fEq. s1.2dg imply the following identity

P+UstdsI − P+d = 0, t ù 0. s1.7d

Inserting this identity into the right-hand sidesrhsd of the previous equation we find, forf PK
% D− and t1,t2ù0,

P+Ust1dP+Ust2df = P+Ust1dfsI − P+d + P+gUst2df = P+Ust1dUst2df = P+Ust1 + t2df . s1.8d

We note that, since forf PK we haveP+Ust1+ t2df =P+Ust1+ t2dP−f =Zst1+ t2df, Eq. s1.8d implies
the semigroup law. Given a Lax–Phillips structure with an evolution groupUstd on the Hilbert
spaceH, consider the family of operatorshTstdjtù0 such thatTstd: H°H, tù0 and

Tstd ; P+Ustd, t ù 0. s1.9d

Each element of this family of operators annihilates the subspaceD+, as can be seen, for example,
from Eq. s1.7d. By Eq. s1.8d we find that for any vectorf PD− % K we have

Tst1dTst2df = Tst1 + t2df, t1,t2 ù 0 s1.10d

and so the familyhTstdjtù0 forms a one parameter continuous semigroup. We observe from Eq.
s1.6d that, for f PK, we have

Zst1dZst2df = Tst1dTst2df, t1,t2 ù 0, f P K. s1.11d

Consider now the Lax–Phillips outgoing translation representation. Denote the outgoing trans-

lation representer of an operatorTstd from the family defined in Eq.s1.9d by T̃std. Given any
vector valued functionf PLN

2 sRd in the outgoing translation representation we have

sT̃stdfdssd = H fss− td, sø 0,

0, s. 0,
J t ù 0. s1.12d

Denote the generator of the semigrouphTstdjtù0 by A. It is easy to show that the spectrum ofA
is ssAd=hm u Im m,0j. Denoting the outgoing translation representer ofA by Ã, the eigenfunc-

tions of Ã are given by
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fm,nssd = Heimsn, sø 0,

0, s. 0,
J ∀ m Im m , 0, ∀ n P N, s1.13d

where fm,n is an eigenfunction ofÃ with eigenvaluem.
As mentioned above one usually works in the spectral representations rather than in the

translation representations. Hence, we would like to find the representation of the semigroup
hTstdjtù0 and the eigenfunctionsfm,n in the outgoing spectral representation. For this we need the
definition of a Toeplitz operator on the Hardy spaceHN

+ sRd ssee, for example, Ref. 28 and
references thereind:

Definition fToeplitz operator on HN
+ sRdg: Let WPLBsNd

` sRd fBsNd is the space of bounded
linear operators onNg. Let P+ denote the projection of LN

2 sRd on HN
+ sRd. The operator

TW:HN
+ sRd→HN

+ sRd defined by

TWf = P+Wf, f P HN
+ sRd

is called a Toeplitz operatorfon HN
+ sRdg with symbol W. Here Wf is the operator of pointwise

application of W to f i.e., sWfdssd=Wssdfssd, sPR.
Define hustdjtPR, a family of multiplicative operators onLN

2 sRd, by

fustdfgssd = e−ist fssd, f P LN
2 sRd, s P R. s1.14d

Denote by T̂std the outgoing spectral representer of the semigroup elementTstd. Taking the

Fourier transform of Eq.s1.12d and using the definition of a Toeplitz operator we find thatT̂std is
given by

T̂stdf = P+ustdf = Tustdf, f P HN
+sRd, t ù 0 s1.15d

and T̂stdf =0 for f PHN
− sRd. The semigrouphTstdjtù0 is, therefore, represented in the outgoing

spectral representation, by the semigroup of Toeplitz operators onHN
+ sRd with symbolsustd fand

a trivial action onHN
− sRdg.

Define the mapŴ+:H°LN
2 sRd by Ŵ+;FW+ srecall thatW+ is the map ofH onto the

outgoing translation representation andF is the Fourier transform operatord. ThenŴ+ mapsH
onto the Lax–Phillips outgoing spectral representation and we can summarize the discussion above
by the observation that for anyf PK we have

Ŵ+Zstdf = Ŵ+Tstdf = T̂stdfout = Tustdfout, t ù 0, f P K, s1.16d

where fout=Ŵ+f is the outgoing spectral representer off PK. Put differently, letting Ẑstd
=Ŵ+ZstdŴ+

−1 be the outgoing spectral representer ofZstd and lettingK̂=Ŵ+K be the subspace of
LN

2 sRd representingK in the outgoing spectral representation, we have

Ẑstd = TustduK̂. s1.17d

Taking the Fourier transform of Eq.s1.13d we find that in the outgoing spectral representation

the eigenfunctions of the generatorÂ of the semigrouphT̂stdjtù0=hTustdjtù0 are given by

f̂m,nssd = i
n

s − m
∀ m Im m , 0, ∀ n P N. s1.18d

Equationss1.17d ands1.18d raise the question of the characterization, out of all of the eigenvectors

of the generator of the semigrouphTustdjtù0 given in Eq.s1.18d, of those which are contained inK̂.
These will be the eigenvectors of the Lax–Phillips semigroup. The rest of this section deals with
this question.

032104-6 Y. Strauss J. Math. Phys. 46, 032104 ~2005!

                                                                                                                                    



We start with the observation that following the discussion of the properties of the Lax–

Phillips S-matrix in the preceding section we know that the subspaceK̂, representingKPH in the
outgoing spectral representation, is given by

K̂ = HN
+ sRd * SHN

+ sRd, s1.19d

where S is an operator valued function with the propertiessa9d–sc9d listed in the preceding
section. Such a function is identified as belonging to the class of operators onHN

+ sPd known as
inner functions. Thus we conclude that the representation of an elementZstd of the Lax–Phillips
semigroup in the outgoing spectral representation is always of the form

Ẑstd = TustdusHN
+ sRd * SHN

+ sRdd, t ù 0, s1.20d

whereS is some inner function. By a slight abuse of terminology a semigroup of the type of Eq.
s1.20d will be called in the rest of this paper a Lax–Phillips semigroup. From Eq.s1.20d we can
infer the general form of an element of the adjoint semigroupZ*std. Using the notation of Eq.
s1.19d we get

Ẑ*std = PK̂Tustd
* uK̂ = PK̂TūstduK̂, t ù 0. s1.21d

In order to understand the structure described here and the origin of Theorem 1.3, we turn to
the Sz.-Nagy–Foias theory of contraction operators on Hilbert space.38 We start with the observa-
tion that the familyhTustdjtù0 is a continuous semigroup of contraction operators and the adjoint
family hTustd

* jtù0=hTūstdjtù0 is also a semigroup of contractions. Moreover,hTustd
* jtù0 is an isometric

semigroup. It is a basic result of the Sz.-Nagy–Foias theory that the study of continuous semi-
groups of contractions can be reduced to the study of a single contraction operator. IfhTstdjtù0 is
a one parameter continuous semigroup of contractions with generatorA defined by

Ah= lim
t→0+

1

t
sTstd − Idh s1.22d

then the study ofhTstdjtù0 reduces to the study of itscogenerator Tdefined by

T =
A + I

A − I
. s1.23d

It is easy to show that the cogeneratorT is a contraction. The elements of a semigrouphTstdjtù0 are
given in terms of the cogeneratorT by

Tstd = expSt
T + I

T − I
D . s1.24d

Denoting the cogenerator of the semigrouphTūstdjtù0 by ST:HN
+ sRd→HN

+ sRd, one finds that

sSTfdssd =
s − i

s + i
fssd, s P R, f P HN

+ sRd. s1.25d

The cogenerator ofhTūstdjtù0 is then identified as the canonical shift operator onHN
+ sRd ssee, for

example, Ref. 28d. By Eq. s1.24d we then have

Tustd
* = Tūstd = expSt

ST + I

ST − I
D . s1.26d

Using Eq.s1.21d we find that
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Ẑ*std = PK̂ expUSt
ST + I

ST − I
DUK̂. s1.27d

Two other important ingredients of the Sz.-Nagy–Foias theory are the notions ofunitary and
isometric dilationof a contraction operator and thefunctional calculus for completely nonunitary
(cnu) contractions. A dilation of an operator is defined as follows.

Definition sdilationd: Assume that for an operator B on a Hilbert spaceH and an operator A
on a Hilbert spaceH8 the following relations hold:

sid H is a subspace ofH8,
sii d Bx=PHAx for all xPH, where PH denotes the orthogonal projection fromH8 into H.

We call A a dilation of B if (i) and (ii) hold and if

Bnx = PHAnx, x P H, n = 1,2,3, . . . . s1.28d

Sz.-Nagy and Foias provesRef. 38, Chap. Id that for every contractionT on a Hilbert spaceH
there exists an isometricsand a unitaryd dilation V on some Hilbert spaceR, which is moreover
minimal in the sense that

R = ∨0
`VnH. s1.29d

The minimal isometric dilation is determined up to an isomorphism. The spaceH is invariant for
V* and we have

TPH = PHV, T* = V* uH, s1.30d

wherePH denotes the orthogonal projection fromR onto H.
Sz.-Nagy and Foias showsRef. 38, Chap. IIId that the function spaceH`sDd sD is the open

unit diskd, regarded as an algebra with an involution under the usual addition and multiplication of
functions, can be used to define afunctional calculus for completely nonunitary (cnu) contrac-
tions. By this we mean that, for a cnu contractionT on a Hilbert spaceH there exists an algebra
homomorphism ofH`sDd into BsHd sthe space of bounded operators onHd. The map providing
this homomorphism is defined, for a functionaPH`sDd having the series expansionaszd
=on=0

` cnz
n, by

aszd = o
n=0

`

cnz
n → asTd = lim

r→1−
asrTd = lim

r→1−
So

n=0

`

cnr
nTnD .

Under this mapping we find, for a functionaPH`sDd and an isometric dilationV of a cnu
contractionT, the following relation:

asTdh = PHasVdh, h P H, a P H`sDd. s1.31d

Define

TẐ* ; PK̂STuK̂, s1.32d

whereK̂PH+sRd is defined in Eq.s1.19d. The operatorPK̂STuK̂ is called acompression of the

shift into the subspaceK̂. It can be shown that, for any inner functionS, the shiftST is an isometric

dilation of the compression ofST into K̂, i.e., it is an isometric dilation ofTẐ* . Since the function

etszd ; expSt
z+ 1

z− 1
D s1.33d

is inner, Eq.s1.31d implies that
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expSt
TẐ* + I

TẐ* − I
D = PK̂ expUSt

ST + I

ST − I
DUK̂ = PK̂TūstduK̂ = Ẑ*std. s1.34d

The operatorTẐ* is therefore the cogenerator of the semigrouphẐ*stdjtù0. Indeed, given the family
of functionsftPH`sDd defined by

ftszd =
z− 1 + t

z− 1 − t
, t . 0,

Sz.-Nagy and Foias provesRef. 38, Chap. III, Theorem 8.1d that the cogeneratorT of a contractive
semigrouphTstdjtù0 is obtained by

T = lim
t→0+

ftsTstdd

and applying this relation tohẐ*stdjtù0 we get

lim
t→0+

ftsẐ*stdd = lim
t→0+

ft + etsTẐ* stdd = lim
t→0+

PK̂ft + etsSTduK̂ = lim
t→0+

PK̂ftsūstdduK̂ = PK̂STuK̂ = TẐ* .

We conclude thatthe compression of the shift to the subspaceK̂ is the cogenerator of the semi-

group hẐ*stdjtù0 and hence

TẐ* = PK̂STuK̂ =
B̂* + I

B̂* − I
, s1.35d

where B̂* is the generator of the semigrouphẐ*stdjtù0. We note also that, using Eq.s1.30d, we
obtain

TẐ =
B̂ + I

B̂ − I
= ST

* uK̂, s1.36d

whereB̂ is the generator andTẐ is the cogenerator of the Lax–Phillips semigrouphZstdjtù0.
For a contractionT on a Hilbert spaceH we define thedefect operators DT andDT* by

DT ; sI − T*Td1/2, DT* ; sI − TT*d1/2.

The defect spacesDT andDT* are defined by

DT = DTH, DT* = DT*H.

For every complex numberl for which the operatorI −lT* is boundedly invertible, define

QTsld ; uf− T + lDT*sI − lT*d−1DTguDT s1.37d

the values of the operator valued functionQTsld are bounded operators fromDT into DT* . When
considered on the unit diskD, QTsld is a purely contractive, analytic, operator valued function,
i.e., it is a contraction fromDT into DT* for everyl in the unit disk. The functionQTsld is called
the characteristic function of the contraction Tssee Ref. 38, Chap. VId. The main theorem of the
Lax–Phillips scattering theory, relating eigenvalues of the generator of the Lax–Phillips semigroup
and singularities of the Lax–PhillipsS-matrix, is then a direct result of the following theorem,
proved by Sz.-Nagy and FoiassRef. 38, Chap. VI, Theorem 4.1d.

Theorem 1.4: Let T be a cnu contraction onH. Denote byaT the set of pointsmPD for
which the operatorQTsmd is not boundedly invertible, together with the pointsmPC not lying on
any of the open arcs of C on whichQTsld is a unitary operator valued analytic function ofl.
Furthermore, denote byaT

0 the set of pointsmPD for which QTsld is not invertible at all. Then
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ssTd = aT

and

spsTd = aT
0.

Given the cogeneratorTẐ* we can define its characteristic functionQTẐ*sld and obtain the

spectrum ofTẐ* in the closed unit disk through Theorem 1.4. In this particular case the function
QTẐ* is an inner function on the unit disk. We can now pass from the unit disk to the upper

half-plane by setting

Sszd = QTẐ*Sz− i

z+ i
D, Im z. 0. s1.38d

The operator valued functionS on the left-hand sideslhsd of Eq. s1.38d is exactly the inner

function appearing in Eq.s1.19d or Eq. s1.20d, defining the subspaceK̂,HN
+ sRd and identical to

the Lax–PhillipsS-matrix. Theorem 1.4 above then immediately implies Theorem 1.3.

Recapitulating the discussion in this section, we have seen thatẐstd, the outgoing spectral
representer of an element of the Lax–Phillips semigroupZstd, is of the form of a restriction of a

Toeplitz operatorTustd to a subspaceK̂,HN
+ sRd given by K̂=HN

+ sRd * SHN
+ sRd, for some inner

functionS. The Lax–PhillipsS-matrix S is essentially the characteristic function for the generator

B̂* of the semigroupẐ*std. The cogeneratorTẐ* of Ẑ*std is identified as a compression of the shift
and its characteristic function is an inner function. The correspondence between the points inP

whereS has a nontrivial null spacesor poles of the analytic continuation ofS to P̄d and eigen-

values of the generator ofẐstd for Zstdg then arises from a theorem in operator theorysnamely
Theorem 1.4 aboved relating the points of singularity of the characteristic function for a contrac-
tion T to the spectrum ofT.

II. DESCRIPTION OF RESONANCES

A. Preliminary discussion

In this section the structures described in Sec. I B are utilized for the description of quantum
mechanical resonances. The structures developed below bear general resemblance to the structure
of the Lax–Phillips scattering theory. For a given scattering problem an “incoming representation”
and an “outgoing representation” are defined, as well as the “S-matrix” transforming between the
two. The evolution goes in these “representations” into the analogue of translation, i.e., the semi-
group of Toeplitz operatorshTustdjtù0. Moreover, beyond general resemblance, the framework
developed below makes explicit use of the fundamental structures of the Lax–Phillips theory
originating from the Sz.-Nagy–Foias theory of contractions. Time evolution of resonances is
actually described by a Lax–Phillips type semigroup of the form of Eq.s1.20d and the relation
between eigenvalues corresponding to resonances and zeros of theS-matrix results from the
Sz.-Nagy–Foias theory in the same way as described above in Sec. I B.

The starting point for the developments in this section is a method, proposed by Grossmann,13

for the description of quantum mechanical resonances through the use of Hilbert space nesting.
Let H0 andH1 besinfinitely dimensional, separabled Hilbert spaces. A nesting map ofH1 into

H0 is a linear mappingu such that

s1d the domain ofu is H1 andu is continuous onH1,
s2d the range ofu is dense inH0,
s3d u is one to one.

The adjoint ofu is defined in the usual way by the relation
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sf,ugdH0
= su* f,gdH1

s2.1d

u* is a nesting map ofH0 into H1. We note that the properties of the mapu puts it in the class of
quasiaffine transformsbetweenH1 andH0 ssee, for example, Refs. 38 and 21d. A nested Hilbert
space is defined as follows.

Definition (nested Hilbert space): A nested Hilbert spacesH1,H0,ud is defined to be a struc-
ture consisting of the two Hilbert spacesH0 and H1, a nesting mapu of H1 into H0 and the
adjoint nesting mapu* .

Given a nested Hilbert spacesH1,H0,ud and an operatorA on H0, Grossmann considereds

two types of operators,Ã and Â defined onH1. Respectively, these operators are defined to be

Ã = u*Au s2.2d

and

Â = u−1Au. s2.3d

We observe that the operatorÂ in Eq. s2.3d is well defined for any operatorA which leaves the

range ofu invariant. Letf PH1 be in the domain ofÃ. For everygPH1 we then have

sg,Ã fdH1
= sg,u*AufdH1

= sug,AufdH0
.

We see that matrix elements ofA on the dense setuH1,H0 can be calculated as matrix elements

of Ã on H1. Put differently, the operatorÃ on H1 may be defined through the knowledge of a

subset of the matrix elements ofA on H0. Moreover, ifA is bounded and self-adjoint thenÃ is
also bounded and self-adjoint. Grossmann considers the resolventGszd=sz−Hd−1 of a scattering

HamiltonianH and defines through the nestingsH1,H0,ud the operatorG̃szd according to Eq.

s2.2d. Since the matrix elements ofG̃szd between elements ofH1 are a subset of the set of matrix

elements ofGszd on H0, it may happen thatG̃szd has a larger domain of analyticity thanGszd. In

particular, the domain of analyticity ofG̃szd may cross the natural boundary of analyticity ofGszd
along the positive real axis so that it may be possible to reach a second Riemann sheet resonance
pole of the resolvent.

The matrix elements ofÂ are, on the other hand, generically different from those ofA due to

the different scalar product and, in general,Â is neither bounded nor symmetric. It is possible to

show that the eigenvalues ofsÂd* include the “improper” eigenvalues ofA* .

Let A be a densely defined operator onH0 such that the operatorsA*ˆ d* is also densely defined.
A complex numberz0 is defined to be a generalized eigenvalue ofA if there is an elementf
PH1 such that

sA*ˆ d* f = z0f . s2.4d

In particular, it is easy to show that eigenvalues ofA are also eigenvalues ofsA*ˆ d* .
If in the Hilbert space nestingsH1,H0,ud the mapu :H1°H0 is a contraction then we have

a contractive nestingof H1 into H0. This property ofu a priori adds more structure to the
resulting framework. A short discussion of this point is found in Sec. III below.

B. Main results

In a similar way to the Lax–Phillips scattering theory, this work centers around three main
results: the existence of appropriate incoming and outgoing nesting structures, the existence of a
continuous semigroup of contraction operators and the identification of the resonances of the
theory, the eigenvalues of the generator of the semigroup, with zeros of the “S-matrix” mapping
between the incoming and outgoing nesting structures.
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Starting with the nesting structures, we have the following theorem.
Theorem 2.1. (outgoing contractive nesting):Let H0 and H be self-adjoint operators on a

Hilbert spaceH. Let hUstdjtPR be the unitary evolution group onH generated byH [i.e., Ustd
=exps−iHtd] . Denote byHac

0 andHac, respectively, the absolutely continuous subspaces ofH0 and
H. Assume that the absolutely continuous spectrum ofH0 and H has multiplicity one and that it
satisfies sacsH0d=sacsHd=R+. Assume furthermore that the Møller wave operatorV−

;V−sH0,Hd :Hac
0 °Hac exists and is complete. Then there exists a mapV̂+:Hac°H+sRd such

that

sad sHac,H
+sRd ,V̂+d is a contractive Hilbert space nesting ofHac into H+sRd.

sbd For every tù0 define the Grossmann type operatorU*ˆ std :H+sRd°H+sRd according to Eq.

(2.3), i.e., U*ˆ std=sV̂+
* d−1U*stdV̂+

* . These operators are well defined and, for every tù0 and
every fPHac we have

V̂+Ustdf = sU*std̂d*V̂+f = Tustdfout, t ù 0, s2.5d

where fout=V̂+f and Tustd is the Toeplitz operator with symbol ustd given by Eq. (1.14).

The nestingsHac,H
+sRd ,V̂+d is referred to below as theoutgoing contractive nesting ofHac.

Remarks:

s1d It follows from Eq. s2.4d and the discussion above that eigenvalues of

sU*std̂d* :H+sRd°H+sRd, are generalized eigenvalues ofUstd sfor tù0d.
s2d Obviously, the lhs of Eq.s2.5d can be defined for everytP s−` ,`d. Equations2.5d, however,

is valid for tù0.

Proof of Theorem 2.1:At the center of the proof of Theorem 2.1 lie two theorems, proved by
Van Winter, that enable us to define a contractive nesting ofL2sR+d into H+sRd. Taken together, the
following theorems are referred to below as the Van Winter theorem.39

Theorem 2.2 (Van Winter): The class of functions f which are analytic, regular in the upper
half-plane, and have the property that

E
0

`

dr ufsreifdu2 s2.6d

is uniformly bounded inf for 0,f,p, is identical to the Hardy class H2sPd. For each such f
there exists a boundary value function fsrd sr .0d on R+. The boundary values fsrd of functions
fsreifd in H2sPd are dense in L2sR+d.

Theorem 2.3 (Van Winter): A complex valued function f defined on the upper half-planeP
is in H2sPd if and only if it is given by an inverse Mellin transform as

fsreifd =
1

Î2p
E

−`

+`

ds Essdsreifd−is−1/2 s2.7d

for some function Essd satisfying

E
−`

+`

dss1 + e2psduEssdu2 , `

in this case the Mellin transform of f is given by

Ess,fd =
1

Î2p
E

0

`

dr f sreifdr is−1/2 = efs−isf/2dEssd. s2.8d
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It can be shown39 that in Eq. s1.8d it is possible to takef to zero, i.e., that iffsrd is the
boundary value onR+ of a function fsreifd in H2sPd then

Essd =
1

Î2p
E

0

`

dr f srdr is−1/2. s2.9d

By combining Theorem 2.2 and Theorem 2.3 we find that any function inH2sPd can be recon-
structed from its boundary value on the positive real axis. Defineu :H+sRd°L2sR+d by taking, for
each functionf PH2sPd, the restriction toR+ of the boundary value off on the real axis. Thenu
is one to one andu−1 can be defined. It is also important to note that the Van Winter theorem can
be applied to boundary values of Hardy class functions on the negative real axis, a fact which is
used below.

Using the Van Winter theorem we easily obtain the following result.
Proposition 2.1: The mapu :H+sRd→L2sR+d is a contractive nesting map, sH+sRd ,L2sR+d ,ud

is a contractive nesting of H+sRd into L2sR+d and sL2sR+d ,H+sRd ,u*d is a contractive nesting of
L2sR+d into H+sRd.

Proof: From the Van Winter theorem we know that the mapu is injective and that
uH+sRd,L2sR+d is dense inL2sR+d. Denote byH−sRd the space of boundary values onR of

functions belonging toH2sP̄d srecall thatP̄ is the lower half of the complex planed. We have

L2sRd = H−sRd % H+sRd. s2.10d

H+sRd is then a subspace ofL2sRd and it inherits its scalar product from that ofL2sRd. By the
definition of u we have forf PH+sRd,

iufiL2sR+d
2 = suf,ufdL2sR+d , sf, fdL2sRd = sf, fdH+sRd = ifiH+sRd

2 . s2.11d

u :H+sRd°L2sR+d is therefore a contraction andsH+sRd ,L2sR+d ,ud is a contractive nesting of
H+sRd into L2sR+d. Defining the adjoint mapu* :L2sR+d°H+sRd through the relation

sux,ydL2sR+d = sx,u*ydH+sRd, x P H+sRd, y P L2sR+d s2.12d

we conclude thatsL2sR+d ,H+sRd ,u*d is a contractive nesting ofL2sR+d into H+sRd.
j

Consider the spectralsor energyd representation forH0. The assumptionsacsH0d=R+ sand that
the multiplicity is oned leads to the existence of a unitary mapU :Hac

0 °L2sR+d defining a repre-
sentation ofHac

0 in terms of the spaceL2sR+d. We can now use the unitarity of the Møller wave
operatorV−:Hac

0 °Hac and define a unitary mapW+:Hac°L2sR+d by

W+ ; UsV−d* . s2.13d

W+ is a transformation to a spectral representation forH uHac. Applying the contractive nesting
sL2sR+d ,H+sRd ,u*d then allows us to define a map

V̂+:Hac ° H+sRd

by

V̂+ ; u*W+ = u*UsV−d* . s2.14d

Since W+ is unitary andu* is a contractive nesting map we find thatsHac,H
+sRd ,V̂+d is a

contractive nesting ofHac into H+sRd and sad is proved.

Next, we turn to the proof ofsbd. Assume that the range ofV̂+
* is invariant for an operator

A :Hac°Hac. Then, it is possible to use the nestingsH+sRd ,Hac,V̂+
* d to define the Grossmann

type operatorÂ :H+sRd°H+sRd according to Eq.s2.3d, i.e.,
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Â = sV̂+
* d−1AV̂+

* . s2.15d

The generalized eigenvalues ofA are then eigenvalues of the operatorsA*dˆ * :H+sRd°H+sRd
given by

sA*dˆ * = V̂+A** ssV̂+
* d−1d* . s2.16d

The first equality in Eq.s2.5d results from the following proposition
Proposition 2.2: For any bounded operatorA :Hac°Hac satisfyingA** =A and such that

V̂+
* H+sRd,Hac is invariant for A, and for any hPHac we have

sA*ˆ d*V̂+h = V̂+Ah.

Proof: SinceV̂+
* is a nesting map ofH+sRd into Hac the mapsV̂+

* d−1 is defined on the dense

setV̂+
* H+sRd,Hac and we can define the mapssV̂+

* d−1d* through the relation

sg, fdH+sRd = ssV̂+
* d−1V̂+

* g, fdH+sRd = sV̂+
* g,ssV̂+

* d−1d* fdHac

which holds for anyf PDsssV̂+
* d−1d*d and anygPH+sRd. It is then true that

ssV̂+
* d−1d* = sV̂+

** d−1 = V̂+
−1. s2.17d

From Eq.s2.16d and Eq.s2.17d we conclude that, for anyf PV̂+Hac we have

sA*dˆ * f = V̂+A** V̂+
−1f, f P V̂+Hac. s2.18d

By the injective property ofV̂+, for any f PV̂+Hac there is a uniquehPHac such thatf =V̂+h.
Hence, by Eq.s2.18d we have

sA*dˆ *V̂+h = V̂+A** h, h P Hac. s2.19d

In particular, ifA satisfiesA** =A we find that

sA*dˆ *V̂+h = V̂+Ah, h P Hac. s2.20d

j

It is easy to see that, fortù0, UstdV̂+
* H+sRd,V̂+

* H+sRd. Indeed we have

UstdV̂+
* H+sRd = UstdsW+d*uH+sRd = sW+d* ūstduH+sRd , sW+d*uH+sRd = V̂+

* H+sRd

hence, we can apply Proposition 2.2 toUstd stù0d and obtain the first equality in Eq.s2.5d.
In order to prove the second equality in Eq.s2.5d we need to obtain a more explicit expression

for the mapV̂+. We have
Proposition 2.3: Define the inclusion mapI :L2sR+d°L2sRd by

sIfdssd = Hfssd, s ù 0,

0, s , 0,
Jf P L2sR+d. s2.21d

Let P+ be the orthogonal projection of L2sRd onto H+sRd and letW+ be the unitary map defined

in Eq. (2.13). Then the mapV̂+:Hac°H+sRd is given by

V̂+ = P+IW +. s2.22d

Proof: We first need an explicit expression for the mapu* . RegardingL2sR+d as a closed
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subspace ofL2sRd, the inclusion mapI :L2sR+d°L2sRd is given by Eq.s2.21d. The lhs of Eq.
s2.12d can be written then as

sux,ydL2sR+d = sIux,I ydL2sRd. s2.23d

Making use of the decomposition ofL2sRd, Eq. s2.10d, we observe that anyyPL2sR+d correspond
to the following decompositon into an orthogonal sum:

I y = y+ + y−, y+ P H+sRd, y− P H−sRd. s2.24d

Equations2.21d then implies that

y+ssd = − y−ssd, s , 0. s2.25d

Inserting the decomposition, Eq.s2.24d, into the rhs of Eq.s2.23d we obtain

sux,ydL2sR+d = sIux,y+ + y−dL2sRd =E
−`

+`

dssIuxdssdsy+ssd + y−ssdd. s2.26d

We can now use Eq.s2.26d to obtain the following identity:

E
−`

+`

dssIuxdssdsy+ssd + y−ssdd =E
−`

+`

ds xssdsy+ssd + y−ssdd =E
−`

+`

ds xssdy+ssd = sx,y+dH+sRd,

s2.27d

where the second equality follows from the orthogonality ofH+sRd andH−sRd. Equationss2.26d
and s2.27d imply that

sux,ydL2sR+d = sx,y+dH+sRd. s2.28d

Comparing Eq. s2.12d and Eq. s2.28d we find the desired expression for the map
u* :L2sR+d°H+sRd,

u*y = y+ = P+I y, y P L2sR+d, y+ P H+sRd. s2.29d

Equations2.14d can now be written in the form

V̂+ = P+IW +. s2.30d

j

Observe that, for anyhPHac we have

IW +Ustdh = IUV̂−*Ustdh = IUU0stdV̂−*h = ustdIW +h, s2.31d

whereustd is the multiplicative operator defined in Eq.s1.14d. Using again the decomposition in
Eq. s2.10d we have

IW +h = P+IW +h + P−IW +h = h+ + h−, s2.32d

whereh+=P+IW +h=V̂+h andh−=P−IW +h. HereP+ is the projection onH+sRd defined above and
P−:L2sRd°H−sRd is the orthogonal projection ofL2sRd on H−sRd. From Eqs.s2.30d–s2.32d we
obtain, for anyhPHac,

V̂+Ustdh = P+ustdIW +h = P+ustdsh+ + h−d. s2.33d

We conclude the proof of Theorem 2.1 by observing thatH−sRd is stable under the action ofustd
for tù0. Hence we haveustdh−PH−sRd and so
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V̂+Ustdh = P+ustdh+ = TustdV̂+h. s2.34d

This completes the proof of Theorem 2.1.
j

Theorem 2.1 provides the analogue of the Fourier transform of the representation in Theorem
1.1 in Sec. I, that is, it is the analogue of the outgoing spectral representation of the Lax–Phillips
scattering theory. One may think of it as the “outgoing contractive nesting” associated withHac

andUstd.
As in the case of the Lax–Phillips theory, there is another nesting structure which may be

thought of as the “incoming contractive nesting” associated withHac andUstd. In a similar fashion

to Eq. s2.14d we define a contractive nesting mapV̂−:Hac°H+sRd by

V̂− ; u*W− = u*UsV+d* . s2.35d

For V̂− we have the following theorem.
Theorem 2.4 (incoming contractive nesting):Let H0 and H be self-adjoint operators on a

Hilbert spaceH and lethUstdjtPR be the unitary evolution group onH generated byH. Denote by
Hac

0 and Hac, respectively, the absolutely continuous subspaces ofH0 and H. Assume that the
absolutely continuous spectrum ofH0 and H has multiplicity one and that it satisfiessacsH0d
=sacsHd=R+. Assume furthermore that the Møller wave operatorV+;V+sH0,Hd :Hac

0 °Hac

exists and is complete. Then there exists a mapV̂−:Hac°H+sRd such that

sad sHac,H
+sRd ,V̂−d is a contractive Hilbert space nesting ofHac into H+sRd.

sbd For every tù0 define the Grossmann type operatorU*ˆ std :H+sRd°H+sRd according to Eq.

(2.3), i.e., U*ˆ std=sV̂−
* d−1U*stdV̂−

* . These operators are well defined and, for every tù0 and
every fPHac we have

V̂−Ustdf = sU*std̂d*V̂−f = Tustdf in, t ù 0, s2.36d

where fin=V̂−f and Tustd is the Toeplitz operator with symbol ustd given by Eq. (1.14).

Once the existence of the incoming contractive nesting and the outgoing contractive nesting
are established we can turn to the definition of the analogue of the Lax–PhillipsS-matrix. Let

f in=V̂−f PH+sRd be the “incoming nested representer” of an elementf PHac. Let fout=V̂+f
PH+sRd be the “outgoing nested representer” of the same elementf. We have

fout = V̂+V̂−
−1f in = u*UsV−d*V+U*su*d−1f in = u*USU*su*d−1f in = u*S̃su*d−1f in, s2.37d

whereS=sV−d*V+ is the scattering operator andS̃:L2sR+d°L2sR+d is defined byS̃;USU* . The

operatorS̃ is the representer ofS in the spectralsenergyd representation forH0 and is a multipli-
cative operator in this representation, i.e.,

sS̃fdsEd = S̃sEdfsEd, f P L2sR+d.

Equations2.37d provides the definition of thenested scattering matrixas follows:
Definition (nested scattering matrix): LetS=sV−d*V+ be the scattering operator associated

with H0 and H. Let S̃:L2sR+d°L2sR+d be given by

S̃; USU* . s2.38d

The nested scattering matrixSnest:H
+sRd°H+sRd is defined to be

Snest; u*S̃su*d−1. s2.39d
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Of course, for everyf PHac we havefout=Snestf in wherefout=V̂+f and f in=V̂−f. We have the
following theorem.

Theorem 2.5: Consider L2sR+d and L2sR−d as closed subspaces of L2sRd. Denote
PR+:L2sRd°L2sRd the orthogonal projection of L2sRd on L2sR+d and, similarly,

PR−:L2sRd°L2sRd the orthogonal projection of L2sRd on L2sR−d. Let S̃ be defined as in Eq.

(2.38). Then, for every finPV̂−Hac,H+sRd we have

fSnestf ingssd =
1

2p
E

0

`

dE
i

s − E + i0+S̃sEdfPR+f ingsEd +
1

4p2 E
0

`

dE
i

s − E + i0+S̃sEd

3HE
−`

`

dsE
−`

0

ds8fPR−f ingss8ds8−is−1/2Eis−1/2J . s2.40d

Proof: We need to obtain a realization of the mapsu* andsu*d−1 on the functional level. For
u* we have the following.

Lemma 2.1: The mapu* :L2sR+d°H+sRd is given, for any fPL2sR+d, by

su* fdssd =
1

2p
E

0

`

dE
i

s − E + i0+ fsEd.

Proof: The starting point is Eq.s2.29d. The inclusion mapI :L2sR+d°L2sRd is realized in a
simple way: given a functionf PLN

2 sR+d, and for anysPR, we have

sI fdssd =E
0

`

dE dss− EdfsEd, s2.41d

whereds·d is the Dirac delta distribution.
Now for the realization of the projectionP+:L2sRd°H+sRd. For this we Fourier transform

L2sRd and note that, denoting the Fourier transform operator byF, we haveH+siRd=L2sR+d and
FH−sRd=L2sR−d. For any f PL2sRd we therefore obtain

P+f = F−1PR+Ff

and hence, forf PL2sRd

sP+fdssd =
1

2p
E

−`

`

dt eistSustdE
−`

`

ds e−itsfssdD =
1

2p
E

−`

`

dsE
0

`

dt eiss−s+i0+dt fssd

=
1

2p
E

−`

`

ds
i

s − s+ i0+ fssd. s2.42d

Combining Eq.s2.41d and Eq.s2.42d we get, for f PL2sR+d,

su* fdssd = sP+I fdssd =
1

2p
E

−`

`

ds
i

s − s+ i0+FE
0

`

dE dss− EdfsEdG =
1

2p
E

0

`

dE
i

s − E + i0+ fsEd.

s2.43d

j

Next, we need to find an explicit expression for the inverse mapsu*d−1. We have the following
lemma.

Lemma 2.2: The mapsu*d−1:u*L2sR+d°L2sR+d is given, for any fPu*L2sR+d by

fsu*d−1fgsEd = fPR+fgsEd +
1

2p
E

−`

`

dsE
−`

0

dsfPR−fgssds−is−1/2Eis−1/2,
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where Eù0, PR+ and PR− are the orthogonal projections of L2sRd on L2sR+d and L2sR−d, respec-
tively fL2sR+d and L2sR−d are considered as subspaces of L2sRdg.

Proof: The procedure for constructingsu*d−1 is as follows: Giveny+PH+sRd in the range of
u* , there is some vectoryPL2sR+d such thatI y=y++y− fy− is in H−sRdg and Eq.s2.25d is valid.
y−ssd for s,0 are then the restriction toR− of the values of some functiony−PH−sRd. Van

Winter’s theorem then implies thaty−PH2sP̄d, and hence alsoy−PH−sRd, can be uniquely
reconstructed from its boundary value on the negative real axis. We conclude that, for eachy+ in
the range ofu* we can assign a uniquey−PH−sRd such that Eq.s2.25d holds. Therefore,y=y+

+y− can be identified with a unique element inL2sR+d corresponding to a giveny+Pu*L2sR+d.
This construction defines an inversesu*d−1 such that

su*d−1y+ = y, y+ P u*L2sR+d, y P L2sR+d.

Observe that the main step in the procedure described above is the construction, through the Van

Winter theorem, of a functionf PH2sP̄d from data on the boundary value function off on the
negative real axisR−.

Given the boundary value functionuhPL2sR+d for a functionhPH2sPd, Van Winter’s theo-
rem implies that one can reconstruct the functionhPH2sPd by using an inverse Mellin transform.
We first find the Mellin transform

Essd =
1

Î2p
E

0

`

hsxdxis−1/2 dx s2.44d

and then we reconstruct the analytic function via the inverse Mellin transform as follows:

hsreifd =
1

Î2p
E

−`

`

Essdsreifd−is−1/2 ds, z= reif, r . 0, 0ø f ø p. s2.45d

For a functionhPH2sPd, define a new function byh̃szd= h̄sz̄d, Im z,0. Thenh̃PH2sP̄d. In fact,

each functionh̃PH2sP̄d can be obtained from some functionhPH2sPd by this procedure. From
Eqs.s2.44d and s2.45d we obtain

Ēssd =
1

Î2p
E

0

`

h̄sxdx−is−1/2 dx s2.46d

and

h̄sreifd =
1

Î2p
E

−`

`

Ēssdsreifdis−1/2 ds, z= reif, r ù 0, −p ø f ø 0. s2.47d

DenotingẼssd=Ēssd and taking notice of the fact thath̃sxd= h̄sxd for realx, we can write Eq.s2.46d
and Eq.s2.47d in the form

Ẽssd =
1

Î2p
E

0

`

h̃sxdx−is−1/2 dx s2.48d

and

h̃sreifd =
1

Î2p
E

−`

`

Ẽssdsreifdis−1/2 ds, z= reif, r ù 0, −p ø f ø 0. s2.49d

Using Eq.s2.48d and Eq.s2.49d we can reconstruct a functionh̃PH2sP̄d from its boundary value
function onR+. This is not quite our goal since we would like to reconstruct the function from its
boundary value on the negative real axisR−. This problem, however, is solved by taking advantage
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of the analyticity properties ofh̃. Closing a contour integration in the lower half-plane we obtain
ss is a real numberd

1
Î2p

E
−`

0

h̃sxdx−is−1/2 dx +
1

Î2p
E

0

`

h̃sxdx−is−1/2 dx = 0

and hence

Ẽssd = −
1

Î2p
E

−`

0

h̃sxdx−is−1/2 dx. s2.50d

Using Eq.s2.50d at the rhs of Eq.s2.49d and takingf→0 we obtain

h̃sxd = −
1

2p
E

−`

`

dsE
−`

0

dx8 h̃sx8dx8−is−1/2xis−1/2, x . 0. s2.51d

Given the boundary value onR− of a function h̃PH2sP̄d, Eq. s2.51d enables us to obtain its
boundary value onR+. We can now construct the inverse mapsu*d−1 according to the procedure
described above. Given a functionh+Pu*L2sR+d we have for,Eù0,

fsu*d−1h+gsEd = fPR+h+gsEd +
1

2p
E

−`

`

dsE
−`

0

dsfPR−h+gssds−is−1/2Eis−1/2. s2.52d

This completes the proof of Lemma 2.2. j

Equations2.39d, Lemma 2.1 and Lemma 2.2 imply Eq.s2.40d and Theorem 2.5 is proved.j

Theorem 2.1, Theorem 2.4, and Theorem 2.5 provide the basic nesting structure for the
description of quantum mechanical resonances. The fact that for eachtù0 the evolutionUstd
transforms, both in the incoming contractive nesting and in the outgoing contractive nesting, into
elements ofhTustdjtù0, the semigroup of Toeplitz operators onH+sRd, suggests that the Sz.-Nagy–
Foias theory, providing the basic mechanism of the Lax–Phillips scattering theory, may be used in
the description of resonances. In particular, the Lax–Phillips semigroup in Eq.s1.20d may be used
in the description of the time evolution of quantum mechanical resonances and the relation be-
tween resonances and second sheet poles of theS-matrix in the lower half-planesor first sheet
zeros of theS-matrix in the upper half-planed may be shown in some cases to be a result of the
Sz.-Nagy–Foias theory of contractions.

The following proposition indicates on the way the Sz.-Nagy–Foias theory may be used.

Proposition 2.4 (H` case): Assume that in Eq. (2.38)S̃: L2sR+d°L2sR+d is the boundary
value onR+ of some functionSPH`sPd. Suppose, furthermore, thatS has a single, simple, zero

at the point z=m̄, Im m,0 in P. Let fin=V̂−f and fout=V̂+f for some fPHac. We have

foutssd = fSnestf ingssd =
s − m̄

s − m
fSnest8 f ingssd − i2 Im mfP−S8f in

− gsmd
1

s − m
, s2.53d

where fin
− PH−sRd is such thatPR−sf in+ f in

− d=0, Snest8 =u* S̃8su*d−1, S̃8 is the boundary value onR+

of a functionS8PH`sPd and S8 has no zeros inP.
Proof: We need first to consider the structure theory ofHp functions on the upper

half-plane.16,9 We have the following definition and subsequent theorem.
Definition (Blaschke product): A Blaschke product on the upper half-plane is an analytic

function bszd on P of the form

bszd = Sz− i

z+ i
Dm

p
n

uzn
2 + 1u

zn
2 + 1

·
z− zn

z− z̄n

, s2.54d
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here m is a non-negative integer and zn, Im z.0, are zeros of bs·d in P, finite or infinite in
number.

Theorem 2.6: If f PHpsPd s0,pø`d and fò0, then fs·d=bs·dgs·d, where gs·d is a non-
vanishing HpsPd function. The boundary value function of fs·d on R satisfiesugsxdu= ufsxdu a.e.
sxPRd. The function bs·d is a Blaschke product of the form given in Eq. (2.54) and zn are the zeros
sznÞ id of f in P.

By the definition of a Blaschke product and Theorem 2.6, if the functionSPH`sPd has only
a single zero inP then it must be of the form

Sszd =
z− m̄

z− m
S8szd, Im z. 0, Im m , 0, s2.55d

whereS8PH`sPd has no zeros inP. By assumptionS̃ is the boundary function ofS on R+ and
so

S̃sEd =
E − m̄

E − m
S8sEd, E ù 0. s2.56d

Inserting this form ofS̃ into Eq. s2.40d we get

fSnestf ingssd =
1

2p
E

0

`

dE
i

s − E + i0+

E − m̄

E − m
S8sEdfPR+f ingsEd +

1

4p2

3 E
0

`

dE
i

s − E + i0+

E − m̄

E − m
S8sEdE

−`

`

dsE
−`

0

ds8fPR−f ingss8ds8−is−1/2Eis−1/2

in the first integral we can change the integration interval to the negative real axis by using a
contour integration in the upper half-planefwe recall thatH`sPd can be regarded as an algebra on
H2sPdg. We get

1

2p
E

0

`

dE
i

s − E + i0+

E − m̄

E − m
S8sEdfPR+f ingsEd =

s − m̄

s − m
S8ssdf inssd

−
1

2p
E

−`

0

dE
i

s − E + i0+

E − m̄

E − m
S8sEdfPR−f ingsEd.

s2.57d

Since f inPV̂−Hac it is in the range ofu* hencessee the proof of Theorem 2.5d there is some

function f in
− PH2sP̄d such thatPR−sf in+ f in

− d=0. Using Eq.s2.51d we obtain

fPR+f in
− gsEd =

1

2p
E

−`

+`

dsE
−`

0

ds8fPR−f ingss8ds8−is−1/2Eis−1/2, E ù 0. s2.58d

Thus we get

fSnestf ingssd =
s − m̄

s − m
S8ssdf inssd +

1

2p
E

−`

`

dE
i

s − E + i0+

E − m̄

E − m
S8sEdf in

− sEd. s2.59d

For the second term on the rhs of Eq.s2.59d we have the following decomposition:
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1

2p
E

−`

`

dE
i

s − E + i0+

E − m̄

E − m
S8sEdf in

− sEd =
1

2p
E

−`

`

dE
i

s − E + i0+

E − m̄

E − m
fsP+ + P−dS8f in

− gsEd

=
s − m̄

s − m
fP+S8f in

− gssd − i2 Im mfP−S8f in
− gsmd

1

s − m
.

s2.60d

The second equality on the rhs of Eq.s2.60d is obtained by making use of the properties of the
projectionsP+ and P− in order to close contour integrals in the upper, respectively, lower half-
plane. Taking notice of the fact thatS8 is in H`sPd and henceS8f inPH+sRd we finally obtain

fSnestf ingssd =
s − m̄

s − m
fP+S8sf in + f in

− dgssd − i2 Im mfP−S8f in
− gsmd

1

s − m
. s2.61d

Moreover, from the procedure for the construction ofsu*d−1 it follows that f in+ f in
− = I su*d−1f in, so

thatP+S8sf in+ f in
− d=P+S8I su*d−1f in=P+I S̃8su*d−1f in=u* S̃8su*d−1f in and the proof of Proposition 2.4

is complete.
j

The Blaschke factorBm defined byfsee Eq.s2.54dg

Bmszd =
z− m̄

z− m
s2.62d

is an inner function, hence we can define the subspaceK̂m,H+sRd by

K̂m ; H+sRd * BmH+sRd s2.63d

and the Lax–Phillips semigrouphẐstdjtPR+ according to Eq.s1.20d, i.e.,

Ẑstd = TustduK̂m. s2.64d

The dimension of the subspaceK̂m is one and, up to a multiplicative constant, the eigenvector

xmPK̂m of Ẑstd is given by

xmssd =
1

s − m
. s2.65d

Equations2.53d can be written then in the form

fout = BmSnest8 f in − i2 Im mfP−S8f in
− gsmdxm s2.66d

and, using Eq.s2.5d we have, fortù0,

V̂+Ustdf = Tustdfout = TustdBmSnest8 f in − is2 Im mfP−S8f in
− gsmddẐstdxm

= TustdBmSnest8 f in − is2 Im mfP−S8f in
− gsmdde−imtxm. s2.67d

Equations2.67d can be interpreted as implying that in the outgoing nesting “representation” the
zero of theS-matrix in the upper half-plane corresponds, through the mechanism of the Sz.-Nagy–
Foias theory described in Sec. I, to a resonance for which the characteristic, exponentially decay-
ing, evolution in time is given in terms of the action of a Lax–Phillips type semigroup. The
resonance state is identified with the eigenvectorxm of this semigroup. Equations2.67d clearly

exhibits the decomposition, in the nesting spaceH+sRd, of the statefout=V̂+f corresponding to an
elementf PHac, into a resonance part and a contribution coming from the subspace inH+sRd
orthogonal to the resonance.
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Define

LV̂+
= V̂+

* V̂+Hac , Hac.

The setLV̂+
is a linear space inHac which is dense inHac. For an elementg in LV̂+

there is a

unique elementhPHac such thatg=V̂+
* V̂+h. Then, fortù0 and f ,gPLV̂+

we have

sg,UstdfdHac
= sV̂+

* V̂+h,UstdfdHac
= sV̂+h,V̂+UstdfdH+sRd = shout,TustdfoutdH+sRd

= shout,ustdBmSnest8 f indH+sRd − i2 Im mfP−S8f in
− gsmdshout,ẐstdxmdH+sRd

= shout,ustdBmSnest8 f indH+sRd − i2 Im mfP−S8f in
− gsmde−imtshout,xmdH+sRd, s2.68d

whereg=V̂+
* V̂+h, hout=V̂+h, andustd is the unitary group defined in Eq.s1.14d. Thus, on a dense

set inHac, matrix elements of the evolution can be calculated in the outgoing contractive nesting.
The example of anH` S-matrix gives a clear demonstration for the possible use of the Sz.-Nagy–
Foias theory of contractions in the framework of quantum mechanical scattering problems.

III. COMMENTS—THE CONTRACTIVE CONTAINMENT OF HILBERT SPACES

Consider the following definition of abounded and contractive containmentof Hilbert
space.29

Definition (bounded and contractive containment): IfH0 is a Hilbert space, one says that
another Hilbert spaceH1 is contained boundedly inH0 if it is a vector subspace ofH0 and if the
inclusion map of it intoH0 is bounded. If the inclusion map is a contraction, one says thatH1 is
contained contractively inH0.

If A is a bounded operator from the Hilbert spaceH1 into the Hilbert spaceH0, then we define
MsAd,H0 to be the range ofA with the Hilbert space structure that makesA a coisometry from
H1 onto MsAd. Thus if x andy are vectors inH1 and if they are orthogonal to the kernel ofA
then

sAx,AydMsAd = sx,ydH1
. s3.1d

The spaceMsAd is contained boundedly inH0, and if A is a contraction fromH1 into H0 then
MsAd is contained contractively inH0. Every Hilbert space contained boundedly inH0 is such an
operator range, since it is the range of the inclusion map of it intoH0.

Another important notion is that of acomplementary space.29 If A: H1°H0 is a Hilbert space
contraction, thenHsAd;Mss1−AA *d1/2d,H0 is called the complementary space ofMsAd. If
MsAd is an ordinary subspace, that is, ifA is a partial isometry, thenAA * and 1−AA * are
complementary orthogonal projections, andHsAd is the ordinary orthogonal complement of
MsAd. If A is not a partial isometry then the intersectionMsAdùHsAd, called theoverlapping
space,29 is nontrivial. In this case we have

MsAd ù HsAd = AHsA*d. s3.2d

In addition we have

H0 = HsAd + MsAd, s3.3d

where is Eq.s3.3d vectors inMsAd andHsAd are considered as elements ofH0.
Applying the definition above and the subsequent discussion to the nesting structure

sHac,H
+sRd ,V̂+d it is clear thatMsV̂+d,H+sRd is contractively contained inH+sRd fof course,

the same statement is valid forMsV̂−d,H+sRdg. Moreover, sinceV̂+: Hac°H+sRd is injective,

the scalar product inMsV̂+d defined in Eq.s3.1d can be written in the form
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sx,ydMsV̂+d ; sV̂+
−1x,V̂+

−1ydHac
. s3.4d

RegardingV̂+ as a map fromHac onto MsV̂+d, equipped with the scalar product defined in Eq.

s3.4d, we find that it is unitary andMsV̂+d is a representation ofHac fin terms of functions

belonging toH+sRdg. Since V̂+ is a contraction we can construct the complementary space

HsV̂+d,H+sRd by

HsV̂+d = Mss1 − V̂+V̂+
* d1/2d

and Eq.s3.2d and Eq.s3.3d imply that

MsV̂+d ù HsV̂+d = V̂+HsV̂+
* d Þ h0j s3.5d

and

H+sRd = HsV̂+d + MsV̂+d. s3.6d

We know thatV̂+Hac is dense inH+sRd, hence for anyf PH+sRd there exists some sequence
of elementshfnjnPN, fnPHac such that

lim
n→`

if − V̂+fniH+sRd = 0. s3.7d

Observe that by the one to one correspondence betweenHac andMsV̂+d, the continuity ofV̂+

and its contractive property, if a sequencehfnjnPN of elementsfnPHac converges to an element
f PHac we have

lim
n→`

iV̂+f − V̂+fniH+sRd ø lim
n→`

if − fniMsV̂+d = limn→`if − fniHac
= 0. s3.8d

Hence all converging sequences inHac correspond, under the mappingV̂+, to sequences inH+sRd
converging to elements inMsV̂+d in the topology of the space H+sRd. Conversly, any element in

MsV̂+d, regarded as a subset ofH+sRd, correspondssunder the mapping byV̂+d to some sequence

converging inHac. Thus elements inMsV̂+d are associated with the existence of converging
sequences inHac. We conclude that elements inH+sRd that do not correspondsunder the mapping

by V̂+d to any converging sequence inHac are all inHsV̂+d \MsV̂+d. In particular, resonances,
which are not elements ofHac and do not correspond to any converging sequence inHac, always

belong to the complementary spaceHsV̂+d. In the discussion above of anS-matrix associated with

anH`sPd function this observation implies that the subspaceK̂m containing the resonance has the

property thatK̂m,HsV̂+d \V̂+Hac.

IV. CONCLUSIONS

This paper introduces an application of the Sz.-Nagy–Foias theory of contraction operators on
Hilbert space for the description of resonances in quantum mechanical scattering problems for
which the generator of evolution is bounded from below. This approach is based on the construc-
tion, in Sec. II above, of a framework analogous to that of the Lax–Phillips scattering theory. Thus,
in this framework there exists an outgoing nesting structure, an incoming nesting structure and a
nestedS-matrix, which are analogous to the Lax–Phillips translation representations and the Lax–
Phillips S-matrix, respectively. In the outgoing and incoming nesting structures the evolution is
transformed, for timestù0 into a continuous semigroup of Toeplitz operators. It was shown that,
in the case that the originalS-matrix is a bounded analytic function in the upper half-plane, its
zeros in the upper half-planesor poles of its analytic continuation to the lower half-planed corre-
spond to the existence of a subspace of the nesting space such that thesnestedd evolution restricted

032104-23 Sz.-Nagy–Foias theory and Lax–Phillips type J. Math. Phys. 46, 032104 ~2005!

                                                                                                                                    



to this subspace defines a Lax–Phillips type semigroup providing the typical exponential decay
behavior of the resonance. The relation between the zeros of theS-matrix and the eigenvalues of
the generator of the semigroup are seen to be a result of the Sz.-Nagy–Foias theory of contrac-
tions. One may note, furthermore, that the two conditions for an appropriate description of a
resonance, set in Sec. I, are formally satisfied. However, the interpretation of the resonance state

fthe eigenvectorxm of the generator of the Lax–Phillips type semigrouphẐstdjtù0 appearing in Eq.
s2.68dg merits some additional investigation. The problem of interpretation amounts to the under-
standing of the contribution of the resonance to observable quantities. Since the resonance state is
identified with a well defined closed subspace of the Hardy space, which is a Hilbert space, an
appropriate interpretation can be achieved, in principle, by the transfer of the action of operators
corresponding to quantum mechanical observables from the original Hilbert space to the Hardy
space via the nesting maps. Associating matrix elements of observables to matrix elements of the
transformed operatorssin a manner similar to the treatment of the evolution in the present paperd
should enable for the isolation of the contribution of the resonance. The question of interpretation
of the resonance state as well as the natural question regarding the relation of the formalism
developed in this paper to standard methods for the description of resonances, such as complex
scaling, are best addressed through the analysis of simple concrete models using the framework
introduced here and its comparison to the results of analysis by other methods. Such an analysis
will be considered elsewhere.

The results presented in this work are limited in two obvious ways. The first is the fact that the
nesting structures are constructed for scalar valued functions and the second stems from the fact
that the appearance of the Lax–Phillips semigroup was shown under the assumption that the
S-matrix is the boundary value function onR+ of an H` function in the upper half-plane. An
extension of the nesting framework to the case of an absolutely continuous spectrum ofH0 andH
with finite multiplicity seem to follow in a straightforward way from the framework developed
here. More general cases may present additional difficulties.

Concerning the second difficulty raised above, it should be emphasized that the general
framework developed in Sec. II, up to and including Theorem 2.5, exist regardless of any particu-
lar assumptions on the properties of the originalS-matrix. More elaborate tools from operator
theory may be invoked if more general assumptions, other than the simplifying assumption of an
H` S-matrix, are made. Possible extensions of the framework presented in this paper, along these
lines, will be investigated elsewhere.
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A time reversible probabilistic representation of solutions of thesEuclideand
Schrödinger equation in momentum representation is constructed using Lévy pro-
cesses and bridges. Each diffusion in the position representation is associated with
a jump diffusion in the momentum space. Our method can be looked upon as a
rigorous version of Feynman’s path integral approach. Several examples are
studied. ©2005 American Institute of Physics.fDOI: 10.1063/1.1850178g

I. INTRODUCTION AND NOTATION

Feynman’s path integral approach to quantum mechanics can be regarded as an informal
reinterpretation of this theory in intrinsically stochastic terms. More than 50 years after its
creation,9 this approach has proved to be deep enough to provide basic insights into an amazing
list of physical models, far beyond what could be anticipated originally. However, it is only
“informal” because thescomplexd probability measures on the various path spaces underlying
Feynman’s approach do not exist. Of course, a number of mathematical counterparts of such
informal probability measures have been known, and used with profit, for a very long timescf.
Refs. 1,18, and references therein for historical perspectives on the issue and, in particular, on the
role of the Trotter formula as a kind of alternatived. The basic one, for configuration representa-
tion, is as old as quantum theory itself: it is Wiener measure, induced by Brownian motion. Its
original ssampled path space, also named after Wiener, is of the form

V0 = hv P CsR+;Rdd : vs0d = 0j,

and its relation with quantum theory appears in the famous Feynman–Kac formula19

se−st/"dHx*dsqd =E
V0

x*svstd + qde−s1/"de0
t Vsvsrd+qddr dPWsvd, s1.1d

where H=−s"2/2dD+V is a lower bounded Hamiltonian observable onL2sRdd ,Vsqd a scalar
potential,x* belongs to the dense domainDsHd of H in L2sRd ," is the Planck constant, andPW is
the Wiener measure.

It is often more appropriate to consider path spaces on a compact time intervalf0,tg instead
of R+, for instance

Vq,t = hv P Csf0,tg;Rdd : vstd = qj.

Then the Feynman–Kac formula becomes
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se−st/"dHx*dsqd =E
Vq,t

x*svs0dde−s1/"de0
t Vsvsrdddr dPWsvd. s1.2d

The right-hand side ofs1.2d is a legitimate path integral representation of the solution of the
Cauchy problem inL2sRdd,

− "
]ht

*

]t
= Hht

* ,

s1.3d
h0

*sqd = x*sqd,

regarded as counterpart of Feynman’s one for Schrödinger equation,10 resulting informally from
the “Wick rotation” t→−it in s1.3d. The representations1.2d is the Euclideansor imaginary timed
viewpoint of Feynman’s formula for the wave functionc, too often considered as the only rigor-
ous one. In relation with the physicists standard manipulations of paths integrals,27 however, the
representations1.2d is not always appropriate. Indeed, in Feynman’s framework, the configuration
representation is only one of those where the path integral approach should apply successfully.
What are the associated probabilistic counterparts of path integrals in momentum or energy rep-
resentation, for example? We will really be able to claim that the mathematical content of Feyn-
man’s approach is under control when a general probabilistic construction valid in any represen-
tation, and providing at once the existence of all underlying probability measures, will be available
sat least for a restricted class of potentialsd. This is, of course, still far from being the case.

Such a general construction would, presumably, also be a great advance to Stochastic Analysis
itself23 since it would provide as well new relationssEuclidean counterparts of quantum unitary
transformationsd between stochastic processes, or measures, usually regarded as unrelated in prob-
ability theory.

A probabilistic counterpart of Feynman’s formula in configuration representation, distinct
from s1.2d, has been introduced in the mid-eightiesscf. Refs. 35,6, and references thereind. It is
founded on the elementary observation that the Feynman–Kac formula is just a conditional ex-
pectation, a concept never defined in quantum mechanics where only absolute expectations appear,
and in a very specific manner. Precisely, for the quantum system with the same Hamiltonian as
before,

E
A

ctsqdc̄tsqddq, s1.4d

is interpreted as thesunconditional or absoluted probability measure, for this system, to be in the

BorelianA at time t, wherec̄ denotes the complex conjugate of the wave functionc. Of course,
the product form of the density ins1.4d is in fact independent of the representation.

Since various probabilistic interpretations of the solutions ofs1.3d as conditional expectations
are available,s1.4d suggests to look, among those, for a special class of diffusion processes whose
absolute probability density is the product of positive solutionsht

* of s1.3d and of positive solu-
tions ht of the equation,

"
]ht

]t
= Hht,

hvsqd = xsqd, s1.5d

adjoint to s1.3d with respect to the time parameter on a compact time interval, saytP I =fr ,vg.
Such diffusions are indeed well defined and it can be shown that their qualitative properties are
much closer to what is needed to understand Feynman’s approach than those ofs1.2d, cf. Refs. 6,7.
In particular, they are time inhomogeneous but still time reversible. The above mentioned product
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form of their probability at the timet becomes a mathematical expression of their reversibility
sand their Markovian character, actuallyd since s1.5d can be interpreted as the time reversal of
s1.3d. In fact, the qualitative properties of these processes are so close to the quantum ones that
they allow to understand, for example, fresh aspects of quantum symmetries in Hilbert space,
generally ignored.21,6

The purpose of this paper is to show that the structure of this probabilistic constructionsEQM,
or Euclidean quantum mechanicsd is preserved in momentum representation, suggesting that this
structure is, somehow, independent of the representation. If this is indeed the case, a global
mathematical picture of Feynman’s path integral approach should be accessible, with a number of
exciting consequences, both at the conceptual level of quantum physics and in the infinite dimen-
sional analysis context ofsEuclideand quantum field theory. In this infinite dimensional context,
the need for such a unification has been known for a long time in physics and in mathematicsscf.
for instance, Refs. 27,13d.

As observed by Feynman and Hibbs,10 Sec. 5.1, it is expected that in momentum representa-
tion, the underlying stochastic processes belong to a special class of jump processes. In other
words, and in contrast with the configuration representation, the elementsv of the momentum
path space cannot be made continuous, in general, but at best continuous on the right.

The organization of our paper is as follows. Section II is devoted to a review of Lévy
processes and the use of the Lévy–Khintchine representation to represent potentials. In Sec. III we
present a summary of the relations between Lévy processes and pseudodifferential or Hamiltonian
operators, and we show how to construct the two adjoint equations corresponding, in momentum
representation, tos1.3d ands1.5d. What plays the role of the Hamiltonian operatorH in s1.3d and

s1.5d, is now a pseudodifferential operator, denoted byĤ, whose explicit form depends, of course,
on the scalar potentialV in s1.1d.

Section IV describes the construction of the new class of reversible diffusions with jumps
ẑt ,tP I sour “momentum process”d whose absolute probability density at any timetP I is a prod-
uct ĥt

*ĥt of positive solutions of the two adjoint equations above. One way to describe them is to
give the two stochastic integro-differential equations solved byẑt ,tP I, whose coefficients depend
exclusively on the two positive solutionsĥt

* andĥt on I sEuclidean counterparts of the momentum
wave function and its complex conjugated. The dual aspect of this construction is fundamental. In
particular, two families ofs-algebrassor “filtrations”d are necessary, here, for the description ofẑt

in I =fr ,vg. Let us recall that traditional constructions of stochastic processes require only one
such filtration, the nondecreasing familysPtd, generated byẑt ,tP I, and describing its pastsmore
precisely the set of all events whose occurrence can result from the observation ofẑs,r øsø td.
The information aboutPt is contained in the solutionsĥt

* of the Cauchy problem forĤ, given a
positive initial conditionĥr

* . But we will need as well a nonincreasing filtrationFt, describing the
future of ẑt on I. This will correspond to the information included in the solutionĥt of the adjoint
PDE, for a positive final conditionĥv. Another aspect of this duality can be expressed by saying
that the resulting Markovian processẑt ,tP I =fr ,vg, is built from the data of two positive prob-
ability densities at the boundary]I of our time interval, saypr andpv, instead of the traditional
initial probability density and a transition function. Our data ofpv is not contradictory, however,
becauseẑt is the Markovian representative of a wider class of processes built fromhpr ,pvj, called
Bernsteinsor “local Markov,” or “reciprocal,” cf. Refs. 6,7d and satisfying the property

EffsẑtduPs ∨ Fug = Effsẑtduẑs,ẑug, s, t , u, s1.6d

for all f bounded measurable, whereEf·uAg denotes the conditional expectation given as-algebra
A. In other words, the knowledge of all the pastPs and the futureFu of the process is irrelevant
to compute the conditional expectations; only the boundary valuesẑs, ẑu matter. Propertys1.6d is
more general than the Markov property but this one is sufficient for quantum physics, as shown by
the product form of the integrand ofs1.4d.

Sections V and VI describe the dynamics of the momentum processẑt ,tP I. Here, again, we
follow Feynman’s approach. Hissunpublishedd Princeton Ph.D. thesis was entitled “The least
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action principle in quantum mechanics” and this principle can be regarded as a stationary phase
method in infinite dimension.1 In our probabilistic context some methods of controlled Markov
processes can be adapted to our purpose. They provide asstochasticd action functional, and in
particular a Lagrangian, whose critical points are precisely the diffusion process with jumps
constructed in Sec. IV. The method exploits the maximum principle for a class of PDEs which can
be interpreted as quantum deformations of the classical Hamilton–Jacobi equation in momentum
representation. The equations of motion of Sec. VI are the ones solved by the critical points of the
action functional and provide the probabilistic version of the quantum Heisenberg equations in
momentum representation. In this sense, the structure of the present construction is, indeed, the
same as the one of the reinterpretation of Feynman’s approach in configuration representation of
Refs. 6 and 35. In particular, the study of the symmetries of this frameworksnot done hered should
have interesting surprises in store as in the configuration representation.6,33 A number of explicit
examples illustrate our construction.

II. LÉVY–KHINTCHINE REPRESENTATION AND POTENTIALS

Let V:Rd→C with Vs0dù0 and such thate−tV is continuous positive definite. In this case the
function V admits the Lévy–Khintchine representation

Vsqd = a + ikc,ql +
1

2
iqi2 −E

Rd\h0j
se−ikq,kl + ikq,kl1hukuø1j − 1dnsdkd, s2.1d

wherekPRd is called the wave vector,a,cPRd,k· , ·l denotes the scalar product inRd with norm
i ·i, andn is a Lévy measure onRd\ h0j, i.e., n satisfieseRdsiki2∧1dnsdkd,`. Note however that
the above hypothesis onV is not satisfied by potentials of the formVsqd=qa for a.2, thus
excluding quartic potentials in particular. See, e.g., Refs. 3,29 for background on Lévy processes.
A stochastic processjt, tù0, defined on a probability spacesV ,P ,Pd is called a Lévy process if
it has right continuous paths starting from the origin and its increments are independent and
stationary:

sad Psj0=0d=1,
sbd for all 0øsø t, jt−js is independent ofPs,P, the past filtration generated by alljr, r øs,
scd for all 0øsø t, jt−js is equal in distribution tojt−s.

The Lévy processjt of characteristic exponentVsqd is defined by

Efe−si/"dkjt,qlg = e−st/"dVsqd, q P Rd, s2.2d

so that, from now on, the Lévy processjt will have the units of the momentump="k andV, of
course, the ones of aspotentiald energy. Lévy processes form a large class of Markov processes,
including the two most commonly used in mathematical physics: Brownian motion and the Pois-
son process.

TheRd-valued processjt ,tPR+, admits the following canonicals“Lévy–Itô” d decomposition:

jt = ct + Wt
" +E

0

t E
huku.1j

kmsdk,dsd +E
0

t E
h0,ukuø1j

ksmsdk,dsd − nsdkddsd, s2.3d

whereWt
"="1/2Wt is a Brownian motion with covariance" ,msdk,dsdd is a Poisson random mea-

sure sor “canonical jump measure”d counting the jumpsDjs=js−js− swhere js−= limr↗s jrd,
namely,

msdk,dsd = o
DjsÞ0

dsDjs,sdsdk,dsd.

Notice that the jump process ins2.3d is independent ofWt
". The first Stieltjes integral in the

decompositions2.3d describes the sum of all large jumpssof size bigger than oned up to timet. It
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is called a “compound Poisson process” and is of bounded variation, but may have no finite
moments. The Poisson random measuremsdk,dsd is determined by its compensator

nsdkddsª Efmsdk,dsdg. s2.4d

As a function oft, the jump process

Mt =E
0

t E
h0,ukuø1j

ksmsdk,dsd − nsdkddsd s2.5d

in s2.3d sthe “compensated sum of small jumps”d is a Pt-martingale, i.e., it satisfiesEfuMtug,`,
tù0, and

EfMtuPsg = Ms, a . s . , 0ø sø t. s2.6d

If one takes the absolute expectation, the martingale propertys2.6d implies that t°EfMtg is
constant. A physically interesting example of martingale follows from the definitions2.2d of the
characteristic exponent ofjt, indeed

expS−
1

"
siqjt + tVsqddD, t . 0, s2.7d

is aPt-martingale. It has been shown in Euclidean quantum mechanics that most martingales play,
in point of fact, the role of constants of the motionscf. Refs. 6,21 and references thereind.

Remarks:

s1d If "=0 the only possible term of unbounded variation paths ins2.3d is the processs2.5d of
small jumps. A criterion for bounded variation paths is

E
Rd

suku ∧ 1dnsdkd , `, s2.8d

and, in this case,Mt can be decomposed as

Mt =E
0

t E
h0,ukuø1j

kmsdk,dsd − tE
hukuø1j

knsdkd, t . 0.

Condition s2.8d may be verified even whennsRdd=`, i.e., when there are infinitely many
jumps in any compact time interval. It follows also clearly froms2.1d–s2.3d that the paths
t°jt are continuous if and onlyn=0.

s2d A formal expression of the Lévy–Itô decompositions2.3d, used later on whenn is symmetric,
is

jt = ct + Wt
" +E

0

t E
Rd\h0j

kmsdk,dsd, s2.9d

but it should be stressed that although the integrals ins2.3d of large and small jumps are
convergent, the last term ins2.9d does not make sense in general.

s3d From s2.1d and s2.3d it is clear that, in such a framework, the Brownian motionWt sin the
purely diffusive cased has the characteristic exponentVsqd= 1

2iqi2. We could say as well that
Wt

" corresponds toVsqd=s" /2diqi2 but the first version is more natural for our purpose.
s4d Compound Poisson process.

Let Zn, nPN, denote a sequence of independent identically distributedRd-valued random
variables with common probability lawmZ on Rd\ h0j, and letNt be a Poisson process with
intensityg.0, independent of all theZn, nPN. This means thatN0=0 and
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PsNt = nd =
sgtdn

n!
e−gt, n P N.

Notice that the compensated Poisson process isÑt=Nt−gt, so thatEfÑtg=0 andEfÑt
2g=gt.

The compound Poisson process is defined as

jt = Z1 + ¯ + XNt
, t P R+.

It is a Lévy process with Lévy measuren=gmZ. The Lévy–Khintchine representation re-
duces here to

Vsqd = gE
Rd\h0j

se−iqk − 1dmZsdkd.

The paths ofjt are piecewise constant, and discontinuities occur only at randoms“waiting” d
times

Tn = infht ù 0:jt = nj, n ù 1,

with T0=0, and the jump sizes are random within the range of theZn. For example, reducing
mZsdkd, in the above Lévy–Khintchine formula, tod1sdkd, we recover the above elementary
Poisson processjt=Nt, with jumps of size +1 at eachTn. ThoseTn are gamma distributed
ssee, e.g., Ref. 20d, i.e., their probability density has the form

ge−gs sgsdn−1

sn − 1d!
1f0,̀ dssd.

s5d One of the main difficulties in handling Lévy processes is that they can easily be of un-
bounded variation, i.e.,

o
0øsøt

uDjsu = `, a . s. s2.10d

However it is always true that

o
0øsøt

uDjsu2 , `,

a.s., and this second property allows to control the problems due tos2.10d, see, e.g., Ref. 2.

III. HAMILTONIANS AND PSEUDODIFFERENTIAL OPERATORS

We refer to the survey15 and to the references therein for the notions summarized in this
section on the links between Lévy processes and pseudodifferential operators. In order to proceed
with the definition of pseudodifferential operators and the momentum representation, we need to
introduce the Fourier transform

Fuspd =
1

s2p"dd/2E
Rd

e−si/"dkp,qlusqddq, u P SsRdd,

and its inverse

F−1vsqd =
1

s2p"dd/2E
Rd

esi/"dkp,qlvspddp, v P SsRdd.

Given anysmeasurabled classical observablef :Rd3Rd→R such thatq° fsp,qd is continuous
with polynomial growth, the pseudodifferential operator with symbolfsp,qd is defined as
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fsp,i" ¹ duspd =
1

s2p"dd/2E
Rd

e−si/"dkp,qlfsp,qdF−1usqddq

= Fsfsp, · dF−1us·ddspd, p P Rd, u P SsRdd.

In particular, the pseudodifferential operatorVsi"¹ d, for V as in s2.1d, satisfies

Vsi" ¹ duspd = auspd − "kc, ¹ ul −
"2

2
Du −E

Rd
susp + "kd − uspd − k"k, ¹ uspdl1hukuø1jdnsdkd.

Let sPtdtPR+
denote the Markov semigroup associated with the Lévy processsjtdtPR+

. This means
that

Ptuspd = Efusp + jtdg

= EfsFF−1udsp + jtdg

=
1

s2p"dd/2E
Rd

EFexpS−
i

"
kjt,ql −

i

"
kp,qlDGF−1usqddq

=
1

s2p"dd/2E
Rd

expS−
t

"
Vsqd −

i

"
kp,qlDF−1usqddq

= expS−
t

"
Vsi" ¹ dDuspd, u P SsRdd, t P R+,

hence the infinitesimal generator of the Markovian semigroup ofsjtdtPR+
is −s1/"dVsi"¹ d.

We are only interested in real-valued scalar potentialsVsqd, i.e., the following conditions are
assumed to be satisfied from now on:

sH1d the constantc in s2.1d is equal to 0, and
sH2d n is symmetric with respect tok°−k.
According tos2.1d–s2.3d, sH1d says that our basic Lévy process has no constant drift and from

sH2d its measuren is invariant under time reversal, as it should be for any Hamiltonian observable
in the class considered now. We shall also assume that the parametera is zero, i.e.,Vs0d=0,
without loss of generality from the physical point of view, since the energy is defined up to an
additive constant. Hence, we shall restrict ourselves toV compatible with the Lévy–Khintchine
representation

Vsqd =
1

2
iqi2 −E

Rd\h0j
se−ikq,kl − 1dnsdkd, s3.1d

and therefore for alluPSsRd,

Vsi" ¹ duspd = −
"2

2
Duspd −E

Rd
susp + kd − uspddnsdkd.

Notice that the conditionssH1d and sH2d imply that we could write as well

Vsqd =
1

2
iqi2 −E

0

`

scossqkd − 1dnsdkd.

Then we would have
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Vsi" ¹ duspd = −
"2

2
Duspd −

1

2
E

0

`

susp + "kd − 2uspd + usp − "kddnsdkd. s3.2d

Consider any HamiltonianH of the form

H = −
"2

2
Dq + Vsqd s3.3d

and the associated Schrödinger equation in the position representation

i"
]F

]t
sq,td = HFsq,td = −

1

2
"2DqFsq,td + VsqdFsq,td.

The Euclidean version of this equation results from the substitutiont° it,

"
]ht

]t
sqd = Hhtsqd = −

1

2
"2Dqhtsqd + Vsqdhtsqd, t P fr,vg. s3.4d

The equation adjoint tos3.4d is given by the substitutiont°−it,

− "
]ht

*

]t
sqd = Hht

*sqd = −
1

2
"2Dqht

*sqd + Vsqdht
*sqd, t P fr,vg. s3.5d

Let us define the HamiltonianĤ=FHF−1 in momentum representation, i.e.,

Ĥĥtspd = FsHF−1ĥtdspd =
1

2
ipi2ĥtspd + FsVF−1ĥtdspd

=
1

2
ipi2ĥtspd + Vsi" ¹ dĥtspd

=
1

2
ipi2ĥtspd −

"2

2
Dĥtspd −E

Rd
sĥtsp + "kd − ĥtspddnsdkd. s3.6d

Using this, the momentum representation of the Euclidean system described bys3.4d becomes

"
]ĥt

]t
spd = Ĥĥtspd =

1

2
ipi2ĥtspd + Vsi" ¹ dĥtspd, s3.7d

andh ,ĥ are linked by the relationĥt=Fht. Similarly for equations3.5d,

− "
]ĥt

*

]t
spd = Ĥĥt

*spd =
1

2
ipi2ĥt

*spd + Vsi" ¹ dĥt
*spd. s3.8d

We call ssomewhat improperlyd integral kernel the kernelhst ,p,u,dld, 0, t,u, p, l PRd, associ-
ated with

e−s1/"dsu−tdĤfspd =E
Rd

fsldhst,p,u,dld.

The following proposition shows how to compute the kernelhst ,p,u,dld starting from the lawmt

of the Lévy processjt at time t.
Proposition 3.1: For any0, t,v and p, l PR we have

hst,p,u,dld = asu − t,p,ldmu−ts− p + dld, s3.9d

where
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asu − t,p,ld = Efe−s1/2"de0
u−tip + jti2 dtuju−t = l − pg,

and mu−ts−p+dld denotes the image measure ofmu−t under l° l +p.
Proof: Since −s1/"dVsi"¹ d is the generator ofsjtdtPf0,ug, we have from the Feynman–Kac

formula for Markov processesssee, e.g., Sec. III.19 of Ref. 28d,

e−s1/"dsu−tdĤfspd = Effsjude−s1/2"det
uijti2 dtujt = pg = Effsp + ju−tde−s1/2"de0

u−tip + jti2 dtg, t , u,

where we used the stationarity of the increments ofjt. So, by definition of the integral kernel
hst ,p,u,dld and the Feynman–Kac formula,

E
Rd

hst,p,u,dldfsld = e−s1/"dsu−tdĤfspd

= Effsju−t + pde−s1/2"de0
u−tip + jti2 dtg

=E
Rd

Effsju−t + pde−s1/2"de0
u−tip + jti2 dtuju−t = lgmu−tsdld

=E
Rd

fsp + ldEfe−s1/2"de0
u−tip + jti2 dtuju−t = lgmu−tsdld

=E
Rd

fsldEfe−s1/2"de0
u−tip + jti2 dtuju−t = l − pgmu−ts− p + dld.

Consequently we obtains3.9d. N
We are going to consider five one-dimensional examples in a detailed way, as illustrations of

our approach.

Examples:

s1d Vsqd=s1−cossaqdd, a.0. This case corresponds to

nsdkd = 1
2sdasdkd + d−asdkdd

in s2.1d. By s3.6d,

Ĥuspd = 1
2
ipi2uspd − 1

2Dauspd,

whereDa denotes the discretized Laplace operator

Dauspd =
usp + ad − 2uspd + usp − ad

a2 .

The random jump measure is of the form

msdk,dsd = o
n=1

`

dsa,Tn
1dsdk,dsd + ds−a,Tn

2dsdk,dsd,

wheresTk
1dkù1 andsTk

2dkù1 are two independent sequences of Poissonian waiting times, with
the same intensity 1/s2a2d. The Lévy–Itô decomposition reduces here to the compensated
sum of jumps. After introduction ofn andm as above we find
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jt =E
0

t E
R

ksmsdk,dsd − nsdkddsd = asNt
1 − Nt

2d,

where sNt
1dtPR+

and sNt
2dtPR+

are independent standard Poisson processes with intensity
1/s2a2d sinces2.5d reduces to a sum, fork= ±a, of all jumps at the waiting timesTn

i , i =1,
2, up to the timet. As an illustration, let us check the propertys2.4d of the compensator, in
this special case. For any integrablef, we have, sinceTn

1 andTn
2 have the same distribution

scf. Remark 2d:

EFE
0

t E
R

fskdmsdk,dsdG = EFo
k=1

` E
0

t E
R

fskddsa,Tk
1dsdk,dsd +E

0

t E
R

fskdds−a,Tk
2dsdk,dsdG

= EFo
k=1

`

fsad1hTk
1øtj + fs− ad1hTk

1øtjG
= sfsad + fs− addo

k=1

`

PsTk
1 ø td

=
1

2a2sfsad + fs− addo
k=1

` E
0

t

e−s/s2a2d ss/s2a2ddk−1

sk − 1d!
ds

=
t

2a2sfsad + fs− add =E
0

t E
R

fskdnsdkdds,

henceEfmsdk,dsdg=nsdkdds, as claimed. Here we can compute

e−s1/"dtĤfspd = Effsp + asNt
1 − Nt

2dde−s1/2"de0
t ip + asNt

1 − Nt
2di2 dtg

= e−t o
k,lù0

S1

2
Dk+l

fsp + ask − ldd

3E
0

t E
0

tk

¯ E
0

t2E
0

t E
0

sl

¯ E
0

s2

e−s1/2"de0
t ip + aso

i=1

k

i1fti,tg
std

− o
i=j

l

i1fsj,tg
stdd i2 dtds1 ¯ dsl dt1 ¯ dtk.

It is generally hard to solve difference equations likes3.7d for Ĥ given before. As an
illustration, let us observe that the solution of its time independent version, namely the
stationary equation associated withs3.7d,

p2

2
uspd −

1

2
susp + 1d + usp − 1d − 2uspdd = Euspd,

is given, forus0d=u0 andus1d=u1, by

uspd = −
s− 2dp+1sau1 − u1

Îa2 − 4 +a2u0 − au0
Îa2 − 4 − 2u0d

sa − Îa2 − 4dp+2Îa2 − 4

+
s− 2dp+1sau1 + u1

Îa2 − 4 +a2u0 + au0
Îa2 − 4 − 2u0d

sa + Îa2 − 4dp+2Îa2 − 4

+
sa + Îa2 − 4dp+1 + sa − Îa2 − 4dp+1

s− 2dp+1sa + 2d2 +
a − sa + 2dsp2 + 8p + 12d

sa + 2d2 ,
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with a=E+2 scomputation done using the command rsolve in Mapled.
s2d Harmonic oscillator:Vsqd= 1

2iqi2. This is the casensdkd=0 in s2.1d, and

Ĥuspd =
1

2
ipi2uspd −

"2

2
Duspd.

Clearly, the Lévy–Itô decomposition reduces tojt=Wt
", i.e., the underlying Lévy process is

a Brownian motionswith variance"d. Notice that this case can be regarded as the limita↘0
of Example 1.

s3d Vsqd=ciqia, c.0, aP s0,2g. Then

nsdkd = 50, whena = 2sthis is the case in Example 2d,

ca

uku1+adk, whena Þ 2, 6
whereca.0 depends on the value ofa. The associated Lévy process is called a “stable
process of ordera” sand a its “index of stability”d. Recall that bys2.2d, the existence of
moments of order up tonù1 for jt implies thenth differentiability of Vsqd at q=0, the
converse being true for moments of even order, see, e.g., Ref. 32, Theorem 1, p. 278. In
particular,a-stable distributions onR have finite mean if and only ifa.1.
Those processes are important because of their rotational invariancesin dimensiond
.1d and also because they are self-similar. Recall that a stochastic processZt is self-
similar with Hurst index H.0 if, ∀aù0, Zat and aHZt, tù0, have same finite-
dimensional distributionsswe refer to Ref. 8 for more about self-similar processesd. In
particular the stable processsjtdtù0 of order a is self-similar with Hurst index 1/a, i.e.,
we havejat=a1/ajt, aù0. For such processes the Hamiltonians3.6d becomes

Ĥuspd = 1
2ipi2uspd − c"aDa/2uspd,

involving the fractional power of the Laplacian, a highly nonlocal operator, often linked with
relativistic Hamiltonians, cf. Ref. 14. Whena=2, i.e., in the case of the Brownian motion
Wt

" appearing ins2.3d, this scaling property can be traced back to one of the “isovectors” of
the symmetry group of the classical heat equations1.5d for the free HamiltonianH0=
−s"2/2dD, cf. Ref. 21.

s4d Vsqd=s1/a2dlog coshaq, a.0. The Lévy measure is of the form

nsdkd =
1

2a2

dk

k sinhskp/s2add
,

see, e.g., Refs. 5,12,30fnote that in Eq.s2d of Ref. 12 as well as in Eq.s4d of Ref. 5, cosh
should be replaced bysinhg. Notice that in the limita↘0 this measure reduces to 0, and
the potentialV becomes the harmonic one of Example 2. The associated processjt is
called Meixner process,24 and its Lévy–Itô decomposition has no diffusive part. Its
expectation and variance are, respectively, given byEfjtg=0, Efjt

2g= t, t.0. The corre-
sponding Hamiltonian is

Ĥuspd =
1

2
ipi2uspd −

1

2a2E
Rd\h0j

susp + "kd − uspdd
dk

k sinhskp/s2add
.

s5d Vsqd=s1/a2dlogs1+a2q2d, a.0. The Lévy measure

nsdkd =
1

a2uku
e−uku/a dk

is one of thessymmetricd variance gamma processscf., for instance, Ref. 22d, whose expec-
tation and variance are, respectively,Efjtg=0, Efjt

2g=2t, t.0. Notice that when the param-

032105-11 Euclidean quantum mechanics J. Math. Phys. 46, 032105 ~2005!

                                                                                                                                    



etera is large the exponential decay ofnsdkd is lower around zero and so the probability of
large jumps increases. According to Remark 2, the paths of the variance gamma process are
of bounded variation. This process has no continuous martingale component but is a pure
jump process with infinite number of jumps in any compact time interval. Of course the
associated Hamiltonian operator is given by

Ĥuspd =
1

2
ipi2uspd −

1

a2E
R\h0j

susp + "kd − uspdd
e−uku/a

uku
dk.

As in Example 4, this case reduces to the harmonic one whena↘0.

Before explaining how the existence of the relevant class of Bernstein processes can be
proved, let us introduce some notation and assumptions. In the sequel we make the absolute
continuity hypothesis, with an obvious abuse of notation,

hst,p,u,dld = hst,p,u,ldlsdld, lsdpd − a . e . , s3.10d

0, t,u, p, l PRd, wherel denotes a given reference measure. In particular, forr ø tøv, we have

ĥt
*spd = e−s1/"dst−rdĤĥr

*spd =E
Rd

ĥr
*sidhsr,i,t,pdlsdid

and

ĥtspd = e−s1/"dsv−tdĤĥvspd =E
Rd

ĥvsmdhst,p,v,mdlsdmd.

This condition is satisfied, for example, if

sid the law ofjt ,t.0, has a density with respect to Lebesgue measure, e.g., in the case of stable
processesssee Example 3d and for Lévy processes with Brownian component, or

sii d mt−ss−j +dpd has a density with respect tolsdpd ,lsdjd, a.e. In particular this will follow
from Proposition 3.1 ifl is absolutely continuous under the translationp° j +p, lsdjd, a.e.,
andmt−s is absolutely continuous with respect tol,

mt−ssdpd = mt−sspdlsdpd.

This is the case in particular for the symmetric Poisson process of Example 1 withlsdpd
=on=−`

` da3nsdpd.

Note that we havehss, j ,t ,pd=hst ,p,s, jd, sinceĤ that is symmetric with respect tol.

IV. MOMENTUM REPRESENTATION AND BERNSTEIN–LÉVY PROCESSES

This section summarizes the existence results for Bernstein processes established in Ref. 25.
Let ĥr

* ,ĥv :Rd→R+ be two l-a.e. strictly positive initial and final conditions ofs1.3d and s1.5d,
respectively, such that for sometP I =fr ,vg, and therefore for any sucht,

E
Rd

ĥt
*spdĥtspdlsdpd = 1. s4.1d

As explained in the introduction, this relation will be interpreted as a Euclidean version of Born’s
probabilistic interpretation of the wave function in momentum representation. More precisely, and
since no specific relation betweenĥt

* andĥt is needed for the last identity to make sense,s4.1d will
be regarded as the Euclidean counterpart of the time invariance of any transition amplitudes in
Feynman’s approach. So the following result shows in particular that, quite in contrast with the
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quantum case, this EuclideansBornd probabilistic interpretation of the wave function in momen-
tum representation is mathematically justifiable.

Theorem 4.1: sRef. 25d There exists aRd-valued processsẑtdtPfr,vg whose probability density
at time t with respect tol is precisely given by the product

rtspd = ĥt
*spdĥtspd.

This processsẑtdtPfr,vg is both forward and backward Markovian, with forward transition prob-
ability kernel, for r,s, t,u,v and j,p, l PRd, given by

p̂st,p,u,ld =
ĥusld
ĥtspd

hst,p,u,ld, s4.2d

and backward transition probability kernel

p̂*ss, j ,t,pd =
ĥs

*s jd
ĥt

*spd
hss, j ,t,pd. s4.3d

In particular, the initial and final laws ofsẑtdtPfr,vg are of the form

prsdid = ĥrsidĥr
*sidlsdid andpvsdmd = ĥvsmdĥv

*smdlsdmd.

In fact, if hss, j ,t ,pd is continuous ins j ,pd and strictly positive for all 0,s, t, Theorem 1 of Ref.
4 ssee also Theorem 3.2 of Ref. 17, and Theorem 3.4 of Ref. 35d state that given any two strictly
positive probability densitiesprsid and pvsmd, it is indeed possible to find two strictly positive
functionsĥr

* , ĥv :Rd→R+ such that

prsid = ĥr
*sidĥrsid, pvsmd = ĥvsmdĥv

*smd.

A posteriori, ĥr
* and ĥv can, therefore, be interpreted asspositived initial and final boundary

conditions of the two underlying adjoint equationss1.3d ands1.5d. The resulting processsẑtdtPfr,vg
is a sMarkoviand Bernstein processscf. Ref. 7, for exampled. As observed ins1.6d this means in
particular that

Psẑt P dpuPs ∨ Fud = Psẑt P dpuẑs,ẑud,

and that the joint lawPsẑr PA, ẑvPBd, for A,B two Borelians ofRd, has the special form

Psẑr P A,ẑv P Bd =E
A3B

ĥr
*sidhsr,i,v,mdĥvsmdlsdidlsdmd.

Conversely, we also have a uniqueness result, i.e., ifsẑtdtPfr,vg is a Markovian Bernstein process
with Bernstein kernelhss, j ,t ,dp,u, ld=PsẑtPdpu ẑs= j , ẑu= ld scf. Refs. 7,25d such that

hss, j ,t,dp,u,ldhss, j ,u,ld = hss, j ,t,pdhst,p,u,ldlsdpd,

sø tøu and j ,p, l PRd, then there exist positive density functionsĥr
*sid and ĥvsmd such that

Psẑr P A,ẑv P Bd =E
A3B

ĥr
*sidhsr,i,v,mdĥvsmdlsdidlsdmd,

see Theorem 7.1 in Ref. 25. The processessẑtdtPfr,vg resulting from the construction of Theorem
4.1 can be regarded as generalizations of the usual concept of Markovian bridgesscf., for example,
Ref. 6 in the more familiar case of diffusion processesd, which corresponds to Dirac boundary
conditions at the boundary of the time intervalfr ,vg. In contrast, here, we allow for anysl-a.e.
strictly positived probability densitiespr andpv. We shall give a description of Markovian bridges
of Theorem 4.1 in terms of forward and backward stochastic integro-differential equations driven

032105-13 Euclidean quantum mechanics J. Math. Phys. 46, 032105 ~2005!

                                                                                                                                    



by the Lévy processsjtdtPfr,vg of Sec. II. Let us recall that, for stochastic equations, the analog of
classical solutions of integro-differential equations is called a strong solutionsin this case the
solution is a processd. It requires, indeed, strong regularity conditions on the coefficients of the
equation, for example Lipschitz conditions for stochastic differential equations. When more gen-
eral coefficients are needed, there is a concept of weak solution, where one looks for a unique
process with the proper set of finite-dimensional distributionsscf. Ref. 16 for instanced. Then the
solution is a probability measure. Letzt−, respectively,zt+, denote the left, respectively, the right,
limit of zt at tP fr ,vg.

The proof of the next Proposition 4.2 relies on Lemma 4.3 below,scf. Ref. 25d which gives the
forward and backward generators of the processsẑtdtPI constructed in Theorem 4.1. Indeed, the
knowledge of the generators ofsẑtdtPI provides the forward and backward representationss4.4d
and s4.5d of sẑtdtPI as weak solutions of stochastic integro-differential equations, using Theorem
13.58, Theorem 14.80 of Ref. 16, pp. 438 and 481, and references therein. In order for these
representations to hold, we need to assume that the conditions given on p. 434 of Ref. 16 are
fulfilled:

sH3d The functions

st,pd ° E
Rd

s1 ∧ iki2d
ĥtsp + "kd

ĥtspd
nsdkd,

st,pd ° E
h0,ukuø1j

k
ĥtsp + "kd − ĥtspd

ĥtspd
nsdkd,

st,pd ° ¹ log ĥtspd,

sH4d as well as

st,pd ° E
Rd

s1 ∧ iki2d
ĥt

*sp − "kd
ĥt

*spd
nsdkd,

st,pd ° E
h0,ukuø1j

k
ĥt

*sp − "kd − ĥt
*spd

ĥt
*spd

nsdkd,

st,pd ° ¹ log ĥt
*spd,

are bounded on compacts ofR+3Rd.
Proposition 4.2: The processsẑtdtPfr,vg is solution, in the weak sense and with respect to the

forward filtration sPtdtPfr,vg, of

dẑt = dWt
" +E

Rd
kmsdk,dtd + " ¹ log ĥtsẑt−ddt, s4.4d

under a probability P for which Wt
" is a (forward) Brownian motion with variance", and

msdk,dsd is the canonical point measure with compensatorfĥtsẑt−+"kd / ĥtsẑt−dgnsdkddt.
In terms of backward differentials,sẑtdtPfr,vg solves weakly, with respect to the decreasing

filtration sFtdtPfr,vg:
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d* ẑt = d*Wt
"* +E

Rd
km*sdk,dtd − " ¹ log ĥt

*sẑt+ddt, s4.5d

whereWt
"* denotes a backward Brownian motion with variance", andm*sdk,dtd is the backward

Poisson random measure with compensatorfĥt
*sẑt+−"kd / ĥt

*sẑt+dgnsdkddt. In s4.4d and s4.5d,
sẑtdtPfr,vg represents the processsassociated with our system in the momentum representationd
whose probability density is of the formrtspd, as in Theorem 4.1. Let us define forf PSsRdd and
g:Rd° s0,`d the integro differential operatorLg by

Lgfspd =
"

2
Dfspd +

1

"
E

Rd
sfsp + "kd − fspdd

gsp + "kd
gspd

nsdkd + "k¹ log gspd, ¹ fspdl. s4.6d

The forward and backward generatorsLĥt
and −Lĥt

* of sẑtdtPI are given from the next lemma.
Lemma 4.3: The kernelsp̂st ,p,u, ld and p̂*ss, j ,t ,pd defined ins4.2d and s4.3d satisfy the

partial integro-differential (Kolmogorov forward or Fokker–Planck) equations

]p̂

]u
st,p,u,ld = sLĥu

dl
†p̂st,p,u,ld, s4.7d

where† denotes the adjoint, Lĥs
is the forward generator given by

Lĥs
f =

"

2
Dfspd +

1

"
E

Rd
sfsp + "kd − fspdd

ĥtsp + "kd
ĥtspd

nsdkd + "k¹ log ĥtspd, ¹ fspdl, s4.8d

and

]p̂*

]s
ss, j ,t,pd = − sLĥs

*d j
†p̂ss, j ,t,pd,

where−Lĥs
* is the backward generator given by

− Lĥs
* f = −

"

2
Dfspd −

1

"
E

Rd
sfsp + "kd − fspdd

ĥt
*sp + "kd
ĥt

*spd
nsdkd − "k¹ log ĥt

*spd, ¹ fspdl.

s4.9d

Let the forward and backward derivative operatorsDt and Dt
* be defined informally, on two

appropriate domains of real-valued functionsf, in terms of the HamiltonianH and two positive
solutionsĥt, ĥt

* of s3.7d and s3.8d by

Dtf =
1

ĥt
S ]

]t
−

1

"
ĤDsĥt fd

and

Dt
* f =

1

ĥt
* S ]

]t
+

1

"
ĤDsĥt

* fd.

Lemma 4.3 is proved using the following decompositions ofDt andDt
* , which are straightforward

to verify

Dt =
]

]t
+ Lĥt

andDt
* =

]

]t
− Lĥt

* . s4.10d

Let us observe that for constantf, in particular, these two derivative operators are zero by defi-
nition. But many nontrivial functionsf :Rd3 I →R in these domains have the same property. For
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instance letsh̃tdtPfr,vg denote a positive solution ofs3.7d on I, distinct fromsĥtdtPfr,vg. Then clearly
we haveDtf =0 as well whenf =h̃t / ĥt.

V. VARIATIONAL CHARACTERIZATION AND LAGRANGIAN

As indicated in the introduction, a natural way to interpret the version of Euclidean quantum
mechanics advocated here is as a mathematical counterpart of Feynman’s path integral approach.
In Feynman’s perspective, the variational derivations of the quantum laws of motionsas well as
some kinematical characterizations of the pathsd is fundamentalscf. Refs. 1,10d. We prove in this
section and the next one that as far as the dynamics of the momentum representation is concerned,
such a variational approach is well defined and provides a characterization of the stochastic
process constructed before. More precisely, we will use the approach to stochastic control for jump
processes of Refs. 31,11, to obtain a variational characterization of the Markovian Bernstein
processessor reversible diffusions with jumpsd considered above. We consider the stochastic

control problem infŜ Jst ,p; Ŝd with action functional

Jst,p;Ŝd = Est,pdFE
t

v

Lsẑssd,Ŝsdds− " log ĥvsẑsvddG , s5.1d

whereEst,pd denotes the conditional expectation givenhẑt=pj, the infimum is taken on the set of

control variables made of all measurable scalar functionsŜ·:Rd3R+→R, and the integrand

Lsp,Ŝsd is defined as

Lsp,Ŝsd = LexpsŜs/"dŜsspd + e−Ŝsspd/"ĤeŜsspd/"

=
1

2
ipi2 +

1

2
i ¹ Ŝsspdi2 +E

Rd
S1 +S Ŝssp + "kd − Ŝsspd

"
− 1DesŜssp+"kd−Ŝsspdd/"Dnsdkd

=
1

2
ipi2 +

1

2
i ¹ Ŝsspdi2 +E

Rd

Ŝssp + "kd − Ŝsspd
"

esŜssp+"kd−Ŝsspdd/"nsdkd

−E
Rd

sesŜssp+"kd−Ŝsspdd/" − 1dnsdkd.

In particular, whenŜs=" log ĥs,

Lsp," log ĥtd = "Lĥt
log ĥtspd +

1

ĥtspd
Ĥĥtspd = "Lĥt

log ĥtspd +
"

ĥtspd
]

]t
ĥtspd = "Lĥt

log ĥtspd

+ "
]

]t
log ĥtspd = "Dt log ĥtspd.

In other terms we have

Lsp," log ĥtd =
1

2
ipi2 +

"2

2
i ¹ log ĥtspdi2 +E

Rd
slog ĥtsp + "kd − log ĥtspdd

ĥtsp + "kd
ĥtspd

nsdkd

−E
Rd

ĥtsp + "kd − ĥtspd
ĥtspd

nsdkd.

Now let us observe that
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Dtp = Lĥt
p = " ¹ log ĥtspd +E

Rd
k

ĥtsp + "kd
ĥtspd

nsdkd.

From now on, we will denote byLsp,Dtpd and call Lagrangian, the integrandLsp," log ĥtd of the
action functional, when re-expressed in terms of the variablesp,Dtp. We have, usings3.2d and the
expression ofDtp,

Lsp,Dtpd =
1

2
ipi2 + "K¹ĥt

ĥt

,DtpL +
Vsi" ¹ dĥt

ĥt

+
"2

2

Dĥt

ĥt

−
"2

2
I¹ĥt

ĥt
I2

+E
Rd

slog ĥtsp + "kd − log ĥtspdd
ĥtsp + "kd

ĥtspd
nsdkd

− "E
Rd

kk, ¹ log ĥtspdl
ĥtsp + "kd

ĥtspd
nsdkd.

By Taylor’s formula applied inside the integral term we obtain the Lagrangian

Lsp,Dtpd =
1

2
ipi2 + "K¹ĥt

ĥt

,DtpL +
Vsi" ¹ dĥt

ĥt

+
"2

2
D log ĥtspdE

Rd
s1 + iki2 + os"3dd

ĥtsp + "kd
ĥtspd

nsdkd. s5.2d

Let us observe that the action functional forŜs=" log ĥs can be expressed in various equivalent
ways,

Jst,p;Ŝd = Est,pdFE
t

v

DsŜssẑsdds− " log ĥvsẑsvddG
= Est,pdFE

t

v

Lsĥtsẑsd,ŜsddsG − Est,pdf" log ĥvsẑvdg

= Est,pdfŜvsẑvd − Ŝtspd − " log ĥvsẑsvddg = Est,pdFE
t

v

dŜssẑsd − " log ĥvsẑsvddG
= Est,pdFE

t

v

¹ Ŝssẑsd + dẑs +E
t

v E
Rd

sŜssẑs− + "kd − Ŝssẑs−ddmsdk,dsd

+E
t

v ]

]s
Ŝssẑsdds− " log ĥvsẑsvddG

= Est,pdFE
t

v

¹ Ŝssẑsd + dẑs +E
t

v E
Rd

Ŝssẑs− + "kdnsdkdds

+E
t

v ]

]s
Ŝssẑsdds− " log ĥvsẑsvddG ,

where we have used the extension of Itô’s calculus to our diffusions with jumps. The symbol+

denotes the Fisk–Stratonovich differentialscf., e.g., Ref. 26d. Let us show that the diffusion
processes with jumps constructed before can also be regarded as minima of a stochastic action

functional associated with the startingĤ. The infima are taken on all measurable functions

Ŝt :Rd→R:
Proposition 5.1. The dynamic programming equation with final boundary condition
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]At

]t
spd + min

Ŝt

sLexpsŜ/"dAtspd + Lsp,Ŝtdd = 0, Av = − " log ĥv, s5.3d

associated with the action functionals5.1d is equivalent to the Hamilton–Jacobi–Bellman equation

]At

]t
spd = −

1

2
ipi2 −

"

2
DAtspd +

1

2
i ¹ Atspdi2 +E

Rd
se−"−1sAtsp+"kd−Atspdd − 1ddnskd, Av = − " log ĥv,

s5.4d

with solution At=−" log ĥt, r ø tøv. Moreover, in s5.3d, the minimum in Sˆ
t is attained on Sˆ t

=" log ĥt.

Proof: Given Ŝt andAt two suitable functions, let us define

Fsp,kd =
Atsp + "kd − Atspd

"
esŜtsp+"kd−Ŝtspdd/" +

Ŝtsp + "kd − Ŝtspd
"

esŜtsp+"kd−Ŝtspdd/"

− esŜtsp+"kd−Ŝtspdd/" + e−sAtsp+"kd−Atspdd/".

We have

Lsp,Ŝtd + LexpsŜt/"dAtspd − eAtspd/"Ĥe−Atspd/" = LexpsŜt/"dsAtspd + Ŝtspdd

+ e−Ŝtspd/"ĤeŜtspd/" − eAtspd/"Ĥe−Atspd/"

= "E
Rd

Fsp,kdnsdkd +
1

2
i ¹ Atspd + ¹ Ŝtspdi2

ù "E
Rd

Fsp,kdnsdkd.

Now, for all a.0,

min
xPR

sxa+ a log a − a + e−xd = 0,

hence takingx=sAtsp+"kd−Atspdd /" anda=esŜtsp+"kd−Ŝtspdd/", we haveFsp,kdù0, and

Lsp,Ŝtd + LexpsŜt/"dAtspd − eAtspd/"Ĥe−Atspd/" ù 0,

the minimumszerod being attained forŜt=−At, i.e.,

min
Ŝt

sLsp,Ŝtd + LexpsŜt/"dAtd = eAtspd/"Ĥe−Atspd/".

The dynamic programming equations5.3d can be formulated as

]At

]t
+ eAt/"Ĥe−At/" = 0,

and its solution isAt=−" log ĥt. Finally, from the relation

1

"
DAt = − eAt/"De−At/" +

1

"2
i ¹ Ati

2,

we have
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eAtspd/"Ĥe−Atspd/" = eAtspd/"S1

2
i pi2e−Atspd/" −

"

2
De−Atspd/" −E

Rd
se−sAtsp+"kd−Atspdd/"dnsdkdD

=
1

2
i pi2 +

"

2
DAt −

1

2
i ¹ Ati

2 −E
Rd

se−"−1sAtsp+"kd−Atspdd − 1dnsdkd,

which yieldss5.4d. N

In the backward case we consider the action functional time reversed ofs5.1d,

J*st,p;Ŝ*d = Est,pdFE
r

t

Lsẑssd,Ŝ*dds− " log ĥr
*sẑsrddG . s5.5d

Similarly whenŜs=" log ĥs
* we verify that

Lsp," log ĥs
*d = − "Ds

* log ĥs
*spd,

where we have useds4.10d and the backward generators4.9d. Then

J*st,p;Ŝ*d = − Est,pdFE
r

t

Ds
*Ŝs

*sẑs
*dds+ " log ĥr

*sẑsrddG
= Est,pdfŜr

*sẑrd − Ŝt
*sẑtd − " log ĥr

*sẑsrddg

= − Est,pdFE
r

t

dŜs
*sẑs

*d + " log ĥr
*sẑsrddG

= − Est,pdFE
r

t

¹ Ŝs
*sẑsd7d* ẑs

* +E
r

t E
Rd

sŜs
*sẑs+ + "kd − Ŝs

*sẑs+ddm*sdk,dsd

+E
r

t ]

]s
Ŝs

*sẑs
*dds+ " log ĥr

*sẑsrddG
= − Est,pdFE

r

t

¹ Ŝs
*sẑsdod* ẑs

* +E
r

t E
Rd

Ŝs
*sẑs+ + "kdnsdkdds+E

r

t ]

]s
Ŝs

*sẑs
*dds

+ " log ĥr
*sẑsrddG .

With respect to the underlying filtrationFt, the Lagrangian now takes the form

Lsp,Dt
*pd =

1

2
ipi2 − "K¹ĥt

*

ĥt
* ,Dt

*pL +
Vsi" ¹ dĥt

*

ĥt
* −

"2

2
D log ĥt

*spdE
Rd

s1 + iki2

+ os"3dd
ĥt

*sp + "kd
ĥt

*spd
nsdkd, s5.6d

and the following backward version of Proposition 5.1 holds true.
Proposition 5.2: The backward dynamic programming equation with initial boundary condi-

tion

]At
*

]t
spd + min

Ŝt
*

sLexpsŜ* /"dAt
*spd + Lsp,Ŝt

*dd = 0, Ar
* = − " log ĥr

* , s5.7d

associated withs5.5d, is equivalent to the backward Hamilton–Jacobi–Bellman equation
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]At
*

]t
spd =

1

2
ipi2 +

"

2
DAt

*spd −
1

2
i ¹ At

*spdi2 −E
Rd

se−"−1sAt
* sp+"kd−At

* spdd − 1ddnskd, Ar
* = − " log ĥr

* ,

s5.8d

with solution At
* =−" log ĥt

* , r ø tøv. Moreover, ins5.7d, the minimum in Sˆ
t
* is attained at Sˆ t

*spd
=" log ĥt

*spd.
Proof: Of course, Propositions 5.1 and 5.2 will not be formally used. The key point is thatẑt,

tP I, can be regarded as critical point of a stochastic variational principle. Proposition 5.1 is
sufficient sinceẑt, tP I, is time reversible in the above mentioned sense. But it is illustrative to
show that its critical property takes two slightly different forms with respect to the filtrationsPt

andFt. So we summarize theFt proof only for completeness. We first show that

min
Ŝt

*
sL

expsŜt
* /"d

*
At

*spd + Lsp,Ŝt
*dd = − eAt

* /"Ĥe−At
* /", s5.9d

and the minimum is attained forŜt
* =At

* . Let

F*sp,kd = esŜt
* sp−"kd−Ŝt

* spdd/"At
*sp + "kd − At

*spd
"

+ esŜt
* sp−"kd−Ŝt

* spdd/" f t
*sp + "kd − f t

*spd
"

− esŜt
* sp−"kd−Ŝt

* spdd/" + e−sAt
* sp−"kd−At

* spdd/".

We have

Lsp,Ŝ*d + L
expsŜt

* /"d
*

At
*spd − eAt

* spd/"Ĥe−At
* spd/" = "E

Rd
F*sp,kdnsdkd +

1

2
i ¹ At

*spd + ¹ Ŝt
*spdi2

ù "E
Rd

F*sp,kdnsdkd,

Proceeding as in the forward case we obtains5.9d and the dynamic programming equations5.3d
becomes

]At
*

]t
− eAt

* /"Ĥe−At
* /" = 0,

with solutionAt
* =−" log ĥt

* . Finally we have

eAt
* spd/"Ĥe−At

* spd/" =
1

2
ipi2 − eAt

* spd/"S"2

2
De−At

* spd/" +E
Rd

se−At
* sp+"kd/" − e−At

* spd/"dnsdkdD
=

1

2
ipi2 +

"

2
DAt

*spd −
1

2
i ¹ At

*spdi2 −E
Rd

se−"−1sAt
* sp+"kd−At

* spdd − 1dnsdkd,

which yieldss5.8d. N
The actions5.1d, with Lagrangians5.2d may seen relatively artificial. As a matter of fact, and

as Sec. VI will show, they are natural"-deformations of their classicalsEuclideand counterparts in
momentum representation.

VI. EQUATIONS OF MOTION

We now derive a.s. equations of motion associated withsẑtdtP1. Those equations justify, in a
way, our whole strategy, including the variational approach of Sec. V. Here,sẑtdtPfr,vg represents
the process associated to our system in momentum representation, and the expectations of the
almost sure equations of motion can be interpreted as the probabilistic counterpart of the Ehrenfest
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theorem in quantum dynamics of Ref. 6. The forward and backward derivatives defined before as
the generatorsDt=s] /]td+Lĥt

andDt
* =s] /]td−Lĥt

* have natural probabilistic interpretations as the
following limits of conditional expectations, forf regular enough

Dtftsẑtd = lim
Dt↓0

EFU ft + Dtsẑt+Dtd − f tsẑtd
Dt

UPtG = EFU d

dt+
f tsẑtdUPtG , s6.1d

and

Dt
* f tsẑtd = lim

Dt↓0
EFU f tsẑtd − f t−Dtsẑt−Dtd

Dt
UFtG = EFU d

dt−
f tsẑtdUFtG , s6.2d

wheresd/dt+df ,sd/dt−df denote the right-hand side and left-hand side derivatives corresponding to
the formal limits of s6.1d and s6.2d when Planck’s constant" is equal to 0. Of course, the
expectationE denotes, here, the one with respect to the processẑt solving Eqs.s4.4d ands4.5d. The
definitionss6.1d and s6.2d provide a probabilistic interpretation ofMt, Mt

* such thatDtMt=0 and
Dt

*Mt
* =0. Indeed, when this happens we have clearly for allDt.0,

EfMt+Dtsẑt+DtduPtg = Mtsẑtd andMt
*sẑtd = EfMt−Dt

* sẑt−DtduFtg.

As indicated afters2.6d, the first condition means thatMtsẑtd is aPt-martingale and the second that
Mt

*sẑt
*d is a Ft-martingale. For instance,f tsẑtd=ĥtsẑtd / ĥtsẑtd, as defined above, is aPt-martingale.

The relation with quantum dynamics is clearer when expressed in terms ofsabsolute, in
contrast with conditionald expectations. For this purpose it is sufficient to observe the following.

Corollary 6.1: Under (absolute) expectations and when ft ,Dtf, Dt
* f are integrable we have

d

dt
Eff tsẑtdg = EfDtftsẑtdg = EfDt

* f tsẑtdg, f P SsRd+1d.

Proof: This follows from the Itô formula, written as

df tsẑtd = Dtftsẑtddt + k¹ f tsẑtd,dWt
"l +E

Rd
sf tsẑt− + "kd − f tsẑt−ddSmsdk,dtd −

ĥtsẑt− + "kd

ĥtsẑt−d
nsdkddtD

and

d* fsẑtd = Dt
* f tsẑtddt + k¹ fsẑtd,d*Wt

"*l +E
Rd

sfsẑt+d − fsẑt+ − "kddSm*sdk,dtd −
ĥt

*sẑt+ − "kd

ĥt
*sẑt+d

nsdkddtD .

N
In the next proposition we make the assumption:

E
Rd

ikinsdkd , `, s6.3d

and letDtpup=ẑt
be denoted byDtẑt.

Proposition 6.2: The processsẑtdtPfr,vg, critical point of the action functional introduced
before Proposition 5.1, solves the almost sure equations of motion,

DtS"
¹ĥt

ĥt
Dsẑtd = ẑt, s6.4d

where¹ denotes¹p except if otherwise specified, and

Dtẑt =
1

ĥtsẑtd
s− i¹qVdsi"¹pdĥtsẑtd. s6.5d
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Proof: By s3.1d,

− i¹qVsqd = − iq +
1

"
E

Rd
ke−si/"dkq,klnsdkd.

Therefore

s− i¹qVdsi" ¹ dĥtspd = " ¹ ĥtspd +E
Rd

kĥtsp + "kdnsdkd.

On the other hand, we have

Dtp = Lĥt
p = " ¹ log ĥtspd +E

Rd
"k

ĥtsp + "kd
ĥts"kd

nsdkd

which proves the first relations6.5d. Concernings6.4d we have

DtS"
¹ĥt

ĥt
Dspd =

1

ĥt
S ]

]t
−

1

"
ĤDs" ¹ ĥtd = p +

1

ĥt

¹ S"
]

]t
− ĤDĥt = p.

This relation can also be obtained by differentiation with respect top of the heat equation forĥ,

] ¹ ĥt

]t
spd = ¹

]ĥt

]t
spd =

1

"
¹ Ĥĥtspd =

1

"
Ĥ ¹ ĥtspd + p.

N
In the backward case, similar calculations yield

Dt
* ẑt =

1

ĥt
*sẑtd

si¹qV̄dsi"¹pdĥt
*sẑtd, Dt

*S"
¹ĥt

*

ĥt
* Dsẑtd = − ẑt.

SinceDt°−Dt
* andp°−p under time reversal, it is clear that these equations are time reversed

of s6.5d. The sforwardd analog of the Newton equation in momentum representation becomes

DtDtS¹ĥt

ĥt
Dsẑtd =

1

ĥtsẑtd
s− i¹qVdsi" ¹ dĥtsẑtd.

If Vsqd=q2/2 we obtainDtẑt="¹ log ĥt andDtDtẑt= ẑt. This is the purely diffusive case, already
known.6

Let us come back on the interpretation of what we found and, in particular, on its associated
classical limit. In position representation the classical action functionalSshould be regarded as the
integral of thes“reduced”d Poincaré–Cartan differential form,

ṽq = psq,tddt − hsq,psq,tdddt,

wherep=psq,td denotes the momentum expressed as a function of the position and time andh
=hsq,psq,tdd the Hamiltonian observable. This means that the underlying flow is the one associ-
ated with the first equation of Hamilton, for our elementary class ofhsq,pd=sipi2/2d+Vsqd,
reduced to theq-variable:

dq

dt
= psq,td. s6.6d

The second Hamilton equation follows from the integrability condition ofṽq. For Lipschitzp, let
s°qssd be the solution ofs6.6d such thatqstd=q. Let us denote byeq,tṽq the associated line
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integral. When it is locally univocal, this integral defines the action functional, saySsq,td. ThenS
solves the Hamilton–Jacobi equation,

]S

]t
+ hsq,¹qSd = 0,

whose¹q coincides with the above second Hamilton equation. For the momentum representation,
the construction is symmetric. Instead ofṽq we have to consider the reduced form

ṽp = qsp,tddp + hsqsp,td,pddt

whose underlying flow is the one associated with the second equation of Hamilton reduced to its
p-variable:

dp

dt
= − ¹ Vsqsp,tdd.

When

Ŝsp,td =Ep,t

ṽp

makes sense, so does the Hamilton–Jacobi equation,

]Ŝ

]t
+ hs− ¹pŜ,pd = 0 s6.7d

whose gradient¹p coincides with the integrability condition ofṽp.
Let us specialize this to our class of elementary Hamiltonians which are classical limits of

s3.3d. Then the action function becomes

Ŝsp,td =E Sqspssd,sd
dp

ds
+ hsqspssd,sd,pdDds=E S1

2
p2 − ¹pŜ·ṗssd + Vs− ¹pŜdDds

=E Lspssd,ṗssddds, s6.8d

whose integrand defines the LagrangianL of our system. So, for the elementary class of Hamil-
toniansH considered here, the equations of motion reduce to

d

dt
s− ¹pŜd = p,

s6.9d
dp

dt
= − ¹ Vs− ¹pŜd.

Now let us compare this with the Lagrangian and a.s. equation of motion obtained for our class of
time-reversible processesẑt with jumps. First notice that, in the above classical summary, the
parameter is the usuals“real”d time. In order to obtain the Euclidean counterpart we have to
introduce the “Wick rotation”t°−it seen in Sec. I. It is easy to check thats6.9d can be trans-
formed into
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d

dt
si¹pŜd = ip,

s6.10d

i
dp

dt
= − ¹qVsi¹pŜd,

where Ŝ=Ŝsp,td solves the Euclidean counterpart of the Hamilton–Jacobi equations6.7d. Com-
paring withs6.5d, those equations can be regarded as the quantum deformation ofs6.10d when the
smooth trajectoriest° ipstd are replaced by the very irregular ones of our diffusion process with
jumpsẑt. Since the classicalsstrongd time derivative does not make sense anymore, it is natural to
replace it by its probabilistic counterpartDt s6.1d or, regarded as an operator, bys4.10d. The role

of the classical action functionŜsp,td is manifestly played, ins6.5d, by Atspd=−" log ĥtspd solving
the Hamilton–Jacobi–Bellman equations5.4d. In particular, it is clear from our first equations6.5d
that the position observable is now proportional to"¹ log ĥtspd=−¹Atspd. So the Hamilton–
Jacobi–Bellman equations5.4d is a quantum deformation of the Euclidean version of the classical
equations6.7d. The integrand of the action functional, i.e., our LagrangianLsp,Dtpd defined in
s5.2d of Sec. V, is also asEuclideand deformation of the classical integrand ofs6.8d. The main
deformation term, of orderos"2d, involves an integral with respect to the Lévy measurensdkd.
This “small” term is, however, necessary to validate the variational characterization of the process
ẑt given in Sec. V. Notice that, because of the relation between the action function and the positive
solutionĥt of s3.7d scf. Proposition 5.1d Atspd=−" log ĥtspd, and also the fact that the underlying
Lévy measurensdkd does not depend on the Planck constant", the limit "→0 of the probabilistic
construction is not trivial. In particular, the first term under the integral of the Hamilton–Jacobi–
Bellman equations5.4d, which coincides with the factorĥtsp+"kd / ĥtspd in the integral term of the
forward generatorLĥt

of ẑt, reduces to

E e−"ks¹ĥt/ĥtdspd,klnsdkd →E ek¹Ŝspd,klnsdkd ; E e−kq,klnsdkd,

namely the Laplace transform ofn sor Fourier transform in imaginary timed. Indeed, both quan-
tically and classically, the positionq is proportional to the gradient of the action. Using this and
the representations3.1d of the classical potentialV, one can reinterpret our first order classical
equation of motions6.10d for p as the solution of a deterministic variational principle, limit of the
one given in Sec. V, whose “control”uskd becomes optimal precisely whenu*skd=e−kq,kl. Of
course, then, the associated classical Lagrangian reduces to the Euclidean version of the one in
s6.8d or, equivalently, to the classical limit ofLsp,Dtpd as given in Sec. V, for the semiclassical

stateĥtspd=exp−s1/"dŜtspd. However, since this deterministic variational principle does not seem
to have an obvious physical interpretation it will not be given herescf. Ref. 31d.

A number of the properties of these processes remains to be investigated. Many of those
known to hold for pure diffusions should survive for the much richer class of diffusions with
jumps considered here. In particular, a systematic study of their symmetries, in term of a Noether
theorem, on the model of Refs. 33,34, is possible and should provide further information on the
general structure of the construction. A more geometrical approach to these symmetries21 can
probably be extended as well to this class. Moreover, the almost sure equations of motion could be
more elegantly deduced from an appropriate generalization of the stochastic calculus of variations
used in Ref. 7.
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In this paper, we consider the problem of the controllability of a finite-dimensional
quantum system in both the Schrödinger and interaction pictures. Introducing a
Quantum Transfer Graph, we elucidate the role of Lie algebra rank conditions and
the complex nature of the control matrices. We analyze the example of a sequen-
tially coupledN-level system: a spin-1

2 particle coupled to a finite quantum har-
monic oscillator. This models an important physical paradigm of quantum
computers—the trapped ion. We describe the control of the finite model obtained,
under the right conditions, from the original infinite-dimensional system. ©2005
American Institute of Physics.fDOI: 10.1063/1.1852701g

I. INTRODUCTION

The control and controllability of finite-dimensional quantum systems are of topical interest to
the chemical dynamics, coherent control and quantum computing communities.1–9 Indeed, several
methods of proving controllability of quantum systems3,4,10–13have been developed from corre-
sponding techniques used in the control of finite-dimensional classical systems. In these treat-
ments, specifically in the graphical methods, the role of the driftsor field-freed Hamiltonian is not
obvious. In quantum mechanics, it is fairly standard to use an interaction picture, where the drift
term does not appear explicitly in the Schrödinger equation. In these cases, the presence of only
one matrix, namely the control matrix in the interaction picture, makes it not amenable to use of
the rigorous Lie algebraic method11 to determine controllability.

In this paper, we present fresh insights into the controllability and control of quantum systems
both in the Schrödinger and interaction pictures. We propose a new graphical method—the Quan-
tum Transfer Graph—that will explicitly demonstrate both the roles of the drift and control ma-
trices, and also the importance of considering the control matrix as one with complex entries. Then
we analyze a very interesting example of a sequentially coupledN-level system: a spin-1

2 particle
coupled with a quantum harmonic oscillator. This models an important physical paradigm of
quantum computers—the trapped ion. The analysis in this paper expands on our earlier work on
the trapped-ion problemsRef. 17d and illustrates the key role played by the Quantum Transfer
Graph in understanding the complex matrices that describe the interactions between the field and
the ion. To our knowledge this is the only example of a quantum control problem where the
interaction matrices are complex. Our general analysis of a sequentially connected system can also
be extended to understanding the control ofN-level chain systems used in adiabatic schemes such
as STIRAP,14 as well as the control of transitions between sequentially connected Zeeman states.

II. SCHRÖDINGER PICTURE

The Schrödinger equation for a particle in a static and dynamic potentialsin atomic units,
whereine=m="=1d is written as
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ıuĊl = sH0 + HIduCl. s1d

Here, H0 is the Hamiltonian of the particle in the static potential, with a finite numbersNd of
eigenvaluesEn corresponding to the eigenvectorsfn. The interaction with the time-dependent
potential is given by the control HamiltonianHI, which includes the time dependence. In general,
we consider problems where the time dependence is separable and linear, for example,HI

=oiuistd* mi. Here the operatormi represents the transition couplings between the various eigen-
states ofH0 due to the time-dependent fielduistd. Unitarity demands thatH0 andHI be Hermitian.
The eigenvalues ofH0 are therefore real. In the control literature, the Schrödinger equation is
written equivalently as

Ẋ = SA + o
i

uistdBiDX. s2d

In vector representation,X is the state vector,A is the drift matrix,Bi are the control matrices and
uistd are controls, generally chosen to be piecewise smooth. In the eigenbasis ofH0, A is −ı times
a real matrix with only diagonal terms. Each matrixBi is skew-Hermitian. It can, in general, be
written as a sum of aı times a real symmetric matrix and a skew-symmetric matrix,Bi = ı* Bi

S

+Bi
K. More generally,A, Bi [susNd. In most quantum applications considered up to this point2,4,15

the matrix elements of theBi are of the formı times a symmetric matrix. Consider a special case,
where the eigenstates ofH0 are sequentially coupled by control fieldsuistd. It is well known3,9,11

that a sufficient condition for controllability is that the dimension of the span of the Lie algebra
generated byA and theBi be equal to the dimension ofsusnd. Rather than take the specific values
for the matrix elements of the control matrices,Bi, it will be instructive to consider its general
structure—a skew-Hermitian, tridiagonal matrix with zero diagonal elements. In the case whereB
is of the formı times a symmetric matrix, this matrix can be decomposed intoN−1 matrices—
simple roots of the Lie algebrasusnd, as shown below. These matrices represent the nearest-
neighbor couplings. We want to elucidate how these nearest-neighbor couplings generate the Lie
algebra. Note that we do not have control over each individual coupling. Nevertheless, one can see
how decomposing the control matrix into the simple roots is a powerful way to examine the
controllability properties of the system.

Using standard notation for a basis ofsusNd, let ei,j denote the matrix with uniti j entry and
zeros elsewhere. Definexi,j =ei,j −ej ,i and yi,j = ısei,j +ej ,id. B is decomposed into the
ı-times-symmetric roots

S1 = y1,2= ı1
0 1 0 0 0 0 …
1 0 0 0 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 0 …
] ] ] ] ] ] �

2 , s3d

S2 = y2,3, s4d

S3 = y3,4, s5d

¯ . s6d

The Lie bracket of these roots with each other give theN−2 skew-symmetric matrices that
represent next-nearest-neighbor coupling as shown below. These matrices form a closed Lie alge-
bra with the matrices from which they were formed, for example,S1, S2 and their commutator
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KN=fS1,S2g form a Lie subalgebra, similarly forS2, S3 and their commutatorKN+1, and so on. This
generation of alternate symmetric and skew-symmetric elements of the algebra has been observed
earlier,3,13

fS1,S2g = x1,3 ; KN, s7d

KN+1 = x2,4, s8d

¯ . s9d

Similarly,

fx1,3,x2,4g = y1,4 ; S2N−1. s10d

Carrying on in a similar fashion through the matrix that represents the coupling between the first
andNth stateshereN is assumed evend,

SNsN−1d/2 = y1,N. s11d

It can be shown that the number of linearly independent commutators formed by this set of
matrices isNsN−1d /2. Thus, the roots of the control Hamiltonian can be used to produceNsN
−1d /2 independent elements of the algebra.

An interesting observation can be made if the control matricesBi representing the nearest-
neighbor couplings are all skew-symmetric. The Lie algebra generated by these matrices consists
of the skew-symmetric matrices, i.e., the symmetric matricesSn are not generated. These matrices
also numberNsN−1d /2. This is the set of generators for the rotation groupOsNd, each pairwise
coupling representing an independent rotation inN-dimensions.16

Thus, if the eigenstates are sequentially connected by the transition matrix elementssusually
reald, then the Lie algebra generated by the roots of the control terms alone span a space of
NsN−1d /2. If the drift matrix is strongly regular,12 it can be decomposed intoN linearly indepen-
dent traceless diagonal matriceshi =ei,i −ei+1,i+1. The Lie brackets formed by the drift matrix and
the NsN−1d /2 matrices computed above yield anotherNsN−1d /2 matrices of the opposite sym-
metry. For example,fA,S1g givesK1, etc. Thus the total number of linearly independent matrices
are 2*NsN−1d /2+N=N2, which is sufficient to show controllability.

III. QUANTUM TRANSFER GRAPHS

Graphical methods used to analyze controllability of quantum systems4,17 are drawn from
similar techniques used in the controllability analysis of classical systems.12 These methods are
very elegant. However, they do not bring out two features intrinsic to the controllability of
quantum systems—the special role of the drift matrix, and the intrinsically skew-Hermitian nature
of the control matrices. To address these issues, we propose that transfer graphs representing the
control of quantum systems should be drawn with each eigenstate represented by a double node,
representing the real and imaginary parts of the complex wave function. The transition matrix
elements are represented by edges of the graph. However, a real matrix element will couple the
real part of one state with the real part of the other; and the imaginary part of one state with the
imaginary part of the other. A purely imaginary matrix element will couple the real part of one
state with the imaginary part of the other. This graph will truly be transitively connected only if the
transition matrix elements are complex numbers with both real and imaginary parts. Otherwise the
presence of a strongly regular drift matrixswhich in time produces a rotation from real to imagi-
nary spaced can generate the “missing” elements of the Lie algebra, i.e., complete the transitivity
of the Quantum Transfer Graph. These features of Quantum Transfer Graphs are shown in Fig. 1.
Other modifications introduced in a recent paper17 such as ordering the state in energy and the
thickness of the edges representing the strength of the couplings are retained.
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IV. CONTROL IN THE INTERACTION PICTURE

In quantum physics, one often uses the interaction picture by making a unitary transformation
that is very similar to transforming into the rotating frame in classical physics. Remembering that
A is diagonal and =ıH0, this is carried out as follows:

Y = exps− AtdX, s12d

Ẏ = − A exps− AtdX + exps− AtdẊ s13d

=− A exps− AtdX + exps− AtdsA + o
i

uistdBidX s14d

=o
i

uistdexps− AtdBiX s15d

=o
i

uistdexps− AtdBi expsAtdY s16d

=o
i

uistdFBi +
− t

1!
fA,Big +

s− td2

2!
fA,fA,Bigg + ¯GY s17d

=o
i

uistdBi
˜ Y. s18d

The transformed state vectorY evolves on an adjoint orbit ofUsnd with a span ofNsN−1d. The
last expansionsBaker–Campbell–Hausdorff expansiond contains the Lie algebra formed by the
drift and control matrices. In the case that the system is controllable, these matrices span a space
of dimensionNsN−1d. Therefore, the presence of a strongly regular drift matrix, and a transitively

FIG. 1. Features of a Quantum Transfer Graph. Three nondegenerate eigenstates of the field-free Hamiltonian are repre-
sented by double nodes, representing the realsleftd and imaginarysrightd parts of the complex wave function. States that
are transitively connected in the classical sense are not necessarily connected when the doublet structure is employed. A
control matrix withı times symmetric structure connects nodes as shown insad. A control matrix with real, skew-symmetric
structure connects nodes as shown insbd. The drift Hamiltonian causes rotations between the real and imaginary nodes of
each eigenstate as inscd. The control matrix with a general complex, skew-Hermitian structure transitively connects the
real and imaginary parts of the eigenstates as insdd.
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connected set of eigenstates is sufficient to show controllability. In exactly the same manner, if a
set of eigenstates is transitively connected in the interaction picture, and the drift matrix is strongly
regular, then these are sufficient conditions to establish controllability as well.

We note that if we have a control matrix that has both symmetric and skew-symmetric parts
as in Fig. 1sdd, we know that we can generate theNsN−1d elements of the algebra. The Quantum
Transfer Graph is transitively connected even without the consideration of the drift matrix. In such
a case the demand for the strongly regular drift matrix can be relaxed, and controllability can be
shown even with drift matrices that are not strongly regular.12

V. SPIN-1
2 PARTICLE COUPLED TO FINITE HARMONIC OSCILLATOR

We now apply controllability analysis to a quantum system that is one of the scalable para-
digms of a future quantum computer. The system is also interesting from the viewpoint of control,
because the control matrices contain both symmetric and skew-symmetric elements. Our analysis
can be extended to other systems with sequentially connected eigenstates such as those inN-level
STIRAP, and the control of Zeeman states.

In a recent paper,17 we showed that under certain circumstances, the model of a spin-1
2 particle

coupled to finite harmonic oscillator is a good representation of a trapped ion with two essential
internal states. The spin-1

2 model represents a two-level atom with an energy splitting"v0, where
the frequencyv0/2p is in the several GHz range. The atomic levels are coupled to the motion of
the ion in a harmonic trap.18 These quantized vibrational energy levels are separated by a fre-
quencyvm/2p in the MHz range. The Hamiltonian of this system without a control field applied
to it sin atomic unitsd is

H0 = v0
sz

2
+ vmn̂. s19d

The Pauli operators describes the equivalent spin-1
2 system, and the operatorn̂ is the number

operator of the quantized simple harmonic oscillator. The eigenstates of the field-free system are
characterized by two quantum numbersSz, andn. When a bichromatic field is applied that causes
transitions between statesu↓ ,nl and u↑ ,nl scarrier transitionsd, and between statesu↓ ,nl and
u↑ ,n−1l sred sideband transitionsd, the system is sequentially connected. An important parameter
of this system is the Lamb–Dicke parameterhm that describes the extent of the ion’s motion
compared to the wavelength of the applied electromagnetic field. It is possible to adjust the
strength of the trapsthereby adjustinghmd such that one of the transition couplings goes to zero,
and the state space is truncated toN-levels as shown in Fig. 2.

FIG. 2. Trapped-ion quantum states coupled by control fields with frequenciesvc andvr. They cause transitions denoted
by solidscarrierd and dashedsred sidebandd lines, respectively. By changing the strength of the trap, it is possible to reduce
one of the transition strengths to zero, thus truncating the infinitely large Hilbert space.
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In the case when the extent of the ion’s motion is comparable to the wavelength of the applied
field, a matrix element of the control Hamiltonian in the field-free eigenbasis in the interaction
picture can be written as17

kS8n8uHI8uSnl = Vstd2 RefkS8us+uSl ^ kn8uexpsıshmsam + am
† dddunlg. s20d

The harmonic oscillator part of this matrix element18 is written as

kn8uexpsıshmsam + am
† dddunl = exps–hm/2dÎn,!

n.!
sıhmdun8−nuLn

un8−nushm
2 d. s21d

The symboln. refers to the larger ofn andn8, andn, refers to the smaller ofn andn8. Ln
asxd is

the associated Laguerre polynomial. When the applied field connects statesu↓ ,nl and u↑ ,nl
scarrier transitionsd, n8=n, and when the applied field connects statesu↓ ,nl and u↑ ,n−1l sred
sideband transitionsd, n8=n−1. The matrix elements are zero for all other values ofn8. The
strength of the ion trap can be adjustedsthereby adjustinghmd so that the coupling strength of one
of the sred or carrierd transitions becomes zero, the system is transformed into a finite closed
subsystem, and a remaining infinite subsystem. For example, if the argument of the Laguerre
polynomialhm

2 is adjusted to 0.527 667 so thatL6
1shm

2 d=0, theu↓ ,6l to u↑ ,7l transition is turned
off.

The truncated finite system is now anN-level sequentially dipole coupled system. The electric
field corresponding to the frequencies that cause the carrier and red transitions are dubbedEc and
Er, respectively. The eigenstates can be ordered asu↑ ,0l, u↓ ,0l, u↑ ,1l, u↓ ,1l ,… . The drift
HamiltonianH0 of this system can be written in matrix form as

1
0 0 0 0 0 0 … 0 0

0 v0 0 0 0 0 … 0 0

0 0 vm 0 0 0 … 0 0

0 0 0 v0 + vm 0 0 … 0 0

0 0 0 0 2vm 0 … 0 0

0 0 0 0 0 v0 + 2vm … 0 0

] ] ] ] ] ] �

0 0 0 0 0 0 … SN

2
− 1Dvm 0

0 0 0 0 0 0 … 0 v0 + SN

2
− 1Dvm

2 . s22d

In the interaction picture, the Schrödinger equation is written as

Ẏ = sustdBc + vstdBrdY. s23d

In general, we can assume that fieldsEcstd andErstd do not have a phase difference between them.
Then,

ustd = c1Ecstd = 0.25m0 exps− h2/2dEcstd, s24d

vstd = c2Erstd = 0.25hm0 exps− h2/2dErstd, s25d
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Bc = ı1
0 L0sh2d 0 0 0 0 …

L0sh2d 0 0 0 0 0 …
0 0 0 L1sh2d 0 0 …
0 0 L1sh2d 0 0 0 …
0 0 0 0 0 L2sh2d …
0 0 0 0 L2sh2d 0 …
] ] ] ] ] ] �

2 . s26d

Br =1
0 0 0 0 0 0 …
0 0 L0

s1dsh2d 0 0 0 …
0 − L0

s1dsh2d 0 0 0 0 …
0 0 0 0 L1

s1dsh2d 0 …
0 0 0 − L1

s1dsh2d 0 0 …
0 0 0 0 0 0 …
0 0 0 0 0 − L2

s1dsh2d …
] ] ] ] ] ] �

2 . s27d

The associated Laguerre polynomialsLn
asxd can be written as

Ln
asxd = o

k=0

n

s− 1dkSn + a

n − k
Dxk

k!
. s28d

The argument of the polynomials is the square of the Lamb–Dicke parameterh which gives a
measure of how much the ion moves in the harmonic potential as compared to the wavelength of
the light applied. We note that the control matrices for this system are different from the usual

control matrices in quantum physics problems. The control matrixB̃c has the usualı times sym-

metric structure. The control matrixB̃r has a real, skew-symmetric structure. If we take the Lie
algebra formed by these two matrices, we getNsN−1d /2 independent matrices. As the drift matrix
is strongly regular this system is completely controllable. We can further analyze this behavior in
a four-dimensional model problem.

A. Example: A model four-dimensional system

Using a simple four-dimensional example,2,19 we show how the Lie algebra produces succes-
sive elements, and spans the space. Consider a general matrixA for a four-dimensional Hilbert
space with sequentially coupled eigenstates. In particular, we have

A =1
a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d
2 , s29d

Bc = ı1
0 a 0 0

a 0 0 0

0 0 0 g

0 0 g 0
2 , s30d
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Br =1
0 0 0 0

0 0 b 0

0 − b 0 0

0 0 0 0
2 . s31d

Taking the Lie brackets ofBc and Br, we produce four more linearly independent matricesC
=fBc,Brg /b, D=sfBc,Cg−Br * sa2+g2d /bd / s2agd, E=fBc,Dg, andF=fE,Brg / s−bd. Thus the con-
trol matrices themselves produceNsN−1d /2=6 elements of the Lie algebra. Taking the Lie brack-
ets of these six matrices with the drift matrixA, we get six more independent matrices with the
opposite symmetry as the first six. Further Lie brackets of the two sets of six matrices produce the
remaining four diagonal traceless matrices into which the strongly regular drift matrix can be
decomposed.

B. Graphical analysis

We create a Quantum Transfer Graph to represent and analyze this system. We represent the

various eigenstatesuŜ,nml by double-vertices of a graph as shown in Fig. 3. When a resonant
electromagnetic field is applied, the coupling between two eigenstates caused by the interaction
form the edges. The eigenstates are ordered in energy, and the edges on the graph will represent
the matrix elements of the interaction between the eigenstatessnot a population flow between
themd, their thickness qualitatively indicating the strength of the coupling. The carrier fieldswith
frequencyvcd acting on an ion connects statesu↓nl and u↑nl. As the coupling matrix consists of
real elements, this field connects the real parts to the real parts and the imaginary parts to the
imaginary parts. The red sideband fieldswith frequencyvrd connects statesu↓nl and u↑n−1l.
Since the coupling matrix consists of imaginary elements, this field connects the real parts to the
imaginary parts and vice versa. When both fields are applied simultaneously, we see that the
Quantum Transfer Graph splits into two very interesting subgraphs. In the sense of the usual
transfer graph,4,20 all eigenstates are transitively connected. However, we can directly see the role
of the drift Hamiltonian in moving this system from one subgraph to the other, and truly making
the eigenstates transitively connected.

VI. SPECIFIC CONTROL SCHEME

We now discuss a specific control scheme for theinfinite system, and show how the Quantum
Transfer Graph helps us to describe the roles of the control and drift matrices in this scheme. In
1996, Law and Eberly21 showed that by using the carrier and red fieldsalternatelyit is possible to
produce arbitrary superpositions of a finite number of harmonic oscillator states. References 22
and 23 show that the same scheme can be used to generate arbitrary finite superposition states in

FIG. 3. Quantum Transfer Graph of a model four-level system. Control fields with frequenciesvc andvr cause transitions
denoted by solidscarrierd and dashedsred sidebandd lines, respectively. The dotted lines insbd demonstrate the effect of the
drift Hamiltonian in rotating between the real and imaginary parts of each eigenfunction.
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a spin-12/harmonic oscillator system. This scheme works by designing a sequence of alternately
applied carrier and red sideband fields interspersed with a waiting timesaction of the driftd in order
to transfer the population from an arbitrary superposition to the ground state of the systemu↓ ,n
=0l. As seen by the Quantum Transfer Graph in Fig. 3sbd, there are many combinations of the drift
and control matrices that can be applied in order to get to the ground statesboth in the finite and
the infinite systemsd. The optimal combination will be one that time-optimizes the process subject
to the constraint on the fields’ intensities. This time-optimized Law–Eberly scheme is an interest-
ing avenue for future work. Aspects of the controllability of the infinite-dimensional problem are
discussed in related work by the authors.24

VII. CONCLUSION

A Quantum Transfer Graph is an effective tool in elucidating the controllability of finite
quantum systems both in the Schrödinger and interaction pictures. We have shown the equivalence
of sufficient conditions for controllability in both pictures, and explicitly presented the role of the
drift matrix. We analyze the example of a sequentially connectedN-level system as implemented
by suitably designed quantum states of a trapped ion. Showing the mechanism of control, we
explain how the specific Law–Eberly control scheme can be efficiently implemented.
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Asymptotic of complex hyperbolic geometry and
L2-spectral analysis of Landau-like Hamiltonians
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Rabat, Morocco

sReceived 13 July 2004; accepted 10 September 2004; published online 11 February 2005d

In this paper we show that the flat Hermitian complex geometry ofCn, nù1, is
approximated by the complex hyperbolic geometry of the Bergman complex balls
Br

n,Cn of radiusr.0. Furthermore, it will be shown that some elements of the
L2-spectral analysis, such as the spectrum, theL2-eigenprojector and the resolvent
kernels, associated to the so-called Landau-like HamiltonianHB,r on Br

n give rise to
their analogous of the Landau-like HamiltonianHB,` on Cn by letting r tend to
infinity. © 2005 American Institute of Physics.fDOI: 10.1063/1.1853505g

I. INTRODUCTION

Let P=hw=x+ iy ;y.0j be the upper-half plane endowed with the Poincaré metric

ds2srd =
r2

4
Sdx2 + dy2

y2 D ,

wherer is a non-negative real number. The metric ds2srd is scaled such that the constant scalar
curvature of the real hyperbolic planeP is equal to −4/r2.

In Ref. 6, A. Comtet considered one parameter family of magnetic Schrödinger operatorssor
Maass Laplaciansd HB,r given onP by

HB,r = − 4H y2

r2S ]2

]x2 +
]2

]y2D − 2iBy
]

]x
− B2r2J, B . 0, s1d

and discussed some of their asymptotic spectral properties whenr goes to +̀ . In particular, the
finite point spectrum inL2sP ; sr2/4dsdx dy/y2dd of HB,r goes to the Landau levels

4Bs2l + 1d, l = 0,1,2,… ,

that correspond to the pure point spectrum inL2sR2;dxdyd of the magnetic Schrödinger operator
HB,`, associated to the vector potentialA=s2By,−2Bx,0d, given inx,y coordinates by

HB,` = −HS ]2

]x2 + 2iByD2

+ S ]2

]y2 − 2iBxD2J
or in the complex coordinatez=x+ iy as

HB,` = − 4H ]2

]z] z
+ BSz

]

]z
− z

]

]z
D − B2uzu2J .

The operatorsHB,r and HB,` scalled also Landau Hamiltoniansd describe the Hamiltonians of a
charged nonrelativistic particle moving under the action of an external uniform magnetic field

adElectronic mail: aghanmi@math.net
bdElectronic mail: intissar@fsr.ac.ma
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acting onP andR2, respectively. The magnetic Schrödinger operatorHB,r on P given bys1d can
be intertwined, via Cayley transform, with the LaplacianHB,r of the hyperbolic complex disc
Br

1=hz[C ; uzu,rj, which is given in the complex coordinatez of Br
1 by

HB,r = − 4S1 −U z

r
U2DHS1 −U z

r
U2D ]2

]z] z
+ BSz

]

]z
− z

]

]z
DJ + 4B2uzu2.

Therefore, to have a natural generalization of the above LaplaciansHB,r and HB,` to higher
complex dimensions, one may replace the planeC by the Hermitian complex spaceCn, nù1, and
the real hyperbolic discBr

1 by the Bergman complex ballBr
n of radiusr.0. Here, the Bergman

ball Br
n will be viewed as the bounded realization of the rank one Hermitian symmetric space of

noncompact typefi.e., the complex hyperbolic spaceHnsCdg whose holomorphic sectional curva-
ture Sr is known to be a negative constant that we will be scaling here to be equal to −4/r2.
Namely, we can set the following.

Definition 1: Let B be a fixed real number andr.0. Then

sid The Landau-like Hamiltonian HB,r on the Bergman ballBr
n is defined to be equal to

HB,r = − 4S1 −U z

r
U2DH o

i,j=1

n

sdi j −
zizj

r2 d
]2

]zi ] zj

+ Bo
j=1

n Szj
]

]zj
− zj

]

]zj
DJ + 4B2uzu2.

sii d The Landau-like Hamiltonian HB,` on the Hermitian spaceCn is defined to be equal to

HB,` = − 4Ho
j=1

n
]2

]zj ] zj

+ Bo
j=1

n Szj
]

]zj
− zj

]

]zj
D − B2uzu2J .

Here we shall note that such Hamiltonians had been considered and studied by many authors in
different contexts of both mathematics and physics. Thus, for the unit complex disc casesn=1 and
r=1d, one can refer to the interest paperssRefs. 14, 17, 8, 18, and 9d. And for the unit complex
ball snù2, r=1d, the reader can refer to the works in Refs. 11, 13, 19, 1, 5, and 3. Also let us note
that the operatorsHB,` on Cn=R2n, which go back to Landausfor n=1d, play an important role in
many different contexts such as Feynman path integral.sin Feynman–Kac formulad, oscillatory
stochastic integral and theory of lattices electrons in uniform magnetic field. See Bellissard4 and
the rich list of references therein. However, apart Comtet work’s6 for n=1 ssee also Ref. 7d, both
Landau-like HamiltoniansHB,r andHB,` had been studied separately in all previous cited works.

In the present paper, we discuss, whenr→ +`, the asymptotic of the Kähler–Bergman ge-
ometry on the hyperbolic Bergman ballsBr

n of radiusr centered at the origin ofCn, nù1. Further,
we follow in spirit Comtet approach to give an analytic treatment which connect many aspect as
spectral theory of the Landau-like HamiltoniansHB,r on Br

n sL2-point spectrum, the
L2-eigenprojectors and the resolvent kernelsd to that of the Landau-like HamiltoniansHB,` on Cn

snù1d by lettingr go to infinity. Namely, the objective of our work is aimed to show in a rigorous
mathematical sense the following statements.

s1d The curved complex hyperbolic geometry of the complex Bergman ballsBr
n of radiusr

.0 approximates in a natural intuitive way the flat Hermitian geometry ofCn. This means that all
geometrical elements onBr

n such as the metric dsr
2, the distancedr, the volume form dmr, the

group of motionsGr ,… , converge to their analogous onCn whenr→ +`; see Table I.
s2d Let

sdsHB,rd = H4Bs2l + nd − 4
lsl + nd

r2 ; l [ Z+,0 ø l , Br2 −
n

2
J

be the finite set of the point spectrum of the Landau-like HamiltonianHB,r in the Hilbert space
L2sBr

n;dmrd. Then obviously we have
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lim
r°+`

sdsHB,rd = hllª4Bs2l + nd; l = 0,1,2,…j,

which gives the so-called Landau energy levels for the Landau-like HamiltonianHB,` on Cn.
Further, ifKl,r

B sz,wd denotes theL2-eigenprojector kernel of theL2-eigenspace

Al
2,BsBr

nd = HF [ L2sBr
n;dmrd/HB,rF = S4Bs2l + nd − 4

lsl + nd
r2 DFJ

then Kl,r
B sz,wd converges, whenr tends to +̀ , to Kl,`

B sz,wd the L2-eigenprojector kernel of the
L2-eigenspace

Al
2,BsCnd = hF [ L2sCn;dmd/HB,`F = 4Bs2l + ndFj;

see Theorem 1.
s3d Appropriately modified, the resolvent kernel of the Landau-like HamiltonianHB,r con-

verges, whenr→ +`, to the resolvent kernel of the Landau HamiltonianHB,` sTheorem 2d.
Thus the paper is organized as follows: in Sec. II, we show that the Bergman–Kähler geom-

etry on the Bergman ballsBr
n gives rise to the flat geometry ofCn by letting r→ +`; see Propo-

sitions 1 and 2, and Table I. In Sec. III, we give the geometrical realization of the Landau
Hamiltonians on bothBr

n andCn and we establish some of their invariance properties under the
action of the groups of motions; see Proposition 4. In Sec. IV, we recall and we precise some
L2-spectral properties ofHB,r and HB,`. Finally, in Sec. V, we give the asymptotic proofs for
L2-spectral analysis of the Landau-like HamiltonianHB,r, when r→ +`, such as the
L2-eigenprojector kernels in Theorem 1 and resolvent kernels in Theorem 2.

We conclude this introduction by pointing out that our convergence theorems cannot be
obtained just by a simple application of the general theorems in perturbation theory of the operator
HB,r as in Rauch and Taylor work’s.16 Here the setting is quite different.

TABLE I. Asymptotic of metric and action objects onBr
n.

Metric and action objects onBr
n, r.0 Their asymptotic onCn=lim

→
Br

n

Hermitian metric dsr
2,

dsr
2= s1−uz/ r u2d−2

3oi,j=1
n ss1−uz/ r u2ddi,j + zizj / r2ddzj

^dzj

Euclidean metric ds̀2, ds̀2
ªo j=1

n dzj ^ dzj

Holomorphic sectional curvatureSr=−4/r2 Flat curvatureS̀ =0

Bergman distancedrsz,wd, cosh2sdrsz,wd/ r d
= ur2−kz,wlu2/ sr2− uzu2dsr2− uwu2d

Euclidean distanced`sz,wdd`sz,wdªuz−wu

Volume form dmrszd, dmrszd= s1−uz/ r u2d−n−1
dmszd Lebesgue form dm`szd, dm`szd=dmszd

Kähler 2-formVrszd, Vrszd= s1−uz/ r u2d−2

3oi,j=1
n ss1−uz/ r u2ddi,j + zizj / r2ddzi ∧dzj

Kähler 2-formV`szd, V`szd=o j=1
n dzj ∧dzj

Vector potentialurszd, urszd=−is1−uz/ r u2d−1

3o j=1
n szj dzj −zj dzjd

Vector potentialu`szd, u`szd=−io j=1
n szj dzj −zj dzjd

Group of motionsGr on sBr
n,dsr

2d,
Gr=hgr=s Ar

Cr
Br
Dr

d[Mn+1sCd ;grJ
−1srdgr

*

=J−1srd ,detsgrd=1j

Group of motionsG` on sCn,ds̀2d,
G`=hg`=sA

0
B

sdetAd−1d ;A[Usnd ,B[Cnj

Homographic action ofGr on Br
n, gr .z=sArz+Brd

3sCrz+Drd−1
Affine action ofG` on Cn, g` .z=sdetAdsAz+Bd

Automorphic factorjr
Bsgr ,zd, B[R, jr

Bsgr ,zd

=sr2−kz,gr
−1.0l/ r2−kz,gr

−1.0ldBr2
Automorphic factorj`

Bsg` ,zd, B[R,

j`
Bsg` ,zd=eBskz,g`

−1
.0l−kz,g`

−1
.0ld
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II. HERMITIAN STRUCTURE OF Cn AND BERGMAN–KÄHLER GEOMETRY OF THE
BALLS Br

n.

Let sCn,k. , .ld be the usualn-dimensional Hermitian complex space endowed with its flat
Kähler metric ds̀2,

ds̀2 = o
j=1

n

dzj ^ dzj . s2d

The Euclidean distanced`sz,wd and the volume measure dm`szd associated to ds̀2 are given,
respectively, by

d`sz,wd = uz− wu,

dm`szd = dmszd sUsual Lebesgue measure onCnd.

For r fixed in g0, +`f, let Br
n be the centered ball inCn of radiusr. That is

Br
n = hz= sz1,z2,…,znd [ Cn; uzu2 = uz1u2 + uz2u2 + ¯ + uznu2 , r2j.

We equipBr
n with the scaled Bergman–Kähler metric dsr

2,

dsr
2 =

r2

sr2 − uzu2d2 o
i,j=1

n

ssr2 − uzu2ddi,j + zizjddzi ^ dzj . s3d

The hyperbolic distancedrsz,wd and the volume measure dmrszd associated to dsr
2 onBr

n are given,
respectively, by

cosh2Sdrsz,wd
r

D =
ur2 − kz,wlu2

sr2 − uzu2dsr2 − uwu2d
s4d

and

dmrszd =
r2sn+1d dmszd
sr2 − uzu2dn+1 .

Both sCn,ds̀2d and sBr
n,dsr

2d are complete Kähler manifolds. Further, the holomorphic sectional
curvature of sBr

n,dsr
2d is a negative constant and is equal here toSr=−4/r2. Note that

limr°+` Sr=0, which corresponds to the flat curvature ofsCn,ds̀2d.
Associated tosCn,ds̀2d andsBr

n,dsr
2d are their groups of motionsG` and “Gr”. The groupG`

can be represented by the solvable semidirect group Usnd›Cn, where Usnd denotes the unitary
group ofCn with respect tok. , .l. The elementsg`[G` can be written as matrices in the form

g` = SA B

0 sdetAd−1D, A [ Usnd, B [ Cn.

Also, for fixedr.0, the group “Gr” of sBr
n,dsr

2d is essentially isomorphic, as a Lie group, to the
complex Lorentz group SUsn,1d. But, since we will be varyingr in g0, +`f, we need to make the
groups “Gr” varying smoothly inr. To do this letW` be the group of smooth infinite paths in the
vector spaceMn+1sCd of sn+1d3 sn+1d complex matrices ofCn+1. That is W`=C`sg0,
+`f ,Mn+1sCdd. Instead ofW`, we consider the following subgroupS` of all pathsg[W` “pre-
serving” the nondegenerate Hermitian formJr on Cn+1, corresponding to the
sn+1d3 sn+1d-matrix Jsrd given by
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JsrdªSIn 0

0 − r2D ,

such that limr°+` gsrd exists and detsgsrdd=1 for every fixedr.0. That is

S` = hg [ W`;g*srdJsrdgsrd = Jsrd, lim
r°+`

gsrdexists and detsgsrdd = 1j .

Now, for every fixedr.0, let Gr denote the set of evaluations atr of all pathsg[S`. That is
Grªhgsrd ; g[S`j. Then Gr is a Lie group of dimensionn2+2n and it can be described as
follows:

Gr = hgsrd [ Mn+1sCd; g*srdJsrdgsrd = Jsrd, detsgsrdd = 1j,

or equivalently

Gr = hgsrd [ Mn+1sCd; gsrdJ−1srdg*srd = J−1srd, detsgsrdd = 1j. s5d

Below, we will discuss the asymptotic of the groupsGr, whenr→ +`. Namely, we have the
following proposition.

Proposition 1: (i) Let g be a smooth path inS`. Then we havelimr°+` gsrd[G`

=Usnd›Cn.
(ii) For g`[G` there exists at least one path g:r°gsrd in S` such that g̀ =limr°+`gsrd.
Proof: For sid, we uses5d to see that for every fixedr.0 the elementgsrd=s Asrd

Csrd
Bsrd
Dsrd d[Gr,

satisfies the identity

gsrdSIn 0

0 − 1/r2Dg*srd = SIn 0

0 − 1/r2D .

Therefore, if we setg`ªlimr°+` gsrd, which exists by definition, we see thatg` satisfies the
identity

g`SIn 0

0 0
Dg`

* = SIn 0

0 0
D . s6d

Therefore, writingg` in the formg`= s A
C

B
D

d, whereA, B, C, andD are, respectively, the limit when
r→ +` of Asrd, Bsrd, Csrd, andDsrd, we conclude from the identitys6d thatA is a unitary matrix
and thatC=0. Finally, since detsg`d=limr°+` detsgsrdd=1, it follows thatD=sdetAd−1.

Now, for sii d, let us fixg`= s A
0

B
D

d[G` and setB= s v
t+is

d with v[Cn−1, nù2, ands, t[R. Also,
for every fixedr.0, let us consider the matrix

gsrd = SA 0

0 D
D ·atsrd ·nv,ssrd, s7d

whereatsrd andnv,ssrd are given, respectively, by

atsrd =1
In−1 0 0

0 coshS t

r
D r sinhS t

r
D

0
1

r
sinhS t

r
D coshS t

r
D 2

and
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nsv,sdsrd =1
In−1 −

v
r

v

v*

r
1 −

uvu2

2r2 −
is

r

uvu2

2r
+ is

v*

r2 −
uvu2

2r3 −
is

r
1 +

uvu2

2r2 +
is

r

2 .

Then it is clear from the above explicit formulas, thatatsrd and nv,ssrd are smooth paths in
r[ g0, +`f. Further, for every fixedr.0, we can show by direct computation that the matrices
atsrd and nv,ssrd are in Gr. Hence, the elementgsrd belongs toGr for all fixed r and so the
mappingr°gsrd is in S`. Furthermore, using again the explicit expressions involved in the
construction ofgsrd in s7d, it becomes easy to check that limr°+` gsrd=g`. Thus, the proof of the
proposition is completed.

Remark 1: (i) Note that the complex spaceCn as well as the ballsBr
n can be realized as

homogeneous spaces. Indeed, forBr
n, we haveBr

n=Gr /Kr, where Kr, given by

Kr = Hksrd = SAsrd 0

0 sdetAsrdd−1D ;Asrd [ Usnd and lim
r°+`

Asrd existsJ ,

is the isotropic group at the origin0[Br
n of the transitive action of the group Gr on Br

n that is
given by

gsrd . z= sAsrdz+ BsrddsCsrdz+ Dsrdd−1, s8d

where we have set gsrd=s Asrd
Csrd

Bsrd
Dsrd d[Gr, with Asrd[Mn,nsCd, Bsrd[M1,nsCd, Csrd[Mn,1sCd and

Dsrd[C depending smoothly inr. In (8) the point z[Br
n is viewed as as13nd-matrix so that

Csrdz+Dsrd is nothing than a complex number.
Similarly we haveCn=sUsnd›Cnd /Usnd, where the group G̀=Usnd›Cn acts onCn by

g` . z= detsAdsAz+ Bd for g` = SA B

0 sdetAd−1D [ G`. s9d

(ii) The actions of the groups Gr on Br
n and G̀ on Cn, as defined above by (8) and (9), can be

extended to smooth complex-valued functions by considering the following transformations:

fTr
Bsgrdfgszdª jr

Bsgr;zdfsg . zd for gr [ Gr, f [ C`sBr
nd, z[ Br

n,

fT`
Bsg`dfgszdª j`

Bsg`;zdfsg . zd, for g` [ G`, f [ C`sCnd, z[ Cn,

where the automorphic factors jr
Bsgr ;zd and j̀Bsg` ;zd are given, respectively, by

jr
Bsgr;zdªSr2 − kz,gr

−1 . 0l
r2 − kz,gr

−1 . 0l
DBr2

for gr [ Gr, z[ Br
n, s10d

j`
Bsg`;zdªeBskz,g`

−1.0l−kz,g`
−1 . 0ld for g` [ G`, z[ Cn. s11d

Now, for the limit of the metric objects associated to dsr
2 and the action objects associated to

the groupsGr on the hyperbolic Bergman ballBr
n, whenr→ +`, we have the following.

Proposition 2:

sid The Bergman metricdsr
2 converges to the Euclidean metricds̀2 of Cn.

sii d The hyperbolic Bergman distance dr converges to the Euclidean distance d`.
siii d Let g[S` and g̀ =limr°+` gsrd. Thenlimr°+` jr

Bsgsrd , ·d= j`
Bsg` , ·d.
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Proof: sid follows easily from the explicit expressions of the metrics dsr
2 and ds̀2 as given in

s3d ands2d. Just note that the limit limr°+` dsr
2=ds̀2 means here that for every fixedz[Cn andr

large enough the form dsr
2su,vd is well defined for everyu, v in the tangent spaceTzBr

n=TzCn

=Cn, and that we have limr°+` dsr
2su,vd=ds̀2su,vd.

To provesii d fix sz,wd[Cn3Cn. Then forr large enough the Bergman distancedrsz,wd is
well defined through the identitys4d, i.e.,

cosh2Sdrsz,wd
r

D =
ur2 − kz,wlu2

sr2 − uzu2dsr2 − uwu2d
.

Furthermore, using the explicit expression of the inverse function of cosh2sxd, x[ f0, +`f, we can
rewrite it as follows:

drsz,wd =
r

2
Logs1 + 2Îy − 1fÎy + Îy − 1gd, for y [ f1, +`f,

where we have set

y = yrsz,wd =
ur2 − kz,wlu2

sr2 − uzu2dsr2 − uwu2d
.

Now, after direct computation, we can writey−1 in the following form:

y − 1 =
r2uz− wu2

sr2 − uzu2dsr2 − uwu2d
+

ukz,wlu2 − uzu2uwu2

sr2 − uzu2dsr2 − uwu2d
.

Thus, forzÞw andr→ +`, we have

y = 1 +OS 1

r2D andy − 1 =
uz− wu2

r2 + OS 1

r2D .

Hence,

Îy = 1 +OS1

r
D andÎy − 1 =

uz− wu
r

+ OS1

r
D .

Therefore, using the asymptotic of the logarithmic function Logs1+xd=xs1+Osxdd for x→0, we
deduce easily that the limit ofdrsz,wd when r→ +` exists and this limit is equal touz
−wu¬d`sz,wd.

For the proof ofsiii d, it is clear that, for fixedz[Cn and r large enough, the automorphic
factor jr

Bsgr ,zd, gr=gsrd[Gr, as given ins10d, is well defined. Thus, we can write it in the form

jr
Bsgr,zd = expHBr2SLogS1 −

kz,gr
−1 . 0l
r2 D − LogS1 −

kz,gr
−1 . 0l
r2 DDJ ,

where Log is the principal determination of the complex logarithm. But, since limr°+` gr ·w
=g` ·w for everyw[K, whereg`ªlimr°+` gr, we get

lim
r°+`

jr
Bsgr,zd = eBskz,g`

−1.0l−kz,g`
−1 . 0ld .

Hence in view ofs11d, we see that limr°+` jr
Bsgr ,zd= j`

Bsg` ,zd. With this we have finished the
proof of the proposition.

There are many other geometrical elements of the Bergman–Kähler geometry onBr
n that

converge to their analogous onCn=lim→ Br
n. Table I summarizes the relevant items onBr

n andCn

that we will consider in this paper.
Remark 2: The above list of geometrical elements is not exhaustive. Indeed, one can consider
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other items such as the three points function Jr
Bsz1,z2,z3d, z1,z2,z3[Br

n, defined by

Jr
Bsz1,z2,z3d = Sr2 − kz1,z2l

r2 − kz2,z1lD
Br2Sr2 − kz2,z3l

r2 − kz3,z2lD
Br2Sr2 − kz3,z1l

r2 − kz1,z3lD
Br2

= e2iBVrsz1,z2,z3d,

where the three phase pointVr is given by

Vrsz1,z2,z3d = r2FargS1 −
kz1,z2l

r2 D + argS1 −
kz1,z2l

r2 D + argS1 −
kz3,z1l

r2 DG .

Here, argsZd denotes the principal argument of the complex number Z. Then it is easy to check that

lim
r°+`

Vrsz1,z2,z3d = V`sz1,z2,z3d =
i

2
fskz1,z2l − kz1,z2ld + skz2,z3l − kz2,z3ld + skz3,z1l − kz3,z1ldg

s12d

for every fixed three points z1, z2, z3 in Cn. In particular, for the case n=1, the obtained result (12)
is geometrically consistent since the three phase pointsVrsz1,z2,z3d is the area of the geodesic
triangle of summits z1, z2, z3 in the discBr

1 and that V`sz1,z2,z3d represents the area of the
Euclidean triangle of summits z1, z2, z3 in R2=C.

III. GEOMETRICAL REALIZATION OF LANDAU-LIKE HAMILTONIANS AND INVARIANCE
PROPERTIES

Let HB,r be the Landau-like Hamiltonians on the ballsBr
n, r[ g0, +`g, as given in Definition

1. Then in this section, we give a geometrical realization of them as Schrödinger operators in the
presence of uniform magnetic field onBr

n and we establish some of their invariance properties.

A. Geometrical realization of the Landau-like Hamiltonians HB,r

For r[ g0, +`g, let ur be the real differential 1-form defined by

urszd = iS1 −U z

r
U2D−1

o
j=1

n

szj dzj − zj dzjd, z[ Br
n si = Î− 1d s13d

and letLc
psBr

nd denote the space of smooth differentialp-forms onBr
n with compact support. For

fixed B[R, let ¹r
B be the first order differential operator acting onLc

psBr
nd by

¹r
B
ªd + Î− 1B extur.

Hered is the exterior derivative of differentialp-forms and extur is the operator of exterior left
multiplication by ur. Precisely, exturv=ur∧v for all v[LpsBr

nd. Also, let s¹r
Bd* denote the

formal adjoint of¹r
B with respect to the Hermitian scalar product

sa,bdp =E
Br

n
a ∧ !b, a,b [ Lc

psBr
nd, s14d

where! denotes the Hodge star operator associated to the appropriate metric onBr
n, r[ g0, +`g.

Thus, using the above notations, we fix the following definition.
Definition 2: Let B[R. For r[ g0, +`g set

HB,rªs¹r
Bd*¹r

B s15d

acting on the space of smooth functionsC`sBr
nd=L0sBr

nd. The operators HB,r will be called
Landau-like Hamiltonians ofBr

n associated to the vector potentialur.
Remark 3: The definitions15d of the Landau-like Hamiltonians acting on scalar functions can

be extended to the case of differential p-forms, 1øpø2n, of Br
n, r[ g0, +`g, by considering
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HB,r
p = s¹r

Bd*¹r
B + ¹r

Bs¹r
Bd* . s16d

The following proposition, giving the explicit expressions of the Landau-like Hamiltonians
HB,r, asserts that the LaplaciansHB,r in Definition 2 is in fact a geometrical realization of those in
Definition 1. Namely, we have

Proposition 3: Let B fixed inR. Then
(i) The explicit expression of the Landau-like Hamiltonian HB,r, (15), in the complex coordi-

nates z=sz1,… ,znd[Br
n, r[ g0, +`f, is given by

HB,r = − 4S1 −U z

r
U2DH o

i,j=1

n Sdi j −
zizj

r2 D ]2

]zi ] zj

+ Bo
j=1

n Szj
]

]zj
− zj

]

]zj
DJ + 4B2uzu2.

(ii) The explicit expression of the Landau-like Hamiltonian HB,`, s15d, in the complex coor-
dinates z=sz1,¯ ,znd[B`

n =Cn is given by

HB,` = − 4Ho
j=1

n
]2

]zj ] zj

+ Bo
j=1

n Szj
]

]zj
− zj

]

]zj
DJ + 4B2uzu2.

Proof: The proof relies essentially on the construction of the Hodge star operator. Forn=1
this is easy to handle since in this case the metric dsr

2 is conformal to the Euclidean metricudzu2 of
the discBr

1 for which we have

!1 =
i

2
S1 −U z

r
U2D−2

dz∧ dz, !dz= idz, !dz= − i dz, and!sdz∧ dzd = 2iS1 −U z

r
U2D2

.

For nù2 the Kählerian metric

dsr
2szd = − o

i,j=1

n
]2

]zi ] zj

Logsr2 − uzu2ddzi ^ dzj

on Br
n is no more conformal to the Euclidean metricudzu2= udz1u2+¯+ udznu2. Indeed, forz[Br

n,
zÞ0, the eigenvalues of the Hermitian metric dsr

2 are explicitly given by

l1srd =
r4

sr2 − uzu2d2 andl2srd =
r2

r2 − uzu2
.

The first eigenvaluel1srd is of complex multiplicity one with the vector columnz as eigenvector
while the eigenvaluel2srd occurs with n−1 multiplicity with eigenspace the hyperplanez'

=hu[Cn; ku,zl=0j. Thus, using the Gram–Schmidt procedure, we can construct a unitary coframe
at the pointz of differential 1-formsw j, j =1,2,… ,n, with

w1szd =
r2zj dzj

uzusr2 − uzu2d

and in which the metric can be written as

dsr
2 = w1szd ^ w1szd + w2szd ^ w2szd + ¯ + wnszd ^ wnszd,

and the vector potentialur has the formurszd= i uzusw1szd−w1szdd.
Using such coframe, the Hodge star operator,!, can be defined as

w jszd ∧ !wkszd = w jszd ∧ !wkszd = 2d jk dmrszd,
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w jszd ∧ !wkszd = w jszd ∧ !wkszd = 0.

Now, using the definition of the Landau-like HamiltonianHB,r=s¹r
Bd*¹r

B, we can write it in the
form

HB,r = d*d + iBsd* extur − sexturd*dd + B2sexturd*sexturd. s17d

Thus, to obtain explicit differential expression inz of HB,r it will be enough to find those of the
operators d*d, d*sexturd, sexturd*d, andsexturd*sexturd acting on functions. For this, recall that
the adjoints operators d* of d andsexturd* of extur with respect tos14d are known to be given,
respectively, by

d* = − !d! andsexturd* = ! extur!.

Also note that the operator d*d is nothing than the Laplace–Beltrami operator ofsBr
n,dsr

2d,
r[ g0, +`g, whose explicit expression in the complex coordinatesz=sz1,z2,… ,znd is given by

d*d = − 4S1 −U z

r
U2D o

i,j=1

n Sdi j −
zizj

r2 D ]2

]zi ] zj

. s18d

For the other involved operators occurring ins17d, we have the following lemma whose proof can
be done by straightforward computation keeping in mind thatur=−ir2s]−]dLogs1−uz/ru2d; see
also Ref. 3.

Lemma 1: Let f be any smooth function onBr
n and z[Br

n. Then we have

s1d d*ur = 0,

s2d sexturd* dfszd = − 2iS1 −U z

r
U2DsE − Edfszd, s19d

s3d d*sexturdfszd = 2iS1 −U z

r
U2DsE − Edfszd, s20d

s4d sexturd*sexturdfszd = 4uzu2fszd. s21d

Hence, by combinings18d–s21d, we obtain the desired expression ofHB,r as stated insid of the
above proposition.

The explicit expression given insii d of HB,` on the complex spaceCn can easily be handled
since the metric ds̀2 is the Euclidean metric itself.

B. Invariance properties

In below, we establish some invariance properties of the Landau-like HamiltoniansHB,r
p acting

on p-forms of Br
n, p=0,1,… ,2n, r[ g0, +`g. To do this remind that the vector potentialur and

the automorphic factorjr
B, are given, respectively, by

urszd = − ir2s]− ]dLogsr2 − uzu2d, z[ Br
n, s22d

jr
Bsg;zdªSr2 − kz,g−1 . 0l

r2 − kz,g−1 . 0l
DBr2

for g = gr [ Gr, z[ Br
n, s23d

for which we have the following.
Lemma 2: Letr.0, g=gr[Gr, and denote by g*ur the pull-back of the differential1-form ur

by the map z°g.z. Then for every z[Br
n, we have
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sid sg*urdszd = urszd − ir2dFLogSr2 − kz,g−1 . 0l
r2 − kz,g−1 . 0l

DG ,

sii d ds jr
Bsg,zdd = Br2jr

Bsg,zddFLogSr2 − kz,g−1 . 0l
r2 − kz,g−1 . 0l

DG .

Proof: Let g[Gr andz[Br
n. Then using definition ofGr, we get the identity

r2 − ug . zu2 = r2sr2 − ug−1 . 0u2dsr2 − uzu2d
ur2 − kz,g−1 . 0lu2

.

Then usings22d and the fact that the pull-back operationg* :v°g*v commutes with the operators
] and] si.e., ]g* =g*] and]g* =g*]d, it follows that

g*urszd = urszd − ir2s]− ]dLogsur2 − kz,g−1 . 0lu2d.

But, sincez°r2−kz,g−1.0l is holomorphic and d=]+] it follows

s]− ]dLogsur2 − kz,g−1 . 0lu2d = dFLogSr2 − kz,g−1 . 0l
r2 − kz,g−1 . 0l

DG .

Hence,sid holds. Similarly, a direct computation yieldssii d.
Now, let L2sBr

n;Lpd be the Hilbert space obtained as completion ofLc
psBr

nd with respect to
s14d. For g=gr[Gr, let Tr

Bsgd be the transformation defined by

Tr
Bsgdv = jr

Bsg, · dg*svd, v [ Lc
psBr

nd, r [ 0, +`, s24d

wherejr
Bsg, ·d is the automorphic factor as given ins23d andg*v is the pull-back of the differential

p-form v by the biholomorphic mappingz°gr ·z. ThenTr
B is a projective representation of the

groupGr on L2sBr
n;Lpd. That is

sid Tr
B acts unitary onL2sBr

n;Lpd for everyg[Gr;
sii d for all g1, g2[Gr, we haveTr

Bsg1g2d=e2iBfsg1,g2dTr
Bsg2dTr

Bsg1d, wheref is a phase factor
given here by

fsg1,g2d = r2 argS1 −
kg1

−1 · 0,g2 · 0l
r2 D .

siii d For each functionf [L2sBr
n;Lpd, the mapg[Gr°Tr

Bsgdf [L2sBr
n;Lpd is continuous.

Thus the following invariance properties hold.
Proposition 4: Let B[R fixed and g=gr[Gr for r[ g0, +`g. Then for p=0,1,… ,2n, we

have
sid The first order differential operators¹r

B=d+Î−1 extur are invariant with respect to the
transformations Tr

Bsgd. That is

Tr
Bsgd¹r

B = ¹r
BTr

Bsgd.

sii d The Landau-like Hamiltonians HB,r
p =s¹r

Bd*¹r
B+¹r

Bs¹r
Bd* are also Tr

B-invariant. More exactly
we have

Tr
BsgdHB,r

p = HB,r
p Tr

Bsgd.
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Proof: By a direct computation of¹r
BfTr

Bsgdvg in sid for g[Gr, v[Lc
psBr

nd andz[Br
n, where

Tr
Bsgdv is as given ins24d, we get

¹r
BfTr

Bsgdvg = ¹r
Bf jr

Bsg,zdg*vg = ds jr
Bsg,zdg*vd + iBjr

Bsg,zdur ∧ g*v

= jr
Bsg,zddsg*vd + sdjr

Bsg,zdd ∧ g*v + iBjr
Bsg,zdur ∧ g*v.

Now, using the above lemma and the well known facts thatg*d=dg* andg*su∧vd=g*u∧g*v, we
get

¹r
BfTr

Bsgdvg = jr
Bsg,zdg*sdvd + Br2jr

Bsg,zddFLogSr2 − kz,g−1 . 0l
r2 − kz,g−1 . 0l

DG ∧ g*v + iBjr
Bsg,zd

3Hg*ur + ir2dFLogSr2 − kz,g−1 . 0l
r2 − kz,g−1 . 0l

DGJ ∧ g*v = jr
Bsg,zdg*sdv + iBur ∧ vd.

Hence, we obtain the desired resultsid as cited in the proposition.
Now, for the proof ofsii d, we usesid and the fact thatTr

Bsgd is unitary, to show thatTr
Bsgd

commutes also with the formal adjoints¹r
Bd* . Hence, the invariance property of the Hamiltonian

HB,r
p with respect toTr

Bsgd, g[Gr, holds and so the proof of the proposition is completed.

IV. BACKGROUND ON L2-CONCRETE SPECTRAL THEORY OF THE LANDAU-LIKE
HAMILTONIANS HB,r.

In this section, we we recall some well establishedL2-spectral properties ofHB,r for
r[ g0, +`g.

A. L2-spectrum and L2-eigenfunctions of HB,ron L2
„Br

n ;dmr…

We start with the following.
Proposition 5: (Spectrum of the Landau-like Hamiltonians). Let nù1, B.0 and let HB,r be

the Landau-like Hamiltonians onBr
n for r[ g0, +`g. Then we have the following.

(i) For fixed r[ g0, +`f, the Landau-like Hamiltonian HB,r is densely defined on the Hilbert
space L2sBr

n;dmrd and admits a unique self-adjoint realization denoted HB,r, whose spectrum on
L2sBr

n;dmrd is given by

ssHB,rd = sdsHB,rd ø Fn2

r2 + 4B2r2, + `G ,

where the finite discrete partsdsHB,rd of the spectrum is given by

sdsHB,rd = Hllsrdª4Bs2l + nd − 4
lsl + nd

r2 ; l [ Z+, 0 ø l , Br2 −
n

2
J .

Here, each L2-eigenvaluellsrd occurs with infinite multiplicity.
(ii) For r= +`, the Landau-like Hamiltonian HB,` is also densely defined on the Hilbert space

L2sCn;dmd and admits unique self-adjoint realization. The spectrumssHB,`d of HB,` in L2sCn;dmd
is reduced only to a pure point spectrum with infinite degenerated multiplicities. More exactly we
have

ssHB,`d = sdsHB,`d = hlls`dª4Bs2l + nd; l = 0,1,2,…j.

Proof: For the proof of assertionsid, the reader can refer, for example, to Refs. 8, 18, and 9 for
n=1 and to Refs. 19 and 5 fornù2. The assertionsii d is well known, in both mathematics and
physics literature, as Landau energy levels for Schrödinger operators with uniform magnetic field
on R2n=Cn.
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Below, we give concrete characterization of theL2-eigenfunctions of the Landau-like Hamil-
toniansHB,r acting onL2sBr

n;dmrd, r[ g0, +`g. Mainly, we have the following.
Proposition 6: Let B.0 andr[ g0, +`g.
(i) Let r[ g0, +`f such that Br2.n/2 and l[Z+ satisfying0ø l ,Br2−n/2. Then any F

solution of HB,rF=s4Bs2l +nd−4flsl +nd /r2gdF, in L2sBr
n;dmrd, can be expanded in L2sBr

n;dmrd as
follows:

Fszd = S1 −U z

r
U2DBr2−l

o
p=0

+`

o
q=0

l

2F1Sq − l,2Br2 + p − l ;n + p + q;U z

r
U2DhB,r,l

pq sz,zd,

where hB,r,l
pq sz,zd denotes the harmonic polynomials onCn that are homogeneous of degree p in z

and degree q in z (see Ref. 10). Furthermore, its norm is given byiFi
L2sBr

n; dmrd
2

=op=0
+` oq=0

l gB,r
n,pqsldihB,r,l

pq i
L2sS2n−1d
2

with

gB,r
n,pqsld =

sl − qd!G2sn + p + qd
2Gsn + p + ld

r2sn+p+qdGs2Br2 − n − q − l + 1d
s2Br2 − n − 2ldGs2Br2 + p − ld

. s25d

(ii) For r= +` and l=0,1,2,… . Then any function F solution of HB,`F=4Bs2l+ndF in
L2sCn;dmd can be expanded as follows:

Fszd = e−Buzu2o
p=0

+`

o
q=0

l

1F1sq − l,n + p + q;2Buzu2dhB,l
pqsz,zd,

where its norm is given by

iFiL2sCn;dmd
2 = o

p=0

+`

o
q=0

l

gB
n,pqsldihB,l

pqiL2sS2n−1d
2

with

gB
n,pqsld = S 1

2B
Dn+p+qsl − qd!G2sn + p + qd

2Gsn + p + ld
.

Proof: sSketch of the proof.d For n=1, the result insid is contained in the works of Elstrodt8

and Patterson.18 For nù2, one can checksid by the use of the weighted Plancherel formula
established in Ref. 19 on the unit Bergman ball.

For the computation of the norm, we use the polar coordinatesz=rrv, 0ø r ,1, v[S2n−1,
and Parseval equality to have

iFi2 = iFi
L2sBr

n,dmrd
2

= o
p=0

+`

o
q=0

l

gB,r
n,pqsldihB,r,l

pq iL2sS2n−1d
2 .

The quantitiesgB,r
n,pqsld are defined by

gB,r
n,pqsldª

r2n

2
E

0

1

xn+p+q−1s1 − xd2sBr2−ld−n−1u2F1sq − l,2Br2 + p − l ;n + p + q;xdu2 dx,

where we have setx=r2. Then the above integral involving the product of two hypergeometric
functions can be computed by applying the following well known identity:
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2F1s− m,b;c;xd =
1

scdm
x1−cs1 − xdc−b+mS d

dx
Dm

sxc+m−1s1 − xdb−cd,

wherem is in Z+ andscdm=csc+1d¯sc+m−1d is the Pochhammer symbol, and using integration
by parts and the fact

S d

dx
Dm

ss1 − xda+m−1
2F1sa,b;c;xdd =

s− 1dmsadmsc − bdm

sgdm
s1 − xda−1

2F1sa + m,b;c + m;xd.

Thus, we get the norm ofF as given bys25d.
The resultsii d, for r= +`, is well known for Schrödinger operators with constant magnetic

field on R2n=Cn. For the norm the proof is similar to the one given for Theorem 2.1 in Ref. 2.
Remark 4: Note that the bottom eigenvaluel0srd=4Bn, corresponding to l=0, is independent

of r. The associated L2-eigenspace is isomorphic to the usual weighted Bergman–Hilbert space of
holomorphic functions onBr

n that are square integrable with respect to the densitys1
− uz/ru2d2Br2−n−1 dm,

HGrszd holomorphic;E
Br

n
uGrszdu2S1 −U z

r
U2D2Br2−n−1

dmszd , + `J .

Also, the L2-eigenspace associated to the ground state4Bn of the Landau-like Hamiltonian HB,`

on Cn is isometric to the Bargmann–Fock space

HG:Cn → C, G entire and E
Cn

uGszdu2e−2Buzu2 dmszd , + `J .

B. Explicit formulas for the L2-eigenprojector kernels for the discrete spectrum of
HB,r

Now, let B.0 andl [Z+ be fixed. Forr.0 such thatr2. s2l +nd / s2Bd, let Al
2,BsBr

nd be the
following Hilbert space corresponding to theL2-eigenvalue:

llsrd = 4Bs2l + nd − 4
lsl + nd

r2

of the Landau-like HamiltonianHB,r. That is

Al
2,BsBr

nd = HF [ L2sBr
n;dmrd/HB,rF = S4Bs2l + nd − 4

lsl + nd
r2 DFJ .

Also, let Al
2,BsCnd be the following Hilbert space associated to theL2-eigenvaluellsrd=4Bs2l

+nd sLandau energy leveld of the Landau-like HamiltonianHB,` on Cn,

Al
2,BsCnd = hF [ L2sCn;dmd/HB,`F = 4Bs2l + ndFj.

Then one can show that the above Hilbert spacesAl
2,BsBr

nd andAl
2,BsCnd admit L2-eigenprojector

kernels which we denote here, respectively, byKl,r
B sz,wd with z, w[Br

n and Kl,`
B sz,wd with z,

w[Cn. Therefore, the following proposition gives the explicit closed expressions of such
L2-eigenprojector kernels. Namely, we have the following.

Proposition 7: Let B.0 fixed. Then we have the following.
(i) For fixed l[Z+ such that0ø l ,Br2−n/2, the L2-eigenprojector kernel Kl,r

B sz,wd of the
L2-eigenspace Al

2,BsBr
nd is given in term of the Bergman distance drsz,wd by the following closed

explicit formula:
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Kl,r
B sz,wd = An;B;lsrdSr2 − kz,wl

r2 − kz,wl
DBr2ScoshSdrsz,wd

r
DD−2sBr2−ld

32F1S− l,2Br2 − l ;n;tanh2Sdrsz,wd
r

DD , s26d

where the constant An;B;lsrd is given explicitly in terms of gamma functions by

An;B;lsrd =
1

pn

Gsn + ld
Gsndl!

3
s2Br2 − n − 2ldGs2Br2 − ld

r2nGs2Br2 − n − l + 1d
. s27d

(ii) For r= +` and l=0,1,2,…, the L2-eigenprojector kernel Kl,`
B sz,wd of Al

2,BsCnd is given
by the following explicit closed formula:

Kl,`
B sz,wd = S2B

p
DnGsn + ld

Gsndl!
eBskz,wl−kz,wlde−Buz − wu2

1F1s− l,n;2Buz− wu2d.

Proof: Using the invariance property of the Landau-like HamiltoniansHB,r under the action
Tr

B of the group of motionsGr ssee Proposition 4d, we cheek that theL2-eigenprojector kernel
Kl,r

B sz,wd, r[ gÎn/2B, +`f, is Gr-invariant which means that we have

Kl,r
B sz,wd = jr

Bsg;zd jr
Bsg;wdKl,r

B sg . z,g . wd

for everyg=gr[Gr, where jr
Bsg;zd is the automorphic factor ofg at pointz. Hence, we get

Kl,r
B sz,wd = jr

Bsgw;zd jr
Bsgw;wdKl,r

B sgw . z,0d,

wheregw is in Gr such thatgw·w=0. Now let us note that

jr
Bsgw;zd jr

Bsgw;wd = jr
Bsgw;zd = Sr2 − kz,wl

r2 − kz,wl
DBr2

and that the functionz°Kl,r
B sz,0d is a radialL2-eigenfunction ofHB,r. Therefore, we get

Kl,r
B sz,0d = hgB,r

n,00sldj−1S1 −U z

r
U2DBr2−l

2F1S− l,2Br2 − l ;n;U z

r
U2D .

Here, the factorhgB,r
n,00sldj−1

¬An;B;lsrd is due to the normalization and is given through the formula
s25d in which we takep=q=0. Hence, we obtain

Kl,r
B sgw . z,0d = An;B;lsrdS1 −Ugw . z

r
U2DBr2−l

2F1S− l,2nr2 − l ;n;Ugw . z

r
U2D .

Next using the fact that

1 −Ugw . z

r
U2

=
sr2 − uzu2dsr2 − uwu2d

ur2 − kz,wlu2
,

we get the desired resultsid of the above proposition.
The result insii d can be obtained in a similar way and the reader can refer, for example, to

Ref. 2.

C. Resolvent kernels of HB,r on L2
„Br

n ;dmr…

Fix m[C and r[ g0, +`g. Then by resolvent kernelRB,rsm ;z,wd, z, w[Br
n, we mean the

kernel of the integral operatorRB,rsmd that solves
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fHB,r − hB,rsmdgRB,rsmd = I ,

whereI is the identity operator andhB,rsmd is the complex number given by

hB,rsmd =
m2 + n2

r2 + 4B2r2 for r [ fg0; + `f;

hB,`smd = m¬m` for r = + `.

s28d

That is for everyw[Cc
`sBr

nd, we have

fRB,rsmdwgszd =E
Br

n
RB,rsm;z,wdwswddmrswd.

More particularly, we seek forRB,rsm ;z,wd such that
s1d RB,rsm ;z,wd is Tr

B bi-invariant. That is, for everygr[Gr, r[ g0, +`g, we have

RB,rsm;gr . z,gr . wd = jr
−Bsgr,zd jr

−Bsgr,wdRB,rsm;z,wd. s29d

s2d RB,rsm ;z,wd is solution of the differential equation

fHB,r − hB,rsmdgRB,rsm;z,wd = dwszd, s30d

wheredwszd is the “Dirac density” concentrated at the pointw with respect to the volume measure
dmr of Br

n. The solution of the above equationss29d ands30d is given by the following proposition.
Proposition 8:Let B.0 be fixed andm, m`[C. Then we have the following,
sid For r[ g0, +`f andmÞ−is2l +n±2Br2d for l =0,1,2,…, a resolvent kernel RB,rsm ;z,wd,

z,w[Br
n, of the Landau-like Hamiltonian HB,r associated to hB,rsmdªsm2+n2d /r2+4B2r2 is given

explicitly by

RB,rsm;z,wd = CB,r
n smdSr2 − kz,wl

r2 − kz,wl
DBr2S sr2 − uzu2dsr2 − uwu2d

ur2 − kz,wlu2 Dn−im/2

32F1Sn − im

2
+ Br2,

n − im

2
− Br2;1 − im;

sr2 − uzu2dsr2 − uwu2d
ur2 − kz,wlu2 D ,

where the constant CB,r
n smd is given by

CB,r
n smd = S 1

2pnDGSn − im

2
+ Br2DGSn − im

2
− Br2D

r2sn−1dGs1 − imd
.

sii d For r= +` and m`Þ4Bs2l +nd for l =0,1,2,…, a resolvent kernel RB,`sm` ;z,wd,
z,w[Cn, of the Landau-like Hamiltonian HB,` associated to hB,`sm`dªm` is given explicitly by

RB,`sm`;z,wd = S2B

p
DnGSn

2
−

m`

8B
D

4B
3 eBskz,wl−kz,wlde−Buz − wu2GSn

2
−

m`

8B
;n;2Buz− wu2D ,

where Gsa ;g ;xd is the degenerate hypergeometric function of the second kind.15

Proof: Proof of sid. Let r[ g0, +`f be fixed. Since the resolvent kernelRB,r, we are looking
for, is Tr

B bi-invariant, it follows that it has the following form:
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RB,rsm;z,wd = Sr2 − kz,wl
r2 − kz,wl

DBr2

fSm;
drsz,wd

r
D ,

wheref is a function of the distancedrsz,wd on sBr
n,dsr

2d. Using the geodesic polar coordinates
z=r tanhsr /rdv, where r =drsz,0d and v[S2n−1, we see that the radial part radsHB,rd of the
Landau-like HamiltonianHB,r is given by

radsHB,rd = − 5 d2

dr2 + Sf2n − 1gcothS r

r
D + tanhS r

r
DDS1

r
D d

dr
+

4B2r2

cosh2S r

r
D − 4B2r26 .

Hence, the functionfsm ; r /rd is the irregular solution at the pointr /r=0 of the following ordi-
nary differential equation:

d2

dr2 + Sf2n − 1gcothS r

r
D + tanhS r

r
DDS1

r
D d

dr
+

4B2r2

cosh2S r

r
D − 4B2r2 + hB,rsmd = − dsrd

with r ù0.
Therefore, by making the changes=r /r and substitutinghB,rsmd by its value given ins28d, we

see that the above differential equation reduces to the following ordinary differential equation of
Jacobi’s type:

d2

ds2 + sf2n − 1gcothssd + tanhssdd d

ds
+

s2Br2d2

cosh2ssd
+ m2 + n2 = 0, s. 0,

whose singular solution is given through the expression

fcoshssdg−sn−imd
2F1Sn − im + 2Br2

2
,
n − im − 2Br2

2
;1 − im;cosh−2ssdD . s31d

In view of the above explicit singular solutions31d, the solution ofs29d ands30d is then given by

RB,rsm;z,wd = CB,r
n smdSr2 − kz,wl

r2 − kz,wl
DBr2ScoshSdrsz,wd

r
DD−sn−imd

32F1Sn − im

2
+ Br2,

n − im

2
− Br2;1 − im;cosh−2Sdrsz,wd

r
DD ,

whereCB,r
n smd is a normalization constant that ensures the identitys30d. It is given explicitly by

CB,r
n smd = S 1

2pnr2sn−1dDGSn − im

2
− Br2DGSn − im

2
+ Br2D

Gs1 − imd
.

The proof ofsii d is similar to the first one. Just let mention that the radial part of the Landau-like
HamiltonianHB,` is given by

− H d2

dr2 +
2n − 1

r

d

dr
− 4B2r2J ,

wherer = uzu. And using the appropriate change of function

RB,`sm`;rd = e−x/2ysxd

with x=2Br2, we see that the ordinary differential equation resulting here is of the following form:
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xy9sxd + sn − xdy8sxd + lysxd = dsxd, x ù 0,

whose irregular solution atx=0 is the degenerate hypergeometric function of the second kind
Gs−l ;n;xd.

V. ASYMPTOTIC OF L2-SPECTRAL PROPERTIES OF THE LANDAU-LIKE
HAMILTONIANS HB,r

According tosid of Proposition 6, it is clear that the point spectrumsdsHB,rd in L2sBr
n;dmrd of

the Landau-like HamiltonianHB,r on Br
n converges, whenr→ +`, to the “Landau levels” that

constitute the point spectrum of the Landau-like HamiltonianHB,` on Cn, which recover, forn
=1, the Comtet’s result6 as mentioned in the introduction. Whereas the continuous part of the
spectrum ofHB,r becomes empty. In this section, we will be interested in the asymptotic of the
L2-eigenprojector kernels ofL2-eigenspaces of the Landau-like HamiltonianHB,r as well as of
their resolvent kernels by lettingr tend to infinity. Mainly, we show that they give rise to their
analogous ofHB,` on then-complex spaceCn.

A. Asymptotic of the L2-eigenprojector kernels when r tends to + `

The first main result gives asymptotic of theL2-eigenprojector kernelKl,r
B sz,wd of the Landau-

like HamiltonianHB,r on the ballsBr
n whenr→ +`. Precisely, we have the following.

Theorem 1: Let B.0, l [Z+ fixed, and Kl,r
B sz,wd and Kl,`

B sz,wd are, respectively, the
L2-eigenprojector kernels of the L2-eigenspaces of HB,r and HB,` corresponding to their point
spectrum. Then for every fixedsz,wd[Cn3Cn, we have

lim
r°+`

Kl,r
B sz,wd = Kl,`

B sz,wd.

Proof: Let l [Z+ andsz,wd[Cn3Cn fixed. Then it is clear, from the established explicit formulas
s26d sProposition 7d, that the L2-eigenprojector kernelKl,r

B sz,wd is well defined for everyr
.Maxsuzu , uwu ,Îs2l +nd /2Bd. Thus according to the explicit expression of the constantAn;B;lsrd as
given by s27d and using the Binet formula

Gsx + ad
Gsx + bd

= xa−bS1 + OS1

x
DD

with x=2Br2, a=−l, b=−n− l +1, we derive easily that we have

lim
r°+`

An;B;lsrd = S2B

p
DnGsn + ld

Gsndl!
. s32d

Also, let us note that we have

lim
r°+`

Sr2 − kz,wl
r2 − kz,wl

D−Br2

= eBskz,wl−kz,wld s33d

and

lim
r°+`

ScoshSdrsz,wd
r

DD2sBr2−ld

= lim
r°+`

S sr2 − uzu2dsr2 − uwu2d
ur2 − kz,wlu2 DBr2−l

= e−Buz − wu2. s34d

Next, since

tanh2Sdrsz,wd
r

D = 1 −
sr2 − uzu2dsr2 − uwu2d

ur2 − kz,wlu2
,

uz− wu2

r2

for r→ +`, we conclude by the use of the following standard fact:

032107-18 A. Ghanmi and A. Intissar J. Math. Phys. 46, 032107 ~2005!

                                                                                                                                    



lim
m°+`

2F1Sa,m+ b;c;
z

m
D = 1F1sa;c;zd, s35d

that we have

lim
r°+`

2F1S− l,2Br2 − l ;n;1 −
sr2 − uzu2dsr2 − uwu2d

ur2 − kz,wlu2 D = 1F1s− l,n;2Buz− wu2d. s36d

Thus, froms32d–s34d and s36d, we see that

lim
r°+`

Kl
Bsr;z,wd = S2B

p
DnGsn + ld

Gsndl!
eBskz,wl−kz,wlde−Buz − wu2

1F1s− l,n;2Buz− wu2d.

The right-hand side in the above equality is nothing more than theL2-eigenprojector kernel
Kl,`

B sz,wd of Al
2,BsCnd given in sii d of Proposition 7. This finishes the proof of Theorem 1.

Next, in the following section, we will look for the asymptotic of the resolvent kernels
associated to the Landau-like HamiltoniansHB,r, whenr→ +`.

B. Asymptotic of resolvent kernels of HB,r when r\ +`

For l in a suitable region ofC, we will be constructing modifiedTr
B bi-invariant resolvent

kernelRB,rsl ;z,wd solution of the differential equation

fHB,r − hB,rsldgRB,rsl;z,wd = dwszd with hB,rsld = 4Bs2l + nd − 4
lsl + nd

r2 .

Thus, the solution we seek can be deduced from Proposition 8 by settingm=−is2l+n−2Br2d.
Namely, we have the following.

Proposition 9: LET B.0 and l[C. Then We have the following.sid For fixed r[ g0,
+`f and l[C \ sZ+ø2Br2+Z+d, a resolvent kernel RB,rsl ;z,wd, z,w[Br

n with zÞw, of the
Landau-like Hamiltonian HB,r associated to hB,rsldª4Bs2l+nd−4lsl+nd /r2 is given explicitly
by

RB,rsl;z,wd = CB,r
n sldSr2 − kz,wl

r2 − kz,wl
DBr2S sr2 − uzu2dsr2 − uwu2d

ur2 − kz,wlu2 DBr2−l

32F1S− l,2Br2 − l;2Br2 − 2l − n + 1;
sr2 − uzu2dsr2 − uwu2d

ur2 − kz,wlu2 D ,

where the constant CB,r
n sld is given by

CB,r
n sld = SGs− ld

2pn D Gs2Br2 − ld
r2sn−1dGs2Br2 − l − n + 1d

.

(ii) For r= +` andl[C \Z+, a resolvent kernel RB,`sl ;z,wd, z,w[Cn with zÞw, of the Landau-
like Hamiltonian HB,` associated to hB,`sldª4Bs2l+nd, is given explicitly by

RB,`sl;z,wd =
s2Bdn−1

2pn Gs− ldeBskz,wl−kz,wlde−Buz − wu2Gs− l;n;2Buz− wu2d.

Therefore, we have the following.
Theorem 2: Let B.0 and l[C \R+ be fixed, and RB,rsl ; . , .d and RB,`sl ; . , .d be the resol-

vent kernels of the Landau-like Hamiltonians HB,r and HB,`, respectively. Then for every fixed
sz,wd[Cn3Cn such that zÞw, we have

lim
r°+`

RB,rsl;z,wd = RB,`sl;z,wd.
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Proof: Let l be fixed inC \R+. Then without loss of generality, we can assume thatw=0. Hence,
for fixed zÞ0 in Cn, the resolvent kernelRB,rsl ;z,0d¬RB,r

n sl ;zd simplifies to be given by

RB,r
n sl;zd =

Gs− ldGs2Br2 − ld
2pnr2sn−1dGs2Br2 − 2l − n + 1d

S1 −U z

r
U2DBr2−l

32F1S− l,2Br2 − l;2Br2 − 2l − n + 1;1 −U z

r
U2D .

Further, we may writeRB,r
n sl ;zd as follows:

RB,r
n sl;zd =

s2Bdn−1

2pn Gs− ldS1 −U z

r
U2DBr2−l

lim
g°n

fB,r
g sl;zd,

where we have set forg close ton sandgÞnd,

fB,r
g sl;zd =

Gs2Br2 − lds2Br2d1−g

Gs2Br2 − 2l − g + 1d
3 2F1S− l,2Br2 − l;2Br2 − 2l − g + 1;1 −U z

r
U2D .

Now, by appealing to the hypergeometric identity

2F1sa,b;c;xd =
GscdGsc − a − bd
Gsc − adGsc − bd2F1sa,b;a + b − c + 1;1 −xd +

GscdGsa + b − cd
GsadGsbd

3s1 − xdc−a−b
2F1sc − a,c − b;c − a − b + 1;1 −xd,

and applying it to the hypergeometric function involved infB,r
g sl ;zd with a=−l, b=2Br2−l, c

=2Br2−2l−g+1, andx=1−uz/ru2, we see after the use of the duplication formula

GszdGs1 − zd =
p

sinpz

and easy simplification that the above functionfB,r
g sl ;zd can be rewritten as a sum in the follow-

ing form:

fB,r
g sl;zd =

p

sinpg
hfB,r

g,1sl;zd − fB,r
g,2sl;zdj,

where

fB,r
g,1sl;zd =

Gs2Br2 − lds2Br2d1−g

Gs2Br2 − l − g + 1d
·

2F1S− l,2Br2 − l;g;U z

r
U2D

Gs− l − g + 1dGsgd
s37d

and

fB,r
g,2sl;zd =

s2Buzu2d1−g
2F1S2Br2 − l − g + 1,−l − g + 1;2 −g;U z

r
U2D

Gs− ldGs2 − gd
. s38d

Therefore, sincefB,r
g sl ;zd and fB,r

g,j sl ;zd, j =1, 2, are analytic functions ing, we see that the
singularity ing produced by 1/ssinpgd can be eliminated by applying the Hopital rule and doing
so, we end by writing the resolvent kernelRB,r

n sl ;zd as follows:

RB,r
n sl;zd = SB,r

n,1sl;zd − SB,r
n,2sl;zd,

where
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SB,r
n,j sl;zd =

s− 1dns2Bdn−1

2pn Gs− ldS1 −U z

r
U2DBr2−l d

dg
ffB,r

g,j sl;zdgug=n
, j = 1,2.

Hence, to obtain the limit ofRB,r
n sl ;zd whenr→ +`, we use the following lemmaswhose proof

will be given later in the Appendixd.
Lemma 3: Using the above notations, we have the following.

sid lim
r°+`

d

dg
ffB,r

g,1sl;zdgug=n
=

d

dg
F 1F1s− l;g;2Buzu2d

Gs− l − g + 1dGsgdGug=n

,

sii d lim
r°+`

d

dg
ffB,r

g,2sl;zdgug=n
=

1

Gs− ld
d

dg
Fs2Buzu2d1−g 1F1s− l − g + 1;2 −g;2Buzu2d

Gs2 − gd G
ug=n

,

where1F1sa;c;xd is the confluent hypergeometric function.
Therefore, using the above lemma and the well established fact

lim
r°+`

S1 −U z

r
U2DBr2−l

= e−Buzu2

we conclude that

lim
r°+`

RB,r
n sl;zd = s− 1dns2Bdn−1

2pn Gs− lde−Buzu2 3
]

]g
F 1F1s− l;g;2Buzu2d

GsgdGs− l − g + 1d

−
1

Gs− ld
s2Buzu2d1−g 1F1s− l − g + 1;2 −g;2Buzu2d

Gs2 − gd G
Ug=n

.

But, since

Gsa;n;zd = s− 1dnH ]

]g
F 1F1sa;g;zd

GsgdGsa − g + 1dGUg=n

−
1

Gsad
]

]g
Fz1−g 1F1sa − g + 1;2 −g;zd

Gs2 − gd G
ug=nJ .

we can rewrite the above limit as

lim
r°+`

RB,r
n sl;zd =

s2Bdn−1

2pn Gs− lde−Buzu2Gs− l;n;2Buzu2d, s39d

where the right-hand side ofs39d is nothing more than the resolvent kernelRB,`sl ;z,0d of HB,`

associated to the spectral parameterhB,`sld=4Bs2l+nd. Hence, the proof of the theorem is ended.
Remark 5: The previous theorem is the generalization to nù2 of Comtet result’s on the

asymptotic of the resolvent kernel whenr tends to+`. But, here, we have produced a rigorous
proof of this result for nù1.

VI. CONCLUDING REMARKS AND COMMENTS

In the preceding sections, we have investigated the asymptotic of the geometrical structure of
the hyperbolic ballsBr

n when the radiusr→` as well as the asymptotic of some aspect of
stationary spectral propertiessspectrum,L2-eigenprojector kernels, resolvent kernelsd of the so-
called Landau-like Hamiltonians acting on functions. And we have shown that they give rise to
their analogous of the flat caseCn.

Added to the asymptotic of the stationary spectral analysis of the Landau-like Hamiltonians,
they are other aspects of spectral theory related to the Landau-like Hamiltonians such as evolution
spectral theory, essentially the heat and wave kernels for which it is likely to investigate their
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asymptotic whenr→ +` and to compare the obtained asymptotic formulassif they existd to their
analogous of the Landau-like Hamiltonians on the flat caseCn. We hope to come back to these
matters in the future.

Moreover, in view of the explicit formulas obtained for the Landau Hamiltonians acting on
differential 1-forms of the disc, see Ref. 12, which lead to the so-called Pauli Hamiltonians, it
seems to be also of interest to discuss and study the concrete spectral analysis of Landau-like
Hamiltonians, as defined ins16d, acting on differentialp-forms, 1øpøn, as well as their
asymptotic. Such Pauli Hamiltonians describes the motion of a nonrelativistic particle with spin1

2
under the action of an external uniform magnetic field. Their action on differential 1-formsv
= f dz+g dz, identified to the matrix columns f

g
d, are given explicitly by

HB,r
1 = SHB,r 0

0 H−B,r
D − 4Bs3,

where

HB,r = − 4S1 −U z

r
U2DHS1 −U z

r
U2D ]2

]z] z
+ Bz

]

]z
− SB +

2

r2Dz
]

]z
J + 4BSB +

2

r2Duzu2.

Above H−B,r is the “complex conjugate” ofH−B,r ands3= s 1
0

0
−1

d is the third Pauli spin matrix.
All previous considerations can be generalized to the case of the complex projective space

Pr
nsCd; the compact counterpart ofBr

n; whose holomorphic sectional curvature is equal to +4/r2.

The spacePr
nsCd is endowed with the scaled Fubini-study metric dsr

2̃ given in the complex coor-
dinatesz1,z2,… ,zn of the chartCn by

dsr
2̃ = S1 +U z

r
U2D−2

o
i,j=1

n SS1 +U z

r
U2Ddi,j −

zizj

r2 Ddzi ^ dzj ,

whose associated invariant Landau-like Hamiltonian is given by

H̃B,r = − 4S1 +U z

r
U2DH o

i,j=1

n Sdi j +
zizj

r2 D ]2

]zi ] zj

+ Bo
j=1

n Szj
]

]zj
− zj

]

]zj
DJ + 4B2uzu2.

Thus, the discussion forPr
nsCd can be carried over in a similar way. The major difference is that

the spectrum ofH̃B,r reduces only to the discrete part where their eigenvalues occur with finite
multiplicities. We intend to return to this subject in future work.
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APPENDIX „PROOF OF LEMMA 3 …

Here, we give the proof of Lemma 3 in the preceding section. For this, we start by the
following lemma for series functions.

Lemma 4: Let uksmd be a sequence of functions in m,m.m0, satisfying the following assump-
tions:

sid uuksmdu,ak for someak independent of m,m.m0, such thatok=0
+` ak, +`.

sii d For every fixed k, we havelimm°+` uksmd=vk, whereok=0
+` uvku, +`. Then
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lim
m°+`

o
k=0

+`

uksmd = o
k=0

+`

lim
m°+`

uksmd.

Proof of (i) of Lemma 3:According tos37d and by the use of Leibnitz formula we have

d

dg
ffB,r

g,1sl;zdgug=n
= Ir

1 + Ir
2,

where

Ir
1 =

d

dg
FGs2Br2 − lds2Br2d1−g

Gs2Br2 − l − g + 1d G
Ug=n

·
2F1S− l,2Br2 − l;n;U z

r
U2D

Gs− l − n + 1dGsnd

and

First, we will show that limr°+` Ir
1=0. Indeed, the termIr

1 can be written as a product of three
factors. Namely, we have

Ir
1 =

Gs2Br2 − lds2Br2d1−n

Gs2Br2 − l − n + 1d
3 hcs2Br2 − l − n + 1d − Logs2Br2dj 3

2F1S− l,2Br2 − l;n;U z

r
U2D

Gs− l − n + 1dGsnd
,

wherecszd=G8szd /Gszd is the logarithmic derivative of the functionGszd. Then using the Binet
formula Gsx+ad /Gsx+bd=xa−bs1+Os1/xdd and the fact that

csx + bd − Logsxd = OS1

x
D

with a=−l, b=−l−g+1, x=2Br2, we see that we have

lim
r°+`

Gs2Br2 − lds2Br2d1−n

Gs2Br2 − l − n + 1d
= 1 sA1d

and

lim
r°+`

hcs2Br2 − l − n + 1d − Logs2Br2dj = 0.

Further, since limx°+` 2F1sa,x+b;c;j /xd=1F1sa;c;jd sLemma 35d, we see that fora=b=−l, x
=2Br2, c=n, andj=2Buzu2, we have

lim
r°+`

2F1S− l,2Br2 − l;n;U z

r
U2D = 1F1s− l;n;2Buzu2d,

which is finite. Hence, we conclude easily that limr°+` Ir
1=0.

Therefore, to getsid of the Lemma 4, we must show that

lim
r°+`

Ir
2 =

d

dg
F 1F1s− l;g;2Buzu2d

Gs− l − g + 1dGsgdGug=n

.

To do this let us note that in view ofsA1d, it follows
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lim
r°+`

Ir
2 = lim

r°+`

d

dg
3 2F1S− l;2Br2 − l;g;U z

r
U2D

Gs− l − g + 1dGsgd
4

ug=n

,

if the last limit exists. Hence, using the expansion in series of the above involved Gauss hyper-
geometric function2F1 given by

2F1S− l,2Br2 − l;g;U z

r
U2D = o

k=0

+`
s− ldks2Br2 − ldk

sgdk
·
SU z

r
U2Dk

k!
,

wheresadk is the Pochhammer symbol, we then get

d

dg
3 2F1S− l;2Br2 − l;g;U z

r
U2D

Gs− l − g + 1dGsgd
4

ug=n

= o
k=0

+`

Uksrd,

where we have set for every fixedk[Z+ andr varying in g0, +`f,

Uksrdªs− ldk
s2Br2 − ldk

sr2dk

d

dg
F 1

Gs− l − g + 1dGsgd
·

1

sgdk
G

ug=n

·
suzu2dk

k!
.

At once, one can check easily that for every fixedk, we have

lim
r°+`

Uksrd = s− ldk
d

dg
F 1

Gs− l − g + 1dGsgd
·

1

sgdk
G

ug=n

·
s2Buzu2dk

k!
¬vk.

Thus, proceeding formally, we get

lim
r°+`

Ir
2 = lim

r°+`

d

dg
3 2F1S− l;2Br2 − l;g;U z

r
U2D

Gs− l − g + 1dGsgd
4

ug=n

= lim
r°+`

o
k=0

+`

Uksrd = o
k=0

+`

vk =
d

dg
F 1

Gs− l − g + 1dGsgdok=0

+`
s− ldk

sgdk
·

s2Buzu2dk

k! G
ug=n

=
d

dg
F 1F1s− l;g;2Buzu2d

Gs− l − g + 1dGsgdGug=n

.

But, to conclude rigorously that

lim
r°+`

Ir
2 =

d

dg
F 1F1s− l;g;2Buzu2d

Gs− l − g + 1dGsgdGug=n

,

we apply Lemma 4. For this, we should see that the seriesok=0
+` Uksrd is absolutely convergent.

Indeed, for every fixedk, we have

uUksrdu ø suludk

s2Br2 + uludk

sr2dk U d

dg
F 1

Gs− l − g + 1dGsgd
·

1

sgdk
G

ug=n
U ·

suzu2dk

k!
.

And for fixed a such that 0,a,1 and arbitrary fixed real numberR, R.0, setr0=R/a. Then
since
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s2Br2 + uludk

sr2dk = p
j=1

k S2B +
ulu + j − 1

r2 D ,

it follows that for everyr.r0=R/a si.e, 1 /r2,a2/R2d and fixedk, we have the following
estimate:

s2Br2 + uludk

sr2dk ø s2Br0
2 + uludkSa2

R2Dk

. sA2d

Also, the factor

U d

dg
F 1

Gs− l − g + 1dGsgd
·

1

sgdk
G

ug=n
U

can be easily estimated. Indeed, we have

U d

dg
F 1

Gs− l − g + 1dGsgd
·

1

sgdk
G

ug=n
U ø Csnds1 + kd

1

sndk
. sA3d

Setting together the estimatessA2d and sA3d, we see that we have

uUksrdu ø Csnd
suludks2Br0

2 + uludk

sndk
· s1 + kd ·

sa2dk

k!
¬ak, sA4d

for everyr.r0 andz[Cn such thatuzu,R. Finally, since 0,a,1, we may use the ratio test to
see that the seriesok=0

+` ak, whereak is as given insA4d, is convergent.
For the proof ofsii d, one can proceed similarly as abovefusing the expansion in series of the

Gauss hypergeometric function2F1 involved in s38d and Leibnitz formulag to split
limr°+`sd/dgdffB,r

g,2sl ;zdgug=n
as follows:

lim
r°+`

d

dg
ffB,r

g,2sl;zdgug=n
= Jr

1 + Jr
2,

whereJr
1 andJr

2 are given, respectively, by

Jr
1 =

s2Buzu2d1−n

Gs− ld o
k=0

+`
d

dg
fs2Br2 − l − g + 1dkgug=n

sr2dk ·
s− l − n + 1dk

Gs2 − nds2 − ndk
·

suzu2dk

k!

and

Jr
2 = o

k=0

+`
s2Br2 − l − n + 1dk

sr2dk 3
d

dg
F s2Buzu2d1−gs− l − g + 1dk

Gs− ldGs2 − gd
·

1

s2 − gdk
G

ug=n

·
suzu2dk

k!
.

For every fixedl[C \R+ andz[C \ h0j, we have limr°+` Jr
1=0. To show this, we use again the

Lemma 4 this time for

Uksrd =

d

dg
fs2Br2 − l − g + 1dkgug=n

sr2dk ·
s− l − n + 1dk

Gs2 − nds2 − ndk
·

suzu2dk

k!
,

vk = lim
r°+`

Uksrd = 0,
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ak =
1

r2C1snd ·
sulu + n + 1dks2Br0

2 + ulu + n + 1dk

s2 + ndk
·k ·

sa2dk

k!
.

Also, we can show in a similar waysas for Ir
2d that

lim
r°+`

Jr
2 =

1

Gs− ld
d

dg
Fs2Buzu2d1−g 1F1s− l − g + 1;2 −g;2Buzu2d

Gs2 − gd G
ug=n

.

Here, we apply again the Lemma 4 for

Uksrd =
s2Br2 − l − g + 1dk

s2Br2dk 3
d

dg
F s2Buzu2d1−gs− l − g + 1dk

Gs− ldGs2 − gd
·

1

s2 − gdk
G

ug=n

·
s2Buzu2dk

k!
,

vk = lim
r°+`

Uksrd =
d

dg
F s2Buzu2d1−gs− l − g + 1dk

Gs− ldGs2 − gd
·

1

s2 − gdk
G

ug=n

·
s2Buzu2dk

k!
,

ak = C2snd ·
sulu + n + 1dks2Br0

2 + ulu + n + 1dk

s2 + ndk
· s1 + kd ·

sa2dk

k!
.

Thus, the proof of Lemma 3 is completed.
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We find the conditions under which the spectrum of the unitary time evolution
operator for a periodically rank-N kicked system remains pure point. This stability
result allows one to analyze the onset of, or lack of chaos in this class of quantum
mechanical systems, extending the results for rank-1 systems produced by Comb-
escure and others. This work includes a number of unitary theorems equivalent to
those well known and used in the self-adjoint theory. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1841482g

I. INTRODUCTION

We will derive conditions on the time-periodic perturbations to the base Hamiltonian for the
spectrum of the Floquet operator to remain pure point. We consider Hamiltonians of the form

Hstd = H0 + A*WAo
n=0

`

dst − nTd s1d

where A is bounded,W is self adjoint andH0 has pure pointsdiscreted spectrum. The time
evolution of such Hamiltonians is of great interest in quantum chaos, and of central importance is
the spectral properties of the Floquet operator, defined as

V = eiA*WA/"e−iH0T/" s2d

which comes directly from considering the time evolution of the kicked system

Ustd = FexpS−
i

"
E

0

t

dt8 Hst8dDG
+

with Hst8d given by s1d. The spectrum of the Floquet operator is known as the “quasienergy
spectrum.”

This work is an extension of a result of Combescure.1 Our results are based on the self-adjoint
work by Howland.2 If we chooseA to be a rank-1 perturbation,

A = uclkcu,

W= lI ,

we reproduce the work of Combescure.1 The vectorucl is a linear combination of orthonormal
basis states,ufnl of the unperturbed HamiltonianH0,

adElectronic mail: j.mccaw@physics.unimelb.edu.au
bdElectronic mail: b.mckellar@physics.unimelb.edu.au
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ucl = o
n=0

`

anufnl. s3d

Combescure showed that ifcP l1sH0d, that is if

o
n=0

`

uanu , ` s4d

then the quasienergy spectrum remains pure point for almost every perturbation strengthl. We
will generalize this result to all finite rank perturbations,

A = o
k=1

N

Ak = o
k=1

N

ucklkcku,

W= o
k=1

N

lkucklkcku, s5d

wherelkPR and each vectoruckl is a linear combination of theH0 basis states,ufnl,

uckl = o
n=0

`

sakdnufnl. s6d

The statesuckl are orthogonal,

kckucll = dkl.

The basic result is that if eachuckl is in l1sH0d, the spectrum ofV will remain pure point for
almost every perturbation strength.

The perturbation for which we prove that the quasienergy spectrum remains pure point is in
fact more general than the finite rank perturbation presented above. The finite rank result is
however the motivation for undertaking this work.

Howland2 showed that the Hamiltonians1d has a pure point spectrum if theck’s are inl1sH0d.
Here, we follow a similar argument, showing that the continuous part of the spectrum ofV is
empty, allowing us to conclude that the spectrum ofV must be pure point.

Associated with what we have termed the Floquet operator, is the “Floquet Hamiltonian”

K = − id/dt + Hstd.

It turns out thatK provides a different way to access similar information to what we are seeking.
Developed in papers by Howland3–5 and linked to our Floquet operator in Ref. 6sp. 808d, K was
introduced, in some part, because directly working withV proved too difficult. The large body of
knowledge on self-adjoint operators provides a mature basis for proving theorems aboutK. As
discussed in Ref. 6, the spectrum ofK is easily related algebraically to that ofV, so results on the
spectrum forK andV are equivalent.

Working directly with V, however, as we do here, is valuable in that it gives a transparent,
direct insight into the dynamics of the perturbed systemHstd. After the completion of this work,
which is a unitary equivalent to that of Howland,2 we discovered that Howland had used his work2

on the spectrum of self-adjoint operators to obtain similar results to what we do here.5

The relationship between our work and Howland’s workssRefs. 2 and 5d is similar to the
relationship between the self-adjoint rank-1 work of Simon and Wolff7 and the unitary rank-1
work of Combescure.1

032108-2 J. McCaw and B. H. J. Mckellar J. Math. Phys. 46, 032108 ~2005!

                                                                                                                                    



The techniques developed in this paper provide new, general theorems applicable to unitary
operators and show that it is possible to develop the theory of the spectrum of time evolution
operators directly, without need for the techniques of Ref. 3 briefly mentioned here.

A. Motivation

The classical study of chaos is now a well established and flourishing field of research in
mathematics and mathematical physics. Chaotic behavior seems to pervade a vast spectrum of
dynamical systems, and an appreciation of it is essential for a detailed understanding of such
systems. The classic example of the earth’s weather patterns always comes to mind when chaos is
mentioned.

The microscopic world, however, is not governed by the laws of classical dynamics. In the
realm of small quantum numbers the dynamics of a system is governed by the Schrödinger
equation. In such systems, the simple and elegant definitions of chaos such as positive Lyapunov
exponent, which hold for classical systems, are not applicable. In fact, there is no universally
accepted definition of quantum chaos. Some model systems show what many would consider
“chaotic behavior,” yet there are general arguments made by some8 to the effect that “quantum
chaos” does not exist. Our study of one aspect of “quantum chaos” is motivated by much of this
work. Taking note of these uncertainties and conflicting views, two questions arise that are of
central importance.

sad What properties of a quantum mechanical system determine whether or not the correspond-
ing classical system that derives from it will display chaotic behavior?

sbd Are there in fact quantum systems that display chaotic behavior at the quantum level?

The former question is intimately linked to the “correspondence principle” and theories of
quantum measurement. Needless to say, this area of fundamental physics is infamous for its
interpretational difficulties and seemingly inconsistent behavior.

The latter question too, is the source of much debate in the literature. As in any immature
study, quantum chaos is struggling to be self-consistently defined. A wide range of possible
definitions and interpretations of what quantum chaos actually is have been put forward, many in
direct contradiction with one another. At some stage in the future presumably, we will find a
satisfactory criteria for what constitutes quantum chaos. Until then, many attempts to look at
particular aspects of the dynamics of quantum systems will besand have beend made. Some
papers, courtesy of their definition of quantum chaos, come to the conclusion that there is no such
thing as quantum chaos. That is, they conclude that no quantum system can display chaotic
behavior. Other papers, simply as a consequence of a different starting point, come to the conclu-
sion that there are quantum systems that display chaos.

There are general arguments that allow one to categorize the behavior of a quantum system
based upon the spectral composition of the quasienergy spectrum. Hence, Combescure’s work on
the spectrum is relevant to the study of chaos. Our work, by extending the result of Combescure,
may allow for the further categorization of classes of Hamiltonian systems as chaotic or otherwise.
This is further discussed in the next section.

B. Spectral analysis of operators and a link to chaos

The intuitive definition for the energy spectrum of a quantum system is best seen through
example, say the hydrogen atom. The bound states of hydrogen are a countable number of iso-
lated, discrete energies. Each energy corresponds to an eigenvalue of the system and the set of
these points makes up the point energy spectrum. The positive energy scattering states form the
continuous energy spectrum. Thus, the energy spectrum for the hydrogen system consists of two
disjoint parts: the negative energy discretesor “point”d spectrum, and the positive energy continu-
ous spectrum.

For hydrogen,spsHd=han;an<−13.6/n2 for nPNj, andscontsHd=s0,`d.
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As another simple example, the harmonic oscillator quantum system has only discrete energy
levels, and thus is said to be “pure point.” That is, the eigenvectors of the harmonic oscillator form
a basis of the Hilbert space.

While these simple examples have shown clearly that we can split the energy spectrum into
point and continuous parts, this is not the whole story. The mathematical treatment of operators
and measures shows that the spectrum in fact consists of three parts, the point, absolutely con-
tinuous and singularly continuous spectrum. For an appreciation of the work that follows, a
mathematically rigorous understanding of the spectra is necessary. The introductory chapters in
Ref. 9 are essential reading.

One must note that the concept of spectrum is associated with a particular operator. Typically,
we talk of the energy spectrum, associated with the Hamiltonian. However, all operatorsse.g.,
Hamiltonian, Floquet, etc.d have a spectrum. A failure to realize this has lead to a number of
confused papersssee, for example, Ref. 10d which use results on the spectrum of the Hamiltonian
in a discussion of the spectrum of the Floquet operator. With these words of warning, we return to
a discussion of the Floquetsor quasienergyd spectrum of a quantum system.

The link between spectral properties and dynamics is an active field of research and is not yet
fully understood. The introduction to the paper of Last11 provides an informative overview of the
field and gives details on some of the most relevant theorems and results, including the RAGE
theoremsRef. 12, p. 341, Theorem XI.115d. See also Ref. 13sRef. 28d. Last’s paper deals with
systems where the Hamiltonian spectrum is of interest. In time-periodic Hamiltonian systems, the
spectrum of the Floquet operator takes over that role. Yajima and Kitada14 show that RAGE like
results apply to time-periodic systems, as we have here, and thus an analysis of the Floquet
operator spectrum is of interest.

Refering to either the Hamiltonian spectrum or the Floquet spectrum where appropriate, and
the appropriate RAGE like theorem, we now comment on the “typical” manifestation of the
spectrum. A typical quantum mechanical system does not possess a singularly continuous spectral
component and thus, singular continuity is not usually mentioned in texts on quantum mechanics.
This however, is not to say that it cannot exist, or that it does not manifest itself in the dynamical
behavior of appropriate systems. With an understanding that Milek and Seba meant to refer to the
RAGE like theorem in Ref. 14 rather than the RAGE theorem itself, the argument presented in
Sec. II of their paper10 shows that if a system possesses a singularly continuous quasienergy
spectrum then its energy growth over time may be characteristic of a classically chaotic system.
Thus, establishing the existence or otherwise of singular continuous spectra for the Floquet op-
erator can be seen as of central importance to the question of whether or not a quantum mechani-
cal system is chaotic. It must be noted that the arguments presented by Milek and Seba are
acknowledged to be anything but rigorous—a point clearly established by Antoniou and
Suchanecki29,30

It is with the application of the RAGE like theorem in mind,14 that we undertook the following
work on the analysis of the quasienergy spectrum of the class of Hamiltonians as defined bys1d.
The aforementioned work by Milek and Seba,10 utilizing the rank-1 work of Combescure, has
shown the manifestation of singularly continuous spectra in numerical simulations of rank-1
kicked rotor quantum systems. The work here has the potential to extend upon this, and provide a
rigorous mathematical basis to numerical calculations on the time evolution of higher rank kicked
quantum systems.

C. Outline and summary of results

In Sec. II we will present the main theorems of the paper, concerned with establishing when
systems of the form given bys1d maintain a pure point quasienergy spectrum. Parallelling How-
land’s paper2 on self-adjoint perturbations of pure point Hamiltonians, the key ideas are those of
U-finiteness and the absolute continuity of the multiplication operatorV. To establish the second
of these concepts for our unitary casesremember that we are concerned with the spectral proper-
ties of the unitary time evolution operator and not with the spectral properties of the self-adjoint
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Hamiltonian itselfd, we require a modified version of the Putnam–Kato theorem.15 This, and
associated theorems are the topic of Sec. III. Sec. IV uses the results of Secs. II and III to give the
final results, which are then discussed in Sec. V.

D. Notation

We inherit our notation directly from the work of Howland.2 H and K will denote Hilbert
spaces throughout this paper. They will always be separable. The inner product of two vectorsx
andy is kx,yl, and the norm of a vectorx is ixi=kx,xl1/2. For an operatorA:H→K we define the
following:

sid the domainDsAd; the vectorsxPH for which Ax is defined,
sii d the rangeRsAd=hyPK :y=Ax for somexPHj,
siii d the kernel kerA=hxPH :Ax=0j, and
sivd the operator normiAi=supxPDsAd:ixi=1hiAxij.

For any setSPC, S̄ is the closure ofS. If An is a sequence of operators,s-lim An salso An

→ sAd denotes the strong limit,isAn−Adgi→0 for all gPH. w-lim An salsoAn→wAd denotes the
weak limit, ukAng, fl−kAg, flu→0 for all g, f PH. By the Schwartz inequality, the weak limit
exists if the condition above is satisfied forf =g. We will also have need for the norm limit of an
operator,iAn−Ai→0.

For a unitary operatorV=ee−iuEsdud onH, we define for any Borel setS, EfSg=eS Esdud. The
Esdud are orthogonal projection operators, i.e.,E2=E and thus

E ufsudu2Esdud = UE fsudEsdudU2

.

We decompose our operator into its pure pointsVpd, singular continuoussVscd and absolutely
continuoussVacd components.Vs=Vp+Vsc is the singular part of the operatorV. Similarly, we
define the corresponding spectral measuresEp, Esc, Eac, and Es. For a vectorxPH, mx is the
measure

mxsSd = kEsSdx,xl.

Again, we definemx
p, mx

sc, mx
ac, andmx

s. See Ref. 9, pp. 19–23, for an excellent description of these.
By their definition,mx

p, mx
sc, andmx

ac are mutually singular, so we may write the Hilbert space as
a direct sumsi.e., each of the spaces below is invariantd

H = Hpp % Hac % Hsc.

The spectrum ofV is ssVd, defined by

ssVd = ha P C:aI − V is not invertiblej.

If Tx=ax for somexPH andaPC, thenx is an eigenvector, with corresponding eigenvaluea.
The closure of the set ofa’s forms the point spectrum ofV,

spsVd = ha:a an eigenvalue ofVj = ssV �Hpd.

We say thatV is pure pointif and only if the eigenvectors ofV form a basis ofH. The absolutely
ssingularlyd continuous spectrum,sacsscdsVd is similarly defined by

sacsscdsVd = ssV �Hacsscdd.

For a complete discussion and analysis of these topics, the most convenient reference issRef. 9,
pp. 19–23, 188, 230–231d or Ref. 16.
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A set SPH is said to reduce an operatorA if both S and its orthocomplementH * S are
invariant subspaces forA.

A vector f is cyclic for an operatorA if and only if finite linear combinations of elements of
hAnfjn=0

` are dense inH. This motivates the definition that a setS is cyclic forH if and only if the
smallest closed reducing subspace ofH containingS is H.

We will also use some basic set notation.AùB andAøB are, as usual, the intersection and
union of setsA and B, respectively.Ac is the complement ofA. A,B is AùBc. Note that
sA,Bd,C is not equal toA,sB,Cd, the former being a subset of the latter.

The functionxSsxd is the characteristic function for a setS.

II. SPECTRAL PROPERTIES OF THE FLOQUET OPERATOR

Let U be unitary onH and letK be an auxiliary Hilbert space. Define the closed operator
A:H→K, with dense domainDsAd. For our purposes,A bounded onH is adequate. We work
with a modificationsmultiplication byeiud of the resolvent ofU,

Fsu;Ud = s1 − Ueiud−1, s7d

and define foruP f0,2pd, ande.0 the functionGe :K→K,

Gesu;U,Ad = AF*su+;UdFsu+;UdA* , s8d

whereu±=u± ie. Let J be a subset off0,2pd.
Definition II.1 sU-finited: The operator A is U-finite if and only if the operator Gesu ;U ,Ad has

a bounded extension toK, and

Gsu;U,Ad = s-lim
e↓0

Gesu;U,Ad s9d

exists for almost everyuPJ.
We define the function

destd =
1

2p
So

n=0

`

einst+ied + o
n=−`

0

einst−ied − 1D =
1

2p

1 − e−2e

1 – 2e−e cosstd + e−2e . s10d

The limit as e→0 of destd is a series representation of thed-function. The proof is based on
showing that

lim
e↓0
E

−p

p

gstddestddt = 0,

where gstd= fstd− fs0d and fstd is bounded ins−p ,pd. One splits the integral into three parts,
e−p

−j +e−j
j +ej

p . One must assume thatfstd is continuous att=0 fotherwiseefstddstddt is not well
definedg so that

∀h, ∃ j . 0s.t.∀ t,utu , j we haveufstd − fs0du , h.

The assumption thatfstd is bounded ons−p ,pd is also required.
The first and third integrals are zero becausedestd→0 for tÞ0 from s10d and the assumption

thatgstd is bounded. The second integral from −j to j is zero by the continuity offstd at t=0, the
positivity of destd and Ref. 17, p. 435,s3.792.1d.

Given s10d and the spectral decomposition ofU, we may write

des1 − Ueiud =E des1 − eisu−u8ddEsdu8d =E desu − u8dEsdu8d =
1

2p
s1 − e−2edF*su+;UdFsu+;Ud.

s11d
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The existence of a nontrivialU-finite operator will have important consequences for the
spectrum of the Floquet operatorV. We introduce the set

NsU,A,Jd = hu P J:s-lim
e↓0

Gesu;U,Ad does not existj

of measure zero, which enters the theorem. We will often refer to this set simply asN during
proofs.

Theorem II.2: If A is U-finite on J and RsA*d is cyclic for U, then

sad U has no absolutely continuous spectrum in J, and
sbd the singular spectrum of U in J is supported by NsU ,A,Jd.

Proof: sad Following Howland, we note that the absolutely continuous spectral measure,
my

acsJd, is thee→0 limit of kdes1−Ueiudy,yl for uPJ. If yPH is in RsA*d, allowing us to write
y=A*x for somexPK, then

lim
e↓0

kdes1 − Ueiudy,yl = lim
e↓0

kdes1 − UeiudA*x,A*xl = lim
e↓0

es1 − ed
p

kGesu;U,Adx,xl = 0

for almost everyuPJ. The setY of vectorsy for which my
acsJd=0 is a closed reducing subspace

of H, and by construction contains the cyclic setRsA*d as a subset. BecauseY is invariant, finite
linear combinations of action withUn leaves us inY. Due to the cyclicity, these same linear
combinations allow us to reach anyyPH. Thus, the setY of vectorsy with my

acsJd=0 must be the
whole Hilbert spaceH. So there is no absolutely continuous spectrum ofU in J.

sbd A theorem of de la Vallée PousinfRef. 18, p. 127,s9.6dg states that the singular part of the
spectrum of a function is supported on the set where the derivative is infinite. In our case, this
corresponds to finding wheremysdud→`. We calculate

lim
e↓0

kdes1 − Ueiudy,yl =E dsu − u8dkEsdu8dy,yl =E dsu − u8dmysdu8d = mysdud.

Thus,my
s=my

sc+my
pp is supported on the set where

lim
e↓0

kdes1 − Ueiudy,yl = `. s12d

From the proof to partsad, if y=A*x then the limits12d is zero foruPJ, u¹N, somy
s in J must

be supported byN. The set of vectorsy with my
ssJùNcd;my

ssJ,Nd=0 is closed, invariant and
containsRsA*d, so must beH by the argument above. Thus, the singular spectrum ofU is
supported on the setN. j

We now define a new operator,Qszd :K→K,

Qszd = As1 − Uzd−1A* .

Note that

Qseiu±d = AFsu±;UdA* . s13d

Qszd is clearly well defined for!z! Þ1. Proposition II.3 shows that the definition can be extended
to !z! =1.

Proposition II.3: Let A be bounded. IfuPJ, but u¹NsU ,A,Jd, then

sad the operator Qseiud=As1−Ueiud−1A* is bounded on K, and
sbd one has s-lim

e↓0

Qse±isu±iedd=Qse±iud.

Proof: sad Without loss of generality, takeu=0 sz=1d. By Theorem II.2,e−i0¹spsUd, so
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s1−Uei0d−1 exists as a densely defined operator. AsA is a bounded operator, it suffices to show
that s1−Uei0d−1A* is bounded. We have

is1 − Uei0+d−1A*xi2 = kFs0+;UdA*x,Fs0+;UdA*xl

= kAF*s0+;UdFs0+;UdA*x,xl

= kGes0;U,Adx,xl ø Cuxu2 sasu ¹ Nd s14d

for some real constantC. If y=A*x, notingU=ee−iuEsdud, we also have

is1 − Uei0+d−1A*xi2 =E S 1

1 − e−iue−eDS 1

1 − eiue−eDkEsdudy,yl.

In light of s14d, we may safely takee to zero, to obtain

E S 1

1 − e−iuDS 1

1 − eiuDkEsdudy,yl ø Cixi2 , `. s15d

From s15d, we have

E S 1

1 − e−iuDS 1

1 − eiuDkEsdudy,yl = kf1 − Ug−1y,f1 − Ug−1yl ø Cixi2 , `, s16d

so yPDfs1−Ud−1g. Thus,Qs1d=As1−Ud−1A* is defined on allK and bounded.
sbd For yPDss1−Ud−1d, we show that the difference betweenQse±is0±iedd andQse±i0d tends to

zero ase→0. Again, due to the boundedness ofA, we need only show that

iss1 − Uei0+d−1 − s1 − Ud−1dA*xi

tends to zero. Consider

us1 − Ue−ed−1y − s1 − Ud−1yu2 =E U 1

1 − e−iue−e −
1

1 − e−iuU2

kEsdudy,yl

=E S s1 − e−ed2

1 – 2e−e cosu + e−2eD kEsdudy,yl
s1 − e−iuds1 − eiud

. s17d

The first factor is bounded and tends to zero foruÞ0. The second factor is the measure from
s15d. Clearly, away from the origin, the integral tends to zero. About the origin, we must take some
care to show that there is no contribution to the integral.

Using s10d, we have

s1 − e−ed2

1 – 2e−e cosu + e−2e =
s1 − e−ed2

1 − e−2e 2pdesud.

On substitution intos17d, we obtain

s1 − e−ed2

1 − e−2e 2pE
−a

a

desud
mysdud

2s1 − cosud
=

s1 − e−ed2

1 − e−2e 2pE
−a

a dQe

du

gysud
2s1 − cosud

du.

The functionQesud=edesu8ddu8 is the step function in thee→0 limit. For nonzeroe it is positive,
monotonic, increasing and bounded by unity. Asu¹N we have also writtenmysdud=gysuddu for
some well behaved positive functiongysud. By integration by partsssee Ref. 19, p. 32 for exis-
tence conditions, which are satisfiedd we obtain
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s1 − e−ed2

1 − e−2e 2pHFQesud
gysud

2s1 − cosudG−a

a

−E
−a

a

Qesud
d

du

gysud
2s1 − cosud

duJ .

The first term within the curly braces is clearly some finite value. The second term is less than

E
−a

a d

du

gysud
2s1 − cosud

du = F gysud
2s1 − cosudGa

−a

from the properties of theQe function mentioned above. As with the first term, it is clearly some
finite value. Noting that

lim
e↓0

s1 − e−ed2

1 − e−2e = 0

we see that partsbd follows. j

Theorem II.4: Let A be bounded and U-finite on J, with RsA*d cyclic for U. Let W be bounded
and self-adjoint onK, and define the Floquet operator

V = eiA*WA/"U.

We assume that foruzu Þ1, Qszd is compact, and that Qse±isu±iedd converges to Qse±iud in operator
norm ase→0 for a.e.u in J. Define the set

MsU,A,Jd = hu P J:Qse±isu±i0dd does not exist in normj.

Then

sad V has no absolutely continuous spectrum in J, and
sbd the singular continuous part of the spectrum of V in J is supported by the set

NsU ,A,JdøMsU ,A,Jd.

Proof: sad For convenience, we write the Floquet operator as

V = s1 + A*Z AdU,

whereZ is defined appropriately by requiring expsiA*WA/"d=1+A*ZA. fFor the rank-N pertur-
bation case whereW=ok=1

N lkucklkcku and A=ok=1
N ucklkcku, we have Z=ok=1

N sexpsilk/"d
−1ducklkcku.g

Noting s7d and s13d allows us to define

Q1 = AFsu;VdA* = As1 − Veiud−1A* .

Consider some vectory8PH. Ay8=xPK is defined for suchy8. A*x=y9 is some vector inH. The
cyclicity of RsA*d means that action with linear combinations of powers ofU on y9 allows us to
obtain anyyPH, our originaly8 being one of them. Thus, we have a construction ofA−1, namely,
operation withA* followed by the linear combination of powers ofU. As y8 was arbitrary,A−1

exists for allyPH. This allows us to introduceI =A−1A in what follows.fThe particular choice of
A as a projection ins5d does not have an inverse, but we will see in Sec. IV that we can define a
subspace ofH on whichRsA*d is cyclic, and apply this theorem.g

We now proceed by use of the resolvent equation,

Q1 − Q = AH 1

1 − Veiu −
1

1 − UeiuJA*

= AH 1

1 − Veiu sA*Z AUeiud
1

1 − UeiuJA* = Q1seiudZ AUA−1eiuQseiud. s18d

Thus, briefly usingL=Z AUA−1eiu for clarity, we have
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LQ1 − LQ = LQ1LQ ⇒ s1 + LQ1ds1 − LQd = 1

⇒ 1 + eiuZ AUA−1Q1seiud = f1 − eiuZ AUA−1Qseiudg−1. s19d

Denote byN andM the setsNsU ,A,Jd andMsU ,A,Jd. If uP sJ,Nd,M, i.e., uPJùNcùMc,
and 1−eiuZ AUA−1Qseiud is not invertible, then the compactness of −LQseiud fwhich follows from
the compactness ofQseisu+iedd, the norm convergence ofQseisu+iedd and Theorem VI.12 in Ref. 9g
allows us to use the Fredholm alternativesRef. 9, p. 201, Theorem VI.14d to assert that

∃x P K,s.t. f1 − eiuZ AUA−1Qseiudgx = 0.

That is, there is some vectorxPK which satisfies the equation

x − eiuZ AUA−1As1 − Ueiud−1A*x = 0. s20d

As uPJ,N, by Proposition II.3y=A*xPDfs1−Ueiud−1g so definef as

f = s1 − Ueiud−1A*x. s21d

f is a well-defined vector onH and we have

x = eiuZ AUf.

By s21d, xÞ0 impliesfÞ0, so we have

s1 − Ueiudf = A*x = eiuA*Z AUf

or

Vf = e−iuf. s22d

We conclude thate−iuPspsVd.
The multiplicity of the eigenvalue is given by the dimension of the kernel of 1

−eiuZ AUA−1Q, which is finite by the compactness ofQ and Theorem 4.25 of Ref. 20.
Therefore, ifuPJ,sNøM øspsVdd, which is a set of full Lebesgue measuresthat the setM

has measure zero is a consequence of Lemma II.5d, then the vector

xsed = f1 + eisu+iedZ AUA−1Q1seisu+ieddgx ; f1 + L+Q1seiu+dgx s23d

must be bounded in norm ase→0 because we have just seen that if it is unbounded, we have an
eigenvalue of the operatorV. For y=A*xPRsA*d, the absolutely continuous spectrum,my

ac of V is
the limit of

kdes1 − Veiudy,yl = kAdes1 − VeiudA*x,xl.

Our aim is to show that this is zero for allyPH. We define

F1sud = s1 − Veiud−1, s24d

Fsud = s1 − Ueiud−1, s25d

and in a similar fashion tos18d and s19d, obtain

F1sud = Fsudf1 + sV − UdeiuF1sudg s26d

and

s1 + sV − UdeiuF1sudd = s1 − sV − UdeiuFsudd−1.

Writing X=V−U, on substitutings26d into our expression for thed-function s11d we obtain

032108-10 J. McCaw and B. H. J. Mckellar J. Math. Phys. 46, 032108 ~2005!

                                                                                                                                    



2pdes1 − Veiud = s1 − e−2edF1
*su+dF1su+d = f1 + eiu+XF1su+dg*2pdes1 − Ueiudf1 + eiu+XF1su+dg.

Substitution ofs13d and noting that

X = V − U = s1 + A*Z AdU − U = A*Z AU

gives us

Ades1 − VeiudA* = Af1 + Xeiu+F1su+dg*des1 − Ueiudf1 + Xeiu+F1su+dgA*

= f1 + L+Q1su+dg*Ades1 − UeiudA*f1 + L+Q1su+dg.

The absolutely continuous spectrum,my
ac of V is the limit of

kAdes1 − VeiudA*x,xl = kf1 + L+Q1su+dg*Ades1 − UeiudA*f1 + L+Q1su+dgx,xl

= kAdes1 − UeiudA*xsed,xsedl =
es1 − ed

p
kGesu;U,Adxsed,xsedl s27d

which tends to zero ase→0 if both Gesu ;U ,Ad andxsed are bounded.Gesu ;U ,Ad is bounded as
we haveuPJ,N andxsed is bounded bys23d.

Part sad follows sinceRsA*d cyclic for U implies thatRsA*d is cyclic for V.
sbd Let N1=NsV,A,Jd. We have just shown thatuPJ,sNøM øspsVdd implies that

e

p
kGesu;V,Adxsed,xsedl → 0 s28d

and therefore

kdes1 − Veiudy,yl → 0. s29d

If we can infer the strong limit from this weak limit then we have established thatu¹N1. We use
the result that ifxn→wx and ixni→ ixi, then xn→ sx sRef. 21, p. 244d. Writing Ge and G for
Gesu ;V,Ad andGsu ;V,Ad, andFe andF for Fsu+;Vd andFsu ;Vd, consider

uiGexi2 − iGxi2u = uksGe
2 − G2dx,xlu = ukAhsFe

*Fe − F*FdA*AFe
*Fe + F*FA*AsFe

*Fe − F*FdjA*x,xlu.

If A, Fe, andF are bounded operators, then ifFe
*Fe−F*F tends to zero ase→0 we can conclude

that the strong limit exists. A short calculation shows that

Fe
*Fe − F*F = fs1 − e−2ed − s1 − e−edsUeiu + U*e−iudgFe

*FeF
*F

which trivially tends to zero ase→0 given the boundedness ofFe andF. Finally, A is bounded by
assumption ands23d shows thatQ1su+d is a bounded operator ase→0 and thus bothFe andF are
bounded.

Moving on from s29d, we have now established thatN1,NøM øspsVd so N1 must have
measure zero, again remembering that we need Lemma II.5 below to prove thatM has measure
zero. By Theorem II.2,N1 supports the singular spectrum ofV. That is,

mssN1
cd = 0,

where the setN1
c is the complement ofN1. As the measure is positive andms=msc+mp, we know

that

mscsN1
cd = 0.

Trivially, sNøMd,spsVd containsN1,spsVd. Thus

mscsfN1 ù spsVdcgcd = mscsN1
c ø spsVdd = mscsN1

cd + mscsspsVdd = 0 + 0 = 0

as thescontinuousd measure of single points is zero.
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The setNøM ùspsVdc must supportmsc asN1ùspsVdc is a subset. Therefore

mscsfN ø M ù spsVdcgcd = 0.

This equals

mscsfN ø Mgc ø spsVdd = mscsfN ø Mgcd + mscsspsVdd=mscsfN ø Mgcd

so we conclude that the setNøM supports the singular continuous part of the spectrum.j
Theorem II.4 has shown us thatV has an empty absolutely continuous component, and that the

singular continuous component is supported by the setNøM, which is independent ofl. We
know thatN has measure zero, and Lemma II.5 below shows us thatM also has measure zero.
This will allow us to apply Theorem II.6 to show that the singular continuous spectrum ofV is also
empty. Thus, with both theac andscspectra empty, we can conclude thatV must have pure point
spectrum.

Lemma II.5: Let Qszd be a trace class valued analytic function inside the complex unit circle,
with uzu,1. Then for almost everyu,

lim
e↓0

Qseisu+iedd ; Qseisu+i0dd

exists in the Hilbert–Schmidt norm.
Proof: We parallel the proof of de Branges theoremssee Ref. 22 and pp. 149–150 in Ref. 23d.

Consider

Qseisu+iedd + Q*seisu+iedd =E A*H 1

1 − e−isu8−ude−e
+

1

1 − eisu8−ude−eJAEsdu8d

=E A*H 2s1 − e−e cossu8 − udd
1 + e−2e − 2e−e cossu8 − udJAEsdu8d.

The factor within the curly braces is greater than zero for allu8 ,u and thus we have

Qseisu+iedd + Q*seisu+iedd ù 0 ∀ e ù 0.

Therefore, following de Branges,

udets1 + Qseisu+iedddu2 ù dets1 + Q*seisu+ieddQseisu+ieddd=p s1 + uanu2dùHo uanu2 = iQseisu+ieddiHS
2

1.
,

hanj are the eigenvalues ofQ. From the two bounds onudets1+Qseisu+iedddu above, we obtain

I Qseisu+iedd
dets1 + Qseisu+iedddIHS

ø 1 andU 1

dets1 + Qseisu+ieddd
U ø 1.

The definition of an analytic operator Ref. 9, p. 189d implies the analyticity of the eigenvalues, and
thus the operations of taking the determinant and the Hilbert–Schmidt norm are analytic. Hence,
both functions above are analytic and bounded within the complex unit circlese.0d. Application
of Fatou’s theoremsRef. 24, p. 454d establishes the existence in the limit ase→0 and hence both
functions exist on the boundary almost everywhere. Taking the quotient we establish the existence
of Qseisu+i0dd in the Hilbert–Schmidt norm. j

Let sV ,md be a separable measure space, and

Vsld =E e−iuElsdud

a measurable family of unitary operators onH. We denote by
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V =E e−iuEsdud

the multiplication operator

sVudsld = Vsldusld

on L2sV ,m ;Hd, whereusldPL2sV ,m ;Hd.
A vector usld is an element ofL2sV ,m ;Hd if, for usldPH,

E
−`

`

iusldi2dm , `.

It is important to note the difference betweenVsld acting onH andV acting onL2sV ,m ;Hd.
To obtain our goal of showing that for almost everyl, Vsld has a pure point spectrum, we must
show thatV is absolutely continuous as a function ofl on the spaceL2sV ,m ;Hd.

Theorem II.6 is taken directly from Ref. 2. The proof given is, apart from some small nota-
tional changes, identical to that in Ref. 2. Due to a number of typographical errors however, we
have reproduced the proof here for reference and clarity.

Theorem II.6: Let V be absolutely continuous on L2sV ,m ;Hd, and assume that there is a
fixed set S of Lebesgue measure zero which supports the singular continuous spectrum of Vsld in
the interval J form-a.e. l. Then Vsld has no singular continuous spectrum in J form-a.e. l.

Proof: For fixed xPH, and any measurable subsetG of V, let usld=xGsldx be a vector in
L2sV ,m ;Hd. Then

E
G

uEl
scfJgxu2msdld ø E

G

uElfSgxu2msdld

=E uElfSgusldu2msdld=E uEfSgusldu2msdld=iEfSgusldi2 = 0.

eGuEl
scfJgxu2msdld=0 implies thatuEl

scfJgxu2=0 for m-a.e. l. Thus

El
scfJgx = 0

for everyxPH. j

The application of Theorem II.6 relies on finding a fixed setSof measure zero which supports
the singularly continuous spectrum.S=NøM is sufficient.

We have now established all the basic requirements forV to be pure point, givenU pure point.
They are now combined to produce the main theorem of the paper. There is still quite a lot of
manipulation to satisfy the conditionV ac on L2sR ;Hd of Theorem II.6, and this will be the focus
for the remainder of Sec. II and III.

Theorem II.7. Let U and Asatisfy the hypotheses of Theorem II.4 and define forlPR,

Vsld = eilA*A/"U.

Then Vsld is pure point in J for a.e. l.
Proof: By Theorem II.4, withW=lI, Vsld has no absolutely continuous spectrum inJ, and its

singularly continuous spectrum is supported on the fixed setS=NøM. Application of Lemma II.5
shows thatS is of measure zero. Theorem II.6 applies and shows that the singular continuous
spectrum is empty, if we can show thatV is absolutely continuous onL2sR ;Hd. We show this in
the following sections.

As we have shown that both the absolutely continuous and singular continuous parts of the
spectrum are empty, we conclude thatVsld is pure point for almost everylPR. j

To show thatV is ac, we apply a modified version of the Putnam–Kato theorem which is
proved in Sec. III. The unitary Putnam–Kato theorem is the following.
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Theorem III.3: Let V be unitary, and D a self-adjoint bounded operator. If C=VfV* ,Dgù0,
then V is absolutely continuous on RsC1/2d. Hence, if RsC1/2d is cyclic for V, then V is absolutely
continuous onH.

We apply this theorem on the spaceL2sR ;Hd. A naive application to obtain the desired result
is as follows. We slightly change notation and explicitly include thel dependence ofW in our
definition of V. If we chooseD=−isd/dld, with V=eilA*WAU, we see that

− i
dV*

dl
= − U*A*WAe−ilA*WA= − V*A*WA

so that for someuPL2sR ;Hd,

fV* ,Dgu = sV*D − DV*du = − DV*u=i
d

dl
sV*ud = V*A*WAu.

Therefore,

C = VfV* ,Dg = A*WA.

With W= I, we obtainC=A*Aù0 and thusRsC1/2d=RsA*d ssee the proof to Theorem VI.9 in Ref.
9d is cyclic for V. Hence,V is ac and we satisfy all the requirements of Theorem II.7.

The problem here is thatD is not bounded, and boundedness ofD is essential in the proof of
the Putnam–Kato theorem. We use a similar technique as Howland2 to overcome this issue.

As the norm ofA*A may be scaled however we like, we can rewriteV, for real t as

Vstd = eictA*AU s30d

for some realc.0.
Proposition II.8: On L2sR ;Hd, consider the unitary multiplication operatorV, defined by

Vustd = Vstdustd = eictA*AUustd

and the bounded self-adjoint operatorD=−arctansp/2d, where p=−id/dt. Then C=VfV* ,Dg is
positive definite, and RsC1/2d is cyclic for V. Hence, the requirements of Theorem II.7 are fully
satisfied.

Proof: The operatorD on L2sR ;Hd is convolution by the Fourier transform of −arctansx/2d,2

which is ipt−1e−2utu fRef. 25, p. 87,s3dg. This is a singularsprincipal valued integral operator,
because arctansp/2d does not vanish at infinity. Thus, forustdPL2sR ;Hd,

Dustd = ipPE
−`

` e−2ut−yu

t − y
usyddy

and

fV* ,Dgustd = ipPE
−`

`

e−2ut−yuV
*std − V*syd

t − y
usyddy

so

Custd = VfV* ,Dgustd=ipPE
−`

`

e−2ut−yu1 − VstdV*syd
t − y

usyddy. s31d

Inserting our expressions30d for Vstd, we obtain
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Custd = ipE
−`

`

e−2ut−yu1 − eicst−ydA*A

t − y
usyddy

=ipE
−`

`

e−2ut−yu1 − cossA*Acst − ydd − i sinsA*Acst − ydd
t − y

usyddy. s32d

Note that this is no longer a singular integral. To show thatC is positive, we must show that

sustd,Custdd . 0 ∀ ustd P L2sR;Hd.

Note that the inner product onL2sR ;Hd is given by

sustd,u8stdd =E
−`

`

u*stdu8stddt. s33d

We now write our operatorA in terms of its spectral components. Please note thatl decomposes
A and bears no relation to the strength parameter used at other stages in this paper. When required
for clarity, we writeel to identify the integral over the variablel,

A =E lEsdld.

A general vectorustd may be written

ustd =E Esdldustd.

Then

fsAdustd =E fsldEsdldustd

which implies that we may rewrites32d as

Custd = ipE
−`

`

dyE
l

e−2ut−yu1 − eicst−ydulu2

t − y
Esdldusyd=E

−`

`

dyE
l

flst − ydEsdldusyd

=E
l

EsdldClstd,

where

Clstd =E
−`

`

dyflst − ydusyd

and we have defined the new function

flstd = ipe−2utut−1s1 − eictulu2d.

By the convolution theorem, note that

C̃lsvd = f̃lsvdũsvd,

where indicates Fourier transform. Using this decomposition ofustd and Parseval’s theorem, we
can now easily write downsustd ,Custdd. We usesx,ydH to indicate the inner product on the Hilbert
spaceH, reservingsx,yd for the inner product onL2sR ;Hd as in s33d.
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sustd,Custdd =E
−`

`

dtsustd,CustddH =E
−`

`

dtSustd,E
l

EsdldClstdD
H

=E
−`

`

dtSustd,E
l

Esdld E dv

2p
eivtC̃lsvdD

H
=E

l

Esdld E dv

2p
uũlsvdu2f̃lsvd.

We clearly see that iff̃lsvd is positive for alll, thenC will be positive.
In the following calculation we will find the need to boundculu2. The restriction 0øculu2

ø1 will be employed. We argue that asA*A is a positive self-adjoint bounded operator we can
restrict the integral overl to sRef. 26, pp. 262 and 273d

A*A =E
−`

`

ulu2Esdld =E
m−0

M

ulu2Esdld, s34d

whereM is the least upper bound andm the greatest lower bound ofA*A. The norm ofA*A is
given by maxsumu , uMud. Thus, if we set

c =
1

iA*Ai

then we guarantee eachculu2 to be less than unity.
Proceeding, the Fourier transform,f̃lsvd of

flstd = ipe−2utut−1f1 − cosctulu2 − i sin ctulu2g s35d

is now calculated. We splits35d into two parts,

fl1std = ipe−2utut−1f1 − cosctulu2g, s36d

fl2std = pe−2utut−1 sin ctulu2. s37d

The Fourier transform ofs36d is

f̃l1svd = ipE
−`

`

e−2utut−1s1 − cosctulu2de−ivt dt

= ipFE
0

`

e−2tt−1s1 − cosctulu2de−ivt dt +E
0

`

e−2ts− t−1ds1 − cosctulu2deivt dtG .

Using Ref. 25, p. 157,s59d, and settingS=culu2/ s2+ivd, we obtain

f̃l1svd =
ip

2
logS 1 + S2

1 + S*2D .

The logarithm of a complex number can in general be written as

logszd = logsuzud + i Arg z

so noting thatus1+S2d / s1+S*2du=1, we see that

f̃l1svd = −
p

2
Arg S 1 + S2

1 + S*2D = − p Arg s1 + S2d.

With k=culu2, the real and imaginary parts of 1+S2 are
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Rs1 + S2d =
s4 + v2d2 + k2s4 − v2d

s4 + v2d2 ,

Is1 + S2d =
− 4k2v

s4 + v2d2 .

With the restriction that 0økø1, the real part is positive for allv and thus Argszd
=arctansIz/Rzd. Thus,

f̃l1svd = − p arctanS Is1 + S2d
Rs1 + S2dD .

arctanszd is the principal part of Arctanszd, with range −p /2,arctanszd,p /2. The Fourier trans-
form of s37d is similarly calculated using Ref. 25, p. 152,s16d, to be

f̃l2svd = pfarctanS+ arctanS*g = pFarctanS culu2

2 + iv
D + arctanS culu2

2 − iv
DG .

Repeated application of the formula arctansz1d+arctansz2d=arctansz1+z2/1−z1z2d, valid when
z1z2,1 strue for 0økø1d, yields sthis result is not valid for values ofk larger than around 2, at
which point the arctan addition formulas fail—this is a moot point however, as we may trivially
restrictk as already explainedd

f̃lsvd = f̃l1svd + f̃l2svd = p arctanSnsv,culu2d
dsv,culu2dD , s38d

where

nsv,kd = 4kfs4 + v2d2 + kvs4 + v2d + k2s4 − v2d − k3vg s39d

and

dsv,kd = s4 + v2d3 − 2k2v2s4 + v2d − 16k3v − k4s4 − v2d. s40d

One may easily confirm that for 0økø1, nsv ,kd /dsv ,kd and hencef̃lsvd is strictly positive by
noting that there are four distinct regions of interest forv, in which terms inn andd do not change
sign. Table I shows these regions and the sign of each term in the region. Note that the global
spositive and hence irrelevantd k factor froms39d is dropped from the numerator for the following
discussion.

TABLE I. Sign of each term in the numeratornsv ,kd and the denominatordsv ,kd of s38d.

nsv ,kd= s4+v2d2 +kvs4+v2d2 +k2s4−v2d −k3v

v,−2 +ve −ve −ve +ve

−2,v,0 +ve −ve +ve +ve

0,v,2 +ve +ve +ve −ve

v.2 +ve +ve −ve −ve

dsv ,kd= s4+v2d3 −2k2v2s4+v2d −16k3v −k4s4−v2d

v,−2 +ve −ve +ve +ve

−2,v,0 +ve −ve +ve −ve

0,v,2 +ve −ve −ve −ve

v.2 +ve −ve −ve +ve
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For each row in the table, we simply need to show that the terms add to produce a strictly
positive number. First note that the first column for both the numerator and denominator is
independent ofk. To show the positivity of each row, we set all positivek-dependent terms to zero
and then takek=1 for the negative terms to maximize their contribution. Expanding out terms, it
is then trivially seen in all cases that the first columnf s4+v2d2 for the numerator ands4+v2d3 for
the denominatorg dominates. Thus, no row is negative and we conclude thatf̃l is positive definite.

We have established that the Fourier transform offl is positive definite forculu2ø1. As a
visual aid, Fig. 1 showsf̃lsvd. The positivity forculu2ø1 is clear.

Thus,C is strictly positive andV is absolutely continuous onRsC1/2d. As A*A is a factor of
1−eictA*A si.e., A*A is a factor ofCd, RsC1/2d=RsA*d. Noting thatRsA*d is cyclic for U and hence
cyclic for V, we conclude thatRsC1/2d is cyclic for V. Thus, V is absolutely continuous on
L2sR ;Hd. j

We have now satisfied all the requirements of Theorem II.7.

III. THE UNITARY PUTNAM–KATO THEOREM

In this section, we will prove a modified version of the Putnam–Kato theorem, as used in the
preceding sections. The theorems and proofs follow a similar argument to that of Reed and Simon
sRef. 15, p. 157, Theorem XIII.28d and are motivated by the stroboscopic nature of the kicked
Hamiltonian.

Definition III.1. (V-Smooth): Let V be a unitary operator. A is V-smooth if and only if for all
fPH, VstdfPDsAd for almost every tPR and for some constant C,

o
n

iAVnfi2 ø Cifi2.

Theorem III.2 : If A is V-smooth, thenRsA*d,HacsVd.
Proof: SinceHacsVd is closed, we need only showRsA*d,HacsVd. Let fPDsA*d, c=A*f,

and let dmc be the spectral measure forV associated withc. Define, for the periodT in s1d,

FnsTd =
1

Î2p
sA*f,fVsTdgncd. s41d

We calculate

FIG. 1. Plot off̃lsvd=f̃l1svd+f̃l2svd, the Fourier transform offlstd= ipe−2utut−1s1−cossctulu2d− i sinsctulu2dd. f̃lsvd is
strictly positive for allv whenculu2ø1.
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uFnu =
1

Î2p
usf,AVncdu ø

1
Î2p

ifiiAVnci.

BecauseA is V-smooth, we see that

o
n

uFnu2 ø
1

2p
ifi2o

n

iAVnci2 ø
C

2p
ifi2ici2 , `.

So FnPL2sRd. By the Riesz–Fischer theoremsRef. 27, pp. 96–97, 4.26 Fourier seriesd, Fsud
= 1/Î2ponFne

inuPL2.
The spectral resolution ofVfTg is

VfTg =E
0

2p

eiu dETsud,

so we have

sVfTgdn =E
0

2p

einu dETsud.

Therefore, froms41d we obtain

Fn =
1

Î2p
E

0

2p

sA*f,einu dEsudcd

=
1

Î2p
E

0

2p

einusc,dEsudcd

=
1

Î2p
E

0

2p

einu dmcsud.

Using the inverse of the expression above forFsud gives

Fn =
1

Î2p
E

0

2p

einuFsuddu.

As we have just shown thatFsudPL2, dmcsud=Fsuddu is absolutely continuous, which implies
that cPRsA*d is in HacsVd and soRsA*d,HacsVd. j

Theorem III.3 (Unitary Putnam–Kato theorem) : Let V be a unitary operator, and A a
self-adjoint bounded operator. If C=VfV* ,Agù0, then V is absolutely continuous on RsC1/2d.
Hence, if RsC1/2d is cyclic for V, then V is absolutely continuous.

Proof: The discrete time evolution of an operatorA is given by

Fn = V−nAVn.

We calculate

Fn − Fn−1 = V−nVfV* ,AgVn ; Gn,

so
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o
n=a

b

sf,Gnfd = o
n=a

b

sf,V−nVfV* ,AgVnfd

= o
n=a

b

sVnf,VfV* ,AgVnfd = o
n=a

b

sC
1
2Vnf,C

1
2Vnfd = o

n=a

b

iC
1
2Vnfi2,

whereC=VfV* ,Ag. We also have

o
n=a

b

sf,Gnfd = sf,V−bAVbfd − sf,V−sa−1dAVsa−1dfd.

Taking the modulus and using the Schwartz inequality, we obtain

o
n=a

b

iC
1
2Vnfi2 ø 2usf,V−bAVbfdu = 2usVbf,AVbfdu ø 2iAi iVbfi2 = 2iAi ifi2 , `

and thus we see thatC1/2 is V-smooth.
That V is absolutely continuous onRsC1/2d follows directly from Theorem III.2. j

IV. FINITE RANK PERTURBATIONS

Here, we utilize the results of Sec. II to show that perturbations of the forms5d lead to the
Floquet operator having pure point spectrum for almost every perturbation strengthl.

We use directly the definition ofstrongly H-finitefrom Howland.
Definition IV.1 (Strongly H-finite): Let H be a self-adjoint operator onH with pure point

spectrum, fn a complete orthonormal set of eigenvectors, and Hfn=anfn. A bounded operator
A:H→K is strongly H-finite if and only if

o
n=1

`

uAfnu , `. s42d

If H is thought of as a diagonal matrix onl2, i.e.,H=onanufnlkfnu, andA as an infinite matrix
haijj, i.e., A=om,namnufmlkfnu, thens42d says

o
n
Fo

i

uainu2G 1
2 , `. s43d

For our purposes, we need to show that ifA is stronglyH-finite, then it isU-finite. To satisfy
the assumption thatQe is trace class in Lemma II.5sand hence also compact in Theorem II.4d we
also need to show thatA is trace class.

Theorem IV.2: If A is strongly H-finite, then given U=eiTH/", for the period T ins1d and
Hfn=anfn,

sad A is trace class, and
sbd A is U-finite.

Proof: sad Simply consider

trsAd = o
l

kfluAufll = o
l

all ø o
l

uall u. s44d

For each term in the sums44d we trivially have
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uall u ø Îo
i

uail u2

and thuss44d is finite soA is trace class.
sbd Noting that

Uufnl = eiTH/"ufnl

we calculate, by insertion of a complete set of states,

o
n

kfnuGesu;U,Adufnl = o
n

kfnuA
1

s1 − U*e−iu−ds1 − Ueiu+d
A* ufnl = o

m

kfmuA*Aufml
u1 − e−eeiTam/"eiuu2

.

The trace norm is then

tr Gesud = o
n

uAfnu2

u1 − e−eeiTan/"eiuu2
.

If this is bounded fore=0, then it is trivially bounded for alle.0. By s42d and a slightly modified
version of Theorem 3.1 in Ref. 2 this is finite almost everywhere fore=0. Thus the trace norm of
Ge exists ase→0, which implies that the strong limit ofGe exists and we conclude thatA is
U-finite. j

THEOREM IV.3 : Let U be a pure point unitary operator, and let A1, . . . ,AN be strongly
H-finite. Assume that the Ak’s commute with each other. Then for almost everyl=sl1, . . . ,lNd in
RN,

Vsld = eisok=1
N lkAk

*Akd/"U

is pure point.
Proof: This is a trivial modification of Theorem 4.3 in Ref. 2. Let

K = %
k=1

N

RsAkd.

The elements ofK are represented as column vectors. Our operatorA:H→K is defined, fory
PH, by

Ay= 3A1y

A
ANy

4 = 3x1

A
xN

4
and thereforeA* :K→H is given by

A*x = A1
*x1 + ¯ + AN

* xN.

Accordingly, we introduceGesud :K→K, the matrix equivalent of Eq.s8d,

Gesu;U,Ad = Af1 − U*e−iu−g−1f1 − Ueiu+g−1A* = hAif1 − U*e−iu−g−1f1 − Ueiu+g−1Aj
*j1øi,jøN.

The diagonal terms are finite almost everywhere because eachAk is U-finite by Theorem IV.2. The
off-diagonal terms are of the formX1

*X2, and so the Schwartz inequality,

uX1
*X2u2 ø iX1i2iX2i2

ensures that they are finite almost everywhere too. Hence,A is U-finite as every term in the matrix
Gesu ;U ,Ad is almost everywhere finite ase→0.

Our Hamiltonian may now be written as
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Hsld = H0 + A*WsldAo
n=0

`

dst − nTd s45d

and our Floquet operator as

Vsld = eiA*WsldA/"U,

whereWsld=diaghlkj. In this form, the formalism of Sec. II is essentially fully regained, and we
proceed to apply Theorems II.2, II.4, II.6, and II.7.

To establish the absolute continuity of the multiplication operatorV on the spaceL2sRN;Hd
we proceed as in Proposition II.8.

We write

Vst1, . . . ,tNd = eicok=1
N tkAk

*Ak/"U,

define

D = − o
k=1

N

arctanspk/2d,

wherepk=−id /dtk, and compute

C = VfV* ,Dg = o
k=1

N

Ck ù 0.

In obtainingC as a direct sum of theCk, we have had to assume that theAk’s commute with each
other. This complication comes when considering the term

Vst1, . . . ,tNdV*st1, . . . ,tk−1,yk,tk+1, . . . ,tNd

in the equivalent ofs31d. To obtain the required form ofeicstk−ykdAk
*Ak we need theAk’s to commute.

fThis restriction is not required in Howland’s self-adjoint work because the summation overk in
the Hamiltonians45d enters directly, rather than in the exponent ofV.g

Moving on, eachCkù0 is equivalent toC in Proposition II.8 and hence positive. Finally, we
must show thatRsC1/2d is cyclic for V. This is no longer trivial as, for eachk, while we have
RsCk

1/2d=RsAk
*d, the range ofAk

* is not cyclic forU, henceV. To proceed, first note that

RsA*d = ø
k

RsAk
*d.

Now, as argued in Howland, we can assume thatRsA*d is cyclic for U. To elaborate, define
MsU ,RsA*dd to be the smallest closed reducing subspace ofH containingRsA*d. If RsA*d is not
cyclic for U, thenH * M is not empty. However, as shown below, ifyPH * M, thenA*WAy
=0, so inH * M, Vstd=U and is therefore pure point trivially. Thus, we can ignore the space
H * M, and restrict our discussion toM—i.e., we may assumeRsA*d cyclic for U.

The above relied upon showing thatA*WAy=0 for yPH * M. We now prove this. Ify
PH * M andy8PM, then

ky,y8l = 0.

Given y8PM, there exists anxPK such thaty8=A*x, so

ky,A*xl = 0.

That is

032108-22 J. McCaw and B. H. J. Mckellar J. Math. Phys. 46, 032108 ~2005!

                                                                                                                                    



kAy,xl = 0.

This is true for allxPK. Supposey9PH. ThenWAy9PK and so

kAy,WAy9l = 0.

That is

kA*WAy,y9l = 0.

As this is true for anyy9PH, we conclude thatA*WAy=0 onH * M.
Thus,RsA*d fwith A acting onL2sRN ;Hdg may be assumed cyclic forU, hence cyclic forV.
We must finally show thatRsC1/2d=RsA*d. We have

RsA*d = ø
k

RsAk
*d = ø

k
RsCk

1/2d

and

RsCd = ø
k

RsCkd.

As RsA*d=RsA*Ad, RsC1/2d=RsCd and we have shown thatRsC1/2d=RsA*d as required. j

Finally, we wish to make the connection with our original aim—to show that Hamiltonians of
the form

Hstd = H0 + o
k=1

N

lkucklkckuo
n=0

`

dst − nTd s46d

have a pure point quasienergy spectrum.
THEOREM IV.4 : Let H0 be pure point, and define our time dependent Hamiltonian as in

s46d. If c1, . . . ,cNP l1sH0d, then for almost everyl=sl1, . . . ,lNd in RN, the Floquet operator

V = eisok=1
N lkucklkckud/"U

has pure point spectrum.
Proof: This theorem is just a special case of Theorem IV.3 with theAk’s given by ucklkcku.

Clearly, the Ak’s commute. As Howland shows,uclkcu is strongly H-finite if and only if c
P l1sH0d. Thus Theorem IV.3 applies and the result follows. j

V. DISCUSSION OF RESULTS AND POTENTIAL APPLICATIONS

Of fundamental importance in showing that the quasienergy spectrum remains pure point for
almost every perturbation strengthl, was the fact thatckP l1sH0d. That is, if we write

uckl = o
n=0

`

sakdnufnl

where theufnl are the basis states ofH0, thenckP l1sH0d if and only if

o
n=0

`

usakdnu , `.

If this requirement is dropped, and we only retainckP l2sH0d, then Theorem 3.1 in Ref. 2 fails
and there is the possibility thatVsld will have a nonempty continuous spectrum. It was this fact
that Milek and Seba10 took advantage of in showing that the rank-1 kicked rotor could contain a
singularly continuous spectral component under certain conditions on the ratio of the kicking
frequency and the fundamental rotor frequency. They analyzed two regimes of the perturbation.
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One wherecP l1sH0d, in which case the numerical results clearly showed pure point recurrent
behavior, and the other wherecP l2sH0d, but c¹ l1sH0d. In the second case, the authors further
proved that the absolutely continuous part of the spectrum was empty, and thus the system
contained a singularly continuous spectral component. The numerical results reflected this, with a
diffusive type energy growth being observed.

With the generalization of Combescure’s work here, namely our Theorem IV.4, it should now
be possible to investigate the full class of rank-N kicked Hamiltonians. A sufficient requirement
for recurrent behavior has been shown to beckP l1sH0d and so we must turn our attention to
perturbations where this requirement is no longer satisfied.

The challenge will be of course to find systems for which one can show that the absolutely
continuous part of the spectrum is empty. Such systems would be candidates for classification as
quantum chaotic systems.

ACKNOWLEDGMENT

This work was supported by the Australian Research Council.

1M. Combescure, J. Stat. Phys.59, 679 s1990d.
2J. S. Howland, J. Funct. Anal.74, 52 s1987d.
3J. S. Howland, Math. Ann.207, 315 s1974d.
4J. S. Howland, Indiana Univ. Math. J.28, 471 s1979d.
5J. S. Howland, Ann. I.H.P. Phys. Theor.49, 309 s1989d.
6L. Bunimovich, H. R. Jauslin, J. L. Lebowitz, A. Pellegrinotti, and P. Nielaba, J. Stat. Phys.62, 793 s1991d.
7B. Simon and T. Wolff, Commun. Pure Appl. Math.39, 75 s1986d.
8M. Hossein Partovi, Phys. Rev. A45, R555s1992d.
9M. Reed and B. Simon,Methods of Modern Mathematical Physics, Volume 1: Functional AnalysissAcademic, New
York, 1972d.

10B. Milek and P. Seba, Phys. Rev. A42, 3213s1990d.
11Y. Last, J. Funct. Anal.142, 406 s1995d.
12M. Reed and B. Simon,Methods of Modern Mathematical Physics, Volume 3: Scattering TheorysAcademic, New York,

1979d.
13J. M. Combes, “Connections between quantum dynamics and spectral properties of time-evolution operators,” inDif-

ferential Equations with Applications to Mathematical Physics, Volume 192 of Mathematics in Science and Engineering,
edited by W. F. Ames, E. M. Harrell II, and J. V. HerodsAcademic, Boston, 1993d. sSee Ref. 28.d

14K. Yajima and H. Kitada, Ann. I.H.P. Phys. Theor.39, 145 s1983d.
15M. Reed and B. Simon,Methods of Modern Mathematical Physics, Volume 4: Analysis of operatorssAcademic, New

York, 1978d.
16T. Kato, Perturbation Theory for Linear Operators, 2nd ed.sSpringer-Verlag, Berlin, 1976d.
17I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and ProductssAcademic, New York, 1980d.
18S. Saks,Theory of the IntegralsZ Subwencji Funduszu Kultury Narodowej, Warsaw, 1937d.
19Sir Harold Jeffreys and BerthasLady Jeffreysd Swirles,Methods of Mathematical Physics, 3rd ed.sCambridge University

Press, Cambridge, 1962d.
20W. Rudin,Functional AnalysissTata McGraw-Hill, New Delhi, 1974d.
21G. Bachman and L. Narici,Functional AnalysissAcademic, New York, 1972d.
22Louis de Branges, Am. J. Math.84, 543 s1962d.
23T. Kato and S. T. Kuroda, Rocky Mt. J. Math.1, 127 s1971d.
24P. Dienes,The Taylor SeriessDover, New York, 1957d.
25A. Erdelyi, Tables of Laplace TransformssMcGraw-Hill, New York, 1954d, Vol. 1.
26F. Riesz and B. Szokefalvi-Nagy,Functional AnalysissFrederick Ungar, New York, 1955d.
27W. Rudin,Real and Complex AnalysissTata McGraw-Hill, New Delhi, 1974d.
28Differential Equations with Applications to Mathematical Physics, Volume 192 of Mathematics in Science and Engineer-

ing, edited by W. F. Ames, E. M. Harrell II, and J. V. HerodsAcademic, Boston, 1993d.
29I. Antoniou and Z. Suchanecki, Chaos, Solitons Fractals14, 799 s2002d.
30I. Antoniou and Z. Suchanecki, Int. J. Theor. Phys.42, 2255s2003d.

032108-24 J. McCaw and B. H. J. Mckellar J. Math. Phys. 46, 032108 ~2005!

                                                                                                                                    



Exact solution to a supersymmetric Gaudin model
Julia Breiderhoff
Dipartimento di Fisica, Università di Roma TRE, Via Vasca Navale 84, 00146 Roma, Italy

Fabio Musso and Orlando Ragniscoa!

Dipartimento di Fisica, Università di Roma TRE, Via Vasca Navale 84, 00146 Roma, Italy
and I.N.F.N.-Sezione di Roma TRE, Roma, Italy

sReceived 10 November 2003; accepted 21 November 2004;
published online 16 February 2005d

We investigate a special case of the Gaudin model related to the superalgebra
osps1,2d. We present an exact solution to that system diagonalizing a complete set
of commuting observables, and providing the corresponding eigenvectors and ei-
genvalues. The approach used in this paper is based on the co-algebra symmetry of
the model, already known from the Calogero–Gaudin system. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1853503g

I. INTRODUCTION

The Gaudin modelssometimes called Gaudin magnetd,1,2 introduced by Gaudin in 1976, is a
quantum mechanical system involving long-range spin–spin interaction, described by a set ofN
HamiltoniansHi depending on a set ofN arbitrary parametersei:

Hi = o
j=1,jÞi

N
si

xs j
x + si

ys j
y + si

zs j
z

ei − e j
, j = 1, . . . ,N. s1.1d

Out of the operatorss1.1d Gaudin constructed the further operatorsdependent also on another set
of arbitrary parametershid

HG = o
i, j

hi − h j

ei − e j
ssi

xs j
x + si

ys j
y + si

zs j
zd = o

i=1

N

hiHi s1.2d

selecting it as the Hamiltonian of the system: whileHi describes just the interaction of theith spin
with all the others,HG takes care of the mutual interaction among all spins.

Gaudin showed that the HamiltoniansHi commute with each other and constructed their
common eigenvectors by the coordinate Bethe ansatz. The algebra corresponding to the observ-
ables of the model is a loop-algebra, the so-called “rational Gaudin algebra,” whose properties
underlie the integrability of the system. Later, this model was studied by Sklyanin through the
r-matrix approach3,4 and quite recently its intimate connections with Richardson’s work on “pair-
ing force” Hamiltonians5 and with BCS model of superconductivity has been unveiled.6,7

For the special choicehi =ei ∀ i, the Gaudin Hamiltonians1.2d takes the simpler, parameter
independent, form:

HG = o
i,j

ssi
xs j

x + si
ys j

y + si
zs j

zd. s1.3d

In the following we will always work with the “mean-field” Hamiltonians1.3d and we will
continue to refer to it, a bit improperly, as “Gaudin magnet.”
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Using co-algebras, Ballesteros and colleagues developed an alternative approach, shortly de-
noted as BMR in the following, to construct a second family of commuting observables, indepen-
dent of the Gaudin sethHij, but sharing with it the elements1.3d sRefs. 8–10d. In Ref. 10 Musso
and RagniscosMR in the followingd performed an exact diagonalization of this alternative family
of commuting observables, in the simplest finite-dimensional representation, namely the spin-1

2
one. We stress that the existence of two independent complete sets of commuting observables
implies that the Hamiltonians1.3d is maximally superintegrable.

The superalgebra extension of the notion of Gaudin algebra, and of the relatedr-matrix
structure, has been worked out in some remarkable papersssee, for instance, Refs. 11 and 12d
where the Gaudin magnet related to orthosymplectic Lie superalgebraosps1,2d has been con-
structed and solved through a brilliant generalization of the Bethe ansatz.

In the present paper, our purpose is to extend the BMR approach to the supersymmetric
Gaudin magnet associated with theosps1,2d superalgebra and to find a complete family of com-
muting observables independent of the set found by the previous authors in the context of the
Bethe ansatz. These new observables are in fact a sequence of coproducts of the quadratic Casimir
of the algebraosps1,2d. By diagonalizing them, we will construct an exact solution of the model,
providing an explicit expression for the associated eigenvectors and eigenvalues, thus proving that
the Gaudin magnet related to the superalgebraosps1,2d is still maximally superintegrable.

The paper is organized as follows. In Sec. II we briefly recall the basic notions on superalge-
braosps1,2d, as well as the notion of graded tensor-product multiplication, and define a coproduct
enjoying the required homomorphicity properties. Then, we show that, as in thesls2d case, through
the coalgebra approachsRefs. 8 and 13d a completely integrable supersymmetricN-body Hamil-
tonian system can be derived. In Sec. III we construct the common eigenstates of the observables
defined in Sec. II and we derive the eigenvalues associated with the partial Casimir operators of
the systemDshdsCd sh=2, . . . ,Nd scoproducts of the Casimird, paraphrasing the procedure success-
fully followed in Ref. 10. Namely, starting from the “total pseudovacuum,” we first construct an
eigenbasis for the kernel of the global fermionic annihilation operator and then on top of it we
build up all the remaining eigenstates by acting with fermionic creation operators. In Sec. IV we
restrict ourselves to the case of spin 1/2 and give the explicit construction of the eigenstates for
the three-body case. In Sec. V we briefly introduce a more general Hamiltonian, corresponding to
the so-calledt–J models,14 which commutes with the complete family of observables defined in
Sec. II and therefore is completely integrable as well. The proof that our set of eigenstates is
complete is given in the Appendix but only for the case of spin 1/2.

II. THE GAUDIN MAGNET RELATED TO THE SUPERALGEBRA osp „1,2…

The simplest superalgebra that generalizessls2d is the orthosymplectic superalgebraosps1,2d
defined by commutation and anticommutation rulesssupercommutation rulesd. As is well known,
the basic extra-ingredient characterizing the supersymmetric case is a grading, which allows one to
classify the elements of the algebra in two families, the “bosons” with even degree and the
“fermions” with odd degree, and leads to the supercommutation rules. The superalgebraosps1,2d
has five generators, three bosonic ones:H , E+, E− and two fermionic ones:F+, F−. Its defining
relations are the following:15

fH,E±g− = ± 2E±, fE+,E−g− = H, s2.1d

fH,F±g− = ± F±, fF+,F−g+ = H, s2.2d

fE±,F7g− = − F±, fF±,F±g+ = ± 2E±, s2.3d

We immediately see that the operatorsH , E+, E− generate the Lie algebrasls2d. Moreover, as the
anticommutation rules entailsF±d2=E±, some authorsssee, for instance, Ref. 12d defineosps1,2d
only in terms of the three generatorsH , F+, F−.

The Casimir of this algebra is
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C = H2 + 2sE+E− + E−E+d − sF+F− − F−F+d. s2.4d

As we shall see in the following, theNth coproduct of Casimir gives us the Hamiltonian of the
“supersymmetric Gaudin magnet:”

CN = DsNdsCd = fDsNdsHdg2 + 2fDsNdsE+d,DsNdsE−dg+ − fDsNdsF+d,DsNdsF−dg−

= o
jÞi

N

SiSj − F+
i F−

j + F−
i F+

j + 2NjS j +
1

2
DI ; HGs

, s2.5d

whereI is the identity operator, thespositived integer or half-integerj denotes the spin in each site
andSl ;sHl ,E+

l +E−
l ,−isE+

l −E−
l dd.

In passing, we note that a further generalization can be obtained by allowing site-dependent
representationss j1, . . . ,jNd: of course in this case the constant 2Njs j + 1

2
d is then replaced by

2ok=1
N jks jk+ 1

2
d. However, for the sake of simplicity, we will not deal with this more general case

in the present paper.
As in the non-supersymmetric case we poseCh=DshdsCd, h=2, . . . ,N; a complete set of

independent commuting observables is provided by

hDsNdsHd,C2, . . . ,CNj. s2.6d

The operatorsDshd, h=3, . . . ,N are defined through the recursive formula:8

Dshd = sDsh−1d
^ iddDs2d, h = 3, . . . ,N, s2.7d

where Ds2d denotes the coproduct associated with the usual Hopf-algebra structure defined on
Usgd, the universal enveloping algebra of a given Liessuperdalgebrag, namely,

Ds2dsXd = X ^ 1 + 1 ^ X ∀ X P g. s2.8d

For the above construction to hold, yielding complete integrability of the composite system
ssee Ref. 8d, s2.8d has to be a coassociative homomorphism ofosps1,2d, that is,

fDsad,DsbdgS^S= Dsfa,bgSd, ∀ a,b P S, s2.9d

sD ^ iddD = sid ^ DdD, s2.10d

where byf,g we have denoted the supercommutator.
We remark that the above-presented formulas involve tensor-products multiplication, which

has to be associative if we want the coproduct to be coassociative. This requires the tensor product
to be a suitably graded one. The proper definition for binary tensor products is the following:15

sa ^ bdsc ^ dd = ac ^ bds− 1ddegsbdḋegscd. s2.11d

Defining the degree of binary tensor-product in the natural way:

degsa ^ bd = degsad + degsbd mod 2 s2.12d

we obtain the following equations for three element tensor-products:

ssa ^ bd ^ cdssd ^ ed ^ fd = sa ^ bdsd ^ ed ^ cfs− 1ddegscddegsd^ed

= ad ^ be^ cfs− 1ddegsbddegsdd+degscddegsdd+degscddegsed s2.13d

and
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sa ^ sb ^ cddsd ^ se ^ fdd = ad ^ sb ^ cdse ^ fds− 1ddegsb^cddegsdd

= ad ^ be^ cfs− 1ddegsbddegsdd+degscddegsdd+degscddegsed. s2.14d

As s2.13d and s2.14d coincide, the multiplication between three element tensor-products is asso-
ciative. We can extend this result to the general case of multiplication betweenN element tensor-
products obtaining

sa1 ^ a2 ^ . . . ^ aNdsb1 ^ b2 ^ . . . ^ bNd = s− 1doi, j=2
N degsajddegsbid

3sa1b1 ^ a2b2 ^ . . . ^ aNbNd, ∀ aj,bi P S.

s2.15d

Generalizings2.12d, we define the degree of theN element tensor-product as

degsa1 ^ a2 ^ . . . ^ aNd = degsa1d + degsa2d + . . . + degsaNd, mod 2. s2.16d

From this definition it follows straight away that the coproductDsNdsXid preserves the degree of the
generic operatorXi. In fact we have

s2.17d

Hence,

degsDsNdsXidd = degsXid + sN − 1ddegs1d. s2.18d

But degs1d=0, so we obtain

degsDsNdsXidd = degsXid. s2.19d

We can immediately see that, as in the casesls2d, a completely integrable supersymmetricN-body
Hamiltonian system can be constructed through the BMR approach which yields the complete
family of commuting observabless2.6d.

III. CONSTRUCTION OF THE SIMULTANEOUS EIGENSTATES IN THE CASE osp „1,2…

Our aim is to find the common eigenstates of the observabless2.6d, which form a basis for the
Hilbert space of the problem. As reference state, the so-called “pseudovacuum,” we take the
tensor-product of the states annihilated by the single-particle operatorsFi

−, namely, the tensor-
product of theN single-particle lowest weight vectorsu0li, i =1, . . . ,N; as in the nonsupersymmet-
ric case, we denote it asCs0,0d.

We will show that the common eigenstates of the family of observabless2.6d take the form

Fsk;ml,sml
; . . . ;0,0d = fDsNdsF+dgk−mlCsml,sml

; . . . ;0,0d, s3.1d

whereCsml ,sml
; . . . ;0 ,0d is an element of the basis spanning KersDssml

dsF−dd, obtained through the
recursive formula

Csml,sml
; . . . ;0,0d = o

i=0

ml−ml−1

aiD
ssml

−1dsF+dml−ml−1−isFsml

+ diCsml−1,sml−1
; . . . ;0,0d s3.2d

ml = 1,2, . . . ,N, sml
= 2,3, . . . ,N, l = 1,2, . . . ,N − 1. s3.3d

Paraphrasing the procedure followed in Ref. 9 it is possible to prove that the parameters appearing
in s3.1d and s3.3d have to satisfy the inequalities:

mr−1 , mr, smr−1
, smr

, 4j ù mr − mr−1 ù 1,
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smr
− mr ù 0, k ø 2N − mr . s3.4d

In s3.3d sml
indicates the number of sites involved;ml indicates the total excitation of the system,

namely,ml −N is the eigenvalue ofDsNdsHd. Fsml

+ is a shorthand for

and we also defineDs1dsF±d=F±.
Up to a normalization constant, the coefficientsai are determined by

Dssml
dsF−dCsml,sml

; . . . ;0,0d = 0. s3.5d

In fact, a lengthy but straightforward computation shows that they are given by the recursive
relation

ai+1 = ais− 1dml−ml−1−i
Fml − ml−1 − i

2
G +

1

2
s1 − s− 1dml−ml−1−idsml−1 − 2jssml−1

dd

F i + 1

2
G − js1 − s− 1di+1d

. s3.6d

Another straightforward computation shows thatCsml ,sml
; . . . ;0 ,0d are eigenvectors for the op-

eratorsDssml
dsHd:

Dssml
dsHdCsml,sml

; . . . ;0,0d = sml − sml
dCsml,sml

; . . . ;0,0d. s3.7d

Using Eqs.s3.5d ands3.7d it is not difficult to prove that the statess3.1d are indeed eigenstates
of the set of observabless2.6d and then calculate the eigenvalues of the partial Casimir operator
Ch. First of all we notice that

DsNdsHdFsk;ml,sml
; . . . ;0,0d = sk − NdFsk;ml,sml

; . . . ;0,0d. s3.8d

Now we consider the action of the partial CasimirCh on the generic states3.1d. Using commuta-
tion relationss2.1d–s2.3d, we rewriteCh in the equivalent form:

Ch = fDshdsHdg2 + 2DshdsE+dDshdsE−d + 2DshdsE−dDshdsE+d − DshdsF+dDshdsF−d + DshdsF−dDshdsF+d

= fDshdsHdg2 + 4DshdsE+dDshdsE−d − DshdsHd − 2DshdsF+dDshdsF−d.

As the coproduct is a superalgebra homomorphism, all the partial CasimirsCh commute with the
Nth coproduct of any of the generators, in particular

fCh,D
sNdsF+dg = 0.

Thus we only have to worry about the action of the partial CasimirCh=DshdsCd, sh=2, . . . ,Nd on
the statess3.2d:

ChCsml,sml
; . . . ;0,0d = sfDshdsHdg2 + 4DshdsE+dDshdsE−d − DshdsHd − 2DshdsF+dDshdsF−dd

3 S o
i=0

ml−ml−1

aiD
ssml

−1dsF+dml−ml−1−isFsml

+ diDCsml−1,sml−1
; . . . ;0,0d.

s3.9d

There are two possibilities:sid hùsml
and sii d h,sml

.
In casesid, we know that
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DshdsF−dCsml,sml
; . . . ;0,0d = 0→ DshdsE−dCsml,sml

; . . . ;0,0d = 0

and using Eq.s3.7d we obtain

ChCsml,sml
; . . . ;0,0d = sh − mldsh − sml − 1ddCsml,sml

; . . . ;0,0d. s3.10d

On the other hand, in casesii d, the Casimir operatorCh commutes both withFssml
d

+ and with

Dssml
−1dsF+d, so that we obtain

ChCsml,sml
; . . . ;0,0d = S o

i=0

ml−ml−1

aiD
ssml

−1dsF+dml−ml−1−isFsml

+ diDChCsml−1,sml−1
; . . . ;0,0d.

s3.11d

Again we have two possibilities: ifhùsml−1, we have

ChCsml−1,sml−1
; . . . ;0,0d = sh − sml−1ddsh − sml−1 − 1ddCsml−1,sml−1

; . . . ;0,0d, s3.12d

otherwiseCh will work directly on Csml−2,sml−2
; . . . ;0 ,0d.

We can proceed in this way until we will find a stateCsmi ,smi
; . . . ;0 ,0d for which we have

hùsmi
sit will always exist, ass0=0d.

Then, using equationsDshdsF−dCsmi ,smi
, . . . ,0 ,0d=0 ands3.7d we obtain

ChCsmi,smi
; . . . ;0,0d = sh − midsh − smi − 1ddCsmi,smi

; . . . ;0,0d. s3.13d

Summarizing,

ChFsk;ml,sml
; . . . ;0,0d = sh − midsh − smi − 1ddFsk;ml,sml

; . . . ;0,0d, s3.14d

where the value ofi P h0,1, . . . ,lj is selected by the condition:

smi
ø h , smi+1

, sml+1
= N + 1. s3.15d

IV. THE CASE OF SPIN 1
2

In the special casej = 1
2, ml −ml−1 can take two values: 1 or 2. So we have two cases.

Case 1: ml −ml−1=1→ i =0,1,

ai+1 = ais− 1d1−i
F1 − i

2
G +

1

2
s1 − s− 1d1−idsml−1 − sml

+ 1d

F i + 1

2
G −

1

2
s1 − s− 1di+1d

, s4.1d

a1 = a0sml−1 − sml
+ 1d. s4.2d

Case 2: ml −ml−1=2→ i =0,1,2,

ai+1 = ais− 1di
F2 − i

2
G +

1

2
s1 − s− 1didsml−1 − sml

+ 1d

F i + 1

2
G −

1

2
s1 − s− 1di+1d

, s4.3d

a1 = − a0, s4.4d
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a2 = − a1sml−1 − sml
+ 1d = a0sml−1 − sml

+ 1d. s4.5d

In both cases, we have the condition

sml
. ml−1 + 1. s4.6d

Indeed, froms3.4d it follows that sml
ùml−1+1; however, if equality holdsa0 is the only nonvan-

ishing coefficient, ands3.5d cannot be verified.
We rewrite the simultaneous eigenstates of the set of observabless2.6d:

Fsk;ml,sml
; . . . ;0,0d = fDsNdsF+dgk−mCsml,sml

; . . . ;0,0d, s4.7d

N ù smr
ù mr, smr

. smr−1
, mr . mr−1,

smr
. mr−1 + 1, ml ø k ø 2N − ml, mr − mr−1 = 1,2, s4.8d

Csml,sml
; . . . ;0,0d = o

i=0

ml−ml−1

aiD
ssml

−1dsF+dml−ml−1−isFsml

+ diCsml−1,sml−1
; . . . ;0,0d. s4.9d

To construct explicit formulas for the eigenstates we recall that, for spin1
2, the fundamental

representation is three-dimensional: theosps1,2d generators read

H = 11 0 0

0 − 1 0

0 0 0
2, E+ = 10 1 0

0 0 0

0 0 0
2, E− = 10 0 0

1 0 0

0 0 0
2 ,

s4.10d

F+ = 10 0 1

0 0 0

0 1 0
2, F− = 10 0 0

0 0 − 1

1 0 0
2 .

Consequently the vacuumCs0,0d in the spin-12 representation is

s4.11d

Of course, there are three possible single-particle states, namely,

10

1

0
2, 10

0

1
2, 11

0

0
2 ,

where

10

0

1
2 = F+10

1

0
2

denotes the fermionic state and
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11

0

0
2 = E+10

1

0
2

the bosonic one.
Example: The three-body case:As an example, we give the explicit form of the statess4.9d in

the caseN=3 and for the choice of the normalization parametera0=1. This is the basis spanning
the kernel ofDsNdsF−d:

Cs0,0d = 10

1

0
210

1

0
210

1

0
2

Cs1,2;0,0d = 10

0

1
210

1

0
210

1

0
2 − 10

1

0
210

0

1
210

1

0
2 ,

Cs1,3;0,0d = 10

0

1
210

1

0
210

1

0
2 + 10

1

0
210

0

1
210

1

0
2 − 210

1

0
210

1

0
210

0

1
2 ,

Cs2,2;0,0d = 11

0

0
210

1

0
210

1

0
2 − 10

0

1
210

0

1
210

1

0
2 − 10

1

0
211

0

0
210

1

0
2 ,

Cs2,3;0,0d = 11

0

0
210

1

0
210

1

0
2 + 10

1

0
211

0

0
210

1

0
2 − 10

0

1
210

1

0
210

0

1
2 − 10

1

0
210

0

1
210

0

1
2 − 210

1

0
210

1

0
211

0

0
2 ,

Cs2,3;1,2;0,0d = 11

0

0
210

1

0
210

1

0
2 − 210

0

1
210

0

1
210

1

0
2 − 10

1

0
211

0

0
210

1

0
2

− 10

0

1
210

1

0
210

0

1
2 + 10

1

0
210

0

1
210

0

1
2 ,

Cs3,3;1,2;0,0d = 10

0

1
211

0

0
210

1

0
2 − 10

0

1
210

1

0
211

0

0
2 − 11

0

0
210

0

1
210

1

0
2 + 10

1

0
210

0

1
211

0

0
2

+ 11

0

0
210

1

0
210

0

1
2 − 10

1

0
211

0

0
210

0

1
2 − 210

0

1
210

0

1
210

0

1
2 .

The remaining 33–7 eigenstates are constructed using formulas4.7d.
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V. A MORE GENERAL HAMILTONIAN

It is easily seen that the basis constructed in Sec. III diagonalizes the more general Hamil-
tonianH:

H = lDsNdsCbd + mDsNdsCfd, s5.1d

which is an arbitrary linear combination of the bosonic and fermionic part of the Gaudin Hamil-
tonianHGs

, defined ins2.5d,

DsNdsCd = DsNdsCbd + DsNdsCfd, s5.2d

Cb = H2 + 2sE+E− + E−E+d, s5.3d

Cf = F−F+ − F+F−. s5.4d

Indeed,H can be written as

H = mDsNdsCd + sl − mdDsNdsCbd, s5.5d

which obviously commutes withDshdsCd, sh=2, . . . ,Nd and DsNdsHd. So the complete set of ob-
servables

hDsNdsHd,C2, . . . ,CN−1,Hj s5.6d

has the same common eigenstates as the set of observabless2.6d. The eigenvalue equation for the
more general HamiltonianH reads

HFsk;ml,sm−l ; . . . ;0,0d = SlsN − mldsN − sml − 2dd − msN − mld

+ sm − lds1 − s− 1dk−mldSN − ml +
1

2
DDFsk;ml,sml

; . . . ;0,0d.

s5.7d

VI. CONCLUDING REMARKS

A natural generalization of the model presented here will be associated with theq-deformation
of the superalgebraosps1,2d starting from the results first derived by Kulish in the late 1980s, and
using the later findings by Lukierski.16–18 In the coproduct approach integrability of such
q-deformed supersymmetric models will follow from the Hopf-algebra structure ofUqsosps1,2dd.
A further extension is related to the investigation of superalgebras other thanosps1,2d, for in-
stancesls1,2d, already introduced within the Bethe ansatz approach.14,15 Work is progressing in
these directions.

APPENDIX

Here we shall prove that our procedure allows one to find all the lowest weight vectors of the
representationsD1/2dN, i.e., the representation of theN-site chain with spin1

2 at each site. These
lowest weight vectors are the eigenvectors spanning KerDsNdsF−d. In fact the construction of all the
common eigenvectors of the set of observabless2.6d consists of two steps. First, we find the
“lowest weight vectors”Csml ,sml

, . . . ,0 ,0d, built up on the “total pseudovacuum”Cs0,0d. Then
we construct all the remaining states by applyingDsNdsF+d repeatedly onCsml ,sml

, . . . ,0 ,0d. We
note that the number of times we can applyDsNdsF+d on the stateCsml ,sml

, . . . ,0 ,0d basically
depends on the excitation-numberml and on the magnetization-numberk. First of all we notice
that it holds:
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sD1/2dN = sD1/2dsN−1d
^ D1/2. sA1d

In general the dimension of KerDsNdsF−d is obtained recurrently from the Clebsch–Gordan series:

Dj ^ Dk = Dj+k % . . . % Du j−ku, sA2d

whereDj+k, . . . ,Du j−ku are irreducible representations, each one possessing one lowest weight vec-
tor. Thus, the representationsDjdN it is associated with a number of lowest weight vectors, which
corresponds to the number of irreducible representations appearing in its decomposition.

We have

sDjdN = o
k=0

Nj

cj ,k
sNdDk, k = 0,

1

2
,1, . . . , sA3d

wherecj ,k
sNd are the appropriate Clebsch-Gordan coefficients.

For j = 1
2 sA3d obviously becomes

sD1/2dN = o
k=0

N/2

c1/2,k
sNd Dk, k = 0,

1

2
,1, . . . . sA4d

The dimension of KerDsNdsF−d is given byok=0
N/2c1/2,k

sNd . On the other handsA4d can be written in the
form sA1d:

sD1/2dN = S o
k=0

sN−1d/2

c1/2,k
sN−1dDkD ^ D1/2 = o

k=0

sN−1d/2

c1/2,k
sN−1dsDk ^ D1/2d. sA5d

Thus, known all the lowest weight vectors of the representationsD1/2dN−1, by induction we have all
the lowest weight vectors of the representationsD1/2dN. There are two different cases:

Dk ^ D1/2 = D1/2, k = 0. sA6d

There is only one lowest weight vector,

Dk ^ D1/2 = Dk−1/2 % Dk % Dk+1/2, k ù
1
2 . sA7d

We have three lowest weight vectors.
So from the Clebsh–Gordan series we learn that the dimension of KerDsNdsF−d can be obtained

recurrently from the dimension of KerDsN−1dsF−d, observing that a generic state of the kernel of
DsN−1dsF−d will give rise to one new state of the kernel ofDsNdsF−d for k=0 and to three new states
otherwiseskÞ0d.

Has our procedure the same starting points and the same properties?
To both questions the answer is affirmative. First, concerning the starting pointsN=2d, we

notice that formulasA1d yields

sD1/2d2 = D0 % D1/2 % D1 sA8d

while with our techniques froms4.8d, s4.9d, ands4.11d we get

Cs0,0d = 10

1

0
210

1

0
2 ,

Cs1,2;0,0d = o
i=0

1

aisF1
+ds1−idsF2

+diCs0,0d = a0F1
+10

1

0
210

1

0
2 + a1F2

+10

1

0
210

1

0
2 ,
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Cs2,2;0,0,0d = o
i=0

2

aisF1
+ds2−idsF2

+diCs0,0d

= a0sF1
+d210

1

0
210

1

0
2 + a1F1

+F2
+10

1

0
210

1

0
2 + a2sF2

+d210

1

0
210

1

0
2 sA9d

and from the conditions on the coefficientsai s4.2d, s4.4d, ands4.5d we get

Cs1,2;0,0d = 10

0

1
210

1

0
2 − 10

1

0
210

0

1
2 ,

Cs2,2;0,0d = 11

0

0
210

1

0
2 − 10

0

1
210

0

1
2 − 10

1

0
211

0

0
2 .

So we have three states according tosA8d.
Now we turn to consider the general case. LetcsN−1dsml ,sml

, . . . ,0 ,0d be a state belonging to
KersDsN−1dsF−dd: we will obtain a state belonging to KersDsNdsF−dd by tensorizing it with a “spin
down” state:

csNdsml,sml
, . . . ,0,0d = csN−1dsml,sml

, . . . ,0,0d ^ 10

1

0
2 .

As csN−1dsml ,sml
, . . . ,0 ,0d spans KersDsN−1dsF−dd we get all states belonging to KersDsNdsF−dd

havingsml
,N. When generating the complementary subspace of KersDsNdsF−dd through our algo-

rithm, we have to consider two different cases:

s1d csN−1dsml ,sml
, . . . ,0 ,0d is annihilated byDsN−1dsHd. In this case it holdsml −N+1=0⇒no

further element of KersDsNdsF−dd can be constructed, as, froms4.6d, it would havesml+1
.N.

s2d csN−1dsml ,sml
, . . . ,0 ,0d does not belong to KerDsN−1dsHd. it follows thatml øN−2, and con-

sequently two more states of KersDsNdsF−dd can be constructed, withsml+1,sml+1
d=sml

+1,Nd and sml+1,sml+1
d=sml +2,Nd, respectively.

Summarizing, we obtain one element of KersDsNdsF−dd starting from eachsN−1d-particle state
of spin 0, and three elements of KersDsNdsF−dd starting from eachsN−1d-particle state of spink
.0.
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Two interacting electrons in a uniform magnetic field
and a parabolic potential: The general closed-form solution
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We present an analytical analysis of the two-dimensional Schrödinger equation for
two interacting electrons subjected to a homogeneous magnetic field and confined
by a two-dimensional external parabolic potential. We have found the general
closed-form expression for the eigenstates of the problem and its corresponding
eigenenergies for particular values of magnetic field and spatial confinement length.
The mathematical framework is just based on a rigorous solution of the three-term
recursion relation among the coefficients that arises from the series solution of
biconfluent HeunsBHEd equation, connected with the radial part of the Schrödinger
equation for the internal motion. It is also shown that, by vanishing of Coulomb
repulsion strength, the obtained explicit analytical solutions of BHE equation re-
duces to the well-known polynomials satisfying the associated Laguerre differential
equation. Furthermore, in the presence of this interaction, the results are compared
with those previously obtained in the literature for first few low-lying states, and
are found to be in an exact agreement with them. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1850996g

The study of confined-electron systems is one of the central topics of current theoretical
efforts in condensed matter physics, motivated by the recent developments of experimental tech-
niques allowing the creation of ultrasmall nanostructures called quantum dotssQDsd.1–4 Of par-
ticular interest are disklike or two-dimensional QDs with two electrons. It is well known that
electro-optical properties of such QDs are quite sensitive to the reduction of its dimensionality and
to the application of an external magnetic field, and depend strongly on the electron–electron
interaction. In recent literature, there exist a large amount of works5–11 on QDs with two interact-
ing electrons confined in a parabolic potential and/or a magnetic field, wherein a number of
approaches, such as exact diagonalization scheme, perturbational and variational methods as well
as numerical ones have been successfully applied to this problem. The problem becomes separable
by introducing the center-of-mass and internal coordinates. Since the solution of Schrödinger
equation for the center-of-mass motion is trivial and simply yields the well-known Fock–Darwin
eigenstates,12,13 the central quantity of interest in the problem therefore arises from the associated
radial part of the Schrödinger equation for the relative motion.

From the quantum mechanical point of view, the fact that a system of two interacting Cou-
lomb particles under the influence of a parabolic potential belongs to a class of quasi-exactly-
solvable systems is of particular interest in itself. By a quasi-exactly-solvable quantum mechanical
problem, it is intended the following: in contrast to the case of standard exactly solvable quantum
mechanical problems whose entire spectra can easily be calculated by solving, in general, two-
term recursion relations among the coefficients arising from the Frobenius solution to the relevant
Schrödinger equation, occurrence of the three-term recursion relations in such problems does not
admit an exact solution. Thus, it is only possible to find several eigenvalues and associated
eigenstates analytically, under certain circumstances. Introducing accurate group theoretical de-
scription of the relevant problem, Turbiner14 was initially able to show that such a quasi-exact-
solvability is purely a consequence of a hidden sl2 algebraic structure. As discussed in detail by
Turbiner, the proof follows immediately from the fact that the eigenvalue equation for the qua-
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dratic quasi-exactly-solvable operator constructed from the three generators of sl2 algebra is di-
rectly related to the eigenvalue equation of the relevant problem. Historically, the particular ana-
lytical solutions were first found by Verçin15 in the context of anyon theory, and later by Taut16 for
the two electron case. A different calculation based on the method of factorization was also
presented for both Schrödinger and Klein–Gordon equations for a charged particle moving in
Coulomb and magnetic fields.17 There have also been recent other works dealing with this
problem.18–21

In mathematical physics, the problem is directly linked with the third confluent case of Heun’s
equation. This equation is, in fact, a generalization of the confluent hypergeometric equation and
is called biconfluent Heun equationsBHEd.22 Since it is well-known that, after certain transfor-
mations, many Schrödinger equations for a special class of confinement potentials can easily be
reduced to BHE, several attempts to solve this equation have been performed in the literature.23–27

The doubly anharmonic oscillator potential25 and the potentials of the formVsrd= ±Z/ r +gr
+lr2 sRefs. 23, 24, 26, and 27d are the well-known examples of this class of potentials. In
particular, the latterswith l=0 and with a minus signd has been studied in the context of nonrel-
ativistic quarkonium model in quantum chromodynamics.28,29As can also be easily checked, the
problem of interest leads to the same kind of BHE, but withg=0 and with a plus sign. To the
author’s knowledge, so far an exact closed form for the polynomial solutions of this equation has
not been achieved.

In this paper, we analyze analytically the two-dimensionals2Dd Schrödinger equation for two
interacting electrons in a parabolic potential under the influence of a constant, uniform magnetic
field perpendicular to the plane of motion. We investigate for the first time its exact general closed
form solution by solving the three-term recursion relation among the coefficients arising from the
series solutions of the BHE equation. Moreover, we show that, as a particular case, our results
reduces to the well-known associated Laguerre polynomials in the absence of the Coulomb inter-
action between electrons.

The Hamiltonian for a system of two interacting electrons of massm* and chargee in two
space dimensions subjected to both a uniform magnetic field along the direction perpendicular to
the plane and an external parabolic potential is given by

H = o
j=1

2 H 1

2m* Fpsr jd +
e

c
Asr jdG2

+ Usur judJ +
e2

e`ur 1 − r 2u
, s1d

whereUsur jud=s1/2d m*v·
2r j

2 is the single particle confinement potential, andAsr jd is the vector
potential of the magnetic field and will be chosen in the symmetric gauge. It is well known that,
by introducing the relative and center-of-mass coordinates,r = ur 1−r 2u andR=sr 1+r 2d /2, respec-
tively, Eq. s1d can be decoupled as the sum of two single particle Hamiltonians; one with mass
M =2m* and chargeQ=2e and the other with massm=m* /2 and chargeq=e/2, respectively. The
former represents the center-of-mass motion and leads to an eigenvalue equation
H2DsM ,vdCsRd=ERCsRd, wherein H2D is the usual 2D isotropic harmonic oscillator Hamil-
tonian with frequencyv. Here,v describes a relation between both strength of magnetic field and
the strength of spatial confinement, and is expressed byvc=QB0/Mc and v· as v=fv·

2

+svc
2/4dg1/2. As for the relative motion, we are left with the eigenvalue equationfH2Dsm ,vd

+se2/e`ur udgCsr d=ErCsr d, whereinH2Dsm ,vd represent again 2D isotropic harmonic oscillator
Hamiltonian with the same frequencyv, but with massm. Indeed, for both motion,v’s are the
same sincevc=qB0/mc is equivalent toeB0/m*c as in the case that for the center-of-mass motion.
Therefore, by settingCsr d=eimwRsrd due to the cylindrical symmetry of the problem, one can
easily obtain the following second-order differential equation for the corresponding radial part of
the relative motion

032110-2 B. S. Kandemir J. Math. Phys. 46, 032110 ~2005!

                                                                                                                                    



d2R

dr2 +
1

r

dR

dr
−

m2

r2 R− r2R−
u

r
R+ ẽR= 0, s2d

where ẽ=s2Er −m"vcd /"v, u=2me2/e`"2g, r=gr, g2=mv /". The asymptotic behaviors of Eq.
s2d at r→0 andr→` suggest a solution of the formRsrd=rsumue−r2/2Fsrd where the function
Fsrd satisfies the differential equation

rF9 + sa − 2r2dF8 + sdr − udF = 0, s3d

in which a=2sumu+1 andd= ẽ−2ssumu+1d. Here,s takes just +1 and −1 values and thus specifies
the regular and singular solutions of Eq.s2d, respectively, of which only the former one is physi-
cally acceptable since the latter diverges atr→0. In fact, Eq.s3d is generally called the bicon-
fluent Heun equationsBHEd in canonical form and its solution is characterized namely byFsrd
=Ns2sumu ,0 ,d+2ssumu+1d ;rd.22 The solution of Eq.s3d is obtained through the expansion
Fsrd=ok=0

` Akr
k whose coefficients satisfy the following three-term recurrence relation:

sk + 2dsk + 1 +adAk+2 = uAk+1 − sd − 2kdAk, s4d

with A0=1 andA1=u/a. Equations4d is valid for all values ofk greater than and equal to 2. The
difficulty in solving Eq.s4d arises from the presence of the Coulomb termu. Without this term, the
resulting recurrence relation can easily be solved to construct a series solution of Eq.s3d since all
odd coefficients vanish. On the other hand, one can easily expressA2k in terms of A0 by a
successive induction, and hence obtains a polynomial of even powers ofr by just breaking the
resulting series off at a certain value ofk, sayn. However, in the presence of the Coulomb term,
studies on Eq.s4d up to now have been restricted to the calculation of the first few terms due to
calculational complexities, and could not be able to predict what the general expression forAk will
be. In the present work, by solvingAk’s in terms ofA0 andA1, recursively and taking into account
as many terms as we need, and then collecting them together with the same power ofr, we have
achieved to find the general term withrk systematically, and obtained the following infinite series:

Fsrd = o
k=0

`
sa − 1d!

k! sa + k − 1d!
ukrk − o

k=2

`
sa − 1d!

k! sa + k − 1d! o,=0

k−2

Qa ds,duk−2rk

+ o
k=4

`
sa − 1d!

k! sa + k − 1d! o,=0

k−2

o
p.,

k−3

Qa ds,dQa dsp + 1duk−4rk

− o
k=6

`
sa − 1d!

k! sa + k − 1d! o,=0

k−2

o
p.,

k−3

o
r.p

k−4

Qa ds,dQa dsp + 1dQa dsr + 2duk−6rk + ¯ , s5d

in which we have definedQa ds,d=s,+1dsa+,dsd−2,d. Equations5d can easily be rearranged
into a more compact form

Fsrd = o
k=0

`
sa − 1d!

k! sa + k − 1d!Fuk − o
s=0sk^2d

fk/2g

s− 1dsuk−2s−2p
t=0

s

o
,=0

k−t−2

8Qa ds, + tdGrk, s6d

where the symbolfk/2g stands forsk−2d /2 andsk−3d /2 for even and oddk’s, respectively. In Eq.
s6d, the prime above the summation in the square bracket denotes the constraint on summations
and implies that only those values of indexes of subsequent summations which satisfy the con-
straint,.p. r¯ are allowed such that, e.g., for a fixed,, only those values ofQa dsp+1d in the
second sum for which,.p will contribute, and so on. Alternatively, it is also possible to write Eq.
s5d or equivalently Eq.s6d in the form
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Fsrd = o
k=0

`
sa − 1d!

k! sa + k − 1d!F1 + o
s=1

`

s− 1ds k! sa + k − 1d!
sk + 2sd!sa + k + 2s− 1d!

r2sp
t=0

s−1

o
,=0

k+2s−t−2

8Qa ds, + tdGukrk.

s7d

It should be noted that we must have a solution that remains finite asr→`. Such a solution exists
only if the series in Eq.s6d or Eq. s7d are truncated to terminate at a certain value ofk to have a
finite series. On the other hand, the functionFsrd becomes a polynomial if and only if the
conditionsAn+1=0 andd=2n are simultaneously fulfilled. Thus, the only solution of Eq.s3d that
satisfies these quantization conditions can be finally written as

Fnumusrd = o
k=0

n F o
s=0sk^2d

fk/2g
s− 1ds

k! sadk
uk−2sDa nsk,sdGrk. s8d

with

u2 = o
s=0

in/2i

s− 1dsu−2sp
t=0

s

o
,=0

n−t−1

8Qa 2ns, + td, s9d

where the symbolin/2i stands forsn−1d /2 andsn−2d /2 for odd and evenn’s, respectively. In Eq.
s8d we have defined a new symbol

Da nsk,sd = p
t=0

s−1

o
,=0

k−t−2

8Qa 2ns, + td,

provided thatDa nsk,0d=1, and used the Pochhammer symbolsadk=Gsa+kd /Gsad. Therefore, the
corresponding energy eigenvalues can be written asẽn umu=2sn+ umu+1d. The connection of these
eigenvalues with the content of Eq.s9d can be better understood when they are made dimension-
less, by expressing them in terms of standard energy and length units, i.e., the effective Bohr
radiusa0

* and the Rydberg constantR0
* . Therefore, one rewrites these eigenvalues and Eq.s9d in

the form

Ērsn, umud = sn + umu + 1dv̄sn, umud +
mv̄csn, umud

2
,

v̄−1sn, umud = o
s=0

in/2i

s− 1dsv̄ssn, umudp
t=0

s

o
,=0

n−t−1/

Qa 2ns, + td,

respectively, whereĒr =Ēr /2R0
* andu2=2R0

* /"v=1/v̄ are used. Once, a general solution of Eq.
s3d has been obtained in the form Eq.s8d together with Eq.s9d, one can easily test whether it
actually satisfies the differential equation. This can be done by replacing Eq.s8d into Eq. s3d, or
equivalently by replacingAk’s, which are given by the terms with square brackets in Eq.s8d, back
into Eq. s4d. In the absence of the Coulomb interaction between electrons, i.e.,u=0, the only
nonvanishing term in Eq.s7d is obtained by settingk=0, which in fact means that one must retain
only the terms withk=0, k=2, k=4, and so on, in Eq.s5d. Finally, one finds

Fsrd = 1 +o
s=1

`

s− 1ds sa − 1d!
s2sd!sa + 2s− 1d! pt=0

s−1

o
,=0

2s−t−2-

8Qa ds, + tdr2s. s10d

It is also straightforward to verify that the infinite series in Eq.s10d becomes the associated
Laguerre polynomials if it terminates at a certain value ofs. This is possible if and only ifd is an
integer, i.e.,d=4n. This procedure is presented in Appendix A. To check the consistency of our
results with those previously obtained in the literature we also give the first few polynomials
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together with its associated eigenvalues resulting from Eq.s8d and Eq.s9d, respectively, in Ap-
pendix B.

In summary, we have explicitly constructed the exact closed-form solution for the problem of
two interacting electrons in both uniform magnetic field and external parabolic potential. Besides
the polynomial solutions of the problem being obtained from an infinite series for the first time, an
alternative representation for the Laguerre polynomials is achieved. The procedure introduced here
can easily be extended to its 3D counterpart and can be applied well to the problem of the two-
and three-dimensional hydrogen atom in a magnetic field. The results obtained in this paper might
also lead to help in understanding the behavior of confined many electron systems under magnetic
field, due to the fact that these systems may be considered as interacting pairs. In particular, the
present results will be useful in variational and perturbational treatments of the exact spectra of a
few particle systems, and thus provide a further insight on discussion of the fractional nature of
such systems.
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APPENDIX A

Here, we have presented the key steps of how infinite series given by Eq.s10d become the
associated Laguerre polynomials if it is terminated. For this purpose, we start with the expansion
of the relevant series given by Eq.s10d, i.e.,

Fsrd = 1 −
1

2! sa + 1dap
t=0

0

o
,=0

0

8Qa ds, + tdr2 +
1

4! sa + 3dsa + 2dsa + 1dap
t=0

1

o
,=0

2−t

8Qa ds, + tdr4

−
1

6! sa + 5dsa + 4dsa + 3dsa + 2dsa + 1dap
t=0

2

o
,=0

4−t

8Qa ds, + tdr6 + ¯ . sA1d

By using the definition ofQa ds,d and obeying the constraints on each sum, we obtain the
following relations for the products in Eq.sA1d:

p
t=0

0

o
,=0

0

8Qa ds, + td = Qa ds0d = 1.a.d,

p
t=0

1

o
,=0

2−t

8Qa ds, + td = o
,=0

2

Qa ds,d o
p.,

1

Qa dsp + 1d = Qa ds0dQa ds1d = 1.3.a.sa + 2d.d.sd − 4d,

p
t=0

2

o
,=0

4−t/

8Qa ds, + td = o
,=0

4

Qa ds,d o
p.,

3

Qa dsp + 1do
r.p

2

Qa dsr + 2d

= Qa ds0dQa ds2dQa ds4d = 1.3.5.a.sa + 2d.sa + 4d.d . sd − 4d.sd − 8d,

sA2d

Of course, to get an idea about the behavior of the series one can explore more and more terms
with products in Eq.sA1d, by following the same procedure as used in Eq.sA2d. Therefore, by
replacing each term in Eq.sA2d back into Eq.sA1d and collecting the resulting terms into a sum
again, one can easily find out what the general term of the series is, and then arrives at a more
compact series expansion of Eq.sA1d,
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Fsrd = 1 +o
s=1

`

s− 1ds d.sd − 4d ¯ sd − 4s+ 4d
2s¯ 4.2.sa + 2s− 1d ¯ sa + 1d

r2s. sA3d

Now, it remains to show that this infinite series is equal to the associated Laguerre polynomials
when it is terminated at a certain value ofs. For this, we required=4n which leads to the energy
levels ẽn umu=2sumu+1d+4n, i.e., Ersn, umud=s2n+ umu+1d"v+sm/2d"vc. Finally, after necessary
algebra, one finds the explicit form of the generalized Laguerre polynomials in the form

Fnumusrd = o
s=0

n
s− 1ds

s!
Sn + umu

n − s
Dsr2ds = Ln

umusr2d = Ns2umu,0,4n + 2sumu + 1d;rd,

wheres s
nd=Gsn+1d /s! Gsn+1−sd are the binomial coefficients. While, without a spatial confine-

ment, the energy levels connected with the functionFnumusrd are the well-known Landau levels,
i.e., Ersn, umud=s2n+ umu+m+1d"vc/2, in the absence of a magnetic field they reproduce the
usual energy levels of 2D isotropic oscillator, i.e.,Ersn, umud=s2n+ umu+1d"v· .

APPENDIX B

In this appendix, some special results of Eq.s8d together with Eq.s9d have been presented to
show that they reproduce the standard results obtained in the literature. First, we start withn=1
sd=2d which hasẽ1 umu=2sumu+1d+2; so the solution satisfying Eq.s3d is conveniently extracted
from Eq. s8d as

F1 umusrd = o
k=0

1
sa − 1d!

k ! sa + k − 1d!
ukrk = 1 +

u

a
r sB1d

with the corresponding condition onv, u2=1.a.dwhich is calculated from Eq.s9d with the help of
the first equality in Eq.sA1d. Second, we consider the casen=2 sd=4d, whereẽ2 umu=2sumu+1d
+4. For this case, from Eq.s8d we obtain a solution

F2 umu = o
k=0

2
sa − 1d!

k! sa + k − 1d!Fuk − o
s=0sk^2d

0

s− 1dsuk−2s−2p
t=0

s

o
,=0

k+2s−t

8Qa ds, + tdGrk

= 1 +
u

a
r +

1

2! sa + 1da
fu2 − 1.a.dgr2 sB2d

with su2−1.a.dd−2sa+1dsd−2d=0, where, again, Eq.s9d has been used here, but together with the
help of the second equality in Eq.sA1d, besides the first one. We shall finally consider the case
n=3 sd=6d, where ẽ3 umu=2sumu+1d+6. In this case, it is straightforward to show that one can
easily obtain the following solution:

F3 umu = o
k=0

3
sa − 1d!

k!sa + k − 1d!Fuk − o
s=0sk^2d

fk/2g

s− 1dsuk−2s−2p
t=0

s

o
,=0

k+2s−t

8Qa ds, + tdGrk

= 1 +
u

a
r +

1

2!sa + 1da
fu2 − 1.a.dgr2 +

u

3!sa + 2dsa + 1da
fsu2 − 1.a.dd − 2sa + 1dsd − 2dgr3

sB3d

with u4=u2f1.a.d+2sa+1dsd−2d+3sa+2dsd−4dg−1.a.d.3.sa+2dsd−4d. In the last step of Eq.
sB3d we have used again Eq.sA1d. All the exact analytical results presented here are in complete
agreement with the results obtained in Refs. 15 and 16.
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We consider bosons onsEuclideand R4 that are minimally coupled to an external
Yang–Mills field. We compute the logarithmically divergent part of the cutoff regu-
larized quantum effective action of this system. We confirm the known result that
this term is proportional to the Yang–Mills action. We use pseudodifferential op-
erator methods throughout to prepare the ground for a generalization of our calcu-
lation to the noncommutative four-dimensional Moyal planeRu

4. We also include a
detailed comparison of our cutoff regularization to heat kernel techniques. In the
case of the noncommutative space, we complement the usual technique of
asymptotic expansion in the momentum variable with operator theoretic arguments
in order to keep separated quantum from noncommutativity effects. We show that
the result from the commutative spaceR4 still holds if one replaces all pointwise
products by the noncommutative Moyal product. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1839277g

I. INTRODUCTION

In this paper we study the determinant of certain differential operators. Such determinants
naturally arise in quantum field theory at the one loop level. As the determinant of an operator on
an infinite dimensional Hilbert space is not ana priori well-defined object, one must choose some
regularization scheme. The latter means generally the choice of a recipe for how to replace the
formal expressions by something that is both amenable to a rigorous definition and close in its
properties. In our case of the regularization of determinants, a common starting point is the
well-known identity

log detA = Tr log A, s1d

which holds forsfinite dimensionald matricesA. The task is now to give meaning to the trace on
the right-hand side, since the operators of interest do not have a finite trace in general. In this
paper, we restrict the trace to run over a subspace of our Hilbert space only. Loosely speaking, this
subspace is spanned by wave functions that have a momentum expectation value smaller than a
certain cutoffL. The precise definition will follow below. It is known that the cutoff regularized
logarithm of the determinant, now viewed as a function ofL, contains a term that scales like logL
for largeL. This term is closely related to the Wodzicki residue for the operator under consider-
ation, a quantity that is of interest in the study of infinite dimensional geometry, see Ref. 15 for a
recent review.

Motivated by the observation14 that for fermions minimally coupled to an external Yang–Mills
field, the logarithmically divergent part of the cutoff regularized logarithm of the determinant of
the smassived Dirac operator is proportional to the corresponding Yang–Mills action, we consider
the case of bosons in an external Yang–Mills field onR4. With our work, we confirmed that the
above result also applies to the bosonic case. The former result was proposed to be interpreted in
two ways. On the one hand, the spectral action principle2 states that the spectrum of the Dirac
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operator should provide exhaustive information about the complete bare action including the
Yang–Mills expression. On the other hand, it is known that the logarithmically divergent part plays
a critical role in the selection of the finite part of an effective action because of its behavior under
rescaling of the regularization parameterL. From the latter viewpoint, it is desirable that the
logarithmically divergent term in the regularized effective action produce expressions that occur in
the complete bare action already.

To understand the connection between these two interpretations, it is interesting to consider
the case ofsscalard bosons coupled to an external Yang–Mills field.

It is generally accepted that space–time might lose its smooth properties at very small scales.
One possible mathematical framework for this is noncommutative geometry.3 We are interested in
a particular example, the four-dimensionals4Dd Moyal plane,10 also known as noncommutative
flat spaceRu

4. Roughly speaking, the 4D Moyal plane differs from its Euclidean counterpartR4 in
that there is an uncertainty relation for the simultaneous measurement of coordinates coming from
the nonvanishing commutator

fxm,xng = iQmn.

Herexm, m=1, . . . ,4 are coordinates ofR4 andQ is somesantisymmetricd matrix. In this paper we
takeQ to be proportional to the constant symplectic matrix, see Eq.s16d. We refer to Ref. 5 for a
treatment of Lorentz covariant generalization of this equation.

Although the results of our analysis for the case of bosons on the commutative spaceR4 are
not new and can be found already in deWitt’s book,4 our consistent use of pseudodifferential
operator methods technically makes possible the generalization to the noncommutative Moyal
plane. We refer to Refs. 18 and 11 for a generalization of heat kernel regularization calculations to
the noncommutative torus and the Moyal plane, respectively.

The remainder of this paper is structured as follows. Section II sets up the notation used in our
work and states the results in the form of two propositions. Section III provides the necessary tools
from the theory of pseudodifferential operators. The proofs of the statements from Sec. II can be
found in Secs. IV and V, with detailed calculations postponed to the appendix. Also, Sec. IV
contains additional arguments that make contact with the case of fermions onR4 and to an
alternative regularization scheme, the heat kernel regularization. Section VI concludes with what
we consider to be the lessons from our calculations.

II. NOTATION AND STATEMENT OF THE RESULTS

We consider the Klein–Gordon operator with minimally coupled external field on the four-
dimensional flat Euclidean spaceR4, given by

hA = DA
mDA,m = s]m + ieAmds]m + ieAmd = ]m]m + ie]mAm + 2ieAm]m − e2AmAm

= h0 + ie]mAm + 2ieAm]m − e2AmAm. s2d

Here,m=1, . . . ,4 are thesEuclideand indices ofR4, ]m=] /]xm, andAm are glN-valued Yang–Mills
fields onR4. The bosonic wave functions are elements of the Hilbert space

H = L2sR4d ^ Ccolor
N ,

where the last factor carries a glN representation from the external Yang–Mills fields. As an
unbounded operator inH, h0 can be defined on smooth functions inH by its formal expression
and then extended to a self-adjoint operator. We assume the Yang–Mills fieldsAm to be regular,
i.e., to be smooth and to fall offstogether with all their derivativesd at infinity like uxu−2−e, e.0.
The latter assumption ensures that all our spatial integrals below will converge. Also, for regular
Am, the self-adjoint extension ofhA can be computed from that ofh0. In what follows, we will
not distinguish between the formal expression forhA and its self-adjoint extension.
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We consider the cutoff regularized logarithm of the determinant of the massive Klein–Gordon
operator

SLsAd ª TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD , s3d

where the cutoff regularized Hilbert space trace TrL sums over states with momentum bounded by
L. More precisely, ifD is an operator onH and Tr denotes the operator trace onH, then the cutoff
trace is defined by

TrL D ª TrhusL2 + h0dDj, s4d

whereu is the Heaviside step function. As is well-known, the expressions3d occurs in quantum
field theory as the one-loop effective action. Using the formal identity log det=Tr log, it can be
viewed as the generalization of the determinant to operators on an infinite-dimensional Hilbert
space.

The parameterL0 has been introduced to balance physical dimensions. It also provides a
useful tool for cross checking since in the result of our calculations, it should cancel. Moreover, in
the definition of the regularized determinant, we have subtracted a term containing the free Klein–
Gordon operator as a reference. Whereas this term is needed for turning the expression under the
trace into a pseudodifferential operator, it also comes in—at least in the corresponding expression
for fermions—when interpreting the determinant as a subsummation of the one loop diagrams in
the Feynman path integral.16

The regularized determinants3d has an asymptotic expansion inL for large values ofL as

SLsAd = c2sA,mdL2 + c1sA,mdL1 + clogsA,mdlog L + c0sA,md + ¯ , s5d

where the dots indicate terms that vanish at least like 1/L in the limit L→`.
We are interested in the coefficientclogsA,md;clogsAd.
Proposition II.1: For the regularized determinant SLsAd defined as above, the coefficient

clogsA,md is proportional to the Yang–Mills action of Am,

clogsAd =
1

96p2E
R4

d4x trNsFmnFmnd, s6d

wheretrN is the matrix trace inglN and the curvature Fmn of Am is given by

Fmn = ]mAn − ]nAm + iefAm,Ang. s7d

The proof is contained in Sec. IV A. Note that the numerical factor in front ofFmnFmn differs from
the one obtained in Ref. 4 Eqs.s24.16d, etc., by 1

2. By the considerations below, this can be
understood as coming from the usage of a nongauge invariant regularization forSLsAd. However,
the latter allows a straightforward generalization to the noncommutative Moyal plane.

It is well-known that

sD” Ad2 = 14hA − ies ·F, s8d

where D” A=gms]m+ ieAmd, s ·F= 1
4smnFmn= 1

2gmgnFmn, and gm are the four-dimensional gamma
matrices, i.e., 434 matrices that satisfy

gmgn + gngm = 2hmn14, s9d

hmn being the Euclidean flat metric. Using this identity, we are able to rederive the result of Ref.
14 concerning the determinant of the Dirac operator. This is demonstrated in Sec. IV B. Our
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computation has the advantage of avoiding extensive calculations involving the gamma matrices
gm.

It is at first sight surprising that the nongauge invariant definition of the determinant yields a
gauge invariant logarithmically divergent part. It is therefore natural to consider the manifestly
gauge invariant expression

S̃LsAd ª TrL
hA logS− hA + m2

L0
2 D − TrL logS− h0 + m2

L0
2 D , s10d

where in the first trace, the cutoff is taken with respect to the operatorhA rather thanh0. As

before,S̃LsAd has an asymptotic expansion,

S̃LsAd = c̃2sA,mdL2 + c̃1sA,mdL1 + c̃logsA,mdlog L + c̃0sA,md + ¯ , s11d

the dots subsuming terms scaling at least like 1/L. A calculation in Sec. IV C reveals that the
coefficientc̃logsA,md; c̃logsAd in s11d equals half of the corresponding expression inSLsAd,

c̃logsAd = 1
2clogsAd. s12d

This result agrees with the one obtained in Ref. 4.
A widely used alternative regularization of the determinant of a differential operator makes

use of thez-function and the asymptotic expansion of the trace of the heat kernel operator. We
want to compare our coefficient with earlier results that have been obtained with these methods6

fsee also the review articles Ref. 1, and references thereing. In this approach, one considers
asymptotic expansions for the trace of the heat operator,

Ksf,Dd ª TrL2sfe−tDd = t−2a0sf,Dd + t−3/2a1sf,Dd + ¯ + a4sf,Dd + ¯ , s13d

for small t, wheref is some function onR4 that serves as a regulator for the spatial integrals. The
rightmost dots indicate terms that fall off at least linearly int. As the heat trace must be integrated
on the positive axis together with the functiont, the logarithmically divergent contribution to the
heat kernel regularized trace is given by the coefficienta4sf ,Dd. For the comparison of this
coefficient to our result, letcs·dsf ,Ad, etc., be the coefficients in the expansion ofSLsAd, now
spatially regularized in the same way asKsf ,Dd. In Sec. IV D, it is shown that the coefficient

c̃logsf ,Ad in the asymptotic expansion ofS̃LsAd differs from the corresponding expression obtained
via heat kernel regularization methods by a term proportional tom4,

− c̃logsf,Ad +
1

32p2m4E
R4

d4x fsxd = a4S f,
− hA + m2

L0
2 D . s14d

The additional mass term can be traced back to the usage of the reference operator −h0+m2 in s3d.
The calculations using the heat operator can be generalized to the noncommutative 4D torus18 and
the noncommutative Moyal plane.11 The only change one encounters is that in all expressions, the
commutative product of functions must be replaced by the noncommutative product!.

The main part of our paper is devoted to the study of the case of the 4D Moyal plane as the
underlying snoncommutatived “space.” In this case, the algebra of functions onR4 is furnished
with the snoncommutatived Moyal–Weyl product!ª!Q. The latter is defined by the integral
formula

f ! gsxd =
1

s2pd4E
R4
E

R4
d4y d4j eijsx−ydfsx − 1

2Qjdgsyd, s15d

whereQ is a 434 matrix defined by
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Q = uS 0 12

− 12 0
D s16d

for the real parameteru. In our calculations we do not use asymptotic expansions of this product
in powers ofu.

On the Moyal plane, we consider the generalized Klein–Gordon operator

hA
u = ]m]m + ies]mAmd ! + 2ieAm ! ]m − e2sAm ! Amd ! , s17d

where f! is a short-hand notation for the operator that!-multiplies smooth wave functions inH
from the left by thessmoothd function f. We defineSL

u sAd and cs·d
u sA,md in analogy with the

formulass3d and s5d above. Then, our main result is the following.
Proposition II.2: For minimally coupled bosonic fields on the (noncommutative) 4D Moyal

plane, the above formula (6) holds with the commutative products replaced by the noncommutative
Moyal–Weyl product, i.e., we have

clog
u sAd =

1

96p2E
R4

d4x trNFu,mn ! Fmn
u , s18d

where

Fmn
u = ]mAn − ]nAm + efAm,Ang!. s19d

III. PSEUDODIFFERENTIAL OPERATOR METHODS

In our work, we deal with a restricted class ofpseudodifferential operatorssCDOd which
suits our purposes. The statements below may be found in Shubin’s book.17 We considerCDOs
that act on smooth and compactly supported wave functionsu as fx=sxmd, m=1, . . . ,4, and like-
wise y, p describe points inR4; xp=omxmpm denotes the scalar product,uxu is the length of the
vectorxg

sAudsxd =E
R4

d4p

s2pd4E
R4

d4y sfAgsx,pdusydeipsx−yd,

where thesymbol sfAg of A is a smooth function that allows anasymptotic expansionin p
according to

sfAgsx,pd , o
r=0

`

sm−rfAgsx,pd.

Here,; means that for eachs, the finite sumor=0
s sm−rfAg approximatessfAg up to a function that

falls off at most asupum−ss+1d for large upu,

U]x
a]p

bSsfAgsx,pd − o
r=0

s

sm−rfAgsx,pdDU ø Cabs1 + upu2dfm−ss+1d−ubug/2

for all multi-indicesa=sa1, . . . ,a4d, b=sb1, . . . ,b4d, where

]x
a = S ]

]x1Da1

¯ S ]

]x4Da4

,

uau=a1+¯ +a4, andCab are constants. The numberm above is called theorder of A. For a given
symbol, there are many different asymptotic expansions. One particular choice is the asymptotic
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expansion in terms ofhomogeneous symbolssm−r
h fAg, i.e., smooth functions that in addition satisfy

sm−r
h fAgsx,lpd = lm−rsm−r

h fAgsx,pd for upu = 1, l . 1.

The first termsm
h fAg in an asymptotic expansion in homogeneous summands is termed theprin-

cipal symbol.
An asymptotic expansion encodes the information of a given symbolsfAg up to an additive

function that falls off inp like a Schwartz test function. This piece of information will be sufficient
for our purposes.

While the expansion in homogeneous symbols is appropriate to discuss invariant notions such
as the residue of aCDO, the expansions obtained from recursion relations in the computation of
resolvents of operators are not of this type in general. The two types, however, are related to each
other through a finite resummation at every order of the infinite sum.

The action of theCDOs considered here can be extended to smooth functions, leading to the
useful formula

sfAgsx,pd = e−ixpAeixp.

For the productAB of two CDOs A andB with respective symbolssfAg andsfBg, one has
the following asymptotic expansion of the symbol:

sfAg p sfBgsx,pd = sfABgsx,pd , o
a

s− iduau

a!
]p

asfAgsx,pd]x
asfBgsx,pd, s20d

where the sum runs over all 4-indicesa and we have used the notationa ! = a1! ¯a4!. We will
usep whenever we mean this product of symbols, in contrast to the noncommutative product!
defined later on.

InterpretingA as an operator in the Hilbert spaceL2sR4d ^ CN, we can compute the trace ofA
from its symbol according to

TrsAd =E
R4

d4p

s2pd4E
R4

d4x trN sfAgsx,pd,

where trN denotes the matrix trace over the glN-part of the symbol.
For operatorsA that do not have asfinited trace, one considers the cutoff trace

TrLsAd =E
upuøL

d4p

s2pd4E
R4

d4x trN sfAgsx,pd.

Clearly, this coincides with the previous definition of the cutoff regularized trace, Eq.s4d.
The above expression has an asymptotic expansion inL, as can be seen from the asymptotic

expansion of the symbolsfAg in homogeneous symbols. In this case, there appears a term scaling
like log L. On the other hand, theWodzicki residue19 of the operatorA is defined as the angular
p-integral and the spatial integral of the coefficients−4

h fAg in the homogeneous asymptotic expan-
sion,

RessAd ª
1

s2pd4E
upu=1

dVpE
R4

d4x s−4
h fAgsx,pd,

whenever the integral exists. It is known that for compact spatial manifolds this quantity deter-
mines completely the factor in front of the logL term in the asymptotic expansion of TrLsAd. By
abuse of notation, and motivated by the above observation, in our calculations we will use the
expression Ress¯d to mean the factor in front of the logL term in the corresponding cutoff
regularized trace.
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IV. THE CASE M=R4

A. The logarithmically divergent part

In this section we compute the logarithmically divergent part of the bosonic effective action
on R4. We define the regularized bosonic action as

SLsAd ª TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD . s21d

We use the following expression for the logarithm:

logs1 + ad =E
0

1 ds

s
s1 − s1 + sad−1d s22d

and recall the definition for the regularized trace of a pseudodifferential operator

TrLsad ª E
upuøL

d4p

s2pd4E
R4

d4x trN sfagsx,pd s23d

to get

TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD

= −E
upuøL

d4p

s2pd4E
R4

d4xE
0

1 ds

s
trNSsFSI + sS− hA + m2

L0
2 − IDD−1G

− sFSI + sS− h0 + m2

L0
2 − IDD−1GD . s24d

As shown in the first section of the Appendix, the symbol of the resolvent ofhA must satisfy the
following recursion relation:

sfsc1I + c2hAd−1gsp,xd =
1

c1 − c2p
2 −

c2

c1 − c2p
2shA + 2ipmDA

mdsfsc1I + c2hAd−1gsp,xd.

Its formal solution is given by

sfsc1I + c2hAd−1gsx,pd = sc1I + c2s− p2 + hA + 2ipmDAmdd−11,

which can be understood as defining an asymptotic expansion, see the Appendix for details. In
particular, for our values ofc1 andc2, we derive

sFSI + sF− hA + m2

L0
2 − IGD−1G , o

n=0

`
ss/L0

2dn

S1 − s+
sm2

L0
2 +

s

L0
2p2Dn+1shA + 2ipmDA

mdn1.

Here and in all what follows, the 1 on the right-hand sidesrhsd means that the operatorshA, DA,m

should be applied to theN-dimensional constant vector.
Inserting this expansion into the integral and noting that the second symbol just cancels the

first term in the expansion we then have
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TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD = −E

upuøL

d4p

s2pd4o
n=1

`
1

L0
2nE

0

1

ds
sn−1

S1 + sSp2 + m2

L0
2 − 1DDn+1

3E
R4

d4x trNshA + 2ipmDA
mdn1. s25d

In the first section of the Appendix we will expand explicitly the terms ins25d and pick out the
logarithmically diverging ones. Setting all the relevant terms together then gives

ResSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD

= −
1

8p2m2E
R4

d4x trNhA −
1

16p2E
R4

d4x trNhA
2 +

1

8p2m2E
R4

d4x trNhA +
1

12p2E
R4

d4x trNhA
2

+
1

24p2E
R4

d4x trN DA
mhADAm −

1

48p2E
R4

d4x trNshA
2 + DA

nDA
mDAnDAm + DA

mhADAmd

=
1

48p2SE
R4

d4x trN DA
mhADAm −E

R4
d4x trN DA

nDA
mDAnDAmD . s26d

A short calculation shows that the terms under the trace are equal tose2/2dFmnFmn, so we finally
get the result

ResSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD =

e2

96p2E
R4

d4x trNFmnFmn s27d

which proves Proposition II.1.

B. Comparison with fermion calculations

To incorporate fermions, we have to extend the Hilbert space. We takeHfermion=L2sR4d
^ Ccolor

N
^ Cspin

4 , where the last factor carries a representation of the Dirac gamma matrixesgm, m
=1, . . . ,4.

We begin by computing the square of the Dirac operatorD” . First some definitions

DAm = ]m + ieAm,

D” A = gms]m + ieAmd.

A short calculation yields the well-known formula

sD” Ad2 = 14hA + 1
2gmgnfDAm,DAng = 14hA + ies ·F.

Here,14 denotes the 434 unit matrix and

s ·F ª

1
4smnFmn = 1

2gmgnFmn

for the matricessmn
ª fgm ,gng. We use the above identity to obtain

s− iD” A + imds− iD” A − imd = − sD” Ad2 + m2 = − 14hA − ies ·F + m2.

Taking the logarithm on both sides, for the left-hand side we arrive at
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logS− iD” A + im

L0
DS− iD” A − im

L0
D = logS− iD” A + im

L0
D + logS− iD” A − im

L0
D ,

while the right-hand side gives

logs− 14hA − ies ·F + m2d = logS 14s− hA + m2d
L0

2 DS14 −
ie

− hA + m2s ·FD
= logS 14s− hA + m2d

L0
2 D

+ logS14 −
ie

− hA + m2s ·FD + commutator terms.

The extra commutator terms can be computed from the Baker–Campbell–Hausdorff formula.
It is known that on compact manifolds the Wodzicki residue vanishes on commutators.19 We

therefore expect that from the above expression, the commutator terms will not contribute to the
logarithmically divergent part of the regularized trace. In the second section of the Appendix it is
shown explicitly that this is indeed the case. Rather than using integration-by-parts arguments, this
is readily seen from the fact that theCspin-trace overs ·F gives zero. Also, the pertinent contribu-
tions from the first two terms of the right-hand side are calculated in the Appendix.

Furthermore, from Langmann’s results14 we know that TrL logfs−iD” A+ imd /L0g is indepen-
dent of the sign ofm, so we have

2 TrL logS− iD” A + im

L0
D = 4 TrL logS− hA + m2

L0
2 D +

e2

16p2 log LE
R4

d4x trss ·Fd2

+ terms finite inL,

where the trace tr runs over both theCcolor
N and theCspin

4 parts. Performing the trace over the
g-matrices yields

trss ·Fd2 = − 2trNFmnFmn.

The result is then

TrL logS− iD” A + im

L0
D = 2 TrL logS− hA + m2

L0
2 D −

e2

16p2 log LE
R4

d4x trN FmnFmn + ¯

= S e2

48p2E
R4

d4x trN FmnFmn −
e2

16p2E
R4

d4x trN FmnFmnDlog L + ¯

= −
e2

24p2 log LE
R4

d4x trN FmnFmn + terms finite inL,

in agreement with Ref. 14.

C. Dependence on the regularization scheme

So far we have been looking at the cutoff regularized determinant
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SLsAd = TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD . s28d

As the cutoff in this regularization is taken with respect to the reference operatorh0, the above
expression is not manifestly gauge invariant. It is thus surprising that the coefficientclogsAd turns
out to be gauge invariant.

One could use the spectral projection with respect tohA instead, but again the resulting
expression would fail to be manifestly gauge invariant now because of the reference term
logfs−h0+m2d /L0

2g. The latter had to be included to make the calculations tractable by the meth-
ods of classicalCDOs.

Of course, there are gauge invariant regularization schemes such as heat kernel regularization
ssee the review articles in Ref. 1 for recent developments in this fieldd readily available. However,
cutoff regularized traces seem to be closer to physical intuition.

An acceptable, manifestly gauge invariant expression would be

S̃LsAd ª TrL
hA logS− hA + m2

L0
2 D − TrL logS− h0 + m2

L0
2 D , s29d

where

TrL
hA logS− hA + m2

L0
2 Dª TrHPLshAdlogS− hA + m2

L0
2 DJ

is defined using the spectral projectionsPLshAdªusL2−hAd of hA, whereu denotes the Heavi-
side step function that is zero for negative arguments and equal to 1 otherwise. It turns out that

S̃LsAd has an asymptotic expansion as

S̃LsAd = c̃2sAdL2 + c̃1sAdL + c̃logsAdlog L + ¯ . s30d

The dots indicate terms that are finite in the largeL limit.
In this section we want to compare the coefficientc̃logsAd of the logarithmically divergent part

in the above expression to the coefficientclogsAd computed earlier.
A short calculation reveals how to proceed,

TrL
hA log

− hA + m2

L0
2 − TrL

h0 log
− h0 + m2

L0
2

= TrL
h0Slog

− hA + m2

L0
2 − log

− h0 + m2

L0
2 D + sTrL

hA − TrL
h0dSlog

− hA + m2

L0
2 − log

− h0 + m2

L0
2 D

+ sTrL
hA − TrL

h0dlog
− h0 + m2

L0
2 . s31d

Obviously, the coefficientc̃logsAd receives contributions from three different terms, only the first of
which is given byclogsAd. From the calculation of the pertinent part in the third term, it will be
apparent that the second one in fact does not contribute toc̃logsAd. For the computation of the third
term in s31d, however, we must introduce an additional regulator that deals with the noncompact-
ness ofR4. Let f be a smooth, compactly supported function onR4, interpreted as a multiplication
operator onH. Then
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TrH fusL2 + hAdlog
− h0 + m2

L0
2 J =E

R4

d4p

s2pd4E
R4

fsxdsfusL2 + hAdgsFlog
− h0 + m2

L0
2 G + ¯ .

s32d

The dots indicate contributions from the star product of symbols that are uniformly bounded inL.
Use has been made of the fact thatf and sflogs−h0+m2d /L0

2g are independent ofp and x,
respectively.

As a next step, we need to derive an asymptotic expansion for the symbol of the theta
function. We start with the following sum expression for a smooth approximation of the Heaviside
u function sRef. 9, p. 248, etc.d:

uesxd =
1

e
o

r=−`

`
eivr0

+

x + ivr
=

e−x0+

e−xe + 1
, vr = s2r + 1dp/e, s33d

for e.0. The step function is regained in the limite→`. Using this equation, we derive an
asymptotic expansion for the symbol ofusL2+hAd assfor details we refer to the third section of
the Appendixd

sfuesL2 + hAdg =
1

2pi
E dz eizesF 1

z− isL2 + hAdG , o
n=0

`
1

n!
de

sn−1dsL2 − p2dshA + 2ipmDAmd1.

As before, for mnemonic purposes, this asymptotic series can be summarized as

sfusL2 + hAdgsx,pd = usL2 − p2 + hA + 2ipmDAmd1, s34d

where thex dependence originates from the external fieldsA.
Combining our results, we find

TrH fusL2 + hAdlogS− h0 + m2

L0
2 DJ − TrH fusL2 + h0dlogS− h0 + m2

L0
2 DJ

= o
n=1

`
1

n!
E

R4

d4p

s2pd4E
R4

d4x fsxdde
sn−1dsL2 − p2dlogSp2 + m2

L0
2 DtrNhshA + 2ipmDAmdn1j.

Obviously, we can now drop the regulatorf.
For largeL, thede-functions cancel the radialp-integration. Therefore, the only contributions

to the logarithmically divergent part in the above expression can originate from terms where the
derivatives of thede-functions exclusively hit the trace under the integral of the measure d4p but
not the factor logfs−h0+m2d /L0

2g. This is only possible as long as 2sn−1dø3+n sthe derivatives
of de count twice because of thep2 in the argument, and the 3 on the rhs comes from the measure
d4pd and hencenø5. Moreover, since the angularp-integration over an odd number of factorspm

gives always zero, then=5 term cannot contribute either.
As shown in the Appendix, we can now expand the powersshA+2ipmDAmdn1 for nø4,

perform the angularp-integrations, substitutep2→u and use partial integration to get rid of the
derivatives of thede-functions. We arrive at
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TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D

=
1

16p2E
1

`

du logSu + m2

L0
2 DdesL2 − udus1 − 1dE

R4
d4x trNhA1 +

1

16p2E
1

`

du logSu + m2

L0
2 D

3desL2 − udS1

2
−

2

3
+

1

6
DE

R4
d4xtrNhA

21 +
1

16p2E
1

`

du logSu + m2

L0
2 DdesL2 − uds− 1

3 + 1
6d

3E
R4

d4x trN DA
mhADAm1 +

1

16p2E
1

`

du logSu + m2

L0
2 D1

6
desL2 − ud

3E
R4

d4x trN DA
mDA

nDAmDAn1 + ¯

= −
1

96p2logSL2 + m2

L0
2 DE

R4
d4x trN DA

mhADAm1

+
1

96p2 logSL2 + m2

L0
2 DE

R4
d4x trNDA

mDA
nDAmDAn1 + ¯

= −
1

2

1

96p2 logSL2 + m2

L0
2 DE

R4
d4x trN FmnFmn + ¯ ,

where the dots indicate finite or polynomially divergent contributions.
Finally, we will turn back to the second term ins31d. The difference as compared to the

previous calculation is that now the symbol of the operator under the traces has an asymptotic
expansion that is a power series in 1/p. Therefore, in contrast to the above, no logarithmically
divergent term will occur in a largeL expansion.

Combining these results with our previous expression forclogsAd, we find

c̃logsAd =
1

2

1

96p2E
R4

d4x trN FmnFmn =
1

2
clogsAd. s35d

D. Comparison with heat kernel regularization

In this section we want to compare our results with previous ones in the literature18,11obtained
by heat kernel techniques. For a given differential operatorD, we consider the trace of the heat
operator forD,

Kst, f,Dd = Trsfe−tDd,

where the auxiliary smooth functionfsxd is introduced to make spatial integrals converge onRn.
We write the effective action forD as

S= −E
0

` dt

t
Kst, f,Dd.

Here the formula log detsDd=Tr logsDd has been used again together with the following formal
expression for the logarithm:
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log l = −E
0

` dt

t
e−tl,

which holds up to ansinfinited integration constant.
There is an asymptotic expansion for the heat trace ast→0 given by

Trsfe−tDd , o
kù0

tsk−nd/2aksf,Dd.

Next we define thez-function for D as follows:

zss, f,Dd = TrsfD−sd.

Writing the z-function in terms of the heat trace as

zss, f,Dd =
1

GssdE0

`

dt ts−1Kst, f,Dd,

we see thatGssdzss, f ,Dd has simple poles at the pointss=sn−kd /2 and the complex residue at
s=sn−kd /2 is given by

Ress=sn−kd/2sGssdzss, f,Ddd = aksf,Dd. s36d

From the asymptotic expansion of the heat trace and the integral formula for the effective action
S we see that the logarithmically divergent part is given whenk=n so we are interested in
computing the coefficientansf ,s−hA+m2d /L0

2d. In our casen=4.
The first task is to compute thez-function for the operators−hA+m2d /L0

2. From the definition
of the z-function we have

zSs, f,
− hA + m2

L0
2 D =E

R4

d4p

s2pd4E
R4

d4x trN sffg p sFS− hA + m2

L0
2 D−sGsx,pd.

We next use the expansion

sa + xd−s = o
r=0

`

s− 1dr Gss+ rd
r!Gssd

a−sr+sdxr

to write the symbol ofs−hA+m2d /L0
2 as

sFS− hA + m2

L0
2 D−sG = Sp2 + m2 − hA − 2ipmDAm

L0
2 D−s

, o
r=0

`

s− 1dr Gss+ rd
r!Gssd

L0
2s 1

p2ss+rd sm
2 − hA − 2ipmDAmdr1.

Splitting the integration in thez-function into two parts we then have

zSs, f,
− hA + m2

L0
2 D =E

upuø1

d4p

s2pd4E
R4

d4x fsxdtrN sFS− hA + m2

L0
2 D−sGsx,pd

+ o
r=0

`
s− 1dr Gss+ rd

r!Gssd
L0

2sE
1

`

upu3dupu
1

p2sr+sdE
S3

dVp

s2pd4E
R4

d4x fsxd

3trNsm2 − hA − 2ipmDAmdr1. s37d

Using the fact that under the angular integration odd powers ofp give zero we can write
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E
S3

dVj

s2pd4E
R4

d4x fsxdtrNsm2 − hA − 2ipmDAmdr1 = o
k=0

fr/2g

s− 2id2kp2k dsf,r,2kd

for some functions dsf ,r ,2kd of f, hA and DAm determined from the expansion ofsm2−hA

−2ipmDAmdr. In particular, we have

dsf,0,0d =
1

8p2E
R4

d4x fsxd.

We then find

zSs, f,
− hA + m2

L0
2 D = xssd + o

r=0

`
s− 1drL0

2sGss+ rd
r!Gssd E

1

`

upu3 dupu
1

p2sr+sd o
t=0

fr/2g

s− 2id2tp2t dsf,r,2td,

where xssd denotes the first integral in the rhs ofs37d, a holomorphic function ins. We can
evaluate explicitly thep-integral in the above expression to obtain the following formula for the
z-function:

zSs, f,
− hA + m2

L0
2 D = xssd +

L0
2s

Gssdor=0

`

o
t=0

fr/2g
1

2

s− 1dr+t4tGss+ rd
r!

1

s− s2 − r + td
dsf,r,2td. s38d

There are two parts of thez-function contributing to the residue ats=0; the gamma function
Gss+rd and the poles of 1/fs−s2−r + tdg. The first one gives a contribution forr =0 and the latter
one whenr =2+t. From the summation we see thattø r /2 so it follows that only the terms with
tø2 contribute to the residue:

a4S f,
− hA + m2

L0
2 D = Ress=0 GssdzSs, f,

− hA + m2

L0
2 D

= xs0d −
1

4
dsf,0,0d + o

t=0

2
4tGs2 + td

s2 + td!
1

2
dsf,t + 2,2td,

wherexs0d is given by

xs0d =
1

s2pd4E
upuø1

d4pE
R4

d4x fsxd =E
0

1

upu3 dupudsf,0,0d =
1

4
dsf,0,0d.

We have thus obtained the following expression fora4sf ,s−hA+m2d /L0
2d:

a4S f,
− hA + m2

L0
2 D = o

t=0

2
1

2

4tGs2 + td
s2 + td!

dsf,t + 2,2td.

We now compute directly the logarithmically divergent part ofSLsAd. For this we need the
following formula:

sFlogS− hA + m2

L0
2 D − logS− h + m2

L0
2 DG = o

r=1

`
s− 1dr+1

r

1

p2r fsm2 − hA − 2ipmDAmdr − m2rg.

Note that for this asymptotic expansion, we have divided the recursion formulasA8d differently.
We split thep-integration in the trace into two parts to get
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TrL logS fS− hA + m2

L0
2 −

− h0 + m2

L0
2 DD

= finite terms inL + o
r=1

`

o
t=0

fr/2g
s− 1dr+1

r
E

1

L

upu3 dupu
1

p2sr−td s− 1dt4t dsf,r,2td

− o
r=1

`
s− 1dr+1

r
m2rE

1

L

upu3 dupu
1

p2r dsf,0,0d.

The logarithmically divergent part is then given by

clogsAd = − o
t=0

2

4t 1

t + 2
dsf,t + 2,2td +

1

2
m4 dsf,0,0d

so we finally have the result

−
1

2
clogsAd +

1

4
m4 dsf,0,0d = a4sf,s− hA + m2d/L0

2d.

Remarks: s1d The coefficients dsf ,r ,2kd defined below Eq.s37d are given by spatial integrals
over theglsNd-trace of certain polyomials in the external fields and their derivatives. They can be
easily computed by expanding the power on the left-hand side of the defining formula, using the
well-known expressions for the angularp-integration of polynomials inpm.

s2d Note that the argument relatinga−4 andclog did not use the specific form of the coefficients
dsf ,r ,2kd. Therefore, it can be extended to a larger class of operators.

s3d Combining Eqs.s36d ands38d, we have a formula for the calculation of the coefficientsak

at hand. In particular, evaluating the functionxssd for negative integers amounts to the compu-
tation of the symbol ofs−hA+m2dl for positive integer powers ofl. The latter can be obtained
from the formula

sfs− hA + m2dl+1g = sp2 + m2 − hA − 2ipmDA
mdsfs− hA + m2dlg

and the symbol of −hA+m2.

V. GENERALIZATION TO THE MOYAL PLANE

A. The Moyal plane Ru
4: generalities

In this section, we want to replace the manifoldR4 by the four-dimensional Moyal planeRu
4,

an example of a noncommutative manifold.
For the definition of the latter, one must specifysamong other things; see Ref. 3 for the

general theory, Ref. 10 for the treatment of the Moyal plane in this contextd a snoncommutatived
associative algebraA, the elements of which generalize the notion ofssmoothd functions on an
ordinary manifold. In the case of the 4D Moyal plane, the algebraA is taken to include the rapidly
decaying Schwartz test functions onR4, while the product of two such elementsf, g is given by
the integral formula

sf ! gdsxd =
1

s2pd4E
R4
E

R4
d4y d4j eijsx−ydfsx − 1

2Qjdgsyd, s39d

whereQ is a 434 matrix defined by

Q = uS 0 12

− 12 0
D s40d

for the real parameteru.
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The elements ofA act on the Hilbert spaceL2sR4d by left !-multiplication ssee Ref. 8 for an
extension of the above formula to distributionsd. For an elementf PA, we will write the corre-
sponding operator onL2sR4d as f!. From the integral formulas39d of !, we can see thatf! is a
CDO with the symbol

sff ! gsx,pd = fsx − 1
2Qpd. s41d

Note that the asymptotic behavior off is transferred to thep dependence of the symbol off!. In
particular, for rapidly decayingf, f! is infinitely smoothing.10

A natural class of functions suitable for the Moyal product is the setP of infinitely differen-
tiable functionsf on R4 such that, for a real numbers and for every multi-indexa,

us]x
afdsxdu ø Cas1 + x2dss−uaud/2, s42d

s is called theorder of f. For f, gPP and of orders1, s2, respectively,f !g is again inP and of
orders1+s2 sRef. 12, Sect. 7d.

B. Calculation of the logarithmically divergent part

With the commutative product of functions onR4 replaced by the Moyal product!, Eq. s39d,
we are led to study the following variant of the Klein–Gordon operator

hA
uc = ]m]mc + ies]mAmd ! c + 2ieAm ! ]mc − e2Am ! Am ! c

for any rapidly decaying smooth functionc in the Hilbert spaceH=L2sR4d ^ Ccolor
N . Here, the

matrix valued Yang–Mills fieldsAm are taken to be in the setP above with order strictly smaller
than −4, i.e., to satisfys42d with s,−4.

We will also need the operatorDAm
u , defined by

DAm
u c = ]mc + ieAm ! c, c P SsR4d.

In analogy with the first section, we consider the cutoff regularized determinant ofs−hA
u

+m2d /L0
2,

SL
u sAd ª TrLHlog

− hA
u + m2

L0
2 − log

− h0 + m2

L0
2 J .

As before, the trace will be computed from the symbol of logfs−hA
u +m2d /L0

2g. For the latter, we
will need an expression for the symbol of the resolvent ofhA

u . Again, this will be obtained via a
recursion relation.

As explained in the Appendix, we find forc1, c2PC, c1·c2,0 or c2=0,

sfsc1 + c2hA
ud−1gsx,pd =

1

c1 − c2p
2 −

c2

c1 − c2p
2shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd
u dsfsc1 + c2hA

ud−1g

3sx,pd,

where As·−1
2Qpd is a short-hand notation for the external fieldsAm shifted by −1

2Qp in their
argument,As·−1

2Qpdsxd=Asx− 1
2Qpd. In the derivation of the recursion relation, we have used the

identity13

eipsx−ydfsxd = ffs· + 1
2ud ! eips·−ydgsxd

and associativity of the Moyal product.
From the recursion relation, one readily obtains the formal expression
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sfsc1 + c2hA
ud−1gsx,pd , o

n=0

`
s− 1dn

sc1 − c2p
2dn+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd
u dn1.

A thorough investigation reveals, however, that an interpretation of this equation as an asymptotic
expansion inp would be misleading: Thep dependence through the arguments of the external
fieldsAmsx− 1

2Qpd is superficial in that it goes away under the spatial integral. Therefore, one must
develop different tools to tackle the situation. As shown in the Appendix, the operatorRN defined
by the sum of the firstN terms in the above series, forN sufficiently large, differs from the
operatorsc1+c2hA

ud−1 by a trace-class operator only. Hence, for the singular behavior of the cutoff
regularized trace, it suffices to consider this operatorRN.

Inserting the expression for the symbol ofRN into the integral formula for the logarithm, Eq.
s22d, we find

SL
u sAd = − o

n=1

N E
upuøL

d4p

s2pd4E
0

1 ds

s

sn−1

S1 + sSp2 + m2

L0
2 − 1DDn+1E

R4
d4x trNshAs·−s1/2dQpd

u

+ 2ipmDAs·−s1/2dQpd,m
u dn1 + terms finite inL.

Now, for every term in the sum, we can shift thex-integration by −12Qp. After this substitution the
contribution to theL-behavior is apparent: It is only the first four terms that can contribute to
clog

u sAd. Moreover, the resulting expression differs from the correspondingSLsAd, Eq. s25d, solely
in the appearance of the product! in place of the commutative product. As the replacement of the
latter by the Moyal product does not affect the asymptotic behavior in the variablep, we conclude

clog
u sAd =

e2

96p2E
R4

d4x trN Fu,mn ! Fmn
u , s43d

whereFmn
u is defined by

Fmn
u = − iefDAm

u ,DAn
u g.

This proves the claim of Proposition II.2.

VI. CONCLUSION

In the first part of our paper, we considered the regularized determinant of the Klein–Gordon
operatorhA with minimal coupling onR4. For the regularization, we restricted the Hilbert space
trace to run over states of momentum below some cutoffL.

Although similar results have been obtained before, we choose to present here an approach
that consistently uses the pseudodifferential operator methods to prepare the ground for calcula-
tions on a particular noncommutative manifold.

A useful formula for the calculations with symbols of pseudodifferential operatorssCDOd is
given by

sffshAdgsx,pd = fs− p2 + hA + 2ipmDAmd1 s44d

for any function f of the Klein–Gordon operatorhA. This formula originates from a recursion
relation for the symbolsffshAdg. It is to be understood as defining an asymptotic expansion of the
symbol for largep.

Using this asymptotic expansion we could indeed confirm that the cutoff regularized trace
does have an asymptotic expansion in the cutoffL as in Eq.s5d. Although our approach did not
use a manifestly gauge invariant regularization, the term scaling like logL in the regularized trace
of the logarithm of the massive Klein–Gordon operator was found to be gauge invariant. However,
the numerical coefficient in front of this expression differs from that obtained via manifestly gauge
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invariant methods4,11 by a factor of −2, see Eqs.s12d and s14d. This difference can be verified
through a comparison of our approach to heat kernel regularization. It turns out that this argument
does not rely on the particular structure of the operatorhA, cf. the use of the functions dsf ,r ,2td
in Sec. IV D, so we expect it to hold even for more general operators as well. It would be
interesting to understand this feature in more detail. Also, we propose a gauge invariant version of
the cutoff regularization, Eq.s10d, which reproduces the result of Refs. 4 and 11.

Recently, zeta functions have been found to show a pole structure on noncommutative torus7

that differs from the commutative case. It would be interesting to see a similar effect for the Moyal
plane by means of the development in Sec. IV D.

In the second and main part of our work, we considered the generalized Klein–Gordon op-
erator for minimally coupled bosons on the four-dimensional Moyal plane, a particular example
for a noncommutative geometry. The difference to the previous case is that now the external
Yang–Mills fields act on wave functions by the noncommutative Moyal multiplication. This leads
in a natural way to the generalized Klein–Gordon operatorhA

u . As it turns out, the machinery of
CDOs is still applicable, withs44d generalizing to

sffshA
udgsx,pd = fs− p2 + hAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpdm
u d1. s45d

Here,As·−1
2Qpd denotes the external fieldsA shifted by the amount12Qp.

From this formula, one might think that the newp-dependence in the external fields leads to
an improvement in the decay properties of the symbol for largep. This point of view is however
misleading when one wants to draw conclusions for the asymptotic expansion of the regularized
trace: By a change of variables, thep-dependence in the external fields disappears under the
spatial integral of the trace. This fact comes solely from the noncompactness ofR4. It may be
viewed as another manifestation of the UV/IR mixing. A similar effect can be seen for instance in
the example of an infinitely smoothing operator onR that has a nonvanishing trace, see the end of
the fourth section of the Appendix. Therefore, on noncompact manifoldsscommutative or non-
commutatived, arguments linking the asymptotic expansion of the regularized trace of an operator
to the expansion of its symbol must be taken with caution. For our case, we propose to use the
asymptotic expansion inp of the shifted symbol

sffshA
udgsx + 1

2Qp,pd

instead. This proposal is justified rigorously by operator theoretic arguments which show that the
difference between the original operator and a certain truncation of the asymptotic expansion of
the above shifted symbol is trace-class. Hence, it does not contribute to the divergent part of the
regularized trace and we can safely exchange the full symbol by its truncation. This argument can
even be extended to the commutative case, thereby proving that the coefficient of the logL part of
the regularized trace is indeed given by thesnoncompactd Wodzicki residue. The latter observation
now can be used to explain why the expression forclog is a gauge invariant quantity: Since a gauge
transformation conjugates the Klein–Gordon operator by some unitary operator, the fact thatclog is
gauge invariant is equivalent to the vanishing of the Wodzicki residue on commutators.

To conclude, we have seen that the methods ofCDOs are a powerful tool for the investigation
of the case studied here, yet they need to be modified in the described way for the case of the
noncommutative Moyal plane. It would be interesting to see what modifications are necessary to
study the coupling of gravity to the bosons through a varying metric inhA. This is presently under
investigation.
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APPENDIX: DETAILS OF THE COMPUTATIONS

Computation of clog „A…

We are using the following convention for the Klein–Gordon operator:

hA = DA
mDAm = s]m + ieAmds]m + ieAmd = ]m]m + ie]mAm + 2ieAm]m − e2AmAm

= h0 + ie]mAm + 2ieAm − e2AmAm. sA1d

Recall the definition of the symbolsfag of a pseudodifferential operatora:

safdsxd =E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsfagsp,xdfsyd. sA2d

In the computation we need the symbol of the resolvent of the Klein–Gordon operator, i.e., of
the operatorsc1I +c2hAd−1. To determine an asymptotic expansion for this symbol we start with
the following expression:

sc1I + c2hAdafsxd = c1I + c2s]m]m + ie]mAm + 2ieAm]m − e2AmAmd

3E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsfagsp,xdfsyd

=E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsc1I + c2s− p2 − 2eAmpm + ]m]m

+ ie]mAm + 2ieAm]m + 2ipm]m − e2AmAmddsfagsp,xdfsyd. sA3d

Next replacinga by sc1I +c2hAd−1 a we get

sc1I + c2hAdsc1I + c2hAd−1afsxd = afsxd =E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsc1I + c2s− p2 − 2eAmpm

+ ]m]m + ie]mAm + 2ieAm]m + 2ipm]m − e2AmAmdd

3sfsc1I + c2hAd−1agsp,xdfsyd

=E
R4

d4p

s2pd4E
R4

d4y eip·sx−ydsfagsp,xdfsyd. sA4d

So we have

sc1I + c2s− p2 − 2eAmpm + ]m]m + ie]mAm + 2ieAm]m − e2AmAm + 2ipm]mddsfsc1I + c2hAd−1agsp,xd

= sfagsp,xd sA5d

which can be written as
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sc1I − c2p
2dsfsc1I + c2hAd−1agsp,xd + c2shA + 2ipmDA

mdsfsc1I + c2hAd−1agsp,xd = sfagsp,xd,

sA6d

giving us the recursive relation

sfsc1I + c2hAd−1agsp,xd =
1

c1 − c2p
2sfagsp,xd −

c2

c1 − c2p
2shA + 2ipmDA

mdsfsc1I + c2hAd−1agsp,xd.

sA7d

We can now get the desired asymptotic expansion by settinga=1,sfag=1,

sfsc1I + c2hAd−1gsp,xd , o
n=0

`
s− 1dnc2

n

sc1 − c2p
2dn+1shA + 2ipmDA

mdn1. sA8d

Next we evaluate explicitly the terms contributing to the logarithmically diverging part in the
expansions25d of the effective action. When taking the angular integrals the following formulas
are used:

kpmpnl = 1
4p2hmn,

kpm1pm2pm3pm4l = 1
24p4shm1m2hm3m4 + hm1m3hm2m4 + hm1m4hm2m3d,

where the brackets denote integration over the unit sphere inR4, that is

kfspdl ª
1

2p2E
R4

d4p

s2pd4dsupu − 1dfspd. sA9d

Also the angular integral over an odd number of componentspm is zero. Thes-integrals in the
expansion can be evaluated exactly using the formula

E
0

1

ds
sn−1

s1 + sadn+1 =
1

ns1 + adn sA10d

which holds forRe a.0. The effective action can now be written as

TrLSlogS− hA + m2

L0
2 D − logS− h0 + m2

L0
2 DD

= −
1

s2pd4o
n=1

` E
1

L

dupuupu3
1

nsp2 + m2dnE
R4

d4xE
S3

dVptrNshA + 2ipmDA
mdn1 + const, sA11d

where the constantsin Ld term arises from the integration of the symbol over the regionupuø1 for
which the asymptotic expansion is not valid.

When expanding the integrand in terms ofp, the leading term is of the orderp3−2n times a
term of order at mostpn coming from the angular integration—so the highest order term is of
orderp3−n. For the terms contributing to logarithmic divergences of the effective action the leading
order must be larger than or equal to −1, so the relevant terms in the expansion above are terms of
order up to four. To find the parts contributing to the logarithmic divergence we derivate the terms
in sA11d with respect toL and then pick the terms proportional to 1/L. We denote byIn the nth
term in the expansion. Writing the expansions of the first four terms explicitly we then have
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]I1

]L
= −

1

8p2

L3

L0
2

L0
2

L2 + m2E
R4

d4x trNhA1 =
1

8p2SL − m2 1

L
+ OS 1

L3DDE
R4

d4x trNhA1,

]I2

]L
= −

1

8p2

L3

2sL2 + m2d2E
R4

d4x trNhA
21 −

1

8p2

L5

sL2 + m2d2E
R4

d4x trNhA1

= −
1

8p2

1

2L
E

R4
d4x trNhA

21 + ¯ +
1

8p2m2 1

L
E

R4
d4x trNhA1 + ¯ ,

]I3

]L
= −

1

8p2

L3

3sL2 + m2d3E
R4

d4x TrNhA
3 +

1

4p2

L5

3sL2 + m2d3E
R4

d4x trNhA
2

+
1

8p2

L5

3sL2 + m2d3E
R4

d4x trNsDA
mhADAmd

= −
1

8p2OS 1

L3D + ¯ +
1

4p2

1

3L
E

R4
d4x trNhA

2 + ¯ +
1

8p2

1

3L
E

R4
d4x trNsDA

mhADAmd,

]I4

]L
= −

1

8p2

L3

4sL2 + m2d4E
R4

d4x trNShA
4 − L2s3hA

3 + hADA
mhADAm + DAmhA

2DAmd +
2

3
L4shA

2

+ DA
nDA

mDAnDAm + DA
mhADAmdD

= −
1

8p2

2

3

1

4L
E

R4
d4x trNshA

2 + DA
nDA

mDAnDAm + DA
mhADAmd + ¯ .

Comparison with fermion calculations

We now compute the traces of the relevant terms in the identity

logs− 14shA + m2d − ies ·Fd = logS 14s− hA + m2d
L0

2 D + logS14 −
ie

− hA + m2s ·FD
+

1

2
FlogS14

− hA + m2

L0
2 D, logS14 −

ie

− hA + m2s ·FDG
+

1

12
SFlogS14

− hA + m2

L0
2 D,FlogS14

− hA + m2

L0
2 D,

logS14 −
ie

− hA + m2s ·FDGG + FlogS14 −
ie

− hA + m2s ·FD,

FlogS14 −
ie

− hA + m2s ·FD, logS14
− hA + m2

L0
2 DGGD + OS 1

L5D .

The commutator terms come from the Baker–Campbell–Hausdorff formula. Terms that fall off at
least as 1/L5 have been suppressed. We find
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TrL logS14S− hA + m2

L0
2 DD = 4 TrL logS− hA + m2

L0
2 D ,

TrL logS14 −
ie

m2 − hA
s ·FD = −E

upuøL

d4p

s2pd4E
R4

d4xo
n=1

`
1

n
trSsF ie

− hA + m2G p s ·FDpn

.

Here,p denotes the product of symbols of twoCDOs which has the asymptotic expansions20d.
Now using the fact that trs ·F=0 and the expansionsA8d for sf1/sc1+c2hAdg, we get

TrL logS14 −
ie

m2 − hA
s ·FD

= −
1

2
E

upuøL

d4p

s2pd4E
R4

d4x trSsF ie

− hA + m2G p s ·F p sF ie

− hA + m2G p s ·FD + OS 1

L5D
=

1

2
E

upuøL

d4p

s2pd4E
R4

d4x
e2

sp2 + m2d2 tr s ·F2 + OS 1

L5D
=

e2

16p2 log LE
R4

d4x tr s ·F2 + OsL0d.

This provides the results needed in the main text, since, as will be shown below, there are no
contributions to the divergent part of the trace that come from the commutator terms. For this, we
expand the logarithm in the first commutator term above which gives us

1

2
TrLFlogS14

− hA + m2

L0
2 D, logS14 −

ie

− hA + m2s ·FDG
=

1

2
TrLFlogS14

− hA + m2

L0
2 D,

− ie

− hA + m2s ·FG +
1

2
TrLFlogS14

s− hA + m2d
L0

2 D,

−
1

2
S ie

− hA + m2s ·FD2G + OS 1

L7D .

The first term on the rhs is zero, so we have

1

2
TrLFlogS 14s− hA + m2d

L0
2 D, logS14 −

ie

− hA + m2s ·FDG
=

1

4
e2 TrLFlogS 14s− hA + m2d

L0
2 D,S 1

− hA + m2s ·FD2G + OS 1

L7D .

Now

sFFlogS14
s− hA + m2d

L0
2 D,S 1

− hA + m2s ·FD2GG = Flog
p2 + m2

L0
2 ,S 1

p2 + m2D2

s ·F2G
*

+ OS 1

L6D
= − i

2pmL0
2

p2 + m2S 1

p2 + m2D2

]mss ·F2d + OS 1

L6D
= OS 1

L5D
so there is no contribution to the divergent part of the trace.
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Next, we turn to the first triple commutator term in the above identity. Counting the powers of
p in the pertinent symbols, the leading term should scale like 1/p4. However, this term contains a
singles ·F which gives zero under the trace trN. Therefore, one must take one more term in the
expansion of

logS14 −
ie

− hA + m2s ·FD .

The resulting expression then is of order 1/p6 and hence can be dropped. Finally the second triple
commutator term can be seen to behave as 1/p6. In conclusion, we have shown that for the
divergent terms of the cutoff regularized trace, all commutator terms can be neglected in the above
identity.

Dependence on the regularization scheme

Computation of the symbol ofusL+hAd. We start with the following sum expression for the
sregularizedd u-function sRef. 9, p. 248, etc.d:

uesxd =
1

e
o

r=−`

`
eivr0

+

x + ivr
=

e−x0+

e−xe + 1
, vr = s2r + 1dp/e, e . 0.

sThis expression is the discretized version of the well-known integral formula

usxd =E
R

dz

2pi

eiz0+

z− ix
.

The latter is regained fore→`.d Differentiation yields

de
sn−1dsxd =

1

e
o

r=−`

`
eivr0

+
s− 1dnn!

sx + ivrdn+1 , n = 1,2,3, . . . ,

for the sn−1dth derivative of thesregularizedd Dirac d-function.
Using the above expression, we have

sfuesL2 + hAdg =
1

e
o

r=−`

`

sF eivr0
+

sL2 + hAd + ivr
G .

We derived the asymptotic expansion for the symbol ofsc1I +c2hAd−1 fsee Eq.sA8dg to be given
by

sfsc1I + c2hAd−1gsp,xd , o
n=0

`
s− 1dnc2

n

sc1 − c2p
2dn+1shA + 2ipmDA

mdn1.

Using this we get

sfuesL + hAdg ,
1

e
o

r=−`

`

o
n=0

`
eivr0

+
s− 1dn

ssL2 − p2d + ivrdn+1shA + 2ipmDAmdn1.

Using the expressions forde
snd in the above expansion we finally have

sfuesL + hAdg , o
n=0

`
1

n!
de

sn−1dsL2 − p2dshA + 2ipmDAmdn1.

Computation of the traces: We can now proceed with the calculation of the trace. From the
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remarks in the main section, we know that we can drop the spatial regulatorf since terms
proportional to the volume ofR4 cancel exactly. We calculate

TrL
hA logS− h0 + m2

L0
2 D − TrL logS− h0 + m2

L0
2 D

= o
n=0

`
1

n!
E

upuù1

d4p

s2pd4E
R4

d4x de
sn−1dsL2 − p2dlogSp2 + m2

L0
2 DtrNshA + 2ipmDAmdn1 + ¯

− TrL logS− h0 + m2

L0
2 D

=E
upuù1

d4p

s2pd4E
R4

d4x uesL2 − p2dlogSp2 + m2

L0
2 DtrN 1 + o

n=1

`
1

n!
E

upuù1

d4p

s2pd4E
R4

d«
sn−1dsL2 − p2d

3logSp2 + m2

L0
2 DtrNshA + 2ipmDAmdn1 + ¯ − TrL logS− h0 + m2

L0
2 D ,

where the dots indicate terms that are uniformly bounded inL. sIn particular, we have split the
p-integral in a part over the unit ball and an integral over the rest. The former contributes to the
finite part.d Now the first term on the right-hand side matches the last one in the limite→`. As
explained in the main text, we are interested in the termsnø5 of the sum above. Expanding the
pertinent terms and performing the angularp-integrals gives

TrL
hA logS− h0 + m2

L0
2 D − TrL logS− h0 + m2

L0
2 D

=
1

8p2E
1

`

dp p3dsL2 − p2dlogSp2 + m2

L0
2 DE

R4
d4x trN hA1 +

1

2

1

8p2E
1

`

dp p3ds1dsL2 − p2d

3logSp2 + m2

L0
2 DE

R4
d4x trNshA

2 − p2hAd1 +
1

6

1

8p2E
1

`

dp p3ds2dsL2 − p2d

3logSp2 + m2

L0
2 DE

R4
d4x trNshA

3 − p2s2hA
2 + DAmhADAmdd1

+
1

24

1

8p2E
1

`

dp p3ds3dsL2 − p2dlogSp2 + m2

L0
2 DE

R4
d4x trNshA

4 − 3p2hA
3

− p2hADAmhADA
m − p2DAmhA

2DAm − p2DAmhADA
mhA + 2

3p4shA
2

+ DA
mDA

nDAmDAn + DA
mhADAmdd1 + ¯ .

We have also taken the limite→`, in which de goes over into the Diracd-function.
Gathering terms with equal spatial integral we obtain
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TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D

=
1

8p2E
1

`

dp logSp2 + m2

L0
2 DSp3dsL2 − p2d −

1

2
p5ds1dsL2 − p2dDE

R4
d4x trN hA1

+
1

8p2E
1

`

dp logSp2 + m2

L0
2 DS1

2
p3ds1dsL2 − p2d −

1

3
p5ds2dsL2 − p2d

+
1

36
p7ds3dsL2 − p2dDE

R4
d4x trN hA

21 +
1

8p2E
1

`

dp logSp2 + m2

L0
2 D

3S−
1

6
p5ds2dsL2 − p2d +

1

36
p7ds3dsL2 − p2dDE

R4
d4x trN DA

mhADAm1

+
1

8p2E
1

`

dp logSp2 + m2

L0
2 D 1

36
p7ds3dsL2 − p2d

3E
R4

d4x trN DA
mDA

nDAmDAn1 +
1

8p2E
1

`

dp logSp2 + m2

L0
2 DS1

6
p3ds3dsL2 − p2d

−
1

8
p5ds4dsL2 − p2dDE

R4
d4x trN hA

31 + ¯ .

Next we make a change of variablesp2=u to get

TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D

=
1

8p2E
1

` du

2
logSu + m2

L0
2 DSudsL2 − ud −

1

2
u2ds1dsL2 − udDE

R4
d4x trN hA1

+
1

8p2E
1

` du

2
logSu + m2

L0
2 DS1

2
uds1dsL2 − ud −

1

3
u2ds2dsL2 − ud

+
1

36
u3ds3dsL2 − udDE

R4
d4x trN hA

21 +
1

8p2E
1

` du

2
logSu + m2

L0
2 D

3S−
1

6
u2ds2dsL2 − ud +

1

36
u3ds3dsL2 − udDE

R4
d4x trN DA

mhADAm1

+
1

8p2E
1

` du

2
logSu + m2

L0
2 D 1

36
u3ds3dsL2 − udE

R4
d4x trN DA

mDA
nDAmDAn1

+
1

8p2E
0

` du

2
logSu + m2

L0
2 DS1

6
uds2dsL2 − ud −

1

8
u2ds3dsL2 − udDE

R4
d4x trN hA

31 + ¯ .

Now by integrating by parts and noting that

dk

dukdsL2 − ud = s− 1dkdskdsL2 − ud

we have
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TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D

=
1

16p2E
1

`

du logSu + m2

L0
2 DdsL2 − udus1 − 1dE

R4
d4x trN hA1

+
1

16p2E
1

`

du logSu + m2

L0
2 DdsL2 − udS1

2
−

2

3
+

1

6
DE

R4
d4x trN hA

21

+
1

16p2E
1

`

du logSu + m2

L0
2 DdsL2 − udS−

1

3
+

1

6
DE

R4
d4x trN DA

mhADAm1

+
1

16p2E
1

`

du logSu + m2

L0
2 D1

6
dsL2 − udE

R4
d4x trN DA

mDA
nDAmDAn1 + ¯

= −
1

16p2

1

6
E

1

`

du logSu + m2

L0
2 DdsL2 − udE

R4
d4x Tr DA

mhADAm1 +
1

16p2

1

6

3E
1

`

du logSu + m2

L0
2 DdsL2 − udE

R4
d4x trN DA

mDA
nDAmDAn1 + ¯

= −
1

96p2 logSL2 + m2

L0
2 DE

R4
d4x trN DA

mhADAm1

+
1

96p2 logSL2 + m2

L0
2 DE

R4
d4x trN DA

mDA
nDAmDAn1 + ¯ .

Recalling that

trNsDA
mhADAm − DA

nDA
mDAnDAmd =

e2

2
trN FmnFmn

we finally get

TrL
hA logS− h0 + m2

L0
2 D − TrL

h0 logS− h0 + m2

L0
2 D = −

1

2

1

96p2 log
L

L0
E

R4
trN FmnFmn + ¯ ,

sA12d

where again the dots indicate terms that are bounded or polynomial inL.

Computation on the Moyal plane

General remarks: The symbol of the operatorc1+c2hA
u is given by

ssx,pd ª sfc1 + c2hA
ugsx,pd

= − p2 − 2epmAmsx − 1
2Qpd + ies]mAmdsx − 1

2Qpd − e2sAm!Amdsx − 1
2Qpd.

From this expression, it is clear that one can bounds from below by a positive constant and from
above by a multiple ofp2 for p2 greater than a certain constant. Furthermore, the derivatives ofs
fall off as long asx is confined to some compact set. Therefore, by Ref. 17, corollary 5.1, there is
a CDO that invertssc1+c2hA

ud up to some infinitely smoothing operator.
Derivation of the recursion relation: As in the first section of this appendix, we start with the

following identity for s:
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csxd = sc1 + c2hA
udsc1 + c2hA

ud−1csxd

= sc1 + c2hA
ud E d4p

s2pd4 E d4y eipsx−ydssx,pdcsyd

=E d4p

s2pd4 E d4ysc1 + c2s]m]m + ies]mAmd! + 2ieAm!]m − e2Am!Am!ddseipsx−ydsfsc1

+ c2hA
ud−1gsx,pddcsyd.

To continue we need the following formula:

eipsx−ydssx,pd = fss· + 1
2Qp,pd!eips·−ydxs·dgsxd,

which can be proved as follows. Using the integral expression for the star product,

sf!gdsxd ª s2pd−4E E eijsx−ydfSx −
1

2
QjDgsydd4y d4j,

we have for a Schwartz test functionx

FsS· +
1

2
Qp,pD!eips·−ydxs·dGsxd =

1

s2pd4 E E d4j d4zsSx −
1

2
uj +

1

2
Qp,pDeipsz−ydxszdeijsx−zd

=
1

s2pd4 E E d4j d4zsSx −
1

2
uj +

1

2
Qp,pDxszde−izsj−pdeisjx−pyd

=
1

s2pd2 E d4j sSx −
1

2
Qsj − pd,pDx̂sj − pdeisjx−pyd

= eipsx−yd 1

s2pd2 E d4j̃ sSx −
1

2
Qj̃,pDx̂sj̃dei j̃x.

Now in the limit x→1, the Fourier transformx̂ approximates the delta function. Therefore, in this
limit, we obtain the claimed identity. Using this formula in the expression forcsxd we get

csxd =E E d4p d4y

s2pd4 sc1 + c2s]m]m + ies]mAmd! + 2ieAm!]m − e2Am!Am!ddsssx,pdeipsx−yddcsyd

=E E d4p d4y

s2pd4 sc1 + c2s]m]m + ies]mAmd! + 2ieAm!]m − e2Am!Am!dd

3SsS· +
1

2
Qp,pD!eips·−ydDsxdcsyd

=E E d4p d4y

s2pd4 Fsc1 + c2sh0 + 2ipm]m − p2 + ies]mAmd! − 2epmAm!

+ 2ieAm!]m − e2Am!Am!ddsS· +
1

2
Qp,pDG!eips·−ydsxdcsyd

=E E d4p d4y

s2pd4 sc1 + c2p
2 + c2shAs·−s1/2dQpd

u + 2pmDAs·−s1/2dQpd,m
u ddss·,pdeipsx−ydcsyd,

which gives us

1 = sc1 − c2p
2 + c2shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u ddsfsc1 + c2hA

ud−1gsx,pd

or
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sfsc1 + c2hA
ud−1gsx,pd =

1

c1 − c2p
2 −

c2

c1 − c2p
2shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd
u dsfsc1 + c2hA

ud−1g

3sx,pd. sA13d

Derivation of the asymptotic expansion: We setRªsc1+c2hA
ud−1. As −hA

u is a positive opera-
tor, R is bounded forc1·c2,0. Indeed, from

E
R4

d4x c̄sxdsA!wdsxd =E
R4

d4xsc̄!A!wdsxd =E
R4

d4xsc̄!Adsxdwsxd,

which holds forc ,A,wPL2sR4d sRef. 10, lemma 2.10d and Ā!c=c̄!A we conclude

kc,A!wl = kĀ!c,wl

and hencesDAm
u d†=−DAm

u . Therefore,

kw,− hA
uwl = o

m=1

4

kDAm
u w,DAm

u wl ù 0.

In our case, we havec1=1−s+ssm2/L0
2d and c2=−s/L0

2 for 0øsø1 which meets the above
requirement ofc1·c2,0 for 0,sø1. Fors=0, we havec2=0, c1Þ0, andR is a multiple of the
identity.

Next, letRN be theCDO defined by the symbol

sfRNgsx,pd = o
n=0

N
s− c2dn

sc1 − c2p
2dn+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dn1.

We will show that the differenceR−RN is a trace-class operator.
For this, we first applyc1+c2hA

u from the left to obtain

sc1 + c2hA
udsR− RNd = 1 − sc1 + c2hA

udRN.

Here, 1 denotes the identity operator. We will compute the symbol of theCDO on the right-hand
side of this equation. On the level of symbols, multiplication ofRN by c1+c2hA

u from the left
amounts to the application ofc1+c2s−p2+hAs·−s1/2dQpd

u +2ipmDAs·−s1/2dQpd,m
u d to sfRNg, cf. the deri-

vation of the recursion relation above. Hence, we find

sf1 − sc1 + c2hA
udRNgsx,pd = 1 − sc1 + c2s− p2 + hAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u ddsfRNgsx,pd

= 1 − sc1 − c2p
2dsfRNg − c2shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dsfRNg

= − o
n=1

N
s− c2dn

sc1 − c2p
2dnshAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dn1

+ o
n=0

N
s− c2dn+1

sc1 − c2p
2dn+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dn+11

=
s− c2dN+1

sc1 − c2p
2dN+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dN+11.

Let rN be defined by the last expression,
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sfrNgsx,pd ª
s− c2dN+1

sc1 − c2p
2dN+1shAs·−s1/2dQpd

u + 2ipmDAs·−s1/2dQpd,m
u dN+11.

We will show thatrN is a trace-class operator for sufficiently largeN. Expanding the power of
operators in the symbolsfrNg yields terms of the form

const3
1

sc1 − c2p
2dN+1 3 f1! ¯ !fkSx −

1

2
QpD ,

k=1, . . . ,2sN+1d, the f i denoting the external fieldsAm or derivatives thereof.fWe have used the
fact thatsfs·−1

2Qpd!gs·−1
2Qpddsxd=sf !gdsx− 1

2Qpd.g
As Am is in P and of order −2−e, Moyal multiplication by it increases the decay property of

thex-dependent part by 2. On the other hand, differentiation increases it only by 1. Therefore, the
leading term of the above type will be the one whereN derivatives ofDAs·−s1/2dQpd,m

u hit a singleAm.
The resulting term can be bounded from above by

const3
1

s1 + p2dN+1 3 sp2dN/2 3
1

s1 + sx − 1
2Qpd2ds4+e+Nd/2

which is integrable inx–p space for sufficiently largeN.
Application from the left of the bounded operatorR to rN does not change the property of

being trace-class. On the other hand, we find

RrN = Rsc1 + c2hA
udsR− RNd = R− RN.

To summarize, if we are interested in the singular behavior of the cutoff regularized trace ofR, we
may use the symbolsfRNg for N sufficiently large in the integral formula of the trace. This
amounts to the iteration of the recursion relationsA13d N times.

Remarks: It is easy to see that a blind application of the machinery ofCDO leads astray. As
already mentioned in the main text, the symbol of the operatorf! is given by

sff!gsx,pd = fsx − 1
2Qpd.

Hence,f! is an infinitely smoothing operator iff is a Schwartz test function. In other words, the
noncommutative Klein–Gordon operatorhA

u differs from the free operatorh0 by an infinitely
smoothing operator,

sfhA
ugsx,pd = − p2 − 2epmAmsx − 1

2Qpd + ies]mAmdsx − 1
2Qpd − e2sAm!Amdsx − 1

2Qpd

= sfh0gsx,pd + smoothing.

One might therefore expect that the dependence on the fieldsA of the resolventR is in the part that
is not seen by an asymptotic expansion inp and hence does not contribute to the divergent
behavior of the trace. ForCDOs onnoncompactmanifoldsM this line of reasoning must be taken
with caution, since there might be additional divergent terms from thex-integration in the trace
integral. This is nicely illustrated by the above computation and the following example. Consider
the function

fsx,pd = e−x2e−p2
−s1/4dp2

,

wherex andp are one-dimensional variables. Clearly

u]p
a]x

bfsx,pdu ø CK,a,be−s1/4dp2
, x P K , R compact,p P R,

hencef defines an infinitely smoothing operator. On the other hand,
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E
R

dx fsx,pd = Îpes1/4dp2
,

and the operatorf does have a diverging trace. Note that in this example, it is the noncompactness
that yields the surprise. We conclude that even in the commutative case, the correspondence
between the logarithmically divergent part of the trace and the residue needs some additional
justification.

In the above calculation, however, thep–x mixing in the arguments of the fieldsAm—which
originates from the noncommutativity of the Moyal plane—makes it impossible to distinguish
between the asymptoticp-expansion and ansinfinitely smoothingd remainder. There, additional
arguments are imperative. Observe, however, that our lines of reasoning above can be taken over
to the commutative case, thereby solving the raised objection.
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We consider a reformulation of quantum electrodynamics in which covariant Green
functions are used to solve for the electromagnetic field in terms of the fermion
fields. The resulting modified Hamiltonian contains the photon propagator directly.
A simple Fock-state variational trial function is used to derive relativistic two-
fermion equations variationally from the expectation value of the Hamiltonian of
the field theory. The interaction kernel of the equation is shown to be, in essence,
the invariantM matrix in lowest order. Solutions of the two-body equations are
presented for muoniumlike systems for small coupling strengths. The results com-
pare well with the observed muonium spectrum, as well as that for hydrogen and
muonic hydrogen. Anomalous magnetic moment effects are discussed. ©2005
American Institute of Physics.fDOI: 10.1063/1.1845602g

I. INTRODUCTION

It has been pointed out in previous publications that various models in quantum field theory
sQFTd, including quantum electrodynamicssQEDd, can be reformulated, using mediating-field
Green functions, into a form that is particularly convenient for variational calculation.1,2 This
approach was applied to the study of relativistic two-body eigenstates in the scalar Yukawa
sWick–Cutkoskyd theory.3–5 We shall implement such an approach to two-fermion states in QED
in this paper.

The Lagrangian of two-fermion fields interacting electromagnetically iss"=c=1d

L = c̄sxdsigm]m − m1 − q1gmAmsxddcsxd + f̄sxdsigm]m − m2 − q2gmAmsxddfsxd − 1
4s]aAbsxd

− ]bAasxdds]aAbsxd − ]bAasxdd. s1d

The corresponding Euler–Lagrange equations of motion are the coupled Dirac–Maxwell equa-
tions,

sigm]m − m1dcsxd = q1gmAmsxdcsxd, s2d

sigm]m − m2dfsxd = q2gmAmsxdfsxd, s3d

and

]m]mAnsxd − ]n]mAmsxd = jnsxd, s4d

where
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jnsxd = q1c̄sxdgncsxd + q2f̄sxdgnfsxd. s5d

Equationss2d–s4d can be decoupled in part by using the well-known formal solution6,7 of the
Maxwell equations4d, namely

Amsxd = Am
0sxd +E d4x8 Dmnsx − x8d jnsx8d, s6d

whereDmnsx−x8d is a Green functionsor photon propagator in QFT terminologyd, defined by

]a]aDmnsx − x8d − ]m]aDansx − x8d = gmnd4sx − x8d, s7d

andAm
0sxd is a solution of the homogeneoussor “free field”d equations4d with jmsxd=0.

We recall that equations7d does not define the covariant Green functionDmnsx−x8d uniquely.
For one thing, one can always add a solution of the homogeneous equationfEq. s7d with gmn

→0g. This allows for a certain freedom in the choice ofDmn, as is discussed in standard textsse.g.,
Refs. 6 and 7d. In practice, the solution of Eq.s7d, like that of Eq.s4d, requires a choice of gauge.
However, we do not need to specify one at this stage.

Substitution of the formal solutions6d into Eqs. s2d and s3d yields the “partly reduced”
equations,

sigm]m − m1dcsxd = q1gmSAm
0sxd +E d4x8 Dmnsx − x8d jnsx8dDcsxd, s8d

sigm]m − m2dfsxd = q2gmSAm
0sxd +E d4x8 Dmnsx − x8d jnsx8dDfsxd. s9d

These are coupled nonlinear Dirac equations. To our knowledge no exactsanalytic or numericd
solution of Eqs.s8d and s9d for classical fields have been reported in the literature, though ap-
proximatesperturbatived solutions have been discussed by various authors, particularly Barut and
co-workersssee Refs. 8 and 9 and citations thereind. However, our interest here is in the quantized
field theory.

The partially reduced equationss8d ands9d are derivable from the stationary action principle,

dSfc,fg = dE d4x LR = 0 s10d

with the Lagrangian density

LR = c̄sxdsigm]m − m1 − q1gmAm
0sxddcsxd + f̄sxdsigm]m − m2 − q2gmAm

0sxddfsxd

−
1

2
E d4x8 jmsx8dDmnsx − x8d jnsxd s11d

provided that the Green function is symmetric in the sense that

Dmnsx − x8d = Dmnsx8 − xd andDmnsx − x8d = Dnmsx − x8d. s12d

The interaction part ofs11d has a somewhat modified structure from that of the usual formulation
of QED. Thus, there are two interaction terms. The last term ofs11d is a “current–current”
interaction which contains the photon propagator sandwiched between the fermionic currents. We
shall use this modified formulation together with a variational approach to obtain relativistic
few-fermion equations, and to study their bound state solutions.
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II. HAMILTONIAN

We shall consider the quantized theory in the equal-time formalism. To this end we write
down the Hamiltonian density corresponding to the Lagrangians11d, namely

HR = H0 + HI + HII , s13d

where

H0 = c†sxds− iaW · ¹ + m1bdcsxd + f†sxds− iaW · ¹ + m2bdfsxd, s14d

HI =
1

2
E d4x8 jmsx8dDmnsx − x8d jnsxd, s15d

HII = q1c̄sxdgmAm
0sxdcsxd + q2f̄sxdgmAm

0sxdfsxd, s16d

and where we have suppressed the kinetic-energy term of the free photon field. We construct a
quantized theory by imposing equal-time anticommutation rules for the fermion fields, namely

hcasx,td,cb
†sy,tdj = hfasx,td,fb

†sy,tdj = dabd3sx − yd, s17d

and all others vanish. In addition, there are the usual commutation rules for theAm
0 field, and

commutation of theAm
0 field operators with thec andf field operators.

To specify our notation, we quote the Fourier decomposition of the field operators, namely

csxd = o
s
E d3p

s2pd3/2Sm1

vp
D1/2

fbpsusp,sde−ip·x + dps
† vsp,sdeip·xg, s18d

with p=pm=svp,pd , vp=Îm1
2+p2 and

fsxd = o
s
E d3p

s2pd3/2Sm2

Vp
D1/2

fBpsUsp,sde−ip·x + Dps
† Vsp,sdeip·xg, s19d

with p=pm=sVp,pd , Vp=Îm2
2+p2. Note that the mass-m1 free-particle Dirac spinors

usp ,sd , vsp ,sd wheresgmp̂m−m1dusp ,sd=0, sgmp̂m+m1dvsp ,sd=0, are normalized such that

u†sp,sdusp,sd = v†sp,sdvsp,sd =
vp

m1
dss,

s20d
u†sp,sdvsp,sd = v†sp,sdusp,sd = 0.

Analogous properties apply to the mass-m2 spinorsU , V. The creation and destruction operators
b†, b of the sfreed particles of massm1, andd†, d for the corresponding antiparticles, satisfy the
usual anticommutation relations. The nonvanishing ones are

hbps,bqs
† j = hdps,dqs

† j = dssd3sp − qd. s21d

Again, the analogous properties apply to the mass-m2 operatorsB†, B, D†, D. As a concrete
example, we can think of the mass-m1 particles as electrons, and the mass-m2 particles as muons,
though any pairs of charged fermions could be considered.

032302-3 Variational two-fermion wave equations in QED J. Math. Phys. 46, 032302 ~2005!

                                                                                                                                    



III. VARIATIONAL PRINCIPLE, TWO-FERMION TRIAL STATES AND EQUATIONS

The Hamiltonian formalism of QFT is based on the covariant eigenvalue equation

P̂mucl = Qmucl, s22d

whereP̂m=sĤ ,P̂d is the energy momentum operator,Qm=sE,Pd is the four-vector of energy and
momentum, withE2−P2=M2, whereM is the invariant mass of the system. There are very few
problems in QFT for which exact solution of them=0 equations22d can be written down. In
practice, it is necessary to use approximation methods to solve it, such as the widely used cova-
riant perturbation theory or lattice methods. Here we concentrate on the variational approach,
which is based on the variational principle

dkcuĤ − Euclt=0 = 0, s23d

which we shall consider in the rest frame, i.e.,P=0. Variational solutions are only as good as the
trial states that are used. Thus, it is important that the trial states possess as many features of the
exact solution as possible. For a system likem+e−, the simplest Fock-space trial state that can be
written down in the rest frame is

uctriall = o
s1s2

E d3p Fs1s2
spdbps1

† D−ps2

† u0l, s24d

whereFs1s2
are four adjustable functions. We use this trial state to evaluate the matrix elements

needed to implement the variational principles23d, that is

kctrialu:Ĥ0 − E:uctriall = o
s1s2

E d3p Fs1s2

* spdFs1s2
spdsvp + Vp − Ed s25d

and

kctrialu:ĤI:uctriall = −
q1q2m1m2

s2pd3 o
s1s2s1s2

E d3p d3q
ÎvpvqVpVq

Fs1s2

* spdFs1s2
sqdūsp,s1dgmusq,s1d

3Dmnsp − qdV̄s− q,s2dgnVs− p,s2d, s26d

where the Fourier transform of the Green function was used,

Dmnsx − x8d =E d4k

s2pd4Dmnskde−iksx−x8d. s27d

The Green functionDmnsp−qd consists of two parts

Dmnsp − qd = 1
2sDmn

s1dsp − qd + Dmn
s2dsq − pdd, s28d

where Dmn
s1dsp−qd and Dmn

s2dsq−pd are the Green functions of particles with massesm1 and m2,
respectively.

For a particle–antiparticle system like positronium an additional virtual-annihilation interac-
tion term,

ūsp,s1dgmvs− p,s2dDmnsvpdv̄s− q,s2dgnusq,s1d s29d

appears ins26d.10 Note that we have normal-order the entire Hamiltonian, since this circumvents
the need for mass renormalization which would otherwise arise. Not that there is a difficulty with
handling mass renormalization in the present formalismsas shown in various earlier papers; see,
for example, Ref. 11 and citations thereind. It is simply that we are not interested in mass renor-
malization here, since it has no effect on the two-body bound state energies that we obtain in this
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paper. Furthermore, the approximate trial states24d, which we use in this work, is incapable of
sampling loop effects. Thus, the normal ordering of the entire Hamiltonian does not “sweep under
the carpet” loop renormalization effects, since none arise at the present level of approximation.

Note, also, thatkctrialu : ĤII : uctriall=0, that is the variational trial states24d is insensitive to that part
of the interaction Hamiltonian which is linear inAm

0sxd. This means that, with the simple anzatz
s24d only stable bound states and elastic scattering can be described, but not processes that involve
radiation.

The variational principles23d leads to the following equation;

o
s1s2

E d3psvp + Vp − EdFs1s2
spddFs1s2

* spd −
m1m2

s2pd3 o
s1s2s1s2

E d3p d3q
ÎvpvqVpVq

Fs1s2
sqd

3s− idMs1s2s1s2

ope sp,qddFs1s2

* spd = 0, s30d

where Ms1s2s1s2

ope sp ,qd is the usual invariant matrix element corresponding to the one-photon
exchange Feynman diagram:

Ms1s2s1s2

ope sp,qd = − ūsp,s1ds− iq1gmdusq,s1diDmnsp − qdV̄s− q,s2ds− iq2gndVs− p,s2d. s31d

As mentioned above, for a fermion–antifermion system like positronium we obtain10 the addi-
tional virtual-annihilation termsq1=q2;ed

Ms1s2s1s2

ann sp,qd = ūsp,s1ds− iegmdvs− p,s2diDmnsvpdv̄s− q,s2ds− iegndusq,s1d. s32d

Note that theM-matrix arises naturally in this formalism, that isM is not put in by hand, nor
does its derivation require additional Fock-space terms in the variational trial states24d, as is the
case in traditional formulationsse.g., Refs. 12 and 13d.

In the nonrelativistic limit, the functionsFs1s2
can be written as

Fs1s2
spd = FspdLs1s2

, s33d

where the nonzero elements ofLi j for total spin singletsS=0d states areL12=−L21=1/Î2, while
for the spin tripletsS=1d states the nonzero elements areL11=1 for ms= +1, L12=L21=1/Î2 for
ms=0, andL22=1 for ms=−1. We use the notation that the subscripts 1 and 2 ofL correspond to
ms=1/2 andms=−1/2 sor ↑ and↓d, respectively. Substitutings33d into s30d, multiplying the result
by Ls1s2

and summing overs1 ands2, gives the equation

svspd + Vspd − EdFspd =
1

s2pd3 E d3q Ksp,qdFsqd, s34d

where

Ksp,qd = − i o
s1s2s1s2

Ls1s2
Ms1s2s1s2

sp,qdLs1s2
. s35d

To lowest order insupu , uqud / sm1,m2d si.e., in the nonrelativistic limitd, the kernels35d reduces to
K=q1q2/ up−qu2, and sos34d reduces to thesmomentum-spaced Schrödinger equation

S p2

2mr
− «DFspd =

q1q2

s2pd3 E d3q
1

up − qu2
Fsqd, s36d

where «=E−M and mr =m1m2/M , M =m1+m2. This verifies that the relativistic two-fermion
equations30d has the required nonrelativistic limit.
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IV. PARTIAL-WAVE DECOMPOSITION AND CLASSIFICATION OF STATES

In the relativistic case we shall not complete the variational procedure ins30d at this stage to
get final equations for the four functionsFs1s2

, because they are not independent in general. We
require that the trial state must be an eigenstate of the relativistic total angular momentum opera-
tor, its projection, and parity. Namely

3Ĵ2

Ĵ3

P̂ 4uctriall = 3JsJ + 1d
mJ

P
4uctriall. s37d

For a system like positronium charge conjugation invariance is an additional requirement, that is

Ĉue+e−l = Cue+e−l, s38d

however this does not apply form1Þm2. Explicit forms for the operatorsĴ2, Ĵ3 are given in
Appendix A. The functionsFs1s2

spd can be written in the general form

Fs1s2
spd = o

,s1s2

o
ms1s2

fs1s2

,s1s2
ms1s2spdY

,s1s2

ms1s2sp̂d, s39d

whereY
,s1s2

ms1s2sp̂d are the usual spherical harmonics. Here and henceforth we will use the notation

p= upu, etc. sfour-vectors will be written aspmd. The orbital indices,s1s2
andms1s2

depend on the
spin indicess1 and s2 and are specified by Eq.s37d. The radial coefficients of expansions39d
fs1s2

,s1s2
ms1s2spd also depend on the spin variables. Substitution ofs39d into s24d and then intos37d

leads to two categories of relations among the adjustable functions.

A. Mixed-spin states

In this case,s1s2
;,=J and the general solution of the systems37d is

Fs1s2
spd = C1Fs1s2

ssgd spd + C2Fs1s2

strd spd, s40d

whereC1 andC2 are arbitrary constants.Fs1s2

ssgd spd andFs1s2

strd spd are functions, which correspond to
pure singlet states with the total spinS=0 and triplet states withS=1, respectively. The singlet
functions have the form

Fs1s2

ssgd spd = fs1s2

ssgd,spdY
,

ms1s2sp̂d, s41d

where m11=m22=0 and m12=m21=mJ. The relations betweenf12
ssgdJspd and f21

ssgdJspd involve the
Clebsch–GordansCGd coefficientsCssgdms1s2, that is

fs1s2

ssgdJspd = Cssgdms1s2fJspd, s42d

as is shown in Appendix A. We see that the spin and radial variables separate in the sense that the
factors fs1s2

ssgdJspd have a common radial functionfJspd, that is for the singlet functions we obtain

Fs1s2

ssgd spd = Cssgdms1s2fJspdYJ
ms1s2sp̂d. s43d

The CG coefficientsCssgdms1s2 have a simple form,Cssgdm11=Cssgdm22=0, Cssgdm12=−Cssgdm21=1 ssee
Appendix Ad. Thus the nonzero components ofFs1s2

ssgd spd areF↑↓
ssgdspd;F12

ssgdspd , F↓↑
ssgdspd;F21

ssgdspd.
The triplet functions have the form
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Fs1s2

strd spd = fs1s2

strdJspdYJ
ms1s2sp̂d, s44d

where

m11 = mJ − 1, m12 = m21 = mJ, m22 = mJ + 1. s45d

The expressions forfs1s2

strdJspd involve the CG coefficientsCJmJ

strdJms for S=1 listed in Appendix A, that
is

fs1s2

strdJspd = CJmJ

strdJmsf,spd, s46d

where the indexms is defined as

ms = + 1, whenms1s2
= m11,

ms = 0, whenms1s2
= m12 = m21, s47d

ms = − 1, whenms1s2
= m22.

Thereupon, the triplet function is

Fs1s2

strd spd = CJmJ

strdJmsfJspdYJ
ms1s2sp̂d. s48d

We need to note thats43d is true forJù0, while s48d is true forJù1. Thus the coefficientC2 in
s40d is zero whenJ=0. In other words, forJ=0, only the pure singlet state arises. For a system
like positronium the requirements38d decouples the singlet and triplet states for allJ. Indeed, the
charge conjugation eigenstates are

usgl = o
s1s2

Cssgdms1s2E d3p fJspdYJ
mJsp̂dbps1

† d−ps2

† u0l s49d

with C=s−1dJ for the pure singlet states, and

utrl = o
s1s2

CJmJ

strdJms1s2E d3p fJspdYJ
mJsp̂dbps1

† d−ps2

† u0l s50d

with C=s−1dJ+1 for the pure triplet states, as is discussed in Appendix A.
The statess49d ands50d diagonalize the Hamiltonians13d. Thus, for positroniumlike systems,

the states can be characterized by the spin quantum numberS, and the mixed statess40d separate
into singlet statessparastatesS=0d and triplet statessorthostatesS=1d. For distinct particlessm1

Þm2d C is not conserved and there is no separation into pure singlet and triplet states in general.
Thus for arbitrary mass ratios we need to diagonalize the expectation value of the Hamiltonian
s13d sAppendix Ed. This can be achieved by the following linear transformation

Fusgql
utrql G = ÛFusgl

utrl G , s51d

whereÛ is the unimodular matrix

Û = Fa − b

b a
G s52d

with components
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a =Î1 + j

2
, b =Î1 − j

2
, s53d

where

j = s4ssm1 − m2d/sm1 + m2dd2JsJ + 1d + 1d−1/2. s54d

The new states, which diagonalize the expectation value ofĤ, shall be called quasisingletusgql
and quasitripletutrql states

usgql = o
s1s2

CJmJ

sssdJms1s2E d3p fJspdYJ
mJsp̂dbps1

† D−ps2

† u0l,

s55d

utrql = o
s1s2

CJmJ

sstdJms1s2E d3p fJspdYJ
mJsp̂dbps1

† D−ps2

† u0l,

where the coefficientsCJmJ

sssdJms1s2 and CJmJ

sstdJms1s2 are listed in Table I, and satisfy the following

condition:

o
n1n2mJ

sCJmJ

sssdJmnd2 = o
n1n2mJ

sCJmJ

sstdJmnd2 = 2s2J + 1d. s56d

Note that these coefficients differ from CG coefficients, because of the coupled system we are
dealing with. Remember that these coupled quasistates arise only forJ.0. For J=0 purely S
=0 states occur. Quasisinglet and quasitriplet states are both characterized by the same quantum
numbersJ, mJ and P=s−1dJ+1. Because of the unimodularity of matrixs52d we can identify
quasisinglet and quasitriplet states by quasispinslike isospind t=1/2 with t3= 71/2, which is a
new quantum numbersor labeld. However, for our purpose it is more convenient to use the value
s= t3+1/2,which givess=ss=0 or s=st=1 for quasisinglet and quasitriplet states, respectively. In
this case the labelsss andst reflect better the meaning of the indicated quasistates. It is easy to see
from s55d and Table I that for positronium the quasistates become true singletsb=0d and triplet
sa=0d states with different charge conjugation quantum numbers. It is useful to note for subse-
quent calculations that the coefficientsC1 andC2 in s40d areC1=a, C2=−b for quasisinglet states
s=ss=0, andC1=b, C2=a for quasitriplet statess=st=1.

B. The triplet ø-mixing states

These states occur for,s1s2
;,=J71 ssee Appendix Ad. The adjustable functions have the

form

TABLE I. The quasistate coefficientsCJmJ

ssdJms1s2 for s=ss, st.

m11=mJ−1 m12=mJ m21=mJ m22=mJ+1

ss
bS sJ + mJdsJ − mJ + 1d

JsJ + 1d D1/2

− b
mJ

sJsJ + 1dd1/2 + a − b
mJ

sJsJ + 1dd1/2 − a − bS sJ − mJdsJ + mJ + 1d
JsJ + 1d D1/2

st
− aS sJ + mJdsJ − mJ + 1d

JsJ + 1d D1/2

a
mJ

sJsJ + 1dd1/2 + b a
mJ

sJsJ + 1dd1/2 − b aS sJ − mJdsJ + mJ + 1d
JsJ + 1d D1/2
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Fs1s2
spd = CJmJ

strdsJ−1dmsfJ−1spdYJ−1
ms1s2sp̂d + CJmJ

strdsJ+1dmsfJ+1spdYJ+1
ms1s2sp̂d, s57d

where ms1s2
are defined ins47d, while the coefficientsCJmJ

strdsJ71dms, which are precisely the CG
coefficients, can be found in Appendix A. Expressions57d involves two radial functionsfJ−1spd
and fJ+1spd which correspond to,=J−1 and,=J+1. This reflects the fact that the orbital angular
momentum is not conserved and, is not a good quantum number. The system in these states is
characterized byJ, mJ, and P=s−1dJ. In spectroscopic notation, these states are a mixture of
3sJ−1dJ, and 3sJ+1dJ states. The exception is the state withJ=0, for which the orbital angular
momentum is a good quantum number. Indeed, forJ=0 the functionfJ−1spd does not existssee
Appendix Ad, thus the functionFs1s2

spd is defined only by the second term ins57d. Note that
,-mixing states appear for principal quantum numbernù3 only.

V. THE RELATIVISTIC RADIAL EQUATIONS FOR TWO-FERMION SYSTEMS

It is not possible to write a universal two-fermion wave equation, because the adjustable
functions have different form for different states. Thus it was important to classify all states of the
system before deriving final radial equations. Now we return to the variational equations30d and
replace the functionsFs1s2

spd by the expressions40d for the quasistates and bys57d for the triplet
states. After completing the variational procedure we obtain the following results.

For the states with,=J, P=s−1dJ+1 the radial equations are

svp + Vp − EdfJspd =
m1m2

s2pd3 E q2 dq
ÎvpvqVpVq

Ksp,qdfJsqd, s58d

where the kernelKsp,qd is defined by invariantM-matrices as follows froms30d. For the pure
singlet states withJ=0 the kernelKsp,qd is

Ksp,qd = −
i

4p
E dp̂ dq̂sM1212sp,qd − M1221sp,qd − M2112sp,qd + M2121sp,qdd. s59d

For quasisinglet and quasitriplet statessJù1d we have

Ksp,qd = − i o
s1s2s1s2mJ

E dp̂ dq̂ CJmJ

ssds1s2s1s2Ms1s2s1s2
sp,qdYJ

mJ*sp̂dYJ
mJsq̂d, s60d

where the coefficientsCJmJ

ssds1s2s1s2 are expressed through the coefficientsCJmJ

ssdJms1s2,

CJmJ

ssds1s2s1s2 ; CJmJ

ssdJms1s2CJmJ

ssdJms1s2Y o
n1n2mJ

sCJmJ

ssdJmn1n2d2, s61d

wheres=ss, st. In s60d we have summed overmJ, because of the 2J+1 energy degeneracy.
For the triplet states with,=J71, we have two independent radial functionsfJ−1spd and

fJ+1spd. Thus the variational equations30d leads to a system of coupled equations forfJ−1spd and
fJ+1spd. It is convenient to write them in matrix form,

svp + Vp − EdFspd =
m1m2

s2pd3 E q2 dq
ÎvpvqVpVq

Ksp,qdFsqd, s62d

where

Fspd = F fJ−1spd
fJ+1spd G s63d

and
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Ksp,qd = FK11sp,qd K12sp,qd

K21sp,qd K22sp,qd G . s64d

The kernelsKi j are similar in form tos60d, that is

Ki jsp,qd = − i o
s1s2s1s2mJ

CJmJij
s1s2s1s2E dp̂ dq̂ Ms1s2s1s2

sp,qdY
,i

ms1s2*sp̂dY
, j

ms1s2sq̂d. s65d

However the coefficientsCJmJij
s1s2s1s2 are defined by the expression

CJmJij
s1s2s1s2 = CJmJ

strd,ims1s2CJmJ

strd, jms1s2Y o
s1s2mJ

sCJmJ

strd,imsd2, s66d

where,1=J−1, ,2=J+1. The systems62d reduces to a single equation forfJ+1spd when J=0,
since fJ−1spd=0 in that case.

To our knowledge, it is not possible to obtain analytic solutions of the relativistic radial
momentum-space equationss58d and s62d. Thus one must resort to numerical or other approxi-
mation methods. Numerical solutions of such equations are discussed, for example, in Ref. 11,
while variational approximations have been employed in Ref. 5. However, in this paper we shall
resort to perturbative approximations, in order to verify that our equations agree with known
results for positronium toOsa4d. We expect that this must be so, given that the interaction kernels
si.e., momentum-space potentialsd of our equations involve the “tree-level” Feynman diagrams
only.

BeyondOsa4d our equations are evidently incomplete. One could, of course, augment them by
the addition of invariant matrix elements corresponding to one-loop Feynman diagrams to the
existingM-matrices in the kernels of our equations. Indeed such an approach has been used in a
similar though not variational treatment of positronium and muonium by Zhang and Koniuk.14,15

These authors show that the inclusion of single-loop diagrams yields positronium energy eigen-
states which are accurate toOsa5,a5 ln ad. However suchad-hocaugmentation of the kernels
would be contrary to the spirit of the present variational treatment, and we shall not pursue it in
this work.

VI. THE KERNELS IN SEMIRELATIVISTIC EXPANSION AND THE NONRELATIVISTIC
LIMIT

For perturbative solutions of our radial equations, it is necessary to work out expansions of the
relevant expressions to first order beyond the nonrelativistic limit. This shall be summarized in the
present section. We shall do the calculation in the Coulomb gauge, in which the photon propagator
has the form16

D00skd =
1

k2, D0lskd = 0, Dklskmd =
1

kmkm
Sdkl −

kkkl

k2 D , s67d

wherekm=svp−vq,p−qd.
To expand the amplitudesM of s31d ands32d up to the lowest nontrivial order ofsp/md2, we

take the free-particle spinors to be

usp,id = 3S1 +
p2

8m2D
ssW ·pd

2m
4wi, vsp,id = 3

ssW ·pd
2m

S1 +
p2

8m2D 4xi , s68d

as discussed in Appendix C. Analogously, the photon propagator takes on the form
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D00sp − qd =
1

sp − qd2, Dklsp − qd . −
1

sp − qd2Sdkl −
sp − qdksp − qdl

sp − qd2 D . s69d

In this case the total photon propagators28d coincides withs69d. Corresponding calculations give
for the orbital part of theM-matrix,

Ms1s2s1s2

opesorbd sq,pd =
iq1q2

sp − qd2ds1s1
ds2s2

+
iq1q2

m1m2
S1

2
Sm1

m2
+

m2

m1
DS1

4
+

q ·p

sp − qd2D +
sp 3 qd2

sp − qd4 Dds1s1
ds2s2

.

s70d

The linear spin terms, which are responsible for spin–orbit interaction, become

Ms1s2s1s2

opess–od sq,pd = −
q1q2

4m1m2
ws1

† xs2

† SSm2

m1
+ 2DsW 1 − Sm1

m2
+ 2DsW 2D ·

p 3 q

sp − qd2ws1
xs2

. s71d

HeresW 1 andsW 2 are spin matrices of the first and second particles, respectively, which are defined
by the following operations:sW 1ws1

xs2
=ssW 1ws1

dxs2
, sW 2ws1

xs2
=ws1

ssW 2xs2
d. The quadratic spin

terms or spin–spin interaction terms are

Ms1s2s1s2

opess–sd sq,pd =
iq1q2

4m1m2
ws1

† xs2

† H−
ssW 2 · sp − qddssW 1 · sp − qdd

sp − qd2 + ssW 1 · sW 2dJws1
xs2

. s72d

The annihilation contribution, which arises for a particle–antiparticle system,10 is given by the
term

Ms1s2s1s2

ann sp,qd = −
ie2

4m2ws1

† xs2

† hsW 1 · sW 2jws1
xs2

, s73d

where we have excluded a divergent term, which appears in the Coulomb gauge. In this case
m1=m2;m andq1=q2;e in formulass70d–s72d.

The kernels are calculated froms59d, s60d, and s65d with s70d–s72d. They consist of three
parts, namely

Ksp,qd = Ksorbdsp,qd + Kss–odsp,qd + Kss–sdsp,qd. s74d

A. The singlet state „ø=J =0, P=−1…

Details of the calculations can be found in Appendix D. We use the notation,z=sp2

+q2d /2pq, andQlszd are the Legendre functions of the second kind.17 The contributions of the
various terms to the kernel are as follows:

Orbital term,

Kssgldsorbdsp,qd =
2pq1q2

pq
Q0szd +

pq1q2

2m1m2
SSm1

m2
+

m2

m1
+ 1DSp

q
+

q

p
DQ0szd + 2Q1szd

− Sm1

m2
+

m2

m1
+ 2DD . s75d

Spin–orbit interaction,

Kssgldss–odsp,qd = 0. s76d

Spin–spin interaction

Kssgldss–sdsp,qd =
2pq1q2

m1m2
. s77d
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B. The quasistates †ø=J„JÐ1… , P= „−1…J+1 , s =0,1‡

The contributions of the various terms to the kernel are as follows.
Orbital term,

Ksorbdsp,qd =
pq1q2

pq
QJszd +

pq1q2

2m1m2
SSm1

m2
+

m2

m1
− sJ − 1dDSp

q
+

q

p
DQJszd + 2sJ + 1dQJ+1szdD ,

s78d

Spin–orbit interaction,

Kss–odsp,qd =
pq1q2

2m1m2
S− C2

2Sm1

m2
+

m2

m1
+ 4D + 2C1C2

ÎJsJ + 1dUm2

m2
−

m1

m1
UD

3
1

2J + 1
sQJ+1szd − QJ−1szdd. s79d

Spin–spin interaction,

Kss–sdsp,qd = C2
2 pq1q2

2m1m2
Sp

q
+

q

p
DQJszd − C2

2pq1q2

m1m2

1

2J + 1
hJQJ+1szd + sJ + 1dQJ−1szdj, s80d

whereC1 andC2 are defined in Sec. IV.

C. The triplet states †ø=J −1„JÐ1… , ø=J +1„JÐ0… , P= „−1…J
‡

From s65d, it follows that the kernelsK12 andK21 are responsible for mixing of states with
,=J−1 and,=J+1. These kernels have the form

K12sp,qd = K21sp,qd =
pq1q2

5m1m2

ÎJsJ + 1d
s2J + 1d

Sp

q
QJ+1szd +

q

p
QJ−1szd − 2QJszdD , s81d

where only spin–spin interactions contribute. For kernelsK11 andK11 we have the following from
s65d:

Orbital terms,

K11
sodsp,qd =

2pq1q2

pq
QJ−1szd +

pq1q2

2m1m2
Sm1

m2
+

m2

m1
+ 2 −JDSp

q
+

q

p
DQJ−1szd +

pq1q2

m1m2
JQJszd

−
pq1q2

2m1m2
Sm1

m2
+

m2

m1
+ 2DdJ,1, s82d

K22
sodsp,qd =

2pq1q2

pq
QJ+1sz1d +

pq1q2

2m1m2
Sm1

m2
+

m2

m1
− JDSp

q
+

q

p
DQJ+1sz1d +

pq1q2

m1m2
sJ + 2dQJ+2szd.

s83d

Spin–orbit interaction,

K11
ss–odsp,qd =

pq1q2

2m1m2

J − 1

2J − 1
Sm2

m1
+

m1

m2
+ 4DsQJszd − QJ−2szdd, s84d

K22
ss–odsp,qd = −

pq1q2

2m1m2
Sm2

m1
+

m1

m2
+ 4D J + 2

2J + 3
sQJ+2szd − QJszdd. s85d

Spin–spin interaction,
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K11
ss–sdsp,qd =

pq1q2

2m1m2

1

2J + 1
SSp

q
+

q

p
DQJ−1szd − 2QJszdD , s86d

K22
ss–sdsp,qd =

pq1q2

2m1m2

1

2J + 3
SSp

q
+

q

p
DQJ+1szd − 2QJ+2szdD . s87d

Annihilation termsparticle–antiparticle system only, withm1=m2=m, q1=q2=ed,

Kannsp,qd = −
2pe2

m2 dJ,1. s88d

We note that in the nonrelativistic limit the only terms that survive are the first terms of the orbital
part of the kernels. They have the common form 2pq1q2Q,szd /pq, where

Q,szd =
pq

2p
E dq̂ dp̂

sp − qd2Y,
m,

*

sp̂dY,
m,sq̂d. s89d

Thus, Eqs.s58d and s62d reduce to the form

svp + Vp − Edf,spd =
m1m2q1q2

pÎvpVpp
E

0

`

dq
q

ÎvqVq

Q,szdf,sqd. s90d

If we expand the relativistic free-particle energy,

vp . m1S1 +
1

2
S p

m1
D2D, Vp . m2S1 +

1

2
S p

m2
D2D , s91d

we obtain the two-particle Schrödinger radial equation in momentum space18

S p2

2mr
− «D f,spd =

a

pp
E

0

`

dq qQ,szdf,sqd, s92d

wherea=q1q2/4p. The solutions of these equations are well known. They are given in Appendix
D fformula sD12dg.

VII. ENERGY EIGENVALUES AND RELATIVISTIC CORRECTIONS TO O„a4
… FOR

ARBITRARY MASS RATIO

The energy eigenvaluesEn,J for the states, when,=J, can be calculated from the equation

EE
0

`

dp p2fJspdfJspd =E
0

`

dp p2svp + VpdfJspdfJspd

−
m1m2

s2pd3E
0

` p2 dp
ÎvpVp

E
0

` q2 dq
ÎvqVq

Ksp,qdfJspdfJsqd. s93d

For the,=J71 triplet states we have the equation

EE
0

`

dp p2f,ispdf,ispd =E
0

`

dp p2svp + Vpdf,ispdf,ispd

−
m1m2

s2pd3E
0

` p2 dp
ÎvpVp

E
0

` q2 dq
ÎvqVq

Ki jsp,qdf,ispdf, jsqd. s94d

To obtain results forE to Osa4d we use the forms of the kernels expanded toOsp2/m2d fexpres-
sionss75d–s88dg and replacef,spd by their nonrelativisticsSchrödingerd form sD12d ssee Appendix
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Dd. The most important integrals, which we used for calculatings93d and s94d, are given in
Appendix D. It has been shown in Ref. 10 that the contribution of the kernelsK12 andK21 in s94d,
which are responsible for coupling of the equationss62d, is zero. Thus in the framework of the
present approximation, the energy corrections for the triplet states with,=J−1 and,=J+1 can be
calculated independently. We present the results in the formD«=E+sa2mr /2n2d−M , M =m1

+m2, mr =m1m2/ sm1+m2d.

A. Singlet states „ø=J =0, P=−1… „which include the ground state …

The kinetic energy corrections,

D«n
ssgdskd = −

a4mr

n3 S1 −
3

8n
DS1 −

3mr

M
D . s95d

Orbital energy corrections,

D«n
ssgdsod = −

a4mr

n3 S−
1

2
+

3mr

M
−

mr

M

1

n
D . s96d

Spin–orbit energy corrections,

D«n
ssgdss-od = 0. s97d

Spin–spin energy corrections,

D«n
ssgdss–sd = −

a4mr

n3

2mr

M
. s98d

The total energy corrections,

D«n
ssgd = −

a4mr

n3 S1

2
+

2mr

M
−

1

8n
S3 −

mr

M
DD . s99d

B. Quasisinglet, quasitriplet states †ø=J„JÐ1… , P= „−1…J+1
‡

The kinetic energy and orbital energy corrections are common for quasisinglet and quasitriplet
states,

D«n,J
skd = −

a4mr

2n3 S1 −
3mr

M
DS 2

2J + 1
−

3

4n
D . s100d

Orbital energy corrections,

D«n,J
sorbd = −

a4mr

n3

mr

M
S 3

2J + 1
−

1

n
D . s101d

Spin–orbit energy corrections,

D«n,J
ss–od =

a4mr

2n3

1

M2

− C2
2ssm1 + m2d2 + 2m1m2d + 2C1C2

ÎJsJ + 1dum2
2 − m1

2u
s2J + 1dsJ + 1dJ

. s102d

Spin–spin energy corrections,

D«n,J
ss–sd =

a4mr

n3

mr

M

C2
2

s2J + 1dsJ + 1dJ
. s103d

The coefficientsC1 andC2 are defined here in the same way as in formulass79d and s80d.
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Thus, the total energy corrections are

D«n,J,s = −
a4mr

n3 S 1

2J + 1
S1 +

1 7 j−1

4JsJ + 1dD −
1

8n
S3 −

mr

M
DD , s104d

where upper and lower signs correspond to quasisinglets=ss=0 and quasitriplets=st=1 states,
respectively.

C. Triplet states †ø=J −1„JÐ1… , P= „−1…J
‡

Kinetic energy corrections,

D«n,J
strdskd = −

a4mr

n3 S 1

2J − 1
−

3

8n
DS1 −

3mr

M
D . s105d

Orbital energy corrections,

D«n,J
strdsod = −

a4mr

n3 S−
dJ,1

2
+ S 3

2J − 1
−

dJ,1

2
−

1

n
Dmr

M
D . s106d

Spin–orbit energy corrections,

D«n,J
strdss–od =

a4mr

n3

1 − dJ,1

2Js2J − 1d
S1 +

2mr

M
D . s107d

Spin–spin energy corrections,

D«n,J
strdss–sd = −

a4mr

n3 S 1 − dJ,1

Js2J + 1ds2J − 1d
−

2

3
dJ,1Dmr

M
. s108d

The total energy corrections,

D«n,J
tr = −

a4mr

n3 S 1

2J − 1
S1 −

1

2J
−

2mr

M

1

2J + 1
D −

1

8n
S3 −

mr

M
DD . s109d

The annihilation term for positroniumlike systems is

D«n
sanhd =

a4m

4n3 dJ,1. s110d

D. Triplet states †ø=J +1„JÐ0… , P= „−1…J
‡

The kinetic energy corrections,

D«n,J
strdskd = −

a4mr

n3 S 1

2J + 3
−

3

8n
DS1 −

3mr

M
D . s111d

Orbital energy corrections,

D«n,J
strdsod = −

a4mr

n3 S 3

2J + 3
−

1

n
Dmr

M
. s112d

Spin–orbit energy corrections,

D«n,J
strdss–od = −

a4mr

n3

1

2sJ + 1ds2J + 3d
S1 +

2mr

M
D . s113d

Spin–spin energy corrections,
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D«n,J
strdss–sd = −

a4mr

n3

1

sJ + 1ds2J + 3ds2J + 1d
mr

M
. s114d

The total energy corrections,

D«n,J
tr = −

a4mr

n3 S 1

2J + 3
S1 +

1

2sJ + 1d
+

2mr

M

1

2J + 1
D −

1

8n
S3 −

mr

M
DD . s115d

For two equal masses our calculations agree with positronium results.19 In the limit when one
of the masses becomes infinite, saym2→`, the above results reduce to those obtained for a
one-electron Dirac equation in a static Coulomb potentialfto Osa4dg, namely

D«n,j = −
a4m1

n3 S 1

2j + 1
−

3

8n
D . s116d

Indeed, whenm2→` not only the total angular momentum, but alsoJ1
2=sL 1+S1d2 and S2

2 are
independently conserved. Thus, in this case, we can replace the quantum numberJ by j −1/2 in
s100d–s104d swhens=0d and s111d–s115d, and by j +1/2 in expressionss100d–s104d swhens=1d
and s105d–s109d. In other words,

J → j − 1/2 for usgql and utr,=J+1l,

s117d
J → j + 1/2 for utrql and utr,=J−1l.

The quantum numberj = u,±1/2u belongs here to the particle with massm1.
The resultss99d, s104d, s109d, and s115d agree with the calculations of Connell, based on a

quasipotential reduction of the Bethe–Salpeter equation,20 with those of Hersbach, who used a
relativistic Lippman–Schwinger formulation,21 and with those of Duviryak and Darewych based
on a two-fermion Breit equation.22 Grandy8 obtained the same results from a perturbative solution
of the coupled, nonlinear Dirac equationss8d and s9d.

VIII. FINE AND HYPERFINE STRUCTURE: RECOIL EFFECTS

In this section we shall analyze the formulas obtained in the preceding section and we shall
apply them to the energy spectra of some exotic atoms. To compare our calculations with experi-
mental data we shall use the standard spectroscopical notation. First of all, it follows from
s95d–s97d and s105d–s107d that the difference between the energy levels of 2S and 1S statesssee
Fig. 1d is given by formula

Es2Sd − Es1Sd =
3a2mr

8
+

a4mr

128
S11 + 15

mr

M
D . s118d

Note that the formulas118d ignores hyperfine splittingsHFSd, that is we exclude the spin–spin
interaction. The fine structurefFSg of the 2P-state follows similarly froms105d–s107d ands111d–
s113d, provided that we exclude the spin–spin interactions108d and s114d,

DEfss2Pd ; Es2P3/2d − Es2P1/2d =
a4mr

32
S1 +

2mr

M
D . s119d

The HFS of 1S1/2 and 2S1/2 is obtained froms99d and s109d,

DEhfss1S1/2d = a4mr
8mr

3M
, s120d
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DEhfss2S1/2d = a4mr
mr

3M
. s121d

Actually this hyperfine splitting, expressionss120d and s121d, arises from the difference of spin–
spin termss98d and s108d. The formulass120d and s121d give the usual Fermi splitting.18

The HFS of states with,.0 is more complicated. For each,.0 we have two sorts of states
with different J and s: states withJ=,+1 andJ=, , s=ss and states withJ=,−1 andJ=, , s
=st. From s104d, s109d, ands115d we obtain the general HFS formulas for all quantum numbers
n, , and for any mass ratio,

DEhfssn,,,ssd ; D«n,J=,+1
tr − D«n,J=,,ss

=
a4mr

n3

1

2, + 1
S2, + 1 −j−1

4,s, + 1d
+

2mr

M

1

2, + 3
D , s122d

FIG. 1. Energy level diagram of a two-fermion system forn=1, 2 shells.
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DEhfssn,,,std ; D«n,J=,,st
− D«n,J=,−1

tr =
a4mr

n3

1

2, + 1
S2, + 1 −j−1

4,s, + 1d
+

2mr

M

1

2, − 1
D . s123d

The quantityj is defined bys54d, but with the quantum numberJ replaced by,.
For the particular case whenm2@m1 we obtain froms122d and s123d,

DEhfssn,l,ssd =
a4m1

n3

8s, + 1d
s2, + 1d2s2, + 3d

m1

m2
, s124d

DEhfssn,,,std =
a4m1

n3

8,

s2, + 1d2s2, − 1d
m1

m2
, s125d

to leading order inm1/m2.
The approximate resultss124d ands125d are the HFS formulas usually quoted in the literature

se.g., Ref. 18, p. 110, and Ref. 24, p. 836d. As mentioned in Sec. VII, in the one-body limitsm2

→`d, states with labelsss andst can be characterized by the quantum numbersj =,+1/2 andj
=,−1/2, respectively. In this one-body picture, the labelsss andst should be replaced byj in the
formulas s124d and s125d. Note here that, because of the mixed nature of the statesn,,−1/2s,
=J,st=1d andn,,+1/2s,=J,ss=0d, the spin–orbit interaction contributes to the spliting as well. The
splitting is largest whenm1=m2 spositroniumd and disappears for all states in the one-body limit.

It is easy to get the HFS of 2P1/2, 2P3/2 states froms122d and s123d:

DEhfss2P1/2d = a4mrS 1

64
−

j−1

192
+

1

12

mr

M
D , s126d

DEhfss2P3/2d = a4mrS 1

64
−

j−1

192
+

1

60

mr

M
D , s127d

wherej−1=Î8fsm1−m2d /Mg2+1. Note that, if we use the pure triplet state instead of the mixed
states, we get the following expressions for hyperfine splitting:Ehfss2P1/2d=a4mrf 1

96
+smr /12Mdg , Ehfss2P3/2d=a4mrf 1

96+smr /60Mdg. These give the correct results only form1=m2.
The energy level diagram forn=1, 2 shells is presented in Fig. 1. Our calculations for FS

s119d and HFSs120d ands121d reproduce the well-known resultssee, for example, the recent and
comprehensive reviews of Refs. 23 and 27d. Thus we concentrate here on the discussion of HFS
of exited states described bys122d ands123d. As already mentioned, formulass122d ands123d are
a consequence of the general formulass104d, s109d, ands115d, which have been obtained also in
Refs. 8 and 20–22. However, to the best of our knowledge, the derivation and analysis ofs122d
ands123d have never been presented. The results of our calculations of HFS and comparison with
experimental data for muonium and hydrogen are summarized in Tables II and III. Because of the
absence of experimental data for muonic hydrogen we compare our results with the calculations of
Pachucki28 in Table IV.

Although hydrogen and muonic hydrogen are not strictly leptonic atoms, we can take into
account the proton anomalous magnetic moment in the hyperfine splitting in the same phenom-
enological manner as was done by Barker and Glover.29 Thus, to get the corrected result for HFS
in hydrogen and muonic hydrogen, we multiply the expression forDEhfs by the factors1+kpd,

TABLE II. Hyperfine structure in muonium forn=2.

m+e− ExperimentsRef. 24d Theory s126d and s127d Theory witham correction

DEhfss2P1/2d 186 MHz 185.80 MHz 186.01 MHz

DEhfss2P3/2d 74 MHz 74.43 MHz 74.52 MHz
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wherekp=1.792 847 is the anomalous magnetic moment of the proton. The last columns in Tables
III and IV give the HFS corrected by the factors1+kpd. The anomalous magnetic moment of the
muon is very small, nevertheless for the sake of completeness, we provide the same corrections for
muonium, where we use the factors1+amdsam=0.001 166d to get the result of the last column in
Table II from those of the third column. We note that doing so improves the agreement between
the calculated and the experimental HFS results in most cases, and dramatically so for hydrogen
and muonic hydrogen.

From Tables II and III we see that the calculatedOsa4d results agree with observation remark-
ably well. Note that if we use the approximatem1/m2 expansion formulass124d and s125d, for
example, for HFS of 2P1/2 and 2P3/2 states we would get, for muoniumswith am correctionsd, the
result DEhfss2P1/2d=188.50 MHz,DEhfss2P3/2d=75.40 MHz. These approximate results do not
agree as well with observation as the values calculated without them1/m2 expansion, and hence
they differ from what we give in the last column of Table II. Note that this difference can be of the
same order as the contribution of higher order ina for HFS. Usings124d and s125d for muonic
hydrogen givesswith kp correctionsd DEhfss2P1/2d=10.47 meV,DEhfss2P3/2d=4.19 meV. The
m1/m2 expansion approximation is not significant for hydrogen for which the mass ratio is very
small, but it is appreciable for muonium and particularly for muonic hydrogen. Since our results
are true for arbitrary mass ratios we can speak here about recoileffectsrather than about recoil
correctionsto a4.

IX. CONCLUDING REMARKS

We have used the variational method within the Hamiltonian formalism of QED to derive
relativistic momentum-space wave equations for two-fermion systems like muonium. The trial

states are chosen to be eigenstates of the total angular momentum operatorsĴ2, Ĵ3 and parity, as
well as charge conjugation for particle–antiparticle systems. A general relativistic reduction of the
wave equations to radial form is given for arbitrary masses of the two fermions. For givenJ there
is a single radial equation for total spin zero singlet states, but for spin triplet states there are, in
general coupled equations. We have shown how classification of the states follows naturally from
the system of eigenvalue equationss37d, given our trial state.

It is not possible, as far as we know, to obtain analytic solutions of our relativistic radial
equations nor the resulting eigenvalues of the two fermion system that they describe. However, it
is possible to obtainOsa4d corrections to the energy eigenvalues analytically for all states using
perturbation theory.

We have compared our calculated results with experiment for hyperfine splitting of low-lying
levels in muonium and hydrogen. We find good agreement for muonium, as well as for hydrogen
provided that we take into account the anomalous magnetic moment of the proton.

TABLE III. Hyperfine structure in hydrogen forn=2.

H ExperimentsRefs. 25,26d Theory s126d and s127d Theory withkp correction

DEhfss2P1/2d 59.1721 MHzsRef. 25d 21.1698 MHz 59.1241 MHz

DEhfss2P3/2d 23.6541 MHzsRef. 25d 8.4696 MHz 23.6543 MHz

TABLE IV. Hyperfine structure in muonic hydrogen forn=2.

m−H Theory sRef. 27d Theory s126d and s127d Theory withkp correction

DEhfss2P1/2d 7.96 meV 2.79 meV 7.79 meV

DEhfss2P3/2d 3.39 meV 1.16 meV 3.23 meV
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The method presented here can be generalized to include effects of higher order in alpha by
using dressed propagators in place of the bare propagators. This shall be the subject of a forth-
coming work.
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APPENDIX A: TOTAL ANGULAR MOMENTUM OPERATOR IN RELATIVISTIC FORM

The total angular momentum operator is defined by the expression

Ĵ =E d3x c†sxdsL̂ + Ŝdcsxd +E d3x f†sxdsL̂ + Ŝdfsxd, sA1d

whereL̂ is the orbital angular momentum andŜ is the spin operator,L̂ = x̂3 p̂ andŜ= 1
2sŴ . We use

the standard representation for the Pauli matrices,

sŴ = FsW 0

0 sW
G , sA2d

s1 = F0 1

1 0
G, s2 = F0 − i

i 0
G, s3 = F1 0

0 − 1
G . sA3d

Using the field operatorscsxd and fsxd in the form s18d and s19d, after tedious calculations we

obtain the expression for operatorĴ. It consists of three parts, two total angular momentum
operators of each particle–antiparticle system10 and the following part, relevant to our consider-
ations:

Ĵ1 =E d3qSL̂q1sbq↑
† bq↑ + bq↓

† bq↓ + Dq↑
† Dq↑ + Dq↓

† Dq↓d

+ 1
2sbq↑

† bq↓ + bq↓
† bq↑ + Dq↓

† Dq↑ + Dq↑
† Dq↓d

D ,

Ĵ2 =E d3q1 L̂q2sbq↑
† bq↑ + bq↓

† bq↓ + Dq↑
† Dq↑ + Dq↓

† Dq↓d

+
i

2
s− bq↑

† bq↓ + bq↓
† bq↑ − Dq↑

† Dq↓ + Dq↓
† Dq↑d 2 , sA4d

Ĵ3 =E d3q1 L̂q3sbq↑
† bq↑ + bq↓

† bq↓ + Dq↑
† Dq↑ + Dq↓

† Dq↓d

+
1

2
sbq↑

† bq↑ − bq↓
† bq↓ + Dq↑

† Dq↑ − Dq↓
† Dq↓d 2 .

Here L̂ q is the orbital angular momentum operator in momentum representation,

sL̂ qdi ; L̂qi = − isq 3 ¹qdi . sA5d

Note that these expressions are valid for anyt, since the time-dependent phase factors of the form

eivqt cancel out. For the operatorĴ2= Ĵ1
2+ Ĵ2

2+ Ĵ3
2 we have
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Ĵ2 =E d3q1 SL̂ q
2 +

3

4
Dsbq↑

† bq↑ + bq↓
† bq↓ + Dq↑

† Dq↑ + Dq↓
† Dq↓d

+ L̂q−bq↑
† bq↓ + L̂q+bq↓

† bq↑ + L̂q−Dq↑
† Dq↓ + L̂q+Dq↓

† Dq↑

+ L̂q3sbq↑
† bq↑ − bq↓

† bq↓ + Dq↑
† Dq↑ − Dq↓

† Dq↓d
2

+
1

2
E d3q8d3q





2L̂ q8 · L̂ qS bq8↑

† bq8↑Dq↑
† Dq↑ + bq8↑

† bq8↑Dq↓
† Dq↓

+ bq8↓
† bq8↓Dq↑

† Dq↑ + bq8↓
† bq8↓Dq↓

† Dq↓
D

+
1

2
sbq8↑

† bq8↑Dq↑
† Dq↑ − bq8↑

† bq8↑Dq↓
† Dq↓d

−
1

2
sbq8↓

† bq8↓Dq↑
† Dq↑ − bq8↓

† bq8↓Dq↓
† Dq↓d

+ bq8↑
† bq8↓Dq↓

† Dq↑ + bq8↓
† bq8↑Dq↑

† Dq↓

+ L̂q8+S bq8↑
† bq8↑Dq↓

† Dq↑ + bq8↓
† bq8↓Dq↓

† Dq↑

+ bq↓
† bq↑Dq8↑

† Dq8↑ + bq↓
† bq↑Dq8↓

† Dq8↓
D

+ L̂q8−S bq8↑
† bq8↑Dq↑

† Dq↓ + bq8↓
† bq8↓Dq↑

† Dq↓

+ bq↑
† bq↓Dq8↑

† Dq8↑ + bq↑
† bq↓Dq8↓

† Dq8↓
D

+ sL̂q83 + L̂q3dsbq8↑
† bq8↑Dq↑

† Dq↑ − bq8↓
† bq8↓Dq↓

† Dq↓d

− sL̂q83 − L̂q3dsbq8↑
† bq8↑Dq↓

† Dq↓ − bq8↓
† bq8↓Dq↑

† Dq↑d






, sA6d

where

L̂q+ = L̂q1 + iL̂q2, L̂q− = L̂q1 − iL̂q2. sA7d

The formulassA4d andsA6d apply to the particle–antiparticle system10 as well if the operatorsD†

andD are formally replaced byd† andd, respectively.
The requirementss37d with trial state in the form ofs24d lead to the system of equations

fFs1s2
spd;Fs1s2

g:

sL̂3 + 1dF11 = mJF11,

L̂3F12 = mJF12,

sA8d
L̂3F21 = mJF21,

sL̂3 − 1dF22 = mJF22,

sJsJ + 1d − L̂ 2 − 2 − 2L̂3dF11 = L̂−sF12 + F21d,

sJsJ + 1d − L̂ 2 − 1dF12 = F21 + L̂+F11 + L̂−F22,

sA9d
sJsJ + 1d − L̂ 2 − 1dF21 = F12 + L̂+F11 + L̂−F22,
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sJsJ + 1d − L̂ 2 − 2 + 2L̂3dF22 = L̂+sF12 + F21d.

After substitution of the functionsFs1s2
, Eq. s39d, into the systemsA8d and sA9d we get

m12 = m21 = mJ, m11 = mJ − 1, m22 = mJ + 1, sA10d

,11 = ,22 = ,12 = ,21 ; ,, sA11d

and

sJsJ + 1d − ,s, + 1d − 2mJdf11
, spd = Îs, − mJ + 1ds, + mJdf12

, spd + Îs, − mJ + 1ds, + mJdf21
, spd,

sA12d

sJsJ + 1d − ,s, + 1d − 1df12
, spd = f21

, spd + Îs, + mJds, − mJ + 1df11
, spd + Îs, − mJds, + mJ + 1df22

, spd,

sA13d

sJsJ + 1d − ,s, + 1d − 1df21
, spd = f12

, spd + Îs, + mJds, − mJ + 1df11
, spd + Îs, − mJds, + mJ + 1df22

, spd,

sA14d

sJsJ + 1d − ,s, + 1d + 2mJdf22
, spd = Îs, + mJ + 1ds, − mJdf12

, spd + Îs, + mJ + 1ds, − mJdf21
, spd.

sA15d

The solution of this system leads to two categories of relations among the functionsfs1s2

, spd. The
first category, which we call the trivial one, is obtained whenf11

, spd= f22
, spd=0. In this case, as is

easy to see fromsA12d andsA15d, we getf12
, spd=−f21

, spd. This solution corresponds to the singlet
states of the system with,=JsJù0d fas follows fromsA13d or sA14dg. This simple relation allows
us to write the general formula for the componentsfs1s2

, spd in the following form:

fs1s2

, spd = Cssgdms1s2fJspd, sA16d

where the radial functionfJspd is common for all components, and the coefficientsCssgdms1s2 have
the following properties:

Cssgdm11 = Cssgdm22 = 0, Cssgdm21 = − Cssgdm12 = 1. sA17d

The formulassA16d and sA17d with the notationfs1s2

, spd; fs1s2

ssgdJspd make Eq.s42d evident.
The second category corresponds to the triplet states, whenf11

, spd , f22
, spdÞ0. First of all, it is

not difficult to see fromsA13d and sA14d that f12
, spd= f21

, spd; f,spd, and after some simple cal-
culations we get for,=J−1sJù1d,

sJ − mJdf11
J−1spd = ÎsJ − mJdsJ + mJ − 1dfJ−1spd, sA18d

sJ + mJdf22
J−1spd = ÎsJ + mJdsJ − mJ − 1dfJ−1spd, sA19d

for ,=JsJù1d,

mJf11
J spd = − ÎsJ + mJdsJ − mJ + 1dfJspd, sA20d

mJf22
J spd = ÎsJ − mJdsJ + mJ + 1dfJspd, sA21d

for ,=J+1sJù0d,
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sJ + 1 +mJdf11
J+1spd = − ÎsJ − mJ + 2dsJ + mJ + 1dfJ+1spd, sA22d

sJ + 1 −mJdf22
J+1spd = − ÎsJ − mJ + 1dsJ + mJ + 2dfJ+1spd. sA23d

It is convenient to introduce the table of coefficientsCJmJ

strd,ms, which represent the relations in
sA18d–sA23d. sSee Table V.d

Thus, we can write the relations between the componentsfs1s2

, spd in the compact form

fs1s2

, spd = CJmJ

strd,msf,spd. sA24d

The coefficientsCJmJ

strd,ms coincide with the usual Clebsch–Gordan coefficients for total spinS=1
except for a factor 2 in the denominator. The expressions39d can now be written in an explicit
form

Fs1s2
spd = CJmJ

strdsJ−1dmsfJ−1spdYJ−1
ms1s2sp̂d + CJmJ

strdsJdmsfJspdYJ
ms1s2sp̂d + CJmJ

strdsJ+1dmsfJ+1spdYJ+1
ms1s2sp̂d.

sA25d

However, as is shown in Appendix B, the first and third terms have parityP=s−1dJ, while the
second term has parityP=s−1dJ+1. Thus, we get the results57d by suppressing the second term in
sA25d. The second term insA25d is associated with the singlet solutions43d for the mixed-spin
states, which have the same parity.

APPENDIX B: PARITY AND CHARGE CONJUGATION

We consider the application of the parity operator to the trial states24d,

P̂uctriall = o
s1s2

E d3p Fs1s2
spdP̂bps1

† D−ps2

† u0l = o
s1s2

E d3p Fs1s2
spdP̂bps1

† P̂−1P̂D−ps2

† P̂−1P̂u0l.

sB1d

Making use of the properties

P̂bps1

† P̂−1 = hPb−ps1

† , P̂D−ps2

† P̂−1 = − hPDps2

† , P̂u0l = u0l, sB2d

wherehP is the intrinsic paritysshPd2=1d, it follows that

P̂uctriall = o
s1s2

E d3p Fs1s2
spdP̂bps1

† D−ps2

† u0l

= − o
s1s2

E d3p Fs1s2
s− pdbps1

† D−ps2

† u0l = Po
s1s2

E d3p Fs1s2
spdbps1

† D−ps2

† u0l, sB3d

where the parity eigenvalueP depends on the symmetry ofFs1s2
spd in different states. For the

singlet statess,=Jd we get froms43d Fs1s2
s−pd=s−1dJFs1s2

spd, soP=s−1dJ+1. For the triplet states

TABLE V. The CG coefficients for triplet statesstotal spinS=1d.

ms= +1 ms=0 ms=−1

,=J−1 s sJ+mJ−1dsJ+mJd

Js2J−1d d1/2 s sJ−mJdsJ+mJd

Js2J−1d d1/2 s sJ−mJ−1dsJ−mJd

Js2J−1d d1/2

,=J −s sJ+mJdsJ−mJ+1d

JsJ+1d d1/2 mJ

sJsJ+1dd1/2 s sJ−mJdsJ+mJ+1d

JsJ+1d d1/2

,=J+1 s sJ−mJ+1dsJ−mJ+2d

sJ+1ds2J+3d d1/2
−s sJ−mJ+1dsJ+mJ+1d

sJ+1ds2J+3d d1/2 s sJ+mJ+2dsJ+mJ+1d

sJ+1ds2J+3d d1/2

032302-23 Variational two-fermion wave equations in QED J. Math. Phys. 46, 032302 ~2005!

                                                                                                                                    



with ,=J we get froms48d Fs1s2
s−pd=s−1dJFs1s2

spd, so P=s−1dJ+1. For the triplet states with,
=J±1 we get froms57d Fs1s2

s−pd=s−1dJ+1Fs1s2
spd, so P=s−1dJ.

Charge conjugation is associated with the interchange of the particle and antiparticle. Apply-
ing the charge conjugation operator to the trial state of the forms24d we get

Ĉuctriall = o
s1s2

E d3p Fs1s2
spdĈbps1

† d−ps2

† u0l = o
s1s2

E d3p Fs1s2
spdĈbps1

† Ĉ−1Ĉd−ps2

† Ĉ−1Ĉu0l.

sB4d

Using the relations

Ĉbps1

† Ĉ−1 = hCdps1

† , Ĉd−ps2

† Ĉ−1 = hCb−ps2

† , Ĉu0l = u0l, sB5d

whereshCd2=1, we obtain

Ĉuctriall = − o
s1s2

E d3p Fs2s1
s− pdbps1

† d−ps2

† u0l = Co
s1s2

E d3p Fs1s2
spdbps1

† d−ps2

† u0l, sB6d

where the charge conjugation quantum numberC depends on the symmetry ofFs1s2
spd in different

states.
For the singlet statess,=Jd we get froms43d Fs2s1

s−pd=s−1dJ+1Fs1s2
spd, soC=s−1dJ.

For the triplet states with,=J we get froms48d Fs2s1
s−pd=s−1dJFs1s2

spd, soC=s−1dJ+1.
For the triplet states with,=J±1 we get froms57d Fs2s1

s−pd=s−1dJ+1Fs1s2
spd, soC=s−1dJ.

APPENDIX C: EXPANSION OF THE SPINORS AND M-MATRIX ELEMENTS

We recall the form of the particle spinors,

usp,id = Np3 1

ssW ·pd
vp + m1

4wi , sC1d

where

w1 = F1

0
G, w2 = F0

1
G, Np =Îvp + m1

2m1
. sC2d

The antiparticle or “positron” representation for thevispd spinors has the form

vsp,id = Np3 ssW ·pd
vp + m1

1
4xi , sC3d

where

x1 = F0

1
G, x2 = − F1

0
G . sC4d

The normalization is

ūsp,idusp, jd = di j , v̄sp,idvsp, jd = − di j . sC5d

Expanding in powers ofp/m1 and keeping the lowest order nontrivial terms,
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ssW ·pd
vp + m1

.
ssW ·pd
2m1

, sC6d

Np =Îvp + m1

2m1
. 1 +

p2

8m1
2 , sC7d

we obtain the result

usp,id . S1 +
p2

8m1
2D3 1

ssW ·pd
2m1

4wi = 3S1 +
p2

8m1
2D

ssW ·pd
2m1

4wi , sC8d

vsp,id . S1 +
p2

8m1
2D3 ssW ·pd

2m1

1
4xi = 3

ssW ·pd
2m1

S1 +
p2

8m1
2D 4xi . sC9d

The M-matrix elementss70d–s73d have the following nonzero components.
Orbital,

M1111
sorbdsq,pd = M1212

sorbdsq,pd = M2121
sorbdsq,pd

= M2222
sorbdsq,pd =

iq1q2

sp − qd2 +
iq1q2

m1m2
S1

2
Sm1

m2
+

m2

m1
D

3S1

4
+

q ·p

sp − qd2D +
sp 3 qd2

sp − qd4 D , sC10d

Spin–orbit,

M1111
ss–odsq,pd =

iq1q2

8m1m2
Sm2

m1
+

m1

m2
+ 4Dp−q+ − p+q−

sp − qd2 , sC11d

M2222
ss–odsq,pd =

iq1q2

8m1m2
Sm2

m1
+

m1

m2
+ 4Dp+q− − p−q+

sp − qd2 , sC12d

M1112
ss–odsq,pd = M2122

ss–odsq,pd =
iq1q2

4m1m2
Sm1

m2
+ 2Dp3q− − p−q3

sp − qd2 , sC13d

M1211
ss–odsq,pd = M2221

ss–odsq,pd =
iq1q2

4m1m2
Sm1

m2
+ 2Dp+q3 − p3q+

sp − qd2 , sC14d

M1121
ss–odsq,pd = M1222

ss–odsq,pd =
iq1q2

4m1m2
Sm2

m1
+ 2Dp3q− − p−q3

sp − qd2 , sC15d

M2111
ss–odsq,pd = M2212

ss–odsq,pd =
iq1q2

4m1m2
Sm2

m1
+ 2Dp+q3 − p3q+

sp − qd2 , sC16d
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M1212
ss–odsq,pd = − M2121

ss–odsq,pd =
iq1q2

8m1m2
Sm2

m1
−

m1

m2
Dp−q+ − p+q−

sp − qd2 , sC17d

Spin–spin,

M1111
ss–sdsq,pd = M2222

ss–sdsq,pd = − M1212
ss–sdsq,pd = sM2121

ss–sdsq,pdd* =
iq1q2

4m1m2
S sq3 − p3d2

sq − pd2 − 1D ,

sC18d

M1112
ss–sdsq,pd = sM2221

ss–sdsq,pdd* = − sM1211
ss–sdsq,pdd* = − M2122

ss–sdsq,pd

M1121
ss–sdsq,pd = sM2212

ss–sdsq,pdd* = − M1222
ss–sdsq,pd = − sM2111

ss–sdsq,pdd*

=
iq1q2

4m1m2
Sq−q3 − p−q3 − p3q− + p−p3

sq − pd2 D , sC19d

M1122
ss–sdsq,pd = − sM2211

ss–sdsq,pdd* =
iq1q2

4m1m2

q−
2 − 2q−p− + p−

2

sq − pd2 , sC20d

M1221
ss–sdsq,pd = M2112

ss–sdsq,pd =
iq1q2

4m1m2
Sq+q− − p+q− − p−q+ + p+p−

sq − pd2 − 2D . sC21d

Herep=sp1,p2,p3d and

p+ = p1 + ip2 = −Î8p

3
pY1

1su,wd, p− = p1 − ip2 =Î8p

3
pY1

−1su,wd, sC22d

p3 =Î4p

3
pY1

0su,wd. sC23d

For a particle–antiparticle system the annihilation components are

M1111
anh = M2222

anh =
ie2

2m2 , sC24d

M1212
anh = M1221

anh = M2112
anh = M2121

anh =
ie2

4m2 . sC25d

APPENDIX D: SOME USEFUL EXPRESSIONS, IDENTITIES, AND INTEGRALS

The following expressions and identities are useful for evaluating theM-matrix:

1

sq − pd2 =
2p

upu uquol

Qlszd o
ml=−l

+l

Yl
mlsp̂dYl

ml*sq̂d, sD1d

wherez=sp2+q2d /2pq, andQlszd is the Legendre function of the second kind of orderl.17 Then

ssp − qd ·pd2

sp − qd4 =
p2

sp − qd2 −
sp 3 qd2

sp − qd4 . sD2d

The angular integration ins59d, s60d, ands65d involves the following integrals:
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E dp̂ dq̂ Fsp̂ · q̂dYJ8
mJ8sq̂dYJ8

mJ*sp̂d = 2pdJ8JdmJ8mJE dsp̂ · q̂dFsp̂ · q̂dPJsp̂ · q̂d, sD3d

E dsp̂ · q̂d
p̂ · q̂

sp − qd2PJsp̂ · q̂d =
1

upu uquS J + 1

2J + 1
QJ+1szd +

J

2J + 1
QJ−1szdD , sD4d

E dsp̂ · q̂d
sp 3 qd2

sp − qd4 PJsp̂ · q̂d =
sJ + 1dsJ + 2d

2s2J + 1d
QJ+1szd −

JsJ − 1d
2s2J + 1d

QJ−1szd. sD5d

HereFsp̂ ·q̂d is an arbitrary function ofp̂ ·q̂ ,PJsxd is the Legendre polynomial of orderJ.
The integrals in the form

E dp̂ YJ
mJ*sp̂dYJ8

mJ8sp̂dYJ9
mJ9sp̂d sD6d

can be calculated using the Wigner–Eckart theorem.17

The calculation of the relativistic energy corrections involves the integrals

E
0

` E
0

`

dp dq p2q2fJspdfJsqd = 2pSamr

n
D3

dJ,0, sD7d

E
0

` E
0

`

dp dq pqfJspdfJsqdQJsz1d =
pamr

n2 , sD8d

E
0

` E
0

`

dp dq p2q2fJspdfJsqdQJsz1d =E
0

` E
0

`

dp dq p3qfJspdfJsqdQJsz1d = pSamr

n
D3S 4

2J + 1
−

1

n
D ,

sD9d

E
0

` E
0

`

dp dq p2q2fJspdfJsqdQJ−1sz1d = pSamr

n
D3S2

J
−

1

n
D , sD10d

E
0

` E
0

`

dp dq p2q2fJspdfJsqdQJ+1sz1d = pSamr

n
D3S 2

J + 1
−

1

n
D . sD11d

Here fJ is the nonrelativistic hydrogenlike radial wave function in momentum space,18

fJspd ; fn
Jspd = S 2

p

sn − J − 1d!
sn + Jd! D1/2nJ+2xJ22sJ+1dJ!

sn2x2 + 1dJ+2 Gn−J−1
J+1 Sn2x2 − 1

n2x2 + 1
D , sD12d

wherex=p/ samrd is a scaled momentum, andGn−J−1
J+1 are the Gegenbauer functions.

APPENDIX E: DIAGONALIZATION OF THE EXPECTATION VALUE OF THE
HAMILTONIAN

The matrix representation of the perturbing HamiltonianDĤ=Ĥ−ĤNR−M, in the basis of the
statesusgl , utrl s49d and s50d, is sJÞ0d,

kcuDĤuclt=0 = faijg si, j = 1,2d, sE1d

where the matrix elementsaij are
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a11 = ksguDĤusgl = −
a4mr

n3 S 1

2J + 1
− S3 −

mr

M
D 1

8n
D , sE2d

a22 = ktruDĤutrl = −
a4mr

n3 S 1

2J + 1
−

1

2JsJ + 1ds2J + 1d
− S3 −

mr

M
D 1

8n
D , sE3d

a12 = a21 = ksguDĤutrl = ktruDĤusgl =
a4mr

n3

um1 − m2u
2M

1

2J + 1

1
ÎJsJ + 1d

. sE4d

Note that, in the case of positronium, the elementsa11 anda22 give the energy corrections for pure
singlet and triplet states, respectively. Diagonalization of this matrix leads tos104d with eigenvec-
tors s55d.
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We study quantum chromodynamicssQCDd on a finite latticeL in the Hamiltonian
approach. First, we present the field algebraAL as comprising a gluonic part, with
basic building block being the crossed productC* -algebraCsGd^aG, and a fermi-
onic sCAR-algebrad part generated by the quark fields. By classical arguments,AL

has a uniquesup to unitary equivalenced irreducible representation. Next, the alge-
bra OL

i of internal observables is defined as the algebra of gauge invariant fields,
satisfying the Gauss law. In order to take into account correlations of field degrees
of freedom insideL with the “rest of the world,” we must extendOL

i by tensorizing
with the algebra of external gauge invariant operators. This way we construct the
full observable algebraOL. It is proved that its irreducible representations are
labelled byZ3-valued boundary flux distributions. Then, it is shown that there exist
unitary operatorsscharge carrying fieldsd, which intertwine between irreducible
sectors leading to a classification of irreducible representations in terms of the
Z3-valued global boundary flux. By the global Gauss law, these three inequivalent
charge superselection sectors can be labeled in terms of the global color charge
strialityd carried by quark fields. Finally,OL is discussed in terms of generators and
relations. ©2005 American Institute of Physics.fDOI: 10.1063/1.1851604g

I. INTRODUCTION

In a series of papersscf. Refs. 1–6d, we have started to analyze the nonperturbative structure
of gauge theories, with the final aim being the formulation and investigation of gauge models
purely in terms of observables. To start with one should clarify basic structures like that of the
field algebra, the observable algebra and the superselection structure of the Hilbert space of
physical states. It is well-known that the standard Doplicher–Haag–Roberts theory7,8 for models,
which do not contain massless particles, does not apply here. Nonetheless, there are interesting
partial results within the framework of general quantum field theory both for quantum electrody-
namicssQEDd and for non-Abelian models, see Refs. 9–12.

To approach the problem in a rigorous way, we set the system on a finitesregular cubicd lattice
and formulate the model within the Hamiltonian approach. For basic notions concerning lattice
gauge theoriessincluding fermionsd we refer to Ref. 13 and references therein. Within the finite
lattice context, we have analyzed the structure of the observable algebra both for spinorial and
scalar QED and we have shown that the physical Hilbert space decomposes into a direct sum of
superselection sectors labelled by the total electric charge, see Refs. 1–3. Finally, of course, one
wants to construct the continuum limit. In full generality, this is an extremely complicated problem
of constructive field theory. However, the results obtained until now suggest that there is some
hope, to control the thermodynamic limit, see Ref. 1 for a heuristic discussion. We also mention
that for simple toy models, these problems can be solved, see Ref. 14.

In Ref. 4 we have started to investigate quantum chromodynamicssQCDd within the above
framework. In particular, we have analyzed the global Gauss law and the notion of global color
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chargestrialityd. Comparing with QED, the notion of global charge in QCD is much more com-
plicated, according to the fact that the local Gauss law is neither built from gauge invariant
operators nor is it linear. We have shown that one can extract from the local Gauss equation of
QCD a gauge invariant, additive law for operators with eigenvalues inZ3 fthe center of SUs3dg.
This implies—as in QED—a gauge invariant conservation law: The globalZ3-valued color charge
is equal to the globalZ3-valued gauge invariant color electric flux through the boundary.

We stress that within lattice gauge theories, the above notion of color charge is already
implicitly contained in a paper by Kogut and Susskind, see Ref. 15. In particular, Mack16 used it
to propose a certainsheuristicd scheme of color screening and quark confinement, based upon a
dynamical Higgs mechanism with Higgs fields built from gluons. For similar ideas we also refer
to papers by ‘t Hooft, see Ref. 17 and references therein. This concept was also used in a paper by
Borgs and Seiler,18 where the confinement problem for Yang–Mills theories with static quark
sources at nonzero temperature was discussed.

In the present paper, we continue to investigate lattice QCD as initiated in Ref. 4, with the
main topic being the analysis of the observable algebra. Our main result is the proof that all its
irreducible representations are labelled by the global chargestrialityd. For this purpose, we use a
special functional analytical framework developed by Woronowicz. To illustrate it, consider the
Heisenberg algebra, generated by the canonical commutation relationfp,qg=−i, p* =p, q* =q. It is
not properly defined unless we impose an appropriately defined “strong commutation rule.” In this
case, one usually uses the Weyl method which consists in “exponentiating” the commutation
relations:UstdVssd=expsitsdVssdUstd, whereUstdª expsitpd andVssdª expsisqd. In this context,
uniqueness of irreducible representations can be proved and as the observable algebra one can take
the algebraBsHd of all boundedoperators acting on the uniquesHilbertd representation space
L2sR1d.

Unfortunately, this technique does not work in the case of more complicated algebraic rela-
tions between the generators of the algebra in question. Already in the case of scalar quantum
electrodynamics, the “exponentiation” of complicated algebraic relations defining the observable
algebra was impossiblessee Ref. 3d. The situation is similar to the theory of quantum groups,
where a “naive” definition in terms ofsin general unboundedd generators and their relations leads
to contradictions, as long as one does not find some way to give a precise meaning to the relations
in question. One of the most powerful techniques, making it possible to deal even with the most
difficult examples of such algebras, was introduced by Woronowiczssee Ref. 19d. It enables one
to consider algebras defined uniquely in terms ofseven unboundedd generators and algebraic
relations between them. In most cases, the generators themselvesdo not belongto the algebra, but
are onlyaffiliatedwith it. Applying this approach to the Heisenberg algebra, yields the algebra of
compact operatorsKsL2sR1dd, whereasp andq are only affiliated with this algebra. The algebra of
all bounded operatorsBsL2sR1dd is then obtained as themultiplier algebra MsKsL2sR1ddd. It may
be calledextendedobservable algebra.

The fact that bounded operators are not “observables” in the strict sense, but only in the
extended sense, whereas unbounded operators likep andq may be called observables in an even
more generalized sense, as operatorsaffiliatedwith the observable algebra, can be considered to be
a drawback of this approach. But this is the price, which we pay for the rigorous mathematical
tractability of the observable algebra. We have earlier used this approach in scalar QED and the
present paper is consistently written in this language.

We begin our construction with the algebraAL of field operators, see Sec. II. Here, the Weyl
method would provide an alternativesand, probably, simplerd construction of the algebra. But
having in mind the observable algebra, where the Weyl method fails, we use the Woronowicz
approach from the very beginning. In this context, we show uniqueness of irreducible represen-
tations ofAL. Next, we discuss local gauge transformations, the Gauss law and boundary data. In
Sec. III, the algebra of internal observablesOL

i is defined as the algebra of gauge invariant fields,
satisfying the Gauss law. We show that its irreducible representations are labelled by distributions
of color electric fluxes running through the boundary to infinity. It is remarkable that for the very
classification of irreducible representations the abstract characterization ofOL

i as the subalgebra,
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invariant under the group of local gauge transformations, factorized with respect to the ideal
generated by the Gauss law, is sufficient. This is due to the fact that here we work within the
compact formulation, which implies that we “stay within” the representation space of the field
algebra. This remark does not apply to QED in the noncompact formulationscf. Refs. 1–3, where
the corresponding construction is much more complicatedd.

In Chap. IV, we extend both the algebra of internal observablesOL
i , by adding certain “ex-

ternal observables,” and the Hilbert spaceHL, by tensorizing with the Hilbert space of tensors at
“external points.” By external points we mean endpoints of lattice links connecting the finite
lattice L with the rest of the world. These external observables enable us to take into account the
correlations between the field degrees of freedom contained inL and the rest of the world. The
algebra obtained this way is called full observable algebra and is denoted byOL. Within this
context, we show that different Hilbert space sectors, corresponding to different boundary flux
distributions, carry equivalent representations ofOL if and only if their globalZ3-valued flux is
the same, with intertwiners given by charge carrying fieldsscf. Ref. 20d. This reduces the irreduc-
ible representations ofOL to three inequivalent sectors, labeled by theZ3-valued global color
electric flux. By the global Gauss law, this flux coincides with the global color chargestrialityd
carried by the quark fields.

Our proposal to take into account also the external observables is motivated by our strategy to
construct the thermodynamical limit of the theoryvia an inductivesrespectively, projectived limit
procedure for observable algebrassrespectively, state spacesd. This strategy was discussed in Ref.
1. Physically, it reduces considerably the number of superselection sectors of the theory, which are
no longer numbered by the electric flux distribution at the boundary, but only by the global charge.
In Sec. IV we thoroughly discuss our motivation for this proposal, which we consider one of the
most important ideas of this paper.

Finally, in Sec. V,OL is discussed in terms of generators and relations. We start with present-
ing a set of genuine invariants generatingOL, which is, however, highly redundant. In the re-
mainder of this section, we use some gauge fixing methods to reduce this set. In this context, a
couple of delicate questions arises—all in some sense related to the Gribov problem and to the fact
that the underlying classical configuration space has a complicated stratified structure with respect
to the gauge group action. A more complete treatment ofOL as an algebra presented by generators
and relations will be given in two separate papers, see Refs. 21 and 22.

II. THE FIELD ALGEBRA

A. Basic definitions

We consider QCD in the Hamiltonian framework on a finite regular cubic latticeL,Z3, with
Z3 being the infinite regular lattice in three dimensions. We denote the lattice boundary by]L and
the set of oriented,i-dimensional elements ofL, respecitively,]L, by Li, respectively,]Li, where
i =0,1,2,3. Such elements aresin increasing order ofid called sites, links, plaquettes, and cubes.
Moreover, we denote the set of external links connecting boundary sites ofL with “the rest of the
world” by L`

1 and the set of endpoints of external links byL`
0. For the purposes of this paper, we

may assume that for each boundary site there is exactly one external link. Then, external links are
labeled by boundary sites and we can denote them bysx,`d with x[]L0. The set of nonoriented
i-dimensional elements will be denoted byuLui. If, for instance,sx,yd[L1 is an oriented link, then
by usx,ydu[ uLu1 we mean the corresponding nonoriented link. The same notation applies to]L1

andL`
1.

The basic fields of lattice QCD are quarks living at lattice sites and gluons living on links,
including external links. The field algebra is thus, by definition, theC* -tensor product of fermionic
and bosonic algebras:

ALªFL ^ BL, s2.1d

with
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FLª ^

x[L0
Fx s2.2d

and

BLªBL
i

^ BL
b = ^

usx,ydu[uLu1
Busx,ydu ^

x[]L0
Busx,`du. s2.3d

Here,BL
i andBL

b are the internal and boundary bosonic algebras, respectively. We imposelocality
of the lattice quantum fields bypostulatingthat the algebras corresponding to different elements of
L santidcommute with each other.

Remark:The bosonic boundary data represent nontrivial color electric flux through the bound-
ary, which—as will be seen later—allows for nontrivial color charge. As will be shown, nontrivial
boundary flux is necessary for taking into account correlations of field degrees of freedom inside
L with the “rest of the world.” Even if, for some reasons, the global charge of the Universe
vanishes, there is no reason to assume that an arbitrary finite partL is also neutral.

The fermionic field algebraFx associated with a lattice sitex is the algebra of canonical
anticommutation relationssCARd of quarks atx. The quark field generators are denoted by

L0 ] x → caAsxd [ Fx, s2.4d

wherea stands for bispinorial andspossiblyd flavor degrees of freedom andA=1,2,3 is the color
index corresponding to the fundamental representation of the gauge groupG=SUs3d. fIn what
follows, writing G we have in mind SUs3d, but essentially our discussion can be extended to
arbitrary compact groups and their representations.g The conjugate quark field is denoted by
c*

aAsxd, where we raise and lower indices by the help of the canonical Hermitian metric tensorgAB

in C3 and the canonical skew-symmetric structureeab in the spinor space. The only nontrivial
canonical anticommutation relations for generators ofFx read

fc*
aAsxd,cbBsxdg+ = dB

Adb
a. s2.5d

The bosonic field algebraBusx,ydu associated with the nonoriented linkusx,ydu swherey also
stands for̀ d, is given in terms of its isomorphic copiesBsx,yd andBsy,xd, corresponding to the two
orientations of the linksx,yd. The algebraBsx,yd is generatedsin the sense of Woronowicz, as
explained belowd by matrix elements of the gluonic gauge potential on the linksx,yd,

L1 ] sx,yd → UA
Bsx,yd [ Csx,yd, s2.6d

with Csx,yd>CsGd being the commutativeC* -algebra of continuous functions onG andA, B=1,2,3
denoting color indices, and by color electric fields, spanning the Lie algebragsx,yd>sus3d. Choos-
ing an orthonormal basishtij, i =1, . . . ,8, of sus3d we denote byhEisx,ydj the corresponding basis
of gsx,yd,

L1 ] sx,yd → Eisx,ydªti [ gsx,yd. s2.7d

These elements, satisfying the sus3d commutation relations, generate, in the sense of
Woronowicz,19 the C* -algebraPsx,yd>C*sGd sfor the definition see Remark 1 belowd.

Observe thatG acts onCsGd naturally by the left regular representation,

agsudsg8dªusg−1g8d, u [ CsGd. s2.8d

Differentiating this relation, we get an action ofe[sus3d on u[C`sGd by the corresponding right
invariant vector fieldeR. Thus, we have a natural commutator between generators ofPsx,yd and
smooth elements ofCsx,yd,

ife,ugªeRsud. s2.9d
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Thus, we have aC* -dynamical systemsCsx,yd ,G,ad, with automorphisma given by the left
action s2.8d. The field algebraBsx,yd is, by definition, the corresponding crossed product
C* -algebra,

Bsx,ydªCsx,yd^aG, s2.10d

see Refs. 23 and 24 for these notions.
For the convenience of the reader we add a number of comments on the mathematical frame-

work used here.
Remarks:

s1d We give the definition ofC*sGd scf. Refs. 23 and 25d. Take the group algebra ofG, which is
the spaceL1sGd of integrable functions on the group, with convolution providing the product
structure. Complete it with respect to the following norm:

ifiªsuppipsfdi, s2.11d

where f [L1sGd. The supremum is taken over all representationssp ,Hd of the group and
psfd denotes the operator obtained by smearing the corresponding representation inL2sG,Hd
over the group with the functionf, see Refs. 26 and 25. We stress thatC*sGd is aC* -algebra
without unit. Moreover, its sus3d-generatorsti do not belong toC*sGd, but are only affiliated
in the C* -sense, see Ref. 19.

s2d We define the crossed product algebraCsGd^aG. First takeL1sG,CsGdd, defined as the
*-algebra ofCsGd-valuedL1-functions onG, with multiplication given by the twisted con-
volution

sz3 wdsg8dªE
G

zsgdagswsg−1g8dddg,

involution induced from the *-structure ofCsGd,

z*sgd = agszsg−1d*d,

and equipped with the standardL1-norm. Next, consider all its nondegenerate Hilbert space
representations. Finally,CsGd^aG.L1sG,CsGdd is defined as the completion of
L1sG,CsGdd in the sup-norm taken over all these representations. This way we obtain a
C* -algebra without unit. This algebra can be viewed as a skew tensor product ofCsGd with
C*sGd in the following sense: For eachu[CsGd and f [L1sGd denote byu^ f the element
of L1sG,CsGdd given bysu^ fdsgdªufsgd. Then, the linear span of such elements is dense in
L1sG,CsGdd. It is easily seen that

f → 1 ^ f s2.12d

is an isomorphism onto its image, which enables us to identifyC*sGd with the corresponding
subalgebra

C*sGd , CsGd^aG. s2.13d

As already noted, the group algebraC*sGd is aC* -algebra generated by unbounded elements
in the sense of Woronowicz, see Ref. 19. Consequently,CsGd^aG is of this type, too. It is
generated by elementsse,ud fulfilling canonical commutation relationss2.9d. We stress that
both thesunboundedd sus3d-generatorse and thesboundedd generatorsu do not belong to the
algebra, but are only affiliated in theC* -sense. Moreover, note that—contrary tos2.12d—the
mappingu→u^ 1 does notpreserve the algebraic structure ofCsGd and, whence, cannot be
used to imbedCsGd into CsGd^aG. Hence,CsGd£CsGd^aG, but belongs to its multiplier
algebraMsCsGd^aGd. An embedding similar tos2.13d does not hold for a noncompact
group G, because here we have to take instead ofCsGd the algebraC`sGd of functions
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vanishing at infinity, which is an algebra without unit. Thus, the mappings2.12d does not
exist.

s3d Formulas2.9d is a natural generalization of the Heisenberg commutation relationfp,qg=−i,
describing the Abelian caseG=R1. It corresponds to “canonical quantization” over the phase
space

T*sGd > g* 3 G,

with g=sus3d being the Lie algebra ofG and g* being the dual space. Quantization
applies to functions ong* 3G, hence, in particular, to elements ofg. Thus, from the
purely algebraic point of view, one would then definePsx,yd as the enveloping algebra
Usgd of g, see Ref. 4, yielding for the bosonic field algebraBsx,yd the following crossed
product structure of Hopf algebras:

C`sGd^aUsgd.

This is an example of a Heisenberg double of Hopf algebras, see of Refs. 27 and 28. This
choice has, however, substantial drawbacks related to the fact that the operators assigned to
the Lie algebra elementse are necessarily unbounded. This is why we choose the functional-
analytic framework above, where all fields are compact, henceboundedoperators in a
Hilbert space. We call the algebras2.10d the algebra ofgeneralized canonical commutation
relations sCCRd over the groupG.

s4d Within the above framework, one can prove a generalization of the classical uniquess theo-
rem by von Neumann,29 stating that any irreducible representation of the above CCR-algebra
is equivalent to thegeneralized Schrödinger representation, acting on the Hilbert space
L2sGd swith respect to the Haar measured. This will be shown in Sec. II B.

The transformation law of elements ofBsx,yd under the change of the link orientation is
derived from the fact that thesclassicald G-valued parallel transportergsx,yd on sx,yd transforms
to g−1sx,yd under the change of orientation. This transformation lifts naturally to an isomorphism

Isx,yd:Bsx,yd → Bsy,xd s2.14d

of field algebras, defined by

Isx,ydsfdª f̆, Isx,ydsedªĕ, s2.15d

where f̆sgdªfsg−1d andĕ is the left invariant vector field onG, generated by −e. The bosonic field
algebraBusx,ydu is obtained fromBsx,yd andBsy,xd by identifying them viaIsx,yd.

Now, we give a full list of relations satisfied by generators ofBusx,ydu. Being entries of the
fundamental representation of SUs3d, the generators ofCsx,yd must fulfill the following conditions:

sUA
Bsx,ydd*UA

Csx,yd = dC
B1, s2.16d

eABCUA
Dsx,ydUB

Esx,ydUC
Fsx,yd = eDEF1. s2.17d

In what follows, we will use the traceless matrix

EA
Bsx,ydªo

i

Eisx,ydti
A

B, s2.18d

built from generators ofPsx,yd. Its entries obviously fulfill

sEA
Bsx,ydd* = EB

Asx,yd. s2.19d

The transformation laws2.15d of these objects under the change of the link orientation is given by
the following relations:

032303-6 J. Kijowski and G. Rudolph J. Math. Phys. 46, 032303 ~2005!

                                                                                                                                    



UA
Bsy,xd = ŬA

Bsx,yd = sUB
Asx,ydd* , s2.20d

EA
Bsy,xd = ĔA

Bsx,yd = − UA
Dsy,xdUC

Bsx,ydED
Csx,yd. s2.21d

The sus3d-commutation relations read

fEA
Bsx,yd,EC

Dsu,zdg = dxudyzsd
C

BEA
Dsx,yd − dA

DEC
Bsx,ydd, s2.22d

fformula s2.15d implies that all the componentsEA
Bsx,yd commute with all the components

EC
Dsy,xd, because the left invariant and the right invariant fields on the group commuteg. The

canonical commutation relationss2.9d take the following form:

ifEA
Bsx,yd,UC

Dsu,zdg = + dxudyzsdC
BUA

Dsx,yd − 1
3dA

BUC
Dsx,ydd

− dxzdyusdA
DUC

Bsy,xd − 1
3dA

BUC
Dsy,xdd . s2.23d

To summarize, the field algebraAL, given bys2.1d–s2.3d, is aC* -algebra, generated by elements

hcaAsxd,c*
aAsxd,UA

Bsx,yd,EA
Bsx,ydj, s2.24d

fulfilling relations s2.16d, s2.17d, and s2.19d–s2.21d, together with canonicalsantidcommutation
relationss2.5d, s2.22d, ands2.23d.

Remark:According to formulas2.21d, the transformation of the color electric fieldE from
sx,yd to sy,xd consists of two steps.

s1d The parallel transport from pointx to y by means of the two parallel transportersU, each of
them acting appropriately on the two indices ofE.

s2d The change of the sign due to the change of the orientation.

In what follows, we always treatEsx,yd as being attached to the sitex.

B. Uniqueness of irreducible representations

Here, we prove uniqueness of the generalized canonical commutation relations as announced
in Sec. II A.

We use the one-to-one correspondence between nondegenerate representations of crossed
products and covariant representations ofC* -dynamical systems, see Ref. 23. Thus, let us consider
the following covariant representation ofsCsGd ,G,ad on L2sGd swith respect to the Haar mea-
sured:

s1d Take the representationp of the commutativeC* -algebraCsGd given by multiplication with
elements ofCsGd. This, obviously, a representation by bounded operators onL2sGd.

s2d Consider the left regularsunitaryd representationp̂ of G on L2sGd,

sp̂sgdjdsg8dªjsg−1g8d, j [ L2sGd. s2.25d

We calculate

sp̂sgd+psud+p̂sg−1ddsjdsg8d = sspsud+p̂sg−1ddsjddsg−1g8d = usg−1g8d · sp̂sg−1dsjddsg−1g8d

= usg−1g8d · jsg8d = psagsuddsjdsg8d.

This yields

p̂sgd+psud+p̂sg−1d = psagsudd, s2.26d

showing that the pairsp ,p̂d defines acovariant representation ofsCsGd ,G,ad on L2sGd,
indeed.

We call this representationgeneralized Schrödinger representation. Observe that differentiat-
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ing relations2.26d yields the generalized canonical commutation relationss2.9d.
Now, consider an arbitrarycovariant representationsr , r̂d of the theC* -dynamical system

sCsGd ,G,ad, with r being a nondegenerate representation ofCsGd on a Hilbert spaceH and r̂
being a strongly continuous unitary representation ofG on H. By the Gelfand–Najmark theorem
for commutativeC* -algebras, we have a spectral measure dE on G, such that

rsud =E usgddEsgd, s2.27d

for u[CsGd, and by covariance, the pairsr , r̂d also fulfills s2.26d. Thus, we get

r̂sgd+dEsg8d+r̂sg−1d = dEsgg8d. s2.28d

We conclude that the spectral measure dE defines a transitive system of imprimitivity for the
representationr̂ of G based on the group manifoldG. Then, the imprimitivity theorem, see Refs.
30 and 31, yields the following.

Theorem 2.1:Any irreducible representation ofsCsGd ,G,ad is equivalent to the generalized
Schrödinger representation.

Remarks:

s1d Disregarding theC* -context, Theorem 2.1 is a classical result of Mackey, see Ref. 31 and
references therein.

s2d Within the C* -context, there is a formulation of the commutation relationss2.26d for an
arbitrary locally compact group in terms of the pentagon equation, which generalizes to
quantum groups.32

The following statement is a consequence of Theorem 7.7.12 in Ref. 23, but for the reader’s
convenience we add the proof here.

Lemma 2.2: For any compact Lie group, the generalized Schrödinger representation defines
the following isomorphism of C*-algebras:

CsGd^aG > KsL2sGdd, s2.29d

whereKsL2sGdd denotes the algebra of compact operators on L2sGd.
Proof: Any nondegenerate, irreducible representation ofL1sG,CsGdd is equivalent to the

following representation inL2sGd:

sp 3 p̂dszd =E pszsgddp̂sgddg, s2.30d

with z[L1sG,CsGdd. This follows from the one-to-one correspondence between nondegenerate
representations ofL1sG,CsGdd and covariant representations of theC* -dynamical system
sCsGd ,G,ad scf. Ref. 23, Proposition 7.6.4d and from the uniqueness theorem above.

Thus, for everyj[L2sGd we have

sssp 3 p̂dszddjdshd = SE pszsgddp̂sgdj dgDshd =E zsg,hdjsg−1hddg, s2.31d

where we have denotedszsgddshd;zsg,hd. Note that continuous functions

CsG,CsGdd > CsG 3 Gd , L1sG,CsGdd

form a dense subset. Thus, for algebraically special functions of typezsg,hd=xsg−1hd ·yshd, with x,
y[CsGd,L2sGd, we obtain one-dimensional operators of the following type:
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sssp 3 p̂dszddjdshd = yshdE xsgdjsgddg, s2.32d

or, equivalently, in physics notation

sp 3 p̂dszd = uylkxu. s2.33d

Of course, linear combinations of such elements form a dense subset inL1sG,CsGdd and, thus,
also inCsGd^aG. On the other hand, linear combinations of one-dimensional operators exhaust
finite dimensional operators and theirC* -closure in the operator norm gives precisely the algebra
of all compact operatorsKsL2sGdd. j

Remark:

s1d Consider the isomorphisms2.29d. Using the generatorsse,ud of CsGd^aG we built typical
elements ofKsL2sGdd as follows: For any basishtij, take operatorss1+ti

2d−1, which are
compact, and multiply them from both sides by any function of matrix elementsUA

B scom-
pare with Ref. 19, example 3 of Sec. IIId.

s2d We stress that Lemma 2.2 holds for noncompact Lie groups, too. In that case, we have to
takex[C0sGd sfunction with compact supportd andy[C`sGd sfunction vanishing at infin-
ityd in the above proof. In particular, for the case of canonical commutation relations
fp,qg=−i, we takeG=R1 and the above approach yields the algebraKsL2sR1dd. A typical
element belonging to this algebra iss1+q2d−1s1+p2d−1s1+q2d−1 scompare with Ref. 19,
example 4 of Sec. IIId.

Now, we take the tensor product of generalized Schrödinger representations over all links,

^

sx,yd[L1
L2sCsx,ydd ^

x[]L0
L2sCsx,`dd > L2sCd, s2.34d

with

Cª p
sx,yd[L1

Csx,yd p
x[]L0

Csx,`d

and each of the spacesCsx,yd being diffeomorphic to the group space ofG.
This is, by Theorem 2.1, the unique representation space of the gluonic field algebraBL.

Moreover, using the classical uniqueness theorem for CAR-representations by Jordan and
Wigner,33 any representation of fermionic fields is equivalent to the fermionic Fock representation.
Consequently, using Lemma 2.2, we get the following.

Corollary 2.3: The field algebraAL can be identified with the algebraKsHLd of compact
operators on the Hilbert space

HL = FsC12Nd ^ L2sCd, s2.35d

with FsC12Nd denoting the fermionic Fock space generated by12N anticommuting pairs of quark
fields.

The subspaceFsC12Nd is spanned by vectors

c*
a1A1

sx1d¯c*
anAn

sxndu0l, s2.36d

obtained from the fermionic Fock vacuum by the action of quark creation operators. Consequently,
any element ofHL is a linear combination of thesefermionic vectors with coefficients being
L2-functions depending on gluonic potentialsU.

From the physicists point of view, it might seem to be more natural to choose the whole
algebraBsHLd of all bounded operators as the field algebra. In mathematical terms this means
taking themultiplier algebra
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BsHLd = MsKsHLdd

of our field algebraKsHLd. We call BsHLd extended field algebraof our model. Moreover, we
denote the set of affiliated elements of the algebraKsHLd by sKsHLddh. Hence, our approach leads
to the triple,

KsHLd , BsHLd , sKsHLddh,

which contains physical fields in as1d restricted,s2d extended, ands3d even more extended sense,
but which may all be reconstructed from the first element of the triple. On the level of the
observable algebra we will proceed the same way.

The main reason for choosing the above approach, based onKsHLd and not onBsHLd, is that
in this context unbounded generators are structurally related to the fieldsrespectively, observabled
algebra, which is defined in terms of algebraic relations between these generators.

C. Gauge transformations and local Gauss law

The groupGL of local gauge transformations related to the latticeL consists of mappings

L0 ] x → gsxd [ G,

which represent internal gauge transformations, and of gauge transformations at external points,

L`
0 ] z→ gszd [ G.

Thus,

GLªGL
i 3 GL

` = p
x[L0

Gx p
z[L`

0

Gz, s2.37d

with Gy>SUs3d, for everyy. We denote the corresponding Lie algebra by

gLªgL
i

% gL
` = %

x[L0
gx %

z[L`
0
gz, s2.38d

with gy>sus3d, for everyy.
The groupGL acts on the classical configuration spaceC as follows:

Csx,yd ] gsx,yd → gsxdgsx,ydgsyd−1 [ Csx,yd, s2.39d

with gsxd[Gx andgsyd[Gy. This action lifts naturally to functions onC. Moreover, we have an
action ofGx on itself by inner automorphisms. This yields an action ofGL by automorphisms on
each C* -dynamical systemsCsx,yd ,G,ad and, therefore, on the gluonic field algebraBL. For
generators ofBsx,yd,BL, this action is given by

UA
Bsx,yd → gA

CsxdUC
Dsx,ydsg−1dD

Bsyd, s2.40d

EA
Bsx,yd → gA

CsxdEC
Dsx,ydsg−1dD

Bsxd, s2.41d

with y standing also for̀ . Fermionic generators transform under the fundamental representation:

caAsxd → gA
BsxdcaBsxd. s2.42d

To summarize, the group of local gauge transformationGL acts on the field algebraAL in a natural
way by automorphisms.

It is easy to check that, forx[L0, the above automorphisms are generated by the following
derivations of the field algebra:
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GA
BsxdªrA

Bsxd − o
y↔x

EA
Bsx,yd, s2.43d

wherey↔x means that the sum is taken over all nearest neighborsy of x swith y also standing for
`d, and where

rA
Bsxd = o

a
Sc*aAsxdca

Bsxd −
1

3
dA

Bc*aCsxdca
CsxdD s2.44d

is the local matter charge density, fulfillingrA
Asxd=0. Observe that boths2.43d ands2.44d satisfy

the sus3d-commutation relations separately and that the sethGA
Bsxdj of generators spans the Lie

algebragL
i .

The local Gauss law atx[L0 reads

o
y↔x

EA
Bsx,yd = rA

Bsxd, s2.45d

meaning that the gauge generatorGA
Bsxd defined by formulas2.43d vanishes. Observe that for

everyx[]L0, the corresponding boundary fluxEA
Bsx,`d enters the Gauss law. All the Gauss laws

at boundary points can thus be easily “solved” by expressing the boundary fluxes in terms of
internal fields.

For z[L`
0, the generators2.43d of gauge transformations reduces to the boundary flux

EA
Bsz,xd. Nonvanishing of this flux means gauge dependence of the quantum state under the

action ofGz,GL
`. Neglecting these boundary fluxes means neglecting the possibility that a non-

trivial color charge occurs.4 As will be discussed in Sec. IV A, such a “truncated theory” is not
useful as a discrete approximation of the continuum theory.fThe continuum limit should be
constructed1 in terms of an inductivesrespectively, projectived limit of observable algebrassre-
spectively, quantum statesd. In this context, “external fluxes” represent the necessary link between
any two intersecting lattices belonging to a whole sequence of lattices.g

Remark:

s1d We stress that the Gauss laws2.45d is the lattice counterpart of the “covariant divergence
law”

DkE
k ; ]kE

k + fAk,E
kg = r

in the continuum theory. There, the volume integration yields on the left-hand side a standard
boundary flux termsby applying Stokes theoremd and an additional volume integral contri-
bution corresponding to thefAk,Ekg-term. In our lattice formulation, the volume integration
corresponds to summation over all local Gauss laws. This yields a sum over boundary terms
living on external linkssx,`d and a volume contribution equal toEsx,yd+Esy,xd on each
lattice link. This term mimics the termfAk,Ekg of the continuum theory,fe.g., it vanishes
only if the parallel transporterUsx,yd is trivial, which corresponds to the caseAk=0 in the
continuum theoryg.

s2d We add the “naive” Hamiltonian. Starting from the classical Hamiltonian

H =E H1

4
TrsEksxdEksxd + BksxdBksxdd − RscsxdigkDkcsxdd + csxdmcsxdJd3x

of continuum QCD, we obtain the following self-adjoint operator acting on the Hilbert space
HL of our lattice model:
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H =
a

2 o
usx,ydu[uLu1

EA
Bsx,ydEB

Asx,yd +
1

2g2aS o
s[uLu2

UA
As]sd + h.c.D

+
a2

2 o
usx,x+k̂du[uLu1

cAsxdigkUA
Bsx,x + k̂dcBsx + k̂d + h.c. +a3 o

x[uLu0
cAsxdmcAsxd,

s2.46d

wherea is the lattice spacing andk̂ is the vector of lengtha in the direction of thekth axis.
Here, byUA

Bs]sd we denote the Wilson loop corresponding to the plaquettes. By writing
“naive” Hamiltonian we mean that we disregard terms, by whichH must be supplemented in
order to avoid the so-called doubling problem. The dynamical content of this model is based
upon this Hamiltonian, which however will not be investigated in the present paper.

III. THE ALGEBRA OF INTERNAL OBSERVABLES

A. Basic definitions

Physical observables, internal relative toL, are, by definition, gauge invariant fields respect-
ing the Gauss law. Hence, we must take the subalgebra

AGL , AL

of GL-invariant elements of the field algebraAL. This means, in particular, that observables must
commute with all gauge generatorsGA

Bsxd.
Moreover, we must impose all relations inherited from the local Gauss laws at all internal

lattice sitessnot including external sitesd as defining relations of the observable algebra. This
means that the generatorsGA

Bsxd of GL
i must vanish in all possible gauge-invariant algebraic

combinations. Hence, imposings2.45d at the algebraicsrepresentation-independentd level means
that we require vanishing of the idealIL

i ùAGL, with IL
i being the ideal generated bygL

i . Thus, the
algebraOL

i of internal observables is obtained fromAGL by factorizing with respect to this ideal.
Definition 3.1: The algebra of internal observables relative toL is defined as

OL
i = AGL/hIL

i ù AGLj, s3.1d

where AGL ,AL is the subalgebra of GL-invariant elements ofAL and IL
i ,AL is the ideal

generated bygL
i . By the extended algebra of internal observables we mean the multiplier algebra

MsOL
i d.

Remark:The above idealIL
i is generated by unbounded elements in the sense of Woronowicz.

It is obtained by multiplying its generatorsGA
Bsxd from both sides by elements ofAL belonging to

their common dense domain, e.g., the so-calledsmoothelementsscorresponding toC`-functions
on Gd.

B. Classification of irreducible representations

By Corollary 2.3, we can identifyAL with the algebra of compact operators acting on the
Hilbert spaceHL, given bys2.35d. Under this identification, we have a unitary representation of
the gauge groupGL on HL and the subalgebraAGL can be viewed as the commutantsGLd8 of this
representation inKsHLd.

Consider the closed subspaceHL,HL consisting of vectors, which are invariant with respect
to internal gauge transformations,

HLªhh [ HLuGL
i h = hj. s3.2d

Theorem 3.2: The algebra of internal observables (respectively, extended internal observ-
ables) is canonically isomorphic with the algebra of those compact (respectively, bounded) op-
erators on the Hilbert spaceHL, which commute with the action of the group GL

`. This means
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OL
i > KsHLd ù sGL

`d8. s3.3d

Proof: Consider the direct sum decomposition

HL = HL % HL
', s3.4d

with HL
' denoting the orthogonal complement ofHL. Since the actions ofGL

i andGL
` commute,

HL is invariant under the action ofGL
` and, thus, under the full gauge groupGL. Consequently, by

unitarity of GL, HL
' is invariant, too. This implies the following block-diagonal structure of

elements ofGL with respect to the decompositions3.4d:

SA 0

0 B
D ,

with A andB denoting unitary operators onHL andHL
', respectively. It can be easily shown that

sGLd8 = HSC 0

0 D
D [ KsHLd:fA,Cg = 0 = fB,Dg, for all SA 0

0 B
D [ GLJ . s3.5d

Indeed, an arbitrary elements C
F

E
D

d belongs tosGLd8 iff

AC= CA, AE= EB, BF = FA, BD = DB,

for any s A
0

0
B

d[GL. For s h
0

d[HL we haves 0
Fh

d[HL
'. On the other hand, any element ofGL

i has the
form s 1

0
0
B

d. Thus,

S1 0

0 B
DS 0

Fh
D = S 0

BFh
D = S 0

Fh
D ,

for all elements ofGL
i , yielding s 0

Fh
d[HL. Thus,Fh=0, for all h[HL, implying F=0. In an

analogous way one showsE=0. This gives formulas3.5d.
We decomposes C

0
0
D

d= s C
0

0
0

d+ s 0
0

0
D

d. Since the restriction of a compact operator to a closed

subspace is compact, we haves C
0

0
0

d[KsHLd. Moreover, s 0
0

0
D

d[IL
i . This yields the direct sum

decomposition

sGLd8 = sKsHLd ù sGLd8d % sIL
i ù sGLd8d. s3.6d

Consequently, the algebra of internal observablesOL
i =sGLd8 / hIL

i ù sGLd8j is represented by the
direct sum complement

KsHLd ù sGLd8 = KsHLd ù sGL
i d8 ù sGL

`d8

in sGLd8. Finally, by s3.5d we have that arbitrary elements ofsGL
i d8 have the forms C

0
0
D

d, with
C[KsHLd and fD ,Bg=0, for any unitaryB acting onHL

'. Thus,KsHLd, sGL
i d8, yielding the

isomorphisms3.3d. Taking the multiplier algebra ofKsHLdù sGL
`d8 yields BsHLdù sGL

`d8. j

To find a presentation of this algebra in terms of generators and relations is a nontrivial task,
which will be dealt with in Sec. V. Here, we only stress that obvious observables like Wilson loops
are represented inHL as multiplication operators and, therefore, belong to the extended algebra
MsOL

i d. It is impossible, to build compact operators from Wilson loops only. For that purpose, one
must consider combinations of them with gauge invariant combinations of color electric fields,
compare with the Remark after the proof of Lemma 2.2.

Now observe that the restriction of the unitary action ofGL
` to the subspaceHL is not

irreducible. Thus,HL splits into the direct sum of irreducible subspaces. Each irreducible repre-
sentation ofGz, z[L`

0, is labeled by its highest weightsm,nd and is equivalent to the correspond-
ing tensor representation in the spaceSn

msC3d of m-contravariant,n-covariant, traceless and totally
symmetric tensors overC3, endowed with the natural scalar product induced by the scalar product
on C3. Therefore, irreducible representations ofGL

` are labeled by sequences of highest weights
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sm,nd = smz1
,…,mzM

;nz1
,…,nzM

d, s3.7d

where sz1,… ,zMd label the lattice external sites. These representations are equivalent to tensor
products of representations in spacesSnzi

mzisC3d. Let us denote byHL
sm,nd the sum of all the irreduc-

ible subspaces with respect to the action ofGL
`, which carry the same typesm ,nd. Then we have

HL = % HL
sm,nd. s3.8d

Obviously, every subspace of typesm ,nd is invariant under the action of the observable algebra,

OL
i HL

sm,nd , HL
sm,nd.

This yields the following.
Corollary 3.3: The irreducible representations ofOL

i are labelled by highest weight represen-
tations sm ,nd of GL

`. For any sm ,nd, the corresponding irreducible representation ofOL
i coin-

cides with the algebra of those compact operators onHL
sm,nd, which commute with the action of the

group GL
`.

We call the pairsm ,nd the boundary flux distribution carried by the gluonic field. In the next
section, it will become obvious that all distributionssm ,nd occur.

C. Explicit description of irreducible representations

Now we give an explicit description of the above irreducible representations, using the ex-
plicit form s2.35d of HL. Any element ofHL is a linear combination of fermionic vectorss2.36d
with coefficients beingL2-functions depending on gluonic potentialsU. The invariant subspace
HL,HL is spanned by vectors fromHL, which are scalars with respect toGL

i . This means that for
everyx[L0, all the color indicessA1,… ,And of the fermionic states2.36d must be saturated with
the upper indices of eitherUA

Bsx,yd or the canonical tensoreABC. After such contractions, we
are—in general—left with free indices at external pointszi [L`

0. Finally, such a vector can be
multiplied by gauge invariant functions of gluonic potentialsU. The general form of such func-
tions is as follows:

fsfUgd = fsTrsUg1
d,…,TrsUgn

dd,

wheref is a function ofn scalar variables, eachg=sx1,x2,… ,xmd is an arbitrary closed lattice path
andUg is the correspondingparallel transporteralongg,

Ug
A

B = UA
C2

sx1,x2dUC2
C3

sx2,x3d¯UCm−1
Bsxm−1,xmd. s3.9d

Let us denote the result of these operations by

C = SC
…,B1,…,Bnzi

,…
…,A1,…,Amzi

,…D . s3.10d

This is a collection ofGL
i -invariant vectors belonging toHL, labeled by tensor indices assigned to

external pointszi [L`
0, i,e., anHL-valued tensor over

C3M = %

zi[L`
0
Czi

3 .

Linear combinations of those elements span the invariant subspaceHL, with coefficients built
from products of tensors

tszid = St
A1,…,Amzi

B1,…,Bnzi szidD [ Tmzi

nzi sC3d. s3.11d

The resulting vector belonging toHL is a scalar obtained by contraction ofs3.10d with these
tensors,
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C = Cstsz1d,…,tszMdd = t
A1,…,Amzi

B1,…,Bnzi szid¯C
…,B1,…,Bnzi

,…
…,A1,…,Amzi

,…
. s3.12d

Each of the irreducible componentsHL
sm,nd is composed of combinationss3.12d, for which all the

tensorstszid are irreduciblessymmetric, tracelessd, i.e., wheretszid[Smzi

nzi sC3d,Tmzi

nzi sC3d. If t’s are

not irreducible,s3.12d is a sum of irreducible components belonging to different weightssm ,nd,
according to the decomposition of tensorstszid into the sum of products of irreduciblessymmetric,
tracelessd tensors with canonical tensorsdA

B, eABC andeABC.

IV. THE FULL ALGEBRA OF OBSERVABLES

A. Motivation and basic definitions

One of the main perspectives of this work is the construction of the thermodynamical limit of
finite lattice QCD. In Ref. 1 we have, in the context of finite lattice QED, outlined a strategy based
upon an inductivesrespectively, projectived limit procedure for observable algebrassrespectively,
state spacesd. In what follows, we will argue that in order to implement this strategy, we must
extend both the algebra of observablesOL

i sby adding certain “external observables”d and the
Hilbert spaceHL sby tensorizing with the Hilbert space of tensors at external pointsd. Then, each
collection sC

…,B1,…,Bnzi
,…

…,A1,…,Amzi
,…d of GL

i -invariantHL-vectors labelled by free indices at external points

fsees3.10dg will constitute a physical state.
Thus, let us consider two latticesL1 and L2 which are disjointsL1ùL2=xd and have a

common wall such that their sumL̃=L1øL2 is also a cubic lattice. Ifx[L1 and y[L2 are

adjacent points inL̃, then we identify their external points. This joint external pointz may be
visualized e.g., as the middle point of the connecting linksx,yd. The parallel transporter onsx,yd
is defined by

UA
Bsx,ydªUA

Csx,zdUC
Bsz,yd. s4.1d

Observables internal relative toL1 srespectively,L2d are built, among others, from parallel trans-
portersUg along lattice pathsg, which are completely contained inL1 srespectively,L2d. On the

other hand, there exist observables internal relative toL̃, built from parallel transporters along
paths crossing the set of joint external points. Such observables describe correlations between

phenomena occurring in the two disjoint regionsL1 andL2. As examples, consider theL̃-internal
observables

Jg
absx,ydªc*a

AsxdUg
A

BcbBsyd,

with g being a path fromx[L1 to y[L2, or observables

UgªUg
A

A,

with g being a closed path lying partially inL1 and partially inL2. These are operators belonging
to the multiplier algebraMsO

L̃

i d and, whence, areobservablesin the extended sense. According to

the above-mentioned inductive limit procedure, the observable algebra related toL̃ should be
constructed from observables related toL1 andL2. But, in order to construct observables related

to L̃ of the above typesdescribing correlationsd, we must admit fields “having free external tensor
indices,” likec*a

AsxdUg1

A
Csx,zd andUg2

C
Bsz,ydcbBsyd, with z being a joint external point. Quantities

of this type are usually called “charge carrying fields,” they were first introduced by Mandelstam
ssee Ref. 20d.

Observe that charge carrying fields do not act neither onHL1
nor on HL2

. They carry the
fundamentalsrespectively, its contragredientd representation of SUs3d associated with the corre-
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sponding external point. Thus, we must extend the Hilbert spaceHL by tensorizing it with the
Hilbert spaceT` generated by the fundamental and its contragredient representations of SUs3d
associated with all external points,

T`ª ^

z[L`
0
Tszd, Tszdª %

sm,nd
Tn

mszd. s4.2d

Here,Tn
mszd denotes the space of all—not necessarily irreducible—m-contravariant,n-covariant

tensors overCz
3. This way, we are led to consider the Hilbert spaceT` ^ HL. The action of the

gauge groupGL
` extends in a natural way fromHL to this tensor product,

Tsgdst ^ Cdªt ^ sg · Cd, t ^ C [ T` ^ HL, g [ GL
` . s4.3d

On the other hand, the natural action ofGL
` on T` can be also extended to this product,

Rsgdst ^ Cdªsg · td ^ C. s4.4d

It is clear that elements ofT` ^ HL may be represented as “wave functions with free boundary
indices,” i.e., objects of types3.10d. Indeed, such tensors can be naturally viewed as antilinear
mappings

T` ] s° st ^ CdssdªssutdC [ HL, s4.5d

wheres·u ·d denotes the scalar product inT`. Obviously, wave functionss3.10d are mappings of
this type, too.

The above extension of the Hilbert space is necessary if we want to construct the thermody-
namical limit of the theory by the above-mentioned projective limit procedure. According to this

procedure, physical states related toL1 are obtained from physical states related toL̃ by applying
a projection operatorPL1,L̃, which consists in averaging over the degrees of freedom located inL2.

More precisely, consider a wave functionc̃[HL̃, given by s3.12d, take the corresponding pro-

jector uc̃lkc̃u, split all parallel transporters on links joiningL1 and L2 according tos4.1d, and
integrate over all degrees of freedom related toL2 sincluding those located on external links of
L2d. The result is a mixed state related toL1, which can be represented as a mixture of pure states,
each of them being aHL1

-valued tensorC with respect to joint infinities ofL1 andL2. In other
words, the averaging procedure produces, in general, free indices on the common boundary be-
tweenL1 andL2. To be consistent, we must admit such free indices from the very beginning.

From the above discussion we see that tensorstszd occurring in elementst ^ C[T` ^ HL are
not a priori givenc-number quantities, but quantum averages over externalsi.e., contained inL2d
degrees of freedom.

There is, however, an additional requirement, which we impose on physical states of the
system: the averaging procedure described above should be compatible with gauge transforma-

tions. Assume that we average a statec̃[HL̃ over L2, with the parallel transporters on links
joining L1 andL2 split according tos4.1d. Any gauge transformationg at a common external point

z betweenL1 andL2, acting onc̃ can be either implemented by the action ofGL1

` or GL2

` . After
averaging overL2, the action of the gauge groupGL1

` is of course still represented byTsgd,
whereas the action ofGL2

` reduces toRsgd representing gauge transformations in “the rest of the
world.” But, compatibility of averaging with gauging means that the result of this gauge transfor-
mation should not depend upon its implementation. Hence, we postulate

TsgdC = RsgdC. s4.6d

As a result of our discussion, we define the physical Hilbert space as
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HLªhC [ T` ^ HLuTsgdC = RsgdC, for anyg [ GL
`j, s4.7d

with gauge transformation being, according to the above discussion, represented byT. The prop-
erty s4.6d is obviously not shared by elements, which have partially contracted external indices or
indices which do not come from the bosonic wave functionsUsx,`d. To illustrate this, we con-
sider the following examples:

C…,B1,…,Bn,…
…,A1,…,Am,…rAm

Bn szd or C…,B1,…,Bn,…
…,A1,…,Am,…rBn+1

Am+1szd, with rszd [ T1
1szd. s4.8d

Thus, s4.6d is fulfilled precisely by elements of types3.10d having all indices free. Admitting
objects of types4.8d would mean admitting additional degrees of freedomr, which would live at
joint external pointsz and would be relevant for the description of physical states on the lattice

L̃=L1øL2. In that case, these joint external points could not be removed fromL̃.
Using s4.2d, we have

HL = %
sm,nd

HL
sm,nd. s4.9d

Here,HL
sm,nd denotes the intersection ofHL with T`

sm,nd
^ HL, where

T`
sm,nd

ª ^

z[L`
0
Tnz

mzszd s4.10d

is the subspace of tensorial typesmz,nzd at eachz[L`
0. Note that, contrary tos3.8d, s4.9d is not a

decomposition into irreducible components.
Next, observe that the scalar products onHL and onT` induce a natural scalar product onHL.

Using the representations3.10d, it is given by

sCuFdHL
= SC

…,B1,…,Bnzi
,…

…,A1,…,Amzi
,…UF

…,D1,…,Dnzi
,…

…,C1,…,Cmzi
,…D

HL

3 ¯gA1C1
¯gAmzi

Cmzi

¯gB1D1
¯gBmzi

Bmzi¯ .

s4.11d

Tensors with different valencessi.e., having a different number of indicesd are, by definition,
orthogonal.

We define the full algebra of observables related toL as theC* -algebra of gauge invariant
compact operators acting onHL,

OLªKsHLd ù sGL
`d8. s4.12d

As before, we define theextendedfull observable algebra asMsOLd=BsHLdù sGL
`d8. Consider

the algebraOL
` of those compact operators acting onT`, which are invariant with respect to the

action ofGL
`. By classical invariant theory, this algebra is generatedsin the sense of Woronowiczd

by operations of tensorizing or contracting with SUs3d-invariant tensorsdA
B, eABC, andeABC, and

by projection operatorsPsm,nd onto T`
sm,nd,T`.

Proposition 4.1: The full observable algebra can be characterized as follows:

OL > OL
i

^ OL
` . s4.13d

Proof: Any compact gauge invariant operatorA acting onHL can be extended to a gauge
invariant operator on the whole tensor productT` ^ HL, using contractions and tensor products
with boundary tensorsr in T`, see formulas4.8d. More precisely, we set

AsCsr ^ CddªCsr ^ AsCdd, s4.14d

for any tensorr [T` and any contraction operatorC sthe result of the contraction on the right-
hand-side vanishesby definitionif a corresponding index is missing inACd. This way we have
proved that
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KsHLd ù sGL
`d8 > KsT` ^ HLd ù sGL

`d8. s4.15d

But we have

KsT` ^ HLd > KsT`d ^ KsHLd, s4.16d

and, consequently,

KsHLd ù sGL
`d8 > KsT`d ^ sKsHLd ù sGL

`d8d > KsT`d ^ OL
i . s4.17d

Taking again the intersection withsGL
`d8 and implementing it by the representationR yields the

thesis. j

Elements ofOL
` representing the rest of the world are calledexternal observables.

Adopting the point of view thatt occurring int ^ C represents the “quantum averages over the
external field degrees of freedom,” one can argue that the only trace of the action of external
observables, which may be seen fromL, are external gauge invariant operators onT`. Hence,
formulas4.13d could be taken as an axiomatic definition of the full observable algebra. The results
of the following section show that this approach is equivalent to the one used in the present
section.

B. Classification of irreducible representations

Obviously, T` is not irreducible with respect to the action ofOL
`. If tszd[Tn

mszd, then its
image under this action is a sum of components belonging toTl

kszd with sk, ld fulfilling

sm− ndmod 3 =sk − ldmod 3.

We see that theZ3-valued flux

Fszdªsmz − nzdmod 3 s4.18d

through each external linksx,zd, z[L`
0, is conserved under the action ofOL

`. Let us denote the
sequence ofZ3-valued fluxes assigned to all boundary points by

FªsFsz1d,Fsz2d,…d.

In what follows, we callF boundary flux distribution. Consequently, we define the subspace
HL

F,HL as the space spanned by those tensorss3.10d which fulfill condition Fszid=smzi
−nzi

dmod 3. In other words, we set

HL
F
ª %

mszid−nszidmod 3=Fszid
HL

sm,nd, s4.19d

with HL
sm,nd given by decompositions4.9d. Obviously, these subspaces are invariant under the

action of the full observable algebraOL andOL acts irreducibly on each of them. Moreover, the
physical Hilbert spaceHL splits into the direct sum of them,

HL = %
F

HL
F. s4.20d

We obviously have the following.
Lemma 4.2: The spacesHL

F provide all the irreducible representations of the algebra of
observablesOL.

We denote the irreducible component ofOL acting onHL
F, by OL

F.
Now, we define the global flux associated with a given boundary flux distributionsF setting
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F]LªS o
z[L`

0

FszdDmod 3. s4.21d

Let us denote the total number of gluonic and antigluonic flux lines running through the boundary
by

mª o
zi[L`

0

mszid, s4.22d

nª o
zi[L`

0

nszid. s4.23d

Then, we get

F]L = sm− ndmod 3. s4.24d

Lemma 4.3: The irreducible representations ofOL in HL
F and inHL

F8 are unitarily equivalent,
if and only if F and F8 carry the same global flux,

F]L = F]L8 .

Proof: Suppose that we are given a pairsF ,F8d such thatF]L=F]L8 . Then,HL
F is given by

s4.19d and, similarly,

HL
F8 = %

m8szid−n8szidmod 3=F8szid
HL

sm8,n8d.

For F]L=F]L8 , formula s4.24d implies that we can choose a pair of labelssm0,n0d and sm08 ,n08d
such thatm0=m08, n0=n08, Acting with tensorial operatorsj[OL

` stensorising and contracting with

canonical tensorsdA
B, eABC andeABCd on HL

sm0,n0d srespectively,HL
sm08,n08dd, we may pass to any other

subspaceHL
sm,nd of HL

F srespectively, any other subspaceHL
sm8,n8d of HL

F8d. This way we construct
a bijection between the two setssm ,nd and sm8 ,n8d corresponding toF andF8, preserving the
total number of gluonic and antigluonic lines,m=m8 andn=n8.

We shall construct an intertwining operator between representations onHL
F andHL

F8. For this
purpose, we first define a sequence of isometric isomorphisms of Hilbert spaces,

Usm8,n8dsm,nd:HL
sm,nd → HL

sm8,n8d

corresponding to the above bijection, as follows. We choose two finite familieshbaj and hgbj of
lattice paths inL, fulfilling the following conditions:

sid their starting pointsxa and yb, together with their end pointsza and wb belong to the
boundary]L,

sii d for every x[L`
0 there are exactlyDnsxdªnsxd−n8sxd pathsb starting fromx if Dnsxd

.0 and zero otherwise,
siii d for every x[L`

0 there are exactlyDmsxdªmsxd−m8sxd pathsg ending atx if Dmsxd.0
and zero otherwise,

sivd for every x[L`
0 there are exactly −Dnsxd paths b ending atx if Dnsxd,0 and zero

otherwise,
svd for everyx[L`

0 there are exactly −Dmsxd pathsg starting fromx if Dmsxd,0 and zero
otherwise.

Now, the action of the operatorUsm8,n8dsm,nd on a vectorC[HL
sm,nd is defined as follows. We

multiply the tensors3.10d by all parallel transportersUba

Ba
Aa

andUgb

Bb
Ab

, see formulas3.9d. Then, we
contract all the subsequent upper indicesBa with the corresponding subsequent lower indicesBi of
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C at the starting points of the curvesb and all the subsequent lower indicesAb with the corre-
sponding upper indicesAi of C at the end points of the curvesg. It is easy to see that the inverse
sadjointd operator consists in multiplyingC by the same transporters, but in contracting indicesAa

with the corresponding subsequent upper indicesAi of C at the starting points of the curvesb and
all the subsequent indicesBb with the corresponding lower indicesBi of C at the end points of the
curvesg. This implies that

Usm8,n8dsm,nd
* Usm8,n8dsm,nd = id = Usm8,n8dsm,ndUsm8,n8dsm,nd

* .

Organizing the operatorsUsm8,n8dsm,nd into a block matrix, we get an isometric isomorphism de-
noted by

UF8F:HL
F → HL

F8. s4.25d

Next, observe that the action

UF8F
*

OL
F8UF8F:HL

F → HL
F,

defines an irreducible representation ofOL on HL
F. By Lemma 4.2, this representation must be

unitarily equivalent toOL
F, i.e., there exists a unitarysintertwiningd operator

S:HL
F → HL

F, s4.26d

such that

S*UF8F
*

OL
F8UF8FS= OL

F.

It remains to show that equivalent representations yield equal global fluxes: IfHL
F andHL

F8

carry equivalent representations, then there exists an intertwinerVF8F, such that

F]L8 = VF8FF]LVF8F
−1 .

But, according to formulas4.24d, F]L is a scalar on every irreducible representation space ofOL.
Thus, it commutes withVF8F yielding F]L8 =F]L. j

Theorem 4.4: There are three inequivalent representations ofOL labeled by values of the
global fluxF]L. Consequently, the spaceHL splits into the sum of three eigenspaces ofF]L

HL = %
l=−1,0,1

HL
l .

Each of the spacesHL
l is a sum of superselection sectorsHL

F corresponding to all possible
distributionsF of the global fluxl. They carry equivalent representations ofOL.

Anticipating the final result, we call the spacesHL
l “charge superselection sectors,” in contrast

to the “boundary-flux-distribution superselection sectors”HL
F. sFor an analogous discussion in

continuum QED see Ref. 34.d

C. Global color charge and superselection structure

Here we show that, according to the global Gauss law, irreducible representations ofOL are,
alternatively, labeled by global color chargestrialityd, which is carried by the quark fields. We
briefly recall the notion of triality and derive the global Gauss law, for details see Ref. 4.

Consider any integrable representationF of the Lie algebra sus3d on a Hilbert spaceH, i.e., a
collection of operatorsFA

B in H, fulfilling FA
A=0, sFA

Bd* =FB
A, and
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fFA
B,FC

Dg = dC
BFA

D − dA
DFC

B. s4.27d

By s2.22d, s2.44d, ands2.5d, the operatorsEA
Bsx,yd andrA

Bsxd, occurring on both sides of the local
Gauss law, are of this type. Integrability means that for eachF there exists a unitary representation
G]g→Fsgd[BsHd of the groupG such thatF is its derivative. IfF1 andF2 are two commuting
sintegrabled representations of sus3d, then so isF1+F2. Such a collection of operators is an
operator domainin the sense of Woronowicz, see Ref. 35.

We define an operator function on this domain, i.e., a mappingF→wsFd, which satisfies
wsUFU−1d=UwsFdU−1 for an arbitrary isometryU, as follows: For any integrable representationF
of sus3d, consider the corresponding representationF of G. Its restriction to the centerZ of G acts
as a multiple of the identity on each irreducible subspaceHa of F,

FszduHa
= xF

aszd ·1Ha
, z[ Z.

Obviously,xF
a is a character onZ and, therefore,sxF

aszdd3=1. We identify the group of characters
on Z=hz ·13uz3=1,z[Cj with the additive groupZ3>h−1,0,1j by assigning to any characterxF

a

a numberksad[ h−1,0,1j fulfilling

xF
asz ·13d = zksad.

Hence, there exists aZ3-valued operator functionF→wsFd, defined by

zwasFd = xF
asz ·13d, s4.28d

wsFd = o
a

wasFd1Ha
. s4.29d

SincexF
a are characters, we have

wsF1 + F2d = wsF1d + wsF2d, s4.30d

for F1 andF2 commuting. Now, using the equivalence of each irreducible representationa of G
with highest weightsmsad ,nsadd with the tensor representation in the spaceTmsad

nsadsC
3d of

msad-contravariant,nsad-covariant, completely symmetric and traceless tensors overC3, we get

xF
aszd = zwasFd = zmsad−nsad, s4.31d

for z=z ·13[Z. Thus, we have

wasFd = smsad − nsaddmod 3 s4.32d

for every irreducible highest weight representationsmsad ,nsadd. In Ref. 4 we have given an
explicit construction ofwsFd in terms of Casimir operators ofF.

Applying w to the local Gauss laws2.45d and using additivitys4.30d we obtain a gauge
invariant equation for operators with eigenvalues inZ3,

o
y↔x

wsEsx,ydd = wsrsxdd, s4.33d

valid at every lattice sitex. The quantity on the right-hand side is thesgauge invariantd local color
charge density carried by the quark field.

Using the transformation laws2.15d for Esx,yd under the change of the link orientation and
additivity s4.30d of w, we have for every lattice bondsx,yd:

wsEsx,ydd + wsEsy,xdd = wsEsx,ydd + wsĔsx,ydd = wsEsx,yd + Ĕsx,ydd, s4.34d

because representationsE and Ĕ commute. But the following identity holds:
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wsEsx,yd + Ĕsx,ydd = 0, s4.35d

because both representations have the same irreducible subspacesHa, with the values ofmsad and
nsad exchanged.fThe identity follows also directly from formulas2.21d. It implies that the second

order Casimirs forE and Ĕ coincide,K2sEd=K2sĔd, whereasK3sEd=−K3sĔd, cf. Ref. 4.g
Now, we take the sum of equationss4.33d over all lattice sitesx[L0. Due to the above

identity, all terms on the left-hand side cancel, except for contributionswsEsx,`dd;wsEsx,zdd,
z[L`

0, coming from the boundary. The irreducible subspaceHL
F,HL characterized by the flux

distributionF, sees4.19d, is an eigenspace of the gauge invariant operatorwsEsx,zdd, with eigen-
value smz−nzdmod 3=Fszd, according to formulas4.32d. Thus, usings4.21d we obtain

o
x[]L0

wsEsx,`dd = F]L, s4.36d

with F]L being the globalZ3-valued boundary flux corresponding to the flux distributionF. On
the right-hand side we get thesgauge invariantd global color chargestriality d, carried by the matter
field

tLª o
x[L0

wsrsxdd. s4.37d

Thus, theglobal Gauss lawtakes the following form:

F]L = tL. s4.38d

Both quantities appearing here take eigenvalues in the centerZ>Z3 of G.
Comparing with Theorem 4.4, the global Gauss law yields another, equivalent characterization

of irreducible representations of the observable algebra.
Corollary 4.5: The inequivalent representations ofOL are labeled by eigenvalues of global

color chargetL.
Remark:We illustrate the main result of this paper. Observe that we can assign to single quark

fields fbeing in the defining representation of SUs3dg triality 11 and, consequently to antiquarks
21 sor the other way aroundd. A single lattice gluon field has, of course, triality 0. Now, imagine
a state withm quarks andn antiquarks, located in an arbitrary way insideL. By additivity of
triality, tL has eigenvaluem−n mod 3 on this state. As discussed already, gauge invariance of
states with respect to internal gauge transformations implies that all quark indices insideL must
be contracted. Basically, this can be done by connecting quark–antiquark pairsinsideL with flux
lines built from gluonic parallel transporters and by contracting with canonical tensorsdA

B, eABC,
andeABC. On the other hand, some of the flux lines starting at a antiquarksor ending at a quarkd
inside can run through the boundary to end at a quarksor start from an antiquarkd outsideof L. By
the global Gauss law, the total number of gluonic flux lines minus the number of antigluonic flux
lines, calculated modulo 3, is equal to the eigenvalue of triality. But the external quark and
antiquark fields are not taken into account by a theory onL. After averaging over external fields
we are left with the action of external gauge invariant operatorsdA

B, eABC andeABC. The flux lines
running through the boundary may by contracted at pointsz[L`

0 with these tensors, eventually
leaving either nonestL=0d, or one gluonicstL= +1d or one antigluonicstL=−1d noncontracted
line. These three values of triality correspond to the only possible inequivalent representations of
the observable algebra. Thus, in particular, we have rigorously confirmed the heuristic picture,
which earlier was taken as a starting point for discussing the quark confinement problem, see e.g.,
Ref. 16.

V. GENERATORS AND RELATIONS

In this section we wish to find a presentation of the observable algebra in terms of generators
and relations, inherited from canonical commutation relations of fields and from the Gauss law. In

032303-22 J. Kijowski and G. Rudolph J. Math. Phys. 46, 032303 ~2005!

                                                                                                                                    



order to formulate and to study field dynamics, we rather need a presentation in terms of a set of
independent generators. Thus, we wish to solve the Gauss law relations explicitly, to end up with
a reduced set of generators and theirsantidcommutation relations. We show how to implement this
idea by a special gauge fixing procedure based upon the choice of a lattice tree. This procedure
leaves us, however, with some discrete gauge freedom. Moreover, we restrict ourselves to the
generic stratum of the gauge group action, disregarding all nongeneric strata. But even there, our
method works only on a dense subset. These two obstructions to global gauge fixing reflect the
Gribov problem, which is well known in the continuum theory, see also Ref. 36 for a discussion
of this problem in the Ashtekar theory. Thus, following the gauge fixing idea leads to some
delicate problems.

How to overcome these problems will be discussed in separate papers, see Refs. 21 and 22.
Instead of trying to fix the gauge, one rather must find a generating set of genuine invariants.
Below we show that it is quite easy, to write down a highly redundant set of invariants, but it is
very hard to reduce it. If we want to work with genuine invariants we are automatically forced to
consider higher order monomials, built from basic bosonic and fermionic fields. These invariants
inherit, of course, somesantidcommutation relations, but the algebra generated by them does not
close on the linear level. This way interesting new algebras occur. We refer to Ref. 37 for some
first remarks on their structure. It turns out that algebras of similar types have been discussed in
different areas of mathematical physics throughout the last decade, see the list of references in
Ref. 37.

Since the generators ofOL
` have been already listed before, it remains to discussOL

i in terms
of generators and relations.

A. Generators of OL
i

Below, we define a set of generators ofOL
i in terms of gauge-invariant combinations of the

fieldssU ,E,c ,c*d. In the next sections, we will systematically reduce the number of generators to
a minimal set.

Theorem 5.1: The observable algebraOL
i is generated by the following gauge invariant

elements (together with their conjugates):

UgªUg
A

A, s5.1d

Egsx,ydªUg
A

BEB
Asx,yd, s5.2d

Jg
absx,ydªc*a

AsxdUg
A

BcbBsyd, s5.3d

Wabg
abc sx,y,zdª1

6eABCUa
A

DUb
B

EUg
C

FcaDsxdcbEsydccFszd, s5.4d

with g denoting an arbitrary closed lattice path in formula (5.1), a closed lattice path starting and
ending at x in (5.2) and a path from x to y in (5.3). In formula (5.4), a, b andg are paths starting
at some reference point t and ending at x, y, and z, respectively. In formula (5.2), both x and y
stand also for̀ .

For the proof see Appendix B.
Note that the observablesJg

ab and Wabg
abc represent hadronic matter of mesonic and baryonic

type. They will play a basic role in future investigations towards a construction of an effective
theory of interacting hadrons. Looking at the lattice Hamiltonian, given bys2.46d, we see that the
kinetic energyE2 of the gluonic field is given by second Casimirs and its potential energyB2 is
given by Wilson loopsUg. By the above theorem, the Casimirs can be expressed in terms of the
above invariants. It is easy to see that the matter field part is given in terms ofJ’s swhich, however,
are related withW’s via nonlinear constraintsd. At present, it is not quite clear, which parametri-
zation of the Hamiltonian in terms of observables will be the most efficient one for future
applications.
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B. The reduction idea

The above generating set turns out to be highly redundant. There is a number of nontrivial
relations between generators, inherited from the canonicalsantid commutation relations and from
the local Gauss laws. Below, we will show how to solve the local Gauss laws explicitly. This will
be done by using a technique, based upon the choice of alattice tree. This way we shall prove that
OL

i can be decomposedsin a tree-dependent wayd into the tensor product of a gluonic and a matter
field part. This presentation ofOL

i can be constructed in two steps:

s1d First we fix a lattice pointx0 and impose gauge invariance with respect to the pointed gauge
group atx0,

GL
0 = GL

i,0 3 GL
` s5.5d

with

GL
i,0 = p

x0Þx[L0

Gx. s5.6d

Moreover, we implement the Gauss laws at all pointsL0]xÞx0, i.e., we factorize with
respect to the idealIL

0 ù sGL
0 d8, with IL

0 being generated by the Lie algebragL
i,0,gL

i of GL
i,0.

This gives the pointed algebra of internal observables,

OL
i,0
ªsGL

0 d8/hIL
0 ù sGL

0 d8j. s5.7d

s2d Next, we impose onOL
i,0 gauge invariance with respect to the residual gauge groupGx0

, and
factorize with respect to the idealIx0

,OL
i,0 generated by the local Gauss law atx0.

Whereas the first step can be performed without any obstructions, in the second step, all the
problems mentioned at the beginning of this chapter show up.

Theorem 5.2:The internal observable algebra can be viewed as follows:

OL
i > sGx0

d8/hIx0
ù sGx0

d8j, s5.8d

wheresGx0
d8 andIx0

are considered as subalgebras ofOL
i,0.

Proof: SinceGx0
commutes withGL

0 , we havesGLd8=sGL
0 d8ù sGx0

d8. Moreover, the invariant
subspacesH0 andHx0

of GL
i,0 andGx0

are both closed subspaces ofHL, whereasIL
0 andIx0

are
composed of operators vanishing onH0 andHx0

, respectively. Observe that

H0 ù Hx0
= HL

and that the ideal

IL = IL
0

% Ix0

is composed of those operators which vanish on this intersection. Using completely analogous
arguments as in the proof of Theorem 3.2, we obtain

OL
i,0 = KsH0d ù sGL

`d8. s5.9d

In the second step we must factorize the commutantsGx0
d8 of Gx0

in OL
i,0 with respect to

Ix0
ù sGx0

d8. But by s5.9d we have

sGx0
d8 = sGx0

d8sKsH0dd ù sGL
`d8,

wheresGx0
d8sKsH0dd is the commutant taken inKsH0d. Again, using similar arguments as in the

proof of Theorem 3.2, we get
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sGx0
d8/hIx0

ù sGx0
d8j > KsHLd ù sGL

`d8,

which is isomorphic toOL
i , by formulas3.3d. j

C. Reduction with respect to pointed gauge transformations

As already mentioned, a convenient way to solve relations between generators is to choose a
tree, i.e., to assign a unique path connecting any pair of lattice sites. More precisely, a tree is a pair
sx0,Td, wherex0 is a distinguished lattice sitescalledrootd andT is a set of lattice links such that
for any lattice sitex there is exactly one path fromx to x0, with links belonging toT. We denote
this path bybsxd. Consequently, for any pairsx,yd of lattice sites, there is a uniquealong treepath
from x to y, equal tob−1syd+bsxd, wherea+b denotes the composition of the two pathssa path
obtained by first running throughb and next throughad andb−1 denotes the path taken with the
opposite orientation. This does apply also to external sites, becauseexternal linksare treated as
belonging to the treea priori.

To find an explicit set of generators of the pointed observable algebraOL
i,0, given bys5.9d, we

“parallel transport” all generators of the field algebra to the lattice root using the abovealong tree
paths. The transported generators feel only gauge transformations atx0 and, therefore, are invari-
ant with respect toGL

i,0. Hence,sGL
0 d8 is generated by

s1d

hUg
A

B,ET
A

Bsx,yd,cT
aAsxd,cT

*aAsxdj, s5.10d

whereg is an arbitrary closed curve starting and ending atx0 and

ET
A

Bsx,ydªUbsxd
A

CUbsxd−1
D

BEC
Dsx,yd, s5.11d

cT
aAsxdªUbsxd

A
BcaBsxd, s5.12d

with bsxd denoting the unique tree path fromx to x0.
s2d Boundary fluxes,

ET
A

Bsx,`dªUbsxd
A

CUbsxd−1
D

BEC
Dsx,`d. s5.13d

The generating sets5.10d is still enormously redundant. To reduce this redundancy, in a first step,
we restrict the admissible paths to the form

gsx,ydªbsxd+sx,yd+b−1syd. s5.14d

We denote

UT
A

Bsx,ydªUg
A

sx,ydB.

It is obvious that anyUg
A

B may be reconstructed from those quantities. Thus,

hUT
A

Bsx,yd,ET
A

Bsx,yd,cT
aAsxd,cT

*aAsxdj s5.15d

can be taken, together with boundary fluxes, as a set of generators ofsGL
0 d8. The bosonic and

fermionic generators fulfill the same commutation relations as generatorsUA
Bsx,yd andEA

Bsx,yd
ssee Sec. IId. The local Gauss law can be easily rewritten,

rT
A

Bsxd = o
y↔x

ET
A

Bsx,yd, s5.16d

whererT is given bys2.44d with caAsxd replaced bycT
aAsxd. However, a nontrivial commutator

betweenET
A

Bsx,yd and the latter occurs.
Next, observe that for any on-tree-linksx,yd[T we have
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UT
A

Bsx,yd = dA
B.

Thus, the relevant information is carried by thoseUT’s, which correspond to off-tree-links
sx,yd¹T. On the other hand, exactly those among the fieldsET, which correspond to off-tree-
links, may be chosen as independent generators. Indeed, the on-treeET’s can be calculated by
solving the local Gauss law at all the pointsxÞx0. Observe that the off-treeET’s have trivial
commutators withcT’s. Thus, factorization ofsGL

0 d8 with respect to the local Gauss laws at all
points xÞx0 consists in taking only independent internal generators, i.e., those amongs5.15d,
which correspond to off-tree links.

Let us denote the number of lattice sites byN and byL the number of links. Since the number
of on-tree links is equal toN−1, the number of off-tree links is equal to

K = L − N + 1.

Enumerate these links settingsxi ,yid¬,i, where i =1,… ,K. We have thus the following set of
independent generators ofOL

i,0:

hUT
A

Bs,id,ET
A

Bs,id,cT
aAsxd,cT

*aAsxdj, s5.17d

together with the boundary fluxess5.13d. The latter commute with all generatorss5.17d and, after
the final reduction with respect toGx0

, they will generate the center of the algebra.
Generatorss5.17d fulfill canonical santidcommutation relations, given by formulass2.22d,

s2.23d, ands2.5d. They are all subject to gauge transformations at the tree rootx0. Observe that,
since bosonic and fermionic generators commute, we have

OL
i,0 = ÕT

glu
^ ÕT

mat
^ OL

b , s5.18d

whereÕT
glu is the gluonic part generated byhUT

A
Bs,id ,ET

A
Bs,idj and ÕT

mat is the matter field part,

generated byhcT
aAsxd ,cT

*aAsxdj. According to the above discussion, the gluonic algebraÕT
glu is

isomorphic to the generalized CCR-algebra over the group G, spanned byK pairs of generators,

andÕT
mat is isomorphic to the CAR-algebra, generated by 12N pairs of anticommuting elements.

The subalgebraOL
b denotes the component generated by boundary fluxess5.13d.

D. Removing the residual gauge freedom

In the first part of this paper we have mentioned thatG can be, basically, an arbitrary compact
Lie group. Here, we definitely considerG=SUs3d only. In what follows, we denote theK-fold
Cartesian product ofG by GK=G3¯3G and elements ofGK by g=sg1,… ,gKd.

Let us denote the off-tree variables by

Ei = ETs,id, Ui = UTs,id, i = 1,…,K.

The residual gauge groupGx0
>G acts on this set of variables by

sEi,Uid → sgEig
−1,gUig

−1d, s5.19d

with g=gsx0d[Gx0
. In what follows, we want to fix this residual gauge freedom. Thus, we must

consider the action ofG on GK by inner automorphisms

G 3 GK ] sh,sg1,…,gKdd ° shg1h
−1,…,hgKh−1d [ GK.

We wish to parametrize, by choosing a gauge, the space of equivalence classes of elements ofGK

with respect to this group action, which by abuse of language, will be called AdG. Factorizing
with respect to this action, we obtain the orbit spaceGK /Ad G. This is a complicated stratified set,
which will be more deeply discussed in Ref. 21. Here, we restrict ourselves to the generic orbit
type, respectively, the generic stratumGgen

K , which is an open and dense submanifold inGK. An
elementg=sg1,… ,gKd[GK belongs to the generic stratum, iff its stabilizer is the centerZ3 of G.
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It is quite obvious thatg belongs to the generic stratum, iff there does not exist any common
eigenvector of the matricessg1,… ,gKd. Moreover, one can show21 that g belongs to the generic
stratum, iff there exists a pairsgi ,gjd or a triplesgi ,gj ,gkd of elements not possessing any common
eigenvector. Using arguments developed in Ref. 36 one can prove that the bundle

p:Ggen
K → Ggen

K /Ad G

is nontrivial, forKù2. It can be considered as a principal fiber bundle with structure groupG/Z3.
Moreover, one can find a system of local trivializationssrespectively, local sectionsd of this
bundle, defined over a covering ofGgen

K /Ad G with open subsets, which are all dense with respect
to the natural measuresthe one induced by the Haar measured.

Thus, let

Ggen
K /Ad G . U ] fgg → ssfggd ; ss1,…,sKdsfggd [ GK

be one of these local sections, withU being dense inGgen
K /Ad G. Since AdG actsspointwised on

this section, we can fix the gauge by bringings to a special form. Since pairs of group elements
being in a nongeneric position form a set of measure zero inG2, we can—without loss of
generality—assume thatsK−1 and sK are in generic position onU. That means they have no
common eigenvector. Thus, on this neighborhood, we can fix the gauge in two steps: First, we
diagonalizesK−1 and next we use the stabilizer of this diagonal element to bringsK to a special
form. SincesK−1 andsK have no common eigenvector, this fixes thesremainingd stabilizer gauge
completelysup toZ3 d. Let us denote the functionswhich obviously depends only onsK−1 andsKd
implementing this gauge transformation by

p−1sUd ] ss1,…,sKd ° fss1,…,sKd = fssK−1,sKd [ G

and the local section after gauge fixing by

Ggen
K /Ad G . U ] fgg → fsfggd ; sf1,…, fKdsfggd [ GK, s5.20d

with

f i = fssK−1,sKd ·si · fssK−1,sKd−1, i = 1,…,K.

The sectionf can be made explicit by using a system of local trivializations ofG as an SUs2d-
principal bundle overS5. We refer to Ref. 21 for details and to Appendix A for one example of a
local section of this bundle.

Suppose that we had started with another sections̃, related tos by a gauge transformation

given byg[G. Then, the functionf̃ssK−1,sKd= fssK−1,sKd ·g−1 yields the same sectionf. Thus,f is
equivariant with respect to gauge transformations,

fsg ·sK−1 ·g−1,g ·sK ·g−1d = fssK−1,sKd ·g−1, s5.21d

and in this sense, we can consider thef i as being “gauge invariant.” It is challenging to param-
etrize classesfgg of gauge equivalent configurations more intrinsically, namely in terms of genuine
invariants. In Ref. 21 we will prove the following.

Theorem 5.3: Any function onG2 invariant with respect to the action by inner automor-
phisms

G 3 G2 ] sh,sg1,g2dd ° shg1h
−1,hg2h

−1d [ G2

can be expressed as a function in the following invariants and their complex conjugates:

T1sg1,g2dªtrsg1d,

T2sg1,g2dªtrsg2d,
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T3sg1,g2dªtrsg1g2d,

T4sg1,g2dªtrsg1g2
2d,

T5sg1,g2dªtrsg1
2g2

2g1g2d − trsg1
2g2g1g2

2d.

Moreover, there is one algebraic relation between those invariants such that for given values of Ti,
i =1,… ,4, there are at most two possible values of T5.

By this theorem, it follows that the entries off i, i =K−1, K, and, therefore, the group elements
f i themselves can be expressed in terms of the above set of invariants,

f i = f isT1sgK−1,gKd,…,T5sgK−1,gKdd, i = K − 1,K.

Since the sectionf parametrizes the gauge orbit space, it is clear that the remaining group elements
f i, i =1,… ,K−2, can be expressed as a function of tracess5.1d, too.

To summarize, applying this special gauge-fixing to a gauge configurationsU1,… ,UKd, with
genericsUK−1,UKd corresponding to the pairsxK−1,yK−1d, sxK ,yKd of off-tree links, we obtain a
local parametrization of its gauge equivalence class bysu1,… ,uKd defined by

uiªfsUK−1,UKd ·Ui · sfsUK−1,UKdd−1. s5.22d

We denote the indices of these matrices byr ,s,… ,ui =hui
r
sj, and, consequently, the matrix ele-

ments off by f =hf r
Aj. Then we have

ui
r
s = f r

A ·Ui
A

B · sf−1dB
s s5.23d

and the gauge transformations5.21d reads

f r
B → f r

A · sg−1dA
B, s5.24d

sthe color indicesA,B,C,… feel gauge transformations, whereas indicesr ,s,… — assuming the
same values 1,2,3—label “gauge-invariant quantities”d.

By inspecting formulasA1d, we see that there are two independent degrees of freedom in the
matrix uK−1 and six independent degrees of freedom in the matrixuK. They may be combined into
eight degrees of freedom of a single element ofG in the following way:

u0ªuK−1 ·uK · suK−1d−1. s5.25d

The above procedure is defined up to a discrete symmetry only. This symmetry arises from the
action of the permutation groupS3,Ad SUs3d on entries of the diagonal matrix
uK−1[T2,SUs3d. To fix this S3-gauge freedom means choosing for each element ofT2/S3 a
unique representative on the torusT2. Changing this representative by an even permutation does
not change the image of the mappingsuK−1,uKd°u0 given by s5.25d, which does not coverthe
entire group SUs3d but only “ half of it.” Using also odd permutations we cover a dense subset of
SUs3d, but then the discrete symmetryu0→u0 must be taken into account.

It can be shown that the decomposition ofu0 into the above product of elements of special
form is uniquesup to the discrete symmetryd and bothuK−1 anduK may be reconstructed fromu0.
By the above discussion, we can consider the observableu0 as SUs3d-valued, provided we keep
the discrete symmetryu0→u0. To summarize, we have shown that, locally, the full information
carried by the fieldsUi is encoded inK−1 elementsui, i =0,… ,K−2, of G, modulo the discrete
symmetry just described.

Analogously, we constructK gauge invariant generators

ei
r
s = f r

A ·Ei
A

B · sf−1dB
s, s5.26d

which have to fulfill the residual Gauss law atx0. To describe the unconstrained information
carried by the fieldsei, we divide the information contained ineK−1 and eK s16 gauge invariant
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generatorsd into eight independent generators encoded in the momentume0 canonically conjugate
to u0 and eight other combinations ofeK−1 and eK, which can be reconstructed from the global
Gauss law atx0. More precisely, at each point of the sections5.20d, we decompose the pair
seK−1,eKd into a pairseK−1

i ,eK
i d of vectors tangent to this section and a pairseK−1

' ,eK
'd of vectors

orthogonal to it. Here, orthogonality is of course meant in the sense of the natural scalar product
induced by the Killing metric. The tangent components sum up to the momentume0 canonically
conjugate tou0. More precisely,e0 is the image ofseK−1

i ,eK
i d under the tangent mapping of

suK−1,uKd°u0 given by s5.25d. By a simple calculation, we get

e0 = sAd u0
−1 − 1d+Ad uK−1seK−1

i d + Ad uK−1seK
i d, s5.27d

This formula is invertible and enables us to calculate uniquely botheK−1
i andeK

i once we knowe0.
On the other hand, the sumeK−1+eK is given from the Gauss law. This enables us to calculate
suK−1,uK ,eK−1,eKd once we knowsu0,e0d. We end up with 2sK−1d independent generatorssei ,uid,
i =0,… ,K−2, of the gluonic part of the observable algebra.

It is easy to show that these bosonic generators satisfy the generalized canonical commutation
relations overG :

fei
r
s,e j

p
qg = di jsd

p
sei

r
q − dr

qei
p
sd, s5.28d

fei
r
s,u j

p
qg = di jsdp

sui
r
q − 1

3dr
sui

p
qd , s5.29d

fui
r
s,u j

p
qg = 0. s5.30d

For the fermionic observables, we denote

aarsxdªf r
AcT

aAsxd = f r
AUbsxd

A
BcaBsxd. s5.31d

Introducing the joint indexk=sa,r ,xd, k=1,… ,12N, we get,

akªaarsxd. s5.32d

Formally, these quantities fulfill the canonical anticommutation relations

fa*k,alg+ = dk
l , s5.33d

but again, an additional discrete symmetry must be taken into account. This symmetry arises,
because the sectionf, given bys5.20d, is defined only up to the stabilizerZ3 of the generic stratum.
Observe that this ambiguity does not affect the bosonic quantitiesu and e, because they are
“quadratic” in f.

Let us denote the bosonicsrespectively, fermionicd observable algebra part, obtained from

ÕT
glu srespectively,ÕT

matd after fixing the residual gauge, byOT
glu srespectivelyOT

matd. Then we have

OL = OT
glu

^ OT
mat

^ OL
b

^ OL
` . s5.34d

The above discussion shows that locallyson a dense subset of the generic stratumd and up to
discrete symmetries,OT

glu srespectively,OT
matd coincides with the algebra of generalized canonical

commutationsrespectively, anticommutationd relations for the reduced datasui ,eid, with i =0, …,
K−2 frespectivelysak,a*kd, with k=1,… ,12Ng.

As already mentioned at the beginning of this section, a systematic study ofOL as an algebra
defined in terms of generators and relations on the level of genuine invariants will be presented in
Refs. 21 and 22. In particular, we will show that the fermionic part is generated by the following
sesquilinear and trilinear combinations ofak anda*k:

jkl = a*kal , s5.35d
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wpqr = apaqar , s5.36d

w* i jk = a*ka* ja* i . s5.37d

Similarly, to parametrize the bosonic part in terms of genuine invariants, one must take—
according to classical invariant theory—all trace invariants, built frome andu. This set is, how-
ever, highly redundant and it is a complicated task to find, for a fixed numberK, the full set of
relations.
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APPENDIX A: A LOCAL PARAMETRIZATION OF „SU„3…ÃSU„3……gen /Ad SU „3…

Consider the action of the group of inner automorphisms, here denoted by Ad SUs3d, on
SUs3d3SUs3d. In Sec. V D we have used an explicit local parametrization of the generic stratum
of this action in terms of a bundle section. Such a section can be obtained as follows. Let
sg1,g2d[SUs3d3SUs3d be a pair of group elements lying in the generic stratum. First, we
diagonolizeg1. Sinceg1 is generic, the stabilizer of the Ad-action is isomorphic to Us1d3Us1d.
Next, treating SUs3d as an SUs2d-principal bundle overS5, one can bringg2 to a special form
using the Us1d3Us1d-action. This yields a family of local sections defined on dense subsets over
the generic stratum, corresponding to a family of local trivializations of the SUs2d-principal bundle
SUs3d→S5. For details we refer to Ref. 21.

As a local section of the above type one can choose

f1 = 3l1 0 0

0 l2 0

0 0 l3
4, f2 = 3a − d−1b†

b dS1 −
bb†

1 + uauD 4 3 31 0 0

0 c d

0 − d c
4 . sA1d

Here,li are eigenvalues ofg1, fulfilling

ul1u = ul2u = ul3u = 1, l1l2l3 = 1.

The entries

a,d [ C,b = Fb1

b2
G, b1,b2 [ R+,

of the first factor inf2 fulfill

uau2 + b1
2 + b2

2 = 1, udu = 1,a = uaud−2

and the lower diagonal block of the second factor is an SUs2d-matrix in the standard parametri-
zation, with

ucu2 + udu2 = 1.
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APPENDIX B: PROOF OF THEOREM 5.1

Using basic results from invariant theory, see Ref. 38, we get that the only gauge invariant
combinations built exclusively from generatorsUA

B are traces of their products and, whence,
quantities of types5.1d.

Any other invariant is built by contracting the color indices of the fieldsEA
Bsx,yd, UA

Bsx,yd,
caAsxd, andc*

aAsxd. Consider such an invariantI and replace in its definition the above fields by
their gauge invariant counterpartse, u, a, anda* . In particular, the missing on-tree quantitiese and
u, are defined as combinations of the off-tree ones, using the Gauss lawsfor ed and the Bianchi
identities sfor ud. Formally, the new invariant obtained this way coincides withI, because the
factors f and f−1 coming from the definition of the quantitiese, u, a, and a* disappear under
contraction. Moreover, all the fermionic quantitiesa and a* appearing in the invariant may be
grouped to give quantitiesj, w, andw* .

As already mentioned in Sec. V D, the invariant quantitiesu can be expressed assnonlineard
functions of traces ofU finvariantss5.1dg. We show that alsoe, j, w, andw* can be expressed in
terms of invariantss5.1d–s5.4d, listed in Theorem 5.1. Invariantsei

r
s can be dealt with as follows:

We contract them with eight differentu’s and use formulass5.23d ands5.26d to obtain the follow-
ing system of linear equations for the eight independent components ofei

r
s:

ei
r
su

s1ds
r = Eg1

,…,ei
r
su

s8ds
r = Eg8

,

with the right-hand sides all being invariants of types5.2d. Analogously, we can write down
systems of linear equations of this type for the quantitiesj, w, andw* . Solving these systems of
linear equations, we obtaine, u, j, w, and w* as functions, linear with respect to invariants
s5.2d–s5.4d and nonlinear with respect to invariantss5.1d listed in Theorem 5.1.

Hence, we have formally expressedI as a combinationĨ of invariants listed in Theorem 5.1.
In particular all Casimir operators, built from the electric fieldsE may be expressed in terms of
these generators.

The above formulas, expressing any gauge invariant fieldI as a combinationĨ of the invari-
ants listed in Theorem 5.1, were derived by the help of the gauge fixing sections5.20d, which is

not globally defined. Hence, equalityI = Ĩ holds on a dense subset of the configuration space only.
But I is a differential operatorswith smooth coefficientsd on the whole configuration spacesthe
rank of such an operator is equal to its algebraic order with respect to variablesEd. The invariant

Ĩ is a differential operator of the same rank, buta priori its coefficients are well defined on a dense
set of the configuration space only. But, if two such operators coincide on a dense set, they
coincide everywhere.
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Square-integrable wave packets from the Volkov solutions
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Rigorous mathematical proofs of some properties of the Volkov solutions are pre-
sented, which describe the motion of a relativistic charged Dirac particle in a
classical, plane electromagnetic wave. The Volkov solutions are first rewritten in a
convenient form, which clearly reveals some of the symmetries of the underlying
Dirac equation. Assuming continuity and boundedness of the electromagnetic vec-
tor potential, it is shown how one may construct square-integrable wave packets
from momentum distributions in the spaceC0

`sR3d4. If, in addition, the vector po-
tential isC1 and the derivative is bounded, these wave packets decay in space faster
than any polynomial and fulfill the Dirac equation. The mapping which takes mo-
mentum distributions into wave packets is shown to be isometric with respect to the
L2sR3d4 norm and may therefore be continuously extended to a mapping from
L2sR3d4. For a momentum function inL1sR3d4ùL2sR3d4, an integral representation
of this extension is presented. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1849812g

I. INTRODUCTION

There exist only few exact solutions of the Dirac equation, the relativistic equation which
describes the motion of a charged particle with spin 1/2 in an external electromagnetic field. One
important class was discovered by Volkov in 1935,1 who treated the field of a classical, plane
electromagnetic wave. Ever since then, the Volkov solutions have experienced a wide range of
applications in the physics of interactions of electrons and positrons with a laser beam, of which
we enumerate a few.

In 1952, Sengupta2 calculated the scattering of electromagnetic waves by a free electron; to
the author’s knowledge, he was the first to have employed the Volkov solutions explicitly. Ten
years later, Reiss3 computed the probability for electron–positron pair production in two nonpar-
allel classical photon fields, of which one is treated as a perturbation but the other one may be of
arbitrary strength. In a more mathematical paper,4 the same author proved that for this field
configuration, the perturbation expansion converges for small parameters. Brown and Kibble5 as
well as Gol’dman6 studied the Compton scattering of a free electron in a high-intensity laser and
used the Volkov solutions to calculate the cross section for this process. Nikishov and Ritus7 and
Narozhny� et al.8 analyzed thep→m+n decay in the presence of an electromagnetic wave. The
scattering of electrons by a scalar potential in the presence of an intense laser field was considered
by Bergou and Varró9. Moreover, the production of electron–positron pairs in a laser was consid-
ered by Nikishov and Ritus10 and by Narozhny� et al.8 In atomic physics, the Volkov solutions are
used in the calculation of ionization rates in strong laser fields within the so-called strong-field
approximationssee, for example, Refs. 11 and 12d. Szymanowski and co-workers examined laser-
assisted scattering of electrons in a Coulomb potential13 and in a Yukawa potential.14 The cross
section for pair production may be enhanced in the presence of a bare atomic nucleus—a situation
which was investigated by Yakovlev15 and Mülleret al.16,17
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The Volkov solutions for given “asymptotic momenta,” which will be written out explicitly in
the subsequent section, are not square integrable. Therefore, a direct interpretation of a physical
particle that is localized in space is not easily possible. In the case of the free Dirac equation,
where the same problem occurs, square-integrable solutions—so-calledwave packets—may be
constructed from complex-valued functions in momentum space by multiplying these with the free
plane-wave solutions and integrating over momentum space.18,19 The construction of such wave
packets from the Volkov solutions was suggested for the Klein–Gordon equation by Neville and
Rohrlich20 and for the Dirac equation by San Román and co-workers.21–24

Mathematically spoken, the integration over momentum space for the free Dirac equation
represents nothing but the usual Fourier transformation with a minor modification, which accounts
for the spinor structure of the Dirac equation.19 This procedure automatically guarantees the
“normalization” and “completeness” of the free plane-wave solutions, i.e., corresponding func-
tions in momentum space and in spatial space have identicalL2 norms, and anyL2 function in
spatial space may be represented as such a wave packet. In the literature, only peripheral attention
has been paid to a study of the “normalization” and “completeness” properties for the Volkov
solutions. There exist several treatments that offer physically motivated arguments for the normal-
ization. Bergou and Varró9 as well as Filipowicz,25 for example, make use of delta functions and
interchange the orders of divergent integrals in order to obtain the desired result. The standard
textbook by Berestetski� et al.26 assumes electromagentic vector potentials that decrease far away
from the origin, such that—according to the authors’ reasoning—the normalization integral is
practically not influenced by this potential.

However, there seem to be no rigorous mathematical proofs for the claims of “normalization”
and “completeness.” Nevertheless, many authors use these properties in their calculations more or
less explicitly. For example, San Román and collaborators21–24 determine the time evolution of a
free electron wave packet in a laser beam by first calculating the momentum distribution of the
initial wave packet at timet=0 and then computing the resulting wave packets for positive times.
The validity of this procedure relies on both “normalization” and “completeness.” Furthermore,
calculations of cross sections or production rates with the help of the nonsquare-integrable Volkov
solutions and “delta functions”—as performed, for example, in Refs. 5–17—implicitly assume
“normalization” and “completeness.” To be more precise, an incorrect “normalization” would lead
to wrong factors in the differential cross sections. On the other hand, the derivation of the total
cross section requires an integration and summation of the differential cross section overall final
states, i.e., these final states need to satisfy “completeness.”

It is the purpose of this paper to fill part of the gap indicated above and to provide a proof for
the “normalization” of the Volkov solutions. In Sec. II, we present the explicit form of the Volkov
solutions. Some symmetries of the Dirac equation that will be useful in the further development
are discussed in Sec. III. Section IV is devoted to the construction ofregular wave packetsfrom
C0

` functions in momentum space in the case where the electromagnetic vector potential is con-
tinuous and bounded. Assuming also continuous differentiability of the vector potential and
boundedness of its derivative, these regular wave packets are shown to decay rapidly in spatial
space and to fulfill the Dirac equation. In Sec. V, which is the central part of the paper, we state the
main theorem asserting that the norms of a momentum distribution and of its corresponding wave
packet are identical. The statement of the theorem is related to the physical concepts of “normal-
ization to a delta function” and “orthogonality.” The construction of wave packets fromany L2

functions in momentum space is exhibited in Sec. VI, which is achieved by a continuous extension
from the spaceC0

`. Finally, in the Appendix, we give the proof of the main theorem from Sec. V.

II. THE VOLKOV SOLUTIONS

We treat a relativistic spin-1/2 particle with chargee and massm that moves in the four-
potentialAm;sA0,Ad of an electromagnetic field. The motion of the particle is described by the
Dirac equation, which reads
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si]” − eA” − mdc = 0, s1d

where we have used the Feynman slash notation

a” ª gmam

with the 434 Dirac matricesgm.18,19 These matrices fulfill

gmgn + gngm = 2gmn1.

Here as in the entire paper, we use natural unitss"=c=1d and the signatures1222d of the
metric tensorgmn. Scalar products shall be noted as

sabd ; ambm.

In the Lorentz gauge,

s]Ad ; ]mAmsxd = 0,

a plane electromagnetic wave propagating in the direction of the unit vectornPR3 may be
represented by the four-potential

Amsxd = Ãmsjd, j = snxd, s2d

with the four-vector

nm = s1,nd

and the additional conditions

A0 = A ·n ; 0.

The analytical Volkov solutions of the Dirac equations1d with this potential are9

cp,rsr ,td = M serdsp,t − n · r durspdeiSserdsp,r ,td, s3d

where

er = H1, r = 1,2,

− 1, r = 3,4,
J

M s±dsp,jd = 1 ±
en”A”

˜ sjd
2sEspd − n ·pd

P C434, s4d

Ss±dsp,r ,td = ± Sp · r − Espdt −E
0

t−n·r

Jp
s±dsjddjD , s5d

Jp
s±dsjd =

1

Espd − n ·p
S7ep · Ãsjd −

e2

2
Ãsjd2D =

1

Espd − n ·p
S7ep · Ãsjd +

e2

2
uÃsjdu2D , s6d

and

Espd = Îm2 + upu2 s7d

is the energy of the particle. The spinorsurspd are the free Dirac spinors, which can be written as
columns of a certain matrix19
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uspd ; su1spdu2spdu3spdu4spdd =ÎEspd + m

2Espd S1 +
a ·p

Espd + m
D . s8d

Here,

a = g0g

is the three-vector of the Diraca matrices. The functionsurspd are C` in the argumentp and
satisfy

p”urspd = ermurspd. s9d

In addition, they obey the orthogonality relations

urserpd†ussespd ; kurserpd,ussespdlC4 = dr,s.

We remark that equations3d is actually not the original form that was published by Volkov,1

who considered only the superposition of at most countably many unifrequent electromagentic
waves. In his formulas, infinite series over the amplitudes and phases of the external potential
occur. Brown and Kibble5 and Nikishov and Ritus10 seem to be the first to have written down the
solutions in a form that involves a more or less arbitrary form of the electromagnetic potential
which involves an integral in the phase factor. A recent derivation of the Volkov solutions can be
found in Ref. 21, where also the casesr =3,4 aretreated. In addition, we mention that the authors
cited above use −̀ instead of 0 as the lower integration limit in the phases5d. Taking 0sor any
other finite numberd does not require the vector potential to decay for large valuesuju of the
argumentj in order for the integral to converge.

For the sake of simplicity, we setn=ez, so that

t − n · r = t − z

and

Espd − n ·p = Espd − pz.

The spatial part of the vector potential is then of the form

Asr ,td = Ãxst − zdex + Ãyst − zdey ; Ãst − zd P R2. s10d

Here as in the following, we make the identification

R2 > R2 3 h0j , R3

in order to suppress an overduly complex notation. We also set

p' ª spx,pyd P R2 s11d

and

r ' ª sx,yd P R2, s12d

so that

p ·Asr ,td = p' · Ãst − zd.

In addition, we will assume throughout that the functionsÃx,Ãy:R→R areCb, i.e., continuous and
bounded, and set
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iAi ª sup
jPR

ÎÃxsjd2 + Ãysjd2 , `. s13d

III. SYMMETRIES OF THE VOLKOV SOLUTIONS

The construction of the Volkov solutionss3d relies heavily on certain symmetries of the Dirac
equations1d: The three differential operators]x, ]y, and ]t+]z commute formally withsi]”−eA”
−md, which has already been noticed by Nikishov and Ritus.10 These translational symmetries
allow the separation of variables in the equation, which is inherited by the relations

− i]xcp,r = erpxcp,r , s14ad

− i]ycp,r = erpycp,r , s14bd

− is]t + ]zdcp,r = erspz − Espddcp,r . s14cd

fFor more symmetries of the Dirac equations1d and a detailed group theoretical analysis, see the
work of Janner and Janssen.27g Using the Hamiltonian form ofs1d, i.e.,

i]tcsr ,td = Hstdcsr ,td s15d

with the formally self-adjoint Hamiltonian operator

Hstd = as− i = − eAd + bm, s16d

we easily derive froms14cd that for everyt,

sHstd + i]zdcp,r = ersEspd − pzdcp,r ; erkspdcp,r , s17d

where we have introduced

kspd ª Espd − pz = Îm2 + upu2 − pz . 0. s18d

The Volkov solutions are thus simultaneous eigenfunctions of the three operators −i]x, −i]y, and
Hstd+ i]z with corresponding eigenvalueserpx, erpy, and erkspd, which do not depend on the
chosen timet. It will be useful to define

t̂:R3 → R2 3 R+, p ° t̂spd ª sp',kspdd. s19d

Note that the inverse is given by

t ª t̂−1:R2 3 R+ → R3, tsp',ld ª Sp',
m2 + up'u2 − l2

2l
D . s20d

The matrix parts4d and the phases5d of the Volkov solutions may be rewritten in a simple
form in terms of the eigenvalues

M serdsp,jd = 1 +
en”A”

˜ sjd
2erkspd

P C434 s21d

and
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Sserdsp,r ,td = erp' · r ' − erkspdt − erpzst − zd − erE
0

t−z

Jp
serdsjddj

= erp' · r ' − erkspdt − erFSpz −
up'u2

2sEspd − pzd
Dst − zd

+
1

2sEspd − pzd
E

0

t−z

uerp' − eÃsjdu2 djG
= erp' · r ' − erkspdt −

1

2
S m2

erkspd
− erkspdDst − zd −

1

2erkspd

3E
0

t−z

uerp' − eÃsjdu2 dj. s22d

A similar form of the phaseSserd has already been found by Gol’dman.6 Defining

p'sj,p'd ª 5S1

j
E

0

j

up' − eÃsj8du2 dj8D1/2

, j Þ 0,

up' − eÃs0du, j = 0,
6 s23d

nj:R
2 3 sR \ h0jd → R3,njsp',ld ª Sp',

1

2
Fm2 + p'sj,p'd2

l
− lGD , s24d

qj
s±dspd ª njs± t̂spdd = ± Sp',

1

2
Fm2 + p'sj, ± p'd2

kspd
− kspdGD , s25d

and

stsr d ª sx,y,z− td, s26d

we may write this as

Sserdsp,r ,td = qt−z
serdspd ·stsr d − erkspdt. s27d

Note that

0 ø p'sj,p'd ø up'u + ueuiAi. s28d

Moreover, forÃ ;0, p'sj ,p'd= up'u, so thatp'sj ,p'd may be thought of as a modified “per-
pendicular momentum.”

IV. REGULAR WAVE PACKETS

In this section, we shall construct square-integrable wave packets from the Volkov solutions.
These wave packets will be of the form

csr ,td =
1

s2pd3/2o
r=1

4 E
R3

frspdcp,rsr ,tdd3p. s29d

This integral representation was used, for example, by San Románet al.21–24 in their calculations
of the time evolution of wave packets. It will be our task to make sense ofs29d, i.e., we will ensure
the existence of this integral for as many functionsfr as possible and to show that the resulting
wave packetc fulfills the Dirac equations1d.
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In this section, we will start with momentum distributionsfr that are inC0
` and show that the

wave packets defined by these decay faster than any power ofur u for ur u→`. In order to control
thep dependence of the phases27d, we need to determine the inverses of the mappingsqj

s±d from
s25d,

q̃j
s±dsp̃d ª sqj

s±dd−1sp̃d = ts±nj
−1sp̃dd = ts±sp',Îm2 + p'sj, ± p̃'d2 + p̃z

2 7 p̃zdd, s30d

which areC`. We claim the following.
Lemma 1: For every compact set K,R3 and every nx,ny,nzPN0, there is a constant

cnx,ny,nz
sKd satisfying

IS ]

]p̃x
DnxS ]

]p̃y
DnyS ]

]p̃z
Dnz

q̃j
s±dsp̃dI ø cnx,ny,nz

sKd, p̃ P K, j P R.

Proof: By the chain rule, one sees that the derivatives ofq̃j
s±d depend continuously onp̃ as well

as onp'sj ,p̃'d2, ]p̃x
fp'sj ,p̃'dg2, and ]p̃y

fp'sj ,p̃'dg2. fNote that higher-order derivatives of
fp'sj ,p̃'dg2 vanish, see the definitions23d.g The last three expressions are bounded forjPR and

p̃' in a fixed compact set, which is due to the boundedness ofÃ ands28d. The derivatives ofq̃j
s±d

are therefore bounded on the compact setK. j

We may now state the first main theorem, which allows the construction ofL2 wave packets.
Theorem 2: Let f;sf1, . . . ,f4dPC0

`sR3d4.

sad The wave packetc defined by

csr ,td =
1

s2pd3/2o
r=1

4 E
R3

frspdcp,rsr ,tdd3p s31d

is continuous inr and t.
sbd For any nPN0, there is a constant cn such that

icsr ,tdiC4 ø cn

1 + utun

1 + ustsr dun
= cn

1 + utun

1 + fx2 + y2 + sz− td2gn/2 . s32d

In particular cs· ,tdPLpsR3d4 for all t PR and pP f1,`g.

Proof: sad It suffices to show the result for the summandsr independently. Letr n→ r and
tn→ t. Thencp,rsr n,tnd→cp,rsr ,td by continuity of the Volkov solutionss3d, so the integrand in
s31d converges pointwise. Furthermore, sincecp,rsr ,td is bounded inpPsuppfr as well as inr
andt, continuity ofc is established by dominated convergence, see, e.g., Theorem I.11 in Ref. 28.

sbd We will show that for anynx,ny,nzPN0, there is a constantcnx,ny,nz
such that

uxunxuyunyuz− tunzicsr ,tdiC4 ø cnx,ny,nz
s1 + utunx+ny+nzd. s33d

The estimate ins32d follows from this by using

fx2 + y2 + sz− td2gn/2 = sÎx2 + y2 + sz− td2dn ø sÎsuxu + uyu + uz− tud2dn = suxu + uyu + uz− tudn,

where the right-hand side is a polynomial of degreen in uxu, uyu, and uz− tu.
In order to prove the estimates33d, we shall apply the stationary-phase methodssee, for

example, Theorem XI.14 in Ref. 29d. We only need to look at the caser ;sx,y,zdPR3 with
x,y,z− tÞ0; for x, y, or z− t equal to zero,s33d follows by continuity. Settingeªer for abbre-
viation, we find
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E
R3

frspdcp,rsr ,tdd3p =E
R3

frspdM sedsp,t − zdurspdexpfisqt−z
sed spd ·stsr d − ekspdtdgd3p

=E
R3

frsq̃t−z
sed sp̃ddM sedsq̃t−z

sed sp̃d,t − zdursq̃t−z
sed sp̃dd

3expfisp̃ ·stsr d − eksq̃t−z
sed sp̃ddtdgudetsDq̃t−z

sed sp̃ddud3p̃

=
s− idnx+ny+nz

xnxynysz− tdnz
E

R3
frsq̃t−z

sed sp̃ddM sedsq̃t−z
sed sp̃d,t − zdursq̃t−z

sed sp̃dd

3exps− ieksq̃t−z
sed sp̃ddtdudetsDq̃t−z

sed sp̃ddu

3FS ]

]p̃x
DnxS ]

]p̃y
DnyS ]

]p̃z
Dnz

expsip̃ ·stsr ddGd3p̃,

where s27d has been used and the transformation formula for integrals has been applied. Since
fr PC0

` and all otherp̃ dependences areC`, we may perform integrations by parts and obtain

E
R3

frspdcp,rsr ,tdd3p =
inx+ny+nz

xnxynysz− tdnz
E

R3
expsip̃ ·stsr ddS ]

]p̃x
DnxS ]

]p̃y
DnyS ]

]p̃z
Dnz

3ffrsq̃t−z
sed sp̃ddM sedsq̃t−z

sed sp̃d,t − zdursq̃t−z
sed sp̃dd

3exps− ieksq̃t−z
sed sp̃ddtdudetsDq̃t−z

sed sp̃ddugd3p̃. s34d

Observe that by the chain rule,

US ]

]p̃x
DmxS ]

]p̃y
DmyS ]

]p̃z
Dmz

exps− ieksq̃t−z
sed sp̃ddtdU ø dmx,my,mz

s1 + utumx+my+mzd, p̃ P suppfr ,

for some constantsdmx,my,mz
. Again by the chain rule and by Lemma 1, the derivatives ins34d are

uniformly bounded inr , and we may conclude that the integral is bounded inr and that thet
dependence is governed by the above inequality. Thus,

uxunxuyunyuz− tunzIE
R3

frspdcp,rsr ,tdd3pI
C4

ø c̃r,nx,ny,nz
s1 + utunx+ny+nzd

for some constantsc̃r,nx,ny,nz
, from which s33d follows after summation overr.

j

Theorem 2 allows us to define regular wave packets.
Definition 1: For tPR, define

Ft:C0
`sR3d4 → L2sR3d4 ù C`sR3d4, f ° Ftsfd,

where

sFtsfddsr d ª
1

s2pd3/2o
r=1

4 E
R3

frspdcp,rsr ,tdd3p s35d

and C`sR3d4,CbsR3d4 is the space of continuous functionsR3→C4 that vanish at infinity. The
elements of the rangeFtsC0

`sR3d4d will be called regularsVolkovd wave packets.
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The following theorem assures that under weak assumptions, the wave packets defined above
actually fulfill the Dirac equation in the Hamiltonian forms15d. We only need the additional

requirement thatÃ PCb
1, i.e., Ã is continuously differentiable and bothÃ and its derivativeÃ8 are

bounded.
Theorem 3: Let fPC0

`sR3d4, and set

csr ,td ª Ftsfdsr d.

Assume thatÃ PCb
1. Then the following assertions hold:

sad cPC1sR4d4 and

i]tcsr ,td = Hstdcsr ,td ; fas− i = − eÃst − zdd + bmgcsr ,td. s36d

sbd There are constants cn, nPN0, satisfying

isHstdcs·,tddsr di ø cn

1 + utun

1 + fx2 + y2 + sz− td2gn/2 .

Therefore, Hstdcs· ,tdPL2sR3d4 for all t.
scd The mappingR→L2sR3d4, t°cs· ,td, is C1, and

i
d

dt
cs·,td = Hstdcs·,td, s37d

where the derivative is taken in the space L2sR3d4.

Proof: sad Since the Volkov solutionscp,r areC1 and satisfy the Dirac equations15d, we only
have to show that the differentiations ins36d may be interchanged with the integration ins35d.
This is possible since the derivatives ofcp,rsr ,td with respect tot, x, y, and z are continuous
functions ofp, r , andt and since the support off is compact.

sbd Upon interchange of differentiation and integration and using the boundedness of the

derivativeÃ8, this statement follows as in the proof of Theorem 2.
scd We need to show that for everyt0,

i lim
t→0

cs·,t0 + td − cs·,t0d
t

= Hst0dcs·,t0d, s38d

where the limit is to be understood in theL2 norm. In view of partsad, pointwise convergence for
everyr PR3 is given. It remains to show that the left-hand side ofs38d is bounded by a common
L2 function for utu,1; the statement follows then by dominated convergence. Fort.0,

Icsr ,t0 + td − csr ,t0d
t

I ø sup
sPs0,td

iu]tcsr ,tdut=t0+si = sup
sPs0,td

isHst0 + sdcs·,t0 + sddsr di

ø C sup
sPs0,td

1 + ut0 + su2

1 + x2 + y2 + sz− st0 + sdd2

for a certain constantC, which is clear by partsbd. For t,0, we obtain a similar result, in which
supsPs0,td is replaced by supsPst,0d. With little effort, we see that forutuø1,

Icsr ,t0 + td − csr ,t0d
t

I ø C
1 + sut0u + 1d2

1 + x2 + y2 + maxhuz− t0u − 1,0j2 ,

where the right-hand side is anL2 function of x, y, andz. This confirmss38d and concludes the
proof. j
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For the usual Fourier transformation, the Riemann–Lebesgue lemma holds, which states that
the Fourier transformation defined onC0

` extends uniquely to a bounded map fromL1 into C`, the
continuous functions vanishing at infinity, see Theorem IX.7 in Ref. 30. In the case of the Volkov
solutions, a similar result is true.

Theorem 4:

sad There is a constant C with

iFtsfdi` ø CifiL1sR3d4

for all fPC0
`sR3d4,L1sR3d4 and all tPR.

sbd The unique bounded extensionFt
s1d to L1sR3d4 fulfills

Ft
s1d:L1sR3d4 → C`sR3d4,

i.e., Ft
s1dsfd vanishes at infinity for allfPL1sR3d4.

scd For fPL1sR3d4,

sFt
s1dsfddsr d =

1

s2pd3/2o
r=1

4 E
R3

frspdcp,rsr ,tdd3p, s39d

i.e., the same formula as ins35d holds for all fPL1sR3d4.

Proof: sad In order to adapt the proof for the usual Fourier transformation in Ref. 30, we have
to check first that the Volkov solutions are bounded inp. Since this is not directly clear from the
defining equations3d, we shall first rewrite the Volkov solutions. To this end, observe that

n”A”
˜ sjd = − A”

˜ sjdn” .

Employing s9d, we can write

cp,rsr ,td = M̃ serdsp,t − zdurspdeiSserdsp,r ,td s40d

with

M̃ s±dsp,jd ª 1 7 eA”
˜ sjd

Espdn” ± m− p”

2EspdsEspd − pzd
= 1 7 eA”

˜ sjdS±m+ pxg
1 + pyg

2

2EspdsEspd − pzd
−

1

2Espd
g3D .

Using the equality

1

EspdsEspd − pzd
+

1

EspdsEspd + pzd
=

2Espd
Espdsm2 + up'u2d

=
2

m2 + up'u2
,

we find the estimate

m2 + up'u2

EspdsEspd − pzd
ø 2

and conclude thatM̃ s±dsp ,jd are bounded with respect top and j. Consequently,cp,rsr ,td is
bounded inp, r , andt,

icp,rsr ,tdi ø cr s41d

for some constantscr ù0. For fPC0
`sR3d4, this results in the estimate
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isFtsfddsr di ø
1

s2pd3/2o
r=1

4 E
R3

ufrspduicp,rsr ,tdid3p ø
1

s2pd3/2o
r=1

4

crifriL1.

sbd This follows as for the Riemann–Lebesgue lemma: For a givenfPL1sR3d4, choose a
sequencesfndnPN in C0

`sR3d4 with fn→f, n→`, in the L1sR3d4 norm. By Theorem 2,Ft
s1dsfnd

=FtsfndPC`sR3d4 for all nPN. On the other hand, partsad of the present theorem ensures that
Ft

s1dsfnd→Ft
s1dsfd, n→`, uniformly onR3. Therefore, we also haveFtsfdPC`sR3d4.

scd In view of s41d, the integral on the right-hand side ofs39d exists forfPL1sR3d4. Taking
again a sequence as in the proof of partsbd, the statement follows by dominated convergence.j

V. NORMALIZATION

The following theorem may be considered as the central point of this paper.

Theorem 5: Let Ã PCb
1. Then for every tPR, Ft is an isometry with respect to the L2 norm,

i.e., for everyfPL2sR3d4,

iFtsfdiL2sR3d4 = ifiL2sR3d4. s42d

As a simple conclusion, we note the following.
Corollary 6: Under the assumptions of Theorem 5,

kFtsfd,FtsxdlL2sR3d4 = kf,xlL2sR3d4 s43d

for everyf ,xPL2sR3d4.
The lengthy proof of Theorem 5 will be deferred to the Appendix. Here we shall only verify

Corollary 6 and then point out the connection with the “normalization to a delta function” and
“orthogonality” of the Volkov solutions.

Proof of Corollary 6:This corollary is just the application of a general theorem valid for any
isometry between two complex Hilbert spaces: We use the polarization identity

kx,yl = 1
4six + yi2 + ix − yi2 + iix − iyi2 − iix + iyi2d,

which follows from taking appropriate linear combinations from

ix + yi2 = kx + y,x + yl = ixi2 + iyi2 + 2 Rekx,yl

and similar expressions forix−yi2, ix+ iyi2, and ix− iyi2. For an isometryT ssatisfying iTzi
=izi for all zd, this leads to

kTx,Tyl = 1
4siTsx + ydi2 + iTsx − ydi2 + iiTsx − iydi2 − iiTsx + iydi2d

= 1
4six + yi2 + ix − yi2 + iix − iyi2 − iix + iyi2d = kx,yl.

j

In the physical literature, e.g., Refs. 10, 16, 26, and 31, the “normalization” and “orthogonal-
ity” property is laxly written as follows:

E
R3

cp,r
† sr ,tdcp8,r8sr ,tdd3r = s2pd3dr,r8d

s3dsp − p8d, s44d

whereds3d is the three-dimensional delta function. The propertys44d is used for the verification of
s43d,
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kFtsfd,Ftsxdl =
1

s2pd3 o
r,r8=1

4 E
R3
SE

R3
E

R3
frspdxr8sp8dkcp,rsr ,td,cp8r8sr ,tdlC4 d3p d3p8Dd3r

=
1

s2pd3 o
r,r8=1

4 E
R3
E

R3
frspdxr8sp8dSE

R3
kcp,rsr ,td,cp8r8sr ,tdlC4 d3rDd3p d3p8

= o
r=1

4 E
R3
E

R3
frspdxrsp8dds3dsp − p8dd3p d3p8

= o
r=1

4 E
R3

frspdxrspdd3p = kf,xlL2sR3d4.

This calculation certainly involves an unjustified interchange of integration orders and is therefore
rather questionable from a mathematical point of view.

We mention that a different “normalization” has been employed by Neville and Rohrlich20 and
Bergou and Varró.9 These authors use a scalar product that is calculated on those hyperplanes in
Minkowski space–time where the vector potentialA is constant, i.e., their considerations involve
integrals of the form

E
hsr ,tdPR4:t−z=uj

¯ d3r dt

for fixed uPR. However, theL2 norms determined from this integration cannot be regarded as a
normalization for the probability to find a particle. For a probability interpretation, one would have
to integrate over space for a fixed time, at least for a certain specified inertial frame. That is, one
would need a spacelike hyperplane, whereas the above integration is over a lightlike hyperplane.
Even though the lightlike hyperplane and the related coordinates seem more adopted to the sym-
metry of the problem, an integration over a spacelike hyperplane as ins43d or s44d appears much
more “physical.”

VI. EXTENSION TO L2

Theorem 5 allows us to pronounce the following definition.

Definition 2: In the caseÃ PCb
1, let

Ft
s2d:L2sR3d4 → L2sR3d4

be the unique isometric extension ofFt from Definition 1 to L2sR3d4.
It will be profitable to have an integral representation ofFt

s2d for a larger subspace ofL2 than
just C0

`. This is indeed possible for amplitude functions inL1ùL2:
Theorem 7: For fPL1sR3d4ùL2sR3d4, we have

Ft
s2dsfd = Ft

s1dsfd P C`sR3d4, s45d

or more explicitly,

sFt
s2dsfddsr d =

1

s2pd3/2o
r=1

4 E
R3

frspdcp,rsr ,tdd3p. s46d

Proof: We adapt here a proof from the usual Fourier transformation, which can be found in the
book of Weidmann.32 Let sfndn be a sequence inC0

`sR3d4 with fn→f, n→`, in L1sR3d4 and in
L2sR3d4 simultaneously. FixtPR and setcnªFtsfnd. Theorem 2 yieldscnPL1sR3d4ùC`sR3d4.
We have
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Ft
s1dsfd = lim

n→`
cn P CbsR3d4

and

Ft
s2dsfd = lim

n→`
cn P L2sR3d4,

where the limits are understood inCbsR3d4 andL2sR3d4, respectively. Choose a subsequencescnk
dk

such that

cnk
sr d → Ft

s2dsfdsr d, k → `, a.e.

But since

cnk
sr d → Ft

s1dsfdsr d, k → `,

for all r , we conclude that

Ft
s1dsfdsr d = Ft

s2dsfdsr d, a.e. s47d

j

Corollary 8: Let fPL2sR3d4 and Knª hxPR3: ixi2ønj. Then

sFt
s2dfdsr d = lim

n→`

1

s2pd3/2o
r=1

4 E
Kn

frspdcp,rsr ,tdd3p. s48d

Proof: Again adapting a proof from Weidmann,32 let xn be the characteristic function of the set
Kn and fix tPR. ThenxnfPL1sR3d4ùL2sR3d4, and we havexnf→f in L2sR3d4. According to
Theorem 7,

sFt
s2dsxnfddsr d =

1

s2pd3/2o
r=1

4 E
Kn

frspdcp,rsr ,tdd3p.

The claim follows from the fact thatFt
s2dsxnfd→Ft

s2dsfd in L2sR3d4.
j

VII. SUMMARY AND OUTLOOK

In this paper, we have put some assertions concerning the relativistic Volkov solutions on solid
mathematical ground. As a general assumption, we took the electromagnetic vector potential to be
continuous and bounded. In Theorem 2, we have justified the construction of regular wave packets
from Volkov solutions as used, for example, in Ref. 21 and have proved their rapid decay in spatial
space. Theorem 3 shows that these wave packets satisfy the Dirac equation, as long as the vector
potential is alsoC1 and has a bounded derivative. The “normalization” property is verified in the
central Theorem 5 and allows the definition of wave packets for anyL2 function in momentum
space. Finally, Theorem 7 provides a useful integral representation for the momentum-space
functions contained inL1ùL2.

As mentioned in the introduction, it is still desirable to find a rigorous proof of the “com-
pleteness” of the Volkov solutions, i.e., for the hypothesis that for any initial wave packetc0

PL2sR3d4 at timet=0, there is a momentum distributionfPL2sR3d4 from which c0 and also the
time-dependent solutioncsr ,td with cs· ,0d=c0 follows. In other words, the mappingFt

s2d from

s2d should be surjective and therefore unitary for a “reasonable” vector potentialÃ. A comparison

with the field-free caseÃ ;0 suggests that the inverse
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Gt ª sFt
s2dd−1

might be obtainable by the formula

fspd ª sGtscddspd = S 1

s2pd3/2o
r=1

4 E
R3

kcp,rsr ,td,csr dld3pD
r=1,. . .,4

, s49d

at least whencPC0
`. The “physical” version of the above inversion formulas49d is

o
r=1

4 E
R3

cp,r
† sr ,tdcp,rsr 8,tdd3p = s2pd3ds3dsr − r 8d.

The validity of the inversion formulas49d would allow one to write the unitary propagator for the
Dirac equations15d as

Ust,t8d = Ft
s2d + Gt8. s50d

This conjecture is used by San Román and co-workers in Refs. 21–24 for the calculation of the
time evolution of a Volkov wave packet. Having establisheds49d, one might also try to understand
on a more analytical level the squeezing and distortion of wave packets observed in Refs. 21 and
22.

In order to proves49d, one shouldsid verify the existence of the integral on the right-hand side
for cPC0

`, sii d show thatfPL1ùL2, andsiii d demonstrate with the help of Theorem 7 that

c = Ft
s2dsGtscdd.

There are strong indications to the author that the assertionssid andsii d are correct for a bounded

vector potentialÃ PC2 with bounded first and second derivates. More details and results shall be
supplied in a future publication.
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APPENDIX: PROOF OF THEOREM 5

In this appendix, we provide the proof for the main Theorem 5.
Proof: Fix tPR andfPC0

`sR3d4. We have to show that

iFtsfdiL2sR3d4
2 ;

1

s2pd3 o
r,r8=1

4 E
R3

Ir,r8sr dd3r = ifiL2sR3d4
2 sA1d

with

Ir,r8sr d ª E
R3
E

R3
frspdfr8sp8dkcp,rsr ,td,cp8r8sr ,tdlC4 d3p d3p8, sA2d

where the bar denotes complex conjugation. Note that all integrals appearing above exist since
FtsfdPL2sR3d4 by virtue of Theorem 2.

Inserting the Volkov solutionss3d, we find
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Ir,r8sr d =E
R3
E

R3
frspdfr8sp8dexpfisSser8dsp8,r ,td − Sserdsp,r ,tddg

3 kM serdsp,t − zdurspd,M ser8dsp8,t − zdur8sp8dld3p d3p8

=E
R3
E

R3
frspdfr8sp8dexpfiserkspd − er8ksp8ddtg

3 kM serdsp,t − zdurspd,M ser8dsp8,t − zdur8sp8dl

3 expfisqt−z
ser8dsp8d − qt−z

serdspdd ·stsr dgd3p d3p8.

Note that the onlyx and y dependence is contained in the termstsr d. This fact is intimately
connected with the validity of the eigenvalue equationss14ad and s14bd. We thus perform the
integration over these two variablesr ';sx,yd first and obtain

E
R2

Ir,r8sr dd2r' =E
R2
SE

R2
E

R2
kf̃rsp',zd,f̃r8sp'8 ,zdlC4eiser8p'8 −erp'd·r ' d2p' d2p'8 Dd2r',

where

f̃rsp',zd ª E
R

frspdcp,rsr ,tde−ierp' · r ' dpz =E
R

frspdM serdsp,t − zdurspde−ierkspdt

3 expFi
er

2
Sm2 + p'st − z,erp'd2

kspd
− kspdDsz− tdGdpz. sA3d

Sincefr PC0
`sR3d, we see that for everyz,

f̃rs·,zd P C0
`sR2d4 , L2sR2d4.

Using Parseval’s identity, we find

E
R2

Ir,r8sr dd2r' = s2pd2E
R2

kf̃rserp',zd,f̃r8ser8p',zdlC4 d2p'. sA4d

Moreover, with the method applied in the proof of Theorem 2, we can even show that

f̃r P L2sR3d4.

We may therefore interchange the order of integrations by Fubini’s theorem

iFtsfdiL2sR3d4
2 =

1

2p
o

r,r8=1

4 E
R
SE

R2
kf̃rserp',zd,f̃r8ser8p',zdlC4 d2p'Ddz

=
1

2p
o

r,r8=1

4 E
R2
SE

R
kf̃rserp',zd,f̃r8ser8p',zdlC4 dzDd2p'.

The identitysA1d—i.e., the statement of the theorem—is true if for everyp',

1

2p
E

R
kf̃rserp',zd,f̃r8ser8p',zdlC4 dz;

1

2p
kf̃rserp', · d,f̃r8ser8p', · dlL2

= dr,r8E
R

ufrserp',pzdu2 dpz. sA5d
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For the rest of the proof, we shall fixp' and verify sA5d. In preparation for exploiting the
symmetrys17d of the Volkov solutions, we set

t̃s±dsld ª ts±p',ld = S±p',
m2 + up'u2 − l2

2l
D sA6d

and find

Ẽsld ª Est̃s±dsldd = Sm2 + up'u2 +
sm2 + up'u2 − l2d2

4l2 D1/2

=
m2 + up'u2 + l2

2l
sA7d

for l.0. In view of the equalities

t̃s±dskspdd = s±p',pzd sA8d

and

kst̃s±dsldd = l, l . 0, sA9d

we may write

f̃rserp',zd =E
R

frst̃serdskspdddc̃kspd,rszddpz. sA10d

Here,

c̃l,rszd ª ct̃serdsld,rsr ,tde−ip' · r ' = S1 +
en”A”

˜ st − zd
2erl

Dũrslde−ierlt expfiersz− tdñt−zsldg,

sA11d

where

ñjsld ª
1

2
Sm2 + p'sj,p'd2

l
− lD sA12d

is the third component ofnj defined ins24d. Furthermore,

ũrsld ª urst̃serdsldd, sA13d

or, more explicitly,

ũrsld =ÎẼsld + m

2Ẽsld
S1 +

a · t̃serdsld

Ẽsld + m
D

r

, sA14d

where the indexr on the right-hand side denotes therth column of the enclosed matrix.

The functionsc̃l,r fulfill an eigenvalue equation closely related tos17d,

Jc̃l,rszd = erlc̃l,rszd, sA15d

where

J ª axpx + aypy − iaz]z − eaÃst − zd + bm+ i]z = is1 − azd]z + axpx + aypy − eaÃst − zd + bm

sA16d

is a formally self-adjoint ordinary differential operator. The validity ofsA15d is shown easily.
From sA11d we infer that
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ct̃serdsld,rsr ,td = eip' · r 'c̃l,rszd,

so that bys17d,

sHstd + i]zdseip' · r 'c̃l,rszdd = erkst̃serdslddct̃serdsld,rsr ,td = erleip' · r 'c̃l,rszd.

Since

s− iax]x − iay]ydseip' · r 'c̃l,rszdd = saxpx + aypydseip' · r 'c̃l,rszdd,

equationsA15d follows immediately.
Performing the substitution

s:pz ° kspd ; l,

we are led to

f̃rserp',zd =
1

2
E

0

`

frst̃serdslddc̃l,rszdSm2 + up'u2

l2 + 1Ddl, sA17d

where we have used

d

dl
s−1sld =

d

dl

m2 + up'u2 − l2

2l
= −

1

2
Sm2 + up'u2

l2 + 1D .

An attempt to provesA5d with f̃r from sA17d directly by interchanging the orders of integra-
tion fails because the assumptions of Fubini’s theorem are not fulfilled. In order to apply the

theorem, the termc̃l,rszd would have to decay for large values ofuzu. As we shall see, we can avoid
this problem by constructing an analytic continuation ofsA11d to valueslPC with Rel.0, and
then in a limiting procedure, the desired result will follow. For this purpose we need to examine
the Dirac spinorũr because its definitionsA14d might produce a singularity and a branch cut at
certain values ofl. However, forlPC \ h0j,

ReẼsld = Sm2 + up'u2

2ulu2
+

1

2
DRel.

So whenever Rel.0, we also have ReẼsld.0 and

Re
Ẽsld + m

2Ẽsld
. 0.

Consequently, we may extend the definitionsA14d also to complex argumentsl with Rel.0 if
we choose the branch cut of the square root to lie on the negative real axis. Observing that both
sides ofsA15d are analytic with respect tol and identical for reall, we deduce the validity of this
equation forall complexl with Rel.0.

Next inspect the functionñj for complex argumentsm=l+ id with l.0 anddPR,

ñjsl + idd =
l

2
Sm2 + p'sj,p'd2

l2 + d 2 − 1D −
id

2
Sm2 + p'sj,p'd2

l2 + d 2 + 1D ,

so that we obtain for the exponential insA11d,
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uexpfiersz− tdñt−zsl + iddgu = expf− ersz− tdIm ñt−zsl + iddg

= expFersz− td
d

2
Sm2 + p'st − z,p'd2

l2 + d 2 + 1DG .

In addition,

]

]l
ñjsl + idd = ñj8sl + idd = −

1

2
Sm2 + p'sj,p'd2

sl + idd2 + 1D ,

for which we find

uñj8sl + iddu =
um2 + p'sj,p'd2 + sl + idd2u

2ul + idu2
=

Îfm2 + p'sj,p'd2 + l2 − d 2g2 + 4l2d 2

2sl2 + d 2d
Þ 0, l . 0.

So for l.0,

sz− tdc̃l+id,rszd = S1 +
en”Ã” st − zd
2ersl + idd

Dũrsl + idde−iersl+iddt

3
− ier

ñt−z8 sl + idd
]

]l
expfiersz− tdñt−zsl + iddg. sA18d

Now define

f̂r,dszd ª
1

2
E

0

`

frst̃serdslddc̃l−id·sgnfersz−tdg,rszdSm2 + up'u2

l2 + 1Ddl sA19d

for dù0. This integral exists because the integrand is continuous andfr + t̃serd is compactly
supported ins0, `d. Comparing withsA17d, we recognize that ford=0,

f̂r,0 = f̃rserp, · d.

The sign of the imaginary part insA19d was chosen such that ford.0, we observe exponential
decay withz,

ic̃l−id·sgnfersz−tdg,rszdiøS1 +
ueu

2ul − id · sgnfersz− tdgu
in”A”˜ st − zdiD

3 iũrsl − id · sgnfersz− tdgie−erd·sgnfersz−tdgt

3 expF− eruz− tu
d

2
Sm2 + p'st − z,p'd2

l2 + d 2 + 1DG , sA20d

wheresA18d was used. From this we obtain that

sz° c̃l−id·sgnfersz−tdg,rszdd P L2sRd4, d . 0.

This enables us to inspect the decay properties off̂r,d for uz− tu→`. We first see that

if̂r,dszdi ø C0sfd, d P f0,1g,

for a constantC0sfd. This is clear since the integrand insA19d is continuous with respect tod as
well asl and again sincefr + t̃serd has compact support. Furthermore, application ofsA18d gives
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sz− tdf̂r,dszd =
1

2
E

0

`

frst̃serdslddSm2 + up'u2

l2 + 1DS1 +
en”A”

˜ st − zd
2ersl − id · sgnfersz− tdgd

D
3 ũrsl − id · sgnfersz− tdgdexpf− ierltgexph− erd · sgnfersz− tdgtj

3− ier

ñt−z8 sl + idd
]

]l
expfiersz− tdñt−zsl − id · sgnfersz− tdgdgdl.

Performing an integration by parts, we notice that also

uz− tuif̂r,dszdi ø C1sfd, d P f0,1g.

Concludingly,

if̂r,dszdi ø
C0sfd + C1sfd

1 + uz− tu
;

Csfd
1 + uz− tu

, d P f0,1g, sA21d

so that the functionsf̂r,d, dP f0,1g, are uniformly bounded inL2. In addition, we easily see by
dominated convergence that

∀zP R:f̂r,dszd → f̂r,0szd = f̃rserp',zd, d → 0+.

Therefore,

f̂r,d → f̃rserp', · d, d → 0+, in L2. sA22d

The above considerations lead us to

kf̃rserp', · d,f̃r8ser8p', · dlL2 = lim
d→0+

kf̂r,d,f̂r8,dlL2, sA23d

which necessitates the evaluation of the right-hand side ford.0. Due to the decay propertysA20d
that is fulfilled for positived, we may now invoke Fubini’s theorem,

kf̂r,d,f̂r8,dlL2 =
1

4
E

R
E

R
frst̃serdslddfr8st̃

ser8dsl8dd 3 Sm2 + up'u2

l2 + 1DSm2 + up'u2

l82 + 1D
3 Jr,r8,dsl,l8ddldl8, sA24d

where

Jr,r8,dsl,l8d ª E
R

kc̃l−id·sgnfersz−tdg,rszd,c̃l8−id·sgnfer8sz−tdg,r8szdldz

=E
−`

t

kc̃l+ierd,rszd,c̃l8+ier8d,r8szdldz+E
t

`

kc̃l−ierd,rszd,c̃l8−ier8d,r8szdldz

; Jr,r8,d
s−d sl,l8d + Jr,r8,d

s+d sl,l8d. sA25d

These integrals can be evaluated by employing the eigenvalue equationsA15d as follows:

E
−`

t

kc̃l+ierd,rszd,Jc̃l8+ier8d,r8szdldz= er8sl8 + ier8ddJr,r8,d
s−d sl,l8d = ser8l8 + iddJr,r8,d

s−d sl,l8d

and
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E
−`

t

kJc̃l+ierd,rszd,c̃l8+ier8d,r8szdl = ersl + ierddJr,r8,d
s−d sl,l8d = serl − iddJr,r8,d

s−d sl,l8d.

Remembering the formal self-adjointness ofJ and performing an integration by parts, we see that

E
−`

t

kc̃l+ierd,rszd,Jc̃l8+ier8d,r8szdldz−E
−`

t

kJc̃l+ierd,rszd,c̃l8+ier8d,r8szdldz

=E
−`

t

kc̃l+ierd,rszd,is1 − azd]zc̃l8+ier8d,r8szdldz−E
−`

t

kis1 − azd]zc̃l+ierd,rszd,c̃l8+ier8d,r8szdldz

= ikc̃l+ierd,rstd,s1 − azdc̃l8+ier8d,r8stdl.

From the last three equations we derive that

Jr,r8,d
s−d sl,l8d =

i

er8l8 − erl + 2id
kc̃l+ierd,rstd,s1 − azdc̃l8+ier8d,r8stdl.

In a similar way, one may show that

Jr,r8,d
s+d sl,l8d = −

i

er8l8 − erl − 2id
kc̃l+ierd,rstd,s1 − azdc̃l8+ier8d,r8stdl,

so that

Jr,r8,dsl,l8d = S i

er8l8 − erl + 2id
−

i

er8l8 − erl − 2idDkc̃l+ierd,rstd,s1 − azdc̃l8+ier8d,r8stdl

=
4d

serl − er8l8d2 + 4d2kc̃l+ierd,rstd,s1 − azdc̃l8+ier8d,r8stdl. sA26d

This leads to

kf̂r,d,f̂r8,dlL2 =
p

2
E

0

` E
0

`

hdserl − er8l8dfrst̃serdslddfr8st̃
ser8dsl8ddSm2 + up'u2

l2 + 1D
3Sm2 + up'u2

l82 + 1D 3 kc̃l+ierd,rstd,s1 − azdc̃l8+ier8d,r8stdldl dl8 sA27d

with

hdsxd ª
2

p

d

x2 + 4d2 . sA28d

The integral insA27d is of the form

kf̂r,d,f̂r8,dlL2 =
p

2
E

0

` E
0

`

hdserl − er8l8dfsd,l,l8ddl dl8

with a function f depending continuously ond, l, andl8. The restriction uf uf0,1g3f0,̀ d3f0,̀ d has
compact support inf0,1g3 s0,`d3 s0,`d. The trivial extension tof0,1g3R2, i.e.,

f̃sd,l,l8d ª H fsd,l,l8d, l,l8 . 0,

0, otherwise,
J sA29d

is therefore continuous, and we may write
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kf̂r,d,f̂r8,dlL2 =
p

2
E

R
E

R
hdserl − er8l8d f̃sd,l,l8ddl dl8

=
p

2
E

R
E

R
hdsl − l8d f̃sd,erl,er8l8ddl dl8. sA30d

We are required to determine the limit ofsA27d for d→0+, seesA23d. This can be accomplished
with the help of Lemma 9 below. The result is

lim
d→0+

kf̂r,d,f̂r8,dlL2 =
p

2
E

R
f̃s0,erl,er8lddl. sA31d

Owing to sA23d and sA29d, we have

kf̃rserp', · d,f̃r8ser8p', · dlL2 = lim
d→0+

kf̂r,d,f̂r8,dlL2 = 0 sA32d

for er Þer8, which validatessA5d in this case.
Now assumeer =er8¬e. Then again bysA23d and Lemma 9,

kf̃rserp', · d,f̃r8ser8p', · dlL2 =
p

2
E

0

`

frst̃sedslddfr8st̃
sedslddSm2 + up'u2

l2 + 1D2

3 kc̃l,rstd,s1 − azdc̃l,r8stdldl

= pE
R

frst̃sedskspdddfr8st̃
sedskspdddSm2 + up'u2

kspd2 + 1D
3 kc̃kspd,rstd,s1 − azdc̃kspd,r8stdldpz, sA33d

where we have substituted back froml to pz. By virtue of the identities

1 − az = g0sg0 − g3d = g0n” ,

which is a Hermitian matrix, and

n”2 = n2 = 0,

we find

kc̃l,rstd,s1 − azdc̃l,r8stdl =KS1 +
en”A”

˜ std
2el

Dũrsld,g0n”S1 +
en”A”

˜ std
2el

Dũr8sldL
=KS1 +

en”A”
˜ std

2el
Dũrsld,g0n” ũr8sldL

=Kg0n”S1 +
en”A”

˜ std
2el

Dũrsld,ũr8sldL
= kg0n” ũrsld,ũr8sldl = kũrsld,g0n” ũr8sldl = kurst̃sedsldd,g0n”ur8st̃

sedslddl.

sA34d

In order to evaluate this scalar product, fixl and setpª t̃sedsld. We will make use of the 434
matrices18
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L±spd ª
±p” + m

2m
;

±sg0Espd − g1px − g2py − g3pzd + m

2m
, sA35d

which obey

Ler
spdurspd = urspd, sA36d

and the fact that for any four-vectora,

a”† = g0a”g0.

This gives

kc̃l,rstd,s1 − azdc̃l,r8stdl = kLespdurspd,g0n”Lespdur8spdl

= kurspd,g0Lespdn”Lespdur8spdl = kurspd,g0Mur8spdl sA37d

with the 434 matrix

M ª Lespdn”Lespd =
ep” + m

2m
n”

ep” + m

2m
=

1

4m2fp”n”p” + emsp”n” + n”p” d + m2n”g. sA38d

Using

a”b” + b”a” = 2sabd1,

which is valid for any four-vectorsa andb of real numbers, and

p”2 = p2 = m2,

we continue

M =
1

4m2f2snpdp” − m2n” + 2emsnpd + m2n”g =
esnpd

m
Lespd =

ekspd
m

Lespd.

Hence,

kc̃l,rstd,s1 − azdc̃l,r8stdl =
ekspd

m
kurspd,g0Lespdur8spdl =

ekspd
m

kurspd,g0ur8spdl = dr,r8
kspd
Espd

,

sA39d

where

kurspd,g0ur8spdl ; urspd†g0ur8spd = erdr,r8
m

Espd

was exploited.18 Therefore, we obtain fromsA33d,

kf̃rserp', · d,f̃r8ser8p', · dlL2 = dr,r8pE
R

frst̃sedskspdddfr8st̃
sedskspdddSm2 + up'u2

kspd2 + 1Dkspd
Espd

dpz

= 2pdr,r8E
R

frst̃sedskspdddfr8st̃
sedskspddddpz

= 2pdr,r8E
R

ufrserp',pzdu2 dpz, sA40d

which confirmssA5d also in the caseer =er8. This completes the proof. j
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We are left with showing the following.
Lemma 9: Let fPC0sf0,1g3R2,Cd. Then

Id ª E
R2

hdsx − x8dfsd,x,x8ddx dx8 → E
R

fs0,x,xddx, d → 0+, sA41d

with hd from sA28d.
Proof: We first collect some properties of the functionshd,

∀d . 0, x P R:hdsxd . 0, sA42d

∀d . 0:E
R

hdsxddx = 1,

and

∀g . 0:E
R\f−g,gg

hdsxddx → 0, d → 0+. sA43d

Set

gsd,xd ª E
R

hdsx − x8dfsd,x,x8ddx8 sA44d

for d.0, so that

Id =E
R

gsd,xddx. sA45d

The compactness of suppf implies the existence of a compact intervalfa,bg such that

gsd,xd = 0 for d . 0, x ¹ fa,bg.

Therefore,

Id =E
a

b

gsd,xddx.

Note that

ugsd,xdu ø E
R

hdsx − x8dufsd,x,x8dudx8 ø ifi` , `.

We claim that

∀x P fa,bg: lim
d→0+

gsd,xd = fs0,x,xd. sA46d

The statement in the lemma follows then by dominated convergence.
In order to provesA46d, fix xP fa,bg. For anyg ,d.0, we estimate

032304-23 Square-integrable wave packets J. Math. Phys. 46, 032304 ~2005!

                                                                                                                                    



ugsd,xd − fs0,x,xdu = UE
R

hdsx − x8dffsd,x,x8d − fs0,x,xdgdx8U
= UE

R
hdsydffsd,x,x − yd − fs0,x,xdgdyU

ø 2ifi`E
R\f−g,gg

hdsyddy + sup
rPf−g,gg

ufsd,x,x + rd − fs0,x,xdu, sA47d

wheresA42d was employed twice. Choose anye.0. Sincef is continuous, we findg ,a.0 such
that

sup
rPf−g,gg

ufsd,x,x + rd − fs0,x,xdu ,
e

2
for d P s0,ad.

In view of sA43d, we find bP s0,ad with

2ifi`E
R\f−g,gg

hdsyddy ,
e

2
for d P s0,bd.

Therefore,

ugsd,xd − fs0,x,xdu , e for d P s0,bd, sA48d

and the lemma is proved. j

1D. M. Wolkow, Z. Phys.94, 250 s1935d.
2N. D. Sengupta, Bull. Calcutta Math. Soc.44, 175 s1952d.
3H. R. Reiss, J. Math. Phys.3, 59 s1962d.
4H. R. Reiss, J. Math. Phys.3, 387 s1962d.
5T. S. Brown and T. W. B. Kibble, Phys. Rev.133, A705 s1964d.
6I. I. Gol’dman, Zh. Eksp. Teor. Fiz.46, 1412s1964d; fSov. Phys. JETP19, 954 s1964dg.
7A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz.46, 1768s1964d; fSov. Phys. JETP19, 1191s1964dg.
8N. B. Narozhny�, A. I. Nikishov, and V. I. Ritus, Zh. Eksp. Teor. Fiz.47, 930s1964d; fSov. Phys. JETP20, 622s1965dg.
9J. Bergou and S. Varró, J. Phys. A13, 2823s1980d.

10A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz.46, 776 s1964d; fSov. Phys. JETP19, 529 s1964dg.
11H. R. Reiss, J. Opt. Soc. Am. B7, 574 s1990d.
12D. P. Crawford and H. R. Reiss, Opt. Express2, 289 s1998d.
13C. Szymanowski, V. Véniard, R. Taïeb, A. Maquet, and C. H. Keitel, Phys. Rev. A56, 3846s1997d.
14C. Szymanowski and A. Maquet, Opt. Express2, 262 s1998d.
15V. P. Yakovlev, Zh. Eksp. Teor. Fiz.49, 318 s1965d; fSov. Phys. JETP22, 223 s1966dg.
16C. Müller, A. B. Voitkiv, and N. Grün, Phys. Rev. A67, 063407s2003d.
17C. Müller, A. B. Voitkiv, and N. Grün, Phys. Rev. Lett.91, 223601s2003d.
18J. D. Bjorken and S. D. Drell,Relativistic Quantum MechanicssMcGraw-Hill, New York, 1964d.
19B. Thaller,The Dirac EquationsSpringer, Berlin, 1992d.
20R. A. Neville and F. Rohrlich, Phys. Rev. D3, 1692s1971d.
21J. San Román, L. Roso, and H. R. Reiss, J. Phys. B33, 1869s2000d.
22J. San Román, L. Plaja, and L. Roso, Phys. Rev. A64, 063402s2001d.
23J. San Román, L. Roso, and L. Plaja, J. Phys. B36, 2253s2003d.
24J. San Román, L. Roso, and L. Plaja, J. Phys. B37, 435 s2004d.
25P. Filipowicz, J. Phys. A18, 1675s1985d.
26V. B. Berestetski�, E. M. Lifshitz, and L. P. Pitaevski�, Relativistic Quantum TheorysPergamon, Oxford, 1971d.
27A. Janner and T. Janssen, PhysicasAmsterdamd 60, 292 s1972d.
28M. Reed and B. Simon,Methods of Modern Mathematical Physics. I. Functional AnalysissAcademic, New York,

London, 1972d.
29M. Reed and B. Simon,Methods of Modern Mathematical Physics. III. Scattering TheorysAcademic, New York,

London, 1979d.
30M. Reed and B. Simon,Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointnesssAcademic,

New York, London, 1975d.
31C. Itzykson and J.-B. Zuber,Quantum Field TheorysMcGraw-Hill, New York, 1980d.
32J. Weidmann,Linear Operators in Hilbert SpacessSpringer, New York, Berlin, 1980d.

032304-24 Stephan Zakowicz J. Math. Phys. 46, 032304 ~2005!

                                                                                                                                    



Upper limit on the critical strength of central potentials
in relativistic quantum mechanics

Fabian Braua!

Groupe de Physique Nucléaire Théorique, Académie Universitaire Wallonie-Bruxelles,
Université de Mons-Hainaut, B-7000 Mons, Belgium

sReceived 20 September 2004; accepted 8 November 2004;
published online 16 February 2005d

In the context of relativistic quantum mechanics, where the Schrödinger equation is
replaced by the spinless Salpeter equation, we show how to construct a large class
of upper limits on the critical value,gc

s,d, of the coupling constant,g, of the central
potential,Vsrd=−gvsrd. This critical value is the value ofg for which a first,-wave
bound state appears. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1850997g

I. INTRODUCTION

A covariant description of bound states of two particles is achieved with the Bethe–Salpeter
equation.1 This equation reduces to the spinless Salpeter equation2 when the following approxi-
mations are performed:

sid elimination of any dependences on timelike variablesswhich leads to the Salpeter
equation3d,

sii d any references to the spin degrees of freedom of particles are neglected as well as negative
energy solutions.

The spinless Salpeter equation takes the forms"=c=1d

fÎp2 + m2 + Vsr dgCsr d = MCsr d, s1d

wherem is the mass of the particle andM is the mass of the eigenstatesM =m+E, E is the binding
energyd. We restrict our attention to interactions which are introduced in the free equation through
the substitutionM→M −Vsr d, whereVsr d is the time component of a relativistic four-vector. The
interaction could also, in principle, be introduced through the substitutionp→p−Asr d, where
Asr d is the spatial component of a relativistic four-vector. However we do not consider this kind
of potential since the derivation of the spinless Salpeter equation from the Bethe–Salpeter equation
leads toAsr d=0. Equations1d is generally used when kinetic relativistic effects cannot be ne-
glected and when the particles under consideration are bosons or when the spin of the particles is
neglected or is only taken into account via spin-dependent interactions. Despite its apparent
complexity, this equation is often preferred to the Klein–Gordon equation. Equations1d appears,
for example, in mesons and baryons spectroscopy in the context of potential modelsssee, for
example, Refs. 4–8d. fFor a review of several aspects of the “semirelativistic” description of
bound states with the spinless Salpeter equation see W. Lucha and F. F. Schöberl, Int. J. Mod.
Phys. A 14, 2309s1999d, and references therein.g

Due to the pseudodifferential nature of the kinetic energy operator, few exact results are
known about this equation. Most of these results have been obtained for a Coulomb potentialsfor
example, upper and lower bounds on energy levelsd.9–13 Recently, upper and lower limits on
energy levels have also been obtained for some other particular interactions.14–17
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Conversely to the Schrödinger equation, for which a fairly large number of results giving both
upper and lower limits on the number of bound states can be found in the literaturessee, for
example, Refs. 18–27d, only two results are known for the spinless Salpeter equation.28,29The first
result, obtained in Ref. 28, is an upper bound on the total number of bound states yielding a lower
limit on the critical value,gc

s0d, of the coupling constantsstrengthd, g, for which a firstS-wave
s,=0d bound state appearss, being obviously the angular momentumd in the potentialVsrd
=−gvsrd. The second results, obtained in Ref. 29, is an upper limit on the number of,-wave
bound states which yields a lower limit on the critical value,gc

s,d for which a first,-wave bound
state appears.

In this paper, we obtain accurate upper limits on the critical strengthgc
s,d applicable to attrac-

tive spurely negatived central potentials which are less singular than −r−1 at the origin. This
limitation has a deep reason. Indeed, it is known that for the spinless Salpeter equation, a potential
which behaves like −r−1 at the origin is characterized by a maximal value of the coupling constant
above which the spectrum is no longer bounded from below. This particularity has been studied in
detail for the Coulomb potentialssee, for example, Ref. 9d. The −r−1 singularity is a critical
singularity for the spinless Salpeter equation just as the −r−2 singularity is a critical singularity for
the Schrödinger equation. So in this paper we discard this class of potentials which should be
treated separately. Moreover we suppose that the central potentialVsrd is piecewise continuous for
r P g0,`f. The upper limits ongc

s,d we obtain in Sec. II are compared with the exact critical value
obtained numerically for some test potentials. These comparisons indicate that the new upper
limits are very restrictive. Some conclusions are presented in Sec. III.

II. UPPER LIMIT ON THE CRITICAL STRENGTH

The idea used to derive the upper limit ongc
s,d is to transform the standard eigenvalue problem

obtained with the time independent spinless Salpeter equations1d, and where the eigenvalues are
the eigenenergies, into an eigenvalue problem where the eigenvalues are the critical coupling
constants. These critical values of the strength of the potential correspond to the occurrence of an
eigenstate with a vanishing binding energy. We thus consider the zero binding energy spinless
Salpeter equation that we need to write as an integral equation. This has been done in Ref. 29 but
since we need some modifications in the development, we recall the main line here.

We must calculate the Green function of the kinetic energy operator. Similar calculations have
also already been performed previously.30,31 In contrast to results found in Ref. 31, we need here
to calculate the Green functionof the following operator:

Tsp2d = Îp2 + m2 − m. s2d

This is done by performing the integral

Gsm,Dd =
1

s2pd3 E dp
exps− ip · Dd
Îp2 + m2 − m

, s3d

whereD=r −r 8 andD= uDu. We find that

Gsm,Dd =
m

4pD
F1 +

2

p
FsmDdG ;

m

4pD
HsmDd, s4ad

with

Fsyd =E
y

` dz

z
K1szd +

p

2
= K1syd +

p

2
−E

y

`

dz K0szd, s4bd

and whereKnsyd is a modified Bessel functionssee, for example, Ref. 32, p. 374d. The zero
binding energy spinless Salpeter equation takes thus the form of the following integral equation:

032305-2 Fabian Brau J. Math. Phys. 46, 032305 ~2005!

                                                                                                                                    



Csr d = −E dr 8 Gsm,DdVsr 8dCsr 8d, s5d

with Gsm,Dd given by s4d. We now restrict our attention to central potentialsVsr d=Vsrd, with r
= ur u.

Integration over angular variables reduces the integral equations5d to the following one-
dimensional integral equation

u,srd = −E
0

`

dr8 G,sm,r,r8dVsr8du,sr8d, s6ad

with

G,sm,r,r8d =
mrr8

2
E

0

p

du8 sinu8
HsmDd

D
P,scosu8d, s6bd

whereu,srd is the radial wave function,Csr d=su,srd / rdY,msr̂ d and whereHsxd is defined bys4ad.
An important technical difficulty, to obtain a symmetrical kernel, appears if the potential

possesses some change of signfsee relations7d belowg. This is overcome when one searches for
necessary conditions, or upper bound on the number of bound states, by replacing the potential by
its negative partVsrd→V−srd=−maxs0,−Vsrdd. Indeed, the potentialV−srd is more attractive than
Vsrd and thus a necessary condition for existence of bound states inV−srd is certainly a valid
necessary condition forVsrd. This procedure can no longer be used to obtain sufficient conditions.
For this reason we consider potentials that are nowhere positive,Vsrd=−gvsrd, with vsrdù0.

The integral equations6d can be written with a symmetrical kernel provided we introduce a
new wave function

f,srd = uVsrdu1/2u,srd. s7d

This change of function leads to the following integral equation:

f,srd = gE
0

`

dr8K,sm,r,r8df,sr8d, s8ad

with

K,sm,r,r8d = vsrd1/2G,sm,r,r8dvsr8d1/2. s8bd

The relations8d is thus an eigenvalue problem and, for each value of,, the smallest characteristic
number is just the critical valuegc

s,d. The other characteristic numbers correspond to the critical
values of the strength of the potential for which a second, a third,…, ,-wave bound state appears.
The kernels8bd acting on the Hilbert spaceL2sRd is an Hilbert–Schmidt operator for potentials
which decrease faster thanr−1 at infinity. Thus this kernel satisfies the inequality

E
0

` E
0

`

dx dy K,sx,ydK,sx,yd , `. s9d

Consequently the eigenvalue problems8d always possesses at least one characteristic numbersRef.
33, pp. 102–106d sin general, this problem has an infinity of characteristic numbersd.

Now we use the theoremssee, for example, Ref. 33, pp. 118–119d which states that, for a
symmetric Hilbert–Schmidt kernel, we have the variational principle
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max
w
UE

0

`

dx dy K,sx,ydwsxdwsydU =
1

ug1u
, s10d

for wsrd satisfying

E
0

`

dr wsrd2 = 1. s11d

The maximal value is reached forwsxd=w1sxd, wherew1sxd is the eigenfunction associated to the
smallest eigenvalueg1. Consequently, for an arbitrary normalized function,fsxd, we obtain the
following upper limit ong1:

ug1u ø UE
0

`

dx dy K,sx,ydfsxdfsydU−1

. s12d

For the clarity of the discussion we now consider in two separate sections the ultrarelativistic
regimesm=0d and the relativistic regimesm.0d.

A. Ultrarelativistic regime m =0

In this section, we derive ansamong othersd upper limit on the critical value,gc
s,d, of the

coupling constant,g, of the potential,Vsrd=−gvsrd, for which a first,-wave bound state appears
in the ultrarelativistic regimesm=0d. In this limit, the kernel takes a simple form since
mK1smyd=1/y whenm goes to zero. This implies that

lim
m→0

mHsmDd =
2

pD
. s13d

The functionG,s0,r ,r8d takes then the form

G,s0,r,r8d =
rr 8

p
E

0

p

du8
sinu8

D2 P,scosu8d. s14d

A simple change of variable leads tosRef. 32, p. 335d

G,s0,r,r8d =
1

2p
E

−1

1

dy
P,syd

sr2 + r82d/s2rr 8d − y
=

1

p
Q,S r2 + r82

2rr 8
D , s15d

where the functionQ,sxd is a Legendre function of the second kind. The functionG,s0,r ,r8d can
thus be evaluated explicitly for each value of the angular momentum,. We have, for example,

G0s0,r,r8d =
1

p
lnU r + r8

r − r8
U s16d

and

G1s0,r,r8d =
1

p
F r2 + r82

2rr 8
lnU r + r8

r − r8
U − 1G . s17d

Since the functionG,s0,r ,r8d is given by the relations15d, it follows that the kernelK,s0,r ,r8d,
sees8bd, is known for each value of,. Now, we just need to choose a suitable normalized function
fsrd to apply the variational principle reported above.

For simplicity we restrict the rest of the following discussion to,=0 but extensions to
nonvanishing values of the angular momentum is obvious, one just needs to compute the corre-
sponding expression of the functionG,s0,r ,r8d.
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The functionfsrd should be as close as possible to the zero binding energy wave function but
also should be general and simple enough to obtain a neat formula. We simply choose

fsrd = Afrp−1vsrdpg1/2, p . 0, s18d

whereA is the normalization factor. The relationss8bd, s12d, s16d, ands18d lead to the following
upper limit ongc

s0d:

gc
s0d ø

apE
0

`

dx F1s2p − 1;xd

2E
0

`

dx F1sp;xdE
0

x

dy F1sp;ydlnSx + y

x − y
D ; gup,1

m=0, s19d

whereF1sq;xd=xsq−1d/2vsxdsq+1d/2 and where we have introduced the parametera which takes the
value 1, respectively, 2 for one, respectively, twosidenticald particle problems. The most stringent
upper limit is obviously obtained by minimizing the right-hand side ofs19d with respect to all
positive values ofp.

A simpler, but less stringent, version of this upper limit can be obtained with the help of the
following minorization:

lnSx + y

x − y
D ù

2y

x
, s20d

gc
s0d ø

apE
0

`

dx F1s2p − 1;xd

4E
0

`

dx x−1F1sp;xdE
0

x

dy yF1sp;yd
; gup,2

m=0. s21d

The accuracy of these upper limits can be tested with some typical potentials. The comparison
between the exact resultssobtained by solving numerically the spinless Salpeter equationd and the
upper limits s19d and s21d is reported in Table I. We have also added two lower limits ongc

s0d

obtained with the upper limits on the number of bound states derived in Refs. 28 and 29. Note that
for these tests, we choose a two identical particles problem,a=2.

The results reported in Table I indicate clearly that the accuracy of the upper limits19d is quite
remarkable. The upper limits21d is obviously less stringent but could prove to be useful to obtain
explicit formulas. The typical value ofp which optimize these upper limits varies between 2 and
3. We do not consider other choices forfsrd fsees18dg here since the relations19d is already very
accurate.

As an additional indication that the upper limits obtained with the method proposed in this
work are quite accurate, we report in Table II a comparison between the exact value of the critical
strengthgc

s1d s,=1d and the corresponding upper limit obtained with the relationss12d, s17d, and
s18d and notedgup

m=0,,=1 in this table.

TABLE I. Comparison, for some typical potentials, between the exact critical values,gc
s0d, the upper limitsgup,1

m=0 s19d, gup,2
m=0

s21d and the lower limits obtained in Refs. 28 and 29.

vsxd Reference 29 Reference 28 gc
s0d gup,1

m=0 gup,2
m=0

exps−xd 4.443 4.370 5.574 5.584 7.411

fcoshsxdg−2 4.126 3.886 5.008 5.018 6.769

exps−x2d 4.513 4.169 5.426 5.442 7.399

x exps−xd 3.696 3.349 4.360 4.364 5.964
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B. Relativistic regime m >0

To obtain an upper limit ongc
s,d for a nonvanishing massm, we need to calculate the expres-

sion of the functionG,sm,r ,r8d. To this end we note that

K1syd ø Fsyd ø K1syd +
p

2
. s22d

From the relations12d, it is obvious that a minorization of the kernelK,sm,r ,r8d is enough to
obtain the upper limit. However, the minorizations22d of the functionFsyd is too crude to obtain
good results. Instead we use

Fsyd ù K1syd +
p

2
−

p

2
exps− yd. s23d

This minorizations23d is proved in the Appendix. From the definition ofG,sm,r ,r8d s6bd and the
inequality s23d we obtain

G,sm,r,r8d ù
1

p
G,sm,r,r8d + S,sm,r,r8d −

1

2
T,sm,r,r8d, s24d

where

G,sm,r,r8d = mE
ur−r8u

r+r8
dy K1smydP,S r2 + r82 − y2

2rr 8
D , s25d

S,sm,r,r8d = mE
ur−r8u

r+r8
dy P,S r2 + r82 − y2

2rr 8
D =

2m

2, + 1
r,

,+1r.
−,, s26d

with r,=minfr ,r8g and r.=maxfr ,r8g and Ref. 34,

T,sm,r,r8d = mrr8E
−1

1

dy
exps− mÎr2 + r82 − 2rr 8yd

Îr2 + r82 − 2rr 8y
P,syd

=Î 2

p
m2rr 8E

−1

1

dy
K1/2s− mÎr2 + r82 − 2rr 8yd
fm2sr2 + r82 − 2rr 8ydg1/4 P,syd

=2mÎrr 8K,+1”2smr.dI,+1”2smr,d, s27d

where Insxd is a modified Bessel functionssee, for example, Ref. 32, p. 374d. The kernel
S,sm,r ,r8d is actually the Green function of the nonrelativistic kinetic energy operator and takes
a simple form while the kernelG,sm,r ,r8d can be calculated analytically for each value of,.30,31

We find, for example,

TABLE II. Comparison, for some typical potentials, between the exact criti-
cal values,gc

s1d and the upper limitgup
m=0,l=1 obtained with the relationss12d,

s17d, ands18d.

vsxd gc
s1d gup

m=0,l=1

exps−xd 10.975 10.992
fcoshsxdg−2 8.1174 8.1268
exps−x2d 10.200 10.231
x exps−xd 9.5442 9.5636
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G0sm,r,r8d = K0smur − r8ud − K0smsr + r8dd, s28d

G1sm,r,r8d = K0smur − r8ud + K0smsr + r8dd +
1

mrr8
fsr + r8dK1smsr + r8dd − ur − r8uK1smur − r8udg.

s29d

Now, we just need to choose a suitable normalized functionfsrd to apply the variational
principle reported abovefsees12dg. We take the following expression forfsrd:

fsrd = Afr2p−1vsrdpg1/2, p . 0. s30d

For simplicity we again restrict the rest of the following discussion to,=0 but extensions to
nonvanishing values of the angular momentum is obvious, one just needs to compute the corre-
sponding expression of the functionG,sm,r ,r8d.

The relationss8bd, s12d, s18d, ands28d lead to the following upper limit ongc
s0d:

gc
s0d ø

aE
0

`

dxÎxF2s2p − 1;xd

2E
0

`

dx F2sp;xdE
0

x

dy F2sp,ydTsx,yd
; gup

m.0, s31ad

with

Tsx,yd =
1

p
fK0sbsx − ydd − K0sbsx + yddg + 2by +

1

2
fexps− bsx + ydd − exps− bsx − yddg,

s31bd

whereF2sq,xd=xq−1/2vsxdsq+1d/2 and whereb=mR, R being the scale of length which appears in
the potentialfvsrd=vsRxdg. Again, we have introduced ins31ad the parametera which takes the
value 1, respectively, 2 for one, respectively, twosidenticald particle problems.

The accuracy of this upper limit can be tested with some typical potentials. The comparison
between the exact results and the upper limits31d is reported in Table III. Note that for these tests,
we also choose a two identical particles problem,a=2.

The results reported in Table III indicate clearly that the accuracy of the upper limits31d is
quite good. But for a small value ofb the upper limit is however less restrictive. Thus for a small
value ofb it is preferable to use an intermediate form forfsrd. We then propose in general to use

TABLE III. Comparison, for some typical potentials, between the exact critical values,gc
s0d and the upper limitgup

m.0 s31d.

vsxd
b

exps−xd fcoshsxdg−2 exps−x2d

gc
s0d gup

m.0 gc
s0d gup

m.0 gc
s0d gup

m.0

0.1 4.694 5.390 4.461 4.994 4.927 5.363

0.5 2.387 2.547 2.766 3.006 3.309 3.589

1 1.361 1.407 1.742 1.843 2.198 2.352

2 0.7133 0.7206 0.9598 0.9862 1.257 1.307

3 0.4804 0.4817 0.6549 0.6642 0.8669 0.8880

4 0.3607 0.3615 0.4956 0.4994 0.6589 0.6694

5 0.2890 0.2893 0.3981 0.3999 0.5305 0.5364
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fsrd = Afrap−1vsrdpg1/2, p . 0, s32d

with 1øaø2. This last expression forfsrd improves significantly the restriction on the possible
values ofgc

s0d. Indeed, forb=0.1,a=1.18 and for the exponential potential, the upper limit is then
equal to 4.812 instead of 5.390. But this additional flexibility is only significant for a small value
of b, indeed forb=0.5 the best upper limit is found to be equal to 2.521sfor the exponential
potential anda=1.69d instead of 2.547.

However, even with the choices32d for fsrd, the upper limits31d still yields less restrictive
results for smallb than those obtained for larger values ofb or those obtained with the upper limit
s19d. This is easy to understand, since this is in the sector of smallb, that the error introduced by
the inequalitys23d is the most important. Indeed, in the limit ofb going to zero, the upper limit
s31d coincides with the upper limits19d and forb going to infinity, only the nonrelativistic kernel
S,sm,r ,r8d contributes.

III. CONCLUSIONS

In this paper we have shown how to construct upper limits on the critical value,gc
s,d, of the

coupling constant,g, of a central potential,Vsrd=−gvsrd. The method used to derive the upper
limits is quite general and otherspossibly more complicatedd families of upper limits yielding
spossiblyd stronger restrictions ongc

s,d could also be obtained. Indeed, the method is based on a
variational principle for which a trial zero energy wave function is needed. There is no limitation
on the accuracy of such a trial function, which imply that there is, in principle, no limitation on the
accuracy of the upper limit ongc

s,d derived with this procedure. However, this remark is only true
for the ultrarelativistic regime,m=0, where the kernel of the integral equation has been calculated
exactly. Form.0, a minorization of the kernel has been used yielding some errors in the restric-
tions on the possible values of the critical valuegc

s,d which cannot be compensated by a better
choice of the trial zero energy wave function. In this paper we have proposed in Sec. II a
compromise between accuracy and simplicity of the final formula. The accuracy of the upper
limits on gc

s,d was then tested with some typical potentials.
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APPENDIX: MAJORIZATION OF THE PRIMITIVE OF K0„x…

We choose the following integral representation for the modified Bessel functionK0sxd sRef.
32, p. 376d:

K0sxd =E
0

`

dt exps− x coshtd. sA1d

We have

E
y

`

dx K0sxd =E
0

`

dt
exps− y coshtd

cosht
ø exps− ydE

0

`

dt
1

cosht
=

p

2
exps− yd. sA2d
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We express the equations of motion of unoriented membranes with the help of
Jordan algebras. ©2005 American Institute of Physics.fDOI: 10.1063/1.1857032g

I. INTRODUCTION

The proposal of the matrix theory as a fundamental theory of physics1 and its connection with
the supermembrane theory2 gave a strong impetus to the study of noncommutative space-time
models. The starting point of these investigations is often the correspondence between the Poisson
algebra of functions on the surface of the membrane and the associative algebra of the regularized
matrix coordinates. Nevertheless, there are models where even the assumption of the associativity
of the space-time coordinates is dropped. We demonstrate that the nonassociative Jordan algebras
can be used to describe the motion of the bosonic membrane. In contrast to the case of Poisson
algebras, our construction does not require orientable surfaces, so it can describe nonorientable
surfaces, too. Let us note that Jordan algebras were used for example in string theory3 and matrix
string theory.4

In Sec. II we briefly review the matrix theory—membrane correspondence—while Sec. III
contains the Jordan algebraic reformulation of this theory.

II. A SHORT REVIEW OF THE ORIENTED MEMBRANE

The classical equation of motion of a membrane is derived from the action

S= − TE d3sÎ− det]aXm]bXm, s2.1d

where theXmss0,s1,s2d coordinates describe the embedding of the membrane’s world volume
into the ambient Minkowski space. The Hamiltonian equations of motion in the light-front coor-
dinates are generated by the Hamiltonian

H =
nT

4
E d2sSẊiẊi +

2

n2hXi,XjjhXi,XjjD s2.2d

and the supplementary constraint

hẊi,Xij = 0. s2.3d

The equation of motion is
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Ẍi =
4

n2hhXi,Xjj,Xjj. s2.4d

sFor references, explanation of notation, and further review of this topic we refer to Ref. 5.d
In the regularization procedure of Hoppe,6 the Xi coordinate functions are replaced by finite

size matrices, Poisson brackets by matrix commutators, and the integration over the membrane’s
surface by suitably normalized traces. The regularized Hamiltonian and the equations of motion
are

H =
1

2plp
3 TrS1

2
ẊiẊi −

1

4
fXi,X jgfXi,X jgD ,

s2.5d
Ẍi + ffẊi,Ẋ jg,Ẋ jg = 0, fẊi,Xig = 0,

where theXi coordinates are now Hermitian matrices.
This reformulation requires orientable surfaces. Nevertheless, this procedure can be extended

to nonorientable surfaces, too.7 Indeed a nonorientable surface has an orientable double coversthe
orientation bundled. Inside the Poisson algebra of the functions of the double cover, one can
identify the sub-Lie-algebra of those functions, which generate the area-preserving transforma-
tions of the nonorientable surface.8,9 On RP2 one obtains theUSpsNd Lie algebra.

III. THE UNORIENTED MEMBRANE

The surface of the membrane has no intrinsic orientation. Indeed, the Hamiltonians2.2d is
invariant against the flip of the sign of the symplectic formv of the Poisson bracket. This fact
suggests that it might be possible to rewrite the expressionss2.2d ands2.3d with no reference to the
sign of v. Since the correspondence betweens2.2d ands2.3d uses the replacement of the commu-
tative algebra of theXi functions by the noncommutativeXi matrices via deformation quantization,
it is quite reasonable to search for a deformed algebraic structure that does not depend on the sign
of v. Let us recall that onR2 with v=dx∧dy the deformed Moyal products look like

fphg = fg +
ih

2
sfxgy − fygxd +

h2

8
F fxygxy −

1

2
sfxxgyy + fyygxxdG + ¯ . s3.1d

The second-order term is symmetric with respect to the exchange of thex andy variables, so it
makes no reference to the orientation of the surface. Exactly this term is the first nontrivial term
in the Jordan product off andg

f+hg =
1

2
sfphg − gphfd = fg +

h2

8
F fxygxy −

1

2
sfxxgyy + fyygxxdG + ¯ , s3.2d

so we try to rewrites2.3d ands2.4d with the help of anticommutatorssJordan productsd instead of
commutators.

The Hamiltonian can be rewritten using the following calculation:

TrsfX,YgfX,Ygd = 2 TrsXYd2 − 2 TrsX2Y2d,

TrsX + Xd + sY + Yd = TrsX2Y2d, s3.3d

TrhX + fY + sX + Ydgj =
1

2
TrsXYd2 +

1

2
TrsX2Y2d

fhere+ is the usual Jordan product of matricesX +Y=sXY+YXd /2g.
Consequently,
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H =
1

2plp
3 TrS1

2
Ẋi + Ẋi − Xi + sX j + sXi + X jdd + sXi + Xid + sX j + X jdD . s3.4d

The accelerationsẌi of the matrix coordinates are given by double commutatorss2.4d, so it can be
expressed by with the help of the associator of the Jordan algebra

sX,Y,Zd = sX + Yd + Z − X + sY + Zd =
1

4
fY,fX,Zgg, s3.5d

whose identity gives the following equation of motion:

Ẍi = 4sXi,X j,X jd = fX j,fXi,X jgg. s3.6d

The substitution of double commutators by associators occurs in almost all papers on the Jordan
algebraic reformulation of quantum mechanics. Our next task is to express the constraints

fẊi ,Xig=0 with the Jordan product of matrices. This is obviously impossible directly. The best we
can do is to require that

4sẊi,U,Xid = fU,fẊi,Xigg = 0 s3.7d

for any matrix U. Since only the multiples of the identity matrix commute with all the other

matrices, this equation implies thatfẊi ,Xig=c·1, but it is well known that this is impossible for
finite size matricessby taking the trace of both sidesd.

So we managed to rewrite the Eqs.s2.3d ands2.4d in a Jordan algebraic language. Since these
equations are only finite dimensional approximations of the continuous equations2.2d, we expect
that a similar procedure can be repeated fors2.2d, at least up to the leading orders of a deformation
parameter. For this purpose, we would like to expresseds2hf ,gj2 with the help of the Jordan
multiplication +h. This is possible in the sense that the following identity holds onR2:

hf,gj2 = sfxgy − fygxd2 = −
4

h2ff+hsg+hsf+hgdd − sf+hfd+hsg+hgdg + Osh2d + ax + by, s3.8d

where the explicit forms ofa andb are

a = fxsfgy
2 − 2fyggyd + gxs2fy

2g − f fygyd,

s3.9d
b = fysfgx

2 − 2fxggxd + gxs2fx
2g − f fxgxd.

The verification of these formulas consists of a fairly direct but quite long calculation, which can
be easily performed by a symbolic algebra package. It is amusing to compare this to the simplicity
of the matrix versions3.3d and s3.4d of these identities. Since the integral of theax+by term is
zero if f andg have compact supportsor the integration is done over a compact closed surfaced,
s2.2d can be expressed with the help of the deformed Jordan multiplication up to terms of order
Osh2d.

Next we would like to see what sort of Jordan algebra can be associated to a nonorientable
surface. We treat here only the simplest case of the real projective planeRP2, but we believe that
the same conclusion would be true for the other nonorientable surfaces, too.sIt was demonstrated
in Ref. 10 that the Goldstone–Hoppe regularization procedure is applicable for higher genus
orientable surfaces, too.d

Let us recall that the Goldstone–Hoppe construction on the unit sphereS2 uses the correspon-
dence
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xi ↔
2

N
Ji, hxi,xjj = ei jkxk, − ifJi,Jjg = ei jkJk, s3.10d

where thex1,2,3 are the three-dimensional coordinates ofS2 satisfyingx1
2+x2

2+x3
2=1, while J1,2,3

are the Hermitian generators of theN-dimensional irreducible representation ofSUs2d. As an
algebra, these matrices generateMatNsCd, while as asunitald Jordan algebra they generate the
self-adjoint part ofMatNsCd, which is denoted byHNsCd. This is probably well known for Jordan
algebrists, but with the help of the standard representation ofSUs2d

N = 2j + 1, J3uml = muml,

J+uml = Îjs j + 1d − msm+ 1duml,

s3.11d
J−uml = Îjs j + 1d − msm− 1duml,

J1 =
J+ + J−

2
, j2 =

J+ − J−

2i
,

this can be demonstrated quite explicitly. Let us denote byeij the matrix with zero entries except
at seijdi j =1. Theneii can be written as a suitable polynomial ofJ3, sinceJ3 is diagonal with
different diagonal entries. Furthermore,

seii + J1d + ei+1,i+1 =
1

4
sJ1di,i+1sei+1,i + ei,i+1d,

s3.12d

seii + J2d + ei+1,i+1 =
1

4
sJ1di,i+1s− iei+1,i + iei,i+1d.

The successive Jordan products of these types of matrices generate the whole ofHNsCd. sFor
example,

sei+1,i + ei,i+1d + s− iei+1,i+2 + iei+2,i+1d =
1

2
s− iei,i+2 + iei+2,id, s3.13d

etc.d
Now let us turn our attention to the case ofRP2. This projective plane is the quotient ofS2 by

the antipodal mapsx1,x2,x3d→ s−x1,−x2,−x3d, so we would like to keep those elements of the
Jordan algebra generated byJ1,2,3 that are invariant with respect to the substitutionJ1,2,3→
−J1,2,3. This part can be generated by the matriceshJi +Jk; i ,k=1,2,3j. We restrict ourself to the
very simple case whenN is odd, soJi representsSOs3d. In this caseJi can be chosen to be purely
imaginary and antisymmetric, soJi +Jk is a symmetric real matrix. The Jordan algebra generated by
these matrices is formally real, i.e.,oiai

2=0 implies ai =0. Such unital and finite dimensional
Jordan algebras are direct sums of simple onessp. 72d.11 If this direct sum were nontrivial, or the
generated algebra were realized as a diagonal embedding of, for example,HN/2sRd into HNsRd,
that would implicate the existence of a nontrivial decomposition of the vector spaceCN into the
direct sum of vector spaces, with invariant factors with respect to the action ofSOs3d fsince the
linear span of the generating sethJi +Jk, i ,k=1,2,3j is also invariant againstSOs3dg, but this
would contradict to the irreducibility of the representation. So we conclude that the Matrix theo-
retic description of a membrane with topology of the real projective space requires the use of the
Jordan algebra of real symmetric matrices. This result is in sharp contrast compared to the con-
struction of Ref. 7, where the Lie algebra ofUSpsNd was used, since the closest Jordan algebraic
relative ofUSpsNd is HNsHd, i.e., the set of self-adjoint quaternionic matrices.
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A discretization of a continuum theory with constraints or conserved quantities is
called mimetic if it mirrors the conserved laws or constraints of the continuum
theory at the discrete level. Such discretizations have been found useful in con-
tinuum mechanics and in electromagnetism. We have recently introduced a new
technique for discretizing constrained theories. The technique yields discretizations
that are consistent, in the sense that the constraints and evolution equations can be
solved simultaneously, but it cannot be considered mimetic since it achieves con-
sistency by determining the Lagrange multipliers. In this paper we would like to
show that when applied to general relativity linearized around a Minkowski back-
ground the technique yields a discretization that is mimetic in the traditional sense
of the word. We show this using the traditional metric variables and also the
Ashtekar new variables, but in the latter case we restrict ourselves to the Euclidean
case. We also argue that there appear to exist conceptual difficulties to the construc-
tion of a mimetic formulation of the full Einstein equations, and suggest that the
new discretization scheme can provide an alternative that is nevertheless close in
spirit to the traditional mimetic formulations. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1841483g

I. INTRODUCTION

Continuum theories, either mechanical systems or field theories, usually have conservation
laws and sometimes constraints. When one discretizes the equations of these theories, for instance
in order to solve them numerically on a computer, or for “quantization on the lattice” purposes, the
resulting discrete equations will usually fail to preserve the conserved quantities of the continuum
theory upon evolution. Similar comments apply to constraints. Although one may have discrete
equations resulting from discretizing the constraints of the continuum theory, if one chooses initial
data that solve these equations exactly, they will fail to be solved upon discrete evolution.

Mimetic discretizations are discretizations of continuum theories that preserve conserved
quantities or constraints in the discrete theory that mimic those of the continuum theory. There is
quite a body of literature1 on mimetic discretizations in the context of continuum mechanics and
electromagnetism. The literature on Hamiltonian lattice QCD implicitly considers a mimetic dis-
cretization of Yang–Mills theory, although this fact is not usually emphasized.

Some authors have considered the question of whether mimetic discretizations of general
relativity can be constructed.2,3 It is well known that if one discretizes the Einstein equations, the
Hamiltonian and momentum constraint, which should hold for all time if satisfied initiallysignor-
ing for the moment the issue of spatial boundariesd, fail to do so in the discrete theory. Although
there has been success in generating mimetic formulations of linearized relativity, it appears
unlikely that something similar will be available for the full theorysor even for the linearized
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theory on nontrivial backgrounds or slicingsd. This is due to the fact that discretized derivatives
fail to satisfy Leibnitz’s rule and therefore the nonlinear terms when discretized do not have
properties that mirror those of the continuum.3

We have recently introduced a new approach to the discretization of theories, particularly of
theories with constraints4,5 called “consistent discretization.” The technique guarantees that the
resulting discrete equations are compatible, i.e., they admit a common set of solutionsssomething
that is not generically true if one discretizes the equations of a constrained theoryd. The technique
has been tried out in the context of cosmological solutions of the Einstein equations,6 of BF theory
and of Maxwell and Yang–Mills theories on the lattice.4 Current investigations are testing it for the
Gowdy models.

In this paper we would like to show that the technique we proposed, when applied to the
Einstein theory linearized around a Minkowski background yields a discrete formulation that is
mimetic. That is, the discretized constraints are exactly preserved under evolution without deter-
mining the Lagrange multipliers. We first consider linearized general relativity in terms of the
traditional metric variables. We then consider it in terms of Ashtekar’s variables, which have the
advantage of being closer to the discretizations used in Yang–Mills theoriessalthough in this case
we restrict ourselves to Euclidean general relativityd.

In the consistent discretization scheme, equations are discretized with variables evaluated at
two sor mored different levels in time. This includes the constraints of general relativity, which in
the discrete theory therefore can only be viewed as “pseudo” constraintsswe will reserve the word
constraint for expressions that involve all variables evaluated at the same instant of time, as in
traditional canonical terminologyd. These equations, with variables discretized at mixed instants of
time are the equations that are solved by the consistent discretization scheme. Of course, if one is
in a regime in which the time-step is small, then satisfying the pseudoconstraints implies that the
usual discrete constraintsswith all the variables at the same time-stepd are approximately satisfied
as well. Therefore the resulting scheme cannot be strictly called mimetic, although it approxi-
mately is. We will show that if one uses a discretization for general relativity that is mimetic in the
linearized case, one further improves the accuracy with which the consistent scheme for the full
nonlinear theory satisfies the constraints. This encourages further studies of these discretization
schemes in the context of numerical applications.

In the next section we will present a brief summary of the consistent discretizations scheme.
In the following two sections we apply it to linearized gravity, first with the traditional variables
and then with the Ashtekar variables. We end with a discussion and proposals for further research.

II. CONSISTENT DISCRETIZATION OF CONSTRAINED THEORIES

We illustrate the technique with a mechanical system for simplicity, but there is no problem
working it out for field theories, since upon discretization the latter become mechanical systems.
We assume we start from an action in the continuum, written in first-order form,

S=E Lsq,pddt s1d

with

Lsq,pd = pq̇− Hsq,pd − lfsq,pd, s2d

where l is a Lagrange multiplier and the theory has a singlesit is immediate to incorporate
severald constraintfsq,pd=0. The discretization of the action yieldsS=o0

NLsn,n+1d, where

Lsn,n + 1d = pnsqn+1 − qnd − eHsqn,pnd − lnfsqn,pnd, s3d

wheree= tn+1− tn and we have absorbed ane in the definition of the Lagrange multipliers.
We will now view the Lagrangian as the generator of a type 1 canonical transformation

between the instantn and the instantn+1. In ordinary classical mechanics parlance, given a
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canonical transformation between a canonical pairq,p and a new canonical pairQ,P, the gener-
ating function of a type 1 canonical transformation is a function ofq,Q, Fsq,Qd and the canoni-
cally conjugate momenta are defined byP=]F /]Q, p=]F /]q. In our case we will viewqn, pn, ln

and qn+1, pn+1, ln+1 as “configuration variables” and will assign to each of them a canonically
conjugate momentum through the canonical transformation,

Pn+1
q =

]Lsn,n + 1d
]qn+1

, s4d

Pn+1
p =

]Lsn,n + 1d
]pn+1

, s5d

Pn+1
l =

]Lsn,n + 1d
]lsn+1d

, s6d

Pn
q = −

]Lsn,n + 1d
]qn

, s7d

Pn
p = −

]Lsn,n + 1d
]pn

, s8d

Pn
l = −

]Lsn,n + 1d
]lsnd

. s9d

If one explicitly computes the partial derivatives with the Lagrangian given, one can eliminate
the p, Pp, andPl to yield a more familiar-looking set of equations,

Pn+1
q − Pn

q = − e
]Hsqn,Pn+1

q d
]qn

− lnB

]fBsqn,Pn+1
q d

]qn
,

qn+1 − qn = e
]Hsqn,Pn+1

q d
]Pn+1

q + lnB

]fBsqn,Pn+1
q d

]Pn+1
q , s10d

fBsqn,Pn+1
q d = 0.

These indeed look like a discrete version of equations for a system with constraints. However,
there are important differences. First of all, notice that as an evolution system the equations are
implicit. Second, if one solves the first two equations one obtainsPq and q as functions of the
initial data and the Lagrange multipliers. The last equation however, will generically not hold. One
will have to choose specific values for the Lagrange multipliers at each time-stepsand if one is
dealing with a field theory at each point in spaced for all the equations to be solved.

Notice that there can be particular cases in which the system does not determine the Lagrange
multipliers. For instance, consider a totally constrained system like general relativity. There the
Hamiltonian vanishes. Suppose now that the constraint ins10d is only a function ofqn. Then the
evolution equation forqn+1 implies thatqn+1=qn and the constraint is automatically preserved.
Therefore the resulting formulation is mimetic in the traditional sense of the word, a constraint that
is just the discrete version of the continuum constraint is preserved under evolution by the discrete
evolution equations. A similar situation develops if the constraint is only a function ofPq.

If the Hamiltonian is nonvanishing, and the constraint depends only onPn+1
q then the latter is

not automatically preserved upon evolution, but it cannot be satisfied by choosing the Lagrange
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multipliers either since they drop out from the relevant evolution equations. On the other hand, if
the constraint is only a function ofqn, its preservation could be enforced by choosing the Lagrange
multipliers sthe asymmetry betweenPq andq in this treatment comes from the fact that we chose
to write the equations as “propagating forward” in time, if one had chosen to propagate back-
wards, the roles ofq andPq in this discussion would be reversedd.

Summarizing, the consistent discretization technique consists of discretizing the action and
working out the resulting equations of motion for the discrete theory from it through the canonical
transformation that implements time evolution. The resulting evolution equationssand constraintsd
are made of a consistent set of nonlinear algebraic equations by considering the Lagrange multi-
pliers as dynamical variables one must solve for. In particular situations, the Lagrange multipliers
are not determined by the equations. In such cases the resulting set of equations and constraints
must be consistent since it has been derived from a variational principle and the resulting discrete
theory is mimetic in the traditional sense of the word, the constraints are automatically preserved
upon evolution. In the other case, when the Lagrange multipliers are determined the resulting
discrete theory is based on a consistent set of algebraic equations, but as one can see in Eq.s10d,
one is enforcing the constraints with some variables evaluated at instantn and some at instant
n+1. For small step sizes, this implies that the constraints with all the variables evaluated at the
same instant of time are approximately preserved. The resulting theory therefore cannot be called
mimetic in the traditional sense of the word, although it can do a good job of preservingsapproxi-
matelyd the discrete constraints.

In the next two sections we apply this technique to linearized general relativity. We will see
that the resulting theories do not determine the Lagrange multipliers, preserve the constraints
automatically, and therefore are mimetic in the traditional sense of the word. We will not discuss
the case of full general relativity here, but in several examples we have considered elsewhere for
the nonlinear theoryscosmologies,6 Gowdy space–timesd the Lagrange multipliers are determined.
Therefore it is unlikely that this method will yield a mimetic formulation for full GR. However, as
we argued above, it will yield a formulation that approximates general relativity well in certain
regimes and in such regimes the discrete constraints are enforced approximately very well. We
believe it is likely that this is “as close as one will get” to a mimetic formulation of full general
relativity.

III. LINEARIZED GENERAL RELATIVITY IN TERMS OF METRIC VARIABLES

In this section we will apply the technique we described in the preceding section to linearized
general relativity written in terms of the traditional variables. We assume the background is the
Minkowski metric.

A. Continuum formulation

We start with the Arnowitt, Deser, and MisnersADM d7 form of the action of general relativity,

S=E d4xfpabq̇ab − NC− NaC
ag, s11d

where

C =
1
Îq
Fpabpab −

1

2
spb

bd2G − Îqs3dR, s12d

Ca = − 2p;b
ab, s13d

and the variablessqab, N, Nad are related to the four dimensional metrics4dgmn through,

qab = s4dgab, s14d
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N = s− s4dg00d
−1/2, s15d

Na = s4dg0a. s16d

The indicesa,b,c run from 1 to 3.Îq is the determinant of the spatial metricqab ands3dR is its
Ricci curvature scalar. The momentapab are related to the extrinsic curvature of the spacelike
surfacesx0= t=constant throughpab=−ÎqfKab−qabKc

cg and indices are raised and lowered with
the spatial metric. The semicolon denotes covariant differentiation with respect to the Christoffel
connection of the spatial metric. Variation with respect topab,qab,N,Na yields the Einstein equa-
tions. In particular variation ofN,Na gives rise to four constraintsC=0,Ca=0 usually referred to
as ssuper-d Hamiltonian and momentumsor diffeomorphismd constraints.

We have chosen the ADM action since it is one of the most traditionally used in general
relativity. Modern numerical implementations favor the use of formulations in which the evolution
equations are manifestly symmetric-hyperbolic. This is not the case for the ADM equations. In
principle there is no obstruction in applying our technique to any action, but it just is the case that
there has been little investigation about formulating the symmetric-hyperbolic formulations as
deriving from an action principle. This will require further study and therefore we decided to
concentrate on this paper on the ADM action for simplicity.

We now consider that the space–time metric is given by a static background metric plus small
perturbationss4dgmn= s4dgmn

s0d+hmn. For simplicity we make the further choice that the foliation is
such that the zeroth order shiftNa=0 and the zeroth order extrinsic curvature is therefore zero
pab=0. The constraint equations to leading order in the perturbations are given by8

Ca = − 2pab
;b, s17d

C = − Îqfhab
;ab − h;a

;a − hab
s3dRabg. s18d

In these expressionspab is the linear portion of the canonical momentumpab ands3dRab is the
Ricci tensor of the background metric. The action for the linearized theory is

S=E d4xfpabḣab − Ns0dH − Na
s1dCa − Ns1dCg, s19d

where we have kept track of the order in the perturbation expansion of the lapse and the shift
srecall that we assume zero shift in the backgroundd. The constraintsC,Ca are given by the
expressions above, where only terms up to order linear have been kept. The quantity

H =
1
Îq
Fpabpab −

1

2
p2G +

1

2
ÎqF1

2
hab;ch

ab;c − hab;ch
ac;b −

1

2
h;ah

;a + 2h;ah
ab

;b + hhab
;ab − hhab

s3dRabG
s20d

is a true Hamiltonian densitysnot a constraintd that is responsible for the evolution of the canoni-
cal variables, and is multiplied in the action times the lapse of the background space–time.

At this point we can make an important observation. The momentum constraints17d is only a
function of the momentapab sthe covariant derivative is with respect to the background metricd
and the Hamiltonian constraints18d is only a function of the configuration variablesqab. There-
fore, as we discussed in Sec. II, our discretization technique will not determine the value of the
Lagrange multipliers. The resulting theory therefore can only either be mimetic or inconsistent.
We will proceed to show that the resulting discrete theory is indeed consistent.

B. Discretization

We start by discretizing the linearized action,S=on=1
N Lsn,n+1d, where

032501-5 Consistent and mimetic discretizations J. Math. Phys. 46, 032501 ~2005!

                                                                                                                                    



Lsn,n + 1d = o
mW
S o

a,b=1

3

hpabsn,mW dshabsn + 1,md − habsn,mdd − Nsn,mW dfhabsn,mW + eWa + eWbd

− habsn,mW − eWa + eWbd − habsn,mW + eWa − eWbd + habsn,mW − eWa − eWbd − haasn,mW + 2eWbd

+ 2haasn,mW d − haasn,mW − 2eWbdg − Nasn,mW df2pabsn,mW + eWbd − 2pabsn,mW − eWbdgj

− Hsn,mW dD s21d

and

Hsn,mW d = o
a,b=1

3 Fpabsn,mW d2 −
1

2
paasn,mW dpbbsn,mW dG +

1

2 o
a,b,c=1

3 F1

2
shabsn,mW + eWcd − habsn,mW − eWcdd2

− shabsn,mW + eWcd − habsn,mW − eWcddshacsn,mW + eWbd − hacsn,mW − eWbdd −
1

2
shaasn,mW + eWcd

− haasn,mW − eWcddshbbsn,mW + eWcd − hbbsn,mW − eWcdd + 2shccsn,mW + eWad − hccsn,mW − eWadd

3shabsn,mW + eWbd − habsn,mW − eWbdd + hccsn,mW dfhabsn,mW + eWa + eWbd − habsn,mW + eWa − eWbd

+ habsn,mW − eWa − eWbd − habsn,mW − eWa + eWbdgG , s22d

where we have assumed that the background metric is Minkowski and we have chosen the zeroth
order lapse equal to unity and we have dropped thes1d superscript from the first order and shift.
We have also chosen a centered prescription for spatial derivatives, with the following conven-
tions, i.e.,fsid,x=fsi +1d−fsi −1d and fsid,xx=fsi +2d+fsi −2d−2fsid and similarly for higher
derivatives. This choice of prescription is needed for two reasons,sid it ensures that “summation
by parts” signoring boundariesd is satisfied, which is important when taking variations of the
action,sii d it makes the successive application of two first derivatives the second derivative, etc.
This is important when proving mimetism.

The Lagrangian is the generator of the canonical transformation that materializes evolution
from instantn to instantn+1. Specifically, we will introduce the canonically conjugate momenta
as we discussed in the preceding section,

Pab
h sn + 1,mW d = pabsn,mW d, s23d

Pab
p sn + 1,mW d = 0, s24d

PNsn + 1,md = 0, s25d

Pa
Nsn + 1,md = 0, s26d

Pab
h sn,mW d = pabsn,mW d + Nsn,mW − eWa − eWbd − Nsn,mW − eWa + eWbd − Nsn,mW + eWa − eWbd + Nsn,mW + eWa + eWbd

− dabo
c=1

3

sNsn,mW − 2eWcd − 2Nsn,mW d + Nsn,mW + 2eWcdd +
1

2o
c=1

3

fshabsn,mW d − habsn,mW − 2eWcdd

− shabsn,mW + 2eWcd − habsn,mW ddg −
1

2o
c=1

3

fshacsn,mW + eWb − eWcd − hacsn,mW − eWb − eWcdd
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− shacsn,mW + eWb + eWcd − hacsn,mW − eWb + eWcddg −
1

2o
c=1

3

fshbcsn,mW + eWa − eWcd

− hbcsn,mW − eWa − eWcdd − shbcsn,mW + eWa + eWcd − hbcsn,mW − eWa + eWcddg −
1

2
dab o

c,d=1

3

fshddsn,mW d

− hddsn,mW − 2eWcdd − shddsn,mW + 2eWcd − hddsn,mW ddg +
dab

2 o
c,d=1

3

fhcdsn,mW + eWd − eWcd

− hcdsn,mW − eWd − eWcd − hcdsn,mW + eWc + eWdd + hcdsn,mW + eWc − eWddg

+
1

2o
c=1

3

fshccsn,mW + eWa − eWbd − hccsn,mW − eWa − eWbdd − shccsn,mW + eWa + eWbd

− hccsn,mW − eWa + eWbddg, s27d

Pab
p sn,mW d = − shabsn + 1,mW d − habsn,mW dd + 2pabsn,mW d − o

c=1

3

pccsn,mW ddab + Nasn,mW − eWbd

− Nasn,mW + eWbd + Nbsn,mW − eWad − Nbsn,mW + eWad, s28d

PNasn,md = o
b=1

3

f2pabsn,mW + eWbd − 2pabsn,mW − eWbdg, s29d

PNsn,md = o
a,b=1

3

fhabsn,mW + eWa + eWbd − habsn,mW − eWa + eWbd − habsn,mW + eWa − eWbd + habsn,mW − eWa − eWbd

− haasn,mW + 2eWbd + 2haasn,mW d − haasn,mW − 2eWbdg. s30d

The system has four primary constraintss24d–s27d. Preserving these constraints in time im-
plies, vias28d–s30d that the linearized Hamiltonian and momentum constraints are satisfied,

Ca = 2o
b=1

3

fPab
h sn,mW + eWbd − Pab

h sn,mW − eWbdg = 0, s31d

C = o
a,b=1

3

fhabsn,mW + eWa + eWbd − habsn,mW − eWa + eWbd − habsn,mW + eWa − eWbd + habsn,mW − eWa − eWbd

− haasn,mW + 2eWbd + 2haasn,mW d − haasn,mW − 2eWbdg = 0. s32d

Constraintss24d and s27d can be imposed strongly, the second constraint determines the variable
pab. This eliminates the variablepab and its canonically conjugate momenta from the theory.

We now combines23d and s27d to get the evolution equation forPh,

Pab
h sn + 1,mW d = Pab

h sn,mW d − Nsn,mW − eWa − eWbd + Nsn,mW − eWa + eWbd + Nsn,mW + eWa − eWbd

− Nsn,mW + eWa + eWbd + dabo
c=1

3

sNsn,mW − 2eWcd − 2Nsn,mW d + Nsn,mW + 2eWcdd

−
1

2o
c=1

3

fshabsn,mW d − habsn,mW − 2eWcdd − shabsn,mW + 2eWcd − habsn,mW ddg
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+
1

2o
c=1

3

fshacsn,mW + eWb − eWcd − hacsn,mW − eWb − eWcdd − shacsn,mW + eWb + eWcd

− hacsn,mW − eWb + eWcddg +
1

2o
c=1

3

fshbcsn,mW + eWa − eWcd − hbcsn,mW − eWa − eWcdd

− shbcsn,mW + eWa + eWcd − hbcsn,mW − eWa + eWcddg +
1

2
dab o

c,d=1

3

fshddsn,mW d

− hddsn,mW − 2eWcdd − shddsn,mW + 2eWcd − hddsn,mW ddg

−
dab

2 o
c,d=1

3

fshcdsn,mW + eWd − eWcd − hcdsn,mW − eWd − eWcdd − shcdsn,mW + eWc + eWdd

− hcdsn,mW + eWc − eWdddg −
1

2o
c=1

3

fshccsn,mW + eWa − eWbd − hccsn,mW − eWa − eWbdd

− shccsn,mW + eWa + eWbd − hccsn,mW − eWa + eWbddg, s33d

and froms28d we get the evolution equation forh,

habsn + 1,mW d = habsn,mW d + 2Pab
h sn,mW d − dabo

f=1

3

Pf f
h sn,mW d + Nasn,mW − eWbd − Nasn,mW + eWbd

+ Nbsn,mW − eWad − Nbsn,mW + eWad − 2Nsn,mW − eWa − eWbd + 2Nsn,mW − eWa + eWbd

+ 2Nsn,mW + eWa − eWbd − 2Nsn,mW + eWa + eWbd − o
c=1

3

f2habsn,mW d − habsn,mW − 2eWcd

− habsn,mW + 2eWcdg + o
c=1

3

fhacsn,mW + eWb − eWcd − hacsn,mW − eWb − eWcd − hacsn,mW + eWb + eWcd

+ hacsn,mW − eWb + eWcdg + o
c=1

3

fhbcsn,mW + eWa − eWcd − hbcsn,mW − eWa − eWcd

− hbcsn,mW + eWa + eWcd + hbcsn,mW − eWa + eWcdg +
1

2
dab o

c,d=1

3

f2hddsn,mW d − hddsn,mW − 2eWcd

− hddsn,mW + 2eWcdg −
1

2
dab o

c,d=1

3

fhcdsn,mW + eWd − eWcd − hcdsn,mW − eWd − eWcd

− hcdsn,mW + eWc + eWdd + hcdsn,mW + eWc − eWddg − o
c=1

3

fhccsn,mW + eWa − eWbd

− hccsn,mW − eWa − eWbd − hccsn,mW + eWa + eWbd + hccsn,mW − eWa + eWbdg. s34d

A first point to be noted is that the evolution equations have resulted in an explicit evolution
scheme. This is usually not the case, it is a particularity of the linearized theory that the evolution
is explicit. It should be noted that the evolution equations obtained are just a straightforward
discretization of the evolution equations one would obtain in the continuum by working out the
variations of the continuum action.

We have checked, using a computer algebra code, that the evolution equationss34d and s33d
exactly preserve the constraintss31d and s32d, or more precisely that
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Casn + 1,md = Casn,md, s35d

Csn + 1,md = Csn,md + o
a=1

3

fCasn,m+ eWad − Casn,m− eWadg. s36d

This result was expected since we used differentiation operators that ensure that mixed dis-
crete spatial derivatives commute, and that one can integrate by partssmore precisely “sum by
parts”d, and that is all that is needed in a linear theory on a Minkowski background to show that
the constraints are preserved upon evolution. It is interesting to compare this result with that of
Meier.3 He finds a mimetic discretization of linearized general relativity around Minkowski space–
time, but using staggered grids. This is a natural approach, for instance, in electromagnetism and
Yang–Mills theorysand it is the one we will take in the next section where we deal with gravity
with the Ashtekar variablesd.

It would be interesting to generalize these results to the case of linearization around a static
background. In that case it is not obvious that the formulation would result automatically mimetic.
In fact, the failure of the Leibnitz rule at a discrete level implies that it will be difficult to find a
mimetic formulation since the equations now will have nonconstant coefficients and one will need
Leibnitz’ rule to show conservation. Our formalism will yield a consistent formulation, but it is
possible that it will require determining the Lagrange multipliers.

C. Stability

We have discretized the time derivatives without centering themsthat is, we have used a
stencil that is first order accurate onlyd. The reason for this is that the canonical theory is much
cleaner with only two levels in time involved in the derivatives. It is possible to use derivatives
that are second order accurate in time and use our construction by rewriting the theory in terms of
new variables in such a way that the resulting theory has derivatives that are first order accurate,
but we will not do this here.

The spatial derivatives, on the other hand, were centeredsthis was required in order to have
summation by partsd. The resulting scheme is therefore “forward in time centered in space,” a
recipe that is not stable, for instance, for the advection or the wave equation. We therefore would
like to check if our scheme is stable. To simplify things, we will considers34d ands33d and make
the following assumptions: the metric and extrinsic curvatures are diagonal and only depend on
the coordinatest ,x, the lapse is unity and the shift is zero. The resulting equations therefore are

P11
h sn + 1,mW d = P11

h sn,mW d −
1

2o
c=2

3

f2hccsn,mW d − hccsn,mW − 2eW1d − hccsn,mW + 2eW1dg, s37d

P22
h sn + 1,mW d = P22

h sn,mW d + 1
2f2h33sn,mW d − h33sn,mW − 2eW1d − h33sn,mW + 2eW1dg, s38d

P33
h sn + 1,mW d = P33

h sn,mW d + 1
2f2h22sn,mW d − h22sn,mW − 2eW1d − h22sn,mW + 2eW1dg, s39d

h11sn + 1,mW d = h11sn,mW d + 2P11
h sn,mW d − o

f=1

3

Pf f
h sn,mW d −

1

2o
d=2

3

f2hddsn,mW d − hddsn,mW − 2eW1d

− hddsn,mW + 2eW1dg, s40d

032501-9 Consistent and mimetic discretizations J. Math. Phys. 46, 032501 ~2005!

                                                                                                                                    



h22sn + 1,mW d = h22sn,mW d + 2P22
h sn,mW d − o

f=1

3

Pf f
h sn,mW d −

1

2
f2h22sn,mW d − h22sn,mW − 2eW1d

− h22sn,mW + 2eW1dg +
1

2
f2h33sn,mW d − h33sn,mW − 2eW1d − h33sn,mW + 2eW2dg, s41d

h33sn + 1,mW d = h33sn,mW d + 2P33
h sn,mW d − o

f=1

3

Pf f
h sn,mW d −

1

2
f2h33sn,mW d − h33sn,mW − 2eW1d

− h33sn,mW + 2eW1dg +
1

2
f2h22sn,mW d − h22sn,mW − 2eW1d − h22sn,mW + 2eW2dg. s42d

As a test case, we concentrate on a subfamily of solutions of the equations, in whichh11

=P11=0 andh22=−h33 andP22=−P33. In that case, the equations reduce to

P22
h sn + 1,mW d = P22

h sn,mW d − 1
2f2h22sn,mW d − h22sn,mW − 2eW1d − h22sn,mW + 2eW1dg, s43d

h22sn + 1,mW d = h22sn,mW d + 2P22
h sn,mW d − f2h22sn,mW d − h22sn,mW − 2eW1d − h22sn,mW + 2eW1dg.

s44d

We have performed a Von Neumann analysis of this system and confirmed that the scheme is
stable provided the Courant factor is less than 1. So at least for this particular subcase the scheme
is stable. A more complete analysis is needed to guarantee stability in general.

IV. LINEARIZED GENERAL RELATIVITY IN TERMS OF ASHTEKAR VARIABLES

A. Continuum formulation

We will now apply the technique we outlined in the preceding section to general relativity
linearized around Minkowski space using the Ashtekar formulation. The formulation of linearized
gravity with the new variables was first discussed by Ashtekar and Lee.9 The discussion presented
in that paper required the use of complex variables if one was to describe general relativity with
metrics with a Lorentzian signaturesalternatively, one could consider real variables, but then the
theory described the Euclidean signature sectord. Developments that have taken place in the field
since the publication of that paper that allow one to consider the Lorentzian sector using real
variables,10,11 but we will see that the discretized theory is more problematic in this case and we
will not discuss it in detail in this paper.

The Ashtekar canonical variables consist of a set of triads with density weight 1,Eai and a
scomplexd SOs3d connectionAai. In this notationa,b, . . . arespatial vector indices andi , j , . . .
range from 1 to 3. Following Ashtekar and Lee we omit using tildes to denote density weights
since in this context they do not play an important role. To linearize the theory around Minkowski,
we choose a fixed backgroundsEai=E0

ai ,Aai=0d in the phase space and consider fluctuations
around it. In Cartesian coordinates,E0

ai=dai. The triad is therefore given by

Eai = dai + eai, s45d

and therefore the background metric has componentsqab=dab and its determinant is unity and
therefore density weights are all trivial. We will denote byAai the fluctuations of the connection.
The Poisson bracket of the canonical variables isheaisxd ,Abjsydj= idb

ad j
idsx−yd.

The Ashtekar formulation has, in addition to the usual diffeomorphism and Hamiltonian
constraints of the metric canonical formulation of general relativity, a set of additional constraints
that make the formulation invariant under triad rotations. The additional constraints take the form
of a Gauss law, which linearized will read
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GL
i = ]ae

ai + ei jaAaj = 0, s46d

where from now on the subscriptL means we have kept the minimum required number of terms
in the perturbative expansion. In spite of the second term, one can check that if one computes the
Poisson bracket of two Gauss laws, they commute, that is, they form an Abelian algebra. The
internal symmetry group of the linearized theory is therefore Us1d sRef. 3d.

Ignoring boundary terms, thessuper-d Hamiltonian for general relativity can be written as

H =E d3xFNEi
aEj

bSFab
k ei jk −

sb2 − sd
b2 sGa

i − sbAa
i dsGb

j − sbAb
j dD + NaEi

aFab
i G , s47d

and in the full theory it vanishes identically. The parameterb is called the Immirzi parameter and
the parameters is equal to +1 for the Euclidean case and −1 for the Lorentzian signature.
Classically, different values of the Immirzi parameter correspond to different representations of the
same theory. The quantitiesGa

i are the spin connections compatible with the triads, defined by

]fagĒfbg
i + e jk

i Gfag
j Ēfbg

k = 0, s48d

where theĒ’s are the triadsswithout density weightd, related to the Ashtekar variables byEi
a

=detsĒdĒi
a, or equivalently,Ei

a=Ēb
j Ēc

keabcei jk. Indices are lowered and raised with the flat Euclid-
ean metric. One can obtain an explicit expression for the spin connection in terms of the triads,

Gc
i = ec

abs]aeb
i − ]aTrseddb

i d. s49d

To study it in the linearized theory, we need to choose a lapse and a shift. The natural choice
is to use as zeroth order lapse and shift the ones that would preserve the spatial background metric
explicitly time independent. This corresponds to a lapseN=1 and a shiftNa=0. So we will write
NL=1+n and NL

a=na, and these will become Lagrange multipliers in the linearized theory. The
super-Hamiltonian then separates into two pieces, one that acts as a Hamiltonian and another piece
that is given by the Lagrange multipliers times constraints of the linearized theory. These con-
straints are

Ca
L = − i f ab

b = 0, s50d

CL = − iec
abfab

c = 0, s51d

where fab
i =2]fagAfbg

i is the linearized field strength, and the first one is the linearized momentum
constraint and the latter the linearized Hamiltonian constraint. The nonvanishing Hamiltonian for
the linearized theory is given by

HL =E d3xS2ek
ibfab

k ei
a + sAa

aAb
b − Aa

bAb
ad −

b2 − s

b2 fsGa
a − sbAa

adsGa
b − sbAa

bdd

− sGa
b − sbAa

bdsGb
a − sbAb

adG . s52d

B. Discretizing the full theory on the lattice

In this section we review some results of Refs. 4 and 5 where we discretized general relativity
on the lattice. In the next section we will particularize these results to the case of linearized general
relativity. We start by considering an action for general relativity written in terms of Ashtekar’s
variablesssee for instance Ref. 12 and the book by Ashtekar,13 p. 47d,
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L =E EaiFa0
i − H, s53d

whereN andNa are the lapse and shift andH the super-Hamiltonians47d. We will particularize to
the Euclidean cases=1 and choose the Immirzi parameterb=1 which correspond to the original
form of Ashtekar’s variables, for simplicityssee Sec. VI for more detailsd. From now on we will
not assume Einstein’s summation convention and present the summations explicitly, since many
expressions would otherwise be confusing. The Lagrangian can be discretized as follows:

Lsn,n + 1d = −
1

4o
v

TrFo
a

En,v
a shn,v

a0 − hn,v
0a d − o

a,b
Kn,v

ab shn,v
ab − hn,v

ba d + o
a

aa,n,vshn,v
a shn,v

a d† − 1d

+ bn,vshn,v
0 shn,v

0 d† − 1dG , s54d

wherehn+1
a represents an holonomy along thea direction at instantn+1, hn

0 represents the “verti-
cal” stimeliked holonomy. The holonomy associated with a plaquette in theab saÞbd plane
sa ,b=0, . . . ,3d is

hn,v
ab ; hn,v

a hn,v+ea

b shn,v+eb

a d†shn,v
b d†, s55d

and

Kn,v
ab ; 1

2fsEn,v
a En,v

b − En,v
b En,v

a dNn,v + Nn,v
a En,v

b − Nn,v
b En,v

a g. s56d

We will assume that the holonomies are matrices of the formh=oIh
ITI where T0= I and Ta=

−isa wheresa are the Pauli matrices. The indicesn,v represent a label for “time”n and a spatial
label for the vertices of the latticev. The elementary unit vectors along the spatial directions are
labeled asea, so for instancen+e1 labels the nearest neighbor ton along thee1 direction. The unit
vector in the timelike direction ise0 and we chosehn,v+e0

a ;hn+1,v
a . The quantitiesEn,v

a are elements
of the algebra of sus2d anda andb are Lagrange multipliers, the last two terms of the Lagrangian
enforcing the condition that the holonomies are elements of SUs2d. We use the usual conventions
of lattice gauge theories in which one has oriented links and the natural variables are the holono-
mies in a given orientation and based at a given vertex. If we need to traverse back, as in the case
of closed loops one then considers the adjoint of the holonomy based at the vertex one is ending
at.

The discretization of the field tensor is based on

Fab
i → − 1

4Trfshn,v
ab − hn,v

ba dTig. s57d

Instead of working out the equations of motion for this action, we will, in the next section,
particularize it to the linearized case and work out the relevant equations of motion, which is
equivalent to working the equations first and then linearizing if appropriate perturbative orders are
kept.

C. The linearized theory on the lattice

We now proceed to linearize the action. We start with the holonomies. The explicit form of the
linearized holonomy is

hv
a = 1 +o

i

fv
aiTi , s58d

where we have dropped the subscriptn we used in the last section to indicate the time level in
order to make the notation more compactsbut we will make it explicit when things are evaluated
at n+1d. In this equationfv

aiTi is an element of the algebra that can be viewed as a “phase”sit
corresponds to the logarithm of the path-ordered exponential of the connection along the direction
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ad. The holonomy of a plaquette in the planeab is sneglecting higher order termsd

hv
ab = hv

ahv+ea

b shv+eb

a d†shv
bd† = S1 − o

i

F2v
abiiD1 + o

i

sF1v
abi + F2v

abidTi . s59d

The first order contribution is

F1v
abk ; + fv

ak − fv
bk − fv+êb

ak + fv+êa

bk , s60d

and the second order contribution is

F2v
abi j ; − fv

aifv
b j + fv

aifv+êa

b j + fv+êb

ai fv
b j − fv+êb

a j fv+êa

bi − fv
aifv+êb

a j − fv
b jfv+êa

bi , s61d

F2v
abk ; o

i j

ei jkF2v
abi j . s62d

We now linearize the expression forK defined in the preceding section, by noting that to first
order,

ev
a = o

i

sdai + ev
aidTi s63d

and ignoring higher order terms we get that

Kv
ab = o

i

seabi + K1,v
abidTi s64d

with

K1
abk; eabknv +

1

2
snv

adbk − nv
bdakd + o

i

sev
aieibk − ev

bieiakd. s65d

We now consider the first term in the discretized Lagrangians54d. Substituting the expression
for the holonomy around a plaquettes59d we get the following identity, valid up to second order:

−
1

4
TrFo

a

En,v
a shn,v

a0 − hn,v
0a dG = o

a

F1v
a0a + o

a

F2v
a0a + o

ak

ev
akF1v

a0k s66d

and we note that when one considers the sum over all vertices, the first term on the right-hand side
yields a total derivative with respect to time that can be ignored in the Lagrangian.

For the second term ins54d we uses59d and s64d, getting the following identity, valid up to
second order:

1

4
TrFo

ab

Kn,v
ab shn,v

ab − hn,v
ba dG = − o

abk

seabkF1v
abk+ eabkF2v

abk+ K1v
abkF1v

abkd. s67d

When one considers the sum over all vertices the first term on the right-hand side of this
expression vanishes. The resulting Lagrangian therefore can be written as

L = − o
v
Ho

ai

ev
aisfn+1,v

ai − fn,v
ai d + o

i jk

ei jksfv
i jfn+1,v

ik + F2v
i jk + nvF1v

i jkd + o
aijk

2ev
aiei jkF1v

ajk + o
ab

nv
aF1v

abb

+ o
i j

sfv
0i − fv+êj

0i dev
ji + o

i jk

ei jkfv
0isfn+1,v

kj + fv+êj

0k + fv
jkd − o

i jk

fv+êj

0i ei jksfv
jk + fn+1,v

jk dJ . s68d

Now that we have an explicit expression for the Lagrangian we can proceed to identify the
various terms. The theory has the following Lagrange multipliers:fv

0i the “vertical component of
the phase”swhich plays a role analogous to the time component of the vector potential in Maxwell
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theoryd and the linearized lapse and shift. These quantities multiply times the constraints of the
linearized theory. Explicitly, the momentum and Hamiltonian constraint read

Cv
a = o

b

F1v
abb, s69d

Cv = o
i jk

ei jkF1v
i jk . s70d

In order to get Gauss’ law, we first take the variation of the Lagrangian with respect to the
Lagrange multiplierfv

0i to get

Gv
i ; o

a

sjn+1,v
ai + jn+1,v

āi d = 0, s71d

where

jn+1,v
ai ; + dai + en,v

ai + o
k

eaiks− fn,v
ak − fn,v+êa

0k − fn,v
0k + fn+1,v

ak d, s72d

jn+1,v
āi ; − dai − en,v−êa

ai + o
k

eaiksfn,v−êa

ak + fn,v
0k + fn,v−êa

0k + fn+1,v−êa

ak d. s73d

At the moment this does not appear to be a true constraint since it involves variables at instant
n and at instantn+1. To see that it actually is a constraint, we will calljn+1,v

ai the component in the
direction êa of a quantity that we will think of as an “electric field”sin the sense that it is the
quantity that satisfies the usual form of Gauss lawd and we will calljn+1,v

āi the component in the
direction −êa, both at pointsn+1,vd. To make this more transparent, we need to see how they
transform under gauge transformations. To leading order the fielden,v

a is e0,n,v
a =oid

aiTi. We then
define

ĕn,v
a = en,v

a +
1

4
fhn,v

0a e0,n,v
a shn,v

0a d† − hn,v
a0 e0,n,v

a shn,v
a0 d†g = en,v

a + o
jk

eajkF1v
0akTj , s74d

with the second equality valid up to second order. By inspection one sees that the fieldĕn,v
a is an

element of the algebra that transforms like an electric field atsn,vd under gauge transformation.
One can also show the following identities, valid to first order:

jn+1,v
a ; o

i

jn+1,v
ai Ti = shn,v

0 d†ĕn,v
a hn,v

0 , s75d

jn+1,v
ā ; o

i

jn+1,v
āi Ti = − shn+1,v−êa

a d†jn+1,v−êa

a hn+1,v−êa

a s76d

from which one immediately sees that the quantities we identified as components of the electric
field have the appropriate transformation properties under gauge transformations.

Therefore we can identifys71d as the usual intuitive expression of Gauss’ law stating that field
lines cannot emanate from a point in vacuum.

We now turn our attention to the equations of motion. Given the Lagrangians68d we work out
the equations of motion from the canonical transformation. We start by computing the canonical
conjugate momentum toe,

Pn+1,v
sedak ;

]Lsn,n + 1d
]en+1,v

ak = 0, s77d
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Pv
sedak ; −

]Lsn,n + 1d
]ev

ak = − F1v
a0k + 2o

i j

ekijF1v
aij = 0. s78d

Therefore the dynamics ofPsed is trivial. However, the last equation can be viewed as an
evolution equation forf throughs60d,

fn+1,v
ak = fv

ak − fv
0k + fv+êa

0k − 2o
i j

ekijF1v
aij . s79d

Notice that by adding over indicesa belonging to a given plaquette equations79d, one effectively
gets an evolution equation for all the horizontalf’s in the plaquette. This is due to the fact that the
vertical contributions ins60d will cancel out in pairs when adding through the plaquette. Explicitly,

F1,n+1,v
abk = F1v

abk− 2o
i j

ekijsF1v
aij + F1v+êa

bij − F1v+êb

aij − F1v
bijd ; F1v

abk− 2o
i j

ekij o
dPPab

F1vd

dij , s80d

where in the last termvd is the vertex in which the linkd originates andPab is the plaquette
spanned bya andb.

We now consider the momentum canonically conjugate tof. We start by computing the
canonical conjugate momentum at instantn+1,

Pn+1,v
sfdak ;

]Lsn,n + 1d
]fn+1,v

ak = − ev
ak + o

i

eakisfv
ai + fv

0i + fv+êa

0i d. s81d

The momentum can be written in terms of the electric field in an expression that parallels the usual
relation between the electric field and the canonical momentum in the latticejak as

Pn+1,v
sfdak = dak − jn+1,v

ak + o
i

eakifn+1,v
ai s82d

and in terms of it, Gauss’ laws71d can be written as

Gn+1,v
k = − o

a
SPn+1,v

sfdak − Pn+1,v−êa

sfdak − o
i

eakisfn+1,v
ai + fn+1,v−êa

ai dD . s83d

This final expression for Gauss’ law is a genuine constraint, in the sense that all variables are
expressed at the same instant of time.

We now compute the momentum conjugate tof at instantn,

Pv
sfdab = −

]Lsn,n + 1d
]fv

ab = − ev
ab + nv

a − nv−êb

a + dabo
i

s− nv
i + nv−êi

i d + 2s− fv−êb

aa + fv+êb

aa + fv
ba − fv+êa

ba

− fv−êb

ba − fv+êa−êb

ba d + 2dabo
i

sfv−êi

ai − fv+êi

ai − fv
ii + fv+êa

ii + fv−êi

ii + fv+êa−êi

ii d

+ o
i

eabis− 2nv + 2nv−êi
+ fv

0i − fv+êa

0i − 2ev
aa + 2ev−êi

aa − 2ev
bi + 2ev−êb

bi − 2ev
ii + 2ev−êi

ii + fn+1,v
ai d

+ 2dabo
i,j

eaijsev
ai − ev−êj

ai d. s84d

One still needs to replace the expressions for thee’s and for thef’s evaluated at instantn
+1. The resulting substitutions lead to lengthy expressions that are not particularly illuminating,
and will not be needed in what follows, so we will not display them here. We point out however,
that the resulting scheme is not an explicit one for thePsfd’s. Since these variables do not arise in
the constraints, we do not need this evolution equation to show mimetism.

One now needs to show that the evolution is mimetic, that is, it preserves the discrete con-
straintss69d, s70d, ands83d. Using the evolution equations80d one gets that
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Cn+1,v
a = Cv

a + Cv − Cv+êa
, s85d

Cn+1,v = Cv + 4o
a

sCv+êa

a − Cv
ad. s86d

To study the time evolution of Gauss’ law one needs Eqs.s79d, s81d, ands84d and one gets that

Gn+1,v
k = Gn,v

k . s87d

As in the preceding section, we have checked these identities using computer algebra.

V. DISCUSSION AND CONCLUSIONS

The consistent discretization scheme is such that it yields a set of discrete equations for the
evolution equations and the constraints of general relativity that is compatible, that is, all can be
solved simultaneously. It does so at the price of determining the Lagrange multiplierssthe lapse
and the shiftd. In the linearized case we have shown that one can discretize the theory in such a
way that the Lagrange multipliers are not determined and nevertheless the theory is consistent.

When one discretizes a theory there is always an ambiguity in how to proceed. Among the
ambiguities we have the dependence on how one chooses to represent the derivatives. What we
have found is that in the linearized case one can choose certain derivative operators for which the
Lagrange multipliers are not determined. It should be noted that the consistent discretization
scheme would work even if one did not choose the derivatives this way, but the Lagrange multi-
pliers will be determined in order to have a consistent set of equations. This is true both in the case
of the traditional variables and also in the Ashtekar variables. In the latter case there is an
additional element that is the presence of an extra constraint: the Gauss law. We have also chosen
a specific way of discretizing the theory in such a way that Gauss’ law is implemented exactly in
the discrete theorysthis is standard in Yang–Mills theory on the lattice, and implies that the
discrete formulation is gauge invariant, and also that these discretizations are mimetic, though this
is rarely emphasized in the Yang–Mills literatured. In the case of the traditional variables, one can
also associate mimetism with gauge invariance. The action we chose to work with is invariant
under linearized coordinate transformations of the formhmn8 =hmn+jsm,nd. The discrete action, if
one chooses a derivative operator such that the second derivatives coincide with the derivative of
a first derivative and satisfies summation by parts, is invariant under a discrete version of the
above symmetry. This symmetry is generated canonically by the discrete constraints. This explains
in a geometrically nice way why mimetism was possible in the linearized case.

In the case of Lorentzian general relativity written in terms of Ashtekar’s variables, the
presence of the termssGa

i −sbAa
i d in the Hamiltonian make it more difficult to discretize the action

in such a way that the Gauss law is preserved exactly. This is because theGa
i ’s have to be written

in terms of the triads and the resulting expressions are not easy to discretize on the lattice
preserving the internal symmetrysunlike theAa

i ’s which are readily discretized by considering a
parallel transport operator along the elementary linksd. It may be possible using dual lattices to
discretize such terms in an invariant way, but this will require further study. There is no problem
applying our discretization technique to this case directly, but what will happen is that the internal
symmetry will be broken, the Lagrange multipliers associated with the Gauss law will be deter-
mined and the resulting discretization will not be mimetic in the traditional sense of the word. It
is clear that further work is needed before this kind of discretizations will be useful numerically.

In the full nonlinear case either with the traditional or the new variables, the constraints
involve both coordinates and momenta and therefore the application of our technique will deter-
mine the Lagrange multipliers and will therefore not furnish a mimetic discretization in the
traditional sense. The resulting discrete theory is consistent, but it does so at the expense of
determining the Lagrange multipliers. Based on what we learned from the linearized case, we can
conclude that the only remaining possibility for a formulation that is mimetic in the traditional
sense would be to implement the symmetries implied by the constraints exactly in the lattice.
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Since the symmetries implied by the diffeomorphism constraint are broken by the introduction of
the lattice it appears unlikely that such a formulation would ever be found.

The conclusion we can draw from this is that for the case of full nonlinear general relativity,
the closest one can come to a formulation that preserves the constraints under evolution is the
proposal of consistent discretizations we have introduced. Such proposal is not mimetic in the
traditional sense in that it imposes the constraints by determining the Lagrange multipliers. This
proposal has many new aspects that are currently in investigation. It has been successfully applied
in cosmological examples and is now being studied in detail for the Gowdy space–times. If it
works for this example, it is likely that it could be applied successfully in general, but this
obviously requires further study.

Something to be noticed is that it is not clear that the formulations we presented are going to
be useful numerically. In particular, the fact that they are not based on manifestly hyperbolic
equations. We have presented a first step towards showing stability of the scheme in a particular
situation, but a fuller analysis should be carried out to determine if the scheme is stable in general.
Numerical relativity codes also use more sophisticated time stepping techniques than the one we
use. It is clear, however, that our method can accommodate more elaborate discretizations of the
time derivatives and the calculations in this paper could be repeated in that case. Another inter-
esting point would be to attempt to apply the techniques in this paper to the several manifestly
hyperbolic formulations of the Einstein equations that have been proposed in the last few years.
Unfortunately, few of them have been worked out in the context of an action principle, but this
difficulty could presumably be remedied. This would also allow one to study within our frame-
work manifolds with boundaries.

Another element of interest is the impact of the choice of the derivative operators on the
construction of consistent discrete theories. The consistent technique will work no matter what
derivative operators are chosen. But here we have learned that one can choose them in such a way
that the linearized theory is automatically mimetic. We would like to argue that the level of
accuracy with which the consistent discretization enforces the constraints is improved when one
chooses a formulation that is mimetic at the linear level, at least for weak fields. The argument is
simple. In the consistent discretization scheme the constraints that are enforced exactly have the
form fsqn,pn+1d=0. The constraints one would like to see enforced are of the formfsqn,pnd=0.
Starting from the former, and using the equations of motion one has thatfsqn,pn+Osp2dd=0
where the terms that correctpn are of orderp2 sor q2 or mixed but quadraticd. This is true if the
theory is mimetic in the linearized level. Otherwise one would havefsqn,pn+Ospdd=0. Therefore
choosing a discretization that is mimetic at the linearized level, at least for weak fields, implies
that the constraints are tracked more accurately in the full nonlinear theory when one discretizes
consistently.

Summarizing, we have shown that the consistent discretization scheme we have introduced
recently, when applied to general relativity discretized around Minkowski space–time yields a
formulation that is mimetic. That is, a formulation in which the discrete constraints are exactly
preserved upon discrete evolution. We have also argued that for the full nonlinear case, the use of
consistent discretizations appears as a possibility to yield a formulation that is close to the inten-
tion of mimetic formulations, although only approximately.
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The aim of this work is to present a formulation to general relativity, which is
analogous to the null surface formulation, but now instead of starting with a
complete integral of the eikonal equation we start with a complete integral
of the Hamilton–Jacobi equation. In the first part of this work we show that on the
space of solutions of a certain class of systems of six second-order partial differ-
ential equations,uss=Lss,s* ,g ,u,us,us* ,ugd ,us*s* =L*ss,s* ,g ,u,us,us* ,ugd, ugg

=Yss,s* ,g ,u,us,us* ,ugd ,uss* =Fss,s* ,g ,u,us,us* ,ugd, usg

=Css,s* ,g ,u,us,us* ,ugd ,us*g=C*ss,s* ,g ,u,us,us* ,ugd, a four-dimensionalsdefi-
nite or indefinited metric,gab, can be constructed on the four-dimensional solution
space with local coordinatesxa. Furthermore the solutions,u=Zsxa,s,s* ,gd, satisfy
the four-dimensional Hamilton–Jacobi equation,gabu,au,b=1. We remark that this
structure is invariant under a subset of contact transformations. In the next section,
as an example, we apply these results to the Schwarzschild metric. Finally we use
the four-dimensional metric obtained in the first part and we impose the Einstein
equations. ©2005 American Institute of Physics.fDOI: 10.1063/1.1850366g

I. INTRODUCTION

Many years ago, Wünschmann, Cartan, and Chern,1–6 while studying the structure and trans-
formation properties of third-order ODE’s, discovered that all three-dimensional conformal
Lorentzian geometries were encoded in equivalence classessunder contact transformationsd of
third-order ODE’s, that were characterized by the vanishing of a certain function,WfFg, defined
from the differential equation itself, that is referred to as the Wünschmann invariant. In other
words, from the solutions to equations of the form

d3z

dt3
= FSz,

dz

dt
,
d2z

dt2
,tD ,

with WfFg=0, all three-dimensional conformal Lorentzian metrics could be constructed.
In a more recent series of papers Frittelli, Kozameh, Newman, Kamran, and Nurowski,7–14

were able to generalize this result. They showed that all four-dimensional conformal Lorentzian
geometries were encoded in equivalence classessunder contact transformationsd of pairs of
second-order partial differential equationssPDE’sd that were characterized by the vanishing of an
analogoussgeneralizedd Wünschmann invariant, referred to as themetricity conditions.

In this work, referred to as the null surface formulation of general relativity, the metric of the
space–time is a derived concept. The fundamental objects are two functions,Zsxa,z ,z*d and
Vsxa,z ,z*d, of the space–time pointsxa and parametrized by points on the sphere; that is, by
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functions defined onM3S2 sthe sphere bundle over the space–timed. The first of the functions,
Zsxa,z ,z*d, which encodes all the conformal information of the space–time, describes a sphere’s
worth of surfaces through each space–time point. It is from these surfaces that a conformal metric
can be constructed. The second function,Vsxa,z ,z*d, which plays the role of a conformal factor,
converts it into any metric in the conformal class. The level surfaces ofZsxa,z ,z*d in M, for each
fixed value ofz, are null hypersurfaces with respect to this metric. Asz takes different values on
S2 at a fixed pointxa in M, the normals to the null hypersurfaces sweep out the null-cone atxa.

To establish this new approach to general relativity, these authors began with a four-
dimensional Lorentzian manifold, already containing a metricgab and a complete integral to the
eikonal equation

gabsxad¹aZ ·¹bZ = 0. s1d

A complete integral, expressed as

u = Zsxa,z,z*d, s2d

contains the space–time coordinates,xa, and the neededsfor a complete integrald two parameters
sz ,z*d. By constructing the four functions,

u i ; su,v,v* ,Rd ; sZ,]zZ,]z*Z,]z*zZd s3d

from Eq. s2d and its derivatives, and by eliminatingxa, via the algebraic inversion

xa = Xasz,z* ,u id, s4d

they found thatu=Zsxa,z ,z*d satisfies in addition to Eq.s2d the pair of second-order partial
differential equations inz, z* , of the form

]zzZ = LsZ,]zZ,]z*Z,]zz*Z,z,z*d,

]z*z*Z = L*sZ,]zZ,]z*Z,]zz*Z,z,z*d. s5d

Thexa, in the solution of Eq.s5d, appear now as constants of integration. The roles ofxa and
sz ,z*d are thereby interchanged. Note that the metric has disappeared from the equations.

The question then was, could this procedure be reversed? Could one start with a pair of
equations of the form,s5d, and then find the eikonal equation,s1d, with a metricgabsxad.

It was shown that when the functionssL ,L*d satisfy an integrability condition, a weak
inequality and a certain set of differential conditionssthe metricity or generalized Wünschmann
conditionsd, the procedure can be reversed. The solutions to the pair do determine a conformal
four-dimensional Lorentzian metric and, in fact, all conformal Lorentzian metrics can be obtained
from equivalence classes of equations of the form Eq.s5d. When certain specific conditions,15 in
addition to the Wünschmann condition, are imposed on thesL ,L*d, the metrics, determined by the
solutions, are in the vacuum conformal Einstein class.

The aim of the present work is to present an approach to general relativity, which is similar to
the null surface formulation, but now instead of using a complete integral to the eikonal equation,
we use a complete integral to the Hamilton–JacobisHJd equation.

In Sec. II we begin with a four-dimensional manifold,M, with no further structure and then
investigate arbitrary three-parameter families of surfaces onM given by

u = constant =Zsxa,a,b,gd. s6d

sThexa are local coordinates onM anda, b, andg parametrize the families and can take values
on S3, S13R2, S23R or onR3. However, in this work we combine the reala andb parameters
into a pair of conjugate parameterss ands* ; g will be real.d More specifically, we then ask when
do such families of surfaces define a four-dimensional metric,gabsxad, such that
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gab¹aZsxa,s,s* ,gd¹bZsxa,s,s* ,gd = 1. s7d

We have here either taken the mass in the HJ equation to beoneor set it into thegab as a factor.
By taking ss,s* ,gd derivatives of Eq.s6d and eliminating thexa, we will show that theu

=Zsxa,s,s* ,gd must also satisfy a system of six second-order PDE’s,

]ssZ = Lsu,w,w* ,R,s,s* ,gd,

]s*s*Z = L*su,w,w* ,R,s,s* ,gd,

]ggZ = Ysu,w,w* ,R,s,s* ,gd,

s8d
]ss*Z = Fsu,w,w* ,R,s,s* ,gd,

]sgZ = Csu,w,w* ,R,s,s* ,gd,

]s*gZ = C*su,w,w* ,R,s,s* ,gd,

with

w ; ]sZ, w* ; ]s*Z, andR; ]gZ,

and whereL, L* , Y, F, C, andC* are restricted to satisfy certain metricity or “Wünschmann-
like” conditions.

Here]s, ]s* , and]g, denote the partial derivatives with respect to the parameterss, s* , andg,
respectively. Observe that in the solutions of Eqs.s8d u=Zsxa,s,s* ,gd, thexa are four constants of
integration for Eqs.s8d while thes, s* , andg are three integration constants for Eq.s7d. Observe
that u=Zsxa,s,s* ,gd is a complete integral to the Hamilton–Jacobi equations7d.

In this section we also remark that the four-dimensional metricgabsxad associated with the
system of partial differential equations,s8d, is invariant under a subset of contact transformations
of the differential equations.

In Sec. III, as an example, we apply the results derived in Sec. II to the Schwarzschild metric.
In Sec. IV, we present our formulation of general relativity. For this purpose we substitute the

four-dimensional metric already obtained in Sec. II into the Einstein equations. From our results
we conclude that the Einstein equations can be reformulated as equations for families of three-
dimensional surfaces given by the level surfaces ofu=Zsxa,s,s* ,gd.

This new point of view can be given in either of two versions. In the first version, the
variables are the six functions,sL ,L* ,Y ,F ,C ,C*d of the seven variables,su,w,w* ,R,s,s* ,gd
i.e., the right-hand side of Eqs.s8d. These functions must satisfy three sets of equations; the
integrability conditions, the Wünschmann-like conditions and a further condition obtained from
the Einstein equations. The metric, on a four-manifold, can be written down directly in terms of
these six functions and their derivatives.No use need be made of the set, Eqs.s8d. In the second
version one uses the same set ofsL ,L* ,Y ,F ,C ,C*d in the right-hand side of Eqs.s8d and solves
for the Zsxa,s,s* ,gd. The metric is then written in terms of theZsxa,s,s* ,gd and its derivatives.
The advantage of the first version is that one does not need to solve Eqs.s8d, but one has to extract
salgebraicallyd the four-manifold from thesu,w,w* ,Rd while in the second version the four-
manifold is explicitly given by the four constants of integration,xa.

There is no claim being made that this approach to the Einstein equations has any obvious
advantage over the usual metric approach. It however does give certain mathematical insights into
the differential geometry associated with general relativity.
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II. 4D METRICS AND THE METRICITY OR WÜNSCHMANN-LIKE CONDITIONS

In this section we prove that in the space of solutions of a certain class of systems of six
second-order PDE’s, a four-dimensional definite or indefinite metric,gab, can be constructed such
that the solutions satisfy the four-dimensional HJ equation. We start with a four-dimensional
manifoldM fwith local coordinatesxa=sx0,x1,x2,x3dg and assume we are given a three-parameter
set of functionsu=Zsxa,a ,b ,gd. In general the parametersa, b, andg can take values onS3,
S13R2, S23R or on R3. As we said, we combine the reala and b parameters into a pair of
conjugate parameterss ands* , andg is real. We also assume that for fixed values of the parameters
s, s* , andg the level surfaces

u = constant =Zsxa,s,s* ,gd, s9d

locally foliate the manifoldM and thatu=Zsxa,s,s* ,gd satisfies the HJ equation

gabsxad¹aZsxa,s,s* ,gd¹bZsxa,s,s* ,gd = 1, s10d

for some unknown metricgabsxad.
The basic idea now is to solve Eq.s10d for the components of the metric in terms of

¹aZsxa,s,s* ,gd. To do so, we will consider a number of parameter derivatives of the condition
s10d, and then by manipulation of these derivatives, obtain both the four-dimensional metric and
the six partial differential equations defining the surfaces plus the conditions these PDE’s must
satisfy. They will be referred to as the metricity or Wünschmann-like conditions.

Remark 1: The notation is as follows: there will be two types of differentiation, one is with
respect to the local coordinates, xa, of the manifoldM, denoted by¹a or “comma a,” the other is
with respect to the parameters s, s* and g, denoted by]s, ]s* , and ]g.

From the assumed existence ofu=Zsxa,s,s* ,gd, we define four parameterized scalarsu i in
the following way:

u0 = u ; Zsxa,s,s* ,gd,

u+ = w ; ]sZsxa,s,s* ,gd,

s11d
u− = w* ; ]s*Zsxa,s,s* ,gd,

u1 = R; ]gZsxa,s,s* ,gd.

Remark 2: For each value of s, s* and g, Eqs. (11) can be thought of as a coordinate
transformation between the xa ’s and su,w,w* ,Rd.

We also define the following six important scalars:

L̃ = ]ssZsxa,s,s* ,gd,

L̃* = ]s*s*Zsxa,s,s* ,gd,

Ỹ = ]ggZsxa,s,s* ,gd,

F̃ = ]ss*Zsxa,s,s* ,gd,

C̃ = ]sgZsxa,s,s* ,gd,
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C̃* = ]s*gZsxa,s,s* ,gd. s12d

In what follows we will assume that Eqs.s11d can be inverted, i.e., solved for thexa’s;

xa = Xasu,w,w* ,R,s,s* ,gd.

Equationss12d can then be rewritten as

]ssZ = Lsu,w,w* ,R,s,s* ,gd,

]s*s*Z = L*su,w,w* ,R,s,s* ,gd,

]ggZ = Ysu,w,w* ,R,s,s* ,gd,

s13d
]ss*Z = Fsu,w,w* ,R,s,s* ,gd,

]sgZ = Csu,w,w* ,R,s,s* ,gd,

]s*gZ = C*su,w,w* ,R,s,s* ,gd.

This means that the three-parameter family of level surfaces, Eq.s9d, can be obtained as solutions
to the system of six second-order PDE’ss13d. Note thatsL ,L* ,Y ,F ,C ,C*d satisfy the integra-
bility conditions

Ds*L = DsF, DgL = DsC, DgF = Ds*C,

DsL
* = Ds*F, DgL* = Ds*C* , DgF = DsC

* , s14d

DgC = DsY, DgC* = Ds*Y, Ds*C = DsC
* ,

where we have the following.
Definition 1: The total s, s* , and g derivatives of a function F=Fsu,w,w* ,R,s,s* ,gd are

defined by

DsF ; Fs + Fuw + FwL + Fw*F + FRC,

Ds*F ; Fs* + Fuw
* + FwF + Fw*L* + FRC* , s15d

DgF ; Fg + FuR+ FwC + Fw*C* + FRY,

respectively.
The solution space of Eqs.s13d is four dimensional. This can be seen in the following way.

The system of PDE’ss13d is equivalent to the vanishing of the four one-forms,vi,

v0 = du − w ds− w* ds* − Rdg,

v+ = dw − L ds− F ds* − C dg,

v− = dw* − F ds− L* ds* − C* dg,
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v1 = dR− C ds− C* ds* − Y dg. s16d

A simple calculation, using the integrability conditions onsL ,L* ,Y ,F ,C ,C*d, leads to dvi

=0 smodulovid from which, via the Frobenius theorem, the solution space of Eqs.s13d is four
dimensional.

From the four scalars,u i, we have their associated gradient basisu i
,a given by

u i
,a = ¹au i = hZ,a,]sZ,a,]s*Z,a,]gZ,aj, s17d

and its dual vector basisui
a, so that

ui
au j

,a = di
j, ui

au i
,b = db

a. s18d

It is easier to search for the components of the four-dimensional metric in the gradient basis
rather than in the original coordinate basis. Furthermore, it is preferable to use the contravariant
components rather than the covariant components of the metric; i.e., we want to determine

gijsxa,s,s* ,gd = gabsxadu i
,au j

,b. s19d

The metric components and the Wünschmann-like conditions are obtained by repeatedly operating
with ]s, ]s* , and]g on Eq.s10d, which, by definition, is

g00 = gabZ,aZ,b = 1. s20d

Applying ]s to Eq. s20d yields ]sg
00=2gab]sZ,aZ,b=0, i.e.,

g+0 = 0. s21d

In the same way we obtain that]s*g00=2gab]s*Z,aZ,b=0, ]gg00=2gab]gZ,aZ,b=0 and thus,

g−0 = 0,

s22d
g10 = 0.

A direct computation shows that

]sssg00/2d = gab]ssZ,aZ,b + gab]sZ,a]sZ,b = gabL,aZ,b + g++ = 0. s23d

Since, by the assumed linear independence ofsZ,a,]sZ,a,]s*Z,a,]gZ,ad,

L,a = LuZ,a + Lw]sZ,a + Lw*]s*Z,a + Lg]gZ,a, s24d

Eq. s23d, using Eqs.s20d–s22d and s24d, is equivalent to

g++ = − Lu. s25d

In exactly the same way we find that

]s*s*sg00/2d = Lu
* + g−− = 0,

]ggsg00/2d = Yu + g11 = 0,

]ss*sg00/2d = Fu + g−+ = 0,

]sgsg00/2d = Cu + g1+ = 0,
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]s*gsg00/2d = Cu
* + g−1 = 0. s26d

Therefore, the final result is

sgijd =1
1 0 0 0

0 − Lu − Fu − Cu

0 − Fu − Lu
* − Cu

*

0 − Cu − Cu
* − Yu

2 . s27d

Remark 3: We require thatdetsgijd=D be different from zero, with

D ; YuFu
2 − 2FuCuCu

* + Lu
*Cu

2 + LusCu
*d2 − LuLu

*Yu. s28d

The metricity or Wünschmann-like conditions are obtained from the third derivatives, i.e.,
from ]sssg

00=0, ]sss*g
00=0, ]ss*s*g00=0, ]s*s*s*g00=0, ]ssgg00=0, ]sggg00=0, ]gggg00=0, ]s*s*gg00

=0, ]s*ggg00=0. By using the integrability conditions,s14d, a direct computation shows that they
are equivalent to the following nine equations:

Lus+ Luuw + LuwL + Luw*F + LuRC = 2fLwLu + Lw*Fu + LRCug,

Lus* + Luuw
* + LuwF + Luw*L* + LuRC* = 2fFwLu + Fw*Fu + FRCug,

Lus
* + Luu

* w + Luw*
*

F + Luw
* L + LuR

* C = 2fFw*Lu
* + FwLu + FRCu

*g,

Lus*
* + Luu

* w* + Luw*
*

L* + Luw
* F + LuR

* C* = 2fLw*
*

Lu
* + Lw

* Fu + LR
* Cu

*g,

Lug + LuuR+ LuwC + Luw*C* + LuRY = 2fCwLu + Cw*Fu + CRCug, s29d

Yus+ Yuuw + YuwL + Yuw*F + YuRC = 2fCwCu + Cw*Cu
* + CRYug,

Yug + YuuR+ YuwC + Yuw*C* + YuRY = 2fYwCu + Yw*Cu
* + YRCug,

Lug
* + Luu

* R+ Luw*
*

C* + Luw
* C + LuR

* Y = 2fCw*
*

Lu
* + Cw

* Fu + CR
* Cu

*g,

Yus* + Yuuw
* + Yuw*L* + YuwF + YuRC* = 2fCw*

*
Cu

* + Cw
* Cu + CR

* Yug.

Summarizing we have the following.
sad If we start from a complete integral,u=Zsxa,s,s* ,gd to the HJ equation,s10d, then it

satisfies the system of six second-order PDE’ss13d, with sL ,L* ,Y ,F ,C ,C*d satisfying Eqs.s14d
and the Wünschmann-like conditionss29d; in other words, in the solution space of Eqs.s13d there
is the naturally defined metric,

gab = u,au,b +
1

D
fsLu

*Yu − sCu
*d2dw,aw,b + sCuCu

* − YuFudsw,aw,b
* + w,a

* w,bd + sLuYu − Cu
2dw,a

* w,b
*

+ sFuCu
* − Lu

*Cudsw,aR,b + R,aw,bd + sFuCu − LuCu
*dsw,a

* R,b + R,aw,b
* d + sLuLu

* − Fu
2dR,aR,bg,

s30d

whereD is defined by Eq.s28d.
sbd If we start with a system of six second-order PDE’ss13d, where sL ,L* ,Y ,F ,C ,C*d

satisfy Eqs.s29d and the integrability conditions,s14d, then in its solution space there exist a

032502-7 General relativity via complete integrals… J. Math. Phys. 46, 032502 ~2005!

                                                                                                                                    



natural four-dimensional metric given by Eq.s30d. Though it might appear as if the metric com-
ponents depend on the parametersss,s* ,gd, the Wünschmann-like conditions guarantees that they
do not. Furthermore, the solutionsu=Zsxa,s,s* ,gd satisfy the HJ equation

gab¹aZsxa,s,s* ,gd¹bZsxa,s,s* ,gd = 1

with the just determined metric, Eq.s30d.
Remark 4: From the results presented above we conclude that solving the four-dimensional HJ

equation, in a four-dimensional background space–time, is equivalent to solving a system of six
second-order PDE’s.

In some of the earlier work on the eikonal equation in three- and four-dimensional Lorentzian
spaces, it was proved that the conformal Lorentzian metrics associated with third-order ODE’s and
pairs of second-order PDE’s satisfying the Wünschmann condition and generalized Wünschmann
condition, is preserved when the differential equation is transformed by a contact transformation.
For our present case, there is an analogous result given by the following.

Theorem 1: Let Eqs. (13) be a system of six second-order PDE’s, withsL ,L* ,Y ,F ,C ,C*d
satisfying the conditions (14) and (29), and let

]s̄s̄Z̄ = L̄sū,w̄,w̄* ,R̄,s̄,s̄* ,ḡd,

]s̄* s̄*Z̄ = L̄*sū,w̄,w̄* ,R̄,s̄,s̄* ,ḡd,

]ḡḡZ̄ = Ȳsū,w̄,w̄* ,R̄,s̄,s̄* ,ḡd,

s31d
]s̄s̄*Z̄ = F̄sū,w̄,w̄* ,R̄,s̄,s̄* ,ḡd,

]s̄ḡZ̄ = C̄sū,w̄,w̄* ,R̄,s̄,s̄* ,ḡd,

]s̄* ḡZ̄ = C̄*sū,w̄,w̄* ,R̄,s̄,s̄* ,ḡd,

be a second system of six second-order PDE’s locally equivalent to Eqs. (13) under the subset of
contact transformations generated by the generating function

Hss,s* ,g,u,s̄,s̄* ,ḡ,ūd = ū − u − Gss,s* ,g,s̄,s̄* ,ḡd. s32d

Then under this subset of contact transformations the metric given by Eq. (30) is preserved.
The proof of this theorem is exactly as that presented in Ref. 12 for a system of two second-

order PDE’s such that on its space of solutions there is a unique four-dimensional conformal
Lorentzian metric,gab, such thatgabu,au,b=0. Here we only justify the form of the generating
function s32d. We first review the definition of a general contact transformation.

Theorem 2: Every contact transformation which is not a prolonged point transformation is
determined in terms of a generating function Hss,s* ,g ,u, s̄, s̄* ,ḡ ,ūd by solving the following seven

implicit equations for s̄, s̄* ,ḡ ,ū,w̄=]s̄ū,w̄* =]s̄*ū,R̄=]ḡū:

Hss,s* ,g,u,s̄,s̄* ,ḡ,ūd = 0,

Hs + wHu = 0, Hs̄ + w̄Hū = 0,

Hs* + w*Hu = 0, Hs̄* + w̄*Hū = 0,
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Hg + RHu = 0, Hḡ + R̄Hū = 0. s33d

The generating function Hss,s* ,g ,u, s̄, s̄* ,ḡ ,ūd is an arbitrary smooth function, subject only to the

solvability of Eqs. (33) for s̄, s̄* , ḡ, ū, w̄, w̄* and R̄.
For a proof of this theorem see, for example, Olver.16

Without loss of generality one can take

H = ū − V̄su,s,s* ,g,s̄,s̄* ,ḡd, s34d

so that the contact transformation has the form

ū = V̄su,s,s* ,g,Ass,s* ,g,u,w,w* ,Rd,A*ss,s* ,g,u,w,w* ,Rd,Css,s* ,g,u,w,w* ,Rdd,

s̄= Ass,s* ,g,u,w,w* ,Rd,

s̄* = A*ss,s* ,g,u,w,w* ,Rd,

ḡ = Css,s* ,g,u,w,w* ,Rd, s35d

w̄ = V̄s̄su,s,s* ,g,Ass,s* ,g,u,w,w* ,Rd,A*ss,s* ,g,u,w,w* ,Rd,Css,s* ,g,u,w,w* ,Rdd,

w̄* = V̄s̄*su,s,s* ,g,Ass,s* ,g,u,w,w* ,Rd,A*ss,s* ,g,u,w,w* ,Rd,Css,s* ,g,u,w,w* ,Rdd,

R̄= V̄ḡsu,s,s* ,g,Ass,s* ,g,u,w,w* ,Rd,A*ss,s* ,g,u,w,w* ,Rd,Css,s* ,g,u,w,w* ,Rdd,

where Ass,s* ,g ,u,w,w* ,Rd, A*ss,s* ,g ,u,w,w* ,Rd, and Css,s* ,g ,u,w,w* ,Rd are obtained by
solving

V̄s + wV̄u = 0,

V̄s* + w*V̄u = 0, s36d

V̄g + RV̄u = 0,

for s̄, s̄* , andḡ in terms ofs, s* , g, u, w, w* , andR.
As was pointed out earlier, for each value ofs, s* , andg, the four-parameters,xa, family of

solutions

u = Zsxa,s,s* ,gd, s37d

of s13d is also a three-parameters,ss,s* ,gd, family of solutions of Eq.s10d, i.e., are complete
integrals of Eq.s10d. We now invoke the envelope construction to take one complete integral of

Eq. s10d into another such solution. Consider the functionū=Z̄sxa, s̄, s̄* ,ḡd defined by

ū = V̄su,s,s* ,g,s̄,s* ,ḡd, s38d

whereu is defined by Eq.s37d ands, s* , andg are defined implicitly as functions ofxa, s̄, s̄* , and
ḡ by the envelope conditions12,17

V̄uw + V̄s = 0,
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V̄uw
* + V̄s* = 0, s39d

V̄uR+ V̄g = 0.

Note that although Eqs.s39d have the same form as Eqs.s36d, they involve the variablesxa, s, s* ,
andg. Using both Eqs.s38d and s39d, we have that

ū,a = V̄uu,a. s40d

By direct substitution ofū,a into the HJ equation, Eq.s10d, we see that it is a new complete

integral if and only if V̄u
2=1. That is, ū=V̄su,s,s* ,g , s̄, s̄* ,ḡd has the form ū= ±u

+Gss,s* ,g , s̄, s̄* ,ḡd. For simplicity, taking the positive sign, we have that ifusxa,s,s* ,gd is a
complete integral of Eq.s10d then

ū = u + Gss,s* ,g,s̄,s* ,ḡd, s41d

wheres, s* , andg are defined implicitly as functions ofxa, s̄, s̄* , andḡ by the envelope conditions

w + Gs = 0,

w* + Gs* = 0, s42d

R+ Gg = 0,

is a new complete integral of Eq.s10d. Equationss41d and s42d define a particular subset of the
contact transformations given by contact transformations

ū = u + Gss,s* ,g,s̄,s̄* ,ḡd, s43d

w = − Gs, s44d

w* = − Gs* , s45d

R= − Gg, s46d

w̄ = Gs̄, s47d

w̄* = Gs̄* , s48d

R̄= Gḡ. s49d

The generating function for this set of contact transformations is given by

Hss,s* ,g,u,s̄,s* ,ḡ,ūd = ū − u − Gss,s* ,g,s̄,s* ,ḡd = 0 s50d

thus justifying our choice of the generating function, Eq.s32d.

III. EXAMPLE

As an example we apply our results to the motion of a particle in the Schwarzschild space–
time. By using the coordinatesxa=st ,r ,u ,fd, the Hamilton–Jacobi equation for this case can be
written as
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S 1

m2D3 u,t
2

S1 −
rg

r
D − S1 −

rg

r
Du,r

2 −
u,u

2

r2 −
u,f

2

r2 sin2 u4 = 1, s51d

wherem is the mass of the particle andrg=2M with M being the mass of the Schwarzschild
solution. By the method of separation of variables one finds that a complete solution to Eq.s51d
can be written in the following form:

u = Zsxa,a,b,gd = − gt + bf +EÎa2 −
b2

sin2 u
du +EÎg2r3 − sm2r2 + a2dsr − rgd

rsr − rgd2 dr ,

s52d

wherea, b, and g are three constants of separation. For this problem,g, is the energy of the
particle,b is the value of the angular momentum about the polar axis anda is the magnitude of
the total angular momentum. To obtain the system of second-order PDE’s associated with this
complete integral we takea=s* +s and b= iss* −sd. Thus the complete integral in terms of the
parametersss,s* ,gd is given by

u = Zsxa,s,s* ,gd = − gt +EÎg2r3 − fm2r2 + ss+ s*d2gsr − rgd
rsr − rgd2 dr

+E Îss+ s*d2 + ss− s*d2 csc2 u du − iss− s*df. s53d

A direct computation shows that

w =E − ss+ s*ddr
ÎrÎg2r3 − fm2r2 + ss+ s*d2gsr − rgd

+E fss+ s*d + ss− s*dcsc2 ugdu

Îss+ s*d2 + ss− s*d2 csc2 u
− if,

w* =E − ss+ s*ddr
ÎrÎg2r3 − fm2r2 + ss+ s*d2gsr − rgd

+E fss+ s*d − ss− s*dcsc2 ugdu

Îss+ s*d2 + ss− s*d2 csc2 u
+ if, s54d

R= − t +E Îrr 2g dr

sr − rgdÎg2r3 − fm2r2 + ss+ s*d2gsr − rgd
.

By using Eqs.s53d and s54d, one sees that the Jacobian of the coordinate transformation,u i

=u isxa,s,s* ,gd, for this case, is given by

J =
]su,w,w* ,Rd
]st,r,u,fd

=
2im2r3/2ss+ s*dfss+ s*d2 + ss− s*d2 csc2 ug−1/2

fg2r3 − fm2r2 + ss+ s*d2gsr − rgdg1/2 . s55d

Using Eqs.s54d, our system of six PDE’s for a Schwarzschild space–time is obtained as
follows.

First we have that

]ssZ = Asr,s,s* ,gd + s*2Bsu,s,s*d,

]s*s*Z = Asr,s,s* ,gd + s2Bsu,s,s*d,

]ggZ = Csr,s,s* ,gd,

]ss*Z = Asr,s,s* ,gd − ss*Bsu,s,s*d,

032502-11 General relativity via complete integrals… J. Math. Phys. 46, 032502 ~2005!

                                                                                                                                    



]sgZ = Dsr,s,s* ,gd,

]s*gZ = Dsr,s,s* ,gd, s56d

where

Asr,s,s* ,gd =E − r3/2fg2r − m2sr − rgdgdr

fg2r3 − fm2r2 + ss+ s*d2gsr − rgdg3/2,

Bsu,s,s*d =E 4 csc2 udu

fss+ s*d2 + ss− s*d2 csc2 ug3/2,

s57d

Csr,s,s* ,gd =E − Îrr 2fm2r2 + ss+ s*d2gdr

fg2r3 − fm2r2 + ss+ s*d2gsr − rgdg3/2,

Dsr,s,s* ,gd =E Îrr 2ss+ s*dg dr

fg2r3 − fm2r2 + ss+ s*d2gsr − rgdg3/2.

On the other hand, Eqs.s53d and s54d imply that

t = tsu,w,w*R,s,s* ,gd,

r = rsu,w,w*R,s,s* ,gd,

s58d
u = usu,w,w*R,s,s* ,gd,

f = fsu,w,w*R,s,s* ,gd.

Therefore, the system of six second-order PDE’s for a particle moving in the Schwarzschild
space–time is given by

]ssZ = L = Asrsu,w,w*R,s,s* ,gd,s,s* ,gd + s*2Bsusu,w,w*R,s,s* ,gd,s,s*d,

]s*s*Z = L* = Asrsu,w,w*R,s,s* ,gd,s,s* ,gd + s2Bsusu,w,w*R,s,s* ,gd,s,s*d,

]ggZ = Y = Csrsu,w,w*R,s,s* ,gd,s,s* ,gd,

s59d
]ss*Z = F = Asrsu,w,w*R,s,s* ,gd,s,s* ,gd − ss*Bsusu,w,w*R,s,s* ,gd,s,s*d,

]sgZ = C = Dsrsu,w,w*R,s,s* ,gd,s,s* ,gd,

]s*gZ = C* = Dsrsu,w,w*R,s,s* ,gd,s,s* ,gd.

Sinceusxa,s,s* ,gd given by Eq.s53d is a complete integral to the HJ equations51d, thenL,
L* , Y, F, C, andC* given in Eqs.s59d satisfy Eqs.s14d ands29d. Therefore a four-dimensional
metric can be defined in the space of solutions of Eqs.s59d. By comparison of Eqs.s10d ands51d
it is clear what that metric should be. However here we show the steps to explicitly obtain this
metric by the procedure developed in earlier. What is remarkable is that this metric can be
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obtained without the evaluation of the integrals that arose in this problem. As we can see from Eq.
s27d, to obtain the four-dimensional metric in tetrad components, we need to computeLu, Lu

* , Yu,
Fu, Cu, andCu

* .
Since, for example,

Lu = s]L/]rds]r/]ud + ss]Ld/]uds]u/]ud,

then we need to computes]r /]ud ands]u /]ud. From Eqs.s53d ands54d, via implicit derivations,
we obtain that

]r

]u
= −Îg2r3 − fm2r2 + ss+ s*d2gsr − rgd

m4r3 ,

s60d
]u

]u
= −Îss+ s*d2 + ss− s*d2 csc2 u

m4r4 .

A direct computation shows that the metric in tetrad components is given by

g00 = 1, g0+ = 0, g0− = 0, g01 = 0,

g++ =
s*2 fsr,u,s,s*d − hsr,s,s* ,gd

m2 ,

g+− = −
ss* fsr,u,s,s*d + hsr,s,s* ,gd

m2 ,

s61d

g+1 =
rss+ s*dg

m2fg2r3 − fm2r2 + ss+ s*d2gsr − rgdg
,

g−− = sg++d* , g−1 = g+1,

g11 =
− rfm3r2 + ss+ s*d2g

m2fg2r3 − fm2r2 + ss+ s*d2gsr − rgdg
,

where

fsr,u,s,s*d =
4 csc2 u

r2fss+ s*d2 + ss− s*d2 csc2 ug
,

s62d

hsr,s,s* ,gd =
g2r − m2sr − rgd

g2r3 − fm2r2 + ss+ s*d2gsr − rgd
.

On the other hand, from Eqs.s53d and s54d, we have that

u,a = S− g,Îg2r3 − fm2r2 + ss+ s*d2gsr − rgd
rsr − rgd2 ,Îss+ s*d2 + ss− s*d2 csc2 u,iss* − sdD ,

w,a = S0,
− ss+ s*d

ÎrÎg2r3 − fm2r2 + ss+ s*d2gsr − rgd
,

ss+ s*d + ss− s*dcsc2 u

Îss+ s*d2 + ss− s*d2 csc2 u
,− iD ,
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w,a
* = S0,

− ss+ s*d
ÎrÎg2r3 − fm2r2 + ss+ s*d2gsr − rgd

,
ss+ s*d − ss− s*dcsc2 u

Îss+ s*d2 + ss− s*d2 csc2 u
,iD ,

R,a = S− 1,
Îrr 2g

sr − rgdÎg2r3 − fm2r2 + ss+ s*d2gsr − rgd
,0,0D . s63d

Finally, by using Eqs.s30d, s61d, and s63d, a direct computation shows that the four-
dimensional metric living in the solution space of the PDE’ss59d is given by

ds2 = gab dxa dxb = m23S1 −
rg

r
Ddt2 −

dr2

S1 −
rg

r
D − r2sd u2 + sin2 u df2d4 , s64d

which is the desired result.

IV. THE EINSTEIN EQUATIONS

We now adopt a new point of view towards geometry on a 4D manifold. Instead of a Lorent-
zian metricgabsxad on M, as the fundamental variable we consider as the basic variables a family
of surfaces onM given by u=constant=Zsxa,s,s* ,gd or preferable its second derivatives with
respect tos, s* , andg. From this new point of view these surfaces are basic and the metric is a
derived concept. Now we will find the conditions onu=Zsxa,s,s* ,gd or more accurately on the
second order system such that the 4D metric, Eq.s27d, be a solution to the Einstein equations.

We start with the Einstein equations18

Rab =
8pk

c4 STab −
1

2
gabTD , s65d

with the Ricci tensor given by

Rab =
1

Î− g

]

]xcsGab
c Î− gd −

]2

]xa]xb ln Î− g − Gad
c Gbc

d , s66d

g=detsgabd and

Gab
c =

1

2
gcdS ]gda

]xb +
]gdb

]xa −
]gab

]xd D , s67d

are the Christoffel symbols.
As in the null surface formulation of general relativity in the present case the Einstein equa-

tions are given by

RabZ,aZ,b =
8pk

c4 STab −
1

2
gabTDZ,aZ,b. s68d

That is, to obtain the Einstein equation in this case, we need to computeR00;RabZ,aZ,b, which is
oneof the components ofRij ;Rabu ,a

i u ,b
j . From Eq.s27d we have thatR00=R00. Using the metric

given by Eq.s27d with coordinatesu i =su0,u+,u−,u1d in Eq. s66d to computeR00, we find that Eq.
s68d is equivalent to

− s2Dd−1GARuu
A − 6s2Dd−2MABRu

ARu
B =

8pk

c4 STabZ,aZ,b −
1

2
TD , s69d

where
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RA = sLu,Lu
* ,Yu,Fu,Cu,Cu

*d, s70d

GA = sa,a* ,b,2c,2d,2d*d, s71d

with

a ; Lu
*Yu − sCu

*d2,

b ; LuLu
* − Fu

2,

s72d
c ; CuCu

* − FuYu,

d ; FuCu
* − Lu

*Cu,

and

sMABd =1
a2

2

c2

2

d2

2
ac, ad cd

c2

2

a*2

2

d*2

2
a*c cd* a*d*

d2

2

d*2

2

b2

2
dd* bd bd*

ac a*c dd* aa* + c2 ad* + cd a*d + cd*

ad cd* bd ad* + cd ab+ d2 bc+ dd*

cd a*d* bd* a*d + cd* bc+ dd* a*b + d*2

2 . s73d

A direct computation shows that

detsMABd =
D8

8
. s74d

At first glance it appears that Eq.s69d cannot be equivalent to the 10 components of the
Einstein equations. However, Eq.s69d is valid for any value ofs, s* , andg. Thus if we add to Eq.
s69d the metricity or Wünschmann-like conditions, we obtain a set of consistent equations equiva-
lent to the standard Einstein equations. The final equations read

− s2Dd−1GARuu
A − 6s2Dd−2MABRu

ARu
B =

8pk

c4 STabZ,aZ,b −
1

2
TD ,

Lus+ Luuw + LuwL + Luw*F + LuRC = 2fLwLu + Lw*Fu + LRCug,

Lus* + Luuw
* + LuwF + Luw*L* + LuRC* = 2fFwLu + Fw*Fu + FRCug,

Lus
* + Luu

* w + Luw*
*

F + Luw
* L + LuR

* C = 2fFw*Lu
* + FwLu + FRCu

*g,

Lus*
* + Luu

* w* + Luw*
*

L* + Luw
* F + LuR

* C* = 2fLw*
*

Lu
* + Lw

* Fu + LR
* Cu

*g,

Lug + LuuR+ LuwC + Luw*C* + LuRY = 2fCwLu + Cw*Fu + CRCug,
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Yus+ Yuuw + YuwL + Yuw*F + YuRC = 2fCwCu + Cw*Cu
* + CRYug,

Yug + YuuR+ YuwC + Yuw*C* + YuRY = 2fYwCu + Yw*Cu
* + YRCug,

Lug
* + Luu

* R+ Luw*
*

C* + Luw
* C + LuR

* Y = 2fCw*
*

Lu
* + Cw

* Fu + CR
* Cu

*g,

Yus* + Yuuw
* + Yuw*L* + YuwF + YuRC* = 2fCw*

*
Cu

* + Cw
* Cu + CR

* Yug, s75d

plus the integrability conditions, Eq.s14d.
As we said in the Introduction, we can now view the Einstein equations in either of the two

closely related fashions:
We can consider Eqs.s75d as ten differential equationssof high orderd for the single function

Zss,s* ,gd. In this case the integrability conditions are not relevant. Alternatively, the Einstein
equations can be considered as the 10 equations, Eqs.s75d, for the six independent variables
sL ,L* ,Y ,F ,C ,C*d. In this case, the integrability conditions, Eq.s14d, must be added but the
order of the equations is much lower.

V. CONCLUSIONS

In the first part of this work, we have shown that the ideas and procedures developed in our
recent papers,19,20 see also Ref. 21, on the two- and three-dimensional time-independent HJ equa-
tion can be generalized to the four-dimensional HJ equation on an arbitrary manifoldM. That is,
we have shown that on a four-dimensional manifoldM, a definite or indefinite metric,gab, is
equivalent to a family of foliations ofM, depending on three parameterss, s* , andg, described by
u=Zsxa,s,s* ,gd that satisfies the Wünschmann-like conditions, Eqs.s29d. Furthermore, from Eqs.
s29d we observe that one can adopt other points of view, whereL, L* , Y, F, C, andC* are the
basic variables andu=Zsxa,s,s* ,gd is an auxiliary variable. From this second point of view, Eqs.
s29d, are simpler but requires that we add the integrability conditionss14d so that aZ does exist.

In the second part of this work we have reformulated the Einstein equations as equations for
families of surfaces. IfZ is taken as the basic variable then the Einstein equations are equivalent
to Eqs.s69d. But if L, L* , Y, F, C, andC* are the basic variables the Einstein equations are
equivalent to Eqs.s69d and s14d. In both cases the Wünschmann equations are needed.

To establish our main results we have used a complete integral to the HJ equation on a
four-dimensional manifold. We point out that similar programs can be carried out with, rather than
complete solutions, two- and one-parameter families of solutions to the HJ equation. In these cases
one can prove the following statements.

Statement 1: On the space of solutions of a certain class of systems of two second-order
PDE’s,

uss= Pss,s* ,u,us,us* ,uss*d,

s76d
us*s* = P*ss,s* ,u,us,us* ,uss*d,

a four-dimensional definite or indefinite metric, gab, can be constructed such that the four-
dimensional Hamilton–Jacobi equation, gabu,au,b=1 holds. Furthermore, this structure will be
invariant under a subset of contact transformations.

Statement 2: On the space of solutions of a certain class of fourth-order ODE’s,

u-8 = Sss,u,u8,u9,u-d, s77d
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a four-dimensional definite or indefinite metric, gab, can be constructed such that the four-
dimensional HJ equation, gabu,au,b=1 holds. Furthermore, this structure will be invariant under
contact transformations.

In a future paper we will present the proofs of these statements.
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By using an iterative algebraic method, we derive from a spectral problem a hier-
archy of nonlinear evolution equations associated with dispersive long wave equa-
tion. It is shown that the hierarchy is integrable in Liouville sense and possesses
bi-Hamiltonian structure. Two commutators, with zero curvature and Lax represen-
tations, for the hierarchy are constructed, respectively, by using two different sys-
tematic methods. Under a Bargmann constraint the spectral is nonlinearized to a
completely integrable finite dimensional Hamiltonian system. By introducing the
Abel–Jacobi coordinates, an algebro-geometric solution for the dispersive long
wave equation is derived by resorting to the Riemann theta function. ©2005
American Institute of Physics.fDOI: 10.1063/1.1857064g

I. INTRODUCTION

The development of a integrable system representing well-known physical phenomena has
shown to be meaningful and valuable. For instance, the illustration of the bi-Hamiltonian structure
of a system of partial differential equations is proven to be a direct and elegant method in
establishing the complete integrability of the system.1–5 If a set of partial differential equations can
be formulated as a Hamiltonian system in two distinct but compatible ways, Magri had proven in
Ref. 1 that this gives rise to an infinite sequence of conserved Hamiltonians which are in involu-
tion with respect to one of those two symplectic structures. Recently, two constructive approaches
that can handle both finite-dimensional and infinite-dimensional integrable Hamiltonian systems
were successfuly developed. The first approach is based on the trace identity,6,7 which is effective
in constructing the infinite-dimensional Liouville integrable Hamiltonian systems. Starting from a
properly defined isospectral problem, many integrable hierarchies and their Hamiltonian structures
se.g., AKNS, TC, TA, BPT, Yangd had been obtained by applying this method.6–10The second one
used nonlinearization technique,11,12which has also been proven to be powerful for obtaining new
finite-dimensional integrable Hamiltonian systems from various soliton hierarchies. Under the
Bargmann or Neumann constraints on the potentials and the eigenvalues, which play a central role
in the process of nonlinearization, the related eigenvalue problem can be nonlinearized as a
finite-dimensional completely integrable system. This covers the eigenvalue problems associated
with the well-known soliton hierarchies such as the KdV, AKNS, Jaulent–Miodek, Kaup–Newell,
etc.10–17An advantage of this method is that its solution to the soliton equation associated with an
eigenvalue problem can be reduced to solving a compatible system of nonlinear ordinary differ-
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bdAuthor to whom correspondence should be addressed. Electronic mail: Faneg@fudan.edu.cn
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ential equations.9–15 This approach has now been further developed to a general method for
handling higher order constraints associated with infinitely many hierarchies of finite-dimensional
integrable Hamiltonian systems.18–20

The algebro-geometric method is an analogue of inverse scattering transformation. It was first
developed by Dubrovin, Its, Matveev, and Belokoloset al.21–23and more recently by Gesztesy and
Holden.24 The method can derive an important class of exact solutions, which is called algebro-
geometric solution, to the soliton equation such as KdV equation, sine–Gordon equation, and
Schrödinger equation. In the degenerated case the method gives the soliton solution and elliptic
function solution. Recently, an alternate approach based on the nonlinearization technique of Lax
pairs or the restricted flow technique has been proposed.25–27 By this method or other
methods,28–33 algebro-geometric solutions fors1+1d- and s2+1d-dimensional soliton equations
can now be obtained.23–33

The dispersive long wavesDLWd equation

ut = 2uux + 2vx + uxx,

vt = 2suvdx − vxx s1.1d

was first derived by Whitham and Broer for simulating dispersive waves in shallow water.34,35 Its
symmetries, conservation laws, similarity reductions, painlevé property and soliton solutions had
been fully discussed.36–38In recent years, the following spectral problem associated with the DLW
equations1.1d,

cx = Uc = S− 1
2sl − ud − v

1 1
2sl − ud

Dc, s1.2d

has been proposed.13,39Under two different constraints between the potentials and eigenfunctions,
the nonlinearization of the spectral problem gives two kinds of finite-dimensional completely
integrable systems.13 By using gauge transformation

f̃x = S1 0

0 − 1
Dc, l = 2ih, u = 2ar, v = q + brx,

the spectral problems1.1d can be shown to be in close analogy to the classical Boussinesq spectral
problem,

c̃x = S− ih − ar q + brx

− 1 ih + ar
Dc̃.

Therefore, the DLW hierarchy is intimately related to the Boussinesq hierarchy, whose algebro-
geometric solutions can be found from the work of Gesztesy and Holden.24

In this paper, we would investigate some aspects related to the DLW equations1.1d and its
spectral problems1.2d. In Sec. II starting from a spectral problem, we first derive a hierarchy
associated with the DLW equation by using an iterative algebraic method. It will be shown that the
hierarchy is integrable in the Liouville sense and its bi-Hamiltonian structure can be established
from trace identity. In Sec. III we present a systematic method to construct a zero curvature
representation for the hierarchy. In Sec. IV, from the nonlinearization of the spectral problems1.2d,
we devise a finite dimensional completely integrable Hamiltonian system under a Bargmann
constraint. The Abel–Jacobi coordinates are introduced in Sec. V from which the algebro-
geometric solutions for the DLW equations will be derived by resorting to the Riemann theta
functions.
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II. DLW HIERARCHY AND ITS BI-HAMILTONIAN STRUCTURE

We first recall briefly some notations from the theory of generalized Hamiltonian equations:6

Let G be a finite-dimensional Lie algebra overC andG̃ be the corresponding iterated algebra,

G̃ = G ^ Cfl,l−1g,

whereCfl ,l−1g is the set of Laurent polynomials inl. Suppose thathe1,… ,epj is a basis ofG.

The set he1snd ,… ,epsndj is then a basis ofG̃, where eisnd=eis0dln=eil
n. For esndPG̃, i

=1,… ,p, its gradation is defined by

degseisndd = degseil
nd = n.

Consider in the following a general spectral problem:

cx = Usu,ldc, s2.1d

where u=su1,… ,updTPS, S is a Schwarz space, andl is a spectral parameter. The function
Usu,ld can be unified to the following representation:

U = R+ u1e1 + ¯ + upep,

whereR,e1,… ,epPG̃. We define the ranks for] ,u,l, andxPG̃ in such a way that ifab is well
defined for any two entitiesa andb, then

ranksabd = ranksad + ranksbd.

We also define the rank ofR in such a way that above elementU has homogeneous rank, i.e.,

ranksRd = ranksu1e1d = ¯ = ranksupepd.

Finally, we define

ranksxd = degsxd, x P G̃, ranksld = degsxld − degsxd,

ranksuid = a − ei, ranks]d = a,

ranksbd = 0 sb = constantd,

where degsRd=a and degseid=ei.
Denote

g+ = o
nùp

gn, g− = o
n,p

gn,

and callg+ the positive part ofg, wherepPZ is a properly chosen integer.
The DLW hierarchy corresponding to equations1.1d derived from the spectral problems1.2d is

now given to be a basis of iterated algebra overC as follows:

hsnd = S 1
2ln 0

0 − 1
2lnD, esnd = S0 ln

0 0
D, fsnd = S 0 0

ln 0
D , s2.2d

such that the following equalities,

fhsmd,esndg = esm+ nd, ffsmd,hsndg = fsm+ nd,
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fesmd, fsndg = 2hsm+ nd,

hold. The gradation for the basis is defined by

deghsnd = degesnd = degfsnd = n.

From Eqs.s2.2d, theU in s1.2d can be expressed as

U = − hs1d + fs0d + uhs0d − ves0d,

and we have

deghs1d = 1, deges0d = degfs0d = 0,

ranksld = ranks]d = ranksud = ranksvd = 1.

The adjoint equation

Vx = fU,Vg = UV − VU

with

V = ahs0d + bes0d − cfs0d

can be solved and we obtain

ax = 2vc − 2b, bx = − bl + ub+ va,

cx = cl + uc+ a. s2.3d

Substituting the Laurent expansiona=oaml−m, b=obml−m, c=ocml−m into s2.3d, we obtain the
following recursive formulas:

amx= 2vcm − 2bm,

bmx= − bm+1 + ubm + vam,

cmx= cm+1 + ucm + am. s2.4d

Taking a0=0, c0=a, b0=av, we further derive froms2.4d that

S 1
2am+1

cm+1
D = LS 1

2am

cm
D ,

whereL is the matrix operator defined by

L = S− ] + ]−1u] ]−1v ] + v

2 ] + u
D .

Set

slnVd+ = o
m=0

n

famhsn − md + bmesn − md − cmfsn − mdg.

Then,Vx=fU ,Vg implies that
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− slnVd+x + fU,slnVd+g = − slnVd−x + fU,slnVd−g. s2.5d

Notice that all the terms on the left-hand side ofs2.5d have degreesù0, whereas all the terms on
the right-hand side ofs2.5d have degreesø0. Therefore, we have

− slnVd+x + fU,slnVd+g P Chs0d + Ces0d + Cfs0d. s2.6d

In other words, we only need to calculate those terms that containhs0d ,es0d , fs0d. Direct calcu-
lation shows that

− slnVd+x + fU,slnVd+g = bn+1es0d + cn+1fs0d.

To cancel the termcn+1fs0d, we introduceDn=cn+1hs0d. It is then easy to prove that, forVsnd

=slnVd++Dn, we have

− sVsndd+x + fU,sVsndd+g = − cn+1xhs0d − 1
2an+1xes0d.

Then zero curvature equationUt−sVsndd+x+fU ,sVsndd+g gives the following DLW hierarchy:

ut = cn+1x, vt = 1
2an+1x, n = 1,2,… . s2.7d

We note here that the first two representative systems in the hierarchys2.7d are

ut = aux, vt = avx,

ut = asuxx + 2vx + 2uuxd, vt = as− vxx + 2uxv + 2uvxd.

The second system is exactly the DLW equations1.1d in the case whena=1.
The following theorem serves to develop the Hamiltonian structure of the hierarchys2.7d.
Theorem 2.1:The hierarchys2.7d possesses the bi-Hamiltonian structure

wt = J
dHn

dw
= K

dHn−1

dw
, s2.8d

where the vector functionw, the Hamiltonian operatorsJ,K and the Hamiltonian function are
given by

w = Su

v
D, K = JL = S 2] ]2 + ]u

− ]2 + u] v ] + ]v
D ,

J = S0 ]

] 0
D, Hn = 1

2an+2, n = 0,1,… . s2.9d

Proof: We introduce

Gn+1 = S 1
2an+1

cn+1
D , s2.10d

then hierarchys2.7d can then be rewritten in the form of

wt = JGn+1 = KGn = JLn+1G0 = JsJ−1Kdn+1G0, n = 1,2,… , s2.11d

whereG0=s0,1dT.
We take the Killing–Cartan formkA,Bl to be trsABd. From direct calculation we then obtain
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KV,
]U

]l
L = −

1

2
a, KV,

]U

]u
L =

1

2
a, KV,

]U

]v
L = c.

By using the result of trace identity,6 we have

d

dw
S−

1

2
aD = l−g ]

]l
FlgS1

2
a,cDTG .

Substituting

a = o
n=0

`

anl−n, c = o
n=0

`

cnl−n

into the above equation yields

d

dw
S−

1

2
an+1D = sg − ndGn, s2.12d

which holds for alln=0,1,2,… . The conditionn=0 in s2.12d givesg=1. Therefore, we obtain

Gn+1 =
dHn

dw
, s2.13d

whereHn is given bys2.9d.
Combinings2.11d with s2.13d we then obtain the desired Hamiltonian formulations2.8d for the

DLW hierarchys2.7d.
It is crucial to prove the existence of infinite involutive conserved densities. The inner product

between two functionsf andg is defined by

sf,gd =E fg dx,

and the Poisson bracket is defined by

hf,gj = S df

dw
,J

df

dw
D .

Finally, the integrability of the hierarchys2.7d or s2.8d is given in the following Theorem 2.2.
Theorem 2.2: The Hamiltonian functionshHnjn=0

` defined bys2.9d constitute common con-
served densities for the whole hierarchys2.8d. It other words, it is an integrable Hamiltonian
system in Liouville sense.

Proof: It is easy to see thatJL=L*J. We then have

hHn,Hmj = SdHn

dw
,J

dHm

dw
D = sLn+1G0,JLm+1G0d = sLn+1G0,L

*JLmG0d = sLn+2G0,JLmG0d

= hHn+1,Hm−1j.

Repeating the above argument gives

hHn,Hmj = hHm,Hnj = hHm+n,H0j. s2.14d

On the other hand, we have

hHm,Hnj = sLm+1G0,JLn+1G0d = sJ*Lm+1G0,L
n+1G0d = − hHn,Hmj. s2.15d

Combinings2.14d with s2.15d gives

032701-6 Y. C. Hon and E. G. Fan J. Math. Phys. 46, 032701 ~2005!

                                                                                                                                    



hHm,Hnj = 0,

which implies thathHnj are in involution. Furthermore, we have

SE Hn dxD
t

= SdHn

du
,utD = SdHn

du
,J

dHm

du
D = hHn,Hmj = 0.

This implies thathHnj are also conserved densities.

III. ZERO CURVATURE AND LAX REPRESENTATIONS

The zero curvature and Lax representations are two different commutator representations of
nonlinear evolution equations. They play an important role in the investigation of integrable
systems. To obtain the two commutator representations for the DLW hierarchys2.7d, based on the
general spectral problems2.1d we first propose an approach to derive a hierarchy of nonlinear
evolution equations from which their zero representation can be obtained. Recall that the Gateaux
derivative of a spectral operatorUsu,ld in directionj=sj1,j2,… ,jpdT at pointu is defined by

U8sjd =
d

d«
Usu + «jdu«=0.

Denote

¹l = S dl

du1
, ¯ ,

dl

dup
DT

to be the functional ofl. If there exist twop3p matrix integro-differential operatorsK and J
depending onu such that

K ¹ l = lkJ ¹ l,

wherek being a constant, thenK andJ are called a pair of Lenard’s operators.
By using the pair of Lenard’s operatorsK and J, we can define the Lenard’s recursion

sequence by

G0 P Ker J = hGuJGj, KGj−1 = JGj, j = 1,2,… .

The corresponding fieldXj =JGj produces a hierarchy of nonlinear evolution equations connected
with the spectral problems2.1d as follows:

ut = Xnsud = JsJ−1KdnG0, n = 1,2,… . s3.1d

The zero curvature representation of the hierarchys3.1d can now be constructed using the follow-
ing theorem.

Theorem 3.1:Suppose that

sad G0PKer J=GuJG.
sbd For arbitrary given vector functionG=sGs1d , ¯ ,GspddT, the following operator equation

Vx − fU,Vg = U8sKGd − lbU8sJGd s3.2d

has a solutionV=VsGd.

Let

An = o
j=1

n

Vjl
bsn−jd = o

j=0

n

VsGjdlbsn−jd,

whereVj =VsGjd. The hierarchys3.1d then possesses the following zero curvature representation:
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Ut − Anx + fU,Ang = 0 s3.3d

and also the following Lax pair:

cx = Uc, ct = Anc.

Proof: SinceG0PKer J=hGuJG=0j, we have

Anx − fU,Ang = o
j=1

n

sVjx − fU,Vjgdlbsn−jd = o
j=1

n

fU8sKGj−1d − lbU8sJGj−1dglbsn−jd

= o
j=1

n

U8sJGjdlbsn−jd − o
j=0

n−1

U8sJGjdlbsn−j+1d = U8sJGnd − U8sJG0dlbsn+1d = U8sXnd,

where the vector fieldXn=JGn=KGn−1.
SinceUt=U8sutd, it follows that

Ut − Anx + fU,Ang = U8sutd − U8sXnd = U8sut − Xnd = 0.

The construction of the zero representation for the hierarchys2.7d is given in the following
theorem. We first need the following lemmas.

Lemma 3.1:Let l be an eigenvalue of equations1.2d. The functional gradient¹l of l is then
given by

¹l = SE c1c2D−1

sc1c2,− c2
2dT,

whereK andJ are the pair of Lenard’s operators

K ¹ l = lJ ¹ l, s3.4d

and hGjj is the Lenard’s sequence

KGj−1 = JGj, j = 1,2,… , s3.5d

whereK andJ are defined bys2.9d and s2.10d.
Proof: The result can be directly computed froms1.2d.
Lemma 3.2:The differential map ofUsu,ld in s1.2d is given by

U8sjd = S 1
2j1 − j2

0 − 1
2j1

D, j = sj1,j2dT,

so thatU8sjd is an injective homomorphism.
Lemma 3.3:If b=1 in s3.2d, then for arbitrary given vector functionG=sGs1d ,Gs2ddT, the

following operator equation

Vx − fU,Vg = U8sKGd − lU8sJGd s3.6d

has a solution

V = VsGd = S− 1
2lGs2d + 1

2sGx
s2d + uGs2dd Gx

s1d − vGs2d

Gs2d 1
2lGs2d − 1

2sGx
s2d + uGs2dd

D . s3.7d

Proof: By representing the commutatorfU ,Vg asU=U0+U1l andV=V0+V1l such that

U0 = S 1
2u − v

1 − 1
2u
D, U1 = S 1

2 0

0 − 1
2

D ,
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V0 = SA B

C − A
D, V1 = SD 0

0 − D
D ,

whereA,B,C,D are four undetermined functions, we have

fU,Vg = fU0,V0g + sU0,V1g + fU1,V0gdl + fU1,V1gl2 = fU0,V0g + sU0,V1g + fU1,V0gdl

= S− vC − B 2vA + uB

2A − uC B+ vC
D + S 0 2vD − B

2D + C 0
Dl, s3.8d

and

KG = S 2Gx
s1d + Gxx

s2d + uGx
s2d + uxG

s2d

− Gxx
s1d + uGx

s1d + 2vGx
s2d + vxG

s2d D, JG= SGx
s2d

Gx
s1d D . s3.9d

Substitutings3.8d ands3.9d into s3.6d and comparing the corresponding elements in both sides of
the matrices, we can determine the values ofA,B,C, andD from which the solutionV as given in
s3.7d can be obtained.

Finally, from Theorem 3.1 we have the following.
Theorem 3.2:Let

An = o
j=1

n

Vjl
n−j = o

j=0

n

VsGjdln−j ,

whereVj =VsGjd is given bys3.7d. The DLW hierarchys2.7d possesses the following zero curva-
ture representation:

Ut − Anx + fU,Ang = 0, s3.10d

and the Lax pair

cx = Uc, ct = Anc.

Similarly we can obtain the Lax representation of the hierarchys2.7d through the following
lemmas and theorem.

Lemma 3.4:The spectral problems1.2d is equivalent to

Lc = S− 2 ] + u − 2v

− 2 2] + u
Dc = lc, s3.11d

where the differential map ofL=Lsu,v ,ld is

L8sjd = Sj1 − 2j2

0 j1
D ,

andL8sjd is an injective homomorphism.
Proof: Direct calculation froms1.2d.
Lemma 3.5:For arbitrary given vector functionG=sGs1d ,Gs2ddT, the following operator equa-

tion

fV,Lg = L8sKGd − L8sJGdL s3.12d

has a solution

V = VsGd = S 1
2sGx

s2d + uGs2dd Gx
s1d − vGs2d

Gs2d − 1
2sGx

s2d + uGs2dd
D + S− 1

2Gs2d 0

0 − 1
2Gs2d DL. s3.13d

Proof: Representing the commutatorfV,Lg of L=L0+L1]x andV=V0+V1]x such that
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L0 = S u − 2v

− 2 u
D, U1 = S− 2 0

0 2
D ,

V0 = SA B

C D
D, U1 = SE 0

0 F
D ,

whereA,B,C,D are four undetermined functions, we have

fV,Lg = fV0,L0g + fV0,L1]xg + fV1]x,L0gd + fV1]x,L1]xg

= fV0,L0g + V1L0x − L1V0x + sfV0,L1g + fV1,L0g + V1L1x − L1V1xd]x

= S− 2B + 2vC + uxE + 2Ax − 2vsA − Dd − 2vxE + 2Bx

2sA − Dd − 2Cx 2B − 2vC + uxF − 2Dx
D

+ S 2Ex − 2vsE − Fd + 4B

2sE − Fd − 4C − 2Fx
D]x. s3.14d

We also have

L8fKGg − L8sJGdL = S2Gx
s2d 4Gx

s1d

0 − 2Gx
s2d D]x

+ S2Gx
s1d + Gxx

s2d + uxG
s2d − 4Gx

s1d 2Gxx
s1d − 2vGx

s2d − 2vxG
s2d

2Gx
s2d 2Gx

s1d + Gxx
s2d + uxG

s2d D .

s3.15d

Substitutings3.14d ands3.15d into s3.12d and comparing the corresponding elements on both sides
of the matrices, we then obtain

A = − D = 1
2Gx

s2d, B = Gx
s1d, C = 0, E = F = Gs2d.

Since]x=L1
−1sL−L0d, we have

V = VsGd = S 1
2Gx

s2d Gx
s1d

0 − 1
2Gx

s2d D + Ss2d 0

0 Gs2d D]x

= S 1
2sGx

s2d + uGs2ddGx
s1d − vGs2d

Gs2d − 1
2sGx

s2d + uGs2dd
D + S− 1

2Gs2d 0

0 1
2Gs2d DL.

Theorem 3.3:Let

Bn = o
j=1

n

VjL
n−j = o

j=0

n

VsGjdLn−j , s3.16d

whereVj =VsGjd, Gj =sGj
s1d ,Gj

s2ddT, and the matrix functionV satisfiess3.13d. The DLW hierarchy
s2.7d possesses the following Lax representation:

Lt = fBn,Lg, s3.17d

and the Lax pair

Lc = lc, ct = Bnc.

Proof: From s3.12d and s3.16d, we have
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fBn,Lg = o
j=1

n

fVj,LgdLn−j = o
j=1

n

fL8sKGj−1d − L8sJGj−1dLgLn−j

= o
j=1

n

L8sJGjdLn−j − o
j=0

n−1

L8sJGjdLn−j = L8sJGnd − L8sJG0d = L8sXnd.

SinceLt=L8sutd, it follows that

Lt − fBm,Lg = L8sutd − L8sXmd = L8sut − Xmd = 0.

The proof is completed.

IV. A FINITE DIMENSIONAL HAMILTONIAN SYSTEM

To construct the algebro-geometric solution of DLW hierarchy, in this section we investigate
the finite dimensional Hamiltonian systems associated with the spectral problems1.2d through a
nonlinearization approach.12,13Let l j, j =1,… ,N beN different eigenvalues of equations1.2d, and
spj ,qjd be the associated eigenfunctions, i.e., we consider the followingN eigenvalues:

Spj

qj
D

x
= S− 1

2sl j − ud − v

1 1
2sl j − ud

DSpj

qj
D . s4.1d

Denotep=sp1,p2,… ,pNdT, q=sq1,q2,… ,qNdT, and ∧=diagsl1,l2,… ,lNd. From the Barg-
mann constraint

G1 = Sv

u
D = o

j=1

N

¹ l j = S kp,ql
− kq,ql

D , s4.2d

we then obtain

w = Su

v
D = S− kq,ql

kp,ql
D ; hsp,qd. s4.3d

From the constraints4.3d, the equations4.1d can further be nonlinearized into the following
finite-dimensional Hamiltonian system:

px = −
1

2
∧ p −

1

2
kq,qlp − kp,qlq = −

]H

]q
,

qx = p +
1

2
∧ q +

1

2
kq,qlq =

]H

]p
, s4.4d

whose Hamiltonian functionH is given by

H = 1
2kp,pl + 1

2k∧p,ql + 1
2kq,qlkp,ql.

In the following, we proceed to show that the Hamilton systems4.4d is completely integrable
in the Liouville sense. The Poisson bracket of two functions in symplectic spacesR2N,dp∧dqd is
defined as

sF,Gd = o
j=1

N S ]F

]qj

]G

]pj
−

]F

]pj

]G

]qj
D =K ]F

]q
,
]G

]p
L −K ]F

]p
,
]G

]q
L ,

which is skew-symmetric, bilinear, and satisfies the Jacobi identity. In particular,F and G are
called involution if sF ,Gd=0.
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Consider a bilinear functionQlsp,qd=kslI − ∧ d−1p,ql such that

Gl = G0 + o
j=1

N
¹l j

l − l j
= S Qlsp,qd

1 − Qlsq,qd
D . s4.5d

From s3.4d and s4.5d, we have

Vl = VsGld = S− 1
2l − Qlsp,qd − kp,ql + Qlsp,pd

1 − Qlsq,qd 1
2l + Qlsp,qd

D .

Let Fl=detVl. Then, we have

Fl = − 1
4l2 − Qls∧p,qd + Qlsp,pd + kp,plQlsq,qd + UQlsp,pd Qlsp,qd

Qlsp,qd Qlsq,q,d
U

= −
1

4
l2 + o

m=0

`

Fml−m−1, s4.6d

where

F0 = 2H,

Fm = − k∧m+1p,pl + kp,qlk∧mq,qd + o
m=0

m−1 Uk∧ jp,pl k∧m−1−jp,ql
k∧ jp,ql k∧m−1−jq,ql

U .

By considering thatFl is a Hamiltonian in the symplectic spacesR2N,dp∧dqd, the canonical
equations of theFl-flow can be computed as

d

dtl
Spk

qk
D = I ¹ Fl = S− ]Fl/]qk

]Fl/]pk
D = Wsl,lkdSpk

qk
D ,

where

Wsl,lkd =
2

l − lk
Vl + s1 − Qlsp,qddS1 0

0 − 1
D .

Lemma 4.1:The Lax matrixVm satisfies the Lax equations4.7d alone thetl-flow:

dVm

dtl

= fWsl,md,Vmg s4.7d

and

sFm,Fld = 0, ∀ l,m P C, s4.8d

sFj,Fkd = 0, ∀ j ,k = 0,1,… . s4.9d

Proof: Notice that

Qls∧j,hd = lQls∧j,hd − kj,hl,

ksmI − ∧ d−1slI − ∧ d−1j,hl =
1

m − l
sQlsj,hd − Qmsj,hdd,

a direct calculation shows thats4.7d holds. From the Lax equations4.7d we have
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sFm,Fld = o
j=1

N S ]Fm

]qj

]Fl

]pj
−

]Fm

]pj

]Fl

]qj
D = o

j=1

N S ]Fm

]qj

dqj

dtl

+
]Fm

]pj

dpj

dtl
D

=
dFm

dtl

=
d

dtl

sdetVmd =
d

dtl

s− 1
2trVm

2d = − trSVm

dVm

dtl
D

=− tr Vm trfWsl,md,Vmg = 0.

Substitutings4.6d into s4.8d and using the coefficients ofl andm, we then obtains4.9d.
We conclude the above results in the following theorem.
Theorem 4.1: The finite dimensional Hamiltonian system defined bys4.4d is completely

integrable in Liouville sense in the symplectic spacesR2N,dp∧dqd.
Theorem 4.2:Let sp,qd be a solution of the Hamiltonian systems4.4d. Then,u andv defined

by s4.3d satisfy the following stationary DLW equation

XN + c1XN−2 + ¯ + cN−1X0 = 0 s4.10d

with suitably chosen constantsc1,… ,cN−1.
Proof: Operating withsJ−1Kdk−1 upon the expression ofs4.2d, we get

Gk + b1Gk−2 + ¯ + bk−1G0 + bkG−1 = o
j=1

N

l j
k ¹ l j , s4.11d

whereb1,… ,bk are arbitrary constants,G−1=s0,0dT, andJ−1KG−1=G0.
Consider the polynomial

psld = p
j=1

N

sl − l jd = lN + p1lN−1 + ¯ + pN.

Applying the operatorJok=1
N pN−k on s4.11d, we obtains4.10d, wherec1,… ,cN depend onb1,… ,bk

andl1,… ,lN.
Introduce the generating functionhgkj,

gl = G0 + o
k=0

`

Gkl
−k, s4.12d

which satisfies

sK − lJdgl = 0,

we have

Vxsgld − fU,Vsgldg = U8ssK − lJdgld = 0.

This implies that

]

]x
sdetVsgldd = 0.

Hence, we have

detVsgld = − 1
4l2. s4.13d

Define a new set of integralshHkj, respectively, by

H0 = 1
2F0, H1 = − 1

2F1, H2 = − 1
2F2,
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Hm = − 1
2Fm + 2o

j=0

m−3

HjHm−j−3, mù 3.

Equations4.6d can then be transformed into the following equivalent form:

−
4

l2Fl = s1 − 4Hld2, s4.14d

where

Hl = o
m=1

`

Hm−1l
−m−1.

The involutivity of hHkj is based on the equality

hHm,Hlj =
1

16ÎFlFm

hFm,Flj = 0.

By using s4.5d and s4.11d, we have

Gl = G0 + o
k=0

`

l−k−1o
j=1

N

l j
k ¹ l j ,

=G0 + o
k=0

`

c−k−1sGk + c1Gk−2 + ¯ + ck−1G0 + ckG−1,

=clgl + o
k=0

`

l−k−1ckG−1,

where

cl = 1 +o
k=0

`

ck+2l
−k−2. s4.15d

Using s4.6d and s4.14d again, we have

Vl = VSclgl + o
k=0

`

l−k−1ckG−1D = Vsclgld.

Therefore, we have

Fl = detVl = − 1
4cl

2gl
2. s4.16d

From s4.14d and s4.16d, we obtain

cl = 1 − 4Hl.

Denote the variables ofHl flow andHk flow by tl and tk, respectively. Applying the Leibniz
rule of the Poisson bracket, we obtain

1

2l2hc,Flj = s1 − 4Hldhc,Hlj,

for any smooth functionc. Thus,
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d

dtl

=
1

2l2s1 − 4Hld
d

dtl

=
1

2l2cl

d

dtl

. s4.17d

For w=su,vdT=hsp,qd, we have

dw

dtl

=1 − 2Kq,
dq

dtl
L

Kp,
dq

dtl
L +K dp

dtl

,qL2 = 2JGl,

dw

dtl

=
1

2l2cl

dw

dtl

=
1

l2cl

JGl =
1

l2Jgl

=o
k=0

`

JGKl−k−3 = o
k=0

`

JGKl−k−3.

Finally, we state the above result in the following theorem.
Theorem 4.3: Let spsx,tkd ,qsx,tkdd be a compatible solution of theh0 and Hk flow. Then,

wsx,tKd=hsp,qd solves thekth DLW equation

wt = Xkswd.

V. ALGEBRO-GEOMETRIC SOLUTIONS

Based on results presented in Secs. III and IV, we give the construction of the algebro-
geometric solutions for the hierarchys2.7d in the following lemmas and theorem.

Lemma 5.1:The solutionsu andv for the DLW hierarchys2.7d can be expressed in the form

u = o
k=1

N

slk − nkd, ]x ln v = o
k=1

N

smk − nkd, s5.1d

wheremk,nk are called the elliptic coordinates of the finite-dimensional Hamiltonian systems4.3d.
Proof: We expressFl in the form

Fl = − Vl
112

− Vl
12Vl

21 = −
1

4
l2 + o

k=1

N
Ek

l − lk
,

where

Ek = − lkpkqk + pk
2 + kp,qlqk

2 + o
j=1,jÞk

N
spjqk − pkqjd2

l j − lk
.

Let

Fl = −
bsld
4asld

= −
Rsld

4a2sld
, s5.2d
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Vl
12 = − kp,ql + Qlsp,pd = − kp,ql

msld
asld

,

Vl
21 = 1 −Qlsq,qd =

nsld
asld

, s5.3d

where

asld = p
k=1

N

sl − lkd, bsld = p
k=1

N+2

sl − lN+kd,

msld = p
k=1

N

sl − mkd, nsld = p
k=1

N

sl − nkd,

Rsld = asldbsld = p
k=1

2N+2

sl − lkd.

Comparing the coefficients oflN−1 in s5.2d and s5.3d gives

kq,ql = − o
k=1

N

slk − nkd,
kp,pl
kp,ql

= o
k=1

N

smk − lkd. s5.4d

By using s4.2d and s5.4d, we then obtains5.1d.
From the Lax equations4.7d, we have

dVm
12

dtl

= 2sW11V12 − W12V11d,

dVm
21

dtl

= 2sW21V11 − W11V21d. s5.5d

Taking l=mk,nk in s5.2d and s5.3d, we get

Vmk

11 =
ÎRsmkd
2asmkd

, Vmk

11 =
ÎRsnkd
2asnkd

.

Hence, we have

1

2ÎRsmkd
dmk

dtl

=
msld

asldsl − mkdm8smkd
,

1

2ÎRsnkd
dnk

dtl

= −
nsld

asldsl − nkdn8snkd
.

By using the polynomials interpolation formula, we have

o
k=1

N
mk

N−j

2ÎRsmkd
dmk

dtl

=
lN−j

asld
, o

k=1

N
mk

N−j

2ÎRsnkd
dnk

dtl

= −
lN−j

asld
. s5.6d

Define the hyperelliptic curve by
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G:j2 − 4Rsld = 0, s5.7d

with genusg=N and the usual holomorphic differentials by

ṽ j =
lN−j dl

2ÎRsld
, j = 1,2,…,N. s5.8d

DenotePsmkd=sl ,j=2ÎRslddPG. Let P0PG be fixed. Define the quasi-Abel–Jacobi coordinates
by

f̃ j = o
k=1

N E
P0

Psmkd

ṽ j, c̃ j = o
k=1

N E
P0

Psnkd

ṽ j, j = 1,2,…,N. s5.9d

Then,s5.6d can be represented in the form

df̃ j

dtl

=
lN−j

asld
,

dc̃ j

dtl

= −
lN−j

asld
.

Let a1,b1,… ,aN,bN be the canonical basis of cycles on theG and

C = sAjkdN3N
−1 , Ajk =E

ak

ṽ j .

Define the normalized holomorphic differential by

vs = o
j=1

N

Csjṽ j, v = sv1,…,vNdT = Cṽ.

Then, we have

E
ak

vs = dsk, E
bk

vs = Bsk,

where the matrixB=sBskd is symmetric with positive-definite imaginary part. This is used to
define the Riemann theta function ofG as

uszd = o
zPZN

expspikBz,zl + 2pikz,zld, z P CN.

The Abel mapAsPd and the Abel–Jacobi coordinate are defined as

AsPd =E
P0

P

v, Aso nkPkd = o nkAsPkd,

f = ASo
k=1

N

PsmkdD = o
k=1

N E
P0

Psmkd

v = Cf̃,

c = ASo
k=1

N

PsnkdD = o
k=1

N E
P0

Psnkd

v = Cc̃.

Let Sk=l1
k+¯ +l2N+2

k , andR̃sl−1d=p j=1
2N+2s1=l jl

−1d. The coefficients in
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1

ÎR̃sl−1d
= o

k=1

`

Lkl
−k

are then given by

L0 = 1, L1 =
1

2
S1, Lk =

1

2kSSk + o
i+j=k,i,jù1

SiL jD .

From s5.2d, we obtain

ÎRsld = lasldcl,

and the lemma is proved.
Lemma 5.2:Let Ck be thekth column vector of the matrixC. Under the Abel–Jacobi coordi-

nate system, we have straightened out the flows to

df

dtl

= o
k=1

`

Vk−1l
−k−1,

dc

dtl

= − o
k=1

`

Vk−1l
−k−1, s5.10d

df

dtk
= Vk−1,

dc

dtk
= − Vk−1, s5.11d

where

V0 = 1
2L0C1, V1 = 1

2sL1C1 + L0C2d,

Vk = 1
2sLkC1 + ¯ + L0Ck+1d, k ø N − 1,

Vk = 1
2sLkC1 + ¯ + Lk−N+1CNd, k ù N − 1.

Proof: Notice that

df

dtl

=
1

2l2cl

df

dtl

=
1

2l2cl

C
df̃

dtl

=
lN−1

2ÎRsld
sC1l−1 + ¯ + ¯ CNl−Nd

=
1

2l2ÎR̃sl−1d
sC1l−1 + ¯ + ¯Nl−Nd

=
1

2o
k=0

`

Lkl
−k−2o

j=1

N

Cjl
−j = o

k=0

`

Vkl
−k−3.

Similarly, we can obtain the second formula ofs5.10d and compare the coefficients ofl−k−1 in
s5.10d to obtains5.11d.

From s5.11d, we get

f = f0 + o
k=1

`

Vk−1tk, c = c0 − o
k=1

`

Vk−1tk.

Hence, the evolution picture of the 1+1 flow is given as
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f = f0 + V0x + V1t, c = c0 − V0x − V1t. s5.12d

Since degR=2N+2 onG, there are two infinite points̀1 and`2 which are not branch points
of G. From Riemann theorem, there exists two constantsM1,M2PCN such thatusAsPd−f
−M1d, usAsPd−c−M2d have exactlyn zeroes atm1,… ,mN andn1,… ,nN, respectively. That is,

o
j=1

N

m j = IsGd − o
j=1

2

Resl=` j
ld ln usAsPd − f − M1d, s5.13d

o
j=1

N

n j = IsGd − o
j=1

2

Resl=` j
ld ln usAsPd − f − M1d, s5.14d

with the constant

IsGd = o
j=1

N E
aj

lv j .

For the samel, there are two points on the different sheets of the Riemann surfaceG,

P+sld = sl,ÎRsldd, P+sld = sl,− ÎRsldd.

Under the local coordinatez=l−1 at infinity, the hyperelliptic curveG :j2−4Rsld=0 in the neigh-

borhood of infinity is expressed asj̃2−4R̃szd=0 with j̃=zN+1j and sz,2s−1ds−1ÎRszdduz=0

=s0,2s−1ds−1d, s=1, 2. Thus, we have

v = Cṽ = sC1l−1 + ¯ + CNl−Nd
lN−1dl

2ÎRsld

= sC1l−1 + ¯ + CNl−Nd
dl

2l2ÎR̃sl−1d

=
1

2
s− 1ds−1o

j=0

`

Vkz
k dz

and

AsPsz−1dd =E
P0

P

v = − È
s

P0

v + È
s

P

v = − ps +
1

2
s− ds−1o

k=0

`
1

k + 1
Vkz

k+1.

Since the theta function is an even function, we have

usAsPsz−1d − f − M1d = usf + M1 + hsd +
1

2
zs− 1ds−1 ]

]x
usf + M1 + hsd + osz2d. s5.15d

From s5.13d and s5.15d, we obtain

o
j=1

N

m j = IsGd −
1

2
s− 1ds−1 ]

]x
usf + M1 + hsd

=IsGd +
1

2
]x ln

usf + M1 + h2d
usf + M1 + h1d

. s5.16d

Simiarly, we have
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o
j=1

N

m j = IsGd +
1

2
]x ln

usc + M2 + p1d
usc + M2 + p2d

. s5.17d

Substitutings5.16d ands5.17d into s5.1d, we then obtain the following algebro-geometric solution
for the DLW equation

u = o
k=1

N

lk − IsGd −
1

2
]x ln

usV0x + V1t + a1d
usV0x + V1t + a2d

,

v2 =
usV0x + V1t + a2dusV0x + V1t + b2d
usV0x + V1t + a1dusV0x + V1t + b1d

v2s0,td,

where

al = f0 + M1 + pl, bl = − c0 − M2 − pl, l = 1,2.

VI. CONCLUSION

Spectral problem usually provides many important integrable properties related to nonlinear
equations such as Lax pair,r-matrix, Hamiltonian structure, Darboux transformation, and algebro-
geometric solution. In this paper we investigate a spectral problem associated with the DLW
equation and derive a hierarchy of nonlinear evolution equations related to the DLW equation by
using an iterated algebraic method. The Hamiltonian structures for the DLW hierarchy are estab-
lished by using trace identity. These two methods can be extended to other kinds of hierarchies. In
constructing the commutator representation, the parameterl is found to be easier to be computed
than the operatorL. We thus provide a transformation to change the operatorL to l in order to
obtain the Lax representation for the DLW hierarchy. Through nonlinearization technique, a finite
dimensional Hamiltonian system is obtained in an explicit form. The Abel–Jacobi coordinates are
introduced from which the algebro-geometric solutions for the DLW equation can be derived by
resorting to the Riemann theta function. The results given in this paper can be applied to many
interesting problems such as higher order constrained flow andr-matrix structure.
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We outline a unified approach to geometrization of Lagrange mechanics, Finsler
geometry and geometric methods of constructing exact solutions with generic off-
diagonal terms and nonholonomic variables in gravity theories. Such geometries
with induced almost symplectic structure are modeled on nonholonomic manifolds
provided with nonintegrable distributions defining nonlinear connections. We intro-
duce the concept of Lagrange–Fedosov spaces and Fedosov nonholonomic mani-
folds provided with almost symplectic connection adapted to the nonlinear connec-
tion structure. We investigate the main properties of generalized Fedosov
nonholonomic manifolds and analyze exact solutions defining almost symplectic
Einstein spaces. ©2005 American Institute of Physics.fDOI: 10.1063/1.1855402g

I. INTRODUCTION

The geometry of Fedosov manifolds is a natural generalization of Kähler geometry defining a
procedure of canonical deformation quantization.1–5 By definition, a Fedosov manifold is given by
a triplesM ,u ,Gd whereM is aC`-manifold enabled with symplectic structureu sa nondegenerated
closed exterior two-formd and a symplectic connection structureG si.e., a torsionless linear con-
nection parallelizing the symplectic formd. If a Lagrange fundamental functionL : sx,yd[TM
→R is defined onM sfor simplicity, in this work we shall consider only regular Lagrangians;
sx,yd denote a set of local coordinates on the tangent bundleTM with x[Md, there is a natural
almost complex structure adapted to the canonical nonlinear connectionsin brief, N-connectiond
induced byLsx,yd.6–8 Nonlinear connections can also be naturally related to generic off-diagonal
metrics and nonholonomic moving frames inssuperd gravity and string theories.9–13So, if we want
to apply the methods of symplectic geometrysand possible generalizations for Poisson
manifolds14d to various types of Lagrange–Hamilton, and related Finsler–Cartan spaces, we have
to consider spaces enabled with N-connection structure.

In this work, we study the geometry of almost symplectic connectionssin general, they are not
torsion-free but can be symmetrizedd which are distinguished by a N-connection structure and
preserve an almost symplectic form, for instance, induced by a regular Lagrangian or off-diagonal
metric structure. This is related to almost symplectic manifoldsssee, for instance, Refs. 15–19d
but, in our case, the manifolds are nonholonomic ones.

We shall define and analyze the curvature tensor for such almost symplectic connections and
related Einstein equations with nonholonomic variables. For nonholonomic manifolds, i.e., mani-
folds with nonintegrable distributionssin our case, with a such distribution defined by a
N-connectiond, this is not a trivial task. The problem together with a proposal when the Riemann
tensor is interpreted as a modification of the Spencer cohomology and related to solutions of
partial differential equations, as well to superspaces, are analyzed in Refs. 20 and 21.
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The geometry of nonholonomic manifolds has a long time historical perspective: For instance,
in Ref. 22 it is stated that it is probably impossible to construct an analog of the Riemannian tensor
for the general nonholonomic manifold. In two more recent reviewssRefs. 23 and 24d, it is
emphasized that in the past there were proposed well-defined Riemannian tensors for a number of
spaces provided with nonholonomic distributions, like Finsler and Lagrange spaces and various
types of their higher order generalizations, i.e., for nonholonomic manifolds possessing corre-
sponding N-connection structures. As some examples of former such investigations, we cite Refs.
25–29.

Essentially, the Fedosov type nonholonomic geometry to be elaborated in this work is based
on the notion of N-connection and considers a Whitney-like splitting of the tangent bundle to a
manifold into horizontal and vertical subspacesssee the discussion and a bibliography for recent
developments and applications in Refs. 30–32d. Here we emphasize that the geometrical aspects of
the N-connection formalism have been studied since the first papers of Cartan33 and
Kawaguchi34–36 swho used it in component form for Finsler geometryd, then one should mention
the so-called Ehresmann connection37 and the work of Barthel38 where the global definition of
N-connection was given. The monographssRefs. 6–8d consider the N-connection formalism
elaborated and applied to the geometry of generalized Finsler–Lagrange and Cartan–Hamilton
spaces, see also the approaches in Refs. 39–42.

The works related to nonholonomic geometry and N-connections have appeared many times
in a rather dispersive way when different schools of authors from geometry, mechanics, and
physics have worked many times entirely independent of each other. We outline some recent
results with explicit applications in modern mathematical physics and particle and string theories:
N-connection structures were modeled on Clifford and spinor bundles,43,44on superbundles and in
some directions ofssuperd string theory,45,46as well as in noncommutative geometry and gravity.47

The idea to apply the N-connections formalism as a new geometric method of constructing exact
solutions in gravity theories was suggested in Refs. 9 and 10 and developed in a number of works,
see, for instance, Refs. 11–13d.

We begin in Sec. II with an introduction into the N-connection geometry for arbitrary mani-
folds with tangent bundles admitting splitting into conventional horizontal and vertical subspaces.
We illustrate how regular Lagrangians induce natural semispray, N-connection, metric, and almost
complex structures on tangent bundles and discuss the relation between Lagrange and Finsler
geometry and their generalizations. Then we prove that N-connection structures and corresponding
almost complex geometries may be modeled by generic off-diagonal metrics and nonholonomic
frames in gravity theories.

Section III is devoted to the theory of linear connections on N-anholonomic manifoldssi.e., on
manifolds with nonholonomic structure defined by N-connectionsd. We demonstrate how the linear
connections may be adapted to the N-connection splitting of the manifolds and analyze the con-
ditions when such distinguished connections may be naturally related to almost complex struc-
tures. This has greatphilosophicalinterest, because several authors have defined different notions
of general connections, looking for associated parallel transport and covariant differential operator
satisfying, if possible, the properties of those of a linear connectionse.g., Ehresmann connections
on bundles, nonhomogeneous connections of Grifone,48 quasi- and pseudo-connectionsssee Ref.
49, etc.d, but it always implies losing properties or demanding more assumptions than in the case
of a N-connection.fFor example, nonhomogeneous connections of Grifone define a covariant
derivativeDXY, which in general does not define a vector field on the manifoldssee p. 302 of Ref.
48d and which does not satisfyDXsfYd= fDXY+sXfdY ssee p. 305 of Ref. 48d. In the case of
nonlinear connections used in the book of Yano and IshiharasRef. 50, p. 209d it is assumed that
horizontal distributions are invariant under dilatationsssee also Ref. 51d, etc.g In the present paper
we shall see that one can define a canonical linear connection adapted to a given N-connection.
This shall allow us to avoid extra constructions and additional restrictions.

In Sec. IV, we define the Fedosov N-anholonomic and Lagrange–Fedosov manifolds as certain
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generalizations of the Fedosov spaces to nonholonomic configurations. We construct in explict
form the curvature tensor of such spaces and define the Einstein equations for N-adapted linear
connection and metric structures.

In Sec. V, we analyze the main conditions when vacuum gravitational configurations with
N-anholonomic structures can be defined as exact solutions of the Einstein equations. We prove
that for a very general five-dimensional ansatz for metric coefficients depending on two, three, and
four variables the system of field equations is completely integrable. We illustrate that the method
can be reduced to the case of four-dimensional spaces, which gives us the possibility to generate
conformal almost complex gravitational metrics.

We shall use both physical and mathematical languages and both coordinate and intrinsic
notations, when possible.

II. NONLINEAR CONNECTIONS AND FEDOSOV SPACES

In the following, we recall some results on nonlinear connections and almost symplectic
structures, which in certain particular cases, are induced by regular Lagrangians, Finsler funda-
mental functions, or by generic off-diagonal metrics in gravity theories. From now on, all the
manifoldssin general, nonholonomic onesd—in the literature, the equivalent term, anholonomic, is
also used—and geometric objects are supposed to beC`.

A. Nonlinear connection geometry

Let V be ansn+md-dimensional manifold. It is supposed that in any pointu[V there is a
local splitting Vu=Mu % Vu, whereM is an n-dimensional subspace andV is an m-dimensional
subspace.sOne has this local decomposition whenV →M is a surjective submersion. A particular
case is that of a fiber bundle, but we can obtain the results in the general case.d We shall split the
local coordinatessin general, abstract ones both for holonomic and nonholonomic variablesd in the
form u=sx,yd, or ua=sxi ,yad, wherei , j ,k,…=1,2,… ,n anda,b,c,…=n+1,n+2,… ,n+m. We
denote byp{ :TV →TM the differential of a mapp :Vn+m→Vn defined by fiber preserving mor-
phisms of the tangent bundlesTV andTM. The kernel ofp{ is just the vertical subspacevV with
a related inclusion mappingi :vV →TV.

Definition 1: A nonlinear connection (N-connection)N on a manifoldV is defined by the
splitting on the left of an exact sequence

0 → vV→
i

TV → TV/vV → 0,

i.e., by a morphism of submanifoldsN :TV →vV such thatN + i is the unity invV.
In an equivalent form, we can say that a N-connection is defined by a splitting to subspaces

with a Whitney sum of conventional horizontalshd subspace,shVd, and verticalsvd subspace,
svVd,

TV = hV % vV , s1d

wherehV is isomorphic toM. Moreover, one can say that a N-connection is defined by a tensor
field of types1,1d P=H −N, whereH srespectively,Nd denotes the projection over the horizontal
srespectively, verticald subspace. Observe thatP+P= I , i.e., P is an almost product structure,
horizontalsrespectively, verticald subspace being the eigenspace associated to the eigenvalue11
srespectively,21d.

Locally, a N-connection is defined by its coefficientsNi
asud,

N = Ni
asuddxi

^
]

]ya .

The well-known class of linear connections consists on a particular subclass with the coefficients
being linear onya, i.e., Ni

asud=Gbj
a sxdyb.
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Any N-connectionN=Ni
asud may be characterized by an associated framesvielbeind structure

en=sei ,ead, where

ei =
]

]xi − Ni
asud

]

]ya, ea =
]

]ya , s2d

and the dual framescoframed structureqm=sqi ,qad, where

qi = dxi, qa = dya + Ni
asuddxi . s3d

These vielbeins are called N-adapted frames. In order to preserve a relation with the previous
denotations,8–11,43,44,46we note thaten=sei ,ead and qm=sqi ,qad are, respectively, the formerdn

=d /]un=sdi ,]ad and dm=dum=sdi ,dad which emphasize that operatorss2d and s3d define, corre-
spondingly, certain “N-elongated” partial derivatives and differentials which are more convenient
for calculations on such nonholonomic manifolds.

Any N-connection also defines a N-connection curvature

V = 1
2Vi j

adi ∧ dj
^ ]a,

with N-connection curvature coefficients

Vi j
a = df jNfig

a = d jNi
a − diNj

a =
]Ni

a

]xj −
]Nj

a

]xi + Ni
b]Nj

a

]yb − Nj
b]Ni

a

]yb . s4d

The vielbeinss3d satisfy the nonholonomysequivalently, anholonomyd relations

fea,ebg = eaeb − ebea = Wab
g eg s5d

with santisymmetricd nontrivial anholonomy coefficientsWia
b =]aNi

b andWji
a =Vi j

a.
Definition 2: A manifoldV is called N-anholonomic if on the tangent space TV it is defined as

a local (nonintegrable) distribution (1), i.e., TV is enabled with a N-connection and related
nonholonomic vielbein structure (5).

We note that in this work we use boldfaced symbols for the spaces and geometric objects
provided/adapted to a N-connection structure. For instance, a vector fieldX [TV is expressed as
X =sX,∨Xd, or X =Xaea=Xiei +Xaea, whereX=Xiei and ∨X=Xaea state, respectively, the irreduc-
ible sadapted to the N-connection structured horizontal shd and verticalsvd components of the
vector swhich following Ref. 6 and 7 are called distinguished vectors, in brief, d-vectord. In a
similar fashion, the geometric objects onV like tensors, spinors, connections, etc., are called,
respectively, d-tensors, d-spinors, d-connections if they are adapted to the N-connection splitting.

In secs. II B and II C we show how certain types of N-connection geometries can be naturally
derived from Lagrange–Finsler geometry and in gravity theories.

B. N-connections and Lagrangians

We outline the main results on N-connections and almost symplectic structures induced by
regular Lagrangians.6–8 In this case the N-anholonomic manifoldV is to be modeled on the
tangent bundlesTM, p, Md, where M is an n-dimensional base manifold,p is a surjective

projection, andTM is the total space. One denotes byTM̃=TM \ h0j where h0j means the null
section of mapp.

A differentiable LagrangianLsx,yd, i.e., a fundamental Lagrange function, is defined by a map

L : sx,yd[TM→Lsx,yd[R of classC` on TM̃ and continuous on the null section 0:M→TM of
p. A regular Lagrangian is with nondegenerated Hessian,

sLdgijsx,yd =
1

2

]2Lsx,yd
]yi ] yj s6d
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when rank ugij u=n on TM̃.
Definition 3: A Lagrange space is a pair Ln=fM ,Lsx,ydg with sLdgijsx,yd being of constant

signature over TM̃.
The notion of Lagrange space was introduced by Kern52 and elaborated in detail by Miron’s

school on Finsler and Lagrange geometry, see Refs. 6 and 7, as a natural extension of Finsler
geometry33,53–59ssee also Refs. 45 and 46 on Lagrange–Finsler supergeometryd.

By straightforward calculations, there were proved the following results:

1. The Euler–Lagrange equations,

d

dt
S ]L

]yiD −
]L

]xi = 0,

where yi =dxi /dt for xistd depending on parametert, are equivalent to the “nonlinear”
geodesic equations

d2xi

dt2 + 2GiSxk,
dxj

dt
D = 0

defining paths of a canonical semispray

S= yi ]

]xi − 2Gisx,yd
]

]yi ,

where

2Gisx,yd =
1

2
sLdgijS ]2L

]yi ] xkyk −
]L

]xiD
with sLdgij being inverse tos6d.

2. There exists onTM̃ a canonical N-connection

sLdNj
i =

]Gisx,yd
]yi s7d

defined by the fundamental Lagrange functionLsx,yd, which prescribes nonholonomic frame
structures of typess2d ands3d, sLden=sei ,

∨ekd andsLdqm=sqi ,∨qkd. fOn the tangent bundle the
indices related to the base space run the same values as those related to fibers: we can use the
same symbols but have to distinguish like∨ek certain irreduciblev-components with respect
to, sor ford N-adapted bases and cobases.g

3. The canonical N-connections7d defining∨ei, induces naturally an almost complex structure

F :xsTM̃d→xsTM̃d, wherexsTM̃d denotes the module of vector fields onTM̃,

Fseid = ∨ei, Fs∨eid = − ei ,

when

F = ∨ei ^ qi − ei ^
∨qi s8d

satisfies the conditionFcF=−I , i.e., Fa
bFb

g=−dg
a, wheredg

a is the Kronecker symbol and
“ c” denotes the interior product.

4. OnTM̃, there is a canonical metric structure

sLdg = sLdgijsx,ydqi
^ q j + sLdgijsx,yd∨qi

^
∨q j s9d

constructed as a Sasaki type lift fromM.

One holdssRefs. 6–8d the following
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Theorem 1: The spacesTM̃ ,F , sLdgd with almost complex formF (8) defined bysLdNj
i , see (7),

and canonical metric structuresLdg (9) is an almost Kähler space with almost symplectic structure

sLdu = sLduabsx,ydqa ∧ qb = sLdgijsx,yd∨qi ∧ q j . s10d

Proof: It is evident if we define

sLdusX,Yd 7 sLdgsFX,Yd

and putX =ea andY =eb. j

We conclude that any regular Lagrange mechanics can be geometrized as an almost Kähler
space with N-connection distribution. In such a Lagrange–Kähler nonholonomic manifold, the
fundamental geometric structuresssemispray, N-connection, almost complex structure, and ca-

nonical metric onTM̃d are defined by the fundamental Lagrange functionLsx,yd.
Remark 1: For applications in optics of nonhomogeneous media and gravity (see, for in-

stance, Refs. 7, 9, 11, and 12) one considers metric forms of type gij ,elsx,ydsLdgijsx,yd which
cannot be derived from a mechanical Lagrangian. In the so-called generalized Lagrange geometry
one considers Sasaki-type metrics (9) with certain general coefficients both for the metric and
N-connection, i.e., whensLdgij →gijsx,yd, and sLdNj

i →Nj
i sx,yd. [In this case, we can similarly

define an almost KählerN-anholonomic spacesTM̃ ,F ,ud with the geometric structures induced
naturally by theN-connection.]

Remark 2: Finsler geometry with the fundamental Finsler function Fsx,yd, being homoge-
neous of type Fsx,lyd=lFsx,yd, for nonzerol[R, may be considered as a particular case of
Lagrange geometry when L=F2. [In another turn, there is a proof59 that any Lagrange fundamen-
tal function L can be modeled as a singular case in a certain class of Finsler geometries of extra
dimension.] We shall apply the methods of Finsler geometry and its almost Kähler models in this
work. Nevertheless, because the generalized Lagrange spaces are very general ones enabled with
N-anholonomic structure inducing a corresponding almost symplectic structure we shall empha-
size just such geometric configurations.

Remark 3: It is also proved that both generalized Lagrange and Finsler geometries can be
modeled on Riemannian–Cartan N-anholonomic manifolds13,30–32 if off-diagonal metrics and
N-connections are introduced into consideration.

Now we shall demonstrate how N-anholonomic configurations can be defined in gravity
theories. In this case, it is convenient to work on a general manifoldV ,dim V =n+m with global

splitting, instead of the tangent bundleTM̃.

C. N-connections in gravity

Let us consider a metric structure onV with the coefficients defined with respect to a local
coordinate basis dua=sdxi ,dyad,

g = gIabsuddua
^ dub

with

gIab = Fgij + Ni
aNj

bhab Nj
ehae

Ni
ehbe hab

G . s11d

A metric, for instance, parametrized in the forms11d is generic off-diagonal if it cannot be
diagonalized by any coordinate transforms. Performing a frame transform with the coefficients

ea
aIsud = Fei

iIsud Ni
bsudeb

aIsud
0 ea

aIsud
G , s12d
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ebI
bsud = FeiI

isud − Nk
bsudeiI

ksud

0 eaI
asud G , s13d

we write equivalently the metric in the form

g = gabsudqa
^ qb = gijsudqi

^ q j + habsud∨qa
^

∨qb, s14d

wheregij 7gsei ,ejd andhab7gsea,ebd and

ea = ea
aI]aI andqb = ebI

bdubI .

are vielbeins of typess2d and s3d defined for arbitraryNi
bsud. We can consider a special class of

manifolds provided with a global splitting into conventional “horizontal” and “vertical” subspaces
s1d induced by the “off-diagonal” termsNi

bsud and prescribed type of nonholonomic frame struc-
ture.

If the manifoldV is spseudod Riemannian, there is a unique linear connectionsthe Levi-Civita
connectiond ¹, which is metric,¹g=0, and torsionless,¹T=0. Nevertheless, the connection¹ is
not adapted to the nonintegrable distribution induced byNi

bsud. In this case, it is more convenient
to work with more general classes of linear connections which are N-adapted but contain non-
trivial torsion coefficients because of nontrivial nonholonomy coefficientsWab

g s5d. sFor instance,
in order to construct exact solutions parametrized by generic off-diagonal metrics, or for investi-
gating nonholonomic frame structures in gravity models with nontrivial torsion.d

For a splitting of aspseudo-d Riemannian–Cartan space of dimensionsn+md funder certain
constraints, we can considerspseudo-d Riemannian configurationsg, the Lagrange and Finsler type
geometries were modeled by N-anholonomic structures as exact solutions of gravitational field
equations.9–13,31,32In this paper, we shall concentrate on N-anholonomic almost complex struc-
tures of vacuum gravity which can be naturally defined assn+nd configurations, in general,
embedded in certain spaces of dimensionsn+md, mùn.

III. CONNECTIONS ON ALMOST SYMPLECTIC N-ANHOLONOMIC MANIFOLDS

The geometric constructions can be adapted to the N-connection structure:
Definition 4: A distinguished connection (d-connection)D on a manifoldV is a linear con-

nection conserving under parallelism the Whitney sum (1) defining a general N-connection.
Equivalently, DP=0, P being the almost product structure defined by the N-connection.

The N-adapted componentsGbg
a of a d-connectionDa=sdacDd are defined by the equations

Dadb = Gab
g dg,

or

Gab
g sud = sDadbddg. s15d

In its turn, this defines a N-adapted splitting intoh- andv-covariant derivatives,D=D+∨D, where
Dk=sLjk

i ,Lbk
a d and ∨Dc=sCjk

i ,Cbc
a d are introduced as correspondingh- and v-parametrizations of

s15d,

Ljk
i = sDkejdqi, Lbk

a = sDkebdqa, Cjc
i = sDcejdqi, Cbc

a = sDcebdqa.

The componentsGab
g =sLjk

i ,Lbk
a ,Cjc

i ,Cbc
a d completely define a d-connectionD on a N-anholonomic

manifold V.
The simplest way to perform computations with d-connections is to use N-adapted differential

forms like Gb
a=Gbg

a qg with the coefficients defined with respect tos3d and s2d.
We shall say that a d-connectionD preserves an almost symplectic two-form, of Lagrange

type sLdu s10d sor any general one,ud defined from a generalized Lagrange geometry or
N-anholonomic gravity model, if
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Du = 0 s16d

or

ZsusX,Ydd = usDZX,Yd + usX,DZYd

for any d-vector fieldsX, Y, Z [TV.
Theorem 2: The torsionTa7Dqa=dqa+Gb

a∧qb of a d-connection has the irreducible h-, v-
components (d-torsions) with N-adapted coefficients

Tjk
i = Lf jkg

i , Tja
i = − Taj

i = Cja
i , Tji

a = V ji
a ,

Tbi
a = Tib

a =
]Ni

a

]yb − Lbi
a , Tbc

a = Cfbcg
a , s17d

where Lf jkg
i =Ljk

i −Lkj
i and so on. j

Proof: By a straightforward calculation we can verify the formulas.
Remark 4: The Levi-Civita linear connection¹=h¹Gbg

a j, with vanishing both torsion and
nonmetricity, is not adapted to the global splitting (1). In fact, if¹ was adapted, then¹P=0, P
being the almost product structure defined by the N-connection, and then, as¹ is torsionless, one
obtains by means of the Lemma 2.1.6 of Ref. 60 that the Nijenhuis tensor field NP vanishes, thus
proving that both vertical and horizontal distributions are involutive in the sense of Frobenius
theorem, which is not our case of anholonomic manifolds. Then, we must look for another con-
nection to study the geometry of these manifolds.

One holds:

Proposition 3: There is a preferred, canonical d-connection structure, D̂, on N-aholonomic
manifoldV constructed only from the metric and N-connection coefficientsfgij ,hab,Ni

ag and sat-

isfying the conditionsD̂g=0 and T̂jk
i =0 and T̂bc

a =0.
Proof: By straightforward calculations with respect to the N-adapted basess3d ands2d, we can

verify that the connection

Ĝbg
a = ¹Gbg

a + P̂bg
a s18d

with the deformation d-tensorfP̂bg
a is a tensor field of types1,2d—as is well known, the sum of a

linear connection and a tensor field of types1,2d is a new linear connectiong

P̂bg
a = SPjk

i = 0,Pbk
a =

]Nk
a

]yb ,Pjc
i = −

1

2
gikVkj

a hca,Pbc
a = 0D

satisfies the conditions of this Proposition. It should be noted that, in general, the componentsT̂ja
i ,

T̂ji
a, and T̂bi

a are not zero. This is an anholonomic framesor, equivalently, off-diagonal metricd
effect. j

With respect to the N-adapted frames, the coefficientsĜab
g =sL̂jk

i ,L̂bk
a ,Ĉjc

i ,Ĉbc
a d are computed:

L̂jk
i =

1

2
girSdgjr

]xk +
dgkr

]xj −
dgjk

]xr D ,

L̂bk
a =

]Nk
a

]yb +
1

2
hacSdhbc

]xk −
]Nk

d

]yb hdc −
]Nk

d

]yc hdbD ,

Ĉjc
i =

1

2
gik]gjk

]yc ,
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Ĉbc
a =

1

2
hadS ]hbd

]yc +
]hcd

]yb −
]hbc

]yd D . s19d

For the canonical d-connection there are satisfied the conditions of vanishing of torsion on the

h-subspace andv-subspace, i.e.,T̂jk
i =T̂bc

a =0. In more general cases, such components of torsion

are not zero, for instance, the metric d-connections of typeGab
g =sL̂jk

i + l jk
i sud ,L̂bk

a ,Ĉjc
i ,Ĉbc

a

+cbc
a sudd are also compatible with metrics14d and has nontrivialTjk

i and T̂bc
a .

Let us consider a special case with dimV =n+n, hab→gij andNi
a→Ni

j in s14d when a tangent

bundle structure is locally modeled onV. We denote such a space byṼ sn,nd. One holds:

Theorem 4: The canonical d-connectionD̂ (19) for a local modelling of a TM̃space onṼ sn,nd

is defined byĜab
g =sL̂jk

i ,Ĉjk
i d with

L̂jk
i =

1

2
girSdgjr

]xk +
dgkr

]xj −
dgjk

]xr D, Ĉjk
i =

1

2
girS ]gjr

]xk +
]gkr

]xj −
]gjk

]xr D . s20d

This d-connection is almost Hermitian, i.e., it is compatible with the almost Hermitian structure
sg,Fd, when

D̂u = 0 and D̂F = 0 s21d

for a two-formfin an intrinsic way,usX,Yd=gsFX,Ydg

u = uabsx,ydqa ∧ qb = gijsx,yd∨qi ∧ q j .

Proof: It is similar to that for the Theorem 1. j

On almost symplectic manifolds, usually there are considered symmetric linear connections.
In our case, we can always define a symmetric d-connection by taking the symmetric part[in
coordinate-free notation,SXY= 1

2sDXY+DYX+fX,Ygd] of Gab
g ,

Sab
g = 1

2sGab
g + Gba

g d, s22d

whereGab
g =sL̂jk

i + l jk
i sud ,Ĉjk

i +cjk
i sudd. On a N-anholonomic manifoldṼ sn,nd, an almost symplectic

form u is not closed, i.e.,duÞ0. But it may be closed under the action of N-adapted derivatives
s2d and differentialss3d when

du = dsuabsx,ydqa ∧ qbd = 0,

which means that

eguab + eaugb + ebuag = 0. s23d

The conditions16d written in N-adapted bases results in

eguab = Gagb − Gbga

for Gagb7uatGgb
t .

Definition 5: An almost symplectic two-formu is N-symplectic if it satisfies the conditions
(23).

There is a relation between the set of all d-connectionsD for which Du=0 for any givenu and

N and the set of all symmetric connections onṼ sn,nd. By straightforward calculations we can verify
that

Gagb = 1
2seaugb − eguab − ebuagd + sSagb − Sgba + Sbgad s24d

is inverse tos22d, which for almost symplecticuab satisfying the conditionss23d simplifies to
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Gagb = eaugb + sSagb − Sgba + Sbgad.

On holonomic manifolds with trivial N-connection, the formulass23d ands24d transform into
those from Ref. 3 withea→] /]ua. We may conclude that N-anholonomic transforms map sym-
plectic forms in almost symplectic ones but preserve the main symmetry properties and compat-
ibility with the linear connection structure if the computations are performed with respect to
N-adapted bases.

IV. CURVATURE OF N-SYMPLECTIC d-CONNECTIONS

Let V sor Ṽ sn,ndd be an N-anholonomic manifold provided with a metric d-connectionGg
a.

Definition 6: A Fedosov N-anholonomic manifold is defined by an almost symplectic
d-connection and almost complex structure induced by the N-connection.

Definition 7: A Lagrange–Fedosov manifold is a Fedosov N-anholonomic manifold with the
N-connection and almost complex structure defined by the fundamental Lagrange function, see
Theorem 1.

The curvature of a symplectic d-connectionD is defined by the usual formula

RsX,YdZ 7 DXDYZ − DYDXZ − DfX,XgZ .

Because on N-anholonomic spaces the “simplest” adapted to the N-connection induced almost
complex structures is defined by the canonical d-connection, it is convenient to use it as a sym-
plectic d-connection.

By straightforward calculations we prove:
Theorem 5: The curvatureRb

a7DGb
a=dGb

a−Gb
g ∧Gg

a of a d-connectionGg
a has the irreducible

h- v- components (d-curvatures) ofRbgd
a ,

Rhjk
i = ekLhj

i − ejLhk
i + Lhj

mLmk
i − Lhk

mLmj
i − Cha

i Vkj
a ,

Rbjk
a = ekLbj

a − ejLbk
a + Lbj

c Lck
a − Lbk

c Lcj
a − Cbc

a Vkj
c ,

Rjka
i = eaLjk

i − DkCja
i + Cjb

i Tka
b ,

Rbka
c = eaLbk

c − DkCba
c + Cbd

c Tka
c ,

Rjbc
i = ecCjb

i − ebCjc
i + Cjb

h Chc
i − Cjc

h Chb
i ,

Rbcd
a = edCbc

a − ecCbd
a + Cbc

e Ced
a − Cbd

e Cec
a . s25d

Remark 5: For an N-anholonomic manifoldṼ sn,nd provided with N-sympletic canonical

d-connectionĜgab=ugtĜab
t , see (20), the d-curvatures (25) reduces to three irreducible compo-

nents,

Rhjk
i = ekLhj

i − ejLhk
i + Lhj

mLmk
i − Lhk

mLmj
i − Cha

i Vkj
a ,

Rjka
i = eaLjk

i − DkCja
i + Cjb

i Tka
b ,

Rbcd
a = edCbc

a − ecCbd
a + Cbc

e Ced
a − Cbd

e Cec
a , s26d

where all indices i, j ,k… and a,b,… run the same values but label the components with respect
to different h- or v-frames.

The indices of the components of the curvature tensor are lowered as
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Rtbgd = utaRbgd
a .

For Lagrange–Fedosov manifolds, the two-formuta has the coefficients defined by the metric
structure and Lagrangian, sees10d. In this case we can apply the canonical d-connection and the
d-metric for definition of the curvature of symplectic d-connections.

Contracting, respectively, the components ofs25d and s26d we prove:
Corollary 6: The Ricci d-tensorRab7Rabt

t has the irreducible h- v-components

Rij 7 Rijk
k , Ria 7 − Rika

k , Rai 7 Raib
b , Rab 7 Rabc

c , s27d

for a general N-holonomic manifoldV, and

Rij 7 Rijk
k , Ria 7 − Rika

k , Rab 7 Rabc
c , s28d

for an N-anholonomic manifoldṼ sn,nd.
Corollary 7: The scalar curvature of a d-connection is

RQ 7 gabRab = gijRij + habRab, for V ;

= 2gijRij for Ṽ sn,nd.

Corollary 8: The Einstein d-tensor is computedGab=Rab− 1
2gabRQ .

In modern gravity theories, one considers more general linear connections generated by de-

formations of typeGbg
a =Ĝbg

a +Pbg
a . We can split all geometric objects into canonical and postca-

nonical pieces which results in N-adapted geometric constructions. For instance,

Rb
a = R̂b

a + DPb
a + Pg

a ∧ Pb
g s29d

for Pb
a=Pbg

a qg. This way, for almost complex geometries, the d-tensorss26d and s28d can be
redefined just for symmetrized d-connections compatible with the almost complex structure.

V. EINSTEIN FLAT N-ANHOLONOMIC MANIFOLDS

In terms of differential forms, the vacuum Einstein equations are written

habg ∧ R̂bg = 0, s30d

where, for the volume four-formh7 *1 with the Hodge operator “*,”ha7each, hab7ebcha,

habg7egchab ,… andR̂bg is the curvature two-form. The deformation of connections18d defines
a deformation of the curvature tensor of types29d but with respect to the curvature of the Levi-
Civita connection,¹Rbg. The gravitational field equationss30d transforms into

habg ∧ ¹Rbg + habg ∧ ¹Zbg = 0, s31d

where¹Zg
b= ¹Pg

b+Pa
b∧Pg

a.
A subclass of solutions of the gravitational field equations for the canonical d-connection

defines also solutions of the Einstein equations for the Levi-Civita connection if and only if

habg ∧ ¹Zbg = 0. s32d

This property is very important for constructing exact solutions in Einstein and string gravity,
parametrized by generic off-diagonal metrics and anholonomic frames with associated
N-connection structuressee reviews of results in Refs. 30–32d.
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A. The ansatz for metric

In this section we investigate a class of five-dimensional vacuum Einstein solutions with
nontrivial associated N-connection and generic off-diagonal metric. We analyze the conditions
when such solutions reduce to four dimensions and possess almost complex structure.

Let us consider a five-dimensional ansatz for the metrics14d and frames3d whenua=sxi ,y4

=v ,y5d; i =1, 2, 3 and the coefficients

gij = diagfg1 = ± Ãsxk,vd,Ãsxk,vdg2sx2,x3d,Ãsxk,vdg3sx2,x3dg,

hab = diagfÃsxk,vdh4sxk,vd,Ãsxk,vdh5sxk,vdg,

Ni
4 = wisxk,vd,Ni

5 = nisxk,vd s33d

are some functions of necessary smooth class. The partial derivative are briefly denoteda•

=]a/]x2, a8=]a/]x3, a* =]a/]v.
Theorem 9: The vacuum Einstein equations (30) for the canonical d-connection (18) con-

structed from data (33) are equivalent to the system of equations

g3
•• −

g2
• g3

•

2g2
−

sg3
• d2

2g3
+ g29 −

g28g38

2g3
−

sg28d
2

2g2
= 0, s34d

h5
** − h5

*slnuÎuh4h5uud* = 0, s35d

wib + ai = 0, s36d

ni
** + ni

* = 0, s37d

where

ai = ]ih5
* − h5

*]i lnuÎuh4h5uu, b = h5
** − h5

*flnuÎuh4h5uug* ,

g = 3h5
* /2h5 − h4

* /h4, s38d

h4
* Þ0 and h5

* Þ0 and the functions h4 and Ã must satisfy certain additional conditions

d̂ih4 = 0 and d̂iÃ = 0, s39d

for any zisxk,vd definingd̂i =]i −swi +zid]4+ni]5.
Proof: It is a straightforward calculation, see similar ones in Refs. 31, 9, and 11. j

We note that the conditionss39d are satisfied if

Ãq1/q2 = h4 s40d

for some nonzero integersq1 andq2 andzi defined from

]iÃ − swi + zidÃ* = 0. s41d

Remark 6: Under the conditions of the Theorem 9, we can also consider d-metrics with h5
*

=0 for such functions h4=h#sxi ,vd when

lim
h5

*→0

hh5
*flnuÎuh#h5uug*j → 0

and
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lim
h5

*→0

hh5
*]i lnuÎuh#h5uuj → 0.

In these cases, Eqs. (35) and (36) will be satisfied by any h#sxi ,vd and wisxi ,vd and we may take
ni

* =nf1gisxidh#sxi ,vd in order to satisfy (37).
Theorem 10: The system of gravitational field equations (30) for the ansatz (33) can be solved

in general form if there are given certain values of functions g2sx2,x3d for, inversely, g3sx2,x3dg,
h4sxi ,vd for, inversely, h5sxi ,vdg.

Proof: We outline the main steps of constructing exact solutions proving this Theorem, see
detailed computations presented in the Proof of Theorem 4.3 from Ref. 31.

• The general solution of Eq.s34d can be written in the form

l = gf0gexpfa2x̃
2sx2,x3d + a3x̃

3sx2,x3dg, s42d

weregf0g, a2, anda3 are some constants and the functionsx̃2,3sx2,x3d define any coordinate
transformsx2,3→ x̃2,3 for which the two-dimensional line element becomes conformally flat,
i.e.,

g2sx2,x3dsdx2d2 + g3sx2,x3dsdx3d2 → lsx2,x3dfsdx̃2d2 + esdx̃3d2g, s43d

wheree= ±1 for a corresponding signature. In coordinatesx̃2,3, Eq. s34d transforms into

lsl•• + l9d − l• − l8 = 0

or

c̈ + c9 = 0, s44d

for c=lnulu. There are three alternative possibilities to generate solutions ofs34d. For
instance, we can prescribe thatg2=g3 and get Eq.s44d for c=lnug2u=lnug3u. If we suppose
that g28=0, for a giveng2sx2d, we obtain froms34d

g3
•• −

g2
• g3

•

2g2
−

sg3
• d2

2g3
= 0,

which can be integrated exactly. Similarly, we can generate solutions for a prescribedg3sx3d
in

g29 −
g28g38

2g3
−

sg28d
2

2g2
= 0. s45d

We note that a transforms43d is always possible for two-dimensionals2Dd metrics and the
explicit form of solutions depends on chosen system of 2D coordinates and on the signature
e= ±1. In the simplest case, Eq.s34d is solved by arbitrary two functionsg2sx3d andg3sx2d.

• Equations35d relates two functionsh4sxi ,vd andh5sxi ,vd following two possibilities:

ad to compute

Îuh5u = h5f1gsxid + h5f2gsxidE Îuh4sxi,vdudv, h4
*sxi,vd Þ 0;

= h5f1gsxid + h5f2gsxidv, h4
*sxi,vd = 0, s46d

for some functionsh5f1,2gsxid stated by boundary conditions;
bd or, inversely, to computeh4 for a givenh5sxi ,vd, h5

* Þ0,
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Îuh4u = hf0gsxidsÎuh5sxi,vdud* , s47d

with hf0gsxid given by boundary conditions.

• The exact solutions ofs36d for bÞ0 are defined from an algebraic equation,wib+ai =0,
where the coefficientsb andai are computed as in formulass38d by using the solutions for
s34d and s35d. The general solution is

wk = ]k lnfÎuh4h5u/uh5
* ug/]v lnfÎuh4h5u/uh5

* ug, s48d

with ]v=] /]v and h5
* Þ0. If h5

* =0, or evenh5
* Þ0 but b=0, the coefficientswk could be

arbitrary functions onsxi ,vd. For the vacuum Einstein equations this is a degenerated case
imposing the compatibility conditionsb=ai =0, which are satisfied, for instance, if theh4
andh5 are related as in the formulas47d but with hf0gsxid=const.

• Having definedh4 andh5 and computedg from s38d we can solve Eq.s37d by integrating on
variable “v” the equationni

** +gni
* =0. The exact solution is

nk = nkf1gsxid + nkf2gsxidE fh4/sÎuh5ud3gdv, h5
* Þ 0

= nkf1gsxid + nkf2gsxidE h4dv, h5
* = 0

= nkf1gsxid + nkf2gsxidE f1/sÎuh5ud3gdv, h4
* = 0, s49d

for some functionsnkf1,2gsxid stated by boundary conditions.

The exact solution ofs41d is given by some functionszi =zisxi ,vd if both ]iÃ=0 andÃ* =0,
we chosezi =0 for Ã=const, and

zi = − wi + sÃ*d−1]iÃ, Ã* Þ 0, = sÃ*d−1]iÃ, Ã* Þ 0, for vacuum solutions. s50d

j

Theorem 10 states a general method of constructing five-dimensional exact solutions in vari-
ous gravity models with generic off-diagonal metrics, nonholonomic frames and, in general, with
nontrivial torsion. Such solutions are with associated N-connection structure. This method can also
be applied in order to generate, for instance, certain Finsler or Lagrange configurations as
v-irreducible components, or for a certain class of conformal factorsÃsxi ,vd for both h- and
v-irreducible components. The five-dimensional ansatz cannot be used to generate directly stan-
dard Finsler or Lagrange geometries because the dimension of such spaces cannot be an odd
number. Nevertheless, the anholonomic frame method can be applied in order to generate four-
dimensional exact solutions containing Finsler–Lagrange configurations. For instance, a four-
dimensional configuration can be defined just by an ansatzs14d with the datas33d where the
coefficients do not depend on coordinatex1 and the metric is stated to be four dimensional with the
conformal factorÃsx2,x3,vd.

B. An example of induced almost Kähler gravity

Let us consider a four-dimensional ansatz which may mimic under certain constraints a
generalized Lagrange geometry and induced almost Kähler structure in Riemann–Cartan space:

g = Ãsx2,x3,vdfg22sx2,x3ddx2
^ dx2 + g33sx2,x3ddx3

^ dx3 + h44sx2,x3,vddy4
^ dy4

+ h55sx2,x3,vddy5
^ dy5g,

where
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dy4 = dv + w2sx2,x3,vddx2 + w3sx2,x3,vddx3,

dy5 = dy5 + n2sx2,x3,vddx2 + n3sx2,x3,vddx3.

This d-metric will define a class of vacuum solutions of the Einstein equations if the coefficients
are subjected to the conditions of Theorem 10, when the dependence on coordinatex1 is elimi-
nated. We putg22=gsx3d andg33=0 to be a solution ofs34d in the form s45d, i.e.,

2gg9 − sg8d2 = 0

and chooseh5=0 and

h4 = h#sx3,vd =
a2

ugsx3d 3 vu
gsx3d

for a=const, which satisfiess35d, see Remark 6. Taking any functionsw2,3sx2,x3,vd and
n2,3sx2,x3,vd satisfying

n2,3
* = n2,3f0gsx2,x3dh#sx3,vd

we solve, respectively, Eqs.s36d and s37d. We may take

Ã = Ã#sx3,vd = fh#sx3,vdgq2/q1

like for s50d. All such functions define a vacuum Einstein d-metric

g = Ã#sx3,vdFgsx3ddx2
^ dx2 +

a2

ugsx3d 3 v2u
gsx3ddy4

^ dy4G ,

modeling an embedded generalized Lagrange geometryfit is a particular case of d-metrics con-
sidered in Ref. 8, see formulas6.3d, which in our case is derived from a gravity modelg. We
construct a conformal almost Kähler geometry if we consider

u = Ã#sx3,vdgsx3d
a

Îugsx3d 3 v2u
dy4 ∧ dx2

and

F =
Îugsx3d 3 v2u

a
S ]

]v
^ dx2 +

]

]y5 ^ dx3D −
a

Îugsx3d 3 v2u
S d

]x2 ^ dv +
d

]x3 ^ dy5D .

Finally, we note that if we choose the functionsw2,3sx2,x3,vd andn2,3sx2,x3,vd to parametrize a
noncommutative structure, this vacuum gravitational space will possess a noncommutative sym-
metry like in Refs. 31 and 32. An alternative class of solutions can be generated if we put certain
boundary conditionssfor instance, forv= t treated as a timelike coordinate, and one of the space
coordinatesx2, x3, y5 running to infinited when the N-connection coefficients possess a Lie algebra
symmetry. In this case, we generate an explicit example of vacuum gravitational fieldssin general,
with nontrivial torsiond possessing Lie symmetries.61 We can select such values ofw2,3 andn2,3

when conditionss32d are satisfied and the solutions coincide with those for the Levi-Civita con-
nection, but this is a very restricted case of N-connection geometry and associated almost complex
structures.
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We derive generalized Hamilton–Jacobi equations for dynamical systems subject to
linear velocity constraints. As long as a solution of the generalized Hamilton–
Jacobi equation exists, the action is actually minimizedsnot just extremizedd.
© 2005 American Institute of Physics.fDOI: 10.1063/1.1858441g

I. INTRODUCTION

Consider a mechanical system with configuration spaceRn. Let L be the Lagrangian, and
suppose that the system is subject tok,n nonholonomic constraints of the form

visxstddTẋstd = 0, i = 1,2,…,k, t [ ft0,t1g, s1.1d

where thevi :Rn→Rn are smooth functions andT denotes transpose. LetVsxd be thek3n matrix
whoseith row is visxdT. Then, an application of d’Alembert’s principle together with the method
of Lagrange multipliers, gives that the equations of motion for the system are

d

dt

]L

] ẋ
−

]L

]x
= VTl, s1.2d

wherel is thek-dimensional Lagrange multiplier. Equations1.2d together withs1.1d constitute a
system ofn+k equations for then+k unknownsx1,x2,… ,xn, l1,l2,… ,lk. The components of
VTl can be physically interpreted as the components of thespolygenicd force that acts on the
mechanical system in order to maintain the given nonholonomic conditions.10 Notice that
d’Alembert’s principle is not variational. A variational approach to the dynamics of systems
subject to linear velocity constraints was proposed in Ref. 15ssee also Ref. 1, Chap. 1, Sec. 4d. A
lucid critique of this “Vakonomic dynamics”svariational axiomatic kind dynamicsd can be found
in Ref. 20. It is shown there that the vakonomic equations may lead to paradoxical behavior. The
relation between the vakonomic and holonomic approaches has also been discussed in Refs. 1, 4,
5, 7, 11, and 17.

We show in this paper that the second, hydrodynamic form of Hamilton’s principle may be
extended to nonholonomic systems. We concentrate on theoptimization aspectthat is largely
ignored in the physics literature. As long as a solution of the generalized Hamilton–Jacobi equa-
tion exists, the action isminimizedby a path satisfying the correct equations of motionss1.2d. Our
derivation relies on general nonlinear Lagrange functionals.12–14 It would be quite feasible to
derive the result, after a suitable transformation, using standard optimal control results such as
Ref. 16, Sec. 5.2, Theorem 7, and Ref. 8, Chap. IV. We find, however, that the approach based on
Lagrange functionals is more transparent.

The paper is outlined as follows. In Sec. II we recall the hydrodynamic form of the classical
Hamilton principle as established in Ref. 19, Sec. IIsthe latter developed from Ref. 9d. In Sec. III,
we extend the latter result to systems subject to linear velocity constraints. In Sec. IV the paper
concludes with a discussion.
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II. THE CLASSICAL HAMILTON PRINCIPLE

Consider a dynamical system with configuration spaceRn. Let

Lsx,vdª
1

2
mv ·v − Vsxd s2.1d

be the Lagrangian function, whereVs·d :Rn→R is of classC1. The extension of the results of this
paper to general Lagrangian functions that are strictly convex with respect tov appears straight-
forward. We prefer, however, to treat the simple cases2.1d in order to avoid obscuring ideas with
technicalities. LetX0 denote the class of allC1 pathsx: ft0,t1g→Rn such thatxst0d=x0. Let V
denote the family of continuous functionsv : ft0,t1g→Rn. For sx,vd[X03V, we define the func-
tional Jsx,vd by

Jsx,vd =E
t0

t1

Lsxstd,vstdddt − S1sxstdd, s2.2d

whereS1:Rn→R is continuous. Consider the following control problem:

minimize hJsx,vdusx,vd [ sX0 3 Vdj, s2.3d

subject to the constraint

ẋstd = vstd, ∀ t [ ft0,t1g. s2.4d

Remark. 1: It is apparent that this control problem is equivalent to minimizing the action
functional IsxdªJsx, ẋd over X0.

To solve problemss2.3d we rely on the following elementary, albeit fundamental, result in the
spirit of Lagrange. LetY be a nonempty set. Consider the minimization ofJ:Y→R, whereR
denotes the extended reals, over the nonempty subsetM of Y.

Lemma 1:sLagrange Lemmad Let L :Y→R and let y0[M minimize J+L over Y. Assume
that Ls·d is finite and constantover M. Then y0 minimizes J over M.

Proof: For anyy[M, we haveJsy0d+Lsy0døJsyd+Lsyd=Jsyd+Lsy0d. HenceJsy0døJsyd.
Q.E.D.

A functionalL that is constant and finite onM is called the Lagrange functional. For problem
s2.3d, let

M = hsx,vd [ X0 3 Vuẋstd = vstd, ∀ t [ ft0,t1gj.

We introduce a suitable class of nonlinear Lagrange functionals for our problem. LetF : ft0,t1g
3Rn→R be of classC1. Corresponding to such anF, we define the nonlinear functionalLF on
X03V

LFsx,vdªFst1,xst1dd − Fst0,xst0dd +E
t0

t1 F−
]F

]t
st,xstdd − vstd · ¹ Fst,xstddGdt.

Whensx,ud[M, by the chain rule, we haveLFsx,ud=0. Thus,LF is indeed a Lagrange functional
for our problem. The solution procedure is now outlined as follows. Consider the unconstrained
minimization

min
sx,vd[sX03Vd

sJ + LFdsx,vd. s2.5d

We perform two-stage optimization.
Step 1:For each fixedx[X0, we try to compute an optimal controlvx

* throughpointwise
minimization of the integrand ofJ+LF. More explicitly, consider for eachx[X0 and each
t[ ft0,t1g the finite-dimensional problem
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min
v[Rn

H1

2
mv ·v − Vsxstdd −

]F

]t
st,xstdd − v · ¹ Fst,xstddJ . s2.6d

We get

vx
*std =

1

m
¹ Fst,xstdd. s2.7d

We notice thatvx
* belongs to the class of admissible velocitiesV.

Step 2:Consider now the minimization of the functional

GFsxd = sJ + LFdsx,vx
*d

on the spaceX0. We have

GFsxd = − S1sxst1dd + Fst1,xst1dd − Fst0,xst0dd +E
t0

t1 F−
]F

]t
st,xstdd −

1

2m
¹ Fst,xstdd · ¹ Fst,xstdd

− VsxstddGdt.

If we can findS such thatGSs·d is actually constant onX0, then any pairsx,vx
*d[X03V solves

problems2.5d. Then, by Lemma 1, if the pairsx,vx
*d satisfies

ẋstd = vx
*std =

1

m
¹ Sft,xstdg, ∀ t [ ft0,t1g,

it also solves the original constrained problems2.3d and s2.4d.
Theorem 1: sRef. 19d Let Sst ,xd be any C1 solution onft0,t1g3Rn of the terminal value

problem

]S

]t
+

1

2m
¹ S· ¹ S+ Vsxd = 0, s2.8d

Sst1,xd = S1sxd. s2.9d

Let x* [X0 be any solution onft0,t1g of

ẋstd =
1

m
¹ Ssxstd,td. s2.10d

Thensx* , 1/m¹Ssx*std ,tdd solves problems2.3d and s2.4d.
Proof: If S satisfiess2.8d and s2.9d, we getGSsxd;−Ssx0,t0d on X0. Q.E.D.
Notice that when aC1 solutionSsx,td of s2.8d ands2.9d exists, then there are also solutionsx

of the differential equations2.10d satisfyingxst0d=x0, and therefore optimal pairs. In this case, the
action functional is actuallyminimized, not just extremized. The difficulty lies, of course, with the
terminal value problems2.8d ands2.9d that, in general, only has a local int solution (namely, on
some intervalst ,t1d ,t0, t).

Remark 2:Let us now assume thatS is of classC2. Following Ref. 9, let us introduce the
acceleration field ast ,xd through a substantial time derivative

ast,xdªF ]

]t
+

1

m
¹ S· ¹ GS 1

m
¹ SDst,xd =

1

m
¹ F ]S

]t
+

1

2m
¹ S· ¹ SGst,xd.

Then,s2.8d implies the local form of Newton’s law
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ast,xd = −
1

m
¹ Vsxd. s2.11d

III. NONHOLONOMIC DYNAMICAL SYSTEMS

Consider a system subject to linear velocity constraints of the form

Vsxstddẋstd = 0, t [ st0,t1d, s3.1d

whereV :Rn→Rk3n, k,n is a continuous map. We assume that for eackx[Rn, the rows ofV are
linearly independent. These constraints are calledPfaffian. A simple example is provided by a disk
rolling on a plane without slipping. More complex nonholonomic systems with Pfaffian con-
straints occur in many problems of robot motion planning and vehicular dynamics, and have
therefore been the subject of intensive study, see Refs. 2, 3, and 18 and references therein. Let

Vsxstddvstd = 0, t [ ft0,t1g. s3.2d

We now study the control problems2.3d, s2.4d, and s3.2d, namely the same problem as in the
previous section when also constraints3.2d is present. This problem is equivalent to minimizing
the action functional

IsxdªJsx,ẋd =E
t0

t1

Lsxstd,ẋstdddt − S1sxst1dd, s3.3d

under the constraintss3.1d. Reformulating the calculus of variations problem as a control problem
as before, we let

M = hsx,vd [ X0 3 Vuẋstd = vstd, Vsxstddvstd = 0, ∀ t [ ft0,t1gj.

Let F : ft0,t1g3Rn→R be of classC1 and g: ft0,t1g3Rn→Rk be continuous. Corresponding to
such a pair, we define the nonlinear functionalLF,g on X03V by

LF,gsx,vdªFst1,xst1dd − Fst0,xst0dd +E
t0

t1 F−
]F

]t
st,xstdd − vstd · ¹ Fst,xstdd

+ gst,xstddTVsxstddvstdGdt.

It is apparent thatLF,g is a Lagrange functional for the problem since it is identically zero when
s2.4d ands3.2d are satisfied. Following the same procedure as in the previous section, we consider
the unconstrainedminimization of sJ+LF,gdsx,vd over X03V. For x[X0 fixed, the pointwise
minimization of the integrand ofJ+LF,g at time t gives

vx
*std =

1

m
f¹Fst,xstdd − VTsxstddgst,xstddg . s3.4d

Notice thatvx
* [V. We consider next the minimization of the functional

GF,gsxd = sJ + LF,gdsx,vx
*d

on the spaceX0. We have
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GF,gsxd = − S1sxst1dd + Fsxst1d,t1d − Fsxst0d,t0d +E
t0

t1 F−
]F

]t
st,xstdd −

1

2m
i ¹ Fst,xstdd

− VTsxstddgst,xstddi2 − VsxstddGdt,

wherei ·i denotes the Euclidean norm inRn. Let Sst ,xd of classC1 andmst ,xd continuous solve on
Rn3 ft0,t1g of the initial value problem

]S

]t
+

1

2m
i ¹ S− VTmi2 + Vsxd = 0, s3.5d

Ssx,t0d = S0sxd. s3.6d

ThenGS,msxd;−Ssx0,t0d on X0. By Lemma 1, ifx[X0 satisfies for allt[ ft0,t1g

ẋstd =
1

m
f¹S− st,xstdd − VTsxstddmst,xstddg , s3.7d

Vsxstddẋstd = 0, s3.8d

then it solves the problem together with the corresponding feedback velocitys3.4d.
Remark 3:As in the unconstrained case, we now show thats3.5d implies the second principle

of dynamics. Assume thatS is of classC2 and thatV, andm are of classC1. The acceleration field
is again obtained through a substantial derivative of the velocity field

ast,xdªF ]

]t
+

1

m
f¹S− VTmg · ¹ GS 1

m
f¹S− VTmgDst,xd

=
1

m
H¹F ]S

]t
+

1

2m
i ¹ S− VTmi2G −

]sVTmd
]t

Jst,xd.

Then,s3.5d yields

ast,xd = −
1

m
¹ Vsxd −

1

m
VT]m

]t
. s3.9d

Define

lst,xdª −
]m

]t
st,xd.

For x[X0 satisfyings3.7d and of classC2, let lstdªlst ,xstdd. We then get

mẍstd = − ¹ Vsxstdd + VTsxstddlstd, s3.10d

namely Eq.s1.2d. By differentiatings3.8d, a simple calculation employings3.10d shows that the
Lagrange multipliersl may be expressed as an instantaneous function ofx and ẋ, see, e.g., Ref.
20, Sec. 2, and Ref. 18, pp. 269–270.

Next we show how the multiplierm can be also eliminated in our hydrodynamic context. Ifx
satisfiess3.7d and s3.8d, then, pluggings3.7d into s3.8d, we get

Vsxstdd
1

m
f¹Sst,xstdd − VTsxstddmst,xstddg = 0.

SinceV has full row rank, the latter is equivalent to
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mst,xstdd = sVsxstddVTsxstddd−1Vsxstdd ¹ Sst,xstdd. s3.11d

Plugging this intos3.7d, we get

ẋstd =
1

m
fsI − psxstddd ¹ Sst,xstddg, s3.12d

wherepst ,xd is defined by

psxd = VTsxdsVsxdVTsxdd−1Vsxd. s3.13d

Observe thatpsxd2=psxd andpsxdT=psxd. Thus,psxd is an orthogonal projection. In fact,psxd is
the orthogonal projection onto rangesVTsxdd.

Remark 4:Notice thats3.12d implies s3.8d. Indeed,

Vsxstddẋstd = Vsxstdd
1

m
fsI − psxstddd ¹ Sst,xstddg = 0,

sinceI −psxd projects onto the kernel ofVsxd.
Remark 5:It is apparent thats3.11d–s3.13d are related to the projection technique introduced

in Ref. 6. Indeed, there the constrained dynamics is obtained by suitably projecting the free
dynamics.

Now we use the freedom we have in pickingS and m. Sinces3.11d must be satisfied by an
optimal solution, we impose that the pairsS,md satisfiesidentically on all of ft0,t1g3Rn

mst,xd = sVsxdVTsxdd−1Vsxd ¹ Sst,xd. s3.14d

Hence, we can writeGSsxd instead ofGS,msxd, and Eq.s3.5d becomes

]S

]t
+

1

2m
isI − pd ¹ Si2 + sxd = 0. s3.15d

We are now ready for our main result.
Theorem 2: For x[Rn, let ssxd= I −psxd denote the orthogonal projection ontoker Vsxd. Let

Sst ,xd be any C1 solution onft0,t1g3Rn of

]S

]t
+

1

2m
¹ S· s ¹ S+ Vsxd = 0, Sst1,xd = S1sxd. s3.16d

Then any x[X0 satisfying

ẋstd =
1

m
ssxstdd ¹ Sst,xstdd s3.17d

on ft0,t1g solves together with

vstd =
1

m
ssxstdd ¹ Sst,xstdd

problemss2.3d, s2.4d, ands3.2d. fEquivalently, such an x[X0 minimizess3.3d subject tos3.1dg. If
S is of class C2, and x[X0 satisfyings3.17d is also of class C2, then x satisfiesEq. s3.10d

mẍstd = − ¹ Vsxstdd + VTsxstddlstd,

with l given by

lstd = − sVsxstddVTsxstddd−1Vsxstdd ¹
]S

]t
st,xstdd. s3.18d
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Proof: If S solvess3.16d, we getGSsxd=−Ssx0,t0d for any x[X0. Thus any pairsx,vd[X0

3V solves the unconstrained minimization problem. Sincex satisfiess3.17d, constraints2.4d is
fulfilled. Moreover, by Remark 4,s3.2d is also satisfied. By Lemma 1, the pair is optimal for the
original constrained minimization. Finally,x satisfiess3.10d with l as ins3.18d in view of Remark
3 ands3.14d. Q.E.D.

IV. DISCUSSION

We conclude this paper with a few simple remarks on how the minimization of the modified
action leading to the vakonomic equations relates to the problem studied in the preceding section.
Assume thatL :R3Rn3Rn→R is of classC2. Assume, moreover, thatS1 andV are of classC1.
Recall

IsxdªE
t0

t1

Lst,xstd,ẋstdddt − S1sxst1dd

and the constraints3.1d

Vsxstddẋstd = 0, t [ ft0,t1g. s4.1d

For X taking values inRk of classC1, let

Lst,x,ẋdªLst,x,ẋd + XTstdVsxdẋ.

Introduce also the modified action

IsxdªE
t0

t1

Lst,xstd,ẋstdddt − S1sxst1dd. s4.2d

Taking as variations pathsystd[C1ft0,t1g such thatystd=0, and setting the first variation ofI
equal to zero, we get the equations

d

dt

]L
] ẋ

−
]L
]x

= 0, s4.3d

]L
] ẋ

st1,xst1d,ẋst1dd =
]S1

]x
sxst1dd. s4.4d

They read

d

dt

]L

] ẋ
−

]L

]x
= − VTẊ − X · V8ẋ +

]

]x
sX · Vẋd, s4.5d

]L

] ẋ
st1,xst1d,ẋst1dd + VTsxst1dXst1dd =

]S1

]x
sxst1dd, s4.6d

where

sX · V8ẋdi = o
a=1

k

Xao
j=1

n
]Vai

]xj
ẋj,

]

]x
sX · Vẋdi = o

a=1

k

Xao
j=1

n
]Va j

]xi
ẋj .

Equations4.5d together withs4.1d constitute the equations of the Vakonomic dynamics. Moreover,
s4.5d ands4.6d arenecessaryconditions for theunconstrainedminimization of the modified action
s4.2d over X0. If x does minimizes4.2d over X0 and it satisfiess4.1d, then, by Lemma 1, it also
minimizesIsxd over X0 subject tos4.1d.
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In this work it is shown that, by a series of admissible functional transformations,
the generalized Blasius equation in fluids can be exactly reduced to a three-term
generalized Emden–Fowler equation. Furthermore, the restricted in axisymmetric
flows and simplified forms of this equation can be reduced tosid two-term gener-
alized Emden–Fowler equations;sii d generalized Emden–Fowler equations;siii d
Emden–Fowler equations of the normal form; andsivd Abel equations of the second
kind. By means of a recently developed mathematical solution methodology
sPanayotounakos, Fifth Greek Congress on Mechanics, Xania, Crete, 22–25 June
2004, Hellas, Greeced, we provide exact analytic solutions for the simplified as well
as for the restricted forms of the above-mentioned Blasius equations. Thus, it is
proved that important, unsolvable in exact form problems in nonlinear fluid dynam-
ics now can be analytically solved. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1819528g

I. INTRODUCTION

There is a wide class of particularly basic second-order nonlinear ordinary differential equa-
tions sODEsd in mathematical physics and nonlinear mechanics that does not admit exact analytic
solutions in terms of knownstabulatedd functions.1–3Among these equations, one of great interest
in nonlinear fluid dynamics is that related to uniform flow past a semi-infinite plate. The first to
introduce and discuss such a problem was BlasiussRef. 4d. He obtained similarity solutions of the
well-known simplified Blasius equation. The generalization of the Blasius problem was introduced
in Ref. 5, including nonuniform flow. Later, in Ref. 6 the generalized Blasius equation was
investigated numerically, and it was proved that if one of its characteristic parameters is positive
or zero, then the related convenient boundary conditions are sufficient to define a unique solution;
but, when this parameter becomes negative, the property of uniqueness disappears. The more
general problem with arbitrary parameters has been the object of study of many researchers.7,8

Several relative problems requiring the solution of the generalized Blasius equationsFalkner–
Skan equationd were introduced in Ref. 9, investigating axisymmetric flow due to stretching flat
surface; in Ref. 10, performing a series method for the solution of laminar boundary layers or
moving surfaces; in Ref. 11, developing self-similar solutions describing thermal capillary flows in
viscous layers, and in Ref. 12, using similarity solutions of the boundary equations for a stretching
wall. All the above problems have to be solved numerically, or in the form of power series for
fixed values of the parameters being introduced.

adElectronic mail: tsakstel@central.ntua.gr
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This work deals with the possibility of constructing exact analytic solutions concerning the
generalized Blasius equation correlated with a wide class of nonlinear boundary value problems in
mathematical physics and nonlinear mechanics. Before we address the issue of these solutions, we
prove that, by a series of admissible functional transformations, the above-mentioned equation can
be reduced to a three-term generalized Emden–Fowler equation, which in axisymmetric cases
srestricted formd becomes two-term. In addition, the simplified Blasius equation can be reduced to
a typical generalized Emden–Fowler equation, or to an Emden–Fowler equation of the normal
form. Both previous types of Emden–Fowler equations, by means of admissible functional trans-
formations, are further reduced to Abel equations of the second kind of the normal form. Thus, it
is proved that the unsolvability of the Blasius problems is due to the fact that both Abel and
Emden–Fowler equations do not admit exact analytic solutions in terms of knownstabulatedd
functions. Only very special cases of these equations can be analytically solved in parametric
form, which were tabulated in Ref. 3.

Our goal is that, based on a recently developed mathematical technique leading to the con-
struction of analytic solutions of the Abel equation of the second kind of the normal form,13 we
provide exact analytic solutions of the prescribed two types of Blasius equations:sid the simplified
equation, andsii d the restricted form of the generalized equationsconcerning axisymmetric flowsd,
with convenient boundary conditions.

The solution methodology employed is general and can be applied to a large class of other
unsolvable nonlinear ODEs in mathematical physics and nonlinear mechanics such as the Duffing
nonlinear oscillatorssee Ref. 14d, the Van der Pol nonlinear oscillator, the Kidder equation in
porous media, the Thomas–Fermi and White–DwarfsChandrasekhard equations in thermodynam-
ics and relativistic mechanics, etc.

II. SOME RESULTS OF THE CLASSES OF EMDEN–FOWLER AND ABEL EQUATIONS

There is a wide class of nonlinear ODEs which can be reduced to equations that traditionally
attracted the attention of many researchers: those of the simplest appearance but involving the
most difficulties for integrationsAbel and Emden–Fowler equationsd. Both these types of equa-
tions are in general unsolvable.3 Recently, a mathematical methodology was developed in Ref. 13
that leads to the construction of exact analytic solutions of the Abel nonlinear ODEs of the second
kind.

Before we address the issue of the construction of exact analytic solutions of the Blasius
equations in fluids, we will digress to some well-known classes of nonlinear ODEs, and to admis-
sible functional transformations that reduce a class of ODEs to a different class.

A. The Emden–Fowler equation of the normal form

The Emden-Fowler nonlinear ODE of the normal form is

yxx9 = Axnym, s2.1d

whereA andn,m are arbitrary parameters. Here, the notationyx8=dy/dx, yxx9 =d2y/dx2, . . . is used
for the total derivatives. We note the following regarding the solution ofs2.1d:3

sid For mÞ1, Eq. s2.1d possesses the following particular solution:

y = lxsn+2d/s1−md, wherel = fsn + 2dsn + m+ 1d/Asm− 1d2g1/sm−1d. s2.2d

sii d The transformations

P: y = wstd/t, x = 1/t; t Þ 0, s2.3d

transforms2.1d into the following equation of different pair of exponentshn,mj:

wtt9 = At−n−m−3wm. s2.4d
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Equations2.1d is, in general, unsolvable. Reference 3 discusses all solvable Emden–Fowler
equations, e.g., all possible combinations of parametersA, n, andm for which exact solutions can
be constructed in parametric form.

B. The generalized Emden–Fowler equation

The generalized Emden–Fowler ODE is

yxx9 = Axnymsyx8d
,. s2.5d

For ,=0 it degenerates to the normal Emden–Fowler forms2.1d. To analyze Eq.s2.5d we utilize
the triad notationhn,m,,j to denote the specific exponents of the equation. We note the following:

sid Consideringx=xsyd and introducing theF-transformation

F: yx8 =
dy

dx
=

1

dx/dy
=

1

xy8
, s2.6d

we then derive the following alternative generalized Emden–Fowler equation:

xyy9 = − Aymxnsxy8d
3−,. s2.7d

The above transformation can be represented in short-hand notation using the triad sym-
bolism

hn,m,,j↔
F

hm,n,3 −,j.

sii d If mÞ0, nÞ−1, and,Þ1, the coordinate transformation

J: wstd = xn+1, t = syx8d
1−,, s2.8d

transforms Eq.s2.5d to the following new Emden–Fowler equation:

wtt9 = Bt1/s1−,dw−n/sn+1dswt8d
s2m+1d/m, where B = −

m

m+ 1
FAs1 − ,d

n + 1
G1/m

. s2.9d

We denote this transformation symbolically as

hn,m,,j↔
J H 1

1 − ,
,−

n

n + 1
,
2m+ 1

m
J .

Different compositions of transformationF andJ generate six distinct generalized Emden–
Fowler equations corresponding to different triad of exponentshn,m,,j sRef. 13, p. 301d.
When the solution of the transformed equation is obtained in the formw=wstd, the solution
of the original equation can be obtained in the parametric form

x = w1/s1+nd, y = kswt8d
−1/m; k = fsn + 1d/As1 − ,dg1/m. s2.10d

siii d In the special case when,=0 we showed that transformations2.3d leads to the normal
Emden–Fowler equations2.4d, that is

hn,m,0j↔
P

h− n − m− 1,m,0j.

Then, different compositions of transformationsF, J, andP generate 12 distinct general-
ized Emden–Fowler equationssRef. 3, p. 302d.

sivd Finally, with ,=0 andn=1, different compositions of transformationF, J, andP generate
24 different generalized Emden–Fowler equationssRef. 3, p. 303d.
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C. The Abel equation of the second kind

The Abel nonlinear ODE of the second kind is

fg1sxdy + g0sxdgyx8 = f2sxdy2 + f1sxdy + f0sxd. s2.11d

sid The transformations

w = Sy +
g0

g1
DE, where E = expS−E f2

g1
dxD , s2.12d

reduces2.11d into the simplified form

wx8 = F1sxdw + F0sxd, s2.13d

in which

F1sxd = FSg0

g1
D

x

8
+

f1

g1
− 2

g0f2

g1
2 GE, F0 = S f0

g1
−

g0f1

g1
2 +

g0
2f2

g1
3 DE2. s2.14d

sii d With the aid of the substitution

j =E F1sxddx, s2.15d

the simplified Abel equations2.13d reduces into the following Abel equation of the second
kind of the normal form:

wwj8 − w = Fsjd, where Fsjd =
F0sxd
F1sxd

. s2.16d

siii d If the variable coefficients of the original equations2.11d satisfy the functional relation

g0s2f2 + g1x
8 d = g1sf1 + g0x

8 d, g1 Þ 0, s2.17d

then its general solution is given by the formula

g1y
2 + 2g0y

g1J
= 2E f0

g1J
dx+ C, s2.18d

whereC is an integration constant andJsxd the integrating factor

Jsxd = expSE 2f2

g1
dxD . s2.19d

The above result is attributed to Julia in 1933sRef. 8, p. 27d.
sivd Consider now the special form of the Abel equations2.11d

yyx8 − y = ax + bxm, m any number. s2.20d

In Ref. 3 the following result was provided: ifmÞ1, a.−1/4, and assuming that

a = −
sn + 2dsn + m+ 1d

s2n + m+ 3d2 , where n1,2=
1

2S±
m− 1

Î1 + 4a
− m− 3D , s2.21d

the coordinate transformations
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x = jsn+2d/sm−1dwsjd, y =
m− 1

2n + m+ 3
jsn+2d/sm−1dSjwj8 +

n + 2

m− 1
wD ; n = n1,2

s2.22d

reduces2.20d to the Emden–Fowler equation of the normal form

wjj9 = Ajnwm, where A = S2n + m+ 3

m− 1
D2

b. s2.23d

D. Some basic transformations

sid Consider the Emden–Fowler nonlinear ODE of the normal form

yxx9 = Axnym, s2.24d

with mÞ1 andmÞ−2n−3. The transformation

j =
2n + m+ 3

m− 1
xsn+2d/sm−1dy, u = xsn+2d/sm−1dSxyx8 +

n + 2

m− 1
yD , s2.25d

leads to the Abel equation of the second kind of the normal form

uuj8 − u = −
sn + 2dsn + m+ 1d

s2n + m+ 3d2 j + AS m− 1

2n + m+ 3
D2

jm. s2.26d

sii d Consider the generalized Emden–Fowler equation

yxx9 = Axnymsyx8d
,. s2.27d

The substitutions

z=
x

y
yx8, y = Axn−,+2ym+,−1, s2.28d

reduces2.27d into the following Abel nonlinear ODE of the second kind:

sz,y − z2 + zdyz8 = fsm+ , − 1dz+ n − , + 2gy. s2.29d

Furthermore, using the new substitution

j = y − z2−, + z1−,, s2.30d

Eq. s2.29d leads to the following equation:

jjz8 = fsm+ 2, − 3dz+ n − 2, + 3gz−1j + fsm+ , − 1dz2 + sn − m− 2, + 3dz− n + , − 2gz1–2,,

s2.31d

which is of the Abel forms2.13d.

III. THE REDUCTION OF THE EQUATIONS OF BLASIUS

By the generalized equation of Blasius we mean the following nonlinear ODE of the third
order:
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yxxx98 + ayyxx9 = bsyx8
2 − 1d, s3.1d

wherea and b are arbitrary constants. But,a is in general positive and can be set equal to 1
without loss of generality, as one sees from the transformationy=lz, x=lt, wherel2a=1. The
boundary conditions of greatest interest are the following:

For aÞ1

ys0d = a1; yx8s0d = b1; yx8sxd → 0, as x → `, s3.2d

or

ys0d = a2; yxx9 s0d = b2; yx8sxd → 0, as x → `, s3.3d

and fora=1

ys0d = yx8s0d = 0, yx8sxd → k as x → `, s3.4d

or

ys0d = yxx9 s0d = 0, yx8sxd → k as x → `. s3.5d

Here,k is a constant. Whenbù0, the last conditions are sufficient to insure a unique solution of
the equations3.1d, but this uniqueness fails whenb,0.6

The equation for the case whereb=0 was originally solved by Blasius, Ref. 4, who introduced
it in studying the laminar flow of a fluid. Also, the above simplified Blasius equationsb=0d was
investigated in Ref. 16 for the casea=1/2 in studying the flow of an electrically conducting fluid
up a hot vertical plate in the presence of strong magnetic field normal to the plate. The generalized
Blasius equations3.1d, wherebÞ0, has been the object of Refs. 5–8. Finally, the restricted form
of the Blasius equation

yxxx98 + ayyxx9 − byx8
2 = 0, s3.6d

obeying the boundary conditionss3.2d ands3.3d, or s3.4d ands3.5d, has been the object of study of
Refs. 10–12 and 17.

We emphasize that all the above investigations refer mainly to numerical solutions, as well as
to approximate ones by series expansions, similarity variables techniques, etc. Furthermore, all
previous investigations refer to concrete values of the parametersa andb.

In what follows we provide a reduction methodology concerning the generalized Blasius
equation that leads to equation of the Abel or Emden–Fowler forms. This methodology is realistic
and usual for deriving exact analytic solutions of the problem under consideration.

Consider the generalized Blasius equation

yxx98 + ayyxx9 − byx8
2 + b = 0;

0 ø x , + `; a1 ø y , + `; yx8s0d = b1; yx8s`d = 0; s3.7d

wherea1,b1=constants,b1.0; a=positive constant,b=positive or negative constant.
The substitution

yx8 = zsyd ⇒ yxx9 = zzy8, yxxx98 = z2zyy9 + zzy8
2, s3.8d

reducess3.7d into the second-order nonlinear ODE

z2zyy9 + zzy8
2 + ayzzy8 − bz2 + b = 0;

a1 ø y , + `; zsa1d = b1; zs`d = 0,szP f0,b1gd. s3.9d

Introduce the transformation
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zsyd = nsjd, j = jsyd ⇒ zy8 = nj8jy8, zyy9 = njj9 jy8
2 + nj8jyy9 , s3.10d

and obtain the equation

jy8
2n2njj9 + jyy9 n2nj8 + jy8

2nnj8
2 + ayjy8nnj8 − bn2 + b = 0. s3.11d

We define functionnsjd such that

nnjj9 = − nj8
2 ⇒ snnj8dj8 = 0 ⇒ nnj8 = 1 ⇒ nsjd = Î2j = zsyd; n Þ 0, s3.12d

and thus Eq.s3.11d becomes of the following form, performing only the determinable function
jsyd:

Î2jjyy9 + ayjy8 − 2bj + b = 0;

a1 ø y , + `; jsa1d = b1
2/2; js`d = 0,sj P f0,b1

2/2gd. s3.13d

The new substitution

Î2j = v ⇒ jy8 = vvy8, jyy9 = vvyy9 + vy8
2, s3.14d

transformss3.13d to the following second-order nonlinear ODE:

v2vyy9 + vvy8
2 + ayvvy8 − bv2 + b = 0, s3.15d

while theF-transformations2.6d reducess3.15d to the equation

v2yvv9 − vyv8 = avyyv8
2 − bv2yv8

3 + byv8
3;

a1 ø y , + `; for y = a1, v = b1; for y → `, v → 0,sv P f0,b1gd. s3.16d

Applying again afsimilar to s3.10dg transformation, that is setting

ysvd = yssd, s= ssvd,

with concrete form

sv8 = v ⇒ s= v2/2; v Þ 0, s3.17d

we obtain the nonlinear ODE

ys9 =
a

Î2
s−1/2yys8

2 − bÎ2s1/2ys8
3 +

b

Î2
s−1/2ys8

3;

a1 ø y , + `; for y = a1, s= b1
2/2; for y → `,s→ 0,ssP f0,b1

2/2gd. s3.18d

The F-transformations2.6d on Eq. s3.18d reduces it to the following three-term generalized
Emden–Fowler equation:

syy9 = Ay s−1/2sy8 + Bs1/2 −
B

2
s−1/2; A = −

a

Î2
, B = − bÎ2;

a1 ø y , + `; for s= b1
2/2,y = a1; for s→ 0,y → `,ssP f0,b1

2/2gd. s3.19d

We distinguish now the following two cases:

Case a:b=0
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This case corresponds to the simplified Blasius equation

yxxx- + ayyxx9 = 0;

0 ø x , + `; a1 ø y , + `; yx8s0d = b1; yx8s`d = 0;

a = positive constant; a1,b1 = constants, b1 . 0. s3.20d

The fequivalent tos3.13dg transformed equation becomes a generalized Emden–Fowler equation,
that is

jyy9 = Ayj−1/2jy8; A = − a/Î2;

a1 ø y , + `; jsa1d = b1
2/2; js`d = 0,sj P f0,b1

2/2gd. s3.21d

The F-transformations2.6d reducess3.21d to the generalized Emden–Fowler equation with a
different pair of exponents

yjj9 = − Aj−1/2ysyj8d
2; A = − aÎ2;

a1 ø y , + `; for y = a1,j = b1
2/2; for y → `,j → 0,sj P f0,b1

2/2gd, s3.22d

while theJ-transformations2.8d with concrete form

wstd = j1/2, t = syj8d
−1, s3.23d

transformss3.22d into the following generalized Emden–Fowler equation:

wtt9 = Bt−1wswt8d
3; B = 4aÎ2 = − 4A;

0 ø w ø b1/Î2. s3.24d

When the solution of Eq.s3.24d is obtained in the formw=wstd, the solution of Eq.s3.22d can be
written in the parametric formfsee Eqs.s2.10dg

j = w2, y =
1

2A
swt8d

−1; t = parameter;

a1 ø y , + `; for y = a1,j = w2 = b1
2/2; for y → `,j = w2 → 0,sj P f0,b1

2/2gd.

s3.25d

Equations3.24d is directly reducible to the Emden–Fowler equation of the normal form

tww9 = − Bwt−1; B = 4aÎ2 = − 4A;

0 ø w ø b1/Î2. s3.26d

The above generalized Emden–Fowler equations3.21d and s3.22d, or the Emden–Fowler
equation of the normal forms3.26d, can be reduced to an Abel equation of the second kind of the
normal form by means of the admissible functional transformationss2.28d ands2.25d, respectively.
Consider for example the reduced generalized Emden–Fowler equations3.21d. Then, by the trans-
formation s2.28d with concrete form
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z
! =

y

j
jy8, y

! = Ay2j−1/2, s3.27d

s3.21d becomes the Abel equation of the second kind

sy! − z
! + 1dyz8

!
=

4 − z
!

2z
!

y
! ;

s3.28d

for y0 = a1,j0 = b1
2/2,y!0 = Î2a1

2A/b1; for y1 → `,j1 → 0.

Furthermore, by the transformations2.12d with concrete form

r = y
! − z! + 1, s3.29d

Eq. s3.28d results in

rr
z
!8 = F1sz!dr + F0sz!d;

F1sz!d =
4 – 3z!

2z!
, F0sz!d =

sz! − 1ds4 − z!d

2z!
. s3.30d

Finally, the substitutions2.15d with concrete form

s=E F1sz!ddz! =E 4 – 3z!

2z!
dz! = 2 lnuz!u −

3

2
z!, s3.31d

transformss3.30d to the Abel equation of the normal form

rr s8 − r =
F0sz!ssdd

F1sz!ssdd
;

F0sz!ssdd

F1sz!ssdd
=

sz! − 1ds4 − z!d

4 – 3z!
; s= 2 lnuz!u −

3

2
z!. s3.32d

When the Abel equations3.32d is solved sincluding one constant of integrationd, then, by the

transformations3.29d one extracts the solution of the Abel equations3.28d in the formy
!=y

!sz!d, and
the solution of the generalized Emden–Fowler equations3.21d can be obtained parametrically as
follows.
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Using the first part ofs3.27d, we have

z
! = y

jy8

j
=

y

j

j
z
!8

y
z
!8

⇔
y

z
!8

y
=

1

z
!

j
z
!8

j
, s3.33d

while by the second part we extract

y2 =
y
!

j1/2

A
⇔ y = ±

y
!1/2j1/4

A1/2 , 2yy
z
!8 =

1

A
Syz8

! Îj + y
!

j
z
!8

2Îj
D . s3.34d

Combination of the last two relations results in

y
z
!8 = ±

1

2ÎA1 y
z
!8

!

Îy
!

j1/4 + Îy
!

j
z
!8

2j3/42 , s3.35d

and thus, by way ofs3.28d, we obtain

y
z
!8

y
=

1

2S 4 − z!

2z!sy! − z! + 1d
+

j
z
!8

2j
D . s3.36d

Both Eqs.s3.33d and s3.36d perform the following equation forj
z
!8:

1

2S 4 − z!

2z!sy! − z! + 1d
+

j
z
!8

2j
D =

1

z!

j
z
!8

j
⇔

j
z
!8

j
=

1

y
! − z! + 1

.

Consequently, the variablesj and y in transformations3.27d are given in parametric form as
follows:

j = expSC +E dz!

y
! − z! + 1

D;

y = ±
y
!1/2

A1/2FexpSC +E dz!

y
! − z! + 1

DG1/4

; s3.37d

y
!=y

!sz!d5the solution of the Abel equations3.28d including one constant of integration;

z! = parameter;C = integration constant.

Equationss3.37d consist the intermediate integral of the simplified Blasius equations3.20d, that is,
the solution of the problem under consideration in the phase plane. The solution to the original
Blasius equations3.20d also can be obtained parametrically by means ofsid Eq. s3.12d, giving
zsyd=Î2j f y andj as ins3.37dg ; sii d the transformations3.10d, giving zsyd=nsjd=Î2j; andsiii d
by the substitutions3.8d, which permits us to writedy/zsyd=dy/Î2j=dx.

Summarizing, the exact analytic solution of the simplified Blasius equations3.20d in paramet-
ric form is given by the following equations:
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y = ±
y
!1/2

A1/2FexpSC +E dz
!

y
! − z

! + 1
DG1/4

;

x = ±E y
!1/2

Î2A1/2FexpSC +E dz
!

y
! − z

! + 1
DG−1/4Sy

!
z
!8 +

1

4sy! − z
! + 1d

Ddz
!

7 C
!

;

C,C
!

= integration constants; s3.38d

y
!sz!d5the solution of the Abel equations3.28d including a third constant of integration;

z! = parameter.

Case b:bÞ0

This case corresponds to the generalized Blasius equations3.1d. We shall consider here the
restricted form of this equation, that is, Eq.s3.6d governing axisymmetric flows due to stretching
flat surfaces. We have already proved that this equation can be reduced to a two-term generalized
Emden–Fowler equation, namely

syy9 = Ay s−1/2sy8 + Bs1/2; A = −
a

Î2
, B = − bÎ2;

a1 ø y , + `; for s= b1
2/2,y = a1; for s→ 0,y → ` ssP f0,b1

2/2gd. s3.39d

Transformation ofs2.28d with concrete form

z! = y
sy8

s
, t

!
= Ay2s−1/2, s3.40d

furnishes the results

dz! = Ssy8

s
+ y

syy9

s
− y

sy8
2

s2 Ddy; dt
!

= A
4y s− y2sy8

2s3/2 dy.

Because ofs3.40d, these last relations formulate the following equation:

z
t
!8
!

= 2

z! + y2syy9

s
−

z2

y

s4 − z!dt!
. s3.41d

Solving s3.41d for syy9 and introducing to the resulting new equation the expressions3.39d, one
obtains

syy9 = fs4 − z!dt!zt8
!

− 2z! + 2z2
!

g
s

2y 2 = Ays−1/2sy8 + Bs1/2,

which, by means ofs3.39d, becomes
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fs4 − z
!dt!z

!
t
!8 − 2z

! + 2z2
!

g
A

2t
!

= Az
! + B. s3.42d

This is an Abel equation of the second kind of the normal form

sz! − 4dz!
t
!8 =

2

t
z2
!

− AS1 +
1

t
!Dz

! −
2B

A
;

for y 0 = a1, s0 = b1
2/2, t0

!
= Î2a1

2A/b1; for y1 → `,s1 → 0. s3.43d

By the transformation

r = sz! − 4dexpS−E 2

t
!

dt
!D =

sz! − 4d

t
!2

, s3.44d

s3.43d is reduced to

rr
t
!8 = F1st!dr + F0st!d;

F1st!d = −
Ast!+ 1d + 16

t
!

, F0st!d = −
2Bt

!
− 32A + 4A2s1 + t

!d

At
!

. s3.45d

Finally, the substitution

s= −E Ast!− 1d + 16

t
!

dt
!

= − At
!

− sA + 16dlnut!u, s3.46d

transformss3.45d to the following Abel equation of the second kind of the normal form:

rr s8 − r =
F0st!ssdd

F1st!ssdd
=

2Bt
!

− 32A + 4A2s1 + t
!d

AfAs1 + t
!d + 16g

; s= − At
!

− sA + 16dlnut!u. s3.47d

When the solution of the Abel equations3.47d is obtained in the formr =rssd sincluding one
constant of integrationd, the solution of Eq.s3.43d can be expressed by means of the transforma-

tion s3.44d asz!=z!st!d and thus, the solution to the original Emden–Fowler equations3.39d can be
constructed parametrically as follows.

By the first part ofs3.40d, one obtains

z! = y
sy8

s
=

y

s

s
t
!8

y
t
!8

⇔
y

t
!8

y
=

1

z!

s
t
!8

s
, s3.48d

while by the second of these equations we extract

y2 =
t
!

A
s1/2 ⇔ 2yy

t
!8 =

1

A
Ss1/2 +

t
!
st8

2s1/2
D . s3.49d

Combination of the last two relations results in
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y
t
!8 = ±

1

2ÎA1s1/4

t
!1/2

+
t
!1/2s

t
!8

2s3/42 , s3.50d

and thus

y
t
!8

y
=

1

2S1

t
!

+
st8

2sD . s3.51d

Introducing expressions3.51d into s3.48d, we perform the following equation fors
z
!8:

1

2t
!

+
s

t
!8

4s
=

1

z!

s
t
!8

s
⇔

s
t
!8

s
=

2z
!

t
!s4 − z!d

. s3.52d

Consequently, boths andy in transformations3.40d are given parametrically as follows:

s= expSC +E 2z!

t
!s4 − z!d

dt
!D;

y = ±
t
!1/2

A1/2FexpSC +E 2z!

t
!s4 − z!d

dt
!DG1/4

; s3.53d

z!=z!st!d5solution of the Abel equations3.43d including one constant of integration;

C = integration constant; t
!

= parameter.

The solution to the original Blasius equations3.6d follows the same exactly steps as in case
sad.

Summarizing, the simplified Blasius equations3.20d was reduced:sid to the generalized
Emden–Fowler equationss3.21d ands3.22d; sii d to the Emden–Fowler equation of the normal form
s3.26d, andsiii d to the Abel equation of the second kind of the normal forms3.32d. In addition, the
restricted form of the generalized Blasius equations3.6d was reduced:sid to the two-term gener-
alized Emden–Fowler equations3.39d, and sii d to the Abel equation of the second kind of the
normal form s3.47d. In addition, the solution to the original Blasius equations can be obtained
parametrically, as Eqs.s3.38d ands3.53d show. This presupposes the construction of the solution of
the Abel equationss3.32d and s3.47d, respectively.

In what follows, based on the mathematical construction briefly discussed in Ref. 13, we
provide the exact analytic solution of the Abel equation of the second kind of the normal form
yyx8−y=Fsxd, which consists of the fundamental ODE of the above-mentioned prescribed reduc-
tion procedure.

IV. EXACT ANALYTIC SOLUTION OF THE ABEL EQUATION, yy x8−y =F„x…

Before we address the issue of the construction of exact analytic solutions to the Abel ODE of
the second kind of the normal form, we will provide a mathematical result given by Julia in 1933
ssee Ref. 2, p. 27d concerning the exact solution of an Abel nonlinear ODE of the second kind.
According to this result, if the variable coefficients of the equation
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fg1sxdy + g0sxdgyx8 = f2sxdy2 + f1sxdy + f0sxd s4.1d

satisfy the functional relation

g0s2f2 + g1x
8 d = g1sf1 + g0x

8 d, g1 Þ 0, s4.2d

then there exists its general solution, given by the formula

g1y
2 + 2g0y

g1J
= 2E f0

g1J
dx+ C, s4.3d

whereC is an integration constant andJ the integrating factorJsxd=expfes2f2/g1ddxg.
Consider the Abel equation of the second kind of the normal form

yyx8 − y = Fsxd, s4.4d

whereFsxd is an arbitrary smooth function of the variablex. We introduce the functional trans-
formation

ysxd = f1sxdnsjd, j = jsxd, s4.5d

which reducess4.4d to the form

f1
2jx8nnj8 + f1f1x

8 n2 − f1n = F. s4.6d

Here, f1sxd, jsxd, andnsjd are to be determined. Introducing a new functiongsxd, one rewrites
s4.6d as

sf1
2jx8n + gdnj8 − 2F = s− f1

2jx8n + gdnj8 − 2f1f1x
8 n2 + 2f1n. s4.7d

The last equation splits into the following two equations:

sf1
2jx8n + gdnj8 − 2F = Gsxd, s4.8d

s− f1
2jx8n + gdnj8 − 2f1f1x

8 n2 + 2f1n = Gsxd. s4.9d

Here,gsxd and Gsxd are also arbitrary smooth functions to be determined. We develop now the
following steps.

1st step: We apply Julia’s construction on the Abel equations4.8d and obtain, after integration,
the following results:

g = f 1
2jx8; s4.10d

n2 + 2n − 8E G + 2F

f 1
2 dx+ C = 0, s4.11d

whereC is an integration constant.
2nd step: Similarly, we apply Julia’s construction on the Abel equations4.9d and obtain, after

integration, the following results:

f1 = sx + 2ld/2; n2 − 2n +
8

sx + 2ld4 E sx + 2ld2Gsxddx−
C
!

sx + 2ld4 = 0, s4.12d

wherel is a parameter andC
!

is a new constant of integration.
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The problem under consideration demands that from the already introduced three constants of

integrationl ,C, andC
!

only one exists. Ifl=0, thenf1sxd=x/2, and supposing that the original
Abel equations4.4d obeys the condition forx=0, ys0d=y0Þ0, by s4.5d we admit the resulty0

=0·nsj0d=0. This is unacceptable, and thus one concludes thatlÞ0 andC=C
!

=0.
Summarizing, the obtained results are the following:

f1sxd =
x + 2l

2
,

gsxd
jx8sxd

= f1
2, s4.13d

n2 + 2n − 8E G + 2F

sx + 2ld2dx= 0, n2 − 2n +
8

sx + 2ld4 E sx + 2ld2G dx= 0, s4.14d

wheregsxd, jsxd, andGsxd are to be determinedsxÞ−2ld.
3rd step: In what follows we are able to construct an exact analytic solution of the problem

under consideration, that is of the original Abel equations4.4d. Supposing, without loss of gener-
ality, real roots of the last two equationss4.14d, solving them forn, and equating the results we
deduce the unique relation

Î1 + 8E G

v
dx+ 16E F

v
dx= 2 +Î1 −

8

v2 E vG dx, s4.15d

where

v = sx + 2ld2 = s2f1d2. s4.16d

We rewrites4.15d in the form

Îv2 − Msxd = vÎ1 + Nsxd − 2v, s4.17d

with

Msxd = 8E vG dx, Nsxd = 8E G

v
dx+ 16E F

v
dx, s4.18d

and, sinceMx8=8vG, Nx8=8sG/vd+16sF /vd, squaring and differentiatings4.17d, one extracts the
equation

6vvx8 + Mx8 + 2s1 + Ndvvx8 + v2Nx8 − 8Î1 + Nvvx8 − 2v2 Nx8

Î1 + N
= 0. s4.19d

Finally, introducingMx8 andNx8 by way of s4.18d into the last relation, we perform the following
cubic equation fors1+Nd1/2:

s1 + Nd3/2 − 4s1 + Nd + F3 +
4sG + Fd
x + 2l

Gs1 + Nd1/2 − 4
G + 2F

x + 2l
= 0. s4.20d

The substitution

s1 + Nd1/2 = N̄ + 4
3 , s4.21d

transformss4.20d to the Cardan form

N̄3 + pN̄+ q = 0, s4.22d

where
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p = −
a2

3
+ b, q = 2Sa

3
D3

−
ab

3
+ c, a = − 4, b = 3 +

4sG + Fd
x + 2l

, c = −
4sG + 2Fd

x + 2l
.

s4.23d

It is well known that the solution of the cubic equations4.22d can be expressed in analytic
form, depending on the sign of the discriminant

Q = Sp

3
D3

+ Sq

2
D2

. s4.24d

WhenQ,0, s4.22d possesses three real roots, whereas whenQ.0 there exists a single real root
and a complex conjugate pair of roots. The caseQ=0 furnishes three real roots, two of which are
equal. Based on these observations and noting that only real roots are of interest, we list the
specific forms of the roots ofs4.22d as follows:

Case 1: Q,0 sp,0d,

Nsxd = SN̄sxd +
4

3
D2

− 1;

N̄1sxd = 2Î−
p

3
cos

a

3
, N̄2sxd = 2Î−

p

3
cos

a − p

3
, N̄3sxd = − 2Î−

p

3
cos

a + p

3
;

cosa = −
q

2Î− Sp

3
D3

; 0 , a , p, p,q as ins4.23d, s4.25d

Case 2: Q.0,

Nsxd = SN̄sxd +
4

3
D2

− 1; N̄sxd =Î3 −
q

2
+ ÎQ +Î3 −

q

2
− ÎQ, p,q as ins4.23d.

s4.26d

Case 3: Q=0,

Nsxd = SN̄sxd +
4

3
D2

− 1; N̄1sxd = 2Î3 −
q

2
, N̄2sxd = N̄3sxd = −Î3 −

q

2
, p,q as ins4.23d.

s4.27d

By now the problem can be solved according to the following procedure.
ad Combination of the second of Eqs.s4.18d together with the substitutions4.21d results in

Nsxd = 8E G + 2F

v
= FNsxd +

4

3
G2

− 1. s4.28d

Furthermore, Eq.s4.17d, together with the second part ofs4.14d, yields the expressions

Î1 −
M

v2 = Î1 + N − 2, sn − 1d2 = 1 −
M

v2 , s4.29d

by means of which we extract the equation
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Î1 + 8E G + 2F

v
dx= 2 + sn − 1d. s4.30d

Thus, combinings4.28d and s4.30d, one obtains the following solution fornsxd:

nsxd = N̄sxd + 1
3 = fNsxd + 1g1/2 − 1, s4.31d

whereN̄sxd as in Eqs.s4.25d–s4.27d. SinceNsxd has been evaluated already ins4.28d, the subsid-
iary functionMsxd provided ins4.18d also can be evaluated.

Summarizing, we perform the following solutions:

nsxd = N̄ + 1
3 = Î1 + N − 1,

Nsxd = 8E G + 2F

sx + 2ld2dx= SN̄ +
4

3
D2

− 1,

Msxd
sx + 2ld4 =

8

sx + 2ld4 E sx + 2ld2Gdx= − SN̄ +
1

3
DSN̄ −

5

3
D ,

N̄sxd as in Eqs.s4.25d to s4.27d. s4.32d

Note that bothNsxd andMsxd denote integrals, and they are expressed in terms of the unknown
subsidiary functionGsxd, which is to be determined.

bd It is easy now to show that the already constructed solutionnsxd in Eq. s4.31d verifies all the

transformed Abel equationss4.6d, s4.8d, ands4.9d if and only if the derivativeN̄x8 of the function

N̄sxd is given by the differentiation of the second ofs4.32d. In other words, the set

n = N̄ +
1

3
, N̄x8 =

4sG + 2Fd

sx + 2ld2SN̄ +
4

3
D s4.33d

verifies all the aforementioned Abel equations.
Indeed, introducings4.33d together with the expression forf1sxd given ins4.12d into the above

Abel equations, simultaneously settingjx8=1 sj=xd, we extract the cubic equationss4.20d. For
example, Eq.s4.9d provides

sÎ1 + N − 2d
2sG + 2Fd

x + 2l
= − sÎ1 + N − 1d2Î1 + N + 2sÎ1 + N − 1dÎ1 + N −

2G

x + 2l
Î1 + N,

while Eq. s4.6d also provides

sÎ1 + N − 1d
4sG + 2Fd

sx + 2ldÎ1 + N
= − sÎ1 + N − 1d2 + 2sÎ1 + N − 1d +

4F

x + 2l
,

which coincide with the cubic equations4.20d.
This leads to a similar result for the original Abel equations4.4d. Thus, the solution of the

original Abel equation can be written

ysxd = 1
2sx + 2ldfN̄sxd + 1

3g, s4.34d

whereN̄sxd is given in Eqs.s4.25d–s4.27d in terms of the unknown subsidiary functionGsxd.
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cd In determiningGsxd we refer to the sets4.33d together with the Abel equations4.8d, or
s4.9d, or equivalently with the following equivalent system of equations resulting from these Abel
equations:

sf1fx8n
2 − f1n − Fdsn + 1d + nsG + 2Fd = 0, s4.35d

nx8 =
f1x
8

f1
n2 −

1

f1
n +

F + G

f1
2 . s4.36d

The functional relations4.35d together with first part ofs4.33d leads to the cubic equations4.20d.
On the other hand, the Riccati equations4.36d, by means of the sets4.33d, results also in the cubic

equations4.20d. This means thatnsxd=N̄+1/3 is a solution of s4.36d if and only if N̄x8=4sG
+2Fd / sx+2ld2sN̄+4/3d.

By the functional transformation

nsxd − 1 = N̄sxd − 2
3 = H̄sj̄d, j̄ = lnux + 2lu, s4.37d

we reduce the Riccati equations4.36d to the normal form

H̄j8 = H̄2 − f1 – 4sG + Fde−j̄g. s4.38d

Thus, according to the above results, a solution of the Riccati equations4.38d is given by the
following set of equations:

H̄sjd = N̄ − 2
3, N̄j8 =

4sG + 2Fd

N̄ + 4
3

e−j̄. s4.39d

It is well knownssee Refs. 2 and 3d, that if N̄−2/3 is asolution ofs4.38d, then the general solution
is given by the formula

H̄Rsj̄d = N̄sj̄d −
2

3
+

fsj̄d

C −E
0

j̄

fsj̄ddj̄

, fsj̄d = expS2E
0

j̄ SN̄ −
2

3
Ddj̄D ;

N̄
j̄
8 =

4sG + 2Fde−j̄

N̄ + 4
3

, C = integration constant. s4.40d

For verification, inserting the quantities

H̄R = N̄ − 2
3 + A, A =

f

SC −E
0

j̄

f djD , s4.41d

into Eq. s4.38d, we obtain

N̄
j̄
8 − sN̄ − 2

3d2 + 1 – 4sG + Fde−j̄ = − A
j̄
8 + A2 + 2sN̄ − 2

3dA. s4.42d

By means of the expression forN̄
j̄
8 given in s4.40d, the left-hand side of the last equation results in

the cubic forms4.20d, which is identically equal to zero. On the other hand, the right-hand side,
which is a Bernoulli equation forA, is also identically equal to zero, since the quantityA given in
s4.41d is the general solution of this Bernoulli equation.
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Furthermore, the same set of equationss4.41d, together with the third part ofs4.40d, must be

the solution of the Abel equations4.6d, which in thesj̄ ,H̄d–coordinates can be written as

sH̄ + 1dH̄
j̄
8 = − H̄2 + 1 + 4Fe−j̄. s4.43d

Introducings4.41d into s4.43d, we obtain

sN̄ − 2
3 + 1dN̄j8 + sN̄ − 2

3d2 − 1 – 4Fe−j̄ = − sN̄ − 2
3 + 1dA

j̄
8 − AsN̄j8 + A

j̄
8d − A2 − 2sN̄ − 2

3dA.

s4.44d

The left-hand side of this equation is identically equal to zero, since, by means of the third part of
Eqs.s4.40d, the cubic forms4.20d results. Thus, the right-hand side becomes

sN̄ − 2
3 + A + 1dA

j̄
8 + AN̄

j̄
8 + A2 + 2sN̄ − 2

3dA = 0,

which, by way of the second part ofs4.40d, yields the equation

sN̄ − 2
3 + A + 1dA

j̄
8 + A2 + 32SN̄ −

2

3
D +

4sG + 2Fde−j̄

N̄ +
4

3
4A = 0. s4.45d

Introducing A
j̄
8 by means ofs4.42d, taking into account substitutions4.21d, and manipulating

accordingly, we extract the following cubic equation forf1+N̄sxdg:

2s1 + Nd3/2 + s3A − 4ds1 + Nd + sA2 − 4Ads1 + Nd1/2 + 4sG + 2Fde−j̄ = 0. s4.46d

Both cubic equationss4.20d ands4.46d are sufficient for the elimination ofN and the evaluation of
the subsidiary unknown functionG in terms of the second memberF of the original Abel equation
s4.4d, a fact that also ensures the general solution of this Abel equation. But, since Eq.s4.46d is a
strongly nonlinear integral equation, this elimination seems to be in general impossible.

However, for the elimination of the functionG and thus the construction of an exact analytic
solution of the original Abel equations4.4d, one defines a functional relation by the following
procedure. We seek a solution for the Riccati equations4.38d such that

lim
j̄→+`

H̄Rsj̄d = lim
j̄→+`

fN̄sj̄d − 2
3g; lim

j̄→−`

H̄Rsj̄d = lim
j̄→−`

fN̄sj̄d − 2
3g. s4.47d

These assertions by way ofs4.40d ensure the equations

lim
j̄→+`

E
0

j̄

w
j̄
8dj̄ = 0, lim

j̄→−`

E
0

j̄

w
j̄
8dj̄ = 0,

that is, the equation

E
−`

+`

w
j̄
8dj̄ = 0. s4.48d

It is also well knownfsee Ref. 15, p. 406s3.722.8dg, that

E
−`

+` cossaj̄d

b − j̄
= p sinsabd, a . 0.

Settinga=1 andb=0, the above integral becomes
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E
−`

+`

−
cosj̄

j̄
dj̄ = 0. s4.49d

Combination ofs4.48d and s4.49d results in

w
j̄
8 = −

cosj̄

j̄
,

and thusfRef. 15, p. 187s2.641.2d; p. 928s8.23dg, one defines

w = cisj̄d,

cisj̄d = −E
j̄

+` cos t

t
dt = C + lnj̄+E

0

j̄ cos t − 1

t
dt = the cosine integral;

cisj̄d = C + lnj̄ + o
n=1

`

s− 1dn j̄2n

s2nds2nd!
;

C = Euler’s constant = 0.577 215 664 901 532 5 . . . . s4.50d

By Eqs.s4.50d and the second part ofs4.40d, one extracts the relation

2E sN̄ − 2
3ddj̄ = lnucisj̄du,

and thus defines the solution

N̄ −
2

3
= −

1

2

cosj̄

j̄cisj̄d
= Fsj̄d. s4.51d

In addition, the general Riccati solution given by the first part ofs4.40d becomes

H̄Rsj̄d = −
1

2

cosj̄

j̄cisj̄d
−

cisj̄d

C −E cisj̄ddj̄

,

which, becausefRef. 15; p. 406s3.722.7d; p. 929s8.235.2dg

lim
j̄→0

cisj̄d = cis0d = − `, lim
j̄→−`

cisj̄d = ± pi ,

E cisj̄ddj̄ = FC + lnj̄ − 1 + o
n=1

`

s− 1dn j̄2n

s2n + 1ds2nds2nd!Gj̄,

satisfies the assertionss4.47d.
By now, in order for the functionN̄−2/3=Fsj̄d being defined ins4.51d to be a solution of the

Riccati equations4.38d, and thus of the original Abel equations4.4d, the third part of Eqs.s4.40d
must be also valid. Thus, we perform the equation
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4sG + 2Fde−j̄

N̄ + 4
3

=
1

2

cisj̄dsj̄sinj̄ + cosj̄d + cos2j̄

fj̄cisj̄dg2
, s4.52d

by means of which, introducing also the expression forN̄+4/3, weevaluate the subsidiary func-

tion Gsj̄d.
The above results complete the solution of the problem under consideration, that is the con-

struction of the exact solution of the original Abel equations4.4d. Indeed, following the inverse
course the above solution can be written as follows:

ysxd = 1
2sx + 2ldfN̄sxd + 1

3g,

4sG + 2Fde−j̄ =
1

4

fsj̄sinj̄ + cosj̄dA
!

+ cos2j̄gs4j̄A
!

+ cosj̄d

sj̄A
!

d3

;

A
!

sj̄d = cisj̄d = the cosine integral;

cisj̄d = C + ln j +E
0

j̄ cos t − 1

t
dt = C + lnj̄ + o

n=1

`

s− 1dn j̄2n

s2nds2nd!
;

j̄ = lnux + 2lu ⇒ dj̄ =
1

x + 2l
dx;

N̄sxd as in Eqs.s4.25d to s4.27d;

l = integration constant. s4.53d

V. EXACT ANALYTIC SOLUTIONS OF THE BLASIUS EQUATION

For simplicity and without loss of generality, we choose to extract the implicit analytic solu-
tion of the simplified Blasius equations3.20d emphasizing that the same exactly mathematical
procedure can be followed in the case of the restricted form of the generalized Blasius equation
s3.6d. According to the solution methodology developed in Sec. IVfformulass4.53dg, as well as in
Eqs. s3.31d and s3.29d, the solution of the Abel equations3.28d can be written in exact analytic
form as follows:

y
!sz!d = rsz!d + z! − 1 =z! − 1 + 1

2fN̄sz!d + 1
3gs2 lnuz!u − 3

2z! + 2ld;

4FGsj̄d + 2
F0

F1
Ge−j̄ =

1

4

fsj̄sinj̄ + cosj̄dA
!

+ cos2j̄gs4A
!

j̄ + cosj̄d

sj̄A
!

d3

;

j̄ = lnU2 lnU z!

2
U −

3

2
z! + 2lU, A

!
= cisj̄d = the cosine integral;
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F0

F1
=

sz! − 1ds4 − z
!d

4 – 3z!
, l = integration constant. s5.1d

Here,N̄sz!d is given in terms ofGsz!d by the formulass4.23d and s4.25d–s4.27d. In order to define

the type of the functionN̄sz!d which must be chosen among Eqs.s4.25d–s4.27d, as well as to define

the functionGsz!d and the constant of integrationl, we must combine the above Abel equation
s3.28d with the original Emden–Fowler equations3.21d through the transformations3.27d and the
boundary data of the problem under consideration. Thus, we have the following conditions:

1st boundary condition: for y1→`, j1→0.
By the second part ofs3.27d we obtain

lim
y→`

j1→0

y2

Îj
= lim

y1→`

j1→0

y
!

1

A
= ` ⇒ y

!
1 → `.

As y
!

1→`, from substitution ofs3.29d it follows that r1→`, and thus the Abel equations3.30d
permits us to write

sr
z
!

1

8 − F1,1dr1 = F0,1 ⇒ for r1 → `, F0,1→ `.

But, sinceF0,1=sz!1−1ds4−z!1d /2z!1, we have that forF0,1→`, z!1→0.

2nd boundary condition:for y0=a1, j0=b1
2/2, y

!
0=Î2a1

2A/b1, z!0=unknown.
The first boundary condition, that is to say

for y1 → `, j1 → 0 andz!1 → 0,

insures the type of the functionN̄sz!1d. In fact, by Eqs.s4.23d we estimateb=3,c=0,p=−7/3,q

=−116/3, and thus we conclude that the discriminantQsz!1d, Eq. s4.24d , becomes positive

sQsz!1d=s−7/9d3+s116/3d2d. This means that the form ofN̄sz!1d is expressed by Eq.s4.26d.
Based on the above observations, one distinguishes the following two cases concerning the

solution of the intermediate Emden–Fowler equations3.21d.
Case a:
This case corresponds to a unique solution of Eq.s3.21d inside the main interval

yP s+` ,a1g, jP f0,b1
2/2g, that is to say to a unique solution of the Blasius equations3.20d. Thus,

if the solution is unique, then the solution of the Abel equations3.28d is expressed by Eqs.s5.1d,

whereN̄sz!d is given bys4.26d. In addition, the solution of the Emden–Fowler equations3.21d is

expressed parametrically by Eqs.s3.37d, in which v!sz!d is the already constructed solution given in
s5.1d. For the evaluation of the two constants of integrationl andC, we apply the second of the
prescribed boundary conditions, that is to say the boundary condition

for y0 = a1, j0 = b1
2/2 andy

!
0 = Î2a1

2A/b1.

Applying these conditions on Eqs.s5.1d and s3.37d, we perform the following:

Î2a1
2A

b1
= z!0 − 1 +

1

2
FN̄sz!0d +

1

3
GS2 lnuz!0u −

3

2
z!0 + 2lD ,
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4FGsj̄0d + 2
F0

F1
U

z
!

0

e−j̄0 =
1

4

fsj̄0 sin j̄0 + cos j̄0dA0

!
+ cos2 j̄0gs4A0

!
j̄0 + cos j̄0d

sj̄0A0

!
d3

,

b1
2

2
= expfC + Rsz!0dg,

a1 = ±
y
!1/2sz!0d

A1/2 hexpfC + Rsz!0dgj1/4 s5.2d

where

Rsz!0d =E dz!

y
!sz!d − z! + 1

z
!

0
, j̄0 = lnU2 lnU z!0

2
U −

3

2
z!0 + 2lU, A

!
0 = cisj̄0d,

F0

F1
z
!

0
=

sz!0 − 1ds4 − z!0d

4 – 3z!0

. s5.3d

In the above equationsy!sz!d is given by the first of Eqs.s5.1d, andN̄sz!0d by Eq. s4.26d.
Equationss5.2d consist of a strongly nonlinearstranscendentald system of four equations

including five unknown parameters, that is, the parametersz!0;Gsz!0d ;l ;C, andRsz!0d. Thus, one
more relation must be added for the estimation of the above five parameters. This relation is the

cubic equations4.22d at z!=z!0.
The above-mentioned calculations permit us to construct the solution of the reduced Emden–

Fowler equations3.21d, that is, the solution of the problem under consideration in the phase plane.
The solution to the original Blasius equations3.20d can be obtained by way of Eqs.s3.38d in
combination with the third boundary conditionsyx8s0d=b1d, indispensable for the evaluation of the

third constant of integrationC
!

being introduced ins3.38d.
Case b:
The solution of the intermediate Emden–Fowler equations3.21d is not unique inside the main

interval yP s+` ,a1g ;jP f0,b1
2/2g, but it can be divided into several branches of solutions valid

separately inside consecutive subintervalsysn−1dP syn= +` ,yn−1d, ysn−2dP fyn−1,yn−2d , . . . , ys0d

P fy1,y0=a1g ; jsn−1dP fjn=0,jn−1d , jsn−2dP fjn−1,jn−2d , . . . , js0dP fj1,j0=b1
2/2g. Here, the

superscript in parentheses denotes quantity inside the corresponding subinterval.
For simplicity, and without loss of generality, we assume two branches of solutions valid

inside two consecutive subintervalssy2= +` ,y1d , fy1,y0=a1g; andfj2=0,j1d , fj1,j0=b1
2/2g.

In each pairh+` ,j2j ,hy1,j1j, andha1,b1
2/2j correspond three concrete valuesz!2, z!1, andz!0 of the

parameterz!, respectively. We note also that in each of the above subintervals two constants of

integrationls1d andls0d, as well as two subsidiary determinable functionsGs1dsz!d andGs0dsz!d exist,
being introduced separately by the corresponding solutions of two Abel equations of the type
s3.28d. The same conclusion results for the parametric solutionss3.37d of two Emden–Fowler
equations of the types3.21d valid separately in the above subintervals and introducing two con-

stants of integrationCs1d and Cs0d, as well as two integrandss1/sy!s1dsz!d−z!+1dd and s1/sy!s0dsz!d
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−sz!d+1dd. Thus, the whole problem is focused on the determination of the before-mentioned

concrete valuesj1,y1,z!1, as well as on the kind of solutions valid inside of each of the above
discrete subintervals.

The first boundary condition, that is to say

for y2 → `, j2 → 0, z
!

2 → 0 sy!s2d → `d,

insures only that the discriminantQs1dsz!s1dd is positive. This means that the solutionN̄s1dsz!s1dd valid
inside the first subintervalsy2=` ,y1d ; fj2=0,j1d is given by Eq.s4.26d. In other words, in the first
subinterval we admit the following solution of the Abel equations3.28d:

y
!s1dsz!s1dd = z

!s1d − 1 +
1

2
FN̄s1dSz

!s1d +
1

3
DGS2 lnuz!s1du −

3

2
z
!s1d + 2ls1dD ,

4FGsj̄s1dd + 2
F0

F1
Ge−j̄s1d

=
1

4

fsj̄s1dsin j̄s1d + cos j̄s1ddA
!s1d + cos2 j̄s1dgs4A

!s1dj̄s1d + cos j̄s1dd

sj̄s1dAs1d!
d3

,

j̄s1d = lnU2 ln U z!s1d

2
U −

3

2
z!s1d + 2ls1dU, A

!s1d = cisj̄s1dd,

UF0

F1
U

z
!s1d

=
sz!s1d − 1ds4 − z!s1dd

4 – 3z!s1d
, s5.4d

whereN̄s1dsz!s1dd as in Eq.s4.26d andz!s1dP s+` ,z!1d.
Similarly, the solution of the corresponding Emden–Fowler equations3.21d in the above

subinterval is given parametrically as follows:

js1d = expsCs1d + Rs1dsz!s1ddd;

ys1d = ±
y
!s1d1/2

sz!s1dd
A1/2 fexpsCs1d + Rs1dsz!s1dddg1/4;

y
!s1dsz!s1dd as in Eqs.s5.3d;

Rs1dsz!s1dd =E dz!s1d

y
!s1dsz!s1dd − z!s1d + 1

. s5.5d

At the concrete unknown valuez!s1d=z!1, where the solution changes, the continuity and the
smoothness demand the validity of the following equations:

N̄s1dsz!1d = N̄s0dsz!1d, y
!s1dsz!1d = y

!s0dsz!1d, y
!

z
!8

s1d
sz!1d = y

!
z
!8

s0d
sz!1d. s5.6d

We emphasize thatN̄s0dsz!s0dd , y
!s0dsz!s0dd, and y

!
z
8s0dsz!s0dd denote the corresponding quantities valid

inside the second subintervalfy1,y0=a1g ; fj1,j0=b1
2/2g and including one new constant of inte-
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gration ls0d, as well as a determinable functionGs0dsz!s0dd sin terms of the unknown expression

N̄s0dsz!s0ddd. The expression forN̄s0dsz!s0dd must be selected between formulass4.25d–s4.27d, while

the solution fory!s0dsz!s0dd ,Gs0dsz!s0dd is given by Eqs.s5.1d where, instead ofls1d andN̄s1dsz!s1dd, the

new expressionsls0d andN̄s0dsz!s0dd must be introduced.

Similarly, the continuity and the smoothness of the solution atz
!s0d=z

!
1 demand the validity of

the following two equations:

j1
s1d = j1

s0d, y1
s1d = y1

s0d, s5.7d

in which j1
s1d andy1

s1d as in Eqs.s5.5d, and

j1
s0d = expsCs0d + R1

s0dsz!1dd;

y1
s0d = ±

y
!

1
s0d1/2

sz!1d
A1/2 fexpsCs0d + R1

s0dsz!1ddg1/4;

y
!

1
s0dsz!1d as in Eqs.s5.4d for z!s0d = z!1with ls0d andN̄s0dsz!s0dd;

R1
s0dsz!1d =UFE dz!s0d

y
!s0dsz!s0dd − z!s0d + 1

GU
z
!s0d=z

!
1

. s5.8d

The five equations s5.6d and s5.7d introduce nine unknownsls1d ,N̄s1dsz!1d ,ls0d ,

N̄s0dsz!1d , R1
s1d ,R1

s0d ,z!1,Cs1d, andCs0d. Four additional equations of the typess5.1d ands3.37d hold

true atz!s0d=z!0, that is to say at the pointys0d=y0=a1 andjs0d=j0=b1
2/2, namely

Î2a1
2A

b1
= z!0 − 1 +

1

2
FN̄s0dsz!0d +

1

3
GS2 ln uz!0u =

3

2
z!0 + 2ls0dD;

4FGsj̄0d + 2UF0

F1
U

z
!

0

Ge−j̄0 =
1

4

fsj̄0 sin j̄0 + cos j̄0dA
!

0 + cos2 j̄0gs4A
!

0j̄0 − cos j̄0d

sj̄0A
!

0d3

,

b1
2

2
=USexpFCs0d +E dz!s0d

y
!s0dsz!ds0d − z!s0d + 1

GDU
z
!s0d=z0

!
;

a1 = ±
ys0d1/2!

sz!0d
A1/2 USexpFCs0d +E dz!s0d

ys0d!
sz!s0dd − z!s0d + 1

G1/4DU
z
!s0d=z

!
0

. s5.9d

These equations introduce the new fixed parameterz!0, as well as the new integrand value
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R0
s0d ; *3E dzs0d!

ys0d!
sz!s0dd − zs0d!

+ 1
4*

z
!s0d=z

!
1

.

Thus, a nonlinearstranscendentald system of nine equationss5.6d, s5.7d, and s5.9d with 11 un-

knownsls1d ,ls0d ,N̄s1dsz!1d ,N̄s0dsz!1d ,R1
s1dsz!1d , R1

s0dsz!1d ,R0
s0dsz!0d ,Cs1d ,Cs0d ,z!1, and z0

!
results, which

must be enriched by two additional cubic equations of the types4.22d valid atz!=z
!

1 andz
!=z

!
0. The

solution of the above system furnishes all the unknown parameters of the problem under consid-
eration.

The prescribed analysis can be extended to cases of several branches of different solutions
valid inside several consecutive subintervals demanding successive solutions of strongly nonlinear
stranscendentald systems of the types5.6d, s5.7d, ands5.9d.

VI. CONCLUSIONS

Through a series of admissible functional transformations, we reduced the generalized Blasius
equation in fluids to a three-term generalized Emden–Fowler equation. In addition, the restricted
and the simplified forms of this equation were reduced tosid a two-term generalized Emden–
Fowler’s equation;sii d Emden–Fowler’s equations of the normal form; andsiii d Abel’s equations
of the second kind.

By a mathematical solution methodology concerning the construction of exact analytic solu-
tions of the Abel equation of the second kind of the normal form, we succeeded in constructing
exact analytic solutions for the simplified as well as for the restricted form of the generalized
Blasius equation in axisymmetric flows. Thus, important unsolvable in exact form problems in
nonlinear mechanics, such as manufacturing of polymer and metal sheets, cooling of an infinite
metallic plate, boundary layer along a liquid film in condensation process, thermal capillary flow
in viscous layer, etc., now can be analytically solved.

The mathematical methodology introduced is general and can be applied to a wide class of
unsolvable nonlinear ODEs in mathematical physics and nonlinear mechanics.
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Uniform estimates on the velocity in Rayleigh–Bénard
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Manuel Núñeza!

Departamento de Análisis Matemático, Universidad de Valladolid, 47005 Valladolid, Spain

sReceived 17 March 2004; accepted 23 November 2004; published online 8 February 2005d

The kinetic energy of a fluid located between two plates at different temperatures is
easily bounded by classical inequalities. However, experiments and numerical
simulations indicate that when the convection is turbulent, the volume of the do-
mains in which the speed is large, is rather small. This could imply that the maxi-
mum of the speed, in contrast with its quadratic mean, does not admit ana priori
upper bound. It is proved that, provided the pressure remains bounded, a uniform
estimate for the speed maximum does indeed exist, and that it depends on the
maxima of certain ratios between temperature, pressure, and velocity. ©2005
American Institute of Physics.fDOI: 10.1063/1.1855400g

I. INTRODUCTION

The study of thermal convection of a fluid powered by the difference of temperature between
two plates, known as Rayleigh–Bénard convection, has been an extensively studied subject for a
long time. Computer modeling and physical experiments have produced an enormous wealth of
information: for recent reviews, see Refs. 1 and 2. Perhaps unavoidably, there has not been a
comparable volume of rigorous studies, if we except the study of the stability of different patterns
sRef. 3, pp. 23–95d. It is well known that when the difference of temperature between the top and
bottom plates exceeds a certain amount, usually measured in terms of the Rayleigh constantR,
convection sets in. Near the onset, convection cells occur; with increasingR, and depending also
on the ratio between viscosity and thermal diffusivitysthe Prandtl numberd more complex patterns
appear and bifurcations to chaotic states may occur. The same may be said of the temperature: for
a colorful illustration, starting with regular rolls, see e.g., Ref. 4.

The standard mathematical model of Reyleigh–Bénard convection is given by the Boussinesq
approximation to the equations of motion, which we repeat here for convenience. We will consider
a d-dimensional domainU of the formV3 f0,hg, and as usual we will assume that the tempera-
ture is constant at the lower and upper lids,T=T0 at V3 h0j andT=Th,T0 at V3 hhj. The rest
of the boundary conditions will be discussed later. Let us denote byv the fluid velocity,T the
temperature,n the kinematic viscosity,k the thermal diffusivity, andp the kinetic pressure. Then
the nondimensionalized Boussinesq approximationssee, e.g., Ref. 5d to the equations of motion is

]v

]t
= nDv − v · ¹ v − ¹ p + sT − Thded, s1d

]T

]t
= kDT − v · ¹ T, s2d

adElectronic mail: mnjmhd@am.uva.es
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¹ ·v = 0. s3d

ed denotes the vertical unit vector. Traditionally the differenceu of the actual temperature with the
linear one between the lidssassociated to pure heat conductiond is used,

u = T − T0 + bxd,

s4d

b =
T0 − Th

h
.

p is also changed top+bxd
2/2−sT0−Thdxd swhich we denote again bypd. The final system is

]v

]t
= nDv − v · ¹ v − ¹ p + ued, s5d

]u

]t
= kDu − v · ¹ u + bvd, s6d

¹ ·v = 0. s7d

Boundary conditions are usually the following ones: the upper and lower plates are taken either
rigid, where we assume a no-slip condition andv vanishes there, or stress free, in which casevd=0
and the vertical derivatives of the remaining components of the velocity are also zero,]dvi =0. The
lateral walls are assumed rigid and conducting, so thatv andu vanish there.

Let us state some classical results, sinceT satisfiess2d, which is a scalar parabolic equation
without terms inT, it also satisfies the maximum and minimum principlesssee, e.g., Ref. 6d. That
means thatT lies always betweenT0 andTh, which makes excellent physical sense. Thereforeu is
uniformly bounded. By multiplyings5d by v, integrating inU and making use of the boundary
conditions, one gets

1

2

d

dt
E

U
v2 dV + nE

U

u ¹ vu2 dV =E
U

uvd dV ø iui` VolsUd2ivdi2, s8d

where VolsUd denotes the volumesarea in dimension twod of U. Since with our boundary condi-
tions a Poincaré inequality holds, there exists a positive constantc such that

cE
U

uv2udV ø E
U

u ¹ vu2 dV.

Thus, by standard inequalities,

1

2

d

dt
ivi2

2 +
nc

2
ivi2

2 ø
1

2n2c2iui`
2 VolsUd, s9d

which implies thativi2 is bounded for all time.
As in many other turbulent situations, modeling of the chaotic phase of convection shows a

tendency of the flow to concentrate the velocity in regions of small volume.7 Thus the bounded-
ness of the kinetic energy does not provide ana priori bound upon the maximum of the speed. It
is true that physically it seems obvious that this maximum cannot grow without limit, but never-
theless it is interesting to obtain rigorous estimates in terms of the main magnitudes of the
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problem. Our only hypothesis will be the boundedness of the pressurep for, to be specific, of
p / s1+vdg.

II. ANALYSIS OF THE MOMENTS OF THE VELOCITY

Let us start with the momentum equation

]v

]t
= nDv − v · ¹ v − ¹ p + ued, s10d

and forp=1,2…, let

Fp =E
U

vp dV, s11d

wherev= uvu represents the modulus ofv. Fp is a function of time. Sincev2=v ·v,

]v2p

]t
= 2pv2p−2v ·

]v

]t
.

Therefore

1

2p
Ḟ2p =E

U
v2p−2v ·

]v

]t
dV,

and taking into account the momentum equation,

1

2p
Ḟ2p = −E

U
v2p−2sv · ¹ vd ·v dV + nE

U
v2p−2v · Dv dV +E

U

suv2p−2vd − v2p−2v · ¹ pddV.

s12d

In the first place,

E
U

v2p−2sv · ¹ vd ·v dV =E
U

1

2p
v · ¹ v2p dV = 0. s13d

As for the dissipative term,

E
U

v2p−2v · Dv dV =E
U
o

j

s¹ · sv jv
2p−2 ¹ v jd − ¹ v j · ¹ sv2p−2v jdddV

=
1

2
E

]U
v2p−2]v2

]n
ds −E

U
Sv2p−2u ¹ vu2 +

p − 1

2
v2p−4u ¹ v2u2DdV. s14d

It is understood that the last termsmultiplied by p−1d vanishes whenp=1; there are never
negative powers ofv. As for the boundary integral, it also vanishes, since]v2/]n vanishes in all
the boundary, including possible stress-free surfaces.

The last term we must consider is
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E
U

suv2p−2vd − v2p−2v · ¹ pddV. s15d

Since

−E
U

v2p−2v · ¹ p dV = −E
]U

v2p−2pv ·n ds +E
U

sp − 1dpv2p−4v · ¹ v2 dV, s16d

and again the boundary integral vanishes, the term ins16d is

E
U

sv2p−2uvd + sp − 1dpv2p−4v · ¹ v2ddV, s17d

with the same meaning as before whenp=1. We may bounds17d in several ways. We first choose

UE
U

v2p−2uvd + sp − 1dpv2p−4v · ¹ v2 dVU = UE
U

u

1 + v
svdv

2p−2 + vdv
2p−1d + sp − 1d

p

1 + v
sv2p−4

+ v2p−3dv · ¹ v2 dVU
ø I u

1 + v
I

`
E

U

sv2p−2 + v2p−1duvdudV + sp − 1dI p

1 + v
I

`

3E
U

sv2p−4 + v2p−3duv · ¹ v2udV

ø I u

1 + v
I

`
E

U

sv2p−1 + v2pddV + sp − 1dI p

1 + v
I

`

3E
U

sv2p−3 + v2p−2du ¹ v2udV. s18d

From now on we will denote

a = I u

1 + v
I

`

,

b = I p

1 + v
I

`

.

Notice that they are functions oft. Thus

1

2p
Ḟ2p ø − nE

U
v2p−2u ¹ vu2 dV −

nsp − 1d
2

E
U

v2p−4u ¹ v2u2 dV + aE
U

sv2p−1 + v2pddV

+ sp − 1dbE
U

sv2p−3 + v2p−2du ¹ v2udV. s19d

For our first estimate we will not make use of the first dissipative term. We have

aE
U

sv2p−2 + v2p−1ddV ø asF2p−1 + F2pd. s20d

As for the second term, by using Cauchy–Schwarz and Young’s inequalities,
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sp − 1dbE
U

svp−1 + vpdvp−2u ¹ v2udV ø sp − 1dbSE
U

svp−1 + vpd2 dVD1/2SE
U

v2p−4u ¹ v2u2 dVD1/2

ø sp − 1db21

n
E

U

svp−1 + vpd2 dV

+
sp − 1dn

4
E

U
v2p−4u ¹ v2u2 dV

ø sp − 1db22

n
sF2p−2 + F2pd +

sp − 1dn
4

E
U

v2p−4u ¹ v2u2 dV.

s21d

We have proved the recursive inequality

1

2p
Ḟ2p ø −

nsp − 1d
4

E
U

v2p−4u ¹ v2u2 dV + aF2p−1 + aF2p +
2sp − 1db2

n
F2p−2 +

2sp − 1db2

n
F2p.

s22d

We use now the fact thatU has finite volume to bound all theFk in terms ofF2p,

F2p−2 ø VolsUd1/pF2p
1−1/p,

s23d
F2p−1 ø VolsUd1/2pF2p

1−1/2p.

Let us begin studying a series of alternatives. It may happen

sAd F2p,1. Otherwise,
sBd F2p−2øVolsUd1/pF2p, F2p−1øVolsUd1/2pF2p.

We will consider the consequences of alternativesBd. We have

1

2p
Ḟ2p +

nsp − 1d
4

E
U

v2p−4u ¹ v2u2 dV ø Sas1 + msUd1/2pd +
2sp − 1db2

n
s1 + VolsUd1/pdDF2p,

s24d

and if we callk=1+maxhVolsUd ,1j,

1

2p
Ḟ2p +

nsp − 1d
4

E
U

v2p−4u ¹ v2u2 dV ø kSa +
2sp − 1db2

n
DF2p. s25d

Let us now remember a particular case of the Gagliardo–Nirenberg inequalitysRef. 8, pp. 69 and
70d. For any functionf [H1sUd, there exists a constantC depending only onU such that

ifi2
d+2 ø Csi ¹ fi2 + ifi1ddifi1

2. s26d

Sincesx+yddø2d−1sxd+ydd, by takingl=maxh2d−1C,1j,

ifi2
d+2 ø lsi ¹ fi2

d + ifi1
ddifi1

2, s27d

with lù1. Notice that forf =vp,

ifi2 = F2p
1/2, ifi1 = Fp, ¹ f =

p

2
v2p−2 ¹ v2, i ¹ fi2

2 =
p2

4
E

U
v2p−4u ¹ v2u2 dV. s28d

In the inequalitys27d, there exist two alternatives. Either
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sb1d ifi2 , l1/sd+2difi1, s29d

or

sb2d i ¹ fi2
2 ù S ifi2

d+2 − lifi1
d+2

lifi1
2 D2/d

. s30d

With our election off, the first alternative means

F2p , l2/sd+2dFp
2. s31d

Alternative sb2d, when taken intos25d, yields

1

2p
Ḟ2p ø −

nsp − 1d
p2 SF2p

sd+2d/2 − lFp
d+2

lFp
2 D2/d

+ kSa +
2sp − 1db2

n
DF2p. s32d

Take now, forpù2,

gp = lS1 + kd/2S p2

nsp − 1dD
d/2Sa +

2sp − 1db2

n
Dd/2D . s33d

Notice thatgpùlùl2/sd+2dù1. A short calculation will convince us that ifF2p.gpFp
2 and sb2d

occurs, thenḞ2pø0. Since alternativesb1d is included in

sB1d F2p ø gpFp
2,

the remaining possibility is

sB2d F2p ø 0.

Recall that all this assumessBd. Therefore the alternatives aresAd F2pø1, sB1d or sB2d.

III. UNIFORM ESTIMATES IN TIME

Let us consider a time intervalf0,tg, and let

Fpstd = maxh1,maxhFpstd:t [ f0,tgjj
s34d

Gpstd = maxhgpstd:t [ f0,tgj.

For everyt[ f0,tg wheresAd or sB1d occurs, certainly

F2pstd ø GpstdFpstd2. s35d

Now, if s35d occurs for everyt[ f0,tg, obviously

F2pstd ø GpstdFpstd2. s36d

The other possibility is that for a certaint1[ f0,tg,

F2pst1d . GpstdFpstd2, s37d

which implies thatsB2d holds, i.e.,Ḟ2pst1dø0. Let st0,t1g be a maximal left interval wheres37d
occurs. We know thatF2p is decreasing there. Ift0.0, F2pst0d=GpstdFpstd2, which, since
F2pst1døF2pst0d, contradicts our hypothesis. The only possibility is thats35d occurs nowhere, i.e.,
t0=0. In that case,F2p is decreasing inf0,t1g and thereforeF2pst1døF2ps0d. Thus, in every case

F2pstd ø maxhGpstdFpstd2,F2ps0dj. s38d

Sinceivstdip=Fpstd1/p, if we denote
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fpstd = maxh1,maxhivstdip:t [ f0,tgjj, s39d

the 2pth root of s38d yields

f2pstd ø maxhGpstd1/2pfpstd,ivs0di2pj. s40d

Hence

f4std ø maxhG2std1/4f2std, ivs0di4j,

f8std ø maxhG4std1/8G2std1/4f2std,G4std1/8ivs0di4, ivs0di8j¯ ,

s41d
f2nstd ø hG2n−1std1/2n

G2n−2std1/2n−1
¯G2std1/4f2std,

G2n−1std1/2n
G2n−2std1/2n−1

¯G4std1/8ivs0di4…, ivs0di2n.

Let us study the infinite product

G2std1/4G4std1/8
¯G2n−1std1/2n

¯ . s42d

Recall that

astd = I ustd
1 + vstdI`

, bstd = I pstd
1 + vstdI`

. s43d

Let us denote byastd, bstd their respective maxima inf0,tg. By the expression ins33d,

G2nstd ø lS1 + kd/2S 22n

ns2n − 1dD
d/2Sastd +

2s2n − 1d
n

bstd2Dd/2D
ø lS1 +S22n+2kSastd

n
+

bstd2

n2 DDd/2D ø lS1 +S22n+2kSastd
n

+
bstd2

n2 + 1DDd/2D . s44d

The addition of 1 to the parentheses is intended to ensure that

x = S22n+2kSastd
n

+
bstd2

n2 + 1DDd/2

ù 1.

Since for thosex, logs1+xdø1+logx holds,

log G2nstd ø log l + 1 +
d

2
Slog k + s2n + 2dlog 2 + logSastd

n
+

bstd2

n2 + 1DD .

Hence the sum of the logarithms ofG2n satisfies

o
n=1

`
1

2n+1log G2nstd ø
1

2
S1 + logl +

d

2
log kD +

d

2
log 2o

n=1

`
2n + 2

2n+1 +
d

4
logSastd

n
+

bstd2

n2 + 1D .

s45d

Thus, since the sum of the seriesos2n+2d /2n+1 is 3,

p
n=1

`

G2nstd1/2n+1
ø 23d/2sled1/2kd/4Sastd

n
+

bstd2

n2 + 1Dd/4

, s46d

and the same may be said of any finite product
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p
n=1

m

G2nstd1/2n+1
. s47d

Since, on the other hand,

ivs0dip ø ivs0di` VolsUd1/p ø kivs0di`, s48d

we find

f2nstd ø 23d/2sled1/2kd/4Sastd
n

+
bstd2

n2 + 1Dd/4

maxhf2std,kivs0di`j. s49d

It is well known thativip→ ivi` asp→`, so thatf2nstd→maxh1,ivstdi` : t[ f0,tgj. Also, f2std
represents the maximum of the kinetic energy inf0,tg, which we denote byEstd. Calling M the
universal constant written ins49d, we obtain our main estimate

maxhivstdi`:t [ f0,tgj ø MS1

n
max
f0,tg

I ustd
1 + vstdI`

+
1

n2max
f0,tg

I pstd
1 + vstdI`

2

+ 1Dd/4

3 maxhEstd,kivs0di`j. s50d

IV. COMMENTS AND EXTENSIONS OF THE ESTIMATES

In principle it could look as if the estimates in terms ofu andp divided by 1+v are unnec-
essary, since ifv is bounded so areu and p. While there is no conceptual gain in taking these
magnitudes divided by 1+v, the estimates50d is in fact finer than one involving onlyiui` and
ipi`. It can be far better if the regions whereu and/orp are larger coincide with regions of high
velocity. In particular, high temperature deviation propels the fluid faster, so it is likely that
u / s1+vd is considerably smaller thanu.

When the flow is chaotic, the temperature may become irregular. Therefore it is possible that
some primitive ofu se.g., a functionQ such that for some coordinatej , ] jQ=ud may have a better
behavior than the temperature deviation: portions whereu is positive may compensate with others
where it is negative to obtain a smooth result. We will see thativi` may also be bounded in terms
of Q / s1+vd. The method follows the steps of the previous one: the term

E
U

uv2p−2vd dV s51d

may be written as

E
U

s] jQdv2p−2vd dV = −E
U

Q] jsv2p−2vdddV = −E
U

Qsv2p−2] jvd + 2sp − 1dv2p−4vdv · ] jvddV.

s52d

This may be bounded by

s2p − 1dE
U
U Q

1 + v
Usv2p−2 + v2p−1du ¹ vudV ø s2p − 1dI Q

1 + v
I

`
E

U

sv2p−2 + v2p−1du ¹ vudV.

s53d

Using now the Cauchy–Schwarz inequality, the term is bounded by
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s2p − 1d2I Q

1 + v
I

`

1

2n
E

U

sv2p−2 + v2pddV + nE
U

v2p−2u ¹ vu2 dV. s54d

The last term may now be cancelled with the first of the dissipative termsswhich we did not use
in our previous proofd and we are left with

s2p − 1d2I Q

1 + v
I

`

2 1

2n
sF2p−2 + F2pd. s55d

The rest of the proof is analogous to the previous one. We are left with a bound of the form

maxhivstdi`:t [ f0,tgj ø MS 1

n2max
f0,tg

I Qstd
1 + vstdI`

2

+
1

n2max
f0,tg

I pstd
1 + vstdI`

2

+ 1Dd/4

3 maxhEstd,kivs0di`j. s56d

Notice, however, that now a factor of the form 1/n2 appears before the maximum norm of
Q / s1+vd, and this is squared, while before we had only 1/n and the power ofu / s1+vd was one.
This may be important when the viscosity is low.

V. CONCLUSIONS

While the kinetic energy of the flow in Rayleigh–Bénard convection may be easily bounded
by classical inequalities, the maximum of the velocity is harder to handle. As soon as the flow
becomes chaotic small islands or filaments of high velocity are observed, which makes compatible
the boundedness of the square mean of the velocitysthe kinetic energyd with the existence of large
velocity peaks. It is proved here that, provided the pressure remains uniformly bounded, so does
the velocity, and its maximum may be estimated by the maxima of the temperature deviation and
pressure divided by one plus the velocity modulus. Other estimates may be made in terms of
certain means of the temperature, which may be considerably smaller than the temperature itself if
its distribution is irregular. The bounds depend on certain powers, depending on the dimension, of
the previously mentioned magnitudes and the flow viscosity.
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The topological interaction method is applied to the evaluation of boundary–
boundary correlation functions, which yield the square of the spontaneous magne-
tization mb at the boundary in the thermodynamic limit. One of the remarkable
results is that the boundary–boundary correlation functionCM is found to be non-
monotonic with respect to the system sizeM for T,Tc, because of boundary
effects. On the other hand, it is monotonic aboveTc, CM .sA+sTd /ÎMd
exps−M /jd with the correlation lengthj and withA+sTd,ÎT−Tc near the critical
point Tc. At the critical point,CM ,1/M, and belowTc, CM .mb

2+s−A−sTdÎM

+BsTd+CsTd /ÎMdexps−M /jd, whereA−sTd,mb
3, BsTd,mb

2, CsTd,mb,ÎT−Tc.
Fisher’s finite-size scaling is confirmed in this respect. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1845954g

I. INTRODUCTION

A second-order phase transition1–8 is characterized by spontaneous symmetry breakingsSSBd
accompanied by the appearance of long-range ordersLROd,5,6,9

LRO = lim
R→`

kQs0dQsRdl s1.1d

for the relevant local order-parameterQj or QsRd of the system. The global order parameterQ is
defined by the sum or integral

Q = o
j

Qj =E QsRdddR s1.2d

in d dimensions. A standard method to study SSB is to evaluate the generalized partition function
of the form

ZsT,Ld = Tr expf− bsH0 − LQdg, s1.3d

whereL is a parameter conjugate to the order parameterQ. Then, the thermal average ofQ is
given by

adElectronic mail: msuzuki@rs.kagu.tus.ac.jp
bdElectronic mail: j1202706@ed.kagu.tus.ac.jp
cdElectronic mail: scchang@mail.ncku.edu.tw
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kQlL =
]

]sbLd
log ZsT,Ld. s1.4d

The spontaneous order parameter is obtained by taking the following limits:

kQl+ = lim
L→+0

lim
N→`

kQlL s1.5d

for the system sizeN. The order of the above two limits is crucial, as is well known. It has been
proved5,6,9 that

LRO = kQl+
2. s1.6d

It is extremely difficult to calculateZsT,Ld for a nonvanishingL. Yang2 used a trick to make a
magnetic fieldH go to zero proportionally toN−1/2=L−1 si.e., H,N−1/2=L−1d, in order to evaluate
the spontaneous magnetizationms of the two-dimensional Ising model. It might be impossible to
obtainms if we setH,N−1 swhich means that the Zeeman energy is of the order of unity even
below the critical pointTcd, as was discussed by Suzuki and Suzuki.10

In the present paper, we study SSB in the two-dimensional Ising model by using the topo-
logical interaction methodsTIM d proposed by Suzuki.11,12 The scheme of TIM in the present
model sFig. 1d is described by the following Hamiltonian:

H = H0 − J28o
k=1

N

S1,kSM,k, s1.7d

where

H0 = − J1o
j=1

M

o
k=1

N

Sj ,kSj ,k+1 − J2 o
j=1

M−1

o
k=1

N

Sj ,kSj+1,k s1.8d

with Sj ,k= ±1. Clearly,J28 changes the topology of the system, according to the conditionsJ28Þ0 or
J28=0. Physically, ifJ28Þ0, then hkS1,iSM,ilj denote short-range correlations. However, ifJ28=0,
then they denote the long-range correlation forM→`, under the limitN→` first before setting
J28=0. This condition is vital for evaluating the long-range order belowTc. This corresponds to the
situation that the thermodynamic limitsN→`d should be taken before a magnetic fieldH is made
to vanishsH→ +0d in order to calculate the spontaneous magnetization in a uniform system.

Even whenM is finite, this topological interaction method yields the boundary–boundary
correlation functionCMs0d=kS1SMlJ28=0 as follows:

FIG. 1. Topological interactionJ28 to connect the two opposite boundary spins.
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CMs0d = lim
J28→+0

lim
N→`

1

bN

] ln Z2DsJ28d
]J28

, s1.9d

whereZ2DsJ28d is the partition function of the system andb is the inverse temperaturesi.e., b
=1/kBTd. The nearest-neighbor correlation function, denoted asCMsJ2d, can be treated at the same
time as

CMsJ2d = lim
J28→J2

lim
N→`

1

bN

] ln Z2DsJ28d
]J28

. s1.10d

In the present paper, we derive boundary–boundary correlation functions in the two-
dimensional Ising model and we study their asymptotic behavior for large system size.

II. PARTITION FUNCTION, CORRELATION FUNCTIONS AND BOUNDARY
SPONTANEOUS MAGNETIZATION

Consider the rectangular Ising model with the spin–spin interactionJ1s.0d in the vertical
direction andJ2s.0d in the horizontal direction. Impose the topological spin–spin interactionJ28
between column 1 and columnM, as is shown in Fig. 1. The Hamiltonian of the system is the
same as that given in Eqs.s1.7d and s1.8d, namely

H = − J1o
j=1

M

o
k=1

N

Sj ,kSj ,k+1 − J2 o
j=1

M−1

o
k=1

N

Sj ,kSj+1,k − J28o
k=1

N

S1,kSM,k s2.1d

with periodic boundary condition in the vertical direction. The partition function of this system is
expressed as

Z2D = 2MN−1scoshK1dNMscoshK2dNsM−1dscoshK28d
Ns− Pf A1 + Pf A2 + Pf A3 + Pf A4d,

s2.2d

using the standard PfaffiansPfd method.4,13–15 Here, the above four Pfaffians are evaluated in
Appendix A to give the following expressions:

hPf Aij2 = detAi = p
n=1

N

hz2s1 − z1
2djMhsf + f8z2dasundM + sf8 + fz2dasund−M + 2s− 1dizj s2.3d

for i =1, 2, 3, and 4 with the notationsK1,2=bJ1,2, K28=bJ28, z1,2=tanhK1,2, z28=tanhK28 and z
=z28 /z2. The argumentshunj denote 2np /N for i =1, 2 ands2n−1dp /N for i =3, 4. The functions
f = fsad and f8= fs1/ad are given by

f = fsad =
sa − z2/x1dsa − z2x1d

s1 − z2
2dsa2 − 1d

s2.4d

and

f8 = fs1/ad = 1 − fsad =
s1 − az2/x1ds1 − az2x1d

s1 − z2
2ds1 − a2d

, s2.5d

respectively, wherex1=s1−z1d / s1+z1d=e−2K1 anda=asud is the larger solution of the following
equation:

s1 + z1
2ds1 + z2

2d − 2z1s1 − z2
2dcosu − z2s1 − z1

2dsa + a−1d = 0. s2.6d

More explicitly, we have
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a = asud =
1

2s1 − z1
2dz2

fs1 + z1
2ds1 + z2

2d − 2z1s1 − z2
2dcosu

+ Îhs1 + z1
2ds1 + z2

2d − 2z1s1 − z2
2dcosuj2 − 4s1 − z1

2d2z2
2g. s2.7d

The correct branch of the solution differs above and belowTc. This remark is important in
evaluating explicitly the root of Eq.s2.7d. Namely, the functiona=asud is such a branch of the
root as connects withas0d=s1−z1d / hz2s1+z1dj for T.Tc andas0d=z2s1+z1d / s1−z1d for T,Tc.

Then, the correlation functionkS1,iSM,il for N→` can be evaluated as

CMsJ28d ; kS1,iSM,il = lim
N→`

1

N

] log ZsK1,K2,K28d
]K28

= z2z +
1 − z2

2z2

2pz2
E

0

2p sf8aM + fa−Mdz + 1

sf + f8z2daM + sf8 + fz2da−M + 2z
du, s2.8d

wherez denotes the topological parameter defined byz=tanhsbJ28dcothsbJ2d. The above integral
formula of CMsJ28d is very basic in our investigation on the boundary–boundary correlation. Note
that asudùas0d.1 except the critical pointfwhere as0d=1g. Then, the limitM→` is easily
taken in the above integrals2.8d to give the result

C`sJ28d = z2z +
1 − z2

2z2

2pz2
E

0

2p zfs1/asudd
fsasudd + z2fs1/asudd

du. s2.9d

This shows how the nearest-neighbor correlation function changes according to the change of
one-line interactionshJ2j→ hJ28jÞ0d.

It is shown here from the idea of topological interaction method that the limitJ28→ +0 of the
functionC`sJ28d yields the square of the boundary spontaneous magnetizationmb obtained first by
McCoy and Wu13 as follows. It should be noted first that if we setz=0 in the integral of Eq.s2.9d
then the integrals2.9d will vanish. This comes from the wrong limit for studying SSB; we must
integrate Eq.s2.9d first sN→`d before settingJ28=0 snamelyz=0d. No SSB occurs for finiteN.
This is a quite general remark in studying SSB. This situation makes our calculations very difficult
or subtle in our paper, as will be seen later.

Now, we take the correct limitJ28→ +0 after the integration with respect tou in Eq. s2.9d
using the delta functiondsxd as

lim
J28→+0

C`sJ28d =
1

2pz2
lim

z→+0
E

−p

p z

fsasudd/fs1/asudd + z2du

=
1

2z2
E

−p

p

dsÎfsasudd/fs1/asuddddu = 50 sT . Tcd,

z2
2s1 + z1d2 − s1 − z1d2

4z1z2
2 sT ø Tcd,6

s2.10d

because it is easily shown from Eqs.s2.4d, s2.5d, ands2.7d that

fsasudd = 1 + Osu2d and fs1/asudd = Osu2d for T . Tc s2.11d

and

fsasudd = f̂u2 + Osu4d and fs1/asudd = 1 − f̂u2 + Osu4d for T , Tc s2.12d

nearu=0, where
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f̂ =
4z1

2z2
2

hz2
2s1 + z1d2 − s1 − z1d2j2 . s2.13d

It should be remarkable that the first integrand of Eq.s2.10d is essentially singular atu=0 andz=0
only below the critical pointTc. Equivalently, the argument of the delta function in Eq.s2.10d,
z2hfsasudd / fs1/asuddj1/2, has a zero point in the integral ranges−pøuøpd only belowTc. Thus,
we arrive at the following result:

lim
J28→+0

C`sJ28d = mb
2, mb = Hcosh 2K2 − coth 2K1

cosh 2K2 − 1
J1/2

, s2.14d

below Tc. This is an alternative derivation of McCoy–Wu’s formula onmb.
It will be instructive to studyC`sJ28d for various values of the ratioJ28 /J2. In particular,C`sJ2d

is confirmed to be equal to the uniform nearest-neighbor correlation function16,17

C`sJ2d =
1

4pz2
E

−p

p H1 + z2
2 +

s1 − z2
2dh2z1s1 + z2

2dcosu − s1 + z1
2ds1 − z2

2j
Îhs1 + z1

2ds1 + z2
2d − 2z1s1 − z2

2dcosuj2 − 4z2
2s1 − z1

2d2Jdu,

s2.15d

as it should be. All the functionsC`sJ28d are singular atTc for any values ofJ28, as shown in Fig.
2.

III. BOUNDARY–BOUNDARY CORRELATION FUNCTION

The main purpose of the present paper is to evaluate the boundary–boundary correlation
function both for finiteM and infiniteMs→`d, using the above topological interaction method. In
principle, this should be performed by taking the limitJ28→ +0 sand consequentlyz=z28 /z2

→ +0d in the above basic integral formulas2.8d. In fact, we obtain an integral representation of
the form

CM ; CMs0d =
1

2pz2
E

−p

p 1

fMsud
du, s3.1d

where

FIG. 2. Temperature dependence of the correlation functionsC`sJ28d for various values of the ratioJ28 /J with J1=J2=J.
They are all singular atTc swherekBTc/J=2.269. . .d.
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fMsud = fsasuddasudM + fS 1

asud
Dasud−M . s3.2d

It is easily found from Eqs.s2.4d, s2.5d, ands2.7d that fMsud is anMth order polynomial of cosu.
For example, we have, forM =2,

f2sud =
1

z2
2s1 − z1

2d2fs1 + z1
2 − 2z1 cosud2 + 4z1

2z2
2 sin2 ug. s3.3d

Then, we obtain the correlation function

C2 =
z2s1 + z1

2d
Îs1 − z1

2d2 + 4z1
2z2

2
= 1 − 8e−4K1−2K2 + ¯ = C` − 4e−4K1−2K2 + ¯ . s3.4d

The second expression of Eq.s3.4d is a low temperature series expansion. The third expression
shows the quite remarkable fact thatC2 is less thanC` at low temperatures. This surprising result
is found to be universal for any values ofM as shown in Fig. 3, which has been calculated
numerically froms3.1d.

It will be interesting and useful in the theory of critical phenomena to study analytically the
asymptotic behavior of the boundary–boundary correlation functionCM. First note that the inte-
grand of Eq.s3.1d for largeM is singular atu=0 belowTc. Thus, it seems to be rather complicated
to evaluate Eq.s3.1d for largeM belowTc. We must integrate first Eq.s3.1d before taking the limit
M→`, or at least, to perform the two procedures simultaneously. In fact, we obtain, belowTc,

C` = C`s0d =
1

2pz2
lim

M→`
E

−p

p as0d−M

c2u2 + as0d−2M du =
1

2pz2c
lim

M→`
E

−pcas0dM

pcas0dM dx

x2 + 1

=
1

2pz2c
E

−`

` dx

x2 + 1
=

1

2cz2
s3.5d

with

c = Î f̂ = h lim
u→0

fsasudd/u2j1/2 =
1

2z2mb
2 . s3.6d

This relation is derived from Eqs.s2.12d and s2.13d. Thus, we arrive again at the relation

FIG. 3. Temperature dependence ofCM for various values ofM with J1=J2=J. It is seen numerically thatCM is less than
C` at low temperatures.
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lim
M→`

CM = mb
2. s3.7d

Clearly we haveC`=0 for T.Tc. This can be also derived using the delta function as

lim
M→`

CMs0d =
1

2pz2
lim

M→`
E

−p

p as0d−M

f + f8as0d−2M du

=
1

2z2
E

−p

p dsÎf/f8d
f8

du = 50 sT . Tcd,

z2
2s1 + z1d2 − s1 − z1d2

4z1z2
2 sT ø Tcd.6 s3.8d

The above two derivationss2.14d and s3.7d of mb
2 yield

lim
J28→+0

lim
M→`

CMsJ28d = lim
M→`

lim
J28→+0

CMsJ28d = mb
2. s3.9d

This exchangeability of the two limits comes from the fact thatJ28 changes only the topologysnot
symmetryd of the system.

Next we study the asymptotic behavior ofCM ;CMs0d.

A. Asymptotic form of CM above Tc

Noting the propertys2.11d, we find, from Eq.s3.1d,

CM .
1

2pz2
E

−p

p

e−M log asud du .
e−M log as0d

2pz2
E

−`

`

e−kMu2
du = A+sTde−M/jb/ÎM . s3.10d

Here, we have used the relation

log asud . log as0d + ku2, k ;
z1s1 − z2

2d
s1 − z1d2 − z2

2s1 + z1d2 . s3.11d

The coefficientA+sTd is given by

A+sTd =
1

2z2
F s1 − z1d2 − z2

2s1 + z1d2

pz1s1 − z1
2d G1/2

, ÎT − Tc. s3.12d

The correlation lengthjb is exactly expressed by

jb =
1

log as0d
=

1

logS 1 − z1

z2s1 + z1dD
, s3.13d

which diverges as follows:

jb ,
1

T − Tc
→ ` asT → Tc, nb = 1. s3.14d

It is interesting to note that the above correlation lengthjb is exactly the same as the ordinary
correlation lengthj defined by the correlation functionCsRd in the K2 direction for an infinite
system18

j−1 = log cothK2 − 2K1. s3.15d

That is, from Eq.s3.13d, we obtain

jb = j, nb = n = 1. s3.16d
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It should be also noted that the above asymptotic form including the prefactors1/ÎMd agrees
with that of the ordinary correlation function19,20

CsR,Td .
B+e−R/j

ÎR
, T . Tc, R→ `. s3.17d

However, the situation is different at and belowTc, as will be seen later.

B. Asymptotic form of CM at Tc †or for M„T−Tc… /Tc™1‡

It will be interesting to evaluate the asymptotic form ofCM at Tc or for MsT−Tcd /Tc!1. We
find easily that

asud = 1 +au + ¯ = eau + Osu2d, a ;
2z1,c

1 − z1,c
2 , s3.18d

and

fsasudd = 1
2 + Osud and fs1/asudd = 1

2 + Osud, s3.19d

using Eqs.s2.4d, s2.5d, ands2.7d, as is shown in Appendix B. Here,z1,c denotes the value ofz1 at
Tc. Then, we obtain

CM =
1

2pz2,c
E

−p

p asud−M

fsasudd + fs1/asuddasud−2M du .
2

pz2,c
E

0

` e−aMu

1 + e−2aMudu

=
2

paMz2,c
E

0

1 dt

1 + t2
=

s1 + z1,cd2

4z1,c
·

1

M
;

AsTcd
M

,

s3.20d

where z2,c=s1−z1,cd / s1+z1,cd. fIn particular, we haveAsTcd=sÎ2+1d /2 for J1=J2.g This
asymptotic form sCM ,1/Md is different from the ordinary asymptotic form1,18 CsR,Tcd
,R−1/4 sh=1/4d. A similar form was obtained by McCoy and Wu13 in a different situation.

C. Asymptotic form of CM below Tc

It is more complicated to study the asymptotic behavior of the boundary–boundary correlation
functionCM belowTc, because of the existence of long-range order. We can derive, from Eq.s3.1d,
the following asymptotic form:

CM , mb
2 + H− A−sTdÎM + BsTd +

CsTd
ÎM

Je−M/j, s3.21d

and

j =
1

log as0d
=

1

logSz2s1 + z1d
1 − z1

D s3.22d

for MsTc−Td /Tc@1, using the renormalized evaluation method of singular integrals,21 as will be
shown in Appendix C. Here, the coefficientsA−sTd andBsTd are given by

A−sTd = 2Î1 − z2
2

p
Fz2

2s1 + z1d2 − s1 − z1d2

4z1z2
2 G3/2

= 2mb
3Î1 − z2

2

p
s3.23d

and
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BsTd =
1

2pz2
E

−p

p 2s1 − cosud f̂ − fsasudd

fsasudd2s1 − cosud f̂
du = Os1d in M , s3.24d

respectively. The functionf̂ sof Td is defined infsasudd= f̂u2+Osu4d, namely bys2.13d. It is easily
shown that

A−sTd , mb
3, BsTd , mb

2, andCsTd , mb. s3.25d

This yields the following finite-size scaling law:

CM − kS1lkSMl . Psc
s±dsmb

ÎMd
1

M
e−M/j, s3.26d

where

Psc
s±dsxd = a±x3 + b±x2 + c±x + d. s3.27d

It is easily understood thatmb
ÎM is the scaling variable in Eq.s3.26d, becausemb,sTc−Td1/2

,j−1/2,M−1/2 to give the invariance property ofmb
ÎM ,ÎM /j. The above scaling forms3.26d is

a typical example of Fisher’s finite-size scaling law.22,23

D. Nonmonotonicity of CM below Tc

One of the remarkable features onCM is that it is nonmonotonic with respect to the system-
sizeM below Tc, as is seen from Eq.s3.21d. It is easily found thatA−sTd.0 ssee Appendix Cd.
This yields the nonmonotonicity ofCM. This behavior seems to be surprising, at first. Thus, we
have confirmed this result in three ways. The first one is analytic, as in Eq.s3.21d with A−sTd
.0.

The second one is to make use of the low-temperature expansion ofCM, as was already
exemplified forC2 in Eq. s3.4d. It is possible in principle to calculate the low-temperature expan-
sion of CM. However, it is so complicated that we are here satisfied, for the second confirmation
of the nonmonotonicity ofCM, to find the following expansion up to the first order of
x2 s=e−2K2 with x1=e−2K1d:

CM =
1

2pz2
E

−p

p 1

fsasuddaM + fs1/asudda−M du = 1 −
4hx1

2 + sM − 1ds1 − x1
2dx1

M − x1
2Mj

s1 − x1
2ds1 + x1

Md2 x2 + Osx2
2d

s3.28d

for an arbitrary value ofM. On the other hand, the square of the boundary magnetizationC`

=mb
2 is generally expanded as

C` = mb
2 =

h1 + x1 − s1 − x1dx2jh1 − x1 − s1 + x1dx2j
s1 − x1

2ds1 − x2d2 = 1 −
4x1

2

1 − x1
2o

n=1

`

nx2
n. s3.29d

Therefore, we find

CM − C` = −
4x1

MhMs1 − x1
2d − s1 + x1

2ds1 + x1
Mdj

s1 − x1
2ds1 + x1

Md2 x2 + Osx2
2d s3.30d

to confirm the inequalitiesC1.CM andCM ,C` at sufficiently low temperatures forM ù2.
The third method to confirm this behavior is to integrate Eq.s3.1d numerically. Two examples

of typical monotonic behavior and nonmonotonic behavior are shown in Fig. 4. In more detail,
assumingJ1=J2=J for simplicity, we find the inequalityCM ,C` except forM =1 belowkBT/J
=1.6616. . . as is shown in the above low-temperature expansion. For 1.6616. . .,kBT/J
,1.8883. . ., we findCM ,C… except forM =1, 2. From Fig. 4sbd, it is found thatCM with M
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=1, 2, 3, 4 are larger thanC` at kBT/J=2.0. In addition, the minimum value ofCM is found at
finite Mminù2. For example,C2 takes the minimum value forkBT/J,1.3696. . . andC8 is mini-
mum atkBT/J=2.0 fFig. 4sbdg. For TùTc, we haveMmin=`.

Above Tc, the functionCM is monotonic with respect to the system sizeM. The reason why
CM becomes nonmonotonic only belowTc is because the finite-size effect onCM becomes domi-
nant only belowTc, namely because the difference betweenCM andC` comes from the remaining
correlations longer thanM. These correlations become larger at low temperaturesfwhere the
long-range ordersLROd appearsg. Except at very low temperatures, the functionCM for small M
denotes the short-range correlation effect coming mainly from a finite strip and consequently it
decreases asM increases.

IV. SUMMARY AND DISCUSSION

We have applied a new scheme of topological interaction method to the evaluation of the
boundary–boundary correlation functionCM for the system-sizeM. An exact integral formula of
CM has been derived to give the asymptotic scaling form,

CM − mb
2 = CM − kS0lkSMl . P̃sc

s±dsÎM/jd
1

M
e−M/j. s4.1d

This confirms Fisher’s finite-size scaling law. More explicitly, we have

CM . A+sTde−M/j/ÎM aboveTc,

CM .
AsTcd

M
,

CM . mb
2 + H− A−sTdÎM + BsTd +

CsTd
ÎM

Je−M/j below Tc, s4.2d

wherej is given by Eq.s3.13d for T.Tc and by Eq.s3.22d for T,Tc. The nonmonotonicity ofCM

with respect toM has been found to appear only belowTc, owing to the competing effect of the
strong short-range correlation, long-range correlation dominant at low temperatures and finite-size
effect.

It will be interesting to remark that present formulaCM .sA+sTd /ÎMdexps−M /jd aboveTc is
consistent with Morita’s sum rule,24

FIG. 4. Size dependence ofCM for J1=J2=J swhere kBTc/J=2.269. . .d; sad above Tc skBT/J=3.0d and sbd below
Tc skBT/J=2.0d. The correlation functionCM is nonmonotonic with respect toM only belowTc.
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lim
N→`

1

N o
i,j=1

N

kS1,iSM,jl = se2K1 tanhK2dM cothK2 = e−M/j cothK2 s4.3d

which is valid aboveTc. For more details, see Appendix D.
The present topological interaction method will be applicable to many other systems to evalu-

ate not only the boundary magnetization but also other physical quantities such as the boundary
energy and boundary many-body interactions,kQ1,i1,i2,…,in

l by introducing the topological interac-
tion −JQoQ1,i1,…,in

QM,i1,…,in
. The TIM will be also useful in studying quantum spin systems.25
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APPENDIX A: EVALUATION OF PFAFFIANS ˆPf Ai‰

By the standard Pfaffian method,4,13,14 the partition function can be calculated to be

ZsJ28d = scoshbJ1dNMscoshbJ2dNsM−1dscoshbJ28d
No

hSj
FHp

j=1

M

p
k=1

N

s1 + z1Sj ,kSj ,k+1dJ
3Hp

j=1

M−1

p
k=1

N

s1 + z2Sj ,kSj+1,kdJHp
j=1

N

s1 + z28S1,kSM,kdJG
= 2NM−1scoshK1dNMscoshK2dNsM−1dscoshK28d

Ns− Pf A1 + Pf A2 + Pf A3 + Pf A4d,

sA1d

where we use the notationsz1,2=tanhbJ1,2=tanhK1,2 and z28=tanhbJ28=tanhK28. The antisym-
metrical matricesA1 andA3 are given by

Ais j ,k; j ,kd = 3
0 1 − 1 − 1

− 1 0 1 − 1

1 − 1 0 1

1 1 − 1 0
4 for i = 1,3, 1ø j ø M, 1 ø k ø N,

A1s j ,k; j ,k + 1d = − A1
Ts j ,k + 1;j ,kd = 3

0 z1 0 0

0 0 0 0

0 0 0 0

0 0 0 0
4 for 1 ø j ø M, 1 ø k ø N,

A3s j ,k; j ,k + 1d = − A3
Ts j ,k + 1;j ,kd = 3

0 z1 0 0

0 0 0 0

0 0 0 0

0 0 0 0
4 for 1 ø j ø M, 1 ø k ø N − 1,

A3s j ,N; j ,1d = − A3
Ts j ,1;j ,Nd = 3

0 − z1 0 0

0 0 0 0

0 0 0 0

0 0 0 0
4 for 1 ø j ø M ,
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Ais j ,k; j + 1,kd = − Ai
Ts j + 1,k; j ,kd = 3

0 0 0 0

0 0 0 0

0 0 0 z2

0 0 0 0
4 for i = 1,3, 1ø j ø M − 1, 1ø k ø N,

AisM,k;1,kd = − Ai
Ts1,k;M,kd = 3

0 0 0 0

0 0 0 0

0 0 0 z28

0 0 0 0
4 for i = 1,3, 1ø k ø N. sA2d

The matrixA2 sA4d is exactly the same asA1 sA3d except that the sign ofz28 should be reversed.
The determinant of the matrixA1 is the square of the Pfaffian ofA1, and can be calculated by the
same procedure as given in Ref. 13 to be

detA1 = p
u

fu1 + z1e
iuu2M detD1sudg, sA3d

whereu=2np /N with n=1,2,… ,N, andD1sud is a 2M 32M matrix with the form

D1sud =3
− a b − z28

− b a z2

− z2 − a b

− b a z2

− z2 − a b

− b a �

� � �

� − a b

− b a z2

− z2 − a b

z28 − b a

4 . sA4d

Here all the unwritten elements in the upper-right and lower-left triangles in Eq.sA4d are zero and
we use the definitions

a = 2iz1 sinuu1 + z1e
iuu−2, b = s1 − z1

2du1 + z1e
iuu−2. sA5d

The determinant of the matrixD1sud can be calculated to be

detD1sud = sf + z2f8dlM + sf8 + z2fdl8M − 2zsbz2dM , sA6d

where

f =
1

2
S1 +

z2
2 + a2 − b2

l8 − l
D, f8 =

1

2
S1 −

z2
2 + a2 − b2

l8 − l
D ,

l = u1 + z1e
iuu−2z2s1 − z1

2da, l8 = u1 + z1e
iuu−2z2s1 − z1

2da−1,

z = z28/z2 = tanhsbJ28dcothsbJ2d sA7d

anda is given by Eq.s2.7d. As the matrixA2 is similar toA1 with the sign ofz28 reversed, we have
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hPf Aij2 = detAi = p
n=1

N

hz2s1 − z1
2djMhsf + f8z2dasundM + sf8 + fz2dasund−M + 2s− 1dizj sA8d

with un=2np /N. The expression of the determinants forA3 and A4 are the same except thatun

=s2n−1dp /N. If z28=z2, it is easily shown that the partition functionZ reduces to the regular
rectangular Ising lattice with toroidal boundary conditions.

It will be instructive to separate the free energy −kBT log Z2D into the following two parts:

− kBT log Z2D = NMf0 + Nf1, sA9d

where f0 is the bulk free energy defined in

− bf0 = logf2 coshK1 coshK2g +
1

4p
E

−p

p

logfz2s1 − z1
2dasudgdu, sA10d

and the remaining partf1 contains the boundary and topological terms,

− bf1 = logfcoshK28g − logfcoshK2g +
1

4p
E

−p

p

logfhsf + f8z2d + sf8 + fz2dasud−2M + 2zasud−Mjgdu.

sA11d

Note that only PfA2 and PfA4 contribute to the free energy and consequently that the factor
s−1di in sA8d is equal to unity. The correlation functionCMsJ28d is thus given by

CMsJ28d = −
]

]J28
f1 =

]

]K28
s− bf1d =

1 − z2
2z2

z2

]

]z
s− bf1d. sA12d

This gives Eq.s2.8d.

APPENDIX B: PROPERTIES OF a„u… , f„a„u……, AND f„1/a„u…… NEAR u=0

It is easy to show, from Eqs.s2.4d, s2.5d, ands2.7d, for T=Tc,

asud =
s1 + z1,c

2 d2 − 4z1,c
2 cosu + 4z1,c sinsu/2dÎ1 + z1,c

4 − 2z1,c
2 cosu

s1 − z1,c
2 d2 = 1 +

2z1,c

1 − z1,c
2 u + Osu2d,

sB1d

fsasudd =
1

2S1 +
s1 + z1,c

2 dsinsu/2d
Î1 + z1,c

4 − 2z1,c
2 cosu

D =
1

2
+ Osud sB2d

and

fs1/asudd =
1

2S1 −
s1 + z1,c

2 dsinsu/2d
Î1 + z1,c

4 − 2z1,c
2 cosu

D =
1

2
+ Osud, sB3d

where we have substitutedz2,c=s1−z1,cd / s1+z1,cd. The above linear dependence ofasud nearu
=0 at Tc is a big contrast to the followingu2-dependence ofasud for TÞTc:

asud =5
1 − z1

z2s1 + z1d
+

z1s1 − z1ds1 − z2
2d

z2s1 + z1dhs1 − z1d2 − z2
2s1 + z1d2j

u2 + Osu4d sT . Tcd,

z2s1 + z1d
1 − z1

+
z1z2s1 + z1ds1 − z2

2d
s1 − z1dhz2

2s1 + z1d2 − s1 − z1d2j
u2 + Osu4d sT , Tcd. 6 sB4d

Equivalently we have
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log asud =5log
1 − z1

z2s1 + z1d
+

z1s1 − z2
2d

s1 − z1d2 − z2
2s1 + z1d2u2 + Osu4d sT . Tcd

log
z2s1 + z1d

1 − z1
+

z1s1 − z2
2d

z2
2s1 + z1d2 − s1 − z1d2u2 + Osu4d sT , Tcd.6 sB5d

APPENDIX C: DERIVATION OF CM BELOW Tc

In order to investigate the asymptotic behavior of the correlation functionCM expressed by the
integral s3.1d, we must studyfM nearu=0, namelyfsasudd and fs1/asudd. Then we easily find

fsasudd = f̂u2 + Osu4d and fs1/asudd = 1 − f̂u2 + Osu4d, sC1d

for T,Tc. Thus, the integral ofCM, s3.1d is essentially singular atu=0 and forM→`. It will be
useful to set

« = as0d−M = e−M/j, sC2d

which goes to zero asM→`. Now we try to evaluateCM given in the form

CM =
1

2pz2
E

−p

p «ãsud−M

fsasudd + «2fs1/asuddãsud−2M du sC3d

for largeM sand consequently«→0d, where

ãsud = asud/as0d. sC4d

As was mentioned above, the integralsC3d is extremely subtle to calculate becausefsasudd
. f̂u2 and fs1/asudd.1 nearu=0 and because«→0 and ãsud−M→0 suÞ0d for M→`. The
main term givesmb

2 and the remaining term becomes of the order of«. In order to evaluate this
remaining term, we make use of the renormalized evaluation method21 of singular integrals as
follows:

CM =
1

2pz2
E

−p

p «

fsasudd + «2fs1/asuddãsud−2M du −
«

2pz2
E

−p

p 1 − ãsud−M

fsasudd + «2fs1/asuddãsud−2M du

; CM
sBd − CM

sAd. sC5d

Noting that the termCM
sBd containsmb

2 and using the “magic representation” ofmb
2 of the form

mb
2 =

1

2pz2
E

−p

p «

2s1 − cosud f̂ + «2
du + Os«2d, sC6d

we obtain the following relation:

CM
sBd − mb

2 =
«

2pz2
E

−p

p H 1

fsasudd + «2fs1/asuddãsud−2M −
1

2s1 − cosud f̂ + «2Jdu + Os«2d

=
«

2pz2
E

−p

p H 1

fsasudd + «2 −
1

2s1 − cosud f̂ + «2Jdu + Os«2d

= − «F 1

2pz2
E

−p

p fsasudd − 2s1 − cosud f̂

2fsasudds1 − cosud f̂
duG + Os«2d ; BsTd« + Os«2d. sC7d

The functionBsTd defined insC7d is easily confirmed to be finite because the integrand of it is
finite in the limit u→0. It is also shown thatBsTd,mb

2. It should be remarked that the replacement
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of the term«2fs1/asuddãsud−2M by «2 in the above calculation gives corrections of the order of«2.
The termCM

sAd is calculated as follows:

CM
sAd =

«

2pz2
E

−p

p 1 − ãsud−M

fsasudd + «2fs1/asuddãsud−2M du

=
«

2pz2
E

−p

p 1 − ãsud−M

fsasudd
du + Os«2d =

«

2pz2
E

−p

p 1 − e−Mbu2

f̂u2
du + Os«2d, sC8d

where

ãsud . ebu2
, b =

z1s1 − z2
2d

z2
2s1 + z1d2 − s1 − z1d2 =

1 − z2
2

4z2
2mb

2 , mb
−2. sC9d

Thus, for largeM sand consequently,«→0d, we obtain

CM
sAd

«
=

1

2pz2
E

−p

p 1 − e−Mbu2

f̂u2
du =

ÎMb

2pz2f̂
E

−ÎMbp

ÎMbp 1 − e−t2

t2
dt

.
Îs1 − z2

2dM
p

mb
3E

−`

` 1 − e−t2

t2
dt = 2mb

3Îs1 − z2
2dM

p
= A−sTdÎM ,

sC10d

where we have used Eqs.s3.6d and sC9d, and the following formula;

E
−`

` 1 − e−t2

t2
dt = 2Îp. sC11d

Thus, we arrive at the following asymptotic formula:

CM
sAd . A−sTdÎMe−M/j, A−sTd = 2Î1 − z2

2

p
mb

3. sC12d

Note thatA−sTdù0 andA−sTd,mb
3.

Therefore, we arrive finally at

CM , mb
2 + H− A−sTdÎM + BsTd +

CsTd
ÎM

Je−M/j. sC13d

Here, the coefficientCsTd is shown to be of the order ofmb. The details of this derivation are
omitted here.

APPENDIX D: CONSISTENCY OF EQ. „3.10… ON CM WITH MORITA’S SUM RULE

Morita’s sum rule is confirmed by extending our result onCM given in Eq.s3.10d to correla-
tions in oblique directions,hkS1,iSM,jlj in the form

Csui − j u,Md ; kS1,iSM,jl .
A8e−R/j

ÎR
, R= Îx2 + M2, x = a0ui − j u, sD1d

wherea0 is an anisotropy parameter depending onz1 andz2, the coefficientA8 may depend on the
angle of the direction of the correlation, and it is proportional toÎk=Î1/j. Then, Morita’s sum
rule will be asymptotically given by
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JsMd ; E
−`

` e−kÎx2+M2

Îksx2 + M2d1/4
dskxd, k =

1

j
. sD2d

In order to study the asymptotic form of this integral, we consider the following ratio:

IsMd ; JsMd/e−kM = ÎkE
−`

` e−ksÎx2+M2−Md

sx2 + M2d1/4 dx ; ÎkE
−`

`

fsx,Mddx. sD3d

The integrandfsx,Md is rewritten as

fsx,Md = sx2 + M2d−1/4 expF−
kx2

Îx2 + M2 + M
G . sD4d

Then, we separate the integralsD3d into the two partsIsMd=ÎksI1sMd+ I2sMdd, where

I1sMd = 2E
0

M

fsx,Mddx and I2sMd = 2E
M

`

fsx,Mddx. sD5d

It is easily shown that

lim
M→`

I2sMd ø lim
M→`

2E
M

` e−kx

Îx
dx = 0 sD6d

for k.0. As the functionfsx,Md satisfies the inequalities

e−kx2/2M

21/4ÎM
ø fsx,Md ø

e−kx2/hsÎ2+1dMj

ÎM
sD7d

for 0øxøM, we obtain the inequalities

21/4Îp ø Is`d ø sÎ2 + 1d1/2Îp sD8d

for TùTc. Thus, we finally arrive at

JsMd . A+8sTde−M/j, A+8sTcd Þ 0. sD9d

This is nothing but Morita’s sum rule.
It will be instructive to present here a rough but direct estimate of the integralsD2d as follows:

JsMd .Î k

M
E

−`

`

expF− kMS1 +
x2

2M2DGdx = Î2pe−kM . sD10d

The prefactorÎ2p in Eq. sD10d satisfies the inequalitysD8d. This rough estimation has been
already made in Ref. 26 in applications of Morita’s sum rule to the coherent anomaly method.27

The above extended formsD1d will be derived rigorously28 using again the topological inter-
action method by applying the interactionJ9ok=1

N S1,i+kSM,j+k for fixed i and j to the two-
dimensional Ising model with widthM and lengthN.

1L. Onsager, Phys. Rev.65, 117 s1944d.
2C. N. Yang, Phys. Rev.85, 808 s1952d.
3R. J. Baxter,Exactly Solved Models in Statistical MechanicssAcademic, New York, 1982d.
4B. M. McCoy and T. T. Wu,The Two-Dimensional Ising ModelsHarvard University Press, Cambridge, 1973d.
5C. N. Yang, Rev. Mod. Phys.34, 694 s1962d.
6T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys.36, 856 s1964d.
7M. Suzuki,Evolutionary Trends in the Physical SciencessSpringer-Verlag, New York, 1991d.
8H. E. Stanley,Introduction to Phase Transitions and Critical PhenomenasClarendon, Oxford, 1971d.
9M. Suzuki, Prog. Theor. Phys.42, 1086s1969d.

033301-16 Suzuki, Suzuki, and Chang J. Math. Phys. 46, 033301 ~2005!

                                                                                                                                    



10M. Suzuki and H. Suzuki, J. Phys. Soc. Jpn.73, 3299s2004d.
11M. Suzuki, Topological perturbation and spontaneous symmetry breaking, reported at the meeting of Physical Society of

JapansSeptember 22, 2003, Okayama Universityd.
12M. Suzuki sunpublishedd.
13B. M. McCoy and T. T. Wu, Phys. Rev.162, 436 s1967d.
14P. W. Kasteleyn, J. Math. Phys.4, 287 s1963d.
15S.-C. Chang and M. Suzuki, Physica A341, 299 s2004d.
16E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.4, 308 s1963d.
17B. Kaufman, Phys. Rev.76, 1232s1949d.
18M. E. Fisher,The Theory of Equilibrium Critical Phenomena, Reports on Progress in Physics, Vol. XXX, Part II, p. 615,

1967 sIOP and PS, Bristol, 1967d, see Eq.s6.2.1d.
19T. T. Wu, Phys. Rev.149, 380 s1966d.
20L. P. Kadanoff, Nuovo Cimento A44, 276 s1966d.
21M. Suzuki sin preparationd.
22M. E. Fisher, J. Vac. Sci. Technol.10, 665 s1973d; M. E. Fisher and M. N. Barbar, Phys. Rev. Lett.28, 1516s1972d.
23M. Suzuki, Prog. Theor. Phys.58, 1142s1977d.
24T. Morita, J. Phys. Soc. Jpn.61, 2694s1992d.
25A. Sugiyama, H. Suzuki, and M. Suzuki, Physica Asto be publishedd.
26A. Lipowski and M. Suzuki, J. Phys. Soc. Jpn.61, 4356s1992d.
27M. Suzuki, J. Phys. Soc. Jpn.55, 4205s1986d, and see also M. Suzuki, X. Hu, M. Katori, A. Lipowski, N. Hatano, K.

Minami, and Y. Nonomura,Coherent Anomaly Method—Mean Field, Fluctuations and SystematicssWorld Scientific,
Singapore, 1995d.

28H. Suzuki and M. Suzukisin preparationd.

033301-17 Study on boundary–boundary correlation functions J. Math. Phys. 46, 033301 ~2005!

                                                                                                                                    



On the largest singular values of random matrices with
independent Cauchy entries

Alexander Soshnikova!

Department of Mathematics, University of California at Davis, One Shields Avenue,
Davis, California 95616

Yan V. Fyodorovb!

Department of Mathematical Sciences, Brunel University, Uxbridge UB83PH,
United Kingdom

sReceived 1 October 2004; accepted 6 December 2004; published online 14 February 2005d

We apply the method of determinants to study the distribution of the largest singu-
lar values of largem3n real rectangular random matrices with independent
Cauchy entries. We show that for a special one-parametric class of statistics the
properties of the largest singular valuessrescaled by a factor 1/m2n2d agree in the
limit with the statistical properties of the Poisson random point process with the
intensity s1/pdx−3/2 and, therefore, are different from the Tracy–Widom law.
Among other corollaries of our method we show an interesting connection between
the mathematical expectations of the determinants of the complex rectangular
m3n standard Wishart ensemble and the real rectangular 2m32n standard Wishart
ensemble. ©2005 American Institute of Physics.fDOI: 10.1063/1.1855932g

I. INTRODUCTION AND FORMULATION OF RESULTS

The main goal of this paper is to study the spectral properties of a large random matrix with
independent identically distributedsi.i.d.d Cauchy entries. In other words we consider a rectangu-
lar m3n matrix A=saijd ,1ø i øm,1ø j øn, wherehaijj are independent identically distributed
Cauchy random variables with the probability densityfsxd=1/ps1+x2d. Our goal is to study the
singular values ofA as the dimensions of a matrix go to infinity,m→`, n→`. This is clearly
equivalent to studying the eigenvalues of a positive-definiten3n matrix M =AtA. Matrices of such
type are quite often called sample covariance matrices in random matrix literature. Positive-
definite matrices are of particular importance in statisticsswe refer to Refs. 33, 50, and 20 for the
classical works on statistical applications of the spectral properties of Wishart matrices, and Refs.
21, 14, 16, and 30 for a few recent developments and applications to various fieldsd. They also are
of long-standing interest in nuclear physics, starting with the classical works of Refs. 49 and 9.
More recently they were used to model the “dissipative” part of the effective Hamiltonian in
quantum chaotic scatteringssee Ref. 19 and references thereind and appeared to be very intimately
connected with the “chiral” ensembles studied in quantum chromodynamicsssee Ref. 45d. As
other important applications of random positive-definite matrices we mention that they are used in
a branch of condensed matter theory known as mesoscopics to model famous universal conduc-
tance fluctuations and other transport properties of small metallic samples and quantum dotsssee
Ref. 4d and also emerged in theory of information communication in random environment.44

It is well known that if the entries ofA are i.i.d. random variables with zero mean and finite
variances2, the empirical distribution function of the eigenvalues ofs1/ndAtA converges in the
limit m→`, n→`, m/n→gP s0, +`d to the Marchenko–Pastur lawssee, e.g., Refs. 29 and 2d
defined by its density

adElectronic mail: soshniko@math.ucdavis.edu.
bdElectronic mail: yan.fyodorov@brunel.ac.uk.
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pgsxd = s2pxgs2d−1Îsb − xdsx − ad, a ø x ø b, s1d

wherea=s2s1−g−1/2d2 andb=s2s1+g−1/2d2 swe assume heregù1d. Since the spectrum ofAtA
differs from the spectrum ofAAt only by the multiplicity of the eigenvaluel=0 sfor mùn the
matrix AAt hasm−n additional zero eigenvaluesd for the rest of the paper we can assumemùn.
Under the assumption that the fourth moment ofaij is finite, Yin, Bai, and KrishnaiahsRef. 51, see
also Refs. 34 and 3d showed that the largest eigenvalue ofs1/ndAtA converges tob almost surely.
Recently Johnstone proved that in the standard Wishart casefi.e., haijj are i.i.d.Ns0,1d random
variablesg the properly rescaled largest eigenvalue converges in distribution to theb=1 Tracy–
Widom distribution,42 ssee also Ref. 41d. Soshnikov38 generalized the result of Johnstone to the
non-Gaussian case providedn−m=Osn1/3d and the moments of the matrix entries do not grow
very fast. There are quite a few standard methods that have been successfully used for Wigner and
sample covariance matrices in the case when second and higher moments of matrix entries exist,
most notably the method of moments,47,48,35–38the method of resolvents,29,28,2 the method of
orthogonal polynomials,13,25the method used by Johansson23 sand recently extended by Ben Arous
and Péché to the case of sample covariance matricesd which is based on the Kazakov–Brézin–
Hikami trick,27,7,8 etc. Unfortunately, the above-mentioned approaches are not suitable for the
Cauchy case. In particular, one can expect the spectral properties ofAtA in the Cauchy case to be
rather different from the case of a finite variance. In our view this makes the studies of the Cauchy
case especially interesting. Denote the eigenvalues ofAtA by l1ùl2ùl3ù ¯ ùln. It is expected
that the majority of the eigenvalues are proportional tomn. We would like to specifically single
out Ref. 11 where Cizeau and Bouchard studied the spectral properties of the Wigner random
matrices with the heavy tailsssee also Refs. 10 and 22 for physical papers on the so-called
Lévy–Smirnov unitary ensemblesd. Among other things, Cizeau and Bouchard arguedson a physi-
cal level of rigord that the empirical distribution function of the eigenvalues of a properly normal-
ized Wigner matrixswith the heavy tails of the marginal distribution of matrix entriesd converges
to a limiting distribution that can be obtained as a solution of a quite complicated system of two
integral equationsfwe refer to the formulass15d, s12ad, s12bd in Ref. 11g. It is not difficult to guess
the right order of the normalization: after the normalization, the norm of any given matrix row has
to be of order of a constantsin particular in the Cauchy case one has to normalize the matrix
entries byn−1 and in the case of a finite variance the normalization is 1/Înd. The support of the
limiting distribution is the whole real line. One can expectsarguing at the same level of physical
rigord to derive a similar system of integral equations for the limiting distribution function of the
eigenvalues ofs1/mndAtA in the case of the i.i.d. Cauchy entries ofA. The support of the limiting
distribution should be the positive half of the real line. Our results formulated below indicate that
the asymptotics of the spectral density at infinity should be 1/px3/2. This suggests that the largest
eigenvalues ofAtA grow faster thanmn; in fact, we will show below that the largest eigenvalues
are of the order ofm2n2. Let us rescale the eigenvalues by that factor:

l̃i =
li

n2m2, i = 1, . . . ,n. s2d

The goal of this paper is to study the local distribution of the largest eigenvalues by the method of
determinants. Our main results are Theorems 1.1 and 1.2 formulated below.

Theorem 1.1:Let A be a random rectangular m3n matrix smùnd with i.i.d. Cauchy entries
and z a complex number with a positive real part. Then as n→` we have

lim
n→`

ESdetS1 +
z

m2n2AtADD−1/2

= Ep
i=1

n

s1 + zl̃id−1/2 = expS−
2

p
ÎzD s3d

=Ep
i=1

`

s1 + zxid−1/2, s4d
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where we consider the branch ofÎz on D=hz:Rz.0j such thatÎ1=1,E denotes the mathemati-
cal expectation with respect to the random matrix ensemble defined above, E denotes the math-
ematical expectation with respect to the inhomogeneous Poisson random point process on the
positive half-axis with the intensity1/px3/2, and the convergence is uniform inside Dsi.e., it is
uniform on the compact subsets of Dd. For a real positive z= t2, tPR, one can estimate the rate of
convergence, namely,

lim
n→`

ESdetS1 +
t2

m2n2AtADD−1/2

= lim
n→`

Ep
i=1

n

s1 + t2l̃id−1/2 = expS−
2

p
utus1 + osn−1/2+eddD , s5d

wheree is an arbitrary small positive number and the convergence is uniform on the compact
subsets off0, +`d.

We will discuss the properties of Poisson random point processes in the Appendix. A very
useful introduction to the elementary theory and methods of random point processes is Ref. 12. It
is not a coincidence that the intensity of the Poisson random process in the above theorem is equal
to the leading term of the asymptotics of the density of the square of a standard Cauchy random
variable.

We claim that the result can be generalized to the case of a sparse random matrix with Cauchy
entries. Let, as before,hajkj, 1ø j øm, 1økøn, be i.i.d. Cauchy random variables, andQ
=sqjkd be am3n nonrandom rectangular 0−1 matrix such that the number of nonzero entries in
each column is fixed and equals tobn. For technical reasons we assume thatbn grows to infinity
as some power ofn, i.e.,bnùna, for some 0,aø1, and lnm is much smaller than any power of
n. We define am3n rectangular matrixA with the entriesG jk=qjkajk, 1ø j øm, 1økøn. As
before we denote byl1ùl2¯ ùln the eigenvalues ofGtG. The appropriate rescaling for the

largest eigenvalues in this case is going to bel̃i =li /m
2bn

2, i =1, . . . ,n. We claim that the result of
Theorem 1.1 can be extended to the case of a sparse random matrixG.

Theorem 1.2:Let G be a sparse random rectangular m3n matrix smùnd defined as above
and z a complex number with a positive real part. Then as n→` we have

lim
n→`

ESdetS1 +
z

m2bn
2GtGDD−1/2

= lim
n→`

Ep
i=1

n

s1 + zl̃id−1/2 = expS−
2

p
ÎzD s6d

=Ep
i=1

`

s1 + zxid−1/2, s7d

where, as in Theorem 1.1, we consider the branch ofÎz on D=hz:Rz.0j such thatÎ1=1, E
denotes the mathematical expectation with respect to the random matrix ensemble defined in the
paragraph above the theorem, E denotes the mathematical expectation with respect to the inho-
mogeneous Poisson random point process on the positive half-axis with the intensity1/px3/2, and
the convergence is uniform inside Dsi.e., it is unform on the compact subsets of Dd. For a real
positive z= t2, tPR, one can get an estimate on the rate of convergence, namely,

ESdetS1 +
t2

m2bn
2GtGDD−1/2

= Ep
i=1

n

s1 + t2l̃id−1/2 = expS−
2

p
ts1 + osbn

−1/2+eddD , s8d

wheree is an arbitrary small positive number and the convergence is uniform on the compact
subsets off0, +`d.

The result of Theorem 1.2 can be generalized even further. Let the setting be as in Theorem
1.2 but relax the condition that the number of nonzero entries in each column is exactlybn to the
condition ok=1

n qjk=bns1+os1dd, j =1, . . . ,m sfor example, the relaxed condition is satisfied by a
typical realization of a random matrixQ with independent Bernoulli 0−1 entries with Prsqjk

=1d=bn/ng. Then we still have
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ESdetS1 +
z

m2bn
2GtGDD−1/2

= expS−
2

p
ÎzDs1 + os1dd.

The proof is almost identical to the proof of Theorem 1.2 and will be left to the reader.
The case when the number of nonzero terms ofQ is fixed in each row can be treated in a

similar manner.
An important consequence of Theorems 1.1 and 1.2 is that the statistical properties of the

largest eigenvaluesl̃1,l̃2, . . . aredrastically different from the statistical properties of thesres-
caledd largest eigenvalues in the GOE42 and real Wishart cases25 that are described by thesb
=1d Tracy–Widom law.

Theorems 1.1 and 1.2 follow from Proposition 1 formulated below.
Proposition 1: Let A=sajkd be a random rectangular m3n matrix with independent (not

necessarily identically distributed) entries with the characteristic functions of the matrix entries
gjkssd=E expsisajkd. Let ti .0, i =1, . . . ,r, be some positive parameters. Then the following for-
mula holds.

ESp
i=1

r

dets1 + ti
2AtAdD−1/2

= s2pd−rsn+md/2E
Rrsn+md

p
i=1

r

dnssiddmpsid

3expS− o
i=1

r

sussidu2/2 + upsidu2/2dD p
1ø jøm,1økøn

gjkSo
i=1

r

tipj
sidsk

sidD .

s9d

Theorems 1.1 and 1.2 imply several important corollaries that are given in the next section.
The proofs of Theorems 1.1 and 1.2 and Proposition 1 are given in the next section. Section

III is devoted to application of the method of determinants to random matrices with i.i.d. complex
entries. We prove in Sec. III the analogue of Proposition 1sProposition 2d in the complex case and
as a corollary establish an interesting connection between the determinants in the 2m32n rect-
angular real Wishart case and them3n rectangular complex Wishart casessee Lemma 1d.

II. PROOFS OF THEOREMS 1.1 AND 1.2

We start with the proof of Proposition 1. Considersdets1+t2AtAdd−1/2, t.0. Let s
=ss1, . . . ,sndt, p=sp1, . . . ,pmdt be real n- and m-dimensional column vectors. LetB=Bstd
= s Id tiA

tiAt Id
d anddnsdmp=pi=1

n dsip j=1
m pi.

Then

sdets1 + t2AtAdd−1/2 = SdetS 1 tiA

tiAt 1
DD−1/2

= sdetsBdd−1/2,

and, since the Hermitian part of the matrixB is positive definite,sdetsBdd−1/2 can be written as the
Gaussian integral overRm+n faccording to our notations introduced abovess,pd is an
sm+nd-dimensional vector; in the next formulass,pdBss,pdt stands for the value of the quadratic
form associated with the matrixB on the vectorss,pdg:

sdets1 + t2AtAdd−1/2 = sdetsBdd−1/2

= S 1

p
Dsn+md/2E dnsdmp exps− ss,pdBss,pdtd

= S 1

p
Dsn+md/2E dnsdmp exps− susu2 + upu2ddSexpS− 2i o

1ø jøm,1økøn

tajkpjskDD .

s10d
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The formulas10d and the independence of matrix entries imply

ESp
i=1

r

dets1 + ti
2AtAdD−1/2

= p−rsn+md/2E
Rrsn+md

p
i=1

r

dnssiddmpsid expS− o
i=1

r

sussidu2 + upsidu2dD
3 E p

1ø jøm,1økøn

expS2iajko
i=1

r

tipj
sidsk

sidD
= s2pd−rsn+md/2E

Rrsn+md
p
i=1

r

dnssiddmpsid expS− o
i=1

r

sussidu2/2 + upsidu2/2dD
3 p

1ø jøm,1økøn

gjkSo
i=1

r

tipj
sidsk

sidD . s11d

The Proposition is proven.
To prove Theorem 1.1 we observe that the functions on the lhs ofs3d are analytic and

uniformly bounded inD=hz:Rz.0j. Therefore, by the Vitali’s theorem it is enough to prove the
convergence for real positivez. Let us denotez= t2, wheret is a positive real number, and apply
the result of the proposition in the caser =1. Since the matrix entries ofA are i.i.d. Cauchy we
havegjkssd=gssd=exps−usud and

Esdets1 + t2AtAdd−1/2 = s2pd−sn+md/2E
Rn+m

dnsdmp exps− susu2 + upu2d/2d p
1ø jøn,1økøm

exps− tuskpjud

= 2mE
Rn

dnss2pd−n/2 expS−
1

2
usu2DE

R+
m

s2pd−m/2

3expS−
1

2o
j=1

m

spj
2 + 2pjto

k=1

n

uskudD
=E

Rn
dnss2pd−n/2 expS−

1

2
usu2DCmSto

k=1

n

uskuD , s12d

whereCsyd=2ey2/2ey
+`s1/Î2pde−t2/2dt. In particular,Cs0d=1 andC8s0d=−s2/pd1/2. It is easy to

see that the functionCsyd is monotonically decreasing onf0, +`d, in particular 1=Cs0d
=maxf0,+`dCsyd. Indeed,C8syd=2yey2/2ey

+`s1/Î2pde−t2/2dt−2s1/Î2pd. The assertion then follows

from the inequalityy−1e−y2/2.ey
+`e−t2/2dt for y.0.

Replacingt by t /nm we arrive at

ESdetS1 +
t2

n2m2AtADD−1/2

=E
Rn

dnss2pd−n/2 expS−
1

2
usu2DCS t

nm
o
k=1

n

uskuDm

. s13d

The rhs of the last formula suggests to use the law of large numbers and large deviations estimates
for the sum of the absolute values ofn standard Gaussian random variables. Since
es1/2pdusue−s2/2ds=s2/pd1/2, we see thats1/ndo j=1

n usju=s2/pd1/2+osn−1/2+ed with probability 1
−Osexps−n1.99edd. Recalling thatCs0d=1 andC8s0d=−s2/pd1/2 we get
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ESdetS1 +
t2

n2m2AtADD−1/2

=E
Rn

dnss2pd−n/2 expS−
1

2
usu2DS1 −

2ts1 + osn−1/2+edd
pm

Dm

= S1 −
2ts1 + osn−1/2+edd

pm
Dm

= expS−
2ts1 + osn−1/2+edd

p
D , s14d

for any e.0 Theorem 1.1 is then followed by the Vitali theorem.
The proof of Theorem 1.2 is very similar. Again we can restrict our attention to the case when

z is a real positive number,z= t2. We have

Esdets1 + t2GtGdd−1/2 =E
Rn

dnss2pd−n/2 expS−
1

2
usu2Dp

j=1

m

CSto
k=1

n

qjkuskuD . s15d

Let k1
s jd ,k2

s jd , . . . ,kbn

s jd be the indicesk for which qjk=1. Thenok=1
n qjkusku=ol=1

bn usk
l
s jdu and we can

claim that s1/bnol=1
bn usk

l
s jdu=s2/pd1/2+osbn

−1/2+ed with probability 1−Osexps−bn
1.99edd for each 1

ø j øm. Since we assumed that lnsmd is much smaller than any power ofn we get similarly to
s14d that

ESdetS1 +
t2

m2bn
2GtGDD−1/2

=E
Rn

dnss2pd−n/2 expS−
1

2
usu2DS1 −

2ts1 + osbn
−1/2+edd

pm
Dm

= S1 −
2ts1 + osbn

−1/2+edd
pm

Dm

= expS−
2ts1 + osbn

−1/2+edd
p

D . s16d

Theorem 1.2 is proven.
Below we restrict our attention to the corollaries of Theorem 1.1sfull matrix cased. The

corollaries of Theorem 1.2 are basically identical to those of Theorem 1.1swith an obvious change
of n to bn where it is neededd.

Remark 0:We are not aware that the results of Theorems 1.1 and 1.2 are enough to imply that
ths statistics of the largest eigenvalues are Poisson in the limit ofn→`. Indeed, to prove the
Poisson statistics in the limit one has to show that

lim
n→`

Ep
i=1

n

s1 + fsl̃idd = Ep
i=1

+`

s1 + fsxidd s17d

for a sufficiently large class of the test functionsf. The results of Theorems 1.1 and 1.2 claim that
s17d is valid for fsxd=s1+zxd−1/2−1 for all z such thatRz.0. Below we formulate several
corollaries of our main result that are weaker than the claim about the Poisson statistics, but still
give us some information about the behavior of the largest eigenvalues. The proof of the Poisson
statistics for the largest eigenvalues in Wigner random matrices with heavy tails will appear in
Ref. 39.

Remark 1:It follows immediately from the result of Theorem 1.1 that “only a finite number”
of the eigenvaluesli are of the order ofn2m2. Indeed, letNn,m be an integer growing to infinity
arbitrarily slowly asn→` and letd.0 be an arbitrarily small positive number. Then Prs#sli

ùdn2m2dùNn,md→0 as n→`. Indeed, suppose this is not the case. Then Prs#sli ùdn2m2d
ùNn,mdùk.0 andEsdets1+st2/n2m2dAtAdd−1/2øks1+t2kd−Nn,m+s1−kd1. One obtains a contra-
diction since fort=Nn,m

−1 the rhs of the last inequality does not go to zerossee also the next
remarkd. One can also rewrite the statement of this remark in the following way: for any positive
d, k, there existn0sd ,kd andCsd ,kd such that Prs#sli ùdn2m2dùCd,k for all n0ønøm.

Remark 2:It is clear from the proof of Theorem 1.1 that the asymptotic result
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ESdetS1 +
t2

n2m2AtADD−1/2

= expS−
2ts1 + osn−1/2+edd

p
D

holds uniformly int on compact subsets off0, +`d. In particular the result is valid for a sequence
tn→0.

Below we formulate and prove some additional consequences of Theorem 1.1. Our first
observation is that one can repeatedly differentiates3d with respect to parameterz.

Corollary 1: Let Rz.0. Then

lim
n→`

Ep
i=1

n

s1 + zl̃id−1/2So
j=1

n
l̃i

1 + zl̃i

D =
2

p
z−1/2 expS−

2

p
ÎzD s18d

=Ep
i=1

`

s1 + zxid−1/2So
j=1

`
xi

1 + zxi
D , s19d

where, as above, E stands for the mathematical expectation with respect to the inhomogeneous
Poisson random point process ons0, +`d with the intensityrsxd=1/px3/2.

Remark 3:If we let z→0 in s18d, one getsEso j=1
n l̃id= +`, which trivially follows from the

fact that matrix entries ofA are Cauchy random variables. Essentially the result of the corollary

can tell us how fast the mathematical expectationEso jl̃ jd grows if we restrict the summation only

to l̃i øL whereL is large.
Proof of Corollary 1:The result immediately follows from the uniform convergence of the

analytic functions ins3d and s4d.
By differentiatings3d twice one can obtain in a similar fashion that

lim
n→`

Ep
i=1

n

s1 + zl̃id−1/2SSo
j=1

n
l̃i

1 + zl̃i

D2

+ o
i=1

n
sl̃id2

s1 + zl̃id2
D = S 4

p2z−1 +
2

p
z−3/2DexpS−

2

p
ÎzD .

s20d

Corollary 2: There is a constant C which depends ong such that forPrsl1/n2m2.xd
,Cx−1/2 uniformly for large nøm and x.

Indeed, it follows from Theorem 1.1 and Remark 1 thatEs1+t2l̃1d−1/2ùexps−2ts1
+osn−1/2+edd /pd uniformly in t on compact subsets off0,`d. Therefore s1−Prsl̃1.xdd
+1/Î1+t2x3Prsl̃1.xdùexps−s2/pdts1+osn−1/2+eddd, which implies 1−exps−s2/pdts1
+osn−1/2+edddù s1−1/Î1+t2xdPrsl̃1.xd. Choosing t2x=1 we obtain that s2/pdgx−1/2s1+dd
ù s1−2−1/2dPrsl̃1.xd for all sufficiently largen, m, andx.

Remark 4:It is not difficult to show that in probabilityl1=Osn2m2d. To see this we observe
that the operator normiAi can be bounded from below by max1ø jøm,1økønuajku. The maximum of
n3m i.i.d. Cauchy random variables is of the orderOsnmd fwith the limiting distribution of
1/nm3max1ø jøm,1økønuajku easily computable, namely Prss1/nmdmax1ø jøm,1økønuajkuøxd
→exps−2/pxdg. We expect that the limiting distributionl1/n2m2 also exists and is given by the
distribution of the rightmost particle in the Poisson process with the intensityrsxd=s1/pdx−3/2, in

other words, limn→`Prsl̃1,xd=exps−s2/pdx−1/2d.
It is a useful exercise to see what Proposition 1 gives in the Wishart case. Below we treat the

case of one determinant:
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Esdets1 + t2AtAdd−1/2 = s2pd−sn+md/2E
Rn+m

dnsdmp exps− susu2 + upu2d/2d

3 p
1ø jøn,1økøm

expS−
1

2
stskpjd2D

=E
Rn

dnss2pd−n/2 expS−
1

2
usu2DE

Rm
dmps2pd−m/2

3p
k=1

m

expS−
1

2
pk

2S1 + t2o
j=1

n

sj
2DD

=E
Rn

dnss2pd−n/2 expS−
1

2
usu2DS1 + t2o

j=1

n

sj
2D−m/2

= cnE
0

+`

expS−
1

2
r2Drn−1s1 + t2r2d−m/2 dr

= cn2
n/2−1E

0

+`

e−rrn/2−1s1 + 2t2rd−m/2 dr, s21d

wherecn is the normalization constant,cn
−1=e0

+` exps−1
2r2drn−1 dr=2n/2−1Gsn/2d. To study the glo-

bal distribution of the eigenvalues in the Wishart ensemble one has to consider rescalingt2

→ t2/n ssince typical eigenvalues ofAtA are of the order ofnd. It follows that

ESdetS1 +
t2

n
AtADD−1/2

= fGsn/2dg−1E
0

+`

e−rrn/2−1S1 + 2t2
r

n
D−m/2

dr

= fGs2/ndg−1s2/ndn/2E
0

+`

e−n/2rrn/2s1 + t2rd−m/2r−1 dr

= fGs2/ndg−1s2/ndn/2E
0

+`

e−n/2Lszdz−1 dz, s22d

whereLszd=z+sm/ndlns1+t2zd−ln z. The asymptotics of the last integral can be obtained by the
steepest descent method. The formulas are especially simple in the square casem=n. One then can
find a positive solution of the equation

dL
dz

= 1 +
t2

1 + t2z
−

1

z
=

t2z2 + z− 1

zs1 + t2zd
= 0 s23d

to bezstd=s−1+Î4t2+1d /2t2. Taking into account thatd2L /dz2=Î4t2+1 atz=zstd we obtain that
in the square Wishart case

ESdetS1 +
t2

n
AtADD−1/2

=
2nnn/2

Gsn/2d
expS− n

− 1 +Î4t2 + 1

4t2
Ds1

+ Î4t2 + 1d−nÎ2pÎ4t2 + 1

n

2t2

− 1 +Î4t2 + 1
s1 + os1dd. s24d

The fact that the asymptotics ins24d is exponential inn is standard. Indeed, it is a straightforward
exercise to verify that
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lim
n→`

1

n
lnSESdetS1 +

t2

n
AtADD−1/2D = −

1

2
E

0

4

slns1 + t2xdp1sxdd dx, s25d

wherep1sxd is the probability density of the Marchenko–Pastur law defined ins1d, which reflects
the law of large numbers for the linear statisticsoi=1

n lns1+t2lin
−1d wherehliji=1

n are the eigenval-
ues of the real Wishart matrix. The variance of the linear statistics is bounded and has a limit as
n→` sfor a rather general class of polynomial ensembles of random matrices it was first discov-
ered by Johansson insRef. 24d, thus contributing a constant term to the rhs ofs24d, so that

ESdetS1 +
t2

n
AtADD−1/2

= ESexpS−
1

2o
i=1

n

lns1 + t2lin
−1dDD

= expS−
1

2
ESo

i=1

n

slns1 + t2lin
−1ddD +

1

8
dstd + os1dD , s26d

wheredstdª limn→`Varsoi=1
n slns1+t2lin

−1ddd and can be explicitely calculatedssee Ref. 24, Theo-
rem 2.4d.

Remark 5:Another class of random matrices we are particularly interested in is the Radema-
cher random matricessi.e., square random matrices with ±1 i.i.d. entriesd, which we are going to
denote byR. It appears that the questions of the invertibility of a Rademacher random matrix and
the estimate of the norm of the inverse are of great importance in geometric functional analysis
sfor example, in connection with a deterministic construction of Euclidean sections of convex
bodiesd. Similar to the previous analysis one can obtain

E
1

Îdets1 + t2RtRd
=

1

s2pdnE
R2n

p
i=1

n

duidvi expS−
1

2o
i=1

n

sui
2 + vi

2dD p
j ,k=1

n

cosstujvkd. s27d

The fact that a Rademacher matrixR is invertible with probability going to 1 asn→` was proved
by J.Komlósssee, e.g., Ref. 6, Chap. 14d. More recently, Kahn, Komlós and Szemeredi26 proved
that the probability thatR is invertible is exponentially close to 1. To the best of our knowledge
there is no known estimate on the norm of the inverse matrixswhich, in our language, corresponds
to the estimate of the smallest eigenvalue ofRtRd.

III. COMPLEX MATRICES WITH i.i.d. ENTRIES

In this section we consider the ensemble ofn3n complex random matricesM =A*A, A
=sAjkd1ø jøm,1økøn, with the joint distribution of the matrix entries ofA given by the formula

PrsAddAdĀ= p
1ø jøm, 1økøn

HdRajkdIajk
1

p
fsuajku2dJ . s28d

In other wordshajk ,1ø j øm,1økønj are independent indentically distributed random vari-
ables with a distribution depending only on the radial component, andfsxd is the density of the
distribution of uajku2. The ensembles28d is a generalization of the standard WishartsLaguerred
ensemble which corresponds to the choicefsxd=e−x.

In the standard WishartsLaguerred case it is known that the smallest eigenvalues are propor-
tional to 1/n2, and thesrescaledd k-point correlation functions are given in the limitn→` by the
determinants

rksx1, . . . ,xkd = detsKsxi,xjddi,j=1,. . .,k, k = 1,2,3, . . . , s29d

with the Bessel kernelswith a=0d. Then
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Ksadsx,yd =
Jas2ÎxdÎyJa8s2Îyd − Jas2ÎydÎxJa8s2Îxd

x − y
, s30d

whereJn is the J-Bessel function, appears as the limit of the rescaled correlation kernel at the hard
edge in the Laguerre and Jacobi ensemblesssee, e.g., Refs. 15 and 43d.

Ban Arous and Péché,5 following the approach suggested by Johansson23 for Wigner matrices,
have recently shown universality of the limiting distribution of the smallest eigenvaluessas well as
in the bulk of the spectrumd for a special class of sample covariance matrices. Their technique
requires that entries ofA have a Gaussian component.

One of the possible ways to attack this problem for an ensembles28d sassuming that all
moments exist, i.e., and do not grow very fastd is to study the mathematical expectation of the ratio
of determinants

Zsh1,h2, . . . ,hk,m1, . . . ,mld = E
pi=1

k
dets1 + hi

2A*Ad

p j=1

l
dets1 + tj

2A*Ad

for appropriately scaledslarged real numbersh1, . . . ,hk,t1, . . . ,tl. For the standard complex
WishartsLaguerred case these expectation values were calculated exactly for anyk, l, n ssee Refs.
17 and 40 and references thereind, and also used to address objects interesting in mesoscopic
physics,18 and quantum chromodynamics.1

In particular, one can easily see thatus] /]hdZsh ,tduh=t=Eoi=1
n 2hli / st2+lid, where 0øl1

øl2ø ¯ øln are the eigenvalues ofA*A. Such an object can be used to extract the mean
eigenvalue density. In a similar fashion, by taking partial derivatives ofZsh1, . . . ,hk,t1, . . . ,tld of
higher orders, one can study the correlations of the eigenvalues ofA*A. To show the universality
of the distribution of the smallest eigenvalues one needs to show that local statistical quantities at
the edge of the spectrumsnear the origind do not dependsin the limit n→`d on the second and
higher moments off.

The next proposition is analogous to Proposition 1 in the real case.
Proposition 2: Let A be a random rectangular m3n matrix with the probability distribution

given by (28). Let tl .0, l =1, . . . ,r, be some positive parameters. Then the following formula
holds:

ESp
l=1

r

dets1 + ti
2AtAdD−1

= p−rsn+md/E
R2rsn+md

p
l=1

r

dnRsslddnIsslddmRpslddmIpsld

3 expS− o
l=1

r

sussldu2 + upsldu2dD p
1ø jøn,1økøm

GSUo
l=1

r

tlsk
sldpj

sldU2D ,

s31d

where ssld=ss1
sld , . . . ,sn

sldd are n-dimensional complex vectors, psld=sp1
sld , . . . ,pm

sldd are m-dimensional
complex vectors, l =1, . . . ,r,

Gsyd =
1

2p
E

0

2p

duE
0

+`

fsxd dxexps2isxyd1/2cossudd =E
0

+`

dxfsxdfsxyd, s32d

and

fsxd = o
l=0

+`
s− 1dl

sl!d2 xl = J0s2x1/2d. s33d

In the special case of single determinantsr =1d the formula (31) can be simplified:
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Esdets1 + t2A*Add−1 =E
s0, + `dm+n

p
i=1

n

e−ui duip
j=1

m

e−vi dvip
k,l

Gst2ukvld. s34d

Remark 6:As in Sec. II we can consider the case when the the matrix entrieshuajkuj are
independent but not identically distributed with the densitiesf jksuxud, 1ø j øm, 1ønøn. The
result of Proposition 2 still holds true provided we replaceG in s31d and s32d by Gjksyd
=s1/2pde0

2pdue0
+`f jksxddxexps2isxyd1/2 cossudd=e0

+`dxfjksxdfsxyd.
Remark 7:In s33d J0szd=s1/2pde0

2p expsiz cosuddu is the standard Bessel function.46

Remark 8:In the special WishartsLaguerred casefwhich corresponds tofsxd=e−xg one has
Gsyd=e−y. If all moments of fsxd exist and do not grow very fast, one can writeGsyd
=ol=0

+` fs−1dlal / sl!d2gyl, wherehanjnù1 are the moments offsxd.
Proof of Proposition 2:Let s=ss1, . . . ,sndt, p=sp1, . . . ,pmdt be complexn-andm-dimensional

column vectors ands* =ss1, . . . ,snd, p* =sp1, . . . ,pmd. In what followsd2ns andd2mp will stand for
dnRsdnIs anddmRpdmIp correspondingly. Then

sdets1 + t2A*Add−1 = SdetS 1 tiA

tiA* 1
DD−1

= S 1

p
Dn+mE d2ns d2mp exps− ss* ,p*dBstdss,pdtd

= S 1

p
Dn+mE d2ns d2mp exps− susu2 + upu2dd

3expS− i o
1ø jøn,1økøm

stajkpksj + tajkpksjdD ,

where as beforeBstd= s Id itA
itA* Id

d andd2nsd2mp=pi=1
n dRsidIsip j=1

m RpidIpi.
We can then write down

ESp
l=1

r

dets1 + ti
2AtAdD−1

= p−rsn+mdE
R2rsn+md

p
l=1

r

d2nssld d2mpsld expS− o
l=1

r

sussldu2 + upsldu2dD
3 p

1ø jøn,1økøm

ESexpS− iSakjo
l=1

r

tlsj
sldpk

sld + akjo
l=1

r

tlsj
sldpk

sldDDD .

s35d

Let u=ol=1
r tlsj

sldpk
sld. Then we can write

Esexps− isajku + ajkuddd =
1

p
E dRzdIzfsuzu2dexps− iszu+ zudd

=
1

p
E

0

2p

duE
0

+`

drrf sr2dexps− ir seiuu + e−iuūdd

=
1

2p
E

0

2p

duE
0

+`

dxfsxdexps− iÎxseiuu + e−iuūdd

=E
0

+`

dxfsxdfsxuuu2d, s36d

wherefsxd has been defined ins33d. Combinings35d and s36d we arrive at
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Ep
l=1

r

sdets1 + tl
2A*Add−1 = S 1

p
Drsm+nd

p
l=1

r E d2nssld d2mpsld expS− o
j=1

n

usj
sldu2 − o

k=1

m

upk
sldu2D

3 p
1ø jøn,1økøm

GSUo
l=1

r

tlsj
sldpk

sldU2D . s37d

In the special caser =1 the formula can be simplified further:

Esdets1 + t2A*Add−1 = S 1

p
Dm+nE

R2sn+md
d2ns d2mp expS− o

j=1

n

usju2 − o
k=1

m

upku2D
3 p

1ø jøn,1økøm
E

0

`

dxfsxdHo
l=0

`
1

sl!d2s− xdlt2lupku2lusju2lJ
= 2m+nE

s0, + `dm+n
p
i=1

n

ri drip
j=1

m

r j dr j expS− o
i=1

n

ri
2 − o

j=1

m

r j
2Dp

k=1

n

p
l=1

m

Gst2rk
2rl

2d

=E
s0, + `dm+n

p
i=1

n

e−uiduip
j=1

m

e−vidvip
k,l

Gst2ukvld. s38d

In the Wishart case one can simplify things even further. The calculations are very similar to
the real Wishart case considered in Remark 4sSec. IId. Since typical eigenvalues ofA*A are of the
order of n, the scaling oft2 by a factor 1/n allows us to study the limiting distribution of the
eigenvalues. It follows froms38d that we are left with the task of evaluating the integral
Esdets1+st2/ndA*Add−1es0 , +`d2npi=1

n e−ui duip j=1
m e−v j dv j exps−st2/ndok=1

n ukol=1
m vld, which can be re-

duced to

E
s0, + `dm+n

p
i=1

n

e−ui duip
j=1

m

e−v j dv j expS−
t2

n
o
k=1

n

uko
l=1

m

vlD
=E

s0, + `dn
p
i=1

n

e−ui duiS1 +
t2

n
o
l=1

n

ulD−m

=E
0

+` zn−1

sn − 1d!
e−zS1 +

t2

n
zD−m

dz

=
nn

GsndE0

+`

zn−1e−nzs1 + t2zd−m dz=
nn

GsndE0

+`

e−nLszdz−1 dz, s39d

whereLszd=z+sm/ndlns1+t2zd−ln z. It is remarkable that the formulas in the complex case are
identical to those in the real casefs21d and s22dg modulo trivial change of parameters. We thus
proved the following result.

Lemma 1: Let m and n be positive integers and zPC \ s−` ,0d. Then

E2m,2n, realSdetS1 +
z

2
AtADD−1/2

= Em,n, complexsdets1 + zA*Add−1, s40d

where on the lhs we have the mathematical expectation with respect to the ensemble of rectangular
2m32n real matrices A with i.i.d. standard Gaussian entries (standard real Wishart ensemble),
and on the rhs we have the mathematical expectation with respect to the ensemble of rectangular
m3n complex matrices A with i.i.d. standard Gaussian entries (standard complex Wishart en-
semble).
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As before, it was enough to prove the result for positive realz= t2. We remind the reader that
in the standard real Wishart case all entrieshaj ,kj are i.i.d. Ns0,1d random variables, and in the
standard complex Wishart case all entrieshRaj ,k,Iaj ,kj are i.i.d. Ns0,1/2d random variablessso in
both casesEuaj ,ku2=1d.

Remark 9:If all moments offsxd exist, then under some technical conditions the asymptotics
of Esdets1+t2A*Add−1 in the global regime depend on the first and second moments offsxddx, si.e.,
on the second and fourth moments of the matrix entriesAkld. This phenomena is known in random
matrix theory: for example, in the case of Wigner random matrices, the limiting distribution of a
global linear statisticsTr hsAd−EsTr hsAdd swhereh is a test function, say a polynomial, andA is
a random Wigner matrix normalized so that a typical eigenvalue is of the order of a constantd
depends on the second and fourth moments of the matrix entriesssee e.g., Refs. 28 and 35d. It is
conjecturedsand, in a few interesting special cases, verifiedd that in the local regime the depen-
dence on the fourth moment goes away.
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APPENDIX

A Poisson random point process on the positive half-axis with the locally integrable intensity
functionrsxd is defined in such a way that the counting functionsse.g., numbers of particlesd in the
disjoint intervalsI1, . . . ,Ik are independent Poison random variables with the parameterseI j

rsxddx,
j =1, . . . ,k. Equivalently, one can define the Poisson random point by requiring that thek-point
correlations functions are given by the products of one-point correlation functionssintensitiesd,
i.e., rksx1, . . . ,xkd=p j=1

k rsxjd.
Let f : s0, +`d→C be a test function with a nice behavior at the origin and infinity. Then

Ep
i=1

`

s1 + fsxidd = 1 +o
k=1

`

E o
1øi1,i2,¯,ik

p
j=1

k

fsxi j
d

= o
k=0

`
1

k!
E

s0, + `dk
p
j=1

k

fsxjdrksx1, . . . ,xkd dx1 ¯ dxk

= o
k=0

`
1

k!SEs0,+`d
fsxdrsxd dxDk

= expSE
s0,+`d

fsxdrsxd dxD . sA1d

If the test functionfsxd equalss1+zxd−1/2−1, andrsxd=1/px3/2, we have

E
s0,+`d

fsxdrsxd dx=E
s0,+`d

ss1 + zxd−1/2 − 1d
1

px3/2 dx= −
2

p
Îz,

which is exactly the exponent ins4d. For random Schrödinger operators the Poisson statistics of
the eigenvalues in the localization regime was first proved by Molchanov in Ref. 32ssee also Ref.
31d.
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In this paper we study the statistics of combinatorial partitions of the integers,
which arise when studying the occupation numbers of loops in the mean field Bose
gas. We review the results of Lewis and collaborators and get some more precise
estimates on the behavior at the critical pointsfluctuations of the condensate com-
ponent, finite volume corrections to the pressured. We then prove limit shape theo-
rems for the loops occupation numbers. In particular we prove that in a certain
range of the parameters, a finite fraction of the total mass is, in the limit, supported
by infinitely long loops. We also show that this mass is equal to the mass of the
condensed state where all particles have zero momentum. ©2005 American Insti-
tute of Physics.fDOI: 10.1063/1.1855933g

I. INTRODUCTION

Statistics of combinatorial partitions arises in many areas of science as number theory, com-
binatorics, probability and statistical mechanics, as illustrated by Vershik in his 1996 paper on the
subject.14

The problem is about decomposing a positive integerNPN+ into a sum of positive integers,
N= j1+¯ + j k, kPN+. Let s j1, . . . ,jkd the sequence of terms in the sum and consider two such
sequences equivalent if they differ by a permutation. A partition ofN is then the equivalence class
of a sequence whose terms sum up toN. Following Vershik we describe partitions by sequences
np =hnj , j PN+j, wherenj is the number of elements equal toj in a sequence representative of the
partition, thuso j jnj =N. Statistics enters once we assign a statistical weight to the partitions, the
choice of the weights is determined by the particular applications we have in mind and the goal is
to derive limit theorems and characterize the typical partitions whenN is large.

As in Ref. 14 we will consider multiplicative weights, namely we will suppose that the
statistical weight ofnp is

wsnp d = p
j=1

`

ws j ,njd, np = hnj, j P N+j s1.1d

wherews j , ·d :N+→R+.
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In the language of statistical mechanics, the assumption restricts the analysis to noninteracting
systems and we will relax it, to study mean field interactions as well. To make clear the connection
with physics, it is convenient to generalize the above context by consideringj as an element of
some countable spaceJ. For instance, a quantum gas of particles in a finite box with Bose–
Einstein statistics, can be represented in terms of occupation numbershnj , j PJj, with J the mo-
mentum eigenvalues of a single particleswhich are countably many because particles are in a
finite boxd. In the free case, the equilibrium distribution of such occupation numbers is determined
by multiplicative weights of the forms1.1d, as it will be discussed in the next section.

Bose condensation is then the phenomenon for which a positive fraction of the total number
of particles occupies the state with zero momentum, the fraction converging to a deterministic
value in the thermodynamic limit. The other particles are distributed over the remaining momenta
and their random distribution, suitably normalized, also converges to a deterministic curve, in the
thermodynamic limit. The fraction with zero momentum, thought of as a Dirac delta of positive
mass added to the remaining distribution, is referred to as the mass of the condensed gas, while the
remaining mass is that of the gas in its “normal state.” All that happens for suitable values of
temperature and density, the theory is very well known and can be found in textbooks and review
papersssee, for instance, Refs. 6 and 15d. The extension to the mean field case is due to Lewis and
collaboratorsssee, for instance, Ref. 10d.

Our model is the same free Bose gas discussed so far, but regarded in terms of “loops” which
arise when enforcing the symmetry of the wave functions under particles permutationssBose
statisticsd. To make this paper self contained, in Appendix A, we derive the representation of the
canonical partition function for a Bose gas in the loops language. Thus in our schemej PN+ is the
“loop length,” representing a cycle withj particles which describe the permutations among par-
ticles when imposing the symmetry of the wave function, see Ginibre5 for a detailed analysis of
the model also when interparticles interactions are present.

Feynman conjectured,4 that Bose condensation is related to the appearance of long loops,
namely a fraction of the total number of particles is concentrated on loops whose length diverges
when Bose condensation occurs, and this fraction should be exactly the same as the condensed
mass of the gas.

Results of this kind for the free gas, and also in the case when obstacles are present as well,
have been proved by Kac and Luttinger,7,8 and Suto.13

The purpose of this paper is to show that many properties of the free gas are easily and
naturally expressed in terms of the loop representation, which in some instances could provide an
alternative picture of the system with some advantages over the more usual momentum-occupation
representation. We will indeed prove very detailed estimates on the statistics of the loops, both in
the free and in the mean field case.

In particular our large deviation estimates can be used to extend our analysis in the case the
Kac potential withg−1/L,1. An extension to a more general class has been obtained in Ref. 9.

In Sec. II we present the model. In Sec. III we study the thermodynamics of the mean field
Bose gas, showing that the phase diagram can be recovered by solving a variational problem in
terms of a free energy functional. We also compute the finite volume corrections to the pressure.
In Sec. IV we analyze the statistics of the “long loops” whose length goes to infinity faster thanL2,
L being the size of the volume. In Sec. V we state large deviation theorems for the “short loops.”
In Sec. VI, we prove that the mass density supported by the long loops is equal to the density of
the condensed state, where all particles have zero momentum.

Proofs are given in the appendixes.

II. THE FREE AND MEAN FIELD BOSE GAS

We will consider the weightsws j ,nd in s1.1d as dependent on the parametersL.0, b.0,
lPR and given by the expression

ws j ,nd =
1

n!
SLdasb j ,Ld

j
ebl jDn

, s2.1d

033303-2 Benfatto et al. J. Math. Phys. 46, 033303 ~2005!

                                                                                                                                    



asb j ,Ld = o
kPZd

e−skLd2/s2b jd

s2pb jdd/2 . s2.2d

The quantityLdasb j ,Ld is the partition function at temperatureb j of a free quantum particle of
unitary mass in a periodic cubic box of sideL, namely

Ldasb j ,Ld = o
kPZd

e−1/2b js2pk/Ld2. s2.3d

The elementary equalitys2.3d is proved in Lemma A.2.
By the help of the weightss2.1d, we construct three probability measures onN+

N, the canonical,
the grand canonical and the mean field measures. The canonical measure withNPN+ particles is
the probability

mN,Lsnp d = ZN,L
−1 1o jnj=Nwsnp d, s2.4d

the partition functionZN,L being the normalization factor andwsnp d is given bys1.1d with ws j ,njd
as in s2.1d with l=0. We are not making explicit the dependence onb, as it will be kept fixed
throughout the sequel. As we will see in Appendix A,ZN,L is equal to the partition function of a
Bose gas in a cubic box of lengthL with periodic boundary conditions and inverse temperatureb.

The grand canonical probability is

Pl,Lsnp d = Jl,L
−1 wsnp d, s2.5d

where

Jl,L = expHLdo
j

ebl j asb j ,Ld
j J s2.6d

and the definition is well posed ifl,0. Indeed, the right-hand sidesrhsd of s2.6d diverges for
lù0 becauseasb j ,Ldù1/Ld, as follows froms2.3d.

Finally, the mean field grand canonical probability is

Pl,L
mf snp d = Jl,L

mf−1
e−bsS jnjd

2/s2Lddwsnp d s2.7d

shaving set equal to 1 the interaction strengthd. Due to the presence of the interaction, which
ensures convergence at infinity, the value of the chemical potentiall is now unrestricted.

To establish the connection of these measures with the Gibbs measures of the Bose gas in the
momentum representation, we realize the above processes in the following way. Letasb j ,p,Ld
.0, j PN+, pPP, P a countable set, be such that

Ldasb j ,Ld = o
pPP

asb j ,p,Ld. s2.8d

We then define new weights,

ws j ,p,nd =
1

n!
Sasb j ,p,Ld

j
ebl jDn

, s2.9d

and callmN,L
* snp d, Pl,L

* snp d, Pl,L
mf,*snp d, np =hnj ,p, j PN+,pPPj, the measures given as ins2.4d–s2.7d

with the new weightsws j ,p,nd of s2.9d and replacingo j jnj →o j ,pjnj ,p. Calling

nj = o
pPP

nj ,p, np = o
j.0

jnj ,p, s2.10d

a simple combinatorial computation, which is omitted, shows that the laws of the variablesnj

undermN,L
* , Pl,L

* , andPl,L
mf,* are the same as those undermN,L, Pl,L, andPl,L

mf .
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We will see that some proofs become simpler using the representations2.10d after a suitable
choice ofasb j ,p,Ld. To recover the momentum representation, we setP=Zd and

asb j ,p,Ld = e−sb j /2ds2pp/Ld2 s2.11d

that satisfiess2.8d fcf. s2.3dg. Moreover, the law undermN,L
* , Pl,L

* , and Pl,L
mf,* of the variablesnp

defined ins2.10d is the usual free Bose canonical and grand-canonical and mean field laws of the
momentum occupation numbers. Examining for simplicity only the free Bose grand canonical
measure, the probability to havenPN particles of unitary mass with momentump is

e−bnf−l+1/2s2pp/Ld2g

onù0
e−bnf−l+1/2s2pp/Ld2g

. s2.12d

This is equal toPl,L
* shnp=njd, because,

e−bnf−l+1/2s2pp/Ld2g = o
hnj ,p,j.0j:o j jnj ,p=n

p
j.0

1

nj ,p!
Se−b jf−l+1/2s2pp/Ld2g

j
Dnj ,p

s2.13d

which follows from the combinatorial identity

1 = o
hnj,j.0j:o j jnj=n

p
j.0

1

nj!
S1

j
Dnj

. s2.14d

It turns out that this identity could be proved by checking that

1 =
1

n!
Udnfsxd

dxn U
x=0

, fsxd = o
hnj,j.0j

p
j.0

1

nj!
Sxj

j
Dnj

. s2.15d

III. THERMODYNAMICS OF THE MEAN FIELD BOSE GAS

By replacing the factorials inwsnp d with the leading terms of the Stirling formula, we obtain
the following heuristics for the distribution of the loops occupation numbers at largeL:

wsnp de−bsS j jnjd
2/s2Ldd < e−bLdFlsrp d, rp = h jnj/L

d, j . 0j, s3.1d

whereFlsrp d : f0, +`dN+→Rt h+`j, is defined by the expression

Flsrp d =
1

2
So

j

r jD2
− lo

j

r j −
Ssrp d

b
, s3.2d

Ssrp d = − o
j=1

`
r j

j
Slog

r j

r j
* − 1D, r j

* =
1

s2pbdd/2jd/2 . s3.3d

Besides the above heuristic derivation, the functionalFlsrp d has an important role in the
sequel. Indeed, as suggested bys3.1d and proved in this paper, in the thermodynamic limitL
→`, the distribution concentrates on the minimizers ofFl, thus reducing the computation of the
“macroscopic observables” to variational problems for the “limit functional”Fl. In particular this
applies to the thermodynamic potentials. Indeed, interpretingFlsrp d as the Gibbs thermodynamic
potential and applying the corresponding version of the second principle of thermodynamics, we
have the following expression for the equilibrium thermodynamical pressure:
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psld ª − inf
rp

Flsrp d. s3.4d

The validity of such an interpretation is confirmed by equality with the mean field grand canonical
pressure,

psld = lim
L→`

1

bLd ln Jl,L
mf . s3.5d

According to thermodynamics, the free energy functional which corresponds to the Gibbs poten-
tial Flsrp d is Flsrp d+lhor jj; we can then use the latter to define the equilibrium thermodynamical
free energy,

asud ª inf
rp :o jr j=u

hFlsrp d + luj. s3.6d

The validity ofs3.6d follows from equality with the mean field canonical free energy, which can be
written, if ZNL,L

mf denotes the mean field canonical partition function,

asud = − lim
L→`

NL/Ld→u

1

bLd ln ZNL,L
mf s3.7d

and thermodynamic consistency follows from checking thatasud is the Legendre transform of
psld.

Equationss3.4d–s3.7d show that the thermodynamics of the mean field Bose gas is the same
thermodynamics of the free energy functionalFl, which can be quite explicitly computed. All that,
including the proofs ofs3.4d–s3.7d, are reported in Appendix G.

The thermodynamics of the Bose gassin the free and in the mean field casesd is very well
known and does not need to be discussed again here, but its features in terms of loops are not so
familiar and, on the other hand, quite interesting and transparent. Recall first that in the free gas
there is, in any dimensiondù3, a Bose condensation characterized by the existence of a critical
densityu* , so that the free energy

a0sud ª asud −
u2

2
s3.8d

fi.e., the mean field free energyasud minus the mean field energy when the particles density isug
is constant pastu* ,

a0sud = a0su*d. s3.9d

Such a property is indeed verified bya0sud as defined bys3.8d with asud as ins3.6d, which means,
recalling s2.4d and s3.7d, that, if uùu* and f·g denotes the integer part,

lim
L→`

lim
NL=fLdug

NL
* =fLdu* g

1

bLd lnHZNL,L

ZNL
* ,L
J = 0. s3.10d

Equations3.10d shows that the ratioZNL,L /ZNL
* ,L→1 sin a very weak sense, indeedd. The closeness

to equality before the limit is an indication of validity of the Bose condensation phenomenon in
finite volumes. We have a resultsproved in Appendix Bd which shows that the infinite volume
description is very accurate,

Theorem 3.1:Let dù3 and

u* = o
j.0

r j
* . s3.11d
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Then, given any density u.u* and any two sequences, NL and NL
* , such that NL=fLdug and NL

*

=fLdu*g, there is a constant c0, only dependent on d, such that

lim
L→`

ZNL,L

ZNL
* ,L

= c0. s3.12d

Moreover, there exists another dimension dependent constant c1, such that, ifl.u* ,

lim
L→`

Jl,L
mf e−bl2Ld/2

Ju* ,L
mf e−bsu* d2Ld/2

= c1. s3.13d

Let us now describe the condensation phenomenon in terms of loops, starting from the analy-
sis of the functionalFlsrp d. In any dimensiondù3, there is a critical chemical potential

l* = o
j.0

r j
* = u* s3.14d

and, for l.l* , the inf in s3.4d is not a minimum, butscf. Appendix Gd it is obtained by any
minimizing sequencerp

snd=hr j
snd , j .0j, such that, for any fixedj ,

lim
n→`

r j
snd = r j

* s3.15d

while

rsld ª lim
n→`

o
j.0

r j
snd = o

j.0
r j

* + sl − l*d = l. s3.16d

Equation s3.15d and s3.16d show that a fractionl−l* of the total massrsld concentrates on
“infinite loops.” The phenomenon is absent forløl* , where instead the rhs ofs3.4d has a unique
minimizer rp sld=hr jsld , j .0j, where

r jsld = r j
*eb jl0sld s3.17d

andl0sld is strictly positive forl,l* , and =0 otherwise. Thus the total mass of the fluid is

rsld = 5o
j.0

r jsld if l ø l* ,

o
j.0

r j
* + sl − l*d if l ù l* ,6 s3.18d

and no mass concentrates on infinite loops forløl* . Note that, bys3.14d, rsl*d=l* .
The validity of the above interpretation follows from the following theorem, which is a

corollary of the large deviation estimates proved in Appendix E.
Theorem 3.2:For any l, s3.19d–s3.21d below hold,

lim
L→`

Pl,L
mf SU jnj

Ld − r jsldU . dD = 0, ∀ d . 0, s3.19d

lim
L→`

Pl,L
mfSU o

jøJsLd
H jnj

Ld − r jsldJU . dD = 0, ∀ d . 0, s3.20d

independently of the choice of JsLd, provided JsLd is an increasing function of L and JsLdøL2,

lim
L→`

Pl,L
mfSUo

jù1
H jnj

Ld − rsldJU . dD = 0, ∀ d . 0. s3.21d
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While the statements relative to global quantities, like pressure, free energy, and total number
of particles are known in the literature, the results on the way the mass distributes among the
different loops are new for the mean field interaction; Suto13 has analogous results in the context
of the canonical free measure.

But all this is not really in the focus of our study, which is rather aimed at relaxing the
assumption of mean field, for instance considering Kac potentials, with the hope that the loops
language may provide some simplification. In this perspective it is important to derive sharp
estimates on the deviations of the densities ins3.19d–s3.21d which have been used in Ref. 9 to
prove the occurrence of Bose condensation with Kac potentials in suitable scaling limits and to get
nontrivial estimates for the low momenta distribution in the condensed region for a class of long
but finite range potential. Results and proofs can be found in Sec. V and Appendix B.

The rate functions of the large deviations of the above macroscopic quantities are faithfully
described by the functionalFlsrp d, whose suitably constrained minima give the correct large
deviations rate functions. Thus, like in the case of the thermodynamical potentials, the analysis of
the functionalFlsrp d gives the right answer.

The functionalFlsrp d is instead inadequate for studying how the mass of the condensed fluid
sin the Bose condensation regimel.l*d distributes among the long loops. The issue is discussed
in the next section.

IV. DISTRIBUTION OF LONG LOOPS

To study the Bose condensation phenomenon, we restrict todù3 and tol.l* . Then, see
s3.18d–s3.21d ands3.14d, the total masssafter the thermodynamic limitd is rsld=u* +sl−l*d, u* is
the mass of the “normal fluid” andsl−l*d of the condensed one. Bys3.20d,

lim
L→`

Pl,L
mfSU o

jøL2

jnj

Ld − u*U . dD = 0, ∀ d . 0 s4.1d

which shows that in finite volumes the mass of the normal fluid is essentially carried by loops with
lengthøL2, while the mass of the condensed concentrates on loops of length.L2,

lim
L→`

Pl,L
mfSU o

j.L2

jnj

Ld − sl − l*dU . dD = 0, ∀ d . 0. s4.2d

Actually most of the mass is on loops whose length is a fraction of the whole volume,

lim
L→`

El,L
mfS 1

Ld o
j.L2

dLd

jnjD = d. s4.3d

Furthermore the numberX̃L of loops larger thanL2 goes like lnL and becomes deterministic

in the limit L→` si.e., X̃L / ln L→a.0d, while the cardinality of the subset of loops larger than
dLd, d.0, is finite and has a nontrivialsi.e., nondeterministicd limit distribution.

We summarize this result in the following theorem proved in Appendix F, where we use the
following notation:

yd,L ;
1

Ld o
jùdLd

jnj, Xd,L ; o
jùdLd

nj, XL ;
1

log L
o
jùL2

nj ,

jmaxª maxh j :nj . 0j. s4.4d

Theorem 4.1:Suppose thatl.l* and 0,d,l−l* , then

lim
L→`

El,L
mf syd,Ld = l − l* − d, s4.5d
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lim
L→`

hEl,L
mf syd,L

2 d − El,L
mf syd,Ld2j = 1

2d2, s4.6d

lim
L→`

El,L
mf sXd,Ld = log

l − l*

d
, lim

L→`
El,L

mf sXLd = d − 2, s4.7d

lim
L→`

hÎlog LfEl,L
mf sXL

2d − El,L
mf sXLd2gj = d − 2, s4.8d

lim
L→`

hEl,L
mf sXd,L

2 d − El,L
mf sXd,Ld2j = Dd = log

l − l*

l − l* − d
S1 − log

l − l*

d
D

+E
d

l−l*−d dx

x
S1 − log

l − l*

l − l* − x
D , s4.9d

Dd

logfsl − l*d/dg
→

d→0
1. s4.10d

Furthermore, for anyjP s1/2,1g,

lim
L→`

Pl,L
mf S jmax

Ld . jsl − l*dD = − ln j. s4.11d

Suto13 has already a proof ofs4.3d in the free canonical case, but he has not analyzed in detail
the statistics of long loops.

V. SMALL AND LARGE DEVIATIONS

A. Small deviations

Theorem 5.1ssmall fluctuations forNd: Let

s2
ª lim

L→`

1

LdEl,L
mf SFo

j.0
jsnj − knjldG2D, knjl ª El,L

mf snjd. s5.1d

Then, ifl0sld is defined as in Appendix G,

s2 =Fb +
1hl,l* j

o j
r j

* jel0sldb jG−1

s5.2d

for any l, if d=3,4, and for lÞl* , if dù5. Moreover, under the same conditions onl, the
function

Isvd ª inf
rp :or j=rsld+v

Flsrp d − inf
rp

Flsrp d s5.3d

with rsld given by (3.18), is twice differentiable inv=0 and

s2 = SbFd2Isvd
dv2 G

v=0
D−1

. s5.4d

Proof: The value ofs2 is calculated in Appendix C, Theorem C.2, in the caselùl* ; the case
l,l* could be treated in a similarssimplerd way. The relation with the free energy functional, Eq.
s5.4d, follows from sI6d of Appendix I. j

Remark:If d=3 andlÞl* , Eq. s5.2d was already obtained by Ref. 2, but the casel=l*
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seems new. To check that the expression given in Ref. 2 coincides withs5.2d for lÞl* , it is
sufficient to note that, sincersld=l−l0sld and, ind=3, r j

* =1/s2pb jd3/2,

o
j

r j
*b jel0sldb j =

b

s2pbd3/2o
j

1

j1/2esl−rslddb j ;
b

s2pbd3/2g1/2sl − rsldd, s5.5d

whereg1/2smd is defined in formulas 17–18 of Ref. 2.
We will also study deviations of other macroscopic quantities. In particular we will consider

the following sets:

V1 ª Z+, V2 ª h,j, V3 ª hJsLdj, V4 ª h1,2, . . . ,JsLdj s5.6d

with JsLd as in Theorem 3.2, namelyJsLdPN+ is an increasing function ofL, such that
limL→` JsLd=` and limL→` JsLd /L2,`.

For k=1, . . . ,4, we then define

AL,d
skd svd ; AL,d

skd
ª Hnp :

1

LdNskd P S o
jPVk

r jsld + v − d, o
jPVk

r jsld + v + dDJ , s5.7d

AL
skdsvd ; AL

skd
ª Hrp : o

jPVk

r j = o
jPVk

r jsld + vJ , s5.8d

with

Nskd = o
jPVk

jnj s5.9d

andr jsld as in s3.17d.
The small deviations forNskd, kÞ1, Nskd as in s5.9d, are discussed in Appendix D forl.l* .

The relation of the corresponding covariances with the free energy functional goes along the same
lines of Appendix I and we omit it.

B. Large deviations

In this section we will express the rate functions of large deviations for the quantitiess5.7d and
s5.8d in terms of variational problems for the limit functional with corresponding constraints.

Theorem 5.2:For any l, if k=1, and for anylÞl* , if k.1,

lim
d→0

lim
L→`3

1

bLd ln Pl,L
mf sAL,d

skd d

− inf
rpPAL

skd
Flsrp d + inf

rp
Flsrp d4 = 1. s5.10d

Proof: The proof of this theorem in the casek=4 and l.l* sthe most interesting cased
follows from Theorem E.3 in Appendix E and Appendix H. The other cases can be treated along
the same lines. j

Remark:The casel=l* is more involved, ifk.1, so we did not study it in detail, but we
think that Theorem 5.2 is still valid.

Corollary 5.3 slarge deviations forNs1d;Nd:

lim
d→0

lim
L→`

ln PsAL,d
s1d d

bLd = − t̄srsld + vd +
v2

2
+ rsldv + pl0sl+t̄d

0 − pl0sld
0 , s5.11d

wherel0sld is defined insG5d, pl0

0 is the pressure of the free system with chemical potentiall0

fcf. Eq. sG2dg and t̄ is the solution of the equation t=̄l0sl+ t̄d−l0sld+v.
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Remark: If l.l* andl+v.l* , thenrsld=l, l0=0 and the expression on the rhs ofs5.11d
becomes −v2/2.

Corollary 5.4 slarge fluctuations forNs2d andNs3dd: If lùl* , −r,
* ,v,l−l* and we define

uªv /r,
* , then

lim
d→0

lim
L→`

1

bLd ln PsAL,d
s2d d = −

1

b

v
,

fsu−1 + 1dlns1 + ud − 1g s5.12d

while, if lùl* and v.l−l* ,

lim
d→0

lim
L→`

1

bLd ln PsAL,d
s2d d = −

1

b

v
,

fsu−1 + 1dlns1 + ud − 1g +
l0

2

2
− l0 + pl0

0 − p0
0, s5.13d

wherel0=l0sl−r,
* −vd.

If l.l* and v.0,

lim
d→0

lim
L→`

JsLd
bLd ln JsLd

ln PsAL,d
s3d d = −

vd

2
. s5.14d

For l.l* and v,0 we get

lim
d→0

lim
L→`

1

bLd ln PsAL,d
s3d d = −

csvdd
2

, s5.15d

where csvd.0 and vanishes asv→0 scf. Corollary 5.5d.
Proof: By Theorem 5.2 and Appendix H,

lim
d→0

lim
L→`

1

bLd ln PsAL,d
s2d d = − t̄sr,sld + vd + pl,t̄ − pl, s5.16d

where t̄ is the solution of the equationr,sldet̄b,=r,sld+v. The solution does exist whenv
.−r,sld and is given by

t̄ =
1

b,
lnSr,sld + v

r,sld
D . s5.17d

When l.l* and −r,
* ,v,l−l* , we see thatp̃l,t̄−pl=sl2/2d+s1/bdo jfsr j

* +v1j=,d / jg
−sl2/2d−s1/bdo jsr j

* / jd=v /b,, so that, defininguªv /r,
* ,

lim
d→0

lim
L→`

1

bLd ln PsAL,d
s2d d = −

1

b

v
,

fsu−1 + 1dlns1 + ud − 1g s5.18d

while, if v.l−l* , we get an extra term coming from the differencep̃l,t̄−pl.
Equations5.14d is a direct consequence ofs5.12d, obtained in the limitu→`. j

Notice that, whenl.l* , in the limit L→`, the fluctuation ofr, has the law of a free Poisson
distribution with parameterr,

* .
Corollary 5.5 slarge deviations forNs4dd: For l.l* ; v.0,

lim
d→0

lim
L→`

JsLd
bLd ln JsLd

ln PsAL,d
s4d d = − vSd

2
− 1D . s5.19d

For v,0 and all lùl* , we have instead,

lim sup
L→`

1

Ld log Pl,L
mfSo

j=1

jsLd

jnj ø fu* − uvugLdD ø − csvd, s5.20d
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where csvd.0 and vanishes asv→0 as

csvd , 5
v2, d ù 5,

v2

uloguvuu
, d = 4,

uvu3, d = 3.
6 s5.21d

Proof: See Theorem E.3 and Appendix H. j

VI. LONG LOOPS AND BOSE CONDENSATION

In this section we show that, in the mean field model, the excess density concentrationr
−r* on large loops implies the phenomenon of condensationsi.e., a finite fraction of the number
of particles occupies the state of zero momentumd.

The reduced density matricessRDMd are the quantum analogue of correlation functions1,12

and the Fourier transform of the one point RDM, in the case of periodic boundary conditions with
translational invariant potentials, givessPenrose11d the average number of particles of momentum
2pp/L, pPZd,

r̂Lspd =E
L

rLs0,zdeis2pp/Ldzdz. s6.1d

Using the language of loops, in the mean field case, where the interaction does not depend on
the position of the particles, the one point RDM reads5

rL
mfsx,yd = o

j0

Jl,L
−1 o

np

wsnp de−bfsS j jsnj + d j ,j0
dd2/2Ldgelb j0 o

kPZd

e−fskL + sx − ydd2/2b j0g

s2pb j0dd/2 . s6.2d

Theorem 6.1:For dù3 and anyb, whenl is larger thanl* ,

lim
L→`

r̂L
mfs0d
Ld = l − l* . s6.3d

Proof: From s6.1d and s6.2d we get that

r̂L
mfs0d =E

L

rL
mfs0,zddz= o

j0

Jl,L
−1 o

np

wsnp de−bfsS j jsnj + d j ,j0
dd2/2Ldgelbo j

jsnj+d j ,j0
d

= El,L
mfSo

j

jnj

Ldasb j ,LdD . s6.4d

The theorem is proved usings4.5d and fcf. sD62dg

0 , asb j ,Ld − r j ø Cr je
−L2/s2b jd.

j

APPENDIX A

In this appendix we recall the relation between the usual definition of the canonical partition
function for a free Bose gas and its representation in the loops language given ins2.4d.

The canonical partition function for a system ofN identical bosons is

ZN = Tr e−bHN,

whereHN is the Hamiltonian operator and the trace involves only symmetrized states.
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Theorem A.1: Let HN=−oi=1
N Di be the Hamiltonian of N free Bosons in a cubic box of size L

with periodic boundary conditions, then

ZN,L = o
np :unp u=N

e−bops2pp/Ld2np = o
np :o jnj=N

p
j

1

nj!
Sop

e−b js2pp/Ld2

j
Dnj

. sA1d

Proof: The Bosons states in the momentum representation can be written asunp l= unp,pPZdl,
np being the number of Bosons with momentum equal tok=2ppL−1. The energy in such a state is
equal toopepnp, ep=s2ppL−1d2, hence the first equality insA1d.

To prove the second one, letl,0 and define,

Zsld ª o
N

eblN o
np :unp u=N

e−bopepnp sA2d

that can be rewritten as

Zsld = expH− o
p

lns1 − e−bsep−lddJ = expHo
j
So

p

e−bsep−ld j

j DJ = o
M

1

M!Fo
j
So

p

e−bsep−ld j

j DGM

= o
np

p
j
Fo

p

e−bsep−ld j

j Gnj 1

nj!
= o

N

eblN o
np :o j jnj=N

p
j

Fop
e−b jep

j
Gnj

1

nj!
. sA3d

SinceZsld is analytic inl for Rel,0, sA1d follows. j

An alternative proof working in the configuration representation can be obtained as follows:

ZN,L =
1

N! op E dr1 ¯ drNkrp1
¯ rpN

ue−bHNur1 ¯ rNl,

whereop is the sum over all permutations ofs1,2, . . . ,Nd. Since any permutation breaks up into
cyclessloopsd, we have

ZN =
1

N! o
n1,n2,. . .

csn1,n2, . . . dp
j

Znj ,

where

sad csn1,n2, . . .d=N!p js1/ jnjds1/nj!d is the number of ways of havingn1 loops of length 1,n2 of
length 2, etc.,

sbd the sum is over all combinations of permutations s.t.o jnj =N,
scd Zs jd=ope

−b jep, where −ep are the eigenvalues of the Laplace operatorD.

In the case of a free Bose gas in a cubic box of sizeL with periodic boundary conditions

ZN,L = o
np :o jnj=N

p
j

1

nj!
Sop

e−b js2pp/Ld2

j
Dnj

thus deriving again the last equality insA1d.
Finally, to justify Eq.s2.3d, we prove the following lemma.
Lemma A.2: For any L anda.0

Ld o
kPZd

e−skLd2/s2ad

s2padd/2 = o
kPZd

e−1/2as2pk/Ld2. sA4d

Proof: EquationsA4d follows from the identities:
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e−skLd2/s2ad =
1

s2pdd/2E
Rd

e−x2/2+iLkx/Îa dx sA5d

and

1

s2pdd o
kPZd

eivk = o
kPZd

dsv − 2pkd. sA6d

j

APPENDIX B

The canonical partition functionsA1d of the free Bose gas can be written as

ZN,L = o
hnkpj

1onkp=Ne−bokpnkpEkp = o
M=0

N

Z̃M,L, sB1d

Z̃M,L = o
hnkp,kpÞ0j

1okpÞ0nkp=Me−bokpÞ0nkpEkp , sB2d

where the momentumkp takes values in the seth2pnp /L ,np PZdj, nkp PZ, andEkp =kp2/2.
In this appendix we study the tail properties of the probability distribution onN with density,

PLsMd =
Z̃M,L

QL
, QL = o

M=0

`

Z̃M,L sB3d

and mean value

kMlL = o
kpÞ0

1

ebEkp − 1
; LdlL

* . sB4d

We remark that this probability distribution is the canonical distribution of the total number of
particles withkÞ0 for a free Bose gas. These results will be used in the sequel to prove small and
large deviation both in the free and mean field case.

We want to study the asymptotic properties of the probability measurePL asL→`. To begin
with, note that, ifdù3, limL→` lL

* does exist and

l* = lim
L→`

lL
* =E

Rd

dkp

s2pdd

1

ebEkp − 1
. sB5d

Let us define

cL = Ld−2sl* − lL
* d. sB6d

Lemma B.1: For any dù3, cL has a limit as L→` and

c* ; lim
L→`

cL =E
0

`

dtF1 − o
npÞ0

e−np2/s2btd

s2pbtdd/2G . sB7d

Proof: s3.2d and sB4d imply that

LdlL
* = o

kpÞ0
o
j=1

`

e−b jEkp = o
j=1

`

fLdasb j ,Ld − 1g sB8d

while sB5d implies that
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Ldl* = Ldo
j=1

`
1

s2pb jdd/2 sB9d

hence, by using the definition ofast ,Ld in s3.2d, we get

cL =
1

L2o
j=1

` F1 − o
npÞ0

e−np2/s2bt jd

s2pbtjdd/2G, tj =
j

L2 . sB10d

The lemma follows from this expression, easily implying the convergence of the sum over
j øL2, and the identity, following froms3.2d swith L=1d:

1 − o
npÞ0

e−np2/s2td

s2ptdd/2 =
1

s2ptdd/2 − o
npÞ0

e−2p2tnp2
sB11d

which implies immediately the convergence of the sum overj ùL2. j

Let us now define

yL =
M − LdlL

*

hL
, hL = 5L2, d = 3,

L2Îlog L d = 4,

Ld/2, d ù 5.
6 sB12d

An important role in this appendix has the following theorem.
Theorem B.2: If M is a random variable with probability (B3), the distribution function of the

random variable yL converges, as L→`, to the distribution function of a random variable y onR
with mean 0 and smooth densityrsyd strictly positive, whose Laplace transform Fssd
=edy rsydexps−syd, sPC, is given, if d=3 and Rs.−2p2b, by

Fssd = expSo
npÞ0

GS s

2p2bnp2DD, Gsud = u − logs1 + ud sB13d

while, if dù4 and RsPR,

Fssd = e1/2c0s2
, c0 =5

1

2p2b2 , d = 4

1

s2pbdd/2o
j=1

`

j1−d/2, d ù 5.6 sB14d

Moreover, there exists a constant C, independent of L and M, such that

s1 + yL
2dhLPLsMd ø C sB15d

and, given any yPR, if we choose M=ML
* so that yL

* =sML
* −LdlL

* d /hL→L→`y, then

hLPLsML
* d ——→

L→`
rsyd. sB16d

Proof: To begin with, we shall prove that the Laplace transform ofyL, FLssd
=oM=0

` PLsMdexpf−ssM −LdlL
* d /hLg, is well defined and convergent asL→`, if RsP ss0,`d,

wheres0=−2p2b, if d=3, ands0=−`, if dù4; this implies in particular that the characteristic
function fLstd=FLs−itd, tPR, is convergent for anyt. By analyzing the decaying properties int of
fLstd, we shall also prove the boundsB15d, implying that the distribution function ofyL is con-
vergent and that its limit is the distribution function of a probability measure onR; in fact, by a
simple application of dominated convergence theorem,
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o
0øMøhL y+LdlL

*

PLsMd =
1

hL
o

0øMøhL y+LdlL
*

hLPLsMd ——→
L→`

E
−`

y

rszddz. sB17d

Note that this result follows from the convergence offLstd to fstd, without using the boundsB15d,
sincePLsMd is a probability measure.3 We are stressing here the role ofsB15d only because we
shall generalize in the following the previous argument to some cases wherePLsMd is not a
probability measure, even ifoM=0

` PLsMd=1.
Finally, by analyzing the properties of the limiting measure Laplace transform, we shall prove

that this measure has a smooth and strictly positive density.
By a straightforward calculation, one can see that

log FLssd =
LdlL

*

hL
s − o

kpÞ0
log

1 − e−bEkp−s/hL

1 − e−bEkp
= o

kpÞ0
F s

hL

1

ebEkp − 1
− logS1 +

1 − e−s/hL

ebEkp − 1
DG

= o
kpÞ0

1

ebEkp − 1
F s

hL
− s1 − e−s/hLdG + o

npÞ0
GS 1 − e−s/hL

e2p2bnp2/L2
− 1

D , sB18d

whereGsud=u−logs1+ud.
Let us consider first the cased=3. ThenhL=L2, so thatFLssd is well defined forRs.s0

;−2p2b; hence we shall fixs so that this condition is satisfied. Then the first term in the third
line of sB18d goes to 0 asL→`, since it is bounded byCL−1, whereC shere and in the followingd
denotes a suitable positive constant, depending ons but independent ofL. Note that

unp ,L ;
1 − e−s/hL

e2p2bnp2/L2
− 1

——→
L→`

unp
* ;

s

2p2bnp2 sB19d

and thatuunp ,Lu, uunp
* uøCnp−2, and uunp ,L−unp

* uøC/L2. On the other hand,Runp ,L andRunp
* are larger of

some constantu0.−1, for anynp ; sinceG8sud=u/ s1+ud, it immediately follows that

uGsunp ,Ld − Gsunp
*du ø Cuunp ,L − unp

* unp−2 ø Cnp−7/2uunp ,L − unp
* u1/4 ø Cunp u−7/2L−1/2. sB20d

It follows that logFLssd andFLssd are convergent forL→` and that, ifFssd=limL→` FLssd,

Pssd ; log Fssd = o
npÞ0

GS s

2p2bnp2D . sB21d

It is not hard to show thatPssd is differentiable and that

P8ssd = o
npÞ0

s

2p2bnp2ss + 2p2bnp2d
sB22d

implying that, if xPR,

lim
x→+`

P8sxd = + `, lim
x→s0

+
P8sxd = − `. sB23d

Let us now callPsdyd the probability measure such that

Fssd = ePssd =E Psdyde−sy. sB24d

The propertysB23d easily implies that the support ofPsdxd is the full real line. Moreover, the
characteristic functionfstd of Psdxd is given by the equation
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fstd = ePs−itd = p
npÞ0

e−itanp−2

1 − itanp−2, a = s2p2bd−1. sB25d

By using the bound logs1+xdù2x/3, valid for 0øxø1/2, we get, ifutuù1,

ufstdu ø p
npÞ0

s1 + t2a2unp u−4d−1/2 ø p
unp uøsÎ2autud1/2

s3/2d−1/2 p
unp u.sÎ2autud1/2

e−t2a2unp u−4/3 ø e−Cutu3/2
.

sB26d

This bound and the support properties ofPsdyd imply that Psdyd=rsyddy, with rsyd a strictly
positive smooth function onR.

In order to complete the proof of the theorem in the cased=3, we still have to prove the
strong convergence propertysB16d, together with the uniform boundsB15d on hLPLsMd. Note that
the definition of characteristic function implies that

hLPLsMd =
1

2p
E

−phL

+phL

dt e−ityLfLstd. sB27d

By using sB18d, we see that

fLstd = FLs− itd = p
npÞ0

evn,L

1 + un,L
, sB28d

whereun,L is given bysB19d with s=−it and

vn,L =
− it

L2se2p2bnp2/L2
− 1d

. sB29d

It follows that ufLstduøpnpÞ0u1+un,Lu−1. Moreover, by usingsB19d, we see that, ifutuøpL2/2 and
unu2ø utu, u1+un,Luù1+d, with a suitabled.0. Hence, ifutuøpL2/2, ufLstduøp0,unp uøutu1/2s1+dd−1

øexps−Cutu−3/2d. If pL2/2ø utuøpL2, the same result is obtained, by observing that in this case, if
unuøL, u1+un,Luù1+1/se2p2b−1d, so that ufLstduøexps−CL3døexps−Cutu−3/2d. Hence, we can
show that, uniformly inL,

ufLstdu ø exps− Cutu3/2d, utu ø phL sB30d

which implies, together withsB27d, thathLPLsMdøC, with C independent ofL andM. Moreover,
by the dominated Lebesgue convergence theorem, we get, for anyyPR,

yL ——→
L→`

y ⇒ hLPLsMd ——→
L→`

1

2p
E

−`

+`

eityfstd = rsyd. sB31d

In order to complete the proof ofsB15d, we use the identity

s− iyLd2hLPLsMd =
1

2p
E

−phL

+phL

e−ityLf L9std. sB32d

Sincef L9std= fLstdfPL8s−itd2+PL9s−itdg, wherePLs−itd=log FLs−itd, and, as one can check easily by
proceeding as in the analysis given before of logFLssd, uniformly in L,

uPL8s− itdu ø Cutu, uPLs− itdu ø C sB33d

the boundsB15d immediately follows from the boundsB30d.
Let us now suppose thatd=4. ThenhL=L2Îlog L, so that, given anyx,0, FLssd is well

defined forRs.x, if L.exps−x/ s2p2bdd. Moreover, as in the cased=3, the first term in the
third line of sB18d goes to 0 asL→`, since it is bounded byCslog Ld−1/2.
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If we defineunp ,L as insB19d, uunp ,LuøCsnp2Îlog Ld−1, with C only depending ons if L is large

enough. Hence, ifG̃sud=u−logs1+ud−u2/2,

Uo
npÞ0

G̃sunp ,LdU ø
C

slog Ld3/2 o
npÞ0

1

unp u6
——→

L→`
0. sB34d

Note also thatL−4ounp uùLfexpsanp2/L2d−1g−2 is bounded forL→`, for anya.0, and that

1

log L
o

0,unp uøL
F 1

sanp2d2 −
1

L4seanp2/L2
− 1d2G ø

C

L2 log L
o

0,unp uøL

1

unp u4
——→

L→`
0 sB35d

so thatslog Ld−1L−4onpÞ0fexpsanp2/L2d−1g−2 is convergent forL→` and

c0 = lim
L→`

1

log L o
npÞ0

1

L4seanp2/L2
− 1d2

= lim
L→`

1

log L o
0,unp uøL

1

a2unp u4
=

1

a2 lim
L→`

1

log L
E

1øuxp uøL

d4xp

uxp u4
=

2p2

a2 .

sB36d

By usingsB18d andsB36d with a=2p2b, it is now easy to prove that logFLssd is convergent
for L→` and that

Pssd = lim
L→`

log FLssd =
1

2
s2 lim

L→`

1

L4 log L o
npÞ0

1

se2p2bnp2/L2
− 1d2

=
1

2

2

s2pbd2s2. sB37d

It follows immediately, if we definePsdyd as in the cased=3, thatPsdyd is a Gaussian probability
measure with densityrsyd=s2pc0d−1/2 expf−y2/ s2c0dg, with c0=2/s2pbd2. The proof ofsB15d and
sB16d in the cased=3 can be easily extended to this case; we omit the details.

Let us finally consider the casedù5. ThenhL=Ld/2 and we can proceed as in the previous
case, the only relevant difference being that nowPssd gets a contribution also from the first term
in the third line ofsB18d. We find thatPssd= 1

2c0s2, with

c0 = lim
L→`

1

Ld o
npÞ0

F 1

e2p2bnp2/L2
− 1

+
1

se2p2bnp2/L2
− 1d2G =E ddkp

s2pdd

e−bEkp

s1 − e−bEkpd2

= o
j1,j2ù0

E ddkp

s2pdde−bEkps j1+j2+1d = o
jù1

j

s2pb jdd/2 . sB38d

The proof ofsB15d and sB16d in the cased=3 can be easily extended also to this case, so
completing the proof of the theorem. j

APPENDIX C: PROOF OF THEOREM 3.1

Note that the mean field grand canonical partition function can be written as

Jl,L
mf = e1/2bl2Ldo

N=0

`

e−sb/2dLdfsN/Ldd − lg2ZN,L sC1d

and that

PLsM ø Nd = PLSyL ø
Ld

hL
sl − l*d +

Ld/2

hL
xN +

L2

hL
cLD ,
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xN = Ld/2S N

Ld − lD . sC2d

Let us now define

Gl,L ;
Jl,L

mf

e1/2bl2Ld
QLLd/2

=
1

Ld/2 o
N=0

`

e−b/2LdfsN/Ldd − lg2PLsM ø Nd. sC3d

Theorem 3.1 follows from the following Lemma.
Lemma C.1: Iflùl* , the quantityGl,L has a limit as L→`. If l.l* , we have, for any d

ù3,

lim
L→`

Gl,L =Î2p

b
sC4d

while, if l=l* , we have

0 , lim
L→`

Gl,L =5
Î2p

b
E

−`

c*

dy rsyd, d = 3,

Î p

2b
, d = 4,

E
−`

+`

dx e−bx2/2E
−`

x

dy rsyd, d ù 5,
6 sC5d

wherersyd is the density probability defined in Theorem B.2.
Moreover, if NL=fuLdg sf·g denotes the integer partd, u.l* , and NL

* =fl*Ldg, then

lim
L→`

ZNL,L

ZNL
* ,L

= H1/Psy ø c*d, d = 3,

2, d ù 4.
J sC6d

Proof: By Theorem B.2,PLsyLø ȳd→L→`e0
ȳdy rsyd, for any fixed ȳ, rsyd being a strictly

positive function depending on the dimensiond. Hence, by usingsC2d and Lemma B.1, we can
easily show that, ifl.l* andxN→L→`x

PLsM ø Nd ——→
L→`

1, ∀ x sC7d

while, if l=l* andxN→L→`x,

PLsM ø Nd ——→
L→` 5Psy ø c*d, d = 3,

Psy ø 0d = 1/2, d = 4,

Psy ø xd, d ù 5.
6 sC8d

Then sC4d and sC5d follow from sC3d and a simple application of the dominated Lebesgue
convergence theorem. The proof ofsC6d is a simple consequence ofsC2d, sC8d and the equation,
valid if NL=fuLdg, u.l* , andNL

* =fl*Ldg,

lim
L→`

ZNL,L

ZNL
* ,L

= lim
L→`

PLsM ø NLd
PLsM ø NL

* d
= lim

L→`

PLSyL ø
Ld

hL
su − l*dD

PLsyL ø cLL2/hLd
. sC9d

j

By similar arguments, one can prove the following theoremssee also Ref. 2 for the casel
.l*d.
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Theorem C.2: If l.l* , the distribution of the random variable xN converges, as L→`, to a
Gaussian distribution with densityexps−bx2/2d; the same result is true ifl=l* and d=3,4.
However, if d.4, the limiting distribution is still well defined, but it is not Gaussian anymore; it
is proportional to e−bx2/2e−`

x dy rsyd, rsyd being the density probability defined in Theorem B.2.

APPENDIX D: DISTRIBUTION OF “SHORT LOOPS”

In this appendix we will restrict todù3 andlùl* and study the distribution of the variables,

yA,L =
o jPA

jnj − LdrA,L

hA,L
, rA,L = o

jPA

r j ,L, sD1d

whereA is a finite subset ofN+, LDr j ,L is the mean value ofjnj with respect to the mean field
measure andhA,L is a suitable scaling factor. The main results are stated in Theorems D.4 and D.5
below, the main ingredient in the proofs is the reduction to the analysis of the probability distri-
bution PLsMd defined in Appendix B.

We start by deriving the following expression forr j ,L:

r j ,L = asb j ,Lda j ,L, sD2d

where

a j ,L =
1

Gl,L

1

Ld/2 o
Nù0

e−bxN
2/2PLsM ø N − jd sD3d

with xN as in sC2d.
Proof of (D2): Let w0s j ,njd be as ins2.1d with l=0, then

r j* ,L =
esbl2/2dLd

Jl,L
mf o

N

e−bsxN
2/2d o

np :o j jnj=N
p

j

w0s j ,njd
j *nj*

Ld =
esbl2/2dLd

Jl,L
mf asb j * ,Ldo

N

e−bsxN
2/2dZN−j* ,L.

sD4d

By sB1d and sB3d we get

r j* ,L =
esbl2/2dLd

Jl,L
mf asb j * ,LdQLo

N

e−bsxN
2/2dPLsM , N − j *d sD5d

hencesD2d follows by sC3d. j

Lemma D.1: For anylùl* , there is a constant C, independent of L and j, such that, if hL is
defined as insB12d,

0 , 1 − a j ,L ø C
j

hL
. sD6d

Moreover, ifl=l* ,
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lim
L→`

hL

j
s1 − a j ,Ld =5

rsc*d

E
−`

c*

dy rsyd
,

d = 3,

2rs0d, d = 4,

E
−`

+`

dx e−bx2/2rsxd

E
−`

+`

dx e−bx2/2E
−`

x

dy rsyd
, d ù 5,6 sD7d

wherersyd is defined as in Lemma C.1.
Proof: Note that

1 − a j ,L =
1

Gl,L

1

Ld/2 o
Nù0

e−bxN
2/2PLsN − j , M ø Nd. sD8d

By using the claim in Lemma C.1 thathLPLsMd is bounded uniformly inL andM, we get

PLsN − j , M ø Nd =
1

hL
o

M=N−j+1

N

hLPLsMd ø C
j

hL
sD9d

which immediately impliessD6d, by using Lemma C.1. On the other hand, ifl=l* and M =N
−r, r ù1, the correspondingyL variable is equal, seesC2d, to sLd/2xN+L2cL−rd /hL, so that, by
using sB16d,

hLPLsM = N − rd ——→
L→` 5rsc*d, d = 3,

rs0d, d = 4,

rsxd, d ù 5.
6 sD10d

EquationssD7d then follows from Lemma C.1 and dominated convergence theorem. j

If l.l* , hLPLsM =N−rd goes to 0 asL→`, so we expect the boundsD6d can be improved.
This is especially true ifj is taken as a diverging function ofL; in particular, if j . sl−l*dLd, it is
easy to see thata j ,L→0 asL→`. In order to get good bounds in all these cases, we shall use the
following large deviation bound for the probability measurePLsMd.

Lemma D.2: Let0,u1,u2; then there exist L̄su1d, such that the probabilities,

SL
+su1,u2d ; PLsLdlL

* + Ldu1 ø M ø LdlL
* + Ldu2d, sD11d

SL
−su1,u2d ; PLsLdlL

* − Ldu2 ø M ø LdlL
* − Ldu1d, sD12d

satisfy, for Lù L̄su1d, the following bounds:

e−a1u2Ld−2s1+dLd ø SL
+su1,u2d ø e−a1u1Ld−2s1−dLd, ∀ u1 . 0, sD13d

e−fsu2dsLd/hLd2s1+dLd ø SL
−su1,u2d ø e−fsu1dsLd/hLd2s1−dLd, u2 , l* , sD14d

wheredL is a function which goes to0 as L→`, a1 is a positive constant, depending on d, and
fsud is a positive function of order u2 for u→0 (equal indeed to a2u

2 for d=2,3).
Proof: By sC2d, we can write
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SL
+su1,u2d =E

u1Ld/hL

u2Ld/hL
PLsdyd = ePLstdE

u1Ld/hL

u2Ld/hL
etyPt,Lsdyd, sD15d

wherePLstd=log FLstd, FLstd is the Laplace transform ofPLsdyd given by sB18d, t is any real
number such thatFLstd is well defined andPt,Lsdyd is the probability measure

Pt,Lsdyd =
e−tyPLsdyd

FLstd
. sD16d

By looking atsB18d, we see thatFLstd is defined fort. tL
* , wheretL

* is the value oft such that the
argumentun,L of the functionGsud=u−logs1+ud is equal to −1 ifunp u=1, that istL

* =−ahL /L2. We
chooset so that

− PL8std =E dy yPt,Lsdyd = v
Ld

hL
, v =

u1 + u2

2
. sD17d

By using sB18d, this condition can be written

1

hL
o
npÞ0

se−t/hL − 1deanp2/L2

seanp2/L2
− e−t/hLdseanp2/L2

− 1d
= v

Ld

hL
, a = 2p2b. sD18d

By proceeding as in the proof of Theorem B.2, it is easy to see that the sum in the lhs is bounded
by Cutu, if we extract from it the terms withunp u=1; hence we get

cL − d
t

hL
2

1

a/L2 + t/hL

L2

a
s1 + d1,Ld = v

Ld

hL
sD19d

with d1,L→0 andcL→c asL→`. It follows that

t
Ld

hL
= − aLd−2s1 + d2,Ld sD20d

with d2,L→0 asL→`. It is easy to see that, for such a value oft, PLstd diverges asC log L for
d=3,4 and asLd−4 for dù5, so that we can write

SL
+su1,u2d = e−avLd−2s1+dLdE

u1Ld/hL

u2Ld/hL
etsy−vLd/hLdPt,Lsdyd sD21d

with dL→0 asL→`. The upper bound insD13d easily follows from this equation. In order to
prove the lower bound we have also to show that

E
u1Ld/hL

u2Ld/hL
Pt,Lsdyd ù 1 − dL sD22d

with dL→0. This result can be deduced as the other ones from the properties of the Laplace
transform of the measurePt,Lsdyd; we omit the details.

Let us now consider the upper bound ofsD14d. We proceed as before, by writing

SL
−su1,u2d = ePLstd−tPL8stdE

−u2Ld/hL

−u1Ld/hL
etsy+u1Ld/hLdPt,Lsdyd ø ePLstd−tPL8std, sD23d

wheret is chosen so thatPL8std=u1L
d/hL. It is easy to see thatPL8std is a monotone function and

that limt→` PL8std=lL
* Ld/hL, so thatt is well defined forL large enough, ifu1,l* . It turns out that

limL→` tshL /Ldd= f0sud.0, with f0sud of orderu for u→0 sand equal tocdu for d=3,4, forsome
cd.0d. Moreover
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PLstd − tPL8std = −E
0

t

dsE
0

s

du PL9sud, C/2 , PL9sud ø C sD24d

and one can prove that limL→` Pl9sud=Cd.0, uniformly for 0øuø t; this allows us to get the
upper bound insD14d. The lower bound is obtained in a similar way, by choosingt so that

PL8std=u2L
d/hL and by proving thate−u2Ld/hL

−u1Ld/hLPt,Lsdyd→1/2 for L→`. j

We can now prove the following bounds on the factorsa j ,L.
Lemma D.3: Given dù3, l.l* and a sequence jL such that

lim
L→`

jL/Ld = g , sl − l*d sD25d

there exists L̄such that, if Lù L̄ and jø jL,

1 − a j ,L ø Ce−a3sl−l*−gdLd−2
, sD26d

where C and a3 are constants independent of L and of j.

Moreover, iflùl* and g.l−l* , there exist C, a4 and L̄ such that, if Lù L̄ and jù jL,

a j ,L ø Ce−a4fg−fsl−l* dggLd−1
. sD27d

Proof. Note that

PLsN − j , M ø Nd ø PLSyL ù
sl − l*dLd + cLL2 + xNLd/2 − j

hL
D . sD28d

Hence, if j ø jL, with jL /Ld→g asL→`, and uxNuøLsd−1d/2, so thatuxNuLd/2/hLøL−1/2Ld/hL,

PLsN − j , M ø Nd ø PLSyL ù
sl − l* − g − dLdLd

hL
D sD29d

with dL→0 asL→`. On the other hand,

1

Ld/2 o
N=0

`

e−sb/2dxN
2
1uxNuùLsd−1d/2 ø Ce−sb/4dLd−1

. sD30d

The boundsD26d then easily follows fromsD8d and Lemma D.2 since the upper bound insD13d
is independent of theu2 value sequal to +̀ in this cased.

The boundsD27d is proved in a similar way, by using the upper bound insD14d and the
remark thatLd−1ø sLd/hLd2. j

We have now all the technical ingredients to study the Laplace transformFA,Lssd of the
probability distribution of the random variablesyA,L defined insD1d. We have

FA,Lssd =
essLdrA,L/hA,Ld

Gl,L

1

Ld/2 o
Nù0

e−bxN
2/2 1

QL
o

hnjù0,jù1j
1o jnj=N · p

j¹A

ws j ,njdp
jPA

ws j ,njde−ss jnj/hA,Ld.

sD31d

By using s2.14d and the identity

ws j ,nde−ss jnj/hA,Ld = o
hn8,n9ù0j

1n8+n9=n
1

n8!
FLdasb j ,Lde−ss j /hA,Ld − 1

j
Gn8 1

n9!
S1

j
Dn9

sD32d

we see that
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FA,Lssd = GA,Lssd
1

Gl,L

1

Ld/2 o
Nù0

e−bxN
2/2PA,L,ssM ø Nd, sD33d

where

PA,L,ssMd = QA,L,s
−1 o

hnjù0,jù1j
1o jnj=M p

j¹A

w̃s j ,njdp
jPA

w̃s j ,nj,sd, sD34d

QA,L,s = o
hnjù0,jù1j

p
j¹A

w̃s j ,njdp
jPA

w̃s j ,nj,sd, sD35d

w̃s j ,n,sd =
1

n!
FLdasb j ,Lde−ss j /hA,Ld − 1

j
Gn

, sD36d

GA,Lssd = essLdrA,L/hA,LdQA,L,s

QL
. sD37d

Note thatPA,L,ssMd in general is not a probability distribution for any value ofs sthis is clear only
for s real and negatived. Moreover, in all the choices of the setA we shall consider,PA,L,ssMd is
absolutely summable overM and its sum is equal to 1swhich is formally true by definitiond.
Hence, we can consider it as a finite complex measure onR swith support on a lattice setd and we
shall study its convergence, asL→`, to a measure with smooth density.

A few simple calculations show that

log QA,L,s = o
jPA

Ldasb j ,Lde−ss j /hA,Ld − 1

j
+ o

j¹A

Ldasb j ,Ld − 1

j
, sD38d

so that

log GA,Lssd = s
LdrA,L

hA,L
+ o

jPA

Ldasb j ,Ld
j

se−ss j /hA,Ld − 1d

= srA,L
* + o

jPA

Ldasb j ,Ld
j

Se−ss j /hA,Ld − 1 +s
j

hA,L
D , sD39d

where

rA,L
* =

Ld

hA,L
o
jPA

asb j ,Ldsa j ,L − 1d. sD40d

It will also useful to consider the random variable

yA,L,s =
M − MA,L,s

*

hL
, sD41d

whereM is a random variable with measurePA,L,ssMd andhL is defined as insB12d.
The mean value ofM is given by

MA,L,s
* ; o

M=0

`

MPA,L,ssMd = o
jPA

sLdasb j ,Lde−ss j /hA,Ld − 1d + o
j¹A

sLdasb j ,Ld − 1d. sD42d

By using sB8d and sB4d, we see that
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MA,L,s
* = LdlL

* + Ldo
jPA

asb j ,Ldse−ss j /hA,Ld − 1d, sD43d

so that

PA,L,ssM ø Nd = PA,L,sSyA,L,s ø
Ldsl − l*d + Ld/2xN + L2cL

hL
+ yA,L,s

* D , sD44d

yA,L,s
* =

Ld

hL
o
jPA

asb j ,Lds1 − e−ss j /hA,Ldd. sD45d

As in the proof of Theorem B.2, the limiting distribution ofyA,L,s will be obtained by studying
the Laplace transformHA,L,sswd of its measure. We have

log HA,L,sswd = o
j=1

`
Ldasb j ,Ld − 1

j
Se−ws j /hLd − 1 +w

j

hL
D + log RA,L,sswd, sD46d

log RA,L,sswd = o
jPA

Ldasb j ,Ld
j

se−ss j /hA,Ld − 1dSe−ws j /hLd − 1 +w
j

hL
D . sD47d

If we define fA,L,sstd=HA,L,ss−itd, we have also

hLPA,L,ssMd =
1

2p
E

−phL

+phL

e−ityA,L,sfA,L,sstd. sD48d

Moreover, ifs=0, the functionHA,L,sswd has to coincidefas one could check by using the identity
sA4d and some easy algebrag with the functionFLswd defined insB18d. It follows that

log HA,L,sswd = log FLswd + log RA,L,sswd,

fA,L,sstd = fLstdRA,L,ss− itd. sD49d

We shall consider some special cases for the setA. First of all, we consider the simplest one,
that is the case whereA contains only one element; we prove the following theorem.

Theorem D.4: If A=h jj and hA,L=Ld/2, then, if dù3 and lùl* ,

rh jj,L ——→
L→`

r j ; s2pb jd−d/2. sD50d

Moreover, if dù3 and l.l* or d=3,4 and l=l* , the probability distribution of yA,L converges,
as L→`, to a Gaussian distribution with variance jr j. Finally, if dù5 and l=l* , the limiting
distribution is still well defined, but its Laplace transform is given by

lim
L→`

log Fh jj,Lssd = − sr* jr j +
1

2
s2jr j + log5E−`

+`

dx e−bx2/2E
−`

x+s jr j

dy rsyd

E
−`

+`

dx e−bx2/2E
−`

x

dy rsyd 6 , sD51d

where
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r* =

E
−`

+`

dx e−bx2/2rsxd

E
−`

+`

dx e−bx2/2E
−`

x

dy rsyd
. sD52d

Proof: By using the definition ofasb j ,Ld in s2.2d, we see that, for anyj ,

asb j ,Ld ——→
L→`

s2pb jd−d/2 = r j . sD53d

Moreover, by LemmasD1d and sD2d, ∀lùl* ,

lim
L→`

a j ,L = 1 ⇒ lim
L→`

r j ,L = r j . sD54d

Let us now observe that, bysD47d, for any fixeds andw,

ulog Rh jj,L,sswdu ø C
Ld

Ld/2hL
2 j2−d/2 ——→

L→`
0. sD55d

Moreover, if we setw=−it, tPR, for any fixeds, we have

ulog Rh jj,L,ss− itdu ø Cutu
Ld

Ld/2hL
j1−d/2 ø Cutu. sD56d

Hence we see, by usingsD49d and the boundsB30d, that ufA,L,sstduøexps−Cutu3/2d. It is easy to
prove that this bound is valid also forf A,L,s9 std, which implies that the measurePh jj,L,ssMd satisfies
the analogous ofsB15d and sB16d swe omit the detailsd; and thatPh jj,L,ssyø ȳd converges to
Psyø ȳd for any ȳ, if Psdyd is the limiting probability measure of Theorem B.2. On the other hand,
we have, seesD45d,

yh jj,L,s
* ——→

L→`
H0, d = 3,4,

s jr j , d ù 5.
J sD57d

Note also that, by Lemmas D.1 and D.3, seesD40d,

r h jj,L
* ——→

L→` 50, d = 3,4, l ù l* ,

0, d ù 5, l . l* ,

− r* jr j d ù 5, l = l* .
6 sD58d

If d=3 or d=4, it follows, by usingsD33d and sD39d, that, for anylùl* ,

lim
L→`

log Fh jj,Lssd = lim
L→`

log Gh jj,Lssd = 1
2s2jr j . sD59d

The same result is true, ifdù5 andl.l* . However, ifdù5 andl=l* , we getsD51d.
The fact that the Laplace transform converges for anys implies that also the characteristic

function is convergent. As it is well known,3 this is sufficient to prove the convergence of the
probability distribution ofyA,L. j

We now consider a more interesting choice of the setA.
Theorem D.5: Let A=h1ø j ø jLj, with jL a monotone diverging function of L such that jL

øL2. Then, if dù3 and lùl* ,

rA,L ——→
L→`

o
j=1

`

r j = l* . sD60d
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Moreover, if jL /L2→L→`0 and l.l* , the probability distribution of yA,L converges, as L→`, to
a Gaussian distribution, provided we take

hA,L = 5L2s jL/L2d1/4, d = 3,

L2Îlog jL, d = 4,

Ld/2, d ù 5.
6 sD61d

The same result is true, ifl=l* , provided d=3 or d=4 and limL→`
Îlog jL / log L=0; in the other

cases the limiting distribution is still well defined but it is not Gaussian.
Proof: By usings2.2d, it is easy to prove that, ifj øL2, there is a constantC, independent of

j andL, such that

asb j ,Ld ø Cr j, 0 , asb j ,Ld − r j ø Cr je
−L2/s2b jd. sD62d

Hence, since 0øa j ,Lø1,

0 ø o
jø jL

sr j ,L − r ja j ,Ld ø C o
jøL2

j−d/2e−L2/s2b jd ø CL2−d ——→
L→`

0. sD63d

On the other hand, bysD6d,

0 ø o
jø jL

r js1 − a j ,Ld ø
C

hL
o
jøL2

j−d/2+1 ——→
L→`

0. sD64d

EquationsD60d is an easy consequence of the last two bounds.
In order to study the limiting distribution ofyA,L, we proceed as in the proof of Theorem D.4.

First of all we observe that, bysD47d, if hA,L is chosen as insD61d, for any fixeds andw,

ulog RA,L,sswdu ø C
Ld

hA,LhL
2o

j=1

jL

j2−d/2 ——→
L→`

0. sD65d

Moreover, if we setw=−it, tPR, for any fixeds, we have

ulog Rh jj,L,ss− itdu ø Cutu
Ld

hA,LhL
o
j=1

jL

j1−d/2 ø Cutu. sD66d

Once again, by proceeding as in the proof of Theorem D.4, one can prove that the measure
PA,L,ssMd satisfies the analogous ofsB15d and sB16d; we omit the details. This implies the con-
vergence ofPA,L,ssyø ȳd to Psyø ȳd for any ȳ, if Psdyd is the limiting probability measure of
Theorem B.2. On the other hand, we have, seesD45d,

yA,L,s
* ——→

L→` 5
0, d = 3,

ss2p2bd−2 limL→`
Îlog jL/log L, d = 4,

so
j=1

`

jr j , d ù 5.6 sD67d

Let us now suppose thatl.l* . Then, by usingsD26d, we can easily show that, for anyd
ù3, rA,L

* , fsee sD40dg goes to 0 asL→`. It is also very easy to show that the factor which
multiplies GA,Lssd on the rhs ofsD33d goes to 1 asL→`. Hence, by usingsD39d, we get
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lim
L→`

log FA,Lssd = lim
L→`

log GA,Lssd = lim
L→`

o
j=1

jL Ldasb j ,Ld
j

Se−ss j /hA,Ld − 1 +s
j

hA,L
D . sD68d

If we insert the value ofhA,L given in sD61d on the rhs of this equation, we can see that only the
terms of orders2 survive in the limit L→`. Moreover, the fact that the Laplace transform
converges for anys implies that also the characteristic function is convergent. Therefore the
limiting distribution of yA,L is well defined and is Gaussian; we can also easily calculate its
variance.

If l=l* , we get a different result fordù4, because we can see, by using Lemma D.1, that

rA,L
* ——→

L→` 5
0, d = 3,

− 2r0s2p2bd−2 limL→`
Îlog jL/log L, d = 4,

− r*o
j=1

`

jr j , d ù 5.6 sD69d

Moreover, the factor which multipliesGA,Lssd on the rhs ofsD33d is still convergent, but it goes
to 1 asL→` only for d=3 and ford=4, if limL→`

Îlog jL / log L=0. It follows that the limiting
distribution of yA,L is still well defined and its Laplace transform can be explicitly calculated;
however, it is Gaussian only ford=3 and ford=4, if limL→`

Îlog jL / log L=0. j

APPENDIX E: LARGE DEVIATIONS FOR “SHORT LOOPS”

In this appendix we considerdù3 andl.l* ; our main result is stated in Theorem E.3.
Given any finite subsetA of N+, we define

SA,Lsv,dd ; Pl,L
mf FLdsrA,L + v − dd ø o

jPA

jnj ø LdsrA,L + v + ddG sE1d

with rA,L defined as insD1d. We want to show that, ifA=h jj or A=h j ø jLj, with jL a monotone
diverging function ofL, such thatjLøL2, we can evaluate the behavior forL→` on the rhs of
sE1d by substituting the measurePl,L

mf with the measure, independent ofl srecall thatl.l* in this
sectiond

PA,Lsnj, j P Ad = ZA,L
−1 p

jPA

ws j ,njd. sE2d

We shall consider in detail only the caseA=h j ø jLj; the other case can be treated in a similar
ssimplerd way.

Let us definePA,Lstd=log FA,LsthA,Ld and

P̃A,Lstd = log GA,LsthA,Ld − thA,LrA,L
* = o

jPA

Ldasb j ,Ld
j

se−t j − 1 + t jd, sE3d

where FA,Lssd and GA,Lssd are defined as insD33d and rA,L
* is defined as insD40d. Chooset

; tLsvd so that

− P̃A,L8 std = vLd. sE4d

Lemma E.1: Let A=h1ø j ø jLj, with jL a monotone diverging function of L such that jL

øL2. Then the equationsE4d has a solution for anyv.−l* . Moreover, if0.v.−l* , tLsvd has a
finite positive limit tsvd for L→`, such that, forv→0 and suitable constants cd,

tsvd , 5c3v
2, d = 3,

c4v/logs1/vd, d = 4,

cdv, d ù 5,
6 sE5d
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while, if v.0, tLsvd,0 and

lim
L→`

jLutLsvdu
logsv jL

d/2−1d
= 1. sE6d

Proof: By using sD39d, we see that Eq.sE4d can be written as

HLstd ; o
j=1

jL

asb j ,Ldse−t j − 1d = v. sE7d

Note that the sign oft is the opposite of the sign ofv. Let us consider first the casev,0. In
this caset.0 andHLstd→−o jø jL

asb j ,Ld, as t→ +`; since limL→`o jø jL
asb j ,Ld=l* , Eq. sE7d

has a unique solutiontLsvd only if v.−l* . It is an easy exercise to show thattLsvd converges, as
L→`, to a limit tsvd, verifying sE5d.

If v.0, there is a unique negative solutiontLsvd of sE7d for any v, sinceHLstd→ +` as t
→−`, and it is easy to see that limL→` tLsvd=0. A more careful analysis shows that Eq.sE6d is
verified. j

Lemma E.2: Let A=h1ø j ø jLj, with jL a monotone diverging function of L such that jL

øL2. Then, if t is defined as in (E4), there existsh.0 such that, for L large enough,

FA,LsthA,Ld = GA,LsthA,Ldf1 + dLstdg, udLstdu ø e−Lh
, sE8d

PA,L8 std = P̃A,L8 std + dLstd, udLstdu ø e−Lh
. sE9d

Proof: By using sD33d, we see thatsE8d is satisfied, if we define

dLstd = dL,1 + dL,2std, sE10d

dL,1 =
1

Gl,L

1

Ld/2 o
Nù0

e−bxN
2/2 − 1, sE11d

dL,2std = −
1

Gl,L

1

Ld/2 o
Nù0

e−bxN
2/2PA,L,tsM . Nd, sE12d

wherePA,L,tsMd is the measure defined insD34d, with s= thA,L, t being the solution ofsE7d. By
using sC3d, we see that

dL,1 =
1

Gl,L

1

Ld/2 o
Nù0

e−bxN
2/2PLsM . Nd, sE13d

wherePLsMd is the probability measure defined insB3d. By using sC4d and the large deviation
estimates of Lemma D.2, it is easy to prove thatudL,1uøexps−Lhd, with 0,h,d−2.

In order to prove a similar bound fordL,2std, we need a large deviation estimate for the
measurePA,L,tsMd. Let us consider first the casev.0, that ist,0, whenPA,L,tsMd is a probability
measure. In this case, ifl−l* −v.0 anduxNuøLd/4, by usingsD43d andsE7d, we see that, forL
large enough

PA,L,tsM . Nd = PA,L,tsM − MA,L,t
* . Ldsl − l* − vd + Ld/2xN + L2cL + hA,LrA,L

* d

ø PA,L,tsM − MA,L,t
* . Lded sE14d

if 0 ,e,l−l* −v, so that, forL large enough,

udL,2stdu ø 2e−bLd/2/2 + 2PA,L,tsM − MA,L,t
* . Lded. sE15d
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Let us consider the Laplace transformHL,tswd of the random variabley=M −MA,L,t
* ; it is

related to the analogous functionHA,L,sswd defined insD46d by the relation

HL,tswd = HA,L,thA,L
swhLd. sE16d

By proceeding as in the proof of Lemma D.2, we can write

PA,L,tsM − MA,L,t
* . Lded = ePL,tswdE

eLd

+`

ewyPL,t,wsdyd, sE17d

wherePL,tswd=log HL,tswd and PL,t,wsdyd=e−wyPL,tsdyd /HL,tswd. We now fix w so that −PL,t8 swd
=eLd; it is to see that this condition can be written as

eLd = Ldo
j=1

jL

asb j ,Ldse−t j − 1ds1 − e−wjd + o
j=1

`

sLdasb j ,Ld − 1ds1 − e−wjd. sE18d

Sincet,0, the solution of this equation must be negative and one can show thatPL,tswd+weLd

=PL,tswd−wPL,t8 swd is negative and of orderLd−2. It follows that

PA,L,tsM − MA,L,t
* . Lded ø ePL,tswd−wPL,t8 swd ø e−cLd−2

sE19d

for somec.0.
The casev,0, that is t.0, is a bit more involved, since in this casePA,L,tsMd is not

necessarily a probability measure. However, it is easy to prove, by usingsD34d, that

o
M=0

`

uPA,L,tsMdu ø e2 log jL sE20d

so that, instead of the boundsE15d, we have

udL,2stdu ø 2e−bLd/2/2+2 log j l + 2uPA,L,tsM − MA,L,t
* . Ldedu. sE21d

Moreover, since it is still true thatPL,tswd−wPL,t8 swd is negative and of orderLd−2, instead of
boundsE19d, we get

uPA,L,tsM − MA,L,t
* . Ldedu ø e−cLd−2 o

M=0

`

uPL,t,wsMdu sE22d

which is a negligible difference, sinceuwuL2øc, so that, as one can easily check,

o
M=0

`

uPL,t,wsMdu ø e2ecjL/L2
log jL. sE23d

We still must provesE9d. By settings= thA,L in sD33d and by doing the derivative with respect
to t, we get

d

dt
FA,LsthA,Ld = LdrA,LFA,LsthA,Ld − GA,LsthA,Ldo

j=1

jL

Ldasb j ,Lde−t jf1 + dL,2,kstd + dL,1g,

sE24d

wheredL,1 is defined as insE11d and
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dL,2,kstd = −
1

Gl,L

1

Ld/2 o
Nù0

e−bxN
2/2PA,L,tsM . N − kd. sE25d

Since kø jLøL2, we can find as before thatudL,2,kstduøe−Lh
. On the other hand,

o jø jL
Ldasb j ,Lde−t j is always of orderLd. It follows that

PA,L8 std =

d

dt
FA,LsthA,Ld

FA,LsthA,Ld
= LdrA,L − o

j=1

jL

Ldasb j ,Lde−t j + Ose−Lh
d = P̃A,L8 std + Ose−Lh

d. sE26d

j

Theorem E.3: If AL,d
s4d svd is defined as ins5.7d and 0,v,l−l* , then

v − d ø − lim
L→`

1

Ld

jL
logsv jL

d/2−1d
log Pl,L

mf sAL,d
s4d d ø u + d sE27d

while, if −l* ,v,0, there are positive functions tdsvd and adsvd, depending on d, such that

adsvd − tdsvdd ø − lim
L→`

1

Ld log Pl,L
mf sAL,d

s4d d ø adsvd + tdsvdd. sE28d

Moreover, the two bounds above do not change if we substitute Pl,L
mf sAL,d

s4d d with P̃A,LstLsvdd
− tP̃A,L8 stLsvdd, tLsvd being the solution of (E4).

Proof: By sE1d Pl,L
mf sAL,d

s4d d=SA,Lsv ,dd. By proceeding as in the proof of Lemma D.2, we can
write

SA,Lsv,dd = ePA,Lstd−tPA,L8 stdE
sv−ddLd

sv+ddLd

etsy−vLddPA,L,tsdyd, sE29d

where t is chosen so thatvLd=−PA,L8 std. By using Lemma E.2, we see thatPA,Lstd and its

derivative can be substituted withP̃A,Lstd and P̃A,L8 std, and thatt can be taken as the solution of
sE4d, without changing the asymptotic behavior ofSA,Lsv ,dd.

Let us consider first the case 0,v,l−l* . It is easy to check that, in this case,P̃A,Lstd is
negligible, forL→`, with respect toutuvLd, so that we get immediately, by using alsosE6d, the
lower bound insE27d. In order to prove the upper bound, we need also a lower bound on

esv−ddLd
sv+ddLd

PA,L,tsdyd, which can be obtained by studying the Laplace transform ofPA,L,tsdyd; this

analysis shows thatesv−ddLd
sv+ddLd

PA,L,tsdyd→1 asL→`.

If −l* ,v,0, as shown in Lemma E.1, the solution ofsE4d converges, asL→`, to the
function tsvd defined insE5d. Moreover, it is easy to check that, up to negligible corrections, for
any fixedt,

lim
L→`

L−dfPA,Lstd − tPA,L8 stdg = − adsvd, sE30d

whereadsvd is a positive function equal to

adsvd = o
j=1

`
1

s2pb jdd/2S1 − e−t j

j
− te−t jD . sE31d

Since it is still true thatesv−ddLd
sv+ddLd

PA,L,tsdyd→1 asL→`, we get the boundsE28d. j
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APPENDIX F: PROOF OF THEOREM 4.1

By sD2d,

El,L
mf syd,Ld =

1

Ld o
jùdLd

Ldasb j ,Lda j ,L,

El,L
mf sXd,Ld = o

jùdLd

Ldasb j ,Ld
j

a j ,L, sF1d

El,L
mf sXLd = o

jùL2

Ldasb j ,Ld
j

a j ,L.

On the other hand, bys2.3d,

uLdasb j ,Ld − 1u ø C exps− Cj/L2d, ∀ j ù L2 sF2d

which allows us to prove very easily the limits ins4.5d and s4.7d, by using Lemma D3.
The arguments given at the beginning of Appendix D can be used to prove also that

El,L
mf snj1

nj2
d =

Ldasb j1,Ld
j1

Ldasb j2,Ld
j2

a j1+j2,L if j1 Þ j2, sF3d

El,L
mf snj

2d = El,L
mf snjsnj − 1dd + El,L

mf snjd = SLdasb j ,Ld
j

D2

a2j ,L +
Ldasb j ,Ld

j
a j ,L. sF4d

It follows that

El,L
mf syd,L

2 d − El,L
mf syd,Ld2 = o

j1,j2ùdLd

asb j1,Ldasb j2,Ldsa j1+j2,L − a j1,La j2,Ld + o
jùdLd

jasb j ,Lda j ,L.

sF5d

The limit s4.6d follows through some simple calculations from this identity, the boundsF2d and
Lemma D.3. In a similar way, one can prove alsos4.8d–s4.10d.

We still must proves4.11d. The previous arguments imply that, ifjP s1/2,1g and j .jsl
−l*dLd, then

lim
L→`

Pl,L
mf snj = 1d = lim

L→`
El,L

mf snjd sF6d

and

lim
L→`

Pl,L
mf sXjsl−l* d ù 1d = lim

L→`
o

j.jsl−l* dLd

Pl,L
mf snj = 1d = − logj. sF7d

APPENDIX G: THE LIMIT FUNCTIONAL

Theorem G.1: There is a nondecreasing, negative, continuous functionl0sld on R, strictly
negative in dø2, such that

psld ª − inf
rp

Flsrp d =
fl − l0sldg2

2
+ pl0sld

0 , sG1d
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pl0sld
0 = b−1o

j

r j
*

j
el0sldb j . sG2d

Moreover, rsldªl−l0sld, is a positive, strictly increasing, continuous function ofl with range
the wholes0,`d and

inf
rp

Flsrp d = inf
rp :o jr j=rsld

Flsrp d. sG3d

Remark 1:In Ref. 10 it is proved that the grand canonical mean field, thermodynamical
pressure coincides withpsld, namely

psld = lim
L→`

1

LdJl,L
mf sG4d

thus proving our claim in the text that the computation of the pressure using the limit functional
gives the correct result.

Remark 2:The proof of Theorem G.1 identifies the functionl0sld as follows. There exists a
dimension dependent constantl* , equal to +̀ in dø2 and,` in dù3 such that forløl* sby
which we will mean, here and in the sequel,any l in dø2 and løl* in dù3d there is a unique
solutionl0 of

l − l0 = o
j

r j
*el0b j . sG5d

This solution, which depends onl, coincides with the functionl0sld of Theorem G.1 forl
øl* , while the latter is identically 0 forl.l* .

We will also prove that the inf insG1d is a minimum whenløl* , and, in such a case, the
minimizer is unique and given by

r j = r j
*el0b j sG6d

in agreement withsG3d, becauseo jr j
*el0b j =rsld by sG5d.

The rhs ofsG6d is the equilibrium density ofj loops in the free, grand canonical ensemble
with chemical potentiall0, so thatl0 has the meaning of an effective chemical potential.

If dù3 andl.l* , the inf in sG1d is not attained and there is a finite fraction of the density
which “concentrates on infinitely long loops.”

By sG3d, rsld can be interpreted as the equilibrium density when the chemical potential isl;
since the range ofrsld is the wholes0,`d, there is no “forbidden interval” for the equilibrium
density, namely there is no first order phase transition in our system. This is due to the assumption
that the interaction energyu2/2, u=o jr j, is convex.

Proof of Theorem G.1:Call msad=o jr j
*eba j, a,0 in dø2 andaø0 in dù3. The graph of

msad is as in Fig. 1, having setl* =ms0d in dù3. Existence and uniqueness of the solutionl0 of
sG5d for løl* follow from monotonicity of ms·d. Graphically l0 is the a-coordinate of the
intersection point in Fig. 1.

Let us next provesG1d and sG2d whenløl* . With l0 as in sG5d we write

Flsrp d = Fr2

2
− sl − l0drG + f− l0r − b−1Ssrp dg, r = o

j

r j . sG7d

Then

Flsrp d ù inf
rp
Hr2

2
− sl − l0drJ + inf

rp
h− l0r − b−1Ssrp dj. sG8d

We have
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inf
rp

h− l0r − b−1Ssrp dj = − pl0

0 sG9d

with a unique minimizer given bysG6d. On the other hand,

inf
rp
Hr2

2
− sl − l0drJ = −

sl − l0d2

2
sG10d

with minimizer anyrp such thato jr j =l−l0. By sG5d, the previous minimizerrp , given bysG6d,
satisfies such a condition, hencesG1d and sG3d.

Suppose next thatdù3 andl.l* . Then

Flsrp d ù inf
rp
Hr2

2
− lrJ + inf

rp
h− b−1Ssrp dj ù −

l2

2
− p0

0, sG11d

where the minimizers of the first inf are thoserp such thato jr j =l, while the minimizer of the
second inf is unique and given byhr j

*j. We thus need to show that there is a sequencerp
snd such that

o jr j
snd=l and

lim
n→`

Ssrp sndd = Ssrp *d. sG12d

Let aªl−r* be the excess mass,l being the massr which minimizesr2/2−lr andr* =o jr j
* . Set

rp j
snd = Hr j

* if j Þ n,

r j
* + a if j = n.

J sG13d

Then

Ssrp sndd = Ssrp *d + Srn
*

n
+ Srn

*

n
+

a

n
DSlogSrn

* + a

rn
* D − 1DD sG14d

with the last parentheses vanishing asn→`.
EquationssG1d–sG3d are therefore proved. We will next show thatrsld is continuous, strictly

increasing, and with ranges0,`d. Let l,l* andl08 the derivative ofl0 with respect tol. Then

FIG. 1. The two graphs, on the left and right, refer, respectively, todø2 anddù3.
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drsld
dl

= 1 −l08 sG15d

and, by differentiatingsG5d,

l08Sbo
j

jr j
*el0b j + 1D = 1. sG16d

Hencel0s·d is a nondecreasing function, as claimed in Theorem G.1; moreover, sincel08,1,
drsld /dl.0, for l,l* . For l.l* , rsld=l and since liml↗l* rsld=l* , becausel* =ms0d and

lim
a↗0

o
j

r j
*eab j = o

j

r j
* = ms0d, d ù 3 sG17d

we conclude thatrsld is continuous and strictly increasing.
Obviously, liml→` rsld=liml→` l=`. It remains to prove that liml→−` rsld=0. By mono-

tonicity, the limit exists. Sincers·d.0, l−l0sld.0, so that liml→−` l0sld=−`. Then

lim
l→−`

o
j

r j
*el0sldb j = lim

a→−`
o

j

r j
*eab j = 0. sG18d

Theorem G.1 is proved. j

Remark:The construction of the minimizing sequencerp
snd in the casel.l* shows that the

excess massl−l* concentrates in the limit on infinitely long loops.
Let

asud ª inf
o jr j=u

sFlsrp d + lud sG19d

observing that the rhs does not depend onl. Obviously

asud ù sup
l

hlu + inf
rp

Flsrp dj. sG20d

We will prove that equality actually holds, namely

asud = sup
l

hlu + inf
rp

Flsrp dj sG21d

which then shows that

asud = sup
l

hlu − psldj, sG22d

namely thatasud is the Legendre transform ofpsld. In Ref. 10 an equivalence of ensembles
theorem is proved, namely that

− lim
L→`

NL=fLdug

1

Ld ln ZNL,L
mf = sup

l
hlu − psldj sG23d

which, together withsG22d shows that

inf
o jr j=u

sFlsrp d + lud = − lim
L→`

NL=fLdug

1

Ld ln ZNL,L
mf sG24d

as claimed in the text.
Proof of (G21):By sG3d the inf of Flsrp d is achieved on the sethrp :o jr j =l−l0j. Call a the

value ofl such that
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rsad = a − l0sad = u sG25d

sexistence and uniqueness follow from Theorem G.1d. Then

sup
l

hlu + inf
rp

Flsrp dj ù hau + inf
rp

Fasrp dj = hau + inf
rp :o jr j=rsad=u

Fasrp dj = asud sG26d

which, together withsG20d, provessG21d. j

By general thermodynamic relations, and making explicit now the dependence onb, the
entropyssb ,ud and the internal energy,esb ,ud, are

ssb,ud = b2]asb,ud
]b

, asb,ud = esb,ud −
ssb,ud

b
. sG27d

In our modelesb ,ud=su2/2d+ksb ,ud, with ksb ,ud the kinetic part of the internal energy. By direct
inspection,ssb ,ud and ksb ,ud as functions of the particles densityu, become constant foru
ùu* . This is the Bose condensation phenomenon, which is interpreted by saying that the fluid
added when increasing the density pastu* does not carry entropy nor momentum.

APPENDIX H

Let lp ª hl j , j .0j be the sequence defined by

l j ª Hl + l8, j P Vk,

l otherwise,
J sH1d

and

Flpsrp d ª
1

2Soj.0
r jD2

− So
j.0

l jr jD −
1

b
Ssrp d, sH2d

plp ª − inf
rp

Flpsrp d, rskdsld ª o
jPVK

r jsld. sH3d

Then

inf
rp :o jPVk

r j=rskdsld+v
Flsrp d = inf

rp :o jPVk
r j=rskdsld+v

FFlsrp d − l8S o
jPVk

r j − srskdsld + vdDG
= inf

rp :o jPVk
r j=rskdsld+v

Flpsrp d + l8srskdsld + vd ù − plp + l8srskdsld + vd.

sH4d

The equality in linesH4d holds if l8 is chosen in such a way that the minimizer sequencerpnsl ,l8d
satisfies the constrainto jPVk

r j =rskdsld+v.
The caseVk=N+ follows directly from the arguments used in Appendix G, by changing the

chemical potential froml→l+l8, wherel8 is

l8 = rsld + v − l + l̃0 sH5d

with l̃0; l̃0sl ,vd=0 whenrsld+vùl* , while otherwise is the unique solution of the equation

o
j

er j
*
l̃0b j = rsld + v. sH6d

The minimizer sequencehr j
sndj jPN+ is then given by
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r j
snd = r j

*eb j l̃0 + 1h j=njfl + l8 − l*g+, sH7d

where we have indicated byf·g+ the positive part. In particular, ifl.l* , v.−sl−l*d, thenl8
=v.

For k=2,3,4, we setl̃0sl ,vd as the solution of the equation

o
j¹Vk

r j
*el̃0b j = l − l̃0 − rskdsld − v sH8d

when this solution exists, otherwise we takel̃0=0. Thenl8 is given by the unique solution of the
equation

o
jPVk

r j
*esl̃0+l8db j = rskdsld + v sH9d

whose existence and uniqueness followssfor any given value ofl̃0d by monotonicity arguments,
sinceVk is bounded fork.1.

Then the minimizer sequencehr j
sndj jPN+, n.maxVk, is given by

r j
snd = r j

*eb jsl̃0+l8d1jPVk
+ sr j

*eb j l̃0 + 1h j=njfl − l¹
* − rskdsld − vg+d1j¹Vk

, sH10d

wherel¹
*
ªo j¹Vk

r j
* . Notice that, when the positive part is null,hr j

sndj does not depend onn and it
is actually a minimum.

In the casekÞ1, l.l* s⇒rksld=lP
* d andv,l−l* ,

plp =
l2

2
+

1

b
o

jPVK

r j
*

j
el8b j +

1

b
o

j¹VK

r j
*

j
, sH11d

wherel8 is the unique solution ofo jPVk
r j

*sel8b j −1d=v.
Collecting Eqs.sG1d and sH4d, we get

inf
rp :o jPVk

r j=rskdsld+v
Flsrp d − inf

rp
Flsrp d = − plp + l8srskdsld + vd + psld. sH12d

To prove Theorem 5.2, one must showssee proof of Theorem E.3 for notationd that

lim
L→`

log SA,Lsv,dd
fPA,Lstd − tPA,L8 stdg

= lim
L→`3

1

bLd ln Pl,L
mf sAL,d

skd d

− inf
rpPAL

skd
Flsrp d + inf

rp
Flsrp d4 . sH13d

For example, ifl.l* , v,l−l* andkÞ1, one has

inf
rp :o jPVk

r j=rskdsld+v
Flsrp d − inf

rp
Flsrp d = −

1

b
o

jPVk

r j
*

j
sel8b j − 1d + l8srskdsld + vd. sH14d

Hence, by usingsE3d, sE4d, sE8d, andsE9d, it is easy to check that the two limits are equal in the
casek=4. The other cases can be treated in a similar way.

APPENDIX I

If k=1, by the analysis in Appendix H, substituting the value ofl8 as a function ofl and l̃0

in sH4d, we get
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inf
rp :o jr j=rsld+v

Flsrp d =
1

2
sr + vd2 − sl − l̃0dsrsld + vd −

1

b
o

j

r j
*

j
eb j l̃0. sI1d

If lÞl* , this expression is twice differentiable and we get

Ud2Isvd
dv2 U

v=0
= 1 +1hl,l* jF2

dl̃0

dv
+

d2l̃0

dv2 srsld + vd −
d2l̃0

dv2 o
j

r j
*el̃0b j − Sdl̃0

dv
D2

o
j

r j
*b jel̃0b jG

v=0

.

sI2d

On the other hand, ifl,l* andv is small enough,l̃0 satisfies the equationrsld+v=o jr j
*el̃0b j, so

that

dl̃0

dv o
j

r j
*b jel̃0b j = 1 sI3d

and we get

Ud2Isvd
dv2 U

v=0
= 1 +1hl,l* jF2

dl̃0

dv
+ Sdl̃0

dv
D2

o
j

r j
*b jel̃0b jG

v=0

= 1 +1hl,l* j
1

o j
r j

*b jel0b j
,

sI4d

where we used also the fact that, ifv=0, l̃0=l0, l0 being defined as insG5d.
If l=l* , the right and left limit of the derivative ofl̃0 in v=0 do exist and are given by

lim
v→0+

dl̃0sl* ,vd
dv

= 0,

lim
v→0−

dl̃0sl* ,vd
dv

= lim
v→0−F 1

o j
r j

*b jel̃0sl* ,vdb jG =
1

o j
r j

*b j
, sI5d

so that, ifdø4, the second derivative ofIsvd in v=0 does exist and is given by

Ud2Isvd
dv2 U

v=0
=F1 +

1hl,l* j

bo j
r j

* jel0sldb jG−1

. sI6d

It follows that, if d=3,4, d2Isvd /dv2 is given by Eq.sI6d for anyl, while, if d.4, the same result
is true, but only forlÞl* .
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Generalized quantum statistics such as para-Fermi statistics is characterized by
certain triple relations which, in the case of para-Fermi statistics, are related to the
orthogonal Lie algebraBn=sos2n+1d. In this paper, we give a quite general math-
ematical definition of “a generalized quantum statistics associated to a classical Lie
algebraG.” This definition is closely related to a certainZ-grading of G. The
generalized quantum statistics is then determined by a set of root vectorssthe
creation and annihilation operators of the statisticsd and the set of algebraic rela-
tions for these operators. Then we give a complete classification of all generalized
quantum statistics associated to the classical Lie algebrasAn, Bn, Cn, andDn. In the
classification, several new classes of generalized quantum statistics are
described. ©2005 American Institute of Physics.fDOI: 10.1063/1.1827324g

I. INTRODUCTION

In classical quantum statistics one works exclusively with Bose and Fermi statisticssbosons
and fermionsd. A historically important extension or generalization of these quantum statistics has
been known for 50 years, namely the para-Bose and para-Fermi statistics as developed by Green.1

Instead of the classical bilinear commutators or anticommutators as for bosons and fermions,
parastatistics is described by means of certain trilinear or triple relations. For example, forn pairs
of para-Fermi creation and annihilation operatorsf i

j sj=± and i =1, . . . ,nd, the defining relations
are

fff j
j, fk

hg, f l
«g = 1

2se − hd2dklf j
j − 1

2se − jd2d jl fk
h,

j,h,e = ± or ± 1, j ,k,l = 1, . . . ,n. s1.1d

About 10 years after the introduction of para-Fermi relations by Green, it was proved that these
relations are associated with the orthogonal Lie algebra sos2n+1d=Bn.

2 More precisely, the Lie
algebra generated by the 2n elementsf i

j, with j=± andi =1, . . . ,n, subject to the relationss1.1d, is
sos2n+1d sas a Lie algebra defined by means of generators and relationsd. In fact, this can be
considered as an alternative definition instead of the common definition by means of Chevalley
generators and their known relations expressed by means of the Cartan matrix elementssinclusive
the Serre relationsd. Moreover, there is a certain representation of sos2n+1d, the so-called Fermi
representationF, that yields the classical Fermi relations. In other words, the representativesFsf i

jd
satisfy the bilinear relations of classical Fermi statistics. Thus the usual Fermi statistics corre-
sponds to a particular realization of para-Fermi statistics. For general para-Fermi statistics, a class
of finite dimensional sos2n+1d representationssof Fock typed needs to be investigated.

adPermanent address: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 1784 Sofia,
Bulgaria. Electronic mail: neli.stoilova@ugent.be

bdElectronic mail: joris.vanderjeugt@ugent.be
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Twenty years after the connection between para-Fermi statistics and the Lie algebra
sos2n+1d, a new connection, between para-Bose statistics and the orthosymplectic Lie superalge-
bra osps1u2nd=Bs0,nd sRef. 3d was discovered.4 The situation here is similar, the Lie superalgebra
generated by 2n odd elementsbi

j, with j=± and i =1, . . . ,n, subject to the triple relations of
para-Bose statistics, is osps1u2nd sas a Lie superalgebra defined by means of generators and
relationsd. Also there is a particular representation of osps1u2nd, the so-called Bose representation
B, that yields the classical Bose relations, i.e., where the representativesBsbi

jd satisfy the relations
of classical Bose statistics. For more general para-Bose statistics, a class of infinite dimensional
osps1u2nd representations needs to be investigated, and one of these representations corresponds
with ordinary Bose statistics.

From these historical examples it is clear that parastatistics, as introduced by Green1 and
further developed by many other research teamsssee Ref. 5 and the references thereind, can be
associated with representations of the Liessuperdalgebras of classB fnamelyBn andBs0,ndg. The
question that arises is whether alternative interesting types of generalized quantum statistics can be
found in the framework of other classes of simple Lie algebras or superalgebras. In this paper we
shall classify all the classes of generalized quantum statistics for the classical Lie algebrasAn, Bn,
Cn, andDn, by means of their algebraic relations. In a forthcoming paper we hope to perform a
similar classification for the classical Lie superalgebras.

We should mention that certain generalizations related to other Lie algebras have already been
considered,6–10 although a complete classification was never made. For example, for the Lie
algebra slsn+1d=An,

7 a set of creation and annihilation operators has been described, and it was
shown thatn pairs of operatorsai

j, with j=± and i =1, . . . ,n, subject to the defining relations

ffai
+,aj

−g,ak
+g = d jkai

+ + di jak
+,

ffai
+,aj

−g,ak
−g = − dikaj

− − di jak
−, s1.2d

fai
+,aj

+g = fai
−,aj

−g = 0

si , j ,k=1, . . . ,nd, generate the special linear Lie algebra slsn+1d sas a Lie algebra defined by
means of generators and relationsd. Just as in the case of para-Fermi relations,s1.2d has two
interpretations. On the one hand,s1.2d describes the algebraic relations of a new kind of general-
ized statistics, in this caseA-statistics or statistics related to the Lie algebraAn. On the other hand,
s1.2d yields a set of defining relations for the Lie algebraAn in terms of generators and relations.
Observe that certain microscopic and macroscopic properties ofA-statistics have already been
studied.11,12

The descriptions1.2d was given for the first time by Jacobson13 in the context of “Lie triple
systems.” Therefore, this type of generators is often referred to as the “Jacobson generators” of
slsn+1d. In this context, we shall mainly use the terminology “creation and annihilation operators
sCAOsd for slsn+1d.”

In the following section we shall give a mathematical definition of “generalized quantum
statistics associated with a Lie algebraG” and the corresponding creation and annihilation opera-
tors. It will be clear that this notion is closely related to gradings ofG, and to regular subalgebras
of G. Following the definition, we go on to describe the actual classification method. In the
remaining sections of this paper, the classification results are presented. The paper ends with some
closing remarks and further outlook.

II. DEFINITION AND CLASSIFICATION METHOD

Let G be a sclassicald Lie algebra. A generalized quantum statistics associated withG is
determined by a set ofN creation operatorsxi

+ and N annihilation operatorsxi
−. Inspired by the

para-Fermi case and the example ofA-statistics, these 2N operators should satisfy certain condi-

033501-2 N. I. Stoilova and J. Van der Jeugt J. Math. Phys. 46, 033501 ~2005!

                                                                                                                                    



tions. First of all, these 2N operators should generate the Lie algebraG, subject to certain triple
relations likes1.1d ands1.2d. Let G+1 andG−1 be the subspaces ofG spanned by these elements:

G+1 = spanhxi
+; i = 1, . . . ,Nj, G−1 = spanhxi

−; i = 1, . . . ,Nj. s2.1d

ThenfG+1,G+1g can be zerofin which case the creation operators mutually commute, as ins1.2dg
or nonzerofas in s1.1dg. A similar statement holds for the annihilation operators andfG−1,G−1g.
The fact that the defining relations should be triple relations, implies that it is natural to make the
following requirements:

ffxi
+,xj

+g,xk
+g = 0,

ffxi
+,xj

+g,xk
−g = a linear combination ofxl

+,

ffxi
+,xj

−g,xk
+g = a linear combination ofxl

+,

ffxi
+,xj

−g,xk
−g = a linear combination ofxl

−,

ffxi
−,xj

−g,xk
+g = a linear combination ofxl

−,

ffxi
−,xj

−g,xk
−g = 0.

So letG±2=fG±1,G±1g andG0=fG+1,G−1g, then we may requireG−2 % G−1 % G0 % G+1 % G+2 sdi-
rect sum as vector spacesd to be aZ-grading of a subalgebra ofG. Furthermore, since we wantG
to be generated by the 2N elements subject to the triple relations, one must haveG=G−2 % G−1

% G0 % G+1 % G+2.
There are two additional assumptions, again inspired by the known exampless1.1d ands1.2d.

One is related to the fact that creation and annihilation operators are usually considered to be each
other’s conjugate. So, letv be the standard antilinear anti-involutive mapping of the Lie algebra
G fcharacterized byvsxd=x† in the standard defining representation ofG, wherex† denotes the
transpose complex conjugate of the matrixx in this representationg then we should havevsxi

+d
=xi

−. And finally, we shall assume that the generating elementsxi
± are certain root vectors of the

Lie algebraG.
Definition 1: Let G be a classical Lie algebra, with antilinear anti-involutive mappingv. A set

of 2N root vectors xi
± si =1, . . . ,Nd is called a set of creation and annihilation operators for G if,

sid vsxi
±d=xi

7,
sii d G=G−2 % G−1 % G0 % G+1 % G+2 is a Z-grading of G, with G±1=spanhxi

± , i =1. . . ,Nj and
Gj+k=fGj ,Gkg.

The algebraic relationsR satisfied by the operators xi
± are the relations of a generalized

quantum statistics (GQS) associated with G.
Observe that this is a mathematical generalization of quantum statistics, inspired by the

examples mentioned. Whether all such GQS actually lead to physically acceptable quantum sta-
tistics remains to be seen; in this sense one should interpret our GQS as “candidates for generali-
zations of quantum statistics.” So with this terminology, a GQS is characterized by a sethxi

±j of
CAOs and the set of algebraic relationsR they satisfy. A consequence of this definition is thatG
is generated byG−1 andG+1, i.e., by the set of CAOs. Furthermore, sinceGj+k=fGj ,Gkg, it follows
that

G = spanhxi
j,fxi

j,xj
hg; i, j = 1, . . . ,N,j,h = ± j. s2.2d

This implies that it is necessary and sufficient to give all relations of the following type:
sR1d The set of all linear relations between the elementsfxi

j ,xj
hg sj ,h=±, i , j =1, . . . ,Nd.
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sR2d The set of all triple relations of the formffxi
j ,xj

hg ,xk
zg=linear combination ofxl

u.
So in generalR consists of a set of quadratic relationsslinear combinations of elements of the

type fxi
j ,xj

hgd and a set of triple relations. This also implies that, as a Lie algebra defined by
generators and relations,G is uniquely characterized by the set of generatorsxi

± subject to the
relationsR.

Another consequence of this definition is thatG0 itself is a subalgebra ofG spanned by root
vectors of G, i.e., G0 is a regular subalgebra ofG. Even more,G0 is a regular subalgebra
containing the Cartan subalgebraH of G. And by the adjoint action, the remainingGi’s are
G0-modules. Thus the following technique can be used in order to obtain a complete classification
of all GQS associated withG:

s1d Determine all regular subalgebrasG0 of G. If not yet contained inG0, replaceG0 by G0
+H.

s2d For each regular subalgebraG0, determine the decomposition ofG into simpleG0-modules
gk sk=1,2, . . .d.

s3d Investigate whether there exists aZ-grading ofG of the form

G = G−2 % G−1 % G0 % G+1 % G+2, s2.3d

where eachGi is either directly a modulegk or else a sum of such modulesg1 % g2 %¯, such
that vsG+id=G−i.

The first stage in this technique is a known one, to find regular subalgebras one can use the
method of extended Dynkin diagrams.14 The second stage is straightforward by means of Lie
algebra representation techniques. The third stage requires most of the work, one must try out all
possible combinations of theG0-modulesgk, and see whether it is possible to obtain a grading of
the types2.3d. In this process, if one of the simpleG0-modulesgk is such thatvsgkd=gk, then it
follows that this module should be part ofG0. In other words, such a case reduces essentially to
another case with a larger regular subalgebra.

In general, when the rank of the semisimple regular subalgebra is equal or close to the rank of
G, the correspondingZ-grading ofG is “short” in the sense thatGi =0 for ui u.1 or ui u.2. When
the rank of the regular subalgebra becomes smaller, the correspondingZ-grading ofG is “long,”
and Gi Þ0 for ui u.2. Thus the analysis shows that it is usually sufficient to consider maximal
regular subalgebrasssame rankd, or almost maximal regular subalgebrassrank ofG minus 1 or 2d.

Note that in Ref. 10 a definition of CAOs was already given. Our Definition 1 is inspired by
the definition in Ref. 10, however it is different in the sense that the grading conditionsGj+k

=fGj ,Gkg are new. It is thanks to these new conditions that we are able to give a complete
classification of CAOs and the corresponding GQS.

In the following sections we shall give a summary of the classification process for the classical
Lie algebrasAn, Bn, Cn, andDn. Note that, in order to identify a GQS associated withG, it is
sufficient to give only the set of CAOs, or alternatively, to give the subspaceG−1 fthen thexi

− are
the root vectors ofG−1, andxi

+=vsxi
−dg. The setR then consist of all quadratic relationssi.e., the

linear relations between the elementsfxi
j ,xj

hgd and all triple relations, and all of these relations
follow from the known commutation relations inG. Because, in principle,R can be determined
from the sethxi

± ; i =1, . . . ,Nj, we will not always give it explicitly. In fact, whenN is large, the
corresponding relations can become rather numerous and long. Such examples of GQS would be
too complicated for applications in physics. For this reason, we shall giveR explicitly only when
N is not too large, more precisely whenN is either equal to the rank ofG or at most double the
rank of G.

Finally, observe that two different sets of CAOshxi
± ; i =1, . . . ,Nj andhyi

± ; i =1, . . . ,Nj ssame
Nd are said to be isomorphic if, for a certain permutationt of h1,2, . . . ,Nj, the relations between
the elementsxtsid

± andyi
± are the same. In that case, the regular subalgebraG0 spanned byhfxi

+,xj
−gj

is isomorphicsas a Lie algebrad to the regular subalgebra spanned byhfyi
+,yj

−gj.
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III. THE LIE ALGEBRA An =sl „n +1…

Let G be the special linear Lie algebra slsn+1d, consisting of tracelesssn+1d3 sn+1d matri-
ces. The Cartan subalgebraH of G is the subspace of diagonal matrices. The root vectors ofG are
known to be the elementsejk s j Þk=1, . . . ,n+1d, whereejk is a matrix with zeros everywhere
except a 1 on theintersection of rowj and columnk. The corresponding root ise j −ek, in the usual
basis. The anti-involution is such thatvsejkd=ekj. The simple roots and the Dynkin diagram ofAn

are given in Table I, and so is the extended Dynkin diagram.
In order to find regular subalgebras ofG=An, one should delete nodes from the Dynkin

diagram ofG or from its extended Dynkin diagram. We shall start with the ordinary Dynkin
diagram ofAn, and subsequently consider the extended diagram.

Step 1:Delete nodei from the Dynkin diagram. The corresponding diagram is the Dynkin
diagram of slsid % slsn− i +1d, so G0=H+slsid % slsn− i +1d. In this case, there are only twoG0

modules and we can set

G−1 = spanhekl; k = 1, . . . ,i, l = i + 1, . . . ,n + 1j, G+1 = vsG−1d. s3.1d

Therefore slsn+1d has the following grading:

slsn + 1d = G−1 % G0 % G+1, s3.2d

and the number of creation and annihilation operators isN= isn− i +1d. Note that the casesi and
n+1−i are isomorphic.

The most interesting cases are those withi =1 andi =2, for which we shall explicitly give the
relationsR between the CAOs.

For i =1, N=n, the rank ofAn. Setting

TABLE I. Classical Lie algebras, theirsextendedd Dynkin diagrams with a labeling of the nodes and the corresponding
simple roots.
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aj
− = e1,j+1, aj

+ = ej+1,1, j = 1, . . . ,n s3.3d

sfor An, the possible setshxi
±j will be denotedhai

±j, for Bn, they will be denotedhbi
±j, etc.d the

corresponding relationsR reads j ,k, l =1, . . . ,nd,

faj
+,ak

+g = faj
−,ak

−g = 0,

ffaj
+,ak

−g,al
+g = d jkal

+ + dklaj
+, s3.4d

ffaj
+,ak

−g,al
−g = − d jkal

− − d jlak
−.

These are the relations ofA-statistics6,7,10–12as considered in the Introduction.
For i =2, N=2sn−1d, let

a−j
− = e1,j+2, a+j

− = e2,j+2, j = 1, . . . ,n − 1,

a−j
+ = ej+2,1, a+j

+ = ej+2,2, j = 1, . . . ,n − 1. s3.5d

Now the corresponding relations aresj ,h ,e= ± ; j ,k, l =1, . . . ,n−1d

faj j
+ ,ahk

+ g = faj j
− ,ahk

− g = 0,

faj j
+ ,a−jk

− g = 0, j Þ k,

fa−j
+ ,a−k

− g = fa+j
+ ,a+k

− g, j Þ k,

fa+j
+ ,a−j

− g = fa+k
+ ,a−k

− g, s3.6d

fa−j
+ ,a+j

− g = fa−k
+ ,a+k

− g,

ffaj j
+ ,ahk

− g,ael
+ g = dhed jkajl

+ + djhdklae j
+ ,

ffaj j
+ ,ahk

− g,ael
− g = − djed jkahl

− − djhd jlaek
− .

These relations are already more complicated thans3.4d. But they are still defining relations for the
Lie algebraAn.

Step 2:Delete nodei and j from the Dynkin diagram. By the symmetry of the Dynkin
diagram, it is sufficient to consider 1ø i ø bn/2c and i , j ,n+1−i. We haveG0=H+slsid % sls j
− id % slsn+1− jd. In this case, there are six simpleG0-modules. All the possible combinations of
these modules give rise to gradings of the form

slsn + 1d = G−2 % G−1 % G0 % G+1 % G+2.

There are essentially three different ways in which theseG0-modules can be combined. To char-
acterize these three cases, it is sufficient to give onlyG−1,

G−1 = spanhekl,elp; k = 1, . . . ,i, l = i + 1, . . . ,j , p = j + 1, . . . ,n + 1j,

with N = s j − idsn + 1 − j + id; s3.7d

G−1 = spanhekl,epk; k = 1, . . . ,i, l = i + 1, . . . ,j , p = j + 1, . . . ,n + 1j, with N = isn + 1 − id;

s3.8d
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G−1 = spanhekl,elp; k = 1, . . . ,i, p = i + 1, . . . ,j , l = j + 1, . . . ,n + 1j, with N = jsn + 1 − jd.

s3.9d

It turns out that the sets of CAOs corresponding tos3.8d ands3.9d are isomorphic tos3.7d, so it is
sufficient to consider onlys3.7d. Each case ofs3.7d with 1ø i ø bn/2c andi , j ,n+1−i gives rise
to a distinct GQS. For reasons explained earlier, we shall give the corresponding set of relations
explicitly only for smallN. In this case, it is interesting to giveR for j − i =1, because then the
number of creation or annihilation operators isN=n. One can label the CAOs as follows:

ak
− = ek,i+1, ak

+ = ei+1,k, k = 1, . . . ,i ,

s3.10d
ak

− = ei+1,k+1, ak
+ = ek+1,i+1, k = i + 1, . . . ,n.

Using

kkl = H0 if k = 1, . . . ,i ,

1 if k = i + 1, . . . ,n
J s3.11d

the quadratic and triple relations read

fak
+,al

+g = fak
−,al

−g = 0, k,l = 1, . . . ,i or k,l = i + 1, . . . ,n,

fak
−,al

+g = fak
+,al

−g = 0, k = 1, . . . ,i, l = i + 1, . . . ,n,

ffak
+,al

−g,am
+ g = s− 1dkll+kmldklam

+ + s− 1dkll+kmldlmak
+, k,l = 1, . . . ,i or k,l = i + 1, . . . ,n,

s3.12d
ffak

+,al
−g,am

− g = − s− 1dkll+kmldklam
− − s− 1dkll+kmldkmal

−, k,l = 1, . . . ,i or k,l = i + 1, . . . ,n,

ffak
j,al

jg,am
−jg = − dkmal

j + dlmak
j, k = 1, . . . ,i, l = i + 1, . . . ,n,

ffak
j,al

jg,am
j g = 0 sj = ± ; k,l,m= 1, . . . ,nd.

The existence of the set of CAOss3.10d is pointed out in Ref. 6 as a possible example. The
relations s3.12d with n=2m and i =m are the commutation relations of the so-called causal
A-statistics investigated in Ref. 9.

Step 3:If we delete three or more nodes from the Dynkin diagram, the resultingZ-gradings of
slsn+1d are no longer of the form slsn+1d=G−2 % G−1 % G0 % G+1 % G+2, but there would be non-
zeroGi with ui u.2, so these cases are not relevant for our classification.

Step 4:Next, we move on to the extended Dynkin diagram ofG. If we delete nodei from the
extended Dynkin diagram, then remaining diagram is again of typeAn, soG0=G, and there are no
CAOs.

Step 5:If we delete nodei and j from the extended Dynkin diagrams0ø i , j øn+1d, then
slsn+1d=G−1 % G0 % G+1 with G0=H+sls j − id % slsn− j + i +1d, and

G−1 = spanhekl; k = i + 1 . . . ,j , l Þ i + 1, . . . ,jj.

The number of annihilation operators isN=s j − idsn+1− j + id. It is not difficult to see that all these
cases are isomorphic to those of step 1. This can also be deduced from the symmetry of the
Dynkin diagram.

Step 6:If we delete nodesi, j , andk from the extended Dynkin diagramsi , j ,kd, then the
correspondingZ-gradings are of the form
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slsn + 1d = G−2 % G−1 % G0 % G+1 % G+2.

All the corresponding CAOs, however, are isomorphic to those of step 2swhich can again be seen
from the remaining Dynkin diagramd.

Step 7:If we delete four or more nodes from the extended Dynkin diagram, the corresponding
Z-grading of slsn+1d has no longer the required propertiessi.e., there are nonzero subspacesGi

with ui u.2d.

IV. THE LIE ALGEBRA Bn =so „2n +1…

G=sos2n+1d is the subalgebra of sls2n+1d consisting of matrices of the form

1 a b c

d − at e

− et − ct 0
2 , s4.1d

wherea is any sn3nd-matrix, b and d are antisymmetricsn3nd-matrices, andc and e are sn
31d-matrices. The Cartan subalgebraH of G is again the subspace of diagonal matrices. The root
vectors and corresponding roots ofG are given by

ejk − ek+n,j+n ↔ e j − ek, j Þ k = 1, . . . ,n,

ej ,k+n − ek,j+n ↔ e j + ek, j , k = 1, . . . ,n,

ej+n,k − ek+n,j ↔ − e j − ek, j , k = 1, . . . ,n,

ej ,2n+1 − e2n+1,j+n ↔ e j, j = 1, . . . ,n,

en+j ,2n+1 − e2n+1,j ↔ − e j, j = 1, . . . ,n.

The anti-involution is such thatvsejkd=ekj. The simple roots, the Dynkin diagram and the ex-
tended Dynkin diagram ofBn are given in Table I. Just as forAn, we now start the process of
deleting nodes from the Dynkin diagram or from the extended Dynkin diagram.

Step 1:Delete node 1 from the Dynkin diagram. The remaining diagram is that ofBn−1, so
G0=H+sos2n−1d;H+Bn−1. There are twoG0-modules:

G−1 = spanhe1,2n+1 − e2n+1,n+1, e1,k+n − ek,n+1, e1k − ek+n,n+1; k = 2, . . . ,nj, s4.2d

andG+1=vsG−1d. Thus sos2n+1d has the following grading:

sos2n + 1d = G−1 % G0 % G+1

and the number ofsmutually commutingd creation and annihilation operators isN=2n−1. Let us
denote the CAOs by

b00
− = e1,2n+1 − e2n+1,n+1, b00

+ = e2n+1,1− en+1,2n+1,

b−k
− = e1,n+k+1 − ek+1,n+1, b−k

+ = en+k+1,1− en+1,k+1, k = 1, . . . ,n − 1, s4.3d

b+k
− = e1,k+1 − en+k+1,n+1, b+k

+ = ek+1,1− en+1,n+k+1, k = 1, . . . ,n − 1.

The corresponding relationsR are given bysj ,h ,e=0, ± ; i , j ,k=1, . . . ,n−1d

fbji
+ ,bh j

+ g = fbji
− ,bh j

− g = 0,
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fb−i
+ ,b−j

− g = fb+i
− ,b+j

+ g, i Þ j ,

fb00
+ ,b−j

− g = fb00
− ,b+j

+ g,

fb00
+ ,b+j

− g = fb00
− ,b−j

+ g, s4.4d

ffbji
+ ,bh j

− g,bek
+ g = di jdjhbek

+ + d jkdhebji
+ − dikdj,−eb−h j

+ ,

ffbji
+ ,bh j

− g,bek
− g = − di jdjhbek

− − dikdjebh j
− + d jkdh,−eb−ji

− .

Step 2:Delete nodei si =2, . . . ,nd from the Dynkin diagram; then the corresponding subal-
gebra isG0=H+slsid % sos2sn− id+1d. Now there are fourG0-modules, with the following grading
for G:

sos2n + 1d = G−2 % G−1 % G0 % G+1 % G+2

with

G−1 = spanhej ,2n+1 − e2n+1,n+j, ej ,k+n − ek,n+j, ejk − ek+n,n+j ; j = 1, . . . ,i, k = i + 1, . . . ,nj,

G−2 = spanhej ,k+n − ek,j+n; 1 ø j , k ø ij. s4.5d

The number of the annihilation operators isN=2isn− id+ i. The most interesting case is that with
i =n: this is the para-Fermi case presented in the Introduction. Indeed, let

f j
− = Î2sej ,2n+1 − e2n+1,n+jd, f j

+ = Î2se2n+1,j − en+j ,2n+1d, j = 1, . . . ,n. s4.6d

Then there are no quadratic relations, andR consists of triple relations only

fff j
j, fk

hg, f l
eg = 1

2se − hd2dklf j
j − 1

2se − jd2d jl fk
h,

j,h,e = ± or ± 1, j ,k,l = 1, . . . ,n. s4.7d

Step 3: Delete two or more nodes from the Dynkin diagram. Then the corresponding
Z-grading of sos2n+1d no longer has the required propertiessi.e., there are nonzeroGi with ui u
.2d.

Step 4:Now we turn to the extended Dynkin diagram. Deleting nodei from this diagram,
leaves the Dynkin diagram of sos2n+1d for i =0,1, of sos2nd for i =n, of sls2d % sls2d % sos2n
−3d for i =2, of sls4d % sos2n−5d for i =3, and of sos2id % sos2n−2i +1d for i ù4. In all these cases
there is only oneG0-module, so there are no contributions to our classification.

Step 5:Delete the adjacent nodessi −1d andi si =3, . . . ,nd from the extended Dynkin diagram.

The remaining diagram is that ofG̃0=sls2d % sls2d % sos2sn− id+1d for i =3, of G̃0=sls4d
% sos2sn− id+1d for i =4, and ofG̃0=sos2si −1dd % sos2sn− id+1d for i .4. In each case, there are

five G̃0-modulesgk, one of which is invariant underv ssay g1d. Then one must setG0=H+G̃0

+g1, and in each case one findsG0;H+Bn−1.
Now, there are only twoG0-modules and

sos2n + 1d = G−1 % G0 % G+1

with

G−1 = spanhei,2n+1 − e2n+1,n+i,eik − ek+n,n+i,ei,k+n − ek,n+i ; k Þ i = 1, . . . ,nj. s4.8d

The number of the anihilation operators isN=2n−1, and all these cases are isomorphic to those of
step 1.
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Step 6:Delete two nonadjacent nodes from the extended Dynkin diagram, sayi and j , i , j ,

i , j Þ0,1. The remaining diagram is that ofG̃0=sos2id % sls j − id % sos2sn− jd+1d fif i =2 we have

sls2d % sls2d instead of sos2idg. There are sevenG̃0-modulesgk, one of which ssay g1d with

vsg1d=g1. Thus one must takeG0=H+G̃0+g1, and this is in factG0;H+sos2sn− j + id+1d
% sls j − id.

The corresponding grading is

sos2n + 1d = G−2 % G−1 % G0 % G+1 % G+2

with

G−1 = spanhek,2n+1 − e2n+1,n+k,ekl − el+n,n+k,ek,n+l − el,n+k; k = i + 1, . . . ,j ,l = 1, . . . ,i, j + 1, . . . ,nj,

G−2 = spanhek,n+l − el,n+k; i + 1 ø k , l ø jj. s4.9d

The number of the annihilation operators isN=2s j − idsn− j + id+ j − i, and all these cases turn out
to be isomorphic to those of step 2.

Step 7:If we delete three or more nodes from the extended Dynkin diagram, the correspond-
ing Z-grading of sos2n+1d has no longer the required propertiessi.e., there are nonzero subspaces
Gi with ui u.2d.

V. THE LIE ALGEBRA Cn =sp „2n…

G=sps2nd is the subalgebra of sls2nd consisting of matrices of the form

Sa b

c − at D , s5.1d

wherea is anysn3nd-matrix, andb andc are symmetricsn3nd-matrices. The Cartan subalgebra
H consist of the diagonal matrices, and the root vectors and corresponding roots ofG are

ejk − ek+n,j+n ↔ e j − ek, j Þ k = 1, . . . ,n,

ej ,k+n + ek,j+n ↔ e j + ek, j ø k = 1, . . . ,n,

ej+n,k + ek+n,j ↔ − e j − ek, j ø k = 1, . . . ,n.

The simple roots, Dynkin diagram and extended Dynkin diagram are given in Table I. Again, the
anti-involution is such thatvsejkd=ekj. Next, we describe the process of deleting nodes and its
consequences for the classification of GQS.

Step 1: Delete nodei si =1, . . . ,n−1d from the Dynkin diagram. The remaining diagram is that
of slsid % sps2sn− idd, so G0=H+slsid % sps2sn− idd. There are fourG0-modules, leading to the
following grading:

sps2nd = G−2 % G−1 % G0 % G+1 % G+2

with

G−1 = spanhek,n+l + el,n+k,ekl − en+l,n+k;k = 1, . . . ,i,l = i + 1, . . . ,nj,

s5.2d
G−2 = spanhek,n+l + el,n+k;1 ø k ø l ø ij.

The number of the annihilation operators isN=2isn− id. The most interesting cases arei =1 and
i =n−1, which we shall describe in more detail.

For i =1, let us denote the CAOs by
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c−j
− = e1,n+j+1 + ej+1,n+1, c+j

− = e1,j+1 − en+j+1,n+1, j = 1, . . . ,n − 1,

s5.3d
c−j

+ = en+j+1,1+ en+1,j+1, c+j
+ = ej+1,1− en+1,n+j+1, j = 1, . . . ,n − 1.

Then the corresponding relationsR read, withj ,h ,e ,g=± or ±1, andj ,k, l =1, . . . ,n−1,

fcj j
h ,cjk

h g = 0,

fc−j
+ ,c−k

− g = fc+j
− ,c+k

+ g, j Þ k,

fc−j
− ,c+k

− g = fc−j
+ ,c+k

+ g = 0, j Þ k,

ffcj j
+ ,chk

− g,cel
+ g = djhd jkcel

+ + dhedklcj j
+ + s− 1dhedj,−ed jlc−hk

+ , s5.4d

ffcj j
+ ,chk

− g,cel
− g = − djhd jkcel

− − djed jlchk
− + s− 1djhdh,−edklc−j j

− ,

ffc−j
j ,c+k

j g,chl
−jg = 2hd jkc−hl

j ,

ffcj j
g ,chk

g g,cel
g g = 0.

For i =n−1, let us also denote the CAOs bycj
±,

c−j
− = ej ,2n + en,n+j, c+j

− = ejn − e2n,n+j, j = 1, . . . ,n − 1,

s5.5d
c−j

+ = e2n,j + en+j ,n, c+j
+ = enj − en+j ,2n, j = 1, . . . ,n − 1.

Now, the corresponding relations read, withj ,h ,e ,g=± or ±1, j ,k, l =1, . . . ,n−1,

fcj j
h ,cjk

h g = 0,

fc+j
+ ,c−k

− g = fc+j
− ,c−k

+ g = 0, j Þ k,

ffcj j
e ,cjk

−eg,chl
e g = jhd jkchl

e + dklch j
e ,

s5.6d
ffc+j

e ,c−k
−eg,chl

j g = sej − hdd jkc−hl
j ,

ffc+j
e ,c−k

e g,cjl
−eg = − jd jlc−jk

e − jdklc−j j
e ,

ffcj j
g ,chk

g g,cel
g g = 0.

This set of CAOs, together with their relationss5.6d, was constructed earlier in Ref. 6. Also the
CAOs s5.3d were already mentioned in Ref. 6 as a possible example, without giving the actual
relationss5.4d.

Step 2:When noden is deleted from the Dynkin diagram ofCn, the corresponding diagram is
that of slsnd, andG0=H+slsnd. In this case, there are twoG0-modules, and sps2nd has the grading
sps2nd=G−1 % G0 % G+1 with

G−1 = hej ,n+k + ek,n+j ; 1 ø j ø k ø nj. s5.7d

There areN=nsn+1d /2 commuting annihilation operators, and the relationsR will not be given
explicitly.

Step 3:Upon deleting two or more nodes from the Dynkin diagram ofCn, the corresponding
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Z-gradings have no longer the required propertysthere are nonzeroGi with ui u.2d.
Step 4:Now we turn to the extended Dynkin diagram. Deleting one node from this diagram

leads to a situation with only oneG0-module, irrelevant for our classification.
Step 5:Delete the adjacent nodessi −1d andi si =2, . . . ,nd from the extended Dynkin diagram.

The remaining diagram is that ofG̃0=sps2si −1dd % sps2sn− idd. There are sevenG̃0-modulesgk,

one of which satisfiesvsg1d=g1. SettingG0=H+G̃0+g1, it turns out thatG0;H+Cn−1. In that
case, there are only fourG0-modules andG has the grading sps2nd=G−2 % G−1 % G0 % G+1 % G+2

with

G−1 = spanhei,n+j + ej ,n+i,eij − en+j ,n+i ; j Þ i = 1, . . . ,nj. s5.8d

The number of the annihilation operators isN=2sn−1d, and all these cases are isomorphic to the
i =1 case of step 1.

Step 6: Delete two nonadjacent nodesi , j sexcluding the casei =1 and j =nd from the

extended Dynkin diagram. The remaining diagram is that ofG̃0=sps2id % sls j − id % sps2sn− jdd.
There are again sevenG̃0-modulesgk, among which one withvsg1d=g1. Then G0=H+G̃0+g1

;H+sls j − id % sps2sn− j + idd. There are only fourG0-modules and the grading is sps2nd=G−2

% G−1 % G0 % G+1 % G+2 with

G−1 = spanhek,n+l + el,n+k,ekl − en+l,n+k; k = i + 1, . . . ,j ,l Þ i + 1, . . . ,jj. s5.9d

The number of annihilation operators isN=2s j − idsn− j + id, and all these cases are isomorphic to
those of step 1 withi Þ1.

Step 7:Delete node 1 andn from the extended Dynkin diagram. The remaining diagram is
that of sls2d % slsn−1d. With G0=sls2d % slsn−1d, there are fourG0-modules and the correspond-
ing grading is sps2nd=G−2 % G−1 % G0 % G+1 % G+2 with

G−1 = spanhe1,n+k + ek,n+1,ek1 − en+1,n+k; k = 2, . . . ,nj. s5.10d

This case is isomorphic to thei =n−1 case of step 1.
Step 8:If we delete three or more nodes from the extended Dynkin diagram, the correspond-

ing Z-grading of sps2nd no longer has the required propertiessi.e., there are nonzero subspacesGi

with ui u.2d.

VI. THE LIE ALGEBRA Dn =so „2n…

G=sos2nd is the subalgebra of sls2nd consisting of matrices of the form

Sa b

c − at D , s6.1d

wherea is anysn3nd-matrix, andb andc are antisymmetricsn3nd-matrices. The Cartan subal-
gebraH consist of the diagonal matrices, and the root vectors and corresponding roots ofG are

ejk − ek+n,j+n ↔ e j − ek, j Þ k = 1, . . . ,n,

ej ,k+n − ek,j+n ↔ e j + ek, j , k = 1, . . . ,n,

ej+n,k − ek+n,j ↔ − e j − ek, j , k = 1, . . . ,n.

The simple roots, Dynkin diagram and extended Dynkin diagram are given in Table I. Again, the
anti-involution is such thatvsejkd=ekj. Next, we describe the process of deleting nodes and its
consequences for the classification of GQS.

Step 1:When node 1 is deleted from the Dynkin diagram ofDn, the remaining diagram is that
of Dn−1, soG0=H+Dn−1=H+sos2sn−1dd. There are twoG0-modules,
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G−1 = spanhe1i − en+i,n+1,e1,n+i − ei,n+1; i = 2, . . . ,nj, s6.2d

and G+1=vsG−1d. G has the corresponding grading sos2nd=G−1 % G0 % G+1, and there areN
=2sn−1d commuting annihilation operators. Denoting the CAOs by

d−i
− = e1,n+i+1 − ei+1,n+1, d+i

− = e1,i+1 − en+i+1,n+1, i = 1, . . . ,n − 1,

d−i
+ = en+i+1,1− en+1,i+1, d+i

+ = ei+1,1− en+1,n+i+1, i = 1, . . . ,n − 1, s6.3d

then, forj ,h ,e=± and i , j ,k=1, . . . ,n−1, the relationsR are given by

fdji
e ,dh j

e g = 0,

fd−i
+ ,d+i

− g = fd+i
+ ,d−i

− g = 0,

s6.4d
ffdji

+ ,dh j
− g,dek

− g = − djhdi jdek
− − djedikdh j

− + dh,−ed jkd−j,i
− ,

ffdji
+ ,dh j

− g,dek
+ g = djhdi jdek

+ + dhed jkdji
+ − dj,−edikd−h,j

+ .

Although the relationss6.4d are new, the existence of the set of CAOss6.3d was pointed out in Ref.
6.

Step 2:When nodei si =2, . . . ,n−2d is deleted from the Dynkin diagram ofDn, the remaining
diagram is that of slsid % sos2sn− idd for slsn−2d % sls2d % sls2d in the casei =n−2g. With G0

=slsid % sos2sn− idd, there are fourG0-modules, and sos2nd has the following grading sos2nd
=G−2 % G−1 % G0 % G+1 % G+2 with

G−1 = spanhekl − en+l,n+k,ek,n+l − el,n+k; k = 1, . . . ,i,l = i + 1, . . . ,nj. s6.5d

The number of annihilation operators isN=2isn− id.
Step 3:Delete noden−1 or n from the Dynkin diagram; the remaining diagram is that of

slsnd, and G0=H+slsnd. There are only twoG0-modules andG has the grading sos2nd=G−1

% G0 % G+1, with

G−1 = spanhej ,n+k − ek,n+j ; 1 ø j , k ø n − 1j ø spanhejn − e2n,n+j ; j = 1, . . . ,n − 1j, for i = n − 1,

G−1 = spanhej ,k+n − ek,j+n; 1 ø j , k ø nj, for i = n. s6.6d

There areN=nsn−1d /2 commuting annihilation operators, and these two cases are isomorphic.
The relations are not given explicitly.

Step 4:Upon deleting two nodesi and j si , j =1, . . . ,n−2d or more from the Dynkin diagram
of Dn, the correspondingZ-gradings have no longer the required propertysthere are nonzeroGi

with ui u.2d.
Step 5:Delete nodesn−1 andn from the Dynkin diagram. The remaining diagram is that of

slsn−1d. For G0=H+slsn−1d, there are sixG0-modules. There are three different ways in which
theseG0-modules can be combined, each of them yielding aZ-grading of the form sos2nd=G−2

% G−1 % G0 % G+1 % G+2, namely,

G−1 = spanhejn − e2n,n+j, ej ,2n − en,n+j ; j = 1, . . . ,n − 1j, s6.7d

G−1 = spanhejn − e2n,n+j, j = 1, . . . ,n − 1; en+j ,k − en+k,j, 1 ø j , k ø n − 1j, s6.8d

033501-13 A classification of generalized quantum statistics J. Math. Phys. 46, 033501 ~2005!

                                                                                                                                    



G−1 = spanhej+n,n − e2n,j, j = 1, . . . ,n − 1; ej ,k+n − ek,j+n, 1 ø j , k ø n − 1j. s6.9d

For s6.7d, we haveN=2sn−1d; for s6.8d and s6.9d, we haveN=nsn−1d /2. It turns out thats6.8d
ands6.9d are isomorphic to each other. Here, we shall give the relations only fors6.7d. Denote the
CAOs of s6.7d by

d−i
− = ei,2n − en,n+i, d+i

− = ein − e2n,n+i, i = 1, . . . ,n − 1,

d−i
+ = e2n,i − en+i,n,d+i

+ = eni − en+i,2n, i = 1, . . . ,n − 1. s6.10d

Then, withj ,h ,e ,g=± or ±1 andi , j ,k=1, . . . ,n−1, the relations are explicitly given by

fdji
h ,dj j

h g = 0,

fd−i
+ ,d+j

− g = fd+i
+ ,d−j

− g = 0,

fd+i
− ,d−i

− g = fd+i
+ ,d−i

+ g = 0,

s6.11d
ffdji

g ,dh j
g g,dek

g g = 0,

ffd+i
j ,d−j

j g,dek
−jg = − dikd−e j

j + d jkd−ei
j ,

ffdji
h ,dj j

−hg,dek
h g = jedi jdek

h + d jkdei
h .

The set of CAOss6.10d with relationss6.11d is the example that was considered earlier in Refs. 6
and 8.

Step 6:Now we move to the extended Dynkin diagram. Deleting nodei leaves the Dynkin
diagram of sos2nd for i =0,1,n−1,n, of sls2d % sls2d % sos2sn−2dd for i =2, of sls3d % sos2sn
−3dd for i =3, and of =sos2id % sos2sn− idd for i ù4. In all these cases there is only oneG0-module,
so there are no contributions to our classification.

Note that deleting nodesi and j f1, i , j , bsn+1d /2cg from the extended Dynkin diagram is
equivalent to delete nodessn− jd and sn− id.

Step 7:Delete the adjacent nodess j −1d and j . For j =1 we are back to step 1, and forj =2 to

step 2 withi =2. For j ù3 the remaining diagram is that ofG̃0=sos2s j −1dd % sos2sn− jdd ffor j
=3 this is sls2d % sls2d % sos2sn− jdd and for j =4 this is sls4d % sos2sn− jddg. There are five

G̃0-modulesgk, one withvsg5d=g5, so one must setG0=H+G̃0+g5;H+sos2sn−1dd. Now, there
are only twoG0-modules,G has the grading sos2nd=G−1 % G0 % G+1, and all these cases are
isomorphic to those of step 1.

Step 8:Delete the nonadjacent nodesi and j si , j −1d from the extended Dynkin diagram.

The remaining diagram is that ofG̃0=sos2id % sls j − id % sos2sn− jdd ffor i =2 this is sls2d % sls2d
% sls j − id % sos2sn− jdd; for i =3 this is sls3d % sls j − id % sos2sn− jddg. There are nineG̃0-modules

gk, one withvsg9d=g9. SettingG0=H+G̃0+g9;H+sls j − id % sos2sn− j + idd, there are only four
G0-modules. All these cases are isomorphic to those of step 2.

Step 9:If we delete three or more nodes from the extended Dynkin diagram, the correspond-
ing Z-grading of sos2nd no longer has the required propertiessi.e., there are nonzero subspacesGi

with ui u.2d.

VII. SUMMARY AND CONCLUSIONS

We have obtained a complete classification of all GQS associated with the classical Lie
algebras. The familiar casesspara-Fermi statistics andA-statisticsd appear as simple examples in
our classification. It is worth observing that some other examples in this classification are also
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rather simple. The GQS given ins3.6d and s3.12d, e.g., seem to be closely related toA-statistics,
except that there are two kinds of particles corresponding to the CAOsfsees3.5d ands3.11dg. The
GQS of typeD given in s6.4d has also particularly simple defining relations. For convenience, a
comprehensive summary of the classification of all GQS is given in Table II.

As we have already mentioned in the main text, several cases in our classification appear as
examples in Refs. 7–12 and in Palev’s thesis.6 In these papers or in the thesis, however, no
classification is given, only a number of examples inspired by the para-Fermi case are considered.
Furthermore, for some of these examples Fock-type representations are constructed.

In this paper, we have dealt only with a mathematical definition of generalized quantum
statistics. In order to talk about a quantum statistics in the physical sense, one should take into
account additional requirements for the CAOs, related to certain quantization postulates.7 First of
all, there should be a state spacespossibly a Fock spaced in which the CAOs act. Here, the Lie
algebraic framework could be useful, since such a state space can coincide with a Lie algebra
representation spacesand automatically all elements in the Lie algebraG and in its universal
enveloping algebra have a well-defined action in any representationd. Physical observables, and in
particular the Hamiltonian, should be Hermitian operators and expressible via the CAOs. The
Hermiticity conditions for physical observables usually lead to conjugacy relations for the CAOs;
these are often such that, for example,sxi

−d†=xi
+ sfor the representatives of the CAOs in a repre-

sentationd. In other words, such Hermiticity conditions are often related to the anti-involutionv.
The representation spaces in which the inner product is such that the Hermitian conjugate of the
representative ofxPG is equal to the representative ofvsxd are often called the unitary represen-
tations swith respect to the given anti-involutionvd. Whether the class of finite dimensional
representations ofG plays a role, or whether it is a class of infinite dimensional representations,
depends on the choice ofv. With the standard choice considered in this paper, the unitary repre-
sentations are finite dimensional. For another choice ofv fstill with vsG−1d=G+1, but no longer all
plus signs invsxi

−d= ±xi
+g, our classification of GQS remains valid, but the unitary representations

will be infinite dimensional.

TABLE II. Summary of the classification: all nonisomorphic GQS associated with a classical Lie algebra are given. For
each GQS, we list the Dynkin diagram ofG0 sdescribed in terms of the Dynkin diagramD of Gd, the subspaceG−1 sas a
reference to the main textd, the number of annihilation operatorssNd, and the relationsR swhen given in the textd.

Lie
algebra

Dynkin diagram
of G0 G−1 N R

An D−hij
si ø bsn+1d/2c d

s3.1d isn+1−id i =1 s3.4d
i =2 s3.6d

D−hi , jj
si ø bn/2cd

si , j ,n+1−id

s3.7d s j − idsn+1− j + id j − i =1 s3.12d

Bn D−h1j s4.2d 2n−1 s4.4d
D−hij

s2ø i ønd
s4.5d 2isn− id+ i i =n s4.7d

Cn D−hij
s1ø i øn−1d

s5.2d 2isn− id i =1 s5.4d
i =n−1 s5.6d

D−hnj s5.7d n/ sn+1d2

Dn D−h1j s6.2d 2sn−1d s6.4d
D−hij

s2ø i øn−2d
s6.5d 2isn− id

D−hnj s6.6d n/ sn−1d2
D−hn−1,nj s6.7d

s6.8d
2sn−1d

n/ sn−1d2
s6.11d
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It is only after an investigation of such further properties, that one can talk about a quantum
statistics. If one can furthermore classify the state spaces for a particular GQS, then one can study
its macroscopic and microscopic properties. Such a program is feasible, and could give rise to
interesting quantum statistical properties. For example, forA-statistics, the microscopic properties
si.e., the properties of the CAOs and their action on the Fock spacesd have been described in Refs.
7–11, whereas the macroscopic propertiessi.e., the statistical properties of ensembles of particles
satisfying this GQSd have been studied in Ref. 12. We hope that some other cases of this classi-
fication will yield similar interesting GQS.

From the mathematical point of view, a set of CAOs together with a complete set of relations
R unambiguously describes the Lie algebra. So each case of our classification also gives the
description of a classical Lie algebra in terms of a number of generators subject to certain rela-
tions. This can also be reformulated in terms of the notion of Lie triple systems.13 According to the
definition, a Lie triple systemL of an associative algebraA is a subspace ofA that is closed under
the ternary compositionffa,bg ,cg, where fa,bg=ab−ba. It is easy to see that in our case the
subspaceG−1 % G+1 si.e., the subspace spanned by all CAOsd is a Lie triple system for the uni-
versal enveloping algebra UsGd.

This paper was devoted to classical Lie algebras only. The exceptional Lie algebras are not
considered here. Although it would be possible to perform a mathematical classification of the
GQS associated withG2, F4, E6, E7, andE8, it is obvious that in such a case the number of CAOs
is a fixed integer. For physical applications, it is of importance that the number of CAOs is not a
fixed number but an integer parameterN. In fact, in quantum field theoretical applications, one is
mainly interested in the caseN→`.

As mentioned in the Introduction, para-Bose statistics is connected with a Lie superalgebra,
the orthosymplectic superalgebra osps1u2nd. In a future paper, we hope to classify all GQS
associated with the classical Lie superalgebras.
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Dynamics of modulated waves is studied in a one-dimensional discrete nonlinear
electrical transmission line. Contribution of a linear dispersive capacitance is ap-
preciated and it is shown via a reductive perturbation method that evolution of such
waves in this system is governed by a higher order nonlinear Schrödinger equation.
Passing through the Stokes wave analysis, a generalized criterion for the Benjamin–
Feir instability in the network is presented and exact solutions of the obtained wave
equation are determined by the means of the Pathria and Morris approach. ©2005
American Institute of Physics.fDOI: 10.1063/1.1843272g

I. INTRODUCTION

It is well known that exactly integrable nonlinear differential equations have soliton solutions
that travel stationary and collide elastically. Many wave spread phenomena can be explained by
integrable equations in some ideal conditions and there is a great variety of applications of the
concept of solitons in condensed matter physics.1 It is possible to divide these applications into the
following two parts: In one part continuum media are treated, e.g., in hydrodynamics,2 and soli-
tons arise as solutions of partial differential equationssPDE’sd. In the other part, intrinsically
discrete models are considered, e.g., chains of magnetic ions or hydrogen-bonded chains in
proteins.1,3 Here differential-difference equations must be solved instead of the PDE’s of the first
part. However, apart from very few exceptions like Toda lattice,4 the differential-difference equa-
tions cannot be solved exactly. Therefore, several soliton perturbation theories have been devel-
oped to study the effect of small perturbations on integrable equations. In these theories, the
reductive perturbation method5,6 is well known. Within this method, we have the semidiscrete
approximation that consists of considering the continuum approximation to describe the envelope
of the signal and treats the carrier wave with its discrete character.

The main purpose of this paper is to study the dynamics of modulated wave trains in a discrete
nonlinear electrical transmission line using the semidiscrete approximation. This paper is orga-
nized as follows. In Sec. II, we present a nonlinear electrical network representing a bandpass filter
with a linear dispersive capacitanceCs. In Sec. III, we use the reductive perturbation method to
derive the higher order nonlinear Schrödinger equationsHONLSEd describing the propagation of
modulated waves in the line. The impact ofCs on the dispersion relation is discussed. In Sec. IV,
the resulting HONLSE is utilized to determine the condition for instability of slowly modulated
waves. A calculation to predict the modulational instabilitysMI d is presented. In Sec. V, the
Pathria and Morris method is exploited to check whether the HONLSE possesses solitary wave
solutions which show that solitons can propagate in the network. Finally, Sec. VI is devoted to
concluding remarks.

adAuthor to whom correspondence should be addressed. Permanent address: Department of Physics, Physics Laboratory,
University of Dschang, P.O. Box 69, Dschang, Cameroon.
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II. MODEL DESCRIPTION

The model under consideration is a lossless discrete nonlinear transmission line made ofN
identical unit cells as illustrated in Fig. 1. Each unit cell contains a linear inductanceL1 in parallel
with a linear capacitanceCs in the series branch and, a linear inductanceL2 in parallel with a
nonlinear capacitanceCsVd in the shunt branches. This nonlinear capacitance consists of a
reversed-biased diode with differential capacitance function of the voltageVn across thenth
capacitor7 and biased by a constant voltageV0: CsV0+Vnd=dQn/dVn in which Qn is the corre-
sponding nonlinear charge. For low voltages chosen aroundV0 the quantityQnsVnd can be ap-
proximated by8

QnsVnd = C0sVn − aVn
2 + bVn

3d, s2.1d

whereC0=CsV0d, a andb are positive constants,C0 designates the characteristic capacitance, and
a andb denote the nonlinear parameter. From the Kirchhoff’s laws applied to the circuit of Fig.
1, we derive the following system of nonlinear equations for the voltageVnstd:

d2Vn

dt2
+ u0

2s2Vn − Vn−1 − Vn+1d + l
d2

dt2
s2Vn − Vn−1 − Vn+1d + v0

2Vn = a
d2Vn

2

dt2
− b

d2Vn
3

dt2
,

n = 1,2, . . . ,N s2.2d

whereN is the number of cells considered. In Eq.s2.2d, we have set

u0
2 =

1

L1C0
, v0

2 =
1

L2C0
, andl =

Cs

C0
. s2.3d

During computations, the following values of the network’s parameters are used8,9

L1 = 200 ± 5mH, L2 = 470 ± 10mH, V0 = 2V, C0 = 370 ± 10pF,

a = 0.21V−1, b = 0.0197V−2, andCs = 1850 ± 10pF. s2.4d

III. OSCILLATORY SOLUTIONS

Now, our attention is focused on the propagation of modulated waves in the system. For this
aim, the semidiscrete approximation5,6 is employed to obtain short wavelength envelope solitons.

FIG. 1. Schematic representation of one unit cell of a discrete nonlinear electrical transmission line. The network is
composed ofN identical cells.
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This approach allows us to treat properly the carrier with its discrete character and to describe the
envelope in the continuum approximation. Therefore, slow variablessj ,td are introduced as fol-
lows: j=«sn−Vgtd, t=«2t where« is a small parameter andVg denotes the group velocity of the
packet wave.

Leaning on the idea developed by Taniuti and Yajima,10 the solutionVnstd of Eq. s2.2d can be
taken in the following form:11

Vnstd = «1/2V11sn,tdeiu + «fV20sn,td + V22sn,tde2iug + «3/2fV30sn,td + V33sn,tde3iug

+ «2fV40sn,td + V42sn,tde2iu + V44sn,tde4iug + «5/2fV50sn,td + V53sn,tde3iu + V55sn,tde5iug

+ c.c. +Os«7/2d, s3.1d

in which u is the phase given byu=kn−vt; c.c. stands for the complex conjugation and« is the
smallness parameter that measures the size of the amplitude of the perturbation. During the
computations, there are nonzero voltagesVlmsn±1,td which are expanded in the continuum limit
aroundVlmsx,td with n=x. So the fast changes of the phaseu in Eq. s3.1d are correctly taken into
account by considering differences in the phase for the discrete variablen. We have also scaled
time and space derivatives as] /]t,0s«d and] /]x,0s«d, respectively, and neglected consistently
high order in« terms. Then we keep up to the second order derivative terms ofVnstd to balance
dispersion and nonlinearity. Introduction ofVnstd and its derivatives into Eq.s2.2d yields a series
of equations distinguished by the power of«.

From the equations ofs«1/2,eiud, that is the terms of 0s«1/2d for the first harmonic, we derive
the following linear dispersion law:

s1 + 4l cos2sk/2ddv2 = v0
2 + 4u0

2 sin2sk/2d s3.2d

in which the wave numberk is taken in the Brillouin zone. The linear dispersion curve that deals
with expressions3.2d is shown in Fig. 2sad and represents a bandpass filter. As displayed in this
figure, the corresponding linear spectrum has a gapf01=v01/2p which is the lower cutoff fre-
quency introduced by the parallel inductanceL2 and it is limited by the cutoff frequency

FIG. 2. Linear dispersion curve defined by relations3.2d for the constants given by expressions2.2d. sad Case wherel
Þ0; sbd case wherel=0. While comparing these two plots, we note that the gap zone is larger in the absence of the linear
capacitanceCs si.e., for l=0d.
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fmax=
vmax

2p
=

1

2p
sv0

2 + 4u0
2d1/2 s3.3d

due to the lattice effects. On the other hand, Fig. 2sbd presents the plot of relations3.2d in the case
wherel=0 that corresponds toCs=0. While comparing the graphs of Figs. 2sad and 2sbd, we note
that the upper cutoff frequencyfmax has not changed in the presence of the linear dispersion
capacitanceCs in the system. But the existence ofCs reduces the value of the lower cutoff
frequency sincef01, f02 with f02=v02/2p. The direct physical consequence of such result is that
the gap zone in the system is highly reduced. Because the width of the intervalff01, fmaxg is bigger
than that offf02, fmaxg, introduction ofCs in the circuit has increased the propagation domain of
the signal.

From the terms proportional to«3/2eiu, we obtain the expression

iFVg
]V11

]j
+

]V11

]t
G = − QskduV11u2V11 s3.4d

in which

Qskd =
v

2
f2asN20 + N22d − 3bg =

v

2H4a2S2v2

D
+

Vg
2

Vg
2 − u0

2D − 3bJ
with

D = 4v2s1 + 4l cos2 kd − 4u0
2 sin2 k − v0

2.

Here we follow the Kakutani and Michihiro idea12 and assume thatDk=k−kc is of Os«d and write
Q=«Q1 whereQ1 is of Os1d and is given approximately by

Q1skd =
Dk

«
SdQskd

dk
D

k=kc

=
Vg

v
Qskd − Svu0

2

Vg
2 DN20

2 F6lv

x
sink −

Vg

v
+

cosk

sink
G + 2aN22Vg

−
N22

2

v
f2vVgs1 + 4l cos2 kd − su0

2 + 4lv2dsin 2kg. s3.5d

In relation s3.5d, the group velocity is expressed as

Vg =
]v

]k
=

2

x
su0

2 + lv2dsink, x = vs1 + 4l cos2sk/2dd s3.6d

and realkc designates the critical value of the wave numberk of the signal. Therefore atOs«3/2d,
Eq. s3.4d becomes

Vg
]V11

]j
+

]V11

]t
= 0. s3.7d

This result means that in the reference frame moving with the group velocityVg, the complex
amplitudeV11 of the signal remains constant to the concerned scale.13 Hence, the right-hand side
srhsd of Eq. s3.4d is shifted to the corresponding nonsecular condition atOs«5/2d.

From the equations ofs«5/2,eiud, we establish that the resulting equation that describes dy-
namics of a packet wave in the discrete nonlinear transmission linesof Fig. 1d is the higher order
nonlinear Schrödinger equationsHONLSEd,

i
]V11

]t
+ P

]2V11

]j2 = Q1uV11u2V11 + Q2uV11u4V11 + iQ3V11
2 ]V11

*

]j
+ iQ4uV11u2

]V11

]j
s3.8d

in which the different coefficients are defined by
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P =
1

2v
fsu0

2 + lv0
2dcosk − 4lVg

2 sin2sk/2d − 4vVg sinkg, s3.9d

Q2 = vFasN40 + N42 + N22N33d −
3b

2
s2N22

2 + N33 + N20
2 + 2N20N22dG , s3.10d

Q3 = 2Vgfb − asN20 + N22dg, s3.11d

Q4 = avÑ42 + 2Q3, s3.12d

andQ1 is given by relations3.5d. The diverse parameters and voltages that appear in the coeffi-
cients of Eq.s3.8d are determined in the Appendix.

The HONLSEs3.8d is known to govern modulations of weakly nonlinear ions in acoustic
plasma waves,5 ferromagnetic chain14 and evolutions of Stokes waves.12,15 This relation is also
used as an envelope equation for describing a weakly subcritical bifurcation to counter propagat-
ing waves16 and also accounts for the slow modulations of an oscillatory mode closed to a
subcritical bifurcation17,18 when Q3=Q4=0. In Eq. s3.8d, the first two terms of the rhs are the
nonlinear terms while the others represent the nonlinear dispersion.

Using the line parameterss2.2d the spatial dispersion coefficients3.9d is plotted as a function
of k sFig. 3d. We could remark from these graphs that the coefficientP has both positive and
negative values whetherl is null or not. When comparing Figs. 3sad–3scd we note that the
presence ofCs si.e., for lÞ0d increases the interval of the values ofP. In other words, introduc-
tion of Cs adds the dispersion in the system. This result will be useful to predict the stability of
modulated waves in the network.

IV. MODULATIONAL INSTABILITY

In this section, we research under which conditions a uniform wave train moving along the
discrete nonlinear electrical transmission line of Fig. 1 will become unstable to a small perturba-
tion. For this purpose, we use the HONLSEs3.8d derived from the exact equationss2.2d describing
the wave propagation in the network. First, we look for solutions of Eq.s3.8d in the form

V11sj,td = E0 expfisknj − vntdg, s4.1d

whereE0 is a complex constant amplitude. Substitution ofs4.1d into Eq.s3.8d yields the nonlinear
dispersion law5

vn = vnskn,uE0u2d = Pkn
2 + Q1uE0u2 + Q2uE0u4 + knsQ3 − Q4duE0u2 s4.2d

in which kn and vn are, respectively, the wave number and the angular frequency of the carrier
wave. From relations4.2d, the plane waves4.1d is nonlinear and the principle of superposition is
invalid. To investigate the MI18 of the carrier wave, a small perturbation ofs4.1d is taken as
follows:5,19–21

V11sj,td = f1 + Asj,tdgE0 expfisknj − vntdg, s4.3d

whereAsj ,td is a complex quantity. Substituting this solution intos3.8d and linearizing the result
with respect toAsj ,td gives the differential equation

iAt + PsAjj + 2iknAjd = Q1sA + A*duE0u2 + 2Q2sA + A*duE0u4 + isQ3Aj
* + Q4AjduE0u2

+ knsQ3 − Q4dsA + A*duE0u2 s4.4d

in which the asterisk denotes the complex conjugation. Following the idea developed by Parkes,5

solutions of Eq.s4.4d could be found in the form
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Asj,td = A1 expfislj + Vtdg + A2
* expf− islj + V * tdg, s4.5d

where l and V indicate, respectively, the wave number and the angular frequency of the pertur-
bation. ParametersA1 andA2 are complex constants. Introduction of relations4.5d into Eq. s4.4d
yields a dispersion law for the perturbation wave

V2 + 2bV + sb2 − P2l4 − l2Q3
2uE0u4 − 2cPl2d = 0, s4.6d

which is a second order equation forV with real coefficients; the quantitiesb andc are defined by

FIG. 3. Dispersive coefficient in terms of the wave numberk taken in the Brillouin zone for the line parameterss2.2d. sad
Case wherelÞ0 andv0Þ0; sbd case wherelÞ0 andv0=0; scd case wherel=0 andv0Þ0. These plots show thatP
admits both positive and negative values and inform that the range values of the dispersion coefficientP increases with the
introduction ofCs in the system.
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b = 2knlP − lQ4uE0u2 and c = Q1uE0u2 + 2Q2uE0u4 + knsQ3 − Q4duE0u2.

The MI phenomenon is observed when the angular frequencyV of the perturbation has a nonzero
imaginary part leading to an exponential growth of the amplitude versus time. This situation
occurs when the discriminantsDd of Eq. s4.6d possesses a negative valuesD,0d leading up to

PQ1 − r , − S l2P2 + Q3
2uE0u4

2uE0u2
D , 0 s4.7d

and necessarily

PQ1 − r , 0 s4.8d

with

r = − knsQ3 − Q4duE0u2 − PQ2uE0u2. s4.9d

Relation s4.8d together withs4.9d represents the MI criterion associated to the HONLSE in the
electrical transmission line of Fig. 1. We deduce from Eq.s4.7d that the wave number of the
perturbationl should be taken in a finite interval namely,

0 , l ,
uE0u
uPu

f2sr − PQ1d − Q3
2uE0u2g1/2. s4.10d

The MI condition s4.8d is function of the nonlinear and dispersive parametersb and l since it
depends on the coefficients of Eq.s3.8d which are related tob and l. The results4.8d is more
general than the one obtained by Ketchakeuet al.11 during the study off4 models. It also
generalizes the family criterion for the standard nonlinear SchrödingersNLSd equations.18,22How-
ever this criterion is similar to that established by Kakutani and Michihiro12 when they examine
the motion of water waves near the marginal state of instability.

V. EXACT SOLITARY SOLUTIONS

The main purpose of this section is to check whether the discrete nonlinear transmission line
under study can support solitary waves. Hence we follow the Pathria and Morris23 method and set
t=Pt. Therefore, the amplitude wave equations3.8d takes the form:

iV11,t + V11,jj + qcuV11u2V11 + qquV11u4V11 + iqmV11
2 V11,j

* + iquuV11u2V11,j = 0 s5.1d

with qc=−Q1/P, qq=−Q2/P, qm=−Q3/P, andqu=−Q4/P. At this level, we introduce the follow-
ing notations:

Qc = qc, Qq = qq + 1
16squ + qmds3qm − 5qud,

Qm = qm − 1
2squ + qmd = − 1

2squ − qmd and Qu = qu − qm. s5.2d

The solutions of Eq.s5.1d strongly depend on the sign of the coefficient23 Qq. Two cases can be
distinguished. WhenQq,0, the solution of Eq.s5.1d is given by

V11sj,td = S r1r2

r1 + sr1 − r2dsinh2sx0dD
1/2

expfifsj,tdg s5.3d

in which
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fsj,td = − Squ + qm

4
DÎ− 3/Qqtanh−1SÎr2

r1
tanhsx0dD +

h

2
sj − mtd + q0,

with x0=s−r1r2Qq/3d1/2sj−htd+q1. In expressionss5.3d, the quantitiesm andh denote the speeds
of the carrier and envelope waves ofV11, respectively;q0 and q1 are arbitrary constants. The
values ofr1 andr2 determine the form of this solution. Solitary waves arise in the system ifr1 and
r2 are real, with23 r1. r2.0.

On the other hand, ifQq.0, r1 andr2 are real withr1.0. r2, a solitary wave also exists and
the corresponding solution for Eq.s5.1d is23

V11sj,td = S r1r2

r2 + sr2 − r1dsinh2sx0dD
1/2

expfifsj,tdg s5.4d

with

fsj,td = − Squ + qm

4
DÎ3/Qqtan−1SÎ−

r1

r2
tanhsx0dD +

h

2
sj − mtd + q0,

and

x0 = s− r1r2Qq/3d1/2sj − htd + q1.

Furthermore, ifr1 and r2 are real withr1. r2.0, then the solution is oscillatory and has the
following form:23

V11sj,td = S r1r2

r1 + sr2 − r1dcos2sx1dD
1/2

expfifsj,tdg, s5.5d

where

fsj,td = − Squ + qm

4
DÎ3/Qqtan−1SÎr2

r1
tanhsx1dD +

h

2
sj − mtd + q0,

andx1=sr1r2Qq/3d1/2sj−htd+q1. From these investigations, we note that the HONLSE possesses
solitary wave solutions for both positive and negative values ofQq.

VI. CONCLUSION

In this paper, we have considered a discrete nonlinear electrical transmission line and exam-
ined dynamics of modulated waves. Exploiting the reductive perturbation method, it has been
shown in the semidiscrete limit that propagations of modulated wave trains are governed by a
modified form of the NLS equation that involves higher orders nonlinearities, i.e., the HONLSE.
Through our investigations, it has been obtained that the capacitanceCs adds the linear dispersive
effects in the circuit with the consequence that the gap zone is greatly reduced and the range of
frequencies for the propagation of the signal has substantially increased given way to more appli-
cations of the model.

Based on the obtained amplitude wave equation, we have utilized the Stokes wave analysis to
construct a criterion for the MI of a plane wave introduced in the electrical line. It has appeared
that the obtained criterion generalizes the family criterion for NLS equations and depends both on
the amplitude and wave number of the propagating signal.

Besides this study of the asymptotic behavior of a signal in the network, the Pathria and
Morris method has been exploited to show that this discrete nonlinear transmission line can
support solitary waves. This last result is of higher importance since it is known that solitons are
good waves for the transport of information in some physical systems.
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APPENDIX

The equations ofs«3,e0iud lead to the potential

V20 = N20uV11u2 with N20 =
2aVg

2

Vg
2 − u0

2 . sA1d

From the equations ofs« ,e2iud, we get

V22 = N22sV11d2, whereN22 =
4av2

D
. sA2d

Terms proportional to«5/2e2iu and«3eiu yield, respectively, the voltages

V30 = 0 and V50 = 0. sA3d

From the equations ofs«3/2,e3iud, we obtain the potential

V33 = N33sV11d3 in which N33 =
1

D1
s18av2N22 − 9bv2d sA4d

with

D1 = 9v2s1 + 4l cos2s3k/2dd − 4u0
2 sin2s3k/2d − v0

2.

The equations ofs«3,e0iud liberate

V40 = N40uV11u4 with N40 =
1

2
N20sN20

2 + 2N22
2 d −

b

a
N20s2N20 + 3N22d. sA5d

From the terms proportional to«2e2iu, we determine the voltage

V42 = N42uV11u2V11
2 + iÑ42sV11

2 dj sA6d

in which the diverse coefficients are defined by

N42 =
4v2

D
f2asN33 + N20N22d − 3bsN20 + 2N22dg

and

Ñ42 =
2

D
f2vVgN22s1 + 4l cos2 kd − su0

2 + 4lv2dN22 sink − 2avVgg.

Note:There exist other nonzero coefficients that do not contribute in the establishment of the
amplitude wave equations3.8d which characterizes the motion of a signal in the line. Nevertheless,
their expressions are found and listed below.

From the equations ofs«2,e4iud, we deduce

V44 = N44sV11d4 whereinN44 =
1

D2
f16av2sN22

2 + 2N33d − 48bv2N22g sA7d

with D2=16v2s1+4l cos2s2kdd−4u0
2 sin2s2kd−v0

2.
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The equations ofs«5/2,e2iud help to determine the voltage

V53 = N53uV11u2V11
3 + iN538 sV11

2 djV11 + iN539 sV11
3 dj sA8d

in which the different parameters are given by

N53 =
18v2

D1
fasN42 + N44 + N20N33d − bs2N33 + 2N20N22 + 2N22

2 dg,

N538 =
6av

D1
s3vÑ42 − 2VgN22d,

and

N539 =
1

D1
f6vVgN33s1 + 4l cos2s3k/2dd − 2su0

2 + 9lv2dN33 sin 3k + 6bvVgg.

From the equations ofs«5/2,e5iud, we get

V55 = N44sV11d5 in which N44 =
25v2

D3
f2asN44 + N22N33d − 3bsN22

2 + N33dg, sA9d

where

D3 = 25v2s1 + 4l cos2s5k/2dd − 4u0
2 sin2s5k/2d − v0

2.
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We define stochastic pants, and the stochastic parallel transport over them for the
Felder–Gawedzki–Kupiainen line bundle over the loop space. It is related to the
construction of stochastic integrals, where we cannot use martingale theory in order
to define them. We get a stochastic fusion of the two line bundles when the two
loops meet. ©2005 American Institute of Physics.fDOI: 10.1063/1.1847707g

I. INTRODUCTION

In conformal field theory or in string theoryssee Refs. 1–3d, people look at random applica-
tions c from a Riemann surfaceS into a Riemannian manifoldM endowed with the probability
measure:

dmscd = Z−1 expf− IscdgdDscd, s1.1d

where dDscd is the formal Lebesgue measure over the set of mapsc and Iscd the energy of the
mapc. Z is the partition function of the theory such thatm is a probability measure.Z is formally
infinite, but physicists regularizeZ and the correlators. IfS has boundaries, let us say exit
boundaries which are circleSi

1 and input boundaries which are circlesSi
2, the amplitude related to

the measures1.1d should realize a map from̂ outputH into ^ inputH whereH is an Hilbert space
associated to the loop spacessee Ref. 4d.

In the case where the manifold is the linear spaceRn, s1.1d is a Gaussian measure, which
corresponds to the free field measure. Since in two dimension, the Green kernel associated to the
Laplacian has a singularity on the diagonal, the random field lives on random distributionsssee
Ref. 5d. It is difficult to state what is a distribution with values in a curved manifold, because the
notion of distribution is linear.

If S=f0,1g3 f0,1g, there is another process indexed byS with values inR, which is the
Brownian sheet and which is continuous.s]2/]s]tdc=hs,t is the white noise overf0,1g3 f0,1g. It
is a formal Gaussian random field with average 0 and covariancekhs,t ,hs8,t8l=ds,tss8 ,t8d whereds,t

is the Dirac delta function inss,td. On S, there is a natural order, and it is possible after the work
of Cairoli6 to study the stochastic differential equation in Itô meaning,

ds,txs,t = Asxs,tdds,tc, s1.2d

by using martingale theory, whereA is a vector field overR. This gives an example of a non-
Gaussian random field parametrized by the square. In the Gaussian case, this gives the Brownian
motion over the path space. Doss and Dozzi7 have studied the formal action which is associated to
s1.2d, that is they have studied the large deviation theory. Léandre and Russo8 studied the behavior
of the density of the solutionxs,t of s1.2d whenss,td→ s0,0d by using the Malliavin calculus over
the Brownian sheet.9 Norris10 has succeeded to give a geometrical meaning tos1.2d and has
constrainedxs,t to live over a curved manifold.
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But it is difficult to generalizes1.2d to the case where the world sheet is not the square
f0,1g3 f0,1g, becauses1.2d uses the multiparameter martingale theory, which requests the pres-
ence of an order relation on the world sheet.

Airault–Malliavin in a series of papersssome of them are published, for instance, in Refs.
11–14d have constructed the Brownian motion over a loop group. For that, they use the Brownian
motion in a Sobolev space with values in the Lie algebra of the groupG. This gives a random field
from the cylinderf0,1g3S1 into G. Various works were done laterssee Ref. 15 for instanced. Fang
and Zhang16 and Léandre17 have studied the formal action which gives the Brownian motion over
a loop group, that is they have performed the large deviation theory.

Infinite dimensional diffusion processes over infinite dimensional manifolds have a long story
initiated by Kuo18 in 1972. The Russian school has studied infinite dimensional processes over
infinite dimensional manifoldsssee Refs. 19 and 20d. Brzezniak–Elworthy21 have done a general
theory of infinite dimensional diffusion processes over infinite dimensional manifolds overM
−2 Banach spaces. The interest ofM −2 Banach spaces is that there is a Doob inequality for
martingales over them. They apply their theory to the case of the free loop space of a manifold.
This produces random cylinders with values in a compact Riemannian manifold, or the Brownian
motion with values in the loop space of a Riemannian manifold. The loops are only Hoelder.

Brzezniak–Léandre22 have extended the construction of Ref. 21 to the case where we consider
Brownian pants. The world sheet has two output boundaries and one input boundary. This gives
one application fromEc ^ Ec into Ec, whereEc is the Banach space of continuous functions over
the loop space. This means that the Brownian pants are Feller. This gives an approach to one of
Segal’s axiom of conformal field theory,4 the Hilbert space of the loop space being replaced by the
Banach space of continuous functionals over it.

Our query is to replace this Banach space by a suitable Hilbert space of sections over a
suitable line bundle over the loop space.

Line bundle overC1 loops are highly studied in the literature: they are the purpose of Kac–
Moody groups23,24 or to the works of Brylinsky25 by starting from the transgression of a 3-form
over the manifoldM. In these works, the authors suppose that the free loop space is simply
connected and constructed the line bundle by using its curvature. Felder–Gawedzki–Kupiainen
have a more general approach by using Deligne cohomology of a line bundle over the loop
space.26 If they consider a Riemann surface with boundaries, they show that the Riemann surface
realizes a map from the tensor product of the line bundles over the exit boundaries to the tensor
product of the line bundles over the input boundaries.

Brzezniak–Léandre27 have studied the diffusion overC1-loops and the parallel transport of the
Felder–Gawedzki–Kupiainen line bundle over random paths. This realizes an isometry from the
Hilbert space of sections of the exit boundary to the Hilbert space of sections of the input
boundary, because the parallel transport is an isometry.

We are motivated by two generalizations of this work.

sid We work over the Hoelder loop space, that is we consider bundles with fibers almost surely
defined.

sii d We consider random pants instead of cylinders.

In the case of random cylinders, they are two possibilities to study line bundles over the loop
space and the parallel transport over a path over the loop space.

Léandre28 considers aC1 path over the Brownian bridge and a stochastic line bundle over the
Brownian bridgeswith fibers almost surely definedd. He shows that the parallel transport overC1

paths of an element of the stochastic line bundle is related to multiparameter integrals: it is a
classical integral in the time of propagation of the loop and a stochastic integral in the internal
time of the loop25 requested in understanding the stochastic line bundles over the loop space, and
therefore in understanding the stochasticZ-valued forms over the loop space. A new stochastic
differential Calculus was established in Refs. 28–31 inspired by the considerations of Iglésias,32

Souriau,33 and Chen34 about diffeology. One of the main theorem of Refs. 29 and 31 is that the
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stochastic cohomology of Chen–Souriau is equal of the de Rham cohomology of the Hoelder loop
space. Therefore a stochastic line bundleswith fiber almost surely definedd over the Brownian
bridge is isomorphic to a true line bundle over the Hoelder loop space.

Brzezniak–Léandre27 consider a diffusion process over the set ofC1 loops in a manifold. The
parallel transport of an element of a true line bundle over theC1 loop space is related to two
parameters integrals, the integral in the propagation time of the loop being stochastic and the
integral in the internal time of the loop being an ordinary integral.

In this paper, we are concerned by the case where the parallel transport is related to a
two-dimensional stochastic integral.

Let us consider the pantS. This gives a propagation time of the loopt and if tø1, an internal
time of the loops→xtssd. If t.1, there are two loops,s→ sxt

1ssd ,xt
2ssdd. The loops→xtssd is only

continuous as well as the two loopss→xt
1ssd ands→xt

2ssd. Although, we can define line integrals
over these loop spaces associated to a one form. We can apply the apparatus of Léandre35 in order
to define Felder–Gawedzki–Kupiainen line bundlejt over the random pathsxts.d for tø1, with
fibers almost surely defined. Fort.1, we can define the tensor product of the bundlesjt

1
^ jt

2 over
the product of the two loopsxt

1s.d andxt
2s.d with fibers almost surely defined with respect to the

join law of sxt
1s.d ,xt

2s.dd. Let us remark thatsxt
1s.d ,xt

2s.dd are not independent.
In t=1, where the two loopssx1

1s.d ,x1
2s.dd meet in only one loopx1s.d, there is a natural

application mapp, sx1
1s.d ,x1

2s.dd→x1s.dd which is the concatenation map. The beautiful properties
of Felder–Gawedzki–Kupiainen line bundle imply thatp*sj1d=j1

1
^ j1

2.
The parallel transport in timet is related to the existence of two-dimensional stochastic

integrals. We cannot apply martingale theory to define themswe refer to Ref. 36 and references
therein and Ref. 37 for analoguous considerations for one-dimensional stochastic integrals for the
fractional Brownian motion where we cannot apply the martingale theory and to Ref. 38 for
analoguous considerations on the sphered. We can define a stochastic parallel transport fromj2

1

^ j2
2 into j1

1
^ j1

2=j1 which is almost surely an isometry and the stochastic parallel transport from
j1 over the fiber over the constant loops→x, because we start from the constant loop. The
composite realized a map from a random section ofj2

1
^ j2

2 over C, called t0,2. We get the
following theorem.

Theorem: t0,2 realizes an isometry fromL2sj2
1

^ j2
2d into L2.

But sincex2
1s.d andx2

2s.d are not independent, the Hilbert space of sections ofj2
1

^ j2
2 over the

product of random loopssx2
1s.d ,x2

2s.dd is not the tensor product of Hilbert spaces of sections of the
line bundlej2

1 over x2
1s.d and ofL2 sections of the Hilbert space of sections overx2

2s.d over j2
2. In

some sense, we have replaced the Banach space of continuous functions over the loop space by the
Hilbert space ofL2 sections of the Gawedzki–Felder–Kupiainen line bundle over the loop space,
but our program failed in part becausex2

1s.d andx2
2s.d are not independent.

For analysis over loop space, we refer to the two surveys of Léandre.39,40

Let us remark that this kind of mechanism of splitting a loop in two loops is very classical in
physics. We refer to the survey of Mandelstam41 about that. Moreover, we are in this work in
presence of a 1+1 dimensional theory, we consider a diffusion process on loop space. The reader
interested by a 1+2 dimensional theory, that is a diffusion process on pants, can see Refs. 42 and
43.

II. CONSTRUCTION OF THE BROWNIAN PANTS

We recall briefly the construction of the Brownian pants of Brzezniak–Léandre.22

We consider a compact Riemannian manifoldM of dimensiond imbedded inRn isometrically.
If xPM, Psxd is the orthogonal projection fromRn into TxsMd. It can be extended to a map from
Rn into the linear applications overRn, which is smooth and have bounded derivatives of all
orders. We introduce the Hilbert spaceH=H1,2sS1;Rnd of the set of loops inRn such that
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E
0

1

ugssdu2 ds+E
0

1

ud/dsgssdu2ds= igi2 , `. s2.1d

Let Bts.d be the Brownian motion with values inH.
We can construct it as follows. LetCs be the linear map fromH into Rn defined as follows:

Cssgs.dd=gssd. SinceH is an Hilbert space and sinceCs is continuous, we get

Cssgs.dd =E
0

1

kgsud,essudldu +E
0

1

kd/du gsud,d/du essudldu, s2.2d

t→Btssd is a Brownian motion with covarianceiess.di2 swe did as we were working onR in order
to simplify the notation, but it is easy to reduce our study to the case ofR by looking at the
coordinates ofCsd. Moreover, ifsÞs8, Cs is independent ofCs8 as a linear map. This shows us
that ess.d andes8s.d are independents and that the couplet→ sBtssd ,Btss8dd realized a nondegener-
ated Brownian motion overRn3Rn, althought→Btssd and t→Btss8d are not independent. We
havekBtssd ,Btss8dl= tkes,es8l. Moreover the covariance matrix ofBtssd andBtss8d is not degener-
ated. In others words, we can write

Btss8d = a1ss,s8dBtssd + a2ss,s8dBtss,s8d, s2.3d

whereBtss,s8d is independent ofBtssd and where the two constants in the decompositions2.3d are
not equal to 0.

We can construct the Brownian motion with values inH in a more global setup. Letg j be an
orthonormal basis ofH. Let Bts jd be some independentR-valued Browian motion. We set

Btssd = o Bts jdg jssd. s2.4d

This series does not converge inH, but in a bigger space. Namely, we get, ifd is the Riemannian
distance on the circlekBtssd−Btss8d ,Btssd−Btss8dløCdss,s8d. We deduce, sincest ,sd→Btssd is a
Gaussian process, thatst ,sd→Btssd has almost surely a version which is Hoelder, by Kolmogorov
lemma. We can show that

kBtssd,Btss8dl = tkes,es8l. s2.5d

The family of Stratonovitch equations

dtxtssd = PsxtssdddtBtssd; x0ssd = x s2.6d

has a meaning. It constitutes a family of Brownian motions over the manifold overM param-
etrized by the circlesin this work,s will denote the internal time of the loop andt the propagation
time of the loopd. We recall17 that ss,td→xtssd has almost surely a version which is1/2−e
Hoelder for alle.

Let s1,s2 be two times. We constrain the elliptic diffusiont→ sxtss1d ,xtss2dd to be equal aty
at time 1.

Let us recall that if we consider an elliptic diffusionỹtsx̃d over a compact manifoldM̃, it has
a heat kernelqtsx̃, ỹd satisfying the estimate

grad logqtsx̃,ỹd ø C
d̃sx̃,ỹd

t
s2.7d

for ỹ close to x̃ for the associated Riemannian metric and the natural Riemannian distanced̃
associated to the elliptic diffusionssee Refs. 44 and 45d. Let us recall that if the stochastic
differential equation of the elliptic diffusion is given by
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dỹtsx̃d = o X̃isỹtsx̃ddw̃t
i + X̃0sỹtsx̃ddt s2.8d

over the compact manifold, the bridge betweenx̃ and ỹ satisfies to the following stochastic
differential equationsin Stratonovitch sensed:

dỹtsx̃,ỹd = o X̃isỹtsx̃,ỹdsdw̃t
i + kX̃isỹtsx̃,ỹd,dgrad logq1−tsỹtsx̃,ỹd,ỹdld + X̃0sỹtsx̃,ỹddt s2.9d

ssee Refs. 44 and 45d. This means that we transform dw̃t
i into dw̃t

i +at
i dt by using the equation

s2.9d. By the estimates2.7d, we have

EFE
0

1

uat
iudtG , `. s2.10d

We write

Btss2d = ass1,s2dBtss1d + bss1,s2dBtss1,s2d,

Btssd = ass1,s2,sdBtss1d + bss1,s2,sdBtss1,s2d + gss1,s2,sdBtss1,s2,sd, s2.11d

where the Brownian motionBtss1,s2,sd is independent of the Brownian motionsBtss1d and
Btss1,s2d. Conditionating byx1ss1d=x1ss2d=y is nothing else to do the following transformation in
s2.11d:

dB̃tssd = ass1,s2,sdsdBtss1d + at
1ss1,s2ddtd + bss1,s2,sdsdBtss1,s2d + at

2ss1,s2ddtd

+ gss1,s2,sddBtss1,s2,sd. s2.12d

We set dB̃tss1d=dBtss1d+at
1ss1,s2ddt and dB̃tss2d=dBtss1,s2d+at

2ss1,s2ddt. Moreover,

dB̃tss8d = ass1,s2,s,s8ddB̃tss1d + bss1,s2,s,s8ddB̃tss2d + gss1,s2,s,s8ddBtss1,s2,sd

+ dss1,s2,s,s8ddBtss1,s2,s,s8d, s2.13d

where dBtss1,s2,s,s8d is independent of the others processes ins2.13d.
Moreover, we have

udss1,s2,s,s8du ø CÎdss,s8d,

ugss1,s2,s,s8d − gss1,s2,sdu ø CÎdss,s8d,

s2.14d
ubss1,s2,s,s8d − bss1,s2,sdu ø CÎdss,s8d,

uass1,s2,s,s8d − ass1,s2,s,s8du ø CÎdss,s8d,

wheredss,s8d is the Riemannian distance over the circle. Let us justify this fact. We have namely

kBtssd − Btss8d,Btssd − Btss8dl ø Cdss,s8d. s2.15d

But this variance is equal to the sum of the square of the left-side hand ofs2.14d.
Lemma II.1:If e0

1uat
iudt,K sHypothesis Kd, we have

Efuxtssd − xtss8dupgfux1ss1d = x1ss2d = yug ø Cdss,s8dp/2. s2.16d

Proof: xtssd−xtss8d satisfies the equality in the Stratonovitch sense,
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dxtssd − dxtss8d = sPsxtssdd − Psxtss8ddddB̃tssd + Psxtss8ddsdB̃tssd − dB̃tss8dd. s2.17d

By the estimatess2.14d andsHypothesis Kd, the result arises by using Burkholder–Davies–Gundy
inequality and Gronwall lemma. j

By using the Kolmogorov lemmassee Ref. 46d, we deduce that there exists an Hoelder
version of the random fieldst ,sd→xtssd where we have conditionated byx1ss1d=x1ss2d=y. The
loop s→x1ssd is splitted in two loopss→xi

1ssd and s→x1
2ssd starting fromy and satisfying the

estimates ifsHypothesis Kd is satisfied,

Efux1
1ssd − x1

1ss8dupg ø Cdss,s8dp/2 s2.18d

and

Efux1
2ssd − x1

2ss8dupg ø Cdss,s8dp/2. s2.19d

Following the idea of Brzezniak–Léandre,22 we introduce two others Brownian motion with val-
ues in the Hilbert spaceH Bt

1s.d andBt
2s.d independent of each other and independent of the first

Brownian motionBts.d. We consider the equations after time 1,

dtxt+1
1 ssd = Psxt+1

1 ssdddBt
1ssd, x1

1ssd = x1
1ssd s2.20d

and

dtxt+1
2 ssd = Psxt+1

2 ssdddBt
2ssd, x1

2ssd = x1
2ssd s2.21d

We have

xt+1
1 ssd − xt+1

1 ss8d = x1
1ssd − x1

1ss8d +E
0

t

sPsx1+u
1 ssdd − Psxu+1

1 ss8ddddBu
1ssd

+E
0

t

Psxu+1
1 ss8ddsdBu

1ssd − dBu
1ss8dd s2.22d

Lemma II.2:If sHypothesis Kd is satisfied, we have

Efuxt
1ssd − xt

1ss8dupg ø Cdss,s8dp/2 s2.23d

and we have

Efuxt
2ssd − x2

2ss8dupg ø Cdss,s8dp/2. s2.24d

Proof: The result comes froms2.18d, s2.19d, ands2.15d and from Gronwall lemmassee Refs.
17, 43, and 47 for analoguous statementsd. j

Definition II.3: The random pant is constituted fortø1 by the random fieldst ,sd→xtssd with
the constrainx1ss1d=x1ss2d=y and for t.1 by the couple of diffusion processest→ sxt

1s.d ,xt
2s.dd

There are one input boundary att=0 and two output boundaries to the pantsx2
1s.d ,x2

2s.dd.

III. LINE INTEGRALS

The material of this part and of the following part follows closely the construction of stochas-
tic integrals of Refs. 43, 47, and 48. So we do not give all the details, referring to these references.

We consider a 1 form v over M conveniently extended in a 1-form overRn with bounded
derivatives of all orders. We considertø1. We consider a segmentl of S1. We would like to give
a meaning to the stochastic integralelkvsxtssdd ,dsxtssdl. In a second case, we considert.1, and
we would like to give a meaning to the two stochastics integralselkvsxt

1ssdd ,dsxt
1ssdl and

elkvsxt
2ssdd ,dsxt

2ssdl. t is the time of the dynamic ands is the internal time of the loop.
We will do the exact treatment fort=1, the others case being similar.
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Let us come back to the Brownian motion over the Sobolev space given bys2.1d. Let us
introduce 0øs, tø1 andDsù0 andDtù0 such thats+Dsø tø t+Dtø1. Let us compute the
covariance ofB.ss+Dsd−B.ssd and ofB.st+Dtd−B.std.

For that, let us defineessd such that for all pathsgs.d in the Sobolev space,

gs0d =E
0

1

kessd,gssdlds+E
0

1

ke8ssd,g8ssdlds, s3.1d

essd = l expf− sg + m expfsg s3.2d

for somel and somem for 0øsø1. Therefore,es.d is smooth with bounded derivatives over the
closed intervalf0,1g with es0d=es1d and note8s0d=e8s1d. Moreover, using the natural rotational
invariance of the norms given bys2.1d, we get

gstd =E
S1

kess− td,gssdlds+E
S1

ke8ss− td,g8ssdlds. s3.3d

This shows us that for the Hilbert structures2.1d,

kes.− t − Dtd − es.− td,es.− s− Dsd − es.− Dsdl = est + Dt − s− Dsd − est − s− Dsd − est + Dt − sd

+ est − sd = e9st − sdDtDs+ OsDt + Dsd3. s3.4d

We can diagonalizeB.ss1d, B.ss2d, B.ss+Dsd, B.std, B.st+Dtd. We can find two couples of indepen-
dent Brownian motionssw.s1d ,w.s2dd and sw.s3d ,w.s4dd such that

B.ssd = a1ss1,s2,sdBtss1d + bss1,s2,sdB.ss2d + gss1,s2,sdw.s1d,

B.ss+ Dsd = a1ss1,s2,s,DsdB.ss1d + bss1,s2,s,DsdB.ss2d + gss1,2,s,Dsdw.s1d + dss1,s2,s,Dsdw.s2d,

s3.5d

B.ss8d = a1ss1,s2,s8dB.ss1d + bss1,s2,s8dBtss2d + gss1,s2,s8dw.s3d,

B.ss8 + Ds8d = a1ss1,s2,s8,Ds8dB̃.ss1d + bss1,s2,s8,Ds8dB.ss2d + gss1,s2,s8,Ds8dw.s3d

+ dss1,s2,s8,Ds8dw.s4d,

0øs+Dsøs8øs8+Ds8ø1. sw.s1d ,w.s2dd are independent ofsB.ss1d ,B.ss2dd. sw.s3d ,w.s4dd is in-
dependent ofsB.ss1d ,B.ss2dd. Moreover, a1ss1,s2,sd−a1ss1,s2,s,Dsd=Css1,s2,sdDs+OsDsd3/2.
bss1,s2,sd−bss1,s2,s,Dsd=Css1,s2,sdDs+OsDsd3/2. gss1,s2,sd−gss1,s2,s,Dsd=Css1,s2,sdDs
+OsDsd3/2. We have too the estimatedss1,s2,s,Dsd=Css1,s2,sdÎDs+OsDsd. We deduce that
kw.s4d ,w.s1dl=OsÎDtd, kw.s4d ,w.s2dl=OsÎDtÎDsd, kw.s2d ,w.s3dl=OsÎDsd.

Lemma III.1:Let H1 be the Hilbert space spanned byess1d andess2d andP be the othogonal
projection ofH1 on it. t→Psestdd is of finite energy.

Proof: H1 has an orthonormal basis constituted of linear combinations ofess1d andess2d. But
t→ kess1d ,estdl=ess1− td is of finite energy. The same holds fort→ kess2d ,estdl. Therefore the
result. j

In the sequel, we will suppose always thatsHypothesis Kd is satisfied, we will remove this
hypothesis only in the last part.

Since the solution of a stochastic differential equation in Stratonovitch sense is unique in law,
we can replace in order to studyxtssd, xtss+Dsd, xtss8d, xtss8+Ds8d the leading Brownian motion

by the diagonalizations3.5d. If we conditionate byx1ss1d=x1ss2d=y, we replaceBtss1d by B̃tss1d,
the same operation holding forBtss2d.

If we look at the linear equation:
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dftssd =
]

]x
PsxtssddftssddB̃tssd s3.6d

it has a solution bounded in all theLp independently ofs, after doing the conditionating. Moreover
ft

−1ssd is bounded in all theLp. We deduce froms3.5d that in law

gt
1ssd =

]

]ÎDs
xtss+ DsdDs=0 s3.7d

is solution of the linear equation

dgt
1ssd =

]

]x
Psxtssddgt

1ssddB̃tssd + Psxtssdd
]

]ÎDs
dss1,s2,s,DsdDs=0 dwts2d, s3.8d

which can be solved by the method of variation of constant46

gt
1ssd = ftssdE

0

t

fu
−1ssdPsxtsudd

]

]ÎDs
dss1,s2,s,Dsddwus2d. s3.9d

We deduce that in law

x1ss+ Dsd = x1ssd + ÎDsg1
1ssd + Dsg1

2ssd + OsDsd3/2. s3.10d

In g1
2ssd, there is a double integral in dwus2d and a single integral in dwus1d. Lemma III.1 allows

us namely to handle the finite energy terms in dB̃tss1d and dB̃tss2d, there are of finite energy ins,
and appear linearly ing1

2ssd. g1
1ssd is a linear expression in dwus2d.

Lemma. III.2:We have the estimate

Effsx1ssddfsx1ss8ddg1
1ssdg1

1ss8dg = Css,s8dÎDsDs8 + OsÎDs+ ÎDs8d3/2. s3.11d

Proof: The proof is very similar to Lemma III.3 of Ref. 48. But before to apply Itô formula

and Clark–Ocone formula,49 we conditionate inB.ss1d andB.ss2d. fThe drift in B̃.ss1d andB̃.ss2d is
namelyB.ss1d andB.ss2d measurablesg. j

We considerN a big integer, and 2N and the dyadic subdivision off0,1g associated to 2N. We
call its elementssi with si ,si+1 such thatsi+1−si =2−N. If sP fsi ,si+1g, we set

xt
Nssd = xtssid +

ss− sid
ssi+1 − sid

sxtssi+1d − xtssidd. s3.12d

We consider

AN =E
l

kvsx1
Nssdd,dsx1

Nssdl. s3.13d

We get the following.
Proposition III.3:WhenN→`, the sequence of random variablesAN tends inL2 to a random

variable calledelkvsx1ssdd ,dsx
1ssdl.

Proof: We write

AN = o Ai
N = oE

si

si+1

kvsx1
Nssdd,dsx1

Nssdl. s3.14d

Let us decomposeAi
N. We write

Ai
N = Bi

N + Ci
N s3.15d

with
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Bi
N = vsx1ssiddDsx1

Nssid s3.16d

and

Ci
N =E

si

si+1

kvsx1
Nssdd − vsx1ssidd,dsxt

Nssdl. s3.17d

Bi
N will converge to the Itô part of the integral in the Proposition III.3 andCi

N to the Stra-
tonovitch counterterm in this integral.

First step:Study ofoBi
N.

By s3.10d, we have

Bi
N = ÎDsivsx1ssiddg1

1ssid + Dsivsx1ssiddg1
2ssid. s3.18d

Let us show that the quantityoDsivsx1ssiddg1
2ssid converges inL2. In gt

2ssid, there are two
terms: the terms with derivatives of order two ofdss1,s2,s,Dsd and the term where derivative of
ass1,s2,s,Dsd, bss1,s2,s,Dsd andgss1,s2,Dsd appear which lead to linear contributions.

The contribution of the finite variational part inB̃1ss1d and inB̃1ss2d is of finite energy ins by
Lemma III.1 and does not cause any difficulty. We can see the contribution of the other linear tems
in g1

2ss1d. As a matter of fact, these terms can be handled by the following considerations: if we do
not conditionate byx1ss1d=x1ss2d=y, we can write

B.ssd = w.s1d,

B.ss+ Dsd = ass,Dsdw.s1d + bss,Dsdw.s2d, s3.19d

whereast ,Dtd=1+CstdsDtd+OsDtd3/2, we get

a1ss1,s2,s,Dsd = a1ss1,s2,sdCass,Dsd,

bss1,s2,s,Dsd = bss1,s2,sdass,Dsd, s3.20d

gss1,s2,s,Dsd = gss1,s2,sdass,Dsd,

such that the linear term ing1
2 are in fact stochastic integrals in dBtssd mutiplied byDs. This term

does not cause any difficulty.
Let us compute the behavior of the quadratic term ing1

2ssid. Dsig1
2ssid modulo a term insDsid3/2

behaves as a double Stratonovitch integrala.ssid in B.ssi +Dsid−B.ssid.
We refer to Ref. 47, pp. 5539, 5540, and 5541 for details. In order to do the conditionating, we

conditionate in addition byB.ss1d and by B.ss2d with respect of this reference. Moreover, we
replaces3.47d in Ref. 47 by the the use of the Itô–Stratonovitch formula of Ref. 50. LetXt andYt

be two semimartingales with values inRn. We would like to solve the stochastic differential
equation in the Stratonovitch sense,

dxt = PsxtdsdXt + dYtd. s3.21d

We solve first the equation

dyt = PsytddYt. s3.22d

Equations3.22d has a stochastic flowf and we havext=fsztd where zt is the solution of the
stochastic differential equation

dzt = ft
*PsztddXt s3.23d
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Let N8 a bigger subdivision associate to 2N8. We suppose in the sequel thatfsj ,sj+1g# fsi ,si+1g.
We write

o vsxtssidda1ssid − o vsxtssjddatssjd = o svsxtssidd − vsxtssjddatssjd + o vsxtssiddd
3S o

fsj,sj+1g#fsi,si+1g
satssid − atssjddD s3.24d

The first term tends clearly to 0. In the double integral which composeatssid, we write

dB.ssi + Dsid − dB.ssid = o dB.ssj + Dsjd − dB.ssjd s3.25d

and we distribute in the double stochastic integral. The integrand beforeB.ssi +Dsid is B̃.ssid
measurable, and continuous inu. Therefore, we can replace the integrand beforeB.ssi +Dsid
−B.ssid by the integrand beforeB.ssj +Dsjd−B.ssjd. When we distribute overfsj ,sj+1g# fsi ,si+1g,
the term where we take twice the samefsj ,sj+1g cancel withatssjd. Therefore, we must take the
sum

Et = o
i

o
fsj,sj+1g#fsi,si+1g;fsj8,sj8+1g#fsi,si+1g; jÞ j8

vsxtssiddE
0,u,v,t

russjddusBssj + Dsjd

− Bssjddrvssj8ddvsBssj8 + Dsj8d − B.ssj8dd s3.26d

wherer .ssjd is B.ssjd measurable and adapted. Let us show that the previous expression converges
to 0.

First, we convert the Stratonovitch integral in Itô integral. SincekB.ssj +Dsjd−B.ssjd ,B.ssj8
+Dsj8d−B.ssj8dl=cssi ,sjdDsiDsj +OsDsi +Dsjd3/2, this leads to a term in 2−N2. This shows that the
finite variational termEt tends to 0. Let us study the martingale part ofEt and let us study the
quadratic variation. This leads to a sum of quadruplets of intervallesfsj ,sj+1g.

Let us remark, if we do not conditionate byx1ss1d=x1ss2d=y,

kB.ssd,B.ss8 + Ds8d − B.ss8dl = OsDs8d, s3.27d

if s is not included in the time intervalgs8, s8+Ds8f.
Let us suppose that all the elements of the quadrupletfsj ,sj+1g are different. We diagonalize

B.ss1d, B.ss2d, B.ssi8d and B.ssjd, B.ssj +Dsjd as it was done before. We start fromB.ss1d, B.ss2d,
B.ssid, B.ssjd, andB.ssj +Dsjd as before. By usings3.27d ands3.4d and an analoguous ofs3.5d, we
find that the contribution where we have a quadruplet without coincidence is in 2−N84. They are
22N24sN8−Nd such contributions. Therefore the total contribution behaves as 2−2N.

If we suppose, they are three different terms, that can come from two cases, the two last terms
in the double integral are equal. Therefore we must estimateswherekÞ j Þ j8d

E
0

t

russjdsduBssj + Dsjd − duBssjddE
0

t

russj8dsduBussj8 + Dsj8d − duBssjddrt
2sskdDsk. s3.28d

By conditionating as before, this leads to a contribution in 2−3N8.
Or the two last terms are different. This leads to a contribution wherekÞk8Þ j

E
0

t

russjdsduBssj + Dsjd − duBssjdd2rtsskdrtssk8dDskDsk8. s3.29d

By diagonalizing as before, this leads to a contribution in 2−3N8. This possibility occurs 2N23sN8−Nd.
This gives a total contribution which vanishes.

The terms where there are only twofsj ,sj+1g leads to a behavior in 2−2N8 because it is of the
shape

033503-10 Rémi Léandre J. Math. Phys. 46, 033503 ~2005!

                                                                                                                                    



E
0

t

russjdsdBussj + Dsjd − duBssjdd2rtsskd2Dsk. s3.30d

The last possibility occurs 2N22sN8−Nd.
This gives a total contribution which vanishes.
We write oÎsi+1−sivsxtssiddg1

1ssid=oBNssid. Let us study its convergence. We write

Ci = BNssid − o
fsj,sj+1g#fsi,si+1g

Bsj

N8 s3.31d

and we would like to show thatoCi converges inL2 to 0.
Let us study the contribution ofEfCiCi8g when i Þ i8. We must estimate the quantity

Efvsx1ssddg1
1ssdvsx1ss8ddg1

1ss8dg s3.32d

if 0 øsøs+Dsø tø t+Dtø1. We have seensLemma III.2d that it behaves asCss,tdÎDsDt
+OsÎDs+ÎDtd3/2. Therefore,

o
iÞi8

EfCiCi8g → 2E
l3l

C2ss,tddsdt − 2E
l3l

Css,tddsdt s3.33d

which is 0.
Let us estimateEfCi

2g.
We have seen that

BNssid = vsx1ssiddDx1ssid + Ossi+1 − sid s3.34d

and the remaining term converges as before by the consideration given before. Therefore, it is
enough to study the contribution of

Ci8 = vsx1ssiddDx1ssid − o
fsj,sj+1g

vsx1ssjddDx1ssjd = o
fsj,sj+1g

svsx1ssidd − vsx1ssjddDx1ssjd.

s3.35d

We have to study the contribution ofEfuCi9u
2g where

Ci9 = Îsj+1 − sj o
fsj,sj+1g

svsx1ssidd − vsx1ssjddg1
1ssjd. s3.36d

In Ci9
2, there are two contributions: the contribution where we have twice the samefsj ,sj+1g which

leads the expressionossj+1−sjdOs2−Nd=ssi+1−sidOs2−Nd. This leads to a contribution where we
sum over allj Þ j8.

So we must estimate

Efsvsx1ssiddd − vsx1ssjddg1
1ssjdsvsx1ssiddd − vsx1ssj8ddg1

1ssj8dg = a j ,j8. s3.37d

This leads to some improvement. Instead of diagonalizing onlyB.ss1d, B.ss2d, B.ssjd, and B.ssj

+Dsjd as it was done before in order to getg1
1ssjd, we will diagonalizeB.ss1d, B.ss2d, B.ssid,

B.ssj +Dsjd, andB.ssjd in order to getg1
1ssjd. We find an expression ofa j ,j8 in

os1/NdÎDsjÎDsj8. s3.38d

Therefore
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o a j ,j8
ÎDsjÎDsj8 = 2−2Nos1/Nd s3.39d

is obtained exactly as in Ref. 47, p. 5542s3.41d, where we conditionate inB.ss1d and B.ss2d in

addition, the drift namely inB̃tss1d and B̃tss2d are B.ss1d and B.ss2d measurables. Therefore,
SiEfuCi9u

2g→0. It remains to see that the error term ins3.34d converges. This arises exactly from
the previous considerations, because in the double integrals which appear ing1

2ssjd, we consider as
leading term the double integrals induBssj +Dsjd−duBssjd which are treated as before.

Second step:Let us study the convergence ofSCi
N in s3.17d. We write

Ci
N = kv8sx1ssiddg1

1ssidg1
1ssidlssi+1 − sid + OsDsid3/2. s3.40d

We use Itô–Stratonovitch formula in order to writeg1
1ssidg1

1ssid as a double Stratonovitch integral,
and we proceed as before in order to show that

o ssi+1 − sidv8sx1ssiddg1
1ssidg1

1ssid s3.41d

converges inL2. j

We consider a more intrinsic approximation of the stochastic integral in the Stratonovitch
senseelkvsx1ssdd ,dsx1ssdl. If x1ssi+1d is close ofx1ssid, we use the function

FNfs,x1ssid,x1ssi+1dg = expx1ssidF s− si

si+1 − si
sx1ssi+1d − x1ssiddG , s3.42d

where exp is the Riemannian exponential andsx1ssi+1d−x1ssidd is the unique vector in the tangent
space atx1ssid such that expx1ssid

fx1ssi+1d−x1ssidg=x1ssi+1d. We extend this map conveniently. We
get another approximationx̃1

Nssd.
Theorem III.4: elkvsx̃1

Nssdd ,dsx̃1
Nssdl converges inL2 to elkvsx1ssdd ,dsx1ssdl.

Proof: We have

x̃1
Nssd = x1ssid +

s− si

si+1 − si
sx1ssi+1d − x1ssidd + OSS s− si

si+1 − si
D2

sx1ssi+1d − x1ssidd2D . s3.43d

Moreover,

E
si

si+1 ss− sid2

ssi+1 − sid2Osx1ssi+1d − x1ssidd2 = Ossi+1 − sid2 s3.44d

whose sum converges top. Therefore the result. j

Remark:We ignore if the stochastic integral of Theorem III.2 is equal to the stochastic integral
of Proposition III.1, although the Itô parts in both are equal. In the sequel we will use the
stochastic integral of Theorem III.2, because it is more intrinsic.

We can repeat the argument in order to defineelkvsx1+t
1 ssdd ,dsx1+t

1 ssdl and to define the line
integralelkvsx1+t

2 ssdd ,dsx1+t
2 ssdl as limit in L2 of the deterministic integral for the intrinsic polygo-

nal approximationsx̃1+t
1,Nssd or x̃1+t

2,Nssd of s→x1+t
1 ssd or s→x1+t

2 ssd.
Theorem III.5: elkvsx̃1+t

1,Nssdddsx̃1+t
1,Nssdl andelkvsx̃1+t

2,Nssdd ,dsx̃1+t
2,Nssdl converges inL2 to the line

integralelkvsx1+t
1 ssdd ,dsx1+t

1 ssdl and to the line integralelkvsx1+t
2 ssdd ,dsx1+t

2 ssdl.
Remark:If we consider the case wherev=df, Theorem III.5 leads to an Itô–Stratonovitch

formula.

IV. INTEGRAL OF A TWO FORM

Let us consider a 2-formv overM, extended in a 2-form overRn with bounded derivatives of
all orders. Consider a deterministic interval of the circle, and lettøt8 be two stopping times

smaller than 1. We would like to define the integralet
t8 elvsdtxtssd ,dsxtssdd. In order to simplify

the exposition, we will taket=0 and t8=1. Moreover, if we consider two stopping time 1

033503-12 Rémi Léandre J. Math. Phys. 46, 033503 ~2005!

                                                                                                                                    



øt ,t8ø2, we would like to define the stochastic integralset
t8 elvsdtxt

1ssd ,dsxt
1ssdd and

et
t8 elvsdtxt

2ssd ,dsxt
2ssdd. t is the time of the dynamic, where we can apply martingale theory in

order to define the stochastic integral ands is the internal time of the loop where we cannot apply
martingale theory in order to define the stochastic integral but the considerations of the previous
part.

We still supposesHypothesis Kd is satisfied.
Since the second case is very similar to the first one, we will consider only the first case. After

extendingv over the whole linear spaceRn, we consider

AN =E
0

1E
S1

vsxt
Nssddsdtxt

Nssd,dsxt
Nssdd, s4.1d

where we consider the approximationxt
Nssd of xtssd swe take the full circleS1 instead of the

interval l in order to simplify the expositiond.
Proposition IV. 1:WhenN→`, AN tends inL2 to the double stochastic Stratonovitch integral

e0
1 eS1kvsxtssdd ,dtxtssd ,dsxtssdl.

Proof: Let us write

AN = o
i
E

f0,1g3fsi,si+1g
kvsxt

Nssdd,dtxt
Nssd,dsxt

Nssdl = o Ai
N. s4.2d

Let us decomposeAi
N. We write

Ai
N = Bi

N + Ci
N s4.3d

with

Bi
N =E

f0,1g3fsi,si+1g
kvsxt

Nssidd,dtxt
Nssid,dsxt

Nssidl =E
f0,1g

kvsxtssidd,dtxtssid,Dxt
Nssidl s4.4d

and

Ci
N =E

f0,1g3fsi,si+1g
kvsxt

Nssdd,dtxt
Nssd,dsxs

Nssdl − Bi
N. s4.5d

First step:Study ofBi
N.

In the stochastic integrals which appear inBi
N, we do the separation in a martingale part and

a finite variational part. There are three problems.

The finite variational part inB̃.ss1d and B̃.ss2d which can be treat by Lemma III.1.
The second problem arises from a contraction betweedtxtssid and Dxtssid, which leads to a

term in Dsi which converge.
The last one comes from the contraction betweenvsxt

Nssdd anddtxt
Nssd which leads to a double

integral, which is a classical integral int and which is ins of the type of the stochastic integral
treated in Proposition III.2.

In the sequel,d means that we take the martingale part of the processes considered and the
associated Itô integral. So we must to consider only the martingale

sBi
Nd8 =E

f0,1g3fsi,si+1g
kvsxtssid,ddtxtssid,Dxtssidl. s4.6d

We write as ins3.10d and we get
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sBi
Nd8 =E

f0,1g
kvsxtssidd,dtxtssid,ÎDsigt

1ssidl +E
f0,1g

Dsikvsxtssidd,dxtssid,gt
2ssidl + OsDsi

3/2d.

s4.7d

Let us show that the sum of the second term converges inL2. Following the notations of the
previous part, we must estimate

o
i

o
fsj,sj+1g#fsi,si+1g

DsjSE
0

1

kvsxtssidd,dxtssid,gt
2ssidl −E

0

1

kvsxtssjdd,dtxtssjd,gt
2ssjdlD

= o
i

o
fsj,sj+1g#fsi,si+1g

DsjSE
0

1

kvsxtssidd,dxtssid,gt
2ssidl −E

0

1

kvsxtssjdd,dxtssjd,gt
2ssidlD

+ o
i

o
fsj,sj+1g#fsi,si+1g

DsjSE
0

1

kvsxtssjdd,dxtssjd,gt
2ssid − gt

2ssjdlD . s4.8d

The first term ins4.8d tends clearly to 0 inL2. Namely, we can consider ingt
2ssjd the linear term,

where we consider the finite variation part ofB̃.ss1d and ofB̃.ss2d which can be treated by Lemma
III.1. We can consider the term in dwus1d which leads to a term in dBussjd fsees3.19d ands3.20dg.
Let us consider the term ingt

2ssd which leads to double stochastic integrals. We look at the right
bracket of the martingale which is associated and we conclude by the same considerations as in the
proof of Proposition III.1, first stepfsees3.26dg.

Let us study the behavior of the first term ins4.7d. We write

Ci =E
f0,1g

kvsxtssidd,dtxtssid,ÎDsigt
1ssidl − o

fsj,sj+1g#fsi,si+1g
E

0

1

kvsxtssjdd,dtxtssjd,ÎDsjgt
1ssjdl.

s4.9d

We would like to show thatSCi tends in 0 inL2 whenN→`. This leads to two types of different
contributions.

The contribution ofSiÞi8EfCiCi8g. We can do as in the previous part in order to estimate the
quantity

EFE
0

1

kvsxussdd,duxussd,gu
1ssdlE

0

1

kvsxustdd,duxustd,gu
1stdlG = ass,td. s4.10d

As in the previous part,ass,td has the asymptotic expansionass,td=C2ss,tdÎDsÎDt+OssÎDs
+ÎDtd3d. In order to see that, we apply Itô formula in order to computeass,td and we use Lemma
III.2. This shows us that whenN,N8→`,

o
iÞi8

EfCiCi8g → 2E
S13S1

C2ss,tddsdt − 2E
S13S1

C2ss,tddsdt. s4.11d

The contribution ofSEfCi
2g. We can write iffsj ,sj+1g# fsi ,si+1g,

ÎDsiE
0

1

kvsxtssidd,dtxtssid,gt
1ssidl =E

0

1

kvsxtssidd,dtxtssid,Dxtssidl + OsDsid. s4.12d

The remaining term converges inL2 by the previous considerations. Let us writeDxtssid
=SDxtssjd. We must estimate theL2 norm of
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Di = o
fsj,sj+1g#fsi,si+1g

SE
0

1

kvsxtssidd,dtxtssid,Dxtssjdl −E
0

1

kvsxtssjdd,dtxtssjd,DxtssjdlD
s4.13d

or

Di8 = o
fsj,sj+1g#fsi,si+1g

SE
0

1

kvsxtssidd,dtxtssid,gt
1ssjdl −E

0

1

kvsxtssjdd,dtxtssjd,gt
1ssjdlD .

s4.14d

We computeEfsDi8d
2g by using Itô formula. This leads to expressions similar tos3.37d to

estimate. They can be estimated by the techniques ofs3.36d–s3.39d,

EfsCid2g = ssi+1 − sidOs2−Nd, s4.15d

after using s3.11d for different times t and t8 instead of 1 and a diagonalization of
B.ss1d ,B.ss2d ,B.ssjd ,B.ssj +Dsjd ,B.ssj8d ,B.ssj8+Dsj8d.

Second step:study ofCi
N.

We write

Ci
N = Di

N + Ei
N s4.16d

with

Di
N =E

f0,1g3fsi,si+1g
kvsxt

Nssdd − vsxt
Nssidd,dtxt

Nssid,dsxt
Nssdl s4.17d

and

Ei
N =E

f0,1g3fsi,si+1g
kvsxtssidd,dtxt

Nssd − dtxtssid,dsxt
Nssdl. s4.18d

We write

vsxt
Nssdd − vsxtssidd =

s− si

Îsi+1 − si

gt
1ssidBsxtssidd + Oss− sid. s4.19d

We write

dtxt
Nssd = dtxtssid +

s− si

Îsi+1 − si

dtgt
1ssid + Oss− sid s4.20d

and we write too

dsxt
Nssd =

ds
Îsi+1 − si

gt
1ssid + ds gt

2ssid + ds Oss− sid. s4.21d

The more singular term inDi
N is

E
f0,1g3fsi,si+1g

s− si

si+1 − si
kgt

1ssidBsxtssidd,dtxtssid,gt
1ssidl = ssi+1 − sidE

0

1

kBsxtssidd,dtxtssid,sgt
1ssidd2l,

s4.22d

sgt
1ssidd2 is a quadratic polynomial insgt

1ssidd and is a product of stochastic integrals. It is by the Itô
formula an iterated integral of length 2 which has exactly the same behavior ofgt

2ssid, and we can
apply the same procedures in order to estimate its contribution. Therefore this term converges in
L2.

The more singular term inEi
N is
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E
f0,1g3fsi,si+1g

Kvsxtssidd,
s− si

Îsi+1 − si

dtgt
1ssid,

ds
Îsi+1 − si

gt
1ssidL

= ssi+1 − sidE
0

1

kvsgtssidd,dtgt
1ssid,gt

1ssidl

= ssi+1 − sidsg1ssidd2vsx1ssidd −E
0

1

sgt
1ssidd2v8sxtssidddtxtssid, s4.23d

wheresgt
1ssidd2 is an homogeneous polynomial of order 2 in its components. We can treat this term

as the contribution ofgt
2ssid. j

We consider a more intrinsic approximation ofxtssd betweenxtssi+1d and xtssid. As in the
previous part, we choose

FNfs,xtssid,xtssi+1dg = expxtssidF s− si

si+1 − si
sxtssi+1d − xtssiddG = x̃t

Nssd s4.24d

and we can show the following theorem.
Theorem IV.2: When N→`, the random ordinary two parameter integral

e0
1eS1kvsx̃t

Nssdd ,dtx̃t
Nssd ,dsx̃t

Nssdl tends in L2 to the stochastic Stratonovitch integral
e0

1eS1kvsxtssdd ,dtxtssd ,dsxtssdl.
Remark:We ignore if the double stochastic integral of Theorem IV.2 is equal to the stochastic

integral of Proposition IV.1. In the sequel, we will use the version of theorem IV.2, because it is an
intrinsic version.

Remark:We have an analoguous theorem when the 2-formv depends smoothly of a finite
dimensional parameter.

V. DELIGNE COHOMOLOGY

In this part, we do not suppose that Hypothesis K is satisfied, but the stochastic integrals we
consider are almost surely defined bys2.10d.

Let us consider the product of loop spacesLsMd3LsMd. We endow it with the probability law
of sx2

1s.d ,x2
2s.dd We will construct a line bundle overLsMd3LsMd, by using the arguments of

Felder–Gawedzki–Kupiainen.26 We will not suppose that the loop space is simply connected,
because our construction is motivated by Deligne cohomology.25

Let Oa be a cover ofM by convex contractibles open subsets ofM, such thatOa1,a2
=Oa1

ùOa2
, Oa1,a2,a3

=Oa1
ùOa2

ùOa3
andOa1,a2,a3,a4

=Oa1
ùOa2

ùOa3
ùOa4

.
Let ga1,a2,a3

be a family of smooth functionsS1-valued which are multiplicatively antisym-
metric in a1,a2,a3 and such that

ga1,a2,a3
ga0,a2,a3

−1 ga0,a1,a3
ga0,a1,a3

−1 = 1 s5.1d

over Oa0,a1,a2,a3
.

Also, let ha1,a2
=−ha2,a1

be a smooth real 1-form overOa1,a2
such that

ha1,a2
− ha0,a2

+ ha0,a1
= 1/iga0,a1,a2

−1 dga0,a1,a2
s5.2d

on Oa0,a1,a2
. Finally, we suppose thatva is a real 2-form defined onOa such that

va1
− va0

= dha0,a1
s5.3d

on Oa0,a1
. These data define an element of the second Deligne hypercohomology group of the

manifoldssee Ref. 25, pp. 250–251d. If we look at the 3-form dva=v, they patch together bys5.3d
in order to give a closed 3-formv on M.
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Consider a systemsl ,vd which constitutes a triangulation of the circleS1 such thatb is an edge
andvP]b is one of its vertex. To each edge, we associate an elementab and to each vertexv we
associate a numberav such that the following hold: we consider the set of loopsg such that for
each edgebgsbd#Oab

and such for all verticesgsvdPOav
. This defines an open subset

UA,a = hg:S1 → Mugsbd # Oab
,gsvd P Oav

for eachsb,vd P Aj. s5.4d

If we consider the product of the loop space, we consider the productUA,a3UA8,a8 which con-
stitutes a cover by open subsets of the product of the loop space.

We would like to define a system of transition maps ofsUA1a1
3UA18,a18

dù sUA2,a2
d3UA28,a28

.

Let us define the refined triangulation of both triangulationA1 and A2 by sb̄, v̄d, v̄P]b̄, the
triangulationA1 by sbi ,vid, vi P]bi and the second triangulation bysb2,v2d, v2P]b2. Let us set
a

b̄

1
=ab1

1 and a
b̄

2
=ab2

2 . If v̄ is a vertex of the new triangulation, we setav̄
1=av1

1 if v̄=v1 and av̄
1

=ab1

1 if v̄ is in the interior point of the intervalb1. We defineav̄
2 analoguously. The system of

transition functionals of the stochastic line bundle overLsMd3LsMd is defined by

r = rA1,a1,A2,a2
sx2

1drA18,a18,A28,a28
sx2

2d, s5.5d

where

rA1,a1,A2,a2
sx2

1d = expFio
b
E

b̄

hab̄1ab̄2sdsx2
1ssddG p

v̄,b̄,v̄P]b̄

ga
v̄
1a

v̄
2a

b̄

2

ga
v̄
1a

b̄

1
a

b̄

2
sx2

1svdd s5.6d

and the analoguous formula holds forrA18,a18,A28,a28
sx2

2d. The transition functions are almost surely
defined. So we cannot definej=j1 ^ j2, but we will follow the lines of Ref. 29 in order to define
the Hilbert space ofL2 sections of it.

Definition V.2: A L2 section of the line bundlej1 ^ j2 over LsMd3LsMd is a system of
functionals overUA,a3UA8,a8 fA,a,A,a8 submitted to the relations: almost surely, oversUA1,a1
3UA183a18

dù sUA2,a2
3UA28,a28

d, we get fA1,a1,A18,a18
=rfA2,a2,A28,a28

. We can define sincer defined by
s5.6d is of modulus 1 the norm of a sectionuf u. We supposeEfuf u2g,` in order to define the space
of L2 sections ofj1 ^ j2.

In order this definition has some consistency, we recall that almost surely oversUA1,a1
3UA18,a18

dù sUA2,a2
3UA28,a28

d, we get

rA1,a1,A2,a2
sx2

1drA2,a2,A1,a1
sx2

1d = 1,

s5.7d
rA18,a18,A28,a28

sx2
2drA28,a28,A18,a18

sx2
2d = 1,

and that onUA1,a1
ùUA2,a2

ùUA3,a3
, we get almost surely

rA1,a1,A2,a2
sx2

1drA2,a2,A3,a3
sx2

1drA3,a3,A1,a1
sx2

1d = 1. s5.8d

This identity works still for the product of transition functions defined byrA1,a1,A2,a2
sx2

1d
rA18,a18,A28,a28

sx2
1d.

In the previous definition, we have supposed that the section is almost surely defined over the
product of random loopssx2

1,x2
2d and issx2

1,x2
2d measurable. We can suppose thatfA,a,A8,a8 depends

from all the random pants, or if we choose 1ø tø2, 1ø tø2, it depends from all the paths
betweent and 2.fA,a,A8,a8 becomes an element ofL2spantd ^ L2sUA,asx2

1d ^ UA8,a8sx2
1dd and satisfies

still to the consistency relations of Definition V.2. We can define theL2 norm of the sectionf. This
increases the degree of freedom and is done in order to define what is the parallel transport over
the random path fromsx2

1,x2
2d into the pathsx1

1,x1
2d. We will get a section of the bundle over

LysMd3LysMd, j1 ^ j2 for the measure defined bysx1
1,x1

2d, but with an extra degree of freedom,
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that is the path betweensx2
1,x2

2d to sx1
1,x1

2d. In order to define the stochastic parallel transport from
a random section overj1 ^ j2 over sx2

1,x2
2d to sx1

1,x2
1d along the patht→ sxt

1,xt
2d, we will use the

double integral of the previous part.
Let us divise the time interval1,2 into the stochastic intervalsfti ,ti+1f where sxt

1,xt
2d over

fti ,ti+1f the processsxt
1,xt

2d lives over some open subsetUA,a3UA8,a8. We have described the time
interval into a finite number of random intervals. Moreover, the timesti are stopping times.

Let us suppose that the parallel transport fromsxti

1 ,xti

2 d to sx1
1,x1

2d is well defined. Let us call
it t1,ti

=t1,ti

1
^ t1,ti

2 sthe product formula will be explained by the next considerationsd. If t
P fti ,ti+1f, we have

t1,t = t1,tiHexpFÎ− 1E
ti

t∧ti+1

o
b

vab
sdsxt

1ssd,dtxt
1ssdd + Î− 1 o

v,b,vP]b
E

ti

t∧ti+1

hav,ab
sdtxt

1svddGJ
^ HexpFÎ− 1E

ti

t∧ti+1

o
b8

vab8
sdsxt

2ssd,dtxt
2ssdd + Î− 1E

ti

t∧ti+1

o
v8,b8,v8P]b8

hav,ab
sdtxt

2svddGJ .

s5.9d

Let us remark that by induction the parallel transport is of modulus ones5.9d. The rules given in
the previous parts of approximation of Stratonovitch integrals allow to state this definition.

Theorem V.3: If f is a section ofLsMd3LsMd for the measure ofsx2
1,x2

2d and measurable for
sx2

1,x2
2d, t1,2f is a section ofj1 ^ j2 for the measure ofsx1

1,x2
1d sbut in an extended sense, because

there are many paths joiningsx2
1,x2

2d to sx1
1,x1

2d. Moreover,

Efut1,2f u2g = Efuf u2g. s5.10d

sWe refer to Refs. 26 and 27 for analoguous results.d
Let us work in time 1. We consider the product of loop spaceLysMd3LysMd for the measure

sx1
1,x1

2d and the loopLsMd induced by concatenation of the two loops for the measure induced by
x1. This induces a mapp,

LysMd 3 LysMd → LsMd s5.11d

which preserves the measure. OverLysMd3LysMd, we have the stochastic line bundlej1 ^ j2 and
over LsMd we have the stochastic line bundlej defined by the previous considerations for the
random loopx1.

For x1, we define a triangulation by choosing verticess1 and s2. We havegss1d=gss2d=y
POay

. We choose another triangulationsb1,v1d where we have chosens1 and s2 among the

vertices. For the first triangulation, we supposegsbd#Oab
andgsvdPOav

whereOas1
=Oas2

=Ō is

fixed, and for the second triangulation, we choosegsb8d#Oab8
and gsv8dPOav8

where Oas1

=Oas2
=Ō for the same open subsetŌ than the first triangulation.

We deduce from the previous triangulation two triangulations ofLysMd and from the second
triangulation two triangulations ofLysMd. The transition map for the big loop spaceLsMd is given
by s5.6d where we replacedsx2

1ssd by dsx1ssd andx2
1svd by x1svd for the refined triangulation of the

two big triangulations of the big circle. But it is almost surely equal to the product of the two
transition functions where we consider the couple of loopssx1

1ssd ,x2
1ssdd. This shows us thatj1

^ j2=p*j. This means that aL2 section ofj over the random loopsx1 for LsMd corresponds
naturally to aL2 section ofj1 ^ j2 over LxsMd3LxsMd for the law sx1

1,x1
2d and theL2 norms are

conserved. We assimilatet1,2f to a section overx1. Afterwards, we use the stochastic parallel

transport fromx1 to x0 t0,1. We setf̃ =t0,1t1,2f. Sincex0 is the constant loops→x, f̃ is a random
variable.
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Theorem V.4: Efu f̃ u2g=Efuf u2g.
This comes from the fact thatt0,1 is a random isometry from the stochastic fiber of the bundle

over the random loopx1 to the fiber over the constant loop.
Remark:In order to define the connection formvA,a over UA,a of the stochastic bundle, we

can consider the formal expression

vA,a = o
b
E

b

vab
sdgs,Xsd + o

v,b,vP]b

khav,ab
sgvd,Xvl s5.12d

ssee Refs. 25–27d which can be treated by using the apparatus of the stochastic Chen–Souriau
calculus. The curvature of this stochastic line bundle is the transgression of the 3-formv, which
can be treated by using the stochastic Chen–Souriau calculus, because we have line integrals in
dsxtssd ssee Ref. 25d, and because we can consider in the part II integral of a one-form which
depends on a finite dimensional parameter.

Remark:For analoguous considerations with the measure of physicists, we refer to the work
of Tsukuda.51

Remark:It is much more simpler to get pants by this procedure than by Dirichlet formsssee
Refs. 52–55d. The reader interested by various aspects and applications of infinite dimensional
processes to physics can see the survey of Albeverio.55
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In this paper we extend the method for numerically stable calculation of the atomic
integrals suggested in our previous paper for theS-states of two-electron atoms to
the states with arbitrary total angular momenta. The extension consists in finding
numerically stable forms of the solution of difference equations appearing in the
calculation of the radial part of the atomic integrals. These equations become for
some value of the independent variable homogenous and their solution in that
region is described by one of the two linearly independent solutions. Modification
of the method of the variation of constants for this special type of linear second
order inhomogenous difference equations is suggested and applied. ©2005
American Institute of Physics.fDOI: 10.1063/1.1849811g

I. INTRODUCTION

This work grew out from the search for a numerically stable method of the solution of linear
inhomogenous second order difference equations appearing in the calculation of the radial part of
the atomic integrals.1 Generally, once we know one of the two linearly independent solutions of
the homogenous equation, the second solution can be obtained by the method of the reduction of
order.2 The solution of the inhomogenous equation is then obtained by the method of the variation
of constants.2 However, it turns out that for the difference equations appearing in the calculation
of the atomic integrals this general well-known procedure is of little use in its standard form. The
reason is that these difference equations become for certain values of the independent variable
homogenous and their solution in that region is described by one of the two linearly independent
solutions. This behavior results from the general formula by several cancellations of large num-
bers. If these cancellations are left on the computer working, for example, in double precision
arithmetics, totally wrong results are obtained.

Therefore, a general method for obtaining a numerically stable solution of this type of differ-
ence equation is given in this paper. The method is applied to the special case of difference
equations appearing in the calculation of the radial part of the atomic integrals. Thus, the method
suggested in our previous paper for theS-states of the two-electron atoms is extended here to the
states with arbitrary total angular momenta. Since in general there are at most two-electron inter-
actions, these results can be extended to all atoms and more generally to all one-center integrals.

The paper is organized as follows. In Sec. II we briefly summarize the calculation of the
atomic integrals via the multipole expansion of Coulomb potential. Here, we proceed along the
lines of our previous paper.1 After integrating out angular degrees of freedom, we use analog of
the Wigner–Eckart theorem for the radial functions. This reduces the integration over four radial
functions to the integration over two radial functions. Then we write down a generalization of the
difference equations for the reduced radial integrals derived in Ref. 1 for theS-states to the states
of arbitrary total angular momenta of the electrons. The main difference is the fact that for the
states of the nonzero total angular momentum the difference equations are inhomogenous. In Sec.
III we discuss solutions of these equations. We present results of numerical experiments that show
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that the difference equations are in a region where they are homogenous described by just one of
the two linearly independent solutions. In Sec. IV we first briefly summarize general methods of
the reduction of order and the variation of constants. We modify the method of the variation of
constants for the cases when the second of the two linearly independent solutions of homogenous
equations is obtained by the method of the reduction of order. The form proposed by us is more
suitable for computational purposes. We then turn our attention to the special type of equations
appearing in the calculation of the atomic integrals and derive numerically stable forms of their
solution. In Sec. V we apply the general method of Sec. IV to the difference equations for the
reduced radial integrals and test it for the case of very large quantum numbers. In Sec. VI, a
summary of the achieved results and perspectives of their further applications are given. In the
Appendix computationally suitable forms of the hypergeometric functions needed in Secs. II and
III are given.

II. CALCULATION OF THE ATOMIC INTEGRALS

In this section we derive the difference equations for the reduced radial part of the atomic
integrals. The derivation of these equations was given in great detail in Ref. 1 for theS-states of
two-electron atoms. What is difficult in the extension of the method described in Ref. 1 for the
S-states to the general state is thesolution of these difference equations, not their derivation.
Therefore, we shall proceed very briefly.

We search for the exact two-electron wave function by the expansion into the symmetry
adapted products of the one-electron wave functions

uil = 2−s1+dl i1,l i2
dni1,ni2

d/2fRni1,l i1
sr1dRni2,l i2

sr2dusl i1,l i2dLl ± Rni2,l i2
sr1dRni1,l i1

sr2dusl i2,l i1dLlg. s1d

Here, the statesusl1, l2dLl are the eigenfunctions of the square and the third component of the sum
of the angular momenta of two electrons

usl1,l2dLl = o
m1=−l1

l1

sl1,m1,l2,M − m1uL,Mdul1,m1ls1dul2,M − m1ls2d, s2d

where s u d denotes Clebsch–Gordan coefficients. Their explicit form is given, for example, in
Refs. 3–5. The radial functionsRn,l are eigenfuctions of one of the generators of the sos2,1d
algebra1 and will be described in greater detail later.

A. Multipole expansion

The matrix elements of the Coulomb interaction, i.e., repulsion integrals, are calculated by
means of the multipole expansion of the operatorr12

−1,

r12
−1 =

1

r.
o
l=0

` S r,

r.
Dl

PlsnW1 . nW2d, s3d

where r,=minsr1,r2d and r.=maxsr1,r2d, Plsxd denotes the Legendre polynomials. With the
usual definition of the inner productsto avoid confusion we note that the inner product used in
Ref. 1 differs from the usual one by the factorr−1d and multipole expansions3d the matrix
elements of the operatorr12

−1 between the statess1d can be written as

ki ur12
−1u jl = 2−sdni1,ni2

dl i1,l i2
+dnj1,nj2

dl j1,l j2
d/2F o

l=maxsul i1−l j1u,ul i2−l j2ud

minsl i1+l j1,l i2+l j2d

ul i1,l i2,l j1,l j2,lXni1,ni2,nj1,nj2

l i1,l i2,l j1,l j2,l

± o
l=maxsul i1−l j2u,ul j1−l i2ud

minsl i1+l j2,l j1+l i2d

ul i1,l i2,l j2,l j1,lXni1,ni2,nj2,nj1

l i1,l i2,l j2,l j1,l G , s4d

wherel in the summation increases by 2.
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The angular partul i1,l i2,l j1,l j2,l corresponds to the matrix elements of the Legendre polynomials
PlsnW1.nW2d between the coupled statess2d,

ul i1,l i2,l j1,l j2,l = ksl i1,l i2dLuPlsnW1 . nW2dusl j1,l j2dLl

= s− 1dL+l+l i1−l j1+l i2−l j2
Îs2l i1 + 1ds2l i2 + 1ds2l j1 + 1ds2l j2 + 1d

2l + 1

3Wsl i1,l j1,l i2,l j2,l,Ldsl i1,0,l j1,0ul,0dsl i2,0,l j2,0ul,0d, s5d

whereWsa,b,c,d;e, fd are the so-called Racah coefficients and their explicit form is given, for
example, in Refs. 4 and 5. The Clebch–Gordan coefficientssa,0 ,b,0uc,0d are zero unlessa, b,
andc satisfy the triangle inequalityua−buøcøa+b anda+b+c is even. This reduces the infinite
sum in Eq.s3d to the finite number of terms in Eq.s4d.

The radial part of the integration reads

Xni1,ni2,nj1,nj2

l i1,l i2,l j1,l j2,l =E
0

`

dr1E
0

`

dr2 r1
2r2

2Rni1,l i1
sr1dRni2,l i2

sr2d
r,

l

r.
l+1Rnj1,l j1

sr1dRnj2,l j2
sr2d

=E
0

`

dr1 Rni1,l i1
sr1dRnj1,l j1

sr1dr1
l+2E

r1

`

dr2 Rni2,l i2
sr2dRnj2,l j2

sr2dr2
−l+1

+E
0

`

dr1 Rni1,l i1
sr1dRnj1,l j1

sr1dr1
−l+1E

0

r1

dr2 Rni2,l i2
sr2dRnj2,l j2

sr2dr2
l+2. s6d

B. Reduction of the radial integrals

Using the analog of the Wigner–Eckart theorem for sos2,1d algebra1 we can write the integrals
over four radial functions as a linear combination of the integrals over two radial functions

Xni1,ni2,nj1,nj2

l i1,l i2,l j1,l j2,l = 2−2Ani1,nj1

l i1,l j1 Ani2,nj2

l i2,l j2 o
n1=−1

ni1+nj1−l i1−l j1−2

cni1,nj1,n1

l i1,l j1 o
n2=−1

ni2+nj2−l i2−l j2−2

cni2,nj2,n2

l i2,l j2

3 Q̃ni1+nj1−1−n1,ni2+nj2−1−n2

l i1+l j1,l i2+l j2,l , s7d

where the multiplicative factorAni,nj

l i,l j equals

Ani,nj

l i,l j =
21−ni−njsni + nj − l i − l j − 2d!sni + l i + nj + l jd!

sni − l i − 1d!snj − l j − 1d!
Îsni − l i − 1d!

sni + l id!
Îsnj − l j − 1d!

snj + l jd!
. s8d

The coefficientscni,nj,n
li,l j of the linear combination read

cni,nj,n
li,l j = Cni,nj,n

li,l j −
sni + nj − l i − l j − 2 −nd
sni + nj + l i + l j − n − 1d

Cni,nj,n+1
l i,l j , s9d

where the coefficientsCni,nj,n
li,l j are given as

Cni,nj,n
li,l j =

Fs− ni + l i + 1,−n;− ni − nj + l i + l j + 2;2dFs− ni − l i,− n;− ni − nj − l i − l j ;2d
sni + l i + nj + l j − n − 1d!n!

s10d

for nù0 and equal zero otherwise. Here,Fsa ,b ;g ;zd denotes the hypergeometric functionssee,
e.g., Refs. 6–8d. We note that Eq.s43d in Ref. 1 is incorrect.

Q̃N1,N2

L1,L2,l denotes the integrals over two radial functions

033504-3 Method of variation of constants J. Math. Phys. 46, 033504 ~2005!

                                                                                                                                    



Q̃N1,N2

L1,L2,l = Q̃N1,N2

+,L1,L2,l + Q̃N1,N2

−,L1,L2,l . s11d

Here,

Q̃N1,N2

+,L1,L2,l =E
0

`

dr1 R̃N1,L1
s2r1dr1

l+1E
r1

`

dr2 R̃N2,L2
s2r2dr2

−l s12d

and

Q̃N1,N2

−,L1,L2,l =E
0

`

dr1 R̃N1,L1
s2r1dr1

−lE
0

r1

dr2 R̃N2,L2
s2r2dr2

l+1, s13d

whereR̃N,Lsrd differs from RN,Lsrd by the normalization factor

R̃N,Lsrd = 2Î sN + Ld!
sN − L − 1d!

RN,Lsrd. s14d

We note that due to the selection rules for the Clebsch–Gordan coefficients mentioned earlier
the differenceuL1−L2u is always even. Moreover, the sumL1+L2+ l must be even as well.

C. Difference equations for the reduced integrals

Proceeding in complete analogy with the considerations made in Ref. 1 we obtain the follow-

ing difference equations for the integralsQ̃N1,N2

±,L1,L2,l,

sN2 − L2dQ̃N1,N2+1
+,L1,L2,l − sN2 + L2dQ̃N1,N2−1

+,L1,L2,l − 2lQ̃N1,N2

+,L1,L2,l = − pN1,N2

L1,L2 s15d

and

sN1 − L1dQ̃N1+1,N2

+,L1,L2,l − sN1 + L1dQ̃N1−1,N2

+,L1,L2,l + 2sl + 1dQ̃N1,N2

+,L1,L2,l = pN1,N2

L1,L2 . s16d

The values ofQ̃N1,N2

−,L1,L2,l are obtained from the relation1

Q̃N1,N2

−,L1,L2,l = Q̃N2,N1

+,L2,L1,l . s17d

Here, the right-hand side of equationspN1,N2

L1,L2 equals

pN1,N2

L1,L2 =E
0

`

dr r 2R̃N1,L1
s2rdR̃N2,L2

s2rd. s18d

Using the explicit form of the radial functions,9

R̃n,lsrd = 22e−rs2rdlLn−l−1
2l+1 s2rd, s19d

and the expression for the generalized Laguerre polynomialsssee, e.g., Refs. 6–8d

LK
asrd =

1

K!
err−a dK

drK se−rrK+ad, s20d

we obtain forL1.L2+1 integrating by partsssee, e.g., Ref. 5d,
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pN1,N2

L1,L2 =
sL1 + L2 + 2d!

2 o
q=maxs0,N2−L1−2d

minsN1−L1−1,N2−L2−1d

s− 1dN2−L2−1−q

3SN1 − L2 − q − 3

L1 − L2 − 2
DSL1 + L2 + 2 +q

L1 + L2 + 2
DS L1 − L2 + 1

N2 − L2 − 1 −q
D s21d

for N2øN1+1 and

pN1,N2

L1,L2 = 0 s22d

otherwise. The values ofpN1,N2

L1,L2 for L2.L1+1 are obtained from the obvious symmetrypN1,N2

L1,L2

=pN2,N1

L2,L1 , see Eq.s18d.
Using difference equationss15d ands16d the integrals are reduced to the integrals over node-

less functions that can be calculated analytically,1

Q̃L1+1,L2+1
+,L1,L2,l = 2−1sL1 + L2 + 1d!Fs1,−L2 + l ;− L1 − L2 − 1;2d. s23d

The difference equationss15d and s16d were programmed inMAPLE in form of the recursive
algorithm and solved both in rational and 16 digit arithmetics. From these numerical experiments
we found that for large quantum numbersN1, N2, L1, and L2 numerical instabilities appear.
Moreover, after some time the recursive algorithm took so much computer memory that further
computation was not feasible.

Therefore, we search for the explicit solution of Eqs.s15d and s16d. This is done in the
following section.

III. SOLUTION OF DIFFERENCE EQUATIONS

In this section we discuss the explicit solution of Eqs.s15d ands16d. We argue that the method
of variation of constants cannot be used in its standard form and discuss the result of our numeri-
cal experiments. These experiments show that Eqs.s15d ands16d are in the region where they are
homogenous described by just one of the two linearly independent solutions.

A. The extension of the method given in Ref. 1

In our previous paper1 we solved Eqs.s15d and s16d for the S-states. It follows from the
properties of the Clebsch–Gordan coefficients that we must consider the only caseL1=L2=L. In
such a case the situation is simplified by virtue of the fact that the right-hand sidepN1,N2

L,L vanishes
wheneveruN1−N2u.1.1 That means that Eqs.s15d ands16d are for most of the valuesN1 andN2

homogenous. Therefore, it was sufficient to find two linearly independent solutionssfundamental
systemd of homogenous equationss15d ands16d for l ,L. The two linearly independent solutions
of homogenous equations15d are

aN2
= s− 1dN2−L2−1FsN2 − L2,− L2 + l ;− 2L2;2d s24d

and

bN2
= FsN2 − L2,− L2 − l ;− 2L2;2d. s25d

The two linearly independent solutions of the homogenous equations16d are

aN1
= FsN1 − L1 − 1,−L1 + l + 1;− 2L1;2d s26d

and
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bN1
= s− 1dN1−L1−1FsN1 − L1,− L1 − l − 1;− 2L1,2d. s27d

For l =L, behavior of Eqs.s15d and s16d was so simple that it was possible to guess the result
directly from the numerical analysis.

The task of solving Eqs.s15d and s16d is therefore twofold.
First, to determine two linearly independent solutions of homogenous equationss15d ands16d

in the cases whenl =minsL1,L2d. In these cases solutions are not hypergeometric functions. In the
Appendix we give a method for finding the solution of Eqs.s15d and s16d in terms of the power
series inN1 or N2. For l ,minsL1,L2d we obtain in this way an alternative expression for the
hypergeometric functions. Forl =minsL1,L2d this method yields at least one of the two linearly
independent solutions. The second solution is found by the method of the reduction of order
described in Sec. IV A below.

Second, the fundamental system is used for the solution of inhomogenous equations by the
method of the variation of constants. One possibility is to apply this method to Eq.s16d and fix

constants on the valuesQ̃L1+1,N2

+,L1,L2,l and Q̃L1+2,N2

+,L1,L2,l. Then we apply the method first to Eq.s15d for

N1=L1+1 and fix constants on the values ofQ̃L1+1,L2+1
+,L1,L2,l and Q̃L1+1,L2+2

+,L1,L2,l . Second, we apply the

method to Eq.s16d for N1=L1+2 and fix constants on the values ofQ̃L1+2,L2+1
+,L1,L2,l andQ̃L1+2,L2+2

+,L1,L2,l . Such
solution, however, is neither fast nor numerically stable. The reason is that solution of Eqs.s15d
and s16d is simplified by virtue of the fact that these equations become homogenous forL1,L2

andN1.N2+1 or L1.L2 andN2.N1+1, see Eq.s22d. Further simplifications were found from
numerical experiments given below. All these simplifications must be carefully examined and
taken into account to get numerically stable formulas.

B. Numerical experiments

We found that Eq.s15d can be forL1.L2 and N2.N1+1 described by just one of the two
linearly independent solutions,

QN1,N2

+,L1,L2,l = KsN1,L1,L2,ldaN2
, s28d

where aN2
is given by Eq.s24d. This equation holds forl ,L2. For l =L2 the dependence of

QN1,N2

+,L1,L2,L2 on N2 can be described as

QN1,N2

+,L1,L2,L2 = KsN1,L1,L2ds− 1dN2−L2−1. s29d

Equations16d behaves in the same way forL2.L1 andN1.N2+1,

QN1,N2

+,L1,L2,l = KsN2,L1,L2,ldaN1
, s30d

whereaN1
is given by Eq.s26d. This equation holds forl ,L1. For l =L1 andN1.N2 we found

QN1,N2

+,L1,L2,L1 = 0. s31d

These results show that Eq.s15d is for L1.L2 andN2.N1+1 described by justoneof the two
linearly independent solutions. Equations16d behaves in this way forL1,L2 andN1.N2+1. A
consequence of this is that although Eqs.s15d ands16d are three term recursion relations we need
in the case of Eq.s15d for L1.L2 and in the case of Eq.s16d for L1,L2 just one initial condition
instead of two. In the case of Eq.s16d for L1,L2 andl =L1 we do not need initial conditions at all.
From numerical experiments given in Sec. V below, we were able to determine these initial

conditions, that means to determine behavior ofQ̃N1,L2+1
+,L1,L2,l for L1.L2 andQ̃L1+1,N2

+,L1,L2,l for L1,L2 and
l ,L1.

This simplifies the situation tremendously because it means thatinstead of solving both Eqs.
(16) and (15) simultaneously, we must solve only Eq. (16) for L1,L2 and Eq. (15) for L1.L2.
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As it is clear from the above discussion we need modification of the method of the variation
of constants for the case when one of the solutions is obtained by the method of the reduction of
order fthe casel =minsL1,L2dg and for special types of equations when for some value of inde-
pendent variable equations become homogenous and their solution in that region is described by
one of the two linearly independent solutionsfEq. s16d for L1,L2 and Eq.s15d for L1.L2g. A
general theory of the variation of constants for these cases is given in the following section.

IV. GENERAL THEORY

In this section a general modification of the method of variation of constants is described. We
consider general linear second order inhomogenous difference equations for the discrete function
fn,

fn+1 + qnfn + rnfn−1 = sn. s32d

We assume thatfn=0 for n,L+1 whereL is integer and thatsn=0 for all n.M +1. Equations15d
is obtained from this general equation by settingn=N2, L=L2, M =N1, andfN2

=Q̃N1,N2

+,L1,L2,l. Equation

s16d is obtained from this general equation by settingn=N1, L=L1, M =N2, and fN1
=Q̃N1,N2

+,L1,L2,l.
With these assignments we have for both cases

rn = −
n + L

n − L
. s33d

We first show the method of the reduction of order. This is not new, but for the sake of further
considerations we describe it in greater detail. Then we summarize the method of the variation of
constants and modify it for the cases when one of the solutions was obtained by the reduction of
order and for special types of equations appearing in the calculation of atomic integrals.

A. Reduction of order

Let an be a solution of the homogenous equation

an+1 + qnan + rnan−1 = 0. s34d

The second linearly independent solution can be found by the method of the reduction of order.
We search for it in the form

bn = sxn − xLdan. s35d

Inserting it into homogenous equations32d swith sn=0d and using Eq.s34d we obtain after some
manipulation

dn+1 = rn
an−1

an+1
dn, s36d

where

dn = xn − xn−1. s37d

Considering the last equation successively for descendingn we get

xj − xn = o
i=n+1

j

di . s38d

Considering Eq.s36d successively for descendingn we get
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dn = p
k=n−m

n−1

rk
an−man−m−1

anan−1
dn−m. s39d

Sincean=0 for n,L+1 we setn−m−1=L+1 in the last equation. Then we obtain fordn,

dn =

p
k=L+2

n−1

rk

anan−1
aL+2aL+1dL+2. s40d

Inserting this equation into Eq.s38d we get finally

xj − xn = aL+2aL+1dL+2 o
i=n+1

j p
k=L+2

i−1

rk

aiai−1
. s41d

B. Variation of constants

Having two linearly independent solutionsan andbn of the homogenous equation a general
solution of the inhomogenous equations32d is obtained by the method of variation of constants2

fn = c1an + c2bn + o
j=L+2

n−1

Tjsbjan − ajbnd. s42d

Here,Tj denotes the ratio

Tj =
sj

Wj
, s43d

whereWj is the Wronskian of the solutions

Wj = aj+1bj − ajbj+1. s44d

The constantsc1 andc2 in Eq. s42d are fixed by the initial valuesfL+1 and fL+2.
For further considerations we derive an alternative form of the WronskianWj, see also Ref. 2.

Insertingbj from Eq. s35d we rewrite Eq.s44d into the form

Wj = − aj+1ajsxj+1 − xjd. s45d

Inserting the differencexj+1−xj from Eq. s41d into the last equation we obtain

Wj = − aL+2aL+1dL+2 p
k=L+2

j

rk. s46d

Since

WL+1 = − aL+2aL+1dL+2 s47d

we can write

Wj = WL+1 p
k=L+2

j

rk. s48d

By means of Eq.s47d we can rewrite also Eq.s41d into the form
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xj − xn = − WL+1 o
i=n+1

j p
k=L+2

i−1

rk

aiai−1
. s49d

We note that, quite generally, formulas42d can be set into an alternative form. Insertingbn

from Eq. s35d we get

fn = anfc1 + c2sxn − xLd + o
j=L+2

n−1

Tjajsxj − xndg, s50d

where the differencexj −xn is given by Eq.s49d. This form of the solution is likely to be less
numerically unstable than the forms42d, especially in the cases where one of the solutions was
obtained by the method of the reduction of order. The reason is that in Eq.s42d we subtract the
numbersbjan andajbn. Insertingbj from Eq. s35d we see that we subtract in factajansxj −xLd and
ajansxn−xLd. These two numbers can be very large especially for largen and j . Therefore their
subtraction can cause a loss of significant digits. The advantage of Eq.s50d is that we directly
calculate theresult of the subtraction.

C. Special type of equations

Until now, our considerations were quite general. Now we turn to the special type of Eq.s32d
for which sn=0 for all n.M +1 whereM is integer and the solution of Eq.s32d in this region is
fully described by justoneof the two linearly independent solutions of the homogenous equation

fn = Kan, s51d

whereK is independent onn. Comparing Eqs.s50d and s51d we get

K = c1 + sxn − xLdc2 + o
j=L+2

M+1

Tjajsxj − xnd s52d

for arbitraryn.M +1. Since this equation holds forn.M +1 independently on the value ofn we
get

c1 − xLc2 + o
j=L+2

M+1

Tjajxj = K s53d

and

c2 − o
j=L+2

M+1

Tjaj = 0. s54d

The last two equations are a source of numerical instabilities if constantsc1 andc2 are determined
from the initial valuesfL+1 and fL+2. To avoid these instabilitieswe use Eqs. (53) and (54) as
equations determining constants c1 and c2. If we do so and insert the result into Eq.s50d we obtain

fn = anFK − o
j=n

M+1

Tjajsxj − xndG . s55d

Considering this equation forn=L+1 we determine the constantK,
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K =
fL+1

aL+1
+ o

j=L+1

M+1

Tjajsxj − xL+1d. s56d

Inserting this back into Eq.s55d we obtain finally

fn = anF fL+1

aL+1
+ o

j=L+2

n−1

Tjajsxj − xL+1d + o
j=n

M+1

Tjajsxn − xL+1dG . s57d

Alternatively, we can use Eq.s35d and rewrite Eq.s57d in terms ofan andbn,

fn =
an

aL+1
F fL+1 − o

j=L+2

M+1

TjajbL+1G + an o
j=L+2

n−1

Tjbj + bn o
j=n

M+1

Tjaj . s58d

The last two equations are likely to be more convenient for computational purposes than Eq.s42d
since there are no cancellations of large numbers in these equations. The possible exception is the
subtraction in the square brackets in Eq.s58d, but for the special case of interestssee Sec. Vd we
avoid this difficulty.

V. APPLICATION OF THE METHOD

General theory outlined in the preceding section will be applied to the difference equations
s15d and s16d. To do so, we need to calculateTj from Eq. s43d.

A. Calculation of Tj

First we calculate Wronskians44d from Eq.s48d. Insertingrk from Eq.s33d into this equation
we get that Wronskian behaves for both Eqs.s15d and s16d as

Wj = s− 1d j−L−1s j + Ld!
s j − Ld!

WL+1

s2L + 1d!
, s59d

where we set eitherL=L2 or L=L1. We note thatWL+1 is the only quantity in this equation that
depends on the concrete form ofaj andbj.

Second, we take the right-hand sidesj of Eq. s32d equal to

sj = −
pN1,j

L1,L2

j − L2
s60d

in case of Eq.s15d and

sj =
pN2,j

L2,L1

j − L1
s61d

in case of Eq.s16d.
Equationss59d, s60d, ands61d can be used to simplify formulas43d. By inserting Eq.s59d with

L=L2 and Eq.s60d into Eq. s43d we get in the case of Eq.s15d,

Tj = −
PN1,j

L1,L2

WL2+1
. s62d

Analogously, by inserting Eq.s59d with L=L1 and Eq.s61d into Eq.s43d we get in the case of Eq.
s16d,
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Tj =
PN2,j

L2,L1

WL1+1
. s63d

Here,PN1,N2

L1,L2 denotes

PN1,N2

L1,L2 =
pN1,N2

L1,L2 WL2+1

sN2 − L2dWN2

. s64d

This quantity was introduced because of the symmetry

PN1,N2

L1,L2 = PN2,N1

L2,L1 s65d

fsee the notes after Eqs.s22d and s59dg. By combining Eqs.s21d and s59d we can write forL1

.L2+1,

PN1,N2

L1,L2 =
sL1 − L2 + 1d!s2L2 + 1d!

2 o
q=maxs0,N2−L1−2d

minsN1−L1−1,N2−L2−1d

s− 1dq

3SN1 − L2 − q − 3

L1 − L2 − 2
DSN2 − L2 − 1

q
DSL1 + L2 + 2 +q

N2 + L2
D . s66d

The caseL2.L1+1 is calculated by means of Eq.s65d.

B. Numerical experiments and final formulas

1. Case l <min „L1,L2…

By numerical experiments we found that the initial valuesfL+1 for Eq. s15d with L1.L2 and
l ,L2 and for Eq.s16d with L1,L2 and l ,L1 are given as

fL+1 = saL+1 + bL+1d o
j=L+1

M+1

Tjaj . s67d

In the case of Eq.s15d this equation holds withL=L2, M =N1, fL+1=Q̃N1,L2+1
+,L1,L2,l and withaj, bj, and

Tj given by Eqs.s24d, s25d, ands62d. In the case of Eq.s16d this equation holds withL=L1, M

=N2, fL+1=Q̃L1+1,N2

+,L1,L2,l and withaj, bj, andTj given by Eqs.s26d, s27d, ands63d.
Then Eq.s58d can be brought to the form

fn = an o
j=L+1

n−1

Tjsaj + bjd + san + bnd o
j=n

M+1

Tjaj . s68d

2. Case l =L2

It follows from Eq. s29d that in this case one of the two linearly independent solutions is

aN2
= s− 1dN2−L2−1. s69d

The second one is determined by the reduction of order. We use Eq.s57d for fN2
=Q̃N1,N2

+,L1,L2,L2 with
n=N2, L=L2, M =N1, and Tj given by Eq.s62d. The value offL+1 was found from numerical
analysis to be

Q̃N1,L2+1
+,L1,L2,L2 =

sL1 + L2 + 1d!sN1 − L2 − 2d!
2sL1 − L2 − 1d!sN1 − L1 − 1d!

. s70d
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3. Case l =L1

It follows from Eq.s31d that the constantK in Eq. s51d is equal to zero, so we can use Eq.s55d
for fN1

=Q̃N1,N2

+,L1,L2,L1 with n=N1, L=L1, M =N2, andTj calculated from Eq.s63d.
One of the two linearly independent solutions of homogenous equations16d is given by Eq.

sA6d of the Appendix withJ=2L1+1,

aN1
= s− 1dN1−L1−1 o

j=0

2L1+1

hjsN1 − L1d j , s71d

wherehj are given by Eq.sA11d and whereh2L1+1=1.
Using Eqs.s33d and s49d we can write Eq.s55d for the case considered as

fn = − an
WL+1

s2L + 1d! o
j=n+1

M+1

Tjaj o
k=n+1

j
s− 1dk−L−1sk + L − 1d!

akak−1sk − L − 1d!
. s72d

This expression is still not entirely satisfactory. We found that there is residual instability forn
close toL+1. To eliminate it we rewrite the double summation in the last equation

fn = − an
WL+1

s2L + 1d! o
k=n+1

M+1
s− 1dk−L−1sk + L − 1d!

akak−1sk − L − 1d! o
j=k

M+1

Tjaj . s73d

The source of instability forn close toL+1 is an interesting identity,

o
j=L+1

M+1

Tjaj = 0. s74d

Therefore, we use this identity in Eq.s73d and rewrite this equation to the form

fn = an
WL+1

s2L + 1d! o
k=n+1

M+1
s− 1dk−L−1sk + L − 1d!

akak−1sk − L − 1d! o
j=L+1

k−1

Tjaj . s75d

This equation is stable for alln from L+1 to M. For n.M, it yields zero as it should.

C. Numerical tests

We tested derived formulas numerically for very large quantum numbers. First we setL1

=16 andL2=14, second we consideredL1=20 andL2=10. We tookN1=50 and variedN2 from
L2+1 to 70 andl from 2 toL2. Then we reversed the role ofL1 andL2 and alsoN1 andN2. These
tests are rather severe; in normal calculation one encounters much more favorable situations. The
formulas were run in double precision arithmetics and compared with the exact solutions of Eqs.
s15d and s16d programmed inMAPLE in the form of the recursive algorithm run in rational arith-
metics. For l ,minsL1,L2d, the hypergeometric functionss24d–s27d were calculated from the
MAPLE subroutine. The numerical stable way of their calculations is given in the Appendix. For
uL1−L2u=2 the relative error of the derived formulas was typically of order 10−15. For the case
uL1−L2u=10 the relative error was typically two orders higher. This shows that numerical stability
of formulas slightly deteriorates with increasing differenceuL1−L2u. However, one can expect that
with increasing difference of the angular momenta of the electrons the contributions of the terms
with large numbers of nodes to the energy is relatively small. Therefore, the achieved numerical
stability is sufficient for all practical purposes.

VI. CONCLUSIONS

In this paper we extended the method of numerically stable calculation of the atomic integrals
suggested in our previous paper1 for the S-states of two-electron atoms to the states of arbitrary
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total angular momenta. Thus, in these two papers the complete solution of the numerically stable
calculation of the atomic integrals is given. In the first paper1 we succeeded in transformation of
the problem of the numerical stable calculation of the atomic integrals to the problem of the
numerical stable solution of the difference equations. In this paper we completed our program by
solving the latter problem in required generality. To achieve this aim we suggested a computa-
tionally stable method for the solution of inhomogenous difference equations that for certain
values of the discrete independent variable become homogenous and in that region are described
by just one of the two linearly independent solutions. The method was applied to the difference
equations appearing in the radial part of the atomic integrals and tested for very large quantum
numbers. These tests show high numerical stability of the suggested method. The stability slightly
decreases with increasing difference of the angular momenta of the electrons.

The method suggested in these two papers can be used for the calculation of the radial part of
the Coulomb interaction between electrons whose orbitals are expanded from the same center.
This covers all atoms and the simplest molecules. The results obtained in these papers can be
directly used for the configuration interaction calculation of the excited states of two electron
atoms. This will be reported elsewhere.

Because of the potential importance of the achieved results it would be desirable to put them
on a rigorous basis. The paper is based on the observation that Eqs.s15d and s16d can be in the
region where they become homogenous described by justone of the two linearly independent
solutions. Although we are certain about this observation, one should seewhyequations behave in
this way. The same applies to our guessess67d, s70d, ands74d, and for Eq.sA17d in the Appendix.

Therefore, we believe that the results achieved in this paper are of some interest from the point
of view of atomic physics as well as pure mathematics.
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APPENDIX

In this appendix we suggest a solution of the homogenous equationss15d ands16d. Since this
solution is given in terms of the hypergeometric functionFsa,b,c,2d we find a particularly useful
form of these functions that can be used also in Eq.s10d.

Let us rewrite homogenous equationss15d and s16d into a general form,

sn − Ldgn+1 − sn + Ldgn−1 − 2sJ − Ldgn = 0. sA1d

This equation is obtained from the original homogenous equations16d,

sn − Ldfn+1 − sn + Ldfn−1 + 2sl + 1dfn = 0, sA2d

by setting eitherfn=gn and J=L− l −1 or fn=s−1dngn and J=L+ l +1. EquationsA1d is obtained
also from homogenous equations15d,

sn − Ldfn+1 − sn + Ldfn−1 − 2l f n = 0, sA3d

by setting eitherfn=gn and J=L+ l or fn=s−1dngn and J=L− l. Due to the selection rules for
Clebsch–Gordan coefficients mentioned after Eq.s5d, the differenceL− l is always even. There-
fore, the parameterJ is odd in the case of Eq.s16d and even in the case of Eq.s15d.

For J,L−1 the solution of Eq.sA1d is given by the hypergeometric function

gn = Fsn − L,− J;− 2L;2d. sA4d

Let us remind the form of the hypergeometric functionFsa,b,c,zd here,
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Fsa,b,c,zd = 1 +
ab

c
z+

asa + 1dbsb + 1d
csc + 1d

z2

2!
+ ¯ . sA5d

It turns out that this form of the hypergeometric functions is useful only fora close to zero, i.e.,
only for n close toL. For largern, a more suitable form is needed.

Since we want to get expression also for the hypergeometric functions appearing in Eq.s10d,
we allow L to be half-integral andn to be half-integral and smaller thanL+1.

We search for the solution of Eq.sA1d in the form of the series

gn = o
j=0

J

hjsn − Ld j . sA6d

Later on, it will be clear why we choose the upper bound of summationJ. The advantage of this
expansion is that the coefficientshj do not change the sign. Therefore, forn larger thanL this way
of calculating the hypergeometric functions is numerically stable and can be used for the hyper-
geometric functions appearing in Eqs.s24d–s27d.

SinceJ must be a non-negative integer, forL= l we obtain only one solution in the formsA6d.
If l ,L, we obtain in this way two linearly independent solutions.

The remaining hypergeometric functions to be calculated are those appearing in Eq.s10d. For
these functions argumenta in the definitionsA5d is always negative. As it is clear from Eq.sA4d
it corresponds to the situation whenn,L. The use of Eq.sA6d is not advantageous in this case,
because for negative value ofn−L we get insA6d the sum of terms with changing signs. Whenn
is close toL, the best way is to calculate the hypergeometric functions from the definitionsA5d.
For n more distant fromL we calculate the hypergeometric functions from the series

gn = o
j=0

J

cjn
j . sA7d

It appears that for evenJ the coefficientscj with odd j equal zero and for oddJ the coefficientscj

with even j equal zero. From this fact it immediately follows that

Fs− n − L,− J;− 2L;2d = s− 1dJFsn − L,− J;− 2L,2d. sA8d

Using this equation we can always raise the value of the parametera over −L.
In the following we first show how to calculate the coefficientshj in the expansionsA6d, then

we calculate the coefficientscj in the expansionsA7d.

Expansion around n =L

We make substitutionN=n−L in Eq. sA1d. Then Eq.sA1d reads

NgN+1 − sN + 2LdgN−1 − 2sJ − LdgN = 0. sA9d

Inserting the expansionsA6d and using the binomial formula we obtain after some manipulation

o
j=0

J Fo
k=0

j S j

k
DNk+1s1 − s− 1d j−kd − 2Lo

k=0

j

Nks− 1d j−k − 2sJ − LdNjGhj = 0. sA10d

Comparing now terms with the same powers ofN we get for the highest powerNJ identically zero.
It means that the coefficienthJ is free for the normalization of the solution. This is the reason why
we chose in Eq.sA6d the upper bound of the summation equal toJ. Going then successively to the
lower powers ofN we obtain recurrence relations for the coefficientshj,
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hJ−j

hJ
=

1

jsJ − jd! op=0

j−1
sJ − pd!

s1 + j − pd! F1 − s− 1d j−p−1

2
sJ − jd − Ls1 + j − pds− 1d j−pGhJ−p

hJ
. sA11d

Normalization of the seriessA6d to the hypergeometric function is done by comparing Eqs.sA4d
and sA6d for some value ofn. The best choice isn=L since then we have

1 = hJ
h0

hJ
, sA12d

where we used the identityFs0,−J;−2L ;2d=1. The ratioh0/hJ is calculated from Eq.sA11d.

Expansion around n =0

We proceed along the same lines as in the derivation of recurrence relations for the coeffi-
cientshj. We insert the expansionsA7d into Eq.sA1d, use binomial formula and compare the terms
with the same powers ofn. After some manipulation we obtain

cJ−2p

cJ
=

1

2psJ − 2pd! oj=0

p−1
cJ−2j

cJ

sJ − 2jd!
s2p − 2j + 1d!

fJ − 2p − Ls2p − 2j + 1dg sA13d

for p running from 1 toJ/2 for J even and tosJ−1d /2 for J odd. The coefficientscJ−2p−1 equal
zero.

The coefficientcJ is determined by comparing seriessA7d and the hypergeometric function
sA4d for somen. Settingn=L we obtain

1 = cJo
j=0

J
cj

cJ
Lj , sA14d

where we used the identityFs0,−J;−2L ;2d=1. For practical purposes, however, this form is not
very convenient, since there is a cancellation of large numbers in the sum on the right-hand side.
For this reason the use of seriessA7d is not suitable for calculation of the hypergeometric func-
tions with n comparable or greater thanL. Instead we determine the constantcJ as follows.

For even values ofJ=2P the constantc2P is found by comparing Eqs.sA4d and sA7d for n
=0,

Fs− L,− 2P;− 2L;2d = c2P
c0

c2P
, sA15d

where the ratioc0/c2P is calculated from Eq.sA13d. The values ofFs−L ,−2P;−2L ,2d were found
from the numerical experiments to be

Fs− L,− 2P,− 2L,2d = p
p=0

P−1
2p + 1

2L − 2p − 1
. sA16d

For odd values ofJ=2P+1, comparison of Eqs.sA4d andsA7d yields forn=0 nothing, since both
sides are identically equal to zero. However, the constantc2P+1 can be calculated from remarkable
identity

c2P+1 =
c2P

L − P
sA17d

found by numerical experiments.
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The complete tables of Clebsch–GordansCGd coefficients for a wide class of
SOs10d SUSY grand unified theoriessGUTsd are given. Explicit expressions of
states of all corresponding multiplets under standard model gauge groupG321

=SUs3dC3SUs2dL3Us1dY, necessary for evaluation of the CG coefficients are
presented. The SUSY SOs10d GUT model considered here includes most of the
Higgs irreducible representations usually used in the literature,10, 45, 54, 120, 126,
126, and210. Mass matrices of allG321 multiplets are found for the most general
superpotential. These results are indispensable for the precision calculations of the
gauge couplings unification and proton decay, etc. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1847709g

I. INTRODUCTION

A particularly attractive idea for the physics beyond the standard modelsSMd is the possible
appearance of grand unified theoriessGUTsd.1 The idea of GUTs bears several profound features.
Perhaps the most obvious one is that GUTs have the potential to unify the diverse set of particle
representations and parameters found in the SM into a single, comprehensive, and hopefully
predictive framework. For example, through the GUT symmetry one might hope to explain the
quantum numbers of the fermion spectrum, or even the origins of fermion mass. Moreover, by
unifying all Us1d generators within a non-Abelian theory, GUTs would also provide an explanation
for the quantization of electric charge. By combining GUTs with supersymmetrysSUSYd, we hope
to unify the attractive features of GUTs simultaneously with those of SUSY into a single theory,
SUSY GUTs.2 The apparent gauge couplings unification of the minimal supersymmetric standard
modelsMSSMd is strong circumstantial evidence in favor of the emergence of a SUSY GUT near
MG.231016 GeV.3

While there area priori many choices for such possible groups, the list can be narrowed down
by requiring groups of rankù4 that have complex representations. The smallest groups satisfying
these requirements are SUs5d, SUs6d, SOs10d, andE6. Amongst these choices, SOs10d is particu-
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larly attractive,4 because SOs10d is the smallest simple Lie group for which a single anomaly-free
irreducible representationsirrepd snamely the spinor16 representationd can accommodate the
entire SM fermion content of each generation.

Once we fix SOs10d as the gauge group, we have also many choices of the Higgs fields though
they are limited by the gauge symmetry. The Higgs fields play an essential role in the spontaneous
symmetry breaking of the SOs10d gauge group and as a source of the observed fermion masses.
The SOs10d gauge group must be broken down to the standard model gauge groupG321

=SUs3dC3SUs2dL3Us1dY gauge group, and each SOs10d irrep must be decomposed intoG321

multiplets. In this paper, we make an explicit construction of the states of theseG321 multiplets.
Using these states, we calculate the CG coefficients appearing in the mass matrices for the states
belonging toG321 irreps and corresponding mass matrices in a wide class of the SOs10d models.
The purpose of the present paper is to give detailed structures of the SOs10d GUTs based on a
general model as far as has been possible, and to serve a wide range of unified model builders.

The paper is organized as follows. In Sec. II, we give a class of SUSY SOs10d GUTs and give
an explicit form of the most general superpotential. In such a superpotential, we postulate a
renormalizability in order to keep the predictability.5–7 However, the result developed here is also
applicable to the nonrenormalizable models.8–14 The symmetry breakings are considered in Sec.
III. Section IV is devoted to present explicit forms of the states in theG321 multiplets for all
SOs10d irreps. This is the central part of the present paper. Using these tables, we give in Sec. V
the mass matrices with the CG coefficients for a class of SUSY SOs10d GUTs, together with
suitable tests and consistency checks for them. In Sec. VI, we consider the quark and lepton mass
matrices in general SUSY SOs10d models. Section VII is devoted to conclusion. We list the
decompositions of each SOs10d irreps underG321 subgroup in Appendix A. In Appendix B, we
present the complete list of the CG coefficients for theG321 multiplets for all SOs10d irreps.

II. A CLASS OF SUSY SO „10… GUTs

In this section, we consider a class of renormalizable SUSY SOs10d models. They include
three families of matter fieldsCi si =1,2,3d transforming as 16 dimensional fundamental spinor
representation,16, gauge fields contained in the adjoint representation, and set of SOs10d multi-
plets of Higgs fields, enabling most general Yukawa couplings. The most general Yukawa cou-
plings follow from decomposition of16316=10+120+126, i.e., they include the Higgs fields in

H=10, D=120, D̄=126 irreps, respectively. Furthermore, to consider as general case of the sym-
metry breaking of SOs10d to the standard model gauge groupG321 as possible, we add several
Higgs fields containingG321 singlets. They areA=45, D=126, F=210, and E=54 irreps. Of
course, that is not the most general case. However, this set of Higgs fields is quite rich and gives
rise to several realistic SUSY SOs10d models. Our aim is to give a systematic method for treat-
ment of models with complicated Higgs sectors. This is a generalization of the method proposed
in Refs. 15–17. We shall assume that the SUSY is preserved so that we consider the breaking of
SUSY SOs10d to the MSSM.

Then the Yukawa couplings are

WY = Y10
i j CiHC j + Y120

i j CiDC j + Y126
i j CiD̄C j , s1d

wherei , j =1,2,3denote the generation indices. Note thatH is a fundamental SOs10d irrep, andA,

D, F, andD+D̄ are antisymmetric tensors of rank 2, 3, 4, and 5, respectively.E is a symmetric
traceless tensor of rank 2.

The most general Higgs superpotential is given by
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W=
1

2
m1F2 + m2D̄D +

1

2
m3H

2 +
1

2
m4A

2 +
1

2
m5E

2 +
1

2
m6D

2 + l1F3 + l2FD̄D + sl3D + l4D̄dHF

+ l5A
2F − il6AD̄D +

l7

120
«AF2 + Esl8E

2 + l9A
2 + l10F

2 + l11D
2 + l12D̄

2 + l13H
2d

+ D2sl14E + l15Fd + Dhl16HA + l17HF + sl18D + l19D̄dA + sl20D + l21D̄dFj, s2d

where SOs10d invariants are defined in the fundamental SOs10d basis 18 ,28 , . . . ,98 ,08 and in the
Y diagonal basis1,2, . . . ,9 ,0swhich we will define in the next sectiond as follows:

F2 ; Fa8b8c8d8Fa8b8c8d8 = FabcdFāb̄c̄d̄,

D̄D ; D̄a8b8c8d8e8Da8b8c8d8e8 = D̄abcdeDāb̄c̄d̄ē,

H2 ; Ha8Ha8 = HaHā,

A2 ; Aa8b8Aa8b8 = AabAāb̄,

E2 ; Ea8b8Ea8b8 = EabEāb̄,

D2 ; Da8b8c8Da8b8c8 = DabcDāb̄c̄,

F3 ; Fa8b8c8d8Fa8b8e8f8Fc8d8e8f8 = Fāb̄c̄d̄FabefFcdēf̄ ,

FD̄D ; Fa8b8c8d8D̄a8b8e8f8g8Dc8d8e8f8g8 = Fāb̄c̄d̄D̄abefgDcdēf̄ḡ,

DHF ; Da8b8c8d8e8Ha8Fb8c8d8e8 = Dāb̄c̄d̄ēHaFbcde,

D̄HF ; D̄a8b8c8d8e8Ha8Fb8c8d8e8 = D̄āb̄c̄d̄ēHaFbcde,

A2F ; Aa8b8Ac8d8Fa8b8c8d8 = Aāb̄AcdFabc̄d̄,

− iAD̄D ; − iAa8b8D̄a8c8d8e8f8Db8c8d8e8f8 = − iAāb̄D̄acdefDbc̄d̄ēf̄ ,

1
120«AF2 ; 1

120«a18a28a38a48a58a68a78a88a98a08
Aa18a28

Fa38a48a58a68
Fa78a88a98a08

= 1
120«ā1ā2ā3ā4ā5ā6ā7ā8ā9ā0

Aa1a2
Fa3a4a5a6

Fa7a8a9a0
,

s3d
E3 ; Ea8b8Ea8c8Eb8c8 = Eāb̄EacEbc̄,

EA2 ; Ea8b8Aa8c8Ab8c8 = Eāb̄AacAbc̄,

EF2 ; Ea8b8Fa8c8d8e8Fb8c8d8e8 = Eāb̄FacdeFbc̄d̄ē,

ED2 ; Ea8b8Da8c8d8e8f8Db8c8d8e8f8 = Eāb̄DacdefDbc̄d̄ēf̄ ,
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ED̄2 ; Ea8b8D̄a8c8d8e8f8D̄b8c8d8e8f8 = Eāb̄D̄acdefD̄bc̄d̄ēf̄ ,

EH2 ; Ea8b8Ha8Hb8 = Eāb̄HaHb,

ED2 ; Ea8b8Da8c8d8Db8c8d8 = Eāb̄DacdDbc̄d̄,

D2F ; Da8b8c8Da8d8e8Fb8c8d8e8 = Dāb̄c̄DadeFbcd̄ē,

DHA ; Da8b8c8Ha8Ab8c8 = Dāb̄c̄HaAbc,

DHF ; Da8b8c8Hd8Fa8b8c8d8 = Dāb̄c̄HdFabcd̄,

DDA ; Da8b8c8Da8b8c8d8e8Ad8e8 = Dāb̄c̄DabcdeAd̄ē,

DD̄A ; Da8b8c8D̄a8b8c8d8e8Ad8e8 = Dāb̄c̄D̄abcdeAd̄ē,

DDF ; Da8b8c8Da8b8d8e8f8Fc8d8e8f8 = Dāb̄c̄DabdefFcd̄ēf̄ ,

DD̄F ; Da8b8c8D̄a8b8d8e8f8Fc8d8e8f8 = Dāb̄c̄D̄abdefFcd̄ēf̄ .

Herea8 ,b8 ,c8 , . . . sa,b,c, . . .d run over all the SOs10d vectorsY diagonald indices and« is a totally
antisymmetric SOs10d invariant tensor with

«18283848586878889808 = i«1234567890= 1. s4d

III. SYMMETRY BREAKING

Here we first introduceY diagonal basisssee also Ref. 18d: 1=18+28i, 2=18−28i, 3=38
+48i, 4=38−48i, 5=58+68i, 6=58−68i, 7=78+88i, 8=78−88i, 9=98+08i, 0=98−08i, up to the
normalization factor 1/Î2. It is more convenient sinces1,3,5,7,9d transforms as5-plet and
s2,4,6,8,0d transforms as5-plet under SUs5d3Us1dX ffor that reasonY diagonal basis could also
be called SUs5d basisg. Consequently,s1,3d and s2,4d are SUs2dL doublets with definite hyper-
chargesY= 1

2 andY=−1
2, respectively. Similarly,s5,7,9d and s6,8,0d transform under SUs3dC as3

and 3 with definite hyperchargesY=−1
3 and Y= 1

3, respectively. Note that under the complex

conjugationsc.c.d, 1̄=2, 3̄=4, 5̄=6, 7̄=8, 9̄=0, and vice versa. The SOs10d invariants are built in
such a way that an indexa is contractedssummedd with the corresponding c.c. indexā, for
example,T

¯a¯T
¯ā¯.

The basis inA=45, D=120, F=210, andD+D̄=126+126dimensional spaces are defined by
totally antisymmetricsunitd tensorssa8b8d, sa8b8c8d, sa8b8c8d8d, and sa8b8c8d8e8d, respectively,

and similarly ina, b, c, d, e indices inY diagonal basis. The states of theD andD̄ have additional
properties,

i«ā1ā2ā3ā4ā5ā6ā7ā8ā9ā10
D̄a6a7a8a9a10

= D̄ā1ā2ā3ā4ā5
,

s5d
i«ā1ā2ā3ā4ā5ā6ā7ā8ā9ā10

Da6a7a8a9a10
= − Dā1ā2ā3ā4ā5

,

that allow one to project out theD and D̄ states, respectively, from the 256 antisymmetric states
sabcded. The explicit expressions for antisymmetric tensors are, for example,
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sabd = ab− ba,

sabcd = abc+ cab+ bca− bac− acb− cba, s6d

etc. Important relations are

s12d = − is1828d,

s34d = − is3848d,

s56d = − is5868d, s7d

s78d = − is7888d,

s90d = − is9808d.

Symmetric E=54 dimensional space is spanned by traceless symmetric statesha8b8j;a8b8
+b8a8sa8 ,b8=18 ,28 , . . . ,98 ,08d andoa8ca8ha8a8j with oa8ca8;0. Also, important relations are

h12j = 1818 + 2828,

h34j = 3838 + 4848,

h56j = 5858 + 6868, s8d

h78j = 7878 + 8888,

h90j = 9898 + 0808.

Now, the Higgs fieldsA, E, D, D̄, and F contain eight directions of singlets under theG321

subgroupssee Appendix Ad. The corresponding vacuum expectation valuessVEVsd are defined by

kAl = o
i=1

2

AiÂi , s9d

kEl = EÊ, s10d

kDl = vRvR̂, s11d

kD̄l = vRvR
ˆ

, s12d

kFl = o
i=1

3

FiF̂i , s13d

where unit directionsÂi si =1,2d, Ê, vR̂, vR
ˆ

andF̂i si =1,2,3d in the Y diagonal basis are

Â1 = Âs1,1,3d
s1,1,0d =

i

2
s12 + 34d, s14d
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Â2 = Âs15,1,1d
s1,1,0d =

i
Î6

s56 + 78 + 90d, s15d

Ê = Ês1,1,1d
s1,1,0d =

1
Î60

h3 3 f12 + 34g − 2 3 f56 + 78 + 90gj, s16d

vR̂ = D̂s10̄,1,3d
s1,1,0d

=
1

Î120
s24 680d, s17d

vR
ˆ

= D̄
ˆ

s10,1,3d
s1,1,0d =

1
Î120

s13 579d, s18d

F̂1 = F̂s1,1,1d
s1,1,0d = −

1
Î24

s1234d, s19d

F̂2 = F̂s15,1,1d
s1,1,0d = −

1
Î72

s5678 + 5690 + 7890d, s20d

F̂3 = F̂s15,1,3d
s1,1,0d = −

1

12
sf12 + 34gf56 + 78 + 90gd. s21d

Here and hereafter, the upper and the lower indices indicate the SUs3dC3SUs2dL3Us1dY,
SUs4d3SUs2dL3SUs2dR quantum numbers, respectively in the case of double indices. A word
about notation: the square brackets are used for grouping of indices. This grouping of indices is
used to emphasize the SUs2dL and SUs3dC structures within the state vectors. The square brackets
satisfy usual distributive law with respect to summation of indices and tensor product of indices,
e.g.,

sf12 + 34gf56 + 78 + 90gd = s1256 + 1278 + 1290 + 3456 + 3478 + 3490d

= s1256d + s1278d + s1290d + s3456d + s3478d + s3490d,

sf1,3gf5f78 + 90g,7f56 + 90g,9f56 + 78ggd = s1578 + 1590,1756 + 1790,1956 + 1978,3578

+ 3590,3756 + 3790,3956 + 3978d

= s1578,1756,1956,3578,3756,3956d

+ s1590,1790,1978,3590,3790,3978d. s22d

Further, the numerical factors which could be misinterpreted as additional SOs10d indices are
written in italics.

The unit directions appearing in VEVs satisfy the following orthonormality relations:

Ai
ˆ ·Aj

ˆ = di j si, j = 1,2d,

Ê2 = 1,

vR̂ ·vR̂ = vR
ˆ

·vR
ˆ

= 0, s23d
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vR̂ ·vR
ˆ

= 1,

Fî · F ĵ = di j si, j = 1,2,3d.

Due to the D-flatness condition the absolute values of the VEVs,vR andvR are equal,

uvRu = uvRu. s24d

The superpotential of Eq.s2d calculated at the VEVs in Eqs.s14d–s21d is

kWl =
1

2
m1kFl2 + m2kD̄lkDl +

1

2
m4kAl2 +

1

2
m5kEl2 + l1kFl3 + l2kFlkD̄lkDl + l5kAl2kFl

− il6kAlkD̄lkDl +
l7

120
«kAlkFl2 + kElfl8kEl2 + l9kAl2 + l10kFl2g. s25d

Inserting the VEVs from Eqs.s14d–s21d, one obtains

kWl =
1

2
m1fF1

2 + F2
2 + F3

2g + m2vRvR +
1

2
m4sA1

2 + A2
2d +

1

2
m5E

2

+ l1FF2
3 1

9Î2
+ 3F1F3

2 1

6Î6
+ 3F2F3

2 1

9Î2
G + l2FF1

1

10Î6
+ F2

1

10Î2
+ F3

1

10GvRvR

+ l5FA1
2F1

1
Î6

+ A2
2F2

Î2

3
+ A1A2F3

2
Î6
G + l6FA1S−

1

5
D + A2S−

3

5Î6
DGvRvR

+ l7F2A2F1F2

Î2

5
+ A2F3

22Î2

5Î3
+ 2A1F2F3

Î2

5 G + l8E
3 1

2Î15
+ l9EFA1

2
Î3

2Î5
+ A2

2S−
1

Î15
DG

+ l10EFF1
2

Î3

2Î5
+ F2

2S−
1

Î15
D + F3

2 1

4Î15
G . s26d

The VEVs are determined by the following equation:

H ]

]F1
,

]

]F2
,

]

]F3
,

]

]vR
,

]

]vR

,
]

]A1
,

]

]A2
,

]

]EJkWl = 0. s27d

From Eq. s27d, we obtain seven equations forF1, F2, F3, A1, A1, E, and vRvR. They are the
following:

0 = m1F1 +
l1F3

2

2Î6
+

l2vRvR

10Î6
+

l5A1
2

Î6
+

2Î2l7A2F2

5
+

Î3l10F1E
Î5

,

0 = m1F2 +
l1F2

2

3Î2
+

l1F3
2

3Î2
+

l2vRvR

10Î2
+

Î2

3
l5A2

2 +
2Î2l7F1A2

5
+

2Î2l7A1F3

5
−

2l10F2E
Î15

,

0 = m1F3 +
l1F1F3

Î6
+

Î2l1F2F3

3
+

l2vRvR

10
+

Î2l5A1A2

Î3
+

2Î2l7A1F2

5
+

4Î2l7A2F3

5Î3
+

l10F3E

2Î15
,

0 = vRvRFm2 +
l2F1

10Î6
+

l2F2

10Î2
+

l2F3

10
−

l6A1

5
−

Î3l6A2

5Î2
G , s28d
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0 = m4A1 +
Î2l5A1F1

Î3
+

Î2l5A2F3

Î3
−

l6vRvR

5
+

2Î2l7F2F3

5
+

Î3l9A1E
Î5

,

0 = m4A2 +
Î2l5A1F3

Î3
+

2Î2l5A2F2

3
−

Î3l6vRvR

5Î2
+

2Î2l7F3
2

5Î3
+

2Î2l7F1F2

5
−

2l9A2E
Î15

,

0 = m5E +
Î3l8E

2

2Î5
+

Î3l9A1
2

2Î5
−

l9A2
2

Î15
+

Î3l10F1
2

2Î5
−

l10F2
2

Î15
+

l10F3
2

4Î15
.

If we assumevRvRÞ0, we obtain five quadratic equations and one linear equation forFi, Ai, and
E. For that case there are 32 solutions. Two of them correspond to SUs5d symmetry and remaining
30 solutions toG321 standard gauge group symmetry solutions. If we setvR=0, we find six
quadratic equations forF1, F2, F3, A1, A2, andE with 64 solutions with symmetry groups having
rank 5. They are isomorphic toG3211;SUs3dC3SUs2dL3Us1dR3Us1dB−L. However, there are
solutions with higher symmetries. They areG3221, G421, G422, and G51 sfor the reader’s conve-
nience, we list the decompositions of each representation in Appendix Ad. For general coupling
constantsl1, . . . ,l21, m1, . . . ,m8, the solutions with higher symmetries are specified by the fol-
lowing relations. Solutions with higher symmetries are characterized by the following:

s1d SUs5d3Us1dX and sSUs5d3Us1ddflipped symmetry solutions,

E = vR = 0,
s29d

F1 =
«

Î6
F3, F2 =

«

Î2
F3, A1 =

2«

Î6
A2,

where «=1 and «=−1 correspond to the SUs5d3Us1dX symmetric vacua andsSUs5d
3Us1ddflipped symmetric vacua, respectively.

s2d SUs5d symmetry solutions,

E = 0,
s30d

F1 =
1
Î6

F3, F2 =
1
Î2

F3, A1 =
2
Î6

A2, vR Þ 0.

s3d G422;SUs4d3SUs2dL3SUs2dR symmetry solutions,

F2 = F3 = A1 = A2 = vR = 0,
s31d

F1 Þ 0, E Þ 0.

s4d G3221;SUs3dC3SUs2dL3SUs2dR3Us1dB−L symmetry solutions,

F3 = A1 = vR = 0,
s32d

F1 Þ 0, F2 Þ 0, A2 Þ 0, E Þ 0.

s5d G421;SUs4d3SUs2dL3Us1d symmetry solutions,

F2 = F3 = A2 = vR = 0,
s33d

F1 Þ 0, A1 Þ 0, E Þ 0.

s6d G3211;SUs3dC3SUs2dL3Us1dR3Us1dB−L symmetry solutions,
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vR = 0,
s34d

Fi Þ 0 si = 1,2,3d, Ai Þ si = 1,2d, E Þ 0.

The higher symmetry solutions given in Eqs.s29d–s34d lead to the crucial consistency checks
for all results in this paper.

IV. THE STATES AND CLEBSCH–GORDAN COEFFICIENTS

A. The states in the G321 multiplets

In order to obtain and study the mass matrices, it is convenient to decompose the Higgs
representations under theG321 gauge group. The explicit decompositions of10, 45, 54, 120, 126,
126, and210 representations inY diagonal basis are presented according to theG321 multiplets
with the same quantum numbers which generally mix among themselves. The eight singlets
s1,1,0d are already given in Eqs.s14d–s21d. There are 45−12=33 would-be NG modes. They are
in the following multiplets: s1,1,0d, fs3,2,−5

6
d+c.c.g, fs1,1,1d+c.c.g, fs3,1, 2

3
d+c.c.g, and

fs3,2, 1
6

d+c.c.g. The corresponding orthonormal states are listed in Table 1sRef. 19d in Y-diagonal
basis. The physically important modes, so-called, Higgs doubletsfs1,2, 1

2
d+c.c.g and color triplets

fs3,1,−1
3

d+c.c.g states are listed in Tables 2sRef. 19d and 3sRef. 19d, respectively. The remaining
G321 multiplets are listed in Tables 4sRef. 19d and 5sRef. 19d. There are altogether 691 states
accommodated inG321 multiplets fsee Table 6sRef. 19dg. There are 26 mass matrices, five con-
taining NG modes, one containing doublets, one containing color triplets, 19 containing the other
modes. There are five multipletss33 statesd with zero mass and 69G321 multiplets with masses
different from zeroscontaining 691−33=658 statesd. Hence the mass spectrum contains 70 dif-
ferent mass eigenvalues. For the SUs5d solutions, there are only 21 different masses andG321

multiplets are grouped into multiplets transforming under the SUs5d group. For theG422 solutions,
there are 27 different mass eigenvalues andG321 multiplets are grouped into multiplets transform-
ing under theG422 groupssee Appendix Ad. The higher symmetries serve as a strong consistency
check of our mass matrices and CG coefficients.

We point out that the main basic blocks in all 691 states are SUs2dL irreps1, 2, and3, and SU

s3d irreps1, 3, 3̄, 6, 6̄, and8:

SUs2dL,

1 f12 + 34g, s13d,s24d, s1234d,

2 f1,3g, f− 3,1g, f2,4g,f− 4,2g,

3 F14,32,
12 − 34

Î2
G, H11

2
,−

33

2
,−

13
Î2
J, H22

2
,−

44

2
,−

24
Î2
J s35d

SUs3dC,

1 f56 + 78 + 90g, s579d, s680d, s5678 + 5690 + 7890d,

3 f5,7,9g, s80,06,68d, s5680,7806,9068d,

3̄ f6,8,0g, s79,95,57d, s5697,7859,9075d,
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6 S580,670,689,
6f90 − 78g

Î2
,
8f56 − 90g

Î2
,
0f78 − 56g

Î2
D ,

s36dH55

2
,
77

2
,
99

2
,
79
Î2

,
95
Î2

,
57
Î2
J ,

6̄ S679,589,570,
5f09 − 78g

Î2
,
7f65 − 09g

Î2
,
9f87 − 65g

Î2
D ,

H66

2
,
88

2
,
00

2
,
h80j
Î2

,
h06j
Î2

,
h68j
Î2

J ,

8 F58,50,70,76,96,98,
56 − 78

Î2
,
56 + 78 −2 3 90

Î6
G ,

S5890,5078,7056,7690,9678,9856,
5690 − 7890

Î2
,
2 3 5678 − 5690 − 7890

Î6
D .

All states can be constructed combining and antisymmetrizing or symmetrizing the basic blocks.
The basic blockss35d and s36d which appear only in antisymmetric tensors are embraced by
parentheses, the basic blocks which appear only in the symmetric tensors are embraced by curly
bracketsshaaj /2=aad, while the basic blocks that appear both in symmetric and antisymmetric
tensors are embraced by square brackets.

B. H operators and Clebsch–Gordan coefficients

Let us denote byR the sum of all representations10, 45, 54, 120, 126, 126, and210,

R= o
I

RI, dim R= 691. s37d

There are 21 cubic invariantsfsee Eq.s3dg,

IsRI,RJ,RK̄d ; IIJK̄, RK ; RK̄, s38d

whereRI 3RJ=oKRK.
Let us denoteH-operatorsssee Refs. 15 and 16d,

HKsRI,RJd = HKsRJ,RId , RK s39d

transforming asRK and

HKsRI,RJd =
1

N

]IIJK̄

]RK̄
. s40d

The normalization factorN is chosen so that

HKsRI,RJdRK̄ = IIJK̄. s41d

For example, in theY-diagonal basis
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fHFsF1,F2dgabcd= 1
6fsF1dabefsF2dcdēf̄ − sF1dacefsF2dbdēf̄ + sF1dadefsF2dbcēf̄ + sF1dcdefsF2dabēf̄

− sF1dbdefsF2dacēf̄ + sF1dbcefsF2dadēf̄g. s42d

For invariants of the typeIIII , there is only oneH operator,HI, for invariants of the typeIIIK̄ there

are twoH operators,HĪ andHK, and for invariants of the typeIIJK̄ there are threeH operators,
HĪ, HJ̄, andHK. The H operators are symmetric inRI andRJ, HsRI ,RJd=HsRJ,RId. More gen-
erally,

IIJK̄ = IJIK̄ = IIK̄J = IJK̄I = IK̄IJ = IK̄JI. s43d

We are especially interested in CG coefficients when at least one of the states transforms as a
singlet under theG321 group. That requires the decomposition of each SOs10d irrep RI into G321

irreps,

RI = o
i

Ri
I , s44d

where indices “i” just enumerate theG321 irreps with fixedY contained in a specificRI irrep. There
are eight singlets, denoted here shortly bySi

I, defined in Eqs.s14d–s21d. For this choice of
G321-singlet states, the action ofH operators are reduced to the invariant subspaces of states with
fixed G321 quantum numbers, which are listed in Tables 1–5sRef. 19d,

HKsŜi
I,Rj

Jd = o
k

Cijk
IJKRk

K, s45d

whereRj
J andRk

K transform as identicalG321 irreps shave the sameG321 quantum numbersd. For
example, for the evaluation of the first column in thes1,3,1d mass matrixfsee Eq.s74dg, the
following H operators must be evaluated:

HEsÊ,Ês1,3,3d
s1,3,1dd =

Î3

2Î5
Ês1,3,3d

s1,3,1d,

s46d

HD̄svR̂,Ês1,3,3d
s1,3,1dd =

1

5
D̄
ˆ

s10̄,3,1d
s1,3,1d

.

Note that

Cijk
IJK = IsŜi

I,R̂j
J,R̂

k̄

K̄d ; Ŝi
IR̂j

JR̂
k̄

K̄ s47d

fthe second part of Eq.s47d defines shortand notationg where

R̂
ī

Ī ; R̂i
I s48d

is the complex conjugated irrep ofR̂i
I. The CG coefficients are listed in 25 tables in Appendix B.

Note that the CG coefficients depend only on the indicesi , j , . . ., that representG321 multiplets and
not on the specific states within theG321 multiplets. That can be used as a consistency check of the
states belonging to the specificG321 multiplets.

We choose all SOs10d invariants in Eq.s3d to be real, except for invariants containing theD

or the D̄ field separatelysfor example,DHF or ED̄2d. In this last case, the sum of the two

invariants, one containingD field and the other havingD̄ field in place ofD, are real. Generally,
CG coefficients are complexsin our case they are either real or pure imaginaryd. Starting with
cubic invariants in Eq.s3d, our choice of phases of states in Tables 1–5sRef. 19d is such that it
leads to the minimal number of imaginary terms in the mass matrices.
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Symmetry relations imply

Cijk
IJK = Cjik

JIK. s49d

CG coefficients also satisfy Hermiticity relations,

Cijk
IJK = C

īkj

ĪKJ
. s50d

Here theī represents the label assigned to the irrep complex conjugated to the irrep designated by
i.

Furthermore, following relations are valid:

o
j

Cij j̄
IJJ̄

dim Rj
J = 0, o

j

dim Rj
J = dim RJ, s51d

o
i

o
j

Cijk
IJKCijl

IJK dim Ri
I dim Rj

J = CsI,J,Kddkl̄,

o
i

dim Ri
I = dim RI, o

j

dim Rj
J = dim RJ, s52d

whereCsI ,J,Kd are constants depending on irrepsRI, RJ, andRK.

V. MASS MATRICES

A. Mass matrices

For the sum of all representationsR fsee Eq.s37dg, we define fluctuations of the Higgs field
around the VEVs as

R= kRl + o
I,i

r i
I . s53d

Then the matrix element of the mass matrix corresponding toG321 multiplets i , j sRi
I and Rj

J

transform identically underG321d is

Mi j
IJ = S ]2W

]r i
I]r j

JD
R=kRl

, s54d

Mi j
IJ = mIdIJdi j + o

K,k
lIJKSi

ICijk
IJK, s55d

wherelIII =6lp, lIIK =2lp, andlIJK=lp for invariants containing three identical representations,
two identical representationssdifferent from the third oned, and three different representations,
respectively. Specifically, hlIJKj=h6l1,6l8,2l5,2l7,2l9,2l10,2l11,2l12,2l13,2l14,2l15,l2,
l3,l4,l6,l16,l17,l18,l19,l20,l21j.

According to Eq.s51d the trace of the total mass matrix over all dimR states inR is

Tr M = o
I

mI dim RI . s56d

The mass matrices are generally non-Hermitian. So the squares of physical masses are equal
to the eigenvalues of matricesM†M andMM†. sOne can obtain Hermitian matricesM†M, i.e.,
MM† with the same spectra.d For a real superpotential, that is forl3=l4, l11=l12, l18=l19, and
l20=l21 and all coupling constants and VEVs real, the matrices are Hermitian due to the Hermi-
ticity relation s50d.
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Now we are ready to present the explicit forms of the mass matrices calculated from the
superpotential of Eq.s2d. Every matrix is designated with the correspondingG321 multiplet and
appears dimRi

I times in the total mass matrixM. A mass matrix associated with aG321 multiplet
and the mass matrix associated with the corresponding complex conjugatedG321 multiplet are
equal up to transposition, and therefore for multiplets withYÞ0 we list only one of the two mass
matrices. Of course, when enumerating the total degrees of freedom, one must include all mass
eigenvaluess691 in totald. The basis designating the columnssc: d of the mass matrices listed
below is given in the same way as shown in Tables 1, 2, 3, 4, and 5sRef. 19d, while the rows are
designated by the corresponding complex conjugatedG321 multiplets sr : d,

s1,1,0d

c: Âs1,1,3d
s1,1,0d ,Âs15,1,1d

s1,1,0d ,Ês1,1,1d
s1,1,0d ,D̂

s10̄,1,3d

s1,1,0d
,D̄
ˆ

s10,1,3d
s1,1,0d ,F̂s1,1,1d

s1,1,0d ,F̂s15,1,1d
s1,1,0d ,F̂s15,1,3d

s1,1,0d

r : Âs1,1,3d
s1,1,0d ,Âs15,1,1d

s1,1,0d ,Ês1,1,1d
s1,1,0d ,D̄

ˆ
s10,1,3d
s1,1,0d ,D̂

s10̄,1,3d

s1,1,0d
,F̂s1,1,1d

s1,1,0d ,F̂s15,1,1d
s1,1,0d ,F̂s15,1,3d

s1,1,0d





 m11

s1,1,0d Î2

3
l5F3 Î3

5
l9A1 −

l6vR

5
−

l6vR

5
Î2

3
l5A1

2Î2l7F3

5
m81

s1,1,0d

Î2

3
l5F3 m22

s1,1,0d −
2l9A2

Î15
−

1

5
Î3

2
l6vR −

1

5
Î3

2
l6vR

2Î2l7F2

5
m72

s1,1,0d m82
s1,1,0d

Î3

5
l9A1 −

2l9A2

Î15
m33

s1,1,0d 0 0 Î3

5
l10F1 −

2l10F2

Î15

l10F3

2Î15

−
l6vR

5
−

1

5
Î3

2
l6vR 0 m44

s1,1,0d 0
l2vR

10Î6

l2vR

10Î2

l2vR

10

−
l6vR

5
−

1

5
Î3

2
l6vR 0 0 m44

s1,1,0d
l2vR

10Î6

l2vR

10Î2

l2vR

10

Î2

3
l5A1

2Î2l7F2

5
Î3

5
l10F1

l2vR

10Î6

l2vR

10Î6
m66

s1,1,0d 2Î2l7A2

5

l1F3

Î6

2Î2l7F3

5
m72

s1,1,0d −
2l10F2

Î15

l2vR

10Î2

l2vR

10Î2

2Î2l7A2

5
m77

s1,1,0d m87
s1,1,0d

m81
s1,1,0d m82

s1,1,0d
l10F3

2Î15

l2vR

10

l2vR

10

l1F3

Î6
m87

s1,1,0d m88
s1,1,0d 






,

s57d

where

m11
s1,1,0d ; m4 + Î2

3l5F1 + Î3
5l9E,

m22
s1,1,0d ; m4 +

2Î2l5F2

3
−

2l9E
Î15

,

m33
s1,1,0d ; m5 + Î3

5l8E,

m44
s1,1,0d ; m2 +

l2F1

10Î6
+

l2F2

10Î2
+

l2F3

10
−

l6A1

5
−

Î3l6A2

5Î2

m66
s1,1,0d ; m1 + Î3

5l10E,
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m72
s1,1,0d ;

2Î2l5A2

3
+

2Î2l7F1

5
, s58d

m77
s1,1,0d ; m1 +

Î2l1F2

3
−

2l10E
Î15

,

m81
s1,1,0d ;Î2

3
l5A2 +

2Î2l7F2

5
,

m82
s1,1,0d ;Î2

3
l5A1 +

4

5
Î2

3
l7F3,

m87
s1,1,0d ;

Î2l1F3

3
+

2Î2l7A1

5
,

m88
s1,1,0d ; m1 +

l1F1

Î6
+

Î2l1F2

3
+

4

5
Î2

3
l7A2 +

l10E

2Î15
.

fs1,1,1d+c.c.g
c: Âs1,1,3d

s1,1,1d ,D̂
s10̄,1,1d

s1,1,1d
,D̂

s10̄,1,3d

s1,1,1d

r : Âs1,1,3d
s1,1,−1d ,D̂s10,1,1d

s1,1,−1d ,D̂s10,1,3d
s1,1,−1d

1
m4 +

Î2l5F1

Î3
+

Î3l9E

Î5
−

il19vR

Î10
−

l6vR

5
−Î2

3
l5A2 −

2Î2l7F2

5

il18vR

Î10
m6 −

2l14E

Î15
+

Î2l15F2

3
−

il18A1

Î10
−

l20F3

2Î10
−

l20vR

Î10

−
l6vR

5

il19A1

Î10
−

l21F3

2Î10
m33

s1,1,1d −
l2vR

10

−Î2

3
l5A2 −

2Î2l7F2

5
−

l21vR

Î10
−

l2vR

10
m44

s1,1,1d

2 , s59d

where

m33
s1,1,1d ; m2 +

l2F1

10Î6
+

l2F2

10Î2
−

1

5
Î3

2
l6A2,

s60d

m44
s1,1,1d ; m1 +

l1F1

Î6
+

Î2l1F2

3
+

4

5
Î2

3
l7A2 +

l10E

2Î15
.

fs3,1, 2
3

d+c.c.g

c: Âs15,1,1d
s3,1,2/3d ,D̂s6,1,3d

s3,1,2/3d ,D̄
ˆ

s10,1,3d
s3,1,2/3d ,F̂s15,1,1d

s3,1,2/3d ,F̂s15,1,3d
s3,1,2/3d

r : Âs15,1,1d
s3̄,1,−2/3d ,D̂s6,1,3d

s3̄,1,−2/3d ,D̂
s10̄,1,3d

s3̄,1,−2/3d
,F̂s15,1,1d

s3̄,1,−2/3d ,F̄s15,1,3d
s3̄,1,−2/3d
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1
m11

s3,1,2/3d −
il18vR

Î10
−

l6vR

5
−

Î2

3
l5A2 −

2Î2l7F1

5
−Î2

3
l5A1 −

2

5
Î2

3
l7F3

il19vR

Î10
m22

s3,1,2/3d m23
s3,1,2/3d

l21vR

2Î30

l21vR

2Î15

−
l6vR

5
m32

s3,1,2/3d m33
s3,1,2/3d −

l2vR

10Î3
−

l2vR

5Î6

−
Î2

3
l5A2 −

2Î2l7F1

5

l20vR

2Î30
−

l2vR

10Î3
m44

s3,1,2/3d m45
s3,1,2/3d

−Î2

3
l5A1 −

2

5
Î2

3
l7F3

l20vR

2Î15
−

l2vR

5Î6
m45

s3,1,2/3d m55
s3,1,2/3d

2 ,

s61d

where

m11
s3,1,2/3d ; m4 +

Î2l5F2

3
−

2l9E
Î15

,

m22
s3,1,2/3d ; m6 +

4l14E

3Î15
+

1

3
Î2

3
l15F1 +

2l15F3

9
,

m23
s3,1,2/3d ; −

il19A2

Î15
+

l21F2

6Î5
+

l21F3

3Î10
,

m32
s3,1,2/3d ;

il18A2

Î15
+

l20F2

6Î5
+

l20F3

3Î10
,

s62d

m33
s3,1,2/3d ; m2 +

l2F1

10Î6
+

l2F2

30Î2
+

l2F3

30
−

l6A1

5
−

l6A2

5Î6
,

m44
s3,1,2/3d ; m1 +

l1F2

3Î2
−

2l10E
Î15

,

m45
s3,1,2/3d ;

l1F3

3Î2
+

2Î2l7A1

5
,

m55
s3,1,2/3d ; m1 +

l1F1

Î6
+

l1F2

3Î2
+

2

5
Î2

3
l7A2 +

l10E

2Î15
.

fs3,2,−5
6

d+c.c.g
c: Âs6,2,2d

s3,2,−5/6d ,Ês6,2,2d
s3,2,−5/6d ,F̂s6,2,2d

s3,2,−5/6d
F̂s10,2,2d

s3,2,−5/6d

r : Âs6,2,2d
s3̄,2,5/6d ,Ês6,2,2d

s3̄,2,5/6d ,F̂s6,2,2d
s3̄,2,5/6d

F̂
s10̄,2,2d

s3̄,2,5/6d
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1
m4 −

l5F3

3
+

l9E

2Î15
−

l9A1

2
−

l9A2

Î6
−

l5A1

Î3
+

2

5
Î2

3
l7F2 −

2l5A2

3
+

2

5
Î2

3
l7F3

−
l9A1

2
−

l9A2

Î6
m5 +

1

2
Î3

5
l8E

l10F1

2Î2
+

l10F3

4Î3

l10F2

2Î3
+

l10F3

2Î6

−
l5A1

Î3
+

2

5
Î2

3
l7F2

l10F1

2Î2
+

l10F3

4Î3
m1 −

l1F3

6
+

7l10E

4Î15

l1F3

3Î2
−

4l7A2

5Î3

−
2l5A2

3
+

2

5
Î2

3
l7F3

l10F2

2Î3
+

l10F3

2Î6

l1F3

3Î2
−

4l7A2

5Î3
m44

s3,2,−5/6d

2 ,

s63d

where

m44
s3,2,−5/6d ; m1 +

l1F2

3Î2
−

l1F3

6
−

2l7A1

5
−

1

4
Î3

5
l10E. s64d

fs3,2, 1
6

d+c.c.g

c: Âs6,2,2d
s3,2,1/6d ,Ês6,2,2d

s3,2,1/6d ,D̂s15,2,2d
s3,2,1/6d ,D̂s15,2,2d

s3,2,1/6d ,D̄
ˆ

s15,2,2d
s3,2,1/6d ,F̂s6,2,2d

s3,2,1/6d ,F̂s10,2,2d
s3,2,1/6d

r : Âs6,2,2d
s3̄,2,−1/6d ,Ês6,2,2d

s3̄,2,−1/6d ,D̂s15,2,2d
s3̄,2,−1/6d ,D̄

ˆ
s15,2,2d
s3̄,2,−1/6d ,D̂s15,2,2d

s3̄,2,−1/6d ,F̂s6,2,2d
s3̄,2,−1/6d ,F̂

s10̄,2,2d

s3̄,2,−1/6d





 m11

s3,2,1/6d l9A1

2
−

l9A2

Î6
−

il19vR

Î10
−

l6vR

5
0 m61

s3,2,1/6d m71
s3,2,1/6d

l9A1

2
−

l9A2

Î6
m5 +

1

2
Î3

5
l8E 0 0 −

2l12vR

5

l10F3

4Î3
−

l10F1

2Î2

l10F2

2Î3
−

l10F3

2Î6

il18vR

Î10
0 m33

s3,2,1/6d m34
s3,2,1/6d m35

s3,2,1/6d −
l20vR

2Î30
−

l20vR

2Î15

−
l6vR

5
0 m43

s3,2,1/6d m44
s3,2,1/6d l12E

Î15
−

l2vR

10Î3
−

l2vR

5Î6

0 −
2l11vR

5
m53

s3,2,1/6d l11E

Î15
m55

s3,2,1/6d 0 0

m61
s3,2,1/6d l10F3

4Î3
−

l10F1

2Î2
−

l21vR

2Î30
−

l2vR

10Î3
0 m66

s3,2,1/6d l1F3

3Î2
+

4l7A2

5Î3

m71
s3,2,1/6d l10F2

2Î3
−

l10F3

2Î6
−

l21vR

2Î15
−

l2vR

5Î6
0

l1F3

3Î2
+

4l7A2

5Î3
m77

s3,2,1/6d 





,

s65d

where

m11
s3,2,1/6d ; m4 +

l5F3

3
+

l9E

2Î15
,

m33
s3,2,1/6d ; m6 −

l14E

3Î15
+

Î2l15F2

9
+

2l15F3

9
,

m34
s3,2,1/6d ; −

il18A1

2Î10
−

il18A2

2Î15
−

l20F1

4Î15
−

l20F2

6Î5
−

l20F3

4Î10
,
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m35
s3,2,1/6d ; −

il19A1

2Î10
+

il19A2

2Î15
−

l21F1

4Î15
+

l21F2

6Î5
−

l21F3

12Î10
,

m43
s3,2,1/6d ;

il19A1

2Î10
+

il19A2

2Î15
−

l21F1

4Î15
−

l21F2

6Î5
−

l21F3

4Î10
,

m44
s3,2,1/6d ; m2 +

l2F2

30Î2
+

l2F3

20
−

l6A1

10
−

1

5
Î2

3
l6A2,

s66d

m53
s3,2,1/6d ;

il18A1

2Î10
−

il18A2

2Î15
−

l20F1

4Î15
+

l20F2

6Î5
−

l20F3

12Î10
,

m55
s3,2,1/6d ; m2 +

l2F2

30Î2
+

l2F3

60
+

l6A1

10
+

1

5
Î2

3
l6A2,

m61
s3,2,1/6d ; −

l5A1

Î3
−

2

5
Î2

3
l7F2,

m66
s3,2,1/6d ; m1 +

l1F3

6
+

7l10E

4Î15
,

m71
s3,2,1/6d ; −

2l5A2

3
−

2

5
Î2

3
l7F3,

m77
s3,2,1/6d ; m1 +

l1F2

3Î2
+

l1F3

6
+

2l7A1

5
−

1

4
Î3

5
l10E.

fs1,2, 1
2

d+c.c.g

c: Ĥs1,2,2d
s1,2,1/2d ,D̂s1,2,2d

s1,2,1/2d ,D̂s15,2,2d
s1,2,1/2d ,D̂s15,2,2d

s1,2,1/2d ,D̄
ˆ

s15,2,2d
s1,2,1/2d ,F̂s6,2,2d

s1,2,1/2d

r : Ĥs1,2,2d
s1,2,−1/2d ,D̂s1,2,2d

s1,2,−1/2d ,D̂s15,2,2d
s1,2,−1/2d ,D̄

ˆ
s15,2,2d
s1,2,−1/2d ,D̂s15,2,2d

s1,2,−1
2

d
,F̂s6,2,2d

s1,2,−1/2d

1
m3 +Î3

5
l13E −

il16A1

Î6
−

l17F1

2
−

il16A2

Î3
−

l17F3

2Î2

l3F2

Î10
−

l3F3

2Î5
−

l4F2

Î10
−

l4F3

2Î5
−

l4vR

Î5

il16A1

Î6
−

l17F1

2
m6 +Î3

5
l14E

l15F3

3Î3
−

il18A2

2Î5
+

l20F3

4Î30
−

il19A2

2Î5
+

l21F3

4Î30
−

l21vR

2Î30

il16A2

Î3
−

l17F3

2Î2

l15F3

3Î3
m33

s1,2,1/2d m34
s1,2,1/2d m35

s1,2,1/2d −
l21vR

2Î10

l4F2

Î10
−

l4F3

2Î5

il19A2

2Î5
+

l21F3

4Î30
m43

s1,2,1/2d m44
s1,2,1/2d

l12E

Î15
0

−
l3F2

Î10
−

l3F3

2Î5

il18A2

2Î5
+

l20F3

4Î30
m53

s1,2,1/2d
l11E

Î15
m55

s1,2,1/2d l2vR

10

−
l3vR

Î5
−

l20vR

2Î30
−

l20vR

2Î10
0

l2vR

10
m66

s1,2,1/2d

2 ,

s67d

where

033505-17 SO~10! group theory for the unified model building J. Math. Phys. 46, 033505 ~2005!

                                                                                                                                    



m33
s1,2,1/2d ; m6 −

l14E

3Î15
+

2Î2l15F2

9
,

m34
s1,2,1/2d ; −

il18A1

2Î10
+

il18A2

Î15
+

l20F1

4Î15
−

l20F3

6Î10
,

m35
s1,2,1/2d ; −

il19A1

2Î10
−

il19A2

Î15
+

l21F1

4Î15
+

l21F3

6Î10
,

m43
s1,2,1/2d ;

il19A1

2Î10
−

il19A2

Î15
+

l21F1

4Î15
−

l21F3

6Î10
,

s68d

m44
s1,2,1/2d ; m2 +

l2F2

15Î2
−

l2F3

30
+

l6A1

10
,

m53
s1,2,1/2d ;

il18A1

2Î10
+

il18A2

Î15
+

l20F1

4Î15
+

l20F3

6Î10
,

m55
s1,2,1/2d ; m2 +

l2F2

15Î2
+

l2F3

30
−

l6A1

10
,

m66
s1,2,1/2d ; m1 +

l1F2

Î2
+

l1F3

2
+

2l7A1

5
−

1

4
Î3

5
l10E.

fs3,1,−1
3

d+c.c.g

c: Ĥs6,1,1d
s3,1,−1/3d, D̂s6,1,3d

s3,1,−1/3d, D̂s10,1,1d
s3,1,−1/3d, D̂s6,1,1d

s3,1,−1/3d, D̄
ˆ

s6,1,1d
s3,1,−1/3d, D̄

ˆ
s10,1,3d
s3,1,−1/3d, F̂s15,1,3d

s3,1,−1/3d

r : Ĥs6,1,1d
s3̄,1,1/3d, D̂s6,1,3d

s3̄,1,1/3d, D̂
s10̄,1,1d

s3̄,1,1/3d
, D̄

ˆ
s6,1,1d
s3̄,1,1/3d, D̂s6,1,1d

s3̄,1,1/3d, D̂
s10̄,1,3d

s3̄,1,1/3d
, F̂s15,1,3d

s3̄,1,1/3d





 m3 −

2l13E
Î15

m12
s3,1,−1/3d m13

s3,1,−1/3d m14
s3,1,−1/3d m15

s3,1,−1/3d −Î 2

15
l4F3

l4vR

Î5

m21
s3,1,−1/3d m22

s3,1,−1/3d 2l15F3

9
m24

s3,1,−1/3d m25
s3,1,−1/3d m26

s3,1,−1/3d l4vR

2Î15

m31
s3,1,−1/3d 2l15F3

9
m33

s3,1,−1/3d m34
s3,1,−1/3d m35

s3,1,−1/3d m36
s3,1,−1/3d l21vR

2Î15

m41
s3,1,−1/3d m42

s3,1,−1/3d m43
s3,1,−1/3d m2 +

l6A2

5Î6

2l12E
Î15

0 0

m51
s3,1,−1/3d m52

s3,1,−1/3d m53
s3,1,−1/3d 2l11E

Î15
m2 −

l6A2

5Î6

l2F3

15Î2
−

l2vR

10Î3

−Î 2

15
l3F3 m62

s3,1,−1/3d m63
s3,1,−1/3d 0

l2F3

15Î2
m66

s3,1,−1/3d −
l2vR

5Î6

l3vR

Î5

l20vR

2Î15

l20vR

2Î15
0 −

l2vR

10Î3
−

l2vR

5Î6
m77

s3,1,−1/3d 





,

s69d

where
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m12
s3,1,−1/3d ; −

il16A1

Î3
−

l17F3

2Î3
,

m13
s3,1,−1/3d ; −

iÎ2l16A2

3
−

l17F2

Î6
,

m14
s3,1,−1/3d ;

l3F2

Î30
−

l3F1

Î10
,

m15
s3,1,−1/3d ; −

l4F1

Î10
−

l4F2

Î30
,

m21
s3,1,−1/3d ;

il16A1

Î3
−

l17F3

2Î3
,

m22
s3,1,−1/3d ; m6 +

4l14E

3Î15
+

1

3
Î2

3
l15F1,

m24
s3,1,−1/3d ; −

il18A1

2Î5
+

l20F3

12Î5
,

m25
s3,1,−1/3d ; −

il19A1

2Î5
+

l21F3

12Î5
,

m26
s3,1,−1/3d ; −

il19A2

Î15
+

l21F2

6Î5
,

m31
s3,1,−1/3d ;

iÎ2l16A2

3
−

l17F2

Î6
,

m33
s3,1,−1/3d ; m6 −

2l14E
Î15

+
Î2l15F2

9

m34
s3,1,−1/3d ;

il18A2

Î30
−

l20F2

6Î10
,

s70d

m35
s3,1,−1/3d ; −

il19A2

Î30
+

l21F2

6Î10
,

m36
s3,1,−1/3d ; −

il19A1

Î10
+

l21F3

6Î10
,

m41
s3,1,−1/3d ;

l4F2

Î30
−

l4F1

Î10
,
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m42
s3,1,−1/3d ;

il19A1

2Î5
+

l21F3

12Î5
,

m43
s3,1,−1/3d ; −

il19A2

Î30
−

l21F2

6Î10
,

m51
s3,1,−1/3d ; −

l3F1

Î10
−

l3F2

Î30
,

m52
s3,1,−1/3d ;

il18A1

2Î5
+

l20F3

12Î5
,

m53
s3,1,−1/3d ;

il18A2

Î30
+

l20F2

6Î10
,

m62
s3,1,−1/3d ;

il18A2

Î15
+

l20F2

6Î5
,

m63
s3,1,−1/3d ;

il18A1

Î10
+

l20F3

6Î10
,

m66
s3,1,−1/3d ; m2 +

l2F1

10Î6
+

l2F2

30Î2
−

l6A2

5Î6
,

m77
s3,1,−1/3d ; m1 +

l1F1

Î6
+

l1F2

3Î2
+

2l1F3

3
+

2

5
Î2

3
l7A2 +

l10E

2Î15
.

fs1,1,2d+c.c.g
c: D̂

s10̄,1,3d

s1,1,2d

r : D̄
ˆ

s10,1,3d
s1,1,−2d

m2 +
l2F1

10Î6
+

l2F2

10Î2
−

l2F3

10
+

l6A1

5
−

1

5
Î3

2
l6A2. s71d

fs1,2, 3
2

d+c.c.g
c: F̂

s10̄,2,2d

s1,2,3/2d

r : F̂s10,2,2d
s1,2,−3/2d

m1 +
l1F2

Î2
−

l1F3

2
−

2

5
l7A1 −

1

4
Î3

5
l10E. s72d

s1,3,0d
c: Âs1,3,1d

s1,3,0d, Ês1,3,3d
s1,3,0d, F̂s15,3,1d

s1,3,0d

r : Âs1,3,1d
s1,3,0d, Ês1,3,3d

s1,3,0d, F̂s15,3,1d
s1,3,0d
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1
m4 −Î2

3
l5F1 +Î3

5
l9E l9A1 −Î2

3
l5A2 +

2

5
Î2l7F2

l9A1 m5 + 3Î3

5
l8E −

l10F3

2

−Î2

3
l5A2 +

2

5
Î2l7F2 −

l10F3

2
m1 −

l1F1

Î6
+

Î2l1F2

3
−

4

5
Î2

3
l7A2 +

l10E

2Î15

2 .

s73d

fs1,3,1d+c.c.g

c: Ês1,3,3d
s1,3,1d, D̄

ˆ
s10̄,3,1d

s1,3,1d

r : Ês1,3,3d
s1,3,−1d, D̂s10,3,1d

s1,3,−1d

1m5 + 3Î3

5
l8E

2l12vR

5

2l11vR

5
m2 −

l2F1

10Î6
+

l2F2

10Î2
+

1

5
Î3

2
l6A2

2 . s74d

fs3,1,−4
3

d+c.c.g

c: D̂s6,1,3d
s3,1,−4/3d, D̄

ˆ
s10,1,3d
s3,1,−4/3d

r : D̄
ˆ

s6,1,3d
s3̄,1,4/3d, D̂

s10̄,1,3d

s3̄,1,4/3d

1m6 +
4l14E

3Î15
+

1

3
Î2

3
l15F1 −

2l15F3

9
−

il19A2

Î15
+

l21F2

6Î5
−

l21F3

3Î10

il18A2

Î15
+

l20F2

6Î5
−

l20F3

3Î10
m2 +

l2F1

10Î6
+

l2F2

30Î2
−

l2F3

30
+

l6A1

5
−

l6A2

5Î6
2 .

s75d

fs3,1, 5
3

d+c.c.g
c: F̂s15,1,3d

s3,1,5/3d

r : F̂s15,1,3d
s3̄,1,−5/3d

m1 +
l1F1

Î6
+

l1F2

3Î2
−

2l1F3

3
+

2

5
Î2

3
l7A2 +

l10E

2Î15
. s76d

fs3,2, 7
6

d+c.c.g

c: D̂s15,2,2d
s3,2,7/6d, D̂s15,2,2d

s3,2,7/6d, D̄
ˆ

s15,2,2d
s3,2,7/6d

r : D̂s15,2,2d
s3̄,2,−7/6d, D̄

ˆ
s15,2,2d
s3̄,2,−7/6d, D̂s15,2,2d

s3̄,2,7/6d

1
m11

s3,2,7/6d m12
s3,2,7/6d m13

s3,2,7/6d

m21
s3,2,7/6d m22

s3,2,7/6d l12E
Î15

m31
s3,2,7/6d l11E

Î15
m33

s3,2,7/6d2 , s77d

where
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m11
s3,2,7/6d ; m6 −

l14E

3Î15
+

Î2l15F2

9
−

2l15F3

9
,

m12
s3,2,7/6d ; −

il18A1

2Î10
+

il18A2

2Î15
+

l20F1

4Î15
+

l20F2

6Î5
−

l20F3

4Î10
,

m13
s3,2,7/6d ; −

il19A1

2Î10
−

il19A2

2Î15
+

l21F1

4Î15
−

l21F2

6Î5
−

l21F3

12Î10
,

m21
s3,2,7/6d ;

il19A1

2Î10
−

il19A2

2Î15
+

l21F1

4Î15
+

l21F2

6Î5
−

l21F3

4Î10
, s78d

m22
s3,2,7/6d ; m2 +

l2F2

30Î2
−

l2F3

20
+

l6A1

10
−

1

5
Î2

3
l6A2,

m31
s3,2,7/6d ;

il18A1

2Î10
+

il18A2

2Î15
+

l20F1

4Î15
−

l20F2

6Î5
−

l20F3

12Î10
,

m33
s3,2,7/6d ; m2 +

l2F2

30Î2
−

l2F3

60
−

l6A1

10
+

1

5
Î2

3
l6A2.

fs3,3,−1
3

d+c.c.g
c: D̂s6,3,1d

s3,3,−1/3d, D̂s10,3,1d
s3,3,−1/3d

r : D̂s6,3,1d
s3̄,3,1/3d, D̄

ˆ
s10̄,3,1d

s3̄,3,1/3d

1m6 +
4l14E

3Î15
−

1

3
Î2

3
l15F1 −

il18A2

Î15
+

l20F2

6Î5

il19A2

Î15
+

l21F2

6Î5
m2 −

l2F1

10Î6
+

l2F2

30Î2
+

l6A2

5Î6
2 . s79d

fs3,3, 2
3

d+c.c.g
c: F̂s15,3,1d

s3,3,2/3d

r : F̂s15,3,1d
s3̄,3,−2/3d

m1 −
l1F1

Î6
+

l1F2

3Î2
−

2

5
Î2

3
l7A2 +

l10E

2Î15
. s80d

fs6,1,−2
3

d+c.c.g

c: Ê
s208,1,1d
s6,1,−2/3d

, D̄
ˆ

s10,1,3d
s6,1,−2/3d

r : Ê
s208,1,1d
s6,1,2/3d

, D̂
s10̄,1,3d

s6,1,2/3d

1m5 − 2Î3

5
l8E

2l12vR

5

2l11vR

5
m2 +

l2F1

10Î6
−

l2F2

30Î2
+

l2F3

30
+

l6A1

5
+

l6A2

5Î6
2 . s81d
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fs6,1, 1
3

d+c.c.g

c: D̂s10,1,1d
s6,1,1/3d, D̄

ˆ
s10,1,3d
s6,1,1/3d

r : D̂
s10̄,1,1d

s6,1,−1/3d
, D̂

s10̄,1,3d

s6,1,−1/3d

1m6 −
2l14E
Î15

−
Î2l15F2

9
−

il19A1

Î10
−

l21F3

6Î10

il18A1

Î10
−

l20F3

6Î10
m2 +

l2F1

10Î6
−

l2F2

30Î2
+

l6A2

5Î6
2 . s82d

fs6,1, 4
3

d+c.c.g

c: D̄
ˆ

s10,1,3d
s6,1,4/3d

r : D̂
s10̄,1,3d

s6,1,−4/3d

m2 +
l2F1

10Î6
−

l2F2

30Î2
−

l2F3

30
−

l6A1

5
+

l6A2

5Î6
. s83d

fs6,2,−1
6

d+c.c.g
c: f̂s10,2,2d

s6,2,−1/6d

r : F̂
s10̄,2,2d

s6,2,1/6d

m1 −
l1F2

3Î2
+

l1F3

6
−

2

5
l7A1 −

1

4
Î3

5
l10E. s84d

fs6,2, 5
6

d+c.c.g
c: F̂s10,2,2d

s6,2,5/6d

r : F̂
s10̄,2,2d

s6,2,−5/6d

m1 −
l1F2

3Î2
−

l1F3

6
+

2

5
l7A1 −

1

4
Î3

5
l10E. s85d

fs6,3,1 /3d+c.c.g
c: D̂s10,3,1d

s6,3,1/3d

r : D̄
ˆ

s10̄,3,1d

s6,3,−1/3d

m2 −
l2F1

10Î6
−

l2F2

30Î2
−

l6A2

5Î6
. s86d

s8,1,0d
c: Âs15,1,1d

s8,1,0d ,Ê
s208,1,1d
s8,1,0d

,F̂s15,1,1d
s8,1,0d ,F̂s15,1,3d

s8,1,0d

r : Âs15,1,1d
s8,1,0d ,Ê

s208,1,1d
s8,1,0d

,F̂s15,1,1d
s8,1,0d ,F̂s15,1,3d

s8,1,0d
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1
m4 −

Î2l5F2

3
−

2l9E

Î15
Î2

3
l9A2 −

Î2l5A2

3
+

2Î2l7F1

5
−Î2

3
l5A1 +

2

5
Î2

3
l7F3

Î2

3
l9A2 m5 − 2Î3

5
l8E −

l10F2

Î6
−

l10F3

Î6

−
Î2l5A2

3
+

2

5
Î2l7F1 −

l10F2

Î6
m1 −

l1F2

3Î2
−

2l10E

Î15

l1F3

3Î2
−

2Î2l7A1

5

−Î2

3
l5A1 +

2

5
Î2

3
l7F3 −

l10F3

Î6

l1F3

3Î2
−

2Î2l7A1

5
m44

s8,1,0d

2 , s87d

where

m44
s8,1,0d ; m1 +

l1F1

Î6
−

l1F2

3Î2
−

2

5
Î2

3
l7A2 +

l10E

2Î15
. s88d

fs8,1,1d+c.c.g
c: F̂s15,1,3d

s8,1,1d

r : F̂s15,1,3d
s8,1,−1d

m1 +
l1F1

Î6
−

l1F2

3Î2
−

2

5
Î2

3
l7A2 +

l10E

2Î15
. s89d

fs8,2,−1
2

d+c.c.g

c: D̂s15,2,2d
s8,2,1/2d ,D̂s15,2,2d

s8,2,1/2d ,D̄
ˆ

s15,2,2d
s8,2,1/2d

r : D̂s15,2,2d
s8,2,−1/2d ,D̄

ˆ
s15,2,2d
s8,2,−1/2d ,D̂s15,2,2d

s8,2,−1/2d

1
m11

s8,2,−1/2d m12
s8,2,−1/2d m13

s8,2,−1/2d

m21
s8,2,−1/2d m22

s8,2,−1/2d l12E
Î15

m31
s8,2,−1/2d l11E

Î15
m33

s8,2,−1/2d2 , s90d

where

m11
s8,2,−1/2d ; m6 −

l14E

3Î15
−

Î2l15F2

9
,

m12
s8,2,−1/2d ; −

il18A1

2Î10
−

il18A2

2Î15
+

l20F1

4Î15
+

l20F3

12Î10
,

m13
s8,2,−1/2d ; −

il19A1

2Î10
+

il19A2

2Î15
+

l21F1

4Î15
−

l21F3

12Î10
,

m21
s8,2,−1/2d ;

il19A1

2Î10
+

il19A2

2Î15
+

l21F1

4Î15
+

l21F3

12Î10
, s91d

m22
s8,2,−1/2d ; m2 −

l2F2

30Î2
+

l2F3

60
+

l6A1

10
,
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m31
s8,2,−1/2d ;

il18A1

2Î10
−

il18A2

2Î15
+

l20F1

4Î15
−

l20F3

12Î10
,

m33
s8,2,−1/2d ; m2 −

l2F2

30Î2
−

l2F3

60
−

l6A1

10
.

s8,3,0d
c: F̂s15,3,1d

s8,3,0d

r : F̂s15,3,1d
s8,3,0d

m1 −
l1F1

Î6
−

l1F2

3Î2
+

2

5
Î2

3
l7A2 +

l10E

2Î15
. s92d

B. Tests and consistency checks of the total mass matrix

The following consistency checks of the total mass matrix have been performedssee also Ref.
17d:

s1d The CG coefficients appearing in the total mass matrix have been found to satisfy the
Hermiticity relations50d.

s2d The trace of the total mass matrix has been evaluated and it has been found that it satisfies
Eq. s56d.

s3d For theG321 symmetric vacuum, the number of the would-be NG modes have been found to
be equal to the number of the broken generators, i.e., massive gauge bosons, 45−12=33.
Here, 45 represents the number of gauge bosons in the adjoint irrep of the SOs10d group, and
12 represents the number of the gauge bosons in the standard modelsG321 groupd. The check
has been performed numerically for several tens of randomly chosen sets of the parameters
of the superpotentiall1, . . . ,l21 andm1, . . . ,m6, constrained by VEV Eqs.s28d.

s4d For the SUs5d symmetric vacuum, it has been found that the number of the different mass
eigenvalues is 21. The number of independent SUs5d irreps contained in the total represen-
tation of the modelR is 22 ssee Appendix Ad, and the would-be NG bosons are in two
multiplets fs1d+s10+10dg. Therefore, there are in total 21 mass eigenvalues: 20 different
from zero and one equal to zero. All other states must be accommodated in the SUs5d irreps.
Further, for the SUs5d symmetric vacuum, all eigenvalues of the doublet Higgs matrix
s1,2, 1

2
d are contained in the spectrum of the triplet Higgs matrixs3,1,−1

3
d. The only mass

eigenvalue of the triplet Higgs matrix spectrum not contained in the doublet mass spectrum
belongs to the SUs5d multiplet 50, leading to the following relation between determinants of
these two matrices:

detsMs3,1,−1/3d − l 3 1d = sm50
s3,1,−1/3d − lddetsMs1,2,1/2d − l 3 1d. s93d

The above relation gives a very strong test for these two matrices. All above checks have
been performed numerically, in the same way as explained in the previous item. Our mass
matrices passed all checks. For the SUs5d symmetric vacuum, all VEVs, exceptE, are
different from zero, and they are nontrivially correlated through the VEV Eqs.s28d and
SUs5d symmetry conditionss30d. Therefore, these tests serve as a strong check of the total
mass matrix up to terms which depend onE.

s5d For theG422 symmetric vacuum, it has been found that the number of different mass eigen-
values is 27, what is just the number of the independentG422 irreps ssee Appendix Ad. The
number of NG states, contained inG422 irrep s6,2,2d is 45−21=24. These checks have been
performed numerically as explained above. All other states have been found to be accom-
modated inG422 irreps. For theG422 symmetric vacuum, VEVs different from zero areF1
andE, and therefore this serves as a check of theE-dependent parts of the total mass matrix.

s6d Similar tests are satisfied for other higher symmetriesG51, G421, G3221, andG3211.
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We stress that all mass matrices in Ref. 17, derived for minimal SOs10d model sR=10+126
+126+210d, satisfy all of the above consistency checks, and are just a special case of the mass
matrices in this paper. Further, all results including CG coefficients and mass matrices were
obtained analytically including checks.

In the recent calculations in Refs. 20 and 21, that appeared after Ref. 17, the necessary
condition s93d between doublets and triplets is not satisfied. The Hermiticity conditions50d and
the total trace relations56d are also not satisfied in these references. Further, none of the higher
symmetry tests is satisfied. That is a consequence of different phase conventions in Ref. 17 and
phase conventions in Refs. 20 and 21.

In this paper, all results for the CG coefficients and mass matrices have been also obtained
analytically. Checks have been performed numerically and it has been found that the mass matri-
ces satisfy ALL consistency checks.

VI. MASS MATRICES OF QUARKS AND LEPTONS

After the symmetry breaking down to theG321 subgroup, the electroweak symmetry breaking
SUs2dL3Us1dY→Us1dem can be achieved by the VEVs of doublets included in the fieldsH, D, D,

D̄, and F. These fields are given byfsee Table 2sRef. 19dg H̃u/d=Hs1,2,2d
s1,2,±1/2d, Du/d=Ds1,2,2d

s1,2,±1/2d,

D̃u/d=Ds15,2,2d
s1,2,±1/2d, D̄u/d=D̄s15,2,2d

s1,2,±1/2d, Du/d=Ds15,2,2d
s1,2,±1/2d, Fu/d=F

s10̄,2,2d

s1,2,±1/2d
. The Yukawa couplings of Eq.

s1d including these doublets can be written as follows:

WY = Ui
csY10

i j H̃u + Y120
i j Du + Y120

i j D̃u + Y126
i j D̄udQj + Di

csY10
i j H̃d + Y120

i j Dd + Y120
i j D̃d + Y126

i j D̄ddQj

+ Ni
csY10

i j H̃u + Y120
i j Du − 3Y120

i j D̃u − 3Y126
i j D̄udLj + Ei

csY10
i j H̃d + Y120

i j Dd − 3Y120
i j D̃d − 3Y126

i j D̄ddLj ,

s94d

whereUc, Dc, Nc, andEc are the right-handed SUs2dL singlet quark and lepton superfields,Q and
L are the left-handed SUs2dL doublet quark and lepton superfields, respectively. This is a gener-
alization of the renormalizable minimal SOs10d model,6,7 including 120. Note that the successful
gauge-couplings unification is realized with only the MSSM particle contents. This means that
only one pair of Higgs doublets remains light and others should be heavysùMGd. Here we accept
the simple picture that the low-energy superpotential is described by only one pair of light Higgs
doubletssHu andHdd in the MSSM. But, in general, these Higgs fields are admixtures of all Higgs
doublets having the same quantum numbers in the original model such as

Hu = ãu
1H̃u + ãu

2Du + ãu
3D̃u + ãu

4D̄u + ãu
5Du + ãu

6Fu,

s95d
Hd = ãd

1H̃d + ãd
2Dd + ãd

3D̃d + ãd
4D̄d + ãd

5Dd + ãd
6Fd,

whereãu,d
i si =1,2, . . . ,5 ,6d denote elements of the unitary matrix which rotate the flavor basis in

the original model into thesSUSYd mass eigenstates. As mentioned above, the low-energy super-
potential is described only by the light Higgs doubletsHu andHd,

WY = Ui
csau

1Y10
i j + au

2Y120
i j + au

3Y120
i j + au

4Y126
i j dHuQj + Di

csad
1Y10

i j + ad
2Y120

i j + ad
3Y120

i j + ad
4Y126

i j dHdQj

+ Ni
csau

1Y10
i j + au

2Y120
i j − 3au

3Y120
i j − 3au

4Y126
i j dHuLj + Ei

csad
1Y10

i j + ad
2Y120

i j − 3ad
3Y120

i j

− 3ad
4Y126

i j dHdLj , s96d

where the formulas of the inverse unitary transformation of Eq.s95d,

H̃u = au
1Hu, Du = au

2Hu,
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D̃u = au
3Hu, D̄u = au

4Hu,

s97d
H̃d = ad

1Hd, Dd = ad
2Hd,

D̃d = ad
3Hd, D̄d = ad

4Hd,

have been used.
Providing the Higgs VEVs,Hu=v sinb andHd=v cosb with v.174.1sGeVd, the quark and

lepton mass matrices can be read off as

Mu = c10M10 + c120M120+ c̃120M̃120+ c126M126,

Md = M10 + M120+ M̃120+ M126,

MD = c10M10 + c120M120− 3c̃120M̃120− 3c126M126, s98d

Me = M10 + M120− 3M̃120− 3M126,

MR = cRM126,

where Mu, Md, MD, Me, and MR denote the up-type quark, down-type quark, neutrino Dirac,
charged-lepton, and right-handed neutrino Majorana mass matrices, respectively. Note that the
mass matrices at the right-hand side of Eq.s98d are defined asM10=Y10ad

1v cosb, M120

=Y120ad
2v cosb, M̃120=Y120ad

3v cosb, andM126=Y126ad
4v cosb, respectively, and the coefficients

are defined asc10=sau
1/ad

1dtanb, c120=sau
2/ad

2dtanb, c̃120=sau
3/ad

3dtanb, c126=sau
4/ad

4dtanb, and
cR=vR/ sad

4v cosbd. These mass matrices are directly connected with low-energy observations and
are crucial to model judgement.

VII. CONCLUSION

We have presented a simple method for the calculation of CG coefficients. We have con-
structed all states for all antisymmetric and symmetric SOs10d tensor irreps. We list all tables for

the CG coefficients for the SOs10d irreps10, 45, 54, 120, 126, 126̄, and210, for all possible cubic
invariants. We have constructed all mass matrices for the corresponding Higgs-Higgsino sector is
SUSY GUT SOs10d models. We have found a set of consistency checks for the CG coefficients
and mass matrices which proved the correctness of all our results. The results obtained here are
useful for a wide class of GUT models based on the SOs10d group.
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APPENDIX A: DECOMPOSITION OF REPRESENTATIONS UNDER G321

Here we list the decompositions of10, 16, 45, 54, 120, 126, and210representations under the
chain of subgroupsG422.G3122.G3121.G321 in Tables 7, 8, 9, 10, 11, 12, and 13sRef. 19d,
where Us1d groups are related to SUs4d→SUs3dC3Us1dB−L, SUs2dL3SUs2dR→SUs2dL
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3Us1dR. fWe use the same notation as Slansky22 but with the proper Us1d normalizations.g Note
also that we may consider another chain of subgroups SOs10d→SUs5d3Us1dX and SUs5d
→G321. The relations between the generators of Us1dX,Y and Us1dB−L,R are

1
10s− X + 4Yd = B − L,

sA1d
Y = B − L + TR

3 ,

whereTR
3 denotes the Us1dR generator.

APPENDIX B: CG COEFFICIENTS

The CG coefficients forHH, AA, EE, DD, DD, DD, D̄D, FF, EA, AF, ED, ED̄, EF, DH, D̄H,

HF, FD, FD̄, AD, AD̄, DH, DA, DD, DD̄, andDF combinations are listed in Tables 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 39,
respectively.19
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The integrability of the deformed quantum elliptic Calogero–Moser problem intro-
duced by Chalykh, Feigin, and Veselov is proven. Explicit recursive formulas for
the integrals are found. For integer values of the parameter this implies the alge-
braic integrability of the systems. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1829375g

I. INTRODUCTION

Deformed quantum Calogero–MosersCMd systems were introduced by Chalykh, Feigin, and
Veselov,1,2 who proved their integrability in rational and trigonometric cases and conjectured that
the same is true in the elliptic case. The aim of this paper is to prove this conjecture.

Elliptic deformed CM system corresponds to the following Schrödinger operator:

Lm
snd = o

j=1

n
p̂j

2

mj
+ 2msm+ 1d o

1ø j,køn

n

mjmkpsxj − xkd, s1d

where all but one “masses” are equal,m1=m−1, m2=¯ =mn=1, m is a real parameter,p̂j

= is] /]xjd, j =1, . . . ,n, and p is the classical Weierstrass elliptic function. The case whenm is
integer is a special one: in that case a stronger version of integrabilitysthe so-called algebraic
integrabilityd was conjectured.2 The first results in this direction were found by Prikhodsky and the
author,3 who proved the conjecture in the simplest nontrivial casen=3, m=2.

The main result of the present paper is an explicit recursive formula for the quantum integrals
of the elliptic deformed CM system. This proves integrability of the system for alln andm and
due to a general recent result by Chalykh, Etingof, and Oblomkov4 this also implies the algebraic
integrability for integer values of the parameterm.

As a by-product we have also new formulas for the integrals of the usual quantum elliptic CM
problem, which was the subject of many investigations since the 1970s.5–11We will be using some
technical tricks from these important papers. In trigonometric and rational limits we have the
formulas for the quantum integrals of the corresponding deformed CM systems which also seem
to be new.

II. PRELIMINARIES AND MAIN FORMULAS

Quantum Hamiltonian of the deformed elliptic CM problem has the following form:

H = − sm]1
2 + ]2

2 + ¯ + ]n−1
2 + ]n

2d + 2sm+ 1do
k=2

n

p1k + 2msm+ 1d o
2ø j,køn

p jk, s2d

where]i =] /]xi, p jk=psxj −xkd. Herep is the classical Weierstrass elliptic function,12 which can be
determined by the differential equation
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sp8szdd2 = 4spszd − e1dspszd − e2dspszd − e3d = 4p3szd − g2pszd − g3. s3d

The Laurent expansion ofp at the origin is of the following form:12

pszd = z−2 + o
k=1

`

g2kz
2k, s4d

where

g2 = 1
20g2, g4 = 1

28g3.

The coefficientsg2k are related to the so-calledBernoulli–Hurwitz numbers13 BH skd,

g2k =
1

s2kd!
BHs2k + 2d

s2k + 2d
.

There is a recursive formula which allows one to obtain the coefficientsg2k+2 from the coefficients
of the lower order,

g2k+2 =
3

sk − 1ds2k + 5doj=1

k−1

g2jg2k−2j, k = 2,3, . . . . s5d

The relationships5d is easy to verify. One needs to differentiates3d to obtain

p9szd = 6p2szd − 1
2g2,

use the expansions4d and collect terms at the appropriate degrees ofz.
To construct the integrals of the operators2d we will follow the idea going back to the papers

by Sawada and Kotera6 and Olshanetsky and Perelomov.7 Namely, the integrals are constructed
from the highest one by successive commutators with some function which in our case ism−1x1

+x2+¯ +xn. This highest integral is of ordern and will be denoted below asI. The rest of this
section is to explain the main ingredients of the formula forI.

Let us introduce the following differential operatorsDk in ]1 with constant coefficients,

D1 = ]1, D2 =
s1 − md

2!
]1

2, D3 =
s1 − mds1 − 2md

3!
]1

3, D4 =
s1 − mds1 − 2mds1 − 3md

4!
]1

4,

Dk = p0,k]1
k + o

i=2

fk/2g

p2i,k]1
k−2i . s6d

The constantsp0,k, k=2,3, . . ., aregiven by

p0,k =
1

k! pl=1

k−1

s1 − lmd, k = 2,3, . . . , s7d

and constantsp2i,k, i =2,3, . . .,k=2i ,2i +1, . . ., aredetermined by the following recursive relations:

p2i,2i = 0, i = 2,3, . . . , s8d

p2i,k =
s1 − msk − 2i − 1dd

k − 2i
p2i,k−1 − s1 + md o

j=1

jÞ2

i−1

s2i − 2jd!Ck−2j+1
k−2i g2i−2jp2j−2,k−1,
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i = 2,3, . . . , k = 2i + 1,2i + 2, . . . , s9d

where Cn
k=n! / sk! sn−kd ! d is a binomial coefficient. To illustrate the formulas9d let us write

explicitly the formulas for the first few values ofi,

p4,k =
s1 − msk − 5dd

k − 4
p4,k−1 − s1 + md

pl=1

3
sk − ld

3
g2p0,k−1, k = 5,6, . . . ,

p6,k =
s1 − msk − 7dd

k − 6
p6,k−1 − s1 + md

pl=1

5
sk − ld

5
g4p0,k−1, k = 7,8, . . . ,

p8,k =
s1 − msk − 9dd

k − 8
p8,k−1 − s1 + mdSpl=1

7
sk − ld

7
g6p0,k−1 +

pl=5

7
sk - ld

3
g2p4,k−1D, k = 9,10, . . . .

It is interesting to note that for the special values of parameterm=1/l, wherel is a positive integer
number, most of the constantss7d and s9d are zero. For example, ifm= 1

2 only p0,2 is nonzero, if
m= 1

3 then onlyp0,2 andp0,3 are nonzero, ifm= 1
4 then onlyp0,2, p0,3, p0,4 andp4,5, p4,6=p0,2p4,5,

p4,7=p0,3p4,5, p4,8=p0,4p4,5 are nonzero and so on.
Let us introduce the following notations:

§ j = sm+ 1d§sx1 − xjd, 2 ø j ø n,

u1j = sm+ 1dpsx1 − xjd, 2 ø j ø n,

ukl = msm+ 1dpsxk − xld, 2 ø k , l ø n,

where§ is the standard elliptic§-function d§szd /dz=−pszd.
We will need also to consider all the subsystems of the deformed CM system. LetS be a

subset ofk indices of the seth1,2, . . . ,nj ands=h j1, j2, . . . ,j tj, j1, j2, ¯ , j t, be a subset oft
indices chosen fromS. The set of all different subsetss of size t of the setS will be denoted by

SsS;td = hs = h j1, j2, . . . ,j tj: j1 , j2 , . . . , j t, j l P Sj.

If sPSsS; td define the setS\s=h j : j PS and j ¹sj. If S=h1,2, . . . ,nj we will use short nota-
tions Sstd=Ssh1,2, . . . ,nj ; td and ŝ=h1,2, . . . ,nj \s. If s contains only one elements=hlj the

brackets will be omitted:l will denote a set which contains one elementhlj, S\ l =S\ hlj and l̂
=h1,2, . . . ,nj \ hlj We will also use notationŝ1ŝ2 to denote the intersection of the subsetsŝ1 and
ŝ2, ŝ1ŝ2=ŝ1ù ŝ2.

We will distinguish two cases, 1PS and 1¹S. In the second case we will use the notation
ad§s

t sDrd for the repeated commutator

ad§s

t sDrd = f§i t
, . . . f§i2

,f§i1
,Drggg, s = hi1,i2, . . . ,i tj. s10d

Note that the order in which§ik
are used is not important because of the form of the operatorDr

We will use also the notationeS
j for the elementary symmetric polynomials of degreej of the

symbols]l, l PS, eS
0=1, eS

1=olPS]l, eS
2=o l,r

l,rPS
]l]r, etc.

Now, define

Q = Dn + o
t=1

fn/2g

o
sPSs1̂;td

ad§s

t sDn−td = o
t=0

fn/2g

o
sPSs1̂;td

ad§s

t sDn−td

and
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QS= Dk + o
t=1

fk/2g

o
sPSsS\1;td

ad§s

t sDk−td = o
t=0

fk/2g

o
sPSsS\1;td

ad§s

t sDk−td, s11d

when the setS consists ofk elements and contains 1. Here and below byfxg we mean the integer
part of the numberx.

Consider now the quantum system with the Hamiltonian,

HS= − DS+ 2 o
j,k

j ,kPS

ujk,

whereDS=m]1
2+o jPS\1] j

2 if 1 PS andDS=o jPS] j
2 otherwise. If 1¹S then this is the standard CM

system which is well known to have complete set of quantum integrals.6–10 In particular, it has the
integral with the highest term]S=p jPS] j. We will denote this integralIS.

If the setS consists ofk elements and contains 1 thenHS is the Hamiltonian of the deformed
CM systems2d with k particles. We claim that this system has the integralswhich we also denote
as ISd with the constant highest term of the form

ES= ]1eS\1
k−1 + p0,2]1

2eS\1
k−2 + p0,3]1

3eS\1
k−3 + ¯ + p0,k]1

keS\1
0 ,

where the constantsp0,s are given by the formulas7d above. Note that whenm=1 they all are zero
andES reduces to]S=p jPS] j, so the integralIS can be considered as a deformation of the corre-
sponding integral of the usual CM system.

We defineIS inductively. Namely, assuming that we know these integrals for the subsystems
consisting of less thann particles define

I = o
t=1

n−2

s− 1dt+1 o
sPSstd

I ŝ]s + s− 1dnsn − 1d]1 ¯ ]n + X. s12d

Here

X = Q + o
t=1

fsn−2d/2g

o
sPSs1̂;2td

XsQŝ s13d

with the coefficients

XS= o ui1j1
ui2j2

¯ uipjp
, s14d

where the sum is taken over all partitions ofS into two-element subsetsS
=hi1, j1jø hi2, j2jø ¯ ø hip, j pj, in the case when the size ofS is even andXS=0 otherwise. These
coefficients can also be determined by the recurrent formulas

X1̂ = o
j=2

n−1

Xh j ,njX1̂\h j ,nj if n = 2p + 1 andX1̂ = 0 if n = 2p s15d

with Xh2,3j=u23.
Theorem 1: The operator I defined by (12) and (13) commutes with the deformed elliptic CM

operator (2).
Remark:The formulas12d is valid in the nondeformed case also, the operator

I 1̂ = o
t=1

n−3

s− 1dt+1 o
sPSs1̂,td

I ŝ]s + s− 1dnsn − 2d]2 ¯ ]n + X1̂

commutes with the operator
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H1̂ = − s]2
2 + ¯ + ]n−1

2 + ]n
2d + 2msm+ 1d o

2ø j,køn

p jk,

which is the usualn−1 particle elliptic CM operator.
Idea of the proof of Theorem 1:The proof will be done by induction. The main idea behind the

formula s12d consists in the observation that one can use the commutativity ofI ŝ]s with Hŝ to
simplify the commutatorfI ,Hg to the expression

fI,Hg = fX,Hg + o
j=1

n

3Xĵ] j,2o
l=1

lÞ j

n

ujl4 + o
1øk,løn

fXk̂l̂]k]l,2uklg,

where termsX, XĴ, andXk̂l̂ depend only on]1 andusr, 1øs, r øn. This is shown in Lemma 1 in
Sec. VI. At the next step we notice that ifX is given by s13d the commutatorfI ,Hg can be
simplified further to the following expression:

fI,Hg = fQ,Hg + o
j=2

n

3Q ĵ] j,2o
l=1

lÞ j

n

ujl4 + o
2øk,løn

fQk̂l̂,2su1k + u1ldgXhk,lj,

whereQ, Q ĵ, andQk̂l̂ depend only on]1 andu1s, 2øsøn. From this we can deduce that

]Q

]xk
= fu1k,Qk̂g

and, therefore, it seems natural to use the operators ad§s

t to constructQ. At this stage the only
freedom left is in choosing operatorsDk which must be the operators in]1 with constant coeffi-
cients. To ensure thatfI ,Hg=0 these operators must satisfy the relation

fDn,psx1 − xidg + s1 + mdff§sx1 − xid,Dn−1g,psx1 − xidg + mfDn−1,psx1 − xidg]1

−
s1 + md

2
p8sx1 − xidDn−1 −

s1 − md
2

Dn−1p8sx1 − xid = 0,

which is equivalent to a large set of identities. It is remarkable that the constants inDk can be
chosen in such a way that all these identities are satisfiedsLemma 3 of Sec. VId. The choice of the
constants is related to the Bernoulli–Hurwitz numbers and is described above. The complete proof
of the theorem is quite technical and is given in a separate section.

III. EXAMPLES: FORMULAS FOR TWO, THREE, AND FOUR PARTICLES

To illuminate our formulas let us consider more explicitly the case of smalln.
Two-particle case:In this case we have the operator

H = − m]1
2 − ]2

2 + 2sm+ 1dp12 = − m]1
2 − ]2

2 + 2u12

which is trivially integrable since the operator]1+]2 obviously commutes with it. This system
gives the formula for operatorI h1,2j which starts the recursive construction of the integralI s12d.
We have

I = I h1,2j =
1

2
sH + s]1 + ]2d2d = ]1]2 +

s1 − md
2

]1
2 + sm+ 1dp12 = ]1]2 + D2 + u12,

X = Xh1,2j = Qh1,2j = D2 + u12 = D2 + f§2,Dg.
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Three-particle case:The integrals for the problem in this case have been found by the
author.14 The operator of the third order has the form

I = ]1]2]3 +
s1 − md

2
s]2 + ]3d]1

2 +
s1 − mds1 − 2md

3!
]1

3 + sm+ 1dsmp23]1 + p13]2 + p12]3d

+
s1 − md

2
sm+ 1dssp12 + p13d]1 + ]1sp12 + p13dd

= ]1]2]3 + p0,2s]2 + ]3d]1
2 + u23]1 + u13]2 + u12]3 + D3 + f§2,D

2g + f§3,D
2g.

OperatorI can be rewritten as

I = I h2,3j]1 + I h1,3j]2 + I h1,2j]3 − 2]1]2]3 + X,

where

X = Q = D3 + f§2,D
2g + f§3,D

2g and I h2,3j = ]2]3 + u23.

Four-particle case:One can check by direct calculation that the operator

I = ]1]2]3]4 +
s1 − md

2
s]2]3 + ]2]4 + ]3]4d]1

2 +
s1 − mds1 − 2md

3!
s]2 + ]3 + ]4d]1

3

+
s1 − mds1 − 2mds1 − 3md

4!
]1

4 + msm+ 1dsp34]1]2 + p24]1]3 + p23]1]4d + sm+ 1dsp14]2]3

+ p13]2]4 + p12]3]4d +
s1 − mdsm+ 1d

2
]1ssp13 + p14d]2 + sp12 + p14d]3 + sp12 + p13d]4d

+
s1 − mdsm+ 1d

2
ssp13 + p14d]2 + sp12 + p14d]3 + sp12 + p13d]4d]1 +

s1 − mds1 − 2mdsm+ 1d
3!

ssp12

+ p13 + p14d]1
2 + ]1sp12 + p13 + p14d]1 + ]1

2sp12 + p13 + p14dd +
s1 − mdmsm+ 1d

2
sp34 + p24 + p23d]1

2

+ sm+ 1d2ss1 − mdsp14p24 + p14p34 + p24p34d + msp12p34 + p13p24 + p14p23dd

commutes withH. The operatorI can be rewritten in the following recursive form:

I = 3]1]2]3]4 + X + I h2,3,4j]1 + I h1,3,4j]2 + I h1,2,4j]3 + I h1,2,3j]4 − I h3,4j]1]2 − I h2,4j]1]3 − I h2,3j]1]4

− I h1,4j]2]3 − I h1,3j]2]4 − I h1,2j]3]4, s16d

where

X = Q + Xh2,3jQh1,4j + Xh2,4jQh1,3j + Xh3,4jQh1,2j

= D4 + f§2,D
3g + f§3,D

3g + f§4,D
3g + f§2,f§3,D

2gg

+ f§2,f§4,D
2gg + f§3,f§4,D

2gg + u23sD2 + f§4,Dgd + u24sD2 + f§3,Dgd + u34sD2 + f§2,Dgd.

and

I h2,3,4j = ]1]2]3 + u23]1 + u13]2 + u12]3.
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IV. INTEGRABILITY OF THE DEFORMED ELLIPTIC QUANTUM CM PROBLEM

Let us introduce the functionu=m−1x1+x2+¯ +xn and consider the corresponding “ad”-
operation: adusLd=fu ,Lg. Following to the procedure known for the usual CM systemssee, for
example, Olshanetsky and Perelomov8 consider the operatorsLk=adu

ksId, k=0,1, . . . ,n−1.
Theorem 2: Operators Lk=adu

ksId, k=0,1, . . . ,n−1, where I is given by (12), commute with
each other and with operator H.

Proof: The proof is similar to the nondeformed case.8,11

Let us first prove thatLk commute withH and witho j=1
n ] j. Proof is by induction ink. Fork=0

it follows from Theorem 1. Let us assume that this is true fork= i, then fork= i +1 we have by the
Jacobi identity

fH,Li+1g = fH,fu,Ligg = ffH,ug,Lig + ffLi,Hg,ug = 2Fo
j=1

n

] j,LiG + f0,ug = 0

and

Fo
j=1

n

] j,Li+1G = Fo
j=1

n

] j,fu,LigG = FFo
j=1

n

] j,uG,LiG + FFLi,o
j=1

n

] jG,uG
= fsm−1 + n − 1dId,Li

mg + f0,ug = 0.

To prove that operatorsLk and Ll, kÞ l, commute one can use the arguments of Oshima’s
paper.11 Consider an involutiond on the space of all differential operators onRn corresponding to
the changex→−x and the anti-involutionp such that the operatorL* is a formal adjoint toL. Our
operatorsLk have the following properties with respect to these involutions:Lk

* =Lk
d=s−1dkLk.

Now, consider the commutatorC=fLk,Llg. By the Jacobi identityfC,Hg=0, therefore we can use
Berezin’s lemma15 which states that in such a case the highest symbol ofC is polynomial inx. In
this case it is also periodic, hence the highest symbol must be constant. We have

Cd = fLk,Llgd = fLk
d,Ll

dg = fLk
* ,Ll

*g = − fLk,Llg * = − C * . s17d

Since the highest symbol ofC is constant the highest symbols ofC* and Cd are the same, which
contradicts tos17d unless the highest symbol ofC is zero and hencefLk,Llg=0.

Theorem 3: Deformed quantum CM problem (1) is integrable for all n and m and algebra-
ically integrable for integer m.

Proof: The complete family of the commuting quantum integrals for arbitrarym is given by
the previous theorems. The algebraic integrability in the case whenm is integer follows from the
general result due to Chalykh, Etingof, and Oblomkov4 ssee Theorem 3.8d.

V. TRIGONOMETRIC AND RATIONAL DEGENERATIONS

Trigonometric degenerations of the Weierstrassp-function corresponds to the case when one
of the half-periodsv1 or v2 is infinite, which happens when two of the roots of the polynomials3d
collide. For example, the case ofe1=e2=a ande3=−2a corresponds tov=`, ṽ= isp /Î12ad, and
pszd=a+s3a/sinh2Î3azd. Choosinga= 1

3 we have

pszd =
1

3
+

1

sinh2 z
= z−2 − o

k=1

`
22k+2

s2k + 2d
B2k+2

s2kd!
z2k, §szd = −

1

3
z+ cothz,

g2k = −
22k+2

s2k + 2d
B2k+2

s2kd!
,

whereB2k+2 are the classical Bernoulli numbers defined by the expansion
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z

ez − 1
= 1 −

1

2
z+ o

k=1

`
B2k

s2kd!
z2k.

In this case the HamiltonianH takes the form

H = − sm]1
2 + ]2

2 + ¯ + ]n−1
2 + ]n

2d +
sm+ 1dsn − 1d

3
S1 − m+

mn

2
D + o

k=2

n
2sm+ 1d

sinh2sx1 − xkd

+ o
2ø j,køn

2msm+ 1d
sinh2sxj − xkd

.

Therefore, the formulas for the integrals in this case can be obtained using the following recursive
formulas for constantsp2i,k:

p2i,k =
s1 − msk − 2i − 1dd

k − 2i
p2i,k−1 + s1 + md o

j=1

jÞ2

i−1

Ck−2j+1
k−2i 22i−2j+2

s2i − 2j + 2d
B2i−2j+2p2j−2,k−1.

The integrability of this problem was shown by Chalykh, Feigin, and Veselov.2 Sergeev and
Veselov16 found a recurrent formula for the quantum integrals with the highest symbols given by
the deformed Newton sums. Our formulas correspond to the deformed elementary symmetric
polynomials and seem to be new even in that degenerate case.

The rational degeneration corresponds to both periods being equal to infinity. In this case
Pszd=z−2 and allg2k=0. Therefore, in this case only constantsp0,k k=1,2, . . ., arenonzero.

VI. PROOF OF THEOREM 1

We prove Theorem 1 by induction inn. For smalln we showed this in Sec. III. Now assume
that the statement of the theorem is true for allk,n and show that it is true fork=n.

Under this assumption, let us first show that commutatorfI ,Hg can be reduced to an expres-
sion on the additional termsX, Xĵ, andXk̂l̂.

Lemma 1:

fI,Hg = fX,Hg + o
j=1

n

3Xĵ] j,2o
l=1

lÞ j

n

ujl4 + o
1øk,løn

fXk̂l̂]k]l,2uklg. s18d

Proof: Using s12d we obtain

fI,Hg = o
t=1

n−2

s− 1dt+1 o
sPSstd

fI ŝ]s,Hg + s− 1dnsn − 1df]1 ¯ ]n,Hg + fX,Hg,

which is equal to

s− 1dnsn − 1dF]1 ¯ ]n,2 o
1ø j,køn

ujkG + fX,Hg + o
j=1

n

3I ĵ] j,Hĵ − D j + 2o
k=1

kÞ j

n

ujk4
+ o

t=2

n−2

s− 1dt+1 o
sPSstd 3I ŝ]s,Hŝ − Ds + 2o

jPs
o
k=1

kÞ j

n

ujk − 2 o
j,k

j ,kPs

ujk4 .

Since I ŝ commutes withHŝ sby the induction assumptiond and I ŝ with −Ds ssince it does not
depend onxi, i Psd we have

033506-8 L. A. Khodarinova J. Math. Phys. 46, 033506 ~2005!

                                                                                                                                    



fI,Hg = o
j=1

n

3I ĵ] j,2o
k=1

kÞ j

n

ujk4 + o
t=2

n−2

s− 1dt+1 o
sPSstd 3I ŝ]s,2o

jPs
o
k=1

kÞ j

n

ujk − 2 o
j,k

j ,kPs

ujk4 + s− 1dnsn − 1d

3F]1 ¯ ]n,2 o
1ø j,køn

ujkG + fX,Hg.

Now we uses12d again and obtain

fI,Hg = o
j=1

n

o
t=1

n−3

s− 1dt+1 o
sPSs ĵ ;td 3I ĵŝ]s] j,2o

k=1

kÞ j

n

ujk4 + s− 1dnsn − 1dF]1 ¯ ]n,2 o
1ø j,køn

ujkG

+ o
j=1

n

3s− 1dn−1sn − 2d]1 ¯ ]n + Xĵ] j,2o
k=1

kÞ j

n

ujk4 + fX,Hg + o
t=2

n−2

s− 1dt+1

3o
sPSstd3I ŝ]s,2o

jPs
o
k=1

kÞ j

n

ujk − 2 o
j,k

j ,kPs

ujk4 .

If we cancel the repeated terms we obtain

fI,Hg = o
j=1

n

3s− 1dn−1sn − 2d]1 ¯ ]n + Xĵ] j,2o
k=1

kÞ j

n

ujk4 + o
t=2

n−2

s− 1dt o
sPSstd FI ŝ]s,2 o

j,k

j ,kPs

ujkG
+ s− 1dnsn − 1dF]1 ¯ ]n,2 o

1ø j,køn

ujkG + fX,Hg.

We uses12d again,

fI,Hg = o
j=1

n

3s− 1dn−1sn − 2d]1 ¯ ]n + Xĵ] j,2o
k=1

kÞ j

n

ujk4 + o
t=3

n−2

s− 1dt o
sPSstd FI ŝ]s,2 o

j,k

j ,kPs

ujkG
+ o

1ø j,køn
Fo

t=1

n−4

s− 1dt+1 o
sPSs ĵ k̂;td

I ŝ ĵ k̂]s] j]k,2ujkG + o
1ø j,køn

fs− 1dn−2sn − 3d]1 ¯ ]n

+ Xĵk̂] j]k,2ujkg + s− 1dnsn − 1dF]1 ¯ ]n,2 o
1ø j,køn

ujkG + fX,Hg.

Finally, canceling the repeated terms, we get

fI,Hg = s− 1dn23]1 ¯ ]n,− sn − 2do
j=1

n

o
k=1

kÞ j

n

ujk + sn − 3d o
1ø j,køn

ujk + sn − 1d o
1ø j,køn

ujk4 + fX,Hg

+ o
j=2

n

3Xĵ] j,2o
k=1

kÞ j

n

ujk4 + o
1ø j,køn

fXĵk̂] j]k,2ujkg,

which simplifies to
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fI,Hg = fX,Hg + o
j=1

n

3Xĵ] j,2o
k=1

kÞ j

n

ujk4 + o
1ø j,køn

fXĵk̂] j]k,2ujkg.

Lemma 1 is proven.
Lemma 2:In the nondeformed case

fI 1̂,H1̂g = fX1̂,H1̂g + o
j=2

n

3X1̂ĵ] j,2o
l=2

lÞ j

n

ujl4 + o
2øk,løn

fX1̂k̂l̂]k]l,2uklg = 0. s19d

Proof: To prove that

fI 1̂,H1̂g = fX1̂,H1̂g + o
j=2

n

3X1̂ĵ] j,2o
l=2

lÞ j

n

ujl4 + o
2øk,løn

fX1̂k̂l̂]k]l,2uklg

one must repeat the arguments of Lemma 1. We will need the addition theorem for the Weierstrass
elliptic function,12

Tijk ; det1pi j p jk pki

pi j8 p jk8 pki8

1 1 1
2 ; 0.

Two cases must be considered to prove the lemma:n is odd andn is even. Ifn is evens19d is
reduced to 2o j=2

n o l=2
lÞ j

n fX1̂ĵ] j ,ujlg=0, asX1̂=0 andX1̂k̂l̂ =0, 2øk, l øn. In this case we have

o
j=2

n

o
l=2

lÞ j

n

fX1̂ĵ] j,ujlg = o
j=2

n

o
l=2

lÞ j

n

X1̂ĵf] j,ujlg = msm+ 1do
j=2

n

o
l=2

lÞ j

n

X1̂ĵp jl8

= msm+ 1d o
2ø j,løn

p jl8 sX1̂ĵ − X1̂l̂d

= msm+ 1d o
2øi, j,køn

TijkX1̂î ĵ k̂ = 0.

If n is odd s19d becomesfX1̂,−D1̂g+o2øk,lønfX1̂k̂l̂]k]l ,2uklg=0, since in this caseX1̂ĵ =0, j
=2, . . . ,n. We have

fX1̂,− D1̂g + o
2øk,løn

fX1̂k̂l̂]k]l,2uklg = o
k=2

n ]2X1̂

]xk
2 + 2o

k=2

n ]X1̂

]xk
]k + 2 o

2øk,løn

X1̂k̂l̂sukl8 ]l − ukl8 ]k − ukl9 d

= o
k=2

n ]2X1̂

]xk
2 − 2 o

2øk,løn

X1̂k̂l̂ukl9 + 2o
k=2

n

1 ]X1̂

]xk
− o

l=2

lÞk

n

X1̂k̂l̂ukl8 2]k = 0.

Lemma 2 is proven.
Lemma 3:The operatorsDn satisfy the relation
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fDn,psx1 − xidg + s1 + mdff§sx1 − xid,Dn−1g,psx1 − xidg + mfDn−1,psx1 − xidg] −
s1 + md

2

3p8sx1 − xidDn−1 −
s1 − md

2
Dn−1p8sx1 − xid = 0 s20d

for any i =2, . . . ,n, where]=] /]x1.
Proof: Let us denote the left-hand side of the relations20d by Yn.
It can be shown by a simple direct calculation thats20d is true if n=1,2,3,4. Theequations

in these cases are

n = 1:Y1 = f],pg + mf1,pg] −
s1 + md

2
p8 −

s1 − md
2

p8 = 0,

n = 2:Y2 = F1 − m

2
]2,pG + s1 + mdff§,]g,pg + mf],pg] −

s1 + md
2

p8] −
s1 − md

2
]p8 = 0,

n = 3:Y3 = F1 − 2m

3
]3,pG + s1 + mdff§,]2g,pg + mf]2,pg] −

s1 + md
2

p8]2 −
s1 − md

2
]2p8 = 0,

n = 4:Y4 = F1 − 3m

4
]4,pG + s1 + mdff§,]3g,pg + mf]3,pg] −

s1 + md
2

p8]3 −
s1 − md

2
]3p8 = 0.

For nù5 we uses6d to obtain

Yn = fp0,n]
n,pg + s1 + mdff§,p0,n−1]

n−1g,pg + mfp0,n−1]
n−1,pg] −

s1 + md
2

p8p0,n−1]
n−1

−
s1 − md

2
p0,n−1]

n−1p8 + Fo
i=2

fn/2g

p2i,n]
n−2i,pG + s1 + mdFF§, o

i=2

fsn−1d/2g

p2i,n−1]
n−1−2iG,pG

+ mF o
i=2

fsn−1d/2g

p2i,n−1]
n−1−2i,pG] −

s1 + md
2

p8 o
i=2

fsn−1d/2g

p2i,n−1]
n−1−2i

−
s1 − md

2 o
i=2

fsn−1d/2g

p2i,n−1]
n−1−2ip8.

We can expressp0,n throughp0,n−1 and p2i,n throughp2l,n−1, l =0, . . . ,2i, as described bys9d and
obtain

Yn = F1 − msn − 1d
n

p0,n−1]
n,pG + s1 + mdff§,p0,n−1]

n−1g,pg + mfp0,n−1]
n−1,pg]

−
s1 + md

2
p8p0,n−1]

n−1 −
s1 − md

2
p0,n−1]

n−1p8 + mF o
i=2

fsn−1d/2g

p2i,n−1]
n−1−2i,pG] − s1 + md

3F o
i=2

fsn−1d/2g

s2i − 2d!Cn−1
n−2ig2i−2p0,n−1]

n−2i,pG + F o
i=2

fsn−1d/2g
s1 − msn − 2i − 1dd

n − 2i
p2i,n−1]

n−2i,pG
+ s1 + mdFF§, o

i=2

fsn−1d/2g

p2i,n−1]
n−1−2iG,pG −

s1 + md
2

p8 o
i=2

fsn−1d/2g

p2i,n−1]
n−1−2i
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−
s1 − md

2 o
i=2

fsn−1d/2g

p2i,n−1]
n−1−2ip8

− s1 + md o
i=2

fsn−1d/2g−2F o
j=i+2

fsn−1d/2g

s2j − 2i − 2d!Cn−2i−1
n−2j g2j−2i−2p2i,n−1]

n−2j,pG .

Denote

Wk = F1 − msk − 1d
k

]k,pG + s1 + mdff§,]k−1g,pg + mf]k−1,pg] −
s1 + md

2
p8]k−1 −

s1 − md
2

]k−1p8

− s1 + md o
i=2

fsk−1d/2g

fs2i − 2d!Ck−1
k−2ig2i−2]

k−2i,pg,

then

Y5 = p0,4W5 + p4,4Y1, Y6 = p0,5W6 + p4,5Y2,

Y7 = p0,6W7 + p4,6Y3 + p6,6Y1, Y8 = p0,7W8 + p4,7Y4 + p6,7Y2

and forkù5,

Y2k−1 = p0,2k−2W2k−1 + o
i=2

k−3

p2i,2k−2W2k−1−2i + p2k−4,2k−2Y3 + p2k−2,2k−2Y1,

Y2k = p0,2k−1W2k + o
i=2

k−3

p2i,2k−1W2k−2i + p2k−4,2k−1Y4 + p2k−2,2k−1Y2.

Below we show thatWn=0 for nù5. First,

10

1 + m
W5 = 2f]4,pg] − 3]4p8 + 10ff§,]4g,pg − 5p8]4 − 80fg2]

1,pg + 2]f]3,pg] − 3p8]4 − 3]4p8

+ 10]ff§,]3g,pg + 10f],pgf§,]3g + 10f§,]gf]3,pg − 80fg2]
1,pg.

We calculate that]ff§ ,]3g ,pg=−1
4]f]3,pg]+ 1

2]p8]3+ 1
4]4p8, therefore

10

1 + m
W5 = −

1

2
]f]3,pg] − 3p8]4 −

1

2
]4p8 + 5]p8]3 + 10p8f§,]3g + 10pf]3,pg − 80g2p8 − 5p-]2

−
5

2
ps4d] −

1

2
ps5d − 80g2p8 + 10p8s3p]2 + 3p8] + p9d + 10ps3p8]2 + 3p9] + p-d = 0.

In this calculation the identities which are the derivatives of the differential equation of the
Weierstrass elliptic functions3d have been used. At the next step we use the induction assumption
that for anys,k, Ws=0. ThenWk can be simplified into

Wk =
1 + m

k
f]k−1,pg] −

s1 + md
2

k − 2

k
]k−1p8 + s1 + mdff§,]k−1g,pg −

s1 + md
2

p8]k−1

− s1 + md o
j=2

fk−1/2g

fs2j − 2d!Ck−1
k−2jg2j−2]

k−2j,pg.

We consider
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1

1 + m
Wk =

1

k
f]k−1,pg] −

k − 2

2k
]k−1p8 + ff§,]k−1g,pg −

1

2
p8]k−1 − o

j=2

fk−1/2g

fs2j − 2d!Ck−1
k−2jg2j−2]

k−2j,pg.

If k=2l,

1

1 + m
W2l =

1

2l
f]2l−1,pg] −

l − 1

2l
]2l−1p8 + ff§,]2l−1g,pg −

1

2
p8]2l−1 − o

j=2

l−1

fs2j − 2d!C2l−1
2l−2jg2j−2]

2l−2j,pg

and if k=2l +1,

1

1 + m
W2l+1 =

1

s2l + 1d
f]2l,pg] −

2l − 1

2s2l + 1d
]2lp8 + ff§,]2lg,pg −

1

2
p8]2l

− o
j=2

l

fs2j − 2d!C2l
2l+1−2jg2j−2]

2l+1−2j,pg.

We show below thatW2l =0. The case ofW2l+1 can be dealt with in the same way,

1

1 + m
W2l =

1

2l
f]2l−1,pg] −

1

2l
sl − 1d]2l−1p8 + ff§,]2l−1g,pg −

1

2
p8]2l−1

− o
j=2

l−1

fs2j − 2d!C2l−1
2l−2jg2j−2]

2l−2j,pg

=
1

2l
f]]2l−2,pg] −

l − 1

2l
]]2l−2p8 + ff§,]]2l−2g,pg −

1

2
p8]]2l−2

− o
j=2

l−1

fs2j − 2d!C2l−1
2l−2jg2j−2]]2l−2j−1,pg

=
1

2l
]f]2l−2,pg] −

l − 1

2l
]]2l−2p8 −

l − 1

2l
p8]]2l−2

+ ]ff§,]2l−2g,pg + f],pgf§,]2l−2g + f§,]gf]2l−2,pg − ]o
j=2

l−1

fs2j − 2d!C2l−1
2l−2jg2j−2]

2l−2j−1,pg

− o
j=2

l−1

s2j − 2d!C2l−1
2l−2jg2j−2p8]2l−2j−1.

From the inductive assumption we have thatW2l−1=0, then

ff§,]2l−2g,pg = −
1

2l − 1
f]2l−2,pg] +

2l − 3

2s2l − 1d
]2l−2p8 +

1

2
p8]2l−2

+ o
j=2

l−1

fs2j − 2d!C2l−2
2l−1−2jg2j−2]

2l−1−2j,pg

and therefore,
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−
1

1 + m
W2l =

1

2ls2l − 1d
]f]2l−2,pg] +

1

2ls2l − 1d
]]2l−2p8 −

1

2
p9]2l−2 −

1

2l
p8]]2l−2

+ ]o
j=2

l−1 F s2l − 2d!
s2l − 2jd!

g2j−2]
2l−1−2j,pG − p8f§,]2l−2g − pf]2l−2,pg

+ o
j=2

l−1

s2j − 2d!C2l−1
2l−2jg2j−2p8]2l−2j−1

=
1

2ls2l − 1d
]f]2l−1,pg −

1

2
p9]2l−2 −

1

2l
p8]2l−1 − p8f§,]2l−2g

− pf]2l−2,pg + ]o
j=2

l−1
s2l − 2d!
s2l − 2jd!

g2j−2f]2l−1−2j,pg + o
j=2

l−1

s2j − 2d!C2l−1
2l−2jg2j−2p8]2l−2j−1.

The commutators can be rewritten as

f]2l−1,pg = o
k=0

2l−2

C2l−1
2l−1−kps2l−1−kd]k, f]2l−2,pg = o

k=0

2l−3

C2l−2
2l−2−kps2l−2−kd]k,

f§,]2l−2g = o
k=0

2l−3

C2l−2
2l−2−kps2l−3−kd]k, f]2l−1−2j,pg = o

k=0

2l−2−2j

C2l−1−2j
2l−1−2j−kps2l−1−2j−kd]k,

and, hence,

−
1

1 + m
W2l =

1

2ls2l − 1d o
k=1

2l−1

C2l−1
2l−kps2l−kd]k +

1

2ls2l − 1d o
k=0

2l−2

C2l−1
2l−1−kps2l−kd]k − o

k=0

2l−3

C2l−2
2l−2−kp8ps2l−3−kd]k

− o
k=0

2l−3

C2l−2
2l−2−kpps2l−2−kd]k + o

j=2

l−1
s2l − 2d!
s2l − 2jd!

g2j−2 o
k=1

2l−1−2j

C2l−1−2j
2l−2j−kps2l−2j−kd]k

+ o
j=2

l−1
s2l − 2d!
s2l − 2jd!

g2j−2 o
k=0

2l−2−2j

C2l−1−2j
2l−1−2j−kps2l−2j−kd]k + o

j=2

l−1

s2j − 2d!C2l−1
2l−2jg2j−2p8]2l−2j−1

−
1

2
p9]2l−2 −

1

2l
p8]2l−1

which can be rewritten as

−
1

1 + m
W2l =

1

2ls2l − 1d o
k=1

2l−1

C2l−1
2l−kps2l−kd]k +

1

2ls2l − 1d o
k=0

2l−2

C2l−1
2l−1−kps2l−kd]k −

1

2
p9]2l−2 −

1

2l
p8]2l−1

− o
k=0

2l−3

C2l−2
2l−2−ksp8ps2l−3−kd + pps2l−2−kdd]k

+ o
k=1

2l−5

o
j=2

l−1−fk/2g
s2l − 2d!
s2l − 2jd!

g2j−2C2l−1−2j
2l−2j−kps2l−2j−kd]k

+ o
k=0

2l−6

o
j=2

l−1−fsk+1d/2g
s2l − 2d!
s2l − 2jd!

g2j−2C2l−1−2j
2l−1−2j−kps2l−2j−kd]k
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+ o
k=1

l−2

s2l − 2k − 2d!C2l−1
2k g2l−2k−2p8]2k−1.

It is shown below that the coefficients by all]k, k=0,1, . . . ,2l −1, are zero. We have

]2l−1:
1

2ls2l − 1d
C2l−1

1 p8 −
1

2l
p8 = 0,

]2l−2:
1

2ls2l − 1d
C2l−1

2 p9 +
1

2ls2l − 1d
C2l−1

1 p9 −
1

2
p9 = 0,

]2l−3:
1

2ls2l − 1d
C2l−1

3 ps3d +
1

2ls2l − 1d
C2l−1

2 ps3d − 2C2l−2
1 p8p

= S 12

2ls2l − 1d
C2l−1

3 +
12

2ls2l − 1d
C2l−1

2 − 2C2l−2
1 Dp8p = 0,

]2l−4:
1

2ls2l − 1d
C2l−1

4 ps4d +
1

2ls2l − 1d
C2l−1

3 ps4d − C2l−2
2 sp8p8 + pps2dd

= S 12

2ls2l − 1d
C2l−1

4 +
12

2ls2l − 1d
C2l−1

3 − C2l−2
2 Dsp8p8 + pps2dd = 0.

Whenk=2l −2q−1, q=2, . . . ,l −1, coefficient by]2l−2q−1 is

K2l−2q−1 =
s2l − 2d!

s2l − 2q − 1d!S ps2q+1d

s2q + 1d!
−

p8ps2q−2d + pps2q−1d

s2q − 1d!
+ o

j=2

q−1
g2j−2

s2q + 1 − 2jd!
ps2q+1−2jd

+
2q

2q − 1
g2q−2p8D .

To show that this coefficient is zero let us calculate its Laurent expansion and show that it consists
of the terms by the positive degrees ofz only. Since it is also a doubly periodic function it can only
be zero. The Laurent expansion for the derivatives of the Weierstrass function are given by

p8 = − 2z−3 + Oszd,

ps2q+1d = − s2q + 2d!z−s2q+3d + Oszd,

ps2q+1−2jd = − s2q + 2 − 2jd!z−s2q−2j+3d + Oszd.

Therefore, we can find that

pps2q−1d = − s2qd!z−s2q+3d − s2qd!o
i=1

q−1

g2iz
−s2q+1−2id + Oszd,

p8ps2q−2d = − 2s2q − 1d!z−s2q+3d − 2s2q − 2d!g2q−2z
−3 + s2q − 1d!o

i=1

q−1

2ig2iz
−s2q+1−2id + Oszd,

and
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−
sp8ps2q−2d + pps2q−1dd

s2q − 1d!
= s2q + 2dz−s2q+3d + o

i=1

q−2

s2q − 2idg2iz
−s2q+1−2id +

4q

2q − 1
g2q−2z

−3 + Oszd.

Therefore

K2l−2q−1 =
s2l − 2d!

s2l − 2q − 1d!S− s2q + 2dz−s2q+3d + s2q + 2dz−s2q+3d + o
i=1

q−2

s2q − 2idg2iz
−s2q+1−2id

+
4q

2q − 1
g2q−2z

−3 − o
i=2

q−1

g2j−2s2q + 2 − 2jdz−s2q−2j+3d − g2q−2
4q

2q − 1
z−3 + OszdD

=
s2l − 2d!

s2l − 2q − 1d!
sOszdd = 0.

Whenk=2l −2q; q=3, . . . ,l −1, coefficient by]2l−2q is

K2l−2q =
s2l − 2d!

s2l − 2qd!S 1

s2qd!
ps2qd −

sp8ps2q−3d + pps2q−2dd
s2q − 2d!

+ o
j=2

q−1
1

s2q − 2jd!
g2j−2p

s2q−2jdD .

The Laurent expansion for the derivatives of the Weierstrass function are given by

ps2qd = s2q + 1d!z−s2q+2d + s2qd!g2q + Osz2d,

ps2q−2jd = s2q − 2j + 1d!z−s2q−2j+2d + s2q − 2jd!g2q−2j + Osz2d,

and we calculate that

pps2q−2d = s2q − 1d!z−s2q+2d + s2q − 2d!s2qdg2q−2z
−2 + s2q − 1d!sq + 1dg2q

+ s2q − 1d!So
i=1

q−2

g2iz
−s2q−2idD + Osz2d,

p8ps2q−3d = 2s2q − 2d!z−s2q+2d − s2q − 2d!s2qdg2q−2z
−2 − s2q − 2d!s2qdS2q + 2

3
Dg2q

− s2q − 2d!o
i=1

q−2

2ig2iz
−s2q−2id + Osz2d,

and

−
spps2q−2d + p8ps2q−3dd

s2q − 2d!
= − s2q + 1dz−s2q+2d − o

i=1

q−2

s2q − 1 − 2idg2iz
−s2q−2id

− S s1 + qds2q − 3d
3

Dg2q + Osz2d.

Therefore
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K2l−2q =
s2l − 2d!

s2l − 2qd!Ss2q + 1dz−s2q+2d + g2q − s2q + 1dz−s2q+2d − o
i=1

q−2

s2q − 1 − 2idg2iz
−s2q−2id

−
s1 + qds2q − 3d

3
g2q + o

j=2

q−1

g2j−2s2q − 2j + 1dz−s2q−2j+2d + o
j=2

q−1

g2j−2g2q−2j + Osz2dD
=

s2l − 2d!
s2l − 2qd!S−

s2q + 3dsq − 2d
3

g2q + o
j=2

q−1

g2j−2g2q−2j + Osz2dD = 0.

Here we have used the identitys5d.
The last case to consider is whenk=0. In this case we need to show that

K0 =
1

2ls2l − 1d
ps2ld − sp8ps2l−3d + pps2l−2dd + o

j=2

l−1
s2l − 2d!
s2l − 2jd!

g2j−2p
s2l−2jd

is zero. We have

K0 = s2l − 2d!Ss2l + 1dz−s2l+2d + g2l − s2l + 1dz−s2l+2d − o
i=1

l−2

s2l − 1 − 2idg2iz
−s2l−2id

−
s1 + lds2l − 3d

3
g2l + o

j=2

l−1

g2j−2s2l − 2j + 1dz−s2l−2j+2d + o
j=2

l−1

g2j−2g2l−2j + Osz2dD
= s2l − 2d!S−

s2l + 3dsl − 2d
3

g2l + o
j=2

l−1

g2j−2g2l−2j + Osz2dD = 0.

The proof of Lemma 3 is now finished.
Lemma 4:The following identity holds:

FQ,o
j=2

n

u1jG + mo
j=2

n

fQ ĵ,u1jg] −
s1 + md

2 o
j=2

n

u1j8 Q ĵ −
s1 − md

2 o
j=2

n

Q ĵu1j8 + mo
k=2

n

o
l=2

lÞk

n

fQk̂l̂,u1kgu1l = 0.

Here again]=] /]x1.
Proof: From Lemma 3,

fDn,u1jg + ff§ j,D
n−1g,u1jg + mfDn−1,u1jg] −

s1 + md
2

u1j8 Dn−1 −
s1 − md

2
Dn−1u1j8 = 0. s21d

Note also that

o
j=2

n

o
sPSs1̂ĵ ;td

ad§s

t sfDn−t−1,u1jg]d = o
j=2

n

o
sPSs1̂ĵ ;td

ad§s

t sfDn−t−1,u1jgd]

+ o
k=2

n

o
l=2

lÞk

n

o
sPSs1̂k̂l̂;td

fad§s

t sDn−2−td,u1kgu1l .

We sums21d and then uses11d to obtainQ andQ
k̂

n
. We have
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0 = o
t=0

fn/2g

o
j=2

n

o
sPSs1̂ĵ ;td

ad§s

t SfDn−t,u1jg + ff§ j,D
n−t−1g,u1jg + mfDn−t−1,u1jg] −

s1 + md
2

u1j8 Dn−t−1

−
s1 − md

2
Dn−t−1u1j8 D

= o
t=0

fn/2g

o
j=2

n

o
sPSs1̂ĵ ;td

fad§s

t sDn−td,u1jg + m o
t=0

fsn−2d/2g

o
k=2

n

o
l=2

lÞk

n

o
sPSs1̂k̂l̂;td

fad§s

t sDn−2−td,u1kgu1l

+ m o
t=0

fsn−1d/2g

o
j=2

n

o
sPSs1̂ĵ ;td

ad§s

t sfDn−t−1,u1jgd] + o
t=0

fsn−1d/2g

o
j=2

n

o
sPSs1̂ĵ ;td

fad§h j ,sj
t sDn−t−1d,u1jg

−
s1 + md

2 o
t=0

fsn−1d/2g

o
j=2

n

o
sPSs1̂ĵ ;td

u1j8 ad§s

t sDn−t−1d −
s1 − md

2 o
t=0

fsn−1d/2g

o
j=2

n

o
sPSs1̂ĵ ;td

ad§s

t sDn−t−1du1j8

= o
t=0

fn/2g

o
sPSs1̂;td

Fad§s

t sDn−td,o
j=2

n

u1jG + m o
t=0

fsn−1d/2g

o
j=2

n

o
sPSs1̂ĵ ;td

ad§s

t sfDn−t−1,u1jgd]

+ m o
t=0

fsn−2d/2g

o
k=2

n

o
l=2

lÞk

n

o
sPSs1̂k̂l̂;td

fad§s

t sDn−2−td,u1kgu1l −
s1 + md

2 o
t=0

fsn−1d/2g

o
j=2

n

o
sPSs1̂ĵ ;td

u1j8 ad
§

s
m

t sDn−t−1d

−
s1 − md

2 o
t=0

fsn−1d/2g

o
j=2

n

o
sPSs1̂ĵ ;td

ad§s

t sDn−t−1du1j8 = FQ,o
j=2

n

u1jG + mo
j=2

n

fQ ĵ,u1jg]

−
s1 + md

2 o
j=2

n

u1j8 Q ĵ −
s1 − md

2 o
j=2

n

Q ĵu1j8 + mo
k=2

n

o
l=2

lÞk

n

fQk̂l̂,u1kgu1l .

Lemma 4 is proven.
Lemma 5:The following identity holds:

fD,Qg = 2o
k=2

n

fu1k,Qk̂g]k − 2mo
k=2

n

fu1k,Qk̂g]1 − s1 + mdo
k=2

n

fu1k8 ,Qk̂g + mo
k=2

n

o
l=2

lÞk

n

fu1k,fu1l,Qk̂l̂gg.

s22d

Proof:

fD,Qg = 2m
]Q

]x1
]1 + 2o

k=2

n
]Q

]xk
]k + m

]2Q

]x1
2 + o

k=2

n
]2Q

]xk
2 .

From s11d it follows that ]Q /]xk=fu1k,Qk̂g and ]Q /]x1=−ok=2
n fu1k,Qk̂g, therefore ]2Q /]xk

2

=−fu1k8 ,Qk̂g and]2Q /]x1
2=−ok=2

n fu1k8 ,Qk̂g+ok=2
n o l=2

lÞk

n fu1k,fu1l ,Qk̂l̂gg, and we arrive ats22d.

Lemma 6:

R= fQ,Hg + o
j=2

n

3Q ĵ] j,2o
l=1

lÞ j

n

ujl4 + o
2øk,løn

fQk̂l̂,2su1k + u1ldgXhk,lj = 0.
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Proof: We have

R= fD,Qg + 2o
k=2

n

fQ,u1kg + 2o
j=2

n

o
l=1

lÞ j

n

fQ ĵ,ujlg] j + 2o
j=2

n

o
l=1

lÞ j

n

Q ĵf] j,ujlg + 2 o
2øk,løn

fQk̂l̂,u1k + u1lgukl.

Using Lemma 5,R is rewritten as

R= 2o
k=2

n

fu1k,Qk̂g]k − 2mo
k=2

n

fu1k,Qk̂g]1 − s1 + mdo
k=2

n

fu1k8 ,Qk̂g + mo
k=2

n

o
l=2

lÞk

n

fu1k,fu1l,Qk̂l̂gg

+ 2o
k=2

n

fQ,u1kg + 2o
j=2

n

fQ ĵ,u1jg] j + 2o
j=2

n

o
l=1

lÞ j

n

Q ĵujl8 + 2 o
2øk,løn

fQk̂l̂,u1k + u1lgukl

and, hence,

R= − 2mo
k=2

n

fu1k,Qk̂g] − s1 + mdo
k=2

n

fu1k8 ,Qk̂g + mo
k=2

n

o
l=2

lÞk

n

fu1k,fu1l,Qk̂l̂gg + 2o
k=2

n

fQ,u1kg − 2o
j=2

n

Q ĵu1j8

+ 2 o
2øk,løn

sQk̂ − Ql̂dukl8 + 2 o
2øk,løn

fQk̂l̂,u1k + u1lgukl.

Now, let us apply Lemma 4 which simplifies the above expression into the following:

R= s1 + mdo
k=2

n

u1k8 Qk̂ + s1 − mdo
k=2

n

Qk̂u1k8 − 2mo
k=2

n

o
l=2

lÞk

n

fQk̂l̂,u1kgu1l − s1 + mdo
k=2

n

u1k8 Qk̂

+ s1 + mdo
k=2

n

Qk̂u1k8 + mo
k=2

n

o
l=2

lÞk

n

fu1k,fu1l,Qk̂l̂gg + o
2øk,løn

fQk̂l̂,2su1k + u1ldgukl

− 2o
j=2

n

Q ĵu1j8 + 2 o
2øk,løn

sQk̂ − Ql̂dukl8

= − 2mo
k=2

n

o
l=2

lÞk

n

fQk̂l̂,u1kgu1l + mo
k=2

n

o
l=2

lÞk

n

fu1k,fu1l,Qk̂l̂gg

+ 2 o
2øk,løn

fQk̂l̂,su1k + u1ldgukl + 2 o
2øk,løn

sQk̂ − Ql̂dukl8 .

From s11d Qk̂−Ql̂ =f§l −§k,Qk̂l̂g and, therefore,R is simplified to

R= mo
k=2

n

o
l=2

lÞk

n

fu1ku1l,Qk̂l̂g + 2 o
2øk,løn

fQk̂l̂,su1k + u1lduklg + 2 o
2øk,løn

f§1l − §1k,Qk̂l̂gukl8

= 2 o
2øk,løn

fs§l − §kdukl8 − su1k + u1ldukl + mu1ku1l,Qk̂l̂g.

All derivatives with respect tox1 of the term
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s§l − §kdukl8 − su1k + u1ldukl + mu1ku1l = msm+ 1d2ss§sx1 − xld − §sx1 − xkddpkl8 − sp1k + p1ldpkl + p1kp1ld

are zero. Indeed, this follows from the fact that the first derivative is the addition theorem for the
Weierstrassp-function,

]

]x1
ss§sx1 − xld − §sx1 − xkddpkl8 − sp1k + p1ldpkl + p1kp1ld

= sp1k − p1ldpkl8 − sp1k8 + p1l8 dpkl + p1k8 p1l + p1kp1l8 = 0.

ThereforeR=2o2øk,lønfs§1l −§1kdukl8 −su1k+u1ldukl+mu1ku1l ,Qk̂l̂g=0 and Lemma 6 is proven.
Proof of Theorem 1:We use Lemma 3 to reduce the commutatorfI ,Hg to the expressions18d

and we show below thats18d is zero. Froms13d,

X = Q + o
t=1

fsn−2d/2g

o
sPSs1̂;2td

XsQŝ,

therefore we can rewrites18d as the following:

fI,Hg = FX1̂]1,2o
l=2

n

u1lG + Fo
k=2

n

X1̂k̂]1]k,2u1kG +FQ + o
t=1

fsn−2d/2g

o
sPSs1̂;2td

XsQŝ,HG
+ 3oj=2

n SQ ĵ + o
t=1

fsn−3d/2g

o
sPSs1̂ĵ ;2td

XsQ ĵŝD] j,2o
l=1

lÞ j

n

ujl4
+F o

2øi, jøn
SQî ĵ + o

t=1

fsn−4d/2g

o
sPSs1̂î ĵ ;2td

XsQî ĵŝD]i] j,2uijG
= fQ,Hg + o

t=1

fsn−2d/2g

o
sPSs1̂;2td

fXs,− DsgQŝ

+ o
t=1

fsn−2d/2g

o
sPSs1̂;2td

FQŝ,− Dŝ + 2o
j=2

n

u1jGXs + o
j=2

n

3Q ĵ] j,2o
l=1

lÞ j

n

ujl4
+ o

j=2

n

o
t=1

fsn−3d/2g

o
sPSs1̂ĵ ;2td

FXs] j,2o
lPs

ujlGQ ĵŝ + o
j=2

n

o
t=1

fsn−3d/2g

o
sPSs1̂ĵ ;2td 3Q ĵŝ] j,2 o

l=1

l¹ jøs

n

ujl4Xs

+ F o
2øi, jøn

]i] j,2uijGQî ĵ + o
2øi, jøn

o
t=1

fsn−4d/2g

o
sPSs1̂î ĵ ;2td

fXs]i] j,2uijgQî ĵŝ

+ FX1̂]1,2o
l=2

n

u1lG + Fo
k=2

n

X1̂k̂]1]k,2u1kG
From the formulas for the system withn=2 we have

fXhk,lj,− Dhk,ljg = − f]k]l,2uklg andf]1]k,2u1kg = − fQh1,kj,Hh1,kjg,

and from Lemma 2 we have that for anys8PSs1̂;2td, tù2,
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fXs8,− Ds8g = − 2 o
k,l

k,lPs8

fXs8\hk,lj]k]l,uklg

and

o
t=1

fsn−3d/2g

o
j=2

n

o
sPSss8\h jj;2td

FXs] j,2o
lPs

ujlGQ ĵŝ = 0.

Hence,fI ,Hg can be simplified to

fI,Hg = fQ,Hg + o
t=1

fsn−2d/2g

o
sPSs1̂;2td

fQŝ,HŝgXs + o
t=1

fsn−2d/2g

o
sPSs1̂;2td

FQŝ,2o
jPs

u1jGXs

+ o
j=2

n

3Q ĵ] j,2o
l=1

lÞ j

n

ujl4 + o
j=2

n

o
t=1

fsn−3d/2g

o
sPSs1̂ĵ ;2td 3Q ĵŝ] j,2 o

l=1

l¹ jøs

n

ujl4Xs + FX1̂]1,2o
l=2

n

u1lG
− o

k=2

n

fQh1,kj,Hh1,kjgX1̂k̂.

This expression is equal to zero. To verify this we should use relations15d, apply Lemma 6, which
gives us

fQ,Hg = − o
j=2

n

3Q ĵ] j,2o
l=1

lÞ j

n

ujl4 − o
2øk,løn

fQk̂l̂,2su1k + u1ldgXhk,lj

and

fQŝ,Hŝg = − o
j=2

j¹s

n

3Qŝ ĵ] j,2 o
l=1

lÞ j ,s

n

ujl4 − o
2øk,løn

k,l¹s

fQŝk̂l̂,2su1k + u1ldgXhk,lj,

and equality

fQh1,k,lj,Hh1,k,ljg = − f]1,2su1k + u1ldgXhk,lj − fQh1,lj]k,2su1k + ukldg − fQh1,kj]l,2su1l + ukldg.

The last equality can be obtained by direct calculation or using formulas for the three-particle case.
Once all these substitutions are made it can be easily seen that all terms ins18d are canceled. This
completes the proof of Theorem 1.

VII. CONCLUDING REMARKS

A more general class of the deformed CM operators related to any Lie superalgebra has been
recently introduced by Sergeev and Veselov,16 who found also recurrent formulas for the quantum
integrals in the trigonometric case for the classical series. In the elliptic case the integrability of
these systems is an open problem. Within this approach the operators1d considered in our paper
corresponds to the Lie superalgebra slsn−1,1d. The author hopes that the technique developed in
this paper can be applied to more general deformed elliptic CM operators related to the Lie
superalgebra slsn,pd.

In this relation it is worth mentioning that as one can see from our formulass6d the parameters
m=1/l, l =1,2,3, . . .play a special role in the theory of the deformed CM operators. These values
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of the parameters have also an interesting geometric interpretation,16,17 they correspond to the
strata in the discriminant variety of the polynomials having a root of multiplicityl.
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Integrable couplings of vector AKNS soliton equations
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By enlarging the associated matrix spectral problems, two specific classes of mul-
ticomponent integrable couplings of the physically important vector AKNS soliton
equations are constructed, which can be linked to each other by a Bäcklund trans-
formation. The resulting two hierarchies of integrable couplings possess the en-
larged zero curvature representations and recursion structures, and thus each system
in the two hierarchies has infinitely many commuting symmetries. ©2005
American Institute of Physics.fDOI: 10.1063/1.1845971g

I. INTRODUCTION

It is in the direction of solving the integrability problem of nonlinear differential equations to
search for completely integrable differential equations and to accumulate characteristics of inte-
grability. Integrability of ordinary differential equations and 1+1 dimensional partial differential
equations, especially scalar ones, was extensively studied and various criteria such as the
Liouville–Arnold theorem, the inverse scattering transform and the Painlevé test were proposed
for testing integrability.1,2 But the higher dimensions of differential equations and the multiplicity
of systems of differential equations cause much difficulty in determining their integrability. Both
the dimension and the multiplicity bring a diversity of mathematical structures of integrable
systems, and indeed, nonlinear differential equations in higher dimensions and systems of nonlin-
ear differential equations often need specific consideration due to complex characteristics of inte-
grability that they may have.

Integrable couplings show one of diverse integrable structures that the multiplicity of inte-
grable systems bring. The problem of integrable couplings was presented and studied extensively
by various perturbations in Ref. 3. The interest in studying integrable couplings comes from the
study of the symmetry problem and its related Virasoro algebra.

To present the definition of integrable couplings concretely, let us first look at a triangular
system of differential equations

Xsx,ud ; Xsx,u,Dxu, . . . d = 0, s1ad

Ysx̄,u,vd ; Ysx̄,u,v,Dx̄u,Dx̄v, . . . d = 0, s1bd

wherex, x̄, u, v, X, andY all can be multicomponent vectors, andDyw means the derivative ofw
with respect toy. The vectorx̄ can contain one or more variables inx, or be the same asx, or
contain the whole vectorx. Such a triangular system is called nontrivial with respect to the system
Xsx,ud=0, if the second subsystemYsx̄,u,vd=0 involves the dependent variableu of the first
subsystemXsx,ud=0. This nontriviality property implies that diagonal systems withYsx̄,u,vd
=Ysx̄,vd, especiallyYsx̄,u,vd=Xsx,vd, are trivial, and so they are not interesting and will be
excluded from our discussion.

Definition: A non-trivial triangular system of differential equations (1) with respect to a given
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system Xsx,u,Dxu, . . .d=0 is called an integrable coupling of the system Xsx,u,Dxu, . . .d=0, if (1)
is integrable.

Among the primary problems of integrable couplings are how one can construct integrable
couplings for a given system and what mathematical structures integrable couplings should pos-
sess. The study of integrable couplings will also help classify integrable systems in whatever
dimensions, along a direction of transforming them into triangular forms. What is more, all
possible methods for constructing integrable couplings will tell us how to extend integrable sys-
tems, from small to large and from simple to complicated. The resulting integrable couplings
themselves provide us with new models of integrable systems, which are probably difficult to find
in other ways.

For evolution equations, the perturbation method to construct integrable couplings was sys-
tematically developed and various mathematical properties associated with the resulting integrable
couplings were discussed in Ref. 3, motivated by the work on perturbations around solutions of
evolution equations by Lakshmanan and Tamizhmani4 and the perturbation bundle by
Fuchssteiner.5 As by-products, local 2+1 dimensional integrable bi-Hamiltonian systems were
presented among the resulting integrable couplings of the Korteweg–de VriessKdVd equation,6

which also provide counter examples for the conjecture on nonexistence of local integrable bi-
Hamiltonian systems in higher dimensions, made by Zakharov and Konopelchenko.7 One of such
2+1 dimensional integrable bi-Hamiltonian systems is

ut = uxxx+ 6uux, s2ad

vt = vxxx+ 3uxxy+ 6suvdx + 6uuy, s2bd

which was presented in Ref. 8 and whose Painlevé property was studied in Ref. 9. This 2+1
dimensional system has a local bi-Hamiltonian structure6

Su

v
D

t
= J1 dH̃1

du

dH̃1

dv
2 = M1 dH̃0

du

dH̃0

dv
2 , s3d

whered /du andd /dv are variational derivatives with respect tou andv, respectively; the Hamil-
tonian pair,J andM, is defined by

J = S 0 ]x

]x ]y
D, M = S 0 ]x

3 + 2ux + 4u]x

]x
3 + 2ux + 4u]x Q

D , s4d

with Q being given by

Q = 3]x
2]y + 2vx + 2uy + 4v]x + 4u]y; s5d

and the Hamiltonian functionals,H̃0 and H̃1, are defined by

H̃0 =E E uv dx dy, H̃1 =E E S1

2
uvxxuuxy +

1

2
uxxv + 3u3vDdx dy. s6d

This bi-Hamiltonian structure gives rise to a hereditary recursion operatorssee Refs. 10 and 11 for
definitiond of the systems2d,

F = S ]x
2 + 2ux]x

−1 + 4u 0

2]x]y − 2ux]x
−2]y + 2svx + uyd]x

−1 + 4v ]x
2 + 2ux]x

−1 + 4u
D . s7d

On the other hand, a basic integrable coupling of an evolution equationut=Ksud:
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ut = Ksud, vt = K8sudfvg s8d

can also be generated by a perturbation around a solution of the equationut=Ksud. In the above
system and elsewhere throughout this paper,P8sudfvg denotes the Gateaux derivative ofPsud
; Psu,Dxu, . . .d with respect tou in a directionv, i.e.,

P8sudfvg = U ]

]«
Psu + «vdU

«=0
= U ]

]«
Psu + «v,Dxu + «Dxv, . . . dU

«=0
.

A symmetrySsud of the equationut=Ksud leads to a solutionsu,Ssudd to the above integrable
couplings8d. However, the second componentv of a solutionsu,vd to the integrable couplings8d
is generally not a symmetry of the equationut=Ksud. This is becausev satisfies the linearized
equationvt=K8sudfvg only for one solution, not for all solutions of the equationut=Ksud. There-
fore, the integrable couplings8d is a generalization of the symmetry problem, which also provides
a stimulus for us to study the problem of integrable couplings. Moreover, the functionu+«v
presents an approximate solution to the equationut=Ksud up to a precision os«d, if su,vd solves
the integrable couplings8d. Another basic integrable coupling of an evolution equationut=Ksud,
generated by perturbation, is given by

ut = Ksud, vt = K8sudfvg + Ksud. s9d

Interestingly, it has a set of hereditary recursion operators3

Fsb1,b2d = S b1Fsud 0

b1F8sudfvg + b2Fsud b1Fsud
D s10d

with two arbitrary constantsb1 andb2, if the original equationut=Ksud has a hereditary recursion
operatorFsud. This also shows that the multiplicity of integrable systems bring the diversity of
integrable structures.

A natural and interesting question for us now is whether there are other kinds of integrable
couplings and what mathematical structures the resulting integrable couplings can have. In this
paper, we aim at presenting two classes of multicomponent integrable couplings for the physically
important vector AKNS soliton equations by enlarging the associated spectral problems. All re-
sulting integrable couplings of the vector AKNS soliton equations possess the enlarged zero
curvature representations and infinitely many commuting symmetries with recursion structures,
but they are different from the integrable couplings obtained through perturbations. Unlike the
case of perturbations,3,6 it is unclear to us whether the resulting integrable couplings have infi-
nitely many commuting conservation laws and Hamiltonian structures. A few concluding remarks
will be given in the last section.

II. VECTOR AKNS SOLITON HIERARCHY

A. Soliton hierarchy

Let m be an arbitrary natural number. To display the vector AKNS soliton hierarchy, we start
from the following sm+1d3 sm+1d matrix spectral problem:

fx = Usu,ldf, Usu,ld = Sal q

r blIm
D = U0l + U1,

]U0

]l
=

]U1

]l
= 0, s11d

wherel is a spectral parameter,a andb are two distinct constants,Im is them3m unit matrix,
and

q = sq1,q2, . . . ,qmd, r = sr1,r2, . . . ,rmdT, u = sq,rTdT. s12d

If m=1 anda=−b= i, wherei is the square root of −1, the above spectral problem becomes the
AKNS spectral problem.12 Therefore, we say thats11d is the vector AKNS spectral problem. A
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special traceless vector AKNS spectral problem, i.e., the case ofs11d undera=−m andb=1, was
discussed in Ref. 13.

As usual, to derive an associated soliton hierarchy, we first solve the stationary zero curvature
equation

Vx = fU,Vg s13d

of the spectral problems11d. We assume that a solutionV can be given by

V = Sa b

c d
D , s14d

wherea is a scalar,bT andc arem-dimensional columns, andd is anm3m matrix. Then we have

fU,Vg = S qc− br sa − bdlb + qd− aq

sb − adlc + ra − dr rb − cq
D .

Therefore, the stationary zero curvature equations13d becomes

ax = qc− br, bx = sa − bdlb + qd− aq, s15ad

cx = sb − adlc + ra − dr, dx = rb − cq. s15bd

Let us seek a formal solution of the type

V = Sa b

c d
D = o

k=0

`

Vkl
−k, Vk = Saskd bskd

cskd dskd D, k ù 0, s16d

wherebskd, cskd, anddskd are assumed to be

bskd = sb1
skd,b2

skd, . . . ,bm
skdd, cskd = sc1

skd,c2
skd, . . . ,cm

skddT, dskd = sdij
skddm3m. s17d

Then, the equationss15d equivalently yield the following recursion relation:

bs0d = 0, cs0d = 0, ax
s0d = 0, dx

s0d = 0, s18ad

bsk+1d =
1

b − a
s− bx

skd + qdskd − askdqd, k ù 0, s18bd

csk+1d =
1

b − a
scx

skd − raskd + dskdrd, k ù 0, s18cd

ax
sk+1d = qcsk+1d − bsk+1dr, dx

sk+1d = rbsk+1d − csk+1dq, k ù 0. s18dd

To uniquely determineaskd, bskd, cskd, anddskd, we fix the following initial data:

as0d = a, ds0d = bIm, s19d

which leads toV0=U0, and require that

uVkuu=0 = 0, k ù 1. s20d

The requirements20d implies to identify all constants of integration as zero while usings18d to
determineV. One can also releases19d ands20d, and choose arbitrary constants of integration. But
the results ofVk are just linear combinations of the expressions ofVk unders19d ands20d. Now it
is direct to generate froms18d under the selectionss19d and s20d that
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bi
s1d = qi, ci

s1d = r i, as1d = 0, dij
s1d = 0,

bi
s2d =

1

a − b
qi,x, ci

s2d =
1

b − a
r i,x, as2d =

1

b − a
o
i=1

m

qir i, dij
s2d =

1

a − b
r iqj ,

bi
s3d =

1

sb − ad2Sqi,xx − 2qio
j=1

m

qjr jD, ci
s3d =

1

sb − ad2Sr i,xx − 2r io
j=1

m

qjr jD ,

as3d =
1

sb − ad2o
i=1

m

sqi,r i,x − qi,xr id, dij
s3d =

1

sb − ad2sr i,qj ,x − r i,xqjd,

bi
s4d =

1

sb − ad3F− qi,xxx+ 3o
j=1

m

sqiqjdxr jG, ci
s4d =

1

sb − ad3Fr i,xxx− 3o
j=1

m

sr ir jdxqjG ,

as4d =
1

sb − ad3Fo
i=1

m

sqir i,xx − qi,xr i,x + qi,xxr id − 3o
i,j=1

m

qiqjr ir jG ,

dij
s4d =

1

sb − ad3S− r iqj ,xxr i,xqj ,x − r i,xxqj + 3r iqjo
k=1

m

rkqkD ,

where 1ø i , j øm. From s18dd, we have

askd = ]−1sqcskd − bskdrd, dskd = ]−1srbskd − cskdqd, k ù 1, s21d

where the operator]−1 is the inverse of the operator],

]]−1 = ]−1] = 1, ] = ]x =
]

]x
. s22d

Then we can obtain the following recursion relation forbskd andcskd:

S csk+1d

bsk+1dTD = CS cskd

bskdTD, k ù 1, s23d

where the 2m32m matrix operatorC is given by

C =
1

b − a1S] − o
k=1

m

rk]
−1qkDIm − r]−1q r]−1rT + sr]−1rTdT

− qT]−1q − sqT]−1qdT S− ] + o
k=1

m

qk]
−1rkDIm + qT]−1rT2 . s24d

As in the cases of the AKNS spectral problem12 and the traceless vector AKNS spectral
problem,13 we take the temporal spectral matrices as

Vsnd = slnVd+ ; o
j=0

n

Vjl
n−j = o

j=0

n Sas jd bs jd

cs jd ds jd Dln−j, n ù 0, s25d

and then introduce the temporal spectral problems,
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ftn
= Vsndf = VsndSu,ux, . . . ,

]n−1u

]xn−1 ;lDf, n ù 0. s26d

The compatibility condition of the spectral spectral problems11d and the temporal spectral prob-
lems s26d, i.e., the zero curvature equations

Utn
− Vx

snd + fU,Vsndg = 0, n ù 0, s27d

lead to a hierarchy of systems of evolution equations

utn
= SqT

r
D

tn

= Kn = Ssa − bdbsn+1dT

sb − adcsn+1d D = FnSsa − bdqT

sb − adr
D, n ù 0, s28d

whereF is the conjugate operator of the operatorC, i.e., F=C†. The soliton hierarchys28d is
called the vector AKNS soliton hierarchy with multiplicitym.

The first nonlinear system ins28d reads as

sqidt2
=

1

a − b
Fsqidxx − 2qio

j=1

m

qjr jG, 1 ø i ø m, s29ad

sr idt2
=

1

b − a
Fsr idxx − 2r io

j=1

m

qjr jG, 1 ø i ø m. s29bd

In particular, the case ofa−b=2i, wherei is the square root of −1, will give us two important
reductions ofs29d.14 The first is the vector nonlinear Schrödinger equation

iqt2
= 1

2qxx + uqu2q,

which corresponds to the reductionr =−qH=−q̄T. The second is the vector defocusing nonlinear
Schrödinger equation

iqt2
= 1

2qxx − uqu2q,

which corresponds to the reductionr =qH= q̄T.

B. Bi-Hamiltonian structure

To exhibit a bi-Hamiltonian structure of the vector AKNS soliton hierarchys28d, we apply the
trace identity proposed by Tussee Ref. 15 for more applicationsd:

d

du
E trSV

]U

]l
Ddx = l−g ]

]l
Flg trSV

]U

]u
DG , s30d

whereg is a constant to be determined andd /du is the variational derivative with respect tou as
before. It is direct to compute that

trSV
]U

]l
D = aa + b trsdd = o

kù0
Saaskd + bo

i=1

m

dii
skdDl−k, s31d

and

trSV
]U

]u
D = S c

bTD = o
kù0

Gk−1l
−k, Gk−1 = S cskd

bskdTD, k ù 0. s32d

Upon inserting these two expressions into the trace identitys30d, we obtain
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d

du
E Saask+1d + bo

i=1

m

dii
sk+1dDdx = sg − kdGk−1, k ù 0.

Then considering the case ofk=1, we knowg=0, and thus we have

dH̃n

du
= Gn−1, H̃n = −

1

n
E Saasn+1d + bo

i=1

m

dii
sn+1dDdx, n ù 1. s33d

Now it follows from s33d that the vector AKNS soliton equationss28d have the following
bi-Hamiltonian structure

utn
= Kn = JGn = J

dH̃n+1

du
= M

dH̃n

du
, s34d

where the Hamiltonian pair,J andM =JC, is defined by

J = S 0 sa − bdIm

sb − adIm 0
D , s35ad

M =1 qT]−1q + sqT]−1qdT S] − o
k=1

M

qk]
−1rkDIm − qT]−1rT

S] − o
k=1

M

rk]
−1qkDIm − r]−1q r]−1rT + sr]−1rTdT 2 . s35bd

Of course, thenth system ins28d has ann-Hamiltonian structure. This bi-Hamiltonian structure

leads to infinitely many symmetrieshKiji=0
` and infinitely many conserved functionalshH̃iji=0

` , and
the hereditary recursion operatorF=MJ−1,

F =
1

b − a1S− ] + o
k=1

M

qk]
−1rkDIm + qT]−1rT qT]−1q + sqT]−1qdT

− r]−1rT − sr]−1rTdT S] − o
k=1

M

rk]
−1qkDIm − r]−1q2 s36d

for the vector AKNS soliton hierarchys28d. The recursion operatorF can also be used to generate
master symmetries16 and at-algebra17 of symmetries including time-dependent symmetries for the
vector AKNS soliton hierarchys28d ssee Ref. 18 for the discussion in the case of the vector
nonlinear Schrödinger equationd.

III. INTEGRABLE COUPLINGS

A. Enlarged zero curvature equations

To construct integrable couplings of the vector AKNS soliton equations in the hierarchys28d,
we use an idea of enlarging spectral problems19 to make an enlarged spectral problem ofs11d as
follows:

f̄x = Ūf̄ = Ūsū,ldf̄, f̄ = sfT,fe
TdT, s37d

with the enlarged spectral square matrix
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Ū = Ūsūd = S U Ua

Ub 0
D = SUsud Ua

Ub 0
D , s38d

where the additional matricesUa andUb give additional dependent variables and the new potential
ū consists of both the original dependent variables and additional dependent variables. This en-

larged spectral matrixŪ is associated with a larger loop Lie algebra thanU. The spectral problem
s37d is equivalent to

fx = Uf + Uafe, sfedx = Ubf.

As usual, solve the stationary zero curvature equationV̄x=fŪ ,V̄g by choosing

V̄ = V̄sūd = S V Va

Vb 0
D = S Vsud Vasūd

Vbsūd 0
D , s39d

whereVa andVb are assumed to have the same sizes asUa andUb, respectively. We are then led
to a set of differential equations

Vx = fU,Vg + UaVb − VaUb, s40ad

sVadx = UVa − VUa, s40bd

sVbdx = UbV − VbU, s40cd

besides a closed condition for the matrix Lie algebra:

UbVa − VbUa = 0. s41d

The systems40d is a linear system of differential equations forVa andVb, and thus there always
exist solutions, buts41d is a restricted condition forUa, Ub, Va, andVb.

Now we enlarge the associated temporal spectral matrices as follows:

V̄snd = SVsnd Va
snd

Vb
snd 0

D = SVsndsud Va
sndsūd

Vb
sndsūd 0

D, n ù 0, s42d

whereVa
snd andVb

snd are assumed to have the same sizes asUa andUb, respectively, and usually
generated fromVa andVb. Then, the enlarged zero curvature equations

Ūtn
− V̄x

snd + fŪ,V̄sndg = 0, n ù 0, s43d

equivalently yield the following systems:

Utn
− Vx

snd + fU,Vsndg + UaVb
snd − Va

sndUb = 0, n ù 0, s44ad

sUadtn
− sVa

snddx + UVa
snd − VsndUa = 0, n ù 0, s44bd

sUbdtn
− sVb

snddx + UbV
snd − Vb

sndU = 0, n ù 0, s44cd

together with the closed conditionUbVa
snd−Vb

sndUa=0, nù0. If we assume that

UaVb
snd − Va

sndUb = 0, UbVa
snd − Vb

sndUa = 0, n ù 0, s45d

then the hierarchys44d of systems determined by the enlarged zero curvature equations becomes
the following hierarchy of triangular systems:
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Utn
− Vx

snd + fU,Vsndg = 0, n ù 0, s46d

sUadtn
− sVa

snddx + UVa
snd − VsndUa = 0, n ù 0, s47d

sUbdtn
− sVb

snddx + UbV
snd − Vb

sndU = 0, n ù 0. s48d

The first equation engenders exactly the vector AKNS soliton equations in the hierarchys28d, but
the second and third equations present a coupled system involvingu, Ua, andUb. Therefore, they
provide a class of candidates of integrable couplings for the vector AKNS soliton equations in
s28d.

In what follows, we shall assume that

]Ua

]l
= 0,

]Ub

]l
= 0. s49d

Moreover, to satisfy the basic condition ins41d, we choose

Ub = Vb = 0 or Ua = Va = 0,

and then the systems40d becomes

sVadx = UVa − VUa or sVbdx = UbV − VbU, s50d

together with the original stationary zero curvature equationVx=fU ,Vg. To satisfy the basic
conditions ins45d, we shall similarly choose

Ub = Vb
snd = 0 orUa = Va

snd = 0,

and thens48d or s47d disappears. Those two classes will be discussed in details and two classes of
integrable couplings will then be generated for the vector AKNS soliton equations ins28d.

B. First class of integrable couplings

1. First enlarged soliton hierarchy

Let us consider the first specific case of the enlarged spectral problems37d,

f̄x = Ūf̄ = Ūsū,ldf̄, f̄ = sfT,fa
TdT, s51d

with the enlarged spectral square matrix

Ū = Ūsūd = SU Ua

0 0
D = SUsud Ua

0 0
D,

]Ua

]l
= 0. s52d

This enlarged spectral problem is equivalent to

fx = Uf + Uafa, sfadx = 0.

Choose a solution forV̄=fŪ ,V̄g as

V̄ = V̄sūd = SV Va

0 0
D = SVsud Vasūd

0 0
D , s53d

and then we are led to the additional equations

sVadx = UVa − VUa, s54d

besidesVx=fU ,Vg. The enlarged temporal spectral matrices read as
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V̄snd = SVsnd Va
snd

0 0
D = SVsndsud Va

sndsūd
0 0

D, n ù 0, s55d

and thus the enlarged associated temporal spectral problem

f̄tn
= V̄sndf̄, f̄ = sfT,fa

TdT, n ù 0, s56d

are equivalent to

ftn
= Vsndf + Va

sndfa, sfadtn
= 0, n ù 0.

Therefore, the enlarged zero curvature equations

Ūtn
− V̄x

snd + fŪ,V̄sndg = 0, n ù 0,

equivalently yield the following triangular systems:

Utn
− Vx

snd + fU,Vsndg = 0, n ù 0, s57d

sUadtn
− sVa

snddx + UVa
snd − VsndUa = 0, n ù 0. s58d

To present a realization of the above structure, let us introduce

Va = o
iù0

Va,il
−i−1,

]Va,i

]l
= 0, s59d

and thens54d implies that

U0Va,0 − V0Ua = 0, s60d

sVa,idx = U0Va,i+1 + U1Va,i − Vi+1Ua, i ù 0, s61d

whereU0 andU1 are defined bys11d, andVi, by s16d.
We assume that

ab Þ 0, i.e., a Þ 0 andb Þ 0, s62d

in order to determineVa. Then,U0 is invertible, and so the matrixVa in s59d is uniquely deter-
mined bys60d and s61d. Define the additional Lax matrices as

Va
snd = slnVad+, n ù 0, s63d

where the subscript1 denotes to take the polynomial part inl. Then bys54d, we have

sVa
snddx = slnUVad+ − slnVd+Ua = slnUVad+ − VsndUa,

and further, we can compute that

− sVa
snddx + UVa

snd − VsndUa = − slnUVad+ + UVa
snd = − U0Va

sn+1d − U1Va
snd + slU0 + U1dVa

snd

= − U0Va
sn+1d + lU0Va

snd

= − U0sVa,n + lVa
sndd + lU0Va

snd = − U0Va,n.

It follows that the additional equations determined bys58d become

sUadtn
= U0Va,n, n ù 0, s64d

and so the candidates of integrable couplings are given by
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utn
= Knsud, sUadtn

= U0Va,n, n ù 0, s65d

To get the concrete expression ofs65d, we now specifyUa andVa,i as follows:

Ua = Sv1 ¯ vl

w1 ¯ wl
D, Va,i = Se1

sid
¯ el

sid

f1
sid

¯ f l
sid D, i ù 0, s66d

where l is an arbitrary natural number,v j and ej
sid are scalars butwj and f j

sid are m-dimensional
columns. Then, the recursion relation defined bys60d and s61d yields

Sej
s0d

f j
s0d D = U0

−1V0Sv j

wj
D = Sv j

wj
D, 1 ø j ø l , s67d

Sej
si+1d

f j
si+1d D = U0

−1Sej
sid

f j
sid D + U0

−1Vi+1Sv j

wj
D − U0

−1U1Sej
sid

f j
sid D, 1 ø j ø l, i ù 0, s68d

and the additional equations determined bys64d become

Sv1 ¯ vl

w1 ¯ wl
D

tn

, U0Va,n = Sae1
snd

¯ ael
snd

bf1
snd

¯ bf l
snd D, n ù 0. s69d

Therefore, the enlarged hierarchys65d of the vector AKNS soliton equations reads as

ūtn
;1

qT

r

v1

w1

]

vl

wl

2
tn

= K̄n ;1
sa − bdbsn+1dT

sb − adcsn+1d

ae1
snd

bf1
snd

]

ael
snd

bf l
snd

2, n ù 0. s70d

2. Recursion structure for the first enlarged hierarchy

Let us now derive a recursion structure for the first enlarged soliton hierarchys70d. From the
above recursion relations68d for ej

sid and f j
sid, we have

aej
si+1d = sej

siddx − qfj
sid + sasi+1dv j + bsi+1dwjd, 1 ø j ø l, i ù 0, s71ad

bf j
si+1d = sf j

siddx − rej
sid + scsi+1dv j + dsi+1dwjd, 1 ø j ø l, i ù 0. s71bd

In particular, this gives rise to

ej
s1d =

1

a
sv jdx, f j

s1d =
1

b
swjdx, 1 ø j ø l ,

ej
s2d =

1

a
F 1

a
sv jdxx −

1

b
qswjdx +

1

b − a
qrv j +

1

a − b
qxwjG, 1 ø j ø l ,

f j
s2d =

1

b
F 1

b
swjdxx −

1

a
rsv jdx +

1

b − a
rxv j +

1

a − b
qrwjG, 1 ø j ø l .

In order to get a recursion structure, we rewrite the equationss69d as
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Sv j

wj
D

tn

= Saej
snd

bf j
snd D = F̄ jSsa − bdbsndT

sb − adcsnd D + F̄0Saej
sn−1d

bf j
sn−1d D, 1 ø j ø l, n ù 0. s72d

Then based ons71d and s21d, we find that thesm+1d3 sm+1d matrix F̄0 can be chosen as

F̄0 = F̄0sq,rd =1
1

a
] −

1

b
q

−
1

a
r

1

b
]Im
2 , s73d

and further, thesm+1d32m matrix operatorsF̄ j can be chosen as

F̄ j = F̄ jsq,r,v j,wjd =
1

b − a
Sv j]

−1LrT − Lwj
T v j]

−1Lq

− Rwj
]−1LTT v jIm − Rwj

]−1Rq
D, 1 ø j ø l , s74d

where sRAdB=BA, sLAdB=AB, and TB=BT for two matricesA and B fnote thatLrTA=rTA but
sLrTdA=rATg. Therefore, the enlarged vector AKNS hierarchys70d possesses the following recur-
sion structure:

1
qT

r

v1

w1

]

vl

wl

2
tn

= F̄1
sa − bdbsndT

sb − adcsnd

ae1
sn−1d

bf1
sn−1d

]

ael
sn−1d

bf l
sn−1d

2 = F̄n1
sa − bdbs1dT

sb − adcs1d

ae1
s0d

bf1
s0d

]

ael
s0d

bf l
s0d

2 = F̄n1
sa − bdqT

sb − adr
av1

bw1

]

avl

bwl

2, n ù 0, s75d

if we define the recursion operatorF̄ as

F̄ =1
F 0

F̄1 F̄0

F̄2 0 F̄0

] � � �

F̄l 0 ¯ 0 F̄0

2 , s76d

whereF=C† is the hereditary recursion operator ofs28d defined bys36d. We point out that there

may exist other choices forF̄ j andF̄0 in the recursion structures72d.
The triangular systems ins70d are commutative. This can be shown, for example, by using the

uniqueness property of the spectral problemfx=Uf, that is, if a Lax matrixV has zero initial
value uVuu=0=0, i.e., if U8fKg−Vx+fU ,Vg=0 and uVuu=0=0, then the Lax matrixV=0.17 Keeping
the equations58d in mind, it is easy to verify that if the original spectral problemfx=Uf
possesses the uniqueness property, then so does the enlarged spectral problems51d. In this way, we
can prove that the spectral problems51d has the uniqueness property. On the other hand, the Lax
matrices

V̄k,lsūd ; sV̄skdd8sūdfK̄lg − sV̄sldd8sūdfK̄kg + fV̄skdsūd,V̄sldsūdg, k,l ù 0, s77d

have zero initial valueuV̄k,lsūduū=0=0 ssee Refs. 17 and 20 for more discussiond. Therefore, the
new enlarged soliton hierarchy defined bys70d or s75d is commutative, and so it is a common
hierarchy of commuting integrable couplings for all the vector AKNS soliton equations in the
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hierarchys28d. The integrability here denotes the existence of infinitely many symmetries.21 Its
first nonlinear system reads as

qt2
=

1

a − b
sqxx − 2qrqd, s78ad

rt2
=

1

b − a
srxx − 2rqrd, s78bd

sv jdt2
=

1

a
sv jdxx −

1

b
qswjdx +

1

b − a
qrv j +

1

a − b
qxwj, 1 ø j ø l , s78cd

swjdt2
=

1

b
swjdxx −

1

a
rsv jdx +

1

b − a
rxv j +

1

a − b
qrwj, 1 ø j ø l , s78dd

whereqT, r, wj arem-dimensional columns andv j are scalar variables.

C. Second class of integrable couplings

1. Second enlarged soliton hierarchy

Let us consider the second specific case of the enlarged spectral problems37d:

f̃x = Ũf̃ = Ũsũ,ldf̃, f̃ = sfT,fb
TdT, s79d

with the enlarged spectral square matrix

Ũ = Ũsũd = S U 0

Ub 0
D = SUsud 0

Ub 0
D,

]Ub

]l
= 0. s80d

It is equivalent to

fx = Uf, sfbdx = Ubf.

Choose a solution forṼ=fŨ ,Ṽg as

Ṽ = Ṽsũd = S V 0

Vb 0
D = S Vsud 0

Vbsũd 0
D , s81d

and we are then led to

sVbdx = UbV − VbU, s82d

besidesVx=fU ,Vg. The enlarged temporal spectral matrices read as

Ṽsnd = SVsnd 0

Vb
snd 0

D = SVsndsud 0

Vb
sndsũd 0

D, n ù 0, s83d

and so the enlarged temporal spectral problems

f̃tn
= Ṽsndf̃, f̃ = sfT,fb

TdT, n ù 0, s84d

are equivalent to

ftn
= Vsndf, sfbdtn

= Vb
sndf, n ù 0.

Now the enlarged zero curvature equations
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Ũtn
− Ṽx

snd + fŨ,Ṽsndg = 0, n ù 0,

equivalently engender the triangular systems

Utn
− Vx

snd + fU,Vsndg = 0, n ù 0, s85d

sUbdtn
− sVb

snddx + UbV
snd − Vb

sndU = 0, n ù 0. s86d

To present the second enlarged soliton hierarchy, let us similarly introduce

Vb = o
iù0

Vb,il
−i−1,

]Vb,i

]l
= 0, s87d

and thens82d leads to

Vb,0U0 − UbV0 = 0, s88d

sVb,idx = UbVi+1 − Vb,i+1U0 − Vb,iU1, i ù 0, s89d

whereU0 andU1 are defined bys11d, andVi, by s16d.
We also assume that the conditions ins62d are satisfied, to determineVb uniquely. Then,U0 is

invertible, and so the matrixVb in s87d is uniquely determined bys88d ands89d, indeed. Define the
additional Lax matrices as

Vb
snd = slnVbd+, n ù 0, s90d

where the subscript+denotes to take the polynomial part inl. Then, usings82d, we have

sVb
snddx = slnUbVd+ − slnVbUd+ = UbV

snd − slnVbUd+,

and we can further compute that

− sVb
snddx + UbV

snd − Vb
sndU = slnVbUd+ − Vb

sndU

= Vb
sn+1dU0 + Vb

sndU1 − Vb
sndslU0 + U1d

= Vb
sn+1dU0 − lVb

sndU0

= sVb,n + lVb
snddU0 − lVb

sndU0

= Vb,nU0.

It now follows that the additional equations determined bys86d become

sUbdtn
= − Vb,nU0, n ù 0, s91d

and thus, the candidates of integrable couplings are determined by

utn
= Knsud, sUbdtn

= − Vb,nU0, n ù 0, s92d

Let us now proceed to present the concrete expression ofs92d. Similarly, we specifyUb and
Vb,i as follows:
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Ub = 1y1 z1

] ]

yl zl
2, Vb,i = 1g1

sid h1
sid

] ]

gl
sid hl

sid 2, i ù 0, s93d

wherel is an arbitrary natural number,yj andgj
sid, 1ø j ø l, are scalars butzj andhj

sid, 1ø j ø l, are
m-dimensional rows. Then, the recursion relation defined bys88d and s89d gives rise to

sgj
s0dhj

s0dd = syjzjdV0U0
−1 = syjzjd, 1 ø j ø l , s94d

sgj
si+1dhj

si+1dd = − sgj
sidhj

siddxU0
−1 + syjzjdVi+1U0

−1 − sgj
sidhj

siddU1U0
−1, 1 ø j ø l, i ù 0, s95d

and the additional equations determined bys91d become

1y1 z1

] ]

yl zl
2

tn

= − Vb,nU0 = − 1ag1
snd bh1

snd

] ]

agl
snd bhl

snd 2, n ù 0. s96d

Therefore, the enlarged hierarchys92d of the vector AKNS soliton equations reads as

ũtn
;1

qT

r

y1

z1
T

]

yl

zl
T

2
tn

= K̃n ;1
sa − bdbsn+1dT

sb − adcsn+1d

− ag1
snd

− bh1
sndT

]

− agl
snd

− bhl
sndT

2, n ù 0. s97d

2. Recursion structure for the second enlarged hierarchy

Let us now derive a recursion structure for the second enlarged soliton hierarchys97d. From
the above recursion relations95d for gj

sid andhj
sid, we have

agj
si+1d = − sgj

siddx − hj
sidr + syja

si+1d + zjb
si+1dd, i ù 0, s98ad

bhj
si+1d = − shj

siddx − gj
sidq + syjb

si+1d + zjd
si+1dd, i ù 0. s98bd

In particular, this generates

gj
s1d = −

1

a
syjdx, hj

s1d = −
1

b
szjdx, 1 ø j ø l ,

gj
s2d =

1

a
F 1

a
syjdxx +

1

b
szjdxr +

1

b − a
yjqr +

1

b − a
zjrxG, 1 ø j ø l ,

hj
s2d =

1

b
F 1

b
szjdxx +

1

a
syjdxq +

1

a − b
yjqx +

1

a − b
zjrqG, 1 ø j ø l .

To obtain a recursion structure, we rewrite the equationss96d as
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Syj

zj
TD

tn

= S − agj
snd

− bhj
sndTD = F̃ jSsa − bdbsndT

sb − adcsnd D + F̃0S − agj
sn−1d

− bhj
sn−1dTD, 1 ø j ø l, n ù 0. s99d

Then it follows froms98d and s21d that thesm+1d3 sm+1d matrix F̃0 can be taken as

F̃0 = F̃0sq,rd =1 −
1

a
] −

1

b
rT

−
1

a
qT −

1

b
]Im
2 , s100d

and further, thesm+1d32m matrix operatorsF̃ j can be taken as

F̃ j = F̃ jsq,r,yj,zjd =
1

b − a
S − yj]

−1LrT − yj]
−1Lq − Lzj

yjIm + Rzj
T]−1RrT Rzj

T]−1LqTT D, 1 ø j ø l , s101d

where sRAdB=BA, sLAdB=AB, and TB=BT for two matricesA and B. Therefore, the enlarged
vector AKNS hierarchys97d possesses the following recursion structure:

1
qT

r

y1

z1
T

]

yl

zl
T

2
tn

= F̃1
sa − bdbsndT

sb − adcsnd

− ag1
sn−1d

− bh1
sn−1d

]

− agl
sn−1d

− bhl
sn−1d

2 = F̃n1
sa − bdbs1dT

sb − adcs1d

− ag1
s0d

− bh1
s0d

]

− ag1
s0d

− bh1
s0d

2 = F̃n1
sa − bdqT

sb − adr
− ay1

− bz1

]

− ayl

− bzl
T

2, n ù 0, s102d

once we define the recursion operatorF̃ as

F̃ =1
F 0

F̃1 F̃0

F̃2 0 F̃0

] � � �

F̃l 0 ¯ ¯ 0 F̃0

2 , s103d

whereF=C† is the hereditary recursion operator defined bys36d. Note that there may also exist

other choices forF̃ j andF̃0 in the recursion structures99d.
The triangular systems ins97d are commutative, which can be shown in a similar manner to

the proof for the first class. The enlarged spectral problems79d has the uniqueness property,
indeed, which can also be directly verified. Moreover, the Lax matrices

Ṽk,lsũd ; sṼskdd8sũdfK̃lg − sṼsldd8sũdfK̃kg + fṼskdsũd,Ṽsldsũdg, k,l ù 0, s104d

have zero initial valueuṼk,lsũduũ=0=0. Therefore, by the so-called uniqueness property,17 the new
enlarged soliton hierarchy defined bys97d or s102d is commutative, and so it is a common
hierarchy of commuting integrable couplings for all the vector AKNS soliton equations ins28d.
The first nonlinear system in the hierarchy reads as

qt2
=

1

a − b
sqxx − 2qrqd, s105ad
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rt2
=

1

b − a
srxx − 2rqrd, s105bd

syjdt2
= − F 1

a
syjdxx +

1

b
szjdxr +

1

b − a
yjqr +

1

b − a
yjrxG, 1 ø j ø l , s105cd

szjdt2
= − F 1

b
szjdxx +

1

a
syjdxq +

1

a − b
yjqx +

1

a − b
zjrqG, 1 ø j ø l , s105dd

whereq, rT, zj arem-dimensional rows andyj are scalar variables.

D. Bäcklund transformation and special solutions

It is known that the adjoint zero curvature equation

s− UTdt − s− VTdx + f− UT,− VTg = 0

is equivalent to the zero curvature equation

Ut − Vx + fU,Vg = 0.

Therefore, they lead to the same soliton equation. Using this fact, our two classes of enlarged
specific spectral problems of the equal sizes can be linked to each other. More specifically, we can
take

Ū = − sŨdT, V̄ = − sṼdT, V̄snd = − sṼsnddT, n ù 0,

to transform one to another of the equal sizes, and thus the two classes of integrable couplings can

be transformed into each other. The resulting Bäcklund transformation fromŪ=−sŨdT reads as

q → − rT, r → − qT, v j → − yj, wj → − zj
T, a → − a, b → − b.

Under this transformation, the first hierarchy of integrable couplingss70d becomes the second
hierarchys97d of integrable couplings. In particular, the first nonlinear integrable couplings78d in
the first enlarged soliton hierarchy becomes the first nonlinear integrable couplings105d in the
second enlarged soliton hierarchy. Therefore, the above Bäcklund transformation links the two
classes of integrable couplings together, and also provides another way to generate the second
class of integrable couplings.

On the other hand, we point out that some special classes of exact solutions can be explicitly
presented for the resulting integrable couplings78d. First, let us choose

q = 0, rt2
=

1

b − a
rxx, sv jdt2

=
1

a
sv jdxx, 1 ø j ø l ,

and then solving the nonhomogeneous heat equations forwj,

swjdt2
=

1

b
swjdxx −

1

a
rsv jdx +

1

b − a
rxv j, 1 ø j ø l ,

gives a class of solutions to the integrable couplings78d. Second, let us choose

qt2
=

1

a − b
qxx, r = 0, swjdt2

=
1

b
swjdxx, 1 ø j ø l ,

and then solving the nonhomogeneous heat equations forv j,

033507-17 Integrable couplings of AKNS equations J. Math. Phys. 46, 033507 ~2005!

                                                                                                                                    



sv jdt2
=

1

a
sv jdxx −

1

b
qswjdx +

1

a − b
qxwj, 1 ø j ø l ,

gives another class of solutions to the integrable couplings78d. In particular, whenm= l =1, we can
have the following two concrete solutions:

q = 0, r =
c1

Ît2 − h1

expS sa − bdsx − j1d2

4st2 − h1d D ,

v1 =
c2

Ît2 − h1

expS−
asx − j1d2

4st2 − h1d D, w1 = o
i=1

k
di

Ît2 − hi

expS−
bsx − jid2

4st2 − hid
D + dk+1,

and

q =
c1

Ît2 − h1

expS sb − adsx − j1d2

4st2 − h1d D, r = 0,

v1 = o
i=1

k
d2

Ît2 − hi

expS−
asx − jid2

4st2 − hid
D + dk+1, w1 =

ci

Ît2 − h1

expS−
bsx − j1d2

4st2 − h1d D ,

wherek is an arbitrary natural number, andhi, ji, ci, anddi are arbitrary constants. The solution
analysis made here also implies that coupled systems of differential equations can possess diverse
solutions,22 like integrable equations in higher dimensions.23 Actually, even in the case of 1+1
dimensions, a new kind of exact solutions, so-called complexitons, were recently shown to exist
for the Korteweg–de Vries equation24 and the Toda lattice equation.25

IV. CONCLUDING REMARKS

Two specific classes of multicomponent integrable couplings have been presented for the
physically important vector AKNS soliton hierarchy. The basic idea in our construction is to apply
an idea of enlarging the associated spectral problems or the associated loop Lie algebras under-
lying the spectral problems. The enlarged vector AKNS soliton hierarchies also possess zero
curvature representations and recursion structures, which guarantee the existence of infinitely
many symmetries of the enlarged soliton hierarchies. Under the reduction ofa=−1, b=1, and
m= l =1, the first class of integrable couplings boil down to the integrable couplings of the scalar
AKNS soliton equations presented in Ref. 19.

We point out that there is another successful choice of enlarged spectral matrices

Ū = Ûsu,vd ; S Usud 0

U8sudfvg Usud
D or SUsud U8sudfvg

0 Usud
D ,

which correspond to the spectral matrices generated by perturbation.3 The additional potentialv in

the above enlarged spectral matrixÛsu,vd must have the same number of dependent variables as

u. But the enlarged spectral matrixÛsu,vd has a symmetric structure, which ensures that there
exist Hamiltonian structures for the enlarged soliton equations.3 On the other hand, we can relax
the conditions ins49d, i.e., let the additional matricesUa andUb in s38d depend on the spectral
parameterl. For example, we can choose

Ua = o
i=1

k

Ua,il
i−1 = o

i=1

k Sv1,i ¯ vl,i

w1,i ¯ wl,i
Dli−1, k,l ù 1,
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Ub = o
i=1

k

Ub,il
i−1 = o

i=1

k 1y1,i z1,i

] ]

yl,i zl,i
2li−1, k,l ù 1.

Then, much more diverse integrable couplings can be expected to obtain.
We would also like to emphasize that the resulting integrable couplings by enlarging spectral

problems are different from the ones obtained by the method of perturbations. Actually, the
integrable couplingss78d ands105d, for example, cannot be obtained through using perturbations
at all. On the other hand, it should be very important to investigate the Painlevé property and
bilinear forms of the enlarged soliton hierarchiess70d ands97d, especially the integrable couplings
s78d ands105d, from the solution perspective. The systemss78d ands105d reduce to two systems
of variable coefficient partial differential equations, ifq and r are given.

We finally remark that the integrability property usually requires the existence of infinitely
many conservation laws.26 The perturbation procedure of enlarging spectral problems guarantees
Hamiltonian structures and thus infinitely many conservation laws.3,6 It is an interesting question
whether the enlarged vector AKNS soliton hierarchiess70d and s97d possess infinitely many
conservation laws of the enlarged type, i.e., involving the additional variablesfv j and wj in the
case ofs70d, andyj andzj in the case ofs97dg and their derivatives with respect tox.
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Basic properties of von Neumann entropy such as the triangle inequality and what
we call MONO–SSA are studied for CAR systems. We show that both inequalities
hold for every even state by using symmetric purification which is applicable to
such a state. We construct a certain class of noneven states giving examples of the
nonvalidity of those inequalities. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1850995g

I. INTRODUCTION

Let H be a Hilbert space andD be a density matrix onH, i.e., a positive trace class operator
on H whose trace is unity. The von Neumann entropy is given by

− Tr sD log Dd, s1d

whereTr denotes the trace which takes the value 1 on each minimal projection. Let% be a normal
state ofBsHd, the set of all bounded linear operators onH. Then% has its density matrixD%, and
its von Neumann entropySs%d is given bys1d with D=D%.

It has been known that von Neumann entropy is useful for description and characterization of
state correlation for composite systems. Among others, the following inequality called strong
subadditivitysSSAd is remarkable:

SswIøJd − SswId − SswJd + SswIùJd ø 0, s2d

where I, J, I ùJ, and I øJ denote the indexes of subsystems andwI denotes the restriction of a
statew to the subsystem indexed byI, and so on. Such entropy inequalities have been studied for
quantum systems, see e.g., Refs. 4,5,9,11,13,15, and also their references. However, the composite
systems considered there were mostly tensor product of matrix algebras to which we refer as the
tensor product systems.

We investigate some well-known entropy inequalities, the triangle inequality and MONO–
SSAswhich will be specified soon laterd, for CAR systems. This study is relevant to our previous
works on state correlations such as quantum-entanglement7 and separability8 for CAR systems. In
a certain sense, the conditions of validity and failure of such entropy inequalities which we are
going to establish will explain the similarities and differences in the possible forms of state
correlations between CAR and tensor product systems.

Let L be an arbitrary discrete set. The canonical anticommutation relationssCARd are

hai
p,ajj = di,j1,

adElectronic mail: moriya@ihes.fr
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hai
p,aj

pj = hai,ajj = 0,

where i, j PL, and hA,Bj=AB+BA santicommutatord. For each subsetI of L, AsId denotes the
subsystem onI given as theC* -algebra generated by allai

* and ai with i P I. For I ,J, AsId is
naturally imbedded inAsJd as its subalgebra.

We have already shown that SSAs2d holds for the CAR systems. For the convenience, we
sketch its proof given in Ref. 6 and Theorem 10.1 of Ref. 2 First we check the commuting square
property for a CAR system as follows:

AsI ø Jd ——→
E1 AsId

EJ↓ ↓EIùJ

AsJd ——→
EIùJ

AsI ù Jd

,

whereE denotes the conditional expectation with respect to the tracial state onto the subsystem
with a specified index. From this property SSA follows for every stateswithout any assumption on
the state, like its evennessd by a well-known proof method using the monotonicity of relative
entropy under the action of conditional expectations.

We move to entropy inequalities for which CAR makes a difference. The following is usually
referred to as the triangle inequality:

uSswId − SswJdu ø SswIøJd, s3d

whereI andJ are disjoint. While this is satisfied for the tensor product systems,1 it is not valid in
general for the CAR systems; there is a counter example.7

We next introduce our main target,

SswId + SswJd ø SswKøId + SswKøJd, s4d

whereI, J, andK are disjoint. We may calls4d “MONO–SSA,” because it is equivalent to SSAs2d
for the tensor product systems at least, and it obviously implies the monotonicity of the following
function:

K ° SswKøId + SswKøJd,

with respect to the inclusion of the indexK. Our question is whether MONO–SSA holds for the
CAR systems, if not, under what condition it is satisfied.

The MONO–SSA for the tensor product systems is shown by what is called purification
implying the equivalence of MONO–SSA and SSA for those systemsssee 3.3 of Ref. 11d. We note
that the purification is a sort of state extension, and is not automatic for the CAR systems. We shall
review the basic concept of state extension.

In the description of a quantum composite system, the total system is given by aC* -algebra
A, and its subsystems are described byC* -subalgebrasAi of A indexed byi =1,2, . . . . Letw be
a state ofA. We denote its restrictions toAi by wi. Surelywi is a state ofAi. Conversely, suppose
that a set of stateswi of Ai, i =1,2, . . . , aregiven. Then a statew of A is called an extension of
hwij if its restriction to eachAi coincides withwi.

For tensor product systems, there always exists a state extension for any given prepared states
hwij on disjoint regions, at least their product state extensionw=w1 ^ ¯ ^ wi ^ ¯ , and generi-
cally other extensions. On the contrary, it is not always the case for CAR systems. When twosor
more than twod prepared states on disjoint regions are not even, there may be no state extension.
We have shown that if all of them are noneven pure states, then there exists no state extension.7,3

We explain the above-mentioned purification in terms of state extension. We are given a state
%1 of AsId. We then prepare some state%2 on someAsJd with Jù I =x such that it has the same
nonzero eigenvalues and their multiplicities as%1 for their density matrices. We want to construct
their pure state extension toAsI øJd. We use the term “symmetric purification” to refer to this
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procedure where the “symmetric” may indicate the above specified property of%2. For the tensor
product systems, symmetric purification exists for every%1. On the contrary for the CAR systems,
though we can easily make a pure state extension of%1, its pair %2 cannot always be chosen
among those states which have the same nonzero eigenvalues and their multiplicities as%1. In the
above and what follows, we shall identify states with their density matrices when there is no fear
of confusion.

We will show that MONO–SSA is not satisfied in general in Sec. III. However it is shown to
hold for every even state in Sec. II. Table I above shows the truthssd and the falsitys3d of the
entropy inequalities.

We fix our notation. The even–odd gradingQ is determined by

Qsai
pd = − ai

p, Qsaid = − ai . s5d

The even and odd parts ofAsId are given by

AsId± ; hA P AsIduQsAd = ± Aj.

For an elementAPAsId we have the decomposition

A = A+ + A−, A± ; 1
2sA ± QsAdd P AsId±.

For a finite subsetI, define

vI ; p
iPI

vi, vi ; ai
pai − aiai

p. s6d

By a simple computation,vI is a self-adjoint unitary operator inAsId+ implementingQ, namely

AdsvIdsAd = QsAd, A P AsId. s7d

For a finite subsetI, every even pure state ofAsId is given by an eigenvector ofvI as its vector
state.

The following is a simple consequence of the CAR given, e.g., in Sec. 4.5 of Ref. 2.
Lemma 1: Let I be a finite subset and J be a (finite or infinite) subset disjoint with J. Let

AsI8 u I øJd;AsId8ùAsI øJd and AsI8 uJd;AsId8ùAsJd, the commutant ofAsId in AsI øJd
and that inAsJd, respectively. Then

AsI8uI ø Jd = AsJd+ + vIAsJd−, s8d

AsI8uJd = AsJd+. s9d

In this note we restrict our discussion to finite-dimensional systems so as to exclude from the
outset the cases where our statements themselves on von Neumann entropy do not make sense; for
infinite-dimensional systems a density matrix does not exist in general for a given state.sHowever
in the proof of Proposition 8 we shall mention possible infinite-dimensional extensions of some
results.d

TABLE I. Truth and the falsity of von Neumann entropy inequalities.

Property Tensor-product systems CAR systems

SSA s s

Triangle s 3 in general, buts for every even state
MONO–SSA s 3 in general, buts for every even state
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II. SYMMETRIC PURIFICATION FOR EVEN STATES

Symmetric purification is a useful mathematical technique having a lot of applications. For
example, we can derive MONO–SSA from SSA for the tensor product systems by using it.

We now discuss symmetric purification for the CAR systems. We shall show its existence for
even states.

Lemma 2: Let I and J be mutually disjoint finite subsets. Let % be an even pure state of
AsI øJd, and let%1 and%2 be its restrictions toAsId andAsJd. Then the density matrix of%1 has
the same nonzero eigenvalues and their multiplicities as those of%2. In particular, Ss%1d=Ss%2d.

Proof: We haveAsI øJd=AsId ^ AsI8 u I øJd by s8d. By some finite-dimensional Hilbert
spacesH1, H2, and H1,2;H1 ^ H2, we can write AsI øJd=BsH1,2d, AsId=BsH1d, and
AsI8 u I øJd=BsH2d.

Since% is a pure state ofAsI øJd, its density matrixfwith respect to the non-normalized trace
Tr of BsH1,2dg is a one-dimensional projection operator ofBsH1,2d, and hence there exists a unit
vectorjPH1,2 such thatD%h=sj ,hdj for any hPH1,2. By using the Schmidt decomposition,12

we have the following decomposed form:

j = o
i

lij1i ^ j2i, li . 0, s10d

wherehj1ij and hj2ij are some orthonormal sets of vectors ofH1 andH2. For n=1, 2, letPsjnid
denote the projection operator on the one-dimensional subspace ofHn containingjni. We denote

the restricted states of% onto BsH2d by %2
˜ . By s10d, the density matrices of%1 and%2

˜ have the
following symmetric forms:

D%1
= o

i

li
2Psj1id, D%2

˜ = o
i

li
2Psj2id. s11d

Since% is an even state, its restriction%2 is even and hence its density matrixD%2
belongs to

AsJd+.
On the other hand, the even state% is invariant under the action of AdsvIøJd=AdsvIvJd:

vIøJD%vIøJ = vIvJD%vIvJ = D%.

Acting the conditional expectation ontoBsH2d with respect to the tracial state of BsH1,2d on the
above equality, we obtain

vJD%2
˜ vJ = D%2

˜

noting thatvI belongs toBsH1d=BsH2d8ùBsH1,2d.
We denoteBsH2d+;BsH2dùAsI øJd+, the set of all invariant elements under AdsvIvJd in

BsH2d. By s8d, BsH2d+ is equal toAsJd+, and also to the set of all invariant elements under AdsvJd
in BsH2d. Therefore bothD%2

˜ andD%2
belong toBsH2d+. Accordingly,D%2

˜ is equal toD%2
as the

density of the state% restricted toBsH2d+, and hence

D%2
= D%2

˜ = o
i

li
2Psj2id. s12d

From s11d and s12d, it follows that %1 and%2 have the same nonzero eigenvalues and their
multiplicities equal tohli

2j. Thus

Ss%1d = Ss%2d.

j

For a subsetI of L, uI u denotes the number of sites inI.
Lemma 3. Let I be a finite subset and%1 be a state ofAsId. Let J be a finite subset such that

Jù I =x and uJuù uI u. Then there exists a pure state% on AsI øJd satisfying
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u%uAsId = %1. s13d

Moreover, if%1 is even, then the above% can be taken to be even.
Proof: We use the same notation as in the proof of the preceding lemma and writeAsI øJd

=BsH1,2d, AsId=BsH1d, and AsI8 u I øJd=BsH2d. Let %1=oili
2Psj1id, where li .0, hj1ij is an

orthonormal set ofH1, andPsj1id is the projection operator on the one-dimensional subspace of
H1 containingj1i. SinceuJuù uI u and hence dimH2ùdim H1, we can take an orthonormal set of
vectorshj2ij of H2 having the same cardinality ashj1ij. Define a unit vectorjPH1,2 by the same
formula as s10d and let % be its vector state, namely the state whose density matrix is the
projection operator on the one-dimensional subspace ofH1,2 containingj. This % is a pure state
extension of%1 to AsI øJd by its definition.

Assume now that%1 is even, and hence its density matrix is inAsId+. For each eigenvalue, the
associated spectral projection is also even and commutes withvI, and its range is invariant under
vI. Therefore we can choose an orthonormal basis of the range of the projection which consists of
eigenvectors ofvI. We takehj1ij to be a set of eigenvectors ofvI.

SincevJ belongs toBsH2d+s=AsJd+d, there exists an orthonormal basis ofH2 consisting of
eigenvectors ofvJ. Due to the assumptionuJuù uI u, we can take a set of different eigenvectorshj2ij
of vJ such that for eachi its eigenvalue, +1 or −1, is equal to that ofj1i for vI. Define a unit vector
j by s10d using thesehj1ij and hj2ij. Since thisj is an eigenvector ofvIøJ by its definition, its
vector state% is even. j

Combining the above two lemmas we obtain the following.
Proposition 4: Let I be a finite subset and%1 be an even state ofAsId. Let J be a finite subset

such that Jù I =x and uJuù uI u. Then there exists an even pure state% on AsI øJd such that its
restriction toAsId is equal to%1 and the density matrix of its restricted state%2;%uAsJd has the
same nonzero eigenvalues and their multiplicities as those of%1.

We may call the above state extension from%1 to % the symmetric purification. Thanks to this,
we obtain the following two theorems.

Theorem 5: Let I, J, and K be mutually disjoint finite subsets. For every even statew,
MONO–SSA,

SswId + SswJd ø SswKøId + SswKøJd s14d

is satisfied.
Proof: The equivalence of MONO–SSA and SSA for even states follows from Proposition 4 in

the same way ass3d, p. 164 of Ref. 1. Since SSA holds for every state, MONO–SSA is valid for
every even state. j

Similarly, by using Proposition 4 we immediately obtain the triangle inequality for even states
in much the same way ass3.1d of Ref. 1. We omit its proof.

Theorem 6: Let I and J be mutually disjoint finite subsets. For every even statew, the triangle
inequality

uSswId − SswJdu ø SswIøJd s15d

holds.

III. VIOLATION OF MONO–SSA

In this section we give a certain class of noneven states. We shall give a sketch of our model
indicated by Fig. 1sbelowd. We can take a pure state%IøK on I øK whose restriction%K is a pure
state, but%I is nonpure, say the tracial state. Such%IøK does not satisfy the triangle inequality,
because the entropies onI and onK are different, whereas the entropy onI øK is zero. It can be
said that the pure state%IøK has the asymmetric restrictions in our terminology. This asymmetry
is due to the large amount of the oddness of%K, whose precise meaning will be given soon.fNote
however that for the infinite-dimensional case, the GNS representationsp%K

andp%KQ should be
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unitarily equivalent, see Proposition 8sid.g We take an arbitrary even state%J on J. The desired
state on%IøKøJ on I øKøJ is given by the product state extension of%IøK and%J, which will be
denoted by%IøK +%J.

We recall the definition of the transition probability.14 For two statesw andc of AsId swhere
uI u is finite or infinited, take any representationp of AsId on a Hilbert spaceH containing vectors
F andC such that

wsAd = sF,psAdFd, csAd = sC,psAdCd, s16d

for all APAsId. The transition probability betweenw andc is given by

Psw,cd ; supusF,Cdu2, s17d

where the supremum is taken over allH, p, F, andC as described above. For a statew of AsId,
we define

pQswd ; Psw,wQd1/2, s18d

wherewQ denotes the statewQsAd=wsQsAdd, APAsId. Intuitively, pQswd quantifies the amount
of oddnessof the statew. If pQswd=0 or nearby, then we may say that the difference betweenw
andwQ is large. If w is even,pQswd obviously takes the maximum value 1.

The following is Lemma 3.1 of Ref. 2.
Lemma 7: If%1 is a pure state ofAsKd andp%1

andp%1Q are unitarily equivalent, then there
exists a self-adjoint unitary u1Pp%1

sAsKd+d9 satisfying

u1p%1
sAdu1 = p%1

sQsAdd, A P AsKd. s19d

The next proposition is a basis of our construction. It is a generalization of Ref. 7. The first
paragraph is in principle excerpted from Theorem 4s4d and s5d of Ref. 2. The second paragraph
is necessary for the argument of entropy.

Proposition 8. Let K and I be mutually disjoint subsets. Assume that%1 is a (noneven) pure
state ofAsKd satisfying pQs%1d=0. Assume that%2 is an even state ofAsId. There exists a joint
extension of%1 and%2 other than their product state extension if and only if%1 and%2 satisfy the
following pair of conditions:

sid p%1
and p%1Q are unitarily equivalent.

sii d There exists a state%2
˜ of AsId such that%2

˜ Þ%2
˜ Q and

%2 = 1
2s%2

˜ + %2
˜ Qd. s20d

For each%2
˜ above, there exists the joint extension of%1 and%2 to AsKø Id denoted byc%̃2

which satisfies

c%̃2
sA1A2d = %1sA1d%2sA2+d + %1sp%1

sA1du1d%̃2sA2−d, s21d

where%1 is the GNS-extension of%1 to p%1
sAsKdd9.

If K and I are finite subsets, then the entropy of%̃2 is equal to that ofc%̃2
.

Proof: We shall show only the sufficiency of the pair of conditionssid and sii d. For the
necessity ofsid see 5.2 in Ref. 2, and for that ofsii d seesdd in the proof of its Theorem 4s4d.

FIG. 1. A state not satisfying MONO–SSA.
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Let sH%1
, p%1

, V%1
d be a GNS triplet for%1 and sH%̃2

, p%̃2
, V%̃2

d be that for%̃2. Define

H ; H%1
^ H%̃2

, V ; V%1
^ V%̃2

, s22d

psA1A2d ; p%1
sA1d ^ p%̃2

sA2+d + p%1
sA1du1 ^ p%̃2

sA2−d, s23d

for A1PAsKd, A2=A2++A2−, A2±PAsId±. Let 11 be the identity operator ofH%1
and12 be that

of H%̃2
.

We can check that the operatorspsAsKø Idd satisfy the CAR by usings19d, and hencep
extends to a representation ofAsKø Id. We define the statec%̃2

on AsKø Id as

c%̃2
sAd ; sV,psAdVd s24d

for APAsKø Id. The von Neumann algebrapsAsKø Idd9 is generated byp%1
sAsKdd9 ^ 12, 11

^ p%̃2
sAsI d+d9, and the weak closure of11 ^ p%̃2

sAsId−d, where we have notedu1

Pp%1
sAsKd+d9=BsH%1

d. Therefore

psAsK ø Idd9 = BsH%1
d ^ p%̃2

sAsIdd9. s25d

From this it follows that the vectorV is cyclic for the representationp of AsKø Id in H. Hence
sH, p, Vd gives a GNS triplet for the statec%̃2

on AsKø Id.
We have

c%̃2
sA1A2d = sV,psA1A2dVd = %1sA1d%̃2sA2+d + %1sp%1

sA1du1d%̃2sA2−d, s26d

for A1PAsKd, A2=A2++A2−, A2±PAsId±. TakingA2=1 in s26d, we obtain

c%̃2
sA1d = %1sA1d. s27d

We will then show

c%̃2
sA2d = %2sA2d. s28d

Under the condition of Lemma 7swhich is our cased, we have

pQs%1d = u%1su1du, s29d

because the transition probability between the vector states of the algebraBsH%1
d=p%1

sAsKdd9 is
equal to thesusuald transition probability of their vectors and hencepQs%1d= usV%1

,u1V%1
du. By the

assumptionpQs%1d=0, s29d implies

%1su1d = 0. s30d

SettingA1=1 in s26d, we obtain

c%̃2
sA2d = %̃2sA2+d + %1su1d%̃2sA2−d = %̃2sA2+d. s31d

By s20d,

%2sA2d = %2sA2+d = %̃2sA2+d. s32d

From s31d and s32d, s28d follows. We have now shown thatc%̃2
is an extension of%1 and%2.

We will show the second paragraph. Bys25d and the commutant theorem,psAsKø Idd8=11

^ p%̃2
sAsIdd8, where the commutant is taken in each GNS space. Thus we have the following

isomorphism:
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b ° 11 ^ b, b P p%̃2
sAsIdd8 s33d

from p%̃2
sAsIdd8 onto psAsKø Idd8. Furthermore bys22d we obtain

sV,s11 ^ bdVd = sV%1
^ V%̃2

,V%1
^ bV%̃2

d = sV%̃2
,bV%̃2

d. s34d

From the assumption thatK and I are finite subsetsswhich we have not used so fard,
p%̃2

sAsIdd8 andpsAsKø Idd8 are both finite-dimensional type I factors.
Now we note the following basic fact about GNS representations for states of finite-

dimensional type I factors which can be considered as the counterpart of Lemma 2 for the usual
case, namely for a pair of isomorphic systems coupled by tensor product. Letv be a state of a
finite-dimensional type I factorU and sHv ,pv ,Vvd denote a GNS triplet ofv. The GNS vector
Vv of v induces a state on the commutantpvsUd8 whose expectation value foraPpvsUd8 is
given bysVv ,aVvd. We call this state onpvsUd8 “v on the commutant.”fIn our terminology, the
pure state with respect toVv on BsHvd=pvsUd ^ pvsUd8 gives a symmetric purification ofv.
Also v on the commutant is symmetric tov.g Then the entropy ofv on U fequivalently that on
pvsUdg is equal to the entropy ofv on the commutant by the same reason described in Lemma 2.
We note that this holds for a generalC* -algebra if the GNS representation of a given state
generates a type I von Neumann algebra with a discrete center. Similarly the extension of Lemma
2 is possible under the above condition on the state.

From the above fact withs33d ands34d, we deduce the equality of the entropies of%̃2 and of
c%̃2

. j

Remark 1:Note that thisc%̃2
is a state extension of%1 and %2, not that of%1 and %̃2. The

possibility of the state extension of%1 and %̃2 is negated by Theorem 4s3d of Ref. 3.
Remark 2:We can easily make examples of states in this proposition. Take a finite subsetK

and an odd self-adjoint elementA in the algebraAsKd which we will identify with BsHd on a
finite-dimensional Hilbert spaceH. Let hPH be a normalized eigenvector of thisA and vh

denote the associated vector state. Thenh'vKh, andvhQ becomes the vector state with respect
to vKh. HencepQsvhd=0. Thisvh obviously satisfiessid. For the existence of%2 satisfyingsii d,
take, for example, the abovevh for %̃2 swith i P Id, vhQ for %̃2Q, and their affine sums20d for %2.

Proposition 8 yields the following construction giving counter examples of MONO–SSA and
those of the triangle inequality.

Theorem 9: Let K, I, and J be mutually disjoint subsets. Let%K=%1 and%I =%2 where%1 and
%2 are those states onAsKd and onAsId given in Proposition 8. Let%KøI be the state extension
of %K and %I to AsKøJd given byc%̃2

in the form of (21). Let%J be an arbitrary even state of
AsJd. Then for such%KøI and %J, there exists a (unique) product state extension%KøI+%J on
AsKø I øJd. If all K , I, and J are finite subsets, then

Ss%KøId + Ss%KøJd , Ss%Id + Ss%Jd, s35d

and

uSs%Id − Ss%Kdu = Ss%Id . Ss%KøId. s36d

Proof: By Ref. 10 or Theorem 1s1d of Ref. 2, there exists a unique product state extension of
a pair of states on disjoint regions ifsand only ifd at least one of them is even, and hence the
suniqued existence of%KøI+%J follows.

By the second paragraph of Proposition 8, we obtain

Ss%KøId = Ssc%̃2
d = Ss%̃2d. s37d

Since%2= 1
2s%̃2+%̃2Qd and %̃2Þ %̃2Q, we have

Ss%Id = Ss%2d = Ss1/2s%̃2 + %̃2Qdd . 1/2Ss%̃2d + 1/2Ss%̃2Qd s38d

by the strict concavity of von Neumann entropy with respect to the affine sum of statesssee
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Remark 3belowd. Due to the unitary invariance of von Neumann entropy,

Ss%̃2d = Ss%̃2Qd. s39d

By s37d, s38d, ands39d, we have

Ss%Id . Ss%KøId. s40d

By the product property of%KøJ=%K+%J the density matrix of%KøJ is a product of the density
matrices of%K and%J which mutually commute because%JPAsJd+. Hence by a direct compu-
tation we have

Ss%KøJd = Ss%Kd + Ss%Jd.

Since%K is assumed to be pure and henceSs%Kd=0, we have

Ss%KøJd = Ss%Jd. s41d

From s40d and s41d, we obtains35d. From s40d andSs%Kd=0, we obtains36d. j

Remark 3:Let H be a finite-dimensional Hilbert space. For statesw and c on the algebra
BsHd and for 0ølø1, the following von Neumann entropy inequalities are well known:

Sslw + s1 − ldcd ù lSswd + s1 − ldSscd, s42d

Sslw + s1 − ldcd ø lSswd + s1 − ldSscd − l log l − s1 − ldlogs1 − ld. s43d

We refer to Proposition 6.2.25 of Ref. 4 for their proofs. We now see the strict concavity of von
Neumann entropy which was used in the proof of Theorem 9, namely for 0,l,1 the equality of
s42d holds if and only if w=c. We employ the proof method given in the above-mentioned
reference. LetK be a two-dimensional Hilbert space andP denote a one-dimensional projection of
BsKd. We denoteA1;BsHd, A2;BsKd, and A1,2;BsH ^ Kd. Let v denote a state onA1,2

whose density matrixDv is given by

lDw ^ P + s1 − ldDc ^ s1 − Pd.

We denotev restricted toA1 sto A2, respectivelyd by v1 sand v2d. We see thatv1 is equal to
lw+s1−ldc, hence

Ssv1d = Sslw + s1 − ldcd.

Also we have

Ssvd − Ssv2d = lSswd + s1 − ldSscd.

Since

Ssv1d + Ssv2d − Ssvd = vslog Dv − logsDv1
^ Dv2

dd ; Ssvuv1 ^ v2d ù 0,

which is equivalent to the subadditivity of entropy, we obtains42d. This Ssv uv1 ^ v2d is relative
entropy of the two states in its argument and is known to have strict positivity, i.e.,Ssv uv1

^ v2d=0 if and only if v=v1 ^ v2, which is equivalent tow=c for 0,l,1. Hence our desired
strictness ofs42d is shown.

Remark 4:We shall give a rough estimation of the amount of violation of the triangle inequal-
ity, i.e., uSswId−SswKdu−SswKøId of s36d for a general statew. Let ŵ;1/2sw+wQd. Then it obvi-
ously satisfies the triangle inequality. Bys42d and s43d, we have uSsŵKøId−SswKøIduø
−1/2 log 1/2−1/2 log 1/2=log 2, andsimilarly uSsŵId−SswIduø log 2 anduSsŵKd−SswKduø log 2.
HenceuSswId−SswKdu−SswKøId is at most 3 log 2. However, we do not know its possible maximal
value.sThe violation of the triangle inequality for our concrete model considered in Ref. 7 ranges
from 0 up to log 2.d
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Generalizing the Lie derivative of smooth tensor fields to distribution-valued ten-
sors, we examine the Killing symmetries and the collineations of the curvature
tensors of some distributional domain wall geometries. The chosen geometries are
rigorously the distributional thin wall limit of self-gravitating scalar field configu-
rations representing thick domain walls and the permanence and/or the rising of
symmetries in the limit process is studied. We show that, for all the thin wall
space–times considered, the symmetries of the distributional curvature tensors turns
out to be the Killing symmetries of the pullback of the metric tensor to the surface
where the singular part of these tensors is supported. Remarkably enough, for the
nonreflection symmetric domain wall studied, these Killing symmetries are not
necessarily symmetries of the ambient space–time on both sides of the wall. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1851603g

I. INTRODUCTION

Consider a family of space–timessM ,ggd, wheregg is C` metric tensor which depends on a
parameterg. An isometryc on sM ,ggd is defined to be a diffeomorphismc :M→M for which
c*gg=gg. The infinitesimal generator of a one-parameter groupcl of local isometries is theC`

vector fieldV on M that satisfies

Lv
gg = 0, s1d

andV is called a Killing vector field onsM ,ggd relative to this group. To every one-parameter
family of Killing symmetries there is an associated conserved quantity along the geodesics of the
space–time and these conserved quantities are useful for integrating the geodesic equation.1

Although isometries are the most important transformations onsM ,ggd, geometric symme-
tries other than Killing symmetries may also be considered. LetgRic be the Ricci curvature tensor
of gg. A vector fieldV on M that satisfies

Lv
gRic = 0, s2d

is called a Ricci collineation. It is well known that for every vector fieldV such thats1d is
satisfied, i.e., for every Killing vector field,s2d is also satisfied and the Ricci tensor inherits the
symmetries of the metric. However, other vector fields that are not Killing vectors may exist for
which s2d is satisfied and these are called proper Ricci collineations. SinceRic is obtained by
contracting the Riemann curvature tensor, Ricci collineations have a natural geometrical signifi-
cance and it is believed that they can be useful to understand the interplay between geometry and
physics in general relativitysfor more details on these and other geometric symmetries, see Refs.
2–5d.

Now, consider a space–timesM ,gd of low differentiability, revealing itself through a lack of
smoothness of the metricg and its curvature tensors. Up to what extent can the classical concept
of a geometric symmetrysin the smooth cased be carried over to this situation? Let us assume that
the metric tensorsg andgg are distribution-valued tensors that satisfy
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g ; lim
g→0

gg s3d

sin the sense of distributionsd and that their corresponding curvature tensors have a well-defined
distributional meaning. Further, assume that the following diagram holds;

gg ——→ gRiem ——→ gRic ——→ gG

↓g→0 ↓g→0 ↓g→0 ↓g→0

g ——→ Riem ——→ Ric ——→ G

s4d

wheregg, gRiem, gRic, gG andg, Riem, Ric, G are the distribution valued metric, Riemann, Ricci
and Einstein tensors of the smooth and the distributional geometries, respectively. Although dis-
tributional curvatures are in general ill-defined due to the nonlinearities of general relativity, there
is a class of distributional metrics for which the Riemann curvature tensor and its contractions can
be interpreted as distributions.6 Metrics for thin shells7 are included into this class.6,8 Furthermore,
for such a class an appropriate notion of convergence of metrics has been stated which ensures the
convergence of the respective curvatures,6 in the sense that the diagrams4d holds.

Since the derivative of a distribution is a distribution, for a distributional metric whose cur-
vature tensors make sense as distributions, it makes sense to consider their geometric symmetries.
Obviously, this situation should be considered also from the distributional point of view. For
example, Eq.s2d contains products of the Ricci tensor and the vector field which generates the
symmetry, so that for a distribution-valued Ricci tensor such equation restricts the vector field to
be C`. With this proviso, we can consider geometric symmetries in cases in which the curvature
tensors are zero almost everywhereswhen obtained within standard differential geometryd. Fur-
thermore, for distributional geometries such that the above diagram holds, we can study the
permanence and/or the rising of symmetries in the limit process. Thus, from the study of these
geometries we expect to get further insight about the nature of distributional curvatures in general
relativity.

Killing symmetries of distributional metrics have been considered previously in Ref. 9, where
it is shown that the Killing fields of the Schwarzschild metric are also Killing of its ultrarelativistic
limit, the last one being app-wave with a distributionald profile.10 In addition, based on the
analysis of the adjoint orbits of normal-form-preserving diffeomorphisms, Killing symmetries of
impulsive pp-waves with distributional profiles have been analyzed11 and the existence of non-
smooth Killing vectors put forward.12

In this paper, adopting a different approach for a rigorous definition of symmetries of distri-
butional geometries, we are concerned with symmetries of domain wall space–times. Such space–
times have been the subject of intense investigation, after it was realized in Ref. 13 that our
four-dimensional universe might be a thinscodimension oned distributional domain wall embed-
ded in a five-dimensional space–time. Thin wall geometries have distribution-valued curvature
tensor fields whose singular parts are proportional to a Dirac distribution supported on the surface
where the wall is localized. All the metrics representing the possible backgrounds of an infinitely
thin domain wall14 have been found and classified,15,16 these being joined at a common boundary,
the surface where the wall is localized, following the Darmois–Israel formalism.7 On the other
hand, smooth domain wall geometries can be obtained as solutions to the coupled Einstein-scalar
field system with a suitable symmetry breaking potentialVsfd.14,17–20The behavior of gravity in
some of these models has been also investigated.21–23Recently, following the convergence criteria
of Ref. 6, the distributional thin wall limit of some classes of domain wall space–times has been
rigourously analyzed24,25 showing that the diagrams4d, in which gg and g are the distribution
valued metric tensors of the thick and thin domain wall space–times, respectively, holds. Specifi-
cally, we will study the symmetries of the metric and its curvature tensors of these distributional
domain wall geometries. Domain walls have drastic gravitational effects in the ambient space and,
due to its role in brane-world models, we are interested in their geometric symmetries besides
those defining the plane-parallel symmetry since a larger group may exists for various particular
models.
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In Sec. II, after an overview on the subject of distribution-valued tensors, we give the defi-
nition of the Lie derivative of a tensor distribution along aC` vector field. In the next three
sections, we examine the Killing symmetries and the collineations of the singular Ricci and
Einstein curvature tensors associated to the distributional thin wall limit of some thick domain
wall space–times for which the diagrams4d holds.24 The last section is devoted to summarize and
discuss the results.

II. MATHEMATICAL FRAMEWORK

We first recall some fundamental results about distribution-valued tensors on aC` paracom-
pactn-dimensional manifoldM.26–28

Let DpsMd be the space ofC` p-tensor fields onM with compact support endowed with its
Schwartz topology, i.e., the space of testp-tensor fields. The space ofp-cotensor distributions on

M, Dp
*8sMd, is defined as the dual ofDpsMd. Now, in order to keep things simple, we endow the

C` paracompact manifoldM with a C` metric h. However, it should be noted that tensor
distributions and their derivatives can be described without assuming the presence of a metric29

and that, by using de Rham currents30 and replacing test tensors by testn-forms, the introduction
of a volume form can also be avoided. Here we shall follow the approach of Ref. 26.

Let U be a testp-tensor field onM. The identification of a locally integrablep-cotensor field
T with a distribution-valued tensor is defined by

TfUg ; E
M

T ·Uvh, s5d

whereT ·U denotes the scalar product ofT andU, andvh is the volume element ofh. Sinces5d
is the integral of ann-form with compact support, we have

TfUg ; E
wsMd

Ti1¯ip
Ui1¯ipudethu1/2 dx1

¯ dxn s6d

in the domainwsMd of the chartsx1, . . . ,xnd. Obviously, s6d is independent of the choice of
coordinate system covering the corresponding domain. Further, althoughs5d depends on the
choice ofh, the space of locally integrable tensor fields does not.26

Next, let us define the Lie derivative of a tensor field in the sense of distributions. LetV be a
C` vector field andT be aC1 p-cotensor field onM. The Lie derivative ofT is the p-cotensor
field LvT such that, for every testp-tensor fieldU,

LvTfUg ; E
M

LvT ·Uvh =E
M

LvsT ·Uvhd −E
M

ssT ·LvUdvh + sT ·UdLvvhd. s7d

Now, sinceT ·Uvh is ann-form with compact support, we have

E
M

LvsT ·Uvhd =E
M

divsT ·Uvhd =E
]M

ivsT ·Uvhd = 0, s8d

whereiv denotes interior product, in the last step we have used Stokes’ theorem and the surface
term vanishes becauseU has compact support. Therefore

LvTfUg = −E
M

ssT ·LvUdvh + sT ·UdLvvhd. s9d

On the other hand, we have
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Lvvh = s¹ ·Vdvh s10d

where¹ is the torsion free metric compatible Levi–Civita covariant derivative associated withh
and

¹ ·V ; ¹ jV
j . s11d

It follows that

LvTfUg = −E
M

T · sLvU + Us¹ ·Vddvh. s12d

Therefore, to have a definition which coincides with the usual one whenT is C1, we define forT
an arbitraryp-cotensor distribution andV a C` vector field onM the Lie derivative ofT as the
p-cotensor distribution given by

LvTfUg ; − TfLvU + s¹ ·VdUg. s13d

Note thats13d makes sense since bothLvU ands¹ ·VdU are testp-tensor fields ifV is aC` vector
field. Further, it should be stressed that the distributional Lie derivative of a tensor distribution,
s13d, reduce to the classical Lie derivative of an ordinary smooth tensor for a tensor distribution
associated to a smooth tensor. This claim follows directly from the derivation ofs12d.

In the next sections,s13d will be used to define and compute the Lie derivative of a
distribution-valued metric tensorg with V a C` vector field that generates a one parameter group
of isometries of the space–timesM ,gd. We also make use ofs13d to define and compute the Ricci
and Einstein collineations of the distributional geometry associated to these space–times. Since all
the distribution-valued metric tensors that we shall consider are regular metrics in the sense of Ref.
6, let us recall their definition. Suppose thatsM ,gd are given such that

s1d g and sg−1d exist everywhere and are locally bounded,
s2d the first derivative¹g sin the sense of distributionsd of g in some smooth derivative operator

¹ exists and is locally square-integrable, i.e., the outer product of the derivative with itself is
locally integrable.

Following Ref. 6, these are the minimal conditions for the Riemann curvature tensor to be
definable as a distribution by the usual coordinate formula and we shall say thatg is a regular
metric. Since for this class of metrics the outer product of any number of metrics and inverse
metrics with the Riemann curvature tensor can be interpreted as distributions, the Ricci and
Einstein curvature tensors of a regular metric make sense as distributions. Finally, it should be
stressed that for such class an appropriate notion of convergence of metrics exists which ensures
the convergence of the respective curvatures,6 in the sense that the diagrams4d holdssfor details,
see Ref. 6d.

III. A DOMAIN WALL WITH A DE SITTER EXPANSION

Consider the space–timesR4,ggd where the metric tensorgg, in a particular coordinate basis,
is given by

gg = cosh−2g bx

g
s− dt ^ dt + dx ^ dx + e2btsdy ^ dy + dz ^ dzdd, s14d

whereb andg are constants, with 0,g,1. This space–time is generated by a thick domain wall,
i.e., a solution to the coupled Einstein-scalar field equations

gG + ggL ; gRic − 1
2

gggR+ ggL = 8pfdf ^ df − gs 1
2df ·df̃ + Vsfddg , s15d

where the vector fielddf̃ is the metric dual todf and
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hf −
d

df
Vsfd = 0, s16d

where −h;dd+dd, with d andd the exterior derivative and the codifferential, respectively. In
this case we have

f = f0 tan−1ssinhsbx/gdd, f0 ; Îgs1 − gd/4p, s17d

Vsfd =
1

8p
b2S2 +

1

g
Dcos2s1−gdsf/f0d, L = 0. s18d

The scalar field takes values ±pf0/2 at x= ±` corresponding to two consecutive minima of the
potential and interpolates smoothly between these values,17,18,20 with g playing the role of the
wall’s thickness.24 The five-dimensional analogue of this geometry, considered as a thick brane-
world model, has been studied in Ref. 23.

Note thats14d is C` as are also all its curvature tensor fields. In particular, for the Ricci and
Einstein tensor fields we obtain

gRic = − S2 +
1

g
Db2 cosh−2 bx

g
S− dt dt +

3

1 + 2g
dx dx + e2btsdy dy + dzdzdD s19d

and

gG = − S1 +
2

g
Db2 cosh−2 bx

g
S− dt dt +

3g

2 + g
dx dx + e2btsdy dy + dzdzdD , s20d

where, following standard practice, we have omitted writing the outer product sign.
Now, from s1d and s14d, we obtain six linearly independent Killing vector fields onsR4,ggd

given by

V1 = y, V2 = z, V3 = zy − yz, s21d

V4 = t − bsyy + zzd, s22d

V5 = 2byV4 + sb2sy2 + z2d − e−2btdy, s23d

V6 = 2bzV4 + sb2sy2 + z2d − e−2btdz. s24d

The Killing vectorss21d are generic to the plane parallel symmetry, two spatial translationsV1, V2

and one spatial rotationV3. The six vector fieldss21d–s24d are also Killing vectors on thes2
+1d-dimensional de Sitter space–timesR3,ḡd with

ḡ = − dt dt + e2btsdy dy + dzdzd, s25d

whereV4 is a quasitime translation andV5, V6 are quasi-Lorentz rotations. Note thats21d–s24d are
all independent of the thicknessg of the wall. It is straightforward to show that fors21d–s24d we
have in the classicalsi.e., nondistributionald sense

Lv
gRic = 0, Lv

gG = 0. s26d

One can also show that there are no other vector fields for whichs26d is satisfied. Hence, the Ricci
s19d and Einsteins20d curvature tensors only admit improper collineations.

Next, consider the Lie derivative ofs14d in the sense of distributions as given bys13d. Let h
be the ordinary four-dimensional Minkowski metric tensor in Cartesian coordinates
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h = − dt dt + dx dx + dy dy + dzdz, s27d

and let¹ be the Levi–Civita covariant derivative associated withh. Let U be a test tensor onR4.
From s13d, it is straightforward to verify that for all Killing vectorss21d–s24d, we have

Lv
ggfUg = 0, s28d

as expected. Indeed, it is to make such things true that the Lie derivative is defined as ins13d. For
the sake of completeness, let us show explicitly the computation of this derivative for the Killing
vector given bys22d. We have

Lv4

ggfUg ; − ggfLv4
U + s¹ ·V4dUg = −E

R4

gg · sLv4
U + Us¹ ·V4ddvh = −E

R4
cosh−2g bx

g
ss]t

− by]y − bz]z − 2bds− Utt + Uxxd + e2bts]t − by]y − bz]zdsUyy + Uzzdddt dx dy dz= 0,

s29d

where in the last step we have integrated by parts and used the fact thatU is of compact support.
For all the Killing vector fieldss21d–s24d, analogous computations show that

Lv
gRicfUg = 0, Lv

gGfUg = 0, s30d

as expected.
We turn now to consider theg→0 limit of this geometry. In Ref. 24, it has been proved that

s14d provides a sequence of metrics that satisfies the convergence conditions of Ref. 6 such that
the limit of the Riemann curvature tensor exists and is the Riemann tensor of the limit metric. The
same holds for the other curvature tensors. We have

g ; lim
g→0

gg = sQx
−e2bx + Qx

+e−2bxds− dt dt + dx dx + e2btsdy dy + dzdzdd, s31d

Ric ; lim
g→0

gRic = 2bd0sdt dt − 3 dx dx − e2btsdy dy + dzdzdd, s32d

G ; lim
g→0

gG = 4bd0sdt dt − e2btsdy dy + dzdzdd, s33d

whereQx
− andQx

+ are the Heaviside distributions with support onx,0 andx.0, respectively, and
d0 is the Dirac measure with support on the surfacex=0. Note thatg is piecewise smooth and that
the pullback ofg to the surfacex=0 is the same from both sides. Note also that this pullback is
given by s25d. Indeed, the above expressions should be understood in the sense of distributions.
Thus,g; limg→0

gg means

gfUg ; lim
g→0

ggfUg. s34d

In fact, gg, sggd−1 and¹gg, with ¹ the covariant derivative associated withs27d, converge locally
sin square integrald to g, sgd−1, and¹g, respectively.24 sRemarkably enough, withg¹ the covariant
derivative associated to any regular metric tensorg we haveg¹g=0 in the sense of distributions.6d
Hence,Ric andG are the distribution-valued Ricci and Einstein curvatures ofg.24 It follows that
the diagrams4d, in which gg andg are the distribution valued metric tensors of the thick and thin
domain wall space–times, respectively, holds in the sense of distributions.

Now, as follows from the distributional convergences4d proved in Ref. 24 and the fact that the
vectorss21d–s24d are all smooth vector fields independent of the wall’s thickness, these are also
Killing vectors of sR4,gd in the sense thatLvg is the zero distribution onR4. As an example,
consider the Killing vector given bys22d. For s31d we have
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Lv4
gfUg ; − gfLv4

U + s¹ ·V4dUg = −E
R4

g · sLv4
U + Us¹ ·V4ddvh = −E

x,0
e2bxss]t − by]y

− bz]z − 2bds− Utt + Uxxd + e2bts]t − by]y − bz]zdsUyy + Uzzdddt dx dy dz

−E
x.0

e−2bxss]t − by]y − bz]z − 2bds− Utt + Uxxd + e2bts]t − by]y − bz]zdsUyy

+ Uzzdddt dx dy dz= 0, s35d

where we have integrated by parts and used the fact thatU is of compact support.
Indeed,s21d–s24d are also improper Ricci collineations. Fors32d and s22d we have

Lv4
RicfUg ; − RicfLv4

U + s¹ ·V4dUg = − bE
x=0

ss]t − by]y − bz]z − 2bds2Utt − 3Uxxd − 2e2bts]t

− by]y − bz]zdsUyy + Uzzdddt dy dz= 0, s36d

where in the last step we have integrated by parts and used again the fact thatU is of compact
support. Analogous computations show that

Lv RicfUg = 0, LvGfUg = 0, s37d

for all the Killing symmetries ofs14d, a result that obviously cannot be proved outside the
distributional setting. It follows that for this space–time the diagram

Lv
gg = 0 ——→ Lv

gRic = 0 ——→ Lv
gG = 0

↓g→0 ↓g→0 ↓g→0

Lvg = 0 ——→ Lv Ric = 0 ——→ LvG = 0

s38d

holds in the sense of distributions. Besidess21d–s24d, there is no otherC` vector field for which
s37d are satisfied. It should be noted that both diagrams,s4d and s38d, hold underg-dependent
smooth diffeomorphisms, whenever in the limitg→0 these remain bounded in order to avoid
different identifications of points in the manifold under these diffeomorphisms.

Finally, it should be stressed that any smooth metric can be chosen as an auxiliary metric in
s13d. We have made the choices27d for simplicity. In this sense, anyC` metric tensor fieldh
whose Killing vectors are given bys21d–s24d is also a convenient choice for explicit calculations
since in this case¹ ·V =0. Now, withg¹ the covariant derivative associated tog, we haveg¹ ·V =0
for g given by s31d and V any of its Killing vector fieldss21d–s24d. However,s31d cannot be
chosen as an auxiliary metric, since forV an arbitraryC` vector field,sg¹ ·Vd turns out to be
discontinuous at the surfacex=0 andsg¹ ·VdU is not a test tensor field.

IV. A DOMAIN WALL EMBEDDED IN AN ANTI-DE SITTER SPACE–TIME

Consider the space–timesR4,ggd where the metric tensor is given by

gg = cosh−2g bx

g
s− dt dt + dy dy + dzdzd + dx dx, s39d

with b andg constants andg.0. This is a thick domain wall space–time, solution to the coupled
Einstein-scalar field equationss15d and s16d with L=−3b2 and

f = f0 tan−1ssinhsbx/gdd, f0 ; Îg/4p s40d

and
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Vsfd =
1

8p
b2S3 +

1

g
Dcos2sf/f0d. s41d

This space–time behaves asymptoticallysi.e., far away of the walld as an anti-de Sitter
space–time24 and its five-dimensional analogue provides a thick domain wall version22 of the
original Randall–Sundrum scenario.13 Here, g plays the role of the wall’s thickness and the
distributionalg→0 limit of this geometry has been analyzed in Ref. 24.

There are six Killing vector fields onsR4,ggd, given by

V1 = y, V2 = z, V3 = zy − yz, s42d

V4 = t, V5 = ty + yt, V6 = zt + tz, s43d

whereV4 is a time translation andV5, V6 are Lorentz rotations.
The Ricci and Einstein tensor fields ofs39d are given by

gRic = L tanh2 bx

g
gg +

b2

g
cosh−2 bx

g
Scosh−2g bx

g
s− dt dt + dy dy + dzdzd + 3 dx dxD ,

s44d

gG = − L tanh2 bx

g
gg −

2b2

g
cosh−2sg+1d bx

g
s− dt dt + dy dy + dzdzd. s45d

The distributional thin wall limits ofs39d, s44d, ands45d are given by

g ; lim
g→0

gg = sQx
−e2bx + Qx

+e−2bxds− dt dt + dy dy + dzdzd + dx dx, s46d

Ric ; lim
g→0

gRic = Lg + 2bd0s− dt dt + 3 dx dx + dy dy + dzdzd, s47d

G + gL ; lim
g→0

sgG + ggLd = 4bd0sdt dt − dy dy − dzdzd, s48d

whereRic andG are the distribution-valued Ricci and Einstein curvatures ofg.24 The diagrams4d,
in which gg andg are given bys39d and s46d, respectively, holds in the sense of distributions.

Note thatg is piecewise smooth and that the pullback ofg to the surfacex=0 is the same from
both sides of this surface. Note also that the six vector fieldss42d ands43d are also Killing vectors
on the s2+1d-dimensional Minkowski space–timesR3,ḡd with ḡ the Minkowski metric which
appears as this pullback.

Next, let h be the Minkowski metric tensors27d and let ¹ be the Levi–Civita covariant
derivative associated withh. Let U be a test 2-tensor field onR4. From s13d, it is straightforward
to verify that for the vector fields given bys42d and s43d, we have

Lv
ggfUg = 0, LvgfUg = 0, s49d

as expected. Hence,s42d ands43d are Killing vectors ofsR4,gd in the sense thatLvg along these
vectors is the zero distribution onR4. Analogous computations show that

Lv
gRicfUg = 0, Lv

gGfUg = 0 s50d

and

033509-8 N. Pantoja and A. Sanoja J. Math. Phys. 46, 033509 ~2005!

                                                                                                                                    



Lv RicfUg = 0, LvGfUg = 0. s51d

It follows that for this space–time the diagrams38d holds in the sense of distributions. Besidess42d
and s43d, there is no otherC` vector field for whichs50d and s51d are satisfied onR4.

Next, letM+;hst ,x,y,zdPR4,x.0j and letU+ be a test tensor of compact supportK,M+.
From s12d we find that

LvgfU+g = 0 s52d

is satisfied along theC` vector fields onR4 given by

V7 = x + bstt + yy + zzd, s53d

V8 = btV7 + s 1
2b2s− t2 + y2 + z2d + 1

8e2bxdt, s54d

V9 = byV7 − s 1
2b2s− t2 + y2 + z2d + 1

8e2bxdy, s55d

V10 = bzV7 − s 1
2b2s− t2 + y2 + z2d + 1

8e2bxdz. s56d

It follows that Lvg is the zero distribution onM+, along these vector fields.
Now, let U be a test tensor onR4 and let us consider the Lie derivativessin the sense of

distributionsd of s39d ands46d along the vector fieldss53d–s56d. Sincegg and¹gg converge locally
to g and ¹g for g→0,24 it follows directly thatLv

gg also converge locally toLvg along the
smooth vector fieldss53d–s56d. Thus, forV7 we have

LV7

gg = 2b cosh−2g bx

g
S1 − tanh

bx

g
Ds− dt dt + dy dy + dzdzd, s57d

LV7
g = Qx

−4be2bxs− dt dt + dy dy + dzdzd, s58d

that satisfy

lim
g→0

LV7

ggfUg = LV7
gfUg. s59d

The fact thatLv7
g is the zero distribution onM+ may be interpreted naturally as a Killing

symmetry ofg on M+ generated byV7. Since this symmetry arises in the limitg→0 of gg, V7 is
an asymptoticKilling vector field on sR4,ggd. The same considerations holds for the otherC`

vector fieldss54d–s56d. Further, sincesR4,gd is reflection symmetric along the direction perpen-
dicular to the wall, a symmetry inherited fromsR4,ggd, the above considerations can be extended
to M−;hst ,x,y,zdPR4,x,0j under the replacementx→−x. Indeed, these results are by no
means unexpected, they simply put in a rigorous setting the emergence of additional symmetries
in the g→0 limit of the space–timesR4,ggd, where we have an absolute control over what is
going on.

For the sake of completeness, let us analyze the action ofLv on the distribution-valued
curvature tensors of the metrics46d along the vector fieldss53d–s56d. Let us consider again the
vector fieldV7. We find

LV7
Ric = 2bsd08 − 2bd0ds− dt dt + 3 dx dx + dy dy + dzdzd − Qx

−12b3e2bxs− dt dt + dy dy

+ dzdzd s60d

and
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LV7
s8pTd ; LV7

sG + Lgd = 4bsd08 + 2bd0ds− dt dt + dy dy + dzdzd. s61d

Indeed,V7 is neither a Ricci collineation nor a matter collineation and the same conclusion
extends to the vector fieldss54d–s56d. In particular, this shows explicitly that the distributional
energy momentum tensor of the brane does not inherit all the symmetries of the bulk.

V. AN ASYMMETRIC DOMAIN WALL SPACE–TIME

Let us now to consider the space–timesR4,ggd where theC` metric tensorgg is given by

gg = cosh−2g/3 bx

g
e−4bx/3s− dt dt + e2bxsdy dy + dzdzdd + cosh−2g bx

g
dx dx, s62d

with b andg constants and 0,g,1. This represents a two-parameter family of plane symmetric
static domain wall space–times in which the reflection symmetry along the direction perpendicular
to the wall has been relaxed, being asymptoticallysi.e., far away of the walld flat for x.0 and
behaving asymptotically as the Taub space–time forx,0.20 The metrics62d is solution to the
coupled Einstein-scalar field equationss15d and s16d with L=0 and

f = f0 tan−1ssinhsbx/gdd, f0 ; 1
6
Î3gs1 − gd/p s63d

and

Vsfd =
1

24p
b21

g
cos2s1−gdsf/f0d, s64d

whereg plays the role of the wall’s thickness. The distributionalg→0 limit of this geometry has
been analyzed in Ref. 25. It should be noted thats62d does not inherit theZ2 symmetry ofVsfd,
a fact that makes very interesting the analysis of the symmetries of this space–time.

The Ricci and Einstein tensor fields ofs62d are given by

gRic =
b2

3g
Scosh

bx

g
D−2s1−2g/3d

s− e−4bx/3 dt dt + e2bx/3sdy dy + dzdzdd +
b2

3g
s3

− 2gdcosh−2 bx

g
dx dx, s65d

gG =
b2

3g
Scosh

bx

g
D−2s1−2g/3d

s2 − gdse−4bx/3 dt dt − e2bx/3sdy dy + dzdzdd −
b2

3
cosh−2 bx

g
dx dx,

s66d

and the distributional thin wall limits ofs62d, s65d, ands66d are given by25

g ; lim
g→0

gg = Qx
−s− e−2bx/3 dt dt + e2bx dx dx + e4bx/3sdy dy + dzdzdd + Qx

+s− e−2bx dt dt

+ e−2bx dx dx + dy dy + dzdzd, s67d

Ric ; lim
g→0

gRic = 1
3bd0s− dt dt + 3 dx dx + dy dy + dzdzd, s68d

G ; lim
g→0

gG = 2
3bd0sdt dt − dy dy − dzdzd. s69d

Note thatg is piecewise smooth and that the pullback ofg to the surfacex=0 is the same from
both sides and coincides with the ordinarys2+1d-dimensional Minkowski metric. Like its
smoothed versions62d, g is not reflection symmetric along the coordinate perpendicular to the
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wall. The space–timesR4,gd for x.0 is isometric to the ordinarys3+1d-dimensional Minkowski
space–time, while forx,0 it is the Taub space–time.20,25

There are only four independent Killing vector fields onsR4,ggd and these are given by

V1 = y, V2 = z, V3 = zy − yz, V4 = t. s70d

Let ¹ be the derivative operator in the ordinary Minkowski metric tensors27d. Let U be a test
2-tensor field onR4. From s13d it is straightforward to show that the four vectors given ins70d
generate also isometries ofs67d and are improper collineations for the distributional Ricci and
Einstein curvature tensors. It follows that for this space–time the diagrams38d holds in the sense
of distributions.

Next, consider theC` vector fields given by

V5 = ty + yt, V6 = zt + tz. s71d

We have

LV5
gfUg ; − gfLV5

U + s¹ ·V5dUg = −E
R4

g · sLV5
U + Us¹ ·V5ddvh = −E

x,0
se−2bx/3 − e4bx/3d

3sUty + Uytddt dx dy dz−E
x.0

se−2bx − 1dsUty + Uytddt dx dy dz, s72d

where we have integrated by parts and used the fact thatU is of compact support. It follows

LV5
g = 2sQx

−ebx/3 + Qx
+e−bxdsinhbxsdt dy + dy dtd. s73d

On the other hand, as can be guessed from the explicit form ofRic, we have

LV5
RicfUg ; − RicfLV5

U + s¹ ·V5dUg

= −
1

3
bE

x=0
sy]t + t]ydsUtt + 3Uxx + Uyy + Uzzddt dy dz= 0, s74d

where in the last step we have integrated by parts and used again the fact thatU is of compact
support. Analogous computations show that

LV6
g = 2sQx

−ebx/3 + Qx
+e−bxdsinhbxsdt dz+ dzdtd, s75d

LV6
Ric = 0. s76d

Hence, althoughV5 andV6 are not Killing vectors ofsR4,gd, they are Ricci collineations. Further,

LV5
G = 0, LV6

G = 0, s77d

andV5 andV6 are also Einstein collineations. Indeed, the above expressions should be understood
in the sense of distributions. Besidess70d ands71d, there is no otherC` vector field that generates
symmetries ofRic andG.

It should be noted thatLv5
g andLv6

g are piecewise smooth and that the pullbacks ofLv5
g and

Lv6
g to the surfacex=0 are the same from both sides of the wall and vanish. It follows that the

symmetries of the distribution-valued curvature tensorsRic and G swhich are supported on the
surfacex=0d coincide with the Killing symmetries of the pullback ofg to this surface. For the
sake of completeness, let us show that the same result is also reached within the standard thin shell
formalism.7,31 For sR4,gd with g given bys67d, the pullbackḡ of g to the surfacex=0 is the same
from both sides and is given by
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ḡ = s− dt dt + dy dy + dzdzd. s78d

The extrinsic curvature tensorK of the surfacesx=x0 as submanifolds ofsR4,gd, is the C`

regularly discontinuous tensor across the surfacex=0 given by

K = − 1
3bQx

−se−2bx0/3 dt dt + 2e−4bx0/3sdy dy + dzdzdd − bQx
+e−2bx0 dt dt. s79d

Thus, the discontinuityffK gg;uK ux0=0+− uK ux0=0− of K across the surfacex=0, which is declared as
a purely intrinsic property of this surface, is the ordinaryC` tensor field defined on the surface
x=0 given by

ffK gg = 2
3bs− dt dt + dy dy + dzdzd. s80d

Therefore, the symmetries offfK gg are the symmetries of the pullbackḡ of g to the surfacex
=0. Now, we have

Ric = 1
2d0sffK gg + sḡ−1 · ffK ggddx dxd, s81d

from which it follows that the symmetries of the distributional Ricci tensor ofg turns out to be the
Killing symmetries of the induced metricḡ on the surfacex=0 where the 2-brane is localized. It
should be noted that this is not an example of the well knownstriviald symmetry inheritance.
Although, the pullbackḡ of g to the surfacex=0 acts a metric on this surfacesas follows from the
fact that the surfacex=0 has a well-defined intrinsic geometryd and therefore the Killing vectors
of this pullback are naturally collineations of the curvature tensors of this pullback,Ric given by
s68d or s81d is not the Ricci tensor ofḡ. The same conclusions can be extended also to all the thin
domain wall geometries considered in the preceding sections.

Remarkably enough, the asymmetric geometry considered here, explicitly shows that the
Killing symmetries of the pullback of the metric tensor to the surface where the thin wall is
localized may form a larger group than the group of Killing symmetries which are common to the
ambient space–time on both sides of the wall.

VI. SUMMARY AND DISCUSSION

In this work, by generalizing the Lie derivative of smooth tensor fields to distribution-valued
tensors, we defined and computed the Killing symmetries and the Ricci and Einstein collineations
of some distributional domain wall geometries for which the diagrams4d, with gg and g the
distribution valued metric tensors of the thick and thin domain wall space–times, respectively,
holds rigourously in the sense of distributions. For all the geometries considered, the distribution-
valued curvature tensors of the thin wall limit have singular parts proportional to a Dirac distri-
bution supported on the surfaceS where the thin wall is localized. We found that the Killing
symmetries of the distributional geometry of the thin wall space–timesR4,gd are the Killing
symmetries of the smooth thick domain wall space–timesR4,ggd and that, besides these, there are
no other isometries. However, as expected, the thin wall geometry may show additional symme-
tries on the open disjoint setsM+ andM−, that admitS as a boundary, which are not isometries
inherited from the corresponding smooth geometry. These symmetries are the asymptoticsi.e., far
away of the walld Killing symmetries ofsR4,ggd.

For the thin domain walls with reflection symmetry of Secs. III and IV, the Killing vectors of
sR4,gd are the only symmetries of the corresponding distribution-valued Ricci and Einstein ten-
sors. Therefore the Ricci and Einstein collineations of these thin wall geometries are improper. For
the asymmetric thin domain wall of Sec. V, we found that the collineations of the distributional
Ricci and Einstein tensors form a larger group than the one formed by the Killing symmetries of
the corresponding space–timesR4,gd. The additional symmetries are then proper Ricci and Ein-
stein collineations. Finally, for all the thin wall space–timessR4,gd considered, the symmetries of
the distributional curvature tensors turns out to be the Killing symmetries ofsS ,ḡd, whereḡ is the
pullback ofg to S.
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Although we have restricted ourselves to consider four-dimensional domain wall space–times,
these models are straightforwardly generalized toD-dimensional domain wall space–times.25 On
the other hand, the analysis presented here can be carried out, in principle, for all the distribution-
valued curvature tensors of a space–timesM ,gd, whenever the distribution-valued metric tensorg
is a regular metric in the sense of Ref. 6. This generalization and its implications will be discussed
in a forthcoming paper.
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Among the many families of nonperiodic tilings known so far, SCD tilings are still
a bit mysterious. Here, we determine the diffraction spectra of point sets derived
from SCD tilings and show that they have no absolutely continuous part, that they
have a uniformly discrete pure point part on the axisRe3, and that they are other-
wise supported on a set of concentric cylinder surfaces around this axis. For SCD
tilings with additional properties, more detailed results are given. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1842355g

I. THE TILINGS

After the discovery of families of tiles that permit only aperiodic tilings, the question arose
whether there exists a single tile that permitsonly aperiodic tilings by copies of itselfsanaperiodic
prototiled. A first example, which gives tilings in Euclidean 3-space, was found by Schmitt in
1988. It was elaborated later by Conway and Danzerscf. Ref. 7d. In particular, they modified
Schmitt’s prototile to a convex one. We refer to these tilings—which will be described in this
section—as SCD tilings.

A tiling in Rd is a collection of tileshTnjnù0 which coversRd and contains no overlapping
tiles, i.e., intsTkdù intsTnd=x for kÞn. A tile is a nonempty compact setT,Rd with the property
that clsintsTdd=T. A tiling T is calledaperiodic, if T+x=T implies x=0.

The SCD tilings are built from a single kind of tile—a singleprototile—which we refer to as
SCD tile. Essentially, the main idea is that the only possible tilings are of the following form: The
tiles can be put together to form layers, which extend in two dimensions; these layers can be
stacked, but only in such a way that two consecutive layers are rotated against each other by a
fixed angle, which may be incommensurate top. Then, the symmetry groups of the resulting
tilings may still be nontrivial, even infinite, but they contain no translation. To achieve this, we
allow only directly congruent copies of the tiles, but no mirror imagesscf. Sec. IIId.

The SCD tile: Choose 0,l,1, and positive real numbersb1,b2,c. Let w=arctansb1/b2d, set
a=Îb1

2+b2
2, and

a = sa,0,0d, b = sb1,b2,0d, c = lb + s0,0,cd, d = la − s0,0,cd,

scf. Fig. 1d. Now, we define the SCD tile as

T = convs0,a,b,a + b,c,a + c,d,b + dd, s1d

where convsMd denotes the convex hull ofM. The result is the union of the two triangular prisms
convs0,a,b,a+b,c,a+cd and convs0,a,b,a+b,d,b+dd, glued together at the rhomb-shaped
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bdPresent address: Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany. Electronic mail:
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facet convs0,a,b,a+bd. This is the reason that it is sometimes called Conway’s biprism. If
w¹pQ, we will call the SCD tileincommensurateswhich is the classical cased, otherwisecom-
mensurate.

We should mention that this is only one possible construction. Several generalizations or
variations are possiblescf. Sec. III or Ref. 7d. But all these tiles give rise to tilings with basically
the same structure.

The SCD tilings: Using translations of the SCD tile, one can put them togethersid by joining
triangular facets convs0,b,cd with convsa,a+b,a+cd, and sii d by joining triangular facets
convs0,a,dd with convsb,b+a,b+dd. If we do so inductively until no triangular facet remains
uncovered, we end up with a planar layer covering a two-dimensional plane.

This layer is congruent toL=hx+TuxPGj, where G is the two-dimensional point lattice
spanned bya andb, i.e., G=Za+Zb. The top ofL shows ridges and valleys, all parallel to each
other, and all parallel tob. The bottom ofL also shows “down under”sor upside downd valleys
and ridges, all of them parallel toa. In order to stack the layers, consider a layerL8=L−c. Take
a second layerL9=s0,0,cd+RL8, where R is a rotation through −w around the axisRe3

=ks0,0,1dlR. L9 fits exactly on top ofL8. In the same fashion, we proceed stacking layers and
obtain

T = ø
mPZ

ms0,0,cd + RmL8, s2d

which is a tiling ofR3. There are many other possibilities to build SCD tilings. For example, two
consecutive layers can be shifted against each other by an arbitrary translation in the direction of
Rmb, which is the direction of the matching valleys and ridges of the two layers. Let us mention
that Danzer’s version restricts these translations to a discrete setZRmb in order to allow crystal-
lographic applications. Therefore, “SC tilings” might be a better notation for the more general
tilings we consider here. Nevertheless, we will stick to the well-known notation of SCD tilings
throughout this paper, holding in mind that the SCD tilings in Ref. 7 are a proper subset of the
SCD tilings here. In this sense, all possible SCD tilings are congruent to

T = ø
mPZ

ms0,0,cd + vm + RmL8, s3d

for somevm=sv1
smd ,v2

smd ,0d, wherevm+1−vm is a sreald multiple of Rmb. For a more thorough
discussion of all possible SCD tilings, see Sec. III or Ref. 7.

As with tiles, we will distinguish betweenincommensurateSCD tilings, if they are built from
incommensurate SCD tiles, andcommensurateSCD tilings otherwise. Now, it is easy to see that
incommensurate SCD tilings are aperiodic: Sincew¹pQ, all layersms0,0,cd+vm+RmL have
pairwise different orientations. Consequently, a possible translationx with T+x=T must map
every layer onto itself. The translation vectors that fix themth layerms0,0,cd+vm+RmL are those
in RmG. So, the translation vectors which fix the whole tiling are elements of

ù
mPZ

RmG = h0j,

wherefore all incommensurate SCD tilings are aperiodic.

FIG. 1. The construction of an SCD tilesleftd and a view of an SCD tilesrightd.
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Note that even in the incommensurate casefinitely many layers could still possess nontrivial
translation symmetries, as two layers might still share a so-called coincidence site latticeG8 of
finite index in G. Then, any finite number of layers still may admit one, where the index grows
with the number of layers. In the limit of infinitely many layers, only the trivial translation
survives, hence the final incommensurate SCD tiling is aperiodic, compare Ref. 7 for details.

II. THE DIFFRACTION SPECTRUM

Since the discovery of quasicrystals, a central point in the study of tilings is the diffraction
behavior of tilings or point setsscf. Ref. 16d. With point sets, one can model the structure of
quasicrystals quite well, e.g., by representing every atom by a point. But many interesting struc-
tures were originally described in terms of tilings. The usual way to examine the diffraction
behavior of such structures is to replace every tile by onesor mored reference points, in a way that
the tiling and the point set determine each other uniquely by local rulessi.e., they are “mutually
locally derivable,” cf. Refs. 1 and 3d, and then to determine the diffraction behavior of the
resulting point set. In this sense,crystallographictilings in Rd—i.e., tilings which permitd lin-
early independent translations—correspond to crystallographic point sets, which again model ideal
crystals. These show a sharp diffraction spectrum consisting of bright spots only, the “Bragg
peaks,” located on a uniformly discrete point set, compare Refs. 6 and 9.

The Fourier transform of structures like tilings or point setssthis will be made precise belowd
gives a desription of their diffraction behavior. For example, the diffraction spectrum of quasi-
periodic point sets, corresponding to physical quasicrystalsscf. Ref. 9d, consists of Bragg peaks
only, but their positions need not be discrete. In general, any diffraction spectrum, described in
terms of a positive measurem, consists of threesuniqued parts,

m = mpp + msc+ mac,

compare Ref. 2 for examples and further references. Thepure pointpart mpp=oxPLIsxddx is the
sum of weighted Dirac measuressthe so-called Bragg peaksd over a countable setL, wheredx is
the normalized point measure atx fi.e., dxsMd=1, if xPM, and dxsMd=0 otherwiseg and Isxd
denotes the intensity. Thesingular continuouspart msc satisfiesmscshxjd=0 for all x, but is sup-
portedsor concentratedd on a set of Lebesgue measure zero. Theabsolutely continuouspart mac

corresponds to a measure with a locally integrable density function and is supported on a set of
positive Lebesgue measure. The diffraction spectrumm of a structure is calledsingular, if mac

vanishes. It is calledpure point, if mac andmsc vanish; i.e., if it consists of Bragg peaks only. For
example, the latter case occurs if the considered structure is amodel setscf. Ref. 10d. In this case,
there is a rich theory one may use to examine the diffraction spectrum. In this paper, however, we
leave the realm of pure point diffractive structures and have to use different methods.

This section makes use of the calculus of tempered distributions, also known as generalized
functions scompare Refs. 4, 13, and 15d. In particular, this allows for a unified treatment of
functions and measures. The following common notations are used:SsRdd denotes the Schwartz

space of rapidly decreasing functions onRd. The functionf̃ is given by f̃sxd= fs−xd. The Fourier

transform off is denoted byf̂. The tempered distributions,S8, are the continuous linear function-
als onSsRdd. For TPS8 andwPSsRdd, we will often write kT,wl instead ofTswd. As described
above, one now constructs anSCD setLSCD from an SCD tiling and determines the diffraction
spectrum ofLSCD, taking up and extending previous work in this direction.7,12 To do so, choose a
point z in the interior of the SCD tileT in s1d, choose an SCD tilingT and set

L ª LSCDª hv + Rmzusv + RmTd P T j,

i.e., replace every tilev+RmT by the corresponding reference pointv+Rmz. Obviously,L consists
of layers which are congruent to the latticeG. Now, define the measure
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v ª vSCDª o
xPL

dx.

Let Cr =f−r /2 ,r /2g3 be the closed cube of side lengthr centered at the origin. The diffraction
spectrum ofL is described by the Fourier transformĝ of the autocorrelation

g = lim
r→`

r−3 o
x,yPLùCr

dx−y,

where the limit of these measures is taken in the vague topology.A priori, it is not clear whether
this limit exists. But since the considered measures are translation bounded, there is at least one
convergent subsequencefRef. 9, Proposition 2.2g. In this case, we restrict to this convergent
subsequence. If there is more than one convergent subsequence, we consider each one separately.
This way, we can now always assume thatg exists as a tempered measure.

Let vr =oxPLùCr
dx. Then,

g = lim
r→`

r−3vr p ṽr ,

whereṽrª svr d̃ . By definition, this means that limr→` r−3kvr p ṽr ,wl exists for all test functions
wPSsR3d. So,

lim
r→`

r−3kvr p ṽr,wl = lim
r→`

r−3E
R3
E

R3
wsx + yddṽrsyddvrsxd

= lim
r→`

r−3E
Cr

E
R3

wsx + yddṽrsyddvsxd

= lim
r→`

r−3E
R3
E

R3
wsx + yddṽrsyddvsxd

= lim
r→`

r−3kv p ṽr,wl

and therefore

g = lim
r→`

r−3v p ṽr . s4d

This can also be deduced from Lemma 1.2 in Ref. 14.
In order to determineĝ, we compute the Fourier transform of limr→` r−3vp ṽr. Since the

Fourier transform is continuous on the setS8 of tempered distributions, we have

s lim
r→`

r−3v p ṽrdˆ = lim
r→`

r−3sv p ṽrdˆ.

So, we proceed to computesvp ṽrdˆ. Sinceṽr has compact support, we haveṽr
ˆ PC` and ṽr pv

=vp ṽr. The convolution theorem for distributions yields

ksv p ṽrdˆ,wl = kv̂,ṽr
ˆ · wl s5d

for all wPSsR3d. Let us take a closer look atv. It can be written as

v = o
mPZ

dvm+RmG
s2d

^ dmc
s1d,

where vm=sv1
smd ,v2

smdd, compare s3d. Here and in what follows,dMªoxPMdx. Note that
dvm+RmG

s2d is a measure onR2 and dmc
s1d is one onR1. Let wPSsR3d be of the formwsx1,x2,x3d

= fsx1,x2dgsx3d, i.e., f PSsR2d, gPSsRd, andw= f ·g. Since linear combinations of such functions
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w are dense inSsR3d, see Ref. 4, the following calculation for tempered distributions holds:

v̂ = o
mPZ

dvm+RmG
s2d̂

^ dmc
s1d̂.

It remains to examinedmc
s1d̂, which equalse−2pimcx3, and

dvm+RmG
s2d̂ = sdvm

s2d p dRmG
s2d dˆ = dvm

s2d̂ · dRmG
s2d̂ = e−2pisx1v1

smd+x2v2
smdddenss2dsGddRmG*

s2d ,

where denss2d denotes the two-dimensional density ofG. The last equality uses the Poisson sum-
mation formula in distribution formsRef. 15, p. 254d

dĜ = denssGddG* , s6d

whereG* =hyuyxPZ for all xPGj denotes the dualsor reciprocald lattice. The dual lattice ofRmG
is indeedRmG* , since

y P sRmGd* ⇔ ∀ x8 P RmG : yx8 P Z ⇔ ∀ x P G : yRmx P Z

⇔ ∀ x P G : R−myx P Z ⇔ R−my P G* ⇔ y P RmG* .

Altogether, we get the following result. Letwsxd=0 for all xPM8=sømPZR
mG*d3R fand thus

wsxd=0 for all xPMªclsM8d, since w is continuousg; in other words, let the interior of the
support ofw be contained in the complement ofM. Then,

kv̂,wl = K o
mPZ

e−2pisx1v1
smd+x2v2

smd+mcx3ddenss2dsGddRmG*
s2d ,wL = 0, s7d

wherev̂ is already known to be a tempered distribution. Since the termd
RmG*
s2d refers only to the

two coordinatesx1,x2, we conclude that the support ofv̂ is a subset ofM, as is the support of
sṽr pvd∧

, by s5d. So, the support ofĝ is a subset ofM. So far, we have established the following.
Theorem 2.1:The diffraction spectrum of any SCD setLSCD is a singular measure, and it is

supported on the set

M = clSø
mPZ

RmG*D 3 R.

j

In the case of incommensurate SCD tilings,M is the union of all concentric cylinder surfaces
S with central axisRe3, where the radius of eachS is ivi for some vPG* . In the case of
commensurate SCD tilings,M is a union of lines parallel toRe3. In this case, as we will see later
on in an example, the support ofĝ is a true subset ofM.

Now, take a closer look at the diffraction spectrum alongRe3. From s7d, we conclude

v̂ = denss2dsGd o
mPZ

e−2pisx1v1
smd+x2v2

smd+mcx3ddRmG*
s2d , s8d

which might not be a measure inR3, but has a clear meaning as a tempered distribution. The
coefficient ofd0

s2d can be calculated by means ofs6d as follows:

o
mPZ

e−2pimcx3 = o
nPcZ

dn
s1d̂ = sdcZ

s1ddˆ = denss1dscZddscZd*
s1d = c−1dc−1Z

s1d , s9d

to be read as an equation for tempered distributions inS8=S8sRd.
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On the other hand, sinceṽr is a finite measure with compact support, its Fourier transform is
an analytic function and can be written as

ṽr̂sxd = o
yPLùCr

e2pisx1y1+x2y2+x3y3d. s10d

For x=s0,0,x3d, we thus get

lim
r→`

r−3v̂̃rv̂ = denss2dsGd lim
r→`

r−3S o
yPLùCr

e2pix3y3DSo
nPZ

e−2pincx3dRnG*
s2d D

= denss2dsGd lim
r→`

r−3S o
m=−dr/2e

br/2c
dr

smdr2e2pimcy3DSo
nPZ

e−2pincx3dRnG*
s2d D .

Here,dr
smd is chosen such thatdr

smdr2 counts the number of elements ofLùCr in layerm. So,dr
smd

depends on denss2dsGd, and limr→` dr
smd=denss2dsGd for all mPZ, uniformly in m.

Putting the pieces together, and restricting to the central axis, we obtain

lim
r→`

r−3uṽr
ˆ v̂uRe3

= c−1sdenss2dsGdd2lim
r→`

r−1S o
m=−dr/2e

br/2c
e−2pimcx3Ddc−1Z

s1d .

This expression vanishes forx3¹c−1Z, while for x3Pc−1Z we get

c−1sdenss2dsGdd2 lim
r→`

r−1 o
m=−dr/2e

br/2c
1 = c−1sdenss2dsGdd2 = denss2dsGddenss3dsLSCDd.

In analogy to denss2d, denss3d denotes three-dimensional density. It follows:
Theorem 2.2: The diffraction spectrumĝ of any SCD setLSCD, restricted toRe3, is pure

point. In particular,

ĝuRe3
u = denss2dsGddenss3dsLSCDd o

xPc−1Ze3

dx.

j

For special cases, this result already appears in Ref. 12. In the general case, it seems difficult
to achieve results about the explicit behavior on the cylinder surfaces. If the SCD tiling has
additionial properties, it is possible to show that all existing Bragg peaks are located onRe3.

Definition 2.3: A point setL in Rd is calledrepetitive,if for every r.0 some R.0 exists such
that for all x ,yPRd a congruent copy ofsx+CrdùL occurs in every setsy+CRdùL.

This definition has a natural extension to the repetitivity of tilings. For our purposes, it suffices
to call an SCD tiling repetitive, if the corresponding SCD sets are repetitive. In particular, ifT is
repetitive, there are only finitely many ways how two tiles can touch each other.sOtherwise, there
would be infinitely many different pairs of tiles, each fitting into a boxCr with r =2ia+bi. This
infinitely many pairs, having all the same positive volume, must be contained in a finite ball of
radiusR, which is impossible.d

Proposition 2.4: If an SCD tilingT is repetitive, thenw=arccossp/qd, with p,qPZ.
Proof: Let T be repetitive. Then, the tiles of two consecutive layersLi ,Li−1 can touch each

other in only finitely many ways. LetLi =T+G, Li−1=R−1sT+Gd−R−1c, andG=ks1,0d ,sb1,b2dlZ.
By the definition ofT andT, it follows thatb1=cosswd, b2=sinswd and thatR−1 srecall thatR is a
rotation through the angle −wd is given by
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Scosswd − sinswd
sinswd cosswd

D .

So, R−1G=ksb1,b2d ,sb1
2−b2

2,2b1b2dlZ. Obviously,ksb1,b2dlZ#GùR−1G. Since the tiles ofLi and
Li−1 touch each other in finitely many ways, there are only finitely many possibilities how a point
of G is positioned relative to its nearest point inR−1G. Consequently, one has
sGùR−1Gd \ ksb1,b2dlZÞx. Therefore, the equation

ks1,0d + lsb1,b2d = msb1,b2d + nsb1
2 − b2

2,2b1b2d s11d

has a solution, wherekÞ0Þn. We must show that this is only possible ifb1 is a rational number
p/q. Let b1 be an irrational number. Fromlb2=mb2−n2b1b2 sl ,m ,nPZd, one concludesn=0 and
l=m. Therefore,

k + lb1 = mb1 + nsb1
2 − b2

2d

givesk=0, so there is no solution ofs11d with kÞ0Þn. j

Theorem 2.5:Let L be an incommensurate SCD set. If RmL+mc=L for some mù1, or if L
is repetitive andw=arccossp/qd, where q is odd, then the diffraction spectrum ofL is singular
continuous on M\Re3.

Lemma 2.6: Let R be an orthogonal map, m a measure, and let the measure R.m be given by
R.msAd=msR−1Ad. Then

R . m̂ = R . m̂.

Proof: Let wPSsR3d. It is clear thatkR.m ,wl=km ,w +Rl. Since

w + R̂sxd =E wsRyde−2pixy dy =E wsỹde−2pixsR−1ỹddỹ =E wsỹde−2pisRxdỹdỹ = ŵsRxd,

whereỹ=Ry, it follows that w + R̂=ŵ +R. Thus

kR . m̂,wl = kR . m,ŵl = km,ŵ + Rl = km,w + R̂l = km̂,w + Rl = kR . m̂,wl

which proves the claim. j

Proof of Theorem 2.5:Let RmL+mc=L. The support of the autocorrelationg is the closure of
the setL−L=hx−yux ,yPLj. Since

RmsL − Ld = RmL + mc − sRmL + mcd = L − L,

we getg=Rm.g. Lemma 2.6 impliesĝ=Rm.ĝ=Rm.ĝ, and thereforeĝ=Rkm.ĝ for all kPZ.
Now, let L be repetitive andw=arccossp/qd, whereq is odd. Like L itself, the setL−L

consists of equidistant layers. IfL=økPZR
kG+vk+kc0 fwherec0=s0,0,cdg, then

L − L = ø
iPZ

ø
kPZ

Rk+iG + vk+i + sk + idc0 − sRkG + vk + kc0d.

Now, we use a fact from Ref. 7: IfT is a repetitive SCD tiling, and ifw=arccossp/qd with q odd,
then the union ofi consecutive layers inT is congruent to any other such union ofi consecutive
layers inT. Therefore, all difference setsRk+iG+vk+i +sk+ idc0−sRkG+vk+kc0d are congruent. This
meansvk+i −vk=Rksvi −v0d. SinceRc0=c0, it follows:
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RsL − Ld = RSø
iPZ

ø
kPZ

RksRiG − G + vi − v0d + ic0D
= RSø

kPZ
RkSø

iPZ
RiG − G + vi − v0 + ic0DD = L − L.

Therefore, one hasĝ=Rk.ĝ for all kPZ.
In both cases, the following argument applies: If there is a Bragg peakIsxddx at xPM \Re3

with intensityIsxd.0, then there are infinitely many Bragg peaksIsxddRkmx, with kPZ, on a circle
of diameterixi. But sinceĝ is a tempered distribution, it is bounded on every compact setK,R3.
This is a contradiction. Therefore, no Bragg peaks occur inM \Re3. The claim now follows from
Theorem 2.1. j

In contrast to this situation, let us ask what happens for a fully periodic SCD tiling. This is
only possible if it is a commensurate SCD tilingswhich means thatR is of finite orderd, and if the
sequencesv1

smd ,v2
smdd is periodicsto be precise, periodic modRmad. Equivalently, there is akù1,

such thatRk=id andv1
sm+kd;v1

smd ,v2
sm+kd;v2

smd modRma for all mPZ. In this case,s8d gives

v̂ = denss2dsGd o
nPkZ

o
j=0

k−1

e−2pisx1v1
s jd+x2v2

s jd+sn+jdcx3ddRn+jG*
s2d

= denss2dsGdo
j=0

k−1

e−2pisx1v1
s jd+x2v2

s jd+jcx3dS o
nPckZ

e−2pinx3DdRjG*
s2d

= denss2dsGdo
j=0

k−1

e−2pisx1v1
s jd+x2v2

s jd+jcx3dsckd−1sdRjG*
s2d

^ dsckd−1Z
s1d d.

This term vanishes everywhere except onsø j=1
k RjG*d3 sckd−1Z. So, the diffraction spectrum of a

fully periodic SCD tiling is, as expected, supported on a uniformly discrete point set. It is, in fact,
a pure point diffraction spectrum, consisting of isolated Bragg peaks. The support is indeed
uniformly discrete, since from the periodicity of the tiling the repetitivity follows, wherefore
Proposition 2.4 yieldsw=arccossp/qd sp,qPZd. Since the tiling is commensurate,sp,qd can take
the valuess0,1d or s1,2d only.

III. FURTHER REMARKS

s1d One special case which occurs is the body-centered-cubic latticesbccd as the underlying
point set of an SCD tiling. It is the dual of the root latticeD3, compare Ref. 5,

bcc =D3
* = ks1,0,0d,s0,1,0d,s1

2, 1
2, 1

2dlZ.

This is achieved by placing the reference pointz in the center1
2sa+bd of the SCD tile, and

choosingscf. Sec. Id,

a = s1,0,0d, b = s0,1,0d, c = s0,1
2, 1

2d, d = s 1
2,0,− 1

2d, v1
smd = v2

smd = H0, m even,
1
2 , m odd.

h

Using s8d and s10d, one finds for this case

gbcĉ= lim
r→`

r−3S o
yPbccùCr

e2pixyDS o
mPZ

e−2pisx1v1
smd+x2v2

smd+x3m/2dDdenss2dsZ2ddZ2
s2d.

This measure vanishes onhx u sx1,x2d¹Z2j. For sx1,x2dPZ2, one finds
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lim
r→`

r−3S o
n=−dr e

br c
r2e2pix3n/2DS o

mP2Z+1
e−pisx1+x2+x3md + o

mP2Z
e−2pix3m/2D

= lim
r→`

r−1S o
n=−dr e

br c
e2pix3n/2Ds1 + e−pisx1+x2+x3dd o

mPZ
e−2pix3m.

From s9d, one getsomPZ e−2pix3m=dZ
s1d. So, this term vanishes forx3¹Z, and forx3PZ we have to

examine the factor 1+e−pisx1+x2+x3d. It equals 2srespectively, 0d if x1+x2+x3 is evensrespectively,
oddd. In the even case, the first sum does not converge, so the limit is not zero. Altogether, the
diffraction spectrum of bcc consists of Bragg peaks on points in

D3 = hux u x1 + x2 + x3 ; 0 mod 2j.

In this way, we retrieve the well-known result that the diffraction image of the bcc is pure point,
with Bragg peaks on the points of the dual latticesD3

*d* =D3=2 fcc.
In a similar way, one finds further structures that are well known from crystallography or

discrete geometry, such as the root latticesZ3 and D3 fwhich is a scaled version of the face-
centered-cubic latticesfccdg, or the hexagonal close packingscompare Ref. 5d.

s2d The description of the SCD tile in Sec. I follows the idea of Conway, see Ref. 7. The
prototile found by Schmitt is not convex, but showed itself the valleys and ridges, which occur on
the layers of our tilingssand his tilings have essentially the same structure as oursd. Anyway, both
tiles lead to the same SCD sets, and both tiles are examples of aperiodic prototiles. But the latter
is only true if we forbid tilings which contain both our SCD tile and its mirror image. For example,
let T be as ins1d andT8 the mirror image ofT under reflection in the plane spanned bya andb.
The layerL=T+G contains only translations ofT, the layerL8=T8+c+G contains only transla-
tions of T8. The tiling

T = ø
mP2Z

s0,0,mcd + sL ø L8d

is invariant under the translationstsxd=x+s0,0,2cd andusxd=x+b, hence not aperiodic.
In our description, the anglew can take any value ing0,p /2f. The SCD tile described by

Danzer sRef. 7d usesw=arccossp/qd, where p,q are positive integers,p,q,qù3 sleading to
incommensurate SCD tilingsd. In this case, it is possible toenforceSCD tilings which are repeti-
tive. Then, in particular, two tiles can touch each other only in finitely many different ways.sThis
is clearly not true for all SCD tilings considered in this paper.d Using this, one can modify the
shape of the prototile in such a way that the occurrence of mirror images of the prototile is ruled
out. This can be done, e.g., by adding protrusions and indentations to the tiles, fitting together like
key and keyhole, but only if the tiles are directly congruent. So, in this case, one has indeed a
single prototile—no longer convex—permitting only aperiodic tilings, just by its shape.

Anyway, even in the last setting, there may occur other symmetries, namely screw motions.
Obviously, the tilingT in s2d is invariant under the mapssxd=Rx+s0,0,cd. More generally, if we
choose an arbitrary SCD tile as discussed here, then in the set of all tilings built from this tile we
will always find tilings invariant under the mapssk skPZd. Thus the symmetry group of such
tilings is infinite. In less than three dimensions, aperiodicity is equivalent to finiteness of the
symmetry group. The SCD tilings show that this is not true in general. Therefore, it makes sense
to rephrase the question “Is there an aperiodic prototile?” as “Is there a prototile that permits only
tilings with finite symmetry group?,” shortly, “Is there astrongly aperiodicprototile?” scf. Ref.
11d. To our knowledge, no answer to this question is known so far.

s3d To some extent, the underlying mechanism of SCD tilings does occur in nature. The
structure of smecticC* liquid crystals resembles the layer structure: planar, two-periodic “sheets”
of tilted moleculesscalled directorsd are stacked with a screw order on top of each other.8 This
happens in such a way that theseffectived period in directionRe3 is on a much greater length scale
than the elementary periods within the layers.
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Following a strictly geometric approach we construct globally supersymmetric sca-
lar field theories on the supersphere, defined as the quotient spaceS2u2

=UOSps1u2d /Us1d. We analyze the superspace geometry of the supersphere, in
particular deriving the invariant vielbein and spin connection from a generalization
of the left-invariant Maurer–Cartan form for Lie groups. Using this information we
proceed to construct a superscalar field action onS2u2, which can be decomposed in
terms of the component fields, yielding a supersymmetric action on the ordinary
two-sphere. We are able to derive Lagrange equations and Noether’s theorem for
the superscalar field itself. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1850363g

I. INTRODUCTION

While superspheres have been extensively studied as target spaces for supersymmetric sigma
models, see, e.g., Refs. 1 and 2, little attention has been paid to considering the supersphere as the
base space for supersymmetric field theories. However, treating the supersphere as such provides
us with an interesting model for studying globally supersymmetric field theories in curved space.

In this paper we present a strictly geometric approach to constructing globally supersymmetric
scalar field theories on the supersphere, defined here as the coset space UOSps1u2d /Us1d,3,4 the
body of which is given by the ordinary two-sphere. We should emphasize here that there is an
ambiguity in defining a supersphere, i.e., a supersymmetric generalization of the ordinary two-
sphere, the only criterion being that the body of the respective supermanifold coincides withS2.
Another example of a supersymmetric generalization ofS2 would be the quotient space SUs2u1d/
Us1u1d, as considered in, e.g., Ref. 5. If one insists, however, on the additional condition that the
resultant coset space is not just a supermanifold but rather asuperspace, this excludes, for ex-
ample, the latter possibility and leaves as one obvious choice precisely the coset space
UOSps1u2d /Us1d.

While it is not important to insist on this additional condition for the purpose of using the
supermanifold as the target space for some supersymmetric sigma model, it is crucial to enforce it
if one wants to construct a field theory on the supermanifold as the background. This is because
the superspace condition ensures first that the tangent space group of the supermanifold under
consideration corresponds to the even Grassmann extension of the tangent space group of the body
of the respective coset space and second that the fermionic field content of the theory will trans-
form asspinor fields under the action of the tangent space groupssee Secs. III E and V Bd.

Note, however, that taking the coset space UOSps1u2d /Us1d as the supersymmetric generali-
zation of the ordinary sphere involves inevitably the usage of a rather unfamiliar extension of
complex conjugation to supernumbers, referred to as pseudoconjugation,6 see Sec. II A, together
with the definition of a graded adjoint, see Sec. II B.
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We shall emphasize one other important point about our approach to constructing scalar field
theories onS2u2. While it is possible to construct supersymmetric theories on certain curved
backgrounds using component fields from the outset, as in, e.g., Ref. 7 for the case of AdS2, we
instead rigorously pursue a superspace approach; analyzing the superspace geometry of the super-
sphere we construct in particular the invariant vielbein and spin connection, using a supergener-
alization of the left-invariant Maurer–Cartan form for ordinary Lie groupsssee Sec. Vd. Having
this information at hand we proceed to construct asuperscalarfield theory onS2u2, which only
when written in terms of the component fields of the superscalar field under consideration, and
after integrating out the odd coordinates, becomes a field theory on the ordinary sphere. Having
derived the component field version of the superfield action in Sec. VII, we will be able to briefly
discuss supersymmetry breaking in Sec. VIII. Notably, the superspace approach also makes it
possible to derive Lagrange equations as well as Noether’s theorem for the superscalar field itself,
see Sec. IX.

II. THE UNITARY ORTHOSYMPLECTIC GROUP

A. Pseudoconjugation

We expand an arbitraryscomplexd supernumberz in terms of the generators of a Grassmann
algebrazi, i =1, . . . ,N, as

z= z0 + zizi + zijziz j + zijkziz jzk + ¯ . s1d

We use a subscript 0 to denote thebodyof the supernumber, the remaining terms are called the
soul. A supernumber is said to beevenif the above expansion does not contain terms with an odd
number of generators. The set of even supernumbers will be denoted byCc. A supernumber is said
to beodd if it contains only terms with an odd number of generators. The odd supernumbers will
be denoted byCa. The set of all supernumbers will be denoted byCN. We will normally, however,
consider the formal limitN→` and denote the supernumbers byC`. Note also thatC0>C is
precisely the set of ordinary complex numbers.

The standard extension of ordinary complex conjugation to supernumbers is given in Ref. 8.
It is defined as a map

p: HCc → Cc,

Ca → Ca,
h

which agrees with complex conjugation on ordinary numbers and satisfies the following proper-
ties:

sa + bd* = a* + b* ,

sabd* = b*a* ,

a** = a,

for arbitrary supernumbersa andb. Note that when taking the conjugate of a product the order is
reversed. The Grassmann generators can be taken to be real with respect to this conjugation, i.e.,
zi

* =zi, and the expansion ofz* is given by

z* = z0
* + zi

*zi − zij
* ziz j − zijk

* ziz jzk + ¯ .

Note that the minus signs are due to the reordering of the Grassmann generators.
It is possible to define another extension of complex conjugation to supernumbers, called

pseudoconjugation.6 Pseudoconjugation is defined as a map
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L: HCc → Cc,

Ca → Ca,
h s2d

which agrees with complex conjugation on ordinary numbers and satisfies the following proper-
ties:

sa + bdL = aL + bL, s3ad

sabdL = aLbL, s3bd

aLL = s− 1deaa, s3cd

for arbitrary supernumbersa and b, where ea=0 if aPCc and ea=1 if aPCa. Note that the
pseudoconjugate doesnot switch the order when applied to a product. A consequence of this
definition is that the generators of the Grassmann algebra can no longer be described as real with
respect to pseudoconjugation in the same way as for standard conjugation. To see this note that if
we hadzi

L=zi this would imply thatzi
LL=zi which contradicts Eq.s3cd. In fact, a definition of

how the pseudoconjugate acts on the Grassmann generators which is consistent with Eqs.s2d,
s3ad–s3cd is not always possible. If howeverN is even, or indeed infinite, we can proceed as
follows. Let W be theN-dimensional vector space of Grassmann generators. Pick a semilinear
map9 f :W→W such thatf2=−1, for example, the matrix

J = S 0 1N/2

− 1N/2 0
D ,

and then definezi
L= fszid. Using this definition of the pseudoconjugate on the Grassmann genera-

tors it is possible to write down the expansion for an arbitrary supernumber as

zL = z0
* + zi

*zi
L + zij

* zi
Lz j

L + zijk
* zi

Lz j
Lzk

L + ¯ .

B. Graded adjoint

Using ordinary complex conjugation of supernumbers it is possible to define an adjoint op-
eration onpure supermatrices. A pure, i.e.,evenor odd, spuqd-dimensional supermatrix is written
in block form as

X = SA B

C D
D . s4d

The matrix is said to be even ifAPMatp3psCcd, BPMatp3qsCad, CPMatq3psCad, and D
PMatq3qsCcd. The matrix is called odd ifAPMatp3psCad, BPMatp3qsCcd, CPMatq3psCcd, and
DPMatq3qsCad. Here Matm3nsFd arem3n matrices overF.

The standard adjoint operation is defined, as usual, by the conjugate transpose

X† = X* t, s5d

or in block form

SA B

C D
D†

= SA* t C* t

B* t D* t D .

This satisfies the usual properties of an adjoint

sXYd† = Y†X†,
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X†† = X.

It is also possible to use the pseudoconjugate to construct agraded adjoint.6 Note, however,
that one cannot construct an adjoint operation which has sensible properties using the pseudocon-
jugate combined with the ordinary transpose, but rather one must use thesupertranspose. The
supertranspose of a purespuqd-dimensional supermatrix is defined by

SA B

C D
Dst

= S At s− 1deXCt

− s− 1deXBt Dt D , s6d

whereeX=0 for even supermatrices, andeX=1 for odd supermatrices. Note that with this definition
of the supertranspose we have that in generalsXstdstÞX, see Ref. 6. The graded adjoint is then
defined as

X‡ = XLst, s7d

and this satisfies a graded version of the properties of the standard adjoint

sXYd‡ = s− 1deXeYY‡X‡,

X‡‡ = s− 1deXX.

We may also extend the definition of the graded adjoint tosupervectorsin a manner consistent
with the definition for supermatrices. We write a pure, i.e., even or odd,spuqd-dimensional super-
vector as

V = Su

w
D .

The supervector is said to be even, i.e.,eV=0, if uPMatp31sCcd andwPMatq31sCad. It is called
odd, i.e.,eV=1, if uPMatp31sCad andwPMatq31sCcd. We define the supertranspose ofV to be

Vst = sut, s− 1deVwtd

and the graded adjoint is then defined by

V‡ = VLst.

C. Compact form of OSp „n z2m…

Using the graded adjoint one can define a compactsi.e., unitaryd form of the orthosymplectic
supergroup OSpsnu2md which is not possible with the ordinary adjoint.

The orthosymplectic supergroup is defined by6

OSpsnu2md = hsP PLsnu2md:sstgs= gj, s8d

where PLsnu2md are the invertible even supermatrices of dimensionsnu2md and

g = S1n 0

0 J2m
D, J2m = S 0 1m

− 1m 0
D .

The algebra is given by

ospsnu2md = hX P plsnu2md:Xstg + gX= 0j, s9d

where plsnu2md is the algebra of PLsnu2md. If we write X in block form, as in Eq.s4d, then forX
to be in the algebra it must satisfy
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At + A = 0, s10ad

B + CtJ = 0, s10bd

DtJ + JD = 0. s10cd

From Eqs.s10ad and s10cd we see that the body of the algebra is

ospsnu2md0 = osnd 3 sps2md.

To find a compact form of an algebra we must first complexify it and then impose a consistent
anti-Hermitian condition, which yields a unitary group. For the orthosymplectic algebra the stan-
dard adjoint of Eq.s5d does not give a consistent anti-Hermitian condition. To see this, note that
imposingX†=−X, we findB* t=−C andC* t=−B. From Eq.s10bd we have

0 = sB + CtJd*J = − CtJ + B

which together with Eq.s10bd would imply B=C=0. This problem is avoided by using the graded
adjoint. ImposingX‡=−X we haveBLt=C andCLt=−B. The previous argument now gives

0 = sB + CtJdLJ = CtJ + B

and hence no inconsistency.
The unitary orthosymplectic algebra can now be defined as

uospsnu2md = hX P ospsnu2md ^ Cc: X‡ = − Xj, s11d

and the group as

UOSpsnu2md = hsP OSpsnu2md ^ Cc: s‡ = s−1,sdetssd = 1j, s12d

where thesuperdeterminantis defined by

sdetSA B

C D
D = detsA − BD−1CddetsDd−1. s13d

Note that in the definition of UOSpsnu2md we have imposed the condition sdetssd=1, hence
strictly speaking we are dealing with thespecial unitary orthosymplectic group, we shall not
however refer to it as such.

D. UOSp„1z2…

We will be interested in the particular case of UOSps1u2d. The algebra has three even genera-
tors Ji, i =0,1,2 and two oddgeneratorsQa, a=−,+, which can be represented as supermatrices

s14d

wheressida
b are the standard Pauli matrices. The generators of the algebra satisfy the following

commutation and anticommutation relations,

fJi,Jjg = − ei j
kJk, s15ad

fJi,Qag =
i

2
ssida

bQb, s15bd
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fQa,Qbg =
i

2
ssidabJi , s15cd

where ei jk is completely antisymmetric withe012=1. The indicesi , j , . . . have been raised and
lowered usingdi j =di j =di

j, whereasa ,b , . . . have been raised and lowered using the antisymmetric
symbolseab and eab, with e−+=e−+=1. The raising and lowering conventions, along with their
application to the Pauli matrices, are discussed more in Appendix A. The bracketf,g shall denote
the anticommutator whenever both entries are odd, as, e.g., in Eq.s15cd. In any other casef,g is to
be understood as the commutator.

The Casimir operatorC of uosps1u2d is given by

C = JiJi − eabQaQb.

A general element of the algebra can be expanded asX=uiJi +haQa, whereui PRc andh−=hL,
h+=h, with hPCa. We find thatX is anti-Hermitian as the generators satisfy the following
Hermiticity properties:

Ji
‡ = − Ji ,

sQad‡ = eabQb.

Note that if we naively multiplied the generators by a supernumber we would not obtain an
anti-Hermitian elementX. The correct definition of left and right multiplication is10

zSA B

C D
D = S zA zB

s− 1dezzC s− 1dezzD
D ,

SA B

C D
Dz= SAz s− 1dezBz

Cz s− 1dezDz
D .

The general element of the group UOSps1u2d can be represented by a supermatrix

ssa,b,hd = 11 + 1
4hhL − 1

2h 1
2hL

− 1
2hL 1 − 1

8hhL 0

− 1
2h 0 1 − 1

8hhL21
1 0 0

0 a − bL

0 b aL 2 s16ad

=11 + 1
4hhL − 1

2sha − hLbd 1
2shbL + hLaLd

− 1
2hL s1 − 1

8hhLda − s1 − 1
8hhLdbL

− 1
2h s1 − 1

8hhLdb s1 − 1
8hhLdaL 2 , s16bd

where the parametersa,bPCc are constrained by sdetssd=aaL+bbL=1, andhPCa is uncon-
strained. Note that the first matrix on the right-hand side of Eq.s16ad is just expshaQad. The
second matrix is of the form expsuiJid, for someui PRc determining the constrained parametersa
and b. From this we see that the body of uosps1u2d is simply uosps1u2d0=sus2d which will be
important in the next section.

III. CONSTRUCTING THE SUPERSPHERE

A. General coset spaces

We shall briefly review the general formalism for constructing spaces as coset spaces, covered
in, for example, Ref. 11.

Consider a groupG with a subgroupH. We define an equivalence relation onG by
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g1 , g2 ⇔ g2
−1g1 P H.

Each elementgPG lies in an equivalence class

gH ; hgh: h P Hj.

The set of all equivalence classes is thesright-dcoset spaceG/H, written as

G/H ; hgH: g P Gj.

We can define a projection mapp : G→G/H by sending an elementgPG to its equivalence
classgHPG/H. Also, for each point in the coset space we may choose a particular element ofG
which projects down to this point underp, this group element is called acoset representative.

The left action ofG on itself descends to an action ofG on the coset space

g8: G/H → G/H

:gH ° g8gH.

This is well defined as it is clearly independent of the coset representative chosen.
In Sec. V we will introduce a vielbein and spin connection onG/H which are invariant under

this left action, and as such we will think ofG as the isometry group of the coset space.

B. The sphere as a coset space

We first review how the ordinary sphere can be constructed as the coset spaceS2

=SUs2d /Us1d. This construction is then straightforward to generalize to the case of the super-
sphere.

The group SUs2d has the 232 matrix representation

ssa,bd = Sa − b*

b a* D ,

where the parametersa,bPC0 are just ordinary complex numbers which are constrained byaa*

+bb* =1. The matricesssw,0d, with ww* =1, form a Us1d subgroup. We define an equivalence
relation on SUs2d by multiplication on the right with an element of this Us1d subgroup,

ssa,bd , ssa8,b8d = ssa,bdssw,0d.

This equivalence relation defines the coset space SUs2d/Us1d. The projection map for this coset
space is the standardHopf map, it can be written as

p: SUs2d → SUs2d/Us1d

:ssa,bd ° ssa,bdĴ0ssa,bd†,

whereĴ0=si /2ds0 is the element of the algebra sus2d which generates the Us1d subgroup. Note we
consider the image ofp as a subset of the algebra sus2d, which is justR3 as a vector space.
Expanding the image in coordinates we have

ssa,bdĴ0ssa,bd† = o
i=0

2

xiĴi ,

wherexi PR. This equation leads to the constraint

sx0d2 + sx1d2 + sx2d2 = 1,

hence the coset space SUs2d/Us1d is just an ordinary sphere,S2#R3.
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C. The supersphere as a coset space

The construction of the preceding section naturally generalizes to the case of the
supersphere,3,4 which we will see can be defined as the coset spaceS2u2=UOSps1u2d /Us1d. Here
Us1d;hwPCc:wwL=1j is the even Grassmann extension of the group Us1d.

We use the matrix representation of UOSps1u2d defined in Eqs.s16ad and s16bd. The equiva-
lence relation on UOSps1u2d is given by multiplication on the right with an element of aUs1d
subgroup,

ssa,b,hd , ssa8,b8,h8d = ssa,b,hdssw,0,0d. s17d

In terms of the group parameters we have

a8 = aw, b8 = bw, h8 = h.

This equivalence relation defines the coset space UOSps1u2d /Us1d. Note that the body of this
coset space is just SUs2d/Us1d, which as we showed in the preceding section is just anS2. The
projection map for this coset is a supersymmetric generalization of the ordinary Hopf map, it can
be written as

p: UOSps1u2d → UOSps1u2d/Us1d
s18d

:ssa,b,hd ° ssa,b,hdJ0ssa,b,hd‡.

Note that the image of this map is considered as a subset of the algebra uosps1u2d. Expanding the
image in coordinates we have

ssa,b,hdJ0ssa,b,hd‡ = o
i=0

2

xiJi + o
a=±

jaQa, s19d

wherexi PRc and j± PCa. It is then possible to solve for the coordinates in terms of the group
parameters, which yields

x0 = s1 − 1
4hhLdsaaL − bbLd, s20ad

x1 = s1 − 1
4hhLdsabL + aLbd, s20bd

x2 = is1 − 1
4hhLdsabL − aLbd, s20cd

j− = −
i

2
s2habL + hLsaaL − bbLdd, s20dd

j+ = −
i

2
s2hLaLb − hsaaL − bbLdd. s20ed

These coordinates satisfy the constraint

sx0d2 + sx1d2 + sx2d2 − 2j−j+ = 1, s21d

which is the equation for the unit supersphereS2u2#R3u2. Another way to think about this equation
is as a two-sphere in the even coordinates, with a radius dependent on the odd coordinates, given
by 1+j−j+=1−1

4hhL. It is also clear from Eq.s21d that the body of the supersphere is just an
ordinary sphere, as expected.

The reality of the coordinatesxi and ja is defined with respect to the pseudoconjugate; we
havesxidL=xi andsj−dL=−j+, ssj+dL=j−d. Note that if we expand out the coordinates in terms of
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the Grassmann generators as in Eq.s1d then these reality conditions give the same number of
constraints, as would be obtained with standard complex conjugation, which reduces the dimen-
sionality down from that ofC3u2 to that of R3u2. Obviously for the purposes of counting these
constraints we must take the number of Grassmann generators,N, to be finite.

D. Unconstrained coordinates

In this section we will construct unconstrained coordinates on the supersphere. OnS2 we can
define, for example, polar and stereographic coordinates and we will generalize these toS2u2 in the
following.

We first note that the general element of UOSps1u2d can be written as

s= ehaQae−wJ0e−uJ2e−cJ0.

Here u ,w ,cPRc, and their bodies are chosen to be in the range 0øu0øp, −p,w0øp and
−p,c0øp. Hereu0, the body ofu, should not be confused with the coordinateu0. A convenient
choice of coset representative is given by takingc=0, i.e.,

L1su,w,h,hLd = ehaQae−wJ0e−uJ2. s22d

Thus we havesu ,w ,h ,hLd as coordinates onS2u2. The constrained coordinatessx0,x1,x2,j−,j+d
of Eqs.s20ad–s20ed can be written in terms of these generalized polar coordinates as

x0 = s1 − 1
4hhLdcosu, s23ad

x1 = s1 − 1
4hhLdsinu cosw, s23bd

x2 = s1 − 1
4hhLdsinu sinw, s23cd

j− = −
i

2
she−iw sinu + hL cosud, s23dd

j+ = −
i

2
shLeiw sinu − h cosud. s23ed

Note that the trigonometric functions for supernumbers are defined in terms of the usual power
series; the usual trigonometric identities are satisfied if the angles are even supernumbers. Also
note the appearance of the radius factor, 1−1

4hhL, in Eqs.s23ad–s23cd.
To define a generalization of stereographic coordinates we take a different coset representative

L2sz,zL ,h ,hLd, which can be written in the matrix representation of Eq.s16ad as

L2 =1
1 +

1

4
hhL −

1

2
h

1

2
hL

−
1

2
hL 1 −

1

8
hhL 0

−
1

2
h 0 1 −

1

8
hhL

21
1 0 0

0
zL

s1 + zzLd1/2

− 1

s1 + zzLd1/2

0
1

s1 + zzLd1/2

z

s1 + zzLd1/2
2 . s24d

The complex coordinatez is related to the previous coordinates by

033511-9 Scalar field theories on the supersphere J. Math. Phys. 46, 033511 ~2005!

                                                                                                                                    



z=
x1 + ix2

1 + j−j+ − x0 =
eiw sinu

1 − cosu
, s25d

where again the radius factor, 1+j−j+, appears. We will find later that the coordinateh is not the
most convenient for our purposes, with hindsight we thus define a new odd coordinatex, and its
pseudoconjugatexL, by

x = −
i

2
shLz+ hd, xL =

i

2
shL − hzLd. s26d

These relations can be inverted, giving

h =
2isxLz+ xd

s1 + zzLd
, hL =

2isxzL − xLd
s1 + zzLd

.

Rewritingh in terms ofx gives us the coset representative for the pointsz,xd, which we write as

L3sz,zL,x,xLd = L2sz,zL,hsx,xLd,hLsx,xLdd. s27d

Note that the coordinatessz,xd cover a singleC1u1 chart onS2u2. From Eq.s25d we see that as
u0→0 we havez→`, thus these coordinates can be viewed as generalizations of stereographic
coordinates projected from the north polesi.e., u=0d. To cover the entire supersphere we need a
second coordinate patch, which we will think of as projection from the south pole. Away from
both the north and south pole we define a newsevend complex coordinate byw=z−1. A coset
representative for the pointsw,hd is given by

L28 =1
1 +

1

4
hhL −

1

2
h

1

2
hL

−
1

2
hL 1 −

1

8
hhL 0

−
1

2
h 0 1 −

1

8
hhL

21
1 0 0

0
1

s1 + wwLd1/2

− w

s1 + wwLd1/2

0
wL

s1 + wwLd1/2

1

s1 + wwLd1/2
2 .

This can be obtained from the coset representativeL2 by multiplication on the right with

sS z

szzLd1/2,0,0D =1
1 0 0

0
z

szzLd1/2 0

0 0
zL

szzLd1/2
2 ,

which, as it should be, is an element of theUs1d subgroup of UOSps1u2d. We will also need the
analogue of the coordinatex for this patch, which we take to be

z =
i

2
shLw + hd. s28d

Away from the poles, the two coordinate patches are related by the holomorphic transformations

w =
1

z
, z = −

x

z
. s29d

The two patchessz,xd and sw,zd taken together cover the whole supersphere.
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E. Other superspheres

At this stage we should mention that the coset spaceS2u2=UOSps1u2d /Us1d is not the only
way in which a supersphere can be defined. There are at least two other possible coset construc-
tions.

sid OSps3u2d /OSps2u2d—The ordinary two-sphere can be constructed as the coset space Os3d/
Os2d; since the body of OSpsnu2md is just Osnd3Sps2md it is natural to consider the coset
space OSps3u2d /OSps2u2d as a supersymmetric generalization of this.2 The body of this
space is clearly just the ordinary two-sphere. Just as UOSps1u2d /Us1d is, as a subset of
R3u2, given by Eq.s21d, so is OSps3u2d /OSps2u2d. Now, however, the coordinatesxi andja

are just real supernumbers, i.e., when expanded in the Grassmann generators, as in Eq.s1d,
all the coefficients are real numbers.

sii d SUs2u1d/Us1u1d—This construction is a generalization of that of the complex projective
plane. The body of this coset space is given by Us2d / sUs1d3Us1dd=CP1. As the ortho-
symplectic groups are not used in this construction the use of the pseudoconjugate and
graded adjoint is not required. This space, calledCP1u1, and its generalizationsCPnum are
considered further in Ref. 5.

However, neither of these two coset spaces can naturally be considered what one calls a
superspace. A coset spaceG/H will be a superspace if it satisfies two conditions. First, the
subgroupH should besthe even Grassmann extension ofd the tangent space group of the body of
the coset space. This will correspond to a restriction of the tangent space group of a general
supermanifold. Second, we require that under thescod-adjoint action ofH the odd generators of
the algebra ofG transform as spinors. The coset space UOSps1u2d /Us1d satisfies both of these
conditions, Us1d is the tangent space group of the ordinary sphere, and we see from Eq.s15bd that
Q± transform as spinors. Most other treatments use the supersphere as a target space for some
sigma model1,2 and thus do not require a superspace structure. Here we shall be treating the
supersphere as the base space for our field theories and as such require it to be a superspace. This
will be discussed more in Sec. V.

IV. ACTION OF UOSp „1z2… ON S2z2

A. Transformation of the coordinates under UOSp „1z2…

Using the general result of Sec. III A we see that the left action of UOSps1u2d is well defined
on the coset spaceS2u2. First we wish to show how such a transformation acts on the unconstrained
coordinatessz,xd which were defined in Sec. III D. The left action of the arbitrary element
ssc,d,bdPUOSps1u2d transforms the coset representativeL3sz,zL ,x ,xLd as

L3sz,zL,x,xLd → L3sz8,z8L,x8,x8Ld = ssc,d,bdL3sz,zL,x,xLd.

We can split the transformation asssc,d,bd=ss1,0,bdssc,d,0d and analyze the two parts sepa-
rately. Using Eqs.s16ad and s27d we find, that under the action ofssc,d,0d the coordinates
transform as

z8 =
cLz− d

dLz+ c
, s30ad

x8 =
x

dLz+ c
, s30bd

whereas underss1,0,bd we have

z8 = S1 −
i

2
bLxDz−

i

2
bx, s31ad
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x8 = S1 +
1

8
bbLDx −

i

2
sb + bLzd. s31bd

Obviously we can take the pseudoconjugate of these equations to find howzL andxL transform.
Note that the group elementssc,d,0d is obtained by exponentiating just theJi generators of

the uosps1u2d algebra. We also see that the form of Eq.s30ad is that of a Möbius transformation
corresponding to the rotation of a sphere. We thus refer to the transformations of Eqs.s30ad and
s30bd as the rotations of the supersphere. The group elementss1,0,bd is obtained by exponenti-
ating only theQa algebra generators. We will therefore refer to Eqs.s31ad and s31bd as the
supersymmetry transformations.

For completeness we must also consider how thesw,zd coordinates of the other patch trans-
form. We find that under rotations given byssc,d,0d we have

w8 =
dL + cw

cL − dw
,

z8 =
z

cL − dw
.

Under supersymmetry transformations given byss1,0,bd we have

w8 = S1 −
i

2
bzDw −

i

2
bLz,

z8 = S1 +
1

8
bbLDz +

i

2
sbL + bwd.

Again we may take the pseudoconjugate of these equations to find the transformation properties of
wL andzL.

B. Differential operator representation of uosp „1z2…

We may use the transformation properties of the coordinates under UOSps1u2d to construct a
differential operator representation of the algebra uosps1u2d.

The coordinatessz,zL ,x ,xLd can be represented by a single superspace coordinateXM,
where the indexM =sm,md runs overm=z,zL, m=x ,xL. We may then define a superscalar field
F on the supersphere, which is just a supernumber valued function onS2u2. In this coordinate patch
it takes the valueFsXd.

Now consider an infinitesimal active coordinate transformationX→X+dX. As discussed more
in Appendix F, we may alternatively think of this as a transformation of the field,FsXd, given by

FsXd → F8sXd = FsX − dXd. s32d

Expanding to first order we have

dFsXd = − dXM]MFsXd. s33d

For the case of an isometry we can writedXM =duKM, wheredu is some small parameter, andKM

is a Killing supervector. The quantity −KM]M will then be the differential operator corresponding
to the isometry.

First we shall consider the rotations of Eqs.s30ad and s30bd. For a rotation generated by the
elementJ0 we havessc,d,0d=eu0J0, hence
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c = eiu0/2, d = 0.

Expanding Eqs.s30ad and s30bd to first order inu0 we find

dz= − iu0z, dx = −
i

2
u0x,

dzL anddxL are obtained by taking the pseudoconjugate of these equations. Substituting into Eq.
s33d gives us the differential operator corresponding toJ0, namely,

J̃0 = iFz
]

]z
− zL ]

]zL +
1

2
x

]

]x
−

1

2
xL ]

]xLG . s34ad

A similar argument leads to the differential operators forJ1 andJ2,

J̃1 =
i

2
Fs1 − z2d

]

]z
− s1 − zL2d

]

]zL − zx
]

]x
+ zLxL ]

]xLG , s34bd

J̃2 = −
1

2
Fs1 + z2d

]

]z
+ s1 + zL2d

]

]zL + zx
]

]x
+ zLxL ]

]xLG . s34cd

Now consider the supersymmetry transformations of Eqs.s31ad ands31bd. Expanding these to
first order inb and bL, and substituting into Eq.s33d we find the differential operators corre-
sponding toQ− andQ+,

Q̃− =
i

2
Fxz

]

]z
− xL ]

]zL + z
]

]x
−

]

]xLG , s34dd

Q̃+ =
i

2
Fx

]

]z
+ xLzL ]

]zL +
]

]x
+ zL ]

]xLG . s34ed

It is straightforward to verify that the generators of Eqs.s34ad–s34ed satisfy the uosps1u2d algebra.
As stated earlier they are of the form −Kp

M]M, wherep=0,1,2,−,+labels the generators. This
allows us to read off the Killing supervectorsKp

M of the supersphere.
In order to construct a superfield theory onS2u2 we first have to introduce the invariant

vielbein and spin connection, which we do next.

V. COSET SPACE GEOMETRY

A. Vielbein and spin connection for reductive coset spaces

Consider some Lie groupG, a subgroupH of G and the space of right cosetsG/H
=hgH: gPGj. The Lie algebrah of H is spanned by the generatorsHI Ph, I =1, . . . ,dimH. Let
the remaining generators of the Lie algebrag of G spank#g. We shall denote these remaining
generators byKAPk, A=1, . . . ,dimG−dim H. As a vector space we then have

g = h % k.

The structure constants ofG are defined by

fHI,HJg = f IJ
KHK,

fHI,KAg = f IA
JHJ + f IA

BKB,
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fKA,KBg = fAB
JHJ + fAB

CKC.

If k can be chosen such that the structure constantsf IA
J vanish, the coset spaceG/H is said to be

reductive.
Suppose now that the coset manifoldG/H is parametrized by coordinatesYM, M

=1, . . . ,dimG−dim H, and so the coset representative may be writtenLsYMd. For reductive coset
spaces we can then define an invariant vielbeinEA and spin connectionvI by

L−1sYddLsYd = EAKA + vIHI , s35d

which is a generalization of the left-invariant Maurer–Cartan form for Lie groups. HereLsYd is
assumed to be in a matrix representation.

Note that these are indeedinvariant one-forms since under a left action ofgPG on the coset
space we have

L ° gL, s36ad

L−1dL ° sL−1g−1ddsgLd = L−1dL, s36bd

whereg is constant on the coset space. Hence we can think of this action as an isometry.
In contrast, under a right action ofh−1PH on the coset space we find

L ° Lh−1, s37ad

L−1dL ° hL−1dsLh−1d = hsL−1dLdh−1 + hdh−1, s37bd

and hence

Hereh=hsYd, i.e., h is not necessarily constant on the coset space, but is rather a local transfor-
mation. Note thathsEAKAdh−1Pk is only true for reductive coset spaces. Thus we have

EAKA ° E8AKA = EAshKAh−1d, s38ad

vIHI ° v8IHI = vIshHIh
−1d + hdh−1. s38bd

We can rewrite this using the co-adjoint representation12 of G, i.e.,g°Rp
qsgd, which is defined as

g−1Tpg = Rp
qsgdTq, s39d

whereTp, p=1, . . . ,dimG, are the generators ofg. Thus we have

hKAh−1 = RA
Bsh−1dKB

and so we can alternatively write

EA ° E8A = EBRB
Ash−1d. s40d

Rewriting Eq.s38bd in the co-adjoint representation we find

v8IsH̃IdA
B = vIRA

CshdsH̃IdC
DRD

Bsh−1d + RA
CshddRC

Bsh−1d,

whereH̃I denotes the generatorHI in the co-adjoint representation. DefiningVA
B=vIsH̃IdA

B we
can finally write Eq.s38bd as
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VA
B ° VA8

B = RA
CshdVC

DRD
Bsh−1d + RA

CshddRC
Bsh−1d.

In this sense the right action ofh−1 on the coset space, defined in Eq.s37ad, can be regarded as a
local gauge transformation acting on the tangent space.

B. Vielbein and spin connection for S2z2

We will now derive the superzweibein and spin connection forS2u2 following the construction
given in the preceding section.

As mentioned in Sec. III C the supersphereS2u2 is, as a coset space, given byS2u2

=UOSps1u2d /Us1d. As before we will split up the generators ofG=UOSps1u2d into the generator
of the subgroupH=Us1d, which we take to beJ0, and the remaining generatorsKA, A=sa,ad,
which are given byJa, Qa, with a=1,2,a=−,+, seeEqs.s15ad–s15cd. In this case we have—apart
from S2u2 being a reductive coset space—the additional structure that

fH,Qg # Q,

fH,Jg # J,

hence

h−1Qah = Ra
AshdKA = Ra

bshdQb,

h−1Jah = Ra
AshdKA = Ra

bshdJb,

ThusRA
Bshd takes block diagonal form

RA
Bshd = SRa

bshd 0

0 Ra
bshd

D . s41d

Using the matrix representation of the UOSps1u2d algebra, see Eq.s14d, we find forRa
bshd and

Ra
bshd, respectively,

Ra
bshd = S cosw sinw

− sinw cosw
D , s42ad

Ra
bshd = Se−iw/2 0

0 eiw/2D . s42bd

We see that tangent supervectorsVA belong to ascompletelyd reducible representation of the
tangent space group; the componentsVa transform in the vector representation, whereas the
componentsVa transform in the corresponding spinor representation ofUs1d. In this sense we are
dealing with a superspace rather than just a supermanifoldssee Sec. III Ed.

To construct the superzweibein and spin connection in the particular case of UOSps1u2d /Us1d
we must choose an appropriate coset representative. This is given by

L1su,f,h,hLd = ehaQae−fJ0e−uJ2,

as defined in Eq.s22d. In matrix form fsee Eq.s16adg we have
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L1su,f,h,hLd = 11 + 1
4hhL − 1

2h 1
2hL

− 1
2hL 1 − 1

8hhL 0

− 1
2h 0 1 − 1

8hhL21
1 0 0

0 a − bL

0 b aL 2 ,

where hereasu ,wd=e−iw/2 cossu /2d and bsu ,wd=eiw/2 sinsu /2d. According to the general formal-
ism derived in the preceding section, the superzweibein and spin connection forS2u2 as the coset
space can be derived from the generalized Maurer–Cartan one-form, Eq.s35d,

L1
−1su,f,h,hLddL1su,f,h,hLd = EAKA + vIHI ,

with HI =J0 and KA=sJa,Qad, a=1,2, a=−,+. This way we obtain the superzweibein and spin
connection inssuperd-polar coordinates. Their explicit form is given in Appendix B.

Using instead the coset representative defined in Eq.s27d we find for the superzweibein in
complexsstereographicd coordinates

sEM
Ad =1

− i

1 + zzL + xxL

1

1 + zzL + xxL

− 2isxzL − xLd
s1 + zzLd3/2 0

i

1 + zzL + xxL

1

1 + zzL + xxL 0
− 2isxLz+ xd
s1 + zzLd3/2

− ix

1 + zzL
x

1 + zzL
2i

s1 + zzL − xxLd1/2 0

ixL

1 + zzL
xL

1 + zzL
0

2i

s1 + zzL − xxLd1/2

2 ,

where the indexM, as before, runs overz, zL, x, xL. For the inverse superzweibein, which we
will make extensive use of later, we have

sEA
Md =1

i

2
s1 + zzLd −

i

2
s1 + zzLd

i

2
sxzL − xLd −

i

2
sxLz+ xd

1

2
s1 + zzLd

1

2
s1 + zzLd

1

2
sxzL − xLd

1

2
sxLz+ xd

i

2
s1 + zzLd1/2x 0 −

i

2
s1 + zzL + xxLd1/2 0

0
i

2
s1 + zzLd1/2xL 0 −

i

2
s1 + zzL + xxLd1/2

2 .

Note that the two coset representatives, Eqs.s22d ands27d, differ by a gauge transformation only.
Thus, the superzweibein in complex coordinates can be derived from the one in polar coordinates
by means of a gauge transformation, see Eq.s40d.

In order to construct a superfield Lagrangian later on we will make special use ofE− andE+,
which we can read off fromsEA

Md above. We have

E− =
i

2
s1 + zzL + xxLd1/2sx]z − ]xd, s43ad

E+ =
i

2
s1 + zzL + xxLd1/2sxL]zL − ]xLd. s43bd

The superdeterminantfcf. Eq. s13dg of sEM
Ad is given by
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E ; sdetsEM
Ad =

i

2

1

1 + zzL + xxL =
i

2

1 + zzL − xxL

s1 + zzLd2 . s44d

Finally, we have for the spin connection in complex coordinates

v0 =
i

1 + zzL + xxL szLdz− zdzL + dxxL + dxLxd

= −
1

2
szL + zdE1 +

i

2
szL − zdE2 +

1

2

xzL − xL

s1 + zzLd1/2E− −
1

2

xLz+ x

s1 + zzLd1/2E+, s45d

hence in the co-adjoint representation

VB
C = v0sJ0dB

C,

where

sJ0dB
C =1

0 1 0 0

− 1 0 0 0

0 0 −
i

2
0

0 0 0
i

2

2 .

Note that the body ofVa
b is given by

uVa
bu0 =

i

1 + z0z0
* sz0

*dz0 − z0dz0
*dsJ0da

b,

which matches the result expected for the ordinary sphere. Similar expressions for the super-
zweibein, its dual and the spin connection can be obtained for thesw,zd coordinate patchssee Sec.
III D d. They are given in Appendix C.

The results developed in this section can be used to define a covariant derivative on the
supersphere. This will be given by

DA = EA
Ms]M + vM

0 J0d = EA + VA, s46d

with VA=EA
MvM

0 J0 and whereJ0 is taken to be in the representation appropriate to the field being
acted on.

C. Torsion and curvature of S2z2

We are now in the position to calculate the torsion components for the supersphere and
hence—by Dragon’s theorem13—the curvature components. This can be done using the fact that
the santi-dcommutator of two covariant derivatives is determined in terms of the supertorsionTAB

C

and the supercurvatureRAB as follows:

fDA,DBg = TAB
CDC + RAB. s47d

Here, both the torsion and the curvature are two-forms which have the following symmetry
properties:

TAB
C = − s− 1deAeBTBA

C,

RAB = − s− 1deAeBRBA,

with
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eA = H0 if A = a,

1 if A = a.
J

It is convenient to directly express the torsion and curvature components in terms of the super-
zweibein and spin connection. Defining the so-calledanholonomycoefficientsCAB

C by

fEA,EBg = CAB
CEC,

we have

TAB
C = CAB

C + VAB
C − s− 1deAeBVBA

C,

RABC
D = EAVBC

D + VAC
EVBE

D − s− 1deAeBsA ↔ Bd − CAB
EVEC

D.

Note that as a result of the Bianchi identities and of the restricted choice of tangent space group
the curvature is completely determined in terms of the torsion. This is known asDragon’s theo-
rem.

The only nonvanishing torsion components are given by

Tab
a =

i

2
ssadab, s48ad

Taa
b = −

i

2
ssada

b, s48bd

where the invariant tensorssada
b is given in Appendix A. Note that even for flat superspace one

finds nonzero torsion componentsTab
a. Since the curvature is completely determined in terms of

the torsion we must therefore expect some other nonvanishing torsion components in the case of
S2u2, which is a curved superspace. Thus it is not surprising that we encounter the additional
torsion componentsTaa

b.
For the only nonvanishing curvature components we find

R12B
C = − R21B

C = sJ0dB
C, s49ad

R−+B
C = R+−B

C = −
i

2
sJ0dB

C. s49bd

Note that the only nonzero components of the body of the curvature tensor,Rabc
d, are given by

R12a
b=−R21a

b=sJ0da
b, which matches the result for the ordinary sphere.

In the following we will use the geometric structure developed in this section to formulate
scalar field theories onS2u2. Before we do so, however, we will discuss superscalar fields on the
supersphere and their transformation properties under isometries.

VI. SUPERFIELDS ON THE SUPERSPHERE

A. Component fields

In Sec. IV B we defined a superscalar field,F, on the supersphere. Working in thesz,xd
coordinate patch we can perform an expansion in thex andxL variables, giving

F = Asz,zLd + xcxsz,zLd + xLcxLsz,zLd + xxLFsz,zLd. s50d

The fieldsA, cx, cxL, andF are called the component fields ofF, and are functions ofz andzL

only. F is often referred to as theauxiliary field.
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Since we know how the superfieldF transforms under isometriesfsee Eq.s33dg, it is possible
to derive how the component fields transform. For example, under the action ofJ0 we havedF

=u0J̃0F, which gives

dA = iu0sz]z − zL]zLdA, s51ad

dcx = iu0sz]z − zL]zL + 1
2dcx, s51bd

dcxL = iu0sz]z − zL]zL − 1
2dcxL, s51cd

dF = iu0sz]z − zL]zLdF. s51dd

Similar expressions for the transformation properties underJ1 and J2 can also be found. An
identical argument gives the transformation of the component fields under the supersymmetry

transformationdF=baQ̃aF. We find

dA =
i

2
ssbLz+ bdcx + sbzL − bLdcxLd, s52ad

dcx =
i

2
ssbzL − bLdF − sbLz+ bd]zAd, s52bd

dcxL = −
i

2
ssbLz+ bdF + sbzL − bLd]zLAd, s52cd

dF =
i

2
ssbLz+ bd]zcxL − sbzL − bLd]zLcxd. s52dd

It is possible to put these equations in a more familiar form by rewriting them usingKilling
spinors, which we do next.

B. Killing spinors

In order to define Killing spinors we must first introduce some more notation concerning the
geometry ofS2u0, the even Grassmann extension of the ordinary two-sphere. The gamma matrices,
gm, m=z,zL, for S2u0, can be taken to be

gz = − is1 + zzLdS0 1

0 0
D ,

gzL
= is1 + zzLdS0 0

1 0
D .

These satisfyhgm,gnj=2gmn where the metricgmn has the following nonzero components:

gzzL = gzLz =
2

s1 + zzLd2 .

As we can see from Eq.s45d, the restriction of the spin connectionv0 from the supersphere toS2u0

is given by
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v ; uv0ux,xL=0 = vzdz+ vzLdzL =
i

s1 + zzLd
szLdz− zdzLd1−

i

2
0

0
i

2
2 .

This allows us to define the covariant derivativeDm=]m+vm.
Killing spinors onS2u0 are defined byssee Ref. 14d

Dme =
i

2
kgme, s53d

wherek= ±1. A solution to this equation withk=−1 reads

e =
1

2s1 + zzLd1/2SbL − bzL

bLz+ b
D , s54d

wherebPCa is some arbitrary constant.
In order to rewrite Eqs.s52ad–s52dd using Killing spinors we also need to introduce a new set

of component fields, which are obtained from the superfieldF. In the case of the spinor and
auxiliary fields this will require the use of the covariant derivative. We define

Ã = uFux,xL=0, s55ad

ca = u2sDaFdux,xL=0, s55bd

Fab = u − ssDaDb − DbDadFdux,xL=0. s55cd

We can useFab to alternatively define

F̃ = eabFab, s55dd

wheree−+=1.

The set of fields given byÃ, c−, c+, andF̃ turns out to be a conformal rescaling of the original
component fields defined in the preceding section. We find

Ã = A, s56ad

c− = − is1 + zzLd1/2cx, s56bd

c+ = − is1 + zzLd1/2cxL, s56cd

F̃ = − s1 + zzLdF. s56dd

Note that from Eq.s55bd we see immediately that the fieldsc− andc+, carrying the tangent
space indexa, indeed transform as spinors under the action of the tangent space groupUs1d. The
componentsc− andc+ can be grouped into a two-component spinor,c, as

c = Sc−

c+
D .

Using these results we can rewrite the transformation of the component fields under the
supersymmetry transformations, given in Eqs.s52ad–s52dd, in the more compact form
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dÃ = e‡c, s57ad

dc = s− i]”Ã + F̃de, s57bd

dF̃ = − ie‡D” c, s57cd

where the spinorse andc are considered ass0u2d-dimensional even supervectors in order to define
their graded adjointsssee Sec. II Bd. These equations should be compared with standard results,
for instance in Ref. 7. Note that here the graded adjoint plays the role of the Dirac conjugate.

VII. SCALAR FIELD ACTIONS ON S2z2

A. Kinetic part of superfield action

We are now in the position to write down a Lagrangian in terms of some superscalar fieldF.
Remember that we can expandFsz,xd in terms of thex variables as

F = Asz,zLd + xcxsz,zLd + xLcxLsz,zLd + xxLFsz,zLd.

Here we want to restrict our attention tospseudodreal superfields only. We therefore impose the
reality condition

FL = F,

which reads in terms of the component fields

AL = A,

scxLdL = − cx,

scxdL = cxL,

FL = F.

Let us consider the following kinetic Lagrangian15 for the superscalar fieldF,

Lkin = D−FD+F = E−FE+F. s58d

In order to write down an action on the supersphere we will need the invariant volume form
dzdzLdxdxLE, with E=sdetsEM

Ad as in Eq.s44d. We thus have for the action

Ikin =E dzdzLdxdxLEE−FE+F. s59d

This will be invariant under supersymmetry transformations, as long as the LagrangianLkin trans-
forms as a scalar, e.g., asF. This is the case, provided that under a supersymmetry transformation
with parameterb, we have

Lkin → ebaQ̃aLkin.

To check this, note that under a supersymmetry transformation with smallb we have

dLkin = E−FE+sbaQ̃aFd + E−sbaQ̃aFdE+F.

Now using the fact that
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fE−,Q̃−g = −
i

4
xE−, fE+,Q̃−g =

i

4
xE+,

fE−,Q̃+g =
i

4
xLE−, fE+,Q̃+g = −

i

4
xLE+,

we find thatLkin indeed transforms as a scalar under supersymmetry transformations

dLkin = baQ̃aLkin.

Similarly the action will be invariant under rotations if the Lagrangian transforms as

Lkin → euiJ̃iLkin.

Under rotations, for smallui, we have

dLkin = E−FE+suiJ̃iFd + E−suiJ̃iFdE+F,

which we can rewrite using

fE−,J̃0g =
i

2
E−, fE+,J̃0g = −

i

2
E+,

fE−,J̃1g = −
i

4
sz+ zLdE−, fE+,J̃1g =

i

4
sz+ zLdE+,

fE−,J̃2g = −
1

4
sz− zLdE−, fE+,J̃2g =

1

4
sz− zLdE+.

Doing so we find

dLkin = uiJ̃iLkin.

Thus the action is invariant not only under supersymmetry transformations but also under rota-
tions.

Let us rewrite the kinetic part of the superfield action in terms of component fields. To do so
first note that we can write the Lagrangian as

Lkin = E−FE+F = − 1
4s1 + zzL + xxLdfsx]z − ]xdFgfsxL]zL − ]xLdFg,

and thus we have for the Lagrangian densityLkin,

Lkin = ELkin = −
i

8
fsx]z − ]xdFgfsxL]zL − ]xLdFg. s60d

ExpandingLkin in terms of thex variables we need to keep track only of terms proportional
to xxL, as these are the only ones which will survive the Grassmann integration overx andxL in
the action. We have

uLkinuxxL = −
i

8
s]zA]zLA + cx]zLcx + cxL]zcxL + F2d.

Hence we find for the action in terms of the component fields after integrating out thex,xL

dependence
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Ikin =
i

8
E dzdzLs]zA]zLA + cx]zLcx + cxL]zcxL + F2d. s61d

Note that had we used theh coordinates instead of thex coordinates the action would not have
taken this simple form. Note further that the kinetic part of the component field action is confor-
mally invariant, see Appendix E.

For the Euler–Lagrange equations we find

]z]zLA = 0, s62ad

]zLcx = 0, s62bd

]zcxL = 0, s62cd

F = 0. s62dd

These imply thatA is a harmonic function ofz andzL, cx is a holomorphic function andcxL is
an antiholomorphic function ofz. Thus if we insist on boundedness of the solutions,A as well as
cx andcxL are constant in this coordinate patch. Remember, however, that only the two coordi-
nate patchessz,xd andsw,zd taken together cover the whole sphere, see Sec. III D. Thus, in order
to make a global statement, we also have to consider the field equations following from the action
written in thesw,zd patch. To do so, first note that we can rewrite the superfieldF in terms of the
w andz coordinates as

Fsz,xd = Aszd + xcxszd + xLcxLszd + xxLFszd = Aszd −
z

w
cxszd −

zL

wLcxLszd +
zzL

wwLFszd.

Then defining the fields

Âswd = Aszd, s63ad

czswd = − zcxszd, s63bd

czLswd = − zLcxLszd, s63cd

F̂swd = zzLFszd, s63dd

we have

Fsw,zd ; Âswd + zczswd + zLczLswd + zzLF̂swd.

Using the inverse superzweibein in thesw,zd coordinate patch, see Appendix C, we find for the
LagrangianfEq. s58dg

E−FE+F = E−8FE+8F

and hence for the action in terms of the component fields defined in Eqs.s63ad–s63dd

Ikin =
i

8
E dwdwLs]wÂ]wLÂ + cz]wLcz + czL]wczL + F̂2d.

The Euler–Lagrange equations following from this action are
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]w]wLÂ = 0, s64ad

]wczL = 0, s64bd

]wLcz = 0, s64cd

F̂ = 0. s64dd

Now Eq.s64cd, for example, implies thatcz is a holomorphic function ofw. If, however, we insist
also on boundedness of the solution we have—sincecz=−zcxszd and since Eq.s62bd implies that
cx is constant—that bothcxszd andczswd must be zero. An analogous argument shows that also
cxLszd andczLswd must be taken to be zero.

B. Full superfield action

Now let us add a potential term to the kinetic part of the superfield action given in Eq.s59d.
This will allow us later to study supersymmetry breaking in this theory. Note that adding a
potential term breaks the conformal invariance of the action.

The potential part of the superfield action will be taken to be

Ipot =
1

4
E dzdzLdxdxLEUsFd, s65d

with UsFd some superpotential. When expandingUsFd in terms of the odd variables one should
note that, since

E =
i

2

1 + zzL − xxL

s1 + zzLd2 ,

the only terms contributing to the action after integrating out thex,xL dependence will be the
ones proportional to 1 andxxL. Keeping this in mind we write

UsFd = UsA + xcx + xLcxL + xxLFd = UsAd + xxLsFU8sAd − cxcxLU9sAdd + ¯ ,

where the dots stand for the terms proportional tox andxL, respectively. Thus we can rewriteIpot

in terms of the component fields as

Ipot =
i

8
E dzdzLS UsAd

s1 + zzLd2 −
FU8sAd − cxcxLU9sAd

1 + zzL
D . s66d

The full actionI = Ikin+ Ipot in terms of the component fields is then given by

I =
i

8
E dzdzLS]zA]zLA + cx]zLcx + cxL]zcxL + F2 +

UsAd
s1 + zzLd2 −

FU8sAd − cxcxLU9sAd

1 + zzL
D .

s67d

The Euler–Lagrange equations corresponding to the full action can be found in Appendix D. Note
that we can check the invariance of the action under rotations and supersymmetry transformations
explicitly using the transformation laws given in Eqs.s51ad–s51dd and s52ad–s52dd.

Seeing asF is just an auxiliary field we may eliminate it from the action. The field equation
for F is purely algebraic, we have
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F =
1

2

U8sAd
1 + zzL

,

and thus eliminating it from the action we find

I =
i

8
E dzdzLS]zA]zLA + cx]zLcx + cxL]zcxL +

UsAd − 1
4sU8sAdd2

s1 + zzLd2 +
U9sAd

1 + zzL
cxcxLD .

For later convenience we define the effective potentialV by

VsAd = UsAd − 1
4sU8sAdd2. s68d

Note that the factors1+zzLd−2 contributes to the invariant volume element ofS2u0 and as such is
not part of the effective potential. Also note that the effective potential will be unbounded from
below wheneverUsAd is given by a polynomial of degree greater than 2. However, there exist
nonpolynomial choices of the potentialUsAd, for example, a Gaussian, which lead to effective
potentials that are bounded from below.

The truncated supersymmetry transformations are

dA =
i

2
ssbLz+ bdcx + sbzL − bLdcxLd,

dcx =
i

2
SsbzL − bLd

1

2

U8sAd
1 + zzL

− sbLz+ bd]zAD ,

dcxL = −
i

2
SsbLz+ bd

1

2

U8sAd
1 + zzL

+ sbzL − bLd]zLAD .

Note that the truncated action will be invariant under these supersymmetry transformations. How-
ever, the truncated transformations will not close unless we impose the field equations, i.e., the
commutator of two supersymmetry transformations will give a rotation only on-shell.

VIII. SUPERSYMMETRY BREAKING

In this section we will investigate supersymmetry breaking in this model for different choices
of the potentialUsFd. In order to do so let us consider an SOs3d invariant classical vacuum
solution given byA=constant andcx=cxL=0. Under supersymmetry this solution transforms as

dA = 0,

dcx =
i

4
sbzL − bLd

U8sAd
1 + zzL

,

dcxL = −
i

4
sbLz+ bd

U8sAd
1 + zzL

.

Thus this solution will be supersymmetry preserving ifU8sAd=0, i.e., if F=0. On the other hand,
FÞ0 indicates states of broken supersymmetry.

Note that vacuum solutions correspond to critical points of the effective potentialV, given in
Eq. s68d. Since
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V8sAd = U8sAds1 − 1
2U9sAdd

we have two types of stationary points, namelyU8sAd=0 andU9sAd=2, the former corresponding
to states with unbroken supersymmetry, the latter corresponding to states for which supersymme-
try is possibly broken.

As a first example consider the potentialUsAd=mA2, wheremPR0 is some constant param-
eter. HereR0>R denotes the body ofRc. We shall look for critical points of the effective
potential, which is

VsAd = sm− m2dA2. s69d

Note that ifm=0 or 1 the effective potential is identically zero. In the case ofm.1 or m,0 there
exists neither a global nor a local minimum. If, however, 0,m,1 the potential possesses a global
minimum atA=0. As this implies thatU8sAd=2mA=0, supersymmetry will be preserved for this
solution.

As a second example we will consider the potential

UsAd = 1
3gA3 + lA,

with g,lPR0 constant. The extrema of the effective potential

VsAd = lA + 1
3gA3 − 1

4sgA2 + ld2 s70d

are given by

U8sAd = gA2 + l = 0 ⇒ A = ±Î− l

g
,

U9sAd = 2gA= 2 ⇒ A =
1

g
.

In order to decide whether we can have stable supersymmetry preserving vacuum solutions, we
need to know for which parameter valuesA= ±Î−l /g correspond to local minima. Thus we need
to investigateV9sAd at these points. We have

V9sAd = U9sAds1 − 1
2U9sAdd − 1

2U8sAdU-sAd = − 2Î− lgsÎ− lg 7 1d.

One must distinguish between four different cases.

sid SupposeÎ−lg.1. In this caseV9sAd,0 for both the rootsA= ±Î−l /g, henceU9sAd=2
must correspond to the local minimum. Thus for this vacuum solution supersymmetry will
be brokenfsee Fig. 1sadg.

sii d Suppose 0,Î−lg,1. In this case one of the rootsA= ±Î−l /g will correspond to a local
maximum the other to a local minimum. Thus there exists a supersymmetry preserving
vacuum solutionfsee Fig. 1sbdg.

siii d Suppose −lg=1. ThenA= ±Î−l /g= ±1/g implies that one of the two roots corresponds to
V9sAd=0, the other to a maximum. Thus there exists no stable supersymmetry preserving
vacuum statefsee Fig. 1scdg.

sivd Supposelg.0. There is no solution toU8sAd=0, hence supersymmetry will be broken.
However, in this caseVsAd has a single maximum atA=1/g and thus any vacuum solution
will be unstable anywayfsee Fig. 1sddg.

Note, however, that the effective potential of Eq.s70d is unbounded from below and as such
exhibits only local minima. Therefore there do not exist true vacuum solutions.
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IX. CONSERVED CURRENTS FROM SUPERFIELD FORMALISM

Using the superfield formalism we will derive in this section a supersymmetric generalization
of the energy-momentum tensor.

In order to do so consider some superfield Lagrangian densityL=LsF ,]Fd. Remember that
a coordinate transformationXM→XM +dXM is realized on superscalar fields asfsee Eq.s33dg F
→FsX−dXd=FsXd+dFsXd wheredF=−dXM]MF. Note that in the case of an isometry, as we
shall assume here, we havedXM =duKM, with KM a Killing supervector.

Similarly we find that the Lagrangian density transforms under an isometry as

dL = − s− 1dM]MsdXMLd. s71d

For a derivation of this result see Appendix F. On the other hand, we find that the change in the
Lagrangian density obtained by varying the fields is

dL = dF
]L
]F

+ s]MdFd
]L

]s]MFd
= dFS ]L

]F
− ]MS ]L

]s]MFd
DD + ]MSdF

]L
]s]MFd

D . s72d

Note that the superzweibein is invariant under an isometry, thus the variation ofL with respect to
the superzweibein is zero. From Eq.s72d we see that the Euler–Lagrange equations are

]L
]F

− ]MS ]L

]s]MFd
D = 0. s73d

Thus if we impose the field equations the first term in Eq.s72d vanishes and we can set the
remaining term equal to −s−1dM]MsdXMLd. Then usingdF=−dXM]MF we find

]MSdXNSs− 1dMdN
ML − ]NF

]L
]s]MFd

DD = 0. s74d

We are now in the position to define the superenergy-momentum tensorTN
M,

FIG. 1. A sketch of the effective potentialVsAd=lA+ 1
3gA3− 1

4sgA2+ld2 for the four different cases discussed in the text.
HereA1=Î−l /g andA2=1/g.
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TN
M = s− 1dMdN

ML − ]NF
]L

]s]MFd
. s75d

The corresponding super-Noether currentJM is then defined by

JM = KNTN
M . s76d

By means of Eq.s74d JM will satisfy the superconservation law

]MJM = 0. s77d

Let us now consider the specific Lagrangian density forS2u2 given byfsee Eqs.s59d ands65dg

L = EsE−FE+F + 1
4UsFdd. s78d

One can check that the field equations given by Eq.s73d indeed coincide—when written in terms
of the component fields—with the field equations given in Appendix D, which were directly
derived from the action in terms of the component fields.

For the superenergy-momentum tensor we find in this case

TN
M = s− 1dMdN

MEsE−FE+F + 1
4UsFdd − ]NFEsE−

ME+F + s− 1dME−FE+
Md.

The supercurrents are given by

Jp
M = Kp

NTN
M ,

with p=0,1,2,−,+, asbefore. The Killing supervectorsKp
N can be read off from Eqs.s34ad–s34cd

ands34ed. Note that by taking thexxL component of the conservation equation, Eq.s77d, we find
a conservation equation purely inz

us]MJp
MduxxL = us]zJp

z + ]zLJp
zL

duxxL = us]mJp
mduxxL = 0, s79d

as both]xJp
x and ]xLJp

xL

do not contribute axxL term. It will turn out that it is thisxxL

contribution to the conservation equation that gives rise to the familiar energy-momentum tensor
and fermionic currents, which can alternatively be derived directly from the action in terms of the
component fields. Considering other components of the conservation equation, say thex compo-
nent, we find

us]zJp
z + ]zLJp

zL
dux = − us]xLJp

xL
dux.

Note that this also is a conservation equation purely inz. However, the term on the right-hand side

of the equation, −us]xLJp
xL

dux, which does not involve any derivatives with respect toz, must be
understood as some kind of source term. Yet, the interpretation of these additional conservation
equations remains unclear.

Now let us consider the currentsJi
m, i =0,1,2, inmore detail. We have

Ji
m = Ki

NTN
m = Ki

nTn
m + Ki

mTm
m.

By direct calculation one finds that the componentsTx
m are proportional tox and similarly the

componentsTxL
m are proportional toxL. Now, as alsoKi

x is proportional tox and similarlyKi
xL

is proportional toxL the above equation simplifies to

Ji
m = Ki

nTn
m.

Note thatKi
n= uKi

nuxxL;ki
n correspond to the usual Killing vectors on the sphereS2u0,

sk0
md = isz,− zLd,
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sk1
md =

i

2
ss1 − z2d,− s1 − zL2dd,

sk2
md = − 1

2ss1 + z2d,s1 + zL2dd.

Defining j i
m and tm

n as thexxL components ofJi
n andTm

n, respectively,

j i
m ; uJi

muxxL, tm
n ; uTm

nuxxL

we can rewrite the conservation equation, Eq.s79d, for the bosonic currentsJi
m as

]mj i
m = ]mski

ntn
md = 0.

For tm
n we find in terms of the conformally rescaled fieldsÃ,c−,c+, as given in Eqs.s56ad–s56cd,

tmn=
i

8
ÎuguS]mÃ]nÃ +

i

2
c‡gm]nc − gmnF1

2
s]Ãd2 −

1

8
U8sÃd2 +

1

2
UsÃdGD , s80d

where the index has been lowered using the metricgmn. Note that the auxiliary fieldF̃ has been
eliminated.

We shall now consider thexxL contribution to the currentsJa
m, a=−,+. Let usdefine

ja
m ; uJa

muxxL

and also

jm ; bL j−
m + b j+

m.

From Eq.s79d we see thatjm satisfies the conservation equation

]mjm = 0.

Rewriting this fermionic current in terms of the rescaled fieldsÃ,c−,c+, as we did before in the
case oftmn, we find

jm =
i

8
Îugue‡S]”Ã +

i

2
U8sÃdDgmc, s81d

wheree is the Killing spinor defined in Eq.s54d.

X. CONCLUSIONS AND OUTLOOK

We have shown how to construct the supersphereS2u2 as the coset space UOSps1u2d /Us1d,
analogous to the construction of flat superspace as the super Poincaré group quotiented by the
Lorentz group. The definition of UOSps1u2d, which is the isometry group of the supersphere,
required the notions of pseudoconjugation and graded adjoint.

The coset space UOSps1u2d /Us1d has the structure of a superspace, rather than just being a
supermanifold as is the case for other coset space definitions of the supersphere. This allowed us
to consider the supersphere as a base space for a superscalar field theory. AsS2u2 is an example of
a curved superspace on which we haverigid supersymmetry transformations, i.e., the supersym-
metry parameter is not position dependent, the theory we constructed exhibits global supersym-
metry. Upon integrating out the odd coordinate dependence, this superscalar field theory becomes
a supersymmetric theory on the ordinary sphere with a scalar, spinor, and auxiliary field. Choosing
a polynomial potential we saw that solutions at local minima may break supersymmetry, provided
certain conditions are met. Also recall that, contrary to what is expected, the effective potential for
this model is not typically bounded from below. This appears to be due to the Euclidean nature of
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the theory. However, as we pointed out, nonpolynomial potentials can be found which will exhibit
global minima and thus true vacuum solutions.

Using the superfield formalism we were able to derive Euler–Lagrange equations and Noet-
her’s theorem for the superscalar fieldF itself, starting from some general superfield Lagrangian
densityLsF ,]Fd. When applying Euler–Lagrange equations to the specific Lagrangian density
constructed forS2u2 we found that the field equations forF reduce, when written in terms of the
component fields, to the ones derived directly from the action on the ordinary sphere. The super-
conservation equations derived from Noether’s theorem—when applied to the Lagrangian density
for the supersphere—give rise to the familiar energy-momentum tensor and fermionic currents
expected from the component field action. Notably, though, the super conservation equations also
give rise to additional conservation laws, that appear to be independent of the familiar ones and
which thus call for some interpretation.

In this work we have concentrated on superscalar field theories on the supersphere. Using the
methods we have presented it would be possible to further this study by investigating more general
field theories, for example, gauge theories or sigma models with the supersphere as the base space.
Another possible extension of this work would be to quantize the scalar field theory, which due to
its Euclidean nature would correspond to a statistical field theory.
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APPENDIX A: RAISING AND LOWERING CONVENTIONS FOR SPINOR INDICES

Raising and lowering of spinor indicesa ,b , . . . isachieved with the use of the antisymmetric
epsilon symbolseab andeab; the convention we will follow is that of Ref. 16. When raising an
index we always contract on the second index ofeab, e.g.,

ca = eabcb.

However, when lowering an index we always contract on the first index ofeab, e.g.,

cb = egbcg.

Combining the preceding two equations we see that

eabegb = da
g.

Hence we see that if we choosee−+=1, then we must also havee−+=1. Note that we can think of
eab aseab with both indices raised.

The scomponents of thed standard Pauli matrices are taken to bessida
b. Lowering the first

index allows us to construct the quantity

ssidab = egassidg
b = − eagssidg

b,

which is symmetric ina ,b. We can then raise the second index to give

ssida
b = egassidg

debd = eagssidg
dedb.

Notice that the third terms in the above two equations have been written in a way more suggestive
of standard matrix multiplication. In fact, if we define the antisymmetric matrixe=seabd, we may
think of these quantities as the components of the matrices −esi andesie=ssidt, respectively.

The quantityssida
b fas well asssada

bg is a Us1d invariant tensor, i.e.,
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ssida
b = Ra

gshdss jdg
dRd

bsh−1dRj
ish−1d,

whereRp
qshd is as given in Eq.s39d.

APPENDIX B: SUPERZWEIBEIN AND SPIN CONNECTION IN POLAR COORDINATES

We obtain for the superzweibein inssuperd-polar coordinates

sẼM
Ad

=1
sinu 0 0 0

0 − 1 0 0

i

4
shL sinu − h cosue−iwd −

1

4
he−iw S1 +

1

8
hhLDsin

u

2
e−iw/2 S1 +

1

8
hhLDcos

u

2
e−iw/2

i

4
sh sinu + hL cosueiwd −

1

4
hLeiw S1 +

1

8
hhLDcos

u

2
eiw/2 − S1 +

1

8
hhLDsin

u

2
eiw/22 ,

where the indexM here runs overw ,u ,h ,hL. The spin connection is in polar coordinates given
by

v0 = − dw cosu −
i

4
dhLsh cosu − hLeiw sinud −

i

4
dhshL cosu + he−iw sinud

= − cotu Ẽ1 +
i

4

1

sinu
She−iw/2 sin

u

2
− hLeiw/2 cos

u

2
DẼ− +

i

4

1

sinu
She−iw/2 cos

u

2

+ hLeiw/2 sin
u

2
DẼ+.

APPENDIX C: SUPERZWEIBEIN AND SPIN CONNECTION IN THE „w ,z… PATCH

We find for the superzweibein in thesw,zd coordinate patch

sEM8
Ad =1

i

1 + wwL + zzL

− 1

1 + wwL + zzL

2iszwL + zLd
s1 + wwLd3/2 0

− i

1 + wwL + zzL

− 1

1 + wwL + zzL 0
2iszLw − zd
s1 + wwLd3/2

− iz

1 + wwL

z

1 + wwL

− 2i

s1 + wwL − zzLd1/2 0

izL

1 + wwL

zL

1 + wwL 0
− 2i

s1 + wwL − zzLd1/2

2 ,

where the indexM now runs overw,wL ,z ,zL. The inverse superzweibein is given by

033511-31 Scalar field theories on the supersphere J. Math. Phys. 46, 033511 ~2005!

                                                                                                                                    



sEA8
Md =1

−
i

2
s1 + wwLd

i

2
s1 + wwLd −

i

2
szwL + zLd

i

2
szLw − zd

−
1

2
s1 + wwLd −

1

2
s1 + wwLd −

1

2
szwL + zLd −

1

2
szLw − zd

i

2
s1 + wwLd1/2z 0

i

2
s1 + wwL + zzLd1/2 0

0
i

2
s1 + wwLd1/2zL 0

i

2
s1 + wwL + zzLd1/2

2 .

The superdeterminant ofsE8M
Ad is given by

E8 ; sdetsEM8
Ad =

i

2

1

1 + wwL + zzL .

Finally, we find for the spin connection in thesw,zd coordinate patch

v80 =
i

1 + wwL + zzL swLdw− wdwL + dzzL + dzLzd

=
1

2
swL + wdE81 −

i

2
swL − wdE82 +

1

2

zwL + zL

s1 + wwLd1/2E8− −
1

2

zLw − z

s1 + wwLd1/2E8+.

APPENDIX D: EULER–LAGRANGE EQUATIONS FOR THE FULL ACTION

The field equations following from the full action given in Eq.s67d are

]z]zLA =
1

2

U8sAd
s1 + zzLd2 −

1

2

FU9sAd
1 + zzL

+
1

2

cxcxLU-sAd

1 + zzL
,

]zLcx = −
1

2

cxLU9sAd

1 + zzL
,

]zcxL =
1

2

cxU9sAd
1 + zzL

,

F =
1

2

U8sAd
1 + zzL

.

APPENDIX E: CONFORMAL INVARIANCE OF THE KINETIC PART OF THE ACTION

The superscalar field action, Eq.s67d, can be rewritten using the notation of Sec. VI B. We
find it to be

I =
i

16
E d2zÎuguSgmn]mÃ]nÃ + ic‡]”c + F̃2 −

1

2
c‡cU9sÃd + UsÃd + F̃U8sÃdD ,

whereg is the determinant of the metric. The kinetic part of the action is obtained by setting

UsÃd=0. Note that we could replace the second term,ic‡]”c, with ic‡D” c. This is because the
term involving the spin connection will vanish due to the anticommuting nature ofc and the form
of the gamma matrices.

Under a conformal transformation, the metric and gamma matrices transform as
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gmn→ l2gmn,

gm → l−1gm,

wherel is some positive function on the sphere. It is then possible to define the transformation
properties of the component fields in such a way that the kinetic part of the action will remain
invariant. We find

Ã → Ã,

c → l−1/2c,

F̃ → l−1F̃.

The presence of a nonzero potential will break this conformal invariance.

APPENDIX F: TRANSFORMATION PROPERTIES OF SUPERSCALAR DENSITIES

Using the infinitesimal point transformationX8M =XM +duJMsXd we can define the Lie de-
rivative of any supertensor fieldTsXd by

LJTsXd = lim
du→0

TsX8d − T8sX8d
du

.

For instance, a superscalar transforms asF8sX8d=FsXd, hence the Lie derivative can be calculated
by using a Taylor expansion. We find

LJFsXd = JM]MFsXd.

Now, let TsXd be a superscalar density of weight +1. It is defined to transform as

T8sX8d = JsXdTsXd,

whereJsXd is given by the superdeterminant

JsXd = sdetS ]XM

]X8ND = 1 −dus− 1dM]MJM + ¯ .

Note that in the last line we have expanded the superdeterminant to first order, resulting in the
appearance of a supertrace, this explains the factors−1dM in the summation overM. Also we can
expand

TsX8d = TsXd + duJM]MTsXd + ¯ .

Combining these gives us the Lie derivative of a superscalar density

LJTsXd = s− 1dM]MsJMTsXdd.

The same procedure can be used to calculate the Lie derivative of any supertensor field.
Using the Lie derivative we can describe the infinitesimal active coordinate transformation,

X→X+duJ, alternatively as a transformation of the fields. We need to find the difference between
the tensor which has been dragged alongduJ to the pointX, and the tensor which was already at
X. For the supertensor fieldTsXd this difference is given by

dTsXd = − duLJTsXd.
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We give approximate formulas for spectrum and the corresponding spectral projec-
tions of perturbed linear operators. The main tool is the so-calledlevel shift opera-
tor, which expresses the effects of second order perturbation theory on the point
spectrum. ©2005 American Institute of Physics.fDOI: 10.1063/1.1850833g

I. INTRODUCTION

One of the main tools of quantum mechanics is perturbation theory for eigenvalues of family
of linear operators of the formLlªL0+lQ. This theory is particularly simple if one considers an
isolated eigenvalue ofL0 of finite degeneracy and one assumes thatL0 andQ are self-adjoint. In
this case, both the eigenvalues and the eigenvectors can be described by functions analytic in the
coupling constantesld. This is described in almost every textbook on quantum mechanics.

In quantum mechanics self-adjoint operators play a prominent role. However, non-self-adjoint
operators are also physically relevant. For instance, they are used to describe resonances. In fact,
resonances are often defined as complex eigenvalues of analytically deformed Hamiltonians,
which are usually non-self-adjoint. The perturbation theory of non-self-adjoint operators is more
complicated than that of self-adjoint operators. In the case of non-self-adjoint operators, eigenval-
ues and eigenvectors are typically described by a multivalued analytic function with a branch point
at l=0. This is described, e.g., in Refs. 11 and 16.

The method of analytic functions may be inapplicable if the isolated eigenvalue has infinite
degeneracy, because it may then happen that the perturbed operator has continuous spectrum close
to the unperturbed eigenvalue. Thus one cannot follow individual eigenvalues.

In practice one is not interested in the full perturbation expansion of eigenvalues or eigenvec-
tors. One usually uses the lowest order approximation. The first order approximation to the eigen-
value is very simple—it is just the appropriate matrix element of the perturbation. More interesting
is the second order approximation. Its importance has been noted since the early days of quantum
mechanics. Not without a reason the computations based on the second order perturbation theory
have been called by Fermi the golden rule of quantum mechanics.

In our paper we describe a method of constructing approximate eigenvalues and approximate
eigenprojections that summarizes the usual second order perturbation theory. We do not restrict
ourselves to self-adjoint operators. We prove that our construction can be applied without any
problem in the case when the eigenvalue has infinite multiplicity. Thus, the formulas that we give
are quite robust—they do not need the assumptions typical of the usual approach to perturbation
theory through expansion in a power series.

Let us now describe our results a little more closely. Suppose thatL0 is a closed operator
having a cluster of isolated eigenvaluesJ. The spectral projection ofL0 onto J, denoted1JsL0d,
gives a natural decomposition of the Banach space into a direct sumH=Hv % Hv̄.

Let Q be a perturbation. Our main object is the perturbed operator

adElectronic mail: jan.derezinski@fuw.edu.pl
bdElectronic mail: rafal.fruboes@fuw.edu.pl
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Ll,b ª L0 + lsQvv̄ + Qv̄vd + bQvv.

Note that we assume that insideHv the perturbation is zero. This guarantees that there is no first
order shift of the spectrum.Qvv̄+Qv̄v is the “off-diagonal” part of the perturbation—it connectsHv

andHv̄. Qvv is the “external” part of the perturbation—it acts insideHv̄. We use two perturbation
parameters,l for the off-diagonal andb for the diagonal part. We are interested in what happens
for small complexl andb. We will try to estimate carefully the deviations from our predictions
in terms of these two coupling constants.

It is easy to see that for smalll andb, the spectrum ofLl,b does not differ much from the
spectrumL0. Thus, for smalll and b, for any isolated pointe of J, there exists a patch of
spectrum ofLl,b located arounde, which we will denote byQe. sWe say “a patch,” not “a cluster,”
because the spectrum does not have to be discrete.d We will give the formula for a projectionpe

that approximates the spectral projection ofLl,b onto Qe. We will show that this projection
approximately diagonalizesLl,b. By this we mean thatL−peLl,bpe−s1−pedLl,bs1−ped is small.

The above results are contained in Theorem 2.1. They are quite easy. What is more interesting
is the study of the splitting of the patchQe, which is the subject of Theorem 2.3—the main result
of our paper.

We show that if the eigenvaluee is semisimple then the patch of the spectrum arounde
naturally splits into subpatches separated by a distance of orderOsulu2d. The subpatches will be
parametrized by eigenvalues of the so-calledlevel shift operatorsLSOd. The level shift operator is
a certain operator that describes the shift of spectrum under the influence of second order pertur-
bation theory. The subpatch of the spectrum ofLl,b arounde+l2m, wherem is an eigenvalue of
the LSO, will be denoted byQe,m. We will also give a formula for the projectionpe,m that
approximates the spectral projection ofLl,b onto Qe,m. Finally, we will show thatpe,m approxi-
mately diagonalizesLl,b.

Clearly, the results that we present are quite general and applicable in many situations. The
main motivation for our paper comes, however, from the class of problems first considered by
Jaksic and Pillet in Refs. 12, 13, and 15. Using the terminology of Ref. 7 we can say that the
results of our paper can be used to describe approximately resonances of Pauli–Fierz Liouvillean.
The last section is devoted to a short description of this application.

Let us briefly explain what we mean by resonances of Pauli–Fierz Liouvilleans. We use the
name “Pauli–Fierz system” to describe a quantum system consisting of a small systemse.g., an
atomd interacting with a bosonic fieldse.g., photons or phononsd. We are especially interested in
the case when the field has a positive density, for instance it is at a positive temperature. The
dynamics of this system is generated by a certain self-adjoint operator, which, following Ref. 7,
we call the “Pauli–Fierz Liouvillean.” Next we apply the so-called Jaksic–Pillet method and we
obtain an analytically deformed Pauli–Fierz Liouvillean. Analytically deformed Liouvilleans are
non-self-adjoint and have spectrum in the lower half-plane. Moreover, they often have isolated
eigenvalues. These eigenvalues are called resonances. They do not depend on the parameter of
deformation. They are physically relevant, they are responsible for the decay of certain correlation
functions. They can be naturally written as the sum of an explicit operator with discrete eigenval-
ues and a perturbation. The method of our paper allows us to give approximate predictions about
the resonances.

Another class of operatorssnot discussed in our paperd where our results could be applied are
the generators of a Pauli–Fierz dynamics on an operator algebrascalled C-Liouvilleans in Ref.
14d.

Level shift operators appear in the mathematics and physics literature in various disguises
whenever the second order perturbation theory is considered. They are often introduced in the case
of embedded eigenvalues. For instance, they appeared implicitly in the work of Ref. 6 devoted to
the perturbation theory for embedded eigenvalues of Pauli–Fierz operators. The analysis of the
point spectrum given in Ref. 6 is very closely related to the analysis given in our paper. Never-
theless, there are some differences. Reference 6 was devoted to the study ofembeddedeigenval-
ues, and therefore additional tools were required: the limiting absorption principle and Mourre’s
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positive commutator method. Another difference is the self-adjointness of the operator studied in
Ref. 6, whereas in our paper we do not restrict ourselves to self-adjoint operators.

Constructions similar to ours can be found in the papers of Bach–Fröhlich–Sigal.1,2 The
authors study the spectrum of certain operatorsssimilar to the Pauli–Fierz operators considered in
Refs. 6 and 7d by an iterative procedures“renormalization group”d. The basic step of this proce-
dure resembles our prescription for locating the spectrum and constructing the approximate spec-
tral projection.

The LSO appears naturally in the so-called weak couplingsvan Hoved limit.4,5,8 In this context
it is sometimes called the Davies generator.

II. MAIN RESULTS

A. Notation

If J,Q,C, then we say thatJ is an isolated subset ofQ if it is closed and open in the
relative topology ofQ.

Qcl denotes the closure ofQ in C.
If L is a linear operator, spL denotes its spectrum and DomL its domain. IfJ is an isolated

and bounded subset of spL, then we can define the spectral projection ofL ontoJ by the formula

1JsLd =
1

2pi
R

g

sz− Ld−1 dz,

whereg is a closed path that encirclesJ counterclockwise.
If e is an isolated point of spL, then we will write 1esLd for 1hejsLd. For suche set Ne

ª sL−ed1esLd. We say that the degree of nilpotence ofe is equal ton iff Ne
n−1Þ0 but Ne

n=0. We
say thate is semisimple iffn=1 si.e., Ne=0d.

If Q,C ande.0, then we set

DsQ,ed ª hzP C : distsz,Qd , ej.

For ePC, Dse,ed will denote the open disc centered ate with radius e. Moreover, we set
Dsx ,edªx.

If Asl ,bd are bounded operators, andfsl ,bd a positive function, then

Asl,bd = Osfsl,bdd

means that there existsc such that

iAsl,bdi ø cfsl,bd.

Moreover,

A1sl,bd = A2sl,bd + Osfsl,bdd

or

A1sl,bd =
Osfsl,bdd

A2sl,bd

means that

A1sl,bd − A2sl,bd = Osfsl,bdd.

B. Assumptions

Let L0 be a closed operator on a Banach spaceH. Suppose thatJ is an isolated bounded
subset of spL0.
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It will be convenient to denote1JsL0d by 1vv and set1vv
ª1−1vv. We can also introduce the

subspaces

Hv
ª 1vvH, Hv̄

ª 1vvH,

so thatH is decomposed into a direct sum

H = Hv
% Hv̄. s2.1d

With respect to the decompositions2.1d any operatorB on H satisfying

DomsBd = sDomsBd ù Hvd % sDomsBd ù Hv̄d

can be written as

B = FBvv Bvv̄

Bv̄v BvvG . s2.2d

In particular, we have

L0 = FL0
vv 0

0 L0
vvG . s2.3d

It will be convenient to writeE for L0
vv. Note thatE is a bounded operator onHv and spsEd=J.

Let Q be another operator, that we will treat as a perturbation ofL0. More precisely, we make
the following assumptions.

Assumption 2.A: Qvv=0.
Assumption 2.B: Off-diagonal elements of Q, i.e., Qvv̄ and Qv̄v, are bounded.
We will also use either one of the following two assumptions.
Assumption 2.C: Qvv is an operator bounded perturbation of L0

vv sRef. 11d.
Assumption 2.D:Hvv is a Hilbert space, L0

vv is self-adjoint, bounded from below and Qvv is a
form bounded perturbation of L0

vv sRef. 11d.
Let l ,bPC. Note that under Assumption 2.C or 2.D the operatorL0

vv+bQvv is well defined
for small enoughb sRef. 11d. Likewise,

Ll,b ª L0 + lQvv̄ + lQv̄v + bQvv = F E lQvv̄

lQv̄v L0
vv + bQvvG

is well defined for small enoughb. For simplicity we will writeL instead ofLl,b.
Fix an open subsetV,C such thatVclùspL0=J andJ,V. Note that there existsb0 such

that, for ubuøb0, spsL0
vv+bQvvdùVcl=x. We fix b0 satisfying these conditions.

C. Results

The main results of our paper are stated in the following two theorems. Note that Theorem 2.1
is quite easy and basically describes the well-known stability of spectrum under a perturbation.
Theorem 2.3 is more difficult—it describes the splitting of the spectrum according to second order
perturbation theory. In that theorem, an important role is played by the level shift operator. Note
that we tried to make the two theorems as parallel as possible.

Theorem 2.1: Suppose that Assumptions 2.A and 2.B hold. We also suppose that either
Assumption 2.C or 2.D is satisfied. Then the following is true:

s1d There exists a continuous and increasing function

f0,`gf{x ° dsxdg P f0,`g,

such thatlimx→0 dsxd=0, and for ubu,b0 and ulu,l0, for somel0.0, we have
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spsLd ù V , DsspE,dsuluddcl. s2.4d

s2d In what follows we assume thatE is an isolated subset ofspE. Clearly, s1d implies that there
exists0,lE such that, forulu,lE,

QE ª DsE,dsuluddcl ù spL s2.5d

is an isolated subset ofspL and QE,V.
s3d For ulu,lE we have

1QEsLd − 1EsL0d = Osulud. s2.6d

s4d For ulu,lE we have

dim 1QEsLd = dim 1EsL0d. s2.7d

s5d In what follows we assume that e is an isolated point ofspE. We will writeQe for Qhej. If the
degree of nilpotence of e as an eigenvalue of E is equal to n, then there exists Ce such that

Qe , Dse,Ceulu2/ndcl.

s6d For

ulu , i1esL0dQvv̄se1vv − L0
vvd−2Qv̄v1esL0di−1/2

¬lê, s2.8d

we set

peª s1esL0d + lse1vv − L0
vvd−1Qv̄v1esL0dds1esL0d + l21esL0dQvv̄se1vv − L0

vvd−2Qv̄v1esL0dd−1

3 s1esL0d + l1esL0dQvv̄se1vv − L0
vvd−1d. s2.9d

Then pe is a projection. Moreover,

sad

1Qe
sLd − pe = Osulud; s2.10d

sbd if e is a semisimple eigenvalue of E then

1Qe
sLd − pe = Osulu2 + ulbud; s2.11d

scd if, in addition, spsEd=hej, then

1Qe
sLd − pe = Osulu3 + ulbud. s2.12d

s7d For ulu,lê we have

sad

L − peLpe − s1 − pedLs1 − ped = Osulud; s2.13d

sbd if e is a semisimple eigenvalue of E then

L − peLpe − s1 − pedLs1 − ped = Osulu2 + ulbud; s2.14d

scd if, moreover, spsEd=hej then

L − peLpe − s1 − pedLs1 − ped = Osulu3 + ulbud. s2.15d

Note that in Eq.s2.9d we use the notationse1vv−Lvvd−1 for the inverse of the operatore1vv

−Lvv restricted toHv̄. In what follows we will often use similar notation without a comment.
Let us now assume that spE is a finite set.
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Definition 2.2: We define the level shift operator (LSO) as

G ª o
ePspsEd

1esEdQvv̄se1vv − L0
vvd−1Qv̄v1esEd.

From now on we will write for shortnessGee
ª1esEdG1esEd.

Now we are ready to state our main theorem.
Theorem 2.3: Suppose that Assumptions 2.A and 2.B hold. We also assume either Assumption

2.C or 2.D. Assume also thatspE is a finite set consisting of semisimple eigenvalues. Then the
following is true:

s1d There exists a continuous and increasing function

f0,`gf{x ° dsxdg P f0,`g,

such thatlimx→0 dsxd=0, and, for ubu,b0, ulu,l0, for somel0.0, we have

spsLd ù V , DsspsE + l2Gd,ulu2dsulu2 + ubuddcl = ø
ePspsEd

Dse+ l2 spsGeed,ulu2dsulu2 + ubuddcl.

s2.16d

s2d In what follows we fix ePspE, and M is an isolated subset ofspGee. Clearly, (1) implies
that there exists0,le,M and 0,be,M such that forulu,le,M and ubu,be,M,

Qe,M ª Dse+ l2M,ulu2dsulu2 + ubuddcl ù spL

is an isolated subset ofspL and Qe,M,V.
s3d For ulu,le,M and ubu,be,M we have

1Qe,MsLd − 1MsGeed = Osulu + ubud. s2.17d

s4d For ulu,le,M and ubu,be,M we have

dim 1Qe,MsLd = dim 1MsGeed. s2.18d

s5d Assume now that m is an isolated point ofspGee. We will writeQe,m for Qe,hmj. Suppose that
the degree of nilpotence of m as an eigenvalue ofGee is equal to n. Then

Qe,m , Dse+ l2m,Ce,mulu2sulu2 + ubud1/ndcl,

for some Ce,m.0.
s6d For

ulu , i1msGeedQvv̄se1vv − L0
vvd−2Qv̄v1msGeedi−1/2

¬le,m̂, s2.19d

we set

pe,mª s1msGeed + lse1vv − L0
vvd−1Qv̄v1msGeedds1msGeed + l21msGeedQvv̄se1vv − L0

vvd−2

3Qv̄v1msGeedd−1s1msGeed + l1msGeedQvv̄se1vv − L0
vvd−1d. s2.20d

Then pe,m is a projection. Moreover,

sad

1Qe,m
sLd − pe,m = Osulu + ubud; s2.21d

sbd if m is a semisimple eigenvalue ofGee then

1Qe,m
sLd − pe,m = Osulu2 + ubud. s2.22d
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s7d For ulu,le,m̂ we have

sad

L − pe,mLpe,m − s1 − pe,mdLs1 − pe,md = Osulu2 + ulbud;

sbd if 1vv=1msGeed then

L − pe,mLpe,m − s1 − pe,mdLs1 − pe,md = Osulu3 + ulbud.

Remark 2.4: Note that in both theorems (6) describes how close the projections pe and pe,m are
to the corresponding spectral projections of L and (7) describes how well they diagonalize L.

In Theorem 2.1, we have the same order of smallness in (6) and (7). We will see from the
proof, that (7) essentially follows from (6).

On the other hand, in Theorem 2.3, the order of smallness of (7) is much better than that of
(6). Thus (7) requires a separate proof.

III. PROOFS

Let us begin with a general fact about the stability of the spectrum of bounded operatorssRef.
11d.

Theorem 3.1:Let APBsHd. Then there exists an increasing and continuous function,

f0,`gf{x ° mAsxdg P f0,`g,

such thatlimx→0 mAsxd=0 and for any BPBsHd we havespsA+Bd,DsspsAd ,mAsiBiddcl.
If aPspsAd is an isolated eigenvalue with the degree of nilpotence equal to n, then there exists

e.0 such that for zPDsa,ed \ haj we have

isz− Ad−1i ø Cuz− au−n, s3.1d

for some C.0. Moreover, forulu,La for someLa.0 we have

spsA + lBd ù Dsa,ed , Dsa,culu1/ndcl, s3.2d

where c=sCiBid1/n.
Proof: We prove only the last statement. Letulu,ensCiBid−1. If z

PDsa,ed \Dsa,sCilBid1/ndcl then

uz− au . sCilBid1/n,

so by the inequalitys3.1d,

1 . CilBi uz− au−n ù ilBi isz− Ad−1i ù ilBsz− Ad−1i.

This shows thatz−A−lB is invertible and hencez¹spsA+lBd, so we gets3.2d. j

Let us comment on some additional notation that we will use. ForE an isolated subset of
spsEd we will write

1EE
ª 1EsEd = 1EsL0d, 1EE

ª 1 − 1EE, 1EEI
ª 1vv − 1EE,

HE
ª Ran1EsEd, HĒ

ª Ran1EE, HEI ª Ran1EEI .

Now the Banach spaceH can be decomposed in the following way:

H = HE
% HĒ = HE

% HEI
% Hv̄,

and operatorL can be written as
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L =F EEE
lQEĒ

lQĒE LEE G = 3 EEE 0 lQEv̄

0 EEEI lQEI v̄

lQv̄E lQv̄EI L0
vv + bQvv 4 . s3.3d

If e is an isolated point of spsEd then we write1ee for 1hejhej, He for Hhej, etc. Note thatEEE

=EEEI.
We will use the following theorem for several operators and for various decompositions of the

spaceH.
Theorem 3.2: Let H be a closed operator on a Banach spaceH=Hv % Hv̄. Assume that

off-diagonal elements of H, i.e., Hvv̄ andHv̄v are bounded. For zPC \spsHvvd define

Gvszd ª z1vv − Hvv − Hvv̄sz1vv − Hvvd−1Hv̄v.

Then for z¹spsHvvd we have

s1d zPspsHd iff 0PspsGvszdd,
s2d if 0¹spsGvszdd then

sz− Hd−1 = sz1vv − Hvvd−1 + s1vv + sz1vv − Hvvd−1Hv̄vdGv
−1szds1vv + Hvv̄sz1vv − Hvvd−1d.

The last equation is often called the Feshbach formula. We will keep this name. For more
information about the above theorem the reader is referred to Refs. 6 and 10.

Lemma 3.3: Suppose that Assumptions 2.A and 2.B hold. We also assume either Assumption
2.C or 2.D. LetE be an isolated subset ofspsEd and fix r.0. Then there exists0,LE such that
for ulu,LE, ubu,b0 we havesV \DsspsEEEd ,rddùspsLEEd=x and

sup
zPV\DsspsEEEd,rd

ulu,LE, ubu,b0

isz1EE − LEEd−1i , `. s3.4d

Proof: If zPV and ubu,b0 thenz¹spsLvvd and hence we can use the Theorem 3.2 for the

operatorLEE and for decompositionHĒ
ªHEI % Hv̄. We obtain that, for someLE.0, and ulu

,LE and forzPV \DsspsEEEId ,rd,

GEIszd = z1EEI − EEEI − l2QEI v̄sz1vv − Lvvd−1Qv̄EI ,

is invertible and hencez¹spsLEEd. Moreover, for suchz, GEIszd has a uniformly bounded inverse.
Therefore, the Feshbach formula impliess3.4d. j

Proof of the Theorem 2.1:s1d By Theorem 3.2,zPspsLdùV iff zPspsE+l2Qvv̄sz1vv

−Lvvd−1Qv̄vdùV. By Theorem 3.1,

spsE + l2Qvv̄sz1vv − Lvvd−1Qv̄vd , DsspsEd,mEsulu2cddcl,

where

c = sup
zPV,ubu,b0

iQvv̄sz1vv − Lvvd−1Qv̄vi,

swhich as we know is finited, and mE: f0,`f→f0,`f is a continuous increasing function with
limx→0 mEsxd=0. Thus spsLdùV,DsspsEd ,dsuluddcl, wheredsxd=mEsx2cd.

s2d A simple consequence ofs1d.
s3d For some 0,lE, ulu,lE, andubu,b0, there exists a closed pathg,V that encirclesQE

counterclockwise, but no other parts of spsLd. We have
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sup
zPg, ubu,b0

ulu,lE

isz− Ld−1i , `.

Besides,

s2pid−1R
g

sz1vv − L0
vvd−1 dz= s2pid−1R

g

sz1vv − Lvvd−1 dz= 0.

Therefore,

1QEsLd − 1EsL0d = s2pid−1R
g

ssz1 − Ld−1 − sz1vv − Ed−1 − sz1vv − Lvvd−1ddz

= ls2pid−1R
g

sz1 − Ld−1sQvv̄ + Qv̄vdssz1vv − Ed−1 + sz1vv − Lvvd−1ddz= Osulud.

s4d Equations2.6d implies that forulu sufficiently small we havei1QEsLd−1EsL0di,1 so by a
well-known theoremsRef. 11d Eq. s2.7d holds for ulu small. Butl°dim 1QEsLdPN is a continu-
ous function sos2.7d holds for all ulu,lE.

s5d Let E, r, and LE be the same as in the Lemma 3.3. Forulu,LE, ubu,b0, we can use
Theorem 3.2, which implies that forzPV \DsspsEEEd ,rd we havezPspsLd iff

zP spsEEE + l2QEĒsz1EE − LEEd−1QĒEd.

By Theorem 3.1 we get

spsEEE + l2QEĒsz1EE − LEEd−1QĒEd , DsE,mEEEsulu2cddcl, s3.5d

where

cª sup
zPV\DsspsEEEd,rd

ubu,b0, ulu,LE

iQEĒsz1EE − LEEd−1QĒEi

is finite by Lemma 3.3.
Now setE=hej and assume thate has a degree of nilpotence equal ton. Then by Theorem 3.1

we can takemEeesxdªc1x
1/n.

s6d For ulu,lê,

1ee+ l2Qev̄se1vv − L0
vvd−2Qv̄e,

is an invertible operator so the expression forpe makes sense. Direct computations show that
pe

2=pe. Note that

s1ee+ l2Qev̄se1vv − L0
vvd−2Qv̄ed−1 = 1ee− l2Qev̄se1vv − L0

vvd−2Qv̄e + Osl4d

so

pe = 1ee+ lsQev̄se1vv − L0
vvd−1 + se1vv − L0

vvd−1Qv̄ed + l2sse1vv − L0
vvd−1Qv̄eQev̄se1vv − L0

vvd−1

− Qev̄se1vv − L0
vvd−2Qv̄ed + Osulu3d. s3.6d

We have
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1Qe
sLd = 1esL0d + ls2pid−1R

g

ssz1vv − Ed−1Qvv̄sz1vv − L0
vvd−1 + sz1vv − L0

vvd−1Qv̄vsz1vv − Ed−1ddz

+ l2s2pid−1R
g

ssz1vv − Ed−1Qvv̄sz1vv − L0
vvd−1Qv̄vsz1vv − Ed−1

+ sz1vv − L0
vvd−1Qv̄vsz1vv − Ed−1Qvv̄sz1vv − L0

vvd−1ddz+ Osulu3 + ulbud.

e is the only one eigenvalue ofE insideg so sz1vv−Ed−1 has only one pole insideg. All points on
and insideg are not in spsL0

eed so sz1vv−L0
vvd−1 is analytic inside and continuous ong. If e is

semisimple thensz1vv−Ed−1=sz−ed−11ee+analytic partand hence

1Qe
sLd = 1esL0d + lsQev̄se1vv − L0

vvd−1 + se1vv − L0
vvd−1Qv̄ed + l2Ss2pid−1R

g

sz1vv − Ed−1Qvv̄

3sz1vv − L0
vvd−1Qv̄vsz1vv − Ed−1 dz+ se1vv − L0

vvd−1Qv̄eQev̄se1vv − L0
vvd−1D + Osulu3

+ ulbud. s3.7d

Now partsbd fEq. s2.11dg is a simple consequence ofs3.7d ands3.6d. In general, whene is not
semisimple, terms of orderOsulud will not cancel so partsad fEq. s2.10dg cannot be improved.

If spsEd=hej ande is semisimple thensz1vv−Ed−1=sz−ed−11ee=sz−ed−11vv. Now

s2pid−1R
g

sz1vv − Ed−1Qvv̄sz1vv − L0
vvd−1Qv̄vsz1vv − Ed−1 dz= − Qev̄se1vv − L0

vvd−2Qv̄e.

Now part scd fEq. s2.12dg is a simple consequence ofs3.7d and s3.6d.
s7d The proof ofs6d in the casessad, sbd, andscd shows actually slightly improved results,

s1Qe
sLd − pedL = Osulud, Osulu2 + ulbud, andOsulu3 + ulbud,

Ls1Qe
sLd − ped = Osulud, Osulu2 + ulbud, andOsulu3 + ulbud.

To obtains7d we use

L − peLpe − s1 − pedLs1 − ped = − fpe,fpe,Lgg = − fpe,fpe − 1esLd,Lgg.

j

Proof of the Theorem 2.3:s1d Let ePspsEd. Let E=hej, Le=LE and r be the same as in the
Lemma 3.3 and in the proof ofs5d of the previous theorem. Forulu,Le, ubu,b0 and for z
PV \DsspsEeed ,rd we can use Theorem 3.2 for the operatorL and for decompositionHªHe

% Hē. If zPspsLdùV \DsspsEeed ,rd then

0 P spsz1ee− Eee− l2Qeēsz1ee− Leed−1Qēed. s3.8d

Note thatePspsEd is semisimple soEee=e1ee and moreover, we haveQēe=Qv̄e and Qeē=Qev̄.
Now s3.8d can be written as

z− e

l2 P spsQev̄sz1ee− Leed−1Qv̄ed. s3.9d

Note that
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sz1ee− Leed−1 = se1ee− Leed−1 + se− zdsz1ee− Leed−1se1ee− Leed−1

= se1ee− L0
eed−1 + se1ee− Leed−1slsQeIv̄ + Qv̄eId + bQvvdse1ee− L0

eed−1

+ se− zdsz1ee− Leed−1se1ee− Leed−1, s3.10d

and se1ee−L0
eed−1=se1eeI−EeeId−1+se1vv−L0

vvd−1. Now we can write

Qev̄sz1ee− Leed−1Qv̄e = Gee+ I + II + III , s3.11d

where

I = bQev̄se1ee− Leed−1Qvvse1ee− L0
eed−1Qv̄e,

II = lQev̄se1ee− Leed−1sQv̄eI + QeIv̄dse1ee− L0
eed−1Qv̄e, s3.12d

III = se− zdQev̄sz1ee− Leed−1se1ee− Leed−1Qv̄e.

Clearly, iI iøCIubu. If we note that

1vvse1ee− Leed−11eeI = lse1vv − Lvvd−1Qv̄eIGeI
−1sed = Osld

and similarly1eeIse1ee−Leed−11vv=Osld then we getiII iøCII ulu2. Moreover, Theorem 2.1 implies
that uz−eu,Cl2 and hence by the Lemma 3.3fEq. s3.4dg we getiIII iøCIII l

2. So for ulu,Le and
ubu,b0 we have

iI + II + III i , Cesulu2 + ubud

for someCe.0. Now we can apply the Theorem 3.1 to the expressions3.9d and get forulu
,Le and ubu,b0,

z− e

l2 P DsspsGeed,mGeesCesulu2 + ubudddcl, s3.13d

where functionsmGee: f0,`f→f0,`g are continuous, increasing and limx→0mGeesxd=0. This implies

spsLd ù V \ DsspsEeed,rd , Dse+ l2 spsGeed,ulu2mGeesCesulu2 + ubudddcl,

and hence forulu,l0ªminePspsEdLe and ubu,b0 we have

spsLd ù V , ø
ePspsEd

Dse+ l2 spsGeed,ulu2dsulu2 + ubuddcl,

where we denoteddsxdªmaxePspsEdsmGeesCexdd.
s2d A simple consequence ofs1d.
s3d Let g be a closed path such thatg encirclesM but no other parts of spsGeed. By s1d and

s2d, for small enoughl andb, the translated and rescaled pathe+l2g encircles onlyQe,M but no
other parts of spsLd. Now

1Qe,MsLd = s2pid−1R
e+l2g

1

h1 − L
dh.

For all hPe+l2g we can use Feshbach formula for the operatorL and for the decomposition
H=He% Hē. We get
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R
e+l2g

sh1 − Ld−1 dh =R
e+l2g

s1ee+ sh1ee− Leed−1lQēedGe
−1shds1ee+ lQeēsh1ee− Leed−1ddh,

where

Geshd = h1ee− e1ee− l2Qeēsh1ee− Leed−1Qēe.

Note that

ssh − ed1ee− l2Geed−1 − Ge
−1shd = l2ssh − ed1ee− l2Geed−1Qev̄sse1vv − L0

vvd−1

− 1vvsh1ee− Leed−11vvdQv̄eGe
−1shd, s3.14d

where we usedQv̄e=Qēe andQev̄=Qeē. Moreover,

se1vv − L0
vvd−1 − 1vvsh1ee− Leed−11vv

= se1vv − L0
vvd−1 − sh1vv − L0

vv − bQvvd−1 − l2sh1vv − L0
vv − bQvvd−1Qv̄eIGeI

−1shd

3QeIv̄sh1vv − L0
vv − bQvvd−1

= se1vv − L0
vvd−1ssh − ed1vv + bQvvdsh1vv − L0

vv − bQvvd−1 − l2sh1vv − L0
vv − bQvvd−1

3Qv̄eIGeI
−1shdQeIv̄sh1vv − L0

vv − bQvvd−1, s3.15d

where

GeIshd = h1eeI − EeeI − l2QeIv̄sh1vv − Lvvd−1Qv̄eI .

If we change the variableh=e+l2z and use the equationss3.14d and s3.15d we get

R
e+l2g

sh1 − Ld−1 dh =R
g

s1ee+ sse+ l2zd1ee− Leed−1lQēedsz1ee− Geed−1

3s1ee+ lQeēsse+ l2zd1ee− Leed−1ddz+ Osulu2 + ubud. s3.16d

Since

s2pid−1R
g

sz1ee− Geed−1 dz= 1MsGeed,

we get1Qe,MsLd−1MsGeed=Osulu+ ubud.
s4d Equation s2.17d implies that for ulu and ubu sufficiently small we havei1Qe,MsLd

−1MsGeedi,1 so by a well-known theoremsRef. 11d equalitys2.18d holds. But dim1QEsLdPN is
a continuous function ofl andb so s2.18d holds for all ulu,le,M and ubu,be,M.

s5d If the degree of nilpotence ofm as an eigenvalue ofGee is n then due to the Theorem 3.1,
Eq. s3.13d can be written as

z− e

l2 P Dsm,Ce,msulu2 + ubud1/ndcl ø DsspsGeed \ hmj,mGeesCesulu2 + ubudddcl.

s6d For ulu,le,m̂,

1msGeed + l21msGeedQvv̄se1vv − L0
vvd−2Qv̄v1msGeed

is an invertible operator so the expression forpe,m makes sense. Direct computations show that
pe,m

2 =pe,m.

033512-12 J. Dereziński and R. Früboes J. Math. Phys. 46, 033512 ~2005!

                                                                                                                                    



In the proof of the parts3d we showed that1Qe,m
sLd=1msGeed+Osulu+ ubud so sad is already

done. To showsbd, we use the approximation for1Qe,m
sLd given by s3.16d;

1Qe,m
sLd =

Osul2u+ubud 1

2pi
R

g

slsse+ l2zd1ee− Leed−1Qēe + 1eedsz1ee− Geed−1

3slQēesse+ l2zd1ee− Leed−1 + 1eeddz =
Osul2u+ulbud 1

2pi
R

g

slse+ l2zds1ee− L0
eed−1

3Qēe + 1eedsz1ee− Geed−1slQeēsse+ l2zd1ee− L0
eed−1 + 1eeddz

= slsse+ l2md1ee− L0
eed−1Qēe + 1eed1msGeedslQeēsse+ l2md1ee− L0

eed−1 + 1eed =
Osulu3d

pe,m,

where we used

sse+ l2zd1ee− L0
eed−1 − sse+ l2zd1ee− Leed−1 = Osulu + ubud.

s7d Let us denote1mm
ª1msGeed, Qmv̄

ª1mmQvv̄ andQv̄m
ªQv̄v1mm, so that

pe,m = s1mm+ lse1vv − L0
vvd−1Qv̄mds1mm+ l2Qmv̄se1vv − L0

vvd−2Qv̄md−1

3s1mm+ lQmv̄se1vv − L0
vvd−1d.

We compute

pe,msL − ed = s1mm+ lse1vv − L0
vvd−1Qv̄mds1mm+ l2Qmv̄se1vv − L0

vvd−2Qv̄md−1

3sl2Qmv̄se1vv − Lvvd−1Qv̄v + lbQmv̄se1vv − Lvvd−1Qvvd = Osulu2 + ulbud,

pe,mLpe,m − epe,m = s1mm+ lse1vv − L0
vvd−1Qv̄mds1mm+ l2Qmv̄se1vv − L0

vvd−2Qv̄md−1

3sl2Qmv̄se1vv − Lvvd−1Qv̄m + l2bQmv̄se1vv − Lvvd−1Qvvse1vv − Lvvd−1Qv̄md

3s1mm+ l2Qmv̄se1vv − L0
vvd−2Qv̄md−1s1mm+ lQmv̄se1vv − L0

vvd−1d

= Osulu2 + ulbud.

Thus

pe,msL − eds1 − pe,md = Osulu2 + ulbud.

Similarly,

s1 − pe,mdsL − edpe,m = Osulu2 + ulbud.

Finally, we use

L − pe,mLpe,m − s1 − pe,mdLs1 − pe,md = pe,msL − eds1 − pe,md + s1 − pe,mdsL − edpe,m.

This provessad.
Assume now that spsEd=hej. Then

Qmv̄se1vv − Lvvd−1Qv̄v = Qmv̄se1vv − Lvvd−1Qv̄e = Qmv̄se1vv − Lvvd−1Qv̄m.

fThe first identity follows from spsEd=hej, the second is a consequence of the definition of1mm.g
Using this we get

033512-13 Level shift operator J. Math. Phys. 46, 033512 ~2005!

                                                                                                                                    



pe,msL − ed = s1mm+ lse1vv − L0
vvd−1Qv̄mds1mm+ l2Qmv̄se1vv − L0

vvd−2Qv̄md−1l2Qmv̄se1vv − Lvvd−1

3Qv̄ms1mm+ l2Qmv̄se1vv − L0
vvd−2Qv̄md−1s1mm+ lQmv̄se1vv − L0

vvd−1d + Osulu3d.

This provessbd. j

IV. APPLICATION: ANALYTICALLY DEFORMED PAULI–FIERZ LIOUVILLEANS

In this section we describe a class of operators to which the results of our paper can be
applied. These operators arise naturally as models used in quantum physics. They provided for us
a part of motivation to write this paper.

In order to introduce these operators we have to introduce a number of concepts taken from
operator algebra and mathematical physics. Our presentation is based on Refs. 6, 7, 12, 13, and 9.

A. W*-dynamical systems and Liouvilleans

Let us start with a brief description of some elements of theory of operator algebras, that we
will use.3,9

A pair sM ,ttd, whereM is a W* -algebra andtt is a s-weakly continuous group of automor-
phisms ofM, is called aW* -dynamical system. In many circumstances it is convenient to describe
a quantum system by aW* -dynamical system. One of important results of theory ofW* -algebras
says that there exists a distinguished representation, unique up to the unitary equivalence, called
the standard representation.3,9 It is a quadruplesp ,W ,J,W+d, whereW is a Hilbert space,p
ªM→BsWd is a *-representation,J an antiunitary involution, called the modular conjugation,
and W+ is a self-dual cone, called the positive cone, inW satisfying certain axioms. In this
representation there exists a unique self-adjoint operatorL, called the Liouvillean, that implements
the dynamics

psttsAdd ª eitLpsAde−itL

and leaves invariant the positive cone,eitLW+=W+.
The properties of theW* -dynamicstt are encoded in a simple way in the Liouvillean. For

instance, the dynamicstt has no stationary states iffL has no point spectrum; it has a single
stationary state iffL has a simple eigenvalue at zero.

One can argue that the resonances ofL correspond to metastable states of the systemsM ,td.

B. Massless bosons at zero density interacting with a small quantum system

Our main object of interest will be Pauli–Fierz systems at a positive density. They will be
introduced in the next section. In order, however, to understand their physical content it is appro-
priate to describe first Pauli–Fierz systems at a zero densitysin other words, at zero temperatured,
which we will do in this section.

Let K be a Hilbert space associated with quantum mechanical system and letK be a self-
adjoint Hamiltonian for this system.

Let L2sRdd be the one particle bosonic space and leth be the one particle energy operator
given by the multiplication byuju wherejPRd. The Hamiltonian dGshd of the Bose gas acts on the
symmetricsbosonicd Fock spaceGssL2sRddd.

Let the interaction between systems be given by a measurable operator valued functionRd

{j°vsjdPBsKd. The following sections are based on Ref. 7ssee also Ref. 6d.
The Hilbert space of the system at zero densityszero temperatured is H=K ^ GssL2sRddd and

the free Hamiltonian is
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Hfr ª K ^ 1GssL
2sRddd + 1K ^ E ujua*sjdasjddj,

wherea*sjd /asjd are the usual creation/annihilation operators of the boson of momentumj. The
interaction is given by the operator

VªE svsjd ^ a*sjd + v*sjd ^ asjdddj.

The full Pauli–Fierz Hamiltonian equals

H ª Hfr + lV,

where lPR. To guarantee the self-adjointness ofH we can assume thates1+uju−1divsjdi2 dj
,`.

C. Massless bosons at density r interacting with a small quantum system

In this section we explain the notion of a Pauli–Fierz system at densityr.
Suppose that we are given a measurable function

Rd { j ° rsjd P f0,`f.

Let us consider the “doubled” Fock spaceGssL2sRdd % L2sRdd. The creation/annihilation operators
corresponding to the left/rightL2sRdd will be denoted byal

*sjd /alsjd andar
*sjd /arsjd, respectively.

Let us introduce the left and right Araki–Woods creation and annihilation operators

ar,l
* sjd ª Î1 + rsjdal

*sjd + Îrsjdarsjd,

ar,lsjd ª Î1 + rsjdalsjd + Îrsjdar
*sjd,

ar,r
* sjd ª Îrsjdalsjd + Î1 + rsjdar

*sjd,

ar,rsjd ª Îrsjdal
*sjd + Î1 + rsjdarsjd.

The sub-W* -algebra ofBsK ^ K̄ ^ GssL2sRdd % L2sRdddd generated by operators of the form

A ^ 1K̄ ^ expSi E fsjdar,l
p sjddj + i E f̄sjdar,lsjddjD ,

where APBsKd and eufsjdu2dsjddj,`, will be called the Pauli–FierzW* -algebra. It is in a
standard representation.

Note that the Pauli–Fierz algebra is isomorphic to the tensor product of the algebra of the
small systemBsKd and the algebra of Araki–Woods canonical commutation relations at densityr.

The free Liouvillean is given by

Lfr ª K ^ 1 ^ 1 − 1 ^ K̄ ^ 1 + 1 ^ 1 ^ E sujual
*sjdalsjd − ujuar

*sjdarsjdddj;

the perturbation is

Qr ªE vsjd ^ 1 ^ ar,l
* sjddj + hc−E „1 ^ v̄sjd… ^ ar,r

* sjddj + hc.

Assumption 4.A: Ifes1+uju2ds1+rsjddivsjdi2 dj,` holds then
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Lr ª Lfr + lQr

essentially self-adjoint on the intersection of the domains of Lfr and Qr.
The most important class of densities is that given by the Planck law at the inverse tempera-

ture b,

rb
sjd

ª sebuju − 1d−1.

In particular,b=` corresponds to the temperature zerosand density zerod, and the corresponding
Liouvillean is unitarily equivalent to

H ^ 1 − 1 ^ H̄. s4.1d

Thus in this case all the information is encoded in the Pauli–Fierz Hamiltonian described in the
preceding section. One can argue that for a generalr, Lr is a kind of a thermodynamical limit
s4.1d.

D. Analytically deformed Pauli–Fierz Liouvilleans

Pauli–Fierz Liouvilleans have continuous spectrum that covers the whole real line. They may
also have some embedded eigenvalues. In particular, a thermal Pauli–Fierz Liouvilleansi.e.,
whose density is given by the Planck lawd always has a zero eigenvalue corresponding to a KMS
state. In general, eigenvalues of a Liouvillean are related to stationary states, therefore their study
is very important from the physical point of view.

Another physically relevant question about Pauli–Fierz Liouvilleans is whether they have
resonances and if so what is their location. They may manifest themselves as poles of anS-matrix
or decay rates of certain correlation functions.

In order to define resonances we use the approach of Jaksic–Pillet. The first step of this
approach consists of “gluing” the “left” and “right” one-particle subspaces. This is done as fol-
lows. We use the spherical coordinates inRd and we introduce the Jaksic–Pillet gluing map
defined as

L2sRdd % L2sRdd { sf+, f̄−d ° f P L2sRd ^ L2sSd−1d, s4.2d

fsp,vd ª Hpsd−1d/2f+spvd, p . 0,

s− pdsd−1d/2f̄−s− pvd, p ø 0.J
Here,sp,vdPR3Sd−1 andSd−1 denotessd−1d dimensional sphere. The canonical conjugation in
L2sRd ^ L2sSd−1d is given by the complex conjugation.

If we assume that

v*sjd = vs− jd, rsjd = rs− jd

and introduce

vrsp,vd ª Hpsd−1d/2s1 + rspvdd1/2vspvd, p . 0,

s− pdsd−1d/2rspvd1/2vspvd, p ø 0.
J

In the new representation, the free Liouvillean and its perturbation can be written as

Lfr ª K ^ 1 ^ 1 − 1 ^ K̄ ^ 1 + 1 ^ 1 ^ E pa*sp,vdasp,vddp dv,
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Qr =E svrsp,vd ^ 1 ^ a*sp,vd + vr
*sp,vd ^ 1 ^ asp,vdddp dv

+E s1 ^ v̄rsp,vd ^ a*s− p,vd + 1 ^ v̄r
*sp,vd ^ as− p,vdddp dv

as an operator onK ^ K̄ ^ GssL2sRd ^ L2sSd−1dd.
Let us make the following assumption.
Assumption 4.B: The function

R { p ° vrsp, · d P BsK,K ^ L2sSd−1dd

extends to an analytic function in a stripuIm pu,h0 and

sup
uImpu,h0

E ivrsp, · di2dsRepd , `.

Let i−1¹p be the generator of translations onL2sRd in the spectral parameterp. Let S
ªdGsi−1¹pd be its second quantization. Note that for any complexh,

Lfrshd ª eihSLfre
−ihS= Lfr + h1^1

^ N,

whereN=dGs1d is the number operator. Moreover, foruIm hu,h0,

Qrshd ª eihSQre
−ihS

=E vrssp + hd,vd ^ 1 ^ a*sp,vddp dv +E vr
*ssp + h̄d,vd ^ 1 ^ asp,vddp dv

+E 1 ^ v̄rssp + h̄d,vd ^ a*s− p,vddp dv +E 1 ^ v̄r
*ssp + hd,vd ^ as− p,vddp dv.

Theorem 4.1:Assume that 4.A, and 4.B hold. Then we have the following.

s1d There exists a unique operator-valued functionh°Lrshd defined for0ø−Imh,h0 such
that

sad Lrshd=eihSLre
−ihS for hPR.

sbd For 0, Imh,h0, h°Lrshd is an analytic family.
scd For Imz.0, sz−Lrshdd−1 is strongly continuous up toImh=0.

s2d For and open U,C, UùspdiscsLrshdd is locally independent ofh, as long as
UùspesssLrshdd=0” .

If we assume thatdim K,`, then for0ø−Imh,h0 there existsl0.0 such that forul u ,l0 the
following statements hold:

s3d spLrshd, hz[C : Imzø0j,
s4d There exists c.0 such that

spessLrshd , hz [ C : Imz, − uImhus1 − culudg.

s5d Real eigenvalues of Lrshd are semisimple and

sppp Lr = spLrshd ù R.

So real discrete eigenvalues ofLrshd are semisimple, independent ofh and coincide with the
embedded eigenvalues ofLr. The nonreal discrete eigenvalues ofLrshd, which are called reso-
nances or metastable states, are also independent ofh but they do not have to be semisimple.
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E. LSO for Pauli–Fierz Liouvilleans

In this section we indicate how one can apply the method described in our paper to an
analytically deformed Pauli–Fierz Liouvillean. We will see that many objects, including the LSO,
do not depend on the parameter of deformationh, or depend rather mildly.

It is easy to see thatRùspLfrshd is an isolated subset of spLfrshd equal to

spsK ^ 1 − 1 ^ K̄d = hk1 − k2 : k1,k2 P spKj.

The corresponding spectral projection equals the orthogonal projection ontoK ^ K̄ ^ V, whereV
is the Fock vacuum. Note that it does not depend onh. Denote this projection by1vv. Clearly,

E=1vvLfrshd does not depend onh either and can be identified withK ^ 1−1^ K̄.
We can apply the method developed in this paper to the operatorLrshd=Lfrshd+lQrshd

obtaining the LSO, which again does not depend onh,

Gr ª o
ePspsEd

1esEdQr
vv̄shdse1vv − Lfr

vvshdd−1Qr
v̄vshd1esEd.

One can computeGr from the undeformed Liouvillean as well,

Gr = lim
e↘0

o
ePspsEd

1esEdQr
vv̄sse+ i [ d1vv − sLfr

vvdd−1Qr
v̄v1esEd. s4.3d

Note thats4.3d coincides with the definition of LSO contained in Ref. 7.
One can also compute the projectorspeshd and pe,mshd. They depend onh, but in a rather

controlled way, they are analytic functions ofh for satisfyingsPR,

peshd = eisSpesh + sde−isS, pe,mshd = eisSpe,msh + sde−isS.
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In this paper we study different models of the Teichmüller space of compact hy-
perbolic surfaces with special emphasis on their construction by geodesic octagons.
Such surfaces have become increasingly interesting due to their applications to the
physical behavior of chaotic quantum systems. They are, on the one hand, complex
enough to show the relevant features, and on the other hand, they possess a simple
mathematical structure allowing practical implementations. We give a new descrip-
tion of Teichmüller space and the mapping class group in terms of geometric data
of the octagons. This provides modellings based on the vertices and also on the
generators of the associated isometry group. In addition, we explicitly connect our
approach with other models currently used in the literaturesHelling matrices,
Fenchel–Nielsen parametersd. The result of the paper may be considered as a com-
putational tool kit to work with a specific model and to relate it with the others. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1850177g

I. INTRODUCTION

The purpose of this paper is to provide tools for computation and experimentation on compact
Riemann surfaces of genus 2, starting from their description via the pasting of a fundamental
octagon. A Riemann surface here is understood as a compact two-dimensional orientable manifold
with a Riemannian metric of constant curvature −1. The universal covering of such surfaces is the
hyperbolic plane for which we shall use the Poincaré disc model.

Over the years, many authors have studied the particular case of genus 2: this case gives
access to quite explicit calculations but is still complex enough for the study of relevant phenom-
ena in a model situation.

In Ref. 10, 12, 19, and 32 , for instance, explicit presentations of the mapping class group are
given; in Refs. 7, 15, 20–24, 29, 34, 35, and 39, suitable parameters are introduced for the
construction of algebraic and geometric models of Teichmüller space and in order to approach the
moduli problem. Computations of explicit examples and numerical experiments are carried out for
the Koebe–Poincaré uniformization theorem in Refs. 2, 14, 16, 28, 30, 31, 38, 41, and 42. Bounds
and numerical computations for small eigenvalues of the Laplace–Beltrami operator are given in
Ref. 25 and 27.

In Refs. 4, 6–9, and 36, the Hadamard–Gutzwiller model is studied from a physical point of
view. Eigenvalues and eigenfunctions of a quantum mechanical system which describes the mo-
tion of a particle on a surface of constant negative curvatureshyperbolic octagond are analyzed

adElectronic mail: peter.buser@epfl.ch
bdElectronic mail: alfred.kuenzle@zkb.ch
cdElectronic mail: frank.steiner@physik.uni-ulm.de
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with respect to its strongly chaotic behavior. Numerical experiments are performed in order to
investigate the statistical properties of highly excited states8 and the lengths of periodic orbits are
related with an arithmetical structure of chaos.3,5

The use of a fundamental polygon as the “input device” for such computations has a number
of advantages. First of all, to designate any example, it is sufficient to give the sequence of
vertices.7 Second, a function on the surfacessuch as an eigenfunction of the Laplaciand is repre-
sented simply as a function on a compact plane domain. Finally, by letting the mapping class
group operate on these polygonsssee Sec. VIIId, we obtain geometrically different domains rep-
resenting the same surface, hence a possibility of checking numerical accuracy experimentally.

The paper is organized as follows. In Sec. II we briefly review the connection between the
hyperbolic octagons and the corresponding Riemann surfaces and Fuchsian groups of genus 2. In
Sec. III, we show how the octagon is computed if three of its vertices are given. Not all triples lead
to a result and so we solve the problem of how to overview the admissible triples in Sec. VII. This
yields a new description of the Teichmüller space in genus 2sTheorem 7.3d. In Sec. IV and
Theorem 7.2, the same is carried out in terms of Fuchsian groups.

In Secs. V and VI, we relate the parameters used in this paper to other parameters known in
the literature. Here we have made an effort to provide simple formulas that are easily program-
mable. Table I shows the global structure of the formulas for the parameter changes settled in this
paper. In this table,z0, z1, z2, z3 are vertices of the octagon,b1, b2, b3, b4 are generators of the
Fuchsian group related to the octagon,hhijj is Helling’s matrix from Ref. 24,ck, dk, ek for k=1,
2, 3, are trace parameterssthe Fenchel–Nielsen triplesd and lsgkd ,ak the corresponding Fenchel–
Nielsen length and twist parameters. The arrows point out the different possible ways of express-
ing one set of parameters in terms of the others. The numbers refer to the corresponding transfor-
mation formulas in the text.

Finally, in Sec. VIII, we introduce elementary operations on the octagon and prove that they
generate the mapping class group. The proof uses a new technique introduced in the thesis1 and is
different from the usual approach by Dehn twists.

II. OCTAGONS AND TEICHMÜLLER SPACE

In this section we describe the relation between the symmetric hyperbolic octagons and the
compact Riemann surfaces of genus 2. The construction is standard, for details see, e.g., Refs. 11
and 40.

We work in the unit disc model

TABLE I. Changes of parameters.
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D = hz= x + iy P Cuuzu , 1j

of hyperbolic geometry with the Riemannian metric

ds2 =
4sdx2 + dy2d
s1 − x2 − y2d2

of constant curvature −1. The hyperbolic distance ofz,wPD is denoted by distDsz,wd and the
Euclidean distance byuz−wu.

The orientation-preserving isometries ofsD ,ds2d are the Möbius transformations

z° gszd =
az+ b

b̄z+ ā
, zP D,

wherea,bPC are complex numbers satisfyinguau2− ubu2=1, andā,b̄ are the complex conjugates.
The group of all orientation-preserving isometries ofsD ,ds2d is denoted by Isom+sDd.

The geodesics in this model are the intersections withD of the Euclidean circles and the
Euclidean straight lines that intersect the boundary]D orthogonally.

A hyperbolicn-gon is a simply connected compact domainV,D, whose boundary consists
of n geodesic arcs, thesidesof V, whose endpoints are thevertices. Denoting the interior angles
at these vertices byd1,… ,dn, we have thearea formula

areasVd = sn − 2dp − sd1 + ¯ + dnd. s2.1d

Now let z1,z2,z3PD+=hx+ iyPD uy.0j be points with arguments

0 , argsz1d , argsz2d , argsz3d , p

and letz0P g0,1f,D be on the positive real axis. Setting

z4 = − z0, z5 = − z1, z6 = − z2, z7 = − z3

we obtain a geodesic octagonP=Pfz0,z1,z2,z3g with verticesz0,… ,z7 and sidessk=zk−1zk, k=1,
…, 8, where we writez8=z0. By construction,P is invariant under the rotationz°−z so that
opposite sides have the same lengths. Fork=1, …, 4, we therefore have a uniquely defined
isometrybkP Isom+sDd sending sidesk+4 to sk in such a way that

bkszk+3d = zk, bkszk+4d = zk−1.

sSee Fig. 1.d

FIG. 1. Symmetric hyperbolic octagon in the unit disk and generators of the Fuchsian group.
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For these isometries we havebksPdù P=sk. Pasting sidessk+4 andsk together, fork=1, 2, 3,
4 fby identifying anyzPsk+4 with bkszdPskg, we therefore obtain a closed surfaceS of genus 2,
which carries the hyperbolic metric inherited fromP. This metric is smooth, except possibly at the
point w0PS which corresponds to the vertices ofP. It follows that the metric is smooth atw0 if
and only if the sum of the interior angles ofP equals 2p.

We call P admissibleif this angle sum equals 2p. By the area formulas2.1d, this is the same
as requiring that areasPd=4p.

A classical result, which can be traced back to Fricke–Klein,18 says thatany compact Riemann
surface of genus 2 can be obtained by the above construction out of some admissible octagon.

The proof uses the fact that on any such surfaceS there exists a curve systemS consisting of
simple closed geodesicss1,s2,s3,s4 which intersect each other pairwise at one and the same
point w0. CuttingS open alongS gives a symmetric octagon.

This brings us as follows to the concept of Teichmüller spacessee Ref. 26 for a general
accountd.

If f :S→S is a homeomorphism, then the closed geodesics in the homotopy classes of the
image curvesf +sk also decomposeS into an admissible octagon. Hence, different octagons may
lead to the same surface. For this reason it has become useful tomark a surface by selecting a
curve systemS on it. Two marked surfacessS,Sd andsS8 ,S8d are then calledmarking equivalent
if there exists an isometryh:S→S8 sendingS to S8. TheTeichmüller spaceT2 sfor genus 2d is the
set of all marking equivalence classes.

If, in the above construction,S is marked with the geodesicssk that result from the couples of
sidessk+4, sk of the octagon, then it is not difficult to show that there is a one-to-one correspon-
dence between the setP2 of all admissible octagons and the Teichmüller spaceT2. We may
therefore identifyP2 with the Teichmüller space in genus 2.

The surface obtained fromP may also be described in terms of Fuchsian groups. IfP is
admissible, then by a theorem of Poincaré,17,33,37the isometriesb1,b2,b3,b4 generate a Fuchsian
groupG, Isom+sDd with fundamental domainP, andS is the quotient surfaceS=D /G. We may
mark G by the selection of the generatorsb1,… ,b4 and callG with these generators andG8 with
generatorsb18 ,… ,b48 marking equivalent if there existgP Isom+sDd satisfyingbk8=gbkg

−1, k=1,…,
4. It can be shown that this establishes a one-to-one correspondence between the setP2 of all
admissible polygons and the setF2 of all marking equivalence classes of Fuchsian groupssfor
genus 2d, see, e.g., Refs. 12, 23, and 24.

III. COMPUTATION OF z0

Definition 3.1: A triple of complex numbers z1,z2,z3PD satisfying

0 , argsz1d , argsz2d , argsz3d , p

is called admissibleif there exists z0P g0,1f such that the symmetric octagon Pfz0,z1,z2,z3g is
admissible.

Instead of using the octagon we shall work most of the time with the pentagonG
=Gfz0,z1,z2,z3g given by the verticesz0,z1,z2,z3,z4=−z0.

The triplez1,z2,z3, and likewise the pentagonG is admissible if and only if areasGd=2p. As
we shall see in Lemma 3.3,z0 is uniquely determined byz1,z2,z3.

Lemma 3.2: Gfz0,z1,z2,z3g is an admissible pentagon if and only if

Imp
k=0

3

s1 − zkz̄k+1d = 0. s3.1d

Proof: We use the area formula for trianglesDszk,zk+1d with vertices 0,zk, zk+1 given in sA7d:
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areaDszk,zk+1d = 2 args1 − zkz̄k+1d sk = 0,1,2,3d. s3.2d

The area of this trianglesas for any geodesic triangle inDd is a number between 0 andp.
Therefore we have 0,args1−zkz̄k+1d,p /2. The sum of these areas is equal to the area of
Gfz0,z1,z2,z3g and, since the latter is less than 3p, we have

0 , o
k=0

3

args1 − zkz̄k+1d ,
3p

2
.

Since all four arguments lie between 0 andp /2, we have

o
k=0

3

args1 − zkz̄k+1d = argp
k=0

3

s1 − zkz̄k+1d

san equality between real numbers and not an equality modulo 2pd. This gives us the formula

areaGfz0,z1,z2,z3g = 2 argp
k=0

3

s1 − zkz̄k+1d. s3.3d

Now the argument of the product equalsp if and only if the imaginary part equals zero, and the
lemma follows. N

In the next lemma we show how to computez0 out of an admissible triplez1,z2,z3 such that
Gfz0,z1,z2,z3g becomes an admissible pentagon. The lemma is formulated in such a way that the
formula for z0 is easily programmable and is valid for all cases.

Lemma 3.3: Let z1,z2,z3PD be complex numbers satisfying0,argsz1d,argsz2d,argsz3d
,p. Abbreviate

u = s1 − z1z̄2ds1 − z2z̄3d,

a = Imh− uz̄1z3j,

b = Imhusz3 − z̄1dj,

c = Imhuj. s3.4ad

The triple z1,z2,z3 is admissible if and only if a+b+c,0. If the triple is admissible, then
there exists exactly one z0P s0,1d such that Gfz0,z1,z2,z3g is admissible. This z0 is given by the
formula

z0 =
2c

− b + Îb2 − 4ac
. s3.4bd

Remark:In the futuresbut not yet during the proof of the lemmad, if an admissible triple is
given, thenz0 always means the real number given by this formula. As we shall see, for admissible
triples, parameterc is always positive, and therefore ifa becomes zero, formulas3.4bd is never
singular.

Proof of the lemma:Let us first consider the value ofc. By equations3.3d, we have

0 , 2 argsud = areaDsz1,z2d + areaDsz2,z3d , 2p.

Hencec=Imhuj.0.
Next let us consider the area ofGfz0,z1,z2,z3g where we keepz1,z2,z3 fixed sadmissible or

notd and varyz0 from 0 to 1, including the limiting casesz0=0 andz0=1. Forz0=0 the pentagon
is singular and consists just of two triangles,Gfz0,z1,z2,z3g=Dsz1,z2døDsz2,z3d, and its area is
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,2p. As we continuously increasez0, the area of the pentagon increases strictly to a maximum at
z0=1, where areaGf1,z1,z2,z3g=2 argfs1−z̄1dus1+z3dg. Consequently, the triplez1,z2,z3 is ad-
missible if and only if argfs1−z̄1dus1+z3dg.p. Since Imss1−z̄1dus1+z3dd=a+b+c, this is equiva-
lent to saying thata+b+c,0.

Now let us assume that the triple is admissible, and hencea+b+c,0. From what we have
just seen, there exists exactly one value ofz0 in the intervals0, 1d for which Gfz0,z1,z2,z3g is
admissible. By virtue of Lemma 3.2, this value is the unique solution in the intervals0, 1d of the
equation Impk=0

3 s1−zkz̄k+1d=0. This equation is the same as

az0
2 + bz0 + c = 0 s3.5d

swith the above-defined values ofa,b,cd. In the casea=0, we haveb+c=a+b+c,0. Using that
c.0, we obtainb,−c,0 and the solution of equations3.5d is z0=c/ s−bd. This indeed lies in the
interval s0, 1d and is also given by the formula of the lemma.

If aÞ0, s3.5d has the two distinct solutions

z0 =
2c

− b ± Îb2 − 4ac
,

where we already know that exactly one of them lies in the intervals0, 1d. In particular, this means
that Îb2−4ac is a real number. It remains to be shown that the solution ins0, 1d is the one with
the plus sign.

If a,0, thenb2−4ac.b2 and therefore −b−Îb2−4ac,0. In this case the solution with the
minus sign lies in the intervals−` ,0d.

If a.0, we first conclude froma+b+c,0 thatb,0. Furthermore,b2−4ac,b2, so that in
this case −b−Îb2−4ac.0. Again from a+b+c,0, we have −a.b+c and sob2−4ac.b2

+4bc+4c2=s−b−2cd2. From this we findÎb2−4ac.−b−2c and thence −b−Îb2−4ac,2c.
Altogether 2c/ s−b−Îb2−4acd.1, so that the solution with the minus sign now lies in the

interval s1,`d. This concludes the proof of the lemma. N
Remark:The expressions1/2ads−b±Îb2−4acd for the solution ofs3.5d is less useful than that

given in Lemma 3.3 becausea becomes 0 in certain cases.

IV. GENERATORS OF THE FUCHSIAN GROUP

In this section we compute the generators of the Fuchsian group which arise naturally from
the octagon and vice versa.

The generators areb1,b2,b3,b4P Isom+sDd, where, for k=1, 2, 3, 4,bk is the suniquely
determinedd orientation-preserving isometry mapping sidezk+3zk+4 onto sidezkzk−1 in such a way
that bkszk+3d=zk and bkszk+4d=zk−1 swith the notationz8=̇z0d. It is well known thatb1,b2,b3,b4

generate the Fuchsian groupG of the octagon and that the following relationfwhich also follows
from s4.3d belowg holds:

b1b2
−1b3b4

−1b1
−1b2b3

−1b4 = id. s4.1d

We express the generators by half turns. Letpk be the midpoint of sidezk−1zk for k=1, 2, 3, 4; set
p5=0, p6=z0 and letmk be the half turn aroundpk sk=1, …, 6d, i.e., the rotation with anglep and
centerpk sso thatpk is the unique fixed point ofmk andmk

2= idd.
In the next lemma, we use the notation

Bfzg =
az+ b

cz+ d
for B = Fa b

c d
G P GLs2,Cd.

Lemma 4.1: Let z1,z2,z3 be an admissible triple and assume that z0 has been computed so that
Gfz0,z1,z2,z3g is admissible. Set
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vk =
zk−1s1 − uzku2d + zks1 − uzk−1u2d

1 − uzk−1zku2
, k = 1,…,4, s4.2ad

then uvku,1. Furthermore, the matrix

Bk =
− 1

Î1 − uvku2
F 1 vk

v̄k 1
G, k = 1,…,4 s4.2bd

is well defined and satisfies

Bkfzg = bkszd, zP D, k = 1,…,4,

i.e., the Bk are matrices representing the generators of the Fuchsian group for the octagon
Pfz0,z1,z2,z3g.

Proof: From sA1d and sA2d it follows that uvku,1 for k=1, …, 4.
Let mk denote the half turn around the midpointpk of sidezk−1zk, k=1, …, 4, and letm5 denote

the half turn around the pointp580. FromsA3d, mk is given by the matrix

Mk =
i

Î1 − uvku2
F 1 − vk

v̄k − 1
G, k = 1,…,5, s4.2cd

where we setv580. FromsA4d, the midpoints and centers of rotation are

pk =
vk

1 +Î1 − uvku2
, k = 1,…,5. s4.2dd

Note thatMkM5=Bk, k=1, …, 4.
It remains to be shown that

bk = mkm5. s4.2ed

Now m5szd=−z for zPD and therefore, in particular,

mkm5szk+3d = mkszk−1d = zk,

mkm5szk+4d = mkszkd = zk−1.

Since any isometry from Isom+sDd is uniquely determined by the images of two distinct points,
this proves that indeedmkm5=bk and the proof of Lemma 4.1 is complete. N

The remainder of this section concerns the converse problem of finding the vertices of the
octagon from a given set of generators.

By virtue of the relations4.1d, any one of the generators is determined by the other three. We
shall assume thatb1,b2,b3 are given and computeb4 as well asz0,z1,z2,z3.

For this we first consider some mapping properties of the half turnsmk.
Let ak be the interior angle ofG=Gfz0,z1,z2,z3g at vertexzk, k=0, 1, 2, 3, 4. As may be seen

from Fig. 2, the imagesG, m1sGd , m1m2sGd , m1m2m3sGd, andm1m2m3m4sGd cover an angular
sector of anglea0+a1+a2+a3+a4 at z0. Since the angle sum ofG is p, it follows that
m1m2m3m4sGd is the same astsGd, wheret denotes the isometry with axis throughz4 and z0

which mapsz4 onto z0. Denoting bym6 the half turn aroundz0=p6, we can write

t = m6m5.

Sincem1m2m3m4sGd=tsGd, we conclude thatm1m2m3m4=m6m5, or

m1m2m3m4m5m6 = id. s4.3d

Note thats4.3d implies s4.1d.
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We also need this relation in terms of the matricess4.2cd. A priori, we can only say that

M1¯M6= ± f1 0

0 1 g. However, the set of all admissible triplesz1,z2,z3 is aconnectedopen subset

of D3D3D sTheorem 7.3d. Hence, by continuity, the sign is always the same. Taking any
example, we see that it is the plus sign. Thus the matricesMk in s4.2cd, representing the half turns
mk satisfy

M1M2M3M4M5M6 = F1 0

0 1
G . s4.4d

A convenient way to “input” the generators is to define them by means of the pointsp1,p2,p3,
in much the same way as the octagon is defined by givingz1,z2,z3. For the triplep1,p2,p3, we
assume

0 , argsp1d , argsp2d , argsp3d , p

and call itadmissibleif there exists an admissibleGfz0,z1,z2,z3g such thatpk is the midpoint of
sidezk−1zk, k=1, 2, 3sa more convenient criterion for this admissibility is given in Theorem 7.1d.

From sA3d and sA5d, the half turnmk aroundpk is given by the matrix

Mk =
i

Î1 − uvku2
F1 − vk

v̄k − 1
G, k = 1,2,3, s4.5ad

where the invariantvk and pointpk are related by

vk =
2pk

1 + upku2
, pk =

vk

1 +Î1 − uvku2
, k = 1,2,3. s4.5bd

The corresponding generator is given by the matrix

Bk 8 Fbk dk

d̄k b̄k
G =

− 1
Î1 − uvku2

F 1 vk

v̄k 1
G, k = 1,2,3, s4.5cd

where

bk =
− 1

Î1 − uvku2
, dk =

− vk

Î1 − uvku2
, vk =

dk

bk
. s4.5dd

These relations show that it is equivalent to give eitherBk, pk, or vk. We call the generators
b1,b2,b3, given byB1,B2,B3 admissibleif the corresponding pointsp1,p2,p3 form an admissible
triple.

In Theorem 7.1 we give a geometric criterion for the admissibility of the triplep1,p2,p3 and
we now prove the following

FIG. 2. A succession of half turns.
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Lemma 4.2: Let b1,b2,b3 be an admissible triple of generators and let

A = Fa b

b̄ ā
G 8 B3B2

−1B1

be the matrix representing the product b3b2
−1b1. Then the octagon has the vertex

z0 =
v6

1 +Î1 − v6
2

with v6 =
a − ā

b − b̄
. s4.6d

The generator b4 is given by the matrix

B4 = AW whereW8
− 1

Î1 − v6
2F 1 − v6

− v6 1
G . s4.7d

The remaining vertices are obtained from z0 via the generators

z4 = − z0, z1 = b1sz4d, z5 = − z1, z2 = b2sz5d, etc. s4.8d

Proof: From s4.3d,

m4 = m3m2m1m6m5 = m3m5m5m2m1m5m5m6m5 = b3b2
−1b1m5m6m5.

The half turnm4 is represented by the matrix

M4 =
i

Î1 − v6
2
AF 1 v6

− v6 − 1
G .

We determinev6 such thatM4 is a half turn. This is the case if and only if the trace of the
matrix is zero. Evaluating the trace, we find that it is zero if and only if

a − ā + v6sb̄ − bd = 0.

The solution to this isv6=sa−ād / sb−b̄d. The formula forB4 is now clear and the expression for
z0 swhich is the fixed point ofm6 wherem6 is determined byv0d is given bysA4d. N

Remark 4.3:There is a simple geometric construction ofb4 out of b3,b2,b1.
We recall thatbk=mkm5. The construction is described in terms ofm1,m2,m3 and yields the

centerp4 of the half turnm4.
Let q+=m3m2m1s1d andq−=m3m2m1s−1d and draw the geodesicsg+ from 1 toq+ andg− from

−1 to q− sthe points 1,q+ and −1,q− are “points at infinity,” respectively, of these geodesicsd. We
claim thatp4 is the intersection ofg− andg+. sSee Fig. 3.d

FIG. 3. Construction ofp4 andb4.
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To see this, we again use the relations4.3d. The productm6m5 is a hyperbolic transformation
with axis from −1 to 1, i.e.,m6m5s−1d=−1 andm6m5s1d=1. Therefore,m3m2m1s−1d=m4s−1d and
m3m2m1s1d=m4s1d. In other words,m4 exchanges −1 andq− so thatm4sg−d=g− and the fixed
point of m4 lies ong−. For the same reason, it also lies ong+.

V. THE HELLING MATRIX

It may be desirable to describe the octagon in a way which does not involve its position in the
unit discD. In Ref. 24, Helling introduces the invariantshij which are defined in the following
way. Let againm1,… ,m6 be the half turns aroundp1,… ,p6, respectively. We use the matricesMi

corresponding to the half turnsmi as in s4.2cd, and set

hij = − 1
2tr MiMj, i, j = 1,…,6, s5.1d

where tr denotes the trace. We callH=hhijj the Helling matrix.
From the sign propertysA6d we have trMiMj ,0 so that thehij are positive. The geometric

meaning of thehij is given by

hij = cosh distDspi, pjd. s5.2d

In order to compute the half turnssand hence the octagond out of the Helling matrix, we use
the following formula which we state in an independent form.

Lemma 5.1: Let M1,M2,M3 be the matrices for the half turns with centers q1,q2,q3PD, set
aij =−1

2 trMiMj and define

a123= det3 1 a12 a13

a21 1 a23

a31 a23 1
4 = 1 + 2a12a23a31 − a12

2 − a23
2 − a31

2 . s5.3d

It then follows that

M3 =
sa12a23 − a13d

a12
2 − 1

M1 +
sa12a13 − a23d

a12
2 − 1

M2 +
1

2sa12
2 − 1d

orsq1,q2,q3dÎa123sM1M2 − M2M1d,

s5.4d

whereor denotes the orientation of the triple.
Proof: Since the formula remains invariant if all the half turns are conjugated by the same

matrix fa b

b̄ ā g for suitablea ,b, we may assume that pointsq1,q2,q3 are given by

q1 = 0, q2 = t P f0,1d, q3 = u + iv.

The determinant then becomes

a123= 16t2v2s1 − td−2s1 − u2 − v2d−2,

and the stated formula reads

ts1 + u2 + v2d − us1 + t2d
ts1 − u2 − v2d F i 0

0 − i
G +

us1 − t2d
ts1 − u2 − v2d

i

1 − t2
F1 + t2 − 2t

2t − s1 + t2d G ±
2v

1 − u2 − v2F0 1

1 0
G

=
i

1 − u2 − v2F1 + u2 + v2 − 2su + ivd
2su − ivd − s1 + u2 + v2d G .

The equality is now easily verified. N
To obtain the half turns we first recall that
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p5 = 0, M5 = F i 0

0 − i
G . s5.5ad

Furthermore,

M5M6 =
− 1

1 − p6
2F1 + p6

2 − 2p6

− 2p6 1 + p6
2G, h56 =

1 + p6
2

1 − p6
2 ,

which yields

p6 =Îh56 − 1

h56 + 1
, M6 = iF h56 − Îh56

2 − 1

Îh56
2 − 1 − h56

G . s5.5bd

With Lemma 5.1, and knowing that all triplesp5,p6,pk are positively orientated, we obtain

Mk =
sh56h6k − h5kd

h56
2 − 1

M5 +
sh56h5k − h6kd

h56
2 − 1

M6 +
Îdk

Îh56
2 − 1

F0 1

1 0
G , s5.5cd

for k=1, 2, 3, 4, where

dk = det3 1 h56 h5k

h56 1 h6k

h5k h6k 1
4 . s5.5dd

VI. FENCHEL–NIELSEN PARAMETERS

The Fenchel–Nielsen parameters, frequently used in the literature, are another type of param-
eter arising from certain sets of closed geodesics14,26,40and are defined as follows.

Let pk8=−pk, k=1,…, 6, and consider the geodesic arcsc1 from p1 to p2 andc18 from p28 to p18.
On the surfaceS sobtained by pasting the sides of the octagond, the two arcs together form a
smooth closed geodesicg1. Similarly, a closed geodesicg2 is obtained from the arcsc2 and c28,
which run, respectively, fromp3 to p4 and from p48 to p38. The diagonalp6p68 yields a closed
geodesicg3.

The triple g1,g2,g3 dissectsS into two partss“pairs of pants”d which have the topological
type of a sphere from which three pairwise disjoint discs have been removed. The pairs of pants
are determined, up to isometry, by the lengthslsg1d , lsg2d , lsg3d. When the pairs of pants are pasted
together again to yieldS, there arises an additional degree of freedom at eachgk, the so-called
twist parametersseeak belowd. This parameter is determined by the lengths of two additional
closed geodesicsmk,hk. We define them in terms of generators of the fundamental group ofS.

For k=0,…, 4, we denote the geodesic arc fromp5 to mksp5d by b̃k, and the corresponding

curve on S by bk. Note that b̃k lies on the axis of the generatorbk of the groupG which
corresponds to the octagon. The geodesics are defined in Table II.

In Table II the expression “g1,b2b1
−1” means thatg1 is the closed geodesic in the free

homotopy class ofb2b1
−1, etc., and the symbol↔ means that the correspondingb2b1

−1 in G is
b2b1

−1=m2m1, etc. Pointsw1,… ,w6 on the surface correspond top1,… ,p6 in the octagon. Fork
=1, 2, 3, 4, the closed geodesicbk corresponds to the straight line on the octagon joiningpk8 to pk.

For k=1, 2, 3, the geodesicsmk,hk intersectgk—each in two points—and are disjoint from the
othergi. We call the numbers

ck = cosh1
2lsgkd, dk = cosh1

2lsmkd, ek = cosh1
2lshkd, s6.1d

theFenchel–Nielsen triples. In s6.5d ands6.6d we shall derive the twist parameters from these, but
before that we relate them to the half turns and the Helling matrix.

Using the relation forXPSLs2,Cd,
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tr X2 = tr 2X − 2, s6.2d

for k=1, 2, 3 and indices mod 6, the above list gives

ck = − 1
2trsM2k−1M2kd,

dk = 1
2tr2sM2k−1M2k−2M2k−3d − 1,

ek = 1
2tr2sM2kM2k−2M2k−3d − 1. s6.3d

Note thatck is positive bysA6d.
In Ref. 24, it is shown that, forA,B,CPSLs2,Cd with tr A=tr B=tr C=0,

TABLE II. The Fenchel–Nielsen parameter geodesics.
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tr2sABCd + trsABdtrsBCdtrsCAd + tr2sABd + tr2sBCd + tr2sCAd − 4 = 0.

For k=1, 2, 3, this yields

ck = h2k−1,2k,

dk = 2dsh2k−1,2k−2,h2k−1,2k−3,h2k−2,2k−3d − 1,

ek = 2dsh2k,2k−2,h2k,2k−3,h2k−2,2k−3d − 1, s6.4d

whered denotes the polynomial

dsa,b,cd = det31 a b

a 1 c

b c 1
4 .

In order to obtain the other parameters from the Fenchel–Nielsen triples, we use twists.
We give the description forg1, since the twists alongg2,g3 are defined in the same way and

the formulas are obtained by cyclic permutation.sSee Fig. 4.d
For convenient viewing we cutS open alongg2 andg3 into a four-holed sphereX. The cuts

appear as closed boundary geodesicsg2,g28 andg3,g38. The geodesicg1 further separatesX into
two isometric three-holed spheresY, with boundary geodesicsg1,g2,g3, andY8 with boundary
geodesicsg18 ,g28 ,g38.

The shortest geodesic arca2 on Y from g3 to g1 and the shortest geodesic arca28 on Y8 from
g1 to g38 both have the same length given by

cosh2 lsa2d = cosh2 lsa28d =
sc2 + c1c3d2

sc1
2 − 1dsc3

2 − 1d

fsee Ref. 13, Theorem 2.4.1sidg. On g1, let t1 be the geodesic arc going from the end point ofa2

to the initial point ofa28. There are infinitely many such arcsswinding aroundg1d. We render the
selection oft1 unique by requiring that the closed curvea2t1a28sg38d

−1sa28d
−1t1

−1a2
−1g3 lies in the free

homotopy class ofm1. The twist parametera1 is defined as

a1 = ±
lst1d
lsg1d

,

where we take the plus sign ift1 goes in the same direction asg1 and the minus sign ift1 goes in
the opposite direction.

In Ref. 13 fProposition 3.3.11 in connection with the above expression for cosh2 lsa2dg it is
shown that

FIG. 4. Defining the twist parametera1.
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d1 = cosh1
2lsm1d = F1sa1d,

whereF1 is the function

F1sad 8
1

c1
2 − 1

sc1
2 + c2

2 + c3
2 + 2c1c2c3 − 1ds1 + coshalsg1dd − 1.

Replacing t1 by the arct18 which winds an additional time aroundg1 gives the curve

a2t18a28sg38d
−1sa28d

−1st18d
−1a2

−1g3 in the free homotopy class ofh1. Accordingly,

e1 = cosh1
2lsh1d = F1sa1 + 1d.

The twist parametersa2,a3 are defined in the same way and the relation with the Fenchel–
Nielsen triples is as follows.

Lemma 6.1: For k=1, 2, 3,if

p = c1
2 + c2

2 + c3
2 + 2c1c2c3 − 1, Gk = ek + 1 − s2ck

2 − 1dsdk + 1d + 2p,

then

ck = cosh1
2lsgkd,

dk =
p

ck
2 − 1

s1 + coshaklsgkdd − 1,

ek =
p

ck
2 − 1

s1 + coshsak + 1dlsgkdd − 1, s6.5d

and

sinhaklsgkd =
Gk

Îck
2 − 1

2ckp
. s6.6d

Proof: The first two formulas have already been proved. For the third, we apply the rule

coshsx + yd = coshx coshy + sinhx sinhy

to x=aklsgkd andy= lsgkd. N
The twists now allow us to solve for thehij in the system of equationss6.4d, using the fact that

cosh
ak

2
lsgkd =Î1 + coshaklsgkd

2
=

1
Î2p

Îsdk + 1dsck
2 − 1d,

sinh
ak

2
lsgkd =

sinhaklsgkd

2 cosh
ak

2 lsgkd
=

Gk

2ck
Î2pÎdk + 1

. s6.7d

The geometric interpretation of thehij on Y is shown in Fig. 5 for the case wherea1,a2,a3

have small positive values.
Arcs p5p6, p1p2, p3p4 on the pentagonP correspond, respectively, to one-half of the boundary

geodesicsg1,g2,g3 of Y. Arcs p6p1, p2p3, p4p5 correspond to arcs onY which decomposeY into
two hexagonsswhich are not isometric and do not generally even have the same aread. Since
pointsw5,w6 on g3, corresponding top5,p6, are opposite, we have

h56 = c3. s6.8d
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Arc a2 and the arcw1w6 which corresponds top1p6, form a quadrilateral onY with right
angles at the end points ofa2. Using the trigonometry for such quadrilateral gives

h61 = Gsa3lsg3d,a1lsg1dd,

whereG is the function

Gsx,yd = cosha2 cosh
x

2
cosh

y

2
+ sinh

x

2
sinh

y

2
.

From the arcs connectingp6 with p2, etc., we obtain similar quadrilaterals which differ from the
first by plus or minus one-half of the boundary geodesicsg1,g2. Thus,

h62 = Gsa3lsg3d,sa1 + 1dlsg1dd,

h51 = Gssa3 − 1dlsg3d,a1lsg1dd,

h52 = Gssa3 − 1dlsg3d,sa1 + 1dlsg1dd.

Using the abbreviations, fork=1, 2, 3,

xk,1 = Îdk + 1, yk,1 =
Gk

2ck
Îdk + 1

,

xk,2 = ckxk,1 + yk,1, yk,2 = ckyk,1 + sck
2 − 1dxk,1,

xk,3 = ckxk,1 − yk,1, yk,3 = ckyk,1 − sck
2 − 1dxk,1, s6.9ad

and recalling that

Gk = ek + 1 − s2ck
2 − 1dsdk + 1d + 2p, p = c1

2 + c2
2 + c3

2 + 2c1c2c3 − 1, s6.9bd

then, applying cyclic permutations tog1,g2,g3 in s6.5d–s6.8d, we obtain

h2k−1,2k = h2k,2k−1 = ck,

FIG. 5. Geodesic arcs for the Helling matrix.
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h2k−2−i,2k−1+j = h2k−1+j ,2k−2−i =
1

2p
ssck+1 + ckck+2dxk,1+jxk−1,1−i + yk,1+jyk−1,1−id, s6.9cd

for k=1, 2, 3, i =0, 1, j =0, 1, where the indices ofh are mod 6 and the remaining indices are
mod 3.

In order to see how the octagon can follow directly from the twist and length parameters, we
use the fact that the shortest connectionsa1,a2,a3, which, respectively, linkg2 to g3,g3 to g1, and
g1 to g2, separate the three-holed sphereY into two right angled geodesic hexagons. Figure 6
shows one of these hexagons drawn inD, the universal covering ofS=D /G.

The selected covering curves ofg1,g2,g3 are the geodesicsg̃1 through p1,p2,g̃2 through
p3,p4 and g̃3 throughp5,p6. Now ak appears as the common perpendicular ofg̃k−1 and g̃k+1, k
=1, 2, 3 sindices mod 3d. The arca28 ssee Figs. 4 and 6d, which was used to define the twist
parametera1, now appears as a perpendicular arc ofg̃1 that is opposite toa2 and shifted alongg̃1

by ua1ulsg1d. The shift is to the left ifa1 is positive and to the right ifa1 is negative. It is well
known that the surfaceS has a rotational symmetrysthe so-called hyperelliptic involutiond with
fixed pointsw1,… ,w6, and it therefore follows thatp1 lies at a point ong̃1 that is equidistant from
the end points ofa2 anda28. The pointsp2,… ,p6 have analogous properties. The positions of these
points inD may thus be found by applying the isometries given by the matrices

Rt 8 F1 + cosht sinht

sinht 1 + cosht
G, Ut 8 F1 + cosht i sinht

− i sinht 1 + cosht
G, t P R. s6.10d

Geometrically,Rt is a hyperbolic isometry with axis from −1 to 1, shifting 0 to the point
sinht / s1+coshtd=tanhst /2d, whose hyperbolic distance to 0 ist. Similarly, Ut is a hyperbolic
isometry with axis from −i to i, shifting 0 toi tanht /2 with the same distance. Hence to obtain the
pointsp1,… ,p6 from the lengthslsgkd and twistsak, we set

lk = 1
2lsgkd, ck = coshlk,

qk = 1
2aklsgkd, ak = arccosh

ck + ck−1ck+1

Îsck−1
2 − 1dsck+1

2 − 1d
, s6.11ad

and apply products ofRt andUt given by the following list:

p5 = 0, p6 = Rl3
f0g,

p1 = Rl3−q3
Ua2

R−q1
f0g,

p2 = Rl3−q3
Ua2

R−l1−q1
f0g,

FIG. 6. Twist parameters as seen in the universal covering.
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p3 = R−q3
Ua1

Rl2−q2
f0g,

p4 = R−q3
Ua1

R−q2
f0g. s6.11bd

VII. A PICTURE OF TEICHMÜLLER SPACE

In the first part of this section we give a simple criterion for the admissibility of the triple of
generatorsb1,b2,b3 and thus a geometric picture of Teichmüller space in terms of octagons. In the
second part, a similar description is given in terms of the verticesz1,z2,z3. The main results are
summarized in Theorems 7.2 and 7.3.

Any bk is the product of half turnsbk=mkm5 fcf. s4.2edg, wherem5 is the half turn with center
0. Describing the admissible triplesb1,b2,b3 is therefore equivalent to describing the centers of
rotationp1,p2,p3 of the corresponding half turnsm1,m2,m3.

For any triple of pointsp1,p2,p3PD+ with

0 , argsp1d , argsp2d , argsp3d , p,

we construct a triplep1
* ,p2

* ,p3
* P]D as follows: p1

* is the second end point at infinity of the
geodesic throughp1 whose first end point at infinity is 1;p2

* is the second end point at infinity of
the geodesic throughp1

* andp2;p3
* is the end point at infinity of the geodesic throughp2

* andp3.
sSee Fig. 7.d

Theorem 7.1:The triple p1,p2,p3 is admissible if and only if the points pk
* satisfy

0 , argsp1
*d , argsp2

*d , argsp3
*d , p.

Proof: We use a continuity argument. Assuming first thatp1,p2,p3 is admissible, there is an
admissible pentagonz0z1z2z3z4 such thatpk is the midpoint of sidezk−1zk, k=1, 2, 3, and we label
p4 the midpoint of sidez3z4.

Shifting z0 towards 1 by a small amountt.0, i.e., replacing it by the pointz0
t on the geodesic

g from −1 to 1, whose hyperbolic distance fromz0 is t and which lies nearer 1, gives a new
pentagon with verticesz0

t , z1
t 8m1sz0

t d, z2
t 8m2sz1

t d, z3
t 8m3sz2

t d, z4
t 8m4sz3

t d. Thus, the new penta-
gon has the same midpointsp1,p2,p3,p4, but it is no longer centered at 0.sSee Fig. 8.d

Now, from s4.3d, z4
t =m4m3m2m1sz0

t d=m6m5sz0
t d, where in this casem6m5 is the hyperbolic

isometry with axisg. Hence,z4
t Pg and distDsz0

t ,z4
t d=distDsz0,z4d so that the pointz4 is also shifted

towards 1 byt. Since fork=1, 2, 3, 4 the triangleszk−1zk−1
t pk andzkzk

t pk sbeing exchanged bymkd
have the same area,the area of the new pentagon is still2p.

Similarly, ast is increased by small amounts, the pentagon retains the area 2p and therefore
remains convex. Ast→`, zk

t converges topk
* for k=1, 2, 3 andz4

t converges to 1, so the quadri-
lateral 1p1

*p2
*p3

* is convex. Moreover,p3
* is the end point at infinity of the geodesic through 1 and

p4 sas observed in a different way at the end of the section precedentd. It follows that

FIG. 7. A non-admissible triple of midpoints.
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0 , argsp1
*d , argsp2

*d , argsp3
*d , p.

Conversely, if this relation holds, we letz0
t Pg be a moving point between 0 and 1 and

consider the pentagonPt with verticesz0
t , z1

t =m1sz0
t d, z2

t =m2sz1
t d, z3

t =m3sz2
t d, z4

tt=−z0
t fin contrast to

z4
t =m4sz3

t d used beforeg. For z0
t =1, Pt is an ideal pentagon with area 3p. As z0

t moves towards 0,
Pt remains convex and the area changes continuously. Forz0

t =0, Pt becomes a quadrilateral with
area,2p. Hence there existsz0

t P s0,1d for which the area of the pentagon is exactly 2p, which
means thatp1,p2,p3 is admissible. N

Theorem 7.1 provides a convenient way to overview the domainP,D+3D+3D+ of all
admissible triples, starting from a random choice ofp1PD+,

For anyp1PD+, the geodesic from −1 top1
* separatesD+ into two open convex subsets. If

Dfp1g is the one which does not containp1, then, by Theorem 7.1, a triplep1,p2,p3 can only be
admissible ifp2PDfp1g. sSee Fig. 9.d

Similarly, for p2PDfp1g with p2
* the second end point at infinity of the geodesic throughp1

*

and p2, the geodesic from −1 top2
* separatesDfp1g into two open convex subsets and we let

Dfp1,p2g be the one which does not containp2.
Again by Theorem 7.1, a triplep1,p2,p3 is admissible if and only ifp3PDfp1,p2g. This yields

the following geometric picture of Teichmüller space in genus 2.
Theorem 7.2:The setP of all admissible triples p1,p2,p3 is given as

P = hsp1,p2,p3d P D+ 3 D+ 3 D+up2 P Dfp1g,p3 P Dfp1,p2gj.

Clearly, Theorem 7.2 shows thatP is homeomorphic toD+3D+3D+ or, equivalently, toR6.
Remark:The description may be varied. For instance, ifp2PD+ is chosen freely, then letp̃2

be the second end point at infinity of the geodesic through −1 andp2, with D̃fp2g the domain cut
away by the geodesic from 1 top̃2 which does not containp2. A triple p1p2p3 is then admissible

if and only if p1P D̃fp2g andp3P D̃fp1,p2g, etc.
In the second part of this section we outline a similar picture in terms of the setZ of all

admissible triplesz1,z2,z3.

FIG. 8. Deforming the pentagon.

FIG. 9. Domains of admissible midpoints.
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As before,z1PD+ is selected arbitrarily andz1
#P]D is the end point of the geodesic through

1 andz1. If g1
# is the geodesic from −1 toz1

#, then, in the disc modelD of the hyperbolic plane, it
is well known that the linel1

#, consisting of all pointszPD+ whose distance fromg1
# is the same

as the distance ofz1 to g1
# and which lie on the opposite side ofg1

# to z1, is a circular arc.
For zPl1

#, the geodesic arc fromz to z1 intersectsg1
# at its midpoint p sthere are two

right-angled triangles with the same angle atp and the same length of opposite sided. Hence, the
half turn with centerp sends the trianglepzs−1d to pz1z1

#. In particular, the angles atz andz1 are
the same. It follows that the quadrilateralss−1ds1dz1z ands−1ds1dz1z1

# have the same angle sump.
Line l1

# separatesD+ into two connected open components and we denote the one which does
not containz1 by D#fz1g sthe shaded area in Fig. 10d. Forz2PD+, the quadrilaterals−1ds1dz1z2 has
angle sum,p if and only if z2PD#fz1g.

Now takingz2PD#fz1g, but instead of choosing the end point of the geodesic throughz1,z2 as
in the previous step, letz2

#P]D be such that the pentagons−1ds1dz1z2z2
# has angle sump. The

remainder of the construction is as before:g2
# is the geodesic from −1 toz2

#;l2
# is the line of all

points, on the opposite side ofg2
# from z2, which are equidistant withz2 from g2

#. This line
separatesD+ into two connected open components and we denote the one which does not contain
z2 by D#fz1,z2g.

For a triplez1,z2,z3, the angle sum of the pentagons−1ds1dz1z2z3 is equal top for z3Pl2
#, it

is smaller thanp if z3PD#fz1,z2g and greater thanp otherwise. If the angle sum is smaller than
p then there existsz0P s0,1d such that the angle sum of the pentagon −z0z0z1z2z3 is exactlyp.

We summarize the result in the next theorem.
Theorem 7.3:The setZ of all admissible triples of vertices z1,z2,z3 is given as

Z = hsz1,z2,z3d P D+ 3 D+ 3 D+uz2 P D#fz1g,z3 P D#fz1,z2gj.

VIII. GENERATORS OF THE MODULAR GROUP

A compact Riemann surface of genus 2 may be decomposed into symmetric octagons in
infinitely many different ways. We call two octagonsequivalentif the two surfaces obtained by
pasting together the pairs of opposite sides are isometric. From the theory of Teichmüller spaces,
it is well known that there exists a groupM operating on the parameter space such that two
octagons are equivalent if and only if there existsmPM sending the first octagon to the second.
This group is known as themodular group. Generators ofM are described in this section.

The idea is borrowed from the thesis of Aigon1 who studied group actions on surfaces of
signatures0; 2, 2, 2, 2, 2d. The generators are similar to those used in Ref. 12.

In the parameter space of the setZ of all admissible triplessz1,z2,z3d, eachmPM applied to
one such triple yields a new admissible triple,

sz18,z28,z38d = mfz1,z2,z3g,

with the property that the corresponding octagonz08z18¯z78 is equivalent toz0z1¯z7. Applying the
given generators successively tosz1,z2,z3d and its images yields all equivalent octagonsfit re-

FIG. 10. The connected open componentD#fz1g of D+ sshaded aread.
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mains however a difficult problem to determine whether or not two given triplessz1,z2,z3d and
sz1,z2,z3d lie in the same orbit ofMg.

Since the octagons are determined by the pentagons, we describe the action ofM in terms of
operations on pentagons. When pointsz0,p1,p2, etc., occur in the formulas, it is always assumed
that these are the corresponding points of the octagon determined by the triplez1,z2,z3.

The first operation shears the pentagon and shifts the result into normal position.sSee Fig. 11.d
The sheared points are

ẑ0 = m6s0d, ẑk = mksẑk−1d, k = 1,2,3,4.

By s4.3d we haveẑ4=0. The pointsp1,p2,p3,p4,p5 are the midpoints of the sides of the pentagon

P̂ with verticesẑ0,… , ẑ4 and moreover,P and P̂ have the same areasas already observed in the

proof of Theorem 7.1d. From this it is easily seen thatP̂ is a fundamental domain for the action of

the groupG1 generated bym1,… ,m5. If P̂ is now shifted using the isometry

z° hszd =
z− z0

1 − z0z
, s8.1d

thenhsP̂d is an admissible pentagon equivalent toP. Altogether, this gives the operationxPM
defined as

xfz1,z2,z3g = shsẑ1d,hsẑ2d,hsẑ3dd, s8.2d

with

ẑ0 = m6s0d, ẑ1 = m1sẑ0d, ẑ2 = m2sẑ1d, ẑ3 = m3sẑ2d.

The next operation is

tfz1,z2,z3g = sz1,z2,m3sz4dd. s8.3d

The pentagonP8 with verticesz0,z1,z2,m3sz4d ,z4 has normal position, areaP8=areaP and
the pointsp1,p2,p3,p5 are also the midpoints ofP8. HenceP8 is a fundamental domain for the
action ofG1 and thereforeP andP8 are equivalent.sSee Fig. 12.d

FIG. 11. Shear transformation.

FIG. 12. Transformation of typet.
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The remaining two operations merely change the position of the pentagon. The first one
rotates it

rfz1,z2,z3g = srsz2d,rsz3d,rsz4dd, s8.4d

with

rszd =
r1szd
r1sz1d

ur1sz1du, r1szd =
z− p1

1 − p̄1z
.

The mappingr1:D→D is the hyperbolic isometry with axis through 0,p1 which movesp1 to
0. The multiplication byur1sz1du / r1sz1d is a rotation around 0 bringingr1sz1d to the positive part of
the real axis.sSee Fig. 13.d

The second operation is the symmetry about the imaginary axis

sfz1,z2,z3g = s− z̄3,− z̄2,− z̄1d, s8.5d

where the bar indicates the complex conjugate.
Theorem 8.1:The operationsx ,r ,s ,t generate the modular groupM.
Proof: We have to show that ifz1,z2,z3 andz18 ,z28 ,z38 are equivalent admissible triples then we

can obtain one from the other by a succession of applications ofx ,r ,s ,t.
Let P,P8 be the corresponding pentagons,R,R8 the Riemann surfaces obtained by pasting the

sides of the corresponding octagons andS,S8 the surfaces obtained by pasting the sides ofP,P8,
respectively, in the following way: fork=1, …, 5, mk maps sidezk−1zk si.e., z4z0 for k=5d onto
itself and any pointz on this side is pasted to pointmkszd. The resulting surface is topologically a
sphere: pointsp1,… ,p5 turn into pointsw1,… ,w5 on S and the verticesz0,… ,z4 of P turn into a
single point w6 on S. The surfaceS carries a hyperbolic metric inherited fromP, which is,
however, singular atw1,… ,w6. The sides ofP become five geodesic arcs atw6 connectingw6 with
w1,… ,w5. The same holds forS8, with singular pointsw18 ,… ,w68.

From the geometry of compact Riemann surfaces of genus 2, it is known thatR8 is isometric
to R if and only if S8 is isometric toSwith an isometryg:S8→Ssendingw18 ,… ,w68 to w1,… ,w6.
In our case, such an isometry is indeed given, and it carries the arcs fromw68 to w18 ,… ,w58 to
geodesic arcs onS connecting somewk to the remainingwi. These arcs are simple and intersect
each other only atwk. We call them the “w-curves.”

On P again, these curves are split into a number of geodesic arcs—thew-arcs—each of which
is either a side ofP or else runs through the interior connecting two boundary points ofP with
each other. Some of the latter have an end point at one of the vertices ofP. If the number of these
is r and the number ofw-sides ofP is s, thenr +s=5.

The strategy is to applyx ,r ,s ,t successively toP sstill calling the successive imagesPd so
that the number of interiorw-arcs is reduced at each step until eventually they all disappear.

The initial step depends on the above isometryg:S8→S. If gsw68d=w6 then nothing is carried
out in this step. Ifgsw68d=wk with kÞ6, then the position ofP is changed usingr5−k. Correspond-
ing to our notation, this results in a cyclic permutation of the labelling of the pointsw1,… ,w5 on

FIG. 13. Rotating the pentagon.
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S so that we can now say thatg sendsw68 to w5. We then apply the shear transformationx. After
this initial step we havegsw68d=w6. The shearx is not used again in the later steps.

There are now two possible situations. In the first, it is found that, after a suitable change of
the position ofP via r ands, there exists aw-arc from a vertexz4 to a point on sidez2z3 which
is notz3 ssee Fig. 14 which shows two such arcsd. In this case, we applyt to P so that the vertices
are nowz0,z1,z2,z38 ,z4. Sincew-arcs do not intersect each other in the interior ofP, no w-arc can
connect an interior point of sidez3z4 s“interior” here means different fromz3,z4d with a boundary
point of P which does not lie on sidez2z3. Any end point of aw-arc onp3z3 is pasted onto an end
point of aw-arc onp3z2. From this it is easily seen that the number of interiorw-arcs is reduced
at least by one in this step. It is possible that sidez38z4 is now of w-type.

In the remaining case, anyw-arc in the interior ofP and emanating from a vertex ofP has its
end point on the opposite side. If we change the position ofP svia applications ofr andsd so that
the vertex isz4 then this arc goes fromz4 to sidez1z2 and soany w-arc emanating from a vertex
into the interior ofP goes fromz4 to sidez1z2. sSee Fig. 15.d

Here we applytrtr−1 to P. Underrtr−1, P becomesz0z1z28z3z4 and undert it then becomes
z0z1z28z38z4. From the same argument as before, the number ofw-arcs in the interior ofP has
become smaller and after some steps all interiorw-arcs have disappeared. This means that the
above isometryg:S8→S mapsP8 to P, i.e., P and P8 are isometric. Hence we may change the
position ofP usingr ands so that finallyP=P8. N

Remark:The generators in Theorem 8.1 are for practical use and are not kept to a minimum
number. Lu,32 for the case of genus 2, and later Wajnryb43 for the general case, showed that the
mapping class group of a surface of genusù1 can be generated by two elements.
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APPENDIX

For convenience we review some facts from hyperbolic geometry in the unit disc model.
For given pointsz1,z2PD, let p=pz1z2

be the midpoint of the geodesic segmentz1z2 andm
=mz1z2

the half turn with centerp. Thus,

mspd = p, msz1d = z2, msz2d = z1, m2 = id.

In order to obtain manageable formulas, we introduce the constant

v = vz1z2
=̇

z1s1 − uz2u2d + z2s1 − uz1u2d
1 − uz1z2u2

. sA1d

Abbreviatingx= uz1u, y= uz2u,

x + y = 1 +xy− s1 − xds1 − yd andxy, 1,

so that

uvu ,
xs1 − y2d + ys1 − x2d

1 − x2y2 =
s1 − xydsx + yd

s1 − xyds1 + xyd
, 1,

i.e.,

uvz1z2
u , 1. sA2d

For the half turn we define

M = Mz1z2
=̇

i

Î1 − uvz1z2
u2
F 1 − vz1z2

v̄z1z2
− 1

G , sA3d

and letm=mz1z2
be the isometrymP Isom+sDd defined by this matrix. It follows immediately that

msz1d=z2, msz2d=z1, andm2= id. It can also be verified directly that the midpoint ofz1z2 is

p = pz1z2
=

vz1z2

1 +Î1 − uvz1z2
u2

. sA4d

Conversely,

v =
2p

1 + upu2
, M =

i

1 − upu2F1 + upu2 − 2p

2p̄ − s1 + upu2d G . sA5d

If M andM8 are two matrices for half turns as insA5d, then it is easily seen that

tr MM8 , 0. sA6d

In the remaining part we prove the area formula for a geodesic triangleDsz1,z2d with vertices
0, z1,z2 used in Sec. III

areaDsz1,z2d = 2 args1 − z1z̄2d, sA7d

assuming that 0øargz1øargz2øp. fThis assumption is unnecessary if we wish to interpretsA7d
as a formula for the oriented area.g

The proof is seen from the construction shown in Fig. 16.
If C,C is the circle throughz1,z2 which intersects]D orthogonally, thenCùD is the geodesic

throughz1,z2. Since circles orthogonal to]D are invariant under the antiholomorphic involution
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z°1/z̄, it follows that 1/z̄1 and 1/z̄2 lie on C. Denoting the interior angles ofDsz1,z2d at 0,z1,z2,
respectively, bya0,a1,a2, then applying the peripheric angle theorem to the Euclidean triangle
sz2,1 /z̄1,1 /z̄2d inscribed inC gives the angle at vertex 1/z̄1 as

\sz21/z̄1,1/z̄2d = a2

as marked in the figure. Similarly, trianglesz1,1 /z̄2,1 /z̄1d has angle\sz1,1 /z̄2,1 /z̄1d=a1 at vertex
1/z̄2.

The triangle s1/z̄2,Q,1 /z̄1d has anglep−a1−a2 at Q, the intersection point of the line
segmentssz1,1 /z̄2d and sz2,1 /z̄1d.

The formula which gives the area ofDsz1,z2d in terms ofz1 andz2 is based on the simple fact
that if b1=r1e

ib1 and b2=r2e
ib2 are two complex numbers with 0øb1øb2øp, then

\sb2,0 ,b1d=b2−b1=argsb2b̄1d.
Setting

b1 =
1

z̄1

− z2 andb2 =
1

z̄2

− z1,

we have

p − a1 − a2 = argSS 1

z̄2

− z1DS 1

z1
− z̄2DD = argS 1

z1z̄2

s1 − z1z̄2d2D
= − argsz1z̄2d + 2 args1 − z1z̄2d = − s− a0d + 2 args1 − z1z̄2d.

As areaDsz1,z2d=p−sa0+a1+a2d, it follows that

areaDsz1,z2d = 2 args1 − z1z̄2d.
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Recently Pluhar and WeidenmüllerfAnn. Phys.sN.Y.d 297, 344 s2002dg showed
that the eigenvectors of the matrix of second moments of embedded Gaussian
unitary ensemble of random matrices generated byk-body interactionsfEGUEskdg
for m fermions inN single particle states are SUsNd Wigner coefficients and de-
rived also an expression for the eigenvalues. Going beyond this work, we will show
that the eigenvalues of this matrix are square of a SUsNd Racah coefficient and thus
the matrix of second moments of EGUEskd is solved completely by SUsNd
Wigner–Racah algebra. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1850179g

I. INTRODUCTION

Interacting finite quantum systems such as nuclei, atoms, quantum dots, nanometer-scale
metallic grains, etc., are governed by Hamiltonians of lowscompared to the number of particles in
the systemd particle rank. Therefore, for many purposes, the random matrix models appropriate for
these systems are embedded random matrix ensembles ofk-body interactions originally intro-
duced, via nuclear shell model calculations, by French and Wong and Bohigas and Flores.1 For a
system ofm spinless fermions inN single particle statesswe will use fermions throughout this
paper and turn briefly to bosons at the endd the embedded Gaussian unitary ensemble of random
matrices ofk-body interactionsfEGUEskdg is generated by defining the HamiltonianH, which is
given to bek-body, to be GUE in thek-particle spaces and then propagating it to them particle
spaces by using the geometrysdirect product structured of them-particle spaces. Just as EGUEskd,
the EGOEskd and other embedded ensembles are defined.2 With m particle space dimension given
by Nm= s N

m
d, one has the unitary groups SUsNd, UsNkd, and UsNmd with EGUEskd invariant under

UsNkd and the embedding inm-particle spaces is defined by SUsNd; note that a GUE inm particle
spaces is invariant under UsNmd but not the EGUEskd, k,m. Very early, using the so-called binary
correlation approximation, Mon and French3 and later Frenchet al.4 derived some analytical
properties of embedded ensembles valid in the dilute limitfdefined bysN,m,kd→`, m/N→0 and
k/m→0g. However only recently rigorous analytical results, valid for anysN,m,kd are derived for
these ensembles by Benetet al.5 and very soon Pluhar and Weidenmüllershereafter called PWd
demonstrated6 that these results indeed follow from considerations based on the SUsNd embedding
algebra. With all them-particle matrix elements being linear combinations of thek-particle matrix
elementsfsee Eq.s9d aheadg, the joint distribution for the matrix elements will be a multivariate
Gaussian. Thus all the information about EGUEskd is in the covariance matrix or the matrix of
second momentsfEq. s10d aheadg. PW have shown that the eigenvectors of this matrix are SUsNd
Wigner for Clebsch–GordonsCGdg coefficients and derived the expression for their eigenvalues
using a duality relation for EGUEskd. The purpose of this paper is to show that the eigenvalues can
be written as SUsNd Racah coefficients and thus the matrix of second moments is solved com-
pletely by SUsNd Wigner–Racah algebra. To this end results for SUsNd Racah coefficients given in
Refs. 7–9 are used. We will start with some basic results given in the PW paper.
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II. BASIC DEFINITIONS AND RESULTS

Let us begin withm particles inN single particle statessunfortunately in PW, is used in place
of N but to keep the notations the same as in our earlier papers,2,10 we useNd. The single particle
sspd creation operatorai

† for any ith sp state transforms as the irreducible representationh1j of
UsNd and similarly a product ofr creation operators transform, as we have fermions, as the irrep
h1rj in Young tableaux notation. Let us add that a UsNd irrep hl1,l2, . . . ,lNj defines the corre-
sponding SUsNd irrep as hl1−lN,l2−lN, . . . ,lN−1−lNj with N−1 rows fthere are also other
equivalent ways of defining SUsNd irreps given a UsNd irrep sRef. 6dg. This UsNd↔SUsNd
correspondence is used throughout and therefore we use UsNd and SUsNd interchangeably. In PW,
h1rj is denoted byf r and we will follow this notation from now on. Withvr denoting irrepssand
other multiplicity labelsd of the groups in a subgroup chain of UsNd that supply the labels needed
for a complete specification of anym-particle statesfor the purpose of the present paper the
subgroup chain need not be specifiedd, the operatorpi=1

r ai
† and a normalizedr-particle creation

operatorA†sf rvrd behave as the SUsNd tensorsTfrvr and s1/Îr!dTfrvr, respectively. Using the
composition formula,

Tfmvm = o
vk,vs

Cfkvk fsvs

fmvm TfkvkTfsvs, s= m− k, s1d

whereCfkvkfsvs

fmvm is a SUsNd CG coefficient, am-particle stateufmvml=A†sfmvmdu0l can be written as
a product ofk ands=m−k particle states as

ufmvml = Sm

k
D−1/2

o
vkvs

A†sfkvkdufsvslCfkvk fsvs

fmvm . s2d

Some properties of the CG coefficients, used later in simplifications, are

Cfavafbvb

fabvab = s− 1dfsfa,fb,fabdCfbvb fava

fabvab , Cfava fbvb

fabvab = C
fava fbvb

fabvab ,

Cfava fbvb

fabvab = s− 1dfsfa,fb,fabdÎdsfabd
dsfad

Cfabvab fbvb

fava ,

C00 fava

fava = 1, Cfava fava

00 =
1

Îdsfad
, sC

fava favb

fabvab d* = C
favb fava

fabvab ,

o
va,vb

sC
fava favb

fabvab d*C
fava favb

fab8 vab8 = d fabfab8
dvabvab8

. s3d

In s3d, f is a function that defines the phase for the 1↔2 interchange in the CG coefficients,dsfd
is the dimension of the irrepf and f̄ is the irrep conjugate tof. For f r =h1rj, f r =h1N−rj and it also
contains a phase factor as given in Eq.s53d of Ref. 7 fthis is also seen easily by comparing the
second and third equalities ins3d with the corresponding relations for the standard CG coefficients
for angular momentum11g. Similarly with fa= fk, fb= fk, one has

fab = gn = h2n1N−2nj, n = 0,1, . . . ,k.

Note that g0=h0j for SUsNd and also gn=gn. The function f in Eq. s3d is of the form
fsl1,l2,l3d=Fsl1d+Fsl2d+Fsl3d where F is some function withFsld an integer andFsld
=Fsl̄d; for SUsNd irreps that appear in this paper these results are valid as can be seen from Eq.
s60d of Ref. 7 except that there can be an overallN dependent factor which will not change any of
the final results.

SUsNd irreducible tensorsBksgnvnd constructed out ofA†sfkvkdAsfkvk8d are defined by
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Bksgnvnd = o
vk,vk8

A†sfkvkdAsfkvk8dCfkvk fkvk8
gnvn . s4d

It is useful to note that the tensorsB’s in s4d multiplied byk! are, to within a phase factor, the same
as the tensors defined in Eq.s48d of Ref. 7. Wigner–Eckart theorem decomposes the matrix
elements ofBksgnvnd in m-particle spaces into a reduced matrix elementki il and a CG coefficient,

kfmvmuBksgnvndufmvm8 l = kfmiBksgndifmlC
fmvm fmvm8
gnvn . s5d

Two important properties ofBksgnvnd are

kkBksgnvndllk = ÎNkdgn,h0j,

kkBksgnvndBksgmvmdllk = dgngm
dvnvm

. s6d

In s6d, kk llk denotes trace over thek-particle spaces. The first equality in Eq.s6d easily follows
from the fact that heregn=h0j as traces are scalars with respect to SUsNd and then applying the
fifth equality in Eq.s3d. Similarly the second equality in Eq.s6d follows from the fact that only
gn=gm will give a scalar. Now we will turn to EGOEskd.

Consider ak-body Hamiltonian,

Hskd = o
va,vb

Vvavb
skdA†sfkvadAsfkvbd, s7d

whereVvavb
skd are matrix elements ofHskd in k-particle space and form a GUE, i.e.,Vvavb

skd are
independent Gaussian variables with zero center and variance given by

Vvavb
skdVvcvd

skd =
l2

Nk
dvavd

dvbvc
. s8d

In Eq. s8d the overline indicates ensemble average andl2 is ensemble averaged variance ofHskd
in k-particle space. Them-particle matrix elements ofHskd are, withs=m−k,

Hvm
1 vm

2 skd = kfmvm
1 uHskdufmvm

2 l = Sm

k
D o

va,vb,vs

sCfkvafsvs

fmvm
1

d*Cfkvbfsvs

fmvm
2

Vvavb
skd. s9d

Equation s9d is obtained easily by substituting the definitions7d for Hskd, then inserting the
complete set of states betweenA† andA operators and applying Eq.s2d. The EGUEskd in mùk
spaces is defined by Eqs.s7d–s9d. Now it is clear that for any analysis of EGUEskd all one needs
to know is the covariance between any twom-particle matrix elementsHvm

1 vm
2 skd and this defines

the matrix of second moments,

Avm
1 vm

4 :vm
3 vm

2 = Hvm
1 vm

2 skdHvm
3 vm

4 skd. s10d

As stressed by PW, the most important step in EGUEskd analysis is to derive a “generalized
eigenvalue expansion” ofA defined byAij =okCikEkCjk with Ek the eigenvalues andCjk the
eigenvectors such thatEk are positive andC’s Hermitian. To this end, it is useful to consider the
unitary decomposition ofHskd in terms of the SUsNd tensorsBksgnvnd,
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Hskd = o
gn,vn

BksgnvndWgnvn
skd. s11d

The expansion coefficientsWgnvn
skd are easily given by

Wgnvn
skd = kkHskdBksgnvndllk s12d

and this follows by using the definitions11d and Eq.s6d. The most significant property of theW
coefficients is that they are independent Gaussian variables with zero center and variance given by
fderived using Eqs.s11d, s4d, s7d, ands8d in that order and using the orthonormal properties of the
CG coefficientsg

Wgnvn
skdWgmvm

skd =
l2

Nk
dgngm

dvnvm
. s13d

III. MATRIX OF SECOND MOMENTS

First we will derive an expression for the covarianceHvm
1 vm

2 skdHvm
3 vm

4 skd in terms of SUsNd CG
coefficients and Racah coefficients and then turn to the eigenvalues and eigenvectors ofA, the
matrix of second moments. Applying Eqs.s10d, s11d, ands5d in that order gives

Hvm
1 vm

2 skdHvm
3 vm

4 skd = o
gn,vn,gm,vm

kfmvm
1 uBksgnvndWgnvn

skdufmvm
2 lkfmvm

3 uBksgmvmdWgmvm
skdufmvm

4 l

= o
gn,vn,gm,vm

Wgnvn
skdWgmvm

skdkfmvm
1 uBksgnvndufmvm

2 lkfmvm
3 uBksgmvmdufmvm

4 l

=
l2

Nk
o
gnvn

kfmvm
1 uBksgnvndufmvm

2 lkfmvm
3 uBksgnvndufmvm

4 l

=
l2

Nk
o
gnvn

ukfmiBksgndifmlu2C
fmvm

1 fmvm
2

gnvn C
fmvm

3 fmvm
4

gnvn . s14d

Equationss55d and s56d of Ref. 7 together with Eqs.s3d fsee also the remark just after Eq.s4dg
allows one to write the reduced matrix element in Eq.s14d as a SUsNd Racah or U-coefficient,

ukfmiBksgndifmlu2 =

sNmd2Sm

k
D2

dsgndsNm−kd
fUsfmfN−kfmfk; fm−kgndg2. s15d

With h2n1N−2nj=h1nj ^ h1N−nj−h1n−1j ^ h1N−n+1j where ^ denotes Kronecker product, the dimen-
sion dsgnd is given by

dsgnd = dsnd = sNnd2 − sNn−1d2 =
sN!d2sN + 1dsN − 2n + 1d

sn!d2sN − n + 1!d2 . s16d

Before going further let us define, for a givensm,Nd, a functionLnskd,

Lnskd = Sm− n

k
DSN − m+ k − n

k
D . s17d

Now, using Eq. s16d and substituting the expression given by Eq.s61d of Ref. 7 for the
U-coefficient ins15d, it is seen that
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ukfmuuBksgnduufmlu2 = Lnsm− kd, n = 0,1,2, . . . ,k. s18d

Combinings14d with s18d yields an expression for the covariance betweenH matrix elements in
m-particle spaces,

Hvm
1 vm

2 skdHvm
3 vm

4 skd =
l2

Nk
o

n=0,1,. . .,k;vn

sNmd2Sm

k
D2

dsgndsNm−kd
fUsfmfN−kfmfk; fm−kgndg2C

fmvm
1 fmvm

2
gnvn C

fmvm
3 fmvm

4
gnvn

=
l2

Nk
o

n=0,1,. . .,k;vn

hLnsm− kdjC
fmvm

1 fmvm
2

gnvn C
fmvm

3 fmvm
4

gnvn . s19d

Equations19d will be useful in deriving expressions for the moments ofH spectrum, i.e.,kHplm.
However the disadvantage ofs19d is that it is not in a proper form to give the eigenvalues and
eigenvectors of the matrixA in Eq. s10d. In order to obtain them, the CG coefficients in Eq.s14d
should be changed toC

fmvm
1 fmvm

4
gmvm C

fmvm
3 fmvm

2
gmvm and this can be accomplished by a SUsNd Racah trans-

form. Using Eq.s3.2.17d of Ref. 9 one has, for example,

o
vn

C
fmvm

1 fmvm
2

gnvn C
gnvnfmvm

3
fmvm

4

= o
gmvm

Usfmfmfmfm;gngmdCfmvm
2 fmvm

3

gmvm
C

fmvm
1 gmvm

fmvm
4

. s20d

Then Eqs.s20d and s3d will give

o
vn

C
fmvm

1 fmvm
2

gnvn C
fmvm

3 fmvm
4

gnvn = o
gmvm

Îdsgnd
dsgmd

Usfmfmfmfm;gngmdC
fmvm

1 fmvm
4

gmvm C
fmvm

3 fmvm
2

gmvm . s21d

Finally Eqs.s21d and s15d combined withs14d produce the generalized eigenvalue expansion of
the matrix of second momentsA,

Avm
1 vm

4 :vm
3 vm

2 = Hvm
1 vm

2 skdHvm
3 vm

4 skd = o
gmvm

C
fmvm

1 fmvm
4

gmvm C
fmvm

3 fmvm
2

gmvm 5 l2

Nk

sNmd2Sm

k
D2

sNm−kd
Fo

gn

Î 1

dsgnddsgmd

3fUsfmfN−kfmfk; fm−kgndg2Usfmfmfmfm;gngmdG6 . s22d

Obviously the quantity in the curly brackets in Eq.s22d gives the eigenvalues ofA and theC’s are
eigenvectors.

IV. EIGENVALUES AS SU „N… RACAH COEFFICIENTS AND THEIR APPLICATIONS

In order to proceed further, it is useful to consider 6j symbols of SUsNd and they are defined
by fsee Eq.s3.2.18d of Ref. 9g,

Usl1l2ll3;l12l23d = Îdsl12ddsl23ds− 1dfsl2,l2,0d+fsl12,l3,l̄d+fsl1,l2,l12dHl1 l23 l̄

l3 l12 l2
J .

s23d

In s23d l’s are SUsNd irreps and the four couplings involved in the U-coefficient are assumed to
be multiplicity free sfor the applications in the present paper this assumption is always validd.
Symmetry properties of the 6j-symbol appearing on the right-hand side ofs23d are well known.8,9

In the present analysis, the Biedenharn–Elliott sum rule extended to SUsNd sRefs. 8 and 9d plays
a central role. This sum rule relates a product of three Racah coefficientssweighted appropriately
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by dimension factors and phase factors with the irreps in the Racah coefficients appearing in some
particular orderd with sum over a common irrep label to a product of two Racah coefficients. After
converting the Racah coefficients ins22d into 6j symbols of SUsNd using Eq.s23d and then
applying the symmetry properties of the 6j symbols, it is seen that the sum in the square brackets
in Eq. s22d is exactly in the required form. Applying the Biedenharn–Elliott sum rule, the sum then
simplifies to

Nm−k

Nkdsgmd
U2sfmfN−m+kfmfm−k; fkgmd.

Herem=0,1, . . . ,m−k. Now the eigenvalues of the matrixA, in terms of the UsNd Racah coef-
ficients is given by

Em =
l2

Nk

sNmd2Sm

k
D2

dsgmdsNkd
fUsfmfN−m+kfmfm−k; fkgmdg2, m = 0,1, . . . ,m− k s24d

with degeneracydsgmd fsee Eq.s16dg. Equations24d is the central result of this paper. With this,
the matrixA is completely specified by the UsNd Wigner and Racah coefficients. Now substituting
the formulafEq. s61d of Ref. 7g for the U-coefficients in Eq.s24d produces the result of PW,

Avm
1 vm

4 :vm
3 vm

2 = Hvm
1 vm

2 skdHvm
3 vm

4 skd = o
gmvm

C
fmvm

1 fmvm
4

gmvm C
fmvm

3 fmvm
2

gmvm Em, s25d

where

Em =
l2

Nk
Lmskd, m = 0,1, . . . ,m− k. s26d

Note that the functionLmskd is defined by Eq.s17d.
Information about EGUEskd is contained in the ensemble averaged momentsMp=kHplm and

the bivariate momentsSpq=kHplmkHqlm. In deriving the formulas for the lower order moments, we
will show the usefulness of Eq.s19d. Obviously, ensemble averaged centroid is zero and the
variance is

kH2lm =
1

Nm
o

vm
i ,vm

j

Hvm
i vm

j Hvm
j vm

i =
1

Nm
o

gm,vm

Lmskd o
vm

i ,vm
j

C
fmvm

i fmvm
i

gmvm C
fmvm

j fmvm
j

gmvm = L0skd. s27d

The second equality follows froms25d and the final result follows by applyings3d; note that
ovm

i C
fmvm

i fmvm
i

gmvm =ÎNmdm,0. The variance ins27d is in l2/Nk units and this factor is dropped as all the

quantities we consider from now on are all scaled with respect tohkH2lmj1/2. As the third moment
is zero, we will turn to the fourth moment,

kH4lm =
1

Nm
o

vm
i ,vm

j ,vm
k8,vm

l

Hvm
i vm

j Hvm
j vm

k8Hvm
k8vm

l Hvm
l vm

i

=
1

Nm
o

vm
i ,vm

j ,vm
k8,vm

l
H2F o

gn,vn

kfmvm
i uBksgnvndufmvm

j lkfmvm
j uBksgnvndufmvm

k8lG
3F o

gm,vm

kfmvm
k8uBksgmvmdufmvm

l lkfmvm
l uBksgmvmdufmvm

i lG + F o
gn,vn

kfmvm
i uBksgnvndufmvm

j l

3kfmvm
k8uBksgnvndufmvm

l lGF o
gm,vm

kfmvm
j uBksgmvmdufmvm

k8lkfmvm
l uBksgmvmdufmvm

i lGJ
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= 2fL0skdg2 +
1

Nm
o

vm
i ,vm

j ,vm
k8,vm

l
H o

n=0,1,. . .,k;vn

hLnsm− kdjC
fmvm

i fmvm
j

gnvn C
fmvm

k8fmvm
l

gnvn J
3H o

m=0,1,. . .,m−k;vm

hLmskdjC
fmvm

j fmvm
i

gmvm C
fmvm

l fmvm
k8

gmvm J
= 2fL0skdg2 +

1

Nm
o
n=0

minhk,m−kj

Lnsm− kdLnskddsnd. s28d

The second equality in Eq.s28d follows by applying Eqs.s11d ands13d. In the third equality, it is
easy to recognize the first term. The second term follows by applying Eqs.s19d ands25d to the two
pieces in the corresponding term in the second equality. The final result follows by applying the
orthonormality of the CG coefficients. Equationss27d ands28d will give the excesssg2d parameter
of the density of eigenvalues of EGUEskd,

g2 =
kH4lm

fkH2lmg2 − 3 =F 1

Nm
o
n=0

minhk,m−kj
Lnsm− kdLnskddsnd

fL0skdg2 G − 1. s29d

Turning now to the lowest bivariate momentS11, it is easily seen that

S11 = kHlmkHlm =
1

sNmd2 o
vm

i ,vm
j

Hvm
i vm

i Hvm
j vm

j =
1

Nm
L0sm− kd. s30d

Applying s19d and recognizing that onlyn=0 will contribute to the traces give immediately Eq.
s30d. However Eq.s25d generates a different formula forS11 and equating it tos30d gives the
identity sderived in PW using the duality transformationd,

1

Nm
o
n=0

m−k

Lnskddsnd = L0sm− kd.

The variance of the distribution of centroids of theH spectra over the EGUEskd ensemble is

Ŝ11 =
S11

kH2lm =
1

Nm

L0sm− kd
L0skd

. s31d

Finally S22 is given by

S22 = kH2lmkH2lm =
1

sNmd2 o
vm

i ,vm
j ,vm

k8,vm
l

uHvm
i vm

j u2uHvm
k8vm

l u2

=
1

sNmd2 o
vm

i ,vm
j ,vm

k8,vm
l

uHvm
i vm

j u2 uHvm
k8vm

l u2 +
2

sNmd2 o
vm

i ,vm
j ,vm

k8,vm
l

fHvm
i vm

j Hvm
k8vm

l g2

= fL0skdg2 +
2

sNmd2 o
n=0

m−k

fLnskdg2dsnd. s32d

Here in the second equality used is the propertyx2y2=sx2dsy2d+2fxyg2 of Gaussian variablesx and
y. Similarly the final result follows by applyings25d to the second term in the second equality and
simplifying the CG coefficients using Eq.s3d. Now, the variance of the distribution of the vari-
ances of theH spectra over the EGUEskd ensemble is
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Ŝ22 =
S22

fkH2lmg2 − 1 =
2

sNmd2 o
n=0

m−k FLnskd
L0skdG2

dsnd. s33d

Equationss27d, s29d, s31d, ands33d are also given by Benetet al.;5 this paper neither gives details

of the derivations nor uses SUsNd Racah coefficients. Also in this work,Ŝ11, Ŝ22, andg2+1 are
denoted byS, R, andQ, respectively, while we have followed Ref. 3.

V. CONCLUSIONS

Going beyond PW, matrix elements of the matrix of second moments are written explicitly in
terms of SUsNd Wigner and Racah coefficients and this result is obtained by recognizing that the
reduced matrix elements ofBksgnd are SUsNd Racah coefficients. With this one has Eq.s19d and
this is converted into the generalized eigenvalue expansion form by first applying a SUsNd Racah
transform and then applying the Biedenharn–Elliott sum rule extended to SUsNd. This gives the
eigenvalues of the matrix of second moments explicitly in terms of SUsNd Racah coefficientsfEq.
s24dg. The two different forms given by Eqs.s19d and s25d for the covariances ofm-particle H
matrix elements, give in a simple manner the formulas for the low order momentsMp that define
the state density and the bivariate momentsSpq that give information about fluctuations.

Although EGUEskd for only fermions is considered in this paper, all the results in fact trans-
late to those of EGUEskd for bosons by using the well knownN→−N symmetry,12,13 i.e., in the
fermion results replaceN by −N and then take the absolute value of the final result. For example,
them boson space dimension isdsmd= us −N

m
du=hsN−m+1dmj. More importantly the eigenvalues of

the matrix of the second moments are

LB
nskd → USm− n

k
DS− N − m+ k − n

k
DU = Sm− n

k
DSN + m+ n − 1

k
D . s34d

This result was explicitly derived in Ref. 14; see Eq.s14d of this paper. Moreover for bosons,
hkj ^ hkN−1j→gn=h2n ,nN−2j, n=0,1, . . . ,k. Also, theN→−N symmetry and Eq.s16d give dsgnd
=hsN+n−1dnj2−hsN+n−2dn−1j2 and this is same as Eq.s15d of Ref. 14. Similarly Eqs.s27d, s29d,
s31d, ands33d extend directly to the boson EGUEskd with Lnskd replaced byLB

nskd defined in Eq.
s34d. In addition, for fermions to bosons there is also am↔N symmetry and this connects fermion
resultsssay forMp andSpqd in the dilute limit to boson results in the dense limit.13

Recently there is considerable interest in mesoscopic physics to study EGUEskd for fermions
with spin15 and here the embedding algebra is Us2Nd.UsNd ^ SUs2d with SUs2d generating spin.
The approach presented in Secs. II–IV is being applied to this system; some useful results for the
Us2Nd.UsNd ^ SUs2d Wigner–Racah algebra are available in Refs. 16 and 17. Finally, Wigner–
Racah algebra analysis of embedded ensembles with more general group symmetriesssee Refs. 2,
6, 17, and 18 for examplesd should be possible in the future, thus opening up a new direction in
random matrix theory.
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The Darboux transformations for two dimensionalA2n
s2d Toda equation are con-

structed. The lowest degree of the Darboux transformation is 2s2n+1d if all the
spectral parameters are complex, or 2n+1 if one spectral parameter is real. Exact
solutions are written down by computing the Darboux transformations explicitly. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1857033g

I. INTRODUCTION

The two dimensional Toda equation is an important integrable system which has been studied
widely se.g., Refs. 1–15d and has applications to differential geometry.4–7 A Toda equation corre-
sponding to a Kac–Moody algebrag of affine type can be written as

wk,xt = Ak expSo
i=1

n

ckiwiD − A0vk expSo
i=1

n

c0iwiD sk = 1,…,nd, s1.1d

whereC=scijd0øi,jøn is the generalized Cartan matrix ofg, v=sv0,v1,… ,vndT is a nonzero vector
such thatCv=0, andA0,A1,… ,An are real constants.8,9 There have been a lot of works on the two
dimensional Toda equations which are infinite, or are periodicswith g=An

s1dd,5,10 or having fixed
ends,11,12 or with finite dimensional Lie algebrassKac–Moody algebras of finite typed.13–15

As a special case ofg=A2
s2d, the Tzitzeica equation is a typical equation in affine geometry

describing indefinite affine spheres.4,16 An expression of Darboux transformation of the Tzitzeica
equation, whose spectral parameter is real, was discussed in Ref. 17, and the loop group decom-
position was presented in Ref. 18.

In this paper, we consider the Toda equation with Kac–Moody algebrag=A2n
s2d. It is neither

periodic nor with fixed ends. It has ans2n+1d3 s2n+1d Lax pair, and the Lax pair has a unitary
symmetry, a reality symmetry and a cyclic symmetry of order 2n+1. To get the Darboux trans-
formations which generate solutions of the same equation, we need to consider all these symme-
tries in the construction. Therefore, Darboux transformations of high degree are necessary. We
shall consider the case where all the spectral parameters are complex, as well as the case where
one spectral parameter is real. The main results are presented in Theorem 1 of Sec. IV and
Theorem 2 of Sec. V.

In Sec. II, we discuss the Lax pair of theA2n
s2d Toda equation. In Sec. III, the formulas of

Darboux transformation are listed in terms of the standard construction. In Sec. IV, the Darboux
transformation with complex spectral parameters is written down in an explicit way. Correspond-
ingly, the Darboux transformation with a real spectral parameter is written down explicitly in Sec.
V. In Sec. VI, the explicit solutions of the Tzitzeica equation are presented.

II. LAX PAIR AND EVOLUTION EQUATIONS

The A2
s2d Toda equation, or the Tzitzeica equation, is

adElectronic mail: zxzhou@public6.sta.net.cn
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w1,xt = − A0e
−w1 + A1e

2w1, s2.1d

whereA0, A1 are real constants. It corresponds to the generalized Cartan matrixC= s 2
−4

−1
2

d of A2
s2d

with Cs 1
2 ,1dT=0.

For nù2, theA2n
s2d Toda equation is

w1,xt = − A0e
−w1 + A1e

2w1−w2,

wj ,xt = − A0e
−w1 + Aje

2wj−wj−1−wj+1 s j = 2,…,n − 1d,

wn,xt = − A0e
−w1 + Ane

2wn−2wn−1, s2.2d

whereA0, A1,…, An are real constants. It corresponds to the generalized Cartan matrix

C =1
2 − 1

− 2 2 − 1

− 1 2 − 1

� � �

− 1 2 − 1

− 2 2

2 s2.3d

of A2n
s2d andCs 1

2 ,1 ,… ,1dT=0.
For all nù1, let wj =−su1+…+ujd s j =1,… ,nd, thens2.1d becomes

u1,xt = A0e
u1 − A1e

−2u1, s2.4d

and s2.2d becomes

u1,xt = A0e
u1 − A1e

u2−u1,

uj ,xt = Aj−1e
uj−uj−1 − Aje

uj+1−uj s2 ø j ø n − 1d,

un,xt = An−1e
un−un−1 − Ane

−2un. s2.5d

Hereafter, for anys2n+1d3 s2n+1d matrix A or anys2n+1d-vectorv, and for any integersi
and j , defineAij =Ai8 j8 and vi =vi8 where i ; i8 mod 2n+1, j ; j8 mod 2n+1, and 1ø i8 , j8ø2n
+1. Especially, denote

di j = H1 if i − j ; 0 mod 2n + 1,

0 otherwise.
s2.6d

Let v=e2pi/s2n+1d, V=diags1,v−1,… ,v−2nd. Let K=sKijd=sdi,2n+1−jds2n+1d3s2n+1d and J=sJijd
=sdi,j−1ds2n+1d3s2n+1d be two constant matrices and

P = spidi jds2n+1d3s2n+1d, Q = sqidi,j+1ds2n+1d3s2n+1d, s2.7d

where

pi = − p2n+1−i = ui,x s1 ø i ø nd, p2n+1 = 0,

qi = q2n−i = Aie
ui+1−ui s1 ø i ø n − 1d, qn = Ane

−2un, q2n = q2n+1 = A0e
u1. s2.8d

From s2.7d and s2.8d, detQ=q1…q2n+1=A0
2A1

2…An−1
2 An is a constant.

Notice that
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V*K = v−2KV. s2.9d

HereA* refers to the Hermitian conjugate of a matrixA.
Now consider the Lax pair

Fx = Usx,t,ldF ; slJ + Psx,tddF, Ft = Vsx,t,ldF ; l−1Qsx,tdF. s2.10d

Its integrability condition

Ut − Vx + fU,Vg = 0 s2.11d

is

Qx = fP,Qg, Pt + fJ,Qg = 0, s2.12d

or equivalently

qi,x = spi+1 − pidqi, pi,t = qi−1 − qi . s2.13d

These are just theA2n
s2d Toda equationss2.4d and s2.5d by considerings2.8d.

It is easy to check thatJ, Psx,td, Qsx,td satisfy the relations

VPV−1 = P, VJV−1 = vJ, VQV−1 = v−1Q,

KPK−1 = − PT, KJK−1 = JT, KQK−1 = QT. s2.14d

Written equivalently in terms ofU andV, s2.14d becomes

Usx,t,ld = Usx,t,ld, Vsx,t,ld = Vsx,t,ld,

VUsx,t,ldV−1 = Usx,t,vld, VVsx,t,ldV−1 = Vsx,t,vld,

KUsx,t,ldK−1 = − sUsx,t,− ldd* , KVsx,t,ldK−1 = − sVsx,t,− ldd* . s2.15d

Conversely, ifsP,Qd satisfiess2.12d, then detQ is independent ofx, since

sdetQdx = detQ trsQxQ
−1d = detQ trsfPQ−1,Qgd = 0. s2.16d

Now suppose thatA0,A1,… ,An−1Þ0 are given constants andsP,Qd is a s2n+1d3 s2n+1d
matrix solution ofs2.12d satisfying the constraintss2.14d and detQ is a constant. Froms2.14d, P
andQ must be of forms2.7d with

pi + p2n+1−i = 0, qi = q2n−i si = 1,2,…,2n + 1d. s2.17d

In the region whereqiAi .0 si =1,… ,nd, let qi =Aie
ui+1−ui s1ø i øn−1d, q2n=A0e

u1, then qn

=Ane
−2un whereAn=detQ/A0

2A1
2
¯An−1

2 . Moreover, from the first equation ofs2.12d,

pi = − p2n+1−i = ui,x s1 ø i ø nd, p2n+1 = 0. s2.18d

The second equation ofs2.12d implies thatsu1,… ,und is a solution of theA2n
s2d Toda equations2.4d

or s2.5d. Therefore, we have the following,
Lemma 1: SupposesP,Qd is a s2n+1d3 s2n+1d matrix solution of (2.12) satisfying the

constraints (2.14) anddetQ is a constant. Then in the region where qiAi .0 si =1,… ,nd,
su1,… ,und is a solution of the A2n

s2d Toda equation (2.4) or (2.5).
In order to construct Darboux transformation, we need the following lemma, which is the

direct consequence ofs2.14d.
Lemma 2:Supposem[C.

sid If Fsx,td is a solution of (2.10) forl=m, thenFsx,td is a solution of (2.10) forl=m;
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sii d If Fsx,td is a solution of (2.10) forl=m, then for any integer k, VkFsx,td is a solution of
(2.10) for l=vkm.

siii d If Fsx,td is a solution of (2.10) forl=m, Csx,td is a solution of (2.10) forl=−m, then
sC*KFdx=0, sC*KFdt=0.

III. DARBOUX TRANSFORMATION

The Darboux matrix with unitary reduction can be constructed in the following known
procedure.19,20

Let l1,… ,lM beM complex numbers such thatl j, −l j s j =1,2,… ,Md are distinct. LetHj be
a column solution of the Lax pairs2.10d for l=l j s j =1,2,… ,Md. Denote

Gi j =
Hi

*KHj

li + l j

s3.1d

for i , j =1,2,… ,M, G=sGi jd1øi,jøM,

Gsx,t,ld = p
l=1

M

sl + lldS1 − o
i,j=1

M sG−1di jHiHj
*K

l + l j
D . s3.2d

Then it can be checked directly that

Gsx,t,ld−1 = p
l=1

M

sl + lld−1S1 + o
i,j=1

M sG−1di jHiHj
*K

l − li
D . s3.3d

Gsx,t ,ld is a polynomial ofl of degreeM with matrix coefficients. Write

Gsx,t,ld = o
j=0

M

s− 1dM−jGM−jsx,tdl j, G0sx,td = I , s3.4d

and define

Ũ = GUG−1 + GxG
−1, Ṽ = GVG−1 + GtG

−1. s3.5d

Lemma 3: Ũ=lJ+ P̃, Ṽ=s1/ldQ̃ where P̃=P+fJ,G1g, Q̃=GMQGM
−1.

Proof: Using s2.14d and the fact thatHj is a solution of the Lax pairs2.10d with l=l j, we
have

Gi j ,x = Hi
*KJHj, Gi j ,t =

1

lil j

Hi
*KQHj . s3.6d

Substitutings3.2d, s3.3d, ands3.6d into s3.5d and using the symmetriess2.14d, we get the conclu-
sion of the lemma by direct calculation.

Lemma 4:

Gsx,t,− ld*KGsx,t,ld = p
l=1

M

sll + ldsll − ldK. s3.7d

Proof: The equalitys3.7d follows from

Gsx,t,− ld* = KGsx,t,ld−1K−1p
l=1

M

sll + ldsll − ld, s3.8d

which is a direct result ofs3.2d, s3.3d and the fact thatG is Hermitian. The lemma is proved.
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The solutionQ̃ has been expressed in terms ofGM. According tos3.2d,

s− 1dMGM = p
l=1

M

llS1 − o
i,j=1

M sG−1di jHiHj
*K

l j
D = p

l=1

M

lls1 − s2n + 1dR*G−1Sd , s3.9d

whereR andS areM 3 s2n+1d matrices with

Rij = s2n + 1d−1/2sHid j, Sij = s2n + 1d−1/2li
−1 o

k=1

2n+1

sHid−k. s3.10d

IV. DARBOUX TRANSFORMATION WITH COMPLEX SPECTRAL PARAMETERS

Darboux matrix keeping the reductionss2.14d can be derived by above general construction
together with some more constraints on the spectral parameters and the solutions of the Lax pair.

Let m be a nonzero complex number such that argsmdÞkp / s4n+2d for any integerk. Let
l j =v j−1m, l2n+1+j =v−j+1m s j =1,2,… ,2n+1d. Then all l j and −l j s j =1,2,… ,2s2n+1dd are
distinct. Let h be a column solution ofs2.10d for l=m, Hj =V j−1h, H2n+1+j =V−j+1h
s j =1,2,… ,2n+1d. ThenHj is a solution ofs2.10d for l=l js j =1,2,… ,2s2n+1dd.

We constructG, Gsx,t ,ld, Ũsx,t ,ld, Ṽsx,t ,ld according to Sec. III withM =2s2n+1d.
More explicit expressions ofGi j can be written down from their definitions3.1d. For 1ø i , j

ø2n+1, let

Aij = Gi j =
h*sV*di−1KV j−1h

v−i+1m + v j−1m
= v−i+1 h*KVi+j−2h

m + vi+j−2m
,

Bij = Gi,2n+1+j =
h*sV*di−1KV−j+1h

v−i+1m + v−j+1m
= v−i+1 h*KVi−jh

m + vi−jm
,

Cij = G2n+1+i,j =
h*sV*d−i+1KV j−1h

vi−1m + v j−1m
= vi−1 h*KV j−ih

m + v j−im
,

Dij = G2n+1+i,2n+1+j =
h*sV*d−i+1KV−j+1h

vi−1m + v−j+1m
= vi−1 h*KV−i−j+2h

m + v−i−j+2m
. s4.1d

ThenG is written as a 232 block matrixG= s A
C

B
D

d whereA=sAijd, B=sBijd, C=sCijd, D=sDijd are

s2n+1d3 s2n+1d matrices, andG−1=s Â

Ĉ

B̂

D̂
d where

Â = sA − BD−1Cd−1, B̂ = − A−1BsD − CA−1Bd−1,

Ĉ = − D−1CsA − BD−1Cd−1, D̂ = sD − CA−1Bd−1. s4.2d

Froms4.1d, we know thatD=A, C=B. Hence,s4.2d leads toD̂=Â
¯

, Ĉ=B̂
¯

. Then, froms3.2d, we
have the following.

Lemma 5:Gsx,t ,l̄d=Gsx,t ,ld. Hence the coefficients of each power ofl in Gsx,t ,ld are all
real matrices.

From s4.1d, we get

Ai+1,j−1 = v−1Aij , Bi+1,j+1 = v−1Bij , Ci+1,j+1 = vCij , Di+1,j−1 = vDij . s4.3d

Written equivalently, they are
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JAJ= v−1A, JBJ−1 = v−1B, J−1CJ= v−1C, J−1DJ−1 = v−1D. s4.4d

According tos4.2d,

JÂJ = v−1Â, JB̂J−1 = v−1B̂, J−1ĈJ = v−1Ĉ, J−1D̂J−1 = v−1D̂. s4.5d

Hence

Âi+1,j−1 = v−1Âij , B̂i+1,j+1 = v−1B̂ij , Ĉi+1,j+1 = vĈij , D̂i+1,j−1 = vD̂ij . s4.6d

Lemma 6:VGsx,t ,ldV−1=Gsx,t ,vld.
Proof:

V
Vi−1hsV j−1hd*K

l + v j−1m
V−1 =

vVihsV j−2hd*V*KV−1

vl + v j−2m
=

v−1VihsV j−2hd*K

vl + v j−2m
. s4.7d

Hence,

V o
i,j=1

2n+1

Âij
Vi−1hsV j−1hd*K

l + v j−1m
V−1 = o

i,j=1

2n+1

Âi+1,j−1
VihsV j−2hd*K

vl + v j−2m
= o

i,j=1

2n+1

Âij
Vi−1hsV j−1hd*K

vl + v j−1m

s4.8d

by s4.6d. Similar relations hold for the terms inG with Bij , Cij , and Dij . Moreover,pl=1
2s2n+1dsl

+lld=pl=1
2s2n+1dsvl+lld. Hence, bys3.2d, the lemma is true.

From Lemma 4, Lemma 5, and Lemma 6,Ũ and Ṽ defined bys3.5d are real and satisfy the
relationss2.15d. Moreover, after the Darboux transformation, they must satisfy the integrability
condition s2.11d. Hence, by Lemma 1, we have the following.

Proposition 1: sP̃,Q̃d generated by the Darboux transformation constructed above is a real
solution of (2.12) satisfying the relations (2.14). Therefore, it gives a solution of the A2n

s2d Toda
equation (2.4) or (2.5).

In order to get explicit expressions of the solutions we should derive the explicit expression of
G2s2n+1d. Equations3.2d is too complicated to be computed directly even by computer. Therefore,
we need to represent the matrixG, regarded as a linear transformation, in another basis, so that its
inverse can be computed explicitly.

Let jk=s2n+1d−1/2Vk−1s1,1,… ,1dT, then theith component ofjk is

sjkdi = s2n + 1d−1/2v−sk−1dsi−1d. s4.9d

Using the fact

o
j=1

2n+1

v jk = H0 if k ò 0 mod 2n + 1,

2n + 1 if k ; 0 mod 2n + 1,
s4.10d

we know thatsj1,… ,j2n+1d is an orthonormal basis ofC2n+1.
From s4.1d,

Ajk = akj3−k, Bjk = g2−kjk+1, Cjk = gkjk−1, Djk = a2−kj1−k, s4.11d

where

ak = o
j=1

2n+1
h*KV jh

m + v jm
v−sk−1d j, gk = o

j=1

2n+1
h*KV jh

m + v jm
v−sk−1d j . s4.12d

Using s2.9d, we have h*KV jh=sh*KV jhd* =v−2jh*KV jh, h*KV jh=sh*KV jhdT=v2jh*KV−jh.
Hence
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ak = a3−k, gk = g3−k. s4.13d

From s4.2d and s4.11d, we obtain

Âjk = âkj3−k, B̂jk = ĝ2−kjk+1, Ĉjk = ĝkjk−1, D̂jk = â2−kj1−k, s4.14d

where

âk = a3−ksua3−ku2 − ug3−ku2d−1, ĝk = − g3−ksua3−ku2 − ug3−ku2d−1. s4.15d

Let h=sh1,… ,h2n+1dT, then the entries ofHi, H2n+1+i s1ø i ø2n+1d are sHid j =vsi−1ds j−1dhj,
sH2n+1+id j =v−si−1ds j−1dhj. Hence, froms3.10d, for 1ø i , j ø2n+1,

Rij = s2n + 1d−1/2vsi−1ds j−1dhj, R2n+1+i,j = s2n + 1d−1/2v−si−1ds j−1dhj ,

Sij = s2n + 1d−1/2m−1v−si−1d jh−j, S2n+1+i,j = s2n + 1d−1/2m−1vsi−1d jh−j . s4.16d

Written in matrices, theith column of R is shij2−i ,hijidT and the j th column of S is
sm−1h−jj j+1,m−1h−jj1−jdT.

Let

Al = h̄lh−l, Cl = hlh−l . s4.17d

Lemma 7: umu−2s2n+1dG2s2n+1d=1−s2n+1dR*G−1S=diagsg1,… ,g2n+1d where

gj = 1 − 2s2n + 1dReS 1

m

A ja2−j − C jg2−j

ua2−ju2 − ug2−ju2
D . s4.18d

Proof: Using the expressionss3.9d and s4.14d, we have umu−2s2n+1dG2s2n+1d=1−s2n
+1dR*G−1S and

sR*G−1Sdi j = shij2−i
* ,hiji

*dSÂ B̂

Ĉ D̂
DSm−1h−jj j+1

m−1h−jj1−j
D = f idi j , s4.19d

where

f j = m−1h−jshjâ j+1 + hjĝ j+1d + m−1h−jshjâ j+1 + hjĝ j+1d =
1

ua2−ju2 − ug2−ju2
sm−1A ja2−j − m−1C jg2−j

s − m−1C jg2−j + m−1A ja2−jd . s4.20d

The lemma is proved.

According to Lemma 3, we get the entriessq̃1,… ,q̃2n+1d of Q̃ in s2.7d as

q̃j =
gj+1

gj
qj . s4.21d

However, the expression ofgj in s4.18d is still not simple enough. To simplify the expressions
of the solutions, we need the following two lemmas.

Lemma 8:Suppose k−2=s2n+1ds+r where s, r are integers, 1ø r ø2n+1, then

ak =
2n + 1

m2n+1 + m2n+1So
l=1

r

Als− mdr−lm2n+l−r + o
l=r+1

2n+1

Als− md2n+1+r−lml−r−1D ,
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gk =
2n + 1

2m2n+1So
l=1

r

Cls− mdr−lm2n+l−r + o
l=r+1

2n+1

Cls− md2n+1+r−lml−r−1D . s4.22d

Proof: According tos4.12d,

ak = o
j=1

2n+1

o
l=1

2n+1 Alv
−jsk−l−2d

m + v jm
. s4.23d

Let u be a constant withuuu,1. Let

ak
sud = o

j=1

2n+1

o
l=1

2n+1 Alv
−jsk−l−2d

m + uv jm
= o

j=1

2n+1

o
l=1

2n+1

o
r=0

+`

m−1Alv
jsr+2+l−kds− umm−1dr. s4.24d

Using s4.10d we haveo j=1
2n+1v jsr+2+l−kd=0 unlessr+2+l −k;0 mod 2n+1. Let r=k− l −2+s2n

+1ds, then, usingk−2=s2n+1ds+r,

s2n + 1d−1ak
sud = o

l=1

2n+1

o
sù

1
2n+1

sl−k+2d

m−1Als− umm−1dk−l−2+s2n+1ds

= o
l=1

r

o
s=−s

+`

m−1Als− umm−1dk−l−2+s2n+1ds + o
l=r+1

2n+1

o
s=−s+1

+`

m−1

3Als− umm−1dk−l−2+s2n+1ds = o
l=1

r Als− umdr−lm2n+l−r

m2n+1 + sumd2n+1 + o
l=r+1

2n+1 Als− umd2n+1+r−lml−r−1

m2n+1 + sumd2n+1 .

s4.25d

Here a sum is zero if the lower bound is greater than the upper bound. Since argsmd¹ hkp / s4n
+2duk[Zj, by takingu→1, we get the expression ofak in s4.22d. The expression ofgk in s4.22d
is obtained similarly. The lemma is proved.

Lemma 9:For any integer k,

ua2−ku2 − ua1−ku2 − ug2−ku2 + ug1−ku2 = 2s2n + 1dResm−1sAka2−k − Ckg2−kdd . s4.26d

Proof: First suppose −k−1=s2n+1ds+r, 1ø r ø2n, then s2−kd−2=s2n+1ds+r +1, s1−kd
−2=s2n+1ds+r. According to Lemma 8,

a2−k =
2n + 1

m2n+1 + m2n+1So
l=1

r+1

Als− mdr+1−lm2n−1+l−r + o
l=r+2

2n+1

Als− md2n+2+r−lml−r−2D ,

a1−k =
2n + 1

m2n+1 + m2n+1So
l=1

r

Als− mdr−lm2n+l−r + o
l=r+1

2n+1

Als− md2n+1+r−lml−r−1D . s4.27d

Hence

a1−k = − m−1msa2−k − s2n + 1dm−1Ar+1d. s4.28d

This implies

ua2−ku2 − ua1−ku2 = 2s2n + 1dResm−1Ar+1a2−kd − s2n + 1d2umu−2uAr+1u2. s4.29d

Similarly, we have
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− ug2−ku2 + ug1−ku2 = − 2s2n + 1dResm−1Cr+1g2−kd + s2n + 1d2umu−2uCr+1u2. s4.30d

SinceuCr+1u2= uAr+1u2,

ua2−ku2 − ua1−ku2 − ug2−ku2 + ug1−ku2 = 2s2n + 1dResm−1Ar+1a2−kd − 2s2n + 1dResm−1Cr+1g2−kd.

s4.31d

According tos4.17d, Ar+1=Ak, Cr+1=Ck. Hences4.26d holds.
If −k−1;0 mod 2n+1, s4.28d still holds. The same result is obtained. This proves the lemma.
From s4.18d and s4.26d,

gk = 1 −
2s2n + 1d

ua2−ku2 − ug2−ku2
ReSAka2−k − Ckg2−k

m
D =

ua1−ku2 − ug1−ku2

ua2−ku2 − ug2−ku2
. s4.32d

Using s4.21d, we get the transformation of the solution ofs2.12d,

q̃k =
hkhk+2

hk+1
2 qk, s4.33d

Wherehk= ua2−ku2− ug2−ku2.
Remark 1:From (4.13), the equalityh1−k=hk always holds. Hence q̃−k−1= q̃k holds provided

that q−k−1=qk holds. This means that the Darboux transformation does not change the natural
relation (2.17).

hk’s can be written down explicitly. Fork=1,2,… ,n+1, we haves2−kd−2=−s2n+1d+2n
+1−k. The first equation ofs4.27d can be written as

a2−k =
2n + 1

m2n+1 + m2n+1S o
l=1

2n+1−k

Als− md2n+1−k−lmk+l−1 + o
l=2n+2−k

2n+1

Als− md4n+2−k−lmk+l−2n−2D .

s4.34d

Similarly,

g2−k =
2n + 1

2m2n+1S o
l=1

2n+1−k

Cls− md2n+1−k−lmk+l−1 + o
l=2n+2−k

2n+1

Cls− md4n+2−k−lmk+l−2n−2D
= −

2n + 1

2m
S o

l=1

2n+1−k

Cls− 1dk+l − o
l=2n+2−k

2n+1

Cls− 1dk+lD . s4.35d

Equations4.33d leads to the transformation of the solutionsũ1,… ,ũnd of s2.4d or s2.5d as

ũk = uk + ln
hk+1

hk
s1 ø k ø nd s4.36d

If h1,… ,hn have the same sign.
In summary, we have the following theorem.
Theorem 1: Supposesu1,… ,und is a solution of (2.4) or (2.5). Letm[C \ h0j such that

argsmdÞkp / s4n+2d for any inter k. Let h=sh1,… ,h2n+1dT be a column solution ofs2.10d for l
=m. Let l j =v j−1m, l2n+1+j =v−j+1m, Hj =V j−1h, H2n+1+j =V−j+1hs j =1,2,… ,2n+1d. Define Gi j

=Hi
*KHj / sli +l jd (i , j =1,… ,2s2n+1d). Let Gsx,t ,ld be defined bys3.2d with M=2s2n+1d. Then

G is a Darboux matrix for (2.10) in the sense that for any solutionF of (2.10),F̃=GF satisfies

F̃x = slJ + P̃dF̃, F̃t = l−1Q̃F̃, s4.37d

where P̃=P+fJ,G1g, Q̃=G2s2n+1dQG2s2n+1d
−1 .
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Let

zk =
1

um2n+1 + m2n+1u2
U o

l=1

2n+1−k

hlh−ls− md2n+1−k−lmk+l−1 + o
l=2n+2−k

2n+1

hlh−ls− md4n+2−k−lmk+l−2n−2U2

−
1

4umu2U o
l=1

2n+1−k

hlh−ls− 1dk+l − o
l=2n+2−k

2n+1

hlh−ls− 1dk+lU2

, s4.38d

then in the region wherez1,… ,zn have the same sign, the new solutionsũ1,… ,ũnd of (2.4) or (2.5)
is given by

ũk = uk + ln
zk+1

zk
sk = 1,2,…,nd. s4.39d

V. DARBOUX TRANSFORMATION WITH A REAL SPECTRAL PARAMETER

Now suppose a spectral parameter in constructing Darboux matrix is real. Considering the
symmetries in Lemma 2, the Darboux matrix can be derived as follows.

Let m be a nonzero real number,l j =v j−1ms j =1,2,… ,2n+1d, then alll j, −l j s j =1,… ,2n
+1d are distinct. Leth be a column solution ofs2.10d for l=m, Hj =V j−1h, s j =1,2,… ,2n+1d.
ThenHj is a solution ofs2.10d for l=l j s j =1,2,… ,2n+1d.

According to Sec. III forM =2n+1, we can also constructG andGsx,t ,ld. From s3.1d,

Gi j =
h*sV*di−1KV j−1h

v−i+1m + v j−1m
= v−i+1 h*KVi+j−2h

m + vi+j−2m
. s5.1d

Now

Gjk = akj3−k, ak = o
j=1

2n+1
h*KV jh

m + v jm
v−sk−1d j, G−1jk = âkj3−k, âk = a3−k

−1 . s5.2d

Lemma 10:Gsx,t ,l̄d=Gsx,t ,ld.

Proof: Sincel2−i =li, H2−i =Hi, we have

G2−i,2−j =
H2−i

* KH2−j

l2−j + l2−i

=
Hi

*KHj

li + l j

= Gi j . s5.3d

Let L be a constant matrix such thatL11=1, Li+1,1−i =1 si =1,2,… ,2nd andLij =0 for othersi , jd.
ThenG satisfiesLGL=G. This leads toLG−1L=G−1. Therefore,

o
i,j=1

2n+1 S sG−1di jHiHj
*K

l + l j
D = o

i,j=1

2n+1
sG−1d2−i,2−jH2−iH2−j

* K

l + l2−j

= o
i,j=1

2n+1
sG−1di jHiHj

*K

l + l j

. s5.4d

The lemma is proved.
Hence, the coefficients of each power ofl in Gsx,t ,ld are all real matrices.
Similar to Lemma 6, we have

VGsx,t,ldV−1 = Gsx,t,vld. s5.5d

From Lemma 4, Lemma 10, ands5.5d, Ũ and Ṽ defined bys3.5d satisfy the relationss2.15d.
Let h=sh1,… ,h2n+1dT, then

Rij = s2n + 1d−1/2vsi−1ds j−1dhj, Sij = s2n + 1d−1/2m−1v−si−1d jh−j . s5.6d

Written in matrices, theith column ofR is hij2−i, and thej th column ofS is m−1h−jj j+1.
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Therefore, −m−2n−1G2n+1=1−s2n+1dR*G−1S=diagsg1,… ,g2n+1d where

gj = 1 − s2n + 1dm−1hjh−j/a2−j . s5.7d

Similar to Lemma 8,ak can be expressed as

ak =
2n + 1

2m2n+1So
l=1

r

Als− mdr−lm2n+l−r + o
l=r+1

2n+1

Als− md2n+1+r−lml−r−1D
=

2n + 1

2m
So

l=1

r

s− 1dr−lAl − o
l=r+1

2n+1

s− 1dr−lAlD , s5.8d

whereAl =hlh−l andk−2=s2n+1ds+r with s, r [Z and 1ø r ø2n+1.
From s5.8d, we geta2−k+a1−k=s2n+1dm−1Ak corresponding to Lemma 9. Froms5.7d, gk=1

−s2n+1dm−1Aka2−k
−1 =−a1−ka2−k

−1 . Hence,q̃k=shkhk+2/hk+1
2 dqk wherehk=a2−k.

Sinces2−kd−2=−s2n+1ds+2n+1−k, s5.8d leads to

hk = a2−k = −
2n + 1

2m
S o

l=1

2n+1−k

s− 1dk+lAl − o
l=2n+2−k

2n+1

s− 1dk+lAlD s5.9d

sk=1,2,… ,n+1d. Finally,

ũk = uk + ln
hk+1

hk
. s5.10d

If h1,… ,hn have the same sign.
The above results are summarized in the following theorem.
Theorem 2: Supposesu1,… ,und is a solution of (2.4) or (2.5). Letm[R \ h0j. Let h

=sh1,… ,h2n+1dT be a real column solution of (2.10) forl=m. Let l j =v j−1m, Hj =V j−1h s j
=1,2,… ,2n+1d. DefineGi j =Hi

*KHj / sli +l jd (i , j =1,… ,2n+1). Let Gsx,t ,ld be defined by (3.2)
with M=2n+1. Then G is a Darboux matrix for (2.10) in the sense that for any solutionF of

(2.10), F̃=GF satisfies

F̃x = slJ + P̃dF̃, F̃t = l−1Q̃F̃, s5.11d

Where P̃=P+fJ,G1g, Q̃=G2n+1QG2n+1
−1 .

Let

zk = o
l=1

2n+1−k

s− 1dk+lhlh−l − o
l=2n+2−k

2n+1

s− 1dk+lhlh−l s5.12d

then in the region wherez1,… ,zn have the same sign, the new solutionsũ1,… ,ũnd of (2.4) or (2.5)
is given by

ũk = uk + ln
zk+1

zk
sk = 1,2,…,nd. s5.13d

VI. APPLICATION TO THE TZITZEICA EQUATION

The Tzitzeica equation

uxt = eu − e−2u s6.1d

is a special two dimensional Toda equation withn=1.
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Supposeu is a solution ofs6.1d andh=sh1,h2,h3dT is a column solution of its Lax pair for
l=m. Using Theorem 1 and Theorem 2, we get the new solution ofs6.1d. Whenm is taken as a
complex number,

ũ = u + ln
4umu2um2h1h2 + m2h1h2 − umu2uh3u3u2 − sm3 + m3d2u2h1h2 − h3

2u2

s2umu2mh1h2 − 2umu2mh1h2 + sm3 − m3duh3u2d2 . s6.2d

Whenm is a real number,

ũ = u + ln
2h1h2 − h3

2

h3
2 . s6.3d

Equations6.3d is similar to that given by Ref. 17.

ACKNOWLEDGMENTS

The author is grateful to Professor C. H. Gu and Professor H. S. Hu for their helpful sugges-
tions and discussions on constructing the Darboux transformations. He is also grateful to Dr. J.
Inoguchi for his suggestion on studying the Tzitzeica equation together with helpful discussions.
This work was supported by the special funds for Chinese major state basic research projects and
the trans-century training program foundation for the talents by the Ministry of Education of
China.

1A. V. Mikhailov, JETP Lett. 30, 414 s1979d.
2A. P. Fordy and J. Gibbons, Commun. Math. Phys.77, 21 s1980d.
3A. P. Fordy and J. C. Wood,Harmonic Maps and Integrable SystemsVieweg, Braunschweig, 1994d.
4C. Rogers and W. K. Schief,Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton
TheorysCambridge University Press, Cambridge, 2002d.

5H. S. Hu, Contemp. Math.308, 179 s2002d.
6H. S. Hu, Lett. Math. Phys.57, 19 s2001d.
7A. V. Razumov and M. V. Saveliev, Commun. Anal. Geom.2, 461 s1994d.
8M. J. Ablowitz and P. A. Clarkson,Solitons, Nonlinear Evolution Equations and Inverse ScatteringsCambridge Uni-
versity Press, Cambridge, 1991d.

9I. McIntosh, Nonlinearity7, 85 s1994d.
10V. B. Matveev and M. A. Salle,Darboux Transformations and SolitonssSpringer, Heidelberg, 1991d.
11A. N. Leznov and E. A. Yuzbashjan, Lett. Math. Phys.35, 345 s1995d.
12A. N. Leznov and A. Sorin, Phys. Lett. B402, 87 s1997d.
13C. L. Terng and K. Uhlenbeck, Commun. Pure Appl. Math.53, 1 s2000d.
14M. Adler and P. Van Moerbeke, Duke Math. J.112, 1 s2002d.
15M. V. Savaliev, Phys. Lett. A122, 312 s1987d.
16C. L. Terng,Integrable Systems in Differential Geometry, Vol. 1, Advanced Studies in Pure MathematicssMathematical

Society of Japan, 2005d.
17A. R. Its, J. Sov. Math.31, 3330s1985d.
18J. Dorfmeister and U. Eitner, Abh. Math. Sem. Univ. Hamburg71, 225 s2001d.
19V. B. Zakharov and A. V. Mikhailov, Commun. Math. Phys.74, 21 s1980d.
20J. Cieśliński, J. Math. Phys.36, 5670s1995d.

033515-12 Zi-Xiang Zhou J. Math. Phys. 46, 033515 ~2005!

                                                                                                                                    



Representations of classical Lie subalgebras of quantum
pseudodifferential operators

Carina Boyalliana! and José I. Liberatib!

Ciem-FAMAF, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba,
Argentina

sReceived 29 July 2004; accepted 1 November 2004; published online 22 February 2005d

We show that there is a family of anti-involutionsse,k se= ±1 andkPZd, up to
conjugation, of the Lie algebraSq of quantum pseudodifferential operators preserv-
ing the principal gradation. We classify the irreducible quasifinite highest weight
modules over the Lie subalgebras ofSq, fixed by minusse,k sk evend, and we
realize them in terms of irreducible highest weight representations of the Lie alge-
bra of infinite matrices with finitely many nonzero diagonals and its classical Lie
subalgebras of B, C, and D types. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1845600g

I. INTRODUCTION

The W-infinity algebras naturally arise in various physical theories, such as conformal field
theory, the theory of the quantum Hall effect, etc. TheW1+` algebra, which is the central extension
of the Lie algebraD of differential operators on the circle, is the most fundamental among these
algebras.

When we study the representation theory of a Lie algebra of this kind, we encounter the
difficulty that although it admits aZ-gradation, each of the graded subspaces is still infinite
dimensional, and therefore the study of highest weight modules which satisfy the quasifiniteness
condition, that is, graded subspaces have finite dimension, becomes a nontrivial problem.

The study of representation theory of the Lie algebraD̂ sthe universal central extension of the
Lie algebraD, also denoted byW1+` in the physicists literatured, was initiated in Ref. 5. In that

paper, Kac and Radul classified the irreducible quasi-finite highest weight representations ofD̂,
and it was shown that they can be realized in terms of irreducible highest weight representations
of the Lie algebra of infinite matrices. At the end of that article, they did, very briefly, the same for

the Lie algebraSq̂, the central extension of the Lie algebra of quantum pseudodifferential opera-

tors, which contains as a subalgebra theq-analogue of the Lie algebraD̂, the algebra of all regular
difference operators onC3.

In Ref. 2 we extend the results obtained in Ref. 5, for the central extension of the Lie algebra
of M 3M matrix quantum pseudodifferential operators.

In this paper we get analogous results to those obtained in Ref. 6, forSq̂. That is, we show that
there is a family of anti-involutionsse,k se= ±1 andkPZd, up to conjugation, of the Lie algebra
Sq, preserving the principal gradation. We classify the irreducible quasifinite highest weight mod-
ules over the Lie subalgebras ofSq, fixed by minusse,k sk evend, and we realize them in terms of
irreducible highest weight representations of the Lie algebra of infinite matrices with finitely many
nonzero diagonals and its classical Lie subalgebras ofB, C, andD types. Here we get a larger
family of subalgebras, and this makes the picture much richer than in the classical case.
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bdElectronic mail: liberati@mate.uncor.edu
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The paper is organized as follows. In Sec. II we recall some definitions and notations ofg,̂`

and its classical subalgebras. In Sec. III we study the structure ofSq̂, its involutions and we

introduce the subalgebrasSq
k,ê. In Sec. IV we characterize the quasifiniteness of highest weight

modules overSq
k,ê. In Sec. V we establish the relation of this subalgebra withg,̂s` ,Rmd and finally

in Sec. VI we realize and construct the quasifinite highest weight modules overSq̂.

II. LIE ALGEBRAS gø̂ `
†m‡ AND ITS CLASSICAL SUBALGEBRAS

Denote byRm=Cfug / sum+1d, the quotient algebra of the polynomial algebraCfug by the ideal
generated byum+1 smPZ+d. Let 1 be the identity element inRm. Denote byg,`

fmg the complex Lie
algebra of all infinite matricessaijdi,jPZ with only finitely many nonzero diagonals with entries in
Rm. Denote byEij the infinite matrix with 1 atsi , jd-place and 0 elsewhere. There is a natural
automorphismn of g,`

fmg given by

nsEi,jd = Ei+1,j+1. s2.1d

Let the weight ofEi,j be j − i. This defines theprincipal Z-gradationg,`
fmg= % jPZsg,`

fmgd j. Denote
by g,̂ `

fmg=g,`
fmg

% Rm the cental extension ofg,`
fmg given by the following 2-cocycle with values in

Rm:

CsA,Bd = TrsfJ,AgBd, s2.2d

whereJ=oiø0Eii . TheZ-gradation of the Lie algebrag,`
fmg extends tog,̂ `

fmg by setting the weight
of Rm to be 0. In particular we have thetriangular decomposition

g,̂ `
fmg = sg,̂ `

fmgd+ % sg,̂ `
fmgd0 % sg,̂ `

fmgd−, s2.3d

where

sg,̂ `
fmgd± = %

jPN
sg,̂ `

fmgd± j andsg,̂ `
fmgd0 = sg,`

fmgd0 % Rm.

Given lP sg,̂ `
fmgd0

* , we let

ci = lsuid,

al j
sid = lsuiEj ,jd, s2.4d

ahj
sid = al j

sid − al1+j
sid + d j ,0ci ,

where j PZ and i =0, . . . ,m. Let Lsg,̂ `
fmg ,ld be the irreducible highest weightg,̂ `

fmg-module with
highest weightl. The al j

sid are called thelabelsandci are thecentral chargesof Lsg,̂ `
fmg ,ld.

Consider the vector spaceRmft ,t−1g, and take theRm-basisvi = t−i, i PZ. The Lie algebrag,`
fmg

acts on this vector space via the usual formula

Eijvk = d j ,kvi . s2.5d

Now consider the followingC-bilinear form onRmft ,t−1g:

B±sumvi,u
nv jd = ums− unds±1didi,−j . s2.6d

Denote byb̄`
−fmg srespectively,b̄`

+fmgd the Lie subalgebra ofg,`
fmg which preserves the bilinear form

B−s,d frespectively,B+s,dg. We have
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b̄`
−fmg = hsaijsuddi,jPZ P g,`

fmguaijsud = s− 1di+j+1a−j ,−is− udj,

b̄`
+fmg = hsaijsuddi,jPZ P g,`

fmguaijsud = − a−j ,−is− udj.

Denote byb`
fmg= b̄`

−fmg
% Rm srespectively,b̃`

fmg= b̄`
+fmg

% Rmd, the central extension ofb̄`
−fmg srespec-

tively, b̄`
+fmgd given by the corresponding restriction of the 2-cocycle ins2.2d. These subalgebras

inherit from g,̂ `
fmg the principalZ-gradation and the triangular decompositionssee Refs. 6 and 3

for notationd,

b`
fmg = % jPZsb`

fmgd j, b`
fmg = sb`

fmgd+ % sb`
fmgd0 % sb`

fmgd−

and

b̃`
fmg = % jPZsb̃`

fmgd j, b̃`
fmg = sb̃`

fmgd+ % sb̃`
fmgd0 % sb̃`

fmgd−.

Note that the Lie algebrab̃`
fmg is isomorphic tob`

fmg by mappingukEij −s−udkE−j ,−i to ukEij

+s−1di+j+1s−udkE−j ,−i. Whenm=0, we have the usual Lie subalgebra ofg,`, denoted byb`.
Given lP sb`

fmgd0
* , denote byLsb`

fmg ;ld the irreducible highest weight module overb`
fmg with

highest weightl.
For eachlP sb`

fmgd0
* , we let

ci = lsuid,

bl0
sid = ls2uiE0,0d si oddd,

bl j
sid = lsuiEj ,j − s− udiE−j ,−jd, i Þ 0,

s2.7d
bhj

sid = bl j
sid − bl1+j

sid ,

bh0
sid = − 2bl1

sid + 2ci si evend,

bh0
sid = bl0

sid − bl1
sid + ci si oddd,

wherej PN andi =0, . . . ,m. The superscriptb stands for typeB. Thebl j
sid are called thelabelsand

ci are thecentral chargesof Lsb`
fmg ,ld.

As before, take theRm-basis,vi = t−i, i PZ of Rmft ,t−1g, and considerRmft ,t−1g equipped with
the following C-bilinear form:

Csumvi,u
nv jd = ums− unds− 1didi,1−j . s2.8d

Denote byc̄`
fmg the Lie subalgebra ofg,`

fmg which preserves the bilinear formCs,d. We have

c̄`
fmg = hsaijsuddi,jPZ P g,`

fmguaijsud = s− 1di+j+1a1−j ,1−is− udj.

Denote byc`
fmg= c̄`

fmg
% Rm the central extension ofc̄`

fmg given by the restriction of the 2-cocycle
s2.2d, defined ing,`

fmg. This subalgebra inherits fromg,̂ `
fmg the principalZ-gradation and the

triangular decompositionssee Refs. 6 and 3 for notationd

c`
fmg = % jPZsc`

fmgd j, c`
fmg = sc`

fmgd+ % sc`
fmgd0 % sc`

fmgd−.

In particular whenm=0, we have the usual Lie subalgebra ofg,`, denoted byc`.
Given lP sc`

fmgd0
* , denote byLsc`

fmg ;ld the irreducible highest weight module overc`
fmg with

highest weightl.

033516-3 Representations of classical Lie subalgebras J. Math. Phys. 46, 033516 ~2005!

                                                                                                                                    



For eachlP sc`
fmgd0

* , we let

ci = lsuid,

cl j
sid = lsuiEj ,j − s− udiE1−j ,1−jd,

s2.9d
chj

sid = cl j
sid − cl1+j

sid ,

ch0
sid = cl1

sid + ci si evend,

where j PN andi =0, . . . ,m. Here, the superscriptc denotes typeC. Thecl j
sid are called thelabels

andci are thecentral chargesof Lsc`
fmg ,ld.

Again, take theRm-basis,vi = t−i, i PZ of Rmft ,t−1g, but considerRmft ,t−1g equipped with the
following C-bilinear form:

Dsumvi,u
nv jd = ums− unddi,1−j . s2.10d

Denote byd̄`
fmg the Lie subalgebra ofg,`

fmg which preserves the bilinear formDs,d. We have

d̄`
fmg = hsaijsuddi,jPZ P g,`

fmguaijsud = − a1−j ,1−is− udj.

Denote byd`
fmg= d̄`

fmg
% Rm the central extension ofd̄`

fmg given by the restriction of the 2-cocycle
s2.2d. This subalgebra inherits fromg,̂ `

fmg the principalZ-gradation and the triangular decompo-
sition ssee Refs. 6 and 3 for notationd

d`
fmg = % jPZsd`

fmgd j, d`
fmg = sd`

fmgd+ % sd`
fmgd0 % sd`

fmgd−.

In particular whenm=0, we have the usual Lie subalgebra ofg,`, denoted byd`.
Given lP sd`

fmgd0
* , denote byLsd`

fmg ;ld the irreducible highest weight module overd`
fmg with

highest weightl.
For eachlP sd`

fmgd0
* , we let

ci = lsuid,

dl j
sid = lsuiEj ,j − s− udiE1−j ,1−jd,

s2.11d
dhj

sid = dl j
sid − dl1+j

sid ,

dh0
sid = − dl1

sid − dl2
sid + 2ci si evend,

where j PN and i =0, . . . ,m. Here, the superscriptd denotes typeD.Thedl j
sid are called thelabels

andci are thecentral chargesof Lsd`
fmg ,ld.

III. THE SUBALGEBRA Sq AND ITS INVOLUTIONS

Denote byTq, qPC3=C \ h0j, the following operator onCfz,z−1g:

Tqfszd = fsqzd.

Denote bySq
as the associative algebra of all pseudodifferential operators, i.e., the operators on

Cfz,z−1g of the form
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E = o
kPZ

ekszdTq
k, whereeiszd P Cfz,z−1g ssum is finited.

Any pseudodifferential operator can be written as linear combinations of elements of the form
zkfsTqd, where f PCfw,w−1g. The product inSq

as is then given by

szr fsTqddszsgsTqdd = zr+sfsqsTqdgsTqd.

Denote bySq the Lie algebra obtained fromSq
as by taking the usual bracket. LetSq8=fSq,Sqg. It is

easy to check that we have

Sq = Sq8 % CTq
0 sdirect sum of idealsd.

Thus, the representation theory ofSq reduces to that ofSq8. Taking the trace form inCfw,w−1g,
namely tr0so jcjw

jd=c0, we obtain, by a general constructionscf. Sec. 1.3 in Ref. 5d, the following
2-cocycle inSq:

CszmfsTqd,zkgsTqdd = m tr0sfsq−mwdgswdddm,−k. s3.1d

Let

Sq̂ = Sq8 + CC

denote the central extension ofSq8 corresponding to the cocycles3.1d.
The elementszkTq

m sk,mPZd form a basis ofSq. Define theweightby

wt zkTq
m = k, wt C = 0.

This gives us the principalZ-gradation ofSq
as, Sq, andSq̂,

Sq
as= %

jPZ
sSq

asd j, Sq̂ = %
jPZ

sSq̂d j .

An anti-involution s of Sq
as is an involutive antiautomorphism ofSq

as, i.e., s2=Id, ssax
+byd=assxd+bssyd and ssxyd=ssydssxd, for all a,bPC and x,yPSq

as. From now on we will
assume thatuquÞ1.

Proposition 3.1: Any anti-involutions of Sq
as which preserves the principalZ-gradation is of

the following form:

sA,B,kszd = AzTq
k and sA,B,ksTqd = BTq

−1

with kPZ and A,BPC−h0j such that A2Bk=qk.
Proof: Since s preservesZ-gradation we may assume thatsszd=zfsTqd and ssTqd=gsTqd,

where f ,g, PCfw,w−1g. Now, sinceTq is an invertible element in our algebra, so isgsTqd, and
therefore of the formgsTqd=BTq

l for someBPC−h0j and l PZ. Similarly, fsTqd=ATq
k with A

PC−h0j andkPZ. Using thats2= id we have

1 = fsgsTqddfsTqd andTq = gsgsTqdd.

Combining the second equation and the expression ofgsTqd we getTq=Bl+1Tq
sl2d. We can deduce

that eitherl =1, B= ±1 or l =−1 andBPC.
Now using the first equation and the expression forfsTqd we have 1=A2BkqlkTq

sl+1dk, and hence
sl +1dk=0.

If l =1, thenA= ±1. Since we assumed thatq is not a root of unity, it is easy to check that
these are not antiautomorphisms. Thereforel =−1 and we have finished our proof. j

It is immediate thatshPCfw,w−1gd,

sA,B,ksznhsTqdd = Anqfnsn−1dkg/2znhsBq−nTq
−1dTq

nk. s3.2d
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Given sPC, denote byQs the automorphism ofSq given by sendingaPSq to z−sazs. There-
fore, usings3.2d, we have

ussA,B,ku−s = sq−skA,q2sB,k. s3.3d

Denote bySq
A,B,k the fixed Lie subalgebra ofSq by −sA,B,k, namely

Sq
A,B,k = ha P SqusA,B,ksad = − aj.

It inherits a Z-gradation fromSq since sA,B,k preserves the principalZ-gradation ofSq
as:

Sq
A,B,k= % jPZsSq

A,B,kd j, wheresSq
A,B,kd j =hzj fsTqd u fswdPCfw,w−1g andsA,B,kszj fsTqdd=−zj fsTqdj.

Now, it is straightforward froms3.3d that we have the following.
Lemma 3.2: The Lie algebraSq

A,B,k for arbitrary choices of A and B is isomorphic toSq
e,q,k

wheree is either1 or −1.
We will write se,k andSq

e,k instead ofse,q,k andSq
e,q,k. From now onk is even.

Let us denote byCfw,w−1ge,j swheree=1 or e=−1d the set of Laurent polynomials such that
fsw−1d=−sed j fswd.

Now, we can give a complete description ofsSq
e,kd j.

Lemma 3.3: We have

sSq
e,kd j = hzjsqs j−1d/2Tqdkj/2fsqs j−1d/2Tqdufswd P Cfw,w−1ge,jj. s3.4d

Proof: By s3.2d, an element ofsSq
e,kd j is of the formszjhsTqdPSqd,

zjhsTqd − se,kszjhsTqdd = zjshsTqd − sed jsqs j−1d/2Tqd jkhsq−j+1Tq
−1dd = zjsqs j−1d/2Tqd jk/2fsqs j−1d/2Tqd

with fswd=hsqs−j+1d/2wdw−jk/2−sed jhsqs−j+1d/2w−1dwjk/2. It is easy to see thatfsw−1d=−sed j fswd, fin-
ishing the proof. j

From this lemma we have that

B = hzjsqs j−1d/2Tqd jk/2ssqs j−1d/2Tqdm − e jsqs j−1d/2Tqd−mdu j P Z,mP Nj

form a C-basis ofsSq
e,kd if e=1 andBø hzjsqs j−1d/2Tqd jk/2j is a basis ife=−1.

We denote again byC the restriction of the 2-cocycle ins3.1d to sSq
e,kd, namely

Cszmsqsm−1d/2Tqdmk/2fsqsm−1d/2Tqd,znsqsn−1d/2Tqdnk/2gsqsn−1d/2Tqdd

= dm,−nmtr0sfsqsm−1d/2wdgsqs−m−1d/2wdd, s3.5d

wherezmsqsm−1d/2Tqdmk/2fsqsm−1d/2Tqd and znsqsn−1d/2Tqdnk/2gsqsn−1d/2Tqd are in Sq
e,k. Denote bySq

e,k̂

the central extension ofSq
e,k by CC corresponding to the 2-cocycleC. Sq

e,k̂ is a Lie subalgebra of

Sq̂ by definition.

IV. CHARACTERIZATION OF QUASIFINITENESS OF HWMs OF Sq
e,k̂

In order to characterize the quasifiniteness of the highest weight modulessHWMsd of Sq
e,k̂ we

will apply general results for quasifinite representations ofZ-graded Lie algebras obtained in Ref.
4. We refer to Ref. 4 for proofs and details. Letg be aZ-graded Lie algebra overC:

g = %
jPZ

g j, fgi,g jg , gi+j ,

wheregi is not necessarily of finite dimension. Letg±= % j.0g± j. A subalgebrap of g is called
parabolic if it containsg0 % g+ as a proper subalgebra, that is

p = %
jPZ

p j, wherep j = g j for j ù 0, andp j Þ 0 for somej , 0.

We assume the following properties ofg:
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sP1d g0 is commutative,
sP2d if aPg−k sk.0d and fa,g1g=0, thena=0.
Given aPg−1, aÞ0, we definepa= % jPZp j

a, wherep j
a=g j for all j ù0, and

p−1
a = o f¯ffa,g0g,g0g, . . . g, p−k−1

a = fp−1
a ,p−k

a g.

Lemma 4.1:sad pa is the minimal parabolic subalgebra containing a. sbd g0
a
ª fpa,pagùg0

=fa,g1g.
In the particular case of the central extension of the Lie algebra of matrix differential operators

on the circlessee Ref. 1, Remark 2.2d, we observed the existence of some parabolic subalgebrasp
such thatp−j =0 for j @0. Having in mind that example, we give the following definition.

Definition 4.2:sad A parabolic subalgebrap is callednondegenerateif p−j has finite codimen-
sion in g−j, for all j .0.

sbd An elementaPg−1 is callednondegenerateif pa is nondegenerate.
Now, we begin our study of quasifinite representations overg. A g-module V is called

Z-graded if V= % jPZVj and giVj ,Vi+j. A Z-gradedg-module V is called quasifinite if dim Vj

,` for all j .
GivenlPg0

* , a highest weight moduleis aZ-gradedg-moduleVsg ,ld generated by a highest
weight vectorvlPVsg ,ld0 which satisfies

hvl = lshdvl sh P g0d, g+vl = 0.

A nonzero vectorvPVsg ,ld is calledsingular if g+v=0.
The Verma moduleover g is defined as usual,

Msg,ld = Usgd^Usg0%g+dCl,

whereCl is the one-dimensionalsg0 % g+d-module given byh°lshd if hPg0, g+°0, and the
action of g is induced by the left multiplication inUsgd. Here and furtherUsqd stands for the
universal enveloping algebra of the Lie algebraq. Any highest weight moduleVsg ,ld is a quotient
module of Msg ,ld. The irreducible moduleLsg ,ld is the quotient ofMsg ,ld by the maximal
proper graded submodule. We shall writeMsld and Lsld in place ofMsg ,ld and Lsg ,ld if no
ambiguity may arise.

Consider a parabolic subalgebrap= % jPZp j of g and letlPg0
* be such thatulug0ùfp,pg=0. Then

the sg0 % g+d-module Cl extends to ap-module by lettingp j act as 0 for j ,0, and we may
construct the highest weight module

Msg,p,ld = Usgd^UspdCl

called thegeneralized Verma module.
We will also require the following condition ong.
sP3d If p is a nondegenerate parabolic subalgebra ofg, then there exists a nondegenerate

elementa such thatpa#p.
Theorem 4.3:The following conditions onlPg0

* are equivalent:

s1d Msld contains a singular vector a·vl in Msld−1, where a is nondegenerate;
s2d there exist a nondegenerate element aPg−1, such thatlsfg1,agd=0;
s3d Lsld is quasifinite;
s4d there exist a nondegenerate element aPg−1, such that Lsld is the irreducible quotient of the

generalized Verma module Msg ,pa,ld.

Now considerg=Sq
e,k. Take a parabolic subalgebrap of Ŝq

e,k, namely, it is a subalgebra of the
following form:
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p = %
jPz

p j, wherep j = sŜq
e,kd j for j ù 0 andp j Þ 0 for somej , 0.

Observe for eachj PN we have

p−j = hz−jsqs−j−1d/2Tqd−jk/2fsqs−j−1d/2Tqd:f P I−jj,

whereI−j is a subspace ofCfw,w−1ge,j. Given fswdPCfw,w−1ge,0 andpswdPCfw,w−1ge,j we have

that ffsq−1/2Tqd ,z−nsqs−n−1d/2Tqd−nk/2psqs−n−1d/2TqdgPSq
e,k̂. Computing

ffsq−1/2Tqd,z−nsqs−n−1d/2Tqd−nk/2psqs−n−1d/2Tqdg = z−nsqs−n−1d/2Tqd−nk/2sfsq−n−1/2Tqd

− fsq−1/2Tqddpsqs−n−1d/2Tqd

= z−nsqs−n−1d/2Tqd−nk/2gsqs−n−1d/2Tqdpsqs−n−1d/2Tqd,

s4.1d

where gswd= fsq−n/2Tqd− fsqn/2Tqd. As f ranges overCfw,w−1ge,0, gswd ranges over all Laurent
polynomials such thatgsw−1d=gswd. We denote this set byCfw,w−1g0. Thuss4.1d implies that if
pswdP I−n, then pswd multiplied by any Laurent polynomial inCfw,w−1g0 belongs toI−n. This
means thatI−n is a Cfw,w−1g0-submodule ofCfw,w−1ge,n, whereCfw,w−1ge,n is regarded as a
module overCfw,w−1g0 by multiplication.

It is known that every nonzeroCfw,w−1g0-submodule ofCfw,w−1ge,n is a free rank 1 submod-
ule generated by a monic Laurent polynomialsmeaning that the coefficient of the higher degree
monomial is 1d. Denote bybn

e such a generator forI−n if I−nÞ0 andbn
eswd=0 if I−n=0. We call

bn
eswd, kPN the characteristic polynomialof p.

Let us check conditionssP1d, sP2d, andsP3d for Sq
e,k̂. We can immediately see that condition

sP1d is satisfied since

sSq
e,kd0 = hhsq−1/2Tqd:hsw−1d = hswdj

is abelian. Let us checksP2d.
Lemma 4.4: If aP sSq

e,kd−j, s j .0d such thatfa,sSq
e,kd1g=0, then a=0.

Proof: Take aP sSq
e,kd−j, s j .0d, then a=z−jsqs−j−1d/2Tqd−jk/2hsqs−j−1d/2Tqd with hsw−1d

=−e jhswd. Consider an arbitrary element ofsSq
e,kd1, namely,zsTqdk/2gsTqd with gsw−1d=−egswd.

We have that

0 = fz−jsqs−j−1d/2Tqd−jk/2hsqs−j−1d/2Tqd,zsTqdk/2gsTqdg

= z−j+1sq−j /2Tqdfs−j+1dkg/2shsqs−j+1d/2TqdgsTqd − hsqs−j−1d/2Tqdgsq−jTqdd

= z−j+1sq−j /2Tqdfs−j+1dkg/2fsq−j /2Tqd s4.2d

with fsTqd=hsq1/2Tqdgsqj /2Tqd−hsq−1/2Tqdgsq−j /2Tqd. Suppose thathswd=anw
n+ lower degree

terms, with anÞ0 and takegswd=wm−ew−m with nÞ−mj, then

0 = fswd = ansqsn+mjd/2 − qs−n−mjd/2dwm+n + lower degree terms

which is a contradiction, thereforea=0. j

To checksP3d we will need the following lemma.
Lemma 4.5: Lethbn

e :nPNj be the sequence of characteristic polynomials of a parabolic

subalgebrap of the Lie algebraSq
e,k̂. Then

s1d bn
eswdPCfw,w−1ge,n;

s2d bn
eswd divides

sqs−n−1d/2w − eqsn+1d/2w−1dssq−1 − 1dq1/2w − e−n−1sq − 1dq−1/2w−1dbn+1
e sq−1/2wd;

s3d bn+m
e swd dividessqm/2−q−m/2dsw+e−nw−1dbn

esqm/2wdbm
e sqn/2wd;
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s4d p−nÞ0 for all nPN.

In particular all bn
eswd are nonzero.

Proof: Part s1d follows from the definition of the characteristic polynomial. Computing

fzsTqdk/2sTq − eTq
−1d,z−n−1sq−n/2−1Tqdfs−n−1dkg/2bn+1

e sqs−n/2d−1Tqdg

= z−nsqs−n−1d/2Tqd−nk/2ssq−n−1Tq − eqn+1Tq
−1dbn+1

e sqs−n/2d−1Tqd − sTq − eTq
−1dbn+1

e sq−n/2Tqdd

we see thatbn
esqs−n−1d/2wd divides

sq−n−1w − eqn+1w−1dbn+1
e sqs−n/2d−1wd − sw − ew−1dbn+1

e sq−n/2wd. s4.3d

From the commutation relation

fzsTqdk/2sTq − eTq
−1d,z−n−1sqs−n/2d−1Tqdfs−n−1dkg/2sqs−n/2d−1Tq − e−n−1qsn/2d+1Tq

−1dbn+1
e sqs−n/2d−1Tqdg

= z−nsqs−n−1d/2Tqd−nk/2ssq−n−1Tq − eqn+1Tq
−1dsqs−n/2d−1Tq − e−n−1qsn/2d+1Tq

−1dbn+1
e sqs−n/2d−1Tqd

− sTq − eTq
−1dsq−n/2Tq − e−n−1qn/2Tq

−1dbn+1
e sq−n/2Tqdd

we see thatbn
esqs−n−1d/2wd divides

sq−n−1w − eqn+1w−1dssqs−n/2d−1w − e−n−1qsn/2d+1w−1dbn+1
e sqs−n/2d−1wd

− sw − ew−1dsq−n/2w − e−n−1qn/2w−1dbn+1
e sq−n/2wdd. s4.4d

Now, from s4.3d and s4.4d we see thatbn
esqs−n−1d/2wd divides

sq−n−1w − eqn+1w−1dssq−1 − 1dq−n/2w − e−n−1sq − 1dqn/2w−1dbn+1
e sqs−n/2d−1wd.

This provess2d, and we can deduce that ifbn+1
e swdÞ0, thenbn

eswdÞ0.
Part s3d can be similarly proved by computing the following two commutators:

fz−nsqs−n−1d/2Tqds−ndk/2bn
esqs−n−1d/2Tqd,z−msqs−m−1d/2Tqds−mdk/2bm

e sqs−m−1d/2Tqdg

and

fz−nsqs−n−1d/2Tqds−ndk/2sqs−n−1d/2Tq − e−nqsn+1d/2Tq
−1dbn

esqs−n−1d/2Tqd,

z−msqs−m−1d/2Tqds−mdk/2bm
e sqs−m−1d/2Tqdg.

In particular, ifbk
eswdÞ0 andbl

eswdÞ0, thenbl+k
e swdÞ0. Parts4d follows immediately from

s2d and s3d. j

Givenp a parabolic subalgebra ofSq
e,k̂, by the lemma above, we have that it is nondegenerate.

Take

a = z−1sq−1Tqd−k/2b1
esq−1Tqd P p−1, s4.5d

where b1
e is the first characteristic polynomial ofp. Then, pa is, by Lemma 4.1, the minimal

parabolic subalgebra containinga. Using again the above lemma, we know that it is nondegener-
ate, therefore by definitiona is nondegenerate, and by constructionpa#p, proving sP3d.

Now, considerlP sSq
e,k̂d0

* . Let Lsld=LsSq
e,k̂,ld denote the unique irreducible quotient of

Msld=MsSq
e,k̂,ld. A functional lP sSq

e,k̂d0
* is described by its labelsDn=qsndlssq−1/2Tqdn

−sq−1/2Tqd−nd with nPZ, qsnd=qn/2−q−n/2, and the central chargelsCd=c. We will consider the
generating series

Dsxd = o
nPZ

xnDn.

Recall that aquasipolynomialis a linear combination of functions of the formpsxdqax, where
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psxd is a polynomial andaPC. That is, it satisfies a nontrivial linear differential equation with
constant coefficients. We also have the following well-known proposition.

Proposition 4.6: Given a quasipolynomial P, and a polynomial Bsxd=pisx−Aid, take bsxd
=pisx−aid where ai =eAi, then bsxdsonPZPsndx−nd=0 if and only if Bsd/dxdPsxd=0.

If the polynomial B is even we callP an even quasipolynomial. We will prove the main
theorem of this section.

Theorem 4.7:An irreducible highest weightSq
e,k̂-module Lsld is quasifinite if and only if one

of the following equivalent conditions hold.
(a) There exists a monic Laurent polynomial b1

eswdPCe,1fw,w−1g such that

b1
esxdsDsxd − 2cd = 0. s4.6d

(b) There exists an even quasipolynomial Pesxd such that

Pesnd = Dn for n Þ 0 and Ps0d = 2c. s4.7d

Proof: We can apply Theorem 4.3. Therefore the quasifiniteness ofLsld is equivalent to show

that there exist a nondegenerate elementaP sSq
e,k̂d−1, such thatlsfsSq

e,k̂d1,agd=0. Takea as in
s4.5d. Sinceb1

eswdPCe,1fw,w−1g, then we have thatb1
eswd=amswm−ew−md+am−1swm−1−ew−m+1d

+ . . . +a1sw−ew−1d+a0s1−ed with amÞ0. Recall that a base forsSq
e,k̂d1 is

B = hzsTqdk/2sTq
n − eTq

−nd:n P Nj

if e=1 andBø hzsTqdk/2j if e=−1. Therefores∀nd,

0 = lsfzsTqdk/2sTq
n − eTq

−nd,agd

= lsb1
esTqdsTq

n − eTq
−nd − sq−nTq

n − eqnTq
−ndb1

esq−1Tqd − tr0sb1
eswdswn − ew−nddCd

= lSo
j=0

m

ajssTq
j − eTq

−jdsTq
n − eTq

−nd − sq−nTq
n − eqnTq

−ndsq−jTq
j − eqjTq

−jdd + tr0sb1
eswdswn − ew−nddCD

= o
j=0

m

ajsqdsn + jdlssq−1/2Tqd j+n − sq−1/2Tqd−j−nd − eqsn − jdlssq−1/2Tqdn−j − sq−1/2Tqd−n+jd

− lstr0sb1
eswdswn − ew−nddCd

= o
j=0

m

ajsD j+n − eDn−jd + 2eanc. s4.8d

We also have for the casee=−1,

0 = lfa,zTq
k/2g = lsb1

esTqd − b1
esq−1Tqdd = o

j=0

m

ajlsqs jdssq−1/2Tqd j − sq−1/2Tqd−jdd = o
j=0

m

ajD j .

s4.9d

Multiplying the last equality ins4.8d by xn−ex−n, adding overnPZù0, and using the fact that
Dn=D−n and s4.9d whene=−1, we get

0 = o
j=0

m

ajsx−j − exjdDsxd + 2eb1
esxdc = − eb1

esxdsDsxd − 2cd. s4.10d

The equivalence ofsad andsbd follows from the fact that Eq.s4.6d holds, if and only if multiplying

both sides of this formula byxm this equation also holds, and nowb̃esxd=xmb1
esxdPCfxg. Observe

that b̃es0d=amÞ0, and sinceb1
esx−1d=−eb1

esxd it is easy to see that ifa is a root ofb̃esxd, then 1/a
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is also a root ofb̃esxd. Now we can apply Proposition 4.6 and due to the relationship between the

roots ofB andb in this proposition it follows that theBsxd corresponding to ourb̃esxd is an even
polynomial, finishing our proof. j

Given a quasifinite irreducible highest weightSq
k,ê-moduleV by Theorem 4.7, we have that

there exists an even quasipolynomialPsxd satisfyings4.7d. We will write

Psxd = o
i

pisxdcoshqsei
+xd + o

j

qjsxdsinhqsej
−xd, s4.11d

with pisxd frespectively,qjsxdg are nonzero evensrespectively, oddd polynomials,ei
+ and ej

− are
distinct complex numbers, coshqsxd=sqx+q−xd /2 and sinqsxd=sqx−q−xd /2. The expression in
s4.11d is unique up to a sign ofei

+ or a simultaneous change of signs ofej
− andqjsxd. We callei

+

srespectively,ej
−d, even typesrespectively, odd typed exponentsof V with multiplicities pisxd fre-

spectively,qjsxdg. As in Ref. 6, we denotee+ the set of even type exponents with multiplicitypisxd
and by e− the set of odd type of exponents with multiplicityqisxd. Therefore the pairse+;e−d
uniquely determinesV. We will denote this module byLsSq

k,ê ;e+;e−d.

V. EMBEDDING OF Sq
e,k̂ INTO INFINITE RANK CLASSICAL LIE ALGEBRAS

Let O be the algebra of all holomorphic functions onC3 with the topology of uniform
convergence on compact sets, and denote

Oe,j = hf P Oufswd = − e j fsw−1dj.

We consider the vector spaceSq
Oas

spanned by the quantum pseudodifferential operatorssof infi-
nite orderd of the formzkfsTqd, wheref PO. The product inSq

as and its principal gradation extend

to Sq
Oas

. Denote bySq
O the corresponding Lie algebra. Then the cocycleC extends by formula

s3.1d. Let S q
Ô=Sq

O+CC be the corresponding central extension. Similarly we define

S q
k,eÔ

= Sq
k,eO

+ CC

the central extension ofSq
k,eO

by the restriction of the cocycleC, where

Sq
k,eO

= hzlsqsl−1d/2Tqdlk/2fsqsl−1d/2Tqdul P Z, f P Oe,lj.

We shall construct an embedding ofSq
e,k̂ into the Lie algebra of infinite matrices with only

finitely many nonzero diagonal, over the algebra of truncated polynomials and its classical Lie
subalgebras of typeB, C, andD.

As in Sec. II, consider the associative algebraRm=Cftg / stm+1d with mPZ+. Recall thatg,`
fmg

is theZ-graded complex Lie algebra of all infinite matricessai,jdi,jPZ with finitely many nonzero
diagonals with entries inRm.

Let us fixsPC3, then we have a family of homomorphismws:Sq→g,`
fmg which is compatible

with the principal gradation, defined by

ws,tszkfsTqdd = o
lPZ

fssq−l+tdEsl−kd,l . s5.1d

Observe that it naturally extends to a homomorphismws,t :Sq
O→g,`

fmg. Let

Is
fmg,e,l = hfsqsl−1d/2Tqduf P Oe,l and f sidssqjd = 0 for all j P Z,i = 0,1, . . . ,mj

and
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Js
fmg,k,e = %

lPZ
zlsqsl−1d/2Tqdlk/2Is

fmg,e,l P Sq
k,eO

.

Therefore, it follows by the Taylor formula forws
fmg :Sq

e,k→g,`
fmg, that

Ker ws
fmg = Js

fmg,k,e. s5.2d

Choose a branch of logq. Let t=log q/2pi. Then anysPC3 is uniquely written ass=qa, a
PC /t−1Z. Now, let fix s=ss1, . . . ,sndPCn such that if we write eachsi =qai, we have

ai − aj ¹ Z + t−1Z for i Þ j , s5.3d

and fix m=sm1, . . . ,mndPZ+
n.

Let g,`
fmg= % i=1

n g,`
fmig. Consider the homomorphism

ws
fmg = %

i=1

n

wsi

fmig:Sq
k,eO → g,`

fmg.

Proposition 5.1: Givens and m as above, we have the exact sequence ofZ-graded Lie
algebras, provided thatuquÞ1:

0 → Js
fmg,k,e → Sq

k,eO →
ws

fmg

g,`
fmg → 0

where Js
fmg,k,e=ùi=1

n Jsi

fmig,k,e.
Proof: The first part is clear froms5.2d. For the sake of simplicity, we will prove the surjec-

tivity of ws
fmg in the caseN=1, m=m ands=s=qa. We will use the following well-known fact: for

every discrete sequence of points inC and a non-negative integerm there existsfswdPO having
prescribed values of its firstm derivatives at these points. By conditions5.3d and uquÞ1 we have
thathqsn−1d/2−j+aj andhq−sn−1d/2+j−aj are discrete and disjoint sequences of points inC. Therefore we
can findpPO such thatpsidsqsn−1d/2−j+ad=psidsq−sn−1d/2+j−ad=0 for i =0, . . . ,m−1 and j PZ,

psmdsqsn−1d/2−j+ad = 1, psmdsq−sn−1d/2+j−ad = − e js− 1dmq2mhf−sn−1d/2g+j−aj

for a fixed value ofj and zero for the remaining points in the sequences. Now letfswd=fpswd
−enpsw−1dg /2. Using Taylor formula forws

m and the way we choosep it is a straightforward
computation that the image ofznsqsn−1d/2Tqdnk/2fsqsn−1d/2Tqd is up to a nonzero constant
stm/m!dEj−n,j. Similarly one can show thatftm−1/ sm−1!dgEj−n,j is also in the image, and then
inductively completing the proof. j

Now we want to extend the homomorphismws
fmg to a homomorphism between the central

extensions of the corresponding Lie algebras.

Proposition 5.2: TheC-linear mapŵs
fmg :Sq

k,ê→g,̂ `
fmg defined byss=qad,

uŵs
fmgusSq

k,êd j
= uws

fmgusSq
ked j

if j Þ 0, s5.4d

ws
fmĝsqsndsq−n/2Tq

n − qn/2Tq
−ndd = ws

fmgsqsndsq−n/2Tq
n − qn/2Tq

−ndd

− o
j=1

m
qsa−1/2dn + s− 1d jqs−a+1/2dn

qn/2 − q−n/2 sn log qd j t
j

j !
sn Þ 0d, s5.5d

ŵs
fmgsCd = 1 P Rm, s5.6d

is a homomorphism of Lie algebras overC.

Proof: It is straightforward computation restricting the formula ofws
fmĝ in s6.5d of Ref. 5, to

Sq
k,ê. j
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The homomorphismws
fmg :Sq

k,e→g,`
fmg is defined for anysPC3. However if s=qa with a

PZ /2, it is no longer surjective. The casea=1 is described by the following.
Proposition 5.3: We have the following exact sequences of Lie algebras:

0 → Jq
fmg,k,1 → Sq

k,1O→
wq

fmg

d`
fmg → 0,

0 → Jq
fmg,k,−1 → Sq

k,−1O→
wq

fmg

c`
fmg → 0.

Proof: By definition ofwq
fmg, it is easy to see that its image lies ind`

fmg or c`
fmg depending ife=1

or −1. The proof of the rest is similar to that of Proposition 5.1. j

Similarly, the casea=1/2, isdescribed by the following.
Proposition 5.4: We have the following exact sequences of Lie algebras:

0 → Jq1/2
fmg,k,1 → Sq

k,1O →
w

q1/2
fmg

b̄`
+fmg → 0,

0 → Jq1/2
fmg,k,−1 → Sq

k,−1O →
w

q1/2
fmg

b̄`
−fmg → 0.

Remark 5.5:For arbitraryaPZ the image ofSq
k,1̂ by w

qa
fmg is nqa

sd`
fmgd and the image ofSq

k,−1̂

by w
qa
fmg is nqa

sc`
fmgd, wheren was defined ins2.1d. Similarly, for aPZ+1/2 theimage ofSq

k,ê by

w
qa
fmg is nqa

sb`
fmgd. Therefore it is enough to considera=1 anda=1/2.

We will say that a vectors=ss1,s2, . . . ,sNd=sqa1, . . . ,qaNdPCN satisfies thecondition if ai

PZ, thenai =1; if ai PZ+1/2 thenai =1/2, andai −aj ¹Z+t−1Z for i Þ j .
Now, given s=ss1,s2, . . . ,sNd=sqa1, . . . ,qaNdPCN satisfying the “condition” above andm

=sm1, . . . ,mndPZN, and combining Propositions 5.1–5.4, we obtain a surjective Lie algebra ho-
momorphism

ŵs
fmg = %

i=1

n

wsi

fmig:Sq
k,eÔ → gfmg

ª %
i=1

n

gfmig, s5.7d

where

gfmig =5g,̂ `
fmig if ai ¹ Z/2,

b`
fmig if ai = 1/2,

d`
fmig if ai = 1 ande = 1,

c`
fmig if ai = 1 ande = − 1.

6 s5.8d

VI. REALIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF Sq
«,k̂

Heregfmg will be g,̂ `
fmg or one of its classical subalgebras. The proof of the following result is

in Ref. 3.
Proposition 6.1: Thegfmg-module Lsgfmg ;ld is quasifinite if and only if all but finitely many of

the †hj
sid are zero, where† represents a, b, c or d depending on whethergfmg is g,̂ `

fmg, b`
fmg, c`

fmg or
d`

fmg.
Take a quasifinitelsidP sg0

fmigd* for each i =1, . . . ,N, and letLsgfmig ;lsidd be the correspond-
ing irreduciblegfmig-module. The outer tensor product
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Lsgfmg;ld = ^ i=1
n Lsgfmig;lsidd

is an irreduciblegfmg-module. The moduleLsgfmg ;ld can be regarded asSq
e,k̂-module via the

homomorphismws
fmĝ given by s5.7d, which we shall denote byLs

fmg,k,esld.
We shall need the following Proposition, whose proof is completely similar to Proposition 4.3

in Ref. 5.

Proposition 6.2: Let V be a quasifiniteSq
k,ê-module. Then the action ofSq

k,ê on V naturally
extends to the action ofsSq

k,eÔ
d j on V for any jÞ0.

Given m=sm1, . . . ,mndPZ+
n, we let gfmg= % i=1

n gfmig. Let s=ss1, . . . ,snd satisfying the “condi-

tion.” By Proposition 5.1s4d, we have thatŵs
fmg :Sq

k,ê→gfmg is a surjective homomorphism of Lie
algebras overC.

Now we have the following important result.
Theorem 6.3: Let s=ss1, . . . ,snd satisfying the “condition.” Consider the embedding

ŵs
fmg :Sq

k,ê→gfmg and let V be a quasifinitegfmg-module. Then anySq
k,ê-submodule of V is a

gfmg-submodule as well. In particular, theSq
k,ê-modules Ls

fmg,k,esld are irreducible.
Proof: The same proof as Theorem 4.5 in Ref. 5. j

By Proposition 6.1 and Theorem 6.3, we have that theSq
k,ê-modulesLs

fmg,k,esld are irreducible
quasifinite highest weight modules. Using the formulass5.4d and s5.6d, we can calculate the
generating seriesDm,s,l

k,e sxd=onDnx
−n of the highest weight and the central chargec of the

Sq
k,ê-moduleLs

fmg,k,esld. We will introduce the following notation:

hisa,bd ª
qab + s− 1diq−ab

qa/2 − q−a/2

sb log qdi

i!
. s6.1d

Proposition 6.4: Take the embeddingŵs
fmg :Sq

k,ê→g,̂ `
fmg with s=qa and a¹Z /2. The

g,̂ `
fmg-module Lsg,`

fmĝ ;ld regarded as aSq
k,ê-module is isomorphic to LsSq

k,ê ;e+,e−d where e+ and
e− consists of the exponents a− j −1, s j PZd with multiplicities,

o
0øiøm,i even

ah̃j
sidx

i

i!
and o

0øiøm,i odd

ah̃j
sidx

i

i!
, s6.2d

respectively, withah̃j
sid=sahj

sid−d0,jcidslog qdi.

Proof: By Proposition 6.1 and Theorem 6.3 theSq
k,ê-module Ls

fmg,k,esld is an irreducible
quasifinite highest weight module. By applyingl to s5.5d and using formulass5.1d ands6.1d, we
obtain snPZd

sDm,s,l
k,e dn = − qsndlSo

jPZ
o
i=0

m

sqnsa−j−1/2d − s− 1diq−nsa−j−1/2ddsn log qdi t
i

i!
Ejj

− o
i=0

m
qsa−1dn + s− 1diqs−a+1dn

qn/2 − q−n/2

sn log qdi

i!
tiD

= − qsndlSo
jPZ

o
i=0

m

shisa − j ,nd − hisa − j − 1,nddtiEjj − o
i=0

m

hisa − 1,ndtiD . s6.3d

Shifting the indexj to j +1 in the first sum of the last identity ins6.3d we have

sDm,s,l
k,e dn = − qsndSo

jPZ
o
i=0

m

hisa − j − 1,ndahj
sid − o

i=0

m

hisa − 1,ndciD . s6.4d

Using the definition of multiplicities and exponents for the quasipolynomial in Theorem 4.7sbd,
we finish our proof. j
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Proposition 6.5: Take s=qa, a=1/2 and the embeddingŵs
fmg :Sq

k,ê→b`
fmg. The b̀fmg-module

Lsb`
fmg ;ld regarded as aSq

k,ê-module is isomorphic to LsSq
k,ê ;e+,e−d where e+ and e− consists of the

exponents−j −1/2, s j PZù0d with multiplicities

o
0øiøm,i even

bh̃j
sidx

i

i!
and o

0øiøm,i odd

bh̃j
sidx

i

i!
, s6.5d

respectively, wherebh̃j
sid=bhj

sidslog qdi for j .0 and bh̃0
sid=1/2bh0

sidslog qdi.
Proof: Replacinga=1/2 in s6.3d and shifting the indexj to j +1 in its first summation we get

sDm,s,l
k,e dn = − qsndlSo

jPZ
o
i=0

m

his− j − 1/2,ndstiEj+1,j+1 − tiEjjd − o
i=0

m

shis− 1/2,ndtidD . s6.6d

Now, splitting the summationo jPZ into two, namelyo jù0+o jø0, changingj by −j −1 in the
negative index sums, using the fact thathisa ,bd=s−1dihis−a ,bd and formulass2.7d, we have

sDm,s,l
k,e dn = − qsndo

jù0
o
i=0

m

his− j − 1/2,ndbh̃j
sid/slog qdi s6.7d

now the proposition follows from the definition of multiplicities and exponents applied to the
quasipolynomial given by Theorem 4.7. j

Proposition 6.6: Consider s=qa, a=1.

sad se=1d. Take the embeddingŵs
fmg :Sq

k,1̂→d`
fmg. The d̀fmg-module Lsd`

fmg ;ld regarded as a

Sq
k,1̂-module is isomorphic to LsSq

k,1̂;e+,e−d where e+ and e− consists of the exponents−j ,
s j PZù0d with multiplicities,

o
0øiøm,i even

dh̃j
sidx

i

i!
and o

0øiøm,i odd

dh̃j
sidx

i

i!
, s6.8d

respectively, withdh̃j
sid=dhj

sidslog qdi if j .0 and 0h̃j
sid=1/2sdh0

sid−dh1
siddslog qdi.

sbd se=−1d. Take the embeddingŵs
fmg :Sq

k,1̂→c`
fmg. The c̀fmg-module Lsc`

fmg ;ld regarded as a

Sq
k,1̂-module is isomorphic to LsSq

k,1̂;e+,e−d where e+ and e− consists of the exponents−j ,
s j PZù0d with multiplicities

o
0øiøm,i even

ch̃j
sidx

i

i!
and o

0øiøm,i odd

ch̃j
sidx

i

i!
, s6.9d

respectively, withch̃j
sid=chj

sidslog qdi.
Proof: We leave the details of the proof to the reader since it is completely similar to the proof

of Propositions6.5d. j

Consider an irreducible quasifinite highest weightSq
k,ê-module V and denote byPsxd its

corresponding quasipolynomial. We will write

Psxd = o
s=qaPC

o
i=0

ms

as,ihisx,a − 1d
sinhqsx/2d

2
s6.10d

with as,i PC, andas,i Þ0 for only finitely manysPC. We can fix ambiguities in expressingPsxd
in the form s6.10d caused by symmetries ofs6.1d fnamelyhisa ,bd=s−1dihisa ,−bdg, by the fol-
lowing rule inthe choice of the parameters: when s=qa, with aPZ we requireaø0; whena
P1/2+Z, we askaø1/2; whena¹1/2Z we require that Ima.0 if Im aÞ0, or a.1 if a
PR, where Im denote the imaginary part of a complex number andf g denote the closest integer
to the number which is not larger than itself.
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Now, we decompose the sethsPC uas,i Þ0 for someij into a disjoint union of equivalence
classesS under the relation

s= qa , s8 = qa8 if and only if a − a8 P Z + t−1Z,

Then, we choose a representatives of each equivalence classS such thats=q if a lies in Z and
s=q1/2 if a lies in Z+1/2. LetS=hs=qa,s1=qa+k1,s2=qa+k2, . . .j. Takek0=0 andm=maxsPSms. It
is easy to see by the rules in picking the parameters that if a=1 or 1/2, thenki PN.

Now, we attach toS a gfmg-moduleLs
fmgslSd in one of the following ways.

If a¹Z /2, let ahkr

sid=as+kr,i
slog qdi with i =0, . . . ,ms and r =0,1,2, . . . . Weassociate toS the

g,̂ `
fmg-moduleLs

fmgslSd with central charges and labels

ci = o
kr

ahkr

sid, al j
sid = o

krù j

ah̃kr

sid,

whereah̃k
sid=ahk

sid−cidk,0.
If a=1/2 let bhkr

sid=as+kr,i
slog qdi with i =0, . . . ,mq1/2 and r =0,1,2, . . . . Weassociate toS the

b`
fmg-moduleLs

fmgslSd with central charges and labels

ci = o
kr

bhkr

sid, si evend, ci = 0, si oddd,

bl j
sid = o

krù j

bhkr

sid, bl0
sid = o

krù0

bhkr

sid si oddd,

where j PN and i =0, . . . ,mq1/2.

If a=1 ande=−1, let chkr

sid=as+kr,i
slog qdi with j =0, . . . ,mq andr =0,1,2, . . . . Weassociate to

S the c`
fmg-moduleLs

fmgslSd with central charges and labels

ci = o
kr

chkr

sid si evend, ci = 0 si oddd,

cl j
sid = o

krù j

chkr

sid,

where j PN and i =0, . . . ,mq. If a=1 and e=1, let chkr

sid=as+kr,i
slog qdi with j =0, . . . ,m1 and r

=0,1,2, . . . . Weassociate toS the d`
fmg-moduleLs

fmgslSd with central charges and labels

ci = o
kr

dhkr

sid si evend, ci = 0 si oddd,

dl j
sid = o

krøi

dhkr

sid,

where j PN and i =0, . . . ,m1.
Denote byhs1,s2, . . . ,sNj a set of representatives of the equivalence classes in the seths

PC uas,j Þ0 for some jj. Theorem 6.3, theSq
k,ê-module Ls

fmg,k,esld is irreducible for s
=ss1, . . . ,sNd satisfying the “condition.” Then by the above discussion, Theorem 6.3, and Propo-
sitions 6.4–6.6 we have proved the following.

Theorem 6.7: Let V be an irreducible quasifinite highest weightSq
k,ê-module with central

charge c and let Psxd be the quasipolynomial given by Theorem 4.7 written in the form (6.10).
Then V is isomorphic to the tensor product of the modules Ls

fmg,k,eslSd with distinct equivalence
classes S.

Remark 6.8:A different choice of representativess=qa with a¹Z /2 in the equivalence class
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S has the effect of shiftingg,̂ `
fmg via the automorphismni for somei. It is not difficult to see that

any irreducible quasifinite highest weight moduleLsSq
k,ê ,zd can be obtained as above in an essen-

tially unique way up to this shift.
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Erratum: “The use of so „2,1… algebra for the evaluation
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Equations43d should read

cni,nj,n
li,l j = Cni,nj,n

li,l j −
ni + nj − l i − l j − 2 −n

ni + nj + l i + l j − n − 1
Cni,nj,n+1

l i,l j .

JOURNAL OF MATHEMATICAL PHYSICS46, 039901s2005d

46, 039901-10022-2488/2005/46~3!/039901/1/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1857031


Inversion time of large spins
Ekatherina A. Karatsuba
Computer Centre of RAS, ul. Vavilova 40, Moscow 119991, Russia

Paolo Morettia!

“Istituto dei Sistemi Complessi” del C.N.R., Sezione di Firenze, Via Panciatichi, 64 -
50127 Florence, Italy

sReceived 23 September 2004; accepted 26 November 2004;
published online 14 March 2005d

In order to find an accurate expression for the inversion probability of a large spin,
an asymptotic expansion in series of Bessel functions is found, and a formula for
the inversion time is obtained. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1860593g

I. INTRODUCTION

Spin dynamics plays a very important role in the study of molecular magnetic clusters. In
particular, if Mössbauer spectroscopy is used, the inversion time of the spin is one of the most
important parameters in the structure of the experimental spectra.1 In a pictorial, intuitive descrip-
tion, as the total electronic spin of the surrounding neighbors inverts its direction, the magnetic
field on the iron nucleus also changes. Thus, the nuclear energy levels are modified and we are in
the presence of the “Mössbauer relaxation spectrum,” with a structure that depends on the fre-
quency of the inversion.2

In Ref. 3 the coefficientubnstdu2, which gives the probability of finding the system in thenth
spin state, has been calculated and it is found to be a somewhat involute trigonometric sum. An
approximate expression forbnstd by means of the corresponding Bessel functions was obtained
only if n!N, at!N sN is the total number of spin states,a is a parameterd, since the trigono-
metric sum which runs through all the spin states can be replaced by an integral in a careful way
only in this case. Using a heuristic argumentation, this form has been assumed to be valid also for
n=N, which corresponds to the transition from spin-up to spin-down, and the inversion time has
been calculated in this way. It is given by the first maximum ofubNstdu2. However, due to the
important role of the inversion time, which connects the theory with the experimental spectra, a
better calculation is in order, thus justifying in a strict way the approach used in Ref. 3.

In this paper a new formula for the probability amplitudebNstd, for Nù2 and for anyt, is
obtained. This exact expression in terms of the Bessel functions with large indexes allows the
effective computation ofbNstd with increasing accuracyssee Fig. 1 in Sec. IIId.

An asymptotically exact expression is obtained for the spin inversion time. An application of
this useful formula is shown in the example of the Fe8 cluster.

II. POSITION OF THE PROBLEM

The Hamiltonian of our system, which involves an entire spinS, has the form:H=H0+V,
whereH0 is a static Hamiltonianse.g., a magnetic fieldd and V is the term responsible for the
transitions between spin states.

Starting from the discrete set of theNsN=2S+1d spin eigenstatesunl of H0 with energiesEn,
we can write the wave function as

adElectronic mail: p.moretti@ifac.cnr.it
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cstd = o
n=1

N

anstdunlexps− iEnt/"d. s1d

From the Schrödinger equation, the coefficientsanstd result:

i"ȧnstd = o
l=1

N

alstdVnl expsivnltd, vnl =
En − El

"
. s2d

Some simplifications are in order. First, we can assume thatV connects only neighboring
states, and does not have diagonal elements; moreover,uvn,n±1u=v, independent ofn, andVn,n+1

*

=Vn,n−1=k.
The initial conditions of interest are

a1s0d = 1,

ans0d = 0, n = 2,3,…,N,

which correspond to the spin upsor downd.
The substitution

bnstd = anstde−invt s3d

leads to a set of equations that can be solved by Laplace transform. By consideringn=N, namely
the probability amplitude of the spin inversion, the following result can be obtained:

bNstd = − 2
s− 1dN

N + 1 o
s=1

N

sin
sp

N + 1
sin

Nsp

N + 1
expS2pib cos

sp

N + 1
D , s4d

where

b =
kt

p"
= a

t

2p
, a =

2k

"
. s5d

This equation works for small values ofv; more precisely, if in the full calculation an expansion
up to the first order inv is performed, the coefficientbN is again given bys4d within a phase factor
only.3

III. THE ASYMPTOTIC EXPANSION OF bN

The aim of the present work is to study the functionbNstd whereNù2.
Theorem: For bNstd holds the formula:

bNstd = s− 1dN 2

aton=1

+`

i sN+1ds2n−1dhfsN + 1ds2n − 1d − 1gJsN+1ds2n−1d−1satd + fsN + 1ds2n − 1d

+ 1gJsN+1ds2n−1d+1satdj, N ù 2.

To prove the theorem it is necessary to prove three lemmas.
Lemma 1: The following relation is valid for bNstd:

bNstd =
s− 1dN

2sN + 1d
fS1 − S2 − sS3 − S4dg,

where
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S1 = o
j=1

N+1

expF2piS2j − 1

N + 1
+ b cos

s2j − 1dp
N + 1

DG ,

S2 = o
j=1

N+1

expF2piS 2j

N + 1
+ b cos

2jp

N + 1
DG ,

S3 = o
j=1

N+1

expF2pib cos
s2j − 1dp

N + 1
G ,

S4 = o
j=1

N+1

expS2pib cos
2jp

N + 1
D .

Proof: First, one easily verifies that

2bNstd = − 2
s− 1dN

N + 1 o
s=1

2sN+1d

sin
sp

N + 1
sin

Nsp

N + 1
expS2pib cos

sp

N + 1
D ,

and after straightforward calculations we obtain that

bNstd =
s− 1dN

4sN + 1d o
s=1

2sN+1d

s− 1ds+1HexpF2piS s

N + 1
+ b cos

sp

N + 1
DG

+ expF− 2piS s

N + 1
− b cos

sp

N + 1
DG − 2 expF2pib cos

sp

N + 1
GJ . s6d

Since the function

s− 1ds+1expF2piS s

N + 1
+ b cos

sp

N + 1
DG

is periodic ins, with the period 2sN+1d,

o
s=1

2sN+1d

s− 1ds+1expF2piS s

N + 1
+ b cos

sp

N + 1
DG = o

s=1

2sN+1d

s− 1ds+1 expF− 2piS s

N + 1
− b cos

sp

N + 1
DG ,

and therefore

bNstd =
s− 1dN

2sN + 1d o
s=1

2sN+1d

s− 1ds+1HexpF2piS s

N + 1
+ b cos

sp

N + 1
DG − expF2pib cos

sp

N + 1
GJ .

s7d

We represents7d in the form of the sum of two sums, one over odds:s=2j −1; j
=1,2,3,… ,N+1; another one over evens:s=2j ; j =1,2,3,… ,N+1. From here we have the
statement of the lemma.

We consider the function

fsxd = e2pib cos 2px, s8d

which is a periodic function with the period 1. We expandfsxd as a Fourier series

042101-3 Inversion time of large spins J. Math. Phys. 46, 042101 ~2005!

                                                                                                                                    



fsxd = o
k=−`

+`

cskde2pikx, s9d

with the coefficients

cskd =E
0

1

fsxde−2pikxdx = 2E
0

1/2

e2pib cos 2pxcos 2pkxdx. s10d

Lemma 2: For uku.0, the following estimate is valid:

ucskdu ø
s2pbd2 + 2pubu

k2 ,

and, in particular, the Fourier series for the function fsxd converges absolutely.
Proof: From s10d, cskd=cs−kd. For kÞ0, we find

cskd =E
0

1

fsxd
de−2pikx

− 2pik
=

1

s2pikd2E
0

1

f9sxde−2pikxdx,

ucskdu ø
1

s2pkd2E
0

1

uf9sxdudx ø
1

s2pkd2 max
0øxø1

uf9sxdu.

Since froms8d

f9sxd = − 16p4b2sin2 2pxe2pib cos 2px − 8p3ib cos 2pxe2pib cos 2px,

then

uf9sxdu ø s2pd4b2 + s2pd3ubu.

From here we have the statement of the lemma.
Lemma 3: Assume that M and m are integers, M .1, 0ømøM; the sums A and B are defined

by the equalities:

A = o
j=1

M

expF2piSm

M
S j −

1

2
D + b cos 2p

s j − 1
2d

M
DG ,

B = o
j=1

M

expF2piS m

M
j + b cos 2p

j

M
DG .

Then the following relations hold:

A = M o
r=−`

+`

s− 1drcsrM − md,

B = M o
r=−`

+`

csrM − md,

where cskd are the Fourier coefficients of the function fsxd=e2pib cos 2px.
Proof: Representing the factore2pib cos 2px of each summand of the sumsA andB in the form

of the Fourier series, we find
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A = o
j=1

M

expF2pi
m

M
S j −

1

2
DG o

k=−`

+`

cskdexpS2pi
j − 1

2

M
kD = o

k=−`

+`

cskdo
j=1

M

expF2pi
m+ k

M
S j −

1

2
DG ,

s11d

B = o
j=1

M

expS2pi
m

M
jD o

k=−`

+`

cskdexpS2pi
j

M
kD = o

k=−`

+`

cskdo
j=1

M

expS2pi
m+ k

M
jD . s12d

Since

o
j=1

M

expF2pi
m+ k

M
S j −

1

2
DG = Hs− 1drM if m+ k = rM ,r is an integer,−̀ , r , + `

0 if m+ k is not a multiple ofM ,
J

o
j=1

M

expS2pi
m+ k

M
jD = HM if m+ k = rM ,r is an integer,−̀ , r , + `

0 if m+ k is not a multiple ofM ,
J

then we have froms11d and s12d, respectively,

A = M o
r=−`

+`

s− 1drcsrM − md,

B = M o
r=−`

+`

csrM − md.

The lemma is proved.
Corollary 1: From lemma 1 and lemma 3 we obtain that

bNstd = s− 1dN+1o
n=1

+`

hcfsN + 1ds2n − 1d − 2g + cfsN + 1ds2n − 1d + 2g − 2cfsN + 1ds2n − 1dgj.

s13d

Proof of the theorem:The terms of this series, the functionscskd, are defined by the integrals
s10d and can be transformed into a convenient form. By making the change of variable of inte-
grationy=2px, w=y−p /2, in s10d, we obtain

cskd =
1

p
E

0

p

eiat cosycosky dy =
ik

2p
E

0

2p

eiskw−at sin wddw,

a=2pb / t.
The integral

Jksatd =
1

2p
E

0

2p

eiskw−at sin wddw s14d

is the Bessel function of thekth order; using well-known recurrence formulas,4 we represent the
seriess13d in the form

bNstd = s− 1dN 2

aton=1

+`

i sN+1ds2n−1dhfsN + 1ds2n − 1d − 1gJsN+1ds2n−1d−1satd + fsN + 1ds2n − 1d

+ 1gJsN+1ds2n−1d+1satdj, N ù 2. s15d
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The theorem is proved.
Remark: Since Jnsatd decreases exponentially asn increases, and in (15) the summing is over

n, belonging to an arithmetic progression with the difference2sN+1d, then the first summands of
the sum (15) give already a very good approximation to bNstd.

Let kù1, and

bN
skdstd = s− 1dN 2

aton=1

k

i sN+1ds2n−1dhfsN + 1ds2n − 1d − 1gJsN+1ds2n−1d−1satd + fsN + 1ds2n − 1d

+ 1gJsN+1ds2n−1d+1satdj, N ù 2. s16d

We note at once that, also stopping tok=1, the result is very satisfactory up to the first
maximum, and the expression used in Ref. 3, with a single Bessel function, is improved signifi-
cantly. This is shown in Fig. 1 for a typical valueN=15.

IV. CALCULATION OF THE INVERSION TIME

Since functions16d reproduces the behavior ofbNsatd very well also fork=1 in the range of
interest, we use this approximate form to find the position of the first maximum of its squared
modulus, which gives the inversion time. This maximum corresponds to the first zero of
d/dtfbN

s1dsatdg, and is given by the equationst=atd

0 =
d

dt
FN

JNstd
t

+ sN + 2d
JN+2std

t
G =

d

dt
F2NsN + 1d

t
JN+1std + 2JN+2stdG

and since4

d

dt
JN+2std = JN+1std −

N + 2

t
JN+2std,

FIG. 1. The value ofubNstdu2sN=15,a=1d as given bys4d, and by approximations16d, with k=1, 2, 3.
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JN+2std = −
d

dt
JN+1std +

N + 1

t
JN+1std,

we eventually obtain

0 =
d JN+1std

dt
−

JN+1std
t

F2NsN + 1d + sN + 3dsN + 1d − t2

N2 + 2N + 3
G s17d

as can easily be verified. By expanding in the neighborhood of the first zero of d/dtfJN+1g, as
given by Abramowitz,5 a straightforward calculation leads to the result

t̄ = N + 1 + 0.8N1/3 − 1.16N−1/3 + OsN−2/3d. s18d

V. CONCLUSIONS

The difference between expressions18d and that of Ref. 3, for a typical value ofN,10–20,
is remarkable. With reference to the Fe8 cluster,6 the value of the experimental parametersk/Dd,
whereD is the anisotropy constant, is found to be about 0.22, less than the value 0.25 given in
Ref. 3. It is, therefore, closer to the experimental value 0.16, thus confirming that a precise
determination of the inversion time is of fundamental importance in correlating the structure of
Mössbauer spectra to the spin Hamiltonian parameters.

We would like to stress that in this system the inversion takes place by means of jumps
between the degenerate lowest doublets, and therefore the use of formulass4d and s18d is well
justified. The accurate asymptotic formulas18d would be useless, in the presence of an indeter-
minate error due to a large value ofv.

An even better calculation can be worked out by observing that, in many cases, the spin states
are degenerate in energy only to a first approximation. As indicated in Ref. 3, a full investigation
taking into account the energy differences leads to the Laplace transform of Lommel’s polynomi-
als, and work is in progress in this direction.
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In the framework of geometric quantization, filaments of vorticity in a two-
dimensional, ideal incompressible superfluid belong to certain coadjoint orbits of
the group of area-preserving diffeomorphisms. The Poisson structure for such vor-
tex strings is analyzed in detail. While the Lie algebra associated with area-
preserving diffeomorphisms is noncanonical, we can nevertheless find canonical
coordinates and their conjugate momenta that describe these systems. We then
introduce a Fock-like space of quantum states for the simplest case of bosonic
vortex loops, with natural, nonlocal creation and annihilation operators for the
quantized vortex filaments. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1853504g

I. INTRODUCTION

In this paper we discuss quantized vortex filaments—open or closed strings of vorticity—in
the context of a model of an incompressible, inviscid fluid. Vortices are excitations descriptive of
the collective motion of the fluid. Such collective coordinates have played an essential role in
understanding a variety of quantum many-body systems, of which superfluids are a prominent
example.

Quantized vortex configurations in two or three spatial dimensions can be described by means
of unitary representations of the groupG=SDiff sRnd, for n=2 or 3. HereG is the groupsunder
compositiond of area- or volume-preserving diffeomorphisms of the plane or of three-space, re-
spectively, where the diffeomorphisms are compactly supported or become rapidly trivial at in-
finity. To exploit the full physical content of the representation theory, we would like to have a
description that makes use of the ideas associated with canonical creation and annihilation opera-
tors in Fock space. Here we take some important steps in this direction, writing canonically
conjugate coordinates to describe filaments of vorticity in an idealized thin planar film of fluid, and
introducing a Fock-like space of states, with creation and annihilation field operators, to describe
bosonic vortex loops.

Knowledge of the symmetry group of a classical system generally permits use of some variant
of geometric quantization, where the Hilbert space of quantum states carries an appropriate uni-
tary, irreducible representation of the symmetry group. Thus we construct the quantized vortices so
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as to respect the classical symmetry of the fluid. The configuration space for the fluid can be
identified with the underlying manifold ofG, and the symmetry is also described byG, acting on
its own group manifold by left multiplication.

Unitary representations are obtained from coadjoint orbits or families of orbits, which serve as
reduced phase spaces for the classical system. Forn=2 we consider the Poisson structure on those
coadjoint orbits ofG that are associated with filaments of vorticity. Ordinarily the description is
noncanonical. However, using a coordinatization intrinsic to the filaments themselves, we are able
to write canonically conjugate coordinates for the coadjoint orbits. These turn out to be the
position Gssd of the filament inR2, parametrized by its own arc lengths, and thecumulative
vorticity function g̃ssd along the filament.

We next introduce a Fock-like space for bosonic vortex loops. The arguments of the field
operators are extended configurationssunparametrized loopsd, so that the operators are, in a sense,
nonlocal. Our formal construction also assumes the existence of a suitable measure on the space of
unparametrized loops. We show that the desired measure for systems of loopssi.e., multiloop
configurationsd should satisfy a multiplicative property with respect to the creation of new loops,
in order to yield an appropriate hierarchy of unitary group representations. We give some simple
prescriptions for constructing such measures from single-loop measures.

Section II briefly surveys some related research. In Sec. III we review the symplectic structure
on coadjoint orbits of diffeomorphism groups, establish notation, and discuss the Poisson structure
on coadjoint orbits associated with vortex filaments. Section IV introduces the formal construction
of the Fock space, while Sec. V contains conclusions and suggestions for future research direc-
tions.

II. BACKGROUND

The diffeomorphism groupG=SDiff sRnd is taken as the classical symmetry group of an ideal,
incompressible fluid by Arnold.1 Marsden and Weinstein2 consider coadjoint orbits with point
vorticessfor n=2d. We refer to the book by Arnold and Khesin,3 and references therein.

Goldin, Menikoff, and Sharp examine the quantizability of particular vortex structures from
the point of view of geometric quantization on coadjoint orbits.4,5 They demonstrate that not all
the coadjoint orbits ofG permit quantization, in the sense of obtaining an irreducible, unitary
representation ofG. A necessary condition is existence of a polarization which, roughly speaking,
encodes the uncertainy principle. It expresses the condition that the coordinates of the orbit
sregarded as a reduced, classical phase spaced can be partitioned into some maximal set of “con-
figuration space” variables together with another set of “momentum” variables. When a polariza-
tion is found, the quantum states can be written as functions of configuration space coordinates
only.

For point vortices in two dimensions, and one-dimensional vortex filaments in three dimen-
sions, the requisite polarizations do not exist. However, polarizations do exist for coadjoint orbits
containing vortex dipoles, loopssclosed stringsd, and arcssopen stringsd in the plane, and for orbits
containing vortex ribbons and tubes in three-space.

Owczarek6,7 obtains similar results in three dimensions using an approach based formally on
a field theoretic interpretation of knot theory,8,9 proposed by Peradzyński.10 He also discusses the
role of topological degrees of freedom for knotted and linked vortices in the thermodynamics of
critical superfluid helium,11 as anticipated in Ref. 5. Brylinski12 studies the symplectic structure on
orbits associated with vortex filaments in three dimensions, noting too that vortex ribbons are
better suited for quantization than vortex filaments. He proves that vortex ribbons describe
Lagrange manifolds with respect to the standard symplectic structure, remarking that this could be
a starting point for geometric quantization. Penna and Spera13 reconstruct the Poisson structure
that generates Hamiltonian dynamics for vortex filaments, within the current algebra framework
used here, as a limit of the standard brackets for smooth velocity fields. They also discuss differ-
ences between this framework and the canonical quantization of point vortices.

The geometric ideas we use also underlie the so-nameda-Euler equation,14–18 which can be
understood as an averaged Euler equation—or, in more functional analytic terms, anH1-Euler
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equation in contrast to the standardL2-Euler equation. The latter terminology is associated with
the variational derivation of the equations. Recall that the elements of the Lie algebra ofG are
divergenceless velocity fields. Taking theL2-norm on the space of velocity fields, one obtains the
standard Euler equation by variation of this norm with respect to the velocity field. Taking the
H1-norm instead, one obtains thea-Euler equation by the analogous variational procedure. In
defining theH1-norm, one must introduce a constant factor with the dimension of lengthswhich is
wherea comes into playd. One motivation for the modified theory is to achieve greater stability by
filtering out short-wavelength modes from the system. The interesting feature of this approach for
us is that the diffeomorphism invariance is not destroyed by this change. The geometric frame-
work of Shkoller, Marsden, and Ratiu19,20 may be as valuable for quantization of vortex solutions
to a-Euler equations as the earlier Marsden–Weinstein work2 is for quantum vortices in the
standard Euler fluid.

Questions similar to those addressed in the present paper about the quantum kinematics of
vortex filaments are already answered for systems of nonrelativistic, quantum point particles,
which are classified by the unitary representations of the group DiffsRnd of snot necessarily
volume-preservingd diffeomorphisms.21,22 In particular Goldin, Menikoff, and Sharp predict
“anyons,” particles obeying intermediate statistics modeled on the braid group, using this
approach,22 confirming an earlier idea of Leinaas and Myrheim.23 More recently Goldin and Sharp
propose a general construction of creation and annihilation field operators as intertwining opera-
tors in a hierarchy of unitary representations of the diffeomorphism group. For the case of anyons
they construct such field operators explicitly, showing howq-commutation rules enter for the
operators without having been assumed from the outset.24 We adopt the same spirit here in our
Fock space construction, but for ease of discussion we treat only the bosonic case. We expect to
be able to generalize our results to anyonic statistics for systems of planar vortex loops and
filaments.

The above-mentioned facts regarding the quantizability of certain vortex structures highlight
the possibility of interesting effects on the quantum level associated with the more complicated
topology of vortex configuration spaces. Thus there can be “internal statistics” for individual,
two-dimensional vortex loops, and effects associated with twistedness, knottedness, and linked-
ness of vortex ribbons in three dimensions.

Speliotopoulos constructs creation and annihilation operators for vortices in superfluid helium
with a heuristic approach that starts from a rule for quantization of vorticity.25 Treating the vortices
as point-like excitations, he postulates an approximate bilinear one-vortex HamiltonianH=ec*c,
wherec* and c are one-vortex creation and annihilation operators. To avoid singularities in the
corresponding wave function, he then modifies the creation and annihilation operators in a way
that he interprets as a transition from point vortices to vortex patches. However the vortex patches
are homogeneous, and in our framework are also not susceptible to geometric quantization.4

Taking coadjoint orbits that allow polarizations, the unitarity of the resulting representations
of G further depends on having measures on the configuration space that are quasi-invariant under
G. Construction of such measures is difficult, but not essential for our present results on the
kinematics of such systems. However, we expect the details to be very important to quantum
dynamics. Some ideas regarding properties of measures appropriate to the description of quantum
vortices are given in Ref. 26. Related questions about measures are discussed by Ismagilov27 and
Goldin and Moschella;28,29 a mathematical construction of such measures is proposed by
Shavgulidze.30

III. POISSON STRUCTURE FOR VORTEX FILAMENTS IN R 2

A. Symplectic structure on coadjoint orbits of diffeomorphism groups

The present notation is a compromise between that used in our previous publications, and the
notation of the textbook by Arnold and Khesin.3 We begin with the general formula for the

042102-3 Quantum kinematics of bosonic vortex loops J. Math. Phys. 46, 042102 ~2005!

                                                                                                                                    



Kirillov–Kostant–SouriausKKSd symplectic structure on coadjoint orbits of a Lie groupG. We
then takeG to be SDiff sRnd, with n=2 or 3 as needed for discussing incompressible hydrody-
namics.

Let G be the Lie algebra ofG andG* be its dual, with the pairingk·,·l mappingG* 3G→R. Let
f·,·g denote the bracket inG. For finite-dimensional groupsG* is isomorphic as a vector space toG,
while if G is an infinite-dimensional group of the sort we consider, thenG* is in a sense larger than
G; they are no longer isomorphic. Denote left translation inG by Lgshd=gh, right translation by
Rgshd=hg, and the adjoint actionRg−1+Lg by Adg:G→G swhere+ denotes compositiond; Adg slike
Lgd is a left action onG.

Given a manifoldM andF :M→M, its derivative at the pointxPM is a linear operatoruF* ux
from TxM to TFsxdM. The derivative of Adg at the identityePG is the adjoint representation ofG
acting inG, denoted also as Adg. For jPG, we write

adj = U d

dt
U

t=0
Adgstd,

wheregstd is a curve inG with gs0d=e and

U d

dt
U

t=0
gstd = j;

then fj ,hg=adjh.
Define the coadjoint representation ofG acting inG* , for j ,hPG andmPG* , by

kcoadjm,hl = kadj
*m,hl = km,adjhl = km,fj,hgl. s1d

This is the infinitesimal version of the coadjoint representation ofG on G* ,

kAdg
*smd,jl = km,Adgjl, s2d

which is a right action:kAdg1g2

* m ,jl=ksAdg2

* +Adg1

* dsmd ,jl. For mPG* , the coadjoint orbit contain-
ing m is the setOmª hAdg

*smd :gPGj. Given an elementjPG, the coadjoint representation ofG
associates to it a vector fieldjG* on Om. The KKS symplectic form onOm is given by

VmsjG*smd,hG*smdd ª km,fj,hgl, s3d

wherejG*smd is the value ofjG* at m.
To describe idealized, incompressible hydrodynamics, one considersG to beSDiff sMd, where

M is a manifold equipped with a volume form. UsuallyM =R2 or R3, with the standard Euclidean
metric and volume element, so thatSDiff sMd consists of volume-preservingC` diffeomorphisms
of M. For M not compact, diffeomorphisms are usually further assumed to be compactly sup-
ported, or else to become trivial sufficiently rapidly at infinity. The group law is defined by
composition of diffeomorphisms:f1f2=f1+f2, for f1,f2PG. With this convention we follow
Refs. 2 and 3, instead of our previous papers where the opposite order was used. With the present
convention, the bracket inG is the negative of the usual Lie bracket of vector fieldsssee the
followingd. Now G can be identified with divergenceless vector fields onM vanishing rapidly at
infinity, the space that we callsVectsMd. The left group action inG is Lf1

sf2d=f1f2=f1+f2,
while Rf1

sf2d=f2+f1, so thatsAd fdscd=fcf−1=f +c +f−1. Let ct
v be a one-parameter sub-

group in G generated by a vector fieldvsxd on the manifoldM. Then fromsAd fdsct
vd=f +ct

v

+f−1, we have

Ad uf* uev = sDfvd + f−1, s4d

or in Cartesian coordinatesssumming over repeated indicesd,
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sAdsfdvd jsxd = FS ]fsyd j

]yk vkD + f−1Gsxd = U ]fsyd j

]yk U
y=f−1sxd

vksf−1sxdd =
]xj

] ff−1sxdgkvksf−1sxdd.

s5d

Thus the matrixDf at x is given by

fDfgk
j sxd =

]fsxd j

]xk , s6d

and atf−1sxd by

fDfgk
j sf−1sxdd =

]xj

] ff−1sxdgk . s7d

This specifies how diffeomorphisms act in the space of velocity fields of the fluid.
The transformation has a counterpart in the adjoint action of diffeomorphisms on stream

functions. For divergenceless velocity fields inR3, the stream functionxv is defined so thatv=
−curl xv. In R2, xv is a scalar function, and we havevi =−ei j]xv /]xj, where ei j is the usual
antisymmetric symbol withe12=1. The stream function is defined only up to the gradient of a
function onR3, or up to an additive constant onR2. In the latter case one can obtainxv from v by
introducingw=¹s2dxv=sv2,−v1d=v'. Thenxv=e`

x w ·ds, where the integration is along any path
from infinity to x sand is independent of the pathd; this choice setsxv=0 at infinity. An interesting
and convenient relation satisfied by such a stream function is

xfv1,v2gL
= v2 Ã v1, s8d

wheref· , ·gL denotes the standard Lie bracket of vector fields,fv1,v2gL=sv1¹ dv2−sv2¹ dv1. We
use the subscriptL to distinguish this from the bracket in the Lie algebraG obtained in Eq.s15d.
The action of diffeomorphismssin three dimensionsd, given by

xi8 = fsAd fdxgi = S ]yj

] ffsydgi x jD + f−1 s9d

or

xi8sxd =
] ff−1sxdg j

]xi x jsf−1sxdd, s10d

and sin two dimensionsd given by

xi8sxd = xisf−1sxdd, s11d

leads to the correct adjoint representation on the velocity fields.
Now G* consists ofgeneralizedsco-dvector fields; that is, fieldsAsxd whose components are

generalized functionssdistributionsd. The duality is expressed by the pairing

kAsxd,vsxdl ªE
Rn

Asxd · vsxddnx =E
Rn

Aisxdvisxddnx. s12d

For n=3, we have

kAsxd,vsxdl = −E
R3

vsxd · xvsxdd3x, s13d

wherevsxd=curl Asxd is a generalized vorticity field.
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Now the adjoint action ofG on G should be such that infinitesimally it reduces to the adjoint
action ofG onG; this requirement is satisfied bys4d ands5d. Consider the one-parameter subgroup
ft

u of G, which is the solution of the ordinary differential equation

dft
usxd
dt

= usft
usxdd,

ft=0
u sxd = x,

describing the flow under the vector fieldusxdPsVectsRnd. Then

sAdsft
udvd j =

] fft
usxdg j

]xk vk + sft
ud−1, s14d

and as a result

fu,vg = adsudv = U d

dt
U

t=0
fAdsft

udvg = − fu,vgL, s15d

so we see that the bracket in the Lie algebraG is the negative of the Lie bracket of the vector
fields.

Next we write the symplectic form explicitly. We work in the three-dimensional case, because
two-dimensional vector fields can be embedded in three dimensions so that the same formulas are
applicable.

For mPG* we take the generalized velocity fieldAsxdPsVectsRnd* . Forj ,hPG we take two
divergenceless vector fieldsu1sxd, u2sxd. Then the formula for the KKS form on the coadjoint orbit
containingAsxd, taken atAsxd, is

VAsxdsu1G*sAsxdd,u2G*sAsxddd = kAsxd,fu1sxd,u2sxdgl = −E
R3

Asxd · fu1sxd,u2sxdgLd3x.

s16d

Using s8d and integration by parts, we obtain

VAsxdsu1G*sAsxdd,u2G*sAsxddd =E
R3

vsxd · fu1sxd Ã u2sxdgd3x. s17d

B. Vortex filaments

Next we consider the case of coadjoint orbits associated with vortex loops or arcs inR2. We
shall use the term “filament” to refer to either a loop or an arc. For a vortex filament inR2, the
vorticity field can be written as

vsxd = kezE
0

2p

da dsx1 − C1sadddsx2 − C2sadd, s18d

whereCsad is a parametrized filament inR2; i.e., C : f0,2pg→R2; and wherek is proportional to
the total vorticity of the filament. The KKS symplectic form is given by
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VAsxdsu1G*sAsxdd,u2G*sAsxddd

= kE
R2

dx1 dx2 ez ·E
0

2p

da dsx1 − C1sadddsx2 − C2saddsu1sxd Ã u2sxdd

= kE
0

2p

da u1
1sC1sad,C2saddu2

2sC1sad,C2sadd

− kE
0

2p

da u2
1sC1sad,C2saddu1

2sC1sad,C2sadd

= kE
0

2p

da sdC1sad ∧ dC2saddsu1sCsadd,u2sCsaddd, s19d

where C1sad, C2sad are the first and second components ofCsad in R2, and dC1sad, dC2sad
denote the respective infinitesimal variations.

Thus the KKS form on the coadjoint orbit characterized byCsad can be written as the
two-form

VCsad = kE
0

2p

da dC1sad ∧ dC2sad. s20d

Taking a geometric point of view, it is natural to consider unparametrized filaments instead of
parametrized ones. An unparametrized filament is just theimageof the mapCsad. As remarked in
Ref. 4, the unparametrized filaments should serve as the quantum configurations. Given assuffi-
ciently smoothd unparametrized filamentG, a naturally available intrinsic parametrization is with
respect to its own arc lengths sin the case of the loop, calculated from an arbitrary initial pointd.
Then we can use a description of the vortex filament in which the original parametrized filament
Csad is replaced by the pairsG ,gd, whereg is the vorticity distribution written as a function ofs.
The functiongssd is defined fromCsad by

gssd ª
da

ds
. s21d

ThusG describes just the shape of the filament; the remaining information is coded ingssd. One
expects that the canonical coordinates on the coadjoint orbits can be expressed in terms of these
quantities. Therefore, it is desirable to write the principal formulas in terms of them.

To calculate the action of the symplectic form on two vector fields in the intrinsic coordinates,
we can introduce internal tangent and normal components of the vector fields. In these coordinates
uisxd=suitsxd ,uinsxdd, for i =1,2;wherex is a point on the filament,uitsxd is the component ofuisxd
tangent to the curve, anduinsxd the component normal to the curve. Usings19d, the action of the
symplectic form on the pair of vector fieldsu1sxd, u2sxd is given by

VAsxdsu1G*sAsxdd,u2G*sAsxddd =E
R2

d2x ezkE ds gssddsx − Gssddsu1sxd 3 u2sxdd. s22d

In intrinsic coordinates, the symplectic form reads

Vsgssd,Gssdd = kE ds gssdds∧ dGssd. s23d

This suggests that we introduce thecumulative vorticityfunctiong̃ssdªe0
sgss8dds8, where the zero

in the lower limit of the integral can be taken arbitrarily, so that dg̃ssd=gssdds. Then
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Vsg̃ssd,Gssdd = kE ds dg̃ssd ∧ dGssd, s24d

which is the canonical form of the symplectic structure.
Next we calculate the Poisson bracket for the coadjoint orbit of a vortex filament, in both

systems of coordinates. First, let us consider the parametrization byCsad=sC1sad ,C2sadd. For any
two functionsFsCd, GsCd on the coadjoint orbit, one defines the Poisson bracket by

hF,GjsCsadd = VCsadsXF,XGd, s25d

whereXF andXG are the vector fields on the coadjoint orbit associated withF andG. They are
given by the formula

iXF
sVCsadd = − dFsCsadd, s26d

where iX is the interior product; that is,iXsVd is here the one-form satisfyingfiXsVdgsYd
=VsX,Yd for any vector fieldY on the coadjoint orbit.

In general

dFsCsadd =E
0

2p

daF dF

dC1sad
dC1sad +

dF

dC2sad
dC2sadG , s27d

so the vector field associated withFsCsadd is given by

XF =E
0

2p

daFXF
1sad

d

dC1sad
+ XF

2sad
d

dC2sadG , s28d

whered /dC1sad andd /dC2sad are defined to be the basis dual todC1sad anddC2sad as specified
by the formulas

b d

dC1sad cdC1sbd = dsa − bd,

b d

dC2sad cdC1sbd = 0,

s29db d

dC1sad cdC2sbd = 0,

b d

dC2sad cdC2sbd = dsa − bd.

Next we express the components ofXF in terms of derivatives ofFsCd. Since

iXF
sVCsadd = kE

0

2p

dafXF
1dC2sad − XF

2dC1sadg, s30d

we obtain by comparison withs27d

XF
1sad = −

1

k

dF

dC2sad
, s31d
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XF
2sad =

1

k

dF

dC1sad
. s32d

As a result,

XF =E
0

2p

da
1

k
F−

dF

dC2sad
d

dC1sad
+

dF

dC1sad
d

dC2sadG . s33d

Thus we obtain the Poisson bracket of two functions on our coadjoint orbit,

hF,GjsCsadd = VCsadsXF,XGd = −E
0

2p

da
1

k
F dF

dC1sad
dG

dC2sad
−

dF

dC2sad
dG

dC1sadG . s34d

Applying a similar procedure, we obtain the formula for the Poisson bracket with respect to the
intrinsic coordinatesg̃ssd andGssd,

hF,Gjsg̃ssd,Gssdd = Vsg̃ssd,GssddsXF,XGd =
1

k
E dsF dF

dGssd
dG

dg̃ssd
−

dF

dg̃ssd
dG

dGssdG . s35d

Thus the coordinatesGssd and g̃ssd serve as canonical coordinates and momenta of the coadjoint
orbit. Formulas35d agrees with the result of Ref. 4 concerning the polarization of the orbits. The
quantum configuration space is the space ofunparametrizedfilamentsGssd. The stability sub-
group, or little group, consists of those area-preserving diffeomorphisms which preserve the fila-
ment as a set, but which can change arbitrarily the cumulative vorticity distributiong̃ssd, preserv-
ing only the total vorticity of the loop.

C. Evaluation of a Poisson bracket

Let us consider the calculation of the Poisson bracket for a concrete, illustrative pair of
functions on the coadjoint orbit of vortex filaments, using Eqs.s25d ands26d. Suppose first that the
vector fieldsXF, XG can be identified withuG* andvG* , respectively, for vector fieldsu andv on
R2. We then have Eq.s19d, which we write more concisely as

VsuG* ,vG*d = kE
0

2p

dafsu1 + Cdsv2 + Cd − su2 + Cdsv1 + Cdgsad. s36d

Next introduce a local coordinate system inR2 defined in a sufficiently narrow, ribbon-like
neighborhood of the filament. Such coordinates can be defined locally using integral curves of the
vector fields obtained via parallel transport of the tangent and normal vector fields on the filament.
We can thus write the coordinates for a point in such a neighborhood asss,x'd, wheres is the
arclength along the filament, andx' is locally the arclength coordinate along the integral curve of
the normal vector field, taking the value 0 on the filament. In this notation, the symplectic form
can be formally rewritten

VsuG* ,vG*d = kE E d2xds1dsx'dI f0,Ltotg
ssdgssdfu1sxdv2sxd − u2sxdv1sxdg, s37d

where d2x=dsdx', I f0,Ltotg
is the indicator function that is 1 on the intervalf0,Ltotg and 0 outside

it, Ltot is the length of the filament, and the integration is taken over a neighborhood of the filament
in which the coordinates are defined. Now let us regardF as given, withXF=uG* , and contract
both sides of Eq.s34d with an arbitrary vector fieldvG* . The right-hand side becomes
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udFsvG*duC = uvG*sFduC = U d

dt
U

t=0
Fsft

v + Cd, s38d

whereft
v is the flow generated byv, while the left-hand side ofs34d becomes justuVsuG* ,vG*duC

which is s37d. Equatings37d and s38d, we now consider a particular, highly instructive choice of
functionsF: let us defineFb

j sCd=Cjsbd for j =1,2, whereb is a fixed value of the parametera.
That is, for eachb the Fb

j are coordinate functions on the space of filaments. Then

U d

dt
U

t=0
Fb

j sft
v + Cd = v jsCsbdd, s39d

which may be rewritten as

E E d2x v jsxdds1dsx'dds1dss− ssbdd. s40d

Settings37d equal tos40d, and recalling thatv was chosen arbitrarily, the resulting equations are
easily solved to obtain formal expressions foru: For j =1, we have

u1s0,sd = 0,

s41d

u2s0,sd = −
1

kgssd
ds1dss− ssbdd,

while for j =2,

u1s0,sd =
1

kgssd
ds1dss− ssbdd,

s42d
u2s0,sd = 0.

We make two remarks about these formulas:

1. The vector fieldu is singularsa distributiond, so that from a rigorous point of view it does not
belong to the Lie algebraG. It is, however, straightforward to regularize it. In place ofFb

j sCd
consider

Fb
jsadsCd =E

0

2p

da da
s1dsa − bdCjsbd, s43d

whereda
s1d is a family of smooth functions parametrized bya such that the weak limit of

da
s1dsad asa→0 is ds1dsad; we then obtain formulas corresponding tos41d ands42d with ds1d

replaced byda
s1d.

2. The solutions foru describe it only on the filament, and not in the local neighborhood.
Nevertheless, one can extendu to the neighborhood in a smooth but otherwise arbitrary way.

Finally we calculate the Poisson bracket for the functions

FsCd = C1sb1d, GsCd = C2sb2d, s44d

defined on the coadjoint orbit. Letu1 andu2 be vector fields in the plane whose components on the
filamentC are given by the formulass41d ands42d, respectively. The Poisson bracket ofF andG
is then given by
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uhF,GjuC = uVsXF,XGduC

= uVsu1G* ,u2G*duC

= kE
0

2p

da fu1
1sCsaddu2

2sCsadd − u1
2sCsaddu2

1sCsaddg

= kE
0

Ltot

ds gssd
1

kgssd
ds1dss− ssb1dd

1

kgssd
ds1dss− ssb2dd

=
1

kgsssb1dd
dsssb1d − ssb2dd. s45d

This result confirms the formal expressions34d obtained for the Poisson bracket.

IV. FOCK SPACE FOR BOSONIC VORTEX LOOPS

In this section we construct a Fock space of states for planar vortex loops. We do this for the
simplest case of bosonic loops. Despite its relative simplicity, this case is quite rich and illustrates
some of the general features. It will serve as a fundamental construction in our continuing study of
vortex structures in ideal quantum fluids. Our consideration is formal to the extent that we make
no commitment to a specific quasi-invariant measure on the configuration space, which is neces-
sary for the construction of unitary representations; see Ref. 30, however, where a class of such
measures is constructed. We expect the particular choice of measure to describe the dynamics of
the theory,31 while here we consider only the kinematics.

In the approach to nonrelativistic quantum systems based on local current algebras and dif-
feomorphism groups,21,32,33the states are vectors in a Hilbert space carrying a unitary represen-
tation of the group DiffsMd, of snot necessarily volume-preservingd diffeomorphisms of the
spatial manifoldM that become rapidly trivial at infinity. The states are square-integrable func-
tions defined on the configuration space, with values in a complex inner product space. In quantum
mechanics, the configuration space typically consists ofN-point subsets ofM, while in statistical
physics it consists of countably infinite but locally finite subsets.

The representations take the general form

sVsfdCdsGd = xfsGdCsfGdÎdmf

dm
sGd, s46d

wheref is a diffeomorphism,G is an element of the configuration spaceD son which diffeomor-
phisms ofM act naturallyd, m is a measure onD quasi-invariant under diffeomorphisms, and
xfsGd denotes a unitary cocycle, satisfyingsalmost everywhered the relation

xf1+f2
sGd = xf2

sGdxf1
sf2Gd. s47d

In the applications of diffeomorphism groups to the nonrelativistic quantum mechanics of finitely
many particles, inequivalent cocycles describe distinct quantum statisticssbosonic, fermionic,
anyonic, or plektonicd, and can be obtained by inducing from unitary representations of the
stability subgroup.21,22,34The square root of the Radon–Nikodym derivative ins46d ensures that
Vsfd is unitary with respect to the measurem; note that this expression also satisfies a cocycle
condition.

Our purpose here is to generalize the earlier construction to include configurations that are
extended objects—in particular, the quantum vortex filaments in an ideal, incompressible fluid
discussed in Sec. III. Thus we consider unitary representations of the subgroupSDiff sRnd, here
with n=2.

In general, the configuration space consists of unparametrized loops. It can be decomposed
into the disjoint union of submanifolds, each of which consists of configurations having a specified
numberN of component loops; we call such configurations “multiloops.” There is a corresponding
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decomposition of the full Hilbert spaceH into a direct sum of component subspacesHN, charac-
terized by the number of loops in a configuration. So far, this is similar to the case of point
particles. The new ingredient with extended objects is the further decomposition of the subspace
of N-loop configuration space into components invariant under area-preserving diffeomorphisms.
These are the topological sectors discussed, for example, in Ref. 26. There is a corresponding
decomposition of the Hilbert spacesHN.

When studying point particles, it is useful to consider creation and annihilation operators. For
the diffeomorphism group these intertwine the correspondingN-particle unitary group represen-
tations, and the cocycles impose the algebra of canonical commutation, anticommutation, or
q-commutation relations on the creation and annihilation fields.24 We anticipate that this scheme
will also work for nonrelativistic extended objects such as vortex filaments.

We now construct representations of creation and annihilation field operators for bosonic
vortex loops, where the cocycles are assumed to be trivial. This removes complications due to the
different topological sectors in eachN-loop subspace—when a loop is created, the operator need
not “know” whether it intersects with or overlaps existing loops. For that reason, this case is
formally very similar to the case of bosonic point particles. Nevertheless we have the new feature
that the arguments of the creation and annihilation operators are extended, unparametrized loops,
rather than points in the physical space.

Now the wave functions of this quantum theory are complex-valued functions of multiloops.
The N-loop representation of the diffeomorphism group is given by

fVsfdCgNshG1, . . . ,GNjd = CshfG1, . . . ,fGNjdÎdmf
sNd

dmsNd shG1, . . . ,GNjd, s48d

with hG1, . . . ,GNj being a multiloop comprised ofN unparametrized loopsspossibly intersecting,
overlapping, knotted, and so forth, according to the number of dimensions of the spaced. HerefG j

denotes the natural action of the area-preserving diffeomorphismf on the loopG j embedded in
R2.

We define the operatorsc*sGd :HN→HN+1 andcsGd :HN+1→HN by

fcsGdCgNshG1, . . . ,GNjd ª CN+1shG1, . . . ,GN,Gjd, s49d

fc*sGdCgNshG1, . . . ,GNjd ª o
j=1

N

dsG,G jdCN−1shG1, . . . ,Ĝ j, . . . ,GNjd, s50d

whereĜ j means thatG j is omitted, and wheredsG ,G8d is formally defined as a distribution over
functionshsGd on the one-loop configuration space by

E dmsG8ddsG,G8dhsG8d = hsGd. s51d

Straightforward calculation gives the commutation relations for these creation and annihilation
operators:

fcsGd,csG8dg = 0, fc*sGd,c*sG8dg = 0, fcsGd,c*sG8dg = dsG,G8d. s52d

Necessary conditions for the operatorscsGd, c*sGd and the representationsVsfd to form a
hierarchy are the intertwining properties of the form proposed in Ref. 24:

VN+1sfdc*shd = c*sVN=1sfdhdVNsfd,

s53d
VNsfdcshd = csVN=1sfdhdVN+1sfd,

wherecshd=edmsGdhsGdcsGd andc*shd=edmsGdhsGdc*sGd are the creation and annihilation op-
erators averaged with respect tohPHN=1. These intertwining properties restrict the quasi-
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invariant measures in an interesting way. Thus, a condition on themsNd sufficient to satisfys53d is

∀ j P h1, . . . ,Nj,
dmf

sNd

dmsNd shG1, . . . ,G j, . . . ,GNjd =
dmf

sN−1d

dmsN−1d shG1, . . . ,Ĝ j, . . . ,GNjd
dmf

s1d

dms1d shG jjd.

s54d

Iteration of this formula leads to the following multiplicative property of the Radon–Nikodym
derivatives:

dmf
sNd

dmsNd shG1, . . . ,GNjd = p
j=1

N
dmf

s1d

dms1d shG jjd. s55d

This is the condition which, when satisfied by the quasi-invariant measure, ensures existence
of a hierarchy of representations of the diffeomorphism group. The representations from the
hierarchy are indexed by the numbers of loops. The simplest examples of such measures are, of
course, products of one-loop measures, so that

dmsNdshG1, . . . ,GNjd = dms1dshG1jd . . . dms1dshGNjd. s56d

However, we are mainly interested in more general measures, which can distinguish nonoverlap-
ping and overlapping vortex loops. Such measures should depend on the areas of the overlap
regions, which are preserved by the diffeomorphisms in our group. For complicated overlaps there
can be many such regions, on whose areas the measures may explicitly depend; some general
properties that should be satisfied are discussed in Ref. 26. In particular, suppose that some
multiloopshG1, . . . ,GNj consist ofN overlapping loops withr distinguished regions of overlap; let
the areas beb1, . . . ,br. Then let

dmsNdshG1, . . . ,GNjd = fsb1, . . .brddms1dshG1jd . . . dms1dshGNjd, s57d

where f is a general, measurable function ofb1, . . . ,br. One can assume that forb1= . . . =br =0,
fsb1, . . .brd=1. It is easy to prove that for a measure satisfying this condition,s55d is satisfied.

V. SUMMARY AND OUTLOOK

We have written down and analyzed the Poisson structure for coadjoint orbits associated with
two-dimensional vortex filaments, and introduced canonical coordinates and momenta—the un-
parametrized filaments, and the cumulative vorticity functions, respectively. This result confirms
the results of Ref. 4, which were obtained by requiring the existence of a polarization for geo-
metric quantization.

We have also constructed a space of quantum states for bosonic vortex loops. This construc-
tion is at a formal level, but acquires concrete meaning when an appropriate quasi-invariant
measure is chosen.

Similar constructions should be valid for other nonrelativistic extended objects. These may
include vortex dipoles in two space dimensions, vortex ribbons and tubes in three space dimen-
sions, or nonrelativistic bosonic strings. We also anticipate further study of the dynamics for
extended vortex configurations, where the dynamical role of topological degrees of freedom
should become apparent.
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The hyperbolic case
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Wigner functions play a central role in the phase space formulation of quantum
mechanics. Although closely related to classical Liouville densities, Wigner func-
tions are not positive definite and may take negative values on subregions of phase
space. We investigate the accumulation of these negative values by studying
bounds on the integral of an arbitrary Wigner function over noncompact subregions
of the phase plane with hyperbolic boundaries. We show using symmetry tech-
niques that this problem reduces to computing the bounds on the spectrum associ-
ated with an exactly solvable eigenvalue problem and that the bounds differ from
those on classical Liouville distributions. In particular, we show that the total “qua-
siprobability” on such a region can be greater than 1 or less than zero. ©2005
American Institute of Physics.fDOI: 10.1063/1.1851971g

I. INTRODUCTION

Since its introduction,1 the Wigner function has been the subject of extensive study in the
fields of quantum physics, quantum chemistry and signal analysisssee Refs. 2–10 and references
thereind. Since Wigner functions represent quantum states on phase space, they play a key role in
the phase space formulation of quantum mechanics. They are also designed to closely resemble
the joint densities of position and momentum, known as Liouville densities, that are used in
classical mechanics. In quantum physics, such studies have been stimulated in recent times by the
development of quantum tomography, which has enabled the reconstruction of Wigner functions
corresponding to states of a variety of quantum systems.11 Such experimental observations have
confirmed that Wigner functions can be negative on subregions of phase space. This is one of
several properties that can be used to distinguish Wigner functions from classical Liouville den-
sities.

The study of these “quantum properties” has been approached in a number of ways including
calculations of pointwise bounds on Wigner functions and bounds on various moments.12–16 A
more recent development has been the study of bounds on integrals of the Wigner function over
subregions of the phase space,17–19which we denote byG. We call such integralsquasiprobability
integralssqpisd. For a given subregionSof G, the problem of determining best possible upper and
lower bounds on all possible qpis overS has been shown to be equivalent to the problem of
determining the supremum and infimum of the spectrum of theregion operatorassociated withS.
This operator is just the image under Weyl’s quantization map20 of the characteristic function ofS,
namely the function that equals 1 onS and 0 elsewhere onG. In the special case of a quantum
system with one linear degree of freedom, it has been shown that for any subregion of the phase
plane enclosed by an ellipse, the eigenvalue problem is exactly solvable and the bounds on qpis
can be obtained analytically for ellipses of arbitrary size.17

The determination of bounds on qpis is important not only because it provides information
about the structure of theoretically possible Wigner functions, which is a question of mathematical
interest, but also because an understanding of that structure provides checks on experimentally
determined Wigner functions. It is therefore of interest to know if there are other subregions of the
phase plane, and more generally of phase space, for which the spectrum of the associated region
operators, and hence the best-possible upper and lower bounds on all possible associated qpis, can
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be determined exactly. In this paper, we show that an exact formula for the spectrum of the region
operator, from which the bounds are easily obtained numerically, can be derived for subregions of
the phase plane with hyperbolic symmetry. The solvability of the eigenvalue problems for the
corresponding region operators, as in the case of elliptical subregions discussed earlier, relies on
the invariance of these regions under one-parameter subgroups of the metaplectic groupMps2,Rd
of transformations of the phase plane. This group consists of all real transformations of the form

T:sq,pd → sq8,p8d = saq + bp + q0,gq + dp + p0d, s1d

where ad−bg=1. In this paper, the subgroup ofMps2,Rd formed by the transformations
Ts : sq,pd→ ssq,p/sd ,s.0 is of particular importance.

Several illustrative examples of eigenvalue problems for hyperbolic regions are considered in
what follows, including the interesting limiting case of an infinite wedge. We shall be concerned
with quantum systems with one linear degree of freedom, described in terms of a Hilbert space of
statesH, and with the properties of Wigner functions on the associatedsq,pd phase planeG. We
are not concerned with dynamics, and consider each Wigner function at a fixed time. Dimension-
less phase plane coordinatessq,pd are used, and in effect we set"=1. Finally, we note that in the
absence of limits of integration, integrals are assumed to run from −` to `.

II. BOUNDS ON QUASIPROBABILITY INTEGRALS

The Wigner function corresponding to a pure statecPH has the definition

Wcsq,pd =
1

p
E c̄sq + tdcsq − tde2ipt dt. s2d

For a mixed state, the Wigner function is a convex linear combination of such integrals. It is
known that Wigner functions are bounded at every pointsq,pdPG such that −1/pøWsq,pd
ø1/p and that they satisfy the normalization conditions

E
G

Wdq dp = 1, 0ø E
G

W2 dq dp ø
1

2p
,

where the value 1/2p is attained if and only ifW corresponds to a pure state.

More generally, an operatorÂ is unitarily related to a phase space functionAsq,pd by the
Weyl–Wigner transform21 and its inverse,

A = WsÂd, Â = W−1sAd. s3d

HereW−1 is Weyl’s quantization map andW is such that the Wigner function corresponding to a
quantum density operatorr̂ is given byWr=Wsr̂d / s2pd. In this paper we make extensive use of

the configuration realization, in whichÂ can be expressed as an integral operator

sÂcdsxd =E AKsx,ydcsyddy. s4d

We refer to the functionAKsx,yd as the configuration kernel ofÂ. It is related to the phase space
function Asq,pd by the formulas22,23

Asq,pd =E AKsq − y/2,q + y/2deipy dy, s5d
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AKsx,yd =
1

2p
E Assx + yd/2,pdeipsx−yd dp, s6d

which provide an explicit realization of the transformationss3d.
An important property of Wigner functions is that quantum averages on phase space take the

same form as classical averages, ifAsq,pd is the phase space representation of a quantum observ-

able Â, then its quantum average in the state with density operatorr̂ and corresponding Wigner
function Wr is given by

kÂl = TrsÂr̂d =E
G

Wrsq,pdAsq,pddq dp. s7d

The qpi of a Wigner functionW over a subregionS of G may be written as the functional

QSfWg =E
S

Wsq,pddq dp. s8d

Note that the integral on the right-hand side can be rewritten in terms of the characteristic function
xSsq,pd that equals 1 onS and 0 on its complement,

QSfWg =E
G

Wsq,pdxSsq,pddq dp,

and, by comparing withs7d, we can write

QSfWg = kx̂sl, s9d

where we have introduced theregion operatorx̂S=W−1sxSd,17 with configuration kernelfas given
by s6dg

xS,Ksx,yd =
1

2p
E xSssx + yd/2,pdeipsx−yd dp. s10d

Since the expectation value of a quantum operator always lies between the extremal values of
its spectrum, we deduce froms9d thatQSfWg must lie between the infimum and the supremum of
the spectrum ofx̂S. Moreover, as the spectral bounds on the expectation value of an operator can
be approached arbitrarily closely with normalized states inH, these bounds are best-possible.
Hence the best-possible bounds on the qpi functionalQS are provided by the extremal solutions to
the integral equation

sx̂Scdsxd =E xS,Ksx,ydcsyddy = lcsxd s11d

that defines the eigenvalue problem forx̂S.
For a general regionS, the integral equations11d is not exactly solvable and the bounds on its

spectrum must be obtained by using computational methods. However, there is a subclass of
regions for which thesgeneralizedd eigenvalues and eigenfunctions can be determined exactly.
This subclass is the set of regions that are each invariant under a one-parameter subgroup of the
metaplecticsor linear canonicald group of transformationss1d of the phase plane. Any such trans-

formation U has the special property that its inverse Weyl–Wigner transformÛ=W−1sUd is a
unitary sand thus spectrum preservingd operator acting onH. If a subregionS of G is invariant
under a metaplectic transformation, then it follows that the associated region operatorx̂S is in-

variant under the corresponding unitary operationÛ, that is generated by an operatorr̂ of no
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greater than the second degree inq̂ and p̂. It follows that fx̂S, r̂g=0 and hence that the eigenfunc-
tions of x̂S may be chosen so that they are also eigenfunctions ofr̂. These are readily obtained by
solving the eigenvalue problem forr̂.

This approach can be applied to regions that are bounded by ellipses, hyperbolas, parabolas,
and straight lines.fIf the boundary is composed of several curves, then each curve must be
invariant under the same one-parameter subgroup ofMps2,Rd.g In the case of elliptical regions,
the best-possible bounds have already been described,17 while the fact that the marginal distribu-
tions of the Wigner function are true probability density functions24 implies that integrals over
regions bounded by parallel straight lines must lie in the intervalf0, 1g. In this paper, we consider
the problem of determining the best-possible bounds on qpis over regions with hyperbolic bound-
aries.

III. BEST-POSSIBLE BOUNDS ON QPIS FOR HYPERBOLIC REGIONS

In order to demonstrate our technique for constructing the bounds on qpis, we begin with a
simple example. LetCk be the hyperbolic curve consisting of all points that satisfy

qp= k, k ù 0, s12d

as depicted in partsad of Fig. 1. Note thatCk is itself composed of two curves, namelyCk
+, which

lies in the positivesq,pd quadrant ofG andCk
−, which lies in the negativesq,pd quadrant ofG. It

is clear that the curvesCk
± are separately invariant under the action of the transformation

Ts : sq,pd→ ssq,p/sd for all s.0.
Now consider the subregionSk that contains all points inG such thatqpùk, qù0, which is

indicated by the shaded region in partsad of Fig. 1. Since this region can be viewed as the union
of all hyperbolic curvesCl

+ with l ùk, it is itself invariant under the action ofTs. In order to apply
this symmetry to the problem of determining the bounds on qpis overSk, we must first construct
the corresponding region operator, which we denote byx̂k. Note that the characteristic function on
Sk, may be written as

xk = H1, qpù k, q ù 0

0, otherwise
J = HsqdHsp − k/qd, s13d

whereH is the Heaviside function. Usings6d, the configuration kernel for the region operator can
be determinedssee the Appendix for detailsd:

xk,Ksx,yd = HSx + y

2
De2ikfsx−yd/sx+ydgF1

2
dsx − yd −

1

2pisx − ydG , s14d

and hence the bounds on qpis are given by the spectral bounds associated with the integral
equation

FIG. 1. Graphs of hyperbolic regions and their boundaries, insad the hyperbolic regionSk is shown as are the boundary
curvesCk

+ andCk
−, while in sbd the infinite wedgeS0 is depicted.
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E
−x

`

e2ikfsx−yd/sx+ydgF1

2
dsx − yd −

1

2pisx − ydGcsyddy = mcsxd. s15d

We know, however, that the region operatorx̂k is invariant under the set of operator transfor-
mations that correspond to the subgroup ofMps2,Rd formed byTs ,s.0. Since the effect ofTs

is to squeeze position and stretch momentumsor vice versad while preserving the canonical
commutation relations, the corresponding operator transformation, up to an unimportant phase, is

given by the squeezing operatorÛs=expsi log ssq̂p̂+ p̂q̂d /2d. This implies thatx̂k commutes with

Ûs for all s.0, and hence

fx̂k,v̂g = 0, v̂ = sq̂p̂ + p̂q̂d/2.

It follows that the eigenfunctions ofx̂k can be chosen such that they are also eigenfunctions ofv̂.
We can then obtain a partial solution to the integral equations15d by solving the equationv̂c
=vc. A number of results connected with this problem can be found in a paper of Chruscinski.25

On configuration space, this equation appears as the first order differential equation

x
dc

dx
= Siv −

1

2
Dc. s16d

The solutions of this equation are complex-valued linear combinations of the functions

cv
+sxd = 5 1

Î2p

eiv loguxu

uxu1/2 , x . 0,

0, x , 0,
6 cv

−sxd = 50, x . 0,

1
Î2p

eiv loguxu

uxu1/2 , x , 0.6 s17d

Herev can take any real value. These solutions are generalized functions and are elements of the
space of tempered distributionsG8,26 of which H is a proper subspace. The factor 1/Î2p is
inserted to ensure thatscv

± ,cv8
± d=dsv−v8d. Since they have disjoint support,cv

+ and cv8
− are

orthogonal for allv,v8PR. Note that, since loguxu→−` as uxu→0, the eigenfunctions become
highly oscillatory in the neighborhood of the origin and are undefined atuxu=0, due to theuxu1/2

term in the denominator.
Since thecv

± form two independent families of solutions tos16d, the eigenfunctions ofx̂k are
not yet fully determined. In order to construct these solutions, we must solve the reduced eigen-
value problem

x̂kcv = msv,kdcv, cv = avcv
+ + bvcv

− , s18d

whereav ,bvPC. In order to solves18d, we must first determine the action ofx̂k on the two-
dimensional subspaceGv8 of G8 spanned bycv

+ and cv
−, x̂kscv

+ ,cv
−dT=Asv ,kdscv

+ ,cv
−dT, where

Asv ,kd is given by the matrix

Asv,kd = SA11sv,kd A12sv,kd
A21sv,kd A22sv,kd

D . s19d

The matrix elements ofAsv ,kd can be computed by using the configuration realization ofx̂k,
details of which are presented in the Appendix. It so happens that the matrix elements ofAsv ,kd
depend on the functionsdsv ,kd andasv ,kd, that are given by

dsv,kd =
1

2Ftanhspvd +
1

4p
IHR

C0

eivz−2ik cothsz/2d

coshsz/2d
dzJG , s20d

whereC0 is any closed path in the complex plane that contains only the pole atz=0, and
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asv,kd =
e−pv

2p
SE

0

p Sevt−2k tanst/2d

sinst/2d
−

cossvt − 2k tanhst/2dd
sinhst/2d Ddt −E

p

` cossvt − 2k tanhst/2dd
sinhst/2d

dtD .

s21d

The above formula is written in this way, because the individual terms in the first integral are
singular att=0, whereas their difference is well defined. In terms of these functions, we may
expandAsv ,kd as

Asv,kd = S 1
2 + dsv,kd 1

2fasv,kd + ie−pvs 1
2 + dsv,kddg

1
2fasv,kd − ie−pvs 1

2 + dsv,kddg 0
D . s22d

Hence the spectrum of the region operatorx̂k splits into positive and negative parts, which we
label bym+sv ,kd andm−sv ,kd, respectively,

m±sv,kd = 1
2f 1

2 + dsv,kd ± Îs 1
2 + dsv,kdd2s1 + e−2pvd + asv,kd2g . s23d

Of particular interest are the functionsLk=infvPR m−sv ,kd and Uk=supvPR m+sv ,kd, since they
provide the best-possible bounds on qpis over the hyperbolic regionsSk. Although it does not seem
possible to obtain exact expressions for these functions, it is not difficult to compute the bounds
after first evaluatinga andd numerically.

These bounds are graphed in Fig. 2 fork in the rangef0, 5g from which we conclude that the
upper bound on qpis overSk remains close to but greater to 1 for allk and that this difference is
greatest whenk=0 ssee insetd. The lower bound displays a more marked difference from the
classical bound of 0, reaching a minimum value of −0.3089 at approximatelyk=1.9, before rising
again. A surprising result is that the lower bound does not approach 0 for large values ofk.
Nonetheless, this appears to be a characteristic feature of bounds on qpis for many classes of
regions.27

The infinite wedge:An interesting subclass of hyperbolic regions is provided by taking the
limit as k→0. The regionS0 so obtained is precisely the positivesq,pd quadrant ofG, as depicted

FIG. 2. sColor onlined Graph of the best-possible bounds on qpis overSk for k in the range 0 to 5. The inset graph, with
k in the range 0 to 0.2, shows that the upper bound lies above 1, but converges rapidly to 1 ask increases.
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in part sbd of Fig. 1. Note that whenk=0, the functionsd anda take a simplified form,

sdsv,0dd = 1
2 tanhspvd, asv,0d = − 1

2 tanhspvd + usvd, s24d

whereusvd may be expressed as an infinite sum,28

usvd =
8v

p
o
n=0

`
1

v2 + s4n + 1d2 .

If we now apply these simplifications to the spectral formulas23d, we obtain the spectrum forx̂0:

m±sv,0d = 1
4s1 + tanhspvd ± Îs2usvd − tanhspvdd2 + s1 + tanhspvdd2d, s25d

which is graphed in Fig. 3. The infimum and supremum can then be determined numerically, and
to an accuracy of ±5310−10, we have that

− 0.155 939 843, Q0fWg , 1.007 679 970. s26d

An interesting point is that these bounds are also best-possible when applied to regions
defined by infinite wedges. This equivalence is due to two factors: first, by an appropriate meta-
plectic transformationT, the regionS0 can be transformed into any infinite wedge with half-angle

a,p /2. Second, the operator transformationÛT that corresponds toT is unitary, and thus the
spectrum ofx̂0 is preserved under its action. This implies that the spectrum of any region operator
corresponding to an infinite wedge is given bys25d. As a consequence, the integral of a Wigner
function over any infinite wedge must lie between the bounds given ins26d. Bounds on the
spectrum of similar operators have been considered before, in the context of the quantum phase
operator21 and in connection with studies of probability backflow29 but not to the same level of
precision.

FIG. 3. sColor onlined Graph of the spectrum ofx̂0 which, as labeled, splits into the curvesm+sv ,0d andm−sv ,0d.
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IV. EXAMPLES INVOLVING TWO BOUNDARY CURVES

As a second example, consider the slightly more complicated case of a region with a boundary
composed of two curves withTs symmetry. There are several possible forms that such a region
can take,27 however, we will concentrate on just the subcase for which the boundary curves lie in
positive and negativesq,pd quadrants, as shown in partsad of Fig. 4.

In order to further simplify matters, we assume that both curves are labeled by the variablek.
We label the class of regions that remain bySk,2 and note that this region may be written in terms
of the regionSk as

Sk,2 = Sk + RpsSkd, s27d

where Rp denotes a rotation through an anglep. Note thatRp : sq,pd→ s−q,−pd and that the
operator that corresponds to this transformation under the Weyl–Wigner transform is just the parity

operatorP̂, which acts on the canonical coordinate and momentum operators according to

P̂q̂P̂ = − q̂, P̂p̂P̂ = − p̂.

Due to the linearity of the Weyl quantization map, this implies that the region operator that
corresponds toSk,2 may be expressed as

x̂k,2 = x̂k + P̂x̂kP̂. s28d

This operator also commutes withv̂, and hence its eigenstates can be chosen such that they are
some linear combination ofcv

±. In order to find the correct linear combination, we must first
determine the matrix representation ofx̂k,2 on the subspace spanned bycv

±. This turns out to quite

simple, since the action ofP̂ on this subspace is given byP̂cv
± =cv

7. Thus the matrix representation
of x̂k,2 is given by

A2sv,kd = Asv,kd + S0 1

1 0
DAsv,kdS0 1

1 0
D = S 1

2 + dsv,kd asv,kd

asv,kd 1
2 + dsv,kd

D . s29d

The simple form of this matrix representation leads to the following expression for the spec-
trum of x̂k,2:

m2,±sv,kd = 1
2 + dsv,kd ± uasv,kdu, s30d

In this case, the eigenfunctions are odd and even combinations ofcv
±, and are independent ofk,

c2,v
± sx;kd ; c2,v

± sxd =
1
Î2

scv
+sxd ± cv

−sxdd, s31d

which indicates that the operatorsx̂k,2 commute for allkù0.

FIG. 4. Regions bounded by two hyperbolic curves, insad the hyperbolic regionSk,2 is shown while insbd the double
wedgeS0,2 is depicted.
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The properties of the spectrum in this case vary somewhat from the preceding example. In
particular,m2,−sv ,kd is not restricted to negative values and, similarly,m2,+sv ,kd is not strictly
positive, although clearly the inequalitym2,+sv ,kdùm2,−sv ,kd holds for allvPR, kù0. Since the
bounds on qpis overSk,2 are given by the infimumLk,2 and supremumUk,2 of the spectrum ofx̂k,2,
it is these functions that are of primary importance in the context of this paper. Again, closed-form
expressions do not appear to exist, so we must resort to computational techniques in evaluating
these functions, the results of which are graphed in Fig. 5. In this case, the upper bound is well in
excess of 1 for small values ofk, but rapidly approaches 1 ask increases. The lower bound, on the
other hand, dips initially, reaching a minimum of −0.4014 atk=0.4 before rising again, and
appears to approach a finite negative value near to −0.3 ask→`.

Double wedges:It is again of interest to consider in more detail the limit ask→0 of the region
Sk,2. The resulting regionS0,2 is the union of the positive and negativesq,pd quadrantsfas shown
in part sbd of Fig. 4g, and one might guess that qpis over such a region should be positive,24 since
it appears to be composed from the union of a set of infinite straight lines, over which the integral
of the Wigner function is known to be positive. However, since these lines cross at the origin one
cannot immediately apply this result and it will be shown that the true bounds on qpis lie signifi-
cantly outside thef0,1g interval to which classical probabilities are restricted.

The region operator that corresponds tox̂0,2 may be expressed in terms ofx̂0 as x̂0,2= x̂0

+ P̂x̂0P̂. The spectrum for this operator can be derived froms30d upon substitution ofs24d, from
which we obtain

m2,±sv,0d =
1 + tanhspvd

2
± Uusvd −

tanhspvd
2

U . s32d

This spectrum is graphed in Fig. 6, and from this one sees that the functionm2= 1
2 +usvd passes

through both the infimum and the supremum of the spectrum ofx̂0,2. Since usvd is an odd
function, we need only calculate its global maximum in order to determine the bounds on qpis
over S0,2. Using computational techniques, this value can be obtained to great accuracy, and we
find that the best-possible boundssaccurate to ±5310−10d on qpis overS0,2 are

FIG. 5. sColor onlined Graph of the best-possible bounds on qpis overSk,2 for k in the range 0 to 5.
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− 0.236 823 652, Qa,2fWg , 1.236 823 652. s33d

Note that the upper and lower bounds sum to 1 since they are symmetric about 1/2. This sym-
metry can be explained by noting that if one rotates the regionS0,2 through an anglep /2, then one
obtains its complement: i.e.,Rp/2sS0,2d=G /S0,2=S0,2

c . Note that the integral of a Wigner function
over G=SøSc is normalized to 1. Now, since the operator equivalent of a rotation is a unitary
transformation, the region operator that corresponds to the complement ofS0,2 has precisely the
spectrum given ins32d. Accordingly, the spectrum ofx̂0,2 must consist of pairs that sum to 1 and,
in particular, the upper and lower bounds on this spectrum must be symmetric about 1/2.

As in the case of the regionS0, the bounds on qpis overS0,2 can be applied to a wider class
of regions. We shall refer to elements of this wider class as double wedges, since they are formed
by taking the union of an infinite wedge with its rotation through an anglep. By applying the
appropriate metaplectic transformation, we can transformS0,2 into any double wedge. The corre-
sponding operator transformation is unitary and preserves the spectrum ofx̂0,2, so that the spec-
trum of any region operator corresponding to a double wedge is given bys32d. Accordingly, the
integral of any Wigner function over an arbitrary double wedge must satisfy the inequality given
in s33d.

V. CONCLUSION

The problem of constructing best-possible bounds on integrals of the Wigner function is not
only of mathematical interest, but should be of practical significance in providing checks on
experimentally reconstructed quantum states. Since our approach to the problem relies on speci-
fying the region to be integrated over, it is important to identify the types of region for which the
bounds can be easily computed. In this paper, we have considered several examples of regions
with a hyperbolic symmetry for which the bounds can be computed numerically from the spectrum
of an exactly solvable integral equation. We have demonstrated that the bounds on integrals of the
Wigner function for these regions are not equivalent to those on integrals of true probability
density functions. In particular, the lower bound is significantly below zero in all cases, although
it lacks the scalloped effect arising from eigenvalue crossings as seen in the bounds for elliptical

FIG. 6. sColor onlined Spectrum of the double wedge operatorx̂0,2.
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discs.17 The upper bound also rises above 1 although for the most part the difference between its
value and the classical bound is very small. This contrasts with the case of the disc, for which the
upper bound always remains below 1.

The results herein can also be extended to more complicated regions with boundaries given by
an arbitrary number of hyperbolic curves sharing the same symmetry,27 for example, the regions
shown in Fig. 7. The problem of determining the spectrum is essentially the same but the matrix
representations for operators corresponding to regions with many boundaries are functions of
many variables and hence the behavior of the bounds is much more difficult to characterize.

APPENDIX

The configuration kernels that correspond tos13d take the form

xk,Ksx,yd =

HSx + y

2
D

2p
E

−`

`

HSp −
2k

x + y
Deisx−ydp dp. sA1d

This integral can be computed in a generalized sense,30 and we find that

xk,Ksx,yd = HSx + y

2
De2ikfsx−yd/sx+ydgF1

2
dsx − yd −

1

2pisx − ydG . sA2d

This expression for the configuration kernel ofx̂k enables us to determine the action ofx̂k on
the spaceGv8 frecall that this is given by the matrixAsv ,kd defined ins19dg. In this representation
x̂k acts oncv as

sx̂kcvdsxd =E
−x

`

e2ikfsx−yd/sx+ydgF1

2
dsx − yd −

1

2pisx − ydGcvsyd dy. sA3d

If we substitutecv=avcv
+ +bvcv

−, then we find that the action ofx̂k whenx,0 differs from that
whenx.0. Thus, forx.0,

sx̂kcvdsxd = avE
0

`

e2ikfsx−yd/sx+ydgF1

2
dsx − yd −

1

2pisx − ydGeiv log y

Î2py
dy

+ bvE
−x

0

e2ikfsx−yd/sx+ydgF1

2
dsx − yd −

1

2pisx − ydGeiv loguyu

Î2puyu
dy

and forx,0,

sx̂kcvdsxd = avE
uxu

`

e2ikfsx−yd/sx+ydgF1

2
dsx − yd −

1

2pisx − ydGeiv log y

Î2py
dy.

It is immediately clear thatA22sv ,kd=0, since thex.0 case involves onlyav.

FIG. 7. Examples of generalized hyperbolic regions are shown insad–scd.
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The other integrals can be simplified and this process leads to the following expression for the
matrix elements ofA:

Asv,kd = S 1
2 + dsv,kd 1

2fasv,kd + ibsv,kdg
1
2fasv,kd − ibsv,kdg 0

D , sA4d

where the functionsd, a, andb are given by

dsv,kd =
1

2p
E

0

` sinsvt − 2k tanhst/2dd
sinhst/2d

dt, sA5d

asv,kd =
1

2p
E

0

` sinsvt − 2k cothst/2dd
coshst/2d

dt, sA6d

bsv,kd =
1

2p
E

0

` cossvt − 2k cothst/2dd
coshst/2d

dt. sA7d

Note, however, that although the integrands ofa andb are bounded for allt, they become highly
oscillatory in the neighborhood of the origin, which poses difficulties for numerical schemes.
These problems can be alleviated by using the technique of contour integration.

In the case ofbsv ,kd, we consider the following contour integral in the complex plane:

IC =
1

2p
R

C

eivz−2ik cothsz/2d

coshsz/2d
dz, sA8d

whereC is the contour shown in partsad of Fig. 8. Although the contour is divided into four parts,
only the integrals along the real axis contribute, since the contributions from the semicircular
segments vanish in the respective limits ase→0 andR→`. Thus one has that

lim
R→`,e→0

IC = 2
1

2p
E

0

` eivt−2ik cothst/2d

coshst/2d
dt, sA9d

and as a result,bsv ,kd=RhICj /2.
We can make use of the residue theorem in evaluatingIC,

IC = 2pi o Resfszd, sA10d

wherefszd is the integrand insA8d. Note thatfszd has two distinct classes of residues, simple poles
at z=s2n+1dpi and essential singularities atz=2mpi, with mPZ. The contourC encloses only
the simple poles withnù0 and the essential singularities withmù1, and hence the sum insA10d
is over the residues at these points.

It is easy to evaluate the residues at the simple poles and we find that the total contribution
from the simple poles insideC is given by

FIG. 8. The contours used in evaluating the functionsbsv ,kd, asv ,kd, anddsv ,kd, in sad the semicircular contourC, in sbd
the contourC8 used to relatebsv ,kd to dsv ,kd, and inscd an example of a contourC0 for evaluatingRsv ,kd.
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Ress =
1

2pi
o
n=0

`

s− 1dne−s2n+1dpv =
sechspvd

2pi
. sA11d

The sum of the residues associated with the essential singularities can also be simplified,

Rese =
1

2p
o
n=1

`

s− 1dne−2npvRsv,kd =
e−pv sechspvd

2
Rsv,kd, sA12d

whereRsv ,kd is the residue offszd associated with the essential singularity at the origin.
Ordinarily, one might try to evaluate this residue by constructing the Laurent series forfszd,

however in this case the coth term in the exponential makes this extremely difficult. However, one
may use the residue theorem in reverse and evaluateRsv ,kd by considering the integral offszd
over a closed contour enclosing the originsand no other polesd,

Rsv,kd =
1

2pi
R

C1

eivz−2ik cothsz/2d

coshsz/2d
dz. sA13d

The rapid oscillations due to the coth term do not appear in this calculation, and due to its finite
range this integral can be rapidly evaluated to a high degree of accuracy using numerical tech-
niques.

If we now collect the results for the residues together, we discover that

bsv,kd =
sechspvd

2
F1 +

e−pv

2
IhRsv,kdjG . sA14d

Note that in deriving these results it has been assumed thatvù0. A similar procedureswith the
semicircular contour defined in the lower half-planed enables us to extend the validity ofsA14d to
all vPR.

In order to obtain superior expressions for the functionsasv ,kd and dsv ,kd, we choose
another contourfsee partsbd of Fig. 8g, this time involving five curves. However, we know from
the above calculation that the integral overe0 vanishes, which leaves four curves to consider. Of
these, the integral over the imaginary axis from 0 top results in a pure imaginary contributionIp,
while the integral overe1 contributes −1/2 in the limit ase1→0. The integral over the positive
real axis is equal tobsv ,kd+asv ,kdi in the limit ase0→0, while the contribution from the line
spi ,pi +`d can be expressed as −exps−pvdsdsv ,kd+ I`id.

By equating the real parts, we find that

bsv,kd = e−pvs 1
2 + dsv,kdd . sA15d

This leads to the expressions20d for dsv ,kd and the expressions22d for the matrixA. If we equate
the imaginary parts, then we discover that

asv,kd = e−pvsIp − I`d, sA16d

where

Ip =
1

2p
E

0

p evt−2k tanst/2d

sinst/2d
dt, sA17d

I` =
1

2p
E

0

` cossvt − 2k tanhst/2dd
sinhst/2d

dt. sA18d

NeitherIp nor I` are well defined, but their difference is, and provided one expressesasv ,kd as in
s21d, the singularities of these integrals are avoided.
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We characterize the quasianti-Hermitian quaternionic operators in quaternionic
quantum mechanics by means of their spectra; moreover, we state a necessary and
sufficient condition for a set of quasianti-Hermitian quaternionic operators to be
anti-Hermitian with respect to a uniquely defined positive scalar product in a infi-
nite dimensionalsrightd quaternionic Hilbert space. According to such results we
obtain two alternative descriptions of a quantum optical physical system, in the
realm of quaternionic quantum mechanics, while no alternative can exist in com-
plex quantum mechanics, and we discuss some differences between them. ©2005
American Institute of Physics.fDOI: 10.1063/1.1873040g

I. INTRODUCTION

Many attempts have been made in the past in order to formulate quantum mechanics in
Hilbert spaces over the skew-fieldQ of quaternions. In the early 1960s a systematic approach
began to quaternionic quantum mechanicssQQMd;1 at present, a clear and detailed review of this
theory, together with the foundations of quaternionic quantum field theory, can be found in Ref. 2.

It is worth noting that an important difference exists between complex and quaternionic
quantum mechanics about Hamiltonians operators and observables. In both theories, observables
are associated with self-adjointsor Hermitiand operators, whereas Hamiltonians are Hermitian in
complex quantum mechanicssCQMd, but they are anti-Hermitian in QQM, and the same happens
for the symmetry generators, like the angular momentum operators. Moreover, in CQM any
anti-Hermitian operator can be made Hermitiansand vice versad by multiplying by i. In QQM in
contrast, an anti-Hermitian operator cannot be trivially converted to a Hermitian one by multiply-
ing by a c-number; actually in this context in order to obtain such a conversion one needs a
“phase” operator.2

Thus, if one wishes to enlarge the theoretical framework and to generalize standard quater-
nionic Hamiltonians and symmetry generatorssas happened in CQM where pseudo-Hermiticity
has been fruitfully introducedd, in QQM one rather needs to deal withpseudoanti-Hermitian
quaternionic operators.

Definition (Ref. 3): A quaternionic linear operator H is said to besh-d pseudoanti-Hermitian
if a linear invertible Hermitian operatorh exists such that

hHh−1 = − H†. s1d

If Eq. s1d holds with a bounded positive definiteh, H is saidquasianti-Hermitian.
Of course, severalh can exist which verify Eq.s1d. The properties of pseudoanti-Hermitian

Hamiltonians in QQM are analogous to the ones of pseudo-Hermitian in CQM. In particular, a
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new inner product in the Hilbert space can be associated with any bounded positive definiteh
which fulfills Eq. s1d, and differenth’s give rise to alternative descriptions.4

In this paper, we preliminarly characterize in Sec. II the subclass of quasianti-Hermitian
quaternionic operators with discrete spectrumsin finite dimensional vector spacesd, showing that
they are necessarily diagonalizable operators with imaginary eigenvaluessand vice versad. Next,
facing the unity problem, we derive in Sec. III a necessary and sufficient condition for a set of
quasianti-Hermitian operators to be anti-Hermitian with respect to a uniquely defined scalar prod-
uct in quaternionic Hilbert spaces. Finally, we consider in Sec. IV two alternative descriptions of
a physical system in quantum optics, which are possible only in the realm of QQM, according with
the previous result, and we discuss some differences between them.

II. QUASIANTI-HERMITIAN QUATERNIONIC OPERATORS

In this section, we characterize the subclass of quasianti-Hermitian quaternionic operators by
means of their spectra, in strict analogy with similar statements in CQM.5,6 The following propo-
sition, which holds in finite dimensional Hilbert spaces, provides a necessary and sufficient con-
dition for a quaternionic operator with discrete spectrum to be quasianti-Hermitian.

Proposition 1: Let H be a quaternionic linear operator with discrete spectrum. Then, a
definite operatorh exists such that H ish-pseudoanti-Hermitian (hence, h-quasianti-Hermitian) if
and only if H is diagonalizable with imaginary spectrum.

Proof: Let H be a pseudoanti-Hermitian operator. We preliminarily observe that, being in any
caseh an invertible operator, all its eigenvalues must be different from zero, so that eitherh is
definite or it is indefinite. Now, let us suppose that a positivesrespectively, negatived definite
operatorh exists which fulfills conditions1d; then, anR exists such thath=R†R sRef. 7d srespec-
tively, h=−R†Rd, and by Eq.s1d we obtain

RHR−1 = − R†−1H†R† = − sRHR−1d†,

i.e., RHR−1 is anti-Hermitian, hence it is diagonalizable and it has an imaginary spectrum.2 The
same conclusion holds obviously with regard toH, since on a right quaternionic vector space the
similarity transformations preserve the properties of the spectrum, in the sense that the real part
and the moduli of the imaginary part of the eigenvalues do not change undersquaternionicd
similarity transformations.

Conversely, ifH is diagonalizable with imaginary spectrum, then by proposition 2 of Ref. 3,
a positive definite operatorh=SS† exists which fulfills conditions1d. j

We remark that the above Proposition still holds in infinite dimensional Hilbert spacesHQ if
one assumes that the eigenvalues ofH have finite multiplicity and there is a basis onHQ in which
H is block diagonal with finite dimensional blocksssee also Ref. 6d.

As a consequence of Proposition 1, any quasianti-Hermitian operatorH with discrete spec-
trum can be written by means of a set of biorthonormal vectorssif we suitably fix their phasesd
as3,2

H = o
n

o
a=1

dn

ucn,aliEnkfn,au, En ù 0,

wheredn denotes the degeneracy associated to thenth eigenvalue,a is a degeneracy label, and the
usual relations for a biorthonormal basis hold,

kfm,bucn,al = dmndba,

o
n

o
a=1

dn

ucn,alkfn,au = o
n

o
a=1

dn

ufn,alkcn,au = 1.
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III. ALTERNATIVE DESCRIPTIONS OF QUANTUM SYSTEMS

As we already pointed out in the Introduction, differentsalternatived description of the same
physical system in a quaternionic Hilbert spaceHQ are possible whenever differenth’s fulfill
conditions1d. Indeed,for any bounded self-adjoint positive definiteh, the space HQ endowed with
the scalar productkw uclh=kwuhucl is a Hilbert space Hh

Q.
We do not report here the explicit proof of this property, which was already stated in CQM;8

indeed the proof easily follows from the one in the complex case since all the key steps in it still
hold in a quaternionic Hilbert space, as for instance the closed graph theorem9 and the uniticity of
the decompositionh=S2, with S positive and self-adjoint.10

Hence, an undesirable ambiguity can arise, as we will explicitly show in the next section by
means of a physical example; in order to remove that and obtain a propersquaternionicd quantum
mechanical interpretation, we will resort to the concept of irreducibility of the physical operators
on HQ.

As a preliminary step, we state the following lemma, which actually is very similar to the
quaternionic version of the corollary of the Schur lemmason the irreducible quaternionic group
representations of unitary operatorsd10 and can be easily proven in the same way.

Lemma: LethHij si =1,2, . . . ,Nd be an irreducible set of anti-self-adjoint bounded quater-
nionic linear operators on the (right) quaternionic Hilbert spaceHQ. Then, the commutant of
hHij, i.e., the set of all bounded quaternionic linear operators which commute with each Hi is
composed of the operators T=h1+aI a swhere h, aPR, and I a is a unitary, anti-Hermitian opera-
tor on HQd.

Thus, the following proposition provides a necessary and sufficient condition for a set of
h-quasianti-Hermitian quaternionic operators to admit a unique positive definite operatorh which
satisfy the quasianti-Hermiticity condition.

Proposition 2: LethHij be a set of boundedh-quasianti-Hermitian operators on a right
quaternionic Hilbert spaceHQ, whereh denotes a bounded positive self-adjoint operator. Then, h
is uniquely determined up to a global normalization factor if and only if the sethHij is irreducible
on HQ.

Proof: First, we observe that, by assumption, all the quasianti-Hermitian operators in the set
hHij are bounded both onHQ and on Hh

Q, since iHixih=iSHixiø iSHiS
−1iiSxi=iSHiS

−1iixih

swhere the decompositionh=S2, with S positive, self-adjoint has been used10d; furthermore, they
are anti-self-adjoint onHh

Q becausehHi =−Hi
†h ∀i =1,2, . . . ,N. Assume now that anh8 exists

with the same properties ash. Then, it follows thatfh8−1h ,Hig=0 ∀i =1,2, . . . ,N. Hence, by the
previous lemma,h=h8sh1+aI ad. But imposing the Hermiticity condition onh, one easily obtains
h8sh1+aI ad=sh1−aI adh8, which implies eithera=0 or hh8 ,I aj=0. Denoting byuh8l an eigenvec-
tor of h8: h8uh8l= uh8la swherea.0, sinceh8 is positived the conditionhh8 ,I aj=0 would imply
h8sI auh8ld=−sI auh8lda, i.e., an eigenvector ofh8 would exist associated with a negative eigen-
value, contradicting thus the hypothesis on the positive definiteness ofh8. Then, a=0 and h
=h8h.

The converse is easily proven by merely paraphrasing the analogous proof in complex Hilbert
spaces.8 j

As a consequence of the above proposition, any reducible sethHij of quasianti-Hermitian
operators admits at least two quite different positive operatorsh andh8 which fulfill the quasianti-
Hermiticity condition for any operator belonging to this set. This allows us to construct two
different Hilbert spacesHh

Q andHh8
Q , endowed with scalar productskwuhucl andkwuh8ucl, respec-

tively, such that anyHi is anti-Hermitian onHh
Q as well as onHh8

Q .
In particular, any reducible set of anti-Hermitian operatorshHij on HQ will appear at the same

time as a set of anti-Hermitian operators on the Hilbert spaceHh
Q whereh denotes a bounded,

nontrivial, positive operator which commutes with any element ofhHij.
This is just the scenario of the example we will study in the next section, which exactly

mimics an analogous situation in CQM, where alternative descriptions arise in correspondence
with different h’s which fulfill the quasi-Hermiticity condition for a sethHij.

4,8
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IV. A PHYSICAL EXAMPLE

Let us consider a two level quantum optical system in thecomplexHilbert spaceH whose
dynamics is described by the complex anti-Hermitian time-dependent Hamiltonian,

H = 2V0stdJ1 + 2V1stdJ2 + vstdJ3 s" = 1d, s2d

where V0std, V1std, and vstd are real valued functions of the timet, and the anti-Hermitian
operatorsJl sl =1,2,3d obey the usual rules of commutation of the sus2d algebra

fJl,Jmg = − «lmnJn.

As we already noted in the Introduction,H times i is of course an observable in CQM, and it
coincides with the one introduced in order to describe the interaction of a chirped classical
electromagnetic field with a two level atomic system in a complex Hilbert space.11 This model has
been extensively studied also to explain the Berry phase.12

By resorting to the irreducible two-dimensional representation of theJ operators

J1 =
i

2
S0 1

1 0
D, J2 =

1

2
S 0 1

− 1 0
D, J3 =

i

2
S1 0

0 − 1
D s3d

and settingV=V0+ iV1, we can write the Hamiltonians2d as a 232 anti-Hermitian complex
matrix,

H = i1
vstd

2
V*std

Vstd −
vstd

2
2 . s4d

The seth of anti-Hermitian complex operators obtained by changing the entries in Eq.s4d, is
of course irreducible in the two-dimensionalscomplexd Hilbert spaceH, since such is the spinorial
representations3d of the Jl’s.

From a different point of view, we can interpret the Hamiltonians4d as aanti-Hermitian
quaternionic operatorin a srightd quaternionic Hilbert spaceHQ, and the dynamics of our quan-
tum system is then described by the Schrödinger equation2

d

dt
uCl = − HuCl, s5d

where uCl belongs toHQ. sWe recall that in QQM the eigenvalues of a anti-Hermitian Hamil-
tonian are imaginary quaternions, whose moduli represent the values of the energy of the system.d

Roughly speaking,HQ can be obtained fromH by simply adding to each complex vector
uvlPH a termuv8l j , whereuv8lPH and j : j2=−1 is a quaternionic unity different fromi; note that
dim HQ=dimH=2. Actually the various manner in which one canquaternionifya complex Hil-
bert space are all equivalent to this one.13

Now, let us denote byuCl=s Ca,++Cb,+j

Ca,−+Cb,−j
d;s C+

C−
d swhereCa,± ,Cb,± are complex functions oftd

the quaternionic state vector representing the system; the componentsC− and C+ can be inter-
preted from a physical point of view as the probability amplitudes for the system of being in the
lowest or in the excited state, respectively. From the Schrödinger equation one immediately gets
the time evolution of the componentsC±,

Ca,+8 =
i

2
vstdCa,+ + iV*stdCa,−, s6ad
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Ca,−8 = −
i

2
vstdCa,− + iVstdCa,+, s6bd

Cb,+8 =
i

2
vstdCb,+ + iV*stdCb,−, s7ad

Cb,−8 = −
i

2
vstdcb,− + iVstdCb,+. s7bd

where the prime denotes a time derivative.
Since the systems ins6d ands7d are identical, and they represent a rotation of the vectorC in

the complex space, we can write their solutions as a whole using the Cayley–KleinsCKd matrix,
independently on the quaternionic or complex character ofC±,

SC+

C−
D = S F* G

− G* F
DSC+s0d

C−s0d
D , s8d

where Fstd and Gstd are complex functions depending onv and V in a rather involved way;
furthermoreFs0d=1, Gs0d=0, anduFu2+ uGu2=1.11

The CK matrix can be regarded as the matrix representation of the time evolution operatorU
associated with the time-dependent Hamiltonians4d, and it belongs to a two-dimensionalscom-
plexd unitary representation of the SUs2d group; by varyingH in h, we correspondingly obtain a
setU=hUj.

We remark once again that the form of any elementUPU does not depend on the scalar field,
C or Q, adopted. Now, as long as we study the two-level system inH, the setU is clearly
irreducible, hence, by the corollary of the Schur lemma, no nontrivialh exists which commutes
with it. Recalling the discussion at the end of the preceding section, we can conclude that the
description of the system inH is unique.

On the contrary, if we now considerU as a quaternionic group representation acting onHQ, it
can be proven that this representation is reducible into the direct sum of two equivalent unidimen-
sional irreducible quaternionic representations onHQ,14,15 so thatU admits a nontrivial commu-
tant. By a direct computation, the most general quaternionic Hermitian matrixh commuting with
any UPU shence with anyHPhd is

h = S a jz

− jz a
D, zP C. s9d

Since its matrix elements are independent ofv andV, h is a secularmetric in the sense of Ref.
16.

Moreover,h is positive definite whenevera. uzu, as one can prove by solving the eigenvalue
problem associated with it.17

We can conclude that any elementUPU is unitary onHQ,

U†U = 1, s10d

and, moreover, it ish-unitary onHh
Q,18 i.e.,

U†hU = h. s11d

Alternatively, we can say that the HamiltonianH given in Eq.s4d is anti-Hermitian onHQ as
well as on the Hilbert spaceHh

Q endowed with the scalar productkCuhuFl, since

H = hHh−1 = − H†, s12d

whereh is given in Eq.s9d.
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Then, we may describe the dynamics of our system inHQ or in Hh
Q. Moreover, if the value

a=1 is chosen in Eq.s9d, one obtains that for each vectoruccl with complex components
kccuccl=kccuhuccl. The relevant physical quantities with respect to both the alternative descrip-
tions can now be easily computed.

Let us compute first the diagonal matrix elements of the angular momentum operators and of
the Hamiltonian when the system is described by the vectoru+l= s 1

0
d andu−l= s 0

1
d. sIn the sequel by

an abuse of language, we will call themexpectation values.d One easily obtains

k± uJ1u ± l = 0, k± uhJ1u ± l = 7
1
2kz,

k± uJ2u ± l = 0, k± uhJ2u ± l = 7
1
2 jz,

k± uJ3u ± l = k± uhJ3u ± l = ±
i

2
,

k± uHu ± l = ±
i

2
v, k+ uhHu + l =

i

2
v − kzV, k− uhHu − l = −

i

2
v − kzV* .

All these values are obviously imaginary quaternions. In particular the moduli of the mean values
of H are

uk± uHu ± lu =
uvu
2

, uk± uhHu ± lu =Îv2

4
+ uzu2uVu2, s13d

showing then a sharp difference between the two descriptions, which however vanishes asuzu
→0.

More generally, by using the previous results, one can compute all the expectation values
associated with any vectoruCl=s C+

C−
d sC± PQd, being trivially uCl= u+lC++ u−lC−. The only

obvious warning concerns the norm ofuCl, sincesas one can obtain by an easy calculationd

kCuhuCl = uC+u2 + uC−u2 + 2 RehC̄+jzC−j Þ kCuCl. s14d

sHere,C̄+ denotes the quaternionic conjugate ofC+.d
Finally, making resort to the forms8d of the evolution operatorU, we can also compute the

transition probabilities in both the descriptions. Let us for instance assume that the system is in the
excited stateu1l at t=0; the probability of finding the system in the ground stateu2l at the time
t is given by

P+→−std = uk− uUu + lu2 = uGu2 s15d

according to the first description, and by

P+→−8 std = uk− uhUu + lu2 = uzu2uFu2 + uGu2. s16d

according to the alternative description.19

We emphasize in conclusion that the possibility of an alternative description for this model
can only occur in QQM, which then appears as a theory intrinsically different from CQM, and not
a mere trascription of it.
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We introduce a condition for memoryless quantum channels which, when satisfied
guarantees the multiplicativity of the maximal,p-norm with p a fixed integer. By
applying the condition to qubit channels, it can be shown that it is not a necessary
condition, although some known results for qubits can be recovered. When applied
to the Werner-Holevo channel, which is known to violate multiplicativity whenp is
large relative to the dimensiond, the condition suggests that multiplicativity holds
when dù2p−1. This conjecture is proved explicitly forp=2,3,4.Finally, a new
class of channels is considered which generalizes the depolarizing channel to maps
which are combinations of the identity channel and a noisy one whose image is an
arbitrary density matrix. It is shown that these channels are multiplicative forp
=2. © 2005 American Institute of Physics.fDOI: 10.1063/1.1862094g

I. INTRODUCTION

A noisy quantum channel can be described by9,26,29 means of a completely positive, trace-
preservingsCPTd mapE which transforms the density matricesg on the Hilbert spaceH into the
output statesEsgd. Such maps can always be represented8,26,29 in the form

Esgd = o
k

AkgAk
†, o

k

Ak
†Ak = 1, s1d

with hAkj called a set of Kraus operators associated withE. When the channel is memoryless,6 m
successive uses are described by the mapE^m. It is natural to ask if entangled inputs can decrease
the effects of noise for memoryless channels5 in some way.

One measure of the effect of noise is the maximal,p-norm of a channel, which is defined as

npsEd ; sup
gPDsHd

iEsgdip, p ù 1, s2d

whereiAip;sTruAupd1/p is thep-norm of the operatorA and where the supremum is taken over all
DsHd, the set of density matrices. The quantity TrfEsgdpg is a measure of the closeness of the
output to a pure state, andnpsEd=1 if and only if some output stateEsgd is pure. Because the
Rényi entropy30 can be written asSpsrd=f−1/sp−1dglogirip

p one could define a maximal output
Rényi entropy2,13,14satisfyingsp−1dSp,maxsEd=−p log npsEd.

Amosov, Holevo, and WernersAHWd conjectured4 that npsEd is multiplicative for tensor
product channels
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npsE^md ; sup
GPDsH^md

iE^msGdip = fnpsEdgm, s3d

whereE^m is the CPT map which describesm successive memoryless uses of the channelE, and
where the maximization in the second term of Eq.s3d is now performed over the density matrices
GPDsH^md. The AHW conjecture requires that a product stateG saturates the supremum of
npsE^md for the memoryless channelE^m so that entangled input statesG do not increase the
output norm. One rationale for the multiplicativity hypothesis4 is the physical intuition that quan-
tum coherence among successive channel uses should be degraded by the action of a memoryless
channel. Since the,p-norm “measures” the purity of the states emerging from the channel, one
might expect separable inputs to perform better than entangled inputs. The multiplicativity of
npsE^md is equivalent to additivity for the minimum Rényi entropy with the samep.2,13,14More-
over, if s3d holds forp arbitrarily close to 1, then it implies4 the additivity of the minimum output
von Neumann entropy,24 another measure of output purity. This has been shown33 to be related to
a conjectured additivity property of the Holevo information,15 and to conjectures about additivity
and superadditivity of the entanglement of formation.1,27

Subsequently, Werner and Holevo34 showed that the general multiplicativity conjecture is
false by producing a channel that violatess3d for p.4.79. Nevertheless, one might still expect
multiplicativity to hold for some range ofp, most notably 1øpø2 and this would suffice for
many applications in quantum information theory. However, even the casep=2 is still not re-
solved. It is hence important to understand under which circumstances and for which values ofp
a given channel satisfies Eq.s3d. Many authors have tackled this problem by discussing special
situations for which the conjecture can be proved.2,3,10,13,18–23,25,28,32In the case of a fixed integer
p, we provide an upper bound fornpsE^md, and derive a pair of sufficient conditions, either of
which ensures thatE satisfies the multiplicativity conjectures3d.

The material is organized as follows. In Sec. II we introduce some notation and present a
linearization technique that allows one to compute the,p-norm of integer order as the expectation
value of an operator defined on an extended Hilbert space. In Sec. III we derive our upper bound
and show how it leads to a sufficient condition for the multiplicativity of the,p-norm. Then we
apply our condition to several classes of channels. By considering qubit channels in the case
p=2, we show in Sec. IV A that our sufficient condition is not necessary. We also obtain new
proofs of multiplicativity when the two shortest axes of the image ellipsoidswhether or not
shiftedd are equal. In Sec. IV B we prove multiplicativity whenp=2 for a shifted depolarizing
channel and further generalizations which do not seem to have been considered in the literature.
Finally, in Sec. IV C we consider the Werner–Holevo channel34 for p=2,3,4, andobtain new
results about multiplicativity whenp=3,4. Wealso conjecture that the channel is multiplicative
for any pwhen it acts on a space of dimensiondù2p−1.

We include several appendices. The first reviews useful facts about operators, including
Hilbert–Schmidt duality, shift and permutation operators, and double stochastic matrices. Appen-
dix A also contains information about the notation, and the proof of an important identity. Appen-
dix B discusses properties and alternative forms of the linearizing operators we use. Appendix C
provides details needed for our analysis of the Werner–Holevo channel.

II. LINEARIZATION OF p-NORM FUNCTIONS

A. Basic linearization strategy

In this section we present a method, introduced in Ref. 13, that allows one to compute the
,p-norm from the expectation value of a operator defined in an extended Hilbert space. For any
integerp, it is possible to find a linear operatorXsE ,pd defined in the extended Hilbert spaceH^p

such that, for any density matrixgPH, we have

s4d

where the trace on the left-hand side is computed with respect to an orthonormal basis ofH, while
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the trace on the right-hand side is computed with respect to an orthonormal basis ofH^p. In other
words, we can represent thep-purity functionTrfEsgdgp as the expectation value ofXsE ,pd on p
copies ofg. The operatorXsE ,pd is not uniquely defined; in fact, it can be realized by the action
of tensor products of the dual map ofE on any permutation operator acting onH^p whose shortest
cycle is lengthp.

To make this explicit, we need some notation, which is explained in more detail in Appendix

A, particularly Appendixes A 1 and A 2. We will use a hat to denote the dual, or adjoint, mapÊ
with respect to the Hilbert–Schmidt inner product. LetLp andRp denote the left and right cyclic
shifts which can be defined by their action on an orthonormal product basis as

Lpuj1j2 ¯ jp−1jpl = uj2 ¯ jpj1l, s5ad

Rpuj1j2 ¯ jp−1jpl = ujpj1 ¯ jp−1l, s5bd

whereuj1j2¯jp−1jpl= ^ j=1
p uj jl and hujklj is an orthonormal basis forH. Then the operator

VsE,pd = Ê^psLpd s6d

satisfiess4d. This follows from

Tr g^pVsE,pd = Trsg ^ g ^ ¯ ^ gdÊ^psLpd

= TrfEsgd ^ Esgd ^ ¯ ^ EsgdgLp = TrfEsgdgp, s7d

where the last step usedsA12d. It follows from sA14d that Lp could be replaced by another
permutation; however, it is important to make a definite choice for later use.

In previous work,13,14 a different realization ofXsE ,pd was used which is valid only for pure
states. Let

QsE,pd = VsE,pdRp = Ê^psLpdRp s8d

= o
k1,. . .,kp

Ak1

† Ak2
^ Ak2

† Ak3
^ ¯ ^ Akp

† Ak1
, s9d

wherehAkj form a set of Kraus operators forE as in s1d. The operatorQsE ,pd satisfiess4d when
g= uclkcu is a pure state. This relation is proved in Appendix B 1, and implicitly shows that it does
not depend on the chosen Kraus representations1d of E. For p=2, s9d ands8d were obtained earlier
in Ref. 35.

In general, the operatorVsE ,pd will not be Hermitian. We have already observed thatXsE ,pd
is not unique and that wheneverPp is a permutation operator whose shortest cycle is lengthp, the

operatorÊ^psPpd provides another realization. SinceLp=Rp
†,

fÊ^psLpdg† = Ê^psLp
†d = Ê^psRpd. s10d

This implies thatVsE ,2d is Hermitian forp=2, and that the operator

1
2fVsE,pd + fVsE,pdg†g = 1

2fÊ^psLpd + Ê^psRpdg s11d

gives a Hermitian realization ofXsE ,pd for any p. However, we do not expects11d to have the
important multiplicity propertys14d for repeated uses of the channel. Further discussion of other
realizationsXsE ,pd is given in Appendixes B 2 and B 3.

Linear operators satisfyings4d provide a useful tool for studying thep-purity functions, which
are intrinsically nonlinear objects; it reduces some associated problems to the analysis of the linear
operatorXsE ,pd acting on the extended Hilbert spaceH^p obtained by addingp−1 “fictitious”
copies of the input Hilbert spaceH. In Refs. 13 and 14, this approach was used to obtain some
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additivity properties of Gaussian Bosonic channels. Forp=2, Eq.s4d was used in Ref. 7 to study
the fidelity obtainable in continuous-variable teleportation with finite two-mode squeezing, and in
Ref. 35 to analyze the purity of generic quantum channels.

B. Tensor product maps

The results derived in the preceding section can also be applied when the basic CPT map is
itself a tensor product. Then Eq.s4d becomes

s12d

where G is a generic density matrix in the input Hilbert spaceH^m and XsE^m,pd is a linear
operator onsH^md^p=H^mp. Following the strategy of Sec. II A, we now chooseXsE^m,pd to be
the operator,

VsE^m,pd ; sE^m̂d^psLpd = sE^m̂d^psLp
^md. s13d

The operatorLp is described in more detail in Appendix A 3 where it is proved thatLp=Lp
^m

=sLmpdm. Using sE^m̂d^p=sÊd^mp, we find

VsE^m,pd = Ê^mpsLp
^md = fÊ^psLpdg^m = fVsE,pdg^m. s14d

Equations14d is a key result whose simplicity hides a great deal of subtlety. The essential
point is that the linear operatorXsE^m,pd which satisfiess1d for the tensor product channelE^m

can be realized by the action of the dual ofE^m on the permutationLp
^m.

III. CONDITIONS FOR MULTIPLICATIVITY

A. Upper bound

We now use the singular value decomposition16,17 to observe that one can write

VsE,pd = o
j

m juh jlkv ju, s15d

wherehuh jlj and huv jlj denote orthonormal bases forH^p and m j .0 are the singular values of
VsE ,pd, i.e., the nonzero eigenvalues ofuVsE ,pdu;ÎfVsE ,pdg†VsE ,pd. Before applying this, it is
convenient to introduce the convention of using bold uppercase greek letters to denote tensor
product vectors as inuCl;ucl^p= ucl ^ ucl ^ ¯ ^ uclPH^p. Then

TrfEsuclkcudgp = kCuVsE,pduCl

= o
j

m jkCuh jlkv juCl

ø mmaxo
j

ukCuh jlkv juClu

ø mmaxiCi2 = iVsE,pdi`, s16d

wheremmax=supj m j =iVsE ,pdi` is the largest singular value ofVsE ,pd. Applying this analysis to
multiple uses of the channel, one can similarly conclude that

TrfE^msuClkCudgp ø iVsE^m,pdi`, s17d

where uCl is now an arbitrary vector inH^m. However, it follows froms14d that the singular
values ofVsE^m,pd are products of those ofVsE ,pd so that
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iVsE^m,pdi` = siVsE,pdi`dm = smmaxdm. s18d

Combinings17d and s18d, one finds

TrfE^msuClkCudgp ø siVsE,pdi`dm = smmaxdm. s19d

Since, the supremum ins2d is attained using a pure state input ands19d holds for all pure
inputs uCl, we conclude that the upper bound

npsE^md ø smmaxdm/p, s20d

holds for all pairs of integersm andp.

B. Multiplicativity condition

The bounds20d leads to a sufficient condition for multiplicativity. We state this formally, and
give a condition as a corollary.

Theorem 1: The channelE has the multiplicativity property (3) if the largest singular value of
VsE ,pd satisfies

iVsE,pdi` = fnpsEdgp. s21d

Corollary 2: The channelE has the multiplicativity property (3) if the largest singular value
of VsE ,pd is also an eigenvalue ofVsE ,pd with a product eigenvector of the formufl^p.

To prove Theorem 1, observe that in the notation of the preceding sections21d can be written
asmmax=fnpsEdgp. Thens20d implies

npsE^md ø smmaxdm/p = fnpsEdgm. s22d

On the other hand, one always has

npsE^md ù iE^msgmax
^mdip = iEsgmaxdip

m = fnpsEdgm,

wheregmax denotes the state which achieves the supremum fornpsEd. Combining these inequali-
ties givesnpsE^md=fnpsEdgm. QED

To prove the corollary, observe that its hypothesis holds if and only if there is a stateufl in H
such that

mmax= kFuVsE,pduFl = TrfEsuflkfudgp, s23d

where the second equality useds7d and our convention thatuFl= ufl^p. But it is always true that

TrfEsuflkfudgp ø sup
g

TrfEsgdgp ; fnpsEdgp s24d

so thatmmaxø fnpsEdgp. Combining this withs20d whenm=1, implies thatmmax=fnpsEdgp so that
the hypothesis of Theorem 1 holds. QED

In Sec. IV A we will see that the condition in Theorem 1 is not necessary. There are unital
qubit CPT maps, which are known to be multiplicative, but do not satisfys21d. Verifying the
hypothesis of Corollary 2 requires that one find an eigenvector as well as the largest singular value
of an operator, but does not require knowledge ofnpsEd; conditions21d does require the latter, but
does not require computation of any eigenvectors. In general,s21d seems easier to check. How-
ever, in the examples we analyzed, both conditions hold and the process of verifying one easily
yields the other. It would be interesting to know ifs21d implies that the singular value ofVsE ,pd
is also an eigenvector with a product eigenvalue as in Corollary 2.
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IV. APPLICATIONS

A. Qubit channels

1. Notation

We illustrate our condition by looking at some examples of qubit channels, for which we will
use notation similar to that introduced in Refs. 25 and 31. Any 232 matrix can be represented in
the basis consisting of the 232 identity matrix1 and the three Pauli matrices which we often write
as a formal vectorsW ;ss1,s2,s3d. In this basis a density matrix can be written asg= 1

2f1
+wW ·sW g with wW in R3 and uwW uø1. The density matrix is pure if and only ifuwW u=1. Any linear map
F on a qubit, can be described by two real vectorssW, tWPR3 and by a 333 real matrixT, through
the expression

Fsz01 + zW · sW d = sz0 + sW ·zWd1 + sz0tW + T ·zWd · sW , s25d

which holds for allz0PC andzWPC3. This corresponds to representingF in the basish1 ,sW j by the
434 matrix s 1

tW
sWt

T
d which we have written in block formswith the convention thattW corresponds to

a column vector andsW t a row vector, using the superscriptt to denote transposed. It was shown in
Ref. 24 that it suffices to considerT diagonal with real elementshl1,l2,l3j. fIn essence, a variant
of the SVDswhich leads to negative as well as positivelkd can be applied toT corresponding to
rotations on the input and output bases, respectively.g

In this notation,F is trace preservingsTPd if and only if sW=0 and it is unital if and only iftW=0.
Additional conditions under which the map is positivity preserving or completely positivesCPd are
more complex. A complete set of conditions for the map to be CPT was obtained in Ref. 31. When
t1= t2=0, these CPT conditions reduce tosl1±l2d2ø s1±l3d2− t3

2, as shown in Refs. 11 and 31.
Since the dual map ofF is represented by the adjoint matrix, it satisfies,

F̂sz01 + zW · sW d = sz0 + tW ·zWd1 + sz0sW + Tt ·zWd · sW . s26d

SinceH is now two dimensional, the left shiftL2 is simply the SWAP operatorS which satisfies

S= 1
2f1 ^ 1 + s1 ^ s1 + s2 ^ s2 + s3 ^ s3g. s27d

It is then straightforward to uses6d to show that

VsF,2d = F̂^2sSd =
1

2Fs1 + utWu2d1 ^ 1 + o
j=1

3

l j
2s j ^ s j + o

j=1

3

l jt js1 ^ s j + s j ^ 1dG . s28d

2. Unital maps

For qubit channels the conjectures2d has been extensively studied in Refs. 18, 19, 22, and 24.
Multiplicativity has been proven for allp for unital qubit channels18 and for p=2 for all qubit
channelssTheorem 2 of Ref. 18d. Here we will use the casep=2 to illustrate the multiplicativity
criterion presented in Sec. III B.

It will be useful to choose the subscript “max” inh1, 2, 3j so thatulmaxu=maxkulku. For unital
qubits maps, the maximum,2-norm of F can be achieved with an input state of the form
1
2f1±smaxg for which the output12f1±lmaxsmaxg has eigenvalues12f1±lmaxg and

n2sFd =
1
Î2

Î1 + lmax
2 . s29d

WhenF is unital,tW=0 and the third term in the expressions28d vanishes. It then follows that in the
product basishu00l,u01l,u10l,u11lj, the operatorVsF ,2d is represented by the matrix
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1

21
1 + l3

2 0 0 l1
2 − l2

2

0 1 − l3
2 l1

2 + l2
2 0

0 l1
2 + l2

2 1 − l3
2 0

l1
2 − l2

2 0 0 1 + l3
2
2 . s30d

This is easily seen to have two nonzero 232 blocks. The “inner” block has eigenvalues1
2f1

−l3
2± sl1

2+l2
2dg with eigenvectors 2−1/2s0,1, ±1,0dt corresponding to the Bell states

2−1/2su01l± u10ld. The “outer” block has eigenvalues12f1+l3
2± sl1

2−l2
2dg with eigenvectors

2−1/2s1,0,0, ±1dt corresponding to the Bell states 2−1/2su00l± u11ld. SinceVsF ,2d is Hermitian, its
singular values are simply the absolute values of the eigenvalues above.

When theulku are distinct fork=1,2,3, thesingular values ofVsF ,2d are all distinct and
correspond to maximally entangled, rather than product, states. Moreover, one of the singular
values is always strictly greater thann2sFd. For example, whenulmaxu= ul3u, one of the “outer”
eigenvalues equalsn2sFd2+ 1

2sl1
2−l2

2d which is strictly greater thans29d unlessul1u= ul2u. There-
fore, althoughF is multiplicative, it does not satisfys21d. This establishes thats21d is not a
necessary condition for multiplicativity.

Now consider the casel3.l1=l2ù0; such channels are sometimes called “two-Pauli”
channels.5 The image of the Bloch sphere is an ellipsoid shaped like an American football. For
these channels, the “outer” block ins30d is diagonal, itssdegenerated eigenvalue 1

2s1+l3
2d

=fn2sFdg2 is the largest singular value ofVsF ,2d and the corresponding eigenvectorsu00l and
u11l are product states. Thus, Theorem 1 implies that the channel satisfiess3d.

3. Nonunital maps

We now consider channels similar to those above, but with the image ellipsoid shifted along
the longest axis. It suffices to considerul3uùl1=l2ù0 andt1= t2=0. The same results hold for
permutations of 1,2,3 and forl1=l2ø0. However, the analysis in the basis we have chosen to
representVsF ,2d is simplest whenulmaxu= ul3u. The matrix representingVsF ,2d is

1

21
1 + st3 + l3d2 0 0 0

0 1 + t3
2 − l3

2 2l1
2 0

0 2l1
2 1 + t3

2 − l3
2 0

0 0 0 1 + st3 − l3d2
2 s31d

which has an “inner” block with eigenvalues1
2f1+t3

2−l3
2±2l1

2g and a diagonal “outer” block with
eigenvalues1

2f1+st3±l3d2g and product eigenvectors. One can verify that the largest singular
value is 1

2f1+sut3u+ ul3ud2g. To see that this equalsfn2sFdg2, observe that the optimal input state is
1
2f1+st3/ ut3uds3g for which the output state has eigenvalues1

2f1±sut3u+ ul3ud2g. Thus, we can again
use Theorem 1 to conclude thats3d holds.

The methods introduced here are able to handle qubit channels for which the image of the
Bloch sphere is an elongated ellipsoid with a symmetry axis, i.e., in the shape of an American
football, both when the channel is unital and when it is shifted in the direction of the longest axis.
However, it cannot handle these channels if the shift is orthogonal to the longest axis, i.e., ift3
=0 but t2Þ0 above. When the ellipsoid has a symmetry axis butul1u= ul2uù ul3u so that it is
shaped like a flying saucer, the methods used here cannot prove multiplicativity. Even for unital
channels, for which multiplicativity has been established,19 neither of the conditions in Theorem 1
holds.
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B. Shifted depolarizing channels

1. Shifting and generalizing the depolarizing channel

The unital qubit map withlk= ± ulmaxu for all k, is a special case of the depolarizing channel
which has the formEsgd=s1−xdsTr gd 1

d1+xg. It is CPT for −1
3 øxø1. The nonunital qubit map

which takes

g = 1
2f1 + wW · sW g ° 1

2f1 + stW + lwW d · sW g = s1 − utWu − ld 1
21 + utWu 1

2f1 + t̂ · sW g + lg s32d

can be regarded as a shifted depolarizing channel because it shifts the output toward the pointt̂ on
the Bloch sphere. By rotating coordinates so thattW=s0,0,t3d, this is a special case of the qubit
maps considered in Sec. IV A 3 above. It is then natural to define a shifted depolarizing channel in
dimensiond by

Esgd = asTr gd
1

d
1 + bsTr gduclkcu + cg s33d

with the stateucl fixed anda+b+c=1. Whena,b,c are positive, this channel is a convex com-
bination of the identity map and two completely noisy channels which maps all states to1

d1 and to
uclkcu, respectively.

We now consider the more general class of channels of the form

Esgd = s1 − cdsTr gdr + cg, s34d

where r is a fixed density matrix. Forr=s1/dd1, this is the usual depolarizing channel; forr
=f1/sa+bdgfsa/dd1+buclkcug it is the shifted depolarizing channels33d.

When cù0 additivity was proved for the depolarizing channel ind dimensions using a
majorization argument12 from which multiplicativity immediately follows; for −f1/sd2−1dgøc
ø1 s which is the range for which the map is CPTd multiplicativity of the depolarizing channel in
d dimensions was proved in Ref. 21. Neither shifted depolarizing channels nor the generalization
s34d seem to have been explicitly considered in the literature before. One could obtain a proof of
multiplicativity for p=2 whenc.0 by verifying that the positive element condition in Ref. 25 is
satisfied.sIn fact, these maps satisfy the stronger condition considered in Ref. 23.d However,
neither of these positive element conditions can be verified whenc,0. By contrast, the method
presented here can establish multiplicativity whenp=2 for all CPT maps of the forms34d, includ-
ing those withc,0.

2. Convex combinations of the identity and completely noisy maps

It will be useful to write the spectral decomposition ofr asr=o jaju jlk j u with the eigenvalues
aj in decreasing order. Then, forc.0, the stateEsu1lk1ud majorizes all outputs so thatfnpsEdgp

=fca1+s1−cdgp+cpo j.1
d aj

p.

Since,ÊsBd=s1−cdfTr Brg1+cB, we have

Êsu jlkkud = s1 − cdkkuru jl1 + cu jlkku = s1 − cdd jkak1 + cu jlkku s35d

and

VsE,2d = sÊ ^ ÊdsSd = o
jk

Êsu jlkkud ^ Êsuklk j ud

= o
jk

fs1 − cd2d jkak
21 ^ 1 + cs1 − cdd jkaks1 ^ uklkku + uklkku ^ 1d + c2u jlkku ^ uklk j ug

= s1 − cd2sTr r2d1 ^ 1 + cs1 − cdf1 ^ r + r ^ 1g + c2S. s36d

From this it is easy to see thatVsE ,2d hasd product eigenvectors of the formukkl with eigenval-
ues
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s1 − cd2sTr r2d + 2cs1 − cdak + c2 = fs1 − cdak + cg2 + s1 − cd2o
jÞk

aj
2, s37d

and s d
2

d blocks of the formfs1−cd2sTr r2d+cs1−cdsaj +akdg12+c2sx, with eigenvalues

s1 − cd2sTr r2d + cs1 − cdsaj + akd ± c2 s38d

and entangled eigenvectors 2−1/2su jkl± ukjld. Whenc.0 all eigenvalues are non-negative and the
largest singular value isfs1−cda1+cg2+s1−cd2o j.1aj

2=fn2sEdg2 associated with the product ei-
genvectoru11l. Therefore, one can use Theorem 1, or Corollary 2, to conclude that the channel
s34d is multiplicative forp=2 whenc.0.

3. CPT maps with a negative contribution from the identity

To analyze the casec,0, write c=−x with x= ucu.0, and recall that we assumed that thehajj
are decreasing. It can still happen that all eigenvalues ofVsE ,2d are non-negative, in which case
the largest singular value isfs1+xdad−xg2+s1+xd2o j,daj

2 associated with the product eigenvector
uddl. It turns out that the requirement thatE be CPT suffices to ensure that the eigenvalues of
VsE ,2d are non-negative. Therefore, any CPT map of the forms34d is multiplicative forp=2.

To see the relevance of the CPT condition, observe that the CP requirement that
sE ^ 1dso jku jlkku ^ u jlkkud swhich is the Choi matrixd is positive semidefinite holds if and only if

B = s1 + xdr − x11 ¯ 1

] ]

1 ¯ 1
2

is positive semidefinite. ThenB has non-negative diagonal elements, which gives

s1 + xdaj − x ù 0 ⇒ x ø
aj

1 − aj
⇒

x

1 + x
ø aj . s39d

All 2 32 principle minors ofB are non-negative, which implies

s1 + xd2a1a2 − xs1 + xdsa1 + a2d ù 0. s40d

Now, all eigenvalues ofVsE ,2d will be positive if s1−cd2sTr r2d+cs1−cdsaj +akd−c2ù0 for all
j ,k. But the most negative of these is

s1 + xd2sTr r2d − xs1 + xdsa1 + a2d − x2 ù s1 + xd2sa1
2 + a2

2d − s1 + xd2a1a2 − x2

= s1 + xd2Fa1
2 + a2

2 − a1a2 − S x

1 + x
D2G

ù s1 + xd2fa1
2 + a2

2 − 2a1a2g = s1 + xd2sa1 − a2d2 ù 0,

s41d

where the second inequality useds39d with j =1,2 toconclude thatfx/ s1+xdg2øa1a2.

C. The Werner–Holevo channel

In our final example, we apply our condition forp=3,4 aswell as p=2. We study the
channelsWd introduced in Ref. 34 to show that multiplicativity does not hold for sufficiently large
p. The channelWd is defined on ad dimensional Hilbert space as
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Wdsgd ;
1

d − 1
fsTr gd1d − gTg =

1

sd − 1d oj,k

Wjk
† gWjk s42d

with 1d the identity operator onH, gT the matrix transpose with respect to some fixed basishuilj,
and Wjk the anti-Hermitian operatoru jlkku− uklk j u. sWe will often suppress the subscriptd and
simply write W for Wd.d As observed in Ref. 34, any pure input state yields an output state
Wsuclkcud with eigenvalues1/sd−1d with multiplicity d−1. This implies

npsWdd = sd − 1ds1−pd/p. s43d

Werner and Holevo showed that ford=3 and p.4.79 this map is not,p multiplicative, by
showing that maximally entangled inputs yield output,p-norm greater thansd−1ds1−pd/p. For d
.3, they also showed that multiplicativity fails for sufficiently largep. Although their results
strongly suggest that multiplicativity does hold for smallerp, they do not preclude the possibility
that it fails with inputs that are partially entangled. Our results show that this cannot happen when
p=2,3,4 anddù2p−1.

The multiplicativity ofW for p=2 was established in Ref. 25; the additivity of minimal output
entropy and Holevo capacity was proved in Refs. 28 and 10; and, recently, a short elegant proof
of multiplicativity for all 1øpø2 was given in Ref. 2. Here we use Theorem 1 to give another
proof of s3d for p=2, and then consider multiplicativity ofVsW ,pd for integerp.2.

For p=2 it is straightforward to show thatsor see Appendix C 1d

VsW,2d = sW ^ WdsSd =
1

sd − 1d2fsd − 2d1 ^ 1 + Sg. s44d

with S the SWAP onH ^ H. The eigenvalues ofVsW ,2d can be computed from those ofSwhich
has a diagonal block withd product statesu j j l as eigenvectors with eigenvalue 1, ands d

2
d blocks of

the form s 0 1
1 0

d with eigenvalues +1 and −1 corresponding to the entangled states
2−1/2su jkl± ukjld. This yields eigenvalues 1/sd−1d with multiplicity dsd+1d /2 andsd−3d / sd−1d
with multiplicity dsd−1d /2. For dù3, these are also the singular values ofVsW ,2d; for d=2,
1/sd−1d is the only singular value. In both casesiVsW ,2di`=1/sd−1d=n2sWd. Therefore,s21d is
satisfied and the result follows from Theorem 1.

To study p.2, we first observe thatsC2d implies thatVsW ,pd is a linear combination of
permutation matrices. This has some important consequences.

sad VsW ,pd has a large number of invariant subspaces, giving it a block diagonal structure.
Each block describes the restriction ofVsW ,pd to a subspace spanned by all permutations of
a vectorujk1

jk2
¯jkp

l with indicesk1øk2ø ¯ økp.
sbd All row and column sums are equal. Moreover,sC3d implies that every row and column sum

of VsW ,pd or, equivalently, of each block, is exactlysd−1d1−p, which is also the value of
fnpsWdgp.

It follows immediately fromsbd that sd−1d1−p is an eigenvalue of each block ofVsW ,pd and
hence, an eigenvalue ofVsW ,pd with very high degeneracy. Therefore,VsW ,pd can have a
singular value greater thatfnpsWdgp only if some block has a singular value greater than
sd−1d1−p. The following lemma, which is proved in Appendix C 5, shows that it will suffice to
consider this question for one of the largest blocks.

Lemma 3: When dùp, the largest singular value ofVsW ,pd is a singular value of each of the
p! 3p! blocks representing the restriction ofVsW ,pd to a subspace ofsCdd^p spanned by all
permutations of a vectorujk1

jk2
¯jkp

l with distinct kp.
Based on this and the structure of the largest blocks as described in Appendx C 4, we make the

following conjecture.
Conjecture 4: The,p multiplicativity relation (3) holds for the channelWd when the dimen-

sion dù2p−1.
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This conjecture is proved forp=2,3,4. For largerp we have shown in Appendix C 4 that the
largest block ofVsW ,pd has two eigenvectors which transform as the two one-dimensional
representations ofSp. The corresponding eigenvalues aresd−1d1−p andsd−1d−psd−2p+1d. When
dù2p−1, ud−2p+1uød−1. Moreover, no other singular values have the symmetry associated with
a one-dimensional representation ofSp. Thus, if we knew that the largest singular value of
VsW ,pd must be associated with a one-dimensional irreducible representation, we could conclude
that the largest singular value ofVsW ,pd is d−1, proving the conjecture.

Now we considerp=3,4. Theresults in Appendix C 1 can be used to writeVsW ,pd explicitly
as

VsW,3d =
1

sd − 1d3Fsd − 3d1 + o
a,b

Sab − R3G , s45d

VsW,4d =
1

sd − 1d4Fsd − 4d1 + o
a,b

Sab − o
a,b,c

R3sa,b,cd + R4G , s46d

where the shiftR3sa,b,cd is defined in Appendix A 2. The block structure ofVsW ,pd for p
=3,4 issummarized in Table I. In this table,i , j ,k,, always denote distinct indices. For readabil-
ity, sd−1dpmmax is reported in the last three columns, and should be compared to
sd−1dpfnpsWdgp=sd−1d. For VsW ,3d and VsW ,4d, all singular values can be found explicitly
with the help of Mathematica, with the largest for each block shown in Table I. The multiplica-
tivity condition s21d holds if the largest singular value issd−1d1−p. For p=3, this holds ford
ù4; for p=4, it holds fordù8. Forp=3, an analytic argument, which does not require determin-
ing the eigenvalues ofVsW ,3d, is presented in Appendix C 2.

V. CONCLUSION

We have extended the method introduced in Refs. 13 and 14 to study the maximal,p-norms
of a CPT map whenp is a fixed integer. This yields a sufficient condition for multiplicativity
which requires only that one find the singular values of a particular matrix, rather than performing

TABLE I. Block structure ofVsW ,pd.

Number
of blocks Size

Type of
vectors

Non-neg
elements

max sing value3sd−1dp

d=3 d=4 dù5

p=3

d 131 ukkkl yes 2 3 d−1

dsd−1d 333 u j jkl yes 2 3 d−1

sd3 d 636 ui jkl no 4 3 maxhd−1,u7−duj

p=4

d 131 ukkkkl yes 2 3 d−1

dsd−1d 434 u j j jk l yes 2 3 d−1

sd2 d 636 u j jkkl yes 2 3 d−1

1
2dsd−1dsd−2d 12312 ui jkkl no Î18 Î13 maxhd−1,Îd2−12d+45j

sd4 d 24324 ui jk,l no 11 maxhd−1,u15−duj
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a full optimization. Although the matrix will bedp3dp, it often has a block structure which makes
the problems quite tractable, as shown in several examples. The condition is not necessary, but
does allow us to prove new results about multiplicativity in several interesting cases, as well as
providing alternative proofs of known results.
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APPENDIX A: SOME OPERATOR PROPERTIES

1. Hilbert–Schmidt duality

For a Hilbert spaceH the subspace of operators satisfying TrA†A,` also forms a Hilbert
spacesthe space of Hilbert–Schmidt operatorsd with respect to the inner product,

kA,Bl = Tr A†B. sA1d

An operatorssometimes referred to as a “superoperator”d E acting on this space has an adjoint

which we will denoteÊ and which satisfies

TrfEsAdg†B = Tr A†ÊsBd ∀ A,B. sA2d

BecausefEsAdg†=EsA†d, by writing C for A† one easily sees thatsA2d is equivalent to to the
condition

TrfEsCdgB = Tr CÊsBd ∀ B,C. sA3d

The mapÊ is often called the dual ofE because it is defined by the duality property of the Riesz
representation theorem applied to the inner productsA1d. WhenE is a CPT map of the forms1d,
its dual is the unital CP map with the form

Êsgd = o
k

Ak
†BAk. sA4d

One can verify, either directly fromsA1d or by usingsA4d, that the dual of the mapE^m is given

by them-fold tensor product of the dual map ofE; i.e., E^m̂=sÊd^m.

2. Shift operators

The shift operators defined ins5d are unitary and satisfyLpRp=1 so thatLp
†=Lp

−1=Rp. More-
over, if a vectoruCl in H^p has the expansion

uCl = o
j1j2¯ jp

cj1j2¯ jp
uj j1

j j2
¯ j jp

l sA5d

then

LpuCl = o
j1j2¯ jp

cj1j2¯ jp
uj j2

j j3
¯ jpj j1

l sA6d
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= o
j1j2¯ jp

cjpj1¯ jp−1
uj j1

j j2
¯ j jp

l sA7d

so thatLp induces a right shift on the expansion coefficients. From this, it follows thatLp andRp

induce left and right shifts on all product states, e.g.,

Lpuf1,f2, . . . ,fpl = uf2,f3, . . . ,fp,f1l, sA8ad

Rpuf1,f2, . . . ,fpl = ufp,f1, . . . ,fp−1l, sA8bd

where uf1,f2, . . . ,fpl denotesuf1l ^ uf2l ^ ¯ ^ ufpl. It also follows from sA8d that the shift
operators are independent of the choice of orthonormal basis ins5d.

To compute operators associated with the WH channel, it will be useful to observe that

Lp = o
m1¯mp

um2 ¯ mpm1lkm1m2 ¯ mpu, sA9ad

Rp = o
m1¯mp

umpm1 ¯ mp−1lkm1m2 ¯ mpu, sA9bd

whereumjl denotes any orthonormal basis ofH. It will also be useful to introduce some notation
for shift operators on a subset ofH^p. For example, writeH^4=Ha ^ Hb ^ Hc ^ Hd. Then
L3sa,b,dd denotes the operator which acts as a left shift onHa ^ Hb ^ Hd and the identity onHc,
i.e.,

L3sa,b,dd = o
m1¯m4

um2m4m3m1lkm1m2m3m4u. sA10d

The SWAP operatorsL2sa,bd=R2sa,bd play such a special role that we denote them asSab. Using
the standard method for writing any permutation as a product of cycles, one can see that any shift
can be written as a product of SWAP operators, e.g.,L3sa,b,dd=SabSad and L4sa,b,c,dd
=SabSacSad.

3. Tensor products of shifts

When the underlying Hilbert is itself a tensor productH^m, we will let Lp denote the shift
operator acting onp copies ofH^m, e.g.,L3ux,y,zl= uy,z,xl with x,y,z denoting vectors inH^m.
Then, Lp=Lp

^m=sLmpdm. To avoid notation with double subscripts, we prove this in the casep
=3. Then

L3ux,y,zl = L3ux1,x2, . . . ,xm,y1,y2, . . . ,ym,z1,z2, . . . ,zml

= uy1,y2, . . . ,ym,z1,z2, . . . ,zm,x1,x2, . . . ,xml

= L3
^mux1,x2, . . . ,xm,y1,y2, . . . ,ym,z1,z2, . . . ,zml, sA11d

where the last line follows by writing

L3
^m = sL3 ^ 1 ^ ¯ ^ 1ds1 ^ L3 ^ 1 ^ ¯ ^ 1d ¯ s1 ^ 1 ^ 1 ^ ¯ ^ 1 ^ L3d

and observing that

sL3 ^ 1 ^ ¯ ^ 1dux1,x2, . . . ,xm,y1,y2, . . . ,ym,z1,z2, . . . ,zml

= uy1,x2, . . . ,xm,z1,y2, . . . ,ym,x1,z2, . . . ,zml.

Note that it is also evident fromsA11d that Lp
^m=sLmpdm.
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4. An important trace identity

We now show that for any set of operatorshB1,B2, . . . ,Bpj acting onH,

TrHfB1B2B3 ¯ Bpg = TrH^pfB1 ^ B2 ^ ¯ ^ BpgLp, sA12d

where we have introduced subscripts to emphasize that the trace on the left-hand side of Eq.sA12d
is performed onH, while the trace on the right-hand side is performed onH^p. To verify sA12d
observe that

TrfB1B2 ¯ Bpg = o
j1

kj1uB1B2 ¯ Bp−1Bpuj1l

= o
j1,. . .,jp

kj1uB1uj2lkj2uB2uj3l ¯ kjp−1uBp−1ujplkjpuBpuj1l

= o
j1,. . .,jp

kj1,j2, . . . ,jpuB1 ^ B2 ^ ¯ ^ Bpuj2, . . . ,jp,j1l

= TrfB1 ^ B2 ^ ¯ ^ BpgLp,

where a resolution of the identity operator1 of H was inserted between the productsBjBj+1.

5. General permutations

Shifts are special cases of permutation operators. LetPp denote a permutation ofh1,2, . . . ,pj
and Sp the set of all such permutations. We will writePs jd=kj for the permutation that takes
j °kj. For example,Lps jd= j +1. One can then define a permutation operator onH^p by

Ppuj j1
j j2

¯ j jp
l = ujPs j1djPs j2d ¯ jPs jpdl sA13d

with huj jlj an orthonormal basis forH as ins5d. A permutation of the indicesh1,2, . . . ,pj induces
a permutation on thedp product basis vectorsH^p via sA13d. Although we abuse notation by
using the same letter for both, there should be no confusion. The permutation operator onH^p is
represented by adp3dp matrix which has precisely one 1 anddp−1 0’s in each row and column.

The permutation which takesk1°k2° ¯ °kq°k1 is called a cycle and writtenP
=sk1,k2, . . . ,kqd, i.e., Pskjd=skj+1d with the understanding thatPskqd=k1 andPs jd= j if j does not
appear as one of theki in the cycle. Any permutation can be written uniquely as a product of
disjoint cycles, and the length of the disjoint cycles inPPP† are the same as those inP. For
examples13dL5s13d=s14532d. If a permutation ofh1,2, . . . ,pj has a cycle decomposition with
cycles whose length is strictly less thanp, then some subset ofh1,2, . . . ,pj is invariant. A
permutationPp whose shortest cycle is of lengthp has no invariant subsets. Permutations satis-
fying this condition, which is equivalent tosPpdss jdÞ j for s,p and sPpdps jd= j for all j , are of
particular interest.

In fact, when all operatorsBi =B are identical,sA12d can be extended to any permutationPp

of h1,2, . . . ,pj whose shortest cycle is lengthp. One finds

TrH Bp = o
j1,. . .,jp

kj1uBujPps1dlkjPps1duBujPp
2s1dl ¯ kjsPpdps1duBuj1l

= o
j1,. . .,jp

kj1uBujPps1dlkj2uBujPps2dl ¯ kjpuBujPpspdl

= o
j1,. . .,jp

kj1,j2, . . . ,jpuB ^ B ^ ¯ ^ Bujk1
,jk2

, . . . ,jkp
l

= TrH^pfB ^ B ^ ¯ ^ BgPp = TrH^pB^pPp. sA14d

To see where the invariance condition is used, consider the permutations153d s24d. Attempting to
apply the process above yields
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TrH B5 = o
j1,j3,j5

kj1uBuj5lkj5uBuj3lkj3uB3uj1l

= o
j1,j3,j5

kj1,j5,j3uB ^ B ^ B3uj5,j3,j1l = TrHa^Hc^He
fB ^ B ^ B3gL3

or TrH B5=TrH^3fB^ B3 ^ BgL3 or TrH B5=TrH^2fB^ B4gL2.

6. Double stochastic matrices

A double stochastic matrix16 is a matrix with non-negative elements whose row and column
sums are all 1, i.e.,B is double stochastic if and only ifbjkù0∀ j ,k and o jbjk=okbjk=1. The
vector s1,1, . . . ,1d is always an eigenvector with eigenvalue 1. Moreover, all other eigenvalues
satisfy ul juø1. A permutation ofh1,2, . . . ,pj can be represented by a matrix which has precisely
one 1 andp−1 0’s in each row and column. This is a special type of double stochastic matrix
called a “permutation matrix.” Moreover, a permutationPp of h1,2, . . . ,pj has no nontrivial
invariant subspaces if and only if its permutation matrix is indecomposable. Note that the corre-
sponding permutation operator onHp, represented by adp3dp matrix with precisely one 1 and
dp−1 0’s in each row and column, can have invariant subspaces. In fact, it will be block diagonal.

APPENDIX B: PROPERTIES OF LINEARIZING OPERATORS X„E ,p…

1. Kraus operator form of V„E ,p…

We first observe that conjugation of a tensor product of operators by a shift operation induces
a shift on the tensor product, e.g.,

LpfB1 ^ B2 ^ ¯ ^ BpgLp
−1 = B2 ^ ¯ ^ Bp ^ B1. sB1d

More generally,

PpfB1 ^ B2 ^ ¯ ^ BpgPp
−1 = BPs1d ^ BPs2d ¯ ^ BPspd. sB2d

To proves9d, one can uses1d and sB1d to see that

fÊ^psLpdgRp = F o
k1,. . .,kp

sAk1

†
^ Ak2

†
^ ¯ ^ Akp

† dLpsAk1
^ Ak2

^ ¯ ^ Akp
dGLp

−1

= o
k1,. . .,kp

sAk1

†
^ Ak2

†
^ ¯ ^ Akp

† dsAk2
^ Ak3

^ ¯ ^ Akp
^ Ak1

d

= o
k1,. . .,kp

Ak1

† Ak2
^ Ak2

† Ak3
^ ¯ ^ Akp

† Ak1
sB3d

which gives the desired result. Moreover, using a similar argument andsB2d, one finds

RpfÊ^psLpdg = RpF o
k1,. . .,kp

sAk1

†
^ Ak2

†
^ ¯ ^ Akp

† dLp
−1sAk1

^ Ak2
^ ¯ ^ Akp

dG
= o

k1,. . .,kp

Akp

† Ak1
^ Ak1

† Ak2
^ ¯ ^ Akp−1

† Akp
. sB4d

Then by observing that bothsB3d and sB4d involve tensor products of operators of the form
Akj

† Akj+1
, one sees that after a change of variable in the summation indices, e.g.,kj →kj−1 in sB4d,

the two expressions are identical. Therefore,RP commutes with Ê^psLpd and QsE ,pd
=VsE ,pdRp=RpVsE ,pd.
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2. General permutations

DefineXsE ,pd the set of operatorsXsE ,pd of H^p that satisfy the propertys4d for all the input

statesg of H. We have already seen thatÊ^psLpd is in XsE ,pd which implies that it is nonempty.
Moreover, the linearity of Eq.s4d with respect toXsE ,pd implies that wheneverXsE ,pd andYsE ,pd
are inXsE ,pd, thenaXsE ,pd+s1−adYsE ,pd is in XsE ,pd is also. This is true for any real number
a includinga,0 anda.1, and even for complexa. By choosing 0,a,1, we can also conclude
that XsE ,pd is convex; however,XsE ,pd is not compact. Because TrfEsgdgp is real,

Tr g^pXsE,pd = Tr g^pXsE,pd = Trfg^pXsE,pdg† = TrfXsE,pdg†g^p = Tr g^pfXsE,pdg†

sB5d

for all density matricesg. Therefore, wheneverXsE ,pd is in XsE ,pd so arefXsE ,pdg† and the
self-adjoint operator12sXsE ,pd+fXsE ,pdg†d.

In view of the discussion in Appendix A 4 we can also conclude that the operatorÊ^psPpd is
in X wheneverPp is a permutation whose shortest cycle is lengthp. Moreover, a modification of
the argument in the preceding section shows that, for these permutations,

Ê^psPpdPp
† = Pp

†Ê^psPpd = o
k1,. . .,kp

Ak1

† APsk1d ^ Ak2

† APsk2d ^ ¯ ^ Akp

† APskpd. sB6d

SincePpg^pPp
†=Pp for any permutation,

Trfg^psPpXsE,pdPp
†dg = TrfsPp

†g^pPpdXsE,pdg = Tr g^pXsE,pd = TrfEsgdpg. sB7d

Note that the mapPp°PpPpPp
† does not change the cycle structure ofPp, e.g., if Pp is a product

of a 3-cycle and a disjoint 2-cycle, then so isPpPpPp
†. Thus,PpLpPp

† is a permutation whose
shortest cycle is lengthp irrespective of the cycle structure ofPp. One can show that

PpfÊ^psLpdgPp
†= Ê^psPpLpPp

†d, with a similar result whenLp is replaced by any permutation
whose shortest cycle is lengthp.

3. Linearizing operators for pure inputs

The setXsE ,pd is a subset ofXpuresE ,pd, the set of operators, which satisfy the propertys4d
wheng= uclkcu is pure. We have already observed thatQsE ,pd=VsE ,pdRp belongs toXpuresE ,pd
but need not belong toXsE ,pd. It follows from sB6d that the operatorsÊ^psPpdPp

† are also in
XpuresE ,pd. In addition, for anyXsE ,pdPXpuresE ,pd the operatorsXsE ,pdPp and PpXsE ,pd are
also inXpuresE ,pd for all permutationsPp. This follows from

Trfg ^ g ^ ¯ ^ ggXsE,pdPp = Truclkcu ^ uclkcu ^ ¯ ^ uclkcuXsE,pdPp

= Tr Ppuc, . . . ,clkc, . . . ,cuXsE,pd

= Truc, . . . ,clkc, . . . ,cuXsE,pd

= Trfg ^ g ^ ¯ ^ ggXsE,pd = Tr Esgdp,

wheneverg= uclkcu is pure.

APPENDIX C: OPERATORS FOR WERNER–HOLEVO CHANNEL

1. General form of V„W ,p…

It follows from s42d, sA9d, ands6d that for the WH channel,
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VsW,pd = o
j1¯jp

Wsuj2lkj1ud ^ Wsuj3lkj2ud ^ ¯ Wsujplkjp−1udWsuj1lkjpud

=
1

sd − 1dp o
j1¯jp

sdj2j1
1 − uj̄1lkj̄2ud ^ sdj3j2

1 − uj̄2lkj̄3ud ^ ¯ ^ sdj1jp
1 − uj̄plkj̄1ud

=
1

sd − 1dpFd1 − So
j1

uj̄1lkj̄1u + o
j2

uj̄1lkj̄2u + ¯ + o
jp

uj̄1lkj̄puD
+ o

a,b
So

jajb

uj̄aj̄blkj̄bj̄auD − ¯ + s− 1dp o
j1¯jp

uj̄1j̄2 ¯ j̄p−1j̄plkj̄2j̄3 ¯ j̄pj̄1uG sC1d

=
1

sd − 1dpFsd − pd1 + o
a,b

Sab − o
a,b,c

R3sa,b,cd + ¯ + s− 1dpRpG , sC2d

where we have used the notation introduced at the end of Appendix A 2. Note that the orthonormal

basishuj jlj can be chosen real, but even if it is not,huj̄ jlj gives another orthonormal basis forH for
which the representationsA9d is also valid.

It is useful to compare the structure ofsC2d to that of a binomial expansion. The term in
square brackets is a sum of shift operatorsRk of orderk=0,1,2, . . . ,p. Forkù2 the number ofRk

is s p
k

d with coefficients−1dk. In view of sC1d, the sd−pd1 term should be regarded as the sum of a
k=0 termd1 and ak=1 term −p1. The coefficient of thek=0 term is anomalous, since it has the
value d rather than 1. This implies that the row and column sums of the matrix representing

VsW ,pd in the orthonormal basishuj̄ j1j̄ j2¯ j̄ jplj of H^p are

1

sd − 1dpFd + o
k=1

p

s− 1dkSp

k
DG =

d − 1

sd − 1dp . sC3d

One similarly finds that the sum of the absolute values of elements in any row or column sum is
bounded above by

1

sd − 1dpFd + o
k=1

p Sp

k
DG =

sd − 1 + 2pd
sd − 1dp ,

and will use the fact that

o
k=2

p Sp

k
D = 2p − p − 1.

2. Singular value analysis for p =3

We first remark that one can reduce the analysis ofVsW ,3d to that of its 636 blocks without
using Lemma 3. Whenp=3, all blocks with basis vectorsu j jkl with j Þk have only non-negative
elements. To see why, note that the only negative contribution comes fromR3, for which
k j jk uR3u jkjl=−1 is the only nonzero element of the row corresponding toj jk. But k j jk uVu jkjl
ù k j jk usSac−R3du jkjl=0. Therefore, every 333 block is represented by a stochastic matrix and,
hence, its column sumsd−1d1−p is also its largest singular value. Thus, only the 636 blocks of
VsW ,3d can have negative elements and, hence, a singular value greater thansd−1d1−p.

Using an ordered basis whose first three elements arehui jkl ,L3ui jkl ,L3
2ui jklj and last three

Sabhui jkl ,Sbcui jkl ,Sacui jklj, one can write each 636 block assd−1d−3F with
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F = sd − 3d16 + S− L3 V

V − L3
D andV = 11 1 1

1 1 1

1 1 1
2 . sC4d

Then

F†F = sd − 3d21 + sd − 3dfG + G†g + G†G

= sd2 − 5d + 7d16 + S− d + 6 2d − 8

2d − 8 −d + 6
D ^ V. sC5d

Since the eigenvalues ofV are 3, 0, 0, the nonzero eigenvalues ofF†F ared2−5d+7 swith fourfold
degeneracyd and sd2−5d+7d+3fs6−dd± s2d−8dg or sd−7d2 and sd−1d2. Now sd2−5d+7d
ø sd−1d2 whendù2 andsd−7d2ø sd−1d2 if and only if dù4. Therefore, whendù4 the largest
singular value of this block isd−1 which implies that the largest singular value ofiVsW ,3di`

=sd−1d−2.

3. Singular value analysis for p =4

For p=4, one can show that the 434 and 636 blocks have only non-negative elements.
Therefore, their largest singular value is the same as the column sumsd−1d−3. VsW ,4d also has
12312 blocks corresponding to permutations ofui jkkl, with i , j ,k distinct and 24324 blocks
corresponding to permutations ofui jk,l, with i , j ,k,, distinct. By Lemma 3, the largest singular
value is associated with the latter. Nevertheless, an analysis of all blocks was performed using
Mathematica, yielding the results summarized in Table II. This confirms that the largest singular
value ofVsW ,4d is sd−1d−3 whendù8.

4. Structure of largest block

a. Preliminaries

Recall that every permutationP in Sp can be classified as even or odd, depending on the
number of transpositionssor SWAPd operators needed to write it as a productP
=Sa1b1

Sa2b2
¯Sambm

. Although this decomposition is not unique,m is either always even or always
odd. Let uPu be the minimal number of swaps needed so that

s− duPu = H+ 1 if P is even

− 1 if P is odd
J .

Note thatSsa,bd and R4sa,b,c,dd are odd andR3sa,b,cd is even. More generally, a shift ofj
elements is even whenj is odd and odd whenj is even. Thus, one can write

TABLE II. Singular value decomposition ofVsW ,4d on the 12-dimensional subspace generated by the vectors
hui jkkl , u jikkl , . . . ,ukjiklj and the 24-dimensional subspace generated byhui jk,l , u j jk,l , . . . ,ukji,lj.The singular values
VsW ,4d are given in the left column, with the corresponding degeneracies in the central and right columns.

Singular value
3sd−1d4

Degeneracy
s12312 blocksd

Degeneracy
s24324 blocksd

Îd2−12d+45 2 6

ud−5u 1 3

ud−3u 3 5
Îd2−4d+5 4 6

ud−1u 2 3

ud−15u 0 1
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VsW,pd =
1

sd − 1dpfsd − pd1 + Ṽodd− Ṽeveng, sC6d

whereṼodd is the sum over odd permutationsseven shiftsd in sC2d andṼeven the sum over even
permutationssodd shiftsd in sC2d.

Fix k1,k2, ¯ ,kp and letK denote the subspace spanned byhPujk1
,jk2

, . . . ,jkp
l :PPSpj

whereujkl is an orthonormal basis forCd and the action ofP is as defined insA13d. The matrix
representing a particular permutation operatorP has elements

pst = kjk1
,jk2

, . . . ,jkp
uPs

†PPtujk1
,jk2

, . . . ,jkp
l sC7d

which dependsonly on the labelingPs, s=1,2, . . . ,p! of elements ofSp and not on the choice of
indices kj or vectorsj j. It will be convenient to simply useukl to denoteujkl, and to write
uPsk1,k2, . . . ,kpdl for Pujk1

,jk2
, . . . ,jkp

l. sThe conditionkj ,kj+1 is only a convenient convention;
the essential requirement is that thekj are distinct.d

b. Irreducible representation structure

The matrix representing the action of a permutationP on the vectorshPuk1,k2, . . . ,kpl :
PPSpj is identical to its matrix in the regular representation ofSp. Therefore, one can find a
unitary transformation to a basis whose components form disjoint subsets which transform as the
irreducible representation ofSp. This basis change simultaneously converts all permutations to a
block diagonal form. Thus,VsW ,pd, is also block diagonal with each block corresponding to an
irreducible representation ofSp. The two one-dimensional representations, therefore, yield eigen-
vectors ofVsW ,pd. In fact

VsW,pdufsyml =
d − 1

sd − 1dpufsyml, sC8ad

VsW,pdufantil =
d − 2p + 1

sd − 1dp ufantil, sC8bd

where

ufsyml =
1

Îp!
o

PPSp

uPsk1,k2, . . . ,kpdl =
1
Î2

suuevenl + uuoddld, sC9ad

ufantil =
1

Îp!
o

PPSp

s− duPuuPsk1,k2, . . . ,kpdl =
1
Î2

suuevenl − uuoddld, sC9bd

with

uuevenl =Î 2

p! o
peven

uPsk1,k2, . . . ,kpdl,

and

uuoddl =Î 2

p! opodd

uPsk1,k2, . . . ,kpdl.

If we could conclude that the largest singular value ofsd−1dpVsW ,pd is associated with a
one-dimensional representation ofSp, then we could conclude thatsd−1dpiVsW ,pdi`=
maxhd−1,ud−2p+1uj. Note that this maximum is clearlyd−1 whendù2p−1. For d,2p, the
maximum isd−1 if and only if 2p−d−1ød−1⇔2dù2p.
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c. Odd/even structure

We now describe the odd/even structure ofVsW ,pd. We can divide thep! basis vectors ofK
into two equal subsets, those of the formPevenuk1,k2, . . . ,kpl and those of the form
Podduk1,k2, . . . ,kpl. We will denote their spans asKeven and Kodd, respectively. Now
kk1,k2, . . . ,kpuPuk1,k2, . . . ,kpl=0 unless P is the identity permutation. Therefore
kPssk1,k2, . . . ,kpduPuPtsk1,k2, . . . ,kpdl=0 unlessP=PsPt

†= I. Moreover, since the identity is an
even permutation

kPevensk1,k2, . . . ,kpduPodduP̃evensk1,k2, . . . ,kpdl = kPoddsk1,k2, . . . ,kpduPodduP̃oddsk1,k2, . . . ,kpdl = 0,

sC10d

kPevensk1,k2, . . . ,kpduPevenuP̃oddsk1,k2, . . . ,kpdl = kPoddsk1,k2, . . . ,kpduPevenuP̃evensk1,k2, . . . ,kpdl = 0.

sC11d

Thus, the largest block ofsd−1dpVsW ,pd can be written in the form

B = sd − pd1 + S− Bee Boe

Beo − Boo
D

with Bee andBoo determined byṼeven andBeo andBoe determined byṼodd.
It is useful to relate the order of elements within the bases associated with odd and even

permutations. LetP1,P2, . . . ,PM with M =p! /2 denote the even permutationsswith P1=1d and
Pt+M =PtS the odd, whereS denotes the swap operatorSsk1,k2,k3, . . . ,kpd=k2,k1,k3, . . . ,kp.
sThere is nothing special about applying SWAP to the first two elements. Any fixed choice would
do.d Then

bs,t+M = kPssk1,k2, . . . ,kpduPuPtSsk1,k2, . . . ,kpdl

= kPsSsk2,k1, . . . ,kpduPuPtsk2,k1, . . . ,kpdl = bs+M,t, sC12d

where we used the fact that the matrix representing a permutation is independent of the initial
choice ofki. Thus,Beo=Boe and, for the same reason,Bee=Boo, and we can write

B = sd − pd1 + S− We Wo

Wo − We
D = sd − pd1 + Boff , sC13d

whereWe andWo are determined byṼevenandṼodd, respectively. By conjugating withs 1 0
0 −1

d, one
finds thatB has the same singular values as

G = sd − pd1 − SWe Wo

Wo We
D = sd − pd1 − Goff . sC14d

Note that we have shown that the restriction ofVsW ,pd to K is similar to 1/sd−1dpfsd−pd1
−Ṽodd−Ṽeveng which differs from sC6d by a sign. Although this may seem surprising, it could
easily be established directly by observing that any vectoruvlPK can be written asuvl= uvevenl
+ uvoddl with uvevenlPKevenanduvoddlPKodd. UsingsC3d and related combinatorics, one finds that
the row and column sums ofB, G, We, and Wo are, respectively,d−1, d−2p+1, 2p−1−p, and
2p−1−1. It follows thatd−1 andd−2p+1 are eigenvalues ofB andG,

BS1

1
D = sd − 1dS1

1
D, BS 1

− 1
D = sd − 2p + 1dS 1

− 1
D , sC15ad
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GS 1

− 1
D = sd − 1dS 1

− 1
D, GS1

1
D = sd − 2p + 1dS1

1
D , sC15bd

where 1 denotes a vector with all 1’s. These are easily seen to be equivalent tosC8d.
The main reason for changingB to the form sC14d is that Goff is a multiple of a double

stochastic matrix, its column sum 2p−p−1 is both its largest eigenvalue and its largest singular
value. Therefore,d−2p+1 is the smallest eigenvalue ofG; however, even when it is the most
negative eigenvalue, we cannot conclude that it is also the largest singular value becauseG could
have a positive, or complex, eigenvalue of greater magnitude.

Remark:ConjugatingB with the block Hadamard transformH=2−1/2s1 1

1 −1 d corresponds to

making the change of basis tosC18d. One finds

HFH† = sd − pd1 + S− We + Wo 0

0 − We − Wo
D . sC16d

5. Proof that ‖V„W ,p…‖` is attained on the largest blocks

As above, fixk1,k2, ¯ ,kp and letB denote the block ofVsW ,pd corresponding to their
spanK.

For simplicity, we first compare the singular values ofB to those for a block spanned by
vectors of the form

hPu j , j ,k3, . . . ,kpl:P P Spj sC17d

with j ,k3, ¯ ,kp. Observe that

H 1
Î2

Psuk1,k2,k3, . . . ,kpl ± uk2,k1,k3, . . . ,kpld:P P Sp, P Þ S12J sC18d

is another orthonormal basis forK, and letV be the unitary matrix for the basis change from
hPuk1,k2, . . . ,kpl ,PPSpj to sC18d. Let K± denote the subspace spanned by vectors with a6 sign

in sC18d, andB̃++ the submatrix for the restriction ofVBV† to the subspaceK+. The effect of any
permutation on vectors of the formsC17d and those with a1 sign insC18d is the same. Therefore,

B̃++ is identical to the matrix for the restriction ofVsW ,pd to the span ofsC17d, and the largest
singular value of the latter is the same as

iB̃++i` = sup
fPK+

kf,B̃++
† B̃++fl
ifi2 = sup

fPK+

kf,VB†BV†fl
ifi2 ø sup

fPK
kf,VB†BV†fl

ifi2 = iBi`
2 . sC19d

In sC16d we showed thatB̃++=−We+Wo and thatB is block diagonal, which immediately implies

that the singular values ofB̃++ are a subset of those forB. This is stronger thansC19d, but does not
necessarily generalize.

Next, consider a block for a subspace spanned by vectors of the form

hPu j , j , . . . ,j ,km+1, . . . ,kpl:P P Spj sC20d

with m occurences ofj and j ,km+1¯kp. We adopt the convention thatQPSm denotes a permu-
tation of h1,2, . . . ,mj. Choosep! / m! permutationsPtPSp such that eachPt is in a distinct coset
of Sp/Sm or, equivalentlyPsPt

−1¹Sm∀sÞ t. Then the vectors
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uftl =
1

Îm!
o

QPSm

PtQuk1, . . . ,km,km+1, . . . ,kpl sC21d

transform under permutations exactly as those insC20d. Therefore, the restriction ofB to the span
of sC21d is represented by the same matrix as the block ofVsW ,pd corresponding tosC20d. Then,
as in sC19d, its largest singular value is bounded above byiBi`.

To deal with the general case, note that the restrictionj ,km+1,km+2, ¯ ,kp does not play
an essential role. The same argument works wheneverj is distinct from the remainingki with
i .m. Then, for example, the

largest singular value of the block for permutations ofui,i,i, j , j ,k6, . . . ,kpl

ø largest singular value of the block for permutations ofui,i,i,k4,k5, . . . ,kpl

ø largest singular value of the block for permutations ofuk1,k2, . . . ,kpl = iBi`.

Proceeding in this way, one can complete the argument by induction. Alternatively, one could
consider cosets for repeated indices, such asSp/ sS33S2d in this example.
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Recently, Avronet al. in a series of papers shed new light on the question of
quantum transport in mesoscopic samples coupled to particle reservoirs by semi-
infinite leads. They rigorously treat the case, when the sample undergoes an adia-
batic evolution thus generating a current through the leads, and prove the so-called
BPT formula. Using a discrete model, we complement their work by giving a
rigorous proof of the Landauer–Büttiker formula, which deals with the current
generated by an adiabatic evolution on the leads. As is well known from physics,
both of these formulas link the conductance coefficients for such systems to the
S-matrix of the associated scattering problem. As an application, we discuss reso-
nant transport through a quantum dot. The single charge tunneling processes are
mediated by extended edge states, simultaneously localized near several leads. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1862324g

I. INTRODUCTION

Mesoscopic systems have been extensively studied in the last two decades, both from theo-
retical and experimental points of view. Much effort has been devoted to the understanding of
transport phenomena through quantum rings, wires, or dotsssee the monographs, Refs. 15 and 18d.
These nano-devices display several nontrivial effects, for example, Aharonov–Bohm conductance
oscillations, quantum Hall effect, and single charge tunneling. Consequently, various theories have
been developed in order to explain them. Among such theories, the scattering approach to the
transport problem initiated by Landauer,23,24 and accomplished by Büttiker,10,11 is perhaps the
most frequently utilized one in the physics literature. The basic idea in the Landauer–Büttiker
sLBd formalism is that the charge transport through a finite system connected to severalsusually
semi-infinited leads is a scattering process. The incident electrons are either transmitted between
leads or reflected in the same lead. By a counting argument, the conductanceG of a two-lead
system is related to its transmittanceT swhich still remains to be computed from theS matrix of
the problemd by the Landauer formula at zero temperature,

G =
e2

h
T. s1d

As shown by Büttiker, this formula admits a generalization to a multilead geometry, and also
to the case, when a magnetic field is present. In particular, a four-terminal setup is the natural way
to put into evidence the quantization of the Hall resistance in strong magnetic fields.

Alternatively, the conductanceG can be found from the linear response theory. It is then a
natural question, whether the Landauer formula can be derived directly from the Kubo formalism.
This problem was addressed in a series of papers in the 1980sssee Refs. 17, 20, 25, and 22d. All
those papers used the Kubo formula as given for macroscopic samples. Later on, Baranger and
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Stone6 argued for a Kubo formula adapted to mesoscopic systems with leads. They also presented
a formal justification of the equivalence between the linear response theory, and the LB approach.

The main aim of our work is to provide a rigorous derivation of this equivalence, following
their ideas. Second, we use the LB formalism to describe the resonant transport through a meso-
scopic sample weakly coupled to leads, the so-called quantum dotssee Ref. 21 for a reviewd.
These steps are behind the formulas used in Ref. 26 for studying specific properties of such
systems.

Now let us describe the strategy followed to achieve the results. First, we establish a Kubo
formula for the conductance, and then we perform the thermodynamic and adiabatic limits. Sec-
ond, we compute the transmission between different leads from scattering theory. A comparison of
the two results leads us to the Landauer–Büttiker formula.

We stress that in the present approach we use a tight-binding representationsi.e., a discrete
modeld for Hamiltonians. This makes some of the delicate technical points easier to handle. For
instance, due to the particular form of the current operatorswhich has finite rankd, the trace
implied by the Kubo formula is reduced to a simple product of matrix elements of an effective
resolventReff that comes from the Feshbach formula. Its associated Hamiltonian acts only in the
Hilbert space of the finite system, and is non-Hermitian, due to a supplementary term that em-
bodies the effects of the leads. This term is well known in the physics literature as the self-energy
of the leadsssee Ref. 15d. Roughly speaking, it controls the imaginary part of the effective
Hamiltonian coming from the Feshbach formula, and is proportional to the square of the hopping
integral between the leads and the sample. As a consequence, a weak coupling generates reso-
nances located near the real axis, and a peak in the conductance, as given by the LB formula, each
time the energy of the incident electron equals an eigenvalue of the isolated dot. These peaks are
the so-called Coulomb oscillations in quantum dotsssee Ref. 21 for an introduction to the subjectd.
In fact, our approach shows that the peaks arenot of Coulomb origin, but a purely resonant effect
sas shown numerically in Ref. 26, they are very sensitive to the lead-dot coupling, the interaction
adding quantitative differences onlyd.

Other interesting geometric, topological, and adiabatic aspects of transport problems through
mesoscopic samples were given by Avronet al. in Refs. 1–4. Note that the authors work with
adiabatic pumps, i.e., the perturbation occurs on the sample, and not on the leadssthe analog of LB
formula in that case is the so-called BPT formula12d.

In Ref. 5 the authors rigorously prove the BPT formula. They chose to work from the begin-
ning with infinite leads. A difficulty in that approach is that the one particle fermionic density
matrix is no longer trace class, and one has to be careful when defining the currents. We manage
to bypass this difficulty, by starting with the grand canonical density matrix in the associated Fock
spaces forfinite leads. Due to the absence of self-interactions, we manage to define one particle
currents in a natural way. Then we let the lengths of the leads go to infinity, and finally we perform
the adiabatic limit.

We note that Cohen in Ref. 13 investigates the connection between the BPT and Landauer
formulas on one hand, and linear response theory on the other hand. By starting with the Kubo
formalism, Cohen found expressions for both the dissipative and nondissipative parts of the
response.

Application to pumping of the BPT formula can be traced back to several other authors.
Probably the first one to use this tool was Brouwer.9 Then Moskalets and Büttiker in Ref. 27
investigated dissipation and noise in adiabatic quantum pumps, while in Ref. 28 they extended the
theory to nonadiabatic situations.

The paper is organized as follows. Section II sets notation and gives the main result, Section
III presents some relevant spectral properties of our system, while Sec. IV contains the proof of
our main theorem. Section V is devoted to a simple application of the formalism to the resonant
transport through noninteracting quantum dots. Several technical tools are left to appendices.
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II. PRELIMINARIES AND RESULTS

A. The model

We use the tight-binding approximation, and thus a discrete model, throughout the paper. The
system, through which the current will run, is modeled byG, chosen to be a finite subset ofZ2 swe
can also identify it with a finite subset ofNd. We coupleG to several “one-dimensional” leads. The
sites of each lead are modeled byN#N; whenN=N the lead is semi-infinite. In the sequel the
finite system described byG will be named sample while the name “system” will be given to the
whole structure consisting of “sample+leads.”

The total one-particle Hilbert space is a direct sum of the space modeling the sample, andM
spaces corresponding to the leads,

H = l2sGd % l2sNd % ¯ l2sNd. s2.1d

Let us describe the one-particle Hamiltonian. In the sample we may have any self-adjoint
bounded operatorHS. For example, we can chooseHS to be the restriction of a Harper-type
operator tol2sGd with Dirichlet boundary conditions,

HS= o
sm,ndPZ2

sE0um,nlkm,nu + t1se−isBm/2dum,nlkm,n + 1u + H.c.d + t2se−isBn/2dum,nlkm+ 1,nu + H.c.dd.

s2.2d

Here H.c. means Hermitian conjugate,E0 is the reference energy,B is a magnetic field, from
which the magnetic phases appearsthe symmetric gauge was usedd, while t1 and t2 are hopping
integrals between nearest neighbor sites.

As for the leads, the dynamics in each of them is governed by the one-dimensional discrete
Laplacian onl2sNd with Dirichlet boundary conditionsssee Appendix Ad. The Hamiltonian on the
leads will bestL.0 is the hopping integral on leadsd

HL = o
a=1

M

Ha
L, Ha

L = o
naPN

tL · sunalkna + 1u + H.c.d, s2.3d

acting on functions, which by convention are extended with value zero at the sites −1 andN+1.
The “coupling” between the sample and leads is described by the tunneling Hamiltonian,

HT = to
a=1

M

u0alkSau + to
a=1

M

uSalk0au ¬ HLS+ HSL. s2.4d

Here t.0 is the hopping integral between each lead and the sample, and simulates a quantum
point constriction, or a tunneling barrier. Hereu0al is the first site on the leada, anduSal is the site
from the sample, through which the coupling with the leada is realized.

Then the total one-particle Hamiltonian is the sumHS+HL+HT, with obvious identifications.
In the case when the leads aresemi-infinite, we introduce a special notation for it,

K ª HS+ o
a=1

M

Ha
L + HT = HS+ HL + HLS+ HSL. s2.5d

B. Adiabatic currents and conductivity

Here we deal with electronic transport through the system. We first take the leads to be finite
si.e., each lead consists ofN,` sitesd, although their length can be arbitrarily large. However, the
thermodynamic limitN→` is to be taken at a certain point in our argument.

We will only work in the grand canonical ensemble. This means that our system is in contact
with a reservoir of energy and particles. Having this in mind, we will study the linear response of
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a system of noninteracting fermions at temperatureT and chemical potentialm subjected to a
perturbation, which is switched on adiabaticallysto insure that the system is at equilibrium at all
timesd.

Let xh, h.0, be a smooth switching function 0øxhstdø2,

xhstd = Heht if t ø 0,

1 if t . 1.
J s2.6d

Then the perturbation is given bysia denotes theith site on the leadad

VsN,td ª xhstdo
a=1

M

Va o
ia=0

N

uialkiau. s2.7d

Notice thatVsN,td models the adiabatic application of a constant voltageVa on the leada. This
will generate a charge transfer between the leads via the sample.

The relevant one-particle Hamiltonians then are given by

H0sNd ª HS+ HLsNd + HT,

HsN,td ª H0sNd + VsN,td. s2.8d

HereHLsNd is the Hamiltonian acting on the finite leads, whileH0sNd is the same operator as in
s2.5d, but the different notation indicates that it describes the initial equilibrium state for finite
leads.

Now we are interested in deriving the current response of the system due to the perturbation.
Since we work in the grand canonical ensemble, we have to consider all our operators in the
second quantization, see Appendix B for further notation and properties.

At t=−` our system is characterized by the Gibbs equilibrium state, and its corresponding
statistical operatorsdensity matrixd is the well known onefsee sB2dg. The statistical operator
describing the equilibrium state at timet for the sample coupled with the finite leads is denoted by
r̂sNdstd, and is defined as thestrace classd solution of the quantum Liouville equation

i
]r̂sNdstd

]t
= fdGsHsN,tdd,r̂sNdstdg, s2.9d

which satisfies the initial condition limt→−` r̂sNdstd= r̂0
sNd, wherer̂0

sNd is as insB2d, but with H0sNd
instead ofH. We stress here the fact that if the leads are infinite, these operators are no longer of
trace class.

Let us now write the perturbation in the “interaction picture,”

ṼsN,sd ª eisH0sNdVsN,sde−isH0sNd. s2.10d

To describe the solution of the Liouville equation we consider the following equation:

dW

ds
ssd = iWssddGsṼsN,sdd, Ws− `d = Id,

where the unitaryWssd is given by the usual Dyson series with respect to dGsṼsN,sdd. By direct

computation, and usingsB5d for ṼsN,sd, one can verify that

r̂sNdstd = e−it dGsH0sNddW*stdr̂0
sNdWstdeit dGsH0sNdd s2.11d

is the unique solution to the Liouville equation, providing us with a positive operator of trace
class. Expanding the Dyson series up to the first order, and usingsB4d andsB5d, a straightforward
computation gives
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r̂sNdstd = r̂0
sNd − iE

−`

t

fdGseiss−tdH0sNdVsN,sde−iss−tdH0sNdd,r̂0
sNdgds+ OsV2d. s2.12d

Let us introduce the one-particle charge operator in a given leada swhich is just minus the
projection corresponding to the lead, the sign taking into account the fact that we deal with
electronsd

Qa
sNd = − o

i=0

N

uialkiau. s2.13d

Denote byQa
sNd=dGsQa

sNdd its second quantization. Since we work in the grand canonical en-
semble, the average charge in the leada is given by

Qa
sNdstd ª TrFa

sr̂sNdstdQa
sNdd. s2.14d

Then the average charge is smooth int, and we can define the current in the leada as the charge
transfer per unit of time, namely

Iastd ª
d

dt
Qastd. s2.15d

We will see that att=0, this current can be written as

Ias0d = o
b

gabsT,m,h,NdVb + OsV2d, s2.16d

wheregabsT,m ,h ,Nd are the so-called conductance coefficients.15 At this stage they depend on
the temperature, the chemical potential, the adiabatic coefficient, and the length of the leads. The
point of this paper is then to study the connection betweengab and the transmittance of the
problem, defined below.

Let us stress once again, as we have already done it in the introduction, that the above current
is derived in a linear response regime. As it is well known, this approach does not allow one to
perform the adiabatic limit first, since the error ins2.16d is in factOsV2/h2d. Such a result would
demand a different approach, as done, for example, in Avronet al.5 Nevertheless, the linear
response theory gives relevant results, if the amplitude of the external perturbation is weaker than
its rate of adiabaticity.

For the mathematical treatment of linear response theory, together with an analysis of its
physical applicability, we cite a recent paper by Boucletet al.7

C. The transmittance

Now we briefly switch to an apparently unrelated scattering problem, associated with the pair
of HamiltonianssK ,H0d, where H0=HL and K=H0+W=H0+HS+HT. Thus the “free” system
consists here of thesemi-infiniteleads, while the complete evolution is that of the coupled system
sleads and sampled.

The operatorK is defined on the full spaceH, sees2.1d, and the operatorH0 is defined on the
subspaceH0= %a=1

M l2sNd. We denote byJ:H0→H the identification operator. We obviously have
J*J=Id, the identity onH0. Note thatH0 has purely absolutely continuous spectrum. The operator
KJ−JH0 is of finite rank, hence thestwo spaced trace class scattering theoryssee Refs. 30–32d
implies that the wave operators

V± = s− lim
t→7`

eitKJe−itH0 s2.17d

exist and are asymptotically complete.

042106-5 A rigorous proof of the Landauer–Büttiker formula J. Math. Phys. 46, 042106 ~2005!

                                                                                                                                    



In the sequel we will return to the notationHL, instead ofH0. It will be clear from the context,
whether we regard it as an operator onH, or onH0. Thesnormalizedd generalized eigenfunctions
of HL on the semi-infinite leads arefherekP s0,pd, l=2tL cosskd, and 1øaøMg given by

Casld = o
mù0

Csl;mduml, Csl;md =
sinsksm+ 1dd
ÎptL sinskd

.

The generalized Fourier transform associated to these eigenvectors is defined as

F: %
a=1

M

l2sNd → %
a=1

M

L2sf− 2tL,2tLgd, s2.18d

fFsFdgasld = kCasld,Fall2sNd = o
mù0

Csl;mdFasmd. s2.19d

Its adjoint is given by

F* : %
a=1

M

L2sf− 2tL,2tLgd → %
a=1

M

l2sNd, s2.20d

fF*sJdgasmd =E
−2tL

2tL

JasldCsl;mddl. s2.21d

We see thatF is a unitary operator, and thatFHLF* is just multiplication byl, i.e.,

FHLF* = 2tL cosskdId. s2.22d

The scattering operator is unitary, and is given byS=V−
* V+. The T-operator is defined byT

ªS−Id. In the spectral representation ofH0, the T-operator is al-dependentM 3M matrix, the
T-matrix. Thusfsees4.4d

o
b

tabsldJbsld = fFsS− IddF*Jgasld. s2.23d

The transmittance between the leadsa andb at energyl is finally defined as

Tabsld ª utabsldu2. s2.24d

D. The Landauer–Büttiker formula and the main theorem

We can finally give the main result of our paper.
Theorem 2.1:Consider the conductance gabsT,m ,h ,Nd between the leadsa and b saÞbd,

at temperature T.0, chemical potentialmP s−2tL ,2tLd, adiabatic switch-on coefficienth.0 and
length of the leads N,`. Assume that the point spectrum of Kfthe one from (2.5), with N=`g is
disjoint from the thresholds−2tL and 2tL. Then if we first take the limit N→`, and after that
h↘0, we have

gabsT,md ª lim
h↘0

f lim
N→`

gabsT,m,h,Ndg = −
1

2p
E

−2tL

2tL

dE
]fFDsEd

]E
TabsEd, s2.25d

whereTabs·d is real analytic ons−2tL ,2tLd and equal to zero outside this interval. The function fFD

is the usual Fermi–Dirac function [see (B3)]. If T→0 in (2.25) (limit taken at last), we obtain the
Landauer formula
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gabs0+,md =
1

2p
Tabsmd. s2.26d

III. THE FESHBACH FORMULA AND SPECTRAL ANALYSIS FOR THE SYSTEM WITH
SEMI-INFINITE LEADS

We assume throughout this section that the leads are semi-infinite. We denote byRLszd the
resolvent of the leads as a block diagonal matrix in%a=1

M l2sNd. Some of its properties are given in
Appendix A.

We use the Feshbach formula19,29 in order to express the full resolvent in terms of an effective
Hamiltonian, which describes the mesoscopic system in the presence of the leads.

If PS denotes the projection onto the subspace corresponding to the “system”l2sGd, andPL

=Id−PS denotes the projection onto the leads, then we can rewrites2.1d as

H = PSH % PLH. s3.1d

To simplify, we write

RLszd = sPLKPL − zPLd−1,

as an operator acting onPLH.
The effective Hamiltonian is defined as

Heffszd ª HS− HSLRLszdHLS, zP C \ R, s3.2d

acting onPSH. We abuse notation slightly, and write

Reffszd = sHeffszd − zd−1

on this space.
Using the identitysA1d from Nenciu’s paper,29 the total resolvent reads in operator matrix

notationfsee alsos2.5dg,

Rszd = sK − zd−1 = F Reffszd − ReffszdHSLRLszd
− RLszdHLSReffszd RLszd + RLszdHLSReffszdHSLRLszd G . s3.3d

Using s2.4d, the explicit expression for the matrix elements ofRLszd that we gave insA1d, and
Proposition 6.1siii d, we can write

Heffszd = HS− t2o
a=1

M

uSalk0auRLszdu0alkSau = HS−
t2

tL
z1szdo

a=1

M

uSalkSau. s3.4d

The spectral problem forK is thus reduced to the spectral problem forHL andHeff. Note that
Heffszd is not Hermitian. We also have

sHeffszd − zd−1 = PSsK − zd−1PS, Im zÞ 0, s3.5d

again with a slight abuse of the notationPS.
We need some more notation. Fore.0, define the strip

Ve ª hx + iy P C:− 2tL + e , x , 2tL − e,uyu , 1/ej. s3.6d

Finally, introduce the orthogonal projection
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PT
ª o

a=1

M

uSalkSau. s3.7d

We can then write

Heffszd = HS−
t2

tL
z1szdPT.

The main result of this section is stated as follows.
Proposition 3.1: LetuSbl and uSgl be the coupling points between the sample, and leadsb and

g. Define

ubgszd = kSb,fHS− z− st2/tLdz1szdPTg−1Sgl, Im z. 0. s3.8d

Then for all positivet ande, the function ubg admits a meromorphic extension ubg
+ to C+øVe, and

all its poles have negative imaginary part. In particular, the restriction of uab
+ to the interval

s−2tL ,2tLd is real analytic.
Proof: First note thatubg

+ is the key term appearing in the transmittance formulafsees4.6dg.
Now introduce the notationfseesA4dg

H+szd ª HS−
t2

tL
z+szdPT. s3.9d

Thenubg
+ szd=kSb ,fH+szd−zg−1Sgl is the meromorphic extension we are looking for. Sincel2sGd is

finite dimensional, the set of poles is included in the set of solutions of detsH+szd−zd=0. Due to
s3.5d, the poles cannot be in the upper complex half-plane.

Now let us prove that the poles are neither on the real axis. If there are no solutions for
detsH+szd−zd=0 in s−2tL ,2tLd, then we are done. Now assume that there existslP s−2tL ,2tLd,
such thatH+sld−l is not invertible. ThenH+sld−l is not injective. Denote bypl the orthogonal
projection onto to the null space ofH+sld−l. For everyflPRanspld we have

sHS− ldfl −
t2

tL
z+sldPTfl = 0.

Taking the scalar product withfl and estimating the imaginary part, we havefusesA4dg

kfl,PTfll = iPTfli2 = 0.

This implies thatPTfl=0, and thusfl must also be an eigenfunction forHS, corresponding
to the eigenvaluel. Notice that this does not say that all eigenvectors ofHS corresponding tol are
in the range ofpl.

BecauseplPT=sPTpld* =0, and because Ranspld is spanned by eigenvectors ofHS, it means
that pl commutes withH+szd, and we can writeshereql=Id−pld

H+szd − z= plsH+szd − zdpl + qlsH+szd − zdql = sl − zdpl + qlsH+szd − zdql. s3.10d

The range ofql is generated by eigenvectors ofHS, which either correspond to other eigenvalues
thanl, or correspond tol but are orthogonal to Ranspld. Now qlsH+sld−ldql is one to one on
Ransqld, thus invertible, and so isqlsH+szd−zdql for z close tol sby simple perturbation theory
and the Neumann seriesd. Moreover, its inverse is holomorphic nearl. Therefore,

sH+szd − zd−1 − sl − zd−1pl s3.11d

is holomorphic aroundl. In conclusion, sinceplSg=0,
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ubg
+ szd = kSb,fH+szd − zg−1Sg − sl − zd−1plSgl s3.12d

is also holomorphic nearl, and we are done. A similar reasoning gives a meromorphic extension
to C−øVe, which we denote byubg

− . It is also easy to seefuses3.5d and s3.8dg that

ubg
+ sz̄d = ugb

− szd. s3.13d

j

Remark:The above proposition does not rule out real poles for the effective Hamiltonian. It
only says that its eventual real poles are not singularities for functions likeubg. Notice that we
allowedt to be arbitrarily large.

Another important observation is thatK cannot have an infinite number of discrete eigenval-
ues outsidef−2tL ,2tLg. Assume the contrary. Then the equation detfHeffsld−lg=0 would have
infinitely many solutions, which accumulate either at −2tL, or at 2tL. Since the determinant is
continuous at ±2tL, it would mean that either −2tL or 2tL is also a zero. This would imply thatK
has an eigenvalue at the thresholds, contradicting our hypothesis in Theorem 2.1.

IV. PROOF OF THE MAIN THEOREM

As we have already announced in the introduction, the strategy of the proof is to compute the
conductance and transmittance separately, and then to show that they are related as ins2.25d. Since
the transmittance involves less work, we start with it.

A. A formula for the transmittance

We will use the notation introduced in Sec. II C. The scattering operatorS:HL→HL can be
written as

S= V−
* V+ = Id +

2i

p
E

−2tL

2tL

ImfsHL − x + i0d−1gXsx + i0dImfsHL − x + i0d−1gdx, s4.1d

where we used the fact thatHL has purely absolutely continuous spectrum, and introduced

Xszd = J*HLSJ − J*HLSsK − zd−1HSLJ

with the usual abuse of notation. See Ref. 34 for a proof of this formula in general two space trace
class scattering theory.

Note thatJ*HLSJ=0. Using the Feshbach formula we get

S= Id −
2it2

p
o

a,b=1

M E
−2tL

2tL

sImfsHL − x + i0d−1gu0ald 3 kSa,Reffsx + i0dSblsk0buImfsHL − x + i0d−1gddx.

s4.2d

TakeJP %a=1
M C0

`ss−2tL ,2tLdd. Using the formulass2.22d; s2.18d, s2.20d, ands3.8d, we have

fFsS− IddF*Jgasld = −
2it2

p
o
b=1

M E
−2tL

2tL

dxsImfsl − x + i0d−1gCsl;0dduab
+ sxd

3 SE
−2tL

2tL

Imfsl8 − x + i0d−1gCsl8;0dJbsl8ddl8D . s4.3d

Using twice Sohotsky’s formula 1/st+ i0d=P.V.s1/td− ipd, we get
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fFsS− IddF*Jgasld = 2pt2io
b=1

M

uCsl;0du2uab
+ sldJbsld. s4.4d

Therefore, theT-matrix in the spectral representation ofHL is given by the elements

tabsld =
2t2

tL
i sinskduab

+ sld. s4.5d

Then the transmittance between the leadsa and b at energym¬2tL cosskmd is fsee s2.24dg
expressed as

Tabsmd =
4t4

tL
2 sin2skmduuab

+ smdu2. s4.6d

B. Conductivities via the linear response theory

We now concentrate on the left-hand side ofs2.25d. Our main goal here is to obtain a more
detailed version of formulas2.16d, and to put into evidence the conductivitiesgab between differ-
ent leads. Then we perform the thermodynamic and adiabatic limits.

1. Deriving the linear response: a Kubo formula

Differentiating in s2.15d, using the Liouville equation s2.9d, trace properties
fi.e., TrsfA,BgCd=−TrsBfA,Cgdg, andsB4d, we have

Iastd = TrFa
Sdr̂sNdstd

dt
Qa

sNdD = i TrFa
sr̂sNdstdfHsN,td,Qa

sNdgd

= i TrFa
sr̂sNdstddGsfHsN,td,Qa

sNdgdd = TrFa
sr̂sNdstddGs jastddd, s4.7d

where the one-particle current operator is

jastd ª ifHsN,td,Qa
sNdg, s4.8d

and has a simple explicit form, independent of timefbecauseQa
sNd andVsN,td commuteg,

ja = itsu0alkSau − uSalk0aud. s4.9d

Note thatja is a rank two operator. Notice also that even if the leads are semiinfinite,ja is the
same, this fact justifying the absence ofN in its notation.

Now we continue to compute the current, using the decompositions2.12d. Introduce the
notationfsee alsos2.8d and sB3d, and sett=0g

Is0ds0d ª TrHsfFDsH0sNdd jad,

Is1ds0d ª iE
−`

0

TrFa
sr̂0

sNdfdGsṼsN,sdd,dGs jadgdds. s4.10d

Insertings2.12d in s4.7d, and usingsB6d for the first term and trace commutation properties for the
second one, we obtain

Ias0d = Is0ds0d + Is1ds0d + OsV2d. s4.11d

Introduce the notation
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Qb
sNds− sd ª e−isH0sNdQb

sNde+isH0sNd. s4.12d

We continue rewritingIs1ds0d employingsB4d–sB6d, which leads to

Is1ds0d = iE
−`

0

TrFa
sr̂0

sNdfdGseisH0sNdVsN,sde−isH0sNdd,dGs jadgdds

= − io
b
E

0

`

xhs− sdTrFa
sr̂0

sNdfdGsQbs− sd,dGs jadgdVb ds

= − io
b
E

0

`

ds xhs− sdTrFa
sr̂0

sNd dGfQbs− sd, jagdVb

= − io
b
E

0

`

ds xhs− sdTrHsfFDsH0sNddfQbs− sd, jagdVb.

Notice that the minus sign appears, because the charge is negative, and we replaced the projection
on each lead with the corresponding charge operator. The average current at timet=0 then
becomes

Ias0d = Is0ds0d + Is1ds0d + OsV2d = TrHsfFDsH0sNdd jad − io
b
E

0

`

ds e−hs TrHsfFDsH0sNdd

3fQb
sNds− sd, jagdVb + OsV2d. s4.13d

If we compare this expression with the one announced ins2.16d, we see that we are almost in
place with the exception of the termIs0ds0d. This term represents the current in the equilibrium
state when allVa’s are zero. Let us now prove that this term is always zero. Indeed,

Is0ds0d = i TrhfFDsH0sNddfH0sNd,QasNdgj = i TrhffFDsH0sNdd,H0sNdgQasNdg = 0. s4.14d

Therefore, we have finally obtained an expression for the total current as it was announced in
s2.16d, where the conductivities are given by

gabsT,m,h,Nd ª − iE
0

`

ds e−hs TrHsfFDsH0sNddfQb
sNds− sd, jagd. s4.15d

What we do in the next paragraphs is to perform the various limits required by Theorem 2.25.

2. Making the leads semi-infinite: N \`

Define the quantity which is the natural candidate for the limitN→`

gabsT,m,h,`d ª − iE
0

`

ds e−hs TrHsfFDsKdfQb
s`ds− sd, jagd. s4.16d

Notice that in the limitN=`, we haveH0s`d=K fsees2.8d and s2.5dg. Neither fFDsKd nor Qb
s`d

3s−sd are of trace class anymore, but sinceja is the same as ins4.9d sthus of rank twod, the total
operator is of trace class with trace uniformly bounded with respect tos. It is easy to see that
gabsT,m ,h ,Nd converges tos4.16d, sinceH0sNd converges strongly toK, and ja is trace class. The
hard part is to say something about the rate of convergence.

The main result of this paragraph is contained in the following lemma, which states that the
speed of convergence whenN grows to infinity is faster than any inverse power ofN.

Lemma 4.1: For every J.0, there exists C.0, which may depend on all other parameters but
N, so that
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ugabsT,m,h,Nd − gabsT,m,h,`du ø CN−J. s4.17d

Proof: We will need the formulas3.3d, where we replaceHL with HLsNd fsee belows2.8d for the
definition ofHLsNdg. We introduce the obvious notationRLsN,zd andHeffsN,zd, to indicate that the
leads have finite length. For future reference, formulas3.3d leads to

kSa,sH0sNd − zd−10al = − kSa,sHeffsN,zd − zd−1Salk0a,RLsN,zd0al = k0a,sH0sNd − zd−1Sal.

s4.18d

We first reduces4.15d to a form which is easier to work with. Replacing the expression for
Qb

sNds−sd fsees4.12d and s2.13dg we havesusing trace commutation propertiesd

gabsT,m,h,Nd = − iE
0

`

ds e−hshTrsfFDsH0sNdde−isH0sNdQb
sNdeisH0sNd jad

− TrsfFDsH0sNddeisH0sNd jae−isH0sNdQb
sNddj. s4.19d

It is clear that it is enough to prove an estimate as ins4.17d for just one of the terms ins4.19d.
Define

AabsNd ª E
0

`

e−hs TrsfFDsH0sNdde−isH0sNdQb
sNdeisH0sNd jadds. s4.20d

SinceiH0sNdiøconst uniformly inN, it means that we can find an intervalfa,bg, independent of
N, which contains the spectrum ofH0sNd. Define the functionf0PC0

`sRd, 0øf0ø1,
suppsf0d, s−1+a,b+1d and

f0sxd =
1

ebsx−md + 1
, x P sa,bd. s4.21d

Also define for everys.0 the function

fssxd ª f0sxde−isx. s4.22d

Clearly, fFDsH0sNdde−isH0sNd=fssH0sNdd. Assume thatf̃0 is an almost analytic extension off0,
supported in the strip,

suppsf̃0d , s− 1 +a,b + 1d 3 s− h/2,h/2d , C, s4.23d

and such that

sup
−1+aøxøb+1

u]̄f̃0sx + iydu ø const ·uyuP, uyu ø h/2, s4.24d

whereP is any previously given positive integer. Becausee−isz is entire as function ofz, an almost
analytic extension forfs is simply f̃sszdª f̃0szde−isz. The Helffer–Sjöstrand formula is the for-
mula ssee, for example, Ref. 16d

fssH0sNdd =
1

p
E

suppsf̃0d
s]̄f̃0sx + iydde−isx+sysH0sNd − x − iyd−1 dx dy.

We will use the following technical result.
Proposition 4.2: Let F:C→C \R be smooth. Assume that for x+ iy in the support off̃0, we can

find two positive integers k1ø P and k2ø P, such that we have the estimate

uFsx + iydu ø const ·
1

Nk1uyuk2
, x + iy P suppsf̃0d, y Þ 0. s4.25d
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Then

E
suppsf̃0d

u]̄f̃0szdu · uFszdudx dy ø const ·
1

Nk1
. s4.26d

Clearly, the proposition is immediately implied bys4.24d and s4.25d and it does not require
further details.

We can introduce the expression offssH0sNdd in s4.20d and perform the integral with respect
to s; the interchange of integrals is permitted because on the support off̃0 we haveuyu,h. In
order to simplify the writing, we denotex+ iy=z and dx dy by d2z. Then, up to constants, we have
that AabsNd is proportional to

E
suppsf̃0d

]̄f̃0szdTrssH0sNd − zd−1Qb
sNdsH0sNd − z+ ihd−1jadd2z. s4.27d

Next we want to simplify the above trace, by expressingQb with the help of the current operator
jb. Let z8=z− ih. We havefsees4.8d and s4.9dg

jb = − ifQb
sNd,H0sNdg = − isQb

sNdsH0sNd − z8d − sH0sNd − zdQb
sNdd − isz8 − zdQb

sNd,

then using obvious notation for the resolvents

R0sN,zdQb
sNdR0sN,z8d =

1

z8 − z
hiR0sN,zd jbR0sN,z8d + Qb

sNdR0sN,z8d − R0sN,zdQb
sNdj.

s4.28d

Inserting this back intos4.27d, we have a number of terms, which must be treated separately. We
only deal with one of them, namely the term givensup to constantsd by

E
suppsf̃0d

]̄f̃0szdTrsR0sN,zdQb
sNd jadd2z. s4.29d

SinceQb
sNd ja=−itdabu0alkSau, introducing it back again and performing the trace, we obtain up to

constantsfsees4.18dg

dabE
suppsf̃0d

]̄f̃0szdkSa,sHeffsN,zd − zd−1Salk0a,RLsN,zd0ald2z. s4.30d

The next step is to replace the quantities involving finite leads with the ones corresponding to
semi-infinite leads. LetJ be an arbitrarily large integer. We see that one term we have to look at
in connection withs4.30d is

F1szd ª kSa,sHeffsN,zd − zd−1Sal · sk0a,RLsN,zd0al − k0a,RLszd0ald.

An application ofsC3d and sC6d yields the estimate

uk0a,RLsN,zd0al − k0a,RLszd0alu ø const ·
1

uIm zu2
e−2cNuIm zu, s4.31d

uniformly in z on the support off̃0, with Im zÞ0. Notice thats3.5d is also true at finiteN, and this
gives an upper bound of order 1/uIm zu on the first factor inF1szd. We finally obtain

uF1szdu ø const ·
1

uIm zu3
e−2cNuIm zu, s4.32d

uniformly in z on the support off̃0, with Im zÞ0. But this implies
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uF1szdu ø const ·
1

uIm zu3+JN−J. s4.33d

Now choosef̃0 to have a decay iny near the real axis with an exponentP larger thanJ+3
fsees4.24dg. Thens4.26d implies that the integral ofF1 times ]̄f̃0 will decay at least likeN−J.

Another type of term one needs to estimate can be set into the form

F2szd ª k0a,RLszd0alfkSasHeffsN,zd − zd−1Sal − kSasHeffszd − zd−1Salg. s4.34d

Using the identityA−1−B−1=A−1sB−AdB−1, and the expressions3.2d, which is valid for both
effective Hamiltonians, we reduce the problem to the estimate froms4.31d, but in addition we have
some other terms which are each bounded from above by 1/uIm zu. We eventually get the estimate

uF2szdu ø const ·
1

uIm zu5
e−2cNuIm zu, s4.35d

and then we argue as before.
Concluding, we proved that the difference between a term as ins4.30d at finiteN, and a similar

term “with infinite leads,” decays faster than any inverse power ofN. We consider thats4.17d, thus
the lemma, to be proven. j

3. Taking the adiabatic limit: hb0

The next limit to be performed is the adiabatic limit. Thus we define

gabsT,md ª lim
h↘0

gabsT,m,h,`d, s4.36d

wheregabsT,m ,h ,`d is given bys4.16d. The idea is again to use the resolvent properties, as we
did in the preceding section, one important difference now being that we have to use Stone’s
formula instead of the Helffer–Sjöstrand formula. The computations will also be more involved in
this case. Froms4.16d we have

gabsT,m,h,`d = − iE
0

`

ds e−hs TrHsfFDsKde−isKQbeisKja − jae−isKQbeisKfFDsHdd.

We note that in the above formula appears againfFDsKde−isK and its adjoint. We will express
them using Stone’s formula. Recall now thatK can have point spectrum outside the interval
f−2tL ,2tLg; we also assumed that ±2tL are not eigenvalues. This implies thatK can only have a
finite number of eigenvalues outsidef−2tL ,2tLg fsee the remarks followings3.13dg. We will see in
the next section thatK might have embedded eigenvalues ins−2tL ,2tLd ssee Proposition 5.4d.

Consider without loss of generality that there is only one eigenvalueE1 outsidef−2tL ,2tLg, P1

being the corresponding projection. Then from Stone’s formula one has

fFDsKde−isK = lim
«→0

E
−2tL

2tL

dE fFDsEde−isE1

p
Im RsE + i«d + fFDsE1de−isE1P1. s4.37d

Now we follow the same steps as in Sec. IV B 2, namely we perform the integrals overs and we
get

gabsT,m,h,`d =
i

2p
lim
«→0

E
−2tL

2tL

dE fFDsEd TrHsMabsE,h,«dd + fFDsE1d TrHsP1QbRsE1 − ihd ja

+ jaRsE1 + ihdQbP1d, s4.38d

where we wrote
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MabsE,h,«d ª sRsE + i«d − RsE − i«ddQbRsE − ihd ja + jaRsE + ihdQbsRsE + i«d − RsE − i«dd.

s4.39d

We start with the terms arising from the eigenvalueE1, and show that in the limith↘0 they
give no contribution. First we use again a trick to introduce current operators instead of charge
operators, namely we write

P1jbRsE1 − ihd = iP1fK − sE1 − ihd,QbgRsE1 − ihd = − hP1QbRsE1 − ihd − iP1Qb,

from which we get

P1QbRsE1 − ihd = −
1

h
P1jbRsE1 − ihd −

i

h
P1Qb. s4.40d

Then replacingP1QbRsE1− ihd and its adjoint in the second term froms4.38d we obtain for
the second term in this expression

− TrHsP1QbRsE1 − ihd ja + jaRsE1 + ihdQbP1d =
1

h
TrHs jaRsE1 + ihd jbP1 + jaP1jbRsE1 − ihd

+ isP1Qb ja − jaQbP1dd, s4.41d

and we can see right away that the last term disappears, whenaÞb.
The singularities appearing in resolvents can be isolated by writing

RsE1 ± ihd = ± i
P1

h
+

1

2pi
E

uz−E1u=e

1

z− sE1 ± ihd
sK − zd−1 dz with e . h. s4.42d

We also writeP1 as a Riesz integral,

P1 =
i

2p
E

uz8−E1u=e8
Rsz8ddz8 with e8 , e. s4.43d

By looking at s4.41d we see that the singular term equal to

1

h2TrHh jaP1jbP1j

is in fact identically zero, due to

P1jaP1 = iP1fK,QagP1 = iP1fK − E1,QagP1 = 0. s4.44d

Thus we are only left with the regular part froms4.42d. Substitute it intos4.41d, together withP1

expressed as ins4.43d. We have

1

h
TrHh jaRsE1 + ihd jbP1 + jaP1jbRsE1 − ihdj =

1

4p2h
E

uz−E1u=e

dzE
uz8−E1u=e8

dz8 Fabsz,z8,hd,

s4.45d

where we used the notation

Fabsz,z8,hd ª
1

z− sE1 + ihd
TrHs jaRszd jbRsz8dd +

1

z− sE1 − ihd
TrHs jaRsz8d jbRszdd.

s4.46d

To go further with the computations we need a technical lemma that gives a general expres-
sion for TrHs jaRszd jbRsz8dd.
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Lemma 4.3: Let uabszd be the function introduced in Proposition3.1. Then the following
identity holdssaÞbd:

TrHs jaRszd jbRsz8dd =
t4

tL
2 sz1szd − z1sz8dd2uabszdubasz8d. s4.47d

Proof: Taking into account the explicit form ofja and jb, we have

TrHs jaRszd jbRsz8dd = − t2hkSa,Rszd0blkSb,Rsz8d0al − kSa,RszdSblk0b,Rsz8d0al − k0a,Rszd0bl

3kSb,Rsz8dSal + k0a,RszdSblk0b,Rsz8dSalj.

Each term is then computed using the Feshbach formula forRszd,

kSa,Rszd0blkSb,Rsz8d0al = t2kSa,ReffszdSblk0b,RLszd0blkSb,Reffsz8dSalk0a,RLsz8d0al,

kSa,RszdSblk0b,Rsz8d0al = t2kSa,ReffszdSblk0b,RLsz8d0blkSb,Reffsz8dSalk0a,RLsz8d0al,

k0a,Rszd0blkSb,Rsz8dSal = t2k0a,RLszd0alkSa,ReffszdSblk0b,RLszd0blkSb,Reffsz8dSal,

k0a,RszdSblk0b,Rsz8dSal = t2k0a,RLszd0alkSa,ReffszdSblk0b,RLsz8d0blkSb,Reffsz8dSal.

Moreover, we can also use the expression for the matrix elements of the resolventRL, which
proves the lemma. j

Now turning back tos4.46d, and using the lemma above, we arrive at

tL
2

t4Fabsz,z8,hd =
1

z− sE1 + ihd
sz1szd − z1sz8dd2uabszdubasz8d +

1

z− sE1 − ihd

3sz1szd − z1sz8dd2uabsz8dubaszd.

Now we must handle the contour integrals ins4.45d. Notice thatuabszd is singular aroundE1.
However, due to the equivalences3.5d and relations4.42d, we haveswith e1.ed

uabszd = kSa,P1Sbl
1

E1 − z
+

1

2pi
E

uz1−E1u=e1

dz1
1

z1 − z
kSa,Rsz1dSbl. s4.48d

Remember that we havee1.e.e8. Substituting theu’s in s4.46d we obtain a lot of terms. The
most singular one is of the formswe omit the contours and constants for simplicityd

A1 ª
1

h
E dzE dz8S 1

z− sE1 + ihd
+

1

z− sE1 − ihdD sz1szd − z1sz8dd2

sE1 − zd · sE1 − z8d
. s4.49d

By the residue theorem

A1 =
s2pd2i

h2 ssz1sE1 − ihd − z1sE1dd2 − sz1sE1 + ihd − z1sE1dd2d.

Writing the Taylor series forz1sE1± ihd, one is left inside the parentheses with an expression of
orderh3, andA1 vanishes in the limith→0.

Next, take one of the terms involving the singular part ofuabszd and the regular part ofuabsz8d
swe omit for the moment the constantstL ,t as well as the matrix elements ofP1d,
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A2 =
1

h
E dzE dz8

sz1szd − z1sz8dd2

z− sE1 + ihd
·

1

E1 − z
E dz1

z1 − z8
uabsz1d. s4.50d

We see that the integral with respect toz8 only involves analytic functions in the diskuE1−z8u
,e8, therefore the integral vanishes.

Another term coming from the singular part ofuabsz8d and the regular part ofuabszd is the
following:

A3 ª
1

h
E dzE dz8

sz1szd − z1sz8dd2

z− sE1 + ihd
·

1

E1 − z8
E dz1

z1 − z
uabsz1d

= −
2pi

h
E dz

sz1szd − z1sE1dd2

z− sE1 + ihd E dz1

z1 − z
uabsz1d, s4.51d

where in the second line we performed the integral with respect toz8. We can also perform the
integral with respect toz and get up to constants the term

1

h
sz1sE1 + ihd − z1sE1dd2E dz1

z1 − E1
uabsz1d.

Using again the Taylor series we see thatA3,h, thus it will disappear as well. The same thing
happens with all the other terms.

Looking back at s4.38d, we continue with the contribution ofMab. Let us first bring
MabsE,h ,«d to a suitable form. Usings4.28d it turns out that

MabsE,h,«d = Mab
s1dsE,h,«d + Mab

s2dsE,h,«d, s4.52d

where

Mab
s1dsE,h,«d ª

1

h − «
s jaRsE − i«d jbRsE − ihd − jaRsE + ihd jbRsE + i«dd −

1

h + «

3s jaRsE + i«d jbRsE − ihd − jaRsE + ihd jbRsE − i«dd, s4.53d

while Mab
s2d includes all terms with only one resolvent. SinceaÞb, and using the trace cyclicity,

the trace ofMab
s2d is zero and we are only left withMab

s1d,

gabsT,md = lim
h↘0

lim
e↘0

i

2p
E

−2tL

2tL

dEfFDsEdTrHsMab
s1dsE,h,edd. s4.54d

Now we apply again the identitys4.47d and we use the meromorphic extensions ofuabszd ssee
Proposition 3.1d, and the properties ofz1szd. The result is

gabsT,md = lim
h↘0

lim
e↘0

t4

tL
2

i

2p
E

−2tL

2tL

dE fFDsEdSCabsE,h,ed
h − e

−
DabsE,h,ed

h + e
D , s4.55d

with the following notationfsee alsos3.8d and s3.13dg

CabsE,h,ed ª sz−sE − ied − z−sE − ihdd2uab
− sE − ieduba

− sE − ihd − sz+sE + ihd − z+sE + iedd2

3uab
+ sE + ihduba

+ sE + ied, s4.56d

DabsE,h,ed ª sz+sE + ied − z−sE − ihdd2uab
+ sE + ieduba

− sE − ihd − sz+sE + ihd − z−sE − iedd2

3uab
+ sE + ihduba

− sE − ied. s4.57d

Since theu±szd are smooth near the real axis, and thez± have good behavior, one can take at once
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the limit e↘0 in s4.56d ands4.57d. In the following we show thatCab vanishes in the limith↘0.
To see this we write, for example,

z+sE + ihd − z+sEd = − iE
0

h

s]yz+sE + iydddy s4.58d

and use the explicit form ofz+ to obtain the estimate

u]yz+sE + iydu ø const ·
1

Î4tL
2 − E2

, s4.59d

which shows thats1/hdCab,h and the result follows.
The last step is to deal with

gabsT,md = − lim
h↘0

t4

tL
2

i

2p
E

−2tL

2tL

fFDsEd
DabsE,h,0+d

h
dE. s4.60d

One notes that with the notation

FsE,hd ª sz+sE + ihd − z−sEdd2uab
+ sE + ihduba

− sEd,

we haveDabsE,h ,0+d=−2i Im FsE,hd and

gabsT,md = − lim
h↘0

t4

tL
2

1

p
E

−2tL

2tL

fFDsEd
Im FsE,hd

h
dE. s4.61d

Using s3.13d and sA4d we see that ImFsE, i0+d=0 and

ReFsE,0+d = − 4fIm z+sEdg2 · uuab
+ sEdu2.

Taking the limit h↘0, we obtain in the integral the terms]h Im FdsE,0+d. Using the Cauchy–
Riemann equations foru+ andz+, we get after some work that we can replaces]h Im FdsE,0+d by
s1/2d3]E ReFsE,0+d. This also shows thatF is not analytic.

Integrating by parts and noticing thatz+s±2tLd−z−s±2tLd=0 we proved the following lemma.
Lemma 4.4: The conductance coefficients gabsT,md defined in (4.36) are given by the relation

gabsT,md = −
4t4

tL
2

1

2p
E

−2tL

2tL

dE
]fFDsEd

]E
sIm z+sEdd2uuab

+ sEdu2. s4.62d

C. Completion of the proof of the main theorem

Before giving the final step in the proof of the Landauer–Büttiker formula, let us briefly
review what we have done in this section. We started with the scattering problem associated to the
semi-infinite leads case, the transmission between two leads being found ins4.6d. The rest of the
work has been done to obtain explicit expressions for the conductance coefficients given by the
Kubo-type formulas4.15d, when the thermodynamic and adiabatic limits are taken.

To finish the proof of Theorem 2.1 there is not much to be done. First, use the explicit
expressions forz±s·d, together with the definition of the Fermi “momentum,”E=2tL cosskEd, in
s4.62d. The result is

gabsT,md = −
4t4

tL
2

1

2p
E

−2tL

2tL

dE
]fFDsEd

]E
sin2skEduuab

+ sEdu2. s4.63d

Now comparings4.63d and s4.6d one obtainss2.25d, and we are done. Notice that whenT
→0, we have −]EfFD→dsE−md, ands2.26d follows.
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The presence of 1/2p in those equations is not an accident. It makes more sense, if one
carefully includes in computations the physical constantse and " swe have been working until
now with the conventione="=1d. Without giving details, we assure the reader that in the end the
equality in s2.26d becomes

gabs0+,md =
e2

2p"
Tabsmd =

e2

h
Tabsmd, s4.64d

which is nothing but the well-known Landauer formula at zero temperature. Note that when the
total particle density is fixed, thenm represents the Fermi energy of our system. When the leads
become infinite, the sample does not contribute to the thermodynamic limit, thus the Fermi energy
is fixed by the leads. The proof of Theorem 2.1 is completed. j

V. RESONANT TRANSPORT IN A QUANTUM DOT

Up to now we allowedt to be arbitrarily large, together with the assumption that the Hamilton
operator for the system with semi-infinite leadsK had no eigenvalues at ±2tL. In this section we
are interested in small coupling, i.e., the limitt→0.

We now assume that the sample HamiltonianHS does not have eigenvalues±2tL. This as-
sumption implies, through a simple perturbation argument, and the explicit form of the effective
Hamiltonian, that the full HamiltonianK does not have eigenvalues ±2tL, providedt is sufficiently
small.

Assume thatHS hasJù1 spossibly degenerated eigenvalues, denoted byhE1, . . . ,EJj, such
that

ssHSd ù f− 2tL,2tLg = hE1, . . . ,EJj , s− 2tL,2tLd. s5.1d

We are not interested in possible eigenvalues outsidef−2tL ,2tLg, since for smallt they will
still remain discrete eigenvalues forK, and we saw that they do not contribute to transport. Now
we focus on the influence ofhE1, . . . ,EJj on the transport properties, whent is small.

Let us give the main result of this section. We consider the transmittancefsees4.6dg between
the leadsb andg. Assume that all eigenvalueshE1, . . . ,EJj, s−2tL ,2tLd of HS are nondegenerate.
The normalized eigenvector corresponding toEj is denoted byf j.

Proposition 5.1:sid For everylP s−2tL ,2tLd \ hE1, . . . ,EJj we have

lim
t↘0

Tbgsl,td = 0. s5.2d

sii d Fix l=Ej. If either kSb ,f jl or kSg ,f jl is zero, then

lim
t↘0

TbgsEj,td = 0. s5.3d

siii d Fix l=Ej. If both kSb ,f jl and kSg ,f jl are different from zero, then there exists a positive
constant CsEjd such that

lim
t↘0

TbgsEj,td = CsEjdU kSb,f jl · kSg,f jl

oa=1

M
ukSa,f jlu2

U2

. s5.4d

Remark:The physical significance of this proposition is quite transparent. It states that at
small coupling, the following things happen:sid If the energy of the incident electron is not close
to the eigenvalues ofHS, it will not contribute to the current.sii d If the incident energy is close to
some eigenvalueEj, but the eigenfunctionf j is not localized around both coupling pointsSg and
Sb, then again there is no current.siii d In order to have a peak in the current, it is necessary forHS

to have extended edge states, which couple several leads. A numerical analysis of the Harper
operator on large domains with Dirichlet boundary conditions puts into evidence such extended
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edge states, as well as the existence of bulk states concentrated in the middle of the dotssee Refs.
26 and 33d.

Proof: We split the proof into several technical results. We will not assume that theEj’s are
nondegenerate, unless stated otherwise.

Lemma 5.2: Consider ubg given in (3.8), and ubg
+ its meromorphic extension. Then

lim
t↘0

st2 sup
lPs−2tL,2tLd

uubg
+ sl,tdud , `.

Proof: The lemma roughly says thatubg
+ sld cannot blow up worse than 1/t2, whent is small.

In other words, its polessif anyd have an imaginary part of ordert2, whent is small.
Clearly, if t is smaller than somed0.0, then by the usual perturbation theory we get that for

all l located outside some small disksswith radii determined byd0d centered athEjj j=1
J sthe

eigenvalues ofHSd, we have

isH+sld − ld−1i ø C max
jPh1,. . .,Jj

uEj − lu−1,

thus we only need to look at what happens in each interval of the formsEj −e ,Ej +ed.
Assume thatEj is n-fold degenerate. Denote byP j the n-dimensional projection correspond-

ing to Ej. The operatorP jP
TP j has aspossibly triviald null space in RansP jd. Let pj be the

projection onto this space. Letp̃j =P j −pj be the projection onto the orthogonal complement of
Ranspjd in RansP jd. It is easy to see that there exists a positive constantCj, such that

p̃jP
Tp̃j ù Cjp̃j

2. s5.5d

Indeed, this is implied by the fact that the operator is non-negative, and with a trivial null space.
Let qj =Id−pj. SincePTpj =0, and arguing as ins3.10d, we have

sH+sld − ld−1 − sEj − ld−1pj = qjfqjsH+sld − ldqjg−1qj .

Only the right-hand side will contribute toubg
+ , sincepjSg=0. The proposition will be proven, if

we can show the estimatefon Ransqjdg

ifqjsH+sld − ldqjg−1i ø C/t2 s5.6d

for l nearEj.
Notice thatqj = p̃j +sId−P jd, i.e., it is the orthogonal sum of some part ofP j and the projec-

tions corresponding to all other eigenvalues ofHS different fromEj. Let AjªqjsH+sld−ldqj.
Note further thatsId−P jdAjsId−P jd is well-behaved whenl is close toEj, because it essen-

tially equalssId−P jdsHS−ldsId−P jd plus a perturbation of ordert2. Applying the Neumann series
again, we get that on RansId−P jd,

ifsId − P jdAjsId − P jdg−1i ø const s5.7d

for l close toEj andt small enough. Hence ifp̃j =0, this estimate implies

ifqjsH+sld − ldqjg−1i ø const, s5.8d

which impliess5.6d, and we are done.
If p̃j Þ0, we again apply the Feshbach lemma for the operatorAj, intending to reduce the

problem to the subspace Ransp̃jd. ThenAj is invertible in Ransqjd, if and only if the operator

Xj ª p̃jAjp̃j − p̃jAjsId − P jdfsId − P jdAjsId − P jdg−1sId − P jdAjp̃j s5.9d

is invertible in Ransp̃jd, and their inverses will have the same estimate for their norm, whent is
small. It is not difficult to see that the second term ins5.9d is of ordert4, whenl is nearEj. We
can then write
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Xj = p̃jAjp̃j + Ost4d. s5.10d

But the operator

p̃jAjp̃j = Ej − l − st2/tLdz+sldp̃jP
Tp̃j s5.11d

is one to onesthus invertibled, because for everyf PRansp̃jd with norm one we havefsee also
sA4dg

ip̃jAjp̃j fi ù ukf,Aj flu ù uImskf,Aj fldu = st2/tLdÎ1 − l2/s4tL
2dkf,PTfl,

and usings5.5d we get

ip̃jAjp̃j fi ù st2/tLdÎ1 − l2/s4tL
2dCj ,

which leads to

ifp̃jAjp̃jg−1i ø const · 1/t2.

Using this ins5.10d by employing again the Neumann series, we get that fort small andl nearEj

we have

iXj
−1i ø const · 1/t2,

thus s5.6d is proven, and so is the lemma. j

Remark:We see that ifpj Þ0, its range is spanned by eigenvectors ofK corresponding toEj.
But they do not contribute in any way toubg

+ .
Corollary 5.3: We use the notation introduced in the previous lemma. Assume that Ej is n-fold

degenerate.

sid For everylP s−2tL ,2tLd with l¹ hE1, . . . ,EJj we have

lim
t↘0

t2uubg
+ sl,tdu = 0. s5.12d

sii d Fix l=Ej. Assume p˜ j =0. Then

lim
t↘0

t2uubg
+ sEj,tdu = 0. s5.13d

siii d Fix l=Ej. Assume that p˜ j Þ0. Then p̃jP
Tp̃j is positive onRansp̃jd and

lim
t↘0

t2uubg
+ sEj,tdu = tLukSb,p̃jfp̃jP

Tp̃jg−1p̃jSglu. s5.14d

Proof: sid By regular perturbation theory, we see thatuubg
+ sl ,tdu remains bounded whent

tends to zero, whilel is fixed and away from the eigenvalues ofHS. Hences5.12d is straightfor-
ward.

sii d If p̃j =0 andl=Ej, the estimates5.8d implies again thatuubg
+ sEj ,tdu remains bounded when

t tends to zero, thuss5.13d follows.
siii d If p̃j Þ0 andl=Ej, we rely on the properties of the inverse on Ransp̃jd of the operator

p̃jAjp̃j introduced ins5.11d. A consequence of the arguments presented in the previous proposition
is that forl close toEj we have

ubg
+ sld − kSb,p̃jfp̃jAjp̃jg−1p̃jSgl = Ots1d. s5.15d

Then usings5.11d with l=Ej, and the fact thatuz+sldu=1, the result follows easily. The corollary
is proven. j

Completing the proof of Proposition 5.1:The proof is easily obtained by replacing
s5.12d–s5.14d in s4.6d, in the nondegenerate case. Details are omitted.
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We see that in the degenerate case it is not that simple to give clear criteria, for which the
current is zero, or not, in the small coupling regime. Assume thatEj is n-fold degenerate. Denote
by hf j

ssdjs=1
n the normalized eigenvectors ofHS spanning the range ofP j. A sufficient condition for

the right-hand side ofs5.14d to be zero for everyb andg, is P j to be orthogonal toPT. In other
words, kSa ,f j

srdl=0 for every 1øaøM and 1ø r øn. Physically, this means no contact at all
between the leads and the modeEj. A necessary but not sufficient condition for the right-hand side
of s5.14d to be different from zero is to havep̃j Þ0. The proposition is proven. j

We continue this section with a result giving more information about the poles in the case,
whent is small, and we are near a nondegenerate eigenvalue ofHS.

Assume that the eigenvalueE1P s−2tL ,2tLd of HS is nondegenerate. We denote the corre-
sponding normalized eigenvector withf1, i.e., HSf1=E1f1. It is clear that one of the following
two alternatives is true:

s1d A1, there existsa1P h1, . . . ,Mj such thatkf1,Sa1lÞ0;
s2d A2, for all aP h1, . . . ,Mj we havekf1,Sal=0.

If A1 holds, thenf1 is “coupled” with at least one lead. IfA2 holds, then the coupling is
absent.

Define the projectionPL=oa=1
M u0alk0au. By direct computation we havefsees3.8d and s3.3dg

PLsK − zd−1PL =
z1szd

tL
o
a=1

M

u0alk0au +
z1

2szd
tL
2 o

a,b=1

M

u0aluabszdk0bu. s5.16d

Then the weighted resolventPLsK−zd−1PL admits a meromorphic extension to any domain of the
form C+øVe fsees3.6dg.

Proposition 5.4:sid For small enought, the weighted resolventPLsK−zd−1PL has a simple

pole near E1 fdenoted by E˜ 1stdg.
sii d If A1 holds true, then fort.0 small enough the pole E˜

jstd is a resonance for K with

lim
t↘0

sReẼ1std − E1d/t2 = −
E1

2tL
2 o

a=1

M

ukf1,Salu2

and

lim
t↘0

Im Ẽ1std/t2 = −
Î4tL

2 − E1
2

2tL
2 o

a=1

M

ukf1,Salu2.

siii d If A2 holds forf1, then Ẽ1std=E1 and f1 remains an eigenvector for K, i.e., Kf1=Ẽ1f1.
Proof: Let us focus on what happens nearE1, when A1 holds. Denote byP1 the spectral

projection ofHS corresponding tof1, and letQ1=Id−P1. The Feshbach lemma givesfusing a
compact notation, cf.s3.3dg

sH+szd − zd−1 = sQ1H+Q1 − zd−1 + s1 − sQ1H+Q1 − zd−1Q1H+P1d

3 sH̃+szd − zd−1 · s1 − P1H+Q1sQ1H+Q1 − zd−1d, s5.17d

where the new effective HamiltonianH̃+szd is defined by

H̃+szd ª P1H+szdP1 − P1H+Q1sQ1H+Q1 − zd−1Q1H+P1, s5.18d

and lives in a one-dimensional space. With the notation
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f1sz,td ª o
a,b=1

M

o
i,i8Þ1

t4

tL
2 z+

2szdkf1,SalkSa,fil 3 kfi,sQ1H+Q1 − zd−1fi8lkfi8,SblkSb,f1l,

we have that for small enought, H+szd−z is invertible, if and only if the function

F1sz,td ª E1 − z−
t2

tL
z+szdo

a=1

M

ukf j,Salu2 − f1sz,td

is different from zero. Notice that fort small enough, andz nearE1, we havef1sz,td=Ost4d.
For small t, and with z near E1, the implicit function theorem provides us with a unique

solution Ẽ1std to the equationF1sz,td=0.
If we define

T1sz,td ª − sQ1H+Q1 − zd−1Q1H+P1 − P1H+Q1sQ1H+Q1 − zd−1

+ sQ1H+Q1 − zd−1Q1H+P1H+Q1sQ1H+Q1 − zd−1,

then we can write

sH+ − zd−1 =
1

F1sz,td
fP1 + T1g + sQ1H+Q1 − zd−1. s5.19d

It is easy to see thatT1 is analytic inz nearE1, and of orderOst2d. Now we must take the matrix
elementskSa ,sH+szd−zd−1Sbl to obtainuabszd in s5.16d. It turns out that

PLsK − zd−1PL = bounded and analytic term +
z+

2szd
tL
2 o

a,b=1

M H kSa,c1lkc1,Sbl + kSa,T1Sbl
F1sz,td Ju0alk0bu.

Moreover, since we can show that

F1sz,td/sE1std − zd = 1 +Ost2d

for z in a small neighborhood ofE1, we conclude that

PLsK − zd−1PL = bounded and analytic term +s1 +Ost2dd
z+

2szd
tL
2 o

a,b=1

M kSa,c1lkc1,Sbl + Ost2d

Ẽ1std − z

3u0alk0bu.

Therefore the second statement of the proposition is now proved up to a straightforward applica-

tion of the implicit function theorem for the claimed properties ofẼ1std. The third statement is
also straightforward. j
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APPENDIX A: THE DISCRETE LAPLACIAN ON THE HALF-LINE

Denote byhunljnù0 the standard basis inl2sNd. For tL.0, consider the operatorHa
L, which acts

on cP l2sNd as follows:

sHa
Lcds jd = tLcs j + 1d + tLcs j − 1d, j ù 0, cs− 1d ª 0.
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It is well known that the spectrum ofHa
L is purely absolutely continuous, and moreover

ssHa
Ld=f−2t ,2tg. We are interested in the matrix elements of the resolvent ofHa

L. If Im z.0, one
can easily compute

km,Ra
Lszdnl =

1

tLsz2 − z1d
sz1szdum−nu − z1szdm+n+2d, sA1d

wherez1,2 are solutions of the equation

tLz2 − zz + t = 0, sA2d

andz1 is chosen, such thatuz1u,1/uzu at infinity snote thatz1z2=1d.
We give several explicit representations forz1. By lnsxd=lnsuxud+ i argsxd we understand the

principal branch of the natural logarithm defined onC \ s−` ,0g, with argsxdP s−p ,pd. ThusÎx
=Îuxuesi/2dargsxd.

Proposition 6.1: We have the following properties.

sid Assume that z¹ f−2tL ,2tLg. Then

z1szd =
z

2tL
s1 −Î1 − 4tL

2/z2d. sA3d

sii d Consider the holomorphic functions

z±szd =
z

2tL
7 iÎ1 − z2/s4tL

2d, z¹ s− `,− 2tLg ø f2tL,`d. sA4d

Thenz1szd=z+szd if Im z.0, and z1szd=z−szd if Im z,0.
siii d We havez2szd=1/z1szd.

Proof: We see thatz1 in sA3d solves the equation, and behaves like 1/z for large uzu. Further-

more, sincez1 and z̃± are holomorphic, it is enough to verify their equality at points of the form
±it with t.0, which is trivial. j

APPENDIX B: THE SECOND QUANTIZATION OF AN IDEAL FERMI GAS

The results in this section are well known, see for example Ref. 8. We recall the results to fix
the notation.

Given a separable Hilbert spaceH, the associated antisymmetric Fock space is given by

FasHd = %
n=0

`

H^an, H^a0
ª C.

Here the subscripta indicates the total antisymmetrization of the tensor products. LetB
=hekjkù1 be an orthonormal basis inH. Then we can construct the “occupation number” basis in
FasHd associated toB. We denote a generic vector byCN1,N2,. . ., where theNk’s are numbers
seither 0 or 1d showing how many timesek appears in the tensor products definingC. For
example,C0,0,. . .=1PC is the vacuum.

The annihilation operators associated with this particular basis are defined as

aaCN1,N2,. . .,Na=0,. . .= 0,

aaCN1,N2,. . .,Na=1,. . .= s− 1dob,aNbCN1,N2,. . .,Na=0,. . .,

while their adjointssthe creation operatorsd are given by

aa
†CN1,N2,. . .,Na=1,. . .= 0,

042106-24 Cornean, Jensen, and Moldoveanu J. Math. Phys. 46, 042106 ~2005!

                                                                                                                                    



aa
†CN1,N2,. . .,Na=0,. . .= s− 1dob,aNbCN1,N2,. . .,Na=1,. . . .

If A is a bounded linear operator inH, its second quantizationA =dGsAd is the operator onFa,
whose restriction toH^an is given by

A ^ Id ^ ¯ ^ Id + . . . + Id ^ ¯ ^ Id ^ A,

where the above sum hasn terms. Using the particular basisB, we have

A = dGsAd = o
k,jù1

kek,Aejlak
+aj . sB1d

For example, the total Hamiltonian isH =dGsHd, and the number operator isN=dGsIdd.
Now assume thatH is finite dimensional. The grand canonical partition functionJ and the

density matrix operator in the grand canonical ensembler̂0 are defined as

J ª TrFa
e−bsH−mNd, r̂0 ª

1

J
e−bsH−mNd. sB2d

Finally, we define

fFDsxd =
1

ebsx−md + 1
, r0 ª fFDsHd. sB3d

The following proposition will be used extensively in Sec. III.
Proposition 6.2: Let A and B be bounded operators inH. Denote byfA,Bg=AB−BA their

commutator. Then

dGsfA,Bgd = fA,Bg, sB4d

eABe−A = dGseABe−Ad, sB5d

TrFa
sr̂0Ad = TrHsr0Ad. sB6d

Proof: The first identity is easily proven using the anticommutation relations

fA,Bg = o
k,j ,m,n

kek,Aejlkem,Benlfak
†ajam

† an − am
† anak

†ajg

= o
k,j ,m,n

kek,Aejlkem,Benlfak
†and jm − am

† andkng = o
k,j

kek,sAB− BAdejl = dGsfA,Bgd,

while the second one is implied by the first equality, the Baker–Cambell–Hausdorff formula

eABe−A = B + fA,Bg + 1
2fB,fB,Agg + ¯ ,

and the linearity of dGs·d.
Concerning the third identityssee also Proposition 5.2.23 in Ref. 8d we first note that the trace

is invariant with respect to the basis used, so we may assume that the basisB=hekj is the set of
eigenvectors ofH. We consider the occupation number basis derived from it. The eigenvalues of
H are denoted byhlkj. Then

J = Pks1 + e−bslk−mdd , `, sB7d

and we can write
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TrFa
sr̂0Ad = o

N1,N2,. . .Ph0,1j
kCN1,N2,. . .,r̂0ACN1,N2,. . .l.

Since

r̂0CN1,N2,. . . =
1

J
e−bo jNjsl j−mdCN1,N2,. . . =

1

J
P je

−bNjsl j−mdCN1,N2,. . . ,

and

kCN1,N2,. . .,ACN1,N2,. . .l = o
k,m

kek,AemldNk,1
dNm,1dk,m,

we have

TrFa
sr̂0Ad = o

k

kek,Aekl
1

J
o

N1,N2,. . .Ph0,1j
P je

−bNjsl j−mddNk,1
.

Note that

o
N1,N2,. . .Ph0,1j

P je
−bNjsl j−mddNk,1

= s1 + e−bsl1−mdds1 + e−bsl2−mdd ¯ e−bslk−md
¯ s1 + e−bsl j−mdd ¯ ,

sB8d

hence

1

J
o

N1,N2,. . .Ph0,1j
P je

−bNjsl j−mddNk,1
= fFDslkd,

and therefore

TrFa
sr̂0Ad = o

k

kek,AeklfFDslkd = TrHsr0Ad.

j

APPENDIX C: A DISCRETE KREIN FORMULA AND EXPONENTIAL DECAY

We now give a formula relating the resolvent of the discrete Laplacian defined onl2sNd, N
=h0,1, . . . ,Nj, with the resolvent of the Laplacian defined onl2sNd; both operators are with
Dirichlet boundary conditions. We denote byrLsN,zd the resolvent on the finite segment, and by
rLszd the resolvent on the semi-infinite lead. We use lower case letters to emphasize that we model
only one lead. The operator itself is denoted byhLsNd when restricted to a segment, and byhL on
l2sNd. The vectordm is the vector inl2sNd having 1 in themth position, and 0 elsewhere. Define
for everyzPC \R the “integral kernels”

gm,nsN,zd = kdm,rLsN,zddnl, gm,nszd = kdm,rLszddnl. sC1d

The Dirichlet boundary condition means

g−1,nsN,zd = gN+1,nsN,zd = g−1,nszd = 0, sC2d

with analogous equalities for the second argument, due to the symmetry propertygm,nsN,zd
=gn,msN, z̄d.

Proposition 6.3: For all0øm,nøN we have the following Krein formula:

gm,nsN,zd − gm,nszd = tLgm,NsN,zdgN+1,nszd. sC3d
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Proof: The proof is outlined here. For every fixedn, the vectorsg·,nsN,zd sg·,nszdd are inl2sNd
sl2sNdd. Then

fshLsNd − zdg·,nsN,zdgsmd = dm,n,

fshL − zdg·,nszdgsmd = dm,n. sC4d

Using summation by parts, we get the identityfthe scalar products are inl2sNdg

kfshLsNd − z̄dg·,msN,z̄dg,g·,nszdl = kg·,msN,z̄d,shL − zdg·,nszdl − tLgm,NsN,zdgN+1,nszd, sC5d

where we employed various symmetry properties of the kernels, together withsC2d. The use of
sC4d finishes the proof. j

Finally, we need an exponential decay estimate for the resolvents.
Proposition 6.4: There exist constants0,c,C, such that uniformly in N and z with0

, uIm zu,1 we have

ugm,nsN,zdu ø
C

uIm zu
exps− cuIm zuum− nud, sC6d

for all m,nPN. The same estimate holds, when N=`.
Proof: This proof is a discretesand simplerd version of the usual Combes–Thomas argument

ssee Ref. 14d, which leads to boundedness of resolvents between spaces with exponential weights.
Define the discrete dilation fora.0 by

sWacdsnd = eancsnd. sC7d

Then, by a direct computation, the dilated HamiltonianHsad=WaHW−a is given by

sHsadcdsnd = e−acsn + 1d + eacsn − 1d

= sHcdsnd + se−a − 1dcsn + 1d + sea − 1dcsn − 1d = ssH + Vsaddcdsnd,

where the perturbationVsadªse−a−1dT1+sea−1dT−1, T±1 being the shift operators. Noting that
Vsad is of orderOsad. If c is a sufficiently small positive constant, andaøcuIm zu, we can write

sHsad − zd−1 = sH − zd−1s1 + VsadsH − zd−1d−1, sC8d

where the second part is invertible, and its norm is less than a chosen constantsfor example, 2d.
Hence,

isHsad − zd−1i ø isH − zd−1i · is1 + VsadsH − zd−1d−1i ø
2

uIm zu
. sC9d

Define the following vectors inl2sNd sthe exponential is in themth positiond

Cmn= s0,0, . . . ,eiargsgmnsN,zdd, . . . ,0,0d, mù n. sC10d

Then

kCmn,WasH − zd−1W−adnl = easm−ndugmnsN,zdu = kCmn,sHsad − zd−1dnl ø
C

uIm zu
,

from which the claimed estimate follows. j
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The theory of operator integrals is used to determine the moment operators of the
Cartesian margins of the phase space observables generated by the mixtures of the
number states. The moments of thex-margin are polynomials of the position op-
erator and those of they-margin are polynomials of the momentum operator. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1851957g

I. INTRODUCTION

According to the theory developed in Ref. 7, each complex valued measurable functionf and
operator measureE determine a unique, possibly unbounded, linear operatorLsf ,Ed, the operator
integral of f with respect toE. In the case of real valued functions and phase space operator
measures, a natural application of this theory is quantization.

In general, quantization means any procedure which associates a quantum mechanical observ-
able to a given classical dynamical variable, the latter being represented by a real valued measur-
able function on the phase spaceR2n of the classical system. Phase space quantization schemes are
often realized by associating to a given classical variablef the operatorefsq,pdDsq,pddq dp,
whereD is some operator valued phase space function and the integral is interpreted, e.g., in the
weak or strong sense on a suitable domainscf., e.g., Refs. 6, 10, and 13d.

Consider the quantization determined by the operator densitysq,pd°Dsq,pdª s2pd−1W
s−q,pdTWs−q,pd* , where theWs−q,pd are the Weyl operators acting in a separable Hilbert space
and T is a state, i.e., a positive operator of trace one. Now the mapBsR2nd{B°EsBdªeBD
PLsHd is a phase space observable, so that any classical variablef can be integrated with respect
to it. On its natural domain, the operator integralLsf ,Ed coincides with thesweakd quantization
integralefD. In this way,Lsf ,Ed can be interpreted as a quantization of the classical variablef. It
can be noted that this approach differs from the Weyl quantization, which is obtained by replacing
T in the above densityDsq,pd by sa constant timesd the parity operator inL2sRd scf., e.g., Ref. 3,
Sec. IV.1, Ref. 6, p. 199, and Ref. 10, pp. 140–141d.

In this paper, we consider the phase space observables onR2 associated with certain pure
states and their convex combinations, with the state vectors being taken from a fixed countable
orthonormal basis of the separable Hilbert space. The moment operators of the Cartesian margins
of these operator measures will be determined using the theory of operator integrals. The results
sharpen and extend some of those obtained previously in Ref. 9.
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II. OPERATOR INTEGRALS AND PHASE SPACE OBSERVABLES

A. The operator integral

In the following, we review the basic results of Ref. 7 on the theory of operator integrals and
prove a proposition concerning integration with respect to sequences of positive operator mea-
sures.

Let H be a Hilbert space, with inner productk·u·l, andLsHd the set of bounded operators on
H. Let V be a nonempty set,A a s-algebra of subsets ofV, andE:A→LsHd a positive operator
measuresa positive operator valued set functions-additive with respect to the strong, or, equiva-
lently, the weak operator topologyd. For all w, cPH, the mapA{X° kc uEsXdwlPC is a com-
plex measure, and it is denoted byEc,w. Let f :V→C be anA-measurable function and letDsf ,Ed
be the set of those vectorswPH for which f is integrable with respect to the complex measure
Ec,w for all cPH. The setDsf ,Ed is a vector subspace ofH, and there is a unique linear operator
Lsf ,Ed on the domainDsf ,Ed such that

kcuLsf,Edwl =E f dEc,w

for all wPDsf ,Ed andcPH scf. Ref. 7d. We callLsf ,Ed the (operator) integralof f with respect
to E.

Let D̃sf ,Ed be the set of those vectorswPH for which uf u2 is integrable with respect to the
positive measureEw,w. We have the following results, proved in Ref. 7.

Theorem 1: sad D̃sf ,Ed is a vector subspace of Dsf ,Ed. sbd If EsXd is a projection for all

XPA, then D̃sf ,Ed=Dsf ,Ed. It is well known that, in casesbd, the domain is dense.
Theorem 2: If f is real valued, then Lsf ,Ed is a symmetric operator, that is, kc uLsf ,Edwl

=kLsf ,Edc uwl for all c ,wPDsf ,Ed. The following general lemma will be used in the proof of
Proposition 1.

Lemma 1: Letmn:A→C be a complex measure for each nPN such that the seriesonPNmn

converges absolutely in the total variation norm. Letm and n denote the measuresonPNmn and
onPNumnu, respectively. Hereu·u stands for the total variation.

sad f is n-integrable, if and only ifon=1
` e uf udumnu,`.

sbd If f is n-integrable, then f is integrable with respect tom and all the measuresmn, and

E f dm = o
n=1

` E f dmn.

Proof: sad Assume thatf is n-integrablesi.e., uf u is suchd. SinceumnsBduønsBd for all BPA
andnPN, uf u is mn-integrable for eachnPN. Now

o
n=1

k E uf udumnu =E uf udSo
n=1

k

umnuD øE uf udn

for eachkPN, so thaton=1
` e uf udumnu,`. The converse follows from Lemma A.5. of Ref. 7.

sbd Clearly m and all themn aren-continuous. Letg andgn be their Radon–Nikodým deriva-
tives with respect ton, respectively. Since

So
n=1

k

mn − mDsBd =E
B
So

n=1

k

gn − gDdn

for all BPA andkPN, we have
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lim
k→`

E Uo
n=1

k

gn − gUdn = lim
k→`
Io

n=1

k

mn − mI = 0,

wherei·i denotes the total variation norm. This means that the seriesongn converges inL1snd to
the functiong. Thus some subsequenceson=1

km gnd converges tog n-almost everywhere. In addition,
the monotone convergence theorem gives

nsBd = o
n=1

` E
B

ugnudn =E
B
So

n

ugnuDdn

for all BPA, so that

U fsxdo
n=1

km

gnsxdU ø ufsxduo
n

ugnu = ufsxdu s1d

for n-almost allxPV.
Assume now thatf is n-integrable. Then bysad, f is mn-integrable for eachnPN, and the

serieson=1
` e f dmn converges absolutely. Because ofs1d, the dominated convergence theorem

implies thatfg is n-integrable, i.e.,f is m-integrable, and

E f dm =E fg dn = lim
m→`

o
n=1

km E fgn dn = o
n=1

` E f dmn.

j

Proposition 1: Let En:A→LsHd be a positive operator measure for each nPN such that the
range of En is bounded in norm by Mn.0, with onMn,`. Then the norm limitonE

nsBd, B
PA, defines a positive operator measure E, for which

uLsf,EduD̃sf,Ed , o
n

uLsf,EnduD̃sf,End,

where the series is understood to converge in the weak sense to an operator, whose domain

consists of those vectorswPùnPND̃sf ,End for which the vector seriesonLsf ,Endw converges
weakly.

Proof: Let c ,wPH. SinceiEc,w
n iø4 supBPAuEc,w

n sBduø4ici iwiMn, the seriesonEc,w
n con-

verges absolutely in the total variation norm. The above inequality also implies that for everyB
PA, the sesquilinear functionalsw ,cd°onEc,w

n sBd is bounded, so that there is asclearly positived
operatorEsBdPLsHd, for which kc uEsBdwl=onEc,w

n sBd. Thus the mapB°EsBd is a positive
operator measure, for whichEsBd=onE

nsBd in the operator norm andEc,w=onEc,w
n in the total

variation norm.
By applying Lemma 1sbd to the finite positive measuresEw,w

n and the functionuf u2, we see that

if wP D̃sf ,Ed, thenwP D̃sf ,End for all nPN, andone uf u2 dEw,w
n =euf u2 dEw,w,`. Now let Fn

denote the positive operator measureMn
−1En. We haveonMn

Îeuf u2 dFc,w
n øonMns1+euf u2 dFc,w

n d
,`. Using the inequality

E uf uduFc,w
n u ø iciÎE uf u2 dFw,w

n

from Ref. 7, we getone uf uduEc,w
n u=onMne uf uduFc,w

n u,`, from which it follows by Lemma 1sad
and sbd that
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kcuLsf,Edwl = o
n

kcuLsf,Endwl.

j

B. Phase space observables

We assume that the Hilbert spaceH is separable. For anyw ,cPH, let uwlkcu denote the
operatorj° kc ujlw. Let hunl unù0j be a fixed orthonormal basis ofH. We call it the number
basis. LetA+=onù0

În+1un+1lknu and A−=onù0
În+1unlkn+1u be the raising and lowering op-

erators associated with this basis. They are closed operators with the domain

DsA+d = DsA−d = Hw P Huok

kukwuklu2 , `J ,

and they satisfy the relationA+=A−
* . The symmetric operatorss1/Î2dsA++A−d and s1/Î2disA+

−A−d are essentially self-adjoint onDsA+d and their closuresQ andP are unitarily equivalent to
the canonical position and momentum operators, respectively, acting inL2sRd. The operatorsA+

andA− can be expressed in terms ofQ andP according to

A+ =
1
Î2

sQ − iPd,

s2d

A− =
1
Î2

sQ + iPd

scf. Ref. 2, p. 283 and Ref. 12, p. 73d. The number operatorNªonù0nunlknu=A+A−, with the
domain

DsNd = Hw P Huok

k2ukwuklu2 , `J ,

is self-adjoint and satisfies

N + 1
2I = 1

2sQ2 + P2d. s3d

fThe last equality is a simple consequence ofs2d and the fact thatDsNd=DsA+A−d=DsA−A+d.g
The operatorsQ and P generate strongly continuous one parameter unitary groupsp°Vspd

ªeipQ and q°UsqdªeiqP which satisfy the Weyl relation UsqdVspd=eiqpVspdUsqd for all q,p
PR. The Weyl operatorsWsq,pd are defined byWsq,pd=e−s1/2diqpUsqdVspd for q,pPR. The map
sq,pd°Ws−q,pd is a projective representation ofR2.

Let T be a state operator. Then

I =
1

2p
E

R2
Ws− q,pdTWs− q,pd* dq dp,

and the mapET:BsR2d→LsHd defined by

ETsBd =
1

2p
E

B

Ws− q,pdTWs− q,pd* dq dp

is a normalized positive operator measure, a phase space observable. HereBsR2d denotes the
s-algebra of Borel subsets ofR2 and the integrals are understood in the weak sense. The con-
struction of the operator measuresET can be found for instance in Refs. 5 or 14. The operator
measureET is covariant with respect to the projective representationsq,pd°Ws−q,pd in the sense
that ETsB+sq0,p0dd=Ws−q0,p0dETsBdWs−q0,p0d* for all BPBsR2d and sq,pdPR2.
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The following characterization is obtained in Refs. 4 and 15: every normalized positive
operator measureE:BsR2d→LsHd, which is covariant with respect to the representation
sq,pd°Ws−q,pd, is of the formET for some stateT.

We letEusl denote the phase space observable associated with the number stateuslksu. Consider
the mixed states

T = o
n=0

`

wnunlknu, s4d

wherewnù0 andown=1. These states are the ones for which the observableET is covariant also
with respect to the phase shifts in the sense that

eiuNETsf0,`d 3 Xde−iuN = ETsf0,`d 3 sX + udd

for all uP f0,2pd andXPBsf0,2pdd, whereR2=f0,`d3 f0,2pd and the sumX+u is understood
modulo 2p. scf. Ref. 8d.

SincewniEunlsBdiøwn for all nPN andBPBsR2d, Proposition 1 can be applied to the posi-
tive operator measureswnE

unl. That the norm limitonwnE
unlsBd equalsETsBd, follows from the

identity

kwuETsBdwl =
1

2p
E

B
So

n

wnukwuWs− q,pdunlu2Ddq dp = o
n

wnkwuEunlsBdwl,

wherewPH is arbitrary and the monotone convergence theorem has been used.

III. MOMENT OPERATORS OF THE CARTESIAN MARGINS OF THE PHASE SPACE
OBSERVABLES ASSOCIATED WITH THE NUMBER STATES

Let x andy denote the functionssq,pd°q andsq,pd°p, respectively. In Ref. 7, the moment
operatorsLssx± iydk,Ekunld and Lssx2+y2dk,Ekunld were determined. In Ref. 9, these results were
used to obtain the operator relations

Lsx,Ekunld , Q,

Lsy,Ekunld , P,

s5d
Lsx2,Ekunld , sn + 1

2dI + Q2,

Lsy2,Ekunld , sn + 1
2dI + P2.

In this section, we determine directly the moment operatorsLsxk,ETd and Lsyk,ETd, where the
stateT is taken to be of the formonwnunlknu. The results show, among other things, that the
inclusionss5d are in fact equalities.

A. The operators L„xk ,EŠzn‹
… and L„yk ,EŠzn‹

…

Let U :L2sRd→H be the unitary operator which maps the Hermite function basishhnjnù0 of
L2sRd onto the number basis ofH according to the ruleUhn= unl. The position and momentum
operators inL2sRd correspond to the operatorsQ andP via the unitary transformationU, so that
the operatorsW0sq,pd, defined byW0sq,pd=U−1Wsq,pdU, act inL2sRd according to the formula

sW0sq,pdfdstd = eis1/2dqpeiptfst + qd.

We need the following well-known resultssee, e.g., Ref. 14, pp. 47 and 49d.
Lemma 2: Let F:L2sRd→L2sRd denote the Fourier–Plancherel operator. Let uPL2sRd be a
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unit vector and fPL2sRd. Then ūs·−qdf PL1sRdùL2sRd for almost all qPR and Fus·−pdFf
PL1sRdùL2sRd for almost all pPR. In addition,

1
Î2p

kW0s− q,pduufl = eis1/2dqpFsūs·−qdfdspd

for almost all qPR and all pPR, and

1
Î2p

kW0s− q,pduufl = e−is1/2dqpF−1sFus·−pdFfdsqd

for almost all pPR and all qPR.
Proof: Since u, f PL2sRd, the function ūs·−qdf is integrable. Becauseifi2=euūst

−qdfstdu2 dt dq by Fubini’s theorem,ūs·−qdf PL2sRd for almost all q. Similarly, Fus·−pdFf
PL1sRdùL2sRd for almost allpPR. The rest of the proof follows from straightforward calcula-
tions.

j

First we determine the square integrability domains corresponding to the functionsxk andyk.

Lemma 3: D̃sxk,Ekunld=DsQkd and D̃syk,Ekunld=DsPkd for all kPN.

Proof: Let kPN be fixed. LetwPH and f =U−1wPL2sRd. If wP D̃sxk,Ekunld, the function
sq,pd°q2kukf uW0s−q,pdhnlu2=q2kukwuWs−q,pdunlu2 is integrable overR2, and

E
R2

q2k dEw,w
unl sq,pd =

1

2p
E q2kSE ukwuWs− q,pdunlu2 dpDdq

=E q2kSE uFshns·−qdfdspdu2 dpDdq

=E q2kSE uhnst − qdu2ufstdu2 dtDdq

=E SE q2kuhnst − qdu2ufstdu2 dqDdt

=E E st − qd2kuhnsqdu2ufstdu2 dq dt

=E E st − qd2kuhnsqdu2ufstdu2 dt dq,

where Lemma 2, the unitarity of the Fourier–Plancherel operator, and Fubini’s theorem have been
used. The existence of the last integral implies thatt° st−qd2kufstdu2 is integrable overR for
almost allqPR. Thus alsot° t2kufstdu2 must be integrable.fIn fact, take oneqPR for which
t° st−qd2kufstdu2 is integrable and use the fact that there exist positive constantsA, B, M, such that
At2kø st−qd2køBt2k for utuùM.g This means thatf belongs to the domain of thekth power of the
position operator inL2sRd and hencew=Uf PDsQkd. Conversely, ifw=Uf PDsQkd, the functions
t° utluufstdu2 and q° uqluuhnsqdu2 are integrable overR for all l ø2k and hencest ,qd° st
−qd2kuhnsqdu2ufstdu2 is integrable overR2. The preceding calculation now shows thatw

P D̃sxk,Ekunld. The equalityD̃sxk,Ekunld=DsQkd is thus proved.

The resultsD̃syk,Ekunld=DsPkd is obtained in an analogous manner by using the fact that the
position and momentum operators inL2sRd are unitarily equivalent via the Fourier–Plancherel
operatorF.

j

Now we can determine the operatorsLsxk,Ekunld andLsyk,Ekunld.
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Theorem 3: Lsxk,Ekunld=pk
unlsQd and Lsyk,Ekunld=pk

unlsPd, where pk
unl: R→R is the polynomial

pk
unlstd = knust − Qdkunl = o

l=0

k SSk

l
Ds− 1dk−lknuQk−lunlDtl .

Proof: Sincepk
unl is a polynomial of orderk and Q is unitarily equivalent to the position

operator in L2sRd, the natural domain of the operatorpk
unlsQd fwhich is the set

DsQkdùDsQk−1dù ¯DsQdg is equal to that ofQk. BecauseQ andP are unitarily equivalent, also

Dspk
unlsPdd=DsPkd. Thus by the preceding lemma, we haveDspk

unlsQdd=DsQkd=D̃sxk,Ekunld and

Dspk
unlsPdd=DsPkd=D̃syk,Ekunld.
Let w, cP D̃sxk,Ekunld,Dsxk,Ekunld. Let f =U−1w, g=U−1c. Since the function

sq,pd ° qkkcuWs− q,pdunlkwuWs− q,pdunl

is integrable overR2, we get

kcuLsxk,Ekunldwl =E
R2

qk dEc,w
unl sq,pd

=
1

2p
E qkSE kcuWs− q,pdunlkwuWs− q,pdunldpDdq

=E qkSE Fshns·−qdgdspdFshns·−qdfdspddpDdq

=E qkSE hnst − qdgstdhnst − qdfstddtDdq

=E SE qkuhnst − qdu2dqDgstdfstddt

=E SE st − qdkuhnsqdu2dqDgstdfstddt,

=E knust − Qdkunlgstdfstddt

= kcupk
unlsQdwl.

The fifth equality follows from Fubini’s theorem, sincesq,td°qkuhnst−qdu2gstdfstd is integrable
fbecause of the inequality

uqkuhnst − qdu2gstdfstdu ø
1
2s1 + q2kdsufstdu2 + ugstdu2duhnst − qdu2

and the proof of Lemma 3g. The unitarity ofF is also used. Sincec was taken arbitrarily from the

dense setDsQkd=D̃sf ,Ekunld, we havepk
unlsQd,Lsxk,Ekunld.

The equalitypk
unlsQd=Lsxk,Ekunld follows from the fact that being self-adjoint, the operator

pk
unlsQd cannot have a proper symmetric extension.

The statementpk
unlsPd=Lsyk,Ekunld is obtained in the same manner, sincepk

unl can also be

written in the formpk
unlstd=knust−Pdkunl andpk

unlsPd is self-adjoint. j

Remark:SinceknuQmunl=0 for oddm, andknuQmunl.0 for evenm, only the terms with even
k− l are present in the sum defining the polynomialpk

unl, and the coefficients of the corresponding
xl are all strictly positive. In particular,Lsxk,EkunldÞQk and Lsyk,EkunldÞPk for k.1 andnù0,
reflecting the difference from the Weyl quantizationsRef. 6, p. 229d, as well as the fact that the
Cartesian margins ofEunl are not the spectral measures ofQ andP.
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Using Theorem 3, all the operatorsLsxk,Ekunld andLsxk,Ekunld can be written in terms ofQ and
P, respectively. In particular, the first and second moment operators are the following:

Lsx,Ekunld = Q,

Lsy,Ekunld = P,

s6d
Lsx2,Ekunld = sn + 1

2dI + Q2,

Lsy2,Ekunld = sn + 1
2dI + P2.

For the special case ofn=0, these results were already obtained by formal computations in Ref. 1,
pp. 28–29swithout addressing the question on the domains of the operatorsd. A related result of
Ref. 10, p. 140, however, seems to lack a constant term.

B. The operators L„xk ,ET
… and L„yk ,ET

… with T=onwnzn‹Šn z

In the next theorem, we need to consider the expressionsknuQ2kunl. These integrals are well
known and can be calculated, e.g., as instructed in Ref. 11, p. 60. We need here only the following
fact.

Lemma 4: For nùk, the expressionknuQ2kunl can be written as a polynomial in n of order k.
Proof: ExpressingQ in terms ofA+ andA−, we getknuQ2kunl=s1/2kdisA++A−dkunli2. Because

A−A+=N+ I, we can write

sA+ + A−dkunl = o
m=0

k

amun + k − 2ml,

where amun+k−2ml=A+
k−2mqm

+ sNdunl for 0ømøk/2 and amun+k−2ml=A−
2m−kqm

− sNdunl for k/2
ømøk, where qm

± are some polynomials with 2 degsqm
± d± sk−2mdøk. Now am

2 =sn+1dsn
+2d¯ sn+k−2mdqm

+ snd2 for 0ømøk/2 and am
2 =nsn−1d¯ sn−s2m−kd+1dqm

− snd2 for k/2øm
øk, so that eacham

2 is a polynomial inn of order at mostk, with the coefficient of the highest
power positive. Sincea0

2=sn+1dsn+2d¯ sn+kd, we see thatknuQ2kunl=s1/2kdom=0
k am

2 is a poly-
nomial in n of order exactlyk.

j

Theorem 4:Let T=onwnunlknu be a mixture of the number states and kPN. Let pk
unl denote the

polynomials defined in Theorem 3, and define

skl = Sk

l
Do

n=0

`

wnknuQk−lunlsø`d

for 0ø l øk.

sad D̃sxk,ETdÞ h0j if and only if

o
n

nkwn , `, s7d

in which case skl,` for all 0ø l øk, Dsxk,ETd=D̃sxk,ETd=DsQkd, and

Lsxk,ETd = o
l=0

k

sklQ
l .

In particular, the operator Lsxk,ETd is then self-adjoint.
sbd The statement (a) holds true when“x” and “Q” are replaced by“y” and “P.”
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Proof: Let kPN be fixed. According to Proposition 1, Lemma 3 and Theorem 3 we have

uLsxk,ETduD̃sxk,ETd , o
n

wnLsxk,Ekunld = o
n

wnpk
unlsQd s8d

swhere the series of operators are understood in the same sense as in Proposition 1d. Let w
PDsQkd.Dsonwnpk

unlsQdd and wÞ0. Let Aw,w
unl be the density function of the positive measure

Ew,w
unl . By the definition of the square integrability domain,wP D̃sxk,ETd if and only if the function

x2konwnAw,w
unl is integrable. By the monotone convergence theorem, the latter statement is equiva-

lent to

o
n

wnE x2k dEw,w
unl , `. s9d

According to the proof of Lemma 3,

E x2k dEw,w
unl =E E st − qd2kuhnsqdu2usU−1wdstdu2 dt dq

= o
l=0

2k S2k

l
Ds− 1d2k−1SE tlusU−1wdstdu2 dtDknuQ2k−lunl.

SinceknuQmunl=0 for oddmPN, only the terms with evenl are present in the above sum. Because
U−1wÞ0, these terms are all strictly positive. Since 0, knuQ2lunløes1+q2kduhnsqdu2 dq=1
+knuQ2kunl for all l øk and onwn=1, the convergence of the seriesonwnknuQ2kunl implies the
convergence of each seriesonwnknuQ2lunl andskl, l øk. Thus, it follows that a nonzero vector in

DsQkd belongs toD̃sxk,ETd if and only if the series

o
n

wnknuQ2kunl s10d

converges. By the preceding lemma, this is equivalent tos7d. SinceD̃sxk,ETd,DsQkd by s8d, we

have shown thatD̃sxk,ETdÞ h0j if and only if s7d holds, and in that case,D̃sxk,ETd=DsQkd and
skl,` for l øk.

From the definition of the polynomialspk
unl we see that ifs10d converges, thenfusings8dg we

get

kcuLsxk,ETdwl = o
n

wnkcupk
unlsQdwl = o

l=0

k

sklkcuQlwl

for eachwPDsQkd and cPH. Thus, ol=0
k sklQ

l ,Lsxk,ETd fnow Dsol=0
k sklQ

ld=DsQkd, because
skk=1g. Since the operatorol=0

k sklQ
l is self-adjoint andLsxk,ETd is symmetric, the statementsad

has been proved.
The resultsbd is obtained in the same manner, since

uLsyk,ETduD̃syk,ETd , o
n

wnLsyk,Ekunld = o
n

wnpk
unlsPd,

knuQmunl=knuPmunl for all m, nù0 and
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E y2k dEw,w
unl =E E st − pd2kuFhnspdu2usFU−1wdstdu2 dt dp

= o
l=0

2k S2k

l
Ds− 1d2k−lSE tlusFU−1wdstdu2 dtDknuP2k−lunl

for all wPDsPkd.
j

Remark:For eachkPN, there are statesT of the forms4d such thats7d does not convergefso

that D̃sxk,ETd=h0jg, but all the seriesskl do. In that case,ol=0
k sklQ

l is still a well-defined self-
adjoint operator with the domainDsQkd. An example of such a state forkPN is given by tn
=1/sSnk+1d, whereS=onn

−sk+1d. We do not know whether there are any nonzero vectors in the
domainDsxk,ETd then.

IV. OPERATOR INTEGRALS OF SOME POLYNOMIALS

In this last section, we use Theorem 3 to determine the operator integrals for certain types of
polynomials. To that end, leth, h1, h2 be real polynomials defined byhstd=ol=0

k alt
l, akÞ0, and

histd=ol=0
ki ai,lt

l, ai,ki
Þ0, i =1,2.

The operators Lsh+x,Ekunld and Lsh+y,Ekunld: Let c, wPH. There exist positive constantsM,
A, B such that Autkuø uhstduøButku for utuùM, which implies that the functionh+x fi.e.,
sq,pd°hsqdg is Ec,w

unl -integrable if and only if xk is such, and in that case,eh+x dEc,w
unl

=ol=0
k al exl dEc,w

unl . Since Dsxk,Ekunld=DsQkd,DsQld=Dsxl ,Ekunld for l øk, it follows that Dsh
+x,Ekunld=DsQkd, and

Lsh + x,Ekunld = o
l=0

k

alpl
unlsQd. s11d

Naturally, a similar result holds for the functionh+y.
The operators Lsh1+x+ ih2+y,Ekunld: Let c, wPH. The functionh1+x+ ih2+y is Ec,w

unl -integrable
if and only if both h1+x and h2+y are such, and in that caseesh1+x+ ih2+yddEc,w

unl =eh1+x dEc,w
unl

+ i eh2+y dEc,w
unl . Thus, we haveDsh1+x+ ih2+y,Ekunld=DsQk1dùDsPk2d, and

Lsh1 + x + ih2 + y,Ekunld = o
l=0

k1

a1,lpl
unlsQd + io

l=0

k2

a2,lpl
unlsPd. s12d

The operators Lsh1+x+h2+y,Ekunld with ki even and ai,ki
.0: Assume thatki is even, and

ai,ki
.0, i =1,2. Then we can choose positive constantsM, Ai, Bi such thathistdù0 and Ait

ki

øhistdøBit
ki for utuùM and i =1,2.This implies that the functionh1+x+h2+y is Ec,w

unl -integrable
for c, wPH if and only if both xk1 and yk2 are such. We getDsh1+x+h2+y,Ekunld
=DsQk1dùDsPk2d, and

Lsh1 + x + h2 + y,Ekunld = o
l=0

k1

a1,lpl
unlsQd + o

l=0

k2

a2,lpl
unlsPd. s13d

A note on the operators Lsx± iy ,Ekunld and Lsx2+y2,Ekunld: The above observations show that,
in particular, Lss1/Î2dsx± iyd ,Ekunld=s1/Î2dsQ± iPd, and Ls 1

2sx2+y2d ,Ekunld= 1
2sQ2+P2d+sn+ 1

2
dI.

These operator integrals have already been determined in Ref. 7susing a different methodd to be
the following:Lss1/Î2dsx± iyd ,Ekunld=A7 andLs 1

2sx2+y2d ,Ekunld=N+sn+1dI. The fundamental op-
erator equalitiess2d and s3d now show that the results are indeed consistent.
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We study decoherence properties of arbitrarily long histories constructed from a
fixed projective partition of a finite dimensional Hilbert space. We show that deco-
herence of such histories for all initial states that are naturally induced by the
projective partition implies decoherence for arbitrary initial states. In addition we
generalize the simple necessary decoherence conditionfSchereret al., Phys. Lett. A
326, 307s2004dg for such histories to the case of arbitrary coarse graining. ©2005
American Institute of Physics.fDOI: 10.1063/1.1888030g

I. INTRODUCTION

In the Copenhagen interpretation of quantum mechanics all properties of a quantum system
are defined with respect to measurements performed by an external observer using classical mea-
suring devices. This interpretation, however, cannot be used in the case of closed quantum sys-
tems, such as the Universe as a whole. In this case any observer must be a part of the system itself.
A self-contained theory of closed quantum systems that does not rely on either the external
observer nor on the existence of classical devices is still under development. The decoherent
histories approach1–5 is probably the most promising candidate for such a theory. This approach
predicts probabilities for quantum histories, i.e., ordered sequences of quantum-mechanical
“propositions.” Mathematically, these propositions are represented by projectors, the same projec-
tors that would define a quantum measurement in the Copenhagen approach. In particular, an
exhaustive set of mutually exclusive propositions corresponds to a complete set of mutually
orthogonal projectors.

Due to quantum interference, one cannot always assign probabilities to a set of histories in a
consistent way. For this to be possible, the set of histories must be decoherent. Whether the
corresponding decoherence condition is fulfilled or not depends on the initial state, the unitary
dynamics of the system and the propositions from which the histories are constructed. The depen-
dence on the initial state is connected to one of the central questions in quantum cosmology, the
question of how the classical features of our world evolve from the initial quantum state of the
Universe. This question provides the main motivation for the research presented in this paper.

Here we consider histories that are constructed from afixedexhaustive set of mutually exclu-
sive propositions,hPmj, and investigate the question of how the choice of the initial state affects
decoherence of such histories. We show that decoherence of arbitrarily long histories for all initial
states that are induced by the projectorshPmj via normalization implies the decoherence for
arbitrary initial states. It is relevant to note that, unlike the set of all possible states, the sethPmj is
discrete and may contain as few as just two elementssfor “yes–no” propositionsd. As an additional
result, we obtain a generalization of the simple necessary decoherence condition that was derived
for fine-grained histories in Ref. 6. The condition is applicable to arbitrary coarse grainings.

The paper is organized as follows. After introducing our framework we present the math-
ematical content of our results in the form of a theorem. We prove the theorem, infer the results,
and conclude with a short summary.

adAuthor to whom correspondence should be addressed, Electronic mail: artur.scherer@uni-konstanz.de
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II. OUR FRAMEWORK

Definition 1:A set of projectorshPmj on a Hilbert spaceH is called a projectivepartition of
H, if ∀m ,m8 :PmPm8=dmm8Pm andomPm=1H. Here,1H denotes the unit operator. We call a pro-
jective partitionfine-grainedif all projectors are one dimensional, i.e.,∀m dimssuppsPmdd=1,7

andcoarse-grainedotherwise.
Definition 2: Given a projective partitionhPmj of a Hilbert spaceH, we denote by

KfhPmj ;kgª hha :ha=sPa1
,Pa2

,… ,Pak
dP hPmjkj the corresponding exhaustive set of mutually ex-

clusive histories of lengthk. Histories are thus defined to be ordered sequences of projection
operators, corresponding to quantum-mechanical propositions. Note that we restrict ourselves to
histories constructed from afixedprojective partition, the projectorsPa j

within the sequences are
all chosen from the same partition for all “times”j =1,… ,k.

Definition 3:Given a Hilbert spaceH and a projective partitionhPmj of H, we denote byS the
set of all density operators onH and byShPmj the discrete set of “partition states” induced by the
partition hPmj via normalization,

ShPmj ª H Pn

TrfPng
:Pn P hPmjJ . s1d

An initial staterPS and a unitary dynamics generated by a unitary mapU :H→H induce a
probabilistic structure on the event algebra associated withKfhPmj ;kg, if certain consistency
conditions are fulfilled. These are given in terms of properties of thedecoherence functional
DU,rf· , ·g on KfhPmj ;kg3KfhPmj ;kg, defined by

DU,rfha,hbg ª TrfCarCb
†g, s2d

where

Ca ª sU†kPak
UkdsU†k−1Pak−1

Uk−1d ¯ sU†Pa1
Ud = U†kPak

UPak−1
U ¯ Pa2

UPa1
U. s3d

The setKfhPmj ;kg is said to bedecoherentor consistentwith respect to a given unitary map
U :H→H and a given initial staterPS, if

DU,rfha,hbg ~ dab ; p
j=1

k

da jb j
s4d

for all ha ,hbPKfhPmj ;kg. These are the consistency conditions. If they are fulfilled, probabilities
may be assigned to the histories and are given by the diagonal elements of the decoherence
functional,pfhag=DU,rfha ,hag.

What we have just described is a slightly simplified version of the general decoherent histories
formalism. In general, both the partition and the unitary may depend on the parameterj
=1,… ,k. Our setting based on a fixed partition and a fixed unitary is motivated by the analogy
with the classical symbolic dynamics.6,8 Various generalizations of this setting will be addressed in
forthcoming publications. In the literature several consistency conditions of different strength can
be found.9 The conditions given above are known asmedium decoherence.5 It has recently been
shown that consideration of the weaker decoherence conditions is problematic.10

III. RESULTS

Theorem: Let a projective partitionhPmj of a finite dimensional Hilbert spaceH and a
unitary map U onH be given. Then the following three statements are equivalent:

sad ∀rPShPmj∀kPN ∀ha ,hbPKfhPmj ;kg :DU,rfha ,hbg~dab,
sbd ∀Pm8 ,Pm9P hPmj∀nPN : fUnPm8sU

†dn,Pm9g=0,
scd ∀rPS ∀kPN ∀ha ,hbPKfhPmj ;kg :DU,rfha ,hbg~dab.
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Proof: We will prove the theorem by showing thatsad implies sbd, sbd implies scd, and scd
implies sad. The last implication,scd⇒ sad, is trivial, and the second implication,sbd⇒ scd, can be
easily shown using the notation of Eq.s3d. It remains to prove the implicationsad⇒ sbd.

The proof is constructed as follows. We first show that the proposition

∀r P ShPmj ∀ n P N ∀ m0,m8,m9 with m8 Þ m9:TrfPm9sU
nPm0

U†ndPm8sU
nrU†ndPm9g = 0

s5d

is a necessary consequence of the decoherence conditionsad and then conclude that this proposi-
tion implies the commutativity conditionsbd of the theorem.

The first part of the proof will be accomplished by contradiction, i.e., we will assume thats5d
is not satisfied, and then show that this assumption contradicts the decoherence conditionsad of the
theorem.

Assume conditions5d is not satisfied. This means there exist a partition stater̃PShPmj, an
integerñPN, and partition-element labelsm0,m8 ,m9, with m8Þm9, such that

TrfPm9sU
ñPm0

U†ñdPm8sU
ñr̃U†ñdPm9g = c Þ 0. s6d

This, as we will see, is in contradiction to decoherence conditionsad. Written out, the decoherence
condition sad is

TrfPak
UPak−1

U ¯ Pa1
Ur0U

†Pb1
¯ Pbk−1

U†Pbk
g ~ p

j=1

k

da jb j
s7d

for all kPN, all initial statesr0PShPmj, and arbitrary historiesha ,hb. Since the lengthk of the
histories is arbitrary, we may choosek=qñ with arbitrary qPN. By summing over
a1,… ,añ−1,añ+1,… ,aqñ−1 andb1,… ,bñ−1,bñ+1,… ,bqñ−1, and usingomPm=1H, we obtain

TrfPaqñ
sUq−1dñPañ

Uñr0U
†ñPbñ

sU†q−1dñPbqñ
g ~ daqñbqñ

dañbñ
s8d

for all qPN, andr0PShPmj, and arbitraryañ,bñ,aqñ,bqñ. In order to proceed we will need the
following lemma.6

Lemma: LetH be a finite dimensional Hilbert space and U:H→H any unitary map onH.
Then∀e.0 ∃qPN such thatiUq−1Hi,e ,i ·i meaning the conventional operator norm, which
is iAiªsuphiAvi :vPH ,ivi=1j for an operator A onH.

According to this lemma, for any given arbitrarily smalle.0 we can always find aqPN such

that Uq=1H+Ôsed, whereÔsed is some operator whose norm is of ordere, iÔsedi,e. Using the
submultiplicativity property of operator norms, we have

iU−1Ôsedi ø iU−1i 3 iÔsedi = iÔsedi s9d

and henceUq−1=U−1+Ô8sed, whereiÔ8sedi,e.
Now we are in a position to derive a contradiction. We let our histories start with the initial

stater0= r̃. Furthermore we chooseañ=m8, bñ=m9, andaqñ=bqñ=m0. Sincem8Þm9, condition
s8d becomes

∀q P N:TrfPm0
sUq−1dñPm8U

ñr̃U†ñPm9sU
†q−1dñPm0

g = 0. s10d

Choosingq such thatiUq−1Hi,e for a givenarbitrarily small e.0, we get a situation where the

expressionssUq−1dñ and sU†q−1dñ in Eq. s10d can be replaced bysU†+Ô8seddñ and sU+Ô8
†
seddñ,

respectively. In the following it will be convenient to use the definition
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Ar1,r2,…,rñ
ª p

i=1

ñ

sU†risÔ8sedd1−rid, s11d

where the operators inside the product are written out from left to right in the order of increasing
index i. Using this definition we have

sU† + Ô8seddñ = o
r1,…,rñPh0,1j

Ar1,…,rñ
. s12d

This yields for the left-hand side of Eq.s10d,

TrfPm0
sUq−1dñPm8U

ñr̃U†ñPm9sU
†q−1dñPm0

g

= TrFPm0S o
r1,…,rñPh0,1j

Ar1,…,rñDPm8U
ñr̃U†ñPm9S o

s1,…,sñPh0,1j
As1,…,sñ

† DPm0G
= o

r1,…,rñPh0,1j
o

s1,…,sñPh0,1j
TrfPm0

Ar1,…,rñ
Pm8U

ñr̃U†ñPm9As1,…,sñ

† Pm0
g. s13d

According tos10d the left-hand side of this equation must be zero. Hence we have

TrfPm0
sU†dñPm8U

ñr̃U†ñPm9U
ñPm0

g

= − o
r1,…,rñPh0,1j
r1+¯+rñ,ñ

o
s1,…,sñPh0,1j
s1+¯+sñ,ñ

TrfPm0
Ar1,…,rñ

Pm8U
ñr̃U†ñPm9As1,…,sñ

† Pm0
g. s14d

Using the cyclic permutation-invariance property of the trace and the triangle inequality, we obtain

uTrfPm9sU
ñPm0

U†ñdPm8sU
ñr̃U†ñdPm9gu

ø o
r1,…,rñPh0,1j
r1+¯+rñ,ñ

o
s1,…,sñPh0,1j
s1+¯+sñ,ñ

uTrfAs1,…,sñ

† Pm0
Ar1,…,rñ

Pm8U
ñr̃U†ñPm9gu. s15d

Utilizing the inequality uTrfBTguø iBiTrÎT†T for bounded operatorsB:H→H and operators
T:H→H with finite trace normiTi1ªTrÎT†T, see Ref. 11, we deduce from Eq.s15d,

uTrfPm9sU
ñPm0

U†ñdPm8sU
ñr̃U†ñdPm9gu ø o

r1,…,rñPh0,1j
r1+¯+rñ,ñ

o
s1,…,sñPh0,1j
s1+¯+sñ,ñ

iBr1,…,rñ

s1,…,sñiTrÎT†T, s16d

where we defined

Br1,…,rñ

s1,…,sñ
ª As1,…,sñ

† Pm0
Ar1,…,rñ

, s17d

Tª Pm8U
ñr̃U†ñPm9. s18d

Using the fact thatiB†i=iBi for any bounded operatorB and it’s adjoint B†,12 we have

iÔ8
†
sedi=iÔ8sedi,e. Utilizing the submultiplicativity property of operator norms we deduce that

the norms of the operatorsBr1,…,rñ

s1,…,sñ are all bounded from above bye, except in the case where all

s1,… ,sñ and all r1,… ,rñ are equal 1, which is excluded from the sum on the right-hand side of
Eq. s16d. Indeed we have
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iBr1,…,rñ

s1,…,sñi ø Sp
i=1

ñ

iUisiiÔ8
†
seddi1−siDiPm0

iSp
i=1

ñ

iU†iriiÔ8seddi1−riD
ø Sp

i=1

ñ

e1−siDSp
j=1

ñ

e1−r jD ø e2 , e, if s1 + ¯ + sñ , ñ, r1 + ¯ + rñ , ñ,

s19d

where we usediPm0
i=iUi=iU†i=1 ande!1. With the definitionMªTrÎT†T we finally con-

clude from Eq.s16d,

uTrfPm9sU
ñPm0

U†ñdPm8sU
ñr̃U†ñdPm9gu , 22ñMe. s20d

Sincec, ñ, and M are fixed constants, we can always arrange 22ñMe, ucu by choosing a suffi-
ciently smalle.0. This contradicts the assumptions6d and thus proves our propositions5d.

We are now in a position to derive the commutativity conditionsbd of the theorem. It is a
straightforward consequence of propositions5d we have just proven. Taking conditions5d and
choosing in it the staterPShPmj to be proportional to the projector sandwiched betweenUn and
U†n within the first bracket,

r =
Pm0

TrfPm0
g
, s21d

wherePm0
is still arbitrary, we necessarily get the condition

∀n P N ∀ m0,m8,m9 with m8 Þ m9:TrfPm9sU
nPm0

U†ndPm8sU
nPm0

U†ndPm9g = 0. s22d

With the definitionAªPm8sU
nPm0

U†ndPm9 Eq. s22d becomes TrfA†Ag=0. SinceA†A is a positive
operator, this is possible if and only ifA=0. Hence conditions22d is equivalent to

∀n P N ∀ m0,m8,m9 with m8 Þ m9:Pm8sU
nPm0

U†ndPm9 = 0. s23d

This condition implies

o
m8

Pm8sU
nPm0

U†ndPm9 = Pm9sU
nPm0

U†ndPm9 s24d

for any m0 and m9, and arbitrarynPN. But sinceom8Pm8=1H, the left-hand side of the last
equation must be equal tosUPm0

U†dPm9. Hence we obtain

Pm9sU
nPm0

U†ndPm9 = sUnPm0
U†ndPm9 s25d

on the one hand and by taking the adjoint of Eq.s25d,

Pm9sU
nPm0

U†ndPm9 = Pm9sU
nPm0

U†nd s26d

on the other hand, for anynPN and arbitrarym0 andm9. Therefore

sUnPm0
U†ndPm9 = Pm9sU

nPm0
U†nd s27d

for any nPN and arbitrarym0,m9, and sofUnPm0
U†n,Pm9g=0 for any nPN and all Pm0

,Pm9
P hPmj. h

The implicationsad⇒ scd of the theorem constitutes the main result of this paper: the deco-
herence of histories of arbitrary length for all initial states from the setShPmj implies decoherence
of such histories for arbitrary initial statesrPS. It should be mentioned that the setShPmj can be
viewed as the smallest natural set of states that is associated with our framework. It is discrete and
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may consist of just two elementssin the case of “yes–no” propositionsd. The setS, on the other
hand, contains the continuum of all possible states that are allowed in our framework.

In Ref. 6 the notion of classical states with respect to a partitionhPmj was introduced.
Definition 4:A state represented by the density operatorr is calledclassical with respect to

(w.r.t.) a partition hPmj of the Hilbert spaceH, if it is block-diagonal w.r.t.hPmj, i.e., if r
=omPmrPm. We denote byShPmj

cl the set of all density operators that are classical w.r.t.hPmj.
In Ref. 6 it was shown that in the case of fine-grained partitions sets of histories of arbitrary

length decohere for all classical initial statesonly if the unitary dynamics preserves the classicality
of states, i.e.,only if

∀r P ShPmj
cl :UrU† P ShPmj

cl . s28d

It is a single-iteration criterion, to verify that it holds for a particular unitary mapU, only a single
iteration of the map needs to be taken into account, which can be much easier than establishing
decoherence directly by computing the off-diagonal elements of the decoherence functional. This
is especially useful for studying chaotic quantum maps, for which typically only the first iteration
is known in a closed analytical form.13 Unfortunately, conditions28d fails to be necessary in the
coarse-grained case. The following simple corollary of our theorem provides a necessary single-
iteration condition that applies to arbitrary coarse grainings and is equivalent tos28d in the
fine-grained case.

Corollary: Let a projective partitionhPmj of a finite dimensional Hilbert spaceH and a
unitary map U onH be given. The medium decoherence condition is then satisfied for all classical
initial states and arbitrarily long histories, i.e.,

∀r P ShPmj
cl ∀ k P N ∀ ha,hb P KfhPmj;kg:DU,rfha,hbg ~ dab, s29d

only if the following necessary condition is fulfilled:

∀Pm8,Pm9 P hPmj:fUPm8U
†,Pm9g = 0. s30d

Proof: Follow trivially from the implicationsad⇒ sbd of the theorem, asShPmj,ShPmj
cl . h

IV. SUMMARY

We have investigated decoherence properties of sets of quantum histories constructed from a
fixed projective partitionhPmj of a finite dimensional Hilbert space. We have found that if deco-
herence is established for arbitrary history lengths and all initial states fromShPmj, which is the
smallest natural set induced byhPmj, then any set of histories constructed fromhPmj is decoherent
for all possible initial states. In addition, we have provided a necessary single-iteration criterion
for decoherence of arbitrarily long histories that generalizes the condition of Ref. 6 to the case of
arbitrary coarse grainings.
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We study a possible improvement of uncertainty relations. The Heisenberg uncer-
tainty relation employs commutator of a pair of conjugate observables to set the
limit of quantum measurement of the observables. The Schrödinger uncertainty
relation improves the Heisenberg uncertainty relation by adding the correlation in
terms of anti-commutator. However both relations are insensitive whether the state
used is pure or mixed. We improve the uncertainty relations by introducing addi-
tional terms which measure the mixtureness of the state. For the momentum and
position operators as conjugate observables and for the thermal state of quantum
harmonic oscillator, it turns out that the equalities in the improved uncertainty
relations hold. ©2005 American Institute of Physics.fDOI: 10.1063/1.1876874g

I. INTRODUCTION

Soon after Heisenberg and Schrödinger invented Quantum Mechanics around 1925, Heisen-
berg discovered the uncertainty relation in 1927.1 The standard form of Heisenberg’s uncertainty
relation for any pair of observablesA andB and a density matrixr is expressed as

1

4
ukfA,Bglru2 ø VarrsAdVarrsBd, s1.1d

where VarrsAd=trsrA2d−(trsrA)d2 is the variance ofA in the state defined byr, and VarrsBd is
defined analogously,kfA,Bglr=trsrfA,Bgd is the expectation of the commutatorfA,Bg=AB−BA.
The relations1.1d states the fundamental limitation on quantum measurement for incompatible
snoncommutingd observables and has played a fundamental role in quantum theory.

In 1930, Schrödinger2 improved the uncertainty relations1.1d by including the correlation
between observables:

1

4
ukfA,Bglru2 +

1

4
ukhA0,B0jlru2 ø VarrsAdVarrsBd, s1.2d

wherekhA0,B0jlr=trsrhA0,B0jd denotes the expectation of anticommutatorhA0,B0j=A0B0+B0A0

andA0=A−kAlr, B0=B−kBlr. The first term on the left-hand side ofs1.2d encodes incompatibility,
while the second term encodes correlation between observablesA andB.

In recent years in the field of quantum computation and quantum information, the strong
correlation, such as the phenomenon of entanglement, in the quantum world that cannot occur in
classical mechanics, has been intensively studied.3 Thus one expects that the Schrödinger uncer-
tainty relation will play an important role in quantum theory.4

In this paper, we improved the uncertainty relationss1.1d ands1.2d by introducing additional
terms in the lower bounds ofs1.1d ands1.2d, respectively. We will show that for any observables
A andB, and any density matrixr, the following uncertainty relations hold:
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1

4
ukfA,Bglru2 + trsA0r1/2A0r1/2d„trsB0r1/2B0r1/2d… ø VarrsAdVarrsBd s1.3d

and

1

4
ukfA,Bglru2 +

1

4
ukhA0,B0jlru2 + MsA0,B0;rd ø VarrsAdVarrsBd, s1.4d

where the quantityMsA0,B0;rd is defined in Theorem 2.2 explicitly. Notice that the relationss1.3d
ands1.4d are improved versions of the relationss1.1d ands1.2d, respectively. If the density matrix
r is pure, then the second term on the left-hand side ofs1.3d and the third term ins1.4d are
vanished, and sos1.3d ands1.4d are reduced to the original relationss1.1d ands1.2d, respectively.

It may be worth mentioning that for any observableA the functional,

r ° trsAr1/2Ar1/2d,

is concave by Lieb’s concavity theorem,5 and so in a sense the values of additional terms in the
above measure the mixturedness ofr. We also note that the Wigner–Yanase skew information6 is
given by

Isr,Ad = −
1

2
trsfr1/2,Ag2d = trsrA2d − trsAr1/2Ar1/2d, s1.5d

and so the terms we introduced are related to the Wigner–Yanase information. See Sec. III for the
details.

In order to show that the uncertainty relationss1.3d and s1.4d are optimal in some special
situations, we consider the position and momentum operators as a pair of conjugate observables in
L2sRd, and choose the density operatorr corresponding to the thermal statesquasi-free stated for
a quantum harmonic oscillator. In this case, we show that the equalities ins1.3d ands1.4d hold. See
Theorem 4.2.

Let us describe the main idea employed in this paper. LetA andB be self-adjoint operators
sobservablesd acting on a separable Hilbert space. Letk·,·l be the Hilbert–Schmidt inner product
defined on the class of Hilbert Schmidt operators:

kA,Bl ª trsA*Bd.

Then the left-hand side ofs1.2d equalsukA0r1/2,B0r1/2lu2. In order to maker play the same role as
A andB, we introduce orthogonal decompositions:

Ar1/2 = Ar,+ + Ar,−,

s1.6d
Br1/2 = Br,+ + Br,−,

where

Ar,+ ª
1

2
sAr1/2 + r1/2Ad,

s1.7d

Ar,− ª
1

2
sAr1/2 − r1/2Ad,

and Br,+ and Br,− are defined analogously. Notice thatkAr,−,Ar,+l=0 and kBr,−,Br,+l=0. One
observes that
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ukAr,+,Br,−lu = ukAr,−,Br,+lu =
1

4
ukfA,Bglru.

The relations1.3d will be followed from the above relation and the Schwarz inequality. See the
proof of Theorem 2.1 in Sec. III. The proof ofs1.4d is a little complicated. LetS be the subspace
spanned byBr,+ andBr,− and letPS be the projection ontoS. Denote byi ·i2 the norm induced by
k·,·l. Notice thatiPSAr1/2i2ø iAr1/2i2. We will estimateiPSAri2 to prove the relations1.4d. See
Sec. III for details.

There have been several proposals to quantify uncertainty by many authors. A prominent one
is the Shanon entropy,7,8 and another one is the Fisher information arising in Statistical
Inference.9,10 Recently Luo and Zhang11 tried to characterize uncertainty relations by the Wigner–
Yanase skew information.6 Also, there are other families of uncertainty relations for mixed states.
See Ref. 12 and the references therein. However, the results and the method used differ from those
in this paper.

The paper is organized as follows: In Sec. II, we list our main results, Theorem 2.1 and
Theorem 2.2. In Sec. III, we produce the proofs of main theorems by introducing the concept of
orthogonal decompositions ofAr1/2 and Br1/2. In Sec. IV, we give a brief discussion on the
possible optimal improvement. Then, we give an example of a mixed statesand a pair of conjugate
observablesd for which the equalities ins1.3d and s1.4d hold.

II. IMPROVEMENT OF UNCERTAINTY RELATIONS: MAIN RESULTS

In this section we first list our main results, Theorem 2.1 and Theorem 2.2, and then give some
remarks on the content of the results.

Let H be a separable Hilbert space. Denote byLsHd the algebra of all bounded linear
operators onH. An operatorTPLsHd is called Hilbert–Schmidt if trsT*Td,`, where trsT*Td is
the trace ofT*T. The class of all Hilbert–Schmidt operators is denoted byL2sHd.

We consider a pair of self-adjoint operatorsA and B acting onH. Denote byDsAd fresp.,
DsBdg the domain ofA sresp.,Bd. Let r be a density matrixsoperatord on H; rù0 and trsrd=1. In
order to care for the domain problems arising from the unboundedness ofA andB, we assume that
the properties in the following assumption hold.

Assumption 2.1: Let A and B be self-adjoint operators acting on a separable Hilbert spaceH
and letrPLsHd be a density matrix. We assume that the following properties hold:

sad The inclusions r1/2H, (DsAdùDsBd), Ar1/2H, (DsAdùDsBd) and
Br1/2H, (DsAdùDsBd), hold.

sbd The composition maps Ar1/2, Br1/2, BAr1/2, ABr1/2, A2r1/2, and B2r1/2 define Hilbert–
Schmidt operators onH.

scd There is a dense set D, (DsAdùDsBd) such that the following inclusions hold:
AD, (DsAdùDsBd) and BD, (DsAdùDsBd).

We now list our main results. For notational simplicity, put

kTlr ª trsTrd, iTir
2 = trsT*Trd,

for any sunboundedd operator, whenever the expressions in the above are well defined. Let
fA,BgªAB−BA and hA,BjªAB+BA be the commutator and anticommutator ofA and B, re-
spectively. The following results are improved versions of the uncertainty relationss1.1d ands1.2d:

Theorem 2.1:Let A and B be self-adjoint operators acting on a separable Hilbert spaceH
and letr be a density matrix. Under Assumption 2.1, the relation

1

4
ukfA,Bglru2 + trsAr1/2Ar1/2dtrsBr1/2Br1/2d ø iAir

2iBir
2 s2.1d

holds.
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Theorem 2.2:Let A, B, andr be the operators as in Theorem 2.1. Under Assumption 2.1, the
relation,

1

4
ukfA,Bglru2 +

1

4
ukhA,Bjlru2 + MsA,B;rd ø iAri2iBir

2 s2.2d

holds, where MsA,B;rd=maxhM1sA,B;rd ,M1sB,A;rdj and M1sA,B;rd is given by

M1sA,B;rd ª
1

4

„ukfA,BglrutrsBr1/2Br1/2d…2

iBir
4 − „trsBr1/2Br1/2d…2 s2.3d

if trsBr1/2Br1/2d, iBir
2, and M1sA,B;rd=0 otherwise.

Under Assumption 2.1, one can check that each term in the relationss2.1d and s2.2d is well
defined. It may be possible to weaken Assumption 2.1 to get the relationss2.1d and s2.2d. Put

A0 ª A − kAl0, B0 ª B − kBlr.

If one replacesA andB by A0 andB0 in the relationss2.1d ands2.2d, one can see that Theorem 2.1
and Theorem 2.2 are improvements of Heisenberg’s uncertainty relations1.1d and Schrödinger’s
uncertainty relations1.2d, respectively. Notice that ifr is pure, trsA0r1/2A0r1/2d=trsB0r1/2B0r1/2d
=0, and so the relationss2.1d ands2.2d are reduced to the relationss1.1d ands1.2d, respectively, for
any pure states.

It may be worth giving discussions on the content of Theorem 2.1 and Theorem 2.2 in more
detail.

Remark 2.1:The Wigner–Yanase skew information6 for any observableA and a density matrix
r is defined by

Isr,Ad ª
1

2
trsfr1/2,AgfA,r1/2gd = trsA2rd − trsAr1/2Ar1/2d. s2.4d

Thus, the terms we introduced in Theorem 2.1 and Theorem 2.2 are related to the above skew
information. Since 0ø Isr ,Ad, we see that trsAr1/2Ar1/2dø iAir

2 and the equality holds if and only
if fr ,Ag=0. If r commutes with eitherA or elseB, then kfA,Bglr=0. Thus, if A and B are
conjugate observables, there does not exist such a density matrix, and the strict inequalities
trsAr1/2Ar1/2d, iAir

2 and trsBr1/2Br1/2d, iBir
2 hold for any conjugate observablesA andB.

Remark 2.2:The inequalitys2.2d is not optimal. In fact, we discarded complicated non-
negative terms in the derivation ofs2.2d. We will give a discussion on the optimal lower bound of
s2.2d. See Theorem 4.1 in Sec. IV.

Remark 2.3:As an application of the uncertainty relationss2.1d ands2.2d, we considered the
position and momentum operators onL2sRd as a pair of conjugate observables and the density
matrix r corresponding to the thermal state for a quantum harmonic oscillator. We proved that the
equalities in the uncertainty relations ins2.1d and s2.2d hold in this case. See Theorem 4.2.

III. PROOFS OF THEOREM 2.1 AND THEOREM 2.2

We produce the proofs of Theorem 2.1 and Theorem 2.2 in this section. LetA and B be
self-adjoint operators andr a density matrix satisfying the properties in Assumption 2.1. For
notational brevity, we write

Ar ª Ar1/2, Br ª Br1/2. s3.1d

We decomposeAr andBr as

Ar = Ar,+ + Ar,−,
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Br = Br,+ + Br,−, s3.2d

where

Ar,+ ª
1

2
sAr1/2 + r1/2Ad =

1

2
hA,r1/2j,

Ar,− ª
1

2
sAr1/2 − r1/2Ad =

1

2
fA,r1/2g,

s3.3d

Br,+ ª
1

2
sBr1/2 + r1/2Bd =

1

2
hB,r1/2j,

Br,− ª
1

2
sBr1/2 − r1/2Bd =

1

2
fB,r1/2g.

Denote bykT,Sl ,T,SPL2sHd, the Hilbert–Schmidt inner product onL2sHd:

kT,Sl ª trsT*Sd, ∀ T,SP L2sHd, s3.4d

and iTi2 the induced norm:

iTi2
2
ª trsT*Td. s3.5d

Here we have used the normiTi2 to distinguish it from the operator normiTi. In the sequel, we
assume that the properties in Assumption 2.1 hold.

Lemma 3.1: (a) The composite mapsr1/2A, r1/2B, r1/2AB, r1/2BA, r1/2A2, and r1/2B2 are
bounded on D. The bounded extensions of those operators, denoted by the same symbols, are
adjoint operators of Ar1/2, Br1/2, BAr1/2, ABr1/2, A2r1/2, and B2r1/2, respectively.

(b) The equalities,

r1/2sA2r1/2d = sr1/2AdsAr1/2d, r1/2sB2r1/2d = sr1/2BdsBr1/2d,

r1/2sABr1/2d = sr1/2AdsBr1/2d, r1/2sBAr1/2d = sr1/2BdsAr1/2d,

hold, wherer1/2sA2r1/2d is the composite map (operator product) ofr1/2 and A2r1/2, and sr1/2Ad
3sAr1/2d the composite map ofr1/2A and Ar1/2, etc.

(c) kAr,+,Ar,−l=0 and kBr,+,Br,−l=0.
Proof: sad By Assumption 2.1sbd–scd, one has that for anywPD andhPH,

sw,Ar1/2hd = sr1/2Aw,hd,

and sor1/2A=sAr1/2d* on D. SinceD is dense, the relation extends toH. The rest of the partsad
follows from a similar method used above.

sbd Those equalities follow from Assumption 2.1sbd and the partsad of the lemma.
scd Part scd of the lemma follows from the definitions ofAr,± andBr,± in s3.3d and the trace

property; trsTSd=trsSTd. h

It follows from Lemma 3.1scd that the decompositions ins3.2d are orthogonal decomposi-
tions. Also, Lemma 3.1sad shows thatAr,+ and Br,+ are self-adjoint, andsAr,−d* =−Ar,− and
sBr,−d* =−Br,−.

Lemma 3.2: The equalities,

kAr,±,Ar,±l =
1

2
htrsA2rd ± trsAr1/2Ar1/2dj,
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kBr,±,Br,±l =
1

2
htrsB2rd ± trsBr1/2Br1/2dj,

kBr,±,Ar,±l =
1

4
htrshA,Bjrd ± 2trsBr1/2Ar1/2dj,

kBr,±,Ar,7l =
1

4
htrsfB,Agrdj,

hold.
Proof: The equalities follow from the definitions ofA± andB± in s3.3d and direct computa-

tions. h

Notice that by the first and second equalities in Lemma 3.2, one has that

iAr,±i2
2 =

1

2
hiAir

2 ± trsAr1/2Ar1/2dj,

iBr,±i2
2 =

1

2
hiBir

2 ± trsBr1/2Br1/2dj. s3.6d

Also one recognizes that the Wigner–Yanase skew informationIsr ,Ad and iAr,−i are related by

Isr,Ad = 2iAr,−i2. s3.7d

See the definition ofIsr ,Ad in s2.4d.
We are now ready to prove Theorem 2.1 and Theorem 2.2. It follows froms3.1d that

kBr,Arl = trsBArd =
1

2
trshB,Ajrd +

1

2
trsfB,Agrd.

Since the first term on the rhs of the above is real and the second term is pure imaginary,

ukBr,Arlu2 =
1

4
utrshB,Ajrdu2 +

1

4
utrsfB,Agrdu2, s3.8d

and so by the Schwarz inequality, the Schrödinger uncertainty relation,

1

4
„trsfB,Agr…u2 +

1

4
utrshB,Ajrdu2 ø iAri2

2iBri2
2, s3.9d

holds. Recall thatiAri2
2=iAir

2 and iBri2
2=iBir

2.
Proof of Theorem 2.1:It follows from the Schwarz inequality ands3.6d that

ukBr,+,Ar,−lu2 ø iBr,+i2
2iAr,−i2

2 =
1

4
„iBir

2 + trsBr1/2Ar1/2d…„iAir
2 − trsAr1/2Ar1/2d…,

ukBr,−,Ar,+lu2 ø iBr,−i2
2iAr,+i2

2 =
1

4
„iBir

2 − trsBr1/2Ar1/2d…„iAir
2 + trsAr1/2Ar1/2d….

Thus, by the fourth equality in Lemma 3.2 and the above inequality. we have

1

8
utrsfB,Agrdu2 = ukBr,+,Ar,−lu2 + ukBr,−,Ar,+lu2 ø

1

2
hiBir

2iAir
2 − trsBr1/2Br1/2dtrsAr1/2Ar1/2dj.

The above relation equals that in Theorem 2.1. h.
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Now, let us turn to the proof of Theorem 2.2. Recall that the classL2sHd of the Hilbert–
Schmidt operator is a Hilbert space with the Hilbert–Schmidt inner productk·,·l defined ins3.4d.
Denote byÂr,± and B̂r,± the normalized vectors inL2sHd in the direction ofAr,± and Br,±,
respectively:

Âr,± = Ar,±/iAr,±i2, B̂r,± = Br,±/iBr,±i2. s3.10d

If iAr,−i2=0 sresp.,iBr,−i2=0d, we setÂr,−=0 sresp.,B̂r,−=0d. By s3.2d and s3.10d,

Ar = iAr,+i2Âr,+ + iAr,−i2Âr,−,

s3.11d
Br = iBr,+i2B̂r,+ + iBr,−i2B̂r,−.

We introduce vectors orthogonal toAr andBr by

Ar
' = iAr,−i2Âr,+ − iAr,+i2Âr,−,

s3.12d
Br

' = iBr,−i2B̂r,+ − iBr,+i2B̂r,−.

It is easy to check that

iAr
'i2 = iAri2, iBr

'i2 = iBri2,

s3.13d
kAr

',Arl = 0, kBr
',Brl = 0.

Denote byS̃andS the subspace ofL2sHd spanned byhÂr,+,Âr,−j andhB̂r,+,B̂r,−j, respectively, and
let PS be the projection toS.

Proposition 3.1: The inequality,

ukBr,Arlu2 + ukBr
',Arlu2 ø iBri2

2iAri2
2,

holds.

Proof: Let B̂r and B̂r
' be normalized vectors in the directions ofBr andBr

', respectively:

B̂r = Br/iBri2, B̂r
' = Br

'/iBri2.

SincehB̂r ,B̂r
'j is an orthonormal basis ofS, we have

iPSAri2 = ukB̂r,PSArlu2 + ukB̂r
',PSArlu2, s3.14d

and so

ukB̂r,Arlu2 + ukB̂r
',Arlu2 = iPSAri2

2 ø iAri2
2.

By multiplying iBri2
2 to both sides of the above inequality, we proved the lemma. h

Lemma 3.3: The equality,

ukBr
',Alu2 = M1sA,B;rd + M2sA,B;rd,

holds, where M1sA,B;rd is given by (2.3) in Theorem 2.2 and

M2sA,B;rd =
1

4
siBr,+i2iBr,−i2d−2FiBir

2trsBr1/2Ar1/2d −
1

2
khB,AjlrtrsBr1/2Br1/2dG2

,

s3.15d

if trsBr1/2Br1/2d, iBir
2, and M2sA,B;rd=0 otherwise.
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Proof: By the definition ofBr
' in s3.12d,

kBr
',Arl = kiBr,−i2B̂r,+ − iBr,+i2B̂r,−,Ar,+ + Ar,−l

= H iBr,−i2

iBr,+i2
kBr,+,Ar,+l −

iBr,+i2

iBr,−i2
kBr,−,Ar,−lJ

+ H iBr,−i2

iBr,+i2
kBr,+,Ar,−l −

iBr,+i2

iBr,−i2
kBr,−,Ar,+lJ .

Since the first term on the rhs of the last equality in the above is real and the second term is pure
imaginary, we have

ukBr
',Arlu2 = M1sA,B;rd + M2sA,B;rd,

where

M1sA,B;rd = U iBr,−i2

iBr,+i2
kBr,+,Ar,−l −

iBr,+i2

iBr,−i2
kBr,−,Ar,+lU2

,

M2sA,B;rd = U iBr,−i2

iBr,+i2
kBr,+,Ar,+l −

iBr,+i2

iBr,−i2
kBr,−,Ar,−lU2

. s3.16d

By Lemma 3.2,

M1sA,B;rd =
1

42ukfB,Aglru2siBr,+i2iBr,−i2d−2siBr,−i2
2 − iBr,+id2.

Substitutings3.6d into the above expression, we proved thatM1sA,B;rd in the above equals that
in s2.3d.

Next, we considerM2sA,B;rd in s3.16d. M2sA,B;rd can be expressed as

M2sA,B;rd = siBr,+i2iBr,−i2d−2fiBr,−i2
2kBr,+,Ar,−l − iBr,+i2

2kBr,−,Ar,−lg2.

Using Lemmas3.2d and s3.6d, one can check that the above expression equals that ins3.15d.
Notice that, if iBr,−i2=0, thenBr

'=0 by s3.12d. Thus,M1sA,B;rd=M2sA,B;rd=0 in this case.
This proved the lemma completely. h

Proof of Theorem 2.2:Since M2sA,B;rdù0, Theorem 2.2 forM1sA,B;rd follows from
Proposition 3.1,s3.8d, and Lemma 3.3. By interchanging the role ofAr and Br, we proved the
theorem completely. h

IV. OPTIMAL IMPROVEMENT AND APPLICATION

We give a brief discussion on the optimal improvement of Theorem 2.2, which can be ob-
tained by the method used in Sec. III. Then, as an application of Theorem 2.1 and Theorem 2.2, we
consider the thermal states of a quantum harmonic oscillator.

A. Possible optimal improvement

Recall thatS is the subspace ofL2sHd spanned byhB̂r,+,B̂r,−j andPS is the projection ontoS.
In the proof of Theorem 2.2, we have used the identitys3.14d. The quantityiPSAri is the length of
the projection ofAr onto S. Thus, it is clear that, in order to obtain the optimal improvement one

has to find the vectorX with iXi2=iAri2 in the subspaceS̃ spanned byhÂr,+,Âr,−j, which has the
biggest component inS.

In order to find such a vector inS̃, put

042109-8 Yong Moon Park J. Math. Phys. 46, 042109 ~2005!

                                                                                                                                    



X = aAr + bAr
',

wherea andb are complex constants satisfying

uau2 + ubu2 = 1.

One has that

iPSXi2
2 = a2iPSAri2

2 + ābkPSAr,PSAr
'l + ab̄kPSAr

',PSArl + ubu2iPSAr
'i2

2.

One can choosea such thataù0. The first and last terms on the rhs of the above are non-
negative. To make the other terms non-negative, we chooseb as

b = gkPSAr
',PSArl/ukPSAr

',PSArlu,

wheregù0. We then have

iPSXi2
2 = a2iPSAri2

2 + 2agukPSAr,PSAr
'lu + g2iPSAr

'i2
2, s4.1d

wherea andg are non-negative real numbers satisfying

a2 + g2 = 1. s4.2d

Thus, the problem is to maximizes4.1d under the constraints4.2d. The problem can be solved by
the method of the Lagrange multiplier.

We use the following notation:

a = iPSAri2
2, b = iPSAr

'i2
2, c = ukPSAr,PSAr

'lu. s4.3d

Put

d = sa − bd/2c. s4.4d

The method of the Lagrange multiplier implies that

aa + cg = la,

bg + ca = lg,

wherel is the Lagrange multiplier. The above relations imply

a2 − 2dag − g2 = 0. s4.5d

Sincea.0, one has that

a = sd + Îd2 + 1dg. s4.6d

From s4.2d and s4.6d, a andg can be solved explicitly. One may check that

g2 = 1/s1 + sd + Îd2 + 1d2d = 1/f2sd2 + 1d + 2dÎd2 + 1g. s4.7d

The relationss4.5d and s4.2d imply

ag = s1 − 2g2d. s4.8d

We substitutes4.7d and s4.8d into

iPSXi2
2 = as1 − g2d + 2cag + bg2

to obtain
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iPSXi2
2 = a + csÎd2 + 1 −dd = a +

1

2
hfsa − bd2 + 4c2g1/2 − sa − bdj. s4.9d

We leave that detailed derivation ofs4.9d to the reader.
Let us denote by

m3sA,B;rd ª
1

2
hfsa − bd2 + 4c2g1/2 − sa − bdj, s4.10d

wherea, b, andc are given bys4.3d. Put

M3sA,B;rd ª iBir
2m3sA,B;rd. s4.11d

We then obtain the following result.
Theorem 4.1:The relation

1

4
ukfA,Bglru2 +

1

4
ukhA,Bjlru2 + M̃sA,B;rd ø iAir

2iBir
2.

holds, where

M̃sA,B;rd = maxHo
k=1

3

MksA,B;rd,o
k=1

3

MksB,A;rdJ ,

and M1sA,B;rd, M2sA,B;rd and M3sA,B;rd are given as in (2.3), (3.15), and (4.11), respectively.
Proof: It follows from s4.9d that

iBir
2iPSAri2

2 + M3sA,B;rd = iBir
2iPSXi2

2 ø iBir
2iXi2

2 = iBir
2iAir

2. s4.12d

We recall from thes3.14d and Lemma 3.3 that

iBir
2iPSAri2

2 = ukBr,Arlu2 + M1sA,B;rd + M2sA,B;rd. s4.13d

Thus, the theorem follows froms4.12d, s4.13d, ands3.8d together with interchanging the role ofA
andB. h

Even if M3sA,B;rd can be expressed explicitly in terms ofiAr,±i2, iBr,±i2, etc., the expression
is complicated and so we do not present it here.

B. An Application

In L2sRd, the momentum operatorP and the position operatorQ are represented by

P = i
d

dx
, Q = x. s4.14d

It is convenient to introduce the annihilation and creation operators that are defined as

a =
1
Î2

Sx +
d

dx
D, a* =

1
Î2

Sx −
d

dx
D .

Those operators satisfy the canonical commutation relations

fa,a*g = 1, fa,ag = fa,a*g = 0, s4.15d

andP andQ can be written as
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P =
i

Î2
sa − a*d, Q =

1
Î2

sa + a*d. s4.16d

Let N be the number operator defined by

N = a*a. s4.17d

The Hamiltonian for quantum harmonic oscillator is given by

H =
1

2
sP2 + Q2d = N +

1

2
. s4.18d

Let V be the ground state ofH and letF0 be the dense subset consisting of finite linear combi-
nations of vectorshsa*dnV ,nPNj. ThenF0 is a common core fora, a* , andN. For the details, we
refer to Sec. 5.2 of Ref. 13.

The density operatorr corresponding to the thermal state is given by

r =
1

Z
exps− bHd =

1

Z
expS− bSN +

1

2
DD , s4.19d

whereZ=tr(exps−bHd) andb.0 the inverse of the temperature.
Theorem 4.2: Let A=P and B=Q and let r be given by (4.19). Then the properties in

Assumption 2.1 holdswith D=F0d. Moreover each side of (2.1) and (2.2) equals
cosh2ssb /2dd /4 sinh2sb /2d, and so the equalities in the uncertainty relations in Theorem 2.1 and
Theorem 2.2 hold.

Proof: Let ak
#, k=1,2, . . . ,n, be eithera* or elsea. It can be checked that

Ip
k=1

n

ak
#wI ø isN + n + 1dn/2wi,

for any wPF0.
13 Thusspk=1

n ak
#dsN+n+1d−n/2 is bounded operator for eachn. Thus the properties

sad and sbd in Assumption 2.1 hold.
Notice that the equalities

asN + 1d = sN + 2da, a*sN + 2d = sN + 1da* ,

hold onF0. The above equalities imply

sN + 2d−1a = asN + 1d−1, sN + 1d−1a* = a*sN + 2d−1.

Using the above relations repeatedly, one can check that propertyscd in Assumption 2.1 holds. We
leave the details to the reader.

Next, we compute each side ofs2.1d and s2.2d. A direct computation shows that

ka*alr = e−b/s1 − e−bd. s4.20d

It follows from s4.20d and the canonical commutation relationss4.15d that

iQi
r
2 =

1

2
tr„sa + a*dsa + a*dr… =

1

2
+ e−b/s1 − e−bd =

1

2
coshsb/2d/sinhsb/2d. s4.21d

The method used in the above gives

iPi
r
2 =

1

2
coshsb/2d/sinhsb/2d. s4.22d

It can be checked that
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r1/2a = eb/2ar1/2, r1/2a* = e−b/2a*r1/2. s4.23d

We uses4.23d to obtain

trsQr1/2Qr1/2d =
1

2
tr„sa + a*dseb/2a + e−b/2a*dr… =

1

2
trse−b/2aa* + eb/2a*ad

=
1

2
he−b/2 + seb/2 + e−b/2de−b/s1 − e−bdj = 1/2 sinhsb/2d, s4.24d

trsPr1/2Pr1/2d = 1/2 sinhsb/2d. s4.25d

A direct computation yields

khP,Qjlr = 0, trsPr1/2Qr1/2d = 0. s4.26d

Thus s4.21d and s4.22d imply

iPir
2iQir

2 = cosh2sb/2d/4 sinh2sb/2d. s4.27d

SincefP,Qg= i, s4.24d and s4.25d imply that

lhs of s2.1d =
1

4
+

1

4 sinh2sb/2d
= cosh2sb/2d/4 sinh2sb/2d. s4.28d

Next, we compute the lhs ofs2.2d. We uses4.21d and s4.24d to obtain

iQi
r
4 − „trsQr1/2Qr1/2d…2 =

1

4
Hcosh2sb/2d

sinh2sb/2d
−

1

sinh2sb/2dJ ,

=
1

4
,

and so

M1sP,Q;rd = „trsQr1/2Qr1/2d…2 = 1/4 sinh2sb/2d.

Thus, we conclude that

lhs of s2.2d = cosh2sb/2d/4 sinh2sb/2d. s4.29d

Combinings4.27d–s4.29d, we complete the proof of Theorem 4.2. h
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Using theanalytic representationof the so-called Gazeau–Klauder coherent states
sCSsd, we shall demonstrate that how a new class of generalized CSs, namely the
family of dual statesassociated with theses states, can be constructed through
viewing these states astemporally stable nonlinear CSs. Also we find that the
ladder operators, as well as the displacement type operator corresponding to these
two pairs of generalized CSs, may be easily obtained using our formalism, without
employing thesupersymmetric quantum mechanicssSUSYQMd techniques. Then,
we have applied this method to some physical systems with known spectrum, such
as Pöschl–Teller, infinite well, Morse potential and hydrogenlike spectrum as some
quantum mechanical systems. Finally, we propose the generalized form of the
Gazeau–Klauder CS and the corresponding dual family. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1861276g

I. INTRODUCTION

Coherent statessCSsd play an important role in various fields of physics, quantum technolo-
gies and especially in quantum opticsssee, for instance, Refs. 1–4d. Therefore efforts along
generalizations and applications have been appreciably increased in recent years.5 Recently,
Gazeau and Klauder have introduced an important class of generalized CSs, the so-called
“Gazeau–Klauder CSs” have been denoted byuJ,gl, corresponding to any arbitrary quantum
mechanical system.6,7 Keeping in mind that Gazeau–Klauder CSs are really CSs, we will refer to
them as “GK states.” These states have attracted much attention in literaturessee, e.g., Refs.
8–13d. More recently, along generalization of GK states, the vector CSs of the GK type have been
constructed and some physical applications of them have been addressed.14

In another direction, a new way of generalization has been proposed to construct the so-called
family of the dual statescorresponding to some particular known classes of CSs such as nonlinear
CSs.15,16 In an extended framework we have recently studied this idea, rederived basically and
well developed.16 The construction of the dual pairs may be actually performed for all classes of
generalized CSs, obtained by each of the three ways of generalizations; i.e.,algebraic, symmetric,
anddynamics. We have found that the canonical CSs are the onlyself-dualfamily sa useful check
point for our future construction in this paperd. Also we have already established the dual states
associated with KPS,17 PS,18 and SUs1,1d group CSs successfully, of course, after demonstrating
the nonlinearity nature of these states.8 Unfortunately, as we have stated in earlier works, employ-
ing either our previous approaches in Ref. 16 or the formalism proposed in Ref. 15 for construct-
ing the dual of GK state, do not lead to full consistent CSs with the Gazeau–Klauder criteria. For

instance according to the proposition in Ref. 16 theT̂−1 operator, whose action on canonical CS

adElectronic mail: rokni@sci.ui.ac.ir
bdElectronic mail: mk.tavassoly@sci.ui.ac.ir
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yields uJ,gl may be obtained trivially. But when one acts the relatedT̂-operator on the standard
CS, the output state which was expected to be of the GK typesin fact the dual set of GK statesd,
encounters some difficulties. For example, apart from the ill-definition of theT̂ sand soT̂−1d
operator, the obtained states do not fulfilltemporal stability. Consequently, the important property
of the GK states,the action identityevolves some problems. Therefore one must try someradi-
cally different methodfrom the previous ones.

This paper is organized as follows: first, after imposing asecond modificationon themodified
GK statesuz,al sto be distinguished from “GK states,” by abuse of notation we shall call them as
GKCSsd introduced by El Kinani and Daoud,11 we shall clarify the nonlinearity of these states.
Second, in view of establishing the GKCS as an extension of “KPS nonlinear CS” 17 to “temporally
stable CS,” together with the fact that the dual family of KPS nonlinear CS has already been
introduced appropriately, we attempt to find the dual of GKCSswe shall refer to it as DGKCSd
through generalization of “the dual of KPS nonlinear CS” to state that it possesses the “temporal

stability” characteristic. Upon generalizing this result, we shall introduce theŜsad-operatorsa
PRd which transfers any generalized nonlinear CS, corresponding to a Hamiltonian with known
spectrumswhich does not preserve temporal stabilityd to a situation in which it nicely restores this
property.

Additionally, a set of new interesting results such as the explicit form of annihilation, creation,
and displacement type operators corresponding to each of the two generalized CSssGKCSs and
DGKCSsd will be obtained. Also, by using the dual family of GKCS, the even, odd, and
Schrödinger cat CSs have been introduced. We then apply the method to some well-known solv-
able systems, i.e., harmonic oscillator, Pöschl–Teller, infinite well and Morse potential and hydro-
genlike spectrum as some examples of quantum mechanical systems. Finally, we outline a scheme
for generalization of the GKCSsas well asDGKCSs.

II. ANALYTICAL REPRESENTATIONS OF GAZEAU–KLAUDER CS AS NONLINEAR CS

In this section, we first revisit the analytical representations of GKCSs and then impose a
second modification on them. At last, we establish their nonlinearity nature.

A. Analytical representations of GK states

The GK states,uJ,gl, corresponding to any Hamiltonian with discretesnondegenerated eigen-
valuesenù0, are defined as6,7,19

uJ,gl 8 NsJd−1/2o
n=0

`
Jn/2e−igen

Îrsnd
unl, J ù 0, −` , g , `, s1d

whereN is a normalization constant may be determinedsfor a new and interesting formalism
related to degenerate Hamiltonian see Ref. 14d. The orthonormal sethunljn=0

` satisfy the eigenvalue
equation

Ĥunl = Enunl ; "venunl = enunl, " ; 1, v ; 1. s2d

The eigenvalues of the HamiltonianĤ are such that

0 = e0 , e1 , e2 , ¯ , en , en+1 , ¯ . s3d

These states should satisfy the following properties:sid continuity of labeling, sii d resolution of the
identity, siii d temporal stability, and sivd action identity. The last two conditions requirersnd
=feng!.

Along the works on GK states, El Kinani and Daoud in a series of papers,11–13 imposed a
minor modification on these states via generalizing the Bargman representation for the standard
harmonic oscillator.20 The authors introduced theanalytical representations of GK states, denoted
by us as GKCSs,

042110-2 R. Roknizadeh and M. K. Tavassoly J. Math. Phys. 46, 042110 ~2005!

                                                                                                                                    



uz,al=̇Nsuzu2d−1/2o
n=0

`
zne−iaen

Îrsnd
unl, zP C, a P R, s4d

where the normalization constant and the functionrsnd are given by

Nsuzu2d = o
n=0

` uzu2n

rsnd
, rsnd = feng ! . s5d

Briefly speaking, they replaced −̀,g,` andJ.0 in s1d by aPR andzPC, respectively. We
must emphasize the main difference between the GKCSs presented ins4d and GK states ins1d in
view of the significance and the role ofg anda, particularly in the integration procedure, in order
to establish the resolution of unity. For this purpose, it is required to find an appropriate positive
measure dlszd such that

E
0

R

uz,alkz,audlszd = o
n=0

`

unlknu = Î, 0 , Rø `. s6d

Insertings4d in s6d, writing z=xeiu and expressing the measure as

dlszd = dlsuzu2d = pNsx2dssx2dx dx du, s7d

performing the integration overuP f0,2pg, the over-completeness relations6d finally reduced to
the following moment problemssee Ref. 17 and references thereind

E
0

R

xnssxddx = rsnd, 0 , Rø `. s8d

B. A discussion about the modification of GK states

As it is observed in the preceding section, in the modification imposed by El Kinani and
Daoud on the GKCSs, the parametera has beenimplicitly considered as a constant, whose
presence in the exponential factor of the introduced CSs preserves the temporal stability require-
mentsit is not now an integrationvariabled. Meanwhile, for the temporal stability of the states in
s4d one reads

e−iĤtuz,al = uz,a8l, a8 = a + vt. s9d

Upon a closer inspection, one can see that the latter relation is indeed inconsistent with the
resolution of the identity. By this, we mean that whena is considered as a constant parameter, it
really labels any over-complete set of GKCSs,huz,alj. But the time evolution operator ins9d maps
the over-complete set of stateshuz,alj to another over-complete sethuz,a8lj. These are twodistinct
sets of CSs, each of them labeled with a specifica, if one considers the El Kinani-Daoud formal-
ism. But the temporal stability precisely means that under the chosen dynamics, the time evolution
of a CS remains CS,of the same family. In this manner, the states introduced ins4d are not of the
Gazeau–Klauder type, exactly.

To overcome this problem, we redefine the resolution of the identity as follows:

lim
G→`

1

2G
E

−G

G

daE
0

R

uz,alkz,audlszd = o
n=0

`

unlknu = Î, 0 , Rø `. s10d

We can simplify the left-hand sidesLHSd of s10d which interestingly led us exactly to the LHS of
s6d. Indeed we have
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E
0

R

uz,alkz,audlszd = lim
G→`

1

2G
E

−G

G

daE
0

R

uz,alkz,audlszd, s11d

where dlszd is determined as ins7d.
By this fact we want to conclude that both of the over-complete collection of stateshuz,alj

and huz,a8lj, with fixed a and a8;a+vt, belong to a large set of over-complete states with an
arbitrarya,

huz,al,zP C,− ` ø a ø `j. s12d

Note that by replacingaPR with −`øaø` in s12d we want to emphasize that the parametera
is relaxed from the constraint of being fixed. But we will encounter other difficulty, that is the
variability of a destroys the well definition of the “operator valued function” fsa ,n̂d, which will
be introduced later ins14d, in addition to the deformed annihilation and creation operatorsA
=afsa ,n̂d andA†= f†sa ,n̂da†. To overcome this difficulty we may bridge the gap between these
two situations: variability and constancy ofa. We define the set of operatorsA=afsa ,n̂d, A†

= f†sa ,n̂da† and any other operator which explicitly depends ona, in eachsectorssubspaced Ha,
labeled by a specifica parameter, of the whole Hilbert spaceH which contains all GKCSshuz,alj.
Indeed, the whole Hilbert space foliates by eacha sremember the continuity ofad. Moreover, the
action of the time evolution operator on any state on a specific sector, transfer it to another sector,
both belong to a large Hilbert space. So,when we deal with the operators that depend on thea
parameter, it should necessarily be fixed, while this is not the case when we are dealing with the
states.

We notify here that takinga as aconstantin somewhere and as avariable in another may be
confused and seems to be problematic. However, it is similar to the case which one encounters in
the contexts of general relativity and quantum field theory, where the covariant formulation of the
theory is required. In these cases one considers in the whole space with the dimensionn, the
spacelike Cauchy hypersurfaceS is defined with the dimensionn−1. Fixing a is similar to the
so-called gauge fixingse.g., a section in timed. For instance by gauge fixing one may calculate the
evolution of metric in solving theEinstein equationin general relativity or the commutation
relation in quantum field theory. So in the present case, although the operators are typically true
operators over the whole Hilbert spaceH, but the calculations and their commutation relations are
done with a fixeda in the subspaceHa.

C. The relation between nonlinear CS and GKCS

On the other hand, the notion of nonlinear CSs introduced in Refs. 21–23 has attracted much
attention in the recent decade, especially in quantum optics. The realization of a special class of
these states has been proposed in the quantized motion of a trapped ion in a Paul trap.22,24 The
nonlinear CS defined as eigenvector of the deformed annihilation operator has the following
expansion over the Fock space:

uzl f = N fsuzu2d−1/2o
n=0

`
zn

În!ffsndg!
unl, ffsndg ! 8 fsndfsn − 1dfsn − 2d ¯ fs1d, s13d

where fs0d;1 andNf in some appropriate normalization constant may be determined. We recall
that by replacingfsnd with 1/ fsnd in the relations13d one immediately gets the nonlinear CSs
introduced in Ref. 15. We have called these states as the dual family of nonlinear CSs of Man’ko’s
type.16

Following the formalism given in Ref. 8 for the states expressed ins4d one may obtain
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fGKsa,n̂d = eiasên−ên−1dÎ rsn̂d
n̂rsn̂ − 1d

, a, being fixed. s14d

where we have chosen the notationên;rsn̂d /rsn̂−1d.
Moreover, we gain the opportunity to find raising and lowering operators in a safe manner

AGK = afGKsa,n̂d, AGK
† = fGK

† sa,n̂da†. s15d

It is easy to verify thatAGKuz,al=zuz,al. Obviously the commutation relation between these two
sf-deformedd ladder operators obeys23 the relation

fAGK,AGK
† g =

rsn̂ + 1d
rsn̂d

−
rsn̂d

rsn̂ − 1d

= ên+1 − ên. s16d

The special casersnd=n! recovers the standard bosonic commutation relationfa,a†g= Î. Using the
“normal-ordered” form of the Hamiltonian as in Ref. 8 and taking"=1=v, for the Hamiltonian of
GKCSs we get

ĤGK ; Ĥ = AGK
† AGK = n̂ufGKsa,n̂du2 =

rsn̂d
rsn̂ − 1d

= ên s17d

which clearly shows that the dynamics of the system is independent ofa.

III. THE DUAL FAMILY OF GKCS AS THE TEMPORALLY STABLE CS OF THE DUAL OF
KPS CS

The KPS coherent states, introduced by Klauder, Penson, and Sixdeniers17 have the following
form:

uzlKPS= NKPSsuzu2d−1/2o
n=0

`
zn

Îrsnd
unl, zP C. s18d

As demonstrated in Ref. 8, all of the various sets of CSs introduced in Ref. 17, constructed by
diversersnd’s, are nonlinear CSs in nature. Also the appropriate nonlinearity functionfsnd as well
as the deformed annihilation, creation, and Hamiltonian operators were introduced there. Espe-
cially, it is found thatrsnd in s18d must satisfy the relationrsnd=fnf2sndg ! = feng!, whereen’s are
the eigenvalues of the associated factorized Hamiltonian. Taking into account the above results,
comparings18d with GKCS in s4d and keeping" andv in the formulas, one may conclude that

e−isa/"vdĤuzlKPS= uz,al, 0Þ a P R, zP C. s19d

While uzlKPS states are not temporally stable,uz,al states enjoy this property.
Now we may outline a relatively evident physical meaning to the arbitrary reala in s4d or s19d

asa;vt, where byt we mean the time that the operator acts on the KPS coherent states. It should
be mentioned that, in a sense this interpretation has been presented for the GKCSs in a compact
form.10 If so, thenuz,al can be considered as the evolution ofuzlKPS. Therefore in a more general
framework, we claim that the action of the evolution type operator

Ŝsad = e−isa/"vdĤ, ŜŜ† = Ŝ†Ŝ= Î, 0Þ a P R, s20d

on any nontemporally stable CSs, makes it temporally stable CSs. So,Ŝsad is a nice operator
which transfers any generalized CS to a situation which it restores the temporal stability property.

Here, we stress the fact that ins20d the Hamiltonian,Ĥ, should satisfyĤunl="venunl.
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At this point we are ready to find a suitable way to define the dual family of GKCS. First, we
note that the dual family of KPS CSs introduced ins18d has already been established in Ref. 8, via
the following exact form:

uz̃lKPS= ÑKPSsuzu2d−1/2o
n=0

`
zn

Îmsnd
unl, zP C, s21d

where

msnd ; r̃snd =
sn ! d2

rsnd
. s22d

Hereafter, the sign “tilde” over the operators and states, assign them to the corresponding dual
operators and states, respectively. For instancer̃snd is dual correspondence ofrsnd. Equations22d
expresses the relation between KPS and the associated dual CSs, in a simple way. ObviouslyNKPS

andÑKPS in s18d ands21d are the normalization constants obtained. Employing the formalism led
to s19d, for “the dual of KPS states” ins21d naturally results in the following superposition of Fock
states for the dual family of GKCSsswe shall refer to them as DGKCSd:

S̃̂saduz̃lKPS= e−isa/"vdĤ̃uz̃lKPS

= Ñsuzu2d−1/2o
n=0

`
zne−ia«n

Îmsnd
unl = uz,ãl, zP C, 0Þ a P R, s23d

whereÑ=ÑKPS fbecause of the unitarity ofŜsad, which preserves the normg is given by

Ñsuzu2d = o
n=0

` uzu2n

msnd
. s24d

The special case of«n=n in s23d recovers the canonical CSs, correctly. Note also that setting

a=vt in s20d and s23d reduces the operatorsŜsad and S̃̂sad to the well-knowntime evolution

operatorsUstd and Ũstd, respectively. The casea=0 for the states ins4d and s23d recovers KPS
and the corresponding dual CSsswhich certainly are not temporally stabled, respectively. The
overlap between two states of the DGKCSs takes the following form:

kz,ãuz8,a8̃l = Ñsuzu2d−1/2Ñsuz8u2d−1/2o
n=0

`
sz*z8dne−i«ns−a+a8d

msnd
, s25d

which means that the states are essentially nonorthogonal.
It should be noticed that the produced statesfuz,ãl introduced ins23dg form a new class of

generalized CSs, essentially different fromuz,al in s4d. Also, it is apparent that for our introduc-
tion of DGKCSs, we have obtained directly the analytic representation of DGKCS for any arbi-
trary quantum mechanical system. Using the formalism proposed in Ref. 8, one can deduce the
nonlinearity function for the dual states ins23d as

f̃GKsa,n̂d = eias«̂n−«̂n−1dÎ msn̂d
n̂msn̂ − 1d

, a being fixed, s26d

where we have used the notation«̂n;msn̂d /msn̂−1d. Therefore, analogous tos17d the deformed
annihilation and creation operators of the dual system may be expressed explicitly as
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ÃGK = aeias«̂n−«̂n−1dÎ msn̂d
n̂msn̂ − 1d

, s27d

ÃGK
† = e−ias«̂n−«̂n−1dÎ msn̂d

n̂msn̂ − 1d
a†. s28d

The normal-ordered Hamiltonian ofdual oscillator in the same manner stated ins17d is

Ĥ̃GK ; Ĥ̃ = ÃGK
† ÃGK =

msn̂d
msn̂ − 1d

=
n̂2

ên

, s29d

which is again independent ofa. As a result

Ĥ̃unl = Ẽnunl ; "v«nunl = «nunl, «n ; ẽn =
n2

en
, s30d

where again we have used the unitsv=1=". The first equation ins30d illustrates clearly the
relation between the eigenvalues of the two mutual dual systems. Also, the DGKCSs are required
to satisfy the following inequalities:

0 = «0 , «1 , «2 , ¯ , «n , «n+1 , ¯ , s31d

the same as that ofen’s in s3d. At this point a question may have arisen: to what extent one may
be sure that the DGKCSs ins23d are of the Gazeau–Klauder type? Let us briefly investigate this
question.

s1d Continuity of labeling, it is clearly satisfied.
s2d Resolution of unity,

E
0

R̃
uz,ãlkz,ãudlszd = o

n=0

`

unlknu = Î, 0 , R̃ø `, s32d

where the measure dlszd is defined as ins7d. The radius of convergence of DGKCS is

determined asR̃=limn→`În msnd and msnd is defined as positive constants assumed to be
appearing as moments of a probability distribution. Similar calculations that led to the
result in s8d are needed to arrive at the new moment problem associated with the
DGKCSs,

msnd ; r̃snd =E
0

R̃
xns̃sxddx, 0 , R̃ø `, s33d

which must be solved with the help of the previously mentioned techniques. As for the
GKCSs, we assume thatms0d=1 andmsnd,` for all n.

s3d Temporal stability, usings23d and the relevant Hamiltonians30d gives us

e−iĤ̃tuz,ãl = Ñsuzu2d−1/2o
n=0

`
zne− i«nsa+vtd

Îmsnd
unl

= uz,a + ṽtl, s34d

which illustrates that DGKCSs remain coherent, as time goes on.
s4d Action identity: from the conditionsiii d we find that the time evolution of a CS is a map

given by sz,ad° sz,a+vtd. The new statesuz,ãl satisfy the relation
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kz,ãuĤ̃uz,ãl = vuzu2, s35d

in consistence with Gazeau–Klauder’s criteria, which is the so-called action identity. This is
a strong requirement which uniquely specifies the weightshmsndjnù0 in the denominator of
the expansion coefficients of the DGKCS. Usings23d, s24d, ands30d on the LHS ofs35d we
obtain

o
n=0

`
«nuzu2n

msnd
= uzu2o

n=0

` uzu2n

msnd
, s36d

by which we arrive at the following condition;

«n =
msnd

msn − 1d
. s37d

By conventional choice ofms0d;1, we thus deduce

msnd = «n«n−1¯ «1 = Pk=1
n «k ; f«ng ! . s38d

So, we have established that the DGKCSs ins23d are exactly of the Gazeau–Klauder type. It
should be noted that the same arguments we presented in Sec. II B about the resolution of the
identity sand the integration proceduresd, the a parametersthe states and the operators which
depend on itd and the corresponding Hilbert spaces must also be considered for the DGKCSs have
been built in the present section.

A. The introduction of temporally stable nonlinear CS

Let us now outline the main idea in a general framework. It is believed that the property of the
temporal stability is intrinsic to theharmonic oscillatorand the systems which areunitarily
equivalentto it.25 But in what follows we shall demonstrate how this important property can be
restored by a redefinition of any generalized CSs which can be classified in the nonlinear CSs
category. Recall that the nonlinear CSs we introduced ins13d do not generally have the temporal
stability property.23 So, by considering the results obtained in the previous work8 and the above
explanations, we want to proceed and introduce generally the notion of “temporally stable non-
linear CSs” as

uz,al f = N fsuzu2d−1/2o
n=0

`
zne−iaen

În!ffsndg!
unl, en = nf2snd, 0Þ a P R, zP C. s39d

We can also define the dual of the latter states by the following expression:

uz,ãl f = Ñ fsuzu2d−1/2o
n=0

`
znffsndg ! e−ia«n

În!
unl, «n =

n

f2snd
, 0Þ a P R, zP C, s40d

which are indeed the temporally stable version of the nonlinear CSs that have been introduced in
Ref. 15. In both sets of the CSs given bys39d ands40d, a is a real constant and the normalization
factors are independent ofa. Settinga=0 in s39d ands40d, we recover the old form of Man’ko’s
and Roy’s nonlinear CSs, respectively, which clearly are not temporally stable.

B. Temporally stable CS of SU „1,1… group

An instructive example of the families of nonlinear CSs is provided by the Gilmore–
PerelomovsGPd26 and Barut–GirardellosBGd CSs27, defined for the discrete series representations
of the group SUs1,1d. Using the results of Ref. 8 for GP states, and then imposing the proposed
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formalism on them, the “temporally stable CSs of GP type associated with SUs1,1d group” can be
defined as

uz,alGP
SUs1,1d = NGPsuzu2d−1/2o

n=0

`
zne−iafn/sn+2k−1dg

fn ! /Gsn + 2kdg1/2unl, uzu , 1, s41d

whereNGP is a normalization factor and the parameterk=1,3/2,2,5/2,…, labels the SUs1,1d
representation being used. Analogously, applying the presented extension to the BG type of CSs,
gives immediately “temporally stable CSs of BG type associated with SUs1,1d group” as follows:

uz,alBG
SUs1,1d ; uz,ãlGP

SUs1,1d = NBGsuzu2d−1/2o
n=0

`
zne−iansn+2k−1d

fn ! Gsn + 2kdg1/2unl, zP C, s42d

where once more,NBG is chosen by normalization of the states.

C. Temporally stable CS of Penson–Solomon type and its dual

As established in Ref. 8, the generalized CSs introduced by Penson and Solomon18 as

uq,zl = Nsq,uzu2do
n=0

`
qnsn−1d/2

În!
znunl, s43d

are also nonlinear withfsnd=qs1−nd and therefore the factorized Hamiltonian readsĤPS= n̂q2s1−n̂d.

It is stated in Ref. 18 that under the action of exps−iĤtd these states are temporally stable, where

the HamiltonianĤ=a†a= n̂ expresses thesshiftedd quantum harmonic oscillator with the corre-
sponding canonical CS. Seemingly to verify the invariance under time evolution operator, it may

be more realistic to act the operator, exps−iĤPStd, on the PS states ins43d, where ĤPSunl
= n̂q2s1−n̂dunl=nq2s1−ndunl. Clearly by such proposition these states are not temporally stable. But
the presented formalism in this paper allows one to construct the temporally stable CS of PS type
as follows:

uq,z,al ; e−isa/"vdĤPSuq,zl = NPSsq,uzu2do
n=0

`
qnsn−1d/2

În!
e−iaenznunl, s44d

whereen=nq2s1−nd.

We have already introduced the dual family of the PS states of Eq.s43d uq,zl̃ in Ref. 8. So the
temporally stable dual of these states may also be obtained immediately as

uq,z,al̃ ; e−isa/"vdĤ̃PSuq,zl̃ = ÑPSsq,uzu2do
n=0

`
q−nsn−1d/2

În!
e−ia«nznunl, s45d

where«n=n/q2s1−nd.

D. Some remarkable points

We end this section with some remarkable points.

sid First, one can prove that thef-deformed annihilation operator given bys14d is just the
same as the one derived earlier in Ref. 10, denoted byasad,

asad = e−iaĤsn̂d/"vǎeiaĤsn̂d/"v, s46d

or in terms of the introduced evolution operatorŜsad,
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asad = ŜsadǎŜ†sad. s47d

It must be noticed thatǎ and its adjointǎ† in Eqs.s46d and s47d have been defined as
follows:

ǎunl = Îenun − 1l, ǎ†unl = Îen+1un + 1l. s48d

Now using the relationsf†sn̂da=af†sn̂−1d and n̂a=asn̂−1d, we have

e−iaĤsn̂d/"vǎ = ǎe−iaĤsn̂−1d/"v = ǎe−iaên−1, s49d

where we have used Eq.s2d in the last step. Upon replacings49d on the right-hand side
sRHSd of s46d and taking into accounts2d we are readily led to the equalityasad
;AGK=afGKsa ,n̂d.

sii d In light of the presented explanations the annihilation operator eigenstatesalgebraic defini-
tiond for GKCSs and DGKCS are such that

AGKuz,al = zuz,al, ÃGKuz,ãl = zuz,ãl. s50d

The deformed annihilation and creation operatorsÃGK and ÃGK
† of the dual oscillator alge-

bra, satisfy the following eigenvector equations:

ÃGKunl = Î«ne
ias«n−«n−1dun − 1l, s51d

ÃGK
† unl = Î«n+1e

ias«n+1−«ndun + 1l, s52d

fÃGK,ÃGK
† gunl = s«n+1 − «ndunl, s53d

fÃGK,n̂g = ÃGK, fÃGK
† ,n̂g = − ÃGK

† . s54d

Upon looking on the actions defined ins51d ands52d one can interpretÃGK and ÃGK
† as the

operators which correctly annihilate and create one quanta ofdeformed photon, respec-
tively. A closer look at the basis of the involved Hilbert spaceHa in each over-complete set
huz,alj, shows that it is spanned by the vectors

un,al =
sÃGK

† dneia«n

Îfeng!
u0l ; unl, ÃGKu0l = 0. s55d

Moreover, we have omitted thea parameter from the basis for simplicity. At last, we are
able to introduce the generators of the deformed oscillator algebra28 of Gazeau–Klauder and

the corresponding dual family ashAGK,AGK
† ,Ĥj and hÃGK,ÃGK

† ,Ĥ̃j, respectively.
siii d One may expect that the inequalities for«n given in s31d corresponding to any solvable

system do not hold for DGKCSsfthe restriction which also exists ins3d for GKCSsg. This
generally may be true, but fortunately many cases—if not all—such as all physical systems
considered in this paper are of this sortsboth of«n anden are strictly increasingd. So it must
be mentioned that before making use of our formalism for dual states associated with any set
of GKCSs one should be sure about the conditions31d. If both of the inequalities ins3d and
s31d hold simultaneously, then one has

1 .
en

en+1
.

n2

sn + 1d2 s56d

which can be expressed in terms of the nonlinearity functionfGKsa ,n̂d as follows:
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În + 1

n
.ÎU fGKsa,n̂d

fGKsa,n̂ + 1d
U2

.Î n

n + 1
, s57d

for all n.0.
sivd As it may be clear, when one wants to work with one of the dual pairs singly, they can be

considered on their relevant domains. But to deal with their mutual relation, calculations
must be done only in the intersection of the domains of the pair of CSssin this case GKCSs
and DGKCSsd; i.e., generally on a unit disk, unless the CS is defined on a finite dimensional
Hilbert space. As we shall see later, the latter is the case for Morse potential.

svd Finally, the probability distribution for the DGKCSs is defined as

P̃snd = uknuz,ãlu2 = Ñsuzu2d−1 uzu2n

msnd
, s58d

which is independent of thea parameter.

We terminate this section with recalling that there exists also a set of equations such as

s51d–s54d related to GKCSs which may be obtained just by replacingÃGK, ÃGK
† , and «n with

AGK, AGK
† , and en, respectively. The latter have been already derived by applying SUSYQM

techniques,12 but rederivation of them are very easy by our formalism. According to their results,
the one-dimensional SUSYQM provides a mathematical tool to define ladder operators for an
exactly solvable potential. But the authors did not express theexplicit form of the ladder operators,
and only the concerning actions were expressed there. Therefore besides the simplicity of our
method, it is more complete in the sense that as we found theexplicit form of the raising and
lowering operators in terms of the standard bosonic creation and annihilation operators and the
photon numbersintensity of the fieldd have been found easilyfsee Eqs.s15d, s27d, ands28dg.

IV. DISPLACEMENT OPERATORS ASSOCIATED WITH GKCS AND THE
CORRESPONDING DUAL FAMILY

Now that we introduced the explicit form of the deformed annihilation operator and hence the
annihilation operator definition for GKCSs and DGKCSs according to Eqs.s50d, we are in the
position to extract the CSs of Klauder–Perelomov type for an arbitrary quantum mechanical
system. For this purpose, we introduce the following auxiliary operators related to GKCSs:

BGK = a
1

fGKs− a,n̂d
, BGK

† =
1

fGK
† s− a,n̂d

a†, s59d

and those for the dual families DGKCSs,

B̃GK = a
1

f̃GKs− a,n̂d
, B̃GK

† =
1

f̃GK
† s− a,n̂d

a†. s60d

Notice that the minus sign in the argument of thef-function is needed in both cases, since only in
such cases we havefGK

† s−a ,n̂d= fGKsa ,n̂d.
The f-deformed operators given bys59d ands60d are canonically conjugate of thef-deformed

creation and annihilation operatorssAGK,AGK
† d and sÃGK,ÃGK

† d, respectively; i.e., they satisfy the

algebrasfAGK,BGK
† g=fBGK,AGK

† g= Î andfÃGK,B̃GK
† g=fB̃GK,ÃGK

† g= Î, respectively. Now we have all
mathematical tools to construct the displacement operators for GKCS,

DGKsz,ad = expszBGK
† − z*AGKd, s61d

and for DGKCS,
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D̃GKsz,ad = expszB̃GK
† − z*ÃGKd. s62d

The actions ofDGKsz,ad andD̃GKsz,ad on the vacuum stateu0l yield the GKCSs and DGKCS, up
to some normalization constant, respectively, as we demand. From the group theoretical point of

view, one can see that the setshAGK,BGK
† ,BGK

† ,AGK, Îj and hÃGK,B̃GK
† ,B̃GK

† ÃGK, Îj, which are,
respectively, associated with GKCSs and DGKCSs, form the Lie algebrah4 and the corresponding
Lie group is the well-known Weyl–HeisenbergsWHd group. Also, the action of the latter operators
in s61d ands62d on the vacuum state are the orbits of the projectivenonunitaryrepresentations of
the WH group.16 It must be understood that as we pointed out earlier, we have applied neither the
formalism in Ref. 16 nor the equivalent formalism of Ref. 15 for constructing the dual states, since
the states obtained from the earlier formalisms were not completely consistent with the Gazeau–
Klauder criteria. Indeed, we proposed a way, through viewing the GKCSsuz,al and its dual pair
uz,ãl as generalization of KPS nonlinear CSsuzlKPS and its dualuz̃lKPS to the two distinct tempo-
rally stable CSs, respectively. Speaking otherwise, the operators introduced ins61d ands62d do not

have the relationD̃GKs−z,ad=DGKsz,ad=fDGKsz,ad−1g†, which is the characteristic of the earlier
formalisms. To this end, it is possible to build the following displacement type operators,

VGKsz,ad=expszAGK
† −z*BGKd for GKCSs, and in a similar manner,ṼGKsz,ad=expszÃGK

†

−z*B̃GKd for DGKCSs, whose actions on the vacuum state yield two new sets of states. But it is
easy to investigate that none of them can be classified in the Gazeau–Klauder CSs.

V. THE CONSTRUCTION OF EVEN, ODD AND SCHRÖDINGER CAT COHERENT STATES
FROM THE INTRODUCED DGKCS

Various superpositions of CSs may result in different nonclassical states of light. Recently,
there has been much interest in the construction as well as generation of these states, in the regard
of their applications in the context of quantum optics. Their different characteristics are due to the
various quantum interference between summands. As an example, the even and odd CSs associ-
ated with canonical CSs as well as other classes of generalized CSs such as nonlinear CSs
extensively studied in the literature29 exhibit nonclassical features, such as squeezing, sub-
Poissonian statisticssantibunchingd, and oscillatory number distribution. The symmetricsantisym-
metricd combinations of GKCSs have been introduced in Ref. 11. Similarly, using the unnormal-
ized DGKCSs we are led to the evensoddd CSs denoted by +s−d,

uz,ãl± = N8̃±suzu2d−1/2suz,ãl ± u− z,ãld

= N8̃±suzu2d−1/2o
n=0

`
e−ia«nfzn ± s− zdng

Îmsnd
unl, s63d

wherezPC andaPR. For the normalization factors we get

N8̃±suzu2d = 2So
n=0

` uzu2n

msnd
+ o

n=0

` s− 1dnuzu2n

msnd D−1

. s64d

A few simplifications imposed on the states ins63d will clarify the name evensoddd associated
with these states

uz,ãl+ = N8̃+suzu2d−1/2o
n=0

`
z2ne−ia«2n

Îms2nd
u2nl, s65d
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uz,ãl− = N8̃−suzu2d−1/2o
n=0

`
z2n+1e−ia«2n+1

Îms2n + 1d
u2n + 1l. s66d

Finally the s±d states ins65d and s66d satisfy the following eigenvalue equations:

sÃGKd2uz,ãl± = z2uz,ãl±. s67d

The probability distributions for the even-DGKCSs+d and odd-DGKCSs−d are derived as

P̃±snd = uknuz,ãl±u2 = N8̃±suzu2d−1 uzu2n

msnd
, s68d

which clearly are independent of thea parameter.
Now, we pay attention to another specific superposition of the DGKCSsuz,ãl, by which we

may obtain thereal s+d and imaginary s−d Schrödinger cat states as

uz,ãl±
Cat= N9̃±suzu2d−1/2suz,ãl ± uz* ,ãld, s69d

wherez* is the complex conjugate ofz. Insertingz=reiu in the last equations give us the following
explicit forms:

uz,ãl+
Cat= N9̃+suzu2d−1/2o

n=0

`
rn cossnud

Îmsnd
e−ia«nunl s70d

and

uz,ãl−
Cat= N9̃−suzu2d−1/2o

n=0

`
rn+1 sinfsn + 1dug

Îmsn + 1d
e−ia«n+1un + 1l, s71d

where the normalization constants would be

N9̃+suzu2d = o
n=0

`
r2n cos2snud

msnd
s72d

and

N9̃−suzu2d = o
n=0

`
r2sn+1d sin2fsn + 1dug

msn + 1d
. s73d

The probability distribution for the reals+d and imaginarys−d Schrödinger cat CSs ins70d and
s71d can be calculated as

P̃±
Catsnd = uknuz,ãl±

Catu2 = N±9̃sr2d−1r2ns1 ± coss2nudd
msnd

, s74d

which are again independent ofa.

VI. SOME PHYSICAL APPLICATIONS OF THE DGKCS

In order to illustrate the presented idea in this paper, let us apply the formalism on some
physical examples which the associated GKCSs have already been known. To economize in the
space the complete form of DGKCSs have not been given in what follows and it will be enough

for our intention to present«n, msnd, andÑsuzu2d, since substituting these quantities intos23d gives
readily the explicit form of the DGKCSs,uz,ãl.

Example 1, harmonic oscillator: As the simplest example we apply the formalism to the
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harmonic oscillator Hamiltonian, whose nonlinearity function is equal to 1, hence«n=n=en which
results in the moments asmsnd=n! = rsnd. Note that we have considered a shifted Hamiltonian to
lower the zero-point energy to zerose0=0=«0d. Eventually

uz,ãlCCS= e−uzu2/2o
n=0

`
zne−ian

În!
unl = uz,alCCS s75d

ensures theself-dualityof canonical CS. For this example all the Gazeau–Klauder’s requirements
are satisfied, trivially.

Example 2, Pöschl–Teller potential: The interest in this potential and its CSs is due to various
applications in many fields of physics particularly in atomic and molecular physics. The usual
GKCSs for the Pöschl–Teller potential have been demonstrated nicely by Antoineet al.10 Their
obtained results are as follows:

en = nsn + nd, rsnd =
n ! Gsn + n + 1d

Gsn + 1d
, n . 2 s76d

with the radius of convergenceR=`. Consequently using the equations given bys76d in s22d and
s30d we are able to construct DGKCSs associated with this particular potential by the new quan-
tities obtained as

«n =
n

n + n
, msnd =

n ! Gsn + 1d
Gsn + n + 1d

, n . 2 s77d

and for the normalization constant we obtain froms24d,

Ñsuzu2d = s1 − uzu2d−1−n, s78d

whose region of convergence is determined as the open unit disk. The overlap between two of
these states whena=a8 is obtained froms25d as

kz,ãuz8,ãl = fs1 − uzu2ds1 − uz8u2dgs1+nd/2s1 − zz8ds−1−nd. s79d

For these dual states we only investigate the resolution of the identity; since the other three
requirements are obviously satisfied. As required, we must finds̃sxd such that the moment integral

E
0

1

xns̃sxddx =
n ! Gsn + 1d
Gsn + n + 1d

s80d

holds. It may be checked that the proper weight functions̃sxd is determined asns1−xdn−1.
At this point we recall thaten’s in s76d denotes the eigenvalues of different Hamiltonians. The

characteristics of the dynamical system has been shown by the parametern. For instance, the
eigenvalues of the anharmonicsnonlineard oscillator, well studied in literature and the related
GKCSs and GK states have been discussed in Refs. 11 and 30 in detail, respectively. In the current
example the parametern is related to two other parameters, namelyl andk through the relation
n=l+k, which determine the height and the depth of the well potential. However, when one deals
with the nonlinear oscillator it has another meaning; e.g., we refer to Ref. 30, in which the interest
was due to its usefulness in the study of laser light propagation in anonlinear Kerr medium. In
particular,n in this case is related to the nonlinear susceptibility of the medium. So, the obtained
results ins77d ands78d can be exactly used for the anharmonic oscillator, too. To this end, we shall
see in the next example that the case ofn=2 in s76d is the eigenvalues of the infinite well
potential.

Example 3, infinite well potential: The GKCSs for the infinite well, have been established by
Antoine et al. in Ref. 10. The related quantities are
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en = nsn + 2d, rsnd =
n ! sn + 2d!

2
, s81d

with radius of convergence asR=`. Consequently insertings81d in s22d and s30d one can con-
struct the dual of these states by the quantities

«n =
n

n + 2
, msnd =

2

sn + 1dsn + 2d
, s82d

and the normalization factor can be obtained froms24d as

Ñsuzu2d = s1 − uzu2d−3, s83d

whose region of convergence is determined as the open unit disk. The overlap between two of
these states for the special casea=a8 is obtained froms25d as

kz,ãuz8,ãl = fs1 − uzu2ds1 − uz8u2dg3/2 1

1 − zz8
. s84d

To clarify the fact that these dual states are actually CSs, we only investigate the resolution of the
identity, since the other three requirements are satisfied straightforwardly. For this condition we
must finds̃sxd such that the integral

E
0

1

xns̃sxddx =
2

sn + 1dsn + 2d
s85d

holds. It is easy to verify thats̃sxd=2s1−xd is the solution.
Example 4, Morse potential: The GKCSs for the Morse potential, which is the simplest type

of anharmonic oscillator and is useful in various problems in different fields of physicssfor
example, spectroscopy, diatomic, and polyatomic molecule vibrations and scatteringd, can be
obtained using the related quantities given in Ref. 9:

en =
nsM + 1 −nd

M + 2
, rsnd =

Gsn + 1dGsM + 1d
sM + 2dnGsM + 1 −nd

, s86d

wheren=0,1,2,…, sM +1d. Therefore taking into accounts86d in s22d ands30d the dual of these
states can be produced by the following quantities:

«n =
nsM + 2d
M − n + 1

, msnd =
sM + 2dnGsn + 1dGsM − n + 1d

GsM + 1d
. s87d

For the normalization factor in this case one obtains

Ñsuzu2d = F1 +
uzu2

2 + M
GM

, s88d

where again Eq.s24d has been used. Noticing that the series led toÑsuzu2d in s88d is finite, it is
readily found that it is absolutely convergent. i.e.,x=Îuzu2ù0, zPC. For evaluating the overlap
between two of these states, whena=a8, the formulas25d is not useful and one must calculate
especially the overlap between the Morse states for themselves, because of the upper bound of the
summation
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kz,ãuz8,ãl = Ñsuzu2d−1/2Ñsuz8u2d−1/2o
n=0

M+1
sz*z8dn

msnd

= FS1 +
uzu2

2 + M
DS1 +

uz8u2

2 + M
DG−M/2F2 + M + zz8

2 + M
GM

. s89d

We need only to verify the resolution of the identity. As before, we must find a functions̃sxd such
that

E
0

`

xns̃sxddx =
sM + 2dnGsn + 1dGsM − n + 1d

GsM + 1d
. s90d

Using the definition of Meijer’sG-function and the inverse Mellin theorem, it follows that31

E
0

`

dx xs−1Gp,q
m,nSaxu

a1, …, an, an+1, …, ap

b1, …, bm, bm+1, …, bq
D

=
1

as

P j=1
m Gsbj + sdP j=1

n Gs1 − aj − sd
P j=n+1

p Gsaj + sdP j=m+1
q Gs1 − bj − sd

. s91d

Comparings90d ands91d, one can find the functions̃sxd needed ins90d, in terms of the Meijer’s
G-function by the expression

s̃sxd = sM + 2dGsM + 1dG0,0
1,1SxsM + 2d−1u

− sM + 1d, .

0, .
D . s92d

Example 5, hydrogenlike spectrum: As the final physical example, we choose the hydrogenlike
spectrum where the corresponding CS has been a long-standing subject and discussed frequently
in the literature. For instance in Refs. 6 and 32 the one-dimensional model of such a system with

the HamiltonianĤ=−v / sn̂+1d2 and the eigenvaluesEn=−v / sn+1d2 has been consideredsv
=me4/2, andn=0,1,2,…d. But to be consistent with the GKCSs, as it has been done in Ref. 32,
the energy levels should be shifted by a constant amount, such that after takingv=1 one has the
eigenvaluesen and therefore the functionsrsnd as follows:

en = 1 −
1

sn + 1d2, rsnd =
sn + 2d
2sn + 1d

s93d

with unit disk centered at the origin as the region of convergence, i.e.,R=1. Therefore the related
dual family of GKCSs for a bound state portion of the hydrogenlike atom can be constructed. For
this purpose, we take into accounts93d in s22d and s30d, so the corresponding quantities for the
DGKCSs can be easily obtained as

«n =
nsn + 1d2

n + 2
, msnd =

2n ! sn + 1d!
n + 2

. s94d

In this caseR̃=` as the radius of convergence. For the normalization factor, using Eq.s24d obtains

Ñsuzu2d =
1

2Îuzu2
f2I1s2Îuzu2d + Îuzu2I2s2Îuzu2dg, s95d

whereInszd is the modified Bessel function of the first kind. Similar to the preceding examples, we
only verify the resolution of the identity. In the present case we must find a functions̃sxd such that
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E
0

`

xns̃sxddx = 2
n ! sn + 1d!

n + 2
. s96d

The integral ins91d is again helpful, if we rewrite the RHS ofs96d as 2n! fsn+1d ! g2/ sn+2d!. The
suitable measure is then found to be

s̃sxd = G0,0
3,1SxUU0, 1, 1, .

2, .
D . s97d

The overlap between these states for the special casea=a8 is obtained froms25d in the closed
form

kz,ãuz8,ãl = Ñsuzu2d−1/2Ñsuz8u2d−1/2 1

2Îz*z8
s2I1s2Îz*z8d + Îz*z8I2s2Îz*z8dd, s98d

whereÑsuzu2d andÑsuz8u2d are determined by Eq.s95d.

VII. INTRODUCING THE GENERALIZED GKCS AND THE ASSOCIATED DUAL FAMILY

In light of the above explanations we are now in a position to propose the generalized GKCSs,
by which we may recover the GKCSs given by Eq.s4d salso the associated dual family, DGKCSsd
and the nonlinear CSs given by Eq.s13d as some special cases. In the following scheme, the
physical meaning of thea parameter which enters in the GKCS and DGKCS will be more clear,
the case we have already mentionedfin the explanations after Eq.s19dg asa=vt.

A. Time evolved CSs as the generalized GKCSs

Consider the HamiltonianĤ whose eigenvectors and eigenvalues areufnl anden, respectively,
such that

Ĥ = vo
n=0

`

enufnlkfnu, where Ĥufnl = venufnl, s99d

wherev is a constant with the dimension of energystaking "=1d. Let H be a separable, infinite
dimensional and complex Hilbert space spanned by orthonormal sethufnljn=0

` . Also suppose 0
=e0,e1,e2, ¯ ,en,en+1,¯ , be such that the sumon=0

` sxn/ feng ! d converges in some inter-
val 0,xøL. For zPC, such thatuzu2,Lø`, we define the generalized CSs as follows:

uzl=̇Nsuzu2d−1/2o
n=0

`
zn

Îfeng!
ufnl, s100d

whereNsuzu2d is a normalization factor. As it is clear, these states known as nonlinear CSs, with the
nonlinearity function fsnd=Îen/n. Setting z=reiu with r =J1/2, it is reasonable to writeuzl
;uJ,ul. Now if dn be a measure which solves the moment problem

E
0

L

Jn dnsJd = feng ! , E
0

L

dnsJd = 1, s101d

then these CSs satisfy the resolution of the identity

E
0

L FE
0

2p

uJ,ulkJ,uuNsJd
du

2pGdnsJd = IH. s102d

The CSs ins100d evolve with time in the manner
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uz,tl = e−iĤtuzl = Nsuzu2d−1/2o
n=0

`
zne−ivent

Îfeng!
ufnl, s103d

or equivalently in terms of the new variablesJ andu,

uJ,u,tl = e−iĤtuJ,ul = NsJd−1/2o
n=0

`
Jn/2einue−ivent

Îfeng!
ufnl. s104d

This larger set of GKCSs, we will call them “generalized GKCSs,” defined for allt, satisfies the
resolution of the identity,

E
R
FE

0

L HE
0

2p

uJ,u,tlkJ,u,tuNsJd
du

2pJdnsJdGdmB

=E
0

L FE
0

2p

uJ,u,tlkJ,u,tuNsJd
du

2pGdnsJd

=E
R
FE

0

L

uJ,u,tlkJ,u,tuNsJddnsJdGdmB

= o
n=0

`

ufnlkfnu = IH, s105d

where dmB which is really a functionalsnot a measured is referred to as theBohr measure,

kmB; fl=̇ lim
T→`

1

2T
E

−T

T

fsxddx =E
R

fsxddmBsxd, s106d

and f is a suitably chosen function overR. In particular, if fsxd=1 for all x, thenkmB ; fl=1, so that
mB resembles a probability measure. Therefore writing the Bohr measure as an integral has only a
symbolic meaning.

Settingt=0 in the “generalized GKCSs” of Eq.s103d, we shall recover the nonlinear CSs and
for u=0, the generalized CSs of Eq.s104d reduce to the GKCSsuJ,al in s1d with a;vt, which
the latter states satisfy the resolution of the identity,

E
R
FE

0

L

uJ,alkJ,auNsJddnsJdGdmBstd = IH. s107d

The generalized GKCSsuJ,u ,tl in s104d satisfy the temporal stability condition and the action
identity, as well as the continuity in the labels and resolution of the identity,

e−iĤt8uJ,u,tl = uJ,u,t + t8l, kJ,u,tuĤuJ,u,tl = vJ, s108d

and so do the statesuz,tl in s103d.

B. The dual family of the ”generalized GKCS”

Let us now writeen=nf2snd, so using our previous results in the present paper, there is adual

set of numbersẽn;«n=n/ f2snd, associated with thedual Hamiltonian H̃̂. Correspondingly this
Hamiltonian has eigenvectorsufnl and eigenvalues«n, such that
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Ĥ̃ = vo
n=0

`

«nufnlkfnu, whereĤ̃ufnl = v«nufnl. s109d

Also assume that 0=«0,«1,«2, ¯ ,«n,«n+1,¯ , such that the sumon=0
` sxn/ f«ng ! d con-

verges in some interval 0,xø L̃. We can now define thedual family of generalized CSs intro-
duced ins100d by

uz̃l 8 Ñsuzu2d−1/2o
n=0

`
zn

Îf«ng!
ufnl, s110d

which are the well-knownsduald nonlinear CSs of Ref. 15. The time evolution of these states reads
as

uz, t̃l = e−iĤtuz̃l = Ñsuzu2d−1/2o
n=0

`
zne−iv«nt

Îf«ng!
ufnl. s111d

Again, settingz=reiu with r =J1
2, we can writeuz̃l;uJ, ũl. So, equivalently the states ins111d

can be rewritten in terms of the new variablesJ andu as

uJ,u, t̃l = e−iĤtuJ,ũl = ÑsJd−1/2o
n=0

`
Jn/2einue−iv«nt

Îf«ng!
ufnl. s112d

We call this large set of states as the “dual of the generalized GKCS.” Setting u=0 in s112d will
reduce it to the dual of the GKCSs we introduced ins23d with a=vt. Provided the moment
problem

E
0

L̃
Jn dñsJd = f«ng ! , E

0

L̃
dñsJd = 1, s113d

has a solution, we also have expressions for the resolution of the identity of the types102d, s105d,
ands107d. The GK criteria may immediately be verified for the dual of the generalized GKCS in
Eq. s112d, as it was down for the “generalized GKCSs” in Eq.s104d.

C. Generalized creation and annihilation operators

We define two sets of the generalized annihilation operators

Aufnl = Îenufn−1l, Ãufnl = Î«nufn−1l, s114d

and the corresponding generalized creation operators

A†ufnl = Îen+1ufn+1l, Ã†ufnl = Î«n+1ufn+1l, s115d

where«n= ẽn. Therefore, the Hamiltonian of the system and its associated dual are

Ĥ = vA†A, H̃̂ = vÃ†Ã. s116d

Note that we have dropped the GK indices from all the operators in this last section because the
discussion is exclusively related to the GK states. Then, for the states ins100d ands110d we have
clearly

Auzl = zuzl, Ãuz̃l = zuz̃l. s117d

In the Heisenberg picture the generalized annihilation operatorsA and Ã evolve in time as

042110-19 Construction of the Dual Family of Gazeau-Klauder J. Math. Phys. 46, 042110 ~2005!

                                                                                                                                    



Astd = eiĤtAe−iĤt, Ãstd = eiĤ̃tÃe−iĤ̃t, s118d

and similarly for the generalized creation operators. At any timet one may obtain,

Astduz,− tl = zuz,− tl, Ãstduz,− t̃l = zuz,− t̃l. s119d

D. Interpolating between generalized GKCSs and their dual

Following the approach proposed in Ref. 16 we can define the operatorT̂ on H as

T̂ 8 o
n=0

` Îfeng!
f«ng!

ufnlkfnu, s120d

with the action

T̂ufnl =Îfeng!
f«ng!

ufnl, n = 0,1,2… . s121d

Then, writinghz=Nsuzu2d1/2uzl and similarly definingh̃z,hJ,u,t, andh̃J,u,t as the unnormalized CSs,
we have

T̂hz = h̃z. s122d

SinceT̂, Ĥ, and H̃̂ commute, we have the interpolation rule at any fixed timet; i.e., fixeda,

e−isĤ̃−ĤdtT̂hJ,u,t = h̃J,u,t. s123d

VIII. CONCLUDING REMARKS

Finally we present a summary of our results. After imposing a second modification on GK
states, we showed that both the GKCSs and DGKCSs are essentially of the type of the so-called
nonlinear sf-deformedd CSs. In each of the two cases the relevant nonlinearity function is an
operator valued functionwhich depends on the intensity of lightsñd, but is labeled by a constant
real parametersad. The introduced nonlinearity function which contains an intensity dependent
phase factor, has not appeared in literature up to now. This feature originates from the temporal
stability requirement imposed on GKCSs and DGKCSs. Meanwhile, using the two nonlinearity
functions we constructed the raising and lowering operators, by which one can create and anni-

hilate thedeformed photons. After all, we proposed a general evolution operatorŜsad, whose
action on any generalized CS with known spectrum transforms it to a temporally stable CS. This
physicallymakes the generalized CS more useful in practical experiments.

Adding the results presented in Sec. VI we show that, at least in most of the considered
physical systems, i.e., when the CS deals with the whole Fock spacehunljn=0

` , while the GKCSs is
defined on the whole complex planesunit diskd the DGKCSs are restricted to unit diskswhole
planed, and vice versa. This situation does not hold for Morse potential in which there is a cutoff
in the summationsfinite dimensional Hilbert space:hunljn=0

M+1d. So based on the results in Ref. 33 in
which the authors relate the radius of convergence to the physical quantities, it can be concluded
that GKCSs and DGKCSs can be produced under different physical conditions.

We emphasize the fact that the Hamiltonian involved in the operatorŜsad must be the one that
expresses the dynamics of the system. Using this proposition we introduced the dual family of
GKCS. Also it may be understood that the GKCSs can be rewritten in terms of the associatedfGK

function, explicitly as
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uz,al f = Nsuzu2d−1/2o
n=0

`
zn

În!ffGKsa,n̂dg!
unl,

and similarly for the DGKCSs in terms of the same nonlinearity functionfGKsa ,n̂d,

uz,ãl f = Ñsuzu2d−1/2o
n=0

`
znffGKsa,n̂dg!

În!
unl.

Hence, we have established that the latter states are indeed a special class of nonlinear CSs which
are temporally stable. This property is preserved, using a particular set of nonlinearity functions as
introduced ins14d and s26d. Also, the map

uz,al ° uz,ãl

may be obtained by the following map:

fGKsa,n̂d °
1

fGKsa,n̂d
.

Note that this map converts even the normalization factor correctly. Keeping in mind the above
explanation, a certain class of nonlinear CS and its dual, determined on a specified point of the
phase spaceszPCd, including the fact that the standard CS is self-dual, may be similar to the
image of a state by the map defined above. While the images of standard canonical CS are the
same in any arbitrary point of the phase space, i.e., the usual CS does not destroy the flatness of
the mirror sor the linearity of the mediumd, this is not so for the nonlinear CSs. It may be
recognized that the operatorf in the CSs affect the flatness of the mirrorsor the linearity of the
mediumd, and makes it to be curvedsor nonlineard. As much as the state is far from the harmonic
oscillator CSs, the effect of thef-function is more strong and the dual statesimaged is far from the
state itself. So the role of the nonlinearity in the nonlinear CSs may be related to the medium,
instead of the source of light. In other words, corresponding to any nonlinear CSs there exist an
equivalent situation, “a linear sourcesordinary photond with a nonlinear optical medium,” such as
Kerr medium. This particular interpretation of the nonlinear CSs has already been realized in Refs.
34 and 35.

Finally, we confined ourselves to the general introduction of the new type of Gazeau–Klauder
CSs in this paper. Although it would be interesting for further applications in quantum optics to
investigate in detail, minimization of Robertson–Schrödinger uncertainty equation, the intelligent
states and the statistical properties, quadrature squeezing, etc., of DGKCSs and the special super-
positions of them have been introduced associated with various exactly solvable quantum me-
chanical systems and compared with those of the old onesGKCSs typed. Also it seems that the
vector CSs of DGKCSs may be constructed, as it was done for GK states.14 These matters are
under consideration for future works.

ACKNOWLEDGMENTS

The authors would like to express their thanks to Professor S. Twareque Ali from the Depart-
ment of Mathematics and Statistics of Concordia University, for his intuitive and useful comments
and suggestions, in addition to his rigorous look at the paper, in all its stages during preparation.
The authors thank Professor M. Soltanolkotabi and Dr. M. H. Naderi for reading the paper care-
fully and useful discussions. One of the authorssM.K.T.d acknowledges support from the Univer-
sity of Yazd of Iran.

1J. R. Klauder and B. S. Skagerstam,Coherent States, Applications in Physics and Mathematical PhysicssSingapore,
World Scientific, 1985d.

2S. Twareqe Ali, J-P. Antoine, and J-P. Gazeau,Coherent States, Wavelets and Their GeneralizationssSpringer-Verlag,
New York, 2000d.

3P. Deuar and P. D. Drummond, Phys. Rev. A66, 033812s2002d.

042110-21 Construction of the Dual Family of Gazeau-Klauder J. Math. Phys. 46, 042110 ~2005!

                                                                                                                                    



4C. C. Chong, D. I. Tsomokos, and A. Vourdas, Phys. Rev. A66, 033813s2002d.
5R. Roknizadeh and M. K. Tavassoly, J. Phys. A37, 5649s2004d.
6J-P. Gazeau and J. R. Klauder, J. Phys. A32, 123 s1999d.
7J-P. Gazeau and P. Monceau,Generalized Coherent States for Arbitrary Quantum SystemssKlauer Academic, Nether-
lands, 2000d.

8R. Roknizadeh and M. K. Tavassoly, J. Phys. A37, 8111s2004d.
9D. Popov, Phys. Lett. A316, 369 s2003d.

10J-P. Antoine, J-P. Gazeau, J. R. Klauder, P. Monceau, and K. A. Penson, J. Math. Phys.42, 2349s2001d.
11A. H. El Kinani and M. Daoud, J. Math. Phys.35, 2279s2001d; J. Phys. A 34, 5373s2001d.
12A. H. El Kinani and M. Daoud, Int. J. Mod. Phys. B16, 3915s2002d.
13A. H. El Kinani and M. Daoud, Int. J. Mod. Phys. B15, 2465s2003d.
14S. Twareque Ali and F. Bagarello, quant-ph/0410151.
15B. Roy and P. Roy, J. Opt. B: Quantum Semiclassical Opt.2, 65 s2000d.
16S. Twareqe Ali, R. Roknizadeh, and M. K. Tavassoly, J. Phys. A37, 4407s2004d.
17J. R. Klauder, K. A. Penson, and J.-M. Sixdeniers, Phys. Rev. A64, 013817s2001d.
18K. A. Penson and A. I. Solomon, J. Math. Phys.40, 2354s1999d.
19J. R. Klauder, quant-ph/9810044.
20V. Bargman, Commun. Pure Appl. Math.14, 187 s1961d.
21P. Shanta, S. Chaturvdei, V. Srinivasan, G. S. Agarwal, and C. L. Mehta, Phys. Rev. Lett.72, 1447s1994d.
22R. L. de Matos Filho and W. Vogel, Phys. Rev. A54, 4560s1996d.
23V. I. Man’ko, G. Marmo, S. E. C. G. Sudarshan, and F. Zaccaria, Phys. Scr.55, 528 s1997d.
24Z. Kis, W. Vogel, and L. Davidovich, Phys. Rev. A64, 033401s2001d.
25B. I. Lev, A. A. Semenov, C. V. Usenko, and J. R. Klauder, Phys. Rev. A66, 022115s2002d.
26A. M. Perelomov,Generalized Coherent States and Their ApplicationssSpringer, Berlin, 1986d.
27A. O. Barut and L. Girardello, Commun. Math. Phys.21, 41 s1971d.
28V. V. Borzov, E. V. Damaskinsky, and S. B. Yegorov, Zap. Nauchn. Semin. LOMI245, 80 s1997d sIn Russiand.
29S. Mancini, Phys. Lett. A233, 291 s1997d.
30P. Roy, Opt. Commun.221, 145 s2003d.
31A. M. Mathai and R. K. Saxena,General Hypergeometric Functions with Applications in Statistical and Physical

Science, Lecture Notes in Mathematics, Vol. 348sSpringer, New York, 1973d.
32J. R. Klauder, quant-ph/0110108.
33M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, Eur. Phys. J. D32, 80 s2005d .
34S. S. Mizrahi, Lima J. P. Camargo, and V. V. Dodonov, J. Phys. A37, 3707s2004d.
35M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, J. Phys. Soc. Jpn.73, 2413s2004d.

042110-22 R. Roknizadeh and M. K. Tavassoly J. Math. Phys. 46, 042110 ~2005!

                                                                                                                                    



Estimates on Green functions of second order differential
operators with singular coefficients

Z. Habaa!

Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw,
Plac Maxa Borna 9, Poland

sReceived 6 October 2004; accepted 10 December 2004; published online 4 March 2005d

We investigate the Green functionsGsx;x8d of some second order differential op-
erators onRd+1 with singular coefficients depending only on one coordinatex0. We
express the Green functions by means of the Brownian motion. Applying probabi-
listic methods we prove that whenx=s0,xd andx8=s0,x8d sherex0=0d lie on the
singular hyperplanes, thenGs0,x ;0 ,x8d is more regular than the Green function of
operators with regular coefficients. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1855934g

I. INTRODUCTION

We discuss Green functions of some second order differential operators with singular coeffi-
cients appearing in quantum physics.

As a first example consider the Lagrangian for a scalar field insd+1d-dimensions interacting
with gravity

L = gmn]mf]nf + sm2 + jRdf2, s1d

wheregmn is the metric tensor andR is the scalar curvature. Such a Lagrangian withm=0 and the
minimal coupling j=0 appears also in the theory of structure formationscosmological
perturbationsd.1 We discuss the Euclidean version of a spatially homogeneous metricfwe write
x=st ,xd or x=sx0,xd depending on whether the first coordinate has an interpretation of time or
spaceg,

ds2 = dt2 + gjkstddxjdxk.

The Laplace–Beltrami operator resulting from the bilinear form in Eq.s1d reads

Dg = 1
2g−1/2]msgmng1/2]nd s2d

fhereg=detsgmndg. In cosmological modelsgjk. t2a andgjk. t−2a when t→0 with a.0. Such a
singular behavior can appear also in models describing collapse phenomena in general relativity.2

As a second example we consider quantum mechanics on astopologically triviald manifold
with the Hamiltonian

H = − Dg + Usx0d s3d

fin some global coordinatesx=sx0,xdg.
The Green functions ofsEuclideand quantum scalar fieldss1d with m=0 and the minimal

couplingj=0 are solutions of the equation
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− DgG = g−1/2d. s4d

These Green functions are also relevant for classical field theory because they describe a propa-
gation of disturbances. In quantum mechanicss3d we are interested in the propagator kernels

exps− tHdsx0,x;x08,x8d, s5d

wheret is purely imaginary.
In this paper we prove that if the coefficients of the Laplace–Beltrami operator have a power-

law singularity at a certain pointt= t0, then the Green functionsGst0,x ; t0,x8d are more regular
than the ones of operators with regular coefficientssfor regular coefficients the Green function can
be expressed by the geodesic distance3,4d. In quantum field theory these Green functions have the
meaning of expectation values of quantum fields at equal times. In quantum mechanics the propa-
gators5d will have an anomalous behavior int. The Green functions4d can be obtained from the
propagators5d by means of an integration overt.

II. THE GREEN FUNCTIONS

Let us change coordinates

dt

dh
= Îg. s6d

The Laplace–Beltrami operators2d takes the form

2Dg = g−1]h
2 + gjk] j]k. s7d

The bilinear form in Eq.s1d determines an operatorA which is of the same form asH in quantum
mechanicsfEq. s3dg:

A = − Dg + w. s8d

Here,w= 1
2m2+ 1

2jR for the scalar field andw=U for quantum mechanics. The Green function of
A is a solution of the equation

− s]h
2 + ggjk] j]k − WdG = 2dsh − h8ddsx − x8d, s9d

where we write

W= gw. s10d

Together with Eq.s9d we consider the differential equation

− ]tPt = APt s11d

with the initial conditionP0sh ,x ;h8 ,x8d=dsh−h8ddsx−x8d. Equations11d defines the transition
function of a stochastic process.5

We can formulate the problem of solving the equation

AG = d s12d

as a problem in the Hilbert space of square integrable functionsL2sdhdxd.6 We assume that W is
a non-negative function. The operatorA can be considered as a self-adjoint non-negative operator
in L2 if ggjk andW are locally integrable functionsfthen we can define the Friedrichs extension6

of the symmetric differential operators8dg. The transition functionPt of Eq. s11d can be defined as
the integral kernel of exps−tAd. Then, the kernel of the inverse
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A−1 =E
0

`

dt exps− tAd

is the solution of Eq.s9d. It follows that the Fourier transformG̃ of G has the representation

G̃sh,h8;pd =E
0

`

dtP̃tsh,h8,pd, s13d

whereP̃ is a solution of the equation

− ]tP̃t = ÃP̃t s14d

with the initial conditionP̃0sh ,h8 ,pd=dsh−h8d sthe fundamental solutiond. Here

Ã = − 1
2]h

2 + 1
2pjg

jkshdgshdpk + W; − 1
2]h

2 + Vshd + Wshd. s15d

Equations14d is a Schrödinger-type equation with the HamiltonianÃ and the potentialV+W
where

Vshd = 1
2pjg

jkshdgshdpk ; pṼpshd. s16d

If the potentialsV and W belong toLloc
1 sdhd, then Ã is a well-defined essentially self-adjoint

operator inL2sdhd.7

We can express the kernelP̃ by means of the Brownian motionb sthe Feynman–Kac
formula;8 a discussion of the probabilistic representation for singular potentials can be found in
Ref. 9d:

P̃tsh,h8,pd = EFdsh8 − h − bstddexpS−E
0

t

Vsh + bssddds−E
0

t

Wsh + bssdddsDG , s17d

whereEf.g denotes an average over the Brownian paths. Now, the kernel of exps−tAd has the
representation

Ptsh,x,h8,x8d = s2pd−dE dp expsipsx8 − xdd

3 EFdsh8 − h − bstddexpS−E
0

t

Vsh + bssddds−E
0

t

Wsh + bssdddsDG .

s18d

In order to eliminate thed function in Eq.s17d it is useful to express the expectation value over the
Brownian motion by means of an expectation value over the Brownian bridgeg. Let q be a path
connectingh with h8

qS s

t
D = h + sh8 − hd

s

t
+ ÎtgS s

t
D , s19d

whereg is the Gaussian process on the intervalf0, 1g sthe Brownian bridged starting from 0 and
ending in 0 with the covariance

Efgssdgss8dg = s8s1 − sd

for s8øs. Then, Eq.s17d can be rewritten in the form8
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P̃tsh,h8,pd = s2ptd−1/2 expS−
1

2t
sh8 − hd2DEFexpS− tE

0

1

dssVsqssdd + WsqssdddDG .

s20d

Applying the Jensen inequalityssee Refs. 10 and 11d to the Ef. .g integral we obtain the
inequality

P̃tsh,h8,pd ù s2ptd−1/2 expS−
1

2t
sh8 − hd2DexpS− tE

0

1

ds EfVsqssdd + WsqssddgD ; P̃L.

s21d

This integral is

P̃t
Lsh,h8,pd = s2ptd−1/2 expS−

1

2t
sh8 − hd2DexpS− tE

0

1

dsE dys2pss1 − sdd−1/2 expS−
y2

2ss1 − sdD
3sV + Wdsh + ssh8 − hd + ÎtydD . s22d

As a simple application of the inequalitys21d we note that if

V + Wø A8p2 + B8, s23d

then

P̃t
Lsh,h8,pd ù s2ptd−1/2 expS−

1

2t
sh8 − hd2Dexps− tA8p2 − tB8d. s24d

Hence, we obtain a bound from below by the transition function for thed-dimensional Brownian
motion.

On the other hand, we may apply the Jensen inequality in the opposite direction to the
s-integral

P̃tsh,h8,pd ø s2ptd−1/2 expS−
1

2t
sh8 − hd2DE

0

1

ds Efexps− tVsqssdd − tWsqssdddg ; P̃U.

s25d

This integral takes the form

P̃t
Ush,h8,pd = s2ptd−1/2 expS−

1

2t
sh8 − hd2DE

0

1

dsE dys2pss1 − sdd−1/2 expS−
y2

2ss1 − sdD
3exps− tsV + Wdsh + ssh8 − hd + Îtydd. s26d

If

V + Wù Ap2 + B,

then

P̃t
Ush,h8,pd ø s2ptd−1/2 expS−

1

2t
sh8 − hd2Dexps− tAp2 − tBd. s27d

Hence, we estimate the transition function from above by the Wiener transition function.
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III. SCALE INVARIANT METRICS

We consider in this section a power-law cosmological expansion. Such an expansion is an
exact solution of coupled Einstein equations for a metric and for the scalar field with an exponen-
tial self-interaction. Some consequences for a structure formation with such an expansion are
discussed in Refs. 12 and 13. Ifgjkstd has an isotropic power-law behavior, thenV is scale
invariant. Let us assume here thatV andW are non-negative and scale invariant aroundh=0 fthere
is nothing special in the choice ofh=0 as a singular point, see a discussion at Eq.s44dg:

Ṽjkslhd = l2nṼjkshd s28d

and

Wslhd = l2sWshd. s29d

Let us denoteu=t−1/2h. We apply the scaling properties of the Brownian bridges19d. Then, forV
of the form s28d andW in s29d we obtain

P̃tsh,h8,pd = s2ptd−1/2 expS−
1

2t
sh8 − hd2DEFexpS− t1+nE

0

1

pṼpsu + ssu8 − ud + gssdddsD
3 expFS− t1+sE

0

1

Wsu + ssu8 − ud + gssdddsDG . s30d

The boundss22d and s26d become simple ifh=h8=0. Then, the bounds22d reads

P̃t
Ls0,0,pd = s2ptd−1/2 expS− t1+nE

0

1

dsE dys2pss1 − sdd−1/2VsydexpS−
y2

2ss1 − sdD
− t1+sE

0

1

dsE dys2pss1 − sdd−1/2WsydexpS−
y2

2ss1 − sdDD
= s2ptd−1/2 expS− t1+nphpE

0

1

dssss1 − sddn − Bt1+sE
0

1

dssss1 − sddsD , s31d

where the bilinear formh in p is defined by

php = s2pd−1/2E dy expS−
y2

2
DpṼsydp s32d

and the constantB in Eq. s31d is

B = s2pd−1/2E dy expS−
y2

2
DWsyd. s33d

The integrals32d is finite if n.−1
2 ands33d is finite if s.−1

2. In such a case the lower bounds31d
is nontrivial. The upper bounds26d takes the form

P̃t
Us0,0,pd = s2ptd−1/2E

0

1

dsE dys2pss1 − sdd−1/2expS−
y2

2ss1 − sdDexps− t1+nVsyd − t1+sWsydd.

s34d

We are interested in the Green functionss9d of the operatorA which according to Eqs.s13d
ands18d are expressed by at integration uponPt. As the simplest example of the integrals13d let
V+W=Ap2+B. Then performing thet integration upon the rhs of Eq.s13d we obtain
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G̃0s0,0;pd = s2Ap2 + 2Bd−1/2. s35d

This is the standard behavior of equal-time Green functions for the quantum free field.
In Eq. s31d let us first discuss the caseW=B=0. Then, the integral overt of Eq. s31d gives the

lower bound on the Green function

G̃s0,0;pd ù K1sphpd−v, s36d

where

v =
1

2s1 + nd
. s37d

In order to estimate the upper bounds34d sfor W=0d let us assume a lower bounduṼu0 on Ṽ, i.e.,
for pÞ0

pṼp ù p2uṼu0 . 0. s38d

Now, we change variables in Eqs.s13d and s34d, st ,yd→ sr ,ud, where

r = tupu2/s1+nduṼsydu0
1/s1+nd,

u = ysss1 − sdd−1/2.

Then, the upper bound takes the form

G̃s0,0;pd ø upu−2vE
0

`

drs2prd−1/2E
0

1

dsE dus2pd−1/2sss1 − sdd−n/s1+nduṼsudu0
−v

3expS−
u2

2
Dexps− r1+nd. s39d

We can see that the integral on the rhs of Eq.s39d is finite if −1,n,`.
We can summarize our results as follows.
Theorem 1: Assume thatW=0 and the potentialV in Eq. s15d is non-negative and scale

invariant withn.−1
2 fEq. s28dg. Then, the operatorÃ is essentially self-adjoint and the integral

kernel of exps−tÃd has the probabilistic representations20d. The Green functionG of Eq. s9d can
be defined as an integral kernel ofA−1. Assume that the potentialV satisfies the lower bounds38d.
Then the Fourier transformG̃sh ,h8 ;pd of Gsh ,h8 ,x−x8d at h=h8=0 for any p satisfies the
inequalities

K1sphpd−v ø G̃s0,0;pd ø K2upu−2v, s40d

whereh is defined in Eq.s32d andK1 andK2 are some positive constants.

For n,0 the Fourier transformG̃ is decaying to zero faster than the Green function for
operators with constant coefficients. As a consequenceG is less singular than the one for operators
with constant coefficientsfsee Eq.s43d belowg.

In the configuration space, ifW=0, then we can extract thet dependence fromV using its
scale invariance. Then, changing the integration variable in Eq.s18d, p=t−s1/2ds1+ndk, we can
conclude thatP has the form

Ptsh,x,h8,x8d = t−s1/2ds1+ndd−1/2Fst−1/2h,t−1/2h8,t−s1/2ds1+ndsx − x8dd s41d

with a certain functionF. Integration overt with a rescaledt=r ux−x8u2/s1+nd brings the Green
function at equal time to the form
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Gsh,x,h,x8d = ux − x8u−d+1/s1+ndfsux − x8u1/s1+ndh,sx − x8dux − x8u−1d. s42d

It follows

Gs0,x,0,x8d = ux − x8u−d+1/s1+ndfssx − x8dux − x8u−1d. s43d

We obtain such a behavior inux−x8u if we apply the inverse Fourier transform to the functions on
both sides of the inequalitiess40d.

Let us note that ifV is singular ath0Þ0 se.g.,V.uh−h0u2nd, then all our results concerning
the transition functions and Green functions still hold true but instead of settingh=h8=0 we set
h=h8=h0 fthis conclusion follows directly from Eq.s30dg. So, e.g., the formulas43d reads

Gsh0,x,h0,x8d = ux − x8u−d+1/s1+ndfssx − x8dux − x8u−1d. s44d

We admit nowWÞ0
Theorem 2: Let Wù0 be scale invariantfEq. s29dg ands.−1

2. Thensunder the assumptions
of Theorem 1 concerningVd for anyL.0, if upu.L, then there exist positive constantsK1 andK2

such that the inequalitiess40d hold true.
Proof: SettingW=0 in Eq.s34d we obtain the upper bounds39d. For the lower bound we note

that the exponential in Eq.s31d is dominated by the term quadratic in the momenta. We change the
integration variable in Eqs.s13d and s34d:

t = rsphpd−1/s1+nd.

Then, we can see that for anyL.0, if upu.L, then there exists a constantC such that in the
exponential of Eq.s31d Bt1+s,Cr1+s. Then

E dt P̃t
Ls0,0,pd ù sph2pd−vE drs2prd−1/2 expS− r1+nE

0

1

dssss1 − sddn − Cr1+sE
0

1

dssss1 − sddsD .

From this lower bound and from the upper bounds39d we obtain the results of the theorem.
If W.0, then the lower bound in Eq.s40d cannot be true for arbitrarily smallp because as

follows from Eq.s34d sV=0 for p=0d

G̃s0,0,0d ø E
0

`

dts2ptd−1/2E
0

1

dsE dys2pss1 − sdd−1/2 expS−
y2

2ss1 − sdDexps− t1+sWsydd , `.

s45d

If we imposed the condition thattù0 swhich is quite artificial in the Euclidean frameworkd,
then we would need to impose boundary conditions ath=0 on the Brownian motion in the path
integral s17d. The Dirichlet boundary conditions can easily be imposed in the functional integra-
tion framework. We just insert the characteristic function of the positive real axis in the path
integrals17d, rejecting all the Brownian paths which leave the positive real axis. With the Dirichlet
boundary conditions our estimates on the upper bound remain unchanged whereas the estimates on
the lower bound require some minor modifications.

Let us consider an example of a three-dimensional space. By a change of coordinates we can
diagonalize the matrixsgjkd:

gjk = d jkaj
2. s46d

Let a=sa1a2a3d1/3 and

d j = aj
−1a−2]haj ,

d = a−3]ha,
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Q =
1

18o
j,k

sd j − dkd2.

Then, in the potentialW of Eq. s9d,14

gR= 6a4sa−2]hd + d2 + Qd s47d

and

m2g = m2a6. s48d

We obtain a scale invariantV and W if aj are scale invariant. Let us consider the simplest case
when allaj are equal,tPR, and

astd = utua. s49d

We have

h = s1 − 3ad−1tutu−3a.

Note that fora.
1
3 the pointt=0 corresponds toh=−` and t=` to h=0.

Then

Vsyd = kp2uyu2n,

wherek.0 is a certain constant and

n = 2as1 − 3ad−1. s50d

For a scale invariant metric

W= m2gshd + jgR= C1m
2uhu6a/s1−3ad + jC2h−2.

De Sitter space can be obtained as a limita→`. Then, we haveVshd=cp2uhu−4/3 and m2g
=c8h−2, henceWshd= c̃h−2. This is a singular perturbation which goes beyond our analysis. It can
be treated by means of the path integral methods. However, in such a caseW needs a regulariza-
tion, then a renormalization and a subsequent removal of the regularization.9 The h−2 singularity
comes also from the termgR. Hence, the results of this section apply only toj=0. Then, in Eq.
s29d s=3as1−3ad−1. B in Eq. s33d is finite if uau, 1

3.
In quantum mechanicsx0 is interpreted as a space variable. The metric takes the formsd+1

=3d

ds2 = dx0
2 + ux0u2asdx1

2 + dx2
2d.

Then,h=s1−2ad−1x0ux0u−2a. The Hamiltonians3d is symmetric inL2sÎgdxd. The change of coor-

dinatesx0→h associates withH the operatorÃ=gH̃ which is symmetric inL2sdhdxd,

Ã = − ]h
2 + V + W,

where

Vshd = C1p
2uhu2a/s1−2ad s51d

with p2=p1
2+p2

2 and

W= gUshd = C2uhu4a/s1−2adUshd. s52d

The anomalous behavior ofP̃t has the following as a consequence.
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Corollary 3: Let P̃tsh ,h8 ,pd be the fundamental solution of Eq.s14d with W=0 andV defined
in Eq. s51d. If n=a / s1−2ad.−1

2, then for anytù0

E dx Pts0,x,0,x8dux − x8u2 = s− DpdP̃ts0,0,pdup=0u = B1t1/2+n s53d

and

E dxdh8 Pts0,x,h8,x8dux − x8u2 =E dh8s− DpdP̃ts0,h8,pdup=0u = B2t1+n. s54d

If Wshdù0 defined in Eq.s52d belongs toLloc
1 sdhd, then instead of the equalities in Eqs.s53d and

s54d we have bounds from above byB1t1/2+n in Eq. s53d andB2t1+n in Eq. s54d.
Proof: We prove Eq.s54d fEq. s53d is simpler and proved in a similar wayg. Let us calculate

s− Dpd E dh8 P̃ts0,h8,pdup=0u =E dh8s2ptd−1/2 expS−
1

2t
sh8d2D

3 EFt1+nE
0

1

TrṼsst−1/2h8 + gssdddsG = B2t1+n. s55d

If Wù0, then instead of the expectation values55d we have

E dh8s2ptd−1/2 expS−
1

2t
sh8d2DEFt1+nE

0

1

TrṼsst−1/2h8 + gssddds

3expS−E
0

t

WSst−1h8 + ÎtgS s

t
DDdsDG ø B2t1+n,

where the inequality follows fromWù0.
Corollary 3 means that ifn,0, then the sample paths of diffusions generated by operators

with singular coefficients have worse continuity properties than the Brownian pathssfor Brownian
paths see Ref. 8d.

IV. MORE GENERAL METRICS

We study the lower bound onG following from Eq. s22d

G̃Ls0,0,pd =E
0

`

dts2ptd−1/2 expS− tE
0

1

dsE dys2pss1 − sdd−1/2 expS−
y2

2ss1 − sdDVsÎtydD ,

and the upper bound following from Eq.s26d

G̃Us0,0,pd =E
0

`

dts2ptd−1/2E
0

1

dsE dys2pss1 − sdd−1/2 expS−
y2

2ss1 − sdDexps− tVsÎtydd

for more generalV.
A generalization of Theorem 1 reads as follows.

Theorem 4: Let us considerV=pṼp, which is not scale invariant but of the form

Ṽshd = Ṽshdfshd + lshd, s56d

where Ṽ is a matrix scale invariant functions28d satisfying the conditions of Theorem 1 with
−1

2 ,n,0, f is a bounded function with a strictly positive lower bound, andl is a non-negative
bounded matrix function. Assume in addition that
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E dy expS−
y2

2
D fsydṼsyd ù cI . 0, s57d

wherec is a positive number. Under our assumptionss56d ands57d for anyL.0, if upu.L, then
there exist a positively definite bilinear formh2 and constantsK1 andK2 such that

K1sph2pd−v ø G̃s0,0;pd ø K2upu−2v. s58d

If nù0 for Ṽ in Eq. s56d, then for upu.L the inequalitiess58d hold true withv= 1
2.

Proof: Our assumptionss56d on Ṽ mean that it satisfies the inequalities

tnpṼ1sydp + pl1p ø VsÎtyd ø tnpṼ2sydp + pl2p s59d

with certain matrix functionsṼ1 andṼ2 independent oft and bilinear formsl1 andl2 sindependent

of yd. It follows that the integral ofP̃t satisfies the bounds

E dt P̃t
L2 exps− tpl2pd øE dt P̃t øE dt P̃t

U1 exps− tpl1pd, s60d

where in the lower boundP̃L2 the potentialV2 from the rhs of Eq.s59d is applied and inP̃U1 the
one from the lhs of Eq.s59d. The integrals57d definesh of Eq. s32d fand theh2 from the upper
bounds59dg. Let us change the integration variablet=rsph2pd−1/s1+nd on the lhs of Eq.s60d and

t=rupu−4vuṼ1sydu0
−2v on the rhs. Then, the lower and upper bounds readffrom Eqs.s31d, s34d, and

s38dg

sph2pd−vE
0

`

drs2prd−1/2 exps− r1+n − rsph2pd−2vpl2pd

ø G̃s0,0,pd ø upu−2vE
0

`

drs2prd−1/2E
0

1

dsE dus2pd−1/2sss1 − sdd−n/s1+nduṼ1sudu0
−v

3expS−
u2

2
Dexps− r1+n − rupu−4vuṼ1suÎss1 − sddu0

−2vpl1pd. s61d

The conditions57d implies that the bilinear formh2 is strictly positive. Hence, there exists a
constantK such that

Kph2p ù pl2p.

Then, for −1
2 ,n,0 andupu.L, there existsc1 such that

rsph2pd−1/s1+ndpl2p , rc1

in the exponential on the lhs of Eq.s61d. The l1 term can be set zero for the upper bound. In such
a case for eachL.0 there exist constantsc1 andc2 such that ifupu.L, then the inequalitiess61d
take the form

sph2pd−vE
0

`

drs2prd−1/2 exps− r1+n − rc1d

ø G̃s0,0,pd ø upu−2vE
0

`

drs2prd−1/2E
0

1

dsE dus2pd−1/2

3sss1 − sdd−n/s1+nduṼ1sudu0
−v expS−

u2

2
Dexps− r1+nd. s62d
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The inequalitiess62d coincide withs58d because under our assumptions the integrals in Eq.s62d
are finite. The last statement of Theorem 4 follows from the inequalitiess60d because the behavior

for largep follows from the behavior ofP̃t for a smallt. If n.0, then in Eq.s60d t1+n,At for

any A and a sufficiently smallt. Hence, we obtain the same behavior ofG̃ for large momenta as

in the caseṼ=1.
We would like to note that the restrictive forms56d of V is not necessary. As an example we

could considerV which has singularities at several points, e.g.,

Vshd = p2sa0uh − h0u2n0 + kuhu2nd s63d

with un0u, unu sonly negative indices are nontriviald. An application of the lower and upper bounds
s31d and s34d to the potentials63d leads to the conclusion that after an integration upont the
inequalitiess40d hold true forupu.L. Hence, the leading singularityn determines the behavior at
large momenta.

V. DISCUSSION AND SUMMARY

As we pointed out in the Introduction our results concerning the Green functions can find an
application to quantum field theory in an expanding universe. The stronger damping in momenta
fEq. s40dg in the inflationary modelssa.1d at h=h8=0 indicates that it would be promising to
start quantization at this timesh=0 corresponds tot=` in cosmological models witha.

1
3d. The

exponential inflation can be obtained as a limita→` which corresponds ton=−2
3. This limit is

beyond our rigorous approach but it could be treated by means of more sophisticated methods of
Ref. 9. By a formal scaling argument we obtain again the behaviors40d which in inflationary
cosmological models is known as the Harrison–Zeldovich spectrum of scalar fluctuations.1,15 The
Green functions can be applied in order to derive a solution of Einstein equations linearized
around the homogeneous background.12,13 In such a case in addition to the scalar Green function
the tensor Green function must be studied as well. Further consequences of our estimates con-

cerning the spectrum ofG̃ for the complete theory still need to be explored. For this purpose a
detailed dependence of the Green function onh and h8 would be useful. It is much harder to
derive such estimates than the ones for the time zero case. In the Appendix we investigate the
upper boundGU for generalh. In particular, calculations performed there suggest that it is only the
behavior ofVsyd for smally which is relevant for Theorem 4 and that the upper bound is valid for
all n.−1+1/d. For the lower boundGL we can also obtain an integral representation. However,
it is quite complicated.

Another motivation for a study of thesd+1d-dimensional Green functions comes from the
problem of a dimensional reduction of quantum fields defined on a brane.16 In such a case we
restrict ourselves to ad-dimensional submanifold imposing the conditionh=h8=0. We have
proved here that if the metric has a power-law behavior, then the Green functions of the restricted
quantum field theory are decaying faster in the momentum space than the standardupu−1. In
particular, forn=−1

2 we obtain the propagatorupu−2 in d-dimensions which is the same as the one
of the Euclidean massless free field.

APPENDIX

We calculate the upper bound for the Green functionG̃ following the form of Eqs.s26d and
s13d in more detail. Setu=Îty and let us perform the integration upont in Eq. s26d with W=0.
Then

G̃Ush,h8,pd = 2s2pd−1/2E
0

1

dsE dus2pss1 − sdd−1/2K0sÎ2MpṼpsudd, sA1d

where
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M = sh8 − hd2 + sss1 − sdd−1su − h − ssh8 − hdd2 sA2d

andKr is the modified Bessel function of orderr.17

The integral is simpler ifh=h8

G̃Ush,h,pd = p−1E
0

1

dsE du K0sNÎ2pṼpsudd, sA3d

where

N = sss1 − sdd−1/2h − u. sA4d

If h8=h=0, then the integralsA1d further simplifies. If additionallyV is scale invariant, then we
can calculate it exactly as in Sec. III.

For arbitraryh andh8 the behavior ofG̃U is much more complicated because the decay ofG̃U

substantially depends onh. In the simplest case, whenṼ= 1
2

G̃sh,h8,pd = upu−1 exps− upuuh8 − hud. sA5d

Let us consider an arbitraryV and assume that it behaves as

Vslyd = l2nBlsyd sA6d

whenl→0 with a certainBl, which as a function ofl is bounded from above and from below,
i.e., C2sydùBlsydùC1syd.0 for a smalll. Let us change variables in Eq.sA1d

u = upu−1/s1+ndy. sA7d

Assume thatupu→`, h→0, and h8→0 in such a way thatu= upu1/s1+ndh and u8= upu1/s1+ndh8
remain finite. In such a case from Eq.sA1d we can conclude that

G̃supu−1/s1+ndu,upu−1/s1+ndu8,pd . upu−2v sA8d

for largep in agreement with Eqs.s40d and sA5d sn=0 for a constantṼd.
EquationssA1d–sA4d give an integral representation of the upper bound which is expected to

approximate the exact Green functionG̃ for largep. We suppose that the Fourier transformGU of

G̃U is a reliable approximation toG at short distances. After the Fourier transform of Eq.s26d with
W=0 we can calculate thet integral in Eq.s13d exactly. We obtain

GUsh,x,h8,x8d = s2pd−sd+2d/2E
0

1

dssss1 − sdd−1/2E dysdetṼsydd−1/2ssx − x8dṼ−1sydsx − x8d

+ sh − h8d2 + sss1 − sdd−1sy − h − ssh8 − hdd2d−d/2. sA9d

If Ṽijsyd=di jvsyd, then the formulasA9d can be expressed in a simpler form

GUsh,x,h8,x8d = s2pd−sd+2d/2E
0

1

dssss1 − sdd−1/2E dysux − x8u2 + vsydsh − h8d2

+ sss1 − sdd−1vsydsy − h − ssh8 − hdd2d−d/2. sA10d

If v=1, then Eq.sA10d gives

s2pd−sd+1d/2sux − x8u2 + sh − h8d2d−sd−1d/2, sA11d

as it should.
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The integralssA9d andsA10d suggest some generalizations of the theorems proved in the main
part. First, assume thatVsyd.uyu2r for a largeuyu. Then the integralssA9d andsA10d are finitesfor
ux−x8uÞ0d if r.−1+1/d. Next, it can be shown from Eq.sA10d that if vsyd.uyu2n for y→0 and
h=h8=0, then

GUs0,x,0,x8d . ux − x8u−d+1/s1+nd

for x−x8→0. The derivation of the results44d based on Eq.sA10d suggests that for Theorem 4
only the behavior ofVsyd for a smally is relevantfassuming the integralsA10d is finiteg.

For generalv and arbitraryx ,x8 ,h and h8 it is harder to obtain usable estimates. Let us
mention some special cases. It follows directly from Eq.s41d that

Gsh,x,0,xd . uhu−ds1+nd+1

and

Gs0,x,h8,xd . uh8u−ds1+nd+1,

whereas from Eq.sA10d we obtain that ifvshdÞ0, then

GUsh,x,h,x8d . vshd−1/2ux − x8u−d+1 sA12d

whenx→x8.
If Vsydùcuyu2r with c.0 andr.−1+1/d for largey, then changing the integration variable

y= ux−x8u1/s1+rdz we can show that for anyh andh8 there existsA such that ifux−x8uùA, then

GUsh,x,h8,x8d ø Kux − x8u−d+1/s1+rd. sA13d

When r.0, then Eq.sA13d gives a nontrivial estimate saying that the Green function has a
stronger decay for large distances than the one for operators with constant coefficients. However,
such a decay at large distances will be changed by most perturbationsW whereas the behavior for
short distances is remarkably stable with respect to perturbations.
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In nonrelativistic quantum electrodynamics the charge of an electron equals its bare
value, whereas the self-energy and the mass must be renormalized. In our contri-
bution we study perturbative mass renormalization, including second order in the
fine structure constanta, in the case of a single, spinless electron. As is well
known, if m denotes the bare mass andmeff the mass computed from the theory, to
order a one hasmeff /m=1+s8a /3pdlogs1+ 1

2sL /mdd+Osa2d which suggests that
meff /m=sL /md8a/3p for small a. If correct, in ordera2 the leading term should be
1
2ss8a /3pdlogsL /mdd2. To check this point we expandmeff /m to order a2. The
result isÎL /m as leading term, suggesting a more complicated dependence ofmeff

on m. © 2005 American Institute of Physics.fDOI: 10.1063/1.1852699g

I. INTRODUCTION

Nonperturbative renormalization in relativistic quantum electrodynamicssQEDd remains as a
mathematical challenge. Thus it is of interest to study simplified candidates, an obvious one being
nonrelativistic QED. In this theory, with comparable little effort, one can start from a self-adjoint
Hamiltonian operator and thus has a well-defined mathematical framework. As an additional
simplification, there is no charge renormalization because of the absence of positrons. Neverthe-
less, even in nonrelativistic QED, energy and mass renormalization remain poorly understood.
Our, admittedly modest, contribution is to study mass renormalization including ordera2.

Let us first explain the basic Hamiltonian. We consider a single, spinless free electron coupled
to the quantized radiation field. We will use relativistic units and employ immediately the total
momentum representation. Then the Hilbert space of states is the symmetric Fock space,F, over
the one-particle spaceL2sR33 h1,2jd, i.e.,

F = %n=0
` f^s

nL2sR3 3 h1,2jdg.

The inner product inF is denoted bys·,·d and the Fock vacuum byV. OnF we introduce the Bose
field

asfd = o
j=1,2

E fsk, jd*ask, jddk, f P L2sR3 3 h1,2jd. s1.1d

Operatorsasfd andasfd* =a*sfd are densely defined and satisfy the CCR,

fasfd,a*sgdg = sf,gdL2sR33h1,2jd,

adElectronic mail: hiroshima@mpg.setsunan.ac.jp
bdElectronic mail: spohn@ma.tum.de
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fasfd,asgdg = 0,

fa*sfd,a*sgdg = 0.

The kinetic energy of the photon is given by

Hf = o
j=1,2

E vskda*sk, jdask, jddk, s1.2d

which is the second quantization ofvskd= uku considered as a multiplication operator onL2sR3d.
Similarly the momentum of the photon field is

Pf = o
j=1,2

E ka*sk, jdask, jddk. s1.3d

The coupling of the electron to the Maxwell field is mediated through the transverse vector
potentialAŵ defined by

Aŵ =
1
Î2

sasf ŵd + a*sf ŵdd, s1.4d

where

f ŵsk, jd =
1

Îv
ŵskdesk, jd, k P R3, j = 1,2, s1.5d

with k/ uku , esk,1d , esk,2d forming a right-handed dreibein inR3. ŵ is the form factor which, as a
minimal assumption, satisfies

E
R3

uŵskdu2svskd−2 + vskdddk , `. s1.6d

Later on, we will make a more specific choice ofŵ.
With these definitions the Hamiltonian under study is

Hŵspd = 1
2:sp − Pf − eAŵd2: + Hf, p P R3, s1.7d

wherep is the total momentum,e the charge, to be definiteeù0, and :X: denotes the Wick order
of X. Hŵspd with domainDsHf +

1
2Pf

2d=DsHfdùDs 1
2Pf

2d is self-adjoint fore and p with ueu,e0

andupu,p0 for somee0 andp0, provideds1.6d holds. The energy-momentum relation is defined as
the bottom of the spectrum ofHŵspd,

Eŵspd = inf ssHŵspdd. s1.8d

In s1.7d the bare massm of the electron is still missing. It appears in two places. First the form
factor depends onm. Let us assume a sharp ultraviolet cutoffL. Then

ŵskd = ŵ0smck/Ld, L . 0,

ŵ0skd = Hs2pd−3/2 for uku ø 1,

0 for uku . 1,
J s1.9d

with 1/mc the Compton wavelength. Second, energy is to be measured in units ofmc2 and
momentum in units ofmc. We henceforth setc=1 sand also"=1d. Thus the true energy-
momentum relation of the Pauli–Fierz Hamiltonian is
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Em,Lspd = mEŵsp/md, ŵ of s1.9d. s1.10d

Note that equivalentlyEm,Lspd is given through

Em,Lspd = inf sS 1

2m
:sp − Pf − eAŵ0s·/Ldd2: + HfD .

Removal of the ultraviolet cutoffL through mass renormalization means to find sequences

L → `, m→ 0 s1.11d

such thatEm,Lspd−Em,Ls0d has a nondegenerate limit. A convenient criterion for nondegeneracy is
the curvature ofEm,Lspd at p=0, in other words the inverse effective mass. Let us assume for a
moment an infrared cutoff,

ŵskd = 0 for uku , k/m

with some 0,k. Then it is known1 that, for ueu,e* , upu,p* with suitablee* .0 andp* .0, Hŵspd
has a nondegenerate ground statecgspd separated by a gap from the continuum, i.e.,

Hŵspdcgspd = Eŵspdcgspd, cgspd P F,

has a unique solution. Let us set

Em,Lspd − Em,Ls0d =
1

2meff
p2 + Osupu3d s1.12d

for small p. Then, using second order perturbation theory ins1.10d, one obtains

m

meff
= 1 −

2

3 o
m=1,2,3

scgs0d,sPf + eAŵdmsHŵs0d − Eŵs0dd−1sPf + eAŵdmcgs0dd

scgs0d,cgs0dd
. s1.13d

We assume that this formula remains valid also whenk=0.
On the basis ofs1.13d, mass renormalization can be discussed more precisely. Froms1.13d it

trivially follows that m/meff depends only on the ratioL /m. It is convenient to express this
dependence in the form

meff

m
= hsL/md. s1.14d

Clearly hù1 andhs0d=1. Let us set

l =
L

m
. s1.15d

One expects thath is increasing inl, because with increasingL more photons are bound to the
electron which makesmeff larger.

Let us distinguish several cases. Ifh has a finite limit asl→`, then the mass renormalization
is finite,

meff = hs`dm.

Such kind of behavior occurs in the Nelson model.2 Second, let us consider the case thathsld
increases linearly for largel. We set

hsld = 1 +b0l

with b0.0. Then
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meff = m+ b0L. s1.16d

Hence mass renormalization is additive. This behavior is found in the dipole approximation to the
Pauli–Fierz Hamiltonian, e.g., Ref. 3, and in the classical Abraham model.4 If meff.0 is imposed,
then asL→` necessarilym→−`. As soon asm,0, mHŵsp/md is not bounded from below.
Therefore we regard the theory as not renormalizable. Thus the case of interest is when for large
l,

hsld . b0lg, b0 . 0, 0, g , 1, s1.17d

which defines the scaling exponentg and the amplitudeb0. g depends one, as doesb0. Inserting
s1.17d in s1.14d, one obtains for sufficiently largel,

meff

m
. b0SL

m
Dg

. s1.18d

Thus the choice

m= L−g/s1−gdb1
1/s1−gd s1.19d

yields

lim
L→`

meffsLd = m* = b0b1. s1.20d

Hereb0 is fixed byhsld andb1 is a parameter which can be adjusted to yield the experimentally
determined mass of the electron.

Of course, the difficulty with our discussion is that, while the scaling function is well defined,
at present we have no technique to find out its behavior for largel. For that reason we turn to
perturbative renormalization which, through the interchange of the limitsL→` ande→0, tries to
guess the proper value ofg. The details will be given in the following sections, but let us
summarize briefly our findings. The fine structure constant is defined through

a =
e2

4p
. s1.21d

To first order one finds

hsld = 1 +
8a

3p
logS1 +

1

2
lD + Osa2d, s1.22d

which suggests

hsld . l8a/3p s1.23d

for sufficiently largel and therefore

g =
8a

3p
, a ! 1. s1.24d

To have a control check, one assumes that to second order

hsld . ls8/3pda+ba2
. 1 +

8a

3p
log l +

1

2
S8a

3p
log lD2

+ ba2 log l + Osa3d s1.25d

for small a. Therefore by expandingmeff /m to ordera2, one should find a termslog ld2 with an
already determined prefactor and a term proportional to logl, together with lower order terms. As
to explain, this guess is not confirmed.Insteadwe prove that
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hsld = 1 +
8a

3p
logS1 +

1

2
lD + c0a2Îl + Osa3d, c0 . 0, s1.26d

for uau small enoughdepending onL, which could suggestg= 1
2 independent ofe.

Note added in proof:Since the completion of this work, Hiroshima and Ito5 extended the
investigation to include the spin of the electron. The number of terms in the perturbation series up
to the same order as studied here is then multiplied by a factor of 4. As a net result one finds that
the leading divergence is proportional tol2, rather thanl1/2. Because of the interaction with the
quantized magnetic field the effective masssat the order consideredd is more strongly ultraviolet
divergent when spin is included.

Some aspects of the effective mass and its renormalization have been studied before. Spohn6

investigates the effective mass of the Nelson model2 from a functional integral point of view. Lieb
and Loss7,8 study mass renormalization and binding energies for various models of matter coupled
to the radiation field including the Pauli–Fierz model. Hainzl9 and Hainzl and Seiringer10 compute
the leading order of the effective mass of the Pauli–Fierz Hamiltonian with spin 1/2.

Our paper is organized in the following way. In Sec. II we review under which conditions
Eŵspd=Eŵsp,ed is jointly analytic inp ande. In Sec. III we set up the perturbation theory for the
effective mass and work out explicitly the terms includinga2. Their asymptotics withL→` is
studied in Sec. IV.

II. GROUND STATE AND ITS ANALYTIC PROPERTIES

Throughout this paper we assume that

ŵskd = 50 for uku , k/m,

s2pd−3/2 for k/mø uku ø L/m,

0 for uku . L/m.
6

For notational convenience, we shall use notationsHspd, A, andEspd instead ofHŵspd, Aŵ, and
Eŵspd, respectively. LetFk srespectively,Fk,0d be the symmetric Fock space overL2sRk/m

3

3 h1,2jd frespectively,L2sRk/m
3' 3 h1,2jdg, whereRk/m

3 =hkPR3ikuùk /mj. Then it follows that

F > Fk ^ Fk,0. s2.1d

It is seen thatFk reducesHspd and, under the identifications2.1d,

Hspd > sHspddFkd ^ 1 + 1 ^ sHfdFk,0d . s2.2d

The bottom of the continuous spectrum ofHspddFk
is denoted by Ecspd. Note that

inf ssHspddFk
d=Espd. The following lemma can be proven in the similar manner as in Ref. 11.

Lemma 2.1 (Ref. 11): There exists a constant p* .0 independent of e withueu,e0 such that for
pPR3 with upu,p* ,

Ecspd − Espd . 0.

In particular there exists a ground statecg,kspdPFk of HspddFk
for pPR3 providedupu,p* .

By Lemma 2.1, we see thatHspd has the ground state

cgspd = cg,kspd ^ Vk,0

for pPR3 provided upu,p* , whereVk,0 denotes the vacuum ofFk,0. To have uniqueness, one
proves that for any ground statecgspd, one has

scgspd,Vd . 0

providedupu,p* and ueu,e* with somee*.
Lemma 2.2 (Ref. 1): There exists a constant e* .0 such that for sp,edPR33R with
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upu,p* and ueu,e* , the ground state of Hspd is unique up to multiple constants.
Remark 2.3: In the casek=0 and for sufficiently small e, Chen12 proves the absence of a

ground state of Hspd in F for pÞ0 and the existence of a ground state of Hs0d.
We also need the analytic properties ofcgspd=cgsp,ed and Espd=Esp,ed with respect to

sp,edPR33R in a neighborhood ofs0,0dPR33R.
Lemma 2.4: There exists an open neighborhoodO of s0,0dPR33R such thatcgsp,ed is

strongly analytic and Esp,ed analytic onO.
Proof: Let cg,kspdPFk be the ground state ofHspddFk

. Since cgspd=cg,kspd ^ Vk,0, it is
enough to show thatcg,kspd is strongly analytic onO. We splitHspd as

Hspd = H0spd + HIspd, s2.3d

where

H0spd = 1
2sp − Pfd2 + Hf ,

HIspd = − esp − Pfd ·A +
e2

2
:A2: .

Then we obtain that

iHIspdCiFk
ø c4iH0spdCiFk

+ c5iCiFk
s2.4d

for CPDsH0spddFk
d=DsHfdùDsPf

2dùFk. ThenHspddFk
is an analytic family of typesAd for e

neare=0 ssee Ref. 13, p. 16d. Thus by Ref. 13, Theorem XII.9,HspddFk
is an analytic family in the

sense of Kato, which implies that by Ref. 13, Theorem XII.8, together with Lemmas 2.1 and 2.2,
cg,ksp,ed is strongly analytic andEsp,ed analytic fore neare=0. Alternatively we splitHspd as

Hspd = H08 + p ·HI8 + 1
2p2,

where

H08 = 1
2:sPf + eAŵd2: + Hf, HI8 = − sPf + eAŵd.

Then we have

iHI8CiFk
ø c6iH08CiFk

+ c7iCiFk
s2.5d

with some constantsc6 andc7 for CPDsHfdùDsPf
2dùFk. ThusHspddFk

is an analytic family of
type sAd for pPR3 nearp=0. We can see thatcg,ksp,ed is strongly analytic andEsp,ed analytic
for p nearp=0 in the similar manner as fore. j

III. EFFECTIVE MASS

A. Formulas

In what follows we assume thatsp,edPO. By the definition ofEsp,ed, we have

m

meff
=

1

3
DpEsp,eddp=0. s3.1d

Actually we can see in Ref. 1 thatHspd is unitarily equivalent toHsupunzd, wherenz=s0,0,1d.
ThusEsp,ed=Ẽsupu ,ed=inf ssHsupunzdd and

m

meff
= ]upu

2 Ẽsupu,eddupu=0.

Moreover we see thatẼs−upu ,ed=Ẽsupu ,ed. Then

042302-6 F. Hiroshima and H. Spohn J. Math. Phys. 46, 042302 ~2005!

                                                                                                                                    



]pmEsp,eddpm=0 = 0, m = 1,2,3. s3.2d

SinceEsp,ed also has the symmetry,Esp,−ed=Esp,ed, Esp,ed is a function ofe2. In particular it
follows that

]e
2m+1Esp,edde=0 = 0, mù 0. s3.3d

Lemma 3.1: The ratio m/meff can be expressed as

m

meff
= 1 −

2

3 o
m=1,2,3

scgs0d,sPf + eAdmsHs0d − Es0dd−1sPf + eAdmcgs0dd
scgs0d,cgs0dd

.

Proof: Since

sHspdC,cgspdd = EspdsC,cgspdd,

for CPDsHspdd, taking a derivative with respect topm on the both sides above, we have

sHm8 spdC,cgspdd + sHspdC,cgm
8 spdd = Em8 spdsC,cgspdd + EspdsC,cgm

8 spdd s3.4d

and

sHm9 spdC,cgspdd + 2sHm8 spdC,cgm
8 spdd + sHspdC,cgm

9 spdd

= Em9 spdsC,cgspdd + 2Em8 spdsC,cgm
8 spdd + EspdsC,cgm

9 spdd. s3.5d

HereEm8 spd frespectively,cgm
8 spdg denotes the derivativesrespectively, strong derivatived in pm, and

Hm8 spd=sp−Pf −eAŵdm, Hm9 spd=1. By s3.2d it follows that Em8 s0d=0, and bys3.4d with p=0,

sPf + eAdmcgs0d P DssHs0d − Es0dd−1d,

and

cgm
8 s0d = sHs0d − Es0dd−1sPf + eAdmcgs0d.

Therefore, usings3.1d and s3.5d, we have

m

meff
=

1

3 o
m=1,2,3

scgs0d,E9s0dmcgs0dd
scgs0d,cgs0dd

=
1

3 o
m=1,2,3

H1 +
scgs0d,2Hm8 s0dcgm

8 s0dd

scgs0d,cgs0dd
J

= 1 −
2

3 o
m=1,2,3

ssPf + eAdmcgs0d,sHs0d − Es0dd−1sPf + eAdmcgs0dd
scgs0d,cgs0dd

. s3.6d

Thus the lemma follows. j

From this lemma we obtain the following corollary.
Corollary 3.2: Let ueu,e* . Then meffùm.

B. Perturbative expansions

Let

cgs0d = o
n=0

`
en

n!
wn, Es0d = o

n=0

`
e2n

s2nd!
E2n.

We want to get the explicit form ofwn. Let
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Ffin = hhCsndjn=0
` P FuCsmd = 0 for mù , with some,j,

F0 = hC P FfinusidCs0d = 0,sii dsuppkPR3nCsndsk, jdÔh0j,n ù 1,j P h1,2jnj.

Lemma 3.3: It follows thatF0,DsH0
−1d.

Proof: Let C=hCsndjn=0
` PF0. Since

sH0
−1Cdsndsk1, . . . ,kn, j1, . . . ,jnd = F1

2
sk1 + ¯ + knd2 + o

i=1

n

vskidG−1

Csndsk1, . . . ,kn, j1, . . . ,jnd,

and suppsk1,. . .,kndPR3n Csndsk1, . . . ,kn, j1, . . . ,jndÔhs0, . . . ,0dj, we obtain that

iH0
−1CiF2 = o

n=1

`

isH0
−1CdsndiFsnd

2
, `

and the lemma follows. j

We defineA− andA+ by

A− =
1
Î2

asf ŵd, A+ =
1
Î2

a*sf ŵd.

Then A=A++A−. Moreover Am
− and Am

+ are defined by A− and A+ with esk, jd
=se1sk, jd ,e2sk, jd ,e3sk, jdd replaced byemsk, jd. We splitHs0d as

Hs0d = H0 + eH1 +
e2

2
H2,

where

H0 = 1
2Pf

2 + Hf ,

H1 = 1
2sPf ·A + A · Pfd = Pf ·A = A · Pf ,

H2 = :A2
ª A+ ·A+ + A− ·A− + 2A+ ·A−.

Lemma 3.4: It follows that E0=E2=0, and there exists a ground statecgs0d=on=0
` sen/n!dwn

such that

w0 = V, w1 = 0, w2 = − H0
−1H2V, w3 = 3H0

−1H1H0
−1H2V. s3.7d

In particular w2PFs2d and w3PFs1d % Fs3d.
Proof: It is obvious thatE0=0. Let cgs0d=on=0

` sen/n!dwn be an arbitrary strongly analytic
ground state ofHs0d with sw0,VdÞ0. Letrsed=on=0

` sen/n!drn be an analytic function one and set
cg

r=rsedcgs0d. Thencg
r is also a strongly analytic ground state ofHs0d and

Set
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r0 = 1/sw0,Vd, r1 = − r0sw1,Vd/sw0,Vd,

r2 = − hr0sw2,Vd + 2r1sw1,Vdj/sw0,Vd,

r3 = − hr0sw3,Vd + 3r1sw2,Vd + 3r2sw1,Vdj/sw0,Vd.

Thencg
r=on=0

` sen/n!dwn
r satisfies that

swn
r,Vd = d0,n, n = 0,1,2,3. s3.8d

We resetcg
r srespectively,wn

rd with s3.8d ascgs0d srespectively,wnd. Let us writeHs0d, Es0d, and
cgs0d as H, E, and cg, respectively. Take derivative ine on the both sides ofsHC ,cgd
=EsC ,cgd, CPDsHd. Then we have

sH8C,cgd + sHC,cg8d = E8sC,cgd + EsC,cg8d, s3.9d

sH9C,cgd + 2sH8C,cg8d + sHC,cg9d = E9sC,cgd + 2E8sC,cg8d + EsC,cg9d, s3.10d

3sH9C,cg8d + 3sH8C,cg9d + sHC,cg-d = E-sC,cgd + 3E9sC,cg8d + 3E8sC,cg9d + EsC,cg-d,

s3.11d

whereE8 srespectively,cg8d denotes the derivativesrespectively, strong derivatived in e, andH8
=PfsPf +eAd andH9=Pf ·A. SetC=V ande=0 in s3.10d. Then

0 = E2sV,Vd, s3.12d

which shows thatE2=0. Froms3.9d with e=0 it follows that

H1V + H0w1 = 0,

from which it holds thatH0w1=0. Hencew1=bV with some constantb. By s3.8d we have,
however,b=0. Thenw1=0 follows. By s3.10d with e=0, we have

H2V + H0w2 = 0.

SinceH2VPF0, we see that by Lemma 3.3,H2VPDsH0
−1d. Thus we havew2=−H0

−1H2V+cV
with some constantc. Since s−H0

−1H2V ,Vd=0, it follows that c=0 from s3.8d. From s3.11d it
follows that ine=0,

3H1w2 + H0w3 = 0.

SinceH1w2=−H1H0
−1H2VPF0, Lemma 3.3 ensures thatH1w2PDsH0

−1d. Hencew3=−3H0
−1H1w2

+dV=3H0
−1H1H0

−1H2V+dV with some constantd. Sinces3H0
−1H1H0

−1H2V ,Vd=0, it follows that
d=0 from s3.8d. Then the lemma is proven. j

In the similar manner as Lemma 3.4, we can prove the following proposition.
Proposition 3.5: There exists a ground statecgs0d=on=0

` sen/n!dwn such that

w2m = H0
−1H− o

j=1,2
S2m

j
DH1w2m−j + o

j=2

m S2m

2j
DE2jw2m−2jJ, mù 2,

w2m+1 = H0
−1H− o

j=1,2
S2m+ 1

j
DHjw2m+1−j + o

j=2

m−1 S2m+ 1

2j
DE2jw2m−2j+1J, mù 2,

with w2mPFs2d % Fs4d % ¯ % Fs2md and w2m+1PFs1d % Fs3d % ¯ % Fs2m+1d, and E2m is given by
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E2m = S2m

2
DsV,H2w2m−2d, mù 2.

C. Effective mass up to order e4

In this section we expandm/meff up to ordere4.
Lemma 3.6: The ratio m/meff can be expanded as

m

meff
= 1 −e22

3 o
m=1,2,3

sV,AmH0
−1AmVd

− e42

3 o
m=1,2,3

H2sC3
m,H0

−1C1
md + sC2

m,H0
−1C2

md − 2sC2
m,H0

−1H1H0
−1C1

md

−
1

2
sC1

m,H0
−1H2H0

−1C1
md + sC1

m,H0
−1H1H0

−1H1H0
−1C1

mdJ + Ose6d,

s3.13d

where

C1
m = AmV,

C2
m = − 1

2PfmH0
−1sA+ ·A+dV,

C3
m = 1

2h− AmH0
−1sA+ ·A+dV + 1

2PfmH0
−1sPf ·A + A · PfdH0

−1sA+ ·A+dVj .

Proof: Since bys3.6d,

m

meff
= 1 −

2

3 o
m=1,2,3

ssPf + eAdmcgs0d,cgm
8 s0dd

scgs0d,cgs0dd
, s3.14d

where cgm
8 s0d=s−]pm

cgspddp=0, we expand cgm
8 s0d and cgs0d in e. Assume that cgs0d

=on=0
` sen/n!dwn satisfiess3.7d, i.e., w0=V, w1=0, w2=−H0

−1H2V, and w3=3H0
−1H1H0

−1H2V. We
have

sPf + eAdmcgs0d = eAmV + e2s 1
2Pfmw2d + e3s 1

2Amw2 + 1
6Pfmw3d + Ose4d

= eC1
m + e2C2

m + e3C3
m + Ose4d. s3.15d

Note that by Proposition 3.5,

w0 P Fs0d, w2 P Fs2d, w3 P Fs3d
% Fs1d, w4 P Fs4d

% Fs2d.

In particular

1

scg,cgd
= 1 −e4s

1

2
w2,

1

2
w2d − e4sV,

1

24
w4d + Ose6d = 1 −e41

4
sw2,w2d + Ose6d. s3.16d

Let

cgm
8 s0d = o

n=0

`
en

n!
Fn

m. s3.17d

Since
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ssHs0d − Es0ddC,cgm
8 s0dd = ssPf + eAdmC,cgs0dd, C P DsHs0dd, s3.18d

settinge=0 on the both sides ofs3.18d, we have

H0F0
m = 0.

Then

F0
m = b0V s3.19d

with some constantb0. From taking derivative of the both sides ofs3.18d at e=0, we see that by
s3.7d,

H0F1
m = AmV,

H2F0
m + 2H1F1

m + H0F2
m = Pfmw2,

3H2F1
m + 3H1F2

m + H0F3
m = 3Amw2 + Pfmw3.

From them it follows that

F1
m = H0

−1C1
m + b1V, s3.20d

F2
m = H0

−1s2C2
m − 2H1F1

m − H2F0
md + b2V

= 2H0
−1sC2

m − H1H0
−1C1

md + s− b0H0
−1H2V + b2Vd, s3.21d

F3
m = H0

−1s6C3
m − 3H1F2

m − 3H2F1
md + b3V

= 6H0
−1hC3

m − H1H0
−1C2

m + sH1H0
−1H1H0

−1 − 1
2H2H0

−1dC1
mj

+ s3b0H0
−1H1H0

−1H2V − 3b1H0
−1H2V + b3Vd, s3.22d

where b1, b2, b3 are some constants. Here we used thatH1V=0. By s3.14d s3.15d s3.16d and
s3.17d we have

m

meff
= 1 −

2

3o
m=1

3 He2ssC1
m,F1

md + sC2
m,F0

mdd

+ e4S1

6
sC1

m,F3
md +

1

2
sC2

m,F2
md + sC3

m,F1
mdDJ + Ose6d. s3.23d

Substitutes3.20d–s3.22d into s3.23d. No contribution of constantsb0, . . . ,b3 exists, i.e., we can
directly see that

e2hb1sC1
m,Vd + b0sC2

m,Vdj = 0

and

e4H1

6
b3sC1

m,Vd +
1

6
b1sC1

m,− 3H0
−1H2Vd +

1

6
b0sC1

m,3H0
−1H1H0

−1H2Vd

+
1

2
b2sC2

m,Vd +
1

2
b0sC2

m,− H0
−1H2Vd + b1sC3

m,VdJ = 0.

Then the lemma follows. j

Remark 3.7: By Lemma 3.1 we have seen that
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m

meff
= 1 −

2

3 o
m=1,2,3

ssPf + eAdmcgs0d,sHs0d − Es0dd−1sPf + eAdmcgs0dd
scgs0d,cgs0dd

. s3.24d

We “informally” expandsHs0d−Es0dd−1 as

sHs0d − Es0dd−1 = o
n=0

` S− H0
−1o

l=1

`
el

l!
HlDn

H0
−1

= o
n=0

`

s− 1dno
k=n

`

ek o
l1,. . .,ln=1

l1+¯+ln=k

k
1

l1! ¯ ln!
H0

−1Hl1
H0

−1Hl2
¯ H0

−1Hln
H0

−1. s3.25d

Here we set

Hj = HHj , j = 1,2,

− Ej , j ù 3.
J

Then we have

sHs0d − Es0dd−1 = H0
−1 − eH0

−1H1H0
−1

+ e2s− 1
2H0

−1H2H0
−1 + H0

−1H1H0
−1H1H0

−1d + Ose3d. s3.26d

Substitute (3.26) into (3.24). Then the result coincides with (3.13).

D. Explicit expressions

For eachkPR3 let us define the projectionQskd on R3 by

Qskd = o
j=1,2

uejskdlkejskdu.

We also set

m= 1,

since it can easily be reintroduced at the end of the computation. We set

ŵ j = ŵskjd, v j = vskjd, Qskjd = Qj, j = 1,2.

Let

1

Ej
=

1

ukju2/2 + v j
, j = 1,2,

1

E12
=

1

uk1 + k2u2/2 + v1 + v2
, k1,k2 P R3,

1

Fj
=

1

r j
2/2 + r j

, j = 1,2,

1

F12
=

1

sr1
2 + 2r1r2X + r2

2d/2 + r1 + r2
, r1,r2 ù 0, − 1ø X ø 1.

Lemma 3.8: It follows that
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m

meff
= 1 −aa1sL,kd − a2a2sL,kd + Osa3d,

where

a1sL,kd =
8

3p
logSL + 2

k + 2
D s3.27d

and

a2sL,kd = s4pd22

3
E E d3k1 d3k2

uŵ1u2

2v1

uŵ2u2

2v2

3H− S 1

E1
+

1

E2
D 1

E12
s1 + s2d + S 1

E12
D3uk1 + k2u2

2
s1 + s2d

+ S 1

E1
+

1

E2
DS 1

E12
D2

sk1 ·k2ds− 1 +s2d −
1

E1

1

E2
s1 + s2d

+ S uk1u2

E1
2 +

uk2u2

E2
2 D 1

E12
s1 − s2d +

1

E1

1

E2

1

E12
sk1 ·k2ds− 1 +s2dJ , s3.28d

where s=sk̂1, k̂2d. Changing variables to polar coordinates we also have

a2sL,kd =
s4pd2

s2pd6

2

3
E

−1

1

dXE
k

L

dr1E
k

L

dr2 2p2r1r2

3H− S 1

F1
+

1

F2
D 1

F12
s1 + X2d + S 1

F12
D3r1

2 + 2r1r2X + r2
2

2
s1 + X2d

+ S 1

F1
+

1

F2
DS 1

F12
D2

r1r2Xs− 1 +X2d −
1

F1

1

F2
s1 + X2d + S r1

2

F1
2 +

r2
2

F2
2D 1

F12
s1 − X2d

+
1

F1

1

F2

1

F12
r1r2Xs− 1 +X2dJ . s3.29d

Proof: Note that

a1sL,kd =
2

3
sÎ4pd2sAm

+V,H0
−1Am

+Vd

=
2

3
sÎ4pd22E ŵskd2

2vskd
1

uku2/2 + uku
d3k

=
2

3
sÎ4pd2 1

s2pd34pE
k

L 1

r/2 + 1
dr

=
8

3p
logSL + 2

k + 2
D .

Thuss3.27d follows. To checka2sL ,kd we exactly compute the five terms on the right-hand side
of s3.13d separately.

s1d We have

042302-13 Mass renormalization in nonrelativistic QED J. Math. Phys. 46, 042302 ~2005!

                                                                                                                                    



2sC3
m,H0

−1C1
md = sV,− sA− ·A−dH0

−1AmH0
−1Am

+Vd

+ 1
2sV,sA− ·A−dH0

−1sPf ·A + A · PfdH0
−1PfmH0

−1Am
+Vd. s3.30d

SincePfmH0
−1AmV=H0

−1AmPfmV=0, the second term of the right-hand side ofs3.30d vanishes, we
have

2sC3
m,H0

−1C1
md = − sV,sA− ·A−dH0

−1Am
+H0

−1Am
+Vd

= −E E d3k1 d3k2
uŵ1u2

2v1

uŵ2u2

2v2

1

E12
S 1

E1
+

1

E2
DtrsQ1Q2d. s3.31d

s2d We have

sC2
m,H0

−1C2
md = S1

2
D2

sPfmH0
−1sA+ ·A+dV,H0

−1PfmH0
−1sA+ ·A+dVd

= S1

2
D2

sV,sA− ·A−dsH0
−1d3sPf · PfdsA+ ·A+dVd

= S1

2
D2E E d3k1 d3k2

uŵ1u2

2v1

uŵ2u2

2v2
S 1

E12
D3

uk1 + k2u22 trsQ1Q2d. s3.32d

s3d We have

− 2sC2
m,H0

−1H1H0
−1C1

md

=
1

2
sPfmH0

−1sA+ ·A+dV,H0
−1sPf ·A + A · PfdH0

−1Am
+Vd

= o
n=1,2,3

sV,sA− ·A−dH0
−1PfmH0

−1PfnAn
+H0

−1Am
+Vd

=E E d3k1 d3k2
uŵ1u2

2v1

uŵ2u2

2v2
S 1

E12
D2S 1

E1
+

1

E2
Dsk2,Q1Q2k1d. s3.33d

s4d We have

−
1

2
sC1

m,H0
−1H2H0

−1C1
md

= −
1

2
sAm

+V,H0
−1ssA+ ·A+d + 2sA+ ·A−d + sA− ·A−ddH0

−1Am
+Vd

= − sV,Am
−H0

−1sA+ ·A−dH0
−1Am

+Vd

= −E E d3k1 d3k2
uŵ1u2

2v1

uŵ2u2

2v2

1

E1

1

E2
trsQ1Q2d. s3.34d

s5d We have
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sC1
m,H0

−1H1H0
−1H1H0

−1C1
md = S1

2
D2

sAm
+V,H0

−1sPf ·A + A · PfdH0
−1sPf ·A + A · PfdH0

−1Am
+Vd

= sAm
+V,H0

−1sPf ·AdH0
−1sPf ·AdH0

−1Am
+Vd

= o
n,k=1,2,3

sAm
+V,H0

−1PfnAn
+H0

−1PfkAk
−H0

−1Am
+Vd

+ o
n,k=1,2,3

sAm
+V,H0

−1PfnAn
−H0

−1PfkAk
+H0

−1Am
+Vd. s3.35d

Since

PfkAk
−H0

−1Am
+V = 0,

the first term on the last line ins3.35d vanishes. Then we have

sC1
m,H0

−1H1H0
−1H1H0

−1C1
md = o

n,k=1,2,3
sV,Am

−H0
−1PfnAn

−H0
−1PfkAk

+H0
−1Am

+Vd

=E E d3k1 d3k2
uŵ1u2

2v1

uŵ2u2

2v2

1

E12
HS 1

E2
D2

2sk2,Q1k2d +
1

E1

1

E2
sk2,Q1Q2k1dJ

=E E d3k1 d3k2
uŵ1u2

2v1

uŵ2u2

2v2

1

E12
HS 1

E1
D2

sk1,Q2k1d + S 1

E2
D2

sk2,Q1k2dJ
+E E d3k1 d3k2

uŵ1u2

2v1

uŵ2u2

2v2

1

E12

1

E1

1

E2
sk2,Q1Q2k1d. s3.36d

Equations3.28d follows from Lemma 3.6,s3.31d, s3.32d, s3.33d, s3.34d, s3.36d and the facts

trfQsk1dQsk2dg = o
j ,j8=1,2

sejsk1dej8sk2dd2 = 1 + sk̂1,k̂2d2,

sk1,Qsk2dQsk1dk2d = sk1,k2dssk̂1,k̂2d2 − 1d,

sk1,Qsk2dk1d = uk1u2s1 − sk̂1,k̂2d2d.

Thus the proof is complete. j

IV. MAIN THEOREM

By s3.29d we can see that

a2sL,kd =
s4pd2

s2pd6

2

3o
j=1

6

bjsLd, s4.1d

where

b1sLd = −E
−1

1

dXs1 + X2dE
k

L

dr1E
k

L

dr2 2p2r1r2S 1

F1
+

1

F2
D 1

F12
,

b2sLd =E
−1

1

dXs1 + X2dE
k

L

dr1E
k

L

dr2 2p2r1r2S 1

F12
D3r1

2 + 2r1r2X + r2
2

2
,
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b3sLd =E
−1

1

dX Xs− 1 +X2dE
k

L

dr1E
k

L

dr2 2p2r1
2r2

2S 1

F1
+

1

F2
DS 1

F12
D2

,

b4sLd = −E
−1

1

dXs1 + X2dE
k

L

dr1E
k

L

dr2 2p2r1r2
1

F1

1

F2
,

b5sLd =E
−1

1

dXs1 − X2dE
k

L

dr1E
k

L

dr2 2p2r1r2S r1
2

F1
2 +

r2
2

F2
2D 1

F12
,

b6sLd =E
−1

1

dX Xs− 1 +X2dE
k

L

dr1E
k

L

dr2 2p2r1
2r2

2 1

F1

1

F2

1

F12
.

Our main theorem is stated as follows.
Theorem 4.1:There exist strictly positive constants c1 and c2 such that

c1 ø lim
L→`

a2sL,kd
ÎL

ø c2.

To prove Theorem 4.1 we estimate the lower and upper bounds ofa2sL ,kd /ÎL asL→` in what
follows.

Let rLs· , ·d: f0,`d3 f−1,1g→R be defined by

rL = rLsr,Xd = r2 + 2LrX + L2 + 2r + 2L = sr + LX + 1d2 + D,

where

D = L2s1 − X2d + 2Ls1 − Xd − 1. s4.2d

Lemma 4.2: There exist constants C1, C2, C3, and C4 such that for sufficiently largeL.0,

s1d E
−1

1

dXE
0

L

dr
1

rLsr,Xd
ø C1

1

L
,

s2d E
−1

1

dXE
0

L

drS 1

rLsr,XdD
2

ø C2
1

L5/2,

s3d E
−1

1

dXE
0

L

dr
1

rLsr,Xd
1

r + 2
ø C3

log L

L2 ,

s4d E
−1

1

dXE
0

L

drS 1

rLsr,XdD
2

s1 − X2d ø C4
1

L3 .

Proof: See Appendix A. j

A. Upper bounds

Lemma 4.3: There exists a constant Cmax such that

lim
L→`

UasL,kd
ÎL

U , Cmax.
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Proof: Note that for a continuous functionf,

d

dL
E

k

L

dr1E
k

L

dr2 fsr1,r2d =E
k

L

fsL,rddr +E
k

L

fsr,Lddr . s4.3d

In this proof,C denotes some sufficiently large constant and is not necessarily the same number.
s1d We have

d

dL
b1sLd = 16p2E

−1

1

dXE
k

L

dr
1

rLsr,XdS L

r + 2
+

r

L + 2
Ds1 + X2d.

Since by Lemma 4.2s3d and s1d,

E
−1

1

dXE
k

L

dr
1

rLsr,Xd
L

r + 2
ø C

log L

L
,

E
−1

1

dXE
k

L

dr
1

rLsr,Xd
r

L + 2
ø C

1

L
,

we have

U d

dL
b1sLdU ø C

log L

L
. s4.4d

s2d We see that by Lemma 4.2s2d,

d

dL
b2sLd = 16p2E

−1

1

dXE
k

L

drS 1

rLsr,XdD
3

rLsL2 + r2 + 2LrXds1 + X2d

ø 16p2E
−1

1

dXE
k

L

drS 1

rLsr,XdD
2

rLs1 + X2d

ø 16p2L2E
−1

1

dXE
k

L

drS 1

rLsr,XdD
2

s1 + X2d ø C
1

ÎL
.

Hence

U d

dL
b2sLdU ø C

1
ÎL

. s4.5d

s3d We have

U d

dL
b3sLdU = 32p2UE

−1

1

dXE
k

L

dr XsX2 − 1dS 1

rLsr,XdD
2S L2r

r + 2
+

r2L

L + 2
DU .

Since by Lemma 4.2s3d and s4d,

UE
−1

1

dXE
k

L

dr XsX2 − 1dS 1

rLsr,XdD
2 L2r

r + 2U ø C
1

L
,

UE
−1

1

dXE
k

L

dr XsX2 − 1dS 1

rLsr,XdD
2 r2L

L + 2U ø C
1

L
,

we have
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U d

dL
b3sLdU ø C

1

L
. s4.6d

s4d It is trivial that

ub4sLdu ø Cflog Lg2. s4.7d

s5d We have

d

dL
b5sLd = 32p2E

−1

1

dXE
k

L

dr
1

rLsr,Xd
s1 − X2drLHS 1

L + 2
D2

+ S 1

r + 2
D2J .

Since by Lemma 4.2s1d,

E
−1

1

dXE
k

L

dr
1

rLsr,Xd
s1 − X2drLS 1

L + 2
D2

ø C
1

L
,

E
−1

1

dXE
k

L

dr
1

rLsr,Xd
s1 − X2drLS 1

r + 2
D2

ø C
1

L
,

we see that

U d

dL
b5sLdU ø C

1

L
. s4.8d

s6d We have by Lemma 4.2s1d

U d

dL
b6sLdU = 32p2UE

−1

1

dXE
k

L

drsX2 − 1dX
1

rLsr,Xd
r

r + 2

L

L + 2U ø C
1

L
.

Then we have

U d

dL
b6sLdU ø C

1

L
. s4.9d

From s4.4d–s4.9d it follows that

ubjsLdu ø Cflog Lg2, j = 1,4,

ub2sLdu ø CL1/2, ubjsLdu ø C log L, j = 3,5,6. s4.10d

Then the lemma follows. j

B. Lower bounds

Lemma 4.4: There exists a positive constant Cmin.0 such that

Cmin ø lim
L→`

b2sLd
ÎL

.

From this lemma ands4.10d, i.e.,

lim
L→`

bjsLd
ÎL

= 0, j = 1,3,4,5,6,

the following corollary follows.
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Corollary 4.5: It follows that

Cmin ø lim
L→`

a2sL,kd
ÎL

.

Proof of Lemma 4.4:We have

d

dL
b2sLd = 16p2E

−1

1

dXE
k

L

drs1 + X2dS 1

rLsr,XdD
3

sr2 + 2rLX + L2drL, s4.11d

where, recall that

rLsr,Xd = sr + LX + 1d2 + D,

D = L2s1 − X2d + 2Ls1 − Xd − 1.

Note thatD.0 for Xø0 and a sufficiently largeL. Since the integrand ofs4.11d,

TRsrd = S 1

rLsr,XdD
3

sr2 + 2rLX + L2drL

is positive, it is enough to prove that

lim
L→`

ÎL
d

dL
b2sLd ^ lim

L→`

ÎLE
−1+s1/Ld

0

dXE
k

L

dr TRsrds1 + X2d . 0. s4.12d

We simply setr=rLsr ,Xd. Since

sr2 + 2rLX + L2drL = Lhsr − 2dr + s4 + 4LX − 2Ldr + 2sL2 + 2Ldj,

we have

E
k

L

dr TRsrd = LE
k

L

dr
r − 2

r2 + Ls4 + 4LX − 2LdE
k

L

dr
r

r3 + 2LsL2 + 2LdE
k

L

dr
1

r3

= LE
k

L

dr
r

r2 + L2s4X − 2dE
k

L

dr
r

r3 + 2L3E
k

L

dr
1

r3 + t1sLd,

where

t1sLd = − 2LE
k

L

dr
1

r2 + 4LE
k

L

dr
r

r3 + 2L2E
k

L

dr
1

r3 .

Moreover since

E
k

L

dr
r

r2 = −
1

2
F1

r
G

k

L

−E
k

L

dr
LX + 1

r2 ,

E
k

L

dr
r

r3 = −
1

4
F 1

r2G
k

L

−E
k

L

dr
LX + 1

r3 ,

we have
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E
k

L

dr TRsrd = − L2XE
k

L

dr
1

r2 + L3s2 − Xs4X − 2ddE
k

L

dr
1

r3 + t1sLd + t2sLd,

where

t2sLd = LS−
1

2
DF1

r
G

k

L

− LE
k

L

dr
1

r2 + L2s4X − 2dS−
1

4
DF 1

r2G
k

L

− L2s4X − 2dE
k

L

dr
1

r3 .

Note that

E 1

sx2 + a2dn+1dx =
1

2na2

x

sx2 + a2dn +
2n − 1

2n

1

a2 E 1

sx2 + a2dndx, n ù 1.

Then

E
k

L

dr
1

r2 = F r + LX + 1

2D

1

r
G

k

L

+
1

2D3/2Farctan
r + LX + 1

ÎD
G

k

L

,

E
k

L

dr
1

r3 = F r + LX + 1

4D

1

r2G
k

L

+
3

8
F r + LX + 1

D2

1

r
G

k

L

+
3

8

1

D5/2Farctan
r + LX + 1

ÎD
G

k

L

.

Hence we have

E
k

L

dr TRsrd = − L2X
1

2D3/2HFarctan
r + LX + 1

ÎD
G

k

L

+ FÎD
r + LX + 1

r
G

k

LJ
+

3

8
L32s2X + 1ds1 − Xd

1

D5/2HFarctan
r + LX + 1

ÎD
G

k

L

+ FÎD
r + LX + 1

r
G

k

LJ
+ t1sLd + t2sLd + t3sLd,

where

t3sLd = L32s2X + 1ds1 − XdF r + LX + 1

4D

1

r2G
k

L

.

It is proven in Lemma B.1 of Appendix B that

lim
L→`

ÎLE
−1+1/L

0

s1 + X2dst1sLd + t2sLd + t3sLdddX = 0. s4.13d

From this it is enough to show that

lim
L→`

ÎLL2E
−1+1/L

0

dXs1 + X2d
1

D3/2FÎD
r + LX + 1

r
G

k

L

3
1

4
H− 2X + 3s1 − Xds2X + 1d

L

D
J ù 0 s4.14d

and that there exists a positive constantj.0 such that
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lim
L→`

ÎLE
−1+1/L

0

dXs1 + X2dH− L2X
1

2D3/2Farctan
r + LX + 1

ÎD
G

k

L

+
3

8
L32s2X + 1ds1 − Xd

1

D5/2Farctan
r + LX + 1

ÎD
G

k

LJ
= lim

L→`

ÎLL2E
−1+1/L

0

dXs1 + X2d
1

D3/2Farctan
r + LX + 1

ÎD
G

k

L

3
1

4
H− 2X + 3s1 − Xds2X + 1d

L

D
J . j. s4.15d

Changing variableX to −y, we shall proves4.15d, i.e.,

lim
L→`

ÎLL2E
0

1−s1/Ld

dys1 + y2d
1

D3/2Farctan
r − Ly + 1

ÎD
G

k

L1

4
aLsyddy . j,

where

aLsyd = 2y +
6

L
+ bLsyd,

bLsyd =
3

L
S1 +

4

L
D y +

L2 + 4L − 2

LsL + 4d

Sy −
1

L
D2

−
L + 2

L

.

The functionbLs·d satisfies the following properties.
s1d bL9 syd,0 for 0øyø1−1/L, i.e., bLsyd is concave for 0øyø1−1/L.
s2d limL→` bLs1−1/Ld=−1.
s3d limL→` bLsyd=0 for yÞ1 and limL→` bLs1d=−3/2.
By s1d–s3d we have

inf
0øyø1−1/L

bLsyd = minhbLs0d,bLs1 − 1/Ldj

and then for sufficiently largeL,

inf
0øyø1−1/L

bLsyd = bLs1 − 1/Ld . − 7
4 .

Hence

inf
15/16øyø1−1/L

aLsyd ù
15
8 − 7

4 = 1
8 . 0.

Moreover

Farctan
r − Ly + 1

ÎD
G

k

L

= arctan
s1 − ydL + 1

ÎD
− arctan

k − Ly + 1
ÎD

. 0,

lim
L→`

Farctan
r − Ly + 1

ÎD
G

k

L

= arctan
1 − y

Î1 − y2
+ arctan

y
Î1 − y2

. 0

for 0øyø1. Then
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d = inf
L.1

inf
0øyø1

Farctan
r − Ly + 1

ÎD
G

k

L

. 0.

Then we have

lim
L→`

ÎLL2E
0

1−s1/Ld

dys1 + y2d
1

D3/2Farctan
r − Ly + 1

ÎD
G

k

L1

4
aLsyd

ù lim
L→`

ÎLL2E
15/16

1−s1/Ld

dys1 + y2d
1

D3/2Farctan
r − Ly + 1

ÎD
G

k

L1

4
aLsyd

ù
1

8
3

1

4
3 d 3 lim

L→`

ÎLL2E
15/16

1−s1/Ld

dy
1

D3/2.

Furthermore,

lim
L→`

ÎLL2E
15/16

1−s1/Ld

dy
1

D3/2

= lim
L→`

1
ÎL
E

15/16

1−s1/Ld

dy
1

Hs1 − y2d +
2

L
s1 + yd −

1

L2J3/2

ù lim
L→`

1
ÎL
E

15/16

1−s1/Ld

dy
1

Hs1 − yd +
2

L
J3/2

1

s1 + yd3/2

ù lim
L→`

1
ÎL
E

15/16

1−s1/Ld

dy
1

Hs1 − yd +
2

L
J3/2

1

23/2

= lim
L→`

1
Î2

1
ÎL

S 1
Î3/L

−
1

Î1/16 + 2/L
D =

1
Î6

.

Then we proved that

lim
L→`

ÎL
d

dL
b2sLd . 4p 3

1
8 3

1
4 3

1
Î6

3 d =
pd

8Î6
. 0.

Then s4.15d follows. We shall shows4.14d. Since the left-hand side ofs4.14d is

lim
L→`

ÎLL2E
0

1−s1/Ld

dys1 + y2d
1

D3/2FÎD
r − Ly + 1

r
G

k

L1

4
aLsyddy, s4.16d

it is enough to show thatf¯gk
L in s4.16d is non-negative. We can directly see that

FÎD
r − Ly + 1

r
G

k

L

=
ÎDK

hsL + LX + 1d2 + Djhsk + LX + 1d2 + Dj
,

where, for 0øyø1,

K = s− 2y2 + y + 1dL3 + s1 + 4ydL2 − 2L + kssy2 − 2dL2 + s− 2y − 2dL + 1d + k2ss− y + 1dL + 1d.

SinceK.0 for a sufficiently largeL, s4.14d follows. j
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Proof of Theorem 4.1:The theorem follows from Lemma 4.3 and Corollary 4.5. j

Remark 4.6: (1) a2sL ,kd /ÎL converges to a non-negative constant asL→`. (2) By (4.1), we
can define a2sL ,0d since bjsLd with k=0 are finite. Moreover a2sL ,0d also satisfies Theorem 4.1.
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APPENDIX A: PROOF OF LEMMA 4.2

Proof of Lemma 4.2:By the definition ofD it follows that for sufficiently largeL,

1

D
ø

1

L
for X ø 0.

Let

d = dskd =
1

Lk, 0 , k ø 2.

Then for sufficiently largeL,

D ù L2s1 − X2d − 1 . 0 for − 1 +dskd , X ø 0, 0, k ø 2.

In particular we obtain

1

D
ø

a

L2

1

1 − X2 for − 1 +dskd ø X ø 0, 0, k ø 2,

with some constanta independent ofL. In this proofC denotes some sufficiently large constant
and it is not necessarily the same number. We dividee−1

1
¯dX as

E
−1

1

¯ dX =E
0

1

+E
−1+d

0

+E
−1

−1+d

.

s1d It is trivial that ue0
1
¯dXuøC/L. Note that

UE
0

L

dr
1

rLsr,XdU =
1

ÎD
Uarctan

L + LX + 1
ÎD

− arctan
LX + 1

ÎD
U ø p

1
ÎD

.

Let d=ds1/2d=1/ÎL. Hence we have

UE
−1+d

0

¯ dXU ø
C

L
arcsins1 − dd,

UE
−1

−1+d

¯ dXU ø
C
ÎL

d.

Thus s1d follows.
s2d It is trivial that ue0

1
¯dXuøC/L3. Note that
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UE
0

L

dr
1

rLsr,Xd2U =
1

2D
UE

0

L 1

rLsr,Xd
dr + S L + LX + 1

sL + LX + 1d2 + D
−

LX + 1

sLX + 1d2 + D
DU

ø 5
C

L2S 1

Ls1 − X2d3/2 +
1

L
D , − 1 +d ø X ø 0,

C

L
S 1

ÎL
+

1

L
D , − 1 ø X ø − 1 +d.6

Let d=ds1d=1/L. Hence we have

UE
−1+d

0

¯ dXU ø
C

L3E
−1+d

0

dXS 1

s1 − X2d3/2 + 1D ø
C

L3S 1
Îd

+ 1D ,

UE
−1

−1+d

¯ dXU ø
C

L
S 1

ÎL
+

1

L
Dd.

Then s2d follows.
s3d We see that

1

rLsr,Xd
1

r + 2
=

,1

r + 2
+

,2

rLsr,Xd
,

where

,1 =
1

L2

1

s4X − 1d/L − 1
, ,2 =

1

L2

r + 2LX

s4X − 1d/L − 1
.

We have

UE
−1

1

dXE
0

L

dr
,1

r + 2U ø
logsL + 2d

L2 E
−1

1

dX
1

s4X − 1d/L − 1
ø C

log L

L2 ,

UE
−1

1

dXE
0

L

dr
,2

rLsr,XdU ø
L

L2E
−1

1

dXE
0

L 1

rLsr,Xd
1 + 2X

s4X − 1d/L − 1
ø

C

L2 .

Hences3d follows.
s4d It is trivial that ue0

1
¯dXuøC/L3. Let d=ds3/2d=1/L3/2. From the proof ofs2d it follows

that

UE
−1+d

0

¯ dXU ø
C

L3E
−1+d

0

dXH s1 − X2d
s1 − X2d3/2 + s1 − X2dJ ø

C

L3sarcsins1 − dd + 1d,

UE
−1

−1+d

¯ dXU ø
C

L
S 1

ÎL
+

1

L
Dd.

Hences4d follows. j
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APPENDIX B: PROOF OF „4.13…

Lemma B.1: It follows that

lim
L→`

ÎLE
−1+1/L

0

s1 + X2dst1sLd + t2sLd + t3sLdddX = 0, sB1d

where

t1sLd = − 2LE
k

L

dr
1

r2 + 4LE
k

L

dr
r

r3 + 2L2E
k

L

dr
1

r3 ,

t2sLd = LS−
1

2
DF1

r
G

k

L

− LE
k

L

dr
1

r2 ,

t3sLd = L32s2X + 1ds1 − XdF r + LX + 1

4D

1

r2G
k

L

.

Proof: In this proofC also denotes some sufficiently large constant, which is not necessarily
the same number. We have

ÎLLUE
−1+s1/Ld

0

dXE
k

L

dr
1

r2U ø CÎLL
1

L5/2 = C
1

L
,

ÎLLUE
−1+s1/Ld

0

dXE
k

L

dr
r

r3U ø CÎLL2 1

L7/2 = C
1

L
,

ÎLL2UE
−1+s1/Ld

0

dXE
k

L

dr
1

r3U ø CÎLL2 1

L7/2 = C
1

L
.

Then

lim
L→`

ÎLE
−1+1/L

0

dXs1 + X2dt1sLd = 0

follows. Next we shall show that

lim
L→`

ÎLE
−1+1/L

0

dXs1 + X2dt2sLd = 0. sB2d

Note that

UF1

r
G

k

LU = U 1

sL + LX + 1d2 + D
−

1

sk + LX + 1d2 + D
U ø

2

D
ø

2

L2

1

1 − X2 .

Then

UE
−1+1/L

0

dXF1

r
G

k

LU ø C
log L

L2 .

Similarly we can see that
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UE
−1+1/L

0

dXF 1

r2G
k

LU ø C
1

L3 ,

which implies that

ÎLLUE
−1+1/L

0

dXF1

r
G

k

LU ø C
log L

ÎL
,

ÎLL2UE
−1+1/L

0

dXF 1

r2G
k

LU ø C
1

ÎL
.

HencesB2d follows. Finally we shall show that

lim
L→`

ÎLE
−1+1/L

0

dXs1 + X2dt3sLd = 0. sB3d

We dividee−1+1/L
0 dX as

E
−1+1/L

0

dX =E
−1+1/L

−1/2

dX +E
−1/2

0

dX.

Since

1

D
ø

1

L2

1

1 − X2 ø
1

L2

4

3
for −

1

2
ø X ø 0,

we see that

ÎLL3UE
−1/2

0

dXF r + LX + 1

D

1

r2G
k

LU ø CÎLL3 L

L2

1

L3 = C
1

ÎL
. sB4d

On the other hand,

F r + LX + 1

D

1

r2G
k

L

=
L + LX + 1

D

1

hsL + LX + 1d2 + Dj2 −
k + LX + 1

D

1

hsk + LX + 1d2 + Dj2 .

Since

UL + LX + 1

D
U ø

C

L
, U k + LX + 1

sk + LX + 1d2 + D
U ø

C

L
,

we have

UE
−1+1/L

−1/2

dXF r + LX + 1

D

1

r2G
k

LU ø C
1

L
E

−1+1/L

−1/2 1

D2 ø C
1

L4 .

Then we obtain that

ÎLL3UE
−1+1/L

−1/2

dXF r + LX + 1

D

1

r2G
k

LU ø C
1

ÎL
. sB5d

Thus sB3d follows from sB4d and sB5d. j
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Existence of the semilocal Chern–Simons vortices
Dongho Chaea!

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea

sReceived 14 June 2004; accepted 21 December 2004; published online 17 March 2005d

We consider the Bogomol’nyi equations of the Abelian Chern–Simons–Higgs
model with SUsNdglobal^ Us1dlocal symmetry. This is a generalization of
the well-known Abelian Chern–Simons–Higgs model with Us1dlocal

symmetry. We prove existence of both topological and nontopological multivortex
solutions of the system on the plane. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1868858g

I. INTRODUCTION

The Abelian Chern–Simons–Higgs model with SUsNdglobal^ Us1dlocal symmetry is defined by
the Lagrangian,

L =
k

4
emnlFmnAl + sDmFd†sDmFd −

1

k2uFu2suFu2 − 1d2,

whereAmsm=0,1,2d is the gauge field onR3, Fmn=s] /]xmdAn−s] /]xndAm is the corresponding
gauge curvature tensor,Dm=s] /]xmd− iAm is the gauge covariant derivative,F
=sF1,F2, . . . ,FNd is a CN valued function onR3, called the Higgs multiplet,emnr is the totally
skewsymmetric tensor withe012=1, and finallyk.0 is the Chern–Simons coupling constant. Our
metric onR3 is sgmnd=diags1,−1,−1d. This model was suggested by Khare,6 generalizing the
original Abelian Chern–Simons–Higgs model, due to Hong–Kim–Pac4 and Jackiw–Weinberg.5 We
also mention that there are also studies of the corresponding Abelian Higgs model with
SUsNdglobal^ Us1dlocal symmetry in Refs. 14 and 3. Similar to the case of Abelian Chern–Simons–
Higgs model, in the static case, the following Bogomol’nyi system inR2 is obtained:6

sD1 ± iD2dFk = 0, ∀ k = 1, . . . ,N,

F12 = ±
2

k2uFu2suFu2 − 1d. s1.1d

This system is equipped with one of the following boundary conditions: either

uFszdu2 → 1 asuzu → `, s1.2d

or

uFszdu2 → 0 asuzu → ` s1.3d

Following the standard Jaffe–Taubes reduction procedure,13 we introduce new variable
su1, . . . ,uNd by

adElectronic mail: chae@skku.edu
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Fkszd = expF1

2
uk + io

j=1

Mk

Argsz− zk,jdG, z= x1 + ix2 P C1 = R2,

whereZk=hzk,jj j=1
Mk is the set of zeros ofFkszd. Then, the systems1.1d becomes the following

semilinear elliptic system forsu1, . . . ,uNd in R2:

Duk = So
j=1

N

eujDSo
j=1

N

euj − 1D + 4po
j=1

Mk

dsz− zk,jd, k = 1, . . . ,N, s1.4d

where we setk=2 for simplicity. In terms ofsu1, . . . ,uNd, the boundary conditions1.2d reads

euk → sk as uzu → `

with sk ù 0 for all k = 1, . . . ,N,ando
k=1

N

sk = 1, s1.5d

while s1.3d reads

euk → 0 asuzu → ` for all k = 1, . . . ,N. s1.6d

The boundary conditions1.5d is called topological, while the boundary conditions1.6d is
called nontopological. We observe that whenN=1, the systems1.4d reduces to the well-known
sscalard Chern–Simons equation, for which there are many studies for topological vortices,11,15

nontopological vortices,1,2,10periodic vortex condensates,9,8,12,16respectively. We first consider the
nontopological case. In the systems1.4d equipped withs1.3d, without loss of generality, we assume
M1ùMk for all k=1, . . . ,N. Let us define

fkszd = sMk + 1dp
j=1

Mk

sz− zk,jd, Fkszd =E
0

z

fksjddj. s1.7d

Given «.0, a=a1+ ia2PC, let us introduce the functionsr«,a
skd szd by

r«,a
skd szd =

8«2Mk+2ufkszdu2

S1 + «2M1+2UF1szd +
a

«M1+1U2D2 . s1.8d

We note that for any«.0 andaPC1, ln r«,a
s1dszd is a solution of the Liouville equation,

D ln r«,a
s1dszd = − r«,a

s1dszd + 4po
j=1

M1

dsz− z1,jd. s1.9d

We state the existence theorem for the nontopological vortices.
Theorem 1.1 (Existence of nontopological vortices):Let Nù2. For each k=1, . . . ,N let

MkPN with M1ùMk for all k=1, . . . ,N, and letZ1, . . . ,ZN be given withZk=hzk,jj j=1
Mk PR2. Then,

there exists a constant«1.0 such that for any«P s0,«1d there exists a family of solutions to (1.4)
su1,u2, . . . ,uNd equipped with the boundary condition (1.6). Moreover, the solutions we con-
structed have the following representations:

u1szd = ln r
«,a

«
*

s1d szd + «2ws«uzud + «2v«
*s«zd, s1.10d

ukszd = ln r
«,a

«
*

skd szd + «2ws«uzud + «2v«
*s«zd + ln «4, s1.11d

for all k=2, . . . ,N.
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In (1.10) and (1.11), the function«°a«
* is continuous in a neighborhood of0, and ua«

* u→0 as
«→0. The radial function w in (1.10) and (1.11) has the following asymptotic behavior:

wsuzud = − C0 lnuzu + Os1d, s1.12d

as uzu→` with the constant C0.0 defined by

C0 =
4pM1

2s2M1 + 1d6

15sM1 + 1d5 sinS pM1

M1 + 1
D . s1.13d

The functionv«
* in (1.10) and (1.11) satisfies

sup
zPR2

uv«
*s«zdu

lns1 + uzud
ø os1d as « → 0. s1.14d

Next, we consider the systems1.4d equipped with the topological boundary conditions1.5d. With-
out loss of generality, we assume that formP h1, . . . ,Nj,

euk → sk as uzu → ` for k = 1, . . . ,m, s1.15d

euk → 0 asuzu → ` for all k = m+ 1, . . . ,N, s1.16d

whereok=1
m sk=1, andskP s0,1g for eachk=1, . . . ,m. The following is our second main theorem.

Theorem 1.2 (Existence of topological vortices):In order to have solution to the system
(1.4) equipped with (1.15) and (1.16), it is necessary that

M1 = M2 = ¯ = Mms;Md and Mk , M for all k = m+ 1, . . . ,N. s1.17d

If the condition (1.17) is satisfied, then there exists a solutionsu1, . . . ,uNd to the problem. More-
over, the solutions we constructed have the following representations:

ukszd = lnSskp
j=1

M uz− zk,ju2

sm + uz− z1,ju2dD + v for k = 1, . . . ,m, s1.18d

while

ukszd = lnS p j=1

Mk uz− zk,ju2

p j=1

M
sm + uz− z1,ju2d

D + v for k = m+ 1, . . . ,N s1.19d

for a functionvPùq=1
` HqsR2d.

II. EXISTENCE OF NONTOPOLOGICAL VORTICES

In this section our aim is to prove Theorem 1.1. From the equation,D lnuz−z0u2=4pdsz−z0d in
R2 we find that

DSuk − u1 − o
j=1

Mk

lnuz− zk,ju2 + o
j=1

M1

lnuz− z1,ju2D = 0.

Hence, we obtain the relations betweenu1 anduk,
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uk = u1 + lnSp j=1

Mk uz− zk,ju2

p j=1

M1 uz− z1,ju2
D + hkszd s2.1d

for all k=1, . . . ,N, wherehkszd is a harmonic function inR2. We choose

hkszd ; ln «4+2Mk−2M1.

Then,s2.1d becomes

uk = u1 + lnS «4+2Mk−2M1p j=1

Mk uz− zk,ju2

p j=1

M1 uz− z1,ju2
D . s2.2d

We introduceg«,a
skd szd, rksrd, k=1, . . . ,N as follows:

g«,a
skd szd =

1

«2r«,a
skd S z

«
D, rksrd =

8sMk + 1d2r2Mk

s1 + r2M1+2d2 f= lim
«→0

g«,0
skd szdg. s2.3d

Let us make a change of variables fromu1 to v by the following formula:

u1szd = ln r«,a
s1dszd + «2ws«uzud + «2vs«xd, s2.4d

wherews·d is a radial function to be determined below. Then, after elementary computations we
find that combination ofs2.2d and s2.4d implies the following representation formula foruk:

ukszd = ln r«,a
skd szd + «2ws«uzud + «2vs«xd + ln «4 s2.5d

for all k=2, . . . ,N.
Then, the equation foru1 in s1.4d can be written as the functional equationPsv ,a,«d=0,

where

Psv,a,«d = Dv +
1

«2g«,a
s1dszdse«2sv+wd − 1d − fg«,a

s1dszdg2e2«2sv+wd + «2o
k=2

N

g«,a
skd szde«2sv+wd − «4o

k=2

N

g«,a
s1dszdg«,a

skd

3szde2«2sv+wd − «8 o
k,l=2

N

g«,a
sld szdg«,a

skd szde2«2sv+wd. s2.6d

Now we introduce the functions spaces introduced in Ref. 1. Let us fixaP s0, 1
2

d throughout this
paper. Following Ref. 1, we introduce the Banach spacesXa andYa as

Xa =Hu P Lloc
2 sR2duE

R2
s1 + uxu2+aduusxdu2 dx , `J

equipped with the normiuiXa

2 =eR2s1+uxu2+aduusxdu2 dx, and

Ya =Hu P Wloc
2,2sR2duiDuiXa

2 + I usxd
1 + uxu1+sa/2dI

L2sR2d

2

, `J
equipped with the norm

iuiYa

2 = iDuiXa

2 + I usxd
1 + uxu1+sa/2dI

L2sR2d

2

.

We recall the following propositions proved in Ref. 1.
Proposition 2.1: Let Ya be the function space introduced above. Then we have the followings:
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sid If vPYa is a harmonic function, thenv;constant.
sii d There exists a constant C1.0 such that for allvPYa,

uvsxdu ø C1iviYa
lnse+ uxud, ∀ x P R2.

Proposition 2.2: LetaP s0, 1
2

d, and let us set

L = D + r1:Ya → Xa. s2.7d

We have

Ker L = Spanhw+,w−,w0j, s2.8d

where we denoted

w+sr,ud =
rM1+1 cossM1 + 1du

1 + r2M1+2 , w−sr,ud =
rM1+1 sinsM1 + 1du

1 + r2M1+2 , s2.9d

and

w0 =
1 − r2M1+2

1 + r2M1+2 . s2.10d

Moreover, we have

hE
R2

Im L =H f P XaUE
R2

fw± = 0J . s2.11d

We can check easily thatP is a well-defined continuous mapping fromB«0
,Ya3C3R+ into Xa,

whereB«0
=hiviYa

+ uauø«,«0j for sufficiently small«0. In order to have a continuous extension
to «=0 of Ps·d we require that lim«→0 Ps0,0,«d=0, which implies the following equation forw:

Dw + r1w − r1
2 = 0. s2.12d

We first note the following lemma about asymptotic behaviors of the solutionswPYa, the proof
of which is in the Appendix.

Lemma 2.1: Let C0 be the number introduced in (1.13). Then, there exist radial solutions
wsuzud of (2.12) belonging to Ya, and satisfying the asymptotic formula in (1.12).

In order to obtain the linearized operatorPsv,ad8 s0,0,0d=A we first compute,

U ]g«,a
skd szd
]a1

U
«=0,a=0

= − 4rkw+, U ]g«,a
skd szd
]a2

U
«=0,a=0

= − 4rkw−,

for all k=1, . . . ,N, wherej j

Using these we find

Afn,bg = Ln − 4sr1w − 2r1
2dsw+b1 + w−b2d.

For the linearized operatorAf·g we need the following key lemma.
Lemma 2.2: The operatorA :Ya3R2→Xa

2 defined above is onto. Moreover, kernel ofA is
given by

Ker A = Spanhw+,w−,w0j 3 hs0,0dj. s2.13d

Thus, if we decompose Ya3R2=Ua % Ker A, where we set Ua=sKer Ad', thenA is an isomor-
phism from Ua onto Xa.

For the proof of Lemma 2.2 we need the following proposition, the proof of which is in the
Appendix.
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Proposition 2.3:

I±ªE
R2

sr1w − 2r1
2dw±

2 dx Þ 0.

With Proposition 2.3 equipped, the proof of Lemma 2.2 is the same as the one in Ref. 1, since
the linearized operator,A is the same as the one in it. We are now ready to prove our main
theorem.

Proof of Theorem 1.1:Let us set

Ua = sKer Ld' 3 R2.

Then, Lemma 2.2 shows thatPsv,j,bd8 s0,0,0,0d :Ua→Xa3Xa is an isomorphism foraP s0, 1
2

d.
Then, the standard implicit function theoremssee, e.g., Ref. 17d, applied to the functionalP:Ua

3 s−«0,«0d→Xa3Xa, implies that there exists a constant«1P s0,«0d and a continuous function
«°c«

*
ª sv«

* ,a«
*d from s0,«1d into a neighborhood of 0 inUa such that

Psv«
* ,a«

* ,«d = 0 for all « P s0,«1d.

This completes the proof of Theorem 1.1. SinceM1ùMk for all k=1,¯ ,N, the representation of
solutionsuk, and the explicit form of

lnfr
«,a

«
*

skd szdg = − fs4M1 − 2Mkd + 4glnuzu + Os1d

as uzu→`, together with the asymptotic behaviors ofws·d described in Lemma 2.1, the fact that
v«

* PYa, combined with Proposition 2.1, implies that the solutions satisfy the boundary condition
in s1.6d. Now, from Proposition 2.1 we obtain that

uv«
*szdu ø Civ«

*iYa
sln+uzu + 1d ø Cic«iUa

sln+uzu + 1d.

This implies then

uv«
*s«xdu ø Cic«iUa

sln+u«xu + 1d ø Cic«iUa
sln+uxu + 1d. s2.14d

From the continuity of the function«°c« from s0,«0d into Ua and the factc0
* =0 we have

ic«iUa
→ 0 as« → 0. s2.15d

The proof of s1.14d follows from s2.15d combined withs2.14d. This completes the proof of
Theorem 1.1. j

III. EXISTENCE OF TOPOLOGICAL VORTICES

Our aim in this section is to prove Theorem 1.2.
Proof of Theorem 1.2:We first establish that in order to have existence of solutionsu1,¯ ,uNd

satisfyings1.4d ands1.15d ands1.16d, it is necessary to haves1.17d. Without loss of generality we
may assumeM1ùMk for all k=1,¯ ,m. Suppose that there existsMk,M1 for some k
P h1,¯ ,mj. Then, froms1.4d we have

Dsuk − u1 − o
j=1

Mk

lnuz− zk,ju2 + o
j=1

M1

lnuz− zl,ju2d = 0

and
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uk = u1 + lnSp j=1

Mk uz− zk,ju2

p j=1

M1 uz− zl,ju2
D + hkszd s3.1d

for some harmonic functionhkszd. Since

uk → ln sk, u1 → ln s1, lnSp j=1

Mk uz− zk,ju2

p j=1

M1 uz− zl,ju2
D→ OssMk − M1dlnuzud,

as uzu→`, s3.1d implies hk;Ck sconstantd, and provides an absurd relation. Hence,M1=¯

=Mm;M. Similarly, the relation s3.1d with k=m+1,¯ ,N implies Mk,M for all k=m
+1,¯ ,N, since for allk=m+1,¯ ,N, uk→−`, while u1→ ln s1 as uzu→`.

Then, choosingCk=lnssk/s1d for all k=1,¯ ,m, s2.1d becomes

uk = u1 + lnSsk

s1
p
j=1

M uz− zk,ju2

uz− z1,ju2
D s3.2d

for k=1,¯ ,N. Let us set

hkszd =5 skp
j=1

M uz− zk,ju2

sm + uz− z1,ju2d
for k P h1, ¯ ,mj,

p j=1

Mk uz− zk,ju2

p j=1

M
sm + uz− z1,ju2d

for k P hm+ 1,¯ ,Nj,6
wherem. is a sufficiently large parameter. We introduce new unknownv by

u1 = v + ln h1. s3.3d

Then,s3.2d combined withs3.3d implies the representation foruk, k=1,¯ ,N by

uk = v + ln hk.

We introduce

gszd = o
j=1

M
4m

sm + uz− z1,ju2d2 .

We note that

D ln h1szd = 4po
j=1

M

dsz− z1,jd − gszd. s3.4d

We also introduce the functionu0 defined by

o
k=1

N

hk = eu0. s3.5d

Note that sinceeu0→ok=1
m sk=1, we haveu0→0 asuzu→`.

Using s3.4d and s3.5d, we can rewrite the equation foru1 in s1.4d as follows:

Dv = ev+u0sev+u0 − 1d + g,

which is the Euler–Lagrange equation of the functional

042303-7 Existence of the semilocal Chern–Simons vortices J. Math. Phys. 46, 042303 ~2005!

                                                                                                                                    



Fsvd =E
R2
F1

2
u ¹ vu2 +

1

2
seu+u0 − 1d2 + gvGdx. s3.6d

After this step the arguments for the existence of solution by minimization of the functionalFsvd
by showing the coercivity and the weak lower semicontinuity inH1sR2d for sufficiently largem, is
exactly the same as in Refs. 15 and 11 or 16 and we do not repeat them here. This finishes the
proof of Theorem 1.2. j
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APPENDIX

Here we prove Lemma 2.1 and Proposition 2.3. We begin with the following elementary
integration lemma.

Lemma 4.1: Let mùk+1, then we have

E
0

` rks2N+2d−3

s1 + r2N+2dmdr =
pp j=1

k−1
sNj + j − 1dp j=1

m−k
fNj + j − 1g

2sm− 1d!sN + 1dm sinS pN

N + 1
D . sA1d

Proof:

E
0

` rks2N+2d−3

s1 + r2N+2dmdr =
1

2N + 2
E

0

` tk−1−f1/sN+1dg

s1 + tdm dt ssettingt = r2N+2d

= −
1

2N + 2
E

0

` tk−1−f1/sN+1dg

sm− 1d
d

dt

1

s1 + tdm−1dt

=
1

s2N + 2d
1

sm− 1dSk − 1 −
1

N + 1
DE

0

` tk−2−f1/sN+1dg

s1 + tdm−1 dt = ¯

=
Sk − 1 −

1

N + 1
DSk − 2 −

1

N + 1
D¯ S1 −

1

N + 1
D

2sN + 1dsm− 1dsm− 2d ¯ sm− k + 1d E
0

` t−1/sN+1d

s1 + tdm−k+1dt.

sA2d

Now we use the well-known formula from the Mellin transformssee, e.g., Ref. 7d,

E
0

` ta−1

s1 + tdndt =
pusa − 1dsa − 2d ¯ sa − sn − 1ddu

sn − 1d! sinspad
, a P s0,1d

in order to evaluate

E
0

` t−1/sN+1d

s1 + tdm−k+1dt =E
0

` ta−1

s1 + tdm−k+1dt =
pusa − 1dsa − 2d ¯ sa − m+ kdu

sm− kd! sinspad
, sA3d

where we seta=N/ sN+1d. SubstitutingsA3d into sA2d, we obtainsA1d. j

Proof of Lemma 2.1:Let us setfsrd=r1srd. Then, it is found in Ref. 1 that the ordinary
differential equationswith respect tord, Dw+r1w= fsrd has a solutionwsrdPYa given by
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wsrd = w0srdHE
0

r f fssd − f fs1d
s1 − sd2 ds+

f fs1dr
1 − r J sA4d

with

f fsrd ª S1 + r2M1+2

1 − r2M1+2D2s1 − rd2

r
E

0

r

w0stdtfstddt,

wheref fs1d andws1d are defined as limits off fsrd andwsrd asr →1. From the formulasA4d we
find that

wsrd = w0srdE
2

r S1 + s2M1+2

1 − s2M1+2D2Issd
s

ds+ sbounded function ofrd sA5d

as r →`, where

Issd =E
0

s

w0stdtr1stddt.

Sincew0srd→−1 asr →`, s1.12d follows if we show

I = Is`d =E
0

`

w0srdrr1srddr = C0.

We evaluate the integral,

I =E
0

`

w0srdfsrdr dr =E
0

`

w0srdr1srd2r dr = 64sM1 + 1d4E
0

` s1 − r2M1+2dr4M1+1

s1 + r2M1+2d5 dr

= 64sM1 + 1d4FE
0

` r4M1+1

s1 + r2M1+2d5dr −E
0

` r6M1+3

s1 + r2M1+2d5drG
= 64sM1 + 1d43 pM1

2s2M1 + 1ds3M1 + 2d

2 3 4!sM1 + 1d5 sinS pM1

M1 + 1
D −

pM1
2s2M1 + 1d2

2 3 4!sM1 + 1d5 sinS pM1

M1 + 1
D4

=
4pM1

2s2M1 + 1d6

15sM1 + 1d5 sinS pM1

M1 + 1
D = C0,

where we usedsA1d with sk,md=s2,5d and s3,5d in the fourth line. This completes the proof of
Lemma 2.1. j

Proof of Proposition 2.3:In order to transform the integral we use the formula

LF 1

16s1 + r2M1+2d2G =
sM1 + 1d2r4M1+2

s1 + r2M1+2d4 ,

which can be verified by an elementary computation. Using this, we have the following:
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I± =E
R2

sr1w − 2r1
2dw±

2 dx =E
0

2p E
0

`

sr1w − 2r1
2d

r2M1+2

s1 + r2M1+2d2Hcos2sM1 + 1du
sin2sM1 + 1du Jr dr du

= pE
0

` F8sM1 + 1d2r2M1

s1 + r2M1+2d2 w − 2r1
2G r2M1+2

s1 + r2M1+2d2r dr = pE
0

` F1

2
LH 1

s1 + r2M1+2d2Jw

−
2r1

2r2M1+2

s1 + r2M1+2d2Gr dr = pE
0

` F1

2
Lw ·

1

s1 + r2M1+2d2 −
2r1

2r2M1+2

s1 + r2M1+2d2Gr dr

= pE
0

` F r1
2

2s1 + r2M1+2d2 −
2r1

2r2M1+2

s1 + r2M1+2d2Gr dr = pE
0

` F 5r1
2

2s1 + r2M1+2d2 −
2r1

2

s1 + r2M1+2dGr dr

= 64psM1 + 1d4E
0

` F 5r4M1+1

2s1 + r2M1+2d6 −
2r4M1+1

s1 + r2M1+2d5Gd r

= 64psM1 + 1d43pM1
2s2M1 + 1ds3M1 + 2ds4M1 + 3d

4 3 4!sM1 + 1d6 sinS pM1

M1 + 1
D −

pM1
2s2M1 + 1ds3M1 + 2d

4!sM1 + 1d5 sinS pM1

M1 + 1
D4

= −
2p2M1

2s2M1 + 1ds3M1 + 2d

3sM1 + 1d2 sinS pM1

M1 + 1
D , 0,

where we usedsA1d with sk,md=s2,6d ands2,5d, respectively, in order to evaluate the integrals in
the seventh line. This completes the proof of the proposition. j
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In this paper we show that the Higgs boson of thesminimald standard model has at
most three gauge inequivalent ground states. One of these states is related to ordi-
nary electromagnetism and the other two to electromagnetism within magnetically
charged vacua. If space–time is assumed to be rotationally symmetric then the
charged electroweak vacua may be identified with Dirac monopoles of magnetic
chargeg= ±1/2. This offers a physical interpretation of magnetic monopoles and
Dirac’s quantization condition of electric charge in terms of the electroweak inter-
action. Moreover, in the case of thesminimald standard model the three possible
gauge inequivalent ground states of the Higgs boson are shown to fully determine
the topological structure of the gauge bundle which underlies the electroweak
interaction. ©2005 American Institute of Physics.fDOI: 10.1063/1.1883312g

I. INTRODUCTION

In this paper we discuss the topological structure that underlies the electroweak interaction as
it is described by thesminimald standard model. More specifically, we shall show that the topo-
logical structure of the principal SUs2d3Us1d bundle of the electroweak interaction is fully
determined by the hypercharge of the Higgs boson.

In Ref. 15 it has been shown that the symmetry of electromagnetism under charge conjugation
is equivalent to the triviality of the electroweak gauge bundle. The aim of this paper is to discuss
the topology of the electroweak gauge bundleP over an arbitrary space–timesM ,gMd when
charge conjugation is not taken into account. We will show that the structure ofP is fully
determined by Dirac’s famous quantization condition of electric charge. It follows that in the case
of the sminimald standard model the Higgs boson has at most three gauge inequivalent ground
states, one of which corresponds to ordinary electromagnetism and the other two correspond to
electromagnetism within a “magnetically charged vacuum.” Thus, the latter spoil charge conjuga-
tion. The fact that there are two charged vacua corresponds to theZ2-grading of charge conjuga-
tion of ordinary electromagnetism. To prove this, we will first summarize the basic geometrical
setup in the next section. In the third section we present the proof of the above statements and
discuss some consequences. In the fourth section we propose a specific generalization of the
moduli space of all electroweak vacua that has been introduced in Ref. 15 and discuss Dirac
monopoles from the geometrical viewpoint presented in this paper. We finish with a summary of
the results presented.

In the following we summarize the motivation and the physical terminology used in this paper
ssee also Ref. 15d. This paper is part of a sequence of papers dealing with a globally geometrical
analysis of spontaneously broken gauge theories. The discussion is based on a geometrical under-
standing of the “two shifts” usually performed in order to make perturbation theory on Minkowski
space–timeR1,3

d ° d + A,
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z0 ° z0 + f. s1d

For example, in the semiclassical approximations“tree-level”d of the sminimald standard
modelA=B+WPV1sR1,3,R % R3d denotes the electroweak gauge potential andfPV0sR1,3,C2d
represents the Higgs boson. Moreover, the Higgs boson and the electroweak gauge boson are
assumed to represent the following “particle multiplets:”

A = sAelm,W±,Z0d,

f = sfG,fH,physd. s2d

When “quantized”Aelm is identified with the photon andW± andZ0 with the electroweak vector
bosons;fG denotes the Goldstone boson andfH,phys the physical Higgs boson.

In the unitary gauge the pairsA,fH,physd is physically interpreted as a “fluctuation” of a
ground states“semiclassical vacuum”d of the electroweak interaction. From a geometrical perspec-
tive such a ground state may be described as a particular “Yang–Mills–Higgs pair”sd,z0d, where
“d” is considered as the exterior covariant derivative with respect to the trivial connection onC2.
The chosen minimumz0PC2 of the Higgs potentialVH can be regarded as the canonical smooth
mapping

z0:R
1,3→ orbitsz0d,

x ° z0. s3d

Here, the submanifold orbitsz0d,C2 is the orbit ofz0 with respect to a unitary group action of
G;SUs2d3Us1d on C2.

Of course, the decompositions2d and the physical interpretation ofsA,fH,physd only makes
sense if either the topology of space–timesM ,gMd or the topology of the underlying gauge bundle
P is assumed to be trivial. But what do we know about the global properties of the respective
spaces? And what kind of phenomena can we expect if the respective topologies are nontrivial?
Usually, one argues that physics can only make local statements. Consequently, the above given
interpretation may be considered as local relations for locally space–time and anysgauged bundle
are topologically trivial. Then, for example, the gauge classes of mappingss3d are known to be
classified byp1sG/Hd, where the closed subgroup H,G is isomorphic to the isotropy group ofz0.
However, the notion of locality is physically meaningless in the context of gauge theories for the
latter do not give rise to a scalesin contrast to gravityd. Therefore, the mathematical fact that every
bundle is locally trivial has no physical meaning. We are thus forced to consider a bundle as a
global geometrical object. This holds true in particular with respect to a gauge bundleP. Likewise,
because of the local nature of our experiments it seems more appropriate to determine the topo-
logical structure of space–time only by physical reasoning and not bya priori assumptions.

The assumption that the topology ofsM ,gMd and of P is quite general naturally rises the
question about the moduli space of gauge classes of semiclassical vacua. This moduli space is
related to the topology of space–time and the underlying gauge bundle. One may thus learn
something about the global structure of the latter by investigating the moduli space of semiclas-
sical vacua. Notice that the topological structure of space–time and of the gauge bundle also
determines the global structure of every associated bundlesup to equivalenced. That the moduli
space of semiclassical vacua actually provides a good tool to study the possible topolological
structure ofP is demonstrated in this paper for the special case of the electroweak interaction.
Although restricted to the semiclassical approximation the results presented may also have non-
trivial consequences for quantizing the electroweak/electromagnetic interaction on curved space–
time. Indeed, our discussion is also intended as a preliminary step towards a geometrical under-
standing of perturbation theory.
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II. THE ELECTROWEAK INTERACTION AS A SPECIFIC YANG–MILLS–HIGGS GAUGE
THEORY

For the convenience of the reader we summarize in this section the basic geometrical notions
used to geometrically formulate the bosonic sector of the electroweak interaction as a specific
Yang–Mills–HiggssYMH d gauge theory. For the terminology used and the details we refer to
Refs. 13 and 15. A corresponding discussion of fermions can be found in Ref. 14.

In what follows sM ,gMd denotes a smooth orientablessemi-dRiemannian manifold of arbi-
trary signature and dimension. As a topological space,M is assumed to be paracompact, con-
nected and Hausdorff. In addition we shall assume that either the cohomology ofM is torsion
free, or all cohomological statements presented are regarded “modulo torsion.” Since we are
mainly interested in the case wheresM ,gMd denotes a four dimensional Lorentzian manifold of
signature −2, we callM “space–time.” Likewise, byP we mean a smooth principal G bundle
over space–timeM,

pP:P→ M,

p ° x, s4d

with structure group GªSUs2d3Us1d. We callP the “electroweak gauge bundle.” Its topological
structure is thought to be given but so-far arbitrary. We will show that the actual bundle structure
is fully determinedsup to equivalenced by physical reasoning.

We call sP ,rH,VHd the geometrical data which permit to describe the electroweak interaction
as a specific YMH gauge theory. Here,

rH:G → GLs2,Cd,

g = sgs2d,gs1dd ° gs2dgs1d
y , s5d

with yPQ denoting the so-called “hypercharge;”

VH:C2 → R,

z ° luzu4 − m2uzu2 s6d

is the well-known Higgs potentialsl ,m.0d. Note that the unitary representationrH is faithful and
the Higgs potential is rotationally symmetric, i.e.,VH= fH + r with rszdª uzu the “radial function.”

The “Higgs bundle”jH and the “Yang–Mills bundle”jYMªtM
*

^ adsPd are naturally associ-
ated with the geometrical datasP ,rH,VHd. The Higgs bundle is defined by

pH:EH ª P3rH
C2 → M,

z ; fsp,zdg ° pPspd s7d

and the adjoint bundleadsPd is given by

pad:adsPd ª P3adLiesGd → M,

t ; fsp,Tdg ° pPspd. s8d

The latter is always considered as a real vector bundle of rank four. Also the Higgs bundle will be
mainly regarded as a real vector bundle of rank four. The real vector bundletM

* denotes the
cotangent bundle of space–timeM.

Each minimumz0PC2 of the Higgs potential induces a specific fiber sub-bundlejorb,jH,
which we call the “orbit bundle” with respect toz0,
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porb:Orbitsz0d ª P3rorb
orbitsz0d → M

z ; fsp,zdg ° pPspd, s9d

with rorbª urHuorbitsz0d. Note that in the case at hand the Higgs potential has only one orbit of
minima. Also, for two different minima the corresponding orbit bundles are equivalent. We there-
fore refer tos9d as the orbit bundle with respect to the datasP ,rH,VHd. For rotationally symmetric
Higgs potentials the orbit bundle can be thought of as a sphere sub-bundle of the Higgs bundle.

Each sectionVPGsjorbd is in one-to-one correspondence with a smooth principal H bundleQ
over M

pQ:Q → M,

q ° x. s10d

The structure group H;Uelms1d of Q is isomorphic to the isotropy groupIsz0d,G of the mini-
mum z0PC2

Isz0d ; hexpsufT + iygduT = Tsz0d P sus2d,trfsT + iyd2g = − n2,n P Nj. s11d

Moreover, there is an equivariant embedding of principal bundlesi :Q�P, such thatsi ,Qd is an
H reduction ofP ssee, Ref. 9d. For a discussion of spontaneously broken gauge theories in terms
of bundle reductions see, for example, Refs. 4, 5, 12, and 17. We call the principal H bundleQ the
“electromagnetic gauge bundle” with respect to the “vacuum section”V. The relation between a

sectionV of the orbit bundle and the appropriate H reductionsi ,Qd of P is given by Vsxd
= ufsisqd ,z0dguqPpQ

−1sxd for all xPM.
EachVPGsjorbd gives rise to a distinguished subset of principal connections onP. They are

determined by the requirement

dAV = 0, s12d

whereAPAsjHd is the corresponding associated connection onjH. The connections onP which
satisfy the conditions12d are called compatible with the vacuum sectionV frespectively, with the
H reductionsi ,Qd of Pg. These connections have the crucial property that they are flat when
restricted to the “physical space–time”MphysªVsMd,EH.

A YMH pair sA ,FdPAsjHd3GsjHd is called a “vacuumspaird” iff F=V is a vacuum section
andA=U is associated with a flat connection onP which is compatible withV. Each vacuum
defines an absolute minimum of the energy functionalsif globally definedd that is associated with
the well-known YMH functional. The moduli space of gauge classes of vacua is denoted byMvac.
The latter turns out to be nontrivial iffP is trivial. In this case,Mvac can be canonically identified
with HdeR

1 sMd. In other words, the moduli space of the electroweak vacua only depends on the
topology of space–time. In particular, ifM is simply connected then there is a natural vacuum
spaird sU0,V0d which generatesMvac. This vacuum corresponds to the vacuum usually introduced
in perturbation theory via the “shift”s1d.

SinceMvac=x for nontrivial P, we have to appropriately generalize the notion of the moduli
space of electroweak vacua. This will be achieved by use of the fact thatMvacÞx iff electro-
magnetism is symmetric with respect to charge conjugation. Before we introduce a generalization
of Mvac, however, we shall prove in the next section that Dirac’s quantization condition of electric
charge fully determines the topological structure of the electroweak gauge bundle.
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III. THE TOPOLOGY OF THE ELECTROWEAK GAUGE BUNDLE

When charge conjugation is taken into account the existence of vacuum sections is equivalent
to the triviality of the electroweak gauge bundle. We therefore consider in this section the situation
where charge conjugation is spoiled. Physically, this is the case if an absolute magnetic field exists
which, for example, is generated by a magnetic monopole. We show that in the case of the
standard model the Higgs boson may also provide such a state.

Proposition 3.1: LetQ be a principal H bundle over a smooth manifoldM and letl :H�G
be a homomorphism which is also a smooth embedding of Lie groups. Up to isomorphism there is
a unique principal G bundleP over M together with a smooth embeddingi :Q�P such that
si ,Qd is an H reduction ofP.

Proof: For this lethsUi ,wid u i PLj be a family of local trivializations of the principal H bundle
Q :pQ:Q→M. That is,Ui ,M is an open subset such thatM,øiPLUi, and

wi:pQ
−1sUid → Ui 3 H,

p ° sxª pQsqd,hi ª wi,xsqdd s13d

is an equivariant diffeomorphism for alli PL.
Accordingly, forUi ùUj Þx we denote by the mappings

hij :Ui ù Uj → H,

x ° wi,xsqdsw j ,xsqdd−1, s14d

the transition functions with respect to the local trivializationhsUi ,wid u i PLj.
For all i , j PL such thatUi ùUj Þx we define smooth mappings

gij :Ui ù Uj → G,

x ° lshijsxdd s15d

which satisfy the co-cycle conditiongijsxdgjksxdgkisxd=e for all xPUi ùUj ùUk. Therefore, up to
equivalence there is a unique principal G bundleP :pP:P→M with local trivialization
hsUi ,cid u i PLj such thatgijsxd=ci,xspdsc j ,xspdd−1.

We define a smooth familyhsUi ,ii u i PLdj of mappings

ii:pQ
−1sUid → pP

−1sUid,

q ° ci
−1usx,lswi,xsqdddux=pQsqd. s16d

Since l is an embedding, these mappings have maximal rank and fulfilliisqd=i jsqd for all q
PpQ

−1sUi ùUjd. Therefore, they define a global immersioni :Q→P which is a homeomorphism
onto isQd. Moreover, sincel is a homomorphism, the embeddingi is equivariant and fulfillpP

+ i=pQ. Consequently,si ,Qd is an H reduction ofP and thusP a G extension ofQ. Any other
G-extensionP8 must be equivalent toP, for the structure functions ofP8 are equivalent to those
of P. h

Therefore, for given datasQ ,G,ld there issup to equivalenced a unique G-extensionP of the
principal H bundleQ. Since every principal Us1d bundle is characterized by an integer we may
apply the Proposition 3.1 to prove our main result.

Proposition 3.2: LetsP ,rH,VHd be the geometrical data which specifies the electroweak
interaction of the (minimal) standard model as a YMH gauge theory. Up to equivalence the
topological structure of the electroweak gauge bundle is fully determined by the hypercharge of
the Higgs boson. Moreover, for a given hypercharge y.0 there are2unu+1 gauge inequivalent
sections of the orbit bundle where
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y = Î1
2sn2 − 1

2d, n P Z* . s17d

Proof: To prove the statement we make use of the fact that every principal Us1d bundle is
characterized by its Chern numbernPZ, wheren=0 corresponds to the trivial bundlessee Ref. 7d.
For a given hyperchargeyPQ, the definitions11d of the isotropy group of a minimumz0PC2 of
the Higgs potentialVH determines an integernPZ* ;Z \ h0j which is unique moduloZ2. For
example, one may assume thatz0=s0,0,0,r0d with r0ª

Îm2/2l andTsz0d= it3/2Psus2d to prove
the relations17d. In the case wherey,0, we may replacey by −uyu in the definition of the
hypercharge. So, we may assumey.0 without loss of generality. The relations17d is Dirac’s
quantization condition of electric charge in terms of the hypercharge of the Higgs boson. Modulo
Z2, this condition fixes a specific principal Uelms1d bundleQ overM, wherehPUelms1d is given
by h=det expsufT+ iygd. Accordingly, the embeddingl reads

l:Uelms1d � SUs2d 3 Us1d,

h = expsinud ° sexpsuTd,expsiuydd. s18d

Therefore, the structure of the electroweak gauge bundleP is fully determined by the hyper-
charge of the Higgs boson. Moreover, if the casen=0 is taken into account one obtains 2unu+1
Uelms1d reductions of the principal SUs2d3Us1d bundleP. h

The casen=0 is special in several respects and has been thoroughly discussed in Ref. 15. For
instance, as already mentioned, the corresponding electromagnetic gauge bundle equals the trivial
principal Uelms1d bundle independently from the topology of space–time,

pr1:M 3 Uelms1d → M,

q = sx,hd ° x. s19d

This electromagnetic gauge bundle is the only one which possesses a flat connection. Moreover, it
has a natural flat connection that is induced by the Maurer–Cartan form on Uelms1d. Since the
electroweak gauge bundle is trivial too, the corresponding embeddingi :Q�P is given by

i:M 3 Uelms1d � M 3 sSUs2d 3 Us1dd,

sx,hd ° sx,lshdd. s20d

Accordingly, the vacuum sectionV0 reads

V0:M → M 3 orbitsz0d,

x ° sx,z0d. s21d

Indeed, it has been shown that, for the trivial electroweak gauge bundle, any other vacuum
sectionV must be gauge equivalent to the canonical sectionV0. It follows thatMvac.HdeR

1 sMd,
which turns out to be equivalent to the existence of charge conjugation. Therefore, the casen
=0 corresponds to ordinary electromagnetism generated by the ground stateV0 of the Higgs
boson.

Since fornÞ0 the corresponding electromagnetic gauge bundles possess no flat connection,
we call the appropriate ground states of the Higgs boson “magnetically charged.” They spoil the
symmetry of ordinary electromagnetism under charge conjugation like a magnetic monopole.
However, theZ2 symmetry of charge conjugation is hidden in the two-to-one relations17d between
the Chern number and the hypercharge of the Higgs boson. Physically this means that it is possible
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to absolutely distinguish between positive and negative electrically charged particles if we know
the gauge class of the ground states of the Higgs boson. We stress that fornÞ0 the electroweak
gauge bundleP is nontrivial and possesses no flat connection.

When the Gell–Mann–Nishijima relation between the hypercharges and the electric charges of
the fermions is taken into account, the hypercharge of the Higgs boson yieldsy=1/2 scf., for
instance, Refs. 1,11, or 20d. Thus, in the case of thesminimald standard model the Higgs boson has
exactly three gauge inequivalent ground states, which are parametrized by the Chern numbersn
=0, ±1. These ground states correspond to the lowest nonvanishing electric charge a particle may
have.

Let OPGsjHd be the zero section andG*sjHd;GsjHd \ hOj. Then, the Proposition 3.2 shows
that the Higgs bundlejH has at least 2unu+1 nonvanishing sections. Therefore,G*sjHdÞx, and for
eachFPG*sjHd there is a uniquenPZ and a nonvanishing functionwPC`sMd such that

F:M → EH,

x ° wsxdVsxd. s22d

Consequently, also fornÞ0 every nonvanishing section of the Higgs bundle is fully determined
by its length. This is but a geometrical variant of what is usually referred to as “unitary gauge.” In
fact, despite the chosen terminology the unitary gauge is not a choice of gaugeswhich may not
exist globallyd. Instead, it refers to the moduli space of ground states of the Higgs boson.

IV. MAGNETICALLY CHARGED VACUA AND MONOPOLES

As discussed in the preceding section, ordinary electromagnetism corresponds to then=0
ground states of the Higgs boson. Moreover, the moduli space of electroweak vacua is related to
the topology of space–time via the isomorphismMvac.HdeR

1 sMd.
As we have already mentioned, in the case ofnÞ0 the electroweak gauge bundle possesses

no flat connection and thusMvac=x. One may therefore ask for an appropriate generalization of
Mvac. For this we call a solutionFmagPV2sMd of the Maxwell equations a “Dirac–HiggssDHd
monopole,” provided it satisfies the following conditions:sad fFmagg /2pPHdeR

2 sMd is integral;sbd
the Chern numbern of the isomorphism class of principal Us1d bundles defined byFmag is either
zero or related to the hypercharge of the Higgs boson via Dirac’s quantization conditions17d; scd
for eachxPM there is a geodesic normal coordinate systemsU ,wd such thati]t

Fmag=0, where]t

is the slocald timelike vector field that is induced bysU ,wd. In particular, forn=0 it is assumed
that conditionscd holds true for every geodesic normal coordinate system. We letMmag be the
moduli space of all gauge classes of YMH pairssA ,VdPAsjHd3GsjHd such thatA is associated
with a connection onP which is compatible with the vacuum sectionV and whose curvature
corresponds toFmag.

The conditionscd physically means that there is always an inertial reference systemsU ,wd
such that with respect to this systemFmag is purely magnetic,it

*Fmag=BtPV2sStd with
it :St�U,M is defined by the local spacelike hypersurfacet=const. Moreover, forn=0 we
haveFmag=0.

For nÞ0 we call Mmag the “smagneticallyd charged sector” of the moduli space of the
electroweak vacua. Accordingly, forn=0 we call Mmag=Mvac the “smagneticallyd uncharged
sector” of the electroweak vacua. Note that the charged sector ofMmag also depends on the
geometry of space–time.sWe would like to thank G. Naber for an appropriate hintd.

To present an example which demonstrates the nontriviality of the magnetically charged sector
of Mmag we consider the exterior Schwarzschild space–timesM ,gMd. Here, M.R
3 fr0,`f3S2 with r0PR+ the Schwarzschild radius. Consequently,M<S2 where the latter is a
spacelike submanifold ofsM ,gMd. Since the pull-back ofgM to this submanifold equals the
Riemannian standard metric onS2,R3 it is straightforward to check that
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Fmag=
n

2
sinq dq ∧ dw s23d

defines a Dirac–Higgs monopole providednÞ0 satisfies Dirac’s quantization conditions17d. The
corresponding electromagnetic gauge bundlesQ ,id over sM ,gMd is equivalent to thesgeneral-
izedd Hopf bundlessee, for instance, Refs. 10, 17, and 18 for a very readable approachd

pn:S
3/Zn → S2, s24d

whereZnª he2kpi/nuk=0,1, . . . ,n−1j,Us1d andpn generalizes the famous Hopf mapp1 between
spheresscf. Ref. 8; for a recent discussion of the various physical meanings of the Hopf fibration
see Ref. 19d.

In classical electrodynamics the DH monopole fields23d is regarded as being created by a
massive magnetically charged pointlike particles“Dirac monopole”d moving in Minkowski space–
time R1,3. In this context the monopole fieldFmagPV2sMd is known as the Dirac monopole field
on MªR1,3\G, whereG,M denotes the worldline of the Dirac monopole, see Ref. 6. However,
in the context of the standard model the physical interpretation ofs23d is different. Notice that in
either casesgM ,Fmagd is not a solution of the combined Einstein–Maxwell equations. Also notice
that the DH monopole has finite energy since the Schwarzschild radiusr0 acts like an ultraviolet
cutoff. Indeed, the energy-momentum currenttPGsEndstMdd of the DH monopole fields23d reads
t=sn2/2r4dIdTM. Hence, the “vacuum energy”L is given by the magnetical analogue of the
electrostatic energy of an electrically charged sphere

L = 4p
g2

r0
, s25d

whereg;n/2 is the magnetic charge of the DH monopole. Notice that the vacuum energy either
is zero or uniquely determined by the Schwarzschild radius and the hypercharge of the Higgs
boson, i.e., by the topology of space–time and the electroweak gauge bundle. In particular, in the
case of the standard model one hasLP h0,p / r0j.

The given example of a DH monopole also demonstrates that the electroweak gauge bundleP
is nontrivial in general. However, to determine the structure of the moduli spaceMmag of elec-
troweak vacua for more general space–timessM ,gMd is certainly a major challenge. The geom-
etry of sstaticd monopolessin Minkowski space–timed is thoroughly discussed, for example, in
Refs. 2 and 3ssee also, in Ref. 16d. However, the point here is to not regard magnetic monopoles
as individual “classicalspointliked particles” in space–time but instead to consider monopoles as
specific ground states of the Higgs boson whose realizations depend on both the topology and the
geometry of space–time. Indeed, the notion of a world lineG,M is a purely classical concept
which seems to make no sense withinsquantumd field theory. Also, Dirac’s famous quantization
condition qnPZ of electric chargeqPQ sagain, when measured in appropriate units, see again
Ref. 6d holds true only if the appropriate monopole bundleswhich is characterized bynPZ*d is
identified with the electromagnetic gauge bundle. However, this is consistent with the standard
model only if the monopole bundle is regarded as a specific Uelms1d reduction of the electroweak
gauge bundleP. That is, the monopole is identified with a specific gauge class of ground states of
the Higgs boson which are not gauge equivalent to those considered in perturbation theory.

In Ref. 15 it has been shown that, with respect to any electroweak vacuum, the Yang–Mills
bundle decomposes as

jYM = jelm % jz0 % jW±. s26d

Here, respectively,jelm andjZ0 are trivial line bundles which geometrically represent ansasymp-
totically freed photon and an electrically neutral massive weak vector boson. In contrast,jW±

ªtM
*

^ jW, with jW,adsPd denoting a rank two vector bundle, simultaneously represents both of
the electrically charged and massive weak vector bosonsW± iff electromagnetism is symmetric
with respect to charge conjugation. Of course, one may expect that only electrically charged
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particles permit a physical distinction between the magnetically charged and uncharged ground
states of the Higgs boson. With respect to a magnetically charged vacuum, thesmassived vector
bosonsW+ and W− are no longer charge conjugate to each other due to their electromagnetic
interaction with the corresponding DH monopole. Geometrically, this is expressed by the nontrivi-
ality of jW and that the asymptotically free states of theW± bosons must satisfy the field equation
ssee also Eq. 35 in Ref. 15d

dAdAW± + mW
2 W± = 0. s27d

Here, respectively,dA anddA is the exterior covariant derivative and its formal adjoint with respect
to a DH monopole connectionA andW± PGsjW±d is sthe electrically charged part ofd a smooth
“fluctuation” of A. Moreover,mW

2 PR+ is a nonvanishing eigenvalue of the Yang–Mills mass
matrix sfor the terminology used please see Ref. 15d V*MYM

2 PGsEndsjYMdd with fsA ,Vdg
PMmag.

However, in the case of a magnetically charged vacuum theZ2 symmetry of charge conjuga-
tion is restored in the two-to-one correspondence between the charge of the vacuum and the
hypercharge of the Higgs boson. Of course, it is interesting to also ask for appropriate physical
effects which permit to distinguish between the gauge inequivalent ground states of the Higgs
boson. Though we do not want to discuss this question here, we would like to stress again that
such an interaction can only occur for a topologically nontrivial space–time. Moreover, such an
interaction also depends on the space–time geometry, i.e., on the gravitational field. Consequently,
appropriate physical effects caused by the interaction of the electrically charged weak vector
bosonssrespectively, fermionsd with the electroweak vacuum may provide the possibility to gain
some insight into the topology and the geometry of space–time.

V. CONCLUSION

We have shown that the topological structure of the electroweak gauge bundle either is trivial
or fully determined by the hypercharge of the Higgs boson. This is a geometrical variant of Dirac’s
quantization condition within the realm of the electroweak interaction. For this it is crucial,
however, that in the case of thesminimald standard model “charge comes with mass.” Indeed, it is
a remarkable fact that no massless electrically charged particles are known to exist in nature. In
general, the moduli space of the electroweak vacua consists of a magnetically charged and an
uncharged sector. The uncharged sector corresponds to ordinary electromagnetism. It is deter-
mined by the assumption that the electrically charged massive weak vector bosons are charge
conjugate to each other. The uncharged sector is fixed by the topology of space–time via the first
de Rham cohomology group ofM. In contrast, a necessary condition for the existence of the
charged sectorsi.e., the existence of DH monopolesd is the nontriviality of the second de Rham
cohomology group of space–time provided there is nosalgebraicd torsion sthe author thanks R.
Vitolo for appropriate discussion on the occurrence of torsiond fe.g., H1sM ,Zd=0g. Moreover, a
charged ground state of the Higgs boson can only exist if it also fits with the geometry of
space–time.

In the case of thesminimald standard model the physical Higgs boson geometrically appears
as a fluctuation of any of the three gauge inequivalent ground states of the Higgs boson which are
characterized by the Chern numbersn=0, ±1. These ground states correspond to the lowest
possible nonvanishing electric charge a particle may assume. However, the magnetically charged
ground statesn= ±1 can be realized only if space–time possesses a nontrivial topology as, for
example, in the case of a rotationally symmetric space–time. In this case, the corresponding
electromagnetic gauge bundles are equivalent to Hopf fibrations. The appropriate DH monopoles
generalize the well-known Dirac monopoles of magnetic chargeg= ±1/2 to the electroweak
interaction within thesminimald standard model. This example may also motivate the terminology
of “magnetically charged electroweak vacua.” In general, these topologically nontrivial ground
states of the Higgs boson yield electric charge quantization analogous to ordinary Dirac mono-
poles. Clearly, whether these ground states of the Higgs boson can be actually realized for a
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general space–time manifoldsM ,gMd needs a more thorough analysis of the space of solutions
FmagPV2sMd of the corresponding Maxwell equations. Moreover, like in the usual discussion of
magnetic monopoles also the definition of DH monopoles does not refer to some field equation of
gravity. Of course, this seems unsatisfying from a physical viewpoint. However, to mathematically
discuss the structure of the correspondingly enlarged moduli space of electroweak vacua is obvi-
ously even more challenging. In any case, the geometrical viewpoint presented here with respect
to the electroweak interaction of thesminimald standard model suggests that the mechanism of
spontaneous symmetry breaking may provide a better understanding of the link between topology
and geometry.
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By making use of the potentials of the heat conduction equation the integral equa-
tions are derived which determine the heat kernel for the Laplace operator −a2D in
the case of compound media. In each of the media the parametera2 acquires a
certain constant value. At the interface of the media the conditions are imposed
which demand the continuity of the temperature and the heat flows. The integration
in the equations is spread out only over the interface of the media. As a result the
dimension of the initial problem is reduced by 1. The perturbation series for the
integral equations derived are nothing else as the multiple scattering expansions for
the relevant heat kernels. Thus a rigorous derivation of these expansions is given.
In the one dimensional case the integral equations at hand are solved explicitly
sAbel equationsd and the exact expressions for the regarding heat kernels are ob-
tained for diverse matching conditions. Derivation of the asymptotic expansion of
the integrated heat kernel for a compound media is considered by making use of the
perturbation series for the integral equations obtained. The method proposed is also
applicable to the configurations when the same medium is divided, by a smooth
compact surface, into internal and external regions, or when only the region inside
sor outsided this surface is considered with appropriate boundary conditions. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1870734g

I. INTRODUCTION

The heat kernel technique1–5 is widely used for constructing the quantum field theory in
gravitational background and with allowance for nontrivial boundary conditions. Of a particular
interest is the asymptotic expansion of the heat kernel it terms of evolution parameter for its small
values. The coefficients of this expansion pertain to divergences and anomalies in the relevant
quantum field theory models. Proceeding from this one can develop the renormalization procedure
needed.

For well posed spectral problems the heat kernel coefficients are expressed, in an polynomial
way, through the local geometric characteristics of the manifoldD and its boundaryS. Not only
the contributions ofD andS are independent but the contributions of individual regions ofD and
S are also additive.

The spectral problem is well posed for the goal of constructing the heat kernel if the second
oder elliptic differential operator in question is close to the Laplace operator defined on a smooth
manifold with a smooth boundary, if any.
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There are no universal methods for constructing the heat kernel and its asymptotic expansion.
The development of different approaches to this problem is the subject of many worksssee, for
example, the reviews1–5 and references thereind.

The initial definition of the heat kernel is the Green function of the heat-conduction equation
with an elliptic operator under study. In many physical problems it is worth going from the
differential equation, defining the solution to be found or the relevant Green’s function, to the
equivalent integral equation. In the dynamical evolution problems the integral equations mani-
festly show the reason–consequence relations governing the physical process under study. Reduc-
ing the problem to the integral equation, as a rule, allows one to develop the method of successive
approximationssperturbation theoryd.

Transforming the initial differential equation into the integral form is in the general case a
nontrivial problem. Special attention should be paid here to incorporating the boundary conditions
into the integral equation. When constructing the integral equations governing the Green’s func-
tion of the heat equation we shall use the surface potentials for this equation. The volume potential
and the potentials of single and double layers naturally arise in the theory of the Laplace equation.
In this case they are referred to as the Newtoniansor electrostaticd potentials. This idea proved to
be fruitful also in studies of the Helmholtz equation describing, for example, steady harmonic
oscillations, the wave equation, and the heat-conduction equation. The potentials are particular
solutions of these homogeneous equations, and they are constructed in a universal way in terms of
the fundamentalsor elementaryd solution of the initial equation. The potential technique has turned
out to be effective both for consideration of the general properties of the equations under study
sfor example, the prove of the solution uniquenessd and for deriving particular solutions with given
properties and for obtaining the Green’s functions.

This paper seeks to demonstrate the efficiency of using the heat potentials when constructing
the integral equations for the heat kernelsGreen functionsd at first in the case of manifolds with
boundary. It is worth noting that integration in these equations is spread out over the boundary
only. As a result the dimensionality of the initial problem is reduced by co-dimension of the
boundaryS. Further this approach is extended to the compound media, where the principal part of
the differential operator has a discontinuity at the interface between different media. A typical
example here is the electrodynamics of continuous media.6 The velocity of light has, in the general
case, a jump discontinuity on the border between two media with different characteristicssfor
example, on the border between dielectric and vacuumd. In the both media the Maxwell equations
are well defined, and at the interface the matching conditionssor boundary conditionsd should be
satisfied. The concrete form of these conditions is determined by the physical content of the
problem in question. In the same way the conduction of heat in compound media is treated.7 As far
as we are aware, the heat kernel for compound media is not investigated yet.4

The layout of the paper is as follows. In Sec. II the essentials of the potential theory are
recalled first for the Laplace equationsNewtonian potentialsd and then for the heat-conduction
equationsheat potentialsd. By making use of the heat potentials the integral equation for the Green
function sheat kerneld is derived for a compact region of Euclidean space bounded by a smooth
surface. The perturbative series for this equation is developed which is nothing else as the multiple
scattering expansion for the heat kernel. Thus a rigorous derivation of this expansion is presented.
The convenience to use here the Laplace transform is shown. In Sec. III the integral equations are
derived that determine the heat kernel for compound media. The efficiency of the approach
proposed is demonstrated by deriving thet-small asymptotics of the first three terms of the
perturbation series for the heat kernel in the case of compound mediasSec. IVd. In Sec. V the heat
kernel on an infinite line is constructed in an exact form for diverse matching conditions. In the
ConclusionsSec. VId the obtained results are briefly summarized and the possibility of extending
the approach proposed is discussed. In the Appendix the general conditions at the interface are
found which result in self-adjoint boundary value problem for the Laplace operator considered in
compound media.
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II. HEAT POTENTIALS

In order to recall the basic facts from the potential theory, we first address the Laplace
equation

Du = 0 s2.1d

considered in thed-dimensional Euclidean spaceRd, which is divided by a smooth closed surface
S into a compact internal domainD+ and external oneD−. On the surfaceS the relevant boundary
conditions should be imposed, that depend on the physical content of the problem in question. For
example, it may be a mathematical formulation of the electrostatic problem.6 The surfaceS is
supposed to possess the properties of smoothness needed. In the potential theory8–11 this implies
that S is the Lyapunov type surface. The points of Euclidean spaceRd are denoted byx,y,z, …,
andrxy is the Euclidean distance betweenx andy. At any pointx on S there exists a unit normal
nx or nsxd. For definiteness we choose the inward directed normal. It is possible because we are
dealing with closed surfacesS.

For a linear homogeneous differential equation the fundamentalsor elementaryd solution is
defined, which is the Green function of this equation in an unbounded space. By definition, the
fundamental solution obeys the initial equation with ad-like source on its right-hand side. In the
case of the Laplace equation inRd the fundamental solution is

Edsx;x8d = −
Gsd/2dsrxx8d

−d+2

s2d − 4dpd/2 , d ù 3, E3sx;x8d = −
1

4prxx8
s2.2d

with the properties

DxEdsx;x8d = Dx8Edsx;x8d = dsddsx,x8d, Edsx;x8d = Edsx8;xd. s2.3d

The potentials for the Laplace equation are constructed by making use of the fundamental
solution, namely, the volume potential

Usxd = −
1

4p
E

D

wsyd
rxy

dy, s2.4d

the single-layer potential

Vsxd = −
1

4p
E

S

nsyd
rxy

dSy, s2.5d

and the potential of a double layer

Wsxd = −
1

4p
E

S

msyd
]

]ny

1

rxy
dSy. s2.6d

These formulas are written ford́=3, and the following notations are used: dy and dSy are, respec-
tively, the elements of the volume and of the surface at the pointy,wsyd ,msyd, andnsyd are the
densities of these potentials. It is convenient to consider the densitieswsyd ,msyd, andnsyd to be
continuous functions.

All three potentials are solutions of the Laplace equations2.1d, namely, the volume potential
s2.4d is harmonic outsideD ,Vsxd, and Wsxd are harmonic outsideS. The single-layer potential
Vsxd is continuous everywhere inRd, specifically, on passing throughS. The potential of a double
layer Wsxd has a discontinuity onS, namely,

Wisxd = Wsxd − 1
2msxd,
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Wesxd = Wsxd + 1
2msxd, x P S. s2.7d

HereWsxd is the value of the integrals2.6d, when the pointx belongs toS fWsxd is a continuous
function for x varying alongSg, Wisxd is the value of the double-layer potentials2.6d, when the
point x tends toS from D+, andWesxd is the same when the pointx approaches atS from D−.

In what follows we shall frequently use the derivative along the normal to the surfaceSat the
point y, which belongs toS. This derivative acts on the function the argument of which is the
distancerxy between the pointsx and y, the point x being not obliged to lay onS. Simple
calculation gives

]

]ny
rxy = cosw, s2.8d

wherew is the angle between the vectorr xy, which starts atx and ends aty, and the normalny. In
the same way we have

]

]ny
fsrxyd = f8srxydcosw,

]

]ny
S 1

rxy
D = −

cosw

rxy
2 . s2.9d

Equationss2.8d and s2.9d are obviously valid for both inward and outward directed normals.
The application of the potentialss2.4d–s2.7d for transforming the boundary problems for the

Laplace equations2.1d to the integral equations can be found in many textbooks on mathematical
physics.8–10,12–15

Let us proceed to consideration of the heat-conduction equation,

]u

]t
− a2Du = 0. s2.10d

The fundamentalsor elementaryd solution to this equation inRd is

Edsx,t;x8,t8d = ust − t8dK0sx,t;x8,t8d, s2.11d

where

K0sx,t;x8,t8d =
1

s2aÎpst − t8ddd
expF−

rxx8
2

4a2st − t8d
G . s2.12d

The functionK0sx,t ;x8 ,t8d sthe propagator14 or the heat kerneld obeys the homogeneous heat
equations,

S ]

]t
− a2DxDK0sx,t;x8,t8d = 0,

S ]

]t8
+ a2Dx8DK0sx,t;x8,t8d = 0, s2.13d

and inhomogeneous initial condition

K0sx,t;x8,t8d → dsddsx − x8d, whent − t8. s2.14d

This condition enables one to construct the solution of the Cauchy problem for the nonhomoge-
neous heat equation
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S ]

]t
− a2DxDusx,td = fsx,td s2.15d

considered in an unbounded space

usx,td =E dx8 K0sx,t;x8,t8du0sx8d +E
t8

t

duE dx8 K0sx,t;x8,udfsx8,ud, s2.16d

where u0sxd=usx,t= t8d. In the classical mathematical physics8 the representations2.16d of the
solution to the heat-conduction equations2.15d is known as the Poisson formula. The last term in
s2.16d can be considered as an analog of Eq.s2.4d defining the volume potential for the Laplace
equation.

In a complete agreement with the definitionss2.5d and s2.6d the heat surface potentials are
introduced, namely, the simple-layer potential,

Vsx,td = a2E
0

t

duE
S

dSy K0sx,t;y,udnsy,ud s2.17d

and the potential of a double layer,

Wsx,td = a2E
0

t

duE
S

dSy
]K0

]ny
sx,t;y,udmsy,ud = −E

0

t du

2st − udES

dSyrxy cosw K0sx,t;y,udmsy,ud,

s2.18d

where the functionsnsy,ud andmsy,ud are the surface densities of these potentials. By the con-
struction the heat potentialsVsx,td andWsx,td vanish att=0.

For bounded densitynsx,td the heat potential of a single layerVsx,td is continuous every-
where inRd, also on passing through the surfaceS, and satisfies the homogeneous heat-conduction
equations2.10d outsideS, i.e., it is parabolic outsideS. The normal derivatives ofVsx,td have
jump discontinuities onS. For continuous inS densitynsx,td these discontinuities are given by

S ]Vsx,td
]nx

D
i

=
]Vsx,td

]nx
−

1

2
nsx,td,

S ]Vsx,td
]nx

D
e

=
]Vsx,td

]nx
+

1

2
nsx,td, x P S. s2.19d

For bounded densitymsx,td the heat potential of a double layers2.18d is continuous every-
where outside ofS sin Rd\Sd and in S. OutsideS the potentialWsx,td is parabolic. On passing
throughS it has discontinuities. For continuous inS densitymsx,td these discontinuities are given
by sd=3d

Wisx,td = Wsx,td + 1
2msx,td,

Wesx,td = Wsx,td − 1
2msx,td, x P S. s2.20d

The normal derivatives of the double-layer potential are continuous on passing throughS.
The employment of the Newtonian and heat potentials for transforming the boundary-value

problems for Laplace and heat equations into the integral ones is based on the discontinuity
properties on the boundary of the double-layer potential and the normal derivatives of the single-
layer potential. Let us consider a simple example, namely, construction of the solution to the
Dirichlet problem for the heat equation in a compact domainD bounded by a smooth surfaceS,
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S ]

]t
− a2DDusx,td = 0, x P D, t . 0,

usx,0d = 0, x P D,

usx,td = csx,td, x P S, t . 0, s2.21d

where the functioncsx,td specifies the temperature on the boundaryS at different time instantst.
We shall look for the solutionusx,td in terms of the heat potential of a double layers2.18d,

usx,td = Wsx,td. s2.22d

With account of Eq.s2.20d we have on the boundaryS,

1

2
msx,td = − a2E

0

t

dt8E
S

dSx8
]K0

]nx8
sx,t;x8,t8dmsx8,t8d + csx,td, x,x8 P S. s2.23d

Thus, the problem under consideration is reduced to the solution of the linear integral equation of
the second kind. With respect to the variablet these equations are of the Volterra type and with
respect to the spatial variablesx and x8 they are of the Fredholm type, the variablesx and x8
ranging on the boundaryS.

In an analogous way the integral equations for the Green’s function of the heat equation can
be deduced. Let us consider this technique in the case of the first boundary-value problemsthe
Dirichlet problemd for this equation. The Green functionKsx,t ;x8 ,t8d is specified by the following
conditions:8 it should satisfy the homogeneous heat equation with respect to the first pair of its
arguments

S ]

]t
− a2DxDKsx,t;x8,t8d = 0, s2.24d

it should obey the inhomogeneous initial condition

Ksx,t;x8,td = dsx,x8d, t ù 0, s2.25d

and the homogeneous boundary condition

Ksx,t;x8,t8d = 0, x P S. s2.26d

Strictly speaking, the functionKsx,t ;x8 ,t8d is the propagator of the heat equation. It should be
multiplied by the step functionust− t8d in order to get the Green function.14 This point should be
kept in mind when dealing with the parabolic equations.

We represent the Green functionKsx,t ;x8 ,t8d as the sum of a free propagator and the heat
potential of a double layer,

Ksx,t;x8,t8d = K0sx,t;x8,t8d + a2E
t8

t

duE
S

dSy
]K0

]ny
sx,t;y,udmsy,u;x8,t8d. s2.27d

The right-hand side of this equation obviously satisfies Eq.s2.24d. When t= t8 the double-layer
potential ins2.27d sthe second termd vanishes. The free propagator in this formulaK0 enables one
to obey the initial conditions2.25d. The density of the double-layer potentialmsy,u ;x8 ,t8d is
determined from the boundary conditions2.26d. On substituting Eq.s2.27d into s2.26d the follow-
ing integral equation is obtained for the potential densitym:
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1

2
msx,t;x8,t8d = − K0sx,t;x8,t8d − a2E

t8

t

duE
S

dSy
]K0

]ny
sx,t;y,udmsy,u;x8,t8d, x P S.

s2.28d

For Eq.s2.28d and consequently for Eq.s2.27d the method of successive approximations can
be developed, as Eq.s2.28d is an integral equation of the second kind. It has been proved, that the
series arising here is uniformly convergent.16 The first terms of this series for Eq.s2.27d are

Ksx,t;x8,t8d = K0sx,t;x8,t8d + s− 2a2d1E
t8

t

duE
S

dSy
]K0

]ny
sx,t;y,udK0sy,u;x8,t8d

+ s− 2a2d2E
t8

t

duE
S

dSy
]K0

]ny
sx,t;y,udE

t8

u

du1E dSy1

]K0

]ny1

sy,u;y1,u1d

3 K0sy1,u1;x8,t8d + ¯ . s2.29d

Obviously, this series is a result of successive approximations applied to the integral equation for
the complete propagator

Ksx,t;x8,t8d = K0sx,t;x8,t8d − 2a2E
t8

t

duE
S

dSy
]K0

]ny
sx,t;y,udKsy,u;x8,t8d. s2.30d

The seriess2.29d is nothing else as the multiple scattering expansion for the heat kernel in the
problems under consideration.17,18 Thus we have derived this expansion in a rigorous way.

By making use of the Laplace transform in Eq.s2.29d one can remove the integrations over
the intermediate time variablesu’s,

K̄sx,x8;pd = K̄0srxx8;pd + s− 2a2d1E
S

dSy K̄1srxy;pdK̄0sryx8;pd

+ s− 2a2d2E
S

dSy K̄1srxy;pdE
S

dSy1
K̄1sryy1

;pdK̄0sry1x8;pd + ¯ , s2.31d

where

K̄sx,x8;pd =E
0

`

e−ptKsx,t;x8,0ddt, s2.32d

K̄0srxy;pd =E
0

`

e−ptK0sx,t;y,0ddt =
1

2pa2K0S rxy

a
ÎpD , s2.33d

K̄1srxy;pd =E
0

`

e−pt]K0

]ny
sx,t;y,0ddt = −

cosw

2pa3
ÎpK1S rxy

a
ÎpD, y P S. s2.34d

In Eq. s2.34d w is the angle between the vectorsr xy andny. The Laplace transformsK̄0 andK̄1 are
calculated ford=2. They are expressed in terms of the modified Bessel functions19 K0szd and
K1szd. We hope that our notations will not lead to confusion because the free propagator
K0sx,t ;x8 ,t8d and the Bessel functionK0szd have a different number of arguments. The series
s2.31d is the perturbative solution to the following integral equation:
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K̄sx,x8;pd = K̄0srxx8;pd − 2a2E
S

dSy K̄1srxy;pdK̄sryx8;pd. s2.35d

The seriess2.29d or s2.31d contains complete information about the Green functionsheat kerneld in
the problem at hand. However, extracting it from here is not a simple task.

The second term on the right-hand side of Eq.s2.31d is responsible for one reflection from the
boundarysthe Born approximationd. Its contribution into the heat kernel can be expressed in terms
of the confluent hypergeometric function19 Wab. By making use of the convolution theorem for the
Laplace transform7,19–21we obtain

K̄s1dsx,x8;pd =
2a2Îp

s2pd2a5E
S

dSy cosw K0S rxy

a
ÎpDK1S ryx8

a
ÎpD . s2.36d

The inverse Laplace transform gives22

Ks1dsx,x;td =
1

25/2p3/2a2t
E

S

dSy
cosw

rxy
expS−

rxy
2

2a2t
DW1

2
1
2
S rxy

2

a2t
D , s2.37d

wherew is the angle between the vectorr xy and the inward directed normal to the boundaryS at
the pointy.

The perturbation seriess2.31d can be employed, for example, to find the asymptotic expansion
of the heat kernel trace.

III. COMPOUND MEDIA

An important advantage of the heat potential technique for constructing the integral equations
is the possibility of applying it to compound media. We show this by considering first the solution
of the heat-conduction equation instead of the relevant Green’s function.

Thus, in both the regionsD+ andD− the heat equations are defined

S ]

]t
− a+

2DDu+sx,td ; T̂txsa+du+sx,td = 0, x P D+, s3.1d

S ]

]t
− a−

2DDu−sx,td ; T̂txsa−du−sx,td = 0, x P D−, s3.2d

with the matching conditions at the interfaceS, namely, when crossingS the following quantities
should be continuous: temperature

u+sx,td = u−sx,td, x P S s3.3d

and heat current

l+
]u+sx,td
]n+sxd

+ l−
]u−sx,td
]n−sxd

= 0, x P S, s3.4d

wheren+sxd andn−sxd are inward normals to the surfaceSat the pointx for the regionsD+ andD−,
respectively. These matching conditions imply, in particular, that there are no heat sources onS.
The parametersa+,a−,l+, andl− specify the material characteristics of the media.

We shall look for the solution to this problem in terms of the heat potentials of single layer
and double layer. Here the following feature proves to be important. If the solutionu+sx,td in the
internal regionD+ is represented as the heat potential of a single layer,
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u+sx,td = a+
2E

0

t

dt8E
S

dSx8 K0
s+dsx,t;x8,t8dnsx8,t8d, s3.5d

then the solutionu−sx,td in the external regionD− should be looked for in terms of the heat
potential of a double layer,

u−sx,td = a−
2E

0

t

dt8E
S

dSx8
]K0

s−d

]n−sx8d
sx,t;x8,t8dmsx8,t8d, s3.6d

whereK0
s+d andK0

s−d are the fundamental solutions of the heat equationss3.1d ands3.2d, which are
defined by the formulas2.12d with a=a+ anda=a−, respectively.

Substituting Eqs.s3.5d and s3.6d into the first matching conditions3.3d we obtain

a+
2E

0

t

dt8E
S

dSx8 K0
s+dsx,t;x8,t8dnsx8,t8d =

1

2
msx,td

+ a−
2E

0

t

dt8E
S

dSx8
]K0

s−d

]n−sx8d
sx,t;x8,t8dmsx8,t8d, x,x8 P S.

s3.7d

The second matching conditions3.4d results in another integral equation,

l+a+
2E

0

t

dt8E
S

dSx8
]K0

s+d

]n+sxd
sx,t;x8,t8dnsx8,t8d −

1

2
l+nsx,td

+ l−a−
2E

0

t

dt8E
S

dSx8
]2K0

s+d

]n−sxd ] n−sx8d
sx,t;x8,t8dmsx8,t8d = 0, x,x8 P S. s3.8d

Thus the problem under consideration is reduced to the solution of the system of two linear
integral equations of the second kinds3.7d and s3.8d. It is worth noting that we have obtained
homogeneous equations, because there are not any heat sources in the problem under study.
Hence, we are dealing here with the eigenfunctions only.

Let us proceed to the Green’s functionKsx,t ;x8 ,t8d in this problem. In what follows, it is
convenient to represent this function in terms of the following four components depending on the
range of the arguments:

Ksx,t;x8,t8d =5
K++sx,t;x8,t8d, x,x8 P D+,

K+−sx,t;x8,t8d, x P D+,x8 P D−,

K−+sx,t;x8,t8d, x P D−,x8 P D+,

K−−sx,t;x8,t8d, x,x8 P D−.
6 s3.9d

The conditions, which specify the Green functionKsx,t ;x8 ,t8d, can be found in the following
way. This function should provide the solutionūsx,td of the inhomogeneous boundary-value
problems3.1d–s3.4d with the heat sourcefsx,td in the form

ūsx,td = − ust − t8dE
t8

t

dtE
Rd

Ksx,t;j,tdfsj,tddj, s3.10d

where ust− t8d is the step function. The functionūsx,td will satisfy the inhomogeneous heat-
conduction equation
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fsx,td =HT̂txsa+dūsx,td, x P D+,

T̂txsa−dūsx,td, x P D−,
J s3.11d

if the Green functionKsx,t ;x8 ,t8d obeys the corresponding homogeneous heat equations with
respect to the first pair of its arguments

T̂txsa+dKsx,t;x8,t8d = 0, x P D+,

T̂txsa−dKsx,t;x8,t8d = 0, x P D−, s3.12d

and the inhomogeneous initial conditions2.25d with respect to both pairs of its arguments. In
terms of the componentss3.9d the initial conditions2.25d acquires the form

K++sx,t;x8,td = dsx,x8d, x,x8 P D+, s3.13d

K−−sx,t;x8,td = dsx,x8d, x,x8 P D−, s3.14d

K+−sx,t;x8,td = K−+sx,t;x8,td = 0. s3.15d

On the right-hand side of the initial conditionss3.15d the delta functiondsx,x8d with x,x8
PS is absent. Thus in our consideration we eliminate the treatment of heat sources at the interface.
The point is such sources alter the matching conditions instead of the initial conditions. In the next
section the solution to the heat-conduction equation, defined on a line, will be constructed for such
a configuration by making use of the heat potential technique.

The matching conditionss3.3d and s3.4d are directly transformed into the conditions for the
Green functionKsx,t ;x8 ,t8d with respect to the first pair of its arguments,

K++sx,t;x8,t8d = K−+sx,t;x8,t8d, s3.16d

l+
]K++

]n+sxd
sx,t;x8,t8d + l−

]K−+

]n−sxd
sx,t;x8,t8d = 0, s3.17d

K+−sx,t;x8,t8d = K−−sx,t;x8,t8d, s3.18d

l+
]K+−

]n+sxd
sx,t;x8,t8d + l−

]K−−

]n−sxd
sx,t;x8,t8d = 0, s3.19d

x P S.

It turns out that the heat equationss3.12d, the initial conditionss3.13d–s3.15d, and the matching
conditionss3.16d–s3.19d are enough for construction of the Green function in the case of com-
pound media in a unique way.

We shall look for the components of the Green functions3.9d in terms of the heat potentials of
single and double layers with respect to the first pair of their arguments, the componentsK++ and
K+− being expressed through the heat potentials of single layers and the componentsK−− andK−+

through the heat potentials of double layers. In order to take into account the inhomogeneous
initial conditions s3.13d and s3.14d for the componentsK++ and K−− we add to the chosen heat
potentialssnonsingular part of the Green functiond the free propagatorK0

s+d or K0
s−d ssingular part of

this functiond
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K++sx,t;x8,t8d = K0
s+dsx,t;x8,t8d + a+

2E
t8

t

duE
S

dSy K0
s+dsx,t;y,udn++sy,u;x8,t8d, s3.20d

K+−sx,t;x8,t8d = a+
2E

t8

t

duE
S

dSy K0
s+dsx,t;y,udn+−sy,u;x8,t8d, s3.21d

K−−sx,t;x8,t8d = K0
s−dsx,t;x8,t8d + a−

2E
t8

t

duE
S

dSy

]K0
s−d

]n−syd
sx,t;y,udn−−sy,u;x8,t8d, s3.22d

K−+sx,t;x8,t8d = a−
2E

t8

t

duE
S

dSy

]K0
s−d

]n−syd
sx,t;y,udn−+sy,u;x8,t8d. s3.23d

The matching conditionss3.16d and s3.17d give

K0
s+dsx,t;x8,t8d + a+

2E
t8

t

duE
S

dSy K0
s+dsx,t;y,udn++sy,u;x8,t8d

=
1

2
n−+sx,t;x8,t8d + a−

2E
t8

t

duE
S

dSy

]K0
s−d

]n−syd
sx,t;y,udn−+sy,u;x8,t8d, s3.24d

l+
]K0

s+d

]n+sxd
sx,t;x8,t8d + l+a+

2E
t8

t

duE
S

dSy

]K0
s+d

]n+sxd
sx,t;y,udn++sy,u;x8,t8d −

1

2
l+n++sy,u;x8,t8d

+ l−a−
2E

t8

t

duE
S

dSy

]2K0
s−d

]n−sxd ] n−syd
sx,t;y,udn−+sy,u;x8,t8d = 0, x P S. s3.25d

In the same way we deduce froms3.18d and s3.19d

a+
2E

t8

t

duE
S

dSy K0
s+dsx,t;y,udn+−sy,u;x8,t8d = K0

s−dsx,t;x8,t8d +
1

2
n−−sx,t;x8,t8d

+ a−
2E

t8

t

duE
S

dSy

]K0
s−d

]n−syd
sx,t;y,udn−−sy,u;x8,t8d,

s3.26d

−
1

2
l+n+−sx,t;x8,t8d + l+a+

2E
t8

t

duE
S

dSy

]K0
s+d

]n+sxd
sx,t;y,udn+−sy,u;x8,t8d

+ l−a−
2E

t8

t

duE
S

dSy

]2K0
s−d

]n−sxd ] n−syd
sx,t;y,udn−−sy,u;x8,t8d + l−

]K0
s−d

]n−sxd
sx,t;x8,t8d = 0, x P S.

s3.27d

The sets of integral equations of the second kinds3.24d, s3.25d and s3.26d, s3.27d define the
heat kernel for compound media in full. With respect to spatial variables these equations are of
Fredholm type while regarding time variable they are of Volterra type. It is essential that the
integration over the spatial variables is restricted by the interfaceS only. Hence the dimension of
the initial problem is reduced by 1. By making use of the Laplace transform one can remove the
integration over the time variables in Eqs.s3.24d–s3.27d as it has been done in Sec. II.
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Obviously the integral equations for the heat kernel derived here can be also applied when the
surfaceS divides the same medium into the regionsD+ andD+, i.e., when the constantsa+

2 anda−
2

equal.
For constructing the solutions to the integral equationss3.24d–s3.27d the perturbation theory

can be employedssee Sec. IId. The expansion parameters in this case prove to be the constantsa±
2

andl±. The perturbation series generated here are nothing else as the multiple scattering expan-
sion for the heat kernel.17,18Thus we have proposed a rigorous derivation of these expansions both
for homogeneous media and compact regions and for compound media.

IV. ASYMPTOTIC EXPANSION OF HEAT KERNEL FROM PERTURBATION SERIES

In practical applications, especially in QFT, the asymptotic expansion of the integrated heat
kernel whent→ +0 proves to be important.1–4 It has the form

Kstd ; E dx Ksx,t;x,0d = s4ptd−d/2 o
n=0,1,2,…

`

tn/2Bn/2 + ES. s4.1d

In this expansiond is the dimension of the configuration space and ES stands for the exponentially
small corrections ast→ +0. We show how to derive this expansion proceeding from the pertur-
bation series for the integral equationss3.24d–s3.27d. The functionsK−+ andK+− do not contribute
to integrated heat kernelssee Sec. V Cd, thus we must consider onlyK++ andK−−.

For our purposes it is convenient to use such coordinates that in the vicinity of the surfaceS
the metric isgij dxi dxj =sdx3d2+gab dxa dxb wherex3 is a coordinate on the normal toS, x3=0 on
S. In view of the exact form of the free propagators2.12d, one can infer that in each term of the
perturbation series for integral equationss3.24d–s3.27d the power int contributions are given only
at the following conditions: when evaluating the heat kernel trace, the integration overdx should
be spread over the region immediately adjacent to the boundarySand in the course of the multiple
integration over the boundaryS the respective distancesryy8 should be also small. Therefore in the
vicinity of S we may replace the squared distancesx−zd2 by several terms of its expansion in
powers of the corresponding geodesic distances on the surfaceS,

sx − zd2 = sx3 − z3d2 + s2h1 − sx3 + y3dk1 + x3z3sk1
2 + k2

2dj + s3h− 1
3s2z3 + x3dk18 + x3z3sk1k18 + k2k28dj

+ ¯ ,

k1 = Labj
ajb, k2 =

1

2
s«acLb

c + «bcLa
cdjajb, «ac = − «ca, k18 ;

dk1

ds
, k28 ;

dk2

ds
. s4.2d

The surface area element is dSz= s1− 1
12Rabj

ajbs2+¯ ds ds dV, V parametrizes a unit sphere,
Lab is the second fundamental form onS, Rab is intrinsic Ricci curvature,j is a unit tangent vector
at x to the geodesics with the lengths joining z to x on S ssee, for example, Ref. 23d.

Here we present the first three terms of the perturbation series under consideration whent
→ +0sd=3d,

Ks0dstd = K++
s0dstd + K−−

s0dstd =
t−3/2

s4pa+
2d3/2D+ +

t−3/2

s4pa−
2d3/2D−,

K++
s1dstd =

t−1S

8pa+
2 +

t−1/2

8p3/2a+
E

S

dS La
a +

t0

28p
E

S

dSF5sLa
ad2 + La

bLb
a −

2

3
Ra

aG + ¯ ,
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K++
s2dstd = −

t−1

8p

l−

l+

S

a+
2 −

1

8p3/2

l−

l+

t−1/2

a+
E

S

dS La
a +

t0

32pHa−
l−

l+

sa+ + 2a−d
sa+ + a−d2E

S

dSF− sLa
ad2 + 4La

bLb
a

−
1

3
Ra

aG + F1

8
−

l−

l+

1

sa+ + a−d3S35

12
a−

3 +
11

4
a−

2a+ + 2a+
2a− +

2

3
a+

3 +
9

4

a−
4

a+
+

3

4

a−
5

a+
2DGE

S

dSfsLa
ad2

+ 2La
bLb

agJ + ¯ . s4.3d

To obtainK−−
s1dstd andK−−

s2dstd one should replacea+↔a−,l+↔l−,La
b→−La

b. The asymptotics of the
subsequent terms of perturbation series may be found in a similar way. After that all factors
appearing with the same powers oft are added up to give the heat kernel coefficients. The latter
are expressed through the integrals of the surface geometric invariants. The asymptoticss4.3d were
presented in Ref. 24 without considering the derivation of the relevant integral equations.

V. HEAT KERNEL ON A LINE

In this section we demonstrate the efficiency of our approach based on integral equations for
constructing the heat kernel on a line. In this case the interface between the media reduces to a
point. As a result we are dealing with the Volterra integral equations in respect of onestimed
variable. These equations are of a special typesAbel equationsd, and their solutions can be found
in an exact form.

A. Homogeneous media with gluing conditions

By making use of the heat potential technique we construct here, in an exact form, the heat
kernel Ksx,y; td for the Laplace operator on an infinite line for homogeneous medium with a
nonstandard gluing conditions at the originsthese conditions will be specified belowd. From the
physical point of viewKsx,y; td is the temperature at the pointx which is generated by a unit
instantaneous heat source placed at the pointy at the momentt=0.

As in the preceding sections we first formulate the conditions that define the heat kernel in the
problem under consideration. With respect to the first argumentKsx,y; td should satisfy the one-
dimensional heat-conduction equation

S ]

]t
−

]2

]x2DKsx,y;td = 0, t . 0, −` , x , ` s5.1d

and special conditions at the interfacex=0

lKs− 0,y;td = l−1Ks+ 0,y;td, s5.2d

Ul−1 ]

]x
Ksx,y;tdU

x=−0
= Ul

]

]x
Ksx,y;tdU

x=+0
, s5.3d

wherel is a dimensionless parameter. We shall refer to these conditions as to gluing ones. In the
Appendix it is shown that such conditions lead to a self-adjoint spectral problem for the Laplace
operator in any dimension. The initial condition forKsx,y; td involves its both space arguments

Ksx,y;0d = dsx,yd. s5.4d

We shall seek forKsx,y; td in terms of free heat kernel and single-layer heat potentials. The
solution is decomposed in four components related to different positions of the heat source and the
observer
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K−+sx,y;td =E
0

t

dt K0sx,0;t − tda1st,yd, x , 0, y . 0, s5.5d

K++sx,y;td = K0sx,y;td +E
0

t

dt K0sx,0;t − tda2st,yd, x,y . 0, s5.6d

K+−sx,y;td =E
0

t

dt K0sx,0;t − tda3st,yd, x . 0, y , 0, s5.7d

K−−sx,y;td = K0sx,y;td +E
0

t

dt K0sx,0;t − tda4st,yd, x,y , 0, s5.8d

whereK0sx,y; td is the free heat kernelspropagatord on an infinite line

K0sx,y;td =
1

2Îpt
e−fsx − yd2/4tg. s5.9d

In multi-dimensional problems we may also choose single-layer potential for internal region
and double-layer potential for external region. However whend=1 such a choice may lead to
divergent integrals.

First we substitute Eqs.s5.5d ands5.6d into the gluing conditionss5.2d ands5.3d. Then we take
into account that the single-layer potential changes smoothly across the boundary, while the
normal derivative of this potential undergoes a jump

K−+s− 0,y;td =
1

2Îp
E

0

t

dt
a1sy,td
Ît − t

, s5.10d

K++s+ 0,y;td = K0s0,y;td +
1

2Îp
E

0

t

dt
a2sy,td
Ît − t

, s5.11d

U ]

]x
K−+sx,y;tdU

x=−0
= −

1

2
a1sy,td, s5.12d

U ]

]x
K++sx,y;tdU

x=+0
= U−

1

2
a2sy,td +

]

]x
K0sx,y;tdU

x=0
. s5.13d

Inserting Eqs.s5.10d and s5.11d into Eq. s5.2d one obtains the Abel integral equation

1

2Îp
E

0

t dt

Ît − t
fl2a1sy,td − a2sy;tdg = K0s0,y;td s5.14d

with the solution

a1sy,td − l−2a2sy;td =
2

l2Îp

d

dt
E

0

t K0s0,y;td
Ît − t

dt =
1

2Îpl2
y

t3/2expS−
y2

4t
D . s5.15d

When considering the gluing conditions the use of the single-layer potentials leads to the exactly
solvablesno iterations neededd Abel equation only in one-dimensional case. The substitution of
Eqs.s5.12d and s5.13d into Eq. s5.3d gives
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a1sy,td = − l2a2sy,td +
l2

2Îp

y

t3/2e−y2/4t. s5.16d

From s5.15d and s5.16d it follows that

a1sy,td =
l2

l4 + 1

y
Îpt3/2

e−y2/4t, a2sy,td =
l4 − 1

l4 + 1

y

2Îpt3/2
e−y2/4t. s5.17d

And finally

K−+sx,y;td =
l2

l4 + 1

1
Îpt

e−fsx − yd2/4tg, s5.18d

K++sx,y;td =
1

2Îpt
e−fsx − yd2/4tg +

l4 − 1

l4 + 1

1

2Îpt
e−fsx + yd2/4tg. s5.19d

In a similar way one gets

K+−sx,y;td =
l2

l4 + 1

1
Îpt

e−fsx − yd2/4tg, s5.20d

K−−sx,y;td =
1

2Îpt
e−fsx − yd2/4tg −

l4 − 1

l4 + 1

1

2Îpt
e−fsx + yd2/4tg. s5.21d

These formulas are in complete agreement with the result of a combined employment of the
Lemma 5.2 argued in Ref. 25 and Lemma 4.1 from Ref. 26,

K++sx,y;td = cos2 uKNsx,y;td + sin2 uKDsx,y;td, s5.22d

K−−sx,y;td = sin2 uKNsx,y;td + cos2 uKDsx,y;td, s5.23d

K+−sx,y;td = sinu cosufKNsx,y;td − KDsx,y;tdg, s5.24d

where

cos2 u =
l4

l4 + 1
, sin2 u =

1

l4 + 1
,

andKDsx,y; td andKNsx,y; td are the heat kernels for Dirichlet and Neumann boundary conditions,
respectively.

B. Dielectriclike conditions on a line

We construct here the heat kernel for the Laplace operator defined on an infinite line with
dielectriclike matching conditions at the originx=0. The heat kernel is defined by the heat-
conduction equation

S ]

]t
− a2sxd

]2

]x2DKsx,y;td = 0, t . 0, −` , x , + `, x Þ 0, s5.25d

where
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a2sxd = Ha−
2, x , 0,

a+
2, x . 0,

J
a+

2 anda−
2 being positive constants. At the interface of dielectric media the matching conditions

Ks− 0,y;td = Ks+ 0,y;td, s5.26d

Ul−
]

]x
Ksx,y;tdU

x=−0
= Ul+

]

]x
Ksx,y;tdU

x=+0
s5.27d

should be met. As usual, the initial condition forKsx,y; td is given bys5.4d.
We call the boundary conditionss5.26d ands5.27d the dielectriclike conditions. The use of this

term requires some explanations. When two dielectric mediaD+ and D− possessing different
characteristics are separated by the interfaceS of an arbitrary form then in Maxwell theory we
have on the surfaceS the set of coupled boundary conditions involving all the components of the
electromagnetic potentialAmst ,xd, m=0,¯ ,d. If one disregards the vector character of the elec-
tromagnetic field and confine oneself to oscillations described by a sole scalar potentialsfor
example, sound waves which are described by a scalar velocity potentiald then at the interface
between different media the conditionss5.26d ands5.27d should be satisfied. In other words, these
boundary conditions hold in the theory of scalar “photons” in compound media.

Again we seek for the solution in terms of a relevant free propagator and single-layer heat
potentials,

K−+sx,y;td = a−
2E

0

t

dt K0sx,0;a−
2st − tddb1st,yd, x , 0, y . 0, s5.28d

K++sx,y;td = K0sx,y;a+
2td + a+

2E
0

t

dt K0sx,0;a+
2st − tddb2st,yd, x,y . 0, s5.29d

K+−sx,y;td = a+
2E

0

t

dt K0sx,0;a+
2st − tddb3st,yd, x . 0, y , 0, s5.30d

K−−sx,y;td = K0sx,y;a−
2td + a−

2E
0

t

dt K0sx,0;a−
2st − tddb4st,yd, x,y , 0. s5.31d

First we insert Eqs.s5.28d and s5.29d into the matching conditionss5.26d and s5.27d. The
single-layer potential changes smoothly across the boundary, while its normal derivative under-
goes a jump,

K−+s− 0,y;td =
a−

2Îp
E

0

t

dt
b1sy,td
Ît − t

, s5.32d

K++s+ 0,y;td = K0s0,y;a+
2td +

a+

2Îp
E

0

t

dt
b2sy,td
Ît − t

, s5.33d

U ]

]x
K−+sx,y;tdU

x=−0
= −

1

2
b1sy,td, s5.34d
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U ]

]x
K++sx,y;tdU

x=+0
= U−

1

2
b2sy,td +

]

]x
K0sx,y;a+

2tdU
x=0

. s5.35d

Substituting Eqs.s5.32d and s5.33d into Eq. s5.26d one obtains the Abel integral equation,

1

2Îp
E

0

t dt

Ît − t
fa−b1sy,td − a+b2sy;tdg = K0s0,y;a+

2td s5.36d

with the solution

a−b1sy,td − a+b2sy;td =
2

Îp

d

dt
E

0

t dt

Ît − t
K0s0,y;a+

2td =
1

2Îp

y

a+
2t3/2 expS−

y2

4a+
2t
D . s5.37d

The substitution of Eqs.s5.34d and s5.35d into Eq. s5.27d gives

l−b1sy,td = − l+b2sy,td + l+
1

2Îp

y

a+
3t3/2e−sy2/4a+

2td. s5.38d

From Eqs.s5.37d and s5.38d it follows that

b1sy,td =

l+

a+

l+

a+
+

l−

a−

y
Îpa+

3t3/2
e−y2/4a+

2t, b2sy,td =

l+

a+
−

l−

a−

l+

a+
+

l−

a−

y

2Îpa+
3t3/2

e−y2/4a+
2t. s5.39d

And finally

K−+sx,y;td =

l+

a+

l+

a+
+

l−

a−

1

Îpa+
2t

e−fsx − y a−/a+d2/4a−
2tg, s5.40d

K++sx,y;td =
1

2Îp a+
2t

e−fsx − yd2/4 a+
2tg +

l+

a+
−

l−

a−

l+

a+
+

l−

a−

1

2Îp a+
2t

e−fsx + yd2/4 a+
2tg. s5.41d

In a similar way one gets

K+−sx,y;td =

l−

a−

l−

a−
+

l+

a+

1

Îp a−
2t

e−fsx − ya+/a−d2/4 a+
2tg, s5.42d

K−−sx,y;td =
1

2Îp a−
2t

e−fsx − yd2/4 a−
2tg +

l−

a−
−

l+

a+

l−

a−
+

l+

a+

1

2Îp a−
2t

e−fsx + yd2/4 a−
2tg. s5.43d

The solution obtained here exactly reproduces the results obtained in this problem by other
methods.7,27

C. d-like heat source at the interface

In the preceding considerations we excluded the configuration when thed-like heat source is
placed at the interface of the mediay=0. For completeness we have to check whether this
configuration contributes to the tracee−`

` Ksx,x; tddx. To this end we use the approach of Ref. 28.
The idea is to modify the boundary conditionss5.26d and s5.27d so that they allow for the heat
source placed at the interface

K−s− 0;td = K+s+ 0;td, s5.44d
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Ul−
]

]x
K−sx;tdU

x=−0
− Ul+

]

]x
K+sx;tdU

x=+0
= Q dstd. s5.45d

The conditions5.45d means that the heatQ instantly generated by the source is divided into two
flows which are proportional tol− andl+. We represent the solution in the form

K−sx;td = a−
2E

0

t

dt K0sx,0;a−
2st − tddb1std, x , 0, s5.46d

K+sx;td = a+
2E

0

t

dt K0sx,0;a+
2st − tddb2std, x . 0. s5.47d

The functionsb1std and b2std can be determined by making use of the Laplace transform. We

denote byK̄sx;sd the transform ofKsx; td, i.e.,

K̄sx;pd =E
0

`

dt e−p tKsx;td.

Transformings5.45d and s5.47d we obtain

K̄−sx;pd = a−b̄−spdÎp/p exps− xÎp/a−d, s5.48d

K̄+sx;pd = a+b̄+spdÎp/p exps− xÎp/a+d. s5.49d

Then Eq.s5.44d leads to the relation between the Laplace transformsb̄− and b̄+,

a−b̄−spd − a+b̄+spd = 0. s5.50d

The substitution of Eqs.s5.46d and s5.47d into Eq. s5.45d gives

l−b−std + l+b+std = 2 Q dstd. s5.51d

After the Laplace transform one arrives at the second relation betweenb̄1 and b̄2,

l1b̄−spd + l2b+spd = 2 Q d̄spd. s5.52d

How to apply the Laplace transform to the singulard function can be found in appropriate
handbooks.20,21 The essence of the matter comes to defining the integration rule

E
0

`

fstddstddt = fs0d,

whence it follows in particular

d̄spd =E
0

`

e−ptdstddt = 1.

In the problems treated by the integral Laplace transform the semiaxist.0 sor t. t0d is usually
considered. Therefore thed-function should be defined here in a nonsymmetric way, for example,
as the limit when«→ +0 of the function

d«std = H0, t , 0, t . «,

1/«, 0 , t , «.
J

The solution of the systems5.50d and s5.52d is
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b̄−spd =
2 a+Q d̄spd
l+a− + l−a+

, b̄+spd =
2 a−Q d̄spd
l+a− + l−a+

. s5.53d

By the inverse Laplace transform we find froms5.53d

b−std =
2 a+Q dstd
l+a− + l−a+

, b+std =
2 a−Q dstd
l+a− + l−a+

. s5.54d

Having inserteds5.54d into s5.46d and s5.47d we derive

K−sx;td =
1

Îpt
e−x2/4a−

2t Q
l+

a+
+

l−

a−

, x , 0, s5.55d

K+sx;td =
1

Îpt
e−x2/4a+

2t Q
l+

a+
+

l−

a−

, x . 0. s5.56d

These formulas show that fort.0 the heat kernel is finite notwithstanding thed-like heat source
situated at the interface between two media. Therefore the neighborhood of the pointx=0 gives no
contribution to the heat kernel tracee−`

` Ksx,x; tddx.

VI. CONCLUSION

For a broad set of boundary conditions the finding of the heat kernel is reduced to the solution
of integral equations defined on the boundarysor at the interfaced of the manifolds. As a result the
dimension of the initial problem is brought down by 1. Remarkably this technique is applicable to
compound media where the standard methods for the investigation of heat kernel do not work
because in this case the principal part of the elliptic operator in question is not smooth.

The perturbation series for the integral equations derived are nothing else as the multiple
scattering expansions for the relevant heat kernels. Thus a rigorous derivation of these expansions
both for homogeneous media and compact regions and for compound media has been done.

The efficiency of this approach is convincingly demonstrated by constructing, in an exact
form, the heat kernel on an infinite line with diverse matching conditions and by deriving the first
terms of the asymptotic expansion for integrated heat kernel in the case of three-dimensional
compound media.
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APPENDIX : SELF-ADJOINTNESS OF BOUNDARY VALUE PROBLEMS FOR
COMPOUND MEDIA

Often it is helpful to use the spectral representation for the Green’s function of the heat-
conduction equations2.10d,

Ksx,t;x8,0d = o
k

e−vktfksxdfk
*sx8d, sA1d

where fksxd are the eigenfunctions of the spectral problem at hand

− a2Dfksxd = vkfksxd, x P D sA2d

obeying the relevant boundary conditions onS. Apparently, the representationsA1d is well defined
if the spectral problemsA2d is Hermitian and positive definite. In this connection it is worth
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elucidating the boundary conditions for compound media that lead to the self-adjoint spectral
problemfsee Eqs.s3.1d–s3.4dg. In this case we have instead ofsA2d,

− a2sxdDfksxd = vkfksxd, sA3d

where

a2sxd = Ha+
2, x P D+,

a−
2, x P D−,

J sA4d

a+
2 and a−

2 being constants. At the interfaceS the natural modesfksxd obey the dielectriclike
conditions

fk+sxd = fk−sxd,

l+
] fk+sxd
]n+sxd

+ l−
] fk−sxd
]n−sxd

= 0,

x P S. sA5d

Here we are using the same notations as in Eqs.s3.1d–s3.4d.
Since the outer regionD− is not bounded the spectrumvk is continuous. For example, we can

assume that at the spatial infinityuxu→` the natural modesfksxd satisfy the scattering problem
conditions and decrease sufficiently fast. The explicit form of these conditions will not be needed
below.

The differential operator in Eq.sA3d apparently coincides with its adjoint

f− a2sxdDg † =H− a+
2D, x P D+,

− a−
2D, x P D−.

J sA6d

The boundary value problem with the operator −a2sxdD will be self-adjoint when the integral for
two sufficiently smooth functionsusxd andvsxd,

I =E
D+øD−

dx a2sxdsvDu − uDvd sA7d

vanishes. Applying the Green integral formula for the domainsD+ andD− separately we obtain

I =E
S

dSFa+
2Su+

]v+

]n+
− v+

]u+

]n+
D + a−

2Su−
]v−

]n−
− v−

]u−

]n−
DG . sA8d

The functionsusxd andvsxd are assumed to diminish at the infinity in such a way that the region
uxu→` does not contribute to the integralsA8d. The integralI is equal to zero, for example, for the
following conditions at the interfaceS:

u+sxd = u−sxd,

a+
2]u+sxd
]n+sxd

+ a−
2]u−sxd
]n−sxd

= 0, x P S. sA9d

The function vsxd should satisfy the same boundary conditions onS. Thus the dielectriclike
conditionssA5d lead to self-adjoint boundary value problem if

l+

a+
2 =

l−

a−
2 .
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Of course, conditionssA9d do not exhaust all the cases when the boundary value problem
under consideration is self-adjoint. Let the surfaceS divides the same medium into the domains
D+ andD−, i.e.,a+

2=a−
2. We get the self-adjoint spectral problem if we impose at the interfaceS the

following gluing conditions:

lu+sxd = l−1u−sxd,

l−1]u+sxd
]n+sxd

+ l
]u−sxd
]n−sxd

= 0, x P S, sA10d

wherel is a dimensionless constant. The one-dimensional version of this problem has been con-
sidered in Sec. V.
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Universality in a class of Q-ball solutions:
An analytic approach
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The properties of Q-balls in the general case of a sixth order potential have been
studied using analytic methods. In particular, for a given potential, the initial field
value that leads to the soliton solution has been derived and the corresponding
energy and charge have been explicitly evaluated. The proposed scheme is found to
work reasonably well for all allowed values of the model parameters. ©2005
American Institute of Physics.fDOI: 10.1063/1.1851972g

I. INTRODUCTION

A scalar field theory with a spontaneously broken Us1d symmetry may contain stable nonto-
pological solitons, the so-called Q-balls.1,2 Q-balls are coherent states of complex scalar fields that
carry a global Us1d charge and can be understood as bound states of scalar particles which appear
as stable classical solutions carrying a rotating time dependent internal phase. They are character-
ized by a conserved nontopological chargeQ sNoether charged that ensures existence and
stability.3,4

The concepts associated with these solutions are quite general and occur in a wide variety of
physical contexts.5 Q-balls are allowed in supersymmetric extensions of the standard model that
allow flat directions in the scalar potential. Flat directions in the minimal supersymmetric standard
model sMSSMd6 have been shown to exist. The conserved charge is associated with the Us1d
symmetries of baryons and leptons, while, the relevant Us1d fields correspond to either squark or
slepton particles. Thus, Q-balls can be thought of as condensates of a large number of either
squark or slepton particles which can affect baryogenesis via the Affleck–Dine mechanism7 during
the post-inflationary period of the early universe. The Q-ball stability is cosmologically important
since if stable Q-balls are formed in the early universe they can contribute to its dark matter
content. These can be huge balls with charges of order 1020; however, very small Q-balls can also
be considered as dark matter constituents.8 Decaying Q-balls can also be of crucial cosmological
significance. If Q-balls decay after the electroweak phase transition, they can protect baryons from
the erasure of baryon number due to sphaleron transitions. Furthermore, the Q-ball decay may
contribute to dark matter production in the form of the lightest supersymmetric particle, explaining
the baryon to dark matter ratio of the universe.9

Consider the Us1d Goldstone model Lagrangian describing a single complex scalar fieldf in
three spatial dimensions given by

adElectronic mail: ti3@gen.auth.gr
bdElectronic mail: kouirouki@astro.auth.gr
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L = 1
2]mf]mf̄ − Usufud. s1d

Usufud has a single minimum atf=0 which is equivalent of stating that there is a sector of scalar
particlessmesonsd carrying Us1d charge with mass equal toÎ1

2U9s0d. The corresponding energy
functional is given by

E =E S1

2
uḟu2 +

1

2
u ¹ fu2 + UsufudDd3x s2d

while the conserved Noether currentfdue to the global Us1d symmetryg is

Jm =
1

2i
sf̄]mf − f]mf̄d s3d

with charge given by

Q =
1

2i
E sf̄]tf − f]tf̄dd3x. s4d

The stationary Q-ball solution can be obtained by assuming that

f = eivt fsrd, s5d

where fsrd is a real radial profile function that satisfies the ordinary differential equation,

d2f

dr2 +
2

r

df

dr
= − v2f + U8sfd, s6d

with boundary conditionsfs`d=0 andf8s0d=0. In each case, the effective potential is defined as
Ueffsfd=v2f2/2−Usfd, while, the existence of Q-ball solutions leads to constraints on the potential
Usfd and the frequencyv, sid the effective mass off must be negative, so, by assuming that
Us0d=U8s0d=0 and U9s0d=v+

2.0 one can deduce thatv,v+. sii d The minimum of Usfd / f2 must
be attained at some positive value off ssay 0, f0,`d and existence of the solution requires that
v.v− wherev−

2=2Usf0d / f0
2. Hence, Q-balls exist for allv in the rangev−, uvu,v+.

The charges4d and energys2d of a stationary Q-ball solutions5d take the simple form

Q = 4pvE r2f2srddr , s7d

E =
1

2
v2Q2 + 4pE S f82

2
+ UsfdDr2dr . s8d

Numerical and analytical methods have shown that when the internal frequency is close to the
minimal valuev− the profile function is almost constant, implying that the charges7d is large
sthin-wall approximationd. On the other hand, when the internal frequency approaches the maxi-
mal valuev+ the profile function falls off very quicklysthick-wall approximationd. In the thick-
wall approximation the behavior ofQ depends on the particular form of the potential and the
number of dimensions.10

The choice of the potential is not unique since the only requirement is that the ratio Usfd / f2

has a local minimum at some value off different from zero. There are several natural types to be
considered, two of which are shown below,
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sId Usfd =
m1

2

2
f2 − l1f4 + m1f6,

sII d Usfd = m3f2s1 − K logsl3f2dd + m3f2p. s9d

In each case, two of the parameters can be removed by rescaling, thus, the potentials of type I have
one free parameter while potentials of type II have two for fixedp. The type I potential is the
simplest allowed one which is a polynomial inf2, while type II mimics the D-flat direction in
MSSM. Here,pù6 is some integer that ensures the growth of the potential for largef, but does
not destroy the flatness property for intermediate values off. None of these types are the kind
which might be associated with a renormalizable quantum field theory, but, they are typical of
effective theories incorporating radiative or finite temperature corrections to a bare potential. In
this paper, we shall be dealing with type I potentials only, for whichv+=m1 and v−

=Îs2m1
2m1−l1

2d /2m1. Stable Q-balls exist forÎs2m1
2m1−l2d /2m1,v,m1. The equation of mo-

tion s6d is

d2f

dr2 +
2

r

df

dr
= a2f − 4l1f3 + 6m1f5, s10d

where we have defineda2=m1
2−v2.

Q-balls can be studied either analytically,1,10,11or numerically.3–10,12–14In a recent work,15,16

we employed analytic arguments in order to construct an approximate profile function of the
symmetrized Woods–Saxon type, expected to be valid in the thin-wall limit. This approximate
profile led to an explicit energy-charge relation which, to our surprise, was found to yield valid
results for a region far exceeding the expected limits of the thin-wall approximation. The calcu-
lation was carried out for a specific form of type I potential, i.e.,l1=2, m1=1, andm=2. In this
paper, the aforementioned work is being extended to include the general case of type I potentials
swhere the parameters are taken to be arbitraryd in both regimes, thin-wall and thick-wall, respec-
tively. This way, the soliton energy and charge as well as the initial field valuefs0d can be
accurately derived as functions ofa for the whole allowed range of the model parameters.

II. POTENTIAL ENERGY

From a mechanical point of view, a Q-ball solution describes the motion of a particle moving
with friction in the potential

Ueffsfd = − 1
2a2f2 + l1f4 − m1f6, l1,m1 . 0. s11d

The corresponding equation of motion is given bys10d. Upon rescalingr → r /a and lettingfsrd
= fs0dcsard for cs0d=1, Eq.s10d transforms to

d2c

dr2 +
2

r

dc

dr
= c − 4lc3 + 6mc5, s12d

wherel=l1fs0d2/a2 andm=m1fs0d4/a2 and the effective potentials11d becomes

Uscd = − 1
2c2 + lc4 − mc6. s13d

After some algebra, it can be shown that Eq.s12d implies that

E
0

`

rn−1Sdc

dr
D2

dr =
2n

4 − n
E

0

`

rn−1S−
1

2
c2 + lc4 − mc6Ddr, n Þ 0. s14d

For the special casesn=3 andn=0, we get that
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1

2
E

0

`

r2Sdc

dr
D2

dr = 3E
0

`

r2S−
1

2
c2 + lc4 − mc6Ddr , s15d

2E
0

`

r−1Sdc

dr
D2

dr = −
1

2
cs0d2 + lcs0d4 − mcs0d6 ; Us1d. s16d

The first condition is Derrick’ssor viriald theorem which states that, for a three-dimensional
model, the kinetic energy equals three times the potential energy; the second condition describes
the energy dissipation of the mechanical system.

The mechanical analogue imposes several constraints on Us1d. Consider a particle initially
located at the pointcs0d=1 which starts rolling down the potential wall to eventually stop at the
point cs`d=0. sHere r corresponds to the time variabled. Then, the potential energys13d at the
origin Us1d=−1

2 +l−m must be consumed by the friction terms2/rdsdc /drd, therefore Us1d must
be bounded both from below and above, since for Us1d large the particle will overshoot the top
point while for Us1d small it will not reach it.

The initial potential energy Us1d must be positive implying that

m ø l − 1
2 s17d

and, also, U8s1d must be positivesattractive “force”d leading to

m ø
1
6s4l − 1d. s18d

These conditions are satisfied forl.1 whens18d holds while for 1/2,l,1 whens17d holds.
Note that forl,1 no Q-ball solutions can be found. Depending on the shape of the potentialsi.e.,
the actual values ofl andmd the following two distinct cases occur.

sId Thin-wall approximation:In this case,cs0d lies near the maximum of the effective poten-
tial which is deep. Then U8s1d=−1+4l−6m<0 must be positive and close to zerosslow rolld
while U9s1d is negativesconvex regiond and of order unity. The Q-ball solutions lie approximately
on the line

m = 1
6s4l − 1d s19d

and the initial potential energy depends linearly onl,

Us1d = 1
3sl − 1d, l . 1. s20d

sII d Thick-wall approximation:Here, the potential is shallow and the maxima are high up
while U9s1d is positive and largesconcave regiond andm is small. The initial potential energy Us1d
increases withl and reaches its maximal value whenm→0. This value can be determined
numerically and is found to belmax.4.701 37. The actual functional dependence of Us1d on l
however, is unknown and needs to be determined.

To that end, let us assume a leading power law behavior

Us1d = kln. s21d

Then,s13d implies that the Q-ball solutions lie on the line

m = − 1
2 + l − kln s22d

which determinesk in terms oflmax fsincemslmaxd=0g,

k =
2lmax− 1

2lmax
n . s23d
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In order to determine the value ofn in s21d, we require that the transition from the thick-wall
region to the thin-wall one be smooth implying that, U8s1d is small for small values ofl s.1d,
i.e.,

U8s1d = 2s1 − ld + 6kln < 0. s24d

Its minimum value occurs at the pointlmin=s3nkd1/s1−nd. Substitutinglmin in s24d one gets that
U8s1d vanishes forn=2.821 87 in which caselmin=1.548 89sin agreement to our hypothesisd.
Assuming thatn can only take integer or half-integer valuessotherwise the structure of the model
on the complex plane would be very complicatedd, Fig. 1 shows that forn=3, the transition is
indeed satisfactorily smooth. For this case, we get thatk=1/24.75. This way, we get themsld
relation for the thin-walls19d and thick-walls22d limits depicted in Fig. 2 against numerical data.

FIG. 1. The potential energy gradient in terms ofl for different values ofn.

FIG. 2. Themsld relation forn=3 against numerical data.
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III. PROPERTIES OF Q-BALLS

Using the rescaling formulas of the preceding section, thea dependence of the functionsE, Q,
and fs0d can now be analytically determined. The initial field valuefs0d that leads to a Q-ball
solution is given by

fs0d = aÎ l

l1
, a =Î m

m1

l1

l
. s25d

Figure 3 depicts predicted values offs0d in terms ofa against numerically calculated ones for
sample valuesl1=2, m1=1, m=2 sas in Ref. 16d.

The corresponding charges7d and energys8d functionals are given by

Q =
4pv

a

l

l1
E

0

`

c2r2 dr , s26d

E =
a2 + 2v2

2v
Q + 4pa

l

l1
E

0

` S1

2
c82 − lc4 + mc6Dr2 dr . s27d

It was shown in Ref. 16 that a trial function satisfying the boundary conditions and having the
right asymptotic behavior, is the symmetrized Woods–Saxon profile

fsrd =
c

Î1 + c1 coshsbrd
. s28d

This function satisfies the exact differential equation

f9 =
b2

4
f −

b2

c2f3 +
3

4

b2

c4s1 − c1
2df5 s29d

and the approximate one

f9 +
2

r
f8 =

b2

4
S1 −

4

br
Df −

b2

c2S1 −
1

br
Df3 +

3b2

4c4Ss1 − c1
2d +

2

3

c1
2

br
Df5 + Osf7d. s30d

Here,c, c1, andb are arbitrary parameters which need to be determined in order thats28d fits the
exact profile functioncsrd in the best possible way. Note that only two of the three parameters in

FIG. 3. Predicted initial field valuesfs0d against numerical data.
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s28d are independent since the initial conditionfs0d=1 implies thatc=Î1+c1.
First note thats28d satisfies the following relations:

f82 =
b2

4
f2 −

1

2

b2

c2f4 +
1

4

b2

c4s1 − c1
2df6,

f4 = c2f2 + c2c1
d

dc1
f2, s31d

f6 = c4f2 + 2c4c1
d

dc1
f2 +

1

2
c4c1

2 d2

dc1
2f2,

in terms of which the charges26d and energys27d functionals can be explicitly evaluated,

Q =
4pv

a

l

l1

c2

3b3i0, s32d

E = 4p
c2

3b3Î m

m1
HSsm2 + v2d

2a

l

l1
Îm1

m
+ mc4 − lc2 −

1

8
b2c1

2Di0 + S2mc4 − lc2 −
1

4
b2c1

2Dc1
di0
dc1

+
1

2
Smc4 +

1

8
b2s1 − c1

2dDc1
2d2i0
dc1

2J . s33d

Here i0 is a function ofc1 given by

i0sc1d =
1

Î1 − c1
2

arccoshS 1

c1
DFp2 + arccoshS 1

c1
D2G, for c1 , 1. s34d

Note thatl1, m1, m are fixed external parameters,l varies continuously between 1 and 4.701 37
andm is a known function ofl given by s19d and s22d depending on the regime.

The profile parametersb andc1 can be determined by imposing the conditionss15d ands16d
on fsrd, that is

1

2
b2c1

2c2E
0

` dr

r

sinh2 r

s1 + c1 coshrd3 = Us1d, s35d

S1

2
− lc2 + mc4 −

b2c1
2

24
Di0 + S2mc4 −

b2c1
2

12
− lc2Dc1

di0
dc1

+
c1

2

2
Smc4 +

b2

24
s1 − c1

2dDd2i0
dc1

2 = 0.

s36d

Equations35d can be written in a compact form

b =
1

c1c
Î2Us1d

i1
, s37d

where

i1 =E
0

` dr

r

sinh2 r

s1 + c1 coshrd3 s38d

in terms of whichs36d becomes
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S1

2
− lc2 + mc4 −

1

12c2

Us1d
i1

Di0 + S2mc4 −
1

6c2

Us1d
i1

− lc2Dc1
di0
dc1

+
c1

2

2
Smc4 +

s1 − c1
2d

12c1
2c2

Us1d
i1

Dd2i0
dc1

2

= 0. s39d

Equations39d determinesc1 in terms ofl and is depicted in Fig. 4. Note that the values ofc1 and
b obtained this way are universal since they do not depend on the geometrical parameters of the
potential. Nevertheless, the values of the energy and charge do depend on the specific form of the
potential, i.e., the values ofl1, m1, andm. These values tend to infinity in both limits sincesid in
the thin-wall limit c1→0 while sii d in the thick-wall limit a→0.

Figures 5 and 6 present thea dependence of the charges32d and energys33d against values
obtained numerically, forl1=2, m1=1, m=2. It is interesting to realize that the range of validity
of the thick-wall approximation is very wide and gives satisfactory results even in the thin-wall
region. It appears that in this class of theories the Q-balls prefer to be “thick.”

FIG. 4. Thec1sld relation obtained froms39d.

FIG. 5. Thea dependence ofQ given by s32d.
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IV. CONCLUSIONS

In this paper we have extended our earlier work16 and investigated phenomenologically rel-
evant properties of Q-balls in a universal way. In particular, we have addressed the following
problem: Given the geometrical characteristics of the scalar potential find the initial field value
that will lead to a Q-ball solution as well as the corresponding charge and energy of the soliton.
For a particular class of potentialsssixth order polynomialsd, after parameter rescaling, the prob-
lem can be tackled in a universal way. The Q-ball profile can be accurately approximated by
means of a two-parameter symmetrized Woods–Saxon function which can be analytically calcu-
lated in all cases. This scheme is found to yield satisfactory results in the whole parameter region
so that we do not have to rely on approximations like thin-wall or thick-wall. The soliton energy
and charge can subsequently be analytically calculated and compared against numerically calcu-
lated values taken from an earlier work.15

We believe that a similar line of argument can be applied to study the profile function and the
energy-charge dependence in all types of potentials.
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The two approaches of consistent quantum field theory for systems of the trapped
Bose–Einstein condensates are known, one is the Bogoliubov–de Gennes approach
and the other is the generalized Bogoliubov approach. In this paper, we investigate
the relation between the two approaches and show that they are formally equivalent
to each other. To do this one must carefully treat the Nambu–Goldstone mode
which plays a crucial role in the condensation. It is emphasized that the choice of
vacuum is physically relevant. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1865322g

I. INTRODUCTION

The Bose–Einstein condensation is associated with the appearance of the Nambu–Goldstone
sNGd mode1 which is gapless. This is because the phenomenon is a manifestation of a spontaneous
breakdown of a global phasesgauged symmetry in quantum field theorysQFTd and then the
Goldstone theorem requires that there must be a gapless mode. The NG mode plays a crucial role
in creating and maintaining an ordered state such as the Bose–Einstein condensatesBECd.

For systems of the trapped BECs,2–4 there are two approaches in QFT involving the NG mode
explicitly. They are called the Bogoliubov–de GennessBdGd5,6 and the generalized Bogoliubov
sGBd7,8 approaches. Both seem to offer consistent formulations in the sense that the canonical
commutation relations are respected and that the unperturbed Hamiltonian is diagonalized. The
purpose of this paper is to study the relation between them. We can prove that they are formally
equivalent to each other, finding the explicit linear transformation in operators from one to the
other. The treatment of the NG mode is subtle. We will clarify this point.

After the formal equivalence of the two approaches are established, we emphasize that the
choice of vacuum is relevant physically while the choice of approach is not.

The paper is organized as follows. In Sec. II, the model action and Hamiltonian are given. An
artificial breaking term is introduced there. Sections III and IV are devoted to reviews of the GB
and BdG approaches, respectively. Section V is a central part of this paper, in which first the
equivalence in the excitation modes is proved and then the correspondence between the NG modes
in the two approaches is established. It will be found that the two sets of the NG modes are related
through a squeezing transformation. In Sec. VI, we give a summary and discuss implications of
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our conclusion. Finally we comment that the two different types of vacua lead to different observ-
able results. In the Appendix, we give expressions for free propagators when the unperturbed
vacuum associated with quantum coordinates is chosen.

II. MODEL ACTION AND HAMILTONIAN

We start with the following action to describe the trapped BEC of neutral atoms:

S=E dt d3xFc†sxdsT − K − V + mdcsxd −
g

2
c†sxdc†sxdcsxdcsxdG , s1d

where

T = i
]

]t
, s2ad

K = −
1

2m
¹2, s2bd

V = 1
2mv2sx2 + y2 + z2d. s2cd

with the chemical potentialm and the coupling constantg. Here we assumed for simplicity the
isotropic trapping potential with its frequencyv, but the essences of the present paper are not lost
even in anisotropic trapping potentials. Throughout this paper" is set to unity. This action is
invariant under the global phase transformation,

csxd → eihcsxd and c†sxd → e−ihc†sxd, s3d

whereh is an arbitrary constant phase.
When a continuous symmetry is broken spontaneously and the NG mode is present, one

usually needs an artificial breaking interaction to control an infrared behavior of the system. In the
system of the BEC, we add

DS= «ēE dt d3xfe−iuvsxdcsxd + eiuvsxdc†sxdg s4d

to the original actions1d,8

S« = S+ DS. s5d

Here« is an infinitesimal dimensionless parameter which is taken to be vanishing at the final stage
of calculation, andē is a typical energy scale of the system given byv. As we will see below, such
a breaking term is necessary for the GB formalism, while it seems that the BdG formalism can be
formulated without it.

Let us divide the original fieldcsxd into the classical and quantum parts as

csxd = eiuvsxd + eiuwsxd, s6d

where it is assumed that thec-number real functionvsxd, whose square is a distribution function
of condensed particle, is time independent, and thatu is real, time and space independent, corre-
sponding to the situation without vortices. We factorizeeiu in wsxd so that there appears no phase
factor in the following formulations. Equations6d is substituted into Eq.s5d, which is rewritten in
terms ofvsxd andwsxd as follows:

S« = S0 + S1 + S2 + S3,4, s7d

where
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S0 =E dt d3xFvsxds− K − V + m + 2«ēdvsxd −
g

2
v4sxdG , s8ad

S1 =E dt d3xhvsxdf− K − V + m − gv2sxd + «ēgwsxd + w†sxdf− K − V + m − gv2sxd + «ēgvsxdj,

s8bd

S2 =E dt d3xHw†sxdfT − K − V + mgwsxd −
g

2
v2sxdf4w†sxdwsxd + w2sxd + w†2sxdgJ , s8cd

S3,4=E dt d3xH− gvsxdfw†sxdw†sxdwsxd + w†sxdwsxdwsxdg −
g

2
w†sxdw†sxdwsxdwsxdJ . s8dd

At the tree level, thec-number functionvsxd satisfies

fK + V − m + gv2sxd − «ēgvsxd = 0, s9d

which, at the limit of vanishing«, is reduced to the Gross–PitaevskiisGPd equation:9

fK + V − m + gv2sxdgvsxd = 0. s10d

We rewritevsxd as

vsxd = ÎNcf«sxd, s11d

since the condensate particle numberNc is given by

Nc =E d3x v2sxd, s12d

and f«sxd can be normalized to unity,

E d3x f«
2sxd = 1. s13d

The suffix « in f«sxd is put to remind us that it is«-dependent, which will be relevant in later
sections.

The total Hamiltonian of the system is now written as

Ĥ = Ĥ0 + Ĥint, s14d

where

Ĥ0 =E d3xHŵ†sxdsK + V − mdŵsxd +
gNc

2
f«
2sxdf4ŵ†sxdŵsxd + ŵ2sxd + ŵ†2sxdgJ , s15d

Hint =E d3xHgÎNcf«sxdfŵ†sxdŵ†sxdŵsxd + ŵ†sxdŵsxdŵsxdg +
g

2
ŵ†sxdŵ†sxdŵsxdŵsxdJ . s16d

It is emphasized that the canonical commutation relations

fŵsx,td,ŵ†sx8,tdg = d3sx − x8d s17d

and fŵsx ,td ,ŵsx8 ,tdg=fŵ†sx ,td ,ŵ†sx8 ,tdg=0, must hold for consistent QFT.
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III. GENERALIZED BOGOLIUBOV APPROACH

First let us review the GB approach, in which the field operatorŵsxd andŵ†sxd are expanded
as

ŵsxd = o
n=0

`

ânstdwn
s«dsxd, s18ad

ŵ†sxd = o
n=0

`

ân
†stdwn

s«dsxd, s18bd

where the complete orthonormal set of real functionshwn
s«dsxdj,

E d3xwn
s«dsxdwm

s«dsxd = dnm, s19d

o
n=0

`

wn
s«dsxdwn

s«dsx8d = d3sx − x8d, s20d

is obtained from the following eigenequation:

sL − Mdwn
s«dsxd = sen + «ēdwn

s«dsxd. s21d

For later convenience, we have introduced the abbreviated notations of

L = K + V − m + 2gNcf«
2sxd, s22ad

M = gNcf«
2sxd, s22bd

and the indexs«d in hwn
s«dsxdj indicates that they are«-dependent, andhwn

s«dsxdj are expanded as

wn
s«dsxd = wn

s0dsxd + «wn
s1dsxd + ¯ . s23d

So in the limit «→0, the functionshwn
s«dsxdj reduce tohwn

s0dsxdj, which are the solutions of the
eigenequations

sL − Mdwn
s0dsxd = enwn

s0dsxd. s24d

The eigenequations21d with n=0 is identical with thes«-modifiedd GP equations9d, andw0
s«dsxd is

nothing but f«sxd defined in Eq.s11d. Hereafter the indexs«d in hws«dsxdj is omitted otherwise
mentioned.

For the operatorsânstd and ân
†std the following commutation relations are assumed:

fânstd,âm
† stdg = dnm s25d

andfânstd ,âmstdg=fân
†std ,âm

† stdg=0. Combining these with the completeness condition in Eq.s20d,
one can reproduce the canonical commutation relations of Eq.s17d. In the formulation under the
“Bogoliubov” approximation, meaning that the termâ0wnsxd is absent in the expansion of Eq.
s18d, the canonical commutation relations are violated as

fŵsx,td,ŵ†sx8,tdg = d3sx − x8d − w0sxdw0sx8d. s26d

Substituting Eq.s18d into Eq. s15d, we rewriteĤ0 in terms of theâ-operators,
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Ĥ0 = o
n=0

`

enân
†ân + o

n,m=0

`

f2ân
†Unmâm + ânUnmâm + ân

†Unmâm
† g, s27d

where

Unm=
gNc

2
E d3x f«

2sxdwnsxdwmsxd. s28d

This Hamiltonian can be diagonalized by introducing the generalized Bogoliubov transformation,

b̂n = o
m=0

`

sCnmâm + Snmâm
† d, s29ad

b̂n
† = o

m=0

`

sCnmâm
† + Snmâmd, s29bd

and

Ĥ0 = o
n=0

`

fEG,nb̂n
†b̂n + sc-numbersdg. s30d

Here the real matricesC andS in the matrix notation are given by

C = 1
2sEG

1/2Oe−1/2 + EG
−1/2Oe1/2d, s31ad

S= 1
2sEG

1/2Oe−1/2 − EG
−1/2Oe1/2d, s31bd

with

sEGdnm= EG,ndnm, s32ad

sednm= sen + «ēddnm, s32bd

and the orthogonal matrixO diagonalizes the real symmetric matrixW with eigenvalues of
EG,n

2 sn=0,1,2, . . .d,

OWOT = EG
2 , s33d

where

W= S4s«ēdU00 + Os«2d Î«ēu8T + Os«3/2d
Î«ēu8 + Os«3/2d W8 + Os«d

D , s34d

with

u8 = 14Îe1U10

4Îe2U20

]

2 , s35ad

Wnm8 = en
2dnm+ 4ÎenUnm

Îem sn,m= 1,2, . . .d. s35bd

We use the following notations for matrices such asA and A8: A8 stands for a matrixAnm with
n,m=1,2, . . .while A does for one withn,m=0,1,2, . . .. And wenotice that when we investigate
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the leading order behavior of «, it does not matter if we use
hwn

s0dsxdj for Unm instead ofhwn
s«dsxdj fsee Eq.s28dg.

One can easily check the properties ofC andS from Eq. s31d,

o
m=0

`

sCnmCn8m − SnmSn8md = dnn8, s36ad

o
m=0

`

sCnmSn8m − SnmCn8md = 0. s36bd

The above expressions are expanded with respect to the infinitesimal parameter«. We note that the
zeroth eigenvalue,

EG,0 = Î«ēÎĒ0 + Os«3/2d, s37ad

Ē0 ; 4U00 − u8TW8−1u8, s37bd

approaches zero as it should be, but is kept nonvanishing due to«, which enables us to diagonalize

Ĥ0.
The matrixO is obtained explicitly as

O = S1 − 1
2s«ēdu8TW8−2u8 + Os«2d − Î«ēu8TW8−1O8T + Os«3/2d

Î«ēO8W8−1u8 + Os«3/2d O8 + Os«d
D , s38d

whereO8 is an orthogonal matrix diagonalizing the matrixW8,

O8W8O8T = EG8
2, s39d

with the diagonal matrix

sEG8
2dnm= EG,n

2 dnm+ Os«1/2d sn,m= 1,2, . . .d. s40d

Thus the mixing amongân sn=1,2, . . .d is regular with respect to«, only the mixing betweenâ0

and otherân’s gives rise to a singularity.

Thus the field operators in the GB approach are expanded in terms ofb̂-operators diagonal-
izing the unperturbed Hamiltonian as

ŵsxd = o
n=0

`

fb̂nwCnsxd − b̂n
†wSnsxdg, s41ad

ŵ†sxd = o
n=0

`

fb̂n
†wCnsxd − b̂nwSnsxdg s41bd

with

wCnsxd = o
m=0

`

Cnmwmsxd, s42ad

wSnsxd = o
m=0

`

Snmwmsxd. s42bd
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IV. BOGOLIUBOV–DE GENNES APPROACH

Next we review the BdG approach. The parameter« is set to be zero throughout this section,
so all the quantities are those of«=0.

One sets up the coupled eigenequations,

Lunsxd − Mvnsxd = EB,nunsxd, s43ad

Lvnsxd − Munsxd = − EB,nvnsxd, s43bd

where the notations in Eq.s22d are used and we assume the functionsunsxd andvnsxd to be real.
The orthonormal condition reads as

E d3xfunsxdumsxd − vnsxdvmsxdg = dnm, s44ad

E d3xfunsxdvmsxd − vnsxdumsxdg = 0. s44bd

Several authors have already made remarks on states with zero eigenvalue for Eq.s43d.10–12It
is easy to see thatu0sxd=v0sxd= fsxd fthe normalized solution of GP equation, see Eqs.s10d and
s11dg are eigenfunctions withEB=0. However, the set offsxd and hunsxd ,vnsxdj with EB,nÞ0 is
not complete. One needs one more state denoted byhsxd for the completeness,12 which is a
solution of

sL + Mdhsxd =
1

I
fsxd, s45d

whereI is a positive constant. The orthonormal properties are, in addition to Eqs.s13d ands44d for
eigenfunctions of nonzero eigenvalues,

0 =E d3xfhunsxd − vnsxdjfsxdg, s46ad

0 =E d3xfhunsxd + vnsxdjhsxdg, s46bd

1
2 =E d3x fsxdhsxd. s46cd

The last line fixes the value ofI. The completeness condition now reads as

o
n=1

`

funsxdunsx8d − vnsxdvnsx8dg + ffsxdhsx8d + hsxdfsx8dg = d3sx − x8d, s47ad

o
n=1

`

funsxdvnsx8d − vnsxdunsx8dg + ffsxdhsx8d − hsxdfsx8dg = 0. s47bd

Consider the field operators. We introduce the oscillator-operatorsânstd=âne
−iEB,nt and ân

†std
=ân

†eiEB,nt associated withunsxd and vnsxd, respectively, and also a set of canonical variables

hQ̂std ,P̂stdj for fsxd andhsxd,
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fân,âm
† g = dnm, s48d

fQ̂std,P̂stdg = i , s49d

and other vanishing commutation relations. Then the field operators are expanded as

ŵsxd = P̂stdhsxd − iQ̂stdfsxd + o
n=1

`

fânstdunsxd − ân
†stdvnsxdg, s50ad

ŵ†sxd = P̂stdhsxd + iQ̂stdfsxd + o
n=1

`

fân
†stdunsxd − ânstdvnsxdg. s50bd

It is easy to check that the canonical commutation relations are derived from these expressions and

the completeness condition in Eq.s47d. Also the substitution of Eq.s50d into the Ĥ0 in Eq. s15d
leads to

Ĥ0 =
P̂2

2I
+ o

n=1

`

fEB,nân
†ân + sc-numbersdg, s51d

where we have employed the orthonormal conditions,s13d, s44d, ands46d. Important observations
here are that the canonical commutation relations would be violated without introducinghsxd and

that we have the termP̂2/ s2Id in the Hamiltonian as a result of the existence of the NG mode.

V. RELATION BETWEEN GENERALIZED BOGOLIUBOV AND BOGOLIUBOV–DE
GENNES APPROACHES

We have reviewed the GB and BdG approaches in the preceding two sections. Both of them
seem to be consistent canonical theories in which the NG mode is taken account of properly.

On the other hand, the two approaches follow different procedures. For example, one sees in

the BdG approach the appearance of canonical variablesP̂ andQ̂, while one does not in the GB
approach. Furthermore, in the BdG approach one apparently sees no problem of infrared diver-
gence associated with the NG modes, while one encounters it in the GB approach.

Then arises a natural question whether the two approaches are equivalent. In this section, we
first show that these two approaches are equivalent in the excitation modes. After that, we find a
correspondence in the zero-mode eigenspaces of the two approaches, investigating the functions
fsxd andhsxd in the BdG approach in terms ofwnsxd in the GB one. Then the limit of«→0 in the
GB approach must be taken carefully.

First, let us deal with the following simultaneous equations for excited states withnù1,
equivalent to Eq.s43d,13

sL − Mdu+,nsxd = EB,nu−,nsxd, s52ad

sL + Mdu−,nsxd = EB,nu+,nsxd, s52bd

where

u±,nsxd = unsxd ± vnsxd. s53d

Then we have

sL + MdsL − Mdu+,nsxd = EB,n
2 u+,nsxd s54ad

sL − MdsL + Mdu−,nsxd = EB,n
2 u−,nsxd. s54bd
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Suppose that the eigenfunctionsu±,nsxd sn=1,2, . . .d in the BdG approach can be expanded in
terms ofwn

s«dsxd sn=0,1, . . .d in the GB approach,

u±,nsxd = o
m=0

`

R±,nmwm
s«dsxd. s55d

Substitute Eq.s55d into Eq. s52d, apply Eq.s21d, multiply w
n8
s«dsxd from the left and integrate

over x, then we derive the matrix equations

R+e = EBR−, s56ad

R−se + 4Ud = EBR+, s56bd

where the matrix notations aresEBdnm=EB,nm andsUdnm=Unm in Eq. s28d, andsednm is defined in
Eq. s32d. Remark that the indices ofsR±dnm run fromn=1 andm=0. From these equations derive
the equations,

R+ese + 4Ud = EB
2R+, s57ad

R−se + 4Ude = EB
2R−. s57bd

One can easily find the solutions forR± by usingO satisfying Eq.s33d, that is,

R+ = H+Oe−1/2, s58ad

R− = H−Oe1/2, s58bd

whereH± are arbitrary matricessn=1,2, . . . ;m=0,1,2, . . .d whose off-diagonal elements are van-
ishing. In fact we have from Eqs.s31d–s33d,

R+ese + 4Ud = EG
2 R+, s59ad

R−se + 4Ude = EG
2 R−, s59bd

wheresEG8 dnm=EG,ndnm sn,m=1,2, . . .d. The comparison of Eqs.s57d ands59d clearly shows that
the energy spectraEB andEG are identical for excited states, so let us denote them simply byE.
If we take

H+ = E1/2, s60ad

H− = E−1/2, s60bd

we can find in the limit of«→0 from arguments in Sec. IV that

unsxd = wCn
s0dsxd, s61ad

vnsxd = wSn
s0dsxd. s61bd

Thus it has been proved that the two approaches are essentially equivalent to each other in the
excited modes.

Next, in order to include the zero-mode eigenspace, we introduce a new functionh«sxd,
corresponding to Eq.s45d, through the relation,
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sL + Mdh«sxd =
1

I«

f«sxd. s62d

Here f«sxd is defined in Eq.s11d with Eq. s9d, and the constantI« is determined from the condition

1

2
=E d3x f«sxdh«sxd. s63d

It is clear from their definitions that the functionsf«sxd and h«sxd and the constantI« reduce to
fsxd, hsxd, andI, respectively, as« goes to zero.

We attempt to expandh«sxd in terms ofhwn
s«dj,

h«sxd = o
n=0

`

knwn
s«dsxd. s64d

Remark thatw0
s«dsxd is included in this summation. Substitute this into Eq.s45d,

sL + Mdh«sxd = o
n=0

`

knfsen + «ēd + 2Mgwn
s«dsxd =

1

I«

f«sxd, s65d

and multiply it byed3x wm
s«dsxd, one obtains in the matrix notation

fe + 4Ugk =
1

I«

e0, s66d

with se0dn=d0n and skdn=kn. We manipulate this as

fe2 + 4e1/2Ue1/2ge−1/2k = We−1/2k =
1

I«

e1/2e0, s67d

whereW is defined in Eq.s34d, and we have

k =
1

I«

e1/2W−1e1/2e0. s68d

We remark thatsednm should be interpreted not asendnm but as sen+«ēddnm. Since OW−1OT

=EG
−2 from Eq. s33d andC−S=EG

−1/2Oe1/2 from Eq. s31d, Eq. s68d reduces to

k =
1

I«

sC − SdTEG
−1sC − Sde0. s69d

The behaviors of the matricesEG
−1, sC−Sd, and sC+Sd=EG

1/2Oe−1/2 with respect to« can be
estimated from Sec. III,

EG
−1 = SOs«−1/2d 0

0 Os«0d
D s70ad

C − S= SOs«1/4d Os«1/4d
Os«d Os«0d

D s70bd

C + S= SOs«−1/4d Os«3/4d
Os«0d Os«0d

D , s70cd

where the first rows and columns correspond ton=0, and the second ones ton=1,2, . . ..There-
fore, up to the leading order of«, we have after some manipulations

042307-10 Mine, Okumura, and Yamanaka J. Math. Phys. 46, 042307 ~2005!

                                                                                                                                    



EG
−1sC − Sde0 = Ē0

−3/4s«ēd−1/4e0 + Os«d. s71d

Recall the definition of Eq.s37d for Ē0 which is independent of«. Finally k becomes

k =
1

I«

Ē0
−3/4s«ēd−1/4sC − SdTe0 + Os«d, s72d

implying that

h«sxd =
1

I«

sĒ0d−3/4s«ēd−1/4swC0
s«dsxd − wS0

s«dsxdd + Os«d

=
1

I«

Ē0
−1Fw0

s«dsxd − o
n=1

`

su8TW8−1dnen
1/2wn

s«dsxdG + Os«1/2d. s73d

The constantI« can be evaluated from Eq.s73d, Eq. s63d, and f«sxd=w0
s«dsxd,

I« =
2

Ē0

+ Os«1/2d. s74d

Then we have an explicit form ofh«sxd as

h«sxd =
1

2Fw0
s0dsxd − o

n=1

`

su8TW8−1dnen
1/2wn

s0dsxdG + Os«1/2d. s75d

We rewrite the functionf«sxd, which isw0
s0dsxd in the limit of «→0, as

f«sxd = w0
s«dsxd = sĒ0d−1/4s«ēd1/4fswC0sxd + wS0sxdd + Os«1/2dg, s76d

since then the completeness condition becomes evidentfsee Eqs.s20d and s47d with Eq. s61dg,

d3sx − x8d = o
n=0

`

wn
s«dsxdwn

s«dsx8d

= o
n=1

`

fwCn
s«dsxdwCn

s«dsx8d − wSn
s«dsxdwSn

s«dsx8dg + ff«sxdh«sx8d + h«sxdf«sx8dg. s77d

This way it has been confirmed thatf«sxd andh«sxd thus defined in the GB approach correspond
to fsxd andhsxd in the BdG approach in the limit of«→0.

As the next step, we rewrite the oscillatorlike operatorb̂0 by a new set of canonical operators

hQ̂b,P̂bj,

b̂0 =
1
Î2

sP̂b − iQ̂bd, s78ad

b̂0
† =

1
Î2

sP̂b + iQ̂bd, s78bd

with

fQ̂b,P̂bg = i s79d

and
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fQ̂b,Q̂bg = fP̂b,P̂bg = 0. s80d

Using Eqs.s73d, s76d, ands75d one can express the field operator in the GB approach as

ŵsxd = b̂0stdwC0
s«dsxd − b̂0

†stdwS0
s«dsxd + ŵexcsxd = jP̂bstdh«sxd − ij−1Q̂bstdf«sxd + ŵexcsxd + Os«1/2d,

s81d

where

j = Î2Ē0
−1/4s«ēd1/4, s82d

ŵexcsxd = o
n=1

`

fb̂nstdwCn
s«dsxd − b̂n

†stdwSn
s«dsxdg. s83d

Recall Eq.s74d and thatwexcsxd is common, which has been proved in the first part of this section,
and we see that Eqs.s81d and s50d become identical to each other in the limit of«→0, if we
identify

P̂ = jP̂b, s84ad

Q̂ = j−1Q̂b. s84bd

Namely, the field operators in the GB approach may be expressed as

ŵsxd = P̂stdh«sxd − iQ̂stdf«sxd + ŵexcsxd + Os«1/2d, s85ad

ŵ†sxd = P̂stdh«sxd + iQ̂stdf«sxd + ŵexc
† sxd + Os«1/2d. s85bd

The Hamiltonians30d in the GB approach is in terms ofP̂ andQ̂,

Ĥ0 =
1

2I«

j2P̂b
2 + s«ēdj−2Q̂b

2 + o
n=1

`

Enb̂n
†b̂n + sc-numbersd

=
1

2I«

P̂2 + s«ēdQ̂2 + o
n=1

`

Enb̂n
†b̂n + sc-numbersd → 1

2I
P̂2 + o

n=1

`

Enb̂n
†b̂n + sc-numbersd,

s86d

which is the same as Eq.s51d.
Thus Eqs.s78d, s82d, and s84d reveal the correspondence between the two sets of operators

representing the NG modes in the two approaches,hb̂0,b̂0
†j and hP̂ ,Q̂j, in the limit of «→0.

VI. SUMMARY AND DISCUSSIONS

It was shown explicitly in this paper that in the unperturbed representation for systems of the
trapped BECssid the operators of excitation modes in the GB and BdG approaches are identical,

and sii d the operatorsb̂0 and b̂0
† of the NG mode in the GB approach are related to the quantum

coordinatesP̂ andQ̂ in the BdG approach through the linear relationss78d ands84d with Eq. s82d.
The introduction of the breaking term in Eq.s4d and the parameter« in the GB is very important
to find the relations. The formal equivalence of the two approaches is established since the
operators turned out to be related to each other linearly.

We note that the scale transformationfsee Eq.s84dg,
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P̂b → P̂ = jP̂b, s87ad

Q̂b → Q̂ = j−1Q̂b, s87bd

which is canonical, corresponds to the squeezing, although it is singular asj−1 diverges in the limit
of «→0.

Let us discuss on vacuum states. Because of the resultsid, the vacuum structures with respect
to the excitation modes are identical in the two approaches, we simply require

b̂nuVexcl = 0 sn ù 1d. s88d

But there are two ways to determine the vacuum structure in the NG mode sector. One is a
prescription, naturally adopted in the GB approach, to have the vacuum defined by

b̂0uV0l = 0. s89d

Here the operatorb̂0 is treated as a gapless mode. The other is to have no unique vacuum but a

quantum mechanical state associated with the quantum coordinateshP̂ ,Q̂j, denoted byuQl. Al-
though this state must satisfy

kQuQ̂uQl = kQuP̂uQl = 0, s90d

due to the condition

kVuŵsxduVl = 0, s91d

whereuVl is the total vacuum, it cannot be determined completely from general considerations. As
an example, one may take for it a Gaussian wave function, centered atQ=0. HereQ is a quantum

number associated with the operatorQ̂.
In summary, we have the two types of total vacuum, depending on whether the NG mode is

treated as a gapless mode or as quantum coordinates,

uVl = HuV0l ^ uVexcl sas gapless moded,

uQl ^ uVexcl sas quantum coordinated.
J s92d

One should not confuse the choice of approach and that of vacuum. We can develop in the GB
approach a consistent formulation with the vacuumuQl ^ uVexcl as quantum coordinates, guided by
the relationss78d ands84d with Eq. s82d. What matters physically is the choice of vacuum but not
that of approach. We are discussing the unperturbed representation in this paper. The choice of
unperturbed vacuum affects the unperturbedsfreed propagator and inevitably all of the higher
order effects. The corrections at one-loop level to the original GP equation have been evaluated
when the vacuumuV0l ^ uVexcl is chosen.8 We have reported the evaluation of the same correc-
tions with the choice ofuQl ^ uVexcl in Ref. 14. The expressions for free propagators withuQl
^ uVexcl are given in the Appendix, while those withuV0l ^ uVexcl are found in Ref. 8.
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APPENDIX: PROPAGATORS USING QUANTUM COORDINATES

In this Appendix, we construct unperturbedsfreed propagators withuQl ^ uVexcl. These are
necessary to calculate quantum and thermal corrections.

The time dependence ofQ̂ and P̂ are governed by the Hamiltonians86d,

Q̂std = cossÎ«ĒtdQ̂ +
1

Î«ĒI«

sinsÎ«ĒtdP̂, sA1ad

P̂std = cossÎ«ĒtdP̂ − sÎ«ĒI«dsinsÎ«ĒtdP̂, sA1bd

whereĒ=ÎēĒ0+Os«d.
We substitute Eq.sA1d into the field operators in Eq.s85d,

ŵsxd = fcossÎ«ĒtdP̂ − Î«ĒI« sinsÎ«ĒtdQ̂gh«sxd − iFcossÎ«ĒtdQ̂ +
1

Î«EI«

sinsÎ«ĒtdP̂G f«sxd

+ ŵexcsxd + Os«d, sA2ad

ŵ†sxd = fcossÎ«ĒtdP̂ − Î«ĒI« sinsÎ«ĒtdQ̂gh«sxd + iFcossÎ«ĒtdQ̂ +
1

Î«ĒI«

sinsÎ«ĒtdP̂G f«sxd

+ ŵexc
† sxd + Os«d. sA2bd

When the limit«→0 is taken, they are

ŵsxd = P̂hsxd − iSQ̂ +
1

I
P̂tD fsxd + ŵexcsxd, sA3ad

ŵ†sxd = P̂hsxd + iSQ̂ +
1

I
P̂tD fsxd + ŵexc

† sxd. sA3bd

These representations are the same as in Ref. 12.
Next, let us construct the propagators with Eq.sA2d and the vacuumuQl ^ uVexcl. The

232-matrix propagator is derived as

GQsx,x8;t,t8d = SGQ,11sx,x8;t,t8d GQ,12sx,x8;t,t8d
GQ,21sx,x8;t,t8d GQ,22sx,x8;t,t8d

D , sA4d

where

GQ,11sx,x8;t,t8d ; kVuTfŵsxdŵ†sx8dguVl = FcossÎ«ĒtdcossÎ«Ēt8dh«sxdh«sx8d

+ S 1

Î«ĒI«

D2

sinsÎ«ĒtdsinsÎ«Ēt8df«sxdf«sx8d

+ i
1

Î«ĒI«

cossÎ«ĒtdsinsÎ«Ēt8dh«sxdf«sx8d

− i
1

Î«ĒI«

sinsÎ«ĒtdcossÎ«Ēt8df«sxdh«sx8dGkQuP̂2uQl
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+ fcossÎ«ĒtdcossÎ«Ēt8df«sxdf«sx8d + sÎ«ĒI«d2sinsÎ«ĒtdsinsÎ«Ēt8dh«sxdh«sx8d

+ isÎ«ĒI«dcossÎ«ĒtdsinsÎ«Ēt8df«sxdh«sx8d

− isÎ«ĒI«dsinsÎ«ĒtdcossÎ«Ēt8dh«sxdf«sx8dgkQuQ̂2uQl

+ Hust − t8dF− sÎ«ĒI«dcossÎ«ĒtdsinsÎ«Ēt8dh«sxdh«sx8d

+
1

Î«ĒI«

sinsÎ«ĒtdcossÎ«Ēt8df«sxdf«sx8d + i sinsÎ«ĒtdsinsÎ«Ēt8df«sxdh«sx8d

+ i cossÎ«ĒtdcossÎ«Ēt8dh«sxdf«sx8dG + ust8 − td

3F− sÎ«ĒI«dsinsÎ«ĒtdcossÎ«Ēt8dh«sxdh«sx8d

+
1

Î«ĒI«

cossÎ«ĒtdsinsÎ«Ēt8df«sxdf«sx8d − i sinsÎ«ĒtdsinsÎ«Ēt8dh«sxdf«sx8d

− i cossÎ«ĒtdcossÎ«Ēt8df«sxdh«sx8dGJkQuP̂Q̂uQl

+ Hust − t8dF− sÎ«ĒI«dsinsÎ«ĒtdcossÎ«Ēt8dh«sxdh«sx8d

+
1

Î«ĒI«

cossÎ«ĒtdsinsÎ«Ēt8df«sxdf«sx8d − i cossÎ«ĒtdcossÎ«Ēt8df«sxdh«sx8d

− i sinsÎ«ĒtdsinsÎ«Ēt8dh«sxdf«sx8dG + ust8 − td

3F− sÎ«ĒI«dcossÎ«ĒtdsinsÎ«Ēt8dh«sxdh«sx8d

+
1

Î«ĒI«

sinsÎ«ĒtdcossÎ«Ēt8df«sxdf«sx8d + i cossÎ«ĒtdcossÎ«Ēt8dh«sxdf«sx8d

+ i sinsÎ«ĒtdsinsÎ«Ēt8df«sxdh«sx8dGJkQuQ̂P̂uQl sA5d

GQ,22sx,x8;t,t8d = GQ,11sx8,x;t8,td, sA6d

GQ,12sx,x8;t,t8d ; kVuTfŵsxdŵsx8dguVl = FcossÎ«ĒtdcossÎ«Ēt8dh«sxdh«sx8d

+ S 1

Î«ĒI«

D2

sinsÎ«ĒtdsinsÎ«Ēt8df«sxdf«sx8d
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− i
1

Î«ĒI«

cossÎ«ĒtdsinsÎ«Ēt8dh«sxdf«sx8d

− i
1

Î«ĒI«

sinsÎ«ĒtdcossÎ«Ēt8df«sxdh«sx8dGkQuP̂2uQl

+ fcossÎ«ĒtdcossÎ«Ēt8df«sxdf«sx8d + sÎ«ĒI«d2sinsÎ«ĒtdsinsÎ«Ēt8dh«sxdh«sx8d

+ isÎ«ĒI«dcossÎ«ĒtdsinsÎ«Ēt8df«sxdh«sx8d

+ isÎ«ĒI«dsinsÎ«ĒtdcossÎ«Ēt8dh«sxdf«sx8dgkQuQ̂2uQl

+ Hust − t8dF− sÎ«ĒI«dcossÎ«ĒtdsinsÎ«Ēt8dh«sxdh«sx8d

+
1

Î«ĒI«

sinsÎ«ĒtdcossÎ«Ēt8df«sxdf«sx8d + i sinsÎ«ĒtdsinsÎ«Ēt8df«sxdh«sx8d

− i cossÎ«ĒtdcossÎ«Ēt8dh«sxdf«sx8dG + ust8 − td

3F− sÎ«ĒI«dsinsÎ«ĒtdcossÎ«Ēt8dh«sxdh«sx8d

+
1

Î«ĒI«

cossÎ«ĒtdsinsÎ«Ēt8df«sxdf«sx8d + i sinsÎ«ĒtdsinsÎ«Ēt8dh«sxdf«sx8d

− i cossÎ«ĒtdcossÎ«Ēt8df«sxdh«sx8dGJkQuP̂Q̂uQl

+ Hust − t8dF− sÎ«ĒI«dsinsÎ«ĒtdcossÎ«Ēt8dh«sxdh«sx8d

+
1

Î«ĒI«

cossÎ«ĒtdsinsÎ«Ēt8df«sxdf«sx8d − i cossÎ«ĒtdcossÎ«Ēt8df«sxdh«sx8d

+ i sinsÎ«ĒtdsinsÎ«Ēt8dh«sxdf«sx8dG + ust8 − td

3F− sÎ«ĒI«dcossÎ«ĒtdsinsÎ«Ēt8dh«sxdh«sx8d

+
1

Î«ĒI«

sinsÎ«ĒtdcossÎ«Ēt8df«sxdf«sx8d − i cossÎ«ĒtdcossÎ«Ēt8dh«sxdf«sx8d

+ i sinsÎ«ĒtdsinsÎ«Ēt8df«sxdh«sx8dGJkQuQ̂P̂uQl sA7d

GQ,21sx,x8;t,t8d = GQ,12sx8,x;t8,td. sA8d

In the above definitions, we use the notation for propagators without NG mode,

Gexc,11sx,x8;t − t8d ; kVexcuTfŵexcsxdŵexc
† sx8dguVexcl, sA9ad
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Gexc,12sx,x8;t − t8d ; kVexcuTfŵexcsxdŵexcsx8dguVexcl, sA9bd

Gexc,21sx,x8;t − t8d ; kVexcuTfŵexc
† sxdŵexc

† sx8dguVexcl, sA9cd

Gexc,22sx,x8;t − t8d ; kVexcuTfŵexc
† sxdŵexcsx8dguVexcl. sA9dd

One can find their explicit forms in Ref. 8.
In the limit of «→0, the propagators become

GQ,11sx,x8;t,t8d = Fhsxdhsx8d + fsxdfsx8dS t

I
DS t8

I
D + ihsxdfsx8dS t8

I
D − i f sxdhsx8dS t

I
DGkQuP̂2uQl

+ fsxdfsx8dkQuQ̂2uQl + Hust − t8dF fsxdfsx8dS t

I
D + ihsxdfsx8dG + ust8 − td

3F fsxdfsx8dS t8

I
D − i f sxdhsx8dGJkQuP̂Q̂uQl + Hust − t8dF fsxdfsx8dS t8

I
D

− i f sxdhsx8dG + ust8 − tdF fsxdfsx8dS t

I
D + ihsxdfsx8dGJkQuQ̂P̂uQl

+ Gexc,11sx,x8;t − t8d, sA10d

GQ,22sx,x8;t,t8d = GQ,11sx8,x;t8,td, sA11d

GQ,12sx,x8;t,t8d = Fhsxdhsx8d + fsxdfsx8dS t

I
DS t8

I
D − ihsxdfsx8dS t8

I
D − i f sxdhsx8dS t

I
DGkQuP̂2uQl

+ fsxdfsx8dkQuQ̂2uQl + Hust − t8dF fsxdfsx8dS t

I
D − ihsxdfsx8dG + ust8 − td

3F fsxdfsx8dS t8

I
D − i f sxdhsx8dGJkQuP̂Q̂uQl + Hust − t8dF fsxdfsx8dS t8

I
D

− i f sxdhsx8dG + ust8 − tdF fsxdfsx8dS t

I
D − ihsxdfsx8dGJkQuQ̂P̂uQl

+ Gexc,12sx,x8;t − t8d, sA12d

GQ,21sx,x8;t,t8d = GQ,12sx8,x;t8,td. sA13d
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Starting from vector fields that preserve a differential form on a Riemann sphere
with Grassmann variables, one can construct a superconformal algebra by consid-
ering central extensions of the algebra of vector fields. In this paper, theN=4 case
is analyzed closely, where the presence of weight zero operators in the field theory
forces the introduction of noncentral extensions. How this modifies the existing
field theory, representation theory, and Gelfand–Fuchs constructions is discussed. It
is also discussed how graded Riemann sphere geometry can be used to give a
geometrical description of the central charge in theN=1 theory. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1863652g

I. INTRODUCTION

Two-dimensional conformal symmetry in quantum field theory has, over the last 30 years,
touched many parts of mathematics and theoretical physics. A quantum field theory that is con-
formally invariant is called a conformal field theorysCFTd, and in this paper, only the case of two
dimensions is examined. Lying at the heart of CFT is understanding how to treat the infinite
conformal symmetry on the quantum level, and understanding the representation theory of the
algebra. If one wants a nontrivial, unitary representation of the symmetry algebrasknown as the
DeWitt algebrad, then a central extension must be introduced into the algebra, yielding the Vira-
soro algebra.3 Hence, when considering any algebra which has the Virasoro algebra as a subalge-
bra, the understanding of how and what extensions can be added is of crucial importance. Two-
dimensional CFTs present an example of a quantum field theory where there is a rich interplay
between the geometry of the theory and the quantum theory. As a result, many aspects of the
quantum theory can be described elegantly by the geometry. This is a point of view that this paper
will use repeatedly.

In this paper, the case of the conformal symmetries of a Riemann sphere and graded Riemann
sphere are examined. In Ref. 7 it was found that a graded Riemann sphere is a sensible space on
which to try and construct a superconformal field theorysSCFTd. On this space many results can
be obtained, and primary fieldssfields that “generate” the space of statesd can be built in a natural
manner associated to the geometry of the space. These spaces give rise to lie graded algebras of
vector fields that contain the DeWitt algebra. Much work has been done on the extensions of these
algebras in Ref. 6. Here, theN=4 case is revisited, with particular attention paid to the weight 0
fields that arise in the theory. These fields give unusual behavior, giving logarithms in the super
OPE, and exhibiting some Jordan block structure in the adjoint representation. The structure,
however, turns out to be quite manageable, since the behavior turns out to be quite similar to that
of a free boson. The understanding of how to construct bosonic primary fields geometrically, as
sections of a line bundle is extremely well covered in the CFT literature. However, it is also
known, in the bosonic theory, how to construct central extensions geometrically.10 Here, this is
extended to theN=1 case, and is discussed how this might extend to higherN.

In Sec. II, the vector fields for theN=4 case are found, and extensions of the algebra consid-
ered, using just the graded Jacobi identity. In particular, it is found that if the algebra is not
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reduced to its simple subalgebra, then the Jacobi identity implies that algebra must be extended by
noncentral elements, if it is to contain the Virasoro algebra with nontrivial central charge. Section
III examines how this fits into the operator formalism of CFT, where the starting point is usually
an operator product expansion. There the subtlety arises from understanding what mode expan-
sions to take for operators, and how to treat logarithms in the operator product expansion. Section
IV looks at how the usual representation theory of theN=4 algebra will be altered with the
noncentral extension found. Section V then considers how the algebra obtained fits into the
formalism of Gelfand–Fuchs extensions, and how superspace techniques can be used to write
them. Section VI then looks at theN=1 Gelfand–Fuchs cocycle, i.e., theN=1 central charge, and
considers how to realize the cocycle as a geometric object on a graded Riemann sphere.

II. THE ALGEBRA OF VECTOR FIELDS

On a Riemann sphere, one obtains the DeWitt algebra by looking at the vector fields that
preserve the one-form dz, a basis of which is given by

ln = − zn+1 ]

]z
. s1d

Calculating the commutation relations given by the lie bracket yields the DeWitt algebra

fln,lmg = sn − mdln+m. s2d

Similarly, on a graded Riemann sphere, withN=4 and the usual one-formv=dz+oi=1
4 ui dui, one

finds a basis of vector fields that preservev sRef. 6d,

ln = − znsz] + 1
2sn + 1dui]id ,

gr
j = zr+1/2Su j] − ] j +

sr + 1
2d

z
u juk]kD ,

tn
ml = znSul]m − um]l +

n

z
umulup]pD , s3d

cr
k = − zr−1/2S 1

6ekpqrupuqur] +
sr − 1

2d
z

u1u2u3u4]k + 1
2ekpqrupuq]rD ,

un = − zn−1su1u2u3u4] + 1
12ei jkluiu juk]ld .

These vector fields give rise to the graded commutation relations under the graded Lie bracket,

fln,lmg = sn − mdlm+n, fln,gr
jg = Sn

2
− rDgn+r

j , fln,tm
pqg = − mtm

pq,

fln,cr
kg = S−

n

2
− rDcn+r

k , fln,umg = − sn + mdum+n,

fgr
j ,gs

kg = 2d jkl r+s + ss− rdtr+s
jk , ftn

ml,gr
jg = dmjgn+r

l − dl jgn+r
m + nemljkcn+r

k ,

s4d
fgr

j ,cs
kg = d jk2sr + sdur+s + 1

2e jkpqtr+s
pq , fgr

j ,ung = − 1
2cn+r

j ,
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ftn
ml,tr

pqg = dmqtn+r
pl + dmptn+r

lq + dlqtn+r
mp + dlptn+r

qm, ftn
ml,upg = 0,

ftn
ml,cr

kg = dmkcn+r
l − dklcn+r

m , fcr
k,cs

jg = 0, fcr
k,ung = 0, fum,ung = 0.

Note that this algebra is not simple, and thatfg ,gg=g / kuol squotient taken in the vector space
sensed is simple. This simple algebra is the largeN=4 algebra, without its three central elements.
The tn

ml form an sos4d loop algebra. This loop algebra may be written explicitly as sos4d=sus2d
% sus2d by the change of basis

tm
1 = 1

2stm
12 + tm

34d, tm
2 = 1

2stm
13 − tm

24d, tm
3 = 1

2stm
14 + tm

23d,

t̄ m
1 = 1

2stm
34 − tm

12d, t̄ m
2 = 1

2s− tm
13 − tm

24d, t̄ m
3 = 1

2stm
23 − tm

14d.

These sus2ds can then be centrally extended, to affine currents, with extensionc and c̄. Defining
c+=c+ c̄ andc−=c− c̄, one finds the modified commutation relation,

ftn
ml,tr

pqg = dmqtn+r
pl + dmptn+r

lq + dlqtn+r
mp + dlptn+r

qm + sdmpdlq − dmqdlpdc+ndn+r,0 + emlpqc
−ndn+r,0.

The c− also modifies, by the Jacobi identity, the relations

fgr
j ,cs

kg = d jk2sr + sdur+s + 1
2e jkpqtr+s

pq + c−sr + 1
2dd jkdr+s,0,

fln,umg = − sn + mdum+n −
c−

4
sn + 1ddm+n,0.

The c+ also modifies, by the Jacobi identity, the relations

flm,lng = sm− ndlm+n −
c+

4
msm2 − 1ddm+n,0,

fgr
j ,gs

kg = 2d jkl r+s + ss− rdtr+s
jk − c+sr2 − 1

4dd jkdr+s,0,

fcr
k,cs

jg = c+d jkdr+s,0, fum,ung = −
c+

4m
dm+n,0 for mÞ 0.

As it stands, thehgr
j ,cs

j ,u0j Jacobi identity impliesc+=0. This offending Jacobi identity is usually
bypassed by working infg ,gg rather than ing, but this is not the route that will be taken here.
Nonzeroc+ can be obtained by adding another extension, denotedv0. From thefln,umg commu-
tator, it can be seen that theum form a current of weight zero. This current can be deformed to
include a logarithmic term, so thatuszd=−onunz

−n+v0 log z. This then modifies the commutation
relations,

fln,umg = − sm+ ndum+n − v0dm+n,0,

s5d
fgr

j ,cs
kg = 2d jkssr + sdur+s + v0dr+s,0d + 1

2e jkpqtr+s
pq .

Using the Jacobi identity, one can see thatv0 commutes with all elements, exceptu0. The
hgr

j ,cs
j ,u0j Jacobi identity now yieldsfu0,v0g=c+/4. This algebra now realizes centrally extended

K8s4d salso known as largeN=4d with the u0 operator put back in. Note that inK8s4d, v0 is a
central extension.6 The behavior of theum,v0 is very similar to that of the modes of a free boson,
identifying v0 with momentum andu0 with position. The commutation relations then become
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flm,lng = sm− ndlm+n −
c+

4
msm2 − 1ddm+n,0, fln,gr

jg = Sn

2
− rDgn+r

j ,

fln,cr
kg = S−

n

2
− rDcn+r

k , fln,umg = − sn + mdum+n − Sc−

4
sn + 1d + v0Ddm+n,0,

fgr
j ,gs

kg = 2d jkl r+s + ss− rdtr+s
jk − c+sr2 − 1

4dd jkdr+s,0, fln,tm
pqg = − mtm

pq,

ftn
ml,gr

jg = dmjgn+r
l − dl jgn+r

m + nemljkcn+r
k , fgr

j ,ung = − 1
2cn+r

j ,

s6d
fgr

j ,cs
kg = d jk2sr + sdur+s + 1

2e jkpqtr+s
pq + sc−sr + 1

2d + 2v0dd jkdr+s,0,

ftn
ml,tr

pqg = dmqtn+r
pl + dmptn+r

lq + dlqtn+r
mp + dlptn+r

qm + sdmpdlq − dmqdlpdc+ndn+r,0 + emlpqc
−ndn+r,0,

ftn
ml,upg = 0, ftn

ml,cr
kg = dmkcn+r

l − dklcn+r
m , fcr

k,cs
jg = c+d jkdr+s,0,

fcr
k,ung = 0, fum,ung = −

c+

4m
dm+n,0, fu0,v0g =

c+

4

with c± central, andv0 has only one nontrivial commutator, namelyfu0,v0g. Thus, whileu0,v0 can
both be considered to be operators at level 0, they cannot both be in the Cartan subalgebra. Ifv0

is nonzero, one can choose it to be in the Cartan subalgebra. Usually, in a conformal field theory,
one finds that the space of operators at level zero can be identified with the Cartan subalgebra.
This is not the case here, and can potentially lead to Jordan blocks. In this sense, theN=4 theory
can be thought of as a logarithmic theory, with the logarithmic character coming fromuszd. The
usual large algebra comes from looking at the simple subalgebra obtained from identifyingu0

,0, i.e., considering the field]uszd as fundamental rather thanuszd. To see where the logarithms
actually come in, one must look at the operator formalism.

III. THE OPERATOR APPROACH

The super operator product expansion of the super Virasoro operator with a primary superfield
for the N=4 case is given by5

TsZ1dFsZ2d ,
hu12,1u12,2u12,3u12,4

Z12
2 FsZ2d +

u12,1u12,2u12,3u12,4

Z12
]FsZ2d

+
1

12

ei jklu12,iu12,ju12,k

Z12
DlFsZ2d +

1

4

ei jklu12,iu12,jJ
kl

Z12
FsZ2d + p logsZ12dFsZ2d,

s7d

whereZ1=sw,xid, Z2=sz,uid, u12,i =sxi −uid, Z12=sw−z−xiuid,

TsZ2d = u1u2u3u4Lszd + 1
12ei jkluiu jukG

lszd + 1
8ei jkluiu jT

klszd + 1
2ukc

kszd − Uszd s8d

and theJab form an sos4d algebra with commutation relations given by1
2t0

ab. logsZ12d is defined by

logsZ12d = logsw − zd − o
p=1

4
1

p
S xiui

sw − zdD
p

. s9d

The xi components of each side can be taken, giving
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LswdFsZ2d , S h

sw − zd2 +
1

sw − zd
] +

1

2sw − zd2ui]i −
uiu jJ

ij

sw − zd2 −
6u1u2u3u4

sw − zd4 pDFsZ2d,

1

2
GiswdFsZ2d , S − hui

sw − zd2 −
ui]

2sw − zd
+

]i

2sw − zd
−

uiu j] j

2sw − zd2 +
uiu jukJ

jk

sw − zd3 +
u jJ

ji

sw − zd2

−
ei jklu jukul

3sw − zd3 pDFsZ2d,

1

2
TabswdFsZ2d , S huaub

sw − zd2 +
ub]a − ua]b

2sw − zd
+

uaubu j] j

2sw − zd2 −
u1u2u3u4

sw − zd3 eabjkJ
jk

+
1

sw − zd2suau jJ
bj − ubu jJ

ajd +
1

sw − zd
Jab +

eabjku juk

2sw − zd2pDFsZ2d, s10d

1

2
ckswdFsZ2d , S− heklmnulumun

6sw − zd2 +
eklmnulumun

12sw − zd
] +

u1u2u3u4

2sw − zd2]k +
eklmnulum

4sw − zd
]n −

eklmnul

2sw − zd
Jmn

+
ukelmnpulum

4sw − zd2 Jnp −
uk

sw − zd
pDFsZ2d,

− UswdFsZ2d , Shu1u2u3u4

sw − zd2 −
u1u2u3u4

sw − zd
] −

eklmnukulum

12sw − zd
]n +

eklmnukul

4sw − zd
Jmn+ logsw − zdpDFsZ2d

from which the vector fields ofs3d can be recovered. Note that logarithms only appear in OPEs
containingUszd. Clearly, in this last OPE, a contour integral can only be taken if]UswdFszd is
considered. TakingUszd=onUnz

−n+V0 log z, it can be shown thatfV0,Fg=pF. Allowing V0 to
annihilate the vacuum11 then yieldsV0uFl=puFl. The fV0,Fg commutator is unusual, in that it
contains no differential operators. Hence, it is not obvious how to associate a conformal vector
field of the form ofs3d to V0. The logarithm in the last OPE ofs10d prevents one from obtaining
an action fromU0. If one looks at a representation whereV0=0, then it can be seen thatp=0 and
that thew contour integral inUswdFszd can be performed, to give

fU0,FsZdg , Shu1u2u3u4

z2 +
u1u2u3u4]

z
+

eklmnukulum]n

12z
−

eklmnukulJ
mn

4z
DFsZd.

However, its action on the highest weight from this approach is unclear, and a more careful
approach to the representation theory is warranted.

The logarithmic character can also be examined by looking at theTsZ1dTsZ2d OPE, given by

TsZ1dTsZ2d ,
c+ logsZ12d

4
−

c−u12,1u12,2u12,3u12,4

4Z12
2 +

u12,1u12,2u12,3u12,4

Z12
]TsZ2d

+
1

12

ei jklu12,iu12,ju12,k

Z12
DlTsZ2d. s11d

Using s9d, one can see that the only term involving logarithms is the term,

UswdUszd ,
c+

4
logsw − zd. s12d

Therefore, ifc+Þ0, Uszd must have a logarithmic component in its mode expansion. This can
easily be verified by taking the contour integrals ins12d to get the commutation relations. If there
is no logarithmic component inUszd, then from the computation one can deduce thatc+=0, the
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same result found when using the Jacobi identity in the preceding section. The fieldUszd behaves
in a very similar way to a free boson. In particular,fV0,U0g=c+/4, and hence they are not
mutually diagonalizable, as was reflected by the above manipulations of the last OPE ins10d.

One can ask if the field,Uszd, can be written in a logarithmic form1

LswdDszd ,
hDszd + Eszd

sz− wd2 +
]Dszd
sw − zd

,

LswdEszd ,
hEszd

sz− wd2 +
]Eszd

sw − zd
.

From s11d one can read off theLswdUszd OPE to find

LswdUszd ,
]Uszd
sw − zd

−
c−

4sw − zd2 . s13d

Regarding −c−/4 as a constant field of weight zero, one then gets the desired form. While theV0

operator gives rise to an eigenvalue, this analysis does not yield a conformal transformation
associated toV0. The previous analysis shows thatv0 had to be introduced as an extension of the
algebra. This suggests that rather than thinking of thep eigenvalue as being associated to a
primary field, one should instead think of theV0 operator as appearing in a similar way to a central
extension.

IV. A LITTLE REPRESENTATION THEORY

A closer look at the level zero operators is warranted. These are normally defined as those
operators with adl0 eigenvalue being zero. Considering the commutation relationss6d, one can see
that clearlyhl0,t0

ml,v0,c±j fall into this category. However,u0 has a strange action under adl0,
namely

fl0,u0g = − Sc−

4
+ v0D .

If one were to define a basise1=−sc−/4d−v0, e2=u0 and write down the matrix for adl0 with
respect to this basis, one would find the Jordan block

sadl0d = S0 1

0 0
D .

In this manner,u0 can be considered as an operator at level zero that is not in the Cartan
subalgebra.

The algebra here differs slightly from the usual largeN=4 algebra, by the modeu0. This
affects the representation theory. The Fock space will be enlargened, due to the presence of
polynomials inu0 acting on the highest weight. Using the analogy ofv0 as momentum, andu0 as
position, instead of considering the statesu0

nuhl, the “momentum” eigenstatesuk,hl=e−ku0uhl can
be considered. From the fact that the only nontrivial commutatorsu0 has are withln,gr

j ,v0, one can
show
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v0uk,hl = Sc+k

4
+ pDuk,hl, gr

j uk,hl = e−ku0gr
j uhl +

k

2
cr

j uk,hl,

s14d

lnuk,hl = 5e−ku0lnuhl + knunuk,hl, n Þ 0,

Sh + kSc−

4
+ pD + k2c+

8
Duk,hl, n = 0 6

from which it can be seen thatuk,hl obeys highest weight conditions, with potentially differentv0

andl0 eigenvalues fromuhl. In analogy with a free boson, theun. n.0 annihilate the vacuum and
the highest weight state andv0 annihilates the vacuum. For nonzeroc+, u0 annihilates neither.

V. GELFAND–FUCHS 2-COCYCLES

For an algebra of vector fields, where a function can be associated to each vector field, it is
often useful to construct central extensions by considering Gelfand–Fuchs 2-cocycles.4 Here,
superfield formalisms are used, which yield similar results to Ref. 4. For instance, in the bosonic
case, one has10

lm = − zm+1 ]

]z
, lszd = zm+1, then

s15d

cslm,lnd =
1

24pi
R

0
dzS ]3

]z3zm+1Dzn+1 =
c

12
msm2 − 1ddm+n,0

or for a general polynomiallszd

csl s1d,l s2dd =
1

24pi
R

0
dz ls1d- l s2d, s16d

where the contour is a closed loop around the origin, say the unit circle, beginning and ending at
z=1. Since the extensions are known for theN=1, 2,3,4 algebras, they can be set in Gelfand–
Fuchs 2-cocycle form. For theN=1 case

ln = − znsz]z + 1
2sn + 1du]ud, lszd = zn+1,

s17d
gr = zr+1/2s]u − u]zd, gszd = zr+1/2.

Defining the graded fieldXsid=
1
2l sid+ugsid with l andg graded even polynomials inz,z−1, one finds

the central extension is given by the 2-cocycle,

csXs1d,Xs2dd =
1

6pi
R

0
dzdusDXs1d9 dXs2d, s18d

whereD=]u+u]z, and, as usual,edu really means] /]u. Similarly, for N=2, the vector fields and
associated fields are

ln = − znsz]z + 1
2sn + 1dui]uid, lszd = zm+1,

gr
i = zr−1/2szui]z − z]ui

+ sr + 1
2duiu j]u jd, giszd = zr+1/2, s19d

tm = − zmsu2]u1
− u1]u2

d, tszd = zm.

Introducing the graded field,
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Xsid = 1
2l sid + u jgsid

j + u1u2tsid s20d

the 2-cocycle is given by

csXs1d,Xs2dd =
1

6pi
R

0
dzdu2 du1sD1D2Xs1d8 dXs2d, s21d

whereDi =]ui
+ui]z. For N=3,

ln = − znsz]z + 1
2sn + 1dui]uid, lszd = zm+1,

gr
i = zr−1/2szui]z − z]ui

+ sr + 1
2duiu j]u jd, giszd = zr+1/2,

s22d
tm
i = zm−1szei jku j]uk

− mu1u2u3]ui
d, tiszd = zm,

cr = − zr−1/2su1u2u3]z + 1
2ei jkuiuk]ukd, cszd = zr−1/2,

Xsid = 1
2l sid + u jgsid

j + 1
2eklmukultsid

m + u1u2u3csid, s23d

csXs1d,Xs2dd =
1

6pi
R

0
dzdu3 du2 du1sD1D2D3Xs1ddXs2d. s24d

Now, for N=4, Xsid is given by

Xsid = 1
2l sid + u jgsid

j + 1
2uaubtsid

ab − 1
6eabcduaubuccsid

d − u1u2u3u4
1
2usid, s25d

whereusid=zn−1 corresponds to the vectorum in s3d, and similarly for the other fields inXsid. In the
cases so far, given anXsid, a conformal vector field can be obtained. It is worth considering what
Xsid means in the operator approach. To this end, recall the super stress-energy tensorT from s8d.
From the OPEs11d, it can be shown thatLszd scales like a field of weight 2, and hence expansion
Lszd=omLmz−m−2. Similarly, the other operators have scaling dimensions-Gi is 3

2, Tij is 1, ci is 1
2

and U is 0. In fact, theGi ,Tij ,ci are primary fields. Now, rather than obtain the vector field
associated toXsid, the operator associated to it can be obtained by computing

1

pi
R

0
dzdu4 du3 du2 du1 XsidT. s26d

A similar formula12 holds for the smallerN. SinceV0 is a part ofT, one can ask how to obtain the
operatorV0 from the above integral, and see if it sheds light on how thefu0,v0g=c+/4 commutator
might be obtained. To this end, consider the logarithmic part of

1

pi
E

1+ie

1−ie

dz
1

2
uszdUszd =

1

pi
E

1+ie

1−ie

dz
1

2
uszdV0 logszd

= −
1

2pi
E

1+ie

1−ie

dz
1

z
V0E u +

1

2pi
V0Flogszd E uG

1+ie

1−ie

. s27d

Concentrating on the first part of the expression, it seems very suggestive to associate the constant
part ofeu, which arises as an integration constant, to the algebra elementv0 sassumingeu is single
valued around the origin, i.e.,u has no 1/z termd. This turns out to be precisely what is needed to
obtain thec+ 2-cocycle,
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c+sXs1d,Xs2dd =
− 1

2pi
R

0
dzdu4 du3 du2 du1SD1D2D3D4E Xs1dDXs2d s28d

assuming the integrand is single valued around the origin. On expanding out theXsid and applying
all the superderivatives, the only component ofXs1d that is actually integrated inD1D2D3D4eXs1d
is theus1d component. This essentially means thatc+su0,u0d cannot be explicitly obtained, since
the integrand would have logs in it. This, however, is not a problem, sincefu0,u0g=0 by antisym-
metry of the commutator. Also,c+sv0,v0d is not obtained, but by the same argument is clearly
zero. Most importantly, if the integration constant is taken to be 1, then one can obtain
c+sv0,u0d=−1

4. Thec− cocycle can also be found,

c−sXs1d,Xs2dd = −
1

2pi
R

0
dzdu4 du3 du2 du1Xs1d8 Xs2d s29d

as well as an expression for thev0 extension,

v0sXs1d,Xs2dd =
2

pi
R

0
dzdu4 du3 du2 du1S1

zs1 − 1
2ui]uidXs1dDXs2d. s30d

All of the extensions here for allN are consistent with the operator formalism. Apart fromc+ in
N=4, which has a problem with logs, all the extensions can be obtained from the super OPE by
calculating

−
1

4p
R

0
dzduN ¯ du1R

z

dw dxN ¯ dx1 Xs1dsZ1dXs2dsZ2dTsZ1dTsZ2d s31d

and give rise to the same formulas. The formulas also suggest that the extensions should be
described by a map from two vector fields into something proportional to the volume form

C:D1AN 3 D1AN → dz^ i
]

]ui
. s32d

VI. N=1 GELFAND–FUCHS 2-COCYCLE

In s17d, a parametrization of a vector field in terms of a field was written. One can try and
explore how these fields are related to a graded Riemann sphere. First, redefineX= 1

2 fszd+gszdu,
where nowf andg need not have a defined parity, i.e., they are each a sum of an even part and an
odd part. Now, introduce the map

l:X ° − S fszd
]

]z
+

1

2
f8szduDD − gszdS2u

]

]z
− DD . s33d

Under this identification,s18d holds. In componentss18d now reads

csXs1d,Xs2dd =
1

6pi
R dzS1

4
f s1d- f s2d + s− 1dgs2dgs1d9 gs2dD , s34d

where13 s−1dgs2dgs2d=s−1dgs2d0gs2d0+s−1dgs2d1gs2d1=gs2d0−gs2d1 with gs2d0 and gs2d1 being, respec-
tively, the even and odd parts ofgs2d. Recall that any invertible superconformal transformation can
be parametrized byF : sz,ud° sw,pd,

042308-9 On extensions of superconformal algebras J. Math. Phys. 46, 042308 ~2005!

                                                                                                                                    



w = w0 + uw1sw08d
1/2,

x = w1 + usw08 + w1w18d
1/2, s35d

wherew0=w0szd is even and with body, andw1=w1szd is odd. Restricting to invertible transfor-
mations, and using the superconformal conditionDw=xDx, one can show that

F*1 ]

]w

Dx

2 = 1sDuxd−2 − S ]x

]z
DsDuxd−3

0 sDuxd−1 21 ]

]z

Du
2 . s36d

Plugging in the parametrizations35d, and looking at the pull-pack of the vector fieldlsXd, one
finds the induced transformation law forX,

Xsw,xd ° sDuxd−2sX + Fdsz,ud ¬ X̂sz,ud s37d

showing thatX can in fact be identified with components of sections of the locally rank one sheaf
v−1,7,9 wherev=dz+u du. Thus, in local coordinates, it reads as the tensorX =Xv−1, yielding the
transformation law

F*sXsw,xdv−1d = sX + Fdsz,udv−1sDuxd−2 = X̂sz,udv−1. s38d

A bracket can be introduced onGsv−1d6as

fXs1d,Xs2dg = − 2Xs1dXs2d8 + 2Xs1d8 Xs2d − s− 1dXs1dsDXs1ddsDXs2dd. s39d

The bracket represents graded antisymmetric and obeys the graded Jacobi identity, and hence
defines a Lie graded algebra structure. The mapl :Gsv−1d→GsD1A1d is then a Lie graded algebra
homomorphism, with the brackets on vector fields given by the usual Lie bracket. Equations18d
can be rewritten as

csXs1d,Xs2dd =
1

12pi
R

0
dzdussDXs1d9 dXs2d − s− 1dXs1dXs2dsDXs2d9 dXs1dd. s40d

The integration measure, transforms, according to the Berezinian as

F*Fdw
]

]x
G = Fdz

]

]u
GsDuxd. s41d

Knowing howX transforms froms37d, one can compute

F*ssDxXs1d9 dXs2d − s− 1dXs1dXs2dsDxXs2d9 dXs1dd = sDuxd−1ssDuX̂s1d9 dX̂s2d − s− 1dXs1dXs2dsDuX̂s2d9 dX̂s1d

+ 2hx,ujfX̂s1d,X̂s2dg + Dushx,ujssDuX̂s1d9 dX̂s2d

− s− 1dXs1dXs2dsDuX̂s2d9 dX̂s1dddd, s42d

where the primes on the left-hand side are derivatives with respect tow, and on the right-hand side

with respect toz. Also, s−1dXX̂=s−1dX̂X̂ on virtue ofDux being even and

hx,uj =
x9

Dux
− 2

x8Dux8

sDuxd2 s43d

is theN=1 Schwarzian.8 Notice that the last term ins42d is a total derivative inDu, and hence will
vanish under the integral. Hence, it is most useful to look at sections of dz^ ] /]u modulo exact
derivatives. More explicitly,
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R
0

dzdusf0 + f1ud = s− 1d f1R
0

dz f1 s44d

and modulo exact derivatives means that iff1 has an antiderivative, thensf0+ f1ud,0. In particu-
lar, this means

f0 + f1u = f0 + F18u = Duss− 1dF1F1 + s− 1d f0f0ud , 0 s45d

as required.
Given F : sz,ud° sw,xd, a contravariant map can be defined as

Ux,u:1 c

6
ssDxXs1d9 dXs2d − s− 1dXs1dXs2dsDxXs2d9 dXs1dd

fXs1d,Xs2dg
2 ° 1 c

6
ssDuX̂s1d9 dX̂s2d − s− 1dXs1dXs2dsDuX̂s2d9 dX̂s1dd

fX̂s1d,X̂s2dg
2

s46d

by

Ux,u1 c

6
ssDxXs1d9 dXs2d − s− 1dXs1dXs2dsDxXs2d9 dXs1dd

fXs1d,Xs2dg
2

= 1sDuxd −
c

3
hx,ujsDuxd−2

0 sDuxd−2 2F*1 c

6
ssDxXs1d9 dXs2d − s− 1dXs1dXs2dsDxXs2d9 dXs1dd

fXs1d,Xs2dg
2 , s47d

recalling that the first term is only defined up to exact derivatives. Given, in addition, a map
C : sw,xd° su,rd, and using the property of the Schwarzianhr ,uj=hr ,xjsDuxd3+hx ,uj which
can be deduced froms43d, one can show

Ux,u + Ur,x = Ur,u. s48d

Associating the necessary open sets to the mapsF andC then realizess48d as the requirement on
restriction maps. This then, locally, represents a nontrivial extension of

Fdz
]

]u
G % v−1 s49d

modulo exact derivatives in the first slot and forcÞ0. If c=0, the extension becomes trivial. The
graded Lie brackets can then be defined on sections of this extension as

FS l

Xs1d
D,S m

Xs2d
DG = 1 c

6
ssDxXs1d9 dXs2d − s− 1dXs1dXs1dsDxXs2d9 dd

fXs1d,Xs2dg
2 , s50d

where the grade is given by the lower component. Note that, although it looks like the top
component has a different parity to the bottom component, after performing theedzdu integral to
get the central charge, it will have the same parity. The graded Jacobi identity is already satisfied
by the lower component, it remains to verify the upper component.

s− 1dXs1dXs3dFFS l

Xs1d
D,S m

Xs2d
DG,S s

Xs3d
DG + cyclic =SU

0
D s51d

has top component
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U = s− 1dXs1dXs3dss− sDXs1ddXs2d- + s− 1dXs1dXs1d- sDXs2dd − 3s− 1dXs1dXs1d8 sDXs2d9 d + 3sDX19dX28

− 2s− 1dXs1dX1sDX2-d + 2sDXs1d- dXs2ddX3 + s− 1dXs1d+Xs2ds2Xs1dXs2d8 − 2Xs1d8 Xs2d

+ s− 1dXs1dsDXs1dDXs2ddddsDX39d + cyclic

= s− 1dXs1dXs3d]s2sDXs1d8 dXs2d8 Xs3d − 2sDXs1d8 dXs2dXs3d8 + 2s− 1dsX1dXs1dsDXs2d8 dXs3d8

− 2s− 1dXs1dsDXs2d8 dXs3d + 2s− 1dXs1d+Xs2dXs1d8 Xs2dsDXs3d8 d − 2s− 1dXs1d+Xs2dXs1dXs2d8 sDXs3d8 d

− s− 1dXs2d]ssDXs1ddsDXs2ddsDXs3dddd + s− 1dXs1dXs3dDs2s− 1dXs1dsDXs1d8 d

− 2s− 1dXs1d+Xs2dsDXs1d8 dXs2dsDXs3d8 d + 2s− 1dXs2dXs1dsDXs2d8 dsDXs3d8 d + s− 1dXs1dsDXs1d9 dsDXs2ddXs3d

− s− 1dXs1d+Xs2dsDXs1d9 dXs2dsDXs3dd + s− 1dXs1dsDXs1ddsDXs2d9 dXs3d + s− 1dXs2dXs1dsDXs2d9 dsDXs3dd

+ s− 1dXs2dXs1dsDXs2ddsDXs3d9 d − s− 1dXs1d+Xs2dsDXs1ddXs2dsDXs3d9 dd , 0, s52d

where the equivalence follows since the term is a total derivativesrecall ]=D2d, and the brackets
obey the graded Jacobi identity. Hence, the algebra of conformal vector fields admits an extension
on the graded Riemann sphere to accommodate the central charge, which realizes a map of the
form s32d usings18d. The construction precisely mirrors that done for the bosonic case in Ref. 10.
Given the list of Schwarzians in Ref. 8, it should be possible to extend the construction to allN
ø4.

VII. CONCLUSIONS

If one wishes to study all of the conformal symmetries on anN=4 graded Riemann sphere at
the quantum level, and not neglect any symmetries, then one is forced to look at adding noncentral
extensions to the algebra. If theu0 symmetry is neglected, then all of the extensions are central. To
the author’s knowledge, this has not been observed before, and the author is unaware of theN
=4 algebra given bys6d having appeared previously in the literature. It was found that this
extension was completely consistent with the usual CFT treatments of the quantum theory, i.e.,
with the operator product expansions of theN=4 theory, and in fact explained why the logarithms
appeared in the OPE. The effect on the representation theory was discussed, as was the description
of the Gelfand–Fuchs extensions forN=1, . . . ,4, given by the superfield formalism. There, it was
found that the extra extension explained the appearance of the indefinite integral inside the contour
integral ins28d. It was then described for theN=1 case how the central extension arises from the
geometry of anN=1 graded Riemann sphere, and how it might be expected that the central
extensions for the higherN might be obtained.

As well as exploiting graded Riemann sphere geometry to describe extensions of supercon-
formal algebras, these calculations also shed some light on how one might try to treat noncentral
extensions in a CFT. In this case, the field theory exhibited an, albeit mild, logarithmic behavior,
not unrelated to the manner in which zero modes are modified in Ref. 2. For higherN, the
requirement of having a Virasoro subalgebra with nonzero central extension could force noncen-
tral extensions to appear that enrich the zero mode structure.N=5 would have a graded odd
weight −1

2 field whose zero mode structure might give unavoidable Jordan cells in the represen-
tation theory. In theN=4 case, the modified zero mode structure was reflected by the appearance
of indefinite integrals in the Gelfand–Fuchs extensions.
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In this note, we explicitly compute the functional determinant of a Dirac Laplacian
with nonlocalpseudodifferentialboundary conditions over a finite cylinder in terms
of the z-function of the Dirac operator on the cross section and the pseudodiffer-
ential operators defining the boundary conditions. In particular, this result reduces
to our previous formulafJ. Phys. A 37, 7381 s2004dg for the special case of
generalized Atiyah–Patodi–Singer conditions. To prove our main result, we use the
gluing and comparison formulas established by the present authors in Refs 14
and 15.
© 2005 American Institute of Physics.fDOI: 10.1063/1.1860591g

I. INTRODUCTION

Recent advances in quantum field theory have necessitated the explicit evaluation of func-
tional determinants of Dirac operators over a variety of space–time configurations. In fact, at the
one-loop order, any such theory can be reduced to the theory of determinants. We refer the reader
to the works of Dowker and Critchley1 and Hawking.2 See also Elizaldeet al.,3 Kirsten,4 and Scott
and Wojciechowski,5 for recent reviews. Because of their increasingly important role in math-
ematical physics, over the past several years there has been intense research to compute functional
z-determinants of Dirac Laplacians. Of great significance is the Dirac Laplacian with spectral
pseudodifferential boundary conditions; the Atiyah–Patodi–Singershenceforth APSd boundary
conditions being the most well-known example. Such boundary conditions arise in, for instance,
one-loop quantum cosmology,6–8 spectral branes,9 and the study of Dirac fields in the background
of a magnetic flux.10

However, only recently was the open problem of explicitly computing thez-determinant of a
Dirac Laplacian with APS conditions over a finite cylinder solved.11 One reason this problem
withstood the efforts of existing mathematical methods is that it is impossible to find explicit
formulas for the eigenvalues of such a Dirac operator. For this reason, we had to attack the
problem using the method ofadiabatic decompositionpioneered by Douglas and Wojciechowski12

for the eta invariant and by the second author and Wojciechowski13 for the z-determinant. The
purpose of this current paper is twofold. First, we extend the result of Ref. 11 to a general class of
pseudodifferential conditions that generalize the APS condition up to operators ofarbitrary finite
rank. To compute thez-determinant in this generalized framework, which in some sense possesses
eigenvalues that are even more enigmatic, we use the gluing and comparison formulas for
z-determinants proved by the authors in Refs. 14 and 15 to break up this general framework into
tangible parts which can be explicitly computed. The second purpose of this paper is to elucidate
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the effectiveness of these gluing and comparison formulas to computez-determinants that have
eluded explicit evaluations due to the perplexity of their eigenvalues. This also exemplifies the aim
of gluing and comparison formulas: Breaking up complex problems into simpler more tractable
ones.

We now describe our setup. FixR.0 and letD :C`sNR,Sd→C`sNR,Sd be a Dirac type
operator whereNR=f−R,Rg3Y is a finite cylinder withR.0, Y a closed compact Riemannian
manifold sof arbitrary dimensiond, and S a Clifford bundle overNR. We assume thatD is of
product form

D = Gs]u + DYd, s1.1d

whereG is a unitary bundle isomorphism ofS andDY is a Dirac operator acting onC`sY,Sd such
that G2=−Id andGDY=−DYG. Furthermore, we assume that

dimskersG + id ù kersDYdd = dimskersG − id ù kersDYdd. s1.2d

Let P+,P−, andP0 denote the orthogonal projections onto the positive, negative, and zero eigens-
paces ofDY. SinceNR has boundaries, we have to impose boundary conditions. Let Gr`

* sDYd
denote the space of pairssP1,P2d, whereP1 andP2 are orthogonal pseudodifferential projections
on L2sY,Sd such that

P1 − P+, P2 − P− are smoothing operators,

and for i =1, 2,

PiG = GsId − Pid, DYPi = PiDY.

An important class of such boundary conditions are the renowned generalized APS spectral
conditions,16 which are defined as follows. Lets1,s2 be involutionssthat is,si

2=Idd over kersDYd
such thats1G=−Gs1 ands2G=−Gs2. Note that such involutions exist because of the assumption
s1.2d. Then

P+
s1
ª P+ +

1 + s1

2
P0, P−

s2
ª P− +

1 + s2

2
P0 s1.3d

are calledgeneralized APS spectral projections, andsP+
s1,P−

s2dPGr̀* sDYd. These generalized APS
boundary conditions were considered in our papersRef. 11d, but elements of Gr̀* sDYd are much
more general and can differ from APS projections by operators ofarbitrary finite rank. LetP
=sP1,P2dPGr̀* sDYd and impose boundary conditions forD at h−Rj3Y and hRj3Y via

P1 at h− Rj 3 Y, P2 at hRj 3 Y.

We denote byDP the resulting operator with these boundary conditions, that is,

DP ª D:domsDPd → L2sNR,Sd, s1.4d

where

domsDPd ª hf P H1sNR,SduP1sfuu=−Rd = 0, P2sfuu=Rd = 0j.

By the fundamental work of Seeley,17,18the spectrum of the Dirac operatorDP consists of discrete
real eigenvalueshlkj. The z-function of DP

2 is defined by

zDP
2ssd = o

lkÞ0
lk

−2s,

which is a priori defined forRssd@0, and by the work of Grubb19,20 and Wojciechowski21

scf. Lei22 and Loya and Park15d, has a meromorphic extension toC with 0 as a regular point. The
z-determinant ofDP

2 is defined by

042309-2 P. Loya and J. Park J. Math. Phys. 46, 042309 ~2005!

                                                                                                                                    



detzDP
2
ª exps− zDP

28 s0dd.

This definition first appeared in Ray and Singer’s seminal paper23 on the analytic torsion. Since we
imposed nonlocal pseudodifferential boundary conditions, it is impossible to compute the eigen-
valueshlkj of DP explicitly, so there is no direct way to compute thez-determinant detzDP

2 from
the eigenvalues. However, we shall give two derivations of the formula for detzDP

2:

s1d Using the gluing formula proved in Ref. 14.
s2d Using the comparison/relative invariant formula proved in Ref. 15.

See Sec. II for more on these results. The formula for detzDP
2 is described as follows. Since the

Pi’s are orthogonal projectors such thatPiG=GsId−Pid by assumption, with respect to the de-
composition

L2sY,Sd = L2sY,S+d % L2sY,S−d s1.5d

with S± denoting thes±id-eigenspaces ofG in S srecall thatG2=−Idd, we can write

Pi =
1

2
SId ki

−1

ki Id
D ,

whereki :L
2sY,S+d→L2sY,S−d are corresponding isometries. In particular,

UP ª − k1k2
−1:L2sY,S−d → L2sY,S−d

is a unitary operator. LetÛP denote the restriction ofUP to the orthogonal complement of its
s−1d-eigenspace. LetWª ImsId−P1dù ImsId−P2d. Then our assumptions onsP1,P2d imply that
W is a finite-dimensional vector space and thatDY: ImsPid→ ImsPid andDY: ImsId−Pid→ ImsId
−Pid. We define a mapTP over W by

TP ª H sinhs2RDYd
DY

on Wù kersDYd',

2R on Wù kersDYd.
J

We also defineTP1
and TP2

over the finite-dimensional vector spaces ImsP+dù ImsId−P1d and
ImsP+dù ImsP2d, respectively, by

TP1
ª e4RDY, TP2

ª e4RDY.

The following theorem is the main result of this note.
Theorem 1.1.The following equality holds:

detzDP
2 = e2CR2zDY

2s0d+hY
sdetTPd2

sdetTP1
d2sdetTP2

d2 · detFS2 Id + ÛP + ÛP
−1

4
D ,

where C=sGssd−1zDY
2ss−1/2dd8s0d with zDY

2ssd the z-function of DY
2, hY=dim kersDYd and detF

denotes the Fredholm determinant.
More explicitly, if we let Em denote the eigenspace ofDY associated to the eigenvaluem

PspecsDYd, then we can write
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detzDP
2 = e2CR2zDY

2s0d+hYS p
m.0

EmùImsId−P1dÞ0

e−4mRD ·S p
m.0

EmùImsP2dÞ0

e−4mRD
·S p

mPspecsDYd
EmùWÞ0

sinh2s2mRd
m2 D · detFS2Id + ÛP + ÛP

−1

4
D , s1.6d

where if m=0 in the product in the second line, we replacefsinh2s2mRdg /m2 by its limit as m
→0, that is,s2Rd2. In particular, whenP1=P+

s1 andP2=P−
s2, the generalized APS spectral pro-

jectors ins1.3d, then Theorem 1.1 reduces to the main result of Ref. 11.

detzDP
+
s1,P

−
s2

2
= e2CR2zDY

2s0d+hYs2Rd2hdet*S2Id − ss1s2d− − ss1s2d−
−1

4
D , s1.7d

wheress1s2d− is the restriction of the unitary maps1s2 to L2sY,S−dùkersDYd, h is the number of
s+1d-eigenvalues ofss1s2d−, and where det*sLd denotes the determinant ofsLukersLd'd for an
operatorL over a finite-dimensional vector space.

The structure of this paper is as follows. In Sec. II, we review the gluing formula from Ref. 14
and the comparison/relative invariant formula from Ref. 15, which we shall use in the subsequent
sections. In Sec. III, we derive new formulas forz-determinant ratios of Dirac Laplacians with
boundary conditions of special types. Finally, in Sec. IV we combine these specialz-determinant
ratios and the gluing and comparison formulas from Refs. 14 and 15 to derive our main Theorem
1.1.

II. THE GLUING AND COMPARISON FORMULAS FROM REFS. 14 and 15

In this section we review the gluing formula from Ref. 14 and the comparison/relative invari-
ant formula from Ref. 15.

Let D be a Dirac type operator acting onC`sM ,Sd whereM is a closed compact Riemannian
manifold of arbitrary dimension andS is a Clifford bundle overM. Suppose thatM =M−øM+ is
partitioned into a union of manifolds with a common boundaryY=]M−=]M+. We assume that all
geometric structures are of product type over a tubular neighborhoodN of Y whereD takes the
product forms1.1d. By restriction ofD, we obtain Dirac type operatorsD± over M±. We impose
the boundary conditions given by the orthogonalized Calderón projectorsC± for D± and we denote
by DC±

the resulting operators,

DC±
= D±:domsDC±

d ª hf P H1sM±,SduC±sfuYd = 0j → L2sM±,Sd.

Here, we recall that the Calderón projectorsC± are the projectors defined intrinsically as the
unique orthogonal projectors onto the closures inL2sY,Sd of the infinite-dimensionalCauchy data
spacesof D±:

hfuYuf P C`sM±,Sd, D±f = 0j , C`sY,Sd.

The gluing problemfor the z-determinant is to describe the “defect”

detzD2

detzDC+

2 · detzDC−

2 = ?□

in terms of recognizable data. To describe the solution in Ref. 14, we need to introduce some
notations. With respect to the decomposition as ins1.5d, the Calderón projectorsC± have the
matrix forms
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C± =
1

2
S Id k±

−1

k± Id
D , s2.1d

where the mapsk± :L2sY,S+d→L2sY,S−d are corresponding isometries, so thatUª−k−k+
−1 is a

unitary operator overL2sY,S−d. Furthermore,U is of Fredholm determinant class. We denote byÛ
the restriction ofU to the orthogonal complement of itss−1d-eigenspace. We also put

L ª o
k=1

hM

gUk ^ gUk:g kersDd → g kersDd,

wherehM =dim kersDd, g is the restriction map fromM to Y, andhUkj is an orthonormal basis of
kersDd. ThenL is a positive operator on the finite-dimensional vector space

g kersDd ; ImsC−d ù ImsC+d.

We now have all the ingredients to state the followinggluing formula:14

detzD2

detzDC−

2 · detzDC+

2 = 2−zDY
2s0d−hYsdetLd−2detFS2Id + Û + Û−1

4
D , s2.2d

wherehY=dim kersDYd and detF denotes the Fredholm determinant. There is a similar formula for
manifolds with cylindrical ends.24

We now explain the comparison/relative invariant formula proved in Ref. 15 forsM−,D−d. To
this end, we consider the space Gr`

* sD−d, which consists of orthogonal projectionsP such that
P−C− are smoothing operators andGP=sId−PdG. Let us fix PPGr̀* sD−d and letkP :L2sY,S+d
→L2sY,S−d be the map that determinesP ask± doesC± in s2.1d. Let DP denote the operatorD−

on M− with the boundary condition given byP. Let PW be the orthogonal projection ofL2sY,Sd
onto the finite-dimensional vector space

Wª g kersDPd ; ImsC−d ù ImsId − Pd.

Then we introduce a linear map

L ª − PWGR−1GPW:g kersDPd → g kersDPd, s2.3d

whereR is the sum of the Dirichlet to Neumann maps on an extension ofM− defined as follows.

Fix any invertible extensionD̃ of D to a manifoldM̃ that containsM−. sThe doubleof D would

do nicely.d Then for anywPC`sY,Sd, there are uniquef1PC`sM−,Sd and f2PC`sM̃ \M−,Sd
that are continuous atY with valuew such thatD̃2fi =0, i =1, 2, off of Y. Then

Rw ª ]uf1uY − ]uf2uY. s2.4d

In Ref. 15, we prove thatL is a positive operator so that detL is a positive real number. Now the
main result of Ref. 15 states that

detzDP
2

detzDC−

2 = sdetLd2 · detFS2Id + Û + Û−1

4
D , s2.5d

whereÛ is the restriction ofUªk−kP
−1 to the orthogonal complement of itss−1d-eigenspace. The

formula s2.5d extends the work of Scott25 for the invertible casescf. Scott and Wojciechowski26d,
and has recently been further extended to noncompact manifolds whose boundaries are manifolds
with multi-cylindrical ends.27
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III. THE z-DETERMINANT FOR SPECIAL BOUNDARY CONDITIONS

If sP1,P2dPGr̀* sDYd, then for the sake of clarity we shall denote the operatorDP in the
introduction with these boundary conditions byDP1,P2

. Thus, overNR=f−R,Rg3Y we impose
boundary conditions ath−Rj3Y and hRj3Y via

P1 at h− Rj 3 Y, P2 at hRj 3 Y,

andDP1,P2
is the operator with domain

domsDP1,P2
d ª hf P H1sNR,SduP1sfuu=−Rd = 0, P2sfuu=Rd = 0j. s3.1d

Let P be a projection onL2sY,Sd with sP , Id−PdPGr̀* sDYd. By definition of Gr̀* sDYd, the image
of PP0 is a Lagrangian subspace in ImsP0d=kersDYd. Let s be the involution over ImsP0d such
that fs1+sd /2gP0=PP0. Recalling P+

s
ªP++fsId+sd /2gP0, it follows that sP , Id−P+

sd
PGr̀* sDYd. Recall that we can write

P =
1

2
S Id kP

−1

kP Id
D, P+

s =
1

2
S Id ks

−1

ks Id
D

for corresponding isometrieskP ,ks :L2sY,S+d→L2sY,S−d, and defineÛP as the restriction of
UPªkPks

−1 over L2sY,S−d to the orthogonal complement of itss−1d-eigenspace. Note that −kP
and −ks are the isometries corresponding to Id−P and Id−P+

s, respectively. We begin by com-
puting the following ratio.

Lemma 3.1: We have

detzDP,Id−P+
s

2

detzDP,Id−P
2 =S p

m.0
EmùImsId−PdÞ0

e4mRsinh2s2mRd
m2 D · detFS2Id + ÛP + ÛP

−1

4
D ,

where Em denotes the eigenspace of DY associated to the eigenvaluemPspecsDYd.
Proof: We give two proofs, first using the gluing formulas2.2d then using the comparison

formula s2.5d, in order to demonstrate the effectiveness of these formulas.
Gluing proof of Lemma 3.1:Let us decomposeNR into two partsf−R,rg3Y andfr ,Rg3Y as

shown in Fig. 1. Then the restrictions ofDP,Id−P+
s over the decomposed partsf−R,rg3Y and

fr ,Rg3Y define two Dirac type operators with boundary conditions given byP at h−Rj3Y and
Id−P+

s at hRj3Y. It is easy to check that the Calderón projections of these two operators are,
respectively, justC−=Id−P and C+=P+

s over hrj3Y. We denote the operators over the decom-
posed partsf−R,rg3Y andfr ,Rg3Y, with the new boundary conditions given by these Calderón
projectors overhrj3Y, by DP,Id−Psrd andDP+

s,Id−P+
ssrd, respectively. Applying the gluing formula

s2.2d to this situation, we obtain

detzDP,Id−P+
s

2

detzDP,Id−P
2 srd · detzDP+

s,Id−P+
s

2 srd
= 2−zDY

2s0d−hYsdetLrd−2detFS2 Id + ÛP + ÛP
−1

4
D , s3.2d

wherezDY
2ssd is thez-function of DY

2 andhY=dim kersDYd, where we used that theÛ in s2.2d for

this situation is −s−kPdsks
−1d=kPks

−1
¬ ÛP, and where

FIG. 1. CuttingNR at r into two pieces.
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Lr ª o
k=1

hP
grUk ^ grUk:grkersDP,Id−P+

sd → gr kersDP,Id−P+
sd,

wherehP=dim kersDP,Id−P+
sd, gr is the restriction map fromNR to hrj3Y, andhUkj is an ortho-

normal basis of kersDP,Id−P+
sd. From the main result of Ref. 11fthat is, the formulas1.7dg, we have

detzDP+
s,Id−P+

s
2 srd = eCsR−rd2zDY

2s0d+hY,

whereC=sGssd−1zDY
2ss−1/2dd8s0d. Thus, detzDP+

s,Id−P+
s

2 srd→2zDY
2s0d+hY asr →R, so takingr →R in

s3.2d, we see that

detzDP,Id−P+
s

2

detzDP,Id−P
2 = sdetLRd−2detFS2 Id + ÛP + ÛP

−1

4
D .

It remains to computesdetLRd−2. To do so, we note that

kersDP,Id−P+
sd ; ImsId − Pd ù ImsP+

sd = ImsId − Pd ù ImsP+d,

since ImsId−Pd and ImsP+
sd have zero intersection in kersDYd by definition ofs. Let hcmj be an

orthonormal basis of ImsId−Pdù ImsP+d wherecmPEm. sHere, we recall thatDYP=PDY, soDY

preserves ImsId−Pd and obviously ImsP+d as well. It follows thatDY can be diagonalized within
the finite-dimensional space ImsId−Pdù ImsP+d. This elementary fact will be used quite often in
the sequel.d Thenfm=e−mucmPkersDP,Id−P+

sd and

ifmi2 =E
−R

R

e−2mudu=
e2mR − e−2mR

2m
=

sinhs2mRd
m

.

It follows that

LR = o
m.0

EmùImsId−PdÞ0

fmsRd
ifmi

^
fmsRd
ifmi

= o
m.0

EmùImsId−PdÞ0

e−2mR

ifmi2cm ^ cm.

Hence,

sdetLRd−2 = p
m.0

EmùImsId−PdÞ0

S e−2mR

ifmi2D−2

= p
m.0

EmùImsId−PdÞ0

e4mRsinh2s2mRd
m2 .

This completes the Gluing proof of Lemma 3.1.
Comparison proof of Lemma 3.1:We shall apply the comparison formulas2.5d to the pair

sDP,Id−P+
s

2 ,DP,Id−P
2 d. Here we regard Id−P as the Calderón projector at the boundaryhRj3Y of the

operator

D:domsDd → L2sNR,Sd,

where

domsDd ª hf P H1sNR,SduPsfuu=−Rd = 0j .

ThenDId−P+
s=DP,Id−P+

s andDc−
=DP,Id−P, so by the comparison formulas2.5d,

042309-7 Functional determinants for the Dirac equation J. Math. Phys. 46, 042309 ~2005!

                                                                                                                                    



detzDP,Id−P+
s

2

detzDP,Id−P
2 = sdet Ld2 · detFS2 Id + ÛP + ÛP

−1

4
D ,

where we used that theU in s2.5d for this situation iss−kPds−ks
−1d=kPks

−1
¬UP, and whereL is

the map overhRj3Y defined ins2.3d:

L = − PWGR−1GPW:W→ W

with

Wª gR kersDP,Id−P+
sd ; ImsId − Pd ù ImsP+

sd = ImsId − Pd ù ImsP+d.

To determinesdetLd2, we need to findR. An invertible extensionD̃ of D is just Gs]u+DYd over
f−R,2Rg3Y with boundary conditionP at −R and Id−P at 2R. Let hcmj be an orthonormal basis
of W=ImsId−Pdù ImsP+d wherecmPEm, and for each suchm, definewmªGcmPGW. Since
GDY=−DYG andPG=GsId−Pd, it follows thatwm=GcmPE−mù ImsPd. Using this, it is straight-
forward to check that

f1 ª
sinhsmsu + Rdd

sinhs2mRd
wm over f− R,Rg 3 Y,

and

f2 ª emsu−Rdwm over fR,2Rg 3 Y,

are continuous atu=R with valuewm and satisfyD̃2fi =0, i =1, 2. Thus, by the definition ofR in
s2.4d, we have

Rwm ª ]uf1uu=R − ]uf2uu=R = Sm
coshs2mRd
sinhs2mRd

− mDwm =
me−2mR

sinhs2mRd
wm.

Therefore,

− GRGcm = − GRwm = − G
me−2mR

sinhs2mRd
wm =

me−2mR

sinhs2mRd
cm.

It follows that

L = − PWGR−1GPW = o
m.0

EmùImsId−PdÞ0

e2mRsinhs2mRd
m

cm ^ cm.

Hence,

sdetLd2 = p
m.0

EmùImsId−PdÞ0

e4mRsinh2s2mRd
m2 ,

which completes the Comparison proof of Lemma 3.1. h

Next, we compute a relatedz-determinant ratio.
Lemma 3.2: With the notations above, the following equality holds:

detzDP+
s,Id−P

2

detzDP+
s,Id−P+

s
2 =S p

m.0
EmùImsId−PdÞ0

e−4mRsinh2s2mRd
m2 D · detFS2 Id + ÛP + ÛP

−1

4
D .
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Proof: Observe that Id−P+
s is the Calderón projector athRj3Y of the operator

D:domsDd → L2sNR,Sd,

where

domsDd ª hf P H1sNR,SduP+
ssfuu=−Rd = 0j.

ThenDId−P=DP+
s,Id−P andDC−

=DP+
s,Id−P+

s, so the comparison formulas2.5d applied to this situa-
tion gives us

detzDP+
s,Id−P

2

detzDP+
s,Id−P+

s
2 = sdetLd2 · detFS2 Id + ÛP

−1 + ÛP
4

D ,

where we used that theU in s2.5d for this situation iss−ksds−kP
−1d=kskP

−1=skPks
−1d−1=UP

−1, and
whereL is the map overhRj3Y defined ins2.3d:

L ª − PWGR−1GPW:W→ W

with

Wª gR kersDP+
s,Id−Pd ; ImsId − P+

sd ù ImsPd = ImsPd ù ImsP−d.

To computesdetLd2 for this example, we proceed in much the same way as for the Comparison

proof of Lemma 3.1. An invertible extensionD̃ of D is just Gs]u+DYd over f−R,2Rg3Y with
boundary conditionP+

s at −R and Id−P+
s at 2R. Let hcnj be an orthonormal basis ofW

=ImsPdù ImsP−d wherecnPEn. It is important to note that, in contrast to the Comparison proof
of Lemma 3.1, then’s are negativesrather than positived and thatcnPEnù ImsPd frather than
ImsId−Pdg. Following the Comparison proof of Lemma 3.1 almost verbatim, it is straightforward
to check that

L = − PWGR−1GPW = o
n,0

EnùImsPdÞ0

e2nRsinhs2nRd
n

cn ^ cn,

so

sdetLd2 = p
n,0

EnùImsPdÞ0

e4nRsinh2s2nRd
n2 .

Finally, using thatG mapsEnù ImsPd isomorphically ontoE−nù ImsId−Pd, where we used that
GDY=−DYG andPG=GsId−Pd, we finally get

sdetLd2 = p
m.0

EmùImsId−PdÞ0

e4s−mdRsinh2s− 2mRd
s− md2 = p

m.0
EmùImsId−PdÞ0

e−4mRsinh2s2mRd
m2 ,

which completes our proof. h

We are now ready to prove the following
Lemma 3.3: With the notations above, the following equality holds:

detzDP,Id−P
2 = e2CR2zDY

2s0d+hY ·S p
m.0

EmùImsId−PdÞ0

e−8mRD ,

where C=sGssd−1zDY
2ss−1/2dd8s0d with zDY

2ssd the z-function of DY
2 and hY=dim kersDYd.
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Proof: Solving for detzDP,Id−P
2 in Lemma 3.1, we obtain

detzDP,Id−P
2 = detzDP,Id−P+

s
2 ·S p

m.0
EmùImsId−PdÞ0

e−4mRm2

sinh2s2mRdD · detFS2 Id + ÛP + ÛP
−1

4
D−1

.

s3.3d

On the other hand, from Lemma 3.2, we know that

detzDP+
s,Id−P

2

detzDP+
s,Id−P+

s
2 =S p

m.0
EmùImsId−PdÞ0

e−4mRsinh2s2mRd
m2 D · detFS2 Id + ÛP + ÛP

−1

4
D

and from the main result of Ref. 11fsee formulas1.7dg, we also have

detzDP+
s,Id−P+

s
2 = e2CR2zDY

2s0d+hY.

Hence,

detzDP+
s,Id−P

2 = e2CR2zDY
2s0d+hYS p

m.0
EmùImsId−PdÞ0

e−4mRsinh2s2mRd
m2 D · detFS2Id + ÛP + ÛP

−1

4
D .

Substituting this expression intos3.3d, using that

detzDP,Id−P+
s

2 = detzDP+
s,Id−P

2 , s3.4d

concludes the proof of our result once we show thats3.4d holds. In fact,s3.4d holds in the more
general setting: detzDP,Id−Q

2 =detzDQ,Id−P
2 for all sP , Id−QdPGr̀* sDYd. To prove this, we simply

observe that

Gs]u + DYdf = lf, Pfs− Rd = 0, sId − QdfsRd = 0

if and only if csudªGfs−ud satisfies

Gs]u + DYdc = − lc, sId − PdcsRd = 0, Qcs− Rd = 0,

where we used thatG2=−Id, GDY=−DYG, PG=GsId−Pd, andQG=GsId−Qd. It follows that
specsDP,Id−Q

2 d=specsDQ,Id−P
2 d, which implies that detzDP,Id−Q

2 =detzDQ,Id−P
2 . h

IV. PROOF OF THEOREM 1.1

As we already mentioned, in order to demonstrate the effectiveness of the gluing formulas2.2d
and the comparison formulas2.5d, we shall give separate proofs of Theorem 1.1 exploiting both
formulas.

Gluing proof of Theorem 1.1:Recall that the operatorDP as defined ins1.4d written using the
notations3.1d is

DP1,P2
ª D:domsDP1,P2

d → L2sNR,Sd,

where

domsDP1,P2
d ª hf P H1sNR,SduP1sfuu=−Rd = 0, P2sfuu=Rd = 0j.

Let us decomposeNR into two partsf−R,0g3Y and f0,Rg3Y as shown in Fig. 2. Then the
restrictions ofDP1,P2

over the decomposed parts define two Dirac type operators with boundary
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conditions given byP1 at h−Rj3Y and P2 at hRj3Y. It is easy to check that the Calderón
projections of these operators are, respectively, just Id−P1 and Id−P2 overh0j3Y. We denote the
operators over the decomposed partsf−R,0g3Y andf0,Rg3Y with the new boundary conditions
given by these Calderón projectors overh0j3Y by DP1,Id−P1

and DId−P2,P2
, respectively. Now

applying the gluing formulas2.2d to this situation, we obtain

detzDP1,P2

2

detzDP1,Id−P1

2 · detzDId−P2,P2

2 = 2−zDY
2s0d−hYsdetLd−2detFS2 Id + ÛP + ÛP

−1

4
D , s4.1d

where theÛ in s2.2d for this situation is the restriction of −s−k1ds−k2
−1d=−k1k2

−1
¬UP over

L2sY,S−d to the orthogonal complement of itss−1d-eigenspace, noting that −ki is the isometry
corresponding to Id−Pi for i =1, 2, and where

L ª o
k=1

hP

g0Uk ^ g0Uk:g0 kersDP1,P2
d → g0 kersDP1,P2

d, s4.2d

wherehP=dim kersDP1,P2
d, g0 is the restriction map fromNR to h0j3Y, andhUkj is an orthonor-

mal basis of kersDP1,P2
d. By Lemma 3.3shere we need to replaceR with R/2 since the lengths of

f−R,0g and f0,Rg are half that off−R,Rg, which is the interval considered in Lemma 3.3d,

detzDP1,Id−P1

2 = eCR2zDY
2s0d+hY ·S p

m.0
EmùImsId−P1dÞ0

e−4mRD ,

and

detzDId−P2,P2

2 = eCR2zDY
2s0d+hY ·S p

m.0
EmùImsP2dÞ0

e−4mRD .

Now to complete the Gluing proof of Theorem 1.1, it remains to computesdetLd−2 over
g0 kersDP1,P2

d; ImsId−P1dù ImsId−P2d. To do so, we note that

kersDP1,P2
d ; ImsId − P1d ù ImsId − P2d ª W.

Let hcmj be an orthonormal basis ofW wherecmPEm. Thenfmªe−mucmPkersDP1,P2
d and

ifmi2 =E
−R

R

e−2mudu=
sinhs2mRd

m
,

where if m=0, then we replacefsinhs2mRdg /m by its limit asm→0, that is, 2R. It follows that

L = o
mPspecsDYd
EmùWÞ0

fms0d
ifmi

^
fms0d
ifmi

= o
mPspecsDYd
EmùWÞ0

1

ifmi2cm ^ cm.

Hence,

FIG. 2. CuttingNR at 0 into two pieces.
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sdetLd−2 = p
mPspecsDYd
EmùWÞ0

S 1

ifmi2D−2

= p
mPspecsDYd
EmùWÞ0

sinh2s2mRd
m2 .

This completes the Gluing proof of Theorem 1.1.
Comparison proof of Theorem 1.1: We now prove Theorem 1.1 using the comparison formula

s2.5d applied to the pairsDP1,P2

2 ,DP1,Id−P1

2 d. Here we regard Id−P1 as the Calderón projector at the
boundaryhRj3Y of the operator

D:domsDd → L2sNR,Sd,

where

domsDd ª hf P H1sNR,SduPsfuu=−Rd = 0j.

ThenDP2
=DP1,P2

andDc−
=DP1,Id−P1

, so applying the comparison formulas2.5d to this situation,
we obtain

detzDP1,P2

2

detzDP1,Id−P1

2 = sdetLd2 · detFS2Id + ÛP + ÛP
−1

4
D , s4.3d

where we used that theU in s2.5d for this situation iss−k1dk2
−1
¬UP noting that −k1 corresponds

to Id−P1, and whereL is the operator defined ins2.3d for this situation, which we will investigate
in detail soon. Now, by Lemma 3.3,

detzDP1,Id−P1

2 = e2CR2zDY
2s0d+hY ·S p

m.0
EmùImsId−P1dÞ0

e−8mRD ,

therefore bys4.3d,

detzDP1,P2

2 = e2CR2zDY
2s0d+hYS p

m.0
EmùImsId−P1dÞ0

e−8mRD · sdetLd2 · detFS2Id + ÛP + ÛP
−1

4
D .

To compute detL, we use almost the exact same argument found in Lemma 3.2 to show that with
Wª ImsId−P1dù ImsId−P2d,

sdetLd2 = p
mPspecsDYd
EmùWÞ0

e4mRsinh2s2mRd
m2 ,

where in the product, whenm=0 we replacefsinh2s2mRdg /m2 by its limit asm→0, that is,s2Rd2.
Therefore,

detzDP1,P2

2 = e2CR2zDY
2s0d+hYS p

m.0
EmùImsId−P1dÞ0

e−8mRD ·S p
mPspecsDYd
EmùWÞ0

e4mRD
·S p

mPspecsDYd
EmùWÞ0

sinh2s2mRd
m2 D · detFS2Id + ÛP + ÛP

−1

4
D . s4.4d

SinceW=ImsId−P1dù ImsId−P2d, we have
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p
mPspecsDYd
EmùWÞ0

e4mR = S p
m.0

EmùImsId−P1dùImsId−P2dÞ0

e4mRD ·S p
m,0

EmùImsId−P1dùImsId−P2dÞ0

e4mRD
= S p

m.0
EmùImsId−P1dÞ0

e4mRD ·S p
m.0

EmùImsId−P1dùImsP2dÞ0

e−4mRD
·S p

m,0
EmùImsId−P1dùImsId−P2dÞ0

e4mRD .

SinceDYG=−GDY andPiG=GsId−Pid, we have

Em ù ImsId − P1d ù ImsId − P2d Þ 0 ⇔ E−m ù ImsP1d ù ImP2 Þ 0,

asG maps the first space isomorphically onto the second space, therefore

p
mPspecsDYd
EmùWÞ0

e4mR = S p
m.0

EmùImsId−P1dÞ0

e4mRD ·S p
m.0

EmùImsId−P1dùImsP2dÞ0

e−4mRD
·S p

m.0
EmùImsP1dùImsP2dÞ0

e−4mRD
= S p

m.0
EmùImsId−P1dÞ0

e4mRD ·S p
m.0

EmùImsP2dÞ0

e−4mRD .

Putting this expression intos4.4d completes the Comparison proof of Theorem 1.1.
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In this paper we prove the existence of the radially symmetric nontopological bare
solutions in the relativistic self-dual Maxwell–Chern–Simons–Higgs model. We
also verify the Chern–Simons limit for those solutions. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1861277g

I. INTRODUCTION

In this paper we are concerned with the relativistic Maxwell–Chern–Simons–Higgs model
sMCSHd.1 Considers2+1d-dimensional Minkowski spaceR1,2 with the metric diags1,−1,−1d.
The metric is used to raise or lower indices. The Lagrangian density of the relativistic MCSH is
given by

L = sDafdsDafd −
1

4
FabFab +

k

4
eabgAaFbg +

1

2
]aN]aN − q2ufu2N2 −

1

2
squfu2 + kN − qd2,

s1.1d

where all the greek indices run over 0,1,2. Hereq.0 is the charge of electron,k.0 is the
Chern–Simons coupling constant,f :R3R2→C is the Higgs field,Aa :R3R2→R is the gauge
field, N:R3R2→R is the neutral scalar field,Da=]a− iqAa is the covariant derivative withi
=Î−1, andFab=]aAb−]bAa is the field strength.

We say thatsf ,Aad is gauge equivalent tosc ,Bad, if there exists a functionx such that

sc,Bad = seixf,Aa + ]axd.

It is easily verified that theL and its Euler–Lagrange equations are invariant under the gauge
transformation.

We consider the stationary solutions of the Euler–Lagrange equations fors1.1d. The varia-
tional equation forA0, often called the Gauss constraint equation, gives

− DA0 + 2q2ufu2A0 = − kFA. s1.2d

Using this equation, we can write the static MCSH energy functional as

Esf,A,Nd =E
R2

uDAfu2 +
1

2
uFAu2 + q2ufu2A0

2 +
1

2
u ¹ A0u2 + q2ufu2N2 +

1

2
u ¹ Nu2 +

1

2
squfu2 + kN − qd2.

s1.3d

Here we used the notations as follows:A=sA1,A2d, DAf= ¹f− iqfA, andFA=]1A2−]2A1.
Using s1.2d and integrating by parts, we obtain

adElectronic mail: jmhan@hufs.ac.kr
bdElectronic mail: jdjang@hufs.ac.kr
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Esf,A,Nd =E
R2
SuD1f ± iD2fu2 + q2ufu2uA0 ± Nu2 +

1

2
u ¹ A0 ± ¹ Nu2

+
1

2
uFA ± squfu2 + kN − qdu2Ddx ± L,

where

L = qE
R2

FA dx. s1.4d

If L is positivesnegatived, then choose the upperslowerd sign. This yields the lower bound of the
energy functional,

Esf,A,Nd ù uLu,

which is saturated by the following system of self-dual equations:

D1f ± iD2f = 0, s1.5d

A0 ± N = 0, s1.6d

FA ± squfu2 + kN − qd = 0. s1.7d

Since the solutions ofs1.5d–s1.7d are the global minimizer ofE over a suitable function space,2

they are solutions of the Euler–Lagrange equations of the LagrangianL. It is not yet proved
whether the converse is true, i.e., the self-dual equationss1.5d–s1.7d are equivalent to the Euler–
Lagrange equations.

The boundary conditions are given by the finite energy condition ofs1.3d as uxu→`, either

ufu → 1 andN → 0,

or

ufu → 0 andN → q

k
.

The former is called topological, while the latter nontopological.
Let us take the upper signs ins1.5d–s1.7d. The lower sign case can be obtained by the

conjugate transformationsf ,A,Nd→ sf̄ ,−A,Nd. To examine the self-dual equations further, we
use the classical Jaffe–Taubes arguments.3 In fact, Eq.s1.5d implies thatf is holomorphic up to a
nonvanishing multiple factor and has exactlym zeros allowing multiplicities. Thus we may as-
sume thatf takes the form

fszd = expS1

2
usxd + io

j=1

k

nj argsx − pjdD , s1.8d

where the pointsp1, . . . ,pk, called the vortex points, are the distinct zeros off with multiplicities
n1, . . . ,nk, respectively. Clearly,n1+¯ +nk=m. We observe that the arbitrary choice on the imagi-
nary part off merely reflects the gauge invariance ofs1.2d–s1.7d. Now the equationss1.2d, s1.6d,
and s1.7d are transformed into

Du = 2q2seu − 1d + 2kqN+ 4po
j=1

k

njdpj
, in R2, s1.9d
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DN = kqseu − 1d + sk2 + 2q2eudN in R2. s1.10d

The boundary conditions are rewritten as

topological, u → 0 andN → 0, s1.11d

nontopological, u → − ` andN → q

k
, s1.12d

as uxu→`. Conversely, once we find a solutionsu,Nd of s1.9d ands1.10d, we may recoverA and
A0 from s1.5d and s1.6d by the formula

qA1 + iqA2 = − 2i ]̄ ln f,

where]̄=s]1+ i]2d /2.
It was proved that the equationss1.9d ands1.10d allow both topological4 and nontopological5

solutions. On the other hand, one can consider the self-dual equationss1.5d–s1.7d on the ’t Hooft
type periodic domain, of which solutions are called condensate solutions. There has been several
results for the condensate solutions.6–8

It is an interesting question that there exists a radially symmetric solution tos1.9d ands1.10d
if k=0 or 1. Such a radial solution has been studied in several self-dual gauge models.9,10 Con-
cerning the Maxwell–Chern–Simons–Higgs model, ifk=0, then the only solution ofs1.9d and
s1.10d with the topological boundary conditions1.11d is proved to beu;N;0 by the maximum
principle, while there is no result for the nontopological solution. For the casek=1, every topo-
logical solution is radially symmetric about the only vortex point.11 Although the existence of
nontopological multivortex solutions was established by Chae–Imanuvilov,5 their solutions are not
radially symmetric about the vortex point for the casek=1. In this context, whenk=0 or k=1, it
is an interesting problem to consider nontopological solutions which is radially symmetric about a
point. In this paper we are interested in the radially symmetric nontopological solutions when
there are no vortex points, i.e.,k=0. In this case, the solutions are called bare solutions.12 For the
casek=1, we postpone the study of nontopological radial solutions to a forthcoming paper.

From now on we assumem=0 and let us rewrites1.9d as

Du = 2q2seu − 1d + 2kqN. s1.13d

Our first result in this paper is to establish the radial solutions ofs1.10d and s1.13d as follows.
Theorem 1.1: For any x0PR2 and a,0, there exists a unique number b=bsadP s0,q/kd

such that the equations (1.10) and (1.13) with the boundary condition (1.12) admit a unique
solution which is radially symmetric about x0. The corresponding solutionsf ,A,Nd of the self-
dual equations (1.5)–(1.7) is of finite energy. Furthermore, we have the following.

sid There exists a constantg=gsad.4 such that

Esf,A,Nd = pg.

sii d sf ,A,Nd is radially symmetric about x0.
siii d f has no zeros inR2.
sivd max

xPR2
ufsxdu2= ufsx0du2=ea, min

xPR2
Nsxd=Nsx0d=b.

svd ufsxdu2, q−kNsxd=Osuxu−gd.

On the other hand, if we set

k = 0, q = 1/Î2, N ; 0, s1.14d

then the equationss1.9d and s1.10d reduce to
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Du = eu − 1 + 4po
j=1

k

njdpj
,

which is the self-dual equation of the Abelian–Higgs model.13 Similarly, if we set

k = mq2, m . 0, N = qs1 − eud/k, q → `, s1.15d

then the equationss1.9d and s1.10d tend formally to

Du =
1

m2euseu − 1d + 4po
j=1

k

njdpj
, s1.16d

which is the self-dual equation of the Chern–Simons–Higgs model.14,15 Therefore, one can for-
mally consider the Maxwell–Chern–Simons–Higgs model as a unification of the Abelian–Higgs
model and the Chern–Simons–Higgs model.1 The first limit is called the Maxwell limitsor
Abelian–Higgs limitd, while the second one the Chern–Simons limit. There have been several
results about the mathematically rigorous proof for the convergence of the topological solutions4

and the condensate6–8 solutions. See Ref. 2 for the Chern–Simons limit of the solutions of the
Euler–Lagrange equations on a bounded domain. However, there have been no results about the
verification of the limits for the nontopological solutions onR2, as far as we know. For the
nontopological solutions onR2, only the Chern–Simons limit is meaningful because the self-dual
equations of the Abelian–Higgs model permits only the topological boundary conditions at infin-
ity. In the following theorem we verify the Chern–Simons limit for the radially symmetric non-
topological bare solutions, which is the main contribution of the present paper.

Theorem 1.2 (Chern–Simons limit):Let a,0 be fixed and setk=mq2. Let suq,Nqd be the
unique solution of the equations (1.10) and (1.13) with the boundary condition (1.12) which is

radially symmetric about a point x0PR2 with usx0d=a and Nsx0d=bsad. Let Ñq=qNq. Then, as

q→`, suq,Ñqd converges tosu* ,N*d such thatsu* ,N*d satisfies

Du* =
1

m2eu*seu* − 1d, usx0d = a, u* → − ` as uxu → `, s1.17d

and N* =s1−eu*d /m. More precisely, for any R.0,

iuq − u*iC2sBRd = Osq−2d, iÑq − N*iC0sBRd = Osq−2d.

The solutions of the equations1.17d are well known.10 In fact, every solution ofs1.17d is
radially symmetric about a pointx0PR2 with the propertyu,0 onR2, and for eacha,0 s1.17d
allows a unique radial solution withusx0d=a. In this point of view it is an interesting question
whether every nontopological bare solution ofs1.10d and s1.13d is radially symmetric about a
point.

In the next two sections, we will prove Theorems 1.1 and 1.2.

II. EXISTENCE OF RADIAL SOLUTIONS

In this section we prove Theorem 1.1 following the argument in Refs. 9 and 10, which was
used to prove the existence of several kind of self-dual equations of nontopological type. We will
develop the argument in Refs. 9 and 10 into a system of equations. We begin with the following
lemma.

Lemma 2.1: Letsu,Nd be a solution of (1.10) and (1.13) with the boundary, condition (1.12).
Then

0 , N ,
q

k
s1 − eud. s2.1d
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Proof: Although this lemma is well known,6 we provide a proof for the sake of completeness.
We first show thatNù0. Suppose thatx0 is a negative minimum point ofN. Then by the

maximum principle,

0 . Nsx0d .
kqs1 − eusx0dd
k2 + 2q2eusx0d .

In particular, usx0d.0, and hence ifx1 is a maximum point ofu, then usx1d.0. Again the
maximum principle implies,

Nsx1d , qs1 − eusx1dd.

Combining these two inequalities, we obtain

k2

k2 + 2q2eusx0d s1 − eusx0dd , s1 − eusx0dd.

Sinceusx0d.0, this lead us to a contradiction.
Now let v=qseu−1d+kN. A short computation gives

Dv − s4q2eu + k2dv = 2kq2euN + qeuu ¹ uu2 . 0.

Sincev→0 asuxu→`, the maximum principle impliess2.1d. j

We will study solutions ofs1.10d and s1.13d which is radially symmetric about a pointx0

PR2, sayx0=0. If we setr = uxu, u=usrd, andN=Nsrd, thens1.10d and s1.13d become

urr +
1

r
ur = 2q2seu − 1d + 2kqN, r . 0, s2.2d

Nrr +
1

r
Nr = kqseu − 1d + sk2 + 2q2eudN, r . 0, s2.3d

us0d = a, Ns0d = b. s2.4d

Furthermore, if we make a change of variablest=ln r, then withu=ustd andN=Nstd, we obtain

u9 = 2q2e2tseu − 1d + 2kqe2tN, t P R, s2.5d

N9 = kqe2tseu − 1d + sk2 + 2q2eude2tN, t P R, s2.6d

ustd = a + os1d, Nstd = b + os1d near −`. s2.7d

Here, prime denotes the derivative with respect to the variablet.
In view of Lemma 2.1, a necessary condition of the existence of a global solution to

s2.5d–s2.7d with the boundary conditions1.12d is

0 , b ,
q

k
s1 − ead. s2.8d

In particular,a,0. Moreover, we can rewrites2.5d and s2.6d as

u9 = 2q2e2t fsud + 2kqe2tN ; e2tFsu,Nd, s2.9d
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N9 = kqe2t fsud + sk2 + 2q2gsudde2tN ; e2tCsu,Nd, s2.10d

wherefsud=eu−1 andgsud=eu for uø0, and bothf andg are smoothly defined foru.0 in such
a way that

a = sup
uPR

s1 + ufsudu + uf8sudu + ugsudu + ug8sudud , `.

We observe that bothF and C are increasing inu and N, andF,2qC /k for N.0. This fact
plays an important role on the analysis of the above equations with the following identity:

u9 =
2q

k
N9 −

4q3

k
e2teuN. s2.11d

We also define a number

b = maxh1,k,qj.

Lemma 2.2: For a,0 and b.0, the equations (2.9) and (2.10) admits a unique solution
satisfying

lim
t→−`

ustd = a, lim
t→−`

Nstd = b. s2.12d

Proof: It is easy to show thatsu,Nd is a solution ofs2.9d and s2.10d satisfyings2.12d if and
only if su,Nd verifies

ustd = a +E
−`

t

st − sde2sFsussd,Nssddds, s2.13d

Nstd = b +E
−`

t

st − sde2sCsussd,Nssddds. s2.14d

Let TPR be a constant satisfying

e2Tsb2 + ab2 + b2b + ab2bd , minh 1
2,bj .

In order to find a solution in the intervals−` ,Tg, we construct a Picard iterative sequencesuj ,Njd
with the initial datau0=a, andN0=b,

ujstd = a +E
−`

t

st − sde2sFsuj−1ssd,Nj−1ssddds,

Njstd = b +E
−`

t

st − sde2sCsuj−1ssd,Nj−1ssddds.

Inductively, for tP s−` ,Tg,

uNjstdu ø b + skq sup
R

uf u + sk2 + 2q2 sup
R

ugud sup
s−`,Tg

uNj−1udE
−`

T

sT − sde2s dsø b

+
1

4
e2Tsab2 + 2bsb2 + 2ab2dd ø 2b.

Now for tP s−` ,Tg,
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uuj+1std − ujstdu ø
1
4e2Ts2q2 sup

R
uf8u · sup

s−`,Tg
uuj − uj−1u + 2kq sup

s−`,Tg
uNj − Nj−1ud

ø
1
2e2Tsb2 + ab2ds sup

s−`,Tg
uuj − uj−1u + sup

s−`,Tg
uNj − Nj−1ud,

and, sinceuNj−1stduø2b,

uNj+1std − Njstdu ø
1
4e2Tsab2 sup

s−`,Tg
uuj − uj−1u + b2 sup

s−`,Tg
uNj − Nj−1ud +E

−`

t

2q2e2sst − sdfgsujdsNj

− Nj−1d + sgsujd − gsuj−1ddNj−1gdsø
1
4e2Tssab2 + 4ab2bd sup

s−`,Tg
uuj − uj−1u + sb2

+ 2ab2d sup
s−`,Tg

uNj − Nj−1ud.

Consequently,

sup
s−`,Tg

suuj+1 − uju + uNj+1 − Njud ø s 1
4e2Ts3b2 + 4ab2 + 4ab2bdd sup

s−`,Tg
suuj − uj−1u + uNj − Nj−1ud

ø
1
2 sup

s−`,Tg
suuj − uj−1u + uNj − Nj−1ud,

and thus we obtain a solution ons−` ,Tg. Since a,`, the solution can be extended inR.
Moreover, it is easily verified that the solution is unique ons−` ,Tg, and hence inR. j

Given a,0 andbP s0,q/kd, let us denote bysust ,a,bd ,Nst ,a,bdd the solutions ofs2.9d and
s2.10d constructed in Lemma 2.2. Fora,0, let us define

S+sad = hb P s0,q/kd:Nst0,a,bd . q/k for somet0j,

S0sad = hb P s0,q/kd:0 ø Nst,a,bd ø q/k, ∀ t P Rj,

S−sad = hb P s0,q/kd:Nst,a,bd ø q/k ∀ t andNst0,a,bd , 0 for somet0j.

From now on leta,0 be fixed and set

b1sad ;
kq

k2 + 2q2eas1 − ead, b2sad ;
q

k
s1 − ead. s2.15d

We note thatFsa,b2d=0 andCsa,b1d=0.
Lemma 2.3:sid If bP s0,b1d, then bPS−sad. sii d If bP sb2,q/kd, then bPS+sad. siii d S−sad

and S+sad are open. sivd S0sad is a closed nonempty set.
Proof: Note that

u8std =E
−`

t

e2sFsussd,Nssddds, s2.16d

N8std =E
−`

t

e2sCsussd,Nssddds. s2.17d

We observe that ifbP s0,b1d, thenFsa,bd,0 andCsa;bd,0. Hence there existsTPR such that
u9 ,u8 ,N9 ,N8,0 for all t.T. SinceFsu,Nd andCsu,Nd are monotone increasing in bothu,0
andN, it holds thatu9 ,u8 ,N9 ,N8,0 for all tPR, which implies thatbPS−sad. This establishes
sid.
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On the other hand, it is easy to check that ifbP sb2,q/kd, thenFsa,bd.0 andCsa,bd.0.
Then by the same argument as above, it remains thatu9 ,u8 ,N9 ,N8.0 until the graph ofu touches
the t-axis. Onceustd.0, we see thatu9std.0 by the definition ofF, and henceu9 ,u8 ,N9 ,N8
.0 for all tPR. ThusbPS+sad, which provessii d.

The assertionsiii d comes from the continuous dependence of solutions onb. Finally, the
statementsivd is derived from the fact that

S0,
q

k
D = S−sad ø S0sad ø S+sad.

j

Lemma 2.4: There exist two numbers b−sad and b+sad satisfying b−ùb1 and b+øb2 such that

S−sad = s0,b−d, S0sad = fb−,b+g, S+sad = sb+,q/kd.

Proof: We notice from Lemma 2.3sid and sii d that

hb:s0,bg , S−sadj Þ x , hb:fb,q/kd , S+sadj Þ x .

We claim that

b P S−sadsb P S+sad,resp.d ⇒ s0,bg , S−sadsfb,q/kd , S+sad,resp.d. s2.18d

Then the numbers defined by

b−sad = suphb:s0,bg , S−sadj, b+sad = infhb:fb,q/kd , S+sadj

satisfy the assertion.
It remains to proves2.18d. SinceS−sad is open, it suffices to show that ifsd1,d2g,S−sad, then

d1PS−sad. Suppose thatd1¹S−sad. SinceS−sad and S+sad are open,d1PS0sad and thusNstd
ù0 for all tPR. Let uistd=ust ,a,did and Nistd=Nst ,a,did for i =1,2. Note that Fsa,d1d
,Fsa,d2d andCsa,d1d,Csa,d2d. SinceFsu,Nd andCsu,Nd are increasing functions ofu and
N, u1std,u2std and N1std,N2std for all t!−1 by the formulass2.13d and s2.14d. On the other
hand, sinced1PS0sad and d2PS−sad, there existsTPR such thatN1sTd=N2sTd and N1std
,N2std for all t,T.

We claim thatu1std,u2std for all t,T. Otherwise, there would exist a numberT1,T such
that u1sT1d=u2sT1d and u1std,u2std for all t,T1. Hencesu2−u1d9std,0 for all t,T1 by the
monotonicity ofFsu,Nd in u and N. Consequently,u2sT1d−u1sT1d.u2s−`d−u1s−`d=0, a con-
tradiction. Now, sinceu1std,u2std and N1std,N2std for all t,T, we conclude thatsN2−N1d9
.0 for t,T, and henceN1sTd,N2sTd, which violates the fact thatN1sTd=N2sTd. This completes
the proof of the lemma. j

Lemma 2.5: If bPS0sad, then a and b satisfy (2.8). Furthermore,

N8std ù 0, u8std ø 0, ∀ t P R, s2.19d

lim
t→`

ustd = − `, lim
t→`

Nstd =
q

k
. s2.20d

In addition, N9 changes signs only once, from1 to 2.
Proof: Let bPS0sad. Then 0øNstdøq/k for all tPR. Since b1øbøb2, it holds that

Fsa,bdø0 andCsa,bdù0. We split the proof into three steps.
Step 1: If bPS0sad, then (2.19) holds.
We have three cases,b1,b,b2, b=b2, and b=b1. If b1,b,b2, then Fsa,bd,0 and

Csa,bd.0. Hence there existsT0PR such thatu8std,0, u9std,0, N9std.0, andN8std.0 for all
t,T0. Therefore if N8sTd,0 for someT, then there exist two numbersT1 and T2 such that
N8std,0 andN9std,0 on sT1,T2d. We note froms2.11d that
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u8std =
2q

k
N8std −E

−`

t 4q3

k
eussdNssdds.

Henceu8std,0 andu9std,0 on sT1,T2d. Consequently, the monotonicity ofF andC implies that
bPS−sad, a contradiction. Therefore,N8std.0 for all tPR. On the other hand, ifu8.0 at some
point, sinceu8 ,u9,0 near −̀ , there exists an intervalsT3,T4d such thatu8 ,u9.0 on sT3,T4d.
This would imply thatN8 ,N9.0 on sT3,T4d, and thusbPS+sad. Henceu8stdø0 for all tPR.
This provess2.19d.

We now turn to the second case,b=b2. SinceFsa,bd=0 andCsa,bd.0, we haveN9 ,N8
.0 near −̀ . Thusu9 ,u8ø0 near −̀ , otherwisebPS+sad. Now the similar argument as above
showss2.19d.

Finally if b=b1, thenFsa,bd,0 andCsa,bd=0. By a similar argument as the second case,
we arrive ats2.19d.

Step 2: (2.20) holds.
Let l=lim suphNstd : tPRjøq/k. SinceN8stdù0 for all tPR,

l = lim
t→`

Nstd, lim
t→`

N9std = 0. s2.21d

If t=lim infhustd : tPRj.−`, by s2.19d,

t = lim
t→`

ustd, lim
t→`

u9std = 0.

ThusFst ,ld=Cst ,ld=0 and this implies thatlet=0, which is absurd. In the sequel, the first part
of s2.20d is proved. The second identity is now the consequence ofs2.21d.

Step 3: N9 changes signs only once, from 1 to 2.
Since su,Nd is a solution ofs2.5d–s2.7d satisfying s2.20d, it comes froms2.1d that Fsa,bd

,0, namely,a and b satisfy s2.8d. SinceCsa,bd.0, N9.0 for all t!−1. Moreover, sinceN8
ù0 andNstd is convergent ast→`, N9std,0 for all t@1. If N9 changes signs twice, there exist
two numbersT1,T2 suchu9 ,u8 ,N9 ,N8,0 on sT1,T2d, which meansbPS−sad, a contradiction.
This completes the proof. j

It follows from s2.8d and s2.20d that b2¹S0sad, namely,b+,b2.
Lemma 2.6:S0sad consists of only one point.
Proof: Suppose thatd1,d2PS0sad with d1,d2. Let sui ,Nid be the unique solutions of

s2.5d–s2.7d corresponding todi, i =1,2. SinceFsu,Nd andCsu,Nd are increasing functions ofu
andN, there existsTPR such thatu1std,u2std andN1std,N2std for all tøT.

We claim thatu1,u2 for all tPR. Assume the contrary. Then there exists a numberT1PR
such thatu1sT1d=u2sT1d and u1std,ustd for all t,T1. We note thatN1std,N2std for all t,T1.
Otherwise there would be a numberT2,T1 such thatN1sT2d=N2sT2d andN1std,N2std for all t
,T2, which implies thatsN2−N1d9std.0 for all t,T2 by the monotonicity ofCsu,Nd with
respect tou and N. Consequently,N2sT2d−N1sT2d.d2−d1.0, a contradiction. SinceN1std
,N2std for all t,T1, we conclude thatsu2−u1d9.0 for t,T1, and henceu1sT1d,u2sT1d, a
contradiction. Thus the claim follows.

It now follows thatN1std,N2std for all tPR by a similar argument as above. However, this
implies that

sN2 − N1d9std . 0 ∀ t P R, lim
t→`

sN2 − N1d = 0,

a contradiction. j

It follows from Lemma 2.5 and Lemma 2.6 that for eacha,0, there exists a uniqueb
=bsadP s0,q/kd such that the equationss2.5d–s2.7d satisfying s2.20d. Moreover,bP sb1,b2d by
Lemma 2.4. Hereafter letsust ,ad ,Nst ,add be the unique solution tos2.5d–s2.7d with the boundary
condition s1.12d.

Lemma 2.7: There exists a constantg=gsad.4 such that
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lim
t→`

u8std = − g. s2.22d

Proof: Sinceu9,0 by Lemma 2.1, there exists a constantgP s0,`g such thatu8std→−g as
t→`. If g=`, then there is a numberT satisfying thatu8std,−3 for all t.T. Thusustd,−3t
+C for all t.T, and

E
−`

`

e2seussd ds, `.

Sinceb,Nstd,q/k for all tPR and limt→` N8std=0, we see froms2.11d that

lim
t→`

u8std =
2q

k
lim
t→`

N8std −
4q3

k
E

−`

`

e2seussdNssddsù −
4q4

k2 E
−`

`

e2seussd ds. − `,

a contradiction. Henceg,`.
Setw=u−2qN/k. Then

w9 = −
4q3

k
e2teuN, lim

t→`
w8std = − g. s2.23d

Sinceu9,0 and

g =
4q3

k
E

−`

`

e2seussdNssdds, `, s2.24d

we conclude thatg.2 and thuse2t+u→0 ast→`. Using this fact and integrating by parts after
multiplication of s2.23d by w8, we are led to

g2

2
− 2g =

4q3

k
E

−`

`

e2t+uN8S1 +
2q

k
NDdt . 0. s2.25d

Henceg.4. j

We are now in a position to prove Theorem 1.1. We have constructed a unique solutionsu,Nd
of the equationss2.5d–s2.7d satisfying s2.20d. In terms ofr =et variable,su,Nd is a solution of
s2.2d–s2.4d with the boundary conditions1.12d. Then we can recover the nontopological solution
su,A,Nd of s1.5d–s1.7d as mentioned in the Introduction. In other words, we have proved the
statementssii d–sivd of Theorem 1.1. To complete the proof of Theorem 1.1, it remains to show that
su,A,Nd is a finite energy solution and verify the statementssid and svd.

It follows from s2.22d that

lim
t→`

ustd
t

= lim
t→`

u8std = − g.

Henceusxd=Os−g lnuxud near`, which proves the first part ofsvd. We also observe that

DN = euskq + 2q2Nd − ksq − kNd → 0

as uxu→`. This proves the second part ofsvd.
Next, we show thatsu,A,Nd is a finite energy solution. Using the self-dual equationss1.6d and

s1.7d, we can rewrites1.3d as

Esf,A,Nd =E
R2

uDAfu2 + squfu2 + kN − qd2 + 2q2ufu2N2 + u ¹ Nu2.

Sincerur =ut=Os1d, we haveur =Osr−1d. Then
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uDAfu2 = 1
2uuru2eu = Osr−g−2d P L1sR2d,

squfu2 + kN − qd2 = Osr−2gd P L1sR2d,

2q2ufu2N2 = Osr−gd P L1sR2d.

Meanwhile, multiplyings1.10d by N and integrating by parts, we are led to

i ¹ NiL2 ø CsieuiL1 + iq − kNiL1d , `.

Consequently,su,A,Nd is of finite energy.
Finally, we prove the statementsid. By means ofs1.7d, the magnetic flux given bys1.4d is

computed as

L = − qE
R2

squfu2 + kN − qddx = − 2pqE
−`

`

e2tsqeu + kN − qddt = − pu8s`d = pg.

Here we used thet=ln r variable. Sincesf ,A,Nd satisfies the self-dual equations, we conclude
that

Esf,A,Nd = L = pg.

This completes the proof of Theorem 1.1.
In the remaining part of this section, we make an observation ofg given by s2.22d. We are

going to prove that the lower bound ofg in Lemma 2.7 is optimal. In fact, we show that there
exists a solution ofs2.5d–s2.7d satisfyings2.20d such that the correspondingg is arbitrarily close
to 4. We begin with the following lemma.

Lemma 2.8: b=bsad is a continuous decreasing function such that

lim
a→0

b = 0, lim
a→−`

b =
q

k
. s2.26d

Proof: If ak→a0,0, then up to a subsequencebsakd→b0. It follows from the continuous
dependence of solutions to the initial data thatsust ,a0d ,Nst ,a0dd is the unique solution ofs2.5d and
s2.6d with the boundary conditions2.20d satisfyingus−` ,a0d=a0 andNs−` ,a0d=b0. By virtue of
the uniqueness result of Lemma 2.6,b0=bsa0d and hencebsad is a continuous function.

The decreasing property ofb=bsad follows from similar arguments of the proof of Lemma
2.6. Indeed, ifa1,a2 andbsa1døbsa2d, then we arrive at a contradiction by virtue of the mono-
tonicity of Fsu,Nd andCsu,Nd as in the proof of Lemma 2.6.

Finally, it is easily seen froms2.15d that

lim
a→0

b1sad = lim
a→0

b2sad = 0, lim
a→−`

b1sad = lim
a→−`

b2sad =
q

k
.

Sinceb1øbøb2, this impliess2.26d. j

Proposition 2.9:g=gsad is a continuous function and

lim
a→−`

gsad = 4. s2.27d

Proof: We first show the continuity ofgsad. For a,0, let ak→a. Let T0 be such thatu8sT0,ad
=−7/2. Sinceu8st ,ad is continuous ina, we may assume thatu8sT0,akd,−3 for all k. Sinceu8 is
decreasing, we deduce thatu8st ,akd,−3 for all t.T0. Thus fortùT0,

ust,akd , usT0,akd − 3st − T0d ø ak − 3st − T0d.

Now
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E
−`

`

e2teust,akdNst,akddt ø
q

k
eakE

−`

T0

e2t dt +
q

k
eak+3T0E

T0

`

e−t dt =
q

2k
eake2T0 +

q

k
eake2T0 ø C

as ak→a. Since g is given by the formulas2.24d, it comes from the Lebesgue convergence
theorem thatgsakd→gsad. This implies the continuity ofgsad.

To shows2.27d, we observe froms2.25d that

g2sad − 4gsad ø C1E
−`

`

e2teust,adN8st,addt, C1 =
8q3

k
S1 +

2q2

k2 D . s2.28d

Let hst ,ad=N8st ,ad. A simple calculation gives

h9 − sk2 + 2q2eudh = skq + 2q2Ndeuu8.

We recall thath.0. Let T1=T1sad be the positive maximum point ofhst ,ad. Sinceu8std.−g for
all tPR, we have

hsT1;ad ø Skq + 2q2N

k2 + 2q2eueus− u8dDsT1,ad ø
1

k2Skq +
2q3

k
Deagsad = C2e

agsad

asa→−`. Thus bys2.28d,

g2sad − 4gsad ø C1C2e
agsadE

−`

`

e2teust,ad dt

asa→−`. On the other hand, it comes froms2.24d and s2.26d that

E
−`

`

e2teust,ad dt ø
1

b
E

−`

`

e2teust,adNst,addt = S k2

4q4 + os1dDgsad

asa→−`. In the sequel,

g2sad − 4gsad ø Ceag2sad,

and hencegsad−4=os1d asa→−`. This establishess2.27d. j

III. CHERN–SIMONS LIMIT

This section is devoted to the proof of Theorem 1.2. Throughout this section, leta,0 be
fixed. Let suq,Nqd be the unique solution ofs2.5d–s2.7d satisfyings2.20d corresponding tosk ,qd
=smq2,qd such thatbq=limt→−` Nqstd is uniquely determined bya andq. Set

Ñq = qNq, b̃q = qbq, wq = uq +
2

mq2S 1

m
− ÑqD .

We notice that

Ñq , m−1, iwq − uqiL`sRd = Osq−2d, wq9 = −
4

m
e2teuqÑq , 0. s3.1d

Sincewq8 is decreasing, it follows froms2.22d that wq8↘−gq with gq.4 ast→`.
On the other hand, we recall from Lemma 2.4 that

kq

k2 + 2q2eas1 − ead ø bq ø
q

k
s1 − ead.

Hence
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b* ; lim
q→`

b̃q =
1

m
s1 − ead . 0.

It was proved10 that every solution ofs1.17d is radially symmetric about a pointx0PR2, say
x0=0, with the propertyu,0. In addition, for eacha,0, there exists a unique radial solution such
that usx0d=a. Let us rewrites1.17d in the t variable as

u9 =
4

m2e2teuseu − 1d, t P R. s3.2d

Let u* be the unique solution satisfyingu*std=a+os1d near −̀ . Then we can write

u*std = a +
4

m2E
−`

t

st − sde2seu* ssdseu* ssd − 1dds.

In this section we will prove thatuq converges tou* asq→`.
Lemma 3.1:gq is uniformly bounded in q.
Proof: Let T1=T1sqd be the number such thatwq8sT1d=−2. We claim thathT1sqdj is bounded

above for all largeq. Suppose thatT1.0. It follows thatwqstd+2t.ws0d for tP s0,T1d. Thus for
all largeq,

2 . E
0

T1

w9 dt =
4

m
E

0

T1

e2teuqÑq dt .
4b̃q

m
E

0

T1

e2teuq dt .
2b̃q

m
E

0

T1

e2t+wq dt .
2b̃q

m
ewqs0dT1.

Hence if q is large enough, thenT1,mb̃q
−1e−wqs0d. Let zqstd=m−2e2t−a+wqstd. Then zq9

=4m−1e2tsm−1−euqÑqd.0. Sincezqs−`d.0 andzq8s−`d=0, it is seen thatzqs0d.0. As a conse-
quence, we conclude thatT1øC.

SetT2=T2sqd=swq8d
−1s−3d. Then fort.T2,

− wq8std − 3 = −E
T2

t

wq9ssddsø
4

m2E
T2

t

e2seuqssd dsø
4

m2E
T2

t

e2s+wqssd ds.

Since −wq8std.3 for t.T2, it follows thatwqstd,−3st−T2d+wqsT2d. Hence fort.T2,

− wq8std − 3 ,
4

m2E
T2

t

e−s+3T2+wqsT2d ds.

Letting t→`, we find thatgq,3+4m−2e2T2+wqsT2d. Since −wq8std.2 for t.T1, it follows that 2t
+wqstd,2T1+wqsT1d. SinceT1,T2, we obtain

gq , 3 + 4m−2e2T1+wqsT1d ø C.

j

Lemma 3.2: As q→`, we have

euq − 1 +mÑq = Osq−2d. s3.3d

Proof: We first observe froms2.16d that uu8stduøCq2e2t for all tPR2. In particular,

e−2tuu8stdu ø Cq2 s3.4d

for all tPR. Let us writeuq9=2e2tvq, wherevq=q2seuq−1+mÑqd. Thenvq,0 and

vq9 − e2tvqs2q2euq + m2q4d = q2euquuq8u
2 + 2mq4e2teuqÑq.

If T3=T3sqd is a minimum point ofvq, then by Lemma 3.1 ands3.4d,
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0 . vqsT3d ù −
e−2tuuq8u

2euq + 2mq2euqÑq

2euq + m2q2 sT3d ù −
Cq2gqe

uq + 2mq2euqÑq

2euq + m2q2 sT3d ù − C

for some positive constant. This finishes the proof. j

Lemma 3.3: For any TPR, we have

sup
tøT

uuq − u* u = Osq−2d, sup
tøT

uÑq − N* u = Osq−2d, s3.5d

where N* =m−1s1−eu*d.
Proof: Let TPR be fixed. It comes froms3.3d that

wq9 =
4

m2e2teuqseuq − 1d −
4

m2e2teuqseuq − 1 +mÑqd =
4

m2e2teuqseuq − 1d + Osq−2d ·e2t s3.6d

asq→`. Let T0øT. For anytøT0, by s3.1d and s3.6d,

uwqstd − u*stdu ø Osq−2d +E
−`

t

e2tst − sdS 4

m2ueuqseuq − 1d − eu*seu* − 1du + Osq−2dDds

ø Ce2T0 sup
tøT0

uuq − u* u + Cq−2e2T0 + Osq−2d

ø Ce2T0 sup
tøT0

uwq − u* u + Cq−2e2T0 + Osq−2d.

Hence ifT0 is small enough, then

sup
tøT0

uwq − u* u = Osq−2d.

Applying the standard continuation argument, we obtain

sup
tøT

uwq − u* u = Osq−2d,

and thus bys3.1d, we have

sup
tøT

uuq − u* u = Osq−2d.

Finally for tøT, by s3.3d,

uÑq − N* u =
1

m
uemq − eu* u + Osq−2d = Osq−2d.

j

Lemma 3.4: As q→`, we have

mq2seuq − 1 +mÑqd + 2euqÑq = Osq−2d. s3.7d

Proof: Let us writeÑq9=e2thq, where

hq = q2fmq2seuq − 1 +mÑqd + 2euqÑqg.

It suffice to show thatihqstdiL`sRdøC asq→`. A simple calculation yields that
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hq9 − q2e2thqsm2q2 + 2euqd = mq4euquuq8u
2 + 2mq4e2teuqvq + 2q2euquuq8u

2Ñq + 4q2e2teuqÑqvq

+ 4q2uq8e
uqÑq8.

Here vq is defined byvq=q2seuq−1+mÑqd as in the proof of Lemma 3.2. Sincevq,0, if T4

=T4sqd is a positive maximum point ofhq, then

0 , hqsT4d ø −
2mq2euqvq + 4euqÑqvq + 4e−2tÑq8uq8e

uq

m2q2 + 2euq
sT4d.

We observe froms2.17d and s3.3d that uÑq8stduøCq2e2t for all tPR. Combining this and Lemma
3.1 with the above inequality, we conclude thathqsT4døC.

Similarly, if T5=T5sqd is a negative minimum point ofhq, then

0 . hqsT5d ù −
mq2e−2teuquuq8u

2 + 2e−2teuquuq8u
2Ñq

m2q2 + euq
sT5d. s3.8d

We claim thatT5 is bounded below. On the contrary, suppose thatT5→−`. We recall from Lemma

2.5 thatÑq9 changes signs only once, from1 to 2. Let T6=T6sqd be the unique zero ofhq. Then
hq.0 for t,T6 andhq,0 for t.T6. ThusT6→−`. Fix T0PR such thatT6,T0 for all largeq.
For tùT0,

0 , Ñq8std =E
−`

t

e2thqstddt ø E
−`

T6

e2thqstddt ø
1

2
hqsT4de2T6.

Integrating this inequality onsT0,td, we have

Ñqstd − ÑqsT0d = 1
2hqsT4de2T6st − T0d.

Letting q→`, we haveN*std=N*sT0d for all tùT0. SinceT0 was arbitrary,N* is a constant, which
gives a contradiction.

Now sinceT6 is bounded below, it follows from Lemma 3.1 ands3.8d that 0.hqsT5dù−C.
This completes the proof. j

Lemma 3.5: For any TPR2, we have

sup
tøT

uuq9 − u*9u = Osq−2d. s3.9d

Proof: Fix TPR2. Combinings3.2d and s3.6d with s3.5d, we obtain

sup
tøT

uwq9 − u*9u ø Ce2T sup
tøT

uuq − u* u + Osq−2d ·e2T = Osq−2d ·e2T.

Since suptøT Ñq9øC by s3.7d, we are led to

sup
tøT

uuq9 − u*9u ø sup
tøT

uuq9 − u*9u + sup
tøT

uwq9 − u*9u ø Cq−2 sup
tøT

Ñq9 + Osq−2d ·e2T = Osq−2d,

and thus the proof is complete. j

It now follows from s3.5d and s3.9d that for anyTPR2,

iuq − u*iC2s−`,Tg = Osq−2d.

This finishes the proof of Theorem 1.2.
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We construct a nonperturbative approach based on quantum averaging combined
with resonant transformations to detect the resonances of a given Hamiltonian and
to treat them. This approach, which generalizes the rotating-wave approximation,
takes into account the resonances at low field and also at high fieldsnonlinear
resonancesd. This allows us to derive effective Hamiltonians that contain the quali-
tative features of the spectrum, i.e., crossings and avoided crossings, as a function
of the coupling constant. At a second stage the precision of the spectrum can be
improved quantitatively by standard perturbative methods like contact transforma-
tions. We illustrate this method by determining the spectrum of a two-level atom
interacting with a single-mode quantized field. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1864252g

I. INTRODUCTION

Some important features of classical and quantum systems are determined by resonances of
the system which cannot be treated by perturbative approaches. In the vicinity of resonances the
perturbative formulas display small denominators that lead to the divergence of the perturbative
expansions. A widely used model that incorporates a one-photon resonance is the Jaynes-
Cummings Hamiltonian extracted from the full dressed Hamiltonian that describes a two-level
system coupled with a single mode of a quantized field.1 Its counterpart for an interaction with a
semiclassical laser field is the RWA Hamiltoniansrotating-wave approximationd.2

In this article we give a systematic method that allows us to construct effective Hamiltonians
and determine their spectrum by treating the resonances with an adaptation of resonant transfor-
mations that were introduced in Ref. 3 in the context of laser-driven quantum systems in the
Floquet representation. The semiclassical model with several incommensurate frequencies4 has
been treated by different methods in Refs. 5–8.

The goal is to obtain the spectrum for a whole interval of values of a parameter like the
coupling constant. This is needed, e.g., in applications where the coupling changes adiabatically,9

corresponding, e.g., to envelopes of laser pulses or to transversal spatial profiles of cavity fields.
The method is based on the detection of resonances by a projector derived from quantum aver-
aging. We illustrate it on the problem of a two-level atom interacting with a quantized field and
show that a treatment of all the relevant resonances of the system in a given range of parameters
allows us to reproduce with good accuracy the spectrum of this system. The treatment of the
resonances yields the qualitative structure of the spectrum—the crossings and avoided

adElectronic mail: amniyatm@u-bourgogne.fr
bdElectronic mail: sguerin@u-bourgogne.fr
cdElectronic mail: jauslin@u-bourgogne.fr
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crossings—as a function of the coupling constant. Once this main structure is obtained, one can
systematically improve the quantitative accuracy of the spectrum by applying perturbative meth-
ods. We use contact transformations with a Kolmogorov-Arnold-MosersKAM d iteration,3 which
are particularly efficient due to its superconvergent properties.

The paper is structured as follows. In Sec. II, we describe the method of resonance analysis
and the construction of effective Hamiltonians. Section III contains the presentation of the model
and some preliminary considerations. In Sec. IV, taking into account the resonances of this model
in the weak-coupling regime, we extract the effective Hamiltonians by quantum averaging tech-
niques and resonant transformations. In the weak-coupling regime we have to iterate this proce-
dure several times to derive the essential structure of the spectrum in larger ranges of the coupling
constant. In Sec. V we extract the effective Hamiltonians in the strong-coupling regime where the
qualitative properties of the spectrum can be globally obtained by some preliminary unitary trans-
formations and one resonant transformation which treats the zero-field resonances. We obtain an
accurate approximation valid for all values of the coupling constant that contains all the qualitative
structures. Finally, in Sec. VI we give some conclusions.

II. PRINCIPLE OF THE METHOD

We consider a HamiltonianH=H0+eV, whereH0 is the referencesunperturbedd Hamiltonian,
eV is the perturbation, ande is an ordering parameter. The first analysis of this problem is in terms
of perturbation theory: we look for a KAM-type unitary transformationeeW close to the identity
that allows us to reduce the order of the perturbation frome to e2:

e−eWHeeW = H0 + eD + e2V2. s1d

eD is a remaining term of ordere that satisfiesfH0,Dg=0. The unknownW andD are solutions
of the following equations:3,10

fH0,Wg + V = D, s2ad

fH0,Dg = 0. s2bd

The remaining perturbation of ordere2 is given by

e2V2 = o
m=2

`
em

m!
ssm− 1dLW

m−1V + LW
m−1Dd, s3d

whereLW is defined as

LWB = fB,Wg. s4d

The solutions of Eqs.s2d can be written in terms of averaging:3,11

D = V̄ ; PH0
Vª lim

t→`

1

t
E

0

t

dse−iH0sVeiH0s = o
n,j ,j8

un, jlkn, j uVun, j8lkn, j8u, s5ad

W= lim
t→`

− i

t
E

0

t

dsE
0

s

ds8e−iH0s8sV − PH0
VdeiH0s8 = − o

n,j ,j8,n8Þn

un, jlkn, j uVun8, j8lkn8, j8u

En
s0d − En8

s0d ,

s5bd

wheren labels the different eigenvaluesEn
s0d of H0, and j is a degeneracy index which distin-

guishes different basis vectorsun , jl of the degeneracy eigenspace. The operatorPH0
is the pro-

jector on the kernel of the applicationA° fH0,Ag. We remark that the integral representation of
D ,W in Eqs.s5d can be also well defined in cases whereH0 has a continuum spectrum. We can
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iterate the KAM procedure takingH0+eD as the new reference Hamiltonian ande2V2 as the new
perturbation. The units are chosen such that"=1. In the following discussion, we do not write
explicitly the ordering parametere.

A resonanceis defined as a degeneracy of an eigenvalueEn
s0d of H0 and is said to beactive if

the perturbationV has nonzero matrix elements in the degeneracy subspace ofEn
s0d: kn , j uVun , j8l

Þ0 for somej , j8. Otherwise the resonance is calledpassiveor mute. Equations5bd shows that in
the case of quasi-resonancesas opposed to exact resonanced where the denominator would be
different from zero but very small with respect to the numerator,W can be very large, and thus the
expansion cannot be expected to converge. The method we present here is a construction designed
to avoid such divergences. We remark that the concept of resonance is defined intrinsically forH0,
while the distinction between active and passive depends on the relation betweenH0 andV. The
analysis of the resonances thus involves three aspects:

• Decomposition of the Hamiltonian intoH=H0+V. Different decompositions can be consid-
ered for different regimes of the parameters ofH.

• Determination of degenerate eigenvalues ofH0.
• Detection of the resonant termsin the perturbationV that couple these degenerate

eigenstates.

The resonant terms ofV can be detected by projectors of typePH0
that extract a block-diagonal

part of V relative to H0, where the blocks are generated by the degeneracy subspaces. In the
absence of active resonances, when all the eigenvalues ofH0 are nondegenerate or when the
resonances are mute, the matrix representation ofPH0

V is in fact diagonal in the eigenbasis ofH0.
In the presence of active resonances, the block-diagonal effective Hamiltonian that takes into
account the considered resonance of the original Hamiltonian can be written as

Heff = H0 + PH0
V. s6d

We will call the transformation that diagonalizesHeff resonant transformationsRTd. The Hamil-
tonianH=Heff+sV−PH0

Vd is transformed under RTsdenotedRd as follows:

H1 = R†HR = R†HeffR + R†sV − PH0
VdR ¬ H1

s0d + V1, s7d

whereH1
s0d is defined as the new renormalized reference Hamiltonian andV1 is the new perturba-

tion. The effect ofPH0
V in s6d is to lift the degeneracy ofH0. This can happen in two ways: either

the active resonance is transformed into a passive onese.g., in the case of zero-field resonancesd
or the resonance disappears completelyswhen a crossing is transformed into an avoided crossingd.
The new HamiltonianH1 can, however, have other resonances at different values of the coupling
parameter. IfH1

s0d+V1 does not have any other active resonance in the considered range of the
coupling constant, we can, at a second stage, improve the spectrum by a KAM-type perturbative
expansion which is expected to converge. If there are other active resonances, we have to iterate
the renormalization procedure by applying another RT. We remark that there are cases of multi-
photon resonances where the active resonances appear only after applying one or several contact
transformations.

III. DESCRIPTION OF THE MODEL AND PRELIMINARY CONSIDERATIONS

We consider as an illustration a two-level atom interacting with a single mode of a quantized
field described by

H = vsa†a + 1/2d ^ 12 +
v0

2
1 ^ sz + gsa + a†d ^ sx, s8d

wherea, a† are the annihilation and creation operators for the field mode with the commutation
relationfa,a†g=1=on=0

` unlknu, sz,sx are Pauli matrices, and12 is the 232 identity matrix. Herev
is the frequency of the field mode,v0 is the energy difference of the two atomic states, andg is the
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dipole-coupling between the field mode and the atom. This Hamiltonian acts on the Hilbert space
K=F ^ H whereH=C2 is the Hilbert space of the atom generated byu6l seigenvectors ofszd and
F is the Fock space of the field mode generated by the orthonormal basishunl ;n=0,1,2, . . .j, n
being the photon number of the field.

For this system there is a parity operator

P = eipa†a
^ sz = o

n=0

`

s− 1dnunlknu ^ sz, s9d

with the properties

fP,Hg = 0, P = P†, P2 = 1K ; 1 ^ 12. s10d

As a consequence, the eigenstates ofH can be separated into two symmetry classes, even or odd,
underP:

Pufn,±l = ± ufn,±l, Hufn,±l = En,±ufn,±l. s11d

The parity operator also commutes with any operator that depends only onN=a†a andsz.
In spite of the simple form ofs8d, its exact solutions are not known. This can be related to the

fact that the classical limit of this model is nonintegrable.12 This model is of great interest as a
physical model in quantum optics13–16and quantum chaos.17,18Some approximate solutions of this
model have been studied among many others in Refs. 19 and 20 using different formalisms.

The conceptual framework for the solution of this system based on the construction of unitary
transformations can be described as follows: First, we decompose the Hamiltonian in two terms as
H=H0+V. Depending on the considered ranges of the parameters of the system, different decom-
positions may be considered.H0 is a priori an operator that is a regular function exclusively of the
operatorsN andsz. The operatorsN andsz can be considered in the present model as quantum
analogs of classicalglobal actions,21 andH0 can be labeledintegrable. The perturbationV con-
tains functions that involve also the other operatorsa,a†,sx,sy. The goal is to determine a unitary
transformationU, which should be expressed in terms of well-behaved regular functions of
a,a†,sx,sy,sz, such that

U†sH0sN,szd + Vsa,a†,sx,sy,szddU = H8sN,szd, s12d

whereH8 is a regular functionf exclusively of the action operatorsN,sz: H8sN,szd= fsN,szd.
With this transformation the eigenvectors ofH can be expressed asufn,±l=Usunl ^ u± ld and the
corresponding eigenvalues asEn,±= fsn, ±1d whereNunl=nunl andszu± l= ± u± l.

We remark that in our context the important property for singling out the operatorsN,sz is
that they commute with each other and their spectrum and eigenvectors are explicitly available.
The question of whether for a given model there exists a regular unitary transformationU that
accomplishes the above requirement is, to our knowledge, an open problem.

Most of the perturbative approaches can be interpreted as methods to find approximations of
the transformationU. The presence of resonances is one of the central difficulties in the construc-
tion of U, as will be made precise below. In this paper we discuss an iterative approach that
consists of constructing first some approximations ofU that take into account the dominating
effects of a certain number of resonances. The transformations involved in this stage are far from
the identity and have a clearly nonperturbative character. Once we have a transformation that takes
into account the main effect of a set of resonances that are relevant in a considered interval of the
coupling constantg, a perturbative approachslike the KAM, Van Vleck, or other types of the
contact transformationd can be applied to improve the approximation quantitatively. The transfor-
mations involved in this second stage can be considered as deformations of the identity, since they
can be written in the formeW. This stage cannot be implemented if the resonances are not taken
care of beforehand. Indeed the perturbative formulations diverge close to resonances due to the
appearance ofsmall denominatorsas can be seen in Eq.s5bd.
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As in classical mechanics, the construction of the transformationU leading to a Hamiltonian
that contains only action variables can often be considered in two steps:U=U1U2. In the first step,
which is calledreduction, the Hamiltonian is transformed byU1 into a form that contains func-
tions ofsz,sx,sy andN, but not ofa anda†. The degree of freedom of the field is made trivial and
the number of nontrivial degrees of freedom is thus reduced by one. When we apply this reduction
to the effective Hamiltonians6d, we obtain areduced effective Hamiltonian. We remark that in the
literature, this “reduced effective Hamiltonian” is often called simply “effective Hamiltonian.” In
the second step, the reduced Hamiltonian is transformed underU2 into a form that contains
functions of onlyN andsz. For the models8d, the reduction step corresponds to diagonalization in
the Fock space and the second step corresponds to diagonalization in the atomic Hilbert space
which in this case is trivial. The construction of the RT is based on this reduction procedure.

IV. EFFECTIVE HAMILTONIANS IN THE WEAK-COUPLING REGIME

In this section we consider the Hamiltonians8d at resonancev0=v in the weak coupling
regime, so thatH can be decomposed as follows:

H = H0 + V,

H0sN,szd = vsN + 1/2d ^ 12 +
v0

2
1 ^ sz, s13d

Vsa,a†,sx,gd = gsa + a†d ^ sx.

The eigenvalues and eigenvectors ofH0 are

En,±
s0d = vsn + 1/2d ±

v0

2
,

ufn,±
s0d l = un, ± l = unl ^ u ± l, s14d

un, + l = Sunl
0
D, un,− l = S 0

unl D .

For v0=v there is a one photon resonance which corresponds to the degeneraciesEn,+
s0d =En+1,−

s0d .
The degeneracy eigenspaces are spanned by the vectorsufn,+

s0d l andufn+1,−
s0d l. The resonant part ofV

is obtained bys5ad:

Vresª PH0
V = o

n=0

`

sun, + lkn, + uVun + 1,−lkn + 1,− u + un + 1,−lkn + 1,− uVun, + lkn, + ud

= gS 0 a

a† 0
D , s15d

where we have used the relations

a = o
n=0

`

În + 1unlkn + 1u, a† = o
n=0

`

În + 1un + 1lknu. s16d

The effective Hamiltonian containing the one-photon resonance is the so-called Jaynes-Cummings
Hamiltonian that can be written as
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H0
eff = HJC = H0 + PH0

V = vsN + 1/2d ^ 12 +
v

2
1 ^ sz + gS 0 a

a† 0
D . s17d

HJC is a good approximation ofs8d for low energies in the limitg!v0, uv−v0u!v0. In this limit,
the so-called counter-rotating termsgs 0

a
a†

0
d can be discardedsrotating-wave approximationd. H can

thus be written asH=H0
effsN,a,a†,sx,sy;gd+sV−PH0

Vd. Next we transformH0
eff by a resonant

transformationR1 to a regular function of exclusively the action operatorsN,sz. Every resonant
transformation is performed in two steps. To diagonalizeH0

eff in the Fock spacesthe reduction step
of the RT denotedR1d we define a transformation in such a way that the following condition is
satisfied:

R1
†VresR1 = fsNd ^ sx, s18d

where f is a regular function ofN which has to be determined. We require furthermore that
R1

†H0R1 stays a function of onlyN andsz. A suitable transformation satisfying these conditions is

R1 ª Ssaa†d−1/2a 0

0 1
D ; 1o

n=0

`

unlkn + 1u 0

0 1
2 . s19d

This transformation is not unitary butisometric:22

R1R1
† = 1K, R1

†R1 = 1K − Su0lk0u 0

0 0
D , s20d

where we have used the identitya†sN+1d−1a=1− u0lk0u. Applying this transformation on the
resonant term gives

R1
†VresR1 = ga†saa†d−1/2a ^ sx = gÎN ^ sx s21d

andH is transformed underR1 as

HR1
= R1

†HR1 = vN ^ 12 + gÎN ^ sx + gS0 A†

A 0
D , s22d

where

A = asaa†d−1/2a = o
n=0

`

În + 1unlkn + 2u, s23d

with the properties

AA† = aa†, A†A = a†a − 1 + u0lk0u. s24d

To each eigenvectorufl of H corresponds an eigenvectorR1
†ufl of HR1

, since

HR1
R1

†ufl = R1
†HR1R1

†ufl = lR1
†ufl. s25d

We remark thatR1
†uflÞ0 ∀ uflPK. Every eigenvalue of the original HamiltonianH is also an

eigenvalue of the transformed HamiltonianHR1
. However, sinceR1u0, +l=0, there is a difference

in the spectrum betweenH andHR1
: HR1

has an extra zero eigenvalue with eigenvectoru0, +l. The
spurious eigenvalue can be detected and eliminated after applying the transformation. Indeed,
sinceu0, +l is not coupled to any vector in its orthogonal complement, one can eliminate it from
the rest of the calculation by taking the projection ofHR1

into the orthogonal complement
HR1,'s0,+d=P's0,+dHR1

P's0,+d with P's0,+d=1K− u0, +lk0, +u. This difference between unitary and
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isometric transformations was not taken into account in Ref. 23 in diagonalizing the Jaynes-
Cummings Hamiltonian.

The second step of the RT is the diagonalization ofR1
†H0

effR1=vN^ 12+ÎN^ sx in the atomic
Hilbert space. This can be performed by ap /2 rotation around they-axis:

T = e−isp/4dsy =
1
Î2

S1 − 1

1 1
D , s26d

with the properties

T†sxT = sz, T†szT = − sx. s27d

However, since the spurious eigenvectoru0, +l can be separated andu0,−l is already an eigen-
vector ofR1

†H0
effR1, the transformationT must be applied only on the subspace withnù1 photons.

The complete transformationsdenotedT1d reads thus

T1 = P0 ^ 12 + P'0 ^ T, s28d

where

P0 = u0lk0u, P'0 = o
n=1

`

unlknu. s29d

Applying T1 gives

H1 ª T1
†R1

†HR1T1 = H1
s0dsN,sz;gd + V1sa,a†,sz,sx,sy;gd, s30d

with

H1
s0d = vN ^ 12 + gÎN ^ sz,

V1 =
g

2
SA'0 + A'0

† − A'0 + A'0
†

A'0 − A'0
† − A'0 − A'0

† D +
g
Î2

S 0 u2lk0u
u0lk2u − u2lk0u − u0lk2u D , s31d

where

A'0 = P'0AP'0 = o
n=1

`

În + 1unlkn + 2u, s32d

and use has been made of the relations

AP0 = P0A
† = 0, P0AP'0 = u0lk2u. s33d

The first RT is thus the combination ofR1T1. Since the transformationR1 dresses the upper atomic
state bys−1d photon,15 R1=R1T1 can be called a one-photon RT.

H1
s0d is in fact the diagonalized Jaynes-Cummings Hamiltonian in the resonant case with the

eigenvalues

E1,sn,±d
s0d sgd = vn ± gÎn, n = 0,1,2, . . . . s34d

The eigenvalues and therefore the degeneracies ofH1
s0d depend on the coupling constantg. For

small enoughg and low energies,H1
s0d does not have other degeneracies besides the ones atg

=0 for which the new perturbationV1 does not have resonant terms, and we can apply a finite
number of KAM-type transformations to improve quantitatively the precision of the spectrum by
iteration. We apply a finite number of KAM-type transformations with a cutoff in energy to
improve iteratively the precision of the spectrum at small energies. This iteration cannot be
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expected to converge for all values ofg in an interval f0,g0g, because of the presence of a
countable number of resonances at high energies at arbitrarily small values ofg. A single KAM
transformationswhich is essentially equivalent to second-order perturbation theoryd already gives
quite good precision, as shown in Fig. 1sbd for g/v0,0.25 for energies smaller than 10v0. If we
take large enoughg or larger energies, we encounter new resonances which appear at some
specific finite values ofg. These resonances are calledfield-induced resonancesor nonlinear
resonances. For larger values of the couplingfg/v0<0.3 for the shown energy interval in Fig.
1sbdg, where we encounter nonlinear resonances, the KAM iteration diverges. The eigenvalues of
H1

s0d are degenerate atgn=v / sÎn+În+1d asE1,sn,+d
s0d sgnd=E1,sn+1,−d

s0d sgnd. But the corresponding reso-

nant terms inV1 are zero due to paritysmute resonancesd. The next degeneracies appear at

gn = 2v/sÎn + În + 2d, s35d

as

E1,sn,+d
s0d sgnd = E1,sn+2,−d

s0d sgnd, s36d

which have been marked by circles in Fig. 1sad. All the other resonances are mute. There is an
infinite family of nonlinear resonances located at different values of the couplinggn. We observe
from s35d that for higher energies the nonlinear resonances appear for arbitrary small coupling
slimn→`gn=0d. We can extract the resonant terms corresponding to the whole family in a single

FIG. 1. Comparison of exact numerical eigenvaluessdashed linesd of s8d for one-photon resonancev=v0 with the
approximate onesssolid linesd obtained aftersad one one-photon RT given bys34d and sbd one one-photon RT plus one
iteration of KAM-type perturbative expansion. The divergence observed aroundg/v0=0.3 in panelsbd is due to the active
nonlinear resonances ofH1

s0d that occurred at the degeneracies marked by circles in panelsad. One can see clearly that the
locations of these resonances depend onn according to Eq.s35d.
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step by working with the combined projectoronPH
1
s0dsgnd. The resonant terms inV1 corresponding

to the degeneraciess36d are

o
n

PH1
s0dsgndV1 = −

g

2
S 0 A'0

A'0
† 0

D −
g
Î2

S0 0

0 u2lk0u + u0lk2u D , s37d

and the new effective Hamiltonian is thus

H1
eff = vN ^ 12 + gÎN ^ sz + o

n

PH1
s0dsgndV1. s38d

To diagonalizeH1
eff, it can be decomposed according to three orthogonal subspaces:

H1
eff = Ps0,2,−dH1

effPs0,2,−d + Ps0,+dH1
effPs0,+d + P'H1

effP' = H1
effPs0,2,−d + H1

effPs0,+d + H1
effP',

s39d

where the projectors, which commute withH1
eff, are defined by

Ps0,2,−d = S0 0

0 u0lk0u + u2lk2u D, Ps0,+d = Su0lk0u 0

0 0
D ,

P' = 1K − Ps0,2,−d − Ps0,+d =1o
n=1

`

unlknu 0

0 o
n=1,Þ2

`

unlknu 2 , s40d

which leads to

H1
effPs0,+d = 0, H1

effPs0,2,−d = Fs2v − gÎ2du2lk2u −
g
Î2

su2lk0u + u0lk2udGS0 0

0 1
D ,

H1
effP' = v1o

n=1

`

nunlknu 0

0 + o
n=1,nÞ2

`

nunlknu 2 + g1o
n=1

`

Înunlknu 0

0 o
n=1,nÞ2

`

Înunlknu 2
−

g

2
S 0 A'0

A'0
† 0

D . s41d

H1
effPs0,2,−d can be directly diagonalized by

Rs0,2,−d = Ps0,2,−dS0 0

0 cosusu2lk2u − u0lk0ud − sinusu2lk0u + u0lk2ud DPs0,2,−d, s42d

where the angleu is defined by the relation

tan 2u =
gÎ2

2v − gÎ2
, 0 ø u ,

p

2
, s43d

and the corresponding eigenvalues are
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E1,s0,+d
eff = 0, E1,sn=0,2,−d

eff = v −
g
Î2

±
1

2
Îs2v − gÎ2d2 + 2g2. s44d

The reduction step of the second RT to diagonalizeH1
effP' in the Fock space can be defined

as

R2,' ª P'SsA'0A'0
† d−1/2A'0 0

0 1
DP' =1o

n=1

`

unlkn + 2u 0

0 o
n=1,Þ2

`

unlknu 2 s45d

with the properties

R2,'R2,'
† = P', R2,'

† R2,' = P' − Su1lk1u + u2lk2u 0

0 0
D . s46d

Equations45d shows thatR2,' dresses the upper atomic state bys−2d photons. ThereforeR2,' can
be called a two-photon RT. SinceR2,'u1, +l=0=R2,'u2, +l, the spectrum ofR2,'

† H1
effP'R2,' has

two extra zero eigenvalues relative to the spectrum ofH1
effP'. Applying R2,' gives

R2,'
† H1

effP'R2,' = v1o
n=3

`

sn − 2dunlknu 0

0 o
n=1,Þ2

`

nunlknu 2 + g1o
n=3

`

În − 2unlknu 0

0 − o
n=1,Þ2

`

Înunlknu 2
− g/2o

n=3

`

În − 1unlknu ^ sx. s47d

Combining the transformations on the different subspaces we can write the transformation that
diagonalizesH1

eff in the Fock space as

R2 = R2,' + Rs0,2,−d + Ps0,+d. s48d

At the right-hand side ofs47d, the three matrices have entries that commute with each other so we
can diagonalize the sum of them in the atomic Hilbert spacesthe second step ofR2,'d as if they
had scalar entries. The eigenvalues ofR2,'

† H1
effP'R2,' are thus

E1,sn=1,−d
eff = v − g, E1,sn=1,+d

eff = 0, E1,sn=2,+d
eff = 0,

E1,snù3,±d
eff = vsn − 1d +

g

2
sÎn − 2 −Înd ±

1

2
fs− 2v + gsÎn − 2 +Îndd2 + g2sn − 1dg1/2. s49d

As it can be seen froms49d, there are two extra zero eigenvalues which have been added byR2,'

to the spectrum ofH1
eff.

Figures 2sad and 2sbd compare respectively the exact spectrum ofH calculated numerically
with the spectrum ofH0

eff=HJC given bys34d and ofH1
eff given bys49d ands44d. The crossings of

the exact spectrum are all among the eigenvalues with different parities. It is found that the
spectrum ofH0

eff coincides with the exact one only in the range of quite small coupling. The
spectrum ofH1

eff has been modified with respect to the one ofH0
eff by transforming the encircled

crossings between eigenvalues with the same parity into avoided crossings in the smallg region.
This procedure to treat resonances can be iterated to take into account other resonances appearing
at larger values ofg. Figures 2sad–2sed show how the combination of a one-photon RT and
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consecutive two-photon RTs lift the artificial degeneraciessmarked by circlesd of the effective
Hamiltonians. The successive steps, which we have implemented numerically, transform eigen-
value crossings into avoided crossings. We observe that these RTs also produce an improvement of
the approximations of the spectrum. Figure 2sfd shows the effect of a KAM transformation after
the fourth two-photon RT which improves quantitatively the result of Fig. 2sed. The divergence of
the KAM transformation close tog=1 in Fig. 2sed is due to the presence of active resonances at
larger values ofg.

V. EFFECTIVE HAMILTONIANS IN THE STRONG-COUPLING REGIME

In this section we use quantum averaging techniques and RT to obtain the effective Hamilto-
nians ofs8d by starting the analysis from the strong-coupling regime. We derive a formula that
reproduces the spectrum quite accurately in the whole range ofg and for all energies. We consider
an alternative decomposition of the Hamiltonians8d in a way suggested by the strong coupling
regimeg@v0.0,

FIG. 2. Comparison of the exact numerical eigenvaluessdashed linesd of s8d for one-photon resonancev=v0 with the
approximate onesssolid linesd obtained respectively aftersad one one-photon RT given bys34d, sbd one one-photon RT plus
one two-photon RTs given bys49d, scd one one-photon RT plus two two-photon RTs,sdd one one-photon RT plus three
two-photon RTs,sed one one-photon RT plus four two-photon RTs,sfd one one-photon RT plus four two-photon RTs plus
one iteration of KAM-type perturbative expansion. The divergence of the KAM transformation observed close tog/v0

=1 in panelsfd is due to the presence of active resonances at larger values ofg.
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H = H0 + V,

H0 = vsN + 1/2d ^ 12 + gsa + a†d ^ sx, s50d

V =
v0

2
1 ^ sz

which can be interpreted as the system of a quantized field plus the coupling term perturbed by the
two-level atom. We will use this decomposition as an alternative starting point. As it will be seen
later, this approach will allow us to obtain the spectral data for the whole range of values of the
couplinggP f0,`d. We remark that in this decomposition,H0 contains all the unbounded opera-
tors of the complete model and that the perturbationV is a bounded operator. In this case
H0sN,a,a†,sz,sx;gd is integrable since we can explicitly transform it into a form involving a
regular function exclusively of the action operatorsN,sz fgiven below in Eq.s55dg. To transform
H0 to a function of action operators, first we diagonalize the termgsa+a†d ^ sx in the atomic
Hilbert space by the transformations26d:

T†HT = vsN + 1/2d ^ 12 + gsa + a†d ^ sz −
v0

2
1 ^ sx. s51d

Next we apply a second unitary transformation,

U = Se−sg/vdsa†−ad 0

0 esg/vdsa†−ad D , s52d

to transformvsN+1/2d ^ 12+gsa+a†d ^ sz into a function of onlyN,sz sin this case only ofNd:

H1 ª U†T†HTU = FvsN + 1/2d −
g2

v
G ^ 12 −

v0

2
S 0 e2sg/vdsa†−ad

e−2sg/vdsa†−ad 0
D , s53d

where use has been made of the commutation relations amonga, a†, N, and the Hausdorff
formula:

eBCe−B = C + fB,Cg +
1

2!
fB,fB,Cgg + ¯ . s54d

We decomposeH1 as

H1 = H1
s0d + V1,

H1
s0d = U†T†H0TU = FvsN + 1/2d −

g2

v
G ^ 12, s55d

V1 = − v0/2S 0 e2sg/vdsa†−ad

e−2sg/vdsa†−ad 0
D .

The effective Hamiltonian of the system for strong-coupling regime can thus be written as

H1
eff = H1

s0d + PH1
s0dV1. s56d

The eigenvalues ofH1
s0d have a twofold degeneracy for every value ofn as
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E1,sn,±d
s0d = vsn + 1/2d −

g2

v
. s57d

The average ofV1 relative toH1
s0d is thus

PH1
s0dV1 = o

n=0

`

hun, + lkn, + uV1un,− lkn,− u + un,− lkn,− uV1un, + lkn, + uj

= −
v0

2 o
n=0

`

fnunlknu ^ sx, s58d

with

fn = knues−2g/vdsa†−adunl = knues+2g/vdsa†−adunl = e−2g2/v2
knues−2g/vda†

es+2g/vdaunl

= e−2g2/v2So
j=0

n
s− 2g/vd j

j !
Î n!

sn − jd!
kn − j uDSo

i=0

n
s+ 2g/vdi

i!
Î n!

sn − id!
un − ilD

= e−2g2/v2o
j=0

n
s2g/vd2js− 1d j

s j !d2

n!

sn − jd!
= e−2g2/v2

LnS4g2

v2 D s59d

where theLn are the Laguerre polynomials. We remark that in the limit of a large photon number
sn→`d, fn can be expressed as a zeroth-order Bessel functionJ0s4gÎn/vd.15 H1 can be reorga-
nized as

H1 = H1
eff + sV1 − PH1

s0dV1d,

H1
eff = SvsN + 1/2d −

g2

v
D ^ 12 −

v0

2
F ^ sx, s60d

sV1 − PH1
s0dV1d = −

v0

2
S 0 G − F

G† − F 0
D ,

where

G = es+2g/vdsa†−ad, F = o
n=0

`

fnunlknu. s61d

H1
eff can easily be diagonalized by applying the transformations26d that diagonalizessx:

H2 ª T†H1T = H2
s0d + V2, s62d

with

H2
s0d = T†H1

effT = SvsN + 1/2d −
g2

v
D ^ 12 −

v0

2
F ^ sz, s63d

and

V2 = T†sV1 − PH1
s0dV1dT = − v0/4SG + G† − 2F G − G†

− G + G† − G − G† + 2F
D . s64d

The eigenvalues ofH2
s0d are therefore
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E2,sn,±d
s0d = vsn + 1/2d −

g2

v
7

v0

2
e−2g2/v2

LnS4g2

v2 D , s65d

which is the same result obtained in Refs. 17, 19, and 20 by other methods. Figure 3 compares the
exact numerical spectrum ofs8d with the approximations65d for the resonant casev=v0. One can
see that for large enoughg, the formulas65d reproduces the spectrum well. It is not very accurate
for small values ofg because of the presence of the one-photon zero-field resonances that we
analyze as follows. In the limitg→0, we have

H2
s0d,g→0 vsN + 1/2d ^ 12 −

v

2
1 ^ sz,

V2
g→0 gS 0 a − a†

− sa − a†d 0
D . s66d

Thus degeneracies ofH2
s0d,g→0 occur as

E2,sn,+d
s0d,g→0 = E2,sn−1,−d

s0d,g→0 . s67d

They are made active by the resonant terms ofV2
g→0:

FIG. 3. Comparison of exact numerical eigenvaluessdashed linesd of s8d as a function of the coupling constant in the
resonant casesv=v0d, with the approximate eigenvaluesssolid linesd obtained froms65d.
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V2,res
g→0 = PH2

s0d
g→0V2

g→0 = − gS0 a†

a 0
D . s68d

The transformationsthe reduction step of the RTd which transforms this resonant term to a regular
function of N is

R1 ª S1 0

0 saa†d−1/2a
D = 11 0

0 o
n=0

`

unlkn + 1u 2 , s69d

with the properties

R1R1
† = 1K, R1

†R1 = 1K − S0 0

0 u0lk0u D . s70d

We remark that the definition ofR1 depends on the type of resonant terms. The reduction step of
the RT presented here is different froms19d. The Hamiltonian transformed under this RT has an
extra zero eigenvalue corresponding to spurious eigenvectoru0, 2l, while for the Hamiltonian
transformed unders19d, the extra zero eigenvalue corresponds tou0, 1l. Applying R1 on H2 gives

H3 ª R1
†H2R1 = SvN −

g2

v
D ^ 12 + R1

†V2R1

+1
v

2
s1 − o

n=0

`

fnunlknud 0

0 −
v

2
s1 − o

n=1

`

fn−1unlknud − Sv

2
+

g2

v
Du0lk0u 2 . s71d

Next, we takeH3
s0d=vN^ 12 and the rest ofH3 as V3. SinceH3

s0d has a twofold degeneracy as
E3,sn,+d

s0d =E3,sn,−d
s0d , the average ofV3 relative toH3

s0d is thus

PH3
s0dV3 =1

v

2
−

g2

v
−

v

2 o
n=0

`

fnunlknu o
n=1

`

−
g
În

e−2g2/v2
Ln−1

s1d S4g2

v2 Dunlknu

o
n=1

`

−
g
În

e−2g2/v2
Ln−1

s1d S4g2

v2 Dunlknu − Sv

2
+

g2

v
Ds1 − u0lk0ud +

v

2 o
n=1

`

fn−1unlknu 2 ,

s72d

where we have used the relation16

kmue±s2g/vdsa†−adunl =Î n!

m!
S±2g

v
Dm−n

e−s2g2/v2dLn
sm−ndS4g2

v2 D , s73d

with Ln
sm−ndsxd the associated Laguerre polynomials andmùn. The new effective Hamiltonian can

thus be written as

H3
eff = vN ^ 12 + PH3

s0dV3. s74d

Since all the entries ofH3
eff commute withN, it can be diagonalized in the atomic Hilbert space as

if its entries were scalars. The eigenvalues ofH3
eff are thus
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E3,s0,−d
eff = 0, E3,s0,+d

eff =
v

2
−

g2

v
−

v

2
e−2g2/v2

,

E3,snù1,±d
eff = nv −

g2

v
−

v

4
e−2g2/v2SLnS4g2

v2 D − Ln−1S4g2

v2 DD
±

1

2
FSv −

v

2
e−2g2/v2SLnS4g2

v2 D + Ln−1S4g2

v2 DDD2

+
4g2

n
e−4g2/v2SLn−1

s1d S4g2

v2 DD2G1/2

.

s75d

The zero eigenvalue is the extra spurious one that has been added by the RT to the spectrum.
Figure 4 compares the exact numerical spectrum ofs8d and the approximations75d which has
treated the zero-field resonances by a RT. The figure shows that treating all the active resonances
of the system allows us to obtain all the qualitative features of the spectrum in the whole range of
the coupling constant and for all energies. At a second stage, since we have treated all the active
resonances, we can improve further this spectrum quantitatively by a KAM-type perturbative
iteration.

VI. CONCLUSIONS

We have presented a nonperturbative method based on the quantum averaging technique to
determine the spectral properties of systems containing resonances. It consists in the construction
of unitary or isometric transformations that leads to an effective reduced Hamiltonian. These
transformations are composed of two qualitatively distinct stages. The first one consists of non-

FIG. 4. Comparison of exact numerical spectrum ofs8d sdashed linesd as a function of the coupling constant in the resonant
casesv=v0d, with the quite accurate results75d which has treated the zero-field resonances by a RTssolid linesd.
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perturbative transformationssRTsd that are adapted to the structure of the resonances. Their role is
to construct a first effective Hamiltonian that contains the main qualitative features of the
spectrum—crossings and avoided crossings—in a given range of the coupling parameter. The
diagonalized form of this effective Hamiltonian, which depends parametrically on the coupling
constant, is then taken as a new reference Hamiltonian around which one can apply perturbative
techniques to improve the quantitative accuracy of the spectrum. We formulate the perturbative
approach in terms of a KAM-type iteration of contact transformations. Similar results can be
obtained with other formulations of perturbation theory.

We have illustrated the method with a model of a two-level atom interacting with a single
mode of a quantized field. The method can be applied to more general systems with several field
modes. It can also be adapted to the treatment of semiclassical models in which the field is
described as a time-dependent function.

We have analyzed the resonances in two regimes of weak and strong coupling. The results we
obtained in the weak-coupling regime can be expected to be applicable to quite general models.
The analysis of the strong-coupling regime of this model leads to results that are valid for all
values of the coupling and for all energies. The possibility to obtain such a global result is due to
a particular property of the model, and one cannot expect to obtain it for general models. The
particular property is that the part we selected as the reference HamiltonianH0 in the strong-
coupling regime contains all the unbounded operators of the complete model and is explicitly
solvable. The term that was left to be treated by RT and perturbation theory is a bounded operator.
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A comprehensive approach to the theory of higher spin gauge fields is proposed. By
explicitly separating out details of implementation from general principles, it be-
comes possible to focus on the bare minimum of requirements that such a theory
must satisfy. The abstraction is based on a survey of the progress that has been
achieved since relativistic wave equations for higher spin fields were first consid-
ered in the 1930s. As a byproduct, a formalism is obtained that is abstract enough
to describe a wide class of classical field theories. The formalism, viewed as syntax,
can then be semantically mapped to a category of strongly homotopy Lie algebras,
thus showing that the theory in some sense exists, at least as an abstract mathemati-
cal structure. Still, a concrete physicslike, implementation remains to be con-
structed. Lacking deep physical insight into the problem, an implementation in
terms of generalized vertex operators is set up within which a brute force iterative
determination of the first few orders in the interaction can be attempted. ©2005
American Institute of Physics.fDOI: 10.1063/1.1867976g

I. INTRODUCTION

On a very high level of abstraction, the theory of self-interacting higher spin gauge fields
becomes either trivial or void. This might seem like a preposterous statement about a problem, the
solution of which has eluded theoretical physics since the 1970s, when the problem was first
explicitly raised.1 In this paper, we will try to explain the intuition behind this claim.

Theoretical physics in general, and high energy physics in particular, rest on a tremendous
body of knowledge about reality. The nature of this knowledge is manifold, one aspect is the
general principles like the relativity principle, the equivalence principle, various gauge principles
and the quantum paradigm. Another aspect is the many elaborate calculational schemes employed
in particular models, realistic or of the toy variant. This is the nuts and bolts of the science.
Whereas the principles are lofty and beautiful to contemplate, the nuts and bolts are often ugly and
boring to struggle with. Of course, this is a matter of taste and outlook. But in the end, the nuts and
bolts must be there in the right place in order to make contact with experiment, and ensure
eventual mathematical consistency.

In computer science, we also find this division between a high level abstract approach to
problems, and a low level nuts and bolts code grinding. But in computer science the division is
more explicitly pronounced. The complexity of modern software development has forced an
approach where one must get the principles right first.

One purpose of the present paper is to adopt this mode of working with respect to the problem
of introducing self-interactions for higher spin massless gauge fields. Substantial progress notwith-
standing, the problem is still not completely solved, and far less understood. It is not even clear
how to recognize or evaluate a purported solution. Massless higher spin fields appear in many
contexts related to string theory, membrane theory and M-theory and theories deriving from these.
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This makes it interesting to find out if higher spin gauge fields can stand on their own, without
crutches, so to speak, from circumstantial theoretical constructs. Furthermore, a problem so simple
to formulate, but so difficult to solve, is intriguing in itself.

We will approach the problem by formulating an as general as possibleinterface to higher
spin gauge field theory. In the process, specifications that the theory must meet, will be cataloged.
The interface will then turn out to be quite trivial. Then comes the question of implementing the
interface. This is where the nuts and bolts enters. Perhaps there is no implementation, in which
case the theory is void.

Now, what do we gain by adopting this strategy? First, we get a framework where we can
discuss the general aspects of the theory without worrying at the same time whether they can be
implemented or not. We do not have to fix space–time dimension or signature, or worry about
background geometry and coupling to gravity. Indeed, we do not have to worry about space–time
at all. Second, it might be possible to separate the issue of existence from the issue of construction.
Third, if the theory exists, there might be several, in some sense different implementations, thus
avoiding the so common pattern of thinking in terms of uniqueness. Fourth, it might be possible to
implement the theory computationally in some set of abstract data types.sIn that case, consider-
ations of finite definition enters, but that can presumably be taken care of relying on lazy evalu-
ation, thus effectively allowing enumerably infinite data structures.d And last, and perhaps not
completely independent of the previous points, we can separate physics from mathematics. The
problem is so difficult that we cannota priori know if all our cherished physical principles can be
retained. Better then to keep an open mind and treat the problem purely mathematically.

There is one further point to be made. When solving hard problems in theoretical physics, it
is natural to search through mathematics in the hope of finding a pre-existing structure that can be
used. However, one could imagine a physics problem for which there is no mathematical structure
available as yet. That this situation could be encountered in fundamental physics is not at all
unthinkable. It seems to me that computer science has tools to tackle this situation, or at least to
formulate it. Thus, again borrowing from computer science, the approach to higher spin theory
proposed here can also be viewed as an attempt to provide asyntax for the problem. Then
implementation corresponds to providing the syntactical model withsemantics. Now syntax and
semantics are concepts normally applied to programming languages, or formal languages in gen-
eral, so we use the concepts in a slightly transferred sense. Continuing this train of thought, of the
different semantical schemes,denotationalsemantics, where the syntactical structures are mapped
to mathematical objects in a pre-existingsand well understoodd semantical domain,2 seems to be
the most appropriate. If a semantical domain cannot be found, then research should perhaps be
directed towards inventing new mathematics, rather than trying to solve a theoretical physics
problem. If the domain exists, we might be able to target this mathematical structure more pre-
cisely. This is one reason for adopting computer science inspired thinking rather than working
directly within a mathematical structure from the outset.

If it seems strange to use computer science concepts in high energy physics, one should
consider the fact that the subject of theoretical computer science is, in essence,dataandprocesses
in general, and therefore it can be useful in various scientific contexts where one must deal with
complex systems.

Parts of the discussion in this paper are quite elementary. That is inherent in the formal,
syntactic approach. We want to focus on the abstract and general issues involved, not taking, at
least not consciously so, to much pre-existing mathematics on board. But as the present work is
mainly conceptual and in a creative phase, the formalization will not be pushed to far. A pure
syntactic approach would almost certainly obscure the main idea. In order to communicate, we
will compromise by using a somewhat unprincipled mix of syntax, semantics, and mathematics. If
the approach is fruitful, an exact formulation can be set up later.

Perhaps a simple example helps to further explicate this point of view. Consider the real
numbers. The axioms for this structure are well known and used almost subconsciously in every-
day calculating. When working in calculus or real analysis, for example solving differential equa-
tions, these axioms and the theorems are used throughout. We never worry about their relevance
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or their truth. But of course, if there was no implementation of the axioms, the exercise would be
void, i.e., just formal manipulations. Now we know that there are different implementations of the
real numbers in terms of, for example, Dedekind cuts or limits of Cauchy sequences. These
implementations are in their turn based on implementations of the rational numbers in terms of the
natural numbers. The story is well known. But one more point can be made. If numerical calcu-
lations must be done, then a detailed implementation of the real numbers in terms of floating point
numbers is necessary.

Now, we never start with a completely blank mind. We have some knowledge about the
problem at hand and we often have more or less strong intuitions. There might also be folklore on
the subject, but in my opinion, folklore is often too prejudiced to be useful in a creative way.

The first step will be to abstract from what we already know. The scope of the present paper
is to set up a general enough framework within which the problem of self-interactions can be
analyzed, while allowing for various forms for the free theory and allowing for different imple-
mentational ideas as regards interactions.

Two other sources of ideas for the present paper should be mentioned. One is string field
theory,3,4 in particular the nonpolynomial closed string field theory,5,6 and the other is the math-
ematical theory of higher homotopy Lie algebrasssee Ref. 7 for further referencesd. Classical
string field theory can be seen as an implementation of the framework presented here, although we
have actually worked the other way, abstracting what is nonparticular to strings. The various
algebraic structures, on the other hand, can be considered assthemselves quite abstract, but
understoodd semantical domains for the syntax presented here. In fact, there is an enormous
amount of mathematics that might be relevant. We do not understand higher spin gauge fields well
enough to target the appropriate mathematics with precision yet, although it seems possible to
semantically map to higher homotopy Lie algebras. Still we need a concrete, physics like, imple-
mentation. Thus, we envisage a four-tier structure: syntactic formulation of the theory
→semantical map into a known mathematical structure→concrete physicslike implementation
→computational implementation.

II. NOTES ON THE FREE FIELD THEORY

The free field theory of higher spin gauge fields is a simple generalization of the lower spin
gauge theories for spin 1 and spin 2. There are many variations, developed and proposed during
the last five decades.8–14 Indeed, the literature on higher spin fields is enormous, and we will not
attempt to review it. However, it seems to be that certain approaches stand out as particularly
simple and, perhaps for that reason, suited as a basis for interactions. One is the original
formulation15–18in terms of field equations and Lagrangians for symmetric tensor fields, perfected
by Fronsdal.9 Another is the formulation of Freedman and deWit12 in terms of generalized Christ-
offel symbols ssee also Ref. 19d. A third is the BRST approach developed by Siegel and
Zwiebach,20 Ouvry and Stern,21 and independently by the author.22 This approach was inspired by
and adapted from the, at that time, very active work on string field theory. The reader is referred
to the review4 for a list of references. The BRST approach has been rediscovered23–26 several
times during the years since it was first written down in 1986. Then there is the light-front
formulation,27–29which, in a way, is the simplest formulation of all, if not for the intricate mixing
of gauge symmetry with Poincaré symmetry which makes higher order interactions untractable.
Then we have the approach of Vasiliev13 which has lead to a dramatic progress on interactions in
an AdS background geometry. See Refs. 30 and 31 for recent reviews and further references, as
well as a view on the higher spin problem that is complementary to the one given in the present
paper. For completeness, the twistor approach should be noted.8,32

A detailed discussion of the BRST formulation of the free field theory, suitable for our present
purposes, can be found in Ref. 33. Here, the notation that will be needed when discussing the
BRST implementation will be reviewed.

Consider a phase space spanned by bosonic variablessxm ,pmd and sam ,am
†d and ghost vari-

ablessc+,b+d, sc−,b−d, andsc0,b0d with commutation relations
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fxm,png = ihmn, fam,an
†g = hmn, s1d

hc+,b+j = hc−,b−j = hc0,b0j = 1. s2d

The ghosts have the following properties under Hermitian conjugation

sc−d† = c+, sb−d† = b+, sc0d† = c0, sb0d† = b0. s3d

The vacuum is degenerate

amu + l = amu− l = 0, s4d

k+ u− l = k− u + l = 1, s5d

k+ u + l = k− u− l = 0, s6d

with properties

b0u + l = 0, b0u− l = u + l, s7d

c0u− l = 0, c0u + l = u− l, s8d

c−u + l = c−u− l = 0, s9d

b+u + l = b+u− l = 0. s10d

The ghost variables are Grassmann odd, while the bosonic are Grassmann even. The equations
b0u−l= u+l andc0u+l= u−l relating the vacua, then implies that either one of the two vacua must be
odd. Here, we will chooseu2l Grassmann even andu1l Grassmann odd. A peculiar consequence
is that k1u2l becomes odd.

Ghost numbers, gh, are assigned according to

xm,pm,am,am
† 0

c0,c+,c− 1

b0,b+,b− − 1 s11d

u + l − 1/2

u− l 1/2.

The higher spin fields are collected into the ketuFl with expansion

uFl = sFspdu + l + Fspdc+b−u + l + Hspdb−u− l, s12d

where Fspd contains the symmetric higher spin gauge fields, andFspd and Hspd are certain
auxiliary fields. These fields are further expanded in terms of the oscillators

F = F0 + iFmam
† + Fmnam

†an
† + ¯ , s13d

F = F0 + iFmam
† + Fmnam

†an
† + ¯ , s14d
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H = H0 + iHmam
† + Hmnam

†an
† + ¯ . s15d

The gauge parameters are expanded as

uJl = sj0 − ijmam
† + jmnam

†an
† + ¯ db−u + l. s16d

Note that the fielduFl is odd while theuJl is even. The Grassmann properties are carried by
the vacua. When abstracting the free theory, the vacua will be dropped, and the Grassmann
properties ofF andJ will be interchanged. They can be defined either way in the abstract theory.

The BRST operatorQ is expressed in terms of the generators

G0 = 1
2p2, G− = a · p, G+ = a† · p, s17d

spanning the simple algebra

fG−,G+g = 2G0, s18d

with all other commutators zero.
In terms of these generators, the BRST operator readsssigns are chosen so that the component

field actions works out as in Ref. 34d

Q = c0G0 − c+G+ − c−G− − 2c+c−b0. s19d

The action

A = kFuQuFl, s20d

is invariant under the gauge transformations,

dJuFl = QuJl, s21d

as is the field equation

QuFl = 0. s22d

There is one, somewhat puzzling aspect, of this theory. When expanding the equations
s20d–s22d, everything works out nicely for the component fields, except the fact that the theory
contains auxiliary fields which cannot be solved for without introducing a further constraint. This
constraint is applied to both the field and the gauge parameter

TuFl = 0, TuJl = 0, s23d

whereT is the operator

T =
1

2
a · a + b+c−. s24d

When expanded, the constraint equation yields the double tracelessness constraint for com-
ponent fields of spinsù4 and the tracelessness constraint for the corresponding component gauge
parameters. The free field theory is still gauge invariant without imposing these constraints, but the
constraints are needed in order to get the correct number of physical degrees of freedom. These
questions are discussed in Ref. 33.

So the bottom line of the BRST treatment of the free field theory is that the action can be
written askFuQuFl with Q a nilpotent kinetic operator anduFl a certain expansion over internal
and ghost degrees of freedom. Below, when discussing an abstract approach to the theory, we will
not use this notation, instead inventing a new syntax. The reason is to keep bra and ket vectors,
oscillators, and commutator brackets, etc., where they belong, namely in the implementation.
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It is neither particularly difficult, nor very interesting at the present stage of investigation to
write down more complicated free field theories than the one reviewed here. For our present
purpose, it suffices to consider this particular free theory, which is presumable the simplest one, as
an example to abstract.

A note on units: Working in mass units, i.e., with dimensionality dspd=1, all configuration
space fields have dsFsxdd=sD−2d /2 whereD is the space–time dimension, while momentum
space fields have dsFspdd=−sD+2d /2. All in all we get dimensionalities d according to

p,c+,c− 1

a,a†,c0,b0 0

s25d
u + l,u− l 0

x,b+,b− − 1.

Consequently, dsuFld=−sD+2d /2 and dsQd=2.

III. NOTES ON SELF-INTERACTIONS

There is a large amount of work on interactions for higher spin gauge fields. We will certainly
not try to review the full body of knowledge on the matter. Instead, we will outline a few salient
features that we think are significant with respect to the self-interaction problem. We will do this
based on a brief overview of the subject, well aware of the prejudices this might entail.sIn
particular, we will leave out all references to work on coupling point particles to background
higher spin gauge fields, not because the topic is uninteresting, but because it lies somewhat
outside the main thrust of the present paper. The same comment goes for all occurrences of
massless higher spin fields in string theory and its descendantsd.

As far as we know, the question of introducing self-interactionsselectromagnetic and gravi-
tational interactions will be briefly discussed at the end of this sectiond for higher spin massless
fields was first published in Ref. 1, reviewing the so named Gupta program. This program belongs
to the attempts to quantize gravity in terms of an interacting spin 2 field.35,36 It can be approached
via two paths, either by linearizing Einstein gravity, or by starting with a free spin 2 field and
attempting to introduce self-consistent interactions in an iterative way. This latter approach soon
acquired immediacy of its own, more or less independent of the quantization problem. Indeed, the
question of self-coupling a free spin 2 field into a nonlinear theory can be studied as a problem in
classical field theory. Some of the often cited early works on this subject are Refs. 37–40.

That general relativity can be derived from requiring a consistent self-interacting theory of
spin 2 fields, was shown by Deser in Ref. 41ssee also Ref. 42d. In that paper, it is shown that the
Einstein and Yang–Mills theories can both be derived from the requirement of self-interaction in
just one iterative step. The resulting theories are cubic in the first order form, i.e., where pairs of
independent fieldssgmn, Gmn

a d and sAm, Fmnd are used, respectively. In this approach, the further
nonlinearities of the theories are hidden in the choice of first order field variables, since upon
relating to the standard formulation, the fieldGmn

a must be solved in termsgmn, andFmn in terms of
Am in the well known way. This derivation uses only the Abelian local gauge invariance of the free
theory, and the full non-Abelian local gauge invariance is a result rather than an input.

But in the course of this work on Yang–Mills theory and gravity, it became apparent that
gauge invariance is a crucial concept. By iteratively adding nonlinear terms to the free spin 2
action and Abelian gauge transformations, it could be proved1 that a consistent, gauge invariant
theory of self-interacting spin 2 fields can be constructed that is equivalent to Einstein gravity.
This derivation relied on starting from Minkowski space–time, and a free spin 2 fieldhmn propa-
gating in this flat background. That the condition of a Minkowski background can be lifted was
shown in Ref. 43.
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It was only natural then to try and extend the program to spin 3 fields and higher. The general
idea behind this approach is to take a free field theory and its Abelian gauge symmetry and then
deformit into a nonlinear theory. The problem was from the outset1 put in a deformation theoretic
context.44 Most authors express the hope that the so constructed nonlinear theory, if it exists, will
turn out to be unique. A first requirement for this method to succeed is that a general enough
ansatz for the nonlinear theory can be written down. This is a nontrivial problem in general. As
soon as we go beyond spin 2, the problem explodes in a potential complexity of fields, multiplets,
background manifolds, dimensions, symmetry groups, etc., and any ansatz runs the risk of being
to restrictive.

Returning to the historical path, at roughly the same time, another approach to gravity ap-
peared, more closely modeled on Yang–Mills theory. The Yang–Mills interaction of spin 1 fields
was introduced by gauging of a global symmetry algebra like SUsNd in the well-known way.45 A
natural question was whether gravity could likewise be obtained by gauging an appropriate global
space–time symmetry. The candidate global space–time symmetries are the Lorentz or Poincaré
symmetries. It turns out that gravity can indeed be obtained by gauging the Poincaré group using
techniques of vierbeins and spin connections.46–50 The gauging approach is different from the
deformation approach in that the gauge algebra is fixed, but it is promoted from being global to
becoming local. In deformation theory, the algebra is already local, but it is promoted from being
Abelian to becoming non-Abelian. The question then is whether the two approaches yield the
same result. In the case of spin 1 the answer is definitely positive.51,52 In the case of spin 2, there
are conceptual problems involved, at least if one is strongly prejudiced towards a geometrical
view, but barring this, the results agree.

The subsequent work on the higher spin problem followed these two paths, either deforming
the free theory Abelian gauge group, or gauging a globalsbut non-Abeliand symmetry algebra. The
impressive work of Vasiliev falls in the second category. The far less advanced BRST program
falls in the first category, as does the light-front approach and the approach of Berends, Burgers,
and van Dam referred to below. Note also that these methods have been extensively used for
obtaining various supergravity theoriessfor reviews, see Refs. 53 and 54d.

As regards higher spin gauge field interactions, the first positive result was the light-front
construction of cubic interaction terms for arbitrary spin.27 When going from spin 1 and spin 2 in
the light-front approach to higher spin, nothing strange happens. Quite to the contrary, the gener-
alization seems very natural. In four dimensions, where each and every integer spin gauge field
has just two physical helicity degrees of freedom, parametrized by a natural numberl, the cubic
interaction term can be written

gE d4xo
n=0

l

s− 1dnSl

n
Ds]+dlfF ]

]+Gsl−nd

f̄F ]

]+Gn

f̄ + complex conjugate, s26d

where the two components of the complex fieldsf ,f̄d correspond to the two helicitiesl and −l,
and wheres] , ]̄d are complex transverse partial derivatives. The interaction is essentially a binomi-
nal expansion. In the case of oddl, the fields entering the interaction term carry an index
contracted into an antisymmetric symbolfabc reminiscent of the situation for spin 1. How this
generalizes to higher orders in the interaction is not known, since the quartic interaction term has
resisted attempts at construction.

From the cubic interaction term, we can read the following information:

sid There arel transverse derivatives.
sii d The coupling constantg has mass dimension 1−l.
siii d The odd spin fields carry an antisymmetrized index.

The covariant spin 3 vertex constructed in Ref. 55 is consistent with these general properties.
Furthermore, fixing the light-front gauge in the covariant cubic interaction for spin 3 yields
precisely the light-front cubic interaction term for spin 3.56
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In a way, the light-front result is a bit odd. If it turns out, as claimed by Vasiliev, that higher
spin interactions require an anti-deSitter background, then why does the nonlinear Minkowski
Poincaré algebra allow this term? Is it just a coincidence, and the theory breaks down at the quartic
level? We do not know. Note, though, that there are other cubic interaction terms on the light-
front, involving fields of different helicities.29 Whether any of these terms describe higher spin
interaction with gravity to lowest order in the spin 2 field, is at least to my knowledge, not known.
The same situation occurs in covariant approach of Berends, Burgers, and van Dam.55

These latter authors found that upon commuting two spin 3 gauge transformations, the com-
mutator did not close on spin 3, but produced terms that could be interpreted as gauge transfor-
mations for fields of spin.3. This is a clear hint that once one goes beyond spin 2, an infinite
tower of higher spin fields will be neededssee also Refs. 57 and 58d. Berends, Burgers, and van
Dam59,60 furthermore made an extensive analysis of the higher spin problem that is still highly
relevant. Their analysis is within the deformation approach and is based on the original formula-
tion of the free field theory mentioned in Sec. II.

Higher spin fields in electromagnetic and gravitational backgrounds:Self-interactions was
not the first type of interaction discussed for higher spin fields. Rather, it was electromagnetic and
gravitational interactions. To begin with, massive higher spin fields, i.e., matter, in particular spin
3/2, was studied. Later the discussion included massless higher spin gauge fields. There is a huge
literature on this subject, and here we will just point out a list of original referencesshopefully not
to incompleted as well as some recent papers that might be helpful to the reader wishing to pursue
this topic.

To make a long story short, minimally coupling higher spin gauge fields to gravity violates the
higher spin gauge invariances. In the special case of supergravity, nonminimal terms can be added
that saves the theory. But in general, higher spin fields coupled to gravity suffer from a consistency
problem that cannot be alleviated by nonminimal couplings. Similar problems arise in attempts to
couple higher spin fields to electromagnetism. There thus seems to be no consistent way of
introducing higher spin fields into a pre-existing spin 1 and 2 system. The problem was first noted
already by Fierz and Pauli,16 and there exist a long series of papers discussing these problems.61–72

A modern reference is Ref. 73.
In view of these discouraging results it is reasonable to ask if it is at all useful to pursue

investigations into higher spin gauge field interactions. The authors’ own point of view is based on
the following three observations, being well aware of the fact that this is a weak spot;sid negative
sso-called no-go resultsd have been circumvented before,sii d as soon as spin 2 is passed, all spins
must be included, and presumably all be treated on a common ground, and it is not clear what
happens then,siii d all negative results derived within a space–time setting, this might be misguided
if higher spins play any fundamental role at all.

The reader should note that the present paper does not purport to solve these problems, but
rather proposes a way to work around them, by setting up a framework with as few as possible
restrictions.

IV. ABSTRACTING DYNAMICS

Physics concerns itself with the dynamics of physical systems. A physical system is a part of
the universe with a well-defined interface towards the rest of the universe which becomes the
environment. One of the standard paradigms of dynamics is to describe the system in terms of an
action. The action in its turn depends on a set of dynamical variables. Often the action possess
symmetries, i.e., parameter dependent variations of the variables that leave the action essentially
invariant. Equations of motion are obtained by varying the action with respect to the dynamical
variables. The scheme is well known to every physicist, and clearly, it can be formalized. Here we
will choose a moderate level of formalization, sufficient as a backdrop to the formalization we will
need for higher spin gauge fields.

Thus, abstract dynamics can be described as follows.
Let the description of the system be in terms of a set of variableshfij where the indexi runs
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over an index setI. Dynamics is governed by the actionA. The action is a functionAshfijd of the
set of variableshfij. The equations of motion follows from varying the action with respect to the
variables. Formally we have

∀ j P I:sdf j
Ashfijd = 0→ ∃ Wj:Wjshfijd = 0d. s27d

Here,W denotes the equations of motion,

∀ j P I:Wjshfijd = 0. s28d

Defining the variationdf j
requires some care, but we will rely on the standard application of

this operation.
Invariance of the action under symmetry transformations

djf = fshfnj,jd, s29d

is the demand that the variation of the action evaluates to zero

djA = 0. s30d

We also demand that the transformation close and form an algebra, possibly modulo the field
equations,

fdj1
,dj2

gf = fshdj1
fnj,j2d − fshdj2

fnj,j1d = djshfnj,j1,j2dfsmodWd. s31d

The algebra can be field dependent, as signaled by the field dependent gauge parameter
jshfnj ,j1,j2d in the commutator of two gauge transformations.

V. ABSTRACTING THE FREE FIELD THEORY

All higher spin gauge fields, as well as auxiliary fields, are packaged into one master fieldF.
Let such a field be called an HS field. The explicit representation is left to the implementation.
However, we need a way to extract the component fields. Let us write this formally as

getsF,sd → fs, s32d

where we can think ofget as either an operator acting onF or as a function call in the case that
the theory is implemented computationally.get applied to the field equation forF should yield the
component field equations. In practice, in order to make contact with conventional field theory, the
component fields will be ordinary symmetric tensors, so that

fsspd = fm1m2¯ms
spd. s33d

Here,p denotes a momentum space coordinate and the indicesm are space–time indices. It
should be kept in mind, though, that there might be situations where we want to hide the space–
time representation, or where we want to extract an entirely different representation. There is also
the possibility that there is no space–time representation.sA deep reason for the severe problems
in constructing interactions might be that space–time is not the proper arena for higher spins.
Assuming that the very concept of spin can be given a reasonable definition independent of a
background space–time geometry, such a representation is currently under investigation.d

Furthermore, we need a way to distinguish different fields. Here we will build in one piece of
classical field theory. Fields depend on variables, in general space–time coordinates and possibly
extra variables. All these will be collected into one indexed symbolsi, which as already noted,
need not be related to space–time at all. Thus we will write HS fields asFssid, sometimes
abbreviated toFi for convenience.

Implicit in the above discussion on the HS fields is that they belong to some setH. Eventually
H might be a Hilbert space, but we need not presuppose that as yet. We writeF<H. One can
think of this equation as stating thetypeof F.
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Furthermore, to the extent to which we need to be able to multiply fields by numbers and add
them, we may assume that the setH of HS fields is a vector space. The scalars of the vector space
can be complex numbers of even or odd Grassmann parity. The fields might carry a Grassmann
parity %sFdP h0,1j, so that

F1F2 = s− d%sF1d%sF2dF2F1. s34d

The product involved here is just a direct product^. This equation could also be regarded as a
purely textual ordering of symbols. It will be used subsequently when a proper field product is
defined.

A minimum requirement in order to write down a free field theory action is that we can write
a real bilinear form containing some kind of kinetic operatorK. Contemplating this, it becomes
clear that we need to enforce the structure of an inner productins· , ·d on the vector space,

ins·, ·d < H2 → C. s35d

Finally, we need a structure of linear operators acting on the fields. LetK be one such operator

K < H → H, s36d

then the free field theory action is written

AsFd = insF,KFd. s37d

It is clearly interesting to analyze what is the weakest possible structure that needs to be
introduced. The above assumptions are more based on intuition than on a systematic study. As
already noted in the introduction, a pure syntactic formulation should presumably be pursued, but
it is not useful at the present exploratory stage of investigation.

In this context, it can be discussed how general the equations37d for the free action is. It is
clearly an abstraction of thekFuQuFl action in the BRST approach. However, that the free action
should be a bilinear in the abstract fieldF is hard to dispute. Furthermore, the field equations
should involve some operators, differentialsor momentumd in a space–time description, so it is
hard to escape some linear operatorK acting onF and in some way extracting a concrete kinetic
operator acting on the component fields. But the reader must judge for herself/himself.

VI. ABSTRACTING INTERACTIONS

In any field theory, interactions between different fields enter the field equations with nonlin-
ear terms, corresponding to nonquadratic contributions to the action. To accommodate this in our
scheme, we need a way to form products between fields. It is immediately clear that ordinary naive
school products are insufficient in the general case. That only works in scalar polynomial theories
like the f3-model. All other field theories, electrodynamics, gravity, string field theory, etc.,
requires more elaborate schemes. For example, the Yang–Mills three field interaction term reads

gfabcAm
asxdAbsxd · ]Asxdcm. s38d

Superficially, the three fields seem to enter the interaction term in an unsymmetric way. But if
the term is transformed to momentum space, it can be written as

gfabcA
asp1d ·Absp2dsp1 − p2d ·Acsp3d + cyclic permutations. s39d

The configuration space interaction term is local in space–time, whereas in momentum space, the
fields entering the interaction term carry their own momenta. This is the form of interaction that
we want to abstract, since then each field carries a unique label encoded insi.

A product ofn HS fields is a multilinear mappr <H^n→H,

Fssn+1d = pr sFss1d,Fss2d, . . . ,Fssndd. s40d

042312-10 A. K. H. Bengtsson J. Math. Phys. 46, 042312 ~2005!

                                                                                                                                    



A priori, this product has no symmetries, an issue to which we will return below. A shorthand
notation is useful when the field arguments are not needed

pr sFnd ; pr sFss1d,Fss2d, . . . ,Fssndd ; pr sF1, . . . ,Fnd. s41d

We will also need expressions likepr sFk,Cld, which are naturally expanded as need be

pr sFk,Cld = pr sF1, . . . ,Fk,C1, . . . ,Cld. s42d

Multilinearity entails

pr sF1, . . . ,anFn + bnCn, . . . ,Fmd = ans− disan,ndpr sF1, . . . ,Fn, . . . ,Fmd

+ bns− disbn,ndpr sF1, . . . ,Cn, . . . ,Fmd, s43d

where

isan,nd = %sands%sF1d + ¯ + %sFn−1dd. s44d

Upon reordering adjacent fields in the product, there might be a sign flip in the case where they
anticommute,

pr sF1, . . . ,Fn,Cn+1, . . . ,Fmd = s− d%sFnd%sCn+1dpr sF1, . . . ,Cn+1,Fn, . . . ,Fmd. s45d

The HS fields themselves can be chosen as Grassmann even, as seen from the free field theory
swhere the odd parity derives from the vacuumd. But we need this generality, taking grading into
account, since the gauge parameters are odd, and there will occur odd operators likeQ. This also
derives from the BRST free theory. The product itself is assumed to carry no intrinsic Grassmann
parity.

Now, flipping the order of adjacent fields in the product, all permutations of the fields can be
reached. In the case of Grassmann even fields, the product is therefore independent of the par-
ticular order in which the fields are written, and the product is strictly commutative. This might
sound confusing, since we certainly do not expect an Abelian theory. However, noncommutativity
enters when one considers the nested products that appear when studying gauge invariance and
commutators of gauge transformations. Furthermore, associativity is not an issue at this stage.
Here we are considering primitiven-ary products, and associativity only enters upon discussing,
for example, expressing a product of three factors in terms of successive products of two factors.

It should be clear that in order for this product to serve as a basis for introducing interactions,
it must have further properties. This is precisely the subject of our study. The bare minimum of
such properties will be derived from the requirement of gauge invariance of the action.

The low indicesn=0 andn=1 merit simplified notation. Thus we define

pr sF0d ; pr s d = 0, s46d

whereF0 is defined to be a void argument, and

pr sFd = KF. s47d

Since forn=1, pr is of typeH→H, it makes sense to define it as linear transformation. If any
of the fields is identically zero for all values of the labelssi, then the product is zero.

We now have the abstract tools for writing interactions. By taking the product between
n−1 HS fields and then the inner product with annth field, a candidate for ann-field interaction
term can be written

insFn,pr sF1,F2, . . . ,Fn−1dd. s48d

It makes sense to introduce a special notation for this expression

vxsF1,F2, . . . ,Fnd = insFn,pr sF1,F2, . . . ,Fn−1dd s49d
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so thatvx is a multilinear mapvx<H^n→C.
Just as the products40d, vx has noa priori symmetries. However, if this is to be useful in an

interaction term, it must at least be cyclic symmetric in the fieldfcompare to the Yang–Mills three
field interaction term aboves39dg. This can be fixed by explicitly summing over all permutations
of the fields. Alternatively, one could just sum over all cyclic permutations. It turns out, though,
that summing over all permutations leads to simpler formulas. Computationally, it is inefficient to
sum over all permutations. However, in actual implementations, the permutation symmetries will
be explicit, and the combinatorial sums collapse into at mostOsn2d terms.

To that end, letpf0. .ng denote the set of all permutations of the listf0. .ng of natural numbers
between 0 andn. Thenopfng will denote a sum over permutations.

This finishes setting up of the basic syntax of the theory. In the following sections, we will
perform calculations within this syntax. That might seem a bit strange, since we have not defined
any rules of calculation or rewrite rules. However, close scrutiny of the manipulations that follow
shows that we only need to do substitutions and rearrangements of sums. This is a weak form of
equational reasoning that we certainly want to do in any formalism, but strictly speaking, rewrite
rules, belong to semantics.

VII. THE ACTION AND GAUGE INVARIANCE

Since we are working within the deformation tradition it makes sense to write an ansatz for
the action as a formal power series in the polymorphic mapvx. The action then reads

AsFd = o
i=2

`
gi−2

i! o
pfig

vxsF1,F2, . . . ,Fid. s50d

To clean up notation, introduce a new summation symbolopsi=md
` ;oi=m

` opfig.
The action can written, highlighting the kinetic term explicitly and expandingvx, in the form

AsFd = insF,KFd + o
psi=3d

`
gi−2

i!
insFi,pr sF1,F2, . . . ,Fi−1dd

= insF,KFd + o
psi=3d

`
gi−2

i!
insF,pr sFi−1dd, s51d

where

insF,KFd = 1
2sinsF1,K2F2d + insF2,K1F1dd. s52d

The gauge transformation will also be written as a formal power series. At this stage we have
a choice either to introduce a new abstract productprg srenaming the previously introduced
productprad, or use the same product as the one used for the action. This is one of the points
where one is confronted with a dilemma as to the generality of the ansatz. We will be conservative
here and use the same product. The gauge transformation then reads

dJF = o
psi=0d

`
gi

i!
pr sFi,Jd = KJ + o

psi=1d

`
gi

i!
pr sFi,Jd. s53d

Gauge invariance of the action to all orders of interaction amounts to

dJAsFd = 0. s54d

By demanding this to be true, we can derive the requisite demands on the mapsin, pr , andvx.
We must go through this calculation meticulously as we must note all steps where required
properties of the maps must be recorded. To that aim, applydJ to the actions50d,
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dJAsFd = o
i=2

`
gi−2

i!
dJo

pfig
vxsFid. s55d

We immediately run into the problem of how to perform this operation. However, by analyz-
ing how the operation of varying the action is normally done in standard field theories, we see that
this can be done by just textually substitutingdJF for all the occurences ofF one at a turn so to
speak. Indeed

dJvxsF1,F2, . . . ,Fid = vxsdJF1,F2, . . . ,Fid + vxsF1,dJF2, . . . ,Fid

+ ¯ + vxsF1,F2, . . . ,dJFid, s56d

so that we get

dJ o
pfng

vxsFnd = no
pfng

vxsdJF,Fn−1d. s57d

Thus continuing the calculations55d, we get

dJAsFd = o
psi=2d

`
gi−2

si − 1d!
vxsdJF,Fi−1d. s58d

Then, upon substitutings53d for dJF and shifting thei-sum, i → i −1,

o
psi=1d

`
gi−1

i! o
ps j=0d

`
gj

j !
vxspr sF j,Jd,Fid. s59d

Here, we can use the definitions49d of vx,

o
psi=1d

`

o
ps j=0d

`
gi+j−1

i! j !
inspr sF j,Jd,pr sFidd. s60d

No harm is done by extending thei-sum to start ati =0. Assuming that it is allowed to
rearrange the double sum, it can be written as

o
i=0

`

o
psk=0d
psl=0d

k+l=i
gi−1

k! l!
inspr sFk,Jd,pr sFldd, s61d

i.e., we are summing order by order in the total power of the field, corresponding to how an order
by order checking of invariance would be performed. Thus, for any fixedi =n, study

o
psk=0d
psl=0d

k+l=n
gn−1

k! l!
inspr sFk,Jd,pr sFldd = o

psk=0d
psl=0d

k+l=n
gn−1

k! l!
inspr sFld,pr sFk,Jdd. s62d

Again using the definitions49d of vx,

o
psk=0d
psl=0d

k+l=n
gn−1

k! l!
vxspr sFld,Fk,Jd = o

psk=0d
psl=0d

k+l=n
gn−1

k! l!
vxsJ,Fk,pr sFldd = o

psk=0d
psl=0d

k+l=n
gn−1

k! l!
insJ,pr sFk,pr sFlddd.

s63d

Normally, invariance should not depend on the gauge parameterJ, so in order for this sum to
vanish, we must require for allnPN,
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o
psk=0d
psl=0d

k+l=n
1

k! l!
pr sFk,pr sFldd = 0. s64d

This is a nontrivial demand on the mappr . The other demands can be considered as part of the
syntax, but this one involves the semantics of the theory. We will refer to this requirement as the
product identity.

Low level special cases of the product identity:The first four levels, i.e., values ofn, are of
immediate importance.

Whenn=0 the identity trivializes to

pr spr s dd = pr s0d = 0. s65d

The casen=1 becomes

pr sF,pr s dd + pr spr sFdd = KKF = 0. s66d

This equation expresses gauge invariance for the free theory.
Whenn=2, taking permutations into account and noting thatpr sF1,F2d is actually symmet-

ric, we get

pr spr sF1,F2dd + pr sF1,pr sF2dd + pr sF2,pr sF1dd = 0, s67d

or

Kpr sF1,F2d + pr sF1,KF2d + pr sKF1,F2d = 0. s68d

This equation expresses gauge invariance of the cubic interaction term. Granting that we
already know how to implement then=1 equation in terms of an appropriate field and a kinetic
operator, then=2 equation is the first nontrivial equation to implement. It involves the two-
productpr s· , ·d which so far is undefined. This is the product that was partially studied in Ref. 33.

The next level,n=3 involves the quartic interaction term

Kpr sF1,F2,F3d + pr sKF1,F2,F3d + pr sF1,KF2,F3d + pr sF1,F2,KF3d + pr sF1,pr sF2,F3dd

+ pr sF2,pr sF3,F1dd + pr sF3,pr sF1,F2dd = 0. s69d

This equation expresses gauge invariance up to the quartic level. In order to solve it, the full
two-productpr s· , ·d must have been obtained first. Clearly, it can then be seen as a differential
equation for the three-productpr s· , · , ·d with K acting as differential operator.

It follows that a necessary condition for the interaction to be cubic is that the two-product
satisfies a Jacobi identity. In the cubic case, the three-productpr s· , · , ·d is zero, and the first four
terms ins69d vanishes.

The field equations:Varying the actions50d with respect to the fieldF yields the field
equation

dFAsFd = o
psi=2d

`
gi−2

si − 1d!
vxsdF,Fi−1d = inSdF, o

psi=1d

`
gi−1

i!
pr sFidD . s70d

According to the abstract dynamics, we get the field equation

WsFd = o
psi=1d

`
gi−1

i!
pr sFid = 0, s71d

thus expressing the basic intuition that the product captures the interactions.
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VIII. THE GAUGE ALGEBRA

In order to examine the gauge algebra, we do the standard calculation,

fdJ1
,dJ2

gF = dJ1
dJ2

F − s1 ↔ 2d

= dJ1S o
psi=0d

`
gi

i!
pr sFi,J2dD − s1 ↔ 2d

= o
psi=1d

`
gi

si − 1d!
pr sdJ1

F,Fi−1,J2d − s1 ↔ 2d

= o
psi=0d

`

o
ps j=0d

`
gi+j+1

i! j !
pr spr sF j,J1d,sFi,J2dd − s1 ↔ 2d

= o
i=0

`

o
psk=0d
psl=0d

k+l=i
gk+l+1

k! l!
pr sFk,J1,pr sFl,J2dd − s1 ↔ 2d. s72d

This is as far as we can get without invoking semantics for the product. Experience with field
theory, shows that the commutator of two gauge transformations should close on a new, possibly
field dependent gauge transformation, possibly modulo the field equations.

The form of Eq.s72d suggests considering

pr sFk,pr sJ1,J2,F
ldd. s73d

If we could establish the following identity,

o
psk=0d
psl=0d

k+l=i
gk+l+1

k! l!
hpr sFk,pr sJ1,J2,F

ldd + pr sFk,J1,J2,pr sFldd + pr sFk,J1,pr sJ2,F
ldd

− pr sFk,J2,pr sJ1,F
lddj = 0, s74d

then the calculations72d could be continued with

− o
n=0

`

o
psk=0d
psl=0d

k+l=n
gk+l+1

k! l!
spr sFk,pr sJ1,J2,F

ldd + pr sFk,J1,J2,pr sFlddd

= − o
psk=0d

`
gk

k!
prSFk, o

psl=0d

`
gl+1

l!
pr sJ1,J2,F

ldD − o
psk=0d

`
gk

k!
prSFk,J1,J2, o

psl=0d

`
gl+1

l!
pr sFldD .

s75d

The first term can be recognized as a field dependent gauge transformation and the second as
being proportional to the field equations, thus

fdJ1
,dJ2

gF = dJsF,J1,J2dF − g2 o
psk=0d

`
gk

k!
pr sFk,J1,J2,WsFdd, s76d

where the new gauge parameter is

JsF,J1,J2d = − o
psl=0d

`
gl+1

l!
pr sJ1,J2,F

ld. s77d
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We can now record the required properties of the product. Apart from being able to make
substitutions, add and compare equal terms, i.e., use standard equational reasoning, the product
identity s64d is the only nontrivial demand onpr . The equations74d that is needed in the gauge
algebra calculation, can be subsumed in a generalization of the product identitys64d. Let us see
how this can be done.

The product identity was derived under the assumption that all the fields were Grassmann
even, and that the only odd object was the gauge parameter. Therefore, the Grassmann properties
could be ignored. We must generalizes64d to include the case of fields with even and odd parities.
To that end, lethGij denote a set ofn fields with %sGidP h0,1j.

The sum in the product identity runs over all permutations just for convenience. The different
terms are cyclic permutations of the split of the string of fieldsF1¯Fn into two strings withk and
l fields, respectively, and the factor 1/k! l! is cancelled against the number of equal permutations
in each split. Therefores64d can be written as

o
k=0,l=0

cycl.perm.

k+l=n

pr sFk,pr sFldd = 0. s78d

Another way to express this is to consider the index seth1, . . . ,nj as split into the two sets
hi1, . . . ,ikj and h j1, . . . ,j lj.

Denote the splithhi1, . . . ,ikj ,h j1, . . . ,j ljj by xsk, ld. The sum then runs over all different such
splits

o
k=0,l=0

xsk,ld

k+l=n

pr sFi1
¯ Fik

,pr sF j1
¯ F j l

dd = 0. s79d

The order of the indices does not matter when all the fields are Grassmann even. When
arbitrary parities are involved, we need a convention as to the order. Instead of setshi1, . . . ,ikj and
h j1, . . . ,j lj we use ordered listsfi1. .ikg andf j1. . j lg. This pair of ordered lists is denoted bypsk, ld.
It is a particular permutation of the index set into two lists withi1, ¯ , ik and j1, ¯ , j l.

If the fields carry arbitrary Grassmann parity, the weakest generalization is to record a sign
picked up when the order of the fieldsGi1

¯Gik
¯G j1

¯G j l
are reordered lexicographically into

G1G2¯Gn. Denote this sign byespsk, ldd.
We must sum over all such splittings, keeping track of the signs

o
k=0,l=0

psk,ld

k+l=n

espsk,lddpr sGi1
¯ Gik

,pr sG j1
¯ G j l

dd = 0. s80d

We can then return to the equations74d that governs the closure of the gauge algebra. Con-
sider first the last expression of the commutator calculations72d. Expanding the permutations we
have

o
k=0,l=0

cycl.perm.

k+l=n

pr sFk,J1,pr sFl,J2dd − s1 ↔ 2d. s81d

Consider applying the identitys80d to the string of fieldsGn=Fk8J1J2Fl8. Of the terms in the
sum, there are terms where bothJ1 andJ2 are in the first list, bothJ1 andJ2 in the second list,
and terms whereJ1sJ2d is in the first andJ2sJ1d in the second. Writing this out explicitly yields
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o
k=0,l=0

xsk,ld

k+l=n

hpr sFk,pr sJ1,J2,F
ldd + pr sFk,J1,J2,pr sFldd + pr sFk,J1,pr sJ2,F

ldd

− pr sFk,J2,pr sJ1,F
lddj = 0. s82d

Thus, the identitys74d we used in the gauge algebra calculation follows from the generalized
product identitys80d taking Grassmann parities into account.

Therefore, given a particular type of free gauge fieldsF, gauge parameterJ, a kinetic
operatorK and the inner productin, construction of the mappr satisfying s80d is the only
nontrivial task.

In this way, the vaguely defined problem of introducing interactions for higher spin gauge
fields, has been focused on implementing the product mappr satisfying the product identitys80d.
Since very little has been assumed as to the particulars of such an implementation, we are quite
free to explore various implementational schemes. These vary from finding pre-existing math-
ematical domains to setting up concrete data structures within which computerized explorations
can be performed. In the last two paragraphs, we will outline examples of these two extreme
approaches.

IX. STRONGLY HOMOTOPY LIE ALGEBRAS

The product identities we have found are similar to the defining identities for strongly homo-
topy Lie algebrasssh-Lie algebras orL` algebrasd.74,75This opens the possibility to map the syntax
set up here onto such an algebra. Furthermore, in a recent paper76 it is shown that if the gauge
algebra of the Lagrangian higher spin field theory of Berends, Burgers, and van Dam59 actually
exists, then it has the structure of an sh-Lie algebra. The approach of the present paper is more
direct in that the gauge algebra falls into an sh-Lie algebra pattern without further analysis. In both
these approaches, the problem is that we do not know which particular algebra to choose. Or
phrased differently, we do not know if the deformed gauge algebra of the interacting fields exist,
starting from the gauge field theory of the free fields.

There are a few variants of the basic definitions of strongly homotopy Lie algebras in the
literature, but the following, mildly technical, is sufficient for our purpose to bring out the simi-
larity to the product identity.

Definition: Consider aZ2 graded vector spaceV=V0 % V1 over some number field, and denote
the elements byx. The grading is given by% with %sxd=0 if xPV0 and%sxd=1 if xPV1. V is
supposed to carry a sequence ofn-linear products denoted by brackets. The gradedn-linearity is
expressed by

fx1, . . . ,xn,xn+1, . . . ,xmg = s− d%sxnd%sxn+1dfx1, . . . ,xn+1,xn, . . . ,xmg, s83d

fx1, . . . ,anxn + bnxn8 . . . ,xmg = ans− disan,ndfx1, . . . ,xn, . . . ,xmg + bns− disbn,ndfx1, . . . ,xn8, . . . ,xmg,

s84d

whereisan,nd=%sands%sx1d+¯ +%sxn−1d.
The defining identities for the algebra are, for allnPN,

o
k=0

l=0

k+l=n

o
psk,ld

espsk,lddffxps1d, . . . ,xpskdg,xpsk+1d, . . . ,xpsk+ldg = 0, s85d

where psk, ld stands forsk, ld-unshuffles. Ask, ld-unshuffle is a permutationp of the indices
1,2, . . . ,k+ l such thatps1d, ¯ ,pskd andpsk+1d, ¯ ,psk+ ld. espsk, ldd is the sign picked
up during the unshuffle as the pointsxi with indices 0ø i øk are taken through the pointsxj with
indicesk+1ø j ø l. This is just the normal procedure in superalgebras.
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The low index,n=0 andn=1 brackets are treated separately, thus

f·g = 0, s86d

fxg = ]x, s87d

with ] a derivation.
This is a definition. Given that such algebras do exist, it is clear that they provide a possible

semantic target for abstract higher spin gauge field theory. It is obvious that the image of a fieldFn

is a pointxn, and that the productspr s·d map into the bracketsf·g. A technical detail is that in order
for the mapping to be complete, the sh-Lie algebra must be supplied with an inner product.

The details of setting up this mapping would require some care, but it should be essentially
straightforward. The problem lies elsewhere, we still do not know which particular algebra to map
to. Had we known the correct concrete algebra, then we would have had a solution to the higher
spin problem.

A way out of this dilemma is to, as a first step, map the corresponding categories instead. By
formalizing the syntax given here, a category of interacting fields, sayIField is set up. The same
is done for strongly homotopy Lie algebras, denoted byshLie. The interpretation mapfu·ug is then
a functor from the interacting fields to the sh-Lie algebras.

fu · ug < IField → shLie.

Clearly, there is much work to done here and many technical details to work out. It should be
noted that category theory can in fact be used in denotational semantics for programming
languages.77 Given that a programming language is just an example of a formal language, and that
abstract field theory also can be formulated as a formal language, it should be clear that this point
of view is feasible. Whether it helps in the quest to obtain a concrete physicslike implementation
remains to be seen. At least, we are able to put interacting higher spin gauge fields in a context
where models can be systematically searched for.

From a physics point of view it is clear that the abstract view given here must be supple-
mented by physical insight into the problem. That is, what are higher spin gauge fields? What kind
of physics do they describe? What is the proper context to set them in? Lacking that understand-
ing, we will in the next section set up a framework for a concrete implementation within which the
problem can at least be pursued by brute force computerized calculation.

X. VERTEX IMPLEMENTATION

With the free field theory implemented using the BRST technique briefly reviewed in Sec. II,
it is natural to try to implement the interacting field products in terms of vertex operators. This is
how string field theory is done. Taking the open string as an example, the three string vertex is a
product of a bosonic vertex and a ghost vertex. The bosonic vertex is

uV3l = expS1

2 o
r,s=1

3

o
n,m=0

`

a−n
m,rNnm

rs a−m
m,sDu− l3,

in terms of bosonic string oscillatorsa−n
m,r and the Neumann function matricesNnm

rs . There has been
attempts to use this form of three vertex for higher spin gauge fields, but that fails since such a
vertex do not reproduce the spin 1 Yang–Mills cubic interaction term.78. It is known from the
light-front form of the cubic interaction term29 that the vertex must at least contain terms of the
generic forma†a†a†p sindices suppressedd, i.e., with three oscillators and one momentum label.
Such a covariant vertex was partially determined in Ref. 33 and it correctly reproduces the
Yang–Mills cubic interaction term. Further progress was halted by a lack of an effective way of
calculating higher order terms in the three vertex. In this section, higher spin vertices will be
discussed from the point of view of the abstract approach presented here.
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The intention is to define the field products in terms of vertex operators. Ann-vertex operator
is an object that takesn−1 fields, labeled byhsij1

n−1 and outputs a new field, labeled bysn. Each
field Fssid is represented as a ket vectoruFssidl in the oscillator and ghost Fock space corre-
sponding to the labelsi as in Eqs.s12d–s15d. The product is defined in terms of then-vertex
uVss1, . . . ,sn−1,sndl by

pr sFss1d, . . . ,Fssn−1dd ; kFss1du ¯ kFssn−1duuVss1, . . . ,sn−1,sndl. s88d

The notation makes it explicit that the product evaluates to a ket fielduFssndl, or

kFss1du ¯ kFssn−1duuVss1, . . . ,sn−1,sndl → uFssndl. s89d

Note that the fieldsuFl are now Grassmann odd due to the vacuumu+l, whereas the gauge
parameters are Grassmann even. As will be seen below, the vertex can be built from Grassmann
even objects, so that it has full permutational symmetry in all then field labels.

Likewise the mapvx is represented by

vxsFss1d, . . . ,Fssndd ; kFss1du ¯ kFssnduuVss1, . . . ,sndl, s90d

which evaluates to a combination of component fields and momentum labels. In the abstract
action,vx is summed over all permutations of the fields. If we allow ourselves the trick of moving
all the k+un vacua to the left, we get

1

n! o
pf1..ng

vxsFss1d, . . . ,Fssndd =
1

n!
s^ i=1

n k+ uidS o
pf1..ng

Fss1d ¯ FssndDuVss1, . . . ,sndl

= kFss1du ¯ kFssnduuVss1, . . . ,sndl, s91d

i.e., one term, in that particular order. With1¯nk+u as a shorthand for̂ i=1
n k+ui, this can also be

written keeping all the vacua to the left,

1¯nk+ uFss1d ¯ FssnduVss1, . . . ,sndl, s92d

a form that is convenient for explicit calculations.
When implementing the abstract gauge transformation, some care is needed considering the

permutations. The vertex implementation of the gauge transformation becomes

dJuFssndl = QsnduFssndl +
n

2 o
cycl.perm

fs1..sn−1g

1¯nk+ uFss1d ¯ Fssn−2dJssn−1duVss1, . . . ,sn−1,sndl,

s93d

where the coefficientn/2 is an artefact of the permutations.
When evaluating expressions such ass88d, s90d, and s93d, the explicit oscillator and ghost

representations of Sec. II is used.
In order for the vertex to encode nontrivial interaction information, we introduce ann-ary

function F of the labelshsij1
n. Then we write the vertex as

uVss1, . . . ,sndl = Fss1, . . . ,snd E dDp1u− l1 ¯E dDpnu− lndDsSi=1
n pid, s94d

wheredDsSi=1
n pid enforces momentum conservation.

For notational convenience, write

u− l1¯n =E dDp1u− l1 ¯E dDpnu− lndDsSi=1
n pid. s95d
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The n-order interaction term can now be written

gn−2kFu^nFnu− l1¯n. s96d

With this form for the vertex, mass dimensions and ghost number counting should work out
correctly. It is natural to demand ghsFd=0, i.e., the ghost number is zero, but it must carry mass
dimension, as will be calculated shortly.

The ghost number count works out

ghskFu^nd + ghsu− l1¯nd = nS−
1

2
D +

n

2
= 0.

The mass dimension count yields

sn − 2ddsgd + dsFnd + nS−
D + 2

2
D + nD − D = 0. s97d

There is no compelling reason to letg carry nonzero dimensionality, thus we set dsgd=0, so that

dsFnd = D + n −
nD

2
s98d

in four dimensions, the dimension is simply 4−n.
Ansatz for the vertex function:The ansatz for the vertex functionFn is based on the following

clauses:

sid ghsFnd=0,
sii d Fn does not contain annihilatorsc0, c−, b+ or am,
siii d Fn is a space–time scalar,
sivd dsFnd= 1

2s2D+2n−nDd.

The first three clauses imply thatFn can be built from the following bilinears:

ar
† · as

†, ar
† · ps, cr

+bs−, cr
+bs0,

where the indicesr ,s label HS fields. The fourth clause requires that we introduce at least one-
dimensional constantk to balance the dimensions for the second and last bilinear. Choose dskd
=−1. Introduce a symbolhrs

a to denote the dimensionless bilinears according to

hrs
1 = ar

† · as
†, hrs

2 = kar
† · ps, hrs

3 = cr
+bs−, hrs

4 = kcr
+bs0. s99d

As already noted, the higher spin vertices cannot be built out of these bilinears alone, rather,
powers of the bilinears must be considered. To that end, introduce a symbolD2m

n wheren denotes
the order of the vertex andm denotes the homogenous power of bilinears,

D2m
n =nYa1¯am

r1s1¯rmsmhr1s1

a1
¯ hrmsm

am , s100d

where there are implicit summations according to

sid all r i andsi, i P f1. .mg are summed over the listf1. .ng,
sii d all ai, i P f1. .mg are summed over the listf1. .4g,

and where the coefficientsnYa1¯am

r1s1¯rmsm are algebraic numbers to be determined.
Finally, Fn can be synthesized as

Fn = o
m

`

kfsnD/2d−D−ngD2m
n . s101d
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In this framework, the countable set of functionshFnjn=3
` , if they exist, encode the full inter-

acting theory of higher spin gauge fields. The same information can therefore also be considered
as encoded into the countable set of numbershnYa1¯am

r1s1¯rmsmj.
Summarizing, we have the action

A = kFuQuFl + o
n=2

`

gn−2kFu^nFnu− l1¯n, s102d

and the gauge transformations

dJuFl = QuJl + o
n=3

`
n

2
gn−2 o

cycl.perm
1¯nk+ uF^sn−2dJFnu− l1¯n. s103d

It is clear that when formulated in this manner, the gauge invariance of the action can be
checked order by order by computerized calculation. At least it should be possible to work out the
quartic vertex up to and including spin 3 fields. This would make it possible to compare with the
known spin 1 and spin 2 cubic and quartic interaction terms, and with the covariant cubic inter-
action term for spin 3 derived by Berends, Burgers, and van Dam.55 Furthermore, it is likely that
any obstructions that might make the theory inconsistent should crop up beyond the cubic term.

In order to organize such a calculation a few more points need clarifying. These are the issues
of field redefinitions, global symmetries and the tracelessness constraints. A brief discussion of
these points can be found in Ref. 33. Setting up the concrete data structures can be done in a
functional language like Haskell. But the details of this belong to a computer science journal rather
then a physics journal. Therefore this paper defers a thorough discussion to a more appropriate
context.

XI. CONCLUSIONS AND OUTLOOK

It is clear that the framework constructed here is not specific to higher spin gauge fields.
Higher spin gauge fields enter in the specifications of the fieldsF and the kinetic BRST operator
Q, thus essentially in the free field theory. The rest of the abstract structure is independent of the
detailed form ofF andQ. Whether there is an implementation of the structure or not, depends,
consequently, on the form of the free theory.

In particular, the abstract structure is silent on the question of multiplet structure, global
symmetries, group theory factors, etc. The free field theory contemplated in Sec. II is special in
that it contains just one component field of each integer spins. This is perhaps the most simple
situation to envision. We do not know yet if the interacting theory can be constructed in this case.
It might be that more complicated multiplet structures are needed, perhaps accompanied by su-
persymmetry.

There is one peculiarity about the theory outlined here. What is the role of the spin 2 gauge
field that appears in the free field theory? The question is connected to the role of gravity and
space–time background. Presumably, the free field theory can be cast in any fixed spacetime
background. The kinetic operatorQ is known in Minkowski space and in AdS space.

The author is reluctant at the moment to speculate on a fundamental role for higher spin gauge
fields. But one line of thought seems appropriate to air in the present context. The ubiquity of
gravity at all scales of physics is one of the standard tenets of fundamental physics. In particular,
this is one of the motivations behind the many attempts to quantize gravity and unify gravity with
the spin 1 Yang–Mills forces. On the other hand, there is something glaringly macroscopic about
gravity. The force is weak and long range. It is fair to say that we do not know much about gravity
on extreme submicroscopic scales. There is a strand of research based on the assumption that
gravity is not a fundamental force at all, but just an effective force that manifests itself above
submicroscopic scales. Furthermore, as is clear from the cited work on deriving the gravitational
equations either by deforming the free field theory, or by gauging the Poincaré group, that the
nonlinearities can be understood without building it on a geometrical interpretation. This squares
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well with the present day folklore that space–time breaks down at the Planck scale. But if space–
time breaks down, then so does physical geometry. This emphasizes the intuition that arithmetic is
more fundamental than geometry. Arithmetic is completely scale independent, and since the ab-
straction of arithmetic is algebra, it can be argued that an algebraic approach to the fundamental
theory is more natural than a geometric. Should it furthermore turn out that there is a fundamen-
tally discrete substructure to reality, we think physical geometry is out at the most minute scales.

There are no-go theorems79,80,34to the effect that massless fields of spin greater than 2 cannot
generate long range forces. This is also consistent with everyday experience. One, admittedly
sweeping, scenario would be that in a theory containing massless fields of all integersand perhaps
half-integerd spin, all the fields with spins.2 just generate extreme submicroscopic forces, while
the spin 2 field gets effectively self-coupled to generate gravity, and the spin 1 fields generate the
standard model forces, one of them surviving as long-range electrodynamics.

Related to the issues discussed here, there is one advantage of the abstract approach to higher
spin fields. It makes it very natural to reconsider, as already noted, the higher spin problem in a
non-space–time context.

To conclude, there is at least three areas where research is needed. First, the semantic mapping
into generalized Lie algebras need to be clarified. Second, a brute force calculation within the
vertex implementation should be undertaken for experimental reasons. And third, physical insight
into the significance of higher spin gauge fields is badly needed.
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In this work a new asymptotically flat solution of the coupled Einstein–Born–Infeld
equations for a static spherically symmetric space–time is obtained. When the
intrinsic mass is zero the resulting space–time is regular everywhere, in the sense
given by Hoffmann and Infeld in 1937, and the Einstein–Born–Infeld theory leads
to the identification of the gravitational with the electromagnetic mass. This means
that the metric, the electromagnetic field, and their derivatives do not have discon-
tinuities in all the manifold. In particular, there are not conical singularities at the
origin, in contrast to the well-known monopole solution studied by Hoffmann in
1935. The lack of uniqueness of the action function in nonlinear electrodynamics is
discussed. ©2005 American Institute of Physics.fDOI: 10.1063/1.1862308g

I. INTRODUCTION AND RESULTS

The four-dimensional solutions with spherical symmetry of the Einstein equations coupled to
Born–Infeld fields have been well studied in the literature.1–4 In particular, the electromagnetic
field of the Born–Infeld monopole, in contrast to Maxwell’s counterpart, contributes to the ADM
mass of the systemsit is the four momentum of asymptotic flat manifoldsd. Hoffmann was the first
to study such static solutions in the context of general relativity with the idea of obtaining con-
sistent particle-like model.2 Unfortunately, these static Einstein–Born–InfeldsEBId models gener-
ate conical singularities at the origin2,3 that cannot be removed as in global monopoles or other
nonlocalized defects of the space–time.5,6 With the existence of these types of singularities in the
space–time of the monopole we cannot identify the gravitational with the electromagnetic mass. In
this work anew static spherically symmetric solution with Born–Infeld charge is obtained. The
new metric, when the intrinsic mass of the system is zero, isregular everywhere in the sense that
was given by Hoffmann and Infeld3 in 1937 and the EBI theory leads to identification of the
gravitational with the electromagnetic mass. This means that the metric, the electromagnetic field,
and their derivatives do not have singularities and discontinuities in all the manifold. The funda-
mental feature of this solution is the lack of conical singularities at the origin. A distant observer
will associate with this solution an electromagnetic mass that is twice the mass of the electromag-
netic geon found by Demianski4 in 1986. The energy–momentum tensor and the electric field are
both regular with zero value at the origin and new parameters appear, given to the new metric
surprising behaviors. The convention7,8 used is thespatial of Landau and Lifshitzs1962d, with
signatures of the metric, Riemann, and Einstein tensors all positivess111d.

The plan of this paper is as follows: in Sec. II we give a short introduction to the Born–Infeld
theory: properties and principal features. In Sec. III the regularity condition as was given by
Hoffmann and Infeld3 in 1937. Sections IV–VII are devoted to finding the new solution and
analyzing its properties. Finally, the conclusion and comments of the results are presented in Sec.
VIII.
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II. THE BORN–INFELD THEORY

The most significant nonlinear theory of electrodynamics is, by excellence, the Born–Infeld
theory.1,9 Among its many special properties is an exact SOs2d electric-magnetic duality invari-
ance. The Lagrangian density describing Born–Infeld theorysin arbitrary space–time dimensionsd
is

LBI = Î− gLBI =
b2

4p
hÎ− g − Îudetsgmn + b−1Fmnduj, s1d

where b is a fundamental parameter of the theory with field dimensions. In open superstring
theory,10 for example, loop calculations lead to this Lagrangian withb−1=2pa8 sa8; inverse of
the string tensiond. In four space–time dimensions the determinant ins1d may be expanded out to
give

LBI =
b2

4p
H1 −Î1 +

1

2
b−2FmnF

mn −
1

16
b−4sFmnF̃

mnd2J , s2d

which coincides with the usual Maxwell Lagrangian in the weak field limit.
It is useful to define the second rank tensorPmn by

Pmn = −
1

2

]LBI

]Fmn

=

Fmn −
1

4
b−2sFrsF̃rsdF̃mn

Î1 +
1

2
b−2FrsFrs −

1

16
b−4sFrsF̃rsd2

s3d

sso thatPmn<Fmn for weak fieldsd satisfying the electromagnetic equations of motion

¹mPmn = 0, s4d

which are highly nonlinear inFmn. The energy–momentum tensor may be written as

Tmn =
1

4p
5Fm

lFnl + b2FR − 1 −
1

2
b−2FrsFrsGgmn

R
6 ,

s5d
R ; Î1 + 1

2b−2FrsFrs − 1
16b

−4sFrsF̃rsd2.

Although it is by no means obvious, it may be verified that Eqs.s3d–s5d are invariant under
electric-magnetic rotations of dualityF↔ pG. We can show that the SOs2d structure of the Born–
Infeld theory is more easily seen in quaternionic form,11,12

1

R
ss0 + is2P̄dL = L,

R

s1 + P̄2d
ss0 − is2P̄dL = L,

P̄ ;
P

b
,

where we defined

L = F − is2F̃,
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L = P − is2P̃,

the pseudoescalar of the electromagnetic tensorFmn,

P = − 1
4FmnF̃

mn,

ands0, s2 the well-known Pauli matrix.
In flat space, and for purely electric configurations, the Lagrangians2d reduces to

LBI =
4p

b2 h1 −Î1 − b−2E2W j

so there is an upper bound on the electric field strengthEW,

uEWu ø b. s6d

III. THE REGULARITY CONDITION

The new field theory initiated in 1934 by Born9 introduces in the classical equations of the
electromagnetic field a characteristic lengthr0 representing the radius of the elementary particle
through

r0 =Îe

b
,

wheree is the elementary charge andb the fundamental field strength entering in a nonlinear
Lagrangian function. It was originally thought that the Lagrangians1d was the simplest choice
which would lead to a finite energy for an electric particle. This is, however, not the case. It is
possible to find an infinite number of quite different action functions, each giving simple algebraic
relations between the fields and each leading to a finite energy for an electric particle.

In 1937 Hoffmann and Infeld3 introduced a regularity condition on the new field theory of
Born9 with the main idea to solve the lack of uniqueness of the function action. They had already
seen that the condition of regularity of the field gives the restriction in the spherically symmetric
electrostatic caseEr =0 for r =0.

In the general theory they applied the regularity condition not only to theFmn field but also to
the gmn field. The regularity condition for the general theory was that:

Only those solutions of the fields equations may have physical meaning for which space–time
is everywhere regular and for which the Fmn and the gmn fields and those of their derivatives which
enter in the field equations and the conservation laws exist everywhere.

In the general theory of relativity the spherically symmetric solution of the purely gravita-
tional field equations is given by the Schwarzschild line element

ds2 = − A dt2 + A−1dr2 + r2sdu2 + sin2 u dw2d,

A ; 1 −
2M

r
,

wheres−2Md is a constant of integrationM having the significance of the gravitational mass of the
body source of the fieldswe take the gravitational constantG=1d. This line element has an
essential singularity atr =0 and does not satisfy the regularity condition.

In the general relativity form of the original new field theory the requirement that there be no
infinities in thegmn forces the identification of gravitational with electromagnetic mass. In Ref. 3
Hoffmann and Infeld have used for such identification the line element of the well-known mono-
pole solution studied by Hoffmann2 in 1935,
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A ; 1 −
8p

r
E

0

r

fsr4 + 1d1/2 − r2gdr ,

which is originated by an Einstein–Born–Infeld action as in Eq.s1d. This line element approxi-
mates the Schwarzschild form forr greater than the electronic radius but avoids the infinities of
that line element forr =0. However it is still a singularity of conical type at the pole. Whenr
→0 the above expression forA gives

A → s1 − 8pd ; b

so ds2 becomes

ds2 = − b dt2 + b−1 dr2 + r2sdu2 + sin2 udw2d.

Thus the radius of the circumference to the radius of a small circle having its center at the pole is,
in the limit, 2pb and not 2p. Therefore the originsit is at r =0d is a conical point and not regular.
Note that because of the conical point no coordinate can be introduced which will be nonsingular
at r =0 and derivatives are actually undefined at this point.

This problem with the conical singularities atr =0, which destroys the regularity condition,
makes that in Ref. 3 change the action of the Born–Infeld form as in Eq.s1d for other nonlinear
Lagrangian of logarithmic type. The new logarithmic action does not present such difficulties at
r =0, and makes many people change the very nice form of the Einstein–Born–Infeld actions1d for
other nonlinear Lagrangians that solved the problem of the self-energy of the electron and the
regularity condition given above.

In this work we present anexactspherically symmetric solution of the Einstein–Born–Infeld
equations. The metric, when the intrinsic mass of the system is zero, isregular everywhere in the
sense that was given by Hoffmann and Infeld3 in 1937, and the EBI theory leads to identification
of the gravitational with the electromagnetic mass. In this manner we also show that stronger
conditions are needed to solve the problem of lack of uniqueness of the function action.

IV. STATEMENT OF THE PROBLEM

We propose the following line element for the static Born–Infeld monopole:

ds2 = − e2L dt2 + e2Fdr2 + e2Fsrddu2 + e2Gsrd sin2 u dw2, s7d

where the components of the metric tensor are

gtt = − e2L, gtt = − e−2L,

grr = e2F, grr = e−2F,

guu = e2F, guu = e−2F,

gww = sin2 ue2G, gww =
e−2G

sin2 u
. s8d

For the obtention of the Einstein–Born-Infeld equation system we use Cartan’s structure equations
method,13 which is most powerful and direct where we work with differential forms and in an
orthonormal framestetradd. The line elements7d in the one-forms basis takes the following form:

ds2 = − sv0d2 + sv1d2 + sv2d2 + sv3d2, s9d

where the forms are
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v0 = eLdt ⇒ dt = e−Lv0,

v1 = eFdr ⇒ dr = e−Fv1,

s10d
v2 = eFsrddu ⇒ du = e−Fsrdv2,

v3 = eGsrd sinu dw ⇒ dw = e−Gsrdssinud−1v3.

Now, following the standard procedure of the structure equationssAppendixd to obtain easily the
components of the Riemann tensor, we can construct the Einstein equations

G1
2 = − e−sF+Gdcosu

sinu
]rsG − Fd, s11d

G0
0 = e−2FC − e−2F,

C ; f]r]rsF + Gd − ]rF]rsF + Gd + s]rFd2 + s]rGd2 + ]rF]rGg, s12d

G1
1 = e−2Ff]rL]rsF + Gd + ]rF]rGg − e−2F, s13d

G2
2 = e−2Ff]r]rsL + Gd − ]rF]rsL + Gd + s]rLd2 + s]rGd2 + ]rL]rGg, s14d

G3
3 = e−2Ff]r]rsF + Ld − ]rF]rsF + Ld + s]rLd2 + s]rFd2 + ]rF]rLg, s15d

G1
3 = G2

3 = G0
3 = G0

2 = G0
1 = 0. s16d

In the tetrad defined bys10d, the energy–momentum tensor of Born–Infeld takes a diagonal
form, its components being the following:

− T00 = T11 =
b2

4p
SR − 1

R
D , s17d

T22 = T33 =
b2

4p
s1 −Rd, s18d

where

R ;Î1 −SF01

b
D2

. s19d

In this manner, one can see from the Einstein equations11d the characteristic property of the
spherically symmetric space–times,14

G1
2 = − e−sF+Gdcosu

sinu
]rsG − Fd = 0 ⇒ G = F. s20d

Notice that for the interval to be a spherically symmetric one, the functionsFsrd andGsrd must be
equal. As we saw in the precedent paragraph the components of the energy–momentum tensor of
BI assures this condition is in a natural form. Also it is interesting to see from Eqs.s17d ands18d
that the energy–momentum tensor of Born–Infeld has the same form as the energy–momentum
tensor of an anisotropic fluid.

042501-5 New spherically symmetric monopole J. Math. Phys. 46, 042501 ~2005!

                                                                                                                                    



V. EQUATIONS FOR THE ELECTROMAGNETIC FIELDS OF BORN–INFELD IN THE
TETRAD

The equations that describe the dynamic of the electromagnetic fields of Born–Infeld in a
curved space–time are

¹aF
ab = ¹aFFab

R
+

P

b2R
F̃abG = 0 sfield equationsd, s21d

¹aF̃
ab = 0 sBianchi’s identityd, s22d

where

P ; − 1
4FabF̃ab, s23d

S; − 1
4FabFab, s24d

R ;Î1 −
2S

b2 − S P

b2D2

. s25d

The above equations can be solved explicitly giving the follow result:

F01 = Asrd, s26d

F01 = fe−2G, s27d

where f is a constant. We can see from Eqs.s19d and s21d that

F01 =
F01

Î1 − sF̄01d2
,

where we obtain the following form for the electric field of the self-gravitating BI monopole:

F01 =
b

ÎSb

f
e2GD2

+ 1

. s28d

We can associate1

f = br0
2 ; Q ⇒ F01 =

b

ÎSeG

r0
D4

+ 1

, s29d

wherer0 is a constant with units of longitude that in Ref. 1 were associated with the radius of the
electron. Finally the components of the energy–momentum tensor of BI takes its explicit form
reemplacing theF01 that was found in Eq.s29d in expressionss17d and s18d

− T00 = T11 =
b2

4p
S1 −ÎS r0

eGD4

+ 1D , s30d
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T22 = T33 =
b2

4p11 −
1

ÎS r0

eGD4

+ 12 . s31d

Expressionss11d–s16d together withs30d, s31d, and s20d are the full set of Einstein equations in
explicit form.

VI. REDUCTION AND SOLUTIONS OF THE SYSTEM OF EINSTEIN–BORN–INFELD
EQUATIONS

Of the above-noted expressions, we can see thatG0
0=G1

1 then

]r]rG + s]rGd2 − ]rG]rsF + Ld = 0. s32d

In order to reduce Eq.s32d we will proceed as follows. First we make

]rG ; j s33d

with this change of variables, in Eq.s32d we have first derivatives only

]rj + j2 − j]rsF + Ld = 0. s34d

Dividing expressions34d by j and making the substitution

x ; ln j s35d

we obtain the following inhomogeneous equation:

]rx + ex = ]rsF + Ld. s36d

The homogeneous part of the last equation is easy to integrate,

xh = − ln r . s37d

Now, as usual, we make the following substitution in Eq.s36d:

x = xh + xp = − ln r + ln m = − ln r + lns1 + hd. s38d

Then

]r lns1 + hd +
h

r
= ]rsF + Ld ⇒ ]rflns1 + hd + Fsrd − sF + Ldg = 0 s39d

lns1 + hd + Fsrd − sF + Ld = cte= 0,

where dFsrd /dr;hsrd / r. The constant must be put equal to zero to obtain the correct limit.
Finally the form of the exponentG is

G = ln r + Fsrd. s40d

The next step is to putF in function of L and G in expressions13d. After tedious but
straightforward computations and integrations, we obtain

e2L = 1 +a0e
−G + e2G2b2

3
− 2b2e−GEYsrd

ÎY4 + sr0d4dY, s41d

where we define
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Ysrd = eG

andas0d is an integration constant.
Hitherto, we know thatF is an arbitrary function of the radial coordinater, but to be sure of

it, we must introduce the functionL given for the above equation in the Einstein equationss14d
and s15d and verify thatG22=G33. This equality is verified successfully and the functionsL, F,
and G remain mathematically determinate. In this manner the line element of our problems7d
takes the following form:

ds2 = − e2Ldt2 + e2Fsrdfe−2Ls1 + r]rFsrdd2dr2 + r2sdu2 + sin2 u dw2dg. s42d

A. Analysis of the function F„r… from the physical point of view

The functionFsrd must, to have the behavior in the form of the electric field of the configu-
ration, obey the following requirements to give a regular solution in the sense that was given by
Hoffmann and Infeld,3

uF01ur=r0
, b, s43d

uF01ur=0 = 0, s44d

uF01ur→` = 0 asymptotically Coulomb s45d

the simplest functionFsrd that obey the above conditions is of the type

e2Fsrd = F1 −S r0

aur uD
nG2m

, s46d

wherea is an arbitrary constant, and the exponentsn andm will obey the following relation:

mn. 1 sm,n P Nd s47d

with

0 , a , 1 or − 1, a , 0

depending on whethermsnd is even or odd and

a Þ 0

that ensure a consistent regularization condition not only for the electricsmagneticd field but for
the energy-momentum tensors30d and s31d and the line elements42d.

The analysis of the Riemann tensor indicates to us that it is regular everywhere and its
components go faster than 1/r3 when r →`. With all these considerations, the metric solution to
the problem is

ds2 = − e2Ldt2 + F1 −S r0

aur uD
nG2m5e−2Ldr231 −S r0

aur uD
n

smn− 1d

F1 −S r0

aur uD
nG 4

2

+ r2sdu2 + sin2 u dw2d6
s48d

and the electric field takes the form
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F01 =
b

Î1 +F1 −S r0

aur uD
nG4mS r

r0
D4

. s49d

It is interesting to note that if we violate conditions43d taking a=1 and uF01ur=r0
=b slimit value

for the electric field in BI theoryd the energy momentum diverges automatically atr =r0. Strictly,
the regularity conditions for the energy–momentum tensorswithout divergences and discontinui-
ties in the neighborhood ofr0, physical radius of the spherical source of the nonlinear electro-
magnetic fieldd are

uTabur=r0
= finite ⇒ − 1 , a , 0 or 0 , a , 1

depending on parity ofm, n; and

uTabur=0 → 0 ⇒ R → 1.

For the magnetic monopole case the line element is as expressions48d with the following obvious
definition for the magnetic charge,

br0
2 ; Qm.

The magnetic field takes the following form:

F23 =
b

F1 −S r0

aur uD
nG2mS r

r0
D2 =

Qm

F1 −S r0

aur uD
nG2m

r2

and considerations concerning the regularity conditions on the energy momentum tensor are as in
the electric monopole case.

B. Interesting cases for particular values of n and m

Because

exp 2Fsrd = F1 −S r0

aur uD
nG2m

it is easy to see that form=0,

eG = r .

We obtain the spherically symmetric line element of Hoffmann,2 the electric fieldF01, and the
energy–momentum tensorTab takes the form of the well-known EBI solution for the electromag-
netic geon of Demiánski.4

On the other hand, in thelimit when:a→1, n→4, andm→ 1
4 we have

F01→ b

Î1 +F1 −S r0

ur uD
4GS r

r0
D4

=
Q

r2 ,

wheresas is usually takend br0
2;Q. How we see, we obtain as solution in thelimit the Maxwellian

linear field. Note that the values ofa and the exponentsm andn are restricted by conditionss47d.
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VII. ANALYSIS OF THE METRIC

We have the metrics42d

ds2 = − e2Ldt2 + e2Fsrdfe−2Ls1 + r]rFsrdd2dr2 + r2sdu2 + sin2 u dw2dg

if we make the substitution

Y ; reFsrd,

and differentiating it

dY ; eFsrds1 + r]rFsrdddr

the intervals7d takes the form

ds2 = − e2Ldt2 + e−2LdY2 + Y2sdu2 + sin2 u dw2d

we can see that the metricsin particular thegtt coefficientd, in the new coordinateYsrd, takes the
similar form like a Demianski solution for the Born–Infeld monopole space–time:

e2L = 1 −
2M

Y
−

2b2r0
4

3sÎY4 + r0
4 + Y2d

−
4

3
b2r0

2
2F1F1/4,1/2,5/4;−S Y

r0
D4G .

Here M is an integration constant, which can be interpreted as an intrinsic mass, and2F1 is the
Gauss hypergeometric function.15 We have pass

grr → gYY, gttsrd → gttsYd.

Specifically, for the form of theFsrd given by s46d, Y is

Y2 ; F1 −S r0

aur uD
nG2m

r2.

Now, with the metric coefficients fixed to an asymptotically Minkowskian form, one can study the
asymptotic behavior of our solution. A regular, asymptotically flat solution with the electric field
and energy–momentum tensor both regular, in the sense of Hoffmann and Infeld, is when the
exponent numbers ofYsrd take the following particular values:

n = 3, m= 1.

In this case, and forr @ r0/a, we have the following asymptotic behavior forYsrd and −gtt,
which does not depend on thea parameter

Ysrd → r Sr @
r0

a
D ,

e2L . 1 −
2M

r
−

8b2r0
4Ks1/2d
3r0r

+ 2
b2r0

4

r2 + ¯ .

A distant observer will associate with this solution a total mass

Meff = M +
4b2r0

4Ks1/2d
3r0

and total charge
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Q2 = 2b2r0
2.

Notice that when the intrinsic massM is zero the line element is regular everywhere, the Riemann
tensor is also regular everywhere and hence the space–time is singularity free. The electromag-
netic mass

Mel =
4b2r0

4Ks1/2d
3r0

s50d

and the chargeQ aretwice that of the electromagnetic charge and mass of the Demianski solution4

for the static electromagnetic geon. Notice that theMel is necessarily positive, which was not the
case in the Schwarzschild line element. The other important reason for us to take the constant
M =0 is that we must regard the quantityslet us restore for one moment the gravitational constant
Gd

4pGE
Ysr=0d

Ysrd

T0
0sYdY2dY

as thegravitational masscausing the field at coordinate distancer from the pole. In our caseT0
0 is

given by expressions30d. This quantity is preciselysin gravitational unitsd Mel given bys50d, the
total electromagnetic masswithin the sphere having its center atr =0 and coordinater. We will
takeM =0 in the rest of the analysis.

On the other hand, the functionYsrd for the values of them andn parameters given above has
the following behavior near the origin:

for a , 0 whenr → 0,Ysrd → `,

for a . 0 whenr → 0,Ysrd → − `.

Notice that the casea.0 will be excluded because in any valuer0→Ysr0d=0, the electric field
takes the limit valueb and conditions43d is violated. ForM =0 anda,0, expanding the hyper-
geometric function, we can see that the −gtt coefficient has the following behavior near the origin:

e2L . 1 −
8b2r0

4Ks1/2d
3r0

r2S uau
r0
D3

+ 2b2r0
4r4S uau

r0
D6

+ ¯ .

The metricssee figuresd and the energy–momentum tensorbothremain regulars at the originsit is:
gtt→−1, Tmn→0 for r →0d. It is not very difficult to check thatsfor m=1 andn=3d the maximum
of the electric fieldssee the figuresd is not in r =0, but in thephysical borderof the spherical
configuration source of the electromagnetic fieldssthis point is located aroundrB=21/3r0/ uaud. It
means thatYsrd maps correctly the internal structure of the source in the same form as the
quasiglobal coordinate of Ref. 16 for the global monopole in general relativity. The lack of conical
singularities at the origin is due to the very good description of the manifold in the neighborhood
of r =0 given byYsrd.

Because the metric is regularsgtt=−1, atr =0 and atr =`d, its derivative must change sign. In
the usual gravitational theory of general relativity the derivative ofgtt is proportional to the
gravitational force which would act on a test particle in the Newtonian approximation. In
Einstein–Born–Infeld theory with this new static solution, it is interesting to note that although this
force is attractive for distances of the orderr0! r, it is actually a repulsion for very smallr. For
r greater thanr0, the line element closely approximates to the Schwarzschild form. Thus the
regularity condition shows that the electromagnetic and gravitational mass are the same and, as in
the Newtonian theory, we now have the result that the attraction is zero in the center of the
spherical configuration source of the electromagnetic field.
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VIII. CONCLUSIONS

In this report anewexact solution of the Einstein–Born–Infeld equations for a static spheri-
cally symmetric monopole is presented. The general behavior of the geometry is strongly modified
according to the value thatr0 takessBorn–Infeld radius1,9d and three new parameters:a, m, andn.

The fundamental feature of this solution is the lack of conical singularities at the origin when
−1,a,0 or 0,a,1 sdepends on parity ofm and nd and mn.1. In particular, form=1 and
n=3, with the parametera in the range given above and the intrinsic mass of the systemM being
zero, the strong regularity conditions given by Hoffmann and Infeld in Ref. 3 hold in all the
space–time. For the set of values for the above-given parameters, the solution is asymptotically
flat, free of singularities in the electric field, metric, energy–momentum tensor and their deriva-
tives swith derivative values zero forr →0d; and the electromagnetic masssADM d of the system
is twice that of the electromagnetic mass of other well-known2,4 solutions for the Einstein–Born–
Infeld monopole. The electromagnetic massMel asymptotically is necessarily positive, which was
not the case in the Schwarzschild line elementsSee Figs. 1 and 2d.

This solution has a surprising similitude with the metric for the global monopole in general
relativity given in Refs. 16 and 17 in the sense that the physics of the problem has a correct
description only by means of a new radial functionYsrd.

Because the metric is regularsgtt=−1, atr =0 and atr =`d, its derivativesthat is proportional
to the force in Newtonian approximationd must change sign. In Einstein–Born–Infeld theory with
this new static solution, it is interesting to note that although this force is attractive for distances
of the orderr0! r, it is actually repulsive for very smallr.

With this new regular solution, we also show that stronger conditions are needed to solve the
problem of the lack of uniqueness of the function action in nonlinear electrodynamics.
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FIG. 1. Electric field F10 of the EBI - monopole in function of r, forM =0, r0=1, m=1, n=3 anda=−0.9
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APPENDIX: CONNECTIONS AND CURVATURE FORMS FROM THE GEOMETRICAL
CARTAN’S FORMULATION

The standard procedure of Cartan has its start point in the following:

dva = − va
b ∧ vb, sA1d

Ra
b = dva

b + va
l ∧ vl

b. sA2d

These are denominatedthe structure equations. The procedure to obtain the Einstein equations is
as follows.

sid Making the exterior derivatives ofva we compute the connection one-formsva
b:

v0
1 = v1

0 = e−F]rLv0,

v2
1 = − v1

2 = e−F]rFsrdv2,

sA3d
v3

1 = − v1
3 = e−F]rGsrdv3,

v3
2 = − v2

3 =
cosu

senu
e−Fsrdv3.

sii d Making the exterior derivatives ofva
b we compute the curvature two-formsRa

b:

R0
1 = e−2Fs]r]rL − ]rF]rL + s]rLd2dv1 ∧ v0,

R2
1 = e−2Fs]r]rF − ]rF]rF + s]rFd2dv1 ∧ v2,

FIG. 2. Coefficient −gtt of the EBI - monopole in function of r, forM =0, r0=1, m=1, n=3 anda=−0.9
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R3
2 = e−sF+Fd]rsG − Fd

cosu

senu
v1 ∧ v3 + se−2F]rG]rF − e−2Fdv2 ∧ v3,

sA4d

R3
1 = e−2Fs]r]rG − ]rF]rG + s]rGd2dv1 ∧ v3 + e−sF+Fd]rsG − Fd

cosu

senu
v2 ∧ v3,

R0
2 = − e−2F]rL]rFv0 ∧ v2,

R0
3 = − e−2F]rL]rGv0 ∧ v3.

siii d The components of the Riemann tensor are easily obtained from the well-know geometri-
cal relation of Cartan:

Ra
b = Ra

brsvr ∧ vs,

where we obtain explicitly

R0
110= e−2Fs]r]rL − ]rF]rL + s]rLd2d,

R2
112= e−2Fs]r]rF − ]rF]rF + s]rFd2d,

R3
113= e−2Fs]r]rG − ]rF]rG + s]rGd2d,

R3
213= e−sF+Fd]rsG − Fd

cosu

sinu
,

sA5d

R3
123= e−sF+Fd]rsG − Fd

cosu

sinu
,

R3
223= e−2F]rG]rF − e−2F,

R0
330= e−2F]rL]rG,

R0
220= e−2F]rL]rF,

from which we can construct the Einstein equations of the usual manner.
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Conformal symmetries of Einstein’s field equations
and initial data
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This paper examines the initial data for the evolution of the space–time solution of
Einstein’s equations admitting a conformal symmetry. Under certain conditions on
the extrinsic curvature of the initial complete spacelike hypersurface and sectional
curvature of the space–time with respect to sections containing the normal vector
field, we have shown that the initial hypersurface is conformally diffeomorphic to
a sphere or a flat space or a hyperbolic space or the product of an open real interval
and a complete 2-manifold. It has been further shown that if the initial hypersurface
is compact, then it is conformally diffeomorphic to a sphere. Finally, the conformal
symmetries of a generalized Robertson–Walker space–time have been described. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1868372g

I. INTRODUCTION

Most of the known solutions of Einstein’s field equationssthat are highly nonlineard are based
on the assumption that they admit one or more Killing vector fieldssinfinitesimal isometriesd or
homothetic vector fields. These solutions provide many clues and insights into astrophysical and
cosmological questions. However, it would be interesting to analyze space–time solutions with
weaker symmetries, such as, conformal symmetries. This would be further supported by the fact
that Robertson–Walker space–timesswhich provide a satisfactory cosmological modeld do admit a
G6 of Killing vectors and aG9 of conformal Killing vector fieldsssee Maartens and Maharaj14d.
One may also note that conformal symmetries preserve the causal character of space–times. One
little drawback with conformal symmetries lies in the fact that unlike isometries and homotheties,
conformal symmetries do not leave Einstein tensor invariant, and in this respect, may be regarded
unnatural or accidental. Nevertheless, some solutions with conformal symmetries are knownsfor
details we refer to Duggal and Sharma6d. We note that the existence of a proper conformal
symmetry places severe restrictions on the space–times, as indicated by the results proven by
Collinson and French,5 Garfinkle and Tian,10 and Sharma.17 The work reported in this paper is
primarily intrigued by the following significant result of Eardley, Isenberg, Marsden, and
Moncrief:8 “Let sM ,gd be a globally hyperbolic spacetime which (a) satisfies the Einstein equa-
tions for a stress tensor T obeying the mixed energy condition and the dominant energy condition;
(b) admits a homothetic Killing vector fieldj of g; and (c) admits a compact hypersurface of
constant mean curvature (CMC). Then eithersM ,gd is an expanding hyperbolic model with T
vanishing everywhere, orj is Killing.” In this paper we characterize a space–time solution of
Einstein’s equation with a conformal symmetry, in terms of a spacelike hypersurface as an initial
data.As this is a formidable task, we have assumed a curvature condition on the space–time. This
assumption is motivated by the fact that this holds on a generalized Robertson–Walker space–time
sin particular, Robertson–Walker space–timed as indicated in Examples1d of Sec. II. First we
derive the constraint and evolution equations for a conformal Killing vectorsCKVd field on the
space–time solution of Einstein’s equations. Assuming that the space–time solutionM admits a
proper CKV fieldj, and is evolved out of a spacelike hypersurfaceS such thatsad S is complete
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and totally umbilical inM, sbd the normal sectional curvature of the space–time is independent of
the normal section at each point ofS, and scd the normal component ofj is nonvanishing and
nonconstant onS, we prove that such a hypersurface is conformally diffeomorphic to one of the
following: sid sphereS3, sii d Euclidean spaceE3, siii d hyperbolic spaceH3, sivd the Riemannian
product of a real open interval and a complete 2-manifold. Then we prove the main result of this
paper, i.e., if a space–time solutionM of Einstein’s equation admits a CKV fieldj and is evolved
out of a compact spacelike CMC hypersurfaceS such thatsad j is nowhere tangential and
nonvanishing onS, sbd the normal component ofj is nonconstant overS, and scd the normal
sectional curvature ofM is independent of the normal section at each point ofS, thenS is totally
umbilical in M, and conformally diffeomorphic to a 3-sphere. Finally we describe CKV fields on
a generalized Robertson–Walker space–timessee examples1d under Sec. IId.

II. PRELIMINARIES AND NOTATIONS

We would like to follow the ADM 3+1 splitting formalism due to Arnowitt, Deser, and
Misner2 that slices the space–timesM ,gd into a one-parameter family of spacelike hypersurfaces
and considers that the space–time geometry evolve out of an initial spacelike hypersurfaceSst
=constantd with initial data as its Riemannian metricg and the second fundamental formsextrinsic
curvatured k. Let us denote arbitrary vector fields tangential toS by X,Y,Z,W, and the timelike
unit vector field normal toS by N. Then the Gauss and Weingarten formulas are

¹XY = ¹XY + ksX,YdN, ¹XN = KX, s1d

whereK is the Weingartensshaped operator ofS defined byksX,Yd=kKX,Yl sk,l denotes the inner
product with respect to the 3-metricg of S as well as the space–time metricgd, and ¹ ,¹ the
Levi–Civita connections of the metricsg,g, respectively. We write the Gauss and Codazzi equa-
tions as

kRsX,YdZ,Wl = kRsX,YdZ,Wl + ksY,ZdksX,Wd − ksX,ZdksY,Wd, s2d

kRsX,YdN,Zl = s¹XkdsY,Zd − s¹YkdsX,Zd, s3d

whereR andR denote curvature tensors ofg andg, respectively. Letseadsa=1,2,3d denote a local
orthonormal frame on an open neighborhoodO in S. Thensea,Nd is a local orthonormal basis of
the tangent space ofM at each point ofO. Contractings2d and s3d with respect to this basis one
gets

RicsX,Yd + kRsN,XdY,Nl = RicsX,Yd + tkKX,Yl − kKX,KYl, s4d

RicsX,Nd = sdiv KdX − Xt, s5d

whereRic and Ric are the Ricci tensors ofg andg, respectively, andt=Tr K=3 times the mean
curvature ofS. Denoting the scalar curvature and the energy-momentum tensor of the space–time
solution of the Einstein’s field equations

Ric −
r

2
g = 8pT s6d

by r andT, respectively, and usings4d–s6d yields the constraint equations

r +
2t2

3
− uLu2 = 16pTnn, s7d
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sdiv LdX − 2
3Xt = 8pTsX,Nd, s8d

where r is the scalar curvature ofg, i the norm operator with respect tog, L=K−st /3dI and
Tnn=TsN,Nd.

At this point we assume thatsM ,gd admits a conformal Killing vector fieldj, i.e.,

Ljg = sg s9d

for a sufficiently smooth functions on sM ,gd, and decomposej alongS as

j = V + rN, s10d

whereV is the tangential component ofj. A straightforward calculation using Eqs.s1d, s9d, and
s10d provides

LVg = sg − 2rk. s11d

Next, differentiatingr=−gsj ,Nd twice alongS, and following the procedure given on p. 103 of
Ref. 18, we obtain

s¹ ¹ rdsX,Yd =
Ns

2
kX,Yl + kRsV,XdY,Nl + rkRsN,XdY,Nl +

s

2
ksX,Yd − k¹YV,KXl − rkKX,KYl

− k¹XKV,Yl. s12d

The use ofs3d and s4d in the above equation shows

ksLVKdX,Yl = − s¹ ¹ rdsX,Yd +
Ns

2
kX,Yl − Ss

2
− rtDkKX,Yl + r RicsX,Yd − r RicsX,Yd.

s13d

Going back to the Einstein’s Eqs.s6d we observe thatr =8psTnn−Tm
md, whereTm

m=kTem,eml. The
use ofs6d in s13d gives rise to

sLVKdX = − ¹XDr +
Ns

2
X + Srt −

s

2
DKX + rQX− 8prTX+ 4prsTm

m − TnndX, s14d

where D is the spatial gradient operator, andQ is the Ricci operator ofg, and ¹2=¹a¹a sa
summed over 1,2,3d. Equationss7d, s11d, ands14d provide the following evolution equations:

sLVgdsX,Yd = sgsX,Yd − 2rkLX,Yl −
2rt

3
gsX,Yd, s15d

sLVLdX = − S¹XDr −
¹2r

3
XD − 8prSTX−

Tm
m

3
XD + Srt −

s

2
DLX + rSQX−

r

3
XD , s16d

LVt =
3Ns

2
−

st

2
− ¹2r + rF t2

3
+ uLu2 + 4psTm

m + TnndG . s17d

These evolution equations were derived in Ref. 8 through a different approach using Berger’s
trick4 that sets the evolution vector field equal to the CKV field.

Let us now define the concept of normal sectional curvature of the space–time with respect to
a normal section. A normal section ofsM ,gd at a pointp of a spacelike hypersurfaceS is the
timelike plane section spanned by the normalN and a tangential vector, sayX, at p. The normal
sectional curvatureKsN,Xd of M at a pointp and along a unit tangent vectorX of S is defined as
kRsN,XdN,Xl ssee p. 331 of Ref. 3 for the definition of sectional curvature of a timelike plane
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sectiond. If KsN,Xd is independent of the choice ofX at each point ofS, then it follows that
RsN,XdN= fN for some smooth functionf and arbitrary vector fieldX tangent toS. This normal
sectional curvature condition is a weakening of constant curvature condition forM, and holds
whenM is Minkowski, de Sitter, anti-de Sitter, and Robertson–Walker space–times. The normal
sectional curvature has been termed a principal sectional curvature of the Robertson–Walker
space–time by O’Neillsp. 345 of Ref. 16d. Next we provide three examples of space–times
satisfying this condition.

Example 1:The normal sectional curvature condition holds for generalized Robertson–Walker
sGRWd space–times defined by Alias, Romero, and Sanchez in Ref. 1 as the warped productI
3 fS of the timelineI with anarbitrary three-dimensional Riemannian manifoldsS ,gd through the
warping functionf .0 on I such that the metric of the warped product space–timesM ,gd is

ds2 = − dt2 + sfstdd2gab dxa dxb,

where xasa=1,2,3d are the coordinates on the fiberS. Note that, whensS ,gd is of constant
curvature; the GRW space–time reduces to the Robertson–Walker space–time. HereN=] /]t. For
the GRW space–time, it is knownssee p. 210 of Ref. 16d thatRsX,NdN is a multiple ofX, where
R denotes the curvature tensor ofg andX is an arbitrary vector field on the fiberS. Each slice
t=constant, is homothetic to the fiberS, and totally umbilical insM ,gd.

Example 2:Consider a conformally flat perfect fluid solution of Einstein’s equations, admit-
ting a spacelike hypersurfaceS orthogonal to the 4-velocity. In this case the 4-velocity vector isN,
the energy-momentum tensor isT=sm+pdN*N* +pg, whereN* denotes the 1-form metricallysgd
equivalent toN, andm ,p denote, respectively, the energy density and pressure of the perfect fluid.
It turns out, after a straightforward calculation, thatkRsN,XdN,Xl=−s4p /3dsm+3pd for an arbi-
trary unit vector fieldX tangent toS.

Example 3:Classically, we know that the shape operatorK of an sorientabled hypersurface of
a space–time of constant curvaturesMinkowski, de Sitter, and anti-de Sitterd is a Codazzi tensor,
i.e., satisfiess¹XKdY=s¹YKdX fwhich follows from the Codazzi Eq.s3dg. This need not be true for
a general ambient space–time. A hypersurfaceS of a space–timesM ,gd is said to be Codazzi if its
shape tensor is Codazzi. A totally umbilical CMC hypersurface ofM is obviously Codazzi. One
can also verify that if a three-dimensional spaceS of constant curvaturec is a hypersurface of
sM ,gd with K=cfI+ ¹Df for a smooth functionf on S, and whereD denotes the gradient operator
of S, thenS is Codazzi insM ,gd. However, the converse holds only locally, i.e., ifK is a Codazzi
tensor on a space of constant curvaturec, then locally,K=cfI+ ¹Df, for a smooth functionf ssee
Ref. 9d. Now let sM ,gd denote a space–time with a closed CKV fieldj, and a spacelike hyper-
surfaceS such thatS is Codazzi insM ,gd andj is nowhere tangential toS. We then have¹Xj
=sX for a smooth functions and arbitrary vector fieldX on M. A straightforward computation
shows

RsX,Ydj = sXsdY − sYsdX

for arbitrary vector fieldsX, Y on M. SubstitutingX=N, Y=Ysan arbitrary vector field tangent to
Sd, and using the orthogonal splittingj=rN+V sV being the tangential component ofjd we have

rRsN,YdN + RsN,YdV = sNsdY − sYsdN

on S. Taking its inner product with an arbitrary tangent vector fieldX on S, and noting

gsRsN,YdV,Xd = gsRsV,XdN,Yd = 0

sin view of Codazzi equation and the assumption thatS is a Codazzi hypersurfaced, we find
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rgsRsN,YdN,Xd = sNsdgsX,Yd.

As per our assumption,r vanishes nowhere onS. HenceRsN,YdN=sNs /rdY, i.e., the normal
sectional curvature ofM is independent of the choice of the arbitrary vector fieldY at each point
of S.

III. RESULTS AND THEIR PROOFS

From a cosmological point of view, it makes sense to assume that space–time is spatially
homogeneousse.g., Robertson–Walker, Bianchi I, and Taub-NUT space–times are sod and since a
homogeneous Riemannian manifold is completessee p. 127 of Ref. 3d, one may assume that
space–time is spatially complete. Recently, Duggal and Sharma7 considered the Example 3 of the
preceding section, withS as a totally umbilical CMC hypersurface and proved “Let sM ,gd be a
space–time evolved out of a complete initial hypersurfaceS that is totally umbilical and has
nonzero CMC. If M admits a closed CKV fieldj nonvanishing onS, then eitherj is orthogonal to
S, or S is conformally diffeomorphic to E3, S3, H3, or the Riemannian product of an open interval
and a complete Riemannian 2-manifold.” This result assumes that the CKV field is closed, which
implies in view of Example 3, that the normal sectional curvature condition holds. We would like
to consider the case when the CKV is not necessarily closed, but the normal sectional curvature
condition holds. Omitting the CMC condition, and assuming completeness ofS we state our first
result.

Theorem 1:Let sM ,gd be a space–time solution of Einstein’s field equations admitting a CKV
field j and be evolved out of a complete spacelike hypersurfaceS such that (a)S is totally
umbilical in M, (b) the normal componentr of j is nonconstant onS, and (c) the normal sectional
curvature of M is independent of the tangential direction at each point ofS. ThenS is conformally
diffeomorphic to (i) a 3-sphere S3, or (ii) Euclidean space E3, or (iii) hyperbolic space H3, or (iv)
the Riemannian product of a complete two-dimensional manifold and an open real interval. IfS is
compact, then only (i) holds.

Proof: By hypothesis,we have thatRsN,XdN= fX for some functionf and any vector fieldX
tangent toS, at each point ofS. This implies, upon contraction, thatf =s−1/3dRicsN,Nd. Also, as
S is totally umbilical, Eq.s4d assumes the form

RicsX,Yd = RicsX,Yd +
1

3
S2t2

3
− RicsN,NdDkX,Yl. s18d

Contracting this one gets

r + 2 RicsN,Nd = r +
2t2

3
.

Further,s6d implies

r + 2 RicsN,Nd = 16pTnn.

Using s6d in s18d we have

8pTX= QX+ S2t2

9
− 8pTnn +

2 RicsN,Nd
3

DX.

Its trace-free part is

8pSTX−
Tm

m

3
XD = QX−

r

3
X. s19d

By hypothesis,L=0, and hence we have froms16d that
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¹XDr =
¹2r

3
X. s20d

Now we recall the following result of Kuehnelspp. 133 and 135 of Ref. 13d “Let sS ,gd be a
complete connectedn-dimensional Riemannian manifold admitting a nonconstant solutionr of
¹¹r=s¹2r /ndg. Then the number of critical points ofr is Nø2, andS is conformally diffeo-
morphic to sid the spheresSn,g1d if N=2, sii d the Euclidean spacesEn,g0d or hyperbolic space
sHn,g−1d if N=1, andsiii d the Riemannian product of ansn−1d-dimensional Riemannian manifold
and an open real interval, ifN=0. In case whenS is compact, onlysid holds.” According to our
hypothesis,r is nonconstant. Sincer satisfies Eq.s20d, the above result is applicable and therefore
applying it completes the proof.

Our next result assumes the existence of a compact spacelike CMC hypersurface. This is well
motivated because such hypersurfaces have been shown to exist in a Lorentzian manifold by
Gerhardt.11 Before stating our next result we state the following lemma.

Lemma:Let sM ,gd be a space–time manifold admitting a CKV fieldj and be evolved out of
a compact spacelike CMC hypersurfaceS such that the normal vector field toS is an eigenvector
of the Ricci tensor ofM, at each point ofS andj is nonvanishing and nowhere tangent toS. Then
S is totally umbilical inM.

This lemma is the Lorentzian analog and a slight extension of the corresponding result of
Katsurada12 for an Einstein RiemanniansM ,gd, and its proof is similar to that of the Riemannian
case.

Before stating our main theorem we would like to recall the following notions. The geomet-
rodynamic field momentum dynamically conjugate to the geometrodynamic field coordinategab is
defined aspab=g1/2sKab−tgabd. The supermomentum in the ADM formalism is defined asHa

=2¹bfÎgstgab−Kabdg, where g is the determinant of the 3-metricgab and ¹ acts a covariant
derivative of a tensor densityssee p. 521 of Ref. 15 for detailsd. Our main result is as follows.

Theorem 2:Let sM ,gd be a space–time solution of Einstein’s equations admitting a CKV field
j and evolved out of a compact spacelike CMC hypersurfaceS such that (i) the supermomentum
Ha vanishes onS, (ii) the normal componentr of j is nonvanishing and nonconstant onS, and
(iii) the normal sectional curvature of M is independent of the tangential direction at each point
of S. ThenS is totally umbilical in M, and conformally diffeomorphic to the 3-sphere.

Proof: As Ha=0 on S, it follows that

¹at − ¹bKa
b = 0.

In view of this and Eq.s5d we observe thatN is an eigenvector of the Ricci tensor ofsM ,gd at each
point of S. Hence the lemma stated above is applicable here and henceS is totally umbilical. Now
Theorem 1 becomes applicable and henceS being compact, is conformally diffeomorphic toS3.
This completes the proof.

Remark: The metrics ofS in the conclusions of Theorems 1 and 2 can be expressed as

du2 + sr8sudd2 dc2,

globally for casesivd, and except at critical points ofr for casessid, sii d, and siii d; where dc2

denotes the metric of the complete two-dimensional space orthogonal to] /]u sfor details see Ref.
13d. Also, one may note thatS is quasi-Einstein, because the Ricci tensor of dc2 swhich is the
metric of a two-dimensional Riemannian manifoldSd is just a scalar multiple of its metric.

IV. CONFORMAL SYMMETRIES OF GRW SPACE–TIMES.

Let j be a CKV field on a generalized Robertson–Walker space–timesM ,gd, as described in
Example 1. Settingj=r] /]t+Va] /]xa swherexa are the coordinates on the fiberSd, and decom-
posing the CKV equations into normal–normal componentsfnote that] /]t is the unit timelike
vector normal to spacelike sliceStst=constantdg we find that
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s = 2 ] r/]t. s21d

Similarly, decomposing the CKV equation into tangential–normal, and tangential–tangential com-
ponents gives

]r/]xa = f2s]Vb/]tdgab, s22d

LVgab = Ss − 2
r

f
] f/]tDgab. s23d

If V=0, i.e.,j is orthogonal to the slicesSt, then froms22d r is a function of onlyt and froms21d
we haves=2ṙ, where an overdot means derivative with respect tot. Using this expression ofs in

s23d, and noting thatV=0, showsṙ=s ḟ / fdr. Integrating it providesr=cf for an arbitrary constant
c, and hence we obtainj=cf] /]t. This is the well known14 timelike CKV normal to the slicesSt

of a Robertson–Walker space–time. On the other hand, ifr=0, i.e.,j is tangent to each sliceSt,
then from Eq.s21d it follows that s=0, i.e.,j is Killing on sM ,gd. This generalizes the factssee
Ref. 14d that the CKV fields that are tangential to the constant curvature slicesSt of a Robertson–
Walker space–time, are Killing. More generally, ifr is a function of only spatial coordinatesxa,
thens21d implies s=0 and hencej is Killing, thoughj is not tangential toSt. Now suppose that
r is a function of onlyt, i.e., constant on each sliceSt. Then Eq.s22d shows thatVa are functions

of only xa, and hence Eqs.s21d and s23d show thatṙ−s ḟ / fdr=c1sa constantd. Solving this linear
equation provides

r = fstdSc1E
t0

t 1

fstd
dt + c2D , s24d

wherec2 is an arbitrary constant. The value ofs is gotten by using this expression ofr in s21d. If
r is a nonvanishing function of all the four coordinates t,xa, then from Theorem 1 (note that all the
hypotheses of Theorem 1 are satisfied by GRW space–times) it follows that each slice is confor-
mally diffeomorphic to one of the model spaces mentioned in the conclusion of Theorem 1, and has
the line element du2+sr8sudd2 dc2 where dc2 is the 2-metric orthogonal to] /]u. This does com-
pare with the line element of the spatial slice of the Robertson–Walker space–time where the
2-metric dc2 is the standard metric of the unit 2-sphere. Finally we note that if the GRW space–
time admits a maximal conformal groupG15, then it is conformally flat, and henceS has constant
curvature, i.e., GRW space–time reduces to Robertson–Walker space–time.

V. CONCLUDING REMARKS

In the hypotheses of Theorems 1 and 2, we have assumed that the normal componentr of the
CKV field j is nonvanishing and nonconstant onS. If we just assume thatsM ,gd is a space–time
admitting a CKV fieldj and a spacelike hypersurfaceS such thatr is zero, i.e.,j is everywhere
tangential toS, then we observe from Eqs.s11d and s16d that V is conformal onS and L is
preserved byV up to the factor −s /2. Next, suppose that a space–time solutionsM ,gd of Ein-
stein’s equations admits a CKV fieldj and a totally umbilical spacelike hypersurfaceS such that
the normal componentr of j is a nonzero constant onS. Then one can show using Eqs.s3d, s9d,
and s12d that kRsN,XdN,Xl=−4p /3sTnn+Tm

md for any unit tangent vector fieldX on S, i.e., the
normal sectional curvature ofM is independent of the tangential direction at each point ofS.
Conversely, this consequence need not imply thatr is constant onS. This intrigued us to include
this normal sectional curvature condition as a hypothesis in Theorems 1 and 2. This is further
motivated by the fact that the normal sectional curvature condition holds for GRW space–times.

042502-7 Conformal symmetries of Einstein’s equations J. Math. Phys. 46, 042502 ~2005!

                                                                                                                                    



ACKNOWLEDGMENTS

The author is immensely grateful to Professor Vincent Moncrief of Yale University for nu-
merous valuable communications. This work was supported by Yale University Visiting Faculty
Fellowships1994–1995d, and University of New Haven Summer Faculty Fellowships2001d.

1Alias, J., Romero, A., and Sanchez M., “Spacelike hypersurfaces of constant mean curvature in certain spacetimes,”
Nonlinear Anal. Theory, Methods Appl.30, 655 s1997d.

2Arnowitt, R., Deser, S., and Misner, C. W., “The dynamics of general relativity,”Gravitation: An Introduction to Current
Research, edited by L. WittensWiley, New York, 1962d

3Beem, J. K. and Ehrlich, P. E.,Global Lorentzian GeometrysMarcel Dekker, New York, 1981d.
4Berger, B. K., “Homothetic and conformal motions in space-like slices of solutions of Einstein’s equations,” J. Math.
Phys. 17, 1268s1976d.

5Collinson, C. D. and French, D. C., “Null tetrad approach to motions in empty spacetime,” J. Math. Phys.8, 701s1967d.
6Duggal, K. L. and Sharma, R.,Symmetries of Spacetimes and Riemannian ManifoldssKluwer Academic, Dordrecht,
1999d.

7Duggal, K. L. and Sharma, R., “Conformal Killing vector fields on spacetime solutions of Einstein’s equations and initial
data,” Nonlinear Anal. Theory, Methods Appl.sto be publishedd.

8Eardley, D., Isenberg, J., Marsden, J., and Moncrief, V., “Homothetic and conformal symmetries of solutions to Ein-
stein’s equations,” Commun. Math. Phys.106, 137 s1986d.

9Ferus, D., “A remark on Codazzi tensors in constant curvature spaces,”Global Differential Geometry and Global
Analysis, Lecture Notes in Math. 838sSpringer-Verlag, New York, 1981d.

10Garfinkle, D. and Tian, Q., “Spacetimes with cosmological constant and a conformal Killing field have constant curva-
ture,” Class. Quantum Grav.4, 137 s1987d.

11Gerhardt, C., “H-surfaces in Lorentzian manifolds,” Commun. Math. Phys.89, 523 s1983d.
12Katsurada, Y., “On a certain property of closed hypersurfaces in an Einstein space,” Comment. Math. Helv.38, 165

s1964d.
13Kuehnel, W., “Conformal transformations between Einsten spaces,” inConformal Geometry, edited by R. S. Kulkarni

and U. PinkallsVieweg Verlag Braunschweig, Wiesbaden, 1988d.
14Maartens, R. and Maharaj, S. D., “Conformal Killing vectors in Robertson-Walker spacetimes,” Class. Quantum Grav.3,

1005 s1986d.
15Misner, C., Thorne, K., and Wheeler, J.,Gravitation sW. H. Freeman, San Francisco, 1973d.
16O’Neill, B. O., Semi-Riemannian Geometry with Applications to RelativitysAcademic, New York, 1983d.
17Sharma, R., “Proper conformal symmetries of spacetimes with divergence-free conformal tensor,” J. Math. Phys.34,

3582 s1993d.
18Yano, K., Integral Formulas in Riemannian GeometrysMarcel Dekker, New York, 1970d.

042502-8 Ramesh Sharma J. Math. Phys. 46, 042502 ~2005!
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Einstein and gauge gravity

Sergiu I. Vacarua!

Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones
Cientificas, Calle Serrano 123, Madrid 28006, Spain

sReceived 27 July 2004; accepted 22 December 2004; published online 21 March 2005d

We present new classes of exact solutions with noncommutative symmetries con-
structed in vacuum Einstein gravitysin general, with nonzero cosmological con-
stantd, five-dimensionals5Dd gravity andsantid de Sitter gauge gravity. Such solu-
tions are generated by anholonomic frame transforms and parametrized by generic
off-diagonal metrics. For certain particular cases, the new classes of metrics have
explicit limits with Killing symmetries but, in general, they may be characterized
by certain anholonomic noncommutative matrix geometries. We argue that different
classes of noncommutative symmetries can be induced by exact solutions of the
field equations in commutative gravity modeled by a corresponding moving real
and complex frame geometry. We analyze two classes of black ellipsoid solutions
sin the vacuum case and with cosmological constantd in four-dimensional gravity
and construct the analytic extensions of metrics for certain classes of associated
frames with complex valued coefficients. The third class of solutions describes 5D
wormholes which can be extended to complex metrics in complex gravity models
defined by noncommutative geometric structures. The anholonomic noncommuta-
tive symmetries of such objects are analyzed. We also present a descriptive account
how the Einstein gravity can be related to gauge models of gravity and their non-
commutative extensions and discuss such constructions in relation to the Seiberg–
Witten map for the gauge gravity. Finally, we consider a formalism of vielbeins
deformations subjected to noncommutative symmetries in order to generate solu-
tions for noncommutative gravity models with Moyalsstard product. © 2005
American Institute of Physics.fDOI: 10.1063/1.1869538g

I. INTRODUCTION

In the last 15 years much effort has been made to elaborate a consistent formulation of
noncommutative gravity theory generalizing the standard Einstein theory but up to now the prob-
lem is quite difficult to approachssee, for instance, Refs. 1–8 for details related to existing
modelsd. The proposed theories are for the spaces with Euclidean signatures, and, in general, result
in models of complex gravity in noncommutative spaces provided with complex and/or nonsym-
metric metrics and anholonomic frames. There were also derived some effective noncommutative
gravity models from string/brane theory, by considering quantum group structures and/or by
proposing noncommutative gaugelike generalizations of gravity.

In this paper, we pursue the idea that noncommutative geometric structures are present in the
Einstein, five-dimensionalsin brief, 5Dd gravity and gauge gravity models. Such noncommutative
symmetries are emphasized if the anholonomic moving frames9–12 are introduced into consider-
ation. This hidden noncommutativity is nontrivial for various classes of generic off-diagonal
metrics admitting effective diagonalizations by anholonomic transforms with associated nonlinear
connection structure.13–19The metrics may be subjected to the condition to define exact solutions
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of the vacuum field equations with certain possible extensions to matter sources. The noncommu-
tative anhlonomic geometries can be derived even from the commutative general relativity theory
and admit a natural embedding into different models of complex noncommutative gravity. The
metric and framesvielbeind coefficients corresponding to off-diagonal solutions depend on two,
three or four variables and define space–times with associated noncommutative symmetries. Such
classes of exact solutions are very different from the well-known examples of metrics with Killing
symmetryslike the Schwarzschild or Kerr–Newmann solutions; see a detailed analysis in Ref. 20d.

Our aim is to prove, by constructing and analyzing three classes of exact solutions, that certain
noncommutative geometric structures can be defined in the framework of the Einsteinsin general,
with the cosmological termd and 5D gravity. We emphasize classes of anholonomic real and
complex deformations of metrics possessing associated noncommutative symmetries. Contrary to
other approaches to noncommutative gravity and field interactions theory elaborated by substitut-
ing the commutative algebras of functions with noncommutative algebras and/or by postulating
any complex noncommutative relations for coordinates, we try to derive noncommutative struc-
tures from associated symmetries of metrics and frames subjected to anholonomy relations. We
shall propose a classification of such space–times and state a method of complexification of exact
solutions preserving the noncommutative symmetry for black hole and wormhole metrics in real
and complex gravity.

The study of anholonomic noncommutative symmetries of gravitational field interactions is
more involved in the moving frame formalism conventionally adapted to equivalent redefinitions
of the Einstein equations as Yang–Mills equations for nonsemisimple gauge groups like in the
Poincare gauge gravity.21,22 This construction has direct generalizations to various type of gauge
gravity models with nondegenerate metrics in the total bundle spaces, in both commutative and
noncommutative forms.23–29,6 The connection between the general relativity theory and gauge
gravity models is emphasized in order to apply and compare with a set of results from noncom-
mutative gauge theory.

Among our static solutions we find geometries having a structure as have Schwarzschild,
Reissner–Nordstrem, andsantid de Sitter spaces but with the coefficients redefinedswith certain
polarization constantsd with respect to anholonomic real/complex frames which make possible
definition of such objects in noncommutative models of gravity. There are equally interesting
applications to black hole physics, quantum gravity, and string gravity.

Next, the emerged anholonomic noncommutative symmetries of off-diagonal metrics pre-
scribe explicit rules of deformation the solutions on small noncommutative parameters and con-
nect the results to quantum deformations of gravity and gauge models. So, even a generally
accepted version of noncommutative gravity theory has been not yet formulated, we know how to
generate particular classes of real and complex stable metrics with noncommutative symmetries
and possessing properties very similar to the usual black hole and wormhole solutions. In particu-
lar, we present a systematic procedure for constructing exact solutions both in commutative and
noncommutative gravity models, to define black hole and wormhole objects with noncommutative
symmetries and quantum corrections. We are able to investigate the physical properties of such
objects subjected to certain classes of anholonomic and/or quantum deformations.

The paper is organized as follows.
We begin in Sec. II with a brief introduction into the geometry of space–times provided with

anholonomic frame structure and associated nonlinear connections. Such geometries are charac-
terized by corresponding anholonomy relations induced by nonlinear connection coefficients re-
lated to certain off-diagonal metric components. This also induces a corresponding noncommuta-
tive space–time structure.

In Sec. III, we illustrate that such noncommutative anholonomic geometries can be associated
even to real space–times and that a simple realization holds within the algebra for complex
matrices. We emphasize that a corresponding noncommutative differential calculus can be derived
from the anholonomy coefficients deforming the structure constants of the related Lie algebras.

Section IV is devoted to a rigorous analysis of two classes of static black ellipsoid solutions
fthe first and second type metrics defining, respectively, four-dimensionals4Dd vacuum Einstein
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and induced by cosmological constant configurationsg. We prove that such metrics can be com-
plexified in order to admit associated complex frame/nonlinear connection structures inducing
noncommutative matrix geometries and show how analytic extensions of such real and complexi-
fied space–times can be constructed.

In Sec. V, a class of 5D wormhole solutions with anisotropic elliptic polarizations is consid-
ered for the 5D gravity. We argue that such generic off-diagonal metrics may be also complexified
as to preserve the wormhole configurations being additionally characterized by complex valued
coefficients for the associated nonlinear connection. Such objects possess the same noncommuta-
tive symmetry for both types of real and complex solutions.

Section VI is a discussion of how the Einstein gravity and its higher dimension extensions can
be incorporated naturally into commutative and noncommutative gauge models. A new point is
that the proposed geometric formalism is elaborated in order to include anholonomic complex
vielbeins.

In Sec. VII, we define the Seiberg–Witten map for the de Sitter gauge gravity and state a
prescription how the exact solutions possessing anholonomic noncommutative symmetries can be
adapted to deformations via star products with noncommutative relations for coordinates.

We conclude and discuss the results in Sec. VIII. For convenience, we summarize the neces-
sary results from Refs. 13–19 and 30–32 in Appendixes A–C and state some definitions on “star”
products and enveloping algebras in Appendix D.

II. OFF-DIAGONAL METRICS AND ANHOLONOMIC FRAMES

We consider asn+md-dimensional space–time manifoldVn+m provided with aspseudod Rie-
mannian metricg=hgmnj and denote the local coordinatesu=sx,yd, or in component form,ua

=sxi ,yad, where the greek indices are conventionally split into two subsets,x=hxij and y=hyaj,
labelled, correspondingly, by italic indices of typei , j ,k, . . . =1,2, . . . ,n, and a,b, . . .
=1,2, . . . ,m. In general, the geometric objects on such space–times may possess some nontrivial
Killing symmetriessthe Killing case is emphasized by the conditionLXg=0, whereLX is the Lie
derivative with respect to a vector fieldX on Vn+m, see, for instance, Ref. 20d or some deforma-
tions of such symmetries, for instance, by frame transforms. The space–times may have some
additional frame structures with associated nonlinear connection, bundle structure, and even non-
trivial torsions being adapted to the frame structure.

We shall define our constructions for a general metric ansatz of type

g = gmndum
^ dun = gijsxkddxi

^ dxj + habsxk,vddya
^ dyb s1d

with respect to a locally adapted basisfdxi ,dyag, where the Einstein’s summation rule is applied
and byv we emphasize the dependence on a so-called anisotropic coordinate from the sethyaj.
The local basis

efNg
m = dm = dum = fdxi,dyag = fdxi,dya = dya + Ni

asxk,vddxig s2d

scalled to beN-elongated; we shall provide an additional indexfNg if necessary to distinguish such
objectsd is dual to the local basis

ea
fNg = da =

d

dua = F d

]xi =
]

]xi − Ni
asxk,vd

]

]ya,
]

]ybG . s3d

We consider an off-diagonal metric ansatz fors1d having the components

ĝab = Fgij + Ni
aNj

bhab Nj
ehae

Ni
ehbe hab

G . s4d

So, we can write equivalentlyg= ĝab dua dub if the metric is rewritten with respect to the local
dual coordinate basis dum=fdxi ,dyag, the dual to] /]ua=f] /]xi ,] /]ybg sdefined correspondingly
by usual partial derivatives and differentialsd.
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A very surprising fact is that the off-diagonal metric ansatzs4d for dimensionsn+m=3,4,5
and certain imbedding of such configurations in extra dimensionssuperd spaces results in com-
pletely integrable systems of partial differential equationsssee details in Refs. 13–19 with a review
of results in Refs. 30 and 31 and Theorems 1–3 in Appendix Bd. In this paper, we shall consider
that any metrics4d, or equivalentlys1d and framessvielbeinsd s2d and s3d, parametrizes an exact
solution of the Einstein equations in a commutative gravity theory.

Let us state the main geometric properties of space–times provided with off-diagonal metrics
which can be effectively diagonalized with respect to theN-elongated framess2d and s3d.

s1d Such space–times are characterized by certain anholonomic frame relationssanholonomy
conditionsd

ea
fNgeb

fNg − eb
fNgea

fNg = wab
fNggeg

fNg s5d

with some nontrivial anholonomy coefficientswab
fNgg computed as

wk
ij = 0, wk

aj = 0, wk
ab = 0, wc

ab = 0,

wa
bj = − wa

jb = ]bNj
a, wa

ij = − Vi j
a = diNj

a − d jNi
a s6d

swe shall omit the labelfNg if this will not result in any confusion; as a matter of principle,
we can consider arbitrary anholonomy coefficients not related to any off-diagonal metric
termsd. If the valueswab

fNgg do not vanish, it is not possible to diagonalize the metrics4d by
any coordinate transforms: such space–times are generic off diagonal. The holonomic frames
sin particular the coordinate onesd consist of a subclass of vielbeins with vanishing an-
holonomy coefficients.

s2d To any framesvielbeind transform defined by the coefficients ofea
fNg decomposed with

respect to usual coordinate frames, we can associate a nonlinear connection structuresin
brief, N connectiond N with the coefficientshNj

aj fin global form theN connection was
defined in Ref. 33 by developing previous ideas from Finsler geometry,9–12,34–36investigated
in details for vector bundle spaces in Refs. 37 and 38; see also Refs. 13–19 and 30–32 on
definition of such objects inspseudod Riemannian and Riemann–Cartan–Weyl geometry or
on superspacesg. Here we note that theN-connection structure is characterized by its curva-
turesN curvatured V=hVi j

aj with the coefficients computed as ins6d. The well-known class of
linear connections is to be distinguished as a particular case whenNj

asx,yd=G jb
a sxdyb. On

spseudod Riemannian spaces, theN connection is a geometric object completely defined by
anholonomic frames when the vielbein transformsea

fNg are parametrized explicitly via certain
valuessNi

a,di
j ,db

ad, wheredi
j anddb

a are the Kronecker symbols, like ins3d.
s3d TheN coefficients define a conventional global horizontal–verticalsin brief, h–vd splitting of

space–timeVn+m into holonomic–anholonomic subsets of geometrical objects labeled byh
components with indicesi , j , . . . andv components with indicesa,b, . . .; seedetails in Refs.
13–19 and 30–32. The necessary formulas for theh–v decompositions of the curvature,
Ricci and Einstein tensors are contained in Appendix A.

s4d Such generic “off-diagonal” space–times may be characterized by the so-called canonical
N-adapted linear connectionGfcg=hLi

jk ,La
bk,C

i
jc ,Ca

bcj satisfying the metricity condition
Dg

fcggab=0 and being adapted to theh–v distribution. The coefficients ofGfcg are

Li
jk = 1

2ginsdkgnj + d jgnk − dngjkd,

La
bk = ]bNk

a + 1
2hacsdkhbc − hdc]bNk

d − hdb]cNk
dd, s7d
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Ci
jc = 1

2gik]cgjk, Ca
bc = 1

2hads]chdb + ]bhdc − ]dhbcd,

wheredk=d /]xk and]c=] /]ya; they are constructed from the coefficientssand their partial
derivativesd of the metric andN connection. This connection is an anholonomic deformation
sby N coefficientsd of the Levi–Civita connection.

s5d The torsion of the connectionGfcg is definedsfor simplicity, we omit the labelfcgd

Ta
bg = Ga

bg − Ga
gb + wa

bg, s8d

with h–v components

T.jk
i = Tjk

i = Ljk
i − Lkj

i = 0 in the canonical case,

T.bc
a = S.bc

a = Cbc
a − Ccb

a = 0 in the canonical case, s9d

T.ja
i = 0, Tja

i = − Taj
i = − Cja

i , T.i j
a = − Vi j

a, T.bi
a = − T.bi

a = ]bNi
a − L.bi

a .

The nonvanishing components of torsion are induced as an anholonomic frame effect which
is obtained by vielbien transformss2d ands3d even for aspseudod Riemannian metrics4d. In
this paper, we shall also consider some nontrivial torsion structures existing in extra dimen-
sion gravity.

s6d By straightforward calculations with respect to the framess2d ands3d ssee for instance, Refs.
39 and 40d we can compute the coefficients of the Levi–Civita connection¹, i.e., Gabg

f¹g

=gsea
fNg ,¹geb

fNgd=gatGbg
f¹gt, satisfying the metricity condition¹ggab=0 for gab=sgij ,habd,

Gabg
f¹g = 1

2seb
fNggag + eg

fNggba − ea
fNgggb + gatw

t
gb + gbtw

t
ag − gbtw

t
bad.

Using the valuess6d and s3d, we can write

Gbg
f¹gt = HLi

jk,L
a
bk +

]Nk
a

]yb ,Ci
jc +

1

2
gikV jk

a hca,C
a
bcJ . s10d

Comparing the coefficients ofGfcg and Gf¹g, we conclude that both connections have the
same coefficients with respect to theN-adapted framess2d and s3d if and only if ]Nk

a/]yb

=0 andV jk
a =0.

s7d The ansatz of types4d have been largely used in Kaluza–Klein theoriesssee, for instance,
Refs. 41–43d. For the corresponding compactifications, the coefficientsNi

a may be associated
to the potential of certain gauge fields but, in general, they belong to some noncompactified
metric and vielbein gravitational fields. There were elaborated general methods for construct-
ing exact solutions without compactification and arbitraryNi

a in various types of gravity
models.13–19

Any ansatz of types4d with the components satisfying the conditions of the Theorems 1–3
from Appendix B define a new class of exact solutions, vacuum and nonvacuum ones, in three-
through five-dimensional gravity parametrized by generic off-diagonal metrics with the coeffi-
cients depending on two, three or even four variables. These solutions can be constructed in
explicit form by using corresponding boundary and symmetry conditions following the so-called
anholonomic frame method elaborated and developed in Refs. 13–19, 30, and 31sfor instance,
they can describe black elipsoid/tori configurations, two- through three-dimensional solitonic–
spinor–dilaton interactions, polarized wormhole/flux tube solutions, locally anisotropic Taub NUT
space–times and so ond.

Perhaps, by using the anholonomic frame method, we can construct the most general known
class of exact solutions in Einstein gravity and its extra dimension and string generalizations.
From a formal point of view, we can use superpositions of anholonomic maps in order to construct
integral varieties of the Einstein equations with the metric/frame coefficients being functions of
necessary smooth class depending on arbitrary number of variables but parametrized as products
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of functions depending on one, two, three, and four real, or some complex, variables with real and
complex valued functions. The physical meaning of such classes of solutions should be stated
following explicit physical models. We note that the bulk of the well-known black hole and
cosmological solutionssfor instance, the Schwarzschild, Kerr–Newman, Reissner–Nordström, and
Friedmann–Roberston–Walker solutionsd are with metrics being diagonalizable by coordinate
transforms and depending only on one variablesradial or timeliked, with imposed spherical or
cylindrical symmetries and subjected to the conditions of Killing symmetry being asymptotically
flat.

In general, the solutions with anholonomic configurations do not possess Killing symmetries
sfor instance, they are not restricted by “black hole uniqueness theorems,” proved for Killing
space–times satisfying corresponding asymptotic conditions, see details and references in Ref. 20d
but have new properties like thes1d–s7d stated above. There is a subclass of off-diagonal solutions
resulting in corresponding limits into the well-known asymptotically flat space–times, or with
santid de Sitter symmetries.13–19,30,31We are interested to investigate possible symmetries of such
non-Killing exact solutions.

The purpose of the next section is to prove that the space–times with a nontrivial anholonomic
and associatedN-connection structure possess a natural noncommutative symmetry.

III. ANHOLONOMIC NONCOMMUTATIVE STRUCTURES

We shall analyze two simple realizations of noncommutative geometry of anholonomic frames
within the algebra of complexk3k matrices,MksIC,uad depending on coordinatesua on space–
time Vn+m connected to complex Lie algebras SLsk, ICd and SUk. We shall consider matrix valued
functions of a necessary smooth class derived from the anholonomic frame relationss5d sbeing
similar to the Lie algebra relationsd with the coefficientss6d induced by off-diagonal metric terms
in s4d and byN-connection coefficientsNi

a. We shall use algebras of complex matrices in order to
have the possibility for some extensions to complex solutions. Usually, for commutative gravity
models, the anholonomy coefficientswab

fNgg are real functions but in Sec. VII we shall consider also
complex space–times related to noncommutative gravity.3–5

We start with the basic relations for the simplest model of noncommutative geometry realized
with the algebra of complexsk3kd noncommutative matrices,44, MksICd. An element M
PMksICd can be represented as a linear combination of the unitsk3kd matrix I and sk2−1d
Hermitian traceless matricesqap with the underlined indexap running values1,2, . . . ,k2−1, i.e.,

M = aI + o baqa

for some constantsa andba. It is possible to choose the basis matricesqa satisfying the relations

qaqbp
=

1

k
rabp

I + Qabp

g qg −
i

2
fg

abp
qg, s11d

wherei2=−1 and the real coefficients satisfy the properties

Qabp

g = Qbp a
g , Qgbp

g = 0, fg
abp

= − fg
bp a, fg

ga = 0

with fg
abp

being the structure constants of the Lie group SLsk, ICd and the Killing–Cartan metric

tensorrabp
= ft

agfg
tbp

. The interior derivatives]̂g of this algebra can be defined as

]̂gqbp
= adsiqgdqbp

= ifqg,qbp
g = fap

gbp
qa. s12d

Following the Jacobi identity, we obtain

]̂a]̂bp
− ]̂bp

]̂a = fg
abp

]̂g. s13d
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Our idea is to construct a noncommutative geometry starting from the anholonomy relations
of framess5d by adding to the structure constantsfg

abp
the anholonomy coefficientswag

fNgt s6d. Such

deformed structure constants consist fromN-connection coefficientsNi
a and their first partial

derivatives, i.e., they are induced by some off-diagonal terms in the metrics4d being a solution of
the gravitational field equations. We note that there is a rough analogy between formulass13d and
s5d because the anholonomy coefficients do not satisfy, in general, the conditionwta

fNgt=0. There is
also another substantial difference, the anholonomy relations are defined for a manifold of dimen-
sion n+m, with greek indicesa ,b , . . . running values from 1 ton+m but the matrix noncommu-
tativity relations are stated for traceless matrices labeled by underlined indicesa ,bp , running
values from 1 tok2−1. It is not possible to satisfy the conditionk2−1=n+m by using integer
numbers for arbitraryn+m. We suggest to extend the dimension of space–time fromn+m to any
n8ùn andm8ùm when the conditionk2−1=n8+m8 can be satisfied by a trivial embedding of the
metric s4d into higher dimension, for instance, by adding the necessary number of unities on the
diagonal by writing

ĝabp
=3

1 ¯ 0 0 0

¯ ¯ ¯ ¯ ¯

0 ¯ 1 0 0

0 ¯ 0 gij + Ni
aNj

bhab Nj
ehae

0 ¯ 0 Ni
ehbe hab

4
andea

fNg=da=s1,1, . . . ,ea
fNgd, where, for simplicity, we preserve the same type of underlined greek

indices, a ,bp , . . . =1,2, . . . ,k2−1=n8+m8. The anholonomy coefficientswab
fNgg can be extended

with some trivial zero components and for consistency we rewrite them without labeled indices,
wab

fNgg→Wg
abp

. The set of anholonomy coefficientswab
fNgg s6d may result in degenerated matrices, for

instance for certain classes of exact solutions of the Einstein equations. Nevertheless, we can
consider an extensionwab

fNgg→Wg
abp

when the coefficientswg
abp

sutd for any fixed valueut=uf0g
t

would be some deformations of the structure constants of the Lie algebra SLsk, ICd, like

Wg
abp

= fg
abp

+ wg
abp

, s14d

being nondegenerate.
Instead of the matrix algebraMksICd, constructed from constant complex elements, we shall

consider dependencies on coordinatesua=s0, . . . ,uad, for instance, like a trivial matrix bundle on
Vn8+m8, and denote this spaceMksIC,uad. Any elementBsuadPMksIC,uad with a noncommutative
structure induced byWg

abp
is represented as a linear combination of the unitsn8+m8d3 sn8+m8d

matrix I and thefsn8+m8d2−1g Hermitian traceless matricesqasutd with the underlined indexa
running values1,2, . . . ,sn8+m8d2−1,

Bsutd = asutdI + o basutdqasutd

under condition that the following relation holds:

qasutdqbp
sugd =

1

n8 + m8
rabsund + Qab

gp qgp
sump d −

i

2
Wg

abp
qgsump d

with the same values ofQabp

g from the Lie algebra for SLsk, ICd but with the Killing–Cartan-type

metric tensor defined by anholonomy coefficients, i.e.,rabp
sund=Wt

agsuadWg
tbp

suad. For complex

space–times, we shall consider that the coefficientsNi
a and Wg

abp
may be some complex valued

functions of necessary smoothsin general, with complex variablesd class. In result, the Killing–
Cartan-type metric tensorrabp

can also be complex.
We rewrites5d as
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eaebp
− ebp

ea = Wg
abp

eg s15d

being equivalent tos13d and defining a noncommutative anholonomic structuresfor simplicity, we
use the same symbolsea as for someN-elongated partial derivatives, but with underlined indicesd.
The analogs of derivation operatorss12d are stated by usingWg

abp
,

eaqbp
sugd = adfiqasugdgqbp

sugd = ifqasugdqbp
sugdg = Wg

abp
qg. s16d

The operatorss16d define a linear space of anholonomic derivations satisfying the conditions
s15d, denoted AderMksIC,uad, elongated byN connection and distinguished into irreducibleh and
v components, respectively, intoei and eb, like ea=sei =]i −Ni

aea,eb=]bd. The space
AderMksIC,uad is not a left module over the algebraMksIC,uad which means that there is a
substantial difference with respect to the usual commutative differential geometry where a vector
field multiplied on the left by a function produces a new vector field.

The duals to operatorss16d, emp , found fromemp sead=da
mp I, define a canonical basis of 1-formsemp

connected to theN-connection structure. By using these forms, we can span a left module over
MksIC,uad following qaemp sebp

d=qadbp
mp I =qadbp

mp . For an arbitrary vector field

Y = Yaea → Yaea = Yiei + Yaea,

it is possible to define an exterior differentialsin our case beingN elongatedd, starting with the
action on a functionw sequivalent, a 0-formd,

dwsYd = Yw = Yidiw + Yadaw

when

sdIdsead = eaI = adsieadI = ifea,Ig = 0, i.e., dI = 0,

and

dqmp
sead = easemp

d = ifemp
,eag = Wg

amp
eg. s17d

Considering the nondegenerated case, we can inverts17d as to obtain a similar expression with
respect toemp ,

dsead = Wg
amp

egemp , s18d

from which a very important property follows by using the Jacobi identity,d2=0, resulting in a
possibility to define a usual Grassman algebra ofp-forms with the wedge product∧ stated as

emp ∧ en = 1
2semp ^ en − en

^ emp d.

We can writes18d as

dsead = − 1
2Wa

bp mp
ebpemp

and introduce the canonical 1-forme=qaea being coordinate independent and adapted to the
N-connection structure and satisfying the conditionde+e∧e=0.

In a standard manner, we can introduce the volume element induced by the canonical Cartan–
Killing metric and the corresponding star operator! sHodge dualityd. We define the volume
elements by using the complete antisymmetric tensorea1a2¯ak2−1

as
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s =
1

fsn8 + m8d2 − 1g!
ea1a2¯an8+m8

ea1 ∧ ea2 ∧ ¯ ∧ ean8+m8

to which anysk2−1d-form is proportionalsk2−1=n8+m8d. The integral of such a form is defined
as the trace of the matrix coefficient in the forms and the scalar product introduced for any couple
of p-forms Ã andc,

sÃ,cd =E sÃ ∧ !cd.

Let us analyze how a noncommutative differential form calculussinduced by an anholonomic
structured can be developed and related to the Hamiltonian classical and quantum mechanics and
Poisson bracket formalism.

For ap-form Ãfpg, the antiderivationiY with respect to a vector fieldYPAderMksIC,uad can
be defined as in the usual formalism,

iYÃfpgsX1,X2, . . . ,Xp−1d = ÃfpgsY,X1,X2, . . . ,Xp−1d,

whereX1,X2, . . . ,Xp−1PAderMksIC,uad. By a straightforward calculus we can check that for a
2-form J=de one holds

dJ = d2e= 0 andLYJ = 0,

where the Lie derivative of forms is defined asLYÃfpg=siY d+d iYdÃfpg.
The Hamiltonian vector fieldHfwg of an element of algebrawPMksIC,uad is introduced

following the equalityJsHfwg ,Yd=Yw which holds for any vector field. Then, we can define the
Poisson bracket of two functionssin a quantum variant, observablesd w and x, hw ,xj
=JsHfwg ,Hfxgd when

hea,ebp
j = Jsea,ebp

d = ifea,ebp
g.

This way, a simple version of noncommutative classical and quantum mechanicssup to a factor
like the Planck constant,"d is proposed, being derived by anholonomic relations for a certain class
of exact off-diagonal solutions in commutative gravity.

We note that by using the Lie algebra SUsk, ICd we can elaborate an alternative noncommu-
tative calculus related to the special unitary group SUk in k dimensions when the anholonomic
coefficients

Wg
abp

= pg
abp

+ wg
abp

s19d

induce a linear connection in the associated noncommutative spacesnoncommutative geometries
with pg

abp
being the structure constants of SUk were investigated in Refs. 44–49 and 8d.

Let us state the main formulas for such realization of anholonomic noncommutativity: In this
case, the matrix basisqa consists from anti-Hermitiansand not Hermitiand matrices and the
relationss11d are stated in a different form

qaqbp
= −

1

k
rabp

I + Zabp

g qg +
1

2
pg

abp
qg, s20d

whereragZabp

g is trace free and symmetric in all pairs of indices andrabp
=pt

agpg
tbp

. We consider

dependencies of matrix coefficients on coordinatesua=s0, . . . ,uad, i.e., we work in the space
MksIC,uad, and introduce the anholonomic derivationsea,

042503-9 Exact solutions with noncommutative symmetries J. Math. Phys. 46, 042503 ~2005!

                                                                                                                                    



eaw = fqa,wg,

for arbitrary matrix functionwPMksIC,uad defining a basis for the Lie algebra of derivations
DerfMksIC,uadg of MksIC,uad. In this case, we generalizes20d to

qasutdqbsutd = −
1

k
rabp

sutdI + Zabp

g qgsutd +
1

2
Wg

abp
sutdqgsutd,

with an effectivesof N-anholonomy origind metric rabp
suld=Wt

agsuldWg
tbsuld being an anholo-

nomic deformation of the Killing metric of SUk.
In order to define the algebra of formsV*fMksIC,uadg over MksIC,uad we setV0=Mk and

write

dwsead = easwd

for every matrix functionwPMksIC,uad. As a particular case, we have

dqasebp
d = − Wa

bp gqg,

where indices are raised and lowered with the anholonomically deformed metricrabp
suld. This

way, we can define the set of 1-formsV1fMksIC,uadg to be the set of all elements of the formwdb
with w andb belonging toMksIC,uad. The set of all differential forms define a differential algebra
V*fMksIC,uadg with the couplesV*fMksIC,uadg ,dd said to be a differential calculus inMksIC,uad
induced by the anholonomy of certain exact solutionsswith off-diagonal metrics and associatedN
connectionsd in a gravity theory.

We can also find a set of generatorsea of V1fMksIC,uadg, as a left/right module completely
characterized by the duality equationsemp sead=da

mp I and related todqa,

dqa = Wa
bp gqbpqg andemp = qgqmp dqg.

Similarly to the formalism presented in details in Ref. 8, we can elaborate a differential calculus
with derivations by introducing a linear torsionless connection

Demp = − vmp
g ^ eg

with the coefficientsvmp
g=−1

2Wmp
gbp

eg, resulting in the curvature 2-form,

Rmp
g = 1

8Wmp
gbp

Wbp
ate

aet.

So, even the anholonomy coefficientss6d of a solution, for instance, in string gravity, has non-
trivial torsion coefficients,s9d, the associated linear connection induced by the anholonomy coef-
ficients in the associated noncommutative space of symmetries of the solution can be defined to be
torsionless but to have a specific metrics and curvature being very different from the space–time
curvature tensor. This is a surprising fact that commutative curved space–times provided with
off-diagonal metrics and associated anholonomic frames andN connections may be characterized
by a noncommutative shadow space with a Lie algebralike structure induced by the frame an-
holonomy. We argue that such metrics possess anholonomic noncommutative symmetries.

Finally, in this section, we conclude that for the holonomic solutions of the Einstein equations,
with vanishingwg

abp
, any associated noncommutative geometry or SLsk, ICd, or SUk type, de-

couples from the off-diagonalsanholonomicd gravitational background and transforms into a
trivial one defined by the corresponding structure constants of the chosen Lie algebra. The an-
holonomic noncommutativity and the related differential geometry are induced by the anholonomy
coefficients. All such structures reflect a specific type of symmetries of generic off-diagonal
metrics and associated frame/N-connection structures. Considering exact solutions of the gravita-
tional field equations, we can assert that we constructed a class of vacuum or nonvacuum metrics

042503-10 Sergiu I. Vacaru J. Math. Phys. 46, 042503 ~2005!

                                                                                                                                    



possessing a specific noncommutative symmetry instead, for instance, of any usual Killing sym-
metry. In general, we can introduce a new classification of space–times following anholonomic
noncommutative aglebraic properties of metrics and vielbein structures.

IV. BLACK ELLIPSOIDS WITH NONCOMMUTATIVE SYMMETRY

In this section, we shall analyze two classes of black ellipsoid solutions of the Einstein and
santid de Sitter gravityswith arbitrary cosmological termd possessing hidden noncommutative
symmetries. Such off-diagonal metrics will be constructed as to generate also exact solutions in
complex gravity, with respect to complexN-elongated vielbeinssfor simplicity, we shall consider
the metric coefficients to be real with respect to such complex framesd which must be considered
if any noncommutativity of coordinates with complex parameters and/or Wick-type rotations to
Euclidean signatures are introduced. Such metrics are stable for certain configurations with com-
plex off-diagonal termssa rigorous proof may be performed by generalizing to complex spaces the
results from Refs. 18 and 19d.

A. Anholonomic complex deformations of the Schwarzschild solution

We consider a 4D off-diagonal metric ansatzfa complex generalization ofs4d, or equivalently,
of s1d with complex framessvielbeinsd s2d and s3d, see also the ansatzsC2d in Appendix Cg,

ds2 = − S1 −
2m

r
+

«

r2D−1

dr2 − r2gsrddu2 − h3sr,wdr2 sin2 u dw2 + h4sr,wdS1 −
2m

r
+

«

r2Ddt2.

s21d

for usual local spherical and timelike coordinatesu=hua=su2=r ,u3=u ,u4=w ,u5= tdj. In order to
have compatibility with notations from Appendixes B and C, in this section, we consider that 4D
greek indices run from 2 to 5 where the “polarization” functionsh3,4 are decomposed on a small
parameter« ,0, u«u!1,

h4sr,wd = h4f0gsr,wd + «l4sr,wd + «2g4sr,wd + ¯ ,

h5sr,wd = 1 +«l5sr,wd + «2g5sr,wd + ¯ , s22d

gsrd is a necessary smooth class function satisfyinggsrd=1 if «→0 sit will be defined belowd and

dt = dt + n2sr,wddr s23d

for n2=n2
freg+ in2

fimg,«¯ +«2 terms being, in general, a complex valued function. In the particular
case, whenn2 is real, i.e., whenn2=n2

freg andn2
fimg=0, the labelsfreg andfimg being used, respec-

tively, for the real and imaginary parts, the metrics21d was investigated in connection to the
definition of static and nonstatic black ellipsoid configurations in Refs. 13–19, 30, and 31. The
functionsh4,5sr ,wd andn2sr ,wd will be found as the metric will define a solution of the vacuum
Einstein equationssA6d fsee Appendixes A–C for the explicit form of field equationssB3d–sB6d
written for the 4D ansatzsC2dg. By introducing certain complex components of metric generated
by small deformations of the spherical static symmetry on a small positive parameter« sin the
limits «→0 andh4,5→1 we have just the Schwarzschild solution for a point particle of massmd
we show here that it is possible to extend the results of Refs. 18 and 19 with respect to complex
anholonomic structuress2d with a nontrivial componentN2

5=n2sr ,wd given byN elongations23d.
A more interesting class of exact solutions with an effective electric chargeq induced from the

complex/noncommutative/anholonomic gravity may be constructed if we state that the parameter
of anholonomic deformations is of type«=siqd2 for a realq and imaginaryi. In this case the
metric s21d will have real coefficients in the first order of«, being very similar to those from the
well-known Reissner–Nordström metric with, in our case effective, electric chargeq. For conve-
nience, in our further calculations we shall use both small parameters« and/orq.
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The set ofh, l and g functions froms22d define arbitrary anholonomicsin our case with
certain complexityd deformations of the Schwarzschild metric. As a particular case, we can con-
sider the condition of vanishing of the metric coefficient beforedt2,

h5sr,wdS1 −
2m

r
+

«

r2D = 1 −
2m

r
+ «

F5

r2 + «2Q5 = 0,

F5 = l4sr2 − 2mrd + 1, s24d

Q5 = g4S1 −
2m

r
D + l4,

defining a rotation ellipsoid configuration when

l5 = S1 −
2m

r
D−1Scosw −

1

r2D andg5 = − l5S1 −
2m

r
D−1

.

Really, in the first order on«, one follows a zero value for the coefficient beforedt2 if

r+ =
2m

1 − q2 cosw
= 2mf1 + q2 coswg, s25d

which is the equation for a three-dimensionals3Dd ellipsoidlike hypersurface with a small eccen-
tricity q2. In general, we can consider arbitrary pairs of functionsl5sr ,u ,wd and g5sr ,u ,wd ffor
w-anisotropies,l5sr ,wd and g5sr ,wdg which may be singular for some values ofr, or on some
hypersurfacesr =rsu ,wd fr =rswdg. Such a configuration may define a static black ellipsoid object
sa Schwarzschild-type static solution with the horizon slightly deformed to an ellipsoidal
hypersurface18,19d.

In general, not being restricted only to ellipsoidal configurations, the simplest way to analyze
the condition of vanishing of the metric coefficient beforedt2 is to chooseg5 andl5 as to have
Q=0. In this case we find froms24d,

r± = m± mÎ1 − «
F

m2 . mF1 ± S1 + q2 F5

2m2DG , s26d

whereF5sr ,wd is taken forr =2m.
Let us introduce a new radial coordinate

j =E drÎU1 −
2m

r
−

q2

r2U s27d

and define

h4 = − h4sj,wdr2sjdsin2 u, h5 = 1 −
2m

r
− q2F5

r2 . s28d

For r =rsjd found as the inverse function after integration ins27d, we can write the metrics21d as

ds2 = − dj2 − r2sjdgsjddu2 + h4sj,u,wddw2 + h5sj,u,wddt2,

dt = dt + n2sj,wddj, s29d

where the coefficientn2 is taken to solve the Eq.sB6d and to satisfy the conditionV jk
a =0 which

states that we fix the canonicalN-adapted connections7d to coincide with the Levi–Civita con-
nection s10d, i.e., to consider a complexlike Einstein but not Einstein–Cartan theory, which to-
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gether with the conditionr2sjdgsjd=j2 will be transformed into the usual Schwarzschild metric for
«→0.

Let us define the conditions when the coefficients of metrics21d define solutions of the
vacuum Einstein equationsssuch solutions exists in the real case following Theorems 1–3 from
Appendix B, in our case we only state a generalization for certain complex valued metric coeffi-
cientsd. For g2=−1, g3=−r2sjdgsjd and arbitraryh4sj ,u ,wd andh5sj ,ud, we get solutions of Eqs.
sB3d–sB5d. If h5 depends on anisotropic variablew, Eq. sB4d may be solved if

Îuh4u = h0sÎuh5ud* s30d

for h0=const. Considering decompositions of types22d we seth0=h / u«u, where the constanth is
taken as to haveÎuh3u=1 in the limits

sÎuh4ud* → 0

u«u → 0
→ 1

h
= const. s31d

These conditions are satisfied if the functionsh4f0g, l4,5, andg4,5 are related via relations

Îuh4f0gu =
h

2
l5

* , l5 = hÎuh4f0gug5
*

for arbitraryg4sr ,wd. In this paper we select only such solutions which satisfy the conditionss30d
and s31d being a complex variant of the conditionssB16d, see Appendix B. Similar classes of
solutions were selected also in Refs. 18 and 19, for static black ellipsoid metrics for thesnoncom-
plexd Einstein gravity with real« parameter.

The next step is to construct the solution ofsB6d which in general real form issB18d. To
consider linear infinitesimal extensions on« of the Schwarzschild metric, we may write the
solution of sB6d as

n2 = «n̂2sj,wd,

where

n̂2sj,wd = n2f1gsjd + n2f2gsjd E dw n4sj,wd/sÎuh5sj,wdud3, h5
* Þ 0 = n2f1gsjd + n2f2g

3sjd E dw h4sj,wd, h5
* = 0 =n2f1gsjd + n2f2gsjd E dw/sÎuh5sj,wdud3, h4

* = 0,

s32d

with the functionsn2f1,2gsjd may be complex valued and must be stated by boundary conditions.
The data

g1 = − 1, g2 = − 1, g3 = − r2sjdgsjd,

h4 = − h4sj,wdr2sjdsin2 u, h5 = 1 −
2m

r
+ «

f5

r2 , s33d

w2,3= 0, n2 = «n̂2sj,wd, n3 = 0,

for the metric s21d written in variablessj ,u ,w ,td define a class of solutions of the complex
vacuum Einstein equations with nontrivial polarization functionh4 and extended on parameter«
up to the second ordersthe polarization functions being taken as to make zero the second order
coefficientsd. Such solutions are generated by small complex deformationssin particular cases of
rotation ellipsoid symmetryd of the Schwarzschild metric. It is possible to consider some particular
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parametrizations ofN coefficients resulting in Hermitian metrics and frames, or another type of
complex configurations. Such constructions do not affect the stability properties of solutions
elaborated in this paper.

We can relate our complex exact solutionss33d with some small deformations of the
Schwarzschild metric to a Reissner–Nordström-type metric with the “electric” charge induced
effectively from the anholonomic complex gravity, as well we can satisfy the asymptotically flat
condition, if we choose such functionsnkf1,2gsxid asnk→0 for «→0 andh4→1. These functions
must also be selected as to vanish far away from the horizon, for instance, like,1/r1+t, t.0, for
long distancesr →`. We get a static metric with effective “electric” charge induced by a small,
quadratic on«, off-diagonal metric extension. Roughly, we can say that we have constructed a
Reissner–Nordström-type world “living” in a slightly complexified frame which induced both an
effective electric charge and certain polarizations of the metric coefficients via the functionsh4f0g,
h4,5, andn5. Another very important property is that the deformed metric was stated to define a
vacuum solution which differs substantially from the usual Reissner–Nördstrom metric being an
exact static solution of the Einstein–Maxwell equations. For«→0 andh4f0g→1 and forg=1, the
metric s21d transforms into the usual Schwarzschild metric. A solution with ellipsoid symmetry
can be selected by a corresponding condition of vanishing of the coefficient beforedt which
defines an ellipsoidal hypersurfacelike for the Kerr metric, but in our case the metric is nonrotat-
ing.

B. Analytic extensions of ellipsoid complex metrics

In order to understand that the construction in this section of exact solution of vacuum
complex gravity really defines black-hole-like objects we must analyze it’s analytic extensions,
horizon, and geodesic behavior and stability.

The metrics21d has a singular behavior forr =r±, sees26d like the usual Reissner–Nördstrom
one. Our aim is to prove that we have constructed a solution of the vacuum complex Einstein
equations with a static “anisotropic” horizon being a small deformation on parameter« of the
Schwarzschild’s solution horizon. We may analyze the anisotropic horizon’s properties for some
fixed “direction” given in a smooth vicinity of any valuesw=w0 and r+=r+sw0d. The final con-
clusions will be some general ones for arbitraryw when the explicit values of coefficients will
have a parametric dependence on angular coordinatew. Of course, in order to avoid singularities
induced by integration of Eq.sB6d we must choose such solutionss32d as the associated anholo-
nomic frames with necessary smooth class, without singularities.

The metricss21d and s29d are regular in the regions Is`. r . r+
Fd, II sr+

F. r . r−
Fd, and

III sr−
F. r .0d. As in the Schwarzschild, Reissner–Nordström, and Kerr cases these singularities

can be removed by introducing suitable coordinates and extending the manifold to obtain a maxi-
mal analytic extension.50,51We have similar regions as in the Reissner–Nördstrom space–time, but
with just only one possibility«,1 instead of three relations for static electro-vacuum casessq2

,m2,q2=m2,q2.m2; whereq and m are correspondingly the electric charge and mass of the
point particle in the Reissner–Nordström metricd. This property holds for both types of anholo-
nomic deformations, real or complex ones. So, we may consider the usual Penrose’s diagrams as
for a particular case of the Reissner–Nördstrom space–time but keeping in mind that such dia-
grams and horizons have an additional parametrization on an angular coordinate and that the
frames have some complex coefficients.

We can construct the maximally extended manifold step by steps like in the Schwarzschild
casessee details, for instance, in Ref. 52d by supposing that the complex valued coefficients of
metrics and frame are of necessary smooth class as real and complex valued functionssfor
simplicity, we consider the simplest variant when the space–time is provided with a complex
valued metric but admits covering by real coordinates which after certain coordinate transform
may be also complexd. We introduce a new coordinate
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r i =E drS1 −
2m

r
−

q2

r2D−1

for r . r+
1 and find explicitly the coordinate

r i = r +
sr+

1d2

r+
1 − r−

1 lnsr − r+
1d −

sr−
1d2

r+
1 − r−

1 lnsr − r−
1d, s34d

wherer±
1=r±

F with F=1. If r is expressed as a function onj, thanr i can be also expressed as a
function onj depending additionally on some parameters.

Defining the advanced and retarded coordinates,v= t+r i and w= t−r i, with corresponding
elongated differentials

dv = dt + dr i anddw = dt − dr i, s35d

which areN-adapted frames likes2d but complex one, the metrics29d takes the form

ds2 = − r2sjdgsjddu2 − h3sj,w0dr2sjdsin2 u dw2 + S1 −
2m

rsjd
− q2F4sr,w0d

r2sjd
Ddv dw,

wheresin general, in nonexplicit formd rsjd is a function of typersjd=rsr id=rsv ,wd. Introducing
new coordinatessv9 ,w9d by

v9 = arctanFexpS r+
1 − r−

1

4sr+
1d2 vDG, w9 = arctanF− expS− r+

1 + r−
1

4sr+
1d2 wDG s36d

and multiplying the last term on the conformal factor we obtain

ds2 = − r2gsrddu2 − h4sr,w0dr2 sin2 udw2 + 64
sr+

1d4

sr+
1 − r−

1d2F1 −
2m

rsjd
− q2F5sr,w0d

r2sjd Gdv9 dw9,

s37d

wherer is defined implicitly by

tanv9 tanw9 = − expF r+
1 − r−

1

2sr+
1d2 rGÎ r − r+

1

sr − r−
1dx

, x = S r+
1

r−
1D2

, s38d

where the functions tan and exp should be considered as the complex functions. As particular
cases, we may chooseh5 sr ,wd as the condition of vanishing of the metric coefficient before
dv9 dw9 will describe a horizon parametrized by a resolution ellipsoid hypersurface.

The metrics37d is very similar to that analyzed in Refs. 18 and 19 but the coordinate trans-
forms defined bys35d–s38d involve complex coordinate transforms, sodv9 dw9 is a product de-
fined by complexifiedN-adapted frames.

The maximal extension of the Schwarzschild metric deformed by a small parameter«, i.e., the
extension of the metrics21d, is defined by takings37d as the metric on the maximal manifold
swhich for corresponding coordinate transforms can be considered as a real one but with complex
valued coefficients of the metric and moving framesd on which this metric is of smooth classC2.
The Penrose diagram of this static but locally anisotropic space–time, for any fixed angular value
w0 is similar to the Reissner–Nördstrom solution, for the caseq2→« and q2,m2 ssee, for in-
stance, Ref. 52d. There are an infinite number of asymptotically flat regions of type I, connected by
intermediate regions II and III, where there is still an irremovable singularity atr =0 for every
region III. We may travel from a region I to another one by passing through the wormholes made
by anisotropic deformationssellipsoid off diagonality of metrics, or anholonomyd like in the
Reissner–Nordström universe becauseÎ«,q may model an effective electric charge. One cannot
turn back in such travel because the complex frames “do not allow us.”
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It should be noted that the metrics37d is analytic everywhere except atr =r−
1 swe must use the

term analytic as real functions for the metric coefficients in the lower approximations on« and
analytic as complex functions for the higher approximations of the metric coefficients and for all
terms contained in the vielbein coefficientsd. We may eliminate this coordinate degeneration by
introducing other new complex coordinates

v- = arctanFexpS r+
1 − r−

1

2n0sr+
1d2vDG, w- = arctanF− expS− r+

1 + r−
1

2n0sr+
1d2 wDG ,

where the integern0ù sr+
1d2/ sr−

1d2 and complex functions. In these coordinates, the metric issin
general, complexd analytic everywhere except atr =r+

1 where it is degenerate. This way the space–
time manifold can be covered by an analytic atlas by using coordinate carts defined by
sv9 ,w9 ,u ,wd andsv- ,w- ,u ,wd. We also note that the analytic extensions of the deformed metrics
were performed with respect to anholonomic complex frames which distinguish such construc-
tions from those dealing only with holonomic and/or real coordinates, like for the usual Reissner–
Nördstrom and Kerr metrics.

A more rigorous analysis of the metrics21d should involve a computation of its curvature and
investigation of singularity properties. We omit here this cumbersome calculus by emphasizing
that anholonomic deformations of the Schwarzschild solution defined by a small real or complex
parameter« cannot remove the bulk singularity of such space–times; there are deformations of the
horizon, frames, and specific polarizations of constants.

The metrics21d and its analytic extensions do not possess Killing symmetries being deformed
by anholonomic transforms. Nevertheless, we can associate to such solutions certain noncommu-
tative symmetries following the procedure described in Sec. III. Taking the datas33d and formulas
s6d, we compute the corresponding nontrivial anholonomy coefficients

w42
fNg5 = − w24

fNg5 = ]n2sj,wd/]w = n2
*sj,wd s39d

with n2 defined bys32d. Our vacuum solution is for 4D, so forn+m=4, the conditionk2−1=n
+m cannot be satisfied in integer numbers. We may trivially extend the dimensions liken8=6 and
m8=m=2 and fork=3 to consider the Lie group SLs3, ICd noncommutativity with corresponding
values ofQabp

g and structure constantsfg
abp

, sees11d. An extensionwab
fNgg→Wg

abp
may be performed

by stating theN-deformed “structure” constantss14d, Wg
abp

= fg
abp

+wabp

fNgg, with only two nontrivial

values ofwabp

fNgg given by s39d.
The associated anholonomic noncommutative symmetries of the black ellipsoid solutions can

be alternatively defined as in the trivial anholonomy limit they will result in a certain noncom-
mutativity for the Lie group SU3. In this case, we must consider aN deformation of the group
structure constantspg

abp
, like in s19d, Wg

abp
=pg

abp
+wg

abp
. This variant of deformations can be

related directly with the “de Sitter nonlinear gauge gravity model ofsnondcommutative gravity”6

and the SUkfSOskdg models of noncommutative gravity7 by considering complex vielbeins.

C. Black ellipsoids and the cosmological constant

We can generalize the vacuum equations to the gravity with cosmological constantl,

Rm8n8 = lgm8n8, s40d

whereRm8n8 is the Ricci tensorsA3d, in general with anholonomic variables and the indices take
valuesi8 ,k8=1,2 anda8 ,b8=3,4.

For an ansatz of typesC5d,

ds2 = g1sdx1d2 + g2sdx2d2 + h3sxi8,y3dsdy3d2 + h4sxi8,y3dsdy4d2,
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dy3 = dy3 + wi8sx
k8,y3ddxi8, dy4 = dy4 + ni8sx

k8,y3ddxi8, s41d

the Einstein equationss40d are writtenfsee Refs. 30, 31, and 13–19 for details on computation;
this is a particular case of source of typesC14d, see Appendix Bg

R1
1 = R2

2 = −
1

2g1g2
Fg2

˙˙ −
g1

˙ g2
˙

2g1
−

sg2
˙ d2

2g2
+ g19 −

g18g28

2g2
−

sg18d
2

2g1
G = l, s42d

R3
3 = R4

4 = −
b

2h3h4
= l, s43d

R3i8 = − wi8
b

2h4
−

ai8

2h4
= 0, s44d

R4i8 = −
h4

3h3
fni8

** + gni8
* g = 0. s45d

The coefficients of Eqs.s42d–s45d are given by

ai = ]ih4
* − h4

*]i ln Îuh3h4u, b = h4
** − h4

*fln Îuh3h4ug* , g =
3h4

*

2h4
−

h3
*

h3
. s46d

The various partial derivatives are denoted asa˙=]a/]x1, a8=]a/]x2, a* =]a/]y3. This system of
equations can be solved by choosing one of the ansatz functionsfe.g.,g1sxid or g2sxidg and one of
the ansatz functionsfe.g.,h3sxi ,y3d or h4sxi ,y3dg to take some arbitrary, but physically interesting
form ssee Theorem 3 in Appendix Bd. Then, the other ansatz functions can be analytically deter-
mined up to an integration in terms of this choice. In this way we can generate a loss of different
solutions, but we impose the condition that the initial, arbitrary choice of the ansatz functions is
“physically interesting” which means that one wants to make this original choice so that the
generated final solution yields a well-behaved metric.

In Ref. 19ssee also the preceding sectiond, we proved that for

g1 = − 1, g2 = r2sjdqsjd,

h3 = − h3sj,wdr2sjdsin2 u, s47d

h4 = n4sj,wdh4f0gsjd = 1 −
2m

r
+ «

F4sj,wd
2m2 ,

with coordinatesx1=j=edrÎ1−2m/ r +« / r2, x2=u, y3=w, y4= t fthe sr ,u ,wd being usual radial
coordinatesg, the ansatzs41d is a vacuum solution withl=0 of the equationss40d which defines a
black ellipsoid with massm, eccentricity«, and gravitational polarizationsqsjd, h3sj ,wd, and
F4sj ,wd. Such black holes are certain deformations of the Schawarzschild metrics to static con-
figurations with ellipsoidal horizons which is possible if generic off-diagonal metrics and anholo-
nomic frames are considered. A complex generalization of this solution is given by the valuess33d.
In this section we show that the datas47d and/ors33d can be extended as to generate exact black
ellipsoid solutions, defined correspondingly with respect to real or complexN frames, with non-
trivial cosmological constantl=1/4 which can be imbedded in string theory.

At the first step, we find a class of solutions withg1=−1 andg2=g2sjd solving Eq.s42d, which
under such parametrizations transforms to
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g2
˙˙ −

sg2
˙ d2

2g2
= 2g2l.

With respect to the variableZ=sg2d2 this equation is written as

Z˙˙ + 2lZ = 0

which can be integrated in explicit form,Z=Zf0g sinsÎ2lj+jf0gd, for some constantsZf0g andjf0g
which means that

g2 = − Zf0g
2 sin2sÎ2lj + jf0gd s48d

parametrize in real string gravity a class of solution ofs42d for the signatures2, 2, 2, 1d. For
l→0 we can approximateg2=r2sjd, qsjd=−j2, andZf0g

2 =1 which has compatibility with the data
s47d. The solutions48d with cosmological constantsof string or nonstring origind induces oscilla-
tions in the “horizontal” part of the metric written with respect toN-adapted frames.

The next step is to solve Eq.s43d,

h4
** − h4

*fln Îuh3h4ug* = − 2lh3h4.

For l=0 a class of solution is given by anyĥ3 and ĥ4 related as

ĥ3 = h0fsÎuĥ4ud*g2

for a constanth0 chosen to be negative in order to generate the signatures2, 2, 2, 1d. For
nontrivial l, we may search the solution as

h3 = ĥ3sj,wdf3sj,wd andh4 = ĥ4sj,wd, s49d

which solvess43d if f3=1 for l=0 and

f3 =
1

4lFE ĥ3ĥ4

ĥ4
*

dwG−1

for l Þ 0.

Now it is easy to write down the solutions of equationss44d sbeing a linear equation forwi8d
and s45d safter two integrations ofni8 on wd,

wi8 = «ŵi8 = − ai8/b, s50d

whereai8 andb are computed by settings49d into corresponding values froms46d swe choose the
initial conditions aswi8→0 for «→0d and

n1 = «n̂1sj,wd,

where the coefficients

n̂1sj,wd = n1f1gsjd + n1f2gsjd E dw h3sj,wd/sÎuh4sj,wdud3, h4
* Þ 0 = n1f1gsjd + n1f2g

3sjd E dw h3sj,wd, h4
* = 0 =n1f1gsjd + n1f2gsjd E dw/sÎuh4sj,wdud3, h3

* = 0,

s51d

being stated to be real or complex valued for a corresponding model of real or complex gravity,
with the functionsnkf1,2gsjd to be stated by boundary conditions.

We conclude that the set of datag1=−1, with nontrivial g2sjd, h3, h4, wi8, and n1 stated,
respectively, bys48d–s51d we can define a black ellipsoid solution with explicit dependence on
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cosmological constantl, i.e., a metrics41d. The stability of such static black ellipsoids insantid de
Sitter space can be proven exactly as it was done in Ref. 19 for the real case vanishing cosmo-
logical constant.

The analytic extension of black ellipsoid solutions with cosmological constant can be per-
formed similarly as in the preceding section when for the real/complex solutions we are dealing
with real/complex values ofn̂1sj ,wd defining some components ofN-adapted frames. We note that
the solution from string theory contains a frame induced torsion with the componentss9d sin
general, with complex coefficientsd computed for nontrivialNi8

3 =−ai8 /b fsee s50dg and N1
4

=«n̂1sj ,wd fsees51dg. This is an explicit example illustrating that the anholonomic frame method
is also powerful for generating exact solutions in models of gravity with nontrivial torsion, in-
duced by anholonomic frame transforms. For such solutions we may elaborate corresponding
analytic extension and Penrose diagram formalisms if the constructions are considered with re-
spect toN-elongated vielbeins.

Finally, we analyze the structure of noncommutative symmetries associated to thesantid de
Sitter black ellipsoid solutions. The metrics41d with real and/or complex coefficients defining the
corresponding solutions and its analytic extensions also do not possess Killing symmetries being
deformed by anholonomic transforms. For this solution, we can associate certain noncommutative
symmetries following the same procedure as for the Einstein real/complex gravity but with addi-
tional nontrivial coefficients of anholonomy and even with nonvanishing coefficients of the non-
linear connection curvature,V12

3 =d1N2
3−d2N1

3. Taking the datas50d ands51d and formulass6d, we
compute the corresponding nontrivial anholonomy coefficients

w31
fNg4 = − w13

fNg4 = ]n1sj,wd/]w = n2
*sj,wd,

s52d
w12

fNg4 = − w21
fNg4 = d1sa2/bd − d2sa1/bd

for d1=] /]j−w1] /]w andd2=] /]u−w2] /]w, with n1 defined bys32d anda1,2 andb computed by
using the formulas46d for the solutionss49d. Our exact solution, with nontrivial cosmological
constant, is for 4D, like in the preceding section. So, forn+m=4, the conditionk2−1=n+m
cannot be satisfied by any integer numbers. We may similarly trivially extend the dimensions like
n8=6 andm8=m=2 and fork=3 to consider the Lie group SLs3, ICd noncommutativity with
corresponding values ofQabp

g and structure constantsfg
abp

, sees11d. An extensionwab
fNgg→Wg

abp

may be performed by stating theN-deformed “structure” constantss14d, Wg
abp

= fg
abp

+wabp

fNgg, with

nontrivial values ofwabp

fNgg given by s52d. In a similar form, we can consider anholonomic defor-

mations of the SUk structure constants, sees19d.

V. NONCOMMUTATIVE COMPLEX WORMHOLES

The black ellipsoid solutions defined by real and certain complex metrics elaborated in the
preceding section were for the 4D Einstein gravity, in general, with nontrivial cosmological con-
stant. In this section we construct and analyze an exact 5D solution which can be also complexi-
fied by using complex anholonomic transforms as well they can be provided with associated
noncommutative structure. For such configurations we can apply directly the formulas stated in
Appendix B. The metric ansatzs1d is taken in the form

ds2 = g1sdx1d2 + g2sdx2d2 + g3sdx3d2 + h4sdy4d2 + h5sdy5d2,

s53d
dy4 = dy4 + wk8sx

i8,vddxk8, dy5 = dy5 + nk8sx
i8,vddxk8, i8,k8 = 1,2,3,

where

g1 = 1, g2 = g2srd, g3 = − asrd,
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h4 = ĥ4 = ĥ4sr,u,wdh4f0gsrd, h5 = ĥ5 = ĥ5sr,u,wdh5f0gsr,ud s54d

for the parametrization of coordinate of type

x1 = t, x2 = r, x3 = u, y4 = v = w, y5 = p = x, s55d

wheret is the time coordinate,sr ,u ,wd are spherical coordinates,x is the fifth coordinate;w is the
anholonomic coordinate; for this ansatz there is not considered the dependence of metric coeffi-
cients on the second anholonomic coordinatex. Following similar approximations as in Sec. IV C
for deriving the equationss40d, we can write the gravity equations with cosmological constant as
a system of 5D Einstein equations with constant diagonal sourcesthe related details on computing
the Ricci tensors with anholonomic variables and possible sources are given in Appendix Bd:

1

2
R1

1 = R2
2 = R3

3 = −
1

2g2g3
Fg3

˙˙ −
g2

˙ g3
˙

2g2
−

sg3
˙ d2

2g3
+ g29 −

g28g38

2g3
−

sg28d
2

2g2
G = l, s56d

R4
4 = R5

5 = −
b

2h4h5
= l, s57d

R4i8 = − wi8
b

2h5
−

ai8

2h5
= 0, s58d

R5i8 = −
h5

2h4
fni8

** + gni8
* g = 0, s59d

wherei8=1,2,3. Thecoefficients of the equations are given by

ai8 = ]ih5
* − h5

*]i8 ln Îuh4h5u, b = h5
** − h5

*fln Îuh4h5ug* , g =
3h5

*

2h5
−

h4
*

h4
. s60d

The various partial derivatives are denoted asa˙=]a/]x2, a8=]a/]x3, a* =]a/]v.
The system of equationss56d–s59d can be solved by choosing one of the ansatz functionsfe.g.,

h4sxi8 ,vd or h5sxi8 ,vdg to take some arbitrary, but physically interesting form. Then the other ansatz
functions can be analytically determined up to an integration in terms of this choice. In this way
one can generate many solutions, but the requirement that the initial, arbitrary choice of the ansatz
functions be “physically interesting” means that one wants to make this original choice so that the
final solution generated in this way yield a well-behaved solution. To satisfy this requirement we
start from well-known solutions of Einstein’s equations and then use the above procedure to
deform this solution in a number of ways as to include it in a string theory, for instance, as a
gravity model with cosmological constant.

The data

g1 = 1, ĝ2 = − 1, g3 = − asrd,

h4f0gsrd = − r0
2e2csrd, h4 = 1/kr

2sr,u,wd, h5f0g = − asrdsin2 u, h5 = 1,

w1 = ŵ1 = wsrd, w2 = ŵ2 = 0, w3 = ŵ3 = n cosu/kn
2sr,u,wd,
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n1 = n̂1 = 0, n2,3= n̂2,3= n2,3f1gsr,ud E lnukr
2sr,u,wdudw s61d

for some constantsr0 andn and arbitrary functionsasrd, csrd and arbitrary vacuum gravitational
polarizationskrsr ,u ,wd and knsr ,u ,wd define an exact vacuum 5D solution of Kaluza–Klein
gravity14 describing a locally anisotropic wormhole with elliptic gravitational vacuum polarization
of charges,

q0
2

4as0dkr
2 +

Q0
2

4as0dkn
2 = 1,

where q0=2Îas0d sina0 and Q0=2Îas0d cosa0 are, respectively, the electric and magnetic
charges and 2Îas0dkr and 2Îas0dkn are ellipse’s axes.

The first aim in this section is to prove that following the ansatzs53d we can construct locally
anisotropic wormhole metrics insantid de Sitter gravity, in general complexified by a certain class
of anholonomic frame transforms as solutions of the system of Eqs.s56d–s59d with redefined
coordinates as ins55d. For simplicity, we select such solutions when only the coefficientsni can be
real or complex valued functions. Having the vacuum datas61d, we may try to generalize the
solution for a nontrivial cosmological constant by supposing that the new solutions may be rep-
resented as

h4 = ĥ4sxi8,vdq4sxi8,vd andh5 = ĥ5sxi8,vd, s62d

with ĥ4,5 taken as ins54d which solvess57d if q4=1 for l=0 and

q4 =
1

4lFE ĥ5sr,u,wdĥ4sr,u,wd

ĥ5
*sr,u,wd

dwG−1

for l Þ 0.

This q4 can be considered as an additional polarization toh4 induced by the cosmological constant
l. We stateg2=−1 but

g3 = − sin2sÎ2lu + jf0gd,

defining a solution ofs56d with signatures1, 2, 2, 2, 2d being different from the solutions18d.
A nontrivial q4 results in modification of coefficientss60d,

ai8 = âi8 + ai8
fqg, b = b̂ + bfqg, g = ĝ + gfqg,

âi8 = ]iĥ5
* − ĥ5

*]i8 ln Îuĥ4ĥ5u, b̂ = ĥ5
** − ĥ5

*fln Îuĥ4ĥ5ug* , ĝ =
3ĥ5

*

2ĥ5

−
ĥ4

*

ĥ4

,

ai8
fqg = − h5

*]i8 ln Îuq4u, bfqg = − h5
*fln Îuq4ug* , gfqg = −

q4
*

q4
,

which follow formulass58d and s59d result in additional terms to theN-connection coefficients,
i.e.,

wi8 = ŵi8 + wi8
fqg andni8 = n̂i8 + ni8

fqg, s63d

with w
i8
fqg andn

i8
fqg computed by using, respectively,a

i8
fqg, bfqg, andgfqg.

The simplest way to generate complex solutions is to consider thatn̂i8 from the datas61d and
s63d can be complex valued functions, for instance, with complex valued coefficientsn2,3f1g
3sr ,ud resulting from integration. In this case the metrics53d has real coefficients describing
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wormhole solutions with polarized constants but such metric coefficients are defined with respect
to anholonomic frames beingN elongated by some real and complex functions.

Having nontrivial values ofs63d, we can associate certain noncommutative symmetries fol-
lowing the same procedure as for real/complex black ellipsoids. The wormhole cases are described
by a more general set of nontrivial coefficients of anholonomywabp

fNgg, computed by using formulas

s6d and s15d sfor simplicity, we omit such cumbersome expressionsd, and a nontrivial nonlinear
connection curvature, in our caseVi8k8

a =di8Nk8
a −dk8Ni8

a with Nk8
4 =wk8 and Nk8

5 =nk8. Such coeffi-
cients depend on variablessr ,u ,wd, in general, being complex valued functions. We must extend
trivially the dimensions. We must extend the dimensions liken=5→n8=6 andm8=m=2 and for
k=3 if we want to associate a Lie group SLs3, ICd like noncommutativity with the corresponding
values ofQabp

g and structure constantsfabp

g , sees11d. An extensionwab
fNgg→Wabp

g may be similarly

performed by introducingN-deformed “structure” constantss14d, Wabp

g = fabp

g +wabp

fNgg, with nontrivial

values ofwabp

fNgg defined bys63d.

VI. NONCOMMUTATIVE SYMMETRIES AND GAUGE GRAVITY

We start with discussing the results of Refs. 6 and 7 concerning noncommutative gauge
models of gravity.

The basic idea of Ref. 6 was to use a geometrical result21,22 that the Einstein gravity can be
equivalently represented as a gauge theory with a specific connection in the bundle of affine
frames. Such gauge theories are with nonsemisimple structure gauge groups, i.e., with degenerated
metrics in the total spaces. Using an auxiliary symmetric form for the typical fiber, any such model
can be transformed into a variational one. There is an alternative way to construct geometrically a
usual Yang–Mills theory by applying a corresponding set of absolute derivations and dualities
defined by the Hodge operator. For both such approaches, there is a projection formalism reducing
the geometric field equations on the base space to be exactly the Einstein equations from the
general relativity theory.

For more general purposes, it was suggested to consider also extensions to a nonlinear real-
ization with thesantid de Sitter gauge structural group.23 The constructions with nonlinear group
realizations are very important because they prescribe a consistent approach of distinguishing the
frame indices and coordinate indices subjected to different rules of transformation. This approach
to gauge gravitysof course, after a corresponding generalizations of the Seiberg–Witten mapd may
include, in general, quadratic on curvature and torsion termssas it is stated in Ref. 6d being
correlated to the results on gravity on noncommutativeD-branes.53 At the first step, it was very
important to suggest an idea how to include the general relativity into a gauge model being more
explicitly developed in noncommutative form1,2,45 ssee recent developments in Refs. 54–60d.

A. Nonlinear gauge models for the „anti … de Sitter group

There were elaborated some alternative approaches to the noncommutative gauge gravity
models in Ref. 7fby deforming the Einstein gravity based on gauging the commutative inhomo-
geneous Lorentz group ISOs3,1d using the Seiberg–Witten mapg and 60fby considering some
simplest noncommutative deformations of the gauge theory Us2,2d and of the Lorentz algebra SO
s1,3dg. Such theories reduce to the general relativity if certain constraints and brocking symmetries
are imposed. Perhaps, only some experimental data would emphasize a priority of a theory of
noncommutative gravity with a proper prescription how the vielbeins and connection from “com-
mutative” gravity must be combined into components of a linear/nonlinear realizations of a non-
commutative gauge potentials defined by corresponding Seiberg–Witten maps. At the present state
of elaboration of noncommutative geometry and physics, we have to analyze the physical conse-
quences of different classes of models of noncommutative gravity.

We introduce vielbein decompositions ofsin generald complex metricss4d,

ĝabsud = ea
a8sudeb

b8sudha8b8,
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ea
a8eb

a8
= da

b andea
a8ea

b8
= db8

a8,

where ha8b8 is a constant diagonal matrixffor real space–times we can consider it as the flat

Minkowski metric, for instance,ha8b8=diags−1, +1, . . . , +1dg and da
b and db8

a8 are Kronecker’s
delta symbols. The vielbiens with an associatedN-connection structureNi

asxj ,yad, being real or
complex valued functions, have a special paramtrization

ea
a8sud =Fei

i8sxjd Ni
csxj,yadec

b8sxj,yad

0 ee
e8sxj,yad

G s64d

and

ea
a8

sud =Fei
i8

sxjd − Ni
csxj,yadei

i8
sxjd

0 ec
c8

sxj,yad G s65d

with ei
i8sxjd andec

b8sxj ,yad generating the coefficients of metrics1d with the coefficients defined
with respect to anholonmic frames,

gijsxjd = ei
i8sxjdej

j8sxjdni8 j8 andhabsxj,ycd = ea
a8sxj,ycdeb

b8sxj,ycdha8b8. s66d

By using vielbeins and metrics of types64d and s65d and, respectively,s66d, we can model in a
unified manner various types ofspseudod Riemannian, Einstein–Cartan, Riemann–Finsler and
vector/covector bundle nonlinear connection commutative and noncommutative geometries in

effective gauge and string theoriessit depends on the parameterization ofei
i8, ec

b8, and Ni
c on

coordinates and anholonomy relations, see details in Refs. 24–28d.
We consider the de Sitter spaceS4 as a hypersurface defined by the equationshABuAuB=−l2 in

the four-dimensional flat space enabled with diagonal metrichAB, hAA= ±1 sin this section
A,B,C, . . . =1,2, . . . ,5d, wherehuAj are global Cartesian coordinates inR5; l .0 is the curvature
of de Sitter spacesfor simplicity, we consider here only the de Sitter case; the anti-de Sitter
configuration is to be stated by a hypersurfacehABuAuB= l2d. The de Sitter groupSshd=SOshds5d is
the isometry group ofS5-space with six generators of Lie algebra soshds5d satisfying the commu-
tation relations

fMAB,MCDg = hACMBD − hBCMAD − hADMBC + hBDMAC. s67d

We can decompose the capital indicesA,B, . . . asA=sa8 ,5d, B=sb8 ,5d , . . . ,, and themetric
hAB as hAB=sha8b8,h55

d. The operatorss67d MAB can be decomposed asMa8b8=Fa8b8 and Pa8
= l−1M5a8 written as

fFa8b8,Fg8d8g = ha8g8Fb8d8 − hb8g8Fa8d8 − hb8d8Fa8g8 − ha8d8Fb8g8,

fPa8,Pb8g = − l−2Fa8b8, s68d

fPa8,Fb8g8g = ha8b8Pg − ha8g8Pb8,

where the Lie algebra soshds5d is split into a direct sum, SOshds5d=SOshds4d % V4 with V4 being the
vector space stretched on vectorsPa. We remark thatS4=Sshd /Lshd, whereLshd=SOshds4d. For
hAB=diags−1, +1, +1, +1d andS10=SOs1,4d, L6=SOs1,3d is the group of Lorentz rotations.

The generatorsIa and structure constantsf t
sp of the de Sitter–Lie group can be parameterized

in a form distinguishing the de Sitter generators and commutationss68d. The action of the group
Sshd may be realized by using 434 matrices with a parameterization distinguishing the subgroup
Lshd,
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B = bBL, s69d

where

BL = SL 0

0 1
D ,

LPLshd is the de Sitter bust matrix transforming the vectors0,0, . . . ,rdPR5 into the arbitrary
point sV1,V2, . . . ,V5dPSr

5,R5 with curvaturer sVAVA=−r2,VA=tArd, and the matrixb is ex-
pressed

b = 1da8
b8

+
ta8tb8

s1 + t5d
ta8

tb8 t5 2 .

The de Sitter gauge field is associated with a soshds5d-valued connection 1-form,

Ṽ =Sva8
b8 ũa8

ũb8
0
D , s70d

whereva8
b8

PSOs4dshd, ũa8PR4, ũb8Phb8a8ũ
a8.

The actions ofSshd mix the components of the matrixva8
b8

andũa8 fields in s70d. Because the

introduced parameterization is invariant on action on SOshds4d group, we cannot identifyva8
b8

and

ũa8, respectively, with the connectionGfcg and the 1-formea defined by aN-connection structure
like in s2d with the coefficients chosen as ins64d ands65d. To avoid this difficulty we can consider
nonlinear gauge realizations of the de Sitter groupSshd by introducing the nonlinear gauge field

G = b−1Ṽb + b−1 db = SGa8
b8 ua8

ub8 0
D , s71d

where

Ga8
b8

= va8
b8

− sta8Dtb8 − tb8Dta8d/s1 + t5d,

ua8 = t5ũa8 + Dta8 − ta8sdr5 + ũg8t
g8d/s1 + t5d,

Dta8 = dta8 + va8
b8

tb8.

The action of the group Sshd is nonlinear, yielding the transformation rules

G8 = L8GsL8d−1 + L8dsL8d−1, u8 = Lu,

where the nonlinear matrix-valued function

L8 = L8sta,b,BTd

is defined fromBb=b8BL8 fsee the parametrizations69dg. The de Sitter “nonlinear” algebra is
defined by generatorss68d and nonlinear gauge transforms of types71d.
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B. de Sitter nonlinear gauge gravity and general relativity

We generalize the constructions from Refs. 23 and 6 to the case when the de Sitter nonlinear
gauge gravitational connections71d is defined by the viebeinss64d and s65d and the linear con-
nections7d Gfcga

bm=hGa
bmj,

G = SGa8
b8 l0

−1ea8

l0
−1eb8 0

D , s72d

where

Ga8
b8

= Ga8
b8mdum, s73d

for

Ga8
b8m = ea

a8eb
b8

Ga
bm + ea

a8dmea
b8

,

ea8 = em
a8dum, s74d

and l0 being a dimensional constant.
The matrix components of the curvature of the connections72d,

RsGd = dG + G ∧ G,

can be written

RsGd =SRa8
b8

+ l0
−1pb8

a8 l0
−1Ta8

l0
−1Tb8 0

D , s75d

where

pb8
a8 = ea8 ∧ eb8, Ra8

b8
= 1

2Ra8
b8mn dum ∧ dun,

and

Ra8
b8mn = eb

b8
ea

a8Ra
bmn

with the coefficientsRa
bmn defined withh–v-invariant components, seesA2d in Appendix A.

The de Sitter gauge group is semisimple, we are able to construct a variational gauge gravi-
tational theory with the Lagrangian

L = Lsgd + Lsmd, s76d

where the gauge gravitational Lagrangian is defined

Lsgd =
1

4p
TrsRsGd ∧ p GRsGdd = LsGdugu1/2d4u,

for

Lsgd =
1

2l2
Ta8

mnTa8
mn +

1

8l
Ra8

b8mnRb8
a8

mn −
1

l2
sRQ sTd − 2l1d,

with d4u being the volume element,ugu is the determinant computed the metric coefficientss1d
stated with respect toN-elongated frames, the curvature scalarRQ sGd is computed as insA4d,
Ta8

mn=ea8
aTa

mn sthe gravitational constantl2 satisfies the relationsl2=2l0
2l, l1=−3/l0d, Tr denotes
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the trace ona8, b8 indices. The matter field Lagrangian froms76d is defined

Lsmd = − 1
2TrsG ∧ pgId = Lsmdugu1/2 d nu,

with the Hodge operator derived byugu and uhu, where

Lsmd = 1
2Ga8

b8mSb8
a

m − tm
a8

la8
m.

The matter field sourceJ is obtained as a variational derivation ofLsmd on G and is parameterized
in the form

J = S Sa8
bp

− l0ta8

− l0tb8 0
D

with ta8=ta8
mdum andSa8

b8
=Sa8

b8mdum being, respectively, the canonical tensors of energy mo-
mentum and spin density.

Varying the action

S=E d4usLsgd + Lsmdd

on theG-variabless72d, we obtain the gauge-gravitational field equations,

dspRsGdd + G ∧ spRsGdd − spRsGdd ∧ G = − lspJd, s77d

where the Hodge operatorp is used. This equations can be alternatively derived in geometric form
by applying the absolute derivation and dual operators.

Distinguishing the variations onG ande-variables, we rewrites77d,

D̂spRsGdd +
2l

l2
sD̂sppd + e∧ spTTd − spTd ∧ eTd = − lspSd,

D̂spTd − spRsGdd ∧ e−
2l

l2
sppd ∧ e=

l2

2
Spt +

1

l
p §D ,

eT being the transposition ofe, where

Tt = hTa8 = ha8b8T
b8,Tb8 = 1

2Tb8
mndum ∧ dunj ,

eT = hea8 = ha8b8e
b8,eb8 = eb8

mdumj, D̂ = d + Ĝ

sĜ acts asGa8
b8m on indicesg8 ,d8 , . . . and asGa

bm on indicesg ,d , . . .d. The value§ defines the

energy-momentum tensor of the gauge gravitational fieldĜ,

§mnsĜd = 1
2TrsRmaRa

n − 1
4RabRabGmnd .

Equationss77d make up the complete system of variational field equations for nonlinear de
Sitter gauge gravity. We note that we can obtain a nonvariational Poincaré gauge gravitational
theory if we consider the contraction of the gauge potentials72d to a potentialGfPg with values in
the Poincaré–Lie algebra
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G = SGa8
b8 l0

−1ea8

l0
−1eb8 0

D→ GfPg = SGa8
b8 l0

−1ea8

0 0
D . s78d

A similar gauge potential was considered in the formalism of linear and affine frame bundles on
curved space–times by Popov and Dikhin.21,22They considered the gauge potentials78d to be just
the Cartan connection form in the affine gaugelike gravity and proved that the Yang–Mills equa-
tions of their theory are equivalent, after projection on the base, to the Einstein equations.

Let us give an example how an exact vacuum solution of the Einstein equations, with asso-
ciated noncommutative symmetry, can be included as to define an exact solution in gauge gravity.
Using the datas33d defining a 4D black ellipsoid solution, we write the nontrivial vielbein coef-
ficients s64d as

e2
28 = 1, e3

38 = Îug3u, e4
48 = Îuh4u, e5

58 = Îuh5u, N2
5 = n2 s79d

for the diagonal Minkowski metricha8b8=s−1,−1,−1,1d with the tetrad and coordinate indices
running, respectively, the valuesa8 ,b8 , . . . =2,3,4,5 anda ,b , . . . =2,3,4,5. Theconnection co-

efficientsGa8
b8m, see formulas74d, are computed by using the valuesea

a8 and s7d and used for
definition of the potentialGfPg s78d which defines a gauge gravity model with the Yang–Mills
equationss77d being completely equivalent to the Einstein equations even the frames are anholo-
nomic ssee details in Refs. 21, 22, and 24–28d. N coefficients, for instance, a complexN2

5=n2 we
can construct both complex Einstein and gauge gravity vacuum configurations which are stable
and define anholonomically deformed black hole solutions with associated noncommutative sym-
metries.

Finally, we emphasize that in a similar manner, by extending the dimensions of spaces and
gauge groups and introducing the cosmological constant, we can include the solutions for the
santid de Sitter black ellipsoids and wormholes, with real or complex anholonomic structures
sconstructed, respectively, in Secs. IV C and Vd, into a gauge gravity theoryfEinstein and
Poincaré types, or as a degenerated configuration in the nonlinearsantid de Sitter gravityg.

VII. NONCOMMUTATIVE GAUGE DEFORMATIONS OF GRAVITY

The noncommutative gravity theories are confronted with the problem of definition of non-
commutative variants of pseudo-Eucliedean and pseudo-Riemannian metrics. This is connected
with another problem when the generation of noncommutative metric structures via the Moyal
product and the Seiberg–Witten map45 results in complex and noncommutative metrics for, in
general, nonstable and/or unphysical gravitational vacua. In order to avoid the mentioned difficul-
ties, we elaborated a model of noncommutative gauge gravity starting from a variant of gauge
gravity being equivalent to the Einstein gravity and emphasizing in such approach the vielbein
sframed and connection structures, but not the metric configurationssee Refs. 6 and 61d. The
metric for such theories is induced by an anholonomicsin generald frame transform.

For explicit constructions, we follow the method of restricted enveloping algebras62 and
construct gauge gravitational theories by stating corresponding structures with semisimple or
nonsemisimple Lie algebras and their extensions. We use power series of generators for the affine
and nonlinearly realized de Sitter gauge groups and compute the coefficient functions of all the
higher powers of the generators of the gauge group which are functions of the coefficients of the
first power. Such constructions are based on the Seiberg–Witten map and on the formalism of
p-product formulation of the algebra45,63–69when for functional objects, being functions of com-
muting variables, there are associated some algebraic noncommutative properties encoded in the
p-product. Here we note that an approach to the gauge theory on noncommutative spaces was
introduced geometrically70 by defining the covariant coordinates without speaking about deriva-
tives. This formalism was also developed for quantum planes.71,72

In this section, we shall prove the existence for noncommutative spaces of gauge models of
gravity which agrees with usual gauge gravity theories being equivalent, or extending, the general
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relativity theory in the limit of commuting spaces. We shall show how it is possible to adapt
mutually the Seiberg–Witten map and anholonomic frame transforms in order to generate solu-
tions of the gauge gravity preserving noncommutative symmetries even in the classical limit of
commutative Einstein gravity.

A. Enveloping algebras for gauge gravity connections

We define the gauge fields on a noncommutative space as elements of an algebraAu that form
a representation of the generatorI algebra for the de Sitter gauge group and the noncommutative
space is modeled as the associative algebra of IC. This algebra is freely generated by the coordi-
nates modulo idealR generated by the relationssone accepts formal power seriesd Au

=ICffû1, . . . ,ûNgg /R. A variational gauge gravitational theory can be formulated by using a mini-
mal extension of the affine structural groupAf3+1sRd to the de Sitter gauge groupS10=SOs4
+1d acting onR4+1 space.sSee Refs. 73–78.d

Let now us consider a noncommutative spacessee Appendix D for a brief outline of necessary

conceptsd. The gauge fields are elements of the algebraĉPAI
sdSd that form the nonlinear repre-

sentation of the de Sitter algebra soshd s5d sthe whole algebra is denotedAz
sdSdd. The elements

transform

dĉ = iĝĉ, ĉ P Au, ĝ P Az
sdSd8,

under a nonlinear de Sitter transformation. The action of the generatorss68d on ĉ is defined as the

resulting element will form a nonlinear representation ofAI
sdSd and, in consequence,dĉPAu

despiteĝPAz
sdSd. We emphasize that for any representation the objectĝ takes values in enveloping

de Sitter algebra but not in a Lie algebra as would be for commuting spaces.

We introduce a connectionĜnPAz
sdSd in order to define covariant coordinates,

Ûn = ûv + Ĝn.

The valuesÛnĉ transform covariantly, i.e.,dÛnĉ= iĝÛnĉ, if and only if the connectionĜn satisfies
the transformation law of the enveloping nonlinear realized de Sitter algebra,

dĜnĉ = − ifûv,ĝg + ifĝ,Ĝng,

wheredĜnPAz
sdSd.

The enveloping algebra-valued connection has infinitely many component fields. Neverthe-
less, all component fields can be induced from a Lie algebra-valued connection by a Seiberg–
Witten map45,62 and, for SOsnd and Spsnd, see Ref. 79. Here, we show that similar constructions
can be performed for nonlinear realizations of de Sitter algebra when the transformation of the
connection is considered

dĜn = − ifun, * ĝg + ifĝ, * Ĝng.

We treat in more detail the canonical case with the star productsD4d. The first term in the variation

dĜn gives

− ifun, * ĝg = unm ]

]umg.

Assuming that the variation ofĜn=unmQm starts with a linear term inu, we have

dĜn = unmdQm, dQm =
]

]umg + ifĝ, * Qmg.

We expand the star productsD4d in u but not inga and find up to first order inu that
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g = ga
1Ia + gab

1 IaIb + ¯ , Qm = qm,a
1 Ia + qm,ab

2 IaIb + ¯ , s80d

wherega
1 andqm,a

1 are of order zero inu andgab
1 andqm,ab

2 are of second order inu. The expansion
in Ib leads to an expansion inga of the p-product because the higher orderIb derivatives vanish.
For the de Sitter case, we take the generatorsIb s68d, see commutatorssD3d, with the correspond-
ing de Sitter structure constantsfd

bc. fbp
abp sin our further identifications with space–time objects

like frames and connections we shall use greek indicesd. The result of calculation of variations of
s80d, by usingga to the order given insD2d, is

dqm,a
1 =

]ga
1

]um − fa
bcgb

1qm,c
1 , dQt = umn]mga

1]nqt,b
1 IaIb + ¯ ,

dqm,ab
2 = ]mgab

2 − unt]nga
1]tqm,b

1 − 2fa
bchgb

1qm,cd
2 + gbd

2 qm,c
1 j.

Let us introduce the objects«, taking the values in de Sitter Lie algebra andWm, taking values
in the enveloping de Sitter algebra, i.e.,

« = ga
1Ia andWm = qm,ab

2 IaIb,

with the variationdWm satisfying the equation

dWm = ]msgab
2 IaIbd − 1

2utlh]t«,]lqmj + if«,Wmg + ifsgab
2 IaIbd,qng.

This equation can be solved70,45 in the form

gab
2 = 1

2unms]nga
1dqm,b

1 , qm,ab
2 = − 1

2untqn,a
1 s]tqm,b

1 + Rtm,b
1 d.

The values

Rtm,b
1 = ]tqm,b

1 − ]mqt,b
1 + fd

ecqt,e
1 qm,e

1

could be identified with the coefficientsRa
bp mn of de Sitter nonlinear gauge gravity curvaturefsee

formula s75dg if in the commutative limit

qm,b
1 . S Ga

bp
l0
−1xa

l0
−1xbp

0
D

fsees72dg.
We note that the below presented procedure can be generalized to all the higher powers ofu.

As an example, we compute the first order corrections to the gravitational curvature.

B. Noncommutative covariant gauge gravity dynamics

The constructions from the preceding section can be summarized by a conclusion that the de
Sitter algebra valued object«=ga

1sud Ia determines all the terms in the enveloping algebra

g = ga
1Ia +

1

4
unm]nga

1qm,b
1 sIaIb + IbIad + ¯ .

and the gauge transformations are defined byga
1sud andqm,b

1 sud, when

dg1c = igsg1,qm
1d p c.

Applying the formulasD4d we calculate
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fg, * zg = iga
1zb

1fc
abIc +

i

2
unmh]vsga

1zb
1fc

abdqm,c + sga
1]vzb

1 − za
1]vgb

1dqm,bfc
ab + 2]vga

1]mzb
1jIdIc,

where we used the properties that, for the de Sitter enveloping algebras, one holds the general
formula for compositions of two transformations,

dgd§ − d§dg = dis§*g−g*§d.

This is also true for the restricted transformations defined byg1,

dg1d§1 − d§1dg1 = dis§1*g1−g1*§1d.

Such commutators could be used for definition of tensors

Ŝmn = fÛm,Ûng − iûmn, s81d

whereûmn is, respectively, stated for the canonical, Lie and quantum plane structures. Under the
general enveloping algebra one holds the transform

dŜmn = ifĝ,Ŝmng.

For instance, the canonical case is characterized by

Smn = iumt]tG
n − iunt]tG

m + Gm p Gn − Gn p Gm = umtunlh]tQl − ]lQt + Qt p Ql − Ql p Qtj.

We introduce the gravitational gauge strengthscurvatured

Rtl = ]tQl − ]lQt + Qt p Ql − Ql p Qt, s82d

which could be treated as a noncommutative extension of de Sitter nonlinear gauge gravitational
curvatures75d, and calculate

Rtl,a = Rtl,a
1 + umnhRtm,a

1 Rln,b
1 − 1

2qm,a
1 fsDnRtl,b

1 d + ]nRtl,b
1 gjIb,

where the gauge gravitation covariant derivative is introduced,

sDnRtl,b
1 d = ]nRtl,b

1 + qn,cRtl,d
1 fb

cd.

Following the gauge transformation laws forg andq1 we find

dg1Rtl
1 = ifg,*Rtl

1 g

with the restricted form ofg. Such formulas were proved in Ref. 45 for usual gaugesnongravi-
tationald fields. Here we reconsidered them for the gravitational gauge fields.

One can formulate gauge covariant gravitational dynamics of noncommutative spaces follow-
ing the nonlinear realization of de Sitter algebra and thep-formalism and introducing derivatives
in such a way that one does not obtain new relations for the coordinates. In this case, a Leibniz
rule can be defined that

]̂mûn = dm
n + dms

nt ûs]̂t,

where the coefficientsdms
nt =ds

ndm
t are chosen to not have new relations when]̂m acts again to the

right-hand side. One holds thep-derivative formulas

]t p f =
]

]ut f + f p ]t, f]l,
*sf p gdg = sf]l,

* fgd p g + f p sf]l,
*ggd

and the Stokes theorem
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E f]l, fg =E dNuf]l,
* fg =E dNu

]

]ul f = 0,

where, for the canonical structure, the integral is defined,

E f̂ =E dNufsu1, . . . ,uNd.

An action can be introduced by using such integrals. For instance, for a tensor of types81d,
when

dL̂ = ifĝ,L̂g,

we can define a gauge invariant action

W=E dNu Tr L̂, dW= 0,

where the trace must be taken for the group generators.
For the nonlinear de Sitter gauge gravity a proper action is

L = 1
4RtlRtl,

whereRtl is defined bys82d fin the commutative limit we shall obtain the connections72dg. In this
case the dynamic of noncommutative space is entirely formulated in the framework of quantum
field theory of gauge fields. In general, we are dealing with anisotropic gauge gravitational inter-
actions. The method works for matter fields as well to restrictions to the general relativity theory.

C. Noncommutative symmetries and star product deformations

The aim of this section is to prove that there are possible extensions of exact solutions from
the Einstein and gauge gravity possessing hidden noncommutative symmetries without introduc-
ing new fields. For simplicity, we present the formulas including decompositions up to the second
order on noncommutative parameteruab for vielbeins, connections, and curvatures which can be
arranged to result in different models of noncommutative gravity. We give the data for the SU
s1,n+m−1d and SOs1,n+m−1d gauge models containing, in general, complexN-elongated
frames, modeling some exact solutions, for instance, those derived in Secs. IV and V. All data can
be considered for extensions with nonlinear realizations into a bundle of affine or de Sitter frames
sin this case, one generates noncommutative gauge theories of the type considered in Ref. 6 or to
impose certain constraints and breaking of symmetriessin order to construct other models7,60d.

In the preceding sections we considered noncommutative geometric structures introduced by
frame anholonomic relationss5d, or s15d. The standard approaches to noncommutative geometry
also contain certain noncommutative relations for coordinates,

fua,ubg = uaub − ubua = iuabsugd, s83d

where, in the simplest models, the commutatorfua ,ubg is approximated to be constant, but there
were elaborated approaches for general manifolds with the noncommutative parameteruab treated
as functions onug in Ref. 68. We define the starsMoyald product to include possibleN-elongated
partial derivativess3d and a quantum constant",
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f p w = fw +
"

2
Bāb̄sdāfdb̄w + db̄fdāwd + "2Bāb̄Bgmfdsāddsḡdfgfdsb̄ddsm̄dwg

+
2

3
"2Bāb̄db̄Bgmhfdsāddsḡdfgdm̄w + fdsāddsḡdwgdm̄fj + Os"3d, s84d

where, for instance,dsmddsnd=s1/2dsdmdn+dndmd,

Bāb̄ =
uab

2
sdauādbub̄ + dbuādaub̄d + Os"3d s85d

is defined for new coordinatesuā=uāsuad inducing a suitable Poisson bi-vector fieldBāb̄s"d being
related to a quantum diagram formalismfwe shall not consider details concerning geometric
quantization in this paper by investigating only classical deformations related to any anholonomic
frame and coordinates83d noncommutativity origing. The formulass84d and s85d transform into
the usual ones with partial derivatives]a and ]ā from Refs. 68 and 7 considered for vanishing
anholonomy coefficients. We can define a star product being invariant under diffeomorphism
transforms,p→pf−g, adapted to theN-connection structuresin a vector bundle provided with
N-connection configuration, we use the labelf2g in order to emphasize the dependence on coor-
dinatesuā with “overlined” indicesd, by introducing the transforms

f f−gs"d = Qfs"d,

f f−gpf−gwf−g = QsQ−1f f−g p Q−1dwf−g

for Q=1+ofk=1g"
kQfkg, for simplicity, computed up to the squared order on",

Q = 1 − 2"2umnurshfdsmddsndu
āgfdsrddssdu

b̄gdsāddsb̄d + fdsmddsrdu
āgsdnu

b̄dsdsuḡdfdsāddb̄dsḡdgj + Os"4d,

where dsāddb̄dsḡd=s1/3!dsdādb̄dḡ+all symmetric permutationsd. In our further constructions we
shall omit the constant" considering thatu," is a small value by writing the necessary terms in
the approximationOsu3d or Osu4d.

We consider a noncommutative gauge theory on a space withN-connection structure stated by

the gauge fieldsÂm=sÂi ,Âad when “hats” on symbols will be used for the objects defined on
spaces with coordinate noncommutativity. In general, the gauge model can be with different types
of structure groups like SLsk, ICd, SUk, Uk, SOsk−1,1d and their nonlinear realizations. For

instance, for the Usn+md gauge fields there are satisfied conditionsÂm
+ =−Âm, where “1” is the

Hermitian conjugation. It is useful to present the basic geometric constructions for a unitary
structural group containing the SOs4, 1d as a particular case if we want to consider noncommu-
tative extensions of 4D exact solutions.

The noncommutative gauge transforms of potentials are defined by using the star product

Âm
fwg = ŵ p Âmŵf* g

−1 − ŵ p dmŵf* g
−1 ,

where theN-elongated partial derivativess3d are usedŵp ŵf* g
−1 =1=ŵf* g

−1 p ŵ. The matrix coefficients

of fields will be distinguished by “underlined” indices, for instance,Âm=hÂm
abp j, and for commu-

tative values,Am=hAm
abp j. Such fields are subjected to the conditions

sÂm
abp d+su,ud = − Âm

bp asu,ud and Âm
abp su,− ud = − Âm

bp asu,ud.

There is a basic assumption45 that the noncommutative fields are related to the commutative fields
by the Seiberg–Witten map in a manner that there are not new degrees of freedom being satisfied
by the equation
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Âm
abp sAd + Dl̂Âm

abp sAd = Âm
abp sA + Dl̂Ad, s86d

where Âm
abp sAd denotes a functional dependence on commutative fieldAm

abp , ŵ=expl̂, and the

infinitesimal deformationsÂm
abp sAd and ofAm

abp are given, respectively, by

Dl̂Âm
abp = dml̂abp + Âm

ag * l̂gbp − l̂ag * Âm
gbp

and

DlAm
abp = dmlabp + Am

ag * lgbp − lag * Am
gbp ,

where instead of partial derivatives]m we use theN-elongated ones,dm and sum on indexg.
Solutions of the Seiberg–Witten equations for models of gauge gravity are considered, for

instance, in Refs. 6 and 7sthere are discussed procedures of deriving expressions onu to all

ordersd. Here we present only the first order onu for the coefficientsl̂abp and the first and second

orders forÂm
abp including anholonomy relations and not depending on model considerations,

l̂abp = labp +
i

4
unthsdnlagdAm

gb + Am
agsdnlgbdj + Osu2d

and

Âm
abp = Am

abp −
i

4
unthAm

agsdtAn
gbp + Rgbp

tnd + sdtAm
ag + Ragp

tmdAn
gbp j + 1

32unturshf2Ar
agsRg«

snR
ebp

mt

+ Rg«
mtR

«bp
snd + 2sRa«

snR
«g

mt + Ra«
mtR

«g
sndAr

gbp g − fAn
agsDtR

gbp
sm + dtR

gbp
smd

+ sDtR
ag

sm + dtR
ag

smdAn
gbp g − dsfAn

agsdtAm
gbp + Rgbp

tmd + sdtAm
ag + Rag

tmdAn
gbp g

+ fsdnAr
agds2dstddssdAm

gbp + dtR
gbp

smd + s2dstddssdAm
ag + dtR

ag
smdsdnAr

gbp dg − fAn
a«sdtAr

«g + R«g
trd

+ sdtAr
a« + Ra«

trdAn
«ggsdsAm

gbp + Rgbp
smd − sdsAm

ag + Rag
smdfAn

g«sdtAr
«bp + R«bp

trd

+ sdtAr
g« + Rg«

trdAn
«bp gj + Osu3d, s87d

where the curvature is definedRabp
tn=ea

aebp bRb
a

tn with Rb
a

tn computed as in Appendix A, see
formulasA1d, whenG→A, and for the gauge model of gravity, sees75d ands82d. By using the star
product, we can write symbolically the solutions87d in general form,

DÂm
abp sud = −

i

4
untfÂm

ag
p sdtÂn

gbp + R̂gbp
tnd + sdtÂm

ag + R̂ag
tmd p Ân

gbp g,

where R̂gb
tn is defined by the same formulas asRabp

tn but with the star products, likeAA
→ApA.

There is a problem how to determine the dependence of the noncommutative vielbeinsêa
a on

commutative onesea
a. If we consider the frame fields to be included into asantid de Sitter gauge

gravity model with the connections72d, the vielbein components should be treated as certain
coefficients of the gauge potential with specific nonlinear transforms for which the results of Ref.
6 are found. The main differencesconsidered in this workd is that the frames are in general with
anholonomy induced by aN-connection field. In order to derive in such model the Einstein gravity
we must analyze the reductions78d to a Poincaré gauge gravity. An explicit calculus of the
curvature of such gauge potentialssee details in Refs. 21, 22, and 24–28d, show that the coeffi-
cients of the curvature of the connections78d, obtained as a reduction from the SOs4, 1d gauge

group is given by the coefficientss75d with vanishing torsion and constraints of typeÂn
g5=eên

g and

Ân
55=ef̂n with R̂55

tn,e vanishing in the limite→0 like in Ref. 7swe obtain the same formulas for
the vielbein and curvature components derived for the inhomogeneous Lorentz group but gener-
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alized toN-elongated derivatives and with distinguishing intoh–v componentsd. The result forêm
mp

in the limit e→0 generalized to the case of canonical connectionss7d defining the covariant
derivativesDt and corresponding curvaturessA1d is

êm
mp = em

mp −
i

4
untfAn

mp gdtem
g + sdtAm

mp g + Rmp g
tmden

gg + 1
32untubsh2sRmp «

snR
«g

mt + Rmp «
mtR

«g
sndeb

g

− Ab
mp gsDtR

gbp
sm + dtR

gbp
smdeb

bp − fAn
mp gsDtR

gbp
sm + dtR

gbp
smd + sDtR

mp g
sm + dtR

mp g
smdAn

gbp geb
bp

− eb
bpdsfAn

mp gsdtAm
gbp + Rgbp

tmd + sdtAm
mp g + Rmp g

tmdAn
gbp g + 2sdnAb

mp gddstddssdem
g − Ab

mp gdsfAn
gbpdtem

bp

+ sdtAm
gbp + Rgbp

tmden
bp g − sdneb

gddtsdsAm
mp g + Rmp g

smd − fAn
mp gsdtAb

gbp + Rgbp
tbd + sdtAb

mp g

+ Rmp g
tbdAn

gbp gdsem
bp − sdsAm

mp g + Rmp g
smdfAm

gbp sdneb
bp d + en

bp sdsAm
gbp + Rgbp

smdgj + Osu3d. s88d

Having the decompositionss88d, we can define the inverse vielbeinê*mp
m from the equation

ê*mp
m p êm

n = dmp
n

and consequently computeu-deformations of connections, curvatures, torsions, and any type of
actions and field equationssfor simplicity, we omit such cumbersome formulas being certain
analogies to those computed in Ref. 7 but with additionalN deformationsd.

The main result of this section consists in formulation of a procedure allowing to map exact
solutions of a commutative gravity model into a corresponding noncommutative model without
introducing new fields. For instance, we can take the datas33d and s79d and construct theu
deformation of the exact solution defining a static black ellipsoidsa similar prescription works in
transforming both real and complex wormholes from Sec. Vd. The analysis presented in Secs.
IV B and IV C illustrates a possibility to preserve the black ellipsoid stability for a certain class of
extensions of solutions to noncommutative/complex gravity with complexifiedN frames. In an-
other turn, if we consider arbitrary noncommutative relations for coordinatessu noncommutativ-
ityd s83d the resultingu deformation of stable solution will be, in general, unstable because
arbitrary decompositions of types88d will induce arbitrary complex terms in the metric, connec-
tion, and curvature coefficients, i.e., will result in complex terms in the “inverse Schrödinger
problem” and related instabilityssee Refs. 18 and 19d. Perhaps, a certain class of stable
u-deformed solutions can be defined if we constrain theu-noncommutativitys83d to be dual to the
so-called anholonomic frame noncommutativitys5d, or s15d, by connecting the nontrivial values of
uab to certain complexNi

a resulting in stable noncommutative configurations, orsin the simplest
cased to say that the noncommutative extensions are modeled only byN fields Ni

a,"u. The
resulting noncommutative extensions could be defined as to preserve stability at least in the first
order of s"ud terms.

VIII. DISCUSSION AND CONCLUSIONS

With this paper we begin the investigation of space–times with anholonomic noncommutative
symmetry. The exact solutions we find are parametrized by generic off-diagonal metric ansatz and
anholonomic framesvielbeind structures with associated nonlinear connectionssdefining nontrivial
anholonomy relations and inducing natural matrix noncommutative differential geometriesd. Their
noncommutative symmetries are derived from exact solutions of the field equations in the Einstein
gravity theory and their extra dimension and gauge like generalizations.

We analyzed the geometric and physical properties of new classes of exact solutions with
hidden noncommutativity describing specific nonperturbative vacuum and nonvacuum gravita-
tional configurations. Such space–times with generic off-diagonal metrics are very different, for
instance, from those possessing Killing symmetries. We also addressed a particular class of solu-
tions with noncommutative symmetries defining static black ellipsoid space–times which are not
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prohibited by the uniqueness black hole theoremssproved for metrics with Killing symmetries and
satisfying asymptotic flat conditionsd because the generic anholonomic noncommutative configu-
rations are very different from the Killing ones.

Let us comment on the difference between our approach and the former elaborated ones: In
the so-called Connes–Lot models,1,2 the gravitational models with Euclidean signature were elabo-
rated from a spectral analysis of Dirac operators connected to the noncommutative geometry. This
type of noncommutative geometry was constructed by replacing the algebra of smooth function on
a manifold with a more general associative but noncommutative algebra. The fundamental matter
field interactions and Riemannian gravity were effectively derived from a corresponding spectral
calculus. In an alternative approach, the noncommutative geometry, as a low energy noncommu-
tativity of coordinates, can be obtained in string theory because of presence of the so-calledB
fields. A number of models of gravity were proposed in order to satisfy certain noncommutativity
relations for coordinates and framessof Lie group, or quantum group type, or by computing some
effective actions from string/brane theory and noncommutative gauge generalizations of gauge,
Kaluza–Klein, and Einstein gravityd, see Refs. 3–5 and 8. All mentioned noncommutative theories
suppose that that the noncommutative geometry transforms into a commutative one in some limits
to the Einstein theory and its extra dimension generalizations. In our approach we argue that the
existence of hidden noncommutative structures suggests a natural way for constructing noncom-
mutative models of gravitational interactions.

Our strategy explained in Sec. III is quite different from the previous attempts to construct the
noncommutative gravity theory. We give a proof and analyze some explicit examples illustrating
that there are some specific hidden noncommutative geometric structures even in the classical
Einstein and gauge gravity models. This fact can be of fundamental importance in constructing
more general models of noncommutative gravity with complex and nonsymmetric metrics.

Of course, there are two different notions of noncommutativity: The first one is related to the
space–time deformations via Seiberg–Witten transforms with noncommutative coordinates and the
second one is associated to noncommutative algebra modeled by anholonomic vielbeins. In gen-
eral, the result of such deformations and frame maps cannot be distinguished exactly on a resulting
complex space–time because there is a “mixture” of coordinate, gauge and frame transforms in the
case of noncommutative geometry. Nevertheless, there are certain types of gravitational configu-
rations possessing Lie typesnoncommutatived symmetries which “survive” in the limit of com-
mutative coordinates and real valued metrics. We say that such type of solutions of the gravita-
tional field equations possess hidden noncommutative symmetries and describe a generic off-
diagonal class of metrics and anholonomic frame transforms. It is a very difficult task to get exact
solutions of the deformed gravity. In this work, we succeeded to do this by generating such
gravitational configurations which are adapted both to the Seiberg–Witten-type deformations and
to the vielbein transforms. In Sec. VII C we proved that there are possible extensionsson defor-
mation parametersd of exact solutions from the Einstein and gauge gravity possessing hidden
noncommutative symmetries without introducing new fields.

In this work, from a number of results following from application of Seiberg–Witten maps and
related anholonomic vielbein transforms, we selected only those which allow us to define classes
of solutions as noncommutative generalizations of some commutative ones of special physical
interest. Such metrics with hidden noncommutative symmetry are described by a general off-
diagonal ansatz for the metric and vielbein coefficients. The solutions can be extended to complex
metrics by allowing that some subsets of vielbein coefficientsswith associated nonlinear connec-
tion structured may be complex valued. With respect to adapted frames, such metrics have real
coefficients describing vacuum black ellipsoid or wormhole configurationssthere were elaborated
procedures of their analytical extensions and proofs of stabilityd. The new types of metrics may be
considered as certain exact solutions in complex gravity which must be considered if some non-
commutative relations for coordinates are introduced. Such configurations may play an important
role in the further understanding of vacua of noncommutative gauge and gravity theories and
investigation of their quantum variants.

The anholonomic noncommutative symmetry of exact solutions of four-dimensional vacuum
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Einstein equations positively does not violate the localsreald Lorentz symmetry. This symmetry
may be preserved in a specific form even by anholonomic complex vielbein transforms mapping
the 4D real Einstein’s metrics into certain complex ones for noncommutative gravity. Such frames
may be defined as the generated new solutions will be a formal analogy with their realsdiagonald
pedigrees, to be stable with well-defined geodesic and horizon properties, like it was concluded for
black ellipsoid solutions in general relativity.18,19 By complex frame transforms with noncommu-
tative symmetries we demonstrated that we may deform the horizon of the Schwarzshild solution
to a static ellipsoid configuration as well to induce an effective electric charge of complex non-
commutative origin.

We compare the generated off-diagonal ellipsoidalsin general, complexd metrics possessing
anholonomic noncommutative symmetries with those describing the distorted diagonal black hole
solutionsssee the vacuum case in Refs. 80 and 81 and an extension to the case of nonvanishing
electric fields in Ref. 82d. In the complex ellipsoidal cases the space–time distortion is caused by
some anisotropic off-diagonal terms being nontrivial in some regions but in the case of “pure
diagonal” distortions one treats such effects following the fact that the vacuum Einstein equations
are not satisfied in some regions because of presence of matter. Alternatively, the complex ellip-
soid solutions may be described as in a real world with real metric coefficients but defined with
respect to complex frames.

Here we emphasize that the off-diagonal gravity may model some gravity–matter-like inter-
actionssfor instance, in the Kaluza–Klein theory by emphasizing some very particular metric’s
configurations and topological compactificationsd but, in general, the off-diagonal vacuum gravi-
tational dynamics cannot be associated to any effective matter dynamics in a holonomic gravita-
tional background. So, we may consider that the anholonomic ellipsoidal deformations of the
Schwarzschild metric defined by real and/or complex anholonomic frame transforms generate
some kind of anisotropic off-diagonal distortions modeled by certain vacuum gravitational fields
with the distortion parameterssequivalently, vacuum gravitational polarizationsd depending both
on radial, angular and extra dimension coordinates. For complex valued nonlinear connection
coefficients, we obtain a very specific complex space–time distortion instead of matter type dis-
tortion. We note that both classes of off-diagonal anisotropic and “pure” diagonal distortionsslike
in Refs. 80 and 81d result in solutions which in general are not asymptotically flat. However, it is
possible to find asymptotically flat extensions, as it was shown in this paper and in Refs. 18 and
19, even for ellipsoidal configurations by introducing the corresponding off-diagonal terms. The
asymptotic conditions for the diagonal distortions are discussed in Ref. 82 where it was suggested
that to satisfy such conditions one must include some additional matter fields in the exterior
portion of space–time. For ellipsoidal real/complex metrics, we should consider that the off-
diagonal metric terms have a corresponding behavior as to result far away from the horizon in the
Minkowski metric.

The deformation parameter« effectively seems to put an “electric charge” on the black hole
which is of gravitational off-diagonal/anholonomic origin. For complex metrics such “electric
charges” may be induced by complex values of off-diagonal metric/anholonomic frame coeffi-
cients. It can describe effectively both positive and negative gravitational polarizationsseven some
repulsive gravitational effectsd. The polarization may have very specific nonlinearities induced by
complex gravity terms. This is not surprising because the coefficients of an anisotropic black hole
are similar to those of the Reissner–Nördstrom solution only with respect to corresponding an-
holonomic complex/real frames which are subjected to some constraintssanholonomy conditionsd.

Applying the method of anholonomic frame transforms elaborated and developed in Refs.
13–19 and 24–31, we can construct off-diagonal ellipsoidal extensions of the already diagonally
disturbed Schwarzschild metricfsee the metrics3.7d from Ref. 82g. Such anholonomic deforma-
tions would contain in the diagonal limit configurations with«→0 buth3Þ1 fsees47d and/ors33d
ands51dg for such configurations where the functionh3 must be related in the corresponding limits

with the valuesḡD , c̄D, and A from Ref. 82. We remark that there are different classes of
ellipsoidal deformations of the Schwarzschild metric which result in real or complex vacuum
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configuration. The conditions«→0 andq, h3=1 andl→0 select just the limit of the usual radial
Schwarzschild asymptotics without anysalso possibled additional diagonal distortions. For non-
trivial values ofq, h3, andh4 we may obtain diagonal distortions.

In the case of ellipsoidal metrics with the Schwarzschild asymptotics, the ellipsoidal character
could result in some observational effects in the vicinity of the horizon. For instance, scattering of
particles on a static ellipsoid can be computed. We can also model anisotropic matter accretion
effects on an ellipsoidal black hole put in the center of a galactic being of ellipsoidal, toroidal or
another configuration. Even in 4D the nonspheric topology of horizons seem to be prohibited in
the general relativity theory52,83–86,20following some general differential geometry and censorship
theorems, such objects can be induced from extra dimensions and can exist in theories with
cosmological constant,87–89nontrivial torsion or induced by anholonomic frames.13–19,30,31We can
consider black torus/ellipsoid solutions as a background for potential tests for existence of extra
dimensions and of general relativity. A point of further investigations could be the anisotropic
ellipsoidal collapse when both the matter and space–time are of ellipsoidal generic off-diagonal
symmetrysformer theoretical and computational investigations were performed only for rotoids
with anisotropic matter and particular classes of perturbations of the Schwarzshild solutions90d. It
is interesting to elaborate collapse scenaria with respect to compexified anholonomic frames. For
very small eccentricities, we may not have any observable effects like perihelion shift or light
bending if we restrict our investigations only to the Schwarzschild–Newton asymptotics but some
kind of dissipation can be considered for complex metrics.

We also present some comments on mechanics and thermodynamics of ellipsoidal black holes.
For the static black ellipsoids/tori with flat asymptotics, we can compute the area of the ellipsoidal
horizon, associate an entropy and develop corresponding black ellipsoid thermodynamics. But this
is a rough approximation because, in general, we are dealing with off-diagonal metrics depending
anisotropically on two/three coordinates. Such solutions are with anholonomically deformed Kill-
ing horizons, or with anholonomic noncommutative symmetries, and should be described by a
thermodynamicssin general, both nonequilibrium and irreversibled of black ellipsoids/tori self-
consistently embedded into an off-diagonal anisotropic gravitational vacuum with potential dissi-
pation described by some complex metric and frame coefficients. This forms a ground for numer-
ous new conceptual issues to be developed and related to anisotropic black holes and the
anisotropic kinetics and thermodynamics29 as well to a framework of isolated anisotropic
horizons,91–93 defined in a locally anistoropic/noncommutative/complex background with worm-
hole real and/or complex configurations which is a matter of our further investigations.

Finally, we note that we elaborated a general formalism of generating noncommutative solu-
tions starting from exact vacuum solutions with anholonomic noncommutativity, but we do not
know how to extend our solutions via starsMoyald product as to preserve their stability because of
induced general complex terms in the metrics. For some particular duality relations between the
coordinate and frame noncommutativity it seems possible to get stability at least in the first
approximation of noncommutative deformation parameter but an arbitrary noncommutative coor-
dinate relation results in less defined physical configurations. A better understanding of the physi-
cal relevance of the anholonomic noncommutative configurations completed also to general coor-
dinate noncommutativity is an interesting open question which we leave for the future.
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APPENDIX A: EINSTEIN EQUATIONS AND N CONNECTIONS

For convenience, we present in this Appendix a selection of necessary results from Refs.
13–19, 30, and 31.

The curvature tensor of a connectionGfcg with h–v componentss7d induced by anholonomic
framess2d ands3d with associatedN-connection structure is definedRsdt ,dgddb=Rb

a
gtda, where
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Rb
a

gt = dtG
a

bg − dgGa
bt + Gw

bgGa
wt − Gw

btG
a

wg + Ga
bwww

gt, sA1d

splits into irreducibleh–v componentsRb
a

gt=hRh.jk
.i ,Rb.jk

.a ,Pj .ka
.i ,Pb.ka

.c ,Sj .bc
.i ,Sb.cd

.a j, with

Rh.jk
.i = dkL.hj

i − d jL.hk
i + L.hj

m Lmk
i − L.hk

m Lmj
i − C.ha

i V.jk
a ,

Rb.jk
.a = dkL.bj

a − d jL.bk
a + L.bj

c L.ck
a − L.bk

c L.cj
a − C.bc

a V.jk
c ,

Pj .ka
.i = ]aL.jk

i + C.jb
i T.ka

b − sdkC.ja
i + L.lk

i C.ja
l − L.jk

l C.la
i − L.ak

c C.jc
i d,

Pb.ka
.c = ]aL.bk

c + C.bd
c T.ka

d − sdkC.ba
c + L.dk

c C.ba
d − L.bk

d C.da
c − L.ak

d C.bd
c d,

Sj .bc
.i = ]cC.jb

i − ]bC.jc
i + C.jb

h C.hc
i − C.jc

h Chb
i ,

Sb.cd
.a = ]dC.bc

a − ]cC.bd
a + C.bc

e C.ed
a − C.bd

e C.ec
a , sA2d

where we omitted the labelfcg in formulas. The Ricci tensorRbg=Rb
a

ga has the irreducibleh–v
components

Rij = Ri.jk
k , Ria = − 2Pia = − Pi.ka

.k ,

Rai =
1Pai = Pa.ib

.b , Rab = Sa.bc
.c . sA3d

This tensor is nonsymmetric,1PaiÞ
2Pia sthis could be with respect to anholonomic frames of

referenced. The scalar curvature of the metricd connection,RQ =gbgRbg, is computed

RQ = GabRab = R̂+ S, sA4d

whereR̂=gijRij andS=habSab.
By substitutingsA3d and sA4d into the 5D Einstein equations,

Rab − 1
2gabR= kYab,

wherek and Yab are, respectively, the coupling constant and the energy-momentum tensor, we
obtain theh–v decomposition of the Einstein equations,

Rij − 1
2sR̂+ Sdgij = kYi j ,

Sab − 1
2sR̂+ Sdhab = kYab, sA5d

1Pai = kYai,
2Pia = kYia.

The vacuum 5D gravitational field equations, in invarianth–v components, are written

Rij = 0, Sab = 0, 1Pai = 0, 2Pia = 0. sA6d

The main trick of the anholonomic frames method of integrating the Einstein equations in
general relativity and variousssuperd string and higher/lower dimension gravitational theories
consist in a procedure of definition of such coefficientsNj

a such that the block matricesgij andhab

are diagonalized. This substantially simplifies computations but we must applyN-elongated partial
derivatives.
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APPENDIX B: MAIN THEOREMS FOR 5D

We restrict our considerations to a five-dimensionalsin brief, 5Dd space–time provided with a
generic off-diagonalspseudod Riemannian metric and labeled by local coordinatesua=sxi ,y4

=v ,y5d, for i =1,2,3. Westate the condition when exact solutions of the Einstein equations
depending on holonomic variablesxi and on one anholonomicsequivalently, anisotropicd variable
y4=v can be constructed in explicit form. Every coordinate from a setua may be timelike, 3D
spacelike, or extra dimensional. For simplicity, the partial derivatives will be denoted asa3

=]a/]x1, a˙=]a/]x2, a8=]a/]x3, a* =]a/]v.
The 5D quadratic line element is chosen

ds2 = gabsxi,vddua dub sB1d

when the metric componentsgab are parametrized with respect to the coordinate dual basis by an
off-diagonal matrixsansatzd,

3
g1 + w1

2h4 + n1
2h5 w1w2h4 + n1n2h5 w1w3h4 + n1n3h5 w1h4 n1h5

w1w2h4 + n1n2h5 g2 + w2
2h4 + n2

2h5 w2w3h4 + n2n3h5 w2h4 n2h5

w1w3h4 + n1n3h5 w2w3h4 + n2n3h5 g3 + w3
2h4 + n3

2h5 w3h4 n3h5

w1h4 w2h4 w3h4 h4 0

n1h5 n2h5 n3h5 0 h5

4 , sB2d

with the coefficients being some necessary smooth class functions of type

g1 = ± 1, g2,3= g2,3sx2,x3d, h4,5= h4,5sxi,vd,

wi = wisxi,vd, ni = nisxi,vd,

where theN coefficients froms3d and s2d are parametrizedNi
4=wi andNi

5=ni.
By straightforward calculation, we can prove30,31 the following.
Theorem 1: The nontrivial components of the 5D vacuum Einstein equations, Ra

b=0 [see (A6)
in the Appendix A] for the metric (1) defined by the ansatz (B2), computed with respect to
anholonomic frames (2) and (3) can be written in the form

R2
2 = R3

3 = −
1

2g2g3
Fg3

˙˙ −
g2

˙ g3
˙

2g2
−

sg3
˙ d2

2g3
+ g29 −

g28g38

2g3
−

sg28d
2

2g2
G = 0, sB3d

S4
4 = S5

5 = −
b

2h4h5
= 0, sB4d

R4i = − wi
b

2h5
−

ai

2h5
= 0, sB5d

R5i = −
h5

2h4
fni

** + gni
*g = 0, sB6d

where

ai = ]ih5
* − h5

*]i lnÎuh4h5u, b = h5
** − h5

*flnÎuh4h5ug* , g = 3h5
* /2h5 − h4

* /h4. sB7d

Following this theorem,s1d we can define a functiong2sx2,x3d for a given g3sx2,x3d, or
inversely, to define a functiong2sx2,x3d for a giveng3sx2,x3d, from Eq.sB3d; s2d we can define a
function h4sx1,x2,x3,vd for a given h5sx1,x2,x3,vd, or inversely, to define a function
h5sx1,x2,x3,vd for a givenh4sx1,x2,x3,vd, from Eq.sB4d; s3d ands4d having the values ofh4 and
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h5, we can compute the coefficientssB7d which allow to solve the algebraic equationssB5d and to
integrate two times onv the equationsB6d which allows to find, respectively, the coefficients
wisxk,vd andnisxk,vd.

We can generalize the construction by introducing a conformal factorVsxi ,vd and additional
deformations of the metric via coefficientszîsxi ,vd shere, the indices with a “hat” take values like

î =1,2,3,5d, i.e., for metrics of type

ds2 = V2sxi,vdĝabsxi,vddua dub, sB8d

where the coefficientsĝab are parametrized by the ansatz

3
g1 + sw1

2 + z1
2dh4 + n1

2h5 sw1w2 + z1z2dh4 + n1n2h5 sw1w3 + z1z3dh4 + n1n3h5 sw1 + z1dh4 n1h5

sw1w2 + z1z2dh4 + n1n2h5 g2 + sw2
2 + z2

2dh4 + n2
2h5 sw2w3 + z2z3dh4 + n2n3h5 sw2 + z2dh4 n2h5

sw1w3 + z1z3dh4 + n1n3h5 sw2w3 + z2z3dh4 + n2n3h5 g3 + sw3
2 + z3

2dh4 + n3
2h5 sw3 + z3dh4 n3h5

sw1 + z1dh4 sw2 + z2dh4 sw3 + z3dh4 h4 0

n1h5 n2h5 n3h5 0 h5 + z5h4

4 .

sB9d

Such 5D metrics have a second order anisotropy32,37,38when theN coefficients are parametrized in
the first order anisotropy likeNi

4=wi and Ni
5=ni swith three anholonomic,xi, and two anholo-

nomic,y4 andy5, coordinatesd and in the second order anisotropyfon the second “shell,” with four
anholonomicsxi ,y5d, and one anholonomic,y4, coordinatesg with N

î

5
=zî, in this work we state, for

simplicity, z5=0. For trivial valuesV=1 andzî =0, the squared line intervalsB8d transforms into
sB1d.

The Theorem 1 can be extended as to include the generalization to the second ansatzsB8d.
Theorem 2: The nontrivial components of the 5D vacuum Einstein equations, Ra

b=0 [see (A6)
in Appendix A] for the metric (B8) consist from the system (B3)–(B6) with the additional condi-
tions that

d̂ih4 = 0 and d̂iV = 0 sB10d

for d̂i =]i −swi +zid]4+ni]5 when the valueszĩ =szi ,z5=0d are to be found as to be a solution of
(B10); for instance, if

Vq1/q2 = h4 sq1 and q2 are integersd, sB11d

zi satisfy the equations

]iV − swi + zidV* = 0. sB12d

The proof of Theorem 2 consists from a straightforward calculation of the components of the
Ricci tensorsA3d as it is outlined in the Appendix A. The simplest way is to use the calculus for
Theorem 1 and then to compute deformations of the canonical connections7d. Such deformations
induce corresponding deformations of the Ricci tensorsA3d. The condition that we have the same
values of the Ricci tensor for thesB2d and sB9d results in Eqs.sB10d and sB12d which are
compatible, for instance, ifVq1/q2=h4. There are also other possibilities to satisfy the condition
sB10d, for instance, ifV=V1V2, we can consider thath4=V1

q1/q2V2
q3/q4 for some integersq1, q2, q3,

andq4.
A very surprising result is that we are able to construct exact solutions of the 5D vacuum

Einstein equations for both types of the ansatzsB2d and sB9d.
Theorem 3: The system of second order nonlinear partial differential equations (B3)–(B6)

and (B12) can be solved in general form if there are given some values of functions g2sx2,x3d [or
g3sx2,x3d] , h4sxi ,vd [or h5sxi ,vd], and Vsxi ,vd.

sid The general solution of Eq. (B3) can be written in the form
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Ã = gf0g expfa2x̃
2sx2,x3d + a3x̃

3sx2,x3dg, sB13d

where gf0g, a2, and a3 are some constants and the functions x˜2,3sx2,x3d define any
coordinate transforms x2,3→ x̃2,3 for which the 2D line element becomes conformally
flat, i.e.,

g2sx2,x3dsdx2d2 + g3sx2,x3dsdx3d2 → Ãfsdx̃2d2 + esdx̃3d2g. sB14d

sii d The equation (B4) relates two functions h4sxi ,vd and h5sxi ,vd following two possibilities:

sad to compute

Îuh5u = h5f1gsxid + h5f2gsxid E Îuh4sxi,vdudv, h4
*sxi,vd Þ 0 = h5f1gsxid + h5f2gsxidv,

h4
*sxi,vd = 0, sB15d

for some functions h5f1,2gsxid stated by boundary conditions;
sbd or, inversely, to compute h4 for a given h5sxi ,vd, h5

* Þ0,

Îuh4u = hf0gsxidsÎuh5sxi,vdud* , sB16d

with hf0gsxid given by boundary conditions.

siii d The exact solutions of (B5) forbÞ0 is

wk = ]k lnfÎuh4h5u/uh5
* ug/]v lnfÎuh4h5u/uh5

* ug, sB17d

with ]v=] /]v and h5
* Þ0. If h5

* =0, or even h5
* Þ0 but b=0, the coefficients wk could be

arbitrary functions onsxi ,vd. For vacuum Einstein equations this is a degenerated case
which imposes the the compatibility conditionsb=ai =0, which are satisfied, for instance,
if the h4 and h5 are related as in the formula (B6) but with hf0gsxid=const..

sivd The exact solution of (B6) is

nk = nkf1gsxid + nkf2gsxid E fh4/sÎuh5ud3gdv, h5
* Þ 0,

=nkf1gsxid + nkf2gsxid E h4 dv, h5
* = 0, sB18d

=nkf1gsxid + nkf2gsxid E f1/sÎuh5ud3gdv, h4
* = 0,

for some functions nkf1,2gsxid stated by boundary conditions.
svd The exact solution of (B12) is given by some arbitrary functionszi =zisxi ,vd if both ]iV

=0 and V* =0, we choosezi =0 for V=const, and

zi = − wi + sV*d−1]iV, V* Þ 0,

= sV*d−1]iV, V* Þ 0, for vacuum solutions. sB19d

We note that a transformsB14d is always possible for 2D metrics and the explicit form of
solutions depends on the chosen system of 2D coordinates and on the signaturee= ±1. In the
simplest case the equationsB3d is solved by arbitrary two functionsg2sx3d andg3sx2d. The equa-
tion sB4d is satisfied by arbitrary pairs of coefficientsh4sxi ,vd andh5f0gsxid.

The proof of Theorem 3, following from a direct integration ofsB3d–sB6d andsB12d is given
in the Appendix B of Ref. 30.
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There are some important consequences of the Theorems 1–3.
Corollary 1: The nontrivial diagonal components of the Einstein tensor, Gb

a=Rb
a− 1

2Rdb
a, for

the metric (1), given with respect to N frames, are

G1
1 = − sR2

2 + S4
4d, G2

2 = G3
3 = − S4

4, G4
4 = G5

5 = − R2
2 sB20d

imposing the condition that the dynamics is defined by two values R2
2 and S4

4. The rest of the
nondiagonal components of the Ricci (Einstein tensor) are compensated by fixing corresponding
values of N coefficients.

The formulassB20d are obtained following the relations for the Ricci tensorsB3d–sB6d.
Corollary 2: We can extend the system of 5D vacuum Einstein equations (B3)–(B6) by intro-

ducing matter fields for which the coefficients of the energy-momentum tensorYab given with
respect to N frames satisfy the conditions

Y1
1 = Y2

2 + Y4
4, Y2

2 = Y3
3, Y4

4 = Y5
5. sB21d

We note that, in general, the tensorYab for the nonvacuum Einstein equations,

Rab − 1
2gabR= kYab,

is not symmetric because with respect to anholonomic frames there are imposed constraints which
makes nonsymmetric the Ricci and Einstein tensorsfthe symmetry conditions may be defined
explicitly only with respect to holonomic, coordinate frames; for details see Appendix A and the
formulassA5dg.

For simplicity, in our investigations we can consider only diagonal matter sources, given with
respect toN frames, satisfying the conditions

kY2
2 = kY3

3 = Y2, kY4
4 = kY5

5 = Y4, andY1 = Y2 + Y4, sB22d

where k is the gravitational coupling constant. In this case the equationssB3d and sB4d are,
respectively, generalized to

R2
2 = R3

3 = −
1

2g2g3
Fg3

˙˙ −
g2

˙ g3
˙

2g2
−

sg3
˙ d2

2g3
+ g29 −

g28g38

2g3
−

sg28d
2

2g2
G = − Y4 sB23d

and

S4
4 = S5

5 = −
b

2h4h5
= − Y2. sB24d

Corollary 3: An arbitrary solution of the system of equations (B3)–(B6) and (B12) is defined
for a canonical connection (7) containing, in general, nontrivial torsion coefficients. This can be
effectively applied in order to construct exact solutions, for instance, in string gravity containing
nontrivial torsion. We can select solutions corresponding to the Levi–Civita connection (10) for a
generic off-diagonal (pseudo) Riemannian metric if we impose the condition that the coefficients
Ni

4=wisxk,vd, Ni
5=nisxk,vd, and N

î

5
=zî are fixed to result in a zero N curvature, V jk

a =0, on all

“shells” of anisotropy. Such selections are possible by fixing corresponding boundary conditions
and selecting corresponding classes of functions like nkf1,2gsxid, obtained after a general integra-
tion, in formulas (B17)–(B19).

The above presented results are for generic 5D off-diagonal metrics, anholonomic transforms
and nonlinear field equations. Reductions to a lower dimensional theory are not trivial in such
cases. We emphasize here some specific points of this proceduressee details in Ref. 30d.

APPENDIX C: REDUCTION FROM 5D TO 4D

The simplest way to construct a 5D→4D reduction for the ansatzsB2d andsB9d is to elimi-
nate from formulas the variablex1 and to consider a 4D spacefparametrized by local coordinates
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sx2,x3,v ,y5dg being trivially embedded into 5D spacefparametrized by local coordinates
sx1,x2,x3,v ,y5d with g11= ±1, g1â=0, â=2,3,4,5g with further possible 4D conformal and an-
holonomic transforms depending only on variablessx2,x3,vd. We suppose that the 4D metricgâb̂

could be of arbitrary signature. In order to emphasize that some coordinates are stated just for such

4D space we underline the greek indices,â ,b̂ , . . . and theitalic indices from the middle of

alphabet,î , ĵ , . . . =2,3,whereuâ=sxî ,yad=sx2,x3,y4,y5d.
In result, the analogs, Theorems 1–3 and Corollaries 1–3 can be reformulated for 4D gravity

with mixed holonomic–anholonomic variables. We outline here the most important properties of
such reduction.

sid The line elementsB1d with ansatzsB2d and the line elementsB1d with sB9d are, respec-
tively, transformed on 4D space to the values.

The first type 4D quadratic line element is taken

ds2 = gâb̂sxî,vdduâ dub̂ sC1d

with the metric coefficientsgâb̂ parametrized

3
g2 + w2

2h4 + n2
2h5 w2w3h4 + n2n3h5 w2h4 n2h5

w2w3h4 + n2n3h5 g3 + w3
2h4 + n3

2h5 w3h4 n3h5

w2h4 w3h4 h4 0

n2h5 n3h5 0 h5

4 , sC2d

where the coefficients are some necessary smooth class functions of type

g2,3= g2,3sx2,x3d, h4,5= h4,5sxk̂,vd,

wî = wîsxk̂,vd, nî = nîsxk̂,vd, î,k̂ = 2,3.

The anholonomically and conformally transformed 4D line element is

ds2 = V2sxî,vdĝâb̂sxî,vdduâ dub̂, sC3d

where the coefficientsĝâb̂ are parametrized by the ansatz

3
g2 + sw2

2 + z2
2dh4 + n2

2h5 sw2w3 + z2z3dh4 + n2n3h5 sw2 + z2dh4 n2h5

sw2w3 + z2z3dh4 + n2n3h5 g3 + sw3
2 + z3

2dh4 + n3
2h5 sw3 + z3dh4 n3h5

sw2 + z2dh4 sw3 + z3dh4 h4 0

n2h5 n3h5 0 h5 + z5h4

4 ,

sC4d

wherezî =zîsxk̂,vd and we shall restrict our considerations forz5=0.

sii d We have a quadratic line elements1d which can be written

ds2 = g2sdx2d2 + g3sdx3d2 + h4sdvd2 + h5sdy5d2, sC5d

with respect to the anholonomic coframesdxî ,dv ,dy5d, where

dv = dv + wî dxî anddy5 = dy5 + nî dxî sC6d

is the dual ofsdî ,]4,]5d, where
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dî = ]î + wî]4 + nî]5. sC7d

siii d In the conditions of the 4D variant of the Theorem 1 we have the same equationssB3d–sB6d
where we must seth4=h4sxk̂,vd and h5=h5sxk̂,vd. As a consequence we have that

aisxk,vd→aîsxk̂,vd, b=bsxk̂,vd, and g=gsxk̂,vd which result thatwî =wîsxk̂,vd and nî

=nîsxk̂,vd.
sivd The 4D line element with conformal factorsB8d subjected to an anholonomic map with

z5=0 transforms into

ds2 = V2sxî,vdfg2sdx2d2 + g3sdx3d2 + h4sd̂vd2 + h5sdy5d2g, sC8d

given with respect to the anholonomic coframesdxî , d̂v ,dy5d, where

dv = dv + swî + zîd dxî anddy5 = dy5 + nî dxî sC9d

is dual to the framesd̂î ,]4, ]̂5d with

d̂î = ]î − swî + zîd]4 + nî]5, ]̂5 = ]5. sC10d

svd The formulassB10d and sB12d from Theorem 2 must be modified into a 4D form

d̂îh4 = 0 andd̂îV = 0 sC11d

and the valueszĩ =szî ,z5=0d are found as to be a unique solution ofsB10d; for instance, if

Vq1/q2 = h4 sq1 andq2 are integersd,

zî satisfy the equations

]îV − swî + zîdV* = 0. sC12d

svid One holds the same formulassB15d–sB18d from the Theorem 3 on the general form of
exact solutions with that difference that their 4D analogs are to be obtained by reductions

of holonomic indices,î → i, and holonomic coordinates,xi →xî, i.e., in the 4D solutions
there is not contained the variablex1.

svii d The formulassB20d for the nontrivial coefficients of the Einstein tensor in 4D stated by the
Corollary 1 are written

G2
2 = G3

3 = − S4
4, G4

4 = G5
5 = − R2

2. sC13d

sviii d For symmetries of the Einstein tensorsC13d, we can introduce a matter field source with a
diagonal energy momentum tensor, like it is stated in the Corollary 2 by the conditions
sB21d, which in 4D are transformed into

Y2
2 = Y3

3, Y4
4 = Y5

5. sC14d

APPENDIX D: STAR-PRODUCTS, ENVELOPING ALGEBRAS AND NONCOMMUTATIVE
GEOMETRY

For a noncommutative space the coordinatesûi si =1, . . . ,Nd satisfy some noncommutative
relations
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fûi,ûjg = 5 iu i j , u i j P IC, canonical structure,

i f k
ij ûk, fk

ij P IC, Lie structure,

iCkl
ij ûkûl , Ckl

ij P IC, quantum plane,
6 sD1d

where IC denotes the complex number field.
The noncommutative space is modeled as the associative algebra of IC; this algebra is freely

generated by the coordinates modulo idealR generated by the relationssone accepts formal power
seriesd Au=ICffû1, . . . ,ûNgg /R. One restricts attention94 to algebras having thesso-called,
Poincaré–Birkhoff–Wittd property that any element ofAu is defined by its coefficient function and
vice versa,

f̂ = o
L=0

`

f i1,. . .,iL
:ûi1

¯ ûiL: when f̂ , hf ij,

where:ûi1
¯ ûiL: denotes that the basis elements satisfy some prescribed ordersfor instance, the

normal orderi1ø i2ø ¯ ø iL, or, another example, are totally symmetricd. The algebraic proper-
ties are all encoded in the so-called diamondsLd product which is defined by

f̂ ĝ = ĥ , hf ijLhgij = hhij.

In the mentioned approach to every functionfsud= fsu1, . . . ,uNd of commuting variables

u1, . . . ,uN one associates an element of algebraf̂ when the commuting variables are substituted by
anticommuting ones,

fsud = o f i1,. . .,iL
u1

¯ uN → f̂ = o
L=0

`

f i1,. . .,iL
:ûi1

¯ ûiL:

when theL product leads to a bilinearp-product of functionsssee details in Ref. 70d

hf ijLhgij = hhij , sf p gdsud = hsud.

The p-product is defined, respectively, for the casessD1d;

f p g =5 expF i

2

]

]ui u
i j ]

]u8 jGufsudgsu8duu8→u,

expF i

2
ukgkSi

]

]u8
,i

]

]u9
DGufsu8dgsu9duu9→u

u8→u,

q1/2f−u8s]/]u8dvs]/]vd+us]/]udv8s]/]v8dgufsu,vdgsu8,v8duv8→v
u8→u,

6
where there are considered values of type

eiknûn
, eipnlû

n
= eihkn+pn+1/2gnsk,pdjûn

,

gnsk,pd = − kipj fn
ij + 1

6kipjspk − kkdf m
ij fn

mk+ ¯ , sD2d

eAeB = eA+B+1/2fA,Bg+1/12sfA,fA,Bgg+fB,fB,Aggd + ¯ ,

and for the coordinates on quantumsManind planes one holds the relationuv=qvu.
A non-Abelian gauge theory on a noncommutative space is given by two algebraic structures,

the algebraAu and a non-Abelian–Lie algebraAI of the gauge group with generatorsI1, . . . ,IS and
the relations

042503-45 Exact solutions with noncommutative symmetries J. Math. Phys. 46, 042503 ~2005!

                                                                                                                                    



fIs,Ippg = i f t
sppI t. sD3d

In this case both algebras are treated on the same footing and one denotes the generating elements
of the big algebra byûi,

ẑ ip = hû1, . . . ,ûN,I1, . . . ,ISj, Az = ICffû1, . . . ,ûN+Sgg/R
and thep-product formalism is to be applied for the whole algebraAz when there are considered
functions of the commuting variablesui si , j ,k, . . . =1, . . . ,Nd and Is ss,p, . . . =1, . . . ,Sd.

For instance, in the case of a canonical structure for the space variablesui we have

sF p Gdsud = expF i

2
Su i j ]

]u8i

]

]u9 j + tsgsSi
]

]t8
,i

]

]t9
DD 3 uFsu8,t8dGsu9,t9dut8→t,t9→t

u8→u,u9→u.G .

sD4d

This formalism was developed in Ref. 90 for general Lie algebras.
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A well-known class of conformally flat space–times which admit decomposable
Christoffel connexions is considered. It is shown that the corresponding spin-affine
configurations can be constructed within the framework of Infeld–van-der-
Waerden’sg-formalism only if a specific constancy property is imposed on one of
the densities borne by the expression for a typical metric function. Explicit expres-
sions for the gravitational spinors of those space–times are then derived. ©2005
American Institute of Physics.fDOI: 10.1063/1.1876871g

I. INTRODUCTION

The present paper can be looked upon as an application of Infeld–van-der-Waerden’s
g-formalism1–5 that may be of a cosmological interest. Our procedures take up a work carried out
originally by Penrose and Rindler,6,7 which involves the utilization of a decomposable Christoffel
connexion along with a particular spin-affine pattern for describing some properties of a class of
conformally flat space–times. We establish that the consistency of the overall situation will be
ensured only if the independent entry of anyg-metric spinor is taken to bear a specialized
world-gauge form. In fact, this prescription automatically entails ascribing a specific symmetry
property to the relevant spin-affine connexions, and likewise suggests a simple mechanism that
allows one to keep track of all strongly required world behaviors3 in a natural way. We deduce the
conformal-flatness property by showing explicitly that the corresponding wave functions for gravi-
tons vanish identically. It appears, in addition, that one of Infeld’s expressions for Ricci scalars2

becomes completely recoverable when the case of a realg-metric function is effectively allowed
for.

The world-spinor-index notation of Ref. 6 will be adopted throughout the work. Vertical bars
surrounding an index block will mean that the indices singled out are not to partake of a symmetry
operation. Space–time coordinates and a typical covariant world-metric tensor are denoted asxa

andgab, with

]a 7
]

]xa .

One of theg-metric spinors is set as

sgABd = S 0 g

− g 0
D, g = uguexpsiFd,

where sugu ,Fd stands for a pair of differentiable real-valued world invariants. The Hermitian
connecting objects for theg-formalism are presumably taken as the elements of

hsaBB8,sBB8
a ,sa

BB8,saBB8j,

while an appropriate unprimed-index spin connexion for it is written asgaB
C. For the eigenvalue

occurring in the equationssee Ref. 5d
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]agAB = aagAB,

we have the identificationaa= iKa−ua, with

ua = ]a logugu−1, Ka 7 ]aF.

Some further conventions will be explained in due course.
We have outlined the paper as follows. All the specific metric and affine prescriptions are

obtained in Sec. II. It will be expedient to build up in Sec. III some partial-derivative computa-
tional devices. The pertinent curvature structures are exhibited in Sec. IV. We shall make a few
remarks on our work in Sec. V.

II. METRIC AND AFFINE PRESCRIPTIONS

Within the framework of theg-formalism, the key metric prescription is written as5

ugu4 = ms− gd1/2, s1d

wherem amounts to a real spin-scalar density of world weight −1 and absolute weight +4, which
is defined by

]a log m = sb
BB8]asBB8

b . s2d

These structures yield at once the expression

s− 4dua = ]a logfms− gd1/2g. s3d

Equation s3d can be specialized to the case whereinm is identified with a densityc that
particularly bears]-constancy in a given world frame, namely

sb
BB8]asBB8

b = 0, s4d

and, consequently,ua takes the noncovariant form

s− 4dua = ]a logfcs− gd1/2g = Ga. s5d

Indeed, the required world covariance ofgaBC and its complex conjugate1 is simply recovered
from the coordinate-transformation lawsour Jacobian functional determinantDW is the inverse of
that used in Ref. 8d

c8 = sDWd−1c, s6d

which also guarantees the world invariance ofugu. The constancy ofm in the former world frame
can be thought of as playing a “catalytic” role in the construction of a covariant vectorua from a
metric expression of the forms3d. Obviously, the affine relationship borne by Eq.s5d applies only
to one of the frames of each character being eventually dealt with, while the laws6d ensures that
the world behavior of the standard correlation5

GAA8BB8CC8 + ssCC8]AA8sBB8
s = gAA8BCgB8C8 + gAA8B8C8gBC, s7d

will remain appropriately specified when Eq.s5d is actually called for.
To effectively derive the explicit affine expressions associated to the specializations4d, we

initially make use of the eigenvalue equation

]asgBCgB8C8d = s− 2uadgBCgB8C8, s8d

together with its upper-spinor-index version, and implement configurations of the type
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sb
BB8]asBB8

b = sb
BB8]assbCC8gCBgC8B8d. s9d

Such a procedure leads us to the equations

]asbBB8 = s− 1
2dGasbBB8, ]asbBB8 = 1

2GasbBB8, s10d

which immediately imply that

]ag
bc = s− 1

2dGag
bc, ]agbc = 1

2Gagbc. s11d

We are then led to the constancy properties

]asb
BB8 = 0, ]asBB8

b = 0, s12d

along with the affine relationships5

GAsBCdA8sB8C8d = 0, 1
2GAsBCdA8D8

D8 = uA8sBdgsCdA = gAA8sBCd, s13d

which clearly satisfy

gA8sABCd = 0. s14d

It follows that we can write down the expansion6

gAA8BC = uBA8gCA − iFAA8gBC, s15d

from which we get the world expression

Gabc= 1
2sc

BB8sB8sad
A

ssbdB
A8 GAA8, s16d

with the quantityFa being takensthe expansion given in Ref. 6 differs from ours by an overall
“minus” signd as a covariant world vector that bears a well-specified physical meaningsfor further
details, see Refs. 3 and 5d. Hence, working out the index configuration of Eq.s16d produces the
structures

GAA8BB8CC8 = 1
2fsCC8

h s]BB8shAA8 + ]AA8shBB8d − sBB8
h ]CC8shAA8g s17d

and

Gabc= 1
2Gsadgsbdc − 1

4gabGc. s18d

We should observe that the first of Eqs.s13d amounts to the same thing as saying that the trace-free
part of Gasbcd equals zero.

It will be established later in Sec. IV that world affinities of the type prescribed by Eq.s18d
give rise to identically vanishing Weyl tensors, and thus specify parallel displacements in confor-
mally flat space–times. In any such case, we can write down the derivatives

¹AA8wBB8 = ]AA8wBB8 + uBA8wAB8 + uAB8wBA8 s19d

and

¹AA8u
BB8 = ]AA8u

BB8 − 2uAA8u
BB8 + uA8

B uA
B8 + uA

B8uA8
B , s20d

which can therefore be reset as

¹awb = ]awb + 1
4gabsGcwcd − 1

2Gsadwsbd s21d

and
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¹au
b = ]au

b + 1
4fsGcu

cdda
b + Gau

b − gacG
bucg, s22d

with Ga7gabGb.

III. -DEVICES

Equationss12d make it legitimate to account for the spinor commutator

f]AA8,]BB8g = sAA8
a

sBB8
b f]a,]bg = 0. s23d

Transvectings23d with gAB andgA8B8 provides us with the commutativity property

]sA8d
A

]sB8dA = 0 ⇒ ]A8
A ]B8A = ]fA8g

A
]fB8gA, s24d

along with its complex conjugate. Then, using either of the relations

]sA8d
A

]sB8dA = ]sA8d
A sguBAu]sB8d

B d, ]sA8d
A

]sB8dA = gAB]BsA8d]sB8dA, s25d

yields the derivative-order lowering device

]AsA8d]sB8d
A = s− 1daAsA8d]sB8d

A , s26d

together with the formal bivector splittingsshenceforth, the symbol “c.c.” will stand for an overall
complex-conjugate pieced,

f]AA8,]BB8g = s− 1dsgAB]sA8d
C

]sB8dC + c.c.d, s27d

and

f]AA8,]BB8g = gABs]CsA8d]sB8d
C + aCsA8d]sB8d

C d + c.c. s28d

It should be pointed out that the only]-prescriptions for manipulating adequately skew two-
covariant-index structures are supplied by the rules

]A8fAg]fBgB8 = 1
2gBA]A8

C ]B8C = 1
2]A8CsgAB]B8

C d, s29d

and their complex conjugates. We thus have the useful relations

]AA8]BB8 = ]sAsA8dd]ssB8dBd + 1
4gABgA8B8g

ch]c]h, s30d

2s]AA8 + aAA8d]B8
A = 2s]AfA8g + aAfA8gd]fB8g

A = gA8B8sa
h]h − ]A

C8]C8
A d, s31d

and

gAB]D
C8sgAB]C8

D d = s− 2d]CC8]CC8 = gA8B8]D8
C sgA8B8]C

D8d. s32d

Therefore, we can utilize the configurations

]CA8]B8
C + aCA8]B8

C = s− 1d]A8
C ]CB8 s33d

and

2s]AA8 + aAA8d]B8
A = gA8B8]

CC8]CC8. s34d

A remarkable feature of the upper-spinor-index version of Eq.s23d is the fact that a relation
formally similar tos26d can also be derived, but nowno zero operator actually arises. This result
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reflects the noncommutativity of the partial-derivative operators that carry upper-world indices,
namely

]a 7 gab]b, f]a,]bg = 2s]faggfbgcd]c = 4ufag]fbg. s35d

As regards the last equality ofs35d, it is worth observing that

gcfaggfbgh]c]h = gafcggfhgb]c]h = 0. s36d

We also remark that Eqs.s12d guarantee the applicability of the relations

]c]c = ]CC8]CC8, ]c]
c = ]CC8]

CC8. s37d

A short calculation then gives the spinor relationships

]C8sAd]C8
sBd = uC8sAd]C8

sBd − iKC8sAd]C8
sBd s38d

and

]C
sA8d]sB8dC = 2uC

sA8d]sB8dC, s39d

as well as their complex conjugates. We thus have the structures

gACgBD]C8sCd]C8
sDd = s− 1dasAd

C8 ]sBdC8, s40d

and

gA8C8gB8D8]C
sC8d]sD8dC = s− 2dsReahdshCsA8d]sB8d

C , s41d

which, when worked out explicitly, turn out to agree with Eqs.s25d and s26d. We notice that the
contravariant counterparts of the devicess29d must be written as

]A8fAg]fBgB8 = 1
2gAB]C

A8]B8C = 1
2]A8CsgBA]C

B8d, s42d

and, consequently, we can likewise put into practice the upper-primed-index version of the corre-
lation s33d, namely

]C
A8]B8C + aC

A8]B8C = s− 1d]CA8]C
B8. s43d

Accordingly, the contravariant bivector configuration may be set as

f]AA8,]BB8g = gAB]M
sA8d]sB8dM + gA8B8]M8

sAd]sBdM8. s44d

For some differentiable objectxa, we particularly have the device

]AA8xB8
A + aAA8xB8

A = s− 1d]A8
A

xAB8. s45d

In casexa=]af, with f being some adequate numerical function, Eq.s24d will immediately supply
the skew-symmetry relation

]A8
A

xAB8 = ]fA8g
A

xfB8gA. s46d

Thus, on the basis of Eqs.s11d and s29d, we can implement the statements

s− 2d]fA8g
A

xfB8gA = gA8B8]
hxh = gA8B8Vhxh s47d

and
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]AsA8dxsB8d
A = s− 1daAsA8dxsB8d

A , s48d

with Vh7]h−2uh. Moreover, sinceua andKa are both expressed as]-derivatives, we can spell out
the eigenvalue equations

]AsA8dusB8d
A = s− idKAsA8dusB8d

A , s49d

and

]AsA8dKsB8d
A = uAsA8dKsB8d

A , s50d

along with their complex conjugates. Equationss47d and s48d will play a significant role in the
development of Sec. IV.

IV. CURVATURE STRUCTURES

There are two essentially equivalent procedures for expressing in terms of explicit spin-affine
pieces the curvature spinors of the connexion given as Eq.s15d. One consists in working out the
bivector configurations that arise out of the implementation of generalized covariant spinor
commutators,3,5 while the other just involves the spinor translation of the classical world expres-
sion for the Riemann tensorRabc

d of the Christoffel connexions18d. We will adopt the latter
procedure here insofar the legitimacy of the work of the preceding section may automatically
afford a verification of the curvature formulas for the class of space–times at issue. An identically
vanishing Weyl spinor will thus emerge, but the point regarding the admissibility of its
symmetries6,9,10 will be illustrated. The configurations arising at this stage coincide with the
cosmological ones afforded by Ref. 11.

To start with, let us consider the contribution

2]fAA8gGfBB8gCC8
DD8 = 2gC8

D8]fAA8ggfBB8gC
D + c.c.

= gD8
C8

sgAB]sA8d
M

gsB8dMC
D + gA8B8]sAd

M8gsBdM8C
Dd + c.c., s51d

where the square brackets accordingly mean skew-symmetrization over the index pairs. It is useful
to implement the splittings

]sA8d
M

gsB8dMC
D = ]sA8d

M fgDSsgsB8dMsCSd + gsB8dMfCSgdg s52d

and

]sAd
M8gsBdM8C

D = ]sAd
M8fgDSsgsBdM8sCSd + gsBdM8fCSgdg, s53d

together with their complex conjugates. The overallCS-skew contribution ofs51d is proportional
to

sgAB]sA8d
M

gsB8dML
L + gA8B8]sAd

M8gsBdM8L
Ld + c.c. =s− 1dfgABs]sA8d

M
usB8dM + 2i]sA8d

M
FsB8dMd

+ gA8B8s]sAd
M8usBdM8 + 2i]sAd

M8FsBdM8dg + c.c.

s54d

Each of the]u pieces of Eq.s54d vanishes because of the propertys24d, whereas each]F piece
involved explicitly is cancelled by the complex-conjugate contribution. Calling upon the expan-
sion s15d, we perform the following calculationfone should notice that]agAB=s−aadgABg for the
symmetric parts of Eqs.s52d and s53d:
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gAB]sA8d
M sgDSgsB8dMsCSdd + gA8B8]sAd

M8sgDSgsBdM8sCSdd = gDSfgABs]sA8d
M

gsB8dMsCSd − asA8d
M

gsB8dMsCSdd

+ gA8B8s]sAd
M8gsBdM8sCSd − asAd

M8gsBdM8sCSddg = gDSsgA8B8gsuCusAdd]usBdu
M8 usSdM8 − gAB]sCsA8ddussB8dSdd.

s55d

In order to make up the expression for the left-hand side ofs51d, we invoke the complex-conjugate
version of Eqs.s47d and s48d, to obtain

gsuCusAdd]usBdu
M8 usSdM8 = s− 1

2dgCsAdgsBdSVhuh. s56d

Thus, the overall]G-contribution reads

2]fAA8gGfBB8gCC8
DD8 = gC8

D8gDSs 1
2gA8B8gCsAdgsBdSVhuh + gAB]sCsA8ddussB8dSdd + c.c. s57d

The relevant quadraticG term is written out as the bivector configuration

2GMM8fAA8g
DD8GfBB8gCC8

MM8 = fgABsgD8
sA8dgsB8dSC

MgMC8
SD+ gD8

sA8dgsB8dSC8
M8gCM8

SDd

+ gA8B8sgMC8sAd
DgsBdC

D8 M + gCM8sAd
DgsBdC8

D8 M8dg + c.c. s58d

Manipulating the indices of Eqs.s15d and s58d gives

2GMM8fAA8g
DD8GfBB8gCC8

MM8 = fgABsgD8
sA8dusB8dCuC8

D − gD8
sA8dusB8d

M
uMC8g

D
Cd

+ gA8B8susAd
D8usBdC8gC

D − gD
sAdusBdC8uC

D8dg + c.c. s59d

Hence, lowering the indicesDD8 of s57d and s59d, after rearranging conjugate pieces and imple-
menting the computational results

gC8D8gDsAdusBd
M8uCM8 + gDsAdusBdC8uCD8 + gCDuD8sAdusBdC8 + uCD8uC8sAdgsBdD

= gCDusC8sAddussBdD8d + gC8D8uM8sAdgsBdsCdusDd
M8 s60d

and

uM8sAdgsBdsCdusDd
M8 = s− 1

2dgCsAdgsBdDuhuh, s61d

we arrive at the irreducible expression

RAA8BB8CC8DD8 = gA8B8fgCDs]sC8sAddussBdD8d + usC8sAddussBdD8dd + 1
2gC8D8gCsAdgsBdDsVhuh − uhuhdg + c.c.

s62d

We emphasize that the Riemann spinors62d bears world invariance. In essence, this comes from
the fact that the operatorVh can be expressed covariantly ass¹h+2uhd upon acting onuh.

To carry through our main procedure, we simply apply to the left-hand side of Eq.s62d the
formal definitions

XABCD7
1
4MA8B8MC8D8RAA8BB8CC8DD8 s63d

and

JCA8DB8 7
1
4MABMC8D8RAA8BB8CC8DD8, s64d

which amount to the gravitational spinors ofgaB
C. We thus readily obtain the structures
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XABCD= 1
2s]huh − 3uhuhdgCsAdgsBdD = 1

2s¹huh + uhuhdgCsAdgsBdD s65d

and

JCA8DB8 = ]sCsA8ddussB8dDd + usCsA8ddussB8dDd, s66d

which exhibit all the characteristic symmetries.sThe most natural procedure for fixing the sym-
metries of theXJ spinors is provided in Ref. 5.d Evidently, theX-spinor s65d bears a purely
cosmological character, that is to say,

X sABCDd 7 CABCD; 0, s67d

while the Ricci tensor of the connexions18d appears to be associated to the configuration

RAA8BB8 = s− 3
2ds¹huh + uhuhdgABgA8B8 − 2s]sAsA8ddussB8dBd + usAsA8ddussB8dBdd, s68d

which promptly yields the cosmological expressions

l = 3
2s3uhuh − ]huhd = s− 3

2ds¹huh + uhuhd, s69d

wherel is the so-called cosmological constant.6,12

The structures exhibited previously give rise to an expression for a Ricci scalar that coincides
in the case of a real eigenvectoraa with a formula given much earlier by Infeld.2 An easy way of
deducing this result involves first implementing the relation

]aua = ]A8
A ]A

A8 logugu − aaua, s70d

and then performing the calculation

R= 6s3uaua − ]auad = 6f2uaua + siKaua − ]A8
A ]A

A8 logugudg = 3F4uaua + 2iKaua − ]A8
A S 1

ugu2
]A

A8ugu2DG
= 3S2iKaua −

1

ugu2
]A8

A ]A
A8ugu2D . s71d

V. CONCLUSIONS AND OUTLOOK

The work we have presented above sheds some light on the spinor description of conformally
flat space–times that bear affine structures having the form specified by Eq.s18d. It thereby
clarifies once and for all the situation concerning the geometric significance of the choices14d. We
believe that it would be worthwhile to derive a set of pertinent world-transformation laws. It can
be shown that, under the circumstances stipulated in Sec. II, any properties like those exhibited as
Eqs.s12d must behave invariantly under the action of manifold mapping groups. We will probably
elaborate upon these matters elsewhere.
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A note on positive energy theorem for spaces
with asymptotic SUSY compactification

Xianzhe Dai
Mathematics, University of California Santa Barbara, Santa Barbara, California 93106

sReceived 22 November 2004; accepted 5 January 2005; published online 23 March 2005d

We extend the higher dimensional positive mass theorem infDai, X., Commun.
Math. Phys. 244, 335–345s2004dg to the Lorentzian setting. This includes the
original higher dimensional positive energy theorem whose spinor proof is given in
fWitten, E., Commun. Math. Phys.80, 381–402s1981dg and fParker, T., and
Taubes, C., Commun. Math. Phys.84, 223–238s1982dg for dimension 4 and in
fZhang, X., J. Math. Phys.40, 3540–3552s1999dg for dimension 5. ©2005
American Institute of Physics.fDOI: 10.1063/1.1862095g

I. INTRODUCTION AND STATEMENT OF THE RESULT

In this note, we formulate and prove the Lorentzian version of the positive mass theorem in
Ref. 4. There we prove a positive mass theorem for spaces of any dimension which asymptotically
approach the product of a flat Euclidean space with a compact manifold which admits a nonzero
parallel spinorssuch as a Calabi–Yau manifold or any special honolomy manifold except the
quaternionic Kähler manifoldd. This is motivated by string theory, especially the recent work in
Ref. 7. The application of the positive mass theorem of Ref. 4 to the study of stability of Ricci flat
manifolds is discussed in Ref. 5.

In general relativity, a space–time is modelled by a Lorentzian 4-manifoldsN,gd together with
an energy-momentum tensorT satisfying Einstein equation

Rab − 1
2gabR= 8pTab. s1.1d

The positive energy theorem11,14says that an isolated gravitational system with non-negative local
matter density must have non-negative total energy, measured at spatial infinity. More precisely,
one considers a complete oriented spacelike hypersurfaceM of N satisfying the following two
conditions.

sad M is asymptotically flat, that is, there is a compact setK in M such thatM −K is the
disjoint union of a finite number of subsetsM1, . . . ,Mk and each endMl is diffeomorphic toR3

−BRs0d. Moreover, under this diffeomorphism, the metric ofMl is of the form

gij = di j + Osr−td, ]kgij = Osr−t−1d, ]k]lgij = Osr−t−2d. s1.2d

Furthermore, the second fundamental formhij of M in N satisfies

hij = Osr−t−1d, ]khij = Osr−t−2d. s1.3d

Heret.0 is the asymptotic order andr is the Euclidean distance to a base point.
sbd M has non-negative local mass density: for each pointpPM and for each timelike vector

e0 at p, Tse0,e0dù0 andTse0, ·d is a nonspacelike covector. This implies the dominant energy
condition

T00 ù uTabu, T00 ù s− T0iT
0id1/2. s1.4d

The total energysthe ADM massd and the totalslineard momentum ofM can then be defined
as follows1,10 ffor simplicity we suppress the dependence here onl sthe endMldg:
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E = lim
R→`

1

4vn
E

SR

s]igij − ] jgiid p dxj ,

s1.5d

Pk = lim
R→`

1

4vn
E

SR

2shjk − ] jkhiid p dxj .

Herex1, . . . ,xn are the Euclidean coordinates on the end;p denotes the Hodge star operator;vn

denotes the volume of then−1 sphere andSR the Euclidean sphere with radiusR centered at the
base point. When the asymptotic ordert. sn−2d /2, these quantities are finite and independent of
the asymptotic coordinates.fHeren=3.g

Theorem 1.1: (Refs. 12–14):With the assumptions as above and assuming that M is spin, one
has

E − uPu ù 0

on each end Ml. Moreover, if E=0 for some end Ml, then M has only one end and N is flat along
M.

Now, according to string theory,2 our universe is really 10-dimensional, modelled onR3,1

3X whereX is a Calabi–Yau threefold. This is the so-called Calabi–Yau compactification6 which
motivates the spaces we now consider.

Thus we consider a Lorentzian manifoldN fwith signatures2, 1, ¯, 1dg of dim N=n+1,
with a energy-momentum tensor satisfying the Einstein equation. Then letM be a complete
oriented spacelike hypersurface inN. Further, assume that the Riemannian manifoldsMn,gd with
g induced from the Lorentzian metric decomposesM =M0øM1ø ¯ øMs, whereM0 is compact
as before but now each of the endsMl .sRk−BRs0dd3Xl for some radiusR.0 andXl a compact
simply connected spin manifold which admits a nonzero parallel spinor. Moreover the metric on
eachMl satisfies

g = g̊ + u, g̊ = gRk + gX, u = Osr−td, ¹̊u = Osr−t−1d, ¹̊¹̊u = Osr−t−2d, s1.6d

and the second fundamental formh of M in N satisfies

h = Osr−t−1d, ¹̊h = Osr−t−2d. s1.7d

Here ¹̊ is the Levi–Civita connection ofg̊ sextended to act on all tensor fieldsd, r the Euclidean
distance in the Euclidean factor, andt.0 is the asymptotical order.

The total energy and total momentum for each endMl can then be defined bysagain we
suppress the dependence onl hered

E = lim
R→`

1

4vkvolsXdESR3X

s]igij − ] jgaad p dxj dvolsXd,

s1.8d

Pk = lim
R→`

1

4vkvolsXdESR3X

2shjk − ] jkhiid p dxj dvolsXd.

Here thep operator is the one on the Euclidean factor, the indexi, j run over the Euclidean factor
andgaa is the trace of the metricg on the manifoldM.

Then we have the following.
Theorem 1.2:Assuming that M is spin andt. sk−2d /2, kù2, one has

E − uPu ù 0

on each end Ml. Moreover, if E=0 for some end Ml, then M has only one end and N is flat along
M.
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In particular, this result includes the original positive energy theorem whose spinor proof is
given in Refs. 14 and 10 for dimension 4 and in Ref. 15 for dimension 5. The dimension specific
nature in these work is due to the use of special isomorphisms of low dimensional spin groups.
Here we construct the desired metrics directly using the Clifford algebra .

Remark:If M is globally a productRk3X topologically, then the compact factorX need not
be simply connected. The simply connected condition is imposed to guarantee that the spin
structure on the ends coincides with the one obtained by restricting the spin structure from the
inside.

II. THE HYPERSURFACE DIRAC OPERATOR

We will adapt Witten’s spinor method14 to our situation. For that, we follow the presentation
and notations of Ref. 10. The crucial ingredient here is the hypersurface Dirac operator onM,
acting on thesrestriction of thed spinor bundle ofN. Let S be the spinor bundle ofN and still
denote by the same notation its restrictionsor rather, pullbackd to M. Denote by¹ the connection
on S induced by the Lorentzian metric onN. The Lorentzian metric onN also induces a Riemann-

ian metric onM, whose Levi–Civita connection gives rise to another connection,¹̄ on S. The two,
of course, differ by a term involving the second fundamental form.

There are two choices of metrics onS, which is another subtlety here. Since part of the
treatment in Ref. 10 is special to dimension 4, we will give a construction directly using the
Clifford algebra Ref. 8.

Let SOsn,1d denote the identity component of the groups of orientation preserving isometries
of the Minkowski spaceRn,1. A choice of a unit timelike covectore0 gives rise to injective
homomorphismsa, â, and a commutative diagram

a: SOsnd → SOsn,1d
↑ ↑

â: Spinsnd → Spinsn,1d.

s2.1d

We now fix a choice of unit timelike normal covectore0 of M in N. Let FsNd denote the
SOsn,1d frame bundle ofN and FsMd the SOsnd frame bundle ofM. Then i*FsNd=FsMd
3 aSOsn,1d, where i :M�N is the inclusion. IfN is spin, then we have a principal Spinsn,1d
bundle PSpinsn,1d on N, whose restriction onM is then i*PSpinsn,1d=PSpinsnd3 âSpinsn,1d, where
PSpinsnd is the principal Spinsnd bundle of M. Thus, even ifN is not spin, i*PSpinsn,1d is still
well-defined as long asM is spin.

Similarly, whenN is spin, the spinor bundleSon N is the associated bundlePSpinsn,1d3rn,1 D,

whereD=C2fsn+1d/2g
is the complex vector space of spinors and

rn,1:Spinsn,1d → GLsDd s2.2d

is the spin representation. Its restriction toM is given byi*PSpinsn,1d3rn,1D=PSpinsnd3rn D with

rn:Spinsnd�
â

Spinsn,1d ——→
rn,1

GLsDd. s2.3d

Again, the restriction is still well defined as long asM is spin.
Let e0, ei be an orthonormal basis of the Minkowski spaceRn,1 such thatue0u2=−1 sin this

section the indicesi and j range from 1 tond.
Lemma 2.1: There is a positive definite Hermitian inner productk,l on D which is

Spinsnd-invariant. Moreover, ss,s8d=ke0·s,s8l defines a Hermitian inner product which is also
Spinsnd-invariant but not positive definite. In fact

sv ·s,s8d = ss,v ·s8d

for all vPRn,1.
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Proof: Detailed study viaG matricessRef. 3, pp. 10 and 11d shows that there is a positive
definite Hermitian inner productk,l on D with respect to whichei is skew-Hermitian whilee0 is
Hermitian. It follows then thatk,l is Spinsnd-invariant. We now show thatss,s8d=ke0·s,s8l defines
a Spinsnd-invariant Hermitian inner product. Sincee0 is Hermitian with respect tok,l, s,d is clearly
Hermitian. To show thats,d is Spinsnd-invariant, we take a unit vectorv in the Minkowski space,
v=a0e

0+aie
i, a0, ai PR, and −a0

2+oi=1
n ai

2=1. Then

svs,vs8d = ke0vs,vs8l = a0
2ke0e0s,e0s8l + aia0ke0eis,e0s8l + a0aike0e0s,eis8l + aiajke0eis,ejs8l

= a0
2ks,e0s8l − aiajkeje0eis,s8l = a0

2ke0s,s8l + aiajke0ejeis,s8l

= a0
2ke0s,s8l − ai

2ke0s,s8l = − ss,s8d.

Consequently,s,d is Spinsnd-invariant. The above computation also implies thatv· acts as Hermit-
ian operator onD with respect tos,d. j

Thus the spinor bundleS restricted toM inherits an Hermitian metrics,d and a positive definite
metric k,l. They are related by the equation

ss,s8d = ke0 ·s,s8l. s2.4d

Now the hypersurface Dirac operator is defined by the composition

D:GsM,Sd ——→
¹

GsM,T*M ^ Sd ——→
c

GsM,Sd, s2.5d

wherec denotes the Clifford multiplication. In terms of a local orthonormal basise1,e2, . . . ,en of
TM,

Dc = ei ·¹ei
c,

whereei denotes the dual basis.
The two most important properties of hypersurface Dirac operator are the self-adjointness

with respect to the metrick,l and the Bochner–Lichnerowicz–Weitzenbock formula.14,10

Lemma 2.2: Define asn−1d-form on M byv=kf ,ei ·clintseiddvol, wheredvol is the volume
form of the Riemannian metric g andintseid is the interior multiplication by ei. We have

fkf,Dcl − kDf,clgdvol = dv.

ThusD is formally self-adjoint with respect to the L2 metric defined byk,l and dvol.
Proof: Sincev is independent of the choice of the orthonormal basis, we do our computation

locally using a preferred basis. For any given pointpPM, choose a local orthonormal frameei of

TM nearp such that¹̄ei =0 atp. Extende0, ei to a neighborhood ofp in N by parallel translating
alonge0 direction. Then, atp, ¹ei

ej =−hije
0 and¹ei

e0=−hije
j. Thereforesagain atpd,

dv = ¹ei
kf,ei · cldvol

= fss¹ei
e0d · f,ei · cd + se0 ·¹ei

f,ei · cd + se0 · f,s¹ei
eid · cd + se0 · f,ei ·¹ei

cdgdvol

= f− hijsej · f,ei · cd + sei ·e0 ·¹ei
f,cd − hiise0 · f,e0 · cd + kf,Dclgdvol

= f− hijsei ·ej · f,cd − kDf,cl − hiise0 · f,e0 · cd + kf,Dclgdvol

= f− kDf,cl + kf,Dclgdvol.

j

The second property we need is the Bochner–Lichnerowicz–Weitzenbock formula. For a
proof, see Ref. 10.
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Lemma 2.3: One has

D2 = ¹* ¹ + R,

s2.6d
R = 1

4sR+ 2R00 + 2R0ie
0 ·ei · d P EndsSd.

Here the adjoint¹* is with respect to the metrick,l.

III. PROOF OF THE THEOREM

By the Einstein equation,

R = 4psT00 + T0ie
0 ·ei · d.

It follows then from the dominant energy conditions1.4d that

R ù 0. s3.1d

Now, for fPGsM ,Sd and a compact domainV,M with smooth boundary, the Bochner–
Lichnerowicz–Weitzenbock formula yields

E
V

fu ¹ fu2 + kf,Rfl − uDfu2gdvolsgd =E
]V

o ks¹ea
+ ea ·Ddf,flintseaddvolsgd s3.2d

=E
]V

o ks¹n + n ·Ddf,fldvolsugu]Vd, s3.3d

whereea is an orthonormal basis ofg andn is the unit outer normal of]V.
Now without loss of generality, assume thatM has only one end. That is, let the manifold

M =M0øM` with M0 compact andM`.sRk−BRs0dd3X, and sX,gXd a compact Riemannian
manifold with nonzero parallel spinors. Moreover, the metricg on M satisfiess1.6d. Let ea

0 be the
orthonormal basis ofg̊ which consists of] /]xi followed by an orthonormal basisfa of gX.
Orthonormalizingea

0 with respect tog gives rise an orthonormal basisea of g. Moreover,

ea = ea
0 − 1

2uabeb
0 + Osr−2td. s3.4d

This gives rise to a gauge transformation

A:SOsg̊d { ea
0 → ea P SOsgd

which identifies the corresponding spin groups and spinor bundles.
We now pick a unit norm parallel spinorc0 of sRk,gRkd and a unit norm parallel spinorc1 of

sX,gXd. Then f0=Asc0 ^ c1d defines a spinor ofM`. We extendf0 smoothly inside. Then
¹0f0=0 outside the compact set.

Lemma 3.1: If a spinorf is asymptotic tof0:f=f0+Osr−td, then we have

lim
R→`

RE
SR3X

o ks¹ea
+ ea ·Ddf,flintseaddvolsgd = vkvolsXdkf0,Ef0 + Pk dx0 · dxk · f0l,

whereR means taking the real part.

Proof. Recall that¹̄ denote the connection onS induced from the Levi–Civita connection on
M. We have

¹ea
c = ¹̄ea

c − 1
2habe

0 ·eb · c. s3.5d

By the Clifford relation,

042505-5 Positive energy theorem J. Math. Phys. 46, 042505 ~2005!

                                                                                                                                    



ks¹ea
+ ea ·Ddf,fl = − 1

2kfea · ,eb · g¹eb
f,fl.

Hence

E
SR3X

o ks¹ea
+ ea ·Ddf,flintseaddvolsgd

= −
1

2
E

SR3X

kfea · ,eb · g¹̄eb
f,flintseaddvolsgd

+
1

4
E

SR3X
o kfea · ,eb · ghbce

0 ·ec · f,flintseaddvolsgd.

Using s3.4d and the asymptotic conditionss1.7d, the second term on the right-hand side can be
easily seen to give us

lim
R→`

1

4
E

SR3X

k2shac − dachbbde0 ·ec · f,flintseaddvolsgd = vkvolsXdkf0,Pk dx0 · dxk · f0l.

The first term is computed in Ref. 4 to limit

vkvolsXdkf0,Ef0l.

j

The following lemma is standard, see Refs. 10 and 14.
Lemma 3.2: If

kf0,Ef0 + Pk dx0 · dxk · f0l ù 0

for all constant spinorsf0, then

E − uPu ù 0.

As usual, the trick to get the positivity now is to find a harmonic spinorf asymptotic tof0.
Lemma 3.3: There exists a harmonic spinorf on sM ,gd which is asmptotic to the parallel

spinor f0 at infinity,

Df = 0, f = f0 + Osr−td.

Proof: The proof is essentially the same as in Ref. 4fCf. Refs. 6 and 9g. We use the Fredholm
property ofD on a weighted Sobolev space andRù0 to show that it is an isomorphism. The
harmonic spinorf can then be obtained by settingf=f0+j and solvingjPOsr−td from the
equationDj=−Df0. j

Thus, with the choice of harmonic spinor as above, the left-hand side ofs3.4d will be non-
negative sinceRù0. Taking the limit asR→0 and using Lemma 3.1 and Lemma 3.2 then give us
the desired result.4,9,10,14
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A fractional boundary condition is used to join the Gott-Hiscock string to a Levi-
Civita vacuum. The use of a fractional derivative generates Israel boundary layers
whose density depends on the order of the fractional derivative. Variable boundary
layers for the same two bounding space–times can be studied. The string angular
deficit depends on the order of the fractional deficit. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1863692g

I. INTRODUCTION

The Gott-Hiscock1,2 solution describes a constant density string matched to a vacuum Levi-
Civita space–time with angular deficit. Two of the most common boundary matching conditions
for non-null boundaries are due to Lichnerowicz and Darmois. These conditions have been dis-
cussed by Bonnor and Vickers.3 Both conditions involve matching a metric and some metric
derivatives across the boundary. The Darmois condition matches the metric and its second funda-
mental forms on the boundary while the Lichnerowicz condition matches the metric and its first
derivatives on the boundary. The resulting space–time exterior to the string has an angular deficit
related to the mass per unit length of the string interior. For general space—times, if a derivative,
or extrinsic curvature, match is not possible, the most common procedure is to use the Israel4

formalism, defining a surface boundary layer stress energy through the jump in the extrinsic
curvature between space–times on either side of the boundary. Other space–times, whose extrinsic
curvature was not continiuous across the boundary, could have been used for the exterior match,
creating an Israel layer on the string boundary.

The Israel technique provides information about the stress energy content of the bounding
surface layer. While the Israel surface layer can be used to describe the jump in the extrinsic
curvature across a space–time boundary, it will not distinguish surface layers of different densities
or structures that might bound the same two spacetimes. Within the Israel formalism, the only way
of varying the boundary layer properties is to vary the bounding space–times.

One way of modifying the boundary conditions to include different kinds of boundary sur-
faces for the same bounding space–times is to generalize the Lichnerowicz boundary conditions to
a fractional derivative matching and then to use the Israel formalism to describe the resulting
surface layer. This creates boundary layers whose stress energy content depends on the order of
the fractional derivative and allows the study of variable boundary structures between the same
two space–times. In the next section, we apply this fractional matching method to the Gott-
Hiscock string. The hallmark of string behavior, the angular deficit, also depends on the order of
the fractional derivative. The change in the angular deficit introduced by the fractional match is
discussed.

II. FRACTIONAL BOUNDARY CONDITION

A. The metrics

Consider a string oriented along thez axis with constant stress energy content

Tt
t = Tz

z = − «. s1d

From the field equations, the interior metric2 is
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ds2 = − dt2 + dr2 + dz2 + r*2 sin2S r

r* Ddw2, s2d

wherer* = s8ped−1/2 and the string is assumed to be flat atr=0.
The exterior vacuum space–time is

ds2 = − dT2 + dr2 + dZ2 + a2r2dw2. s3d

B. The nonfractional boundary match

The metric match atr=ro, r =ro provides the condition

aro = r * sinS ro

r*
D .

The extrinsic curvature is defined as5

Kij = nsa;bdei
aej

b,

where theei
a are the tangents to the boundary hypersurface with normal vectorna. Calculating the

extrinsic curvatures one finds in the interior

Kww = r* sinSro

r* DcosSro

r* D . s4d

In the exterior the extrinsic curvatures are

Ktt = 0,

Kww = a2ro, s5d

Kzz= 0.

The difference in the extrinsic curvatures across the boundary is

kKffl = Kffsvacuumd − Kffsinteriord = Sa2ro − r* sinSro

r* DcosSro

r* DD ,

kKl = Kw
wsvacuumd − Kw

wsinteriord =
1

ro
−

1

r*

cossro/r
*d

sinsro/r
*d

=
1

ro
−

1

a

cossro/r
*d

ro
.

In the Israel formalism,4 the stress energy of the boundary layer is

8pSab = − hkKabl − habkKc
clj,

8pStt = kKlhoo =
cossro/r * d − a

aro
,

8pSzz=
a − cossro/r * d

aro
,

8pSww = 0. s6d
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If the extrinsic curvatures match, there is no stress energy in the boundary. The match of the
extrinsic curvature provides the same condition as a match of thegff derivatives across the string
boundary,

a = cosS ro

r*
D .

C. The fractional match

In the fractional boundary match, the metric matching conditions are the same as in the
smooth boundary match:

aro = r * sinS ro

r*
D . s7d

Instead of a match of the extrinsic curvatures, a fractional derivative match is used with the
regular partial derivative,]i replaced by ansad order Caputo fractional derivative as described in
the Appendix.

1. Fractional derivatives for the interior metric

In the interior, since the Caputo derivative of a constant is zero, the only function to consider
is f =r*2 sin2sr /r* d. Usinga as the fractional index we have that theath fractional derivative is

Dr,L
sadSr*2 sin2S r

r* DD = r*Sro
sa,r * , rod.

The form of the functionSro
sa ,r* , rod depends on the range of the fractional derivative order.

For a,1 we have

Sro
sa,r * , rod =

sr * /2d1−a

Gs1 − ad FsinS2ro

r*
DE

0

2ro/r*

z−a cosszddz− cosS2ro

r*
DE

0

2ro/r*

z−a sinszddzG .

s8d

For a.1 the function is

Sro
sa,r * , rod =

sr * /2d1−a

Gs2 − ad FsinS2ro

r*
DE

0

2ro/r*

z1−a sinszddz+ cosS2ro

r*
DE

0

2ro/r*

z1−a cosszddzG .

s9d

The two can be related by an integration by parts and the use of a gamma function recursion
relation. Fora=1, the usual first derivative is recovered.

2. Fractional derivatives for the exterior metric

In the exterior it is the right-handed derivative which should be applied. The exterior frac-
tional derivative of the metric function is

Dr,R
sadsa2r2d =

Gs3d
Gs3 − ad

a2r2−a. s10d
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3. The boundary match

The equation for the boundary match is

Gs3d
Gs3 − ad

a2ro
2−a = r*Sro

sa,r * , rod.

For a=1 the usual derivative is obtained, leading to the original derivative matching result

a = cosSro

r* D . s11d

For aÞ1 there is a boundary layer which can be described by the Israel4 formalism.

III. BOUNDARY STRESS ENERGY

The boundary stress energy, Eq.s6d, involves the function

hSa,
ro

r*
D = cosS ro

r*
D − a.

The two fractional matching equations, Eqs.s7d ands10d, can be combined to give an equation for
the parameter “a,”

a , 1:aa =
Csa,ro/r

*d
Gs1 − ad FsinS2ro

r* DE
0

2ro/r*

z−a cosszddz− cosS2ro

r* DE
0

2ro/r*

z−a sinszddzG ,

s12d

a . 1:aa =
Csa,ro/r

*d
Gs2 − ad FsinS2ro

r* DE
0

2ro/r*

z1−a sinszddz+ cosS2ro

r* DE
0

2ro/r*

z1−a cosszddzG ,

s13d

where Csa ,ro/r*d=fGs3−adsina−2sro/r*dg /22−a. For a smooth match,hsa ,ro/r* d should be
zero. Using Eq.s12d, Eq. s13d, and MAPLE,hsa ,ro/r* d was evaluated for a range ofro/r* and
fractional indices. The results are in Table I.

Examining Table I, one sees in all cases that, asa=1 is approached, the stress energy of the
layer approaches zero. Fora,1 the boundary layer has negative density and positivez-stress. As
ro/r* moves abovep /2, the values become complex. Fora.1, the boundary layer density is
positive and the stress is az-tension. Fora.1 complex values occur for values ofro/r* ,p /2.

TABLE I. Values of the functionhsa ,ro/r* d=cossro/r* d−a as a and
ro/r* vary. ro is the radius of the string in the internal metric.r*

=s8peds−1/2d wheree is the constant internal energy density of the string.
Complex values are indicated by C. Whena=1, hsa ,ro/r* d=0, providing
the usual derivative matching condition.

a

ro/r* 0.1 0.3 0.7 0.9 1.1 1.2

0.1p 20.013 20.011 20.006 20.002 0.002 0.005
0.2p 20.051 20.043 20.023 20.008 0.010 0.021
0.3p 20.113 20.097 20.052 20.02 0.023 0.05
0.4p 20.199 20.172 20.095 20.038 0.047 0.107
0.45p 20.25 20.218 20.125 20.051 0.069 C
0.5p 20.31 20.272 20.163 20.071 C C
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The string angular deficit, the cut in the range of thef coordinate due to the presence of the
parameter “a” in the exterior metric, is a hallmark of cosmic string behavior. The angular deficit
depends on the energy density of the string.2 When a fractional boundary condition is used, the
internal stress energy of the string does not change but the energy density of the boundary layer
affects the angular deficit since it must be included in the total energy density of the string. The
angular deficit can be defined by

dw = 2pf1 − ag. s14d

The values of “a” for variousa andro/r* were calculated and are found in Table II. In Table
II, the a=1 column values are calculated from the standard nonfractional match. The linear
density of the string is not affected by the boundary layer but the angular deficit is, increasing in
value asa increases. Fora,1, the angular deficit is less than the zero-boundary-layer,a=1,
value because the negative boundary layer density is decreasing the overall mass density of the
string. For a.1 the deficit is larger than the zero-boundary-layer value because the positive
boundary layer mass increases the string density.

One possible way to interpret the variation of the parameter “a” and the surface energy
density is through a packing fraction. The packing fraction is normally defined as the ratio of the
area covered by a tiling to the total area being tiled. Adapting this to the surface layer we can
consider the ratio of theaÞ1 surface area to thea=1 surface area which is just the ratio of the
“a” values in each row of Table II to the “a” value for a=1:

pfsad =
2pasa Þ 1dLro

2pasa = 1dLro
=

asa Þ 1d
asa = 1d

.

For a,1, the layer with its negative density matter seems overpacked. Fora.1 this ratio can
be used to make some qualitative comments about the energy distribution. From Table II, gener-
ally one notes that the packing fraction decreases asa increases for a givenro/r* and that the
packing fraction decreases as thero/r* increases. The latter effect can be simply explained by
examining cylinders of constant radius and varying internal energy density. As the internal energy
density decreases and the ratioro/r* goes up, the packing fraction decreases as there is less
energy to distribute over the surface. The first effect is more difficult to motivate. One possible
explanation comes from assuming a specific tiling mechanism for the boundary layer and then
using the packing fraction variation to motivate differences within the tiling. For example, if the
surface layer is tiled with an Apollonian packing,6,7 circles with increasing smaller circles packed
in the interstitial regions, the packing fraction is given roughly by

pf = 1 − srsmind/rsmaxdd2−d

wherersmaxd is the radius of the largest circle in the packing,rsmind is the smallest circle in the
tiling, and d,1.3 is the fractal dimension8 of the tiling in flat space. Using this, the variation in

TABLE II. Values of the angular deficit factor “a” as a function ofa and
ro/r*. ro is the radius of the string in the internal metric.r* =s8peds−1/2d

wheree is the constant internal energy density of the string. Complex values
are indicated by C.

a

ro/r* 0.1 0.3 0.7 1 1.1 1.2

0.1p 0.964 0.962 0.957 0.951 0.949 0.946
0.2p 0.86 0.852 0.832 0.809 0.799 0.788
0.3p 0.701 0.684 0.639 0.588 0.565 0.538
0.4p 0.507 0.48 0.404 0.309 0.263 0.202
0.5p 0.308 0.272 0.163 0 C C
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the packing fraction as a function ofa can be explained as a variation in the range of granule sizes
making up the surface layer.

IV. DISCUSSION

In this note, we have suggested using a Caputo space fractional derivative to generate variable
density Israel surface layers on the Gott-Hiscock string bounded by a Levi-Civita vacuum. The
method generates, fora.1, a family of positive energy, increasingly dense boundary layers
between the constant density string interior and the vacuum exterior. Fora,1, the energy density
is negative. The Caputo derivatives can be more restrictive than the Riemann-Liouville forms
since the derivatives of the matching metric functions must exist to use the Caputo definition. The
Riemann-Liouville form would give an additional nonzero matching condition for the constant
metric functions which would identifyro andro.

When joining many hypersurfaces, it is common practice to match extrinsic curvatures. Since
the extrinsic curvature is a Lie derivative, it can be calculated from simple partial derivatives and
can be fractionally generalized. Because the string boundary, as defined in the bounding space–
time, had a well-defined unit normal and derivatives, a simple fractional extrinsic curvature match-
ing would have given the same result as the fractional derivative matching. However, null sur-
faces, for example, do not have a well-defined extrinsic curvature and junction conditions outside
of an extrinsic curvature matching have been developed.9–11 Mars and Senovilla12 have discussed
junction conditions using a rigged metric connection for general hypersurfaces. Hayward13 has
discussed an action for nonsmooth boundaries. Using fractional derivatives as a method for gen-
erating variable density boundary layers apart from the second fundamental form might instead be
a way of giving physical meaning to possible fractional extrinsic curvature definitions.

A smooth boundary with well-defined derivatives is not a necessary condition for the use of a
fractional derivative matching. The Riemann-Liouville derivatives can be applied to functions
which themselves do not have a well defined derivatives. For example, using the Riemann-
Liouville form, Rocco and West14 showed that the continuous but nondifferentiable Wierstrass
function had a well-defined fractional derivative. Kolwankar and Gangal15 also discussed the
fractional derivatives of the Weierstrass function. Fractional derivatives have seen increasing use
in the development of fractional kinetics,16 particularly in discussions of anomalous transport
processes.17 While the method presented in this note generates a family of surface layers of
varying densities between the same two bounding static space–times, the use of fractional deriva-
tives in boundary matching could reflect an underlying boundary matter structure that was built by
an anomalous transport process. A single tiling was used as an example of the relation between
possible matter distributions and the order of the fractional derivative. The results from other
tilings or sums over tilings is an interesting question for investigation.

APPENDIX: FRACTIONAL OPERATIONS

The idea of a fractional derivative arose in 1695 when L’Hopital18 asked Leibniz about the
meaning ofdny/dxn for n= 1

2. The ideas of fractional calculus have attracted the attention of many
of the same people that are associated with the development of physics: Lagrange, Laplace,
Fourier, Liouville, Riemann, and Weyl, among others.19 Since the first conference on fractional
calculus in 1974, the applications to physics have grown enormously, describing phenomena such
as the modeling of viscoelastic phenomena20 and fractional matter transport.17 There have been
many definitions of fractional operations because of the diverse array of applications. Some of the
fractional differentiation definitions aresad the left-handed Riemann-Liouville form,18

Da
nfsxd =

dm

dxmH 1

Gsm− ndEa

x

fsydsx − ydm−n−1dyJ ,

and sbd the right-handed Riemann-Liouville form,18
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bD
nfsxd =

dm

dxmH s− 1dm

Gsm− ndEx

b

fsydsy − xdm−n−1dyJ ,

where, in both cases,m is the smallest integer bigger thann. One very interesting thing about this
form of the fractional derivative is that the derivative of a constant is not zero. For example, the
left-handed derivative of “1” is

Da
nf1g =

d2

dx2H 1

Gs2 − ndE0

x

sx − yd1−ndyJ =
x−nGs1d
Gs1 − nd

,

where the definition of the beta function,

Bsz,wd =E
0

1

xz−1s1 − xdw−1dx=
GszdGswd
Gsz+ wd

,

and the recursion relation for the gamma function have been used. There are other fractional
forms, with modified definitions. The Caputo19 fractional derivatives are similar to the Riemann-
Liouville derivatives except that the derivative appears inside of the integral;f smdsyd is the mth
derivative of fsxd. The left-hand Caputo19 derivative is

CDn
affsxdg =

1

Gsm− ndEa

x

sx − ydm−n−1f smdsyddy.

The right-hand derivative is similar. Butzer and Westphal21 credit Liouville with the definition. In
this paper we shall use the Caputo form.

The notation that we will use is

]i − . DiL
snd,

]i − . DiR
snd,

wheren the fractional order, has been placed in parentheses to distinguish it from a tensor index,
i is the index of the coordinate derivative, andL, R denote the left- or right-hand derivatives.
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In this paper, we present a method for constructing large families of quadratic
Poisson brackets on a manifold using more elementary brackets on a different
manifold. The method is then applied to several examples of completely integrable
systems. One can recover several known brackets for systems such as the Toda
lattice or the open discrete KP hierarchy. New brackets for a doubly periodic
discrete KP hierarchy are also constructed. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1866221g

I. INTRODUCTION

Poisson brackets are classical limits of commutators in deformation quantization, and play a
key role in the theory of completely integrable systems. The so-called quadratic or second Poisson
brackets carry a homogeneity property distinguishing them. It is possible to prove that many
systems are completely integrable by exhibiting two compatible Poisson brackets one of which is
quadratic; this was an idea which originated in Ref. 17 and evolved much further.

The aim of this paper is to present a systematic method for constructing quadratic Poisson
brackets, and to apply it to several examples. The method is some sort of a hybrid of the Miura
transform which involves factorizing the Lax operator noncommutatively and then using a reduc-
tion ssee Refs. 1, 6, 7, and 16d, and the method described in the paper19 of Suris which involves
starting from Poisson brackets satisfyingr-matrix like conditions ong% g% ¯ % g to produce
new r-matrix brackets ong. Our construction is different in the sense that we do not require any
r-matrix like conditions, but rather start from a set of so-called simple bracketssto be definedd on
a subspace ofg% g% ¯ % g, again to produce new, nonsimple brackets ong. In this context, the
classicalr-matrix brackets would be self-inducingssee Ref. 20d.

The second section explains this construction. In the third section we work it out in detail for
the smallest nontrivial example. In the fourth section, first we explain how the second bracket of
the sA-seriesd Toda hierarchy can be obtained by this method. Afterwards, we demonstrate how
the sknownd quadratic Poisson bracket for the Kadomtsev-PetviashvilisKPd hierarchy, discrete in
both space directions can be obtained. Finally, we show that a quadratic Poisson bracket for a
doubly periodic discrete KP hierarchy can be tailor-made, and in a sense uniquely, using the
general construction, if the two periodsM andN are relatively prime. To our knowledge, these last
brackets are new. Commutation of conserved quantities holds for these brackets, but is not proved
in this paper. For this, we refer the reader to Ref. 12 or Ref. 13.

II. SIMPLE BRACKETS AND DESCENT PROPERTIES

Let M be a smooth manifold. Recall that a Poisson structure onM is a skew symmetric
bilinear map fromC`sMd3C`sMd to C`sMd which satisfies the Leibniz rule and the Jacobi
identity. M equipped with a Poisson structure is called a Poisson manifold. A smooth mapf :M
→N between two Poisson manifolds is called a Poisson map if the naturally induced ring homo-
morphism f* :C`sNd→C`sMd defined as f*sgd=g+ f commutes with the brackets, i.e.,
hf*sud , f*svdjM = f*hu,vjN for all u,v. Suppose thatAsMd is a graded subring ofC`sMd closed
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under the bracket operation.fA typical example is whereM is an algebraic variety,AsMd denotes
the ring of regular functions onM, andh,j is defined by polynomial expressions, taking pairs of
homogenous polynomials to homogenous polynomials. We also remark that more generally one
can consider sheaves of rings rather than global functions onM.g We call a Poisson structure onM
quadratic if degshu,vjd=degsud+degsvd for all homogenousu,vPAsMd. sThis name refers to the
case whenu,v have degree 1 and thus the degree ofhu,vj is 2.d In this paper quadratic Poisson
brackets will be the main objects of our concern. For more general information about Poisson
manifolds, please see Refs. 3 and 22.

Definition 1: Suppose that M, AsMd and h,j are as above. Sayhx1, . . . ,xnj is a set of genera-
tors for the ring AsMd. Assume that there exist constantsmi,j such thatmi,j =−m j ,i and

hxi,xjj = mi,jxixj

for all i , j . Then we will say thath,j is simple (or diagonal, or diagonalized) with respect to this set
of generators.

It is straightforward to check that for any choice of constantsmi,j subject to the condition
mi,j =−m j ,i, the resulting bracket satisfies the Jacobi identity.

We remark that in a paper by Dufour and Haraki5 it is shown that simple brackets are in some
sense generic among all quadratic brackets. This is done as follows. It is well known that speci-
fying a Poisson bracket is equivalent to specifying a bivector fieldp satisfyingfp ,pg=0 wheref,g
denotes the Schouten bracket.3 They associatep a vector fieldDspd, called its curl. One proves
that fDspd ,pg=0. Then ifDspd is diagonalizable and its eigenvalues avoid a certain finite set of
identities, this relation forcesp to be diagonalizable. This certainly is a generic condition among
possible Jordan forms ofDspd, however there are new components in the parameter space of all
quadratic brackets, which consist inp Schouten commuting with the nongenericDspd. Quadratic
brackets of many familiar integrable systems, such as the Toda lattice, are not diagonalizable by a
linear change of coordinates, even though they have a diagonalizable curl; hence they fall into this
second class.

We also remark that the sum of any two simple brackets is a simple bracket. Thus any two
members of the family of simple brackets form a compatible pairsequivalently, their Schouten
bracket is 0d.

We will describe a method through which some nonsimple brackets may be constructed using
simple brackets. In the later sections we will show that the quadratic brackets of several well-
known integrable systems arise in this way. We also use this method to construct a highly nonlocal
quadratic bracket for an integrable system for which such a bracket was formerly unknown. Our
setting is as follows: Leta be an associative algebra,g an affine or vector subspace ofa, andh an
affine or vector subspace ofa% a% ¯ % a sM timesd for some positive integerM.

Assume that the image of the mapf on h defined byfsLs1d , . . . ,LsMdd=Ls1d , . . . ,LsMd is equal to
g. Then the induced mapf* :C`sgd→C`shd is injective. Sincef is a polynomial mapf* also
induces a map fromAsgd to Ashd where these denote the rings of polynomial functions ong and
h, respectively.

Next, choose a set of generators forAshd and consider the set of all simple Poisson brackets
with respect to this set of generators. By the remarks above, this set of brackets is itself a vector
space, and we will denote it bySshd.

Theorem 1: Sayh,jh is a Poisson bracket onh. Suppose that for every u,vPAsgd there exists
wPAsgd such thathf*sud , f*svdjh= f*swd. Then w is the unique element of Asgd having this prop-
erty, and the bracket defined byhu,vjg=w is a Poisson bracket on g.

Proof: The uniqueness ofw follows from the injectivity of f* , and makesh,jg well defined.
The bilinearity and the Jacobi identity forh,jg follow from the bilinearity and the Jacobi identity
for h,jh and the fact thatf* is a ring homomorphism. j

We will say that a bracket onh satisfying the hypothesis of the previous theorem “descends”
to a bracket ong.

Corollary 1: The setDshd of simple quadratic brackets onh which descend to a bracket on g
is a vector subspace ofSshd.
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Proof: It only remains to check that a linear combination of two elements ofDshd is in Dshd.
But this easily follows sincef* is an injective homomorphism. j

There are at least two nice features ofDshd which in our opinion make it worthwhile to study.
First, it is relatively easy to determineDshd or some of its subspaces explicitly for concrete
examples. Second, the induced brackets by this family ong give us a rich source of not necessarily
simple brackets ong, among which one can find the quadratic brackets of many familiar integrable
systems, along with new quadratic brackets for certain nonlocal systems.

III. EXAMPLE: M „2…

We will work out the general construction of the last section in detail for the example ofg
=Ms2d soverR or Cd, the associative algebra of 232 matrices,M =2, andh=Ls2d % Us2d where
Ls2d is the vector space of lower triangular 232 matrices, andUs2d the vector space of upper
triangular 232 matrices. Letf :h=Ls2d % Us2d→g be given by fsA,Bd=AB. Let a,b,c,d be
coordinate functionals dual to the entries ong; x,y,z dual to those onLs2d and u,v ,w dual to
those onUs2d in the orders such thatf* is given by

Fx 0

y z
GFu v

0 w
G ← Fa b

c d
G ,

i.e., f*sad=xu, f*sbd=xv, f*scd=yu, and f*sdd=yv+zw. Consider an arbitrary simple bracketh,jh
on h. Denotehx,yjh=mx,yxy, hx,ujh=mx,uxu and so on. Recall thatmi,j =−m j ,i ∀ i , j . An elementary
computation gives

hf*sad, f*sbdjh = smx,v + mu,v + mu,xdf*sabd,

hf*sad, f*scdjh = smx,y + mx,u + mu,ydf*sacd,

hf*sbd, f*scdjh = smx,y + mx,u + mv,y + mv,udf*sbcd,

hf*sad, f*sddjh = smx,y + mx,v + mu,y + mu,vdxuyv + smx,z + mx,w + mu,z + mu,wdxuzw

= smx,y + mx,v + mu,y + mu,v − mx,z − mx,w − mu,z − mu,wdf*sbcd + smx,z + mx,w + mu,z

+ mu,wdf*sadd,

hf*sbd, f*sddjh = smx,y + mx,v + mv,ydxv2y + smx,z + mx,w + mv,z + mv,wdxvzw,

hf*scd, f*sddjh = smy,v + mu,y + mu,vdy2uv + smy,z + my,w + mu,z + mu,wdyuzw.

This implies that a necessary and sufficient condition forh,jh to descend ong is

mx,y + mx,v + mv,y = mx,z + mx,w + mv,z + mv,w s1d

and

my,v + mu,y + mu,v = my,z + my,w + mu,z + mu,w. s2d

ThereforeDshd is a 13-dimensional subspace of the 15-dimensional vector spaceSshd. On the
other hand, the linear transformation sending each element ofDshd to the associated bracketh,jg

over g has a large kernel. To determine exactly what it is, setma,b=mx,v+mu,v+mu,x, ma,c=mx,y

+mx,u+mu,y, mb,c=mx,y+mx,u+mv,y+mv,u, l =mx,z+mx,w+mu,z+mu,w, k=mx,y+mx,v+mu,y+mu,v, mb,d

=mx,y+mx,v+mv,y, mc,d=my,v+mu,y+mu,v. After a row reduction, and taking equationss1d and s2d
into account, we have
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ma,b = k − ma,c, mb,c = ma,c − mc,d, mb,d = k − mc,d

and, the sethk, l ,ma,c,mc,dj is linearly independent considered as linear functions onDshd. Thus
we obtain a complete description of all quadratic brackets ong which descend from simple
brackets ofh,

ha,bjg = sk − ma,cdab, ha,cjg = ma,cac, hb,cjg = sma,c − mc,ddbc,

ha,djg = lad + sk − ldbc, hb,djg = sk − mc,ddbd, hc,djg = mc,dcd.

This is a four-dimensional linear space of compatible brackets. Notice that such a bracket is
simple ong if and only if k= l, hence those lie in a codimension 1 locussthus the six-dimensional
vector space of simple brackets ong meets the four-dimensional vector space of descended
brackets in a three-dimensional subspaced.

For ma,c=mc,d=1,k=2,l =0 one gets

ha,bjg = ab, ha,cjg = ac, hb,cjg = 0,

ha,djg = 2bc, hb,djg = bd, hc,djg = cd

which is ther-matrix Poisson bracket on Ms2d associated tor =p+−p− sRef. 20, Example 5d. For
another example, setma,c=mc,d=k=0,l =−1. The only nonzero bracket then isha,djg=bc−ad. The
submanifold given byb=c is a Poisson submanifold for this bracket, and the resulting bracket on
this submanifold is the example given in Ref. 18. It was shown here that this bracket does not
come from a classicalr-matrix.

Considering applications to integrable systems, one interesting question is the following: For
which values of the constants do a set of given functions Poisson commute? As an example, let us
take the trace and determinant functionals,f1=a+d and f2=ad−bc. sThis is a natural choice since
for a system where the 232 matrix is one of the two matrices of the Lax pair, and the flows are
the isospectral flows ofL, f1 and f2 clearly have to be conserved quantities.d A calculation gives

hf1, f2jg = − lsabcd + lsbcdd.

Thus we deduce thathf1, f2jg=0⇔ l =0.
The general question of which quadratic Poisson brackets can be obtained from any such

descent process is unanswered at the moment. But for the current example, we note the following
result.

Theorem 2: Suppose that we have a quadratic Poisson bracket on g of the form

ha,bjg = ma,bab, ha,cjg = ma,cac, hb,cjg = mb,cbc,

ha,djg = lad + rbc, hb,djg = mb,dbd, hc,djg = mc,dcd.

Then, either the bracket is simple, or, up to a linear change of coordinatesh,jg descends from a
quadratic Poisson bracket onh as above.

Proof: From the identityha,hc,djgjg+hd,ha,cjgjg+hc,hd,ajgjg=0 we obtain

rsmc,d − ma,c + mb,cdbc2 = 0.

Assume that the bracket is not simple. Thereforer Þ0, somb,c=ma,c−mc,d. Next, using the identity
ha,hb,djgjg+hd,ha,bjgjg+hb,hd,ajgjg=0 we obtain

rsmb,d − ma,b − mb,cdb2c = 0.

Thus mb,d−ma,b=ma,c−mc,d. Now set a8= ta. Then ha8 ,bj= tha,bj= tma,bab=ma,ba8b, similarly
ha8 ,cj=ma,ca8c but ha8 ,dj= tha,dj= tlad+ trbc= la8d+ trbc. So the effect of this transformation on
the bracket is to replacer with tr. Taking
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t =
ma,b + ma,c − l

r

and settingk= l + tr we obtain thatma,b=k−ma,c, thus mb,d=k−mc,d, therefore the proof is com-
plete. j

IV. THE TODA AND DISCRETE KP HIERARCHIES

In what follows, let M̂s`d denote the associative algebra of infinite matricesL having the
property that∃n such thatLij =0 if ui − j u.n. sThe last condition makes it possible to form ordinary
matrix products of these matrices.d

The open Toda lattice equationssfor the A series of Lie algebrasd are given by

ȧi = 2sbi+1
2 − bi

2d,

ḃi = bisai − ai−1d,

wherei PZ sRef. 4d splease note the difference in notation from this paperd. We obtain the finite
Toda lattice of lengthN if ai =0 for i ø0 and fori .N, andbi =0 for i ø1 and fori .N. Similarly,
we obtain the periodic Toda lattice of periodN if ai+N=ai andbi+N=bi for all i ssee Ref. 10d.

Let g be the vector subspace of Mˆ s`d consisting in symmetric tridiagonal matricessi.e., Lij

=0 if ui − j u.1, andLij =Ljid. Also leth be the subspace of Mˆ s`d % M̂s`d consisting in pairssK ,Ktd
such thatKij =0 unlessi = j or i = j −1. Define f :h→g by fsK ,Ktd=KKt. Suppose thatai ,bi are
coordinate functionals ong andxi ,yi coordinates onh in the way thatf* is given by

3
. . . . . .

y1 x1

y2 x2

. . . . . .

yN xN

. . .

43
. . .

x0 y1

x1 y2

. . . . . .

xN−1 yN

. . . . . .

4 ← 3
. . . . . .

b1 a1 b2

b2 a2 b3

. . . . . . . . .

bN aN bN+1

. . . . . .

4 .

s3d

In other words,

f*said = xi
2 + yi

2, f*sbid = xi−1yi .

The following quadratic Poisson bracket ong is well known:

hai,ai+1j = 2bi+1
2 , hai,bij = − aibi ,

hai,bi+1j = aibi+1 hbi,bi+1j = 1
2bibi+1. s4d

An important property of this bracket is the following: Denote the rightmost matrix in 3 byL.
Then the coefficients of the characteristic polynomial ofL commute with respect to this bracket.

Remark:For the infinite Toda lattice, one may define thekth coefficient of the characteristic
polynomial of L as the coefficient ofl`−k in detsL−lId. That is, let it be the formal sum, of
monomials inai’s and bi’s containing all butk of the l’s, over all permutations ofZ. Poisson
brackets of such formal sums make sense heresas a formal sum againd because the bracket 4 is
local.

Proposition 1: The bracket 4 is induced by the following simple bracket onh:

hxi,yij = − 1
2xiyi, hxi,yi+1j = 1

2xiyi+1.
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Proof: This is a straightforward computation. j

For our next class of examples, leta be the affine subalgebra of Mˆ s`d consisting in lower
unipotent matricessi.e., LPa if Lii =1∀ i, Lij =0 if j . i, and∃n such thatLij =0 if i − j .nd. For a
given positive integerM, let gM be the affine subspace ofa consisting inL such thatLij =0 if i
− j .M. Seth=g1 % g1 % ¯ % g1 sM timesd and let f :h→gM be the usual map,fsLs1d , . . . ,LsMdd
=Ls1d , . . . ,LsMd. It is easy to see thatf is surjective.

Let uj
sid , i =1, . . . ,M , j PZ be coordinate functionals onh and vi j , i , j PZ , i . j , i − j øM be

coordinate functionals ongm so thatf* is given by

3
¯

¯ 1

u2
s1d 1

u3
s1d 1

¯ ¯

4¯ 3
¯

¯ 1

u2
sMd 1

u3
sMd 1

¯ ¯

4← 3
¯

¯ 1

¯ v21 1

¯ v31 v32 1

¯ ¯ ¯ ¯ ¯

4 .

s5d

Denote these matrices byI +Us1d , . . . ,I +UsMd and V, respectively. Then this equation can be
written asf*sVd=sI +Us1dd¯ sI +UsMdd.

One can verify by induction that

f*svi jd = ok1,k2,¯,ki−jøM
ui

sk1dui−1
sk2d

¯ uj+1
ski−jd.

Theorem 3: Consider the following simple Poisson bracket onh:

hui
skd,uj

sldjh = sdi,j+1 − di,jdui
skduj

sld i f k , l ,

hui
skd,uj

sldjh = sdi,j − di,j−1dui
skduj

sld i f k . l .

hui
skd,uj

skdjh = 0.

The bracket descends on gm to a bracket given by

hvi j ,vnmjgm
= 0 i f n . i and m, j ,or if n , j ,

hvi j ,v jmjgm
= vim,

hvkj,vi jjgm
= vkjvi j i f k . i ,

hvi j ,vikjgm
= vi jvik i f j . k,

hvi j ,vkljgm
= vi jvkl + vkjvil i f i . k . j . l .

The resulting bracket is anr-matrix Poisson bracket, therefore a proof of this theorem can in
principle be obtained using the method described in Ref. 19. We give an independent proof in the
Appendix.

The bracket of theorem 3 is an element ofDshd, and the bracket it induces ongm is a quadratic
Poisson bracket for the open and finite discrete KP hierarchiesssee Refs 2 and 11d. To be precise,
the name “KP hierarchy” is usually attached to the completely integrable system associated to the
pseudodifferential operatorL=]+v−1]

−1+v2]
−2+¯ ssee Refs. 8, 14, and 15d. Above, the Lax

operator isV=S0+Vs1dS−1+Vs2dS−2+¯ +VsMdS−M whereS is the finite difference analog of], i.e.,

042701-6 Ali Ulas Özgür Kisisel J. Math. Phys. 46, 042701 ~2005!

                                                                                                                                    



a subdiagonal matrix consisting of 1’s, andVsid the diagonal matrix such thatVjj
sid=Vjj −i. It is a

nontrivial theorem that the conserved quantities of these systems commute under this bracket.
For the discrete KP hierarchy periodic in one spatial directionsnamely, ∃N such thatvi j

=vi+Nj+N∀ i , jd, the bracket produces a Hamiltonian interpretation in the same mannersRefs. 14
and 21d: Assume the same periodicity on theui

skd, i.e., setui+N
skd =ui

skd∀ i ,k and modify the bracket
above such that

hui
skd,uj

sldjh = So
n=−`

`

sdi,j+1+nN − di,j+nNdDui
skduj

sld if k , l ,

hui
skd,uj

sldjh = So
n=−`

`

sdi,j+nN − di,j−1+nNdDui
skduj

sld if k . l ,

hui
skd,uj

skdjh = 0.

Theorem 3 is valid for this simple bracket without much change.
Considering the presence of two space variables in the KP equation, it is natural to ask for a

further symmetry in the system corresponding to periodicity in a second spatial direction. Such a
system was considered in Ref. 9 for instance. For the purposes of this paper, let us only assume
that we want to find a Poisson bracket such that the dependence ofhui

skd ,uj
sldjh on k and l is only

via the value ofk− l in Z /MZ, and in particular does not depend on whetherk, l or k. l. The
bracketh,jh of Theorem 3 does not satisfy this condition.

Assume thatM andN are relatively prime. Make a change of indexing by settingwi
skd=ui−k

skd .
Below, we will construct another element ofDshd such that when added to the bracket of 3, we
obtain a doubly periodic bracket onwi

skd’s.
We start from some general results. Recall the following notation: SayA=saijd andB=sbijd

whereaij ,bij areC` functions on a Poisson manifold. DefinehA^ ,Bj to be the matrix obtained in
the same way as taking a Kronecker product, but where each product of a pair of functions is
replaced by their Poisson brackets. It is easy to see that the matrix Leibniz rule holds, i.e.,
hAB^ ,Cj=sA^ IdhB^ ,Cj+hA^ ,CjsB^ Id. HereI is the identity matrix.

Let us return to the setting of the Poisson manifoldsh andgm above. Suppose thatS is a set
of positive integers, and lett be a non-negative integer. LetES

t denote the matrix which is thetth
elementary symmetric function in the matricesUsid with i PS. sSinceUsid do not commute, the
order of products appearing in this symmetric function is important. In each case, we order theUsid

with respect to increasing order ini.d Notice thatf*sVd= I +ot=1
n E1,. . .,m

t .
Lemma 1: Let c be a positive integer. For any fixed integer t such that0ø tøc,

o
i=1

m

E1,. . .,i−1
t UsidEi+1,. . .,m

c−t = E1,. . .,m
c+1 .

Proof: Consider an arbitrary monomial of the formUs j1d
¯Us jc+1d such thatj1, ¯ , j c+1. We

claim that this occurs once in both sides of the sum above. This is clear for the right-hand side, and
for the left-hand side it is obtained fori = j t+1. j

Let FPM̂s`d ^ M̂s`d be a diagonal matrix, i.e.,Fij ,kl=0 unlessi = j and k= l. The formula
hUskd^ ,Usldjh=FsUskd ^ Usldd, explicitly written, means

hui
skd,uj

sldj = Fi+1i+1,j+1j+1ui
skduj

sld.

Therefore this defines a simple quadratic Poisson bracket onh if and only if the antisymmetry
condition is satisfied, which happens if and only ifFii ,j j =−Fjj ,ii for all i , j . Notice that this class of
brackets does not include any brackets that depend onk or l, and in particular the bracket of
Theorem 3.
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Define Fa,b to be the diagonal matrix such thatFij ,kl
a,b =Fi−aj−a,k−bl−b, i.e., F shifted a blocks

downwards along the diagonal, andb entries within each block. Notice thatsUsid ^ IdF
=F1,0sUsid ^ Id and sI ^ UsiddF=F0,1sI ^ Usidd.

Theorem 4: Let FPM̂s`d ^ M̂s`d be a diagonal matrix satisfying the antisymmetry condition
above. Define a Poisson bracket onh via the formulahUskd^ ,Usldjh=FsUskd ^ Usldd for all i, j . Then
h,jhPDshd.

Proof: Computehf*sVd^ , f*sVdjh,

hf*sVd^, f*sVdjh =Hp
i=1

m

sI + Usidd ^ p
i=1

m

sI + UsiddJ
h

= o
i,j
Sp

k=1

i−1

sI + Uskdd ^p
n=1

j−1

sI + UsnddDFsUsid
^ Us jdd

3 S p
k=i+1

m

sI + Uskdd ^ p
n=j+1

m

sI + UsnddD
= o

i,j ,t,s,c1,c2

sE1,. . .,i−1
t

^ E1,. . .,j−1
s dFsUsid

^ Us jddsEi+1,. . .,m
c1−t

^ Ej+1,. . .,m
c2−s d

= o
i,j ,t,s,c1,c2

Ft,ssE1,. . .,i−1
t

^ E1,. . .,j−1
s dsUsid

^ Us jddsEi+1,. . .,m
c1−t

^ Ej+1,. . .,m
c2−s d

= o
c1,c2

So
t=0

c1

o
s=0

c2

Ft,sDE1,. . .,m
c1+1

^ E1,. . .,m
c2+1 .

In the last step we used Lemma 1 for each fixedst ,sd. This finishes the proof since eachE1,. . .,m
c is

a diagonal off*sVd. j

Notice that in the proof we obtained, as a bonus, a formula for the descent bracket ongm. We
remark that this new bracket is simple ongm as well.

Adding the bracket obtained from all possibleF’s of the type discussed above to the bracket
of Theorem 3, we obtain the following set of simple brackets onh:

hui
skd,uj

sldjh = sFi+1i+1,j+1j+1 + di,j+1 − di,jdui
skduj

sld if k , l,and

hui
skd,uj

sldjh = sFi+1i+1,j+1j+1 + di,j − di,j−1dui
skduj

sld if k . l .

hui
skd,uj

skdjh = Fi+1i+1,j+1j+1ui
skduj

sld.

We assume thatF=Fm,m for all m. This implies that the bracket depends onj − i, but not oni
and j separately. Notice that the bracket already depends onk andl via l −k only. In order to do the
same for the bracket periodic in one direction, it is enough to ensureF also produces periodic
terms with the same period. For this we assumeFii ,j j =Fii ,j+Nj+N∀ i , j . The combined bracket is

hui
skd,uj

sldjh = SFi+1i+1,j+1j+1 + o
n=−`

`

sdi,j+1+nN − di,j+nNdDui
skduj

sld if k , l ,

and
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hui
skd,uj

sldjh = SFi+1i+1,j+1j+1 + o
n=−`

`

sdi,j+nN − di,j−1+nNdDui
skduj

sld if k . l ,

hui
skd,uj

skdjh = Fi+1i+1,j+1j+1ui
skduj

sld.

Expressing this bracket in terms of the variableswi
skd=ui−k

skd , we obtain

hwi
skd,wj

sldjh = SFi−k+1i−k+1,j−l+1j−l+1 + o
n=−`

`

sdi−k,j−l+1+nN − di−k,j−l+nNdDwi
skdwj

sld

if k, l, and

hwi
skd,wj

sldjh = SFi−k+1i−k+1,j−l+1j−l+1 + o
n=−`

`

sdi−k,j−l+nN − di−k,j−l−1+nNdDwi
skdwj

sld

if k. l.

hwi
skd,wj

skdjh = Fi−k+1i−k+1,j−l+1j−l+1wi
skdwj

sld.

This bracket is still simple, and let us denote the coefficient ofwi
skdwj

sld in hwi
skd ,wj

skdjh above by
k j−i

l−k, noting again that it depends only onj − i and l −k, and not separately on the four variables.
The indexing makes the formulas look very complicated, but observing the following properties of
the functionkb

a, wherebPZ ,aP h1−k, . . . ,M −kj results in considerable simplification:

k0
0 = 0,

kb+N
a = kb

a for all a,b,sso assumeb P Z/NZ for the restd,

kb
a − kb−1

a−1 = da,1db,0 − da,1db,1 − da,0db,1 + da,0db,0 for all b P Z/NZ,

andaP h2−k, . . . ,M −kj
Finally, we want to selectF above, equivalentlyk, such that the bracket above becomes

doubly periodic. This happens if and only if we can extendk to all aPZ such thatkb
a+M =kb

a, and
the conditions above are satisfied for alla,b. We prove the following.

Theorem 5: If M and N are relatively prime positive integers, there exists a unique function
k on Z /NZ3Z /MZ such thatk0

0=0 and

kb
a − kb−1

a−1 = da,1db,0 − da,1db,1 − da,0db,1 + da,0db,0 for all b P Z/NZ and aP Z/MZ.

Proof: Since M and N are relatively prime,s1,1d is a generator for the groupZ /NZ
3Z /MZ. Hence the difference equation and the initial valuek0

0=0 determinesk uniquely if it
exists. To prove existence, consider the sequences1,1d ,s2,2d , . . .. The twoelementss1,0d and
s−1,0d of Z /NZ3Z /MZ appear in some order in this sequence. Ifs1,0d appears first, then set

k1
1 = k2

2 = ¯ = k0,−1= − 1,

k−1
−1 = k−2

−2 = ¯ = k0,1= 1,

andkb
a=0 otherwise.

If the alternative happens, i.e., ifs−1,0d appears befores1,0d then set
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k1
1 = k2

2 = ¯ = k−1,0= − 1,

k−1
−1 = k−2

−2 = ¯ = k1,0= 1,

andkb
a=0 otherwise.

It is easy to check that in both cases the difference equation is satisfied. j

Thus there exists a choice forF making the combined bracket doubly periodic, and we
showed that ifF is subject the requirements above, it is unique.

Remarks:The proof of the last theorem shows that there are two combinatorially distinct cases
depending onM andN. One can check that the alternative which is realized depends on the parity
of the number of steps in the Euclidean algorithm forN andM.

The system in Ref. 9 can be equipped with a quadratic Poisson bracket along these lines.
However there, the variables on which periodicity is imposed are coordinate functionals insI
+U2i+1dsI +U2i+2d, i.e., the matrices are lumped in pairs. It is also true that the conserved quantities
Poisson commute under the bracket obtained. For this computation, and more on the Hamiltonian
properties of these systems see Ref. 12 or Ref. 13.

V. CONCLUSION

In this paper we presented a method for producing quadratic Poisson brackets from a family
of brackets which are easy to constructssimple bracketsd, and applied this method to several
examples. It is possible to produce large families of Poisson brackets using this method, and then
one can seek for a particular element of the family satisfying further requirements, such as
commutation of conserved quantities, or periodicity, etc. The method can produce nonlocal brack-
ets which are sometimes indispensablesas in the doubly periodic KP hierarchy aboved.

We believe the following questions are worthy of further investigation: Given an algebrag, it
is unclear at the moment what the locus of brackets obtainable by such a method in the moduli
space of all quadratic brackets is. Also, understanding the interplay of conserved quantities with
the descent process requires further workse.g., can one characterize those brackets among descent
brackets admitting a large set of commuting quantities?d. In a different direction, it might be
worthwhile to ask if these brackets can be used in the waysr-matrix brackets are used in geom-
etry, such as in producing link invariants.
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APPENDIX: PROOF OF THEOREM 3

We will prove Theorem 3. Recall the formula

f*svi jd = ok1,k2,. . .,ki−jøM
ui

sk1dui−1
sk2d . . .uj+1

ski−jd.

Lemma 2: Suppose i. j .m Then

hvi j ,v jmjgm
= vim.

Also, if k, j then hvi j ,vkljgm
=0

Proof: Using the formula above, we can express the bracket in terms ofuj
sid’s,
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hvi j ,v jmjgm
= H o

k1,k2,. . .,ki−jøM

ui
sk1dui−1

sk2d . . .uj+1
ski−jd, o

l1,l2,. . .,l j−møM

uj
sl1duj−1

sl2d . . .um+1
sl j−mdJ

h

.

When the bracket above is expanded using the Leibniz rule, all brackets except those of type
huj+1

ski−jd ,uj
sl1djh with ki−j , l1 are zero. Thus we obtain

hvi j ,v jmjgm
= o

k1,¯,ki−j,l1,¯,l j−møM

ui
sk1d

¯ uj+1
ski−jduj

sl1d
¯ um+1

sl j−md = vim.

The second part of the assertion is clear, since in that case there are no pairs of terms that give a
nonzero bracket. j

Lemma 3:sid hvii−1,v jmjgm
=0 if j . i and m, i −1, sii d hvii−1,vimjgm

=vii−1vim if m, i −1, siii d
hvii−1,v ji−1jgm

=−vii−1v ji−1 if j . i.
Proof:

hvii−1,v jmjgm
= Ho

køM

ui
skd, o

l1,¯,l j−møM

uj
sl1d

¯ um+1
sl j−mdJ

h

.

Consider brackets of pairs of monomials.ui
skd may have nonzero brackets only with the three

termsui+1
slad ,ui

slbd and ui−1
slcd of a monomialm in v jm. For partsid, note that by the hypothesisj . i

.m+1, each monomialm of v jm contains all three terms. For convenience,m will be indexed as
mla,lb,lc

. If kø la, lcøk or k= lb, one checks thathui
skd ,mla,lb,lc

jh=0. If la,k, lb, then
hui

skd ,mla,lb,lc
jh=−hui

slbd ,mla,k,lc
jh. Therefore the sum vanishes because of pairwise cancellation, and

sid is proven.
To provesii d, note thatui

slbd andui−1
slcd, but notui+1

slad occur in each monomialm of vim shence,
denoted bymlb,lc

d. If k, lb, hui
skd ,mlb,lc

jh=0, if lb,k, lc, hui
skd ,mlb,lc

jh=2ui
skdmlb,lc

. Therefore for
k, lb, hui

skd ,mlb,lc
jh+hui

slbd ,mk,lc
jh=2ui

skdmlb,lc
. For k= lb and kù lc one gets hui

skd ,mlb,lc
jh

=ui
skdmlb,lc

. Therefore, the sum of all the terms givesvii−1vim. siii d is similar to sii d. j

Lemma 4:hvi j ,vnmjgm
=0 if n. i and m, j .

Proof: Do induction oni − j . For i − j =1, the statement reduces tosid of Lemma 3. Notice that
by Lemma 2vi j =hvi j +1,v j+1jjgm

. Then

hvi j ,vnmjgm
= hhvi j +1,v j+1jjgm

,vnmjgm
= − hhvnm,vi j +1jgm

,v j+1jjgm
− hhv j+1j,vnmjgm

,vi j +1jgm
= 0

by the Jacobi identity and the induction hypothesis. j

Lemma 5:sid hvkj ,vi jjgm
=vkjvi j if k. i. sii d hvi j ,vikjgm

=vi jvik if j .k.
Proof: The two parts are similar, so we will only provesid. Again, do induction oni − j . Notice

vi j =hvi j +1,v j+1jjgm
,

hvkj,vi jjgm
= hvkj,hvi j +1,v j+1jjjgm

= − hv j+1j,hvkj,vi j +1jgm
jgm

− hvi j +1,hv j+1j,vkjjgm
jgm

= − hv j+1j,0jgm
+ hvi j +1,v j+1jvkjjgm

= hvi j +1,v j+1jjgm
vkj + hvi j +1,vkjjgm

v j+1j

= vi jvkj.

j

Lemma 6: Suppose i.k. j . l. Thenhvi j ,vkljgm
=vi jvkl+vkjvil .

Proof: We know thatvkl=hvkj ,v jljgm
. Then,
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hvi j ,vkljgm
= hvi j ,hvkj,v jljgm

jgm

= − hv jl ,hvi j ,vkjjgm
jgm

− hvkj,hv jl ,vi jjgm
jgm

= − hv jl ,vi jvkjjgm
+ hvkj,viljgm

= − hv jl ,vi jvkjjgm

= − hv jl ,vi jjgm
vkj − hv jl ,vkjjgm

vi j

= vilvkj + vklvi j .

j

Thus the proof is complete.
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Simple deformations, with a parametere, of classicalR-matrices which follow
from decomposition of appropriate Lie algebras, are considered. As a result non-
standard Lax representations for some well-known integrable systems are presented
and integrable evolution equations are constructed. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1868373g

I. INTRODUCTION

In the theory of nonlinear evolutionary systems one of the most important problems is con-
struction of integrable systems. By integrable systems we understand those which have infinite
hierarchy of commuting symmetries. It is well known that a very powerful tool, called the clas-
sical R-matrix formalism, can be used for systematic construction of field and lattice integrable
dispersive systemsssoliton systemsd as well as dispersionless integrable field systemsssee Refs.
1–10 and the references thereind.

The crucial point of the formalism is the observation that integrable systems can be obtained
from Lax equations. Letg be a Lie algebra, equipped with the Lie bracketf·,·g. A linear map
R:g→g, such that the bracketfa,bgRª fRa,bg+fa,Rbg is a second Lie product ong, is called the
classicalR-matrix. Assume thatR satisfies a Yang–Baxter equation YBsad: fRa,Rbg−Rfa,bgR

+afa,bg=0, which is a sufficient condition forR to be anR-matrix. Then, powers ofL generate
mutually commuting vector fields

Ltn
= fRsLnd,Lg. s1d

For fixedn the remaining systems are considered as its symmetries. In this senses1d represents a
hierarchy of integrable dynamical systems.

In this paper the deformation method for systemss1d, preserving the integrability, is presented.
It has been done on the level of their Lax representations through simple deformations, with
parametere, of classicalR-matrices. It is shown that such a procedure leads to the construction of
nonstandard Lax representations for some well-known integrable systems as well as to the con-
struction of new integrable evolution equations.

II. DEFORMATIONS OF STANDARD R-MATRICES

To construct the simplestR-structure let us assume that the Lie algebrag can be split into a
direct sum of Lie subalgebrasg+ and g−, i.e., g=g+ % g−, where fg± ,g±g,g±. Denoting the
projections onto these subalgebras byP±, we define theR-matrix as

R= 1
2sP+ − P−d. s2d

Straightforward calculation shows thats2d solves YBs 1
4

d. The classicalR-matrices constructed in
this way we understand as standard ones.
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Let us consider the following deformation ofs2d:

R8sad = Rsad + ersad, s3d

where e is an arbitrary constant playing the role of a deformation parameter andr is a linear
deformation operator. First, assume thatr satisfies the following two relations:

fra,b+g P g+, fra,b−g P g−, a P g, b+ P g+, b− P g−. s4d

So, the question arises when the deformedR preserves the property of beingR-matrix. Once again,
straightforward calculation shows thats3d solves YBs 1

4
d when the following condition is fulfilled:

rfa,bgR + erfa,bgr – efra,rbg = 0, s5d

wherefa,bgr =fra ,bg+fa,rbg.

III. DISPERSIONLESS SYSTEMS

Let A be the algebra of formal Laurent seriessLax polynomialsd in p sRef. 6d,

A = HL = o
iPZ

uisxdpiJ , s6d

where the coefficientsuisxd are smooth functions ofx. Poisson brackets onA can be introduced in
infinitely many ways as

ff,gg ; hf,gjsª psS ]f

]p

]g

]x
−

]f

]x

]g

]p
D, sP Z. s7d

Then, fixings, A is the Poisson algebra with an appropriate brackets7d. We construct the standard
R-matrix, through a decomposition ofA into a direct sum of Lie subalgebras. For a fixeds let
Aù−s+k=hoiù−s+kuisxdpij andA,−s+k=hoi,−s+kuisxdpij. Then,Aù−s+k, A,−s+k are Lie subalgebras in
the following cases:

s1d s=0, k=0,
s2d sPZ, k=1,2,
s3d s=2, k=3.

So, fixings we fix the Lie algebra structure withk numbering the standardR-matrices given
in the following form:

R= 1
2sPù−s+k − P,−s+kd = Pù−s+k − 1

2 = 1
2 − P,−s+k, s8d

whereP are appropriate projections. The Lax hierarchys1d can be represented by two equivalent
representations,

Ltq
= hsLqdù−s+k,Ljs = − hsLqd,−s+k,Ljs. s9d

Notice that different schemes are interrelated. Under the transformation

x8 = x, p8 = p−1, t8 = t s10d

the Lax hierarchys9d defined byk, s, andL transforms into the Lax hierarchys9d defined byk8
=3−k, s8=2−s, andL8=L, i.e.,

L for k, s ⇔ L8 = L for k8 = 3 −k, s8 = 2 −s. s11d

In such a situation it is enough to consider the cases ofk=0 andk=1.
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We are interested in extracting closed systems for a finite number of fields. To obtain a
consistent Lax equation, the Lax operatorL must form a proper submanifold of the full Poisson
algebraA, i.e., the left- and right-hand sides of expressions9d must coincide. They are given in the
form7

s= 0, k = 0, L = pN + uN−2p
N−2 + uN−3p

N−3 + ¯ + u1p + u0, s12d

sP Z, k = 1, L = pN + uN−1p
N−1 + ¯ + u1−mp1−m + u−mp−m, s13d

whereui are dynamical fields. Notice, that powers ofL, in general fractional, can be calculated by
expanding them around poles, fors12d around` and for s13d around` and 0. So, fork=0 we
construct one Lax hierarchy and fork=1 we construct, in general, two mutually commuting Lax
hierarchies.

We are looking for a simple deformation ofs8d in the form

r = paPb, PbsLd = fLgb = ub s14d

which will satisfy s4d ands5d for arbitrarye. By some straightforward calculations, we find them
in the form

r = p−s+kPk−1 for 5s1d s= 0, k = 0,

s2d s= 0, k = 1,

s3d s= 1, k = 1
6 s15d

and

r = p−s+k−1Pk−2 for 5s4d s= 1, k = 2,

s5d s= 2, k = 2,

s6d s= 2, k = 3.
6 s16d

We see that deformations ofs8d given by the forms3d ands14d, exist only for distinguished values
of s andk. Nevertheless, for particular fixed values ofe and fixeds si.e., fixed Lie algebrad there
exist other deformations of the forms14d, but they are trivial in the sense that they relate standard
R-matricess8d with different k. Moreover, deformationss16d are constructed froms15d by using
transformations10d ands11d. Hence, the only relevant deformations ares15d and so further we will
consider only them. The deformedR-matrices for the cases ins15d take the form

R8 = Pù−s+k − 1
2 + ep−s+kPk−1 = 1

2 − P,−s+k + ep−s+kPk−1. s17d

The case: s=0, k=0.
The Lax hierarchy for a deformedR-matrix is

Ltq
= hsLqdù0 + efLqg−1,Lj0 = − hsLqd,0 − efLqg−1,Lj0. s18d

Consistent Lax equations are obtained for Lax operators of the form

L = pN + uN−1p
N−1 + uN−2p

N−2 + ¯ + u1p + u0, s19d

whereui are dynamical fields. Froms18d it follows that

suN−1dtq
= − eNsfLqg−1dx,

suN−2dtq
= NsfLqg−1dx − esN − 1duN−1sfLqg−1dx,

. . . . s20d

So, for e=0 the fielduN−1 becomes time independent and without losing the generality we can
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assume that it is zero. Then, Lax operator becomes a standard Lax operators12d for the case with
nondeformedR-matrix. Froms20d the following relation betweenuN−1 anduN−2 results:

uN−2 = −
1

e
uN−1 +

N − 1

2N
suN−1d2 s21d

so we can eliminate one of them. EliminatinguN−2 we will consider constrained Lax operator in
the form

L = pN + uN−1p
N−1 + S−

1

e
uN−1 +

N − 1

2N
suN−1d2DpN−2 + uN−3p

N−3 + ¯ + u1p + u0. s22d

Reparametrizings22d, uN−1°−euN−2 and then taking the limite→0 it becomes the standard Lax
operators12d.

Lemma 3.1: For arbitrarye the Lax hierarchys18d ands22d is equivalent to the Lax hierarchy
s9d and s12d with s=k=0.

The sketch of the proof is as follows. We are looking for transformations that will relate fields
from s22d and fields froms12d. We postulate the following form of these relations:

uN−1 ° − euN−2,

ui ° ui + f isuN−2,uN−3, . . . ,ui+1d for N − 3 ù i ù 0. s23d

Then, we construct functionsf i in such a way, that hierarchys18d will lead to the same evolution
system ass9d for s=k=0. We compare the first nontrivial systems from these hierarchies. Func-
tions f i are recursively constructed comparing evolution expressions forui+1t. Such a procedure
guarantees that the expressions for the fields will be the same only for componentsuN−2t

, . . . ,u1t
.

So, the equality between both evolution expressions foru0 must be argued. The systems for Lax
operatorss12d and s22d both can be understood as the reduction of infinite-field systems for Lax
operators of the formL8=a1p+a0+a−1p

−1+ . . . , given by constraintL=L8N. The equivalence
between the hierarchies considered, constructed fromL8, can be shown by explicit infinite recur-
rence forms23d. Now, reducing them to finite-field systems one finds the appropriate transforma-
tion between finite-field systems, including the evolution foru0. So, the Lax hierarchys18d and
s22d is a new representation of well-known integrable dispersionless hierarchies. The form of
transformations23d, relating both systems, guarantees that it is an invertible transformation.

Example 3.2: Dispersionless KdV: N=2.
For L=p2+up+v and Lti

=hsLi/2dù0+efLi/2g−1,Lj0 we find

Su

v
D

t1

= S 1
2euux − evx

1
4seu − 2dsuux − 2vxd

D ,

Su

v
D

t3

= S − 3
16esu2 − 4vdsuux − 2vxd

− 3
32eseu − 2dsu2 − 4vdsuux − 2vxd

D , s24d

¯ .

In the limit e→0 and u=0 it becomes the standard dispersionless KdV hierarchy. Notice, that
fields uandv are not independent. According tos21d v=−s1/edu+ 1

4u2 and the hierarchys24d is
equivalent to the one

ut1
= ux, ut3

= −
3

2e
uux, ¯ , s25d

i.e., reparametrized dispersionless KdV. The transformation to the standard form of dispersionless
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KdV is given by u°−eu. The hierarchys25d is generated from L=p2+up+ 1
4u2−s1/edu.

Example 3.3: Dispersionless Boussinesq: N=3.
Here we present only the result for the constrained Lax operators22d L=p3+up2

+f 1
3u2−s1/edugp+w. Then, the first nontrivial system from the hierarchy is

Lt2
= hsL

2
3dù0 + efL

2
3g−1,Lj0 ⇔ Su

w
D

t2

= 1
2
9seu − 6duux − 2ewx

2

81e2seu − 3dseuseu − 9d + 9duux − 2
9seu − 6duwx2 .

Eliminating the field w we obtain the reparametrized dispersionless Boussinesq, utt=s2/3ed
3su2dxx. The transformations23d to the standard form of the dispersionless Boussinesq system is
given by u°−eu, w°w− 1

3eu2− 1
27e3u3.

The case: s=0, k=1.
The Lax hierarchy for the deformedR-matrix s17d is

Ltq
= hsLqdù1 + efLqg0p,Lj0 = − hsLqd,1 − efLqg0p,Lj0. s26d

Appropriate Lax operators are of the form

L = uNpN + uN−1p
N−1 + ¯ + u1−mp1−m + u−mp−m. s27d

From s26d one finds thatsuNdt=esuNdxfLqg0−eNuNsfLqg0dx. Hence, in the limit ofe=0 the fielduN

becomes a time-independent fieldcN. Fixing cN=1 the Lax operator becomes a standard Lax
operators13d for s=0, k=1. Moreover, there is no constraint contrary to the previous case. Hence,
the Lax hierarchys27d ands26d leads to new integrable dispersionless systems, at least to the best
of our knowledge. Notice that the zero power ofL always leads to the space translation symmetry,
Lt0

=eLx.
Example 3.4: Extended dispersionless Benney, N=m=1.
Let L=up+v+wp−1, then for Lti

=hsLidù1+efLig0p,Lj0 we find

1u

v

w
2

t0

= e1ux

vx

wx
2 ,

1u

v

w
2

t1

= 1 euxv − euvx

uvx + evvx

uxw + uwx + evxw + evwx
2 ,

1u

v

w
2

t2

= 1 euxv
2 − 2euvvx − 2eu2wx

2uuxw + 2uvvx + 2u2wx + ev2vx + 2euvxw

2uxvw + 2uvxw + 2uvwx + 2euxw
2 + 2evvxw + ev2wx + 4euwwx

2 ,

¯ .

In the limit e→0 and u=1 we obtain the standard dispersionless Benney system.
Example 3.5: Two field system, N=0, m=1.
Consider L=v+wp−1. Then fLig0=vi and sLidù1=0 for i =0,1,2, . . . .Hence we obtain the

system

Lti
= hefLig0p,Lj0 ⇔ Sv

w
D

ti

= S evivx

esviwdx
D s28d
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which does not have any standard counterpart.
The case: s=1, k=1.
The Lax hierarchy is

Ltq
= hsLqdù0 + efLqg0,Lj1 = − hsLqd,0 − efLqg0,Lj1 s29d

and appropriate Lax operators take the form

L = uNpN + uN−1p
N−1 + ¯ + u1−mp1−m + u−mp−m. s30d

From s29d it follows that

suNdt = − eNuNsfLqg0dx, ¯ , su−mdt = s1 + edmu−msfLqg0dx. s31d

So, we find that the highest and lowest fields are related by

uN
s1+edm = u−m

−eN.

For e=0 the fielduN becomes a time-independent fieldcN slet cN=1d, then the Lax operators30d
becomes a standard Lax operators13d for s=k=1. Fore=−1 the fieldu−m becomes time indepen-
dent and the Lax operator becomes a standard Lax operator fors=1, k=2. This last case follows
from the fact that fors=1, k=1, ande=−1 the deformedR-matrix s17d becomes the standard
R-matrix s8d for s=1, k=2. EliminatinguN field the Lax operator takes the form

L = u−m
−feN/s1+edmgpN + uN−1p

N−1 + ¯ + u1−mp1−m + u−mp−m. s32d

In the limit e→0 it becomes the standard Lax operators13d for s=k=1.
Lemma 3.6: For arbitrarye, the Lax hierarchys29d ands30d is equivalent to the Lax hierar-

chy s9d and s13d with s=k=1.
To show this let us make the following transformation:

ui ° uiuN
i/N, p ° uN

−1/Np for N − 1 ù i . − m. s33d

The Poisson brackets7d for s=1 is invariant unders33d. Moreover, the Lax operatorss30d trans-
form into s13d one. Then, after the transformation of coordinatess33d

Lt ° Lt +
1

N
uN

−1suNdtpLp =
by s31d

Lt − esfLqg0dxpLp = Lt + hefLqg0,Lj1.

Hence, the hierarchys29d turns intos9d one withs=k=1.
Example 3.7: Extended dispersionless Toda, N=m=1.
For Lax operator L=up+v+wp−1 from Lt1

=hsLdù0+efLg0,Lj0 we find

1u

v

w
2

t1

= 1 − euvx

uxw + uwx

s1 + edvxw
2 .

In the limit e=0 and u=1 we obtain the standard dispersionless Toda system. In the limite=−1
andw=1 we obtain the reparametrized dispersionless Toda system. The transformations33d to the
standard case is given byv°v, w°u−1w. Eliminating field u, for L=w−fe/s1+edgp+v+wp−1, we get

Sv

w
D

t1

= 1 1

1 + e
w−fe/1+egwx

s1 + edvxw
2 .

For e=0 or by the transformationv°v, w°w1+e it becomes the standard dispersionless Toda
system.
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Notice that for some dispersionless systems it is possible to construct their integrable disper-
sive counterparts, field and lattice soliton systems. Actually, one can do it on the level of their Lax
representation through Weyl-Moyal-type deformation quantization procedure10 of the dispersion-
less case. The idea relies on the deformation of the usual multiplication inA s6d to the new
associative but noncommutative product,

f!g = f exps"ps]p ^ ]xdg = o
iù0

"i

i!
sps]pdi f · ]x

i g, f,g P A s34d

called!-product. It depends on the formal deformation parameter". The Lie algebra structure is
defined by the commutatorhf ,gj!

s =s1/"dsf!g−g!fd. Then, the!-products34d in the limit "→0
reduces to the standard multiplication and the commutator reduces to the Poisson brackets7d for
fixed s. To construct integrable dispersive systems one must split the algebraA with the!-product
into a direct sum of its Lie subalgebras and then construct the standardR-matrices. It can be done
only for s=0,1,2.But, the cases=2 is equivalent to the cases=0. The algebraA with !-product
s34d for s=0 is isomorphic to the Lie algebra of pseudodifferentials operatorss35d, while for s
=1 is isomorphic to the Lie algebra of shift operatorss47d sE=exp"]xd. The first case leads to the
construction of field soliton systems, and the second one leads to the construction of lattice soliton
systems. Obviously, integrable dispersionless systems can be constructed from integrable disper-
sive systems in the so-called quasiclassicalsdispersionlessd limit, ]t°"]t, ]x°"]x, and"→0.

IV. FIELD SOLITON SYSTEMS

Let g be the algebra of pseudodifferential operators2

g = HL = o
iPZ

uisxd]x
i J , s35d

where the multiplication of two such operators uses the generalized Leibniz rule]mu
=osù0s m

s
dusx]x

m−s. The Lie algebra structure ofg is given by the commutatorfL1,L2g=L1L2

−L2L1. We consider decomposition ofg in the form gùk=hoiùkuisxd]x
i j and g,k=hL

=oi,kuisxd]x
i j, which are Lie subalgebras fork=0,1,2. Inthis case the standardR-matrices are

given by

R= 1
2sPùk − P,kd = Pùk − 1

2 = 1
2 − P,k.

So, the Lax hierarchy has the form

Ltq
= fsLqdùk,Lg = − fsLqd,k,Lg. s36d

Consistent Lax equations are obtained for Lax operators of the form3

k = 0, L = ]x
N + uN−2]x

N−2 + ¯ + u1]x + u0, s37d

k = 1, L = ]x
N + uN−1]x

N−1 + ¯ + u0 + ]x
−1u−1, s38d

k = 2, L = uN]x
N + uN−1]x

N−1 + ¯ + u0 + ]x
−1u−1 + ]x

−2u−2, s39d

whereui are dynamical fields. Comparing Lax operatorss37d–s39d with those for the dispersion-
less cases12d and s13d for s=0 we see that not all dispersionless systems have dispersive coun-
terparts.

The simple deformations satisfyings4d and s5d are the following ones:
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r = Pk−1s·d]x
k for k = 0,1.

Note, that the first case has been considered, in a little bit of a different manner, earlier in Ref. 4.
Hence, the deformedR-matrices have the form

R8 = Pùk − 1
2 + ePk−1s·d]x

k = 1
2 − P,k + ePk−1s·d]x

k.

The case: k=0.
The Lax hierarchy is

Ltq
= fsLqdù0 + efLqg−1,Lg = − fsLqd,0 − efLqg−1,Lg s40d

and the appropriate Lax operators are given in the form

L = ]x
N + uN−1]x

N−1 + uN−2]x
N−2 + ¯ + u1]x + u0. s41d

From s40d one finds

suN−1dtq
= − eNsfLqg−1dx,

suN−2dtq
= NsfLqg−1dx − esN − 1duN−1sfLng−1dx − e

NsN − 1d
2

sfLqg−1d2x, s42d

¯ .

Hence, fore=0 the fielduN−1 becomes the time-independentcN−1 one slet cN−1=0d, then Lax
operator becomes a standard Lax operators37d. Expressions42d implies the relation between fields
uN−1, uN−2,

uN−2 = −
1

e
uN−1 +

N − 1

2N
suN−1d2 +

N − 1

2
suN−1dx.

We eliminate the fielduN−2 and as a result the Lax operators take the form

L = ]x
N + uN−1]x

N−1 + S−
1

e
uN−1 +

N − 1

2N
suN−1d2 +

N − 1

2
suN−1dxD]x

N−2 + ¯ + u0. s43d

In the dispersionless limits43d reduces tos22d. Reparametrizings43d, uN−1°−euN−2 and then
taking limit e→0 we obtain the standard Lax operators37d.

Lemma 4.1: For arbitrarye the Lax hierarchys40d ands43d is equivalent to the Lax hierarchy
s36d and s37d.

We are looking for relations between fields from Lax operatorss43d and s37d, respectively.
They are given in the following form:

uN−1 ° − euN−2,

ui ° ui + f ifuN−2,uN−3, . . . ,ui+1g for N − 3 ù i ù 0. s44d

The square brackets ins44d mean that functionsf i, in opposite to the cases23d, depend not only
on ui, but also on the derivativessuidx,suidxx, . . . . Functionsf i are constructed in such a way that
hierarchys40d will lead to the same evolution system as hierarchys36d for k=0. Argumentation
that this equality indeed holds is of the same nature as in Sec. III, the paragraphs=k=0.

Example 4.2: KdV, N=2.
For the constrained Lax operators43d of the form L=]x

2+u]x+ 1
4u2−s1/edu+ 1

2ux we find
reparametrized KdV,

042702-8 B. M. Szablikowski and M. Błaszak J. Math. Phys. 46, 042702 ~2005!

                                                                                                                                    



Lt3
= fsL3/2dù0 + efL3/2g−1,Lg ⇔ ut3

=
1

4
u3x −

3

2e
uux.

The transformation to the standard form of KdV is given by u°−eu.
Example 4.3: Deformed Boussinesq, N=3.
Let L=]x

3+u]x
2+f 1

3u2−s1/edu+uxg]x+w then

Lt2
= fsL2/3dù0 + efL2/3g−1,Lg⇔

ut2
= −

4

3
uux − u2x +

2

9
eu2ux +

2

3
eux

2 +
2

3
euu2x +

2

3
eu3x − 2ewx,

wt2
= −

2

3e
uux +

8

9e
u2ux +

2

3e
ux

2 +
4

3e
uu2x +

2

3e
u3x −

8

27
u3ux −

14

9
uux

2 +
4

3
uwx −

10

9
u2u2x −

8

3
uxu2x

+ w2x −
14

9
uu3x −

2

3
u4x +

2

81
eu4ux +

8

27
eu2ux

2 +
10

27
eux

3 −
2

9
eu2wx −

2

3
euxwx +

4

27
eu3u2x

+
4

3
euuxu2x +

2

3
eu2x

2 −
2

3
euw2x +

10

27
eu2u3x +

10

9
euxu3x −

2

3
ew3x +

4

9
euu4x +

2

9
eu5x.

Eliminating the field w we obtain reparametrized Boussinesq, utt=fs2/3edu2− 1
3uxxgxx

. The trans-
formation s44d to the standard form of the Boussinesq system is given by u°−eu, w°w− 1

3eu2

− 1
27e3u3+ 1

3e2uux− 1
3eu2x.

The case: k=1.
The Lax hierarchy becomes

Ltq
= fsLqdù1 + efLqg0]x,Lg = − fsLqd,1 − efLqg0]x,Lg s45d

and the appropriate Lax operators have the form

L = uN]x
N + uN−1]x

N−1 + ¯ + u0 + ]x
−1u−1. s46d

From s45d one finds thatsuNdt=esuNdxfLqg0−eNuNsfLqg0dx. Hence in the limite=0 the fielduN

becomes a time-independentcN oneslet cN=1d, then Lax operator becomes a standard Lax opera-
tor s46d. There is no constraint contrary to the previous case. The Lax operatorss45d with s46d lead
to the construction of new integrable soliton systems, at least to the best of our knowledge. Again
the zero power ofL always leads to the space translation symmetry,Lt0

=eLx.
Example 4.4: Extended Kaup–Broer, N=1.
Let L=u]x+v+]x

−1w, then for Lti
=fsLid*1+efLig0]x,Lg we find

1u

v

w
2

t0

= e1ux

vx

wx
2 ,

1u

v

w
2

t1

= 1 euxv − euvx

uvx + evvx

uxw + uwx + evxw + evwx
2 ,

ut2
= euxv

2 − 2euvvx − 2eu2wx − eu2v2x,
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vt2
= 2uuxw + 2uvvx + 2u2wx + uuxvx + u2v2x + ev2vx + 2euvxw + euvx

2,

wt2
= 2uxvw + 2uvxw + 2uvwx − ux

2w − 3uuxwx − uu2xw − u2w2x + 2euxw
2 + 2evvxw + euxvxw

+ ev2wx + 4euwwx + euvxwx + euv2xw,

¯ .

It is dispersive counterpart of the hierarchy from Example 3.4. In the limite→0 and u=1 we
obtain the standard Kaup–Broer system.

Example 4.5: Two field system, N=0.
For L=v+w]x

−1 we havefLig0=vi and sLidù1=0, where i=0,1,2, . . . .Then, we obtain for
Lti

=fefLig0]x,Lg again the dispersionless hierarchys28d.

V. LATTICE SOLITON SYSTEMS

Let g be the algebra of shift operators9

g = HL = o
iPZ

uisxdEiJ , s47d

whereE is the shift operator such thatEmusxd=usx+mdEm. The Lie algebra structure ofg is given
by the commutatorfL1,L2g=L1L2−L2L1. We consider simple decomposition ofg in the form
gùk=hoiùkuiEij and g,k=hoi,kuiEij, which are Lie subalgebras fork=0,1. In these cases the
standardR-matrix is given by

R= 1
2sPùk − P,kd = Pùk − 1

2 = 1
2 − P,k.

The Lax hierarchy is

Ltq
= fsLqdùk,Lg = − fsLqd,k,Lg, k = 0,1. s48d

Notice that these two cases are related by simple transformationE°E−1 and uisx−md°u−isx
+md. Then,k=0 goes tok=1 and vice versa. So, it is enough to consider only the first case. For
k=0, the appropriate Lax operators are of the form9

L = EN + uN−1sxdEN−1 + ¯ + u1−msxdE1−m + u−msxdE−m. s49d

The powers ofL are in general fractional and can be constructed in two ways, forL1/N=a1E
+a0+a−1E−1+¯ by requiring sL1/NdN=L and for L1/m=¯ +a1E+a0+a−1E−1 by requiring
sL1/mdm=L. Then, ins48d we useLi/N and Li/m for i =0,1,2, . . . . The Laxhierarchiess48d for k
=0,1 aredispersive counterparts of the dispersionless hierarchiess9d for s=1, k=1 ands=1, k
=2, respectively.

The simple deformations satisfyings4d and s5d are of the form

k = 0,1, r = P0.

But for the same reason as above it is enough to consider the casek=0.
The case: k=0.
The deformedR-matrix is given by

R= Pù0 − 1
2 + eP0 = 1

2 − P,0 + eP0.

Hence

Ltq
= fsLqdù0 + efLqg0,Lg = − fsLqd,0 + efLqg0,Lg. s50d

The appropriate Lax operators are of the form
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L = uNsxdEN + uN−1sxdEN−1 + ¯ + u1−msxdE1−m + u−msxdE−m. s51d

From s50d it follows that

uNsxdt = euNsxds1 − ENdfLqg0, ¯ , u−msxdt = s1 + edu−msxds1 − E−mdfLqg0. s52d

As a result we find that the highest and lowest field are interrelated in the following way:

S uNsxd
uNsx − mdD

1+e

= S u−msxd
u−msx + NdD

e

. s53d

For e=0 the fielduN becomes a time-independentcN one slet cN=1d, then the Lax operators51d
becomes a standard Lax operators49d for k=0. Fore=−1 the fieldu−m becomes time independent
and the Lax operator becomes a standard Lax operator fork=1. It is so, because fork=0 ande
=−1 the deformedR-matrix becomes the standardR-matrix for k=1.

Lemma 5.1: For arbitrarye, the Lax hierarchys50d ands51d is equivalent to the Lax hierar-
chy s48d and s49d for k=0.

Consider the following transformations:

E8N = uNsxdEN ⇔ E8 = asxdE,

ui8sxd =5
uisxd

asxdasx + 1d · ¯ ·asx + i − 1d
for N − 1 ù i . 0,

u0sxd for i = 0,

uisxdasx − 1dasx − 2d · ¯ ·asx − id for 0 . i . − m,
6 s54d

and t8= t, whereasxd is given by the following relation:

uNsxd = asxdasx + 1d · ¯ ·asx + N − 1d. s55d

It transforms the Lax operatorss51d into the Lax operatorss49d with ui8sxd components. Froms54d
it follows that

sE8idt = Pisln asxddtE8i , s56d

where

Pi = 51 + E + ¯ + Ei−1 for i ù 1,

0 for i = 0,

− E−1 − E−2 − ¯ − Ei for i ø − 1.
6

One finds also froms55d, that

sln asxddt = sPNd−1sln uNsxddt =
by s52d

esPNd−1s1 − ENdfLqg0.

Then, using relations1−ENdPi =s1−EidPN which is valid for arbitraryN, i .0, we have

Lt = Lt8 + o
i=−m

N

ui8sxdsE8idt =
by s56d

Lt8 + e o
i=−m

N

ui8sxds1 − ENdPisPNd−1fLqg0E8i = Lt8 + e o
i=−m

N

ui8sxds1 − Eid

3fLqg0E8i = Lt8 + fefLqg0,Lg,

whereuN8 sxd=1. Hence, the hierarchys50d becomess48d with k=0.
Example 5.2: Extended Toda, k=0.
For the Lax operator L=usxdE+vsxd+wsxdE−1 and Lt1

=fsLdù0+efLg0,Lg we find
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1usxd
vsxd
wsxd

2
t1

= 1 − eusxdfvsx + 1d − vsxdg
usxdwsx + 1d − usx − 1dwsxd
s1 + edfvsxd − vsx − 1dgwsxd

2 . s57d

Again, in the limit e→0 and usxd=1 or by the transformation s54d, vsxd°vsxd,
wsxd°wsxd /usx−1d we obtain the standard Toda system. In the limite=−1 and wsxd=1 we
obtain the reparametrized Toda system. The fields usxd and vsxd in s57d according tos53d are
related by usx−1d1+e=wsxd−e.
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We establish the exact solution of the nonlinear Schrödinger equation with a delta-
function impurity, representing a pointlike defect which reflects and transmits. We
solve the problem both at the classical and the second quantized levels. In the
quantum case the Zamolodchikov–Faddeev algebra, familiar from the case without
impurities, is substituted by the recently discovered reflection-transmissionsRTd
algebra, which captures both particle–particle and particle–impurity interactions.
The off-shell quantum solution is expressed in terms of the generators of the RT
algebra and the exact scattering matrix of the theory is derived. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1842353g

I. INTRODUCTION

Impurity problems arise in different areas of quantum field theory and are essential for un-
derstanding a number of phenomena in condensed matter physics. At the experimental side, the
recent interest in pointlike impuritiessdefectsd is triggered by the great progress in building
nanoscale devices.

The interaction of quantum fields with impurities represents in general a hard and yet un-
solved problem, but there are relevant achievements1–11 in the case of integable systems in 1+1
space–time dimensions. The study12–19 of the special case of purely reflecting impuritiessbound-
ariesd indicates factorized scattering theory20–24as the most efficient method for dealing with this
kind of problem. The method provides on-shell information about the system and allows to derive
the exact scattering matrix. The goal of the present paper is to extend this framework, exploring
the possibility to recover off-shell information and to reconstruct the quantum fields, generating
the above scattering matrix. We test this possibility on one of the most extensively studied inte-
grable systems—the nonlinear SchrödingersNLSd model.25–32 More precisely, we are concerned
below with the NLS model coupled to a delta-function impurity. The basic tool of our investiga-
tion is a specific exchange algebra,6,7 called reflection-transmissionsRTd algebra. The RT algebra
is a generalization of the Zamolodchikov–FaddeevsZFd21,23 algebra used in the case without
defects. The RT algebra is originally designed for the construction of the total scattering operator
from the fundamental scattering data, namely the two-body bulk scattering matrix and the reflec-
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tion and transmission amplitudes of a single particle interacting with the defect. In what follows
we demonstrate that in the NLS model the same algebra allows to reconstruct the corresponding
off-shell quantum field as well. Being the first exactly solvable example with nontrivial bulk
scattering matrix, the NLS model sheds some light on the interplay between pointlike impurities,
integrability, and symmetries. In this respect our solution clarifies a debated question about the
Galilean invariance of the bulk scattering matrix.

After introducing the model in Sec. II, we establish the solution, both at the classicalsSec.
II B d and second-quantizedsSec. IIId levels. We do this in detail, clarifying the basic properties of
the solution. In Sec. IV we derive from the off-shell quantum field the total scattering matrix of the
model, showing that it coincides with the one obtained directly from factorized scattering. In Sec.
V we indicate some generalizations. Our conclusions and ideas about further developments are
also collected there. Appendixes A and B are devoted to the proofs of some technical results.

We present below the analysis of the so-calledd-type impurity. A wider class of defects,
interacting with the NLS model and preserving its integrability, can be treated in a similar way.33

We have chosen to focus here on the particulard-type defect in order to keep the length of the
proofs reasonable, referring to Ref. 33 for a more physically oriented treatment of the general case
swithout detailed proofsd.

II. INTRODUCING AN IMPURITY IN THE NLS MODEL

We start by recalling some well-known results about the NLS model without impurity. The
reason for this is twofold: first, because this is a good guide to tackle the problem with impurity
and second, because the central piece of the solution of the NLS model, the Rosales
expansion,34,35 can be adapted to the impurity case.

A. The model to solve

The field theoretic version of NLS is described by a classical complex fieldFst ,xd whose
equation of motion reads

si]t + ]x
2dFst,xd = 2guFst,xdu2Fst,xd. s2.1d

The corresponding action takes the form

ANLS =E
R

dtE
R

dxsiF̄st,xd]tFst,xd − u]xFst,xdu2 − guFst,xdu4d, s2.2d

and, being in particular invariant under time translation, ensures the conservation of the energy

ENLS =E
R

dxsu]xFst,xdu2 + guFst,xdu4d. s2.3d

The latter is non-negative forgù0.
It is well-known that this is a nonrelativistic integrable model36 ssee also Ref. 30 for a reviewd

and an explicit solution for the field was given by Rosales in Ref. 34,

Fst,xd = o
n=0

`

s− gdnFsndst,xd, s2.4d

where
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Fsndst,xd =E
R2n+1

p
i=1

j=0

n
dpi

2p

dqj

2p
l̄sp1d ¯ l̄spndlsqnd ¯ lsq0d

eio j=0
n sqjx−qj

2td−ioi=1
n spix−pi

2td

p
i=1

n

spi − qi−1dspi − qid

s2.5d

and the overbar denotes complex conjugation.
The leveln=0 is the linear part of the field corresponding to the free Schrödinger equation. It

was argued in Ref. 32 that this solution is well-defined for a large class of functionsl fcontaining
the Schwarz spaceSsRdg and an upper bound forg was given for the seriess2.4d to converge
uniformly in x. It also represents a physical field since it vanishes asx→ ±`. In the same paper,
the authors considered NLS on the half-lineR+, which can be seen as the model on the whole line
in the presence of a purely reflecting impurity sitting at the origin. Therefore, the latter represents
a particular case of the model with transmitting and reflecting impurity atx=0 we wish to
contemplate in this paper. They gave the following action:

AR =E
R

dtE
R+

dxsiF̄st,xd]tFst,xd − u]xFst,xdu2 − guFst,xdu4d − hE
R

dtuFst,0du2,

wherehPR is the parameter controlling the boundary condition

lim
x→0+

s]x − hdFst,xd = 0. s2.6d

In our case, since the impurity is allowed to reflect and transmit, we must take theR− part into
account and we are led to work with the following action:

ART = A+ + A− + A0, s2.7d

where

A± =E
R

dtE
R±

dxsiF̄st,xd]tFst,xd − u]xFst,xdu2 − guFst,xdu4d, s2.8d

A0 = − 2hE
R

dtuFst,0du2. s2.9d

The form ofART shows the particular status of the originx=0 where the impurity sits. Again, the
invariance of the action under time translations ensures the conservation of the energy,

ERT =E
R−

%R+
dxsu]xFst,xdu2 + guFst,xdu4d + 2huFst,0du2. s2.10d

It is positive forgù0,hù0, which is what we assume in the rest of this paper. We will see that
h characterizes the transmission and reflection properties of the impurity. Using the variational
principle, one deduces the equation of motion and the boundary conditions for the field:Fst ,xd
must be the solution of NLS onR− andR+, continuous atx=0 and satisfy a “jump condition” at
the origin. It must also vanish at infinity as a physical field.

Definition 2.1: The nonlinear Schrödinger model with a transmitting and reflecting impurity at
the origin is described by the following boundary problem for the fieldFst ,xd:

si]t + ]x
2dFst,xd − 2guFst,xdu2Fst,xd = 0, x Þ 0, s2.11d

lim
x→0+

hFst,xd − Fst,− xdj = 0, s2.12d
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lim
x→0+

hs]xFdst,xd − s]xFdst,− xdj − 2hFst,0d = 0, s2.13d

lim
x→±`

Fst,xd = 0. s2.14d

B. Explicit solution

As announced, the Rosales solution34 can be adapted suitably to solve the problem of defini-
tion 2.1. Sinces2.4d is a solution of NLS onR, it is easy to devise a solution fors2.11d. Starting
from two copies ofs2.4d and s2.5d, one based on a functionl+ and the other on a functionl−,
denotedF+st ,xd andF−st ,xd, respectively, we define

Fst,xd = 5F+st,xd, x . 0,

F−st,xd, x , 0,
1
2sF+st,0d + F−st,0dd, x = 0.

6 s2.15d

It is clearly solution ofs2.11d for xÞ0 and from the vanishing ofF±st ,xd asx→ ±`, s2.14d is also
satisfied. However, there is no reason why, in general,Fst ,xd so defined should satisfy the bound-
ary conditionss2.12d and s2.13d. In order to satisfy these conditions, we parametrizel+, l− as
follows:

Sl+spd
l−spd

D = S 1 Tspd
Ts− pd 1

DSm+spd
m−spd

D + SRspd 0

0 Rs− pd
DSm+s− pd

m−s− pd
D , s2.16d

where

Tspd =
p

p + ih
, Rspd =

− ih

p + ih
, p P R, s2.17d

andm±spd are arbitrary Schwarz test functions. Then, the functionsl±spd satisfy

l±spd = Ts±pdl7spd + Rs±pdl±s− pd, ∀ p P R s2.18d

which follows from the identities

RspdRs− pd + TspdTs− pd = 1 and TspdRs− pd + RspdTs− pd = 0, ∀ p P R. s2.19d

These relations plus a particular choice for the form ofm± will be essential in the proof of the
theorem 2.2 below.

Anticipating the quantum case, if we interpretl+ srespectively,l−d as a wave packet,s2.18d
shows that each wave packet inR+ srespectively,R−d is equivalent to the superimposition of a
transmitting part coming fromR− srespectively,R+d and a reflected part inR+ srespectively,R−d.
This physical interpretation will show up in the next section when we construct a Fock represen-
tation of the creation and annihilation operators.

We are now in position to state the main result of this section whose lengthy proof we defer
until Appendix A.

Theorem 2.2:Let m+, m− be given by

m±skd = ±
m0s±kd + sk 7 ihdm1skd

k 7 ih + 1
, s2.20d

wherem0, m1 are arbitrary Schwartz functions,m1 being even and letF+st ,xd, F−st ,xd be given by
the Rosales expansion (2.4) and (2.5) withl replaced byl+ andl−, respectively. Then,Fst ,xd as
defined in (2.15) satisfies the boundary conditions (2.12) and (2.13), i.e.,
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lim
x→0+

hFst,xd − Fst,− xdj = 0,

lim
x→0+

hs]xFdst,xd − s]xFdst,− xdj − 2hFst,0d = 0.

With this result, we can say thatFst ,xd rewritten as

Fst,xd = usxdF+st,xd + us− xdF−st,xd, s2.21d

whereusxd is the Heaviside function defined here to be1
2 at x=0, is the classical solution of the

nonlinear Schrödinger model with impurity as given in definition 2.1.
We want to emphasize that these boundary conditions decouple for the nonlinear part of the

field sas shown in Appendix Ad and this is due to the reflection-transmission propertys2.18d
satisfied byl+ andl−. This already gives a good hint that the construction of a local field from the
quantum counterparts ofl+, l− is achievable, as we now explain.

III. QUANTIZATION OF THE SYSTEM

In this section, we move on to the construction and resolution of the quantized version of NLS
with impurity. As we mentioned earlier, the crucial ingredient is the RT algebra which encodes the
properties of the impurity.

A. Reflection-transmission algebra

Here we rely on the constructions developed in Ref. 7 and recast them in the particular context
of the scalar nonlinear Schrödinger modelsno internal degrees of freedom, special form of the
exchange matrix and of the generators, see also Ref. 11d.

We consider the associative algebra with identity element1 and two sets of generators,
haaspd ,aa

†spd ;pPR ,a= ± j andhrspd ,tspd ;pPRj, called the bulk and defectsreflection and trans-
missiond generators. The labela=± refers to the half-lineR± with respect to the impuritysin
practice it will indicate where the particle is created or annihilatedd. Introducing the measurable
function S:R3R→C defined by

Sspd =
p − ig

p + ig
s3.1d

the S-matrix is defined in our context by

S = o
a1,a2=±

Sa1a2
sp1,p2dEa1a1

^ Ea2a2
, s3.2d

whereSa1a2
sp1,p2d=Ssa1p1−a2p2d and sEabdsg=dasdbg. It is easy to check thatS satisfies the

unitarity condition and the quantum Yang–Baxter equation

S12sp1,p2dS21sp2,p1d = 1 ^ 1, s3.3d

S12sp1,p2dS13sp1,p3dS23sp2,p3d = S23sp2,p3dS13sp1,p3dS12sp1,p2d. s3.4d

Our defect generatorsrspd, tspd are related tora
bspd, ta

bspd defined in Ref. 7 by

ra
bspd = da

brsapd and ta
bspd = ea

btsapd with e = S0 1

1 0
D . s3.5d

All this setup gives rise to a particular RT algebra whose defining relations then read as follows.

sid Bulk exchange relations,
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aa1
sp1daa2

sp2d − Ssa2p2 − a1p1daa2
sp2daa1

sp1d = 0, s3.6d

aa1

† sp1daa2

† sp2d − Ssa2p2 − a1p1daa2

† sp2daa1

† sp1d = 0, s3.7d

aa1
sp1daa2

† sp2d − Ssa1p1 − a2p2daa2

† sp2daa1
sp1d = 2pdsp1 − p2dfda1

a21 + ea1

a2tsa1p1dg

+ 2pdsp1 + p2dda1

a2rsa1p1d. s3.8d

sii d Defect exchange relations,

frsp1d,rsp2dg = 0, s3.9d

ftsp1d,tsp2dg = 0, s3.10d

ftsp1d,rsp2dg = 0. s3.11d

siii d Mixed exchange relations,

aa1
sp1drsp2d = Ssp2 − p1dSsp2 + p1drsp2daa1

sp1d, s3.12d

rsp1daa2

† sp2d = Ssp1 − p2dSsp1 + p2daa2

† sp2drsp1d, s3.13d

aa1
sp1dtsp2d = Ssp2 − p1dSsp2 + p1dtsp2daa1

sp1d, s3.14d

tsp1daa2

† sp2d = Ssp1 − p2dSsp1 + p2daa2

† sp2dtsp1d. s3.15d

sivd Finally, the defect generators are required to satisfy unitarity conditions,

tspdts− pd + rspdrs− pd = 1, s3.16d

tspdrs− pd + rspdts− pd = 0, s3.17d

which amount to implement the physical energy conservation when reflection and trans-
mission occur.

Since we aim at second quantize a physical system, we now turn to the Fock representation of this
algebraic setup as it is presented in Ref. 7. What we need is to represent the generators
haaspd ,aa

†spd ,rspd ,tspd ,pPRj as operator-valued distributions acting on a common invariant sub-
space of a Hilbert space,F, to be defined. We should also identify a normalizable vacuum stateV
annihilated byaa and cyclic with respect toaa

†. Applying the general construction of Ref. 7, we
know that each such Fock representation is characterized by two numerical matricesTspd and
Rspd. Here we take

Tspd = S 0 Tspd
Ts− pd 0

D, Rspd = SRspd 0

0 Rs− pd
D s3.18d

with T, R given in s2.17d. Now consider

L = %
a=±

L2sRd s3.19d

endowed with the usual scalar product
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kw,cl =E
R

dpo
a=±

w̄aspdcaspd, s3.20d

which makes it a Hilbert space for the associated norm denotedi·i. Then, then-particle subspace
Hsnd is the subspace of then-fold tensor productL^n defined as follows. IfwsndPL^n, we identify
it with the column whose entries arewa1,. . .,an

snd . Then explicitly,Hs0d=C and fornù1, wsndPHsnd if
and only if

wsnd P L^n,

wa1¯an

snd sp1, . . . ,pnd = Tsanpndwa1¯an−1,−an

snd sp1, . . . ,pn−1,pnd + Rsanpndwa1¯an−1an

snd sp1, . . . ,pn−1,− pnd,

s3.21d

n . 1, wa1¯aiai+1¯an

snd sp1, . . . ,pi,pi+1, . . . ,pnd = Ssaipi − ai+1pi+1d

3 wa1¯ai+1ai¯an

snd sp1, . . . ,pi+1,pi, . . . ,pnd, 1 , i , n − 1. s3.22d

The Fock space isF= %n=0
` Hsnd and the common invariant subspace is the finite particle spaceD

spanned by the linear combination of sequencesw=sws0d ,ws1d , . . . ,wsnd , . . .d with wsndPHsnd and
wsnd=0 for n large enough.D is dense inF. We extend the scalar product, again denoted byk· , ·l,
to F,

∀w,c P F, kw,cl = o
n=0

`

kwsnd,csndl

= o
n=0

` E
Rn

dp1 ¯ dpn o
a1,. . .,an=±

w̄a1¯an
sp1, . . . ,pndca1¯an

sp1, . . . ,pnd.

The unit norm vacuum state isV=s1,0, . . . ,0 , . . .d and belongs toD.
Now, we can define the action of the smeared bulk operatorshasfd ,a†sfd ; fP %a=±C0

`sRdj onD
as follows:

asfdV = 0, s3.23d

and for anywsndPHsnd,

fasfdwga1¯an−1

sn−1d sp1, . . . ,pn−1d = ÎnE
−`

` dp

2p
o
a=±

f̄aspdwaa1¯an−1

snd sp,p1, . . . ,pn−1d, s3.24d

fa†sfdwga1¯an+1

sn+1d sp1, . . . ,pn+1d = În + 1fPsn+1df ^ wsndga1¯an+1
sp1, . . . ,pn+1d, s3.25d

wherePsnd is the orthogonal projector inL^n defined in Ref. 7. For completeness, the explicit form
of s3.25d is given in Appendix B. These operators are bounded on eachHsnd,

∀w P Hsnd, iasfdwi ø Înifi iwi, ia†sfdwi ø În + 1ifi iwi. s3.26d

In particular, they are continuous in the smearing functionf. Finally, they satisfy

∀w,c P D, kw,asfdcl = ka†sfdw,cl. s3.27d

The defect generators are represented as multiplicative operators onD, preserving the bulk par-
ticle number,
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frspdwga1¯an

snd sp1, . . . ,pnd = Ssp − a1p1d ¯ Ssp − anpndRspdSsanpn + pd ¯ Ssa1p1 + pd

3wa1¯an

snd sp1, . . . ,pnd, s3.28d

ftspdwga1¯an

snd sp1, . . . ,pnd = Ssp − a1p1d ¯ Ssp − anpndTspdSsanpn + pd ¯ Ssa1p1 + pd

3wa1¯an

snd sp1, . . . ,pnd. s3.29d

It follows then thatr and t have nonvanishing vacuum expectation values

kV,rspdVl = Rspd, kV,tspdVl = Tspd. s3.30d

Introducing finally the operator-valued distributionsaaspd, aa
†spd as

asfd =E
R

dp

2p
o
a=±

f̄aspdaaspd, a†sfd =E
R

dp

2p
o
a=±

aa
†spdfaspd s3.31d

one can check that the defining relations of the RT algebra are satisfied onD. The operatorsa,a†

will be referred to as annihilation and creation operators, respectively. Implementing the automor-
phism% defined in Ref. 7 for which we know that it is realized by the identity operator for any
Fock representation, we get the quantum analog of the reflection-transmission propertys2.18d

aaspd = ea
btsapdabspd + da

brsapdabs− pd, s3.32d

aa
†spd = eb

aab
†spdtsbpd + db

aab
†s− pdrs− bpd. s3.33d

B. The question of operator domains

From the above it appears that the natural domain to start with isD. Actually, it is much too
big for practical calculations and we would like to work on a dense subspace ofD which would
play the role of the standard formal “state space,” a basis of which is usually denoted by
uk1, . . . ,knl, k1. ¯ .kn. As a first step, we define

D0
0 = C,

D0
n = haa1

† sf1d ¯ aan

† sfndV;fi P C0
`sRd, ai = ± ,i = 1, . . . ,nj, n ù 1. s3.34d

One can check thatD0
n is dense inHsnd, i.e., V is cyclic with respect toaa

†. The corresponding
domain D0, dense inD, is the linear space of sequencesw=sws0d ,ws1d , . . . ,wsnd , . . .d with wsnd

PD0
n andwsnd=0 for n large enough.D0 is stable under the action ofaasfd andaa

†sfd. Finally, since
T, R, and S are bounded,C`-functions, D0

n,C0
`sRnd. Now in order to formulate the desired

properties of the quantum field in the next paragraph, we introduce a partial ordering relation on
C0

`sRd by

f s g ⇔ ∀ x P suppsfd, ∀ y P suppsgd, uxu . uyu, s3.35d

which extends naturally toC0
`sRad, a=±. Let us introduce

ãa
†st,xd =E

R

dp

2p
aa

†spde−ipx+ip2t, st,xd P R2,
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ãa
†st, fd =E

R
dx ãa

†st,xdfsxd, f P C0
`sRd. s3.36d

Now, fix tPR and a1, . . . ,an and definesvect standing for “linear span of”d D̃0
0=C and for n

ù1,

D̃0,a1¯an

n = vecthãa1

† st, f1,a1
d ¯ ãan

† st, fn,an
dV; f1,a1

s ¯ s fn,an
, f i,ai

P C0
`sRaid,

0 ¹ suppsf i,ai
d, i = 1, . . . ,nj s3.37d

then the following theorem holds.

Theorem 3.1: ∀tPR, ∀a1, . . . ,an=±, D̃0,a1¯an

n is dense inHsnd.
Proof: We only need to considernù1. The proof relies on two known results of standard

analysis. First, the Fourier transform of aC`-function with compact support is real analyticsi.e.,
a Gevrey class 1 functiond. Second, a real analytic function vanishing on a given open subsetU of
an open connected setO, vanishes on the whole ofO ssee, e.g., Ref. 37d.

Here, it suffices to show thatD̃0,a1¯an

n is dense inD0
n for any tPR so let us consider the

matrix element

Ãt,w,a1¯an
sx1, . . . ,xnd = kwsnd,ãa1

† st,x1d ¯ ãan

† st,xndVl, s3.38d

wherewsndPD0
n is arbitrary. To prove the statement, we now have to show that

Ãt,w,a1¯an
sx1, . . . ,xnd = 0, ∀ ux1u . ¯ . uxnu . 0, xi P Rai, i = 1, . . . ,n s3.39d

implies wsnd=0. Froms3.36d, we get

Ãt,w,a1¯an
sx1, . . . ,xnd =E

Rn
p
j=1

n
dpj

2p
e−ipjxj+itpj

2
kwsnd,aa1

† sp1d ¯ aan

† spndVl, s3.40d

which shows thatÃt,w,a1¯an
is the Fourier transform of aC`-function with compact support and is

therefore real analytic. Conditions3.39d amounts to saying thatÃt,w,a1¯an
vanishes on the set

Ua1¯an
= hx P Rn s . t . ux1u . ¯ . uxnu . 0, xi P Rai, i = 1, . . . ,nj. s3.41d

Ua1¯an
being an open subset ofsthe open and connected spaced Rn, we conclude thatÃt,w,a1¯an

vanishes onRn. This gives in turn that

kwsnd,aa1

† sp1d ¯ aan

† spndVl = 0, ∀ pj P R, j = 1, . . . ,n, s3.42d

or, equivalently, from the cyclicity ofV with respect toa†

wa1¯an

snd sp1, . . . ,pnd = 0, ∀ pj P R, j = 1, . . . ,n. s3.43d

Now using the propertiess3.21d and s3.22d satisfied bywsnd, we get

wa1¯an

snd sp1, . . . ,pnd = 0, ∀ pj P R, ∀ a j = ± , j = 1, . . . ,n s3.44d

that iswsnd=0. j

This theorem will prove to be fundamental in the sequel to derive the required properties of
the quantum field operator. Indeed, it will be enough to perform all calculations only on states in
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s3.45d

and conclude for the whole domainD by a continuity argument.
Lemma 3.2: Let f1,a1

s ¯ s fn,an
and h1,b1

s ¯ shn,bn
, then

kãa1

† st, f1,a1
d ¯ ãan

† st, fn,an
dV,ãb1

† st,h1,b1
d ¯ ãbn

† st,hn,bn
dVl = p

j=1

n

da jb j
kf j ,a j

,hj ,b j
l. s3.46d

In particular, for wP D̃0,a1¯an

n represented as

w = o
bPB

ãa1

† st, f1,a1

b d ¯ ãan

† st, fn,an

b d, f1,a1

b s ¯ s fn,an

b , ∀ b P B, s3.47d

whereB is a finite set, one hasiwi=iobPBf1,a1

b
^ ¯ ^ fn,an

b i.
Proof: To gets3.46d, one uses an induction onn and combiness3.36d, s3.27d, s3.8d, ands3.23d

together with the support conditions on the smearing functions. Using a contour integral argument,
these support conditions imply that all the contributions arising from the RT algebra vanish except
for the usuald- term producing the right-hand side. Equations3.47d is a mere consequence of
s3.46d. j

Remark:It is important to realize that then particle spaceHsnd is the central piece in this
construction and that, on this space, any operation we have consideredsscalar product, creation
operator, Fourier transformd is continuous in the smearing functions. SinceC0

`sRd is dense in
SsRd, the Schwarz space, we can extend the abovesespecially the definition ofD0

nd to smearing
functions inSsRd.

C. Quantum field

We start by definingFst , fd as

Fst, fd =E
R

dxo
a=±

f̄asxdFast,xd, f P C whereC = %
a=±

C0
`sRad. s3.48d

f is viewed as a column vectorf =s f+

f−
d with faPC0

`sRad and 0¹suppsfad. Following the standard

argument of Ref. 29, we replacelaspd ,l̄aspd in the Rosales expansion of the classical fields2.4d
and s2.5d by the operatorsaaspd ,aa

†spd in order to define

Fast,xd = o
n=0

`

s− gdnFa
sndst,xd, g . 0 s3.49d

and

Fa
sndst,xd =E

R2n+1
p
i=1

j=0

n
dpi

2p

dqj

2p
aa

†sp1d ¯ aa
†spndaasqnd ¯ aasq0d

eio j=0
n sqjx−qj

2td−ioi=1
n spix−pi

2td

p
i=1

n

spi − qi−1 − ia«dspi − qi − ia«d

,

s3.50d

where we used ani« prescription depending ona=±.
We now have several requirements to meet for our quantum theory to be well defined. We

must give a precise meaning toFast ,xd, show that the canonical commutation relations as well as
the boundary conditionss2.12d ands2.13d hold in a sense we shall make precise and thatFast ,xd
is indeed the quantum solution we look for.

We start by associatingFast ,xd with the quadratic form defined onD3D by
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sw,cd ° kw,Fast,xdcl, s3.51d

D containing only finite particle vectors, it is enough to investigatekw ,Fa
sndst ,xdcl for arbitraryn.

Proposition 3.3:∀ nù0, ∀ w ,cPD, st ,xd° kw ,Fa
sndst ,xdcl is a C` function.

Proof: The proof is the same as in Ref. 32. j

We define the conjugateFa
†st ,xd again as a quadratic form onD3D by

kw,Fa
†st,xdcl = kFast,xdw,cl. s3.52d

It has the same smoothness properties and froms3.27d, we get

Fa
†sndst,xd =E

R2n+1
p
i=1

j=0

n
dpi

2p

dqj

2p
aa

†sq0d ¯ aa
†sqndaaspnd ¯ aasp1d

3
e−io j=0

n sqjx−qj
2td+ioi=1

n spix−pi
2td

pi=1

n
spi − qi−1 + ia«dspi − qi + ia«d

. s3.53d

Defining the smeared version

F†st, fd =E
R

dxo
a=±

Fa
†st,xdfasxd, f P C s3.54d

we conclude thatFst , fd andF†st , fd are understood as quadratic forms on the domainD and are
related by

kw,Fa
†st, fdcl = kFast, fdw,cl. s3.55d

To get true quantum fields, we need to show that these quadratic forms give rise to operators on
D. This requires the following two lemmas.

Lemma 3.4:∀ w ,cPD,

sid For h1,as ¯ shn,a,

kw,Fast, fadãa
†st,h1,ad ¯ ãa

†st,hn,adVl = o
j=1

n

kfa,hj ,al

3kw,ãa
†st,h1,ad ¯ ãa

†st,hj ,ad̂ ¯ ãa
†st,hn,adVl,

s3.56d

where the hatted symbol is omitted.
sii d For has fa,

kw,Fa
†st, fadãa

†st,hadcl = kw,ãa
†st,hadFa

†st, fadcl. s3.57d

siii d For fashj ,a, j =1, . . . ,n,

kw,Fa
†st, fadãa

†st,h1,ad ¯ ãa
†st,hn,adVl = kw,ãa

†st, fadãa
†st,h1,ad ¯ ãa

†st,hn,adVl.

s3.58d

Proof: One just has to apply the order by order technique developed in Ref. 29. The latter
heavily relied on the ZF algebra satisfied by the creation and annihilation operators. Here, one
must take care in addition of the many contributions of the defect generators but it is remarkable
that the RT algebra satisfied by the bulk and defect operators leads to the same resultssusing the
support requirements of the smearing functions and the conditionsg.0, h.0, all the defect
contributions vanishd. One realizes in these manipulations, especially ins3.58d, that the contribu-
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tions ofF, F† on D̃0
n,a are carried by the zeroth order corresponding to the linear problemsit is the

Fourier transform ofa, a†d. j

Lemma 3.5: GivenwaPD̃0
n,a, caPD̃0

n+1,a and faPC0
`sRad, the quadratic form (3.51) satisfies

the following boundedness condition:

ukwa,Fast, fadcalu ø sn + 1difai iwai icai. s3.59d

Proof: The proof is similar to that given in Ref. 32 and uses lemmas 3.2 and 3.4sid. j

From the Riesz lemma and theorem 3.1, we conclude thatFast , fad :Hsn+1d→Hsnd is a
bounded operator for anynù0. Thus, it defines an operator on the common invariant domainD.
The same holds forFa

†st , fad, Hsnd→Hsn+1d by s3.55d. We can therefore collect our results in the
following theorem.

Theorem 3.6:Fst , fd, F†st , fd :D→D are Hermitian conjugate, linear operators and satisfy

Fst, fdV = 0, F†st, fdV = ã†st, fdV. s3.60d

Finally, we will have anonrelativistic quantum fieldif we prove the canonical commutation
relations forF, F†.

Theorem 3.7:hFst , fd ,F†st , fd , f PCj realize a Fock representation of the equal time canoni-
cal commutation relations onD,

fFst, f1d,Fst, f2dg = 0 = fF†st, f1d,F†st, f2dg, s3.61d

fFst, f1d,F†st, f2dg = kf1, f2l. s3.62d

Proof: We know that it suffices to compute the commutators onD̃0
n,+ or D̃0

n,− for arbitraryn
and then extend the results by continuity toHsnd and by linearity toD. From theorem 3.6, we get
that sid–siii d of lemma 3.4 hold as operator equalities. Let us start with the first commutator. It is
made out of four parts,

fFst, f1d,Fst, f2dg = fF+st, f1,+d,F+st, f2,+dg + fF+st, f1,+d,F−st, f2,−dg + fF−st, f1,−d,F+st, f2,+dg

+ fF−st, f1,−d,F−st, f2,−dg. s3.63d

The first and fourth parts of the right-hand side are easily seen to be zero fromsid of lemma 3.4
One has fora=±,

Fast, f1,adFast, f2,adãa
†st,h1,ad ¯ ãa

†st,hn,adV = o
j=1

n

o
k=1

kÞ j

n

kf2,a,hj ,alkf1,a,hk,alãa
†st,h1,ad ¯

3ãa
†st,hj ,ad̂ ¯ ãa

†st,hk,ad̂ ¯ ãa
†st,hn,adV,

s3.64d

which is symmetric under the exchange off1 and f2 implying the vanishing of the commutators.
As for the mixed terms, one can check that

Fast, f i,adã−a
† st,h1,−ad ¯ ã−a

† st,hn,−adV = 0, i = 1,2 s3.65d

implying the vanishing of the second and third commutators onD̃0
n,−a and hence onD. Now the

vanishing offF†st , f1d ,F†st , f2dg on D is obtained by Hermitian conjugation. This provess3.61d.
Equations3.62d is obtained as follows. Again, we split the commutator into four parts. Now

given a state inD̃0
n,a, we assumehk,as f2,ashk+1,a for somek and using lemma 3.4, we compute

for a=±,
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Fast, f1,adFa
†st, f2,adãa

†st,h1,ad ¯ ãa
†st,hn,adV = kf1,a, f2,alãa

†st,h1,ad ¯ ãa
†st,hn,adV + S

s3.66d

and

Fa
†st, f2,adFast, f1,adãa

†st,h1,ad ¯ ãa
†st,hn,adV = S, s3.67d

whereS is

o
j=1

n

kf1,a,hj ,alãa
†st,h1,ad ¯ ãa

†st,hj ,ad̂ ¯ ãa
†st,hk,adãa

†st, f2,adãa
†st,hk+1,ad ¯ ãa

†st,hn,adV.

This gives

fF+st, f1,+d,F+
†st, f2,+dg + fF−st, f1,−d,F−

†st, f2,−dg = kf1,+, f2,+l + kf1,−, f2,−l = kf1, f2l, s3.68d

i.e., the desired contribution. It is then straightforward usings3.65d to verify that the mixed terms
do not contribute

fF+st, f1,+d,F−
†st, f2,−dg = fF−st, f1,−d,F+

†st, f2,+dg = 0.

j

Now we prove thatV is cyclic with respect toF† and thatFst ,xd is the solution of the
quantum nonlinear Schrödinger equation with impurity. Extending the partial orderings to func-
tions in C as follows:

for f,g P C, f s g ⇔ fa s ga, a = ± , s3.69d

one can prove the following theorems.
Theorem 3.8:The space

H0
snd = vecthF†st, f1d ¯ F†st, fndV; f i P C, i = 1, . . . ,n, fn s . . . s f1j s3.70d

is dense inHsnd.
Proof: Let wsndPHsnd and suppose

kwsnd,F†st, f1d ¯ F†st, fndVl = 0, ∀ fn s ¯ s f1.

Then, it is true in particular forf i,−=0, i =1, . . . ,n but in that case, we have

F†st, f1d ¯ F†st, fndV = ã+
†st, fn,+d ¯ ã+

†st, f1,+dV

which implieswsnd=0 sinceD̃0
n,+ is dense inHsnd. j

Theorem 3.9: The quantum fieldF is solution of the quantum nonlinear Schrödinger equa-
tion with impurity, i.e., it satisfies

si]t + ]x
2dkw,Fst,xdcl = 2gkw,:FF†F:st,xdcl s3.71d

and the following boundary conditions:

lim
x→0+

kw,hF+st,xd − F−st,− xdjcl = 0, s3.72d

lim
x→0+

]xkw,hF+st,xd + F−st,− xdjcl = 2h lim
x→0

kw,Fst,xdcl, s3.73d

lim
x→±`

kw,Fst,xdcl = 0, s3.74d

042703-13 Solving quantum nonlinear Schrödinger equation J. Math. Phys. 46, 042703 ~2005!

                                                                                                                                    



for any w, cPD.
Proof: Inspired by the classical case, we split the field as follows:

Fst,xd = usxdF+st,xd + us− xdF−st,xd. s3.75d

The main difficulty here is to specify a normal ordering prescription for the analog of the cubic
term. We adopt the prescription detailed in Ref. 32 for the normal ordering denoted :¯: and apply
it to Fa, a=±. Then following Ref. 32stheorem 5d, one gets that the quantum fieldFa is solution
of the nonlinear Schrödinger equation on the half-lineRa: for all w ,cPD,

si]t + ]x
2dkw,Fast,xdcl = 2gkw,:FaFa

†Fa:st,xdcl. s3.76d

The situation is now similar to the classical case and we have to check the quantum analog of
s2.12d–s2.14d. The idea lies again in realizing that Eqs.s3.72d–s3.74d can be cast into a zeroth-
order/linear problem. Following the line of argument of Ref. 32stheorem 6d, one shows that given
w ,cPD, there existsxPHs1d such thatkw ,Fst , fdcl=kV ,Fst , fdxl and x is independent off.
This gives in particularkw ,Fast , fadcl=kV ,Fast , fadxl, a=± and we can compute

kw,Fast,xdcl = kãa
†st,xdV,xl =E

R

dp

2p
eipx−ip2txaspd. s3.77d

Then, Eqs.s3.72d and s3.73d are easily obtained using the propertys3.21d satisfied byx. Finally,
since xaPL2sRd, kw ,Fast ,xdcl as a function ofx is also in L2sRd and therefore vanishes at
infinity. Noting that limx→±`kw ,Fst ,xdcl=limx→±`kw ,F±st ,xdcl, we gets3.74d. j

We have finally achieved the goal of this section: we have explicitly constructed off-shell local
fields for the quantum nonlinear Schrödinger system on the line in the presence of a transmitting
and reflecting impurity. As mentioned in Ref. 7, this remained a challenging open problem for
which we brought an answer here. In other words, the quantum inverse scattering method remains
valid in the presence of an impurity provided that the ZF algebra is replaced by the RT algebra.

IV. SCATTERING THEORY

Scattering theory in the presence of an impurity was studied on general grounds in Ref. 7 by
introducing the RT algebra which, being a generalization of the ZF and boundary algebras, is
believed to prove fundamental also in the study of off-shell correlations functions and symmetries
for 1+1-dimensional integrable systems with impurity.

In this section, we aim at giving some credit to this in the context of the nonlinear Schrödinger
model. Indeed from the above results, we can get some insight in the correlations functions of the
theory. The correlations functions vanish unless they involve the same number ofF andF† and
for a given 2n-point function, we need at most the firstsn−1d-order terms in the Rosales expan-
sion of the field. This reads

kV,Fst1,x1d ¯ Fstn,xndF†stn+1,xn+1d ¯ F†st2n,x2ndVl

= o
Køn−1

Løn−1

gK+LkV,Fsk1dst1,x1d ¯ Fskndstn,xndF†sl1dstn+1,xn+1d ¯ F†slndst2n,x2ndVl, s4.1d

whereK=oi=1
n ki andL=oi=1

n l i and the sum runs over alln-upletssk1, . . . ,knd, sl1, . . . ,lndPZ+
n such

that K ,Løn−1.
One has, for exampleswith t12= t1− t2, x12=x1−x2, and x̃12=x1+x2d,
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kV,Fst1,x1dF*st2,x2dVl =E
−`

+` dp

2p
e−ip2t12husx1dusx2dfeipx12 + Rspdeipx̃12g + us− x1dus− x2dfeipx12

+ R̄spdeipx̃12g + usx1dus− x2dTspdeipx12 + us− x1dusx2dT̄spdeipx12j.

s4.2d

More importantly, using the Haag–Ruelle approach suitably, we can relate off-shell and
asymptotic theories and, doing so, fill the gap of our quantum field theory. Indeed, on the one
hand, we know from Ref. 7 that the Fock representation of the RT algebra generates the
asymptotic states of a general integrable theory with impurity with correspondingS-matrix. On the
other hand, in this paper we constructed off-shell local time-dependent fields whose behavior as
t→ ±` we would like to know.

A. Asymptotic theory

The first step is to characterize wave packets for the free Schrödinger equation which take into
account the presence of the impurity atx=0. We adopt the following setup. ForfPC0

`sRd, we
define

f tsxd =E
R

dp

2p
fspdeipx−ip2t. s4.3d

We transpose the partial orderings3.35d to functions of the variablep.
Definition 4.1: Given n,mù1, consider two sets of functions

Hn = hhi,ai
P C0

`sRaid, i = 1, . . . ,nj andGm = hgi,bi
P C0

`sR−bid, i = 1, . . . ,mj, s4.4d

where the functions obey the following order prescriptions:

h1,a1
s ¯ s hn,an

, gm,bm
s ¯ s g1,b1

. s4.5d

We also define

hi,ai

u sxd = usaixdhi,ai

t sxd, gi,bi

u sxd = usbixdgi,bi

t sxd. s4.6d

By construction,hi,ai

u sxd represent wave packets inRai moving away from the impurity towards
ai` while gi,bi

u sxd represent wave packets inRbi moving towards the impurity. One already un-
derstands that they will be relevant for the so-called “out” and “in” states, respectively. In fact, this
is the main theorem of this section for which we need some preliminary results.

From the preceding section, we know the exchange and commutation properties ofF† andã†

smeared with ordered functions in the variablex. Here, our wave packets were constructed from
ordered functions inp but we made no assumption as to their ordering inx. Therefore, we must
include all the possibilities and this requires the use of the permutation group ofn elementsSn.
For sPSn, pPSm, n,mù2, we introduce

uh
ssa1x1, . . . ,anxnd = p

i,j=1

i, j

n

usasi
xsi

− as j
xs j

d, s4.7d

ug
psb1x1, . . . ,bmxmd = p

i,j=1

i. j

m

usbpi
xpi

− bp j
xp j

d, s4.8d

satisfying
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o
sPSn

uh
ssa1x1, . . . ,anxnd = 1 = o

pPSm

ug
psb1x1, . . . ,bmxmd. s4.9d

Lemma 4.2: Given any two sets of functions inHn and Gm,

sid The following limits hold:

lim
t→+`

ih1,a1

u
^ ¯ ^ hn,an

u − h1,a1

t
^ ¯ ^ hn,an

t i = 0,

lim
t→−`

ig1,b1

u
^ ¯ ^ gm,bm

u − g1,b1

t
^ ¯ ^ gm,bm

t i = 0. s4.10d

sii d Let en be the identity ofSn and let us define

Ha1¯an

s sx1, . . . ,xnd = h1,a1

u sx1d ¯ hn,an

u sxnduh
ssa1x1, . . . ,anxnd,

Gb1¯bm

p sx1, . . . ,xmd = g1,b1

u sx1d ¯ gm,bm

u sxmdug
psb1x1, . . . ,bmxmd. s4.11d

Then

lim
t→+`

iHa1¯an

s i = 0, lim
t→−`

iGb1¯bm

p i = 0 for all s Þ en, p Þ em. s4.12d

siii d The following estimate is valid for any FPL2sRnd,

IE
Rn

dx1 ¯ dxnFsx1, . . . ,xndãa1

† st,x1d ¯ ãan

† st,xndI ø În!iFi. s4.13d

Proof: The ideas are the same as those detailed in Ref. 32 from theorem 7 onwards and rest
especially on the use of the weak limit

lim
t→±`

eitk

k ± i«
= 0. s4.14d

We just stress again that in our case all the above holds thanks to the use of the RT algebra and by
paying careful attention to the support conditions encoded ins4.5d. j

We are now in position to identify the asymptotic behavior of the field ast→ ±`.
Theorem 4.3:The following limits hold in the strong sense in the Fock spaceF:

lim
t→+`

F†st,h1,a1

u d ¯ F†st,hn,an

u dV = aa1

† sh1,a1
d ¯ aan

† shn,an
dV, s4.15d

lim
t→−`

F†st,g1,b1

u d ¯ F†st,gm,bm

u dV = ab1

† sg1,b1
d ¯ abm

† sgm,bm
dV. s4.16d

Proof: We note first that froms3.75d one getsF†st ,hi,ai

u d=Fai

† st ,hi,ai

u d and F†st ,gi,bi

u d
=Fbi

† st ,gi,bi

u d so that

F†st,hi,ai

u dV = ãai

† st,hi,ai

u dV andF†st,gi,bi

u dV = ãbi

† st,gi,bi

u dV. s4.17d

Moreover, forfaPC0
`sRad, one has

aa
†sfad = ãa

†st, fa
td. s4.18d

Collecting all this, theorem 4.3 is proved forn=m=1 usingsid, andsiii d of lemmas4.2d,
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iF†st, fa
udV − aa

†sfadVi = iãa
†st, fa

udV − ãa
†st, fa

tdVi ø ifa
u − fa

ti, s4.19d

f playing the role ofh or g. Now we want to compute the left-hand sides of Eqs.s4.15d ands4.16d
for n,mù2. We give details for Eq.s4.15d,

F†st,h1,a1

u d ¯ F†st,hn,an

u dV = o
sPSn

E
Rn

dx1 ¯ dxn Ha1¯an

s sx1, . . . ,xndFa1

† st,x1d ¯ Fan

† st,xndV

= o
sPSn

E
Rn

dx1 ¯ dxn Ha1¯an

s sx1, . . . ,xndãas1

† st,xas1
d ¯ ãasn

† st,xasn
dV

= ãa1

† st,h1,a1

u d ¯ ãan

† st,hn,an

u dV + o
sPSn

sÞen

E
Rn

dx1 ¯ dxn Ha1¯an

s sx1, . . . ,xnd

3hãas1

† st,xas1
d ¯ ãasn

† st,xasn
dV − ãa1

† st,h1,a1

u d ¯ ãan

† st,hn,an

u dVj,

s4.20d

where we used pointsiii d of lemma 3.4 ands3.61d for F† in the second equality. Applyings4.13d
then gives

iF†st,h1,a1

u d ¯ F†st,hn,an

u dV − aa1

† sh1,a1
d ¯ aan

† shn,an
dVi ø În!ih1,a1

u
^ ¯ ^ hn,an

u − h1,a1

t
^ ¯

^ hn,an

t i + 2În! o
sPSn

sÞen

iHa1¯an

s i, s4.21d

implying s4.15d by pointssid–sii d of lemma 4.2 Similar computations give

iF†st,g1,b1

u d ¯ F†st,gm,bm

u dV − ab1

† sg1,b1
d ¯ abm

† sgm,bm
dVi ø Îm!ig1,b1

u
^ ¯ ^ gm,bm

u − g1,b1

t

^ ¯ ^ gm,bm

t i + 2Îm! o
pPSm

Þem

iGb1¯bm

p i, s4.22d

proving s4.16d. j

B. Scattering matrix

Now that we have identified the natural “free” dynamics approached by our interacting field as
t→ ±`, we are left with the verification of asymptotic completeness allowing the construction of
a unitaryS-matrix. We emphasize here that our “in” and “out” spaces are slightly different from
those exhibited in Ref. 7 because of our ordering involving absolute values, so that we must
recheck their properties.

Proposition 4.4: Let

F in = vecthV,ab1

† sg1,b1
d ¯ abm

† sgm,bm
dV, bi = ± , i = 1, . . . ,m, mù 1j, s4.23d

Fout = vecthV,aa1

† sh1,a1
d ¯ aan

† shn,an
dV, ai = ± , i = 1, . . . ,n, n ù 1j, s4.24d

wherehi,ai
and g j ,b j

run overHn and Gm.
Then, F in and Fout are separately dense inF.
Proof: We deal withF in. Again, it is sufficient to consider the matrix element,
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At,w,b1¯bp
sp1, . . . ,pmd = kwsnd,ab1

† st,p1d ¯ abm

† st,pmdVl, s4.25d

wherewsndPHsnd is arbitrary and to show that

At,w,b1¯bp
sp1, . . . ,pmd = 0, ∀ up1u , ¯ , upmu, pi P R−bi, bi = ± , i = 1, . . . ,m

s4.26d

implies wsnd=0. From the cyclicity ofV with respect toa†, s4.26d gives

wb1¯bp

snd sp1, . . . ,pmd = 0, ∀ up1u , ¯ , upmu, pi P R−bi, bi = ± , i = 1, . . . ,m

s4.27d

and in view of the properties ofwsndPHsnd, this implies in turn

wb1¯bp

snd sp1, . . . ,pmd = 0, ∀ pi P R, bi = ± , i = 1, . . . ,m, s4.28d

i.e., wsnd=0. The case ofFout is similar. j

We turn to the definition of the scattering operatorS of our theory.
Proposition 4.5: Take functions inHn and letS: Fout→F in act as follows:

SV = V and S:aa1

† sh1,a1
d ¯ aan

† shn,an
dV ° aan

† sĥn,an
d ¯ aa1

† sĥ1,a1
dV s4.29d

where ĥi,ai
spd = hi,ai

s− pd P Gn. s4.30d

ThenS is invertible andS, S−1 are unitary operators acting onF.
Proof: From the definitionss4.29d and s4.30d, one deduces immediately thatS−1 is well

defined. Then, it is straightforward, albeit lengthy, to check that

kSaa1

† sh1,a1
d ¯ aan

† shn,an
dV,Sag1

† sf1,g1
d ¯ agn

† sfn,gn
dVl

= kaa1

† sh1,a1
d ¯ aan

† shn,an
dV,ag1

† sf1,g1
d ¯ agn

† sfn,gn
dVl. s4.31d

In evaluating the left-hand side, one just has to notice that all the contributions coming from the
defect generators vanish due to the support properties of the smearing functions and one is left
with what would be obtained by using the ZF algebra. Then, it is just a matter of changing the
variables into their opposite to get the right-hand side.

Next, following the line of argument given in Ref. 19, one extendsS to Fout by linearity,
preserving unitarity. This gives rise to bounded linear operators which one can uniquely extend by
continuity to the whole ofF. We note that this last step is allowed by the asymptotic completeness
property satisfied byFout andF in scf. Proposition 4.4d. The case ofS−1 is similar. j

Refering now to Ref. 7 we finish the description of our scattering theory by defining the
correspondence between in and out states and the asymptotic states identified in theorem 4.3
scorrespondence already anticipated in our callingFout andF in the “in” and “out” spacesd,

ug1,b1
; . . . ;gm,bm

lin = ab1

† sg1,b1
d ¯ abm

† sgm,bm
dV, s4.32d

uh1,a1
; . . . ;hn,an

lout = aa1

† sh1,a1
d ¯ aan

† shn,an
dV. s4.33d

Transition amplitudes are therefore easily computable from
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outkh1,a1
; . . . ;hn,an

ug1,b1
; . . . ;gm,bm

lin = kaa1

† sh1,a1
d ¯ aan

† shn,an
dV,ab1

† sg1,b1
d ¯ abm

† sgm,bm
dVl

s4.34d

and usings3.27d, s3.8d, s3.13d, s3.15d, ands3.23d. One recovers for transition amplitudes that they
vanish unlessn=m as expected for an integrable system where particle production does not occur.
As an example, we derive in our context the one and two particle transition amplitudes obtained
in Ref. 6. We start with the computation of the correlators,

kaa
†spdV,ab

†sqdVl = da
bdsp − qd + ea

bdsp − qdTsapd + da
bdsp + qdRsapd s4.35d

and

kaa1

† sp1daa2

† sp2dV,ab1

† sq1dab2

† sq2dVl

= Ssa1p1 − b1q1dfda2

b1 + ea2

b1Tsa2p2dgfda1

b2 + ea1

b2Tsa1p1dg

3 dsp2 − q1ddsp1 − q2d + Ssa1p1 − b1q1dfda2

b1Rsa2p2dgfda1

b2 + ea1

b2Tsa1p1dg

3 dsp2 + q1ddsp1 − q2d + Ssa1p1 − b1q1dfda2

b1 + ea2

b1Tsa2p2dgfda1

b2Rsa1p1dgdsp2 − q1ddsp1 + q2d

+ Ssa1p1 − b1q1dfda2

b1Rsa2p2dgfda1

b2Rsa1p1dgdsp2 + q1ddsp1 + q2d

+ fda1

b1 + Ssa1p1 − b2q2dSsa1p1 + b2q2dea1

b1Tsa1p1dgfda2

b2 + ea2

b2Tsa2p2dgdsp1 − q1ddsp2 − q2d

+ Ssa1p1 − b2q2dSsa1p1 + b2q2dfda1

b1Rsa1p1dgfda2

b2 + ea2

b2Tsa2p2dgdsp1 + q1ddsp2 − q2d

+ fda1

b1 + Ssa1p1 − b2q2dSsa1p1 + b2q2dea1

b1Tsa1p1dgfda2

b2Rsa2p2dgdsp1 − q1ddsp2 + q2d

+ Ssa1p1 − b2q2dSsa1p1 + b2q2dfda1

b1Rsa1p1dgfda2

b2Rsa2p2dgdsp1 + q1ddsp2 + q2d s4.36d

We note that the result for the two-particle correlator differs from that obtained in Ref. 6 by the
appearance of twoS coefficients in the four last terms. This is due to the fact that we started with
a more general RT algebra where the defect generators do not necessarily obey the linear relations
used in Ref. 6. For the one-particle amplitudes, there are two possibilities according to the relative
signs of the in and out states

outkh±,g±lin =5 E
0

` dp

2p
h̄+spdRspdg+s− pd,

E
−`

0 dp

2p
h̄−spdRs− pdg−s− pd,6 s4.37d

outkh±ug7lin =5 E
0

` dp

2p
h̄+spdTspdg−spd,

E
−`

0 dp

2p
h̄−spdTs− pdg+spd.6 s4.38d

One clearly sees the particle-impurity interaction through the reflection coefficientR for a final
and an initial state on the same half-line and through the transmission coefficientT otherwise, as
expected. The particle–particle interaction through the bulk interaction coefficientS shows up in
the 24 different two-particle amplitudes. As an illustration, we compute four such amplitudes
gathered into two generic expressions:
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outkh1,±;h2,±ug1,±;g2,±l
in =E

R±

dp1

2p
E

R±

dp2

2p
sh̄1,±sp1dh̄2,±sp2dRs±p2dSs±p1 ± p2dRs±p1dg1,±s− p2d

3g2,±s− p1d + h̄1,±sp1dh̄2,±sp2dRs±p1dSs±p1 ± p2dSs±p1 7 p2dRs±p2d

3g1,±s− p1dg2,±s− p2dd s4.39d

and

outkh1,±;h2,±ug1,±;g2,7lin =E
R±

dp1

2p
E

R±

dp2

2p
sh̄1,±sp1dh̄2,±sp2dRs±p2dSs±p1 ± p2dTs±p1d

3g1,±s− p2dg2,7sp1d + h̄1,±sp1dh̄2,±sp2dRs±p1d

3Ss±p1 ± p2dSs±p1 7 p2dTs±p2dg1,±s− p1dg2,7sp2dd. s4.40d

More complex transition amplitudes contain the same building blocks namelyR, T, andS, which
shows that the corresponding processes involve a succession of particle-impurity and particle–
particle interactions as expected from the factorized scattering occurring in this integrable model.

V. DISCUSSION AND CONCLUSIONS

We have analyzed above the NLS model interacting with ad-type impurity, establising the
exact classical and quantum solutions. We have shown that an appropriate RT algebra and its Fock
representation allow to construct not only the scattering operator, but also the off-shell quantum
field Fst ,xd. As already mentioned in the introduction, these results can be extended33 to a whole
class of point-like defects, substitutings3.72d and s3.73d by the impurity boundary conditions

lim
x↓0

S kw,Fst,xdcl
]xkw,Fst,xdcl

D = aSa b

c d
Dlim

x↑0
S kw,Fst,xdcl

]xkw,Fst,xdcl
D , s5.1d

where

ha, . . . ,d P R, a P C:ad− bc= 1, āa = 1,j. s5.2d

In absence of impurity bound states, namely in the domain

a + d + Îsa − dd2 + 4 ø 0, b , 0,

csa + dd−1 ù 0, b = 0, s5.3d

a + d − Îsa − dd2 + 4 ù 0, b . 0,

one can treat the model closely following thed-impurity case, because the corresponding reflec-
tion and transmission matricesR andT have the same analytic properties ass3.18d.

We would like to comment finally on the symmetry content of the solution derived in the
paper. It is quite obvious that impurities break down GalileansLorentzd invariance of thetotal
scattering matrixS. However, since thebulk scattering matrixS describes the scattering away
from the impurity, some authors1–5 have assumed thatS preserves these symmetries and that the
breaking inS is generated exclusively by the reflection and transmission coefficientsR and T.
This assumption however, combined with the conditions of factorized scattering, implies1,5 thatS
is constant, which is too restrictive. In fact, one is left with a few systems of limited physical
interest. In order to avoid this negative result, a consistent factorized scattering theory was devel-
oped in Refs. 6 and 7, which does not necessarily assume thatS is GalileansLorentzd invariant.
Since the impurity NLS model considered above is the first concrete application of this framework
with nontrivial bulk scattering, the lesson from it is quite instructive. Focusing onS s3.2d, we see
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that Galilean invariance is broken by the entries which describe the scattering of two incoming
particles localized fort→−` on the different half-linesR− and R+ respectively. Indeed, these
entries depend onk1+k2 and not onk1−k2. An intuitive explanation for this breaking is that before
such particles scatter, one of them must necessarily cross the impurity. The nontrivial transmission
is therefore the origin of the symmetry breaking inS. This conclusion agrees with the observation
that in systems which allow only reflectionse.g., models on the half-lined, one can have14–19both
GalileansLorentzd invariant and nonconstant bulk scattering matrices.

The issue of internal symmetries in the presence of impurities has been partially addressed in
Refs. 8 and 11. In particular, the role of the reflection and transmission elements of the RT algebra
as symmetry generators has been established. However, this question deserves further investiga-
tion. It will be interesting in this respect to extend the analysis38 of the SUsNd–NLS model on the
half-line to the impurity case. Work is in progress on this aspect.

Let us conclude by observing that the concept of RT algebra indeed represents a powerful tool
for solving the NLS model with impurities. We are currently exploring the possibility to apply this
algebraic framework also to the quantization of other integrable systems with defects.

APPENDIX A: PROOF OF THEOREM 2.2

First, notice thats2.12d and s2.13d translate into

lim
x→0+

hF+st,xd − F−st,− xdj = 0, sA1d

lim
x→0+

hs]xF+dst,xd − s]xF−dst,− xdj − 2hFst,0d = 0, sA2d

which we are going to check order by order in the Rosales expansion. The idea is to introduce the
one-to-one correspondence

b±spd = 1
2hl+spd ± l−s− pdj, p P R sA3d

and it is not difficult to check that

baspd = Baspdbas− pd, with Baspd = a
p − iah

p + ih
, a = ± . sA4d

Taken=0 corresponding to the linear problem. One gets

lim
x→0+

hF+
s0dst,xd − F−

s0dst,− xdj =E
R

dp

2p
b−spde−ip2t,

lim
x→0+

hs]xF+
s0ddst,xd − s]xF−

s0ddst,− xdj − 2hFs0dst,0d =E
R

dp

2p
sip − hdb+spde−ip2t,

which vanish using the propertiessA4d. It is interesting to note that the time-dependent phase
e−ip2t, being even inp, does not play any role in the vanishing of the previous expressions. It will
be the same in the following as we shall see.

For nù1, we start by changing variables in the Rosales expansion according to
sp1, . . . ,pn,qn, . . . ,q0d→ sk1, . . . ,k2n−1,−k2n. . . ,−k0d and we use the one-to-one correspondence
sA3d to rewrite the left-hand side ofsA1d as
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lim
x→0+

hF+
snds0,xd − F−

snds0,−xdj = o
a0,. . .,a2n=±

S1 − p
i=0

2n

aiDE
R2n+1

p
i=0

2n
dki

2p
b̄a1

sk1d ¯ b̄a2n−1
sk2n−1d

3ba2n
s− k2nd ¯ ba0

s− k0d
e−io j=0

2n kj
2t

p
j=1

2n

skj + kj−1d

. sA5d

In view of the linear case, we “Ba-symmetrize” the integrand of the previous integral for eachki.
Introducing

Ba
sspd = H1 for s = + ,

Baspd for s = − ,
h sA6d

this reads

1

22n+1 o
s0,. . .,s2n=±

Ba1

s1sk1d ¯ Ba2n−1

s2n−1sk2n−1dBa2n

s2ns− k2nd ¯ Ba0

s0s− k0d

p
j=1

2n

ss jkj + s j−1kj−1d

b̄a1
sk1d ¯ b̄a2n−1

sk2n−1d

3 ba2n
s− k2nd ¯ ba0

s− k0de−io j=0
2n kj

2t

which we rewrite as

1

22n+1 o
s0,. . .,s2n=±

Ba1

s1sk1d ¯ Ba2n−1

s2n−1sk2n−1dBa2n

s2ns− k2nd ¯ Ba0

s0s− k0dp
j=1

2n

ss j−1kj−1 − s jkjd

3
b̄a1

sk1d ¯ b̄a2n−1
sk2n−1dba2n

s− k2nd ¯ ba0
s− k0d

p
j=1

2n

skj−1
2n − kj

2d

e−io j=0
2n kj

2t.

Let us concentrate on the part depending on thes’s. Developing explicitly the sum overs2n, one
gets

1

22n+1 o
s0,. . .,s2n−1=±

Ba1

s1sk1d ¯ Ba2n−1

s2n−1sk2n−1dBa2n−2

s2n−2s− k2n−2d ¯ Ba0

s0s− k0d p
j=1

2n−1

ss j−1kj−1 − s jkjd

3 Sda2n,+
2k2n

k2n + ih
− da2n,−2k2nD

Collecting all the pieces depending onk2n, one gets a function proportional to

k2n

k2n−2
2 − k2n

2 Sb+s− k2nd
k2n + ih

− b−s− k2ndD . sA7d

Now taking m+,m− as in s2.20d it is not hard to see that the function in parentheses insA7d is
identically zero, implying the vanishing ofsA5d.

The case of the jump condition is treated in complete analogy. Indeed, in evaluating the term
proportional toh in sA2d in terms ofb±, all one must do is to replaces1−pi=0

2n aid in sA5d by
s1+pi=0

2n aid. The rest of the argument implies therefore that
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Fsnds0,0d = 0, n ù 1. sA8d

As for the term involving derivatives of the field, an analogous treatment produces the following
integrand:

1

22n+1 o
s0,. . .,s2n=±

Ba1

s1sk1d ¯ Ba2n−1

s2n−1sk2n−1dBa2n

s2ns− k2nd ¯ Ba0

s0s− k0dp
j=1

2n

ss j−1kj−1 − s jkjd

3 So
j=0

2n

is jkjD b̄a1
sk1d ¯ b̄a2n−1

sk2n−1dba2n
s− k2nd ¯ ba0

s− k0d

p
j=1

2n

skj−1
2 − kj

2d

e−io j=0
2n kj

2t.

This time, one must develop the sum fors2n ands2n−1. This produces the functionsA7d but in the
variablek2n−1 and we know it vanishes. This leads to

lim
x→0+

hs]xF+
sndds0,xd − s]xF−

sndds0,−xdj = 0, n ù 1. sA9d

As already mentioned, we see that the continuity and the jump condition of the field hold for
any timet. Put another way, they are conserved in time and this is due to the dispersion relation
of the free Schrödinger equationsbeing quadratic inkj, it is not affected by all the symmetrizations
kj →−kj involved in the proofd.

It is remarkable that the jump condition actually decouples for the nonlinear termssnù1d as
seen fromsA8d and sA9d. This is also true for the continuity which, combined withsA8d shows
that

F−
snds0,0d = F+

snds0,0d = 0, n ù 1.

j

APPENDIX B: EXPLICIT FORM OF THE ACTION OF THE CREATION OPERATOR

The projectorPsnd is constructed in Ref. 7 in terms of the generators of the Weyl group
associated to the root system of the classical Lie algebraBn and of their representation onL^n. In
our context, we get forf PC andwsn−1dPHsn−1d,

fa†sfdwga1¯an

snd sp1, . . . ,pnd =
1

2În
o
k=1

n

Ssak−1pk−1 − akpkd ¯ Ssa1p1 − akpkdsfak
spkd

+ Cksa1p1, . . . ,anpndfTsakpkdf−ak
spkd + Rsakpkdfak

s− pkdgd

3 w
a1¯ak

ˆ
¯an

sn−1d sp1, . . . ,pnd, sB1d

where we have defined

Cksp1, . . . ,pnd = Sspk − p1d ¯ Sspk − pk̂d ¯ Sspk − pndSspn + pkd ¯ Sspk + pk̂d ¯ Ssp1 + pkd.

All the hatted symbols must be omitted.
One recognizes the reflected and transmitted structure inside the square brackets ofsB1d

which, combined with all theS matrices, ensures the propertiess3.21d ands3.22d required for the
functions ofHsnd.

1G. Delfino, G. Mussardo, and P. Simonetti, Nucl. Phys. B432, 518 s1994d.
2R. Konik and A. LeClair, Nucl. Phys. B538, 587 s1999d.
3H. Saleur, cond-mat/9812110.
4H. Saleur, cond-mat/0007309.
5O. A. Castro-Alvaredo, A. Fring, and F. Gohmann, hep-th/0201142.

042703-23 Solving quantum nonlinear Schrödinger equation J. Math. Phys. 46, 042703 ~2005!

                                                                                                                                    



6M. Mintchev, E. Ragoucy, and P. Sorba, Phys. Lett. B547, 313 s2002d.
7M. Mintchev, E. Ragoucy, and P. Sorba, J. Phys. A36, 10407s2003d.
8M. Mintchev and E. Ragoucy, J. Phys. A37, 425 s2004d.
9P. Bowcock, E. Corrigan, and C. Zambon, Int. J. Mod. Phys. A19, 82 s2004d.

10P. Bowcock, E. Corrigan, and C. Zambon, J. High Energy Phys.0401, 056 s2004d.
11E. Ragoucy, inProceedings of the Vth International Workshop on Lie Theory and its Applications in Physics, Varna

sBulgariad, June 2003, edited by H.-D. Doebner and V. K. Dobrev.
12I. V. Cherednik, Theor. Math. Phys.61, 977 s1984d fTeor. Mat. Fiz. 61, 35 s1984dg.
13E. K. Sklyanin, J. Phys. A21, 2375s1988d.
14I. Cherednik, Int. J. Mod. Phys. A7, 109 s1992d.
15P. P. Kulish and R. Sasaki, Prog. Theor. Phys.89, 741 s1993d.
16A. Fring and R. Koberle, Nucl. Phys. B421, 159 s1994d.
17S. Ghoshal and A. B. Zamolodchikov, Int. J. Mod. Phys. A9, 3841s1994d; 9, 4353sEd s1994d.
18E. Corrigan, P. E. Dorey, and R. H. Rietdijk, Prog. Theor. Phys. Suppl.118, 143 s1995d.
19A. Liguori, M. Mintchev, and L. Zhao, Commun. Math. Phys.194, 569 s1998d.
20C. N. Yang, Phys. Rev. Lett.19, 1312s1967d.
21A. B. Zamolodchikov and A. B. Zamolodchikov, Ann. Phys.sN.Y.d 120, 253 s1979d.
22L. D. Faddeev, E. K. Sklyanin, and L. A. Takhtajan, Theor. Math. Phys.40, 688s1980d fTeor. Mat. Fiz.40, 194s1979dg.
23L. D. Faddeev, Sov. Sci. Rev.1, 107 s1980d.
24A. Liguori, M. Mintchev, and M. Rossi, J. Math. Phys.38, 2888s1997d.
25E. K. Sklyanin, Sov. Phys. Dokl.24, 107 s1979d fDokl. Akad. Nauk SSSR244, 1337s1978dg.
26H. Grosse, Phys. Lett.86B, 267 s1979d.
27D. B. Creamer, H. B. Thacker, and D. Wilkinson, Phys. Rev. D21, 1523s1980d.
28J. Honerkamp, P. Weber, and A. Wiesler, Nucl. Phys. B152, 266 s1979d.
29B. Davies, J. Phys. A14, 2631s1981d.
30E. Gutkin, Phys. Rep.167, 1 s1988d.
31M. Gattobigio, A. Liguori, and M. Mintchev, Phys. Lett. B428, 143 s1998d.
32M. Gattobigio, A. Liguori, and M. Mintchev, J. Math. Phys.40, 2949s1999d.
33V. Caudrelier, M. Mintchev, and E. Ragoucy, J. Phys. A37 L367 s2004d.
34R. R. Rosales, Stud. Appl. Math.59, 117 s1978d.
35A. S. Fokas, I. M. Gelfand, and M. V. Zyskin, hep-th/9504042.
36V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP34, 62 s1972d.
37M. Hervé,Les Fonctions AnalytiquessPresses Universitaires de France, Paris, 1982d.
38M. Mintchev, E. Ragoucy, and P. Sorba, J. Phys. A34, 8345s2001d.

042703-24 Caudrelier, Mintchev, and Ragoucy J. Math. Phys. 46, 042703 ~2005!

                                                                                                                                    



On the local and nonlocal Camassa–Holm hierarchies
Paolo Casati,a! Paolo Lorenzoni,b! and Giovanni Ortenzic!

Dipartimento di Matematica e Applicazioni, II, Università di Milano Bicocca-Ed. U5, via
R. Cozzi 53, I-20125 Milano, Italy

Marco Pedronid!

Dipartimento di Ingegneria Gestionale e dell’Informazione, Università di Bergamo, Viale
Marconi 5, I-24044 Dalmine (BG), Italy

sReceived 14 January 2005; accepted 18 February 2005; published online 28 March 2005d

We construct the local and nonlocal conserved densities for the Camassa–Holm
equation by solving a suitable Riccati equation. We also define a Kadomtsev–
Petviashvili extension for the local Camassa–Holm hierarchy. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1888568g

I. INTRODUCTION

Since its introduction in Ref. 1 as a model for shallow water waves, the Camassa–Holm
equation

ut − uxxt = 6uxu − 4uxxu − 2uuxxx s1d

has been the subject of a great number of papers. In particular, some of themsRefs. 4,7, and 9, just
to cite a fewd have been devoted to investigate its bi-Hamiltonian structure and its relation with
other nonlinear partial differential equations living on the same phase space, namely the
Korteweg–de VriessKdVd equation, the Hunter–Saxton equation,3 and the Harry–DymsHDd
equation.5 It is well known how to use the bi-Hamiltonian structure of the KdV equation to
construct the whole corresponding hierarchyssee, e.g., Ref. 8d. This structure has been used in
Ref. 2 to relate in a geometrical way the KdV hierarchy with the celebrated Kadomtsev–
PetviashvilisKPd hierarchy.fIn this paper by “KP hierarchy” we mean the Sato form, in terms of
pseudodifferential operators, of the KP hierarchy. This is a hierarchy ofs1+1d evolution equations
for infinitely many fields.g The same results have been found in Ref. 11 for the HD equation,
recovering in this way the KP extension of the Harry–Dym hierarchy presented in Ref. 10.

The aim of this paper is to develop an analogous theory for the CH equation as well. More
precisely, we show how the bi-Hamiltonian approach to the CH allows us to write a Riccati
equation whose solutions give rise to the conserved densities of the CH equation. As it is well
known, there are two hierarchies of such conserved quantities. The first one contains the Camassa–
Holm equation, and its Hamiltonian densities are nonlocal, while the other one is formed by local
densities.sTo the best of our knowledge, and according to Ref. 6, there is no sound proof of the
existence of an infinite number of members of the nonlocal hierarchy. In this paper we give such
a proof.d Moreover we show that the local CH hierarchy can be embedded in a wider hierarchy in
an infinite number of fields, exactly like the KdV equation can be included in the KP hierarchy.

The paper is organized as follows. In the next section we use the bi-Hamiltonian method to
find a Riccati equation that allows us to construct the two above-mentioned hierarchies of con-

adElectronic mail: paolo.casati@unimib.it
bdElectronic mail: paolo.lorenzoni@unimib.it
cdElectronic mail: giovanni.ortenzi@unimib.it
ddElectronic mail: marco.pedroni@unibg.it
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served quantities. In the third and last section we show—using the technique of the Faà di Bruno
polynomials—how the local CH hierarchy can be framed in a more general hierarchy which plays
the same role that the KP hierarchy does in the KdV case.

II. THE CONSERVED DENSITIES

It is well known that the CH equations1d is a bi-Hamiltonian system on the infinite dimen-
sional spaceC`sS1,Rd of C` functions from the circle to the real line, with respect to the Poisson
tensors,

P0 = 1
2]x − 1

2]x
3, P1 = − sm]x + ]xmd,

wherem is defined bym=s1−]x
2du. In this section we construct the positive and negative CH

hierarchies using the so-called method of the Casimir of the Poisson pencil. This means that we
look for Casimirs of the Poisson pencilPl=P0−lP1, i.e., for functionalsHsld whose differentials
vsld belong to the kernel ofPl. The coefficients of the Laurent expansion of any such Casimir
Hsld=ok=−`

+` Hkl
−k provide indeed a set of functionals satisfying the Lenard–Magri recursion

relation

P0 dHk = P1 dHk+1

and thus in involution with respect to both Poisson structuresssee, e.g., Ref. 8d.
The key point to determinevsld is to notice that

vPlv = vs 1
2vx − 1

2vxxx+ 2lmvx + lmxvd = s 1
4v2 − 1

2vxxv + 1
4vx

2 + lmv2dx. s2d

This result is a direct consequence of the fact thatevPlv is the antisymmetric action of the
2-tensorPl on the pairsv ,vd. The conditionPlvsld=0 is thus equivalent to

1
4v2 − 1

2vxxv + 1
4vx

2 + lmv2 = fsm,ld, s3d

where fsm,ld satisfiesfx=0. It turns out thatv is an exact 1-form iff does not depend onm.
Without loss of generality, we can setfsld=l /4. Then Eq.s3d can be set in the useful Riccati form

hx + h2 = 1
4 + z2m s4d

through the transformation

− vx + 2vh = z, s5d

wherez2=l. Let us verify thatvsld is an exact 1-form:

kv,ṁl=
s4dE

S1
vz−2sḣx + 2hḣddx=

s5d 1

z2E
S1

s− vx + 2vhdḣ dx =
1

z

d

dt
E

S1
h dx, s6d

so that the potential ofvsld is given byH=z−1eS1h dx. In the next two sections we will solve the
Riccati equations4d using a formal development for the functionh. We will find a first solution of
the formhszd=oi=−1

` hiz
−i, where thehi are functions ofm and itsx derivatives. This solution gives

rise to the localsoften called also negatived CH hierarchy, starting from a Casimir ofP1. The
second solution has the formkszd=oi=0

` kiz
−i, where theki are now nonlocal densities. They con-

stitutes the usualsnonlocal, positived CH hierarchy, which the CH equation belongs to. In other
words, we will deal with two possible different choices of the essential singularity of the solutions
of the Riccati equations4d.

A. The local CH hierarchy

In this case the Laurent expansion of the density of Hamiltonians is
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hszd = h−1z+ h0 +
h1

z
+

h2

z2 + ¯ = h−1z+ h0 + o
i=1

`
hi

zi , s7d

where the maximum degree of the positive term is established bys4d.
If we substitute this expansion ins4d we get

o
i=−2

` SShix
+ o

j=−1

i+1

hi−jhjD 1

ziD =
1

4
+ z2m. s8d

Then the obtained system can be solved in a purely algebraic way by equating the terms with the
same degree inz,

z2, h−1
2 = m, h−1 = Îm,

z1, h−1x + 2h0h−1 = 0, h0 = slnsm−1/4ddx,

z0, h0x + h0
2 + 2h1h−1 = 1

4, h1 =
1

8Îm
−

1

8

mxx

Îm3
+

5

32

mx
2

Îm5
,

z−1, h1x + 2h0h1 + 2h2h−1 = 0, h2 = S−
1

16m
+

1

16

mxx

m2 +
5

64

mx
2

m3D
x

,

and so on. It can be shown that the even densities arex derivatives, so thatH=z−1eS1h dx is
actually a Laurent series inl:

Hsld = o
i=0

+`

H2il
−i .

If j is even, we callXj the Hamiltonian vector field associated withHj =eS1hj−1 dx by means of the
Poisson operatorP0. By construction,Xj is the Hamiltonian vector field associated withHj+2 by
means ofP1. The first nontrivial equation of the hierarchy, corresponding toX0, is

]m

]t0
= P0 dH0 = s]x − ]x

3d
1

4Îm
= −

1

8

mx

Îm3
−

1

8

mxxx

Îm3
+

9

16

mxxmx

Îm5
−

15

32

mx
3

Îm7
= P1 dH2. s9d

B. The nonlocal CH hierarchy

In this case the Laurent expansion of the solutionkszd of the Riccati equationss4d is

kszd = k0 + k−1z+ k−2z
2 + k−3z

3 + ¯ = o
i=0

+`

k−iz
i . s10d

Substituting it ins4d, we obtain

o
i=0

` SSk−ix
+ o

j=0

i

k−jkj−1DziD =
1

4
+ z2m. s11d

Exactly as before, we can find a recursive solution ofs11d comparing the terms of the same degree
on both sides of the equation. However, in the present case this requires to solve at any step a
differential equation. This fact is responsible for the presence of nonlocal quantities. The first
equation to be considered is that related to the coefficient ofz0,
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k0x + k0
2 = 1

4 .

It is easily checked that the only periodic solutions of this equation are the constant solutions
k0= ± 1

2. Let us choose the positive constant solution. Next, the coefficient ofz1 gives

k−1x + 2k0k−1 = 0

or, usingk0= 1
2,

s1 + ]xdk−1 = 0.

This linear equation is solved byk−1=c exps−xd, wherec is a constant. But again among them the
only solution which lies inC`sS1,Rd is the trivial one,k−1=0. More generally, the operator 1
+]x is invertible inC`sS1,Rd. The unique solution of

s1 + ]xdk = fsxd

of period 1 is indeed explicitly given by

ksxd =E
0

x

ey−xfsyddy +
1

e− 1
E

0

1

ey−xfsyddy.

From k−1=0 one can immediately show thatk−2n−1=0 for all nù0. In fact,k−2n−1 appears for the
first time in the coefficient ofzn+1,

k−2n−1x
+ k−2n−1 + 2o

i=1

n

k−2ik−2sn−id−1 = 0,

and this allows us to prove by recursion that all the odd terms in the Laurent serieskszd are zero.
Using the remaining equations,

z2, k−2x + 2k0k−2 + k−1
2 = m,

z4, k−4x + 2k0k−4 + 2k−1k−3 + k−2
2 = 0,

z6, k−6x + 2k0k−6 + 2k−1k−5 + k−3
2 + 2k−2k−4 = 0,

¯, ¯ ,

it is now simple to find the even terms,

k−2 = s1 + ]xd−1m,

k−4 = − s1 + ]xd−1ss1 + ]xd−1md2,

k−6 = 2s1 + ]xd−1ss1 + ]xd−1 · ss1 + ]xd−1md2s1 + ]xd−1md

¯ = ¯ .

Thanks to the invertibility of the operator 1+]x in the space ofC` periodic functions, we can
conclude that there is an infinite sequence ofsincreasingly nonlocald densitiesk−2i, giving rise to
a set of functionals in involution with respect to both Poisson brackets. More precisely, letKsld
=eS1k ax be the Casimir of the Poisson pencil constructed withk. ThenKsld= 1

4 +o j=1
` K−2jl

j, with
K−2j =eS1k−2j dx. We call Xj the Hamiltonian vector field associated withKj by means of the
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Poisson operatorP1. By construction,Xj is the Hamiltonian vector field associated withKj−2 by
means ofP0.

Since k−2x+k−2=m, we have thatK−2=eS1k−2 dx=eS1mdx, so that the first equation of the
hierarchy ismt−2

=P1 dK−2=−mx. In order to write the second vector field, we recall thatk−4x

+k−4+k−2
2 =0 and therefore

K−4 =E
S1

k−4 dx = −E
S1

k−2
2 dx = −E

S1
ss1 + ]xd−1md2 dx.

This functional becomes local after the usual change of variablesm=u−uxx, that is invertible in
the space ofC` periodic functions because it is the composition of 1+]x and 1−]x. Its inverse is
explicitly given by

usxd =E
0

x

msydsinhsy − xddy +
1

2 sinh1
2

E
0

1

msydcoshSy − x −
1

2
Ddy.

In terms ofu we have thatK−4=−eS1su2+ux
2ddx, so that

]m

]t−4
= P1 dK−4 = − sm]x + ]xmds1 − ]x

2d−1s− 2u + 2uxxd = 4mux + 2mxu, s12d

that is, witht−4= t,

ut − uxxt = 6uxu − 4uxxux − 2uuxxx, s13d

which is the standard Camassa–Holm equation with null critical velocity term. The next symmetry
of the hierarchy is related to the HamiltonianK−6=eS1k−6=2eS1su3+uux

2ddx, which, usings5d to
compute dK−6, gives

]m

]t−6
= P1 dK−6 = − sm]x + ]xmds1 − ]x

2d−1s6u2 − 2ux
2 − 4uuxxd.

We remark that, due to the Lenard–Magri recursion relations, the equations13d can be obtained
also as]m/]t−4=P0 dK−6.

III. KP EXTENSION OF THE LOCAL CH HIERARCHY

In Ref. 2 it has been shown how to generate, from a bi-Hamiltonian viewpoint, the KP
hierarchy starting from the KdV hierarchy. The same procedure has been performed in Ref. 11,
where the KP extension of the Harry–Dym hierarchysalready found in Ref. 10d has been recov-
ered. The idea is quite simple and can be successfully applied to the local CH hierarchy, as we do
in this section.

In Sec. II A we have found a mapm°hsmd, wherehsmd is the unique solution of the Riccati
equations4d with the asymptotic expansions7d. Since the coefficients ofhsmd are the densities of
the Hamiltonians of the hierarchy, the time derivatives ofhsmd must be anx derivative, that is,

]h

]ts
= ]xH

ssd, s= 0,2,… ,

for suitable currentsHssd. They can be explicitly constructed after noticing that the vector fields of
the hierarchy are not only bi-Hamiltonian, but they are Hamiltonian with respect to every Poisson
structure of the pencil. Indeed, one can immediately see that
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]h

]t2s
= Plsls dHslddreg= PlSo

r=0

s

dH2rl
s−rD , s14d

where “reg” stands for the regular part in the Laurent expansion. Moreover, usings4d the Poisson
pencil Pl can be factorized in the following way:

Pl = − 1
2s]x + 2hd]xs]x − 2hd.

Substituting it in the derivative with respect tot2s of s4d, we obtain

l−1s]x + 2hdht2s
= − 1

2s]x + 2hd]xs]x − 2hdsls dHslddreg.

From the previous equation, due to the particular form of thez development ofh, it follows that
the continuity equation

]h

]t2s
= ]xS−

l

2
s]x − 2hdsls dHslddregD s15d

holds true. Therefore, the currentsHs2sd we are looking for are given by

Hs2sd = −
l

2
s]x − 2hdsls dHslddreg= −

l

2
slsvsldxdreg+ hlslsvslddreg. s16d

The next step is to realize that the currentsHssd, wheres is even, can be obtained directly from a
Laurent seriesh of the forms7d, without using the Riccati equations4d. We start with the prelimi-
nary consideration that they can be written in two equivalent ways,

Hssd = o
i=0

s S−
1

2
vi,xszs−i+2d + viszs−i+2hdD s17d

and

Hssd = −
1

2
s]x − 2hdszs+2 dHszd − z2szs dHszddsingd =

1

2
zs+2s− vx + 2hvd −

z2

2
s]x − 2hdszsvdsing

=
s5d1

2
zs+3 −

z2

2
s]x − 2hdszsvdsing, s18d

where with “sing” we mean the singular part of the expansion inz. Equations18d, usings4d, gives
the regular asymptotic behavior of the currents, that is,sHssddreg=

1
2zs+3+Oszd. On the other hand,

Eq. s17d implies that the currents belong to a particular vector spaceHh, which can be constructed
using only the Hamiltonian densityh. It is defined as the linear span over the functionsC`sS1,Rd
of the Faà di Bruno polynomialshsnd=s]x+hdnz2, with nù0, hs0d=z2.

Proposition 3.1: The currents Hs2sd, with sù0, are elements of Hh.
Proof: Thanks to the representations17d, it suffices to show thatz2i andz2ih are elements of

Hh for all i ù1. First of all, z2=hs0dPHh and z2h=hs1dPHh by definition of Hh. Moreover, the
Riccati equation multiplied byz2,

z2shx + h2d =
z2

4
+ z4m, s19d

shows thatz4=s1/mdshs2d− 1
4hs0ddPHh. Now, acting withs]x+hd on both sides ofs19d, we can

show thatz4hPHh. More generally, acting withs]x+hdn, we prove thatz2sHhd,Hh, and this
concludes the proof. h

At this point it is not difficult to see that the currentHssd can be characterized in a unique way
by the following properties:
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s1d Hssd= 1
2zs+3+Oszd,

s2d HssdPHh.

Therefore, we can assume thath is an arbitrary Laurent series of the form

hszd = h−1z+ o
i=0

+`
hi

zi , s20d

where the coefficientshi are not constrained by the Riccati equation, and we can define the
currentsHssd, for all sù0, imposing the two above-mentioned properties. Then we define the
s- th equation of thelocal KP–CH hierarchyas

]h

]ts
= ]xH

ssd, sù 0. s21d

It is an evolution equation in an infinite number of fields given by the coefficientsh−1,h0,h1,… of
h.

In order to write these equations one must compute the first Faà di Bruno polynomials,

hs0d = z2,

hs1d = h−1z
3 + h0z

2 + h1z+ ¯ ,

hs2d = sh−1
2 dz4 + sh−1x + 2h−1h0dz3 + sh0x + h0

2 + 2h−1h1dz2 + sh1x + 2h−1h2 + 2h0h1dz+ ¯ ,

hs3d = ¯ .

Then the first currents are given by

Hs0d =
1

2h−1
hs1d −

h0

2h−1
hs0d =

1

2
z3 +

h1

2h−1
z+ ¯ ,

Hs1d =
1

2h−1
2 hs2d − S h−1x

2h−1
3 +

h0

h−1
2 Dhs1d − S h0x

2h−1
2 +

h0
2

2h−1
2 +

h1

h−1
−

h−1xh0

2h−1
3 −

h−1h0
2

h−1
3 Dhs0d

=
1

2
z4 + S h−1x

2h−1
2 +

h2

h−1
+

h1h0

h−1
2 −

h−1xh1

2h−1
3 −

h0h1

h−1
2 Dz+ ¯ ,

Hs2d = ¯ .

To recover the local CH hierarchy, one must impose onh the constraint given by the Riccati
equations4d. It entails that all the fieldshi can be written in terms ofm and itsx derivatives. Thus
the local KP–CH hierarchys21d reduces to the local CH hierarchy. This reduction can be inter-
preted, like in the KdV and HD cases, as a stationary reduction. Indeed, the Riccati equation and
the very definition of the currents imply that the currentHs1d is equal toz4/2 and therefore thatt1
is a stationary time. From Proposition 3.1 it also follows that all the odd times are stationary.
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The theory of the separation of variables for the null Hamilton–Jacobi equation
H=0 is systematically revisited and based on Levi–Civita separability conditions
with Lagrangian multipliers. The separation of the null equation is shown to be
equivalent to the ordinary separation of the image of the original Hamiltonian under
a generalized Jacobi–Maupertuis transformation. The general results are applied to
the special but fundamental case of the orthogonal separation of a natural Hamil-
tonian with a fixed value of the energy. The separation is then related to conditions
which extend those of Stäckel and Kalnins and Millersfor the null geodesic cased
and it is characterized by the existence of conformal Killing two-tensors of special
kind. © 2005 American Institute of Physics.fDOI: 10.1063/1.1862325g

I. INTRODUCTION

The aim of this paper is to propose a general approach to the theory of variable separation for
the null Hamilton–Jacobi equationsHJEd

Hsq,pd = 0, q = sqid, p = spid, pi =
]W

]qi .

This approach is based on a suitable definition of separationsSec. IId, whose geometrical content
sSec. IIId is related to special integrable Lagrangian distributions on the cotangent bundleT*Q, of
coordinatessq,pd. By the Hadamard lemma, the integrability conditions of these special distribu-
tions lead in Sec. IV toLevi–Civita separability conditions with Lagrangian multiplierssTheorem
4.1d, which are a natural extension of the classical Levi–Civita conditions,24 and from which we
derive two characterizations of the separation of the null HJE. The first onesTheorem 4.2d asserts
that the separation occurs in a given coordinate system if and only if the ordinary Levi–Civita
equations are satisfied on the surfaceH=0; the second onesTheorem 4.3d asserts that the sepa-
ration occurs if and only if there exists a functionLsq,pdÞ0 such that the ordinary Levi–Civita
equations are satisfied by theconformal HamiltonianH /L. The passage from a HamiltonianH to
a conformal HamiltonianH /L is an extension of the so-calledJacobi sor Maupertuisd transfor-
mation for natural Hamiltonians,9,16,23,28,31,33recalled and discussed in Sec. VI.

We apply these general results to the analysis of particular cases of Hamiltonians. In Sec. V
we consider the so-calledhomogeneous formalismin time-dependent mechanics and get a rigorous
proof of a known property of the separation in the time-dependent HJE.15 In Sec. VI we consider
a natural Hamiltonian in orthogonal coordinates,H= 1

2giipi
2+Vsqd and the corresponding HJE with

a fixed valueE of the energy,

Hsq,pd 8
1
2giipi

2 + Vsqd − E = 0.

From a general theoremsTheorem 6.1d concerned with the separation of this equation, we derive
three theoremssTheorems 6.3, 6.4, and 6.5d characterizing the separation for the following three
special cases,
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V = 0, E Þ 0, non-null geodesics,

V = 0, E = 0, null geodesics,

V − E Þ 0, dynamical trajectories with total energyE.

The case of null geodesics occurs, of course, for indefinite metric tensors. In Sec. VII we analyze
the intrinsic framework of the theorems stated in Sec. VI, by considering special kinds of confor-
mal Killing tensors and by introducing the notion of conformal involution. The first integrals and
the separated equations are examined in Sec. VIII. In Sec. IX we consider the two-dimensional
case. We renounce here to deal with the nonorthogonal separation for natural Hamiltonians, which
is currently under investigation within the general framework presented in this paper. All this work
is also made in the perspective of application to the theory of the ordinary multiplicative separa-
tion and of theR-separation for the second-order differential equations of mathematical physics
sLaplace, Helmholtz, Poisson, Schrödinger equationsd.20,22As possible applications of the present
theory we mention:sid The integration of the equations of the null geodesics in general relativity
theory,11 sii d The integration of dynamical systems which are Hamiltonian only on single hyper-
surfaces of the phase space.

II. DEFINITION OF SEPARATED COMPLETE SOLUTION OF THE NULL HJE

Let Q be a realn-dimensional differentiable manifold andH be a smooth real-valued function
on the cotangent bundleT*Q. Let q=sqid be local coordinates on an open subsetU#Q and
sq,pd=sqi ,pid the corresponding standard canonical coordinates onT*Q. In the following,]i and
]i will denote the partial derivative with respect toqi andpi, respectively.

We restrict our analysis to the open setO#T*U#T*Q, where ]iHÞ0 for all i =1,… ,n,
assuming that it is not empty. In this open set we have dHÞ0, so that any equation of the kind
Hsq,pd=h, h[R, defines a setEh that, if not empty, is a submanifold of codimension 1. In
particular, we focus on the submanifoldE0 described by equationH=0.

We consider the HJE forh=0,

HSq,
]W

]q
D = 0, s2.1d

and two definitions of complete solution.
Definition 2.1:An internal complete solutionof the HJEs2.1d is a solutionWIsq,cad depend-

ing on n−1 parametersscad such that the following completeness condition is satisfied:

rankF ]2WI

]qi ] ca
G = n − 1. s2.2d

An extended complete solutionof the HJE s2.1d is a function WEsq,cd depending onn real
parametersc=scid satisfying the completeness condition

detF ]2WE

]qi ] cj
G Þ 0 s2.3d

for all admissible values ofsq,cd, and satisfying Eq.s2.1d for all c belonging to a suitable
n−1-dimensional submanifold ofRn ssee Remark 2.1 belowd or sup to a transformation ofcd for
cn=0.

The geometrical meaning of these two definitions is the following. An internal complete
solution WI defines a Lagrangian foliationLI of the submanifoldE0, Fig. 1sad, via equationspi

=]iW
I. Each Lagrangian submanifoldLscad[LI is parametrized by the value of then−1 param-

etersscad.
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An extended complete solutionWE defines a Lagrangian foliationLE on an open neighbor-
hood ofT*Q via equationspi =]iW

E. Each Lagrangian submanifoldLscid
[LE is parametrized by

the value of then parametersc=scid. This foliation is compatible with the submanifoldE0, in the
sense that it is reducible to a foliation ofE0, Fig. 1sbd.

Remark 2.1:The quotient setC of the foliationLE is locally an-dimensional manifold with
coordinatesscid. The restrictionLI of LE to E0 is a submanifoldS,C of dimensionn−1. ThenS
is locally defined by an equationhscid=0 with dhuSÞ0. Up to a transformationscid↔ sci8d we can
find coordinates adapted toS such that equationhscid=0 is replaced bycn8=0. This means that for
a suitable choice of the parameters appearing in aWE equations2.1d is satisfied forcn=0.

Remark 2.2:In general, the foliation generated by aWE may be not reducible to the submani-
folds Eh with hÞ0. When it is reducible to eachEh, then we have anordinary complete solution,
Fig. 1scd, of the HJE

HSq,
]W

]q
D = h. s2.4d

The following proposition shows that the two definitions of internal and extended complete solu-
tions are, in a sense, equivalent.

Proposition 2.1: Equations2.1d admits an internal complete solution WI if and only if it
admits an extended complete solution WE.

Proof: Let WI be an internal complete solution. By the completeness conditions2.2d, we know
that there existn−1 linearly independent columns in the matrix]2WI /]qi ]ca. Thus, we can
assume without loss of generality that

detF ]2WI

]qb ] ca
G Þ 0, a,b = 1,…,n − 1.

Then, the function

FIG. 1. The geometry of the three definitions of complete solution.
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WEsq,cd = WIsq,cad + cnq
n, c = scid = sca,cnd s2.5d

is an extended complete solution: the completeness conditions2.3d is satisfied. Conversely, ifWE

is an extended complete solution, then the functionuWI =WEucn=0 is an internal complete solution.
j

Now we adapt the above-given definitions to a particular class of complete solutions:
Definition 2.2:An internal separated solutionof the HJEs2.1d is an internal complete solution

WIsq,cad of the form

WIsq,cad = o
i=1

n

Wi
Isqi,cad. s2.6d

An extended separated solutionof the HJEs2.1d is an extended complete solutionWEsq,cd of the
form

WEsq,cd = o
i=1

n

Wi
Esqi,cd. s2.7d

It is obvious that the additive separation is preserved in the passage from aWE to aWI. However,
it is remarkable that it is also preserved in the inverse passage, from aWI to a WE, due to the
particular form of formulas2.5d. Hence, from Proposition 2.1 it follows that

Proposition 2.2: Equations2.1d admits an internal separated solution WI in a coordinate
systemq=sqid if and only if it admits an extended separated solution WE in the same coordinates.

The equivalence proved in Proposition 2.2 leads to the following definition of separability for
H=0:

Definition 2.3: The null HJE s2.1d is separablein the coordinatesq=sqid if it admits an
internal separated solution or, equivalently, if it admits an extended separated solution.

Remark 2.3:The definition of internal separated solutiongiven here, i.e., depending onn
−1 constant parameters satisfying the completeness conditions2.2d, is that commonly adopted in
the literature. See, e.g., Ref. 17, p. 107. However, the use of a second, although equivalent,
definition of separationsProposition 2.2d is essential for a complete development of the present
theory. Indeed, as will be shown in Sec. IV, the definition ofextended separated solutionallows
the characterization of the separability for the null HJEs2.1d by means of Lagrangian multipliers.

III. SPECIAL DISTRIBUTIONS RELATED TO THE SEPARATION

In order to give necessary and sufficient conditions for the existence of separated solutions it
is convenient to give a geometrical interpretation of the separation in terms of complete integra-
bility of a special kind of first-order differential systems. This interpretation is related to the
concept of separated connection on a cotangent bundle.5

With a coordinate systemq=sqid on Q we associaten differential operators on functions on
T*Q of the kind

Di = ]i + Risq,pd]i , s3.1d

whereRi are assigned functions onT*Q. The vector fieldsDi on T*Q are pointwise independent
and transversal to the fibers. Thus, they span a regular distributionD,TT*U of rankn transversal
to the fibers: this means that at each pointx[T*U they span ann-dimensional subspace
Dx,TxsT*Ud which is transversal to the vertical vectors ofTT*U. We say that the vector fieldsDi

are the generators ofD.
With the same functionsRi entering s3.1d we associate the first-order normal differential

system
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]ipj = di jRisq,pd s3.2d

and we remark as follows,

sid Any integral manifoldL of D, i.e., a submanifoldL,T*U such thatTxL=Dx for all x[L,
is locally described by equations

pi = wisqd, s3.3d

where the functionswi are solutions of systems3.2d. Indeed, sinceD is transversal to the
fibers, any integral manifoldL of D is an n-dimensional submanifold transversal to the
fibers, thus locally described by equations of the kinds3.3d. Moreover, by definition of
integral manifold, the generatorsDi are tangent toL, so that equationsDjspi −wisqdd=0 are
satisfied on L. This implies 0=Djspi −wisqdd=s] j +Rj]

jdspi −wisqdd=−] jwi +Rjdi j . This
shows that the functionss3.3d satisfy the differential systems3.2d.

sii d Any integral manifoldL is a Lagrangian submanifold, since the distributionD spanned by
Di is Lagrangian with respect to the canonical symplectic formv=dpk∧dqk. Indeed, we
have

vsDi,Djd = sdpk ∧ dqkdsDi,Djd = kDi,dpklkDj,dqkl − kDj,dpklkDi,dqkl = Rid j
i − Rjdi

j = 0.

This shows thatD is an isotropic distribution. Being of rankn, it is a Lagrangian distribu-
tion.

siii d Any Lagrangian submanifoldL transversal to the fibers ofT*Q admits local generating
functions, i.e., functionsWsqd such thatL is described by equationspi =]iW. If L is an
integral manifold of the distributionD, thenpi =]iW must be a solution of systems3.2d. It
follows that for i Þ j , ]i] jW=0, i.e.,

Wsqd = o
i=1

n

Wisqid. s3.4d

sivd The Lie brackets of the generatorsDi are vertical vectors, i.e., vectors tangent to the fibers
of T*Q. Indeed,

fDi,Djg = f]i + Ri]
i,] j + Rj]

jg

= ]i] j + ]iRj]
j + Rj]i]

j + Ri]
i] j + Ri]

iRj]
j + RiRj]

i] j − ] j]i − ] jRi]
i − Ri] j]

i − Rj]
j]i

− Rj]
jRi]

i − RjRi]
j] j = s]iRj + Ri]

iRjd] j − s] jRi + Rj]
jRid]i .

It follows that

fDi,Djg = DiRj]
j − DjRi]

i , s3.5d

being

]iRj + Ri]
iRj = DiRj . s3.6d

Hence,D is completely integrable if and only if the generators commute,fDi ,Djg=0, i.e.,
if and only if

DiRj = 0, i Þ j . s3.7d

So far we have no links with the HJEH=0. Now we introduce the functionH.
svd The distributionD, when restricted to the points ofE0, gives rise to a distributionD0 on E0

if and only if the generators are tangent toE0, and this happens if and only if

uDiHuE0
= us]iH + Ri]

iHduE0
= 0. s3.8d

In this case we say thatD is reducible toE0 and a well-known property of the Lie bracket
tells us that
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fDiuE0,DjuE0g = fDi,DjguE0. s3.9d

It follows that the reduced distributionD0 is integrable if and only if

DiRjuE0 = 0, i Þ j . s3.10d

Theorem 3.1:The HJEs2.1d admits an extended separated solution in the coordinate system
q if and only if there exist n functions Risq,pd satisfying one of the following equivalent condi-
tions: sad The distributionD spanned by the generatorss3.1d is completely integrable and reduc-
ible to a distributionD0 on E0. sbd Conditionss3.7d and s3.8d are satisfied:

]iRj + Ri]
iRj = 0, i Þ j , us]iH + Ri]

iHduE0
= 0. s3.11d

Proof: Conditions sad and sbd are clearly equivalent because of the remarks above. Let
WEsq,cd be an extended separated solution. The completeness conditions2.3d means thatsq,cd are
local noncanonical coordinates ofT*Q. Thus, the functionsRi =]i

2WEsq,cd are well defined on an
open subset ofT*Q. Then we consider the separable connectionD with generators

Di = ]i + ]i
2WE]i .

The integral manifolds ofD are locally described by equationspi =]iW
Esq,cd and, due to the

completeness conditions2.3d, we get the complete integrability ofD. Moreover, since forcn=0,
WE is a solution ofs2.1d, the generators are tangent toE0. Conversely, assume that functionsRi

exist satisfyings3.11d. Then the distributionD is completely integrable and the integral manifolds
are generated by a separated solutionWEsq,cd parametrized byn parametersc=scid. Since the
integral manifolds form a foliation, there is only one integral manifoldLc containing a given point.
This means that equationspi =]iW

E must be solvable with respect toc. This is equivalent to the
completeness conditions2.3d. j

Theorem 3.2:The HJEs2.1d admits an internal separated solution in the coordinate system
q if and only if there exist functions Risq,pd such thatsad the distributionD spanned by the
generatorss3.1d is reducible to a distributionD0 on E0 and this reduced distribution is completely
integrable, i.e., such thatsbd conditionss3.8d and s3.10d are satisfied:

us]iH + Ri]
iHduE0

= 0, us]iRj + Ri]
iRjduE0

= 0, i Þ j s3.12d

Proof: The equivalence between conditionssad and sbd follows from the above remarks. Let
WI be an internal separated solution. Then, by Proposition 2.2, we can construct an extended
separated solutionWE in the same coordinates. Hence, by Theorem 3.1, there exist functionsRi

satisfyings3.11d. It is clear that these functionsRi satisfy s3.12d. Conversely, we consider func-
tions Ri satisfying s3.12d which are associated with a distributionD reducible to a completely
integrable distributionD0 onE0. The integral manifolds ofD0 are generated by a separated solution
WIsq,cad parametrized byn−1 parametersscad. Since they form a foliationLI #E0, there is only
one integral manifold containing a given pointp[E0. This means that equationspi =]iW

I are
solvable with respect toca so that the completeness conditions2.2d holds. j

Remark 3.1:We know from Proposition 2.2 that the existence of a separated solutionWI is
equivalent to the existence of a separated solutionWE. However, this does not mean that the
functionsRi entering Theorem 3.1 and Theorem 3.2 are the same functions. Indeed, it is obvious
that functionsRi satisfyings3.11d also satisfys3.12d; but functionsRi satisfyings3.12d may not
satisfy s3.11d.

IV. THE LEVI–CIVITA SEPARABILITY CONDITIONS WITH LAGRANGIAN MULTIPLIERS

The ordinary separation of the HJEH=h s2.4d is characterized by the Levi–Civita
equations,24
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]iH] jH]i] jH + ]iH] jH]i] jH − ]iH] jH]i] jH − ]iH] jH]i]
jH = 0, i Þ j . s4.1d

We want to write similar differential equations characterizing the separation of the null HJEH
=0 s2.1d. For this reason, we look for differential systems equivalent to the conditionss3.11d and
s3.12d, respectively. Since these conditions are differential conditions restricted to a submanifold,
we base our approach on the Hadamard lemmascf. Ref. 1, for the one-dimensional cased.

Lemma 4.1: Let fsx,yd be a smoothsC`d function on an open subset Uof Rm+1 such that
fsx,0d=0. Then there exists a smooth functionlsx,yd such that fsx,yd=ylsx,yd.

Proof: The functionlsx,yd is defined by

lsx,yd =E
0

1 ] f

]y
sx,tyddt. s4.2d

Indeed we have

yE
0

1 ] f

]y
sx,tyddt =E

0

1 ] f

]y
sx,tydy dt =E

0

y ] f

]y
sx,uddu = fsx,yd − fsx,0d = fsx,yd.

The function defined bys4.2d is smooth. j

We use Hadamard’s lemma in the following form.
Lemma 4.2: A smooth function F on T*Q which vanishes on the submanifoldE0 defined by

equationH=0 is of the form

F = Hl, s4.3d

wherel is a suitable function on T*Q.
Proof: Since E0 is a submanifold of codimension 1, and dHÞ0, we can consider local

coordinatessx,yd on T*Q, such thatE0 is locally defined by equationy=H=0. Then, by applying
Lemma 4.1 to the functionF=Fsx,yd, there exists a smooth functionlsx,yd such thatF=yl, i.e.,
a smooth functionlsq,pd such thats4.3d holds. j

Due to Lemma 4.2, and recalling our assumption]iHÞ0, we can reformulate Theorems 3.1
and 3.2 as follows.

Proposition 4.1: The HJEs2.1d admits an extended separated solution in the coordinatesq
=sqid if and only if there exist n functionslisq,pd such that equations

]iRj + Ri]
iRj = 0, i Þ j , s4.4d

are satisfied for

Ri 8 −
]iH − liH

]iH . s4.5d

Proof: It is sufficient to examine the second equations3.11d. Due to Lemma 4.2, this is
equivalent to the existence of functionsli on T*Q such that

]iH + Ri]
iH = liH. s4.6d

Then we get forRi the expressions4.5d. j

Proposition 4.2: The HJEs2.1d admits an internal separated solution in the coordinatesq
=sqid if and only if there exist functionslisq,pd and mi jsq,pd such that equations

]iRj + Ri]
iRj = mi jH, i Þ j , s4.7d

are satisfied for Ri given bys4.5d,

Ri 8 −
]iH − liH

]iH .
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Proof: By recalling the proof of Proposition 4.1, the first equations3.12d means thatRi must
have the forms4.5d. Moreover, due to Lemma 4.2, the second equations3.12d is equivalent to the
existence of functionsmi j on T*Q such thats4.7d holds

.j
We remark that the additional functionsli and mi j play the role of Lagrangian multipliers.

Now we are able to state three effective criteria for the separabilitysDefinition 2.3d of the null
HJE.

Theorem 4.1: The HJEH=0 s2.1d is separable in the coordinatesq=sqid if and only if there
exist n functionsl=slkd on T*Q such that equations

LijsH;ld 8 LijsHd + Hflis] jH]i] jH − ] jH]i] jHd + l js]iH]i]
jH − ]i] jH]iHd

+ lil jsH]i] jH − ]iH] jHd − ] jli]
iH] jH + ] jlis] jH]iH − l jH]iHdg = 0 s4.8d

are satisfied for iÞ j , where

LijsHd 8 ]iH] jH]i] jH + ]iH] jH]i] jH − ]iH] jH]i] jH − ]iH] jH]i]
jH. s4.9d

We call equationss4.8d, LijsH ,ld=0, theLevi–Civita conditions with Lagrangian multipliers.
Proof: By Proposition 4.1, the HJEs2.1d is separable if and only if there exist functionsli on

T*Q such that equationss4.4d and s4.5d hold. Due to the expression ofRi given by s4.5d, the
left-hand sideDiRj of s4.4d becomes

DiRj = −
1

]iHs] jHd2LijsH;ld, s4.10d

so that equationss4.4d are equivalent to equationss4.8d. j

Remark 4.1:For all li =0, the expressions4.5d reduces to

Ri = −
]iH
]iH , s4.11d

and s4.8d become the usual Levi–Civita conditionss4.1d. Conditionss4.8d are more general than
s4.1d. Indeed, equationss4.1d are satisfied if and only if forRi given by s4.11d we haveDiRj =0,
i.e., if and only if the associated distributionD is completely integrable on an open subset ofT*Q
and reducible to everyEh, that is if and only if there exists an ordinary complete solution of
equationH=h s2.4d.

Remark 4.2:Equationss4.8d can be written in the formLijsHd=Pijsq,pdH. This is just a
special casefcorresponding to a first order PDEHsq,pd=0g of a general equation written by
Kalnins and Miller in their theory of the variable separation for partial differential equationsfEq.
s1.25d of Ref. 26, or Eq.s1.17d of Ref. 21g. In fact, equationLijsHd=HPij is considered as a
definition of a so-called regular separation of equationH=0. Instead, in our approach it is a
consequence of the definitions of separation given in Sec. II and rigorously proved by means of
the Hadamard lemma, as shown by the following.

Theorem 4.2: The HJEH=0 s2.1d is separable in the coordinatesq=sqid if and only if the
Levi–Civita conditions LijsHd=0 are satisfied forH=0, that is on the submanifoldE0,

uLijsHduE0
= 0. s4.12d

Proof: The Levi–Civita conditions with Lagrangian multiplierss4.8d obviously imply
LijsHd=0 for H=0. Conversely, assume thats4.12d holds. Then, by Lemma 4.2, there exist
functionsni j such thatLijsHd=ni jH. If we set
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mi j = −
1

]iHs] jHd2ni j ,

and li =0, then due tos4.10d we get that equationss4.5d and s4.7d are satisfied, and due to
Proposition 4.2 the HJE admits an internal separated solution. j

We remark that conditionss4.12d do not involve Lagrangian multipliers.
Remark 4.3:When the functionsRi are given bys4.5d, the generatorsDi become

Di = ]i −
]iH − liH

]iH ] i . s4.13d

Then, the Levi–Civita conditions with Lagrangian multiplierss4.8d can be written in the form

LijsH;lkd = LijsHd + Hflis] jH]i] jH − ] jH]i] jHd + l js]iH]i]
jH − ]i] jH]iHd + lil jsH]i] jH

− ]iH] jHd − Djli]
iH] jHg = 0. s4.14d

It is a remarkable fact that the Levi–Civita separability conditions with Lagrangian multipliersli

are equivalent to differential conditions involving a single undetermined functionL on T*Q and
that these new conditions are the ordinary Levi–Civita separability conditions, but with respect to
a modified Hamiltonian,J=H /L.

Theorem 4.3:The HJEH=0 s2.1d is separable in the coordinatesq=sqid if and only if there
exists a nowhere vanishing functionL=Lsq,pd such that for any iÞ j ,

LijSH
L
D = 0. s4.15d

Proof: The Levi–Civita equations with Lagrangian multiplierss4.14d are not symmetric in the
indicessi , jd, due to the last term. By taking their skew-symmetric part, we obtain equations

]iH] jHDjli = ]iH] jHDil j , s4.16d

which are necessary conditions for the solvability ofs4.14d. SinceDi andDj commute, it follows
that s4.16d are locally equivalent to the existence of a functionFsq,pd such that

li = DiF. s4.17d

Indeed, the commutation conditionfDi ,Djg=0 is equivalent to the existence of local coordinates
sxi ,yjd such thatDi =] /]yi. Hence, equationss4.16d become equivalent to]li /]yj =]l j /]yi. By
considering the coordinatessxid as independent parameters, this is locally equivalent to the exis-
tence of a functionFsx,yd such thatli =]F /]yi, and we gets4.17d. However, it turns out to be
more convenient to replace the functionF in s4.17d with F=lnuLu, whereLsq,pd is a nowhere
vanishing function, so that

li = 1
LDiL. s4.18d

Then, by insertings4.18d in s4.5d, we obtain

Ri = −
]iH
]iH +

1

L
DiL

H
]iH ,

and, bys4.13d,

Ri = −
]iH
]iH +

1

L
s]iL + Ri]

iLd
H

]iH .

By solving this equation with respect toRi, we find
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Ri = −
L]iH − H]iL

L]iH − H]iL
, s4.19d

that is

Ri = −
]isH/Ld
]isH/Ld

. s4.20d

Hence, for the functionss4.20d the complete integrability conditionss4.4d become the Levi–Civita
conditionss4.15d for the new HamiltonianJ=H /L. j

Remark 4.4:The explicit expression of then Lagrangian multipliersli in terms ofL is

li =
hH,Lji

L]iH − H]iL
, s4.21d

wherehH ,Lji 8]iH]iL−]iL]iH. Indeed, bys4.20d, the generatorsDi become

Di = ]i −
]isH/Ld
]isH/Ld

]i .

In particular, usings4.19d, the Lagrangian multiplierss4.18d become

li =
]iH]iL − ]iL]iH

L]iH − H]iL
,

that is s4.21d.
We call the function

J =
H
L

s4.22d

the conformal Hamiltonianassociated toH and the functionL the conformal factor. The link
between the two Hamiltonian vector fieldsXH andXJ generated by the HamiltoniansH andJ,
respectively, is given by the following.

Proposition 4.3: On the submanifoldE0 the vector fieldsXH andXJ are parallel and differ by
the factorL,

usLXJduE0
= uXHuE0

s4.23d

so that the corresponding affine parameters t andt are related by equation

dt = L dt. s4.24d

Proof: Let v be the symplectic form onT*Q. Then,

iXJv = − dJ = 1
L2H dL − 1

LdH, iXHv = − dH. s4.25d

By eliminating dH in these two equations we get the single equationLiXJv−d lnuLuH= iXHv,
which is equivalent to

i sXH−LXJdv =
H
L

dL. s4.26d

By s4.26d, for H=0 the Hamiltonian vector fieldsXH−LXJd vanishes and we gets4.23d. If t and
t are the affine parameters ofXH andXJ, respectively, then bys4.23d, we find thats4.24d holds on
E0. j

Theorem 4.4:If we know a complete solution of the HJEJ=h for the conformal Hamiltonian
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s4.22d, then for h=0 we get the orbits onE0 of the Hamiltonian vector fieldXH.
Proof: According to Proposition 4.3, onE0, the integral curves of the vector fieldsXH andXJ

coincide, up to the reparametrization given bys4.24d. SinceH=0 meansJ=0, by inserting the
conditionh=0 in a complete solution of the HJEJ=h, we get the orbits of the fieldXH on the
hypersurfaceH=0. j

Remark 4.5:We recall that a first integral of a HamiltonianH is a functionF on T*Q which
is constant on the integral curves ofXH and that this is equivalent to the conditionXHF=0 or
hH ,Fj=0. We call isoenergetic first integral of a functionH any functionF which is constant on
all the integral curves contained in a submanifoldH=h for some values ofh[R. Due to the
Hadamard lemma, this is equivalent to the existence of a functionf such thathH ,Fj=fsH−hd.
Of course, any ordinary first integral is a special kind of isoenergetic first integral. Ifh=0 we call
F a null first integral of H: it is characterized by equation

hH,Fj = fH. s4.27d

By s4.23d, it follows that any first integralF of XJ is a null first integral ofXH. In Sec. VIII we
shall use this definition.

Remark 4.6:Let the HamiltonianH be of the formH=H+L. In this case we can consider a
particular conformal HamiltonianJ=H /L. We call the HamiltonianJ the generalized Jacobi
transformof H. According to Theorem 4.4, we get that the orbits ofH on the hypersurfaceH
=0 coincide with the orbits ofJ on J=1. Moreover, bys4.24d, the generalized Jacobi transform
can be considered33 as a transformation on the cotangent bundleT*Q of the extended configuration
manifold Q=R3Q which is a canonical transformation only on the hypersurfacep0+H=0.

V. A FIRST APPLICATION: THE SEPARATION FOR TIME-DEPENDENT
HAMILTONIANS

Let Hst ,qd be a time-dependent Hamiltonian, that is a function on thesn+1d-dimensional
manifoldQ=R3Q sthe extended configuration manifoldd. The well-known HJE associated with a
time-dependent system is

]W

]t
+ HSt,qi,

]W

]qi D = 0. s5.1d

In the so-called homogeneous formalism, this is equivalent to consider on the cotangent bundle
T*Q, with coordinatessqA,pAd=sq0,qi ,p0,pid, the function

HsqA,pAd = p0 + HsqA,pid, s5.2d

whose corresponding equationH=0 is s5.1d swith q0= td. We have the separation of variables of
s5.1d on the hypersurfaceH=0 if and only if the Levi–Civita conditionsLABsHd=0sAÞB
=0,… ,nd are satisfied onE0, that is for

p0 = − HsqA,pid. s5.3d

The Levi–Civita equationsLABsHd=0 for the Hamiltonians5.2d become

LijsHd = LijsHd, Li0sHd = ]iH]i]0H − ]iH]i]0H si, j = 1,…,nd. s5.4d

It is remarkable the fact that, due tos5.3d and since equationss5.4d do not containp0, we have

LABsHduE0 = 0 ⇔ LABsHd = 0.

Thus, in this case we have the perfect equivalence between the separation of the HJEH=h of the
kind s2.4d and the separation of variables for the single equationH=0 of the kinds2.1d. Then, in
order to have the separability for the HJEs5.1d we need that the following conditions be satisfied:

LijsHd = 0, ]iH]i]0H − ]iH]i]0H = 0 si n . s.d. s5.5d
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Remark 5.1:Equationss5.5d implies that theT*Q-Poisson bracket of the functionsH and]0H
vanishes,

hH,]0HjT*Q = ]iH]i]0H − ]iH]i]0H = 0.

Remark 5.2:If conditions s5.5d hold, then the Levi–Civita conditions withn+1 Lagrangian
multipliers LABsH ;lCd=0 are satisfied forlC=0sC=0,… ,nd or, equivalently, conditionss4.15d
hold for L=1.

Remark 5.3:Equations s5.5d are the Levi–Civita separability conditions for the time-
dependent case proposed by Forbat.15 However, the proof given by Forbat is unsatisfactory.
Indeed, it is based on the fact that, assuming that the equations5.1d admits a complete solution of
the formW=W0st ,cd+oiWisqi ,cd, by differentiatings5.1d with respect to a coordinateqi, we get
equations

]iH]ipi + ]iH = 0 s5.6d

sno summation on the indexid. By solving s5.6d with respect to]ipi, we obtain the system

] jpi = di jRi, Ri = −
]iH

]iH
, s5.7d

whose integrability conditions ares5.5d. However, equationss5.6d are derivable also from equation
H=h, whereh is any constant, not only from equationH=0. In other words, in considering the
integrability conditions of systems5.7d one is actually considering the separation of all equations
H=h=const, which is not in general equivalent to the separation of the single equationH=0, as
we have seen in the preceding sections.

VI. THE ORTHOGONAL SEPARATION FOR NATURAL HAMILTONIANS

Let us apply the general theory so far developed to the special but fundamental case of a
natural HamiltonianH=G+V in orthogonal coordinates,

Hsq,pd = 1
2giipi

2 + Vsqd.

With an orthogonal metricG=sgiid we associate differential operatorsSijsAd on functionsAsqd,

SijsAd 8 ]i] jA − ] j lnugii u]iA − ]i lnugjj u] jA = ]i] jA −
1

gii ] jg
ii]iA −

1

gjj ]ig
j j] jA,

which we callStäckel operators. The indicessi , jd are assumed to be distinct and not summed
sn.s.d. In the following the condition “i Þ j n.s.” referred to an operatorSij will be understood. We
know ssee, e.g., Ref. 3d that gkk is a Stäckel metric if and only if

Sijsgkkd = 0, s6.1d

and that a potentialV is separable in these coordinates if and only ifSijsVd=0. Indeed, for a natural
Hamiltonian in orthogonal coordinates the Levi–Civita equations become

LijsHd = giigjj pipjs 1
2Sijsgkkdpk

2 + SijsVdd = 0, s6.2d

and they are satisfied if and only if1
2Sijsgkkdpk

2+SijsVd=0. For the operatorsSij the following rules
hold:

Sijscd = 0, c [ R,

SijsA + Bd = SijsAd + SijsBd,
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SijsABd = ASijsBd + BSijsAd + ]iA] jB + ] jA]iB,

SijsA−1d = 2A−3]iA] jA − A−2SijsAd. s6.3d

The Stäckel operatorsSij corresponding to a conformal orthogonal metricgii =s1/sdgii obey rules
s6.3d and

SijsAd = SijsAd − s−3s]is] jA + ]iA] jsd,

Sijsgkkd = s−1Sijsgkkd − gkks−2Sijssd =
gkk

s
S 1

gkkSijsgkkd −
1

s
SijssdD . s6.4d

Remark 6.1:From the second equations6.4d, by settings=g11,… ,gnn, we derive the follow-
ing theorem due to Kalnins and Miller, Ref. 20, Lemma 1:If sgiid is a Stäckel metric then all
metricssgii /g11d ,… ,sgii /gnnd are Stäckel metrics. We recall also Lemma 2 of Ref. 20:An orthogo-
nal metric sgiid is conformal to a Stäckel metric if and only if gii /gjj , for any fixed value of the
index j, is a Stäckel metric. Indeed, this follows from Lemma 1 and the fact that for any conformal
metric gii we havegii /gij =gii /gjj . Note that equations6.1d are equivalent to equations

]i j
2 lnugii u − ]i lnugkku] j lnugii u + ]i lnugjj u] j lnugkku + ] j lnugii u]i lnugkku = 0.

With the substitutiongii =eiHi
2, ei = ±1, they coincide with the equations given by EisenhartsRef.

14, Appendix 13d.
Let us apply the results of Sec. IV to the function

H = 1
2giipi

2 + V − E, E [ R.

Theorem 6.1:The HJE

1
2giipi

2 + V − E = 0, s6.5d

is separable in the orthogonal coordinatessqid, for a fixed value E[R, if and only if equations

1

ghhSijsghhd =
1

gkkSijsgkkd, SijsVd =
V − E

ghh Sijsghhd, s6.6d

are satisfied for all indices h, k and iÞ j .
Proof: Due to Theorem 4.2, a necessary and sufficient condition for the separation ofH=0 is

that the Levi–Civita conditions be satisfied when restricted to the submanifoldE0, that is forH
=0. By s6.5d, equationH=0 is equivalent to

p1
2 = − o

k=2

n
gkk

g11pk
2 +

2

g11sE − Vd. s6.7d

Thus, bys6.2d and s6.7d, we get

Lij usHduE0
= giigjj pipjS1

2o
k=2

n

Sijsgkkdpk
2 + SijsVd −

1

2
Sijsg11do

k=2

n
gkk

g11pk
2 +

Sijsg11d
g11 sE − VdD .

s6.8d

Functionss6.8d vanish if and only if
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1

2o
k=2

n FSijsgkkd −
gkk

g11Sijsg11dGpk
2 − SijsE − Vd −

Sijsg11d
g11 sE − Vd = 0. s6.9d

Since conditionss6.9d must be satisfied for all values ofp2,… ,pn, they are equivalent to

Sijsgkkd −
gkk

g11Sijsg11d = 0, SijsE − Vd −
E − V

g11 Sijsg11d = 0,

hence tos6.6d. j

The first equationss6.6d mean that the functionss1/ghhdSijsghhd do not depend on the choice
of the indexh. This is a necessary condition for the separability of equations6.5d, which has the
following equivalent formulation.

Theorem 6.2:The necessary condition for the separability of the HJEs6.5d

1

ghhSijsghhd =
1

gkkSijsgkkd for all indices h, k and iÞ j , s6.10d

is equivalent to the existence of a functionsÞ0 such that the conformal metricgii =gii /s is a
Stäckel metric,

Sijsgkkd = 0. s6.11d

Proof: sid If such a function s exists, then by the second equations6.4d we derive
s1/gkkdSijsgkkd=s1/sdSijssd. Hence,s6.10d follows. sii d Conversely, assume thats6.10d holds. If
we chooses=g11 then from the second equations6.4d we getSijsgkkd=0. j

Remark 6.2:From this proof it follows that conditions6.10d is verified if and only ifs6.11d is
satisfied withs=gjj for any arbitrary choice of the indexj .

This theorem suggests the following.
Definition 6.1:We call conformal separable coordinatesorthogonal coordinatesq=sqid for

which conditionss6.10d or s6.11d hold.
Remark 6.3:A special class of orthogonal conformal separable coordinates is that for which

gii =cissqd , ci [R. In this case the components of the orthogonal conformal metric areci =gii /s
=constant; hence, they are obviously of the Stäckel type. Up to a rescaling of the coordinates we
can reduce to the casegii = ±s, according to the signature of the metric. Note that in this case the
original metricsgiid is conformally flat. Orthogonal coordinates for whichgii =gjj are called iso-
thermal.

Now we apply Theorem 6.1 to the following three special cases:

V = 0, E Þ 0, non-null geodesics,

V = 0, E = 0, null geodesics,

V − E Þ 0, dynamical trajectories with total energyE.

The results for the null geodesics case date back to Stäckel32 ssee also Ref. 20d.
Theorem 6.3:The HJE1

2giipi
2=E with a fixed value EÞ0, is separable in orthogonal coor-

dinatessqid if and only if sgiid is a Stäckel metric, i.e., if and only if it is separable in the ordinary
sense for all values of E.

Proof: For V=0 the second equations6.6d givesSijsgkkd=0. j

Theorem 6.4:The HJE of the null geodesics

giipi
2 = 0 s6.12d

is separable in the orthogonal coordinatessqid if and only if these coordinates are conformal
separable.

Proof: For V=0 andE=0 the second equationss6.6d are trivially satisfied, so that only the first
equations characterize the separation. j
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Theorem 6.5:The HJE

1
2giipi

2 + V − E = 0 sV − E Þ 0d, s6.13d

is separable if and only if the conformal metric

gii =
1

E − V
gii s6.14d

is a Stäckel metric, or equivalently, if and only if for all indices h, k and iÞ j ,

1

gkkSijsgkkd =
1

V − E
SijsVd. s6.15d

This means that the coordinates are conformal separable, according to Definition 6.1, but the
conformal factors must be equal to the functionV−E.

Proof: For V−EÞ0 systems6.6d is equivalent tos6.15d. Moreover, let us consider the con-
formal metrics6.14d and the associated Stäckel operatorsSij . From the second formulas6.4d with
s=E−V, we get

Sijsgkkd =
1

E − V
Sijsgkkd −

gkk

sE − Vd2SijsE − Vd.

Thus,Sijsgkkd=0 is equivalent tos6.15d. j

Remark 6.4:The metricgii =sE−Vd−1gii is called theJacobi metricor action metricssee, e.g.,
Ref. 33 and the references cited thereind of the natural HamiltonianH=G+V for the fixed valueE
of the total energy. Then, Theorem 6.5 can be reformulated as follows

Theorem 6.6:The HJEs6.13d is separable if and only if the corresponding Jacobi metric is
a Stäckel metric.

We adapt to the Jacobi metric the considerations about the conformal Hamiltonians stated in
Proposition 4.3 and Theorem 4.4.

With a natural HamiltonianH=G+V= 1
2gij pipj +V and a fixed value of the energyE[R we

associate two Hamiltonians,

HE = 1
2gij pipj + V − E, JE = 1

2
gij

E−Vpipj .

The passage from the natural HamiltonianH=G+V to the geodesic HamiltonianJE is called
Jacobi transformation16,28,30or Maupertuis transformation.9,33

Let XH be the Hamiltonian vector field generated byH sit coincides with that generated by
HEd andXJ the Hamiltonian vector field generated byJE. Adapting to these cases Proposition 4.3,
Theorem 4.4, and Remark 4.5, we get the following.

Theorem 6.7:Assume that equation HE=0 si.e., JE=1d defines a regular hypersurface of T*Q.
Thensid on this hypersurface the Hamiltonian vector fieldsXH and XJ are parallel,

sE − VdXJ = XH, s6.16d

and outside this surface the differencesE−VdXJ−XH is a vertical vector field.sii d On HE=0 the
integral curves of the vector fieldsXH and XJ coincide, up to a reparametrization, and the affine
parameters tand t of XH and XJ, respectively, are related bydt=sE−Vddt. siii d Any first integral
F of XJ is constant along the integral curves ofXH contained on HE=0. sivd If a complete solution
of the geodesic HJE JE=h is known, then for h=1 we get the orbits of the fieldXH on the
hypersurface HE=0.

Proof: By s4.23d, we get s6.16d. Moreover, due tos4.26d, we have thatXH−sE−VdXJ is
vertical outside the hypersurfaceHE=0, since it is generated by the functionL=E−V which is
constant along the fibers. j

Hence, as a corollary of Theorem 6.6, we have the following.
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Theorem 6.8:The orthogonal separation (in the ordinary sense) of the geodesic HJE JE=h is
equivalent to the orthogonal separation of the HJE HE=0 for a fixed value E of the energy. For
h=1 we get the orbits corresponding to the integral curves ofXH with total energy E.

Remark 6.5:Equations6.15d shows thatSijsVd=0 if and only if Sijsgkkd=0. These two condi-
tions characterize the orthogonal Stäckel separation for a natural Hamiltonian. In this case the
Jacobi metric is a Stäckel metric for all values ofE. From s6.15d it follows also that if the
conformal Jacobi metrics6.14d is a Stäckel metric for two distinct valuesE1ÞE2 of the energy,
then it is a Stäckel metric for all values ofE. Indeed, froms6.15d written for E=E1 andE=E2 it
follows that

1

V − E1
SijsVd =

1

V − E2
SijsVd.

Thus,SijsVd=0, so that alsoSijsgkkd=0. As a consequence, we have the following.
Theorem 6.9:The HJEs6.13d is separable for two distinct values of the energy E if and only

if it is separable in the ordinary sense.
Remark 6.6:According to Theorem 6.9, we have that if a natural HamiltonianH=G+V is not

separable in the ordinary sense, then there exists at most one value of the energyE such thatH
=E is separable.

Remark 6.7:For a natural Hamiltonian in orthogonal coordinates the Lagrangian multipliers
li or the functionL, involved in Theorems 4.1 and 4.3, respectively, which in general are func-
tions onT*Q, are necessarily constant along the fibers, i.e., they reduce in this case to functions on
Q.

We conclude this section with the formulation of Theorems 6.2 and 6.3 in terms of Stäckel
matrices. We recall that an orthogonal metric is a Stäckel metric if and only if it is a row of the
inverse of a Stäckel matrixS=fwi

s jdsqidg. By applying this definition to the general conformal
metric gii =gii /s and to the Jacobi metrics6.14d we get the following.

Theorem 6.10: sid Coordinatessqid are conformal separable if and only if there exists a
Stäckel matrixS=fwi

s jdsqidg such that

gii

wsnd
i =

gjj

wsnd
j , s6.17d

where fws jd
i g=S−1. sii d The Jacobi metrics6.14d is a Stäckel metric if and only if there exists a

Stäckel matrixS=fwi
s jdsqidg such thats6.17d holds and moreover,

E − V = o
i

wi
sndgii . s6.18d

Proof: We have

∃sUgii

s
= wsnd

i ⇔
gii

wsnd
i =

gjj

wsnd
j ,

gii

E − V
= wsnd

i ⇔
gii

wsnd
i =

gjj

wsnd
j ∧ E − V = oi

wi
sndgii . j

Remark 6.8:Let us denote byMj
i the cofactor ofw j

sid. We have detS=oiwi
sndMi

n and

wsnd
i =

Mi
n

detS
.

Hence,s6.17d is equivalent to
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gii

Mi
n = ¯ =

gjj

Mj
n .

We observe that in these conditions, only the firstn−1 columns of the Stäckel matrix are involved,
while the last column is involved only in the expressions6.18d of E−V. Hence, in the character-
ization of the null geodesic separation only a rectangularn3 sn−1d Stäckel matrix is involved,

3w1
s1d … w1

sn−1d

A A A
wn

s1d … wn
sn−1d 4 .

VII. THE INTRINSIC CHARACTERIZATION OF THE ORTHOGONAL SEPARATION

Theorems 6.4 and 6.5 show that the separation of variables of the HJE for the null geodesics
and for a fixed value of the energy is equivalent to the ordinary complete orthogonal separation of
a conformalscontravariantd metric

G =
1

s
G,

whereG=sgiid, G=sgiid ands is a nowhere vanishing function onQ. In these two cases we have,
respectively,

s = a suitable function onQ for the null geodesics,

s = E − V for the Jacobi metric.

Since the ordinary geodesic separation can be characterized by means of Killing tensorssKT’sd, in
both cases we are led to consider KT’s of a conformal metric. A basic well known property is the
following.

Proposition 7.1: A symmetric two-tensorK is a KT for the conformal metricG=s1/sdG i.e.,

fG,K g = 0 s⇔hPG,PKj = 0d, s7.1d

if and only if

fG,K g = −
2

s
K ¹ s(G S⇔hPG,PKj = −

2

s
PK¹sPGD . s7.2d

Notation: Here we denote byf· , ·g the Lie–Schouten bracket of contravariant symmetric
tensors and by( the symmetric tensor product. If we consider the homogeneous polynomial
functionsPK on T*Q associated with contravariant symmetric tensorsK =sKi… jd on Q, then this
bracket is defined byPfK 1,K 2g=hPK 1

,PK 2
j and the symmetric product byPK 1(K 2

=PK 1
PK 2

. We say
that K 1 andK 2 are in involution iffK 1,K 2g=0. We denote byKX the image of a vector fieldX
by K interpreted as as1,1d tensor.

Proof of Proposition 7.1:The equivalence ofs7.1d and s7.2d is proved by the following
calculation:

fG,K g = F 1

s
(G,KG =

1

s
(fG,K g + F 1

s
,KG(G

=
1

s
fG,K g − 2K ¹

1

s
(G =

1

s
SfG,K g +

2

s
K ¹ s(GD . j
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A symmetric two-tensorK is a conformal Killing tensorsCKTd if there exists a vector fieldC such
that

fG,K g = 2C(G s⇔hPG,PKj = 2PCPGd. s7.3d

We say thatK is a CKT ofgradient typeif there exists a functionU such thatC= ¹U. We say that
K is a CKT of self-gradient typeif C=K ¹U.

We remark that in Proposition 7.1 the tensorK is a CKT of self-gradient type with respect to
the metricG with U=−lnusu.

Remark 7.1:The eigenvectors ofK in Proposition 7.1 are the same with respect both metrics
G andG. If ri are the eigenvalues ofK with respect toG, then the eigenvalues with respect toG
are

ri =
ri

s
. s7.4d

If the eigenvalues are simple with respect toG, then they are also simple with respect toG.
Remark 7.2:Tensors of the kindfG are at the same time CKT’s of gradient typeswith C

= ¹ f, i.e., U= fd and of self-gradient typeswith C= fG¹ ln f, i.e., U=ln fd.
Definition 7.1: Two CKT’s K and K 8 are said to beequivalent if K 8=K + fG for some

function f.
Equivalent CKT’s have the same eigenvectors. We shall be interested in equivalence classes of

this kind. In any equivalence class there exists a trace-free representative, so that only trace-free
CKT’s are considered by some authors.20,29,34

As shown by the following proposition, in some special case a CKTK is equivalent to a
tensorK 8 of self-gradient typeshence, a KT of a conformal metricd.

Proposition 7.2:sid A CKTK which is diagonalized in orthogonal coordinates is equivalent to
a CKT K 8 of self-gradient type.sii d For any given orthogonal coordinate system there exists a
function U such that any CKTK diagonalized in these coordinates is equivalent to a CKTK 8 of
self-gradient type such thatfG ,K 8g=2K 8¹U(G, i.e., to a KT of the conformal metricG=eUG.
siii d The n functions Uk=−lnugkku satisfy item (ii).

Proof: If gij =0 andKij =0 for i Þ j , thenKii =rigii and Eq.s7.3d is equivalent to

]ir
j = sri − r jd]i ln gjj + ]ir

i, Ci = ]ir
i . s7.5d

Let us take the tensorK 8=K −rnG with eigenvaluesr8i =ri −rn. By usings7.5d we get

]ir8 j = sr8i − r8 jd]i lnugjj u − r8i]i lnugnnu.

This shows thatK 8 is a CKT with Ci8=−r8i]i lnugnnu, hence of self-gradient type withU
=−lnugnnu and a KT for the conformal metricG /gnn. We remark thatU does not depend onK but
only on the given coordinates. j

In the following two sections we give intrinsic versions of Theorems 6.4 and 6.5, respectively,
for the case considered in Theorem 6.3 the intrinsic characterizations are just that of the ordinary
orthogonal separation.4,18 We shall use the following.

Definition 7.2:A sconformald Killing two-tensor with simple eigenvalues and normal eigen-
vectors is calledcharacteristic (conformal) Killing tensor.

A. The orthogonal separation of the null geodesics

A first characterization is related to the existence of a single CKT.
Theorem 7.1:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if

and only if on Q there exists a characteristic CKTK .
Proof: According to the intrinsic characterization of the orthogonal separation of a geodesic

Hamiltonian,4,18 a metricG is orthogonally separable if and only if it admits a KTK , fG ,K g
=0, with simple eigenvalues and normal eigenvectors. SinceG=G /s, due to Proposition 7.1, this
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is equivalent to the existence of a characteristic CKT satisfying equations7.2d. Proposition 7.2
shows that this is equivalent to the existence of a characteristic CKT without any other condi-
tion. j

Remark 7.3:Theorem 7.1 was first stated by Kalnins and MillersRef. 20, Theorem 1, Sec. II
with a different proof, not involving the use of self-gradient CKT’s.

A second characterization is related ton CKT’s.
Theorem 7.2:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if

and only if on Q there exist n CKT’ssK id=sK 1,K 2,… ,K nd, sid pointwise independent, sii d with
common eigenvectors, siii d in involution.

Proof: By Theorem 8.8 of Ref. 7 the common eigenvectors are normal. There exists orthogo-
nal coordinate systems in which all the tensors are diagonalized. Then, the pointwise indepen-
dence implies the existence of a linear combinationswith constant coefficientsd K =ciK i with
simple eigenvalues. This is a conformal characteristic tensor. Then we apply Theorem 7.1. Con-
versely, since the separation ofs6.12d is equivalent to the ordinary separation of a conformal
metric G=G /s, there existn KT’s K i for the conformal metric satisfyingsid, sii d, siii d. Due to
Proposition 7.1, these tensors are CKT’s forG. j

Remark 7.4:In the intrinsic characterization of the ordinary orthogonal separation in terms of
n independent KT’ssin involutiond, the metricG may be one of them. On the contrary, in Theorem
7.2 none CKT’sK i can be the metric. Indeed, if one of theK i is the metric, then conditionsiii d
implies that allK i are KT’s and we reduce to the ordinary orthogonal separation. In other words,
the metric cannot belong to the linear space generated by theK i sby linear combinations with
constant coefficientsd. However,

Proposition 7.3: Given, n CKT’s K i with common normal eigenvectors, there exist a linear
combination with constant coefficients and a function f such that ciK i = fG.

Proof: We apply the second part of Proposition 7.2. Then, there are equivalent CKT’s of
self-gradient typeK i8=K i + f iG with the same functionU. They are KT’s of the metriceUG=G
with common normal eigenvectors. Thus, there exists a linear combination with constant coeffi-
cients such thatciK i8=G. It follows thatciK i =−ci f iG+eUG= fG with f =eU−ci f i.j

A third characterization of the separability fors6.12d involvesn−1 CKT’s.
Theorem 7.3:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if

and only if on Q there exist n−1 CKT’s sK ad=sK 1,K 2,… ,K n−1d with sid common normal eigen-
vectors (i.e., all simultaneously diagonalizable in orthogonal coordinates) and such thatsii d
G ,K 1,K 2,… ,K n−1 are pointwise independent.

Proof: Due to the pointwise independence of the tensors, there exists a linear combination
with constant coefficients having distinct eigenvalues, i.e., which is a characteristic CKT and by
Theorem 7.1 we have the separation of variables fors6.12d Conversely, ifs6.12d is separable, then
the conformal metricG is separable and there existsn−1 tensorssK ad which aresad KT’s with
respect toG, sbd with common normal eigenvectors, and such thatscd sG ,K 1,K 2,… ,K n−1d are
pointwise independent. Hence,K a satisfy sid, sii d, andsiii d. j

This theorem is a slightly modified version of Theorem 2, Sec. II of Ref. 20. In general, a set
of tensorssK ad satisfying the hypotheses of Theorem 7.3 may not be in involution. However,

Proposition 7.4: The tensorssK ad in Theorem 7.3 are equivalent to CKT’s in involution.
Proof: First of all we remark that also the tensorsK a+ faG satisfy the hypotheses of Theorem

7.3, for any choice of then−1 nonzero functionsfa. By using equationss7.5d, we see that two
CKT’s K a, K b sdiagonalized in orthogonal coordinatesd are in involution if and only if for all
indicesi,

Cai

ra
i =

Cbi

rb
i sa,b [ h1,…,n − 1jd, s7.6d

wherera
i are the eigenvalues ofK a andCai are the covariant components of the vector fieldsCa

satisfyingfG ,K ag=2Ca(G. Conditions7.6d is not preserved by replacing the tensors by equiva-
lent ones. Moreover, by Proposition 7.2sii d, K a are equivalent to CKT’sK a8 of self-gradient type
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with the same functionU. By Proposition 7.1,K a8 are KT’s of the conformal metriceUG, having
common normal eigenvectors. Hence, they are in involution. j

There is an alternative formulation of Theorem 7.3, still involvingn−1 CKT’s, due to Kalnins
and Miller sRef. 20, Theorem 4, Sec. IId:

Theorem 7.4:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if
and only if on Q there exist n−1 CKT’s sK ad=sK 1,K 2,… ,K n−1d sid with common eigenvectors,
sii d in involution and such thatsiii d G ,K 1,K 2,… ,K n−1 are pointwise independent.

We give here a proof which is based on the following general characterization of the integra-
bility of frames, which is an extension of that given in Ref. 7, Theorem 8, Sec. VIII.

Theorem 7.5:Let sX id a frame on Q. Let sK ad be n contravariant symmetric two-tensorssid
pointwise independent, sii d simultaneously diagonalized in the framesX id and such thatsiii d for
each aÞb there exists a vector fieldCab and a symmetric two tensorM ab diagonalized in the
frame sX id such that

hPsK ad,PsK bdj = 2PsCabdPsM abd. s7.7d

Then, the frame is integrable and all the two-tensors are simultaneously diagonalized in a same
coordinate system.

We recallscf. Ref. 7d that sId a frame is calledintegrableif for each indexi the distributionDi

spanned by the vectorssX1,… ,X i−1,X i+1,… ,Xnd is completely integrable;sII d a frame is inte-
grable if and only if the distributionsDi j spanned by pairs of vectorssX i ,X jd are completely
integrable;sIII d a frame is integrable if and only if there exist local coordinatessqid such that
X i = f i ] /]qi, where f i are nowhere vanishing functions.

Proof: Let us set fX i ,X jg=Vi j
hXh, Vi j

h =−V ji
h, PsX id=xi, so that hxi , fj=kX i ,dfl, hxi ,xjj

=PsfX i ,X jgd=Vi j
hxh. Assumptionssii d andsiii d mean thatK a=Ka

i X i(X i, M =MiX i(X i. By recall-
ing the calculation of Ref. 7, Sec. VIII, we have

hPsK ad,PsK bdj = 2s2Ka
i Kb

hVih
j + sKa

i kX i,dKb
kl − Kb

i kX i,dKa
klddk

hdk
j dxixhxj .

Being 2PsCabdPsM abd=2Cab
k xkMab

l xl
2=2Cab

k Mab
l xkxl

2, from Eq. s7.7d it follows that

s2Ka
i Kb

hVih
j + sKa

i kX i,dKb
kl − Kb

i kX i,dKa
kl − Cab

i Mab
k ddk

hdk
j dxixhxj = 0.

This is a homogeneous polynomial equation which must be identically satisfied for all values of
the variablesspkd, i.e., for all values of the variablessxid, sincexi =PsX id=Xi

kpk, and detfXi
kgÞ0.

Thus, all coefficients vanish. In particular, the coefficient ofx1x2x3 sas well as for all possible
choices of three distinct indicesd gives rise to equation

Ka
1Kb

2V12
3 + Ka

1Kb
3V13

2 + Ka
2Kb

3V23
1 + Ka

2Kb
1V21

3 + Ka
3Kb

1V31
2 + Ka

3Kb
2V32

1 = 0.

From now on the proof is the same of Theorem 8.8 of Ref. 7. j

Proof of Theorem 7.4:The tensorssK ad=sG ,K ad fulfill the assumptions of Theorem 7.5. In
particular, Eqs.s7.7d become

hPsK ad,PsK bdj = 0, hPsK ad,PsGdj = 2PsCadPsGd.

Hence, the common eigenvectors are normal. j

A final important remark is that Theorems 7.2 and 7.4 can be derived from more general
statements.

Definition 7.2:We say that two symmetric two-tensorsK 1 andK 2 on a Riemannian manifold
are in conformal involution if there exists a vector fieldC12 such that

fK 1,K 2g = 2C12(G s⇔ hPK 1
,PK 2

j = 2PC12
PGd. s7.8d

Theorem 7.6:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if
and only if on Q there exist n CKT’ssK id=sK 0,K 1, . . . ,K n−1d sid pointwise independent, sii d with
common eigenvectors andsiii d in conformal involution.
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Proof: The common eigenvectors are normal, since equations7.8d is a particular case ofs7.7d.
Item sid implies the existence of a linear combinationK =ciK i with simple eigenvalues. Then we
apply Theorem 7.1. Conversely, due to Theorem 7.2, the separation implies the existence of
independent CKT’sK i satisfyings7.8d with Ci j =0. j

Remark 7.5:Theorem 7.6 is in perfect analogy with the intrinsic characterization of the
ordinary orthogonal separation in terms ofn independent KT’s in involution: it is enough to cancel
the word “conformal.” This shows that the notion of conformal involution is a natural and useful
extension of the ordinary involution.

Proposition 7.5: All CKT’s diagonalized in orthogonal coordinatessqid are in conformal
involution.

Proof: According to Proposition 7.2, two tensorsK 1, K 2 diagonalized insqid are equivalent to
two KT’s K 18=K 1−r1

nG, K 28=K 2−r2
nG of the conformal metricG=G /gnn. Two simultaneously

diagonalized KT’s are in involutionsRef. 4, Sec. IId. Hence,

fK 1,K 2g = fK 18 + r1
nG,K 28 + r2

nGg = 2sK 1 ¹ r2
n − K 2 ¹ r1

nd(G.

j

Remark 7.6:As a consequence of this proposition, for two CKT’s simultaneously diagonalized
in orthogonal coordinates equations7.7d, fK 1,K 2g=2C12(M 12, impliesM 12=G, thus the confor-
mal involution s7.8d. In other words, in Theorem 7.6 by replacing the conformal involution
conditionssiii d, fK i ,K jg=2Ci j(G with fK i ,K jg=2Ci j(M i j we do not get an extension of the
theorem.

Remark 7.7:The CKT’s K i of Theorem 7.6 generate ann-dimensional spaceK of CKT’s in
conformal involution which are simultaneously diagonalized in orthogonal coordinates. We call
such a space aconformal Killing–Stäckel spacesCKS spaced. The existence of such a space is
necessary and sufficient for the orthogonal separation of the null geodesic HJE. However, since
propertiessid, sii d, andsiii d in this theorem are invariant with respect to the equivalence transfor-
mationsK i →K i8=K i + f iG, there are infinitely many CKS-spacesK8 associated withK, corre-
sponding to any choice of the functionsf i, having the same properties and diagonalized in the
same coordinates. We remark thatsId each CKS space contain a tensor of the kindfG si.e., a
symmetric tensor withn coinciding eigenvaluesd. sII d There exists a CKS space which contains the
metric tensorG. PropertysId follows from Proposition 7.3. To provesII d, starting from the given
K i, according to Proposition 7.3, we can find a linear combination such thatciK i = fG. Thus, if
c0Þ0, we replaceK 0 by the equivalent tensorK 08=K 0+fs1− fd /c0gG. Then the CKS space gen-
erated bysK 08 ,K 1, . . . ,K n−1d contains the metricG=c0K 08+c1K 1+¯+cn−1K n−1. A consequence of
these remarks is that we can reformulate Theorem 7.6 assuming that the metric tensorG is one of
the K i. This shows that Theorem 7.4 follows from Theorem 7.6.

B. The orthogonal separation for E−VÅ0

Theorem 7.7:The HJEs6.13d for a fixed value E of the energy and for E−VÞ0 is separable
in orthogonal coordinates if and only if on Q there exists a characteristic CKTK such that

fG,K g =
2

E − V
K ¹ V(G s7.9d

or, equivalently, if and only if there exist a function f and a characteristic CKTK 8 such that

fG,K 8g =
2

E − V
sK 8 ¹ V + ¹ fd(G. s7.10d

Proof: The proof of the first part of this statement follows the same pattern of that of Theorem
7.1, with s=E−V. Moreover, if we find a characteristic CKTK 8 satisfying s7.10d, then the
equivalent tensorK =K 8−ff / sE−VdgG satisfies conditions7.9d. j

Theorem 7.8:TheHJE (6.13) for a fixed value E of the energy and for E−VÞ0 is separable
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in orthogonal coordinates if and only if on Q there exist n CKT’ssK id=sK 0,K 1,… ,K n−1d (i)
pointwise independent, (ii) with common eigenvectors, (iii) in conformal involution and such that

fG,K ig =
2

E − V
sK i ¹ V + ¹ f id(G s7.11d

with suitable functions fi.
Proof: Due to Theorem 7.5 and itemsiii d the common eigenvectors are normal. Itemssid and

sii d imply the existence of a CKT with simple eigenvalues satisfyings7.10d. Then we apply
Theorem 7.7. Conversely, ifs6.13d is separable, then the Jacobi metricG=G / sE−Vd is separable.
This means that there existsn KT’s K i for G, pointwise independent, with common eigenvectors,
in involution, hence in conformal involution. Recalling Proposition 7.1, we have

fG,K ig = 2
E−VK i ¹ V(G.

This is a particular case ofs7.11d. j

Remark 7.8:This theorem shows that, in other words, the orthogonal separation of the Jacobi
metric is equivalent to the existence of a CKS space satisfying the additional conditions7.11d. We
observe that we can always modify the basissK id in order to include the metric tensorG. Due to
Proposition 7.2, there exist a functionf and n real numbersci not all equal to zero, such that
fG=oic

iK i. Up to a reordering of the tensors, we can suppose thatc0Þ0. Then, sG ,K ad
=sG ,K 1,… ,K n−1d satisfy itemssii d, siii d and are pointwise independent,

detFgii

Ka
ii G =

1

f
detFcjKj

ii

Ka
ii G = o

b=1

n−1
cb

f
detFKb

ii

Ka
ii G +

c0

f
detFK0

ii

Ka
ii G =

c0

f
detfKj

iig Þ 0.

VIII. SEPARATED EQUATIONS

Summarizing the results of Sec. VII A, we have five intrinsic characterizations of the orthogo-
nal separation of the null geodesic HJE: Theorem 7.1sinvolving a single characteristic CKTd,
Theorem 7.2sinvolving n CKT’s in involutiond, Theorem 7.3sinvolving n−1 simultaneously
diagonalized CKT’sd, Theorem 7.4sinvolving n−1 CKT’s in involutiond, and Theorem 7.6sin-
volving n CKT’s in conformal involutiond. We show how, for each one of these characterizations,
we can reduce the HJE to separated ordinary differential equations. This reduction involves the use
of Stäckel matrices. As shown in Ref. 2, we can state the following.

Lemma 8.1: LetsFid=sF1,… ,Fnd be n independent functions of the form Fi =wsid
j pj

2. They are

in involution if and only if the matrixfwsid
j g is the inverse of a Stäckel matrixS=fwi

s jdg.
Proof: We prove this statement in a direct way, without any reference with the known links

between Stäckel matrices and the orthogonal separation. The condition

hFi,Fhj = 2swsid
k ]kwshd

j − wshd
k ]kwsid

j dpkpj
2 = 0

is equivalent to equations

wsid
k ]kwshd

j = wshd
k ]kwsid

j , k n.s. s8.1d

sid Multiplying by wl
sid and summing over i, we get the equivalent systemdl

k]kw j
shd

=−wshd
k oiwsid

j ]kwl
sid. For kÞ l, wshd

k oiwsid
j ]kwl

sid=0. For any fixed indexk there always exists an index

h such thatwshd
k Þ0. It follows thatoiwsid

j ]kwl
sid=0. And this is equivalent to]kwl

sid=0, for kÞ l. sii d
Conversely, letfwi

s jdg be a Stäckel matrix. By applying]k to equationwshd
i wi

sld=dh
l , we get

oiswi
sld]kwshd

i d+wshd
k ]kwk

sld=0. Let us multiply bywsld
j and sum over the indexl; we get ]kwshd

j

−wshd
k olwk

sld]kwsld
j =0. If we multiply by wsid

k without summing overk, then we findwsid
k ]kwshd

j

=wsid
k wshd

k olwk
sld]kwsld

j . This shows thatwsid
k ]kwshd

j is symmetric with respect to the indicessi ,hd. Thus,
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s8.1d is proved. j

Case of Theorem 7.2:Let sK id be n CKT’s satisfying the conditions of this theorem. The
functionsFi =Ki

jj pj
2 fulfill Lemma 8.1. Hence,wsid

j 8Ki
jj form the inverseS−1 of a Stäckel matrix.

Moreover, since they are CKT’s, sees7.3d, we havehPG ,Fij=2PCi
PG, where PG=giipi

2. This
shows thatFi are null first integralsof the null geodesicsfcf. s4.27dg. SinceFi are independent and
in involution, equations

Fisq,pd 8 Ki
jj pj

2 = ci s8.2d

describe a Lagrangian foliation on an open subset ofT*Q which is compatible with the submani-
fold of equationgiipi

2=0 ssee Sec. IId. This foliation is the geometrical counterpart of an extended
complete solution of the null HJE. This complete solution is separable. Indeed, by solving equa-
tions s8.2d, wsid

j pj
2=ci, we get the separated equations

pj
2 = w j

sidci . s8.3d

Case of Theorem 7.3:Let sK ad=sK 1,… ,K n−1d ben−1 CKT’s satisfying the conditions of this
theorem. They are diagonalized in orthogonal coordinates. Let us consider the diagonalized ten-
sors K a8 =K a−ra

nG, wherera
n are the last eigenvalues ofK a. Sincera

n =Ka
nn/gnn, the diagonal

components ofK a8 are

Ka
j j − Ka

nn gjj

gnn . s8.4d

By recalling the proof of Proposition 7.2, allK a8 are KT’s of the conformal metricG /gnn, simul-
taneously diagonalized, hence in involution. As a consequence, then−1 functions

Fa 8 SKa
j j − Ka

nn gjj

gnnDpj
2

are null first integrals in involution of the null geodesics. Moreover, the function

Fn 8
gjj

gnnpj
2

is a further null first integral in involution. Thesen first integrals in involution are independent
because of itemsii d of Theorem 7.3. Thus, due to Lemma 8.1, the functions

wsad
j 8 Ka

j j − Ka
nn gjj

gnn, wsnd
j 8

gjj

gnn ,

form the inverse of a Stäckel matrix. It follows that equations

Fa = wsad
j pj

2 = ca, Fn = wsnd
j pj

2 = 0, s8.5d

define a Lagrangian foliation of the submanifoldgiipi
2=0, which is the geometrical counterpart of

an internal complete solution of the null HJE. This complete solution is separable. Indeed, by
solving equationss8.5d, wsid

j pj
2=ci, with cn=0, we get separated equations of the kinds8.3d, but

with n−1 constant parametersscad,

pj
2 = w j

sadca. s8.6d

This result is in agreement with Remark 6.8.
Case of Theorem 7.4:The procedure is the same as for the case of Theorem 7.3.
Case of Theorem 7.6:Let sK id be n CKT’s satisfying the conditions of this theorem. By

recalling Remark 7.7, we can always find a linearsconstant coefficientsd combination such that
aiK i = fG. When the constantsai and the functionf are determined, assumingsup to a reorderingd
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that a0Þ0, we can replaceK 0 by G, and we are in the case of Theorem 7.3.
Case of Theorem 7.1:We point out that Theorem 7.1 is convenient for characterizing the

separation, since it involves only a single CKT. However, in order to get separated equations
sinvolving a Stäckel matrixd we need to known−1 CKT’s. Let ri be the eigenvalues of the given

characteristic CKTK . According to Proposition 7.2, the tensorK̃ =K −rnG is a characteristic KT
for the conformal metricG=G /gnn sinstead of the last onen, we can choose any other indexd. As
it is well known, any characteristic KT generates an-space of KT’s simultaneously diagonalized
in orthogonal coordinates, whose eigenvaluesri with respect to the metricG satisfy the Killing–
Eisenhart equations

]ir
j = sri − r jd]i ln gjj s8.7d

which form a complete integrable system. Sincer j =sr j −rndgnn, we observe that for the given

tensorK̃ we havern=0. We observe that, following Kalnins and Miller,20 if we set mi =ri −rn,
then froms8.7d we obtain equations

]im
j = smi − m jd]i ln gjj − mi]i ln gnn,

which summarize Eqs.s2.8d of Ref. 20. Let us taken independent solutionsri
j of systems8.7d with

rn
j =1 for all j . The corresponding tensorsK i of componentsKi

jj =ri
jgj j /gnn are independent KT’s

for G such thatK n=G. This means that

wsid
j = Ki

jj = ri
jgj j /gnn

form the inverse of a Stäckel matrix and equationswsid
j pj

2=ci are equivalent to the separated

equationspj
2=w j

sidci. This gives an extended separated solution. Forcn=0 we get the null geode-
sics.

Finally, let us consider the case ofE−VÞ0.
Case of Theorem 7.8:Let sK id=sK 0,… ,K n−1d be n CKT’s satisfying the conditions of this

theorem. By recalling the proof of Theorem 7.7, if we perform the equivalence transformation

K̃ i =K i −ff i / sE−VdgG we get n KT’s of the Jacobi metricG=G / sE−Vd, characterizing its or-
thogonal separation. Then the functionswsid

j =Ki
jj − f i / sE−Vd form the inverse of a Stäckel matrix.

By solving equationswsid
j pj

2=ci, we get the separated equations

pj
2 = w j

sidci s8.8d

thus, a complete separated solution of the HJE,

sE − Vd−1giipi
2 = 2h. s8.9d

The separated solution following froms8.8d is an extended separated solution of the HJE1
2giipi

2

=E−V with the fixed valueE of the energy. By substituting ins8.9d the expressions ofpj given by
s8.8d, we get an equation of the kindh=hscid. It follows that for h=1 we get equationhscid=1.
When the constantsci satisfy this equation we get an internal separated solution of the HJE for the
given valueE of the energy.

Case of Theorem 7.7:If we have a characteristic CKT tensorK 8 satisfying s7.10d, thenK
=K 8−ff / sE−VdgG is characteristic KT of the Jacobi metricG=G / sE−Vd. Systems8.7d with
gjj =gjj / sE−Vd is completely integrable and providesn independent solutionsri

j with rn
j =1 for all

j . With such a solution we define the inverse of a Stäckel matrix by settingwsid
j =ri

jgj j / sE−Vd.
Then, by solving equationswsid

j pj
2=ci we get separated equations which define an extended sepa-

rated solution. By settingcn=1 we get an internal separated solution. We remark that in both cases
the Stäckel matrices depend on the valueE.

042901-24 Benenti, Chanu, and Rastelli J. Math. Phys. 46, 042901 ~2005!

                                                                                                                                    



IX. THE TWO-DIMENSIONAL CASE

A two-dimensional Riemannian manifold is always conformally flat. The link between the
conformal separation in two dimensions, the analytical functions and the CKT’s is examined in
Ref. 28, and used for generalizing a result of Ref. 25. We show here how some known results
follow from the general theory developed in the preceding sections.

We can write the most general 232 Stäckel matrix in two variables in the form

S= Ff1sq1d c1sq1d
f2sq2d c2sq2d G, f1c2 − f2c1 Þ 0. s9.1d

The inverse matrix is

S−1 =
1

f1c2 − f2c1
F c2 − c1

− f2 f1
G . s9.2d

The componentsgii of a separable orthogonal metricG and of the associated KTK are given by
the second and the first line ofS−1,

fg11,g22g =
1

f1c2 − c1f2
f− f2,f1g, fK11,K22g =

1

f1c2 − c1f2
fc2,− c1g.

Then Theorem 6.10 implies the following.
Theorem 9.1: sid The HJE of the null geodesicss6.12d is separable in the orthogonal coor-

dinatessq1,q2d if and only if there exist two nowhere vanishing functionsj1sq1d and j2sq2d such
that

g11

g22 =
j1

j2
. s9.3d

sii d The HJE s6.13d, for a fixed value of E and for E−VÞ0, is separable in the orthogonal
coordinatessq1,q2d if and only if there exist four functionssj1sq1d ,j2sq2d ,c1sq1d ,c2sq2dd, with

c2

j1
+

c1

j2
Þ 0, s9.4d

such thats9.3d holds and moreover,

E − V = c1g
11 + c2g

22. s9.5d

Proof: From s6.17d ands9.2d it follows that there exist functionsf1sq1d andf2sq2d such that
g11/g22=−f2/f1. The functionsji of the statement are then given byj1=1/f1 and j2=−1/f2.
Formula s9.5d follows from s6.18d and s9.1d. Condition s9.4d is the regularity condition of the
Stäckel matrixs9.1d. j

From Theorem 9.1 it follows that on a two-dimensional Riemannian manifold, orthogonal
coordinatessq1,q2d are conformal separable coordinates if and only if the ratiog11/g22 has the
form s9.3d, which is equivalent to say thatg11/g22 is a product of two functions depending only on
q1 andq2, respectively. In Remark 6.3 we have seen that coordinates satisfyinggii =cissqd sci [Rd
are conformal separable. The following theorem shows that in fact any two-dimensional confor-
mal separable system is of this kind.

Theorem 9.2:On a two-dimensional manifold an orthogonal coordinate system is conformal
separable if and only if, up to a rescaling,

g11 = ± g22. s9.6d

Proof: According to Remark 6.3, ifs9.6d holds, then the coordinates are conformal separable.
Conversely, assume thats9.3d holds. Theng11=r /j1, g22=r /j2, and
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ds2 = g11sdq1d2 + g22sdq2d2 = rS sdq1d2

j1
+

sdq2d2

j2
D .

In the coordinatessq̃id defined by the rescaling dq̃i = ujiu−1 / 2 dqi we have ds2=rse1sdq̃1d2

+e2sdq̃2d2d, whereei =signsjid. It follows that g̃ii =rei. j

Remark 9.1:If s9.6d holds, froms9.3d and s9.5d it follows that j2= ±j1=constant andE−V
=sc1±c2dg11. Then the Stäckel matrixs9.1d and its inverses9.2d have the form

S= F c c1sq1d
7c c2sq2d G, c2 ± c1 Þ 0, S−1 =

1

csc2 ± c1dFc2 − c1

±c c
G .

Let us consider the particular case of the Euclidean planeE2, with Cartesian coordinatessx,yd. We
recall the followingssee, e.g., Ref. 28d.

Proposition 9.1: If f szd=usx,yd+ ivsx,yd, z=x+ iy, is a non constant analytic function, then in
the open domain where¹uÞ0 the real and the imaginary parts define conformal separable
coordinates q1=usx,yd and q2=vsx,yd such that g11=g22.

Proof: From the Cauchy–Riemann conditions

ux = vy, uy = − vx s9.7d

sthe suffixes denote the partial derivativesd it follows that

g12 = uxvx + uyvy = 0, g11 = suxd2 + suyd2 = svyd2 + svxd2 = g22. s9.8d

Then we apply Remark 9.1. The coordinate transformation is singular at those points where the
partial derivativess9.7d vanish, since

detFux vx

uy vy
G = uxvy − vxuy = suxd2 + suyd2 . j

By applying Theorem 9.2, we prove the converse of Proposition 9.1.
Proposition 9.2: Up to a rescaling, every conformal separable system of the Euclidean plane

is generated by a nonconstant analytic function.
Proof:According to Theorem 9.2, we can rescale a conformal separable coordinate system in

order to haveg11=g22 and such that the corresponding coordinate transformation satisfiess9.8d.
The solutions ofs9.8d are

ux = vy, ux = − vy,

uy = − vx, uy = vx,

which are the Cauchy–Riemann conditions forf =usx,yd+ ivsx,yd or f̃ =vsx,yd+ iusx,yd. Hence
the coordinates are generated by an analytic function. j

Remark 9.2:The real and imaginary part of a given analytic function are both harmonic
functions onR2, i.e., solutions of the Laplace equation in the planeDu=0. Conversely, each
harmonic functionusx,yd can be chosen as real part of an analytic function. The corresponding
imaginary partvsx,yd is determined up to an additive constant.

Remark 9.3:It is possible to associate with every harmonic function a class of potentials,
depending on two real parametersa, b, which are separable for a single value of the energy. The
conformal separable coordinates and the suitable value ofE depend onsa,bd. Let usx,yd be a
harmonic function. Then, the functionsũ=u+ax+by, a,b[R are harmonic. According to Remark
9.2, we construct a coordinate transformation

q1 = q1sx,yd = ũ, q2 = q2sx,yd = ṽ,

with ṽ such thatũ+ iṽ is analytic. For these coordinates we have
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g11 = g22 = S ]ũ

]x
D2

+ S ]ũ

]y
D2

.

Hence,sq1,q2d are conformal separable coordinates compatible with a natural HamiltonianH
=G+V for a fixed value of the energyE if and only if

E − V = sc1sq1d + c2sq2ddg11. s9.9d

In particular, the caseE−V=g11 is satisfied by choosingE=a2+b2 and

Vsx,yd = S ]u

]x
D2

+ S ]u

]y
D2

+ 2a
]u

]x
+ 2b

]u

]y
. s9.10d

In the following example we consider a dynamical system with a scalar potential depending on a
single parametera, which is a special case of the potentials9.10d obtained by consideringb=0 in
the preceding discussion.

Example 9.1:In E2 let us consider the potential

Vsx,yd = −
2ax+ 1

x2 + y2 ,

where sx,yd are Cartesian coordinates anda is a real parameter. By examining the separability
condition

dsK dVd = 0, s9.11d

whereK is a generic KT of the Euclidean planessee Ref. 6 for the details of this techniqued, we
find that, foraÞ0, s9.11d is satisfied only forK =G sthe metric tensord. Thus, foraÞ0, V is not
separable inE2. However, for any value ofaÞ0 there is a suitable value of the energyE, such that
the HJE G+V−E=0 is separable in a conformal coordinate system depending ona. Let us
consider

q1 = logÎx2 + y2 + ax= log % + a% cosq, q2 = arctanSy

x
D + kp + ay= q + a% sinu.

With respect to these coordinates we have

g11sq1,q2d = g22sq1,q2d =
x2

sx2 + y2d2 + a2 +
2ax

x2 + y2 +
y2

sx2 + y2d2 =
2ax+ 1

x2 + y2 + a2.

Thus,sq1,q2d are conformally separable. Moreover, since forE=a2 we getE−V=g11, which is of
the form s9.9d, we have the separation of variables for the fixed value of the energyE=a2. Now
we solve the HJE and the corresponding dynamical system. We construct the Stäckel matrixS
associated withsq1,q2d. By applying to this special cases9.3d, s9.4d, ands9.9d, we have

j1 = 1 =j2, c1 = 1, c2 = 0,

so that the Stäckel matrix and its inverse are

S= F 1 1

− 1 0
G, S−1 = F0 − 1

1 1
G .

A basis of the conformal Killing–Stäckel space is

G =
]

]q1 ^
]

]q1 +
]

]q2 ^
]

]q2, K =
]

]q2 ^
]

]q2 .

With respect to the new coordinates, the natural Hamiltonian
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H =
1

2
px

2 +
1

2
py

2 −
2ax+ 1

x2 + y2 − a2

becomes the geodesic HamiltonianJE= 1
2p1

2+ 1
2p2

2. The quadratic first integral isHK= 1
2p2

2. The
separated equations are given by the system

JE = h,

HK = c,
⇔

1
2p1

2 + 1
2p2

2 = h,
1
2p2

2 = c,
⇔

p1
2 = 2sh − cd,

p2
2 = 2c.

The constants have to fulfill the conditions 0øcøh. The integral curves of the Hamilton equa-
tions are

p1 = ± Î2sh − cd, p2 = ± Î2c, q1 = ± Î2sh − cdt + q0
1, q2 = ± Î2ct + q0

2,

and their orbits are described by the equation

q1 − q0
1 = ±Îh − c

c
sq2 − q0

2d.

For h=1, we have the orbits ofH=0, i.e., of the natural Hamiltonian with potentialV and energy
E=a2, parametrized byc[ s0,1d. In Cartesian coordinates the orbits are given by

logÎx2 + y2 + ax= ±Î1 − c

c
FarctanSy

x
D + kp + ayG + d

and in polar coordinatess% ,qd by

log % + a% cosq = ±Î1 − c

c
sq + a% sinud + d,

whered=q0
1±Îf1−c/cgq0

2 is a constant depending on the initial point.
Remark 9.4: For n.2 it is no longer possible to relate conformal separable coordinates with

analytic functions, as for the casen=2. However, it can be seen that the orthogonal coordinate
systems which allow theR-separation of the Laplace equation inn-dimensional manifolds with
constant curvature, obtained by different methods,8,10,17,19,27and known in the Euclidean three-
space as confocal cyclides12,13are all conformal separable coordinates according to our Definition
6.1. This fact exhibits the deep relation between theR-separation and the separation of the HJE
with a fixed value of the energy developed in this paper. Indeed, both conformal separable and
R-separable coordinates are characterized by CKT’sssee, e.g., Ref. 20d. A further analysis of this
link is in progress.
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In this paper we study equations of magnetic hydrodynamics with a stress tensor.
We interpret this system as the generalized Euler equation associated with an Abe-
lian extension of the Lie algebra of vector fields with a nontrivial 2-cocycle. We use
the Lie algebra approach to prove the energy conservation law and the conservation
of cross-helicity. ©2005 American Institute of Physics.fDOI: 10.1063/1.1857065g

I. INTRODUCTION

Magnetic hydrodynamicssMHDd describes evolution of a fluid or plasma, carrying a mag-
netic field. This theory is used to model the processes in the Solar corona,22 as well as to design
tokamaks.14 There are numerous books treating various aspects of the subject, see e.g., Refs. 9 and
20.

The MHD equations are derived from the Euler equation of motion of an incompressible fluid
and the Maxwell’s electrodynamics equations, and describe evolution of a fluid with the velocity
vector fieldv and the magnetic fieldB,

]v

]t
= − sv · ¹ dv + sB · ¹ dB − ¹ p,

]B

]t
= − hv,Bj,

divsvd = 0, divsBd = 0. s1.1d

In this paper we study another system of PDEs, where we add extra terms into the evolution
equation for the velocity,

]v

]t
= − sv · ¹ dv + sB · ¹ dB + o

i,j

]Bi

]xj
¹

]v j

]xi
− ¹ p. s1.2d

The additional terms here are of the third degree in derivatives and one can draw certain parallels
betweens1.2d and the Korteweg–de Vries equation,

ut = uux + uxxx. s1.3d

We interpret the extra terms ins1.2d as a contribution of a stress tensor,

Tki = o
j

]Bi

]xj

]v j

]xk
. s1.4d

This stress tensor is not symmetric, which indicates that the particles of the fluid should possess
electric or magnetic momentum.

adElectronic mail: billig@math.carleton.ca

JOURNAL OF MATHEMATICAL PHYSICS46, 043101s2005d

46, 043101-10022-2488/2005/46~4!/043101/13/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1857065


In spite of the additional higher-order terms, the new system of PDEs retains many features of
the original system. In particular, we show that it still admits the Alfvén wave solutions.

We follow an approach developed by Arnold to give an interpretation of the MHD equations
with the stress tensor as a generalized Euler equation. A generalized Euler equation is an equation
for the geodesics on aspossibly infinite-dimensionald Lie group supplied with a Riemannian
structure. This equation describes the evolution of a tangent vector of the geodesic in the Lie
algebra of the Lie groupssee Sec. III for detailsd.

The Lie algebra that corresponds to the MHD equations with the stress tensor is an Abelian
extensiongstd of the Lie algebra of the divergence zero vector fields twisted with a nontrivial
2-cocyclet. This Lie algebra was studied in the framework of the representation theory of the
toroidal Lie algebras and the cocycle plays a prominent role there.

Infinite-dimensional groups associated with Abelian extensions of the Lie algebra of vector
fields are discussed in Ref. 8.

The Lie algebragstd has nice properties and this translates into nice properties of the PDEs.
In particular we establish the energy conservation law and the cross-helicity conservation for
MHD with the stress tensor.

Ovsienko and Khesin showed in Ref. 21 that the generalized Euler equation for the Lie
algebra of vector fields on a circle yields the nonlinear wave equationut=uux, while incorporation
of the Virasoro cocycle into the Lie algebra leads to the Korteweg–de Vries equations1.3d. In a
way, the present paper may be viewed as a higher-dimensional generalization of Ref. 21.

The paper is organized as follows: in Sec. II we discuss the properties of the systems1.2d,
derive the expression for the stress tensor, list the conservation laws and describe the Alfvén wave
solutions. In Sec. III we review the generalized Euler equation for an arbitrary Lie algebra and we
apply this method in Sec. IV to an Abelian extension of the Lie algebra of the divergence zero
vector fields, derivings1.2d, and establishing the conservation laws in a purely algebraic way.

II. MAGNETIC HYDRODYNAMICS WITH A STRESS TENSOR AND ITS
PROPERTIES

Evolution of an incompressible fluid carrying a magnetic field is given by the equations of
magnetic hydrodynamicssMHDd,

]v

]t
= − sv · ¹ dv + sB · ¹ dB − ¹ p,

]B

]t
= − hv,Bj,

divsvd = 0, divsBd = 0. s2.1d

Here B is the magnetic field,v is the velocity vector field of the fluid, andp spressured is an
auxiliary function which is chosen in such a way that the equation divsvd=0 is satisfied. The
formal dot productv ·¹ represents the differential operator

v · ¹ = o
j

v j
]

]xj
.

The PoissonsLied brackethv ,Bj of two vector fieldsv=o jv jsxds] /]xjd andB=o jBjsxds] /]xjd is
given by

hv,Bj = adsvdB = sv · ¹ dB − sB · ¹ dv = o
j
Sv j

]B

]xj
− Bj

]v

]xj
D .

In the three-dimensional space, the first equation ins2.1d may be also written as
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]v

]t
= v 3 curlsvd + curlsBd 3 B − ¹ p.

For a conducting medium, the curl of the magnetic field is equal to the electric currentsAmpère’s
lawd, and so the expression curlsBd3B represents the Lorentz force, with which the magnetic
field acts on the current.

The configuration space for a flow of an incompressible fluid is the group of volume-
preserving diffeomorphisms. In his remarkable paper,2 Arnold interpreted the Euler equation for
an ideal fluid as the geodesic equation on this Lie group. The geodesic equation describes the
evolution of the tangent vector of the geodesic curve, and this tangent vector belongs to the Lie
algebra, which is the Lie algebra SVect of the divergence zero vector fields, in case of the group
of volume preserving diffeomorphisms.

Using Arnold’s method, Vishik and Dolzhanskii24 ssee also Ref. 17d showed that the MHD
equationss2.1d also may be interpreted as a geodesic equation for a certain infinite-dimensional
Lie group. The Lie algebra that is used to write this equation is the semidirect product

SVect% V1/dV0

of the Lie algebra of divergence zero vector fields SVect with its dual space—the factorV1/dV0

of the differential 1-forms modulo the exact 1-forms. We review this construction in detail in Sec.
III.

The Lie algebra that is associated with the MHD equations,

g = SVect% V1/dV0,

has recently attracted much interest in representation theory. It turns out that representations ofg
may be used for constructing modules for toroidal Lie algebrasssee, e.g., Refs. 5, 6, and 11d. It
was also discovered that this Lie algebra has an important deformation—the Lie bracket ing may
be twisted with a Virasoro-like 2-cocyclet. The twisted Lie algebragstd still has nice properties,
and its representation theory is even better than forg itself.

In this paper we study the system of PDEs that comes from the geodesic equation forgstd. In
Sec. IV we show that this Lie algebra yields the following system of PDEs:

]v

]t
= − sv · ¹ dv + sB · ¹ dB + o

i,j

]Bi

]xj
¹

]v j

]xi
− ¹ p,

]B

]t
= − hv,Bj,

divsvd = 0, divsBd = 0. s2.2d

Let us discuss the properties of this system of PDEs.
First of all, we note that the new term

o
i,j

]Bi

]xj
¹

]v j

]xi
= o

i,j

]2

]xi ] xj
sBi ¹ v jd s2.3d

can also be written as

− o
i,j

]v j

]xi
¹

]Bi

]xj
, s2.38d

since the difference of the two expressions is the gradient ofoi,js]v j /]xids]Bi /]xjd and may be
absorbed into¹p.
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It is curious to note here that in the one-dimensional case the passage from the Lie algebra of
vector fields to the Virasoro algebra leads to the transition from the nonlinear wave equation

ut = uux

to the Korteweg–de Vries equation

ut = uux + uxxx,

as shown by Ovsienko and Khesin in Ref. 21.
Just like the dispersion termuxxx in the KdV, the new termoi,js]Bi /]xjd¹ s]v j /dxid that we get

in s2.2d has a triple derivative inx.
Next we are going to show thats2.2d describes magnetic hydrodynamics with astress tensor.

Indeed, for a stress tensorTki, the equations on the velocity field ins2.1d will becomessee, e.g.,
Sec. 1.7 in Ref. 23d

]vk

]t
= − sv · ¹ dvk + sB · ¹ dBk + o

i

]Tki

]xi
−

]p

]xk
. s2.4d

Proposition 1:The systems2.2d describes magnetic hydrodynamics with a stress tensor. The
stress tensorTki may be written as

Tki = o
j

]Bi

]xj

]v j

]xk
s2.5d

or as

Tki8 = − o
j

]vi

]xj

]Bj

]xk
s2.58d

or as a linear combinationaTki+bTki8 with a+b=1.
Proof: We will prove the statement of the Proposition for tensorTki given bys2.5d. We write

the contribution ins2.4d from the stress tensors2.5d,

o
i

]Tki

]xi
= o

i,j

]2Bi

]xi ] xj

]v j

]xk
+ o

i,j

]Bi

]xj

]2v j

]xi ] xk
.

Since divsBd=0, the first term on the right-hand side vanishes, and we get precisely the first
equation froms2.2d.

The stress tensors2.58d will yield the additional term written in the forms2.38d. The proof in
this case is completely analogous.

We point out that the stress tensors we obtain here are not symmetric,TkiÞTik. In a typical
situation in hydrodynamics, stress tensor is symmetric. The derivation of the symmetry of a stress
tensor is based on the consideration of the angular momentum for an infinitesimal region of the
fluid. Provided that the external force does not cause angular acceleration of individual particles of
the fluid, the stress tensor must be symmetric. However, this need not to be the case if there is a
force acting on polarized fluid particlesssee discussion in Sec. 1.3 in Ref. 4 or Chap. 8 in Ref. 23d.
The asymmetry of stress tensors2.5d indicates that the particles of the fluid are polar, i.e., possess
electric or magnetic momentum. The derivation of the stress tensor from the first principles is
rather delicatessee, e.g., Chap. 7 in Ref. 23d, and this paper does not describe precisely the
physical situations when the stress tensorss2.5d and s2.58d would occur.

Introduction of the terms2.3d which has the third order in derivatives, into the equations will
clearly change the behavior of the solutions in a substantial way. It is quite surprising that the
conservation laws of magnetic hydrodynamics still hold for the systems2.2d.

Our next goal is to study the conservation laws for magnetic hydrodynamics with the stress
tensors2.2d. However before we do that, let us discuss the class of solutions that we consider here.
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We require that the functionsvisxd ,Bisxd are defined in a domainD,Rn and belong to the
intersection of the Sobolev spacesùk=1

` H0
ksDd. We recall that the spaceH0

ksDd is the closure in the
Sobolev spaceHksDd of the functions of classCk with compact supportssee, e.g., Ref. 1d. This
will ensure that all functions and their partial derivatives of all orders are square-integrablefbe-
long toL2sDdg and satisfy the vanishing conditions on the boundary ofD sif D is unbounded this
means that at infinity the functions go to zero faster than the inverse of any polynomiald. Choosing
this class of functions will allow us to carry out integration by parts with the boundary term
vanishing.

Alternatively, we may consider periodic boundary conditions, as it is often done in turbulence
theory.

There are several conserved quantities for the MHD system—mass, momentum, magnetic
helicity, as well as energy and cross-helicity. It turns out that all of these are also conserved for the
MHD with the stress tensor. Since we consider the case of an incompressible fluid, the conserva-
tion of masssvolumed holds trivially. The derivation of the conservation of magnetic helicity
involves only the evolution equation on magnetic fieldB, and is exactly the same for both
systems. Let us prove the conservation of momentum for the new system.

Proposition 2:The total momentum is a conserved quantity for the MHD system with the
stress tensors2.2d,

E
D

vsxddV ; const.

Proof: With the help of Proposition 1, we can write the first equation using the divergence
operator,

]vk

]t
= o

i

]

]xi
s− vivk + BiBk + Tki − pdkid.

By the divergence theorem, we get

]

]t
E

D
vksxddV =R

]D

Rkiei · dn,

whereR is a 2-tensor

Rki = − vivk + BiBk + Tki − pdki,

n denotes the unit outward normal vector, andei’s are the standard basis vectors. Since the vector
fields we consider vanish on the boundary ofD, the last integral is zero.

Next we state the corresponding theorem for the conservation of energy and the cross-helicity
conservation.

Theorem 3:The systems2.2d of magnetic hydrodynamics with stress tensors2.5d in a domain
D,Rn with appropriate boundary conditionsssee discussion aboved has the following two first
integrals:

E
D
o

i
visxd2 + o

i

Bisxd2 dV ; const senergy conservationd s2.6d

and

E
D
o

i
visxdBisxddV ; constscross-helicity conservationd. s2.7d

We will give the proof of this theorem in Sec. IV. These conservation laws will be derived
from the properties of the Lie algebragstd.
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It is interesting to note that unlike the case of the Navier–Stokes equation, introduction of the
stress tensor ins2.2d does not lead to the dissipation of energy, and the energy conservation law
still holds.

For the topological interpretation of helicity and cross-helicity, see Refs. 18 and 19.
In the conclusion of this section we show that systems2.2d admits Alfvén wave solutions.
Alfvén waves solutions are obtained as a perturbation of a steady-state constant solution

vsxd=0,Bsxd=B0. If we take an expansionv= ṽsxd ,B=B0+B̃sxd near this equilibrium state, we
will get the following system:

] ṽ

]t
= − sṽ · ¹ dṽ + sB0 · ¹ dB̃ + sB̃ · ¹ dB̃ + o

i,j

]B̃i

]xj
¹

] ṽ j

]xi
− ¹ p,

]B̃

]t
= − sṽ · ¹ dB̃ + sB0 · ¹ dṽ + sB̃ · ¹ dṽ,

divsṽd = 0, divsB̃d = 0. s2.8d

Next we setB̃= ṽ. In this case the termoi,js]B̃i /]xjd¹ s]ṽ j /]xid is a gradient ofoi,js]ṽi /]xjd
3s]ṽ j /]xid, and we can eliminate it by setting

p = o
i,j

] ṽi

]xj

] ṽ j

]xi
. s2.9d

Now the first two equations ins2.8d reduce to a single equation

] ṽ

]t
= sB0 · ¹ dṽ. s2.10d

Finally, by taking an arbitrary divergence zero vector fieldwsxd, we can construct a solution of
s2.8d,

ṽsx,td = wsx + B0td.

This traveling wave solution is called the Alfvén wave. The only difference with the classical
MHD systems2.1d is the change of the pressure terms2.9d.

III. GENERALIZED EULER EQUATION

In this section we are going to review the geodesic equation approach to hydrodynamics
developed by Arnold. In the key paper,2 Arnold gave an interpretation of the Euler equation for an
incompressible ideal fluid

]v

]t
= − sv · ¹ dv − ¹ p,

divsvd = 0, s3.1d

from the perspective of infinite-dimensional Lie groups. He showed that the Euler equation may
be interpreted as the geodesic equation on the group of diffeomorphisms, where the Riemannian
structure on the group is given by the energy functional.

We will describe this approach here following Ref. 3.
Let G be a Lie groupspossibly infinite-dimensionald, and letg be its Lie algebra. Consider a

map fromg to its dual
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A: g → g* sinertia operatord,

such that it defines a positive-definite symmetric bilinear form ong,

kXuYl = 1
2AsXdY + 1

2AsYdX, X,Y P g.

The corresponding quadratic formkXuXl=AsXdX is called the energy functional.
The Lie algebrag acts on its dual space via the coadjoint action,

sad*sXdudsYd = − usfX,Ygd for X,Y P g, u P g* .

We assume that the spaceAsgd is invariant under the coadjoint action, and we make a convention
that in what followsg* stands forAsgd fthis is a slight abuse of notations since in the infinite-
dimensional caseAsgd is typically smaller than the formal dual ofgg. Since the kernel ofA is
trivial fotherwise, the quadratic formkXuXl=AsXdX is not positive-definiteg, then with the above
convention the operatorA is invertible.

The bilinear formk·u ·l may be left-translated fromg=TesGd to the tangent spaces at all points
of G. This gives a Riemannian structure onG, and allows us to consider the geodesics on this
group.

Next we are going to write the equation for the geodesics onG, which describes the evolution
of the tangent vectorXPg to the geodesic curve. It turns out however, that it is easier to write the
evolution equation for the covectoru=AsXdPg* rather than forX itself. The generalized Euler
equation is the evolution equation foru=AsXd which is written using the coadjoint action
fsees6.4d in Ref. 3g

ut = − ad*sA−1udu. s3.2d

WhenG=SOs3d this equation turns into the equations of motion of a rigid body with a fixed
point.

Let us discuss equations3.2d in the context of fluid dynamics. Evolution of an incompressible
fluid in domainD,Rn from time 0 to timet is given by a volume-preserving diffeomorphism of
D. Thus the group of the volume preserving diffeomorphismsG=SDiffsDd is the configuration
space for this motion. The Lie algebra of the group SDiffsDd is the Lie algebra of the divergence
zero vector fields SVectsDd. As the energy functional we take the kinetic energy,

Ko
i

visxdU ]

]xi
Uo

i
visxd

]

]xi
L =E

D
o

i
visxd2 dV. s3.3d

The dual space for the divergence zero vector fields is the factor space of differential 1-forms
of D by exact 1-forms,

SVectsDd* = V1sDd/dV0sDd.

The pairing between SVectsDd andV1sDd /dV0sDd is given by the integral

o
j

wjsxddxjSo
i

visxd
]

]xi
D =E

D
o

j

wjsxdv jsxddV. s3.4d

It is easy to check that exact 1-forms vanish on the divergence zero vector fields, and so the value
of the integral on the right-hand side is independent of the choice of a representative in a class of
1-forms modulo dV0sDd.

The inertia operator

A: SVectsDd → V1sDd/dV0sDd

that corresponds to the energy functionals3.3d is written as follows:
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ASo
i

visxd
]

]xi
D = o

i
visxddxi .

It is possible to check that in these settings, Eq.s3.2d turns into the Euler equations of motion of
an ideal fluid.

Ebin and Marsden10 used this interpretation of the Euler equations to prove existence of
solutions for the motion of an ideal fluid for small times. A variational approach to the generalized
Euler equation is presented in Ref. 16.

The equations of the magnetic hydrodynamicss2.1d can also be obtained as a special case of
the generalized Euler equations3.2d. To construct the corresponding Lie algebra we take the Lie
algebra SVectsDd together with its dual space,

g = SVectsDd % V1sDd/dV0sDd.

The Lie bracket of two 1-forms is set to be zero. The Lie bracket of two vector fields is defined in
the usual way,

Fo
i

visxd
]

]xi
,o

j

wjsxd
]

]xj
G = o

i,j
vi

]wj

]xi

]

]xj
− wj

]vi

]xj

]

]xi
, s3.5d

and the Lie bracket of a vector field with a 1-form is given by the Lie derivative,

Fo
i

visxd
]

]xi
,o

j

wjsxddxjG = o
i,j

vi
]wj

]xi
dxj + o

j

wjdsv jd. s3.6d

It is easy to see that the space dV0sDd is invariant under the Lie derivative action, so the above
formula may be taken modulo dV0sDd.

The Lie algebrag is a semidirect product of SVectsDd with its moduleV1sDd /dV0sDd. The
spaceV1sDd /dV0sDd forms an Abelian ideal ing.

A really important feature of the Lie algebrag is the existence of an invariant symmetric
nondegenerate bilinear form. In contrast, the Lie algebra SVect does not possess such a form. The
invariant form ong is defined as followsfcf. s3.4dg:

So
i

visxdU ]

]xi
Uo

j

wjsxddxjD =E
D
o

i
visxdwisxddV,

So
i

visxdU ]

]xi
Uo

j

wjsxd
]

]xj
D = 0, SUo

i
visxddxiUo

j

wjsxddxjD = 0. s3.7d

One can verify that the bilinear forms3.7d satisfies the invariance property,

sfX,YguZd = sXufY,Zgd for all X,Y,Z P g.

We can use this form to identify each elementXPg with a linear functionalsXu ·d in g* . It is
well known that when the bilinear form that is used to identifyg* with g, is invariant and
nondegenerate, the coadjoint action becomes isomorphic to the adjoint action. In this case the
generalized Euler equation takes the following form:

Xt = − adsA−1XdX, s3.8d

where nowXPg and the inertia operatorA now mapsg to g.
The generalized Euler equations3.8d yields the equations of magnetic hydrodynamicss2.1d if

we chooseA to be the following involution ong:
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ASo
i

visxd
]

]xi
D = o

i
visxddxi ,

ASo
i

wisxddxiD = o
i

wisxd
]

]xi
. s3.9d

Note that in the second equality we choose asuniqued representative in a class modulo dV0

satisfyingois]wi /]xid=0, so that the right-hand side is a divergence zero vector field.
We see that the inertia operators3.9d satisfiesA−1=A, and the energy functionalsAXuXd for

X=oivisxds] /]xid+oiwisxddxi Pg is given by the integral

E
D
o

i
visxd2 + o

i

wisxd2 dV. s3.10d

The Lie algebra

g = Svect% V1/dV0

appears in the study of toroidal Lie algebrassRefs. 5–7, 11, and 15d. The representations ofg are
an essential ingredient for constructing the representation theory of toroidal Lie algebras. It was
discovered however thatg admits a nontrivial deformation with aV1/dV0-valued 2-cocycle on
SVect, and one gets a better representation theory for the deformed algebra than forg itself.

In the next section we will describe this deformation ofg and study the associated generalized
Euler equation.

IV. ABELIAN EXTENSIONS OF THE LIE ALGEBRA OF VECTOR FIELDS

In the preceding section we have constructed a semidirect productg of the Lie algebra of
divergence zero vector fields withV1/dV0. It turns out that on the same vector space

g = Svect% V1/dV0

we may deform the Lie bracket in a nontrivial way. When we define the Lie bracket of two vector
fields, we are going to add to the right-hand side ofs3.5d a correction term which has value in
V1sDd /dV0sDd,

Fo
i

visxd
]

]xi
,o

j

wjsxd
]

]xj
G = o

i,j
Svi

]wj

]xi

]

]xj
− wj

]vi

]xj

]

]xi
D + tSo

i
visxd

]

]xi
,o

j

wjsxd
]

]xj
D .

s4.1d

In order to get a Lie bracket,t must be a 2-cocycle on SVectsDd with values inV1sDd /dV0sDd.
The following cocycle plays an important role in the representation theory:

tSo
i

visxd
]

]xi
,o

j

wjsxd
]

]xj
D = o

i,j

]vi

]xj
dS ]wj

]xi
D . s4.2d

This cocycle may be viewed as a higher-dimensional generalization of the Virasoro cocycle.
Just as the Virasoro cocycle, it has a triple derivative inx, and in facts4.2d reducès to the Virasoro
cocycle for the Lie algebra of vector fields on a circle.

The cocyclet can be constructed using Gelfand–Fuks cohomology.12,13 In its explicit form it
first appeared in Ref. 11 in the context of the representation theory of toroidal Lie algebras.

We will denote the Lie algebra with the Lie bracket deformed by the cocyclet by gstd. Note
that
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gstd = SvectsDd % V1sDd/dV0sDd

is no longer a semidirect product, but the subspaceV1sDd /dV0sDd still forms an Abelian ideal. As
before, the action of SvectsDd on V1sDd /dV0sDd is given by the Lie derivative formulas3.6d.

Proposition 4:The bilinear form ongstd given by s3.7d is invariant.
Proof: We need to establish the invariance property,

sfX,YguZd = sXufY,Zgd.

There are three nontrivial cases to be considered,

sid X,YPSvectsDd ,ZPV1sDd /dV0sDd,
sii d X,ZPSVectsDd ,YPV1sDd /dV0sDd,
siii d X,Y,ZPSVectsDd.

We will verify the invariance only for the last case, since only this case will involve the
cocyclet, and leave the first two cases as an exercise to the reader.

Suppose

X = o
i

ui
]

]xi
, Y = o

j
v j

]

]xj
, Z = o

k

wk
]

]xk
.

SincesSVectuSVectd=0, then we get thatsfX,Yg uZd=stsX,Yd uZd and sXu fY,Zgd=sXutsY,Zdd.
We have

sfX,YguZd = So
i,j ,s

]ui

]xj
U ]2v j

]xi ] xs
dxsUo

k

wk
]

]xk
D =E

D
o
i,j ,k

wk
]ui

]xj

]2v j

]xi ] xk
dV.

Integrating by parts and using the fact thatois]ui /]xid=0, we get

sfX,YguZd = −E
D
o
i,j ,k

]wk

]xi

]ui

]xj

]v j

]xk
dV.

On the other hand,

sXutsY,Zdd = So
i

ui
]

]xi
Uo

j ,k,s

]v j

]xk
U ]2wk

]xjdxs
dxsD =E

D
o
i,j ,k

ui
]v j

]xk

]2wk

]xjdxi
dV = −E

D
o
i,j ,k

]ui

]xj

]v j

]xk

]wk

]xi
dV.

This proves the invariance propertysfX,Yg uZd=sXu fY,Zgd in casesiii d.
Now we are going to prove the following theorem.
Theorem 5: The generalized Euler equation

Xt = − fAX,Xg s4.3d

for the Lie algebragstd with the inertia operatorA given bys3.9d yields the equations of magnetic
hydrodynamics with asymmetric stress tensors2.2d.

Proof: We write

X = o
i

Bi
]

]xi
+ o

j
v j dxj .

We will fix representatives of classes of 1-forms modulo dV0sDd by imposing a condition
o js]v j /]xjd=0. Then we have
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AX= o
j

v j
]

]xj
+ o

i

Bi dxi

and

fX,AXg = o
i,j

Bi
]v j

]xi

]

]xj
− o

i,j
v j

]Bi

]xj

]

]xi
+ o

i,j ,k

]Bi

]xj

]2v j

]xi ] xk
dxk + o

i,j
Bi

]Bj

]xi
dxj + o

i

BidsBid

− o
i,j

vi
]v j

]xi
dxj − o

i
vidsvid.

Note that the termsBidsBid= 1
2dsBi

2d and vidsvid= 1
2dsvi

2d are full differentials and thus may be
dropped.

Substituting the obtained expression into the generalized Euler equations4.3d and collecting
terms at dxj ,] /]xj, and taking into account that equality of 1-forms is taken modulo dV0sDd, we
get the following system of PDEs:

]v j

]t
= − o

i
vi

]v j

]xi
+ o

i

Bi
]Bj

]xi
+ o

i,k

]Bi

]xk

]2vk

]xi ] xj
−

]p

]xj
,

]Bj

]t
= − o

i
Svi

]Bj

]xi
− Bi

]v j

]xi
D ,

o
j

]v j

]xj
= 0, o

j

]Bj

]xj
= 0.

Rewriting this system in a vector form with the vector fields we gets2.2d.
Finally let us prove Theorem 3 and establish the energy and the cross-helicity conservation

laws for MHD equations with the stress tensors2.2d. We will in fact obtain Theorem 3 as a
corollary of the following.

Theorem 6: Let g be a Lie algebra with a nondegenerate symmetric invariant bilinear form
s·u ·d. Let A be an involution ofg preserving the invariant form

A: g → g, A2 = Id, sAXuAYd = sXuYd for all X,Y P g.

Then the generalized Euler equationXt=−fAX,Xg has the following two first integrals:

sAXuXd ; const s4.4d

and

sXuXd ; const. s4.5d

Proof: Let us evaluates] /]tdsAXuXd,

]

]t
sAXuXd = sAXtuXd + sAXuXtd.

Taking into account thatsXuYd=sAXuAYd andA2=Id, we get thatsAXt uXd=sA2Xt uAXd=sXt uAXd.
Thus

]

]t
sAXuXd = 2sAXuXtd.

Substituting the right-hand side of the generalized Euler equation forXt we obtain
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]

]t
sAXuXd = − 2sAXufAX,Xgd.

By invariance of the form we get

sAXufAX,Xgd = sfAX,AXguXd = 0.

Thus s] /]tdsAXuXd=0 ands4.4d is established.
The second conservation laws4.5d is obtained in a similar way,

]

]t
sXuXd = 2sXtuXd = − 2sfAX,XguXd = − 2sAXufX,Xgd = 0.

This completes the proof of Theorem 6.
Note that fors4.5d we may drop the requirements thatA preserves the invariant form and is an

involution.
We obtain Theorem 3 as an immediate corollary to the previous theorem, noting that the

bilinear form s3.7d on gstd is invariant by Proposition 4 and the inertia operators3.9d is an
involution and preserves this form.

We can see that for

X = o
i

Bi
]

]xi
+ o

j
v j dxj ,

the first integrals4.4d becomes the energy conservation law

sAXuXd =E
D
o

i
visxd2 + o

i

Bisxd2 dV ; const,

and s4.5d becomes the cross-helicity conservation,

sXuXd = 2E
D
o

i
visxdBisxddV ; const.
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The derivation of a Lagrangian invariant so-calledspirality is reviewed through the
Lagrangian coordinates. The value of the spirality is fixed up to a gauge transfor-
mation. The helicity conservation follows directly from this invariant. Among all
ideal flows with zero helicity in a domain of flow frozen into the fluid motion, a
special class is introduced. This special topological class has the possibility to
transform its spirality to be identically zero everywhere in the domain. For those
simply connected domains of motion, a necessary and a sufficient condition is
presented for these zero spirality flows. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1860592g

I. INTRODUCTION

Hydrodynamics has been a very nice laboratory to observe many interesting physical and
mathematical phenomena. Various mathematical theories such as PDEs, dynamical systems, tur-
bulence, functional analysis, geometry, topology, etc., are being widely extended to give as com-
plete as possible description for fluid dynamics equations.

Among these topics, the geometrical study, especially for ideal flows, is a very useful tool to
analyze fluid flows. In this approach the invariants of the fluid motion have been found to highly
simplify the complicated behavior of nonlinear flows.ssee, for example, Moffatt, 1990d. Perhaps
the most ramifications of topological investigations nest in vortex dynamics in ideal fluids as well
as magnetic fields in conductor plasmas. The conservation of the helicity is a fine topological
character of motions. This constant was first understood and interpreted in vortex and magnetic
fields by Moffatt s1969d. However, the conservation of helicity was known even by Kelvin from
the 19th centuryssee Moffatt, 1990d.

The helicity is practically a measure for the wrapping and winding of field lines inside each
other. This quantity is concerned with the so-called writhing number or linking number of two
closed curves in three-space. Historically, as cited by Cantarellaet al. s2001d, Gauss in 1833
discussed the linking number of two separate closed curves. Later, Woltjers1958, Calugareanu in
1959–1961d, Moffatt in s1969d, and Fuller ins1971d developed this subjectssee these references in
Cantarellaet al. 2000, 2001d. Further progressions in this material within various points of view
were achieved by many people such as Arnolds1974d, Berger and Fields1984d, Yoshida and Giga
s1990d, Freedman and Hes1991d, Laurence and Avellanedas1991d, Moffatt and Riccas1992d,
Ricca and Moffatts1992d, Chui and Moffatts1995d, and Cantarellaet al. s2000–2002d.

Vortex Lagrangian invariants reveal a number of special symmetries in ideal fluids. Here the
purpose of the present article is concentrated on the helicity. For other kinds of symmetries and
invariants the reader can, for instance, refer to Lambs1932d, Tagor and Treves1982d, Salmon
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s1988d, Sagdeef, Tur, and Yanovskys1990d, and references thereind, Troshkin s1995d, Zakharov
and Kuznetsovs1997d, Kuznetsov and Rubans1998, 2000d, Arnold and Khesins1998d, and Kuz-
netsovs2002d.

The conservation of helicity is a result of a Lagrangian invariant namedSpirality. A nonrel-
ativistic version of spirality for incompressible flow can be found in the book of Marchioro and
Pulvirenti s1994d, although this fact has been studied both analyticallysTur and Yanovsky, 1993d
and numericallyssee, for example, Russo and Smereca, 1999, and many references thereind. A
more detailed derivation for the spirality in relativistic fluids is presented by the first authorssee
Eshraghi, 2003d. We will review this invariant in this paper in Lagrangian description to give the
helicity conservation. The aim of this paper is to notice the important relation of spirality with the
topology of vortex field. We will consider a zero helicity flow in a volume surrounded by a surface
everywhere tangent to vortex lines. The sustained vanishing helicity as will be shown can natu-
rally result in the existence of a special class of such flows. In this special class the invariant
spirality can be chosen to beidentically zeroamong the movingswith fluidd volume.

There is a feelingseven not so cleard that this invariant may play some role in the difficult
debate of “finite time singularity” in vortex dynamics. It seems that the singularity cannot happen
by any arbitrary initial conditions. Only some of the initial flows may result in a singularity at a
finite future time. In other words, the singularity is probably hidden in the topology of the initial
flow. We still have no obvious clue, but hope that the study of spirality may help us to discover a
topological sinvariantd character of initially smooth flows that possess the potential of creating
singularity in later times.

II. SPIRALITY AND HELICITY CONSERVATION

Let us recall the Lagrangian coordinates which are suitable for invariance properties in ideal
fluids. Although many solutions of hydrodynamic systems are mostly explained in terms of Eu-
lerian variables, there exist some interesting solutions requesting a Lagrangian descriptionssee
Yakubovich and Zenkovich, 2001d. If a fluid particle at timet is at the positionX while initially
sat t=0d was at the positiona, one can takeX as a function ofa and t and vice versa. Hence

X = Xsa,td,

s1d
Ẋ = v,

wherev is the fluid velocity. In an isentropicswhere entropy is constantd, or barotropicswhere the
pressure is only function of densityd, or incompressible flow, the equation of motion reads

v̇ = Ẍ = − = w, = = S ]

]X1
,

]

]X2
,

]

]X3
D . s2d

The function w is the enthalpy or heat function per unit mass of the fluid element. For the
incompressible casew must be simply replaced byP/r+ whereP andr+ are the pressure and the
constant density, respectively.

Consider now thej th component of Eq.s1d and multiply it bys]Xj /]aid and sum overj . It is
easily obtained that

S ]u

]t
D

a
=

du

dt
= − =asw − v2/2d, s3d

where

ui ; v j
]Xj

]ai
, =a = S ]

]a1
,

]

]a2
,

]

]a3
D . s4d

A formal solution for Eq.s3d is

043102-2 H. Eshraghi and Y. Abedini J. Math. Phys. 46, 043102 ~2005!

                                                                                                                                    



usa,td = u+sad + ¹aw, s5d

with

dw

dt
= − sw − v2/2d + fstd.

Here fstd is an arbitrary function of time only which we can put to zero. So

dw

dt
= v2/2 − w, s6d

with the assumed initial condition

wt=0 ; 0. s7d

An inverse transformation of Eq.s5d yields

v = u+ jsad = aj + = w, sa = asX,tdd

or we define a vector functiong,

g ; v − = w = u+ jsad = aj . s8d

Then

= 3 g = = 3 v ; v.

The vectorg in Eq. s8d is the same as the impulse density function corresponding to the geometri-
cal gauge introduced in the literaturessee, for example, Russo and Smereca, 1999d.

It follows from Eq. s8d that

g · v = g · = 3 g = su+i = aid · f=u+ j 3 = ajg = g · v = detS ]am

]Xn
Du+i

]u+ j

]ak
eikj .

By use of the well-known relation dets]am/]Xnd=r /r+ we obtain a Lagrangian invariant so-called
“spirality” which we denote by “Sp:”

Spsad ;
g · v

r
= r+

−1sadeikju+isad
]u+ jsad

]ak
. s9d

The invariance of the spirality is also easily visible through the Eulerian variables which we do not
review it here. The reader can find it in Marchioro and Pulvirentis1994d.

Now let us realize the relation between spirality and helicity. Consider a fluid volumeVt

frozen into the fluid motion. This volume contains a constant amount of mass. Att=0 this domain
wasV+. If its boundary]V+ was everywhere tangent to vortex linesv+sad, it remains so for any
future timet because of the frozenness of vortex lines in ideal flows. Therefore

v · nu]Vt
= 0, s10d

wheren is the unit vector normal to the surface]Vt.
The conservation of the helicityH of the domainVt easily follows from Eqs.s8d ands10d and

the fact that= ·v=0. Hence,

H ; E
Vt

v · vd3X =E
Vt

v · gd3X =E
V+

Spsadr+sadd3a = const. s11d

Equations6d admits a simple gauge transformation
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w → w̃ = w + w+sad, s12d

wherew+sad is an arbitrary differentiable function ofa only. This transformation clearly changes
the value of the spirality at each point but does not change the helicity which is the result of the
frozenness of vortex lines

v

r
= Sv+

r+

· =aDX .

The newsinvariantd spirality Sp̃sad after the gauge transformations12d is

Sp̃sad =
v

r
· sv − = w̃d =

v+

r+

· sv+ − =aw+d, s13d

in which Eq.s7d and the invariance of spirality were taken. Thus, by the gauge transformations12d
the helicity remains unchanged while the spirality takes new invariant values. In the next section,
the case of zero helicity will be studied.

III. SPECIAL TOPOLOGY DUE TO ZERO SPIRALITY

Assume the helicity inVt vanishes,

H =E
Vt

v · sv − = wdd3X =E
V+

v+ · sv+ − 0dd3a = 0. s14d

The total spirality also vanishes according to Eq.s11d. As was shown, the transformations12d
leaves the total spirality and so the helicity unchanged. A natural question arises here:For what

kinds of flows one can find a suitable functionw+sad such that the new spiralitySp̃ identically
vanishes throughoutV+ and soVt? In other words, we want to reveal a special class of zero
helicity in which the spirality can be brought to zero identically:

Sp̃sad ; 0, s15d

with Sp̃sad given by Eq.s13d. It is enough to study this property in the initial configuration inV+.
In this paper we want to notice to the topological meaning of the propertys15d which imposes a
strong restriction among all zero-helicity flows. Although a complete description of the problem
seems to be difficult and complicated, in some special cases there exist some viable statements.

Before starting the topological study we would like to mention an important point. The
propertys15d may contain a significant relation with finite time singularity. In this singularity the
vorticity v is supposed to become infinite at some finite point and finite time while initially it was
smooth. Due to the invariance of the spirality since it can be transformed to zero by Eq.s15d,
everywhereg can be perpendicular to the vorticity. It means that in this case there is more
freedom forg, i.e., there is no restriction on its singularity or smoothness. If the spirality cannot
be transformed to zero, then it must have a finite invariant value by initial conditions. Starting
from a smooth initial point and following the fluid trajectory, assume at a finite point and time a
singularity occurs, i.e.,v becomes infinite. In this case the component ofg which is parallel tov
must necessarily go to zero in order to compensate the singularity of vorticity. This means that we
have some restriction ong. To conclude we say that if the spirality can beidentically transformed
to zero everywhere, then the possibility of a singularity occurring at some point seems to be
increased compared with the case when the spirality cannot be globally zero.

Let us come back to our geometrical consideration. We restrict our consideration to asimply
connected domainfor V+. In this geometry one may find anecessarycondition and also asufficient
condition separately for Eq.s15d. We emphasize that we still do not know a complete geometrical
description for this property and only give one necessary and one sufficient condition which must
be studied very carefully.
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A necessary condition. Assume in the simply connected setV+ some closed vortex lines ofv+

exist such that everywhere on these lines vorticity does not vanish. Let the closed curveC+ be such
a field line ofv+, i.e.,

uv+saduC+
Þ 0,

v+

uv+u
=

dl

udl u
on C+. s16d

Let us substitute the right side of Eq.s13d into Eq.s15d and then divide it byuv+sadu for points on
the closed curveC+. The integration over this curve yields

R
C+

v+ ·dl =R
C+

s=aw+d ·dl = 0. s17d

By the use of Stokes theorem for a surfaceS+ surrounded byC+ sentirely insideV+d we obtain

E
S+

v+ ·dS= 0. s18d

Therefore, if the spirality vanishes everywhere then the “total flux” of vortex lines across any
closed nonzero vortex line must vanish. Of course this does not imply that the closed vortex lines
have no link inside each other. They wrap inside one another but for each such closed curve,
various links cancel provided the total linksfluxd is zero. This fact is consistent with the zero
helicity but, of course, the inverse is not necessarily true: If the helicity is zero, one can imagine
some of closed vortex lines having nonzero fluxes inside but the sum of all these nonzero fluxes
must be zero. To feel this difference in topologies, we consider only four nonzero vortex rings
such that their helicity is zero. If Eq.s15d holds then necessarily Eq.s18d holds across each of
these four nonzero vortex rings. The situation is shown in Fig. 1. We see that across each vortex
ring, two opposite vortex lines pass and so the total flux of vorticity passing through each vortex
ring is zero and also the helicity is zero. On the other hand, in Fig. 2 these four vortex rings have
again zero helicity but the flux across each ring is not zero. It means that Eq.s18d imposes a
significant restriction on the topology of vortex rings. However the general situation is much more
complicated and requests a careful study.

It is very vital here to recall that the problem of the existence of a functionw+ is a global
existence and not a local one. Indeed, “locally” one can “always” use the Clebsh variablesl ,m,
and w̃ such that

FIG. 1. Four nonzero vortex rings with zero helicity and zero spirality.
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v =
l

r
= m + = w̃, s19d

from which Eq.s15d follows sbut only locallyd. If there is no closed vortex lines inV+ sand so in
Vtd the Clebsh variables globally exist and so the spirality can be chosen to be identically zero.

A sufficient condition.Again consider the simply connected domainV+. According to the
“decomposition theorem,” any smooth vector field defined onV+ can be represented as the sum of
a divergence free and tangent to the boundary vector field, and a gradient fieldsi.e., the field which
is the gradient of some smooth scalar functiond. See, for example, Marchioro and Pulvirentis1994d
or Gallavotti s2002d. A more general decomposition applicable even for nonsimply connected
domains is the “Hodge decomposition theorem” accessible, for example, in Cantarellaet al.
s2000–2002d or Schwarzs1995d.

Let us apply the decomposition theorem to the initial velocity fieldv+. This field can be
uniquelydecomposed as

v+sad = w+sad + =af+sad, s20d

where the unique vectorw+sad satisfies

=a · w+ = 0 in V+,

s21d
w+ · n+ = 0 on ] V+

andf+ is unique up to a constant.
A sufficient condition for Eq.s15d is then to have

w+ · =a 3 w+ = w+ · v+ = 0. s22d

If the above condition is found in the initial velocity field, then it is enough to put

w+ = f+. s23d

The conditions22d is equivalent to thelocal integrability of the vector fieldw+. This is the result
of the “Frobenius theorem”ssee Arnold, 1988, or more generally Yang, 1992d. It is valuable to
emphasize the feature of “local” integrability ofw+. This means that if one looks for some surfaces
everywhere normal tow+, i.e.,

w+ ·da = 0, s24d

then the above equation is integrable and there exists locally a surfacem=0 on which Eq.s24d
holds. This means that locally one can write

FIG. 2. Four nonzero vortex rings with zero helicity but nonzero spirality.
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w+ =
l

r
sad=am, s25d

which is the consequence of the Lagrangian invariance of the local Clebsh variablesl /r andm.
Since according to Eqs.s4d, s5d, ands7d we haveu+=v+, then, regarding Eqs.s25d, s20d, ands23d
one finds

u+ =
l

r
sad=am + ¹aw+. s26d

The first term on the right-hand side of the above equation holds “locally” while the last term is
valid “globally” throughoutV+. Indeed, since the vector fieldw+ is divergence free, its field lines
may become closed curves. We know that topologically for a smooth closed curve likew+ we
cannot find any “global” scalar function which its level surfaces are everywhere normal tow+.
Hence, in this case there is not any “global” scalar functionmsad on the entire domain ofV+ such
that the surfacemsad=const be everywhere normal tow+. Finally substitution of Eq.s26d into Eq.
s8d reproduces the Clebsh representations19d.

We summarize our sufficient condition, Eq.s22d, in a global sense or equivalently, Eq.s25d in
a local sense only. If this is fulfilled, then the spirality can “globally”sidenticallyd transformed to
zero fEq. s15d holdsg provided the gauge transformations12d is based on the unique “global”
function w+=f+.

IV. SUMMARY

In the present note we reviewed a nonfamous Lagrangian invariant so-called spirality. This
invariant, which depends on the Bernoulli’s potential and Weber transformation, may have sig-
nificant geometrical and topological features. In particular, we hope the spirality may be helpful in
understanding those topological invariants which may have the potential to create singularity in
future finite times. It seems that if the spirality can be globally zero, the possibility for the creation
of a singularity will increase relative to the other case.

The conservation of helicity, which is a well-known law, can also be obtained by the invari-
ance of the spirality mentioned in Marchioro and Pulvirentis1994d and also Eshraghis2003d. A
gauge transformation for the spirality was given which leaves the helicity unchanged. Then, in the
case of vanishing helicity in a co-moving domain of fluid motion whose boundary was tangent to
vortex lines, we studied a special class of zero spirality. In other words, we tried to discover the
geometrical meaning of such a flow in which one can change the spirality to be identically zero
inside the mentioned domain. We considered a simply connected domain of fluid motion with zero
helicity. For such a domain a necessary and a sufficient condition for the possibility of zero
spirality was introduced.

The necessary condition says that across any closed nonzero vortex linesif anyd inside the
domain, the total fluxslinkd of other vortex lines must vanish. This means that there can exist
some links or wrapping of vortex lines around each other but for any of them all links cancel and
the total link vanishes.

The sufficient condition was derived through the global nature of the decomposition theorem.
By this theorem we could decompose the initial velocity field as the sum of a unique global
divergence free and tangent to the boundary plus a unique global gradient field. It was shown that
if the divergence free field is locally integrable, then the spirality can globally be brought to zero
everywhere.

However, the spirality “locally,” always can become zero. This is the direct result of the
Clebsh variables. We saw under the situation of the sufficient condition that the local invariant
Clebsh variablesl /r andm can also represent the divergence freesand tangent to the boundaryd
component of the initial velocity field. Hence, in this case the invariant Clebsh variablesl /r and
m are only local whilew̃ turns out to be global.
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A Bethe–Ansatz study of a self-dualZN spin model is undertaken for even spin
system. One must solve a coupled system of Bethe–Ansatz equationssBAEd in-
volving zeroes of two families of transfer matrices. A numerical study on finite size
lattices is done for identification of elementary excitations over the ferromagnetic
and antiferromagnetic ground states. The free energies for both ferromagnetic and
antiferromagnetic ground states and dispersion relation for elementary excitations
are found. ©2005 American Institute of Physics.fDOI: 10.1063/1.1847708g

I. INTRODUCTION

The present model was first proposed in 1982 by Fateev and Zamolodchikov1 as a two-
dimensional self-dualZN lattice model with nearest neighbor spin-spin interaction. Baxter, Bazha-
nov, and Perk2 discovered a set of functional equations involving families of chiral PottssCPd
transfer matrices. Fateev–Zamolodchikov modelsFZMd was shown to be a nonchiral self-dual
limit of chiral Potts.3,4 The chiral Potts transfer matrix functional equations were used to obtain
transcendental equationssBethe Ansatz equationsd5 for the zeroes of the transfer matrices for the
present problem.3,4 In the general FZM model the Bethe Ansatz equationssBAEd are coupled
involving two automorphically connected families of transfer matrices as in the CP case.2 In the
odd spin case these families are connected by simple transformations and the BAEs greatly
simplify and decouple requiring us to solve only one set of equations.4 For this odd spin case
alone, Albertini obtained the ferromagnetic ground state.6 A unified treatment for the ground state
of odd and even spin FZM can be found in a previous work.4 For N=4 FZM a comprehensive
study has been done. This includes determination of exact energy values and central charge,7 and
completeness and classification of Bethe states.8 The present work demonstrates the study of these
Bethe equations in both ferromagnetic and antiferromagnetic cases for finding the free energy and
elementary excitations.

In a generic situation for the Fateev–Zamolodchikov modelsto be specific we shall use the
even spin cased we obtained coupled Bethe–Ansatz equations,

p
k=1

LUq sinhsl j − l̄k − igd

sinhsl j − l̄k + igd
= s− 1dM+1Fsinh 2sl j + isgd

sinh 2sl j − isgdG2M

, s1d

adElectronic mail: subho@juphys.ernet.in
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p
k=1

Lq sinhsl̄ j − lk − igd

sinhsl̄ j − lk + igd
= s− 1dM+1, s2d

wherehl jj and hl̄ jj are the spectral variables for transfer matricesTq and TUq
, respectively and

g=p /2N ands= 1
2.

The first equation is quite similar to the generic case of the Bethe equation. However it

involves zeroes of two different transfer matricessl ,l̄d that are coupled further by a second
equation whose form is quite unique.

The generic case of the most commonly encountered Bethe Ansatz equation looks like

p
k=1

L
sinhsl j − lk − igd
sinhsl j − lk + igd

= s− dM+1Fsinhsl j − iSgd
sinhsl j + iSgdG2M

,

whereS is the spin andg is the anisotropy parameter of the model. In Bethe’s original paper,5 he
studied the caseg→`, where the hyperbolic functions reduce to rational ones. Note that in the

generic case we have only one type ofl j as opposed to two species ofl j andl̄ j as they appear in
the present problem.

The standard procedure of calculating the physical quantities, e.g., the energy spectrum, dis-
persion curves, free energy, is to assume that the solutions for the Bethe equation are given by the
string hypothesis. Starting with the work of Bethe there has been a great deal of study in these
complex solutions of BAE. They appear in the form,

la,k
sn,nd = la

sn,nd +
g

2
sn + 1 − 2kdi +

s1 − ndp
4

i + da,k
sn,nd, k = 1,2, . . . ,n,

where la
sn,nd is the real part,n is its length,k runs from 0 throughn labelling the root. The

coefficientn takes on the values+1d spositive parityd or s−1d snegative parityd; da,k
sn,nd vanishes

regularly asM→`.
However Bethe himself realized that for largeM not all solutions of BAE are of the form

saboved with limM→` Imsdd=0. Modern work for the case of limM→` ImsddÞ0 was initiated by
Destri and Lowenstein and Woynarovich who introduced the definition of narrow pairs for
limM→` Imsdd,0 and wide pairs for limM→` Imsdd.0 and was furthered by Avdeev and
Dörfel9,10 who introduced three classes for limM→` Imsdd. It is clear that none of the existing
approaches to BAE forS integer or half-integer is sufficiently refined to answer the reality or
completeness question for the Hamiltonian.

In the general spin hypothesis framework one obtains equations for the centers of the strings
by multiplying the Bethe Ansatz equations over different members of the same string and then
taking the logarithm of the resulting equation. This yields

1

2p
Q j

s1dsla
j d −

1

2pM
o
k

o
b=1

Mskd

Q jk
s2dsla

s jd − lb
skdd =

Ia
s jd

M
,

whereMskd is the number ofk-strings and

Q j
s1dsld = 2o

,=1

nj

fsl,nj + 2s− 2, + 1,n jd,

Q jksld = fsl,nj + nk,n jnkd + fsl,unj − nku,n jnkd + o
,=1

minsnj,nkd−1

2fsl,unj − nku + 2,,n jnkd,

and
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fsl,n,nd = 52n arctanScotSng

2
Dn

tanhsldD ,

0 if ng = qp, q P Z.
6

In certain cases, e.g.,d-function Bose gas, it can be proved that the solutions are real, and no such
multiplying of string components is necessary.11 In such cases, the integers designating the
branches of logarithms uniquely characterize the states and may be viewed as quantum numbers
for the states. A monotonic relation is shown to exist between the integers and the values of the
spectral variablela

sn,vd. In almost all subsequent work in the field this unique characterization of
states by integers and their monotonic relation to solutions have been assumed. In few cases some
counting argument is attempted5,12–15 to justify this assumption. In theN→` limit, after intro-
ducing the concept of density of string centers, one obtains a coupled set of integral equations.
These equations are manipulated to calculate the energies of the ground state and low lying
excited states. For the spin 4 system, complete classification of Bethe states, and exact calculation
for finite and infinite systems is already known.7,8

In the present problem, we had to deal with a doubly coupled set of integral equations; two
sets of coupled equations both involving zeroes of two types of transfer matrices. However
linearity of the equations made it possible to solve for the ground state and elementary excitations
by the Fourier transform method. A study of the classification of roots is undertaken. However one
must keep track of the added complexity of having to handleTq andTUq

simultaneously. One can
identify the ground state and elementary excitations on the basis of this numerical study. The
excitation spectrum and dispersion relations can hence be calculated.

II. FATEEV–ZAMOLODCHIKOV MODEL

Fateev and Zamolodchikov proposed in 1982 a two-dimensional self-dualZN lattice spin
model with nearest neighbor interaction. They obtained this model as the self-dual16 solution of
the star-triangle relations.17

A generalZN model can be defined as follows. On a two-dimensional rectangular lattice the
lattice sites are occupied by a spin variablez which takes its values in the groupZN fzN=1g. If one
designates the sites on the lattice by a two-dimensional integer-valued vectorx, one can write
down the partition function of the statisticalZN model with nearest neighbor interaction as

Z = o
hzj

p
x

p
s=±

wssdszsxd,zsx + eddd, s3d

where the sum runs over all values of the variablez in every site of the lattice. The functionsws,
ss= ±1d are the weight functions corresponding to the interaction between spins on the neighbor-
ing sites of the lattice in horizontalss=1d and verticalss=−1d directions, respectively. The
vectorse1=s1,0d ande−1=s0,1d are the basis vectors of the latticessee Fig. 1d.

In the absence of external fields, the most general interaction between two neighboring spins
after appropriate normalization is given by

FIG. 1. Fateev–Zamolodchikov model on a square lattice.
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wssdsz1,z2d = 1 + o
i=1

N−1

xi
ssd · sz1z2

!di , s4d

where superscript* denotes complex conjugate. Reality ofwssdsz1,z2d imposes on the parameters
the following restriction:

xi
ssd = xN−i

ssd . s5d

The dual transformation of the statistical weights are given by

x̃i
ssd = S1 + o

k=1

N−1

xk
s−sdvkiDS1 + o

k=1

N−1

xk
s−sdD−1

, s6d

wherev=exps2pi /Nd. The region of self-duality is then given by

x̃i
ssd = xi

ssd. s7d

Let the parametersxi
ssd be represented by a family of functionsWisad of auxiliary parametera

PC,

xi
s1d = Wisad, xi

s−1d = Wisp − ad. s8d

The star-triangle relation18,19 on xisad,

o
k=0

N−1

Wn1−ksadWn2−ksp − a − a8dWn3−ksa8d = csa,a8dWn2−n3
sp − adWn1−n3

sa + a8dWn1−n2
sp − a8d.

s9d

The particular solution of Eq.s9d that possesses the self-duality property, e.g., Eq.s7d, is given by

W0 = 1, Wnsad = p
k=0

n−1
sinfpk/N + a/2Ng

sinfpsk + 1d/N − a/2Ng
. s10d

Denotingxn
s1d=Wsnuud andxn

s−1d=W̄snuud we get

Wsnuud
Ws0uud

= p
j=1

n
sinsp j /N − p/2N − ud
sinsp j /N − p/2N + ud

, s11d

W̄snuud

W̄s0uud
= p

j=1

n
sinsp j /N − p/N + ud

sinsp j /N − ud
. s12d

We adopt the normalizationWs0uud=W̄s0uud=1. The “physical region” defined by non-
negative real Boltzmann weightssBWd, is given byuP f0,p /2Nf. For N=2,3 Eq.s11d and Eq.
s12d simply reduce to the self-dual critical Potts model. ForN=4 it gives a particular case of
critical Ashkin–Teller model. Fateev and Zamolodchikov propose that forN=5,7 thesolution
describes the critical bifurcation points in the phase diagram of Alcaraz and Koberle.20

III. CHIRAL–POTTS MODEL AND CONNECTION TO FZM

On the sites of a two-dimensional lattice of sizeM3N denoted by two-dimensional vector
s j ,kd with integer entries, we placeZN spinss j ,k. The spinss j ,k are classical variables satisfying
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s j ,k
N = 1,

i.e., s j ,k=vn, nP h0,1,2, . . . ,N−1j wherev is the complexNth root of unity with the minimum
argument,

v = e2pi/N.

The energy corresponding to a given configuration of spinshs j ,kj is

E = − o
h j ,kj

o
n=1

N−1

hEn
h · ss j ,ks j ,k+1

! dn + En
v · ss j ,ks j+1,k

! dnj.

Row index j runs over 1 toM and column indexk runs over 1 toN with periodic boundary
condition in both directions impliedssee Fig. 2d.

In chiral Potts a subspace of the coupling parameterssEn
h,En

vd is chosen which has a built-in
handedness, or phase. The energy of a nearest neighbor pair is chosen as

Epair
h,v ss1,s2d = − o

n=1

N−1

En
h,v · ss1s2

!dn,

whereEn
h,v= uEn

h,vu ·eidn. The local Boltzmann weightssBWd can now be easily defined as

Wh,vsnd = es1/kBTdo j=1
N−1Ej

h,vv jn
.

Let us denote two adjacent row configurations byhlj and hl8j sl corresponds to the lower rowd,
where

hlj = hvl ju j = 1s1dN and lj P 0,1, . . . ,N − 1j.

The row to row transfer matrix is given by

Thlj,hl8j = p
j=1

N
Whsl j − l j+18 d ·Wvsl j − l j8d.

It has been shown by several authors1,21–23 that the transfer matrices corresponding to the
interaction parameters belonging to the chiral Potts submanifold commute,

fT,T8g = 0.

The self-dual chiral Potts model is given by BWs,

FIG. 2. Square lattice chiral Potts model.
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Wpqsnd
Wpqs0d

= p
j=1

n
bq − v jap

bp − v jaq
, s13d

W̄pqsnd

W̄pqs0d
= p

j=1

n
vap − v jaq

bq − v jbp
, s14d

wherev=exps2pi /Nd and the paired complex variablessa,bdPC2 satisfy the constraint

ax
N + bx

N = k, s15d

kP f0,1g, andx=p or q. In the nonchiral limit, whenk=0, we can parametrizesax,bxd in Eq. s15d
as

ax = e2ix, bx = v1/2e2ix. s16d

Defining u=q−p Eq. s13d and Eq.s14d reduce to Eq.s11d and Eq.s12d. However we retain

suffixes sp,qd in the Boltzmann weightsWpqsnuud and W̄pqsnuud to signify that these BWs are
obtained from the chiral Potts BWs defined in terms ofp andq variables.

The transfer matrix for the FZM can be constructed from the BWs as

Tp,q
n,n8sud = p

k=1

M

W̄pqsnk − nk8uudWpqsnk − nk+18 uud, s17d

whereM is the number of sites in each row and periodic boundary condition is impliedssee Fig.
3d. These transfer matrices for different spectral variableu form a commuting set. This can be
argued from the fact that these transfer matrices come as a limit of CP transfer matrix, which are
known to be commuting. A more direct argument would be that Fateev and Zamolodchikov
obtained FZM BWs as solutions of star-triangle relation, and hence the transfer matrix constructed
out of them should commute,

fTsud,Tsu8dg = 0 ∀ u,u8 P C. s18d

Transfer matrixTsud reduces to identity operator foru→0. An expansion ofTsud gives us the
associated spin chain HamiltonianH,

Tsud = 1 −Muo
n=1

N−1
1

sinsnp/Nd
− uH + Osu2d, s19d

FIG. 3. Transfer matrixThlj,hl8j.
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H = − o
k=1

M

o
n=1

N−1
1

sinsnp/Nd
sXk

n + Zk
nZk+1

−n d, s20d

whereX andZ are defined as

Xkun1 ¯ nk ¯ nMl = un1 ¯ nk + 1¯ nMlmodN,

Zkun1 ¯ nk ¯ nMl = vnkun1 ¯ nk ¯ nMl.

Equationss19d ands20d imply that each Hamiltonian commutes with all the transfer matrices
and their associated Hamiltonians. Thus it has an infinite set of conserved charges in involution.
However only a subset of them, whose number is equal to the degrees of freedom of the system,
are independent.

In order to obtain the zeros of the eigenvalues of the transfer matrixTq, we will use functional
equations connectingTq with its automorphically conjugate partners. Thus it is important to
understand the relevant automorphisms of the constraint Eq.s15d. It has been claimed in the
preceding section that the transfer matrices constructed out of CP BWs, Eq.s13d and Eq.s14d,
commute as long as they satisfy Eq.s15d. For anysa,bdPC2 satisfying the above relations there
exist other complex pairs connected to them which satisfy the same relation. Two such automor-
phic relations of importance are

Rsa,bd = sb,vad, Usa,bd = sva,bd. s21d

It is rather straightforward to check

aRx
N + bRx

N = k, aUx
N + bUx

N = k

from the relation

ax
N + bx

N = k.

If one makes an attempt to go over from CP BWs to FZM BWs through a limiting process,

one gets the following relations forWpRq, W̄pRq, WpUq, andW̄pUq:

WpRqsnuud
WpRqs0uud

= p
k=1

n
sinspk/N − p/N − ud

sinspk/N + ud
, s22d

W̄pRqsnuud

W̄pRqs0uud
= p

k=1

n
sinspk/N − p/2N + ud
sinspk/N − p/2N − ud

, s23d

WpUqsnuud
WpUqs0uud

= e−ıpn/Np
k=1

n
sinspk/N − p/2N − ud
sinspk/N + p/2N + ud

, s24d

W̄pUqsnuud

W̄pUqs0uud
= eıpn/Np

k=1

n
sinspk/N + ud
sinspk/N − ud

. s25d

Thus in the nonchiral limit,Tq→Tqsud and TRq→Tqsu+p /2Nd. There is no simple relation be-
tweenTq and TUq though. However, we do feel that there must exist some nontrivial mapping
betweenTq and TUq whose understanding will unravel the connection between the zeroes ofTq

andTUq
and will give the satisfactory derivation of completeness of states.

043301-7 Free energy and excitation spectrum for FZM J. Math. Phys. 46, 043301 ~2005!

                                                                                                                                    



IV. BETHE ANSATZ TYPE EQUATIONS FOR THE EVEN N FZM

We define the normalized transfer matrices by removing their denominators,

Tq
Nsud = fgqsudḡqsudgMTqsud,

where

gqsud = p
j=1

N/2

sinSp j

N
−

p

2N
+ uD, ḡqsud = p

j=1

N/2

sinSp j

N
− uD .

One must note that the superscript inTq
N denotes “normalize” and is not related to the spin

quantum numberN. Each entry ofTq
Nsud is a product ofNM sines and it has the general form

p
k=1

NM

sck
s1deiu + ck

s2de−iud.

The calculation of this section goes in the same spirit as that of oddN case. Hence we only
quote the results,

LQ=0sud = Fgqs0dḡqs0d
gqsudḡqsud

GM

p
k=1

L
sinsu − vkd

sinvk
,

s26d
L = A + B = NM.

The normalization has been fixed byTqs0d=1id.
The momentumsPd is given by

eiP = LQSu =
p

2N
D = 3 gqs0dḡqs0d

gqS p

2N
DḡqS p

2N
D4

M

p
k=1

L sinS p

2N
− vkD

sinvk
. s27d

Now we turn to the sectorsQÞ0, and the symmetry under charge conjugation allows us to
consider the sectorsQ=1,2, . . . ,sN−1d /2 only. While we have not been able to obtain a proof like
the one given above, one can show that, in the sectorQ,

sad A,B ø
NM

2
− Q, Q = 1,2,¯ ,

N

2
,

sbd A,B ù
NM

2
−

N

2
.

Following similar argument as before, we arrive at

A = B =
NM

2
− Q.

The reader must be warned that this conclusion lacks rigor just like in the case ofN odd. The
factorization in terms of sines can be carried out without the appearance of a phasese2iud±sB−Ad. We
assume this to be true also for the othersQ sectors, and arrive at the general form
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LQsud = Fgqs0dḡqs0d
gqsudḡqsud

GM

p
k=1

L
sinsu − vkd

sinvk
,

s28d

L = NM − 2Q, Q = 0,1,¯
N

2
, LN−Qsud = LQsud.

From this, the eigenvalue ofH is easily found to be

E = o
k=1

L

cotvk − 2Mo
j=1

N/2

cotsp j /Nd. s29d

The momentumsPd is given by

eiP = LQSu =
p

2N
D = 3 gqs0dḡqs0d

gqS p

2N
DḡqS p

2N
D4

M

p
k=1

L sinS p

2N
− vkD

sinvk
. s30d

We shall use the set of functional equations for the eigenvalues of transfer matrices of chiral
Potts derived by Baxter, Bazhanov, and Perk.2,24 This functional relation appears in Ref. 2 as Eq.
s4.40d and has the following form:

T̃q̄ = o
m=0

N−1

cm,qTUmq
−1 TqTUm+1q

−1 X−m−1, s31d

whereT̃=TS, q̄=saq̄,bq̄d=UR−1saq,bqd, and

cm,q = SSp
j=0

m−1
bp − v j+1aq

ap − v jaq
D ·S p

j=m+1

N−1
vsap − v jaqd
bp − v j+1aq

D ·SNsbq − bpdsbp − aqd
apbp − vmaqbq

DDM

,

T̃q̄ = o
s=0

sN/2d−1

sc2s,qTU2sq
−1 TqTU2s+1q

−1 X−2s−1d + o
s=0

sN/2d−1

sc2s+1,qTU2s+1q
−1 TqTU2s+2q

−1 X−2s−2d

= o
s=0

sN/2d−1 S c2s,q

As,qAs,q8
·TR2sq

−1 TqTR2ssUqd
−1 X−1 +

c2s+1,q

As,q8As+1,q
·TR2ssUqd

−1 TqTR2s+2q
−1 X−1D .

Define

p2s =
c2s,q

As,qAs,q8
, d2s+1 =

c2s+1,q

As,q8As+1,q
.

The independent inverse factors ofTR2sq and TR2ssUqd are considered, and both sides of the
above equation are multiplied by the appropriate common factor so as to get rid of inverses of
transfer matrix. The appropriate factor is

Xp
j=1

N/2

TR2jq p
j=0

sN/2d−1

TR2jsUqd. s32d

After multiplying we get
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X · T̃q̄ ·p
j=1

N/2

TR2jqTR2s j−1dsUqd = o
s=0

sN/2d−1Sp2s p
j Þ s
j=0

N/2

TR2jq · p
j Þ s
j=0

sN/2d−1

TR2jsUqd

+ d2s+1 p
j Þ ss + 1d

j=0

N/2

TR2jq · p
j Þ s
j=0

sN/2d−1

TR2jsUqdD . s33d

If one expressesTp,q andTp,Uq in terms of a complex parameteru, whereu=q−p ask→0,

Tq → Tq, TUq → TUqsud,

s34d

TR2kq → TqSu +
kp

N
D, TR2ksUqd → TsUqdSu +

kp

N
D ,

with this parametrization we get

X · T̃q̄ ·p
j=1

N/2

TqSu +
p j

N
D · p

j=0

sN/2d−1

TUqSu +
p j

N
D = o

s=0

sN/2d−1Sp2s p
j Þ s
j=0

N/2

TqSu +
p j

N
D p

j Þ s
j=0

sN/2d−1

TUqSu +
p j

N
D

+ d2s+1 p
j Þ s + 1

j=0

N/2

TqSu +
p j

N
D p

j Þ s
j=0

sN/2d−1

TUqSu +
p j

N
DD .

s35d

Let v be a zero ofTq, i.e., Tqsvd=0, then wheneveru=v−pk/N, Tqsu+pk/Nd=0. Thus for
u=v−pk/N kP h1,2, . . . ,sN/2d−1j all but two terms vanish,

p2k p
j Þ k
j=0

N/2

TqSu +
p j

N
D p

j Þ k
j=0

sN/2d−1

TUqSu +
p j

N
D + d2k−1 p

j Þ k
j=0

N/2

TqSu +
p j

N
D p

j Þ k − 1
j=0

sN/2d−1

TUqSu +
p j

N
D = 0.

s36d

Cancelling the common factors we get

p2ksud ·TUqSu +
pk

N
−

p

N
D + d2k−1sud ·TUqSu +

pk

N
D = 0 s37d

whence

TUqsvd

TUqSv −
p

N
D = −

p2kSv −
pk

N
D

d2k−1Sv −
pk

N
D . s38d

Recalling the expression forTUq,

p
j=1

LUq sinsvi − v̄ jd

sinSvi − v̄ j −
p

N
D = − 1 gUqsvid · ḡUqsvid

gUqSvi −
p

N
D · ḡUqSvi −

p

N
D2

M

·

p2kSvi −
pk

N
D

d2k−1Svi −
pk

N
D . s39d

The ratio ofgUq’s can be obtained as
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gUqsvid = p
j=1

sN/2d−1

sinSp j

N
+

p

2N
+ viD, gUqSvi −

p

N
D = p

j=0

sN/2d−2

sinSp j

N
+

p

2N
+ viD ,

s40d

gUqsvid

gUqSvi −
p

N
D =

sinSp

2
−

p

N
+

p

2N
+ viD

sinS0 +
p

2N
+ viD =

cosSvi −
p

2N
D

sinSvi +
p

2N
D .

Similarly the ratios ofḡUq is found as

ḡUqsvid = p
j=1

sN/2d−1

sinSp j

N
− viD, ḡUqSvi −

p

N
D = p

j=2

N/2

sinSp j

N
− viD ,

s41d

ḡUqsvid

ḡUqSvi −
p

N
D =

sinSp

N
− viD

sinSp

2
− viD = s− 1d ·

sinSvi +
p

N
D

cossvid
.

Using these results for the ratios ofgUq and those ofsp2k/d2k−1d we finally get the Bethe
equations5

p
j=1

LUq sinsvi − v̄ jd

sinSvi − v̄ j −
p

N
D = s− 1dM+13sin 2Svi −

p

2N
D

sins2vid
4

2M

. s42d

Let v̄ be a zero ofTUq, i.e., TUqsv̄d=0, then wheneveru= v̄−pk/N, Tqsu+pk/Nd=0. For u= v̄
−pk/N kP h1,2, . . . ,sN/2d−1j all but two terms vanish

p2k p
j Þ k
j=0

N/2

TqSu +
p j

N
D p

j Þ k
j=0

sN/2d−1

TUqSu +
p j

N
D + d2k+1 p

j Þ k + 1
j=0

N/2

TqSu +
p j

N
D p

j Þ k
j=0

sN/2d−1

TUqSu +
p j

N
D = 0.

s43d

Cancelling the common factors we get

p2ksud ·TqSu +
pk

N
+

p

N
D + d2k+1sud ·TqSu +

pk

N
D = 0,

s44d

Tqsv̄d

TqSv̄ +
p

N
D = −

p2kSv̄ −
pk

N
D

d2k+1Sv̄ −
pk

N
D .

The ratios ofgq’s can be obtained as
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gqsv̄id = p
j=1

N/2

sinSp j

N
−

p

2N
+ v̄iD, gqSv̄i +

p

N
D = p

j=2

sN/2d+1

sinSp j

N
−

p

2N
+ v̄iD ,

s45d

gqsv̄id

gqSv̄i +
p

N
D =

sinSp

N
−

p

2N
+ v̄iD

sinSp

N
+

p

N
+ v̄iD =

sinSv̄i +
p

2N
D

cosSv̄i +
p

2N
D .

Similarly the ratios ofḡq’s is found as

ḡqsv̄id = p
j=1

N/2

sinSp j

N
− v̄iD, ḡqSv̄i +

p

N
D = p

j=0

sN/2d−1

sinSp j

N
− v̄iD ,

s46d

ḡqsv̄id

ḡqSv̄i +
p

N
D =

sinSp

2
− v̄iD

sins0 − vid
= s− 1d ·

cossv̄id
sinsv̄id

.

Using these results for the ratios ofgq and those ofp2k/d2k+1 we finally get

p
j=1

Lq sinsv̄i − v jd

sinSv̄i − v j +
p

N
D = s− 1dM+1.

In order to cast the BAE’s for the even case in a simplersand standardd form, we make a
change of variables.

v j = il j +
p

4N
, v̄ j = il̄ j −

p

4N
. s47d

The BAE’s in terms of these new variables are

p
k=1

LUq sinhsl j − l̄k − igd

sinhsl j − l̄k + igd
= s− 1dM+1Fsinh 2sl j + isgd

sinh 2sl j − isgdG2M

, s48d

p
k=1

Lq sinhsl̄ j − lk − igd

sinhsl̄ j − lk + igd
= s− 1dM+1, s49d

whereg=p /2N ands= 1
2. From the numerical study for even spin BAE’s, it was found thatl j’s

are related to one another. In fact

∀l j ∃ l j + ip/2 modspd. s50d

This allows us to groupl j such thatl j P f−p /4 ,p /4g. Using transformation rules for the hyper-
bolic functions one can rewrite the expressions in terms of a new variablex j =2l j. The left-hand
side sLHSd of BAEs1d becomes
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p
k=1

LUq/2
sinhsl j − l̄k − igd

sinhsl j − l̄k + igd
·

sinhSl j − l̄k − ig −
ip

2
D

sinhSl j − l̄k + ig −
ip

2
D = p

k=1

LUq/2
sinh 2sl j − l̄k − igd

sinh 2sl j − l̄k + igd

= p
k=1

LUq/2
sinhsx j − x̄k − 2igd
sinhsx j − x̄k + 2igd

. s51d

The right-hand sidesRHSd of BAEs1d is rewritten in terms of variablesx j,

s− 1dM+1Ssinhsx j + 2isgd
sinhsx j − 2isgdD

2M

= s− 1dM+1Ssinhsx j + igd
sinhsx j − igdD

2M

, sinces= 1
2 . s52d

A similar transformation is done for BAEs2d. Hence the BAE equations become

p
k=1

LUq/2
sinhsx j − x̄k − 2igd
sinhsx j − x̄k + 2igd

= s− 1dM+1Ssinhsx j + igd
sinhsx j − igdD

2M

, s53d

p
k=1

Lq/2
sinhsx̄ j − xk − 2igd
sinhsx̄ j − xk + 2igd

= s− 1dM+1. s54d

The eigenvaluesLQsud of the transfer matrix are given in terms of these zeroesx j’s as3

LQsud = Fgqs0dḡqs0d
gqsudḡqsud

GM

p
k=1

L/2 sinS2u − ixk −
p

2N
D

sinSixk +
p

2N
D , s55d

where

gqsud = p
j=1

N/2

sinSp j

N
−

p

2N
+ uD, ḡqsud = p

j=1

N/2

sinSp j

N
− uD . s56d

V. STUDY OF FINITE SIZE SYSTEMS

The BAE in the present model differs from the standard form. The sign in front ofg on the
right hand side of BAEs1d is reversed. That is to say that the RHS is equal to the inverse of what
usually is known to be the RHS. The second of the coupled pair, BAEs2d is even more striking.
Though the LHS is still coupled, the RHS is independent of the spectral variable. Understanding
the real significance of these peculiarities can help enormously in solving the problem.

The transfer matrix for the FZM is constructed from the FZM Boltzmann weightssBWd as

Tq
n,n8sud = Tp,q

n,n8sud = p
k=1

M

W̄pqsnk − nk8uuudWpqsnk − nk+18 uuud, s57d

whereM is the number of sites in each row and periodic boundary condition is implied. These
transfer matrices for different spectral variableu form a commuting family. Transfer matrix acts
on vectors defined in terms of spin indices along a rowsor diagonald3 or the spin configuration
n= un1,n2, . . . ,nMl.

There is an associated transfer matrixTp,Uq which corresponds to a conjugate set of Boltz-
mann weights,4
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TUq
n,n8sud = Tp,Uq

n,n8 sud = p
k=1

M

W̄pUqsnk − nk8uuudWpUqsnk − nk+18 uuud. s58d

The shift or translation operatorŜ is defined by its action on a state function or spin configuration
n= un1,n2, . . . ,nMl.

Ŝun1,n2,n3, . . . ,nMl = unM,n1,n2, . . . ,nM−1l. s59d

MomentumP is defined in terms of the shift operator as

eiP = Ŝ−1.

The z-component of spin operatorẐk and spin raising operatorX̂k corresponding to a given
lattice site skd are defined by their action on a state function or spin configuration asn
= un1,n2, . . . ,nMl, nk=0,1, . . . ,N−1.

X̂kun1 ¯ nk ¯ nMl = un1 ¯ nk + 1¯ nMlmodsNd,

Ẑkun1 ¯ nk ¯ nMl = vnkun1 ¯ nk ¯ nMl.

The global spin raising operator is given by

X̂ = p
k=1

M

X̂k.

The spinQ is defined in terms ofX̂ as

eiQ = X̂−1.

Tp,qsud and Tp,Uqsud commute withŜ, Ẑk, and X̂. Hence it is possible to make a spin and
momentum sectorwise study of the problem.

The roots of the BAE are studied by computing the eigenvalues of the transfer matrices as
meromorphic functions ofx=el. Since the transfer matrices with different spectral parameterl
commute, their eigenvectors are independent of the spectral parameter. Hence by taking a specific
value of the spectral parameter one can determine the eigenvectors numerically by diagonalizing
the finite size transfer matrix. From the definition of the eigenvalue equation one can express the
eigenvalues as meromorphic functions ofx, as the entries of transfer matrix are polynomials inx
and the eigenvectors are vectors with numericalsindependent ofxd entries.

However the problem being coupled, one needs to simultaneously diagonalizeTq andTUq or
in other words find the eigenvalues corresponding to simultaneous eigenvectors ofTq and TUq.
This fact by itself introduces a significantly higher level of difficulty over other numerical simu-
lation of similar typesnoncoupled eqns.d, e.g., chiral Potts.25 Coupled BAE and any simultaneous
eigenvalue problemseigenvalues corresponding to simultaneous eigenvectorsd results in the same
generic problem in computer algorithm. One must develop efficient optimized codes for tackling
this.

A detailed numerical study for chains of lengthM ø8 was done in Ref. 3. The main obser-
vations of this numerical study are as follows:

sid 1-string with both parities,s1,vd, v=s±1d,
sii d even length strings with positive parities,sn, +d, n=2,4, . . . ,N,
siii d nonstring solutions Imsld, ±p /3.
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The ferromagnetic ground state is a filled band of 2-strings, and the excitations consist of
s1+d, s1−d, etc. The antiferromagnetic ground state on the other hand is a filled band ofs1, ±d and
excitations are 2-strings with positive parityssee Fig. 4d.

It is remarkable that a good deal of insight into the nature of string solutions can be obtained
from finite systems of rather small size. The 2-strings are easily identified as having imaginary
parts close top /4. One can also identify the real roots and roots with negative parity Imsld
=p /2. There are roots whose imaginary parts are not well approximated byp /2 or p /4. These
roots do not seem to systematically approach the 2-string value asM→`. These roots are clas-
sified as nonstrings. For space limitationM =2 andM =3 figures are presented in this paper. The
imaginary parts of the nonstringsnsd roots are

M =2 P=0 −0.321 982 35pi
0.321 982 35pi

M =3 P=0 −0.297 309 02pi
0.297 309 02pi

P=1 0.179 912−0.330 545pi
0.179 912+0.330 545 15pi

P=2 −0.179 912−0.330 545pi
−0.179 912+0.330 545 15pi

M =4 P=0 −0.337 809 88pi
0.337 809 88pi

−0.348 355−0.342 016pi
−0.348 355+0.342 016 21pi

0.348 355−0.342 016pi
0.348 355+0.342 016 21pi

−0.283 248 74pi
0.283 248 74pi

P=1 −0.258 619−0.387 940 57pi
−0.258 619+0.387 940 57pi

Tables I and II show the classification of roots for spin-4, for lattice sizes 2, 3 and 4 in the
Q=0 sector. The first column shows the momentumP. The second column gives the roots of the

FIG. 4. String and nonstring solutions for BAE.
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BAE in the variablex. The content or the type of root is identified in column three. Column four
gives the corresponding integer that appears in the BAE. In column five the energy calculated for
the corresponding eigenvalue for transfer matrix is given.

VI. FREE ENERGY IN THE FERROMAGNETIC CASE FOR N EVEN

From the numerical study one can identify that the ferromagneticsFMd ground state corre-
sponds to a filled band ofN/2 strings of positive parity forTq and a filled band of 1-string of
negative parity forTUq. This vector always falls in theP=0 sector as is expected. A further study
up to eight sites reveals that this remains true.

The LHS of the first of Bethe Ansatz equations, BAEs1d, is given by

p
k=1

LUq/2 sinhsx j − x̄k − 2igd
sinhsx j − x̄k + 2igd

= s− 1dM+1Fsinhsx j + gid
sinhsx j − gidG2M

. s60d

For the ferromagnetic case we made the assumption that the ground state corresponds toN/2
strings with positive parity forTq and 1-strings of negative parity forTUq,

xa,v
n,l = xa

n + 2gsn + 1 − 2ldi , s61d

x̄a,v
n,l = x̄a

n −
ip

2
. s62d

Define x and x̄ by x=2gx and x̄=2gx̄. If Msnd denotes the number ofn-strings, we get for the
left-hand sidesLHSd of the BAEs1d,

p
l=1

n
sinh 2gsxa

n − x̄b + sn + 1 − 2ldi − i − p0id
sinh 2gsxa

n − x̄b + sn + 1 − 2ldi + i − p0id
=

sinh 2gsxa
n − x̄b − ni − p0id

sinh 2gsxa
n − x̄b + ni − p0id

.

Taking product over the string elements ofxa the first BAE becomes decoupled and is given
in terms of the variables forTq alone,

TABLE I. Classification of roots and integers forM =2.

P lk=ln xk Content Ik Energy

−0.216 337−0.227 395pi s2sd 0.5

−0.216 337+0.227 394 69pi

0.216 337−0.227 395pi s2sd −0.5

0 0.216 337+0.227 394 69pi −6.246 22

−0.265 319 s1+d −0.5

−0.321 982 35pi snsd 0

0.321 982 35pi

0 0.265 319 s1+d 0.5 4

−0.440 687 s1+d −1

0 s1+d 0

−0.5pi s1−d 0

1 0.440 687 s1+d 1 8
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TABLE II. Classification of roots and integers forM =3.

P lk=ln xk Content Ik Energy

−0.325 636−0.228 897pi s2sd 1

−0.325 636+0.228 896 64pi

−0.239 862 44pi s2sd 0

0.239 862 44pi

0.325 636−0.228 897pi s2sd −1

0 0.325 636+0.228 896 64pi −8.369 45

−0.388 991 s1+d −1

−0.267 718pi s2sd 0

0.267 718pi

−0.297 309 02pi snsd 0

0.297 309 02pi

0 0.388 991 s1+d 1 −1.656 86

−0.570 869 s1+d −1.5

−0.213 538−0.5pi s1−d 0

−0.149 008 s1+d −0.5

0.087 3277 s1+d 0.5

0.423 044−0.242 196pi s2sd −1.5

0 0.423 044+0.242 196 19pi 8

−0.768 026 s1+d −2

−0.241 758 s1+d −1

−0.249 498 65pi s2sd 0

0.249 498 65pi

0.241 758 s1+d 1

0 0.768 026 s1+d 2 4.486 83

−0.353 241−0.236 642pi s2sd 1

−0.353 241+0.236 642 31pi

−0.013 2479 s1+d 0

0.179 912−0.330 545pi snsd 0

0.179 912+0.330 545 15pi

1 0.359 907 s1+d 1 3.371 55

−0.540 092 s1+d −1.5

−0.129 032 s1+d −0.5

−0.072 5776−0.5pi s1−d 0

0.117 714−0.250 431pi s2sd −0.5

0.117 714+0.250 430 57pi

1 0.506 275 s1+d 1.5 3.101 02

−0.692 847 s1+d −2

−0.209 487−0.250 419pi s2sd 1

−0.209 487+0.250 418 75pi

0.021 7873 s1+d 0

0.2683 s1+d 1

1 0.821 734 s1+d 2 6.828 43

−0.856 212 s1+d −2

−0.287 304 s1+d −1

−0.506 275 s1+d −1.5

−0.117 714−0.250 431pi s2sd 0.5
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s− 1dsM+1dnFp
l=1

n
sinh 2gsxa

n + sn + 1 − 2l + 1
2did

sinh 2gsxa
n − sn + 1 − 2l + 1

2didG2M

= s− 1dM+1. s63d

After multiplying for the elements of a string, the second BAE becomes

p
k=1

Lq/2

p
l=1

n
sinh 2gsx̄a − xb

n − sn + 1 − 2ldi − i − p0id
sinh 2gsx̄a − xb

n − sn + 1 − 2ldi + i − p0id
= s− 1dsM+1d+snLq/2d. s64d

Thus we have only one set of BAE which involves the zeros of the transfer matrixTq. From
the above equation taking natural logarithm of both sides we get

2Mo
l=1

n

i · lnSsinhsxa + 2gsn + 1 − 2l + 1
2dd

sinhsxa − agsn + 1 − 2l + 1
2ddD = pIa.

Defining the density of string centers for the zeros ofTq by

rsxd = lim
M→`

1

Msxk+1 − xkd
s65d

we get

rsxd =
1

p
QsN/2,+d

s1d8 sxd, s66d

where

TABLE II. sContinued.d

P lk=ln xk Content Ik Energy

−0.117 714+0.250 430 57pi

0.072 5776−0.5pi s1−d 0

0.129 032 s1+d 0.5

2 0.540 092 s1+d 1.5 3.101 02

−0.539 776−0.247 284pi s2sd 1

−0.539 776+0.247 284 22pi

−0.163 49 s1+d −1

0.053 5889 s1+d 0

0.304 098 s1+d 1

2 0.885 356 s1+d 2 11.4569

−0.620 538 s1+d −2

−0.375 937−0.5pi s1−d 0.5

−0.185 678 s1+d −1

0.038 6368 s1+d 0

0.287 304 s1+d 1

2 0.856 212 s1+d 2 12.899

−0.821 734 s1+d −2

−0.2683 s1+d −1

−0.021 7873 s1+d 0

0.209 487−0.250 419pi s2sd −1

0.209 487+0.250 418 75pi

2 0.692 847 s1+d 2 6.828 43
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QsN/2,+d
s1d sxd 8 o

l=1

n

2fSx,n +
1

2
− 2l, + D

and prime onQsN/2,+d
s1d sxd denotes differentiation with respect to the variablex. Here the functionf,

as defined by Takahashi and Suzuki26 is

fsx,n,vd 8 i · lnsgsx,n,vdd, gsx,n,vd 8
sinh 2gsx + ni + p0id
sinh 2gsx − ni + p0id

.

Evaluating the sum overl in the Fourier space,

Q̃sN/2,+d
s1d8 skd = 2p

sinhSpk

2
−

pk

2N
D

sinhSpk

N
D , s67d

r̃skd = 4

sinhSpk

2
−

pk

2N
D

sinhSpk

N
D . s68d

By inverse Fourier transform we get

rsxd =
1

2p
E

−`

+`

dk e−ikxr̃skd.

The free energy for the ferromagnetic ground state is defined as

f0sud 8 lim
M→`

S−
1

M
ln L0sudD = p

a=1

MN/2

p
l=1

N/2
sins2u − ixa + xsldd

sinsixa − xsldd
.

Replacing the summation by an integral over the symmetrically placed string centers,

f0sud = −
1

2
E

−`

`

dx rsxdo
l=1

N/2

lnScoshs2xd − coss4u + 2xsldd
coshs2xd − coss2xsldd D . s69d

Transforming to the Fourier space and utilizing the expression and properties ofr̃skd we get

f0sud =E
−`

` 4dk

k

sinhSkp −
kp

N
Dsinhs2kudsinhS2ku− kp −

kp

N
D

sinh2S2kp

N
D . s70d

VII. EXCITATION ON FM GROUND STATE

We have seen in the preceding section that the FM ground state is given by a filled band of
s2sd strings. Consider theZs2sdsxd function. In the general case it should look like

Zs2sdsxd =
1

2p
Qs2sd

s1d sxd −
1

2pM
o
k

o
b=1

Mskd

Qs2s,kd
s2d sx − xb

kd. s71d

The density ofs2sd vacancies is given by
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ss2sdsxd 8 − Zs2sd8 sxd. s72d

The vacancy density and the density ofs2sd particles is related by

ss2sdsxd = rs2sdsxd +
1

M
o
b=1

Mh
s2sd

dsx − xb
s2sdhd, s73d

wherexb
s2sdh are the position of the holes.

Thus

− ss2sdsxd =
1

2p
Qs2sd

s1d8sxd −
1

2pM
o

kÞs2sd
o
b=1

Mskd

Qs2s,kd
s2d8 sx − xb

kd −
1

2p
E Qs2s,2sd

s2d8 sx − mddm

+
1

2pM
o
h=1

Mh
s2sd

Qs2s,2sd
s2d8 sx − xb

s2sdhd. s74d

The above equation can be interpreted as a collection of terms contributing tos2sd-ground
state,s2sd-holes and excited particlesss2sd=ss2sd

s0d +ss2sd
shd +o jss2sd

s jd wheress2sd
s0d is the same asrs2sd of

the last section.
The expressions for energysEd and momentumsPd are

E = o
k=1

L/2

cotSixk +
p

2N
D − 2Mo

k=1

N/2

cotSpk

N
D , s75d

eiP = p
k=1

L/2 sinhSxk +
ip

2N
D

sinhSxk −
ip

2N
D . s76d

We obtain the energy of a state designated by a given set of strings

E = o
k

strings

o
b=1

Mskd

eksxb
skdd =E dx ss2sdsxdes2sdsxd − o

b=1

Mh
s2sd

es2sdsxb
s2sdhd + o

k
kÞs2Sd

o
b=1

Mskd

esxb
skdd. s77d

The bare energies forn-string with parityv is easily obtained

esn,vdsxad = o
k=1

n

cotSixk,a
sn,vd +

p

2N
D = o

k=1

n

cotSixa
sn,vd − 2gsn + 1 − 2kd −

p

4
s1 − vd +

p

2N
D

= o
k=1

n

tanSp

2
− ixa

sn,vd + 2gsn + 1 − 2kd +
p

4
s1 − vd −

p

2N
D .

One can separate the real and imaginary parts of this expression. This helps in determining
whether we require additional constraints on rapiditiesx j to ensure reality of the total energy.

Numerical study showed that there exist several spurious solutions and only a subset of them,
corresponding to a specific choice of counting numbersIa

s jd, is admissible. Nonstring solutions
exist, however they are not as numerous. From the numerical study we make the assumption that
the elementary excitations over the FMfa sea ofs2sd-stringsg aresad a pair ofs1+d strings, andsbd
s1+d and s1−d strings.

The FM ground state is a filled band ofs2sd strings. The density of ground state energy is
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e0 = lim
M→`

E0

M
=E dx rs2sdsxdes2sdsld − 2 o

k=1

sN−1d/2

cotSpk

N
D . s78d

The observed correlation between the integers suggest that the rapidities corresponding tos2sd
and sad should be connected allowing cancellation of the imaginary part of the total energy,

Imfes2sdg = Imfesadg. s79d

It can be shown that, Imfes2sdg=Imfesadg and Refes2sdg=−Refesadg.

Refesadsxdg =
4

coshs4xd
. s80d

Similar argument holds forsbd-type excitations, where Imfes2sdg=Imfesbdg and Refes2sdg
=−Refesbdg.

Refesbdsxdg =
4

coshs4xd
. s81d

One should note that the dressed energy and bare energy are equal since the function coupling the
ground state density to excited statesQs j ,kd

s2d is zero for j =s2sd. Thus we arrive at

E = E0 + o
b=1

Msad

2esadsxb
sadd + o

b=1

Msbd

2esbdsxb
sbdd, s82d

whereE0 is the ground state energy.
We now turn to the calculation of momentum. The momentum associated with a string of

length j and parityv is found to be

ps1+dsxd = − 1
2Qs1+d

s1d sxd,

ps jdsxd = − 1
2Qs jd

s1dsxd for j Þ s1 + d, s83d

whence

psadsxd = psbdsxd = 2 arctanStanhSx

2
DD + p. s84d

These expressions are similar to the ones for nonstring excitations in the anti-ferromagnetic
case for odd spin FZM. We get the dispersion relations for elementary excitations over the ferro-
magnetic ground state as

esadspd = 4 sinSp

2
D ,

s85d

esbdspd = 4 sinSp

2
D .

VIII. FREE ENERGY IN THE ANTIFERROMAGNETIC CASE FOR N EVEN

From the numerical study for finite lattices it was apparent that the antiferromagneticsAFMd
ground-state corresponds to a filled band of real roots for bothTq andTUq. In other words the AFM
ground state is a filled sea ofs1, +d strings for both families of transfer matrices.
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The AFM ground state corresponds to real roots for both families of transfer matrices. Hence
we consider the natural logarithm of both sides of BAE’s. From BAEs1d we get

o
k=1

LUq/2

i lnSsinhsx j − x̄k − 2igd
sinhsx j − x̄k + 2igd

D = 2M · i lnSsinhsx j + igd
sinhsx j − igdD + 2pI j s86d

with standard definition ofr1sxd andr2sxd,

r1sxad =
1

p
Q1

s1d8sxad −
1

2Mp
o
b=1

M̄

Q1
s2d8sxa − x̄bd =

1

p
Q1

s1d8sxad −
1

2Mp
E

−`

+`

dm̄Q1
s2d8sx − m̄dr1sm̄d.

s87d

From BAEs2d we get

o
k=1

Lq/2

i lnSsinhsx̄ j − xk − 2igd
sinhsx̄ j − xk + 2igd

D = 2pĪ j . s88d

In the continuum limitM→` we get

r2sx̄d =
1

2p
E

−`

+`

dm Q2
s2d8sx̄a − mdr1smd. s89d

The above pair of BAE is solved as before by the Fourier transform method,

r̃1skd =
1

p
Q̃1

s1d8skd −
1

2p
Q̃1

s2d8skdr̃2skd, s90d

r̃2skd =
1

2p
Q̃2

s2d8skdr̃1skd. s91d

From the above two equations,

r̃1skd =

sinhSpk

2
D · sinhSpk

2
−

pk

2N
D

sinhSpk

N
D · sinhSpk +

pk

N
D . s92d

Following a similar procedure as shown in detail in the ferromagnetic case, the free energy for the
antiferromagnetic case is obtained as

f =
1

2
E

−`

+` dk

k

r̃1s2kd
sinhspkdFcoshkSp − 4u −

p

N
D − coshkSp −

p

N
DG . s93d

Substituting forr̃1s2kd,
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f =
1

2
E

−`

+` dk

k

sinhSpk −
pk

N
D

sinhS2pk

N
D · sinhS2pk +

2pk

N
D · coshkSp − 4u −

p

N
D

−E
−`

+` dk

k

sinhSpk −
pk

N
D

sinhS2pk

N
D · sinhS2pk +

2pk

N
D · coshkSp −

p

N
D . s94d

IX. EXCITATION ON AFM GROUND STATE

In the case of AFM, the ground state is a filled band ofs1+d. The results of the preceding
section suggest that excitations appear ass2sd strings when a hole is created in thes1+d sea.
Consider theZs1+dsxd function. In the general case it should look like

Zs1+dsxd =
1

2p
Qs1+d

s1d sxd −
1

2pM
o
k

o
b=1

Mskd

Qs1+,kd
s2d sx − xb

kd. s95d

The density ofs1+d vacancies is given by

ss1+dsxd 8 − Zs1+d8 sxd. s96d

The vacancy densityss1+dsxd and the density ofs1+d particlesrs1+dsxd is related by

ss1+dsxd = rs1+dsxd +
1

M
o
b=1

Mh
s1+d

dsx − xb
s1+dhd, s97d

wherexb
s1+dh are the position of the holes.

Thus

− ss1+dsxd =
1

2p
Qs1+d

s1d8sxd −
1

2pM
o

kÞs1+d
o
b=1

Mskd

Qs1+,kd
s2d8 sx − xb

kd −
1

2p
E Qs1+,1+d

s2d8 sx − mddm

+
1

2pM
o
b=1

Mh
s1+d

Qs1+,1+d
s2d8 sx − xb

s1+dhd. s98d

The above equation can be interpreted as a collection of terms contributing tos1+d ground
state, s1+d holes and excited particles over the ground state sea ofs1+d string. ss1+d=ss1+d

s0d

+ss1+d
shd +o jss1+d

s jd , wheress1+d
s0d is the same asrs1+d of the last section.

We obtain the energy of a state designated by a given set of stringshkj, havingMskd strings of
type skd with string centers atxb

skd,

E = o
k

strings

o
b=1

Mskd

eksxb
skdd =E dx ss1+dsxdes1+dsxd − o

b=1

Mh
s1+d

es1+dsxb
s1+dhd + o

k
kÞs1+d

o
b=1

Mskd

esxb
skdd. s99d

From the numerical study we can make the assumption that the elementary excitations over
the AFM ground state, which is a sea ofs1+d-strings, is given by a set ofs2sd strings.

The density of ground state energy for the AFM case is given by
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e0 = lim
M→`

E0

M
=E dx rs1+dsxdes1+dsld − 2 o

k=1

sN−1d/2

cotSpk

N
D . s100d

Total energy is real since the imaginary part of the energy contribution from holes cancel the
imaginary part of the energy of excitation, i.e., Imfes2sdg=Imfes1+dg. The real parts are given by

Refes2sdsxdg = Refes1+dhsxdg. s101d

In this case also, the dressed energy equals the bare energy. As before, we will denote byes2sd

3sxb
s2sdd its real part. The total energy is given by

E = E0 + o
b=1

Ms2sd

2es2sdsxb
s2sdd, s102d

whereE0 is the ground state energy.
We now turn to the calculation of momentum. The momentum associated with a string of

length j and parityv is found to be

ps1+dsxd = − 1
2Qs1+d

s1d sxd, s103d

ps jdsxd = − 1
2Qs jd

s1dsxd for j Þ s1 + d, s104d

whence

ps2sdsxd = 2 arctanStanhSx

2
DD . s105d

If one keeps in mind the fact that the correlation ofx’s demand an additionalp for the creation of
s1+d hole, we can derive the dispersion relation

es2sdspd = 4 sinSp

2
D . s106d

.
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We utilize a diagrammatic notation for invariant tensors to construct the Young
projection operators for the irreducible representations of the unitary group Usnd,
prove their uniqueness, idempotency, and orthogonality, and rederive the formula
for their dimensions. We show that all Usnd invariant scalarss3n− j coefficientsd
can be constructed and evaluated diagrammatically from these Usnd Young projec-
tion operators. We prove that the values of all Usnd 3n− j coefficients are propor-
tional to the dimension of the maximal representation in the coefficient, with the
proportionality factor fully determined by itsSk symmetric group value. We also
derive a family of new sum rules for the 3−j and 6−j coefficients, and discuss
relations that follow from the negative dimensionality theorem. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1832753g

I. INTRODUCTION

Symmetries are beautiful, and theoretical physics is replete with them, but there comes a time
when a calculation must be done. Innumerable calculations in high-energy physics, nuclear phys-
ics, atomic physics, and quantum chemistry require construction of irreducible many-particle
statessirrepsd, decomposition of Kronecker products of such states into irreps, and evaluations of
group theoretical weightssWigner 3n− j symbols, reduced matrix elements, quantum field theory
“vacuum bubbles”d. At such times effective calculational methods gain in appreciation.

In his 1841 fundamental paper1 on the determinants today known as “Jacobians,” Jacobi
initiated the theory of irreps of the symmetric groupSk. Schur used theSk irreps to develop the
representation theory of GLsn;Cd in his 1901 dissertation,2 and already by 1903 the Young
tableaux3,4 came into use as a powerful tool for reduction of bothSk and GLsn;Cd representations.
In quantum theory the group of choice5 is the unitary group Usnd, rather than the general linear
group GLsn;Cd. Today this theory forms the core of the representation theory of both discrete and
continuous groups, described in many excellent textbooks.6–17

Here we transcribe the theory of the Young projection operators into a form particularly well
suited to particle physics calculations, and show that the diagrammatic methods of Ref. 18 can be
profitably employed in explicit construction of Usnd multiparticle states, and evaluation of the
associated 3n− j coefficients.

In diagrammatic notation tensor objects are manipulated without any explicit indices. Dia-
grammatic evaluation rules are intuitive and relations between tensors can often be grasped visu-
ally. Take as an example the reduction of a two-index tensorTij into symmetric and antisymmetric
parts,T=sS+AdT, where

STij = 1
2sI + s12ddTij

JOURNAL OF MATHEMATICAL PHYSICS46, 043501s2005d
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ATij = 1
2sI − s12ddTij ,

andI ands12d denote the identity and the index transposition. Diagrammatically, the two projec-
tion operators are drawn as

s1d

It is clear at a glance thatS symmetrizes andA antisymmetrizes the two tensor indices. Here we
shall construct such projection operator for tensors of any rank.

Penrose’s papers are the firstsknown to the authorsd to cast the Young projection operators
into a diagrammatic form. Here we use Penrose diagrammatic notation for symmetrization
operators,19 Levi–Civita tensors20 and “strand networks.”21 For several specific, few-particle ex-
amples, diagrammatic Young projection operators were constructed by Canning,22 Mandula,23 and
Stedman.24 A diagrammatic construction of the Usnd Young projection operators forany Young
tableau was outlined in Ref. 25, without proofs. Here we present the method in detail, as well as
the proof that the Young projection operators so constructed are unique.26 The other new results
are a proof that every Usnd 3n− j coefficient is proportional to the dimension of the largest irrep
within the 3n− j diagram, and several sum rules for Usnd 3− j and 6−j coefficients.

The paper is organized as follows. The diagrammatic notation for tensors is reviewed in Sec.
II and the Young tableaux in Sec. III. This material is standard and the reader is referred to any of
the above cited monographs for further details. In Sec. IV we construct diagrammatic Young
projection operators for Usnd, and give formulas for the normalizations and the dimensions of
Usnd irreps. In Sec. V we recast the Clebsch–Gordan recoupling relations into a diagrammatic
form, and show that—somewhat surprisingly—the values of all Usnd 3n− j coefficients follow
from the representation theory for the symmetric groupSk alone. The 3n− j coefficients for Usnd
are constructed from the Young projection operators and evaluated by diagrammatic methods in
Sec. V B. We derive a family of new sum rules for Usnd 3n− j coefficients in Sec. V C. In Sec. VI
we briefly discuss the case of SUsnd and mixed multiparticle antiparticle states. In Sec. VII we
state and prove the negative dimensionality theorem for Usnd. Not only does this proof provide an
example of the power of diagrammatic methods, but the theorem also simplifies certain group
theoretic calculations. We summarize our results in Sec. VIII.

The key, but lengthy original result presented in this paper, the proof of the uniqueness,
completeness, and orthogonality of the Young projection operators26 is relegated to the appendix.

II. DIAGRAMMATIC NOTATION

In the diagrammatic notation18 an invariant tensor is drawn as a “blob” with a leg representing
each index. An arrow indicates whether it is an upper or lower index; lower index arrows always
point away from the blob whereas upper index arrows point into the blob. The index legs are
ordered in the counterclockwise direction around the blob, and if the indices are not cyclic there
must be an indication of where to start, for example,

An internal line in a diagram implies a sum over the corresponding index: matrix multiplication is
drawn as
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where the indexb can be omitted, as indeed can all other “dummy” indices. The Kronecker delta
is drawn as

and its trace—the dimension of the representation—is drawn as a closed loop,

s2d

Index permutations can be drawn in terms of Kronecker deltas. For example, the symmetric
groupS2 acting on two indices consists of the identity elementIab

cd=da
ddb

c and the transposition
s12d ab

cd=da
cdb

d. In the diagrammatic notation these operators are drawn as

Symmetrization of p indices is achieved by adding all permutationss of p indices, S
=s1/p! dos[Sp

dssb1
a1 …dsbpd

ap . Similarly, the operatorA=s1/p!dos[Sp
sgnssd dssb1

ap …dsbpd
a1 swith a mi-

nus − for odd permutationsd antisymmetrizesp indices. Combinations of symmetrizersS and
antisymmetrizersA are collectively referred to assymmetry operators.

In the diagrammatic notation we write the symmetrizers and the antisymmetrizers oflength p
as19

s3d

s4d

In order to streamline the notation we shall neglect the arrows whenever this leads to no confu-
sion. Basic properties of the symmetry operators are listed in Fig. 1: A symmetrizer is invariant
under any permutation of its legs, rulesad. The antisymmetrizer changes sign under odd permu-
tations, rulesbd. A symmetrizer connected by more than one line to an antisymmetrizer is zero by
rules sad and sbd,

s5d

Recursive identities for thesantidsymmetrizers are given insA5d and sA4d.

FIG. 1. Properties of the diagrammatic symmetrization and antisymmetrization operators.
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III. YOUNG TABLEAUX

Partitionk identical boxes intoD subsets, and letlm, m=1,2,… ,D, be the number of boxes
in the subsets ordered so thatl1ùl2¯ùlDù1. Then the partitionl=fl1,l2,¯ ,lDg fulfills
om=1

D lm=k. The diagram obtained by drawing theD rows of boxes on top of each other, left
aligned, starting withl1 at the top, is called aYoung diagramY.

Inserting each number from the seth1,… ,kj into a box of a Young diagram Y in such a way
that numbers increase when reading a column from top to bottom and numbers do not decrease
when reading a row from left to right yields aYoung tableauYa. The subscripta labels different
tableaux derived from a given Young diagram, i.e., different admissible ways of inserting the
numbers into the boxes. Astandard tableauis ak-box Young tableau constructed by inserting the
numbers 1,… ,k according to the above rules, but using each number exactly once.

As an example, three distinct standard tableaux,

are obtained from the four-box Young diagram with partitionl=f2,1,1g.

A. Symmetric group Sk

Young diagrams label the irreps of the symmetric groupSk. A k-box Young diagram Y corre-
sponds to an irrep ofSk, andDl, the dimension of the irrepl, is the number of standard tableaux
Ya that can be constructed from the Young diagram Y. From the above example we see that the
irrep l=f2,1,1g of S4 is three dimensional. The formula for the dimensionDY of the irrep ofSk

corresponding to the Young diagram Y is

DY =
k!

uY u
. s6d

The numberuY u is computed using a “hook” rule: Enter into each box of the Young diagram the
number of boxes below and to the left of the box, including the box itself. ThenuY u is the product
of the numbers in all the boxes. For instance,

The hook rules6d was first proved surprisingly late, in 1954, by Frame, de B. Robinson, and
Thrall.27 Various proofs can be found in Refs.15,16,28–31; in particular, see Sagan32 and references
therein.

B. Representations of U „n…

While every Young diagram labels an irrep ofSk, every standard tableau labels an irrep of
Usnd. The dimensiondY of an irrep labeled by the Young diagram Y equals the number of Young
tableaux Ya that can be obtained from Y by inserting numbers from the seth1,2,… ,nj such that
the numbers increase in each column and do not decrease in each row.

043501-4 Elvang, Cvitanović, and Kennedy J. Math. Phys. 46, 043501 ~2005!

                                                                                                                                    



IV. YOUNG PROJECTION OPERATORS

We now present a diagrammatic method for construction of Young projection operators. A
combinatorial version of these operators was given by van der Waerden,33 who credited von
Neumann. There are many other versions in the literature, all of them illustrating the fundamental
theorem of ’t Hooft and Veltman:34 combinatorics cannot be taught. What follows might aid those
who think visually.

A. The group algebra

Our goal is to construct the projection operators such ass1d for any irrep ofSk. We need to
construct a basis set of invariant tensors, multiply them by scalars, add and subtract them, and
multiply a tensor by another tensor. The necessary framework is provided by the notion ofgroup
algebra.

The elementss[Sk of the symmetric groupSk form a basis of ak!-dimensional vector space
V of elements

s= o
s[Sk

sss [ V, s7d

wheress are the components of the vectors in the given basis. Ifs, t[V have componentssssd
and stsd, we define the product ofs and t as the vectorst in V with componentssstds

=ot[Sk
sttt−1s. This multiplication is associative because it relies on the associative group opera-

tion. SinceV is closed under the multiplication the elements ofV form an associative algebra—the
group algebraof Sk. Acting on an elements[V with any group element mapss to another
element in the algebra, hence this map gives ak!-dimensional matrix representation of the group
algebra, theregular representation. Note that the matrices of any representationm of the group is
also a basis for representation of the algebra: LetDmssd denote aspossibly reducibled represen-
tation of Sk. The group algebra ofSk in the representationm then consists of elements

Dmssd = o
s[Sk

ssDmssd [ V,

wheres is given bys7d. The minimal left-idealsVl of the group algebrasi.e.,sVl=Vl for all s[V,
andVl has no proper subidealsd are the proper invariant subspaces corresponding to the irreps of
the symmetric groupSk.

The regular representation is reducible and each irrep appearsDl times in the reduction, where
Dl is the dimension of the subspaceVl corresponding to the irrepl. This gives the well-known
relation between the order of the symmetric groupuSku =k! sthe dimension of the regular repre-
sentationd and the dimensions of the irreps,

uSku = o
irrepsl

Dl
2.

Using s6d and the fact that the Young diagrams label the irreps ofSk, we have
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1 = k!o
skd

1

uY u2
, s8d

where the sum is over all Young diagrams withk boxes. We shall use this relation to determine the
normalization of Young projection operators in the Appendix.

The reduction of the regular representation ofSk gives a completeness relation

I = o
skd

PY

into projection operators

PY = o
Ya[Y

PYa
.

The sum is over all Young tableaux derived from the Young diagram Y. EachPYa
. projects onto

the corresponding invariant subspaceVYa
. For each Y there areDY such projection operators

scorresponding to theDY possible standard arrangements of the diagramd and each of these project
onto one of theDY invariant subspacesVY of the reduction of the regular representation. It follows
that the projection operators are orthogonal and that they constitute a complete set.

B. Diagrammatic Young projection operators

We now generalizes1d, theS2 projection operators expressed in terms of Kronecker deltas, to
Young projection operator for anySk.

The Kronecker delta is invariant under unitary transformations,da
b=sU†da

a8da8
b8Ub8

b, U[Usnd,
and so is any combination of Kronecker deltas, such as the symmetrizers of Fig. 1. Since these
operators constitute a complete set, any Usnd invariant tensor built from Kronecker deltas can be
written in terms of symmetrizers and antisymmetrizers. In particular, the invariance of the Kro-
necker delta under Usnd transformations implies that the same symmetry group operators which
project the irreps ofSk also yield the irreps of Usnd.

The simplest examples of Young projection operators are those associated with the Young
tableaux consisting of either one row or one column. The corresponding Young projection opera-
tors are simply the symmetrizerss3d or the antisymmetrizerss4d, respectively. As projection
operators forSk, the symmetrizer projects onto the one-dimensional subspace corresponding to the
fully symmetric representation, and the antisymmetrizer projects onto the alternating representa-
tion.

A Young projection operator for a mixed symmetry Young tableau will here be constructed by
first antisymmetrizing subsets of indices, and then symmetrizing other subsets of indices; which
subsets are dictated by the form of the Young tableau, as will be explained shortly. Schematically,

whereaY is a normalization constantsdefined belowd ensuring that the operators are idempotent,
PYa

PYb
=dabPYa

. This particular form of projection operators is by no means unique—Young
projection operators symmetric under transposition are constructed in Ref. 18—but is particularly
convenient for explicit computations

Let Ya be ak-box standard tableau. Arrange a set of symmetrizers corresponding to the rows
in Ya, and to the right of this arrange a set of antisymmetrizers corresponding to the columns in
Ya. For a Young diagram Y withs rows andt columns we label the rows S1, S2,… ,Ss and to the
columns A1, A2,… ,At. Each symmetry operator inPYa

is associated with a row/column in Ya,
hence we label a symmetry operator after the corresponding row/column, for example
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Let the lines numbered 1 tok enter the symmetrizers as described by the numbers in the boxes in
the standard tableau and connect the set of symmetrizers to the set of antisymmetrizers in a
nonvanishing way, avoiding multiple intermediate lines prohibited bys5d. Finally, arrange the
lines coming out of the antisymmetrizers such that if the lines all passed straight through the
symmetry operators, they would exit in the same order as they entered.

We shall denote byDY the dimensions of irreps ofSk, and bydY the dimensions of irreps of
Usnd. Let uSiu or uA iu denote the number of boxes within a row or column, respectively. ThusuA iu
also denotes the number of lines entering the antisymmetrizerAi, and similarly for the symme-
trizers. The normalization constantaY is given by

aY =
Pi=1

s uSiu!P j=1
t uA ju!

uY u
,

where uY u is related throughs6d to DY, the dimension of irrep Y ofSk, and is a hook ruleSk

combinatoric number. The normalization depends only on the shape of the Young diagram, not the
particular tableau. The Young projection operators

s1d are idempotent, PY
2 =PY;

s2d areorthogonal: if Y and Z are two distinct standard tableaux, thenPYPZ=PZPY =0; and
s3d constitute acomplete set, I=oPY, where the sum is over all standard tableaux Ywithk boxes.

The projections are unique up to an overall sign. By construction, the identity element always
appears as a term in the expansion of the symmetry operators of the Young projection operators—
the overall sign is fixed by requiring that the identity element comes with a positive coefficient.
The diagrammatic proof that the above rules indeed assign a unique projection operator to each
standard tableaux is the central result of this paper; as it would impede the flow of our argument
at this point, it is placed in the Appendix.

Example:The Young diagram corresponding to the partitionf3,1g tells us to use one sym-
metrizer of length three, one of length one, one antisymmetrizer of length two, and two of length
one. There are three distinct standard tableaux, each corresponding to a projection operator

whereaY is the normalization constant. The symmetry operators of unit width need not be drawn
explicitly. We haveuY u =8, uS1u =3, uS2u =1, uA1u =2, etc., yielding the normalizationaY =3/2.

C. Dimensions of U „n… irreps

The dimensiondY of a Usnd irrep is computed by taking the trace of the corresponding Young
projection operator,dY =tr PY. The trace can be evaluated by expanding the symmetry operators
using s3d and s4d. By s2d, each closed line is worthn, sodY is a polynomial inn of degreek.

Example:The dimension of a three-index Young projection operator,
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s9d

=
1

3
sn3 + n2 − n2 − nd =

nsn2 − 1d
3

. s10d

Such brute expansion is unnecessarily laborious: The dimension of the irrep labeled by Y is

dY =
fYsnd
uY u

, s11d

where fYsnd is the polynomial inn obtained from the Young diagram Y by multiplying the
numbers written in the boxes of Y, according to the following rules:sAd The upper left box
contains ann. sBd The numbers in a row increase by 1 when reading from left to right.sCd The
numbers in a column decrease by 1 when reading from top to bottom. Hence, ifk is the number
of boxes in Y,fYsnd is a polynomial inn of degreek. The dimension formulas11d is well known,
see for instance Ref. 11.

In the examples10d, we havefYsnd=nsn−1dsn+1d and uY u =3, giving dY =nsn2−1d /3.
Example:For Y=f4,2,1g we have

A diagrammatic proof of the Usnd dimension formulas11d is given in the Appendix.
Diagrammatically, the numberfYsnd is the number ofn-color colorings of the strand network

corresponding to trPY, see, for example, Ref. 18.

D. Examples

We present examples to illustrate decomposition of reducible representation into irreps using
the diagrammatic projection operators.

The Young diagramh corresponds to the fundamentaln-dimensional irrep of Usnd. As we
saw in s1d, the direct product of two of thesen-dimensional representations is an2-dimensional
reducible representation,

s12d

s13d

s14d

Equations12d shows the decomposition of the reducible representation in terms of Young dia-
grams, ands13d gives the corresponding projection operators. Tracings13d yields the dimensions
s14d of the irreps.

The first nontrivial example is the reduction of the three-index tensor Young projection op-
erators, listed in Fig. 2. Further examples can be found in Ref. 18.
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The four projectors are orthogonal by inspection. In order to verify the completeness, expand
first the two three-index projection operators of mixed symmetry,

s15d

In the sum of the fully symmetric and the fully antisymmetric tensors all the odd permutations
cancel, and we are left with

s16d

Adding s15d and s16d we find

verifying the completeness relation.
Acting with any permutation on the fully symmetric or antisymmetric projection operators

gives61 times the projection operatorssee Fig. 1d. For projection operators of mixed symmetry
the action of a permutation is not as simple, because the permutations will mix the spaces corre-
sponding to the different tableaux. Here we shall need only the action of a permutation within a
3n− j coefficient, and, as we shall show below, in this case the result will again be simple, a factor
61 or 0.

V. RECOUPLING RELATIONS

In the spirit of Feynman diagrams, group theoretic weights with all indices contracted can be
drawn as “vacuum bubbles.” We now show that for Usnd any such vacuum bubble can be evalu-
ated diagrammatically, either directly, as a 3n− j coefficient, or following a reduction to 3−j and
6− j coefficients. The exposition of this section follows closely Ref. 18; the reader can find there
more details, as well as the precise relationship between our 3−j and 6−j coefficients, and the
Wigner 3−j and 6−j symbols.35

The decomposition of a many-particle state can be implemented sequentially, decomposing
two-particle states at each step. The Clebsch–Gordan coefficients for X^ Z→Y can be drawn as
3-vertices,

FIG. 2. Reduction of a three-index tensor. Bottom row; the direct product of three unit tableaux, the sum of dimensions,
and the projection operators completeness sum.
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s17d

where 1/Îa is an sarbitraryd normalization constant. The projection operators for X^ Z→Y
→X ^ Z can be drawn as

The orthogonality of irreps implies W=Y in

s18d

and the completeness relation can be drawn as

s19d

where the sum is over all irreps contained in X^ Z.
The normalization constanta can be computed by tracings18d,

wheredY is the dimension of the representation Y. The vacuum bubble on the left-hand side is
called a 3−j coefficient. More generally, vacuum bubbles withn lines are calledn− j coefficients.

Let particles in representations U and V interact by exchanging a particle in the representation
W, with the final state particles in the representations X and Z,

Applying the completeness relations19d repeatedly yields

By the orthogonality of irreps Y=Y8, and we obtain therecoupling relation
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s20d

The “Mercedes” vacuum bubbles in the numerators are called 6−j coefficients.Any arbitrarily
complicated vacuum bubble can be reduced to 3−j and 6−j coefficients by recursive use of the
recoupling relations20d. For instance, a four-vertex loop can be reduced to a two-vertex loop by
repeated application of the recoupling relations as sketched in Fig. 3.

Another, more explicit example of a sequence of recouplings, is the following step-by-step
reduction of a five-particle state:

sfor brevity we omit the normalization factors hered. Taking the trace of both sides leads to
12−j coefficients of the form

s21d

A. U„n… recoupling relations

Due to the overall particle number conservationswe consider no “antiparticle” states hered, for
Usnd the above five-particle recoupling flow takes a very specific form in terms of Young projec-
tion operators,

More generally, we can visualize any sequence of Usnd pairwise Clebsch–Gordan reductions as a
flow with lines joining into thicker and thicker projection operators, always ending in a maximal
PY which spans across all lines.

In the traces21d we can use the idempotency of the projection operators to double the
maximal Young projection operatorPY, and sandwich by it all smaller projection operators,

s22d

From uniqueness of the connection between the symmetry operatorsssee the Appendix Id we have
for any permutations[Sk

s23d

wherems=0, 61. Expressions likes22d can be evaluated by expanding the projection operators

FIG. 3. A reduction of a 4-vertex loop to a sum of “tree” tensors, weighted by products of 3−j and 6−j coefficients.
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PW, PX, PZ and determining the value ofms of s23d for each permutations of the expansion. The
result is

where the factorMsY;W,X,Zd does not dependon n and is determined by a purely symmetric
group calculation. Several examples follow.

B. Evaluation of 3 n-j coefficients

Let X, Y, and Z be irreps of Usnd. In terms of the Young projection operatorsPX, PY, andPZ,
a Usnd three-vertexs17d is obtained by tying together the three Young projection operators,

s24d

The number of particles is conservedsthe multiparticle states constructed here consist only of
particles, no “antiparticles”d: kX +kZ=kY. A 3− j coefficient constructed from the vertexs24d is
then

s25d

As an example, take

Then

s26d

In principle the value of such 3−j coefficient can be computed by expanding out all symmetry
operators, but that is not recommended as the number of terms in such expansions grows combi-
natorially with the total number of boxes in the Young diagram Y. Instead, the answer—in this
casedY =sn2−1dn2sn+1dsn+2d /144— is obtained as follows.

In general, the 3−j coefficientss25d can be evaluated by expanding the projectionsPX andPZ

and determing the value ofms in s23d for each permutations of the expansion.
As an example, consider the 3−j coefficients26d. With PY as in s26d we find

hence
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and the value of the 3−j is dY as claimed ins26d. That the eigenvalue happens to be 1 is an
accident—in tabulations of 3−j coefficients26 it takes a range of values.

The relations23d implies that the value of any Usnd 3− j coefficient s25d is MsY;X,Z ddY,
wheredY is the dimension of the maximal irrep Y.

A 6− j coefficient is composed of the three-vertexs17d and the other three-vertex in the
projection operators24d, with all arrows reversed. A general Usnd 6− j coefficient has the form

s27d

Using the relations23d we immediately see that

s28d

whereM is a pure symmetric groupSkY number, independent of Usnd; it is surprising that the only
vestige of Usnd is the fact that the value of a 6−j coefficient is proportional to the dimensiondY

of its largest projection operator.
Example:Consider the 6−j constructed from the Young tableaux,

Using the idempotency we can double the projectionPY and sandwich the other operators, as in
s22d. Several terms cancel in the expansion of the sandwiched operator, and we left with

We have listed the symmetry factorsms of s23d for each of the permutationss sandwiched
between the projection operatorsPY. We find that in this example the symmetric group factorM
of s28d is

M =
4

24aUaVaWaXaZ =
1

3
,

so the value of the 6−j is

The method generalizes to evaluations of any 3n− j coefficients of Usnd.
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C. Sum rules

Let Y be a standard tableau withkY boxes, and letL be the set of all standard tableaux with
one or more boxessexclude the trivialk=0 representationd. Then the 3−j coefficients obey the
sum rule

s29d

The sum is finite, because the 3−j is nonvanishing only if the number of boxes in X and Z add up
to kY, and this happens only for a finite number of tableaux.

To prove s29d, recall that the Young projection operators constitute a complete set,
oX[Lk

PX =I, whereI is the k3k unit matrix andLk the set of all standard tableaux of Young
diagrams withk boxes. Hence

This sum rule offers a useful cross-check on tabulations of 3−j values, see for instance Ref. 26.
There is a similar sum rule for the 6−j coefficients,

s30d

Referring to the 6−j s27d, let kU be the number of boxes in the Young diagram U,kX be the
number of boxes in X, etc., and letkY be given. Froms27d we see thatkX takes values between 1
andkY −2 andkZ takes values between 2 andkY −1, subject to the constraintkX +kZ=kY. We now
sum over all tableaux U, V, and W keepingkY, kX, andkZ fixed. Note thatkV can take values 1,…,
kZ−1. Using completeness we find

Now sum over all tableaux X and Z to find

verifying the sum rules30d for 6− j coefficients.

043501-14 Elvang, Cvitanović, and Kennedy J. Math. Phys. 46, 043501 ~2005!

                                                                                                                                    



VI. SU„N… AND ITS ADJOINT REPRESENTATION

The SUsnd group elements satisfy det U=1, so SUsnd has an additional invariant, the Levi–
Civita tensor

ea1a2¯an = Ua1

a18Ua2

a28
¯Uan

an8ea18a28¯an8
.

In the diagrammatic notation the Levi–Civita tensors can be drawn as20

They satisfy

s31d

sLevi–Civita projects ann-particle state onto a single, one-dimensional, singlet representationd,
and are correctly normalized,

The Young diagrams for SUsnd cannot contain more thann rows, since at mostn indices can
be antisymmetrized. By contraction with the Levi-Civita tensor, a column withk boxes can be
converted into a column ofn−k boxes: this operation associates to each irrep theconjugateirrep.
The Young diagram corresponding to the irrep is theconjugateYoung diagram constructed from
the missing pieces needed to complete the rectangle ofn rows. For example, the conjugate of the
irrep corresponding to the partitionf4, 2, 2, 1g of SUs6d has the partitionf4, 4, 3, 2, 2g:

The Levi–Civita tensor converts an antisymmetrized collection ofn−1 “in” indices, ansn
−1d-particle state, into 1 “out” index: a single antiparticle stateh̄, the conjugate of the fundamen-
tal representationh single particle state. The corresponding Young diagram is a single column of
n−1 boxes. The product of the fundamental representation and the conjugate representation of
SUsnd decomposes into a singlet and the adjoint representation,

In the notation introduced in Sec. IV, the Young projection operator for the adjoint representation
A is drawn as

UsingPA and the definitions24d of the three-vertex, SUsnd group theory weights involving quarks,
antiquarks, and gluons can be calculated by expansion of the symmetry operators or by application
of the recoupling relation. When the adjoint representation plays a key role, as it does in gauge
theories, it is wisest to abandon the above construction of all irreps by Clebsch–Gordan reductions
of multiparticle states, and build the theory by taking a single particle and a single antiparticle as
the fundamental building blocks. A much richer theory, beyond the scope of this paper follows,
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leading to a diagrammatic construction of representations of all simple Lie groups, the classical as
well as the exceptional. The reader is referred to Ref. 18 for the full exposition.

VII. NEGATIVE DIMENSIONS

We conclude by a brief discussion of implications of then→−n duality18,36of Usnd invariant
scalars.

Any SUsnd invariant tensor is built from Kronecker deltas and Levi–Civita tensors. A scalar is
a tensor object with all indices contracted, so in the diagrammatic notation a scalar is a diagram
with no external legs, a vacuum bubble. Thus, in scalars Levi–Civita tensors can appear only in
pairs sthe lines must end somewhered, and bys31d the Levi–Civita tensors combine to antisym-
metrizers. Consequently both Usnd and SUsnd invariant scalars are all built only from symmetriz-
ers and antisymmetrizers.

Expanding all symmetry operators in a Usnd vacuum bubble gives a sum of entangled loops.
Each loop is worthn, so each term in the sum is a power ofn, and therefore a Usnd invariant scalar
is a polynomial inn.

The negative dimensionality theorem18,36 for Usnd states that interchanging symmetrizers and
antisymmetrizers in Usnd invariant scalar is equivalentsup to an overall signd to substitutingn
→−n in the polynomial, which is the value of the scalar. We write this

Usnd = Us− nd.

The bar symbolizes the interchange of symmetrizers and antisymmetrizers.
The terms in the expansion of all symmetry operators in a Usnd vacuum bubble can be

arranged in pairs that only differ by one crossing,

s32d

with 6 depending on whether the crossing is due to symmetrizations1d or antisymmetrization
s2d. The gray blobs symbolize the tangle of lines common to the two terms.

If the two arcs outside the gray blob of the first term ofs32d belong to separate loops, then in
the second term they will belong to the same loop. The two terms thus differ only by a factor of
n: schematically,

Likewise, if the arcs in the first term belong to the same loop then in the second term they will
belong to two separate loops. In this case the first term is 1/n times the second term. In either case
the ratio of the two terms is an odd power ofn. Interchanging symmetrizers and antisymmetrizers
in a Usnd vacuum bubble changes the sign ins32d. Up to an overall sign the result is the same as
substitutingn→−n. This proves the theorem.

Consider now the implications for the dimension formulas and the values of 3n− j coeffi-
cients. The dimension of an irrep of Usnd is the trace of the Young projection operator, a vacuum
bubble diagram built from symmetrizers and antisymmetrizers. Applying the negative dimension-
ality theorem we getdYtsnd=dYs−nd, where Yt is the transposeY t of the standard Young tableau
Y obtained by interchanging rows and columnssreflection across the diagonald. For instancef3, 1g
is the transpose off2, 1, 1g,

As an example, note then→−n dualities in the dimension formulas of Fig. 2.
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Now for standard tableaux X, Y, and Z, compare the diagram of the 3−j constructed from X,
Y, and Z to that constructed from Xt, Zt, and Yt. The diagrams are related by a reflection in a
vertical line, reversal of all the arrows on the lines, and interchange of symmetrizers and antisym-
metrizers. The first two operations do not change the value of the diagram, hence the values of the
two diagrams are again related byn↔−n sand possibly an overall sign; this sign is fixed by
requiring that the highest power ofn comes with a positive coefficientd. Hence in tabulation it is
sufficient to calculate approximately half of all 3−j ’s. The 3−j sum rules29d provides a cross-
check.

The two 6−j coefficients

are related by a reflection in a vertical line, reversal of all the arrows on the lines, and interchange
of symmetrizers and antisymmetrizers—this can be seen by writing out the 6−j coefficients in
terms of the Young projection operators as ins27d. By the negative dimensionality theorem, the
values of the two 6−j coefficients are therefore again related byn↔−n.

VIII. SUMMARY

We have presented a diagrammatic method for construction of correctly normalized Young
projection operators for Usnd. These projection operators in diagrammatic form are useful for
explicit evaluation of group theoretic quantities such as the 3n− j coefficients. Using the recou-
pling relations, all Usnd invariant scalars can be reduced to expressions involving only terms of
3− j and 6−j coefficients and the dimensionalities of the representations. Our main results are as
follows:

sid Diagrammatic Young projection operators for tensorssmultiparticle statesd with given
symmetry properties; a diagrammatic proof of their uniqueness, completeness, and
orthogonality.

sii d Usnd invariant scalars may be expressed in terms of the Young projection operators, and
their values computed by diagrammatic expansions.

siii d Usnd 3− j and 6−j coefficients constructed from the three-vertex defined ins24d have
simple n-dependencies: they are proportional to the dimension of the maximal irrep pro-
jection operator that spans over all multiparticle indices.

sivd The negative dimensionality theorem applies to all Usnd invariant scalars, in particular the
3n− j coefficients and the dimensions of the irreps of Usnd.

svd The sum ruless29d and s30d for 3− j and 6−j coefficients afford useful cross-checks of
3n− j tabulations.
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APPENDIX: DIAGRAMMATIC YOUNG PROJECTION OPERATORS: THE PROOFS

In this appendix we prove the properties of the Young projection operators stated above in
Sec. IV.
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Uniqueness

We show that the Young projection operatorsPY are well defined by proving the existence and
uniquenesssup to an overall signd of a nonvanishing connection between the symmetrizers and
antisymmetrizers inPY.

The proof is by induction over the number of columnst in the Young diagram Y; the prin-
ciples are illustrated in Fig. 4. Fort=1 the Young projection operator consists of one antisymme-
trizer of lengths ands symmetrizers of length 1, and clearly the connection can only be made in
one way, up to an overall sign, see Fig. 1sbd.

Assume the result to hold for Young projection operators derived from Young diagrams with
t−1 columns. Let Y be a Young diagram witht columns. The lines from A1 in PY must connect
to different symmetrizers for the connection to be nonzero. Since there are exactlyuA1u symme-
trizers inPY, this can be done in essentially one way, since which line goes to which symmetrizer
is only a matter of an overall sign, and where a line enters a symmetrizer is irrelevant due to Fig.
1sad.

After having connected A1, connecting the symmetry operators in the rest ofPY is the
problem of connecting symmetrizers to antisymmetrizers in the Young projection operatorPY8,
where Y8 is the Young diagram obtained from Y by slicing off the first column. Thus Y8 hask
−1 columns, so by the induction hypothesis the rest of the symmetry operators inPY can be
connected in exactly one nonvanishing waysup to an overall signd.

Orthogonality

If Y a and Yb denote standard tableaux derived from the same Young diagram Y, then
PYa

PYb
=PYb

PYa
=dabPYa

2 , since there is a permutation of the lines connecting the symmetry op-
erators of Y with those of Z and by uniqueness of the nonzero connection the result is eitherPYa

2

sif Y a=Ybd or sif Y aÞYbd.
Next, consider two different Young diagrams Y and Z with the same number of boxes. Since

at least one column must be bigger inssayd Y than in Z and thep lines from the corresponding
antisymmetrizer must connect to different symmetrizers, it is not possible to make a nonzero
connection between the antisymmetrizers ofPYa

to the symmetrizers inPz, where subscriptsa and
b denote any standard tableaux of Y and Z. HencePYa

PZb
=0, and by a similar argument

PZb
PYa

=0.

Normalization and completeness

We now derive the formula for the normalization factoraY such that the Young projection
operators are idempotent,PYa

2 =PYa
. By the normalization of the symmetry operators, Young

projection operators corresponding to fully symmetric or antisymmetric Young tableaux will be
idempotent withaY =1.

DiagrammaticallyPYa
2 is simply PYa

connected toPYa
, hence it may be viewed as a set of

outersymmetry operators connected by a set ofinner symmetry operators. Expanding all the inner
symmetry operators and using the uniqueness of the nonzero connection between the symmetrizers
and antisymmetrizers of the Young projection operators, we find that each term in the expansion is

FIG. 4. There is a uniquesup to an overall signd connection between the symmetrizers and the antisymmetrizers, so the
Young projection operators are well defined by the construction procedure explained in the text. The figure shows the
principles of the proof. The dots on the middle Young diagram mark boxes that correspond to contracted lines.
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either 0 or a copy ofPYa
. For a Young diagram withs rows andt columns there will be a factor

of 1/uSi u !s1/uA j u !d from the expansion of each innersantidsymmetrizer, so we find

where the sum is over permutations from the expansion of the inner symmetry operators. Note
that by the uniqueness of the connection between the symmetrizers and antisymmetrizers, the
constantkY is independent of which tableau gives rise to the projection, and consequently the
normalization constantaY depends only on the Young diagram and not the tableau.

For a givenk, consider the Young projection operatorsPYa
corresponding to all thek-box

Young tableaux. Since the operatorsPYa
are orthogonal and in one-to-one correspondence with the

Young tableaux, it follows from the discussion in Sec. IV A that there are no other operators ofk
lines orthogonal to this set. Hence thePYa

’s form a complete set, so that

I = o
Ya

PYa
. sA1d

Expanding the projections the identity appears only once, so we have

and using this, equationsA1d states

sA2d

since all permutation different from the identity must cancel. When changing the sum from a sum
over the tableaux to a sum over the Young diagrams we use thataY depends only on the diagram
and that there areDY =k! / uY u k-standard tableaux for a given diagram. Choosing

aY =
Pi=1

s uSiu!P j=1
t uA ju!

uY u
, sA3d

the factor on the right-hand side ofsA2d is 1 by s8d.
Since the choice of normalizationsA3d gives the completeness relationsA1d, it follows that it

also gives idempotent operators, multiplying byPZb
on both sides ofsA1d and using orthogonality,

we find PZb
=PZb

2 for any Young tableau Zb.

Dimensionality

To prove the dimension formulas11d we need the identities

sA4d

and

sA5d

given in Ref. 18. For Young tableaux with a single row or column, the dimension formula can be
derived directly using the relationssA4d and sA5d.
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Let Y be a standard tableau withk boxes, and Y8 the standard Young tableau obtained from
it by removing the box containingk. Draw the Young projection operators corresponding to Y and
Y8 and note thatPY with the “last” line traced is proportional toPY8.

Quite generally the contraction of the last line will look like

sA6d

Using sA4d and sA5d we have

Inserting this intosA6d we see that the first term is proportional to the projection operatorPY8
The second term vanishes,

If we ignore the internal structure within the dotted box we see that this is exactly of the form of
PY8, except that the “last” symmetrizers and antisymmetrizers are connected by a line. There is a
unique nonvanishing way of connecting the symmetrizers and antisymmetrizers inPY8, and the
“last” symmetrizer and antisymmetrizer are not connected in this, as they correspond to a row and
column with no common box in the Young tableau. Therefore every term obtained from the
expansion of the dotted box must vanish.

The dimensionality formula follows by induction on the number of boxes in the Young
diagrams with the dimension of a single box Young diagram beingn. Let Y be a Young diagram
with p boxes. We assume that the dimensionality formula is valid for any Young diagram with
p−1 boxes. WithPY8 obtained fromPY as above, we havesusing the above calculation and
writing DY for the diagrammatic part ofPYd

dim PY = aY tr DY =
n − t + s

st
aY tr DY8 = sn − t + sdaY8

uY8u
uY u

tr DY8 = sn − t + sd
fY8

uY u
=

fY

uY u
.

This completes the proof of the dimensionality formulas11d.
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We introduce notions of equivalence of conservation laws with respect to Lie
symmetry groups for fixed systems of differential equations and with respect to
equivalence groups or sets of admissible transformations for classes of such sys-
tems. We also revise the notion of linear dependence of conservation laws and
define the notion of local dependence of potentials. To construct conservation laws,
we develop and apply the most direct method which is effective to use in the case
of two independent variables. Admitting possibility of dependence of conserved
vectors on a number of potentials, we generalize the iteration procedure proposed
by Bluman and Doran-Wu for finding nonlocalspotentiald conservation laws. As an
example, we completely classify potential conservation lawssincluding arbitrary
order local onesd of diffusion-convection equations with respect to the equivalence
group and construct an exhaustive list of locally inequivalent potential systems
corresponding to these equations. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1865813g

I. INTRODUCTION

After Noether’s remarkable paper30 had become well known, a number of authors21,31,38,40

searched for conservation laws using the symmetry approach based on the Noether’s results. In
view of the generalized Noether’s theorem,31 there exists one-to-one correspondence between the
nontrivial generalized variational symmetries of some functional and the nontrivial conservation
laws of the associated Euler–Lagrange equations, and any such symmetry is a generalized sym-
metry of the Euler–Lagrange equations.

The Noether’s approach has a number of advantages. It reduces construction of conservation
laws to finding symmetries for which there exist a number of well-developed methods, and
complete description of necessary symmetry properties is known for a lot of systems of differen-
tial equations. However, this approach can be applied only to Euler–Lagrange equations that form
normal systems and admit symmetry groups satisfying an additional “variational” property of
leaving the variational integral invariant in some sense.31 The latter requirements lead to restric-
tion of class of systems that could be investigated in such way.

At the same time, the definition of conservation laws itself gives rise to a method of finding
conservation laws. Technique of calculations used in the framework of this method is similar to
the classical Lie method yielding symmetries of differential equations.20 As mentioned in the
above reference, such algorithmic possibility was first employed by Laplace27 for derivation of the
well-known Laplace vector of the two-body Kepler problem. Following tradition from group
analysis of differential equations, we may call this methoddirect and distinguish four versions of
it, depending on the way of taking into account systems under investigation.sSee, e.g., Refs. 4, 5,
8, and 23 and Sec. IV of this paper for more details as well as Ref. 44 for comparison of the

adElectronic mail: rop@imath.kiev.ua
bdElectronic mail: ivanova@imath.kiev.ua

JOURNAL OF MATHEMATICAL PHYSICS46, 043502s2005d

46, 043502-10022-2488/2005/46~4!/043502/22/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1865813


versions and their realizations in computer algebra programs.d In the present paper we use the
most direct version based on immediate solving of determining equations for conserved vectors of
conservations laws on the solution manifolds of investigated systems.

Let us note that there exist other approaches for construction of conservation laws which
differ from the Noether’s or above direct ones, are based on exploitation of symmetry properties
of differential equations and can be applied to non-Lagrangian systems. Thus, Fushchych and
Nikitin17 proposed to calculate directly bilinear combinations of solutions of motion equations,
which are conserved in time by virtue of symmetries of these equations. It is possible in such way
to find conservation laws corresponding to nongeometric symmetries. In the recent work2 a purely
algebraic formula has been derived for generating conservation laws of systems of differential
equations that possess a scaling invariance.

To classify conservation laws, instead of the usual equivalence relation on their setsmore
exactly, on the set of conserved vectorsd we propose to use the natural and more general notions
of equivalences of conservation laws with respect to Lie symmetry groups for fixed systems of
differential equations and with respect to equivalence groups or sets of admissible pointsor
contactd transformations for classes of such systems. Results of classification up to these equiva-
lences are more comprehensible, especially, if a whole class of systems is studied and blend with
the framework of group analysis.

Bluman and Doran-Wu8 proposed an ingenious procedure of branching iterations for finding
nonlocalspotentiald conservation laws of diffusion equations. Namely, on each iteration they use
a conservation law from the previous iterationsone conservation law for one iterationd to introduce
a potential and to construct the extended potential system. Then they study local conservation laws
of the potential system, which are, generally speaking, nonlocalspotentiald conservation laws for
the initial equation. To the best of our knowledge, it was the first paper where the idea of hierarchy
of potential systems and associated conservation laws is presented in an explicit form.

We generalize the iteration procedure by Bluman and Doran-Wu, admitting dependence of
conserved vectors on different numbersfrom one to the maximum possible thatd of new potentials
on each iteration. The idea of a similar approach was adduced by Wahlquist and Estabrook43 and
was formalized in the form of notion ofuniversal Abelian coveringof differential equations.10,36,42

Such approach naturally results in the questions on some independence of employed potentials.
That is why, in this paper we consider definition of linear dependence of conservation laws in
detail and define the notion of local dependence of potentials.

Therefore, in the first part of the paper we propose some technique and discuss the classifi-
cation problem for conservation laws in general. The ultimate goal of the second part is to present
an exhaustive classification of potential conservation laws in a quite difficult and interesting case.
As an illustration of the proposed technique, we choose the class of diffusion-convection equations

ut = sAsuduxdx + Bsudux, s1d

whereA=Asud andB=Bsud are arbitrary smooth functions ofu, AsudÞ0. Symmetry properties of
s1d were considered by a number of authors,13,32,45however the complete and strong group clas-
sification of s1d was first presented in our recent work34 fsee also references therein for more
details about symmetry analysis of classes intersecting classs1dg.

Studying conservation laws of equationss1d was started from linear equations.38 Dorodnitsyn
and Svirshchevskii12 ssee also Ref. 20d completely investigated the local conservation laws for
reaction-diffusion equationsut=sAsuduxdx+Csud. The first-order local conservation laws of equa-
tions s1d were constructed by Kara and Mahomed.24 Developing results of Bluman and
Doran-Wu8 obtained for the caseB=0, Ivanova22 classified the first-order local conservation laws
for equationss1d with respect to the equivalence group and constructed potential conservation
laws of the first level. Namely, she made two steps of the iteration procedure, looking, in the
second step, for the first-order local conservation laws of the potential systems obtained after the
first step.

In the present work we exhaustively classify, with respect to the corresponding equivalence
group, the local conservation laws of an arbitrary order, find the simplest and general potential
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conservation laws and construct locally inequivalent potential systems of equationss1d. All pos-
sible steps of the branching iterations procedure are done, and admission of dependence of con-
served vectors on a number of potentials is of fundamental importance for completing iterations.
We obtain the following eight inequivalent cases of equationss1d having different sets of potential
conservation laws:

sid the general casesthe parameter-functionsA andB are arbitraryd;
sii d three cases with an arbitrary value ofA and a special value ofB sB=0;B=A;B=eA du

+uAd;
siii d three corresponding linearizable equationssA=u−2,B=0;A=B=u−2;A=1,B=2ud and
sivd the linear heat equationsA=1,B=0d.

The latter case takes on special significance in our consideration since investigation of the
linearizable equations having infinite series of potential conservation laws is reduced to this case
and the nonlinearizable equations from classs1d have at the most two independent conservation
laws.

Our paper is organized as follows. FirstsSec. IId we give a basic theoretical background,
following the spirit of Olver’s book.31 We recall the notions of equivalence of conserved vectors
and characteristics with respect to the triviality relation and discuss properties of the space of
conserved vectors and the space of characteristics. This naturally results in the notions of linear
dependence of conservation laws and local dependence of potentialssSecs. IV and Vd. In Sec. III
we introduce the notions of equivalence of conservation laws with respect to Lie symmetry groups
for fixed systems of differential equations and equivalence groups or sets of admissible pointsor
contactd transformations for classes of such systems. We emphasize the possibility of solving
classification problems for conservation laws with respect to the above equivalences similarly to
usual group classification problems for differential equations. In Sec. IV we adduce different
versions of the direct method of construction of conservation laws, emphasizing the most direct
one and combining it with classification up to symmetry or equivalence groups. Since the two-
dimensional case is special for construction of potential systems we describe it in more detail in
Sec. V.

Then we apply the theoretical background given in the previous sections to investigation of
diffusion-convection equations from classs1d. The local conservation laws ofs1d are classified
with respect to the corresponding equivalence group in Sec. VI. In Sec. VII we construct simplest
potential conservation laws and analyze connections between them using potential equivalence
transformations. The subject of Sec. VIII is the description of general potential conservation laws
of the linear heat equation. In Sec. IX we complete studying potential conservation laws of
diffusion-convection equations and adduce the hierarchy of conservation laws obtained in our
framework. In the same section we give an exhaustive list of locally inequivalent potential systems
of equationss1d. The obtained results can be interpreted as construction of universal Abelian
covering for the whole class of diffusion-convection equations.

II. BASIC DEFINITIONS AND STATEMENTS

Let L be a systemLsx,usrdd=0 of l differential equationsL1=0, . . . ,Ll =0 for m unknown
functionsu=su1, . . . ,umd of n independent variablesx=sx1, . . . ,xnd. Hereusrd denotes the set of all
the derivatives of the functionsu with respect tox of order no greater thanr, includingu as the
derivatives of the zero order. LetLskd denote the set of all algebraically independent differential
consequences that have, as differential equations, orders no greater thank. We identifyLskd with
the manifold determined byLskd in the jet spaceJskd.

Definition 1: A conservation lawof the systemL is a divergence expression DivFªDiF
i

which vanishes for all solutions ofL: uDiv FuL=0. Then-tuple F=sF1sx,usrdd , . . . ,Fnsx,usrddd is
called aconserved vectorof this slocald conservation law.

In Definition 1 and belowDi =Dxi
denotes the operator of total differentiation with respect to

the variablexi, i.e., Di =]xi
+ua,i

a ]u
a
a, whereua

a andua,i
a stand for the variables in jet spaces, which
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correspond to derivatives]uauu/]x1
a1
¯]xn

an and ]ua
a /]xi, a=sa1, . . . ,and, ai PNø h0j, uauªa1

+¯ +an. We use the summation convention for repeated indices and assume any function as its
zero-order derivative. The notationuVuL means that values ofV are considered only on solutions
of the systemL.

Definition 2:A conserved vectorF is calledtrivial if

Fi = F̂i + F̌i, i = 1,n,

whereF̂i andF̌i are, likewiseFi, functions ofx and derivatives ofu si.e., differential functionsd, F̂i

vanish on the solutions ofL and then-tuple F̌=sF̌1, . . . ,F̌nd is a null divergencesi.e., its diver-
gence vanishes identicallyd.

The triviality concerning the vanishing conserved vectors on solutions of the system can be
easily eliminated by confining on the manifold of the system, taking into account all its necessary
differential consequences.

A characterization of all null divergences is given by the following lemmassee, e.g., Ref. 31d.
Lemma 1: The n-tuple F=sF1, . . . ,Fnd, nù2, is a null divergencesDiv F;0d iff there exist

smooth functionsvi j si , j =1,nd of x and derivatives of u, such thatvi j =−v ji and Fi =Djvi j .
The functionsvi j are calledpotentialscorresponding to the null divergenceF. If n=1 any null

divergence is constant.
Definition 3: Two conserved vectorsF and F8 are calledequivalentif the vector-function

F8−F is a trivial conserved vector.
By the latter definition any trivial conserved vector is equivalent to the vanishing one. For any

systemL of differential equations the set CVsLd of conserved vectors of its conservation laws is
a linear space, and the subset CV0sLd of trivial conserved vectors is a linear subspace in CVsLd.
The factor space CLsLd=CVsLd /CV0sLd coincides with the set of equivalence classes of CVsLd
with respect to the equivalence relation adduced in Definition 3. We can identify elements of
CLsLd with conservation laws and call CLsLd also asthe space of conservation lawsof L ssee,
e.g., Ref. 46d. That is why we assume description of the set of conservation laws as finding CLsLd
that is equivalent to construction of either a basis if dim CLsLd,` or a system of generatrices in
the infinite dimensional case, and we will additionally identify elements from CLsLd with their
representatives in CVsLd. In contrast to the orderrF of a conserved vectorF as the maximal order
of derivatives explicitly appearing inF, the order of a conservation lawas an elementF from
CLsLd is called minhrF uFPCVsLdcorresponds toFj. Under linear dependence of conservation
laws we understand linear dependence of corresponding elements in CLsLd.

Definition 4: Conservation laws of a systemL are calledlinearly dependentif a linear
combination of them has a trivial conserved vector.

Note 1:Sometimes other definitions of equivalence of conservation laws are used.16

Let the systemL be totally nondegenerate.31 Then application of the Hadamard lemma to the
definition of conservation law and integrating by parts imply that the left-hand side of any con-
servation law ofL can always be presented up to the equivalence relation as a linear combination
of left-hand side of independent equations fromL with coefficientslm being functions on a
suitable jet spaceJskd,

Div F = lmLm. s2d

Here the orderk is determined byL and the allowable order of conservation laws,m=1,l.
Definition 5:Formulas2d and thel-tuplel=sl1, . . . ,lld are called thecharacteristic formand

the characteristicof the conservation law DivF=0 correspondingly.
The characteristicl is trivial if it vanishes for all solutions ofL. SinceL is nondegenerate, the

characteristicsl and l̃ satisfy s2d for the sameF and, therefore, are calledequivalentiff l− l̃ is
a trivial characteristic. Similarly to conserved vectors, the set ChsLd of characteristics correspond-
ing to conservation laws of the systemL is a linear space, and the subset Ch0sLd of trivial
characteristics is a linear subspace in ChsLd. The factor space ChfsLd=ChsLd /Ch0sLd coincides
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with the set of equivalence classes of ChsLd with respect to the above characteristic equivalence
relation.

The following result31 forms the cornerstone for the methods of studying conservation laws,
which are based on formulas2d, including the Noether theorem and the direct method by Anco and
Bluman.4,5

Theorem 1: sRef. 31d Let L be a normal, totally nondegenerate system of differential equa-
tions. Then representation of conservation laws ofL in the characteristic form (2) generates a
one-to-one linear mapping betweenCLsLd and ChfsLd.

Using properties of total divergences, we can exclude the conserved vectorF from s2d and
obtain a condition for the characteristicl only. Namely, a differential functionf is a total diver-
gence, i.e.,f =Div F for somen-tuple F of differential functions iffEsfd=0. Hereafter the Euler
operatorE=sE1, . . . ,Emd is them-tuple of differential operators

Ea = s− Dda]u
a
a, a = 1,m,

where a=sa1, . . . ,and runs the multi-indices setsai PNø h0jd, s−Dda=s−D1da1
¯ s−Dmdam.

Therefore, action of the Euler operator ons2d results to the equation

EslmLmd = Dl
* sLd + DL

* sld = 0, s3d

which is a necessary and sufficient condition on characteristics of conservation laws for the system
L. The matrix differential operatorsDl

* andDL
* are the adjoints of the Fréchet derivativesDl and

DL, i.e.,

Dl
* sLd = Ss− DdaS ]lm

]ua
a LmDD, DL

* sld = Ss− DdaS ]Lm

]ua
a lmDD .

SinceDl
* sLd=0 automatically on solutions ofL then Eq.s3d implies a necessary condition forl to

belong to ChsLd:

uDL
* slduL = 0. s4d

Conditions4d can be considered as adjoint to the criteriauDLshduL=0 for infinitesimal invariance
of L with respect to evolutionary vector field having the characteristich=sh1, . . . ,hmd. That is
why solutions ofs4d are sometimes calledcosymmetries7,36 or adjoint symmetries.5

By writing L in Cauchy–Kovalevskaya formswhich is always possible sinceL is normald,
systems3d can be split on the solution manifold ofL to get determining equations forlm formu-
lated entirely on the solution manifold ofL. These equations include the adjoint symmetry con-
dition s4d and certain adjoint-linearization equations.5 As stated in Ref. 2, one only needs to find
adjoint symmetries ofL fi.e., solutions ofs4dg in order to obtain conservation laws wheneverL
possesses a scaling symmetry.

III. EQUIVALENCE OF CONSERVATION LAWS

We can essentially simplify and order classification of conservation laws, taking into account
additionally symmetry transformations of a system or equivalence transformations of a whole
class of systems. Such problem is similar to one of group classification of differential equations.

Proposition 1:Any point transformationg maps a class of equations in the conserved form
into itself. More exactly, the transformationg: x̃=xgsx,ud, ũ=ugsx,ud prolonged to the jet space
Jsrd transforms the equationDiF

i =0 to the equationDiFg
i =0. The transformed conserved vectorFg

is determined by the formula

Fg
i sx̃,ũsrdd =

Dxj
x̃i

uDxx̃u
Fjsx,usrdd, i.e., Fgsx̃,ũsrdd =

1

uDxx̃u
sDxx̃dFsx,usrdd s5d

in the matrix notions. HereuDxx̃u is the determinant of the matrixDxx̃=sDxj
x̃id.
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Note 2: In the case of one dependent variablesm=1d g can be a contact transformation:x̃
=xgsx,us1dd, ũs1d=ugs1dsx,us1dd. Similar notes are also true for the statements below.

Definition 6: Let G be a symmetry group of the systemL. Two conservation laws with the
conserved vectorsF andF8 are calledG-equivalentif there exists a transformationgPG such that
the conserved vectorsFg andF8 are equivalent in the sense of Definition 3.

Any transformationgPG induces a linear one-to-one mappingg* in CVsLd, transforms trivial
conserved vectors only to trivial onesfi.e., CV0sLd is invariant with respect tog*g and therefore
induces a linear one-to-one mappinggf in CLsLd. It is obvious that gf preserves linear
sinddependence of elements in CLsLd and maps a basissa set of generatricesd of CLsLd in a basis
sa set of generatricesd of the same space. In such way we can consider theG-equivalence relation
of conservation laws as well determined on CLsLd and use it to classify conservation laws.

Proposition 2: If the systemL admits a one-parameter group of transformations then the
infinitesimal generatorX=ji]i +ha]ua of this group can be used for construction of new conserva-
tion laws from known ones. Namely, differentiating Eq.s5d with respect to the parameter« and
taking the value«=0, we obtain the new conserved vector

F̃i = − XsrdF
i + sDjj

idFj − sDjj
jdFi . s6d

HereXsrd denotes therth prolongation31,33 of the operatorX.
Note 3: Formula s6d can be directly extended to generalized symmetry operatorsssee, for

example, Refs. 6 and 24d. A similar statement for generalized symmetry operators in evolutionary
form sji =0d was known earlier.19,31 It was used by Khamitova25 to introduce a notion of basis of
conservation laws as a set which generates a whole set of conservation laws with action of
generalized symmetry operators and operation of linear combination.

Proposition 3:Any point transformationg between systemsL andL̃ induces a linear one-to-

one mappingg* from CVsLd into CVsL̃d, which maps CV0sLd into CV0sL̃d and generates a linear

one-to-one mappinggf from CLsLd into CLsL̃d.
Corollary 1: Any point transformation g between systemsL andL̃ induces a linear one-to-one

mapping gˆ f from ChfsLd into ChfsL̃d.
It is possible to obtain an explicit formula for correspondence between characteristics ofL

andL̃. Let L̃m=LmnLn, whereLmn=LmnaDa, Lmna are differential functions,a=sa1, . . . ,and runs
the multi-indices setsai PNø h0jd, m, n=1,l. Then

lm = Lnm*suDxx̃ul̃nd.

HereLnm* =s−Dda ·Lmna is the adjoint to the operatorLnm. For a number of cases, e.g., ifL and

L̃ are single partial differential equationssl =1d, the operatorsLmn are simply differential functions
si.e., Lmna=0 for uau.0d and, therefore,Lnm* =Lmn.

Consider the classuLuS of systemsLsx,usrd ,usx,usrddd=0 parametrized with the parameter-
functionsu=usx,usrdd. HereL is a tuple of fixed functions ofx, usrd andu. u denotes the tuple of
arbitrary sparametricd functions usx,usrdd=su1sx,usrdd , . . . ,uksx,usrddd satisfying the condition
Ssx,usrd ,usqdsx,usrddd=0. This condition consists of differential equations onu, wherex and usrd
play the role of independent variables andusqd stands for the set of all the partial derivatives ofu

of order no greater thanq. In what follows we call the functionsu arbitrary elements. Denote the
local transformations group preserving the form of systems fromuLuS asG,=G,sL ,Sd.

Consider the setP=PsL ,Sd of all pairs each of which consists of a system fromuLuS and a
conservation law of this system. In view of Proposition 3, action of transformations fromG,

together with the pure equivalence relation of conserved vectors naturally generates an equiva-
lence relation onP. Classification of conservation laws with respect toG, will be understood as
classification inP with respect to the above equivalence relation. This problem can be investigated
in the way that is similar to group classification in classes of systems of differential equations.
Namely, we construct first the conservation laws that are defined for all values of the arbitrary
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elements.sThe corresponding conserved vectors may depend on the arbitrary elements.d Then we
classify, with respect to the equivalence group, arbitrary elements for each of that the system
admits additional conservation laws.

In an analogous way we also can introduce an equivalence relation onP generated by all
admissible point or contact transformationsscalled also form-preserving ones26d in pairs of equa-
tions from uLuS.

Note 4: It can be easily shown that all the above equivalences are indeed equivalence rela-
tions.

IV. DIRECT ITERATION METHOD OF FINDING CONSERVATION LAWS

To construct conservation laws of a systemL of differential equations, we iterate a modifi-
cation of the mostdirect methodbased on Definition 1. More precisely, the algorithm is as follows.

Zeroth iteration:At first we construct local conservation laws ofL. We fix ansarbitraryd order
r of conserved vectors under consideration. Then we introduce local coordinatess“unconstrained
variables”d on the manifoldLsr+1d determined by the systemL and its differential consequences in
Jsr+1d. The others“constrained”d variables ofJsr+1d are expressed via unconstrained ones by means
of using the equations ofLsr+1d. We substitute the expressions for constrained variables into a
conservation law and split the obtained condition with respect to the unconstrained variables. This
procedure results in a first-order linear system of determining equations for conserved vectors.
Solving the determining equations up to the usual equivalence relation on CVsLd, we obtain
complete description of local conservation laws ofL. To classify conservation laws in easier and
more systematic waysespecially for classes of systems of differential equationsd, instead of usual
equivalence we use the introduced above equivalence with respect to symmetry or equivalence
transformations.sSee Sec. VI for examples.d

First iteration: After applying Lemma 1 to constructed conservation laws on the set of solu-
tions ofL=L0, we introduce potentials as additional dependent variables and attach the equations
connecting the potentials with components of corresponding conserved vectors toL0. sIf n.2 the
attached equations of such kind form an underdetermined system with respect to the potentials.
Therefore, we can also attach gauge conditions on the potentials toL0. See discussion on gauge
freedom in potential systems and necessity of gauge conditions in paper.3d

We must use linear independent conservation laws since otherwise the introduced potentials
will be dependentin the following sense: there exists a linear combination of the potential tuples,
which is, for somer8PN, a tuple of functions ofx andusr8d only.

Then we exclude the unnecessary equationssi.e., the equations that are dependent on equa-
tions ofL0 and attached equations simultaneouslyd from the extendedspotentiald systemL1 which
will be called apotential system of the first level. Any conservation law ofL0 is one ofL1. We
iterate the above procedure of the direct method forL1 to find its conservation laws which are
linear independent with ones from the previous iteration and will be calledpotential conservation
laws of the first level.

Further iterations:We make iterations while it is possiblefi.e., the iteration procedure has to
be stopped if all the conservation laws of apotential systemLk+1 of the sk+1dth levelare linear
dependent with the ones ofLkg or construct infinite chains of conservation laws by means of
induction. This process may yieldpurely potentialconservation laws of the initial systemL, which
are linear independent with local conservation laws and, therefore, depend explicitly on potential
variables.

Any conservation law from the previous step of iteration procedure will be a conservation law
for the next step and vice versa; conservation laws which are obtained on the next step and depend
only on variables of the previous step are linear dependent with conservation laws from the
previous step. It is also obvious that the conservation laws used for construction of a potential
system of the next level are trivial on the manifold of this system.

Since gauge conditions on potentials can be chosen in many different ways, exhaustive real-
ization of iterations is improbable in the casen.2.
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The procedure of exclusion of constrained variablesswhich are described above in detail only
for the zeroth iterationd is called in classical group analysis as “confining to the manifold ofL.”
Taking into accountL in the above way, we automatically eliminate the ambiguity connected with
vanishing conserved vectors on the solutions ofL. However, the second kind of ambiguity arising
via existence of null divergences is preserved, and it is the main reason of difficulties in realization
of this algorithm with symbolic computation systems.44

To find conservation laws on each step of iteration procedure, one can apply other methods
which are based on the characteristic forms2d or its consequencess3d ands4d. These methods are
also called as direct.4,5 Following Ref. 44, for convenience we will numerate them as the second,
third, and fourth versions of the direct method in contrast to the above first one. They are close to
the symmetry group method by Noether since in the case of Euler–Lagrange equations the coef-
ficients la are nothing else than Noether’s characteristics. Taking into account the equivalence
relation on ChsLd, one can assume during calculations that characteristics depend only on uncon-
strained variables.

In the second version of the direct method the representations2d is regarded as an equation
defined on an open subset ofJskd with respect to conserved vectors and characteristics simulta-
neously.

In the framework of the third version, sought quantities are characteristics only. Determining
Eq. s3d is defined on an open subset ofJskd. Conserved vectors are reconstructed from known
characteristics via explicit integral formulas. An algorithm of thissthirdd version of the direct
method was developed for Cauchy–Kovalevskaya systems by Anco and Bluman4,5 ssee also Refs.
31 and 46 for a theoretical backgroundd.

The fourth version is based on Eq.s4d which is defined on the manifoldL and is only a
necessary condition on characteristic of conservation laws. Therefore, one has to choose charac-
teristics from the set of adjoint symmetries using additional conditions. Such approach was used
by Bluman and Doran-Wu8 for studying conservation laws of diffusion equations.

Each from four above versions of the direct method has its advantages and disadvantages. A
detailed comparative analysis of all the versions and their realizations in computer algebra pro-
grams are given by Wolf.44

Prototypes and sources of a number of above ideas can be found in Ref. 28.

V. TWO-DIMENSIONAL CASE

The case of two independent variables is singular, in particular, with respect to possible
sconstantd indeterminacy after introduction of potentials and high effectiveness of application of
potential symmetries. That is why we consider some notions connected with conservation laws in
this case separately. We denote independent variables ast sthe time variabled andx sthe space oned.
Any local conservation law has the form

DtFst,x,usrdd + DxGst,x,usrdd = 0. s7d

HereDt andDx are the operators of the total differentiation with respect tot andx. F andG are
called theconserved densityand theflux of the conservation law correspondingly.

Two conserved vectorssF ,Gd and sF8 ,G8d areequivalentif there exist such functionsF̂, Ĝ,

andH of t, x, and derivatives ofu that F̂ andĜ vanish onLskd for somek and

F8 = F + F̂ + DxH, G8 = G + Ĝ − DtH. s8d

Any conservation laws7d of L allows us to deduce the new dependentspotentiald variablev
by means of the equations

vx = F, vt = − G. s9d

To construct a number of potentials in one step, we must use a set of linear independent conser-
vation lawsssee the preceding sectiond since otherwise the potentials will be dependent in the
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following sense: there exists a linear combination of the potentials, which is, for somer8PN, a
function of t, x, andusr8d only.

In the case of two independent variables we can also introduce the more general notion of
potential dependence.

Definition 7:The potentialsv1, . . . ,vp are calledlocally dependent on the set of solution of the
systemL sor, briefly speaking,dependentd if there existr8PN and a functionH of the variablest,
x, usr8d ,v1, . . . ,vp such thatHst ,x,usr8d ,v1, . . . ,vpd=0 for any solutionsu,v1, . . . ,vpd of the united
system determining the set of potentialsv1, . . . ,vp.

Proof of local dependence or independence of potentials for general classes of differential
equations is difficult since it is closely connected with precise description of possible structure of
conservation laws. An example of such proof for diffusion-convection equations is presented
below.

In the case of single equationL, equations of forms9d combine into the complete potential
system sinceL is a differential consequence ofs9d. As a rule, systems of such kind admit a
number of nontrivial symmetries and so they are of great interest.

Equationss5d and s9d imply the following statement.

Proposition 4:Any point transformation connecting two systemsL andL̃ of PDEs with two
independent variables generates a one-to-one mapping between the sets of potential systems,

which correspond toL and L̃. Generation is made via trivial prolongation on the space of intro-
duced potential variables, i.e., we can assume that the potentials are not transformed.

Corollary 2: The Lie symmetry group of a systemL of differential equations generates an
equivalence group on the set of potential systems corresponding toL.

Corollary 3: Let uL̂uS be the set of all potential systems constructed for systems from the class
uLuS with their construction laws. Action of transformations from G,sL ,Sd together with the

equivalence relation of potentials naturally generates an equivalence relation onuL̂uS.
Note 5: Proposition 4 and its corollaries imply that the equivalence group for a class of

systems or the symmetry group for single system can be prolonged to potential variables for any
step of the direct iteration procedure. It is natural the prolonged equivalence groups are used to
classify possible conservation laws and potential systems in each iteration. Additional equiva-
lences which exist in some subclasses of the class or arise after introducing potential variables can
be used for deeper analysis of connections between conservation laws.

VI. LOCAL CONSERVATION LAWS OF DIFFUSION-CONVECTION EQUATIONS

To classify the conservation laws of equations from classs1d we have to start our investigation
from finding equivalence transformations. Application of the direct method to classs1d allows us
to find the complete equivalence groupG, including the both continuous and discrete transfor-
mations. The following statement is true.

Theorem 2: sRefs. 34 and 35d Any transformation from G, has the form

t̃ = «4t + «1, x̃ = «5x + «7t + «2, ũ = «6u + «3, Ã = «4
−1«5

2A, B̃ = «4
−1«5B − «7,

where«1, . . . ,«7 are arbitrary constants, «4«5«6Þ0.
The kernel of Lie symmetry group of equations from classs1d is the group of the transfor-

mations which are common for all of these equations. We denote it asGker. Via trivial prolongation
on the arbitrary elementsA andB, Gker is isomorphic to a normal subgroup ofG,.

Theorem 3: Gker is formed by the transformations

t̃ = t + «1, x̃ = x + «2, ũ = u,

where«1 and «2 are arbitrary constants.
First we search the conservation laws of equations from classs1d in the form s7d.
Lemma 2: Any local conservation law of any equation from classs1d has the first order.
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Moreover, up to equivalence on conserved vectors one can assume that the density depending on
t, x, and u and the flux depending on t, x, u, and ux.

Proof: Considering conservation laws on the manifold of Eq.s1d and its differential conse-
quences, we can assume thatF and G depend only ont, x, anduk=]ku/]xk, k=0,r8, wherer8
ø2r. We expand the total derivatives ins7d and take into account differential consequences of the
form utj =Dx

j+2eA+Dx
j+1eB, whereeA=eAsuddu, eB=eBsuddu, j =0,r8. As a result we obtain the

following condition:

Ft + Fuj
SDx

j+2E A + Dx
j+1E BD + Gx + Guj

uj+1 = 0. s10d

Let us decomposes10d with respect to the highest derivativesuj. So, the coefficients ofur8+2 and
ur8+1 give the equationsFur8

=0, Gur8
+AFur8−1

=0 that result in

F = F̂, G = − Aur8F̂ur8−1
+ Ĝ,

whereF̂ andĜ are functions oft ,x,u,u1, . . . ,ur8−1. Then, after selecting the terms containingur8
2 ,

we obtain that −AF̂ur8−1ur8−1
=0. It yields thatF̂=F̌1ur8−1+F̌0, where F̌1 and F̌0 depend only on

t ,x,u,u1, . . . ,ur8−2.

Consider the conserved vector with the densityF̃=F−DxH and the fluxG̃=G+DtH, where

H=eF̌1dur8−2. This conserved vector is equivalent to the initial one, and

F̃ = F̃st,x,u,u1, . . . ,ur8−2d, G̃ = G̃st,x,u,u1, . . . ,ur8−1d.

Iterating this procedure a necessary number of times, we obtain the lemma statement.j
Note 6:A similar statement is true for an arbitrarys1+1d-dimensional evolution equationL of

the even orderr =2r̄ , r̄ PN.1,19 For example,19 for any conservation law ofL we can assume up to
equivalence of conserved vectors thatF and G depend only ont, x and derivatives ofu with
respect tox, and the maximal order of derivatives inF is not greater thanr̄.

Lemma 2 gives a stronger result for a more restricted class of equations. In the above proof we
specially use the most direct method to demonstrate its effectiveness in quite general cases. This
proof can be easily extended to other classes ofs1+1d-dimensional evolution equations of odd
orders and potential systems corresponding to equations from classs1d ssee the proof of Lemma
3d.

Theorem 4: Any equation from classs1d has the conservation laws7d where

s1d F = u, G = − Aux −E B. s11d

A complete list of G,-inequivalent equationss1d having additionalfi.e., linear independent with
s11dg conservation laws is exhausted by the following ones:

s2d ∀ A, B = 0: F = xu, G =E A − xAux, s12d

s3d ∀ A, B = A: F = sex + «du, G = − sex + «dAux − «E A, s13d

s4d A = 1, B = 0: F = au, G = axu − aux, s14d

where«P h0, ±1jmodG,, eA=eAsuddu, eB=eBsuddu, a=ast ,xd is an arbitrary solution of the
linear heat equationat+axx=0. sTogether with values A and B we also adduce complete lists of
densities and the fluxes of additional conservation laws.d
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Proof: In view of Lemma 2, we can assume at once thatF=Fst ,x,ud andG=Gst ,x,u,uxd. Let
us substitute the expression forut deduced froms1d into s7d and decompose the obtained equation
with respect touxx. The coefficient ofuxx gives the equationAFu+Gux

=0, thereforeG=−AFuux

+G1st ,x,ud. Taking into account the latter expression forG and splitting the rest of Eq.s7d with
respect to the powers ofux, we obtain the system of PDEs on the functionsF andG1 of the form

Fuu = 0, BFu − AFux + Gu
1 = 0, Ft + Gx

1 = 0. s15d

Solving the first two equations ofs15d yields

F = F1st,xdu + F0st,xd, G1 = Fx
1E A − F1E B + G0st,xd. s16d

In further consideration the major role is played by the equationAFuxx−BFux+Fut=0 that is a
differential consequence of systems15d and can be rewritten as

AFxx
1 − BFx

1 + Ft
1 = 0.

Indeed, it is the unique classifying condition for this problem. There exist four different possibili-
ties for valuesA andB. In all cases we obtain the equationFt

0+Gx
0=0. Therefore, up to conser-

vation laws equivalence we can assumeF0=G0=0. Moreover, the functionF1=const is a solution
of the classifying condition in the general case. This solution corresponds to the conservation laws
of case 1. Only conservation laws of such kind exist for all admissible values of arbitrary elements
A and B. Then we classify special values ofA and B for which Eq. s1d possesses additional
conservation laws.

s1d B¹ kA,1l. ThenFx
1=0, Ft

1=0 that gives contradiction with the assumptionF1Þconst.
s2d A¹ k1l, BP k1l. ThenB=0 modG, andFxx

1 =0, Ft
1=0, i.e.,F1=x modG, scase 2d.

s3d BP kA,1l, A,B¹ k1l. Then B=A modG, and Fxx
1 +Fx

1=0, Ft
1=0, i.e., F1=ex+« modG,,

where«P h0, ±1j scase 3d.
s4d A, BP k1l. Therefore,A=1, B=0 modG,, andFt

1+Fxx
1 =0 scase 4d. j

Note 7: It follows from the proof that we can assumesA,BdÞconst in cases 1, 2, and 3.fIf
sA,Bd=const cases 1, 2, and 3 are included in case 4 for different values ofa.g

Using the conservation laws adduced in Theorem 4, we can introduce potentials for different
values of the parameter functionsA and B and construct the corresponding potential systems
scases 1–4 of Table Id. The important question for our consideration is whether the introduced
potentials are locally independent in the sense of Definition 7. If we know the precise structure of
conservation laws the answer is almost obvious.

Theorem 5: For any equations1d potentials are locally dependent on the equation manifold
iff the corresponding conservation laws are linear dependent.

Proof: Since the direct statement of the theorem is obviousssee Sec. Vd, we prove only the
inverse statement, using the rule of contraries. Suppose that potentialsv0, . . . ,vp introduced with
sindependentd conservation laws of cases 1–4 are locally dependent. The vanishingp means local
triviality of v0 as a potential, i.e.,v0 can be expressed in terms of local variables and the corre-
sponding conservation law is trivial. That is why it is sufficient to investigate only the special
cases when the number of independent conservation laws is greater than 1. Therefore,p=1 if
eitherB=0 or B=A andpPN / h0j for the linear heat equation.

Without loss of generality we can assume that there existr PN and a fixed functionV of
t ,x, v̄=sv1, . . . ,vpd andusrd that v0=Vst ,x, v̄ ,usrdd for any solution of the united system determin-
ing the whole set of potentialsv0, . . . ,vp. Taking into account equations1d and its differential
consequences, we can assume thatV depends only ont, x, v̄, and uk=]ku/]xk, k=0,r8, where
r8ø2r. Let us apply the operatorDx to the conditionv0=Vst ,x, v̄ ,u,u1, . . . ,ur8d: vx

0=Vx+Vvsvx
s

+Vukuk+1. sHereafter the indexs takes the values from 1 top.d Since in any case under consider-
ationvx

s= fsu for some functionsfs of t andx, we can split the differentiated condition with respect
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to uk step-by-step in the reverse sequence, beginning with the major derivative. As a result, we
obtainVuk=0, Vx=0, andf0=Vvsfs, i.e., the functionsf0, . . . ,fp are linear dependent. This gives a
contradiction with the supposition that the conservation laws are independent. j

VII. SIMPLEST POTENTIAL CONSERVATION LAWS OF DIFFUSION-CONVECTION
EQUATIONS

Let us investigate local conservation laws of potential systems 1–4 from Table I, which have
the form

DtFst,x,usrd,vsrdd + DxGst,x,usrd,vsrdd = 0. s17d

These laws can be considered as nonlocalspotentiald conservation laws of equations from class
s1d. We assume them as simplest potential conservation laws since the corresponding potential
systems are constructed from the initial equations1d with one conservation law only.

We classify conservation laws up to the equivalence relation with respect to the transformation
group Gpr

, which is a result of the trivial prolongation of the groupG, from Theorem 2 to the
space of the potentialv.

Lemma 3: Any conservation law of forms17d for each of systems1–4 from Table I has the zero
order, i.e., it is equivalent to a law with a conserved density F and a flux G that are independent
on the (nonzero order) derivatives of u andv.

Proof: Consider any from the systems 1–4. Taking it and its differential consequences into
account, we can exclude dependence ofF andG on all snonzero orderd derivatives ofv and the
derivatives ofu containing differentiation with respect tot. The remaining part of the proof is
completely similar to the one of Lemma 2. j

In an analogous to proof of Theorem 4 and more cumbersome way we prove the following
statement.

Theorem 6: A complete set of Gpr
,-inequivalent conservation laws of forms17d for equations

from classs1d is presented in Table I with a double numeration of cases.
Note 8:To prove Theorem 6 we use all independent differential consequences of correspon-

dent potential systems. In Table I for the double numerated potential systems we omit equations
containingvt since they are only differential consequences of equations of these systems.

TABLE I. Conservation laws and potential systems of convection-diffusion equations.a

N A B F G Potential system

1 ∀ ∀ u −Aux−eB vx=u, vt=Aux+eB

1.1 ∀ 0 v −eA vx=u, wx=v, wt=eA

1.2 ∀ A exv −exeA vx=u, wx=exv, wt=exeA

1.3 ∀ eA+uA ev −eveA vx=u, wx=ev, wt=eveA

1.4 u−2 0 s svu
−1 vx=u, wx=s, wt=−svu

−1

1.5 u−2 u−2 sex svu
−1ex vx=u, wx=sex, wt=−suu

−1ex

1.6 1 2u aev axe
v−auev vx=u, wx=aev, wt=auev−axe

v

2 ∀ 0 xu eA−xAux vx=xu, vt=xAux−eA

2.1 ∀ 0 x−2v −x−1eA vx=xu, wx=x−2v, wt=x−1eA

3 ∀ A sex+«du −sex+«dAux−«eA vx=sex+«du, vt=sex+«dAux+«eA

3.1 ∀ A exsex+«d-2v −exsex+«d-1eA vx=sex+«du, wx=exsex+«d-2v,
wt=exsex+«d-1eA

4 1 0 au axu−aux vx=au, vt=aux−axu

4.1 1 0 sb/a d
xv −asb/a d

xu− sb/a d
tv vx=au,

wx= sb/a d
xv, wt=asb/a d

xu+ sb/a d
tv

aHere«P h0, ±1j, eA=eAsuddu, eB=eBsuddu; ast ,xd, bst ,xd, andast ,vd are arbitrary solutions of the linear
heat equationsat+axx=0,bt+bxx=0,st+svv=0d. In case 1.3 we assumeeB=ueA for a conservation law to
have the adduced form.
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Let us analyze connections between conservation laws and ones between potential systems,
which arise due to additionalsincluding purely potentiald equivalence transformations in some
special cases. Below we assumeA¹ h1,u−2j mod G, as a general value ofA.

General case:Equations1d in the general case has the unique linear independent local con-
servation lawscase 1d with the conserved vectorssF1,G1d=su,−Auxd. All conservation laws of the
corresponding potential system

vx
1 = u, vt

1 = Aux +E B, s18d

are trivial, i.e., in our framework equations1d of the general form admits only trivial potential
conservation laws.

B=0: Any equation of such form has two linear independent local conservation lawsscases 1
and 2d with the conserved vectorssF1,G1d=su,−Auxd andsF2,G2d=sxu,eA−xAuxd, and any con-
servation law isGker-equivalent to one of them. Using these conservation laws, we can introduce
two potentialsv1 andv2, where

vx
1 = u, vt

1 = Aux, s19d

vx
2 = xu, vt

2 = xAux −E A. s20d

Equationss19d and s20d considered separately form two potential systems for equations1d with
vanishingB in unknown functionssu,v1d andsu,v2d correspondingly. The third potential system
is formed by Eqs.s19d ands20d simultaneously, and three functionsu, v1, andv2 are assumed as
unknown. Each from systemss19d and s20d has one linear independent local conservation law
scases 1.1 and 2.1d. These conservation laws with conserved vectorssF11,G11d=sv1,−eAd and
sF21,G21d=sx−2v2,−x−1eAd are simplest potential conservation laws for Eq.s1d with vanishingB
and allow us to introduce “second-level” potentialsw1 andw2. As a result, we obtain two potential
systems of the next level,

vx
1 = u, wx

1 = v1, wt
1 =E A, s21d

vx
2 = xu, wx

2 = x−2v2, wt
2 = x−1E A. s22d

At the same time, the simplest potential conservation laws are trivial on the solution manifold
of the united systems19d and s20d since

F11 = Dxsxv1 − v2d, G11 = − Dtsxv1 − v2d,

F21 = Dxsv1 − x−1v2d, G21 = − Dtsv1 − x−1v2d.

Moreoverw1=xv1−v2, w2=v1−x−1v2, i.e., systems21d, systems22d, and united systems19d and
s20d are point equivalent. It implies that really systems19d and s20d is generated by only three
independent equations.sWe can choose, e.g., the equationvx

1=u, vx
2=xu, xvt

1−vt
2=eA.d Although

systems21d formally belongs to the second level, it is the most convenient for further investigation
since it has the simplest form.

B=A: This case is analyzed in the similar way to the previous one. Any equation withB=A
has the two-dimensional space of local conservation laws. Up toGker-equivalence, we have two
possibilities for conserved vectorsscases 1 and 3d,
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sF1,G1d = Su,− Aux −E AD andsF3,G3d = Ssex + «du,− sex + «dAux − «E AD .

Using these conservation laws, we can introduce two potentialsv1 andv3, where

vx
1 = u, vt

1 = Aux +E A, s23d

vx
3 = sex + «du, vt

3 = sex + «dAux + «E A. s24d

Equationss23d ands24d considered separately form two potential systems for Eq.s1d with B=A in
unknown functionssu,v1d and su,v3d correspondingly. The third potential system is formed by
Eqs. s23d and s24d simultaneously, and three functionsu, v1, and v3 are assumed as unknown.
Each from systemss23d ands24d has one linear independent local conservation lawscases 1.2 and
3.1d. These conservation laws with conserved vectors

sF12,G12d = Sexv1,− exE AD
and

sF31,G31d = S ex

sex + «d2v3,−
ex

ex + «
E AD

are simplest potential conservation laws for Eq.s1d with B=A and allow us to introduce “second-
level” potentialsw1 andw3. As a result, we obtain two potential systems of the next level,

vx
1 = u, wx

1 = exv1, wt
1 = exE A, s25d

vx
3 = sex + «du, wx

3 =
ex

sex + «d2v3, wt
3 =

ex

ex + «
E A. s26d

At the same time, the simplest potential conservation laws are trivial on the solution manifold
of the united systems23d and s24d since

F12 = Dxssex + «dv1 − v3d, G12 = − Dtssex + «dv1 − v3d,

F31 = DxSv1 −
v3

ex + «
D, G31 = − DtSv1 −

v3

ex + «
D .

Moreover

w1 = sex + «dv1 − v3, w3 = v1 −
v3

ex + «
,

i.e., systems25d, systems26d, and united systems23d ands24d are point equivalent. It implies that
really systems23d and s24d is generated by only three independent equations.fWe can choose,
e.g., the equationvx

1=u, vx
3=sex+«du, sex+«dvt

1−vt
3=exeA.g Although systems25d formally be-

longs to the second level, it is the most convenient for further investigation since it has the
simplest form.

B=eA+uA: The initial potential system in case 1.3 is reduced to case 1.2 by means of the
hodograph transformation
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t̃ = t, x̃ = v, ṽ = x, ũ = u−1, Ã = u−2A, s27d

and the conservation law 1.3 is transformed to the local one of case 3 where«=0. The same
transformation extended to the potentialw asw̃=−w+vex also reduces the potential system 1.3 to
1.2.

Linearizable equations:It is well known9,11,14,15,18,39,41that equationss1d G,-equivalent to
ones of cases 1.4, 1.5, and 1.6 are linearized by a nonlocalsso-called potential equivalence29,35d
transformations to the linear heat equation. That is why these equations stand out against the other
diffusion-convection equations with having an infinite number of linear independent purely po-
tential conservation laws.

The u−2-diffusion equationut=su−2uxdx is reduced to the linear heat equation9 by the
hodograph transformations27d. More exactly,s27d is a local transformation between the corre-
sponding potential systemsvx=u, vt=u−2ux andvx=u, vt=ux constructed by means of using the
“common” conservation lawscase 1d. The u−2-diffusion equation has, as a subcase of the case
B=0, two linear independent local conservation laws with the conserved vectors

F1 = u, G1 = − u−2ux, s28d

F2 = xu, G2 = − xu−2ux − u−1 s29d

scases 1 and 2 of Table Id and the infinite series of potential conservation lawsscase 1.4d addi-
tionally. Under the action of hodograph transformations27d the conservation law with conserved
vectors28d is transformed to the trivial one of the linear heat equation with the conserved vector
s1, 0d. And vice versa, the conservation law of the linear heat equation corresponding to the value
a=1 scase 4d is transformed bys27d to the trivial one of theu−2-diffusion equation with the
conserved vectors1, 0d. The conservation law with conserved vectors29d is trivial on the manifold
of potential system constructed by means ofs28d, is equivalent to the one from case 1.4 withs
=1 and is transformed to case 4.1, wherea=1 andb=x. Case 1.4 is reduced bys27d to case 4,
wherea=s.

Since the equationut=su−2uxdx+u−2ux is reduced to theu−2-diffusion equation by the local
transformationt̃= t, x̃=ex, ũ=e−xu, its conservation laws are connected with ones of the linear heat
equation in a way which is similar to the previous case.

The potential systemsṽx̃= ũ, ṽt̃= ũx̃+ ũ2, and vx=u, vt=ux constructed with the “common”
conservation law for the Burgers equationut=uxx+2uux and the linear heat equationut=uxx are
connected via the transformationt= t̃, x= x̃, u= ũeṽ, v=eṽ. sHere the tilde variables correspond to
the Burgers equation.d Let us note that really the famous Cole–Hopf transformation11,18 sfirst
found in Ref. 15d linearizes the Burgers equation to the “potential” heat equationvt=vxx.

29,35The
Burgers equation has the “common” local conservation lawscase 1d and the infinite series of
simplest potential conservation lawsscase 1.6d. The above transformation between the potential
systems induces the one-to-one mapping preservinga between the infinite series 1.6 and the one
4 of the “potential” heat equationvt=vxx. Then, the conservation law of form 4 with the function
ã for the “potential” heat equationvt=vxx is equivalent to the one with the functiona for the heat
equationut=uxx, whereã=ax. The conservation law of case 1 for the Burgers equation is trivial on
the manifold of the corresponding potential system and is mapped to trivial one of the system
vx=u, vt=ux.

Linear heat equation:The linear heat equationut=uxx has an infinite dimensional space of
local conservation laws,12 which is generated by conserved vectors of the formsFa ,Gad
=sau,axu−auxd, wherea=ast ,xd is an arbitrary solution of the backward linear heat equation
at+axx=0. Using a fixed conservation law of such form, we can introduce the potentialva, where

vx
a = au, vt

a = aux − axu. s30d

Systems30d has one infinite series of conservation lawsscase 4.1d with conserved vectors
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sFab,Gabd = SSb

a
D

x
va,− aSb

a
D

x
u − Sb

a
D

t
vaD , s31d

whereb=bst ,xd is an arbitrary solution of the backward linear heat equationbt+bxx=0. These
conservation laws are simplest potential ones for the linear heat equation and allow us to introduce
“second-level” potentialswab. As a result, we obtain potential systems of the next level,

vx
a = au, wx

ab = Sb

a
D

x
va, wt

ab = aSb

a
D

x
u + Sb

a
D

t
va. s32d

Consider the system

vx
a = au, vt

a = aux − axu, vx
b = bu, vt

b = bux − bxu s33d

that is the union of two potential systems of forms30d corresponding to the local conservation
laws with the conserved vectorssFa ,Gad andsFb ,Gbd. In a similar way to the previous cases we
can state that the second-level potential conservation law with conserved vectors31d is trivial on
the solution manifold of systems33d since

Fab = DxSb

a
va − vbD andGab = − DtSb

a
va − vbD .

Moreover, systemss32d and s33d are connected via the local substitution

wab =
b

a
va − vb.

It implies that really systems33d is generated by only three independent equations. We can choose,
e.g., the equations

vx
a = au, vx

b = bu,
b

a
vt

a − vt
b = aSb

a
D

x
u.

As a result of our analysis, we can formulate the following statement.
Theorem 7: For any nonlinearized equations1d and the linear heat equation the potential

systems of the second level, which are constructed by means of using single conservation law of
the simplest potential systems, are equivalent to first-level potential systems obtained with pairs of
conservation laws.

VIII. POTENTIAL CONSERVATION LAWS OF LINEAR HEAT EQUATION

With respect toG,-equivalence the linear heat equation is the unique linear equation in class
s1d. Investigation of its general potential conservation laws plays the major role in classification of
potential conservation laws for linearizable equations in classs1d and, therefore, for whole class
s1d. sThe simplest potential conservation laws are studied in the preceding section.d

As proved in Theorem 4, the linear heat equation has the infinite series of local conservation
laws. Fixing an arbitrarypPN and choosingp linear independent solutionsā=sa1, . . . ,apd of the
backward linear heat equation, we obtainp linear independent conservation laws with the con-
served vectorssFs,Gsd=sasu,ax

su−asuxd. sHereafters=1,p.d In view of Theorem 5 the potentials
v̄=sv1, . . . ,vpd introduced with these conservation laws by the formulas

vx
s = asu, vt

s = asux − ax
su s34d

are independent in the sense of Definition 7.
For the linear heat equation the complete set of first level potential conservation laws is indeed

the union set of conservation laws of systemss34d corresponding to all possible values ofp and
p-tuplesā. The following theorem is true.
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Theorem 8: Any local conservation law of systems34d is equivalent on the manifold of system
s34d to a local conservation law of the linear heat equation.

Corollary 4: For the linear heat equation potential conservation laws of any level are equiva-
lent to local ones on the manifolds of the corresponding potential systems, and potentials of any
level are locally expressed via local variables t, x, usrd (for some r) and potentials of the first lèvel
only.

We present the proof of Theorem 8 as the chain of simple and nice lemmas.
Lemma 4: Any local conservation law of systems34d is equivalent to that with the conserved

vector sKu,Kxu−Kuxd where the function K=Kst ,x, v̄d is determined by the system

Kt + Kxx = 0, asKxvs − ax
sKvs = 0. s35d

Proof: Consider a local conservation law of systems34d in the most general form, where the
conserved vector is a vector-function oft, x and derivatives of the functionsu andvs from the zero
order up to some finite one. Taking into account systems34d and its differential consequences, we
can exclude dependence of the conserved vector on allsnonzero orderd derivatives ofvs and the
derivatives ofu containing differentiation with respect tot. Similarly to Lemma 2 we can prove
that the reduced conserved vectorsF ,Gd does not depend onsnonzero orderd derivatives ofu and,
moreover,F=Fst ,x, v̄d, G=−asFvsst ,x, v̄du+G0st ,x, v̄d. The functionsF andG0 satisfy the system

asas8Fvsvs8 = 0, asGvs
0 = 2ax

sFvs + asFxvs, Ft + Gx
0 = 0.

Let us pass on to the equivalent conserved vectorsF̃ ,G̃d, where F̃=F+DxH, G̃=G−DtH, and
H=Hst ,x, v̄d is a solution of the equationsHx=−F, Ht=G. sThe variablesvs is assumed as

parameters in the latter equations.d ThenF̃=Ku, G̃=Kxu−Kux. The functionK=asHvs depends on
t, x, and v̄ and satisfies systems35d. j

Lemma 5: Let the solutionsas=asst ,xd andbs=bsst ,xd of the (backward) linear heat equation
satisfy the additional conditionax

sbs−asbx
s=0. Then for any i, j PN,

ai
sb j

s − a j
sbi

s = 0. s36d

Hereafter the subscripts i and jdenote theith and jth order derivatives with respect to x.
Proof: We make the proof by means of mathematical induction with respect to the valuei

+ j . Equations36d is trivial for i + j =0, coincides with the additional condition fori + j =1 and is
obtained from this condition by means of differentiation with respect tox if i + j =2. Let us suppose
that the lemma’s statement is true ifi + j =m−1 andi + j =m and prove it fori + j =m+1. Acting on
Eq. s36d where i + j =m−1 with the operator]t+]xx and taking into account the conditionsat

s

+axx
s =0 andbt

s+bxx
s =0, we obtain the equationai+1

s b j+1
s −a j+1

s bi+1
s =0. Therefore, the statement is

true for i8+ j8=m+1, 1ø i8 , j8øm si8= i +1,j8= j +1d. It remains to perform the proof in the case
i8=m+1, j8=0 sor equivalentlyi8=0, j8=m+1d. For these values ofi8 and j8 the statement is
produced by subtracting the induced above equationam

s b1
s−a1

sbm
s =0 from the results of differen-

tiation of Eq.s36d wherei =m, j =0 with respect tox. j

Let Wsw1, . . . ,wld denotes the Wronskian of the functionsw1, . . . ,wl with respect to the vari-
ablex, i.e., Wsw1, . . . ,wld=detswi

jdi,j=1
l .

Lemma 6: The solutionsw1=w1st ,xd , . . . ,wl =wlst ,xd of a linear evolution equation Lw=0 are
linear dependent iff Wsw1, . . . ,wld=0.

Proof: Since the equationLw=0 is linear and evolution the operatorL is the sum of]t and
linear differential operator with respect tox with the coefficients depending ont and x. If the
functions w1, . . . ,wl are linear dependent then the equalityWsw1, . . . ,wld=0 is obvious. Let us
prove the inverse statement.

In the casel =2 the conditionWsw1,w2d=0 impliesw2=Cw1, whereC is a smooth function of
t. Acting on the latter equality with the operatorL, we obtainCtw

1=0, i.e.,C=const orw1=0. In
any case the functionsw1 andw2 are linear dependent.
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SupposeWsw1, . . . ,wld=0. Without loss of generality we can assumeWsw1, . . . ,wl−1dÞ0.
sOtherwise we consider a less value ofl.d Thenwl =Ckwk, whereCk are smooth functions oft and
the superscriptk runs from 1 tol −1. Action of the operatorL on the latter equality results in the
equationCt

kwk=0 that implies, in view of the conditionWsw1, . . . ,wl−1dÞ0, Ck=const. It gives the
Lemma’s statement. j

Lemma 7: Ifai
sb j

s−a j
sbi

s=0 for 0ø i , j øp then Wsa1, . . . ,ap,bs8d=0 for any s8.

Proof: Let Mij
s8 denote thesp−1dth order minor ofWsā ,bs8d, which is obtained by means of

deletion ofs8th andsp+1dth columns corresponding to the functionsas8 andbs8 and ith and j th

rows. Let us multiply the equationai
sb j

s−a j
sbi

s=0 by s−1di+j+s8+p+1Mij
s8 and convolve with respect

to the indicesi and j . In view of the Laplace theorem on determinant expansion we obtain
Wsuāuas as8 ,bsd=0. Here the sign “ ” means that the functionas is substituted instead of the
functionas8 and we have summation over the indexs. The lemma’s statement easily follows from
the latter equation since for any fixedsÞs8 we haveWsuāuas as8 ,bsd=0. j

Lemma 8: The general solution of systems35d can be presented in the form

K = asHvs + b0, s37d

where H is an arbitrary smooth function ofv̄, b0=b0st ,xd is an arbitrary solution of the backward
linear heat equation.

Proof: In view of Lemma 4 the functionsas andbs=Kvs satisfy the conditions of Lemma 5
and, therefore, the ones of Lemma 7, and the variablesv̄ are assumed as parameters. Sinceas are
linear independent it impliesKvs=Cssas, whereCss are smooth functions of the variablesv̄ only.
Hereafter the indicess, s, and § run from 1 to p. The expressions for the cross derivatives
Kvsv§=Cv§

ssas=Cvs
§sas result in the equationCv§

ss=Cvs
§s which can be easily integrated,Css=Pvs

s for
some smooth functionPs of the variablesv̄. Substituting the expressions forCss in the equations
on K and integrating, we obtainK=asPs+b0, whereb0=b0st ,xd is a solution of the backward heat
equation. The latter equality and the equationasKxvs−ax

sKvs=0 together imply the equation
sax

sa§−asax
§dsPvs

§ −Pv§
s d=0. Analogously to Lemma 7 we can state for anyi , j PN

sai
sa j

§ − a j
sai

§dsPvs
§ − Pv§

s d = 0. s38d

Let Mij
s8§8 denote thesp−2dth order minor ofWsād, which is obtained by means of deletion of

s8th and§8th columns corresponding to the functionsas8 and a§8 and ith and j th rows. Let us

multiply the Eq.s38d by s−1di+j+s8+§8Mij
s8§8 and convolve with respect to the indicesi and j . In

view of the Laplace theorem on determinant expansion we obtain

Wsuāuas as8,a§ a§8dsPvs
§ − Pv§

s d = 0. s39d

Here the sign “ ” means that the functionsas anda§ is substituted instead of the functionas8

anda§ correspondingly and we have summation over the indicess and§. For any fixedsÞs8
and§Þ§8 we haveWsuāuas as8,a§ a§8d=0. SinceWsādÞ0 in view of linear independence of the

functionsas, Eq. s39d implies P
vs8
§8 −P

v§8
s8 =0, i.e.,Ps=Hvs for some smooth functionH of v̄. j

In view of Lemma 8 the conserved vectorsKu,Kxu−Kuxd from Lemma 4 has the form
sb0u+DxH ,bx

0u−b0ux−DtHd.
The proof of Theorem 8 is completed.

IX. POTENTIAL CONSERVATION LAWS OF NONLINEAR DIFFUSION-CONVECTION
EQUATIONS

More general potential conservation laws than simplest ones are admissible only if the inves-
tigated system has

sid either more than one linear independent local conservation lawssand, therefore, we can
introduce a number of different potentials for the first iteration stepd,
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sii d or nontrivial simplest potential conservation laws.

As shown in Sec. VII, it is possible in classs1d only for special values of the parameter
functionsA andB. In view of results of Sec. VII for the linearizable equations and Theorem 8, we
can formulate the following statement.

Theorem 9: For any linearizable equation from classs1d all potential conservation laws of
the second level are equivalent on the manifold of the corresponding potential systems to potential
conservation laws of the first level.

To investigate completely the potential conservation laws of equations from classs1d, it
remains to study the subclasses withB=0 andB=A, equations from which have two independent
local conservation laws, and the subclassB=eA+uA reduced toB=A by means of potential
equivalence transformations.

Theorem 10: All potential conservation laws of any equation from classs1d with B=0 or
B=A are trivial on the manifold of the united potential systems19d, s20d and united potential
systems23d, s24d constructed with pairs of independent local conservation laws.

Proof: Consider the united systems19d ands20d for s23d ands24dg. sBelow we write down the
differences of the second case with the first one in brackets.d Similarly to Lemma 3, we can
assume without loss of generality thatF=Fst ,x,v1,v2d and G=Gst ,x,u,v1,v2d. Let us split the
equationDtF+DxG=0 on the manifold determining by the united system. Integration of one from
the obtained equations results in the following expression for the fluxG: G=−sQFdeA+G0, where
G0=G0st ,x,v1,v2d andQ=]v1+x]v2 sQ=]v1+ex]v2d. The other equations form the system on the
functionsF andG0,

Q2F = 0, QG0 = 0, Ft + Gx
0 = 0, sQFdx + Fv2 = 0 fsQFdx − Fv1 = 0g.

Therefore,F=F1v1+F0, and F1, F0, and G0 are functions oft, y=x and v=xv1−v2 sv=exv1

−v2d for which Fv
0 =Fy

1, Ft
1=−Gv

0, Ft
0=−Gy

0. The latter system implies existence of such function
H=Hst ,y,vd that F1=Hv sF1=exHvd, F0=Hy, G0=−Ht. Then,F=DxH, G=−DtH, i.e., the con-
servation law is trivial. j

As shown above, there exists the following chain of local transformations between potential
systems: 1.3↔1.2↔ s23d ands24d, i.e., system 1.3 is locally equivalent to systems23d ands24d.
In view of this fact and Theorem 10 we obtain the following statement.

Theorem 11: On the manifold of the potential system 1.3 all potential conservation laws of
any equation from classs1d with B=eA+uA are trivial.

Summarizing the above results, we note that up toG,-equivalence the hierarchy of conser-
vation lawssincluding local onesd for diffusion-convection equationss1d has the following form:

sid the “common” local conservation lawscase 1d for arbitrary values of the parameter func-
tions A andB;

sii d two independent local conservation laws ifB=0 scases 1 and 2d or B=A scases 1 and 3d;
siii d one “common” local conservation lawscase 1d and one simplest potential thatscase 1.3d if

B=eA+uA;
sivd the infinite series of local conservation lawsscase 4d for the linear heat equation;
svd one “common” local conservation lawscase 1d and the infinite series of simplest potential

conservation lawsscase 1.6d for the Burgers equation;
svid two independent local conservation laws for theu−2-diffusion equationscases 1 and 2d and

the equationut=su−2uxdx+u−2ux scases 1 and 3d as subcases ofB=0 andB=A and the
infinite series of simplest potential conservation lawsscases 1.4 and 1.5d additionally.

Note 9:Above we did not consider in an explicit form action of transformations from Lie
symmetry groups on conservation laws of corresponding equations or potential systems. For the
majority of cases this action is quite trivial. For example, we use translations with respect tox to
normalize the constant« in case 3. In case 2 the same translations result in adding the “common”
conservation law to the special one of this case.

A nonobvious connection between independent conservation laws can be established only for
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A=u−4/3, B=0 scase 1 and case 2d by means of the transformationt̃= t, x̃=1−x−1, ũ=x3u from the
Lie symmetry group of the corresponding equation. This fact was first discovered in Ref. 24 in the
framework of the “operator” approach. It should be mentioned that the valuesA=u−4/3, B=0 give
rise to the equation which distinguishes from nonlinear diffusion-convection equationss1d by
singular Lie symmetry properties.

The Lie symmetry groupG− of the linear heat equation contains infinite dimensional normal
subgroupG−

0 formed by the linear superposition transformationsũ=u+ fst ,xd, wheref = fst ,xd is an
arbitrary solution of the same equation. Up to the equivalence relation, transformations fromG−

0

act identically on the set of conservation laws of case 4. Action of the finite dimensional factor
groupG−/G−

0 on this set induces the analogous factor groupG+/G+
0 on the set of solutions of the

backward linear heat equation, which is varied over by the parameter-functiona.
The hierarchy of conservation laws generates the complete set of locally inequivalent potential

systems for the class under consideration:

sid “common” potential systems18d scase 1d;
sii d additional simplest potential systemss20d scase 2d or s24d scase 3d if B=0 or B=A corre-

spondingly;
siii d second level potential systemss21d scase 1.1d ands25d scase 1.2d swhich are really equiva-

lent to the united potential systems of the first leveld if B=0 or B=A correspondingly;
sivd systems34d with arbitrary number of locally independent potentials for the linear heat

equation.

Potential symmetries arising for equationss1d from cases 1 and 1.1 of Table I were studied by
Sophocleous.37 Complete investigation of the potential systems18d scase 1d with the symmetry
point of view was carried out in Ref. 35.

X. CONCLUSION

The notions and methods proposed in the paper are simple and effective tools for investigation
of both local and pure potential conservation laws. They can be applied to a wide range of
physically interesting systems of differential equations. At the same time, there exist a number of
unresolved problems, in particular, on determining the number of necessary iterations for con-
struction of an exhaustive list of independent potential conservation laws or on connections of our
framework with Wahlquist–Estabrook prolongation structures.43 We hope to consider these prob-
lems in the near future.

The adduced results for diffusion-convection equations can be developed and generalized in a
number of directions. So, studying different kinds of symmetriessLie, nonclassical, generalized
onesd of constructed potential systems, we may obtain the corresponding kinds of potential sym-
metriessusual potential, nonclassical potential, generalized potential onesd. Let us note that inves-
tigation of generalized symmetries is natural for potential systems, since potentials introduced
with equivalent conservation laws are related, in general, via transformations depending on de-
rivatives of local dependent variables. Analogously, local equivalence transformations between
potential systems constructed for different initial equations result in nonlocalspotentiald equiva-
lence transformations for the class under consideration. In such way it is possible to find new
connections between well-studied diffusion-convection equations.35 We believe that the same ap-
proach can be used for investigation of wider classes of differential equations, e.g., variable
coefficient diffusion-convection equations. We also plan to study conservation laws of more gen-
eral structurese.g., ones with pseudopotentialsd.
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Extending a result of Vassilevich, we obtain the asymptotic expansion for the trace
of a spatially regularized heat operatorLQsfde−tDQ

, where DQ is a generalized
Laplacian defined with Moyal products andLQsfd is Moyal left multiplication. The
Moyal planes corresponding to any skewsymmetric matrixQ being spectral triples,
the spectral action introduced in noncommutative geometry by Chamseddine and
Connes is computed. This result generalizes the Connes–Lott action previously
computed by Gayral for symplecticQ. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1855401g

I. INTRODUCTION

Since few years, the interest in noncommutative field theory has been renewed in many works.
The noncommutative space is quite often of Moyal type, involving either noncommutative tori or
Moyal planesssee Refs. 19 and 33 for recent reviewsd.

Historically, Moyal39 has tried to build quantum mechanics with a statistical point of view
using a phase space approach. Actually, his idea was that the formalism of quantum theory allows
to derive the phase space distributionsFsp,qd when a theory of functions of noncommuting
observables is specified conversely. This type of consideration was initiated by Wigner54 with a
formula forFsp,qd using Fourier transform and for canonical conjugate coordinates and momenta
by Weyl52 with group theoretical motivations. A noncommutative star product was previously
explicitly given by Groenewold.29 In fact, the use of quantification by deformation1,42 has been
intensively investigated since it yields a continuous path between classical and quantum mechan-
ics. In the meantime, the Weyl–Wigner quantification process was also interesting for the pseudod-
ifferential operators theory.22 The Seiberg–Witten44 map allows to go from ordinary to noncom-
mutative gauge field theory and the replacement of the ordinary commutative product of functions
by the Moyal noncommutative one is now ubiquitous in string theory where the effective low
energy theory of D-branes with B-field background lives in a noncommutative space.

The mathematical background of these different developments for quantization within non-
commutative geometry8,9,28,48where noncommutative tori7,41 play an important role,12 includes the
construction of new spectral triples,3,13,14,16,24and more generally the theory of pseudodifferential
operators,18,45 the construction of star product,26,34 integrable systems, etc. For reviews on these
topics, see Refs. 9, 28, 35, 37, and 38.

It has been proposed for a long time46,55 that the noncommutative space–time is a quantum
effect of gravity and that this could provide some hints for the regularization of quantum field
theory. Naturally, many types of action have been proposed and here we choose the spectral action
introduced by Chamseddine and Connes5,6 in a proper noncommutative geometry setting. Since a
similar action was derived in Refs. 23 and 24 following a prescription by Connes and Lott,15 it is
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interesting to quote the differences. In Ref. 6, the idea is to recover the usual action of the standard
model of particle physics from purely gravitational considerations; more precisely to define the
bosonic action by TrsfsD2/L2dd while the fermionic action is simplykc ,Dcl whereD is the
Dirac operator,L is an energy scale cutoff andf is a smooth positive function. So Chamseddine
and Connes recovered the Einstein plus Yang–Mills and Weyl actions including of course the spin
1 bosons, but also the part induced by the Higgs fields of spin 0. The action functional computed
in Refs. 23 and 24 is defined by Tr+sF2D−dd whereF is the field strength curvature of a vector
potential and Tr+ is a Dixmier trace which pins down the leading term of logarithmic divergence
in the usual trace ofF2.

Here we choose for the manifold the Moyal planeR2m with flat curvature, technically viewed
as an algebrasSsR2md ,!ud for the Moyal product!u sS is the Schwartz spaced and as Dirac
operator, the usual one −is]m+LQsvmdd ^ gm but where the connectionv acts by Moyal left
multiplicationLQsvd on the usual Hilbert space ofL2-sections of the trivial spinor bundle spinors
H=L2sR2md ^ C2m

. In Ref. 24, this algebra and one of its unitizations is proved to be a real spectral
triple of spectral dimension 2m. So this case completely fits the requirements and the computation
of TrsfsD /Ldd is possible using a standard heat kernel technique. The not so surprisingly result is
that one recovers the usual commutative action where all commutative products have been re-
placed by the Moyal ones.

Despite the fact that this computation is made here in Euclidean signature and with no real
gravity, the main interest is that all the algebraic and analytical difficulties are overcome and that
it is the first example of spectral action for a not almost commutative spectral triple. Since the
Dirac operator has a noncompact resolvent, a spatial regularization by the multiplication of a
function f in the algebra is introduced to get the tracability ofLQsfde−tDQ

where DQ is the
generalized Moyal Laplacian. Of course, the choice of a regularization is arbitrary and one could
prefer for instance a soliton one,36 when one wants to avoid, before the limit, the renormalization
problems set in by UV/IR mixing.

After some reminders on the role of the Moyalology for spectral triples in Sec. II, we establish
the main result, and then, give the important technical details on the heat kernel computation in
Sec. III. Section IV is just an application to the case of Moyal planes which ends with a few
remarks on the difficulties with nonflat cases.

II. MOYAL SPECTRAL TRIPLES AND SPECTRAL ACTION

A. Moyal analysis

In this section, the very basic tools on Moyal analysis are recalled and we refer to Ref. 24 for
a review. The Moyal product comes from the phase space formulation of flat quantum mechanics,
that is a deformation of the associative algebra structure of a suitable family of functions onR2m

with pointwise product in the direction of the flat Poisson bracketh. , .jP. More precisely, if we
denote byW the Weyl map which assigns Schwartz functions onR2m say, to bounded operators on
L2sRmd, the Moyal product!u is constructed in order to obtain ap-algebra homomorphism

W:SsR2md → LsL2sRmdd, Wsf!ugd = WsfdWsgd.

This leads us to

sf!ugdsxd ª spud−2mE E
R2m3R2m

fsydgszdes2i/udsx−yd·Ssx−zdd2myd2mz, s1d

where
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Sª S 0 1m

− 1m 0
D

comes from the canonical symplectic structure ofR2m=T*Rm and uPR+
* is the deformation pa-

rameter.
Actually, one can define Moyal products onSsRnd, n even or odd, independently of any

symplectic structure. In those cases, it is any real skewsymmetric matrixQ which defines the
deformation directions. Generic Moyal products are then defined by

sf!Qgdsxd ª s2pd−nE
Rn3Rn

eijsx−ydfsx − 1
2Qjdgsyddnydnj. s2d

To fix notations and avoid to refer to the odd or even case,n will be an integer equal to the
plane dimension andm will be the integer part ofn/2.

This formula shows that the theory of pseudodifferential operators onRn sRefs. 31 and 45d is
suitable for the analysis of left and right Moyal multiplication operatorsLQsfd andRQsfd defined
by LQsfdcª f!uc andRQsfdcªc!uf. In particular their symbols are

sfLQsfdgsj,xd = fsx − 1
2Qjd, sfRQsfdgsj,xd = fsx + 1

2Qjd . s3d

On coordinate functionsxm, m=1, . . . ,n, generic Moyal products formally define a generalized
Heisenberg Lie algebra structure,

fxm,xng!Q
= iQmn1.

This equality can have a precise analytical meaning if we work with Moyal products on some
tempered distribution spaces,27,47 and is obvious from the asymptotic expansion of Moyal prod-
ucts,

f!Qg , o
aPNn

S i

2
Duau 1

a!

]f

]xa

]g

]sQxda . s4d

This expansion can be heuristically derived froms2d by a Taylor expansion ofsfLQsfdgsj ,xd
“near” x, for a more rigorous approach see Ref. 20. Moyal products satisfy a few useful algebraic
equalitiesssee Ref. 24 for a reviewd; in particular the Leibniz rule is satisfied, the integral is a
faithful trace and the complex conjugation is an involution,

]msf!Qgd = ]mf!Qg + f!Q]mg, s5d

E sf!Qgdsxddnx =E fsxdgsxddnx, s6d

sf!Qgd* = g*!Qf* . s7d

These properties allow to prove thatBQª sSsRnd ,!ud is an associative and involutive Fréchet
algebra with a jointly continuous product.

For Q symplectic, hencen=2m, it is proved in Refs. 27 and 47 thatsL2sR2md ,!ud is an
associative Banach algebra, and we have shown in Ref. 24 thatsDL2sR2md ,!ud is also an *-algebra
with a jointly continuous product,DL2sR2md being the space of smooth functions, having all their
derivatives inL2sR2md endowed with the Fréchet topology ofL2-convergence for all derivatives.
For the nonunital spectral triple point of viewssee belowd, one needs also to choose a unitization
for these algebras. Reference 24 it is studied that unital *-algebrasO0sR2md ,!ud, whereO0sR2md
consists in smooth bounded functions with bounded derivatives, with the topology given by the
family of seminormshpajaPN2N, pasfdª i]afi`.
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For generic Moyal products,sSsRnd ,!ud, sDL2sRnd ,!ud, sO0sRnd ,!ud are also Fréchet alge-
bras. Actually this statement comes from the algebra structure ofSsRnd, DL2sRnd, O0sRnd with
pointwise product as well as with Moyal one, and because any Moyal product splits into a
symplectic Moyal product and a pointwise one denoted by a pointsRef. 42, Proposition 2.7 and
Corollary 2.8d: Namely, f!ugsxd= fsxd .gsxd whenQ=0, so if the matrixQ is decomposed as the
direct sum of a symplectic oneu of dimension 2m and the zero matrix of dimensionn−2m, then

sSsRnd ,!ud>sSsR2md ,!ud^̂sSsRn−2md , .d. Remark in particular thatSsRnd and O0sRnd are alge-
bras for pointwise product while forDL2sRnd this is a consequence of the inclusion
DL2sRnd,O0sRnd.43

A spectral triplesA ,Ã ,H ,D ,J,xd sa noncommutative generalization of a Riemannian spin

manifoldd consists of an algebraA, a suitable one of its unitizationsÃ.A sfor the analog of the
noncompact cased both faithfully represented by bounded operators on a separable Hilbert spaceH
sthe representation is denoted bypd, together with an unbounded self-adjoint operatorD such that
psadsD+ld−1 is a compact operator for allaPA andl in the resolvent ofD and such that the

commutatorsfD ,psadg for all aPÃ extend to bounded operators.J and x are, respectively,
antiunitary and unitary operators with commutation relations depending on the dimension of the
triple. These data must moreover fulfill a set of axiomsssee Refs. 10 and 24d.

It is shown in Ref. 24 that symplectic Moyal planes yield nonunital spectral triples if we

chooseA=sDL2sR2md ,!ud, Ã=sO0sR2md ,!ud, represented by the diagonal left regular representa-
tion pusfdªLusfd ^ 12m on the Hilbert space ofL2-sections of the trivial spinor bundleH
=L2sR2md ^ C2N

, and forD, the flat Dirac operator]”ª−i]m ^ gm wheregm are the Clifford matri-
ces associated tosR2m,hd with h the standard Euclidean metric ofR2m.

B. Main result

The action functionalor Connes–Lott action15 associated with this spectral triple gives the
noncommutative Yang–Mills action for symplectic Moyal products,

YM sad = cE Fmn!uFmnd
2mx, s8d

wherea is a universal represented connection,

a P p̃usha0da1:a0,a1 P Bujd = hpusa0df]”,pusa1dg:a0,a1 P Buj,

andF is its curvature,Fmn=]mAn−]nAm+fAm ,Ang!u
andAm being defined bya=LusAmd ^ gm. This

result comes from the Junk computation23 and the following result.24

Theorem 2.1: For f PSsR2md, the compact operatorpusfdsD” 2+«2d−m lies in Ls1,̀ dsHd and
any of its Dixmier tracesTrv is independent of the positive number«. More precisely we have,

TrvspusfdsD” 2 + «2d−md =
2mV2m

2ms2pd2mE fsxdd2mx, s9d

where Ls1,̀ dsHd is the ideal of compact operators whose kth singular values satisfymksTd
=Osk−1d and V2m is the hyper-area of the unit sphere inR2m.

For generic Moyal products,fsDL2sRnd ,!ud ,sO0sRnd ,!ud ,L2sRnd ^ C2m
,]”g yields also a non-

unital spectral triple, but the Connes–Lott action computation is not obvious because the compu-
tation of s8d was basis dependent.

Let DQ be anoncommutative generalized Laplacianassociated with Moyal products,

DQ
ª − shmns]m + LQsvmdds]n + LQsvndd + LQsEdd ^ 12m,
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DQ
¬ Dr

Q
^ 12m s10d

acting on the Hilbert spaceH=L2sRnd ^ C2m
ªHr ^ C2m

, wherevm
* =−vm and E are in O0sRnd.

From now on, letBQª sSsRnd ,!ud acting on H by the diagonal left regular representation
pQs.dªLQs.d ^ 12m.

For f PBQ, LQsfde−tDQ
will be calledspatially regularized heat operatorassociated with the

generalized LaplacianDQ.
The following is the main result.
Theorem 2.2: Let Du be as in s10d and fPBQ. Then TrspQsfde−tDQ

d has an asymptotic
expansion

TrspQsfde−tDQ
d ,
t→0

2mS 1

4pt
Dn/2

o
lPN

tlE
Rn

fsxdã2lsxddnx, s11d

where

ã0sxd = 1,

ã2sxd = Esxd,

ã4sxd = 1
2E!QEsxd + 1

6hmnE;mnsxd + 1
12Vmn!QVmnsxd,

ã6sxd = 1
6E!QE!QEsxd + 1

12hmnE;m!QE;nsxd + 1
6hmnE!QE;mnsxd + 1

60hmnhrsE;mnrssxd

+ 1
12E!QVmn!QVmnsxd + 1

45hrsV;r
mn!QVmn;ssxd + 1

180h
rsV;n

mn!QVmr;ssxd

+ 1
30hrsVmn!QVmn;rs − 1

30Vmn!QVnr!QVm
r sxd,

where g;mª]mg+fvm ,gg!u
and Vmnª]mvn−]nvm+fvm ,vng!u

is the curvature of the connection
v.

III. HEAT KERNEL EXPANSION FOR MOYAL GENERALIZED LAPLACIANS

We will first discuss the heat kernel expansion for Laplace type operators associated with
Moyal products, for NC planes as well as for NC tori. This section generalizes Vassilevich’s
result50 in two directions: first the Moyal products are defined by their integral form as opposed to
differential or formal Moyal productss4d and second they are taken over the whole planeRn and
not only on NC tori. This noncompact situation generates some analytical difficulties.

We use the standard one-parameter semigroup theory ofe−tA where A is a positivesun-
boundedd operator andtPR+. Let H be a separable Hilbert space. We denote byBsHd the set of
bounded operators onH, by KsHd the compact one’s and byLpsHd the pth Schatten class.

If we assume thatA is a non-negative self-adjoint operator onH, thene−zA is holomorphic for
Rszd.0 and ie−zAiø1 sRef. 32, Example 1.25, p. 493d.56 With RAszdª sz−Ad−1 denoting the
resolvent ofA, one can use the holomorphic functional calculus,

e−tA =
1

2ip
E

G

e−tzRAszddz, s12d

whereG is a positively orientedspossibly infinited closed curve containing the spectrum ofA.
Lemma 3.1: Let B be a bounded operator and A be a non-negative densely defined generator

of a holomorphic semigroup such that BRAszdl PL1sHd for some z¹SpectsAd. Then for t.0,
Be−tA is trace-class.

Proof: For somez0¹SpectsAd, the semigroup property together with the first resolvent equa-
tion ands12d gives
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Be−tA = Bse−st/ldAdl = BRAsz0dlS 1

2ip
E

G

e−st/ldzs1 + sz− z0dRAszdddzD l

.

This concludes the proof becauseiRAszdiøM / uzu for all z with Rszd.0, thus

E
G

e−st/ldRszds1 + uz− z0uiRAszdidudzu , `.

j

Since we are interested in the smallt-asymptotic expansion of TrsBe−tAd, recall the following
definition.

Let hfnjn be a sequence of functions such thatfnstdÞ0 for tÞ0 and fn+1std=osfnstdd as t
→0. A function f has theasymptotic expansion fstd,t→0on=0

` anfnstd, when for eachkPN, fstd
=on=0

k anfnstd+Osfk+1stdd as t→0.

A. Heat kernel expansion for Moyal planes

We will first show thatLQsfde−tDr
Q

is trace-class fortPR+
* , then we will show that its trace has

a smallt-asymptotic expansion:

TrsLQsfde−tDr
Q

d,t→0S 1

4pt
Dn/2

o
lPN

tlE
Rn

fsxdã2lsxddnx,

where the local invariantsãl are built from the universalsrepresentedd connectionvm, the snon-
locald endomorphismE and their covariant derivativesin the adjoint representationd ]m+LQsvmd
−RQsvmd.

We will prove thatLQsfde−tDr
Q

is trace-class by two approaches. The first uses semigroup
theory results while the second will be based on pseudodifferential operatorsCDOd techniques,
which is more in the spirit of Ref. 24.

Theorem 3.2: Let fPSsRnd, vm, EPO0sRnd with vm
* =−vm and E=−g*!ug for some g

PO0sRnd. Then, for all t.0 the spatially regularized heat operator associated withDQ defined in
s10d is trace-class.

First proof of Theorem 3.2:BecausesLQsgdd* =LQsg*d, Isgd=0 impliesLQsgd is self-adjoint,
so DQ is positive. Thanks to Lemma 3.1, it is enough to prove thatLQsfdRDr

Qszdl is trace-class for
l .n/2.

Let us anticipate further notations to see thatDQ is a squared covariant Dirac operator:

DQ = ]”v
2 − B,

]”v ª − is]m + LQsvmdd ^ gm,

andBªLQsEd ^ 12m−LQs]msvnd−vm!uvnd ^ shmn12m−gngmd is bounded.
Assume first thatl =1, z=−1, B=0. Using the notationspQsvdªLQsvmd ^ gm, pQs]”sfdd

ªLQs]mfd ^ gm and the fact that allf PSsRnd factorizes asf = f1!uf2, for somef1, f2PSsRnd sRef.
24, Proposition 2.7d, one gets

pQsfdRDQs− 1d = − pQsfd
1

]” − i
S1 − pQsvd

1

]”v − i
D 1

]”v + i

= − pQsf1d
1

]” − i
pQsf2dS1 − pQsvd

1

]”v − i
D 1

]”v + i

− pQsf1d
1

]” − i
pQs]”sf2dd

1

]” − i
S1 − pQsvd

1

]”v − i
D 1

]”v + i
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= − pQsf1d
1

]” − i
pQsf2d

1

]” + i
S1 − pQsvd

1

]”v + i
D

+ pQsf1d
1

]” − i
pQssf2d!Qvd

1

]” − i
S1 − pQsvd

1

]”v − i
D 1

]”v + i

− pQsf1d
1

]” − i
pQs]”sf2d!Qvd

1

]” − i
S1 − pQsvd

1

]”v − i
D 1

]”v + i
.

By sRef. 24, Lemmata 4.5 and 4.14d, pQsgdR]”sidpQshdR]”sidPLpsHd wheneverg, hPSsRnd and
p.n/2. The boundness ofpQsvd andR]”v

szd then yieldspQsfdRDQs−1dPLpsHd for the samep.
For l ù1, repeat this algorithm usingsA+Cd−1=A−1s1−CA−1s¯s1−CsA+Cd−1d¯ dd up to orderl.

The case with nonzeroB is obtained using the same trick,

pQsfdRDQs− 1d = pQsfdR]”
v
2s− 1ds1 − BRDQs− 1dd.

The first resolvent equation implies the same result for anyz instead of −1 in the resolvent set of
SpectsDQd. j

The second proof, which is based on a functional calculus forCDO,18 needs the following
definition of CDO classes relevant for Moyal analysissShubin45 or GLS30 symbol classesd.

Definition 3.3:Let Sr,l be the Shubin or GLS symbol class

Sr,l
ª hs P C`sR2nd: ∀ a,b P Nn, ∃ Cab P R+u]x

a]j
bssj,xdu,

øCa,bs1 + uxu2dsr−uaud/2s1 + uju2dsl−ubud/2

and letCr,l
ª hAPCDO:sfAgPSr,lj be the associatedCDO class.

Actually, Sr,l fits into the general Hörmander symbol classesssee Ref. 31, Chap. XVIIId
Ssm,gd with order functionmsj ,xd=s1+uxu2dr/2s1+uju2dl/2 and slowly varying metricgj,x=s1
+ uju2d−1udju2+s1+uxu2d−1udxu2.

Second proof of Theorem 3.2:First, Eq.s3d and the product formula forCDOs allows us to
compute the symbol ofDr

u,

sfDr
ugsj,xd = hmnjmjn + 2ivmsx − 1

2Qjdjn − ]mvnsx − 1
2Qjd − vn!Qvnsx − 1

2Qjd − Esx − 1
2Qjd ,

and becausevm, EPO0sRnd, Dr
u lies in C0,2.

Let hfNjNPN be the family of smooth compactly supported functions defined byfNsxd
ªxNsxde−x, where 0øxNø1, xNPCc

`sRd with xNsxd=0 for xP g−` ,−egø fN, +`f for a fixed
e.0 andxNsxd=1 for xP f0,N−eg. First, Ref. 18, Theorem 8.7 yieldsfNstDr

udPC0,−`, and basic
estimatesssee Ref. 24, Sec. 2.4 for detailsd givesLQsfdPC−`,0 for all f PSsRnd. Then, by Ref. 31
Lemma 18.4.3 one obtainsLQsfdfNstDr

QdPC−`,−` and its symbol is inSsR2nd. Therefore,

Cª o
uau+ubuø2n+1

i]x
a]j

bsfLQsfdfNstDr
Qdgi1

ø o
uau+ubuø2n+1

Ca,bE s1 + uxu2ds−l−uaud/2s1+ uju2ds−k−ubud/2dnxdnj,

for someCa,b,` and alll ,kPN, henceC,`. Finally, Ref. 18, Theorem 9.4 showsLQsfdfNstDr
Qd

is trace-class for allNPN. Looking at the estimates in the proof of Ref. 18, Theorem 8.7, one can
find constantsCa,b independent ofN sbecausee−x is rapidly decreasing whenx→ +`, the right
support offN plays no roled, therefore one obtains thatLQsfdfNstDr

Qd is trace-class uniformly inN.

To finish the proof, it remains to show that s-limLQsfdfNstDr
Qd=LQsfde−tDr

Q

, because Ref. 17,

Proposition 2 will ensure thatLQsfde−tDr
Q

is trace-class for allt.0.
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Let fPH andEl be the spectral family ofDr
Q, then

isxNsDr
Qd − 1dfi2

2 = kfusxNsDr
Qd − 1d2fl

=E
SpectsDr

Qd
sxNsld − 1d2dkfuElfl ø E

SpectsDr
ud

dkfuElfl = kfufl.

Hence by dominated convergence and withf=e−tDr
Q

c,

lim
N→`

isxNsDr
Qd − 1de−tDr

Q

ci2
2 = lim

N→`
E

SpectsDr
Qd

sxNsld − 1d2dke−tDr
Q

c,Ele−tDr
Q

cl

=E
SpectsDr

ud
lim
N→`

sxNsld − 1d2dke−tDr
Q

c,Ele−tDr
Q

cl = 0,

where the last equality comes from SpectsDr
Qd,R+. j

We now come to the computation of the exponential ofDQ following a Vassilevich’s idea.50

Proof of Theorem 2.2:Let

Xª 2LQsvmd]m + LQs]mvmd + LQsvm!Qvmd + LQsEd

Yª − ]m]m,

so Dr
Q=Y−X and the Baker–Campbell–HausdorffsBCHd formula

eTeS= eT+S+1/2fT,Sg+1/12fT,fT,Sgg+1/12fS,fS,Tgg−1/48fT,fS,fT,Sggg+¯ ,

allows to write

e−tDr
Q

= etX+1/2t2fX,Yg+1/12t3fX,fX,Ygg−1/6t3fY,fX,Ygg−1/48t4fX,fY,fX,Yggg+1/48t4fY,fY,fX,Yggg+¯e−tY.

In order to obtain a power expansion whent goes to zero, the strategy is to expand the first
exponential, to compute the commutators, to reorganize the sequence and finally to write down the
explicit symbol of thoseCDO’s. The trace will be simply taken by integrating them with respect
to sj ,xdPR2n. Actually, the reorganization in homogeneous terms in powers oft is slightly more
elaborate than a simple exponential expansion. All the operators coming from this expansion are
of the typeLQsgd]a, aPNn, for somegPBQ. Some terms will give no contributions to the trace
sinceej1

a1
¯jn

ane−tuju2dnj=Pi
n1

2s1+s−1daidGfsn+1d /2gt−sai+1d/2 is zero when at least one of theai is
odd, and when they are all even,uau=oi

nai =2l is even and we get

E
Rn

jm1
¯ jm2l

e−tuju2dnj = Sp

t
Dn/2

s2td−l o
sPS2l

1

2ll!
dssm1dssm2d ¯ dssm2l−1dssm2ld

,

wheres runs over the permutation groupS2l of 2l elements. So, in the reorganization of the power
series, we must keep in mind thattlLQsgd]a is effectively a term of ordertl−uau/2 findependently of
thesp / tdn/2 termg. Moreover, to obtain the asymptotic expansion up to orderl say, we must use the
BCH formula up to order 2l −1. The order of the BCH formula is defined as the number of
commutators in the expansion. The term with higher degree derivatives coming from the BCH
formula at orderl is

ft]2,ft]2, . . . ,ft]2,tLQsgd]g ¯ gg ~ tl+1LQshd]l+1,

for somehPBQ, which yields a term of ordertsl+1d/2.
Let us show how it works up to order one. We must use the BCH formula up to order one also,

e−tDr
Q

=etX−tY=etX+1
2

ftX,tYg+¯e−tY, and
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ftX,tYg = t2f]n]
n,2LQsvmd]m + LQs]mvmd + LQsvm!Qvmd + LQsEdg

= t2s2LQs]n]
nvmd]m + 4LQs]nvmd]m]n + LQs]n]

n]mvmd + 2LQs]n]mvmd]n

+ LQs]n]
nsvm!Qvmdd + 2LQs]nsvm!Qvmdd]n + LQs]n]

nEd + 2LQs]nEd]nd

= 4t2LQs]nvmd]m]n + Ost2d,

hence

LQsfde−tDr
Q

= LQsfdets2LQsvmd]m+LQs]mvmd+LQsvm!Qvmd+LQsEdd+2t2LQs]nvmd]m]n+¯et]m]m

= LQsfds1 + ts2LQsvmd]m + LQs]mvmd + LQsvm!Qvmd + LQsEdd

+ 2t2sLQs]nvmd]m]n + LQsvm!Qvnd]m]nd + Ost2ddet]m]m
,

where the lastt2-term comes frometX. So, bys3d,

sfLQsfde−tDr
Q

gsj,xd = s fsx − 1
2Qjd + ts2f!Qvmsx − 1

2Qjds− ijdm + f!Q]mvmsx − 1
2Qjd

+ f!Qvm!Qvmsx − 1
2Qjd + f!QEsx − 1

2Qjdd + 2t2s f!Q]nvmsx − 1
2Qjd

3s− ijdms− ijdn + f!Qvm!Qvnsx − 1
2Qjds− ijdms− ijdnd + Ost2dde−tjmjm

.

Finally, it remains to integratesfLQsfde−tDr
Q

gsj ,xd. By the translationx→x+ 1
2Qj, one obtains,

TrsLQsfde−tDr
Q

d = s2pd−nE E sfsxd + ts2f!Qvmsxds− ijdm + f!Q]mvmsxd + f!Qvm!Qvmsxd

+ f!QEsxdd + 2t2sf!Q]nvmsxds− ijdms− ijdn + f!Qvm!Qvnsxd

3s− ijdms− ijdndde−tjmjm
dnxdnj + Ostsn/2d+2d

= s4ptd−n/2E fsxds1 + ts]mvmsxd + vm!Qvmsxd + Esxd − ]mvmsxd

− vm!Qvmsxddddnx + Ost−sn/2d+2d

= s4ptd−n/2E fsxds1 + tEsxdddnx + Ost−n/2+2d.

The higher order terms can be obtained by similar computations, that is to say, one generically gets

LQsfde−tDr
Q

,t→0L
QsfdSo

lPN
tl o

aPNn,uauøl

LQsga,ldtuau/2]aDet]m]m
,

for somega,l PBQ, and where we have corrected the power series int by the order of derivatives,
with respect to the previous discussion. Here; means asymptotic expansion with respect to the
trace-norm topology,

ILQsfde−tDr
Q

− LQsfdSo
løN

tl o
aPNn,uauøl

LQsga,ldtuau/2]aDet]m]mI
1

= OstN+1d,

convergence of the sequence being warranted by Theorem 3.2.
This concludes the proof of Theorem 2.2 since ins11d we get the coefficient Trs1C2md. j

Remark 3.4:This systematic computation also yields that the other coefficientsã2l, l .3 have
the same canonical form, that is Moyal products replace pointwise ones everywhere.

We will use this asymptotic expansion to compute the spectral action, but it can also be used
to compute counterterms and anomalies in noncommutative quantum field theoryfsee the recent
review sRef. 51d and the quoted referencesg.
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B. Heat kernel expansion for NC tori in Moyal „re…presentation

Let AQ be the smooth algebra of Schwartzsrapidly decreasingd linear combination of the
plane wavesheik.xjkPZn endowed with Moyal product,

AQ = SH o
kPZn

cke
ik.x:sckd P SsZndJ,!QD .

AQ closes to an algebra and represents the NCn-tori,

eik.x!Qeiq.x = e−ik.Qqeiq.x!Qeik.x, s13d

this canonical commutation relation of the NCn-tori coming from the straightforward computa-
tion shere Fourier modes are viewed as tempered distributionsd:

eik.x!Qeiq.x = s2pd−nE E
Rn3Rn

eij.sx−ydeik.sx−1/2Qjdeiq.ydnjdny = e−i1/2k.Qqeisk+qd.x.

One can build a unital spectral triple associated to this algebra,11,28 with H=L2sTnd ^ C2m
the

squared integrable sections of the trivial spinor bundle overTn, andD=]” the flat Dirac operator.
AQ is again represented on bounded operators by the left regular representationpQsadc=LQsad
^ 12mc=a!Qc, for aPAQ, cPH. Actually, this construction is equivalent to the GNS represen-
tation associated to the state given by the canonical tracet of AQ: when asxd=okPZncke

ik.x

PAQ,

tsad ª c0 =E
Tn

asxddnx.

Let againDQ be the noncommutative generalized Laplacian defined ins10d acting now on
HªL2sTnd ^ C2m

, wherevm
* =−vm andEø0 are inAQ.

We will first show that in the NC-tori cases,e−tDQ
is trace-class fortPR+

* is a direct conse-
quence of the compactness ofRD

Qszdª sDQ−zd−1. Then, thanks to the preceding section, it will be
straightforward to show that its trace has a small-t asymptotic expansions11d where the local
invariantsãl are the same as in the Moyal plane case, but withf =1.

Theorem 3.5:Let DQ be as in (10), then e−tDQ
is trace-class for all tPR+

* .
Proof: The proof is simpler than for the Moyal plane. Clearly,R]”szdPLpsHd, p.n, and so

RDQszdPLp/2sHd suse the same trick as in the proof of Theorem 3.2d. Then Theorem 3.1 yields
e−tDQ

=se−ts2/pdDQ
dp/2PL1sHd. j

For the computation of the small-t expansion, because all algebraic propertiessmainly Leibniz
ruled used in the preceding section work as well as for the tori, we also obtain

e−tDQ
,
t→0

o
lPN

tlS o
aPNn,uauøl

LQsga,ldtuau/2]aDet]m]m
,

wherega,l PAQ are the same as for the Moyal plane case except that nowf =1. So the trace has
the small-t expansion,

Trse−tDQ
d = 2ms2pd−nE

Tn
dnxE

Rn
sfe−tDQ

gsj,xddnj

,
t→0

2m

s2pdnE
Tn

dnxE
Rn

o
lPN

tlS o
aPNn,uauøl

ga,lSx −
1

2
QjDtuau/2s− ijdaDe−tuju2dnj.

Now, expandingga,l in Fourier modes and using
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E
Tn

eiksx−s1/2dQjddnx = e−ik1/2Qjdk,0 = dk,0,

we directly obtain the following result.
Theorem 3.6:Let DQ be as in (10), then

Trse−tDQ
d ,
t→0

2mS 1

4pt
Dn/2

o
lPN

tlE
Tn

ã2lsxddnx,

where the a˜2lsxd are given in Theorem 2.2.

IV. THE SPECTRAL ACTION

A. Spectral action for nonunital spectral triples

For a unital spectral triplesA ,H ,Dd, Chamseddine and Connes5,6 proposed a definition of a
physical action which depends only on the spectrum of the covariantD-operatorsthe spectral
action principled,

SsD,Ad ª TrsfsDA
2/L2dd, s14d

where DA is the covariant “Dirac” operatorDAªD+A+eJAJ−1, A is a universal represented
1-form AP p̃sV1Ad, p̃ being the lifted representation on the whole differential algebraV·A
sp̃sa0da1¯dapdªpsa0dfD ,psa1dg¯ fD ,psapdg ,ai PA , i =1, . . . ,pd, J is the real structure of the
triple sthe charge conjugation for spinors in the commutative cased, f a suitable cutoff function,L
a mass scale andeP h+1,−1j depending upon the dimension. Any positive smooth functionf
mimicking the step functionxf0,1g was initially used in Refs. 5 and 6 and in Ref. 21, sufficient
conditions onf have been detailed. Since in the unital case,D has compact resolvent and likewise
for the perturbedDA by Theorem 3.5,fsDA

2 /L2d is trace-class as long asf decreases fast enough;
for instancern−1fsr2dPL1sR+d is a sufficient condition for a spectral triple with spectral dimen-
sion equal ton.

Let us be more explicit about the covariant “Dirac” operatorDA. The starting point is the
analogy between the invariance group of a gauge theory on a Riemannian manifoldM coupled
with general relativity,G=U’Diff sMd and the group of automorphism of an algebraA which
splits into its inner and outer part AutsAd=IntsAd’OutsAd, with the following exactsgroupd
sequence:

1 → U → G → Diff sMd → 1,

1 → IntsAd → AutsAd → OutsAd → 1.

In particular, if we chooseA=C`sM ,MnsCdd>C`sMd ^ MnsCd, n.1, the two constructions coin-
cide: OutsAd=Diff sMd, IntsAd=C`sM ,SUn/Znd. The natural invariance group for an action de-
fined on a spectral triple must be the automorphism group of the algebra. In order to retrieve a
gauge theory with spin matter whenA is almost commutative that isA=C`sMd ^ AF fwhereAF is
a finite algebra such asH % C % M3sCd for the standard model of particle physicssRefs. 2, 5, and
6dg, we must represent AutsAd in the fermionic Hilbert spaceH. In particular, we must lift IntsAd
to the unitary groupUsHd of the bounded operators onH,

UsAd { u ° ssud = psudJpsudJ−1 P UsHd.

For NC tori, Moyal planes and some almost-commutative geometries, this is the adjoint represen-
tation, psudJpsudJ−1c=u!Qc!Qu* , cPH. Under this transformation,D transforms as
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D → ssudDssud−1 = D + psudfD,psu*dg + eJpsudfD,psu*dgJ−1, s15d

wheree comes from commutation relationsDJ=eJD, eP h+1,−1j fssee Refs. 10 and 28 for a
table of signsdg. The signe in Eq. s15d is actually wrong in most of the literature, however the
computations linked with physics models are unaffected becausee=1 in the zero and four-
dimensional cases. HenceDA→DA8 with A8=psudApsu*d+psudfD ,psu*dg transforms covari-
antly.

For almost commutative geometryC`sMd ^ AF, in particular for the standard model, withD
=D” ^ 1HF

and the curved Dirac operatorD” =−iem
agas]m+vmd, v being the spin connection onM,

SsD ,Ad is asymptotically computable by heat kernel techniques. We may note thatD” A
2 can be

written as a generalized Laplacian,D” A
2 =P with P=−sgmns]m+vmds]n+vnd+Ed, wheregmn is the

metric tensor, nowvm is a connection containing spin and Yang–Mills part andE is an endomor-
phism of the fiber bundle, on whose sectionsP acts. One can formally show,5,6 expandingf in
Taylor series, thatSsD ,Ad is linked to the Seeley–DeWitt coefficientsaksP,xd of the trace of the
heat operator on an-dimensional manifold,

Trse−tPd ,
t→0

s4pd−n/2o
lPN

tsl−nd/2E
M

alsP,xddvolsxd, s16d

where dvolsxd is the Riemannian volume form, by the relation between zeta function and trace of
the heat operator25

zPssd ª TrsP−sd =
1

GssdE0

`

ts−1 Trse−tPddt. s17d

On a manifold without boundaryalsP,xd=0, l odd, therefore in the four-dimensional case, this
yields,

SsD” ^ 1AF
,Ad = s4pd−2o

l=0

2

L4−2lf2lE
M

a2lsP,xddvolsxd + OsL−2d, s18d

where

f0 =E
0

`

fstdt dt, f2 =E
0

`

fstddt, f2s2l+2d = s− 1dlfslds0d, l ù 0. s19d

A less formal, derivation of this relation with precise constraints onf can be found in Refs. 21 and
40. ForM still four dimensional andAF=H % C % M3sCd, the spectral action yields a unification of
the Einstein plus Weyl gravity and the standard model including the Higgs sector and its sponta-
neous symmetry breakingssee Refs. 2, 5, and 6d. There is no restriction for an arbitrary dimension
but the coefficientss19d will be slightly different, as we will see below for the Moyal plane.

Remark 4.1:The relations17d, links also the Dixmier trace with the heat kernel expansion,
and therefore the Connes–Lott actions8d with the spectral action as explained in Sec. IV C.

For the nonunital case, sinceD has no longer a compact resolvent, we invoke aspatial
regularizationr to define the spectral action. Like the energy regularizationf, r is a positive
function rapidly decreasing, in the almost commutative case, and must be generically an element
of the algebraA.

Definition 4.2:For a nonunital spectral triplesA ,Ã ,H ,Dd of spectral dimensionn, thespec-
tral action is

SsD,A,rd ª TrHspsrdfsDA
2/L2dd, s20d

where as in the unital case,DA=D+A+eJAJ−1 seP h+1,−1j depending onnd, andAPVD
1 sÃd is

now a represented self-adjoint 1-form of the unitized algebra,A=oiPIpsb0
i dfD ,psb1

i dg, for I a
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finite set,b0
i , b1

i PÃ, 0ørPA and moreover 0øf, L are as in the unital case.
Remark 4.3:sid This definition gives more importance to the choice of the unitization. The

1-form A is now constructed fromÃ, and all the symmetry considerations discussed previously
occur now for the unitized algebra. This is important because unitaries in the algebra are necessary
to express gauge invariance,SsD ,A,rd is gauge invariant that is invariant under the lifted inner
automorphism implemented by the unitary operatorpsudJpsudJ−1 and now the regularizationr
transforms also

A → uAu* + ufD,u*g,

r → uru* .

sii d The positivity ofr andf is necessary in order to get a positive action.
siii d Other regularizations are possible. For instance,fsDA

2psrd−1d whererPS is a strictly
positive function also give rise to trace-class operators for Moyal planes, but the asymptotic
expansion is still unmanageable.

Let us show how it works for an almost commutative geometry associated with a boundary-
less noncompact smooth manifoldM. In this case, we still work withA=Cc

`sMd ^ AF. The opera-
tor re−tP, tPR+

* , is trace-class, forrPCc
`sMd viewed as a pointwise multiplication operator andP

being a generalized LaplaciansCDO operator of order two with metric tensor as coefficient of the
leading symbold. In this case the formulas17d has an analog,

zr,Pssd ª TrsrP−sd =
1

GssdE0

`

ts−1 Trsre−tPddt, s21d

one obtains, forP=sD” +A+eJAJ−1d2,

SsD” ^ 1AF
,Ad = s4pd−n/2o

l=0

m

Ln−2lf2lE
M

a2lsP,xdrsxddvolsxd + OsLn−2sm+1dd,

wherea2l are still the Seeley–DeWitt coefficients which are now only locally integrable while
a2lsP,xdrsxd are globally integrablessee Ref. 49d. The coefficientsf2l have the forms19d in the
four-dimensional case, and their values in any dimensionn is now computed for Moyal planes.

B. The case of the Moyal plane

Actually, the relations21d is quite general, that is for any bounded operatorSand any operator
T such thatST−s is trace-class, we have

zS,Tssd ª TrsST−sd =
1

GssdE0

`

ts−1 TrsSe−tTddt. s22d

With this relation and the result of Sec. III, one can derive the spectral action for Moyal planes.
However in order to obtain more directly the form of the coefficientsf2k in any dimension, we
will derive it by Laplace transform techniques such as in Ref. 40ssee Ref. 53 for details on
Laplace transformd. We assume that the functionf has the following property:

f P C`sR+d is the Laplace transform ofĉ P SsR+d ª hg P S:gsxd = 0,x ø 0j. s23d

Thus, any function with this property has necessarily an analytic extension on the right complex
plane and is a Laplace transform. Consequently, anym-differentiable functionc such thatcsmd

=f is the Laplace transform of a functionĉ and by differentiation, it satisfies

043503-13 The spectral action for Moyal planes J. Math. Phys. 46, 043503 ~2005!

                                                                                                                                    



fszd = csmdszd = s− 1dmE
0

`

e−szsmĉssdds, Rz. 0.

With DQ defined ins10d, usingfsDr
Qd=s−1dme0

`e−sDr
Q

smĉssdds and the positivity ofr=g*!Qg, g
PBQ, we get

TrsLQsrdfsDr
Q/L2dd = s− 1dm TrSLQsgdE

0

`

e−tDr
Q/L2

tmĉstddt LQsg*dD .

Let hFpjpPN be any orthonormal basis ofHr and let 0øBtªLQsgde−tDr
Q/L2

LQsg*d, then

TrsLQsrdfsDr
Q/L2dd = lim

N→`
E

0

`

o
pøN

kFp,BtFpltmĉstddt ø lim
N→`

E
0

`

iBti1t
mĉstddt =E

0

`

iBti1t
mĉstddt.

Let us estimateiBti1. For t.e with a fixed arbitrary smalle, we have

iBti1 = iLQsgde−tDr
Q/2L2

i2
2 ø iLQsgde−eDr

Q/2L2
i2
2ie−st−edDr

Q/2L2
i.

But, st−edDr
Q being positive, we haveie−st−edDr

Q/2L2
iø1. Hence fort.e, iBti1øC uniformly in t.

For tøe, our previous computation shows thatiBti1=Ost−n/2d. Hence Trse0
`Btt

mĉstddtd,`, so by
dominated convergence one obtains

TrsLQsrdfsDr
Q/L2dd = s− 1dmE

0

`

TrsLQsrde−tDr
Q/L2

dtmĉstddt

= s− 1dms4pd−n/2E
0

`

o
l=0

m

Ln−2ltm+l−n/2ĉstddtE
Rn

r!Qã2lsxddnx + OsLn−2sm+1dd

= s4pd−n/2o
l=0

m

Ln−2lf2lE
Rn

r!Qã2lsxddnx + OsLn−2sm+1dd,

wheref2l is now defined by

f2l ª s− 1dmE
0

`

tm+l−n/2ĉstddt. s24d

Whenn=2m is even,f2l has the more familiar form ofs19d,

f2l = 5 1

Gsm− ldE0

`

fstdtm−1−l dt for l = 0, . . . ,m− 1,

s− 1dlfsl−mds0d for l = m, . . . ,n.
6 s25d

For n odd, the coefficientsf2l have less explicit forms because they invoke fractional derivatives
of f, so in this case, it is better to stick to definitions24d.

Let us summarize.
Theorem 4.4:Let rPSsRnd, A=−iLQsAmd ^ gm, Am

* =−AmPO0sRnd, fPC`sR+d be a positive
function satisfying condition (23) and]”A=]”+A. Then LQsrdfs]”A

2 /L2d is trace-class. Moreover, the
following expansion of the spectral action holds:

Ss]”,A,rd = 2ms4pd−n/2o
l=0

m

Ln−2lf2lE
Rn

rsxdã2lsxddnx + OsLn−2sm+1dd,

where thef2l are defined in (24) or (25) depending on the dimension and the a˜2lsxd are given in
Theorem 2.2 with the following replacement in (10):
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LQsvmd → LQsAmd,

LQsEd ^ 12m → sLQs]mAnd + LQsAm!QAndd ^
1
2sgmgn − gngmd.

Moreover, all terms in a˜2l linear in E are zero.
Proof: This follows from gmgn=hmn+ 1

2sgmgn−gngmd, so all linear terms inE are of zero
trace. j

Remark 4.5:When the Dirac operator is symmetrized,DA=D+A+eJAJ−1, one must replace
LQsAmd by LQsAmd−RQsAmd sinceeJsLQsAmd ^ gmdJ−1=RQsAm

* d ^ gm. So, the behavior int of dif-
ferent terms like TrsLQsfdRQsgds−i]daet]m]m

d must be computed. More precisely, since

sfLQsfdRQsgdgsj,xd = s2pd−nE eish−jd.sx−ydfsx − 1
2Qhdgsy + 1

2Qjddnydnh,

we have

TrsLQsfdRQsgds− i]daet]m]m
d =E sfLQsfdRQsgds− i]daet]m]m

gsj,xddnxdnj

=E fsx − 1
2Qjdgsx + 1

2Qjdjae−tuju2dnxdnj,

the translation invariancex→x+ 1
2Qj crucially used in the proof of Theorem 2.2 now fails. This

point is related to the UV/IR mixings and must be clarified.

C. Connes–Lott versus Chamseddine–Connes actions

In order to compare this result with the Connes–Lott action computation of the four-
dimensional Moyal plane,23 up to negative order terms with respect to the mass scaleL, we obtain

Ss]”,A,rd =
1

4p2SL4f0E
R4

rsxdd4x +
fs0d

6
E

R4
rsxdFmn!QFmnsxdd4xD + OsL−2d,

whereFmn
ª]mAn−]nAm+fAm ,Ang!Q

.
If we choose the characteristic functionr=xV of a bounded subsetV,R4sxV¹SsR4dd, prop-

erty s6d yields

Ss]”,A,xVd =
1

4p2SL4f0E
V

d4x +
fs0d

6
E

V

Fmn!QFmnsxdd4xD + OsL−2d, s26d

which, modulo a cosmological term, is the spatially localized noncommutative Yang–Mills action.
This expression must be compared with the four-dimensional Connes–Lott ones8d for Q sym-
plectic, hence!Q=!Q,

YM sad = −
1

4g2 E Fmn!QFmnsxdd4x.

This action is slightly different froms26d, because propertys6d, together with the absence ofr
gives

YM sad = −
1

4g2 E FmnsxdFmnsxdd4x.

For the noncommutative tori, we have also a similar result, with the spectral action in the
unital casesr=1d,
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Ss]”,Ad,L→`2ms4pd−n/2 o
kPN

Ln−2kf2kE
Tn

ã2ksxddnx,

which also yields forn=4,

Ss]”,Ad =
1

4p2SL4f0 +
fs0d

6
E

T4
Fmn!QFmnsxdd4xD + OsL−2d.

D. Towards a gravitational degree of freedom

One can ask about adding gravitational degrees of freedom for Moyal planes or NC tori. For
instance, the results of Sec. III also work with a nonconstant metricgmnsxd. More precisely,
Theorem 3.2 is still true if we replace ins10d, DQ by the square of

− iea
ms]m + vm + LQsAmdd ^ ga,

whereea
m andvm are bounded functions. Here, the pointwise and Moyal products are mixed, but

in this case, computation of the trace of its regularized semigroup can be done, at least in principle,
with the same techniques but it will be highly less easy.

However, this construction is meaningless from a spectral triple point of view. A nonflat Dirac
operator overRn, D” =−iea

msxdgas]m+vmsxdd, vm being the spin connection, will violate most of the
axioms describing spectral triples, for instance,

fD” ,pQsfdg = − igasfea
mvm,pQsfdg + ea

mpQs]mfd + fea
m,pQsfdg]md.

So, for f PBQ, fD” ,pQsfdg can be extended to a bounded operator only iffea
m ,pQsfdg=0. This

condition can be satisfied for instance by an-dimensional Riemannian manifoldsM ,gd endowed
with an isometric action ofRl, l ù2 speriodic or notd. This is actually the Connes–Landi isospec-
tral deformations.13,14 Those cases, admit nontrivial fluctuations of the metricsin some sense for
the untwisted directionsd. Since the only invariant metric onRn or Tn by the natural action ofRn

is the flat one and this is the geometrical obstruction to deal with nonflat Moyal planesssee
Ref. 4d.
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We explore the relationship between the integrability of nonsemilinear partial dif-
ferential equations and formal Dirichlet series solutions. To this end we consider a
variety of integrable and nonintegrable differential equations. We also demonstrate
that such series solutions are a natural extension to the nonlinear case of
those obtained by basic solution techniques for linear ordinary differential
equations. ©2005 American Institute of Physics.fDOI: 10.1063/1.1879083g

I. INTRODUCTION

One class of completely integrable partial differential equationssPDEsd that has long been of
interest is that of nonsemilinear PDEs; see for example Refs. 1–4. However, nonsemilinear PDEs,
when compared with other classes of PDE, present certain problems. One is that many such
equations, even if completely integrable, fail the Painlevé test.5 In other words, there is no simple
test of integrability that can be applied directly to such PDEs.

In two recent papers6,7 it has been suggested that, instead of classifiying equations using
Painlevé expansions, a classification using Dirichlet series might be used. It was noted that, for
two particular classes of nonsemilinear PDEs, the only equations admitting such series solutions
are transformable back onto the only known completely integrable PDEs within those classes. One
aim of the present paper is to explore these ideas still further, and to this end we consider a variety
of nonsemilinear PDEs, both integrable and nonintegrable, in 1+1 and multidimensions. For a
discussion of integrability in multidimensions, see e.g., Refs. 8 and 9.

However, despite the apparent link between Dirichlet series and integrability—at least in the
case of particular examples, or for certain classes of equations—it would be imprudent to claim a
hard and fast connection. Indeed, we show here that the existence of Dirichlet series solutions is
not sufficient for integrability; the question of necessity remains open. A precise description of the
uncertainties in the current state of the art can be found in the concluding Secs. VII and VIII.

A second aim of the present paper is to provide an understanding of our technique as a method
of constructing series solutions. We find that instead of a comparison with Painlevé analysis, it is
more profitable to consider a comparison with solution techniques for linear ordinary differential
equationssODEsd. It turns out that the important feature is that of having multilinear terms that are
dominant over other terms in the equation. We explain our ideas within the context not only of the
PDEs considered but also using ODE examples which help to make clear the connection between
Dirichlet series solutions for nonlinear equations and basic solution techniques for linear ODEs.
We note that Dirichlet series solutions for nonlinear ODEs have been considered beforessee, e.g.,
Ref. 10d, although this connection with the linear case does not seem to have been remarked upon.
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II. DIRICHLET SERIES: AN ODE EXAMPLE

In this section we recall some basic facts about Dirichlet series, and illustrate our ideas using
a simple ODE example. A Dirichlet series is a series of the form

o
j=0

`

aje
−l jx, s1d

wherehl jj is a strictly monotonic increasing sequence of real numberssonly a finite number of
which are negatived, unbounded above, andx,aj PC. We recall that a Dirichlet series, if conver-
gent forx=x0, is then also convergent for allx with Resxd.Resx0d, and uniformly convergent for
all x with uargsx−x0duøu, for any fixedu, 0,u,p /2. That is, in general, convergence is in right
half-planes, and uniform convergence is in sectors. For further details, see e.g., Ref. 11. Clearly,
x→−x allows us to define Dirichlet-type series convergent in left half-planes; more generally, a
rotation x→eiwx s−p,wøpd allows us to define Dirichlet-type series convergent in skewed
half-planes,

o
j=0

`

aje
m jx, s2d

wherem j =−l je
iw is a sequence of points lying on a half-line in the complex plane. We will refer

to any series of the forms2d as a Dirichlet series, or standard Dirichlet series when we wish to
distinguish between a seriess2d and generalizations thereof.

We note that Dirichlet series appear to be used little in the study of solutions of differential
equations. The reason for this is presumably that, in comparison to power seriessTaylor or
Laurentd, relatively few functions, and so also relatively few solutions of differential equations,
can be expressed as Dirichlet series; there is in fact no reason why a given function should have
such an expression. Thus, in general, in order to represent solutions of differential equations,
Dirichlet series need modification, and those cases where this is not necessary are therefore very
special. Indeed, in any half-plane of convergence, a Dirichlet series sums to an analytic function
of x. We return to these considerations laterssee Sec. VId.

We now illustrate the basic ideas underlying our approach using as an example the ODE,

BfVg ; VVxxx+ 2VxVxx − 3VVx + V − Vxx = 0. s3d

We first seek a leading order term for our Dirichlet series,

V , V0e
px, V0 Þ 0, constant. s4d

Substituting into the dominantsquadraticd terms gives

VVxxx+ 2VxVxx − 3VVx , 3psp2 − 1dV0
2e2px, s5d

and so we may takep= ±1 or p=0. However in this last case the quadratic terms are not dominant
over the linear terms, and so we are left withp= ±1.

We takep=−1, and seek to determine which coefficients in our putative Dirichlet series will
be arbitrary, using a substitution of the form

V , V0e
−x + Vje

s j−1dx, s6d

which allows us to determine the coefficient ofVj in the recursion relation by which the coeffi-
cients of our Dirichlet series are determined. We thus obtain that this recursion relation is of the
form
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js j − 2ds j − 3dVj = RjsVj−1,Vj−2, . . . ,V0d, s7d

for some functionRj, and so we have arbitrary coefficients atj =0,2,3. Wetherefore seek a
solution of our ODE as

V = e−xo
j=0

`

Vje
jx, s8d

where allVj are constant. We note in passing that if instead ofx in the seriess8d, we writex− x̃,
for some constantx̃, we can always absorb the factore−jx̃ into the coefficientVj.

Substitution of the seriess8d into our ODE yields

BfVg = e−2xo
j=0

`

Bje
jx = 0, s9d

and so a sequence of equationsBj =0 for the coefficientsVj. Here,

B0 = 0, s10d

B1 = 2V0V1, s11d

B2 = V1, s12d

B3 = − 2V1V2, s13d

B4 = 8V0V4 + 2V1V3 − 3V3. s14d

Thus we see thatV0 is left arbitrary and that, atj =1, since we assumeV0Þ0, V1 is determined as
V1=0. At j =2, V2 is not determined, and we have the compatibility conditionR2=0 si.e., B2=0d,
satisfied sinceV1=0. Similarly at j =3, whereV3 is left undetermined, we must haveR3=0 si.e.,
B3=0d, again satisfied sinceV1=0. The equationsBj =0, j ù4, then determine all subsequent
coefficientsVj , j =4,5,6, . . . , interms of V0, V2, and V3. Our ODE therefore admits, at least
formally, a Dirichlet series solution. We note that, if one of the conditions atj =2 or j =3 had not
been satisfied, then we would have had to modify the series solution by the inclusion of powers of
x. Examples of differential equations where such modifications are needed will be presented later.

We note that for the choicep=1, the fact that we have a Dirichlet series solution of the form

V = ex o
j=−`

0

Ṽje
jx, s15d

with Ṽ0, Ṽ−2, andṼ−3 arbitrary, follows immediately from the observation that our ODE admits the
discrete symmetrysV,xd→ s−V,−xd.

Thus our ODE admits formal Dirichlet series solutions. These are constructed by first identi-
fying a leading order, determined by the terms of highest nonlinearity, and then checking that
compatibility conditions—which arise when coefficients are left arbitrary—are satisfied. It is the
construction of such series solutions that we will explore in later sections. We will also consider
variations of our approach, i.e., series solutions of a more general form than the standard Dirichlet
seriess2d.

The above ODE example, however, also ties in with the other main theme of our paper, which
is integrability: the ODEs3d is integrable, having the Lax pair

fxx = 1
4f1 − msVxx − Vdgf, s16d
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fm = SV

m
−

2

m2Dfx −
1

2

Vx

m
f. s17d

It was the existence of Dirichlet series solutions for integrable PDEs that motivated the work in
Refs. 6 and 7. Here we have an integrable ODE which also admits formal Dirichlet series solu-
tions. In fact the ODEs3d can be obtained from the classification in Ref. 7. It can also be
obtained12 as a similarity reduction of the now famous Fuchsteiner–Fokas–Camassa–Holm
sFFCHd equation,13,14

UUxxx+ 2UxUxx − 3UUx + Uxxt − Ut − 2kUx = 0. s18d

It is to this question of integrability to which we now turn. We consider Dirichlet series
solutions for PDEs, as well as modifications of such for equations where compatibility conditions
are not satisfied. Perhaps the best way to begin is to summarize briefly the results of Refs. 6 and
7. This we now do.

III. DIRICHLET SERIES FOR PDEs

In Ref. 12, the Painlevé analysis of the class of nonsemilinear PDEs

F ; F1 + F2 = 0, s19d

where

F1 = UUxxx+ bUxUxx − p2sb + 1dUUx, s20d

F2 = eUxxt − Ut − 2kUx, s21d

was considered. It was shown that no equation in this class survived the combination of the
Painlevé ODEsRef. 15d and PDEsRef. 16d tests. In particular, since the FFCH equation is
contained in this class, the drawbacks of Painlevé analysis for certain classes of equations—as first
observed by Weiss for the Dym equation5—were confirmed. It also led to the question, posed in
Ref. 12, of how many other equations in this class are actually integrable, in spite of not passing
the Painlevé tests.

Remarkably, it turns out that the class of equationss19d does contain another completely
integrable PDE, namely the Degasperis–ProcesisDPd equation,17

UUxxx+ 3UxUxx − 4UUx + Uxxt − Ut = 0. s22d

Further, as is clear from the results presented in Ref. 12, this PDE also fails to survive the Painlevé
tests: in fact, this PDE admits the weak Painlevé expansion

U = − c8std + f1/2sx,tdo
j=0

`

Uj /2stdf j /2sx,td, fsx,td = x + cstd, s23d

wherec, U0, and U1 are three arbitrary functions oft. This then highlights the need for some
simple and directly applicable test—analogous to the Painlevé tests—capable of identifying com-
pletely integrable differential equations in such a class.

We note that a partial answer to the question of which PDEs in the classs19d are completely
integrable has been given in Ref. 18, as follows. First we observe that in the casepÞ0 we may
assume, without loss of generality, thatp=1 sin the later sections of this paper we prefer to include
the parameterp—as did the authors of Ref. 12—so that the known equations in the classs19d can
be taken in standard formd. That is, whenpÞ0, an appropriate rescaling yields
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UUxxx+ bUxUxx − sb + 1dUUx + êUxxt − Ut − 2kUx = 0, s24d

where ê=p2e. If in addition we havesb+1dêÞ1, we may use a Galilean transformation to set
k=0.12 Of the resulting equations,

UUxxx+ bUxUxx − sb + 1dUUx + êUxxt − Ut = 0, s25d

it was shown in Ref. 18 that in the special caseê=1, only those havingb=2 or b=3 are
completely integrable. This relied on a quasilocal extension of the symmetry approach, so that in
this caseê=1, s25d is expressed in evolution form using the operatorD=s1−]2/]x2d−1, with higher
symmetries containing nestings ofD. The caseb=2 corresponds to the FFCH equation, andb
=3 to the DP equation.

However, as indicated above, one of our aims here is to explore the relationship between a
simple property of solutions, easily testable for a much wider class of equations, i.e., their expres-
sion as formal Dirichlet series, and integrability. It was with this aim in mind that in Refs. 6 and
7 the following class of equations was considered:

E ; E1 + E2 = 0, s26d

where

E1 = UUxxx+ bUxUxx − sb + 1dUUx s27d

and

E2 = astd + bstdU + c0stdUx + c1stdUt + d0stdUxx + d1stdUxt + d2stdUtt

+ e0stdUxxx+ e1stdUxxt + e2stdUxtt + e3stdUttt, s28d

i.e., whereE1 consists of quadratic terms equivalent to those ofs19d for pÞ0, andE2 consists of
all possible linear terms up to and including third derivatives.

Motivated by the observation that not only does the FFCH equations18d admit the exact
solution12

U = fstde−x − k + gstdex, s29d

but also a generalization having the form of a Dirichlet series,

U = e−xo
j=0

`

Ujstdejx, s30d

whereU0, U2, andU3 are three arbitrary functions oft, it was shown in Refs. 6 and 7 that for each
of the choicesb=2 andb=3 in s26d, the only equations admitting Dirichlet series solutions can be
transformed back onto the only known integrable equation within that classsFFCH and DP,
respectivelyd. These results suggest a connection between Dirichlet series solutions and certain
classes of integrable equations.

We note that the construction of a Dirichlet series solution such ass30d, here for the FFCH
equation, proceeds in the same way as in the ODE case: we have dominant and nondominant
termssE1 andE2, respectivelyd, the former determining the leading order behavior and also which
coefficients are left arbitrary. We then have compatibility conditions to be satisfied, in order that
our solution remains a series in powers of exponentials only. When a compatibility condition is not
satisfied the series has to be modified by the inclusion of powers ofx shigher and higher powers
for higher powers ofexd. We also note that if instead ofx in s30d we havex−hstd, we can always
absorb the factore−jhstd into the coefficientUjstd.

In order to explore the connection between Dirichlet series solutions and integrability, we
consider the construction of Dirichlet series solutions for a wide variety of PDEs. We begin in Sec.
IV with various examples of PDEs in the classs19d. For example, we will see in Sec. IV A that the
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Fornberg–Whitham equation21 does not admit Dirichlet series solutions, and so this PDE differs in
this respect from the integrable FFCH and DP equations; this example also allows us to illustrate
the modification of a putative Dirichlet series solution with powers ofx in the case of failed
compatibility conditions. We will also see that in the caseê=1, all equations in the classs25d
admit Dirichlet series solutions for all integerbù2, and thus while there is indeed a strong
connection between Dirichlet series solutions and integrability, the admission of Dirichlet series
solutions is not sufficient for integrability. In Sec. V we give further examples of integrable PDEs,
but in multidimensions rather than 1+1, that admit Dirichlet series solutions. In Sec. VI we
consider some technical points, such as convergence, and the connection between our approach
and basic solution techniques for linear ODEs; we also consider more general Dirichlet-type
series, but find that even integrable equations may require that such nonstandard Dirichlet series
solutions be modified by including powers ofx. We return to a discussion of the connection
between integrability and Dirichlet series solutions in Sec. VII; a summary of our conclusions is
given in Sec. VIII.

IV. EXAMPLES IN 1+1 DIMENSIONS

A. The Fornberg–Whitham equation

In this section we consider the Fornberg–WhithamsFWd equation,19–21

GfUg ; UUxxx+ 3UxUxx − UUx + Uxxt − Ut − Ux = 0, s31d

which corresponds to the parameter choicese ,p2,b ,kd= s1, 1
4 ,3 ,1

2
d in Eq. s19d.

We begin by seeking a leading order term for our Dirichlet series,

U , U0stdepx, U0std Þ 0. s32d

Substitution into the quadratic terms of the equation gives

UUxxx+ 3UxUxx − UUx , ps4p2 − 1dU0
2e2px s33d

and so we have the possible leading ordersdominantd behaviorsU,U0stde±s1/2dx. Corresponding
to these leading order behaviors we obtain the recursion relations

js j ± 1ds j ± 2dUj = Rj , s34d

for the coefficients of our Dirichlet series, whereRj is now a function not only of previous
coefficients but also of their derivatives. Thus, corresponding respectively to the casesp=−1

2 and
p= 1

2, we seek solutions of the form

U = e−s1/2dx o
2j=0

`

Ujstdejx = e−s1/2dxsU0std + U1/2stde1/2x + U1stdex + ¯ d, s35d

where the coefficientsU0, U1, andU2 will be left arbitrary, and

U = e1/2x o
2j=−`

0

Ujstdejx = e1/2xsU0std + U−s1/2dstde−s1/2dx + U−1stde−x + ¯ d, s36d

where the coefficientsU0, U−1, andU−2 will be left arbitrary.
Here we consider the casep=−1

2. Substitution ofs35d into s31d yields

GfUg = e−x o
2j=0

`

Gje
jx = 0, s37d

where
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G0 = 0, s38d

G1/2 = 1
8s4U0 + 3U0U1/2 − 6U08d, s39d

G1 = − U1/28 , s40d

G3/2 = − 1
8s4U1 + 3U1/2U1 + 3U0U3/2 + 6U18d, s41d

G2 = − U3/2, s42d

and 8 is used to denote derivatives with respect tot. We see thatU0 is left arbitrary, and thatU1/2

is determined by the equationG1/2=0 as

U1/2 = −
4

3
+ 2

U08

U0
. s43d

The equationG1=0 does not determineU1, which is left arbitrary. However, we have the com-
patibility conditionU1/28 =0, a condition not satisfied for arbitraryU0. Moreover, we see that even
if we were to have a satisfied compatibility condition atj =1, we would still have another com-
patibility condition to be satisfied atj =2. That is, the FW equation does not admit Dirichlet series
solutions of the forms35d.

The seriess35d, in order to satisfy the FW equation, needs to be modified by the inclusion of
powers ofx. Thus, instead ofs35d, we seek a solution of the form

U = e−s1/2dxsU0 + U1/2e
s1/2dx + sU1,0+ U1,1xdex + sU3/2,0+ U3/2,1xdes3/2dx

+ sU2,0+ U2,1x + U2,2x
2de2x + sU5/2,0+ U5/2,1x + U5/2,2x

2des5/2dx + ¯ d, s44d

where as before all coefficients are functions oft. Substitution intos31d then gives

GfUg = e−x o
2j=0

`

G̃je
jx = 0, s45d

where eachG̃j is now polynomial inx:

G̃0 = 0, s46d

G̃1/2 = 1
8s4U0 + 3U0U1/2 − 6U08d, s47d

G̃1 = − U0U1,1− U1/28 , s48d

G̃3/2 = − 1
8f4U1 + 3U1/2U1,0+ 8U1,1+ 2U1/2U1,1+ 3U0U3/2,0+ 2U0U3/2,1

+ 6U1,08 − 8U1,18 g − 1
8f4U1,1+ 3U1/2U1,1+ 3U0U3/2,1+ 6U1,18 gx, s49d

G̃2 = f2U1,0U1,1+ 3U1,1
2 − U3/2,0− U3/2,1+ 2U1/2U3/2,1+ 2U0U2,1

+ 6U0U2,2+ 2U3/2,18 g + f2U1,1
2 − U3/2,1+ 4U0U2,2gx, s50d

with G̃5/2 being quadratic inx.

We see, as before, thatU0 is arbitrary, and thatU1/2 is determined byG̃1/2=0 to be as given in

s43d. However at j =1, U1,0 is left arbitrary, andG̃1=0 determines the coefficientU1,1. At j
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=3/2, theequationG̃3/2=0 determines bothU3/2,1 andU3/2,0. Then atj =2, U2,0 is left arbitrary and

the equationG̃2=0 determinesU2,2 and U2,1. The equationG̃5/2=0 determines the three coeffi-
cientsU5/2,2, U5/2,1, andU5/2,0. Our modified series therefore contains three arbitrary coefficients,
U0, U1,0, andU2,0. We thus see how a putative Dirichlet series needs to be modified in the case of
failed compatibility conditions, so that the modified series satisfies the PDE/ODE and contains the
predicted number of arbitrary coefficients. In Sec. VI we explain this modification process in terms
of basic solution techniques for linear ODEs.

We now briefly remark on an alternative procedure which allows us to obtain a solution of the
FW equation of the forms35d, albeit not containing three arbitrary functions oft. This can be done
by insisting that the compatibility conditionss40d and s42d be satisfied:s40d requires that
slogsU0dd9=0, and soU0=aebt for some arbitrarya,bPC; s42d then requires thatslogsU1dd8=
−b, and soU1=ce−bt for some arbitrarycPC. Thus for these choices ofU0 and U1 we have a
solution of the forms35d containing one arbitrary function oft, namelyU2. In the special case
U2=0 this infinite series becomes finite to give the exact solutionU=ae−s1/2dsx−2btd+ s2b− 4

3
d

+ces1/2dsx−2btd, as obtained in Ref. 12.

B. The Rosenau–Hyman equation

We now consider the Rosenau–HymansRHd equation,22

HfUg ; UUxxx+ 3UxUxx + UUx − Ut = 0, s51d

which corresponds to the parameter choicese ,p2,b ,kd= s0,−1
4 ,3 ,0d in Eq. s19d.

Proceeding as for the FW equation, we obtain the leading order or dominant behaviorsU
,U0stde±si/2dx, and the corresponding recursion relations

js j ± ids j ± 2idUj = Rj s52d

for the coefficients of our Dirichlet series, whereRj is a function of previous coefficients and their
derivatives. Thus, corresponding respectively to the casesp=−si /2d andp= i /2, we seek solutions
of the form

U = e−si/2dx o
2k=0

`

Ukstdekix = e−si/2dxsU0std + U1/2stdesi/2dx + U1stdeix + ¯ d, s53d

whereU0, U1, andU2 scorresponding toj =0,i ,2id will be left arbitrary, and

U = esi/2dx o
2k=−`

0

Ukstdekix = esi/2dxsU0std + U−s1/2dstde−si/2dx + U−1stde−ix + ¯ d, s54d

whereU0, U−1, andU−2 scorresponding toj =0,−i ,−2id will be left arbitrary.
Here we consider the casep=−si /2d. Substitution ofs53d into s51d yields

HfUg = e−ix o
2k=0

`

Hke
kix = 0, s55d

where

H0 = 0, s56d

H1/2 = − 1
8is3U0U1/2 − 8iU08d, s57d

H1 = − U1/28 , s58d
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H3/2 = 1
8is3U1/2U1 + 3U0U3/2 + 8iU18d, s59d

H2 = − U3/28 . s60d

ThusU0 is left arbitrary, andU1/2 is determined by the equationH1/2=0 as

U1/2 =
8

3
i
U08

U0
. s61d

Then U1 is left arbitrary, with compatibility conditionH1=0, or U1/28 =0; this condition is not
satisfied for arbitraryU0. Further—as for the FW equation—even if this condition atj = i were to
be satisfied, we would still have another compatibility condition,H2=0, to be satisfied atj =2i.
Thus we see that the RH equation does not admit Dirichlet series solutions of the forms53d.

The seriess53d, in order to satisfy the RH equation, needs to be modified by the inclusion of
powers ofx. Thus, instead ofs53d, we seek a solution of the form

U = e−si/2dxsU0 + U1/2e
i/2x + sU1,0+ U1,1xdeix + sU3/2,0+ U3/2,1xdes3i/2dx

+ sU2,0+ U2,1x + U2,2x
2de2ix + sU5/2,0+ U5/2,1x + U5/2,2x

2des5i/2dx + ¯ d, s62d

where as before all coefficients are functions oft. Substituting intos51d, we find thatU0, U1,0, and
U2,0 are left arbitrary with all other coefficients in our series determined in terms of these three.

Once again, as for the FW equation, we can also obtain a solution of the RH equation of the
form s53d but depending on less than three arbitrary functions oft, by insisting that the compat-
ibility conditions s58d and s60d be satisfied. Conditions58d requires thatslogsU0dd9=0, and so
U0=aebt for some arbitrarya,bPC. Then conditions60d requires thatU19−b2U1=0, and soU1

=ce−bt+debt for some arbitraryc,dPC. For these choices ofU0 andU1 we have a solution of the
form s53d containing one arbitrary function oft, U2. In the special caseU2=0 andd=0 this infinite
series self-truncates to give the exact solutionU=ae−si/2dsx+2bitd+ 8

3bi+cesi/2dsx+2bitd, as obtained in
Ref. 12.

C. A further example in 1+1 dimensions

In Secs. IV A and IV B we have seen that the FW and RH equations fail to admit Dirichlet
series solutions. In this they therefore differ from the completely integrable FFCH and DP equa-
tions. Of course, in general, the integrability of a nonsemilinear PDE not admittingsstandardd
Dirichlet series solutions remains an open question.

In this section we will see that it is not always the case that a nonintegrable equation fails to
admit Dirichlet series solutions. That is, the admission of Dirichlet series solutions is not sufficient
for integrability. In order to show this we will consider in this section a special case of the class
of equationss19d, namely those that can be put in the forms25d with ê=1, and in addition withb
an integerù2,

KfUg ; UUxxx+ bUxUxx − sb + 1dUUx + Uxxt − Ut = 0. s63d

We know from Ref. 18 that only those equationss63d havingb=2 or b=3 are completely inte-
grable. However, as we will see, all equationss63d admit Dirichlet series solutions. We note that
the FW and RH equations are not included in the classs63d: for the FW equation, we cannot
remove theUx term, and in any case—as also for the RH equation—we do not haveê=p2e=1 ssee
Sec. IIId.

Seeking a leading order behavior for a possible Dirichlet series solution ofs63d leads toU
,U0stde±x, with corresponding recursion relations

js j ± 2ds j ± b ± 1dUj = Rj , s64d

whereRj is a function of previous coefficients and their derivatives.
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Here we consider the caseU,U0stde−x. We claim that each equation in the classs63d has a
Dirichlet series solution of the form

U = U0stde−x + U2stdex + o
j=b+1

`

Ujstdes j−1dx, s65d

with U0, U2, andUb+1 arbitrary. In order to show this, we substitutes65d into s63d to obtain

KfUg = e−2xo
j=0

`

Kje
jx = 0, s66d

and show that eachKj, for j øb+1, is identically zero. That is, we need to prove thats66d is in
fact

KfUg = e−2x o
j=b+2

`

Kje
jx = 0. s67d

If this is so, then forj ùb+2, each equationKj =0 will determineUj in terms ofU0, U2, andUb+1.
Our discussion of this example is simplified by the fact that all equations in classs63d can be

written in the factorized form,12

KfUg = SU
]

]x
+ bUx +

]

]t
DsUxx − Ud = 0. s68d

Setting

U = U0stde−x + U2stdex + Ub+1stdebx + Ub+2stdesb+1dx + ¯ , s69d

we therefore calculate

Uxx − U = sb2 − 1dUb+1stdebx + sb2 + 2bdUb+2stdesb+1dx + ¯ , s70d

and thus obtain

KfUg = fsb2 + 2bdU0stdUb+2std + sb2 − 1dUb+18 stdgebx + ¯ = Kb+2e
bx + ¯ , s71d

as requiredfcompare withs67dg.
Thus we see that all equations in the classs63d admit formal Dirichlet series solutions of the

form s65d. It then follows, using the discrete symmetrysx,td→ s−x,−td of s63d, that these equa-
tions also admit formal Dirichlet series of the form

U = Ũ0stdex + Ũ−2stde−x + o
j=−`

−sb+1d

Ũjstdes j+1dx s72d

=Ũ0stdex + Ũ−2stde−x + Ũ−sb+1de
−bx + Ũ−sb+2de

−sb+1dx + ¯ , s73d

whereŪ0std, Ũ−2std, and Ũ−sb+1d are arbitrary, and where all other coefficients in the series are
determined in terms of these three.

V. EXAMPLES IN MULTIDIMENSIONS

A. The Kraenkel–Zenchuk system

We now turn to an example of a completely integrable PDE in multidimensions, namely the
Kraenkel–ZenchuksKZd system,23–25
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L1 ; − mt + umx + 2mux = 0, s74d

L2 ; muy + ux − uxx − 2px = 0, s75d

L3 ; m2py + mpx + mpxx − pmx − pxṁx = 0, s76d

which constitutes an extension of the FFCH equation to 2+1 dimensions. This system fails the
Painlevé PDE test: in fact it admits weak Painlevé expansions.26 It thus behaves similarly to the
FFCH and DP equationsssee, respectively, Ref. 12 and Sec. IIId. Here we see that this system
admits Dirichlet series solutions.

For this system, we find corresponding to the leading order behavior

u , u0sy,tde−x, m, m0sy,tde2x, p , p0sy,tde−x, s77d

wherep0=u0, andu0 andm0 are arbitrary, the recursion relation

J1uj

mj

pj
2 ; 1 2jm0 ju0 0

− s j − 2ds j − 1d 0 − 2s j − 1d
0 0 js j − 3dm0

21uj

mj

pj
2 = 1R1j

R2j

R3j
2 , s78d

where R1j, R2j, and R3j are functions of previous coefficients and their derivatives. Arbitrary
coefficients will enter our expansions at values ofj satisfying

detJ = 0, i.e., j2s j − 1ds j − 2ds j − 3d = 0. s79d

At j =0, the two arbitrary coefficients areu0 andm0, as noted previously.
We therefore seek a Dirichlet series solution of the KZ system of the form

u = e−xo
j=0

`

uje
jx, m= e2xo

j=0

`

mje
jx, p = e−xo

j=0

`

pje
jx, s80d

with p0=u0. Substitution into the KZ system yields

L1 = exo
j=0

`

L1je
jx = 0, L2 = e−xo

j=0

`

L2je
jx = 0, L3 = exo

j=0

`

L3je
jx = 0, s81d

whereL10, L20, andL30 are identically zero, and where of course forj ù1 fcompares78dg, we have
sL1j ,L2j ,L3jdT=Js jdsuj ,mj ,pjdT−sR1j ,R2j ,R3jdT.

At j =1, we see froms78d that one of the coefficientsu1 or m1 will be left arbitrary, and that
we have as corresponding compatibility conditionL21=0. This compatibility condition is satisfied.
We then use the equationL31=0 to determinep1, andL11=0 to determinem1, leavingu1 arbitrary.
At j =2, we see froms78d that one ofu2 or m2 will be left arbitrary, and that the corresponding
compatibility condition ism0L22−L32=0. This condition is satisfied. We then use the equation
L32=0 to determinep2, andL12=0 to determinem2, leavingu2 arbitrary. At j =3, we see that one
of the coefficientsu3, m3, or p3 will be left arbitrary, and that the corresponding compatibility
condition isL33=0. Again, the compatibility condition is satisfied. We then use the equationL23

=0 to determinep3, andL13=0 to determinem3, leavingu3 arbitrary. All coefficients in the series
s81d are then determined in terms of the five arbitrary coefficientsu0, m0, u1, u2, and u3. This
number of arbitrary coefficients is consistent with the order of the KZ systemssee also Ref. 26d.
Thus we see that we have another example of a weak Painlevé but completely integrable system
which admits Dirichlet series solutions.
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B. A further example in 2+1 dimensions

Here we consider an alternative generalization of the FFCH equation to 2+1 dimensions, one
based on a nonisospectral scattering problem: discussions of such scattering problems can be
found for example in Refs. 27–29, as well as in Refs. 8 and 9. This completely integrable equation,

MfUg ; 1
2UxxxxUy + UxxxUxy − 1

2UxxUy − UxyUx + Uxxxt− Uxt = 0, s82d

was given in Ref. 30. The reduction

Usx,y,td = Wsz,td, z= x + y, t = 1
2t, s83d

yields the FFCH equation inWz, with k=0 swhich is anyway equivalent to the casekÞ0; see Sec.
III d.

We note in passing that Eq.s82d admits a solution in the form of a weak Painlevé expansion,

U = Us−5/3d −
1

cy
s2ct + Us−5/3d,ydf + f5/3o

j=0

`

Uj /3f j /3, s84d

where all coefficientsUs−5/3d ,U0,U1/3,U2/3, . . . arefunctions ofsy,td, andf=x+csy,td.
The expansions84d contains four arbitrary functionssUs−5/3d ,c ,U0,U2/3d of sy,td, correspond-

ing to the resonances −5/3,−1,0,2/3,respectively. We note that for this equation the negative
resonance at −5/3 can be catered for by introducing an extra coefficient at constant levelsi.e., at
level f0d; for a further example where this can be done we refer to Ref. 26. We also remark that
the term at levelf in s84d is an additional lower order term which corrects the balancing of terms
in the leading order analysis. Further examples of the use of such an additional term, although at
constant level rather than levelf, can be found in Ref. 12, as well as in Refs. 26 and 31; see also
the weak Painlevé expansion for the DP equation given in Sec. III.

We now turn to the construction of Dirichlet series solutions for Eq.s82d. Proceeding as in
previous sections, we obtain for Eq.s82d the leading order behaviorsU,U0sy,tde±x, with corre-
sponding recursion relations

js j ± 1ds j ± 2ds j ± 3dUj = Rj , s85d

whereRj is a function of previous coefficients and their derivatives.
Let us consider the caseU,U0sy,tde−x, corresponding to which we seek a Dirichlet series

solution

U = e−xo
j=0

`

Ujsy,tdejx, s86d

where the coefficientsU0, U1, U2, andU3 will be left arbitrary. Substitution ofs86d into s82d yields

MfUg = e−2xo
j=0

`

Mje
jx, s87d

whereM0, M1, M2, andM3 are all identically zero. Thus we see that all compatibility conditions
are satisfied, and that Eq.s82d does indeed admit formal Dirichlet series solutions of the forms86d,
with U0, U1, U2, andU3 arbitrary, and all other coefficients determined in terms of these four.

It then follows, using the discrete symmetrysx,td→ s−x,−td of Eq. s82d, that this equation also
admits formal Dirichlet series solutions of the form
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U = ex o
j=−`

0

Ũjsy,tdejx. s88d

Thus Eq.s82d provides a further example of a completely integrable PDE, again in 2+1 dimen-
sions, which admits formal Dirichlet series solutions.

VI. TECHNICAL CONSIDERATIONS

In previous sections we have considered the construction of formal Dirichlet series solutions
of a certain form, with coefficients determined recursively by linear algebraic equationssthus in
the present paper we do not consider series having coefficients determined by a sequence of
differential equationsd, for a wide variety of differential equations. We now turn to some technical
points related to such series solutions, including how our approach can be understood as an
extension of basic solution techniques for linear ODEs.

A. Convergence

We have not, for the examples presented in earlier sections, considered the convergence or
otherwise of the Dirichlet series solutions constructed. Here—rather than considering general
approaches to proving convergence—we present a simple ODE example which shows us that such
series solutions can be convergent, in which case they do give meaningful information about the
behavior of solutions. In particular, we see that a Dirichlet series solution may indeed turn out to
represent a solution which is analytic in some half-planessee comments in Sec. IId. This is in turn
related to a second motivation behind the discussion in this section, which is the question of
whether Dirichlet series are not, for certain equations, better suited to the representation of solu-
tions than Painlevé expansions.

We consider the ODE

NfUg ; UUxx − 2Ux
2 + UUx = 0, s89d

for which we obtain the leading order behaviorsU,U0e
px sU0 constantd, with p=1 or p=0. We

note that here, in the absence of any additional linear terms, the choicep=0 is allowed.
Corresponding top=1, i.e.,U,U0e

x, we obtain the recursion relation

js j − 1dUj = Rj s90d

for the coefficients of our Dirichlet series, whereRj is a function of previous coefficients. In this
case we therefore seek a Dirichlet series solution

U = exo
j=0

`

Uje
jx. s91d

Substitution intos89d yields

NfUg = e2xo
j=0

`

Nje
jx, s92d

whereN0 andN1 are identically zero. Thus we obtain a formal Dirichlet series solutions91d, with
U0 andU1 arbitrary and all other coefficients determined in terms of these two.

Meanwhile, for the casep=0, i.e.U, Ũ0, we obtain the recursion relation

js j + 1dŨj = Rj s93d

for the coefficients of our Dirichlet series,Rj being a function of previous coefficients. We now
therefore seek a Dirichlet series solution
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U = o
j=−`

0

Ũje
jx. s94d

Substitution into our Eq.s89d yields

NfUg = o
j=−`

0

Ñje
jx, s95d

whereÑ0 andÑ−1 are identically zero. We therefore obtain a formal Dirichlet series solutions94d,
with Ũ0 and Ũ−1 arbitrary, and all other coefficients determined in terms of these two.

Each of the series solutionss91d ands94d is in fact summable. The ODEs89d has the general
solution

U =
Aex

B − ex , s96d

whereA, BPC are two arbitrary constants of integration. This function can be represented by the
Dirichlet series

U = exo
j=0

` S A

Bj+1Dejx, s97d

for Resxd, loguBu, and also by the Dirichlet series

U = o
j=−`

0 S− A

Bj Dejx, s98d

for Resxd. loguBu. We can identifys97d with s91d, with U0=A/B andU1=A/B2, and thus conclude
that s91d is convergent to a solution analytic in the left half-plane Resxd, loguU0/U1u. Similarly,

we can identifys98d with s94d, with Ũ0=−A andŨ−1=−AB. Thus we see thats94d is convergent

to a solution analytic in the right half-plane Resxd. loguŨ−1/ Ũ0u.
The functions96d is of course analytic except for simple poles spaced at intervals of 2p along

the line Resxd=loguBu. The general solution of the ODEs89d therefore has no movable branched
singularities, and so has the Painlevé property. We note that since these poles are atx=loguBu
+ i argB, their locations depend on the value ofsone ofd the constants of integration, and so they
are movable. The two Dirichlet series represent the functions96d on either side of this line of
poles. Thus our Dirichlet series solutions seem to be much more suited to the representation of the
general solution of this ODE than the usual Painlevé expansion, which would only give a solution
convergent in a punctured disk of radius 2p, centered at a polesalthough it is this last that gives
information about the nature of the singularitiesd.

B. Linear and multilinear differential equations

We have developed a method of seeking solutions in the form of Dirichlet series for differ-
ential equations having a set of constant-coefficient multilinear terms, illustrated using examples
where these terms are quadratic, or bilinear; we use these terms to determine possible leading
orders. However, the simplest example where our approach can be applied is that of the constant-
coefficient linear ODE,

Sp
j=1

N

sD − m jdnjDU = fsxd, D =
d

dx
, s99d

wherenj PN andm j PC, and where for our purposes it is sufficient to assume that
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fsxd = o
j=1

N

Pjsxdem jx, s100d

for some polynomialsPj of x. In the case where allnj =1 and allPjsxd;0, the general solution of
this ODE consists of a linear combination of termsem jx,

U = o
j=1

N

Aje
m jx, Aj P C. s101d

If the constantsm j lie on a line in the complex planefof course, since the equation is linear, the
general solutions101d can always be decomposed into a sum of solutionsUk, where this is true for
eachUkg, this solution can be understood as afinite Dirichlet seriesfcompares2dg. Such a Dirichlet
series, when somenj .1, or somePjsxdò0, needs, in order to give the general solution of the
ODE, to be modified by the inclusion of powers ofx; in the language used earlier, we would say
that in the case where somePjsxdò0 we have a failed compatibility condition at the resonancem j.
The use of infinite Dirichlet series represents the extension of such basic solution techniques for
linear ODEs to nonlinear differential equations.

C. Doubly infinite series

Here we simply comment that Dirichlet-type series of a more general form than the standard
Dirichlet seriess2d may be used to represent solutions of differential equations. For example, the
ODE

PfUg ; Uxx + 3exUUx − Ux + e2xU3 = 0 s102d

has the general solution

U =
1

ex − A
+

1

ex − B
, s103d

which—assuminguAu, uBu—can be represented by the series

U = e−x o
j=−`

`

Uje
jx s104d

for loguAu,Resxd, loguBu, where

Uj = H1/Aj j ø 0,

− 1/Bj , j . 0.
J s105d

Thus we have a representation of the general solution of the ODEs102d as a doubly infinite series,
which is convergent in the strip loguAu,Resxd, loguBu, rather than in a half-plane.

The general solutions103d of Eq. s102d is analytic except for simple poles, and so this
equation has the Painlevé property. There are two families of simple poles, spaced at intervals of
2p along the lines Resxd=loguAu and Resxd=loguBu; since the locations of these poles, atx
=loguAu+ i argA andx=loguBu+ i argB, depend on the constants of integration, they are movable.
The seriess104d provides a representation of the general solution in the strip between these two
lines of poles. Clearly, in addition tos104d, we also have the Dirichlet series solutions

U = o
j=0

` S−
1

Aj+1 −
1

Bj+1Dejx s106d

and
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U = e−x o
j=−`

0 S 1

Aj +
1

BjDejx, s107d

convergent for Resxd, loguAu and Resxd. loguBu, respectively. Together, the three series solutions
given above provide representations of the general solution of Eq.s102d in all the complex plane
except on the two lines Resxd=loguAu and Resxd=loguBu. As with our previous example discussed
in Sec. VI A, such series solutions appear to be much more suited to representing the general
solution of this ODE than would be the usual Painlevé expansion. Of course, this is because of the
form of the general solution; as remarked in Sec. I, there is no reason why the general solution of
any given ODE should admit such a representation. However, for this ODE, such series seem
more appropriate than Taylor or Laurent series. We also note that this example demonstrates the
possibility of seeking Dirichlet-type series solutions when we have nonautonomous dominant
terms.

D. A perturbative technique

In all of our examples so far, except for the ODE discussed in Sec. VI A, we have excluded
from consideration the leading order behaviorp=0, on the grounds that the terms of highest
nonlinearity are then no longer dominant over the other terms in the equation. However, the
possibility ofp=0 occurring as a leading order behavior is one that needs to be taken into account.
Here we consider two examples, one an ODE and one a PDE: we find that even for integrable
differential equations it may happen that series solutions in terms of exponentials require modifi-
cation by the inclusion of power ofx. Our results are obtained using a perturbative approach.

1. An ODE example

Here we consider the ODE

QfUg ; UUxxx+ 2UxUxx − 3UUx = 0, s108d

which consists of the quadratic terms of the FFCH equation, and also of the ODEs3d. As men-
tioned in Sec. II,p=0 occurs as a possible leading order behavior of solutions of this ODEsin
addition to p= ±1 and corresponding to these the series obtained from those of FFCH via the
reduction] /]t=0 andk=0d. For this choicep=0, we obtain the recursion relation

js j2 − 3dUj = Rj , s109d

and so we have resonances atj =0, ±Î3. Corresponding to this leading order behavior, we find that
we can construct a Dirichlet series solution of the form

U = U0 + UÎ3e
Î3x + U2Î3e

2Î3x + U3Î3e
3Î3x

¯ , s110d

whereU0 and UÎ3 are arbitrary constants, and with all remaining coefficientssconstantsd being
determined in terms of these two. It then follows, from the discrete symmetryx→−x of the ODE
s3d, that we also have a Dirichlet series solution

U = U0 + U−Î3e
−Î3x + U−2Î3e

−2Î3x + U−3Î3e
−3Î3x + ¯ , s111d

this having the same coefficients as the Dirichlet series solutions110d.
However, in order to construct a solution of our third order ODE containing three arbitrary

constants—one for each resonance—a different approach needs to be used. Thus we consider a
perturbation about the constant solutionU=U0,

U = U0 + eV + e2W+ e3Z + ¯ , s112d

which then gives a sequence of ODEs, the first three of which are
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U0sVxxx− 3Vxd = 0, s113d

U0sWxxx− 3Wxd = 3VVx − 2VxVxx − VVxxx, s114d

U0sZxxx− 3Zxd = 3WVx + 3WxV − 2WxxVx − 2WxVxx − WVxxx− WxxxV. s115d

As a solution ofs113d we take

V = V−Î3e
−Î3x + VÎ3e

Î3x, s116d

where V−Î3 and VÎ3 are two arbitrary constants corresponding to the resonancesj = ±Î3 swe
already have an arbitrary constant corresponding to the resonancej =0 at ordere0d. For this choice
of V, we then take as solution of Eq.s114d

W= W−2Î3e
−2Î3x + W2Î3e

2Î3x, s117d

whereW−2Î3 andW2Î3 are determined as

W−2Î3 = −
1

3

sV−Î3d2

U0
, W2Î3 = −

1

3

sVÎ3d2

U0
, s118d

and where, since we already have three arbitrary coefficients ins112d, we do not include any
further such here. Then as a solution of Eq.s115d we take

Z = Z−3Î3e
−3Î3x + Z−Î3xe−Î3x + ZÎ3xeÎ3x + Z3Î3e

3Î3x, s119d

whose four coefficients, determined in terms ofU0, V−Î3 andVÎ3, are in the general case nonzero.
We note that, formally, since at each order ofe we need to introduce higher powers ofe±Î3x, our
perturbation results in a doubly infinite series. We see from the above that, at ordere3, we need to
introduce powers ofx into s112d.

2. A PDE example

We now consider the following nonsemilinear PDE:

RfUg ; UxxxxUt + 2UxxxUxt − UxxUt − 2UxUxt = 0, s120d

which corresponds to the reduction] /]t=0 swith y then relabelled astd of Eq. s82d. In the absence
of additional linear terms, in addition top= ±1 and the corresponding series obtained by reduction
from those in Sec. V B,p=0 is a possible leading order behavior. Corresponding to this choice
p=0, we obtain the recursion relation

j2s j2 − 1dUj = Rj , s121d

and so the resonancesj =0,0, ±1.Proceeding as in the previous section, we take

U = U0 + eV + e2W+ ¯ , s122d

i.e., we make a perturbation about the solutionU=U0std. We thus obtain a sequence of PDEs, the
first two of which are

U08sVxxxx− Vxxd = 0, s123d

U08sWxxxx− Wxxd = − VxxxxVt − 2VxxxVxt + VxxVt + 2VxVxt. s124d

As solution of the first of the above, we take
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V = V−1stde−x + V0stdx + V1stdex, s125d

whereV−1, V0, andV1 are three arbitrary functions oft, and as solution of the second

W= W−1stdxe−x + W0stdx2 + W1stdxex, s126d

where

W−1 =
V0V−18

U08
, W0 = −

V0V08

U08
, W1 =

V0V18

U08
. s127d

Thus we have four arbitrary functions oft sU0, V−1, V0, andV1d, one corresponding to each of the
resonancesj =0,0, ±1. We seethat for this example, consideration of the casep=0 leads to the
introduction of powers ofx in our perturbation expansion, basically because of the double reso-
nance atj =0. Given that the PDEs120d is completely integrable—it has the Lax pair

cxx = 1
4f1 − lsUxxx− Uxdgc, s128d

ct = 1
2lUtcx − 1

4lUxtc, s129d

—this then implies that needing to modify such a formal series solution with powers ofx is not
enough to claim non-integrability. However, as we will see in Sec. VII, for some PDEs we can
establish a direct link between needing to modify asstandardd Dirichlet series solution in this way
and their apparent nonintegrability.

VII. DISCUSSION: DIRICHLET SERIES AND INTEGRABILITY

One of the main aims of this paper has been to explore, for nonsemilinear PDEs, the connec-
tion between integrability and Dirichlet series solutions. Our motivation was the work in Refs. 6
and 7 where not only was it observed that the FFCH and DP equations admit standard Dirichlet
series solutions, but also that, for certain classes of PDEs, the only equations admitting such
solutions were transformable back onto the only known completely integrable PDEs within those
classes. Here we have given other examples of completely integrable nonsemilinear PDEs, both in
1+1 and multidimensions, which admit standard Dirichlet series solutions.

However, we have also seen that nonintegrable PDEs may admit Dirichlet series solutions;
that is, the admission of Dirichlet series solutions is not sufficient for integrability. This result
might be as expected, since such series—even if convergent—provide only partial information
about the behavior of solutions. Thus, the techniques explored here should be regarded as being
complementaryto known techniquesse.g., Painlevé analysis, and the use of hodograph transfor-
mationsd. fThe ODEs3d, for example, while admitting standard Dirichlet series solutions, also has
branched solutions; we have the weak Painlevé expansionV=sx−x0d2/3o j=0

` Vj /3sx−x0d j /3, wherex0,
V0, andV2/3 are arbitrary. Consideration of the function

U =
1

sex − Ad1/2

is also instructive.g
We have also seen, using a perturbative approach, that generalized Dirichlet series solutions of

integrable PDEs may require modification by the inclusion of powers ofx; examples include Eq.
s120d, as well as, by implication from the results of Sec. VI D 1, the FFCH equation. Strictly
speaking, this tells us that the admission of Dirichlet series solutionssallowing here, as we should,
such more general formulations within our definitiond is not a necessary condition for integrability.
Of course, there is no reason to expect a simple relationship between integrability and Dirichlet
series, especially given the well known problems that equations of the type being considered here
present for other integrability tests, e.g. for the Painlevé tests. However, it may also be that we
should, as in the previous papers on classification using Dirichlet series,6,7 restrict our attention to
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standard Dirichlet series; it is certainly the case that in Refs. 6 and 7 the use of standard Dirichlet
series isolated what were essentially the FFCH and DP equations.sOf course, a complete classi-
fication of integrable equations in the classes considered in Refs. 6 and 7 remains an open
problem.d

We conclude this section with an example where modification by powers ofx of a standard
Dirichlet series solution can be directly related to the apparent nonintegrability of a PDE, although
of course in general the integrability of a nonsemilinear PDE not admitting such Dirichlet series
solutions remains an open question. This PDE is thex-derivative of the FFCH equation,

SfUg ; sUUxxx+ 2UxUxx − 3UUx + Uxxt − Ut − 2kUxdx = 0, s130d

and has for the leading order behaviorsU,U0stde±x the recursion relations

js j ± 2d2s j ± 3dUj = Rj , s131d

and so resonancesj =0,72,72,73. We know from our results for the FFCH equation that,
corresponding to the leading order behaviorU,U0stde−x, the PDEs130d has a standard Dirichlet
series solution

U = e−xo
j=0

`

Ujstdejx, s132d

with U0, U2, andU3 arbitrary. However, because of the double resonance atj =2, this solution
needs to be modified. As a solution of Eq.s130d we therefore obtain

U = e−xsU0std + U1stdex + sU2,0std + U2,1stdxde2x + sU3,0std + U3,1stdxde3x

+ sU4,0std + U4,1stdxde4x + sU5,0std + U5,1stdx + U5,2stdx2de5x + ¯ d, s133d

where nowU0, U2,0, U2,1, andU3,0 are arbitrary. Thus we see that we need to modify our standard
Dirichlet series solution by including powers ofx. fSimilarly for the series corresponding to the
leading order behaviorU,U0stdex; alternatively we may use ins133d the discrete symmetry
sx,td→ s−x,−td of Eq. s130d.g

The extra resonance atj =2, when compared to the leading order behaviorU,U0stde−x of the
FFCH equation, arises because of the overallx-derivative in Eq.s130d. Meanwhile, the travelling
wave reductionUsx,td=Wszd−m, z=x+mt, yields the ODE

WWzzz+ 2WzWzz− 3WWz − aWz + b = 0, s134d

where the constanta is defined asa=2k−2m, andb is a constant of integration. A nonlinear time
transformationsfollowing Ref. 32d then yields an ODE which does not have the Painlevé property,
in contrast to the case of the FFCH equation itself discussed in Ref. 32. This is then suggestive of
the nonintegrability of Eq.s130d; for details see Ref. 31, where a 2+1-dimensional version of this
PDE is considered. The reason why the ODE obtained from Eq.s134d does not have the Painlevé
property is because of the constant of integrationb, which arises precisely because of the overall
x-derivative in Eq.s130d. Thus we see that the inclusion of powers ofx in the standard Dirichlet
series solutions132d—to obtain the modified Dirichlet series solutions133d—can be directly
related to the apparent nonintegrability of the PDEs130d. It is worth recalling here that the
x-derivative of the completely integrable modified Korteweg–de Vries equation,sUt−Uxxx

+6U2Uxdx=0, fails the Weiss–Tabor–Carnevale Painlevé test,16 and so is presumably noninte-
grable.

VIII. CONCLUSIONS

Our main conclusions are as follows:
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s1d For certain classes of equations, there is a strong connection between standard Dirichlet
series solutions and integrability. This follows from Refs. 6 and 7, and from our results for
the integrable and nonintegrable equations discussed here.

s2d This connection is, however, difficult to unravel: standard Dirichlet series solutions are not
sufficient for integrability and, despite the results presented here, we remain at this stage
reluctant to claim necessity.

s3d For some equations, Dirichlet-type series give useful representations of solutions. However,
information about singularities enters such series in a nontrivial way. Thus we regard our
approach as complementary to known techniques, e.g., Painlevé analysissto study singulari-
tiesd or hodograph transformations.
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We study the dynamics of a one-dimensional Bloch electron subjected to a constant
electric field. The periodic potential is supposed to be less singular than thed-like
potentialsDirac combd. We give a rigorous proof of Ao’s result that for a large class
of initial conditionsshigh momentum regimed there is no localization in momentum
space. The proof is based on the mathematical substantiation of the two simplifying
assumptions made in physical literature: the transitions between far away bands can
be neglected and the transitions at the quasicrossing can be described by Landau–
Zener-type formulas. Using the connection between the above model and the driven
quantum ringsDQRd shown by Avron and Nemirovski, our results imply the in-
crease of energy for weakly singular such DQR and appropiate initial conditions. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1870732g

I. INTRODUCTION

The dynamics of Bloch electronssi.e., electrons subjected to a periodic potentiald in the
presence of a homogeneous electric field is among those topics that appeared since the beginning
of the quantum theory of the solid state physics but are still alive today for both mathematical and
physical reasons; in particular the emergence of superlattices leads to interesting physicsssee, e.g.,
Ref. 31d.

The dynamics of an electron in one dimension subjected to a periodic potentialVpersxd and a
constant electric fieldE=−eF is described by the time-dependent Schrödinger equation,

i"
]c

]t
sx,td = HSWcsx,td = S−

"2

2m

d2

dx2 − eFx+ VpersxdDcsx,td, s1.1d

whereHSW is the so-called Stark–Wannier Hamiltonian.
There is a large body of mathematically oriented literature about spectral properties of the

Stark–Wannier Hamiltoniansespecially concerning the Stark–Wannier ladder problem; see Refs.
8,9,10,22,24 and references thereind. In particular the spectrum has been proved to be absolutely
continuous for twice differentiable potentials7 and recently, results about the nature of the spec-
trum were obtained for more singular potentials.4,13,16,17,26

On the contrary, at the rigorous level there are by far fewer results concerning the dynamics
generated byHSW. Of course, as well known, the results about spectral properties ofHSW lead to
results about dynamics but they either concern finitesalbeit longd intervals of time24,25or are only
qualitative. As an example we mention the results of Avron and Nemirovski5 on driven quantum
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rings. They first proved the nice result that there is a close connection between driven quantum
rings and Stark–Wannier Hamiltonians. Then, using this connection and the fact mentioned above
that the spectrum ofHSW is absolutely continuous for twice differentiable potentials they proved
that the energy of a smoothly driven quantum ring grows indefinitely ast→` for arbitrary initial
conditions.

At the physical level the dynamics generated byHSW has been thoroughly studiedsusing the
temporal gauge representationd both by analytical and numerical methods. Due to the difficulty of
the problem two main assumptions are made.

s1d The only interband transitions considered are the ones between neighboring bandssthe
so-called Zener tunneling process33 through avoided crossingsd; all the others are considered
sufficiently small to be neglected.

s2d The transition probabilities can be computed approximatively via Landau–Zener type
formulae.

Based on earlier developements,12 the consequences of these assumptions were exhaustively
discussed by Ao.2 More precisely, writing the evolution at arbitrary times as a product of evolu-
tions over half Bloch periods and using for the last ones the “scattering matrix” between adjacent
bands given by Blatter and Browne12 he reduced the original problem to a discrete dynamics,
amenable to numerical and analytical study. The main result coming from his analysis is that for
potentials more regular than the Dirac comb and a large class of initial conditions there is a
propagating front for the Bloch electronsin other words it will escape at infinityd. The Dirac comb
is a critical border, one could have either propagation or localizationsrespectively, pure point,
continuous spectrum spectrum or even mixed casesd depending upon the electric field strength and
some resonance conditions.

At the rigorous level the existence of a propagating frontswith quantitative estimatesd for a
large class of initial conditions as well as some spectral consequences has been recently proved in
Ref. 3 for potentials more regular than theLloc

2 class.
The aim of this paper is to provide a rigorous justification of the simplifying assumptionss1d

ands2d above in order to substantiate from the mathematical point of view at least a part of Ao’s

analysis. We do it for a class of periodic potentials whose Fourier coefficients,V̂snd, satisfy

uV̂sndu,constunu−r for all r .0. Notice however that the results of Secs. III and IV are even valid
for r .−1

2.
The need for a rigorous control comes from the fact that even if the errors involved in the

assumptionss1d ands2d are “small” over a half Bloch period they acummulate during a long time
evolution to the point of making irrelevant the approximate computation based on the discrete
dynamics.

The problem turned out to be fairly complex for two reasons. First we are dealing with
singular periodic potentials which leads to a definition in the form sense of the gauged Hamil-

tonian H̃SW and second, we want to control the evolution over infinite intervals of time which
demands a very good control of the errors involved.

The results in this paper allows us to prove the existence of a propagating frontswhich in turn
implies the existence of continuous spectrum forHSWd up to the Dirac combfwhich corresponds

to V̂snd=1 and is known as notoriously difficultg. Actually the Dirac comb case remains open,
although it is not clear for us whether the present approach could provide as well some results in
this case.

The plan of the paper is as follows. Section II contains the preliminaries: the direct integral
representation of the Stark–Wannier Hamiltonian in the temporal gauge, the periodicity in time
properties of the fiber Hamiltonian and the reduction to the one Bloch period. All that is done for

H̃SW defined as a quadratic form sum. Section II contains in addition a key technical estimate
sLemma 2.3d used many times in the following sections. Since the proof is technical and somehow
long it was moved to the Appendix.

Section III contains the first main result of our papersTheorem 3.1d saying that the transitions
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over a half Bloch period, between far-away bandsfneglected by assumptions1d in the physical
literatureg can be controlled by adiabatic techniques. The idea is that in adiabatic perturbation
theory the relevant parameter is« /D, where« is the slowness parameter andD is the spectral gap.
In our case it is the gap that grows with energy making thus the adiabatic machinery effective.

After the far-away decoupling in Sec. III we come to the “in-band” dynamics, i.e., to Zener
transitions through quasicrossings at high energies. The task of computing this dynamics has been
taken again and again in the physical literature. It consists in solving a 232 system of first order
ordinary differential equations over a finite interval of time. There are two problems here. The first
is that the coefficients are taken as given by a low order almost degenerate pertubation theory
without any control of the reminder. Second, the obtained “Zener model” is solved over an infinite
period of time. We cope with the first problem by using the reduction theory in Sec. IV to obtain
an effective HamiltoniansTheorem 4.1d. Then we integrate the system over one-half period by the
use of Dyson series; we compute the first two terms in Sec. V and estimate the remainder in the
Appendix. The resulting “transfer matrix” is given in Theorem 5.1. We expect the results men-
tioned above to give a lot of information on spectral and dynamical properties of the Stark–
WanniersSWd and driven quantum ring models for fairly singular potentials. As an example in
Sec. VI the results in the preceding sections are assembled to prove the Ao’s statement about the
the existence of a propagating front. As direct side consequences we obtainssee Corollary 6.4d that
for r .0 the continuous spectrum ofHSW is not empty ssee however the recent paper of
Perelman26 for a better result in this directiond, that for a large class of initial conditions the energy
of the DQR increases liket2 ssee Corollary 6.5d and that there is no localization in momentum
spacessee Corollary 6.6d.

In the Appendix we state for convenience the Sz-Nagÿ transformation matrix. In order to
make the reading of the paper easier we start each section by simply stating the theorems and
lemmas, their proofs being provided later.

II. PRELIMINARIES

As already said in the introduction we are interested in the evolution given by the Stark–
Wannier operator. For simplicity we normalizee="=2m=1. Moreover since the results we are
going to prove along the paper do not depend upon the electric field strength, we setF=1.
Accordingly the Stark–Wannier Hamiltonian writes

HSW = −
d2

dx2 − x + Vper, s2.1d

whereVper is a real periodic potential with periodicitya=2p. Under these assumptions the quan-
tity 2p" /aF, the so-called Bloch period, is equal to 1.

Let us define

ŨSWst,sd ª Gstde−ist−sdHSW
Gssd* , s2.2d

whereGstd is the temporal gauge,

Gstdcsx,td ª e−ixtcsx,td = :c̃sx,td. s2.3d

Actually Gstd has the role of a boost to a free falling frame that eliminates the field. Then using
s2.2d and s2.3d one has by direct computation,

i
d

dt
ŨSWst,sd = SS− i

d

dx
+ tD2

+ VpersxdDŨSWst,sd = :H̃SWstdŨSWst,sd.

As is well known the periodicity ofVper allows a direct integral representation forH̃SWstd via the
Fourier–Bloch transform28 which maps unitarily the spaceL2sRd onto L2sf0,1d ,dk, l2sZdd,
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sScdsk,nd =
1

Î2p
E

0

2p

e−inxHo
gPZ

e−iksx+2pgdcsx + 2pgdJdx. s2.4d

Note thatsScdsk,nd=sFcdsk+nd whereF is the Fourier transform. In this representationH̃SWstd
reads as

SH̃SWstdS* =E
f0,1d

%

Hsk,tddk, s2.5d

with the fiber Hamiltonian

Hsk,td ª H0sk,td + V. s2.6d

We remark thatHs0,td coincide with the Hamiltonian of the DQR when written in the Fourier
representationssee, e.g., Ref. 5d so all the results below on the evolutionUst ,sd, generated by
Hs0,td apply ssee the Corollary 6.5 belowd to the DQR problem. The unperturbed Hamiltonian
H0sk,td has a simple spectral representation

H0sk,td = o
nPZ

En,0sk,tdPn,0skd, s2.7d

where

En,0sk,td = sn + k + td2 s2.8d

andPn,0skdªPn,0 is the projection on thenth vector,wn, from the canonical basis inl2sZd,

wn,0smd = dn,m. s2.9d

The perturbationV is given by the following convolution inl2sZd:

sVfdsk,md = o
nPZ

V̂sm− ndfsk,nd, s2.10d

V̂snd being the Fourier coefficients ofVper. SinceVper is real we haveV̂snd=V̂
¯s−nd. Moreover we

can chooseV̂s0d=0 sthis amounts for a shift in the energy scaled. We characterize different classes
of perturbations by the norm

iVir ª sup
nPZ

knlruV̂sndu , `, knl ª Î1 + n2 r P R. s2.11d

Notice that whenr gets smaller and smaller,V̂snd are allowed to decrease slower henceVpersxd is
more and more singular. ActuallyVpersxd is to be considered as a tempered distribution on the
one-dimensional torusT such that its Fourier series satisfiesiVir ,`. For r .0, Vpersxd is realized
as an usual function whiler =0 corresponds tod-like potentials. Forr .

1
2, Vpersxd is square

integrable over the unit cell, and then as well known,28 V is H0sk,td bounded with relative bound
zero. As a consequence, by the Kato–Rellich theorem,28 Hsk,td is self-adjoint on thestime inde-
pendentd domain ofH0sk,td:

DsH0sk,tdd = H2 = hfsnduknl2fsnd P l2sZdj. s2.12d

In addition, the existence of a strongly continuous evolutionUsk; t ,sd, generated byHsk,td is
assured by standard resultsssee Ref. 32 and Theorem X.70 in Ref. 27d. We are mainly interested
in the case of more singular potentials corresponding tor ø

1
2 and here the problem is more

involved since as one can easily seeftake, for example,V̂snd=knl−1/2g V is no moreH0sk,td
bounded. Notice that the time independent form domain ofH0sk,td is QsH0sk,tdd=H1
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=hfsnd u knlfsndP l2sZdj. Then one can use the theory of Hamiltonians defined as quadratic
forms.27 More precisely, from

R0sz,k,td ª o
nPZ

Pn,0

En,0sk,td − z
s2.13d

let us define

uR0sz,k,tdu1/2 = o
nPZ

Pn,0

uEn,0sk,td − zu1/2 s2.14d

and

R0sz,k,td1/2 = o
nPZ

sgnsEn,0sk,td − zdPn,0

uEn,0sk,td − zu1/2 . s2.15d

ThenR0sz,k,td=R0sz,k,td1/2uR0sz,k,tdu1/2. The following operator, defined forz¹ssH0sk,tdd will
appear many times along the paper:

Ksz,k,td ª uR0sz,k,tdu1/2VR0sz,k,td1/2. s2.16d

The fact thatV is H0sk,td-bounded in the form sense with relative bound zero is implied by the
following lemma.

Lemma 2.1: Let r.−1
2. Then uniformly in t and k,

lim
a→`

iKs− a2,k,tdi = 0. s2.17d

As a consequence one can use the KLMN theorem27 to defineHsk,td as a form sum with form
domainH1. The associated quadratic form is

H1 { f → o
n

usn + k + tdfsk,ndu2 + o
m,nPZ

V̂sm− ndf̄sk,mdfsk,nd. s2.18d

Due to Lemma 2.1 one can write a useful formula forRsz,k,tdª sHsk,td−zd−1. Indeed, for suffi-
ciently largea

Rs− a2,k,td = R0s− a2,k,td1/2s1 + Ks− a2,k,tdd−1uR0s− a2,k,tdu1/2, s2.19d

one has by analytic continuation

Rsz,k,td = R0sz,k,td1/2s1 + Ksz,k,tdd−1uR0sz,k,tdu1/2. s2.20d

SinceuR0sz,k,tdu1/2 is compact, it follows froms2.19d thatRsz,k,td is compact which impliesssee
Ref. 28d that the spectrum ofHsk,td is discrete. In what concerns the evolutionUsk,s,td generated
by Hsk,td, as a corollary of Theorem 2.27 in Ref. 29 one has the following result assuring the
existence ofUsk;s,td in the weak sense.

Lemma 2.2: LetH−1 denote the space of continuous linear forms onH1. Then for every
fsk,0dPH1 it exists a unique functionfsk, ·d :R→H1 such that

sid R{ t→ sfsk,td ,cd is continuous for anycPH−1,
sii d for every fPH1,

1

i

d

dt
sfsk,td, fd + sfsk,td,Hsk,tdfd = 0.

siii d The map Usk,t ,sd :fsk,sd→fsk,td is isometric and its extension by continuity is unitary in
l2sZd.
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From s2.2d and s2.5d and Lemma 2.2 we can write the following formula for the Stark–
Wannier evolution

e−ist−sdHSW
= Gstd*S*E

f0,1d

%

Usk,t,sddk SGssd, s2.21d

so the study ofe−ist−sdHSW
is reduced to the study of the family of evolutionsUsk,t ,sd in l2sZd

generated byHsk,td, and the rest of the paper will be devoted to this problem. Froms2.6d–s2.10d
it follows that Hsk,td=Hs0,k+ td and then

Usk,t,sd = Us0,k + t,k + sd, s2.22d

which means that one can restrict the analysis to the fiberk=0, and from now on we omit to write
k when it is taken to be zero, e.g.,Hsk=0,td=Hstd, En,0sk=0,td=En,0std, etc. The next remark is
that althoughHstd is not periodic int there is a hidden periodicity. More precisely ifT is the shift
operator inl2sZd,

sTcdsnd = csn − 1d s2.23d

then by direct computation one can see that

THsk,t + 1dT* = Hsk,td, s2.24d

which in turn implies

Ust + 1,s+ 1d = T*Ust,sdT. s2.25d

The analysis ofUst ,sd can be restricted to one period. We take the basic period to be the union of
two half-periods,

t P I0 ø I1, I0 = f− 1
4, 1

4d, I1 = f 1
4, 3

4d . s2.26d

Let us consider now in more detail the spectral properties ofH0std andHstd. We remark that when
tP I0ø I1, H0std has degeneracies at the pointst=0 andt= 1

2. Actually the splitting of one period
into two half-periods is due to the existence of two points per period whereH0std has degenera-
cies. Since the latter play a key role in the dynamicssdue to the Zener transitionsd the above
structure suggests to describessH0stdd inside I l, l =0,1 as aunion of pairs of eigenvalues that
cross att=0 andt= 1

2. We definessee Fig. 1d

sm,0std ª Em−1,0std ø E−sm−1d,0std for mù 1, t P I0, s2.27d

s̃m,0std ª Em−1,0std ø E−m,0std for mù 1, t P I1, s2.28d

so thatssH0stdd=ømù1sm,0std, ssH0stdd=ømù1s̃m,0std on I0 and I1, respectively. An alternative
way of labelling the eigenvalues ofH0std is to count them in the increasing order

E1
0std ø E2

0std ø E3
0std ¯ , t P R. s2.29d

Of course the two labellings are related, for a fixeda and a givent there exists annastd such that

Ea
0std = Enastd,0std andPa

0std = Pnastd,0. s2.30d

Let tPf−1
2 ,0d+sN/2d with N=0,1,2, . . ..Then the correspondence betweena andnastd is given

as follows:
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nastd =5
a − N

2
if N anda have the same parity,

−
a + N − 1

2
if N anda have different parities.6 s2.31d

With this labelling one has

s1,0std = E1
0std, sm,0std = E2m−2

0 ø E2m−1
0 for t P I0, s2.32d

s̃m,0std = E2m−1
0 ø E2m

0 for t P I1. s2.33d

The spectral projections ofH0std corresponding tosm,0std and s̃m,0std are denotedQm,0 and

Q̃m,0,

Q1,0= P0,0, Qm,0 = Pm−1,0+ P−sm−1d,0 for t P I0, s2.34d

Q̃m,0 = Pm−1,0+ P−m,0 for t P I1. s2.35d

By construction, for anym=1,2, . . . andtP I0, sm,0std are well separated. Similarly, fortP I1

s̃m,0std are well separated,

inf
tPI0

distssm,0std,sm+1,0stdd = m− 1
2 ,

inf
tPI1

distss̃m,0std,s̃m+1,0stdd = m. s2.36d

Moreover, at the end of the intervalI0, the two eigenvalues composingsm,0std fwith the exception
of s1,0std which consists in just one eigenvalueg are well separated, e.g.,

FIG. 1. The first eigenvalues of the free HamiltonianH0std as a function of time and the horizontal linesdm,d̃m used in
Lemma 2.3. The intervalsI0 and I1 are also marked.
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E2m−1
0 s− 1

4d − E2m−2
0 s− 1

4d = m− 1. s2.37d

The same is true for the two eigenvalues composings̃m,0std. We come now to the spectral prop-
erties ofHstd.

SinceKsn+ 1
2 ,td tends to zero asn tends to infinity, uniformly with respect tot the analytic

perturbation theory of typeB, see Ref. 15, Chap. VII, works here as long asr .−1
2. More precisely

if we label the eigenvalues ofHstd in increasing orderEastd, a=1, . . . then lima→`sEastd
−Ea

0stdd=0. In addition fortÞ0, 1
2, when all the eigenvalues are nondegenerate the corresponding

spectral projectionsPastd are close the unperturbed ones, lima→`iPastd−Pa
0stdi=0. In the follow-

ing wastd denotes the eigenfunction ofHstd corresponding to the eigenvalueEastd.
Let

Gm = hsm− 1
2d2 + iyuy P Rj, G̃m = hm2 + iyuy P Rj m= 1,2, . . . s2.38d

be vertical lines in the energy plane. In what follows, each time a quantity will be bounded from
above by a positive constant, this will be denoted byC, while for the lower bounds we denote it
c.

The main estimates, used many times along the paper are contained in the following.
Lemma 2.3: Let A,`. Then for each r.−1

2 there exists a constant CV independent of m and
a positive integer Nr such that for any m.Nr the following estimate holds:

sup
tPI0

S sup
zPGm

iKsz,tdi +E
Gm

iR0sz,tdi · iKsz,tdidyD + sup
tPI1

S sup
zPG̃m

iKsz,tdi +E
G̃m

iR0sz,tdi · iKsz,tdidyD
+ max

t=−1/4,1/4
S sup

zPGmøG̃m

iKsz,tdi +E
GmøG̃m

iR0sz,tdi · iKsz,tdidyD ø CVbsmd, s2.39d

where

bsmd ª
log2k4m− 1l
kml1+minh0,2rj . s2.40d

Also one has

lim
y→`

sup
tPI0

sup
xøA

iKsx + iy,tdi = 0. s2.41d

Let m.1, dmª sm− 1
2

d2, d̃mªm2 and gm, g̃m be closed finite contours that intersect the real axis

in and only in dm, dm−1 and d̃m, d̃m−1 [for example, gm can be a square of length8sm−1d]. Then
there exist an absolute constant C such that

sup
tPI0

sup
zPgm

iKsz,tdi ø CiKsdm,0di, s2.42d

sup
tPI1

sup
zPg̃m

iKsz,tdi ø CiKsd̃m,0di. s2.43d

Due to the above lemma we are able to give upper bounds of the typesCVkbsmdldN. In the
following we shall say that a quantityA is of order sOrskbsmdldNd if it obeys the estimateiAi
ø sCVkbsmdldN. The subscriptr reminds us the dependence oniVir. We notice that the third line in
s2.39d follows at once from the estimates of the first and the second lines. As we have said, the
proof of the lemma is postponed to the Appendix.

Now we are ready to spell the spectral properties ofHstd. We shall consider onlytP I0; the
results and the proofs fortP I1, with the appropiate identifications, are the same. The first remark
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is that there exists anm* such that for anym.m* the norm ofKsz,td is smaller than1
2. Second,

for all tP I0 dmPrsHstdd and for all tP I1 d̃mPrsHstdd. Moreover,d̃mPrsHs−1
4

dd.
Corollary 2.4: Let m.m* . Then

minh inf
tPI0

distsdm,ssHstddd, inf
tPI1

distsd̃m,ssHstdddj ù cm. s2.44d

Let Qmstd the spectral projection associated tosmstd=sdm−1,dmdùssHstdd. Then one has the
following.

Corollary 2.5: For m sufficiently large or V small enough

sup
tPI0

iQmstd − Qm,0i ø CVbsmd. s2.45d

Let for a=2m−2,2m−1 fsees2.31dg,

Pa
0s− 1

4d = Pnas−1/4d,0, wa
0s− 1

4d = wnas−1/4d,0, s2.46d

and P2m−2s−1
4

d, P2m−1s−1
4

d the spectral projections ofHs−1
4

d corresponding to the intervals

sdm−1,d̃m−1d and sd̃m−1,dmd, respectively. Then the following estimate holds.
Corollary 2.6: Leta=2m−2,2m−1. Then for m.m* ,

iPas− 1
4d − Pa

0s− 1
4di ø CVbsmd. s2.47d

For sufficiently largem, by Sz-Nagÿ lemmassee the Appendixd, Pas−1
4

d andPa
0s−1

4
d are unitarily

equivalent so thatHs−1
4

d has nondegenerate eigenvalues insdm−1,d̃m−1d and sd̃m−1,dmd, respec-
tively. They are denoted byE2m−2s−1

4
d andE2m−1s−1

4
d. Moreover, ifNas−1

4
d is the Sz-Nagÿ trans-

formation corresponding to the pairPas−1
4

d, Pa
0s−1

4
d then

was− 1
4d = Nas− 1

4dwa
0s− 1

4d s2.48d

are eigenvectors ofHs−1
4

d corresponding toEas−1
4

d. We say that an eigenbasishwas−1
4

dj
a=1

`
of

Hs−1
4

d is a canonical one if for sufficiently largea ssuch that all the above construction worksd
was−1

4
d is given bys2.48d. In the same way one constructs canonical bases fort= 1

4. For tlª−1
4

+sl /2d, l =2,3, . . . thecanonical bases are provided byfsees2.24dg

Twastl + 1d = wastld. s2.49d

Before going to the proofs let us write the reduction to one period formulas2.25d in the canonical
basis.

Lemma 2.7: Let l be even, t0=−1
4, tl = t0+sl /2d. Then fora and b sufficiently large

kwastl + 1d,Ustl + 1,tldwbstldl = kwast2d,Ust2,t0dwbst0dl. s2.50d

Now we present the proofs for the lemmas and corollaries given above.
Proof of Lemma 2.1:We estimate the Hilbert–Schmidt norm ofKs−a2,k,td,

iKs− a2,k,tdi2 ø iKs− a2,k,tdiHS
2 ø iVir

2 o
m,nPZ

1

sm+ k + td2 + a2km− nl−2r 1

sn + k + td2 + a2

ø iVir
2SÎ5

2
Dmaxh−2r,0j

o
mPZ

kmlmaxh−2r,0j

sm+ k + td2 + a2 ,

where in the last line we used the inequality
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km− nl−2r ø SÎ5

2
kmlknlDmaxh−2r,0j

. s2.51d

Then the above series is convergent forr .−1
2 and the lemma is proved using the Lebesque

dominated convergence theorem. h

Proof of Corollary 2.4: Rsdm,td can be written as

Rsdm,td = uR0sdm,tdu
1
2s1 + Ksdm,tdd−1R0sdm,td

1
2 . s2.52d

Taking into account that distsdm,ssH0stdddùcm one obtains froms2.52d,

iRsdm,tdi ø 2iuR0sdm,tdu1/2i · iR0sdm,td1/2i = 2iR0sdm,tdi ø 2sCmd−1, s2.53d

which implies inftPI0
distsdm,ssHstdddùcm. The proof of the inequality distsd̃m,ssHs−1

4
ddd

ùCm/2 is similar. h

Proof of Corollary 2.5:By perturbation theory

Qmstd − Qm,0 = −
i

2p
E

gm

R0sz,td1/2Ksz,tds1 + Ksz,tdd−1uR0sz,tdu1/2 dz.

Taking the norms, using thatrgm
iR0sz,tdidzøC the estimates2.45d follows from s2.42d and

s2.39d.
Proof of Corollary 2.6:Similar to the proof of Corollary 2.5. h

Proof of Lemma 2.7:Direct computation usings2.25d, s2.48d, ands2.49d. h

III. THE ADIABATIC THEOREM

As already said in the introduction our first task is to show that at high energies the most
important “interband transitions” during a half Bloch period are the so-called Zener transitions,
namely the ones between neighboring bandsfe.g., onI0 betweenE2m−2std andE2m−1stdg. This is
nothing else but to claim that fort ,sP I0 the subspaceQmstdH is almost invariant under the

evolutionUst ,sd. In this section we construct adiabatic evolutionsUm
Ast ,t0d andŨm

Ast ,t1d on I0 and
I1, respectively, satisfying

Um
Ast,t0dQmst0dH = QmstdH, t P I0, s3.1d

Ũm
Ast,t1dQ̃mst1dH = Q̃mstdH, t P I1, s3.2d

and prove that they are close toUst ,t0d andUst ,t1d, respectively. We consider first the half Bloch
period I0 and at the end indicate the changes forI1. Let

Qm
+ std ª o

j=m+1

`

Qjstd, Qm
− std ª o

j=1

m−1

Qjstd, t P I0, s3.3d

and defineHm
Astd by

Hm
Astd ª Hstd − Xmstd ¬ Hstd − iQm

+ stdQ̇m
+ std − iQmstdQ̇mstd − iQm

− stdQ̇m
− std. s3.4d

It turns out ssee the proof of Lemma 3.4 belowd that Xmstd are bounded henceHm
Astd are self-

adjoint onDsHstdd. The adiabatic evolutionUm
Ast ,t0d generated byHm

Astd will be defined as the
solution sin the weak sense, as in Lemma 2.2d of the equation
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i
d

dt
Um

Ast,t0d = Hm
AstdUm

Ast,t0d, Um
Ast0,t0d = 1. s3.5d

As in the case of standard adiabatic theorem of quantum mechanics,Um
Ast ,t0d has the intertwining

property

Qmstd = Um
Ast,t0dQmst0dUm

Ast,t0d* , Qm
± std = Um

Ast,t0dQm
± st0dUm

Ast,t0d* , s3.6d

i.e., the families of subspacesQmstdH, Qm
± stdH are invariant underUm

Ast ,t0d. The proof is standard

sKrein–Kato lemma15,18,23d. For tP I1 one constructs in a similar wayŨm
Ast ,t1d by replacingQjstd

by Q̃jstd. The main result of this section is to show thatUm
Ast ,t0d andUst ,t0d are close.

Theorem 3.1:For any r.−1
2 and m sufficiently large oriVir small enough it holds,

sup
tPI0

iUst,t0d − Um
Ast,t0di ø CVbsmdkml−1, s3.7d

sup
tPI1

iUst,t1d − Ũm
Ast,t1di ø CVbsmdkml−1, s3.8d

where CV is a constant that depends on V and bsmd was introduced in Lemma 2.3.
The basic steps of the proof are the standard ones but we must check the relevant estimates.

Define

Vmst,t0d ª Um
Ast,t0d*Ust,t0d, s3.9d

and notice thatiVmst ,t0d−1i=iUm
Ast ,t0d−Ust ,t0di, so one is left with the estimation of

iVmst ,t0d−1i. Since a direct estimation of

isVmst,t0d − 1d =E
t0

t

ds Um
Ass,t0d*XmssdUm

Ass,t0dVmss,t0d s3.10d

would give ssee Lemma 3.4d a bound of orderOrsbsmdd, which is not accurate enough for the
error estimates in the long time behavior we must follow the proof of the standard adiabatic
theorem6 and make “an integration by parts.” More precisely we have the following.

Lemma 3.2: Xmstd can be written in the form (we omit for simplicity the time dependence),

Xm = fH,Ymg, s3.11d

with

Ym =
1

2p
R

gm
−

dz RszdhQm
−Q̇m

− − Qm
+Q̇m

+Qm
− jRszd +

1

2p
R

gm

dz RszdhQmQ̇m − Qm
+Q̇m

+QmjRszd.

s3.12d

Here gm
− is a closed contour aroundssQm

−Hstdd. Now the integration by parts will give
iVmst ,t0d−1i in terms ofYm.

Lemma 3.3: If t belongs to I0 the following estimate holds:

isVmst,t0d − 1di ø iYmstdi + iYmst0di +E
t0

t

dssiXmssdYmssdi + iẎmssdid, s3.13d

so we are left with verifyings3.11d–s3.13d and to estimate the norms ins3.13d. The basic estima-
tion is contained in the following.

Lemma 3.4: For m sufficiently large
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sup
tPI0

siQ̇mstdi + iQ̇m
− stdi + iQ̇m

+ stdid ø CVbsmd. s3.14d

Notice that sinceQm
+ std=1−Qmstd−Qm

− std, we must only estimateiQ̇mstdi and iQ̇m
− stdi. Taking

Lemma 3.4 for granted we give now the proofs of Lemmas 3.2 and 3.3.
Proof of Lemma 3.2:Since by Lemma 3.4Xmstd is bounded

sup
tPI0

iXmstdi ø CVbsmd s3.15d

and in additionfremember that for an orthogonal projection valued functionEstd EstdĖstdEstd
=0g Xmstd is off-diagonal with respect to the decompositionH=Qm

+ stdH % QmH % Qm
−H one ob-

tains Ymstd as the solution of the commutator equations3.11d by using Theorem 9.3 in Ref. 11.
Actually one can verify thats3.12d solvess3.11d by straightforward computation. h

Proof of Lemma 3.3:We omit for simplicity the indexm and the time dependence. Using the
identity fsees3.11dg

i
d

dt
sUA*

YUAd = UA*
hiẎ − X + fX,YgjUA

and replacingUA*
XUA in s3.10d one has

isV − 1d =E
t0

t

dsH− i
d

ds
sUA*

YUAd + UA*
fX,YgUA + iUA*

ẎUAJV

=E
t0

t

dsH− i
d

ds
sUA*

YUAVd + iUA*
YUAV̇ + UA*

fX,YgUAV + iUA*
ẎUAVJ

= u − iUA*
YUAVut0

t +E
t0

t

ds UA*
hXY+ iẎjUAV

which in norm gives the claimed result. h

Proof of Lemma 3.4:We give detailed calculations only forQ̇m
− std. ComputingQm perturba-

tively, using the identityṘsz,td=−Rsz,tdḢstdRsz,td one has

Q̇m
− std =

i

2p
R

gm
−

dzhR0szdḢ0R0szdVRszd + R0szdVRszdḢRszdj,

where we omited the explicitt dependence. To go further with the estimates we deform firstgm
− to

gm
− sLdªgm−1sLdøgm−18 sLdøgm−19 sLdøg0sLd with

gm−1sLd ª hdm−1 + iyuy P f− L,Lgj, s3.16d

gm−18 sLd ª hx + iL ux P f− L,dm−1gj, s3.17d

gm−19 sLd ª hx − iL ux P f− L,dm−1gj, s3.18d

g0sLd ª h− L + iyuy P f− L,Lgj, s3.19d

and then use the estimates2.41d to show that the only integral that survives fromgm
− in the limit

L→` is the one onGm−1 fnotice that limL→` gm−1sLd=Gm−1g. Using the polar decomposition of
R0szd and the resolvent equation forRszd it follows that
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iQ̇m
− stdi ø

1

2p
R

Gm−1

udzuiR0szdiiKszdi · iuR0szdu1/2Ḣ0R0szd1/2i · is1 + Kszdd−1i +
1

2p
R

Gm−1

udzuiR0szdi

3iKszdi · iuR0szdu1/2Ḣ0R0szd1/2i · is1 + Kszdd−1i2.

We note that the quantityuR0sz,td1/2uḢ0stdR0sz,td1/2 is uniformly bounded onGm−1 snamely this
quantity is bounded in norm by a constantd. Indeed,

sup
tPI0

sup
zPGm−1

iR0sz,td1/2Ḣ0stduR0sz,tdu1/2i = sup
tPI0

sup
yPR

sup
m8PZ

U 2sm8 + td
sm8 + td2 − dm−1 − iy

U ø C.

Then using Lemma 2.3 and the inequalityis1+Kdi−1ø s1−iKid−1 one obtains

sup
tPI0

iQ̇m
− stdi ø CVbsm− 1d. s3.20d

Sincebsm−1døCbsmd we proved the claimed result onQ̇m
− std. The estimate ofQ̇mstd goes along

the same line, by deforming the closed contour aroundssQmstdHd, gm, to Gm−1øGm. The lemma
is now proved. h

We turn now to the estimations of the norms in the right-hand sidesrhsd of s3.13d. For Xmstd
Lemma 3.4 gives

sup
tPI0

iXmstdi ø CVbsmd, s3.21d

while for Ymstd we write

iYmstdi ø
1

2p
siQ̇m

− stdi + iQ̇m
+ stdidE

Gm−1

dziRsz,tdi2 +
1

2p
siQ̇mstdi + iQ̇m

+ stdidE
Gm−1øGm

dziRsz,tdi2.

s3.22d

Now for examplefuse again the estimate ofKsz,td on Gm−1øGmg

sup
tPI0

E
Gm−1øGm

udzuiRsz,tdi2 ø C sup
tPI0

E
Gm−1øGm

udzuiR0sz,tdi2 = sup
tPI0

sup
m8PZ

E
−`

` H dy

fEm8,0std − dm−1g2 + y2

+
dy

fEm8,0std − dmg2 + y2J ø Ckml−1,

which together with Lemma 3.4 gives

sup
tPI0

iYmstdi ø CVbsmdkml−1. s3.23d

Obviously,Ymst0d satisfies the same estimate. To estimateiẎmstdi one observes first that it involves

estimates onQ̈m
− std , Q̈m

+ std, and Q̈mstd. In what concernsQ̈m
− std, we perform all the derivatives

involved and estimate the various terms that appear. After a long but straightforward calculation
one can check that the estimates for these terms involve only powers ofs1+Ksz,tdd−1,

R0sz,td1/2Ḣ0stduR0sz,tdu1/2, and the integral ofiR0sz,td1/2i2·iKsz,tdi on Gm−1 which was already
estimated in Lemma 2.3. The result is

sup
tPI0

iQ̈m
− stdi ø CVbsmd. s3.24d

The same estimate is satisfied byQ̈mstd and then
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sup
tPI0

iẎstdi ø CVbsmdkml−1. s3.25d

The last term to be considered isXmstdYmstd which gives a better estimate

sup
tPI0

iXmstdYmstdi ø CV
2bsmd2kml−1. s3.26d

Collecting s3.13d, s3.21d, s3.23d, s3.25d, and s3.26d one obtains the first estimate from Theorem

3.1. ForŨm
Ast ,t0d the computations and estimations are similar as above, the only difference being

that the contour of integrationG̃m is slightly different, i.e., it is shifted upwards with12 with respect
to Gm. As a consequence all the estimations will be improved with1

2, in the sense thatbsmd
→bsm+ 1

2
d. Thus there is no loss if we write

sup
tPI1

iUst,t0d − Ũm
Ast,t0di ø CVbsmdkml−1. s3.27d

The proof of Theorem 3.1 is done. h

IV. THE ADIABATIC EVOLUTION. THE EFFECTIVE HAMILTONIAN

As shown in Theorem 3.1 the true evolution over the half-periodsI0 and I1 is well approxi-

mated, in the limit of largem, by the adiabatic evolutionsUm
A andŨm

A. The next step is to compute,

up to small controllable errors,Um
A when restricted toQmstdH andŨm

A when restricted toQ̃mstdH.

In what follows we consider explicitly onlyUm
A over I0 and give the similar results forŨm

A over I1.
Before entering the computation ofUm

A let us show that, when restricted toQmstdH, Um
A is

nothing but the simplified dynamics in Ref. 2 obtained by keeping only the couplings between
almost touching bands. Indeed, consider an initial wave functioncmssdPQmssdH, sP I0. Then, as
far astP I0, the adiabatic vectorcm

AstdªUm
Ast ,sdcmssdPQmstdH and it can be written as

cm
Astd = o

j=1

2

cjstdwa j
std, a1 = 2m− 2, a2 = 2m− 1, s4.1d

wherewa j
std are eigenfunctions ofHstd corresponding to the eigenvalues fromssHstdd fone can

assume that fort= t0 or t= t1, wa j
std coincide with the canonical eigenfunctions constructed in Sec.

II g. Plugging the decompositions4.1d into the Schrödinger equation forcm
Astd ssee Sec. IIId,

i
d

dt
cm

Astd = Hm
Astdcm

Astd = sHstd − Xmstddcm
Astd, s4.2d

taking the scalar product withwal
std and using the fact thatXmstd is off diagonal i.e.,

QmstdXmstdQmstd=0, one obtains

i
d

dt
clstd = clstdEal

std + o
j=1

2

xl,jstdcjstd, s4.3d

where

xl,jstd ª − iKwal
std,

d

dt
wa j

stdL s4.4d

which is nothing but the equation given in Ao’s paper.
To computeUm

A amounts then to solve the 232 systems4.3d and this problem has been
considered many timesssee Refs. 2,12,19,20 and references thereind in the physical literature. The
trouble with s4.3d is that xl,jstd are not easy to compute up to a controlled error in the limitm
→` since due to the existence of quasicrossings one must deal with almost degenerate perturba-
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tion theory. To our knowledge the earlier papers take forxl,jstd a low order perturbation theory
formula, but never controlled the rest. We avoid this difficulty by using the reduction theory which
is the standard tool in analytic perturbation theory15 and was as well extended to other contexts, in
particular for adiabatic perturbation theoryssee, e.g., Refs. 21,23 and references thereind. More
precisely, form sufficiently largessee Corollary 2.2d iQmstd−Qm,0i,1 and thenssee the Appen-
dixd one can write the Sz-Nagÿ transformation matrix corresponding to the pairQmstd ,Qm,0,

Qmstd = WmstdQm,0Wmstd* . s4.5d

Then if one defines fort ,sP I0,

Umst,sd ª Wmstd*Um
Ast,sdWmssd, s4.6d

it can be checked by straightforward calculation that

i
dUmst,sd

dt
= siẆmstd*Wmstd + Wmstd*Hm

AstdWmstddUmst,sd s4.7d

and that

fQm,0,Umst,sdg = 0. s4.8d

As a consequence if by definition

Ueff,mst,sd ª Qm,0Umst,sdQm,0 s4.9d

thenUeff,mst ,sd satisfiessas operators inQm,0Hd the equation of motion

i
dUeff,mst,sd

dt
= Qm,0siẆmstd*Wmstd + Wmstd*HstdWmstddQm,0Ueff,mst,sd ¬ Heff,mstdUeff,mst,sd.

s4.10d

Going backwards, onceUeff,mst ,sd is known one can recoverUm
Ast ,sd when restricted toQmst0dH,

Um
Ast,t0dQmst0d = WmstdUeff,mst,t0dWmst0d*Qmst0d. s4.11d

The point of the reduction theory outlined above is that we can computeHeff,mstd up to a controlled
error.

Theorem 4.1:For sufficiently large m,

Heff,mstd = Qm,0sH0std + VdQm,0 + 1
2Qm,0sÊm,1stdV + VÊm,1stddQm,0 + DHeff,mstd, s4.12d

where

Êm,1std ª
1

2pi
R

gm

dz R0sz,tdVR0sz,td s4.13d

and

sup
tPI0

iDHeff,mstdi ø CVkmlbsmd3. s4.14d

We prove the theorem in a few lemmas, each lemma giving an estimate for different terms that
appear inHeff,mstd. In the proofs we shall use several results of the perturbation theory. As well
known,Qmstd has the following expansion:
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Qmstd = o
j=0

N

Êm,jstd + Em,N+1std, s4.15d

with

Êm,jstd ª
s− 1d j i

2p
R

gm

dz R0sz,tdsVR0sz,tdd j , s4.16d

Em,jstd ª
s− 1d j i

2p
R

gm

dzsR0sz,tdVd jRsz,td. s4.17d

Using the identityQmstd=sQmstdd2 one can easily check the following relations:

Qm,0Êm,1stdQm,0 = 0, s4.18d

Qm,0Êm,2stdQm,0 = − Qm,0Êm,1
2 stdQm,0, s4.19d

fH0std,Êm,1stdg = − fV,Qm,0g. s4.20d

Moreover,Em,jstd and its derivatives obey the estimates

sup
tPI0

iEm,jstdi ø CVsbsmdd j , s4.21d

sup
tPI0

iĖm,jstdi ø CVs j + 1dsbsmdd j . s4.22d

To sees4.21d we deform the contourgm into Gm−1øGm and write

sup
tPI0

iEm,jstdi =
1

2p
sup
tPI0
IE

Gm−1øGm

dzuR0sz,tdu1/2sKsz,tdd js1 + Ksz,tdd−1R0sz,td1/2I
ø

2

2p
sup
tPI0

sup
zPGm−1øGm

isKsz,tdd j−1iE
Gm−1øGm

udzuiR0sz,td1/2i2iKsz,tdi ø CVsbsmdd j ,

where in the last line we used Lemma 2.3. The estimates4.22d is obtained in the same way. We

remark without giving details thatÊm,j and Ê
˙

m,j verify the same estimates asEm,j and Ėm,j. Now
we list the estimates for the various term appearing inHeff,m.

Lemma 4.2: The first term in the effective Hamiltonian obeys the following estimate:

sup
tPI0

iQm,0Ẇmstd*WmstdQm,0i ø CVkmlbsmd3. s4.23d

Lemma 4.3: The second term is estimated as follows:

Q0Wm
* stdH0stdWmstdQ0 = Q0H0stdQ0 − 1

2hQ0VÊm,1stdQ0 + Q0Êm,1stdVQ0j + Orskmlbsmd3d.

s4.24d

Lemma 4.4: The last term gives

Q0Wstdm
* VWmstdQ0 = Q0VQ0 + Q0sVÊm,1std + Êm,1stdVdQ0 + Orskmlsbsmdd3d. s4.25d
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Combining now Lemmas 4.2, 4.3, and 4.4 one obtains the explicit form of the effective
Hamiltonian as given in Theorem 4.1. When proving the lemmas we skip for simplicity the index
m and the time dependence ofWmstd , Em,1std , Qmstd, and other related quantities.

Proof of Lemma 4.2:We shall use the fact thatE1, Ê1, and E2 are symmetric hence in
particular]ts1−E1

2d−1/2 is also symmetric. As we have said it is easy to see that

E1 = Orsbsmdd, Ê1 = Orsbsmdd, E2 = Orsb2smdd.

DenotingLª s1−E1
2d−1/2

¬1+Mª1+E1
2F one has

WQ0 = LQQ0, Q0Ẇ
* = Q0Q̇L + Q0QL̇

and

M = Orsb2smdd.

Actually by writing L2=1+Ñ we obtain

Q0Ẇ
*WQ0 = 1

2Q0sẆ*W− W*ẆdQ0 = 1
2Q0sQ̇L2Q − QL2Q̇dQ0 + 1

2Q0QfL̇,LgQQ0 = 1
2Q0fQ̇,QgQ0

+ 1
2Q0sQ̇ÑQ − QÑQ̇dQ0 + 1

2Q0QfÑ˙ ,ÑgQQ0 = 1
2Q0fQ̇,QgQ0 + Orsb3smdd

where we used thatÑ andÑ
˙

are ofOrsb2smdd andQ̇=Orsbsmdd. Now one should use the expan-

sion Q=Q0+Ê1+E2 and the propertyQ0Ê1Q0=0,

Q0fQ̇,QgQ0 = Q0fÊ˙ 1 + Ė2,Q0 + Ê1 + E2gQ0 = Q0fÊ˙ 1,Ê1gQ0 + Orsb3smdd.

The last thing to be done is to show thatQ0fÊ˙ 1,Ê1gQ0=0. This follows by writing explicitlyÊ1

sthat is, by using residue theoremd and by direct calculation. h

Proof of Lemma 4.3:The idea behind the proof is to write

Q0W
*H0WQ0 = Q0W

*Ĥ0WQ0 + sm− 1d2Q0 s4.26d

with Ĥ0ªH0−sm−1d2Q0 and to estimate the first term. AsW=s1+E1
2FdsQQ0+s1−Qds1−Q0dd

then

WQ0 = QQ0 + E1
2FQQ0 s4.27d

from where

Q0W
*Ĥ0WQ0 = Q0QĤ0QQ0 + Q0QsĤ0E1

2F + h.c.d + Q0QFE1
2Ĥ0E1

2FQQ0.

We start by estimating the last term

sup
tPI0

iFE1
2Ĥ0E1

2Fi ø ctiE1
2i · iE1Ĥ0E1i, s4.28d

which requires an estimate onE1Ĥ0E1. To obtain it we shall use

sup
tPI0

sup
z,z8PGm−1øGm

iR0sz8,td1/2Ĥ0R0sz,td1/2i ø C. s4.29d

It follows from this that

043505-17 The dynamics of 1D Bloch electrons J. Math. Phys. 46, 043505 ~2005!

                                                                                                                                    



sup
tPI0

iE1Ĥ0E1i = isup
tPI0

i
1

2p2R
gm

R
gm

dzdz8R0sz,td1/2s1 + Ksz,tdd−1Ksz,td

· uR0sz,tdu1/2Ĥ0uR0sz8,tdu1/2Ksz8,tds1 + Ksz8,tdd−1uR0sz8,tdu1/2

ø CR
gm

udzuiR0sz,td1/2iiKsz,tdi ·R
gm

udz8uiR0sz8,td1/2iiKsz8,tdi ø CVkmlbsmd2.

Then the termFE1
2Ĥ0E1

2F turns out to be of orderOrskmlbsmd4d and can be disregarded. We

continue the estimations withQ0QFE1
2Ĥ0QQ0 using the perturbation theory up toE1 si.e., Q

=Q0+E1d:

Q0QFE1
2Ĥ0QQ0 = Q0FE1

2Ĥ0Q0 + Q0FE1
2Ĥ0E1Q0 + Q0E1FE1

2Ĥ0E1Q0 + Q0E1FE1
2Ĥ0Q0.

The second and the third terms in the above equation are simply estimated using the bounds onE1

andE1Ĥ0E1. For the fourth term we have to estimate insteadQ0Ĥ0E1. Following the same steps as

in the estimation ofE1Ĥ0E1 we arrive at

sup
tPI0

iQ0Ĥ0E1stdi = sup
tPI0
I 1

2p2R
gm

R
gm

dzdz8 R0sz,tdĤ0stdR0ssz8,tdVsz8,tddRsz8,tdI ø CVkmlbsmd.

s4.30d

In the similar way one can prove a more general result that will be used below, namely

sup
tPI0

iQ0Ĥ0Eji ø CVkmlsbsmdd j . s4.31d

It follows then froms4.30d that

sup
tPI0

iQ0E1FE1
2Ĥ0Q0i ø CiE1i2iE1Ĥ0Q0i ø CVkmlsbsmdd3.

Hence a preliminar result is

Q0W
*Ĥ0WQ0 = Q0QĤ0QQ0 + Q0QsFE1

2Ĥ0 + Ĥ0E1
2FdQQ0 + Orskmlsbsmdd3d. s4.32d

To go further we shall use thatF= 1
2 +E1

2G sG and its derivatives being again uniformly boundedd.
Then

Q0QFE1
2Ĥ0QQ0 = 1

2Q0QE1
2Ĥ0QQ0 + Q0QE1

2GE1
2Ĥ0QQ0

and the last term is of orderOrskmlsbsmdd4d. In what concernsQ0QE1
2Ĥ0QQ0 one should use the

perturbation theory up toE1,

Q0QE1
2Ĥ0QQ0 = Q0E1

2Ĥ0Q0 + Orskmlsbsmdd3d s4.33d

so finally

Q0W
*Ĥ0WQ0 = Q0Ĥ0Q0 + Q0sĤ0E1 + E1Ĥ0dQ0 + 1

2Q0sĤ0E1
2 + E1

2Ĥ0dQ0

+ Q0E1Ĥ0E1Q0 + Orskmlsbsmdd3d.

In the following we shall use the expansionE1=Ê1+¯ +ÊN+EN+1 for suitableN and the estimate
s4.31d, in such a way that the terms containingEN+1 are small. It turns out that in order to estimate
the third and the fourth terms it is sufficient to go up toE2. When plugging this expansion in

Q0Ĥ0E1
2Q0 and Q0E1Ĥ0E1Q0 several new terms will appearsQ0Ĥ0Ê1E2Q0, Q0Ê1Ĥ0E2, and
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Q0E2Ĥ0E2d. All of them are easily estimated in the same way as before and the result is

Q0Ĥ0E1
2Q0 = Q0Ĥ0Ê1

2Q0 + Orskmlsbsmdd3d,

Q0E1Ĥ0E1Q0 = Q0Ê1Ĥ0Ê1 + Orskmlsbsmdd3d. s4.34d

For the first term we must go up toE3 with the expansion. Usings4.31d and the identitys4.18d we
arrive at

Q0Ĥ0E1Q0 = Q0Ĥ0Ê2Q0 + Orskmlsbsmdd3d. s4.35d

Moreover, usings4.19d we can replaceQ0Ê2Q0 and write

Q0W
*H0WQ0 = Q0Ĥ0 + Q0sn0 − 1d2 − 1

2Q0sĤ0Ê1
2 + Ê1

2Ĥ0dQ0 + 1
2sQ0Ê1Ĥ0Ê1Q0 + Q0Ê1Ĥ0Ê1Q0d

+ Orskmlsbsmdd3d = Q0H0 + 1
2sQ0fÊ1,Ĥ0gÊ1Q0 + Q0Ê1fĤ0,Ê1gd + Orskmlsbsmdd3d

= Q0H0Q0 − 1
2hQ0VÊ1Q0 + Q0Ê1VQ0j + Orskmlsbsmdd3d. s4.36d

In the last line we useds4.20d. The lemma is now proved. h

Proof of Lemma 4.4:Using s4.27d andQ=Q0+E1 it results

Q0Wstd*VWstdQ0 = Q0VQ0 + Q0sE1V + VE1dQ0 + Q0E1VE1Q0 + Q0sQ0 + E1dsVE1
2F + FE1

2VdsQ0

+ E1dQ0 + Q0sQ0 + E1dFE1sE1VE1dE1FsQ0 + E1dQ0.

Let us first show that the last three terms are small. To see this we need estimates onE1VE1 and
Q0VE1. For E1VE1 one has

E1VE1 = −
1

2p2R
gm

R
gm

dzdz8 R0sz,td1/2Ksz,tds1 + Ksz,tdd−1 · uR0sz,tdu1/2VR0sz8,td1/2

3 Ksz8,tds1 + Ksz8,tdd−1uR0sz8,tdu1/2. s4.37d

Now observe that

sup
tPI0

sup
zPgm

sup
z8Pgm

iuR0sz,tdu1/2VR0sz8,td1/2i ø CVbsmd. s4.38d

Then using the fact thatlsgmd,kml,

sup
tPI0

iE1VE1i ø CVkmlsbsmdd3. s4.39d

In what concernsQ0VE1 we have

sup
tPI0

iQ0VE1i =
1

2pIRgm

R
gm

dzdz8 R0sz,tdVR0sz8,tdVRsz8,tdI ø CVkmlsbsmdd2. s4.40d

The estimatess4.39d ands4.40d used inQ0Wstd*VWstdQ0 suffices to prove that the last three terms
are of orderOrskmlsbsmdd3d. We arrived thus at

Q0W
*VWQ0 = Q0VQ0 + Q0sVE1 + E1VdQ0 + Orskmlsbsmdd3d.

As for the remaining termQ0E1VQ0 we shall write it more carefully by writing

Q0E1VQ0 = Q0sÊ1 + E2dVQ0. s4.41d

Finally, Q0E2VQ0 is found to be of orderOrskmlsbsmdd3d and the lemma is finished. h
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For H̃eff,m the computations and estimations are similar as above the difference appearing
again due to the different integration contour. We can then conclude that

H̃eff,mstd = Q̃m,0sH0std + VdQ̃m,0 + 1
2Q̃m,0sÊm,1stdV + VÊm,1stddQ̃m,0 + DH̃eff,mstd,

whereÊm,1std is now the first order term from the pertubative expansion forQ̃mstd and the remain-

der DH̃eff,mstd is of the same order as in Theorem 4.2.

V. THE ADIABATIC EVOLUTION. THE TRANSITION AMPLITUDES

We shall use now the effective Hamiltonian obtained in the preceding section to compute

Um
Ast1,t0d and Ũm

Ast2,t1d when restricted toQmst0dH and Q̃mst1dH, respectively, up to an error
which remains small after taking the sum overm from some sufficiently largen0 to infinity. This
amounts to the computation of the 232 transfer matricesSmst1,t0d :Qmst0dH→Qmst1dH and

S̃mst2,t1d :Q̃mst1dH→Q̃mst2dH sremember thatt0=−1
4, t1= 1

4, t2= 3
4d. They are in turn related to the

effective evolutionsUeff,m and Ũeff,m ssee Sec. IVd by the unitary transformations that rotate the

proper basis ofQmstdH andQ̃mstdH to the canonical ones inQm,0H andQ̃m,0H. The coefficients
of these transformations are easily estimated thus one is left with the calculation of the effective
evolutions. The strategy goes as follows: We start from the effective Hamiltonians introduced in
Sec. IV and use Dyson techniques. Along the Dyson expansions new effective Hamiltonians
appear as well as additional error terms which we carefully count. The final Hamiltonian has a
nice simple structure: it decomposes into a free diagonal time-dependent part and an off-diagonal
time independent perturbation. Its associated evolution leads to the Landau–Zener formulas simi-
lar to the ones obtained by Browne and Lenstra. The rigorous form of the above discussion is the
main result of this section and is contained in the following.

Theorem 5.1:Let r.−1
2, m sufficiently large and define the transfer matrices

Smst1,t0d = SS2m−1,2m−2
m st1,t0d S2m−1,2m−1

m st1,t0d

S2m−2,2m−2
m st1,t0d S2m−2,2m−1

m st1,t0d
D , s5.1d

S̃mst2,t1d =S S̃2m,2m−1
m st2,t1d S̃2m,2m

m st2,t1d

S̃2m−1,2m−1
m st2,t1d S̃2m−1,2m

m st2,t1d
D , s5.2d

with

Si,j
mst1,t0d ª kwist1d,Um

Ast1,t0dw jst0dl, i, j = 2m− 2,2m− 1 s5.3d

S̃i,j
mst2,t1d ª kwist2d,Ũm

Ast2,t1dw jst1dl, i, j = 2m− 1,2m. s5.4d

Then

Smst1,t0d = e−iumst1,t0dSa2m−2st1,t0d − b̄2m−2st1,t0d
b2m−2st1,t0d a2m−28 st1,t0d

D + Reff,m, s5.5d

S̃mst2,t1d = e−i ũmst2,t1dSã2m−1st2,t1d − bD 2m−1st2,t1d

b̃2m−1st2,t1d ã2m−18 st2,t1d
D + Reff,m, s5.6d

with

Reff,m = OrS log8kml
kmlminh2+8r,3/2+5r,3/2+r,2jD asm→ ` s5.7d
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and the following notations (we list below only the quantities related toSm; the ones correspond-

ing to S̃m are discussed at the end of this section):

a2m−2st1,t0d ª 1 −
uV̂s2sm− 1ddu2

m− 1
c2,mst1,t0d − iv1,mst1,t0d, s5.8d

a2m−28 st1,t0d ª 1 −
uV̂s2sm− 1ddu2

m− 1
c2,mst1,t0d − iv2,mst1,t0d, s5.9d

b2m−2st1,t0d ª
V̂s2sm− 1dd

Îm− 1
c1,mst1,t0d − ilmst1,t0d −

2V̂s2sm− 1dd
m− 1

, s5.10d

c1,mst1,t0d ª − si + 1d
Îp

2
eism−1d/8 erfS i + 1

4
Îm− 1D , s5.11d

c2,mst1,t0d ª
p

4
UerfS i − 1

4
Îm− 1DU2

, s5.12d

umst1,t0d ª E
t0

t1

dsssm− 1d2 + s2d,

lmst1,t0d ª E
t0

t1

ds D̄mssde−2ism−1dss2−t0
2d, s5.13d

v1,mst1,t0d ª E
t0

t1

ds
1

2
kwm−1,0,sVÊ1std + Ê1stdVdwm−1,0l ¬ E

t0

t1

ds g1,mssd s5.14d

v2,mst1,t0d ª E
t0

t1

ds
1

2
kw−sm−1d,0,sVÊ1std + Ê1stdVdw−sm−1d,0l ¬ E

t0

t1

ds g2,mssd, s5.15d

Dmstd ª 1
2kwm−1,0,sVÊ1std + Ê1stdVdw−sm−1d,0l. s5.16d

Here erfszd is the error function (see Ref. 1):

erfszd ª
2

Îp
E

0

z

e−t2 dt. s5.17d

Remark:Although the above estimates are valid forr .−1
2 the bound on the error terms gets

small asm tends to infinity only forr .−1
4 and is summable with respect tom only for r .− 1

10
sthese facts can be noticed from the behavior of the error termReff,md.

Proof: We shall consider onlySi,j
m; the proof forS̃i,j

m is similar. Froms2.48d and s4.11d:

Si,j
mst1,t0d = o

k,l=2m−2,2m−1
c̄k,i

mst1dUeff,m;k,lst1,t0dcl,j
mst0d, s5.18d

wherewa
0stbd=wna,0stbd fsees2.30dg and we introduced the coefficients
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ci,k
m stpd ª kwi

0stpd,Wmstpd*Nkstpdwk
0stpdl, p = 0,1 s5.19d

and

Ueff,m;k,lst1,t0d ª kwk
0st1d,Ueff,mst1,t0dwl

0st0dl. s5.20d

The estimation of the coefficientsci,k
m stpd is easy and reads as follows.

Lemma 5.2: For m large enough and r.−1
2 one has

ca,b
m stpd = da,b +

kwa
0stpd,Vwb

0stpdl
Eb

0stpd − Ea
0stpd

s1 − da,bd + Orsb2smdd asm→ `. s5.21d

The estimation ofUeff,m is more involved and the result is summarized in the following.
Lemma 5.3: For m large enough and r.−1

2 the effective evolution is given by

Ueff,m;i,jst1,t0d = Si j
mst1,t0d + e−iumst1,t0dvm + Reff,m asm→ ` s5.22d

with

vmª1 0 −
2V̂s2sm− 1dd

m− 1

2V̂s2sm− 1dd
m− 1

0 2 . s5.23d

The proof of Theorem 5.1 requires only straightforward calculations usings5.18d, s5.21d, and
s5.22d.

Proof of Lemma 5.2:Write fsees4.16d and s4.17dg

Qmstpd − Qm
0 stpd = Êm,1stpd + Em,2stpd, s5.24d

and in the same way

Pastpd − Pa
0stpd = −

i

2p
E

Ca

dz R0sz,tpdVR0sz,tpd +
i

2p
E

Ca

dz R0sz,tpdVRsz,tpdVR0sz,tpd ¬ êa,1stpd

+ ea,2stpd, p = 0,1 s5.25d

with C2m−2=Gm−1ø G̃m−1 and C2m−1=G̃m−1øGm, i.e., Ca is a countour which contains only one
eigenvalue ofH0stpd namelyEa

0stpd. By Lemma 2.3ssee also Sec. IVd one has

iÊm,1stpdi + iêa,1stpdi ø CVbsmd, s5.26d

iEm,2stpdi + iea,2stpdi ø CVbsmd2. s5.27d

Then using the expansion in the Sz-Nagÿ formula,s5.26d and s5.27d, and the fact that fora
=2m−2, 2m−1 we haveQm,0Pa

0stpd=Pa
0stpdQm,0=Pa

0stpd and Pa
0stpdwa

0stpd=wa
0stpd it follows that

up to errors of orderOrbsmd2,

ca,b
m stpd = kwa

0stpd,s1 + Êm,1stpd + êb,1stpddwb
0stpdl. s5.28d

SinceQm,0Êm,1stpdQm,0=Pb
0stpdêb,1stpdPb

0stpd=0 one gets finally

uca,b
m stpd − da,b − kwa

0stpd,êb,1stpdwb
0stpds1 − da,bdlu ø CVbsmd2 s5.29d

and computing the third term on the left-hand sideslhsd of s5.29d by residues theorem we obtain
the needed result. h
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Proof of Lemma 5.3:First remark that due to Theorem 4.1 one can write

Heff,mstd = heff,mstd + DHeff,mstd, s5.30d

where

heff,mstd = Qm,0sH0std + VdQm,0 + 1
2Qm,0sÊm,1stdV + VÊm,1stddQm,0. s5.31d

Denote then byUeff,m
0 st ,t0d the evolution associated toheff,mstd having the equation of motion

i
d

dt
Ueff,m

0 st,t0d = heff,mstdUeff,m
0 st,t0d, Ueff,m

0 st0,t0d = 1. s5.32d

The usual estimation forVeff,mst ,t0dªUeff,m
0 st ,t0d*Ueff,mst ,t0d gives

sup
tPI0

iVeff,mst,t0d − 1i ø
1

2
sup
tPI0

iDHeff,mssdi ø CVkmlbsmd3.

Hence

Ueff,mst,t0d = Ueff,m
0 st,t0d + Orskmlbsmd3d asm→ `. s5.33d

We continue the computation ofUeff,m
0 st ,t0d by further decomposingheff,mstd into a “free” part

HP,mstd ª Qm,0sH0std + VdQm,0 s5.34d

and a perturbation

Bmstd ª 1
2Qm,0sÊm,1stdV + VÊm,1stddQm,0. s5.35d

Remark first thatHP,mstd has a simple matrix form in the eigenbasis ofH0std that can be explicitly
written taking into account thatQm,0=Pm−1,0+P−sm−1d,0. Second one notes that it is possible to
eliminate a diagonal term fromHP,mstd by writing

Ueff,m
0 st1,t0d ª expS− iE

t0

t1

ssm− 1d2 + s2ddsDÛeff,mst1,t0d, s5.36d

whereÛeff,mst ,t0d satisfies the equation

i
d

dt
Ûeff,mst,t0d = sĤP,mstd + BmstddÛeff,mst,t0d, Ûeff,mst0,t0d = 1, s5.37d

and

ĤP,mstd = S 2sm− 1dt V̂s2sm− 1dd

V̂s2sm− 1dd − 2sm− 1dt
D . s5.38d

Now let ÛP,mst ,t0d be the evolution generated byĤP,mstd and

V̂P,mst1,t0d = ÛP,mst1,t0d*Ûm,effst1,t0d. s5.39d

We write the Dyson expansion forV̂P,m with the remainder of order 2,
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V̂P,mst1,t0d = 1 + s− idE
t0

t1

ds1 Bm
intss1d + s− id2E

t0

t1

ds1 Bm
intss1dE

t0

s1

ds2 Bm
intss2dV̂P,mss2,t0d,

s5.40d

where Bm
intstd=ÛP,mst ,t0d*BmstdÛP,mst ,t0d. Observe first that suptPI0

Bmstd=Orskmlbsmd2d as m

→` fthis follows from the estimate onQm,0VÊ1std which is the same as the one from Eq.s4.40dg.
Then

sup
tPI0
IE

t0

t1

ds1 Bm
intss1dE

t0

s1

ds2 Bm
intss2dV̂P,mss2,t0dI ø

1

4
ssup
tPI0

iBmstdid2 = Orsskmlbsmd2d2d asm→ `.

s5.41d

In conclusion, at this level of approximation froms5.39d we have

Ûeff,mst1,t0d = ÛP,mst1,t0dF1 − iE
t0

t1

ds Bm
intssdG + Orsskmlbsmd2d2d asm→ `. s5.42d

Thus we have reduced the problem at hand to the computation ofÛP,mst1,t0d and of the contribu-

tion of Bm
int. Now we writeĤP,mstd in the form ĤP,mstd=ĤP,m

0 std+V̂P, where

ĤP,m
0 std = S2sm− 1dt 0

0 − 2sm− 1dt
D, V̂P = S 0 V̂s2sm− 1dd

V̂s2sm− 1dd 0
D .

Let ÛP,m
0 be the evolution generated byĤP,m

0 ,

ÛP,m
0 st,t0d = Se−ism−1dst2−t0

2d 0

0 eism−1dst2−t0
2d D . s5.43d

By defining all the “effective” Hamiltonians above we ended with a time-independent perturbation

V̂P swhich is precisely the one considered in the physical literature2,12d. Writing the Dyson expan-

sion with the remainder of order 3 forV̂P,m
0 st1,t0d=ÛP,m

0 st1,t0d*ÛP,mst1,t0d,

V̂P,m
0 st1,t0d = 1 + s− idE

t0

t1

ds1 V̂Pss1d + s− id2E
t0

t1

ds1 V̂Pss1dE
t0

s1

ds2 V̂Pss2d

+ s− id3E
t0

t1

ds1 V̂Pss1dE
t0

s1

ds2 V̂Pss2dE
t0

s2

ds3 V̂Pss3dV̂P,m
0 ss3,t0d

ª 1 + V̂P,m
0,s1dst1,t0d + V̂P,m

0,s2dst1,t0d + R3, s5.44d

where V̂Pstd=ÛP,m
0 st ,t0d*V̂PÛP,m

0 st ,t0d. We compute explicitely the first and second order terms
while the remainderR3 is estimated using Eq.sA28d from the Appendix. That is, we usesA45d for
p=3 which gives, withm large enough

iR3i ø Cm0
iVir

3 log2kml
kml3/2+3r . s5.45d

As for the first two terms in the Dyson expansion by direct computation we have
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o
k=0

2

V̂P,m
0,skdst1,t0d =11 −

uV̂s2sm− 1ddu2

m− 1
c2,mst1,t0d −

V̂s2sm− 1dd
Îm− 1

c1,mst1,t0d

V̂s2sm− 1dd
Îm− 1

c1,mst1,t0d 1 −
uV̂s2sm− 1ddu2

m− 1
c2,mst1,t0d 2 , s5.46d

with c1,mst1,t0d andc2,mst1,t0d as introduced in Theorem 5.1.

The expressions5.46d together with the estimates5.45d allow to compute approximatelyÛP,m

with the help of the following formula forBmstd fsees5.35d and s5.14d–s5.16dg:

Bmstd = Sg1,mstd Dmstd

D̄mstd g2,mstd D . s5.47d

Later on we shall need the the following expansion ofBm
int:

Bm
intstd = ÛP,mst,t0d*BmstdÛP,mst,t0d = SÛP,m

0 st,t0dS1 + s− idE
t0

t

ds V̂PssdV̂P,m
0 ss,t0dDD*

BmssdÛP,m
0 st,t0d

3 S1 + s− idE
t0

t

ds V̂PssdV̂P,m
0 ss,t0dD .

The terms−idet0
t ds V̂PssdV̂P,m

0 ss,t0d is actually the remainder of order 1 from the Dyson expansion

of V̂P,m
0 ss,t0d. Consequently we denote this quantityR1 and estimate it bysA45d sfor m large

enoughd as

iR1i ø Cm0
iVir

logkml
kml1/2+r . s5.48d

Using thatBmstd=Orssbsmdd2kmld and s5.48d we have

Bm
intstd = ÛP,m

0 st,t0d*BmstdÛP,m
0 st,t0d + OrS log5kml

kmlminh3/2+r,3/2+5rjD asm→ `. s5.49d

To write downUeff,mst1,t0d we uses5.33d, s5.36d, s5.39d, s5.41d, s5.43d, s5.44d, s5.46d, ands5.49d,

Ueff,mst1,t0d = e−iumst1,t0d11 −
uV̂s2sm− 1ddu2

m− 1
c2,mst1,t0d −

V̂s2sm− 1dd
Îm− 1

c1,mst1,t0d

V̂s2sm− 1dd
Îm− 1

c̄1,mst1,t0d 1 −
uV̂s2sm− 1ddu2

m− 1
c2,mst1,t0d 2

− iSv1,m lm

lm v2,m
D + Reff,m. s5.50d

The remainderReff,m takes into account all the errors involved during the computation of the
effective evolution in the subspaceQmH,

iReff,mi ø 2iR1i · iBmi + iR3i + isBmdi2 + iDHeff,mi = OrS log8kml
kmlminh2+8r,3/2+5r,3/2+r,2jD .

s5.51d

Making the necessary identifications ins5.50d one finds that this expression coincides with the one
given in Lemma 5.3 which is now proven. h

Remark 5.4:Let us justify why we kept explicitly the matrix elements ofBmstd in the effective
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evolution. First we point out, without giving details, that one can obtain sharp estimates onDm and
g’s as in Eqs.s10d and s11d from Ref. 3, namelys j =1,2d

sup
tPI0

uDmstdu ø
CiVir

2

kml1+r , sup
tPI0

ug j ,mstdu ø
CiVir

2

kmlminh2,1+2rj . s5.52d

Second, observe that from these estimates one cannot conclude that the diagonal contribution of
Bmstd is smaller that the second terms from the Landau–Zener coefficientsa2m−2, a2m−28 .

To obtain Ũeff,mst2,t1d we must follow the same steps as above, using the effective Hamil-

tonianH̃eff,m. Without giving explicit calculations we summarize the results and the notations. Up
to errors of orderOrskmlminh2,2+8rjd asm→`,

Ũeff,mst2,t1d = e−i ũmst2,t1d11 −
uV̂s2m− 1du2

m− 1
2

c̃2,mst2,t1d −
V̂s2m− 1d
Îm− 1

2

sc̄̃1,mst2,t1dd

V̂s2m− 1d
Îm− 1

2

c̃1,mst2,t1d 1 −
uV̂s2m− 1du2

m+ 1
2

c̃2,mst2,t1d2 − ie−i ũmst2,t1d

3Sṽ1,mst2,t1d l̃mst2,t1d

l̃mst2,t1d ṽ2,mst2,t1d
D s5.53d

the phaseũm coeficientsc̃ismd being related to the ones ofUeff,mst1,t0d by the relations

ũmst2,t1d = um+1/2st1,t0d, s5.54d

c̃i,mst2,t1d = ci,m+1/2st1,t0d, i = 1,2. s5.55d

l̃mst2,t1d and g̃1,mstd are to be computed in the same way aslmst1,t0d and gmst1,t0d freplace

w−sm−1d,0 with w−m,0 and Êm,1std with Ê
˜

m,1std associated toQ̃mstdg. Finally,

ã2m−1st2,t1d ª 1 −
uV̂s2m− 1du2

m− 1
2

c̃2,mst2,t1d − iṽ1,mst2,t1d, s5.56d

b̃2m−1ª
V̂s2m− 1d
Îm− 1

2

c̃1,mst2,t1d − il̃mst2,t1d. s5.57d

The proof of Theorem 5.1 is finished. h

VI. THE LONG TIME BEHAVIOR. SPECTRAL PROPERTIES

The last part of this work is concerned with the long time behavior of the Bloch electron.
Suppose that at the timet0=−1

4 the electron is in a given bandfsayE2n0−2st0d for n0 fixedg and its
wave functioncst0d=w2n0−2st0d flet us recall thatwistd is the eigenfunction ofHstd which corre-
sponds to the eigenvalueEistdg. We are interested in obtaining some quantitative information about
cstNd=UstN,t0dcst0d where tN= t0+sN/2d, particular attention being payed to the case whenN
goes to infinity.

To answer these questions we proceed as follows: the complete evolutionUstN,t0d is written
as a product of one-period evolutionsUstl +1,tld each of them being then reduced to the first
periodI0ø I1 by usings2.25d. Then we use Theorem 3.1 to approximate the one-period evolution
by the adiabatic evolutions which were written explicitlysin suitable subspacesd in Theorem 5.1.
As pointed out by Ao it is of particular interest to establish how far the electron goes in the energy
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space, otherwise stated, to say up to what band it is accelerated by the electric field. Because in the
neighbor band approximation the electron can jump during one-half period only up to the next
band it is clear that afterN-half periods the uppermost reachable band isE2n0−2+NstNd. Its eigen-
function w2n0−2+NstNd is related tow2n0−2+Nst0d by the shift operatorT fsees2.49dg. The long time
behavior of the Bloch electron is described in the following theorem.

Theorem 6.1:Let r.0 and n0 sufficiently large. Define the so-called propagating front,2

PsNd ª ukw2n0−2+NstNd,UstN,t0dw2n0−2st0dlu2. s6.1d

Then

lim inf
N→`

PsNd = expH− 2o
l=0

` uV̂s2n0 + l − 2du2

n0 + sl/2d − 1
c2,n0+sl/2dst1,t0dJ 3 s1 +Rd, s6.2d

with

uRu ø o
l=0

`
CV

kn0 + l − 1
2l1+2r +

CV log8kn0l
kn0lminh1+8r,1/2+5r,1/2+r,1j expSo

l=0

`
CV

kn0 + sl/2d − 1l1+2rD . s6.3d

As one may guess we need first a more explicit form for the scalar product in Eq.s6.1d. Conse-
quently a preliminary result is the following.

Lemma 6.2: For r.− 1
10, n0 sufficiently large and N even one gets

kw2n0+N−2stNd,UstN,t0dw2n0−2st0dl = p
l=0

sN/2d−1

e−isũn0+lst2,t1d+un0+lst1,t0ddã2sn0+ld−1st2,t1da2sn0+ld−2st1,t0d

+ RsNd, s6.4d

where the remainderRsNd satisfy the estimate

uRsNdu ø
CV log8kn0l

kn0lminh1+8r,1/2+5r,1/2+r,1j . s6.5d

A similar expression holds for N odd.
Proof: The idea is to factorizeUstN,t0d into one-period evolutions and to use the adiabatic

theorem for a suitable indexm of the two-dimensional projectorQmstd or Q̃mstd. By the telescop-
ing sum rule,

p
l=0

n

al − p
l=0

n

bl = o
l8=0

n

p
l=l8+1

n

alsal8 − bl8dp
l=0

l8−1

bl

one has

UstN,t0d = p
l=0

sN/2d−1

Ust2l+2,t2l+1dUst2l+1,t2ld ¬ p
l=0

sN/2d−1

Ũn0+l
A st2l+2,t2l+1dUn0+l

A st2l+1,t2ld + RadsNd.

s6.6d

The propertyT*Ust ,sdT=Ust+1,s+1d leads to
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RadsNd ª o
l=0

sN/2d−1

UstN,t2l+2dsT*dlssUst2,t0dd − Ũn0+l
A st2,t1dUn0+l

A st1,t0ddTl

3 p
k=0

l−1

sT*dkŨn0+k
A st2,t1dUn0+k

A st1,t0dTk.

We pass now to the estimation ofRadsNd. Clearly due to the presence of many unitarities one gets
at once from the adiabatic theorem,

iRadsNdi ø o
l=0

sN/2d−1

iUst2,t0d − Ũn0+l
A st2,t1dUn0+l

A st1,t0di ø o
l=0

sN/2d−1

iUst2,t1d − Ũn0+l
A st2,t1di + iUst1,t0d

− Un0+l
A st1,t0di ø o

l=0

sN/2d−1

2CVbsn0 + ldkn0 + ll−1.

We concentrate on the following term:

p
l=0

sN/2d−1

Ũn0+l
A st2l+2,t2l+1dUn0+l

A st2l+1,t2ldP2n0−2st0d

= o
jN/2=1

`

PjN/2
stNd p

l=0

sN/2d−1SŨn0+l
A st2l+2,t2l+1do

j̃ l=1

`

Pj̃l
st2l+1dUn0+l

A st2l+1,t2ldo
j l=1

`

Pjl
st2ldDP2n0−2st0d

= o
jN/2,jsN/2d−1, j̃sN/2d−1,. . .,j0, j̃0

PjN/2
stNd

3 S p
l=0

sN/2d−1

Ũn0+l
A st2l+2,t2l+1dPj̃l

st2l+1dUn0+l
A st2l+1,t2ldPjl

st2ldDP2n0−2st0d,

where all thej indices run for the moment from 1 tò. However sinceUn
A andŨn

A leave invariant

RanQn and RanQ̃n and since for anyl PZ

Qnstld = P2n−2stld + P2n−1stld,

Q̃nstld = P2n−1stld + P2nstld,

we know that the only indices which contribute are the ones of the setJ2n0−2 where we defineJn

as follows:

Jn ª hs jN/2, j̃ sN/2d−1, j sN/2d−1, . . . ,j̃0, j0d, j0 = 2n0 − 2, ∀ l, j̃ l = j l or j l + 1; j l+1 = j̃ l or j̃ l + 1j.

Then swe drop the times variables inUA and ŨA since their values are clear from the contextd

S p
l=0

sN/2d−1

Ũn0+l
A Un0+l

A DP2n0−2 = o
J2n0−2

PjN/2 p
l=0

sN/2d−1

Ũn0+l
A Pj̃l

Un0+l
A Pjl

.

Clearly if we forcejN/2 to be equal to 2n0+N−2 by multiplying on the left byP2n0+N−2 it remains
only one “path” in this sum. Usings2.25d, s2.49d, s5.3d, ands5.4d one may write
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Kw2n0+N−2stNd, p
l=0

sN/2d−1

Ũn0+l
A st2l+2,t2l+1dUn0+l

A st2l+1,t2ldw2n0−2st0dL =Kw2n0+N−2stNd,P2n0+N−2stNd

3 p
l=0

sN/2d−1

Ũn0+l
A st2l+2,t2l+1dP2n0+2l−1st2l+1dUn0+l

A st2l+1,t2ldP2n0+2l−2st2ldw2n0−2st0dL
=Kw2n0+N−2st2d,TsN/2d−1P2n0+N−2stNd

3 p
l=0

sN/2d−1

sT*dlŨn0+l
A st2,t1dP2n0+2l−1st1dUn0+l

A st1,t0dP2n0+2l−2st0dTlw2n0−2st0dL
= p

l=0

sN/2d−1

S̃2n0+2l,2n0+2l−1
n0+l st2,t1dS2n0+2l−1,2n0+2l−2

n0+l st1,t0d

¬ p
l=0

sN/2d−1

e−i ũn0+lst2,t1dã2n0+2l−1st2,t1de−iun0+lst1,t0da2n0+2l−2st1,t0d + ReffsNd,

where

uReffsNdu ø o
l=0

sN/2d−1

s2uReff,n0+lu + uReff,n0+lu2d ø o
l=0

`

s2uReff,n0+lu + uReff,n0+lu2d

=
CV log8kn0l

kn0lminh1+8r,1/2+5r,1/2+r,1j .

Defining

RsNd ª ReffsNd + kw2n0+N−2,RadsNdw2n0−2l s6.7d

the lemma follows immediately from the estimates ofRadsNd andReffsNd. h

Proof of Theorem 6.1:Let

AsNd ª p
l=0

sN/2d−1

e−isũn0+lst2,t1d+un0+lst1,t0ddã2n0+2l−1st2,t1da2n0+2l−2st1,t0d. s6.8d

Then by Lemma 6.2 the propagating front reads as

PsNd = uAsNdu2 ·U1 +
RsNd
AsNd U2

. s6.9d

Replacinga2m−2st1,t0d and ã2m−1st2,t1d for m=n0+k it follows that swe omit the time arguments
for the simplicity of writingd

uAsNdu = p
l=0

sN/2d−1

uã2n0+2l−1a2n0+2l−2u = p
l=0

sN/2d−1

111 −
uV̂s2n0 + 2l − 1du2

n0 + l −
1

2

c̃2,n0+l2
2

+ ṽ1,n0+l
2 2

1/2

3 SS1 −
uV̂s2sn0 + l − 1ddu2

n0 + l − 1
c2,n0+lD2

+ v1,n0+l
2 D1/2

= expH1

2 o
l=0

sN/2d−1

logSS1 −
uV̂s2n0 + 2l − 1du2

n0 + l − 1
2

c̃2,n0+lD2

+ ṽ1,n0+l
2 DJ
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3 expH1

2 o
l=0

sN/2d−1

logSS1 −
uV̂s2sn0 + l − 1ddu2

n0 + l − 1
c2,n0+lD2

+ v1,n0+l
2 DJ

= exp5− o
l=0

N−1 uV̂s2n0 + l − 2du2

n0 +
l

2
− 1

c2,n0+sl/2d6
3 S1 +OSo

l=0

`
1

kn0 + l − 1
2l1+2rDD ,

where we used estimates of the following typessimilar bounds are found for the sums containing
v1,n0+l

2 and ṽ1,n0+l
2 d and the relationc̃i,mst2,t1d=ci,m+1/2st1,t0d:

o
l=0

sN/2d−1

* uV̂s2n0 + 2l − 1du2

n0 + l −
1

2

c̃2,n0+l* ø o
l=0

` U CV

kn0 + l − 1
2l1+2rU .

Thus

lim
N→`

URsNd
AsNd U¬ uRu ø

CV log8kn0l
kn0lminh1+8r,1/2+5r,1/2+r,1j expSo

l=0

`
CV

kn0 + sl/2d − 1l1+2rD .

The proof of the theorem is done. h

Remark 6.3:Since as long asr .0 the series that appears in Eq.s6.2d both in the exponential
and in the error term converges the propagating front does not vanish in the limitN→`. This
means that the electron is always accelerated and it escapes at infinityin the energy space,
provided that it is initially prepared in a band with sufficient energy. Thus we recovered rigorously
the Ao’s result. We end the paper with a result on the spectral properties of the Stark–Wannier
operator.

Corollary 6.4: For r.0 one hasscontsHSWdÞ0” .
Proof of Corollary 6.4:Let fPHppsHSWd and PN a family of bounded operators that goes

strongly to zero whenN→`. Then it is knownssee Ref. 14d that

lim
N→`

sup
±t.0

iPNe−itHSW
fi = 0.

In particular, fortNª t0+sN/2d,

lim
N→`

iPNe−istN−t0dHSW
fi = 0. s6.10d

The strategy of the proof consists in writingPNe−istN−t0dHSW
f in the Fourier–Bloch representation

and then to express the result in terms of the propagating frontPsNd which was computed in
Theorem 6.1. Usings2.21d, writing fsees2.22dg

Usk,tN,t0d = Us0,tN + k,t0 + kd ¬ UstN + k,t0 + kd = UstN + k,tNdUstN,t0dUst0,t0 + kd

and choosing

f ª eit0XS*SE
f0,1d

%

dk Ust0,t0 + kdw2n0−2st0dD s6.11d

one has

043505-30 Bentosela et al. J. Math. Phys. 46, 043505 ~2005!

                                                                                                                                    



iPNe−istN−t0dHSW
fi = ISe−itNXPNeitNXS*SE

f0,1d

%

dk UstN + k,tNdUstN,t0dw2n0−2st0dDI .

Now we choosePN such that

Se−itNXPNeitNXS*SE
f0,1d

%

dk UstN + k,tNdD = SE
f0,1d

%

dk P2n0−2+NstNdD . s6.12d

Let us show thatPN goes strongly to zero asN goes to infinity. Using the identity

Se−inXS* = id ^ T−n, ∀ n P Z s6.13d

it turns out thatPN is given by

PN ª eitNXS*SE
f0,1d

%

dk P2n0−2+NstNdUstN,tN + kdDSe−itNX = eit0XS*SE
f0,1d

%

dk TN/2P2n0−2+NstNdUstN,tN

+ kdT −sN/2dDSe−it0X = eit0XS*SE
f0,1d

%

dk P2n0−2+Nst0dUst0,t0 + kdDSe−it0X.

Then clearly

s− lim
N→`

PN = 0.

Finally observe that froms6.11d and s6.12d

iPNe−istN−t0dHSW
fi2 = iP2n0−2+NstNdUstN,t0dw2n0−2st0di2 = PsNd.

However, from Theorem 6.1 we know that forn0 sufficiently large andr .0 the propagating front
PsNd does not vanish whenN→` so f must have a part inHcontsHSWd. h

When applied to the driven quantum ring problem the existence of a propagating front gives
the following at once.

Corollary 6.5: Let r.0 and wst0=−1
4

d=w2n0−2st0d, wftN= t0+sN/2dg=UstN,t0dwst0d. Then

kwstNd,HstdwstNdl ù S1 +OrS 1

kn0lrDD · t2. s6.14d

We end this section of applications by showing that there is no localization in momentum
space for appropriate initial conditions.

Corollary 6.6: Let FDsId be the spectral projection of Dª−i]x on the interval Iª fn0,n0

+1d. Then for all V such that r.0 one has

lim
n0→`

lim
N→`

iFDsI + tNde−istn−t0dHSW
FDsI + t0di = 1.

Proof: One can check thatSDS* is simply the multiplication byk+n; thus SFDsIdS* =1
^ Pn0,0. One has successively

iFDsI + tNde−istN−t0dHSW
FDsI + t0di = IFDsI + tNdeitNXS*E

f0,1d

%

dk UstN + k,t0 + kdSe−it0XFDsI

+ t0dI fsees2.21dg

= ISe−itNXFDsI + tNdeitNXS*E
f0,1d

%

dk UstN + k,t0 + kdSe−it0XFDsI
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+ t0deit0XS*I
= ISFDsIdS!E

f0,1d

%

dk UstN + k,t0 + kdSFDsIdS!I
= I1 ^ Pn0,0E

f0,1d

%

dk UstN + k,t0 + kd1 ^ Pn0,0I = sup
kPf0,1d

3i3Pn0,0UstN + k,t0 + kdPn0,0i ù iPn0,0UstN,t0dPn0,0i

= iP2n0+N
0 stNdUstN,t0dP2n0+N

0 st0di fsees2.30dg

= iP2n0+NstNdUstN,t0dP2n0+Nst0di + Orsbsn0 + 1dd

ssee Corollary 2.6d

= PsN + 1d + Orsbsn0 + 1dd.

Using Theorem 6.1, the rest is now clear. h
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APPENDIX

The key estimate

Proof of Lemma 2.3:In the following we shall use the notationaªmaxh0,−rj. We start by
estimating suptPI0

supzPGm
iKssdm+ iyd ,tdi,

sup
tPI0

sup
zPGm

iKssdm + iyd,tdiHS ø iVirSÎ5

2
Da

sup
tPI0

o
nPZ

knl2a

usn + td2 − dm − iyu

ø iVirSÎ5

2
Da

sup
tPI0

o
nPZ

knl2a

usn + td2 − dmu
ø 4iVirSÎ5

2
Da

o
nPZ

knl2a

un2 − dmu

= iVirSÎ5

2
DaH 1

dm
+ 2o

nù1

knl2a

un2 − dmuJ sA1d

where the time dependence ofKssdm+ iyd ,td was eliminated by using the inequalitysproved
belowd

sup
tPI0

usn + td2 − dmu ù
1
4un2 − dmu. sA2d

The next step is to estimate the sum from the rhs ofsA1d. Let us assume thatm.1 sthe
particular casem=1 will be discussed separatelyd. Then approximating the sum with integrals one
has
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o
nù1

kml2a

un2 − dmu
ø E

1

m−1 kxl2a

dm − x2dx +
km− 1l2a

1
2s2m− 3

2d +
kml2a

m− 1
4

+E
m

` kxl2a

x2 − dm
¬ S1 + S2 + S3 + S4.

sA3d

Sincekxl is an increasing function we can estimate the termS1 as follows:

S1 ø km− 1l2aE
1

m−1 dx

dm − x2 =
km− 1l2a

2Îdm

logS Îdm + m− 1
Îdm − sm− 1d

·
Îdm − 1
Îdm + 1

D ø
kml2a

2Îdm

logSm+ Îdm

m− Îdm
D .

sA4d

To obtain the last line we used the following estimatesvalid for mù2d:

Îdm + m− 1
Îdm − sm− 1d

·
Îdm − 1
Îdm + 1

=
2m− 3

2
1
2

·
m− 3

2

m+ 1
2

ø
2m− 1

2
1
2

=
m+ Îdm

m− Îdm

.

The next two terms are easier,

S2 ø
12

5 log 7
·

kml2a

2Îdm

· logSm+ Îdm

m− Îdm
D , sA5d

S3 ø
12

7 log 7
·

kml2a

2Îdm

· logSm+ Îdm

m− Îdm
D . sA6d

We give some details only forS2. First we write

S2 =
km− 1l2a

1
2s2m− 3

2d ø
kml2a

1
2s2m− 3

2d ·

logSm+ Îdm

m− Îdm
D

2Îdm

·
2Îdm

logSm+ Îdm

m− Îdm
D .

Then use

2Îdm
1
2s2m− 3

2d =
4sm− 1

2d
2m− 3

2

= 2 ·
m− 1

2

m− 3
4

ø
12

5

and

1

logSm+ Îdm

m− Îdm
D =

1

logS2m− 1
2

1
2

D ø
1

log 7
.

To estimateS4 we make an integration by parts,

S4 =E
m

` s1 + x2da

x2 − dm
= F s1 + x2da

2Îdm

logSx − Îdm

x + Îdm
DG

m

`

−
a

Îdm
E

m

`

dx xs1 + x2da−1 logSx − Îdm

x + Îdm
D

ø
kml2a

2Îdm

logSm+ Îdm

m− Îdm
D +

a

Îdm
Ssup

xùm
x logSx + Îdm

x − Îdm
DDE

m

`

x2sa−1d dx.

The supremum above is computed by simply noticing that the functionfsxdªx logfsx+ad / sx
−adg is decreasing onsa,`d. Indeed, its first two derivatives are given by
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f8sxd = logSx + a

x − a
D +

2xa

a2 − x2 → 0 if x → `,

f 9sxd =
4a3

sa2 − x2d2 .

Hence

S4 ø
kml2a

2Îdm

logSm+ Îdm

m− Îdm
D +

a

1 − 2a

kml2a

Îdm

logSm+ Îdm

m− Îdm
D =

1

2s1 − 2ad
·

kml2a

2Îdm

· logSm+ Îdm

m− Îdm
D .

sA7d

Now taking into account that

1

dm
ø

4

3 log 7

kml2a

2Îdm

logSm+ Îdm

m− Îdm
D , sA8d

and that 2Îdmù s3/Î5dkml we collect all the estimatessA4d–sA7d and plug them intosA1d

sup
tPI0

sup
zPGm

iKssdm + iyd,tdi ø iVir
4Î5

3
SÎ5

2
Da

·
9 − 6a

1 − 2a

logs4m− 1d
kml1−2a ª CV

logs4m− 1d
kml1+minh0,2rj .

sA9d

Note that the constantCV depends onr and has a pathological behavior atr =−1
2. We treat now the

casem=1. This term contains actually only the terms of the typeS3 andS4, so that

sup
tPI0

sup
zPG1

iKssd1 + iyd,tdi ø iVirSÎ5

2
DaH 1

d1
+ 2o

nù1

k1l2a

un2 − d1uJ
and

o
nù1

`
knl2a

un2 − 1
4u

ø
4k1l2a

3
+E

2

` kxl2a

x2 − 1
4

.

This leads to

sup
tPI0

sup
zPG1

iKssd1 + iyd,tdi ø iVirSÎ5

2
DaS4 +

8k1l2a

3
+

k1l2a

1 − 2a
log 3D ø CV

log 3

k1l1+minh0,2rj .

sA10d

InspectingsA9d and sA10d it is clear that one has for anymù1,

sup
tPI0

sup
zPGm

iKssdm + iyd,tdi ø CV
logs4m− 1d
kml1+minh0,2rj . sA11d

From this estimate one can identifym* such that for anym.m* we have suptPI0
supzPGm

iKssdm

+ iyd ,tdiø1.
Now we turn to the estimation of suptPI0

eGm
iR0sz,tdi ·iKsz,tdidy. The resolvent is easily

estimated as
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iR0sz,tdi ø
1

ÎA2 + y2
, sA12d

where we introduced the notationAª sm− 1
2

d2− sm− 3
4

d2. Since suptPI0
iKsz,tdiø4iKsz,0diHS we

have

sup
tPI0
E

Gm

iR0sz,tdi · iKsz,tdidy ø 4iVirSÎ5

2
DaE

−`

`

dy
1

ÎA2 + y2S o
n1PZ

kn1l2a

ÎBn1

2 + y2
· o

n2PZ

kn2l2a

ÎBn2

2 + y2D1/2

ø 4iVirSÎ5

2
DaSE

−`

`

dy o
n1PZ

kn1l2a

ÎA2 + y2ÎBn1

2 + y2D1/2

·SE
−`

`

dy o
n2PZ

kn2l2a

ÎA2 + y2ÎBn2

2 + y2D1/2

by Cauchy – Schwartz

= 4iVirSÎ5

2
Da

o
nPZ

knl2aE
−`

` dy

ÎA2 + y2ÎBn
2 + y2

ª 4iVirSÎ5

2
Da

o
nPZ

knl2aIsA,Bnd.

In the above calculation we used as well the notation

Bn ª n2 − dm. sA13d

The integralIsA,Bnd is estimated as followssin our caseBn.A alwaysd:

IsA,Bnd ø
1

Bn
1−dE

−`

`

dy
1

ÎA2 + y2 · sA2 + y2dd/2
=

1

AdBn
1−dE

−`

`

dp
1

s1 + p2ds1+dd/2

=
1

AdBn
1−d ·

ÎpGsd/2d
Gss1 + dd/2d

=
Cd

AdBn
1−d ,

where we made the substitutionp=y/A. On the other hand,Bn obeys the following estimate:

Bn = un2 − dmu ø maxhn2,dmj ø maxhknl2,kdml2j ø knl2kdml2 sA14d

from where

IsA,Bnd ø Cd

knl2dkdml2d

AdBn
. sA15d

Using the fact that the functiongsmdª kdml2/Aknl is decreasing so that maxmPZ gsmd=gs0d=4
one haskdml2d /Adø4kml2d. Thus

sup
tPI0
E

Gm

iR0sz,tdi · iKsz,tdidy ø 16iVirSÎ5

2
Da

Cdkml2d o
nPZ

knl2sa+dd

un2 − dmu
ø CVCd

kml4d logs4m− 1d
kml1+minh0,2rj ,

0 , d ,
1

4
−

a

2
. sA16d

The last condition ond assures that the rhs vanishes in the limitm→`. We further optimize the
result by using the inequality
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Csdd ø
3

d
sA17d

and taking

d =
1

4 logkml
,

1

4
−

a

2
, sA18d

from where it follows thatkmlùe1/s1−2ad and

d−1kml4d = 4e logkml. sA19d

Then

sup
tPI0

E
Gm

iR0sz,tdi · iKsz,tdidy ø CV
log2s4m− 1d
kmlminh1,1+2rj . sA20d

The estimatessA11d and sA20d lead to

sup
tPI0

S sup
zPGm

iKsz,tdi +E
Gm

iR0sz,tdi · iKsz,tdidyD ø CV
log2k4m− 1l
kmlminh1,1+2rj . sA21d

In what concerns the estimates onG̃m one must follow the same steps as above, the result being

that m is pushed tom+ 1
2. Sincekm+ 1

2
løÎ2kml and logs4m+1dø2 logs4m−1d one can work

only with bsmd. To proves2.41d and s2.42d one must use the first resolvent identity,

iKsz,tdi ø iKsdm,tdi ·I R0sz,td
R0sdm,tdI ø iKsdm,tdiS1 +

uz− dmu
infzPgm

distsz,ssH0stdddD .

Since

sup
zPgn

uz− dmu = Î5sm− 1d

inf
tPI0

inf
zPgm

distsz,ssH0stddd ø
1
4s2m− 11

4 d

from wheres2.42d follows. Finally let us provesA2d,

inf
tPI0

inf
nPZ
U sn + td2 − dm

n2 − dm
U = inf

tPI0

inf
nPZ
U sn + td − Îdm

n − Îdm
UU sn + td + Îdm

n + Îdm
U

ù inf
tPI0

inf
nPZ
U sn + td − Îdm

n − Îdm
U inf

tPI0

inf
nPZ
U sn + td + Îdm

n + Îdm
U

= inf
tPI0

inf
nPZ
U1 +

t

n − Îdm
U inf

tPI0

inf
nPZ
U1 +

t

n + Îdm
U

ù S1 − sup
tPI0

sup
nPZ
U t

n − Îdm
UDS1 − sup

tPI0

sup
nPZ
U t

n + Îdm
UD

ù S1 − sup
nPZ
U 1

4

n − Îdm
UDS1 − sup

nPZ
U 1

4

n + Îdm
UD = S1 −

1

4 distsÎdm,ZdD
2

=
1

4
.

The proof of Lemma 2.3 is finished. h
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The Sz-Nagÿ transformation

For convenience we give here the well known15,30 Sz-Nagÿ lemma on unitary equivalence of
orthogonal projections.

Lemma 7.2.1: Let P,Q be orthogonal projections in a Hilbert spaceH satisfying

iP − Qi , 1 sA22d

If U is defined by

U = s1 − sP − Qd2d−1/2sPQ+ s1 − Pds1 − Qdd, sA23d

then

U* = U−1 sA24d

and

P = UQU* . sA25d

Notice also that

s1 − sP − Qd2d−1/2 = 1 + o
jù1

s2j − 1d!!
j !2 j sP − Qd2j . sA26d

The remainder of order p for the Dyson series

In this section we review a method to estimate the remainder of orderp for the Dyson series

of V̂P,m encountered in Sec. V. LetE be the space ofC` operator-valued functions onI0 taking
values inBsC2d. Thus∀XPE, ∀l PN

iXi` ª sup
tPI0

i]t
lXstdi , `, sA27d

sinceI0 is compact andt→]t
lXstd is continuous. We define the operatorK :E→E by the following

relation:

sKXdstd ª − iE
t0

t

V̂PssdXssdds, V̂Pstd ª S 0 bstd
bstd 0

D , sA28d

wherebstdª V̂s2sm−1dde2ism−1dst2−t0
2d. The Dyson series with remainder of orderp reads as

V̂P,m
0 st1,t0d = o

k=0

m−1

Kkstdid + KmstdV̂P,n0

0 st1,t0d. sA29d

HereKk denotesK +K + ¯ +K k times. We start by proving a technical lemma.
Lemma 7.3.1: Let aªm−1. Then for all XPE it holds

iKXi` ø
ubu
Îa

2Î6iXi` + ubu
logS Îa

2Î6
∨ 1D

a
iẊi`, sA30d

where we used the notation m∨nªmaxhm,nj.
Proof: We shall use the canonical basis inBsC2d which reads as follows:
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P1,1ª S1 0

0 0
D, P2,2ª S0 0

0 1
D, P1,2ª S0 1

0 0
D, P2,1ª S0 0

1 0
D . sA31d

Also, let x−, x0 et x+ be the characteristic functions corresponding to the intervalsf−1
4 ,−«g,

f−« ,«g andf« , 1
4
g where 0,«,

1
4. Then we have

KX = Kx−X + Kx0X + Kx+X. sA32d

One gets immediately

iKx0Xi` ø 2«ubuiXi`. sA33d

For Kx±X we use the identityKx±X=Kx±P1,1X+Kx±P2,2X. We shall treat in detail only the term
Kx−P2,2X, the estimates for the remaining parts being completely similar. Then with the notation
m∧nªminhm,nj we have

sKx−P2,2Xdstd = − iE
t0

t∧−«

bssdP1,2Xssdds= −E
t0

t∧−«

4iasbssd
P1,2Xssd

4as
ds= − FbssdP1,2Xssd

4as
G

t0

t∧−«

+E
t0

t∧−«

bssd]sSP1,2Xssd
4as

Dds,

sinceḃssd=4iasbssd. The first term is estimated as follows:

IFbssd
P1,2Xssd

4as
G

t0

t∧−«I ø
ubu

2a«
iP1,2Xi`. sA34d

For the second term,

E
t0

t∧−«

bssd]sSP1,2Xssd
4as

Dds=E
t0

t∧−«

bssdS−
P1,2Xssd

4as2 +
P1,2Ẋssd

4as
Dds, sA35d

and consequently

IE
t0

t∧−«

bssd]sSP1,2Xssd
4as

DdsI ø iP1,2Xi`E
t0

−« ubu
4as2ds+ iP1,2Ẋi`E

t0

−« ubu
4ausu

dsø
ubu

4a«
iP1,2Xi`

−
ubulogs4«d

4a
iP1,2Ẋi`.

Finally we find

iKXi` ø ubuSS2« +
1

a«
DiXi` −

logs4«d
a

iẊi`D sA36d

and choosing«=Î3s2ad−1/2∧ 1
4 we arrive at the announced result. h

Using Lemma 7.3.1 and the identitysd/dtdsKp−1Xdstd=V̂stdsKp−2Xdstd one can get the general
result,

if p ù 2, iKpXi` ø
ubu
Îa

ciKp−1Xi` + ubu
log

Îa

c

a
iV̂Kp−2Xi` ø AiKp−1Xi` + BiKp−2Xi`,

sA37d

with the notations
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c = 2Î6, Aª

ubu
Îa

c, B = ubu2
log

Îa

c
∨ 1

a
.

By looking at the expansion ofVP,m
0 st1,t0d it is clear that we must solvesA37d in the caseX

=VP,m
0 . However, in order to estimate as wellV̂P,m

0,spd the caseX=1 would be also usual. We
consider then the following two sequences for∀pù2:

xp
skd = Axp−1

skd + Bxp−2
skd with x0

skd = 1 and x1
skd given. sA38d

Herek=1,2 labels the considered case, namelyxp
s1d=iKpi andxp

s2d=iKpV̂P,m
0 i. We know thatxp is

a linear combination of two geometric seriesp→ r±
p. More explicitlyxp=a+r+

p+a−r−
p wherer± are

the solutions of the characteristic equationr2−Ar−B=0. Denoting withDª
ÎA2+4B one finds

r± =
A ± ÎD

2
. sA39d

The coefficients of the linear combinationa± are solutions of the equation

S 1 1

r+ r−
DSa+

a−
D = Sx0

x1
D ⇔ a± = ±

x1 − r7x0

ÎD
. sA40d

Now for the case 1 we have by direct calculationa±
s1d=r± /ÎD and then

xp
s1d =

r+
p+1 − r−

p+1

ÎD
= o

k=0

p

r+
kr−

p−k = r+
po

k=0

p S r−

r+
Dp−k

.

For the second case we use the superposition principle. Lety the sequence defined by the relation
as x with the initial conditionsy0=0 et y1=B. Then we havexs2d=xs1d+y. Sinceyp=b+r+

p+b–r–
p

with b±= ±BD−1/2 one has

xp
s2d = xp

s1d +
B
ÎD

sr+
p − r−

pd = xp
s1d + Bo

k=0

p−1

r+
kr−

p−k.

We proceed to the estimates by noticing thatur−u, r+ which allows to write

Uo
k=0

p

r+
kr−

p−kU = Ur+
po

k=0

p S r−

r+
Dp−kU ø r+

p 1

1 −
ur−u
r+

=
r+

p+1

r+ − ur−u
=

r+
p+1

A

and consequently

uxp
s1du ø

r+
p+1

A
, uxp

s2du ø
r+

p+1

A
+

B

A
r+

p. sA41d

Using these results we obtain

iKp idi ø
r+

A
r+

p ø S1 +
ÎB

A
DBp/2S1 +

A
ÎB

Dp

, sA42d

where
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ÎB

A
=

1

4Î3
SlogS a

24
∨ 1DD1/2

.

The estimate onxp
s2d gives

iKpV̂P,m
0 i ø

r+
p+1

A
+

B

A
r+

p ø S1 +
ÎB

A
+

B

A
DBp/2S1 +

A
ÎB

D , sA43d

where

B

A
=

1

4Î6

ubu
Îa

logS a

24
∨ 1D .

Therefore we have proved the following.

Theorem 7.3.2:Let ÛP,m and ÛP,m
0 as defined in Sec. V a=m−1 and b=V̂s2sm−1dd. Then

there exists m0 and a constant Cm0
such that the Dyson series forV̂P,m

0 st ,t0d=ÛP,m
0 st ,t0d*ÛP,m

0

converges uniformly with respect to t for every tP I0 and that for any m.m0 one has the following
estimate:

iV̂P,m
0,spdi` ø Cm0

ubupÎlog aS log a

a
Dp/2

. sA44d

The remainder of order p satisfy the estimate

iKpV̂P,m
0 i` ø 2Cm0

ubupÎlog aS log a

a
Dp/2

. sA45d
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It is demonstrated that Burgers equations, which are often believed to describe
dissipative systems, are non-Lagrangian. Following Bateman’s analysis of damped
harmonic oscillator an action is defined to look for a Lagrangian representation for
equations in the Burgers hierarchy. The associated higher-order Lagrangian densi-
ties are found to be degenerate such that the Hamiltonian structure could be studied
by a repackaging of Ostrogradski formalism and Dirac’s theory of constraints. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1852700g

The Burgers equation

ut = uxx + 2uux, u = usx,td s1d

represents the simplest nonlinear evolution equation that can be regarded as a one-dimensional
reduction of the Navier–Stokes equation.1 This equation is dissipative and does not support soliton
solutions. However, it appears in many applicative contexts including the study of acoustics and
shock waves.2 Its solvability was discovered before the introduction of the spectral transform
method.3 For example, the Cole–Hopf transformation4

u =
fx

f
, f = fsx,td s2d

was found to map the equation ins1d into the integrable linear diffusion equation

ft = fxx. s3d

It is of interest to note thats1d represents the first nontrivial flow of the hierarchy written as5

utn+1
= ]s] + udnu, ] =

]

]x
s4d

with tn+1, the commutative time. Fors4d, an equation similar to that ins3d is given by

ftn+1
= ]n+1f. s5d

Taflin6 first observed thats1d can be written in the Hamiltonian form7 and that it has an infinite
number of constants of the motion in involution. A similar study was carried out by Tasso8 for the
third-order Burgers equation. In each of these studies the canonical structure was derived with
particular attention to the linear equation as given ins5d. Moreover, there was no explicit reference

adElectronic mail: binoy123@sancharnet.in

JOURNAL OF MATHEMATICAL PHYSICS46, 043506s2005d

46, 043506-10022-2488/2005/46~4!/043506/8/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1852700


to Lagrangians to construct the Hamiltonian densities. The object of the present work is to provide
an ab initio approach for the canonical or Hamiltonian structure of Burgers equations. We shall
present all results with particular emphasis on the third-order equation. This is however, no loss of
generalization because the method derived by us is applicable to any equation in the hierarchy. We
shall begin by solving the inverse problem of variational calculus to construct an appropriate
Lagrangian and then Hamiltonize this equation to get the relevant Poisson structure. The following
gives a brief outline for the inverse variational problem as given by Helmholtz.9

Let Pfzg=Psx,zndeAr be anr-tuple of differential functions. The Fréchet derivative ofP is the
differential operatorDP:Aq→Ar and is defined as

DPsQd = U d

de
U

e=0
Pfz + eQszdg s6d

for anyQeAq. The Helmholtz condition9 asserts thatP is the Euler–Lagrange expression for some
variational problem ifDP is self-adjoint. Once the existence of a Lagrangian is guaranteed, the
expression for it can be constructed by using a homotopy formula.10 The solution given by
Helmholtz is very neat, from the wider perspective of determining which systems of differential
equations arise from variational principle. However, there are situations where the Helmholtz
solution may turn out to be somewhat unsatisfactory. For example, ifDP is not self-adjoint for a
system of differential equations, we have to stop by inferring that the system is non-Lagrangian. In
the following, we first show that Burgers equation does not satisfy the Helmholtz condition and
then try to construct a Lagrangian by taking recourse to the celebrated work of Bateman.11

The third-order equation is given by

ut = u3x + 3u2ux + 3uu2x + 3ux
2, u = usx,td. s7d

To study the inverse problem for nonlinear evolution equations it is convenient to work with an
integral ofu

wsx,td =E
x

`

dy usy,td s8d

rather thanu itself; w is often called a potential function. In terms of this dependent variable,
s7d reads

wxt = w4x + 3wx
2w2x − 3w2x

2 − 3wxw3x. s9d

Equivalently,

wt = w3x + wx
3 − 3wxw2x. s10d

For s9d we write the Euler–Lagrange expression as

Pfwg = w4x + 3wx
2w2x − 3w2x

2 − 3wxw3x. s11d

From s6d and s11d

DP = D4x + 6wxw2xDx + 3wx
2D2x − 3wxD3x − 3w3xDx − 6w2xD2x,

s12d

Dnx = S d

dx
Dn

.

To construct the adjoint operatorDP
* corresponding tos12d we write DP as
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DP = o
j=1

4

PjswdDjx s13d

and make use of the definition

DP
* = o

j=1

4

s− Dd jxPjswd. s14d

This gives

DP
* = D4x + 6wxw2xDx + 3wx

2D2x + 3w2xD2x + 3wxD3x. s15d

From s12d and s15d we see thatDPÞDP
* . This tells us that the Burgers equations7d or s10d is

non-Lagrangian. The same is true for any member of the hierarchy. Thus it remains an interesting
curiosity to find a Lagrangian from which we could get the Burgers equation using an action
principle. To achieve this, we remember that, being weakly nonlinear the equations of the Burgers
hierarchy are dissipative. In particle dynamics Bateman11 allowed for an additional equation of
motion to write an explicitly time independent Lagrangian for the damped harmonic oscillator. In
particular, the Lagrangian

L = ẋẏ + 1
2lsxẏ− ẋyd − w2xy s16d

was found to give two equations of motion

ẍ + lẋ + w2x = 0 andÿ − lẏ + w2y = 0, s17d

wherew is the natural frequency of the oscillator andl, the damping constant. Therefore, follow-
ing Bateman, we introduce an ansatz,

L =
1

2
swtvx + wxvtd + sw2x F1 F2 ¯ Fm−1 d1

s− 1dn−1vsn−1dx

G1

G2

¯

Gm−1

2 s18d

with v=vsx,td andGi =−vx, i =1,2, . . . ,m−1 to define a Lagrangian densityL. In writing s18d, we
assumed that thenth equation in the Burgers hierarchy written in terms ofwsx,td can be expressed
as

wt = wnx + o
i=1

m−1

Fi . s19d

We demand that the Lagrangian density ins18d should satisfy the following lemmas.
Lemma 1:L via an appropriate action principle gives equations in the Burgers hierarchy.
Lemma 2:L introduces a set of new equations coupled with the original Burgers equations.
Proof of Lemma 1:The potential functionw andv which enter ins18d can be used to obtain

equations of the Burgers hierarchy from an action principle. For this purpose, we consider

dI = 0, I =E L dx dt. s20d

To make the proof transparent we consider the third order equation. Comparings10d ands19d we
have
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F1 = wx
3 andF2 = − 3wxw2x, s21d

such that

L = 1
2swtvx + wxvtd + w2xv2x − wx

3vx + 3wxw2xvx. s22d

The Euler–Lagrange equation froms20d can be written in the form

dL
dc

−
d

dt
S ]L

]ct
D = 0 s23d

with the variational derivative

d

dc
=

]

]c
−

d

dx

]

]cx
+

d2

dx2

]

]c2x
− ¯ . s24d

For the Lagrangian ins22d, the function csx,td is either vsx,td or wsx,td. Choosingcsx,td
=vsx,td we get froms22d and s23d the third order Burgers equation ins10d. This is true for any
member of the hierarchy.

Proof of Lemma 2:For csx,td=wsx,td, the Euler–Lagrange equation gives

vt = v3x + 3wx
2vx + 3wxv2x. s25d

This equation is coupled withs10d verifying our demand in Lemma 2. An equation similar to
s25d can be obtained for each member of the hierarchy.

We shall now recast the equation of the Burgers hierarchy into canonical form and obtain an
explicit expression for the exact Hamiltonian. We do this with particular emphasis on the Lagrang-
ian in s22d. This Lagrangian density is first order in time and higher order in the space variable. In
the context of particle dynamics similar Lagrangians are often called higher-order Lagrangians.
Euler12 first investigated the variational problem in which the integral implied in the definition of
action depends on higher derivatives of the generalized coordinates. The standard procedure for
Hamiltonizing a higher-order Lagrangian is due to Ostrogradaski13 who proceeded by introducing
a set of new variables such that one could finally work with an effective first-order action to arrive
at the canonical structure. We closely follow this procedure to deal with the Lagrangian density in
s22d.

In view of the above, we rewrites22d using

w2xv2x = swxv2x + vxw2xdx − w2xv2x − wxv3x − vxw3x s26d

such that

L = 1
2swtvx + vtwxd − w2xv2x − wxv3x − vxw3x − wx

3vx − 3wxw2xvx. s27d

Here, we have omitted the trivial gauge termswxv2x+vxw2xdx. We reduce the action to first order
by introducing a set of constraints

u − w2x = 0 andh − v2x = 0. s28d

From s27d and s28d we have

L = 1
2swtvx + vtwxd − hu − wxhx − vxux − wx

3vx − 3wxvxu. s29d

The Lagrangian density ins29d is degenerate because the associated Hessian is zero. Degenerate
Lagrangians are Hamiltonized by using the Dirac’s machinery14 which is supposed to introduce a
set of new constraints to consistently define the Hamiltonian density. To pass from the Lagrangian
to the Hamiltonian formulation of the problem we introduce the canonical momentum densities

043506-4 Talukdar, Ghosh, and Das J. Math. Phys. 46, 043506 ~2005!

                                                                                                                                    



pw =
]L
]wt

=
1

2
vx,

pv =
]L
]vt

=
1

2
wx,

s30d

pu =
]L
]ut

= 0,

ph =
]L
]ht

= 0.

These momenta cannot be inverted for velocities. This represents a characteristic feature of de-
generate Lagrangians. In the Dirac’s machinery one proceeds by defining the primary constraints
through the weak equations

c1 = pw − 1
2vx < 0,

c2 = pv − 1
2wx < 0,

s31d
c3 = pu < 0,

c4 = ph < 0.

These equations play a role in the Poisson bracket formalism of Hamiltonian mechanics. The sign
“'” implies that we should not use these constraints before working out the Poisson brackets
chracterizing the dynamical evolution of the system. In other words, all Poisson brackets occurring
in the theory must be worked out before we make use ofs31d. In Dirac’s theory, the total
Hamiltonian of the system is given by

H =E H dx, H = H0 + H8, s32d

whereH0 is the free part of the Hamiltonian density determined by the usual Legendre transfor-
mation and we have

H0 = hu + wxhx + vxux + wx
3vx + 3wxvxu. s33d

The interaction partH8 is an arbitrary linear combination of the constraints such that the total
Hamiltonian could give the correct equations of motion with the usual Poisson brackets. Thus, we
write

H8 = bc1 + gc2 + sc3 + rc4, s34d

whereb, g, s, andr are undetermined multipliers. In order for the Hamiltonian formulation of
dynamics to be consistent it is not only necessary that the positions and momenta evolve in a
manner which respects the constraints, but it is also necessary that the constraints themselves have
dynamics. Thus one must require that
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dci

dt
= fci,Hg < 0 s35d

and this requirement will determine the multipliers provided there are no further constraints in the
problem.

Using the canonical Poisson brackets of thew, v, u, andh fields written as

fwsxd,pwsx8dg = dsx − x8d,

fvsxd,pvsx8dg = dsx − x8d,

s36d
fusxd,pusx8dg = dsx − x8d,

fhsxd,phsx8dg = dsx − x8d

we have found the following Poisson brackets given by

fc1,Hg = fg − hx − 3wx
2vx − 3vxugx,

fc2,Hg = − fb + ux + 3wxu + wx
3gx,

s37d
fc3,Hg = fh − v2x + 3wxvxg,

fc4,Hg = fu − w2xg.

It is clear that the last two Poisson brackets ins37d cannot be made to vanish by any choice of the
multipliers. This implies that there are secondary constraints in the theory. We introduce these
constraints as

c5 = h − v2x + 3wxvx < 0,

s38d
c6 = u − w2x < 0.

The constraintsc5 andc6 must be incorporated in the total Hamiltonian to get the correct dynamics
of the system. Thus we replaces34d by

H8 = bc1 + gc2 + sc3 + rc4 + mc5 + jc6 s39d

with m andj as additional multipliers. In order to check that if there are further constraints in the
problem we have again calculated the following Poisson brackets:

fc1,Hg = fg − 3mvx − jx − hx − wx
2vx − 3vxugx,

fc2,Hg = − fb + mx + 3wxm + ux + 3wxu + wx
3gx,

fc3,Hg = fj + h − v2x + 3wxvxg,

s40d
fc4,Hg = fm + u − w2xg,

fc5,Hg = fsgx + 3vxb + 3wxgdx − rg,
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fc6,Hg = fb2x − sg.

These Poisson brackets can be made to vanish by choosing the Lagrange’s multipliers

b = − sw3x + 3wxw2x + wx
3d,

g = sv3x + wx
2vx − 3wxv2xd,

s = sw3x + 3wxw2x + wx
3dxx,

s41d
r = sv4x − 3w2xv2x − 3w3xvx − 7wxw2xvx − 8wx

2v2xd,

m = sw2x − ud,

j = sv2x − h − 3wxvxd.

Equationss41d indicate thatc1−c6 exhaust all constraints of the problem. Thus froms31d, s33d,
s38d, s39d, ands41d we write the total Hamiltonian density in the form

H = 2w2xh − 2w2xv2x + 15
2 wxw2xvx − hu + 2v2xu − 3wxvxu + wxhx + vxux + wx

3vx + 1
2w3xvx − 1

2wxv3x

+ 3
2wx

2v2x− sw3x + 3wxw2x + wx
3dpw + sv3x + wx

2vx − 3wxv2xdpv − sw3x + 3wxw2x + wx
3dxxpu

+ sv4x − 3w2xv2x − 3w3xvx − 7wxw2xvx − 8wx
2v2xdph. s42d

It is straightforward to verify that each Poisson bracketsfpv ,Hg, fpv ,Hg, fpu ,Hg, and fph ,Hg,
reproduces the Burgers equation ins10d.

Let us now identify those constraints that are physically important for the dynamics of the
system. In order that we must divide the constraints into first and second class irrespective of
whether they are primary, secondary or tertiary. The constraints are called first class if they have
vanishing Poisson brackets with all the rest, that is

fci,cjg = 0, i, j = 1,¯ ,6 s43d

otherwise the constraints are called second class. The first-class constraints are related, at least to
some extent, to the gauge properties of the system while the second-class constraints are associ-
ated with the appearance of unphysical degrees of freedom in the theory. Thus, it is clear that these
two classes play a fundamentally distinct role in the canonical analysis. We have found that the
Poisson brackets involving allc’s are zero except forfci ,cjg, i =1,j =2,5; fci ,cjg, i =2,j =5;
fci ,cjg, i =3,j =6; andfci ,cjg, i =4,j =5. The existence of these nonvanishing Poisson brackets can
be used to see that all constraints of the problem are second class. Moreover, by introducing Dirac
brackets to write the equation of motion one can eventually eliminate all second-class constraints
from the theory. This means that all weak equations now becomes strong, such that allc’s are now
strong zeros. This is precisely, the reason why the zero-order Hamiltonian when substituted in the
canonical equation of Zakharov and Faddeev, and Gardner7 gives the equation of motion. In the
present case, we can make use of

vt =
dH0

dvx
andvt =

dH0

dvx
s44d

to get s10d and s25d. We conclude by noting the following.
The heat equation ins2d is an instructive case of an integrable equation since it is easier to find

a Lagrangian structure15 for this equation. Moreover, using the Cole–Hopf coordinate transforma-
tion, one can map structuressLagrangian or Hamiltoniand of the heat equation into those of the
potential Burgers equation. This viewpoint has been advocated by Hojman and his collaborators in
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a number of publications.16 However, the results cannot be applied directly to investigate the
canonical structure. In the present work we exploited the similarity between physical effects
described by Burgers equations and equations of the damped harmonic oscillator to define an
action that gives an uncomplicated expression for a degenerate Lagrangian densityL which is first
order in time. Faddeev and Jackiw17 found that one must refrain from viewing a Lagrangian that
is linear in first order time derivatives as necessarily describing a constrained system. Despite that
we used Dirac’s machinery to derive the Hamiltonian structure presumably because our Lagrang-
ian analytically represents a set of coupled equations which might also follow from a Lagrangian
which is nonlinear in the first derivatives in time.18
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An extension of the conditional expectationssthose under a given subalgebra of
events and not the simple ones under a single eventd from the classical to the
quantum case is presented. In the classical case, the conditional expectations al-
ways exist; in the quantum case, however, they exist only if a certain weak com-
patibility criterion is satisfied. This compatibility criterion was introduced among
others in a recent paper by the author. Then, state-independent conditional expec-
tations and quantum Markov processes are studied. A classical Markov process is a
probability measure, together with a system of random variables, satisfying the
Markov property and can equivalently be described by a system of Markovian
kernelssoften forming a semigroupd. This equivalence is partly extended to quan-
tum probabilities. It is shown that a dynamicalssemidgroup can be derived from a
given system of quantum observables satisfying the Markov property, and the
group generators are studied. The results are presented in the framework of Jordan
operator algebras, and a very general type of observablessincluding the usual
real-valued observables or self-adjoint operatorsd is considered. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1861275g

I. INTRODUCTION

A classical Markov process is a probability measure together with a system of random vari-
ables, satisfying the Markov propertyswhich characterizes a certain memorilessness of the pro-
cessd. A classical Markov process can equivalently be described by a system of Markovian kernels
forming a semigroup when the process is stationary.

The quantum analogues of probability measures, random variables and Markovian kernels are
the states, observables and unital positive linear maps. A quantum Markov process is usually
modeled as a semigroup of unital positive linear maps on aW* -algebrasvon Neumann algebrad.
The major result of the present paper is the derivation of such a semigroup from a stochastic
process given as a quantum state together with a system of observables, satisfying a certain
directed weak compatibility criterion, the Markov property and the stationarity criterion. This
partly extends the classical equivalence between stationary Markov processes and semigroups of
Markovian kernels to the quantum case. As in the classical case, the major tools are the Radon–
Nikodym theorem and conditional expectations, the extension of which to the quantum case is a
major result of the present paper.

The quantum probabilities are considered in the general framework of Jordan operator alge-
bras, particularly the so-called JBW algebras. A justification for this is given in Ref. 10. An
observable then becomes a homomorphism between such algebras. A classical random variable
can be considered an observable on a classical space with values in a classical space. A real-valued
quantum observablesspectral measure of a self-adjoint operatord can be considered an observable
on a nonclassical quantum space with values in a classical spacesthe real numbersd. This paper,
however, uses the most general type, i.e., an observable on a nonclassical quantum space with
values in a nonclassical quantum space; this is a homomorphism between two nonassociative
Jordan operator algebras.

A Jordan algebra4 is a linear spaceA equipped with asnonassociatived commutative product
+ satisfyingX+ sY+X2d=sX+Yd +X2 for all X,YPA. A JB algebra4 is a real Jordan algebraA that
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is a Banach space with a norm satisfyingiX+Yiø iXi iYi ,iX2i=iXi2, andiX2iø iX2+Y2i for all
X,YPA. The subsetA+ª hX2uXPAj of a JB algebraA is a closed convex cone, and a partial
ordering is defined viaXøY⇔Y−XPA+. For idempotent elementsE andF, EøF is equivalent
to E+F=E. A linear functionalm :A→R is calledpositiveif msXdù0 for XPA+. A positive linear
functionalm is bounded withimi=msId and is called astate if msId=1; m is faithful means that
msXd=0 with Xù0 implies thatX=0. A linear mapV from a JB algebraA to another JB algebra
is positive if VsXdù0 for Xù0. A JB algebra which is the dual of a Banach space is aJBW
algebra. 4 A JBW algebra has a unit denoted byI and is generated by its idempotent elements
called events; the eventE8ª I−E is the negation of the eventE. Two eventsE and F are
orthogonalif E+F=0. The spectral decomposition theorem each element of a JBW algebra.

The conditional probabilitymsFuEd of an eventF under another eventE in a statem with
msEd.0 has been introduced in Ref. 9, where it has been shown thatmsFuEd
=mshE,F ,Ejd /msEd. Note that thetriple producth , , j in a Jordan algebra is defined as follows:
hX,Y,Zj=X+ sY+Zd−Y+ sZ+Xd+Z+ sX+Yd. For some pairs of eventsE andF, the conditional prob-
ability msFuEd does not depend on the underlying statem and is then denoted byPsFuEd.

Generally, the equationmsFd=msFuEdmsEd+msFuE8dmsE8d or the equivalent equation
mshE,F ,Ejd=msE+Fd does not hold; if it does, we writeE→

m
F. This is a weak state-dependent

directed compatibility criterion that has been introduced in Ref. 11 and is always fulfilled in
classical probability theory. Several stronger forms of compatibility exist, e.g., the eventE andF
are calledcompatibleif E→

m
F andF→

m
F both hold for all statesm; in this case,E andF operator-

commute. 4 With a JBW subalgebraA1 of A, we writeA1→m F if E→
m

F holds for each eventE in

A1, and with two JBW subalgebrasA1 andA2 of A, we writeA1→m A2 if E→
m

F each eventE in

A1 and each eventF in A2. We shall later see that the conditionA1→m F ensures the existence of

a reasonable conditional expectation ofF underA1 in the statem. This condition is satisfied, e.g.,
when A1 and F operator-commute, or whenA is the tensor product11 of A1 and A2 with F
PA2, or whenm is a trace state.13

A linear mapsstate, homomorphism, observabled on a JBW algebraA is callednormal if it is
continuous with respect to the weak topology onA generated by its predual. Normal linear maps
are completely additive for any orthogonal family of events. The paper restricts to the study of
normal states and normal observables although it would be desirable to includes-additive states
and standard observables that ares-additive and not necessarily normal, but then some methods
needed from the theory of JBW algebras would not applyssee also Sec. VIId.

The paper is organized as follows: In Secs. II and III, some results that are well known for
C* − /W* -algebras are extended to the Jordan operator algebras for later use; these are Kadison’s
generalized Schwarz inequality and Sakai’s Radon–Nikodym theorem. The extension of condi-
tional expectations and Markov processes to the quantum case is introduced in Secs. IV and V,
respectively. It is shown that a semigroup of positive linear maps is associated with each such
Markov process. Finally the generator of this semigroup is studied in Sec. VI.

Although the motivation for the work presented here primarily stems from a quantum prob-
ability model proposed in Refs. 9–11, the paper is written in such a way that most of it can be
understood without knowledge of that quantum probability model. However, some knowledge of
Jordan operator algebras is required, and the monograph Ref. 4 is recommended as an excellent
reference.

II. THE GENERALIZED SCHWARZ INEQUALITY

The following lemma will be needed to prove the generalized Schwarz inequality for positive
linear maps between JB algebras.

Lemma 2.1: Let X1, . . . ,Xn be n positive elements in a JB algebraA with unit I such that
ok=1

n Xkø I and s1, . . . ,snPR. Then
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So
k=1

n

skXkD2

ø o
k=1

n

sk
2Xk.

Proof: Let w be a state onA. On the direct sum ofn copies ofA we consider the positive–
semidefinite inner product

kYuZl ªo
k=1

n

wshYk,Xk,Zkjd

for Y=Y1 % ¯ % Yn and Z=Z1 % ¯ % Zn with Yk,ZkPA. Then the Cauchy–Schwarz inequality
holds snote thathYk,Xk,Ykjù0 for Yk,XkPA with Xkù0d and, selectingYkªskI for k=1, . . . ,n
and

Z1 ª ¯ ª Zn ªo
k=1

n

skXk,

we get

SwSSo
k=1

n

skXkD2DD2

= kYuZl2 ø kYuYlkZuZl = wSo
k=1

n

sk
2XkDwSHZ1,o

k=1

n

Xk,Z1JD
ø wSo

k=1

n

sk
2XkDwsZ1

2d = wSo
k=1

n

sk
2XkDwSSo

k=1

n

skXkD2D .

Hence

wSSo
K=1

n

skXkD2D ø wSo
K=1

n

sk
2XkD

and, since this every statew, the lemma is proved.
The following proposition now provides the extension of Kadison’s generalized Schwarz

inequality for positive maps between C*-algebras5 to the more general case of positive maps
between JB algebras.

Proposition 2.2:Let V be a positive linear map from a unital JB algebraM to a unital JB
algebraN with VsId=I. ThensVsXdd2øVsX2d for every XPM.

Proof: First, we assume thatM is a JBW algebra4 and thatX has the shapeX=ok=1
n skEk with

pairwise orthogonal idempotent elementsE1, . . . ,EnPA and s1, . . . ,snPR. Then 0øVsEkd for
k=1, . . . ,n andoVsEkdø I such that we can apply Lemma 2.1 obtaining

sVsXdd2 = So
k=1

n

skVsEkdD2

ø o
k=1

n

sk
2VsEkd = VSo

k=1

n

sk
2EkD = VsX2d.

Since, due to the spectral theorem, everyXPM can be approximated in the norm topology by
a sequence of elements having the above special shape and since a positive linear map is auto-
matically norm continuous,sVsXdd2øVsX2d everyXPM.

We now assume thatM is a JB algebra. Then the double dual spacesM** andN** are JBW
algebras containingM andN, respectively, as subalgebras,4 such that Proposition 2.2 follows by
applying the above to the mapV** :M** →N** .

Corollary 2.3:Let V be a bijective positive linear map from a unital JB algebraM to a unital
JB algebraN with VsId=I such that V−1 is positive as well. Then V is a muliplicative homomor-
phism.

Proof: sVsXdd2øVsX2d for everyXPM andsV−1sYdd2øV−1sY2d for everyYPN. Hence with
Y=VsXd :X2øV−1ssVsXd2d. Then, sinceV is positive,VsX2dø sVsXdd2. Therefore,VsX2d=sVsXdd2.
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The identity 2A+B=sA+B2d−A2−B2 for A,BPM finally implies thatV is multiplicative.

III. THE RADON–NIKODYM THEOREM

We shall now extend one of Sakai’s Radon–Nikodym theorems14 from W* -algebras to JBW
algebras. Since all methods needed for the proof of theW* -case are available in the JBW case as
well, the proofs are quite similar in these two cases.

Theorem 3.1:Let A be a JBW algebra and letn, m be two positive normal linear functionals
on A with nøm. Then, there is an element YPA with 0øYø I such thatnsZd=msY+Zd all Z
PA.

Proof: For XPA we define mX via mXsZdªmsX+Zd for ZPA and consider the set
K : hmXuXPA ,0øXø Ij which is a nonempty convex subset of the predualA* of A. Moreover,K
is compact with respect to the weak topology onA* that is generated byA. Note that hX
PA ,0øXø Ij is compact and that the multiplication operation with one element fixed is con-
tinuous with respect to the weak topology onA generated byA* .

All we must show is thatnPK. We assume thatn¹K. From the Hahn–Banach theorem it
then follows that there is an elementAPA and a real numberr such thatnsAd. r and mXsAd
ø r for XPA with 0øXø I. Now let F be the support of the positive partA+ of A; these are
defined as follows: withA=el dEl being the spectral decomposition ofA, A+ªef0,̀ gl dEl and
Fªef0,̀ gdEl. Thenr ùmFsAd=msF +Ad=msA+dùnsA+dùnsAd, which contradictsnsAd. r.

IV. CONDITIONAL EXPECTATIONS

Let A be a JBW algebra andA0 a JBW subalgebra ofA with IPA0. Let m be a normal state
on A andXPA with 0øXø I.

Definition 4.1: An element YPA0 such thatmshE,X,Ejd=msY+Ed all events E inA0 is called
a conditional expectation of X underA0 in the statem.

If F is an event inA and if Y is a conditional expectation ofF underA0 in the statem, we get
that msF uEdmsEd=msY+Ed all eventsE in A0.

Lemma 4.2: If a conditional expectation exists for XPA with 0øXø I, then there is a least
one conditional expectation Y with0øYø I.

Proof: Let ZPA0 be a conditional expectation withZ=el dEl being its spectral decomposi-
tion, and define

Z− ª −E
s−`,0d

l dEl, Yª E
f0,̀ g

l dEl, and E0 ª E
s−`,0d

dEl.

Then Z−,Y,E0PA0. Hence 0ømshE0,X,E0jd=msZ+E0d=−msZ−dø0, i.e., msZ−d=0. Since 0
øZ−, we getmsZ−

2d=0, and the Cauchy–Schwarz inequality for states implies thatmsZ−+Ed=0 for
all eventsE in A0. ThereforemshE,X,Ejd=msZ+Ed=mssZ−+Yd +Ed=msY+Ed for all eventsE in
A0, i.e., Y is a positive conditional expectation ofX. Repeating now the same procedure for the
conditional expectationI−Y of I−X finally yields a conditional expectationY with 0øYø I.

Theorem 4.3: sid A conditional expectation of X underA0 in the statem exists if and only if
A0→m X holdsfi.e., mshE,X,Ej=msE+Xdd for all events EPA0g.

sii d If A0→m X holds and if the restriction ofm to A0 is faithful, then there is one and only one

conditional expectation of X underA0 in the statem fwhich shall be denoted bymsXuA0d in the
remaining part of this paperg.

Proof: sid Let Y be a conditional expectation ofX underA0 in the statem, and letE be an
event in A0. Then msXd=msYd=msY+Ed+msY+E8d=mshE,X,Ejd+mshE8 ,X,E8jd=msXd−2msX
+Ed+2mshE,X,Ejd, where the last equality follows from the identityhE8 ,X,E8j=X−2X+E
+hE,X,Ej. ThereforemshE,X,Ejd=msX+Ed.

Now let A0→m X hold. We then definensZdªmsX+Zd for ZPA0; n is a normal linear func-

tional on A0. Due to the conditionA0→m X, we have 0ønsEdømsEd for all eventsE in A0.
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Therefore 0ønøm on A0. From the Radon–Nikodym theorem we get an elementYPA0 with
0øYø I such that nsZd=msY+Zd for all ZPA0. Finally, we get that msY+Ed=msX+Ed
=mshE,X,Ejd the eventsE in A0, where we have again used the assumptionA0→m X. Thus,Y is a

conditional expectation ofX underA0 in the statem.
sii d Now let m be faithful onA0 and Y1,Y2PA0 with 0øY1,Y2ø I such thatmshE,X,Ejd

=msY1+Ed=msY2+Ed for all eventsEPA0. Then mssY1−Y2d +Ed=0 for all eventsEPA0 and,
sinceA0 is the closed linear hull of its events, we getmssY1−Y2d +Zd=0 for all ZPA0. Hence
mssY1−Y2d2d=0. The faithfulness now implies thatsY1−Y2d2=0. ThereforeY1=Y2.

Let the restriction ofm to A0 be faithful, and letA0→m X,X1,X2 hold with X,X1,X2PA ,0

øX,X1,X2ø I. Lemma 4.2 implies that 0ømsXuA0dø I. Obviously we havems0uA0d=0,
msI uA0d=I, and msaX1+s1−adX2uA0d=amsX1uA0d+s1−admsX2uA0d for 0øaø1. Moreover,
msmsXuA0d uA1d=msXuA1d holds for any other JBW subalgebraA1#A0 with A1→m msXuA0d.

The faithfulness ofm on A0 is not really a strong restriction; moving over fromA to the JBW
algebrahD ,A ,Dj with D being the support ofm, one could even assume thatm is faithful onA.
Note that the support is the smallest eventE with msEd=1, which exists for normal states.

We are now in a position to extend the concept of the state-independent conditional probabili-
ties fPsFuEd; see Ref. 9g to the conditional expectations. IfmsXuA0d=nsXuA0d all normal states
m ,n onA, which are faithful onA0 and satisfyA0→m X andA0→n

X, respectively, and if at least one

such state exists, this state-independent conditional expectation is denoted byEsXuA0d. The con-
ditional expectationsmsFuA0d andEsFuA0d are elements inA0 while msFuEd andPsFuEd are real
numbers for eventsE and F in A. If En is a finite or infinite sequence of mutually orthogonal
events inA with oEn=I and 0,msEnd,1 for eachn, if A0 is the subalgebra generated by theEn,
and if A0→m F holds, we getmsFuA0d=omsFuEndEn. If, moreover, theEn are atoms,9 EsFuA0d
exists andEsFuA0d=oPsFuEndEn.

With R:M→A being a normal observable, i.e., a JBW-homomorphism from another JBW
algebraM to A, RsMd is a JBW subalgebra ofA. If RsMd→

m
X and if m is faithful on RsMd,

msXuRsMddPRsMd is also denoted bymsXuRd for by EsXuRd in the case of independence of the
particular stateg. If R is injective, there is one and only one elementVR,msXdPM with msXuRd
=RVR,msXd. Then 0øVR,msXdø I.

We now assume thatA1 is a further subalgebra ofA such thatA0→m A1 si.e., E→
m

X all events

E in A0 and all XPA1d or RsMd→
m

A1. Then the mapsX→msXuA0d ,X→msXuRd, and X

→VR,msXd fpossibly alsoX→EsXuA0d andX→EsXuRdg are convex normal maps from the positive
unit ball of A1 to the positive unit ball ofA0,RsMd, andM, respectively. Therefore, each of
these maps has a unique extension to a positive normal linear map fromA1 to A0, RsMd, andM,
respectively. Thus,msXuA0d ,msXuRd, andVR,msXd fpossibly alsoEsXuA0d andEsXuRdg are defined
for all XPA1.

Differing from the notation used here, a positive linear mapp :A→A0,X→psXd with
A0#A1,p=p2 andpsId=I is sometimes called a conditional expectationse.g., Refs. 2 and 14d; in
Ref. 4, it is shown that thenpsX+Yd=psXd +Y for XPA andYPA0. If A is a JBW algebra with
a faithful trace statese.g., a JBW algebra with a finite dimension, or a type II1 factord, then it
follows from Theorem 4.3 that a positive linear mapp :A→A with p=p2, psId=I, andpsAd
=A0 exists for each JBW subalgebraA0#A; note that, withm being a trace state,E→

m
F all

eventsE andF in A, and definepsXdªmsXuA0d for XPA.

V. THE MARKOV PROCESS

Let A be a JBW algebra. LetRs:Ms→AssPSd be a family of normal observables withMs

being further JBW algebras. Typical examples of the index setS are intervals, e.g.,f0,`g or
f−`,`g, the integers or the non-negative integersh0,1,2, . . .j. The JBW subalgebra ofA that is
generated byøs8øsRs8sMs8d is denoted byAøs for sPS.

Definition 5.1: The family of normal observables RsssPSd together with a faithful normal
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statem on A is now called a normal Markov process if

sid Aøs→m Rs8sMs8d for s,s8, and

sii d msXuAøsd=msXuRsd for s,s8 and XPRs8sMs8d both hold.

Condition sid is a weak directed compatibility criterion for the family of observables
RsssPSd under the fixed statem. Within classical probability theory, it is meaningless, since
generally holding. Conditionsii d is the Markov property, meaning that a Markov process is memo-
ryless; the future behavior of the process after times depends only on its behavior at times and
not on the process history before times.

We now assume a normal Markov process with eachRsssPSd being injective; then
VRs,m

sRs8sYddPMs for YPMs8 and s,s8 ssee Sec. IVd. Hence, the compositionVs,s8 :
=VRs,m

Rs8 is a positive normal mapMs8→Ms with Vs,s8sId=I. Keep in mind that theVs,s8 depend
on the underlying statem, although this is not shown in the nomenclature.

Theorem 5.2:sid mRssVs,s8sYdd=mRs8sYd for YPMs8 ands,s8; i.e., Vs,s8 transfers the prob-
ability distribution of Rs on Ms into the one of Rs8 on Ms8. Note that mR with mRsEd:
=msRsEdd is the distribution of the observable R in the statem. sii d Vs,s8Vs8,s9=Vs,s9 for s,s8 ,s9
PS with s,s8,s9.

Proof: sid mRssVs,s8sYdd=mssRsVRs,m
Rs8dsYdd=msmsRs8sYduRsdd=msRs8sYdd=mRs8sYd. sii d Let X

PRs9sMs9d. Note that Aøs→m msXuRs8d=msXuAøs8d. Therefore msXuRsd=msXuAøsd
=msmsXuAøs8duAøsd=msmsXuRs8duAøsd=msmsXuRs8duRsd, where the Markov property has been ap-
plied several times. WithX=Rs9sYd we get sRsVRs,m

Rs9dsYd=sRsVRs,m
Rs8VRs8,mRs9dsYd for all Y

PMs9 and, due to the injectivity ofRs,VRs,m
Rs9=VRs,m

Rs8VRs8,mRs9. The left-hand side of this last
equation is identical withVs,s9 and the right-hand side is identical withVs,s8Vs8,s9.

Part sii d of the theorem is the quantum version of the Chapman–Kolmogorov equation in
classical probability theory. It holds if the Markov property is satisfied. Partsid is valid more
generallyfi.e., if RssMsd→m Rs8sMs8d is satisfied fors,s8g. The approach to Markov processes,
presented here, is very similar to the one in classical mathematical probability theoryse.g., Ref. 8d.
The adaptation to the quantum case becomes possible due to the compatibility criterionsid in
Definition 5.1. The faithfulness of the underlying statem and the injectivity of theRs are technical
assumptions to avoid the difficulties involved with them-almost-everywhere equivalence classes
that are used in mathematical probability theory. Some further discussion of the assumptions will
follow in the concluding remarks.

We call a Markov processreversible, if eachVs,s8 has an inverseVs,s8
−1 and if this inverse is a

positive map. ThenVs,s8
−1 transfers the probability distribution ofRs8 on Ms8 into the one ofRs on

Ms. WithoutVs,s8
−1 being positive, it would not transfer states to states, but to linear functionals that

are not necessarily positive. The generalized Schwarz inequalitysCorollary 2.3d implies that the
Vs,s8 are multiplicative isomorphisms in the case of a reversible Markov process.

VI. THE DYNAMICAL GROUP AND ITS GENERATOR

We now assume a Markov process such that eachRsssPSd is injective andMs=M for all s.
Let AutsMd denote the automorphism group ofM and let PossMd be the set of all positive
normal linear maps fromM to M that map the unit element to itself; PossMd is a semigroup, but
an inverse need not exist for an element of PossMd. The Vs,s8 now lie in PossMd, and if the
Markov process is reversible, they lie in AutsMd.

With the index setS being one of the setss−` ,`d, f0,`d, h0,1,2, . . .j or h. . . ,−1,0,1,2. . .j
and with Ms=M for all sPS, we call a Markov processstationary, if msRs8sYd uRsd
=msRt8sYd uRtd for s8−s= t8− t ss,tPS, s,s8, t, t8, and YPMd. Then Vs,s8=Vt,t8 for s8−s= t8
− t, and we can defineVt,t8= :Vt8−t. For theseVt we haveVsVt=Vs+t. Note thatVs,sss=s8d as well as
V0st=0d have not been defined so far, and we now defineVs,s andV0 to be the identity map onM.
Thus, with S=f0,`d and a stationary Markov process, theVt form a dynamical semigroup in
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PossMd; with S=s−` ,`d and a stationary and reversible Markov process, theVt form a dynamical
group in AutsMd.

We shall now briefly consider the generators of such groups, but will not go into the technical
details of the different kinds of convergence, since most of it is well known—if not for JBW
algebras, then at least for theC* − /W* -algebras. If

L:U d

dt
VtU

t=0

existssconvergence in some sense assumedd for a stationary Markov process,L is a linear operator
M→M sor possibly defined only on a dense subset ofMd and the following differential equa-
tion holds:

d

dt
Vt = LVt.

ThenVt=expstLd. L is called thegeneratorof the dynamicalssemidgroupVt. From the generalized
Schwarz inequality we get forYPM,

VtsY2d − Y2 ù sVtsYdd2 − Y2 = sVtsYd + Yd + sVtsYd − Yd

and thereforesnote thatV0 is the identityd

LsY2d = U d

dt
VtsY2dU

t=0
= lim

t↓0

1

t
sVtsY2d − Y2d ù lim

t↓0
sVtsYd + Yd + lim

t↓0

1

t
sVtsYd − Yd = 2Y + LsYd.

In the reversible case, each “ù” can be replaced by “=”sCorollary 2.3d. ThenLsY2d=2Y+LsYd for
YPM. Linear mapsL satisfying this equation are calledderivations. We call a linear mapL
satisfyingLsY2dù2Y+LsYd for YPM a dissipation.

Thus, we have shown that the generator of the dynamical group associated with a stationary
Markov process is a dissipation, and is a derivation if the Markov process is stationary and
reversible. WithM being the self-adjoint part of aW* -algebra and with the inner derivation
LsXdª ifH ,Xg for XPM fwith someHPMg, we get

d

dt
VtsXd = ifH,VtsXdg andVtsXd = eitHXe−itH .

This provides the Schrödinger equation and its solution as a very special case of a more general
approach.

Derivations onC* -algebras are studied in Refs. 2 and 1. The above definition of a dissipation
differs from the dissipations studied in Refs. 1 and 3. In Ref. 1, a linear mapd on a *-subalgebra
A0 of a C* -algebra, satisfyingdsX*XdødsX*dX+X*dsXd for XPA0, is called a dissipation. This
implies, but is not equivalent todsX2dødsXdX+XdsXd=2X+dsXd for all self-adjoint X in A0.
Other authors use the reversed inequalitydsX*XdùdsX*dX+X*dsXd for the definition of a dissi-
pation. Note that our definition is based on this reversed inequality which, moreover, is required to
hold for the self-adjoint elements onlyswhich form the JB algebrad.

Note that other authors immediately define a quantum Markov process as a pair consisting of
a W* -algebra and a dynamical semigroup ofscompletelyd positive normal maps on this
W* -algebra, without starting from a stochastic process given as a family of observables and
implicitly assuming the stationarity.

VII. CONCLUDING REMARKS

The concept of the classical conditional expectations has been extended to the quantum case,
using the framework of Jordan operator algebras. An important condition for the existence of the
conditional expectations is given by a certain weak compatibility criterion that was introduced
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earlier in Ref. 11. With these concepts, it has been possible to partly extend the classical equiva-
lence between two different ways of describing a Markov process to the quantum case. Starting
from a Markov process given as a family of observables, we have derived the positive mapsVs,s8.
In classical probability theory, the reverse is also possible; a Markov process consisting of a family
of random variables can be reconstructed from a system of Markovian kernels by using the
concept of products-algebras. The problem of finding a satisfying analogue of these product
s-algebras for the quantum case has been addressed, but only partly been solved in Ref. 11.

The appropriate framework for this approach to quantum Markov processes are Jordan opera-
tor algebras, but neither the only norm-complete JB algebras nor the weakly complete JBW
algebras are really satisfying. The JB algebras do not contain sufficiently many idempotent ele-
mentssquantum eventsd. If the theory is based upon JBW algebrassas here in this paperd, an
important example, the algebra consisting of the measurable real-valued functions on a measurable
spacesthe real-valued random variables of classical probability theoryd is ruled out. This algebra
can be embedded in a JBW algebraseven in aW* -algebra,7d however, one is rather reluctant to
work with this abstractly constructed JBW algebra instead of the well-understood algebra of
measurable real functions. What is needed is a theory of monotone-sequentially complete JB
algebras, similar to the one of the monotone-sequentially completeC* -algebras studied by
Kadison,6 Kehlet,7 and Pedersen.12 This theory must include a Gleason-type theorem and a
Radon–Nikodym theorem fors-additive states. The Gleason-type theorem is needed for proving
that unique conditional probabilities exist fors-additive states defined on the system of eventssas
done for the JBW case in Ref. 9d, and the Radon–Nikodym theorem is required for showing that
the conditional expectations exist for thes-additive states.
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Landscape paradigm is ubiquitous in physics and other natural sciences, but it has
to be supplemented with both quantitative and qualitatively meaningful tools for
analyzing the topography of a given landscape. We here consider dynamic explo-
rations of the relief and introduce as basic topographic features “wells of duration
T and altitudey.” We determine an intrinsic exploration mechanism governing the
evolutions from an initial state in the well up to its rim in a prescribed time, whose
finite-difference approximations on finite grids yield a constructive algorithm for
determining the wells. Our main results are thussid a quantitative characterization
of landscape topography rooted in a dynamic exploration of the landscape,sii d an
alternative to stochastic gradient dynamics for performing such an exploration,siii d
a constructive access to the wells, andsivd the determination of some bare dynamic
features inherent to the landscape. The mathematical tools used here are not famil-
iar in physics: They come from set-valued analysissdifferential calculus of set-
valued maps and differential inclusionsd and viability theoryscapture basins of
targets under evolutionary systemsd that have been developed during the last two
decades; we therefore propose a minimal Appendix exposing them at the end of this
paper to bridge the possible gap. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1874332g

I. INTRODUCTION

A. The landscape paradigm in natural sciences

The general notion of landscape is encountered in many different domains, for instance in
physics, neural networkssHopfield nets22d and learning processes, molecular biology,13,19ecology
and evolutionary biology,23 or optimization problems, to cite but a few. From the mathematical
viewpoint, alandscapeis simply a functionV:X°Rø h+`j smore precisely, an extended30 func-
tion since it might take infinite values +̀d associating a real valueVsxd to each statexPX of the
system. From a physical viewpoint, the status and definition ofV strongly depend on the scale at
which the system is described, reflecting in the choice of the space of statesX.

Let us give some examples to sustain our exposition. In statistical physics and molecular
biology,Vsxd can be theenergy landscapeif x is theshigh-dimensionald microscopic configuration
of the considered system: atomic coordinates in a glass,15 spin orientations in a spin glass,17

tridimensional conformation of the hundred or more amino acids forming a protein,18 spatial
positions of bead centers in a granular medium.16 It can also be asmesoscopicd free energy
landscapeif x is the value of aslow-dimensionald order parameter describing the global state of
the system: spatially average density, overall magnetization, conformational parameterssd for a
macromoleculesas, for instance, its radius of gyrationd. At a still more macroscopic level,x can be
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a reaction coordinate measuring the progress along a path representing some transformation of the
system and inscribed on aneffective energy landscape. In quite different contexts, cost functions
encountered in optimization problems are close analogs to energy landscapes,2 whereas fitness
landscapes encountered in ecology and evolutionary biology can be cast in the frame of free or
effective energy landscapes, up to a sign changesnamely, by considering the opposite of the
fitnessd. sSee Ref. 28 for an introductory review.d

Energy or free energy landscapes are currently exploited in stochastic gradient methods ac-
counting for the interplay between thermal motion and interaction forcesseffective forces in the
case of a free energy landscaped deriving from the potentialx°Vsxd. In complex systemssglasses,
spin glasses, proteins, for instanced the landscapeV typically presents a large number of local
optima around which the solution of a stochastic gradient method is trapped and travels a long
time before going away and visiting other local minima. This dynamical behavior has been
advocated by Giorgio Parisi to encapsulate a meaning of complexity and rugged landscapes are
often seen as a mark of complex systems.sSee, for instance, Ref. 25.d

Although the landscapeVsxd is thus endowed with different status and interpretations in
varying contexts, understanding and controlling the system behavior requires in any case a quan-
titative knowledge of the landscape topography. It is thus of the utmost importance to design
efficient tools allowing a dynamical analysis of local minima of such a functionx°Vsxd. We
emphasize that it is not just an academic issue since actual energy or free energy landscapes of real
systems are available through either of the following:

sid a theoretical accessfrom first principlesse.g., molecular interactions, spin–spin interac-
tionsd and/or modeling hypotheses, allowing us to write an explicit formula forVsxd;

sii d an experimental access, for instance, for proteinssindirect kinetic or spectral measure-
mentsd sRef. 19d;

siii d a numerical access, either through molecular dynamics at an atomic scale, yielding the
energy landscape, either through Monte Carlo sampling of the configuration space accord-
ing to the Boltzmann distribution, yielding free energy landscapes for the relevant order
parameterssd of the system.20

B. Dynamical analysis of a landscape topography

Here we propose a theoretical and algorithmic analysis allowing us to determine quantitatively
the landscape relief of a functionV, e.g., location of wells, location and heights of the barriers
associated with a given dynamics for exploring the landscape.31 It gives access to a hierarchical
picture of the landscape and allows us to determine the nesting of wells and barriers at different
scales.

Given a dynamic exploration mechanismssuch as a stochastic gradient dynamicsd, we define
the “wells of velocityl, durationT, and altitudey” as the sets of initial statesxPX “below the
level y,” i.e., Vsxdøy, from which at least one evolution governed by the exploration mechanism,
and of velocity bounded byl, reaches the rimy of the well at the prescribed timeT. When the
well is not empty, we then evidence intrinsic dynamics governing the evolutions from an initial
state of the well up to its rimy at prescribed timeT. This intrinsic exploration mechanism is
characterized fromthe time derivative of the well, regarded as a set-valued map associated with
the prescribed duration T and the altitude y the elements of the well. Both the wells and their
intrinsic exploration mechanism can be approximated by finite-difference approximations on finite
grids,which allows us to implement a constructive algorithm.

In this study we offer an alternative to stochastic gradient-type exploration mechanisms. In
quite a similar way of thought, second-order exploration mechanisms of the graph of an energy
landscape function has been proposed in Ref. 1. Here we suggest starting the landscape explora-
tion with a universal mechanism, independent of the energy function, allowing us to look at any
possible velocity with prescribed norml and retaining its intrinsic exploration dynamics as a good
candidate for a dynamical system exploring the given energy landscape. The stochastic gradient
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method is thus replaced by a differential inclusion involving the time derivative of the well, but
allowing in the same spirit the system state to escape the trap of local minima, while being
quantitatively influenced by their depth.

The mathematical tools we use are quite novel in physics: They come from set-valued analysis
sdifferential calculus of set-valued maps and differential inclusionsd and viability theoryscapture
basins of targets under evolutionary systemsd that have been developed during the last two de-
cades.

The resulting quantitative topographic description by wells rooted in a constructive dynamic
exploration of the landscape and the associated determination of the statistical properties of its
relief can then be exploited for the following:

s1d performing a quantitative characterization of the landscape, for comparison or classification
purposes. It allows us to investigate bifurcations, more currently called phase transitions in
many-particle systemssRef. 24d;

s2d providing a quantitative access to the landscape hierarchical structureand allowing us to
estimate its ruggedness, which yields a tentative measure of the system complexity;

s3d defining macrostates and macroscopic variablesto be used in coarse-grained descriptions of
the system. The relevance of such an approach is to provide an intrinsic determination of
macrostates, founded upon the identification of macroscopic features with slow modes and
slowly evolving propertiessRef. 21d.

Outline of the paper. In Sec. II, we shall define wells, introduce some mathematical features
of their relief, and reformulate their characterization in terms of the “capture basin of a target,” a
key concept of viability theory that finds here an unexpected, yet natural, application. In Sec. III,
we present the algorithm allowing us to construct explicitly these wells and the intrinsic explora-
tion mechanism on which it is based. In Sec. IV, we introduce the notion of complete wells,
matching more closely with physical landscape features. After a conclusive summary in Sec. V,
the essential notions of viability theory needed for this paper are presented in an Appendix.j

II. WELLS OF AN ENERGY LANDSCAPE

A. An efficient alternative to stochastic exploration

In order to provide both a quantitatively meaningful and quantitative topographic analysis of
a landscapeV on a spaceX, we introduce “wells of durationT and depthy.” Given a dynamical
system, allowing upward steps of velocity bounded by a parameterl, these wells are the sets
PVsl ; t ,yd of initial states “below the levely” fi.e., of statesxPX such thatVsxdøyg from which
at least one32 evolution reaches the upper levely swhat we call therim of the welld at timeT. In
other words, given some tolerancel allowing upwards exploration, and some levely, the wells
and their depth might be dynamicallysthe experimentally meaningful and operational wayd deter-
mined according to the trapping timeT.

For exploratory purposes, here we implement an alternative to stochastic gradient dynamics
and replace stochastic differential equations encountered in physics by differential inclusions of
the form33

∀t ù 0, x8std P Fsl;xstdd,

wherex Fsl ;xstdd is some set-valued function onX fi.e., Fsl ;xd is a subset ofXg parametrized
by a parameterl[R. Compared to a differential equation, the solution of a differential inclusion
is less constrained since the full specification of the derivativex8std at each timet is replaced by
a constraint on the regionFsl ;xstdd, where it has to lie. Such a tolerance is highly valuable and
quite realistic in the modeling of an actual system, since the experimentally available knowledge
about its dynamics generally provides only boundssor more generally viability constraintsd on the
kinetic rates, rather than explicit pointwise expressions of these rates as a function of the system
state. These bounds might nevertheless vary with the system statexstd, hence defining a specific
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setFsl ;xstddat each timet. For instance, in the case when the functionV is differentiable, a close
analog to stochastic gradient dynamics is provided by

x8std P − = Vsxstdd + lB,

where B denotes the unit ball of the finite-dimensional vector spaceX. Indeed, the gradient
dynamicsx8std=−=Vsxstdd governs evolutions decreasing along the functionV, but stopping at
the first encountered local minimum. To overcome this stalling situation, a natural idea is to
perturb the gradient equation either by a stochastic noise, as currently implemented in simulated
annealing methods, or, as we suggest here, by a “tychastic” one. Indeed, differential inclusion
x8stdP−=Vsxstdd+lB is the “tychastic version” of the stochastic differential equation
dx=−=Vsxstdddt+l dWstd ssee Ref. 8 for the links between stochastic and tychastic viabilityd.

However, we have to overcome the fact that the functionV is usually not differentiable, if
obtained through experimental measures or simulations and no longer analytically defined. Hence
the concept of gradient disappearsswhen the observable or simulated configuration space is
discreted, or has to be approximated by gradients of functions interpolating in one way or another
the experimental data. Any method allowing to bypass these obstacles and to deal with graphs of
such functions may be worthy of being investigated.

Another suggestion is to leave open the choice of the directions of exploration by looking for
any way to climb the landscapeV to reach a given levely at a given timeT. For that purpose, we
can chooseFsl ;xdªlB, stating that any velocity of norml is a priori an eligible candidate to
apply for such a mission. We shall provide below the way of further selecting the most efficient
ssubset ofd velocitysiesd, i.e., achieving the most thoroughly and the most efficiently from a
numerical viewpoint the quantitative exploration of the landscape relief. The same type of strategy
has been used in previous works for constructing an algorithm that is also of relevance for
landscapes. This so-called Montagnes Russes Algorithm converges to global minima of an ex-
tended function jumping over local minima, which amounts to using the gradient algorithm to the
smallest of the exponential Lyapunov functions above the energy function for the differential
inclusionx8stdPlB. sSee Refs. 10 and 11.d But whereas this algorithm was devoted to the search
of global minima, we are here looking for exploratory tools providing a complete hierarchical
picture of the landscape.

B. Definition and characterization of wells

From now on, we assume that the set-valued mapx Fsl ;xd governing the exploration
dynamics is given. We denote byyPR the altitude of the well we wish to study.y=0 is set
through thesarbitraryd choice of a base levelsor, if known and finite, by the lower bound onVd.
Usually, the relevant altitudes are the values of thelocal maximaor saddle pointsof the function
V. We shall associate with it the concept of wellPsl ;T,yd of durationT and altitudey defined as
follows.

Definition II.1: Consider an extended functionV:X°Rø h+`j and a differential inclusion

∀t ù 0, x8std P Fsl;xstdd.

Denote by

SsV,yd ª hx P X such thatVsxd ø yj andS0sV,yd ª hx P X such thatVsxd = yj

the level sets of the functionV and bySlsxd the set of solutions to the above differential inclusion
starting atx. The wellPVsl ;T,yd,SsV;yd of durationT and altitudey of the functionV is defined
by the set of initial statesxPSsV;yd such that there exists at least one solutionxls·dPSlsxd such
that

sid VsxlsTdd = y,
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sii d ∀ t P f0,Tg, Vsxlstdd ø y.

We observe thatPVsl ;0 ,yd=S0sV,ydª hxPX such thatVsxd=yj. In other words, the well
PVsl ;T,yd is the set of initial conditionsx in the well from which there exists at least one
evolutionxls·d staying below the levely during a durationT and reaching the levely at exactly
time T. This does not exclude the fact that for some earlier timet* øT sor some later timet*

ùTd, the evolution reaches the levely. This just means thatx belongs to the intersection
PVsl ;T,ydùPVsl ; t* ,yd of wells of several durations. This point can be made more explicit:
considering the initial statex of the system as a variable and the time to reach the levely as the
result, we can define thereaching functionsl ,x,yd°jsl ,x,yd by

jsl,x,yd ª inf
xPPVsl;T,yd

T,

providing the first instant when one evolution starting fromx reaches the levely.
We can also regard the same object by introducing the set-valued mapsl ;T,xd PV

−1sl ;T,xd
associated with the parameterl, the durationT, and the initial statex the altitudey of the well, the
rim of which can be reached at timeT by at least one evolution governed by differential inclusion
x8stdPFsl ;xstdd.

Turning back to the initial definition, themaximal depthdVsl ;T,yd of the well PVsl ;T,yd is
defined by

dVsl;T,yd ª sup
xPPVsl;T,yd

sy − Vsxdd.

The knowledge of the wells provides some physical characteristics of the landscapeV, thus
bridging the above mathematical definitions with a more traditional description of landscapes. We
observe, for instance, thatjsl ,x,yd is theescape timefor the given dynamics, also called thefirst
passage time, from above a barrier of topy when the velocity is bounded byl. Its inverse
fjsl ,x,ydg−1 has the meaning of a kinetic constant.

DenotingVVsl ;T,yd the number of the connected components of wellPVsl ;T,yd, its loga-
rithm is theconfigurational entropy. sSee Refs. 29 and 16 for its meaning and use in physics,
respectively, for glasses and granular mediad:

sVsl;T,yd ª logsVVsl;T,ydd.

In summary, what we are basically looking for is the subset ofsx,y,l ,Td such that eitherx
PPysl ;T,yd or T.jsl ;x,yd or yPPV

−1sl ;T,xd. As detailed in the next section, we shall give a
mathematical characterization of this set as a “capture basin of a target under an auxiliary system,”
allowing us to implement a constructive algorithm. We choose here the representation of this set
through the above concept of wellxPPVsl ;T,yd.

C. Viability characterization of wells

The next step of our investigation is to translate the above topographically meaningful fea-
tures in terms of capture basins for which many properties have been established and constructive
algorithms are availablesSee the Appendix and for further details, Refs. 3–6.d

Proposition II.2:Consider an extended functionV:X°Rø h+`j and a differential inclusion

∀t ù 0, x8std P Fsl;xstdd.

We associate with it the auxiliary system of differential inclusions

sid x8std P Fslstd;xstdd,

sii d y8std = 0,
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siii d l8std = 0,

sivd t8std = − 1 s1d

the constrained setK and the targetC defined by

K ª EpsVd 3 R+ 3 R+ andC ª GraphsVd 3 R+ 3 h0j,

where GraphsVd andEpsVd,X3Rø h+`j are, respectively, the graph and epigraph ofV ssee the
Appendix for a precise definitiond. Then

PVsl;T,yd = hx P X such thatsx,y,l,Td P Capts1dsK,Cdj,

where Capts1dsK ,Cd is the capture basin of the targetC under evolutionary systems1d and under
the constraint of remaining inK ssee Definition A.2 belowd.

Proof: Indeed, to say thatsx,y,l ,TdPCapts1dsK ,Cd amounts to saying that there exist one
evolutionxls·dPSlsxd and a timet!ù0 such that the associated auxiliary evolution,

t → sxstd,ystd;lstd;tstdd = sxstd,y,l,T − td,

starting fromsx,y,l ,Td at t=0, reaches the targetC at time t! while staying meanwhile inK:

sid sxst!d,y,l,T − t!d P C,

sii d ∀ t [ f0,t!g, sxstd,l,y,T − td P K.

The first condition is equivalent to both equationst!=T and V(xsTd)=y. The second equation
means that for everytP f0,Tg, Vsxstddøy. These are the very properties stating thatx belongs to
the well PVsl ;T,yd, or, equivalently, thatjsl ;x,ydøT. j

Therefore, the graph of the set-valued mapsl ,T,yd PVsl ;T,yd inherits the properties of
capture basins. For instance, it can be shownsusing Theorem A.6 given in the Appendixd that the
well satisfies a kind of dynamical programming principle that can be stated in the following way:

Proposition II.3: The set-valued mapPV is the unique set-valued mapsl ,T,yd Psl ;T,yd
satisfying the initial condition

Psl;0,yd ª S0sV,yd ª hx P X such thatVsxd = yj

the constraints

Psl;T,yd , SsV;yd

and the “tracking property:” for anyxPPsl ;T,yd, any evolutionxls·dPSlsxd starting fromx at
time 0 climbing the well until it reaches the rim at timeT satisfies

sid ∀ t P f0,Tg, xstd P Psl;T − t,yd,

sii d ∀ sù T such that∀ t P fT,sg, Vsxstdd ø y, thenxstd P Psl;t − T,yd.

D. Time derivative of the well as an a posteriori exploratory dynamical system

Since we have related the well of a landscape function to capture basins, the basic viability
theorems provide tangential characterization of the wells, allowing us to find the underlying
dynamical system governing the evolutions of differential inclusion climbing the wells up to their
rims. This can be done to the price of using differential calculus of set-valued mapssinvented in
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the beginning of the 1980s for this purposed: Knowing the “derivatives” with respect to time of the
set-valued mapt PVsl ; t ,yd ssee Definition A.10 for a rigorous definitiond, we obtain an intrinsic
exploration mechanism of the well.

Proposition II.4: For any xPPVsl ;T,yd, those evolutionsxls·dPSlsxd starting atx and
climbing the wellPVsl ;T,yd in the sense thatV(xlstd)øy for any tP f0,Tg andVsxlsTdd=y are
governed by differential inclusion

x8std P −
]PVsl;T − t,yd

]t
ù Fsl;xstdd.

In particular, taking for initial exploration mechanism the set-valued mapFsl ;xdªlB indepen-
dent of the energy functionV instead of exploration mechanismsFsl ;xdª−¹Vsxstdd+lB already
dependent ofV, we obtain a more intrinsic exploration mechanism.

Theorem A.12 stated in the Appendix gives a technically precise meaning to this symbolic
statement. In other words, the underlying dynamical system governing the evolutions climbing the
wells up to their rims is the set of velocitiesvPFsl ;xd pointing to the time derivative of the well
in order to climb it from −T to 0 in order to reach the rim of the well at altitudey. The associated
mathematical problem to comfort this intuitive result starts with the definition of the time deriva-
tive and the proof of this result is based on results of viability theory. Let us just mention the
following informal version of Theorem A.12 stated in the Appendix:

Proposition II.5: The set-valued mapPV is the unique “Frankowska solution to the partial
differential inclusion”

∀t . 0,x P Psl;T,yd, 0 P
]Psl;T,yd

]t
+ Fsl;xd

satisfying the initial condition

Psl;0,yd ª S0sV,yd ª hx P X such thatVsxd = yj

and the constraints

Psl;T,yd , SsV;yd.

We propose now to check the same statement in the discrete case, which allows us to define
an algorithm providing the wells under discrete dynamics and the exploratory mechanisms.

III. THE SAINT-PIERRE CAPTURE BASIN ALGORITHM

The Saint-Pierre Capture Basin Algorithm provides both the set-valued mapPV and for any
xPPVsl ;T,yd, the evolutions climbing the well up to its rim under a given duration.

Let us consider any discrete time approximationFsl ;xd of Fsl ;xd governing the evolution of

sequencesxW PSW lsxd, governed by

xn+1 P Fsl;xnd.

fFor instance,Fsxd :x+hFhsl ;xd, whereh is a time step andFh is an approximation ofF in the
sense that the graph ofFh converges to the graph ofF in the Painlevé–Kuratowski senseg. The
discrete version of a well defined by Definition II.1 for continuous time systems becomes as
follows:

Definition III.1: Consider an extended functionV:X°Rø h+`j and a set-valued map

sl ,xd Fsl ;xd. The discrete time wellPW Vsl ;N,yd,SsV;yd of duration T and depthy of the
function V is the subset of initial statesxPSsV;yd such that there exists one sequencexW PSlsxd
such that

sid VsxNd = y,
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sii d ∀ n P h0,Nj, Vsxnd ø y.

In the discrete time, we obtain the intrinsic exploration mechanism under mere inspection:

Proposition III.2: Knowing the wellPW V, the discrete dynamical system

xn+1 P Fsl;xnd ù PW Vsl;N − n,yd

governs the evolutions starting fromxPPW Vsl ;N,yd and arriving at stepN at some xN

PPW Vsl ;0 ,yd=S0sV,yd of the rim of the wellPW Vsl ;N,yd.
In the discrete case, the discrete well is obtained by the Capture Basin Algorithm:
Proposition III.3: The Saint-Pierre Capture Basin Algorithm yields the discrete well as the

intersection of the following subsets defined recursively by

sid PW Vsl;0,yd = S0sV,yd,

sii d ∀ N ù 0, PW Vsl;N + 1,yd = Fsl; · d−1
„PW vsl;N,yd… ù SsV,yd.

WhenFsl ;xdªx+lB, this algorithm can be written

sid PW Vsl;0,yd = S0sV,yd,

sii d ∀ N ù 0, PW Vsl;N + 1,yd = „PW vsl;N,yd + lB… ù SsV,yd.

Proof: Indeed, we introduce the auxiliary systemC by

Csx,y,l,td ª Fsl,xd 3 hyj 3 hlj 3 ht − 1j,

governing the evolution of the sequence:

sid xn+1 P Fsl;xnd,

sii d yn+1 = yn,

s2d
siii d ln+1 = ln,

sivd tn+1 = tn − 1,

and the constrained setK and the targetC defined by

K ª EpsVd 3 R+ 3 R+ and C ª GraphsVd 3 R+ 3 h0j.

Then one can prove as in the continuous time case that

PW Vsl;N,yd = hx P X, such that sx,y,l,Nd P Capts2dsK,Cdj,

where the subscripts2d in Capts2dsK ,Cd refers to the discrete evolutionary systems2d.
The capture basin algorithm defines recursively a sequence of subsetsCn starting atC0 by

Cn+1ª K ù sCn ø C−1sCndd,

which converges to the capture basin Capts2dsK ,Cd. j

One can prove that whenever the discrete mapx Fhsxdªx+hFhsl ;xd is a time discretiza-
tion of the differential inclusionx8stdPF(l ;xstd), the graph of the discrete well converges to the
graph of the well in the Kuratowski–Painlevé sensessee Refs. 26 and 27 and see Ref. 14, among
other referencesd.
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IV. COMPLETE WELLS

The concept of well we proposed in Definition II.1 is not restrictive enough to match its
physical counterpart, in the sense that it does not require that all evolutions starting from a point
of a well PVsl ;T,yd to remain below the rim of the well before timeT while one of them at least
reaches its rim at timeT.

Definition IV.1:Consider an extended functionV:X°Rø h+`j and a differential inclusion

∀t ù 0, x8std P Fsl;xstdd.

The complete wellWVsl ;T,yd,PsV;yd of durationT and depthy of the functionV is defined by
the set of initial statesxPSsV;yd such that

sid all solutionsxls·dPSlsxd satisfy

∀t P f0,Tg, Vsxlstdd ø y

sii d at least one solutionxls·dPSlsxd satisfies

VsxlsTdd = y.

The complete wells can be characterized in terms of absorption and capture basins.sSee, for
instance, Refs. 3–6.d

Proposition IV.2:Consider an extended functionV:X°Rø h+`j and a differential inclusion

∀t ù 0, x8std P Fsl;xstdd.

We associate with it the auxiliary system of differential inclusionss1d. The constrained setK and
the targetsC andD are defined by

K ª EpsVd 3 R+ 3 R+ andC ª GraphsVd 3 R+ 3 h0j

and

D ª EpsVd 3 R+ 3 h0j.

Then

WVsl;T,yd = hx P X such thatsx,y,l,Td P Capts1dsK,Cd ù Abss1dsK,Ddj.

Proof: Indeed, to say thatsx,y,l ,TdPCapts1dsK ,CdùAbss1dsK ,Dd amounts to saying the
following:

s1d sx,y,l ,TdPCapts1dsK ,Cd, and thus, as we have seen, thatxPPVsl ;T,yd.
s2d sx,y,l ,TdPAbss1dsK ,Dd means that for all evolutionsxls·dPSlsxd, there exists a timet!

ù0 such that the associated auxiliary evolutions,

t → sxstd,ystd;lstd;tstdd = sxstd,y,l,T − td,

starting fromsx,y,l ,Td at t=0 reaches the targetD at time t! while staying, meanwhile, in
K:

sid „xst!d,y,l,T − t!
… P D,

sii d ∀ t P f0,t!g, sxstd,l,y,T − td P K.

The first condition is equivalent to both equationt!=T and inequalityV(xsTd)øy. The
second equation means that for everytP f0,Tg, Vsxstddøy.

These are the two properties stating thatx belongs to the wellWVsl ;T,yd. j
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V. CONCLUSIONS

Our objective in this investigation was to build exploration dynamics of a landscapeV asso-
ciating with a boundl on the velocities of the exploration mechanism, a durationT, and an
altitudey:

s1d The setPVsl ;T,yd of initial statesx below altitudey from which starts at least one evolution
climbing the landscape in order to reach the altitudey at exactly the prescribed timeT;
altitudey might be either a reference level, thus providing access to the depth of the well, or
chosen among the values of local maxima of the landscape function, thus providing access to
the height of the barriers separating the well from the other ones.

s2d An underlying dynamical system governing the evolutions climbing the wells up to their
rims the velocities of the exploration mechanism are consistently chosen among

x8std P −
]PVsl;T − t,yd

]t
.

Hence, the exploration mechanism is no longer an external stochastic modification of the
gradient equation, but an intrinsic set-valued method involving the time derivative of the
well.

This dynamic description of landscape topography has then been reformulated in the frame-
work of viability theory, which provides a constructive algorithm to characterize quantitatively the
landscape, built as an intrinsic exploration mechanism of energy landscapes; this mechanism could
be either a perturbed gradient method or a universal mechanism independent of the energy func-
tion. The more refined notion of complete well, introduced in Sec. IV, allows us to bridge still
more our mathematical definitions and exploration with the current landscape paradigm. As dis-
cussed in the IntroductionsSec. I Bd, our results can then be exploited for taxinomic purposes, to
investigate phase transitions, to quantify the landscape hierarchical structure. It also proposes an
alternative to standard stochastic gradient methods, namely differential inclusions, in modeling
dynamics associated with an experimentally determined landscape.

ACKNOWLEDGMENTS

Jean-Pierre Aubin acknowledges the financial support provided through the European Com-
munity’s Human Potential Programme under Contract No. HPRNCT-2002-00281sEvolution
Equations for Deterministic and Stochastic Systemsd.

APPENDIX: ELEMENTS OF VIABILITY THEORY

Let X be a finite-dimensional vector space. Aset-valued map F:X X associates to anyx
PX a subsetFsxd,X. The set-valued mapF generates the evolutionary systemSF :X Cs0,` ;Xd
associating with any initial statex0PX the setSFsx0d,Cs0,` ;Xd of solutions todifferential
inclusion x8stdPF(xstd) starting atx0. We denote by

GraphsFd ª hsx,yd P X 3 Yuy P Fsxdj , X 3 Y,

the graph of a set-valued mapF :X Y and DomsFdª hxPXuFsxdÞ0”j its domain.
We shall say that a subsetK,X is locally viable under Fsor underSFd if from every x

PK startsat least onesolution xs·d to the differential inclusionx8PFsxd viable in K on the
nonempty intervalf0,Txf in the sense

∀t P f0,Txf, xstd P K,

and thatK is viable if we can takeTx= +` for anyxPK. Most of the results of viability theory are
true whenever we assume that the dynamics are Marchaud:

Definition A.1:We shall say that the set-valued mapF :X Y is a Marchaud map if

043508-10 J.-P. Aubin and A. Lesne J. Math. Phys. 46, 043508 ~2005!

                                                                                                                                    



sid the graph ofF is closed inX3Y,
sii d the values ofFsxd of F are convex subsets ofY,
siii d the growth ofF is linear:∃c.0u ∀xPX, iFsxdiªsupvPFsxdiviøcsixi+1d.

We shall say thatF is l-Lipschitz if sset-valued extension of the standard Lipschitz propertyd

∀x,x8 P X, Fsxd , Fsx8d + lix − x8iB,

whereB is the unit ball inY.
We shall also need some other prerequisites from the Viability Theory: among which capture

and absorption basins.
Definition A.2:Let C,K,X be two subsets,C being regarded as a target,K as a constrained

set. The subset CaptFsK ,Cd of initial statesx0PK such thatC is reached in finite time, without
leavingK, by at least one solutionxs·dPSFsx0d starting atx0 is called the viable-capture basin of
C in K sthe solution might eventually leaveK, but only after having reachedCd. The subset
AbsFsK ,Cd of initial statesx0PK such thatall evolutionsxs·dPSFsx0d starting atx0 are viable in
K until they reachC in finite time is called the absorption basin ofK with targetC.

Obviously AbsFsK ,Cd,CaptFsK ,Cd. We recall the following resultsRef. 7d of bilateral fixed
point property:

Theorem A.3: The viable-capture basin CaptsK ,Cd of a targetC viability being with respect
to the constrained setKd is the unique subsetD satisfyingC,D,K and

D = CaptFsK,Dd = CaptFsD,Cd

and the absorption basin ofK with targetC is the unique subsetA satisfyingC,A,K and

A = AbsFsA,Cd = AbsFsK,Ad.

We also recall backward invariance:
Definition A.4:The subsetK is locally backward invariant underF if for every t0P g0, +`f,

xPK, for all solutionsxs·d to the differential inclusionx8PFsxd arriving at x at time t0, there
exists a timesP f0,t0f sdepending on the solutiond such thatxs·d is viable in K on the interval
fs,t0g. The subsetK is backward invariant underF if we can takes=0 for all solutions.

It is straightforward to check that backward evolutionsu→zsud=xst0−ud are solutions of the
differential inclusionz8sudP−Fszsudd with initial condition zs0d=xst0d; we call thembackward
solutionssstarting fromxst0d at timeu=0d. It is noted that theslocald backward invariance ofK is
stronger thanslocald viability of K under this backward evolution, sinceall solutions starting in a
backward invariant subsetK remain inK for a finite timesdepending on each considered solution
in case of the local version of the propertyd, whereas theslocald viability of K only requires that for
each pointxPK, at leastonesolution isslocallyd viable in K.

We also introduce a weaker notion: A subsetD,K is locally backward invariant relativelyto
K if all backward solutions starting fromD and viable inK si.e. remaining inK for a finite timed
are actually viable inD si.e., remain inD for a finite timed.

Definition A.5:A subsetR,X is a repeller underF if all solutions starting fromR leaveR in
finite time.

Hence,R is not viable, but this does not exclude local viability. It is, moreover, obvious that
any subset of a repeller is itself a repeller.

We can derive the following characterization of capture basinssee Ref. 4d:
Theorem A.6: Let us assume thatF is Marchaud and that the subsetsC,K andK are closed.

If K \C is a repellersthis is for instance the case whenK itself is a repellerd, then the viable-capture
basin CaptFsK ,Cd of the targetC underF is the unique closed subsetD satisfyingC,D,K and34

sid D \C is locally viable underF,
sii d D is locally backward invariant relatively toK.

Definition A.7:The contingent coneTLsxd to L,X at xPL is the setsobviously a closed coned
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of directionsvPX such that there exist sequenceshn.0 converging to 0 andvn converging tov
satisfyingx+hnvnPL for everyn ssee, for instance, Ref. 9d.

For instance, ifL is a differentiable manifold inX, TLsxd coincides with the tangent space to
L at pointx. If the interior ofL is nonempty, thenTLsxd=X for any xP IntsLd.

We introduce the following Frankowska property that we need for deriving the system of
Hamilton–Jacobi–Bellman equations of which the well is a solution:

Definition A.8:Let us consider a set-valued mapF :X X and two subsetsC,K andK. We
shall say that a subsetD betweenC andK si.e.,C,D,Kd satisfies the Frankowska property with
respect toF if

sid ∀ x P D \ C, Fsxd ù TDsxd Þ 0” ,

sii d ∀ x P D such thatsRef. 35d − Fsxd ù TKsxd Þ 0” then −Fsxd , TDsxd. sA1d

WhenK is assumed further to be locally backward invariantsthen −Fsxd,TKsxd for anyxPKd the
above conditionssA1d boil down to

sid ∀ x P D \ C, Fsxd ù TDsxd Þ 0” ,

sii d ∀ x P D, − Fsxd , TDsxd sA2d

fThe minus sign in front ofF arises when considering backward evolution, governed by the
differential inclusion,z8sudP−F(zsud).g

Theorem A.6 and the Viability36 and Invariance Theorems imply
Theorem A.9: Let us assume thatF is Marchaud, thatK andC,K are closed subsets, and

that K \C is a repeller. Then the capture basin CaptFsK ,Cd is

s1d the largest closed subsetD satisfyingC,D,K and

∀x P D \ C, Fsxd ù TDsxd Þ 0” . sA3d

Furthermore, the evolutionsxs·dPSFsxd viable in K until they reachC are governed by the
differential inclusion

x8std P Fsxstdd ù TDsxstdd.

sIt roughly means that these trajectories point intoD or are taugent toD at any point where
they reach the boundary ofD, thus ensuring their viability until they reachC.d

s2d if F is Lipschitz, the unique closed subsetD satisfying the Frankowska propertysA1d.

The absorption basin AbsFsK ,Cd is the largest closed subsetD satisfyingC,D,K and

∀x P D \ C, Fsxd , TDsxd. sA4d

We shall apply Theorem A.9 to the case when subsetsKªGraphsFd andCªGraphsHd are
graphs of set-valued maps fromX to X and when we decide to regardD as the graph of a
set-valued mapG:R3X Y. We then interpret the contingent cone to the graph as the graph of
the contingent derivative. We obtain set-valued solutions to systems of Hamilton–Jacobi inclu-
sions that this unknown functionG should satisfy in order that its graph yields the desired capture
basin. We refer to Refs. 5 and 6, Ref. 12, and their references for more details on this topic. Here,
we recall the definition of contingent derivative of a set-valued map and translate Theorem A.9 in
the framework of wells.

Definition A.10:Let us consider a set-valued mapG:R3X Y. The graph of the contingent
derivativeDGst ,x,yd sa set-valued map defined fromR3X to Yd at a pointst ,x,ydPGraphsGd is
equal to the contingent cone to the graph ofG at st ,x,yd:

TGraphsGdst,x,yd = GraphsDGst,x,ydd.
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Consequently, to say thatwPY belongs to the contingent derivativeDGst ,x,yds±1,vd of G at
st ,x,yd in the directions±1,vdPR3X means that

lim inf
h→0+,v8→v

dSw,
Gst ± h,x + hv8d − y

h
D = 0,

where d is any distance inY. Since the contingent cone is a closed subset, the graph of a
contingent derivative is always closed and positively homogeneoussthis is what remains of the
required linearity of the derivative in classical analysis, but, fortunately, we can survive pretty well
without linearityd.

When g:R3X°Y is single-valued, we setDg(t ,xdªDgst ,x,gst ,xd). We see at once that
Dgst ,xds±1,vd= ±]gst ,xd /]t+]gst ,xd /]x·v wheneverg is differentiable atst ,xd. The above defi-
nition sA.10d generalizes to set-valued maps a property obviously valid for differentiable maps,
hence provides a consistent extension of the differentiation to set-valued maps, coinciding with the
plain notion for smooth single-valued maps. Moreover, it is to note that wheng is Lipschitz on a
neighborhood ofst ,xd and when the dimension ofX is finite, the domain ofDgst ,xd is not empty.
Furthermore, the Rademacher Theorem stating that a locally Lipschitz single-valued map is almost
everywhere differentiable implies thatx Dgst ,xd is almost everywhere single valued. However,
in this case, equalityDgst ,xds−1,−vd=−Dgst ,xds1,vd is not true in general. We refer to Ref. 9 for
more details.

Remark:This is how Fermat defined in 1637 the derivative of a function as the slope of the
tangent to its graph. Leibniz and Newton provided the characterization in terms of limits of
difference quotients. Here, too,the graph of the contingent derivative DGst ,x,yd is the upper
Painlevé–Kuratowski limit of the graphs of difference quotients=hGst ,x,yd of G at st ,x,yd
PGraphsGd, defined by

sl,vd ° =hGst,x,ydsl,vd ª
Gst + lh,x + hvd − y

h
.

Indeed, we observe that

Graphs¹hGst,x,ydd =
GraphsGd − st,x,yd

h
s,R 3 X 3 Yd,

so that the contingent cone to the graph ofG, being the upper limit of the graphs of the difference
quotients, is equal by definition to the graph of the upper graphical limit of the difference quo-
tients.

The strong requirement of pointwise convergence of differential quotients involved in the
usual derivatives can be weakened insat leastd two ways, each way sacrificing different groups of
properties of these usual derivatives.

sid Distributional derivatives: Fix the direction v and take the limit of the function
x°=hgsxdsvd in the weaker sense of distributions. The limitDvg may then be a distribu-
tion, and no longer a single-valued map. However, it coincides with the usual limit
(Dvgsxd=Dgsxd ·v) wheng is Gâteaux differentiable. Moreover, one can define difference
quotients of distributions, take their limit, and thus, differentiate distributions.
Distributions are no longer functions or maps defined onRn, so these distributional deriva-
tives lose the pointwise character of functions and maps; on the other hand, this generali-
zation retains the linearity of the operatorg°Dvg, mandatory for using the theory of linear
operator for solving partial differential equations.

sii d Graphical derivatives:Fix the pointx and take the limit of the functionv°=hgsxdsvd in
the weaker sense of graphical convergencesthe graph of the graphical limit being by
definition the Painlevé–Kuratowski upper limit of the graphsd. The limit Dgsxd may then be
a set-valued map, and no longer a single-valued map. However, it coincides with the usual
limit when g is Gâteaux differentiable. Moreover, one can define difference quotients of

043508-13 Constructing and exploring wells J. Math. Phys. 46, 043508 ~2005!

                                                                                                                                    



set-valued maps, take their graphical limit, and thus differentiate set-valued maps. These
graphical derivatives keep the pointwise character of functions and maps, mandatory for
implementing the Fermat Rule, proving inverse function theorems under constraints or
using Lyapunov functions, for instance, but lose the linearity of the mapg°Dgsxd.

In both cases, the approaches are similar: They usesdifferentd convergencesweaker than the
pointwise convergencefor increasing the possibility for the difference quotients to converge. But
the price to pay is the loss of some properties by passing to these weaker limitssthe pointwise
character for distributional derivatives, the linearity of the differential operator for graphical de-
rivativesd. j

Proposition II.2 related the graph of the well to the capture basinPvsl ;T,yd
=hx [X such thatsx,y,l ,Td[ Capt1sKCdj under systemsA1d:

sid x8std P F„lstd;xstd…,

sii d y8std = 0,

sA1’ d
siii d l8std = 0,

sivd t8std = − 1.

At this point, we need to introduce the concepts of epigraph and epiderivative of extended nu-
merical functions:

Definition A.11:Let V:X°Rø h+`j be an extended function. Its epigraphEpsVd is the set of
pairs sx,ydPX3R satisfying Vsxdøy fthus EpsVd,X3Rg. The contingent epiderivative

D↑Vsxd :X° R̄ is defined through the relation

EpsD↑Vsxdd ª TEpsVdsx,Vsxdd.

We can check thatD↑Vsxd consistently coincide with the usual derivativeDVsxd when V is
differentiable inx, and that for anyvPX,

D↑Vsxdsvd = lim inf
h→0+,v8→v

Vsx + hv8d − Vsxd
h

is a generalized limit of differential quotients.
We deduce from Proposition II.2 and Theorem A.9 the following characterization of the well

as the unique solution to an initial-value problem of a partial differential inclusion satisfying
viability constraints:

Theorem A.12: Assume that the set-valued mapF is Marchaud and that the functionV is
continuous. Then the wellPV:R+3R+3R X is the largest set-valued mapP:R+3R+3R X
solution to the partial differential inclusion

∀x P Psl;T,yd, Fsl;xd ù DPsl;T,y,xds0,− 1,0d Þ 0”

the initial condition

Psl;0,yd = S0sV,yd

and the viability constraint

Psl;T,yd , SsV,yd.

Furthermore, ifF is Lipschitz, this solution is the unique solution satisfying

sid ∀xPPsl ;T,yd, Fsl ;xdùDPsl ;T,y,xds0,−1,0dÞ0” ,
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sii d ∀xPPsl ;T,yd such that infvPFsl;xdD↑Vsxds−vdø0 then −Fsl ;xd,DPsl ;T,y,xds0,
+1,0d.

Proof: Theorem A.9 implies that the graph of the wellPV:R+3R+3R X, once transformed
by the permutationsl ,t ,y,xd→ sx,y,l ,td of the coordinates, is the largest subsetD betweenC
andK si.e., C,D,K,X3R3R+3R+d, such that

∀sx,y,l,td, sFsl;xd 3 h0j 3 h0j 3 h− 1jd ù TDsx,y,l,td Þ 0” .

This amounts to saying that the wellPV is the largest set-valued mapP satisfying the initial
condition Psl ;0 ,yd=S0sV,yd, the constraintPsl ;T,yd,SsV,yd, and the contingent solution to
the partial differential inclusion,

∀x P Psl;T,yd, Fsl;xd ù DPsl;T,y,xds0,− 1,0d Þ 0” ,

and that the evolutionsft° sl ,T− t ,y,xstddg viable in the well until they reach its rim are gov-
erned by the differential inclusion

s0,− 1,0,x8stdd P sh0j 3 h− 1j 3 h0j 3 Fsl;xstddd ù GraphsDPVsl;T − t,y,xstdds0,− 1,0dd.

This can be written as

x8std P Fsl;xstdd ù DPVsl;T − t,y,xstdds0,− 1,0d.

This is what we meant symbolically above as

x8std P Fsl;xstdd ù −
]PVsl;T − t,yd

]t
.

WhenF is Lipschitz fthis is the case whenFsl ;xdªlB swhereB is the unit ball inXdg, the
graph of the wellPV safter permutation of the coordinates as aboved is the unique subsetD,
satisfying

∀sx,y,l,td, sFsl;xd 3 h0j 3 h0j 3 h− 1jd ù TDsx,y,l,td Þ 0” ,

and, whenever(−Fsl ;xd3 h0j3 h0j3 h+1j)ùTKsx,y,l ,tdÞ0” , then

s− Fsl;xd 3 h0j 3 h0j 3 h+ 1jd , TDsx,y,l,td.

Thanks to the definition of the contingent epiderivative and the fact thatKªEpsVd3R+3R+, we
infer that

s− v,0,0, + 1d P TDsx,y,l,td,

if and only if D↑Vsxds−vdø0. This concludes the proof. j
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We derive several partial fractions expansions for products of Bessel functions, and
use them to prove algebraic relationships between infinite series involving squares
of Bessel functions. We also give formulas for the Taylor series coefficients of the
zeros of Bessel functions, when the zeros are regarded as functions of the orderx of
Jxsyd. © 2005 American Institute of Physics.fDOI: 10.1063/1.1866222g

I. INTRODUCTION

In this paper we derive several partial fractions expansions for products of Bessel functions,
the simplest of which is given by

JxsydJ−xsyd
p

sinspxd
= o

n=−`

`
Jn

2syd
n + x

.

These formulas, which are presented in Sec. II, allow us to easily characterizeJxsydJ−xsyd as a
function ofx. Surprisingly, these sorts of identities are generally overlooked in the modern litera-
ture on Bessel functions.

We can apply these formulas to study the zeros of Bessel functions. Letnksxd denote thekth
zero of Jxsyd. In Sec. IV we recursively compute the Taylor series coefficients ofnksxd at the
half-integers. In Sec. V we discuss computing the Taylor series at zero and the positive integers.
The form that we give for the coefficients is interesting because they are expressed as polynomials
in functions defined by series of squares of Bessel functions.

Besides appearing in the Taylor series coefficients ofnksxd, functions like

mksyd = o
n=1

`
Jn

2syd
nk , bksyd = o

n=−`

`
Jn

2syd
s2n + 1dk ,

obey a bewildering variety of identities and algebraic relations. In Secs. IV, V, and VII we prove
many interesting formulas involving these functions. We also present several associated open
problems at the end of Secs. IV–VI.

Throughout this paper we will assume the usual differentiation and addition formulas for
Bessel functions,

2
x

y
Jxsyd = Jx−1syd + Jx+1syd,

2
d

dy
Jxsyd = Jx−1syd − Jx+1syd.

We will also employ a standard Wronskian relation,
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Jx−1sydJ−xsyd + J1−xsydJxsyd =
2 sinspxd

py
.

II. IDENTITIES AND PARTIAL FRACTIONS EXPANSIONS FOR BESSEL FUNCTIONS

The Bessel function of the first kind of orderx is defined by the infinite series

Jxsyd = o
n=0

`
s− 1dn

n!Gsn + x + 1dS y

2
D2n+x

, s2.1d

whereGsxd is the usual gamma function.
We will use the following three partial fractions expansions throughout this paper.
Proposition 2.1: The following formulas hold for all yPC and for all x¹Z,

Jxsyd =
S y

2
Dx

Gsxd o
n=0

`
Jnsyd

n!

S y

2
Dn

n + x
, s2.2d

JxsydJ−xsyd
p

sinspxd
= o

n=−`

`
Jn

2syd
n + x

, s2.3d

JxsydJ1−xsyd
p

sinspxd
= o

n=−`

`
JnsydJn+1syd

n + x
. s2.4d

Equations2.2d has a long history. It appears in several 19th century and 20th century books,
including Lommel,2 Schafheitlin,4 and WatsonsRef. 5, p.143d. From s2.2d one can easily derive
Lommel’s expression forY0szd,

Y0szd =
2

p
slogsz/2d + gdJ0szd +

2

p
o
n=1

`
Jnszd
n!

S z

2
Dn

n
. s2.5d

The functionY0szd is a Bessel function of the second kindsRef. 5, p.64d.
Equationss2.3d ands2.4d seem to be omitted from the modern literature, as well as all of the

easily accessible 19th century books. Considering their relative simplicity, it seems unlikely that
19th century mathematicians would have missed them. In fact, the following integralsRef. 1,
p.756d

E
0

p/2

coss2xudJ0s2y cossudddu =
p

2
JxsydJ−xsyd s2.6d

is exactly equivalent to Eq.s2.3d.
We have found a particularly simple way to prove formulass2.3d and s2.4d that is worth

relating.
Proof: Lommel proves Eq.s2.2d in Ref. 2. We can also prove this result by applying the

following elementary partial fractions expansion to Eq.s2.1d:

n!

xsx + 1dsx + 2d ¯ sx + nd
= o

j=0

n
s− 1d j

j + x
Sn

j
D .

To prove Eq.s2.4d we will use the reflection formula for the gamma function,
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GsxdGs1 − xd =
p

sinspxd
,

and we will apply formulas2.2d several times. Proceeding with the proof,

JxsydJ1−xsyd
p

sinspxd
= sJxsydGsxddsJ1−xsydGs1 − xdd = 1o

n=0

`
Jnsyd

n!

S y

2
Dn+x

n + x 21o
m=0

`
Jmsyd
m!

S y

2
Dm+1−x

m+ 1 −x2
= o

nù0,mù0

`
JnsydJmsyd

n!m!

S y

2
Dn+m+1

sn + xdsm+ 1 −xd

= o
nù0,mù0

`
JnsydJmsyd

n!m!

S y

2
Dn+m+1

n + m+ 1
S 1

n + x
+

1

m+ 1 −x
D .

Next split the sum into two pieces, then rearrange the order of summation to get

=o
n=0

`
Jnsyd

n!sn + xd1o
m=0

`
Jmsyd
m!

S y

2
Dn+m+1

n + m+ 12 + o
m=0

`
Jmsyd

m!sm+ 1 −xd1o
n=0

`
Jnsyd

n!

S y

2
Dn+m+1

n + m+ 12 .

Observe that the two nested sums in the preceding equation are just special cases of Eq.s2.2d.
Substituting the appropriate expressions we have

=o
n=0

`
Jnsyd

n!sn + xd
Gsn + 1dJn+1syd + o

m=0

`
Jmsyd

m!sm+ 1 −xd
Gsm+ 1dJm+1syd

= o
n=0

`
JnsydJn+1syd

n + x
+ o

m=0

`
JmsydJm+1syd

m+ 1 −x
.

Now let m+1=−n, and change the indices of summation on the right-hand sum to get

=o
n=0

`
JnsydJn+1syd

n + x
+ o

n=−1

−`
J−n−1sydJ−nsyd

− n − x
.

Finally, recall that ifmPZ thenJ−msyd=s−1dmJmsyd. Substituting this relation into the preceding
equation yields

=o
n=0

`
JnsydJn+1syd

n + x
+ o

n=−1

−`
JnsydJn+1syd

n + x
= o

n=−`

`
JnsydJn+1syd

n + x
,

completing the proof ofs2.4d.
The proof of Eq.s2.3d is nearly identical to the above proof, except that slightly more care

must be taken when combining the partial fractions expansions forJxsyd andJ−xsyd. j

Proposition 2.2: The infinite sums appearing in Proposition 2.1 are related as follows:

S o
n=−`

`
Jn

2syd
n + x

DS o
n=−`

`
Jn

2syd
n + 1 −x

D =
2

y
S o

n=−`

`
JnsydJn+1syd

n + x
D − S o

n=−`

`
JnsydJn+1syd

n + x
D2

, s2.7d
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o
n=−`

`
JnsydJn+1syd

n + x
= o

n=−`

`
JnsydJn+1syd

n + 1 −x
, s2.8d

1o
n=0

`
Jnsyd

n!

S y

2
Dn

n + x21o
n=0

`
Jnsyd

n!

S y

2
Dn+1

n + 1 −x2 = o
n=−`

`
JnsydJn+1syd

n + x
, s2.9d

1o
n=0

`
Jnsyd

n!

S y

2
Dn

n + x21o
n=0

`
Jnsyd

n!

S y

2
Dn

n − x2 =
− 1

x
o

n=−`

`
Jn

2syd
n + x

. s2.10d

Proof: Equationss2.8d–s2.10d follow trivially from Proposition 2.1.
Equations2.7d is a simple consequence of the Wronskian relation for Bessel functions,

Jx−1sydJ−xsyd + J1−xsydJxsyd =
2 sinspxd

py
.

We will prove s2.7d as follows. Observe from Proposition 2.1 that the left-hand sidesLHSd of Eq.
s2.7d is given by

LHS = JxsydJ1−xsydJx−1sydJ−xsydS p

sinspxdD
2

,

and the right-hand sidesRHSd is given by

RHS =JxsydJ1−xsydS p

sinspxdD
2S2 sinspxd

py
− JxsydJ1−xsydD .

Apply the Wronskian relation to the RHS to see that LHS=RHS, which establishess2.7d. j

Of course these are not the only partial fractions expansions available for Bessel functions.
There are multitudes of ways to generalize these results. We state several generalizations in the
next proposition.

Proposition 2.3: If x, y, and z are complex numbers such that x¹Z, then

p

sinspxd
Jz−xsydJx−zsyd = o

n=−`

`

s− 1dnJz+nsydJ−z−nsyd
x + n

, s2.11d

p

sinspxd
JxsydJ−xszd = o

n=−`

`
JnsydJnszd

n + x
Sy

z
Dn+x

, s2.12d

p

sinspxd
JxsydJ1−xszd = o

n=−`

`
JnsydJn+1szd

n + x
Sy

z
Dn+x

. s2.13d

Suppose that x1+x2+x3=1, then

Jx1
sydJx2

sydJx3
sydGsx1dGsx2dGsx3d = o

nù0,mù0

`

JnsydJmsydJn+m+1sydSn + m

m
DS 1

sn + x1dsm+ x2d

+
1

sn + x1dsm+ x3d
+

1

sn + x2dsm+ x3dD . s2.14d

043509-4 Mathew D. Rogers J. Math. Phys. 46, 043509 ~2005!

                                                                                                                                    



Letting x1=x2=x3= 1
3 in Eq. s2.14d yields an interesting double series forsJ1/3sydd3,

sJ1/3sydd3 =
1

G3s4/3d o
nù0,mù0

`
JnsydJmsydJn+m+1syd

s3n + 1ds3m+ 1d
Sn + m

m
D . s2.15d

III. PROPERTIES OF THE FUNCTION nk„x…

We will give a brief description of the functionnksxd, and then prove a new form for the
differential equation thatnksxd satisfies. Throughout this section we will assume thatxPR.

It is well known thatJxsyd has infinitely many real zeros, and a finite number of complex
zeros. We can regard the zeros ofJxsyd as functions of the orderx.

Definition 3.1: Letnksxd denote the kth real zero of Jxsyd to the right of x. Then Jxsnksxdd
=0 for all x.

It can be shown thatnksxd is continuous and differentiable for allxPR \ h−1,−2, . . .j. In fact,
it is well known thatnksxd satisfies transcendental differential equations. Nicholson’s differential
equationsRef. 5, p. 508d is given by

nk8sxd = − 2nksxdE
0

`

K0s2nksxdsinhstdde−2xt dt, s3.1d

and is valid provided thatx¹ h−1,−2, . . .j. The negative integers must be excluded from the
domain ofnksxd, becausenksxd is discontinuous at each of these points. These discontinuities occur
because new solution curves ofJxsyd=0 come into existence whenxP h−1,−2, . . .j. Watson pro-
vides a nice illustrationsRef. 5, p. 510d of this phenomenon.

The form of the differential equation that we are interested in follows almost directly from
formula s2.3d. Proposition 3.2 will allow us to express derivatives ofnksxd in terms of infinite
series that obey interesting algebraic relationsfsee Theorem 4.7 and Eq.s4.24dg.

Proposition 3.2: If x¹ h−1,−2, . . .j, thennksxd satisfies the differential equation

nk8sxd =
nksxd

2 o
n=−`

`
Jn

2snksxdd
sn + xd2 . s3.2d

Proof: This proof is quite standardsRef. 5, p. 507d. By the definition ofnksxd, and by formula
s2.3d we have

0 = o
n=−`

`
Jn

2snksxdd
n + x

.

Now assume thatx is not a negative integer, and take the derivative of each side to show that

0 = − o
n=−`

`
Jn

2snksxdd
sn + xd2 + nk8sxd

d

dn
o

n=−`

`
Jn

2snksxdd
sn + xd

.

Substituting Eq.s2.3d for the sum on the right-hand side we find that

0 = − o
n=−`

`
Jn

2snksxdd
sn + xd2 + nk8sxd

p

sinspxd
d

dn
sJxsnksxddJ−xsnksxddd. s3.3d

Now expand and simplify d/dnsJxsnksxddJ−xsnksxddd as follows:
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d

dn
sJxsnksxddJ−xsnksxddd =

Jx−1snksxdd − Jx+1snksxdd
2

J−xsnksxdd + Jxsnksxdd
d

dn
sJ−xsnksxddd

=
Jx−1snksxdd − Jx+1snksxdd

2
J−xsnksxdd + 0.

If nksxdÞ0, then the Bessel function addition formula shows thatJx+1snksxdd=−Jx−1snksxdd. Since
the onlyx values for which we may havenksxd=0 are the negative integerssRef. 5, p. 510d, the
initial assumption thatx¹ h−1,−2, . . .j satisfies this condition. Therefore we obtain

d

dn
sJxsnksxddJ−xsnksxddd = Jx−1snksxddJ−xsnksxdd.

The Wronskian relation shows that

Jx−1snksxddJ−xsnksxdd =
2 sinspxd

pnksxd
,

which allows us to evaluatesd/dndsJxsnksxddJ−xsnksxddd in a simple form,

d

dn
sJxsnksxddJ−xsnksxddd =

2 sinspxd
pnksxd

.

Substituting this final result into Eq.s3.3d completes the proof. j

For more technical results about the zeros of Bessel functions, Muldoon’s paper3 provides an
excellent list of references.

IV. THE TAYLOR SERIES FOR nk„x… AT THE HALF-INTEGERS

In this section we will give a recursive formula for computing the derivatives ofnksxd at the
half-integers. The resulting Taylor series converge relatively slowly, however the form that we
give for the coefficients is very interesting. We show that the Taylor coefficients can always be
expressed in terms of polynomials of entire functions. The entire functions in question are defined
by summations of reciprocal powers of integers, with squares of Bessel functions in the numera-
tors.

Definition 4.1: Let k be an integer, and definebksyd and dksyd by

bksyd = o
n=−`

`
Jn

2syd
s2n + 1dk ,

dksyd = o
n=−`

`
JnsydJn+1syd

s2n + 1dk .

Also define the more general function

bk
sa,bdsyd = o

n=−`

`
Jn+asydJn+bsyd

s2n + 1dk .

Proposition 4.2: The functionsbksyd and dksyd have the following elementary properties:

b0syd = 1, s4.1d

b1syd =
sins2yd

2y
, s4.2d
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b2syd =
1

2y
E

0

2y sinszd
z

dz, s4.3d

d2ksyd = 0 if k ù 0 is an integer, s4.4d

d1syd =
1 − coss2yd

2y
. s4.5d

Sinces4.5d will be used later, we note that it follows froms2.4d.
As a simple corollary to Proposition 4.2 we can obtain formulas for 1/p. Here are two

examples,

1

p
=

1

2 o
n=−`

` Jn
2Sp

4
D

2n + 1
, s4.6d

1

p
=

4

9 o
n=−`

` JnSp

3
DJn+1Sp

3
D

2n + 1
. s4.7d

Proposition 4.3: Let kù1 be an integer, thenbk
sa,bdsyd has the following elementary properties

for every pairsa,bdPZ2:

bk
sa,bdsyd =

1

y
bk−1

sa−1,bdsyd +
2a − 3

y
bk

sa−1,bdsyd − bk
sa−2,bdsyd, s4.8d

bk
sa,bdsyd = bk

sb,adsyd, s4.9d

b0
sa,bdsyd = H1 if a = b,

0 if a Þ b,
J s4.10d

bk
s0,0dsyd = bksyd, s4.11d

bk
s0,1dsyd = dksyd, s4.12d

bk
s1,1dsyd = s− 1dkbksyd. s4.13d

Proposition 4.3 establishes linear dependencies betweenbk
sa,bdsyd, bksyd, and dksyd for all

sa,bdPZ2. To expressbk
sa,bdsyd in terms ofdmsyd’s and bmsyd’s, use the recursion formulas4.8d

while applying formulas4.10d as many times as necessary. For example, we can show that

bk
s−1,−1dsyd = S 1

y2 + s− 1dkDbksyd −
2

y2bk−1syd +
1

y2bk−2syd −
2

y
dk−1syd +

2

y
dksyd. s4.14d

The next proposition shows thatdksyd can always be written as a polynomial inbmsyd’s for
møk, and the elementary functions. As a result we can always expressbk

sa,bdsyd as a polynomial
in b2syd ,b3syd , . . . ,bksyd, and elementary functions.

Proposition 4.4: We can calculate d2n+1syd recursively using the following formula:
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coss2yd
y

d2n+1syd = o
k=1

2n−1

dk+1sydd2n+1−ksyd + o
k=0

2n

s− 1dkbk+1sydb2n+1−ksyd. s4.15d

Proof: We will use Eq.s2.7d to prove this result. First observe that a slight rearrangement of
s2.7d yields

S o
n=−`

`
Jn

2syd
n + x

DS o
n=−`

`
Jn

2syd
n + 1 −x

D =
1

y2 − S1

y
− o

n=−`

`
JnsydJn+1syd

n + x
D2

. s4.16d

If ux− 1
2u, 1

2, then we can expand each infinite series aboutx=1/2 to obtain

o
n=−`

`
Jn

2syd
n + x

= o
k=0

`

s− 1dk2k+1bk+1sydsx − 1/2dk,

o
n=−`

`
Jn

2syd
n + 1 −x

= o
k=0

`

2k+1bk+1sydsx − 1/2dk,

o
n=−`

`
JnsydJn+1syd

n + x
= o

k=0

`

22k+1d2k+1sydsx − 1/2d2k.

Substituting these formulas intos4.16d, then collecting the series coefficients on each side of the
equality proves Eq.s4.15d. j

Applying Proposition 4.4 yields the following evaluations ofd3syd andd5syd:

d3syd = tans2ydb3syd −
y

coss2yd
b2

2syd, s4.17d

d5syd = tans2ydb5syd −
2y

coss2yd
b4sydb2syd +

y

cos3s2yd
b3

2syd − 2y2 sins2yd
cos3s2yd

b3sydb2
2syd

+
y3

cos3s2yd
b2

4syd. s4.18d

Now that we have shown how to writedksyd andbk
sa,bdsyd in terms ofbksyd, it is necessary to

justify the claim that all of these functions are entire. Considering the fact that formulas4.17d
contains multiple terms involving 1/coss2yd, this claim is not obvious.

Theorem 4.5:The functionsbksyd, dksyd, and bk
sa,bdsyd are entire functions for all kù0, and

for all sa,bdPZ2.
Proof: Let Eksyd denote thekth Euler polynomial. Recall thatEksyd is akth degree polynomial

with generating function

2eyt

et + 1
= o

k=0

`

Eksyd
tk

k!
.

Then for allkù0, and for allsa,bdPZ2, we have the following representation ofbk+1
sa,bdsyd:

bk+1
sa,bdsyd = s− 1dapk

k!
E

0

p/2

cosSsa + b − 1dz+
pk

2
DJb−as2y coszdEkS1

2
+

z

p
Ddz. s4.19d
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Equations4.19d expressesbk
sa,bdsyd as a finite integral of entire functions, so we conclude that

bk
sa,bdsyd is entire for allkù1 and for allsa,bdPZ2. Thek=0 case is clear from Eq.s4.10d. This

also proves thatbksyd anddksyd are entire, since they are just special cases ofbk
sa,bdsyd. Recall that

bksyd=bk
s0,0dsyd anddksyd=bk

s0,1dsyd.
The proof of Eq.s4.19d is an exercise that we will leave to the reader. j

The next proposition shows thatsd/dydbksyd andsd/dyddksyd are just linear combinations of
dksyd, bksyd, andbk−1syd swith coefficients involvingy and 1/yd. While Proposition 4.4 allows us
to eliminate the notationdksyd, the convenience of working with linear differential equations
justifies its continued use.

Proposition 4.6: The derivatives ofbksyd and dksyd are related as follows:

d

dy
sybksydd = bk−1syd − s1 − s− 1dkdydksyd,

d

dy
sydksydd = s1 − s− 1dkdybksyd. s4.20d

Proposition 4.6 allows us to reformulate our study ofbksyd and dksyd from a differential
equations perspective. By substituting the appropriate formulas fordksyd into Eq. s4.20d, we can
express derivatives ofybksyd as polynomials inb2syd ,b3syd , . . . ,bksyd and the elementary func-
tions. For example, if we plugs4.17d into s4.20d we find

d

dy
syb3sydd = b2syd − 2 tans2ydyb3syd + 2 secs2ydsyb2sydd2. s4.21d

Solving this resulting system of nonlinear differential equations will naturally lead to some very
complicated integrals. To solve Eq.s4.21d for b3syd, multiply each side by secs2yd and collect the
terms involvingb3syd to get

d

dy
S yb3syd

coss2ydD =
b2syd

coss2yd
+ 2S yb2syd

coss2ydD
2

. s4.22d

Now integrate each side from 0 toy, restrictinguyu,p /4 to avoid the poles of secs2yd. Therefore
if uyu,p /4,

b3syd =
coss2yd

y
E

0

y b2sud
coss2ud

+ 2S ub2sud
coss2udD

2

du. s4.23d

It might be of some interest to try to generalize the system of linear differential equations
presented ins4.20d. For example, can we perturb the coefficients, but still find a reduction to a first
order system of equations? It appearssafter some effortd that the equations ins4.20d, combined
with the initial conditionshb0syd=1,d0syd=0,bks0d=1,dks0d=0j are not easily generalized.

Next we will establish a recursive formula for generating the Taylor series coefficients ofnksxd
aboutx=r +1/2 wherer PZ.

Theorem 4.7: Let r be any integer, then we may compute the Taylor series fornksxd about
x=r +1/2. The derivatives ofnksxd can be computed recursively using

nk
sn+1dsr + 1/2d = o

m=0

n

2m+1sm+ 1d!Sn

m
D dn−m

dxn−mfnksxdbm+2
sr+1,r+1dsnksxddgx=r+1/2.

Since Jr+1/2syd can always be written in terms of elementary functions, nksr +1/2d is always
the root of an elementary function. The selection of k determines which zero of Jxsyd that nksxd will
pass through.
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To compute the Taylor series fornksxd about x=1/2, apply Theorem 4.7 withr =0. Since

J1/2syd=s2/pyd
1
2 sinsyd, thekth zero ofJ1/2syd to the right-hand side ofx=1/2 isjust pk, therefore

nks1/2d=pk. Computing the first few terms in our series, we get

nksxd = pk + 2pkb2spkdsx − 1/2d − 8pkb3spkd
sx − 1/2d2

2!
+ s48pkb4spkd − 64p3k3b2

3spkd

− 24pkb2
2spkdd

sx − 1/2d3

3!
+ ¯ . s4.24d

Sincenksxd is not analytic atx=−1, Eq.s4.24d converges for −1,x,2. We can approximate
the first few zeros ofJ0syd using s4.24d. As Table I illustrates, this series converges very slowly.

We will pose three open problems to conclude this section.
Open question 1:It is easy to see that ifmù0 is an integer, thennk

smds1/2d is a polynomial in
the elementspk,b2spkd ,b3spkd , . . . ,bm+1spkd. Thusnk

smds1/2d can be expressed as a polynomial
in pk and the derivatives ofJxspkdJ−xspkdfp /sinspxdg at x=1/2. Based on this evidence, we
might conjecture the existence of a “nice” functionfsx,y,zd, such that

nksxd = fSx,pk,
p

sinspxd
JxspkdJ−xspkdD . s4.25d

It would be highly desirable to prove the existence of such a function, as it would give an exact
solution ofJxsyd=0.

Open question 2:Are the elements of the sethy,coss2yd ,b2syd ,b3syd , . . .j algebraically inde-
pendent? For example, canb3syd be expressed in terms ofb2syd and trigonometric functions?

This is not a trivial question. Using Eq.s4.17d we easily see that ifnù0 is an integer,

b3Ss2n + 1d
p

4
D = s− 1dns2n + 1d

p

4
b2

2Ss2n + 1d
p

4
D . s4.26d

This shows thatb3syd can be expressed in terms ofb2syd at certain discrete points. Whether or not
this indicates more general algebraic relations remains unanswered.

Open question 3:Is it possible to simplify the recurrence relation given in Theorem 4.7? In
other words, can we generatenk

smds1/2d in a way that does not involve taking derivatives?

V. THE TAYLOR SERIES FOR nk„x… AT THE INTEGERS

In general, calculating the Taylor series fornksxd at the integers is far more challenging than
computing the Taylor series at the half-integers. Recall thatnksxd is discontinuous when
xPh−1,−2,j, so it only makes sense to calculate a Taylor series forxP h0,1,2, . . .j. The main
difficulty lies in the fact that

TABLE I. Table of the first five positive zeros ofJ0syd. The approximations
were calculated using Eq.s4.24d.

Zero number Exact zero Approximate zero

1 2.4048… 2.4094…
2 5.5200… 5.5217…
3 8.6537… 8.6545…
4 11.7915… 11.7919…
5 14.9309… 14.9312…
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nk8sxd =
nksxd

2 o
n=−`

`
Jn

2snksxdd
sn + xd2

has removable singularities atx=0,1,2, . . . .This gives rise to polynomial rather than linear
relationships between derivatives ofnksxd. To illustrate this point, we will calculate the first Taylor
polynomial ofnksxd at zero.

Proposition 5.1: The first Taylor polynomial ofnksxd at zero is given by

nksxd = nks0d +
x

2nks0dJ1
2snks0dd

+ Osx2d. s5.1d

Proof: We simply need to show thatnk8s0d has the correct form, and consequently Eq.s5.1d
really is the first Taylor polynomial ofnksxd at zero.

Applying Proposition 3.2, we obtain the following relation fornk8s0d:

nk8s0d
nks0d

=
1

2
lim
x→0

SJ0
2snksxdd

x2 D +
1

2 o
n=−`

nÞ0

`
Jn

2snks0dd
n2 =

1

2
J1

2snks0ddsnk8s0dd2 + o
n=1

`
Jn

2snks0dd
n2 .

We will use Eq.s5.4d to simplify this expression. By lettingy→nks0d in s5.4d, we can show that

o
n=1

`
Jn

2snks0dd
n2 =

1

2nk
2s0dJ1

2snks0dd
. s5.2d

Eliminating this infinite series and solving the resulting quadratic equation fornk8s0d, we arrive at
the simple formula

nk8s0d =
1

2nks0dJ1
2snks0dd

. s5.3d

The fact that we can use Eq.s5.2d to prove such a simple expression fornk8s0d is a minor
miracle. The fact that we must solve a quadratic equation fornk8s0d illustrates why we should not
expect to find a simple recursive formula like that in Theorem 4.7 to computenk

smds0d. j

When we are computing higher derivatives ofnksxd at integer points, we will encounter the
following three functions:

mksyd = o
n=1

`
Jn

2syd
nk ,

hksyd = o
n=1

`
Jn+1

2 syd
nk ,

rksyd = o
n=1

`
JnsydJn+1syd

nk .

In Proposition 4.4 we showed thatdksyd is expressible in terms ofb jsyd’s and the elementary
functions. Unfortunately such strong relationships are probably not possible betweenmksyd, hksyd,
andrksyd. The strongest relationships that we have found allow us to eliminaterksyd if k is even.
It is not too difficult to show that

r2syd = −
sJ0

2syd − 1d2

4y2J0sydJ1syd
+

m1syd
y

−
J0syd
J1syd

r1syd
y

+
1

2

J1syd
J0syd

m2syd +
1

2

J0syd
J1syd

h2syd. s5.4d
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Equations5.4d was critical in our computation of the first Taylor polynomial ofnksxd at x
=0. We will state the more general case in the next proposition.

Proposition 5.2: Define an, bn, andcn as follows:

an =5
J0sydJ1syd if n = − 1,

−
J0

2syd
y

if n = 0,

2

y
mnsyd − s1 − s− 1dndrn+1syd if n ù 1, 6

bn = HJ0
2syd if n = − 1,

− s1 − s− 1dndmn+1syd if n ù 0,
J

cn =5
− J1

2syd if n = − 1,

2

y
J0sydJ1syd if n = 0,

s1 − s− 1dndhn+1syd +
4

y2mn−1syd −
4

y
rnsyd if n ù 1. 6

Then for n=0,1,2. . .,

o
k=−1

n+1

ckbn−k =
dn0

y2 − o
k=−1

n+1

akan−k, s5.5d

where

dn0 = H1 if n = 0,

0 otherwise.
J

If n is odd, then Eq. (5.5) is trivial. When n is even, we obtain nontrivial relationships between
h jsyd’s, r jsyd’s, and m jsyd’s. The case where n=0 yields Eq. (5.4).

If we let n=2, Eq.s5.5d yields the complicated formula

0 =
2

y2m1
2syd − 2S1 − J0

2syd
y2 Dm2syd + 2

J0sydJ1syd
y

m3syd + J1
2sydm4syd − 2m2sydh2syd + J0

2sydh4syd

+
4

y
m2sydr1syd −

4

y
m1sydr2syd + 2r2

2syd − 2
J0

2syd
y

r3syd − 2J0sydJ1sydr4syd. s5.6d

To conclude this section, we will list a couple of interesting open questions aboutmksyd, hksyd,
andrksyd.

Open question 4:Is it possible to find explicit expressions form1syd, h1syd, andr1syd in terms
of known functions? It seems likely that these functions are somehow related to Bessel functions
of the first and second kinds. Formulas similar to Eq.s4.2d and s4.5d would be desirable.

Open question 5:Do more nontrivial algebraic relations exist betweenmksyd, hksyd, and
rksyd? This question is probably very hard, given the difficulty of working with these particular
functions.
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VI. A CONNECTION TO THE RIEMANN ZETA FUNCTION, AND FURTHER REMARKS
ABOUT SERIES OF SQUARES OF BESSEL FUNCTIONS

The functions that we have considered so far,hbksyd ,dksyd ,bk
sa,bdsyd ,mksyd ,hksyd ,rksydj, are

particularly nice. Besides their various algebraic relations and differentiation formulas, they are
sums over products of Bessel functions of integer order. As a result, integrals like

1

2
=E

0

`

JnsydJn+1syddy if n P Z andn ù 0, s6.1d

naturally connect them to the Riemann zeta functionsRef. 1, p. 1102d.
Applying formula s6.1d to dksyd, it is easy to see that fork=1,2,3, . . . ,

S1 −
1

22k+1Dzs2k + 1d =E
0

`

d2k+1syddy. s6.2d

Settingk=1 gives the following integral forzs3d:

7

8
zs3d =E

0

`

d3syddy =E
0

`

stans2ydb3syd − y secs2ydb2
2sydddy.

A simple integration by parts generates another nontrivial integral forzs3d. In general we can use
the algebraic relations between our functions to find many complicated integrals forp and the odd
values of the Riemann zeta function. Perhaps additional knowledge about thebksyd’s will yield
some useful information aboutzs3d ,zs5d , . . . sunfortunately this is probably too much to hope ford.

Since the entire papersup to this pointd discusses functions defined by infinite series of
squares of Bessel functions, we pose the following general question: What functions can be
expressed in such a form?

As an example, we evaluatedb2syd in terms of the sine integral in formulas4.3d. This
expansion converges rapidly, and provides an example of a useful special function expressible by
a series of squares of Bessel functions. We can also derive a similar expression for the cosine
integral,

E
0

2y 1 − cosszd
z

dz= 4o
n=1

`

Jn
2sydo

k=0

n−1
1

2k + 1
. s6.3d

Proof: We can proves6.3d by showing that the derivatives of each side of the equation are
equal, and by showing that the equation holds wheny=0.

It is trivial to show thats6.3d holds wheny=0, since both sides of the equation vanish.
Therefore we just have to show that

1 − coss2yd
y

= 4
d

dy
So

n=1

`

Jn
2sydo

k=0

n−1
1

2k + 1
D .

Observe that this sum converges uniformly wheneveryPR, so we may interchange summation
and differentiation. Therefore ifyPR,

4
d

dy
So

n=1

`

Jn
2sydo

k=0

n−1
1

2k + 1
D = 4o

n=1

`
d

dy
sJn

2syddo
k=0

n−1
1

2k + 1

= 4o
n=1

`

sJn−1sydJnsyd − JnsydJn+1syddo
k=0

n−1
1

2k + 1
.

Now break the sum into two pieces, and combine the two pieces so that the inner sums telescope,
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=4o
n=1

`

Jn−1sydJnsydo
k=0

n−1
1

2k + 1
− 4o

n=1

`

JnsydJn+1sydo
k=0

n−1
1

2k + 1

= 4o
n=0

`

JnsydJn+1sydo
k=0

n
1

2k + 1
− 4o

n=1

`

JnsydJn+1sydo
k=0

n−1
1

2k + 1

= 4o
n=0

`

JnsydJn+1sydSo
k=0

n
1

2k + 1
− o

k=0

n−1
1

2k + 1
D = 4o

n=0

`
JnsydJn+1syd

2n + 1
.

Using the fact thatJ−nsyd=s−1dnJnsyd fas in the proof of Eq.s2.4dg, this becomes

2 o
n=−`

`
JnsydJn+1syd

2n + 1
=

1 − coss2yd
y

by Eq. s4.5d. j

In the next theorem we state Gegenbauer’s result from the 1870s, namely that any even
function with a Taylor series at zero can be written as a sum of squares of Bessel functionssRef.
5, p. 525d. The form that we give for this theorem is slightly different from Watson’s statement,
but is sufficient for our purposes.

Theorem 6.1: (Gegenbauer) Suppose that fszd is an even function that is analytic at zero, or
equivalently suppose that fszd is even and has a Taylor series at zero. Let

fszd = o
n=0

`
f s2nds0d
s2nd!

z2n.

Then the following representation holds for fszd:

fszd = o
n=0

`

anJn
2szd,

where an is given by

an =5
fs0d if n = 0,

2no
k=0

n Sn + k

2k
D

n + k

22k

S2k

k
D f s2kds0d if n ù 1.6

This formula relating an and fs2nds0d can be inverted to give

f s2nds0d =
s− 1dn

22n S2n

n
Do

k=0

n

s− 1dkakS 2n

n + k
D .

If we apply Theorem 6.1 to appropriately chosen hypergeometric functions, we can obtain a
variety of “nice” series of squares of Bessel functions. Examples include

o
n=0

`

s− 1dns2nd!
n!3

S y

2
D2n

sxdn
= J0

2syd + 2o
n=1

`

s− 1dns1 − xdn

sxdn
Jn

2syd, s6.4d
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o
n=0

`

s− 1dnS2n

n
DS2n − x

n − x
DS

y

2
D2n

s2nd!
= o

n=0

`
sxdn

n!
Jn

2syd, s6.5d

wheresxdn=xsx+1d¯ sx+n−1d.
Open question 6:An interesting question associated with Theorem 6.1 is to find a “nice”

expression for the Taylor series coefficients ofmksyd whenk is an odd integer. It is easy to show
that the Taylor series coefficients ofbksyd, dksyd, andm2ksyd can always be expressed in terms of
harmonic numbers. If we let

ln
s jd = o

m=0

n
1

s2m+ 1d j , Hn
s jd = o

m=1

n
1

mj ,

then we can obtain series expansions including

b3syd = o
n=0

`

s− 1dnln
s2d s2yd2n

s2n + 1d!
, s6.6d

m4syd = o
n=1

`

s− 1dn+1SHn
s4d + sHn

s2dd2

4
DS2n

n
DS

y

2
D2n

n!2 , s6.7d

d5syd = o
n=0

`

s− 1dnSln
s4d + sln

s2dd2

2
D s2yd2n

s2n + 2d!
. s6.8d

A simple application of Theorem 6.1 shows that trying to find nice Taylor series coefficients
for hm3syd ,m5syd , . . .j is equivalent to reducing

rn
s jd = o

m=1

n
s− 1dm+1

mj S 2n

n + m
D ,

into “some nice form” whenj .1 is an odd integer.
In the case ofm1syd, we can show that ifAn is the alternating harmonic series,

An = o
k=1

n
s− 1dk+1

k
,

then we must have

m1syd = o
n=1

`

s− 1dn+1A2nS2n

n
DS

y

2
D2n

n!2 . s6.9d

Generalizing this result has proven surprisingly difficult.

VII. MORE REPRESENTATIONS OF bk„y… AND dk„y… IN TERMS OF INFINITE SERIES

The functionsbksyd anddksyd possess many representations in terms of infinite integrals and
infinite series. Sincebksyd anddksyd are just the derivatives with respect to order of products of
Bessel functions, every one of the legions of representations for Bessel functions will yield
formulas forbksyd anddksyd. In this section we will present a few of the most visually appealing
and useful formulas that we have encountered.
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Our first formula expressesdksyd in terms of sums running over the Bessel functions of
half-integer order. This is noteworthy since the Bessel functions of half-integer order reduce to
polynomials in 1/p whenevery→pk.

Let ansyd be defined by

ansyd = o
k=1

`
s− 1dk+1

kn J1/2+ksydJ1/2−ksyd, s7.1d

and letBj denote the Bernoulli numberssRef. 1, p. 1107d. Then fornù1,

d2n−1syd =
4s4n − 1d

s2nd!
uB2nup2n−2sin2syd

y
+

1

4n−1o
j=1

n−1
4js4j − 1d

s2jd!
uB2jup2j−1a2n−2jsyd. s7.2d

Equations7.2d yields the following relation whenn=2:

d3syd =
p2

12

sin2syd
y

+
p

4
a2syd. s7.3d

A second family of formulas can be obtained from Eqs.s2.9d ands2.10d. We can decompose
bksyd anddksyd in terms of two sets of functions defined by a modified Neumann series. Define
gksyd andhksyd by

gksyd = o
n=0

` JnsydS y

2
Dn

n!s2n + 1dk , s7.4d

hksyd = o
n=0

` Jn+1sydS y

2
Dn

n!s2n + 1dk . s7.5d

It is easy to see from Eq.s2.2d that gksyd andhksyd can be written compactly as

gksyd =
s− 1dk−1

2ksk − 1d!
dk−1

dxk−1FS2

y
Dx

GsxdJxsydG
x=1/2

if k ù 1, s7.6d

hksyd =
− 1

2ksk − 1d!
dk−1

dxk−1FS2

y
D1−x

Gs1 − xdJ−xsydG
x=1/2

if k ù 2. s7.7d

We can prove the following formulas forbksyd anddksyd:

d2n+1syd = 2h2n+1syd − yo
m=0

2n

s− 1dmhm+1sydh2n+1−msyd, s7.8d

d2n+1syd = yo
m=0

2n

s− 1dmgm+1sydg2n+1−msyd, s7.9d

bnsyd = gnsyd − yo
m=0

n

s− 1dmhm+1sydgn−msyd. s7.10d
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By combining these three formulas we can find a wide variety of relations betweenbksyd,
dksyd, hksyd, andgksyd. We will use the following elementary evaluations ofg0syd, g1syd, h0syd,
andh1syd,

g0syd = 1, g1syd =
sinsyd

y
, s7.11d

h0syd =
y

2
, h1syd =

1 − cossyd
y

. s7.12d

Examples of identities include

h2sydsinsyd + g2sydcossyd = b2syd, s7.13d

h3sydsinsyd + g3sydcossyd =
1

sins2yd
sd3syd + 2y cossydg2sydb2syd − yb2

2sydd, s7.14d

h4sydsinsyd + g4sydcossyd = b4syd + ysg2sydh3syd − h2sydg3sydd. s7.15d

Unfortunately, it seems to be impossible to expressgksyd or hksyd only in terms ofbksyd’s.
This is not especially surprising, since we would not intuitively expect to find strong relationships
between the derivatives ofJxsyd and the derivatives ofJxsydJ−xsyd. Interestingly enough however,
it may be possible to expressgksyd in terms ofbksyd’s at certain arguments. An example follows
easily from Eq.s7.13d,

g2spkd = s− 1dkb2spkd for k P Z . s7.16d

A third class of identities can be derived from Eqs.s2.12d and s2.13d. While we have not
explored this avenue in depth, we have derived a few noteworthy formulas. If we let

Fksy,zd = o
n=−`

`
JnsydJnszd
s2n + 1dk Sy

z
Dn

,

Gksy,zd = o
n=−`

`
JnsydJn+1szd

s2n + 1dk Sy

z
Dn

,

then examples of identities include

d3syd = − Sp

2
D2

b2
2Sp

2
Dsin2syd

y
− yG2

2Sy,
p

2
D + 2 sinsydG3Sy,

p

2
D , s7.17d

sins2zd
2z

b2syd +
sins2yd

2y
b2szd =

sinszd
z

cossydF2sy,zd +
sinsyd

y
cosszdF2sz,yd. s7.18d

VIII. CONCLUSION

It would be particularly nice to see solutions to some of the open problems presented in this
paper. A solution of question 4 could potentially yield a rapidly converging series forY0szd, while
a solution for question 3 would simplify Theorem 4.7. Such results would be quite useful.
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It might also be interesting to generalize the results of Secs. II, IV, and V to other special
functions. For example, while it is possible to generate a differential equation similar to Eq.s3.2d
for the zeros of2F1

s a,1−a
c uxd, it is not immediately clear that this will yield a nice series similar to

Eq. s4.24d for the zeros of this hypergeometric function.
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We devise a new simple loop algebraG̃M and an isospectral problem. By making
use of the Tu scheme, the multicomponent generalized Kaup–Newell hierarchy is

obtained. Furthermore, an expanding loop algebraF̃M of the loop algebraG̃M is

presented. Based onF̃M, the multicomponent integrable couplings system with two
arbitrary functions of the multicomponent generalized Kaup–Newell hierarchy are
worked out. The method can be applied to other nonlinear evolution equations
hierarchy. ©2005 American Institute of Physics.fDOI: 10.1063/1.1866220g

I. INTRODUCTION

Searching for new integrable hierarchies of soliton equations is an important and interesting
topic in soliton theory. Various efficient approaches have been developed to get many integrable
systems such as AKNS hierarchy, Kaup–Newell hierarchy, Schrödinger system, and so on.1–24As
far as the multicomponent integrable hierarchies are concerned, there have been developments
such as in Refs. 13 and 14. Ma and Zhou once also gave the multicomponent AKNS hierarchies
by using generalized Tu scheme in Ref. 15. In Refs. 16–18, a simple and efficient method for
generating multicomponent integrable hierarchies was proposed. Constructing a new simple loop
algebra and designing an isospectral problem of multicomponent hierarchy of soliton equations
become a key step in this method. Although using the loop algebra in Refs. 16–18 can produce
many multicomponent integrable hierarchies, it is not suitable for seeking the multicomponent

generalized Kaup–Newell hierarchy.10,11 In this paper, a new loop algebraG̃M is first constructed,
and then an isospectral problem is designed. By employing Tu scheme,6–19 the multicomponent

generalized Kaup–Newell hierarchy is worked out. In addition, an expanding loop algebraF̃M of

the loop algebraG̃M is presented, which is devoted to deducing the integrable couplings of the
multicomponent generalized Kaup–Newell hierarchy.

In Refs. 10 and 11, we investigated the isospectral problem,
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bdElectronic mail: faneg@fudan.edu.cn
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wx = Uw, U = S− l2 + bqr lq

lr l2 − bqr
D, lt = 0. s1d

Whereb is an arbitrary constant. Whenb=0, problems1d reduces to the Kaup–Newell spectral
problem. We obtained the generalized Kaup–Newell hierarchy and established its multi-
Hamiltonian structure by using Tu scheme,

ut = Sq

r
D

t
= J

dHn

du
= JL

dHn−1

du
= JLndH0

du
, n = 1,2, . . . .

It is interesting the hierarchy is related to seven well-known nonlinear evolution equations such as
Kaup–Newell equations, Chen–Lee–Liu equations, Gerdjikov equation and Kundu type equation,
etc.11,12 In this paper, we would like to extend the hierarchy to the multicomponent generalized
Kaup–Newell integrable hierarchy in the Lax sense. Finally, we shall obtain the multicomponent
integrable couplings with two arbitrary functions of the multicomponent generalized Kaup–Newell

integrable hierarchy based on a new loop algebraF̃M.

II. A NEW LOOP ALGEBRA

If GM =ha=saijdM33=sa1,a2,a3dj denotes a set of matrices, whereM is a positive integer,
aisi =1,2,3d is the ith column of the matrixa. ThenGM is a linear space.

Let a=sa1,a2, . . . ,aMdT, b=sb1,b2, . . . ,bMdT, and define their producta* b=b* a

=sa1b1,a2b2, . . . ,aMbMdT. If a=sa1,a2,a3d, b=sb1,b2,b3dPG̃M, a commutation operation for
GM is defined as

fa,bg = sa2 p b3 − a3 p b2,2sa1 p b2 − a2 p b1d,2sa3 p b1 − a1 p b3dd, s2d

It is easy to verify that the operations2d is linear and antisymmetric. For∀a,b,cPGM, we can
also verify that

ffa,bg,cg + ffb,cg,ag + ffc,ag,bg = 0, s3d

i.e., Jacobian identity holds. Therefore,GM with the operations2d becomes a Lie algebra. A

corresponding loop algebraG̃M is defined as

G̃M = haln,a P GM,n = 0, ± 1, ± 2, . . .j,

with a commutation operation defined as

falm,blng = fa,bglm+n, ∀ a,b P G̃M . s4d

SinceG̃1 is equal toÃ1 in Refs. 21 and 22, we conclude thatG̃M is an extension of the loop algebra

Ã1. We also find thatG̃M has two features,sid the commutation operation is simple and straight-

forward, as that in the loop algebraÃ1; sii d by means ofG̃M, we proceed to a simple calculation to
be able to obtain various multicomponent integral systems.

Considering linear is spectral problem as follows:

fx = fU,fg, lt = 0,f,U, V P G̃M ,

ft = fV,fg, s5d

whose compatibility gives rise to

fxt = fUt,fg + fU,fV,fgg = ftx = fVx,fg + fV,fU,fgg,

that is
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fUt,fg − fVx,fg + fU,fV,fgg + fV,fU,fgg = 0. s6d

By employings3d, the formulas5d can be written as

fUt,fg − fVx,fg + ffU,Vg,fg = 0. s7d

Sincef is arbitrary, a condition ofs7d holds if and only if the following equation does:

Ut − Vx + fU,Vg = 0. s8d

Hence, the compatibility ofs7d leads to a zero-curvature equations8d.

III. THE MULTICOMPONENT GENERALIZED KAUP–NEWELL HIERARCHY

We consider an is spectral problem

fx = fU,fg, lt = 0, U = s− l2IM + bq p r,lq p IM,lr p IMd, s9d

where

IM =1
1

1

¯

1
2

M31

, q = sq1,q2, . . . ,qMdT, r = sr1,r2, . . . rMdT.

Let

V = o
m=0

`

sas0,md,lbs1,md,lcs1,mddl−2m,

where as0,md=sam1
s0d , . . . ,amM

s0d dT, bs1,md=sbm1
s1d , . . . ,bmM

s1d dT, cs1,md=scm1
s1d , . . . ,cmM

s1d dT. Solving the
stationary zero curvature equation

Vx = fU,Vg, s10d

gives

axs0,md = q p cs1,m+ 1d − r p bs1,m+ 1d,

bxs1,md = − 2bms1,m+ 1d + 2bq p r p bs1,md − 2q p as0,md, s11d

cxs1,md = 2r p as0,md + 2cs1,m+ 1d − 2bq p r p cs1,md,

as1,m+ 1d = bs0,md = cs0,md = 0,

bs1,0d = cs1,0d = 0,as0,0d = a = sa1,a2, . . . ,aMd Þ 0, s12d

cs1,1d = − a p r,bs1,1d = − a p q.

Whereaisi =1,2, . . . ,Md are constants.
DenotingV+

snd=Sm=0
n sas0,md ,lbs1,md ,lcs1,mddl2n−2m, V−

snd=l2nV−V+
snd, then Eq.s7d can be

written as

− V+x
snd + fU,V+

sndg = V−x
snd − fU,V−

sndg. s13d

A direct calculation reads
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− V+x
snd + fU,V+

sndg = saxs0,n + 1d,bxs1,n + 1d − 2bq p r p bs1,n + 1d,cxs1,n + 1d

+ 2bq p r p cs1,n + 1dd

Again taking

Dn = sbs]−1q p cxs1,n + 1d + r p bxs1,n + 1dd + 2b2]−1q p r p sq p cs1,n + 1d − r p bs1,n + 1dd,0,0d,

Vsnd = V+
snd + Dn,

the zero curvature equation

Ut − Vx
snd + fU,Vsndg = 0,

gives rise to the Lax integrable hierarchy

ut = Sq

r
D

t
= J8L8n−1S− a p r

− a p q
D , s14d

with

J8 = SJ11 J12

J21 J22
D ,

where

J11 = 2bq p ]−1q p ] + 4b2q p ]−1q2 p r p ,

J12 = ] − 2bq p r p + 2bq p ]−1r p ] − 4b2q p ]−1q p r2 p ,

J21 = ] + 2bq p r p − 2br p ]−1q p ] − 4b2r p ]−1r p q2 p ,

J22 = − 2br p ]−1r p ] − 4b2r p ]−1q p r2 p ,

L8 =
1

2
SL11 L12

L21 L22
D ,

L11 = ] − 2br p ]−1q2 p r p − r p ]−1q p ] + 2bq p r p ,

L12 = 2br p ]−1q p r2 p − r p ]−1r p ],

L21 = − 2bq p ]−1q2 p r p − q p ]−1q p ],

L22 = − ] + 2bq p ]−1q p r2 p − q p ]−1r p ] + 2bq p r p .

Let us see some special cases of our multicomponent hierarchys14d.
When M =1, the systems14d is just the the generalized Kaup–Newell hierarchy.10,11 When

M .1, the systems14d is the multicomponent generalized Kaup–Newell hierarchy.
The first systemsm=1, a=−1d in hierarchys14d is the following coupled system:

qt = bs1,n + 1dx − 2bqrbs1,n + 1d + 2qDn,
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rt = cs1,n + 1dx − 2bqrcs1,n + 1d − 2rDn. s15d

WhereDn is given by

Dn = sbs]−1qcxs1,n + 1d + rbxs1,n + 1dd + 2b2]−1qrsqcs1,n + 1d − rbs1,n + 1dd,0,0d.

cs1,2d = 1
2rx − 1

2s1 − 2bdr2q;bs1,2d = − 1
2qx − 1

2s1 − 2bdq2r .

Taking n=1 and substitutingcs1,2d, bs1,2d, Dn into systems15d, we have

qt = − 1
2qxx − 1

2sq2rdx − 2bqsqrdx − 1
2bq3r2,

rt = 1
2rxx − 1

2sr2qdx − 2brsqrdx − 1
2bq2r3,

which is just a generalized coupled derivative Schrödinger system in Ref. 11. Other kinds of
equations can be obtained from systems15d in the cases whenn=2, . . ., wejust omit them here.

IV. THE MULTICOMPONENT INTEGRABLE COUPLINGS SYSTEM

Set

FM = ha = saijdM35 = sa1,a2,a3,a4,a5dj, s16d

with a commutation operation defined as

fa,bg = sa2 p b3 − a3 p b2,2sa1 p b2 − a2 p b1d,2sa3 p b1 − a1 p b3dd,a1 p b4 − a4 p b1 + a1 p b5

− a5 p b1,

sa1 p b5 − a5 p b1 + a4 p b1 − a1 p b4d. s17d

ThenFM is a Lie algebra. A corresponding loop algebraF̃M is defined as

F̃M = haln,a P FM,n = 0, ± 1, ± 2, . . .j, s18d

with a commutation operation defined as

falm,blng = fa,bglm+n, ∀ a,b P FM . s19d

Denote

F̃Ms1d = hsa1,a2,a3,0,0dlnj,

F̃Ms2d = hs0,0,0,a4,a5dlnj,

thensid F̃M =F̃Ms1d % F̃Ms2d, F̃Ms1d>G̃M; sii d fF̃Ms1d ,F̃Ms2dg, F̃Ms2d. Based onF̃M, we consider
an isospectral problem,

fx = fU,fg,lt = 0,U = s− l2IM + bu1 p u2,lu1 p IM,lu2 p IM,lu3 p IM,lu4 p IMd, s20d

whereui =sui1,ui2, . . . ,uiMdT, i =1,2,3,4. LetV=om=0
n sam,bm,cm,dm, fmdl−2m. Solving the equa-

tion similar to s10d gives

axs0,md = u1 p cs1,m+ 1d − u2 p bs1,m+ 1d,

bxs1,md = − 2bms1,m+ 1d + 2b p u1 p u2 p bs1,md − 2u1 p as0,md,

043510-5 Generalized Kaup–Newell hierarchy J. Math. Phys. 46, 043510 ~2005!

                                                                                                                                    



cxs1,md = 2u2 p as0,md + 2cs1,m+ 1d − 2bu1 p u2 p cs1,md,

dxs1,nd = − ds1,n + 1d + b p u1 p u2 p ds1,nd + b p u1 p u2 p fs1,nd − u3 p as0,nd − fs1,n + 1d

− u4 p as0,nd,

fxs1,nd = − fs1,n + 1d + b p u1 p u2 p fs1,nd − b p u1 p u2 p ds1,nd − u4 p as0,nd + ds1,n + 1d

+ u3 p as0,nd,

as1,m+ 1d = bs0,md = cs0,md = ds0,md = fs0,md = 0,

bs1,0d = cs1,0d = 0, as0,0d = a = sa1,a2, . . . ,aMd Þ 0,

cs1,1d = − a p u2, bs1,1d = − a p u1, ds1,1d = − a p u3, fs1,1d = − a p u4. s21d

Taking

Dn = sb p s]−1u1 p cxs1,n + 1d + u2 p bxs1,n + 1dd + 2b2]−1u1 p u2 p su1 p cs1,n + 1d

− u2 p bs1,n + 1dd,0,0,d1n,d2nd,

Vsnd = V+
snd + Dn, s22d

whered1n, d2n are arbitrary multicomponent functions ofuisi =1,2,3,4d, therefore according to
the zero curvature equation, we have following multicomponent integrable couplings of hierarchy
of the multicomponent generalized Kaup–Newell hierarchy with two arbitrary functions:

ut =1
u1

u2

u3

u4

2
tn

=1
J11 p cs1,n + 1d + J12 p bs1,n + 1d
J21 p cs1,n + 1d + J22 p bs1,n + 1d

H1p

H2p
2 , s23d

where

J11 = 2b p u1 p ]−1u1 p ] + 4b2 p u1 p ]−1u1
2 p u2,

J12 = ] − 2b p u1 p u2 + 2b p u1 p ]−1r p ] − 4b2u1 p ]−1u1 p u2
2,

J21 = ] + 2b p u1 p u2 − 2b p u2 p ]−1u1 p ] − 4b2u2 p ]−1u2 p u1
2,

J22 = − 2b p u2 p ]−1u2 p ] − 4b2 p u2 p ]−1u1 p u2
2,

H1 = dxs1,n + 1d − b p u1 p u2 p ds1,n + 1d − b p u1 p u2 p fs1,n + 1d + su3 + u4d p Dn + d1nx

− b p u1 p u2 p d1n − b p u1 p u2 p d2n,

H2 = fxs1,n + 1d − b p u1 p u2 p fs1,n + 1d + b p u1 p u2 p ds1,n + 1d + su4 − u3d p Dn + d2nx

+ b p u1 p u2 p d1n − b p u1 p u2 p d2n. s24d

which have the Lax pair,
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fx = Uf, ftn
= Vsndf, s25d

whereU andVsnd satistys9d and s22d, respectively.
In particular, when takingd1n=d2n=0, from s23d, we have

ut =1
u1

u2

u3

u4

2
t

=1
J11p J12p 0 0

J21p J22p 0 0

J31p J32p ] − b p u1 p u2p − b p u1 p u2p

J41p J42p b p u1 p u2p ] − b p u1 p u2p
21

cs1,n + 1d
bs1,n + 1d
ds1,n + 1d
fs1,n + 1d

2 = J1
cs1,n + 1d
bs1,n + 1d
ds1,n + 1d
fs1,n + 1d

2 ,

s26d

whereJijsi , j =1,2d comes from Eq.s24d,

J31 = su3 + u4d p sb p ]−1u1 p ] + 2b2 p ]−1u1
2 p u2d,

J32 = su3 + u4d p sb p ]−1u2 p ] − 2b2 p ]−1u2
2 p u1d,

J41 = su4 − u3d p sb p ]−1u1 p ] + 2b2 p ]−1u1
2 p u2d,

J42 = su4 − u3d p sb p ]−1u2 p ] − 2b2 p ]−1u2
2 p u1d.

From s21d, a recurrence operator is presented

L =1
L11p L12p 0 0

L21p L22p 0 0

L31p L32p b p u1 p u2 p − 1
2] 1

2]

L41p L42p b p u1 p u2 p − 1
2] − 1

2]
2 ,

with

L11 = ] − 2b p u2 p ]−1u1
2 p u2 − u2 p ]−1u1 p ] + 2b p u1 p u2,

L12 = 2b p u2 p ]−1u1 p u2
2 − u2 p ]−1r p ],

L21 = − 2b p u1 p ]−1u1
2 p u2 − u1 p ]−1u1 p ],

L22 = − ] + 2b p u1 p ]−1u1 p u2
2 − u1 p ]−1u2 p ] + 2b p u1 p u2,

L31 = − u3]
−1sb p u1

2 p u2 + 1
2u1 p ]d ,

L32 = − u3]
−1s− b p u2

2 p u1 + 1
2u2 p ]d ,

L41 = − u4]
−1sb p u1

2 p u2 + 1
2u1 p ]d ,

L42 = − u4]
−1s− b p u2

2 p u1 + 1
2u2 p ]d .

Thus, Eq.s23d can be written as
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ut =1
u1

u2

u3

u4

2
t

= JLn1
− a p u2

− a p u1

− a p u3

− a p u4

2 . s27d

When M =1, the systems27d is the integrable coupling of the generalized Kaup–Newell
hierarchy.10 WhenM .1, thes27d is the multicomponent integrable coupling of the multicompo-
nent generalized Kaup–Newell hierarchy.

V. CONCLUSION AND REMARK

In this paper, a new loop algebraF̃M and Tu scheme are proposed to construct a multicom-
ponent integrable couplings with two arbitrary functions of the multicomponent generalized
Kaup–Newell hierarchy. It was shown that the obtained integrable couplings is integrable in the
Lax sense and contains two arbitrary functions of old potentialssu1,u2d and new potentialssu3,u4d
which are different from those in Refs. 16–18. Searching for new and multicomponent integrable
systems is an important and difficult topic in integrable theory. It is obvious that the proposed
method in this paper provides an efficient approach and a guideline to find new and multicompo-
nent integrable systems. The loop algebra presented here can be used to other known integrable
hierarchies of soliton equation for generating the multicomponent systems. But there are two open

problems. How to improve the loop algebraF̃M such that the obtained multicomponent hierarchies
are Liouville integrable and possess Hamiltonian structures? How to extend the proposed method
for constructing integrable couplings of nonisospectral problem and corresponding evolution equa-
tion hierarchy? These problems are worthwhile studying in the future.
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We consider type II superstring compactifications on the singular Spins7d manifold
constructed as a cone on SUs3d/Us1d. Based on a toric realization of the projective
spaceCP2, we discuss how the manifold can be viewed as three intersecting
Calabi–Yau conifolds. The geometric transition of the manifold is then addressed in
this setting. The construction is readily extended to higher dimensions where we
speculate on possible higher-dimensional geometric transitions. Armed with the
toric description of the Spins7d manifold; we discuss a brane/flux duality in both
type II superstring theories compactified on this manifold. ©2005 American Insti-
tute of Physics.fDOI: 10.1063/1.1873038g

I. INTRODUCTION

Calabi–Yau conifold transitions in superstring compactifications have been studied intensively
over the last couple of years. These transitions have become a standard tool in understanding large
N dualities. An example of such a duality is the equivalence of the SUsNd Chern–Simons theory
on S3 for largeN, and the closed topological strings on the resolved conifold.1 A further example
has been obtained by embedding these results in type IIA superstring theory.2 In particular, the
scenario withN D6-branes wrapped around theS3 of the deformed conifoldT*S3 for largeN has
been found to be equivalent to type IIA superstrings on the resolved conifold withN units ofR–R
two-form fluxes throughS2. The latter thus gives the strong-coupling description of the weak-
coupling physics of the former.1 This result has been lifted to the 11-dimensionalM-theory3 where
it corresponds to a so-called flop duality inM-theory compactified on a manifold withG2 ho-
lonomy, for short, aG2 manifold.

Quite recently, similar studies have been done in three dimensions using either type IIA
superstring compactification on aG2 manifold,4,5 or M-theory compactified on a Spins7d
manifold.5 This Spins7d manifold is constructed as a cone on SUs3d/Us1d. Upon reduction of the
M-theory case to 10 dimensions, the original geometric transition involving a collapsingS5 and a
growing CP2 may be interpreted as a transition between two phases described by wrapped
D6-branes orR–R fluxes, respectively.

An objective of the present work is to continue the study of geometric transitions and brane/
flux dualities in lower dimensions. We shall thus consider type II superstrings propagating on the
same Spins7d manifold as above. By comparison with the known results for the Calabi–Yau
conifold transition, in particular, we conjecture new brane/flux dualities in two dimensions. The
type IIA and type IIB superstrings are treated separately, and we find that the resulting gauge
theories in two dimensions have only one supercharge each, so thatN=1/2 in both cases.
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The present study utilizes a toric geometry description of the Spins7d manifold. We find that
the manifold can be viewed as three intersecting Calabi–Yau conifolds associated to a triangular
toric diagram. This result offers a picture for understanding the topology-changing transition of the
Spins7d manifold. It also allows us to discuss the aforementioned brane/flux transition based on an
analysis of type II superstrings on the individual Calabi–Yau conifolds.

Our toric description of the Spins7d manifold may be extended to higher-dimensional mani-
folds thus suggesting thatsgeneralizedd geometric transitions may play a role in higher dimensions
as well. We propose an explicit hierarchy of pairs of geometries related by such transitions.

The remaining part of this paper is organized as follows. In Sec. II, we use toric geometry to
discuss the Calabi–Yau conifold transition and its extension to the Spins7d manifold, and speculate
on a further generalization to higher dimensions. We then turn to compactifications of superstrings
in Sec. III. Since our analysis is based on the toric description of the Spins7d manifold, our results
are deduced from similar results on compactifications on Calabi–Yau conifolds. The associated
brane/flux dualities are discussed separately for type IIA and type IIB superstring propagations.
Section IV contains some concluding remarks.

II. TORIC GEOMETRY AND GEOMETRIC TRANSITIONS

A. Projective spaces and odd-dimensional spheres

As a description of projective spaces in terms of toric geometry lies at the heart of our study
of superstring compactifications, we shall review it here. Odd-dimensionalsreald spheres are
equally important in our analysis and are therefore also discussed here.

The simplestscomplexd projective space isCP1 with a toric Us1d action having two fixed
points, v1 and v2, corresponding to the North and South poles, respectively, of thesreald two-
sphereS2,CP1. In this way,CP1 may be viewed as the intervalfv1,v2g,

v1 ——— v2 s1d

referred to as the toric diagram, with a circle on top which vanishes at the endpointsv1 andv2.
Embedded inC3, CP2 may be described as the space of three complex numberssz1,z2,z3d not

all zero, modulo the identificationsz1,z2,z3d,slz1,lz2,lz3d for all nonzerolPC. Alternatively,
CP2 is thescomplexd two-dimensional space with a toric Us1d2 action with three fixed points,v1,
v2, andv3. Its toric diagram is the trianglesv1v2v3d

s2d

describing the intersection of threeCP1’s. Each of the three edges,fv1,v2g, fv2,v3g, andfv3,v1g,
is characterized by the vanishing of one of the homogeneous coordinates,z3=0, z1=0 or z2=0,
respectively. Each edge is stable under the action of a subgroup of Us1d2—two of them being the
two Us1d factors, while the third subgroup is the diagonal one. This toric realization ofCP2 can be
viewed as the trianglesv1v2v3d with a torus,T2, on top which collapses to a circle at an edge and
to a point at a vertex.

This representation is readily extended to then-dimensional projective spaceCPn where we
have aTn fibration over ann-dimensional simplexsregular polytoped, see Ref. 6, for example. In
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this case, theTn collapses to aTn−1 on each of then faces of the simplex, and to aTn−2 on each
of the sn−2d-dimensional intersections of these faces, etc. We recall thatCPn is defined similarly
to CP2 in terms of n+1 homogeneous coordinates modulo the identificationsz1, . . . ,zn+1d
,slz1, . . . ,lzn+1d.

The odd-dimensionalsreald spheres admit a similar description. The one-sphere, for example,
is trivially realized as aT1,S1 over the zero-simplex—a point. The three-sphere may be realized
as aT2 over a one-simplex—a line segment as the one ins1d. This may be extended to thes2n
+1d-dimensional sphereS2n+1 which may be described as aTn+1 over ann-simplex. Of particular
interest is the five-sphereS5 which in this way may be realized as the triangles2d with a T3 on top
swhereasCP2 had aT2 on topd. It is stressed that it is forn=1 only that the even-dimensional
sphereS2n is equivalent toCPn.

To illustrate this toric description of odd-dimensional spheres, let us add a couple of com-
ments onS5 realized as aT3 over a triangle. As ins2d, an edge of the triangle corresponds to the
vanishing of one of the three complex coordinates of the embedding spaceC3. Each edge of the
triangle s2d is stable under the action of one of the three Us1d factors of Us1d3 associated toT3.
The three-torus itself collapses to a two-torusT2 at an edge and to a circle at a vertex. We may
thus view S5 as three intersecting three-spheres over the triangles2d. As opposed to the toric
description ofCP2 as aT2 over a triangle, the diagonal Us1d of Us1d3 in theS5 description has no
fixed points. This is natural from the realization ofCP2 asS5 modulo Us1d.

B. Calabi–Yau conifold

We shall also make use of the noncompact Calabi–Yau threefold defined inC4 by the equation

uv − xy= 0. s3d

It may be viewed as the singular cone on the five-dimensional baseS23S3 and is therefore
referred to as the Calabi–Yau conifold. The singularity is located at the origin and may be turned
into a regular point by blowing it up. There are basically two ways of doing that, referred to as
resolution and deformation, respectively. Resolving the singularity consists in replacing the sin-
gular point by aCP1. In this way, the local geometry is given by anOs−1d+Os−1d bundle over
CP1. The smooth manifold thus obtained is called the resolved conifold and is of topologyR4

3CP1. In the case of complex deformation, the conifold singularity is removed by modifying the
defining algebraic equations3d by introducing the complex parameterm,

uv − xy= m, s4d

while keeping the Kähler structure. The origin is thereby replaced byS3, and the local geometry
is given byT*S3 of topologyR33S3. This is called the deformed conifold and is related to the
resolved conifold by the so-called conifold transition.

This conifold transition admits a representation in toric geometry, where it can be understood
as an enhancement or breaking, respectively, of the toric circle actions. On the one hand, the
Os−1d+Os−1d bundle overCP1 has only one toric Us1d action, identified with the toric action on
CP1 itself, while the deformed conifoldT*S3 has a toric Us1d2 action since the spherical part can
be viewed as aT2 over a line segment. Referring tos4d, the torus is generated by the two Us1d
actions

su,vd → seiu1u,e−iu1vd, sx,yd → seiu2x,e−iu2yd s5d

with ui real. Thus, the blown-upS3 may be described by the complex intervalf0,mg with the two
circles parametrized byui on top, whereS1su1d collapses to a point atm while S1su2d collapses to
a point at 0. The transition occurs when one of these circles refrains from collapsing while the
other one collapses at both interval endpoints. This breaks the toric Us1d2 action to Us1d, and the
missing Us1d symmetry has become a real linesover CP1d. The resulting geometry is thus the
resolved conifold. The following picture may help to illustrate this transition which can go in both
directions:
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s6d

The top, thin and piecewise straight line in the resolved part ofs6d corresponds to the extraR
while the remaining three thin linessthe two straight lines in the deformed part, and the lower, thin
and piecewise straight line segment in the resolved partd indicate the Us1d’s. The two thick line
segments represent the underlying interval.

A somewhat pragmatic way of viewing the conifold transition is based on the conical structure
of the conifold itself as a cone onS23S3. As described in Ref. 4, ann-dimensional cone on an
sn−1d-dimensional compact spaceY with metric dV2 has metric

ds2 = dr2 + r2 dV2. s7d

It has a singularity at the origin unlessY=Sn−1 and dV2 is the standard round metric. In that case
the cone corresponds toRn. Now, the deformed conifold is obtained by pulling the conical struc-
ture off of the S3 factor in the base, while maintaining it on theS2 factor. The latter is then
equivalent toR3 and we have recovered theR33S3 structure of the deformed conifold. The
resolved conifold is obtained in a similar way by pulling off the conical structure of theS2 factor.

C. Spin „7… manifolds

Here we shall present a picture for understanding the topology-changing geometric transition
of the Spins7d manifold discussed in Ref. 5 and alluded to in Sec. I. First we recall that a Spins7d
manifold is a real eight-dimensional Riemannian manifold with holonomy group Spins7d. As in
the case of Calabi–Yau andG2 manifolds, there are several such geometries.7 The example we
shall be interested in may be described as a singular real cone over the seven-dimensional Aloff–
Wallachscosetd space SUs3d/Us1d. It was argued in Ref. 5 that there are two ways of blowing up
the singularity, replacing the singularity by eitherCP2 or S5. The resulting smooth Spins7d mani-
folds have topologies,

resolution, Spins7d:R4 3 CP2 sCalabi – Yau, R4 3 CP1d s8d

and

deformation, Spins7d:R3 3 S5 sCalabi – Yau, R3 3 S3d, s9d

and are referred to as resolution and deformation, respectively, due to the similarity with the
Calabi–Yau conifold discussed abovefand indicated ins8d and s9dg.

Our aim here is to re-address the transition between these two manifolds using toric geometry.
As described in the following, the basic idea is to view the singular Spins7d manifold fthe real
cone on SUs3d/Us1dg as three intersecting Calabi–Yau conifolds associated to the triangular toric
diagrams2d. To reach this picture, we first recall that a deformed Spins7d manifold is obtained by
blowing up anS5, while a resolved Spins7d manifold is obtained by blowing up aCP2. Deformed
and resolved conifolds, on the other hand, are obtained by blowing up anS3 or aCP1, respectively.
Since anS5 may be represented by three intersecting three-spheres, whileCP2 may be represented
by three intersecting two-spheres, we thus see that the deformed and resolved Spins7d manifolds
correspond to three intersecting conifolds being deformed or resolved, respectively.

To recapitulate this, let us considerC3 parametrized bysz1,z2,z3d. A five-sphere is obtained by
imposing the constraint
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uz1u2 + uz2u2 + uz3u2 = r s10d

swith r real and positived, while the additional identification

sz1,z2,z3d , seiuz1,e
iuz2,e

iuz3d s11d

swith u reald will turn it into a CP2. In either case,r measures the size. With both conditions
imposed, we can obtain the three resolved Calabi–Yau conifolds

R4 3 CP1szk = 0d, k = 1,2,3 s12d

embedded inR43C3, simply by setting one of the coordinates equal to 0. With reference to the
triangles2d, this means that the resolution of the Spins7d singularity reached by blowing up aCP2

may be described by three intersecting resolved conifolds over the triangles2d. Likewise, the
deformation of the Spins7d singularity constructed by blowing up anS5 may be realized as three
intersecting deformed Calabi–Yau conifolds

R3 3 S3szk = 0d, k = 1,2,3 s13d

over the same triangle. This description is thus based on our toric representation ofS5 as aT3 over
a triangle. As already mentioned, this construction collapses to aT2 over an edge forzk=0 where
k=1, 2 or 3, and it is recalled that the resultingT2 over a line segment corresponds toS3.

Since the basic intersection of the deformed or resolved conifolds is governed by the con-
stituent three- or two-spheres, one may describe the intersection of the conifolds by the intersec-
tion matrices associated toS5 or CP2, respectively. They read

Mdef = 10 1 1

1 0 1

1 1 0
2, Mres= 1− 2 1 1

1 − 2 1

1 1 − 2
2 . s14d

We emphasize that the Spins7d transition in our picture is accompanied by Calabi–Yau coni-
fold transitions. In the transition from the resolved Spins7d manifold s8d to the deformed ones9d,
for example, this indicates that the collapsingCP2 and its constituent two-spheres are replaced by
S5 and its constituent three-spheres. This is at the core of the dualities in the phase transition of the
compactified superstrings to be discussed below.

One may attempt to illustrate the geometric transitions of Spins7d manifolds by generalizing
s6d. The following proposal extends readily to higher dimensionsssee belowd, and reads

s15d

The configuration to the left is a representation of theS5 part of the deformed Spins7d manifold,
in which the three thin lines represent the three Us1d factors. The counting is less obvious to the
right of the arrow, as the triangular part represents theCP2 part of the resolved Spins7d manifold.
The inscribed three-vertex in thin line segments thus corresponds to two Us1d factors only. The
three-vertex to the far right represents the extraR in the resolved scenarios8d.

The Spins7d transition may be viewed as taking place when passing a particular point while
moving along a particular curve in the moduli space of Spins7d manifolds. The point corresponds
to the singular Spins7d manifold, whereas the remaining points on the curve are associated to the
deformed and resolved Spins7d manifolds. In one direction away from the singular point, the
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points correspond to the deformed manifolds with the sizer of the blown-upS5 parametrizing that
part of the curve. Likewise, the other direction away from the singular point is parametrized by the
sizer of the blown-upCP2 in the resolved Spins7d manifold. The singular point is shared as it is
reached from either side when the relevantr vanishes,r =0.

In the interpretation of the Spins7d manifold as three intersecting Calabi–Yau manifolds over
a triangle, we see that the Spins7d transition corresponds to all three Calabi–Yau manifolds un-
dergoing simultaneous conifold transitions. We find it an interesting problem to understand the
geometries associated to individual conifold transitions and hope to report on it elsewhere. Our
graphic representations15d fand s6dg does not seem to shed light on this as it is based on the
transition of the full blow-ups, i.e.,S5 and CP2, and not on their constituent three- and two-
spheres.

D. On possible extensions

It seems possible to extend our previous analysis of the Spins7d manifold in terms of inter-
secting Calabi–Yau manifolds to higher dimensions. To this end, let us consider the complexsn
+1d-dimensional spaceCn+1 parametrized bysz1, . . . ,zn+1d. A s2n+1d-dimensional sphere is ob-
tained by imposing the constraint

o
j=1

n+1

uzju2 = r s16d

swith r real and positived, while the additional identification

sz1, . . . ,zn+1d , seiuz1, . . . ,eiuzn+1d s17d

swith u reald will turn it into CPn. In either case,r measures the size of the resulting space. Since
S2n+1 can be described as aTn+1 over ann-simplex it supports a toric Us1dn+1 action whereasCPn

swhich may be realized as aTn over ann-simplexd admits a toric Us1dn action. The additional
Us1d is the one used in the identifications17d. As in the pictures6d, we are thus expecting that a
geometric transition can take place, replacing a Us1d by the one-dimensional real lineR. Since the
Us1d is associated to one of theS1 factors ofTn+1, the transition essentially amounts to replacing
Tn+1 by Tn3R. Our interest is in real fibrations over the spacesS2n+1 and CPn so the relevant
geometric transitions would read

sdeformedd Rm 3 S2n+1 ↔ Rm+1 3 CPn sresolvedd. s18d

With m=3, we expect to be able to describe the transitions18d in terms of Calabi–Yau conifolds.
Using arguments similar to the Spins7d example above, this generalized geometric transition
should be related to12nsn+1d intersecting conifolds over then-simplex, where the number of
conifolds is equal to the number of one-dimensional edges of the simplex. One should also expect
to be able to describe the transition in terms of1

6nsn2−1d intersecting Spins7d manifolds over the
n-simplex, where the number of them is equal to the number of two-dimensional faces of the
simplex. We hope to address this further elsewhere.

The extension of the transition pictures15d to higher dimensions is based onCPn andS2n+1

admitting descriptions asTn andTn+1 fibrations, respectively, over ann-simplex. One chooses an
extra point different from then+1 vertices of then-simplex in such a way that any subset ofq
,n+2 nodes out of the total ofn+2 points gives rise to asq−1d-simplex. A natural choice is the
center of the originalsregulard n-simplex. To representS2n+1, one then draws thin lines from the
vertices through this extra point, where the thin lines represent the Us1d factors of Us1dn+1, cf.
s15d. The projective counterpart,CPn, is represented by ending these thin lines at the common
point, resulting in ansn+1d-vertex inscribed in then-simplex. This inscribed vertex corresponds to
Us1dn. Finally, the real lineR may be represented by a freesn+1d-vertex, and the graphical
representation of the transitions18d is a higher-dimensional version ofs15d.
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The conifold analysis based on the toric varietyCP2 could alternatively be extended by
blowing up some generic points. With the number of points restricted ask=1,2,3,this defines a
so-called toric del Pezzo surface denoted dPk. The blowing up consists in replacing a point byCP1

with a line segment as its toric diagram. The full del Pezzo surface will thus have a polygon with
k+3 legs as its toric diagram.

III. TYPE II SUPERSTRING COMPACTIFICATIONS

A. Compactification on conifold

Based on the Calabi–Yau conifold transition discussed above, Gopakumar and Vafa have
argued that the SUsNd Chern–Simons theory onS3 for largeN is dual to topological strings on the
resolved conifold.1 In this way, the ’t Hooft expansion of the Chern–Simons free energy has been
shown to be in agreement, for all genera, with the topological string amplitudes on the resolved
conifold. This duality has subsequently been embedded in type IIA superstring theory,2 where it
was proposed thatN D6-branes wrapped around the three-sphere of the deformed conifold is
equivalentsfor large Nd to type IIA superstrings on the resolved conifold with theD6-branes
replaced byN units of R–R two-form fluxes through the two-spheresS2,CP1d in the resolved
conifold. This duality thus offers a way of understanding the same physics at strong coupling.

The mirror version in type IIB superstring theory of this duality states that the scenario with
N D5-branes wrapped around the two-sphere in the resolved conifold, is equivalentsfor largeNd
to three-form fluxes through theS3 of the deformed conifold. This has been generalized to other
Calabi–Yau threefolds where the blown-up geometries involve severalCP1’s.8–14

The largeN duality in type IIA superstring theory has also been lifted toM-theory3,4 ssee also
Ref. 15d where it is known to give a so-called flop duality. Unlike the duality in string theory, the
phase transition here is smooth and does not correspond to a topology-changing geometric tran-
sition.

B. Compactification on Spin „7… manifold and brane/flux duality

Based on the results on superstrings compactified on Calabi–Yau threefolds and our toric
description of the geometric transition of the Spins7d manifolds, we now consider the two-
dimensional gauge theories obtained by compactifying type II superstrings on these Spins7d mani-
folds. The idea is to study the consequences of addingN wrappedD-branes to the setup before
letting the manifold undergo the geometric transition. In the transition from the resolved to the
deformed Spins7d manifold, we initially haveD-branes wrappingCP2 sand its constituent two-
spheresd. We conjecture that they are replaced, under the transition, byR–R fluxes throughS5 sand
its constituent three-spheresd. Similarly in the transition from deformed to resolved Spins7d mani-
folds, we conjecture thatD-branes wrapped aroundS5 sand its constituent three-spheresd are
replaced byR–R fluxes throughCP2 sand its constituent two-spheresd. The kind of D-branes
involved and the more detailed phase transition depend on which type II superstrings are propa-
gating on the Spins7d manifolds. In the following we shall therefore consider type IIA and type IIB
separately. We find that they lead to different brane/flux dualities.

1. Duality in type IIB superstring theory

We start by considering type IIB superstrings on the resolved Spins7d manifold s8d. Since the
type IIB theory does not support four-forms, one considersD5-branes wrapped aroundCP2. A
two-dimensional UsNd gauge model can be obtained by wrappingN D5-branes onCP2. The
volume ofCP2 described byr s10d is proportional to the inverse of the gauge coupling squared.
This two-dimensional model has only one supercharge soN=1/2. Now, when the manifold
undergoes the geometric transition to the deformed Spins7d manifold s9d, theN D5-branes disap-
pear and we expect a dual physics withN units of R–R three-fluxes through the compact three-
cycles,S3, in the intersecting Calabi–Yau threefolds. These fluxes could be accompanied by some
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NS–NS fluxes through the noncompact dual three-cycles in the six-dimensional deformed coni-
folds. In order to handle the associated divergent integrals, one would have to introduce a cutoff
to regulate the infinity.9

2. Duality in type IIA superstring theory

Here we start with type IIA superstrings on the deformed Spins7d manifold s9d. In this case, a
two-dimensional UsNd gauge theory can be obtained by wrappingN D6-branes aroundS5. As
above, this gauge model has only one supercharge, so againN=1/2. At thetransition point, the
D6-branes disappear and are replaced byR–R two-form fluxes through the two-spheres embedded
in CP2 in the resolved Spins7d manifold s8d.

One could wonder if there is anM-theory interpretation of this type IIA transition. Let us
therefore consider a nine-dimensional manifoldX9 with a Us1d isometry.M-theory compactified
on X9 is then equivalent to type IIA superstrings compactified onX9/Us1d. We start with the
resolved Spins7d manifolds8d and identify the extra eleventh compact dimension ofM-theory with
theS1 that generatess11d. In this way, the extraM-theory circle becomes the fiber in the definition
of S5 as anS1 fibration overCP2. We thus end up with anR4 bundle overS5 as the compactifi-
cation space inM-theory. As a consequence, the moduli space ofM-theory on such a background
is parametrized by the real parameterr defining the volume ofS5 s10d, and cannot be complexified
by the C field. Starting with the resolved Spins7d manifold, on the other hand, the eleventh
M-theory dimension is obtained by extendingR3 to R4 with the isometry being a trivial Us1d
action on the fiberR4. Using arguments similar to those in Ref. 3, we conjecture that this lift to
M-theory gives rise to assmoothd flop transition in theR4 bundle overS5 where a five-sphere
collapses and is replaced by a five-sphere. In our scenario, however, the physics resulting from the
type IIA superstring compactification undergoes a singular phase transition.

IV. DISCUSSION

Based on toric geometry, we have studied geometric transitions of Spins7d manifolds. Our
framework allowed us to discuss extensions to higher dimensions. It also made it possible to
address straightforwardly type II superstring compactifications on Spins7d manifolds, from which
some brane/flux dualities were extrapolated.

Our work opens up for further studies. One interesting problem is to understand better the
geometries involved in our proposal for higher-dimensional geometric transitions. Another ques-
tion is related to the toric description of the Spins7d manifolds as intersecting Calabi–Yau three-
folds over a triangle where the Spins7d transition corresponds to three simultaneous conifold
transitions. A natural question concerns the geometries associated to individual conifold transi-
tions. Of potential importance to superstring andM-theory compactifications, one should then
study what the physical implications of such transitions would be. It would also be interesting to
understand the link between our results and the ones in Ref. 16 based on string compactifications
on Calabi–Yau fourfolds. One approach to this problem could be to consider the Spins7d manifold
as a Calabi–Yau fourfold modulo an involution, thus ensuring the same number of supersymme-
tries. We hope to report elsewhere on these open problems.
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We complete the classification of almost commutative geometries from a particle
physics point of view given by Iochum, Schücker, and Stephan, J. Math. Phys.sto
be publishedd. Four missing Krajewski diagrams will be presented after a short
introduction into irreducible, nondegenerate spectral triples. ©2005 American In-
stitute of Physics.fDOI: 10.1063/1.1876873g

I. INTRODUCTION

Alain Connes’ noncommutative geometry1–4 allows in an elegant way to unify gravity and the
standard model of particle physics. A central role in this formalism is played by almost commu-
tative spectral triplessA ,H ,Dd which decompose into an external and an internal, finite dimen-
sional component. The external part encodes a compact four-dimensional Euclidian space–time
and the internal one corresponds to a discrete 0-dimensional Kaluza–Klein space, determining the
particle content of the theory. Via the spectral action5 one recovers the Einstein–Hilbert action
combined with the bosonic action of a Yang–Mills–HiggssYMH d theory. Since the set of allowed
YMH theories is determined by the possible internal, finite dimensional spectral triples, we will
restrict ourselves to this part. The standard model of particle physics is the most prominent
example in this context.

Real, finite dimensional spectral triples have been completely classified by Krajewski6 and
Paschke and Sitarz.7 A classification of almost commutative geometries from a physical point of
view was given in Ref. 8. The spectral triples were required to be irreducible and nondegenerate,
in the sense that the Hilbert space was chosen to be as small as possible with nondegenerate
fermion masses. Heavy use was made of Krajewski’s diagrammatic method, which will be de-
scribed briefly below. The main obstacle in finding all physically relevant almost commutative
spectral triples is the sheer mass of diagrams which must be considered. Since this is a purely
combinatorial problem it is convenient to let a computer do the tedious task. The cases of one and
two matrix algebras can still be done by hand. But already three algebras produce hundreds of
diagrams and one easily loses sight.

Therefore we developed an algorithm to calculate these diagrams and used the known results
from Ref. 8 to test and calibrate the program. The main goal was to extend the calculations to
more than three algebras, where we expect thousands of possible irreducible spectral triples.
During the calibration it turned out that four diagrams were overlooked in the case of three
algebras. To complete the proof we will present these four missing diagrams and their models in
this paper. The algorithm to compute the diagrams and the results for the case of four algebras will
be presented elsewhere.
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In Sec. II we give some basic definitions and briefly introduce Krajewski diagrams and
irreducible, nondegenerate spectral triples. The missing diagrams for three algebras are presented
in Sec. III.

II. BASIC DEFINITIONS, IRREDUCIBILITY, AND NONDEGENERACY

In this section we give the necessary basic definitions for a classification of almost commu-
tative geometries from a particle physics point of view. As mentioned above only the
0-dimensional part will be taken into account, so we restrict ourselves to real,S0-real, finite
spectral triplessA ,H ,D ,J,e ,xd. The algebraA is a finite sum of matrix algebrasA=
% i=1

N Mni
sKid with Ki =R , C , H, whereH denotes the quaternions. A faithful representationr of A

is given on the finite dimensional Hilbert spaceH. The Dirac operatorD is a self-adjoint operator
on H and plays the role of the fermionic mass matrix.J is an antiunitary involution,J2=1, and is
interpreted as the charge conjugation operator of particle physics. TheS0-real structuree is a
unitary involution,e2=1. Its eigenstates with eigenvalue +1 are the particle states, eigenvalue −1
indicates antiparticle states. The chiralityx as well is a unitary involution,x2=1, whose eigen-
states with eigenvalue +1s−1d are interpreted as rightsleftd particle states. These operators are
required to fulfill Connes’ axioms for spectral triples:

sid fJ,Dg = fJ,xg = fe,xg = fe,Dg = 0, eJ = − Je, Dx = − xD,

fx,rsadg = fe,rsadg = frsad,JrsbdJ−1g = ffD,rsadg,JrsbdJ−1g = 0, ∀ a,b P A.

sii d The chirality can be written as a finite sumx=oirsaidJrsbidJ−1. This condition is called
orientability.

siii d The intersection formùi j ª trsxrspidJrspjdJ−1d is nondegenerate, detù Þ0. The pi are
minimal rank projections inA. This condition is calledPoincaré duality.

Now the Hilbert spaceH and the representationr decompose with respect to the eigenvalues
of e andx into left and right, particle and antiparticle spinors and representations,

H = HL % HR % HL
c

% HR
c , r = rL % rR % rL

c
% rR

c .

In this representation the Dirac operator has the form

D =1
0 M 0 0

M* 0 0 0

0 0 0 M̄
0 0 M* 0

2 ,

whereM is the fermionic mass matrix connecting the left-handed and the right-handed fermions.
Connes’ axioms, the decomposition of the Hilbert space, the representation and the Dirac

operator allow a diagrammatic dipiction. As was shown in Refs. 6,8 this can be boiled down to
simple arrows, which encode the intersection form and the fermionic mass matrix. From this
information all the ingredients of the spectral triple can be recovered. For our purpose a simple
arrow and a double arrow are sufficient. The arrows always point from right fermionsspositive
chiralityd to left fermionssnegative chiralityd. We may also restrict ourselves to the particle part,
since the information of the antiparticle part is included by transposing the particle part. We will
adopt the conventions of Ref. 8.

ThefluctuationfD of the Dirac operatorD is given by a finite collectionf of real numbersr j

and algebra automorphismss j PAutsAde lifted to the Hilbert spaceH such that
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fD ª o
j

r jLss jdDLss jd−1, r j P R, s j P AutsAde,

where the Lift is given by

Lssd = rsudJrsudJ−1.

The spectral action of this almost commutative spectral triple reduced to the finite part is a
functional on the vector space of all fluctuated, finite Dirac operators,

Vs fDd = l trfs fDd4g −
m2

2
trfs fDd2g ,

wherel andm are positive constants.1,9 Our task is to find the minimaf̂D of this action and their
spectra.

To classify the almost commutative spectral triples we will impose some extra conditions as in
Ref. 8. We will require the spectral triples to be irreducible and nondegenerate according to the
following definitions.

Definition 2.1: sid A spectral triplesA ,H ,Dd is degenerateif the kernel of D contains a
nontrivial subspace of the complex Hilbert spaceH invariant under the representationr on H of
the real algebraA.

sii d A nondegenerate spectral triplesA ,H ,Dd is reducible if there is a proper subspace
H0,H invariant under the algebrarsAd such thatsA ,H0,DuH0

d is a nondegenerate spectral
triple. If the triple is real,S0-real and even, we require the subspaceH0 to also be invariant under
the real structureJ, the S0-real structuree and under the chiralityx such that the triple
sA ,H0,DuH0

d is again real,S0-real and even.
Definition 2.2: The irreducible spectral triplesA ,H ,Dd is dynamically nondegenerateif all

minima f̂D of the actionVs fDd define a nondegenerate spectral triplesA ,H , f̂Dd and if the spectra
of all minima have no degeneracies other than the three kinematical degeneracies: left–right,
particle–antiparticle, and color. Of course in the massless case there is no left–right degeneracy.
We also suppose that the color degeneracies are protected by the little group. By this we mean that

all eigenvectors off̂D corresponding to the same eigenvalue are in a common orbit of the little
group sand scalar multiplication and charge conjugationd.

In physicists’ language nondegeneracy excludes all models with pairwise equal fermion
masses up to color degeneracy. Irreducibility tells us that the Krajewski diagrams, which we must
find must not contain more arrows than strictly necessary to satisfy Connes’ axioms, especially the
Poincaré duality. The last requirement of Definition 2.2 means noncommutative color groups are
unbroken. It ensures that the corresponding mass degeneracies are protected from quantum cor-
rections.

III. THE MISSING DIAGRAMS

In this section we will present the diagrams missing in the proof for three algebras in Ref. 8.
For every diagram only one representative model will be given. All the other models can be
obtained by simply exchanging left with right and particles with antiparticles. On the diagram-
matic side this is equivalent to changing the directions of all arrows or reflecting the diagram on
its diagonal. Permutations of the algebras in the diagrams are neglected as well, since they lead to
the same physical models with a different order of the particles. For every diagram there are
several ways to connect the algebras by arrows in accordance with the consistency conditions of
Table 1 in Ref. 6. With respect to this, the four diagrams are all computed in the same way and
they all fall in the same way. The possibilities of complex conjugating an algebra representation
are limited and yield no essentially new models. It should be obvious from the diagrams whether
the matrix algebras are complex, real, or quaternionic. In all other cases the choice of the field will
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not affect the calculations, so we will not specify the algebras explicitly. For the four missing
diagrams,A1, A2, A3 denote the algebras,a, b, c their generic elements andk, , , p the respec-
tive size of the matrices.

Diagram 1 yields the representation

rLsa,b,cd = 1b ^ 1k 0 0

0 c ^ 1k 0

0 0 b ^ 1p
2, rRsa,b,cd = 1ā ^ 1k 0 0

0 b̄ ^ 1k 0

0 0 a ^ 1p

2 ,

rL
csa,b,cd = 11, ^ a 0 0

0 1p ^ a 0

0 0 1, ^ c̄
2, rR

csa,b,cd = 11k ^ a 0 0

0 1, ^ a 0

0 0 1p ^ c̄
2 .

The mass matrix is

M = 1M1 ^ 1k 0 0

0 M2 ^ 1k 0

0 0 M3 ^ 1p
2, M1,M3 P Mk3,sCd, M2 P Mp3,sCd,

where all three algebras areMnsCd. The fluctuations are

fM1 = o
j

r jv jM1ūj
−1, uj P UsA1d, v j P UsA2d,

fM2 = o
j

r jwjM2v̄ j
−1, wj P UsA3d,

fM3 = o
j

r jv jM3uj
−1,

and the actionVsC1,C2,C3d is, with Ciª
fMi

pfMi equal to

4kfl trsC1d2 − 1
2m2 trsC1dg + 4kfl trsC2d2 − 1

2m2 trsC2dg + 4pfl trsC3d2 − 1
2m2 trsC3dg .

Counting neutrinos and imposing broken color to be commutative leaves only one case,k=,=p
=1. The fluctuations decouple thefMi so it is always possible to reach the absolute minimum of
the Higgs potential and the triple is degenerate.

Diagram 2 falls in the same way.
Diagram 3 is degenerate in the commutative case and exhibits mass relations in the noncom-

mutative case. The calculation runs along the lines of diagram 8 in Ref. 8.
Diagram 4 yields the representation

rLsa,b,cd = Sc ^ 1k 0

0 a ^ 1,
D, rRsa,b,cd = 1b̄ ^ 1k 0 0

0 b̄ ^ 1k 0

0 0 c ^ 1,

2 ,

rL
csa,b,cd = S1p ^ a 0

0 1k ^ b
D, rR

csa,b,cd = 11, ^ a 0 0

0 1, ^ a 0

0 0 1p ^ b
2 ,

with possible complex conjugations here and there. The mass matrix is
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M = SM1 ^ 1k M2 ^ 1k 0

0 0 M3 ^ 1,
D, M1, M2 P Mp3,sCd, M3 P Mk3psCd.

The fluctuations are

fM1 = o
j

r jwjM1v̄ j
−1, wj P UsA3d, v j P UsA2d,

fM2 = o
j

r jwjM2v̄ j
−1,

fM3 = o
j

r jujM3wj
−1, uj P UsA1d,

and the action is

VsC1,C2,C3d = 4kfl trsC1 + C2d2 − 1
2m2 trsC1 + C2dg + 4pfl trsC3d2 − 1

2m2 trsC3dg .

The neutrino count and broken color implyk=,=1 and p=1 or p=2. The casek=,=p=1 is
obviously degenerate.

For k=,=1, p=2 we have one neutrino.fM3 fluctuates independently and can be pushed into
the absolute minimum of the Higgs potential. Let us setfM1 and fM2 into one matrix

fM1,2= o
j

r jwjsM1,M2dSv̄ j
−1 0

0 v̄ j
−1D .

Since thev̄ j
−1PC they commute withsM1,M2d and so

fM1,2= CsM1,M2d,

whereCPM232sCd is an arbitrary matrix.M1 must be linearly independent ofM2 because oth-
erwise they would produce a second neutrino. It follows thatsM1,M2d is invertible and we can
chooseC to be its inverse. In this way we reach the absolute minimum of the Higgs potential and
the triple is degenerate.

IV. CONCLUSION

The new models discovered with help of the computer complete the proof for up to three
algebras given in Ref. 8. We did not find anything of interest from the particle physics point of
view but we gained confidence in our algorithm and it seems sensible to compute the case with
four algebras.
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Homogeneous superspaces arising from the general linear supergroup are studied
within a Hopf algebraic framework. Spherical functions on homogeneous super-
spaces are introduced, and the structures of the superalgebras of the spherical
functions on classes of homogeneous superspaces are described explicitly. ©2005
American Institute of Physics.fDOI: 10.1063/1.1868859g

I. INTRODUCTION

We study spherical functions on homogeneous superspaces arising from the complex general
linear supergroup. This is the first part of our endeavour to develop a theory of spherical functions
on Lie supergroups8,13 and quantum supergroups.12,28 The theory of spherical functions on ordi-
nary Lie groups has long reached its maturityssee, e.g., Ref. 26d. There also exists extensive
literature on spherical functions9,18,14,3,17on quantum symmetric spaces.10,17,3,4,11However, little
seems to be known about spherical functions on Lie supergroups, let alone those on quantum
supergroups. On the other hand, supersymmetry and its quantum analogue have become an inte-
gral part of modern mathematical physics, and have also permeated many areas of pure math-
ematics. A good understanding of spherical functions on Lie supergroups and quantum super-
groups should facilitate practical means for studying the dynamics of physical systems with
classical or quantum supersymmetries.

We choose to work within a Hopf superalgebraic framework to study homogeneous super-
spaces, as it can incorporate both the Lie supergroupsas defined by Kostant8d and quantum
supergroup12,28 cases. Our methodology is similar to that adopted in the literature on quantum
homogeneous spaces.10,17,3,4,11The starting point is the universal enveloping algebra Usgd of the
general linear superalgebrag=glsmun,Cd, which is a cocommutative Hopf superalgebra.15 A
Z2-graded subalgebraCsGd ssee Definition 3.1d of the dual of the universal enveloping algebra
acquires a Hopf superalgebra structure, from which the general linear supergroup can be
reconstructed21 in a manner similar to the Tanakan–Krein theory for compact Lie groups. The
universal enveloping algebra admits many Hopfp-superalgebra structures, each corresponding to
a real formgs,Îi ssee Sec. IV A for definitiond of g. Each Hopfp-superalgebra structureu of Usgd
induces a Hopfp-superalgebraic structure onCsGd. We fix the u corresponding to one of the
compact real forms ofg fsee Eq.s4.3dg. Let p,g be a parabolic subalgebra with Levi factorl, and
let k= lùgs,Îi be the real form ofl. Then thep-subalgebraCsK \Gd of CsGd invariant with respect
to k under the left translation defines a homogeneous superspace12 in the spirit of noncommutative
geometry.2 We shall call this superalgebra the superalgebra of functions on the homogeneous
superspace. Next we consider the subspaceCsK \G/Kd of CsK \Gd consisting of elements that are
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invariant with respect tok under the right translation. It can be shown thatCsK \G/Kd forms a
p-superalgebra, which will be referred to as the superalgebra of spherical functions on the homo-
geneous superspace.

Our aim in the present paper is to understand the structures of the superalgebrasCsK \Gd and
CsK \G/Kd. The main results obtained are Theorem 4.2, Lemma 4.5, and Lemma 4.6, which give
explicit descriptions of the superalgebra of functions on the homogeneous superspace and the
superalgebra of spherical functions. In the case of a homogeneous superspace associated to a
maximal rank reductive subgroup of a compact real form of the general linear supergroup, the
superalgebra of spherical functions is either the polynomial algebra in one variable or a quotient
thereofsTheorems 5.1 and 5.2d.

Recall that the space of functions on an ordinary Lie group has another natural algebraic
structure with the multiplication defined by convolution. In this context, the counter parts of
CsK \Gd andCsK \G/Kd form subalgebras under convolution, where the analogue ofCsK \G/Kd is
the celebrated Hecke algebra.26 The Hecke algebras associated with Riemannian symmetric spaces
are commutative, and their elements provide the invariant integral operators acting on functions on
the symmetric spaces. It is an important problem to develop a theory for such Hecke algebras in
the Lie supergroup context, and to investigate properties of supersymmetric spaces from the
viewpoint of Hecke algebras. We plan to do this in a future publication, as the problem requires in-
depth investigations into the analytical theory of Lie supergroups.

The organization of the paper is as follows. In Sec. II we provide some preliminary material
on the complex general linear superalgebra and its invariant theory. In Sec. III we discuss the Hopf
superalgebra of functions on the general linear supergroup, and explain how the general linear
supergroup itself can be extracted from this Hopf superalgebra.21 The material in this section is not
all new, but it forms the basis for the study of homogeneous superspaces and spherical functions
in later sections. Sections IV and V contain the main results of the paper. In Sec. IV A we discuss
real forms of the complex general linear superalgebra and general linear supergroup from a Hopf
algebraic point of view. The material presented here is largely new, and we believe it to be
interesting in its own right. In Sec. IV B we explain the notion of homogeneous superspaces in a
Hopf algebraic setting, and in Sec. IV C we investigate the superalgebras of spherical functions on
the homogeneous superspaces. In Sec. V we analyze in detail the superalgebras of spherical
functions on the projective superspace and other symmetric superspaces arising from maximal
rank subgroups of real forms of the general linear supergroup.

II. PRELIMINARIES ON gl„m zn ,C…

We present some background material on the universal enveloping superalgebra of the general
linear Lie superalgebra, which will be used later. General references are Refs. 6 and 19.

We shall work on the complex number fieldC for simplicity. Let W be a superspace, i.e., a
Z2-graded vector spaceW=W0̄ % W1̄, whereW0̄ andW1̄ are the even and odd subspaces, respec-
tively. The elements ofW0̄øW1̄ will be called homogeneous. Define a mapf g :W0̄øW1̄→Z2 by
fwg=a if wPWa. sQuite generally, whenever a symbol likefwg appears in the sequel, it is tacitly
assumed that the elementw is homogeneous.d The dual superspacesZ2-graded dual vector spaced
of W will be denoted byW* , and the dual space pairingW* ^ W→C by k,l.

Denote byg the Lie superalgebraglsmun,Cd. A standard basis forg is hEabua,bP I j, where
I =h1,2, . . . ,m+nj The elementEab belongs tog1̄ if aøm,b, or bøm,a, and belongs tog0̄

otherwise. For convenience, we define the map

f g:I → Z2 by fag =H0̄ if a ø m,

1̄ if a . m.
J

Then fEabg=fag+fbg. The supercommutation relations of the Lie superalgebra are given for the
basis elements by
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fEab,Ecdg = Eaddbc − s− 1dsfag−fbgdsfcg−fdgdEcbdad.

As usual, we choose the Cartan subalgebrah= %aCEaa. Let heauaP I j be the basis ofh* such that
easEbbd=dab. The spaceh* is equipped with a bilinear forms,d :h* 3h* →C such thatsea,ebd
=s−1dfagdab. The roots ofg are ea−eb, aÞb, whereea−eb is even if fag+fbg=0̄ and odd other-
wise. We choose as positive roots the elements ofhea−ebua,bj, and as simple roots the elements
of hea−ea+1ua,m+nj.

The enveloping algebra Usglsmun,Cdd of glsmun,Cd will be denoted by Usgd. We shall always
regardg as embedded in Usgd in the natural way. As is well known, Usgd forms aZ2-graded
cocommutative Hopf algebrasi.e., a Hopf superalgebrad in the sense of Ref. 15, with

comultiplication,D :Usgd → Usgd ^ Usgd, DsXd = X ^ 1 + 1 ^ X, X P g,

counit, e:Usgd → C, esXd = 0, X P g,

antipode, S:Usgd → Usgd, SsXd = − X, X P g.

In particular, this Hopf superalgebra structure allows us to introduce a natural left Usgd-module
structure on the dual superspaceW* of any left Usgd-moduleW, with the Usgd-action given by

Usgd ^ W* → W* , x ^ w̄ ° xw̄,

kxw̄,vl ª s− 1dfxgfw̄gkw̄,Ssxdvl, ∀ v P W.

As it stands, the last equation only makes sense for homogeneousw̄PW* and homogeneousx
PUsgd, but it can be extended to all elements ofW* and Usgd linearly.

We shall denote byLl the irreducible left Usgd-module with highest weightlPh* . The
moduleLl is finite-dimensional if and only ifl is dominant,7,19 i.e.,

2sl,ea − ea+1d/sea − ea+1,ea − ea+1d P Z+ ∀ a Þ m. s2.1d

A basic problem in the representation theory of Lie superalgebras is to understand the weight
space decompositions of the finite dimensional irreducible representations. However, the problem
turned out to be unexpectedly difficult, resisting solution for some 20 years. Only a few years ago,
Serganova22 succeeded in developing an algorithm to compute formal characters of irreducible
representations.

Of particular importance to us here is the contravariant vector moduleV=Le1
of g. It has the

standard basishvauaP I j such thatEabvc=dbcva, whereva is even ifaøm, and odd otherwise. The
dual moduleV* of V is the covariant vector module with highest weight −em+n. It has a basis
hv̄auaP I j dual to the standard basis ofV, i.e., kv̄a,vbl=dab. The action ofg on V* is given by

Eabv̄c = − s− 1dfag+fagfbgdacv̄b. s2.2d

As the antipode of Usgd is of order two, there is a Usgd-module isomorphism betweenV and its
double dualV**

ª sV*d* ,

V > V** , v ° v** ,

kv** ,w̄l = s− 1dfvgkw̄,vl, ∀ w̄ P V* .

Remark 2.1: sReference 27d For all d.0, V^d is a semisimple Usgd-module, which does not
contain any one-dimensional submodule.

Let Sd be the symmetric group ond letters. There exists a natural actionrd of Sd on V^d

defined in the following way. Letsi denote the permutationsi , i +1d. Then
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rdssidsva1
^ ¯ ^ vai−1

^ vai
^ vai+1

^ vai+2
¯ ^ vad

d

= s− 1dfaigfai+1gva1
^ ¯ ^ vai−1

^ vai+1
^ vai

^ vai+2
¯ ^ vad

.

Let us denote bytd the representation of Usgd in V^d, and denote byCSd the group algebra ofSd.
The following result was first proven by Sergeev24,25 ssee Ref. 1 for a detailed treatmentd.

Theorem 2.1: The superalgebras tdsUsgdd andrdsCSdd are mutual centralizers inEndCsV^dd.
Let W be a finite dimensional Usgd-module. Let p :Usgd→EndCsWd be the

Usgd-representation furnished byW. Then EndCsWd acquires a natural Usgd-module structure
under the action

Usgd ^ EndCsWd → EndCsWd, x ^ f ° Adxsfd,

Adxsfd ª o
sxd

s− 1dfxs2dgffgpsxs1ddfpsSsxs2ddd,

where we have used Sweedler’s notationDsxd=osxdxs1d ^ xs2d for the comultiplication of x
PUsgd. There exists the natural isomorphismj :W^ W* >EndCsWd of Usgd modules defined, for
any u^ v̄PW^ W* andwPW, by

jsu ^ v̄dswd = kv̄,wlu.

For any Usgd-moduleM, we use the notationsMdUsgd to denote the invariant submodule

sMdUsgd
ª hw P Muxw= esxdw, ∀ x P Usgdj.

We have

sW ^ W*dUsgd > EndUsgdsWd ª hf P EndCsWduAdxsfd = esxdf, ∀ x P Usgdj. s2.3d

ConsiderV^k ^ sV*d^, as a Usgd-module, where the Usgd-action is defined by using the comulti-
plication. The elementZ=oaEaa acts onV^k ^ sV*d^, by sk−,did. This immediately shows that

sV^k
^ sV*d^,dUsgd = h0j if k Þ ,. s2.4d

As sV^dd* >sV*d^d, we have the Usgd-module isomorphism

j :V^d
^ sV*d^d → EndCsV^dd.

It follows from Theorem 2.1 that the even subspace ofsV^d ^ sV*d^ddUsgd is isomorphic toj−1

+rdsCSdd. Let g0̄=glsmd % glsnd be the maximal even subalgebra ofg. Both V and V* naturally
restrict tog0̄-modules. By using Weyl’s first fundamental theorem for the invariant theory of the
general linear group,5 we easily prove thatsV^d ^ sV*d^ddUsg0̄d is contained in the even subspace of
V^d ^ sV*d^d. Since

sV^d
^ sV*d^ddUsg0̄d . sV^d

^ sV*d^ddUsgd,

we have

sV^d
^ sV*d^ddUsgd = j−1 + rdsCSdd. s2.5d

This result may be stated more explicitly as follows.
Theorem 2.2: sReference 25d The vector spacesV^d ^ sV*d^ddUsgd is spanned by the following

elements:

o
a1,. . .,ad

sgnss,a1, . . . ,add ^ vass1d
^ vass2d

^ . . . ^ vassdd
^ v̄ad

^ v̄ad−1
^ . . . v̄a1

, ∀ s P Sd,

s2.6d
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wheresgnss ,a1, . . . ,add is a sign factor which is determined by the restriction ofs on the subset
of odd indices inha1, . . . ,adj in such a way that if the restriction is even thensgnss ,a1, . . . ,add is
1 and −1 otherwise.

We shall refer to both Theorems 2.1 and 2.2 as the first fundamental theorem of the invariant
theory of the general linear supergroup.

III. SUPERALGEBRAS OF FUNCTIONS ON THE GENERAL LINEAR SUPERGROUP

We examine properties of the Hopf superalgebra of regular functions on the general linear
supergroup in this section. The material presented here is of critical importance for setting up the
framework for studying spherical functions. Some of the material can be extracted from Refs. 20
and 21.

Let Usgd0
ª hf PUsgd* uker f contains a cofiniteZ2- graded ideal of Usgdj be the finite dual16

of the universal enveloping algebra Usgd of g. Standard Hopf algebra theory15,16 asserts that the
Hopf superalgebra structure of Usgd induces a Hopf superalgebra structure on Usgd0. Denote by
m+, D+, e+, andS+ the multiplication, comultiplication, counit, and antipode of Usgd0, respectively.
The maps are defined for allf , gPUsgd0, anda, bPUsgd, by

km+sf ^ gd,al = kf ^ g,Dsadl,

kD+sfd,a ^ bl = kf,abl,

kS+sfd,al = kf,Ssadl,

and1Usgd0=e, e+=1Usgd. Because Usgd is supercocommutative, Usgd0 is supercommutative. Recall
that S2= id and hence alsoS+

2= id. For convenience, we shall drop the subscript 0 from the nota-
tions for the multiplication, comultiplication, and antipode of Usgd0.

Let p be a Usgd-representation of dimensiond,`. Now for any xPUsgd, psxd is a
d3d-matrix. We define a set of elementspi j PUsgd* , i , j =1,2, . . . ,d, by

psxd = spi jsxddi,j=1
d , ∀ x P Usgd.

Thepi j will be called the matrix elements ofp. It is easy to see that the matrix elements of every
finite-dimensional representation of Usgd belong to Usgd0. Conversely, Usgd0 is spanned by the
matrix elements of all the finite-dimensional representations of Usgd. To see this, we only need to
consider an arbitrary nonzero elementf PUsgd0. Let Ker be a graded cofinite ideal of Usgd
contained in the kernel off. Then Usgd /Ker forms a left Usgd-module,

Usgd ^ Usgd/Ker→ Usgd/Ker,

y ^ sx + Kerd ° yx+ Ker.

Let hxi +Kerj be a basis of Usgd /Ker, and denote byf ij the matrix elements of the associated
representation relative to this basis. Choose a set of complex numbersci PC such that1Usgd
+Ker=oicixi +Ker, where the set1Usgd+Ker is not contained in the kernel off since f Þ0. Then
f =oi,jcikf ,xjlf ji .

We denote byt the Usgd-representation associated with the contravariant vector moduleV
=Le1

in the standard basis, and denote its matrix elements bytabPUsgd0, a,bP I , wheretab is even

if fag+fbg=0̄, and odd otherwise. Note that

tabsEcdd = dacdbd.

Denote byt̄ the covariant vector representation of Usgd relative to the basishv̄auaP I j. Let t̄ab

PUsgd0, a,bP I , be the matrix elements oft̄. Then
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t̄absEcdd = − s− 1dfagfbg+fbgdbcdad.

Note thatt̄ab is even if fag+fbg=0̄, and odd otherwise.
Definition 3.1: sReference 20d Let CsGd be the subsuperalgebra of Usgd0 generated by

htab, t̄abua,bP I j.
The following relations hold inCsGd:

o
c

tact̄bcs− 1dfcgfag+fbg = dab, o
c

t̄catcbs− 1dfbgfcg+fcg = dab, s3.1d

becauset and t̄ are dual representations of Usgd. More precisely, the first relation states that the
canonical tensorocvc ^ v̄cPV^ V* is Usgd-invariant, while the second relation means that the
dual pairingk,l: V* ^ V→C is a Usgd-module homomorphism.

CsGd has a bisuperalgebra structure, with the comultiplication defined by

Dstabd = o
cPI

s− 1dsfcg−fagdsfcg−fbgdtac ^ tcb,

Dst̄abd = o
cPI

s− 1dsfcg−fagdsfcg−fbgdt̄ac ^ t̄cb.

Let us also denote byS the antipode of Usgd0. By using the definition of dual modules we can
show that

Sstabd = s− 1dfagfbg+fagt̄ba, Sst̄abd = s− 1dfagfbg+fbgtba. s3.2d

The following result was proven in Ref. 20.
Proposition 3.1:sReference 20d (1) CsGd forms a Hopf sub-superalgebra ofUsgd0. (2) CsGd

is dense inUsgd* in the following sense: for every nonzero element xPUsgd, there exists some
f PCsGd such thatkf ,xlÞ0.

Let L denote a finite-dimensional Grassmann algebra. Recall that the general linear super-
group GLsmun,Ld overL is the group of even invertiblesm+nd3 sm+nd-matrices with entries in
L. It was shown in Ref. 21 that GLsmun,Ld can be reconstructed fromCsGd in the following way.
The Z2-graded vector space HomCsCsGd ,Ld has a natural superalgebra structure, with the multi-
plication defined for anyf andc by

sfcdsfd ª o
sfd

s− 1dffs1dgfcgfsf s1ddcsf s2dd, ∀ f P CsGd, s3.3d

where we have used Sweedler’s notation expressing the comultiplicationDsfd of any f PCsGd by
osfdf s1d ^ f s2d.

Theorem 3.1:sReference 21d Let GCª hsuperalgebra homomorphismsCsGd→Lj. Then with
the multiplication defined by (3.3), the set GC forms a group, which is isomorphic toGLsmun,Ld.

We shall not repeat the proof of the theorem here, but merely point out that the inversea−1 of
any elementaPGC is given bya−1sfd=asSsfdd, for all f PCsGd.

We shall refer to the elements ofCsGd as the regular functions on the general linear super-
group. We now consider their properties. Note that there exists two natural left actions dR and dL
of Usgd on CsGd, respectively, corresponding to the left and right translations. For allxPUsgd,
f PCsGd,

dRxsfd = o
sfd

s− 1dfxgffgf s1dkf s2d,xl,

043513-6 R. B. Zhang and Y. M. Zou J. Math. Phys. 46, 043513 ~2005!

                                                                                                                                    



dLxsfd = o
sfd

s− 1dfxgkf s1d,Ssxdlf s2d. s3.4d

Equivalently, the equations ins3.4d can be rewritten in the form

kdRxsfd,yl = s− 1dfxgsffg+fygdkf,yxl, kdLxsfd,yl = s− 1dfxgffgkf,Ssxdyl, s3.5d

for all x,yPUsgd and f PCsGd. Straightforward calculations show that each of dL and dR indeed
convertsCsGd into a sgradedd left Usgd-module. With respect to this module structure the product
map ofCsGd is a Usgd-module homomorphism, and the unit element ofCsGd is Usgd-invariant.
Take dL as an example, we have

o
sxd

s− 1dfxs2dgffgdLxs1d
sfd ^ dLxs1d

sgd ° dLxsfgd, ∀ f,g P Usgd0, x P Usgd,

dLxsed = esxde, ∀ x P Usgd. s3.6d

This is saying that each of the actions dL and dR convertsCsGd into a left Usgd-module
superalgebra.16 The two actions supercommute as can be easily checked. ThusCsGd forms a left
Usgd ^ Usgd-module algebra, with the action

sx ^ ydf = dLx dRysfd, ∀ x,y P Usgd, f P CsGd.

The fact that the product map inCsGd is a module homomorphism means that the operators dRx

and dLx behave as some sort of generalized superderivations. In particular, ifxPg, they are
superderivations.

To better understand the structure ofCsGd, we let X=V^ V* and X̄=V* ^ V. Using the stan-

dard bases ofV andV* we manufacture the baseshxabªvb ^ v̄aj andhx̄abª v̄b ^ vaj for X andX̄,

respectively. Denote byCfX,X̄g the Z2-graded symmetric algebra ofX% X̄. ThenCfX,X̄g as an
associative superalgebra can be described more explicitly as generated byxab, x̄ab, a,bP I ,
subject to the relations

xabxcd = s− 1dsfbg−fagdsfdg−fcgdxcdxab,

xabx̄cd = s− 1dsfbg−fagdsfcg−fdgdx̄cdxab,

x̄abx̄cd = s− 1dsfag−fbgdsfcg−fdgdx̄cdx̄ab.

The generatorsxab and x̄ab are even iffag+fbg=0̄, and odd otherwise. Stated differently, the
2sm2+n2d even generators generate a polynomial algebra, the 4mn odd generators generate a

Grassmann algebra with the standard grading, andCfX,X̄g is the tensor product of the two. LetJ
be thesgradedd ideal of CfX,X̄g generated by the following elements:

o
c

xacx̄bcs− 1dfcgfag+fbg − dab, o
c

x̄caxcbs− 1dfbgfcg+fcg − dab, a,b P I . s3.7d

We have the following theorem.
Theorem 3.2: sReference 20d The assignments xab° tab, x̄ab° t̄ab, a,bP I specify a well-

defined superalgebra isomorphism j:CfX,X̄g /J→CsGd.
Define two left Usgd-actions onX% X̄,

F:Usgd ^ sX % X̄d → X % X̄, u ^ w ° Fsudw,
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C:Usgd ^ sX % X̄d → X % X̄, u ^ w ° Csudw,

by

Fsudsvb ^ v̄ad = s− 1dfuguvb ^ v̄a,

Csudsvb ^ v̄ad = s− 1dfugfbgvb ^ uv̄a,

Fsudsv̄b ^ vad = s− 1dfuguv̄b ^ va,

Csudsv̄b ^ vad = s− 1dfugsfug+fbgdv̄b ^ uva, u P Usgd.

These actions supercommute, and can both be extended to left Usgd-actions onCfX,X̄g by

Fsxdsp1p2d = o s− 1dfxs2dgfp1gsFsxs1ddp1dsFsxs2ddp2d,

Csxdsp1p2d = o s− 1dfxs2dgfp1gsCsxs1ddp1dsCsxs2ddp2d,

wherep1,p2PCfX,X̄g andxPUsgd. This gives rise to a Usgd ^ Usgd-module algebra structure on

CfX,X̄g. Note that the Usgd ^ Usgd-action leaves the idealJ invariant. Thus we have the following
proposition.

Proposition 3.2: The map j:CfX,X̄g /J→CsGd of Theorem 2 is aUsgd ^ Usgd-module alge-
bra isomorphism, with

jssCsxd ^ Fsyddpd = sdLx ^ dRyd jspd, ∀ x,y P Usgd, p P CfX,X̄g.

IV. HOMOGENEOUS SUPERSPACES AND SPHERICAL FUNCTIONS

Recall the following well-known fact in the context of classical homogeneous spaces: ifH is
a compact semisimple Lie group, andHC is its complexification, then for any parabolic subgroup
Q of HC, we haveHC /Q=H /R, whereR is the intersection of the Levi factor ofQ with H. We
shall imitate this construction in the algebraic setting for Lie supergroups. For this we need to
discuss real forms of the complex general linear superalgebra and the general linear supergroup.

A. Real forms

Let us begin by briefly discussing the notion of Hopfp-superalgebras.28 A p-superalgebraic
structure on an associative superalgebraA is a conjugate linear anti-involutionu: A→A: for all
x,yPA, c,c8PC,

uscx+ c8yd = c̄usxd + c̄8usyd, usxyd = usydusxd, u2sxd = x.

Note that the second equation does not involve any sign factors as one would normally expect of
superalgebras. We shall sometimes use the notationsA,ud for the p-superalgebraA with the
p-structureu. Let sB,u1d be another associativep-superalgebra. NowA^ B has a natural superal-
gebra structure, with the multiplication defined for anya,a8PA andb,b8PB by

sa ^ bdsa8 ^ b8d = s− 1dfbgfa8gaa8 ^ bb8,

where s−1dfbgfa8g is the usual sign factor required for exchanging positions of odd elements.
Furthermore, the following conjugate linear map,
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u!u1:a ^ b ° s1 ^ u1sbddsusad ^ 1d = s− 1dfagfbgusad ^ u1sbd, s4.1d

defines ap-superalgebraic structure onA^ B.
Let us assume thatA is a Hopf superalgebra with comultiplicationD, counite and antipodeS.

If the p-superalgebraic structureu satisfies

su!udD = Du, ue = eu,

thenA is called a Hopfp-superalgebra. Now

s ª Su

satisfiess2= idA, as follows from the definition of the antipode.
Let A0 denote the finite dual ofA, which has a natural Hopf superalgebraic structure. We shall

still use D and S to, respectively, denote the comultiplication and antipode ofA0, but write its
counit aseo. If A is a Hopf p-superalgebra with the Hopfp-superalgebraic structureu, then s
=Su induces a mapv: A0→A0 defined for anyf PA0 by

kvsfd,xl = kf,ssxdl, ∀ x P A. s4.2d

Lemma 4.1: The mapv: A0→A0 defined by (4.2) gives rise to a Hopfp-superalgebraic
structure on A0.

Proof: It is clear thatv is conjugate linear. Also,s2= idA implies v2= idA0. For all f ,gPA0,
x,yPA, we have

kvsfgd,xl = kfg,ssxdl = kf ^ g,sS^ Sdsu!udD8sxdl

= s− 1dffgfggkvsfd ^ vsgd,D8sxdl = kvsgdvsfd,xl,

that is,vsfgd=vsgdvsfd. Definev!v as in s4.1d, we have

ksv!vdDsfd,x ^ yl = s− 1dfxgfygkDsfd,ssxd ^ ssydl = kf,ssxydl

= kvsfd,xyl = kDvsfd,x ^ yl,

that issv!vdDsfd=Dvsfd. It is easy to show thatv also satisfies all the other minor requirements
to qualify as a Hopfp-superalgebraic structure onA0. j

The universal enveloping algebra of the general linear superalgebra admits many Hopf
p-superalgebraic structures. Let us fix one Hopfp-superalgebraic structureu: Usgd→Usgd here.
As g is canonically embedded in Usgd, the restriction ofu to g defines a conjugate anti-involution
of the Lie superalgebra. Letg

0̄

s
andg

1̄

s
be the fixed point sets ofg0̄ andg1̄ unders, respectively.

Let gs,Îi ,g be the real span ofg
0̄

s
øÎig

1̄

s
. Thengs,Îi forms a real Lie superalgebra, which is a real

form of g. However, note that thes-invariants ofg do not form a real subalgebra ofg if g
1̄

s
is

nontrivial. This is the reason for us to considergs,Îi instead.
Denote by URsgs,Îid the real universal enveloping algebra ofgs,Îi, which is embedded in Usgd

in the natural way. Furthermore,

Usgd = C^RURsgs,Îid.

By Lemma 4.1, the Hopfp-superalgebraic structureu induces a Hopfp-superalgebraic structure
v: CsGd→CsGd onCsGd. By using the embedding of the real associative superalgebra URsgs,Îid in
Usgd, we can see thatf PCsGd vanishes if and only ifkf ,xl=0, for all xPURsgs,Îid. Therefore
elements ofCsGd can be considered as complex valued functionals on the real superalgebra
URsgs,Îid. From this point of view, we should interpretCsGd as thep-superalgebra of functions on
some real supergroupG. Now let us make this discussion more precise.

Let L be the complex Grassmann algebra introduced in Sec. III. Let−: L→L be a complex
conjugation operation on supernumbersfi.e., sL , −d is a p-superalgebrag. Theorem 3.1 shows that
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all the superalgebra homomorphismsCsGd→L form a supergroupGC, which is isomorphic to
GLsmun,Ld. A homomorphisma: CsGd→L will be called ap-superalgebra homomorphism if it
preserves thep-superalgebraic structures in the sense thatasvsfdd=asfd, for all f PCsGd. The
following result can be easily proven.

Lemma 4.2: If an elementa of GC is a p-superalgebra homomorphism, then its inverse is also
a p-superalgebra homomorphism. The product of any twop-superalgebra homomorphisms in GC
is again ap-superalgebra homomorphism.

Proof: We shall prove the first statement only. The second one can be shown in a similar way.
Recall that the inverse ofaPGC is defined by

ka−1, fl = ka,Ssfdl, ∀ f P CsGd.

Now if a is a p-superalgebra homomorphism, then for allf PCsGd,

ka−1,vsfdl = ka,Svsfdl = ka,Ssfdl = ka−1, fl.

This shows thata−1 is indeed ap-superalgebra homomorphism. j

Introduce the mapǔ: GC→GC defined by

kǔsad, fl = ka,vSsfdl, ∀ f P CsGd.

We need to show that the image ofǔ indeed lies inGC. For any f ,gPCsGd, we have

kǔsad, fgl = s− 1dffgfggka,vSsfdvSsgdl

= s− 1dffgfggka ^ a,vSsfd ^ vSsgdl

= s− 1dffgfggka,vSsfdlka,vSsgdl

= ka,vSsgdlka,vSsfdl

= ka,vSsfdl · ka,vSsgdl

= kǔsad, flkǔsad,gl.

Therefore,ǔsad is a superalgebra homomorphism fromCsGd to L, thus is indeed an element of
GC.

Definition 4.1: Gª h*-superalgebra homomorphismCsGd→Lj.
Theorem 4.1:G forms a subgroup of GC. Furthermore, ǔsad=a−1 for all aPG.
Proof: The fact thatG forms a subgroup immediately follows from the above lemma. Ifa

PG, we have

kǔsad, fl = ka,vSsfdl = ka,Ssfdl

= ka−1,Ssfdl, ∀ f P CsGd.

This confirms the second claim. j

B. Spherical functions on homogeneous superspaces

Hereafter we fix a Hopfp-superalgebraic structureu for Usgd, which is defined for all the
generators by

u:Eab ° Eba. s4.3d

The associated real formglsmun;Cds,Îi of the general linear superalgebra is one of the compact
real forms of the general linear superalgebra, which probably deserves the notationusmund be-
cause it contains the maximal even subalgebrausmd % usnd. sThe unitarizable representations of
this compact real form comprise the tensor powers of the natural representation, while the unita-
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rizable representations of the other compact real form are the duals of these representations.27d
Direct calculations can show that the Hopfp-superalgebraic structure onCsGd induced byu is
given by

vstabd = s− 1dfbgsfag+fbgdt̄ab, vst̄abd = s− 1dfbgsfag+fbgdtab. s4.4d

The real supergroupG has body Usmd3Usnd.
Let p be a parabolic subalgebra ofg with Levi factor l. Let k= ls,Îi be the real form ofl, which

is a subalgebra ofgs,Îi. Denote by URskd the universal enveloping algebra ofk overR. Note that
URsgs,Îid inherits a real Hopf superalgebra structure from Usgd, and URskd inherits a real Hopf
superalgebra structure from URsgs,Îid. Let us introduce the following definition.

Definition 4.2:

CsK \ Gd ª hf P CsGdudLksfd = eskdf, ∀ k P URskdj. s4.5d

Note the following obvious fact, which will be used immediately below:

CsK \ Gd ª hf P CsGdudLksfd = eskdf, ∀ k P Usldj. s4.6d

We have the following lemma.
Lemma 4.3:CsK \Gd forms ap-subalgebra ofCsGd, which is also a left coideal ofCsGd.
Proof: Since Usld is a Hopf subalgebra of Usgd, we haveDskd=oskdks1d ^ ks2dPUsld ^ Usld for

all kPUsld. If a,bPCsK \Gd, then bys4.6d,

dLksabd = o s− 1dfas2dgfbs1dg+fkgkas1dbs1d,Sskdlas2dbs2d

= o s− 1dfas2dgfks1dg+fkgkas1d,Ssks2ddlbs1d,Ssks1ddas2dbs2d

= o s− 1dfkgesks1ddkas1d,Ssks2ddlas2db = eskdab, ∀ k P Usld.

ThusabPCsK \Gd.
Given anyf PCsK \Gd, we have dLksvsfdd=vsdLuskdsfdds−1dfkgsfkg+ffgd for all kPUsld. As Usld

is u invariant, we have dLuskdsfd=eskdf. Thus

dLksvsfdd = eskdvsfd, ∀ k P Usld.

Also, a straightforward calculation shows that

sdLk ^ iddDsfd = eskdDsfd, ∀ k P Usld.

ThusCsK \Gd is a left coideal. This completes the proof. j

The subalgebraCsK \Gd consists of the elements ofCsGd which are invariant with respect to
URskd under left translation. Following the general philosophy of noncommutative geometry,2 we
may take the viewpoint thatCsK \Gd defines an algebraic homogeneous superspace.12 We shall
refer toCsK \Gd as the superalgebra of functions on the homogeneous superspace. Also a word
about the notationCsK \Gd: hereK is used to indicate some real subsupergroup ofG with Lie
superalgebrak.

Remark 4.1:SinceCsGd andCsK \Gd are allp-superalgebras, their elements are in general not
holomorphic functions on the supergroup. This is a particularly welcome fact, as it indicates that
our construction can lead to analogues of compact complex super manifolds like projective su-
perspaces. As is well known from the Gelfand–Naimark theorem, the continuous functions on a
compact manifold determine the manifold completely, even when the manifold is complex, where
all the holomorphic functions are constants.

Remark 4.2:In the quantum group context, one usually considers left or right coideal subal-
gebras of the algebra of functions10,17,3,11in the place ofCsK \Gd. By Lemma 4.3CsK \Gd forms a
left coideal subalgebra ofCsGd.
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Because the two left actions dR and dL of Usgd on CsGd supercommute, the subalgebra
CsK \Gd of CsGd forms a left module algebra over Usgd under the action dR. We shall study the
dRsURskdd-invariant subspace ofCsK \Gd. Let us first generalize the definition of zonal spherical
functions26 to the supergroup setting. We shall refer to elements of the following space as spherical
functions on the homogeneous superspace.

Definition 4.3:

CsK \ G/Kd ª hf P CsK \ GdudRksfd = eskdf, ∀ k P URskdj. s4.7d

Similar arguments as those in the proof of Lemma 4.3 show the following.
Lemma 4.4: The subspaceCsK \G/Kd forms ap-subalgebra ofCsK \Gd. Obviously

CsK \ G/Kd = hf P CsK \ GdudRxsfd = esxdf, ∀ x P Usldj, s4.8d

wherel is the complexification ofk. The fact will be used in the next section to prove Theorem
4.2.

C. Structure of superalgebra of spherical functions

Let l be a reductive subalgebra ofg generated byEaa, aP I , and Ec,c+1, Ec+1,c with c
belonging to some proper subset ofI \ hm+nj. As in the last section, we let

k = ls,Îi .

See Remark 4.3 for further discussions on this choice ofk. The main result here is Theorem 4.2,
which enables us to obtain the superalgebrasCsK \Gd and CsK \G/Kd from the invariants of

CfX,X̄g. An explicit description of the generators of these superalgebras will also be given in
Lemmas 4.5 and 4.6.

Theorem 4.2:Whenk= ls,Îi, we have

CsK \ Gd = h jspdup P CfX,X̄gCsUslddj,

s4.9d
CsK \ G/Kd = h jspdup P CfX,X̄gCsUsldd^FsUslddj.

The remainder of this section is devoted to the proof of Theorem 4.2. The proof is carried out
in two steps. We first show that the theorem holds whenl=kC is even, that is, whenl is a reductive
Lie subalgebra ofg. Then we use this fact to prove the general case. In the process of proving the
theorem, we also establish Lemmas 4.5 and 4.6. We mention that Eqs.s4.6d ands4.8d will be used
repeatedly in the proof without further warning.

1. Proof of Theorem 4.2 for l even

In this case we can find a set of positive integerski, i =1,2, . . . ,r ,r +1, . . . ,s such that
oi=1

r ki =m, o j=r+1
s kj =n, andl= % i=1

s glskid. More explicitly,

l = 51A1 0

�

0 As
2uAi P glskid6 , g.

Proposition 3.2 implies the following short exact sequence:

0 → J → CfX,X̄g→
J

CsGd → 0

in the category of Usld ^ Usld-module superalgebras. Since the various Usld and Usld ^ Usld ac-

tions onJ, CfX,X̄g andCsGd are all semisimple, we have the following short exact sequences of
Usld ^ Usld-modules:
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0 → JCsUsldd → CfX,X̄gCsUsldd → CsGddLUsld → 0,0→ JCsUsldd^FsUsldd → CfX,X̄gCsUsldd^FsUsldd

→ CsGddLUsld^dRUsld → 0,

whereCsK \Gd=CsGddLUsld andCsK \G/Kd=CsGddLUsld^dRUsld. These are also short exact sequences
of Usld ^ Usld-module algebras, thus they imply the claims of Theorem 4.2 in the case under
consideration.

Let us now describe the algebrasCsK \Gd andCsK \G/Kd more carefully. Setl i =ot=1
i kt. Recall

that CfX,X̄g is the symmetric algebra inX% X̄ where X=V^ V̄ and X̄=V̄^ V. Restricted to a
Usld-module,V decomposes into

V = % i=1
s Vi

skid.

The idealglskid of l acts onVi
skid by the natural representation, and acts on all other submodules

trivially. There is also an analogous decomposition of the restriction ofV̄ to a Usld-module. By
applying the first fundamental theorem of the invariant theory of the general linear group,5 we

obtain that the subalgebraCfX,X̄gCsUsldd of CfX,X̄g is generated by

Ĉab
sid
ª o

c=1+l i−1

l i

xcax̄cb, i = 1,2, . . . ,s, a,b P I .

It then immediately follows thatCsK \Gd is generated by

Cab
sid
ª jsĈab

sidd = o
c=1+l i−1

l i

tcat̄cb, i = 1,2, . . . ,s, a,b P I .

Note that theCab
sid are not algebraically independent, for example, fora,bP I the following

hold:

o
i=1

s

Cab
sids− 1dfl ig = dab, o

a=1

m+n

Cab
sid = ki . s4.10d

Thus the elements of the sethCab
sid u i Þs;a,bP I j can also generateCsK \Gd. By using the fact that

tab and t̄cd supercommute, one can verify the following proposition easily.
Proposition 4.1: We have

Cab
sidCcd

s jd = s− 1dsfag+fbgdsfcg+fdgdCcd
s jdCab

sid , s4.11d

in particular, if fag+fbg=1 then sCab
sidd2=0. Thus for fixed i, there is an onto algebra homomor-

phism CfXg→ kCab
sid ua,bP I l, where CfXg is the subalgebra ofCfX,X̄g generated by X, and

kCab
sid ua,bP I l is the subalgebra ofCsK \Gd generated byhCab

sid ua,bP I j.
In a similar way we can show thatCfX,X̄gCsUsldd^FsUsldd is generated by

Ĉsi,jd
ª o

a=1+l j−1

l j

o
c=1+l i−1

l i

xcax̄ca, i, j = 1,2, . . . ,s,

andCsK \G/Kd is generated by

Csi,jd
ª jsĈsi,jdd = o

a=1+l j−1

l j

o
c=1+l i−1

l i

tcat̄ca, i, j = 1,2, . . . ,s.

Again, theCsi,jd are not algebraically independent, for example,
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o
i=1

s

Csi,jds− 1dfl ig = kj, o
j=1

s

Csi,jds− 1dfl jg = ki . s4.12d

Thus the elements of the sethCsi,jd u i , j Þ rj generateCsK \G/Kd.

2. Proof of Theorem 4.2 for generic l

The most general form ofl is as follows. There exists a set of positive integerski as in the last
section such that

l = s% i=1
r−1glskidd % glskrukr+1d % s% j=r+2

s glskjdd.

More explicitly, we have

l =5*1
� 0

Ar−1

B

Ar+2

0 �

As

2*Ai P glskid,

B P glskrukr+1d6 .

Note thatl contains the maximal even subalgebral0= % i=1
s glskid.

We first consider the subalgebraCsGddLUsl0d of CsGd. By using results of the last section, we
can immediately see thatCsGddLUsl0d is generated by the elements ofhCab

sid u i Þ r ;a,bP I j. Now

CsK \ Gd = hf P CsGddLUsl0dudLEmm+1
sfd = dLEm+1,m

sfd = 0j.

We shall show thatCsK \Gd is generated byhCab
sid u i Þ r ,r +1;a,bP I j.

Note that all the elements ofhCab
sid u i Þ r ;a,bP I j are annihilated by dLEmm+1

and dLEm+1,m

except forCab
sr+1d, for which we have

dLEmm+1
sCab

sr+1dd = − s− 1dfag+fbgtm+1,at̄mb, s4.13d

dLEm+1,m
sCab

sr+1dd = − s− 1dfag+fbgtmat̄m+1,b, a,b P I . s4.14d

Note that as a Usgd-module,CsGd has a filtration defined by the degrees of the polynomials in
the tab and thet̄ab, and the filtration on the Usl0d-moduleCsGddLUsl0d defined by the degrees of the
polynomials in thehCab

sid u i Þ r ;a,bP I j is compatible with this filtration. Thus in order to find those
f PCsGddLUsl0d such that dLEmm+1

sfd=LEm+1,m
sfd=0, by passing through to the associated graded

modules defined by these filtrations if necessary, we may assume thatf is homogeneous of degree
m in the elements ofhCab

sid u i Þ r ;a,bP I j. We consider an elementf PCsGddLUsl0d as a polynomial in
hCab

sr+1d ua,bP I j with coefficients being polynomials inhCab
sid u i Þ r ,r +1;a,bP I j. Set Cab=Cab

sr+1d

sa,bP I d. Then by Proposition 4.1, the subalgebrakCabua,bP I l has a basis consists of elements
of the form

Ca1b1

p1
¯ Casbs

ps Cc1d1
¯ Cctdt

, s4.15d

with faig+fbig=0s1ø i øsd, fcjg+fdjg=1s1ø j ø td, andpi ù0s1ø i øsd are integers. Extend such
a basis ofkCabua,bP Il to a homogeneous basisB of CsGddLUsl0d, so that the elements ofB are of
the form
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CCa1b1

p1
¯ Casbs

ps Cc1d1
¯ Cctdt

, s4.16d

whereC is a monomial inhCab
sid u i Þ r ,r +1;a,bP I j. Now let us writef =o0økømfk, where fk is a

linear combination of the basis elements ofs4.16d such thatoipi + t=k and degsCd+k=degsfd. The
action ofEmm+1 ssimilarly for Em+1md on the elements ofs4.5d can be computed by usings4.13d,
and we have

dLEmm+1
sCa1b1

p1
¯ Casbs

ps Cc1d1
¯ Cctdt

d = − o
i=1

s

s− 1dtpiCa1b1

p1
¯ Caibi

pi−1
¯ Casbs

ps Cc1d1
¯ Cctdt

tm+1ai
t̄mbi

+ Ca1b1

p1
¯ Casbs

ps o
j=1

t

s− 1d jCc1d1
¯ Ĉcjdj

¯ Cctdt
tm+1cj

t̄mdj
.

s4.17d

Since the product map ofCsGd is a Usgd-module homomorphismfsees3.6dg, by s4.17d the action
of Emm+1 on the elements ofs4.16d is given by

dLEmm+1
sCCa1b1

p1
¯ Casbs

ps Cc1d1
¯ Cctdt

d

= − s− 1dfCgCo
i=1

s

s− 1dtpiCa1b1

p1
¯ Caibi

pi−1
¯ Casbs

ps Cc1d1
¯ Cctdt

tm+1ai
t̄mbi

+ s− 1dfCgCCa1b1

p1
¯ Casbs

ps o
j=1

t

s− 1d jCc1d1
¯ Ĉcjdj

¯ Cctdt
tm+1cj

t̄mdj
, s4.18d

whereĈcjdj
means that the factorCcjdj

is omitted.
For an elementx of the form s4.16d, let x8sabd be

CCa1b1

p1
¯ Cai−1bi−1

pi−1 Caibi

pi−1Cai+1bi+1

pi+1
¯ Casbs

ps Cc1d1
¯ Cctdt

,

or

CCa1b1

p1
¯ Casbs

ps Cc1d1
¯ Ĉcjdj

¯ Cctdt
,

depending on whethersabd=saibid or sabd=scjdjd.
Let us make some observations. First note that since

km+sh ^ gd,al = kh ^ g,Dsadl, h,g P Usgd0, a P Usgd,

if hbi u1ø i ø,j,CsGd is a set of linearly independent functions which are constants onUsk0d and
htm+1at̄mbua,bPJ, I j is linearly independent, then the sethbitm+1at̄mbu1ø i ø, ,a,bPJj is linearly
independent. Then note that ifScd,B with Ccd appearing in every element for a fixed pairc and
d, then the set

Scd8 = hx8scddux P Scdj

is linearly independent. In fact the elements ofScd andCcdScd8 are the same up to signs. Finally
note that the only relation among the elements inhtm+1at̄mbua,bP I j is fsees3.1dg

o
aPI

tm+1at̄mas− 1dfag = o
1øaøm

tm+1at̄ma− o
m+1øaøm+n

tm+1at̄ma= 0,

and this relation can only come fromsvia the map dLEmm+1
d
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o
1øaøm

Caa − o
m+1øaøm+n

Caa = o
1øaøm

o
c=m+1

lr+1

tcat̄ca − o
m+1øaøm+n

o
c=m+1

lr+1

tcat̄ca = − kr+1,

i.e., a constant.
These observations together withs4.18d imply that dLEmm+1

sfd=dLEm+1,m
sfd=0 if and only if

f = f0, i.e., f is independent ofCab
sr+1dsa,bP I d. Therefore, we have the following.

Lemma 4.5:CsK \Gd is generated by the elements of

hCab
sidui Þ r,r + 1;a,b P I j. s4.19d

By Theorem 2.1 and the first fundamental theorem of the invariant theory of the general linear

group,CfX,X̄gCsUsldd is generated byĈab
sidsi Þ r ,r +1;a,bP I d, and Ĉab

srd−Ĉab
sr+1dsa,bP I d. We have

jsĈab
sidd=Cab

sidsi Þ r ,r +1;a,bP I d, which yield all the elements ofs4.19d. This establishes the short
exact sequence

0 → JCsUsldd → CfX,X̄gCsUsldd → CsK \ Gd → 0

of Usld ^ Usld-module algebras, thus proves the first claim of Theorem 4.2.
Let us now consider the subalgebraCsK \GddRUsl0d of CsK \Gd, which is generated by the

elements of the sethCsi,jd u i Þ r ,r +1; j Þ rj, as follows from results of the last section. Among all
the elements of this set, onlyCsi,r+1d are not annihilated by dREmm+1

and dREm+1,m
. Thus similar to

the case of the left action, we can prove thatf PCsK \GddRUsl0d satisfies dREmm+1
sfd=0 and

dREm+1,m
sfd=0 if and only if it is independent of theCsi,r+1dsi Þ r ,r +1d. Observe that

CsK \ G/Kd = hf P CsK \ GddRUsl0dudREmm+1
sfd = dREm+1,m

sfd = 0j.

We have
Lemma 4.6:CsK \G/Kd is generated by the elements of

hCsi,jdui, j Þ r,r + 1j. s4.20d

By Theorem 2.1 and the first fundamental theorem of the invariant theory of the general linear

group,CfX,X̄gCsUsldd^FsUsldd is generated by

Ĉsi,jd,Ĉsr,jd − Ĉsr+1,jd,Ĉsi,rd − Ĉsi,r+1d, i, j Þ r,r + 1, a,b P I ,

and since

jshĈsi,jdui, j Þ r,r + 1jd = hCsi,jdui, j Þ r,r + 1j,

we have the following short exact sequence of Usld ^ Usld-module algebras:

0 → JCsUsldd^FsUsldd → CfX,X̄gCsUsldd^FsUsldd → CsK \ G/Kd → 0,

which is equivalent to the second claim of Theorem 4.2.
Remark 4.3:Geometric homogeneous superspaces have been studied since the 1970s, see, for

example, Refs. 8 and 13. Symmetric superspaces were also classified by Serganova in Ref. 23 at
the level of Lie superalgebras. In relation to our algebraic definition of homogeneous superspaces,
one may ask the following question. LetP be the parabolic subgroup of GLsmun,Ld with Lie
superalgebrap. We have the homogeneous superspace GLsmun,Ld /P sunderstood as a left coset
of Pd. Now let l be the Levi factor ofp and takek= ls,Îi, with u being the Hopfp-superalgebraic
structure of Usgd corresponding to the compact real form of the general linear superalgebra
fdefined bys4.3dg. Then the question is whether the homogeneous superspace determined by
CsK \Gd is the same as GLsmun,Ld /P in some appropriate sense. We expect the answer to be
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affirmative, but have not been able to locate a reference, which addresses any form of the question,
in the literature on supergeometry.

V. SPHERICAL FUNCTIONS ON C„K \G… WITH MAXIMAL RANK K

We keep notations from the last section. In particular, we fix thep-structureu of Usgd given
by s4.3d, which corresponds to the real formusmund for the general linear superalgebra. We usel

to denote the Levi factor of a parabolic subalgebra ofg, and setk= ls,Îi. The homogeneous
superspaces studied in this section are all examples of symmetric superspaces in the sense of Ref.
22 ssee Tables 2 and 3 in Ref. 23d.

A. The case with k=u„m zn −1…Šu„1…

We first examine in some detail the spherical functions on the homogeneous superspace
corresponding tok=usmun−1d % us1d, where the complexificationl of k is the subalgebra ofg
spanned by the elementsEij , i , j P I \ hm+nj, andEm+n,m+n. But before discussing the superalgebra
CsK \Gd, let us introduce the following superalgebra.

Definition 5.1:CsS2n−1u2mdªCsGddLURsusmun−1dd relative tousmun−1d,k.
More explicitly,

CsS2n−1u2md = hf P CsGdudLksfd = eskdf, ∀ k P URsusmun − 1ddj.

We can modify the analysis of Sec. IV C to constructCsS2n−1u2md. With the help of Theorem 2.1 for
glsmun−1d, we can show thatCsS2n−1u2md is generated by

za ª tm+n,a, z̄a ª t̄m+n,a,

Qabª o
c,m+n

t̄catcbs− 1dfbgfcg+fcg, a P I ,

whereza and z̄a are odd ifaøm, and even otherwise. The defining relations ofCsGd imply Qab

=dab1−zaz̄bs−1dfbg. Thus theza and z̄a generateCsS2n−1u2md by themselves. We have the following
result.

Lemma 5.1: The subalgebra ofCsS2n−1u2md of CsGd is generated by za, z̄a, aP I , which satisfy
the following relation:

o
aPI

z̄aza = 1. s5.1d

Remark 5.1:The notation suggestsCsS2n−1u2md be the superalgebra of functions on the super-
sphere. This can be understood as follows. Under thep-mapv defined bys4.4d, we have

vszad = z̄a, vsz̄ad = za.

Thus we may interpretz̄a as the complex conjugate ofza, and this indeed makes perfect sense
whenza and z̄a are regarded as functions onG ssee Sec. IV Ad. Thus Eq.s5.1d defines a super-
sphere in analogy with the embedding of a supersphereS2n−1u2m in Cnum. This also indicates the
importance of thep-structure in determining the underlying supermanifold ofCsK \Gd.

Remark 5.2:Whenk=usmun−1d % us1d, we haveCsK \Gd=CsS2n−1u2mddLus1d. This superalgebra
embeddingCsK \Gd�CsS2n−1u2md corresponds to a projection fromS2n−1um to the symmetric su-
perspace, which is the supergeneralization of the Hopf mapS2n−1→CPn−1. Therefore, we shall
regard the symmetric superspace associated withCsK \Gd as an algebraic analogue of the projec-
tive superspaceCPn−1um.

We denoteCsK \Gd by CsPn−1umd whenk=usmun−1d % us1d. Lemma 5.1 immediately leads to
the following result.
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Lemma 5.2: The superalgebraCsPn−1umd is thep-subalgebra ofCsS2n−1u2md generated by the
quadratic elements zaz̄b, a,bP I .

Proof: Since for alla, dLEm+n,m+n
za=za, and dLEm+n,m+n

z̄a=−z̄a, any dLus1d-invariant element of
CsS2n−1u2md must be a polynomial inzaz̄b, a,bP I . This result can also be obtained in a more direct
way by using Theorem 4.2. j

Remark 5.3:We should emphasize that elements ofCsPn−1umd are functions on the projective
superspace that are not holomorphic in general becauseCsPn−1umd is a p-superalgebra.

Now we use Theorem 4.2 to extract the algebraCsPn−1umddRURskd of spherical functions on the
projective superspace. Letzªzm+n and z̄= z̄m+n. We have the following.

Theorem 5.1: The algebra of the spherical functions on the projective superspace is gener-
ated by rªzz̄ as a p-subalgebra ofCsPn−1umd. When n.1, the spherical functions form a poly-
nomial algebra in one variable. When n=1, we haves1−rdm+1=0.

Proof: It is an immediate consequence of Theorem 4.2 that the algebraCsPn−1umddRURskd of the
spherical functions on the projective superspace is indeed generated by the single elementr.

Whenn=1, all thezc, z̄c, cøm, are odd. Thus thesm+1dth power of 1−r =ocømzcz̄c vanishes
identically.

To study the case withn.1, we first analyzeCfGLng, the algebra generated by the matrix
elements of the contravariant and covariant vector representations ofglsnd. Let q=glsn−1d
% gls1d be the subalgebra ofglsnd embedded block diagonally. SetA=CfGLngdLUsqd^dRUsqd. Recall
that CfGLng is semisimple as a left module Usqd-module under the action dLUsqd ^ dRUsqd. There
exists a surjective dLUsqd ^ dRUsld-module map c :CfGLng→A. Let c* ,sid−cd* :Usglsndd
→Usglsndd be vector space maps defined by

kf,sid − cd*sudl = ksid − cdsfd,ul,

kf,c*sudl = kcsfd,ul, ∀ u P glsnd, f P CfGLng.

Since the dual space pairing betweenCfGLng and Usglsndd is nondegenerate, there is a nondegen-
erate pairing betweenA andc*sUsglsnddd. Now as vector spaces,

c*sUsglsnddd > Usglsndd/sqUsglsndd + Usglsnddqd,

where the right-hand side is clearly infinite dimensional. This in particular implies that the subal-
gebraA of CfGLng is infinite dimensional.

Let z :CsPn−1umddRURskd→CfGLng be the map defined for anyf PCsPn−1umddRURskd and u
PUsglsndd by kzsfd ,ul=kzsfd , isudl, wherei is the canonical embedding Usglsndd,Usgd. Thenz
is an algebra homomorphism, and we have

zsCsPn−1umddRURsedd = A.

If there existed a nontrivial polynomialPsrd in r which was identically zero as an element of
CsPn−1umd, thenCsPn−1umddRURskd would have to be finite dimensional overC. This contradicts the
fact thatA is an infinite dimensional algebra. j

Let us now study the action of a generalized Laplacian operator on the spherical functions.
Recall that the quadratic Casimir of Usgd can be expressed asc=oa,b=1

m+n s−1dfbgEabEba. For any f
PCsK \G/Kd, we have dRX dRcsfd=dRc dRXsfd=0, ∀XP l. That is dRcsfdPCsK \G/Kd. Consider
the following generalized Laplacian operator on the homogeneous superspace:

¹2 = − o
i=1

m+n−1

Ei,m+nEm+n,i .

Then the actions of dR¹2 and 1
2dRc coincide onCsK \G/Kd. Thus dR¹2 also mapsCsK \G/Kd to

itself.
In the case of the projective superspace, we can show that
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dR¹2srkd = krk−1fsm− n − k + 1dr + kg, k = 0,1, . . . . s5.2d

Let us now consider eigenfunctions of dR¹2 in CsPn−1umddRURskd. Things turn out to be quite different
for m−n+1ø0 andm−n+1.0.

s1d If m−n+1ø0, there exists an eigenfunctionukPCsPn−1umddRURskd of dR¹2 for eachkPZ+

with dR¹2sukd=ksm−n−k+1duk, where

uk = o
i=0

k

s− 1diSn − m+ 2k − 2

i
DSk

i
D2

si!d2rk−i . s5.3d

Furthermore, theuk, kPZ+, spanCsPn−1umddRURskd.
s2d If m−n+1.0, we letL=m−n+1, and denote byfL /2g the largest integerøL /2. Then there

exists an eigenfunctionukPCsPn−1umddRURskd of dR¹2 for each non-negative integerk satisfy-
ing eitherkø fL /2g or k.L with dR¹2-eigenvalueksL−kd, where theuk are still given by
s5.3d. However, theuk’s do not spanCsPn−1umddRURskd.

Note that if m−n+1.0, the operator dR¹2 is not diagonalizable overCsK \G/Kd. The sim-
plest illustration comes from the case withL=1, whereCsK \G/Kd is the direct sum ofha
+br ua,bPCj and %k.1Cuksrd. While acting diagonally on the latter subspace, dR¹2 acts on the
former subspace by dR¹2sa+brd=b.

Remark 5.4:CsGd is not semisimple with respect to dRUsgd. There exist dRUsgd-submodules of
CsGd on which dRc cannot be diagonalized. Therefore, dR¹2 is not diagonalizable onCsK \G/Kd in
general, and cases2d shows this fact.

B. The other maximal rank K cases

We assume that bothm andn are greater than 2 in this section, and consider the maximal rank
K’s that correspond to the subalgebraskn,kª ln,k

s,Îi andkm,kª lm,k
s,Îi, where

ln,k = glsmun − kd % glskd, 0 , k ø n,

lm,k = glskd % glsm− kund, 0 , k ø m.

For the subalgebrakn,k, by Theorem 4.1, the corresponding homogeneous superspaceCsKn,k\Gd is
generated by

Cab = o
c=m+n−k+1

m+n

tcat̄cb, a,b P I .

Note thatfcg=1. As in Theorem 5.1, we can show thatCfCabg forms a polynomial algebra in one
variable if fag=fbg=1; and if fag=fbg=0, thensCabdk+1=0 andsCabdkÞ0. Recall that by Propo-
sition 4.1, we always havesCabd2=0 if fag+fbg=1. The subalgebra of spherical functions
CfKn,k\G/Kn,kg is generated by

C = o
c,a=m+n−k+1

m+n

tcat̄ca,

and forms a polynomial algebra in one variable. Similarly, forkm,k, the symmetric superspace
CsKm,k\Gd is generated by
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Cab = o
c=1

k

tcat̄cb, a,b P I .

If fag=fbg=0, thenCfCabg forms a polynomial algebra in one variable, and iffag=fbg=1, then
sCabdk+1=0 andsCabdkÞ0. The subalgebra of spherical functionsCsKm,k\G/Km,kd is generated by

C = o
c,a=1

k

tcat̄ca,

as a polynomial algebra. To summarize, we have
Theorem 5.2: s1d If møn, then there is an onto algebra homomorphism,

f:CsKn,k \ Gd → CsKm,k \ Gd

which induces an isomorphismCsKn,k\G/Kn,kd→CsKm,k\G/Km,kd.
s2d For each1øk,n, there is an onto algebra homomorphism,

fk+1,k:CsKn,k+1 \ Gd → CsKm,k \ Gd

which induces an isomorphismCsKn,k+1\G/Kn,k+1d→CsKn,k\G/Kn,kd.
Proof: For s1d, we just need to note that any relation among theCab holds for both algebras by

symmetry. Fors2d, let the generators ofCsKn,k\Gd described above beCabskd sa,bP I ,1øk
ønd, and definefk+1,k:CsKn,k+1\Gd→CsKm,k\Gd by fk+1,ksCabsk+1dd=fsk+1d /kgCabskd. j
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In this paper we consider the Schrödinger equation with constant magnetic field of
strengthb.0 in all dimension. We study the behavior of the scattering amplitude
and the scattering phase when the parameterb goes to infinity and the energy is far
from the Landau levels. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1865814g

I. INTRODUCTION

In this paper, we are interested in the Schrödinger equation with magnetic field

i]tc = Hsbdc,

whereHsbd=H0sbd+Vsxd with VPL`sRnd and

H0sbd = ui¹x − bAsxdu2. s1d

Here,A:Rn→Rn is the magnetic potential andb is a strictly positive real parameter. Our aim is to
study the scattering matrix associate to the pairsHsbd ,H0sbdd. In order to lighten the notations we
drop the parameterb and writeH instead ofHsbd. There is a wide literature dealing with the
Schrödinger equation with magnetic fieldssee for instance Refs. 2, 7, and 14 for general properties
dealing with our problemd. In this paper, we consider the case where the magnetic field is constant.
More precisely, denotingAsxd=sA1sxd , . . . ,Ansxdd with Aj :Rn→R, j =1, . . . ,n, the magnetic field
B can be identified with the antisymmetric matrixBsxd=s]xi

Ajsxd−]xj
Aisxddi,j. Here, we consider

the case where the magnetic fieldBsxd does not depend onx. RegardingB as an antisymmetric
linear map onRn, we set 2d=dim RanB and k=n−2d=dim Ker B. As we are interested in the
case whereBÞ0, we suppose thatdÞ0. On the other hand, as we study scattering problems we
do not consider the casen=2d where the spectrum ofH0 is pure point. Hence, we suppose that
k=n−2dÞ0. Under this assumption there exists Cartesian coordinates in which the reference
Hamiltonian takes the form

H0 = o
j=1

d

fsi]x2j−1
− bm jx2jd2 + si]x2j + bm jx2j−1d2g − Dxi,

wherex=sx1,x2, . . . ,x2d−1,x2d,xid=sx', xidPR2d3Rn−2d and m1, . . . ,md are strictly positive real
numbersssee Ref. 14 for detailsd. Under suitable assumptions onV, it is well known ssee Ref. 2d
that the scattering operatorS=Ssbd associated to the pairsH0,Hd is well defined. Our aim is to
describe this operator when the parameterb goes to infinity.

Before going further, let us recall some works concerning such problems. First, we would like
to mention some results concerning the scattering matrix in the case whereAsxd is a long range
potential fi.e., Asxd decreases faster thanuxu−r for somer.0 when uxu goes to infinityg. In that
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case, there is a scattering theory for the pairsH ,−Dd scf. Refs. 10, 13, 16, and 18d and it is possible
to describe the behavior of the scattering amplitude in the high energy limitscf. the work of
Nicoleau12d.

On the other hand, there are some recent works of Bruneau–Pushnitski–Raikov5 and
Bruneau–Dimassi,4 concerning the Schrödinger equation with constant magnetic field. In Ref. 5,
the authors study the spectral shift function associate to this equation in dimension 3 and they
describe its behavior in several asymptotic regimes. In particular, they investigate deeply the case
whereb goes to infinity and the distance from the energy to the set of Landau levels behaves asb.
There are also some works of Kostrykin–Kvitsinsky–Mekuyriev,8 where the authors study partial
scattering matrix in dimension 3 near the Landau levelssb being fixedd. Moreover, in Ref. 8 the
authors make some symmetry assumption on the potentialV. Here, we would like to treat the case
of general potential in dimensionn in the asymptotic regime considered in Ref. 5.

First, we need to give an exact definition of the scattering amplitude in the present situation.
Let us consider the Schrödinger operator with constant magnetic field in dimension 2d,

Ĥ0 = o
j=1

d

fsi]x2j−1
− bm jx2jd2 + si]x2j

+ bm jx2j−1d2g s2d

acting onL2sR2dd. As m1¯mdÞ0, it is well known that the spectrum ofĤ0 is pure point.2 For

q=sq1, . . . ,qddPNd we denoteLq=s2q1+1dm1+¯ +s2qd+1dmd, so that the spectrum ofĤ0 is
given by the sequence of Landau levels

L = ssĤ0d = sppsĤ0d = hbLq,q P Ndj.

In particular, the bottom of the spectrum is given bybL0=bsm1+¯ +mdd. Let us denote by
Yq,L2sR2dd the eigenspace associated to the eigenvaluebLq and Pq:L2sR2dd→Yq the corre-
sponding projector. Denoting La

2sRn−2dd=hf PL2sRn−2dd ; kxilaf PL2sRn−2ddj; we define

F̃0sld :La
2sRn−2dd→L2sSn−2d−1d by

F̃0sldwsjd =
lsn−2d−2d/4

Î2s2pdsn−2dd/2E
Rn−2d

e−iÎlkx,jlwsaddx,

and we set

F0sld:L2sR2d,La
2sRn−2ddd → L2sR2d 3 Sn−2d−1d,

w ° o
bLqøl

Pq ^ F̃0sl − bLqdw.

Let us introduce the space

La
`sRnd = hu:Rn → R,kxilau P L`sRndj

and foruPLa
`sRnd let us setiui`,a=ikxilauiL`. The assumption that we make on the potentialV is

the following.
Assumption 1:We assume thatVsxi ,x'd=V`sxid+Wsxi ,x'd withV` andW in Lr

`sRnd for some
r.1, V`ù0 and suphuWsnd u ,131ùRj→0 whenR→ +`.

It follows from the general results of Ref. 2 that under this assumption the wave operators
associated to the pairsH0,Hd exist and are complete. Therefore, the scattering operatorSsbd is
well defined and by the mean ofF0, we can define the scattering matrix. More precisely, recall that
the absolute continuous spectrum ofH0 is sacsH0d=gbL0, +`f. Then for alll.bL0 there exists

Ssl,bd:L2sR2d 3 Sn−2d−1d → L2sR2d 3 Sn−2d−1d

such that

043514-2 Laurent Michel J. Math. Phys. 46, 043514 ~2005!

                                                                                                                                    



Ssl,bdF0sld = F0sldSsbd.

Let us denoteHa=L2sRn,kxila dxd and i ·iHa
the corresponding norm. Our first result gives a

representation formula for the scattering matrix very similar to that obtained for the Schrödinger
equation.1

Theorem 1: Suppose that Assumption 1 is satisfied and denote bysppsHd the point spectrum
of H. Then, for alllP gbL0, +`f \ sLøsppsHdd, one has

Ssl,bd − Id = − 2ipF0sldVsxdF0sld* + 2ipF0sldVsxdRsl + i0dVsxdF0sld* , s3d

where

Rsl + i0d = lim
m→0+

sH − l − imd−1

exists in the spaceLsHa ,H−ad for a.1/2.
Remark 1.1: In the case where the potential V is compactly supported with respect to the

variable xi, the scattering matrix takes a form that could be interesting for other applications.
More precisely, suppose that VPL`sRnd and there exists a compact K,Rn−2d such that∀xi ¹K,
Vs. ,xid=0. Let x1, x2PC0

`sRn−2dd such thatx1=1 in a neighborhood of K andx2=1 on suppx1.
Then, using some ingrations by parts, it is not hard to prove that

Ssl,bd − Id = − 2ipF0sldfDxi
,x1gRsl + i0dfDxi

,x2gF0sld* .

Using Theorem 1, we can describe the behavior ofSsl ,bd. Let us setTsl ,bd=Ssl ,bd− Id, then
Tsl ,bd has a kernel

sv,v8d P Sn−2d−1 3 Sn−2d−1 ° Tsv,v8,l,bd P LsL2sR2ddd.

Denote byV̂i the partial Fourier transform ofV with respect to the variablexi. We need to
introduce two additional assumptions.

Assumption 2:We suppose thatVPLr
`sRnd for somer.n−2d, and thatV̂i PLr

`sRnd for some
r .0.

Assumption 3:We suppose thatV̂i PC1sRnd and that supRnu]x'
V̂iu,`.

Now we are in position to state our main result on the scattering amplitude. In the following
we denote

L̃ = hLq,q P Ndj = b−1L.

and

Q̃sEd = hq P Nd;Lq ø Ej,

which is a finite set, thanks to the fact thatm1, . . . ,md.0. In this paper we denote byi ·i the L2

norm and the norm on the space of linear bounded operators onL2. We have the following
theorem.

Theorem 2: Suppose that Assumptions 1 and 2 are satisfied and letl.bL.

sid Denotedªdistsl ,Ld and suppose thatd. iVi`,r, then
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sup
sv,v8deSn−2d−13Sn−2d−1

ITsv,v8,l,bd +
i

2s2pdn−2d+1 o
bLqøl

sl − bLqdsn−2d−2d/2PqV̂
isx',Îl − bLq

3sv − v8ddPqI ø Clb−1dfn−2d−2−min s1,rdg/2, s4d

where C depends only oniV̂ii`,r and iVi`,r.

sii d We suppose additionally that Assumption 3 is satisfied. LetEP gL0, +`f \ L̃ andD,R be a
bounded interval. When b tends to infinity, one has

sup
sv,v8deSn−2d−13Sn−2d−1

sup
lPDITsv,v8,Eb + l,bd +

ibsn−2d−2d/2

2s2pdn−2d+1 o
qPQ̃sEd

bq
n−2d−2V̂isx',b1/2bqsv

− v8ddPqI
ø Cbfn−2d−2−min s1,rdg/2, s5d

where

bq = sE − Lqd1/2 = sE − m1q1 − ¯ − mdqdd1/2. s6d

From this theorem we can also deduce the following inverse scattering result.

Corollary 1.2: Suppose that V1, V2 satisfy Assumptions1, 2,and3. Assume that the associate
scattering operators S1 and S2 are equal. Then V1=V2.

We can also use the representation formula of Theorem 1 to study the scattering phasessl ,bd
associate to the pairsH ,H0d. Let us recall briefly how to define this function. Assume that the
operatorTsl ,bd is trace class. Then the determinant detsI +Tsl ,bdd is well defined. Moreover,
Ssl ,bd being unitary, this determinant is of modulus 1 so that the functionss. ,bd can be defined
modulo 2p by

det Ssl,bd = e−2ipssl,bd. s7d

Assume additionally that forb large enough,iTsl ,bdi,1 uniformly with respect tol. Then
ssl ,bd=s−1/2ipdln det Ssl ,bd can be determined uniquely by the following process. Consider
the function

f:s P f0,1g ° detsI + sTd P C

which is holomorphic with respect tos. From the assumptioniTi,1 we deduce that the spectrum
of T is contained ing−1,1f and the functionf is nonvanishing. Therefore, the function lnsfd such
that lnsfds0d=0 is uniquely defined and it follows thats=lnsfds1d=s1/2ipdln det sI +Td is well
defined. Moreover, by construction, we have

2ipssl,bd =E
0

1 d

ds
lnsdet sId + sTsl,bdddds =E

0

1

tr sTsl,bdsId + sTsl,bdd−1dds. s8d

Before we state our results, let us recall the link between the scattering phasessl ,bd and the
spectral shift functionjsl ,bd sin short SSFd. Assume that the differencesH+l0d−g−sH0+l0d−g is
trace class for somel0,g.0 large enoughffor instance, if kxld/2VPL2sRnd with d.n, this
assumption is satisfied in view of Theorem XI.21 of Ref. 15 and the diamagnetic inequalityg.
Therefore, the spectral shift function can be definedssee Refs. 17 and 9d in the sense of distri-
bution by:
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kj8s.,bd . fl = trsfsHd − fsH0dd, ∀ f P C0
`sRd

and jsl ,bd=0 for l below the infimum spectrum ofH. Moreover, we know from the Birman–
Krein theoryssee Refs. 3 and 17d that

det Ssl,bd = e−2ipjsl,bd. s9d

Comparing Eqs.s9d and s7d, it follows that jsl ,bd=ssl ,bd+csl ,bd with csl ,bdPZ. In Ref. 5,
Bruneau, Pushnitski, and Raikov studied the asymptotics ofjsl ,bd far from the Landau levels. In
the two next theorems we lead such a study for the scattering phase.

Theorem 3: Suppose that Assumption 1 is satisfied and that VPL1sRnd. Let EP gL0,

+`f \ L̃ and D,R be a bounded interval. When b→ +`, one hassuplPDiTsEb+ldiøCb−1/2 and
the scattering phase defined by (8) satisfies

sup
lPD
UssEb + l,bd + bsn−2d/2messSn−2d−1d

2s2pdn−2d+1 o
qPQ̃sEd

bq
n−2d−1E

Rn
VsxddxU = Osbsn−3d/2d, s10d

wherebq is given by (6) and messSn−2d−1d denotes the Lebesgue measure of Sn−2d−1.
Let us remark that in the asymptotic regime that we consider the scattering phase and the

spectral shift function differ from a constant independent onl andb. Indeed, it is clear that these

functions are continuous far from the Landau levels. Hence, forEP gL0, +`f \ L̃, the function
csEb+l ,bd is continuous with respect tosl ,bdPD3 gb0, +`f for b0 large enough. As it takes its
values inZ it follows that c is constant. Therefore, it follows froms10d that under the preceding
assumptions we have

sup
lPD
UjsEb + l,bd + bsn−2d/2messSn−2d−1d

2s2pdn−2d+1 o
qPQ̃sEd

bq
n−2d−1E

Rn
VsxddxU = Osbsn−3d/2d.

Remark that this result generalizes Theorem 2.1 of Ref. 5 in several directions. First it holds in all
dimension whereas Bruneau, Pushnitski, and Raikov work in dimension 3. Moreover, it needs less
regularity on the potential. Let us also remark that the method we use to prove it is completely
different from that of Ref. 5 as it stands on the study of the scattering phase. However, we can
notice that forn=3, we obtain the same asymptotics than in Ref. 5.

Using this representation, we can also give a complete asymptotics expansion of scattering
phase. For a sake of simplicity, we formulate the theorem only in the casen=3 sand hence we can
suppose thatm1=1d, but the proof is the same in the case wheren=2d+1. We also prove the
Theorem forV in the Schwartz class whereas it certainly holds for more generalC` potentials
going to zero at infinity as well as their derivatives.

Theorem 4: Suppose that VPSsR3d. Let EPR+
* \ h2q+1,qPNj and D,R be a bounded

interval. There exists a sequence of coefficientssajsl ,E ,Vdd jPN such that one has the following
expansion when b→ +`:

sup
lPD
UssEb + l,bd − b

1
2o

j=0

`

ajsl,E,Vdb−jU = Osb−`d. s11d

Moreover, the coefficients aj can be computed explicitly. Settingg jsEd=oq=1
fs«−1dg/2sE−2q−1d−1

2
−j,

one has

a0sl,E,Vd = −
g0sEd
4p2 E

R3
Vsxddx,
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a1sl,E,Vd =
g1sEd
16p2S2lE

R3
Vsxddx−E

R3
Vsxd2 dxD .

The plan of the paper is the following. In the next section we use the spectral resolution ofH0

to obtain a representation formula for the scattering matrix. In Sec. III, we study the scattering
amplitude whereas the results concerning the scattering phase are proved in Sec. IV.

II. REPRESENTATION OF THE SCATTERING MATRIX

In this section, we recall some basic facts on the spectral resolution ofH0 and the limiting

absorption principle and we prove Theorem 1. Let us denote]Ẽ0/]l :L2sRn−2dd→L2sRn−2dd the
spectral resolution of −Dxi

on Rn−2d. Then, it is well known that the spectral resolution ofH0 is
given by

]E0

]l
= o

bLqøl

Pq ^
]Ẽ0

]l
sl − Lqd. s12d

Moreover, one knows that]Ẽ0/]l=F̃0sld*F̃0sld so thats12d yields

]E0

]l
= F0sld*F0sld. s13d

For zPC with Im zÞ0, we setR0szd=sH0−zd−1 andRszd=sH−zd−1 which are holomorphic with
respect tozPC \R. We denote bysppsHd, the point spectrum ofH. The following proposition
gives the limiting absorption principle for the operatorsH0 andH.

Proposition 2.1:sid Assume thatlP gbL0, +`f \L, then the following limit exists in the space
of bounded operatorsLsHa ,H−ad for any a.1/2:

R0sl ± i0d = lim
m→0+

R0sl ± imd.

sii d Suppose that Assumption1 is satisfied and thatlPR+
* \ ssppsHdøLd, then there exists

Rsl ± i0d = lim
m→0+

Rsl ± imd

in LsHa ,H−ad for any a.1/2.
Proof: Using s12d, it is clear that for allzPC \R, one has

R0szd = o
qPNd

Pq ^ s− Dxi
− sz− bLqdd−1, s14d

where the series converges inLsHa ,H−ad for any a.1/2. Assume thatlP gbL0, +`f \L, then

R0sl ± imd = o
bLqøl

Pq ^ s− Dxi
− sl ± im − bLqdd−1 + Wsl ± imd,

with

iWsl ± imd − Wsl ± im8di2 ø Cum − m8u2 o
bLqùl

iPq ^ Idi2 ø Cum − m8u2. s15d

Moreover, using the limiting absorption principle for the free Laplacian onRn−2d it is clear that for
any lP gbL0, +`f \L, there exists
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lim
m→0+

o
bLqøl

Pq ^ s− Dxi
− sl ± im − bLqdd−1

and the proof ofsid is complete.
The proof of sii d is very close to the proof of Agmon1 for Schrödinger operator. For Imz

.0, let us denoteR`szd=sH0+V`−zd−1. The potentialV` being independent onx', it commutes
with the projectorsPq so that

∀Im z. 0, R`szd = o
q[Nd

Pq^s− Dxi
+ V`sxid−sz− bLqdd−1.

As V` is non negative the spectrum of −Dxi
+V` is contained inR+ and we deduce from the

limiting absorption principle for the Schrödinger operator that for anyl[ gbL0, +`f\L,

R`sl ± i0d= lim
m→0+

R`sl ± imd= o
bLqøl

Pq ^ s−Dxi
+ V` − sl ± i0 − bLqdd−1

exists inLsHa ,H−ad. Now for Im z.0 we can write

Rszd=R`szdsId + WR̀ szdd−1

As in Ref. 1, the only thing we have to check is that for allz[C with Im szdù0, Kszd
=WsxdR`szd is compact fromHa into Ha for somea. 1/2. On the other hand,

Kszd=WsxdR0szdsId − V`R`szdd

and it follows from the limiting absorption principle forR`szd thatsId−V`R`szdd can be continued
to Im zù0 into a bound operator onHa for 1/2 ,a, r/2. Hence the proof is reduced to show
thatW R0szd is compact fromHa into Ha. Using the diamagnetic inequalitys see Ref. 14, Lemma
2.1d, the compactness ofKszd is a straightforward consequence of the same property for the
Schrödinger operator.

In the next proposition we recall some estimates of the resolvent proved in Ref. 5.
Proposition 2.2:sid Assume thatlP gbL0, +`f \L, then

ikxil−aR0sl ± i0dkxil−ai ø
C

distsl,Ld1/2, ∀ a . 1/2.

sii d Suppose that Assumption 1 is verified and thatlP gbL0, +`f satisfiesdistsl ,Ld. iVi`,r. Then
l¹sppsHd and

ikxil−aRsl ± i0dkxil−ai ø
C

distsl,Ld1/2, ∀ 1/2, a , r/2.

Proof: The pointsid is a direct consequence of the well-known high-energy estimates of the
resolvent of the Schrödinger equation. The claimsii d follows easily from Birman–Schwinger
principle and from the following formula:

Rsl ± i0d = R0sl ± i0dsId + V R0sl ± i0dd−1.

j

Now, we are in position to give the proof of Theorem 1 which is an adaptation of the
demonstration given in the case of the Schrödinger operatorscf. Ref. 6 d. We start with a simple
lemma.

Lemma 2.3: Suppose thatlP gbL0, +`f \L, then

R0sl + i0d − R0sl − i0d = 2ipF0sld*F0sld.

Proof: The proof is based on the fact that this result holds for the Schrödinger operator,
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∀l . 0,s− Dxi
− l − i0d−1 − s− Dxi

− l + i0d−1 = 2ipF̃0sld*F̃0sld. s16d

On the other hand, forlP gbL0, +`f \L, it follows from s15d that

R0sl + i0d − R0sl − i0d = o
bLqøl

s− Dxi
− l + bLq − i0d−1

^ Pq − s− Dxi
− l + bLq + i0d−1

^ Pq.

Using s16d, we obtain

R0sl + i0d − R0sl − i0d = 2ip o
bLqøl

F̃0sld*F̃0sld ^ Pq = 2ipF0sld*F0sld,

and the proof is complete. j

Using this lemma, we can prove Theorem 1. Let us denoteW± the wave operators for the pair
sH ,H0d and takef, g in the absolute continuous subspace ofH0. Then

ksS− Iddf,gl = ksW− − W+df,W+gl

= − iE
−`

+`

keitHVsxde−itH0f,W+gldt=− iE
−`

+`

kVsxde−itH0f,W+e−itH0gldt.

Moreover, one knows that

W+ − Id = iE
0

+`

eisHVsxde−isH0ds.

Therefore,

ksS− Iddf,gl = iE
0

+`

iE
−`

+`

kVsxde−itH0f,eisHVsxde−iss+tdH0gldt ds− iE
−`

+`

kVsxde−itH0f,e−itH0gldt

= lim
m,m8→0+

iE
0

+`

e−msiE
−`

+`

e−m8utukeiss+tdH0Vsxde−isHVsxde−itH0f,gldt

3ds− iE
−`

+`

e−m8utukVsxde−itH0f,e−itH0gldt

= lim
m,m8→0

iE
0

+`

e−msiE
−`

+`

e−m8utuE
bL0

+`

kF0sldVsxde−issH−ldVsxde−itsH0−ldf,F0sldgl dl

3dt ds− iE
−`

+`

e−m8utuE
bL0

+`

kF0sldVsxde−itsH0−ldf,F0sldgldl dt

= lim
m8→0+

iE
−`

+`

e−m8utuE
bL0

+`

kF0sldVsxdRsl + i0dVsxde−itsH0−ldf,F0sldgldl dt

− iE
−`

+`

e−m8utuE
bL0

+`

kF0sldVsxde−itsH0−ldf,F0sldgldl dt

=E
bL0

+`

kF0sldVsxdRsl + i0dVsxdsR0sl + i0d − R0sl − i0ddf,F0sldgldl dt

−E
bL0

+`

kF0sldVsxdsR0sl + i0d − R0sl − i0ddf,F0sldgldl dt.

Using Lemma 2.3, we obtain
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ksS− Iddf,gl = 2ipE
bL0

+`

kF0sldVsxdRsl + i0dVsxdF0sld*F0sldf,F0sldgldl dt

− 2ipE
bL0

+`

kF0sldVsxdF0sld*F0sldf,F0sldgldl dt

and the proof of Theorem 1 is complete. j

III. SCATTERING AMPLITUDE IN STRONG MAGNETIC FIELD

In this section, we prove Theorem 2. The first step is to write the scattering amplitude under
a convenient form. Let us denote byk. , .lL2sRn−2dd the scalar product onL2sRn−2dd. From Theorem
1 and Assumption 2, it is clear that forlP gbL0, +`f \ sLøsppsHdd, Tsv ,v8 ,l ,bd can be decom-
posed intoT=T1+T2 with

T1sv,v8,l,bd = −
ip

s2pdn−2d o
bLpøl

o
bLpøl

sl − bLqdsn−2d−2d/4sl − bLpdsn−2d−2d/4

3 PpkVsx',.deiÎl−bLqk.,v8l,eiÎl−bLpk.,vllL2sRn−2ddPq

and

T2sv,v8,l,bd =
ip

s2pdn−2d o
bLpøl

o
bLqøl

sl − bLqdsn−2d−2d/4sl − bLpdsn−2d−2d/4

3 E
Rn−2d

PpVsx',xide−iÎl−bLpkxi,vlRsl + i0dVsx',xideiÎl−bLqkxi,v8lPqdxi,

where the last integral converges in the space of bounded operator onL2sR2dd. From Proposition
2.2, it follows that ford. iVi`,r,

iT2sv,v8,l,bdi ø Cd−1/2 o
bLqøl

sl − bLqdsn−2d−2d/2iVi`,r
2 ø CliVi`,r

2 b−1dsn−2d−3d/2,

where the constantC does not depend onv andv8. It remains to treat the termT1. Suppose that

pÞq. As V̂i PLr
`sRnd, then

sup
sv,v8dPSn−2d−13Sn−2d−1

ukVsx', .deiÎl−bLqk.,v8l,eiÎl−bLpk.,vllL2sRn−2ddu

= sup
sv,v8dPSn−2d−13Sn−2d−1

uV̂isx',Îl − bLpv − Îl − bLqv8du

ø CiV̂ii`,r sup
sv,v8dPSn−2d−13Sn−2d−1

uÎl − bLpv − Îl − bLqv8u−r ø CiV̂ii`,rd
−r/2. s17d

Therefore,

sup
sv,v8dPSn−2d−13Sn−2d−1

IT1sv,v8,l,bd +
ip

s2pdn−2d o
bLqøl

sl − bLqdsn−2d−2d/2PqV̂
isx',Îl − bLqsv

− v8ddPqI ø CiV̂ii`,rlb−1dfn−2d−2−mins1,rdg/2 s18d

and the proof ofsid is complete.
Let us provesii d. Starting froms4d at the energyEb+l, we get
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Tsv,v8,Eb + l,bd =
− ip

s2pdn−2dbsn−2d−2d/2 o
qPQ̃sEd

bq
n−2d−2PqV̂

isx',b
1
2bqsv − v8ddPq

+ Osbfn−2d−2−mins1,rdgd/2.

On the other hand, we know from Lemma 9.1 in Ref. 5 that

is1 − PqdV̂is.,b
1
2bqsv − v8ddPqi ø Cqb−1/2sup

xPRn
u]x'

V̂iu.

Combining these estimates, we obtain the result claimed insii d.
Finally, let us give the proof of Corollary 1.2. Suppose thatS1=S2, thenT1=T2 and for all

E¹ L̃, b.0 andsv ,v8dPSn−2d−13Sn−2d−1, we have

T1sv,v8,Eb,bd = T2sv,v8,Eb,bd.

It follows from Theorem 2 that

o
qPQ̃sEd

bq
n−2d−2Ŵisx',b1/2bqsv − v8ddPq = Osb−fmins1,rdg/2d,

where W=V1−V2. Now, let jPRn−2d, then for all b.0 there existsv ,v8PSn−2d−1 such that
b1/2sv−v8d=j. Therefore,

o
qPQ̃sEd

bq
n−2d−2Ŵ2sx',bqjdPq = Osb−fmins1,rdg/2d,

and taking the limit whenb tends to infinity, we obtain

o
qPQ̃sEd

bq
n−2d−2Ŵ2sx',bqjdPq = 0.

Moreover, this equality holds for allE¹ L̃, so that for allqPNd, the mapx'°Ŵisx' ,−bqjd
belongs tosIm Pqd'. As L2sR2dd= %qPNd Im Pq, it follows that Ŵi vanishes identically and the
proof is complete. j

IV. ASYMPTOTICS OF THE SCATTERING PHASE

In this section, we prove Theorems 3 and 4. Starting from formulas8d, we must show that the

operatorT=TsEb+l ,bd, E¹ L̃ is trace class and to obtain convenient estimates oniTi. For this
purpose, we recall that

TsEb + l,bd = − 2ipF0sEb + ldVsxdF0sEb + ld* + 2ipF0sEb + ldVsxd

3RsEb + l + i0dVsxdF0sEb + ld* .

Moreover, asE¹ L̃, Proposition 2.2 shows thatikxil−aR0sEb+l+ i0dkxil−ai is bounded byb−1/2.
Using Assumption 1, the resolvent

RsEb + l + i0d = R0sEb + l + i0dsId + V R0sEb + l + i0dd−1

can expand in powers ofV R0. Combining this argument with the formula givingF0, it follows
that for LPN,
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TsEb + l,bd = o
l=0

L

o
qPQ̃sEd

Tq,lsEb + l,bd + OsiTq,L+1sEb + l,bdi1d, s19d

where forl PN we have defined

Tq,lsEb + l,bd = s− 1dl+12ipFq,0sEb + ldsVsxdR0sEb + l + i0ddlVsxdFq,0sEb + ld* s20d

and

∀E . bLq, Fq,0sEd = Pq ^ F̃0sE − bLqd. s21d

Let us denote byS1 the space of trace class operators onL2sR2d3Sn−2d−1d and by i .i1 the
corresponding norm. ForAPS1, we denote by trA the trace ofA. With these notations, we have
the following lemma.

Lemma 4.1: Suppose that V satisfies Assumption1. Let EP gL0+`f \ L̃ and D,R be a
bounded interval. When b tends to infinity, one has

sid ∀e.0,

sup
lPD

iTq,lsEb + l,bdiL2sR2d3Sn−2d−1d,L2sR2d3Sn−2d−1d ø Cb−3
4

−1
2

+e,

sup
lPD

iTsEb + l,bdiL2sR2d3Sn−2d−1d,L2sR2d3Sn−2d−1d ø Cb−3
4

+e.

sii d Suppose additionally that VPL1sRnd. For b large enough, Tq,lsEb+l ,bd and TsEb+l ,bd
are trace class and

sup
lPD

iTq,lsEb + l,bdi1 ø Cbsn−2−ld/2, sup
lPD

iTsEb + l,bdi1 ø Cbsn−2d/2.

Proof: Let us start with the pointsid. We start by estimating the operatorFq,0
* sEb+ld which is

bounded fromL2sSn−2d−13R2dd into L−b
2 sRn–2d,L2sR2ddd for all b.

1
2. Moreover, for allb.

1
2 and

wPL2sSn−2d−1d, we have

iF̃0sld*wiL−b
2

2 = lsn−2d−2d/2E
Rn−2d

kxl−bUE
Sn−2d−1

eiÎlxvdvU2

dx

= l−1E
Rn−2d

kl−1/2xl−bUE
Sn−2d−1

eixvdvU2

dx ø Clsb/2d−1iF0s1d*wiL−b
2

2

ø Clsb/2d−1iwiL2sSn−2d−1d
2 .

From this estimate, one deduces easily that for allb.1/2,

iFq,0sEb + ldib ª iFq,0sEb + ldiL
b
2sRn−2d,L2sR2ddd,L2sSn−2d−13R2dd

= iFq,0sEb + ld*iL2sSn−2d−13R2dd,L−b
2 sRn−2d,L2sR2ddd

ø CsEb + l − bLqdsb−2d/4. s22d

It follows from this estimate, Assumption 1, formulas20d and Proposition 2.2 that fore.0,
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iTq,lsbdiL2sR2d3Sn−2d−1d,L2sR2d3Sn−2d−1d

ø CiFq,0sEb + ldi1/2+e
2 3 iVsR0sEb + ldVdliL−1/2−e

2 sRn−2d,L2sR2ddd,L1/2+e
2 sRn−2d,L2sR2ddd

ø b−3
4

−1
2

+e. s23d

This achieves to prove the first estimate ofsid. The second one then follows by Eq.s19d.
Let us provesii d. Thanks to the resolvent estimates of Proposition 2.2, it suffices to show that

the operatoruVu
1
2Fq,0sld* :L2sSn−2d−13R2dd→L2sR2nd belongs to the Hilbert–Schmidt class and

that

iuVu
1
2Fq,0sEb + ldi2 ø Cbsn−2d/4, s24d

where i .i2 denotes the Hilbert–Schmidt norm. Forq=sq1, . . . ,qddPNd, let us denote by
Kqsy' ,x'd the kernel ofPq and byss. , .d the symplectic form onR2d. We have

Kqsy',x'd =
bd

2p
expS−

b

4
fuy' − x'u2 + 2issy',x'dgDLqsy',x',bd, s25d

with

Lqsy',x',bd = p
j=1

d

L̃qj−1Sb

2
uy',j − x',ju2D ,

where forsPN, L̃s is the Laguerre polynomial of orders ssee Ref. 14 for more detailsd. With these

notations, the kernelNsx' ,xi ,x'8 ,vd of uVu
1
2Fq,0sld* satisfies

Nsx',xi,x'8 ,vd = sEb + l − bLqdsn−2d−2d/4uVu
1
2Kqsx',x'8 de−iÎEb+l−bLqkxi,vl

= Osbsn−2d−2d/4duVu
1
2Kqsx',x'8 de−iÎEb+l−bLqkxi,vl

and

iNiL2sRn3R2d3Sn−2d−1d
2 = Osbsn+2d−2d/2dE

R2d3Rn−2d3R2d3Sn−2d−1
uVsx',xidue−sb/2dux' − x'8 u2

3 ULqSb

2
ux' − x'8 u2DU2

dx'dxidx'8 dv

ø Cbsn+2d−2d/2E
R2d3Rn−2d3R2d

uVsx',xidue−sb/2dux' − x'8 u2

3ULqSb

2
ux' − x'8 u2DU2

dx'8 dxidx'.

By change of variable, it comes

iNiL2sRn3R2d3Sn−2d−1d
2

ø Cbsn+2d−2d/2E
R2d3Rn−2d3R2d

uVsx',xidue−bux' − x'8 u2dx'8 dxidx'

ø Cbsn+2d−2d/2E
Rn

uVsxdudxE
R2d

e−ux'8 u2dx'8 ø Cbsn−2d/2

which provess24d. Using s24d and Proposition 2.2, it comes
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iTq,lsEb + ldi1 ø Cbsn−2−ld/2

and the proof ofsii d is complete. j

From this lemma, we know thatiTsEb+l ,bdi,1 and by Taylor expansion, we deduce from
s8d that for NPN

2ipssEb + l,bd = o
k=0

N
s− 1dk

k + 1
trsTsEb + l,bdk+1d + OsiTsEb + l,bdN+2i1d. s26d

Hence, we must show that forkPN, trsTsEb+l ,bdkd admits an expansion in powers ofb1/2. Using
the fact that forpÞq, PpPq=0, we deduce from Eq.s19d that

trsTsEb + l,bdkd = o
qPQ̃sEd

trSo
l=0

L

Tq,lsEb + l,bdDk

+ OsiTq,L+1
k sEb + l,bdi1d. s27d

At this point of the calculus, we can either continue the expansion to get a complete asymptotics
or we can stop the expansion at the first order to prove Theorem 3. Indeed, it follows from Lemma
4.1 that the remainder terms in Eqs.s26d and s27d satisfy

iTq,L+1
N sEb + l,bdi1 = Osbfn−1−NsL+2dg/2d andiTsEb + l,bdN+2i1 = Osbsn−N−3d/2d.

Therefore, Eqs.s26d and s19d yield

ssEb + l,bd =
1

2ip o
qPQ̃sEd

trsTq,0sEb + l,bdd + Osbsn−3d/2d. s28d

On the other hand, a standard calculation shows that the kernelNq,0 of Tq,0sEb+l ,bd is given by

Nq,0sv8,x'8 ,v,x'd = −
ip

s2pdn−2dsEb + l − bLqdsn−2d−2d/2Kqsx',x'8 dV̂isx',ÎEb + l − bLqsv − v8dd.

Using s25d, it follows that

trsTq,0sEb + l,bdd =E
Sn−2d−13R2d

Nq,0sv,x',v,x'ddx'dv

= −
ip

s2pdn−2d+1bdsEb + l − bLqdsn−2d−2d/2E
Sn−2d−13R2d

V̂isx',0ddx'dv

= −
ip messSn−2d−1d

s2pdn−2d+1 E
Rn

Vsxddxsbsn−2d/2sE − Lqdsn−2d−2d/2 + Osbsn−4d/2dd.

Combining this equation withs28d, we obtain the result claimed in Theorem 3.
The end of the paper is devoted to the proof of Theorem 4. We must show that for allN

PN* and all sl1, . . . ,lNdPNN,sk1, . . . ,kNdPNN,

trsTq,l1

k1
¯ Tq,lN

kN d

admits an asymptotic expansion in powers ofb1/2. For this purpose, we work directly on the kernel

of these operators that we expand with respect tob. For VPSsRd, let us denoteV̂ its Fourier
transform. The two next lemmas permit us to obtain an expansion of the kernel ofTq,l1

k1
¯Tq,lN

kN by
mean of the expansion of each term of the product.

Lemma 4.2. Let V1, V2PSsRd and for v, v8P h±1j, l.0 let
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Wsl,v,v8d = o
uPh±1j

V̂1sÎlsv − uddV̂2sÎlsu − v8dd.

Then, there exists VPSsRd such that

Wsl,v,v8d = V̂sÎlsv − v8dd + Osl−`d,

whenl→ +`.
Proof: From the properties of the Fourier transform, it is clear that

Wsl,v,v8d =Hse V1sxddxdse V2sxddxd + Osl−`d if v = v8,

Osl−`d if v Þ v8.

Let us set

Vsxd = SE V2syddyDV1sxd,

then it is clear that

Wsl,v,v8d = V̂sÎlsv − v8dd + Osl−`d.

j

Lemma 4.3: Let VPSsRd and for lPN* , v ,v8P h±1j, l.0 let

Wsl,v,v8d =E eiÎlsux1−x2u+. . .+uxl−xl+1u+xl+1v−x1v8dVsx1d ¯ Vsxl+1ddx1 ¯ dxl+1.

Then, there exists a sequencesVjd jPN of potentials inSsRd such that

Wsl,v,v8d = o
j=0

+`

siÎld−jV̂jsÎlsv − v8dd.

Proof: The integral being absolutely convergent, we have

Wsl,v,v8d =E
R

eiÎlsv−v8dyVsydṼsyddy,

with

Ṽsyd =E
R

eiÎlsuxu−xv8dVsx + yddx.

Moreover,

Ṽsyd =E
0

+`

Vsv8x + yddx +E
−`

0

e−2iÎlxVsv8x + yddx

= V0syd −
1

2iÎl
fe−2iÎlxVsv8x + ydgx=−`

x=0 +
v8

2iÎl
E

−`

0

e−2iÎlxV8sv8x + yddy

= Ṽ0syd + l−1/2Ṽ1syd +
v8

2iÎl
E

−`

0

e−2iÎlxV8sv8x + yddy,

with Ṽ0syd=e0
+`Vsv8x+yddx and Ṽ1syd=si /2dVsyd. In particular, Ṽ0 and Ṽ1 are C` functions

whose derivatives are bounded at all orders. Integrating by partsN times, we obtain
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Ṽsyd = Ṽ0syd + o
j=1

N

l−j /2v8 j−1

s2id j Vs j−1dsyd + Osl−N−1d.

Let us setṼjsyd=fv8 j−1/ s2id jgVs j−1dsyd, then

Wsl,v,v8d = o
j=0

N

l−j /2E
R

eiÎlsv−v8dyVsydṼjsyddy + Osl−N−1d = o
j=0

N

l−j /2V̂jsÎlsv − v8dd + Osl−N−1d,

with Vjsyd=VsydṼjsyd. As VPSsRd and for j ù0, Ṽj and their derivatives are bounded, it is clear
that Vj PSsRd and the proof is complete. j

Now, we give the proof of Theorem 4. Thanks to Eqs.s26d ands27d, it suffices to prove that
for all NPN* and all l =sl1, . . . ,lNdPNN, k=sk1, . . . ,kNdPNN,

trsTq,l1

k1
¯ Tq,lN

kN d

admits an asymptotic expansion in powers ofb1/2. For this purpose, we will simply show that the
kernel ofTq,l1

k1
¯Tq,lN

kN admits such an expansion. Let us start withTq,l j
kj , j P h1, . . . ,Nj. Recall that

Tq,l j
sEb + l,bd = s− 1dl j+12ipFq,0sEb + ldsVsxdR0sEb + l + i0ddl jVsxdFq,0sEb + ld* .

Moreover, it is well knownssee Ref. 11d that for E.0, the resolventf−sd2/dx2d−E− i0g−1 has a
kernelN0sx,yd given by

N0sx,yd =
1

2iÎE
eiÎEux−yu.

Therefore, the kernel ofTq,l j
takes the form

Nq,l j
sv,v8,x',x'8 d =

s− 1dl j+1

s2iÎEb + l − bLqdl j+1
Kqsx',x'8 dE eiÎEb+l−bLqsux1−x2u+¯+uxl j

−xl j+1u+xl j+1v−x1v8d

3Vsx',x1d ¯ Vsx',xl j+1ddx1 ¯ dxl j+1. s29d

By Lemma 4.3 applied in the variablexi, we obtain the following expansion:

Nq,l j
sv,v8,x',x'8 d = Kqsx',x'8 dsiÎbd−l j−1o

m=0

+`

siÎbd−mV̂m,q,l j

i sx',ÎEb + l − bLqsv − v8dd,

with Vm,q,l j PSsR3d. Using Lemma 4.2, it comes that the kernelNq,l j,kj
of Tq,l j

kj has the expansion

Nq,l j,kj
sv,v8,x',x'8 d = Kqsx',x'8 dsiÎbd−l j−1o

m=0

+`

siÎbd−mV̂m,q,l,k
i sx',ÎEb + l − bLqsv − v8dd,

with Vm,q,l j,kj
PSsR3d. Next, using again Lemma 4.2, it follows by induction thatTq,l1

k1
¯Tq,lN

kN has
a kernelNq,l,ksv ,v8 ,x' ,x'8 d which admits an expansion in powers ofib−1/2,

Nq,l,ksv,v8,x',x'8 d = siÎbd−ul u−No
m=0

+`

siÎbd−mV̂m,q,l,k
i sx',ÎEb + l − bLqsv − v8ddKqsx',x'8 d,

whereul uª l1+¯ + lN. Hence, we get
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trsTq,l1

k1 . . .Tq,lN

kN d = o
v=±1

E
R2

Nq,l,ksv,v,x',x'ddx' = 2siÎbd−ul u−No
m=0

+`

siÎbd−mE
R2

V̂m,q,l,k
i sx',0ddx'

= 2siÎbd−ul u−No
m=0

+`

siÎbd−mE
R3

Vm,q,l,ksxddx

and the proof of Theorem 4 is almost complete. Indeed, we have shown that there exists a
sequencesa jd jPN of real numbers such that

ssEb + l,bd =
1

2ip
bsn−2d/2o

j=0

+`

a jsE,ldsiÎbd−j .

Hence, we must prove that forj PN, a2j =0. For this purpose, let us remark thatSsl ,bd being
unitary, ssEb+l ,bd is real valued. Therefore, the coefficientsa2j, j PN vanish and the proof of
expansions11d is complete.

It remains to compute the coefficientsa0 anda1. From Eqs.s26d ands27d and Lemma 4.1 we
deduce that

ssEb + l,bd =
1

2ip o
q=0

fsE−1d/2g

o
k=0

2
s− 1dk

k + 1
trSo

l=0

2

Tq,lsEb + l,bdDk+1

+ Osb−1d.

Using again Lemma 4.1, we obtain

ssEb + l,bd =
1

2ip o
q=0

fsE−1d/2gStr Tq,0 + tr Tq,1 + tr Tq,2 −
1

2
tr Tq,0

2 − tr Tq,0Tq,1 +
1

3
tr Tq,0

3 D + Osb−1d,

s30d

and we must compute all the terms of the sum. From the proof of Theorem 3 withn=3, d=1, we
deduce that

trsTq,0sEb + l,bdd = −
2ip

4p2E
R3

VsxddxSb
1
2sE − 2q − 1d

−1
2 −

l

2
b

−1
2sE − 2q − 1d

−3
2D + OSb−3

2D .

By similar computations, we prove that

trsTq,0
2 sEb + l,bdd = −

1

4psE − 2q − 1d
SE VsxddxD2

+ Osb−1d

and

trsTq,0
3 sEb + l,bdd =

isE − 2q − 1d−3/2

8p
b−1/2SE VsxddxD3

+ Osb−1d.

Let us compute trsTq,1d. It follows from Eq. s29d that

trsTq,1sEb + l,bdd =
− b

8psEb + l − bLqd o
v=±1

E eiÎEb+l−bLqsux1−x2u+vsx1−x2ddVsx',x1dVsx',x2ddx1dx2dx'

=
− 1

8psE − 2q − 1dE s1 + e2iÎEb+l−bLqsux1−x2uddVsx',x1dVsx',x2ddx1dx2dx'

+ Osb−1d =
− 1

8psE − 2q − 1d
SE VsxddxD2
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−
2

8psE − 2q − 1dEx1øx2

e2iÎEb+l−1Lqsx2−x1dVsx',x1dVsx',x2ddx1dx2dx'

+ Osb−1d.

Integrating by parts with respect tox1, we obtain

trsTq,1sEb + l,bdd =
− 1

8psE − 2q − 1dSSE VsxddxD2

+
i

ÎEb + l − bLq
E Vsxd2dxD + Osb−1d

=
− 1

8psE − 2q − 1dSSE VsxddxD2

−
ib−1/2

8psE − 2q − 1d3/2E Vsxd2dxD + Osb−1d.

The computations of trsTq,2d and trsTq,0Tq,1d are similar to the preceding ones. We find

trsTq,0sEb + l,bdTq,1sEb + l,bdd =
isE − 2q − 1d−3/2

16p
b−1/2SE VsxddxD3

+ Osb−1d

and

trsTq,2sEb + l,bdd =
isE − 2q − 1d−3/2

48p
b−1/2SE VsxddxD3

+ Osb−1d.

Combining these equations withs30d, we obtain

ssEb + l,bd = −
g0sEd
4p2 b1/2SE VsxddxD +

lg1sEd
8p2 b−1/2SE VsxddxD

−
g1sEd
16p2 b−1/2SE Vsxd2dxD + Osb−1d

with

g jsEd = o
q=0

fsE−1d/2g

sE − 2q − 1d−1/2−j .

This completes the proof of Theorem 4. j

To conclude, let us notice that Theorem 4 could be generalized to the casen−2d.1 by using
stationary phase method in the variablexi. Nevertheless, there are some difficulties due to degen-
erate phases.
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We study the inviscid limit,m→0, of the stochastic viscous Burgers equation, for
the velocity field vmsx,td, t.0, xPRd, s]vm /]td+svm ·¹ dvm=−¹csx,td
−e¹ksx,tdẆt+sm2/2dDvm, for small e, with vmsx,0d; ¹S0sxd for some givenS0,

Ẇt representing white noise. Here we use the Hopf–Cole transformation,vm

=−m2¹ ln um, whereum satisfies the stochastic heat equation of Stratonovich-type
and the Feynmac–Kac Truman–Zhao formula forum, where dut

msxd
=fsm2/2dDut

msxd+m−2csx,tdut
msxdgdt+em−2ksx,tdut

msxd +dWt, with u0
msxd=T0sxd

3exps−S0sxd /m2d, S0 as before andT0 a smooth positive function. In an earlier
paper, Davies, Truman, and ZhaofJ. Math. Phys.43, 3293s2002dg, an exact solu-
tion of the stochastic viscous Burgers equation was used to show how the formal
“blow-up” of the Burgers velocity field occurs onrandom shockwavesfor thevm=0

solution of Burgers equation coinciding with the caustics of a corresponding
Hamiltonian system with classical flow mapF. Moreover, theum=0 solution of the
stochastic heat equation has itswavefrontdetermined by the behavior of the Hamil-
ton principal function of the corresponding stochastic mechanics. This led in par-
ticular to the level surface of the minimizing Hamilton–Jacobi function developing
cusps at points corresponding to points of intersection of the corresponding prelevel
surface with the precaustic, “pre” denoting the preimage underF determined alge-
braically. These results were primarily of a geometrical nature. In this paper we
consider smalle and derive the shape of the random shockwave for the inviscid
limit of the stochastic Burgers velocity field and also give the equation determining
the random wavefront for the stochastic heat equation both correct to first order in
e. In the casecsx,td= 1

2xTV2x, ¹ksx,td=−astd, we obtain the exact random shock-
wave and prove that its shape is unchanged by the addition of noise, it merely being
displaced by a random Brownian vectorNstd. By exploiting the Jacobi fields for
this problem we obtain the large time limit of the distribution of the Burgers fluid
velocity for noises which have infinite time averages, such as almost periodic ones.
Here resonance with the underlyinge=0 classical problem has an important effect.
Imitating these results for the case of a periodic underlying classical problem per-
turbed by small noise, arming ourselves with some detailed estimates for Green’s
functions enables us to make generalizations. In the stochastic case we have also
the possibility of “infinitely rapid” changes in the number of cusps on the minimiz-
ing level surface of the Hamilton–Jacobi function. This will engender stochastic
turbulence in the Burgers velocity field and, due to its stochasticity, may be of an
“intermittent” nature. There is no analog of this in the deterministic case. ©2005
American Institute of Physics.fDOI: 10.1063/1.1850836g
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I. INTRODUCTION

Stochastic Burgers equations have attracted a considerable amount of attention in recent years,
e.g., Refs. 2, 4, 7, 11, 12, 16, 20–24, 35, 41, 37, and 39. See also Refs. 3, 5, 18, and 30 for related
works. Burgers equations have been used to give models of turbulencessee especially Ref. 11d and
to model the large scale structure of the universe.34 Here we shall be interested in what has come
to be called Burgulence. Primarily we show how a knowledge of Jacobi fields, and the geometry
of the level surfaces of a Hamilton–Jacobi function and the associated caustic surface can be used
in determining the behavior of the velocity field of the viscous Burgers fluid in the inviscid limit.
The presence of viscosity provides access to a range of powerful analytical methods.

Consider the stochastic viscous Burgers equation for the velocity fieldvm=vmsx,td, xPRd, t
.0, smallePR,

]vm

]t
+ svm · ¹ dvm =

m2

2
Dvm − ¹ csxd − e ¹ ksx,tdẆt,

with initial velocity vmsx,0d= ¹S0sxd+Osm2d wherem2 is the coefficient of viscosity. Herec, k,
and S0 are C2 functions andWt is a Wiener process on the probability spacehV ,F ,Pj. The
corresponding heat equation forum=umsx,td is the Stratonovich equation

]um

]t
=

m2

2
Dum +

1

m2csxdum +
e

m2ksx,tdum + Ẇt,

umsx,0d = T0sxdexps− S0sxd/m2d,

whereT0 is a smooth positive function, the square root of the initial Burgers fluid density.
The connection betweenum and vm is the Hopf–Cole logarithmic transformationvm

=−m2¹ ln um. Our studies are driven by an interest in the blow-up ofv0sx,td where

v0sx,td = lim
m→0

vmsx,td.

We seek an understanding of the advent of discontinuities inv0 and the large time limit of its
probability density. In particular we show how for small, almost periodic noise resonating with the
underlying classical problem there is no invariant measure.

It is this correspondence with the stochastic heat equation that enables us to appeal to
asymptotic methods in our study of the viscous Burgers fluid. Moreover, these methods highlight
the importance of the stochastic dynamical flow and the stochastic Hamilton–Jacobi function in
determining the behavior of solutions. With this in mind we would expect, from the work of
Donsker, Freidlinet al.,19,17,41that we have asm→0,

− m2 ln umsx,td → inf
x0

fAsx0,x,td + S0sx0dg = Ssx,td, s1.1d

with

Asx0,x,td = inf
Xssd

Xs0d=x0

Xstd=x

AfXg,

whereAfXg is the stochastic action

adElectronic mail: i.m.davies@swansea.ac.uk
bdElectronic mail: a.truman@swansea.ac.uk
cdElectronic mail: h.zhao@lboro.ac.uk
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AfXg =
1

2
E

0

t

uẊ2ssduds−E
0

t

csXssddds− eE
0

t

ksXssd,sddWs

and

Asx0,x,td = Asx0,x,td + S0sx0d.

We shall assume thatx̃0sx,td the minimizer ofAsx0,x,td is unique. Note that we require absolute

continuity of X scf. Davies and Truman9 and references thereind and we will haveẊ continuous
almost surely. ThenSsx,td is the minimizing solution of the stochastic Hamilton–Jacobi equation

dSt +
u ¹ Su2

2
dt + csxddt + eksx,tddWt = 0, Ssx,0d = S0sxd.

SoSsx,td is Hamilton’s principal function for a stochastic classical mechanical pathXssd, satisfy-
ing the second order stochastic differential equation

dẊssd + ¹ csXssddds+ e ¹ ksXssd,sddWs = 0, sP s0,td,

with

Xs0d = x0, Ẋs0d = ¹ S0sx0d,

wherex0=x0sx,td is determined by the boundary conditionXstd=x. Here we finally have to set
x0= x̃0sx,td to get the minimizingS.

When x0sx,td above is unique, the solutions of the stochastic heat equation and the viscous
stochastic Burgers equation, cf. Ref. 41, for eachmù0 are, respectively,

ut
msxd = expH− m−2o

j=0

m

m2jSjsx,tdJE exp5−
m2m

2
E

0

t

DSmsys
m,t − sdds

+
1

2 o
j=m+1

2m

m2s j−1d o
0øi1,i2øm

i1+i2=j

E
0

t

¹ Si1
· ¹ Si2

sys
m,t − sdds6 ,

vmsx,td = o
j=0

m

m2jv jsx,td − m2 ¹ ln E5exp5−
m2m

2
E

0

t

¹ ·vmsys
m,t − sdds

+
1

2 o
j=m+1

2m

m2s j−1d o
0øi1,i2øm

i1+i2=j

E
0

t

vi1
·vi2

sys
m,t − sdds66 ,

wherev jsx,td= ¹Sjsx,td is known explicitly for j =0,1,2, . . .ssee Truman and Zhao41d.
Note that each second factor in the expectation is of the forms1+Osm2mdd and the first factor

gives the expansion up tom2m−2 for eachm. TheSj satisfy the stochastic Hamilton–Jacobi equa-
tions
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]Sj

]t
+

1

2 o
i1,i2ù0

i1+i2=j

¹ Si1
· ¹ Si2

=
1

2
DSj−1,

for j =0,1,2, . . .,with the convention1
2DS−1=−c−ekẆt, Ẇt being white noise and the Nelson

diffusion processys
m satisfying

dys
m = mdBs − ¹ o

j=0

m

m2jSjsys
m,t − sdds, y0

m = x, Bs is BM.

It is important to note thatS1, and hence allSj, areT0 dependent, cf. Ref. 41. Formally, we are
usingSm,o j=0

` m2jSj whereSm is the solution of the viscous stochastic Hamilton–Jacobi equation,

dSm + 1
2u ¹ Smu2 dt + c dt + ek dWt = 1

2m2DSm dt.

Changes in the degree of nonuniqueness ofx0sx,td is associated with discontinuities inv0sx,td and
u0sx,td and this occurs when infinitely many pathsXssd focus in zero volume centered atx. For
nondegenerate critical pathsXs·d, when the multiplicity ofx0sx,td, n=nsx,td, is finite so that for a
givenx andt the set of possible initial positionsx0 is hx0

1sx,td ,x0
2sx,td , . . . ,x0

nsx,tdj, we can deduce
that

umsx,td , o
i=1

n

ui exph− S0
i sx,td/m2j,

where

S0
i sx,td = S0sx0

i sx,tdd + Asx0
i sx,td,x,td

for i =1,2, . . . ,n and ui is an asymptotic series inm2 associated withx0
i sx,td as above.sThe

detailed structure ofui may be developed by drawing on the papers of Davies and Truman,8,9 Ellis
and Rosen13–15 and Truman and Zhao.41d Needless to say the dominant term in the above comes
from x̃0sx,td the minimizingx0sx,td so that

Ssx,td = min
i=1,2,. . .,n

S0
i sx,td

in line with the results of Freidlinet al.19,17 Here we assume, unless stated otherwise, that the
minimizer x̃0sx,td is unique. The caustic, where the focusing of the pathsXssd occurs, is important
sinceu0sx,td can switch discontinuously from being exponentially large to exponentially small as
we cross parts of the caustic. This is because two of thex0

i sx,td can coalesce and then disappear
causing the minimizingS0

i to disappear.
In this paper we develop inequalities showing how closely related the stochastic caustic and

wavefront are to their classical dynamical counterparts for small noise. Once again the classical
dynamical structures guide the arguments and we state our results for the caustic in terms of the

classical pathX0, the stochastic pathXe and their near neighborX̃e. We also derive inequalities

relating¹X0, ¹Xe, and¹X̃e. For small noise, the stochastic wavefront is shown to lie within ane
neighborhood of the classical wavefront by utilizing the solution of the matrix Jacobi equation, the
Green’s function, to construct the appropriate estimates. Our main theoremss3.5 and 4.6d relate to
the nonexistence of an invariant measure for the small noise stochastic Burgers equation when
there is resonance between the underlying classical mechanical problem and the almost periodic
noise. It is here that we use the detailed properties of Jacobi fields, developed by imitating more
or less standard results for the linear harmonic oscillator.
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II. STOCHASTIC DYNAMICS, Ht AND Ct

We now define our main structures and state without proof some of the key results from our
earlier paper.10 The familiar objects from classical dynamics are easily recognizable.

DefineAsx0,p0,td, the stochastic action, to be

1

2
E

0

t

uẊssdu2 ds−E
0

t

fcsXssddds+ eksXssd,sddWsg, a.s.,

with Xssd=Xss,x0,p0d satisfying

dẊssd = − ¹ csXssddds− e ¹ ksXssd,sddWs,

sP f0,tg, Xs0d=x0, Ẋs0d=p0, x0, p0PRd. We shall assume that the minimizingXssd satisfying

Xstd=x andẊs0d= ¹S0sXs0dd is unique in any space withẊ continuous, where we assume as usual
that Xssd is Fs measurable. Later on we must consider Poisson bracketshXssd ,Xsudjx0,p0

with
respect tox0, p0 variables which we suppress. We also allow forp0 to be an as yet unspecified
function of x0 such as¹S0sx0d.

Then, for¹c, ¹k Lipschitz, with Hessians¹2c, ¹2k and all second derivatives with respect to
space variables ofc andk bounded, according to Kunita,27 ]Xssd /]x0

a satisfies

d

ds
S ]Xssd

]x0
a D =

]Ẋs0d
]x0

a −E
0

s F¹2csXsrdd
]Xsrd
]x0

a dr + e¹2ksXsrd,rd
]Xsrd
]x0

a dWrG .

Moreover,

Ẋssd = Ẋs0d −E
0

s

f¹csXsrdddr + e ¹ ksXsrd,rddWrg. s2.1d

Define the random mapFs:Rd→Rd corresponding to the classical flow by the second order
stochastic differential equation

dsḞs = − ¹ csFsdds− e ¹ ksFs,sddWs,

with F0= I andḞ0= ¹S0.
We then haveXssd=FsFt

−1x, where we accept thatx0sx,td=Ft
−1x may not be necessarily

unique. Given some regularity, the global inverse function theorem gives a caustic timeTsvd
3s.0d such that, fors,Tsvd, Fs is a random diffeomorphism.40 So for t,Tsvd, x0sx,td is
unique. Therefore, as we shall see,

v0sx,td = ḞtFt
−1x = ¹ Ssx,td

is a formal solution of Burgers equation withm=0, which is well defined up to the caustic time
Tsvd.

Lemma 2.1: Assume S0, cPC2 and kPC2,0, ¹c, ¹k are Lipschitz, with Hessians¹2c, ¹2k and

all second derivatives with respect to space variables of c and k bounded. If X˙ ssd satisfies Eq.s2.1d
and we have p0, possibly x0 dependent, then almost surely

]A

]x0
a sx0,p0,td = Ẋstd ·

]Xstd
]x0

a − Ẋas0d.

Remark 2.1:Observe that, if we fixXstd independently ofx0, we obtain almost surely
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]A

]x0
a sx0,p0,td = − Ẋas0d,

for a=1,2, . . . ,d.
Let Xss,x0,xd=Xss,x0,p0dup0=psx0,x,td where p0=psx0,x,td is the sassumed uniqued random

minimizer of Asx0,p0,td with Xst ,x0,p0d=x.
Remark 2.2:Here we need the mapsRd→Rd defined byp0°Xsx0,p0,td, for fixed t, for each

x0PRd to be onto with probability onescf. Kolokoltsovet al.26,25d.
SetAsx0,x,td=Asx0,p0,tdup0=psx0,x,td and define Hamilton’s principal function corresponding to

the initial momentum¹S0sx0d to be

Asx0,x,td = Asx0,x,td + S0sx0d.

Then

]A
]x0

a sx0,x,td = 0 for a = 1,2, . . . ,d ⇒ Ẋs0d = ¹ S0sXs0dd

which defines the classical flow mapF.
We define a prelevel surface of Hamilton’s principal function for real constantc by eliminat-

ing x between the equations

Asx0,x,td = c and
]A
]x0

a sx0,x,td = 0,

a=1,2, . . . ,d, and a level surfaceHt by eliminatingx0. We denote the prelevel surface byFt
−1Ht.

Similarly we define the causticCt and the precausticFt
−1Ct by eliminatingx0 or x between

DetS ]2A
]x0

2sx0,x,tdD = 0 and
]A
]x0

a sx0,x,td = 0,

a=1,2, . . . ,d.
Remark 2.3:Note thatFt

−1Ht sandFt
−1Ctd are determined by taking algebraic inverse images,

i.e., by eliminatingx above. Those are not necessarily the same as the topological inverse images
Ft

−1sHtd andFt
−1sCtd. In fact as we shall demonstrateFt

−1CtÞFt
−1sCtd.

We shall need.
Lemma 2.2: The classical flow map x=Ftsx0d is a differentiable map fromFt

−1Ht to Ht with
Fréchet derivative

DFtsx0d = S−
]2A

]x ] x0
sx0,x,tdD−1S ]2A

]x0
2sx0,x,tdD ,

if A is C3 in space derivatives.
In the next section we investigate the linear harmonic oscillator case in detail. This will

provide us with the main ideas for the proofs of our general results.

III. HARMONIC OSCILLATOR WELLS WITH NOISE

The stochastic harmonic oscillator was studied by Albeverioet al.,1 Markus and
Weerasinghe,28 and McKean.29 The stochastic Mehler formula was first obtained by Truman and
Zhao38–40 and later using different techniques by Truman and Zastawniak.36

Considerv=vsx,td, xPRd, tPR+, satisfying
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dv + sv · ¹ dv dt = − V2x dt − e ¹ ksx,tddWt, s3.1d

with vsx,0d= ¹S0sxd, i.e., v is Burgers velocity field for the perturbed harmonic oscillator poten-
tial

csxd = 1
2xTV2x,

whereV2 is a positive definite, real, symmetric matrix. Here the perturbing potential is the white

noise termktsxdẆt, with real valuedktsxd=ksx,tdPC2,1sRd,R+d and Wt is one-dimensional
Brownian motion on the probability spacehV ,F ,Pj. The corresponding stochastic mechanics is

dsẊ
essd + V2Xessdds= − e ¹ ksXessd,sddWs, s3.2d

with

Xes0dsx0d = x0,

Ẋes0dsx0d = ¹ S0sx0d.

Herex0 must be chosen such that

Xestdsx0d = x,

for fixed t andx in vmsx,td and to minimizeAsx0,x,td, the choice being unique.
Whene=0, we have a harmonic oscillator, which defines the classical flow mapFs

0,

X0ssd = Fs
0x0 = cossVsdx0 + sinsVsdV−1 ¹ S0sx0d, s3.3d

V being the obvious positive square root ofV2.
Note that the solutionXessd of s3.2d can be found explicitly as follows: provided¹ks· ,sd

=−assd, is independent of spatial variables. We obtain in matrix notation

Xessd = cossVsdx0 + sinsVsdV−1 ¹ S0sx0d + eE
0

s

sinsVss− uddV−1asuddWu. s3.4d

It therefore turns out that

Xessd − eE
0

s

sinsVss− uddV−1asuddWu = Fs
0x0. s3.5d

The following simple result for shockwaves in a random environment is an easy corollary of the
above computations.

Theorem 3.1: At time t, let Dt
0sx0d=Dets]X0std /]x0d=Dets¹x0

Ft
0x0d=0 be the equation of the

precaustic in x0, whereFt
0 is the classical flow map for the harmonic oscillator without noise and

let x=Ftx0. Eliminating y0, let the corresponding equation at time t in y=Fty0 be

Dt
0ssFt

0d−1sydd = 0.

Then, if¹ksx,td=−astd, independent of x, the random shockwave in the presence of noise at time
t has equation

Dt
0ssFt

0d−1sy + eNstddd = 0,

where Nstd is the random vector

Nstd =E
0

t

V−1 sinsVst − sddassddWs.
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Remark 3.1:In this case the noise leaves the shape of the shockwaves unchanged merely
displacing them by a random vector −Nstd.

Remark 3.2:Needless to sayNstd satisfies the second order stochastic differential equation

dṄt + V2Nt dt = astddWt,

whereNs0d=0, Ṅs0d=0.
We need the following lemma, a simple one-dimensional result.
Lemma 3.2: Let as·dPC1sR+d be bounded, withlimt→` t−1/2astd=0, and let the infinite time

average

lim
t→`

t−1E
0

t

a2suddu = Msa2d . 0.

Then, if dsa2sudd /duPL1sR+d, the leading behavior of the noise term

Nstd =E
0

t

V−1 sinsVst − sddassddWs,

as t→` is given almost surely by

Nstd , V−1M
1
2sa2dssinsVtdBcstd − cossVtdBsstdd,

where Bc and Bs are normalized BMsRdd processes B, with EsB2stdd= t, correlated by

EsBcstdBssudd =E
0

tcstd∧tssud

a2srdcossVrdsinsVrddr ,

with

tcstd = infHs. 0:E
0

s

a2sudcos2sVuddu = tJ ,

tsstd = infHs. 0:E
0

s

a2sudsin2sVuddu = tJ .

Proof: We need McKean’s result on time changed Brownian motionssee p. 29 of McKean29d.
Now

E
0

t

a2sudcos2sVuddu =
1

2
E

0

t

s1 + coss2Vudda2suddu

and

t−1E
0

t

coss2Vuda2suddu =
1

2VtSa2stdsins2Vtd −E
0

t

sins2Vud
d

du
sa2suddduD → 0,

as t→`. j

If we now work in Cartesian axes relative to whichV is diagonal,Vi j =Vidi j , Vi .0, for
i , j =1,2, . . . ,d, we can deduce a vector version of the last lemma.

Lemma 3.3: Working in coordinates in whichV is diagonal and Nstd=sN1std , . . . ,Ndstdd, we
obtain the behavior as t→`,

Nistd , Vi
−1M

1
2sai

2dssinsVitdBcistd − cossVitdBsistdd,
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for i =1, . . . ,d, where the Bci ,Bsi are normalized correlated BMsRd processes with

EsBcistdBsjsudd =E
0

tci
std∧tsj

sud

aisrdajsrdcossVirdsinsV jrddr ,

together with similar results forEsBcistdBcjsudd and EsBsistdBsjsudd.
Remark 3.3:The above results hold for any finite value ofe, no matter how large. This gives

the leading behavior ofNstd as t→` in terms of the Jacobi fields of the zero noise problem and
thence the large time behavior ofv0sx,td andXesx,td and their sample paths. The Jacobi fields are
also important in understanding the small noise processes, as we see in the next section.

Example:We now illustrate the development of the semicubical parabolic shockwave with
respect to time for the velocity field of a Burgers’ fluid with initial velocitysxy,x2/2d in a
harmonic well with Vsx,yd=sx2+v2y2d /2. The effect of noise here is to superimpose on the
deterministic movement of the cusp caustic a Brownian motion. Let us just consider the deter-
ministic case. It is easy to see

FtSx0

y0
D = 1 x0 cos t + x0y0 sin t

y0 cosvt +
1

2v
x0

2 sin vt 2 . s3.6d

So

Dt
0sx0,y0d = detScos t + y0 sin t, x0 sin t

v−1x0 sin vt, cosvt
D = cosvt cos t + y0 cosvt sin t − v−1x0

2 sin t sin vt.

s3.7d

The precaustic is then given byDt
0sx0,y0d=0. The caustic is obtained by mapping the precaustic

under the mapFt. If v is rational then the deterministic motion of the cusp is periodic as is the
deterministic part ofvt

0. The equation is then given by

8sy cscvt + cot t cot vtd3v = 27x2 cot2 vt csc2t. s3.8d

The periodic motion of the cusp can be seen in Fig. 1 where we plot a succession of caustics for
the casev=3/2. Timeincreases from left to right and top to bottom. Many more illustrations of
this periodic behavior can be found in the Ph.D. thesis of Reynolds.31

We continue to investigate Burgers equation inRd, Eqs. s3.1d and s3.2d, where ¹ksx,ud
=−asud is independent ofx ande0

t uasudu2 du,`. The key elementary lemma here is the follow-
ing.

Lemma 3.4: Let Ẋestd−Ẋ0std=Ṅstd=ee0
t cosfVst−udgasuddWu. Then, working in a coordinate

system in whichV2 is diagonal, Ṅstd has mean zero and is Gaussian with covariance,

Aij
−1std = EfṄistdṄjstdg

=
e2

4 o
±
HcosssVi ± V jdtdE

0

t

cosssVi ± V jdudaisudajsuddu

+ sinssVi ± V jdtdE
0

t

sinssVi ± V jdudaisudajsudduJ, t . 0.

Proof: The point is that, if 0=s0,s1, ¯ ,sn+1= t is a partition off0,tg,
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Ṅistd = limo
j

cosfVist − sjdgaissjdfWssj+1d − Wssjdg

exhibitsṄstd as the limit of a sum of independent Gaussians. So for eacht Ṅstd is Gaussian with
mean and covariance as above. j

A strikingly simple result emerges if we assume thatas·d is almost periodic in the sense that
in our coordinate systemassd=sa1ssd ,a2ssd , . . . ,adssdd, where eachaj is almost periodic.fThe
class of almost periodic functions is a natural generalization of periodic functions in that they can
be realized as uniform limits of trigonometric polynomials and iff is almost periodic
limt↑` t−1et0

t0+t fssdds=Msfd exists, the class being closed under addition and multiplication.g When
as·d is almost periodic in our setup we refer to almost periodic white noise forces. The possibility
of resonance between the almost periodic noise and the restraining harmonic oscillator force
affects the long time behavior of the Burgers fluid.

Theorem 3.5: For almost periodic white noise forces, for underlying harmonic oscillator
potentials, the inviscid limit of Burgers fluid velocityv0sx,td satisfies

Esv0sx,tdd = Ẋ0sx,td = cossVtdx̃0sx,td + V−1 sinsVtd ¹ S0sx̃0sx,tdd,

where x̃0sx,td is the minimizer (assumed to be unique) of the deterministicAsx0,x,td. Moreover,

Pssv0sx,td − Ẋ0sx,tdd P dvd = expS−
vTAstdv

2
Ds2pd−d/2sdet Ad−1/2 dv,

FIG. 1. Periodic motion of caustic.
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where the matrix A−1std is specified above. In particular as t,` we obtain

t−1Aij
−1std = t−1Efsvi

0sx,td − Ẋi
0sx,tddsv j

0sx,td − Ẋj
0sx,tddg

,
e2

4 o
±

hcosssVi ± V jdtdMfcosssVi ± V jd·dais·dajs·dg

+ sinssVi ± V jdtdMfsinssVi ± V jd·dais·dajs·dgj,

where M denotes the infinite time average.
Proof: The proof is a simple consequence of the properties of almost periodic functions.6

j

Remark 3.4:sid The ensemble average of the Burgers fluid velocityEsv0sx,tdd inherits the

singularity structure ofẊ0sx,td with caustics depending on the initial velocity field¹S0.
sii d The distribution of Burgers fluid velocity depends only on the forces in this harmonic

oscillator case.
siii d Evidently, if there is resonance between the noise and the harmonic oscillator forces, there

is no invariant measure for this problem as expected.
We emphasize here that the above results are true for any value ofe.0. We see in the next

section to what extent the above results generalize to the nonlinear setting for small noise. Our
main results will require new detailed estimates for this problem.

IV. GENERAL POTENTIALS WITH SMALL NOISE PERTURBATION

Having considered a special case in the preceding section we now demonstrate for small noise
the closeness of the stochasticXt, Ct, andHt to their deterministic counterparts for more general
potentials. LetXe, with e highlighted, satisfy

dẊesx0,sd = − ¹ csXesx0,sddds− e ¹ ksXesx0,sdddWs, s4.1d

with Xesx0,0d=x0 andẊesx0,0d= ¹S0sx0d, for 0,s, t. Abusing notation, letX0sx0,sd=Fsx0 be the
deterministic version, wheree=0, and letG be given byGi jsx0,s,ud=hXi

0sud ,Xj
0ssdjuss−ud, the

first term being the Poisson bracket, the second a Heaviside function. The following elementary
lemma is key.

Lemma 4.1: With X0 defined as above, G satisfies the matrix Jacobi equation

S d2

ds2 + ¹2csX0sx0,sddDG = 0,Gsx0,s+,sd = 0,UdG
ds

sx0,s,udU
s=u+

= I .

Furthermore, s] /]x0
i dGsx0,s,ud satisfies

d2

ds2

]

]x0
i Gsx0,s,ud + o

j=1

n
]

]Xj
0¹2csX0sx0,sddS ]

]x0
i Xj

0sx0,sdDGsx0,s,ud+ ¹2csX0sx0,sdd
]

]x0
i Gsx0,s,ud = 0

s4.2d

and

¹x0
i Gsx0,s+,sd = 0, U d

ds
¹x0

i Gsx0,s,udU
s=u+

= 0. s4.3d

Proof: A trivial computation using the properties of Poisson brackets. j

We now come to one of our main results.
Theorem 4.2:Subject to certain conditions on the continuity and boundedness of c and k and

their derivatives, define
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X̃esx0,sd = Fsx0 − eE
0

s

Gsx0,s,ud ¹ ksFux0ddWu,

for sP f0,tg. Then there exists a constant M.0 such that for anyd.0 and sufficiently smalle
.0,

Phe−3
2uXesx0,sd − X̃esx0,sdu . d, some sP f0,tgj ,

Me2

d4 , s4.4d

and

Phe−3
2u ¹ Xesx0,sd − ¹ X̃esx0,sdu . d, some sP f0,tgj ,

Me

d2 . s4.5d

We have Xesx0,sd−X̃esx0,sd=ose3 / 2d, ¹Xesx0,sd− ¹ X̃esx0,sd= + se3 / 2d as e→0 in probability.

Proof: sid We first proves4.4d. From the definition ofX̃esx0,sd and Lemma 4.1, it is easy to see

X̃
˙ esx0,sd = Ḟsx0 − eE

0

s ]

]s
Gsx0,s,ud ¹ ksFux0ddWu, sP f0,tg.

Differentiating with respect tos again we have

dX̃
˙ esx0,sd = − ¹ csFsx0dds− e ¹ ksFsx0ddWs − eE

0

s ]2

]s2Gsx0,s,ud ¹ ksFux0ddWu ds

=− ¹ csFsx0dds+ S¹2csFsx0deE
0

s

Gsx0,s,ud ¹ ksFux0ddWuDds− e ¹ ksFsx0ddWs.

It turns out that by Taylor’s theorem, there existj1 andj2 such that for 0øsø t,

dX̃
˙ esx0,sd = − ¹ cSFsx0 − eE

0

s

Gsx0,s,ud ¹ ksFux0ddWuDds

− e ¹ kSFsx0 − eE
0

s

Gsx0,s,ud ¹ ksFux0ddWuDdWs+ e2 o
i,j=1

d
]2

]j1
i j1

j ¹ csj1d

3SE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD
i
SE

0

s

Gsx0,s,ud ¹ ksFux0ddWuD
j

ds+ e2¹2ksj2d

3SE
0

s

Gsx0,s,ud ¹ ksFux0ddWuDdWs

= − ¹ csX̃esx0,sddds− e¹X̃0ksX̃esx0,sdddWs + e2N1ssdds+ e2N2ssddWs.

HereN1 andN2 are given by

N1ssd = o
i,j=1

d
]2

]j1
i j1

j ¹ csj1dSE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD
i
SE

0

s

Gsx0,s,ud ¹ ksFux0ddWuD
j

,

s4.6d

N2ssd = ¹2ksj2dE
0

s

Gsx0,s,ud¹X0ksFux0ddWu.

Now it is easy to see that
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X̃esx0,sd = x0 − s¹ S0sx0d −E
0

sE
0

r

¹ csX̃esx0,udddu dr− eE
0

sE
0

r

¹ ksX̃esx0,udddWu dr

+ e2E
0

sE
0

r

N1suddu dr + e2E
0

sE
0

r

N2suddWu dr

=x0 − s¹ S0sx0d −E
0

s

ss− rd ¹ csX̃esx0,rdddr− eE
0

s

ss− rd ¹ ksX̃esx0,rdddWr

+ e2E
0

s

ss− rdN1srddr + e2E
0

s

ss− rdN2srddWr . s4.7d

On the other hand, the solution ofs4.1d can be represented by

Xesx0,sd = x0 − s¹ S0sx0d −E
0

s

ss− rd ¹ csXesx0,rdddr − eE
0

s

ss− rd ¹ ksXesx0,rdddWr .

s4.8d

Therefore it turns out that there existsM1.0 such that

uX̃esx0,sd − Xesx0,sdu4 = U−E
0

s

ss− rds¹csX̃esx0,rdd − ¹ csXesx0,rddddr− eE
0

s

ss− rds¹ksX̃esx0,rdd

− ¹ ksXesrddddWr+ e2E
0

s

ss− rdN1srddr + e2E
0

s

ss− rdN2srddWrU4

øM1uE
0

s

ss− rds¹csX̃esx0,rdd − ¹ csXesx0,rddddr u4+ M1e4uE
0

s

ss− rd

3s¹ksX̃esx0,rdd − ¹ ksXesx0,rddddWru4+ M1e8uE
0

s

ss− rdN1srd

3dr u4 + M1e8uE
0

s

ss− rdN2srddWru4. s4.9d

Now using Hölder’s inequality,Ese0
sfsrddWrd4øM2se0

sEf4srddr for a constantM2.0, and the
Lipschitz continuity we have

E sup
0øsøt

uX̃esx0,sd − Xesx0,sdu4øM1SE
0

s

ss− rd
4
3drD3

EE
0

s

sup
0ørøs

u ¹ csX̃esx0,rdd − ¹ csXesx0,rddu4 dr

+ M1M2e4sE
0

s

ss− rd4E sup
0ørøs

u ¹ ksX̃esx0,rdd − ¹ ksXesrddu4 dr

+ M1e8SE
0

s

ss− rd
4
3 drD3E

0

s

E sup
0ørøs

uN1srdu4 dr+ M1M2e8s

3E
0

s

ss− rd4E sup
0ørøs

uN2srdu4 dr

øM3s
7L4E

0

s

E sup
0ørøs

uX̃esx0,rd − Xesx0,rdu4 dr+ M3s
4e4L4
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3E
0

s

E sup
0ørøs

uX̃esx0,rd − Xesrdu4 dr+ M3e8s7E
0

s

E sup
0ørøs

uN1srdu4dr

+ M3s
4e8E

0

s

E sup
0ørøs

uN2srdu4 dr . s4.10d

Here L is a Lipschitz constant of ¹c and ¹k and M3 is a constant. But
using inequality Ese0

sfsrddWrd8øM4s
4 / 3e0

sEsfsrdd8dr for a M4.0, and taking M5

=n maxl,j1,j2
hueigenvalue of the Hessians¹2s¹lcsj1ddd u , u eigenvalue of the Hessians¹2sksj2ddd u j,

then

E sup
0øsøt

uN1srdu4 ø M4M5r
4
3E

0

r

sup
0ørøs

, Gsx0,s,ud ¹ ksFux0d,Gsx0,s,ud ¹ ksFux0d.4 du ø M6r
4
3 ,

s4.11d

and

E sup
0øsøt

sN2srdd4 = M4M2rE
0

r

sup
0ørøs

, Gsx0,s,ud ¹ ksFux0d,Gsx0,s,ud ¹ ksFux0d.2 du ø M6r .

s4.12d

HereM6.0 is a constant.
It follows from s4.10d that there existsM7.0 such that

E sup
0øsøt

sX̃esx0,sd − Xesx0,sdd4øM3s
7L4E

0

s

E sup
0ørøs

sX̃esx0,rd − Xesx0,rdd4 dr

+ M3s
4e4L4E

0

s

E sup
0ørøs

sX̃esx0,rd − Xesx0,rdd4 dr+ M7s
28
3 e8 + M7s

6e8.

s4.13d

By using the Gronwall inequality we know that for 0øsø t,

E sup
0øsøt

sX̃esx0,sd − Xesx0,sdd4 ø Me8, s4.14d

for a constantM .0. Then s4.4d follows from the Chebyshev inequality. Following a similar
method, one can prove that 0øsø t,

E sup
0øsøt

sXsx0,sdd4 ø M , s4.15d

for a constantM .0.

sii d Now we proves4.5d. Denote¹i =] /]x0
i . From the definition ofX̃esx0,sd we know

¹iX̃
esx0,sd = ¹iFsx0 − eE

0

s

Gsx0,s,ud¹2ksFux0d¹iFux0 dWu − eE
0

s

¹iGsx0,s,ud ¹ ksFux0ddWu.

Thus, applying Lemma 4.1 again we have
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d

ds
¹iX̃

esx0,sd = ¹iḞsx0 − eE
0

s ]

]s
Gsx0,s,ud¹2ksFux0d¹iFux0 dWu

− eE
0

s ]

]s
¹iGsx0,s,ud ¹ ksFux0ddWu.

Then differentiating again and using Lemma 4.1 we have

d
d

ds
¹iX̃

esx0,sd = − ¹2csFsx0ds¹iFsx0dds− e¹2ksFsx0ds¹iFsx0ddWs

− eE
0

s ]2

]s2Gsx0,s,ud¹2ksFux0d¹iFux0 dWu ds

− eE
0

sS ]2

]s2¹iGsx0,s,udD ¹ ksFux0ddWu ds

= − ¹2csFsx0ds¹iFsx0dds+ ¹2csFsx0deE
0

s

Gsx0,s,ud¹2ksFux0d¹iFux0

3dWu ds+ o
j=1

d
]

]Xj
¹2csFsx0ds¹iFs

jx0deE
0

s

Gsx0,s,ud ¹ ksFux0ddWu ds

+ ¹2csFsx0deE
0

s

s¹iGsx0,s,udd ¹ ksFux0ddWu ds− e¹2ksFsx0ds¹iFsx0ddWs

=− ¹2csFsx0d¹iX̃
esx0,sdds+ o

j=1

d
]

]Xj
¹2csFsx0ds¹iFs

jx0de

3E
0

s

Gsx0,s,ud ¹ ksFux0ddWu ds− e¹2ksFsx0ds¹iFsx0ddWs.

Now using Taylor’s theorem we know that there existj3 andj4 such that

d
d

ds
¹iX̃

esx0,sd = − ¹2cSFsx0 − eE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD¹iX̃
esx0,sdds

− e¹2kSFsx0 − eE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD¹iX̃
esx0,sddWs

− e2o
j=1

d
]

]Xj
¹2csFsx0dFE

0

s

Gsx0,s,ud¹2ksFux0d¹iX
0sx0,uddWu

+E
0

s

¹iGsx0,s,ud ¹ ksFux0ddWuG3SE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD
j

ds

+ e2o
j
o

l

s¹j3
j ¹j3

l ¹2csj3ddSE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD
j

3 SE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD
l

¹iX̃
esx0,sdds− e2o

j

¹j4
j ¹2ksj4d

3SE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD
j

¹isX̃esx0,sdddWs

= − ¹2csX̃esx0,sdd¹iX̃
esx0,sdds− e¹2ksX̃esx0,sdd¹iX̃

esx0,sddWs
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+ e2N3ssdds+ e2N4ssddWs, sP f0,tg.

HereN3 andN4 are given by

N3ssd = − o
j=1

d
]

]Xj
¹2csFsx0dFE

0

s

Gsx0,s,ud¹2ksFux0d¹iX
0sx0,uddWu

+E
0

s

¹iGsx0,s,ud ¹ ksFux0ddWuGSE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD
j

+ o
j
o

l

s¹j3
j ¹j3

l c9sj3dd

3SE
0

s

Gsx0,s,ud ¹ ksFux0ddWuD
j
SE

0

s

Gsx0,s,ud ¹ ksFux0ddWuD
l

¹iX̃
esx0,sd,

s4.16d

N4ssd = − o
j

¹j4
j ¹2ksj4dSE

0

s

Gsx0,s,ud ¹ ksFux0ddWuD
j

¹iX̃
esx0,sd.

Using the Fubini theorem, it is easy to see that

¹iX̃
esx0,sd = ei − s¹i ¹ S0sx0d −E

0

sE
0

r

¹2csX̃esx0,udddu¹iX̃
esx0,rddr − eE

0

sE
0

r

¹2ksX̃esx0,udd

3dWu¹iX̃
esx0,rddr+ e2E

0

sE
0

r

N3suddu dr + e2E
0

sE
0

r

N4suddWu dr

= ei − s¹i ¹ S0sx0d −E
0

s

ss− rd¹2csX̃esx0,rdd¹iX̃
esx0,rddr

− eE
0

s

ss− rd¹2ksX̃esx0,rdd¹iX̃
esx0,rddWr

+ e2E
0

s

ss− rdN3srddr + e2E
0

s

ss− rdN4srddWr . s4.17d

Hereei =s0,0, . . . ,0 ,1 ,0, . . . ,0d.

On the other hand, differentiatings4.8d we have

¹iX
esx0,sd = ei − s¹i ¹ S0sx0d −E

0

s

ss− rd¹2csXesx0,rdds¹iX
esx0,rdddr − eE

0

s

ss− rd¹2ksXesx0,rdd

3s¹iX
esx0,rdddWr . s4.18d

Note here¹i ¹S0,¹2c,¹2k are bounded. So it is easy to prove there existsM1.0 such that
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E sup
0øsøt

u¹iX
esx0,sdu4 ø M1. s4.19d

Therefore it turns out that

u¹iX̃
esx0,sd − ¹iX

esx0,sdu2=U−E
0

s

ss− rds¹2csXesx0,rdd − ¹2csX̃esx0,rddd¹iX
esx0,rddr −E

0

s

ss− rd

3s¹2csX̃esx0,rdds¹iX
esx0,rd − ¹iX̃

esx0,rdddr − eE
0

s

ss− rds¹2ksXesx0,rdd

− ¹2ksX̃esx0,rddd¹iX
esx0,rddWr − eE

0

s

ss− rd¹2ksX̃esx0,rds¹iX
esx0,rdd

− ¹iX̃
esx0,rdddWr + e2E

0

s

ss− rdN3srddr + e2UE
0

s

ss− rdN4srddWrU2

.

s4.20d

This leads to, for any 0øsø t,

E sup
0øsøt

u¹iX̃
esx0,sd − ¹iX

esx0,sdu2ø6E sup
0øsøt

UE
0

s

ss− rds¹2csX̃esx0,rdd − ¹2csXesx0,rddd¹iX
esx0,rddr u2

+ 6E sup
0øsøt

uE
0

s

ss− rds¹2csX̃esx0,rdds¹iX
esx0,rd − ¹iX̃

esx0,rdddr u2

+ 6e2E sup
0øsøt

uE
0

s

ss− rds¹2ksX̃esx0,rdd

− ¹2ksXesrddd¹iX
esx0,rddWru2+ 6e2E sup

0øsøt
uE

0

s

ss

− rd¹2ksX̃esx0,rdds¹iX
esx0,rd − ¹iX

esx0,rdddWru2

+ 6e4E sup
0øsøt

uE
0

s

ss− rdN3srddr u2 + 6e4E sup
0øsøt

uUE
0

s

ss

− rdN4srddWrU2

. s4.21d

Denote byM2=supxPRdhueigenvalue of¹2csxddu , ueigenvalue of¹2ksxdduj and byL the Lipschitz
constant of¹2c and¹2k. So by the Hölder inequality and the Lipschitz continuity we have

E sup
0øsøt

u¹iX̃
esx0,sd − ¹iX

esx0,sdu2

ø6E sup
0øsøt

E
0

s

ss− rd2u¹2csX̃esx0,rdd − ¹2csXesx0,rddu2dr

3E
0

s

u¹iX
esx0,rdu2 dr+ 6E sup

0øsøt
E

0

s

ss− rd2 dr

3E
0

s

u¹2csX̃esx0,rdds¹iX
esx0,rd − ¹iX̃

esx0,rddu2 dr+ 6e2E sup
0øsøt

E
0

s

ss− rd2u¹2ksX̃esx0,rdd
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− ¹2ksXesrddd¹iX
esx0,rd2 dr+ 6e2E sup

0øsøt
E

0

s

ss− rd2u¹2ksX̃esx0,rdds¹iX
esx0,rd − ¹iX̃

esx0,rddu2 dr

+ 6e4E sup
0øsøt

E
0

s

ss− rd2 drE
0

s

uN3srdu2 dr + 6e4E sup
0øsøt

E
0

s

ss− rd2uN4srdu2 drø6HE sup
0øsøt

SE
0

s

ss

− rd2u¹2csX̃esx0,rdd − ¹2csXesx0,rddu2 drD2J1/2

3 HE sup
0øsøt

SE
0

s

s¹iX
esx0,rdd2 drD2J1/2

+ 2M2s
3E

0

s

E sup
0ørøs

u¹iX
esx0,rd − ¹iX

esx0,rdu2 dr+ 6e2

3E
0

s

ss− rd2hE sup
0ørøs

s¹2ksX̃esx0,rdd − ¹2ksXesrddd4j1/2hE sup
0ørøs

s¹iX
esx0,rdd4j1/2 dr

+ 6e2M2s
2EE

0

s

E sup
0ørøs

s¹iX
esx0,rd − ¹iX̃

esx0,rdd2 dr+ 2e4s3E
0

s

E sup
0ørøs

uN3srdu2 dr

+ 6s2e4E
0

s

E sup
0ørøs

uN4srdu2 dr . s4.22d

This leads to

E sup
0øsøt

u¹iX̃
esx0,sd − ¹iX

esx0,sdu2ø6L2HE
0

s

ss− rd4 drE
0

s

E sup
0ørøs

uX̃esx0,rd − Xesx0,rdu4 drJ1/2

3 HE
0

s

E sup
0ørøs

u¹iX
esx0,rdu4 drJ1/2

+ 6L2e2E
0

s

ss− rd2

3hE sup
0ørøs

uX̃esx0,rd − Xesrdu4j1/2 3 hE sup
0ørøs

u¹iX
esx0,rdu4j1/2 dr

+ 2M2s
3E

0

s

Eu¹iX
esx0,rd − ¹iX̃

esx0,rdu2 dr

+ 6e2M2s
2E

0

s

E sup
0ørøs

u¹iX
esx0,rd − ¹iX̃

esx0,rdd2 dr

+ 2e4s3E
0

s

E sup
0ørøs

uN3srdu2 dr + 6s2e4E
0

s

E sup
0ørøs

uN4srdu2 dr .

s4.23d

Note s4.19d. Similar to the estimate ofN1 andN2, we can prove that there existsM3.0 such that

E sup
0øsøt

uN3srdu2 ø M3 , ` s4.24d

and

E sup
0øsøt

uN4srdu2 ø M3 , `. s4.25d

It follows from s4.14d and s4.23d–s4.25d that there existsM4.0 such that
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E sup
0øsøt

u¹iX̃
esx0,sd − ¹iX

esx0,sdu2øM4s
3E

0

s

E sup
0ørøs

u¹iX̃
esx0,rd − ¹iX

esx0,rdu2 dr

+ M4e2E
0

s

E sup
0ørøs

u¹iX̃
esx0,rd − ¹iX

esx0,rdu2 dr + M4e4.

s4.26d

By using the Gronwall inequality we know that

E sup
0øsøt

u¹iX̃
esx0,sd − ¹iX

esx0,sdu2 ø Me4, s4.27d

for a constantM .0. Thens4.5d follows from Chebyshev inequality. j

A. Behavior of the caustic

Define for any given 0øT,`,

V0 = hv P V:e−3
2 sup

x0PRd
u¹Xesx0,sd − ¹ X̃esx0,sdu , d for all sP f0,Tgj.

Then from Theorem 4.2

PhV0j . 1 −
Me

d2 .

Now we define for eachvPV0.
In the case of the causticCt we define

Dpre
e = hst,x0d:Det ¹x0

Xt
esx0d Þ 0,0ø t ø Tj,

Dpre= hst,x0d:Det ¹x0
Ftx0 Þ 0,0ø t ø Tj.

Lemma 4.3: Ase→0, f0,Tg3Rd−Dpre
e → f0,Tg3Rd−Dpre in probability for any given T

.0. That is to say the precaustic surface of the stochastic dynamics converges to the precaustic
surface of the classical mechanics ase→0 in probability.

Proof: From Lemma4.1, it is easy to see that for eachvPV0,

¹x0
Xesx0,sd = ¹ Fsx0 − eE

0

s

Gsx0,s,ud¹2ksFux0d¹x0
Fux0 dWu + osed.

So if Dets¹Fsx0dÞ0, then for sufficiently smalle, Det s¹Xesx0,sddÞ0. That is to say,Dpre
e

→Dpre ase→0 in probability. So ase→0, f0,Tg3Rd−Dpre
e → f0,Tg3Rd−Dpre in probability.

j

Theorem 4.4:Denote for any given T.0,

De = hst,xd:Det s¹sXedt
−1xd Þ 0,0ø t ø Tj,

D = hst,xd:Dets¹Ft
−1xd Þ 0,0ø t ø Tj.

Thenf0,Tg3Rd−De→ f0,Tg3Rd−D, ase→0. That is to say the caustic surface of the stochas-
tic dynamics with noise converges in probability to the caustic surface of the classical mechanics
without noise ase→0.

Proof: Denote byDpre
e ssd a projection ofDpre

e on Rd such thatss,Dpre
e ssdd,Dpre

e . So
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De = hss,Xs
esDpre

e ssdd,all sj. s4.28d

But

Xs
esDpre

e ssdd = XssDpre
e ssdd + sXs

esDpre
e ssdd − XssDpre

e ssddd. s4.29d

But from Lemma 4.1 and Lemma 4.3, ase→0 in probability,

XssDpre
e ssdd → XssDpressdd s4.30d

and

Xs
esDpre

e ssdd − XssDpre
e ssdd → 0. s4.31d

ThereforeXs
esDpre

e ssdd→XssDpre
e ssdd, i.e., Dessd→Dssd. SoDe→D. j

B. Behavior of the wavefront

To characterize the wavefrontHt we must consider the Hamilton principal functionSesx,td
where we have, once again, emphasized thee dependence.

Theorem 4.5: Let fs be the minimizer of

1

2
E

0

t

uḟsu2 ds+ S0sftd −E
0

t

csfsdds,

satisfyingft=x andfs
e be the minimizer of12e0

t uḟs
eu2 ds+S0sft

ed−e0
t csfs

edds−ee0
t ksfs

eddWs, satis-
fying ft

e=x for almost allvPV. Then we have for almost allvPV

Ssx,td − eE
0

t

ksfs
eddWs ø Sesx,td ø Ssx,td − eE

0

t

ksfsddWs. s4.32d

In particular, ase→0, Sesx,td→Ssx,td a.s.
Furthermore, for the classical mechanics, assume there exists a unique x0 for fixed t and x

such thatFtx0=x. The random wavefront for the heat equation hassx,td equation

S0sx,td = eE
0

t

ksFsx0ddWs + osed,

where S0sx,td is Hamilton’s principal function for the path X0sx,tdssd.
Proof: By the definition offs andfs

e, it is easy to see for almost allv,

1

2
E

0

t

uḟs
eu2 ds+ S0sft

ed −E
0

t

csfs
eddsù

1

2
E

0

t

uḟsu2 ds+ S0sftd −E
0

t

csfsdds, s4.33d

and

1

2
E

0

t

uḟsu2 ds+ S0sftd −E
0

t

csfsdds− eE
0

t

ksfsddWs

ù
1

2
E

0

t

uḟs
eu2 ds+ S0sft

ed −E
0

t

csfs
edds− eE

0

t

ksfs
eddWs. s4.34d

It turns out that
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1

2
E

0

t

uḟsu2 ds+ S0sftd −E
0

t

csfsdds− eE
0

t

ksfsddWs

ù
1

2
E

0

t

uḟs
eu2 ds+ S0sft

ed −E
0

t

csfs
edds− eE

0

t

ksfs
eddWs

ù
1

2
E

0

t

uḟsu2 ds+ S0sftd −E
0

t

csfsdds− eE
0

t

ksfs
eddWs. s4.35d

That is s4.32d. Denote

V1 =Hv P V:e sup
0øtøT

UE
0

t

ksfsddWsU ø dJ , s4.36d

and

V2 =Hv P V:e sup
0øtøT

UE
0

t

ksfs
eddWsU ø dJ . s4.37d

But it is easy to see that

PhV1j ù PHeE
0

t

ksfsddWs −
de2

2e2 maxx k2sxdTE0

t

k2sfsddsø
1

2
dJ ù 1 − e−fd2/2e2 maxx k2sxdTg.

s4.38d

Similarly

PhV2j ù 1 − e−fd2/2e2 maxx k2sxdTg. s4.39d

So for vPV1ùV2,

Ssx,td − d ø Sesx,td ø Ssx,td + d. s4.40d

From this, it is easy to conclude ase→0, Sesx,td→Ssx,td almost surely. Now we assume that
there exists a unique minimizerx0=x0sx,td for fixed t and x such thatFtx0=x. Consider the
solution of the Hamilton–Jacobi equation forLsq,q̇d= q̇2/2+csqd,

Ssx,td = S0sx0sx,tdd +E
0

t

uLsqssd,q̇ssdddsuq=q0
,

whereq0 is X0ssd=Fsx0sx,td. HereS satisfies the Hamilton–Jacobi equation

]S

]t
+

1

2
u¹Su2 + csxd = 0 andSsx,0d = S0sxd. s4.41d

Consider

dqssd = Fsx0sx + eE
0

t

Gsx0,t,ud ¹ ksFux0ddWu,td − eE
0

s

Gsx0,s,ud ¹ ksFux0ddWu − Fsx0sx,td.

By Taylor’s theorem, there existsj such that
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dqssd = S ]

]x0
Fsx0D ]

]x
x0sx,tdSeE

0

t

Gsx0,t,ud ¹ ksFux0ddWuD
+ o

i,j ,l=1

d Fo
k=1

d

s¹k¹lFsx0sj,tdd
]

]ji
x0

ksj,td
]

]j j
x0

l sj,td + s¹lFsx0sj,tdd
]2

]jij j
x0

l sj,tdG
3 SeE

0

t

Gsx0,t,ud ¹ ksFux0ddWuD
i
SeE

0

t

Gsx0,t,ud ¹ ksFux0ddWuD
j

− eE
0

s

Gsx0,s,ud ¹ ksFux0ddWu,

and computingq̇ssd gives

dq̇ssd = S ]

]x0
DḞsx0

]

]x
x0sx,tdSeE

0

t

Gst,ud ¹ ksFux0ddWuD
+ o

i,j ,l=1

d Fo
k=1

d

s¹k¹lḞsx0sj,tdd
]

]ji
x0

ksj,td
]

]j j
x0

l sj,td + s¹lḞsx0sj,tdd
]2

]jij j
x0

l sj,tdG
3 SeE

0

t

Gsx0,t,ud ¹ ksFux0ddWuD
i
SeE

0

t

Gsx0,t,ud ¹ ksFux0ddWuD
j

− eE
0

s ]

]s
Gsx0,s,ud ¹ ksFux0ddWu.

Therefore, as required,

dq̇ssd =
d

ds
dqssd. s4.42d

We see by definition that

dqstd = 0, s4.43d

dqs0d = x0Sx + eE
0

t

Gsx0,t,ud ¹ ksFux0ddWu,tD − x0sx,td. s4.44d

Define

V3 = 5 sup
x0PRd

0øsøt

e1/2UE
0

s

Gsx0,s,ud ¹ ksFux0ddWuU ø d6 . s4.45d

It is easy to see that

PhV3j . 1 − e−fd2/2esupx0PRde0
TsGsx0,s,ud ¹ ksFux0dd2 dug. s4.46d

Then for eachvPV3 there existsj1 such that,

043515-22 Davies, Truman, and Zhao J. Math. Phys. 46, 043515 ~2005!

                                                                                                                                    



dqs0d =
]

]x
x0sx,tdSeE

0

t

Gsx0,s,ud ¹ ksFux0ddWuD + o
i,j=1

d
]2

]ji ] j j
x0sj1,td

3SeE
0

t

Gsx0,s,ud ¹ ksFux0ddWuD
i
SeE

0

t

Gsx0,s,ud ¹ ksFux0ddWuD
j

=
]

]x
x0sx,tdSeE

0

t

Gsx0,s,ud ¹ ksFux0ddWuD + osed. s4.47d

Now we have

dS=KS ]

x0
S0D,S ]x0

]x
DSeE

0

t

Gsx0,s,ud ¹ ksFux0ddWuDL + dA. s4.48d

And,

dAeE
0

t

ksFsx0ddWs +E
0

t

Lsq0 + dq0,q̇0 + dq̇0dds−E
0

t

Lsq0,q̇0dds

= eE
0

t

ksFsx0ddWs +E
0

t S ]L
]q

dq0 +
]L
]q̇

dq̇0Dds

= eE
0

t

ksFsx0ddWs + F ]L
]q̇

dq0G
s=0

s=t

+E
0

t S ]L
]q

−
d

ds
S ]L

]q̇
DDdq0 ds

= eE
0

t

ksFsx0ddWs − kq̇s0d,dqs0dl. s4.49d

It turns out that for eachvPV3,

dA = eE
0

t

ksFsx0ddWs −K¹S0sx0d,
]

]x
x0sx,tdSeE

0

t

Gsx0,s,ud ¹ ksFux0ddWuDL + osed.

s4.50d

Therefore for eachvPV3,

dS= eE
0

t

ksFsx0ddWs + osed. s4.51d

The wavefront, for eachvPV3, satisfies

Ssx,td = eE
0

t

ksFsx0ddWs + osed. s4.52d

j

C. Large time behavior for almost periodic small noise

Our Theorem 4.2 shows that for small noiseX̃
˙ esx,td is close to the actual solution of our

problem in the inviscid limit. Also, we have an exact expression forX̃e in terms of the Jacobi fields

for X̃0, If we now assume that¹ksx,sd=−assd is independent ofx, we can defineX̃
˙ esx,td and
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X̃esx,td in the same way as we did for the harmonic oscillator and, since we are working only to
first order ine, thex0sx,td’s are just the deterministic ones. It is therefore not surprising that there
is an analog of Theorem 3.5.

Theorem 4.6: Assume that X˜ 0sx,td is periodic together with its Jacobi fields]X̃0/]g0
a, a

=1,2, . . . ,2d whereg0=sx0,p0dT. Then, ife0
t uassdu2 ds,`, dropping,, the ensemble average is

given by

EsX̃˙ esx,tdd = X̃
˙ 0sx,td = Ẋ0sx,td.

Moreover,

PssX̃˙ esx,td − Ẋ0sx,tdd P dvd = expS−
vTAstdv

2
Ds2pd−d/2sdet Ad−1/2 dv,

where the d3d matrix A−1std is given by

Aii8
−1std = e2E

0

t ]Xi
0sud

]g0
a ajsud

]Xi8
0 sud

]g0
a8

aj8suddu JabJa8b8
]Ẋj

0std
]g0

b

]Ẋj8
0 std

]g0
b8

,

i , i8=1,2, . . . ,d, where J is the complex structure and the summation convention is enforced. In
particular, if as·d is almost periodic, with the above product almost periodic uniformly insx0,p0d
in a compact set K,

t−1Aii8
−1std , e2MS ]Xi

0

]g0
aaj

]Xi8
0

]g0
a8

aj8DJabJa8b8
]Ẋj

0std
]g0

b

]Ẋj8
0 std

]g0
b8

,

where M denotes the infinite time average.
Proof: This is a simple rewrite of the proof of Theorem 3.5. We need uniform almost

periodicity because at the last step we must setp0= ¹S0sx0d and x0= x̃0sx,td the minimizer
sassumed uniqued of Asx0,x,td. We tacitly assume thatsx̃0sx,td , ¹S0sx̃0sx,tdddPK, our compact
set. j

Remark 4.1:The remarks after Theorem 3.5 are all relevant here save that the distribution of
the Burgers fluid velocity now depends on the initial conditions. This distribution is in fact
discontinuous across the cool part of the caustic becausex̃0sx,td jumps as we cross this part of the

caustic, making the Jacobi fields jump here as well. The periodic behavior is in]Ẋj
0std /]g0

b and the
resonance which is relevant is that between the zero noise Jacobi fields]Xi

0/]g0
a and the almost

periodic noise terma. As expected the resonance destroys any possibility of an invariant measure
existing. When the infinite time averages above are all zero the invariant measure should exist for
a suitable restricted class of initial conditions.

D. Archetypal example with some illustrations

Having discussed the properties of the surfacesCt andHt we now illustrate what is perhaps
the archetypal case withS0sx0,y0d=x0

2y0/2 and zero potentials.
Figure 2 illustrates the critical caseA=0 where the precaustic is a parabola and the prelevel

surface consists of an ellipse and a line pair. The zero prelevel surface has equation

x0
21Sy0 +

1

2t
D2

S 1

2t
D2 +

x0
2

S1

t
D2 − 12 = 0,

and the precaustic has equation
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1 + ty0 = t2x0
2.

We now mapsx,yd=Ftsx0,y0d to obtain the hypocycloid tricorn

x =
cosus1 + sinud

2t
, y =

sin us1 − sinud
2t

, s4.53d

for 0øu,2p, as the zero level surface at timet for the heat equation and semicubical parabolic
cusp

8syt + 1d3 = 27t2x2, s4.54d

as the caustic at timet for the corresponding Burgers velocity field. Figure 3 illustrates the level
surfaceHt and the causticCt. The number of solutionsx0sx,td is also indicated for the three
different regionsswithin, on and outwith the semicubical parabolad. In this casex0sx,td is the point
sa,y− ta2/2d whereaPR satisfies the cubict2a3/2−as1+tyd+x=0 andx̃0sx,td corresponds to the
value of a minimizing a2st3a4/8−ta3s1+4tyd /8+ys1+tyd /2d. We note that the vanishing of the

FIG. 2. Precaustic and prelevel surface.

FIG. 3. Cusp and tricorn.
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discriminant of the cubic fora defines the cusp caustic and that it can be shown thatx̃0sx,td jumps
on crossing this caustic and nowhere else.

We now consider the stochastic case att=1 wheree= 1
10 and ksx,y,td=x. Figures 4 and 5

illustrate the case where we haveA=0.
Figures 6 and 7 illustrate the case ofA=− 1

64.
We refrain from presenting a gallery of two- and three-dimensional images herein but such

can be found in the recent doctoral theses of Reynolds and Reynolds.31,32

V. SINGULARITIES AND INTERMITTENCE OF TURBULENCE

We have analyzed the stochastic Burgers equation for small noise and shown how for our
initial conditions resonance between the almost periodic noise and the underlying deterministic
problem destroys any possibility of the existence of an invariant measure. We have also seen how
for small noise the ensemble average and the distribution of the Burgers velocity inherit the
singularity structure of the underlying Hamiltonian system, in particular the way that the caustics
and shockwaves are still relevant.This is the main object lesson of the present work. These results
rely heavily on our exact analysis of the harmonic oscillator and free cases.

Previously we detailed the caustic wavefront interaction in both the classical and stochastic
case by appealing to geometrical properties of the Hamiltonian system. Now we have detailed
information about these stochastic caustic wavefront structures in terms of the classical structures,
at least in the case of smalle.

We now emphasize that new features emerge if one tries to use the above ideas to analyze the
“intermittence” of stochastic turbulence as opposed to deterministic turbulence. The reason for the
sharp contrast between stochastic and deterministic turbulence can already be seen here if we
associate turbulent behavior withsan infinitely rapidd change in the number of cusped curves on
the minimizing level surface of the Hamilton–Jacobi function. The timest when this occurs are
just the times when the prelevel surfacestouch the precaustic. The timest when this number of
curves changes in the deterministic case are simply the zeros of a deterministic functionz, usually
isolated zeros.

In the stochastic casez is a stochastic process whose zeros usually form a perfect set, i.e., an
infinite set containing no isolated points. At these times the number of cusped curves changes with
infinite frequency because of the infinitely rapid oscillation of the stochastic processz. This is in
line with what one would expect for turbulent behavior. When the stochastic processz is recurrent
this turbulent behavior is “intermittent” so that the scale of turbulent fluctuations varies in a
random periodic way.

For example, in the two-dimensional case ofc;0, ktsx,yd;x andS0sx0,y0d= fsx0d+gsx0dy0,
wheref ,g, f8, andg8 are zero atx0=a, g9sadÞ0, the turbulent timest at whichncstd, the number
of cusps on the zero prelevel surface of the Hamilton–Jacobi function changes are the zeros of the
stochastic turbulence processz,

zstd = − aeWt + e2WtE
0

t

Wsds−
e2

2
E

0

t

Ws
2ds.

The turbulence appears at the pointFtsa,−fs1+tf9sadd/tg9sadg wheresa,−fs1+tf9sadd / tg9sadg is a
point on the precaustic with equation

y0 =
− 1 + t2sg8sx0dd2 − tf9sx0d

tg9sx0d
.

Now ht :zstd=0j is a perfect set andzstd is recurrent to 0, whilezcstd=zstd−c has exactly the same
properties. Zeros ofzcstd are times at which the number of cusps on thec prelevel surface of the
Hamilton–Jacobi function changesssee Reynolds, Truman, and Williams33d.

We may also introduce a singularity periodic in thesx0,y0d coordinates.
Lemma 5.1: Consider the initial function S0sx0,y0d= fsx0d+gsx0dgsy0d. If f , f8 ,g,g8 are zero at
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ai for i =1,2, . . . ,n and g9saidÞ0 then the zero precurves will touch at

Sai,g
−1S− 1 − tf9said

tg9said
DD ,

for i =1,2, . . . ,n if g is invertible.
Proof: The precurves meet at solutionsx0 of F0sx0,td=0 where

F0sx0,td =
t

2
sf8 + g8gsy0sx0ddd2 +

t

2
g2g8sy0sx0dd2 + f + ggsy0sx0dd,

andy0sx0d is the precaustic. Now

]F0

]x0
sx0,td = tsf8 + g8gsy0sx0ddd

]

]x0
sf8 + g8gsy0sx0ddd + tgg8g8sy0sx0dd2

+ tg2g8sy0sx0ddg9sy0sx0ddy08sx0d + f8 + g8gsy0sx0dd + gg8sy0sx0ddy08sx0d,

so that clearlyF0sai ,td=0 and ]F0/]x0ux0=ai
=0. Hence the precurves will touch atsai ,y0saidd

wherey0sx0d is the precaustic. However in this case the precaustic is given by

s1 + tsf9 + g9gsy0ddds1 + tgg9sy0dd − t2g82g8sy0d2 = 0,

so that atx0=ai

FIG. 4. Stochastic precaustic and prelevel surface.

FIG. 5. Stochastic caustic and level surface.
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gsy0d =
− 1 − tf9said

tg9said
.

Hence

y0said = g−1S− 1 − tf9said
tg9said

D .

j

Corollary 5.2: If S0sx0,y0d= fsx0d+gsx0dgsy0d whereg is a periodic function with period b and
f ,g, f8 ,g8 are zero atai for i =1,2, . . . ,n while g9saidÞ0 then the precurves will touch at

sx0,y0d = Sai,g
−1S− 1 − tf9said

tg9said
D + lbD ,

for l PZ and i=1,2, . . . ,n.
In order to obtain a periodic cusp singularity we setgs·dª sb/2pdsins2p /b·d, whereb.0, so

that g has period b and gsyd,y for y,0. Clearly if we take f ;0 and gsx0d
ª sa2/2p2dsin2spx0/ad then f, g, f8, andg8 are zero atx0=ka skPZd andg9skad=1. Moreover

FIG. 6. Stochastic precaustic and prelevel surface.

FIG. 7. Stochastic caustic and level surface.
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g−1S− 1 − tf9skad
tg9skad

D = g−1S−
1

t
D=

b

2p
arcsinS−

2p

bt
D ,

which exists ifbù2p / t. Since the conditions of Corollary 5.2 are satisfied we obtain the follow-
ing proposition.

Proposition 5.3: Consider the initial function S0sx0,y0d=sa2b/4p3dsin2spx0/adsins2py0/bd. If
bù2p / t then the precurves will touch at

FIG. 8. Periodic zero prelevel surface and precaustic.

FIG. 9. Periodic zero level surface and caustic.
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sx0,y0d = Ska,
b

2p
arcsinS−

2p

bt
D + lbD ,

for k, l PZ.
In Figs. 8 and 9 we have shown the precurves and image curves, respectively, wherea=3,

b=4, andt=2 so thatbù2p / t.
We shall not pursue the notion of periodic singularities any further, but suffice to say many

examples may be easily created.
Hence, the second object lesson of the present study is that the number of cusped curves on

the wavefront will change infinitely rapidly in the stochastic case when the presurfaces touch and
that this behavior will recur in a random periodic way if the stochastic processz is recurrent. This
is the “intermittence” of stochastic turbulence in our model. There is no analog of this for the
deterministic Burgers equation.

We hope to investigate these phenomena in more detail in a future paper.
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We investigate the asymptotics of Hankel determinants of the form
detj ,k=0

N−1 feVdx vNsxdpi=1
m umi −xu2qixj+kg asN→` with q and m fixed, whereV is an

infinite subinterval ofR and vNsxd is a positive weight onV. Such objects are
natural analogs of Toeplitz determinants generated by Fisher–Hartwig symbols, and
arise in random matrix theory in the investigation of certain expectations involving
random characteristic polynomials. The reduced density matrices of certain one-
dimensional systems of trapped impenetrable bosons can also be expressed in terms
of Hankel determinants of this form. We focus on the specific cases of scaled
Hermite and Laguerre weights. We compute the asymptotics by using a duality
formula expressing theN3N Hankel determinant as a 2sq1+¯+qmd-fold integral,
which is valid when eachqi is natural. We thus verify, for suchq, a recent conjec-
ture of Forrester and Frankel derived using a log-gas argument. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1867981g

I. INTRODUCTION

Consider the multiple integral

HM,N,m,qsmdªE
V

vNsz1ddz1¯E
V

vNszMddzMuDMszdu2p
l=1

M

p
i=1

m

umi − zlu2qi , s1d

where

qªsq1,…,qmd, mªsm1,…,mmd, s2d

vNszd is a nonzero and continuous weight function, possibly depending on a parameterN, and

DMszdª det
j ,k=1

M

szk
j−1d = p

1ø j,køM

szk − zjd s3d

is the Vandermonde determinant. As a notational convenience we also define

HM,N ª HM,N,0,·s·d s4d

=E
V

vNsz1ddz1¯E
V

vNszMddzMuDMszdu2. s5d
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It is known thatM-fold integrals of the forms1d can be identified with the determinant of an
M 3M matrix. Expanding the Vandermonde determinants in terms of sums over permutations, and
simplifying appropriately, we find

HM,N,m,qsmd = M! det
j ,k=0

M−1FE
V

dz aszdzjsz*dkG , s6d

wherez* denotes the complex conjugate ofz, and

aszdªvNszdp
i=1

m

umi − zu2qi . s7d

WhenV#R, Eq. s6d becomes

HM,N,m,qsmd = M! det
j ,k=0

M−1

faj+kg, s8d

where

anªE
V

dz aszdzn. s9d

One says that the determinants8d is generatedby the functions7d.
Since the entries in the determinants8d are of the formaj+k, we have thus identified the

multiple integrals1d, whenV#R, with a Hankel determinant. Had we instead takenV to beT, the
unit circle inC, then according tos6d the entries of the determinant would beaj−k, and we would
thus obtain a Toeplitz determinant.fIt is conventional when discussing such Toeplitz determinants
to setz=eiu and to definean as the integral ofaszdzn with respect to du rather than dz. This merely
introduces the nonzero factorieiu which is easily absorbed into the definition ofaszd, and so such
technicalities are not relevant to our discussion here.g

Whenz[T, functions of the forms7d are known asFisher–Hartwig symbols1 salthough we
remark that they are not the most general examples of Fisher–Hartwig symbolsd. By extension, we
can describe the Hankel determinants8d as being generated by a Fisher–Hartwig symbol which is
defined on the real line.

The asymptotic analysis of Toeplitz determinants generated by Fisher–Hartwig symbols is a
fascinating and well studied subjectssee, e.g., Ref. 1 and references thereind, and rigorous results
which describe the largeM asymptotic behavior of Toeplitz determinants generated by symbols of
the forms7d are known.2 There are a number of important physical applications of such determi-
nantsssee, e.g., Refs. 3–5d. It is often the case, as we discuss presently, that the quantity appearing
in applications is actually the integrals1d rather than the determinant directly, and whenV#R we
are naturally lead to Hankel determinants generated by the symbols7d. We discuss below a
number of physical applications in which the asymptotics of such Hankel determinants is of
interest. A rigorous treatment of these asymptotics is an open problem, however a conjectured
form for the largeM asymptotics has recently been reported by Forrester and Frankel in Ref. 5.
Very recently, them=1 case of this conjecture has been verified whenV=R and vNsxd is a
Hermite weight, by using a Riemann–Hilbert approach.6 In the present work we verify the con-
jecture of Forrester and Frankel whenvNszd is either a Hermite or Laguerre weight for anym[N,
when eachqi [N.

A. Random matrix theory

The multiple integrals1d has a natural interpretation in random matrix theory. Let us consider
the ensemble of random matrices with joint eigenvalue probability density functionspdfd given by
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PM,Nsxdª
1

HM,N
uDMsxdu2p

l=1

M

vNsxld, s10d

and whose eigenvalues lie inV. WhenV=R, concrete examples of such ensembles include the
ubiquitous Gaussian unitary ensemblesGUEd, corresponding tovNsxd=exps−2Nx2d, as well as
more general unitary ensemblessUEd, corresponding tovNsxd=exps−NVsxdd with Vsxd an arbi-
trary polynomial of even degree with positive leading coefficientssee, e.g., Ref. 7d. When V
=s0,`d an important example is the Laguerre unitary ensemblesLUEd, corresponding tovNsxd
=xa exps−4Nxd, which includes Wishart matrices and the Chiral GUE as special casessthe latter
after a straightforward change of variables; see, e.g., Ref. 8d. Settingx=eiu andvNsxd=1 in s10d
we obtain the joint pdf for the eigenphasesul [ f0,2pg of the ensemble of random unitary matrices
with Haar measure, often called the circular unitary ensemblesCUEd. For the purpose of comput-
ing expectations, the CUE is equivalent tos10d with V=T andvNszd=1/iz.

If we denote the characteristic polynomial of theM 3M matrix X, with eigenvaluesx1,… ,xM,
by

ZMsmidªdetsmiI − Xd = p
l=1

M

smi − xld, s11d

thens1d corresponds to the following expectation involving the absolute value of such character-
istic polynomials:

Kp
i=1

m

uZMsmidu2qiL
PM,N

=
HM,N,m,qsmd

HM,N
, s12d

where the expectation on the left-hand side ofs12d is with respect to the joint eigenvalue pdfs10d.
The caseM =N is generally the case of interest.

From s6d we see that expectations of characteristic polynomials of the form appearing ins12d
are characterized by a determinant generated by the symbols7d; when V#R, it is a Hankel
determinant, and whenV=T it is a Toeplitz determinant.

A sizable literature on the correlations of products and ratios of characteristic polynomials of
random matrices from various ensembles has emerged in recent years, see, e.g., Refs. 9–16, and
significant progress has been made in the understanding of such objects. Such quantities have
applications in diverse fields including number theory, quantum chaos, and many-body quantum
mechanics. These works consider either exact algebraic relations that are valid for finiteN, or the
largeN asymptotics in the usual universal microscopic scaling limits. We shall be interested not in
scaling limits, but in the limit of largeN with m fixed. Investigations of objects of the forms12d
in this limit have been reported in Refs. 5 and 17.

B. Impenetrable bosons

A compelling physical motivation for investigating multiple integrals of the forms1d arises
from a consideration of certain one-dimensional many-body systems of impenetrable bosons. By
impenetrability we simply mean that we require the wave function to vanish whenever two bosons
occupy the same point in space. Such systems have been receiving renewed theoretical interest
recently due to the possibility of their experimental realization in the near future using ultracold
systems of atomic bosons confined in elongated traps; see, e.g., Refs. 18 and 19. Systems of
impenetrable bosons with certain specific boundary conditions are known to have ground state
wave functions of the form
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csx1,…,xMd =
1

ÎCM
p
l=1

M

ÎgNsxlduDMffsx1d,…, fsxMdgu, x1,…,xM [ D # R, s13d

see, e.g., Refs. 20 and 21. Specifically, systems with periodic, Dirichlet, or Neumann boundary
conditions have wave functions of this form, as do systems confined in an harmonic well. Of
these, the harmonically confined system is perhaps the most relevant to current experiments.

It is worth emphasizing that the introduction of such zero-range infinite-strength interactions
establishes a correspondence between impenetrable bosons and a corresponding system of free
fermions, a fact first noted in Ref. 22, and this is one of the primary reasons for current experi-
mental interest in such systems. Indeed, for the specific systems mentioned above, were it not for
the absolute value surrounding the Vandermonde determinant,s13d would define the wave func-
tion for a system of free fermions. This fact implies that certain quantities such as the energy
spectrum and the particle density are identical in the impenetrable boson system and its corre-
sponding free fermion system. Quantities which depend on the phase of the wave function how-
ever will clearly differ significantly between these two systems.

One such quantity, of great significance, is then-body density matrix, which for a system of
N+n particles is defined as

rN+n
snd sx1,y1,…,xn,yndªSN + n

n
DE

D

dj1¯E
D

djN csx1,…,xn,j1,…,jNdc*sy1,…,yn,j1,…,jNd.

s14d

A key observation is that wave functions of the forms13d admit the factorization

csx1,…,xn,j1,…,jNd =Î CN

CN+n
p
l=1

n

ÎgNsxlduDnffsx1d,…, fsxndgu

3 p
l=1

N

p
i=1

n

ufsxid − fsjldu · csj1,…,jNd, s15d

and insertings15d into s14d yields

rN+n
snd sx1,y1,…,xn,ynd = SN + n

N
Dp

i=1

n

ÎgNsxidgNsyiduDnffsx1d,…, fsxndgDnffsy1d,…, fsyndgu

3
1

HN+n,N
uHN,N,2n,qsfsx1d,…, fsxnd, fsy1d,…, fsyndduq=s1/2,…,1/2d, s16d

where in the definition ofHN,N,2n,q andHN+n,N we haveV= fsDd and

vNszd = gNsf−1szdd
df−1

dz
szd. s17d

For the four specific systems mentioned belows13d, this vNszd given in s17d is well defined,
nonzero and continuous.

Hence, froms6d we see thatrN+n
snd is characterized by a determinant generated by the symbol

s7d. For systems subject to periodic boundary conditions this determinant will be a Toeplitz
determinant,23,24 whereas for systems confined by an harmonic well it will be a Hankel
determinant.24 Indeed, this link between density matrices for impenetrable bosons and Toeplitz
determinants generated by Fisher–Hartwig symbols was originally one of the key motivations for
investigating the asymptotics of such Toeplitz determinants.3,4,23 In light of the possible future
experimental realization of finite one-dimensional harmonically trapped systems of impenetrable
bosons, an important theoretical question is the behavior of the corresponding density matrices
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whenN is large andx1,y1,… ,xn,yn are fixed. This then provides a direct physical motivation for
investigating the largeN asymptotics ofN3N Hankel determinants generated by symbols of the
form s7d.

Perhaps the most important quantity is the one-body density matrix. The asymptotics of the
one-body density matrix for a system with periodic boundary conditions can be rigorously estab-
lished from the asymptotics of the corresponding Toeplitz determinant. The leading order behavior
of the one-body density matrix in the case of harmonic confinement was deduced in Ref. 24 using
log-gas arguments, and has been recovered in Ref. 25 using a rather more direct, yet still nonrig-
orous, approach. The asymptotics of the one-body density matrix in the Dirichlet/Neumann case
was deduced in Ref. 17, again by log-gas arguments, and has now been rigorously proved in Ref.
5, by making use of recent results in Refs. 26 and 27.

We conclude our discussion of impenetrable bosons by noting the correspondence between the
joint eigenvalue pdfs10d and the wave functions13d. The correspondence between the joint
eigenvalue pdfs10d and the wave function for a system of free fermions is well known.28 The
correspondence between impenetrable bosons and random matrices was first noted by
Sutherland,29 between systems of impenetrable bosons with periodic boundary conditions and the
CUE; see also Ref. 30. The correspondence between impenetrable bosons with Dirichlet or Neu-
mann boundary conditions and the Jacobi unitary ensemblessJUEd was discussed in Refs. 17 and
20, and a similar interpretation for the LUE was noted in Ref. 5. Again, the most interesting case
from an experimental perspective is the correspondence between the GUE and systems of impen-
etrable bosons confined in an harmonic well, and this particular system has been the focus of
considerable recent theoretical study, see, e.g., Refs. 24, 25, and 31 and references therein.

C. Asymptotics of Hankel determinants

The asymptotics of large Toeplitz and Hankel determinants has been of long standing interest
to mathematicians. For Toeplitz determinants generated by well behaved symbols, very precise
asymptotic results are given by the Szegö limit theoremsssee, e.g., Refs. 1 and 32d. Toeplitz
determinants generated by the symbols7d are not amenable to the Szegö limit theorems however
sinces7d has zeros. Inspired in part by applications to impenetrable bosons Lenard4,23 ssee also
Ref. 3d conjectured the asymptotics of Toeplitz determinants generated by symbols of the forms7d,
and this conjecture was subsequently proved by Widom.2 The asymptotic behavior of Toeplitz
determinants generated bys7d, as well as more general Fisher–Hartwig symbols, is now well
understoodssee, e.g., Ref. 1d. Analogously, the asymptotic behavior of large Hankel determinants
generated by functions defined onV#R has also been the subject of study. This problem was
addressed by Szegö33 and also Hirschman34 with V a finite intervalssee also Ref. 32d. In the
context of the UE and LUE of random matrix theory, as well as in the context of trapped systems
of impenetrable bosons, we are interested in case whereV is infinite, and recently Basoret al.35

have considered the asymptotics of Hankel determinants generated by symbols defined onV
=s0,`d. However, a key restriction in these works is that the symbol be nowhere zero, and hence
they do not apply to determinants generated bys7d. Forrester and Frankel5 have recently conjec-
tured the asymptotic behavior of Hankel determinants generated by symbols of the forms7d
defined onV#R. Complete and rigorous proofs of their conjectures remains an open problem. As
mentioned above, a rigorous proof for them=1 case whenV=R andvNsxd is a Hermite weight
has very recently been reported in Ref. 6.

Specifically, Forrester and Frankel5 consider the behavior of the ratio

HN,m,qsmdª
HN,N,m,qsmd

HN+uqu,N
, s18d

where
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uquªq1 + ¯ + qm, s19d

as N→` with m andq fixed. Amongst other results, they consider the casevNsxd=e−NVsxd with
either V=R or V=s0,`d. For a particular choice of suchvNsxd and V there corresponds the
quantityrsxd, which, with PN,N defined as ins10d, equals the limit of

E
VN−1

PN,Nsx,x2,…,xNddx2¯dxN s20d

asN→` with x held fixed; i.e.,rsxd is the limiting expected eigenvalue density of the ensemble
of random matrices defined byPN,N. We note thatrsxd is non-negative and has compact support.
In what follows intssupprd denotes the interior of the support ofrsxd. For a detailed discussion of
rsxd, and a number of other very interesting alternative characterizations ofrsxd, the reader is
referred to Ref. 7. The conjecture reported in Ref. 5sin our notationd is the following.

Conjecture (Forrester–Frankel): Let m,N[N, q[ s−1/2 ,̀ dm and m1,… ,mm[ intssupprd,
where rsxd is defined as above. Furthermore, suppose eitherV=R or V=s0,`d, and take
vNsxd=e−NVsxd where Vsxd is a polynomial which is independent of N and which has positive
leading coefficient and no zeros inV. Then

HN,m,qsmd = No
i=1

m
sqi

2−qidp
i=1

m

fvNsmidg−qip
i=1

m
G2sqi + 1d
Gs2qi + 1d

s2pdqi
2−qi

3 p
1ø j,køm

umk − m ju−2qjqkp
i=1

m

frsmidgqi
2
f1 + os1dg. s21d

Here and in the sequelG refers to Barnes’G-function.36

Despite first appearances, the structure ofs21d is actually quite simple. Note that the only
ensemble dependent quantities on the right-hand side arersxd andvNsxd, and that the dependence
of HM,m,qsmd on these two quantities is universal. The other quantities on the right-hand side are
truly universal. We note that the factorG2sqi +1d /Gs2qi +1d occurs also in the asymptotics of
Toeplitz determinants generated by Fisher–Hartwig symbols,2 and has been discussed in the con-
text of moments of random characteristic polynomials.9,10 We should note that the actual conjec-
ture reported in Ref. 5 is slightly more general thans21d, but s21d is sufficient for our purposes.

As an aside, we remark that the ratio appearing ins16d is precisely of the forms18d and so the
asymptotic behavior of all then-body density matrices for a system of harmonically confined
impenetrable bosons follows directly froms21d.

The present paper focuses on two classical cases already mentioned, the case of the Hermite
weight, corresponding to the GUE, and the case of the Laguerre weight, corresponding to the
LUE. In the Hermite case

vNsxd = e−2Nx2
, V = R, rsmd =

2

p
Î1 − m2, suppsrd = f− 1,1g, s22d

and in the Laguerre case

vNsxd = xae−4Nx, V = s0,`d, rsmd =
2

p
Î 1

m
− 1, suppsrd = f0,1g. s23d

The conjecture reported in Ref. 5 was deduced by considering the specific examples of the
Hermite and Laguerre cases, to find the general form in terms ofrsxd andvNsxd. The asymptotics
for these two cases was deduced by using the log-gas analogy to conjecture a factorization ofs18d,
computing the asymptotics of each factor when theqi were natural, and then conjecturing an
analytic continuation to realqi.
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In this work we show hows21d can be proved rigorously for the Hermite and Laguerre cases,
when eachqi is natural, by using a duality formula derived from a general result in Ref. 9. By a
duality formula we mean an equation identifying theN-fold integralHN,m,qsmd with a 2uqu - fold
integral. Our results clarify the origin of the factors appearing ins21d. A similar approach has been
used in Ref. 25 to investigate a particular special case when the weight was of Hermite type, in the
context of trapped impenetrable bosons.

Section II contains a discussion of the duality formula. Due to the similar nature of the
Laguerre and Hermite cases, they can both be derived simultaneously. Section III then discusses
the asymptotic analysis of the 2uqu - fold integral obtained from the duality formula by means of
the saddle point method. We show how to deduce the general form of all terms and explicitly
simplify the leading order term, and thus verify the conjectures21d for the Hermite and Laguerre
cases when eachqi is natural.

II. DUALITY FORMULA

Let us define

FK,Nsl1,…,lKdª
1

DKsl1,…,lKd
det
j ,k=1

K

pN+j−1
sNd slkd, s24d

wherehpk
sNdjk=0

` are the monic orthogonal polynomials corresponding tovNsxd andV; i.e., they are
uniquely defined by the following two conditions:

E
V

vNsxddx p j
sNdsxdpk

sNdsxd = 0, j Þ k, s25d

p j
sNdsxd = xj + Osxj−1d. s26d

For the Hermite and Laguerre cases, thepN+j−1
sNd sxd can be expressed in terms of the standard

Hermite and Laguerre polynomials found in Szegö’s classic book37 as follows:

pN+j−1
sNd sxd =H2−3sN+j−1d/2N−sN+j−1d/2HN+j−1sÎ2Nxd, Hermite,

s− 1dN+j−1sN + j − 1d!s4Nd−N−j+1LN+j−1
sad s4Nxd, Laguerre.

s27d

According to Brézin and Hikami,9 we have the following very useful identity:

FK,Nsl1,…,lKd =
1

HN,N
E

V

vNsx1ddx1¯E
V

vNsxNddxN DN
2sxdp

l=1

N

p
i=1

K

sli − xld. s28d

If we restrict ourselves toq[Nm and set

K = 2q1 + ¯ + 2qm = 2uqu, s29d

we can consider the confluent limit

lim
*
ª lim

ltsmd+2qm
→mm

¯ lim
ltsmd+1→mm

¯ lim
l2q1+2q2

→m2

¯ lim
l2q1+1→m2

lim
l2q1

→m1

¯ lim
l1→m1

, s30d

where

tsidªo
l=1

i−1

2ql . s31d

Taking the limit s30d of both sides ofs28d, and using the elementary fact thatsmi −xld2qi

= umi −xlu2qi whenqi is an integer andmi andxl are real, we thus obtain
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lim
*

FK,Nsl1,…,lKd =
HN,N,m,qsmd

HN,N
, s32d

and therefore

HN,m,qsmd =
HN,N

HN+uqu,N
lim

*
FK,Nsl1,…,lKd, q [ Nm. s33d

This is the key relation we need to derive the duality formula forHN,m,qsmd, all that remains is to
take the confluent limit ofFK,N.

For later convenience, we set

pN+j−1
sNd sxd = zNsxdrN+j−1sxd. s34d

If we inserts34d into s24d and take the limits30d, then by factoring the Vandermonde determinant
we obtain

lim
*

FK,Nsl1,…,lKd = lim
*

p
1ø j,køm

p
lk=1

2qk

p
l j=1

2qj

sltskd+lk
− lts jd+l j

d−1p
j=1

K

zNsl jd

3 lim
*

p
i=1

m

D2qi

−1sltsid+1,…,ltsi+1dd det
j ,k=1

K

rN+j−1slkd s35d

= p
1ø j,køm

smk − m jd−4qkqjp
i=1

m

zN
2qismidlim

*
p
i=1

m

D2qi

−1sltsid+1,…,ltsi+1dd det
j ,k=1

K

rN+j−1slkd. s36d

To compute the remaining limit ins36d we can use the following.
Lemma 1: Letcsld denote a column vector withtsm+1d entries, then for i=1,2,… ,m

lim
ltsid+2qi

→mi

¯ lim
ltsid+1→mi

1

D2qi
sltsid+1,…,ltsid+2qi

d

3 Gs2qi + 1ddetfcsl1d¯csltsid+1d¯csltsid+2qi
d¯csltsm+1ddg

= detFcsl1d¯csltsiddcsmid
d

dmi
csmid¯

d2qi−1

dmi
2qi−1csmidcsltsi+1d+1d¯csltsm+1ddG , s37d

where G is Barnes’ G-function.
Proof: This is easily proven by induction using L’Hôpital’s rule, and recalling the identity

p
l=1

n

Gsld = Gsn + 2d. s38d

j

Applying Lemma 1 to s36d independently for each sethltsid+1,… ,ltsid+2qi
j with i

=1,2,… ,m, results in
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lim
*

FK,Nsl1,…,lKd = p
1ø j,køm

smk − m jd−4qkqjp
i=1

m
zN

2qismid
Gs2qi + 1d

det
1øl iø2qi
1øiøm

1ø jø2uqu

F dl i−1

dmi
l i−1rN+j−1smidG .

s39d

In s39d the columns of the determinant are ordered such that one starts withi =1, writes out the 2q1

columns depending onl1, and then moves toi =2, etc. We remark that we have now already
obtained one of the two BarnesG-function factors that appear ins21d.

The special property possessed by the Hermite and Laguerre polynomials that allows us to
derive a duality formula forHN,m,qsmd for the specific weightss22d and s23d is that they can be
expressed in terms of contour integrals. Indeed, by suitably massaging the standard results in
Szegö’s book37 we find

pN+j−1
sNd smid =5cjsNde2Nmi

2E
C

dz e−2Nzmi+Nz2/2zN+j−1, Hermite,

cjsNdE
C

dz e−2Nzmi
sz+ 2dN+a

zN+1 S1

z
+

1

2
D j−1

, Laguerre,

s40d

cjsNd =5Î
2N

p

1

i2N+j , Hermite,

s− 1dN+j−1sN + j − 1d!
NN+j−1

1

22N+j+api
, Laguerre,

s41d

where in the Hermite case the contourC lies along the imaginary axis and is oriented from −i` to
+i`, and in the Laguerre caseC is a closed positively oriented contour which encircles the origin
but does not contain the pointz=−2.

It is now straightforward to compute the derivatives required ins39d from the contour inte-
grals in s40d. Defining

zNsmid =He2Nmi
2
, Hermite,

1, Laguerre,
s42d

and recalling the definitions34d we obtain

dl i−1

dmi
l i−1rN+j−1smid = cjsNddli

sNdE
C

dz e−NSsz,miduszdzli−1fzd + cg j−1, s43d

where

Ssz,midª52miz− logszd −
z2

2
, Hermite,

2miz+ logszd − logsz+ 2d, Laguerre,

s44d

uszdª51, Hermite,

sz+ 2da

z
, Laguerre,

s45d

dli
sNdªs− 2Ndl i−1, s46d

and whered= ±1 andc=0,1/2 in theHermite and Laguerre cases, respectively.
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Our task now is to simplify the determinant appearing ins39d by using the contour integral
s43d. This is achieved by the following lemma.

Lemma 2: If q[Nm, and d= ±1, and we define

bd,qi
szdªH1, d = + 1,

iz1−2qi , d = − 1,
s47d

then

det
1øl iø2qi
1øiøm

1ø jø2uqu

FE
C

dztsid+l i
e−NSsztsid+l i

,midusztsid+l i
dztsid+l i

l i−1 fztsid+l i
d + cg j−1G

= p
i=1

m
1

Gs2qi + 1dpi=1

m

p
l i=tsid+1

tsi+1d E
C

dzli
e−NSszli

,miduszli
dbd,qi

szli
dp

i=1

m

D2qi

2 sztsid+1,…,ztsi+1dd

3 p
1ø j,køm

p
lk=tskd+1

tsk+1d

p
l j=ts jd+1

ts j+1d

szlk
d − zl j

dd. s48d

Proof: We start with the identity

det
1øl iø2qi
1øiøm

1ø jø2uqu

FE dztsid+l i
gli

sztsid+l i
,midffsztsid+l i

dg j−1G

= p
i=1

m

p
l i=1

2qi E dztsid+l i
gli

sztsid+l i
,midD2uqusfsz1d,…, fsz2uqudd, s49d

which is valid for arbitrary integrable functionsfszd andgli
sz,mid. If we applys49d to the left-hand

side sLHSd of s48d and use the elementary fact that

Dnsz1 + c,z2 + c,…,zn + cd = Dnsz1,z2,…,znd, s50d

we obtain

LHS of s48d = p
i=1

m

p
l i=1

2qi E
C

dztsid+l i
ztsid+l i

l i−1 p
i=1

m

p
l i=tsid+1

tsi+1d

e−NSszli
,miduszli

d · D2uqusz1
d,…,z2uqu

d d. s51d

To proceed further we first note the following two useful identities.
Lemma 3: If fsz1,… ,z2uqud is a totally antisymmetric function of each set of variables

hztsid+1,… ,ztsi+1dj, for i =1,2,… ,m, then

p
i=1

m

p
l i=1

2qi E dztsid+l i
ztsid+l i

l i−1 fsz1,…,z2uqud

= p
i=1

m
1

Gs2qi + 1dpi=1

m S p
l i=tsid+1

tsi+1d E dzliDD2qi
sztsid+1,…,ztsi+1dd · fsz1,…,z2uqud. s52d

Proof: By expanding the Vandermonde determinant and then rearranging the order of integra-
tions we see that
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p
i=1

m S p
l i=tsid+1

tsi+1d E dzliDD2qi
sztsid+1,…,ztsi+1dd · fs…,ztsid+1,…,ztsid+2qi

,…d

= p
i=1

m

o
si[S2qi

p
l i=1

2qi E dztsid+sisl id
ztsid+sisl id

l i−1 s− 1dsi · fs…,ztsid+1,…,ztsid+2qi
,…d, s53d

and the antisymmetry off then implies that the right-hand side ofs53d equals

p
i=1

m

o
si[S2qi

p
l i=1

2qi E dztsid+sisl id
ztsid+sisl id

l i−1 · fs…,ztsid+sis1d,…,ztsid+sis2qid
,…d

= p
i=1

m

o
si[S2qi

p
l i=1

2qi E dztsid+l i
ztsid+l i

l i−1 · fs…,ztsid+1,…,ztsid+2qi
,…d, s54d

where the last equality follows by simply relabeling integration variables. The stated result is now
immediate. j

Lemma 4: With q, d and bd,qi
szd as defined in Lemma 2 we have

D2qi
sz1

d,…,z2qi

d dD2qi
sz1,…,z2qi

d = p
l=1

2qi

bd,qi
szld · D2qi

2 sz1,…,z2qi
d. s55d

Proof: Whend=1 there is nothing to prove, so taked=−1. Then

D2qi
sz1

d,…,z2qi

d dD2qi
sz1,…,z2qi

d = p
1ø j,kø2qi

szj − zkdszk − zjd
zjzk

s56d

=s− 1d2qi
2+qi p

1ø j,kø2qi

1

zjzk
· D2qi

2 sz1,…,z2qi
d s57d

=p
l=1

2qi

izl
1−2qi · D2qi

2 sz1,…,z2qi
d. s58d

j

Armed with Lemmas 3 and 4 the proof of Lemma 2 follows at once. Applying Lemma 3 to
s51d results in

LHS of s48d = p
i=1

m
1

Gs2qi + 1dpi=1

m S p
l i=tsid+1

tsi+1d E
C

dzliDD2qi
sztsid+1,…,ztsi+1dd

3 p
i=1

m

p
l i=tsid+1

tsi+1d

e−NSszli
,miduszli

d · D2uqusz1
d,…,z2uqu

d d s59d

=p
i=1

m
1

Gs2qi + 1dpi=1

m

p
l i=tsid+1

tsi+1d E
C

dzli
e−NSszli

,miduszli
dp

i=1

m

D2qi
sztsid+1

d ,…,ztsi+1d
d dD2qi

sztsid+1,…,ztsi+1dd

3 p
1ø j,køm

p
lk=tskd+1

tsk+1d

p
l j=ts jd+1

ts j+1d

szlk
d − zl j

dd. s60d

Applying Lemma 4 to the right-hand side ofs60d produces the stated result. j
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Now we substitutes43d into s39d, factor out the constantscjsNd anddli
sNd from the determi-

nant, and apply Lemma 2 to finally obtain the following.
Proposition 1:

HN,m,qsmd = hN,m,qp
i=1

m
1

Gs2qi + 1dGs2qi + 1dpi=1

m

zN
2qismid p

1ø j,køm

smk − m jd−4qjqk · IN,m,qsmd,

s61d

where

IN,m,qsmdªp
i=1

m

p
l i=tsid+1

tsi+1d E
C

dzli
e−NSszli

,midD2qi

2 sztsid+1,…,ztsi+1dd

3 p
i=1

m

p
l i=tsid+1

tsi+1d

gqi
szli

d p
1ø j,køm

p
lk=tskd+1

tsk+1d

p
l j=ts jd+1

ts j+1d

szlk
d − zl j

dd, s62d

the function gqi
szd is

gqi
szd ª uszdbd,qi

szd s63d

=51, Hermite,

i
sz+ 2da

z2qi
, Laguerre,

s64d

and

hN,m,qª p
j=1

tsm+1d

cjsNdp
i=1

m

p
l i=1

2qi

dli
sNd ·

HN,N

HN+uqu,N
. s65d

Proposition 1 is an exact duality formula whenq[Nm, expressing theN-fold integral
HN,m,qsmd in terms of the 2uqu-fold integral IN,m,qsmd. This allows us to compute the largeN
asymptotics ofHN,m,qsmd by computing the largeN asymptotics ofIN,m,qsmd, and the latter can be
obtained by using the saddle point method. This is the subject of Sec. III.

The prefactorhN,m,q defined ins65d can be expressed in terms of the Barnes’G-function by
using known results for the Selberg integral, see, e.g., Refs. 8 and 28, and the asymptotics can then
be obtained from the known asymptotics of Barnes’G-function.38 We obtain

hN,m,q =52−uqu2−3uqu/2+o
i=1

m
2qi

2
p−3uqu/2No

i=1

m
2qi

2+uqu2/2+uquN GsN + 2d
GsN + uqu + 2d

, Hermite,

s− 1duqu2−2uqu+o
i=1

m
2qi

2
p−2uquNsa−uquduqu+o

i=1

m
2qi

2

3
GsN + 2d
GsN + 1d

GsN + a + 1d
GsN + a + uqu + 1d

GsN + 2uqu + 1d
GsN + uqu + 2d

, Laguerre,

s66d

=5No
i=1

m
s2qi

2−qideuquN2−uqu2p
i=1

m

22qi
2−2qip−2qiF1 + OS 1

N
DG , Hermite,

No
i=1

m
s2qi

2−qidp
i=1

m

s− 1dqi22qi
2−2qip−2qiF1 + OS 1

N
DG , Laguerre.

s67d

It will be useful in Sec. III for us to introduce the notation

043516-12 T. M. Garoni J. Math. Phys. 46, 043516 ~2005!

                                                                                                                                    



hN,m,q = No
i=1

m
s2qi

2−qidh0F1 + OS 1

N
DG , s68d

where

h0ª5euquN2−uqu2p
i=1

m

22qi
2−2qip−2qi , Hermite,

p
i=1

m

s− 1dqi22qi
2−2qip−2qi , Laguerre.

s69d

III. ASYMPTOTICS

Now we begin the task of computing the largeN asymptotics of the integralIN,m,qsmd for fixed
m and q. Since the only appearance thatN makes ins62d is in the exponent ofe−NSsz,mid, this
problem is a natural candidate for the saddle point method.

In both the Hermite and Laguerre cases, the functionSsz,mid has two saddle points,z+,i and its
complex conjugatez+,i

* . Explicitly

z+,i = 5mi + iÎ1 − mi
2, Hermite,

− 1 + iÎ 1

mi
− 1, Laguerre.

s70d

It is worth noting that in both cases

Imhz+,ij =
p

2
rsmid, s71d

wherersmid is as defined ins22d ands23d, for the Hermite and Laguerre cases, respectively. Both
saddle points are of equal importance, since

RehSsz+,i,midj = RehSsz+,i
* ,midj, s72d

and we deform the contourC through both of them.
Let us denote the subset of the contour in neighborhoods ofz+,i and z+,i

* by V+,i and V−,i,
respectively, and the complement of the union of these two neighborhoods inC by Cs, so that

C = Cs ø V+,i ø V−,i . s73d

By deformingC appropriately, the dominant contribution of each integral comes fromV+,i and
V−,i, and the standard arguments of the saddle point method lead to

IN,m,qsmd = p
i=1

m

p
l i=tsid+1

tsi+1d SE
V+,i

dzli
+E

V−,i

dzliDe−NSszli
,mid · D2qi

2 sztsid+1,…,ztsi+1dd

3 p
i=1

m

p
l i=tsid+1

tsi+1d

gqi
szli

d p
1ø j,køm

p
lk=tskd+1

tsk+1d

p
l j=ts jd+1

ts j+1d

szlk
d − zl j

dd + p
i=1

m

e−2qiN RehSij ·Ose−«Nd,

s74d

for suitably small«.0, where we have defined

SiªSsz+,i,mid = Ssz+,i
* ,mid* . s75d
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We would now like to expand out the 2uqu-fold composition of the sum of the two integrals
appearing ins74d. To achieve this, we first note that the integrand ins74d is totally symmetric in
each set of variableshztsid+1,… ,ztsi+1dj, for i =1,2,… ,m. With this in mind we can then apply the
following elementary result.

Lemma 5: If fsz1,… ,ztsid+1,… ,ztsi+1d ,… ,ztsm+1dd is a totally symmetric function of the vari-
ableshztsid+1,… ,ztsi+1dj, then

p
l i=tsid+1

tsi+1d SE
V+,i

dzli
+E

V−,i

dzliD fsz1,…,ztsid+1,…,ztsi+1d,…,ztsm+1dd

= o
ni=0

2qi S2qi

ni
D p

l i=tsid+1

tsid+ni E
V+,i

dzli p
l i=tsid+ni+1

tsi+1d E
V−,i

dzli
fsz1,…,ztsid+1,…,ztsi+1d,…,ztsm+1dd. s76d

Proof: All terms in the expansion withni integrals overV+,i can be seen to be equal by
swapping the order of the integrations, permuting the arguments off in hztsid+1,… ,ztsi+1dj, and
then relabeling the integration variables appropriately. j

Applying Lemma 5 tos74d results in

IN,m,qsmd = p
i=1

m

o
ni=0

2qi S2qi

ni
D p

l i=tsid+1

tsid+ni E
V+,i

dzli p
l i=tsid+ni+1

tsi+1d E
V−,i

dzlip
i=1

m S p
l i=tsid+1

tsi+1d

e−NSszli
,midgqi

szli
dD

3D2qi

2 sztsid+1,…,ztsi+1dd · p
1ø j,køm

p
lk=tskd+1

tsk+1d

p
l j=ts jd+1

ts j+1d

szlk
d − zl j

dd + p
i=1

m

e−2qiN RehSij ·Ose−«Nd.

s77d

Now let us parametrize the integration variables ins77d so that the pathsV±,i become line
segmentssof length 2h sayd, centered atz+,i andz+,i

* , respectively, and lying along the direction of
steepest descent

zli
=Hz+,i + eiuitl i , tsid + 1 ø l i ø tsid + ni ,

z+,i
* + e−iuitl i , tsid + ni + 1 ø l i ø tsid + 2qi .

s78d

The anglesui are chosen in the usual way so that with

aiª
S9sz+,i,mid

2
e2iui =

S9sz+,i
* ,mid
2

e−2iui s79d

we haveai [ s0,`d, and so

aitli
2 =

S9sz+,i,mid
2

szli
− z+,id2 =

S9sz+,i
* ,mid
2

szli
− z+,i

* d2, s80d

with tl i [ f−h ,hg. With this convention the integrals throughz+,i are oriented in the negative
direction, and we will compensate for this by introducing the explicit factors−1dni. Explicitly,
since

S9sz+,i,mid
2

= 5p

2
rsmideisArcsinsmid+pd, Hermite,

pmi
2rsmide−ip/2, Laguerre,

s81d

we obtain
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ui =5
p − Arcsinsmid

2
, Hermite,

p

4
, Laguerre,

s82d

ai = 5p

2
rsmid, Hermite,

pmi
2rsmid, Laguerre.

s83d

Note thatai .0 whenmi [ intssupprd.
In making the change of variabless78d in s77d, it is convenient to introduce the following

definitions:

fN,iª4qiui + 2N ImhSij, s84d

wistl idªo
k=1

`
2

S9sz+,i,mid
Ssk+2dsz+,i,mid

sk + 2d!
uszli

− z+,idkuzli
=z+,i+eiuitl i

, s85d

Fnstdªp
i=1

m

p
l i=tsid+1

tsid+ni

e−Naitl i
2wistl id p

l i=tsid+ni+1

tsi+1d

e−Naitl i
2wi

* stl id, s86d

Gnstdªp
i=1

m

p
l i=tsid+1

tsi+1d

ugqi
szli

du., s87d

Dnstdªp
i=1

m

p
ki=tsid+ni+1

tsi+1d

p
j i=tsid+1

tsid+ni

uszki
− zji

d2u., s88d

Hnstdª p
1ø j,køm

p
lk=tskd+1

tsk+1d

p
l j=ts jd+1

ts j+1d

uszlk
d − zl j

ddu., s89d

FnstdªGnstdDnstdHnstd, s90d

where . on the right-hand sides ofs87d–s89d refers to the change of variabless78d, and n
ªsn1,… ,nmd. We also define thesunnormalizedd integral operator

Er,p
sid
ª p

l i=tsid+r

tsid+p E
−h

h

dtl i e−Naitl i
2
Dp−r+1

2 sttsid+r,…,ttsid+pd. s91d

Armed with these definitions, we see that since

Dni

2 sztsid+1,…,ztsid+ni
dD2qi−ni

2 sztsid+ni+1,…,ztsid+2qi
d p
l i=tsid+1

tsi+1d

dzli

= ei4qisqi−niduiDni

2 sttsid+1,…,ttsid+ni
dD2qi−ni

2 sttsid+ni+1,…,ttsid+2qi
d p
l i=tsid+1

tsi+1d

dtl i , s92d

and

043516-15 Asymptotics of Hankel determinants J. Math. Phys. 46, 043516 ~2005!

                                                                                                                                    



p
i=1

m

p
l i=tsid+1

tsi+1d

e−NSszli
,mid = p

i=1

m

e−2qiN RehSijp
i=1

m

e2isqi−nidN ImhSijp
i=1

m

p
l i=tsid+1

tsi+1d

e−Naitl i
2
Fnstd, s93d

we arrive at the following more compact expression forIN,m,qsmd:

IN,m,qsmd = p
i=1

m

e−2qiN RehSijFp
i=1

m

o
ni=0

2qi S2qi

ni
Ds− 1dnieisqi−nidfN,iE1,ni

sid Eni+1,2qi

sid FnstdFnstd + Ose−«NdG .

s94d

The factor s−1dni results from the fact that we traversed the line throughz+,i in the negative
direction, whereas the line throughz+,i

* is traversed in the positive direction.
To obtain an asymptotic expansion ofIN,m,qsmd from s94d we proceed in direct analogy with

the one-dimensional saddle point methodssee, e.g., Ref. 39d and introduce the following gener-
alization ofFnstd:

Fnst,udªp
i=1

m

p
l i=tsid+1

tsid+ni

euli
wistl id p

l i=tsid+ni+1

tsi+1d

euli
wi

* stl id, s95d

whereu[R2uqu. For convenience we also introduce the function

Qnst,udªFnst,udFnstd, s96d

so that with

uli
= − Naitli

2 for each 1ø l i ø 2uqu, s97d

we have

Qnst,h− Naitli
2jd = FnstdFnstd. s98d

Let us suppose for the present thatu is some arbitrary fixed parameter independent oft, and
consider thekth degree Taylor polynomial ofQnst ,ud as a function oft[R2uqu,

Qnst,ud = o
0øuauøk

1

a!F ]a1

]t1
a1
¯U ]a2uqu

]t2uqu
a2uqu

Qnst,udU
t=0

Gta + uOstaduuau=k+1, s99d

wherea[Zù0
2uqu and we use the standard notationsa!= a1!¯a2uqu! and ta= t1

a1
¯t2uqu

a2uqu and uau=a1

+¯+a2uqu.
If in s99d we now chooseu according tos97d we obtain

Qnst,h− Naitli
2jd = o

0øuauøk

1

a!UFU ]a1

]t1
a1
¯

]a2uqu

]t2uqu
a2uqu

Fnst,udFnstdU
t=0

GU
huli

=−Naitl i
2j

ta + uOstaduuau=k+1,

s100d

where we emphasize that the partial derivatives with respect tot on the right-hand side ofs100d
are performed withu fixed beforemaking the substitutions97d. The effect of constructing the
Taylor series in this way is that whens100d is substituted intos94d and the integrations are
performed, each term corresponding to a given value ofuau in s100d will have the sameN
dependence. To see this we need to consider the asymptotics of the integral operators91d acting on
a general monomial, which can be deduced simply by scalingN out of the integral. We thus
deduce that
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p
i=1

m

E1,ni

sid Eni+1,2qi

sid ta = OSN−o
i=1

m
qi

2−o
i=1

m
sni − qid

2−uau/2D . s101d

As a direct consequence ofs101d, we see that withuli
=−aiNtli

2 for each 1ø l i ø2uqu, we have

p
i=1

m

E1,ni

sid Eni+1,2qi

sid taua8 = OSN−o
i=1

m
qi

2−o
i=1

m
sni − qid

2−uau/2D s102d

for any a18 ,… ,a2uqu8 [N; i.e., the left-hand sides ofs101d and s102d have precisely the same
asymptotic dependence onN. From s95d its clear that when computing the partial derivatives of
Fnst ,udFnstd for a givenuau various powers ofu will appear, which after the substitutions97d will
mean we need to calculate quantities of the forms102d. Howevers101d and s102d tell us that all
such quantities have the sameN dependence. This would not be the case if we had just naively
constructed the Taylor polynomial ofFnstdFnstd. We remark that since the symmetry of the
integral operators91d implies ta is annihilated wheneveruau is odd, only integer powers of 1/N
actually appear in the asymptotic expansion ofIN,m,qsmd, despite the appearance ofuau /2 in the
exponent ins102d.

As a result of the expressions102d we can see that the dominant term in the asymptotic
expansion ofs94d occurs when bothni =qi for all i =1,… ,m, and uau=0 in the Taylor expansion
s100d. In general, the coefficient of the term which is of order 1/Nk relative to the leading term is
composed of all terms for which

o
i=1

m

sni − qid2 +
uau
2

= k. s103d

If we are interested only in retaining the leading term the preceding arguments imply that

IN,m,qsmd = p
i=1

m
e−2qiNRehSij

Nqi
2 · I0F1 + OS 1

N
DG , s104d

where the coefficientI0 depends onm andq but is independent ofN. To obtain the explicit form
of I0 we first note that, sinceFns0d=1, we have

Er+1,r+p
sid Fns0dFns0d =

1

Np2/2
Fns0dZpsaid + Ose−h2aiNd, s105d

where

Zpsaid ª E
Rp

dpx Dp
2sxdp

l=1

p

e−aixl
2

s106d

=S p

2p−1Dp/2Gsp + 2d

ai
p2/2

. s107d

The quantityZpsaid is the normalization of the joint eigenvalue pdf of the GUE and can be
expressed in terms of the Selberg integral; see Refs. 8 and 28. If we substitutes100d into s94d and
take the leading term, which corresponds tooi=1

m sni −qid2+ uau /2=0, then applyings105d we find
that

I0 = p
i=1

m S2qi

qi
Ds− 1dqiZqi

2 said ·Fqs0d. s108d

The explicit form ofFqs0d can be obtained from the following results:
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Dqs0d = s− 1duqupo
i=1

m
2qi

2p
i=1

m

r2qi
2
smid, s109d

Gqs0d = 51, Hermite,

p
i=1

m

s− 1dqimi
2qi

2

mi
−aqi , Laguerre,

s110d

Hqs0d = p
1ø j,køm

smk − m jd2qjqk 3H2uqu2−o
i=1

m
qi

2

, Hermite,

1, Laguerre.
s111d

Now let us put together what we have learned about the asymptotic behavior ofIN,m,qsmd to
describe the asymptotic behavior ofHN,m,qsmd whenq[Nm. To this end, we substitutes109d into
s108d, thens108d into s104d, and finally substitutes104d and s68d into s61d, to obtain

HN,m,qsmd = No
i=1

m
qisqi−1dp

i=1

m
G2sqi + 1d
Gs2qi + 1d

2−qi
2+qip2qi

2+qir2qi
2
smid p

1ø j,køm

smk − m jd−4qjqk

3 p
i=1

m

e−2qiN RehSijzN
2qismidai

−qi
2

·Gqs0dHqs0d ·h0F1 + OS 1

N
DG . s112d

Using the explicit forms forGqs0d andHqs0d, given bys110d ands111d, respectively, one can
easily verify that for both the Hermite and Laguerre cases we have the following identity:

p
i=1

m

e−2qiN RehSijzN
2qismidai

−qi
2

·Gqs0dHqs0d ·h0 = p
i=1

m

vN
−qismidr−qi

2
smid22qi

2−2qip−qi
2−2qi

3 p
1ø j,køm

smk − m jd2qjqk. s113d

Inserting the identitys113d into s112d we finally obtain

HN,m,qsmd = No
i=1

m
sqi

2−qidp
i=1

m

fvNsmidg−qip
i=1

m
G2sqi + 1d
Gs2qi + 1d

s2pdqi
2−qi

3 p
1ø j,køm

umk − m ju−2qjqkp
l=1

m

frsmidgqi
2F1 + OS 1

N
DG , s114d

which does indeed recovers21d.
We emphasize that the derivation we have presented fors114d is entirely rigorous forq[Nm

for any m[N, thus verifying the legitimacy of the log-gas procedure used in Ref. 5 for the
Hermite and Laguerre cases, for suchq.
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We consider two particular one-dimensional quantum many-body systems with
local interactions related to the root systemCN. Both models describe identical
particles moving on the half-line with nontrivial boundary conditions at the origin,
but in the first model the particles interact with the delta interaction while in the
second via a particular momentum dependent interaction commonly known as
delta-prime interaction. We show that the Bethe ansatz solution of the delta-
interaction model is consistent even for the general case where the particles are
distinguishable, whereas for the delta-prime interaction it only is consistent and
nontrivial in the fermion case. We also establish a duality between the bosonic
delta- and the fermionic delta-prime model, and we elaborate on the physical in-
terpretations of these models. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1865320g

I. INTRODUCTION

Quantum mechanical models with interactions are, in general, very difficult to solve, but there
exist a few important cases where exact solutions are available, allowing them to be understood
completely. A prominent example is the delta interaction in one dimension which, in the simplest
two-particle case, is defined by the Hamiltonian

H = − ]x
2 + cdsxd, s1d

wherec is a real coupling constant andxPR the relative coordinate of the two particles,x=x1

−x2. This latter model is popular because it allows for an explicit solution by simple means: since
the delta interaction is restricted tox=0, it only manifests itself in the nontrivial boundary con-
ditions for eigenfunctionscsxd of H fwe use the notationcs±0d; lim«↓0 cs±«d, and similarly for
the derivativec8g,

cs+ 0d = cs− 0d,

s2d
c8s+ 0d − c8s− 0d = ccs+ 0d,

and these can easily be accounted for. The natural generalization of this model to an arbitrary
numberN of identical particles defines a prominent exactly solvable quantum many-body system
which, in the boson case, was solved by Lieb and Liniger1 ssee also Ref. 2d and, in the general
case of distinguishable particles, by Yang3 in a seminal paper where the Yang–Baxter relations first
appeared.

Interactions localized at points have been studied extensively using the mathematical theory of
defect indices; see Refs. 4–6 and references therein. From these studies it is well known that the
delta interaction is only one of many possible local interactions, and that in general such interac-
tion can be characterized by four real coupling parameters. One prominent example of such an
interaction, often referred to as delta-prime interaction,7,8 is defined by the following boundary
conditions:
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c8s+ 0d = c8s− 0d,

s3d
cs+ 0d − cs− 0d = 4lc8s+ 0d,

with a real parameterl. Recently it was shown that these latter boundary conditions arise also
from the following formal Hamiltonian:

H = − ]x
2 + 4l]xdsxd]x, s4d

where the second term has a physical interpretation as a local interaction depending also on the
momentump̂=−i]x sRef. 9d; see Sec. III A. This interpretation of the boundary conditions in Eq.
s3d has the advantage that it does not require an infinite coupling constant renormalization as is the

case with the usual one.7,8 fNote that the coupling constantl̃ in the formal Hamiltonian −]x
2

+ l̃d8sxd is dimensionless, whereas the parameterl in Eq. s3d has the dimension of a length,
consistent with Eq.s4d. We feel that this former mismatch of physical dimensions is a strong
argument in favor of our interpretation.g We will therefore refer to the boundary conditions in Eq.
s3d as p̂dp̂ interactionssee Ref. 10 for yet another interpretationd. The N-body generalization of
this model is exactly solvable by the Bethe ansatz in the indistinguishable particle case when the
particles are either bosons or fermions but, different from the delta-interaction case, not in the
general case of distinguishable particles9 ssee also Refs. 5 and 11–13d. Still, this model is comple-
mentary to the model with the delta interactions for at least three different reasons: first, for
indistinguishable particles the delta-interaction model is known to be interesting only for bosons
ssince the delta interaction is trivial on fermion wave functionsd, whereas thep̂dp̂ interaction is
trivial for bosons and nontrivial for fermions.4 Second, while the delta-interaction model for
bosons can be obtained as the nonrelativistic limit of the quantum sine Gordon model, the
p̂dp̂-interaction model for fermions naturally arises as the nonrelativistic limit of the massive
Thirring model.9 Third, there exists an interesting weak coupling duality between the fermionic
p̂dp̂-interaction model and the bosonic delta-interaction model.12

As is well-known, exactly solvable many-body systems of particles moving on the full real
line are naturally associated with the root systemAN−1, and they often allow for extensions to other
root systems such that the exact solubility is preserved.14 An early example was given by Gaudin
who solved theCN root system variant of the delta-interaction model for bosons15 ssee also Ref.
16d, while the general case of this model for arbitrary root systems and distinguishable particles
was treated by Sutherland.17 As pointed out by Cherednik,18 models related to the root systemCN

describe interacting particles on the half-line, and the exact solubility requires the so-called re-
flection equation to be added to the Yang–Baxter relations. The reflection equation has played a
central role in many exactly solvable systems with a boundary; see, e.g., Refs. 19 and 20.

In this paper we consider the Bethe ansatz solution of theCN versions of the models discussed
above. Similarly as for theAN−1 case, we find that the delta-interaction model is exactly solvable
in this way even for distinguishable particles, but for the model with momentum independent
interactions we obtain its exact solution only for indistinguishable particles. We also elaborate on
the physical interpretation of these models as describing particles on the half-line with nontrivial
boundary conditions at the origin.

To be more specific, the models we discuss in the paper can be formally defined by the
following Hamiltonians:

H = − o
j=1

N

]xj

2 + 2c1o
j,k

fdsxj − xkd + dsxj + xkdg + c2o
j=1

N

dsxjd s5d

sdelta interactionsd and
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H = − o
j=1

N

]xj

2 + 2l1o
j,k

fs]xj
− ]xk

ddsxj − xkds]xj
− ]xk

d + s]xj
+ ]xk

ddsxj + xkds]xj
+ ]xk

dg

+ 4l2o
j=1

N

]xj
dsxjd]xj

s6d

sp̂dp̂ interactionsd. For simplicity we assume all coupling constants positive so that there are no
bound states. Mathematically, the model in Eq.s5d is theCN variant of the model solved by Yang,3

and Eq.s6d defines theCN variant of the model discussed in Ref. 9.
The plan of the rest of this paper is as follows. In Sec. II we consider theCN delta-interaction

model, starting by deriving the boundary conditions and thus turning the Schrödinger equation
Hc=Ec into a well-defined mathematical problem. We proceed to the Bethe ansatz solution of
this model where the Yang–Baxter relations and the reflection equation play a central role. We
conclude the section by elaborating on the physical interpretation of this model. In Sec. III we
discuss theCN variant of thep̂dp̂-interaction model, in large part paralleling our discussion for the
delta interaction in Sec. II. We also present a duality relation between the fermionic
p̂dp̂-interaction model and the bosonic delta-interaction model. Appendix A gives some details on
the verification of the Yang–Baxter relations and the reflection equation. Appendix B contains a
few mathematical facts about the Weyl group of the root systemCN, and Appendix C gives some
details on the physical interpretation of these models.

II. DELTA INTERACTION

In this section we provide the exact solution of theCN delta interaction in the case of distin-
guishable particles and elaborate on its physical interpretation.

A. Boundary conditions

The Hamiltonians5d defining theCN delta-interaction model is only formal, and to determine
its eigenfunctions we must first convert it into a set of boundary conditions.

For completeness we start by discussing the HamiltonianH in Eq. s1d, which can be regarded
also as the one-particle case of the Hamiltonian in Eq.s5d, N=1. The first step in finding the
eigenfunctionsc of H is to note that the equationHc=Ec for all x is equivalent to −c9=Ec for
xÞ0 together with the boundary conditions in Eq.s2d. These boundary conditions are obtained by
integrating the equationHc=Ec, i.e., −c9sxd+cdsxdcs0d=Ecsxd, twice, first from x=−« to x
.0 and then once more fromx=−« to x=« yields the first condition in Eq.s2d in the limit «↓0,
and integrating fromx=−« to x=« yields the second condition in Eq.s2d in the same limit. Thus
in this case there are two regions free of interactions,x,0 andx.0, linked to each other by the
boundary condition in Eq.s2d at x=0.

For generalN, the interaction terms of the HamiltonianH in Eq. s5d are restricted toxj

= ±xk andxj =0 for 1ø j ,køN, and the eigenfunctionsc of H therefore obey the equation

So
j=1

N

]xj

2 + EDcsx1, . . . ,xNd = 0 for xj Þ ± xk andxj Þ 0, s7d

and for each of the boundaries of the interaction free regions one gets a pair of boundary condi-
tions similarly to the ones forN=1,

ucuxj=±xk+0 = ucuxj=±xk−0,

us]xj
− ]xk

dcuxj=±xk+0 − us]xj
− ]xk

dcuxj=±xk−0 = 2c1ucuxj=±xk−0, s8ad

ucuxj=+0 = ucuxj=−0,
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]xj
ucuxj=0 − ]xj

ucuxj=−0 = c2ucuxj=+0 s8bd

sthese conditions are obtained by a straightforward generalization of theN=1 argument above,
using]xj

±]xk
=2]xj±xk

d.
Obviously there are now many more regions free of interactions. One such region is 0,x1

,x2, ¯ ,xN, and all others can be obtained from this one by permuting the particle labels,j
→pj with pPSN s=permutation groupd, and/or reflecting some of the coordinates,xj →−xj. Thus
all regions free of interactions can be characterized as follows:

0 , s1xp1 , s2xp2 , ¯ , sNxpN , `, s9d

wheres j = ±1 andpPSN; we will refer to these regions aswedges. It is important to note that they
can be labeled by elementsQ in the group

WN ª sZ/2ZdN
’ SN, s10d

where the first factor corresponds to the reflections while the second factor corresponds to the
permutations of the coordinates,

xQj = s jxpj for Q = ss1, . . . ,sN;pd P WN with s j P h±1j andp P SN. s11d

In the sequel we will therefore use the following convenient notation for the wedges:

DQ, 0 , xQ1 , xQ2 , ¯ , xQN s12d

with QPWN. It is interesting to note that the groupWN is isomorphic to the Weyl group of the root
systemCN; see, e.g., Ref. 21.

B. Bethe ansatz

Using the boundary conditions deduced in the preceding section we now proceed to determine
all eigenfunctions of theCN delta interaction, starting by recalling the physical motivation of the
Bethe ansatz below. For that we first consider the HamiltonianH in Eq. s1d. In this case there are
eigenfunctionscsxd=expsikxd for x,0 which are equal to a particular linear combination of
expsikxd and exps−ikxd for x.0. This can be interpreted as scattering by the delta interaction
~dsxd where a plane wave is partly transmitted and partly reflected. RegardingH in Eq. s1d as a
two particle Hamiltonian withx=x1−x2 the relative coordinate andk=sk1−k2d /2 the relative
momentum, we can interpret this very fact as scattering of a plane wave solution expsik1x1

+ ik2x2d into a linear combination of this wave and another one where the particle momentak1 and
k2 are exchanged, expsik2x1+ ik1x2d. This suggests that an eigenfunctionc of theN-particle Hamil-
tonian in Eq.s5d which is equal to a plane wave expsio j=1

N kjxjd in one wedgeDQ s12d will be

transformed into a linear combination of plane waves expsio j=0
N k̃jxjd in any other wedge where

k̃j =s jkpj, with s j = ±1 resulting from the interactions~dsxjd which can invert momenta,kj →
−kj, andpPSN resulting from the interactions~dsxj −x,d which can interchange momenta,kj ↔k,.

We thus see that the group in Eq.s10d naturally appears again,k̃j =kPj for somePPWN, and
the discussion above suggests the following Bethe ansatz for the eigenfunctions of the Hamil-
tonianH in Eq. s5d:

csxd = o
PPWN

APsQdeikP·xQ for 0 , xQ1 , xQ2 , ¯ , xQN s13d

with x=sx1, . . . ,xNd andkP·xQ;o j=1
N kPjxQj, for all QPWN. The corresponding eigenvalue is ob-

viously E=o j=1
N kj

2.
One now has to take into account the boundary conditions ins8ad and s8bd. For eachQ

PWN, the wedgeDQ s12d participates inN boundaries,xQi=xQsi+1d for i =1,2, . . .sN−1d andxQ1

=0, and for each of these boundaries we will get two conditions. More specifically, the boundary
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at xQi=xQsi+1d is between the wedgesDQ andDQTi
whereTi PWN is the transposition interchanging

i and si +1d, and the conditions implied by Eq.s8ad for j =Qi andk=Qsi +1d are

APsQd + APTi
sQd = APsQTid + APTi

sQTid

s14ad
iskPi − kPsi+1ddfAPTi

sQTid − APsQTid + APTi
sQd − APsQdg = 2c1fAPsQd + APTi

sQdg.

The boundary atxQ1=0 is between the wedgesDQ andDQR1
with R1PWN the reflection of the first

argument, i.e.,xR1j =xj for j Þ1 and −xj for j =1, and the conditions atxQ1=0 implied by Eq.s8bd
for j =Q1 are

APsQd + APR1
sQd = APsQR1d + APR1

sQR1d

s14bd
ikP1fAPsQd − APR1

sQd + APsQR1d − APR1
sQR1dg = c2fAPsQR1d + APR1

sQR1dg.

We thus have 2Ns2NN!d2 linear, homogeneous equations for thes2NN!d2 coefficientsAPsQd.
The following beautiful argument due to Yang3 shows that this system of equations has enough
nontrivial solutions and, at the same time, gives a recipe to compute all theAPsQd.

For that it is important to note thatWN plays a third role, defining

sR̂dQ,Q8 = dQ8,QR s15d

one can write

APsQRd = o
Q8PWN

sR̂dQ,Q8APsQ8d = sR̂APdsQd, s16d

where the first equality is a trivial consequence of the definition, and in the second we interpret

sR̂dQ,Q8 as elements of ann3n matrix R̂ with n=2NN! the rank ofWN. These matrices obviously

define a representationR→ R̂ of WN acting on the coefficientsAPsQd. It is worth noting that this
is identical with the so-calledsrightd regular representation ofWN.

We can therefore insertAPTi
sQTid=sT̂iAPTi

dsQd in Eq. s14ad, and by a simple computation
show that these latter equations are equivalent to

AP = YiskPsi+1d − kPidAPTi
, s17d

where we have introduced the operator

Yisud =
iuT̂i + c1Î

iu − c1
s18d

and interpretAP as a vector with 2NN! elementsAPsQd. In the same way we can rewrite the

conditions in Eq.s14bd usingAPR1
sQR1d=sR̂1APR1

dsQd,

AP = Zs2kP1dAPR1
s19d

with the operator

Zsud =
iuR̂1 + c2Î

iu − c2
. s20d

It is known that the groupWN is generated by the reflectionR1 and the transpositionsTi ssee,
e.g., p. 21 in Ref. 22d. Thus one can use the identities in Eqs.s17d, s19d, and s16d to calculate
recursively all coefficientsAPsQd from AIsId using the operatorsZ andYi above. It is important to
note that there is a possible inconsistency arising from the fact that the representation of an
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elementP in WN as a product of theTi’s andR1 is not unique. However, any two such represen-
tations can be converted into each other by using the defining relations of the groupWN,

TiTi = 1, TiTj = TjTi for ui − j u . 1,

s21ad
TiTi+1Ti = Ti+1TiTi+1,

R1R1 = 1, R1Ti = TiR1 for i . 1,

s21bd
R1T1R1T1 = T1R1T1R1.

Thus no inconsistency can arise provided that

APTiTi
sQd = APsQd, APTiTj

sQd = APTjTi
sQd for ui − j u . 1,

s22ad
APTiTi+1Ti

sQd = APTi+1TiTi+1
sQd,

APR1R1
sQd = APsQd, APR1Ti

sQd = APTiR1
sQd for i . 1,

s22bd
APR1T1R1T1

sQd = APT1R1T1R1
sQd

for all P, QPWN. Using the recursion relationss17d ands19d one finds that these conditions hold
true if and only if the following operator relations are fulfilled:

Yis− udYisud = I, YisudYjsvd = YjsvdYisud for ui − j u . 1,

s23ad
YisvdYi+1su + vdYisud = Yi+1sudYisu + vdYi+1svd,

Zs− udZsud = I, ZsudYisvd = YisvdZsud for i . 1,

s23bd
Zs2vdY1su + vdZs2udY1su − vd = Y1su − vdZs2udY1su + vdZs2vd

for all realu andv. The validity of this system of equations is necessary and sufficient in order for
the Bethe ansatz above to be consistent and the model at hand to be exactly solvable. The first
three relations are the so-called Yang–Baxter relations, and the last one is the reflection equation.

The validity of these relations for arbitraryT̂i and R̂1 can be checked by straightforward but
somewhat tedious computationssof course, the validity of the Yang–Baxter relation in this case is
known since a long time,3 and this seems to be the case also for the reflection equation,17,19but for
completeness we provide the essential steps in the verification in Appendix A 1d.

Thus the Bethe ansatzs13d is consistent even in the general case of distinguishable particles,
and we can calculate all coefficientsAP from AI using the recursion relation

AP = WPskdAI , s24d

whereWPskd is a product of the operatorsYiskPsi+1d−kPid andZs2kP1d obtained by using repeat-
edly s17d and s19d.

Interesting special cases of this solution are when the particles are indistinguishable, i.e., when

the particles are fermions of bosons. In the former caseT̂i =−I, and Eq.s18d implies Yisud=−I
independent of the coupling constantc1. This shows that the delta interaction is trivial for fermi-

ons. In the boson case we haveT̂i = +I, andYisud is a nontrivial phase. As discussed in more detail

below, there are two different boson cases with different physical interpretations, namelyR̂1=−I

and R̂1= +I.
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C. Physical interpretation

As is well known, theCN delta-interaction model describes interacting particles on the half-
line with particular boundary conditions at the origin.18 However, the general solution of theCN

delta-interaction model without any restrictions includes many more eigenfunctions than any
model on the half-line, and the relation between these models is therefore not completely obvious.
In this section we discuss the relation of these models in more detail. We also give a physical
interpretation of the boundary conditions which occur as limits of particular external potentials
restricting the particles to the half-line.

As discussed in Appendix B, in any irrep of the groupWN the reflectionsRj of the particle

coordinatexj are represented either byR̂j = +1 or −1. For simplicity we now discuss in more detail

the cases where allR̂j are the same, either +1 or −1, which from a physical point of view are the
most interesting ones. As discussed in Appendix B, these irreps ofWN can be rather easily
understood since they are related in a simple way to irreps ofSN. Thus we can impose the
following restriction on the eigenfunctionsc of the Hamiltonian in Eq.s5d,

sR̂jcdsx1, . . . ,xj, . . . ,xNd ; csx1, . . . ,−xj, . . . ,xNd = ± csx1, . . . ,xj, . . . ,xNd. s25d

With that assumption we can restrict ourselves toxj .0, and the boundary conditions in Eq.s8ad
and Eq.s8bd reduce to

ucuxj=xk+0 = ucuxj=xk−0,

s26ad
s]xj

− ]xk
ducuxj=xk+0 − s]xj

− ]xk
ducuxj=xk−0 = 2c1ucuxj=xk+0,

and

2]xj
ucuxj=+0 = c2ucuxj=+0 for R̂j = + 1,

s26bd
ucuxj=+0 = 0 for R̂j = − 1,

respectively. These are exactly the boundary conditions obtained from the Hamiltonian

H0 = − o
j=1

N

]xj

2 + 2c1o
j,k

dsxj − xkd s27d

describing particles on the half-line,xj .0, and the boundary conditions at the origin given in Eq.
s26bd.

It is also interesting to note that these later boundary conditions are obtained by allowing the
particles to move on the full line,xj PR, and adding a particular external potentialo jVsxjd to the
Hamiltonian in Eq.s27d which effectively constrains the particles to the half-linexj .0. To be
specific, these potentials are given by

Vsxd =HV0Qs− xd + sc2/2 −ÎV0ddsxd if R̂j = + 1,

V0Qs− xd if R̂j = − 1,
J s28d

whereQs−xd is the Heaviside functionsequal to one forx,0 and zero otherwised, and one must
take the strong coupling limitV0→`, as shown in Appendix C, in this latter limit the eigenfunc-
tions of the HamiltonianH0+o jVsxjd on the full line,xj PR, coincide with the ones ofH0 on the
half-line, xj .0, and the boundary conditions in Eq.s26bd.
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As already mentioned, the most important cases in applications are the ones we have consid-

ered here, i.e., where all theR̂j are the same. Nevertheless it would be of interest to consider the

implications of allowing theR̂j to take on different values, in effect dividing the particles into two
groups distinguished by their interactions with the boundary.

III. LOCAL MOMENTUM-DEPENDENT INTERACTION

In this section we discuss the model with local momentum dependent interactions defined by
the Hamiltonian in Eq.s6d. While most of our discussion is in parallel with the one for the
delta-interaction model in the preceding section, we find that the Bethe ansatz is consistent only in
case of indistinguishable particles. We also present a duality relation between the fermionic variant
of the model with local momentum dependent interactions and the bosonic delta-interaction model
discussed in the preceding section.

A. Boundary conditions

Since this interaction is not as familiar as the delta interaction we give a somewhat more
detailed discussion of how to turn the eigenvalue equation of the formal Hamiltonian in Eq.s6d
into a well-defined mathematical problem in terms of boundary conditions. We stress that we give
this argument only to substantiate our physical interpretation of the model we consider, and that
one also coulddefinethe model in terms of the boundary conditions in Eqs.s30ad ands30bd below,
as is often done for this type of models.4,5 However, it seems that the results in Ref. 23 provide a
framework making our formal computations mathematically precise.

To explain our method we start by considering the formal eigenvalue equationHc=Ec for the
N=1 Hamiltonian in Eq.s4d, i.e.,

− c9sxd + 4ld8sxdc8s0d = Ecsxd s29d

since]xdsxd]xcsxd=]xfdsxdc8sxdg. It is important to note that the wave functioncsxd is not con-
tinuous at the singular pointx=0, but we interpretc8s0d as lim«↓0fc8s«d+c8s−«dg /2 which is well
defined. This amounts to a particular renormalization of this singular interaction; see Ref. 9 for a
more detailed discussion on this. ForxÞ0 Eq. s29d again reduces to −c9=Ec. To deduce the
boundary conditions atx=0 we integrate Eq.s29d from x=−« to «, and taking the limit«↓0 we
obtain the first condition in Eq.s3d. Integrating Eq.s29d from x=−« to x.0 and then once more
from x=−« to « and taking the limit«↓0 yields the second condition in Eq.s3d.

It is straightforward to generalize this argument to theN-particle case: consider the formal
eigenvalue equationHc=Ec for the Hamiltonian in Eq.s6d and treat each singular pointxj

= ±xk andxj =0 separately, similarly as for theN=1 Hamiltonian above. For the singular points
xj =0 the argument is identical to the one for theN=1 case above. For any other singular point
xj = ±xk we introduce new coordinatesy=xj 7xk andz=xj ±xk in the vicinity of this point so that
H=−2s]y

2+]z
2+4l1]ydsyd]y+4l1]zdszd]zd+¯ where the dots represent terms which remain non-

singular asy→0, and then one can treat the singular pointy=0 as explained in theN=1 case
above.

Thus, we find that the eigenfunctionsc of the Hamiltonian in Eq.s6d are determined by Eq.
s7d together with the boundary conditions

s]xj
− ]xk

ducuxj=±xk+0 = s]xj
− ]xk

ducuxj=±xk−0,

ucuxj=±xk+0 − ucuxj=±xk−0 = 2l1s]xj
− ]xk

ducuxj=±xk−0, s30ad

]xj
ucuxj=+0 = ]xj

ucuxj=−0,
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ucuxj=+0 − ucuxj=−0 = 4l2]xj
ucuxj=+0, s30bd

where we used 2]xj7xk
=]xj

7]xk
.

B. Bethe ansatz

We now discuss the Bethe ansatz for the eigenfunctions of the HamiltonianH defined in Eq.
s6d. Obviously much of what we said for the delta-interaction case carries over straightforwardly
to the present case. Due to the different boundary conditions in Eqs.s30ad and s30bd, Eqs.s14ad
and s14bd are changed to

iskPi − kPsi+1ddfAPTi
sQTid − APsQTidg = iskPi − kPsi+1ddfAPsQd − APTi

sQdg

s31ad
APsQTid + APTi

sQTid − APsQd − APTi
sQd = 2l1iskPi − kPsi+1ddfAPsQd − APTi

sQdg,

ikP1fAPsQd − APR1
sQdg = ikP1fAPR1

sQR1d − APsQR1dg

s31bd
APsQd + APR1

sQd − APsQR1d − APR1
sQR1d = 4l2ikP1fAPsQR1d − APR1

sQR1dg.

We now also use Eq.s16d to convert these equations into the recursion relations

AP = YiskPi+1
− kPi

dAPTi
, s32d

and similarly

AP = Zs2kP1
dAPR1

, s33d

where now

Yisud =
iuÎ − 1/l1Ti

iu − 1/l1
s34d

and

Zsud =
iuÎ − 1/l2R̂1

iu − 1/l2
. s35d

As in the delta-interaction case these relations allow to recursively compute all coefficientsAP in
terms ofAI, and the conditions for the absence of inconsistencies are identical tos22ad ands22bd
of the delta-interaction case, leading to the Yang–Baxter relationss23ad and reflection equation
s23bd but now with the operatorss34d and s35d. In contrast to the delta-interaction case, we find

that these consistency relations are fulfilled only ifT̂i = ± I for all i ssee Appendix A 2 for detailsd.
We thus conclude thatthe Bethe ansatz is consistent only if the particles are indistinguishable, i.e.,

AI is chosen such that either Tˆ
i = I or T̂i =−I, and in these two cases we can compute all coefficients

AP from AI as

AP = WPskdAI , s36d

whereWPskd is a product of operatorsYiskPi+1
−kPi

d andZs2kP1
d in Eqs.s34d ands35d obtained by

using repeatedlys32d and s33d.
For T̂i = +I we get from Eq.s34d that Yisud= I independent ofl1, and we conclude thatthe

momentum-dependent interaction is trivial for bosons. However, forT̂i =−I sfermionsd the Yisud
are nontrivial phases. There are two different fermion cases, namelyR̂1= ± I.
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C. Duality

It is interesting to note that there exists a simple duality relation between the fermionic
p̂dp̂-model and the bosonicCN delta-interaction model discussed in Sec. II. Since the operators
Yisud andZsud for the latter model are identical with the ones of the fermionicp̂dp̂-model upon the

substitutionl1→1/c1 and l2→1/c2 fcompare Eqs.s18d and s20d for T̂i =R̂1= +I and Eqs.s34d
and s35d for T̂i =R̂1=−1g, Eqs.s24d and s36d imply that

uAP
d uT̂i=R̂1=+I = uAP

p̂dp̂uT̂i=R̂1=−I,l1→1/c1,l2→1/c2
, s37d

whereAP
d are the coefficients of Sec. II B andAP

p̂dp̂ the ones in Sec. III B. This implies thatthe
bosonic wave functions of the delta-model in Sec. II B and the fermionic wave functions of the
p̂dp̂-model in Sec. III B are identical when restricted to the fundamental wedge

DI, 0 , x1 , x2 , ¯ , xN, s38d

provided that the coupling constants of these models are related as follows:

l1 =
1

c1
and l2 =

1

c2
. s39d

This can be seen also more directly, assuming that the eigenfunctionc of the Hamiltonian in Eq.

s5d is bosonic,T̂i =R̂1= I, it is enough to determine it in the fundamental wedge. Moreover, the
continuity conditions in Eqs.s8ad and s8bd are fulfilled automatically for boson wave functions,
whereas the conditions on the derivatives simplify to

s]xj
− ]xj+1

− c1ducuxj=xk+0 = 0,

s40d
s2]xj

− c2ducuxj=+0 = 0

for all x in the fundamental wedge. In a similar manner one finds that the fermionic eigenfunctions

of the Hamiltonian in Eq.s6d, T̂i =R̂1=−I, are determined by the very same conditions in Eq.s40d
with c1,2 replaced by 1/l1,2.

This generalizes the duality previously observed in theAN−1 case9,12 to theCN case.

D. Physical interpretation

As in the delta-interaction case, one can restrict the eigenfunctionsc of the Hamiltonian in
Eq. s6d by imposing the conditions in Eq.s25d, reducing the boundary conditions in Eqs.s30ad and
s30bd to

s]xj
− ]xk

ducuxj=xk+0 = s]xj
− ]xk

ducuxj=xk−0,

s41ad
ucuxj=xk+0 − ucuxj=xk−0 = 2l1s]xj

− ]xk
ducuxj=xk+0

and

]xj
ucuxj=+0 = 0 for R̂j = + 1,

s41bd
ucuxj=+0 = 2l2]xj

ucuxj=+0 for R̂j = − 1,

where xj .0. This shows that the eigenfunctions of theCN Hamiltonian in Eq.s6d with the
restriction in Eq.s25d are identical to the ones of theAN−1 Hamiltonian,
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H0 = − o
j=1

N

]xj

2 + 2l1o
j,k

s]xj
− ]xk

ddsxj − xkds]xj
− ]xk

d, s42d

restricted to the half-line,xj .0, and the boundary conditions at the origin given in Eq.s41bd.
Moreover, as shown in Appendix C 2, the eigenfunctionsc above restricted toxj .0 become

identical to the ones of the HamiltonianH0+o jVsxjd on the full real line,xj PR, with an external
potential

Vsxd =HV0Qs− xd + ÎV0]xdsxd]x if R̂j = + 1,

V0Qs− xd + 2l2]xdsxd]x if R̂j = − 1
J s43d

in the limit V0→`.

IV. CONCLUDING REMARK

As discussed in the Introduction, there exists a four-parameter family of local interactions,4

and the delta- andp̂dp̂ interactions only correspond to one-parameter subfamilies each. It is
therefore natural to ask, what about the other local interactions? Are there other cases leading to
exactly solvable models? It is thus interesting to note that there is a simple physical interpretation
of the four-parameter family of local interactions which seems very natural to us but seems
different from the one commonly used,4,10 in the simplest case they correspond to the following
generalization of the Hamiltonians in Eqs.s1d and s4d:

H = − ]x
2 + cdsxd + 4l]xdsxd]x + 2sg + ihd]xdsxd − 2sg − ihddsxd]x, s44d

which obviously is the most general hermitian Hamiltonian with interactions localized atx=0 and
containing only derivatives up to second ordershigher derivatives than that do not lead to physi-
cally acceptable boundary conditionsd. This Hamiltonian is formally self-adjoint for arbitrary real
parametersc, l, g, h, and it indeed corresponds to the well-known four-parameter family of local
interactions mentioned above24 ssee also Ref. 23 and Sec. II.1 in Ref. 6d. All these models have
natural generalizations to theAN−1 many-body case, but only the following cases are exactly
solvable by the coordinate Bethe ansatz even for distinguishable particles:sc,1 /c,0 ,0d and
sc,0 ,0 ,hd, for arbitrary realc andh sRef. 24d ssee also Refs. 5, 13, and 25d. It is important to note
that the many-body generalization of the Hamiltonian in Eq.s44d describes identical particles only
if g=h=0, and the proof of this latter result therefore requires an extension of Yang’s method of
solution3 to models of non-identical particles.24 We conjecture that similar results hold true for the
correspondingCN models.
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APPENDIX A: VERIFICATION OF CONSISTENCY RELATIONS

In this appendix we sketch the verification of the consistency relations in Eqs.s23ad ands23bd
sYang–Baxter relations and the reflection equationd.

1. Delta interaction

We start by writing the operatorsYi in the following way:

Yisud = asudÎ + bsudT̂i , sA1d

where
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asud =
c1

iu − c1
, bsud =

iu

iu − c1
. sA2d

Inserting this expression into the equations ins23ad results in a number of relations between the
coefficientsasud andbsud, one for each equation and different permutation operator. Most of them
are trivially fulfilled, but the following ones are nontrivial:

as− udasud + bs− udbsud = 1,

sA3d
as− udbsud + bs− udasud = 0,

and

bsvdasu + vdasud + asvdasu + vdbsud = asudbsu + vdasvd. sA4d

Insertingasud and bsud from Eq. sA2d they can be verified by straightforward calculations. To
verify Eq. s23bd we write the operatorZ as

Zsud = ãsudÎ + b̃sudR̂1, sA5d

where

ãsud =
c2

iu − c2
, b̃sud =

iu

iu − c2
. sA6d

Substituting this and Eq.sA1d into the equations ins23bd leads to the following nontrivial relation:

b̃s2vdbsu + vdãs2udasu − vd + b̃s2vdasu + vdãs2udbsu − vd + ãs2vdasu + vdb̃s2udbsu − vd

= asu − vdb̃s2udbsu + vdãs2vd sA7d

in addition to

ãs− udãsud + b̃s− udb̃sud = 1,

sA8d
ãs− udb̃sud + b̃s− udãsud = 0,

the validity of which follow from straightforward calculations.
We conclude that the Bethe ansatz is consistent even for distinguishable particles.

2. Local momentum-dependent interaction

In this case we getYisud as in Eq.sA1d but with

asud =
iu

iu − 1/l1
, bsud =

− 1/l1

iu − 1/l1
. sA9d

With that the two equations insA3d hold true but the equation insA4d does not. We therefore
conclude thatthe Bethe ansatz is not consistent for distinguishable particles.

For indistinguishable particles we haveT̂i = ± I and the Yang–Baxter relations in Eq.s23ad are
trivially fulfilled. Moreover, in this case it is also easy to check that the relationss23bd hold true

for R̂1= ± I.
We conclude that the Bethe ansatz is consistent in the indistinguishable particle case but not

in general.
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APPENDIX B: REPRESENTATIONS OF THE GROUP WN

In this appendix we discuss the irreducible representations of the groupWN;sZ /2ZdN
’SN. In

particular we will show the following.
Fact: There exists a set of irreducible representations of WN isomorphic to the irreducible

representationsx± ^ r, wherex± is a character (irreducible representation) of the (normal) abe-
lian subgroupsZ /2ZdN such thatx±sRjd= ±1 for all j =1,2, . . . ,N (same sign for all j) andr is an
arbitrary irreducible representation of the permutation group SN.

To show this we will use the notion of induced representations, following Sec. 8.2 of Ref. 26.
We start by determining the group of charactersX=HomssZ /2ZdN,Cd of the subgroupsZ /2ZdN.
The fact that it is generated by the reflectionsRj obeying the relationsssee, e.g., p. 21 in Ref. 22d

Rj
2 = I, j = 1,2, . . . ,N sB1d

implies that the charactersxPX are functions such that

xsRjd = einjp, nj P Z sB2d

for all j =1,2, . . . ,N. The groupWN acts on these characters by

swxdsRd = xsw−1Rwd, ∀ w P WN,x P X,RP sZ/2ZdN. sB3d

We now determine the orbits of the action ofSN in X, represented by a setxi where i PX/SN.
Using the fact that the adjoint action ofSN permutes the reflectionsRj, TjkRjTjk=Rk with Tjk the
transposition interchangingj andk, we conclude that the orbits ofSN in X can be represented by
the characters

xksRjd = H1, j . k,

− 1, j ø k,
J sB4d

wherej ,k=1,2, . . . ,N. For eachi let sSNdi be that subgroup ofSN consisting of allPPSN such that

Pxi =xi, and let furtherW̃i =sZ /2ZdN·sSNdi. The structure ofxi implies thatsSNdi =Si 3SN−i. The

characterxi can be extended to all ofW̃i by setting

xisRPd = xsRd, RP sZ/2ZdN, P P sSNdi . sB5d

Now let ri be an irreducible representation ofsSNdi and combine it with the canonical projection

W̃i → sSNdi to yield an irreducible representationr̃i of W̃i. By taking the tensor product ofxi andr̃i

we can now construct a set of irreducible representationsxi ^ ri of W̃i. We denote the correspond-
ing induced representation of the whole ofWN by ui,ri

. It follows from Proposition 25 in Ref. 26
that all irreducible representations ofWN are isomorphic to such a representationui,ri

. In particular
settingi =0 andi =N we arrive at the claim stated in the “Fact” at the beginning of the section.

APPENDIX C: PHYSICAL INTERPRETATION OF BOUNDARY CONDITIONS

In this appendix we substantiate the physical interpretations of the boundary conditions of the
CN models given in Secs. II and III in the main text.

1. Delta interaction

We first recall the eigenfunctionsc of the one particle Hamiltonian in Eq.s1d. Since this
Hamiltonian is invariant under the reflectionx→−x these eigenfunctions can be chosen such that
csxd= ±cs−xd;c±sxd, and they can be computed using the ansatz
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c±sxd = He−ikx + A±eikx for x . 0,

±seikx + A±e−ikxd for x , 0,
J sC1d

and the boundary conditions in Eq.s2d determine the constantsA± as follows:

A+ =
ik + c/2

ik − c/2
, A− = − 1 sC2d

with A− being independent ofc corresponding to the fact that the delta interaction is trivialsi.e.,
invisibled for fermions. Obviously, these eigenfunctions obey

− c+9sxd = k2c+sxd for x . 0 andc+8s+ 0d = sc/2dc+s+ 0d sC3d

and

− c−9sxd = k2c−sxd for x . 0 andc−s+ 0d = 0, sC4d

which is the simplest nontrivial caseN=1 of the general relation between theCN model and the
AN−1 model discussed in Sec. II C.

We now show that these eigenfunctionsc±sxd for x.0 are identical to the ones of the
Hamiltonians,

H± = − ]x
2 + V0Qs− xd + g±dsxd, sC5d

with

g+ = c/2 −ÎV0 andg− = 0 sC6d

in the limit V0→`. To show this we determine the eigenfunctionsf± of H± with the ansatz

f± = He−ikx + B±eikx for x . 0,

C±evx for x , 0,
J sC7d

and by straightforward computations we find that

B± =
ik + sv + g±d
ik − sv + g±d

andv = ÎV0 − k2 sC8d

for V0.k2. We thus see that

A± = lim
V0→`

B± sC9d

provided thatg± are chosen as in Eq.sC6d. This shows that the eigenfunctionsf+ of the Hamil-
tonianH+ on the full line in the limitV0→` become equal toc+sxd for x.0 sand zero otherwised,
and similarly forf−, c− andH−.

This computation substantiates the physical interpretation of theCN model in caseN=1.
However, since this interpretation only involves the boundary conditions atxj =0 which are not
affected by the interparticle interactions, this argument immediately generalizes to theN.1
particle case.

2. Local momentum dependent interaction

The discussion for the Hamiltonian in Eq.s4d is completely analogous to the one for the
Hamiltonian in Eq.s1d given above, and we therefore only write down the formulas that change.

EquationsC1d determining the even and odd eigenfunctionsc± remains the same butA+ and
A− are sessentiallyd interchanged,
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A+ = 1, A− =
ik + 1/2l

ik − 1/2l
, sC10d

where now the boson eigenfunction is unaffected by the interaction. Moreover, these eigenfunc-
tions solve the following problems on the half-axis:

− c+9sxd = k2c+sxd for x . 0 andc+8s+ 0d = 0 sC11d

and

− c−9sxd = k2c−sxd for x . 0 andc−8s+ 0d = 2lc−s+ 0d. sC12d

The physical interpretation of these boundary conditions is provided by the following Hamilto-
nians with external fields:

H± = − ]x
2 + V0Qs− xd + g̃±]xdsxd]x sC13d

which has eigenfunctions as in Eq.sC7d but with

B± =
ik + v/s1 + vg̃±d
ik − v/s1 + vg̃±d

andv = ÎV0 − k2, sC14d

which converge toA± for V0→` provided that, for example,

g̃+ = ÎV0 and g̃− = 2l. sC15d
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The question of controllability is investigated for a quantum control system in
which the Hamiltonian operator components carry explicit time dependence which
is not under the control of an external agent. We consider the general situation in
which the state moves in an infinite-dimensional Hilbert space, a drift term is
present, and the operators driving the state evolution may be unbounded. However,
considerations are restricted by the assumption that there exists an analytic domain,
dense in the state space, on which solutions of the controlled Schrödinger equation
may be expressed globally in exponential form. The issue of controllability then
naturally focuses on the ability to steer the quantum state on a finite-dimensional
submanifold of the unit sphere in Hilbert space—and thus on analytic controllabil-
ity. A relatively straightforward strategy allows the extension of Lie-algebraic con-
ditions for strong analytic controllability derived earlier for the simpler, time-
independent system in which the drift Hamiltonian and the interaction Hamiltonian
have no intrinsic time dependence. Enlarging the state space by one dimension
corresponding to the time variable, we construct an augmented control system that
can be treated as time independent. Methods developed by Kunita can then be
implemented to establish controllability conditions for the one-dimension-reduced
system defined by the original time-dependent Schrödinger control problem. The
applicability of the resulting theorem is illustrated with selected examples. ©2005
American Institute of Physics.fDOI: 10.1063/1.1867979g

I. INTRODUCTION

Over the last two decades, quantum control has played an important part in theoretical and
experimental progress toward the realization of laser control of chemical reactions and the devel-
opment of quantum computers.1–13 Essential to this contribution has been the integration of con-
cepts and mathematical results from control engineering with the fundamental principles of quan-
tum theory.

Geometric control, a treatment of differential equations rooted in differential geometry, uni-
tary groups, and Lie algebras, provides a natural mathematical basis for quantum control theory.
Explicitly or implicitly, its elements14 pervade the manipulation of quantum states in both tradi-
tional and novel technologies. Indeed, the field of nuclear magnetic resonancesNMRd is largely
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concerned with geometric control of collections of interacting nuclear spins.12,15–17 Geometric
control is also a key ingredient in the theory of quantum computation, figuring prominently in the
works of Lloyd,18 Deutsch, Barenco, and Ekert,19 Akulin, Gershkovich, and Harel.20

In particular, Lloyd18 was among the first to establish that almost all quantum logic gates are
universal. More precisely, if one has available a gate that can operate on two qubits, plus a
single-qubit operation, then an arbitrary unitary transformation on the variables of the system can
be performed with arbitrary precision by implementing a finite sequence of local operations.
Clark21 and Ramakrishnaet al.22 and Ramakrishna and Rabitz23 called attention to the close
relationship between open-loop geometric quantum control methods and the application of quan-
tum logic gates.18,19

Following Ref. 23, let us consider the differential system

dXstd
dt

= AXstd + o
i=1

m

BiXstduistd, Xs0d = I , s1d

which arises both in quantum computing and molecular control. Here,X is aN3N unitary matrix
sI being the corresponding identity matrixd, the matricesA and Bi, i =1, . . . ,m are N3N skew-
Hermitian, and the functionsuistd are controls. This equation is the law of motion of the evolution
operators which govern time development of theN-dimensional vector representing a pure state of
the system in itsN-dimensional Hilbert space. A necessary and sufficient condition fors1d to be
controllable is that the set of all matrices generated byA, Bi, i =1, . . . ,m, and their commutators
si.e., the Lie algebra generated byA andBid equals the set of allN3N skew-Hermitian matrices.
Additionally, when this condition is met, anyX can be attained through some choice among the
controlsuistd restricted to piecewise-constant functions of time. In fact, the formulation adopted by
Lloyd18 in his universality proof corresponds to the special caseA=0 andm=2 of systems1d.
Already in the 1970s, Sussmann and Jurdjevic24,25 applied Lie-group theory to obtain rigorous
results on controllability for finite-dimensional control problems corresponding tos1d.

Quantum computation has mostly concerned itself with the manipulation of discrete systems
with finite-dimensional state spaces. However, the fundamental quantum observables representing
position and momentum, and functions thereof, are continuous in nature. In view of recent devel-
opments in quantum error correction26–28 and quantum teleportation29,30 of continuous variables,
the potential of quantum computation over continuous variables warrants serious investigation,
thus reopening issues of controllability on infinite-dimensional Hilbert spaces. Continuous quan-
tum computers may in fact be able to perform some tasks more efficiently than their discrete
counterparts.

As early as 1983, Huang, Tarn, and ClarksHTCd5,31 proved a basic theorem on strong analytic
controllability of quantum systems. This theorem explicitly embraces the case of quantum systems
whose observables are continuous quantum variables acting on an infinite-dimensional state space,
but the essential finite-dimensional results may be extracted as special cases. Because of the
difficulties caused by infinite dimensionality and the unboundedness of operators, an analytic
domain in the sense of Nelson32 was introduced to deal with domain problems5,31 and maintain
key features of the application of Lie algebraic methods to finite-dimensional problems.

Infinite-dimensional control systems have been widely if not systematically studied outside
the quantum context. Brockett14 addressed the problem of realization of infinite-dimensional bi-
linear systems. Sakawa33 introduced a method for design of finite-dimensionalH` controllers for
diffusion systems with bounded input and output operators by using residual model filters.
Keulen34 designed infinite-dimensionalH` controllers for infinite-dimensional systems with
bounded input and output operators by using the solutions to two kinds of Riccati equations in an
infinite-dimensional space. Based on gap topology, Morris35 constructed finite-dimensionalH`

controllers for infinite-dimensional systems with bounded input and output operators. Morris36

also showed that approximations of Galerkin type can be used to design controllers for an infinite-
dimensional system. Costa and Kubrusly37 derived necessary and sufficient conditions for exis-
tence of a state feedback controller that stabilizes a discrete-time infinite-dimensional stochastic
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bilinear system and ensures that the influence of the additive disturbance on the output is smaller
than some prescribed bound. In Ref. 38, optimizability and estimatability for infinite-dimensional
linear systems are investigated; also, a theorem on the equivalence of input-output stability and
exponential stability of well-posed infinite-dimensional linear systems is established. In Ref. 39,
the Hilbert-space generalization of the circle criterion is used for finite-dimensional controller
design of unstable infinite-dimensional systems. There is also literature on absolute stability prob-
lems and open-loop stability problems in infinite-dimensional systems.40–44 In addition, the spec-
tral factorization problem plays a central role in designing feedback control for the linear quadratic
optimal control problem in infinite-dimensional state-space systems.45–48 In contrast to this body
of work, very little has been published on controllability for time-dependent infinite-dimensional
quantum control systems.

In the microscopic world ruled by quantum mechanics, most interesting phenomena involve
change, and all real-world quantum systems are influenced to a greater or lesser extent by inter-
actions with their environments. The environment changes with time, so the Hamiltonians used to
describe these open quantum systems are explicitly time dependent, as in Refs. 49 and 50. Tailored
time-dependent perturbations are used to improve system performance49 in high-resolution NMR
spectroscopy, where versatile decoupling techniques are available to manipulate the overall spin
Hamiltonian.16 Colegrave and Abdalla studied quantum systems with a time-dependent mass to
investigate the field intensities in a Fabry–Perot cavity.51 They suggested possible applications to
solid-state physics and quantum field theory.52 Remaud and Hernandez53 found that a time-
dependent mass parameter offers a means of simulating input or removal of energy from the
system. Implementation of controls on these time-dependent quantum systems requires guidance
from mathematical studies of controllability for time-dependent Hamiltonian operators. Although
the HTC theorem deals with controllability in infinite-dimensional Hilbert space, it is restricted to
time-independent operators. This paper explores a more general case. We seek an extension of the
HTC theorem that is applicable both to time-independent and time-dependent quantum systems, as
well as to systems with discrete or continuous operators acting on finite- or infinite-dimensional
state spaces.

Since this paper is aimed at an interdisciplinary readership that includes pure quantum theo-
rists as well as control engineers, it is well to draw a clear distinction between time dependence of
the system arising solely from influences that are directly under the control of an external, pur-
poseful agent, and time dependence that is intrinsic to the physical system either in isolation or as
embedded in a natural environment. In the accepted terminology of control theory, which we
adopt, the former case defines a time-independent control system, and the latter, a time-dependent
system. The issue of controllability has received considerable attention in the time-independent
situation so identifiedse.g., in Refs. 5, 8, 12, and 22d; whereas relevant results for the time-
dependent case are very limited.

The time-dependent quantum control problem that we shall address is stated formally in Sec.
II. To cope with the unboundedness of operators involved in the Schrödinger equation, an analytic
domain is introduced in Sec. III, such that solutions of the Schrödinger equation can be expressed
globally in exponential form on this domain. In Sec. IV, we define an augmented system in a space
enlarged by one dimension, enabling its description within the framework of time-independent
control systems. Following the pattern of Kunita’s proof54 of strong controllability of a time-
independent system, we then establish conditions for controllability of this kind for the one-
dimension-reduced system defined by the original time-dependent Schrödinger equation. Three
illustrative applications of the theorem are presented in Sec. V, and our findings are reviewed in
Sec. VI.

II. PROBLEM FORMULATION

The following quantum control system is derived by applying the geometric quantization
method55 to a classical bilinear control system:31,56
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i"
]

]t
cstd = FH08std + o

l

ulstdHl8stdGcstd,

s2d
cst0d = c0.

Here, H08std, and theHl8std with l =1,2, . . . ,r, are Hermitian operators on a unit sphereSH of
Hilbert space, theulstd, l =1, . . . ,r are restricted to piecewise-constant real functions of time, and
cstd denotes a quantum state belonging toSH. In physical language,H08 is the unperturbed or
autonomous Hamiltonian, and theHl8 are interaction Hamiltonians. It is the coefficientsulstd that
are subject to purposeful control by an agent external to the system, within the specified class of
functions. Setting"=1 and dividingH08std and theHl8std by i, we arrive at a more familiar control
form,

]

]t
cstd = FH0std + o

l

ulstdHlstdGcstd,

s3d
cst0d = c0 P SH,

where theHistd, i =0,1,2, . . . ,r, are skew-Hermitian operators onSH. From the standpoint of
systems engineering,H0std is called the drift term in Eq.s3d because no control function directly
modifies its action. Importantly, we depart from previous studies of quantum controllability in
allowing the Hamiltonian operatorsHistd to their own carry explicit time dependence, which is
assumed to be inherent in the physical structure of the system and therefore beyond the control of
any external agent. The operatorsHistd are the counterparts of the structural matrices involved in
standard formulations of linear control theory.

For the systems3d, we know from arguments presented in Ref. 5 that the transitivity of states
on SH requires an infinite sequence of control manipulations within the control sethulstdj of
piecewise-constant real functions. Clearly, such a process is strictly meaningless in practice, al-
though under certain conditions it may be possible to find a finite series of control operations that
approach the desired target state arbitrarily closely. Even so, we are naturally directed to consider
the issue of controllability on afinite-dimensionalsubmanifold of the unit sphereSH, for which in
turn a finite-dimensional tangent space is generated byH0stdcstd , . . . ,Hrstdcstd.

Accordingly, our attention focuses on a finite-dimensional submanifoldM ,SH, on which the
following dynamics prevail:

]

]t
cstd = FH0std + o

l

ulstdHlstdGcstd,

s4d
cst0d = c0, cstd P M, ∀ t ù t0.

Thus, instead of studying controllability onSH, we consider controllability onM ,SH. On the
submanifoldM, the inherited topology ofSH still applies; hence it is paracompact and connected.

For systems4d, we have available a set of vector fieldsOsMd composed of skew-Hermitian
operators onM with Lie algebra defined byOsMd=LhH0, . . . ,Hrj. Let V be a subset ofOsMd. The
Lie algebra generated byV is denoted byLsVd. The restriction ofLsVd to a pointc on M, which
is a tangent subspace ofTMc at c, is written as

LsVdscd = hYscduY P LsVdj , TMc, s5d

while
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L̃sVd = hLsVdscduc P Mj s6d

defines an involutive differential system. A vector fieldX is said to belong toL̃sVd if Xscd
P L̃sVdscd holds for allcPM.

III. SELECTING THE DOMAIN

Recognizing that operators in quantum mechanics are in general unbounded, we need to find
a domain on which exponentiations of the operators entering the systems4d converge. To this end,
we introduce the so-called analytic domain conceived by Nelson,32 a dense domain invariant under
the action of the operators in systems3d. The solution of the Schrödinger equation can be ex-
pressed globally in exponential form on this domain, which is also invariant under the action of
the exponentiations of the operatorsHi.

Definition III.1: If H is an operator on the state spaceH, we call an elementv of H an
analytic vector for H in case the series expansion ofexpsHtdv has a positive radius of absolute
convergence, that is, provided

o
n=0

`
iHnvi

n!
sn , ` s7d

for some s.0.
If H is a bounded operator, then every vector inH is trivially an analytic vector forH.
The corresponding definition of analytic vectors for a Lie algebra of operators runs as

follows.32,57

Definition III.2: A vectorvPH is said to be an analytic vector for the whole Lie algebraL
if for some s.0 and some linear basishH1, . . . ,Hdj of the Lie algebra, the series

o
n=0

`
1

n! o
1øi1,. . .,inød

iHi1
¯ Hin

visn s8d

is absolutely convergent.
The concept of analytic vectors is especially useful for our purposes, since for certain types of

unbounded operators they form a dense set in the Hilbert space. In fact, the set of all analytic
vectors for a Lie algebraL forms an analytic domain in the following sense.32,57

Definition III.3: Let L be the Lie algebra generated by the skew-Hermitian operators
H0, . . . ,Hr on a unit sphere SH of Hilbert space. An analytic domainDA is said to exist for the Hi,
i =0,1, . . .r, if (i) there exists a common dense invariant subspaceDA,H on which the corre-
sponding unitary Lie group G can be expressed locally in exponential form with Lie algebraL, (ii)
DA is invariant under GandL, and (iii) on DA, elements of G can be extended globally to all
tPR+.

We now state Nelson’s fundamental theorem, which provides conditions under which a Lie
algebraL defined by a set of skew-Hermitian operators can be associated with a unitary groupG
havingL as its Lie algebra.

Theorem III.1: (Nelson) LetL be a Lie algebra of skew-Hermitian operators in a Hilbert
spaceH which have a common invariant dense domainDA. Let X1, . . . ,Xd be an operator basis
for L. If T=X1

2+¯ +Xd
2 is essentially self-adjoint, then there is a unique unitary group G inH

with Lie algebraL. Let T̄ denote the unique self-adjoint extension of T. Then the analytic vectors

of T̄ are analytic vectors for the whole Lie algebraL and form a set invariant under G and dense
in H.

Accordingly, on the analytic domainDA, the Lie algebra and its unitary Lie group are related
through the familiar exponential formula. The Lie algebra is composed of skew-Hermitian opera-
tors which are vector fields defined onDAùSH. By propertysiii d of the Definition III.3 of the
analytic domain, these vector fields onDAùSH are complete. Moreover, owing to the skew-
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Hermiticity of the operatorsHi of systems3d, the corresponding transformation groups, taking a
given state onSH to another state onSH, are unitary. This feature guarantees preservation of the
norm of quantum states, as required for the statistical interpretation of quantum mechanics.

In fact, Nelson’s theorem only provides sufficient conditions for the important properties it
yields. With this in mind, we shall assume an analytic domainDA existswithoutexplicitly impos-
ing the conditions stated in this theorem, a stance also adopted in Ref. 5. This strategy clearly
implies that the existence of such a domain must be established explicitly prior to application of
the controllability results to be derived in the following sections.

We are now prepared to adapt the concept of controllability to problems involving unbounded
operators.

Definition III.4: For system (3), ifDA exists forL, and if for anyc0 and c f PDAùSH there
exist control functions u1std , . . . ,urstd, and a time tf srespectively, ∀tfd such that the solution of
control system (3) satisfiescst0d=c0, cstfd=c f, and cstdPDAùSH, where t0ø tø tf, then the
system is called analytically controllablesrespectively strongly analytically controllabled on SH;
moreover we then say that the corresponding unitary Lie group is analytically transitive on SH.

As has been argued, the more pertinent concept is controllability on the submanifoldM of SH.
By assumption,M ùDA is dense inM, while dimsM ùDAd=dim M =m. Denoting the tangent
space ofM ùDA at c by TMc=LhH0, . . . ,Hrjscd, the tangent bundle of the systems4d is given by
TsM ùDAd=øcPMùDA

TMc.
Let Rtscd denote the set of all points that are reachable fromc at time t. The setRscd

=øt.t0
Rtscd is then reachable fromc at some time greater thant0. We say that systems4d is

analytically controllable onM if Rscd=M ùDA, ∀cPM ùDA, and that the system is strongly
analytically controllable onM if Rtscd=M ùDA, ∀ t. t0, ∀cPM ùDA.

IV. CONTROLLABILITY OF TIME-DEPENDENT QUANTUM CONTROL SYSTEMS

A. Reformulation as a time-independent augmented system

Most of the methods developed for determining controllability of time-independent bilinear or
nonlinear systems5,31,58–61cannot be applied directly to the time-dependent bilinear control prob-
lem studied here, since these approaches rely upon the following property. LetYtswd be an integral
curve of the time-independent tangent vectorY starting from pointw and tP ft0,t0+ tfg, and let
cYtswd be an integral curve of the tangent vectorcY starting fromw andtP ft0,t0+ tf / ucug; then the
integral curvesYtswd and cYtswd coincide. This property holds for all time-independent tangent
vectors, but it generally fails for time-dependent tangent vectors.

However, recognizing that this feature has been instrumental to controllability proofs for
nonlinear systems, we recast the systems4d as a time-independent problem so that it can once
again be exploited. Reformulation of the original problem is accomplished by regarding the time
variable t as an additional parameter in the specification of the system state, supplementing the
state vectorc. Thus the state of the extended system is expressed as

j = St + t0
c

D . s9d

Making the corresponding extension of the manifoldM, we form an augmented
sm+1d-dimensional manifold defined by

N =H R

M ù DA
J , s10d

whereR is the real line. Next we define augmented vector fieldsWl by

W0sjd = F 1

H0st + t0dcst + t0d G ,
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Wlsjd = F 0

Hlst + t0dcst + t0d G , s11d

with l =1,2, . . . ,r. Obviously, theWl, with l =0,1, . . . ,r, depend on botht andc, i.e., theWl now
depend on the statej defined by Eq.s9d.

The time-dependent control systems4d has thereby been reformulated as an augmented system
of time-independent form. Explicitly,

]jstd
]t

= FW0sjd + o
l

ulstdWlsjdG ,

js0d = h = S t0
cst0d

D = S t0
c0
D , s12d

∀t ù 0, c0 P M ù DA, j P N,

whereN is then=sm+1d-dimensional manifold constructed in Eq.s10d andM is now viewed as
a one-dimension-reduced manifold of the augmented system. As always, the controlsulstd, with
l =1, . . . ,r, are piecewise-constant real functions of timet.

It is convenient to employt+ t0 instead oft in definitions s9d and s11d, thereby setting the
starting time at zero for the augmented systems12d. Since the latter system is time-independent by
construction, this can be done without affecting its trajectory. Thus, if the time for the augmented
system ist, then the time for the original systems4d is t+ t0. Standard differential equation
techniques can evidently be employed to analyze the behavior of the augmented system on the
manifold N, and the results will reflect the behavior of the original system on manifoldM.

We note peripherally that systems12d is in a decomposed form in the sense of Ref. 59, where
several theorems were developed for decomposition of nonlinear control systems. However, these
theorems do not specify reachable sets, so they cannot be applied here to obtain controllability
results.

Reachable setsR̂tshd and R̂shd are defined for the augmented systems12d in just the same
manner as for systems4d. From the work of Huang, Tarn, and Clark5 based on the results of
Chow,62 Sussmann and Jurdjevic,24 and Kunita,54,58 it is to be expected that the issue of analytic
controllability will hinge on the relationships among certain Lie algebras generated by the vector
fields involved in the control systems4d or its augmented counterparts12d. For the latter problem,

these Lie algebras are specified byÂ=LhW0, . . . ,Wrj, B̂=LhW1, . . . ,Wrj, and Ĉ=LhadW0

m Wl , l
=1, . . . ,r ,m=0, . . . ,̀ j. By definition, adW0

m Wl is built from repeated commutators ofW0, present

in Â but not B̂, with any and all of theWl present inÂ or B̂; clearly,

B̂ , Ĉ , Â. s13d

For future reference we notesin particulard that the restriction ofB̂ to a pointc on N, which is a
tangent subspace ofTNc at c, is written as

B̂scd = hYscduY P B̂j , TNc, s14d

and in turn that

B̂˜ = hB̂scduc P Nj s15d

is an involutive differential system.
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B. Controllability of the augmented system

We must still face the situation that standard controllability results,5,31,58–61derived for time-
independent systems, cannot be carried over directly to our problem as reformulated in the pre-
ceding section, since derivation of these results employs the vector-space property of the tangent
space. Specifically, it is required that ifY is an acceptable tangent vector, then so iscY, wherec
is an arbitrary constant. But in our case, once the first component of a tangent vector of the
augmented manifold is fixed at unity, it is not possible for bothY and cY, with cÞ1, to be
available tangent vectors. However, with the aid of a result of Kunita,54 we may nevertheless
establish one-dimension-reduced controllability of the augmented system; that is, we may prove
strong analytic controllability of the original system since it is not necessary to control the time
dimension.

First, let us identify certain properties of the reachable setR̂tshd that will be useful in proving
strong analytic controllability.

Theorem IV.1: sReferences 24 and 25d Assume that the Lie algebraĈ is locally finitely

generated, and let Ishd be the maximal connected integral manifold ofĈ containing the pointh.

Then R̂tshd,at
0sIshdd, whereat

0 is the integral curve whose vector field is W0. Furthermore, the

interior of R̂tshd with respect to the topology ofat
0sIshdd is dense in Rˆ tshd.

In the rest of this section, we systematically develop the principal result of the paper, namely,

under suitable conditions the reachable set of the augmented systems12d at timet, R̂tshd, is equal
to at

0sIshdd. We begin by establishing a key relationship between the interior of the reachable set

R̂tshd of the augmented system at timet and the interior of its closure, through the following
lemma.

Lemma IV.2:

intscl R̂tshdd = int R̂tshd. s16d

Proof: Let xP intscl R̂tshdd and letSesxd be the set of allx8 such thatx is reachable fromx8
within time e.0. ThenSesxd is the reachable set within timee.0 for the dual control system

]y

]t
= − FW0syd + o

l

ulstdWlsydG . s17d

Theorem IV.1 implies that intSesxd is dense in clSesxd, and intR̂tshd is dense in clR̂tshd. Since
xPcl Sesxd, we know that

cl Sesxd ù intscl R̂tshdd Þ x s18d

and hence that

int Sesxd ù intscl R̂tshdd ù R̂tshd Þ x . s19d

If z belongs to the latter intersection, thenz is reachable fromh using timet, andx is reachable
from z in elapsed time less than or equal toe. Therefore,x is reachable fromh in elapsed time
betweent and t+e. This argument holds for anyt.0 and anye.0. Letting e→0, we conclude

that x is reachable fromh in time t, so xP R̂tshd. Thus,

intscl R̂tshdd , R̂tshd ⇒ intscl R̂tshdd , int R̂tshd.

But clearly intR̂tshd, intscl R̂tshdd and the statements18d follows.
From the control-theoretic perspective, the drift term is undesirable because no control is

present to influence or remove its effect. It is therefore of strategic value to consider a suitably
modified control system, called the auxiliary system, that will serve as a bridge to an effective
controllability analysis of the augmented system. Lete0,e1, . . . ,er be unit vectors inRr+1; in
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particular, letei =s0, . . . ,0 ,1,0, . . . ,0d, in which only thesi +1dth element is unity and the others
are zero. Denote byU0 the set of controlsustd=su0std , . . . ,urstdd composed of piecewise-constant
functionsuistd taking the valuese0, ±e1, . . . , ±er only. Consider then the control system expressed
in the form

]j

]t
= u0stdW0sjd + o

l

ulstdWlsjd, jst0d = h, s20d

whereustdPU0. The solution of this system may be written as

at = atk

ik
¯ at j

i j
¯ at1

i1, s21d

where k is a positive integer and whereat j
i j is the integral curve ofWij

with i j =0,1, . . . ,r, j
=1, . . . ,k, andk a positive integer. The timestj satisfytj ù0 if i j =0, otherwise,tj PR. We denote

by R̂t
0shd the reachable set of the auxiliary system corresponding to the total timet since time zero,

over which the control functionu0s·d is nonzero; the reachable set of the auxiliary system is then

R̂0shd=øt.0R̂t
0shd. Theorem IV.1 is valid for this control system.24

The following notations are convenient:

Exp L̂=the group of diffeomorphisms generated by theat
i, tPR, i =0, . . . ,r, whereat

i is an
integral curve ofWi,

sExp L̂d+=the semigroup of diffeomorphisms generated byat
0, tù0, and theat

l, with tPR
and l =1, . . . ,r,

sExp L̂dt=the subset ofsExp L̂d+ generated byatk
ik· ¯ ·at1

i1, with o j=1
k tj ·1hi j=0j= t.

To clarify the meaning of the last line, we note that when the indexj is such thati j =0, we
haveu0=1 sand all the otherui =0d, soW0 is “turned on” and does play a role as an active vector
field or tangent vector. Conversely, for indicesj such thati j Þ0, the factoru0 multiplying W0 in

systems20d vanishes, andW0 plays no role. The sum appearing in the definition ofsExp L̂dt gives
the total time over whichW0 is active in the system dynamics.

From Chow’s theorem,24,62 it is known that the group ExpL̂ acts transitively on the manifold

N when dimL̂hW0,W1, . . . ,Wrj=dim N, i.e., we know thathashd uaPExp L̂j=N for any hPN.

On the other hand, the reachable set at timet for the auxiliary systems20d is R̂t
0shd=hashd ua

P sExp L̂dtj. sIt is to be noted that in the present contextt is the total time over whichW0 has been
active since time zero, which is generally not equal to the actual elapsed time, sinceW0 may be
turned off over certain intervals.d

Lemma IV.3:

cl R̂tshd = cl R̂t
0shd. s22d

We may gain intuitive understanding of this lemma by analyzing a simple example.
Example:Let us compare the control system

d

dt
Sx

y
D = S1

0
D + uS0

1
D , s23d

whereinuPR, with the system

d

dt
Sx

y
D = u0S1

0
D + u1S0

1
D , s24d

whereinsu0,u1dP hs0, ±1d ,s1,0dj. Clearly, the first of these corresponds to the augmented system,

and the second to the auxiliary system. LetR̂tshd andR̂t
0shd denote, respectively, the reachable sets

of systemss23d and s24d, starting from the stateh. While stopping short of rigorous argument,

052102-9 Controllability of quantum control systems J. Math. Phys. 46, 052102 ~2005!

                                                                                                                                    



explicit computation will be used to reveal the pertinent relationship between clR̂tshd and

cl R̂t
0shd.
First consider the integral curve

atshd = S0

1
D

t1

·S 0

− 1
D

t2

·S1

0
D

t
P R̂t

0shd, s25d

and forn=1,2,3, . . .form a series of integral curvesbt
nshdP R̂tshd defined by

bt
nshd = SS1

0
D + nS0

1
DD

t1/n
·SS1

0
D + nS 0

− 1
DD

t2/n
·S1

0
D

t−st1/nd−st2/nd
. s26d

As n goes to`, we find

bt
nshd → S0

1
D

t1

·S 0

− 1
D

t2

·S1

0
D

t
, s27d

that is,bt
nshd→atshd. HenceatshdPcl R̂tshd.

On the other hand, consider

btshd = SS1

0
D + m1S0

1
DD

t1

·S1

0
D

t2

·SS1

0
D + m2S 0

− 1
DD

t3

P R̂tshd, s28d

wherem1, m2PR and t= t1+ t2+ t3, and construct

a1
n = FS1

0
D

t1/n
·m1S0

1
D

t1/n
Gn

, s29d

again forn=1,2,3, . . . .Applying the Baker–Campbell–Hausdorff formula, it is straightforward to
show that

lim
n→`

a1
n = lim

n→`
HSS1

0
D + m1S0

1
DD

t1

+
t1
2

2n
m1FS1

0
D,S0

1
DG + OS 1

n2DJ = SS1

0
D + m1S0

1
DD

t1

.

s30d

Similarly, let

a3
n = FS1

0
D

t3/n
·m2S 0

− 1
D

t3/n
Gn

s31d

and employ the Baker–Campbell–Hausdorff formula to obtain

lim
n→`

a3
n = lim

n→`
HSS1

0
D + m2S 0

− 1
DD

t3

+
t3
2

2n
m2FS1

0
D,S 0

− 1
DG + OS 1

n2DJ = SS1

0
D + m2S 0

− 1
DD

t3

.

s32d

Obviously

a1
n ·S1

0
D

t2

· a3
n P R̂t

0shd, s33d

and we find that
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lim
n→`

a1
nS1

0
D

t2

a3
n = SS1

0
D + m1S0

1
DD

t1

·S1

0
D

t2

·SS1

0
D + m2S 0

− 1
DD

t3

= btshd. s34d

ThereforebtshdPcl R̂t
0shd.

Now let us proceed with the proof of Lemma IV.3, showing first that clR̂t
0shd#cl R̂tshd.

Consider thatatshdP R̂t
0shd is expressible in the form ofatk

ik
¯at1

i1shd, wheret=o j=1
k tj ·1hi j=0j. With

the guidance of the example above, a sequence of controlsusnds·d associated with the diffeomor-
phism of this form is constructed as follows. For an arbitrary positive integern such thatntm
ùoi jÞ0utju, wherem is the last subscriptj such thati j =0, let

tm
snd = tm −

oi jÞ0
utju

n
. s35d

Define real numberss1
snd , . . . ,sk

snd, ordered so that 0øs1
sndøs2

sndø ¯ øsk
snd, by

s1
snd = ut1u if i1 = 0,

=
1

n
ut1u if i1 Þ 0,

sjù2
snd = sj−1

snd + utj
sndu if last j with i j = 0, s36d

=sj−1
snd + utju if other j with i j = 0,

=sj−1
snd +

1

n
utju if i j Þ 0.

Further, let

usndstd = n · sgnstjdei j
if sj−1

snd ø t ø sj
snd and i j Þ 0,

=0 if sj−1
snd ø t ø sj

snd and i j = 0, s37d

=0 if t ù sk
snd,

wheree1, . . . ,er are unit vectors inRr. The solutionbt
snd of the systems12d associated with the

control usnds·d may be written

bsk
snd

snd = butku
n,ik

¯ but1u
n,i1 P R̂tshd, s38d

wherebutu
n,i j is the integral curve ofW0 if i j =0, or the integral curve ofW0+n·sgnstdWij

if i j Þ0,
i.e.,

butu
n,i j = sW0dt if i j = 0,

=sW0 + n · sgnstdWij
dutu/n if i j Þ 0. s39d

We note thatsW0+n·sgnstdWij
dutu/n and fs1/ndW0+sgnstdWij

gutu describe the same integral curve
on N, by virtue of the time-invariance property of systems12d. Obviously,butpu

n,i j →atp
i j asn→`. On

the other hand,
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sk
snd = o

j

t j · 1hi j=0j −
ol

utlu · 1hi lÞ0j

n
+

ol
utlu · 1hi lÞ0j

n
= t. s40d

Thus, asn→` we obtain

bsk
snd

snd shd → atk

ik
¯ at1

i1shd = atshd, s41d

and henceatshdPcl R̂tshd. Becauseatshd is an arbitrary element inR̂t
0shd, it follows that

R̂t
0shd#cl R̂tshd, and since clR̂tshd is closed, it follows in turn that clR̂t

0shd#cl R̂tshd.
Next we show clR̂tshd#cl R̂t

0shd. ConsiderbshdP R̂tshd of the form ofbuk

ck · ¯ ·bu1

c1shd, with
buj

cj =expujsW0+cj
1W1+¯ +cj

rWrd andcj =scj
1, . . . ,cj

rd. Here,cj
l is the control applied toWl during

time perioduj, socj is the control set applied toW1, . . . ,Wr during the corresponding time interval
uj, with uj PR+ andcj

l PR. For eachbuj

cj , j =1, . . . ,k, takea j
n in the form

a j
n = Fexp

uj

n
scj

1W1d ¯ exp
uj

n
scj

rWrdexp
uj

n
W0Gn

. s42d

Invoking the Baker–Campbell–Hausdorff formula,63 we write

lim
n→`

a j
n = lim

n→`
Fexp

uj

n
scj

1W1d ¯ exp
uj

n
scj

rWrd · exp
uj

n
W0Gn

= lim
n→`

expFujsW0 + cj
1W1 + ¯ + cj

rWrd + o
0øp,qør

uj
2

2n
cj

pcj
qfWp,Wqg + OS 1

n2DG
= expujsW0 + cj

1W1 + ¯ + cj
rWrd = buj

cj . s43d

Constructinga1
n
¯ak

nP R̂t
0shd we then obtain

lim
n→`

ak
n
¯ a1

nshd = buk

ck
¯ br1

c1shd = bshd, s44d

so thatbshdPcl R̂t
0shd. Sincebshd is an arbitrary element ofR̂tshd, we arrive atR̂tshd#cl R̂t

0shd
and hence clR̂tshd#cl R̂t

0shd. We conclude that clR̂tshd=cl R̂t
0shd.

The timet labeling these reachable sets is to be interpreted as the time interval over which the
control operation represented byW0 is in effect, or “turned on.” In fact,W0 is necessarilyalways
“on” in the augmented system, so the total time elapsing in the augmented system is the same as

the time interval over whichW0 is turned on; hence the reachable setsR̂t corresponding to these
two times are identical. Of course, the same coincidence does not hold for the auxiliary system.
However, this is immaterial, since the auxiliary system was only introduced to exploit the key

relationships22d. Further, we may observe that the reachable setR̂t
0shd of systems20d, with the

controlustd=su0std , . . . ,urstdd assuming valuesse0, ±e1, . . . , ±erd, is the same as the corresponding
set for which the controlustd assumes the valuese0, ±ce1, . . . , ±cer, with cPR+.

Since we can take advantage of the results22d in this manner, it is clearly preferable to study

the properties ofR̂t
0shd. The auxiliary system is easier to control, and the state at timet can be

expressed as a composition of integral curves ofWi in the same style as Eq.s21d. To do so, let the
set of subscriptsj with i j =0 be written ashp, . . . ,q,sj in increasing order, of course withtp
+¯ + tq+ ts= t. Then we have
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at = satk

ik
¯ ats+1

is+1d · sats
0 · ats−1

is−1 · a−ts
0 d · sats

0 · ats−2

is−2 · a−ts
0 d ¯ sats+tq

0 · atq−1

iq−1 · a−sts+tqd
0 d

· sats+tq
0 · atq−2

iq−2 · a−sts+tqd
0 d ¯ sats+tq+¯+tp

0 · atp−1

ip−1 · a−sts+tq+¯+tpd
0 d ¯ sats+tq+. . .+tp

0 · at1

i1

· a−sts+tq+. . .+tpd
0 d · at

0 = b0satk

ikd ¯ b0sats+1

is+1d · bts
sats−1

is−1d

· bts
sats−2

is−2d ¯ bts+tq
satq−1

iq−1d · bts+tq
satq−2

iq−2d ¯ btsatp−1

ip−1d ¯ btsat1

i1d · at
0, s45d

wherebtsgd=at
0·g ·a−t

0 . This analysis stimulates us to define the following three sets of diffeo-
morphisms:

Exp B̂=the group generated byat
l, tPR, l =1, . . . ,r, whereat

l is the integral curve whose
vector field isWl,

Ft = øk=1
` hbtk

sgkd · ¯ · bt1
sg1dug j P Exp B̂,0 ø tk ø ¯ ø t1 = tj,

Gt = øk=1
` hbtk

sgkd · ¯ · bt1
sg1dug j P Exp B̂,min

j
t j ù 0,maxj t j = tj.

.
By construction,

R̂t
0shd = Ftat

0shd. s46d

We observe thatFt is a semigroup of diffeomorphisms included in the groupGt, whose properties
are established in the following lemma.

Lemma IV.4: First, the set Gt is a group. Furthermore, ifdim Ĉshd=n−1=m holds for allh
PN, then hashd uaPGtj=at

0sIsa−t
0 shddd is true for all h, where Isnd is the maximal connected

integral manifold containingnPN, whose associated Lie algebra isĈ.
Proof: For a1,a2PGt, it is easily seen thata1·a2PGt. Writing aPGt as a

=btk
sgkd · ¯ ·bt1

sg1d, we also see thata−1=bt1
sg1

−1d · ¯ ·btk
sgk

−1d. ThereforeGt is a group.
Now, denote the sethashd uaPGtj by Btshd. It is straightforward to show thatsid Btshd

=Btsjd if jPBtshd and sii d BtshdùBtsjd=x if j¹Btshd.54 We can demonstrate thatsiii d h

P int Btshd under the topology ofat
0sIsa−t

0 shddd as follows. By definition,R̂t
0shd is the reachable

set for the systems20d. By the same reasoning that leads to Eq.s46d, we haveR̂t
0sa−t

0 shdd,Btshd
becauseR̂t

0sa−t
0 shdd=Ft ·at

0·a−t
0 shd. SinceR̂t

0sa−t
0 shdd has a nonempty interior with respect to the

topology of at
0sIsa−t

0 shddd by Theorem IV.1, we see thatBtshd contains a non-null open setU.
Given mPU, chooseaPGt such thatashd=m. Sincea is a continuous map,a−1sUd is an open
set containingh.

In fact,a−1sUd is included inBtshd. We know thatGt is a group, soa−1PGt if aPGt. Letting
zPa−1sUd, we can findxPU, such thatx=aszdPU,Btshd and alsoxPBtszd. By propertiessid
and sii d, we obtain xPBtszdùBtshdÞx. Hence Btszd=Btshd and zPBtshd. Accordingly,
a−1sUd,Btshd andhP int Btshd under the topology ofat

0sIsa−t
0 shddd.

The propertiessid–siii d imply thatBtshd is maximally connected and open under the topology
of at

0sIsa−t
0 shddd. Thus we haveBtshd=at

0sIsa−t
0 shddd for all t.0 andhPN. In addition, it is seen

that Btshd=at
0sIsa−t

0 shddd=s t0
MùDA

d. The proof of Lemma IV.4 is now complete.

Based on Lemmas IV.3 and IV.4, we could conclude that clR̂tsa−t
0 shdd=at

0sIsa−t
0 shddd if we

could establish thatFt=Gt. The following proof takes a slightly different path. Let ExpB̂˜ denote
the group of diffeomorphisms generated by all one parameter groups of transformations with

respect to vector fields belonging toB̂˜. The setsFt̃ andGt̃ are defined in the same way asFt and

Gt, i.e., via Eq.s17d, but with ExpB̂˜ entering in place of ExpB̂.

Obviously,Ft, F̃t andGt,G̃t hold. We shall now establish thatF̃t=G̃t.
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Lemma IV.5: Let X be a complete vector field belonging toB̂˜, and letgt be the one-parameter

group of transformations generated by X. AssumefB̂ , Ĉgshd, B̂shd is satisfied for allh. Then

dbssgtd is an isomorphism betweenB̂shd and B̂sbssgtdshdd for eachh, and F̃t=G̃t is true for all
t.0.

Proof: Sincebssgt1
d ·bssgt2

d=bssgt1+t2
d holds, we have dbssgt1+t2

d=dbssgt1
d ·dbssgt2

d. Hence it
is enough to prove the lemma’s assertion for sufficiently smallutu. Let Yt,s=dbssgtdZ, whereZ

P B̂˜ . For each value ofs, bssgtd with tPR is the one parameter group of transformations generated
by das

0 X, while

]Yt,s

]t
= − dbssgtdfdas

0 X,Zg = dbssgtdfZ,das
0 Xg. s47d

ThereforefZ,das
0 XgP B̂˜ by assumption, because das

0 X belongs toĈ˜ =hĈshd uhPNj.64,65

Now we fix a pointh of N and a value ofsPR. Let Z1, . . . ,Zn provide a basis ofB̂ in an open
neighborhoodU of h. Then there existC` functionsf ij on U such thatfZi ,das

0 Xg=o j=1
n f ijZ

j holds
in U. Let e be a positive number such thatbssgtdshdPU for utu,e, noting thatbssgtd is a
continuous map oft and bssg0dshd=h. Then dbssgtdfZi ,das

0 Xg=o j=1
n f ij dbssgtdZj for utu,e. Set

Vjstd=dbssgtdZj. ThenVjstd, with utu,e, satisfies the linear differential equation

dVjstd
dt

= o
j=1

n

f jkV
kstd j = 1, . . . ,n. s48d

The solutionVjstd can be written asVjstd=ok=1
n gjkstdVks0d, wheresgjkd is a regular matrix. Also,

we haveVks0dP B̂shd andVkstdP B̂sbssgtddshd. The map dbssgtd : B̂shd→B̂sbssgtddshd is bijective
becausesgjkd is a regular matrix. Moreover, dbssgtd retains the structure of the Lie bracket

with respect to das
0 X. This establishes that dbssgtd is an isomorphism betweenB̂shd and

B̂sbssgtddshd for utu,e. Sincegt8;bssad ·gt ·bssad−1 swith s fixedd is a one-parameter group of

transformations generated by dbssadX and dbssadX belongs toB̂˜ , we knowgt8 swith tPRd belongs

to ExpB̂˜ . But ExpB̂˜ is generated by all suchgt, so we arrive at the relationship

btsadsExp B̂˜ dbtsad−1 , Exp B̂˜ for a P B̂˜ . s49d

Let a be any element ofGt
˜ , written as

a = btk
sgkd · ¯ · bt1

sg1d, tl ù 0, max
l

tl = t. s50d

By induction we can prove that there existg̃k, . . . ,g̃1 of Exp B̂˜ and 0øskø ¯ øs1= t such that

btk
sgkd · ¯ · bt1

sg1d = bsk
sg̃kd · ¯ · bs1

sg̃1d. s51d

Here we only consider the casek=2. If t2ø t1, there is no need for proof. Supposet2. t1, and set
t3= t2− t1. Then we may writebt2

sg2d ·bt1
sg1d=bt1

sbt3
sg2d ·g1d. By relationships49d, there exists

g̃1 of Exp B̂˜ such thatbt3
sg2d ·g1·bt3

sg2d−1= g̃1, i.e., bt3
sg2d ·g1= g̃1·bt3

sg2d. This implies

bt2
sg2d · bt1

sg1d = bt1
sbt3

sg2d · g1d = bt1
sg̃1 · bt3

sg2dd = bt1
sg̃1d · bt2

sg2d. s52d

More detailed proofs may be found in Refs. 54 and 66.

Theorem IV.6: Suppose thatdim Ĉshd=n−1=m holds for all hPN, and suppose that

fB̂ , Ĉgshd, B̂shd holds for all h. Let Ishd be the maximally connected integral manifold contain-

ing h whose corresponding Lie algebra isĈ. Thenat
0sIshdd=R̂tshd.
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Proof: Clearly we havehaat
0shd uaPFtj, haat

0shd uaP F̃tj. In fact, the closures of these two

sets coincide. SinceF̃t=G̃t.Gt, it is seen that

cl R̂t
0shd = clhaat

0shdua P Ftj

= clhaat
0shdua P F̃tj

= clhaat
0shdua P Gt

˜ j sby Lemma IV.5d

= cl at
0sIsa−t

0 sat
0shdddd sby Lemma IV.4d

= cl at
0sIshdd. s53d

But Lemma IV.3 tells us that clR̂t
0shd=cl R̂tshd, so we obtain clR̂tshd=cl at

0sIshdd. From

Lemma IV.2 we know that intR̂tshd=intscl R̂tshdd, which implies intR̂tshd=at
0sIshdd under the

topology of at
0sIshdd. Finally, R̂tshd,at

0sIshdd by Theorem IV.1, and we arrive atR̂tshd
=at

0sIshdd.

C. Strong analytic controllability of the actual system

In Sec. IV B, we investigated the reachable set at timet of the time-independent augmented
system formed by enlarging the state space to include an extra dimension corresponding to the
variablet. Now we return to the original quantum control systems4d to discover conditions under
which it is strongly analytically controllable.

Theorem IV.7: For the control system defined by Eq. (4), let

Bstd = LhH1std, . . . ,Hrstdj,

B1std = − fH0std,Bstdg +
]

]t
Bstd, . . . ,

s54d

Bnstd = − fH0std,Bn−1stdg +
]

]t
Bn−1std, . . . ,

Cstd = LhBstd,B1std, . . . ,Bnstd, . . . j.

Supposedim Cstdcstd=m holds for allcPM ùDA, and fB ,Cgstd,Bstd is the case for all t. Then
the time-dependent quantum control system (4) is strongly analytically controllable.

Proof: We apply Theorem IV.6 to the augmented control systems12d. To do so, we need to

examine the Lie algebrasB̂ and Ĉ for this problem. For economy of expression, we sometimes

omit the t argument in the following steps. ForB̂ we readily find

B̂ = LhW1, . . . ,Wrj = LHS 0

H1std
D, . . . ,S 0

Hrstd
DJcstd = S 0

LhH1std, . . . ,Hrstdj
Dcstd = S 0

Bstdcstd D .

s55d

Next let us constructĈ. For any

Wshd = Wst,cd = S 0

Hstdcstd
D P B̂, s56d

wherehPN, we have
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adW0
W= fW0,Wg = FS 1

H0stdcstd
D,S 0

Hstdcstd
DG

=

]S 0

Hstdcstd
D

]st,cd
S 1

H0stdcstd
D −

]S 1

H0stdcstd
D

]st,cd
S 0

Hstdcstd
D

= H 0

− fH0,Hg + ]H/]t
Jcstd. s57d

Similarly,

adW0
B̂ = S 0

− fH0,Bg + ]B/]t
Dcstd. s58d

SettingB1=−fH0,Bg+]B /]t, we may then derive

adW0

2 B̂ = adW0
adW0

B̂ = adW0
S 0

B1cstd
D = S 0

− fH0,B1g + ]B1/]t
Dcstd. s59d

Continuing in this fashion with

Bn = − fH0,Bn−1g + ]Bn−1/]t s60d

for n=2,3, . . ., we find

adW0

n B̂ = 1 0

− fH0,Bn−1g +
]Bn−1

]t
2cstd = S 0

Bncstd
D . s61d

Thus

Ĉ = LhB̂,adW0
B̂, . . . ,adW0

n B̂, . . . j

= LHS 0

Bstdcstd D,S 0

B1stdcstd
D, . . . ,S 0

Bnstdcstd
D, . . .J

= S 0

LhBstd,B1std, . . . ,Bnstd, . . . jcstd D = S 0

Cstdcstd D . s62d

From the assumption thatfB ,Cgstd,Bstd, ∀std, we have

fB,Cgstdcstd , Bstdcstd, ∀ std. s63d

Hence

FS 0

Bc
D,S 0

Cc
DG , S 0

Bc
D , s64d

so thatfB̂ , Ĉgshd, B̂shd, ∀hPN.

By assumption, dimCstdcstd=m, ∀cPM ùDA, which implies that dimĈshd=m=n−1 holds

for all hPN. According to Theorem IV.6,at
0sIshdd=R̂tshd , ∀ t.0, and sinceat

0sIsa−t
0 shddd

=s t0
MùDA

d, we obtainat
0sIshdd=s t+t0

MùDA
d.

Let p :N→M ùDA be the projection map that in effect annihilates the time dimension of the
augmented problem corresponding to the variablet, and brings us back to the original control
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system. In fact, the extension and projection maps mediate a one-to-one correspondence between
the states of the augmented system and those of the original system. The simplicity of this
relationship stems from the fact thatt is a strictly increasing variable.

To reiterate our strategy: We have dealt with the explicit time dependence of the original
control problem by adding an extra dimension to its state space, such that, as viewed in the
augmented space, the augmented control problem is time independent. After analyzing controlla-
bility within this extension, the results are projected to the original space by removing the extra
time dimension, recovering the exact states of the original system.

Accordingly,psat
0sIshddd=M ùDA, while pR̂tshd=Rt+t0

scd , ∀cPM ùDA and∀t.0. Hence
Rtscd=M ùDA, ∀ t. t0, and the systems4d is strongly analytically controllable onM.

We may note that upon introducing the Lie algebraAstd=LhH0std ,H1std , . . . ,Hrstdj, it is
readily established from propertys13d that B,C,A for all t.

To complete the formal analysis, we state two corollaries that devolve immediately from
Theorem IV.7.

Corollary IV.8: From the operators Hi entering control system (4), form the Lie algebrasB
=LhH1, . . . ,Hrj and C=LhB ,adH0

B , . . . ,adH0

n B , . . .j. Suppose that the Hi do not possess explicit
dependence on the time t, that dim Ccstd=m holds for all cPM ùDA, and that fB ,Cg,B is
satisfied. Then the time-invariant system (4) is strongly analytically controllable.

Corollary IV.9: For the control system (4), form the Lie algebraBstd=LsH1std , . . . ,Hrstdd, and
suppose thatdim Bstdcstd=m holds for allcPM ùDA. Then system (4) is strongly analytically
controllable.

The latter corollary follows becausefB ,Cgstd,Bstd must hold, once dimBstdcstd=m.

V. EXAMPLES OF STRONG ANALYTIC CONTROLLABILITY

In this section, we present three examples that meet the criteria for analytic controllability
enunciated in Theorem IV.7. The examples selected are relevant to problems of interest in math-
ematical physics or engineering applications of quantum mechanics.

Example 1: The strong analytic controllability theorem can be applied to the simple degener-
ate parametric oscillator, a problem of importance in physics and engineering. Introducing an
appropriate effective Hamiltonian allows the corresponding control system to be written in the
form67

i
]

]t
c = Hvstda†a +

1

2
xstdfe−2ivtsa†d2 + e2ivta2gJc. s65d

Here a† and a represent, in turn, the creation and annihilation operators of the pump mode of
frequencyvstd, while xstd is the time-dependent coupling function related to the second-order
nonlinear susceptibility of the pumped medium. We may considervstd andxstd as control func-
tions playing the role of theul in Eq. s4d, since they are real and can be adjusted to piecewise-
constant functions of timet, outside the system itself.

Following Refs. 68–71, we define the operators

K+ = 1
2sa†d2, K− = 1

2a2, K0 = 1
2sa†a + aa†d, s66d

which satisfy the commutation relations of SUs1, 1d, thus

fK0,K±g = ± K±, fK+,K−g = − 2K0. s67d

Setting

H0 = − iK0, s68d

H1 = −
i

2
fe−2ivtK+ + e2ivtK−g, s69d
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H2 = 1
2fe−2ivtK+ − e2ivtK−g, s70d

the control systems65d may be written in the more familiar form

]

]t
c = fvstdH0 + xstdH1stdgc. s71d

The skew-Hermitian operatorsH0, H1, andH2 satisfy the commutation relations

fH0,H1g = − H2, fH0,H2g = H1, fH1,H2g = H0. s72d

We observe that the systems71d does not have a drift term in the usual sense, because the
factor vstd can be manipulated externally. We also see immediately thatA=B=C
=LhH0,H1,H2j, and the second condition of Theorem IV.7 is obviated. In addition,H0 has eigen-
vectorsumkl, with m=0,1, . . . andk=1/4, 3/4,which span an analytic domainDA.69,71 Conse-
quently, we can choose a manifoldM such that dimCc=dim M, ∀cPDAùM. All conditions of
Theorem IV.7 being met, the systems65d is strongly analytically controllable onM.

Example 2: Defining Q= i]t+]x1x1
+]x2x2

, the Schrödinger equation for a free particle moving
in two spatial dimensions may be expressed simply asQu=0. Determination of the maximal
symmetry algebra of this equation leads to the following set of nine operators, which form the
basis of a nine-dimensional complex Lie algebra:72

K2 = − t2]t − tsx1]x1
+ x2]x2

d − t + si/4dsx1
2 + x2

2d, K−2 = ]t, Pj = ]xj
,

s73d
Bj = − t]xj

+ ixj/2, J = x1]x2
− x2]x1

, E = i, D = x1]x1
+ x2]x2

+ 2t]t + 1,

with j =1,2. Of immediate concern is the real Lie algebra spanned by this basis, i.e., the
Schrödinger algebra, which has, as alternative basis, the operatorsBj, Pj, and E syielding the
five-dimensional Weyl algebrad, plus the operatorJ and the three operators defined byL1=D,
L2=K2+K−2, andL3=K−2−K2. The pertinent nonvanishing commutators are specified by72

fL1,L2g = − 2L3, fL3,L1g = 2L2, fL2,L3g = 2L1, fL1,Bjg = Bj, fL1,Pjg = − Pj ,

fPj,Jg = s− 1d j+1Pl, fBj,Jg = s− 1d j+1Bl, fL2,Bjg = − Pj, fL3,Bjg = − Pj, fL2,Pjg = Bj ,

s74d

fL3,Pjg = − Bj, fPj,Bjg = E/2,

where j , l =1, 2, j Þ l.
Now we consider the controllability of the system

]

]t
c = fL2 + u1stdL1 + u2stdL3 + u3stdP1 + u4stdJgc. s75d

In this case there is a time-dependent drift term in the vector field drivingc. The relationss74d
imply the equalitiesB=C=LhL1,L2,L3,P1,P2,B1,B2,J,Ej, while the required analytic domain
DA is furnished by the span of the eigenfunctionscn,m of L3. These take the explicit, time-
dependent form72

cn,m = s2m+n+1pn!m!d−1/2expfipsm+ n − 1d/2g

3 expF sv1
2 + v2

2ds1 − iv3d
4

GSv3 + i

v3 − i
Dsm+nd/2

3
Hmsv1/Î2dHnsv2/Î2d

v3 − i
, s76d

where x1=v1s1+v3
2d1/2, x2=v2s1+v3

2d1/2, and t=v3. It follows as before that the systems75d is
strongly analytically controllable.
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Example 3: A quantum control system with position-dependent effective massm=s2Axd−1 has
been described by the time-dependent Schrödinger equation73

i
]

]t
c = fiBI0 + u1stdAstdI0I− + iu2stdCgc, s77d

whereB, CPR, andAstd, is a real function of timet but in general not piecewise constant. The
operatorsI0 and I±, which are independent of time, provide a basis for an SUs1, 1d algebra, and
have the concrete realization

I− = − ]x, I0 = x]x + 1, I+ = x2]x + 2x, s78d

which satisfies the commutative relations

fI0,I±g = ± I±, fI−,I+g = − 2I0. s79d

This effective-mass problem arises in the study of semiconductor heterostructures and, more
generally, of inhomogeneous crystals.74 In the semiconductor application, the effective mass of a
carrier depends spatially on the graded composition of the semiconductor alloys used in the barrier
and well regions of the microstructures.75

The wave functions of the stationary states of Eq.s77d can be written as

cEst,xd =
1

Î2p
expH− iEE

0

t

Bssdds +E
0

t F− Cssd −
1

2
BssdGdsJ

3 exph− a1stdsx]xx + ]xdjx−iE−1/2 =
1

Î2p
expH− iEE

0

t

Bssdds +E
0

t F− Cssd

−
1

2
BssdGdsJ

3o
n=0

`

p
l=0

n SiBstdE +
1

2
+ lD2

f− a1stdgn 3
x−iE−n−1/2

n!
. s80d

These eigenfunctions span the analytic domain relevant to Theorem IV.7.
Let us define

H0 = BI0 + u2stdC, H1 = − iAstdI0I−, s81d

where we takeu2std=−B/2C. Equations77d can be recast as the control system,

]

]t
c = fH0 + u1stdH1gc. s82d

Here the drift term is time independent. Using the commutation relationss79d, we obtain
fH0,H1g=−BH1. Obviously,B=C,A, so fB ,Cg=B. Choosing a manifoldM such that dimM
=dim Cc for all cPM, we are assured that systems77d is strongly analytically controllable.

VI. CONCLUSIONS

In this paper, we have formulated the time-dependent quantum control problem and studied its
controllability. Acknowledging the unbounded nature of operators commonly involved in quantum
control systems, our analysis has been predicated on the existence of an analytic domain32 on
which exponentiations of such operators are guaranteed to converge. Within this framework, we
have extended the established treatment of time-independent quantum control problems by intro-
ducing an augmented system described in a state space that is enlarged by one dimension, yet
embodies the true dynamics of the original system. With the aid of techniques and results devel-
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oped by Kunita,54,58 we are able to explicate the one-dimension-reduced controllability of the
augmented system. Projection onto the original state space then yields a proof of the analytic
controllability of the original time-dependent quantum control system, under conditions similar to
those required in the time-independent case. The theorem so established has been illustrated with
examples drawn from mathematical physics and systems engineering.
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A unifying framework for the control of quantum systems with non-Abelian ho-
lonomy is presented. It is shown that, from a control theoretic point of view,
holonomic quantum computation can be treated as a control system evolving on a
principal fiber bundle. An extension of methods developed for these classical sys-
tems may be applied to quantum holonomic systems to obtain insight into the
control properties of such systems and to construct control algorithms for two
established examples of the computing paradigm. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1888028g

I. INTRODUCTION

Geometric phases have long been a source of fascination and insight into classical and quan-
tum physical theories.1 In recent years, they have proven to be useful in describing the dynamics
and control of certain nonholonomic mechanical systems with symmetry.2 Inspired by the appear-
ance of geometric phases in biology, engineers have sought to create motion in machines via
cyclic variations in shape space. These endeavors3–6 and the characterization of optimal
trajectories7–10 remain active areas of research.

Most recently, the quantum geometric phase has been realized as a way of constructing logic
gates in a quantum computer.11 Holonomic quantum computationsHQCd employs non-Abelian
geometric phasessholonomiesd for the purpose of quantum information processing. Here we
present a unified framework for the control of quantum holonomic systems with applications to
quantum computing by casting the model as a control system evolving on a principal bundle. The
integration of control theoretic ideas into the HQC paradigm sharpens existing results for these
systems and reveals computational techniques for solving two separate but related fundamental
problems in quantum computing. First, the well known conditions for determining universal quan-
tum computation must be translated to the holonomic framework. The determination of univer-
sality, however, is existential in nature and generally not constructive. Quantum logic gate syn-
thesis or constructive controllability is the process of determining from the system dynamics the
construction or concatenation from available transformations some desired dynamic transforma-
tion of the state. This latter task is required for executing quantum algorithms. Both of these issues
have subtleties in the holonomic framework not encountered in the usualdynamicalapproach to
quantum computing.

Since the introduction of this approach to quantum computing,11 there has been considerable
interest from the research community in proposing physical systems capable of performing
HQC12–19and exploring its mathematical foundations.20–30This paper draws on much of this work
to provide a characterization of the problem, introduce computational techniques, and present
results for two classes of control architectures related to HQC. In particular, we state simple
conditions for determining the holonomy group of a principal fiber bundle with connection. These
conditions, well known and reported elsewhere,8,5,27 circumvent the difficulties in directly apply-
ing the Ambrose–Singer theorem which was originally stated as the technique for determining
universality of HQC. For quantum holonomy groups of dimension greater than 3, a direct appli-
cation of Ambrose–Singer essentially neglects the contribution of nested Lie brackets of lifted
vector fields, however these vector fields can provide new transformations available for manipu-
lating quantum information. From the product bundle representing single qubit rotations and two

JOURNAL OF MATHEMATICAL PHYSICS46, 052103s2005d

46, 052103-10022-2488/2005/46~5!/052103/21/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1888028


qubit interactions, conditions for universality can then be derived. Having established the decisive
condition for determining universality, we explore the difficult inverse problem associated to
constructing holonomies. Namely, given a desired holonomy what is the loop in parameter space
that generates it? In principal, this information is sufficient for the experimentalist to construct
particular holonomies in the laboratory. For the theCPn model, holonomic logic gate synthesis has
been successfully treated by a numerical optimization scheme in Refs. 29 and 28. Moreover, Ref.
28 refines the method to minimize the length of the loop in parameter space. Since the parameters
must be driven sufficiently slowly for the adiabatic approximation to hold, minimizing length also
minimizes the time to construct the logic gate. This criterion is perhaps relevant for combatting
decoherence. Logic gate synthesis has also been treated analytically in Ref. 30, however these
loops are characterized in the Grassmann manifold and not in parameter space. Characterizations
of length minimizing loops can also be found in Refs. 8 and 9.

We apply the theory to two well studied models of HQC. We provide a complete analysis of
the so-calledoptical holonomic computer.21–26We extend the results of Ref. 27 by carrying out the
universality analysis and explicitly characterizing a parametric loop that can be employed to
construct an arbitrary two-qubit logic gate. These results surmount a negative result reported for
this model.22 In a similar manner, we use the Cartan decomposition of the unitary group to solve
the constructive controllability problem for holonomic systems involving a conditional Berry
phase. To the best of our knowledge, aside from theCPn model, the two control models treated
here encompass all proposed holonomic computing schemes.

This paper is organized as follows: In Sec. II, following Ref. 22 the geometry of holonomic
quantum computation is reviewed. Also in Sec. II, we introduce the product bundle describing
single qubit holonomies and two qubit interaction holonomies and state conditions for universal
holonomic quantum computation. In Sec. III, we introduce methods for solving the path ordered
integral associated with logic gate synthesis in the holonomic framework. The main contributions
of the paper are contained in Sec. IV, where we apply the theory of the preceding sections.

II. HOLONOMIC QUANTUM COMPUTATION

If a quantum state undergoes adiabatic evolution subject to a periodic Hamiltonian, it acquires
a phase after one complete cycle. Berry’s surprising discovery31 was that, in addition to the
well-known dynamical phase associated to the evolution, there is a phase of purely geometric
origin. Berry’s phase was then understood as the holonomy or geometric phase corresponding to
a principal bundle with connection over a parameter space.32 This phenomenon has been gener-
alized in a variety of ways, most notably to nonadiabatic evolutions33 and to degenerate systems
possessing a non-Abelian phase factor.34

A. Preliminaries

We construct a family of degenerate Hamiltonians parametrized by elements of a parameter
spaceM that govern the quantum dynamics. To allow for the possibility of a countably infinite
dimensional Hilbert space, we consider universal classifying bundles. For further details see Refs.
22, 24, 35, and 36.

Let H be a separablespossibly infinite dimensionald Hilbert space, and define the manifolds

StksHd = hV = suv1l, . . . ,uvkld P H 3 ¯ 3 HuV†V = 1j, s1d

GrksHd = hX P BsHduX2 = X,X† = X,tr X = nj. s2d

whereBsHd denotes the set of bounded linear operators onH. These manifolds are known as the
suniversald Stiefel and Grassmann manifolds, respectively. The space Grk is also known as a
classifying spaceand can be defined as the union of Grassmann manifolds,35
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GrksHd ; ø
n=k

`

Grk,nsHd. s3d

Denote this Uskd-bundle by Pk. Note that whenH>Cn and the system has ak-dimensional
degeneracy, the bundle of interest is the more familiar Uskd-bundle Stk,nsCnd→Grk,nsCnd which can
be written in terms of homogeneous spaces as

Usnd
Usn − kd

→ Usnd
Usn − kd 3 Uskd

. s4d

We continue with the infinite dimensional case with the understanding that the development
specializes to this case whenH is finite dimensional.

Let M be a finite dimensional parameter space and suppose the classifying mapPk:M
→Grk sto be defined belowd is given. Then form the pullback bundleQk=Pk

*Pk,

Qk → StksHd

↓ ↓
M →

Pk GrksHd.

s5d

Let H0 be a Hamilonian with ak-dimensional degeneracy spanned by the orthogonal basis
huv jl j=1

k j. To simplify notation, let the degenerate eigenvalue be 0. In holonomic quantum compu-
tation, the degenerate subspaces ofH0 encode the quantum information. Suppose we have at our
disposal a set of Uskd unitary transformations

hW1sxd,W2sxd, . . . ,Wmsxdj s6d

parametrized by the base coordinatex. These are thesexponentiatedd analogues ofcontrol Hamil-
tonians. Setting

Uksxd = p
j

Wjsxd, s7d

we obtain the isospectral family of Hamiltonians given by

OsH0d ; UksxdH0Uk
†sxd. s8d

In the adiabatic approximation, the adjoint orbitOsH0d forms a family of Hamiltonians that
govern the system since there are no energy level crossings. The classifying map is then defined as

Pksxd ; UksxdSo
j=1

k

uv jlkv juDUk
†sxd. s9d

B. Control systems on principal fiber bundles

In general, letQ be a principal fiber bundle with structure groupG over a base manifoldM.
Recall that aconnectionon Q defines aG-invariant distributionH such thatTqQ=Hq % Vq, where
Vq;TqsOsqdd>g sthe Lie algebra ofGd. Alternatively, a connection can be characterized by an
Ad-equivariantg-valued one-formA on Q such thatA ·jq=j, wherejq is the infinitesimal gen-
erator of the group action andjPg. The horizontal subspace at a pointqPQ is then defined as the
kernel Hq=hvquA ·vq=0j. The local connection one-form,A, is defined with respect to alocal
sections by A;s*A. Using Ad-equivariance and the fact thatA is the identity on vertical
vectors, we can obtain the local connection form in terms of the base variables only35,37
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A · q̇ = Adgsg−1ġ + Asxd · ẋd. s10d

We note that the termg−1ġ is in the Lie algebrag, by interpretingg−1ġ as the lifted action ofg−1

on ġPTgG. Restricting the connectionA to act on horizontal vectors yields an equation for the
evolution of the group elements given by

g−1ġ = − Asxd · ẋ. s11d

Returning to the quantum setting, we note that the canonical connection on the bundleQk is given
by Awz;Uk

−1 dUk, The matrix elements of the connection form are given by

Axm

v̄v ; kv̄uUk
†sxd

]

]xm

Uksxduvl. s12d

This is commonly known as the Wilczek–Zee connection.34

Assuming direct control over the base variables, we may interpret the quantum control system
as acontrol system evolving on a principal bundleand write it locally as

g−1ġ = − Awzsxd · ẋ,

ẋ = u, s13d

whereu is a vector of control inputs describing the controlled evolution in parameter space.
A formal solution to this system of equations corresponding to a particular path in parameter

space is given by thepath orderedintegral

P expE
g

− Awz dx. s14d

Wheng is a closed curve inM, thenP exprg−Awz dx lies in G and is known as theholonomyof
g. It is well known that the set of all such group elements taken over the set of closed curves in
M is a subgroup ofG and is known as theholonomy group. In holonomic quantum computation,
quantum logic gates are implemented by holonomies acting on the degenerate subspaces.

C. Universality

A control system evolving on a principal fiber bundle is said to belocally controllableif any
group element can be implemented on the state of the system. In the context of quantum comput-
ing, a system with this property is said to besexactlyd universal.38 This property is a fundamental
requirement for building a quantum processor. As is well known, in the usual dynamical approach
to quantum computingsas opposed to the geometric approach addressed hered, the Lie algebra
generated by the system Hamiltonian and the control Hamiltonians determines the universality of
the system. For an N qubit system, it is sufficient for this Lie algebra to spansus2nd. We now show
how these statements translate to the holonomic framework.

Let Xh denote the horizontal lift of a vector fieldX on M. This is the unique vector onTQ such
that TpsXhd=X where p is the projectionp :Q→M. Then thecurvature can be defined as a
g-valued 2-form onQ given by

AsfXi2
h ,Xi1

h gd = − FsXi2
h ,Xi1

h d, s15d

wheref·,·g denotes the Lie bracket onTQ. Thus evaluating the curvature determines the vertical
component of the Lie bracket of horizontal vectors. Letf :Q→g be an Ad-equivariant function on
Q, then

AsfXh, fgd = − dAsXh, fd + XhsAsfdd + fsAsXhdd s16d
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=Xhf , s17d

since the functionf is g-valued and dAs· , ·d is zero if either argument is vertical.35 Using the
correspondence between covariant derivatives of the associated adjoint bundle and Lie derivatives
of Ad-equivariant functions,39 we obtain

AsfXh, fgd = Xhf = DXhf . s18d

Now, the curvature is an Ad-equivariant function onQ, so settingF= f and using the previous
expressions18d to evaluate iterated Lie brackets of horizontally lifted vector fields, we can obtain
the corollary to the well-knownChow–Rashevskitheorem from control theory.9

Theorem 1: (Ambrose–Singer–Chow–Rashevski) The system (13) is locally controllable at
qPQ if the curvature FsXi1

,Xi2
d and all of its covariant derivatives DXik

¯DXi3
FsXi1

,Xi2
d evalu-

ated at the point x=psqd span the entire Lie algebra of G.
Some remarks are in order. Following Ref. 9, we refer to the theorem asAmbrose–Singer–

Chow–Rashevskisince it can be considered to be a corollary to theAmbrose–Singer39 theorem
from the theory of holonomy. We note also that we have stated the theorem in terms of base vector
fields and the local curvature. All the necessary ingredients of the theorem, although not explicitly
stated, can be found in Ref. 39. In fact, theinfinitesimal holonomy algebrais spanned by elements
of the form

Xik
h ·Xik−1

h
¯ Xi3

h ·FsXi1
h ,Xi2

h d. s19d

We can then use the correspondences18d to relate this to covariant derivatives of the associated
adjoint bundle. This statement is used in our applications, since in some holonomic quantum
computation problems the relevant holonomy algebra does not span the entire Lie algebra. How-
ever, it does containnonlocaloperations which together with holonomies corresponding tolocal
operations do indeed span the entire Lie algebra. This is the usual local/nonlocal analysis often
encountered in quantum information science.

For the purposes of building a quantum processor, the quantum information is stored in theC2

vector bundle associated toQ2 and single qubit rotations are performed by SUs2d holonomies
acting on the fiberC2. Interactions among qubits are modeled as SUs4d holonomies acting on the
fibers of the vector bundle associated toQ4.

Thus we may treat the control problems separately and form the product bundlesand its
pullbacksd

¯ St2sHid 3 St4s¯ ^ Hi ^ H j ^ ¯ d 3 St2sH jd ¯

↓ ↓ ↓
¯ Gr2sHid 3 sGr4dints¯ ^ Hi ^ H j ^ ¯ d 3 Gr2sH jd ¯ .

s20d

To set notation, let

Ix =
1

2
S0 1

1 0
D, Iy =

1

2
S0 − i

i 0
D, Iz =

1

2
S1 0

0 − 1
D, 1 = S1 0

1 0
D . s21d

We define thelocal algebragenerated by the elements

Ik1 = Ik ^ 1, Ik2 = 1 ^ Ik, s22d

wherekP hx,y,zj The local algebra is the Lie algebra corresponding to thelocal group SUs2d
^ SUs2d.

To conclude exact universalityscontrollabilityd of the system, one should compute thecontrol
Lie algebrawith the constituent holonomy algebras. For example, in the two-qubit system, com-
pute the Lie algebra generated bysus2d ^ 1,1^ sus2d and the interaction holonomy algebraholint

associated with the bundle St4sHi ^ H jd→ sGr4dintsHi ^ H jd. In the generic case, the control Lie
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algebra will generatesus4d provided that Holint is not isomorphic to the local group or is trivial.
Theorem 2: The two-qubit holonomic system is exactly universal if the Lie algebra generated

by the local algebra andholint spanssus4d.

III. CONSTUCTIVE CONTROLLABILITY

Having established conditions for determining universality in HQC, we now present various
ways of solving or approximating the solution to the path ordered integral arising for the differ-
ential equation defining the group displacement

g−1ġ = − Asxd · ẋ. s23d

For control systems on principal bundles, this equation describes the group transformation ob-
tained from a controlled cyclic variation of the parameters in the base manifold. Recall, that we
assume direct access and complete controllability over the base variables. We endeavor to ascer-
tain the desired group transformation resulting from a particular choice of loop in the base space.
This is the notion of constructive controllability in the context of a control system on a principal
bundle. In HQC these procedures provide explicit methods for logic gate synthesis. This requires
dealing with the path ordered integral obtained froms23d.

A. Path ordered integral

We define the path ordered integral as a product integral. Letg be a curve in the base manifold
M and let xm be local coordinates. We may express the local connection formA in terms of
coordinates as

Asxd = Amsxddxm. s24d

The curveg is parametrized by an intrinsic parameters, which is naturally considered to be time.
In terms ofs, A takes the form

Amsxssdddxm = Assdds, s25d

where

Assd ; Amsxssdd
dxmssd

ds
. s26d

Let fs0,sTg be a real interval over which the curveg is defined. Consider a partition of the interval
P=hs0,s1, . . . ,snj such thatDsk=sk−sk−1 andsn=sT. Then path ordering operator may be defined
as

P expE
g

− Assdds; lim
n→`

p
s0

sn

exps− AsskdDskd. s27d

This definition clearly shows the dependence on the ordering of the exponentials and the difficul-
ties associated with its solution, given that we are naturally interested in the case where the
relevant group is non-Abelian. WhenG is Abelian, then one can directly integrate the connection
coefficients and apply the usual exponential operator.

B. Abelian substructures

A common technique in holonomic quantum computation for tackling the integrals27d is to
restrict the class of loops and exploit Abelian substructures in the connection components.12,21The
strategy is briefly described as follows. Choose a particular 2-manifold ofM spanned by the
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coordinatesss ,td such that the associated connection components commute, that isfAs ,Atg=0
but for which the local curvature form is not identically zero. For these restricted loops the path
ordering ins27d can be avoided and the line integral

R
g

Asxddx =R
g

sAs ds + At dtd s28d

can be integrated directly and exponentiated.
Alternatively, one can use a non-Abelian Stokes theorem40 for evaluating holonomies corre-

sponding to curves lying in a 2-submanifold of parameter space.

C. Averaging

The exact results of the preceding section were accompanied by restrictions on the set of loops
available to the controller or by exploiting Abelian substructures in the connection components.
Here we review local approximations that can be used for any system evolving on a principal
bundle.

In Ref. 41, Leonard and Krishnaprasad developed approximate control algorithms for left
invariant control systems on Lie groups of the form

g−1ġ = eUstd s29d

wheree is a ssmalld parameter andUstd=Tauastd for a basishTaj of g. They employ a Magnus
expansion for a representation of the solution

gstd = gs0dexpsjstdd s30d

given by

jstd = eE
0

t

Ustddt +
e2

2
E

0

t

fŨstd,Ustdgdt +
e3

4
E

0

t FE
0

t

fŨssd,Ussdgds,UstdGdt + ¯ ,

s31d

whereŨstd is the effective input “averaged” over the time period.41

Radford and Burdick have generalized this expansion for systems evolving on principal
bundles.5 Let g : f0,Tg→M be a closed curve in the base space parametrized byxPM, then it is
shown in Ref. 5 that the holonomy associated tog can be locally approximated by

gsTd = gs0dexpsjsgdd, s32d

where

jsgd = −
1

2
FsXi,XjdE

g

dxi dxj +
1

3
DXi

sFsXj,XkddE
g

dxi dxj dxk + ¯ . s33d

Here FsXi ,Xjd is the local curvature form evaluated on the base coordinate vectorsXi =] /]xi
evaluated atgs0d, D]/]xi

is the covariant derivative of the curvature along the base coordinate

vector] /]xi
and the area integrals are defined by

Ixixjxk
=E

g

dxi dxj dxk ; E
0

TE
0

tkE
0

t j

ẋistiddti ẋjstjddtj ẋkstkddtk. s34d

Higher order terms are given by higher order covariant derivatives of the curvature. This is
plausible given expressions33d and the fact that iterated Lie brackets of horizontally lifted vector
fields appear as covariant derivatives of the curvature.
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IV. APPLICATIONS

In this section we apply the results of the preceding sections. We first review theCPn model
of quantum holonomy. This was the original system discovered by Wilczek and Zee34 and subse-
quently proposed as a model for HQC. We then consider two very different models of quantum
holonomic systems. Holonomic quantum computation with squeezed coherent states has a rich
interaction holonomy group that can be exploited to obtain contructive controllability algorithms.
On the other hand, quantum computation based on the conditional phase shift has become the
dominant control strategy for a wide range of holonomic quantum computing schemes. We will
see that the interaction holonomy for systems of this type is quite limited yet powerful enough for
universal computation and constructive algorithms.

A. The CP n model

The CPn sRef. 11d model gives a concrete example illustrating how non-Abelian holonomies
can occur in highly degenerate systems. In this model, we assume that the Hilbert spaceH is finite
dimensional from the outset. That is, we have the isomorphismH>Cn+1=hualja=1

n+1. We further
assume ann-dimensional degenerate subspace with eigenvalue 0. We may write the degenerate
HamiltonianH0 as

H0 = eun + 1lkn + 1u =1
0 0 . . . 0

0 � 0 0

A �

0 0 0 e
2 . s35d

Let hT j ,n+1sxdj j=1
l denote a basis ofusnd parametrized byxPM embedded inusn+1d and letUn

=p j
l expsT j ,n+1sxdd. Given these control operations, it is perhaps not surprising that the holonomy

group can be shown to be Usnd by considering the curvature coefficients onlysand not its cova-
riant derivativesd.34,11. We have the isomorphism

OsH0d >
Usn + 1d

Usnd 3 Us1d
>

SUsn + 1d
Usnd

> CPn. s36d

This system requires control over 2n=dimR CPn real parameters to control ann-level system. For
high dimensional systems, this may be an unrealistic requirement.

B. Squeezed coherent states

In this section we revisit the mathematical foundations ofholonomic quantum computation
with squeezed coherent states. There is considerable literature already on this model,12,21–23,25,26

here we exploit the methods of geometric control. Originally, this model was proposed in the
context of quantum optics12 with displacers and squeezers operating on coherent laser beams in a
nonlinear Kerr medium and thus known as the optical holonomic computer. However, other
physical systems have quantum states that may be displaced and squeezed. As far as the control
analysis is concerned, these systems are identical. Pachos has recently adapted the model to
perform trapped ion quantum computation.16 We, therefore, refer to this model generically as
holonomic quantum computation with squeezed coherent states.

1. Harmonic oscillator

Recall that the commutation relations of the creation, annihilation, and number operatorN
;a†a, are given by

fN,a†g = a†, fN,ag = a, fa,a†g = 1. s37d

The underlying Hilbert spaceH is a Fock space and takes the form
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H = hunl,a P N ø 0j. s38d

The creation and annihilation operators act onH according to

aunl = Înun − 1l, a†unl = În + 1un + 1l, au0l = 0. s39d

Thusa anda† create and destroy quanta.
Since we are interested in the two-qubit system, we will use the subscripti to distinguish the

creation and annihilation corresponding to theith field of the harmonic oscillator. That is, we set
Ni =ai

†ai and

a1 = a ^ 1, a1
† = a†

^ 1, s40d

a2 = 1 ^ a, a2
† = 1 ^ a†. s41d

To provide a concrete example, we will use the degenerate Hamiltonian

Hi = NisNi − 1d s42d

to encode theith qubit in the degenerate subspacehu0il , u1ilj and

H12 = N1sN1 − 1d + N2sN2 − 1d s43d

to obtain controlled interactions on the computation basishu00l, u01l, u10l, u11lj where ui j l= uil
^ u jl. In the optics context, this Hamiltonian correspondssup to a constantd to placing lasers in a
nonlinear Kerr medium.12,21 However, the form of the degenerate Hamiltonian does not affect the
control analysis. For our purposes, it is used only to encode the quantum information. With slight
modification of some constants, the results in this section apply to the trapped ion model proposed
in Ref. 16.

2. Single qubit

We consider first single qubit rotations. Consider the eigenvalue problem for a single creation
operator. The stateual can be written in terms of the basishunlj,

ual = e−uau2/2o
n=0

`
an

În!
unl = e−uau2/2o

n=0

`
ana†n

n!
u0l. s44d

Which is equal to

ual = e−uau2/2eaa†
u0l s45d

and allows for the definition of thedisplacement operator

ual = Dsad = e−uau2/2eaa†
e−a*au0l. s46d

Note that the introduction ofe−a*a does nothing sinceau0l= u0l By using the Campbell–Baker–
Hausdorff formula and noting thatfaa†,−a*ag= uau2, we may write

ual = Dsadu0l = eaa†−a*au0l. s47d

We see that the displacement operator creates a coherent stateual from the vacuum stateu0l. In
HQC with squeezed coherent states, the displacement operator will be a control operator. The
other transformation we have at our disposal is thesqueezing operator, Ssbd, defined by

Ssbd = ebL+−b*L−, s48d

where
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L+ ; 1
2a†2, L− ; 1

2a2. s49d

If we define,

L3 ; 1
4saa† + a†ad, s50d

then we have the commutation relations,

fL3,L+g = L+, fL3,L−g = − L−, fL+,L−g = 2L3. s51d

These are the commutation relations forsus1,1d; thus we see that the squeeze operator is a
representation of the noncompact group SUs1, 1d. With these two unitary transformations, we form
the product

U2sa,bd = DsadSsbd s52d

and the isospectral family of Hamiltonians

U2sa,bdHiU2
†sa,bd. s53d

The holonomy group for the single qubit system has been shown to be Us2d.12,21–23Thus we have
complete control over the single qubit.

3. Two qubit

To obtain universality over the entire quantum register it suffices to show nontrivial Us4d
transformations on the computational basis and check the control Lie algebra. Analogously to the
single qubit case, we employ displacement and squeeze operators as our control operations. Let

J+ = a†
1a2, J− = a†

2a1, J3 = 1
2sa†

1a1 − a†
2a2d. s54d

These generate SUs2d with the commutation relations,

fJ3,J+g = J+, fJ3,J−g = − J−, fJ+,J−g = 2J3. s55d

The two-mode displacement operator is defined as

Nsjd = expsja1
†a2 − j̄a1a2

†d. s56d

Similarly, we may define the two-mode squeeze operator as a representation of SUs1, 1d. Let

K+ = a†
1a

†
2, K− = a1a2, K3 = 1

2sa†
1a1 + a†

2a2d, s57d

and

fK3,K+g = K+, fK3,K−g = − K−, fK+,K−g = − 2K3. s58d

The two-mode squeeze operator is defined as

Mszd = expsza1
†a2

† − z̄a1a2d, s59d

wherej ,zPC. Set

U4 = NsjdMszd. s60d

Setting z=r2e
iu2 and j=r3e

iu3 and we obtain the two-qubit connection coefficients21 listed in
Appendix A. The interaction holonomy algebra spanssus2d3sus2d3us1d sRef. 27d salso listed in
Appendix Bd. Higher order covariant derivatives do not yield independent group directions. The
matrices inholint sit in us4d in a manner that allows for nonlocal Us4d transformations on the
computational basis. By the reduction theorem for connections,39 the connection is reducible to a
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sus2d3sus2d3us1d-valued connection and we may reduce the total space to St2,4sH1 ^ H2d. To
determine the reduced base manifold, we form the quotient

Us4d
SUs2d 3 SUs2d 3 Us1d

>
SUs4d

SUs2d 3 SUs2d
> SGr2,4 ; sGr2,4dint. s61d

In a similar manner, we can reduce the bundles St2sHid°Gr2sHid corresponding to the single
qubit rotations. The Us2d holonomies act in the product spaceH1 ^ H2 as Us2d ^ 1 and 1
^ Us2d. The bundles reduce to St2,4sH1 ^ H2d°Gr2,4sH1 ^ H2d. For the full two-qubit system, we
have the reduced product bundle,

St2,4sH1 ^ H2d 3 St2,4sH1 ^ H2d 3 St2,4sH1 ^ H2d

↓ ↓ ↓
Gr2,4sH1 ^ H2d 3 sGr2,4dintsH1 ^ H2d 3 Gr2,4sH1 ^ H2d.

s62d

4. Control algebra

To be complete, we will now demonstrate that all of SUs4d may be obtained from the single
qubit rotations and the two-qubit transformations above. Of course, as we have mentioned earlier,
this is generically true provided the two-qubit holonomy group is not isomorphic to the local
group. Nonetheless, it is useful to go though the computations.

From the single qubit analysis, we know that we can perform local transformations of the
form SUs2d ^ SUs2d. To simplify matters further, we use linear combinations of the two-qubit
curvature forms and covariant derivatives and consider only

hFr2r3
,Fr2u3

,Fr3u3
,D]/]u2

Fr2u2
,D̃]/]r2

Fr2u2
j, s63d

where

D̃]/]r2
Fr2u2

=1
0 0 0 − e−iu2

0 0 0 0

0 0 0 0

− eiu2 0 0 0
24i sinh 2r2. s64d

From this set of matrices and the local algebras22d, we may build a set of holonomic transfor-
mations spanningsus4d. After taking iterated brackets from these sets, we find that one choice of
spanning elements is given by

sus4d = hC1 ø C2 ø C3j, s65d

whereC1=hIx1,Iy1,Iz1,Ix2,Iy2,Iz2j and

C2 = hFr2r3
,Fr2ru3

,D]/]u2
Fr2u2

,D̃]/]r2
Fr2u2

j,

C3 = hfIx1,Fr2r3
g,fIx1,Fr2u3

g,fIx2,Fr2r3
g,fIx2,Fr2u3

g,ffIx1,Fr2r3
g,Ix2gj.

Please see Appendix C for the matrix representation of these elements.

5. An approximate holonomy in the Cartan subalgebra of su„4…

In the preceding section, we showed that it is indeedpossibleto create holonomic transfor-
mations spanning the full unitary group on two qubits. This was not a constructive procedure. In
this section, we show that by using a combination of the methods in the preceding sections, we can
solve the logic gate synthesis problem completely. We use the local expansion of the holonomy
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procedure to construct an element in the Cartan subalgebra ofsus4d and use the Cartan decom-
position of SUs4d to obtain the result.

The Cartan decomposition of the unitary groups is a powerful technique that has been used for
constructing quantum control algorithms,42,43deriving time optimal control laws for quantum spin
systems44 and understanding the entanglement content of two-qubit unitaries,45,46 Here we review
the decomposition for the purposes of constructing control algorithms.

Let K denote a closed and compact subgroup of a Lie groupG. Assume thatg admits a vector
space decomposition,

g = k % p, s66d

wherek is the Lie algebra ofK andp is vector space orthogonal tok with respect to a biinvariant
metric k·,·l on g. Further assume thatk andp satisfy the following commutation relations:

fk,kg , k, fp,pg , k, fp,kg , p. s67d

We refer to a this decomposition as a Cartan decompostion of the Lie algebrag.
Let a denote a maximal Abelian subalgebra contained inp. The algebraa is often called the

Cartan subalgebraof g. Then one can writeG as

G = KAK, s68d

whereA=expsad.
In a two-qubit system, interactions among the qubits are modeled by the products

Ikl = 2Ik ^ I l , s69d

wherek, l P hx,y,zj. For example,

Iyy =
1

21
0 0 0 − 1

0 0 1 0

0 1 0 0

− 1 0 0 0
2 . s70d

The Cartan decomposition ofsus4d is given by

k = ihIx1,Iy1,Iz1,Ix2,Iy2,Iz2j, s71d

p = ihIxx,Ixy,Ixz,Iyx,Iyy,Iyz,Izx,Izy,Izzj, s72d

a = ihIxx,Iyy,Izzj. s73d

Thus we can write anygPSUs4d as

g = K1 exps− if1Ixx − if2Iyy − if3IzzdK2, s74d

wheref j is a real parameter andKj PSUs2d ^ SUs2d.
By inspection of the two-qubit curvature forms and their covariant derivatives, it seems

possible thatIyy can be obtained by linear combinations of the elements,

hFr2u2
,Fr2u3

,D]/]r2
Fr2u2

,D]/]r2
Fr2u3

j. s75d

Equivalently,Iyy is contained in the real span of

052103-12 Dennis Lucarelli J. Math. Phys. 46, 052103 ~2005!

                                                                                                                                    



F ]h

]xk
,F ]h

]xk−1
, . . .F ]h

]x2
,

]h

]x1
GG¯ G , s76d

wherexP hr2,u2,u3j.
We therefore choose a candidate loop,g* , of the form

u2std = u2s0d + Q2 sinstd, s77d

r2std = r2s0d + R2 cosstd − R2, s78d

u3std = u3s0d + Q3 sinsntd, n Þ 1, s79d

r3 = const., s80d

with the parametershn,r2s0d ,u2s0d ,u3s0d ,R2;Q2,Q3j to be determined. We compute the integrals
appearing in the expansions33d, with the periodT=2p and choose some parameters to yield the
expressions,

Fr2u2
·Ir2u2

=1
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2
22i sinh 2r2s0d ·R2Q2p, s81d

uFr2u3
uu3s0d=p ·Ir2u3

=1
0 0 0 0

0 0 − 1 0

0 − 1 0 0

0 0 0 0
2 i sin 2r3 sinh 2r2s0d ·

R2Q3 sin 2np

n2 − 1
, s82d

uD]/]r2
Fu3r2

uu3s0d=p ·Ir2u3r2
=1

0 0 0 0

0 0 − 1 0

0 − 1 0 0

0 0 0 0
22i sin 2r3 cosh 2r2s0d ·

− 6R2
2Q3 sin 2np

n4 − 5n2 + 4
,

s83d

uD]/]r2
Fr2u2

uu2s0d=0 ·Ir2r2u2
=1

0 0 0 − 1

0 0 0 0

0 0 0 0

− 1 0 0 0
24i sinh 2r2s0d · 2Q2R2

2p

+1
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2
24i cosh 2r2s0d · 2Q2R2

2p. s84d

We also have,

Iu2r2u2
= 0, s85d
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Fu2u3
= 0, s86d

D]/]u3
Fr2u2

= 0, s87d

uD]/]u3
Fr2u3

ur3s0d=p/4 = 0, s88d

Fr2u2
·Ir2u2

= Fu2r2
·Iu2r2

, s89d

uFr2u3
uu3s0d=p ·Ir2u3

= uFu3r2
uu3s0d=p ·Iu3r2

, s90d

u − 2D]/]r2
Fr2u3

uu3s0d=p ·Ir2r2u3
= uD]/]r2

Fu3r2
uu3s0d=p ·Ir2u3r2

, s91d

u2D]/]r2
Fu2r2

uu2s0d=0 ·Ir2u2r2
= uD]/]r2

Fr2u2
uu2s0d=0 ·Ir2r2u2

. s92d

The strategy now is to choose parameters so that theFr2u2
terms kill the terms along the diagonal

in the expressionsD]/]r2
Fr2u2

andD]/]r2
Fu2r2

. Then, with those parameters chosen, we choose the
rest of the parameters so that the remaining terms combine to yield −iuIyy, whereu is a free
parameter. Remembering to include the coefficients in the expansion, the first objective leads to
the following equation:

r2s0d = − 1
2 arctanhs2R2d. s93d

Setting Q2=Q3=u, and substituting the preceding equation definingr2s0d and R2, the second
objective yields

R2 = −
sin 2np

4psn2 − 4d
. s94d

If n is chosen so thats94d is nonzero ands93d is well defined, the loopg* determines the
holonomysup to third orderd

Gsg*d = exps− iuIyyd, s95d

whereu is a free parameter.
Loops generating single qubit SUs2d holonomies can be characterized byabelianizing the

dynamics.21 Thus with this single two-qubit holonomy, we can construct any SUs4d transformation
on the computational basis. To see this, recall that any SUs4d transformation may be written with
the Cartan decomposition

g = K1 exps− iu1Ixx − iu2Iyy − iu3IzzdK2, s96d

whereKj PSUs2d ^ SUs2d.
We may obtain the transformations exps−iu1Ixxd and exps−iu1Izzd by noting that

Kz
−1Sp

2
Dexps− iuIyydKzSp

2
D = exps− iuIxxd, s97d

KxSp

2
Dexps− iuIyydKx

−1Sp

2
D = exps− iuIzzd, s98d

where

Kzsud = exps− iuIz1dexps− iuIz2d, s99d
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Kxsud = exps− iuIx1dexps− iuIx2d. s100d

Thus anygPSUs4d can be approximated up to third order by

g = K1Kz
−1Sp

2
DGsg*dKzSp

2
DGsg*dKxSp

2
DGsg*dKx

−1Sp

2
DK2. s101d

One can also use theabelianizationprocedure of the preceding section to construct a holonomy of
the form12,21

Ũ =
1
Î21

Î2 0 0 0

0 1 − i 0

0 − i 1 0

0 0 0 Î2
2 . s102d

One can then show that the Lie algebra elementj̃ such that expsj̃d=Ũ along with the local algebra

generatessus4d under repeated bracketing. ThusŨ is a so-calleduniversal logic gate. However,
this procedure does not give a prescription for building an arbitrary SUs4d transformation.

C. Conditional Berry phases

An interesting hybrid scheme to quantum computing involvingdynamicalSUs2d rotations and
conditional Berry phases has been realized as a universal set of gates for several physical systems
proposed for quantum computing. To date, there have been HQC implementations using this
control paradigm with NMR,13 trapped ions,14 neutral atoms,15 semiconductor nanostructures,17

and Josephson junction networks.18,19We refer the reader to the literature for a description of the
physical systems underlying these proposed quantum computing schemes.

Here we are interested in the control strategy of the experimentalist with the gates available in
systems of this type. Namely, how does one build an arbitrary unitary transformation on two
coupled qubits given only single qubit rotations and the conditional phase shift? It is perhaps
surprising that indeed this is possible and one can entangle qubits with only the conditional phase
shift as the nonlocal operation. We note that in these systems, the calculation of the geometric
phase is trivial since one is able to exploit Abelian substructures in the case of the SUs2d phases
and the Abelian Berry phase may be computed with the standard version of Stokes theorem.

Since the conditional phase gate is not an element of SUs4d, we employ a Cartan decompo-
sition of Us4d. To this end, recall the notation of the preceding section and note that the real span
of the sets

k = ihIx1,Iy1,Iz1,Ix2,Iy2,Iz2j, s103d

p = ih14,Ixx,Iyy,Izz,Ixy,Ixz,Iyx,Iyz,Izx,Izyj s104d

form a basis ofus4d in the tensor product representation. Moreover, one can check the commu-
tation relationss67d to confirm that the set forms a Cartan decomposition ofus4d whereus4d=k

% p. Since the maximal Abelian subalgebraa contained inp is just

a = ih14,Ixx,Iyy,Izzj, s105d

we obtain the decomposition for anyGPUs4d,

G = K1 exps− if014 − if1Ixx − if2Iyy − if3IzzdK2, s106d

wherefi PR andKj PK=SUs2d ^ SUs2d.
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1. Control algorithms

Proceeding along the lines of Refs. 42, 44, and 43, we develop control algorithms with single
qubit rotations and the conditional phase shift. The action of the conditional phase shift of the
computational basis is as follows:

Ufu00l = u00l, Ufu01l = u01l, s107d

Ufu10l = u10l, Ufu11l = e−ifu11l. s108d

Under the isomorphismC2 ^ C2>C4, the conditional phase shift can be written as

Uf =1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−if
2 . s109d

In terms of the basiss104d we can write

Uf = expS− i
f

2
s214 + Izz− sIz1 + Iz2ddD . s110d

Let

K̃z = expS− i
f

4
sIz1 + Iz2dD , s111d

since

f214,Izig = fIzz,Izig = 0, s112d

we have

K̃zUf/2 = expS− i
f

4
sIz1 + Iz2dD · expS− i

f

4
s214 + Izz− sIz1 + Iz2ddD = expS− i

f

4
s214 + IzzdD .

s113d

Let

Kjsud = exps− iuI j1dexps− iuI j2d P K s114d

for j P hx,yj anduPR is a real parameter. We have the commutation relations,

f− isIz1 + Iz2d,− is214 + Izzdg = f− isIz1 + Iz2d,− iI zzg s115d

and

f− iI zz,f− isI j1 + I j2d,− iI zzgg = − isI j1 + I j2d. s116d

Thus by the Campbell–Baker–Hausdorff formula, we obtain

KjsudK̃zUf/2Kj
−1sud = KjsudexpS− i

f

4
s214 + IzzdDKj

−1sud s117d
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=expS− i
f

4
s214 + Izzcossud + fs− iI j1 − iI j2d,− iI zzgsinsuddD . s118d

We employ ap rotation to achieve the necessary decoupling. Using the preceding expression we
get

KjspdK̃zUf/2Kj
−1spd = KjspdexpS− i

f

4
s214 + IzzdDKj

−1spd s119d

=expS− i
f

4
s214 − IzzdD . s120d

So we obtain

K̃zUf/2 ·KjspdK̃zUf/2Kj
−1spd = exps− if14d. s121d

Similarly,

K̃z8Uf ·KjspdK̃z8U−fKj
−1spd = exps− ifIzzd, s122d

whereK̃z8=exps−isf /2dsIz1+ Iz2dd.
Finally, by noting that for

Kxsud = exps− iuIx1dexps− iuIx2d s123d

Kysud = exps− iuIy1dexps− iuIy1d, s124d

we have

KySp

2
Dexps− ifIzzdKy

−1Sp

2
D = exps− ifIxxd, s125d

Kx
−1Sp

2
Dexps− ifIzzdKxSp

2
D = exps− ifIyyd. s126d

Using s125d and s126d, we can construct the desired decomposition for anyGPUs4d,

G = K1 · exps− if014 − if1Ixx − if2Iyy − if3Izzd ·K2 s127d

=K1 · exps− if014d ·KySp

2
Dexps− if1IzzdKy

−1Sp

2
D ·

3Kx
−1Sp

2
Dexps− if2IzzdKxSp

2
D · exps− if3Izzd ·K2. s128d

This can now be written in terms of just elements of SUs2d ^ SUs2d and the conditional phase shift
Uf,

G = K1 · K̃zUf0/2KjspdK̃zUf0/2Kj
−1spd ·KySp

2
DK̃z8Uf1

KjspdK̃z8U−f1
Kj

−1spdKy
−1Sp

2
D ·Kx

−1Sp

2
D · K̃z8

3Uf2
KjspdK̃z8U−f2

Kj
−1spdKxSp

2
DK̃z8Uf3

KjspdK̃z8U−f3
Kj

−1spd ·K2. s129d

Given the freedom of choosingj in Kj this sequence can be simplified somewhat. For example,
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choose j =y in the product Kj
−1spd ·Kysp /2d to obtain Kj

−1spd ·Kysp /2d=Kys−pd ·Kysp /2d
=Kys−p /2d. Using this substitution and two others, the decomposition simplifies to

G = K1 · K̃zUf0/2KjspdK̃zUf0/2KyS−
p

2
DK̃z8Uf1

KjspdK̃z8U−f1
KyS−

3p

2
DKx

−1Sp

2
DK̃z8Uf2

3KjspdK̃z8U−f2
·KxS−

p

2
D · K̃z8Uf3

KjspdK̃z8U−f3
Kj

−1spd ·K2. s130d

Finally, absorbingK̃z andKj
−1spd into K1 andK2, respectively, we get

G = K1Uf0/2KjspdK̃zUf0/2KySp

2
DK̃z8Uf1

KjspdK̃z8U−f1
KyS−

3p

2
DKx

−1Sp

2
DK̃z8Uf2

Kjspd

3K̃z8U−f2
·KxS−

p

2
DK̃z8Uf3

KjspdK̃z8U−f3
K2. s131d

Some remarks are appropriate. This sequence of unitary transformations is exact and a precise
prescription for building any Us4d logic gate with just local operations and the conditional phase
shift. We make no claim that this decomposition is optimal with respect to number of elements nor
time. In the holonomic framework, time optimality is constrained by the adiabatic requirement. In
this case, one should then focus primarily on minimizing the number of loops necessary to build
an arbitrary gate.

V. CONCLUSION

In this paper, we have considered holonomic quantum computation from a control theoretic
point of view. A general framework for the control analysis is obtained by casting the relevant
problems as control systems evolving on principal fiber bundles. We have applied this framework
to two well established models of the computing scheme. To the best of our knowledge, all
holonomic computing schemes proposed thus far fall into one of the two models considered here.
From a control perspective, an interesting avenue for future work would be extending these ideas
to the control of molecular systems in the Born–Oppenheimer approximationsas mentioned in
Ref. 11d. Holonomies can be realized in this regime36 and it is reasonable to expect that a similar
analysis can be carried out for these systems. However, a direct application of the methods
proposed here will not suffice since the control parameters themselves are quantum degrees of
freedom and therefore possess a nontrivial uncontrolled evolution of their own. In other words, the
state equations analogous to those considered heres13d will be coupled quantum control problems.
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APPENDIX A

Two-qubit connection components,

Ar2
=1

0 0 0 − e−iu2

0 0 0 0

0 0 0 0

eiu2 0 0 0
2 ,
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Ar3
=1

0 0 0 0

0 0 − e−iu3 0

0 eiu3 0 0

0 0 0 0
2s2 cosh2 r2 − 1d,

Au2
=1

0 0 0 e−iu2

0 0 0 0

0 0 0 0

eiu2 0 0 0
2 i

2
sinh 2r2 +1

1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 3
2 i

2
scosh 2r2 − 1d,

Au3
=1

0 0 0 0

0 0 e−iu3 0

0 eiu3 0 0

0 0 0 0
2 i

2
cosh 2r2 sin 2r3 +1

0 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 0
2 i sin2 r3.

APPENDIX B

Interaction holonomy algebra,

Fr2r3
=1

0 0 0 0

0 0 − e−iu3 0

0 eiu3 0 0

0 0 0 0
22 sinh 2r2,

Fr2u2
=1

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2
22i sinh 2r2,

Fr2u3
=1

0 0 0 0

0 0 e−iu3 0

0 eiu3 0 0

0 0 0 0
2 i sin 2r3 sinh 2r2,

Fr3u3
=1

0 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 0
2 i sin 2r3 sinh2 2r2,

D]/]u2
Fr2u2

=1
0 0 0 − e−iu2

0 0 0 0

0 0 0 0

eiu2 0 0 0
22 sinh2 2r2,
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D]/]r2
Fr2u2

=1
0 0 0 − e−iu2

0 0 0 0

0 0 0 0

− eiu2 0 0 0
24i sinh 2r2 +1

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2
24i cosh 2r2,

D]/]u2
D]/]u2

Fr2u2
=1

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 − 1
22i sinh3 r2 +1

0 0 0 e−iu2

0 0 0 0

0 0 0 0

eiu2 0 0 0
22i sinh2 2r2 cosh 2r2.

APPENDIX C

Higher order brackets,

fIx1,Fr2r3
g =1

0 eiu3 0 0

e−iu3 0 0 0

0 0 0 − eiu3

0 0 − e−iu3 0
2 i sinh 2r2,

fIx1,Fr2u3
g =1

0 − eiu3 0 0

e−iu3 0 0 0

0 0 0 eiu3

0 0 − e−iu3 0
21

2
sin 2r2 sinh 2r2,

fIx2,Fr2r3
g =1

0 0 − e−iu3 0

0 0 0 e−iu3

− eiu3 0 0 0

0 eiu3 0
2 i sinh 2r2,

fIx2,Fr2u3
g =1

0 0 − e−iu3 0

0 0 0 e−iu3

eiu3 0 0 0

0 − eiu3 0
21

2
sin 2r2 sinh 2r2,

ffIx1,Fr2r3
g,Ix2g =1

− 1 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
2 i sinu3 sinh 2r2.
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Stability of three unit charges: Necessary conditions
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We consider the stability of three Coulomb chargesh+1,−1,−1j with finite masses
in the framework of nonrelativistic quantum mechanics. A simple physical condi-
tion on masses is derived to guarantee the absence of bound states below the
dissociation thresholds. In particular this proves that certain negative muonic ions
are unstable, thus extending the old result of Thirring to the actual values of all
masses. The proof is done by reducing the initial problem to the question of binding
of one particle in some effective potential. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1873039g

I. INTRODUCTION

The stability of three particles with pure Coulomb forces is an old and extensively studied
problem, this is to explain why certain ions and molecules stay as a whole and some dissociate
into a bound pair and a single particle. Under stability of the HamiltonianH we shall understand
the existence of a bound state with the energy strictly less than infsesssHd, i.e., a stationary state
below all dissociation thresholds. As a quantum system three particles with Coulomb interactions
demonstrate interesting behavior. It is known that three chargesh1+« ,−1,−1j for any «.0 form
the system, which is stable regardless of mass values. However at«=0 the situation abruptly
changes and due to the screening effect not all systems remain stable. The typical example is the
unstable muonic hydrogen ionpm−e−, where the heavy muon is tightly bound to the proton and
screens the positive charge for the electron. This interesting effect is well studied, in particular it
has been proved1 that for equal dissociation thresholds the system remains stablesRefs. 2 and 3
explain very well how stability depends on masses and chargesd.

Among the instability proofs for three unit charges the most appealing is that of Thirring,4

which does not require any numerical calculations. Thirring considered a negative hydrogen ion
with an infinitely heavy proton, and proved that such a negative ion is unstable when its second
negatively charged particle is lighter than electron by a factor larger thanp sp can be replaced3,5

with a better constant 1.57d. In his method Thirring exploited the fact that the ground state in the
hydrogen atom is substantially separated from other states in its spectrumsthe nondegenerate
energy levels have 1/n2 dependenced, and thus its role becomes emphasized. This suggests an idea
to move the problem to the space spanned by the projectorP0= uf0lkf0u ^ 1, wheref0 is the
ground state of hydrogen. After estimating the part of the repulsion, which is present in this space,
the problem reduces to checking the binding of one particle in some effective potential. The
contribution from the attractive interaction term coming from additional particle is easy to treat
because it commutes withP0. Yet this is no longer true if one considers particles of finite mass or
any system of four particles.

Thirring’s bound was improved2 and it was shown that the muonic ionpm−e− is unstable for
actual values of all masses. However this extensionfEq. s24d in Ref. 2g is weak in the sense that
it fails when the second particle is heavy compared to other particles.sFor a physical example, it
does not prove that the ionm−pe+ is unstable, yet we shall prove it here.d This extension still uses
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Thirring’s treatment of repulsion and it is unclear how one could extend it to four particles.
Armour6 with his method proved the instability of such systems as positron-hydrogen-atome−pe+

andm−pe+, but this method requires certain numerical assistance. It is also based on the separation
of variables in the problem of two fixed centers, which makes it inapplicable to four particles
because the variables do not separate even in the case of three fixed centers.

Here we follow the Thirring’s idea but the nucleus does not have to be infinitely heavy. The
derived physical condition restricts the ratio of Jacobi masses, which makes the system stable. It
can be used in conjunction with Thirring’s result and convexity properties of stability curve2 for a
reasonable determination of stability area free from any numerics. The present method has an
important advantage in that it admits generalization to four particles. It should be mentioned that
both Thirring’s method and the new one share the same deficiency, namely, they are not applicable
when the dissociation thresholds in the system are close or equalse.g., when two like charges have
equal massesd. In particular, using such methods one cannot prove the “overheating” effect, when
a system with chargesh+1,−q,−qj and equal masses loses its binding for someq.1. Nowadays
various charged particles are produced in laboratories and it is, of course, of interest to know the
principles behind formation of exotic atoms or molecules. All this motivates the present analysis.

II. FROM THREE PARTICLES TO ONE IN EFFECTIVE POTENTIAL

Let mi, qi, r i PR3 denote masses, charges, and position vectors of particlesi =1,2,3. We set
q1= +1 andq2,3=−1, and the interactions between the particles areVik=qiqk/ ur i −r ku. We enumer-
ate the particles in such a way, that the particless1,2d form the lowest dissociation threshold. The
stability problem with Coulomb interactions is invariant with respect to scaling all masses,2 so we
can set"=1. We separate the center of mass motion in the Jacobi frame7 settingx=r 1−r 2 and
y=r 3−r 1+ax, wherea=m2/ sm1+m2d is the mass parameter invariant with respect to mass scal-
ing. The reduced masses and Jacobi momenta are, respectively,mx=m1m2/ sm1+m2d, my=m3sm1

+m2d / sm1+m2+m3d, andpx,y=−i¹x,y. It is convenient to scale all masses so thatmx=2. sIn Sec. IV
we shall rescale them back.d The Hamiltonian for the system on the tensor product space
L2sR3d ^ L2sR3d is

H = h12 ^ 1 + 1 ^
py

2

2my
+ W,

where

W= V13 + V23 = −
1

uax − yu
+

1

us1 − adx + yu
s1d

andh12=px
2/4−1/x is the Hamiltonian of the pair of particless1,2d snotationx is used instead of

uxud. The ground state wave function ofh12 is f0=Î8/p exps−2xd so thath12f0=−f0. The Hamil-
tonianH is self-adjoint onDsHd=H2sR6d ssquare integrable functions having partial derivatives
up to the second order in the weak distributional sensed and by the HVZ theoremsesssHd
=f−1,`d. We split positive and negative parts ofW by introducingW−ª suWu−Wd /2 and W+

ª s−Wd−=suWu+Wd /2 and we haveW=W+−W−, whereW± ù0. Instead ofH we shall consider the
Hamiltonian

H̃ = h12 ^ 1 + 1 ^
py

2

2my
− W−. s2d

Note that the partW− can also be expressed as

W− = − sV13 + V23Fsx,ydd, s3d

whereF=1 when uV13uù uV23u and F= uV13u / uV23u when uV13uø uV23u, and we have 0øFø1. Be-
causeiV23Ffiø iV23fi we can directly apply Kato’s theorem8 on self-adjointness of atomic
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Hamiltonians and find out thatH̃ is self-adjoint onDsH̃d=DsHd. We cannot though directly apply

the HVZ theorem to locate infsesssH̃d but we observe that the following inequality holdssH
−V23dø H̃øH. Here sH−V23d is the original Hamiltonian without repulsion, which is bounded
from below and by the HVZ theorem infsesssH−V23d=−1. Thus from the min–max principle8 we

get infsesssH̃d=−1.
Now let us assume thatH is stable, i.e.,H has a bound state with the energy less than −1.

BecauseH̃øH from the variational principle we conclude thatH̃ also has a bound stateC

PDsHd with the energy below infsesssH̃d=−1 which means

H̃C = − s− 1 −ddC, s4d

whered.0 is the extra binding energy. Let us introduce a projection operatorP0= uf0lkf0u ^ 1
sP0:DsHd→DsHdd and sethªP0C andjª s1−P0dC, where obviouslyh'j andC=h+j and
h, jPDsHd. Taking the scalar product of each side ofs4d with h andj we obtain

KhU1 ^
py

2

2my
− W−UhL − khuW−ujl = − dihi2, s5d

kjuh12 ^ 1ujl +KjU1 ^
py

2

2my
− W−UjL − kjuW−uhl = s− 1 −ddiji2, s6d

where we have usedkhu1^ py
2ujl=0 becauseP0 and 1̂ py

2 commute. We shall assume thatihi,
ijiÞ0 swe shall get rid of this assumption in Theorem 1d, then we are free to choose such
normalization ofC that iji=1.

From the bound spectrum ofh12 we have4 h12^ 1ù−P0−1/4s1−P0d, hence for the first term
in s6d we get the boundkjuh12^ 1ujlù−1/4. Introducing two non-negative constantsa

ªÎkhuW−uhl andbªÎkjuW−ujl we get by virtue of the Schwarz inequalityukjuW−uhluøab. Now
we can rewrite Eqs.s5d and s6d to obtain the main pair of inequalities,

KhU1 ^
py

2

2my
− W−UhL − ab , 0, s7d

KjU1 ^
py

2

2my
− W−UjL − ab , −

3

4
. s8d

Using the second inequality we shall find maxb /a and by substituting this value intos7d we shall
formulate the stability condition.

Lemma 1: Suppose that Eq. (8) holds andmy,3/2, then the following inequality is true:

b , SÎ 3

2my
− 1D−1

a. s9d

Proof: First, let us show that forAù0,

inf
xPDsHd

ixi=1

KxU1 ^
py

2

2my
− AW−UxL ù −

A2my

2
. s10d

It suffices to prove this forxPC0
`sR6d. Using s3d from the variational principle we get
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KxU1 ^
py

2

2my
− AW−UxL ùE dxE dy x*sx,ydS py

2

2my
−

A

uax − yu
Dxsx,yd

ù −
A2my

2
E dxE dyuxu2sx,ax + yd = −

A2my

2
ixi2 s11d

from which s10d follows and where we have used the explicit expression for the ground state
energy of the hydrogen atom.fUsing an appropriate set of trial functions it is easy to show that
there is an equality sign ins10d, but we do not need this for our purposesg. Now usings10d we
obtain the following chain of inequalities:

inf
jPDsHd

iji=1

kjuW−ujl=b2

KjU1 ^
py

2

2my
− W−UjL = max

lù−1
inf

jPDsHd

iji=1

kjuW−ujl=b2

SKjU1 ^
py

2

2my
− sl + 1dW−UjL + lb2D

ù max
lù−1

inf
jPDsHd

iji=1

SKjU1 ^
py

2

2my
− sl + 1dW−UjL + lb2D

ù max
lù−1

slb2 − sl + 1d2my/2d =
b4

2my
− b2.

Substituting this result intos8d and settinga=sb we obtain

b4

2my
− ss+ 1db2 , −

3

4
. s12d

Now simply minimizing the left-hand side ofs12d overb2 we obtain the lower bound ons, which
gives us Eq.s9d. j

It is worth noting that the relation in the lemma is a version of the uncertainty principle, when
b2 grows, the kinetic energy term grows faster likeb4. Let us introduce an effective potential
Veffsydªedxuf0u2W−. We formulate the result as follows.

Theorem 1: If the system of three charges is stable andmy,3/2 then the particle with mass
my must have a bound state in the potential−s1+sÎ3/2my−1d−1dVeff.

Proof: We haveihi, ijiÞ0. The functionh has the factorized formh=f0sxdfsyd, where f
PH2sR3d, ifiÞ0. By substitutings9d into s7d and using expressions fora2 and h we get the
necessary condition for stability

K fU py
2

2my
− s1 + sÎ3/2my − 1d−1dVeffU fL , 0. s13d

In the next section we shall studyVeffsyd and show that it is a continuous function decaying like
1/y2. Inequalitys13d means that a particle having massmy has a bound state in this potential.

Now let us complete the proof considering the case when eitherj=0 or h=0. If j=0 we have
b=0 and substituting this intos7d we get a condition more stringent than Eq.s13d. If h=0 we have
iji=1 anda=0, substituting this intos8d and usings10d for my,3/2 results in the contradic-
tion. j

III. BINDING IN EFFECTIVE POTENTIAL

In this section we shall analyze the effective potential and find out at which values of the
coupling constantl the Hamiltonianpy

2−lVeff may have bound states. It turns out that the effec-
tive potential in our case has a nonphysical term, which is a long-range attraction of the type 1/y2.
This nonphysical behavior stems from cutting off the positive part of the potential and results in
the infinite number of bound states at the point of bindingsthat is why it is meant nonphysicald.
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But as it is well known since the result of Hilbert and Courant,9 even this long-range attraction
does not guarantee binding, forl maxy y2Veffsydø1/4 the inequalitypy

2−lVeffù0 holds, i.e., no
binding occursssee also the proof in Ref. 8, Vol. 2d. Thus the nontrivial critical coupling constant
exists, and we must determine it. On the other hand, in such potentials short-range repulsive terms
do not play any role for binding.10 It would be of interest to get rid of this nonphysical behavior
in the futurespay attention that the Thirring’s effective potential4 behaves at infinity like 1/y3!d.

To calculateVeff we must cut off the positive part ofW. From s1d Wø0 is equivalent to
cosuùx/ svyd, wherev=sa−1/2d−1 and cosu=x ·y /xy. We shall consider separately two cases
a.1/2 andaø1/2.

A. Case when a>1/2

The integration is simpler in this case. After direct integration in spherical coordinates over
the area where cosuùx/ svyd we obtain

Veffsyd = 16y2E
0

v

ds se−4sySÎas1 − ads2 + 1

as1 − ad
−

uas− 1u
a

−
s1 − ads+ 1

1 − a
D

=
16y2

as1 − adE0

v

ds se−4sysÎas1 − ads2 + 1 − 1d + U, s14d

where

U = 32y2E
1/a

v

ds se−4sys1/a − sd , 0. s15d

Now we do not have to carry out integration ins15d, it is enough to see that it is a short-range
repulsion, which does not play a role in our case. To calculate the first term ins14d we use
Îas1−ads2+1ø1+as1−ads2/2 to get

Veff , 8y2E
0

v

ds s3e−4sy,
3

16y2 , s16d

where after the integration we have dropped the short-range negative terms. Finally, we havepy
2

−lVeffùpy
2−ls3/16dy−2. The following inequality8 holds py

2−s1/4dy−2ù0. Thus in the case of
binding, i.e., when suchf exists thatkf upy

2−lVeffufl,0, we must havel.4/3. Comparing this
with s13d we obtain that three charges form an unstable system ifmy,3/2 and

2mys1 + sÎ3/2my − 1d−1d , 4/3. s17d

Solving this simple inequality tells us that the system is unstable whenmy,2s11−2Î10d /27
.0.3463.

B. Case when aÏ1/2

First let us takea,1/2. We shall writeWsad instead ofW to point out the dependence on
parametera. We can alleviate the integration noting thatWsad=−Ws1−ad, thus we haveW−sad
=s−Ws1−add−=W+s1−ad=Ws1−ad+W−s1−ad. From this we concludeVeffsad=−W̄sad+Veffs1
−ad. The additional integralW̄sadªedxuf0u2W is easy to calculate andVeffs1−ad for a,1/2 we
have already calculated. We obtain
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− W̄sad = 16y2E
0

`

ds e−4sysSS1

a
−

1

1 − a
D + Us−

1

1 − a
U − Us−

1

a
UD

= 32y2E
1/s1−ad

1/a

ds e−4sySs2 −
s

1 − a
D + 32y2E

1/a

`

ds e−4sysS1

a
−

1

1 − a
D . s18d

Using s14d and s15d and approximation for the square rootÎas1−ads2+1ø1+as1−ads2/2 gives
us

Veffs1 − ad ø 8y2E
0

−v

ds s3e−4sy+ 32y2E
1/s1−ad

−v

ds e−4syS s

1 − a
− s2D . s19d

Summings18d and s19d and calculating the integrals explicitly gives us the following expression
for a,1/2:

Veff ,
3

16y2 − e−4y/aF8s1 − ady
a2 + 2

2 − a

a
+

1

y
G

− e4vyF− 2yvsv + 2d2 + s3v/2 + 1dsv + 2d −
1

y
s3v/4 + 1d +

3

16y2G . s20d

For a,1/2 we havev,−2, and it is easily seen that all terms in square brackets are positivesthis
leads again to short-range potentialsd, meaning thatVeff, s3/16dy−2, which gives the same con-
dition for stability ass17d. We do not consider explicitlya=1/2, it is done analogously and also
results ins17d.

IV. SUMMARY

We have initially scaled all massesmi →2mi /mx, makingmx=2. Now rescaling it back we get
throughs17d that the system of three charges is unstable ifmy/mx, s11−2Î10d /27.0.1732. In
the case of infinitely heavy nucleus this ism3/m2,0.1732, which is worse than the refined2,5

Thirring’s estimatem3/m2,1/1.57. The accuracy is lost at the point of cutting the positive part of
the potential, which induces a long-range attraction. However this is more than enough to prove
that the muonic ionspm−e− or m−pe+ are unstable for the actual values of all three masses. The
case of four unit chargesh+1, +1,−1,−1j is treated similarly but the calculations are more
involved11 and results would be published elsewhere. Let us also stress that the obtained condition
is physical. Both Jacobi masses determine Bohr radii for the particle orbits, the orbit within the
pair of particless1,2d and the orbit for the third particle in the field of this pair with respect to the
pair’s center of mass. If the orbit of one negative particle is outdistanced then the attraction from
the positive charge is screened off by the other negative particle and the system becomes unbound.
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Recently, we introduced a mathematical framework for the quantization of a par-
ticle in a variable magnetic field. It consists in a modified form of the Weyl
pseudodifferential calculus and aC* -algebraic setting, these two points of view
being isomorphic in a suitable sense. In the present paper we leave Planck’s con-
stant vary, showing that one gets a strict deformation quantization in the sense of
Rieffel. In the limit "→0 one recovers a Poisson algebra induced by a symplectic
form defined in terms of the magnetic field. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1887922g

I. INTRODUCTION

The present paper treats the semiclassical limit of the mathematical formalism describing a
quantum, nonrelativistic particle without internal structure, placed in a variable magnetic field.
The limit is considered in the precise sense of Rieffel’s axiomsscf. Refs. 8,22,23d, involving
C* -algebras. This setting is widely calledstrict quantization, to distinguish it from the version in
terms of formal seriesssee Ref. 1, for exampled. It consists of several ingredients, which we
outline here very briefly, referring to Sec. II for a detailed discussion.

s1d One needs first a natural family of classical observables. It is admitted that this should
form a Poisson algebraA, which is roughly a real associative and commutative algebra endowed
with a compatible Poisson bracket. This structure describes the classical physical system.

s2d For non-null values of Planck’s constant", one must defineC* -algebras of quantum
observablesC".

s3d It must be shown that for"→0 “the quantum structure converges to the classical one.”
This is described precisely by Rieffel’s system of axioms or some of its versions.

If a certain extra technical condition is verified, allowing to define on classical observables a
family of “deformed products” indexed by", one speaks ofstrict deformation quantization.

In our case, a particle without spin moving in theN-dimensional configuration spaceRN and
placed under the influence of an external variable magnetic field, the natural Poisson algebra is
well known. The observables are smooth functions defined on the phase spaceJªR2N, the
associative product is defined pointwise and the Poisson bracket is induced by the canonical
symplectic form onJ, to which we add a magnetic contribution.6,16 This is described in Sec. III.

Quite surprisingly, the algebras of quantum observables for this system were defined and
developed only recently. One reason could be that the canonical variables in the magnetic casesthe
components of the position and those of the magnetic momentumd satisfy complicated commuta-
tion relations, that must be taken into account when defining more general observables as func-
tions of these basic ones. The intensive use ofconstantmagnetic fields andsord special observ-
ables that arequadraticwith respect to the momenta have also played a certain role. The setting
which is correctsat least in our opiniond appeared in Refs. 6,7 and 13sa pseudodifferential point
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bdElectronic mail: radu.purice@imar.ro
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of viewd and in Refs. 12 and 14sC* -algebrasd. The right attitude can also be found in Ref. 11, but
undeveloped and stated for a very particular case; it seems that it has been largely unnoticed. The
critical point is gauge invariance: when several equivalent vector potentials corresponding to a
given magnetic field are used in defining observables, the results should be connected by simple
unitary equivalences. But to achieve this, one has to be very careful in defining the precise form
of the observables as well as the composition laws to which they are submitted. We shall explain
all these in Sec. IV.

In Sec. V we state our main theorem. It asserts that under certain hypothesis, to a magnetic
field and to an Abelian algebra of “configurational observables” one can associate naturally a strict
deformation quantization.

Sections VI–VIII are devoted to the proof of the main result. The three nontrivial axioms are
verified separately. The Rieffel condition and the von Neumann condition follow from the results
of Refs. 18 and 20sSecs. VI and VIId. Nevertheless, we also give a direct elementary proof for the
von Neumann condition similar with that given for the Dirac conditionsSecs. VII and VIIId.

This paper is addressed also to people that do not have deformation quantization as their main
skill. The system we treat has a certain physical intereststhis is not always the case in this fieldd.
Thus we decided to avoid technical complications and to leave more general situations to subse-
quent works. In particular, we hope to be able to say something on strict deformation quantization
by twisted groupoidsssee Refs. 8–10 and 17, and references therein for the untwisted cased, which
should include the present work as a particular instance. A pure state quantization would also be
an interesting topic.

Both in classical and in quantum theory one works with “real” observables. For any spaceE
of complex functions we denote byER the subspace ofR-valued elements inE. For instance,
C`sPdR will be the family of realC` functions on the smooth manifoldP. If C is aC* -algebra, we
setCR for the set of self-adjoint elements ofC. Some other notations: IfY is a locally compact
group we denote byCsYd the p-algebra of all continuous complex functions onY.
BCsYd ,BCusYd ,C0sYd mean respectively “bounded and continuous,” “bounded and uniformly
continuous,” and “continuous and small at infinity.” IfH is a Hilbert space,KsHd will be the set
of all compact operators inH, forming an ideal in theC* -algebraBsHd of all the linear, bounded
operators onH. The unitary operators form the groupUsHd.

II. THE AXIOMS

We describe here Rieffel’s framework for strict quantization. There are several versions of his
axioms; we choose to work with the system of axioms which appears in Ref. 8, to which we also
refer to for many other details. The starting point is a “classical algebra of observables” described
by a Poisson algebra.

Definition 1.1:A Poisson algebrais a triple sA , + ,h· , ·jd, whereA is a real vector space,
+ ,h· , ·j are bilinear maps: A3A→A such that+ is associative and commutative, h· , ·j is anti-
symmetric and for eachwPA, hw , ·j is a derivation both with respect to+ and toh· , ·j. Thus, aside
bilinearity, the two maps satisfy for allw ,c, rPA.

sid c +w=w +c, sc +wd +r=c + sw +rd,
sii d hc ,wj=−hw ,cj,
siii d hw ,c +rj=c + hw ,rj+hw ,cj +r sLeibnitz ruled,
sivd hw ,hc ,rjj=hhw ,cj ,rj+hc ,hw ,rjj sJacobi’s identityd.

The elements ofA are interpreted as observables of a classical description of a physical
system. For eachwPA and each value"Þ0 of Planck’s constant, one would like to have an
objectQ"swd representing the same observable in a quantum description of the system. One also
hopes that the algebraic structure of the quantum observables should converge to the classical
picture described by the Poisson algebra, in some suitable normi ·i" depending continuously of".
This might be seen as a precise mathematical form of Bohr’s correspondence principle.

052105-2 M. Măntoiu and R. Purice J. Math. Phys. 46, 052105 ~2005!

                                                                                                                                    



A systematic justification of the next definitions may be found in Ref. 8. Note that usually in
A many classical observables are “unbounded;” the use of norms forces us to apply quantization
only to certain subfamiliesA0 of A.

Definition 1.2: LetA0 be a Poisson algebra which is densely contained in the self-adjoint part
CR

0 of an Abelian C* -algebra C0. A strict quantization of the Poisson algebrasA0, + ,h· , ·jd is a
family of mapssQ" :A0→CR

"d"PI, where we have the following:

sid I is a subset of the real axis, for which the origin is an accumulation point contained in I.
sii d C" is a C* -algebra, with product and norm denoted, respectively, by #" and i ·i". For

w" ,c"PCR
" (the self-adjoint part ofC"d we setw"!"c"

ª

1
2sw"#"c"+c"#"w"d sa Jordan

productd and hw" ,c"j"ª s1/i"dsw"#"c"−c"#"w"d.
siii d Q" :A0→CR

" is R-linear for each" and Q0 is just the inclusion map, and the following
axioms are fulfilled:

sad RIEFFEL’S CONDITION: ForwPA0, the map I{"→ iQ"swdi"PR+ is continuous.
sbd VON NEUMANN CONDITION: Forw ,cPA0, iQ"swd!"Q"scd−Q"sw +cdi"→0 when

"→0.
scd DIRAC’S CONDITION: For w ,cPA0, ihQ"swd ,Q"scdj"−Q"shw ,cjdi"→0 when "

→0.
sdd COMPLETENESS:Q"sA0d is dense inCR

" for all "P I.

The word “strict” was coined by Rieffel in order to distinguish his framework from the
sdeformationd quantization defined in terms of formal series. Usually Poisson algebras are function
spaces.

Definition 1.3: We callPoisson manifolda smooth manifold M so that on C`sMdR a bracket
h· , ·j is given such that, denoting by+ the pointwise multiplication, the triplesC`sMdR , + ,h· , ·jd is
a Poisson algebra.

WhenM is not compact,C`sMdR is a very large, unnormed space. In quantization one deals
with suitable families of smooth bounded observables.

Definition 1.4:A strict quantization of the Poisson manifoldM means the choice of a Poisson
subalgebraA0 of C`sMdR composed of bounded functions and a strict quantization of this Poisson
subalgebra.

One should be aware that the linear mapsQ" tend to behave as morphisms only in the
asymptotic limit"→0. But under favorable circumstancessfulfilled rather often, but by no means
alwaysd they may serve to define modified products onC0. In this case, one really is allowed to
think in terms of “deformed products.”

Definition 1.5: A strict quantizationsQ" :A0→CR
"d"PI is calleda strict deformation quantiza-

tion if for each", Q"sA0d is a subalgebra ofCR
" and Q" is injective.

In such a case, for any", one defines #" :A03A0→A0 such that Q"sw#"cd
=Q"swd#"Q"scd for all w, cPA0. The notational ambiguity is deliberate.

Remark:We shall briefly comment upon an alternative definition forstrict deformation quan-
tization of a Poisson algebraA0, in the spirit of Rieffel’s approach.21–23 The mapsQ" being
injective ssee Definition 1.5d, we may identify all the algebrasQ"fA0g and consider the different
C* -algebrasC" as completions for differentC* -norms i .i" of the same *-algebraC ^ A0. We
denote byC ^ A0 the completion taken with respect to theC* -norm uuu . uuuªsup"PIi .i". Then we
may define a strict deformation quantization of the Poisson algebraA0, as a familyhC"j"PI of
C* -algebrasswith products#" andC* -normsi .i"d such that

s1d C0 is Abelian;
s2d C ^ A0 is dense inC" for any "P I;
s3d the triple sI ,hC"j"PI ,Gd, with GªCsI ;C ^ A0d, defines aa continuous field of C* -algebras,

cf. Ref. 5;
s4d sthe Dirac conditiond for any w andc in A0 we have
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lim
"→0

I 1

i"
sw#"c − c#"wd − hw,cjI

"

= 0.

In fact our proof in this paper may be seen to give such a structure.

III. THE MAGNETIC POISSON ALGEBRA

For the convenience of the reader, we start by recalling briefly the way a symplectic manifold
acquires a canonical Poisson structure. For a differentiable manifoldM we denote byC`sMd the
vector space of smooth real functions onM, by xsMd theC`sMd-module of vector fields onM and
by VksMd theC`sMd-module ofk-forms onM si.e.,C` sections of the fibre bundle of antisymetric
k-linear formsLm

k M on TmM, the tangent space ofM at mPMd. One hasV0sMd=C`sMd. We
denote by d:VksMd→Vk+1sMd the exterior differential. A symplectic form onM is just a closed
nondegenerate 2-formSPV2sMd.

It follows easily from the axioms that the bracketh· , ·j of any Poisson manifoldM is given by
a Poisson bivector. This means that one hashf ,gj=wsdf ,dgd for all f, gPC`sMd, where
w:V1sMd3V1sMd→C`sMd is bilinear, antisymmetric and satisfies an extra condition connected
to the Jacobi identityssee Refs. 8 or 24 for detailsd. The symplectic form will lead to such a
Poisson bivector in a specific way. Being a nondegenerate bilinear form on each tangent space,S
defines aC`sMd-linear isomorphismb :V1sMd→xsMd, usvdªSmsbmsud ,vd, ∀su ,vdPTm

* M
3TmM. Then one defines

hf,gjS ª Sfbsdfd,bsdgdg, s1d

so in this case the Poisson bivector is given bywS=S + sb3bd. One checks easily that, in this way,
M becomes a Poisson manifold and we denote byP0sMd the algebraC`sMdR endowed with the
pointwise multiplication and the above canonical Poisson bracket.

We come back to our specific situation. The configuration space of our particle without
internal structure is the spaceXªRN, with elementsq,x,y,z. The subsequent presence of a
magnetic field demandsNù2. We denote byX! the dual of the vector spaceX, with elements
p,k, l and bysx,pd°x·p the duality betweenX andX!.

The phase-space of the system is the cotangent bundleT*X of X, often denoted byJ and
identified with the direct sumX3X! sby identifying all the fibers withX!, using the action through
translationsd. Typical vectors inJ arej=sq,pd or h=sx,kd. All the tangent spacesTjsJd will be
identified withJ and all the cotangent spacesTj

*sJd will be viewed asJ! and, furthermore, as
X!3X. On J we have the canonicalsconstantd symplectic form defined by

s:J 3 J → R, sfsx,kd,sy,ldg ª y ·k − x · l .

This structure is adequate for the description of the particle whith no magnetic field. When a
magnetic field is present, this can be taken into account by a change in the symplectic structure, cf.
Ref. 16.

We thus consider a special class of flat symplectic manifolds, representing perturbations of the
above symplectic space and associated to a generalsregulard magnetic field onX. In fact sucha
magnetic field is described by a closed 2-form BPV2sXd. Starting with the canonical projection
p :J>X3X!→X, we define canonically an injectionp̃2:V2sXd→V2sJd. Thus we get a new
symplectic formsB on J as the sumsBªs+p̃2B, i.e.,

ssBdsq,pdfsx,kd,sy,ldg ª sfsx,kd,sy,ldg + sp̃2Bdsq,pdfsx,kd,sy,ldg = y ·k − x · l + Bqsx,yd.

Being the sum of two closed forms, this 2-form is closed. It is also nondegenerate, thus it is a
symplectic form onJ. Thens1d gives
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hf,gjB ; hf,gjsB
= sBfbsdfd,bsdgdg,

so we badly need an explicit formula forb. Let us denote byk· , ·l the duality betweenJ andJ!.
The inversebj

−1:J→J! is defined, forj=sq,pd, h=sx,kd, z=sy, ldPJ, by

ssBdsq,pdfsx,kd,sy,ldg ; y ·k − x · l + x · B̄qy = ksx,kd,bsq,pd
−1 sy,ldl,

where B̄q:X→X! is the linear, antisymmetric operator defined byBqsx,yd=x·B̄qy, ∀x,yPX. It
follows easily thatb−1 can be set in matrix form,

bj
−1 = SB̄q

− 1X*

1X 0
D:X 3 X! → X! 3 X,

which leads to the next matrix form ofbj,

bj = S 0 1X

− 1X* B̄q
D:X! 3 X → X 3 X!.

Thus, writting djh=sdj
Xh,dj

X!
hd, one gets

hf,gjBsjd = dj
Xf · dj

X!
g − dj

Xg · dj
X!

f + Bqsdj
Xf,dj

Xgd.

Using coordinates, one has dj
Xh=o j=1

N s]pj
hdsjddpj and dj

X!
h=o j=1

N s]qj
hdsjddqj frecall that dpj

P sX!d!;Xg. We get finally

hf,gjB = o
j=1

N

s]pj
f ]qj

g − ]qj
f ]pj

gd + o
j ,k=1

N

Bjks·d]pj
f ]pk

g. s2d

We shall denote byPBsJd the Poisson algebraC`sJdR endowed with the pointwise multiplication
and the Poisson bracketh· , ·jB given in s2d. The different descriptions of the quantum observable
algebras in the next section asks also for a partial Fourier transformed version of this Poisson
algebra. This will be explained in Sec. V under favorable circumstances.

IV. THE QUANTUM MAGNETIC OBSERVABLES; THE C*-ALGEBRAS FOR "Å0

We are placed in the framework of the preceding section, but for most of the constructions the
smoothness assumption onB will be useless. We assume for the moment only thatB is continuous.

We present first a pseudodifferential approach to the magnetic quantum system, following
Refs. 6,7, and 13. NoC* -algebras are in sight for the moment. We choose some vector potentialA
corresponding to the magnetic fieldB sdA=Bd. It also can be chosen continuous; think of the
transversal gauge for example. The vector potential is used to define a representation of some
explicitely gauge invariant structure. Only this one will be used in the process of quantization.

Let us fix some value"Þ0 for the Planck constant. We would like to justify the construction
of a correspondencef °OpA

"sfd betweenssuitabled complex functions defined on the phase space
J and operators. To the functionsq,pd°qj one wants to assign the operatorQj of multiplication
with qj fi.e., sQjudsqdªqjusqdg and tosq,pd°pj we associate the first-order differential operator
PA,j

"
ª"Pj −AjsQd=−i"] j −Aj. The difficulty of defining a functional calculusf °OpA

"sfd
; fsQ,PA

"d for these 2N operators comes from their high degree of noncommutativity,

ifQj,Qkg = 0, ifPA,j
" ,Qkg = "d j ,k, ifPA,j

" ,PA,k
" g = "BkjsQd, j ,k = 1,…,N.

A convenient global form of these canonical commutation relations may be given in terms ofthe
magnetic Weyl system. Recall the unitary groupseiQ·pdpPX! of the position as well asthe magnetic

translationssUA
"sqdªeiq·PA

"

dqPX, given explicitly in the Hilbert spaceHªL2sXd by

052105-5 Strict magnetic deformation quantization J. Math. Phys. 46, 052105 ~2005!

                                                                                                                                    



UA
"sqd = e−si/"dGAsfQ,Q+"qgdeiq·"P, s3d

whereGAsfq8 ,q8+"qgdªefq8,q8+"qgA is the circulation of the vector potentialA along the segment

fq8,q8 + "qg ª hq8 + t"qut P f0,1gj.

The family sUA
"sqddqPX satisfies

UA
"sqdUA

"sq8d = vB
"sQ;q,q8dUA

"sq + q8d, q,q8 P X,

where we set

vB
"sq0;q,q8d: = e−si/"dGBskq0,q0+"q,q0+"q+"q8ld

and

GBskq0,x,yld: =E
kq0,x,yl

B

is the flux ofB through the trianglekq0,x,yl defined by the pointsq0,x, andy. Now the magnetic
Weyl system is the familysWA

"sq,pddsq,pdPJ of unitary operators inH given by

WA
"sq,pd: = e−isssq,pd,sQ,PA

"dd = e−isQ+s"/2dqd·pe−si/"dGAsfQ,Q+"qgdeiq·"P

and it satisfies for allsq,pd, sq8 ,p8dPJ,

WA
"sq,pdWA

"sq8,p8d = esi/2dsssq,pd,sq8,p8ddvB
"sQ;q,q8dWA

"sq + q8,p + p8d.

To constructOpA
"sfd; fsQ,pA

"dd one does not dispose of a spectral theorem. Having the functional
calculus with aC0 group in mind and having faith in the ability of the magnetic Weyl system to
take into account the waysQ1,… ,QN; pA,1

" ,… ,pA,N
" d fail to commute, one proposes

OpA
"sfd: =E

J

djsFJfdsjdWA
"sjd,

where byFJ we denote the symplectic Fourier transform

sFJfdsjd: =E
J

dh e−issj,hdfshd.

A suitable choice of the Haar measures onX,X! andJ leads to the exact form of the formulas
above, with no numerical factors in front of the integrals.

Some simple replacements lead to the following expression for the action of these operators
on vectorsuPL2sXd:

fOpA
"sfdugsxd = "−NE

X
E

X!
dy dk esi/"dsx−yd·ke−si/"dGAsfx,ygdfSx + y

2
,kDusyd. s4d

To haveOpA
"sfdOpA

"sgd=OpA
"sf+"gd andOpA

"sfd* =OpA
"sf +"

d, one setsf +"
sq,pdª fsq,pd sindepen-

dent of" or Bd and

sf+"gdsjd ª s2/"d2NE
J

dhE
J

dz e−2si/"dssj−h,j−zde−si/"dGBskq−y+x,x−q+y,y−x+qldfshdgszd. s5d

The composition law+"; +B
" depends only on the magnetic field and not on the choice of some

vector potential.
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Obviously, forB=0 andA=0 the above formulas reproduce the well-known formulas of the
pseudodifferential calculus in Weyl form. In Ref. 13 they are studied in detail, their gauge-
invariance is underlined and a rigorous meaning of them and of some of their extensions are
outlined. See also Refs. 6,7 for other developments and for nice geometrical interpretations. We
shall come back to thismagnetic Weyl calculusafter an excursion into twisted crossed product
algebras.

The input for a crossed product is a locally compact groupX acting on aC* -algebraA. One
constructs a largerC* -algebraA’X containing bothA and a unitary representation ofX, with a
prescribed commutation rule between elements of these two sets. When a 2-cocycle of the group
swith values in the unitary group of the algebrad is also given and when “unitary representation”
is replaced by “projective representation” in some suitable generalized sense, then one gets a
twisted crossed product. We shall be pragmatic and introduce only the object of strict interest for
our situation in a somewhat ad hoc manner. In Ref. 12 and especially in Ref. 14 we give a more
detailed description. The abstract theory of twisted crossed products was developed in Refs.
4,19,20.

So, let us start by remarking thatX=RN is indeed a locally compact second countable group.
We shall calladmissible C* -algebraA composed of bounded, uniformly continuous complex
functions onX which containsC0sXd and is invariant under translations,aPA, xPX imply as·
+xdPA. Thus, for any"Þ0, one can define the continuous action ofX by automorphisms ofA,

u":X → AutsAd, fux
"sadgsyd ª asy + "xd.

u" is a group morphism and the mapsX{x°ux
"sadPA, aPA are all continuous. Let us recall

the function

sq,x,yd ° vB
"sq;x,yd ª e−si/"dGBskq,q+"x,q+"x+"yld,

which governs the multiplication property of the magnetic translations. It can be interpreted as a
map

vB
":X 3 X → CsX;Td, fvB

"sx,ydgsqd ª vB
"sq;x,yd

with values in the set of continuous functions onX taking values in the 1-torusTª hzPC u uzu
=1j. It is easy to see thatvB

" satisfiesthe 2-cocycle condition

vB
"sx,ydvB

"sx + y,zd = ux
"fvB

"sy,zdgvB
"sx,y + zd, ∀ x,y,zP X,

easy to check with Stokes’ theorem, since dB=0. It is alsonormalized, i.e.,

vB
"sx,0d = 1 =vB

"s0,xd, ∀ x P X.

We have shown in Ref. 14 how to impose conditions onB in order to have a good connection
betweenvB

" and the admissibleC* -algebraA. Let us denote bySA the Gelfand spectrum ofA sthe
space of characters with the pointwise convergence topologyd. Our assumptions onA imply that
X can be identified with a dense subset of the locally compact spaceSA. We say that a continuous
function onX is of classA if it extends to a continuous function onSA. TheC* -algebraA is unital
iff SA is compactsthus a compactification ofXd and in this case “continuous” means also
“bounded;” in the nonunital case many unbounded functions are allowed. If the componentsBjk of
the magnetic field are of classA the mappingX3X{ sx,yd°vB

"s· ;x,ydPCsSA ;Td is well de-
fined and continuous with respect to the topology of uniform convergence on compact subsets of
SA. fNote thatCsSA ;Td is exactly the unitary groupUMsAd of the multiplier algebra ofA.g
These are the needed conditions to callsu" ,vB

"d a twisted action of X onA and to make the
quadrupletsA ,u" ,vB

" ,Xd a particular case ofa twisted C* -dynamical system. These are also
conditions under which one can perform the construction of the twisted crossed product
C* -algebra that we now explain.
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Consider first the Banach spaceL1sX;Ad with the norm iwi1ªeXdxiwiA. As a rule, its
elements will be considered as functions of two variables:fwsxdgsqd;wsq;xd, thus iwi1

=eXdx supqPXuwsq;xdu. We can introduce an involution bywLsq;xdªwsq;−xd and a composition
law

swL"cdsq;xd ª E
X

dy wSq −
"

2
sx − yd;yDcSq +

"

2
y;x − yDe−si/"dGBskq−s"/2dx,q−s"/2dx+"y,q+s"/2dxld

s6d

swe leave to the reader the task of suppressing the variableq and introducing the objectsu" andvB
"

in the right places to get a more abstract version of this formulad. Endowed with this structure
L1sX;Ad is a Banach*-algebra.

Its enveloppingC* -algebra will be calledthe twisted crossed product ofA by the twisted

action su" ,vB
"d of X. A comprehensive but awkward notation would beA’

u"
vB

"

X, which we abbre-
viate toCA

" , insisting on its dependence on" andA, the magnetic fieldB being fixed. We recall
that CA

" is the completion ofL1sX;Ad under theC* -norm,

iwi" ª suphipswdiBsHdup:L1sX;Ad → BsHd representationj.

The main reason forCA
" to exist is the fact that its nondegenerate representations are in a one-to-

one correspondence withcovariant representationsof the twisted C* -dynamical system
sA ,u" ,vB

" ,Xd, i.e., with triplessH ,r ,Ud, whereH is a Hilbert space,r is a nondegenerate repre-
sentation ofA andU is a strongly continuous map fromX to the family of unitary operators onH
satisfying for allx, yPX andaPA,

UsxdUsyd = rfvB
"sx,ydgUsx + yd andUsxdrsadUsxd* = rfux

"sadg. s7d

We shall use this for a single case, that ofthe Schrödinger covariant representationsL2sXd ,r ,UA
"d

associated to the vector potential Aswith dA=Bd. Herer :A→BfL2sXdg is the usual representation
of functions inA by multiplication operatorsfrsad;asQd by a previous notationg andUB

" has been
introduced ats3d. It is easy in this case to checks7d and to view it as another way to codify the
commutation relations between positions and magnetic momenta. In fact this is the root of the
close connectionssee belowd betweenCA

" and the magnetic pseudodifferential calculus sketched
above. The representation ofCA

" corresponding tosL2sXd ,r ,UA
"d is given sby abstract principlesd

by

RepA
"swd ª E

X

dx rfux/2
" swsxddgUA

"sxd,

which gives forwPL1sX;Ad anduPL2sXd,

fRepA
"swdugsxd = "−NE

X

dy esi/"dGAsfx,ygdwSx + y

2
,
y − x

"
Dusyd. s8d

By comparings8d with s4d one sees that, at least formally,RepA
" andOpA

" are connected to each
other by a partial Fourier transformation,OpA

"sfd=RepA
"fFsfdg, with Fª1^ F and sFbdsxd

ªeX!dk e−ix·kbskd whenever it makes sense. It follows that the composition laws+" and L" are
intertwined byF, i.e., f+"g=F−1fsFfdL"sFgdg, as can also be checked by a direct calculation. We
refer to Ref. 14 for details on the rigorous meaning of these connections in nontrivial cases. We do
not need it here since actually all our verifications in Secs. VI–VIII are done in the setting of
twisted crossed products. One defines theC* -algebraBA

"
ªF−1CA

" . On suitable dense subsets of
BA

" we are entitled to uses5d as it stands.
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V. THE MAIN RESULT

In Sec. III, assuming that the components of our magnetic fieldB are C` functions onX
=RN, we endowed the spaceC`sJdR of real smooth functions on the phase-spaceJ=X3X! with
a B-dependent Poisson algebra structure, calledPBsJd. On the other hand, in Sec. IV we con-
structed for each"P s0,1g a C* -algebraBA

" , which is the partial Fourier transform of the twisted
crossed productC* -algebraCA

" defined by the twisted actionsu" ,vB
"d of X on the admissible

C* -algebraA; we had to use the assumption that the componentsBjk are functions of classA.
In order to construct now a strict deformation quantization we must study the conditions to be

imposed to the magnetic field in connection with the choice of the Poisson subalgebraA0 of
PBsJd.

We recall thatCA
" is a C* -completion of the Banach*-algebraL1sX;Ad; the structure depends

on " andB. Then for any subspaceA0 of A and any subspaceS of L1sXd, the algebraic tensor
productA0(S sfinite combination of simple tensorsd is a subspace ofL1sX;Ad, thus also ofCA

" .
The partial Fourier transformed versionF−1fA0(Sg=A0(F−1S will be a subspace of
F−1fL1sX;Adg and, therefore, a subspace ofBA

" . Note that A0(F−1S is also contained in
A(C0sX!d, thus it is composed of complex functions defined on the phase spaceJ. If one also
requires thatA0,C`sXd andF−1S,C`sX!d, thenA0(F−1S,C`sJd and both the classical and
the quantum formalisms hold onA0(F−1S. In fact several choices forA0 andS are available,
their success hanging on the assumptions we impose on the magnetic field. With severe contraints
on B one hopes to quantize larger classes of classical symbols. We shall study a simple, convenient
situation; the reader could work out other cases for himself. We defineA`

ª ha
PAùC`sXd u]aaPA , ∀aPNNj; it is a subspace ofAùBC`sXd. TakeA0=A` andS=SsXd, the
Schwartz space of functions onX which have rapidly decaying derivatives of any order. Then
F−1S=SsX!d is the Schwartz space defined onX!.

We also considerSsX! ;A`d, the space of functionsX!{p° fspdPA` such that for anyl,
mPN,

ifil,mª maxh sup
pPX!

ipas]bfdspdiA uuau ø l,ubu ø mj , `.

We remark that

SsX!;A`d , C`sJd ù F−1hL1sX;Adj.

Then we have the following evident statement.
Proposition 4.1: Suppose that the components of the magnetic field B belong toA`. Then

SsX! ;A`dR is a Poisson subalgebra ofPBsJd and a dense subset of the self-adjoint part of the
Abelian C* -algebraA ^ C0sX!d.

We can now state the following.
Theorem 4.2: sMain resultd Assume that the components of the magnetic field B belong toA`.

Then the family of injectionssSsX! ;A`dR�BA
" d"Pf0,1g is a strict deformation quantization (cf.

Definitions 1.2 and 1.5).
As seen in Sec. IV, one may say thatBA

" is a C* -algebra ofsmagneticd pseudodifferential
symbols and its represented versionsOpA

"sBA
" d,BsL2sXdd areC* -algebras of magnetic pseudod-

ifferential operators. It will be more convenient to work in the other realization, that of twisted
crossed products. There are two reasons.

s1d There exist results of Refs. 18 and 20 on continuous fields of twisted crossed products which
lead almost immediately to Rieffel’s condition.

s2d In the twisted crossed product formalism one disposes of the simple normi ·i1, which will be
very convenient in checking the axioms of von Neumann and Dirac. Thus we state now a
variant of Theorem 4.2; these two results are equivalent by the isomorphisms defined by the
partial Fourier transformation. We need first to rewrite the magnetic Poisson structure. On
SsX;Ad sobvious definitiond we set by transport of structure
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wL0c ª FfsF−1wdsF−1cdg andhw,cjB
ª FfhF−1w,F−1cjBg, w,c P SsX;Ad.

A simple direct calculation gives

swL0cdsq;xd =E
X

dy wsq;ydcsq;x − yd; s9d

L0 is pointwise multiplication in the first variable and convolution in the second. Slightly
more effort is needed to prove that

hw,cjB = − io
j=1

N

fsQj
s2dwdL0s] j

s1dcd − s] j
s1dwdL0sQj

s2dcdg − o
j ,k=1

N

Bjks·dsQj
s2dwdL0sQk

s2dcd,

s10d

wheresQj
s2drdsq;xdªxjrsq;xd and s] j

s1drdsq;xd=s] /]qjdrsq;xd.

Let us denote byC*sXd the groupC* -algebra ofX; it is the envelopingC* -algebra ofL1sXd,
the convolution Banach*-algebra ofX. It is isomorphic toC0sX!d by an extension of the Fourier
transformation; thus the spectrum ofC*sXd is homeomorphic toX!. Note that the twisted crossed

productCA
" =A’

u"
vB

"

X collapses toA ^ C*sXd for "=0.
Proposition 4.3: Suppose that the components of the magnetic field B belong toA`; then the

vector spaceSsX;A`dR=FfSsX! ;A`dgR is a Poisson algebra for the composition laws (9) and
(10). It is also dense in the self-adjoint part of the Abelian C* -algebraA ^ C*sXd.

The partial Fourier transformed version of our main result reads as follows.
Theorem 4.4: Assume that the components of the magnetic field B belong toA`; then the

family of injectionssSsX;A`dR� sCA
" dRd"Pf0,1g is a strict deformation quantization (cf. Definitions

1.2 and 1.5).
The completeness condition is obvious,SsX;A`d is dense insL1sX;Ad ,i ·i1d, L1sX;Ad is

dense insCA
" ,i ·i"d and one hasi ·i1ø i ·i". The conditions of Definition 1.5 are also clearly

satisfied. We still must verify the conditionssad, sbd, andscd of Definition 1.2. This will be done
in the next sections.

Remark:It would be in the spirit of many works in strict deformation quantization to consider
only the caseA=C0sXd. Since in this caseCC0sXd

" is isomorphic toKfL2sXdg, theC* -algebra of all
compact operators onL2sXd fcf. Ref. 14, Proposition 2.17sbdg, in fact one works with a field of
C* -algebras with two types of fibers:C0sJd for "=0 andKfL2sXdg for "Þ0. We think that both
the twisted crossed productCA

" and the pseudodifferential formalism are useful for arbitrary,
admissibleA. In Ref. 15 it is shown how to calculate the essential spectrum and how to get
localization results for generalized Schrödinger operators with anisotropic potentials and magnetic
fields. The anisotropy is taken into account by the abelian algebraA and exploiting the structure
of its spectrum is the key of the proofs.

Remark:Let us point out that if the spectrum ofA is compactsand that is always the case in
the applications to quantum Hamiltonians, where we expectA to have a unitd, then the compo-
nents of the magnetic fieldB being of typeA evidently imply that they are bounded and uniformly
continuous. Thus, in this case the requirement that the components ofB are of classA` fi.e., they
are of classC`sXd and together with all their derivatives admit continuous extensions to the
spectrum ofAg is rather optimal. If we allow the spectrum ofA to be noncompact, then we can
allow unbounded magnetic fields with components of classA but we must replaceA` with Ac

` the
subalgebra of elements ofA` that have compact supportswith respect to the spectrum ofAd.

An important technical ingredient in our proof relies on a result saying roughly that, under
certain conditions, the twisted crossed product of a group with the sectional algebra of aC* -bundle
is the sectional algebra of aC* -bundle of twisted crossed products. This can be found in Refs. 18
and 20; techniques of Refs. 3 and 21 are also relevant here. For us the most convenient reference
is Ref. 18, from which we quote slightly reformulated the definition and the result below.
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Definition 4.5:A continuousC* -bundleis a triple A =sI ,hA"j"PI ,G0sAdd, where I is a Haus-
dorff, locally compact space, A" is a C* -algebra with normi ·i" and G0sAd a C* -algebra of
sections such that

sid for any "P I, hFs"d uFPG0sAdj=A",
sii d for any FPG0sAd, the map"° iF"i" belongs to C0sId,
siii d G0sAd is a C0sId-module: if FPG0sAd and nPC0sId, then nF (defined pointwise) also

belongs toG0sAd.

In fact the arguments in Ref. 20 show that the separability condition in their definition of the
twisted crossed product is needed only in studying the structure of the group of cocycles. Thus, for
our developments of the functional calculus with magnetic fields, we can consider a slightly
general definition for twisted crossed products by eliminating the separability condition, and as the
proof in Ref. 18 is still valid, we have in fact the theorem cited below.

Theorem 4.6: fNielsen, 1996sRef. 18dg Let A be a continuous C*-bundle. . Let sU ,Vd be a
twisted action of an amenable, second countable locally compact group X onG0sAd by
C0sId-automorphisms. Then there exists a continuous C* -bundleC=sI ,hC"j"PI ,G0sCdd such that

sid for any "P I, C"=A"
’th

w"

X, where tx
" :X→AutsA"d, tx

"fFs"dgª fUxsFdgs"d, ∀xPX, ∀F
PG0sAd and w" :X3X→UMsA"d, w"sx,ydª fVsx,ydgs"d, ∀x,yPX,

sii d the mapfsxFds"dgsxd=fFsxdgs"d, ∀"P I, ∀xPX extends from CcsX;G0sAddto an isomor-
phism x :G0sAd’U

VX→G0sCd such that for everyFPL1sX;G0sAdd one has sxFds"d
PL1sX;A"d.

VI. RIEFFEL’S CONDITION

We are placed in the framework of Sec. IV. We start by constructing a twisted action on a large
C* -algebra, consisting of functions depending both on the variables"P f0,1g andqPX;RN. The
same strategy has been used in Ref. 2 for the rotation algebrasswhich are also twisted crossed
productsd in order to explore the regularity of the spectrum of certain finite-difference operators,
the parameter" being replaced there by the strength of asdiscreted magnetic field.

We consider first theC* -bundleA =sI ,hA"j"PI ,G0sAdd, whereIª f0,1g is compact,A"
ªA

sour admissibleC* -algebrad for all " andG0sAdªCsI ;Ad. One checks easily thatA is indeed a
continuousC* -bundle. Note that the Gelfand spectrum of theC* -algebraCsI ;Ad is homeomorphic
to I 3SA, whereSA is the spectrum ofA. Recalling the twisted actionshsu" ,vB

"d u"P Ij of Sec. IV,
one defines for all"P I, q,x, yPX andFPCsI ;Ad,

U:X → AutfCsI ;Adg, sUxFds"d ª ux
"fFs"dg, s11d

VB:X 3 X → CsI 3 SA;Td, fVBsx,ydgs",qd ª vB
"sq;x,yd. s12d

By using notations asfFs"dgsqd;Fs" ,qd fthe elements ofCsI ;Ad>CsI 3SAd may be seen as
functions on I 3Xg, s11d can be rewrittensUxFds" ,qd=Fs" ,q+"xd. The groupX=RN, being
Abelian, is amenable. Then it is easy to verify thatsCsI ;Ad ,U ,VB,Xd is a twistedC* -dynamical
system and thatUxsnFd=nUxsFd for all xPX, nPCsId andFPCsI ;Ad, as required by Theorem
4.6.

To apply Theorem 4.6, one must compute first the twisted actionshst" ,w"d u"P Ij associated to
sU ,VBd. It easily comes out thatt"=u" and w"=vB

"; just use the explicit formulas. Thus the
C* -algebrasC", the fibers of the continuousC* -bundle C, coincide srespectivelyd with the
C* -algebrasCA

" defined in Sec. IV. To show that the map"° iwi" is continuous for anyw
PA`(SsXd, by the axiomsii d of a continuousC* -bundle, one has just to prove that any element
wPSsX;A`d defines asconstantd section belonging toG0sCd. This is obvious even forw
PL1sX;Ad, since the isomorphismx just intertwines the variables" andx.
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VII. THE VON NEUMANN CONDITION

We have to show that, for fixedw, cPSsX;A`dR we have

lim
"→0

i 1
2swL"c + cL"wd − wL0ci" = 0.

The operationsL" and L0 are defined, respectively, ats6d and s9d. Taking into account that
i ·i"ø i ·i1 and by the triangle inequality, it is enough to prove

lim
"→0

iwL"c − wL0ci1 = 0. s13d

By standard arguments one can approach any function inL1sX;G0sAd, in L1-norm, with a con-
tinuous function with compact support, and show thatsusing the notations of Theorem 4.6d

xfL1sX;G0sAddg = CsI ;L1sX,Add.

For any functionwPL1sX;Ad let us denote byw+PCsI ;L1sX;Ad the constant functionw+s"d :
=w, ∀"P I and byw̃PL1sX;CsI ;Add the function taking constant valuesfw̃sxdgs"d : =wsxd, ∀"
P I. Let us also remark that any constant function inCsI ;L1sX;Add is of the formw+=xfw̃g for
somewPL1sX;Ad. We denote by# the product inG0sAd’U

VX and byL the product inG0sCd.
Then for fixedw, cPSsX;A`dR,L1sX;Ad, one has

fw+Lc+gs"d = xfw̃#c̃gs"d

and thus w+Lc+PCsI ;L1sX;Add. As a direct consequence, if we setCsw ,cd : =w+Lc+

−swL0cd+PCsI ;L1sX;Ad we get

lim
"→0

iCsw,cds"d − Csw,cds0di1 = 0.

But

Csw,cds0d = sw+Lc+ds0d − swL0cd+s0d = wL0c − wL0c = 0

so that

iwL"c − wL0ci" = iCsw,cds"di" ø iCsw,cds"di1 →
"→0

0

and thus we have got the von Neumann condition.
An alternative direct proof by elementary arguments can be given by studying the exponent of

the cocycle appearing in the definition ofL",

−
i

"
GBSKq −

"

2
x,q −

"

2
x + "y,q +

"

2
xLD = −

i

"
E

kq−s"/2dx,q−s"/2dx+"y,q+s"/2dxl
B.

Consider a parametrization for the trianglekq−s" /2dx,q−s" /2dx+"y,q+s" /2dxl,

Kq −
"

2
x,q −

"

2
x + "y,q +

"

2
xL = kq,sx,ydfD2g

whereD2: =hst ,sdPR2u0ø tø1,0øsø tj and

kq,sx,ydst,sd: = q −
"

2
x + t"y + s"sx − yd = q + Ss−

1

2
D"x + st − sd"y.

Thus, by denotinget andes the tangent vectors corresponding to the two coordinate functions of
R2, we have

052105-12 M. Măntoiu and R. Purice J. Math. Phys. 46, 052105 ~2005!

                                                                                                                                    



E
kfD2g

B =E
D2

k*B =E
0

1

dtE
0

t

dssk*Bdset,esd.

An obvious calculation gives

sk*Bdset,esd = o
j ,k

Bskq,sx,ydst,sdd
]k j

]t

]kk

]s

and thus we have

−
i

"
GBskq,sx,ydfD2gd = − i"o

j ,k
yjsx − ydkE

0

1

dtE
0

t

ds BjkFq + Ss−
1

2
D"x + st − sd"yG

¬ − i"VBsq,x,y;"d. s14d

Now let us come back tos13d and estimate

iwL"c − wL0ci1 ø E
X

dxE
X

dy sup
qPX
UwSq −

"

2
sx − yd;yDcSq +

"

2
y;x − yDe−i"VBsq,x,y;"d

− wsq;ydcsq;x − ydU . s15d

It is easy to see that the integral is bounded by the expression

2ssup
qPX

sup
yPX

kylmwsq;yddssup
qPX

sup
xPX

kxlmcsq;xddSEX

dxkxl−mD2

,

that is finite and not depending of" for any m.N. On the other hand, the integrand ins15d is
convergent pointwise to zero when" goes to 0, as can be seen after writing the inequality

sup
qPX
UwSq −

"

2
sx − yd;yDcSq +

"

2
y;x − yDe−i"VBsq,x,y;"d − wsq;ydcsq;x − ydU ø Ssup

qPX
UwSq −

"

2
sx

− yd;yD − wsq;ydUDSsup
qPX
UcSq +

"

2
y;x − yDUD + ssup

qPX
uwsq;ydudSsup

qPX
UcSq +

"

2
y;x − yD

− csq;x − ydUD + ssup
qPX

uwsq;ydcsq;x − ydudssup
qPX

ue−i"VBsq,x,y;"d − 1ud .

For the first two lines we use the fact thatw andc belong toSsX;A`d,BC`sX3Xd. For the third
one, the hypothesis that the components of the magnetic field are inA`,BC`sXd implies that for
any sx,ydPX2 we have supqPXuVBsq,x,y;"duøCsx,yd uniformly in ". Thus supqPXuexph−i"V
sq,x,y;"dj−1u converges to 0 for"→0.

VIII. THE DIRAC CONDITION

We need only to prove that the following convergence holds:

I 1

i"
swL"c − cL"wd − hw,cjBI

1
→

"→0
0. s16d

For that we shall need the exact form of the first order term in" of wL"c−cL"w. We use Taylor
developments
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wSq −
"

2
sx − yd;yD = wsq;yd −

"

2o
j=1

N

sxj − yjdE
0

1

dss] j
s1dwdSq − s

"

2
sx − yd;yD

and

cSq +
"

2
y;x − yD = csq;x − yd +

"

2o
j=1

N

yjE
0

1

dss] j
s1dcdSq + s

"

2
y;x − yD .

For rPSsX;A`d, zPX andsq,xdPX2 we shall use the notation¹s1dr for the gradient with respect
to the first variable inX3X and set

sLz
±rdsq;xd ª

1

2
z ·E

0

1

dss¹s1drdSq ± s
"

2
z;xD . s17d

Note that we have

lim
"→0

sLz
±wdsq;xd = 1

2z · s¹s1dwdsq;xd. s18d

Then the Taylor developments above read

wSq −
"

2
sx − yd;yD = wsq;yd − "sLx−y

− wdsq;yd

and

cSq +
"

2
y;x − yD = csq;x − yd + "sLy

+wdsq;x − yd.

Moreover, the assumption thatBjkPA`,BC`sXd implies that for anyx, yPX, the functionX
3 f0,1g{ sq,"d°VBsq,x,y;"dPR is bounded and uniformly continuous. Thus, if we denote

RBsq,x,y;"d ª
1

"
se−i"VBsq,x,y;"d − e−i"VBsq,x,y,0dd, s19d

we get lim"→0uRBsq,x,y;"du=0.
Setting everything together we obtain

swL"c − cL"wdsq;xd =E
X

dyfs1 − "Lx−y
− dwgsq;ydfs1 + "Ly

+dcgsq;x − ydfe−i"VBsq,x,y;0d

+ "RBsq,x,y;"dg −E
X

dyfs1 − "Lx−y
− dcgsq;ydfs1 + "Ly

+dwgsq;x − yd

3fe−i"VBsq,x,y;0d + "RBsq,x,y;"dg =E
X

dy wsq,ydcsq;x − ydfe−i"VBsq,x,y;0d

− e−i"VBsq,x,x−y;0dg + "E
X

dy wsq;ydfsLy
+ + Ly

−dcgsq;x − yd

− "E
X

dyfsLx−y
+ + Lx−y

− dwgsq;ydcsq;x − yd + os"d,

where for obtaining the second identity, we have changed an integration variable fromy to x−y.
By using s18d and some simple arguments we get
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swL"c − cL"wdsq;xd = − i"o
j ,k

BjksqdE
X

dy yjwsq;ydsx − ydkcsq;x − yd

+ "E
X

dyfywsq;yd · s¹s1dcdsq;x − yd − s¹s1dwdsq;yd · sx − ydcsq;x − ydg

+ os"d.

The result is now straightforward by the explicit form of the bracketh· , ·jB and of the composition
law L0.
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By means of complex representation and real representation of a quaternion matrix,
this paper studies the problem of diagonalization of a quaternion matrix, gives two
algebraic methods for diagonalization of quaternion matrices in quaternionic quan-
tum theory. ©2005 American Institute of Physics.fDOI: 10.1063/1.1896386g

I. INTRODUCTION

In the study of quaternionic quantum mechanics and quantum fields,1–3 the theory of diago-
nalization of quaternion matrices plays an important role. In practical calculation and applications
in quaternionic quantum theory, one meets a problem of finding a nonsingular quaternion matrix
S and reducing a quaternion matrixA to a diagonal matrix by a transformation of the formA
→S−1AS. Because of the noncommutation of quaternions and the standard complex mathematical
methods of resolution break down, the problem is more difficults. In Refs. 4 and 5, the authors
discussed the problem of diagonalization of quaternion matrices, and gave a practical rule for
diagonalization of quaternion matrices. In Ref. 6, by means of complex representation and com-
panion vector, we studied the problems the eigenvalues and eigenvectors for a quaternion matrix,
and derived an algorithm for the eigenvalues and eigenvectors for a quaternion matrix in quater-
nionic quantum theory. In this paper, by means of complex representation and real representation
of a quaternion matrix, we study the problem of diagonalization of a quaternion matrix in two
ways, give two algebraic methods for diagonalization of quaternion matrices in quaternionic
quantum theory.

Let R denote the real number field,C the complex number field,Q=R % Ri % R j % Rk the

quaternion field, wherei2= j2=k2=−1, i j =−ji =k. For any matrixA,AT andĀ denote the transpose
and conjugate ofA, respectively.Fm3n denotes the set ofm3n matrices on a fieldF. A,B means
that A is similar toB for A,BPCn3n.

II. COMPLEX REPRESENTATION OF A QUATERNION MATRIX

For any quaternion matrixA=B1+B2i +B3j +B4kPQm3n, i2= j2=k2=−1, i j =−ji =k, Bl

PRm3nsl =1,2,3,4d, A can be uniquely expressed asA=sB1+B2id+sB3+B4id j =A1+A2j , A1,A2

PCm3n. It is easy to verify that for anyAPCm3n, we haveAj= jĀ, and jĀ j =−A. Define

Af = F A1 A2

− Ā2 Ā1
G P C2m32n, s2.1d

the complex matrixAf is known as complex representation of the matrixA.

Let A, BPQm3n, CPQn3s, aPR, Pt=sI t 0

0 −I t
d, Qt=s0 −I t

I t 0 d, I t be t3 t identity matrix. Then

Pt
2= I2t, QtQt

T= I2t. By the definition of complex representation we easily get the following results:
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sA + Bd f = Af + Bf, saAd f = aAf , s2.2d

sACd f = AfCf , s2.3d

Af = Qm
TAfQn. s2.4d

For APQn3n, clearly bys2.3d the quaternion matrixA is nonsingular if and only if the complex
representationAf is nonsingular, andsA−1d f =sAfd−1.

For APQn3n andxPC2n31, if Afx=lx, then bys2.4d,

Āfx̄ = l̄x̄ ⇔ AfsQn
Tx̄d = l̄sQn

Tx̄d, s2.5d

clearly two vectorsx and Qn
Tx̄ are linearly independent. Therefore the following result comes

immediately froms2.5d.
Proposition 2.1:Let APQn3n. Then the complex eigenvalues of complex representationAf

appear in conjugate pairs.

III. COMPLEX REPRESENTATION METHOD

In this section, we derive a technique for diagonalization of a quaternion matrix by means of
complex representation in quaternionic quantum theory.

Let APQn3n, andAf be the complex representation of quaternion matrixA.
If A is a diagonalizable matrix, then there exists a nonsingular quaternion matrixS such that

AS=SJ, J=diagsl1,l2,… ,lnd, in which lt is an eigenvalue of quaternion matrixA. By Ref. 6,
Lemma 3.1 letlt=at+bti with real numberat ,bt and Imltù0, we have

AfSf = SfJf = SfFJ 0

0 J̄
G , s3.1d

therefore the complex representationAf is diagonalizable.
Conversely, if complex representationAf is diagonalizable, by Proposition 2.1 let all eigen-

values ofAf be l1,l̄1,l2,l̄2,… ,ln,l̄n ,in which Imltù0, t=1,2,… ,n, andT be a nonsingular
complex matrix such that

T−1AfT = FJ 0

0 J̄
G = Jf ⇔ AfT = TJf , s3.2d

whereJ=diagsl1,l2,… ,lnd. By s2.4d, the equations3.2d is equivalent to

ĀfT̄ = T̄J̄f ⇔ AfsQn
TT̄Qnd = sQn

TT̄QndJf . s3.3d

Combines3.2d and s3.3d there exists a nonzero matrixT̂ such that

AfT̂ = T̂Jf , s3.4d

whereT̂= 1
2sT+Qn

TT̄Qnd. Let

T = FT11 T12

T21 T22
G , s3.5d

whereTklPCn3n. It is easy to get by direct calculation
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T̂ =F T̂1 T̂2

− T̂2 T̂1

G , s3.6d

where

T̂1 = 1
2sT11 + T̄22d, T̂2 = 1

2sT12 − T̄21d. s3.7d

From s3.6d construct a quaternion matrix

S= T̂1 + T̂2j =
1

2
sIn,− jI ndT̂F In

jI n
G . s3.8d

Clearly Sf =T̂. Therefores3.4d is equivalent to

AfSf = SfJf ⇔ AS= SJ. s3.9d

Finally for any two complex numbersk1,k2, since

F T̂1 T̂2

− T̂2 T̂1

GFk1

k2
G = 0 ⇔ Fk1 k2

k̄2 − k̄1
GFT̂1

T̂2

G = 0. s3.10d

Clearly if sk1,k2dÞ s0,0d, then the equations3.10d has only zero solution,T̂1=0, T̂2=0, i.e., T̂

=0, a contradiction. Therefore nonzeroT̂ is nonsingular complex matrix, and fromSf =T̂ we know
that S is nonsingular quaternion matrix.

From the statement above we get the following result.
Theorem 3.1:Let APQn3n. ThenA is a diagonalizable quaternion matrix if and only ifAf is

a diagonalizable complex matrix, in which case, ifAf is a diagonalizable matrix and let all

eigenvalues ofAf be l1,l̄1,l2,l̄2,… ,ln,l̄n, in which Imltù0, t=1,2,… ,n, andT be a nons-
ingular matrix such that

T−1AfT = FJ 0

0 J̄
G = Jf ⇔ AfT = TJf ,

whereJ=diagsl1,l2,… ,lnd. Let

S=
1

4
sIn,− jI ndsT + Qn

−1T̄QndF In

jI n
G . s3.11d

ThenS is a nonsingular quaternion matrix andS−1AS=diagsl1,l2,… ,lnd.
The proof of Theorem 3.1 is constructive. Theorem 3.1 turns the problem of diagonalization

of a quaternion matrix into that of corresponding complex representation matrix by means of
complex representation of a quaternion matrix. When a quaternion matrix is a diagonalizable
matrix, it gives a formula algorithm for the diagonalization of the quaternion matrix by the
formula s3.11d.

Example:Let

A = 3 2i − 2j j + k

− k 2 − 1

− j 1 − i 1
4 .

Is quaternion matrixA a diagonalizable matrix? IfA is a diagonalizable matrix, then find a
nonsingular quaternion matrixS such thatS−1AS is a diagonal matrix.

Solution: It is easy to get bys2.1d that the complex representationAf of quaternion
matrix A is
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Af = 3
2i 0 0 0 − 2 1 + i

0 2 − 1 − i 0 0

0 1 − i 1 − 1 0 0

0 2 − 1 + i − 2i 0 0

− i 0 0 0 2 − 1

1 0 0 0 1 + i 1

4 ,

and uxI2n−Afu=sx−1d2sx−1−id2sx−1+id2. Therefore the eigenvaluesl of Af are 1, 1, 1+i, 1+i,
1−i, 1−i.

For l=1, find two corresponding linearly independent eigenvectors by solving equation
slI6−Afdx=0, a1=s1+i ,0 ,0 ,0,−1,−idT, a2=s0,1,−i ,1−i ,0 ,0dT; for l=1+i, find two corre-
sponding linearly independent eigenvectorsa3=si ,0 ,0 ,0,−1,idT, a4=si ,0 ,0 ,0,0,1dT; and forl
=1−i, a5=s0,1,i ,−i ,0 ,0dT, a6=s0,0,−1,−i ,0 ,0dT are corresponding linearly independent eigen-
vectors.

Let T=sa1,a3,a4,a2,a5,a6d. ThenT is a nonsingular matrix and

T−1AfT = diagsJ,J̄d = Jf ,

whereJ=diags1,1+i ,1+id. ThereforeAf is diagonalizable, and then by Theorem 3.1A is diago-
nalizable. Construct a quaternion matrixS by s3.11d,

S=
1

4
sI3,− jI 3dsT + Q3

TT̄Q3dF I3

jI 3
G = 31 + i i i

j j 0

− k k − j
4 ,

thenS is a nonsingular quaternion matrix and such that

S−1AS= diags1,1 +i,1 + id.

IV. REAL REPRESENTATION OF A QUATERNION MATRIX

For any quaternion matrixA=A1+A2i +A3j +A4kPQm3n, Al PRm3nsl =1,2,3,4d, define

Af = 3
A1 − A2 − A3 − A4

A2 A1 − A4 A3

A3 A4 A1 − A2

A4 − A3 A2 A1

4 P R4m34n, s4.1d

the real matrixAf is known as real representation of the quaternion matrixA.
Let

Pt = 3
I t 0 0 0

0 − I t 0 0

0 0 I t 0

0 0 0 − I t

4, Qt = 3
0 − I t 0 0

I t 0 0 0

0 0 0 I t

0 0 − I t 0
4 ,

Rt = 3
0 0 0 − I t

0 0 I t 0

0 − I t 0 0

I t 0 0 0
4, St = 3

0 0 − I t 0

0 0 0 − I t

I t 0 0 0

0 I t 0 0
4 .

ThenPt ,Qt ,Rt ,St are unitary matrices, and
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Qt
2 = Rt

2 = St
2 = QtRtSt = − 1. s4.2d

Let A,BPQm3n, CPQn3s, aPR. By the definition of real representation we easily get the
following results:

sA + Bd f = Af + Bf,saAd f = aAf , s4.3d

sACd f = AfCf , s4.4d

Qm
TAfQn = Af , s4.5d

Rm
TAfRn = Af , s4.6d

Sm
TAfSn = Af . s4.7d

Clearly, from s4.4d we know that the quaternion matrixA is nonsingular if and only if real
representation matrixAf is nonsingular, andsA−1d f =sAfd−1.

For APQn3n andxPC4n31, if Afx=lx, then bys4.5d–s4.7d we have

AfsQn
Txd = lsQn

Txd, AfsRn
Txd = lsRn

Txd, AfsSn
Txd = lsSn

Txd. s4.8d

On the one hand, letl be a real number, we may choosexPR4n31, and froms4.8d we easily
verify thatx ,Qn

Tx ,Rn
Tx ,Sn

Tx are linearly independent. This means that real eigenvalues ofAf appear
in fours. On the other hand, letl be an imaginary number. If there exist three complex numbers
k1,k2,k3 such that x=k1Qn

Tx=k2Rn
Tx=k3Sn

Tx, then by s4.2d we easily know thatk1
2=k2

2=k3
2

=k1k2k3=−1, this is a contradiction. Without loss generality suppose thatx ,Qn
Tx are linearly

independent, and clearlyx ,Qn
Tx̄ are also linearly independent, bys4.5d we have

Afx = lx, AfsQn
Txd = lsQn

Txd, s4.9d

Afx = lx, AfsQn
Tx̄d = l̄sQn

Tx̄d. s4.10d

Therefores4.9d ands4.10d mean that the imaginary eigenvalues of real representationAf appear in
pairs and in conjugate pairs.

Form the statement above we obtain the following result.
Proposition 4.1:Let APQn3n. Then the real eigenvalues of real representationAf appear in

fours; the imaginary eigenvalues of real representationAf appear in pairs and in conjugate pairs. In
other words, the complex eigenvalues of real representationAf appear in double conjugate pairs,
i.e., the complex eigenvalues of the 4n34n real matrixAf appear in the form

l1,l1,l2,l2,…,ln,ln,

l̄1,l̄1,l̄2,l̄2,…,l̄n,l̄n.

V. REAL REPRESENTATION METHOD

In this section, we discuss an analogue of technique for diagonalization of a quaternion matrix
by means of real representation in quaternionic quantum theory.

For APQn3n, if A is a diagonalizable matrix, there exists a nonsingular quaternion matrixS
such that
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S−1AS= diagsl1,l2,…,lnd, s5.1d

in which lt is an eigenvalue of quaternion matrixA, t=1,2,… ,n. By Ref. 6, Lemma 3.1 we may
let lt=at+bti with Im ltù0. Let J=diagsl1,l2,… ,lnd=J1+J2i, in which J1=diagsa1,a2,… ,and
andJ2=diagsb1,b2,… ,bnd. Then

sSfd−1AfSf = Jf = 3
J1 − J2 0 0

J2 J1 0 0

0 0 J1 − J2

0 0 J2 J1

4 . s5.2d

Therefore by the fact that

F 1 1

− i i
G−1Fat − bt

bt at
GF 1 1

− i i
G = Fat + bti 0

0 at − bti
G

we have

Af , Jf ,3
a1 − b1 0

b1 a1

�

an − bn

0 bn an

4 % 3
a1 − b1 0

b1 a1

�

an − bn

0 bn an

4 ,3
l1 0 0

0 l̄1

�

ln 0

0 0 l̄n

4
% 3

l1 0 0

0 l̄1

�

ln 0

0 0 l̄n

4 . s5.3d

That is the real representationAf is diagonalizable.
Conversely, if real representationAf is diagonalizable, by Proposition 4.1,s5.2d ands5.3d there

exists a nonsingular complex matrixT such that

T−1AfT = Jf ⇔ AfT = TJf , s5.4d

whereJ=diagsl1,l2,… ,lnd, andlt=at+bti with Im ltù0, t=1,2,… ,n.
Let

T = 3
T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

4 , s5.5d

whereTklPCn3n. By s4.5d–s4.7d and s5.4d we have

AfT̄ = T̄Jf ,

AfsQn
TT̄Qnd = sQn

TT̄QndJf ,

AfsRn
TT̄Rnd = sRn

TT̄RndJf ,
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AfsSn
TT̄Snd = sSn

TT̄SndJf , s5.6d

let T̂= 1
4sT̄+Qn

TT̄Qn+Rn
TT̄Rn+Sn

TT̄Snd, then clearlyT̂ is nonzero complex matrix and with

AfT̂ = T̂Jf . s5.7d

It is easy to get by direct calculation

T̂ = 3
T̂1 − T̂2 − T̂3 − T̂4

T̂2 T̂1 − T̂4 T̂3

T̂3 T̂4 T̂1 − T̂2

T̂4 − T̂3 T̂2 T̂1

4 , s5.8d

where

T̂1 = 1
4sT̄11 + T̄22 + T̄44 + T̄33d, T̂2 = 1

4sT̄21 − T̄12 − T̄34 + T̄43d,

T̂3 = 1
4sT̄31 − T̄42 + T̄24 − T̄13d, T̂4 = 1

4sT̄41 + T̄32 − T̄14 − T̄23d.

From s5.8d construct a quaternion matrix,

S= T̂1 + T̂2i + T̂3j + T̂4k =
1

4
sIn,iI n, jI n,kIndT̂3

In

− iI n

− jI n

− kIn
4 . s5.9d

ClearlySf =T̂, and bys4.4d ands5.7d we haveAS=SJ. Similarly in Sec. III, we can also prove that
S is nonsingular quaternion matrix, thereforeA is a diagonalizable matrix.

The following result comes immediately from the statement above.
Theorem 5.1:Let APQn3n. ThenA is a diagonalizable quaternion matrix if and only if real

representationAf is a diagonalizable real matrix, in which case, ifAf is a diagonalizable matrix
and let complex eigenvalues of the 4n34n real matrixAf are in the form

l1,l1,l2,l2,…,ln,ln,

l̄1,l̄1,l̄2,l̄2,…,l̄n,l̄n,

where Imltù0, t=1,2,… ,n. Then

Af ,3
l1 0 0

0 l̄1

�

ln 0

0 0 l̄n

4 % 3
l1 0 0

0 l̄1

�

ln 0

0 0 l̄n

4 , Jf ,

whereJ=diagsl1,l2,… ,lnd. Let T be a nonsingular complex matrix such that

T−1AfT = Jf ⇔ AfT = TJf .

Construct a quaternion matrix
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S=
1

16
sIn,iI n, jI n,kIndsT̄ + Qn

TT̄Qn + Rn
TT̄Rn + Sn

TT̄Snd3
In

− iI n

− jI n

− kIn
4 . s5.10d

ThenS is nonsingular andS−1AS=diagsl1,l2,… ,lnd.
The proof of Theorem 5.2 is also constructive. Theorem 5.2 turns the problem of diagonal-

ization of a quaternion matrix into that of corresponding real representation matrix by means of
real representation of a quaternion matrix. When a quaternion matrix is a diagonalizable matrix, it
gives a formula algorithm for the diagonalization of the quaternion matrix by the formulas5.10d.
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We describe the structure of the extended Clifford groupfdefined to be the group
consisting of all operators, unitary and antiunitary, which normalize the generalized
Pauli groupsor Weyl–Heisenberg group as it is often calleddg. We also obtain a
number of results concerning the structure of the Clifford group propersi.e., the
group consisting just of the unitary operators which normalize the generalized Pauli
groupd. We then investigate the action of the extended Clifford group operators on
symmetric informationally complete–positive operator valued measuressor SIC–
POVMsd covariant relative to the action of the generalized Pauli group. We show
that each of the fiducial vectors which has been constructed so farsincluding all the
vectors constructed numerically by Reneset al.d is an eigenvector of one of a
special class of order 3 Clifford unitaries. This suggests a strengthening of a con-
jecture of Zauner’s. We give a complete characterization of the orbits and stability
groups in dimensions 2–7. Finally, we show that the problem of constructing fidu-
cial vectors may be expected to simplify in the infinite sequence of dimensions
7,13,19,21,31,… . We illustrate this point by constructing exact expressions for
fiducial vectors in dimensions 7 and 19. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1896384g

I. INTRODUCTION

The statistics of an arbitrary quantum measurement are described by a positive operator
valued measure, or POVMsDavies,1 Buschet al.,2 Peres,3 Nielsen and Chuang4 and references
cited thereind. Suppose the measurement has only a finite number of distinct outcomes. Then the

corresponding POVM assigns to each outcomei the positive operatorÊi with the property that

TrsÊir̂d is the probability of obtaining outcomei swhere r̂ is the density operatord. Since

SiTrsÊir̂d=1 for all r̂ we must haveSiÊi =1.

A POVM is said to beinformationally completeif the probabilities TrsÊir̂d uniquely deter-
mine the density operatorr̂. The concept of informational completeness is originally due to
Prugovečki5 salso see Busch,6 Buschet al.,2 d’Ariano et al.,7 Flammiaet al.,8 Finkelstein,9 and
references cited thereind. It has an obvious relevance to the problem of quantum state determina-
tion. It also plays an important role in the Caveset al.10–13Bayesian approach to the interpretation
of quantum mechanics, and in Hardy’s14,15 proposed axiomatization.

Suppose the Hilbert space has finite dimensiond. Then it is easily seen that an informationally

complete POVM must contain at leastd2 distinct operatorsÊi. An informationally complete
POVM is said to besymmetric informationally completesor SICd if it contains exactly this
minimal number of distinct operators and if, in addition,

s1d lÊi is a one-dimensional projector for alli and some fixed constantl,
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s2d the overlap TrsÊiÊjd is the same for every pair of distinct labelsi , j .

It is straightforward to show that this is equivalent to the requirement that, for eachi,

Êi =
1

d
ucilkciu, s1d

where thed2 vectorsucil satisfy

ukciuc jlu = 51, i = j ,

1
Îd + 1

, i Þ j .6 s2d

SIC–POVMs were introduced in a dissertation by Zauner,16 and in Reneset al.17 Wootters,18

Bengtsson and Ericsson,19,20 and Grassl21 have made further contributions. There appear to be
some intimate connections with the theory of mutually unbiased bases,18,22,23 finite affine
planes,18–20 and polytopes.19,20

If SIC–POVMs existed in every finite dimensionsor, failing that, in a sufficiently large set of
finite dimensionsd they would constitute a naturally distinguished class of POVMs which might be
expected to have many interesting applications to quantum tomography, cryptography, and infor-
mation theory generally. They would also be obvious candidates for the “fiducial” or “standard”
POVMs featuring in the work of Fuchs13 and Hardy.14,15

The question consequently arises, is it in fact true that SIC–POVMs exist in every finite
dimension? The answer to this question is still unknown. Analytic solutions to Eqs.s2d have been
constructed in dimensions 2, 3, 4, 5, 6, and 8. Moreover Reneset al.17 have constructed numerical
solutions in dimensions 5 to 45sthe actual vectors can be downloaded from their website24d. So
one may plausibly speculate that SIC–POVMs exist in every finite dimension. But it has not been
proved.

With one exception, the SIC–POVMs which have so far been explicitly described in the
literature are all covariant under the action of the generalized Pauli groupsor Weyl–Heisenberg
group, as it is often calledd. sThe exception being the solution in dimension 8 described in
Zauner’s thesis.16 Reneset al.17 also mention that they have constructed numerical solutions which
are covariant under the action of other groups, but they do not give any details.d It is therefore
natural to investigate their behavior under the action of the extended Clifford group. The Clifford
group proper is defined to be the normalizer of the generalized Pauli group, considered as a
subgroup of Usdd sthe group consisting of all unitary operators in dimensiondd. It is relevant to a
number of areas of quantum information theory, and it has been extensively discussed in the
literature.25–31 Its relevance to the SIC–POVM problem has been stressed by Grassl.21 As Grassl
notes, it is related to the Jacobi group,32 which has attracted some notice in the pure mathematical
literature. We define the extended Clifford group to be the group which results when the Clifford
group is enlarged, so as to include allantiunitary operators which normalize the generalized Pauli
group. As we will see, this enlargement is essential if one wants to achieve a full understanding of
the SIC–POVM problem.

In Secs. II–IV we give a self-contained account of the structure of the extended Clifford
group. In the course of this discussion we obtain a number of results concerning the structure of
the Clifford group proper which, to the best of our knowledge, have not previously appeared in the
literature and which may be of some independent interest.

In Sec. V we define and establish some of the properties of a function we call the Clifford
trace. We also identify a distinguished class of order 3 Clifford unitaries for which the
Clifford trace=−1. We refer to these ascanonicalorder 3 unitaries.

In Sec. VI we analyze the vectors constructed numerically by Reneset al.17 sRBSC in the
sequeld in dimension 5–45. We show that each of them is an eigenvector of a canonical order 3
Clifford unitary. This suggests the conjecture, thateveryGP fiducial vector is an eigenvector of a
canonical order 3 unitary. We also show that, with one exception, the stability group of each RBSC

052107-2 D. M. Appleby J. Math. Phys. 46, 052107 ~2005!

                                                                                                                                    



vector is order 3sthe exception being dimension 7, where the stability group is order 6d.
In Sec. VII we show that RBSC’s results also support a strengthened version of a conjecture

of Zauner’s16 salso see Grassl21d.
In Sec. VIII we use RBSC’s numerical data, regarding the total number of fiducial vectors in

dimensions 2–7, to give a complete characterization of the orbits and stability groups in dimen-
sions 2–7. Our results show that in each of these dimensionseveryfiducial vector covariant under
the action of the generalized Pauli group is an eigenvector of a canonical order 3 Clifford unitary.
We also identify the total number of distinct orbits. It was already known16,17,21 that there are
infinitely many orbits in dimension 3, and one orbit in dimensions 2 and 6. We show that there is,
likewise, only one orbit in dimensions 4 and 5, but two distinct orbits in dimension 7. We also
construct exact expressions for two fiducial vectors in dimension 7sone on each of the two distinct
orbitsd.

RBSC’s numerical data may suggest that, after dimension 7, the stability group of every
fiducial vector has order 3. In Sec. IX we show that there is at least one exception to that putative
rule by constructing an exact expression for a fiducial vector in dimension 19 for which the
stability group has orderù18.

Our construction of exact solutions in dimensions 7 and 19 was facilitated by the fact that in
these dimensions there exist canonical order 3 unitaries having a particularly simple form. In Sec.
X we show that a similar simplification occurs in every dimensiond for which sad d has at least
one prime factor=1smod 3d, sbd d has no prime factors=2smod 3d, andscd d is not divisible by 9.
In other words, it happens whend=7,13,19,21,31,… .

II. FIDUCIAL VECTORS FOR THE GENERALIZED PAULI GROUP

The SIC–POVMs which have been constructed to date all have a certain group covariance
property. LetG be a finite group havingd2 elements, and suppose we have an injective mapg

→ Ûg which associates to eachgPG a unitary operatorÛg acting ond-dimensional Hilbert space.
Suppose that for allg,g8,

ÛgÛg8 = eijgg8Ûgg8, s3d

whereeijgg8 is a phasefso the map defines a group homomorphism ofG into the quotient group
Usdd /Ucsdd, where Ucsdd is the center of Usddg. sIn other words it defines a projective represen-
tation of the groupG. Such representations also play an important role in the theory of “nice” error
bases.33–35d Finally sand this, of course, is the difficult partd suppose we can find a vectorucl
PCd such thatkc ucl=1 and

ukcuÛguclu =
1

Îd + 1
s4d

for all gÞe se being the identity ofGd. Then the assignment

Êg =
1

d
ÛguclkcuÛg

† s5d

defines a SIC–POVM onCd. The vectorucl is said to be afiducial vector.
To date attention has been largely focussed on the caseG=sZdd2, whereZd is the set of

integers 0,1,…, d−1 under additionmodulo dsalthough there is numerical evidence that fiducial
vectors exist for other choices of group17d. That is also the case on which we will focus here.

To construct a suitable mapsZdd2→Usdd, let ue0l , ue1l ,…ued−1l be an orthonormal basis forCd,

and letT̂ be the operator defined by

T̂uerl = vruerl, s6d

wherev=e2pi/d. Let Ŝ be the shift operator
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Ŝuerl = Huer+1l r = 0,1,…,d − 2,

ue0l r = d − 1.
J s7d

Then define, for each pair of integersp=sp1,p2dPZ2,

D̂p = tp1p2Ŝp1T̂p2, s8d

where t=−epi/d sthe minus sign means thattd2
=1 for all d, thereby simplifying some of the

formulas needed in the sequeld. We have, for allp ,qPZ2,

D̂p
† = D̂−p, s9d

D̂pD̂q = tkp,qlD̂p+q, s10d

and

D̂p+dq =HD̂p if d is odd,

s− 1dkp,qlD̂p if d is even,
J s11d

wherekp ,ql is the symplectic form

kp,ql = p2q1 − p1q2. s12d

Consequently the mappP sZdd2→ D̂pPUsdd has all the required properties. The operatorsD̂p are
sometimes called generalized Pauli matrices. So we will say that a vectoruclPCd is a generalized
Pauli fiducial vector, orGP fiducial vectorfor short, if it is a fiducial vector relative to the action
of these operators, i.e., ifkc ucl=1 and

ukcuD̂puclu =
1

Îd + 1
s13d

for everypPZ2Þ0smoddd.
The set of operatorsD̂p is not a group. However, it becomes a group if we allow eachD̂p to

be multiplied by an arbitrary phase. We will refer to the group GPsdd=heijD̂p :jPR ,pPZ2j so
obtained as the generalized Pauli group.(Also known as the Weyl–Heisenberg group. Our defi-

nition is, perhaps, slightly unconventional. It would be more usual to define GPsdd=htnD̂p :n

PZ ,pPZ2j—i.e., the subgroup generated by the operatorsD̂p. It appears to us that our definition,
and our corresponding definition of the group Csdd ssee belowd, make the analysissslightlyd
simpler. It will be observed that on our definitions GPsdd and Csdd are both infinite. For some
purposes this might be considered a disadvantage. However, in this paper we are really only
interested in the groups which result when the phases are factored out. Consequently, it makes no
important difference whether one adopts our definitionsfon which GPsdd and Csdd are infiniteg or
the more conventional definitionsson which they are finited.)

We now want to investigate the normalizer of GPsdd, i.e., the group Csdd consisting of all

unitary operatorsÛPUsdd with the property

Û GPsddÛ† = GPsdd. s14d

The significance of this group for us is that it generates automorphisms of GPsdd according to the
prescription

P̂ → ÛP̂Û†. s15d

Consequently, ifucl is a GP fiducial vector, then so isÛucl for everyÛPCsdd.
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The group Csdd is known as the Clifford group, and has been extensively discussed in the
literature.25–31 Its relevance to the SIC–POVM problem has been stressed by Grassl.21 However,
none of these accounts derive all the results needed for our analysis of the RBSC vectors. In the
interests of readability we give a unified treatment in the next section.

III. THE CLIFFORD GROUP: STRUCTURE, AND CALCULATION OF THE UNITARIES

We begin with some definitions. Let

d̄ = Hd if d is odd,

2d if d is even.
J s16d

Let SLs2,Zd̄d be the group consisting of all 232 matrices,

Sa b

g d
D , s17d

such thata ,b ,g ,dPZd̄ andad−bg=1 smodd̄d. Note that inverses exist in this group because the

conditionad−bg=1 smodd̄d implies

Sa b

g d
DS d − b

− g a
D = S1 0

0 1
D s18d

in arithmeticmodulo d̄.
We then have the following.

Lemma 1: For each unitary operator Uˆ PCsdd there exists a matrix FPSLs2,Zd̄d and a
vectorxP sZdd2 such that

ÛD̂pÛ† = vkx,FplD̂Fp s19d

for all pPZ2 (wherev=t2=e2pi/d, as before).

Proof: If ÛPCsdd it is immediate that there exist functionsf andg such that

ÛD̂pÛ† = eigspdD̂fspd s20d

for all pPZ2. It follows from Eq. s10d that

seigspdD̂fspddseigsqdD̂fsqdd = tkp,qlseigsp+qdD̂fsp+qdd s21d

for all p ,qPZ2. Consequently

eisgspd+gsqddtkfspd,fsqdlD̂fspd+fsqd = eigsp+qdtkp,qlD̂fsp+qd s22d

which implies fsp+qd= fspd+ fsqdsmoddd. We may therefore write

fspd = F8p + dhspd s23d

for some matrixF8 and functionh. Inserting this expression in Eq.s20d gives, in view of Eq.s11d,

ÛD̂pÛ† = eigspdD̂F8p+dhspd =HeigspdD̂F8p, d odd

eigspds− 1dkp,hspdlD̂F8p, d even.
J s24d

With the appropriate definition ofg8 this means
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ÛD̂pÛ† = eig8spdD̂F8p s25d

for all p. Repeating the argument which led to Eq.s22d we find

eig8sp+qd−g8spd−g8sqdtkp,ql−kF8p,F8ql = 1. s26d

Interchangingp andq gives

eig8sp+qd−g8spd−g8sqdt−kp,ql+kF8p,F8ql = 1, s27d

We consequently require

vkp,ql−kF8p,F8ql = t2skp,ql−kF8p,F8qld = 1 s28d

for all p ,q. It is readily verified thatkF8p ,F8ql=sDetF8dkp ,ql. We must therefore have

DetF8 = 1smoddd. s29d

If d is odd, or if d is even and DetF8=1smodd̄d, we can find a matrixFPSLs2,Zd̄d such that

F=F8smodd̄d. It then follows from Eq.s11d that D̂Fp=D̂F8p for all p.

Suppose, on the other hand,d is even and DetF8Þ1smodd̄d. Then DetF8=d+1smodd̄d.
Write

F8 = Sa b

g d
D . s30d

We knowad−bg=DetF8 is odd. So eithera ,d are both odd, or elseb ,g are both odd. Ifa ,d are
both odd let

D = S1 0

0 0
D s31d

while if b ,g are both odd let

D = S0 1

0 0
D . s32d

Then DetsF8+dDd=1smodd̄d. We can therefore choose a matrixFPSLs2,Zd̄d such thatF=F8

+dDsmodd̄d. Inserting this expression in Eq.s25d we have, in view of Eq.s11d,

ÛD̂pÛ† = eig8spdD̂sF−dDdp = eig8spds− 1dkFp,DplD̂Fp. s33d

We conclude that there is, in every case, a functiong9 and a matrixFPSLs2,Zd̄d such that

ÛD̂pÛ† = eig9spdD̂Fp s34d

for all p.
It remains to establish the form of the functiong9. We note, first of all, that it follows from

Eqs.s8d and s10d that

sD̂pdd = D̂dp = td2p1p2Ŝdp1T̂dp2 = 1 s35d

for all p sbecauseŜd=T̂d=td2
=1d. Consequently,
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1 = ÛsD̂pddÛ† = sÛD̂pÛ†dd = ei dg9spdsD̂Fpdd = ei dg9spd s36d

for all p. We must therefore haveeig9spd=vg̃spd for some functiong̃ taking values inZd. Repeating
the argument which led to Eq.s26d we find

vg̃sp+qd−g̃spd−g̃sqdtkp,ql−kFp,Fql = 1. s37d

We havekp ,ql−kFp ,Fql=s1−DetFdkp ,ql=0 smodd̄d. Consequently,tkp,ql−kFp ,Fql8=1 sbecause

td̄=1d and so

g̃sp + qd = g̃spd + g̃sqdsmoddd s38d

for all p ,q. This impliesg̃spd=kx8 ,pl smoddd for all p some fixedx8P sZdd2. Settingx=Fx8,
and using the fact thatkF−1x ,pl=kx ,Fpl smoddd we conclude

ÛD̂pÛ† = vkx,FplD̂Fp s39d

for all p. h

We now want to prove the converse of Lemma 1. That is, we want to prove that, for each pair

FPSLs2,Zd̄d andxP sZdd2 there is a corresponding operatorÛPCsdd. We also want to derive an

explicit expression for the operatorÛ sthis has, in effect, already been done by Hostenset al.;29

however, the formulas we derive are different, and better adapted to the questions addressed in this
paperd.

We begin by focussing on a special class of matricesF. Let fn1,n2,… ,nrg denote the GCD
sgreatest common divisord of the integersn1,n2,… ,nr. We define the class ofprime matricesto be
the set of all matrices

F = Sa b

g d
D s40d

PSLs2,Zd̄d such thatfb ,d̄g=1 sso thatb has a multiplicative inverse inZd̄d. We then have the
following.

Lemma 2: Let

F = Sa b

g d
D s41d

be a prime matrixPSLs2,Zd̄d. Let

V̂F =
1
Îd

o
r,s=0

d−1

tb−1sas2−2rs+dr2duerlkesu s42d

[where b−1PZd̄ is such thatb−1b=1 smod d̄d]. Then V̂F is a unitary operatorPCsdd such that

V̂FD̂pV̂F
† = D̂Fp s43d

for all p.
Proof: Let

Ŝ8 = D̂sa,gd andT̂8 = D̂sb,dd. s44d

We proceed by constructing a complete set of eigenvectors forT̂8. It turns out thatŜ8 is the shift

operator for these eigenvectors. It is then straightforward to verify thatV̂F has the stated property.
Define
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uf0l =
1
Îd

o
r=0

d−1

sT̂8drue0l. s45d

It follows from Eq. s35d that sT̂8dd=1. Consequently

T̂8uf0l = uf0l. s46d

It follows from Eq. s10d that T̂8Ŝ8=vŜ8T̂8. So we can obtain a complete set of eigenvectors by
laddering. Specifically, let

uf rl = sŜ8druf0l s47d

for r =1,… ,d−1. Then

T̂8uf rl = vruf rl s48d

for all r. SincesŜ8dd=1 fas follows from Eq.s35dg we also have

Ŝ8uf rl = uf r %d1l s49d

for all r swhere%d signifies additionmodulo dd.
We next show that the vectorsuf rl are orthonormal. It follows from Eqs.s6d–s8d ands10d that

sT̂8drue0l = D̂srb,rddue0l = tbdr2
Ŝbrue0l s50d

and consequently

uf0l = S 1
Îd

o
r=0

d−1

tbdr2
ŜbrDue0l = S 1

Îd
o
r=0

d−1

tb−1dsbrd2ŜbrDue0l s51d

swhere we have used the fact thattd̄=1d. We need to be careful at this point, due to the fact that

congruencemodulo dneed not imply congruencemodulo d̄. Let qr be the quotient ofbr on
division by d, and lettr be the remainder. Sobr =qrd+ tr and

uf0l = S 1
Îd

o
r=0

d−1

tb−1dsqrd + trd
2
Ŝqrd+trDue0l. s52d

We have

Ŝqrd+tr = Ŝtr s53d

and

tb−1dsqrd + trd
2
= tb−1dstr

2+2dqrtr+d2tr
2d = tb−1dtr

2
s54d

sbecauset2d=td2
=1d. Consequently

uf0l = S 1
Îd

o
r=0

d−1

tb−1dtr
2
ŜtrDue0l =

1
Îd

o
r=0

d−1

tb−1dtr
2
uetr

l. s55d

The fact that fb ,d̄g=1 implies that fb ,dg=1. It follows that, asr runs over the integers
0,1,… ,d−1, so doestr sthough not necessarily in the same orderd. Consequently
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uf0l =
1
Îd

o
t=0

d−1

tb−1dt2uetl. s56d

It follows that

kf ruf rl = kf0usŜ8d−rsŜ8druf0l = kf0uf0l = 1. s57d

The fact thatkf r u fsl=0 when r Þs is an immediate consequence of the fact thatuf rl , ufsl are

eigenvectors ofT̂8 corresponding to different eigenvalues. We conclude that

kf rufsl = drs s58d

as claimed.
We now want to calculate an explicit formula foruf rl when r .0. It follows from previous

results that

uf rl = D̂ra,rguf0l =
1
Îd

o
t=0

d−1

tb−1dt2+agr2+2grtsŜdrauetl. s59d

By an argument similar to the one leading to Eq.s56d we deduce

uf rl =
1
Îd

o
t=0

d−1

tb−1dst − ard2+agr2+2grst−arduetl s60d

=
1
Îd

o
t=0

d−1

tb−1sdt2−2rt+ar2duetl s61d

fsincead−bg=1 smodd̄dg. Comparing with Eq.s42d we see that

V̂F = o
r=0

d−1

uf rlkeru s62d

which shows thatV̂F is unitary. Moreover,

V̂FT̂V̂F
†uf rl = V̂FT̂uerl = vruf rl s63d

for all r. Comparing with Eq.s48d we deduceV̂FT̂V̂F
† =T̂8. Similarly V̂FŜV̂F

† =Ŝ8. Hence

V̂FD̂pV̂F
† = tp1p2V̂FŜp1T̂p2V̂F

† s64d

=tp1p2D̂ap1,gp1
D̂bp2,dp2

s65d

=ts1−bg+addp1p2D̂Fp s66d

=D̂Fp s67d

for all p. h

To extend this result to the case of an arbitary matrixPSLs2,Zd̄d we need the following
decomposition lemma, which states that every nonprime matrix can be written as the product of
two prime matrices.

Lemma 3: Let
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F = Sa b

g d
D s68d

be a nonprime matrixPSLs2,Zd̄d. Then there exists an integer x such thatd+xb is nonzero and

fd+xb ,d̄g=1. Let x be any integer having that property, and let

F1 = S0 − 1

1 x
D , s69d

F2 = Sg + xa d + xb

− a − b
D . s70d

Then F1,F2 are prime matricesPSLs2,Zd̄d such that

F = F1F2. s71d

Proof: Suppose, to begin with, thatb ,d are both nonzero. Letk=fb ,dg. We then have

b = kb0, s72d

d = kd0, s73d

where fb0,d0g=1. We also havefk,d̄g=1 fbecausead−bg=1smodd̄dg. The fact thatb0,d0 are
relatively prime means we can use Dirichlet’s theoremssee, for example, Nathanson36 or Rose37d
to deduce that the sequence

d0, sd0 + b0d, sd0 + 2b0d, … s74d

contains infinitely many primes. Consequently, there exists an integerx such thatd0+xb0Þ0 and

fd0+xb0,d̄g=1. The fact thatkÞ0 and fk,d̄g=1 then implies thatd+xbÞ0 and fd+xb ,d̄g=1.
The claim is now immediate.

It remains to consider the case whenb ,d are not both nonzero. Ifd=0 the fact that detF

=1smodd̄d would imply thatbÞ0 andfb ,d̄g=1—contrary to the assumption that the matrixF is

nonprime. Suppose, on the other hand, thatb=0. Then the fact that detF=1smodd̄d implies that

dÞ0 andfd ,d̄g=1. So the claim is true for every choice ofx. h

We can now deduce the following converse of Lemma 1.
Lemma 4: LetsF ,xd be any pairPSLs2,Zd̄d3 sZdd2. If F is a prime matrix define

Û = D̂xV̂F s75d

[where V̂F is the operator defined by Eq. (42)]. If F is nonprime choose two prime matrices F1,F2

such that F=F1F2 (the existence of such matrices being guaranteed by Lemma 3), and define

Û = D̂xV̂F1
V̂F2

s76d

[where V̂F1
,V̂F2

are the operators defined by Eq. (42)]. Then

ÛD̂pÛ† = vkx,FplD̂Fp s77d

for all pPZ2.
Proof: The claim is an immediate consequence of Eqs.s9d and s10d and Lemma 2. h

If Û ,Û8 differ by a phase, so thatÛ8=eiuÛ, they have the same action on the generalized
Pauli group,
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ÛD̂pÛ† = Û8D̂pÛ8† s78d

for all p. So the object of real interest is not the Clifford group itself, but the group Csdd / Isdd
which results when the phases are factored out. Here Isdd is the subgroup consisting of all

operators of the formeiuÎ, whereÎ is the identity operator anduPR. The elements of Csdd / Isdd
are often calledClifford operations.

Let SLs2,Zd̄d› sZdd2 be the canonical semidirect product of SLs2,Zd̄d andsZdd2, i.e., the
group which results when the set SLs2,Zd̄d3 sZdd2 is equipped with the composition rule

sF1,x1d + sF2,x2d = sF1F2,x1 + F1x2d. s79d

Then we have the following structure theorem, which states that Csdd / Isdd is naturally isomorphic
to SLs2,Zd̄d› sZdd2 when d is odd, and naturally isomorphic to a quotient group of
SLs2,Zd̄d› sZdd2 whend is even.

Theorem 1: There exists a unique surjective homomorphism,

f:SLs2,Zd̄d › sZdd2 → Csdd/Isdd s80d

with the property Uˆ D̂pÛ†=vkx,FplD̂Fp for each ÛP fsF ,xd and all pPZ2.
If d is odd f is an isomorphism. If d is even the kernel of f is the subgroup

Kf #SLs2,Zd̄d› sZdd2 consisting of the8 elements of the form

SS1 + rd sd

td 1 + rd
D,Ssd/2

td/2
DD , s81d

where r,s,t=0 or 1.

Proof: An operatorÛPCsdd has the property

ÛD̂pÛ† = D̂p s82d

for all p if and only if it is a multiple of the identitysdue to the irreducibility of the projective

representationp→ D̂p, and Schur’s lemmad. So it follows from results already proved that there is
exactly one surjective map,

f:SLs2,Zd̄d › sZdd2 → Csdd/Isdd s83d

such thatÛD̂pÛ†=vkx,FplD̂Fp for eachÛP fsF ,xd and all pPZ2. The fact thatf is actually a
homomorphism is then an immediate consequence of the definitions.

Let Kf be the kernel off. ThensF ,xdPKf if and only if

vkx,FplD̂Fp = D̂p s84d

for all p. For that to be true we must haveF=1smoddd. If d is odd this impliesD̂Fp=D̂p for all
p. Equations84d then becomesvkx,pl=1 for all p, implying x=s0 0d. So the kernel is trivial, and
f is an isomorphism as claimed.

Suppose, on the other hand, thatd is even. The conditionF=1smoddd then implies thatF
=1+dD, whereD is a matrix of the form

D = Sr1 s

t r2
D s85d

with r1,r2,s,t=0 or 1. Inserting this expression in Eq.s84d we find, in view of Eqs.s9d–s11d, that
sF ,xdPKf if and only if
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1 = vkx,FplD̂FpD̂−p = vkx,pltdkp,Dpl s86d

for all p. After rearranging the condition

vx2p1−x1p2 = s− 1dsr1−r2dp1p2−tp1
2+sp2

2
= s− 1dsr1−r2dp1p2+tp1−sp2 s87d

for all p. This is true if and only ifr1=r2, x1=sd/2, andx2= td/2. h

We conclude with a result concerning the order of the group Csdd / Isdd which will be needed
later on. Let nsn,dd be the number of distinct ordered pairssx,ydP sZdd2 such that xy
=nsmoddd. We then have the following.

Lemma 5: The order of the groupCsdd / Isdd is

uCsdd/Isddu = d2So
n=0

d−1

nsn,ddnsn + 1,ddD . s88d

If d is a prime number this reduces to

uCsdd/Isddu = d3sd2 − 1d. s89d

Proof: We begin by showing that Csdd / Isdd and SLs2,Zdd› sZdd2 have the same cardinality
when considered assets. This is true for alld, notwithstanding the fact that whend is even
Csdd / Isdd and SLs2,Zdd› sZdd2 are not naturally isomorphic asgroups.

The statement is immediate whend is odd. Suppose, on the other hand, thatd is even. Let
g:SLs2,Z2dd→SLs2,Zdd be the natural homomorphism defined by

g:Sa b

g d
D ° Sfagd fbgd

fggd fdgd
D , s90d

wherefxgd denotes the residue class ofx modulo d. It is easily seen thatd is surjective. In fact,
consider arbitrary

F = Sa b

g d
D P SLs2,Zdd. s91d

Thenad−bg=1+nd for some integern. If n is even thenFPSLs2,Zd̄d andF=gsFd. Suppose, on
the other hand, thatn is odd. Then eithera or b is odd. If a is oddF=gsF8d where

F8 = Sa b

g d + d
D P SLs2,Zd̄d s92d

while if b is oddF=gsF9d where

F9 = S a b

g + d d
D P SLs2,Zd̄d. s93d

Now let Kg be the kernel ofg. A matrix FPKg if and only if

F = S1 + r1d sd

td 1 + r2d
D , s94d

wherer1,r2,s,t=0 or 1 ands1+r1dds1+r2dd−std2=1smod 2dd. We have

s1 + r1dds1 + r2dd − std2 = 1 + sr1 + r2dd smod 2dd s95d

fbearing in mind thatd is even, sod2=0 smod 2ddg. We therefore requirer1=r2. It follows thatKg

consists of the eight matrices of the form
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S1 + rd sd

td 1 + rd
D , s96d

wherer ,s,t=0 or 1. The fact thatg is surjective anduKgu=8 impliesuSLs2,Z2ddu=8uSLs2,Zddu. In
view of Theorem 1 this means

uCsdd/Isddu = 1
8uSLs2,Z2dduusZdd2u = uSLs2,ZdduusZdd2u = uSLs2,Zdd › sZdd2u s97d

as claimed.
We have shown thatuCsdd / Isddu= uSLs2,Zdd› sZdd2u=d2uSLs2,Zddu for all d, odd or even. It

remains to calculateuSLs2,Zddu. For eachnPZd let Mn#SLs2,Zdd be the set of matrices

Sa b

g d
D s98d

for which ad=n+1smoddd and bg=nsmoddd. The setsMn are disjoint. Moreover, SLs2,Zdd
=øn=0

d−1Mn and uMnu=nsn,ddnsn+1,dd. It follows that

uSLs2,Zddu = o
n=0

d−1

nsn,ddnsn + 1,dd. s99d

Equations88d is now immediate.
If d is a prime number

nsn,dd = H2d − 1 if n = 0 smoddd,

d − 1 otherwise
J s100d

implying

o
n=0

d−1

nsn,ddnsn + 1,dd = dsd2 − 1d. s101d

Equations89d is now immediate. h

IV. THE EXTENDED CLIFFORD GROUP

It can be seen from Eqs.s6d–s8d ands13d that, if ucl=Sr=0
d−1cruerl is a GP fiducial vector, then

so is the vectoruc*l=Sr=0
d−1cr

* uerl obtained by complex conjugation. So to make the analysis com-
plete we need to consider automorphisms of GPsdd which are generated by antiunitary operators.

An antilinear operator is a mapL̂ :Cd→Cd with the property

L̂saufl + bucld = a* L̂ufl + b* L̂ucl s102d

for all ufl , uclPCd and alla ,bPC. The adjointL̂† is defined to be the unique antilinear operator
with the property

kfuL̂†ucl = kcuL̂ufl s103d

for all ufl , uclPCd. fThe existence and uniqueness ofL̂† can be established by a variant of the
argument which establishes the existence and uniqueness of the adjoint of a linear operatorssee,

for example, Greub38d. Alternatively, one can exploit the operatorĴ defined in Eq.s106d. If L̂ is

antilinear then L̂Ĵ is linear. So there exists a unique operatorsL̂Ĵd† with the property

kfusL̂Ĵd†ucl=skcusL̂Ĵdufld* for all ufl , ucl. It follows from the definition of Ĵ that kfuĴucl
=kcuĴufl for all ufl , ucl. It is now straightforward to confirm that, if one definesL̂†= ĴsL̂Ĵd†, then

L̂† satisfies Eq.s103d for all ufl , ucl, and, furthermore, that there is no other operator with that
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property.g An operatorÛ is said to be antiunitary if it is antilinear andÛ†Û=1 sor, equivalently,

ÛÛ†=1d.
We now define theextended Clifford Groupto be the group ECsdd consisting of all unitary or

antiunitary operatorsÛ having the property

Û GPsddÛ† = GPsdd. s104d

Let us also define ESLs2,Zd̄d to be the group consisting of all 232 matrices

Sa b

g d
D s105d

such thata ,b ,g ,dPZd̄ and ad−bg= ±1smodd̄d. In the last section we showed that there is a
natural homomorphismf :SLs2,Zd̄d› sZdd2→Csdd / Isdd. We are going to show that this extends to
a natural homomorphismfE:ESLs2,Zd̄d› sZdd2→ECsdd / Isdd.

Let Ĵ be the antilinear operator which replaces components in the standard basis with their
complex conjugates,

Ĵ:o
r=0

d−1

cruerl ° o
r=0

d−1

cr
* uerl. s106d

Clearly Ĵ†= Ĵ and Ĵ†Ĵ= Ĵ2=1. So Ĵ is an antiunitary operator. Furthermore, it follows from Eqs.
s6d–s8d that

ĴD̂pĴ† = D̂J̃p s107d

for all p, where

J̃ = S1 0

0 − 1
D . s108d

So ĴPECsdd. Note that DetJ̃=−1smodd̄d, so J̃PESLs2,Zd̄d.
Now let C*sdd be the set of antiunitary operatorsPECsdd fso ECsdd is the disjoint union

ECsdd=CsddøC*sddg. The mappingÛ° ĴÛ defines a bijective correspondence between C*sdd
and Csdd. We can use this to prove the following extension of Theorem 1.

Theorem 2: There is a unique surjective homomorphism,

fE:ESLs2,Zd̄d › sZdd2 → ECsdd/Isdd s109d

such that, for eachsF ,xdPESLs2,Zd̄d› sZdd2 and ÛP fEsF ,xd,

ÛD̂pÛ† = vkx,FplD̂Fp s110d

for all p. Û is unitary if DetF=1smod d̄d and antiunitary ifDetF=−1smod d̄d. fE extends the
homomorphism f defined in Theorem 1, and has the same kernel. So fE is an isomorphism if d is
odd, while if d is even its kernel is the subgroup Kf defined in Theorem 1.

Proof: Let Û be an arbitrary antiunitary operatorPC*sdd. The fact thatĴ,Û are both antiuni-

tary means thatĴÛ is unitary. SoĴÛPCsdd. It then follows from Theorem 1 that there exists
sF8 ,x8dPSLs2,Zd̄d› sZdd2 such that

sĴÛdD̂psĴÛd† = vkx8,F8plD̂F8p s111d

for all p. DefineF= J̃F8 andx= J̃x8. In view of Eq. s107d, and the fact thatĴ2=1, we deduce
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ÛD̂pÛ† = ĴsĴÛdD̂psĴÛd†Ĵ† = v−kx8,F8plD̂J̃F8p = vkx,FplD̂Fp s112d

for all p swhere we have used the fact thatkj ,hl=−kJ̃j , J̃hl for all j ,hd. We have DetsFd
=sDet J̄dsDetF8d=−1, sosF ,xdPESLs2,Zd̄d› sZdd2.

Reversing the argument we deduce the converse proposition, for eachsF ,xd
PESLs2,Zd̄d› sZdd2, there existsÛPECsdd such thatÛD̂pÛ†=vkx,FplD̂Fp for all p. The fact that

an operator commutes withD̂p for all p if and only if it is a multiple of the identity means thatÛ
is unique up to a phase.

This establishes the existence and uniqueness of the homomorphismfE. The proof of the
remaining statements is straightforward, and is left to the reader. h

Finally, we have the following result which, together with Lemma 5, enables us to calculate
the order of ECsdd / Isdd.

Lemma 6:

uECsdd/Isddu = 2uCsdd/Isddu s113d

for all d.
Proof: The map

ÛIsdd ° ĴÛIsdd s114d

defines a bijective correspondence between C*sdd / Isdd and Csdd / Isdd. So the set C*sdd / Isdd con-
tains the same number of elements as Csdd / Isdd. The statement is now immediate. h

V. THE CLIFFORD TRACE

We now define the Clifford trace. The significance of this function for us is that every GP
fiducial vector which has been constructed to date is an eigenvector of a Clifford unitary having
Clifford trace=−1.

Let fF ,xgPECsdd / Isdd be the image ofsF ,xd under the homomorphismfE defined in Theo-
rem 2. We refer tofF ,xg as an extended Clifford operationfor Clifford operation if it
PCsdd / Isddg. The operatorsPfF ,xg only differ by a phase. It is therefore convenient to adopt a

terminology which blurs the distinction between the operationfF ,xg and the operatorsÛ

P fF ,xg. In particular, we will adopt the convention that properties which hold for eachÛ
P fF ,xg may also be attributed tofF ,xg. Thus, we will say thatfF ,xg is unitary srespectively

antiunitaryd if the operatorsÛP fF ,xg are unitarysrespectively, antiunitaryd. Similarly, we will

say thatuclPCd is an eigenvector offF ,xg if it is an eigenvector of the operatorsÛP fF ,xg.
It is easily verified that TrsF1d=TrsF2d smoddd wheneverfF1,x1g=fF2,x2g fnote that it is not

necessarily true that TrsF1d=TrsF2d smodd̄d if d is eveng. We therefore obtain a well-defined
function ECsdd / Isdd→Zd if we assign to each operationfF ,xg the value TrsFd smoddd. We obtain

a function ECsdd→Zd by assigning to eachÛP fF ,xg the value TrsFd smoddd. We use the term
“Clifford trace” to refer to either of these functions.sThe Clifford trace is a modular character in
the case whend is prime. For the theory of modular representations see, for example, Serre.39d

We now prove the main result of this section, which states that there is a connection between
the order of a Clifford operation and its Clifford trace.

Lemma 7: LetfF ,xgPCsdd / Isdd, where d is anydimensionÞ3. ThenfF ,xg is of order3 if
TrsFd=−1 smod dd.

Let fF ,xgPCsdd / Isdd, where d is anyprime dimensionÞ3. Then the stronger statement is
true, fF ,xg is of order3 if and only if TrsFd=−1 smod dd.

Remark:The restriction to operationsPCsdd / Isdd is essentialsbecause iffF ,xg is antiunitary
its order must be evend.

Proof: Let fF ,xgPCsdd / Isdd, and let k=TrsFd. Then, taking into account the fact that

DetsFd=1 smodd̄d, it is straightforward to show
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F2 = kF − 1 smodd̄d s115d

implying

F3 = sk2 − 1dF − k smodd̄d, s116d

1 + F + F2 = sk + 1dF smodd̄d. s117d

Now suppose thatk=−1 smoddd. Then there are three possibilities,sad d is odd;sbd d is even and

k=−1 smodd̄d; scd d is even andk=−1+d smodd̄d. In casesad or sbd we have

F3 = 1 smodd̄d, s118d

1 + F + F2 = 0 smodd̄d, s119d

while in casescd we havek2−1=d2−2d=0 smodd̄d, and consequently

F3 = S1 + d 0

0 1 + d
D smodd̄d, s120d

1 + F + F2 = 0 smoddd. s121d

Referring to the definition ofKf ssee Theorem 1d we deduce that, in every case,

sF,xd3 = sF3,s1 + F + F2dxd P Kf s122d

implying thatfF ,xg3=f1,0g. It remains to show that neitherfF ,xg nor fF ,xg2=f1,0g. To see that
fF ,xgÞ f1,0g observe that the contrary would imply −1=k=Trs1d=2 smoddd, which is not pos-
sible given thatdÞ3. Similarly, if fF ,xg2=f1,0g it would follow ftaking the trace on both sides
of Eq. s115dg that 2=k2−2=−1smoddd, contrary to the assumption thatdÞ3. We conclude that
fF ,xg is of order 3, as claimed.

To prove the second part of the lemma suppose thatd is a prime numberÞ3 andfF ,xg is of
order 3. ThensF3,s1+F+F2dxdPKf, implying F3=1 smoddd. In view of Eq. s116d this means

sk + 1dssk − 1dF − 1d = 0 smoddd. s123d

We now proceed byreductio ad absurdum. Suppose thatkÞ−1 smoddd. Then Eq.s123d and the
fact thatd is prime implies

sk − 1dF = 1 smoddd. s124d

Taking the trace on both sides givessk+1dsk−2d=0 smoddd implying k=2 smoddd. Substituting

this value into Eq.s124d we deduceF=1 smoddd, implying F2=1 smodd̄d andF3=F smodd̄d. So

sF,3xd = sF,xd3 P Kf s125d

implying sF ,xdPKf. But that would meanfF ,xg is of order 1, contrary to assumption. We
conclude thatk=−1 smoddd, as claimed. h

The result does not hold whend=3 because then the identity has Clifford trace=−1. It is,
however, easily verified that in dimension 3sas in every other prime dimensiond every order 3
Clifford operation has Clifford trace=−1.

If d is not a prime number there may exist order 3 Clifford operations for which the
Clifford traceÞ−1. Consider, for example,
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fF,xg = FS5 4

2 − 3
D,S− 4

5
DG P Cs6d/Is6d. s126d

Then fF ,xg is of order 3 yet TrsFd=2 smod 6d.
Because these results will play an important role in the following it is convenient to introduce

some terminology. We will say that an operationfF ,xgPCsdd / Isdd is acanonicalorder 3 unitary
if

sad TrsFd=−1 smoddd,
sbd F is not the identity matrix.

Note that the second stipulation is only needed because of the possibility thatd=3. If dÞ3 an
operationfF ,xgPCsdd / Isdd is a canonical order 3 unitary if and only if TrsFd=−1 smoddd.

VI. THE RBSC VECTORS

For 5ødø45 RBSC17,24have constructed GP fiducial vectors numerically. In this section we
examine the behavior of these vectors under the action of the extended Clifford group. In particu-
lar we show that each of them is an eigenvector of a canonical order 3 Clifford unitary. This
suggests the following.

Conjecture A:GP fiducial vectors exist in every finite dimension. Furthermore, every such
vector is an eigenvector of a canonical order 3 unitary.

Conjecture A is related to a conjecture of Zauner’s. Let

fZ,0g = FS0 − 1

1 − 1
D,S0

0
DG . s127d

It will be observed thatfZ,0g is defined, andPCsdd / Isdd, for every dimensiond, and that it is
canonical order 3. Zauner16 has conjectured the following.

Conjecture B:In each dimensiond there exists a GP fiducial vector which is an eigenvector of
fZ,0g.

In Sec. VII we will see that RBSC’s numerical data also provides further support for Conjec-
ture B.

Let ucdl be the RBSC vector in dimensiond. In Table I we list, for each value ofd, a unitary
Clifford operationfFd,xdg having ucdl as one of its eigenvectorssto the precision that RBSC’s
numerical data permitsd. It will be seen that, in every case, TrsFdd=−1 smoddd, implying that
fFd,xdg is canonical order 3. Clearly,ucdl is also an eigenvector offFd,xdg2. Moreover,fFd,xdg2

also has Clifford trace=−1.fFd,xdg andfFd,xdg2 are, however, the only trace −1 unitary Clifford
operations of whichucdl is an eigenvectorsto the stated degree of precisiond.

In Table I we also listsnd1,nd2,nd3d, the dimensions of the three eigenspaces offFd,xdg, and
nd, the dimension of the particular eigenspace to whichucdl belongs. It will be seen that, with one
exception,ucdl always belongs to an eigenspace of highest dimensionsthe exception beingd
=17, whereucdl belongs to the eigenspace oflowestdimensiond.

We used a computer algebra packagesMathematicad to construct the table. To illustrate the
method employed we give a detailed description for the cased=5. We begin with the observation
that, if uc5l is an eigenvector offF ,xg, then

kc5uD̂puc5l = es2pi/5dkx,Fplkc5uD̂Fpuc5l s128d

for all p. So, using the value ofuc5l which is available on RBSC’s website,24 we look for values
of p ,q such that
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TABLE I. For eachd the RBSC vectorucdl is an eigenvector of the unitary operationfFd,xdg. Note that in every case
Tr Fd=−1, implying thatfFd,xdg is canonical order 3.snd1,nd2,nd3d are the dimensions of the three eigenspaces offFd,xdg,
andnd is the dimension of the eigenspace to whichucdl belongs. Note thatnd=maxsnd1,nd2,nd3d, with the single exception
of d=17.

d Fd xd snd1,nd2,nd3d nd d Fd xd snd1,nd2,nd3d nd

5 s−1 −1

1 0 d s 2

2 d s1,2,2d 2 26 s−7 −9

−1 6 d s−11

11 d s8,9,9d 9

6 s−2 3

−1 1 d s 3

0 d s1,2,3d 3 27 s−10 1

−10 9 d s −3

−12 d s8,9,10d 10

7 s−2 −2

−2 1 d s 2

0 d s2,2,3d 3 28 s−3 21

5 2 d s−10

−6 d s9,9,10d 10

8 s−4 3

1 3 d s 3

−1 d s2,3,3d 3 29 s−13 −6

2 12 d s−10

12 d s9,10,10d 10

9 s−3 2

1 2 d s 2

1 d s2,3,4d 4 30 s−8 −7

−9 7 d s11

−3 d s9,10,11d 11

10 s−4 −7

−1 3 d s−2

0 d s3,3,4d 4 31 s−9 −10

−2 8 d s−14

6 d s10,10,11d 11

11 s−5 4

3 4 d s−5

0 d s3,4,4d 4 32 s−11 −31

−15 10 d s11

−7 d s10,11,11d 11

12 s−4 11

1 3 d s 4

−5 d s3,4,5d 5 33 s−7 −5

2 6 d s 8

−5 d s10,11,12d 12

13 s−2 −2

−5 1 d s 6

0 d s4,4,5d 5 34 s−12 3

1 11d s −1

−16 d s11,11,12d 12

14 s−2 −3

1 1 d s−5

1 d s4,5,5d 5 35 s−13 −12

16 12 d s 11

−12 d s11,12,12d 12

15 s−5 1

−6 4 d s−7

−6 d s4,5,6d 6 36 s −8 21

−13 7 d s 0

7 d s11,12,13d 13

16 s−8 13

3 7 d s 1

0 d s5,5,6d 6 37 s−16 1

18 15d s−4

3 d s12,12,13d 13

17 s−5 −7

3 4 d s 6

7 d s5,6,6d 5 38 s−6 −31

1 5 d s 12

−10 d s12,13,13d 13

18 s−5 5

3 4 d s 9

0 d s5,6,7d 7 39 s−17 −11

0 16 d s 8

15 d s12,13,14d 14

19 s−2 4

4 1 d s−7

−4 d s6,6,7d 7 40 s −3 19

−13 2 d s−12

−19 d s13,13,14d 14

20 s−2 −3

1 1 d s−9

−6 d s6,7,7d 7 41 s −2 −10

−12 1 d s19

13 d s13,14,14d 14

21 s−5 −6

−7 4 d s−6

1 d s6,7,8d 8 42 s−15 11

19 14d s 0

−15 d s13,14,15d 15

22 s−2 −1

3 1 d s 8

2 d s7,7,8d 8 43 s−11 1

18 10d s−1

21 d s14,14,15d 15

23 s−11 −10

−5 10 d s 0

−3 d s7,8,8d 8 44 s−8 −29

5 7 d s16

−5 d s14,15,15d 15
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5

2p
sargskc5uD̂puc5ld − argskc5uD̂quc5ldd s129d

is an sapproximated integer. We find that ifp=s1,0d this is only true whenq=s1,0d, s−1,1d or
s0,−1d smod 5d, and that ifp=s0,1d it is only true whenq=s0,1d, s−1,0d or s1,−1d smod 5d.
Taking account of the requirement DetsFd=1 smod 5d we deduce that the only candidates are
sapart from the identityd

fF5,x5g = FS− 1 − 1

1 0
D,S2

2
DG s130d

and its square,fF5,x5g2. To check thatuc5l actually is an eigenvector offF5,x5g we observe that

F5 is a prime matrix. So in view of Lemma 4 we have the following explicit formula for theÛ
P fF5,x5g:

Û =
1
Î5

eiuD̂s2,2dS o
r,s=0

4

e−s4pi/5dsss+2rduerlkesuD s131d

eiu being an arbitrary phase. Suppose we chooseu=7p /15. Then we findÛ3=1 and

isÛ − 1duc5li2 = 0 s132d

to machine precision. This confirms thatuc5l is indeed an eigenvector offF5,x5g. To calculate the
dimensions of the eigenspaces define, forr =0, ±1 sand with the same choice ofud,

P̂r = 1
3s1 + e−2rpi/3Û + e2rpi/3Û2d. s133d

Then P̂r projects onto the eigenspace ofÛ with eigenvaluee2rpi/3. We find

TrsP̂rd = H1, r = 1,

2, r = − 1 or 0,
J s134d

implying that the dimensions of the eigenspaces are 1,2,2, and thatuc5l is in one of the eigens-
paces with dimension 2.

In dimensions 6–45 the calculation goes through in essentially the same way. The calculation
is, however, slightly more complicated whend is even, due to the fact that we must then require
DetFd=1 smod 2dd. Note, also, that whend=6, 21, 24, 28 or 36 the matrixFd is nonprime, so we
must use the decomposition of Lemma 3.

This method also enables us to establishsto the precision that RBSC’s numerical data permitsd
the full stability group ofucdl, i.e., the set of all operationssunitary or antiunitaryd P ECsdd / Isdd
of which ucdl is an eigenvector. It turns out that, with one exception, the stability group is the
order 3 cyclic subgroup generated byfFd,xdg. The exception is dimension 7, where the stability
group is the order 6 cyclic subgroup generated by the antiunitary operation

TABLE I. sContinued.d

d Fd xd snd1,nd2,nd3d nd d Fd xd snd1,nd2,nd3d nd

24 s−2 −3

1 1 d s 0

−3 d s7,8,9d 9 45 s−20 −1

21 19d s−8

6 d s14,15,16d 16

25 s−6 −1

6 5 d s−7

12 d s8,8,9d 9
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fA7,j7g = FS 2 − 1

− 1 0
D,S1

1
DG . s135d

Note thatfA7,j7g2=fF7,x7g.

VII. ZAUNER’S CONJECTURE

In the preceding section we saw that RBSC’s numerical results support Conjecture A. Their
results also support Conjecture B, i.e., Zauner’s conjecture, that in each dimensiond there exists
a GP fiducial vector which is an eigenvector offZ,0g.

In fact, for each 5ødø45 let fLd,hdg be the operation specified in Table II. It is easily
verified that

TABLE II.

d Ld hd d Ld hd d Ld hd

5 s 1 0

1 1 d s 0

−2 d 19 s 2 1

0 −9 d s 5

−6 d 33 s 6 2

5 −15d s13

15 d
6 s 0 1

1 −1 d s 1

−1 d 20 s 0 1

−1 −1 d s 9

−3 d 34 s 0 1

−1 −11d s13

3 d
7 s 2 0

−3 −3 d s 0

3 d 21 s 2 1

−4 8 d s−3

−7 d 35 s14 2

10 4 d s 4

6 d
8 s 0 1

−1 −3 d s−2

3 d 22 s 1 0

2 1 d s 8

6 d 36 s17 1

5 −4 d s−2

−5 d
9 s 2 0

−3 −4 d s 0

−4 d 23 s 0 3

−8 −7 d s−10

−4 d 37 s 6 0

−15 −6d s−7

−6 d
10 s 3 1

−7 −2 d s 2

4 d 24 s 0 1

−1 −1 d s 3

0 d 38 s 0 1

−1 −5 d s−6

16 d
11 s 1 1

2 3 d s 0

5 d 25 s 1 0

6 1 d s 3

4 d 39 s 7 2

2 6 d s17

14 d
12 s 0 1

−1 −3 d s 3

2 d 26 s 9 0

11 −23d s 2

−7 d 40 s27 1

14 −35d s−19

2 d
13 s 4 2

5 6 d s−6

−5 d 27 s 1 0

10 −1d s−4

7 d 41 s18 0

−5 16d s 1

−15 d
14 s 0 1

−1 −1 d s−4

3 d 28 s 12 1

−25 26d s−6

−8 d 42 s 2 1

11 −36d s 8

7 d
15 s 1 0

5 −1 d s 0

7 d 29 s11 0

−2 8 d s−4

−2 d 43 s 8 1

−16 −18d s14

16 d
16 s 3 1

−11 −14d s 5

8 d 30 s10 1

29 3 d s12

1 d 44 s 7 1

−37 20d s 6

19 d
17 s 1 1

2 3 d s 8

−4 d 31 s11 0

6 −14d s−5

4 d 45 s 1 0

20 1 d s14

−6 d
18 s 2 1

7 −14d s−3

3 d 32 s27 1

−8 −5 d s 13

−15 d
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fLd,hdgfFd,xdgfLd,hdg−1 = fZ,0g. s136d

This means that ifÛP fLd,hdg, and if ucdl is the RBSC vector in dimensiond, thenÛucdl is a GP
fiducial vector which is an eigenvector offZ,0g. Conjecture B is thus confirmed numerically for
every dimensionø45. This suggests the following.

Conjecture C:GP fiducial vectors exist in every finite dimension. Furthermore, every such
vector is an eigenvector of a canonical order 3 unitary which is conjugate tofZ,0g.

Conjecture C is clearly stronger than Conjecture B. It also implies Conjecture A.
An operation conjugate tofZ,0g is automatically a canonical order 3 unitary. It would be

interesting to know whether the converse is also true, i.e., whether every canonical order 3 unitary
is conjugate tofZ,0g. If that were not the case Conjecture C would be strictly stronger than
Conjecture A.

VIII. DIMENSIONS 2–7: VECTORS, ORBITS, AND STABILITY GROUPS

In dimensions 2–7 RBSC made a numerical search, in an attempt to find the total number of
GP fiducial vectors. On the assumption that their search was exhaustive we use their data to
calculate, for dimensions 2–7, the number of distinct orbits under the action of the extended
Clifford group. We also calculate the order of the stability group corresponding to each orbit. Our
results are tabulated in Table III. They confirm that in dimensions 2–7everyGP fiducial vector is
an eigenvector of a canonical order 3 Clifford unitarysin agreement with Conjecture Ad. We
incidentally give exact expressions for two of the GP fiducial vectors in dimension 7sone on each
of the two distinct orbitsd.

The calculations on which these statements are based are somewhat lengthy, and there is not
the space to reproduce them here. We therefore confine ourselves to summarizing the end results,
which it is straightforwardsalbeit tediousd to confirm with the help ofsfor exampled Mathematica.

Dimension 2:Exact solutions in dimension 2 have been obtained by Zauner16 and RBSC.17 In
dimension 2 the GP fiducial vectors all lie on a single orbit of the extended Clifford group.
Consider the GP fiducial vector

uc2l = Îs3 +Î3d/6ue0l + eip/4Îs3 −Î3d/6ue1l. s137d

The stability group ofuc2l is the order 6, non-Abelian subgroup of ECs2d / Is2d generated by the
unitary operation

TABLE III. Stability groups in dimensions 2–7. In every case the stability
group includes an order 3 cyclic subgroup generated by a unitary operation
having Clifford trace=−1.

Stability group

Dimension Type Order Number of orbits

2 Non-Abelian 6 1
3 Non-Abelian 6 `

Non-Abelian 12 1
Non-Abelian 48 1

4 Cyclic 6 1
5 Cyclic 3 1
6 Cyclic 3 1
7 Cyclic 3 1

Cyclic 6 1
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fF2,0g = FS 0 1

− 1 − 1
D,S0

0
DG s138d

and the antiunitary operation

fA2,0g = FS0 1

1 0
D,S0

0
DG . s139d

Note thatfF2,0g is canonical order 3. It follows from Lemmas 5 and 6 thatuECs2d / Is2du=48. So
the orbit consists of 48/6=8 fiducial vectorssidentifying vectors which only differ by a phased,
constituting two distinct SIC–POVM’ssas described by RBSCd.

Dimension 3:Exact solutions in dimension 3 have been obtained by Zauner16 and RBSC.17

We saw in Sec. V that dimension 3 is unusual in that it is the only dimension for which the identity
operator has Clifford trace=−1. It seems to be unusual in another respect also, for it is the only
case presently known where the GP fiducial vectors constitute infinitely many distinct orbits of the
extended Clifford group.

Consider the one parameter family of GP fiducial vectors

uc3stdl =
1
Î2

se−itue1l − eitue2ld. s140d

The complete set of GP fiducial vectors is obtained by acting on the vectorsuc3stdl with elements
of ECs3d.

Let T̂ and Ĵ be the operators defined by Eqs.s6d and s106d, respectively. Then

T̂uc3stdl = − Uc3St +
p

3
DL and Ĵuc3stdl = uc3s− tdl. s141d

So uc3stdl and uc3st8dl are on the same orbit ift8=snp /3d± t for some integern. At the cost of
rather more computational effort one can show that this condition is not only sufficient but also
necessary foruc3stdl anduc3st8dl to be on the same orbit. So for each distinct orbit there is exactly
one value oftP f0,p /6g such thatuc3stdl is on the orbit.

As Zauner16 has previously shown, there are three kinds of orbit, a set of infinitely many
generic orbits corresponding to values oft in the interior of the intervalf0,p /6g, and two excep-
tional orbits corresponding to the two endpointst=0 andp /6.

The stability group of the exceptional vectoruc3s0dl consists of all 48 operations of the form
fF ,0g, whereF is any element of ESLs2,Z3d. The orbit thus consists of 432/48=9 fiducial vectors,
constituting a single SIC–POVM.

The stability group of the exceptional vectoruc3sp /6dl is the order 12 non-Abelian subgroup
of ECs3d / Is3d generated by the unitary operation

fF3,x3g = FS− 1 0

− 1 − 1
D,S0

1
DG s142d

and the antiunitary operation

fA3,x3g = FS1 0

0 − 1
D,S0

1
DG . s143d

Note that

fF3,x3g2 = FS 1 0

− 1 1
D,S0

0
DG s144d

is canonical order 3. The orbit thus consists of 432/12=36 fiducial vectors, constituting four
distinct SIC–POVMs.
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The stability group of a generic vectoruc3stdl with 0, t,p /6 is the order 6 non-Abelian
subgroup generated by the unitary operation

fF3,x3g2 = FS 1 0

− 1 1
D,S0

0
DG s145d

and the antiunitary operation

fF3,x3g + fA3,x3g = FS− 1 0

− 1 1
D,S0

0
DG . s146d

The orbit thus consists of 432/6=72 fiducial vectors, constituting eight distinct SIC–POVMs.
Dimension 4:The vector

uc4l =Î5 −Î5

40
S2 cos

p

8
ue0l + ise−ip/8 + s2 +Î5d1/2eip/8due1l + 2i sin

p

8
ue2l

+ ise−ip/8 − s2 +Î5d1/2eip/8due3lD s147d

is a GP fiducial vector in dimension 4, as discovered by Zauner16 and RBSC.17

In Zauner’s notationuc4l is the vector

e−ip/8sXc1a + r3Yc1bd. s148d

In RBSC’s notation it is the vector

r0ue0l + r+eiu+ue1l + r1e
iu1ue2l + r−eiu−ue3l s149d

for the casen= j =m=1 andk=0 fnote, however, that there is a typographical error in RBSC,17

their expression forr0 should readr0=Îs1−1/Î5d / s2Î2−Î2dg.
The stability group ofuc4l is the order 6 cyclic subgroup of ECs4d / Is4d generated by the

antiunitary operation

fA4,x4g = FS− 1 1

− 1 2
D,S2

0
DG . s150d

Note that

fA4,x4g2 = FS 0 1

− 1 3
D,S0

2
DG = FS 0 1

− 1 − 1
D,S0

0
DG s151d

is canonical order 3fwhere we used Eq.s81d to obtain the last expression on the right-hand sideg.
It follows from Lemmas 5 and 6 that the group ECs4d / Is4d is of order 1536. So the orbit

generated byuc4l contains 1536/6=256 fiducial vectors, constituting 256/16=16 SIC–POVMs.
RBSC’s numerical search found a total of 16 SIC–POVMs in dimension 4. If their search was
exhaustive, it would follow that the fiducial vectors all lie on a single orbit of the extended
Clifford group.

Dimension 5:Let uc5l be RBSC’s numerical vector in dimension 5. We noted in the preceding
section that the stability group ofuc5l is of order 3. It follows from Lemmas 5 and 6 that the group
ECs5d / Is5d is of order 6000. So the orbit generated byuc5l contains 6000/3=2000 fiducial
vectors, constituting 2000/25=80 SIC–POVMs. RBSC found a total of 80 SIC–POVMs in di-
mension 5. If their search was exhaustive, it would follow that the fiducial vectors all lie on a
single orbit of the extended Clifford group.

Note that Zauner’s analytic solution in dimension 5son p. 63 of his thesis16d can be used to
give exact expressions for each of the vectors on the orbit.

Dimension 6:Let uc6l be RBSC’s numerical vector in dimension 6. We noted in the preceding
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section that the stability group ofuc6l is of order 3. It follows from Lemmas 5 and 6 that the group
ECs6d / Is6d is of order 10 368. So the orbit generated byuc6l contains 10 368/3=3456 fiducial
vectors, constituting 3456/36=96 SIC–POVMs. RBSC found a total of 96 SIC–POVMs in di-
mension 5. If their search was exhaustive, it would follow that the fiducial vectors all lie on a
single orbit of the extended Clifford groupsin agreement with Grassl’s21 analysis, based on his
exact solution in dimension 6d.

Note that Grassl’s21 analytic solution can be used to give exact expressions for each of the
vectors on the orbit.

Dimension 7:Let uc7l be RBSC’s numerical vector in dimension 7. We noted in the last
section that the stability group ofuc7l is of order 6. It follows from Lemmas 5 and 6 that the group
ECs6d / Is6d is of order 32 928. So the orbit generated byuc7l contains 32 928/6=5488 fiducial
vectors, constituting 5488/49=112 SIC–POVMs. However, RBSC found 336 SIC–POVMs in
dimension 7. This indicates the existence of at least one other orbit.

The search for the additional orbit or orbits is facilitated by the fact that in dimension 7 there
exists a canonical order 3 Clifford unitary for which theF matrix is diagonal, namely

fF78,0g = FS− 3 0

0 2
D,S0

0
DG . s152d

The fact thatF78 is diagonal means that theÛP fF78 ,0g are permutation matrices. Specifically

Û = eiuo
r=0

6

ue4rlkeru s153d

for everyÛP fF78 ,0g swhereeiu is an arbitrary phase, and where we have used the decomposition
described in Lemma 3d. This considerably simplifies the calculations. We will also have occasion
to consider the antiunitary operation

fA78,0g = FS− 2 0

0 − 3
D,S0

0
DG s154d

which is a square root offF78 ,0g.
We look for eigenvectors offF78 ,0g. Let

l r = H1 if r = 1, 2 or 4,

− 1 if r = 3, 5 or 6.
J s155d

Also let

a0 =
1

2
SÎ 1

4 −Î2
+ iÎ4 −Î2

2
D, a1 =

1

4
Î8 − 5Î2

7
, a2 = 2−7/4 s156d

and

b0 =Î2 + 3Î2

14
, b1 =Î4 −Î2

28
, u = cos−1S−

ÎÎ2 + 1

2
D . s157d

Then define

uc78l = a0ue0l − o
r=1

6

sa1 + l ra2duerl, s158d
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uc79l = b0ue0l + o
r=1

6

b1e
il ruuerl. s159d

It is readily confirmed thatuc78l and uc79l are both GP fiducial vectors. The stability group ofuc78l
is the order 3 subgroup generated byfF78 ,0g, while the stability group ofuc79l is the order 6
subgroup generated byfA78 ,0g. Since the stability groups are nonisomorphic the orbits generated
by uc78l and uc79l are disjoint. The orbit generated byuc78l contains 32 928/3=10 976fiducial
vectors, constituting 10 976/49=224 SIC–POVMs. The orbit generated byuc79l contains 5488
fiducial vectors, constituting a further 112 SIC–POVMs. This accounts for all 336 of the SIC–
POVMs identified by RBSC. If we assume that RBSC’s search was exhaustive it would follow
that there are no other orbits, apart from these two.

For the sake of completeness let us note that

uc7l = Ûuc79l, s160d

whereuc7l is RBSC’s numerical vector andÛ is a unitary operator

Û P FS 1 1

− 3 − 2
D,S0

1
DG . s161d

Finally, let us remark thatl r is the Legendre symbolssee, e.g., Nathanson36 or Rose37d

l r = S r

7
D . s162d

It has the important property thatl rs= l rls for all r ,sPZ.

IX. A FIDUCIAL VECTOR IN DIMENSION 19

In Sec. VI we saw that, apart from the solution in dimension 7, RBSC’s numerical solutions
in dimensions 5–45 all have stability group of order 3. This might encourage one to speculate that
whend.7 the stability group isalwaysof order 3. In this section we show that there is at least
one exception to that putative rule, by constructing a GP fiducial vector in dimension 19 for which
the stability group has orderù18.

The vector we construct is an eigenvector of the order 18 antiunitary operation

fA198 ,0g = FS− 9 0

0 − 2
D,S0

0
DG P ECs19d/Is19d. s163d

Note that

fF198 ,0g = fA198 ,0g6 = FS− 8 0

0 7
D,S0

0
DG s164d

is canonical order 3.
The construction is similar to our construction of the vectoruc79l in the last section. Letl r8 be

the Legendre symbol

l r8 = S r

19
D = H1 if r = 1, 4, 5, 6, 7, 9, 11, 16 or 17,

− 1 if r = 2, 3, 8, 10, 12, 13, 14, 15 or 18,
J s165d

and let
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b08 =Î5 + 9Î5

95
, b18 =Î10 −Î5

190
, u8 = cos−1SÎÎ5 − 1

8
D . s166d

Then define

uc198 l = b08ue0l + o
r=1

18

b18e
il r8u8uerl. s167d

It is readily confirmed thatuc198 l is a GP fiducial vector, and an eigenvector offA198 ,0g.
Observe that the orbit generated byuc198 l is disjoint from the orbit generated by RBSC’s

numerical vectoruc19l sbecause the stability groups are nonisomorphicd. It follows that there are at
least two distinct orbits in dimension 19.

X. DIAGONALIZING THE F MATRIX

Our construction of the exact solutionsuc78l , uc79l, and uc198 l in Eqs. s158d, s159d, and s167d
was facilitated by the fact that in dimensions 7 and 19 there exist canonical order 3 unitaries for
which the correspondingF matrix is diagonal. It is natural to ask in what other dimensions that is
true. The theorem proved below answers that question.

We will need the following lemma.
Lemma 8: Let p be a prime number=1 smod 3d, and let n be anyintegerù1. Then there exists

an integera such that

a2 + a + 1 = 0smodpnd. s168d

Proof: The proof relies heavily on the theory of primitive roots, as described insfor exampled
Chap. 3 of Nathanson36 or Chap. 5 of Rose.37 Let f be Euler’s phi, or totient functionfso for every
integerxù1, fsxd is the number of integersy in the range 1øy,x which are relatively prime to
xg. Then there exists a single positive integerg such that for every integermù1 the multiplicative
order ofg, considered as an element ofZpm, is fspmd=sp−1dpm−1 ssee, for example, Nathanson,36

p. 93, or Rose,37 p. 91d. The fact thatp=1 smod 3d meansp=3k+1 for some integerkù1. Define

a = gkpn−1
. s169d

It is then immediate that

a3 = gfspnd = 1 smodpnd. s170d

It is also true thata−1 is relatively prime top. Suppose that were not the case. It would then
follow from the definition ofa, and the fact thatg is a primitive rootmodulo p, that

kpn−1 = lsp − 1d − 3kl s171d

for some integerl ù1. That, however, is impossible sincep is not a multiple of 3.
The fact thata−1 is relatively prime top means that there exists an integerb such that

bsa − 1d=1 smodpnd. s172d

It now follows from Eqs.s170d and s172d that

a2 + a + 1 =bsa3 − 1d = 0 smodpnd. s173d

h

We are now in a position to prove our main result.
Theorem 3: There exists a canonical order 3 unitaryfF ,xgPCsdd / Isdd for which the matrix

F is diagonal if and only if each of the following is true:

s1d d has at least oneprime divisor=1smod3d.
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s2d d has noprime divisors=2smod3d.
s3d d is not divisible by9.

Remark:So there exist canonical order 3 unitariesfF ,xg for which F is diagonal in dimension
7,13,19,21,31,37,39,43,49,… .

Proof: We begin by proving sufficiency. Suppose that conditionss1d, s2d, ands3d are all true.
Then we have, for sometù1,

d = 3n0p1
n1
¯ pt

nt, s174d

where thepi are distinct prime numbers=1smod 3d, where the integern0=0 or 1, and where the
integersn1,… ,nt are allù1. It follows from Lemma 8 that there exist integersa1,… ,at such that

ai
2 + ai + 1 = 0 smodpi

nid s175d

for i =1,… ,t. We now use the Chinese remainder theoremssee, for example, Nathanson36 or
Rose37d to deduce that there exists a single integera such that

a = 1 smod 3d s176d

and

a = ai smodpi
nid s177d

for i =1,… ,t. We then have

a2 + a + 1 = 0 smoddd s178d

implying that the matrix

F = Sa 0

0 − a − 1
D s179d

PSLs2,Zd̄d sbearing in mind thatd is oddd. Moreover, TrsFd=−1smoddd. SincedÞ3 we con-
clude thatfF ,xg is a canonical order 3 unitary for allxP sZdd2. This proves sufficiency.

To prove necessity suppose

F = Sa 0

0 d
D P SLs2,Zd̄d s180d

is such thatfF ,xg is canonical order 3 for somexP sZdd2. Thena+d=−1 smoddd, implying

a2 + a + 1 = 0 smoddd, s181d

a3 = 1 smoddd s182d

fin view of the fact thatad=1 smodddg.
To show thatd has no prime divisors=2smod 3d assume the contrary. It would then follow

from Eqs.s181d and s182d that

a2 + a + 1 = 0 smodpd, s183d

a3 = 1 smodpd s184d

for some prime numberp=2 smod 3d. Let r be a primitive root ofp and letkPZ be such that
0øk,p−1 anda=rk smodpd ssee, for example, Nathanson36 or Rose37d. Then Eq.s184d implies
r3k=1 smodpd which, in view of the fact thatr is a primitive root, means 3k= lsp−1d for some
l PZ. The fact that 0øk,p−1 implies 0ø l ,3. Taking into account the fact thatp−1 is not
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divisible by 3 fbecausep=2 smod 3dg we deduce thatl =0. But then k=0, implying a
=1 smodpd. In view of Eq. s183d this means 3=0smodpd, which is a contradiction.

To prove thatd is not divisible by 9 we again proceed byreductio ad absurdum. Suppose that
d were divisible by 9. It would then follow from Eq.s181d that

a2 + a + 1 = 0 smod 9d. s185d

However, it is easily verifiedsby explicit enumerationd that this equation has no solutions.
Finally, suppose thatd had no prime divisors=1smod 3d. In view of the results just proved it

would follow that d=3. But if d=3, Eq. s181d implies a=1 smod 3d. Taking into account the
requirementad=detF=1 smod 3d this meansd=1 smod 3d. But thenF is the identity matrix,
which contradicts the assumption thatfF ,xg is a canonical order 3 unitary. We conclude thatd
must have at least one prime divisor=1smod 3d. h

XI. CONCLUSION

RBSC conclude their paper by saying “a rigorous proof of existence of SIC–POVMs in all
finite dimensions seems tantalizingly close, yet remains somehow distant.” That well expresses
our own perception of the matter. While working on this problem we have several times had the
sense that the crucial discovery lay just round the corner, only to find that our hopes were illusory.
We make our results public in the hope that they may, nevertheless, contain a few clues, which
will help to take us further forward.

In particular it seems to us that significant progress would be made if it could be established
whether it is in fact true that every GP fiducial vector is an eigenvector of a canonical order 3
unitary. Also, if that is the case, one would like to know exactlywhy it is the case.
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In the Mandelstam–Tamm version of the time-energy uncertainty principleDt de-
notes the infimum of time intervals that elapse before the change in the mean of any
observable has the same magnitude as its standard deviation. We clarify this inter-
pretation, and show that the infimum is achieved for certain observables and thus
that this famous inequality is actually an equality. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1897164g

I. INTRODUCTION

The time-energy uncertainty principlesTEUPd has many versions.1–8 In one of its standard
forms, due to Mandelstam and Tamm9 fwe follow the formulation in Messiah’s booksRef. 1, pp.
319–320dg, Dt represents the infimum of times that must pass for the change in the mean of some
observable to be comparable in size to the standard deviation of that observable at the initial time.
TEUP asserts that this time is greater than or equal to Planck’s constant" divided by twice the
standard deviation of the energy observable at the initial time.

In this note we clarify the meaning of the symbolDt. We strive for exactness and introduce
notions ofdynamic uncertainty per unit timeandstatic uncertaintyto aid our discussion. Indeed,
as we shall explain,Dt is only in a crude sense a lower bound for the time needed for significant
change to occur, and is more accurately regarded as the infimum of the absolute ratio of static
uncertainty to dynamic uncertainty per unit time among observables satisfying technical condi-
tions which ensure that this ratio is properly defined. Moreover, there are observablesscorrespond-
ing even to bounded operatorsd for which this infimum is actually achieved, and thus the
Mandelstam–Tamm inequality is an equality. Defined for a given Hamiltonian and a given initial
state,Dt is a characteristic time for measurable change to occur in a system. The observables used
to observe such change, as one might expect, are ones that measure the component of the time
derivative of the state perpendicular to the initial state.

An alternative view of the TEUP, taken in quantum estimation theory, is thatDt is the standard
error of an estimate for the time at which some quantum event occurs, and the Mandelstam–Tamm
inequality is a special case of a quantum Cramer–Rao inequality.10–12 The time in quantum me-
chanics thus appears to be interpreted not as a variable but as a fixed parameter to be estimated as
parameters are estimated in classical statistics. In our discussion here we adopt instead the tradi-
tional Newtonian view of time.

II. PRELIMINARIES

As is customary, we identify an observable with a self-adjoint operatorA on the Hilbert space
containing the state vectorsc. For convenience neither positive operator valued measures nor

adElectronic mail: john.e.gray@navy.mil
bdAuthor to whom correspondence should be addressed. Electronic mail: vogt@math.georgetown.edu
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density matrices are considered. The inner productk,l in the Hilbert space is assumed to be linear
in the first variable, conjugate linear in the second. We will be careful to point out domain
restrictions in our discussion.

The mean, or the expected value, of an observableA for the statec is given by

mcsAd = kAscd,cl, s1d

while the standard deviation of the observableA is

DcA = isA − mcsAdIdscdi. s2d

The mean and standard deviation are defined if and only ifc is in the domain of the operatorA,
denoted byDsAd. Furthermore, a statec is an eigenstate of the operatorA iff c is in DsAd and
DcA=0.

Although the mean of an observable may appear to be a specialized notion of limited value,
it actually includes the full range of quantum-mechanical probability considerations. IfPAs d is the
projection-valued measure associated with the self-adjoint operatorA, then for any Borel subsetI
of the real numbersPAsId is a bounded observablesin fact an orthogonal projection onto a closed
subspaced andmcsPAsIdd is the probability that a measurement of the observableA when the state
is c yields a value in the setI. As we vary I, we obtain the probability distribution for the
observableA. Thus, means incorporate all of the probability theory, and no domain questions arise
sincec is always inDsPAsIdd.

The Cauchy–Schwarz inequality, applied tos2d for observablesA andB, takes the form

DcADcB ù
1
2uksA − mcsAdIdscd,sB − mcsBdIdscdl − ksB − mcsBdIdscd,sA − mcsAdIdscdlu

= 1
2ukAscd,Bscdl − kBscd,Ascdld = uImskAscd,Bscdlu, s3d

where c is in DsAdùDsBd. If c is in the set D=hc :c is in DsAdùDsBd ,Ascd
is in DsBd , andBscd is in DsAdj, thens3d can be rewritten as

DcADcB ù
1
2ukisAB− BAdscd,clu = 1

2umcsfA,Bgdu, s4d

where in generalfA,Bg= isAB−BAd defines a unique self-adjoint operator, the commutator ofA
andB, whose domainDsfA,Bgd contains the subspaceD.

III. THE MANDELSTAM–TAMM TEUP

Fundamental to quantum mechanics is an evolution of the state between measurements de-
scribed by the Schrödinger equation

i"
dc

dt
= Hscd, s5d

whereH is the energy observable of the system, called itsHamiltonian. For simplicity we assume
H is time independent. The state at timet is given bycstd=exps−it /"dHscd wherecs0d=c is the
state at time 0, andhexps−it /"dH : tPRj is a one-parameter group of unitary operators generated
by H. Since the statistics are contained inc, the statistics also must evolve.

Although the wave functioncstd is defined for allt, the existence of derivatives depends upon
whetherc is in thesdensed domain of the energy operatorH, and, if we are taking the derivative
of the mean of some observable, in the domain of the associated operatorA. The time derivative
of the mean of an observableA at time t=0 is given by
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d

dt
smcsAdd =

d

dt
skAscstdd,cstdld

= lim
t→0

1

t
skAscstdd,cstdl − kAscd,cld

= lim
t→0

SKcstd − c

t
,Ascstd − cdL +Kcstd − c

t
,AscdL +KAscd,

cstd − c

t
LD

= 0 +
− i

"
skHscd,Ascdl − kAscd,Hscdld =

2

"
ImskHscd,Ascdld. s6d

For these equations to be valid we assume that

c is in DsHd, s7ad

cstd is in DsAd for t near 0, and s7bd

kcstd − c,Ascstd − cdl = ostd. s7cd

Conditionss7ad and s7bd are plausible requirements, buts7cd is less so. The notationostdd de-
scribes any scalar quantityqstd such that limt→0 qstd / td=0. If s7ad holds, thenicstd−ci=ost1−ed
for any e.0, but sinceA may be unbounded,s7cd is not guaranteed1.

Proposition:Supposes7ad holds. It follows that

sid if A is bounded, thens7bd and s7cd hold;
sii d if s7bd holds,A is semibounded, andsd/dtdsmcsAdd exists as a two-sided derivative, then

s7cd holds; and
siii d if s7bd holds andhAscstdd : utu,ej is a bounded set for somee.0, thens7cd holds.

Proof: If A is bounded,DsAd is the whole Hilbert space and the expression ins7cd is ost2s1−edd
for small e anda fortiori ostd, which establishessid.

In sii d, since sd/dtdsmcsAdd exists, limt→0s1/tdkcstd−c ,Ascstd−cdl=p for some scalarp.
SinceA is semibounded,ku ,Asud−culù0 for some real numberc and all vectorsu in DsAd sor
else −A satisfies such an inequality and the same argument can be applied to −Ad. Since
limt→0s1/tdkcstd−c ,cscstd−cdl=0, it follows that fort converging to 0+, pù0; while for t con-
verging to 0−, pø0; and sop=0.

To establishsiii d, let M =suphiAscstddi : utu,ej. Givene1.0, choosed1.0 in s0,ed so that if
utu,d1 then ihfcstd−cg / tj+si /"dHscdi,e1/6M. Chooseu in the dense domainDsAd so thatiu
+si /"dHscdi,e1/6M, and choosed2ød1 so that forutu,d2, icstd−ci,e1/ s3siAsudi+1dd. Then
for utu,d2,

U kcstd − c,Ascstd − cdl
t

U ø UKcstd − c

t
+

i

"
Hscd,Ascstd − cdLU + UK i

"
Hscd + u,Ascstd − cdLU

+ uku,Ascstd − cdlu ,
e1

6M
· 2M +

e1

6M
· 2M +

e1

3
= e1.

This establishess7cd. j

1We have not found examples of self-adjoint operatorsH ,A and a statec for which s7ad and s7bd hold but nots7cd. The
following may perhaps suggest an example. In the Hilbert spacel2sNd, define a sequence of vectorshak:kù1j by aksnd
=1/skn3/4d for nøk2, aksnd=0 else, and letA be the number operator satisfyingAsakdsnd=naksnd for k,nù1. Thenhakj is
analogous to hcstd−cj, with t replaced by 1/k. Moreover limk→` kak=c where csnd=1/n3/4 for nù1, and
limk→`kkak,Asakdl=2.
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If in addition to s7d, we assume thatAscd is in DsHd, Hscd is in DsAd, andfH ,Ag exists, then
we can rewrites6d as sd/dtdmcsAd=s1/"dmcsfH ,Agd.

If c is an eigenvector of the energy operator, thenHscd=cc for some real numberc. For any
time interval f0,tg during which Schrödinger evolution occurs,cstd=fexps−ict /"dgscd and the
state remains unchanged since wave functions that differ by a scalar multiple represent the same
state. IfAscd is defined, then so isAscstdd in this case, and

kHscstdd,Ascstddl = ckcstd,Ascstddl = cmcstdsAd s8d

has imaginary part equal to zero. Thus, bys6d, kAscstdd ,cstdl stays constant. This follows directly
because

kAscstdd,cstdl =KASexp
− ict

"
Dscd,Sexp

− ict

"
DscdL ; kAscd,cl. s9d

Since all bounded observables, including orthogonal projections, have constant means, the statis-
tics associated with every observable remain constant in time. This is a familiar property of the
evolution of energy eigenstates.

In any case we can combines3d and s6d, with B=H, to obtain

DcADcH ù
"

2
U d

dt
mcsAdU . s10d

Instead of regardingDcA as the standard deviation, we choose to call it thestatic uncertaintyof
the observableA when the state isc. This label emphasizes thatDcA is a measure of the vari-
ability of A at a given time. The quantitysd/dtdmcsAd is thedynamic uncertainty per unit time: it
measures the variability of the central value ofA per unit time. Typically in one unit of time the
value ofmcsAd changes by approximatelysd/dtdmcsAd ·1. Thus it is quite naturalsafter Messiahd
to make the following definition whenc is a unit vector inDsHd that is not an eigenvector ofH,

Dct =
def

inf
A 5 DcA

U d

dt
mcsAdU :A self-adjoint,A satisfiess7d,and

d

dt
mcsAd Þ 06 . s11d

If c is an eigenvector ofH, then the denominator ins11d is always zero, thus no observable varies
in time. Thinking ofDct as infinity in this case makes sense.

The quantityDct is, roughly speaking, the minimum time required for the dynamic uncertainty
in some observable to achieve the same magnitude as its static uncertainty, the minimum time
interval until the evolution of the state introduces variation large enough to match the intrinsic
variability at the initial time.

This description is only approximate for multiple reasons. The conditions ins7d may not be
fulfilled. In addition, the dynamics are described by a linear approximation tomcstdsAd, namely,
umcs0dsAd+sd/dtdsmcstdsAddut=0st−0d. ObservablesA for which usd/dtdsmcstdsAddut=0 equals zero
and a second or higher order approximation might be relevant are excluded from consideration.
This happens wheneverc is an eigenvector ofA, for thenDcA=0 and bys10d sd/dtdmcsAd=0.
Also ignored is the possibility that linear approximation is not accurate over the time interval of
interest, short as it may be, because, say, the first derivative changes very rapidly. Finally, although
changes in the mean of a variable are important, we cannot argue that they are the only significant
measures of change as time passes or that any change smaller than one standard deviation is truly
negligible. In fact, if the observable is taken to bePAsId, the meankPAsIdc ,cl=p is the probability
that A lies in the Borel setI, and the standard deviation or static uncertainty isÎp−p2, a number
that is larger thanp for p,

1
2. MessiahsRef. 1, pp. 319–320d calls Dct “the characteristic time of

evolution.” This formulation recommends itself since it does not promise too much. The precise
meaning ofDct is given bys11d.
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The existence of observablesA satisfying the conditions ins11d is established below, so that
the definition is not vacuous.

Assuming such observables exist, by combinings11d with inequality s10d, we obtain

DctDcH ù
"

2
s12d

for all unit vectorsc in DsHd that are not eigenvectors ofH. This is the TEUPsRef. 1, pp.
319–320d.

The quantityDct depends not only on the statec but also on the time evolution ofc, that is,
on the particular HamiltonianH that governs the evolution of the state. Furthermore,s11d ands6d
imply that

Dct ù inf
A
H "DcA

2uImskHscd,Ascdldu
:A self-adjoint,c P DsAd,ImskHscd,Ascdld Þ 0J

ù inf
u
H "iu − ku,clci

2uImskHscd,uldu
:u a vector, Imskc,uld = 0 Þ ImskHscd,uldJ . s13d

To obtains13d, we have replaced the time derivative of the mean ins11d by its value ins6d, and
then replacedAscd by a vectoru. Since the infimum ins11d and those ins13d are effectively over
progressively larger sets, the inequalities are as indicated. The theorem below establishes that
these inequalities are in fact equalities.

Theorem: Let c be a unit vector inDsHd that is not an eigenvector ofH. Then

DctDcH =
"

2
. s14d

Furthermore, the infimumDct is achieved precisely for self-adjoint operatorsA satisfyings7d and
taking c to ac+ ibPHscd whereP is the orthogonal projection of the Hilbert space to the sub-
spacesspanhcjd', anda andb are real numbers withb nonzero.

Remarks:The theorem tells us thatDct=" /2DcH. It also tells us that there are three kinds of
observablesA, sid those for which the absolute ratio of static uncertainty to dynamic uncertainty
per unit time is undefinedfi.e., s7d fails or d/dtmcsAd=0g, sii d those for which this ratio is larger
thanDct, andsiii d those for which the ratio equalsDct. The theorem also characterizes the third
kind of observable.

Before proceeding to the proof, we establish the existence of observables for which the
absolute ratio is defined. Ifu is any vector such thatkc ,ul is real, then there always exist
self-adjoint operatorsA that take the unit vectorc to u. Indeed, for an arbitrary Hilbert space
vector c8, A may always be defined byAsc8d=defkc8 ,Psudlc+kc8 ,clu+BPsc8d, whereB is a
self-adjoint operator defined on the Hilbert subspacesspanhcjd'. It is straightforward to verify that
A is self-adjoint if and only ifB is, andA is bounded if and only ifB is.

Now take u to satisfy ImskHscd ,uldÞ0. Then corresponding operatorsA exist with Ascd
=u. So the two infima on the right-hand side ofs13d are over the same set and hence are equal. If
B is taken to be a bounded operator onsspanhcjd', thenA is bounded. This implies thatA satisfies
s7d. HenceDct is well defined.

If u is chosen as in the theoremfi.e.,u=ac+ ibPHscd, with a andb real andb nonzerog, then
ku ,cl=a is real and kHscd ,ul=akHscd ,cl− ibkHscd ,PHscdl, so that ImskHscd ,uld
=−biPHscdi2Þ0 sincec is not an eigenvector ofH. A self-adjoint operatorA taking c to u
exists, constructed as in the preceding paragraphs, and ifB is taken to be bounded,A satisfiess7d.
Thus operatorsA fitting the description in the theorem exist. In particular, a simple example of
such an operatorA is obtained by settingB=0, a=0, andb=1/iPHscdi. Then
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Asc8d = kc8,e+le+ − kc8,e−le−, s15d

where

e± =
1
Î2

Si
PHscd

iPHscdi
± cD . s16d

This choice ofA is bounded and has the discrete spectrumssAd=h1,−1,0j and corresponding
eigenspaces spanhe+j, spanhe−j, andsspanhe+,e−jd'. In fact cstd=exps−it /"dHscd is in the range
space ofA, i.e., spanhe+,e−j, to first order int.

Proof: We establish that the infimum in the last expression ins13d is a minimum. Then the
remarks above show that the previous expressions ins13d are also infimized sinceu gives rise to
a self-adjoint operatorA such thatAscd=u andA even can be chosen to satisfys7d sfor example,
takeA to be globally defined and thus boundedd.

Write u in s13d in the formu=ac+gPHscd+c8, wherec8 is taken to be orthogonal toc and
PHscd, and a and g are unknown scalars. Since we require ins13d that Imskc ,uld=0
Þ ImskHscd ,uld, thena must be real and

ImskHscd,uld = ImskHscd,gPHscdld

= ImsḡdsiPHscdi2d = ImsḡdsiHscd − kHscd,clci2d = ImsḡdsDcHd2. s17d

So g cannot be real.
The ratio inside the final set of braces ins13d swith " /2 omittedd is

iu − ku,clci
uImskHscd,uldu

=
Îugu2sDcHd2 + ic8i2

uImsḡdusDcHd2 ù
1

DcH
s18d

and equality holds if and only ifc8 is the zero vector andg is a nonzero pure imaginary number
ib. j

The above proof establishes the TEUP, and even transforms it into an equality. The quantity
Dct=" /2DcH depends on bothc andH, and can be thought of as a kind of fundamental unit of
time for the given state and evolutionary law. In any shorter time interval, with the caveats noted
earlier, there is no appreciable distinction between dynamics and statics. Since" is small, this unit
is usually small, but in some casessstates that are approximate eigenvectors of the energy observ-
abled it can be large and the system is in a metastable state.

Certain observables allow one to achieve the infimumDct, and allow us, so to speak, to detect
the temporal change in statistics. These observables takec to ac+ ibPHscd, and the significant
part of thisssetb=−1/" anda=0d is merelys−i /"dPHscd=Psdc /dtd, the projection of the time
derivative ofc perpendicular toc. From this perspective the TEUP, despite its assured perennial
interest, appears almost trivial, the time required to detect change is the timet required for the
dynamic uncertainty of such an observableA to achieve the same magnitude as its static uncer-
tainty. A moment’s computation shows that the static uncertainty is

DcA = iAscd − kAscd,clci = IPS d

dt
cD −KPS d

dt
cD,cLcI

= IPS d

dt
cDI =

1

"
iPHscdi =

1

"
iHscd − kHscd,clci =

1

"
DcH

and bys6d
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d

dt
mcsAd =

2

"
ImskHscd,Ascdld =

2

"
ImSKHscd,PS d

dt
cDLD

=
2

"
ImS− i

"
kHscd,PHscdlD =

2

"2iPHscdi2 =
2

"2sDcHd2.

Sincet3 s2/"2dsDcHd2= us1/"dDcHu, we find thatt=" /2DcH.

IV. AFTERWORD

An alternative to the TEUP discussed here is thehalf-life version, in whichDt is an estimate
of the time that must elapse before there is a 50% probability that the state is orthogonal to the
original state. Pfeifer and Fröhlich8 propose six different variants of the half-life TEUP. Allcock2–4

and Wigner5 have also proposed versions of the TEUP. Their treatments are somewhat obscure
since they do not establish square integrability of the wave function with respect to time. Quantum
estimation theory, as already mentioned, yields a quantum Cramer–Rao inequality which has the
form of a general TEUP.

Busch13 proposes three useful notions of time:s1dlaboratory or clock or external time,s2d
dynamic or internal time, ands3d observable or event time. TEUPs can be formulated in terms of
each.

Indeed, multiple versions and interpretations of the TEUP should be accepted as a fact of life.
The product of time and energy has the same units as Planck’s celebrated constant, and it should
not be surprising to find that significant time intervals and energy intervals derived from a variety
of physical scenarios can be related to".

The status ofDt in the Mandelstam–Tamm TEUP and most other TEUPs is quite different
from that ofDx in Heisenberg’s uncertainty principle. An important part of the program of rela-
tivistic quantum mechanics is to establish the comparability and equal footing of space and time.
However, the Mandelstam–Tamm and half-life version of the TEUP, and the equality established
in this paper, are actually obstacles to achieving this objective. Time here is clock time and is the
parameter of the unitary group of state evolution generated by the Hamiltonian. The quantityDct
is not the standard deviation of an observable, but is the infimum of the ratio of static uncertainty
to dynamic uncertainty per unit time, with the caveats noted above.
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There exists an example of a set of 40 projective lines in eight-dimensional Hilbert
space producing a Kochen–Specker-type contradiction. This set corresponds to a
known no-hidden variables argument due to Mermin. In the present paper it is
proved that this set admits a finite saturation, i.e., an extension up to a finite set with
the following property: every subset of pairwise orthogonal projective lines has a
completion, i.e., is contained in at least one subset of eight pairwise orthogonal
projective lines. An explicit description of such an extension consisting of 120
projective lines is given. The idea to saturate the set of projective lines related to
Mermin’s example together with the possibility to have a finite saturation allow to
find the corresponding group of symmetry. This group is described explicitely and
is shown to be generated by reflections. The natural action of the mentioned group
on the set of all subsets of pairwise orthogonal projective lines of the mentioned
extension is investigated. In particular, the restriction of this action to complete
subsets is shown to have only four orbits, which have a natural characterization in
terms of the construction of the saturation. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1887923g

I. INTRODUCTION

The analysis of the foundations of quantum theory has two important results,s1d Bell’s
inequalities;s2d Kochen–Specker theorem. Both of them show that in quantum mechanics a
statistical model of a physical experiment may not admit a realization by way of a probability
spacesV ,F ,Pd. The first result shows, that even if one assumes the existence of a measurable
spacesV ,Fd, one might not be able to consruct a probability measureP. The second result shows
that the assumption about the existence ofsV ,Fd may itself be contradictory.

The Bell–Kochen–Specker theory2,5 restricts itself to considering the measuring devices with
only two possible indications. In this case the problem cocerning the existence ofsV ,Fd reduces
to a problem about coloring projective lines in a finite dimensional Hilbert space. It is possible to
reformulate this problem as follows.8 Let H be a Hilbert space overC of finite dimensionn
ªdimC H. Suppose one is given a family ofmPN orthonormal bases inH : hei

sadji=1
n , a=1,m.

Choose from each basis an elementeia

sad, a=1,m, and look at the inner productsseia

sad ,eib

sbdd, a ,b
=1,m. Is it always possible to make this choice in such a way, that for alla and b the inner
product ofeia

sad andeib

sbd does not vanish, i.e., thesprojectived linesCeia

sad andCeib

sbd arenot orthogo-
nal?

One says that a collection of projective lineshCei
sadji,a produces aKochen–Specker-type con-
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tradiction if the answer to the formulated question is “No.” The original construction by Kochen
and Specker in the proof of their theorem generates the first example of this contradiction. Since
then several other examples of this type have been found, in particular Refs. 7, 6, 9, 4, and 1. In
the present paper we analyze one of them—the example coming from the proof of a no-hidden-
variables theorem given by Mermin.6 Note, that the latter example can be related to the discussion
of Einstein–Podolsky–Rosen paradox and Bell’s theorem in Ref. 3.

The original construction of Kochen and Specker is quite sophisticated. This is determined by
the fact that the authors work in a three-dimensional space. The construction of Mermin and the
corresponding proof are much more simple, but the space is eight-dimensional. To be exact, the
original paper of Mermin is written in terms of operators on a Hilbert space and the reformulation
in terms of projective lines is due to Kernaghan and Peres.4 In general, the latter consists in the
following. One defines a set of 40 projective lines inC8. The corresponding description is explicit
and quite simple. If one views the elements ofC8 as columns of eight complex numbers, then it is
possible to represent each of the 40 projective lines by a column with entries 0, 1 or −1. Thus in
fact the projective lines can even be viewed as real. The corresponding Kochen–Specker contra-
diction is then established by some simple arithmetic argument. The link with the Mermin’s
formulation is as follows. The described set splits into five distinct tuples, each containing eight
pairwise orthogonal projective lines. IdentifyingC8 with sC2d^3 and interpreting each of the five
tuples as coming from an orthonormal basis corresponding to some complete set of pairwise
commuting orthogonal projectors, one arrives at five complete sets playing a key role in Ref. 6.

There is another well-known example—the “Penrose dodecahedron”—studied in detail by
Zimba and Penrose in Ref. 9. In this case one again makes use of 40 projective lines, but this time
in C4. In the corresponding construction one considers a dodecahedron and associates in a certain
way to each of its 20 vertices two projective lines inC4. The whole construction has the symmetry
group of a dodecahedron, which naturally acts on the resulting set of 40 projective lines. Com-
paring the examples of Penrose and of Mermin, it is natural to ask, what can one say about the
symmetry of Mermin’s example? An additional motivation for this is given by the two examples
described in Ref. 1 which also have a high degree of symmetry. One of them is associated to a 120
cell sa four-dimensional analog of dodecahedrond, and the other to a 600 cellsa four-dimensional
analog of icosahedrond. It turns out, that despite of the fact that the projective lines in Mermin’s
case look quite simple, an answer to this question, as was mentioned in Ref. 4, presents a problem.
Its possible solution constitutes the subject of the present paper.

II. SATURATED KOCHEN–SPECKER

Let A denote a set of projective lines in Hilbert spaceH, dimC H=n,`. The setA is called
saturatedwith respect to orthogonality relation' if any of its subsetsB,A of pairwise orthogo-
nal projective lines can be embedded into a subsetC,A of n pairwise orthogonal projective lines.
DenoteP'sAdª hB,Au ∀x,yPB:xÞy⇒x'yj. DenoteCsAdª hBPP'sAd u #B=nj. The ele-
ments ofCsAd will be calledcompletesubsets ofA. Note thatP'sAd contains an empty set and all
subsets of cardinality 1. Note that ifA produces a Kochen–Specker contradiction, thenCsAd is not
empty.

If one looks at the mentioned example of Mermin, one observes that the corresponding set is
not saturated with respect to'. Intuitively, a saturated set should have a higher degree of sym-
metry than an unsaturated part of itfan example of a saturated set is the setPsHd of all projective
lines inHg. This leads to the idea of how to investigate the symmetry of Mermin’s example. One
may try to add projective lines to the given set so that to get a saturated set. After that it makes
sense to proceed with the symmetry. Naively, such an attempt should look as follows. One takes
a subset of pairwise orthogonal lines, tries to find a complete set containing it, and in case there is
no such one, invents several other pairwise orthogonal projective lines to make it complete. These
new projective lines are added to the initial set, and the whole process is repeated until one reaches
a saturation. At each step one solves the problem for the chosen subset, but at the same time one
may create other subsets of pairwise orthogonal elements which require a completion. It means,
that a priori the described algorythm is not even finite.
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In the next section we are going to describe afinite set A of projective lines inH, dimC H
=8, with the following properties:s1d A is saturated with respect to'; s2d A contains a set of
Mermin–Kernaghan–Peres projective lines and due to this, in particular, produces a Kochen–
Specker-type contradiction;s3d everyelement ofA can be represented by a column with each of
the eight entries being 0, 1 or −1.

After that we proceed with the study of the symmetry of the setA. One looks atBijsAd—a
group of all bijections ofA, and denotes byBij'sAd its subgroup consisting of all bijections which
respect the orthogonality relation'. The setCsAd naturally splits into four disjoint subsets de-
noted asCksAd, k=1,2,4,8, aswill be explained below. We describe a subgroupG in Bij'sAd by
giving explicit formulas for a set of its generators and prove, that this group has an action onCsAd
such thatCksAd’s conicide with its orbits. It means that one can take any element ofCksAd and then
generate all the other complete subsets belongingCksAd by applying the elements of this group.
This allows to describe the symmetry of Mermin’s example.

III. 120 PROJECTIVE LINES

We shall now describe a setA which will later be proved to be a saturated extension of
Mermin’s example. SetHªC2 ^ C2 ^ C2. Recall that one has denoted the set of all projective lines
in H by PsHd. Let V denote a set of four symbols,V=he, f ,g,hj. We are going to describe a map

j:PsVd3
ª PsVd \ hxj → CsPsHdd,

such that∀U ,U8PPsVd3 :UÞU8⇒jsUdùjsU8d=x. Note that the latter in particular implies
thatj is injective. Since #PsVd3=15 and dimCsHd=8, the union of all the sets from the image of
j must yield 120 projective lines. This will produce the setA.

The setPsVd3 may be visualized as a tetrahedron with vertices labeled ase, f, g, and h.
Considering the subsets ofV, one identifies the vertices with the subsets of cardinality 1, the edges
with subsets of cardinality 2, faces with subsets of cardinality 3, and the body of the tetrahedron

with V. Assign to the edges of this graph labels of the formw
v

or c
v

wherew andc are two symbols
andv is a number 1, 2 or 3. Require, that the edges associated to the same vertex have different
numbersv. This defines the labelling of the edges of the graph up to a permutation of labels of
vertices. Without loss of generality, one may choose and fix the labeling as shown in

s1d

Note that this tetrahedron appears in Ref. 8.
Choose an arbitrary orthonormal basishwaja=0,1 in C2. It will be convenient to view the

possible values 0 and 1 of the indexa as elements of the groupZ2 with the group operation written
additively saddition modulo 2d. Consider a matrixuª iusa ,bdia,bPZ2

with entriesusa ,bd=−1 if
sa ,bd=s1,1d and usa ,bd=1 otherwise. Note that it can be viewed as a character matrix ofZ2.
There exist the following properties:

s1d usa,bd = usb,ad P R,
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s2d o
b

usa,bdusb,gd = 2da,g,

s2d
s3d usa,1 +ad = 1,

s4d usa,b + gd = usa,bdusa,gd,

wherea, b, g run overZ2. Denoteua
b
ªusa ,bd /Î2 and define another orthonormal basishcaja in

C2: caªobua
bwb.

We shall associate to the mentioned graph and a fixed choice of an orthonormal basishwaja a
setA of 120 projective lines inH expressed via the functionswa and the matrixu. It means that
there will be a complete set associated to every vertex of the graphsthis gives four complete setsd,
to every edgesthis gives six more complete setsd, to every facesthis gives four complete setsd and
to the whole tetrahedronsthis gives one complete setd. In what follows we use the notation: write

ê instead ofhej to refer to a vertex, writeef instead ofhe, fj to denote an edge, writeefg or h̄ to
denote the facehe, f ,gj, and writeefgh instead ofhe, f ,g,hj.

Let us start with the description of the complete sets corresponding to vertices. Denote a set of
all edges having a common vertexvPV by Ev, and consider a set

Sv̂ ª MapssEv → Z2d, v P V.

This set is not empty and contains eight elements. Take anyv, sayv=e, and take anysPSê. The
labels of the edgeseh, eg, andef from Ee are of the formw1, c2, andc3, respectively. Associate
to this fact a vectorCs

sed
ªwssehd ^ cssegd ^ cssefd. The vectorsCs

svd for othervPV are defined in a
similar way. As a result one gets for every vertexv an orthonormal basishCs

svdjsPSv̂
. Denote

Cs
v
ªCCs

svd. It follows, that one has four complete sets of projective lines associated to each
vertex. One definesjsv̂dª hCs

vjsPSv̂
, vPV.

The complete sets associated to edges make use of a slightly more sophisticated indexing. We
denote byEª hef,eg,eh, fg, fh,ghj the set of all edges. To define a complete set of projective
lines corresponding to an edge, one first takes an arbitraryorderedpair of two distinct vertices
sv ,wd. Let z and t denote the remaining two vertices of the graph. Consider a disjoint union of a
one-element sethvwj and a two-element sethz,tj and denote

Kvw ª Mapsshvwj t hz,tj → Z2d.

Note, that#Kvw=8. The complete set of projective lines corresponding to the edgevw will be
indexed by the elements ofKvw. Takev=e, w= f and take arbitraryûPKef. Recall that the labels
of the edgeseh, eg, andef from Ee are of the formw1, c2, andc3, respectively. Denote

Xû
se→fd

ª o
a,mPZ2

ua
mua

ûshdum
ûsgdwa ^ cm ^ cûsefd.

One defines the vectorsXû
sv→wd, ûPKvw, corresponding to every ordered pairsv ,wd, vÞw, in a

similar way. Using the properties of the matrixu, one can prove that

s1d the vectorsXû
sv→wd, ûPKvw, are pairwise orthogonal,

s2d the projective linesCXû
sv→wd andCXû

sw→vd coincide.

The latter fact motivates the notationXû
vw
ªCXû

sv→wd. The first fact implies, thathXû
vwjûPKvw

is a
complete set of projective lines. It follows, that one gets six complete sets of projective lines
associated to each edge of the graph. One definesjsedª hXû

ejûPKe
, ePE.

Let us construct the complete sets associated to faces of the tetrahedron. Actually, every face
is determined by an opposite vertex of the tetrahedron, and in this sense the complete sets to be
constructed can be viewed as associated to vertices. It is simply natural to view them as associated
to faces since the role of complete sets associated to vertices is already occupied. Denote
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Rv̄ ª MapssE \ Ev → Z2d, v P V.

This set is not empty, contains eight elements, and moreover, there is a natural bijectionnv :Rv̄

→̃Sv̂ established by the formulanvsrdsvwd=rsztd, wherez and t are the vertices complementing
hv ,wj up toV. If there is no risk of confusion, we writer* instead ofnvsrd, rPRv̄, as well ass*

instead ofnv
−1ssd, sPSv̄. Now takev=e and anyrPRē. Recall that the labels of the edgeseh, eg,

andef from Ee are of the formw1, c2, andc3, respectively. Denote

Fr
se→fd

ª o
a,mPZ2

ua
r* sehd+r* sefdum

r* segd+r* sefdwa ^ cm ^ cDr+a+m,

whereDrªoePE\Ee
rsed. The vectorsFr

sv→wd corresponding to other choices ofv ,w[V,vÞw are
defined in a similar way. The properties of the matrixu imply that the vectorsFr

sv→wd ,r[Rv̄, are
pairwise orthogonal and thatCFr

sv→wd does not depend on the choice ofw. Denote, Fr
v

ªCFr
sv→wd. It follows, that to every facev̄ one associates a complete set of projective lines

hFr
vjrPRv̄

. One definesjsv̄dª hFr
vjrPRv̄

, vPV.

Let us finally associate a complete set of projective lines to the whole tetrahedron. Denote

L ª Hp:V → Z2u o
vPV

psvd = 1J .

Note, that #L=8. Take anorderedpair se, fdPV3V. Recall that the labels of the edgeseh, eg,
andef from Ee are of the formw1, c2, andc3, respectively,

Fp
se→fd

ª o
a,mPZ2

upshd
psgd+mua

psgd+mwa ^ cm ^ cpsed+a+m.

Note, that using the properties of the matrixu one can prove that the expressionua
m+mua

m+m remains
invariant under the transpositionsa,ad� sm,md. The vectorsFp

su→vd corresponding to other or-
dered pairs are defined in a similar way. Using the properties ofu, one can prove, that

s1d the vectorsFp
sv→wd, pPL, are pairwise orthogonal,

s2d the projective lineCFp
sv→wd does not depend on the choice of the ordered pairsv ,wd.

The latter fact motivates the notationFpªCFp
sv→wd. The first fact implies, thathFpjpPL is a

complete set of projective lines. One definesjsefghdª hFpjpPL. This completes the definition of
j.

Note that the projective lines of the formCs
v andFp have been introduced in Ref. 8, but the

set hFpjp was not viewed as a complete set associated to the whole tetrahedrons1d, since the
projective lines of the formXû

vw andFr
v did not exist. One can find the calculations illustrating the

mentioned properties ofFp in Ref. 8. The definition ofXû
vw andFr

v is new.
Now we have a mapj :PsVd3→CsPsHdd. One verifies, that all the described projective lines

are distinct. It means, that one gets 15 disjoint complete sets of projective lines inH, for every
vertex vPV a sethCs

vjsPSv̂
; for every edgeePE a sethXû

ejûPKe
; for every facev̄, vPV, a set

hFr
vjrPRv̄

; and for the whole tetrahedron a sethFpjpPL. The setAªtUPImsjdU has a cardinality

#A=120. We claim, that the setA is saturated with respect to the orthogonality relation' and
produces a Kochen–Specker-type contradiction.

IV. RELATIONS BETWEEN THE PROJECTIVE LINES

Let us describe the orthogonality relations between the elements of the setA. All these
relations follow from the propertiess2d of the matrixu. Recall that ifrPRv̄, then one denotes by

r* its image under the natural bijectionnv :Rv̄→̃Sv̂. Simillarly, if sPSv̂, one writess* instead of
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nv
−1ssdPRv̄. If sPSv̂, let ¹sªoePEv

ssed. If ûPKe, saye=ef, then letû̃ denote an element ofKef

defined byû̃sefd=1+ûsefd+ûsgd+ûshd, û̃sgd=ûshd, û̃shd=ûsgd. For othere the notationû̃ for
ûPKe is defined in a similar way. Note thatr** =r, s** =s, andû5 =û.

We explicitly describe part of the relations. The others are obtained by permutation of the
symbolse, f, g, andh,

s1d Cs
e 'Cs8

e iff ss·dÞs8s·d,
s2d Cs

e 'Cs1

f iff ssefd=1+s1sefd,
s3d Fr

e'Fr8
e iff r*s·dÞr8*s·d,

s4d Fr
e'Fr1

f iff r*sefd=1+r1
*sefd,

s5d Xû
ef'Xû8

ef iff ûs·dÞû8s·d,
s6d Xû

ef'Xû1

eg iff ûsefd+ûshd=1+û1segd+û1shd,
s7d Xû

ef'Xû1

gh iff ûsgd+ûshd=û1sed+û1sfd,
s8d Fp'Fp8 iff ps·dÞp8s·d,
s9d Cs

e 'Fr
e iff ¹s=1+¹r* ,

s10d Cs
e 'Fr

f iff ¹s+ssefd=1+¹r* +r*sefd,
s11d Cs

e 'Xû
ef iff ssefd=1+ûsefd,

s12d Cs
e 'Xû

fg iff ssefd+ssegd=1+û̃sed,
s13d Fr

e'Xû
ef iff r*sefd=1+û̃sefd,

s14d Fr
e'Xû

fg iff r*sefd+r*segd=1+ûsed,
s15d Cs

e 'Fp iff ¹s=1+psed,
s16d Fr

e'Fp iff ¹r* =1+psed,
s17d Xû

ef'Fp iff ûsgd+ûshd=1+psgd+pshd.

Note, that there is no 1 in the formulas7d. Note that these relations have a self-duality
property. Namely, the condition for orthogonality ins5d is equivalent toû̃s·dÞ û̃8s·d, the condition

in s6d is equivalent toû̃sefd+ û̃shd=1+û1̃segd+û1̃shd, the condition ins7d is equivalent toû̃sgd
+ û̃shd=û1̃sed+û1̃sfd, and the condition ins17d is equivalent toû̃sgd+ û̃shd=1+psgd+pshd. It
follows, that if one has a set of pairwise orthogonal projective lines of the form
hCsi

vi jiPI ø hXû j

e j j jPJø hFrl

wljlPLø hFpm
jmPM, where I, J, L, M are some index sets,vi ,wl PV, e j

PE, then by replacingCsi

vi with F
si

*
vi , Frl

wl with C
rl

*
wl andXû j

e j with Xû̃ j

e j , one obtains a set of projective

lines hF
si

*
vi jiPI ø hXû̃ j

e j j jPJø hC
rl

*
wljlPLø hFpm

jmPM, which are still pairwise orthogonal. It follows,

that one has a mapd :A→A, d2= id, which respects the orthogonality relation'. Call d
PBij'sAd the duality map.

V. LINK TO MERMIN’S EXAMPLE

Let us prove that the setA produces a Kochen–Specker-type contradiction and establish the
link with the example of Mermin. Denote

GsAd ª hf:CsAd → Au ∀ B P CsAd:fsBd P Bj,

DsAd ª hf P GsAdu ∀ B,B8 P CsAd:B Þ B8 ⇒ ¬ sfsBd ' fsB8ddj.

One must show, thatDsAd=x. Suppose the contrary,DsAdÞx. DenoteBvª hCs
vjsPSv̂

sv

PVd, B̂ª hFpjpPL. Take fPDsAd. The definition ofGsAd.DsAd implies, that for everyvPV
one has an elementfsBvdPBv, i.e., fsBvd=C

sv
f

v , wheresv
f is some element ofSv̂. Simillarly,

fsB̂d=Fpf, where pf is some element ofL. The definition ofDsAd implies, thatC
sv

f
v is not

orthogonal to C
sw

f
w sfor any vÞwd. Using the orthogonality relations one concludes, that

sv
fsvwd=sw

fsvwd. It means, that a set of functionshsv
fjvPV induces a functiontf :E→Z2 by the

formula tfsvwdªsv
fsvwd=sw

fsvwd sfor any vwPEd. Now invoke the fact, that the definition of
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DsAd also implies, that for everyvPV the line fsB̂d should not be orthogonal tofsBvd, i.e.,
¬sFpf 'Csv

fd. It follows, that ∀vPV:¹sv
f=pfsvd. Taking the sum over allvPV and invoking

the definition ofL, one getsovPV¹sv
f=ovPVpfsvd=1. On the other hand,

o
vPV

¹sv
f = o

vPV
o

ePEv

sv
fsed = o

ePE

stfsed + tfsedd = 0.

Thus one arrives to a contradiction 0=1. It means that∃”fPDsAd, i.e., DsAd=x.
The link with Mermin’s example is established as follows. Let the standard basis inC2 play

the role of the basishwajaPZ2
involved in the construction ofA. Note, that in the proof ofDsAd

=x we have used only five complete subsets,Bv sv=e, f ,g,hd and B̂. The proof of no-hidden-
variables theorem by Mermin is given in terms of operators inC2 ^ C2 ^ C2. There are five com-
plete sets of pairwise commuting orthogonal projectors present in that proof. If one looks at the
one-dimensional eigenspacessi.e., the projective linesd associated to each of these sets, one ob-

tainsBetBf tBgtBht B̂.

VI. SATURATION PROPERTY, PART 1

The proof that the setA is saturated with respect to' is more bulky. Recall that we have an
injective mapj :PsVd3�CsPsHdd, whereV is a set of 4 symbolsV=he, f ,g,hj. This map has a
property∀U ,U8PPsVd3 ,UÞU8 :jsUdùjsU8d=x. It follows, that one can define a maph :A
→PsVd as follows: one choosesUPPsVd3 to be the valuehsld of the maph on a projective line
l PA wheneverl PjsUd, i.e., h is defined from the requirement∀UPPsVd3 : l PjsUd⇔hsld
=U. Note, thath induces a surjection ontoPsVd3.

The projective lines constitutingA may be classified as follows. Call#hsld the type of the
projective linel PA. There are four types of projective lines. The imagehsld is termed thekind of
the line l. There are 4 kinds in type 1, 6 kinds in type 2, 4 kinds in type 3, and 1 kind in type 4.
We shall also refer to projective lines of the types 1, 2, 3, 4, as being projective lines ofC type,
X type,F type, andF type, respectively. In a similar way, ifhsld= ê, the linel is said to be ofCe

kind, if hsld=ef, the line l is said to be ofXef kind, etc.
Naively, in order to prove the saturation property forA one may think of having to do the

following: one must take every subsetB of A and test if its elements are pairwise orthogonal; if it
happens to be so, one must find a complete subset inA containingB. All this appears to be a very
boring problem since#PsAd=2120. There is of course a group of permutationsS4 acting onP'sAd
and an observation about the existence of the duality mapd, but the #S4 is just 4!=24 and the
order of d as an element ofBij'sAd is just 2, i.e.,d2= id. It means, that one must find a more
sophisticated approach to prove the saturation.

We have a maph :A→PsVd. It induces a mapPshd :PsAd→LªPsPsVdd. How to describe an

image of the compositionP'sAd�PsAd →
Pshd

L, where the first arrow is the canonical injection?
There exists a natural monomorphism of groupsm: BijsVd�BijsPsVdd, b°Psbd. There also

exists a natural monomorphismm: BijsVd�BijsAd, such that for everybPBijsVd there is a
commutative diagram

The monomorphismm is defined as follows. Take anybPPsVd and describe explicitly the values
of msbds·d on the elements of the formCs

v , Xû
e , Fr

v, andFp, wherevPV, ePE, sPSv̂, ûPKe,

rPRv̄, and pPL. Let msbdsCs
vdªCs8

v8, wherev8=bsvd and ∀e1PEv8 :s8se1d=ssPsb−1dse1dd;
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msbdsXû
edªXû8

e8 , wheree8=Psbdsed and û8se8d=ûsed, ∀v1PV\e8 :û8sv1d=ûsb−1sv1dd; msbdsFr
vd

ªFr8
v8, where v8=bsvd and ∀e1PEv8 :r8*se1d=r*sPsb−1dse1dd; finally msbdsFpdªFp8, where

∀v1PV:p8sv1d=psb−1sv1dd. Note, that for everybPBijsVd the mapmsbd respects the orthogo-
nality relation' on A, and the fact that this relation has a symmetry with respect to the group of
permutations ofe, f, g, andh can be expressed as

∀b P BijsVd ∀ l,l8 P A:l ' l8 ⇒ msbdsld ' msbdsl8d.

It follows, that whenever an elementQPL stems from some elementBPP'sAd, the element of
the form PsmsbddsQd, bPBijsVd, also stems from an element ofP'sAd, namely from
PsmsbddsBd. FactorizeL with respect to the equivalence relation; induced by permutations,

Q , Q8: ⇔ ∃ b P BijsVd:PsmsbddsQd = Q8.

DenoteGªL /,. The problem of the description of the image ofP'sAd in L is then reduced to
describing the image of the composition

P'sAd� PsAd →
Pshd

L� G,

where the first arrow is the canonical injection and the last arrow is the canonical surjection.
It is convenient to introduce graphical notation for the elements ofL and G. Consider an

example. LetQ=hê, f̂ ,ē,eg,efghjPL. It is represented by a graph,

The general principle is the following. A graph may have up to four vertices labeled by the
symbolse, f, g or h. If Q containsv̂, introduce a vertex labeled by the symbolv and mark it with
*; if Q containsv̄, introduce a vertexv and draw a circle around it; if there isvwPQ, introduce
two verticesv andw and connect them by an edge; finally ifQ containsefgh, set a letterF near
the corresponding figure. Thus to eachQPL a graph is associated. Note, that if an elementQ
PL stems from some elementBPPsAd, i.e., PshdsBd=Q, then by looking at a graph that repre-
sentsQ one cannot tell everything aboutB, but the kinds of projective lines that are present inB
can be understood.

The graphs representing the elements ofG are similar to the graphs representing the elements
of L. They are obtained by omitting the labelse, f, g, andh of the vertices. For instance, ifQ
PL is as in the example given above, andfQgPG is its image under the natural surjectionL�G,
then fQg is represented by the graph

Whenever one has an element ofG of the formfPshdsBdg, whereB is some subset ofA, the graph
that represents this element is called ashadowof B.

Let us introduce more terminology. A graph representing an element ofG is calledadmissible
iff by definition it represents an element of the image ofP'sAd→G; otherwise it is callednon-
admissible. One would like to describe all the admissible graphs. Whenever a graph represents an
image of someQPL under the canonical surjectionL�G, the cardinality#Q is called thedegree
of this graph. Whenever a graph represents an image of someBPP'sAd underP'sAd→G, one
says thatB hangs overthis graph. AnyB8P P'sAd containingB is called anextensionof B. It is
called apure extension, iff by definitionB8 and B hang over the same graph. An extension
satisfyingB8=B is called trivial . An extensionB8 of B is calledcompleteiff by definition #B8
=8 frecall that 8=dimCsHd, A,PsHdg.
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Proposition 1: s1d The graphp is admissible and any element ofP'sAd hanging over this
graph admits a pure complete extension.

s2d The graphpp is admissible and any element ofP'sAd hanging over this graph admits a
pure complete extension.

s3d The graphn is not admissible.
s4d The graphppp is admissible and any element ofP'sAd hanging over this graph admits a

pure extension up to a set of cardinality 6. Any element ofP'sAd of cardinality 6, which hangs
over this graph, has a complete extension hanging overppp(.

s5d The graphppp( is admissible and any element ofP'sAd hanging over this graph admits
a pure complete extension.

s6d The graphpppp is admissible and any element ofP'sAd hanging over this graph does not
have nontrivial pure extensions. Any element ofP'sAd hanging over this graph has a complete
extension hanging over~~~~.

s7d The graphppppF is not admissible.
Proof: s1d A set consisting of one projective lineCs

e, wheres is some element ofSê, gives an
example of a set hanging overp. Every set hanging over this graph is of the formB=hCs

vjsPS,
wherev is some element ofV andS is some nonempty subset ofSv̂. This subsetB is always a
subset of a complete sethCs

vjsPSv̂
.

s2d Take anyaPZ2 and choose anysPSê such thatssefd=a, and anys1PSf̂ such that
s1sefd=1+a. Then the projective linesCs

e andCs1

f are orthogonal and one can take them two as
a set which hangs over the graphpp. An arbitrary setB hanging over this graph is always of the
form B=hCs

vjsPSø hCs1

w js1PS1
, whereS andS1 are some nonempty subsets ofSv̂ andSŵ, respec-

tively, v, wPV, vÞw. One associates toB a parameteraªssvwd=1+s1svwd, wheres is any
element of S and s1 is any element ofS1. Denote S8ª hsPSv̂ ussvwd=aj and S18ª hs1

PSŵus1svwd=1+aj. Since #S8= #S18=4, the setB8ª hCs
vjsPS8ø hCs1

w js1PS18
gives the required

pure complete extension ofB.
s3d If the graphn is admissible, then there should exist three pairwise orthogonal projective

lines of the formXû
ef, Xû1

eg andXû3

fg, whereû, û1, andû2 are some elements ofKef, Keg, andKfg,
respectively. The orthogonality relations yield three equations,

Xû
ef ' Xû1

eg ⇔ ûsefd + ûshd = 1 +û1segd + û1shd,

Xû
ef ' Xû2

fg ⇔ ûsefd + ûshd = 1 +û2sfgd + û2shd,

Xû1

eg ' Xû2

fg ⇔ û1segd + û1shd = 1 +û2sfgd + û2shd.

Taking the sum of these three equations one arrives to a contradiction 0=1. This means, that the
mentioned triangle is not admissible.

s4d One can construct an example of three pairwise orthogonal lines of the formCs
e, Cs1

f , Cs2

g

as follows: take anya,b,cPZ2 and choosesPSê such thatssefd=a, ssegd=b, anys1PSf̂ such
thats1sefd=1+a, s1sfgd=c, ands2PSĝ such thats2segd=1+b, s2sfgd=1+c. Then the orthogo-
nality relations between the mentioned three lines are fulfilled and the set consisting of these three
hangs over the graphppp. An arbitrary set hanging over this graph is of the formB
=hCs

vjsPSø hCs
wjs1PS1

ø hCs
zjs2PS2

, whereS, S1, andS2 are some nonempty subsets ofSv̂, Sŵ, and
Sẑ, respectively,v ,w,zPV, vÞw, vÞz, wÞz. Without loss of generality one may specializev, w
and z to e, f, and g, respectively. Associate toB three parametersa,b,cPZ2: aªssefd=1
+s1sefd, bªssegd=1+s2segd, cªs1sfgd=1+s2sfgd, wheres, s1 ands2 are elements ofS, S1,
and S2, respectively. Denote S8ª hsPSêussefd=a&ssegd=bj, S18ª hs1PSf̂ us1sefd=1
+a& s1sfgd=cj, andS28ª hs2PSĝus2segd=1+b& s2sfgd=1+cj. Since #S8= #S18= #S28=2, the set
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B8ª hCs
vjsPS8ø hCs

wjs1PS18
ø hCs

zjs2PS28
is a pure extension ofB up to a set of cardinality 6. Now

look for a projective lineFr
h, rPRh̄, which is orthogonal to every element ofB8. This yields the

following equations:

∀s P S8:¹s + ssehd = 1 +¹r* + r*sehd,

∀s1 P S18:¹s1
+ s1sfhd = 1 +¹r* + r*sfhd,

∀s2 P S28:¹s2
+ s2sghd = 1 +¹r* + r*sghd.

Observe that the left-hand sides of these equations may be expressed in terms of parametersa, b,
and c as ¹s+ssehd=ssefd+ssegd=a+b, ¹s1

+s1sfhd=s1sefd+s1sfgd=s1+ad+c, and ¹s2
+s2sghd=s1segd+s1sfgd=s1+bd+s1+cd. Reduce the equations forr to r*sfhd+r*sghd=1+a
+b, r*sehd+r*sghd=a+c andr*sehd+r*sfhd=1+b+c. The latter equation is nothing but a sum of
the first two and may be dropped. DenoteR8ª hrPRh̄ur*sfhd+r*sghd=1+a+b&r*sehd+r*sghd
=a+cj. Taking into account that #R=2, one obtains a setB9ªB8ø hFr

hjrPR8, which is a complete
extension ofB8 and hangs overppp(.

s5d The admissibility ofppp( follows from s4d. Consider anyBPP'sAd hanging over this
graph. Without loss of generality, one may assume, thatB
=hCs

ejsPSø hCs
f js1PS1

ø hCs
gjs2PS2

ø hFr
hjrPR, whereS, S1, S2, andR are some nonempty subsets

of Sê, Sf̂, Sĝ, andRh̄, respectively. Consider a subset ofB consisting of all projective lines ofC
type and associate to it the parametersa,b,cPZ2 in a way as described in the proof ofs4d. Let S8,

S18, S28, and R8 be defined as in the proof of s4d. Then the set B̃
ª hCs

ejsPS8ø hCs
f js1PS18

ø hCs
gjs2PS28

ø hFr
hjrPR8 is the required pure complete extension ofB.

s6d A set of pairwise orthogonal projective linesCs
e, Cs1

f , Cs2

g , andCs3

h , which is required to
establish the admissibility of the graphpppp, can be constructed as follows. Take anyZ2-valued
function w on Eª hef,eg,eh, fg, fh,ghj. Denoteaªwsefd, bªwsegd, cªwsfgd, pªwsehd, q
ªwsfhd, rªwsghd. Take the followings, s1, s2, ands3: ssefd=a, ssegd=b, ssehd=p; s1sefd
=1+a, s1sfgd=c, s1sfhd=q; s2segd=1+b, s2sfgd=1+c, s2sghd=r; s3sehd=1+p, s3sfhd=1+q,
s3sghd=1+r. Then the projective linesCs

e, Cs1

f , Cs2

g , andCs3

h constitute a set as required. An
arbitrary set B hanging over the mentioned graph is of the formB
=hCs

ejsPSø hCs1

f js1PS1
ø hCs2

g js2PS2
ø hCs3

h js3PS3
, whereS, S1, S2, and S3 are some nonempty

subsets ofSê, Sf̂, Sĝ, andSĥ respectively. To every suchB associatew: E→Z2 by settingwsefd
=ssefd, wsegd=ssegd, wsehd=ssehd, wsfgd=s1sfgd, wsfhd=s1sfhd, wsghd=s2sghd, wheres, s1,
and s2 can be taken to be any elements ofS, S1, andS2, respectively. The setS is a nonempty
subset ofS8ª hsPSêussefd=wsefd& ssegd=wsegd& ssehd=wsehdj. Since #S8=1, we see that
#S=1. Similarly, #S1= #S2= #S3=1. In the latter case S3,S38ª hs3PSĥus3sehd=1
+wsehd& s3sfhd=1+wsfhd& s3sghd=1+wsghdj. This means that a set hanging overpppp cannot
have nontrivial pure extensions.

Let us now construct a complete extension of a setB, whereB hangs overpppp. Let w denote
the function associated toB=hCs

e ,Cs1

f ,Cs2

g ,Cs3

h jPP'sAd as described above, and leta, b, c, p,
q, and r be its values on the edgesef, eg, fg, eh, fh, and gh, respectively. Looking for an
extension which hangs over~~~~, we need to construct projective lines of the formFr

e, Fr1

f ,
Fr2

g , and Fr3

h . Define r, r1, r2, and r3 by the formulasr*sefd=a+b+c+p+q, r*segd=1+a+b
+c+p+r, r*sehd=a+b+p+q+r; r1

*sefd=1+a+b+c+p+q, r1
*sfgd=a+b+c+q+r, r1

*sfhd=1+a
+c+p+q+r; r2

*segd=a+b+c+p+r, r2
*sfgd=1+a+b+c+q+r, r2

*sghd=b+c+p+q+r; r3
*sehd=1

+a+b+p+q+r, r3
*sfhd=a+c+p+q+r, r3

*sghd=1+b+c+p+q+r. Straightforward computation
establishes thatB8ªBø hFr

e,Fr1

f ,Fr2

g ,Fr3

h j is a complete extension ofB.
s7d It is necessary to show that five projective lines of the formCs

e, Cs1

f , Cs2

g , Cs3

h , andFp

cannot be pairwiseorthogonal. Recall that we already know that they cannot be pairwisenonor-
thogonal. The conditions of orthogonality between the projective lines ofC type yield a system of
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equations, ssefd+s1sefd=1, ssegd+s2segd=1, ssehd+s3sehd=1, s1sfgd+s2sfgd=1, s1sfhd
+s3sfhd=1, ands2sghd+s3sghd=1. By summation, one obtains¹s+¹s1

+¹s2
+¹s3

=0. On the
other hand, the orthogonality conditions withFp yield the equations,psed=1+¹s, psfd=1+¹s1

,
psgd=1+¹s2

, andpshd=1+¹s3
. Recalling thatovPVpsvd=1, and summing the foregoing equa-

tions yields 1=¹s+¹s1
+¹s2

+¹s3
. Hence, the requirement that all five projective lines are pair-

wise orthogonal leads to a contradiction 1=0. h

Proposition 2: Let BPP'sAd be a set hanging overpppp.
s1d For everyvPV there exists a unique projective line ofFv-kind which is orthogonal to

every projective line belonging to B.
s2d There exist no extensions of B which contain a projective line of X type or of F type.
s3d The complete extension of B is unique and hangs over~~~~.
Proof: s1d It is sufficient to considerv=e. If Cs

e, Cs1

f , Cs2

g , and Cs3

h are four pairwise
orthogonal projective lines, then the requirement thatFr

e is orthogonal to each of them yields four
equations, ¹r* =1+¹s, ¹r* +r*sefd=1+¹s1

+s1sefd, ¹r* +r*segd=1+¹s2
+s2segd, and ¹r*

+r*sehd=1+¹s3
+s3sehd. Expressing¹r* from the first equation and substituting it into the other

three, one finds the expressions for the values ofr* via s, s1, s2, ands3.
s2d The fact thatB cannot have an extension containing a projective line ofF type follows

from the nonadmissibility of the graphppppF. Let us show that the graphp—p is nonadmissible.
This will imply that an extension ofB cannot contain an element ofX type. Consider three
projective lines of the formCs

e, Cs1

f , andXû
ef, and impose the condition that they are pairwise

orthogonal. This yields the equations,ssefd=1+s1sefd, ssefd=1+ûsefd, and s1sefd=1+ûsefd.
The sum of the second and the third equations yieldsssefd+s1sefd=0, contradicting the first
equation. It means that the mentioned graph is not admissible.

s3d The existence of the extension ofB hanging over~~~~ has been proved in the previous
proposition. Since an extension ofB cannot contain elements ofX or F type, it should hang over
a graph which may contain only stars and circles. According to the previous proposition, a set
hanging over a graphpppp cannot have nontrivial pure extensions. It follows, that a complete
extension ofB contains projective lines of the formFr

v. Every such projective line is uniquely
defined according tos1d. It follows that a complete extension ofB hangs over~~~~ and is
unique. h

VII. GROUP OF SYMMETRY

We have given anexplicit description of every element of the finite setA and by that we have
an opportunity toconstruct the mapsw: A→A by simply saying for eachl PA which l8PA
corresponds to it underw. One would like to have a similar opportunity for the setP'sAd, i.e., one
needs tocharacterizethe elements ofP'sAd. In particular, for the set of all complete sets
CsAd,P'sAd it would be nice to have some group transitively acting onCsAd, so that having
found just one complete set, one could automatically generate all the others.

Recall that there is a maph: A→PsVd, whereV is a set of four symbolsV=he, f ,g,hj. We
shall describe a groupG which acts on the setL=PsPsVdd and then describe a groupG which acts
on P'sAd.

We start with the definition of the groupG. Consider the groupBijsPsVdd of all bijections of
the power set ofV. One has #V=4, #PsVd=16, #BijsPsVdd=16!. Associate to eachSPPsVd a
mapTS: PsVd→PsVd defined by the formula

TSsUd ª HU, if # sSù Ud is even,

UDS, if # sSù Ud is odd,
J s3d

where U varies overPsVd, the bar denotes the completion of a set inV and D denotes the
symmetric difference of two subsets. For anyS one hasTS

2= id. In particular,TS is a bijection,
TSPBijsPsVdd. DefineG to be a subgroup inBijsPsVdd generated by reflectionsTS, SPPsVd:

Gª khTSuSP PsVdjl , BijsPsVdd.
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Note, thatTx=Tefgh= id. Note for anyS, thatTSsxd=x.
For a givenSPPsVd, write U1↔U2 to express thatTSsU1d=U2& TSsU2d=U1, andU= inv to

expressTSsUd=U. Then, for example,Tê, Tef, and Tē are explicitly described as follows.Tê

corresponds to

ê↔ efgh, f̄ ↔ ef, ḡ ↔ eg, h̄ ↔ eh,

x,ē, f̂,ĝ,ĥ, fg, fh,gh= inv;

Tef corresponds to

e↔ f̄, f ↔ ē, eg↔ eh, fg ↔ fh,

x,g,h,ḡ,h̄,ef,gh,efgh= inv;

andTē corresponds to

ē↔ efgh, f̂ ↔ ef, ĝ ↔ eg, ĥ ↔ eh,

x,ê, f̄,ḡ,h̄, fg, fh,gh= inv.

Explicit descriptions of the otherTv̂, Tvw, andTv̄ are obtatined via permutations of symbolse, f,
g, andh. Note that for everySPPsVd,

TmsbdsSd = msbdTSmsb−1d, b P BijsVd,

wherem is the natural monomorphism of groups,m: BijsVd�BijsPsVdd, b°Psbd.
Recall that there also exists a natural monomorphismm: BijsVd�BijsAd described in the

previous section.

Every elementgPG is a mapg:PsVd→,PsVd. It induces a mapPsgd :L→,L, L=PsPsVdd. It
means that there is a natural action ofG on L. Recall that we have a maph :A→PsVd. It turns out

that the mapsTS, SPPsVd, can be lifted up to mapsuS:A→,A in such a way that the subgroup of
BijsAd generated byhuSjS has a natural action on the setP'sAd.

Proposition 3: For every SPPsVd there exists a mapuS:A→A such that

s1d ∀l , l8PA: l ' l8⇒uSsld'uSsl8d;
s2d The mapuS renders the following diagram commutative:

s4ds3d uS
2= id.

Proof: If S=x or S=V, then the correspondingTS= id and one may takeuS= id. It means that
essentially one must to consider the cases of nonempty proper subsetsS,V. We describe explicit
formulas foruê, uef, anduē. The other maps are defined by permutations ofe, f, g, andh.

We start withuê. Invoking the explicit description forTê given above, one has, for example,
ê↔efgh. Thus, a projective line of the formCs

e, sPSê, should map under the action ofuê to a

projective line of the formFp8, wherep8 is some element ofL. Denote this byCs
e 

uê

Fp8. A
complete description ofuê consists in the description of its actions on the elements of the form

Cs
e, Cs1

f , Cs2

g , Cs3

h ,
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Fr
e, Fr1

f , Fr2

g , Fr3

h ,

Xû
ef, Xû1

eg, Xû2

eh, Xû3

fg, Xû4

fh, Xû5

gh, Fp.

Defineuê as follows:

Cs
e 

uê

Fp8: Fp 
uê

Cs8
e :

p8sed ª 1 + ¹s, s8sefd ª psfd,

p8sfd ª ssefd, s8segd ª psgd,

p8sgd ª ssegd, s8sehd ª pshd.

p8shd ª ssehd.

Fr1

f  
uê

Xû8
ef : Xû

ef 
uê

F
r18
f :

û8sefd ª ¹r1
* , r18

*sefd ª ûsefd + ûsgd + ûshd,

û8sgd ª r1
*sefd + r1

*sfgd, r18
*sfgd ª ûsefd + ûshd,

û8shd ª r1
*sefd + r1

*sfhd. r18
*sfhd ª ûsefd + ûsgd.

Fr2

g 
uê

Xû18
eg: Xû1

eg 
uê

F
r28
g :

û18segd ª ¹r2
* , r28

*segd ª û1segd + û1sfd + û1shd,

û18sfd ª r2
*segd + r2

*sfgd, r28
*sfgd ª û1segd + û1shd,

û18shd ª r2
*segd + r2

*sghd. r28
*sghd ª û1segd + û1sfd.

Fr3

h 
uê

Xû28
eh: Xû2

eh 
uê

F
r38
h :

û28sehd ª ¹r3
* , r38

*sehd ª û2sehd + û2sfd + û2sgd,

û28sfd ª r3
*sehd + r3

*sfhd, r38
*sfhd ª û2sehd + û2sgd,

û28sgd ª r3
*sehd + r3

*sghd. r38
*sghd ª û2sehd + û2sfd.

Cs1

f  
uê

C
s18
f : Xû5

gh 
uê

Xû58
gh:

s18sefd ª ¹s1
, û58sghd ª û5sghd,

s18sfgd ª s1sfgd, û58sed ª û5sed,

s18sfhd ª s1sfhd. û58sfd ª 1 + û5sed + û5sfd.

Cs2

g  
uê

C
s28
g : Xû4

fh 
uê

Xû48
fh :

s28segd ª ¹s2
, û48sfhd ª û4sfhd,

s28sfgd ª s2sfgd, û48sed ª û4sed,

s28sghd ª s2sghd. û48sgd ª 1 + û4sed + û4sgd.
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Cs3

h  
uê

C
s38
h : Xû3

fg 
uê

Xû38
fg :

s38sehd ª ¹s3
, s38sfgd ª û3sfgd,

s38sfhd ª s3sfhd, û38sed ª û3sed,

s38sghd ª s3sghd. û38shd ª 1 + û3sed + û3shd.

Fr
e 

uê

Fr8
e :

r8*sefd ª 1 + r*sefd,

r8*segd ª 1 + r*segd,

r8*sehd ª 1 + r*sehd.

Note, that the formulas defininguê have a symmetry with respect to the permutations of symbols
f, g, h. It is a straightforward calculation to show thatuê respects the orthogonality relation' on
A. The commutativity of the mentioned diagram follows directly from the construction ofuê. The
verification thatuê is indeed a reflection is also straightforward.

Now defineuef,

Cs
e 

uef

F
r18
f : Fr1

f  
uef

Cs8
e :

r18
*sefd ª ssefd, s8sefd ª r1

*sefd,

r18
*sfgd ª ssefd + ssehd, s8segd ª r1

*sefd + r1
*sfhd,

r18
*sfhd ª ssefd + ssegd. s8sehd ª r1

*sefd + r1
*sfgd.

Cs1

f  
uef

Fr8
e : Fr

e 
uef

C
s18
f :

r8*sefd ª s1sefd, s18sefd ª r*sefd,

r8*segd ª s1sefd + s1sfhd, s18sfgd ª r*sefd + r*sehd,

r8*sehd ª s1sefd + s1sfgd. s18sfhd ª r*sefd + r*segd.

Xû1

eg 
uef

Xû28
eh: Xû2

eh 
uef

Xû18
eg:

û28sehd ª û1sfd, û18segd ª û2sfd,

û28sfd ª û1segd, û18sfd ª û2sehd,

û28sgd ª 1 + û1segd + û1sfd + û1shd. û18shd ª 1 + û2sehd + û2sfd + û2sgd.

Xû3

fg 
uef

Xû48
fh : Xû4

fh 
uef

Xû38
fg :

û48sfhd ª û3sed, û38sfgd ª û4sed,

û48sed ª û3sfgd, û38sed ª û4sfhd,

û48sgd ª 1 + û3sfgd + û3sed + û3shd. û38shd ª 1 + û4sfhd + û4sed + û4sgd.
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Cs2

g  
uef

C
s28
g : Fr2

g 
uef

F
r28
g :

s28segd ª s2segd + s28sghd, r28
*segd ª r2

*segd + r2
*sghd,

s28sfgd ª s28sfgd + s28sghd, r28
*sfgd ª r2

*sfgd + r2
*sghd,

s28sghd ª s28sghd. r28
*sghd ª r2

*sghd.

Cs3

h  
uef

C
s38
h : Fr3

h 
uef

F
r38
h :

s38sehd ª s3sehd + s3sghd, r38
*sehd ª r3

*sehd + r3
*sghd,

s38sfhd ª s3sfhd + s3sghd, r38
*sfhd ª r3

*sfhd + r3
*sghd,

s38sghd ª s3sghd. r38
*sghd ª r3

*sghd.

Xû
ef 

uef

Xû8
ef : Xû5

gh 
uef

Xû58
gh:

û8sefd ª 1 + ûsefd + ûsgd + ûshd, û58sghd ª û5sghd,

û8sgd ª ûsgd, û58sed ª û5sed,

û8shd ª ûshd. û58sfd ª û5sfd.

Fp 
uef

Fp8:

p8sed ª psfd, p8sfd ª psed,

p8sgd ª psgd, p8shd ª pshd.

The verification thatuef satisfies all the conditions of the proposition is straightforward just as in
the case withuê. Note, that the formulas foruef are invariant under the transposition of symbolse
and f and under the transposition of symbolsg andh.

Now defineuē,

Fr
e 

uē

Fp8: Fp 
uē

Fr8
e :

p8sed ª 1 + ¹r* , r8*sefd ª psfd,

p8sfd ª r*sefd, r8*segd ª psgd,

p8sgd ª r*segd, r8*sehd ª pshd.

p8shd ª r*sehd.

Cs1

f  
uē

Xû8
ef : Xû

ef 
uē

C
s18
f :

û8sefd ª 1 + s1sefd, s18sefd ª 1 + ûsefd,

û8sgd ª s1sefd + s1sfhd, s18sfgd ª 1 + ûsefd + ûshd,

û8shd ª s1sefd + s1sfgd. s18sfhd ª 1 + ûsefd + ûsgd.

Cs2

g  
uē

Xû18
eg: Xû1

eg 
uē

C
s28
g :

û18segd ª 1 + s2segd, s28segd ª 1 + û1segd,

û18sfd ª s28segd + s2sghd, s28sfgd ª 1 + û1segd + û1shd,

û18shd ª s2segd + s2sfgd. s28sghd ª 1 + û1segd + û1sfd.
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Cs3

h  
uē

Xû28
eh: Xû2

eh 
uē

C
s38
h :

û28sehd ª 1 + s3sehd, s38sehd ª 1 + û2sehd,

û28sfd ª s3sehd + s3sghd, s38sfhd ª 1 + û2sehd + û2sgd,

û28sgd ª s3sehd + s3sfhd. s38sghd ª 1 + û2sehd + û2sfd.

Fr1

f  
uē

F
r18
f : Xû5

gh 
uē

Xû58
gh:

r18
*sefd ª ¹r1

* , û58sghd ª 1 + û5sghd + û5sfd,

r18
*sfgd ª r1

*sfgd, û58sed ª 1 + û5sed + û5sfd,

r18
*sfhd ª r1

*sfhd. û58sfd ª û5sfd.

Fr2

g 
uē

F
r28
g : Xû4

fh 
uē

Xû48
fh :

r28
*segd ª ¹r2

* , û48sfhd ª 1 + û4sfhd + û4sgd,

r28
*sfgd ª r2

*sfgd, û48sed ª 1 + û4sed + û4sgd,

r28
*sghd ª r2

*sghd. û48sgd ª û4sgd.

Fr3

h 
uē

F
r38
h : Xû3

fg 
uē

Xû38
fg :

r38
*sehd ª ¹r3

* , û38sfgd ª 1 + û3sfgd + û3shd,

r38
*sfhd ª r3

*sfhd, û38sed ª 1 + û3sed + û3shd,

r38
*sghd ª r3

*sghd. û38shd ª û3shd.

Cs
e 

uē

Cs8
e :

s8sefd ª 1 + ssefd,

s8segd ª 1 + ssegd,

s8sehd ª 1 + ssehd.

In order to obtain formulas foruē one may take the formulas defininguê and perform the replace-
ments of the symbolss↔r* , û→ û̃, p;p, and similar fors·d8 symbols. The verification thatuē

satisfies the three conditions of the proposition is again straightforward.
The otheruv̂, uvw, anduv̄ sv ,wPV,vÞwd are defined fromuê, uef, anduē via the permuta-

tions of symbolse, f, g, andh, i.e., in such a way that for everySPPsVd,

umsbdsSd = msbduSmsb−1d, b P BijsVd,

wherem is the natural monomorphism,m: BijsVd�BijsAd. h

Denote byBij'sAd the subgroup ofBijsAd consisting of all bijections ofA which respect the
orthogonality relation' on A. We have constructed a family of reflectionsuSPBij'sAd, S
PPsVd. Denote byG the subgroup ofBij'sAd generated by these reflections,

G ª khuSuSP PsVdjl , Bij'sAd.

Note that the correspondenceTS°uS does notdefine a homomorphism fromG to G, since, for
example, the order of an elementTf̄TêPG is 2, and the order ofu f̄uêPG is 4.
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Let us mention some properties of the groupsG andG. First of all, recall that we have natural
monomorphisms,m: BijsVd�BijsPsVdd, m: BijsVd�BijsAd. It turns out, that the images of
these monomorfisms are in fact contained inG andG, respectively, i.e., each of the two groups

contains a copy ofS4. Denote bytef the bijectionV→̃V which interchanges the symbolse and f,

i.e., tef:e° f , f °e,g°g,h°h. Let us writesefd instead ofmstefd andsefd˜ instead ofmstefd. One
defines in a similar way the transformationssvwd and svwd˜ for all v ,wPV,vÞw.

Proposition 4: For allv ,w,zPV, vÞw, vÞz, wÞz,

TvwTuzTuw = swzd,

uvwuvzuvw = swzd˜ . s5d

Proof: It is sufficient to verify thatTefTegTef=sfgd and thatuefueguef=sfgd˜ . The latter is
established by a straightforward computation. h

Consider a productDª sefdsghdTefTgh. For everyUPPsVd, DsUd=Ū if #U is odd, and
DsUd=U if #U is even. Hence the mapD is obtained by

ê↔ ē, f̂ ↔ f̄, ĝ ↔ ḡ, ĝ ↔ h̄,

x,ef,eg,eh, fg, fh,gh,efgh= inv.

Note, that for anyePE, D=sedsēdTeTē. Consider an analog ofD in G, the product d

ª sefd˜ sghd˜ uefugh. Observe thatd is just the duality transformation mentioned in the section de-
scribing the orthogonality relation onA, dsCs

vd=Fs*
v , dsXû

ed=Xû̃
e , dsFr

vd=Cr*
v , and dsFpd=Fp

snotations* , r* , andû̃ as in that sectiond. More generally, for anyePE one hasd=sed˜ sēd˜ ueuē. The
transformationsDPG anddPG allow to obtainTv̄ anduv̄ svPVd from Tv̂ anduv̂ according to
Tv̄=DTv̂D and uv̄=duv̂d. Any transformationTe sePEd commutes withD, DTe=TeD, and any
transformationue sePEd commutes withd, due=ued.

Note thatsevdTêsevd=Tv̂, vPV, vÞe. Since every transformation of the formsvwd and the
transformationD belong to a subgroupG2 of G generated byhTejePE, any set generatingG2

appended with an elementTê, generates the whole groupG. Similarly, if one denotes byG2 the
subgroup ofG generated byhuejePE, then any set of generators ofG2 appended with an elementuê

generates the whole groupG.
The groupsG2 andG2 should be investigated in more detail. We start with the groupG2. It is

convenient to considerWvwª svwdTvw sv ,wPV,vÞwd. Denote byG28 the subgroup ofG2 gen-
erated bysvwd’s, and byG29 a subgroup ofG2 generated byWvw’s. TogetherG28 andG29 generate
the wholeG. The explicit description ofWef is

ê↔ ē, f̂ ↔ f̄, eg↔ fh, eh↔ fg,

x,ĝ,ĥ,ḡ,h̄,ef,gh,efgh= inv.

and the explicit descriptions of the otherWvw are similar. One verifies thatWefWfg=Weg. More
generally, for anyv, w, zPV, vÞw, vÞz, wÞz,

WvwWwz= Wvz.

It follows, thatG29 consists of all elements of the formWe, ePE, an elementD=WefWgh and a unit
element ofG. Since every elementbPG28 preserves the cardinalityfi.e., #bsUd= #U, UPPsVdg,
and no elementwPG29 except the unit preseves the cardinality, it follows that the intersection of
G28 and G29 is trivial. Moreover, the groupG29 is normal in G2 since sefdWefsefd=Wef,
segdWefsegd=Wfg, andsghdWefsghd=Wef, and there exists a natural action ofG28 on G29 defined as
follows. From the explicit description ofWvw one observes thatG29 is isomorphic to a groupL0 of
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Z2-valued functionsf on V satisfying a conditionovPVfsvd=0, i.e., it is a sample ofsZ2d3. An
element bPBijsVd acts on L0 by the formula f°f +b−1. This induces an action ofG28
.BijsVd on G29.L0. SinceBijsVd.S4 andL0.sZ2d3, it follows that one may view the groupG2

as a semidirect productsZ2d3
’S4.

The considerations about the groupG2 are similar to the considerations aboutG2. In particular,
the elementsvvwª svwd˜ uvw have the properties similar to the properties ofWvw. As a result, one
gets thatG2.sZ2d3

’S4 as well.
G is a group generated by the following five elements:sefd, sfgd, sghd, Tê, and Wef. The

corresponding Coxeter matrix is defined by

ordssefdTêd = 3, ordssfgdTêd = 2, ordssghdTêd = 2,

ordssefdWefd = 2, ordssfgdWefd = 4, ordssghdWefd = 2,

ordssefdsfgdd = 3, ordssefdsghdd = 2, ordssfgdsghdd = 3,

ordsWefTêd = 3,

where ords·d denotes the order of a group element. One verifies that the Coxeter matrix associated
to the original set of generatorshTSjS, SPPsVd, is defined by the formula

ordsTS2
TS1

d = 52, if # sS1 \ S2d is even and #sS2 \ S1d is even,

3, if # sS1 \ S2d is odd and #sS2 \ S1d is odd,

4, otherwise.
6

Note, that the groupG contains other reflections besides the ones already mentioned. In
particular, there exist reflections which interchangeef↔efgh, for example,Tf̂WefTêWef. At least
some of the reflections can be generated starting fromhTSjS by using the following facts: whenever
R1 and R2 are two reflections,R2R1R2 is again a reflection; ifR1 and R2 commute, then their
productR2R1 is again a reflection.

Note that there is another way of expressingsvwd andD in G. Verify that additioned tos5d
there is also a formulaTêTf̂Tê=sefd andTêTēTê=D. After replacing the left-hand and right-hand

sides of these equalities by their analoges inG, one observes, thatuêuēuê=d, but uêu f̂uêÞ sefd˜ .

What is the deviation of the value ofsefd˜ uêu f̂uê from identity? We need more notation to express
that. Consider an Abelian groupF of all Z2-valued functions on the set of all edgesE
=he,Vu #e=2j. We shall associate to everywPF a transformationIwPBijsAd and then show
that in factIw falls into the groupG. The productsvwd˜ uv̂uŵuv̂ will be equal toIw wherew is some
element ofF.

Take anywPF. Denoteaªwsefd, bªwsegd, cªwsfgd, pªwsehd, qªwsfhd, rªwsghd. The
transformationIw will not change the kind of a projective line and we will describe its action on
Cs

e, Xû
ef, Fr

e, andFp. The other cases are obtained by permutation of the symbolse, f, g, h. A
projective line Cs

e is mapped byIw to Cs8
e with s8sefd=ssefd+a, s8segd=ssegd+b, s8sehd

=ssehd+p. A projective lineXû
e maps toXû8

e with û8sefd= û sefd+a, û8sgd= û sgd+p+q, û8shd
= û shd+b+c. A projective lineFr

e maps toFr8
e with r8s·d defined byr8*sefd=r*sefd+b+c+p

+q+r, r8*segd=r*segd+a+c+p+q+r, r8*sehd=r*sehd+a+b+c+q+r. Finally, the projective line
Fp is mapped byIw to Fp8, wherep8s·d is defined asp8sed=psed+a+b+p, p8sfd=psfd+a+c
+q, p8sgd=psgd+b+c+r, p8shd=pshd+p+q+r. Note, that sinceovPVpsvd=1, one gets
ovPVp8svd=1. The differencep8−p satisfiesovPVsp8−pdsvd=0.

We have defined a collectionhIwjwPF of maps A→A, such thatIw
2 = id. This implies, in

particular, thatIw is a bijection, and one may consider the subgroup inBijsAd generated by
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hIwjwPF. Since for everyw1, w2PF we haveIw1
Iw2

= Iw1+w2
, this subgroup is Abelian. Denote byxe

sePEd the element ofF which has a value 1 on the edgee and a value 0 on all other edges.
Straightforward computation establishes that

svwd˜ uv̂uŵuv̂ = Ixvw
s6d

sfor everyv, wPV, vÞwd. Since every mapIw, wPF, may be represented as a composition of
maps of the formIxe

, ePE, it follows from s6d that every mapIw is in G. It follows that the set
hIwjwPF generates some Abelian subgroupN in G.

Proposition 5: The groupN generated byhIwjwPF is a normal subgroup ofG.
Proof: We define forSPPsVd a morphismtS, F→F, such that∀wPF :uSIw= ItSswduS. Since

ux=uV= id, set txª id and tVª id. The set of formulas for the other cases ofS will have a
symmetry with respect to the permutations ofe, f, g, andh, and in fact the nontrivial part of the
proof will consist in providing the definitions oftê, tef, andtē.

There exists a natural monomorphismn: BijsVd�EndsFd defined as follows: for everyb
PBijsVd the morphismnsbd: F→F is defined byw°w8, w8sedªwsmsb−1dsedd for all ePE,
wherem is the natural monomorphismBijsVd�BijsPsVdd. Recall that there also exists a natural
monomorphismm: BijsVd�BijsAd.

The Iw are defined in such a way, that∀bPBijsVd :msbdIwmsb−1d= Insbdswd. Recall that for
everybPBijsVd and everySPPsVd, msbduSmsb−1d=umsbdsSd. Hence,

ItmsbdsSdswd = umsbdsSdIwumsbdsSd
−1 = msbduSmsb−1dIwfmsbduSmsb−1dg−1 = msbduSInsb−1dswduS

−1msb−1d

= msbdI stSnsb−1ddswdmsb−1d = I snsbdtSnsb−1ddswd,

where wPF. It follows, that the collectionhtSjSPPsVd should satisfynsbdtSnsb−1d=tmsbdsSd, b

PBijsVd. Hence it is necessary to describe just three morphismstê,tef,tē:F→F.
It is convenient to represent an element ofF by a graph, which is a tetrahedron with vertices

e, f, g, h, and equip its edges with the values of the considered element ofF on the corresponding
edge. Take anywPF and denote bya, b, c, p, q, andr the values ofw on the edgesef, eg, fg,
eh, fh, andgh, respectively. Definetê, tef, andtē as follows:

s7d

The explicit descriptions of the othertS are induced by permutations of labels of verticese, f, g,
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and h. Recall thattx=tV= id. Straightforward computation establishes thatuêIw= Itêswduê, uefIw

= Itefswduef, anduēIw= Itēswduē. This completes the proof that the groupN is a normal subgroup of

the groupG. h

Note that now one has three types of transformations indexed bySPPsVd, a bijectionTS

PBijsPsVdd frefer to s3dg, a bijection uSPBij'sAd frefer to s4dg, and an automorphismtS

PAutsFd frefer to s7dg.
The groupsG and G will play a key role in the proof of the saturation property ofA. In

particular, it will be shown below that the image of the composition of mapsP'sAd�PsAd

→
Pshd

L, where the first arrow is a canonical injection, is invariant under theG action. It will be
shown, that an image of a complete set under this composition can have a cardinality only 1, 2, 4
or 8. This induces a partition ofCsAd into four subsets. TheG action will fix each of these subsets
and it will turn out thatG acts transitively on each one of them.

VIII. SATURATION PROPERTY, PART 2

We have constructed a groupG and an action ofG on L. Let H be a subgroup ofG. Two
graphs corresponding to some elements ofG are calledH-equivalentiff they can be represented in
L by elements of the sameH orbit.

In the groupG there is an elementD. Its action onL induces a map] :G→G, which in terms
of graphs replaces a starp by a circle( around the same vertex and a circle( by a starp at the
same vertex; the edges ·—· and the symbolF remain untouched. It means that if one is given a
graph, then by applying if necessary the transformation], it is possible to produce a graph with the
number of starsp greater or equal to the number of circles(. We shall call a graph satisfying this
condition, primary, and a graph not satisfying this condition,secondary. For example, a graph
Fp~— · is primary, and a graphF(~— · is secondary. If the graphs represent the elements ofG
related to one another by the transformation], one calls these graphs mutuallydual. If a graph
coincides with its dual, it is calledself-dual. For example, the graphp—( is self-dual.

Note, that anyG-equivalence class is invariant under the transformation induced by]. The set
of elements constituting aG-equivalence class, is completely determined by a list of all primary
elements belonging to it; the other elements are obtained by duality.

Proposition 6: (1) The complete list of primary graphs from the G-equivalence class of the
graph n is of the form

(2) The complete list of primary graphs from the G-equivalence class of the graph*** ( is of the
form:

.

(3) The complete list of primary graphs from the G-equivalence class of the graph** ** F is of the
form:
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(4) The complete list of primary elements of the G-equivalence class of the graph~~~~ is of the
form

Proof: The proof is straightforward. Let us consider the proof ofs1d in more detail. Note that all
the graphs listed ins1d except the graphsbd are self-dual. Denote a graph obtained by duality from
sbd as sb8d; it is of the form (—(. Denote the set of graphss1d appended withsb8d as N3 sN
stands for nonadmissible and 3 stands for the degreed.

That theG-equivalence class of the triangle indeed coincides withN3, follows from two facts:
sid the listN3 is complete, i.e., there is no other graph not present in the list, which isG-equivalent
to some member of the list;sii d any two members of the listN3 are G-equivalent. In order to
establishsid, let us choose and fix some representative inL for each element ofN3. This is
equivalent to assigning some labels to the vertices of the graphs and can be done, for example, as
follows:

Now for each of these labeled graphs calculate the result of the action on them of the transfor-
mations induced byTv̂ and Tvw sv ,wPV,vÞwd, and after that delete the labelse, f, g, h. For
example, if one takes the graphsa1d, then the transformation associated toTê followed by the
deletion of symbolse, f, g, andh, generates a graph(—(. If instead ofTê one takesTĥ, then the
result will be the unlabeled triangle. Performing similar calculations, in each case one obtains an
element ofN3, i.e., N3 is complete.

Now let us establishsii d, i.e., the fact thatN3 is just oneG-equivalence class. It is convenient
to do this in several steps by taking bigger and bigger subgroupsH of G and splittingN3 into
H-equivalence classes. Denote byG1 the subgroup ofG generated byhTv̂jvPV. ThenN3 splits into
threeG1-equivalence classes: the first class consists ofsad and sb8d; the second class consists of
sbd andsed; and the third class consists ofscd andsdd. Denote byG1,3 the subgroup ofG generated
by Tv̂ and Tv̄, vPV. Recall thatTv̄=DTv̂D where D=TefTgh. Hence,G1,3 is generated by the
hTv̂jvPV and D. The list N3 splits into twoG1,3-equivalence classes, the first class contains the
graphssad, sbd, sb8d, andsed; and the otherscd andsdd. Finally, the action associated toTeg on the
graphe* — * f gives a graph,e—h* f (g. Hence, one obtains a transition fromsbd to sdd, i.e., a
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link between the two mentionedG1,3-equivalence classes. It follows, that any two elements ofN3

areG-equivalent and this completes the proof of the first part of the proposition.
The proof ofs2d, s3d, ands4d is similar. h

We have calculated some of theG-equivalence classes of some examples of graphs represent-
ing the elements ofG. It will be interesting to describe for every given degree the sets of
G-equivalence classes of admissible graphs.

Proposition 7: Ifg1 is an admissible graph andg2 is a graph G-equivalent tog1, then it is
also admissible. Moreover, if B1 hangs overg1, then there exists a set B2 which hangs overg2 and
has the same cardinality as B1.

Proof: Choose a representativeQ1 for g1 in L and a representativeQ2 for g2 in L. Henceg1

is associated tofQ1gPG and g2 is associated tofQ2gPG. The assumption thatg1 and g2 are

G-equivalent implies thatQ1 andQ2 are related asQ2=T̂sQ1d, whereT̂ªTS1
TS2

¯TSm
PG, m is

some natural number andS1,S2, . . . ,Sm are some nonempty proper subsets ofV=he, f ,g,hj. Since
Q1 is admissible, choose a setB1PP'sAd,PsAd, such thatPshdsB1d=Q1, whereh :A→PsVd is

the natural map. For everyl PB1 look at l8ª ûsld, whereûªuS1
uS2

. . .uSm
PG. As l runs over the

wholeB1, l8 sweeps up some setB2,A. Note, that since everyuS is a bijection,û is a bijection as
well, and the setsB1 andB2 have the same cardinality. Using the commutative diagram relatingTS

anduS, SPPsVd, and the fact that everyuS respects', one concludes thatB2PP'sAd and that
PshdsB2d=Q2. In particular,B2 hangs overg2, and by that provides a realization of the admissi-
blity of g2. h

The graph * is an admissible graph of degree 1. The complete list of all primary elements
from its G-equivalence class is of the form

sad p sbd ·—· scdF.

It means, that theG-equivalence class of the graphp coincides with the set of all graphs of degree
1.

Similarly, one has an admissible graphpp of degree 2. The complete list of all primary
elements from itsG-equivalence class is of the form

This G-equivalence class coincides with the set of all graphs of degree 2.
In degree 3 there exist admissible, as well as nonadmissible graphs.
Proposition 8: The set of all admissible graphs of degree 3 coincides with the G-equivalence

class of the graphppp.
Proof: Let us generate a list of all primary graphs of degree 3. It is convenient to present it in

a systematic way. Denote byGk1,k2,k3,k4
a subset ofG consisting of all the elements which are

associated to the graphs which havek1 stars,k2 edges,k3 circles, andk4 instances of the symbol
F. Look at all decompositions of 3 into a sum of four non-negative integers,3=3+0+0+0=2
+1+0+0=1+1+1+0.Each of the mentioned three variants corresponds to someGk1,k2,k3,k4

with
k1ùk2ùk3ùk4, one getsG3,0,0,0, G2,1,0,0, andG1,1,1,0. After that one generates the otherGk1,k2,k3,k4

by permuting the argumentsk1, k2, k3, k4 in the obtained three variants. Finally, one deletes from
the list all the entries which do not satisfyk1ùk3 andk4ø1. Inside each of the setsGk1,k2,k3,k4

one
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generates the corresponding graphs by exploring the different variants. After excluding the known
nonadmissible graphs of degree 3, i.e., the graphs which areG-equivalent to a triangle, the list
becomes

Here we use the labels of the form 1C2X, 1C1X1F, etc., to classify the graphs. The label 1C2X

is associated to admissible graphs fromG1,2,0,0, 1C1X1F is associated to admissible graphs from
G1,1,0,1, etc. In a way, similar to the proof of the previous proposition, check that all the presented
graphs are in fact a set of all primary graphs of aG-equivalence class ofppp. h

Now let us look at the graphs of degree 4. Note, that any admissible graph of degree 4 should
satisfy anecessarycondition, it does not contain a nonadmissible graph of degree 3. More pre-
cisely, one says that a graphg1 is containedin the graphg2 by definition iff these two graphs can
be represented inL by Q1 andQ2, respectively, in such a way thatQ1,Q2.

Proposition 9: (1) A graph of degree 4 is admissible iff it does not contain a nonadmissible
graph of degree 3.

(2) The set of all admissible graphs of degree 4 splits into two G-equivalence classes, one of
the graphppp( and the other of the graphpppp.

Proof: Consider the set ofall graphs of degree 4, which do not contain a nonadmissible graph
of degree 3. The set of alladmissiblegraphs of degree 4 is a subset of this set. One generates the
required list in analogy with the case of degree 3. There are five ways to decompose 4 into a sum
of four non-negative integers,4=4+0+0+0=3+1+0+0=2+2+0+0=2+1+1+0=1+1+1+1. It
means, in particular, that one must have a series of graphs marked by labels 4C, 3C1X, 2C2X,
2C1X1F, and 1C1X1F1F. The label 4C generates 4X, 4F, and 4F. Since a graph cannot contain more
than one symbolF, delete 4F. Since it suffices to consider only primary graphs, exclude the case
4F. Treating the other labels in a similar fashion, one arrives at the following: 3C1X generates
3C1F, 3C1F, 1C3X, and 3X1F; 2C2X generates 2C2F; 2C1X1F generates 2C1X1F, 2C1F1F, 1C2X1F,
and 1C2X1F; finally, 1C1X1F1F does not generate more labels. Having a set of all possible labels
classifying the mentioned graphs, one generates a set of graphs present under each label by
exploring different variants. The resulting complete list of primary graphs is given below,
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Note, that the existence of nonadmissible graphs of degree 3 excludes many variants of the
graphs of degree 4. Now exclude all the graphsG-equivalent toppp(. It is easily verified, that all
the remaining graphs constitute in fact the set of all primary graphs from theG-equivalence class
of pppp. h

We have shown, that the set of all admissible graphs of degree 4 splits into twoG-equivalence
classes, one containing the graphpppp and the second, the graphppp(. The elements from the
first class will be referred to assingletsand the elements of the second class asdoublets.

Now consider the case of the graphs of degree 5. Recall that one knows at least some of the
nonadmissible graphs of this degree, these are the graphs from theG-equivalence class of the
graphppppF.

Proposition 10: (1) A graph of degree 5 is admissible iff it does not contain a nonadmissible
graph of degree 3 and does not belong to the G-equivalence class of the graphppppF;

s2d Every admissible graph of degree 5 is G-equivalent to the graph~ppp.
Proof: Let us generate the list of all graphs of degree 5 which do not contain a non-admissible

subgraph of degree 3. There exist six ways to decompose 5 into a sum of four non-negative
integers, 5=5+0+0+0=4+1+0+0=3+2+0+0=3+1+1+0=2+2+1+0=2+1+1+1.This
gives six labels, 5C, 4C1X, 3C2X, 3C1X1F, 2C2X1F, 2C1X1F1F. By permuting the symbolsC, X,
F, andF, one generates the other labels. Excluding from the resulting set of labels the ones, which
do not satisfy the conditionsk3øk1ø4 andk4ø1, wherek1, k3, andk4 are the numbers in a label
associated to the symbolsC, F, andF, respectively, one arrives at the following: 5C generates 5X,
but itself is deleted from the list; 4C1X generates 4C1F, 4C1F, 4X1F, and 1C4X; 3C2X generates
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3C2F, 2C3X; 3C1X1F generates 3C1X1F, 3C1F1F, 1C3X1F, and 1C3X1F; 2C2X1F generates 2C2X1F,
2C2F1F, and 2C1X2F; finally, 2C1X1F1F generates 1C2X1F1F. This yields 20 labels in total. Inside
each label the corresponding graphs are generated by exploring all the possible variants. Note, that
in some of the cases one inevitably obtains a graph containing a nonadmissible part of degree 3,
a graph under the label 5X should contain a triangle since there are maximum four vertices on a
graph; a graph under the label 4C1X always containsp—p; and a graph under the label 4X1F

contains either a triangle or a graphiF. It means that the labels 5X, 4C1X, and 4X1F can be omitted.
After deleting from the list the known nonadmissible graphs of degree 5, i.e., the graphs which are
G-equivalent to the graphppppF, the following list is obtained:

One verifies, that this list coincides with the set of all primary graphs belonging to the
G-equivalence class of the graphppp~. Since the latter graph is known to be admissible, all these
graphs are admissible. h

One could proceed in a similar way and investigate the cases of the graphs of degree 6, 7, and
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8, but it turns out that one does not have to do it. Recall that the aim is to prove that the set of
projective linesA is saturated with respect to the orthogonality relation'.

Theorem 1: The set A is saturated with respect to'. Moreover, for every BPP'sAd, one has
the following:

s1d If B has a shadow of degree1 or 2, then it admits a pure complete extension.
s2d If B has a shadow of degree 3, then it admits a complete extension hanging over a doublet.
s3d If the shadow of B is a doublet, then B has a unique pure complete extension.
s4d If the shadow of B is a singlet, then B has a unique complete extension; this extension has a

shadow of degree 8.
s5d If the degree of the shadow of B isù5, then B has a unique complete extension; this

extension has a shadow of degree 8.

Proof: Take anyBPP'sAd and denoteQªPshdsBdPL. Let g denote the shadow ofB, i.e.,
the graph associated tofQgPG, andd denote the degree ofg.

s1d Suppose thatd=1 or d=2. Theng is G-equiavalent top, or respectively,pp. Represent the

corresponding latter graph by someQ8PL. There existsT̂ªTS1
TS2

. . .TSm
, whereS1,S2, . . . ,Sm are

some nonempty proper subsets ofV sm is some natural numberd, such thatQ8=T̂sQd. Denote

B8ª ûsBd, whereûªuS1
uS2

¯uSm
. Choose a complete setB9 containingB8 such thatPshdsB9d

=PshdsB8d. The setB̂ª û−1sBd yields the required pure complete extension ofB.
s2d The case ofd=3 is similar and the difference is thatg is nowG-equivalent toppp. Let one

chooseQ8 and constructT̂, û andB8 by analogy with the previous case. The complete setB9.B8
cannot be chosen now to have the same shadow asB8, but it can have a shadowppp(. Denote

Q9ªPshdsB9d. The setB̂ª û−1sB9d gives the required extension ofB. This extension hangs over

a graph associated tofQ̂g, whereQ̂ª T̂−1sQ9d, which is G-equivalent toppp( and by that is a
doublet.

s3d Suppose thatd=4 andg is a doublet. Then it isG-equivalent toppp(. ChooseQ8 and

defineT̂, û, andB8 in analogy with the two previous cases. There exists a unique pure extension

B9 of B8. The required unique pure complete extensionB̂ of B will be of the form B̂ª û−1sB9d.
Note that not all the complete extensions of a setB have to be pure.

s4d Suppose thatd=4 andg is a singlet. Theng is G-equivalent to ****. ChooseQ8 and

constructT̂, û, and B8 in analogy with the three previous cases, i.e., we haveQ8=T̂sQd, B8

= ûsBd, h + û=T̂+h. The setB8 has a unique complete extensionB9 and this extension hangs over

~~~~. The setB̂ª û−1sB9d is the unique complete extension of the original setB. The shadow

of B̂ is of degree 8 and is given by the graph associated tofT̂−1sQ9dg, whereQ9ªPshdsB9d.
s5d Suppose thatdù5. Recall that the set of all admissible graphs of degree 5 is the

G-equivalence class of the graphppp~. This graph contains a singletpppp. It follows, that every
admissible graph of degree 5 contains a singlet, since a singlet can beG-equivalent only to a
singlet. Whenever a setB0 hangs over a singlet ****, the corresponding complete extension exists
and is unique. At the same time, for everyvPV there exists a unique projective line of the form
Fr

v, rPRv̄, which is orthogonal to every element ofB0; there exist no projective lines ofX or F
type, which are orthogonal to every element ofB0. Thus the construction of the complete exten-
sion of B0 may be viewed as a step-by-step appending of the mentioned uniqueFr

v to the setB0

asv runs overV. One concludes, that whenever one has some setsB1, B2, B3, andB4 hanging over
the graphsppp~, pp~~, p, and~~~~, respectively, one may extract from each of them a part

Bi
0,Bi si =1,2,3,4d hanging overpppp; the unique complete extensionB̂i

0 of Bi
0 at the same time

plays a role of a unique complete extension ofBi and one hasBi
0,Bi , B̂i

0, i =1,2,3,4.
Now let BPP'sAd have an arbitrary shadowg of degreedù5. Every suchg should contain

an admissible graphḡ of degree 5 and it is possible to choose inB a subsetB̄ hanging overḡ.
Using the lists of graphs from the proofs of the two previous propositions, one verifies in a
straightforward way that every admissible graph of degree 5 contains a singlet. It means, that one
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can always find inḡ some singletg0 and chooseB0, B̄ which hangs over this singlet. The graph
g0, as any other singlet, isG-equivalent topppp. DenoteQ0ªhsB0d and choose anyQ08PL
representing thepppp. There exists a collection of nonempty proper subsetsSi ,V, i

=1,2, . . . ,m sm is some integerd, such thatQ08=T̂sQ0d, where T̂ªTS1
TS2

¯TSm
PG. Denote û

ªuS1
uS2

¯uSm
. The setûsB0d has a shadowpppp, the setûsB̄d has a shadow~ppp and the setûsBd

has a shadow consisting of four stars * andd−4 circles(. A unique complete extensionB̃ of

ûsB0d is at the same time a unique complete extension forûsB̄d and ûsBd. The shadow ofB̃ has a

degree 8 and is of the form~~~~. The setB̂ª û−1sB̃d has a shadow of degree 8 as well and
provides the required unique complete extension of the setB. h

IX. TRANSITIVE ACTION

We have the setA of 120 projective lines inH.C8 which produces a Kochen–Specker-type
contradiction and is saturated with respect to the orthogonality relation'. Note, that if one
extracts a subsetA0 from A consisting of all projective lines ofC andF type, one can still prove
that A0 is saturated with respect to', but A0 will not produce a Kochen–Specker-type contradic-
tion. Consider the setCsAd of all complete subsets ofA and denote byCdsAd the subset ofCsAd
consisting of all the elements which have a shadow of degreedPN.

Theorem 2: s1d The set CdsAdÞx iff d is equal to1, 2, 4or 8;
s2d The groupG acts transitively on each of the CdsAd, d=1,2,4,8.

Proof: s1d The statement thatd cannot be other than 1, 2, 4 or 8 wheneverCdsAdÞx follows
from the fact that a set hanging over a graph of degree 3 cannot have pure complete extensions and
the fact that if a set hangs over a graph of degreeù5, then its complete extension always has a
shadow of degree 8. The examples of realizations of all four mentioned possibilities have been
given in the proof of Proposition 1.

s2d Recall thatG is a subgroup ofBijsAd and the action ofuPG on BPCsAd is given by
PsudsBd. Let us start with the componentC8sAd. Every elementBPC8sAd can be viewed asB
=PsudsB0d, whereB0 is some element ofC8sAd with a shadow~~~~ andu is some element of
G. Denote byC8

0sAd,C8sAd the set of all complete subsets with the specified shadow. It follows,
that the problem is reduced to the following: for every twoB,B8PC8

0sAd show that there exists
uPG such thatPsudsBd=B8. Every element ofC8

0sAd is determined by its part which hangs over
a singlet ****. There are as many elements inC8

0sAd as the sets hanging over this singlet. Take any
B,B8PC8

0sAd and denote byB1,B and byB18,B8 their parts hanging over ****. One associates
in the way described in parts6d of the proof of Proposition 1 toB1 andB18 some functionsw and
w8, respectively,w ,w8 :E→Z2, whereE is the set of all edges of the tetrahedron representing
PsVd3. One verifies, thatB18=PsIw+w8dsB1d. This implies that the action ofG on C8sAd is transitive.

Now consider the case ofC4sAd. This set consists of all those complete subsets ofA hanging
over a doublet. Denote byC4

0sAd,C4sAd the set of all complete subsets with shadowppp(. In
analogy to the case ofC8sAd, the original problem reduces to the problem to show that for every
B,B8PC4

0sAd such thatPshdsBd=PshdsB8d frecall thath :A→PsVd denotes the natural mapg,
there existsuPG such thatPsudsBd=B8. Take any of the mentionedB andB8 and assume without
loss of generality thatPshdsBdPL is visualized by a graph *e* f* g(h. One associates in the way
as pointed out in parts5d of the proof of Proposition 1 toB a triple of parametersa, b, andc. Let
c : hef,eg, fgj→Z2 denote the function, which has values on the edgesef, eg, and fg given bya,
b, andc, respectively. In a similar way a functionc8 : hef,eg, fgj→Z2 is associated to the setB8.
Choose anyw ,w8 :E→Z2 such that their restrictions tohef,eg, fgj coincide withc and c8, re-
spectively. It is clear thatB8=PsIw+w8dsBd. This completes the proof for the caseC4sAd.

The investigation of the caseC2sAd is similar and contains a graphpp and a pair ofZ2-valued
functions on just one edge. The caseC1sAd involves a graph * and does not require a similar
construction ofZ2-valued functions. h
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We give a general expression for the normally ordered form of a function
Ffŵsa,a†dg where ŵ is a function of boson creation and annihilation operators
satisfying fa,a†g=1. The expectation value of this expression in a coherent state
becomes an exact generating function of Feynman-type graphs associated with the
zero-dimensional quantum field theory defined byFsŵd. This enables one to enu-
merate explicitly the graphs of given order in the realm of combinatorially defined
sequences. We give several examples of the use of this technique, including the
applications to Kerr-type and superfluidity-type Hamiltonians. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1904161g

In the normally ordered form of a functionFsa,a†d of boson creation and annihilation opera-
tors all the annihilation operators are moved to the right using the commutation relationfa,a†g
=1. The importance of the normal form, denoted byNfFsa,a†dg and satisfyingFsa,a†d
=NfFsa,a†dg, is evident, as with it the expectation values ofFsa,a†d can be easily evaluated in
such canonical states as the vacuumu0l and coherent statesuzl=e−uzu2/2on=0

` zn/În! unl, sz complex
anda†aunl=nunld. The role of the normal form in quantum field theorysQFTd is pre-eminent.1,2

In this work we consider functionsFsŵd that involve operatorsŵsa,a†d in the form of a
product of positive powers ofa† and a, and powers ofsa+a†d, although the formulas derived
below are valid for more generalŵ’s. Our considerations are based on the following operational
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property of formal power series. Letfsxd=on=0
` fnx

n/n! and gsxd=on=0
` gnx

n/n! be two formal
power series, also called the exponential generating functionssegfd of sequenceshfnjn=0

` and
hgnjn=0

` , respectively. Then it can be verified that

U fSl
d

dx
DgsxdU

x=0
=UgSl

d

dx
D fsxdU

x=0
= o

n=0

`

fn ·gn
ln

n!
,

which we shall call the product formulasPFd. This implies the following property satisfied by
Fslŵd with indeterminatel:

Fslŵd =UFSl
d

dx
DexŵU

x=0
, s1d

which by taking the normal form of both sides becomes

NfFslŵdg =UFSl
d

dx
DNsexŵdU

x=0
. s2d

Note that in Eq.s2d a separation has been achieved between the functional aspectsdefined byFd
and the operator aspectsdefined byŵd of the normal ordering. Conventionally we implement
Nsexŵd by using the auxiliary symbol< with Nsexŵd; :Gŵsx,a,a†d:, where under the symbol<

the functionGŵsx,a,a†d is normally ordered assuming thata† and a commute.3,4 Then Eq.s2d
becomes

NfFslŵdg =UFSl
d

dx
D:Gŵsx,a,a†d:U

x=0
. s3d

Note that the expression of Eq.s3d arises in the evaluation of the partition functionZb for the
system defined by the HamiltonianHsŵd,

Zb = Tr e−bHsŵd =
1

p
E d2zfue−bHsd/dxdGŵsx,z,z*dux=0g,

taking the trace over the coherent state representation,b=skBTd−1.5 The problem of finding
NfFslŵdg reduces to that of findingNsexŵd, still however a nontrivial task,vide the classical
references.3,4,6 We have recently found expressions forGŵsx,a,a†d for several types of operators
ŵ of the form ŵsr,sd=sa†dras sRef. 7d as well as forŵsrW,sWd=Pk=1

M ŵsrk,skd with r, s, rk, sk positive
integers.8

At this point it is already possible to relate Eq.s3d to enumerative formulas for Feynman-type
graphs in QFT.9 Assume that our formal power seriesFsxd can be written in the formFsxd
=expfom=1

` Lmsxm/m!dg, and we similarly assume that we may define operatorsVn
sŵdsa,a†d by

:Gŵsx,a,a†d: = :expSo
n=1

`

Vn
sŵdsa,a†d

xn

n!
D:. s4d

Explicit examples7 from which the operatorsVn
sŵdsa,a†d may be read off include

ŵ = a†a, Nfexpsxa†adg = :expfa†asex − 1dg: , s5d
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ŵ = sa†dra, Nfexpsxsa†dradg = :exp3a†ao
n=1

`

sa†dsr−1dnsr − 1dn

GSn +
1

r − 1
D

GS 1

r − 1
D

xn

n!4: , s6d

with r =2,3, .. . , aswell as more involved expressions for otherŵsa,a†d. Thus, Eq.s3d may be
written as

NfFslŵdg = expSo
m=1

`
Lm

m!
lm dm

dxmD ·U:expSo
n=1

`

Vn
sŵdsa,a†d

xn

n!
D :U

x=0

. s7d

We eliminate the operatorsa anda† by taking the matrix element of Eq.s7d in the coherent state
uzl and usingauzl=zuzl. This yields

kzuNfFslŵdguzl = expSo
m=1

`
Lm

m!
lm dm

dxmD ·UexpSo
n=1

`

Vn
sŵdsz,z*d

xn

n!
DU

x=0

. s8d

By specifyingz=1 in Eq. s8d, definingVn
sŵds1,1d=Vn

sŵd, V =hVn
sŵdjn=1

` , andL =hLmjm=1
` we obtain

ZsL ,V,ld ; k1uNfFslŵdgu1l = expSo
m=1

`
Lm

m!
lm dm

dxmD ·UexpSo
n=1

`

Vn
sŵd x

n

n!
DU

x=0

s9d

which is essentially the counting formula cited by Benderet al.9 Due to the symmetry of the PF,
we haveZsL ,V ,ld=ZsV ,L ,ld, which may facilitate the calculations. Furthermore it can be
demonstrated that for all the forms ofŵ used here the sequenceV consists of positive integers.
The formula Eq.s9d was employed in Ref. 9 as an enumerative tool for counting the Feynman-
type graphs in zero-dimensional QFT models, where the values of all Feynman integrals are equal
to 1. Our derivation sheds light on its quantum origin by tracing back its sources to the boson
normal ordering problem. By specifying the setsL andV one can attempt to produce asin general
divergentd power series expansion inl,

ZsL ,V,ld = o
n=0

`

AnsL ,Vd
ln

n!
s10d

in which AnsL ,Vd can be related to known objects. To see that, recall the definition of the
multivariate Bell polynomialsBsh ,ud related to a functionhsxd=on=1

` hnx
n/n! through sh

=hhnjn=1
` d

euhsxd = o
n=0

`
xn

n! ok=1

n

ukBnkshd = o
n=0

`
xn

n!
Bnsh,ud, s11d

where the coefficients of the expansionBnsh ,ud=ok=1
n ukBnkshd depend only onh1, . . . ,hn. We refer

to Refs. 10 and 11 for further properties ofBnsh ,ud.
With Bnsfd=Bnsf ,1d we see that the coefficientsAn=AnsL ,Vd factorize

An = BnsL d ·BnsVd s12d

which for givenL andV can be worked outssee belowd.
The utility of Eqs.s9d ands12d goes beyond the specific definition of initialŵ, and this is the

philosophy of Ref. 9 where it was suggested thatL andV could be treated as initialinput for QFT
models. From this perspective Eqs.s9d and s12d provide the starting point for a Feynman-type
graph representation of the coefficientsAn in Eq. s10d, whereAn counts the number of graphs with
n labeled lines. The graph construction rules are as follows: a line starts from a white dot, the
origin, and ends at a black dot, thevertex. We further associate strengthsVk with each vertex
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receivingk lines and multipliersLm with a white dot which is the origin ofm lines. Counting such
graphs consists in calculating their multiplicity due to the labelling of lines and the factorsLm and
Vk.

We now specifyL andV and give some examples of the explicit evaluation ofAn along with
the explicit graph representation.

Example 1: L1=1, LM =1 sM .1d, and Lm=0 otherwise, giving the functionFsxd=expsx
+xM /M!d; Vn

sŵd=1 for n=1,2. . ., which arises from the stringŵ=a†a, see Eq.s5d. This corre-
sponds to the normal ordering problemNfexpsla†a+slM /M!dsa†adMdg. Note that the caseM
=2 describes the normal ordering of the exponential of the Kerr-type Hamiltonian12 H=la†as1
+sl /2da†ad. Using the definition of the two variable Hermite–Kampé de Fériet polynomials
Hn

sMdsx,yd ssee Ref. 13 and references thereind

o
n=0

`

Hn
sMdsx,yd

tn

n!
= ext+ytM , s13d

whereHn
sMdsx,yd=n!or=0

fn/Mgfsxn−Mryrd / sn−Mrd!r!g, Fsxd can be expanded as

Fsxd = ex+sxM/M!d = o
n=0

`

Hn
sMdS1,

1

M!
D xn

n!
. s14d

Equations10d yields An=Hn
sMds1,1/M!d ·Bn, where theBell numbersBn are defined through their

egf, expsex−1d=on=0
` Bnx

n/n!.9–11 Observe that for M =2, Hn
s2ds1, 1

2
d=si /Î2dnHns−i /Î2d

=1,2,4,10,26,76,232, . . . are theinvolution numbers10 expressible using Hermite polynomials
Hnsxd. The initial terms ofAn for M =2 are 1,4,20,150,1352,15 428,…, see Fig. 1, and forM
=3, are 1,2,10,75,527,6293, . . ., etc. Note that whereasBn counts all the partitions of ann-set,
Hn

sMds1,1/M!d counts partitions of ann-set into singletons andM-tons.
Example 2: Lm=m for m=1,2, . . ., giving rise to Fsxd=expfom=1

` msxm/m!dg=expsxexd
=on=0

` Inx
n/n!, where In=ok=0

` s n
k

dkn−k are idempotent numbers.10 Again choosing Vn
sŵd=1, n

FIG. 1. Lowest order Feynman-type graphs for Example 1 withn=1,2,3 lines. The number below each graph is its
multiplicity.
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=1,2, . . .,with ŵ=a†a, gives An= In. Bn=1,6,50,615,10 192,214 571, .. . .This corresponds to

normally orderingNfexpslsa†adelsa†addg.
Example 3: L1=0, Lm=1 for m=2,3, .. . , leading to Fsxd=expsex−1−xd=on=0

` Bn
s1dxn/n!,

whereBn
s1d arerestricted Bellnumbers which are defined as counting partitions without singletons.

(Note thatBn
s1d=s1/edok=0

` fsk−1dn/k!g). Here we chooseVn
sŵd=n!, n=1,2, .. . ,derived from the

string ŵ=sa†d2a, and producing via expfx/ s1−xdg=on=0
` Bn

s2,1dxn/n! fsee Eq.s37d of Ref. 7g, An

=Bn
s1d ·Bn

s2,1d=0,3,13,292,5511,166 091, .. . , see Fig. 2. This corresponds to the normal ordering
of expselsa†d2a−1−lsa†d2ad.

Example 4: L2m=2m, L2m+1=0 for m=0,1,2, .. . ,giving Fsxd=expsx sinhsxdd. If, as in Ex-
amples 1 and 2,Vn

sŵd=1, n=1,2, .. . , ŵ=a†a, then by defining theindempotentpolynomials
Instd=ok=0

n s n
k

dkn−ktk we obtain An= In
s2d.Bn=0,4,0,240,0,49 938,0,24 608 160,0, .. . ,where

In
s2d=ok=0

n s n
k
ds−1dkIks−1

2
dIn−ks 1

2
d, yielding Nfexpsla†a sinhsla†addg.

Example 5:In the last example we shall treat the functionŵ=a+a†, usingFsxd=exM/M!, M
=1,2,3, .. . . First observe thatNsexŵd¬Gŵsx,a,a†dª :ex2/2exsa+a†d: which is a consequence of
the Heisenberg algebra. It follows thatV1

sŵdsa,a†d=a+a†, V2
sŵdsa,a†d=1 andVn

sŵdsa,a†d=0 for n
.2, see Eq.s4d, giving V =h2,1,0,0, . . .j andL =hdm,Mjm=1

` . Let us define the modified Hermite
polynomials hnsxd=s−i /Î2dnHnsix /Î2d and then exps2x+x2/2d=on=0

` fhns2d /n!gxn. Using Eqs.
s10d and s12d we get

ZMsL ,V,ld = expSlM

M!

dM

dxMD ·UexpS2x +
x2

2
DU

x=0
= o

n=0

`
hMns2d

n!
SlM

M!
Dn

. s15d

Starting with the simplest caseM =1, the functionZ1sL ,V ,ld=exps2l+l2/2d gives An=hns2d
=1,2,5,14,43,142,499,1850, .. . ,n=0,1,2, .. . , Theseries of Eq.s15d can also be written down

FIG. 2. Lowest order Feynman-type graphs for Example 3 withn=2,3,4 lines. The number below each graph is
smultiplicityd3Pksvertex factor Vk=k!d. Numbers at black dotssverticesd are vertex factors.
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in closed form forM =2, corresponding to a single mode superfluidity-type HamiltonianH,sa
+a†d2,14 and forM =3,15

Z2sL ,V,ld = o
n=0

`
h2ns2d

n!
Sl2

2!
Dn

=
1

s1 − l2d1/2 expS 2l2

1 − l2D , s16d

Z3sL ,V,ld = o
n=0

`
h3ns2d

n!
Sl3

3!
Dn

=

expSf3l3

6
− f4l6

8
D

s1 − fl3d1/2 2F0S1

6
,
5

6
;− ;

3l6

2s1 − fl3d3D , s17d

wherefsld=s1−Î1−4l3d /l3 and 2F0 is the hypergeometric function. In these examplesZ1 and
Z2 are convergent series inl while Z3 is formal power series. From Eq.s15d we can read off the
values of An: AMn=fsMnd! / sM!dnn!ghMns2d and zero otherwise, giving forM =2, A2n

=1,5,129,7485,755 265,116 338 005, . . ., seeFig. 3. Note, that wheneverZ is known in closed
form the equationZsld=expflsd/dxdgZusxdux=0 leads immediately to a set of graphs for which
Lm=dm,1. Thus for M =2, with Eq. s16d we have the following alternative descriptions:sad Lm

=dm,2; V1=2, V2=1, Vn.2=0 andsbd Lm=dm,1; V2n=s4n+1ds2n−1d!. However even ifZ is not
known explicitly methodsad leads to a simple, alternative, graphical description using Eq.s15d.

In conclusion we see that the technique described herein and hinging on Eq.s9d leads to a
combinatorial and graphical description of many physical systems.
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In this paper, the structure of vortices set of the Ginzburg–Landau system of the
superconductivity in dimension three was studied when applied magnetic field
uhexu=Osuln «ud. This singularities set is one-dimensional rectifiable. Its generalized
mean curvature was given. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1899987g

I. INTRODUCTION

Consider the following Ginzburg–Landau equations, referred to as GL:

GL5− s¹− iAd2u =
u

«2s1 − uuu2d in V

− curl h = siu,¹Aud in V

h 3 n = hex 3 n on ]V

s¹u − iAud · n = 0 on ]V.
6

The solutions of this system are the critical points of the following Ginzburg–Landau energy:

Jsu,Ad =
1

2
E

V
Fu¹Auu2 +

1

2«2s1 − uuu2d2 + uh − hexu2G . s1.1d

This energy-functional was introduced by the physicists Ginzburg and Landau in the 1950s as a
model for superconductivity.V is a bounded smooth domain inR3. k=1/« is a dimensionless
constantsthe Ginzburg–Landau parameterd. hex is the applied magnetic field,A:V°R3 is the
vector potential, and the induced magnetic field in the material ish=curl A. ¹A= ¹−iA. The
complex order parameteru indicates the local state of the material.uuu represents the density of
superconducting electron pairs, so thatuuu.1 corresponds to the superconducting state,uuu.0
corresponds to the normal state.

We know that a superconductor placed in an applied magnetic field may change its phases
when the field varies. When the lower critical valueHc1

of applied magnetic field is reached, there
is a phase transition from the superconducting state to the “mixed state,” where vortices appear
szero-set ofud. The motion of vortices generates an electric field and leads to current dissipation.
On the other hand, energy concentrates and blows up like the orderuln «u on vortices set, hence
singularities happen. So, to understand the vortices structure is of great importance not only in
mathematical theory but also in application. The Ginzburg–Landau equations and functional are
invariant underUs1d gauge transformations of the type:u°ueiF, A°A+ ¹F. We choose the
Coulomb gauge

adElectronic mail: zuhanl@yahoo.com
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div A = 0 in V, A · n = 0 on]V. s1.2d

In the caseV,R2, Sandier and Serfaty13–15 already studied global minimizers of energy-
functional s1.1d and describe their vortices structure as«→0. In Refs. 16–18, Serfaty studied
vortices structure of local minimizer ofs1.1d, as «→0, under assumptionE«sud= 1

2eVfu¹uu2
+s1/2«2ds1−uuu2d2gøM0uln «u.

In the caseV,R3, experiments have indicated the possibility of quite complicated vortices
configurations and it remains a challenge to capture these codimension two singularities in a
rigorous mathematical way. In this paper, we are interested in the asymptotic behavior of vortices
set sconcentrating measuresd associated with solutions to GL and concentrate our attention on
singularities of codimension two, then it is natural to assume that the energy ofu« blows up like
uln «u:

E«su«d =
1

2
E

V
Fu ¹ u«u2 +

1

2«2s1 − uu«u2d2Gdx ø M0uln «u, s1.3d

whereM0 is a fixed constant. This condition implies that the length of the vortices set is finite.
Such an assumption is automatically satisfied ifsu« ,A«d is a minimizer ofJsu,Ad with Dirichlet
boundary conditionssee Ref. 11d.

In order to state our main result, it is convenient to introduce the following measures and
Jacobian:2,9,12

m« ª
e«su«d
uln «u

dx, Ju« = Si, js]iu« 3 ] ju«ddxi ∧ dxj ,

where

e«su«d =
1

2
Fu ¹ u«u2 +

1

2«2sb« − uu«u2d2G, b« = 1 +«2uA«u2.

In view of assumptions1.3d, m« is bounded. Therefore, up to a subsequence we may assume

m«⇀ m* as measures. s1.4d

By s1.3d, Ju« is bounded infC0,asKdg* for any compactK,V any 0,a,1 ssee Ref. 8d.
Going to a subsequence, we have

Ju« → J* in fC0,asK,L2R
3dg* , s1.5d

for any compactK,V. Recall that, for a radon measurenPMsVd andm.0, them dimensional
density ofn at xPV is defined by

Qmsn,xd ª lim inf
r→0

nsBsx,rdd
rm .

Set

Sm = hx P V:Q1sm* ,xd . 0j. s1.6d

Then we have the following main theorem.
Theorem 1.1: Let su« ,A«d be the solutions to GL with (1.3). Assume hex is a given constant

vector satisfyinguhexuøCuln «u. The following properties hold.
i) The setSm is closed inV and 1-rectifiable. There exists a constanth0.0 such that for each

x0PSm,

Q*sx0d ª Q1sm* ,x0d ù h0. s1.7d

Moreover, for every compact set K,V \Sm,
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uu«sxdu → 1 uniformly on K as« → 0. s1.8d

ii) The measurem* can be decomposed as

m* = u ¹ hsxdu2 ·H3 + Q*sxd ·H1bSmc, s1.9d

where h is some harmonic function.
iii) The varifold VªVsSm ,Q*d satisfies

HW sxd = p SaW ∧ p
dJ*

dm*
D for m* − a.e. x inSm, s1.10d

where HW sxd denotes the generalized mean curvature of V at x and is defined by

E
V

divSm
XW = −E

V

HW ·XW for all XW P C0
`sV,R3d,

p refers to the Hodge duality, and dJ* /dm* is the Radon-Nikodym derivative of J* with respect to
m* , aW =lim«→0sA« u / ln « u d.

Remark 1.1: From the proof of Lemma 2.2, we have, for hex=osuln «ud, that

HW sxd = 0 for m* − a.e. x inSm.

This means that V is a stationary varifold. The limiting vortex setSm consists of line segments.
But, when hex=Osuln «ud, for the solutions with the bound (1.3), vortices will be curved according
to the equationkW =aW 3tW provided

diJ*i
dm*

= 1.

tW is the unit tangent vector to V andkW its curvature vector.
Remark 1.2: The main motivation of assumption (1.3) come from Refs. 16, 17, and 3. Theorem

1.1 extend the results in Refs. 16 and 17 from two dimensions to three dimensions. We would like
to mention that the method here is completely different than that in Refs. 16 and 17. Our proofs
borrow many ingredients from Refs. 3–5 and 10, in particular, borrowing ideas from the proof of
Theorem 3 of Ref. 5. The first important tool in our proof is monotonicity formula. In order to
establish the monotonicity formula, we need to obtain the uniform estimate on A« and refined
estimates on Jacobian integrals, which is a conjecture by Bourgain, Brezis, and Mironescu (Ref.
7), were just proven by Bethuel, Orlandi, and Smets (Ref. 6). This step is different than that in
Theorem 3 of Ref. 5. The second important ingredient is theh-compactness theorem.

Remark 1.3: In Ref. 11, Rivière studied the global minimizer of the three-dimensional Higgs
model. Theorem 1.1 can be extended to the critical points of that model which satisfy (1.3).

We organize the paper as follows: In Sec. II, we derive the monotonicity formula and
h-compactness theorem. In Sec. III, we prove the main Theorem 1.1.

II. THE MONOTONICITY FORMULA AND h-COMPACTNESS THEOREM

In this section, we will derive the monotonicity formula of the energy. First of all, we establish
some basic estimates onA«. By maximum principles, we have the following lemmasssee Ref. 11d.

Lemma 2.1: Letsu« ,A«d be the solutions to GL. We have

iu«iL`sVd ø 1, i¹AuiL`sVd ø
C

«
. s2.1d

Now we establish an estimate ofA«.
Lemma 2.2: Letsu« ,A«d be the solutions to GL with assumption (1.3). We have
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iA«iw1,6sVd ø C0uln «u. s2.2d

In particular,

iA«iCasV̄d ø C0uln «u s2.3d

where0,a,1 and C0 is independent of«.
Proof: It is well known that for the givenhex, there exists a unique smooth vector fieldF on

V such that

curl F = hex, div F = 0 in V, F · n = 0 on]V. s2.4d

From GL, we have

curl2sA − Fd + uuu2A = siu, ¹ ud in V, s2.5d

curlsA − Fd 3 n = 0 on]V. s2.6d

We see thaticurlAiL2sVd is an equivalent norm of space

HsV,divd = hA P H1sV,R2d:div A = 0 in V,A · n = 0 on]Vj.

Multiplying s2.5d by A−F, integrating by parts, then using Lemma 2.1,s1.3d, and Young’s in-
equality, we obtain

iA − FiH1sVd
2

ø Culn «u + iFiL2sVd
2 . s2.7d

So,

iAiH1sVd
2

ø Culn «u + iFiH1sVd
2

ø Culn «u + Cicurl FiL2sVd
2

ø Culn «u2. s2.8d

Since divA=0 in V, we have, from GL, that

− DA + uuu2A = siu, ¹ ud in V. s2.9d

By elliptic estimate, we have the following interior estimate:

iAiH2sKd
2

ø CsKdsuln «u + iAiH1sVd
2 d ø CsKduln «u2, ∀ K , , V. s2.10d

To derive the boundary estimates, we shall straighten a portion of boundary and study the equation
in the half ball BR

+. Now, we fix a point x0 on ]V. If there exists anR0 such that
VùBR0

sx0d, hsx1,x2,x3d :x3.0j, GR0
=]VùBR0

sx0d, hsx1,x2,0dj, then we have the boundary
conditions

]3A1 = hex
2 , ]3A2 = − hex

1 , A3 = 0 onGR0
.

Combining this relation withs2.9d, by the elliptic estimates, we have the following boundary
estimate:

iAiH2sBR0/2
+ d ø Cfi¹AuiL2sVd + iAiH1sVd + ihexiH1sGR0

dg ø Culn «u.

In general case, we will straighten a portion of]V aroundx0. For simplicity, assume thatx0=0 and
express a portion of]V around 0 byr =rsy1,y2d, rs0,0d=0. Let ] j denote]yj

. Denoter i =]ir,
n=r13 r2/ ur13 r2u and gij =r i ·r j. Choosingsy1,y2d as the normal coordinates of the portion of
surface andn to be the inward normal vector to]V, we havegijs0,0d=di j . Denotee1=r1, e2

=r2, ande3=n. We will choose the isothermal coordinatessy1,y2d. Denotek1 andk2 the principle
curvature. Now, define a map
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x = Fsyd = rsy1,y2d + y3nsy1,y2d, s2.11d

which is defined on someBR
+ and straightens a portion of]V aroundx0. We compute] jF and

Gij =]iF ·] jF:

]1F = f1 − k1y3gr1, ]2F = f1 − k2y3gr2, ]3F = n,

G11 = g11f1 − k1y3g2,

G22 = g22f1 − k2y3g2,

G33 = 1,

G12 = G13 = G23 = 0.

Let Gij denote the element of the inverse of the matrixsGijd. Then

G11 = 1/G11, G22 = 1/G22, G33 = 1, G12 = G13 = G23 = 0.

Given a functionu and a vectorA, we write them in the new variables as follows:

ũsyd = usFsydd, s2.12d

Ãsyd = AsFsydd = o
j=1

3

Gjjaj] jFsyd, s2.13d

where

aj = AsFsydd · ] jFsyd.

Now, let g1=1−y3k1, g2=1−y3k2, then the differential operator in the new coordinates can be
defined as

DÃW= sDÃ1
W,DÃ2

W,DÃ3
Wd, s2.14d

whereDÃ1
W=s1/g1ds]1− iÃ1dW, DÃ2

W=s1/g2ds]2− iÃ2dW andDÃ3
W=s]3− iÃ3dw. Then we have

the following equations forÃ:

1

G11
s]1

2Ãd +
1

G22
s]2

2Ãd + ]3
2Ã = YsÃ,]1Ã,]2Ã,]3Ãd + siũ,DÃũd in BR

+, s2.15d

]3Ã1 = hexg22
−1e2, ]3Ã2 = − hexg11

−1e1, Ã3 = 0 onGR, s2.16d

where GR=hsy1,y2,0d : uy1u2+ uy2u2øR2j, YsÃ,]1Ã,]2Ã,]3Ãd denotes linear combination of these
factors.

From the elliptic estimate tos2.15d, s2.16d, ands2.8d, we have

iÃiH2sBR/2
+ d ø Csuln «u + ihexg11

−1e1iH1sGRd + ihexg22
−1e2iH1sGRdd ø Culn «u. s2.17d

From s2.10d and s2.17d, we have

iAiH2sVd ø Culn «u. s2.18d

By Sobolev embedding, we have
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iAiW1,6sVd ø Culn «u, iAiCasV̄d ø Culn «u, s2.19d

where 0,a,1. The proof of Lemma 2.2 is completed. h

For x0PV and r .0 such thatBrsx0d,V, define

Ẽ«su«,x0,rd ª
1

r
E«su«,x0,rd ;

1

r
E

Brsx0d
F1

2
u ¹ u«u2 +

sb«sxd − uu«u2d2

4«
G . s2.20d

When this will not lead to a confusion, we will also denote itẼ«sx0,rd or evenẼ«srd. A compu-
tation directly gives the followingssee Refs. 3 and 5d.

Lemma 2.3: Letsu« ,A«d satisfy GL and BRsx0d,V, then for0, r ,R,

d

dr
sẼ«sx0,rdd =

1

r
E

]Brsx0d
U ]u«

]n
U2

+
1

r2E
Brsx0d

sb«sxd − uu«u2d
2«2 −

2

r2E
Brsx0d

kJu«,A«ijisx − x0dl

−
1

2r2E
Brsx0d

ssx − x0d · ¹ uA«u2dsb« − uu«u2d, s2.21d

wherej jsxd=oiÞ jxidxj ∧dxi, for j =1,2,3.
Lemma 2.4: There exists C.0 which is independent of« such that for BRsx0d,V,

L = CsC0 + 1duln «u s2.22d

and for anysu« ,A«d satisfying GL with (1.3), we have

d

dr
sexpsLrdsẼ«sx0,rd + CC0«2uln «u3dd ù

1

r
E

]Br

U ]u«

]n
U2

+
1

r2E
Br

sb«sxd − uu«u2d2

4«2 ù 0

s2.23d

for 0, r ,R. In particular, expsLrdsẼ«sx0,rd+C«2uln «u3d is increasing.
Proof: From Lemma 2.3, we need to estimate the last two terms ins2.21d. The conclusion

follows by using Lemma 2.2 immediately. h

In order to establish the monotonicity formula on larger balls, refined estimates on Jacobian
integrals are needed because we only haveCa estimate onA«.

Lemma 2.5: (Refs. 6 and 7) Let wPHloc
1 sV ,Cd, wPC0

`sV ,L1R3d and Kªsuppw. Moreover,
assume that there exists q.6 such that w verifies

iwiLqsVd ø Cq. s2.24d

Then,

UE
V

kJw,wlU ø C1EK

e«swd

uln «u
+ «a0SE

K

e«swdDa12iwiẆ1,3sVd, s2.25d

for some constants C.0 and 0,a0,1,0,a1,1, depending only on q, Cq.
Now we prove the following monotonicity formula.
Proposition 2.1: There exist C.0 andb.0 depending not on« such that for BRsx0d,V and

for any su« ,A«d satisfying GL with (1.3), we have

Ẽ«sx0,urd ø CsẼ«sx0,rd + «bd s2.26d

for 0,u,1/2 and 0, r ,minsR,2 /sC0+1dd.
Proof: We follow closely the lines of Lemma A.6 in Ref. 5 and drop off the subscript« for

simplicity.
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Step 1:We define a smooth cut-off functionf by

fsr,ad = 5 1 if a ø r

2 − a/r if r ø aø 2r

0 if a ù 2r ,
6 s2.27d

wherer .0. Forx0PV and r .0 such thatB2rsx0d,V, set

Ē«sx0,rd ª
1

r
E

B2rsx0d
e«sudfsr,ux − x0uddx, s2.28d

then for 0, r ,R/2

d

dr
sĒ«sx0,rdd =

1

r
E

1

2

tE
]Btrsx0d

U ]u

]n
U2

+
1

r2E
B2rsx0d

sb« − uuu2d2

2«2 fsr,ux − x0ud

−
1

r2E
B2rsx0d

KJu,2o
i

Aisxdjisx − x0dfsr,ux − x0udL −
1

2r2E
B2rsx0d

ssx − x0d · ¹ uAu2d

3sb«sxd − uuu2dfsr,ux − x0ud. s2.29d

Step 2:There exists a constantC.0 such that forB2rsx0d,V,

Ē«sx0,urd ø CC0 expsCC0rdSĒ«sx0,rd +
«a0uln «ua1+1

ur
+ «2uln «u4D s2.30d

for 0,uø1. In fact, we need to estimate the last two terms ins2.29d. We may assumex0=0. The
second one is treated as before,

U 1

2r2E
B2rsx0d

ssx − x0d · ¹ uAu2dsb«sxd − uuu2dfsr,ux − x0udU ø Ē«s2rd + CC0«2uln «u4. s2.31d

For the first term, note that the two-form

wsxd ª o
i

2Aisxdjisxdfsr,uxud s2.32d

satisfies the estimates, using Lemma 2.2,

iwiẆ1,3sB2rd
ø CC0uln «ur . s2.33d

Hence, using Lemma 2.5, we have

1

r2E
B2rsx0d

KJu,2o
i

Aisxdjisx − x0dfsr,ux − x0udL ø CC0Ē«s2rd +
CC0

r
«a0uln «ua1+1. s2.34d

Combinings2.31d, s2.34d, ands2.29d, we have

d

dr
sĒ«sx0,rdd ù − CC0Ē«s2rd − CC0S«2uln «u4 +

1

r
«a0uln «ua1+1D . s2.35d

s2.30d then follows from a version of Gronwall’s lemma given in Lemma A.7, Ref. 5.
Step 3:First, consider the case

ur , pª suln «usC0 + 1dd−1 , r/2. s2.36d

Using Lemma 2.4, we obtain that
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Ẽ«surd ø CsẼ«srd + «2uln «u3d. s2.37d

Next, usings2.30d and the definition ofr,

Ẽ«srd ø Ē«srd ø CSĒ«sr/2d +
«a0uln «ua1+1

r
+ uln «u4«2D ø CsẼ«srd + «a0uln «ua1+2 + «2uln «u4d.

s2.38d

Letting b=a0/2 and combinings2.37d and s2.38d, we get the desireds2.26d. In the caseur ùr
srespectively,r ørd, it suffices to uses2.30d srespectively, Lemma 2.4d to obtains2.26d directly.
This completes the proof of Proposition 2.1. h

Using Lemma 2.2 and Proposition 2.1, the same argument of Theorem 2 in Ref. 5 gives the
following h-compactness theorem, which boundsuu«u away from zero as soon as the local energy
is bounded byhuln «u with h small.

Theorem 2.6: (h-compactness theorem) Letsu« ,A«d be a solution of GL with (1.3) ands
.0 be given. Then, there existh.0 and «0.0, depending only ons.0, C0 such that if x0
PV, «ø«0, Î«ø r ø1/s1+C0d, B2rsx0d,V, and

Ẽ«sx0,rd ø huln «u, s2.39d

then

uu«sx0du ù 1 − s. s2.40d

Corollary 2.7: Under the assumption of Theorem 2.6. Let0,s,1, h.0, and«0.0 be given
by Theorem 2.6. Let x0PV and r.0 such that Bsx0,2rd,V and 4Î«, r ,4/s1+C0d. Then, for
«,«0, if

Ẽ«sx0,rd ø
1
4huln «u s2.41d

we have

u1 − uusxduu ø s ∀ x P Bsx0,3r/4d. s2.42d

III. PROOF OF THEOREM 1.1

In this section we will prove Theorem 1.1. Recall that, by Lemma 2.2 and assumptions1.3d,

E«su«d =E
V

e«su«d ø s2M0 + 1duln «u, s3.1d

wheree«su«d=s1/2dfu¹u«u2+s1/2«2dsb«− uu«u2d2g. By s3.1d, we have

m« ª
e«su«d
uln «u

dx

is bounded. Therefore, up to a subsequence we may assume that

m«⇀ m* as measures. s3.2d

We set

Sm = hx P V:Q1sm* ,xd . 0j, s3.3d

where
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Q1sm* ,xd ª lim inf
r→0

m*sBsx,rdd
r

.

Lemma 3.1: LetQ*sx0dªQ1sm* ,x0d. Then, there exists a constanth0.0 such that if x0
PSm, we have

Q*sx0d ù h0.

Proof: Let h0= 1
4h, whereh.0 and«0.0 are given by Theorem 2.6. The conclusion follows

by using contradiction argument as in the proof of Lemma B.11 in Ref. 5. h

By the upper-semicontinuity ofQ* , we have the following lemma.
Lemma 3.2:Sm is closed inV.
From Lemma 3.1 and Corollary 2.7 we have the following uniformly convergence result away

from Sm.
Lemma 3.3: Let K,V \Sm be any compact subset. For anys.0, there exists a constant

«2.0 depending on K, s such that, for«,«2,

u1 − uuuu ø s on K. s3.4d

Lemma 3.4: We have

m* = gsxdH3 + hsxdH1bSmc,
where g,hPLloc

` sVd and

h0 ø Q*sxd ø hsxd ø Q*sxd ª lim sup
r→0

m*sBsx,rdd
r

ø CM0.

Proof: SinceSm is closed inV, henceSm is measurable. We have

m* = m* bSmc + m* bsV \ Smdc.
By Corollary 2.7, the same argument of Theorem VIII.1 in Ref. 3 yields

H1sSmd ø CM0.

By the monotonicity formula of Proposition 2.1, we have that for anyxPV,

Q*sxd ª lim sup
r→0

m*sBsx,rdd
r

ø CM0.

According to the Radon–Nikodym theorem, we obtain

m* bSm = hsxdcH1bm* c s3.5d

for Q* øhsxdøQ* . Let x0PV \Sm, r .0 such thatB̄sx0,2rd,V \Sm. By Lemma 3.3, we obtain

s ª i1 − uuuiL`sB̄sx0,2rdd = os1d as« → 0.

It is easy to show that

E«sx0,
3
4rdd ø Csd3 + s + C0«2uln «u + «dE«sx0,rd + CC0«uln «u2. s3.6d

Note thats=ss«d=os1d. Dividing both sides ofs3.6d by uln «u and sending«→0 we obtain

m* = sBsx0,
3
4rddd ø Cd3m*sBsx0,rdd,

which implies thatm* bsV \Smd is absolutely continuous with respect to the Lebesgue measure, and
by the Radon–Nikodym theorem again we obtain
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m* = gsxdH3 + hsxdH1bSmc s3.7d

for some locally bounded functiong. The proof of Lemma 3.4 is completed. h

The same proof of Theorem A.sivd in Ref. 4 gives
Lemma 3.5: We have

gsxd = u ¹ h*sxdu2a.e. inV,

where h* is some harmonic function.
Lemma 3.6:Sm is rectifiable,

HW sxd = p SaW ∧ p
dJ*

dm*
D

for m* −a.e. x inSm.

Proof: Let XW PDsV ,R3d be a smooth vector field. Then,

1

uln «uEV

Se«suddi j −
]u

]xi

]u

]xj
D ]Xi

]xj
= −E

V
KpS 2A«

uln «u
∧ p JuD,XWL +

1

2uln «uEV

sb« − uuu2dXW · ¹ uA«u2,

s3.8d

wherep refers to the Hodge duality. Let

a«
i j
ª

1

uln «u
Se«suddi j −

]u

]xi

]u

]xj
D .

sa«
i jd is a symmetric matrix with trace larger thanm«. Hence, its eigenvalues are less or equal tom«.

Note that

ua«
i j u ø 3m«. s3.9d

Passing to a subsequent, we may assume that

a«
i j → a*

i j in the sense of measures.

By s3.9d, we obtainua*
i j uø3m* . Therefore,

a*
i jsxd = Aijsxdm* for m* − a.e. xP V,

where the matrixAijsxd is symmetric and its trace equal to 1 and eigenvalues less or equal to 1.
From s3.9d, we also have

Aij ù − 3di j for m* − a . e . x P V. s3.10d

Now we deal with the last term of the right-hand side ofs3.8d. By Lemma 2.2, we have

U1

2
E

V

sb« − uuu2d
XW · ¹ uAu2

uln «u U ø C«iAiL`SE
V

u ¹ Au2D1/2 1

uln «uSEV

b« − uuu2

«2 D1/2

ø C«uln «u → 0 as« → 0. s3.11d

On the other hand, from Lemma 2.2, passing to a subsequence, there exists anaW such that

A«

uln «u
→ aW in CasV̄d as« → 0. s3.12d

Therefore, passing to the limit ins3.8d, we have
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E
V

Aijsxd
]Xi

]xj
dm*sxd = −E

V
KpSaW ∧ p

dJ*

dm*
D,XWLdm* . s3.13d

We decompose the right-hand side ofs3.13d as

E
V

Aijsxd
]Xi

]xj
dm*sxd =E

V

Aijsxd
]Xi

]xj
dm*sxdbSmc +E

V

S u ¹ h* u2

2
di j −

]h*

]xi

]h*

]xj
D ]Xi

]xj
dx.

s3.14d

SinceDh* =0, we have

E
V

S u ¹ h* u2

2
di j −

]h*

]xi

]h*

]xj
D ]Xi

]xj
dx = 0. s3.15d

From s3.13d and s3.15d, we obtain

E
V

Aijsxd
]Xi

]xj
dm*sxdbSmc = −E

V
KpSaW ∧ p

dJ*

dm*
D,XWLdm* bSmc. s3.16d

Since XW was arbitrary,s3.16d implies that the generalized 1-varifoldsdefined in Ref. 1d Ṽ

ªdAij sxdm* bSm has a first variation. By Theorem 3.8scd in Ref. 1 we obtain thatṼ is a real
rectifiable 1-varifold. In particular,Sm is rectifiable which implies

U*sxd = U*sxd m* − a . e . x P Sm,

thus,

m* = gsxdH3 + U*sxdH1bSmc, Ṽ = VsSm,U*d. s3.17d

By s3.16d, we also have

HW = p SaW ∧ p
dJ*

dm*
D for m* − a . e . x P Sm.

The proof of Theorem 1.1 is now completed. h
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We consider the two-dimensional Schrödinger operator,Hgsbd=−]2/]x2

+fs1/Î−1ds] /]yd−bsxdg2−gVsx,yd, whereV is a non-negative scalar potential de-
caying at infinity likes1+uxu+ uyud−m, and s0,bsxdd is a magnetic vector potential.
Here,b is of the formbsxd=e0

xBstddt and the magnetic fieldB is assumed to be
positive, bounded, and monotonically increasing onR sthe Iwatsuka modeld. Fol-
lowing the argument as in Refs. 15, 16, and 17fRaikov, G. D., Lett. Math. Phys.,
21, 41–49 s1991d; Raikov, G. D, Commun. Math. Phys.,155, 415–428s1993d;
Raikov, G. D. Asymptotic Anal.,16, 87–89s1998dg, we obtain the asymptotics of
the number of discrete spectra ofHgsbd crossing a real numberl in the gap of the
essential spectrum as the coupling constantg tends to ±̀ , respectively. ©2005
American Institute of Physics.fDOI: 10.1063/1.1897844g

I. INTRODUCTION

We consider the two-dimensional Schrödinger operator with electromagnetic field

Hgsbd = −
]2

]x2 + S 1
Î− 1

]

]y
− bsxdD2

− gVsx,yd.

Here,Vsx,yd is a scalar potential decaying at infinity ands0,bsxdd is a magnetic vector potential
given by the formbsxd=e0

xBstddt for a positive magnetic fieldB, which depends only on the
variablex of sx,ydPR2.

The purpose of this paper is to investigate the number of discrete spectra ofHgsbd crossing a
real numberl in the gap of the essential spectrum as the coupling constantg tends to ±̀ ,
respectivelysthe precise formulation is given belowd.

We fix some notations. We denote the set of all integers byZ and denote the set ofnon-
negativeintegers byN. We denote the cardinal number of setA by ]A. We denote both] /]x and
d/dx by ]x, etc. We denote byCksV ,V8d the set of allV8-valued,Ck-functions onV, and by
C0

`sVd the set of all compactly supported, smooth functions onV. We useu ·u to denote the
Euclidean norms and use the notationskzl=s1+uzu2d1/2 for any zPRn and kx;yl=s1+uxu2

+ uyu2d1/2 for any sx,ydPRn3Rm. We denote byQsz,rd the open cube of radiusr, centered atz,
with sides parallel to the coordinate axes. We denote by SpecsAd the spectrum of any self-adjoint
operatorA, and byNsa,A,bd the dimension of the range of the spectral projection forA on the
interval sa ,bd. The notationsNsA.ad , NsA,bd, etc., are defined similarly.

To formulate our results we make the following assumptions for the magnetic fieldB and the
electric potentialV.

sB.1dThe magnetic fieldB is a real-valued, smooth and monotonically increasing function onR.
Moreover, there exist positive numbersB± such thatB−,B+, and limx→±`Bsxd=B± hold,
respectively.
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sB.2d In addition tosB.1d, there exists a positive numberM such that, for any multi-indexa, the
estimateu]x

asBsxd−B±duøCakxl−M holds for ±xù0, respectively. Here, the constantCa is
independent ofx, andB± are as insB.1d.

sV.1d The scalar potentialV is a non-negative smooth function onR2. Moreover, there exists a
positive numberm such that, for any multi-indexa, the estimateu]z

aVszduøCakzl−m−uau holds
for all zPR2. Here, the constantCa is independent ofz.

sV.2d There exists a positive numberC such that the estimateVszdùCkzl−m holds for allzPR2.
sV.3d Let sr ,vdP f0,`d3S1 be the polar coordinates ofzPR2, i.e., r = uzu and v=z/ uzu. There

exists a measurable, bounded and positive functionv on the unit circleS1 such that
limr→` rmVszd=vsvd holds for anyv=z/ uzuPS1.

sV.4d In addition tosV.1d, we have the limit

lim
«↓0

lim sup
m↓0

m2/m VolhzP R2us1 − «dm , Vszd , s1 + «dmj = 0.

Here, “Vol” stands for the Euclidean volume, andm is as insV.1d.

Under the assumptionssB.1d and sV.1d, the operatorHgsbd is essentially self-adjoint on
C0

`sR2d for any gPR fsee Avron, Herbst, and Simons1978dg. In what follows we identify any
closable operator with its operator closure if there is no fear of confusion. Iwatsukas1985d
investigated the spectral properties of the unperturbed operatorH0sbd, which is calledthe Iwatsuka
model by some authorsfMantoiu and Purices1997d, Exner and Kovařik s1999d, and Shirai
s2003dg. Iwatsuka’s result says that, undersB.1d, the spectrum ofH0sbd is absolutely continuous
and SpecsH0sbdd=øn=0

` fLn
−,Ln

+g holds, where we setLn
±=s2n+1dB± for any nPN, respectively,

and for notational convenience, we setL−1
+ =L−1

− =0.
Under sB.1d and sV.1d, the multiplication operatorV is relatively compact with respect to

H0sbd, so the essential spectrum ofHgsbd coincides with that ofH0sbd for any g fsee, e.g., Reed
and Simons1978, Sec. XIII.4dg. In particular, the operatorHgsbd may have discrete spectrasi.e.,
discrete eigenvalues of finite multiplicityd in the gaps of the essential spectrum.

We make some additional notations. Letv be as insV.3d. Set S±
1=hz=sx,ydPR2u uzu=1, ±x

ù0j and setv̂±=eS±
1vsvd2/m dv, respectively. For anylPR \SpecsH0sbdd and for anyl PN, set

nlsld =
1

4p
sB+v̂+uLl

+ − lu−2/m + B−v̂−uLl
− − lu−2/md.

For any intervalfl ,mg,R \SpecsH0sbdd and for anyl PN, set

nlsfl,mgd =
1

2pmSB+v̂+E
l

m

uLl
+ − tu−2/m−1 dt + B−v̂−E

l

m

uLl
− − tu−2/m−1 dtD .

If we assume that 0,Ln
+,l,m,Ln+1

− for some nPN, the sums olPNnlsld and
olPNnlsfl ,mgd converge when 0,m,2, and the relationnlsfl ,mgd=nlsmd−nlsld holds whenl
ùn+1.

We denote byNg
±sld the number of eigenvalues ofH±g8sbd crossingl as g8 increases from

zero to g, i.e., Ng
±sld=o0,g8,g dim KersH±g8sbd−ld, respectively. Note that the sum above is

meaningful under the assumptionssB.1d and sV.2d, since the standard perturbation theory shows
that for every fixedg.0 the set of values ofg8P s0,gd for which dim KersH±g8sbd−ld is not
equal to zero is finitefsee, e.g, Reed and Simons1978dg.

The main results in this paper are the following.
Theorem 1.1: Let Ln−1

+ ,l,Ln
− for some nPN. Assume that (B.1), (B.2), (V.1)–(V.4) hold.

Moreover, assume that the constant m in (V.1) satisfies0,m,2. Then we have

lim
g→`

g−2/mNg
+sld = o

lùn

nlsld. s1.1d

Remark 1.2: In fact, the conclusion of Theorem 1.1 is still valid under weaker conditions on
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B and V in the case ofl,L0
−. See Lemma 3.8 in Sec.III below.

Corollary 1.3: Let Ln−1
+ ,l,m,Ln

− for some nPN. Under the same assumption as in
Theorem 1.1, we havelimg→` g−2/mNsløHgsbd,md=olùnnlsfl ,ngd.

Theorem 1.4: Let Ln
+,l,Ln+1

− for some nPN. Assume that (B.1), (B.2), (V.1)–(V.4) hold.
Then we havelimg→` g−2/mNg

−sld=o0ølønnlsld.
Theorem 1.5: Let Ln−1

+ ,l,m,Ln
− for some nPN. Assume that (B.1), (B.2), (V.1)–(V.4)

hold. Moreover, assume that the constant m in (V.1) satisfies m.2. Then we have
lim infg→` g−2/mNsløHgsbd,mdùolùnnlsfl ,mgd.

At present, the author has not obtained the upper estimate forNsløHgsbd,md in the case of
m.2, nor the results for the case ofm=2.

Remark 1.6:

s1d The study of eigenvalues in the spectral gaps of the Schrödinger operators has a long history
[see, e.g., Birman (1991), Alama, Deift, and Hempel (1989), Hempel and Levendorski�

(1998) and references therein]. In the case of constant magnetic fields (i.e., the case of B+
=B− in our notation), Raikov (1991, 1993d has obtained the strong-electric-field asymptotics
as in Theorem 1.1 and Corollary 1.3 above when the scalar potential decays slowly at
infinity (i.e., the case of0,mø2 in our situation). Moreover, for a class of nonconstant
magnetic fields which includes the Iwatsuka model, Raikov (1998, 1993) shows that the
asymptotics of Ng

+sld are Weylian, i.e., the asymptotic relationlimg→` g−1Ng
+sld

=s1/4pdeR2Vsx,yddx dy holds when the scalar potential decays rapidly (the case of m.2 in
our situation).

s2d Hempel and Levendorski� (1998) [see also Levendorski� (1995, 1996)] study the asymptotics
of Ng

±sld for the magnetic Schrödinger operators H−gV=s−Î−1¹−ad2+W−gV on L2sRnd
under rather general conditions ona,W, and V. Especially, V is not assumed to have a
definite sign. They assume, however, the existence of the density of statesrsl ,Hd
=limR→` NsHuQR

,ld /VolsQRd for the unperturbed operator H, for which the asymptotic
coefficient as in Theorem 1.1 is expressed as

lim
g→`

g−n/mNg
+sld =E

Rn
dzE

l

l+vsvdr−m

drst,Hd

when Vszd=vsvdr−m at infinity and0,m,2, for example. Here, QR is a cube of side length
R and we denote by HuQR

the Dirichlét realization of H on QR. On the contrary, the Iwatsuka
model has no canonical density of states because of lack of spacial symmetry of the magnetic
field B. Thus, at least, we need modify their argument. Indeed, although the isotropic density
of statesrsl ,H0sbdd=sB+/4pd] hl PN uLl

+,lj+sB−/4pd] hl PN uLl
−,lj for the Iwatsuka

model do exist under the assumption in Theorem 1.1, the quantity

E
R2

dx dyE
l

l+vsvdr−m

drst,H0sbdd =
B+

4p

v̂
2 o

lùn+1
uLl

+ − lu−2/m +
B−

4p

v̂
2 o

lùn+1
uLl

− − lu−2/m,

wherev̂=eS1vsvd2/m dv, does not give the correct asymptotic coefficients1.1d, which can be
expressed as

E
hxù0j

dx dyE
l

l+vsvdr−m

dr+st,H0sbdd +E
hxø0j

dx dyE
l

l+vsvdr−m

dr−st,H0sbdd,

wherer±st ,H0sbdd=sB± /4pd] hl PN uLl
± , tj, respectively.

The organization of this paper is as follows: Sec. II contains some preliminary results from
functional analysis and the theory of pseudodifferential operators. In Sec. III, we give a proof of
Theorem 1.1 in the case where the control pointl is fixed below the infimum of the essential
spectrum ofHgsbd. In Sec. IV, we recall the spectral properties of the Iwatsuka modelH0sbd and
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derive some decay estimates for the band functions and the correspondingsgeneralizedd eigen-
functions ofH0sbd. Proofs of Theorem 1.1 forl in general gaps, Theorem 1.4 and Theorem 1.5 are
given in Sec. V.

II. PRELIMINARIES

A. Variational principle

In this section we recall some results concerning the variational principle used mainly in Sec.
III. All the results are well known, so we omit proofs.

For any sesquilinear form, which is referred to asform in the sequel,q on a Hilbert space, we
denote its form domain byDsqd. For any semibounded, closable formq, there exists a unique
self-adjoint operatorAq such that the operator domainDsAqd is a form core for the form closureq̄
and the relationqfug=sAqu,ud holds for anyuPDsAqd. Throughout the paper, we identify such a
form q with the corresponding self-adjoint operatorAq, and we denote the counting function
NsAq,ld simply by Nsq,ld for any real numberl.

The following result is a consequence of the min–max principlefsee, e.g., Reed and Simon
s1978, Vol. IVd, Colin de Verdieres1986, Lemma 5.1dg.

Lemma 2.1: LetsH j ,qj ,Dsqjdd be a triplet of a Hilbert spaceH j, a semibounded, closable
form qj and the form domain Dsqjd for j =1,2 and let J be an isometry from Dsq1d to Dsq2d with
respect to norms ofH1 andH2, respectively. Suppose that there exist positive constants C1 and C2

such that q1fugùC1q2fJug−C2iuiH1

2 holds for all uPDsq1d. Then we have Nsq1,ldøNsq2

, sl+C2d /C1d for any lPR.

For anyb̃PC1sR2,Rd, we define

Hgsb̃d = −
]2

]x2 + S 1
Î− 1

]

]y
− b̃sx,ydD2

− gVsx,yd. s2.1d

In what follows, for any open subsetV in R2, we denote byHgsb̃duV the minimal self-adjoint

realization ofHgsb̃d starting fromC0
`sVd, i.e., the Dirichlét realization ofHgsb̃d on V.

Proposition 2.2: [Colin de Verdiere (1986, Theorem 1.3)] Let r be a positive number and let
L be a real number. Then we have the upper bound

Nss− `,LduH0sB0xduQs0,rdd ø
B0

2p
r2 ] hl P Nus2l + 1dB0 , Lj,

where H0sB0xd is the operator of the forms2.1d with b̃sx,yd=B0x and g=0, and the lower bound

Nss− `,LduH0sB0xduQs0,rdd ù
B0

2p
sr − r1d2 ] hl P Nus2l + 1dB0 , L − Cr1

−2j.

Here, the constant C is independent ofL ,r and r1 with 0, r1, r.
The following result is the so-called IMSsIsmagilov, Morgan, Sigal, Simond localization

formula for the magnetic Schrödinger operatorsfsee Cyconet al.g.
Lemma 2.3: LetṼ be an open subset ofR2 and let hV jj jPJ be a locally finite open covering

of Ṽ. Let hx jj jPJ be a partition of unity subject to the coveringhV jj satisfying the conditions

suppsx jd,V j ,0øx j ø1 and x j PC1sV jd for any jPJ. Moreover, o jPJx j
2=1 on Ṽ. Assume that

b̃PC`sṼ ,Rd. Then we havesHgsb̃du,ud=o jPJsHgsb̃dx ju,x jud−solPJu¹xl u2u,ud for any u

PC0
`sṼd.
The next result follows from an elementary inequality 2XYø«X2+Y2/«.

Lemma 2.4: Assume that b˜PC1sR2,Rd and 0,«,1. Then we have

052112-4 Shin-ichi Shirai J. Math. Phys. 46, 052112 ~2005!

                                                                                                                                    



s1 − «dsH0sb̃du,ud − gsVu,ud − s1 + 1/«disb − b̃dui2 ø sHgsbdu,ud

ø s1 + «dsH0sb̃du,ud − gsVu,ud + s1 + 1/«disb − b̃dui2

for any uPC0
`sR2d.

B. Pseudodifferential operators

In this section we introduce a class of pseudodifferential operatorssCDOsd and recall some
basic results. All the results are well known in the theory ofCDOs, so we omit proofs.

For anymPR andaPC`sR2d, we say thata belongs to the class of symbols Sm if the quantity

hab
smdsad = sup

sx,jdPR2
kx;jl−m+au]x

b]j
aasx,jdu s2.2d

is finite for eacha ,bPN. The seminormshhab
smdja,b gives a Fréchet space topology on the space

Sm. We setS−`=ùmPRSm, which coincides withSsRd.
The symbol classSm is an example of the class introduced by Bealss1975d fFsx,jd

=kx;jl ,wkx,jl=1,l=logskx;jlmd and SF,w
l =Sm in his conventiong, or by Roberts1978d, Dauge

and Roberts1987d fm=kx;jlm,f=kx;jl ,w=1,Ssm;f ,wd=Sm in their conventiong. Hence, by the
standard argument as in Bealss1975d or in Hörmanders1979d fgx,jsy,hd= uyu2+ uhu2/ kx;jl2 in his
conventiong, one can find that, for anyaPSm, the associatedCDO,

Opsadusxd =E E
R2

eÎ−1sx−ydjaSx + y

2
,jDusyddy dj

is a well-defined oscillatory integral for anyuPSsRd. Here, we set dj=dj / s2pd. Moreover,Opsad
mapsSsRd to itself continuouslyfso, extends to a continuous map fromS8sRd to itself by duality
based onL2-normg. For an operatorA from S8sRd to S8sRd, we sayAPOpSm if A is expressed as
Opsad for someaPSm.

Note that the original results in Bealss1975d are formulated in terms of the standard quanti-
zationeeR2eÎ−1sx−ydjasx,jdusyddy dj. However, all the corresponding results below are still valid
for the Weyl quantization; to see this, it suffices to chase the proofs in Bealss1975d carefully, or
use the relation between the standard and the Weyl quantizations as in Theorem 4.5 in Hörmander
s1979d. For omitted proofs, we refer to Proposition 6.17, Theorems 6.1, 7.2, and 7.7 in Beals
s1975d, and for Lemma 2.7 below we refer to Proposition 26.2 in Shubins1987d. Although the
class of symbols considered in Shubin’s book is slightly defferent from the classSm above, the
proof of Proposition 26.2 in his book is valid also for symbols inSm with obvious modifications.

Lemma 2.5: Let m,m8PR. We have the following assertions.

s1d If APOpSm and BPOpSm8, then ABPOpSm+m8 and the symbol of AB has an asymptotic
expansion as usual.

s2d If APOpSm, then A* POpSm and the symbol of A* is expressed as usual.
s3d If APOpS0, then A defines a bounded operator on L2sRd. Moreover, if APOpSm for some

negative m, then A defines a compact operator on L2sRd.
s4d If m.0 and aPS−m, then there exists lPN such thatiOpsadiBsL2sRddøCoa+bølhab

s−mdsad
holds for some constant C.0, independent of a.

s5d If APOpS−`, then A mapsS8sRd to SsRd continuously.

We introduce the weighted Sobolev spaceHm as thesfinited linear hull of the sethAuuu
PL2sRd ,APOpS−mj equipped with the weakest topology which makes the mapsA:L2sRd
→Hmd continuous for allAPOpS−m. The basic properties ofHm are summarized as follows.

Lemma 2.6:

s1d The space H0 coincides with L2sRd topologically.
s2d The embeddingsSsRd,Hm,S8sRd are densely and continuously for any m.
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s3d Hm,Hm8 holds if m8,m, and sHmd8=H−m topologically for any m.

s4d If APOpSm, then A maps Hm+m8 to Hm8 continuously for all m,m8.
s5d For any m,m8, there exists APOpSm which gives a topologically isomorphism from Hm+m8

onto Hm8. In particular, Hm has the topology of a Hilbert space for any m.

Lemma 2.7: Let D0 be a dense subspace ofSsRd. Let m.0 and aPSm. Assume that Opsad is
symmetric on D0 and uasx,jduùCkx;jlm holds for some C.0. Then

s1d The operator OpsaduD0
fthe restriction of Opsad on D0g is essentially self-adjoint, and

DsOpsaduD0
d coincides withhuPL2sRd uOpsaduPL2sRdj.

s2d The space DsOpsaduD0
d equipped with graph norm coincides with Hm topologically.

The following result concerning the eigenvalue asymptotics ofCDOs of negative order plays
an important role in Sec. V.

Proposition 2.8: [Dauge and Robert (1987, Theorem 1.3)] Let m.0 and let aPS−m and a be
real valued. Assume that the following two estimates,

lim
«↓0

lim sup
m↓0

m2/mVolhsx,jd P R2us1 − «dm , ± asx,jd , s1 + «dmj = 0, s2.3d

are satisfied. Then we have Ns±Opsad.md=s1/2pdVolhsz,jdPR2u ±asx,jd.mj+osm−2/md as
m↓0, respectively.

Note that the conditionss2.3d imply the conditionsTd in Dauge and Roberts1987d for the
volume functions Volhzu ±aszd.mj. As an immediate consequence of Proposition 2.8, for any
m.0 and anyaPS−m, the following rough estimate,

Ns±Opsad . md = Osm−2/md, s2.4d

holds asm↓0.

III. PROOF OF THEOREM 1.1 IN THE CASE OF l<B−

A. Upper bound for N„Hg„b…<l…

1. Partition of R2 and sesquilinear forms

In this section, we give a proof of Theorem 1.1 in the case ofl,L0
−s=B−d. For generall

.L0
+ the proof of Theorem 1.1 given in Sec. V needs this special case, as in Raikovs1993d.
We introduce a partition ofR2 and a corresponding partition of unity. LetK=h0,1, + ,−j. Take

and fix positive numbersa , b, ands so that

0 , s , minH 1

4m
,

1

2 − m
,

M

ms1 + Md
,

1

2msm+ 1dJ, a =
1

m
− 2s, b =

1

m
+ s.

Note that 0,s,a,1/m,b. For any g.0, we set V0=hsx,ydPR2u uxuøga , uyuøgbj ,V±

=hsx,ydPR2ugaø ±xøgb , uyuøgbj, respectively, V1=R2\ sV0øV+øV−d and Ṽk=hz
PR2udistsz,Vkd,gsj for any kPK. Let hwkjkPK be a partition of unity subject to the open

coveringhṼkjkPK of R2 satisfying the following:

sP.1d wkPC`sṼkd, suppswkd,Ṽk and 0øwkø1 hold, and for each multi-indexg, there exists
Cg.0 such that supzPR2uwkszduøCgg−ugus holds for anykPK. Moreover,okPKwk

2=1 holds onR2.
For eachkPK, we define a formqk by qkfug=sHgsbdu,ud−solPKu¹wlu2u,ud with form domain

C0
`sṼkd. Then it follows from Lemma 2.3 thatsHgsbdu,ud=okPKqkfwkug holds for any u

PC0
`sR2d. Considering the isometryJ from L2sR2d to %kPKL2sṼkd defined byJsud= %kPKswkud,

by Lemma 2.1, we find thatNsHgsbd,ldøokPKNsqk,ld holds for anyg.0.
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2. Estimates of N „q0<l… and N „q1<l…

In what follows we use the symbolsc and C spossibly with superscripts or subscriptsd to
denote various positive constants in estimates, which may vary from line to line.

Let 0,h,1 and letJ=h j PZ2uṼ0ùQs j ,1dÞxj. Let hx jj jPJ be a partition of unity subject

to the open coveringhQs j ,1+hdj jPJ of Ṽ0 satisfying the following:
sP.2d x j PC0

`sQs j ,1+hdd, and 0øx j ø1 hold, and for each multi-indexg, there existsCg

.0, independent ofj ,h, such that supzPR2ux jszduøCgh−ugu holds for any j PJ. Moreover,

o jPJx j
2=1 holds onṼ0.

For eachj =s j1, j2dPJ, we introduce the auxiliary magnetic potentialbjsxd=e0
j1Bstddt+Bs j1d

3sx− j1d, which gives the constant magnetic fieldBs j1d.
Lemma 3.1: Let q0 and l be as above. We have Nsq0,ld=osg2/md as g→`.
Proof: By Lemmata 2.3, 2.1, 2.4 and Proposition 2.2, we have the estimate

Nsq0 , ld ø o
jPJ

Nss1 − «dH0sbjd − Cgk jl−m − Ch« , ld

ø o
j=s j1,j2dPJ

Bs j1d
2p

s1 + hd2 ] hl P Nus1 − «ds2l + 1dBs j1d , l + Cgk jl−m + Ch«j

ø Ch«ls]Jd + Ch«lgo
jPJ

k jl−m s3.1d

for any small «.0, where we usedsP.2d and the fact that the estimatesuVszduøCk jl−m and
ubsxd−bjsxduø ue j1

x sBstd−Bs j1dddtuø2s1+hdB+ hold on Qs j ,1+hd in the first inequality. By the

definition of J, there existsC.0, independent ofg, such that ]sJdøCVolsṼ0døCga+b

=osg2/md asg→`, sincea+b=2/m−s. The second term on the right-hand sidesrhsd of s3.1d is
less than or equal to

CgE
Ṽ0

kzl−m dzø 4CgE
0

ga+gs

dxE
0

gb+gs

dykx;yl−m. s3.2d

To estimate the above integral, we use the following elementary estimate: Ifm.0 and 1,A
,B, then there existsCm.0, independent ofA,B, such that

E
0

A

dxE
0

B

dykx;yl−m ø 5CmAB1−m if 0 , m, 1,

C1A log B if m= 1,

CmsAB1−m + 1d if m. 1.
6

Then, if 0,m,1, the rhs ofs3.2d is estimated from above byCmgsga+gsdsgb+gsd1−m

=osg1+a+bs1−mdd=osg2/md asg→`. Similarly, if m=1, the rhs ofs3.2d is estimated from above by
C1gsga+gsdlogsgb+gsd=osg1+a log gd=osg2/md as g→`, and if 1,m,2, the rhs ofs3.2d is
estimated from above byCmgssga+gsdsgb+gsd1−m+1d=osg1+a−bsm−1dd=osg2/md as g→`. This
completes the proof. j

Lemma 3.2: Let q1 and l be as above. We have Nsq1,ld=0 for large g.0.

Proof: For any uPC0
`sṼ1d, we have q1fug=sHgsbdu,ud−gsVu,ud−solPKu¹wlu2u,ud

ù sHgsbdu,ud−Csg1−mb+g−2sdiui2=sHgsbdu,ud−os1diui2 as g→`, where we usedsV.1d, sP.1d
and the fact that 1−mb=1−ms1/m+sd=−ms,0. Then the min–max argument yields that
Nsq1,ldøNsH0sbduṼ1

,l+os1dd holds as g→`. Hence we conclude thatNsH0sbduṼ1
,l+os1dd=0 for large g since inf SpecsH0sbduṼ1

d=infuPC0
`sṼ1d,iui=1sH0sbdu,udù inf

SpecsH0sbdds=B−.ld holds asg→` again by the min–max argument. j
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3. Estimate of N „q± <l…

Let 0,h,1. For anyj =s j1, j1dPZ2, we set

Qj = hsx,yd P R2u j1 , g−sx , j1 + 1,j2 , g−sy , j2 + 1j, s3.3d

Qjh = hzP R2udistsz,Qjd , hgsj s3.4d

andJ±=h j PZ2uQj ùṼ±Þxj. Let hx jj jPJ±
be a partition of unity subject to the coveringhQjhj jPJ±

of Ṽ± satisfying the following conditionssrespectively, for ±d:
sP.3d ±x j PC0

`sQjhd ,0øx j ø1, and for each multi-indexg, there existsCg.0, independent
of g,h , j , such that supzPR2u]gx jszduøCgshgsd−ugu holds for any j PJ±. Moreover, o jPJ±

x j
2=1

holds onṼ±.
In what follows, for simplicity, we omit the phrase “respectivelysfor ±d” if there is no fear of

confusion.
Let zj =sxj ,yjd be the center ofQj and we introduce the auxiliary magnetic potentials,

bj ,±sxd =E
0

xj

Bstddt + B±sx − xjd, s3.5d

which gives the constant magnetic fieldB±.
Lemma 3.3: Let jPJ±. There exists C.0, independent of j,g, and h, such thatisb−bj ,±dui

øCgs−Maiui holds for any uPC0
`sQjhd, and for any gù1.

Proof: On Qjh, we have ubsxd−bj ,±sxduø uexj

x sBstd−B±ddtuøCkga−gs−hgsl−Mux−xju
øCg−Ma+s asg→`, where we usedsB.2d in the second inequality. j

Lemma 3.4: Let jPJ±. There exists C.0, independent of j,g, and h such that s1
−Cg−sa−2sddVszdøVsz8dø s1+Cg−sa−2sddVszd holds for any z,z8PQjh. Here, Q̄ stands for the
closure of Q.

Proof: Let z,z8PQjh. If we write z=sx,yd, then

uzu ù uxu ù ga − gs − s1 + hdgs ù ga/2 s3.6d

and uzuø uz8u+ uz−z8uø uz8u+Î2s1+hdgsø uz8u+Cg−sa−sduzu hold for largeg.0, so there existsC
.0, independent ofj ,g,z,z8, such that

C−1kzl ø kz8l ø Ckzl s3.7d

holds. The first order Taylor expansion yieldsuVszd−Vsz8duø uz−z8usupwPQjh
u¹VswduøCs1

+hd2g2s supwPQjh
kwl−m−1øCs1+hd2g−sa−2sd supwPQjh

kwl−møCg−sa−2sdVszd for largeg, where we
useds3.6d in the third inequality,sV.1d, sV.2d in the second and the fourth inequalities,s3.7d in the
last inequality. Here, the constantC is independent ofj ,h ,g,z, andz8. This proves the lemma.j

Lemma 3.5: For any« satisfying0,«,1, we have

Nsq± , ld ø s1 + «d2 B±

2p
o
lPN

VolsV±
s+ds«,ldd, s3.8d

where we setV±
s+ds« , ld=hzPR2u ±xù0,s1−2«dLl

± ,l+gs1+«dVszdj. In fact, the sum on the rhs
of s3.8d terminates for each« and g.

Proof: By Lemma 2.1 andsP.3d, there existsC.0, independent ofj ,g,h, such that
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q±fug ù o
jPJ±

ss1 − «dsH0sbj ,±dx ju,x jud − gsVx ju,x jud − s1 + 1/«disb − bj ,±dx jui2 − Cshgsd−2ix jui2

− Cg−2six jui2d ù o
jPJ±

ss1 − «dsH0sbj ,±dx ju,x jud − g sup
Qjh

uVusx ju,x jud − os1dix jui2d
holds for anyuPC0

`sṼ±d, where we write supQuVu for supzPQuVszdu for short. Then the min–max
theorem yields that

Nsq± , ld ø o
jPJ±

Nss1 − 2«dH0sbj ,±d , l + g sup
Qjh

uVud

ø s1 + hd2g2s B±

2p
o
jPJ±

] hl P Nus1 − 2«dLl
± , l + g sup

Qjh

uVuj

= s1 + hd2g2s B±

2p
o
lPN

o
jPJ±

Fss1 − 2«dLl
± , l + g sup

Qjh

uVud s3.9d

holds for largeg, where we used Proposition 2.2 in the second inequality. Here,FsPd=0 if P is
true andFsPd=1 if P is false.

Set J̃±=h j PJ± uQj ,V±
s+ds« , ldj. We claim that, if j PJ± \ J̃±, then Fss1−2«dLl

± ,l
+g supQjh

uVud=0 holds for largeg.0 uniformly in j , l. Indeed, for suchj , there existsz̄PQj such
that z̄¹V±

s+ds« , ld, i.e.,

s1 − 2«dLl
± ù l + gs1 + «dVsz̄d. s3.10d

Note that if we writez̄=sx̄, ȳdPQj, then ±x̄ù0 since 0,s,a. Then we find that, for any«
.0 fixed, s1−2«dLl

±−l−g supQjh
uVu=s1−2«dLl

±−l−gs1+«dVsz̄d+gss1+«dVsz̄d−supQjh
uVud

ùgss1+«dVsz̄d−supQjh
uVudùgss1+«dVsz̄d−s1+Cg−sa−2sddVsz̄dd=gs«−Cg−sa−2addVsz̄dù0 holds

for large g suniformly in j , ld, where we useds3.10d in the first inequality, Lemma 3.4 in the
second inequality andsV.2d in the last. This shows the claim.

Hence, it follows that, for largeg, the rhs of s3.9d is less than or equal tos1
+hd2sB± /2pdolPNo jPJ̄±

VolsQjdø s1+hd2sB± /2pdolPN VolsV±
s+ds« , ldd. Then the lemma follows

since the setV±
s+d is empty if l is so large thats1−2«dLl

± ùl+CgsupR2 uVu. j

Lemma 3.6: Assume thatl,B−. Then we havelim supg→` g−2/mNg
+sldøolPNnlsld.

Proof: Let V±
s+ds« , ld be as in the previous lemma. SetI0=VolhzPV±

s+ds« , ld u uzuøRj and I`
±

=hz=sx,ydPV±
s+ds« , ld u ±xù0,uzuùRj. Then VolsV±

s+ds« , ldd= I0+ I`
+ + I`

−. We observe thatI0

øpR2, and I`
± ø

1

2
g2/msLl

±−ld−2/meS±
1vsvd2/m dv+Os1d as «↓0 sthe remainder term is uniformly

bounded ingd, since bysV.3d, for any small«.0, there existsR.0 such thaturmVszd−vsvdu
,« if r = uzuùR. Then, taking a limit«↓0 in s3.8d, we derive from Lemmas 3.2, 3.1, and 3.5 that
lim supg→` g−2/mNsHgsbd,ldøolPNnlsld, by Lebesgue’s dominated convergence theorem. The
lemma follows sinceNsHgsbd,ld=Ng

+sld holds if l,B− because of the non-negativity ofV. j

B. Lower bound for N„Hg„b…<l…

Let K andhVkjkPK be as in the beginning of this section. Applying Lemma 2.1 to the pair of
triplets sokPK % L2sVkd ,t1, %kPKC0

`sVkdd and sL2sR2d ,t2,C0
`sR2dd, where we sett1f%kPKvkg

=okPKsHgsbduVk
vk,vkd for %kPKsvkdP %kPKC0

`sVkd ,t2fug=sHgsbdu,ud for uPC0
`sR2d and

J: %kPKC0
`sVkd{ %kPKsvkd°okPKvkPC0

`sR2d, we have

NsHgsbd , ld ù o
kPK

NsHgsbduVk
, ld. s3.11d

As in the proof of Lemma 3.1, we can show that
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NsHgsbduV0
, ld = osg2/md s3.12d

as g→`, using the upper estimate in Lemma 2.4. Also, as in the proof of Lemma 3.2, we can
show that

NsHgsbduV1
, ld ø NsH0sbduV1

, l + os1dd = 0 s3.13d

holds for largeg.0.
Lemma 3.7: For any lPN and any« satisfying0,«,1, set

V±
s−ds«,ld = hzP R2u ± x ù 0,s1 + 2«dLl

± , l + s1 − «dgVszdj,

respectively. Then for any« satisfying0,«,1, we have

NsHgsbduV±
, ld ù s1 − «d2 B±

2p
o
lPN

VolsV±
s−ds«,ldd + osg2/md

as g→`, respectively.
Proof: Let 0,h,1 and j PZ2. Let Qj and Qjh be the cubes defined bys3.3d and s3.4d,

respectively. SetJ±8=h j PZ2uQj ,Ṽ± ,Qj ùV±
s−ds« , ldÞxj, respectively. Letbj ,± be as ins3.5d.

Then, as in the proof of Lemma 3.5, it follows from Lemma 2.4, Lemma 2.1, and Lemma 2.3 that,
for any « satisfying 0,«,1,

NsHgsbduV±
, ld ù o

jPJ±8

Nss1 + 2«dH0sbduQj , l + g sup
Qjh

uVud

ù s1 − «d2 B±

2p
o
jPJ±8

VolsQjd ] hl P Nus1 + 2«dLl
± , l + g sup

Qjh

uVuj

ù s1 − «d2 B±

2p
o
lPN

o
jPJ±8

VolsQjdFss1 + 2«dLl
± , l + g sup

Qjh

uVud, s3.14d

where we used Proposition 2.2 withr1=« in the third inequality.
We claim that, ifj PJ±8, thenFss1+2«dLl

± ,l+g supQjh
uVud=1 holds for largeg.0 uniformly

in j , l. Indeed, if j PJ±8, there existsz̄PQj ùV±
s−ds« , ld, i.e., z̄PQj and s1+2«dLl

± ,l+gs1
−«dVsz̄d hold. Then, by Lemma 3.4 andsV.2d, we havel+g supQjh

uVu−s1+2«dLl
± ùgssupQjh

uVu
−s1−«dVsz̄ddùgs«−Cg−sa−2sddVsz̄d.0 for largeg.0. This shows the claim. So, for largeg.0,
the rhs ofs3.14d is bounded from below by

s1 − «d2 B±

2p
o
lPN

o
jPJ±8

VolsQjd

ù s1 − «d2 B±

2p
o
lPN

VolssV± ù V±
s−ds«,ldd \ hzP V± ù V±

s−ds«,ldudistsz,]V±d ø gsjd

ù s1 − «d2 B±

2p
o
lPN

VolsV± ù V±
s−ds«,ldd − s1 − «d2 B±

2p
o
l=0

Cg1−ma

VolhzP V± ù V±
s−ds«,ldudistsz,]V±d

ø gsj, s3.15d

where we used the fact thatsV± ùV±
s−ds« , ldd \ hzPV± ùV±

s−ds« , ld udistsz,]V±døgsj,ø jPJ±8
Qj,

where the rhs is a disjoint union, in the first inequality and used, in the last inequality, the fact that
the set V± ùV±

s−ds« , ld=hzPV± u s1+2«dLl
± ,l+s1−«dgVszdj is empty for all l satisfying s1

+2«dLl
± ùl+Cg1−ma since supV±

uVuøCkga−gsl−møCg−ma holds for largeg.
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From geometry, we have VolsV0ùV±
s−ds« , lddøVol V0øCga+b=osg2/md and VolsV7

ùV±
s−ds« , ldd=VolsV1ùV±

s−ds« , ldd=0 as g→`, where we used the fact thatV1, hzPR2u uzu
ùgbj, hzPR2u uzuù2Cg1/mj andV±

s−d, hzPR2uB−,l+Cgkzl−mj, hzPR2u uzuøCg1/mj for some
C.0. Hence, we have

VolsV± ù V±
s−ds«,ldd = VolsV±

s−ds«,ldd + osg2/md s3.16d

asg→`, and we observe that

o
l=0

Cg1−ma

VolhzP V± ù V±
s−ds«,ldudistsz,]V±d ø gsj ø Cg1−magb+s = osg2/md s3.17d

asg→`, sinceV± ùV±
s−ds« , ld,V± and 1−ma+b+s=2/m−s1/m−2sm+1dsd,2/m. Then the

lemma follows froms3.14d–s3.17d. j

Lemma 3.8: Letl,B−. Under the same assumption on B and V as in Theorem 1.1, we have
limg→` g−2/mNg

+sld=olPNnlsld.
Proof: We can deduce froms3.11d and s3.12d and Lemma 3.7 that lim infg→` g−2/mNg

+sld
ùolPNnlsld in the same way as in the proof of Lemma 3.6. Then, combining this and Lemma 3.6,
we have the result. j

Remark 3.9: Our proof shows that we can replace the assumptions on B and V in Lemma 3.8
by the following weaker assumptions.

sBd8 In addition to (B.1), there exist M.0 and C.0 such thatuBsxd−B±uøCkxl−M hold as
x→ ±`, respectively.

sVd8 The non-negative scalar potential V belongs to C1sRd, and there exist m.0 and C.0
such that0,m,2 and u]aVszduøCkzl−m−uau holds for all zPR2 and for any multi-indexa satis-
fying uauø1. Moreover, the conditions (V.2) and (V.3) hold.

IV. SPECTRAL PROPERTIES OF THE IWATSUKA MODEL

A. Direct decomposition

In this section we recall from Iwatsukas1985d the spectral representation of the Iwatsuka
H0sbd. We introduce the partial Fourier transformsFudsx,hd=s2pd−1/2eRe−Î−1yhusx,yddy, which
defines a unitary operator onL2sR2d. We writeL0 for FH0sbdF−1. ThenL0 has the direct integral
decompositionL0=eR

%Lshddh acting on the Hilbert spaceeR
%L2sRddh. Here, for eachhPR, the

fiber Lshd of L0 is given by

Lshd = −
d2

dx2 + sh − bsxdd2, s4.1d

acting on the fiberL2sRd of eR
%L2sRddh.

The spectral properties ofLshd are summarized as follows.
Lemma 4.1: [Iwatsuka11, Lemmas 2.3 and 3.5)] Assume that (B.1) holds. For eachhPR, the

operator Lshd is essentially self-adjoint on C0
`sRd and has a complete orthonormal system of

eigenfunctionshwns· ,hdjnPN and the corresponding eigenvalueshlnshdjnPN so that Lshdwns· ,hd
=lnshdwns· ,hd and 0,l0shd,l1shd,l2shd, ¯→` hold for each nPN.

Moreover, the following properties (1)–(5) hold for each nPN.

s1d lnshd is nondegenerate and depends analytically onh.
s2d lnshd is monotonically increasing inh, and limh→±` lnshd=Ln

± hold, respectively.
s3d wns· ,hd belongs to DsLs0dd and depends analytically onh with respect to the graph norm

siui2+iLs0dui2d1/2.
s4d wnsx,hd is a real-valued continuous function of x andh, and moreover, wnsx,hd is infinitely

differentiable in x for eachh and is analytic inh for each x.
s5d The estimateuwnsx,hduøFnsx−b−1shdd holds for a functionFn satisfying0,F0sxd, ¯
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,Fnsxd,¯ and

Fnsxd ø HÎ2sLn
+d1/4 if uxu ø ÎLn

+/B−,

Î2sLn
+d1/4 exph− B−suxu − Lnd2/2j if uxu ù ÎLn

+/B−.
J

The next result follows easily fromsB.1d and the definition ofb.
Lemma 4.2: Under the assumption (B.1), the function b has the inverse b−1 and moreover, for

any x,y,h, we have B−ux−b−1shduø ubsxd−huøB+ux−b−1shdu and B−ux−yuø ubsxd−bsyduøB+ux
−yu.

For anykPN, we introduce the Banach spaceBk=huPS8sRd uxa]x
buPL2sRd if a+bøkj with

norm iuiBk=soa+bøkix
a]x

bui2d1/2.
Lemma 4.3: Let D0 denote either C0

`sRd or SsRd. We have the following assertions.

s1d For any kPN, the operator LshdkuD0
is essentially self-adjoint andLshdkuD0

=sLshduD0
dk.

Moreover, DsLshdkuD0
d=huPL2sRd uLshddist

k uPL2sRdj. Here, Ldist stands for the differential
operator L with domainS8sRd.

s2d The Banach space DsLshdkuD0
d equipped with the graph normLshdkuD0

coincides with the
Banach space DsLs0dkuD0

d equipped with (equivalent) norm byLs0dkuD0
.

s3d If we denote by B˜k the space as in the assertion (2) above, then B˜k coincides with Bk as a

Banach space. In particular, the spaceùkPNB̃k coincides withSsRd as a Fréchet space.

Proof: We note thatLshdPOpS2, soLshdkPOpS2k for anyh. It is easy to see that the symbol
of Lshdk satisfies the ellipticity condition as in Lemma 2.7 andLshd is symmetric onD0. Then, by
Lemma 2.7, the operatorLshdkuD0

is essentially self-adjoint andDsLshdkuD0
d=hu

PL2sRd uLshddist
k uPL2sRdj. Also, we find thatLshdkuD0

=sLshduD0
dkuD0

sinceLshd leavesD0 invari-
ant. This implies thatLshdkuD0

, sLshduD0
dk, which are both self-adjoint, so coincide. This shows

the assertions1d.
The assertions2d follows from Lemma 2.7 withOpsad=Lshdk and with Opsad=Ls0dk since

the topology of the weighted Sobolev spacesHm is independent of specificOpsad by thesoriginald
definition. As a byproduct, we find thatDsLshdkuD0

d coincides withH2k.
Finally we show the assertions3d. It is enough to show in the case ofh=0. Note thatB−uxu

ø ubsxduøB+uxu holds for allxPR by Lemma 4.2, and each derivative ofb is bounded. Then there
existsCk.0 such that

iLs0dkui2 + iui2 ø Ckiui
B2k
2 s4.2d

holds for anyuPD0. Conversely, by the assertions4d in Lemma 2.6, the operatorxb]x
a mapsH2k,

which coincides withDsLshdkuD0
d as stated above, toL2sRd continuously provideda+bø2k. This

means the inequalityixb]x
auiøCsiLs0dkui+iuid for any uPD0. The density ofD0 completes the

proof. j

B. Exponential decay of wn

In this section, using the so-called Agmon estimate, we derive an exponential decay estimates
of the eigenfunctionwn and obtain the estimates for the band functionln. To the end of this
section, we setgsx,hd=sx−b−1shdd2 for any x,hPR.

Lemma 4.4: LethPR and let Lshd be as ins4.1d. Assume that fPL2sRd and there exists
k.0 such that iekgs·,hdfi is finite. Assume thatc in DsLshdd satisfies the equationsLshd
−lnshddc= f. Then there exists Cn=Cnsk ,B−d.0, independent ofh, such that

ieags·,hdci ø Cnsiekgs·,hdf i + icid

holds if 0,a,minhk ,B−
2 /Î8j.

Proof: This is an easy consequence of the method of Agmon estimates. However, we give a
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proof for the sake of completeness. LetxPC`sf0,`dd such thatxstd= t if 0 ø tø1/2,xstd=1 if
tù2, suptù0ux8stduø1 and x is monotonically increasing. For any largeR.0, we setgRsx,hd
=R2xsgsx,hd /R2d. We can find that

ugRsx,hdu ø minhR2,gsx,hdj, u]xgRsx,hdu ø 2ux − b−1shdu s4.3d

and limR→` gRsx,hd=gsx,hd for any sx,hd.
We may assume thatc is not identically zero. The standard Agmon-type argument shows that

ReseagRsLshd−lnshddeagRdù sb−hd2−a2u]xgRu2−lnù sB−
2−4a2dux−b−1shdu2−Ln

+ holds for anya
PR, where we used Lemma 4.2 in the first inequality and “Re” stands for the real part. Then it
follows that

ieagRciieagRf i ù uRese2agRc, fdu ù seagRc,ssB−
2 − 4a2dux − b−1u2 − Ln

+deagRfd. s4.4d

TakefPC0
`sf0,`dd so thatfstd=1 if 0ø tø1,fstd=0 if tù2 andf is monotonically decreasing.

Setfhsxd=fsB−
2gsx,hd / s2Ln

+dd. Then we find that

sB−
2 − 4a2dux − b−1u2 − Ln

+ ù s1 − 8a2/B−
2dLn

+ − 6Ln
+fh s4.5d

using the fact thatgsx,hdø4Ln
+/B−

2 holds on suppfh and gsx,hdù2Ln
+/B−

2 holds on supps1
−fhd, and we find froms4.4d and s4.5d that s1−8a2/B−

2dLn
+ieagRciø ieagRfi+6Ln

+e4aLn
+/B−

2
ici,

sincegRsx,hdøgsx,hdø4Ln
+/B−

2 holds on suppfh. Taking a limit R→`, we have the conclu-
sion. j

Lemma 4.5: LetaPN. There existsk=ka,n.0 such that

sup
hPR

iekg]h
a8wnshdi , ` and sup

hPR
u]h

a8+1lnshdu , ` s4.6d

hold if 0øa8øa.
Proof: We show this by induction ona. We abbreviate the assertion toPsad. Whena=0, the

first estimate ins4.6d follows from Lemma 4.1svd. The Feynman–Hellman formula yields that

]hlnshd = swn,s]hLshddwnd = 2swn,sh − bdwnd. s4.7d

Then the second estimate ins4.6d follows from the exponential decay ofwn with respect toh
−b. This shows thatPs0d is true.

We assume thatPsad is true. First, under this assumption, we show the estimate

sup
hPR

i]h
a+1wnshdi , `. s4.8d

Differentiating the equationsLshd−lnshddwnshd=0 with respect toh in sa+1d times, we obtain

sLshd − lnshdd]h
a+1wnshd = − o

0øa8øa

Ca+1,a8]h
a+1−a8ssb − hd2 − lnshdd]h

a8wnshd. s4.9d

In the case ofj Þn, taking an inner product withw j, we obtain

sl jshd − lnshdds]h
a+1wn,w jd = − o

0øa8øa

Ca+1,a8s]h
a+1−a8ssb − hd2 − lnshdd]h

a8wn,w jd.

Then the Schwarz inequality yields that
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us]h
a+1wn,w jdu2 ø SCadn

−1 o
0øa8øa

us]h
a+1−a8ssb − hd2 − lnshdd]h

a8wn,w jduD2

ø Ca8dn
−2 o

0øa8øa

us]h
a+1−a8ssb − hd2 − lnshdd]h

a8wn,w jdu2 s4.10d

for someCa ,Ca8 .0 independent ofh. Here, we introduced a positive numberdn as

dn = HminhinfhPRsln+1shd − lnshdd, infhPRslnshd − ln−1shddj if n ù 2,

infhPRsl2shd − l1shdd if n = 1.
J

In the case ofj =n, differentiating the relationswn,wnd=1 with respect toh in sa+1d times,

we find that 2s]h
a+1wn,wnd=−o1øa8øaCa+1,a8s]h

a+1−a8wn,]h
a8wnd, where we used the reality ofwn.

Then we have

us]h
a+1wn,wndu ø Ca o

1øa8øa

i]h
a+1−a8wnii]h

a8wni s4.11d

for someCa.0 independent ofh. Hence it follows froms4.10d and s4.11d that

i]h
a+1wni2 = o

jPN

us]h
a+1wn,w jdu2 ø Ca8dn

−2 o
0øa8øa

is]h
a+1−a8ssb − hd2 − lnshddd]h

a8wni2

+ SCa o
1øa8øa

i]h
a+1−a8wnii]h

a8wniD2
, s4.12d

where we used the fact thathw js· ,hdj jPN is an ONB inL2sRd. By the assumptionPsad, all terms
on the rhs ofs4.12d are bounded uniformly inh. Thus we have proveds4.8d underPsad.

Next, we apply Lemma 4.4 tos4.9d with c=]h
a+1wn, f = fa=the rhs ofs4.9d. We may assume

that the constanta in the exponent in Lemma 4.4 is equal tok since we can takek small enough.
Then it follows that there existsCn.0 such that the estimateiekg]h

a+1wniøCnsiekgfai

+i]h
a+1wnid. The first term on the rhs is bounded uniformly inh underPsad, since the maximal

order of derivatives ofwn is less than or equal toa and the maximal order of derivatives ofln is
less than or equal toa+1 in the expression offa. The second term on the rhs is also uniformly
bounded because ofs4.8d we have already proved. Hence, we have proved the first estimate in
s4.6d for Psa+1d, assumingPsad.

Finally, we show the second estimate ins4.6d for Psa+1d, assumingPsad. Differentiating
s4.7d with respect toh in sa+1d times, we obtain

]h
a+2lnshd = 2]h

a+1swn,sh − bdwnd = 2 o
0øa8øa+1

Ca+1,a8s]h
a+1−a8wn,]h

a8ssh − bdwndd. s4.13d

Since the maximal order of derivatives ofwn on the rhs ofs4.13d is less than or equal toa+1, the
uniform boundedness of the rhs ofs4.13d with respect toh follows from the first estimate ins4.6d
for Psad and the exponential decay property of]h

a+1wn we have proved above. Thus we have
proved all the assertion ofPsa+1d, assumingPsad. This completes the induction. j

Lemma 4.6: Let bPN. For any aPN, there exists k=ksa ,b ,nd.0 such that
suphPRiekg]x

b]h
awnshdi,`.

Proof: We show this by induction onb. We abbreviate the assertion toPsbd. The assertion
Ps0d is true by Lemma 4.5.

We assume thatPsbd is true. Then, for anya, we have

iekg]x
b+1]h

awnshdi2 = − se2kg]x
b]h

a]x
2wn,]x

b]h
awnd − 4kssx − b−1shdde2kg]x

b+1]h
awn,]x

b]h
awnd

= se2kg]x
b]h

aslnshd − sb − hd2dwn,]x
b]h

awnd

− 4ks]x
b+1]h

awn,sx − b−1shdde2kg]x
b]h

awnd, s4.14d
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where we used the equationsL−lndwn=0 in the third equality. The first term on the rhs ofs4.14d
is bounded uniformly inh by the assumptionPsbd and the second estimate ins4.6d if we choose
k.0 sufficiently smallsthe choice is independent ofhd. The second term on the rhs ofs4.14d is
bounded from above by 4kiekg]x

b+1]h
awniisx−b−1shddekg]x

b]h
awniø2kiekg]x

b+1]h
awni2+2kisx

−b−1dekg]b]h
awni2, which is uniformly bounded sincePsbd is assumed to be true. j

Lemma 4.7: For any n,a ,bPN, there exists a positive constantk=ksa ,b ,nd such that
supsx,hdPR2uekg]x

b]h
awnsx,hdu,` holds.

Proof: For anygPN, we have]x
gsekg]x

b]h
awnd=o0øg8øgCg,g8s]x

g−g8ekgds]x
b+g8]h

awnd. Since each

of the functions]x
g−g8ekg is of the form “a polynomial ofsx−b−1shdd timesekg ,” we obtain the

estimate

i]x
gsekg]x

b]h
awndi ø o

0øg8øg

Cg,g8
iek8g]x

b+g8]h
awni s4.15d

for somek8.0 satisfying 0,k8,k uniformly in h. The rhs ofs4.15d is bounded uniformly inh
by Lemma 4.6 for an appropriate choice ofk ,k8. This means that thegth Sobolev norm of
ekg]x

b]h
awn is bounded uniformly inh for eachg. Hence, Sobolev’s embedding theorem yields that

sup
xPR

uekg]x
b]h

awnu ø Csiekg]x
b]h

awni + i]xsekg]x
b]h

awndid s4.16d

for someC.0. The above observation shows that the rhs ofs4.16d is uniformly bounded inh if
we choosek small enough. This shows the lemma. j

C. Decay estimate of ln

In this section, we derive the following decay estimate of the band functionln at infinity.
Lemma 4.8: Assume thatsB.2d+ holds. Then, for any nPN, there exists Cn.0 such that

uLn
+−lnsbsxdduøCnkxl−M holds if xù0. Similarly, if we assumesB.2d− then the same estimate

replacedLn
+ by Ln

− holds if xø0.
Proof: We mimic the proof of Lemma 4.1 in Iwatsukas1985d. We first consider the case of

xù0. Let n be fixed and j ,køn. Set Lcssd=−]x
2+B+

2sx−sd2 in L2sRd and a jkssd
=sLcssdw js· ,bssdd ,wks· ,bssddd. Then, using the equation sLsbssddw js· ,bssdd ,wks· ,bssddd
=l jsbssddd jk, we find that

ua jkssd − l jsbssddd jku ø E
R

uB+
2sx − sd2 − sbsxd − bssdd2iw jsx,bssddiwksx,bssddudx

ø 2B+E
R
Hux − suUE

s

x

sB+ − BstdddtUFnsx − sd2Jdx

= 2B+E
−`

−s/2HuyuUE
s

y+s

sB+ − BstdddtUFnsyd2Jdy

+ 2B+E
−s/2

` HuyuUE
s

y+s

sB+ − BstdddtUFnsyd2Jdy, s4.17d

where we used the facts thatuB+
2sx−sd2−sbsxd−bssdd2u= ues

xsB++Bstdddties
xsB+−Bstdddtuø2B+ux

−sies
xsB+−Bstdddtu holds and thatuw jsx,bssdduøFnsx−sd hold if j øn by Lemma 4.1. For any

largeNPN and any larges.0, the first term on the rhs ofs4.17d is bounded from above by
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s2B+d2E
−`

−s/2

uyu2Fnsyd2 dy ø 4B+
2E

−`

−s/2

CN,nkyl−2N dy ø CN,n8 kslN s4.18d

for some constantCN,n8 , where we used Lemma 4.1. SincesB.2d+ implies that there existss0.0
andCn.0 such that suptùs/2uB+−BstduøCnksl−N holds if s.s0, it follows that the second term on
the rhs ofs4.17d is bounded from above by

2B+Cnksl−ME
−s/2

`

uyu2Fnsyd2 dy ø Cn8B+ksl−M s4.19d

if s.s0. Hence it follows froms4.17d–s4.19d that

sup
s.s0

sMua jkssd − l jsbssddd jku ø Cn s4.20d

holds for someCn.0, if we chooses0 sufficiently large.
If we denote by Vnssd the linear subspace ofL2sRd spanned byhw js· ,bssddj jøn, then

sa jkssdd j ,køn is the Hermitian symmetric matrix ofLcssduVnssd with respect to the basis
hw js· ,bssddj jøn. Let m0ssdø ¯ ømnssd be the eigenvalues ofsa jkssdd j ,køn. Let saijd and sbijd be
n3n Hermitian matrices and leta1ø ¯ øan andb1ø ¯ øbn be their eigenvalues, respectively.
Then it is easy to see thatuak−bku2øoi,juaij −bij u2 holds for anyk. Hence it follows froms4.20d
that

sup
s.s0

sMum jssd − l jsbssddu ø Cn8. s4.21d

Then, by the variational principlefReed and Simons1978, Vol. IV, Theorem XIII.3dg, we have
L j

+øm jssd for any j øn. SinceL j
+ is the j th eigenvalue ofLcssd andl jsbssddøL j

+, we can deduce
from s4.21d that

sup
s.s0

sMuL j
+ − l jsbssddu ø Cn9 s4.22d

holds if j øn. This shows the first assertion of the lemma.
In the case ofs→−`, we have the conclusion in a similar way, replacing the objects

a jk ,Lcssd ,Lsbssdd and m jssd’s by sLsbssddc js· ,sd ,cks· ,sdd ,Lsbssdd ,−]x
2+B−

2sx−sd2 and the eigen-
values of the matrixssLsbssddc js· ,sd ,cks· ,sddd j ,køn, respectively. Here,cks· ,sd is the eigenfunction
of −]x

2+B−
2sx−sd2 corresponding to thekth eigenvalueLk

−. j

V. PROOF OF THEOREMS

A. Operators on the direct sum

To the end of this paper, we always assumesB.1d, sB.2d, sV.1d–sV.4d.
Let hwnjnPN be the eigenfunctions given in Lemma 4.1. Because of Lemma 4.1, for anyl

PN, we can define a partial isometryTl from L2sRd into L2sR2d by sTl fdsx,hd=wlsx,hdfshd for
any f PL2sRd. The adjoint operatorTl

* from L2sR2d onto L2sRd is given by sTl
*Fdshd

=eRwlsx,hdFsx,hddx for any FPL2sR2d. We now extendTls to an operator on the direct sum of
Hilbert spacesolPN % L2sRd, more precisely, we define a partial isometryT from olPN % L2sRd
into L2sR2d by Ts% lPNsf ldd=olPNTl f l for any % lPNsf ldPolPN % L2sRd. The unitarity ofT follows
from theL2-orthogonality ofwl’s with respect to the first variable. The adjoint operatorT* from
L2sR2d onto olPN % L2sRd is given byT*F= % lPNTl

*F for any FPL2sR2d. We set

W = T*FWF*T s5.1d

for any multiplication operatorW on L2sR2d and setHg=T*FHgsbdF*Ts=H0−gVd, both acting on
the Hilbert spaceolPN % L2sRd, whereF is the partial Fourier transform as in the preceding
section andV is the operators5.1d with W=V.
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For an operatorA acting on the spaceolPN % L2sRd, we sayA belongs to OpSm if all the
matrix elementsAjks j ,kPNd of A swith respect to the direct sum decompositiond belong to the
classOpSm. When all the matrix-valuedCDOs under consideration have finitely many nonzero
components, the standardCDO calculus as in Sec. II B is applicable also for the matrix-valued
CDOs. In particular, Proposition 2.8 remains valid for the matrix-valuedCDO with obvious
modificationsse.g., we regard the product of symbols as the usual matrix product, etc.d.

In the rest of this section we are concerned with the matrix-valuedCDO V=T*FVF*T.
Lemma 5.1: Let m.0 be as in (V.1). We have the following assertions.

s1d The operator Tn
*FVF*Tn on L2sRd belongs to OpS−m for any nPN, and moreover, for any

a ,bPN, there exists Cab.0 such that the Weyl symbol pV of Tn
*FVF*Tn on L2sRd satisfies

the estimate

hab
s−mdspVd ø Cabhab

s−mdsVd. s5.2d

Here, hab
smd is the seminorm as ins2.2d.

s2d A principal symbol qV of Tn
*FVF*Tn is given by qVsh ,h*d=Vsb−1shd ,−h*d, and moreover, for

any a ,bPN, there exists Cab.0 such that the remainder estimates

hab
s−m−1dspV − qVd ø Cabhab

s−m−1ds¹Vd s5.3d

holds. Here, we denote by¹V the first order derivatives of V.
s3d The operator Ti

*FVF*Tj on L2sRd belongs to OpS−m−1 for any i, j PN satisfying iÞ j , and
moreover, for anya ,bPN, there exists Cab.0 such that the Weyl symbol rV of Ti

*FVF*Tj
on L2sRd satisfies the estimate

hab
s−m−1dsrVd ø Cabhab

s−m−1ds¹Vd. s5.4d

Proof: First, assuming further thatVPSsR2d, we show the assertionss1d–s3d. For any i , j
PN, we find that the operator Ti

*FVF*Tj has the integral kernel Ksh ,h8d
=eeR2wisx,hdw jsx,h8dVsx,yde−Î−1ysh−h8d dxd-y, which converges absolutely for eachh ,h8, and so
the Weyl symbolpV is given by

pVsh,h*d =E
R

e−Î−1wh*
Ksh + w/2,h − w/2ddw

=E E E
R3

dx d-w dz e−Î−1wzwisx,h + w/2dw jsx,h − w/2dVsx,z− h*d, s5.5d

where we changed the variablez=y+h* in the last line. An integration by parts yields that the rhs
of s5.5d is equal to

E E E
R3

d̀x d-w dzkzl−2Ne−Î−1wzkDwl2Nswnsx,h + w/2dwnsx,h − w/2ddVsx,z− h*d s5.6d

for any NPN. Using the estimatekh ;h*løCkx;z−h*lkh−bsxdlkzl, we find that, for anya ,b,

kh;h*lm+au]h
b]h*

a pVsh,h*du

ø CE E E
R3

dx d-w dzkzl−2N+m+akh − bsxdlm+a

3 u]h
bkDwl2Nswisx,h + w/2dw jsx,h − w/2ddukx;z− h*lm+a

u]h*
a Vsx,z− h*du
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ø C8ha0
s−mdsVd E E

R2
dx d-wkh − bsxdlm+au]h

bkDwl2Nswisx,h + w/2dw jsx,h − w/2ddu

s5.7d

if we takeN so that 2N−m−a.1. By Lemma 4.7, we have

u]h
bkDwl2lswisx,h + w/2dw jsx,h − w/2ddu

ø CbN o
0øb8øb

o
0øN8ø2N

u]h
b−b8+2N−N8wisx,h + w/2d]h

b8+N8w jsx,h − w/2du

ø CbN8 exps− cssbsxd − h − w/2d2 − sbsxd − h + w/2d2dd = CbN8 exps− 2csbsxd − hd2 − cw2/2d

Hence, the integral on the rhs ofs5.7d converges absolutely, because of Lemma 4.2. Especially,
when i = j =n, this proves the assertions1d under the temporal assumption onV.

We show the assertionss2d and s3d. The first order Taylor expansion yields that

Vsx,z− h*d = Vsb−1shd,− h*d + sx − b−1shddE
0

1

s]1Vdsux + s1 − udb−1shd,usz− h*d − s1 − udh*ddu

+ zE
0

1

s]2Vdsux + s1 − udb−1shd,usz− h*d − s1 − udh*ddu, s5.8d

where ] jV denotes the derivative ofV with respect to thej th variable. In s5.5d, the symbol
corresponding to the first term on the rhs ofs5.8d is given by

E E E
R3

dx d-w dz e−Î−1wzwisx,h + w/2dw jsx,h − w/2dVsb−1shd,− h*d

=E
R

wisx,hdw jsx,hddx Vsb−1shd,− h*d = Vsb−1shd,− h*ddi j ,

where we used the Fourier inversion formula. We can derive the estimates5.3d for the symbols
corresponding to the second and the third terms on the rhs ofs5.8d in the same way as in the proof
of s5.2d, using the facts thatu]h

asx−b−1shdduøCakx−b−1shdl, which follows from sB.2d, and that
kh ;h*løCkb−1shd ;−h*løC8kux+s1−udb−1shd ;usz−h*d−s1−udh*lkx−b−1shdlkzl. Then we have
the assertionss2d and s3d whenVPSsR2d.

Finally, we give a proof for generalVs. We consider only the case ofi = j =n, since the case of
i Þ j is similar. Since the spaceSsRd is dense inS−k for any k.0, we can approximateV by an
appropriate sequencehVljl=1

` s,SsR2dd in S−k for any k.0. We consider the equality

Tn
*FVlF*Tn = OpsqV1

d + Rs¹Vld, s5.9d

whereRs¹Vld stands for the remainder term. Then it follows from Lemma 2.5,s5.2d ands5.3d that
the rhs ofs5.9d converges toOpsqVd+Rs¹Vd asl →` in the norm operator topology. On the other
hand, the left-hand sideslhsd of s5.9d converges toTn

*FVF*Tn as l →` in the weak operator
topology by definition. Thus, the lemma is true for generalV’s. j

The next lemma follows immediately from Lemma 5.1 if we replaceV by Va.
Lemma 5.2: LetV be the operators5.1d with W=V. Let a.0. SetVi j

a =TiFVaF*Tj for any
i , j PN. If we regardVi j

a as an operator from the jth component to the ith component ofolPN
% L2sRd, thenVi j

a is aC DO whose symbol is given by the form Vsb−1shd ,−h*ddi j +OpS−ma−1.
We need the following result in the place where we use Proposition 2.8.
Lemma 5.3: LetlPR \SpecsH0sbdd and letnl be as in Sec. I. For any lPN, we have

limg→` g−2/m Volhsx,jdPR2uVsb−1sxd ,−jd.g−1ullsxd−luj=nlsld.
Proof: Note thatullsbsxdd−luùCl.0 holds for someCl, independent ofl ,x. For simplicity,

052112-18 Shin-ichi Shirai J. Math. Phys. 46, 052112 ~2005!

                                                                                                                                    



we set Fl =hsx,jdPR2uVsb−1sxd ,−jd.g−1ullsxd−luj ,Fl8=hsx,jdPR2uVsx,jd.g−1ullsbsxdd−luj
for any l PN. By changing the variablessx,jd→ sbsxd ,−jd, we find that s1/2pdVolsFld
=eeFl8

Bsxddx d-j=J0+J++J−, where we set

J0 = E E
Fl8ùhuxuøg1/2mj

Bsxddx d-j, J± = E E
Fl8ùh±xùg1/2mj

Bsxddx d-j,

respectively. We first consider the integralJ0. By sB.1d, sV.1d, there existsC.0 such thatJ0

øB+ Volhsx,jdPR2uCkx,jl−m.Clg−1, uxuøg1/2mj=osg2/md holds asg→`. Next, we consider the
integralJ+. We divideJ+=J+,1+J+,2 with

J+,1 = E E
Fl8ùhxùg1/2mj

sBsxd − B+ddx d-j,

J+,2 =
B+

2p
Volhsx,jd P R2uVsx,jd . g−1ullsbsxdd − lu,x ù g1/2mj.

Using sB.2d we find thatuJ+,1u is bounded from above by

C E E
Fl8ùhxùg1/2mj

kxl−M dxd-j ø Cg−M/2m Volhsx,jd P R2ukx;jl−m . Clg−1,x ù g1/2mj,

which is of orderosg2/md as g→`. If xøg1/2m, then ullsbsxdd−luù uLl
+−lu− ullsbsxdd−Ll

+u
ù uLl

+−lu−Ckxl−M ù uLl
+−lu−Cg−M/2m holds because of Lemma 4.8. Then we find thatJ+,2

=sB+/4pduLl
+−lu−2/mv̂+g2/m+osg2/md asg→` in the same way as in the proof of Lemma 3.6. We

can estimate the integralJ− similarly. j

B. Preliminary estimates

The proofs of Theorems 1.1, 1.4, and 1.5 given below are essentially the same as those of
Theorems 1.2, 1.1 in Raikovs1993d and that of Theorem 2.2 in Raikovs1998d, respectively.
However, we reproduce the proofs of Theorems 1.1–1.5 for the sake of completeness.

Let Ln−1
+ ,l,Ln

−. Take an integerN0 greater thann and setI−=h−1,0,… ,n−1j ,I+=hn,n
+1,… ,N0j. Define the orthogonal projectionsP+,P−,P`, and P−

c on the spaceolPN % L2sRd by
P±=olPI±

% idL2sRd, respectively,P`=id−P−−P+ andP−
c =P++P`=id−P−. Here, “id” stands for

the identity operator. These projectionsP± ,P` commute with each other and with the operatorH0.
Lemma 5.4: We have the asymptotic relations

lim
g→`

g−2/mNsg−1 , V1/2P±uH0 − lu−1V1/2d = o
lPI±

nlsld, s5.10d

lim
g→`

g−2/mNsg−1 , P±V1/2P±uH0 − lu−1V1/2P±d = o
lPI±

nlsld, s5.11d

respectively. Here, the operatorsH0 and V are as in Sec.V A.
Proof: It follows from SpecsA*Ad \ h0j=SpecsAA*d \ h0j that

Nsg−1 , V1/2P±uH0 − lu−1V1/2d = Nsg−1 , uH0 − lu−1/2P±VP±uH0 − lu−1/2d.

The operatorsuH0−lu−1P± are matrix-valuedCDOs on olPI±
% L2sRd and have the symbol

sullshd−lu−1di jdi,jPI±
, which belong to the classOpS0 by Lemma 4.5, and the operatorsuH0

−lu−1/2P±VP±uH0−lu−1/2 are matrix-valuedCDOs whose principal symbols are given bysullshd
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−lu−1Vsb−1shd ,h*ddi jdi,jPI±
, respectively, because of Lemma 5.2. Thens5.10d follows from a

matrix-valuedCDO version of Proposition 2.8. The proof ofs5.11d is similar. j

Lemma 5.5: We have the asymptotic relations

lim
m↓0

m2/mNsm , P−
cV1/2P−uH0 − lu−1V1/2P−

cd = 0, s5.12d

lim
m↓0

m2/mNsm , P−V1/2P+uH0 − lu−1V1/2P−d = 0, s5.13d

lim
N0→`

lim sup
m↓0

m2/mNsm , P−V1/2P`uH0 − lu−1V1/2P−d = 0. s5.14d

Proof: Since P−V1/2P−
cV1/2P−=P−V1/2sid−P−dV1/2P−=P−VP−−sP−V1/2P−d2, we can deduce

from Lemma 5.2 thatP−V1/2P−
cV1/2P− belongs toOpS−m−1. Then it follows froms2.4d that Nsm

, uH0−lu−1/2P−V1/2P−
cV1/2P−uH0−lu−1/2d=Osm−2/sm+1dd=osm−2/sm+1dd as m↓0. This provess5.12d

since SpecsA*Ad \ h0j=SpecsAA*d \ h0j.
The operatorP−V1/2P+ belongs toOpS−m/2−1 by Lemma 5.2 sinceolPI−

% L2sRd and olPI+
% L2sRd are orthogonal, andP+V1/2P−V1/2P+=sP−V1/2P+d*sP−V1/2P+d belongs toOpS−m−2. Then
s2.4d provess5.13d.

By the definition ofP` and the min–max argument, we have

Nsm , P−V1/2P`uH0 − lu−1V1/2P−d ø NssLN0+1
− − ldm , P−VP−d ø CsLN0+1

− − ld−2/mm−2/m,

where we used the fact thatP−VP−POpS−m ands2.4d in the last inequality. SinceLN0+1

− tends to
infinity as N0→`, we have the conclusion. j

Lemma 5.6: We havelimN0→` lim supm↓0 m2/mNsm,V1/2P`uH0−lu−1V1/2d=0.
Proof: If we chooseN0.0 so large thatløLN0+1

− /2 holds, thenL jshd−lùl jshd−LN0+1
− /2

ù sl jshd+LN0+1
− d /4 holds for any j ùN0+1 and for anyhPR, from which we haveP`uH0

−lu−1ø4sH0+LN0+1
− d−1. Then the variational principle yields the estimateNsm,V1/2P`uH0

−lu−1V1/2døNsm,4V1/2sH0+LN0+1
− d−1V1/2d=NsH4/msbd,−LN0+1d=olPNnls−LN0+1

− ds4/md2/ms1
+os1dd asm↓0, where we used Theorem 1.1 proved in Sec. III in the last inequality. Finally, the
lemma follows from the asymptotic relation limN0→`olPNnls−LN0+1

− d=0. j

C. Proof of Theorem 1.1

Using the inequalityV1/2sH0−ld−1V1/2øV1/2P−
cuH0−lu−1V1/2, we have, for any small«.0,

Ng
+sld ø Nsg−1 , V1/2P−

cuH0 − lu−1V1/2d ø Nss1 − «dg−1 , V1/2P+uH0 − lu−1V1/2d

+ Ns«g−1 , V1/2P`uH0 − lu−1V1/2d,

where we used thesgeneralizedd Birman–Schwinger principlefsee, e.g., Alama, Deift, and
Hempels1989d, Birmans1991dg and the Weyl–KyFan inequality. Then by Lemma 5.4 and Lemma
5.6, we obtain the upper bound lim supg→` g−2/mNg

+sldøolPI+
nlsld, taking a limit «↓0 andN0

→`. Next, we obtain the lower bound. For any small«.0, we have

P−
cV1/2sH0 − ld−1V1/2P−

c = P−
cV1/2P−sH0 − ld−1V1/2P−

c + P−
cV1/2P−

csH0 − ld−1V1/2P−
c

ù P−
cV1/2P−sH0 − ld−1V1/2P−

c + V1/2P−
csH0 − ld−1V1/2

− 2 ResP−V1/2P−
csH0 − ld−1V1/2d ù s1 − «dV1/2P−

cuH0 − lu−1V1/2

− P−
cV1/2P−uH0 − lu−1V1/2P−

c − «−1P−V1/2P−
cuH0 − lu−1V1/2P−,

where we used the inequalityP−V1/2P−
csH0−ld−1V1/2P−ù0 in the first inequality and used the

estimate 2usu,V1/2P−
csH0−ld−1V1/2P−uduø«iuH0−lu−1/2P−

cV1/2ui2+«−1iP−
cuH0−lu−1/2V1/2P−ui2 in
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the second inequality. Then, by a variational argument similar to that used in the case of the upper
bound, we can derive the lower bound lim infg→` g−2/mNg

+sldùolPI+
nlsld, using Lemma 5.4 and

Lemma 5.5. This completes the proof of Theorem 1.1.

D. Proof of Theorem 1.4

By the Birman–Schwinger principle, we have the upper bound

Ng
−sld = Nsg−1 , − V1/2sH0 − ld−1V1/2d ø Nsg−1 , V1/2P−uH0 − lu−1V1/2d

ø o
lPI−

nlsldg−2/ms1 + os1dd

as g→`, where we used the inequality −V1/2sH0−ld−1V1/2=V1/2P−uH0−lu−1V1/2−V1/2P−
cuH0

−lu−1V1/2øV1/2P−uH0−lu−1V1/2 in the first inequality and useds5.10d in the last inequality. Next,
for any small«.0, there existsC«.0, independent ofg,N0, such that

Ng
−sld ù Nsg−1 , − P−V1/2sH0 − ld−1V1/2P−d ù Nss1 + «dg−1 , P−V1/2P−uH0 − lu−1V1/2P−d

− NsC«g
−1 , P−V1/2P−

cuH0 − lu−1V1/2P−d ù Nss1 + «dg−1 , P−V1/2P−uH0 − lu−1V1/2P−d

− NsC«8g
−1 , P−V1/2P+uH0 − lu−1V1/2P−d − NsC«8g

−1 , P−V1/2P`uH0 − lu−1V1/2P−d

ù o
lPI−

nlsldsg/s1 + «dd2/ms1 + os1dd

asg,N0→`, where we used the Weyl–KyFan inequality in the second and the third inequalities
and Lemma 5.4 in the last line. This gives the lower bound and we complete the proof.

E. Proof of Theorem 1.5

Let Ln−1
+ ,l,m,Ln

−. Set g=sm+ld /2 ,t=sm−ld /2 and setP+
c =P−+P`. Since P+sHg

−gd2P+=sP+sHg−gdP+d2−g2P+VP+
cVP+, we have, for small «.0, NsløHgsbd,md

ùNssHg−gd2,t2dùNsP+sHg−gd2P+,t2dùNssP+sHg−gdP+d2,t2−«d−NsC«,g2P+VP+
cVP+d

=NssP+sHg−gdP+d2,t2−«d+osg2/md as g→`. Here, we used the fact that the operator
P+VP+

cVP+=P+V2P+−sP+VP+d2 is a matrix-valuedCDO of the classOpS−2m−1. Settingl1=g
−Ît2−« and m1=g+Ît2−«, we haveNsl1, P+HgP+,m1dùNsg−1,V1/2P+sH0−m1d−1P+V1/2d
−Nsg−1,V1/2P+sH0−l1d−1P+V1/2d=olPI+

nlsfl1,m1gdg2/ms1+os1dd as g→`, where we used the
Birman–Schwinger principle and Theorem 1.1. Finally, we have Theorem 1.5 from these, letting
«↓0 andN0→`.
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The paper investigates relations between the phase space structure of a quantum
field theorys“nuclearity”d and the concept of pointlike localized fields. Given a net
of local observable algebras, a phase space condition is introduced that allows a
very detailed description of the theory’s field content. An appendix discusses non-
interacting models as examples. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1883313g

I. INTRODUCTION

Quantum fields are a basic ingredient of relativistic quantum physics. It is common to express
almost all aspects of a theory, including the dynamics, in terms of these pointlike localized fields
and related conceptssLagrangians, field equations, path integralsd. While thisansatzhas proved to
be very fruitful for the construction of models and in perturbation theory, it contains technical
pitfalls which make its consistent handling rather difficult.

The main problem arises from Heisenberg’s uncertainty relation, which says that measure-
ments with sharp localization in configuration space are completely delocalized in momentum
space, i.e., they show a singular high energy behavior. This is reflected in peculiar mathematical
properties of quantum fields: They cannot be defined as operators, their products do not exist, and
nonlinear field equations require subtle limiting processes which are difficult to control.

Thus, the concept of pointlike localized fields may be regarded as an over-idealization. Since
it is well known that physical operations in finite space–time regionssrather than at pointsd do not
show the singular behavior mentioned above, it seems worth while to study how pointlike fields
emerge from such a physically more meaningful setting, and in that way to gain more information
about the fields’ properties.

A framework for such an investigation is provided by algebraic field theory,1 where operations
localized in an open space–time regionO form an algebraAsOd of bounded operators. It is
possible to encode all physically relevant propertiesslocality, covariance, positivity of energyd in
terms of these algebras and their transformation behavior under the Poincaré group, without
reference to pointlike structures.

While it has extensively been discussed in the literature how to pass to the local algebras from
a given field-theoretic model,2 the reverse step is less well understood. Heuristically, pointlike
fieldsfsxd should be derived as limits of operations localized in regions shrinking to the pointx.3,4

However, the details of this limit depend on the high energy behavior of the fields. Following
Fredenhagen and Hertel,3 we will focus on fields satisfyingpolynomial H-bounds, i.e., fulfilling
for some,.0,

iR,fsxdR,i , `, whereR= s1 + Hd−1; s1.1d

H denotes thespositived Hamiltonian. TheseH-bounds are satisfied in all models constructed so
far, more generally in theories which satisfy a sharpened version of the Osterwalder–Schrader
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axioms.5 It has been shown in Ref. 3 that fields of this kind can be recovered from the local
algebras by means of the formula

R,fsxdR, P ù
O{x

R,AsOdR,w
, s1.2d

where —w denotes the weak closure.6 So one can calculate the field content of an algebraic
theory; however, many details about the fields’ properties remained unclear, e.g., the question
whether the fields possess finite spin, or the existence of product expansions.

To gain more insight in this respect, we will make use of an additional property of quantum
field theories, known asphase space conditions. These reflect the heuristic expectation that the
number of local degrees of freedom of a physical system is limited: A system restricted both in
momentum and configuration space, thus being localized in a finite phase space volume, will
possess only a finite number of independent physical states.sThis is easily understood by appeal-
ing to a semiclassical picture, such as Bohr–Sommerfeld quantization.d Clearly, the notion of a
“finite phase space volume” must be handled with care; however, such properties can be formu-
lated in a mathematically precise way in terms ofcompactnessor nuclearityconditions,7–9 which
lead to interesting structural results on the system’s physical behavior.10 For the sake of concrete-
ness, consider the following compactness condition:11 Let H be the theory’s underlying Hilbert
space,S the set of weak-p-continuous functionals onBsHd s“state space”d, PHsEd the spectral
projectors ofH, andOr the standard double cone of radiusr centered at the origin. We require that
for any E, r .0, the map

JE,r: PHsEdSPHsEd → AsOrd* , s1.3d

s ° sdAsOrde
is compact, i.e., can be expanded into a series of rank-1 operators in the norm topology. This
condition was verified explicitly in noninteracting models.9

The connection of these properties with the point field structure was first realized by Haag and
Ojima:12,13 Following the compactness condition mentioned above, the image of the mapJE,r is
“almost finite-dimensional”sup to some degree of precisiond. If we assume that this finite-
dimensional space does not change in the limitr →0 swhich may be expected in theories that are
dilation invariant in their short distance limitd, then we have found finitely many independent
states that represent the short distance structure of the theory, and one may hope to interpret a
corresponding dual basis as pointlike localized quantum fields located atx=0.

The present paper aims at putting these heuristic ideas into a precise mathematical form. We
introduce a phase space condition, specifically sensitive in the short distance limit, that selects a
relevant class of models with “regular” short distance behavior. Its implications can be summa-
rized as follows.

s1d The field content of these theories can be determined, with detailed results on the singular
properties of the fields and their connection to the theory in finite regions. All fields can be
shown to comply with the Wightman axioms; moreover, they transform covariantly both
under unbroken and spontaneously broken symmetries.

s2d Operator product expansions14 can be established rigorously with specific convergence prop-
erties, and allow for a model-independent, nonperturbative definition of normal products in
the sense of Zimmermann.15,16 The field content includes all composite fields.

In this paper, we shall restrict ourselves to the first named aspect; the latter point will be
treated in another publication.17 Section II introduces the phase space condition which lies at the
root of our analysis. Using this condition, we construct the field content of the algebraic theory in
Sec. III, while symmetry aspects and the proof of Wightman’s axioms are discussed in Sec. IV. We
end with a brief outlook on generalizations in Sec. V. In the Appendix, we show that the phase
space condition is fulfilled in models from free field theory.
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The present paper is based on the author’s thesis.18 It presents an abbreviated and somewhat
simplified version of material developed there; for further details and additional technical and
mathematical aspects, the reader is referred to the original work.

II. A PHASE SPACE CONDITION

This section will introduce the specific phase space condition which characterizes the short
distance structure of a quantum field theory. First of all, we shall briefly define our mathematical
setting.

We use the framework of local quantum physics.1 Our field-theoretic model is given by means
of a netO°AsOd, which associates with any open space–time regionO,Rs+1 a von Neumann
algebraAsOd,BsHd, whereH is some fixed Hilbert space. We assume isotony and locality. In
most cases, it will suffice to consider the algebrasAsrdªAsOrd associated with standard double
conesOr of radiusr centered at the origin. We will restrict our attention to the vacuum sector; i.e.,
we assume a strongly continuous unitary representationUsx,Ld of the connected Poincaré group
on H that has a geometric action on the netA scovarianced, and a vectorVPH sthe vacuumd,
unique up to a phase, which is invariant under allUsx,Ld. For the translation part of this repre-
sentation,Usxd=expsiPmxmd, we will assume thespectrum condition, i.e., the joint spectrum of its

generatorsPm falls into the closed forward light coneV̄+; hereH=P0ù0 is the Hamiltonian. We
also require the netA to act irreducibly on H, in the sense thatøOAsOdV is dense inH, where
the union runs over bounded regionsO only. SªBsHd* is the set of weak-p-continuous func-
tionals onBsHd, the positive normed elements of which represent the physical states. BothBsHd
andS will be considered with their norm topology unless otherwise noted.

In analogy to Ref. 3, we will often use the space of polynomially energy-damped functionals,

C`sSd ª ù
,.0

R,SR, , S, s2.1d

whereR=s1+Hd−1 as before. On this space, we define the normsisis,d
ª iR−,sR−,i s,.0d, and

equip C`sSd with the locally convexsmetrizabled topology of simultaneous convergence with
respect to all these norms. As is easily seen, a linear mapw from C`sSd to some Banach space
sE ,i ·iEd is continuous with respect to this topology if and only if

iwis,d
ª sup

s

iwssdi«
isis,d , ` for some, . 0. s2.2d

We setCªLsC`sSd ,Sd, the space of continuous linear maps between these spaces. A prominent
element ofC is the inclusion

J: C`sSd → S,

s ° s, s2.3d

which bears some analogy withs1.3d. A map cPC of finite rank has the form

c = o
j=1

J

s jf j with s j P S andf j P C`sSd* . s2.4d

sThis means that thef j are linear forms withif jis,d=iR,f jR
,i,` for large,.d

For our purposes, it will be critical to control the behavior of the objects mentioned above in
the short distance limit. To achieve this, we introduce some additional structure. ForsPS, we
define

isir ª isdAsrdei sr . 0d. s2.5d

Likewise, for cPC we consider
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icir
s,d

ª ics·ddAsrdeis,d = sup
sPS

sup
APAsrd

ucsR,sR,dsAdu
isi iAi

, s2.6d

which is finite for sufficiently large,. We devote special attention to the question how fast such a
seminormi ·ir

s,d vanishes in the limitr →0, and therefore define forgù0,

dgscd ª 50 if r−gicir
s,d ——→

r→0
0 for some, . 0,

1 otherwise.
6 s2.7d

Eachdg induces a pseudometric onC. EquippingC with the pseudometric

d̂sc,c8d ª E
0

`

e−gdgsc − c8ddg, s2.8d

we have found a topology onC which describes short-distance convergence “to all polynomial
orders.”

fNote thatC is a presheaf overRs+1 with respect toCsOdªCdAsOd, and that thedg are not
so much functions onC, but rather on the stalk ofC at x=0; so we have defined a topology on
the stalk. However, we shall not consider these sheaf-theoretic aspects any further.g

We can now turn to formulating the approximation ofJ with operators of finite rank. We start
with a netO°AsOd that meets the standard requirements listed at the beginning of this section.
We can analyze the short distance behavior of the theory with the help of the concepts introduced
above by considering the numbers

Ng ª minhnu ∃ c P C: rankc = n, dgsJ − cd = 0j, s2.9d

settingNg=` if the set on the right-hand side is empty. It is obvious thatNgùNg8 for gùg8.
Thus, our theory falls into one out of the following three classes:

s1d Ng→` for g→`, butNg,` for all gù0. We shall show in the subsequent sections that the
theory then has a nontrivial field content of Wightman fields. As will be discussed in the
Appendix, a large variety of free field theories falls into this class; one may expect that
physically relevant interacting models exhibit the same behavior.

s2d NgøN for some fixedN,` and allgù0. In this case, only very few observables “survive”
in the short distance limit. In fact, we shall see that in this case necessarilyNg=1 for all g,
and that the theory’s field content is trivial. An example for this behavior was discussed by
Lutz;19 cf. also the Appendix. More generally, one expects that models of this kind arenot
generated by pointlike fields, but possibly by other, nonpointlike objects, such as Mandel-
stam strings or Wilson loops.

s3d Ng=` for some finitegù0. Such theories have a peculiar complex short distance behavior
which does not allowJ to be approximated by maps of finite rank in the specified sense.
Examples are free theories with infinitely many species of particles. One also expects that
theories in 1+1 dimensions, where the fields as well as their Wick products have a “scaling
dimension” of 0, are members of this class.

In what follows, we will disregard the latter case and assume thatNg is finite for all g. We
may encode this into a phase space criterion which selects theories of a sufficiently regular short
distance behavior.

Definition 2.1: A netO°AsOd is said to satisfy themicroscopic phase space conditionif for
everygù0, there exists a mapcPC of finite rank such that

dgsJ − cd = 0,

or, equivalently,
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r−giJ − cir
s,d → 0 for suf ficiently large, . 0.

This condition shows a formal analogy with the well-known compactness and nuclearity
conditions in finite regions:8,9 It demands that the mapJ can be expanded into a series of rank-1

operators, where the series is meant to converge in the pseudometricd̂ introduced in Eq.s2.8d.
Our task will be to analyze the consequences of the microscopic phase space condition,

especially regarding the theory’s point field structure. We will show that the size of the field
content is determined by the “approximation numbers”Ng, and prove that these fields fulfill
certain regularity properties.

III. DETERMINING THE FIELD CONTENT

We will now set out from a netO°AsOd that satisfies the microscopic phase space condi-
tion. Our task is to analyze the point field content of this net. Our line of analysis can be sketched
as follows.

Givengù0, let cPC be a map of finite rank that approximatesJ in the short distance limit:
dgsJ−cd=0. Provided that rankc is minimal with this propertysi.e., c does not contain redun-
dant terms that do not contribute to the approximationd, one will expect that the image of the dual
map c* :BsHd→C`sSd* consists of pointlike fields.fNote that imgc* is spanned by the linear
forms f j in Eq. s2.4d.g In fact, we will show thatFgª img c* depends ong only, and that its
elements are indeed localized fields. Furthermore, we will prove that the union of the spacesFg

exhausts the field content as defined by Fredenhagen and Hertel.3

Let gù0 be fixed in the following. We begin our analysis of the mapc with the following
lemma.

Lemma 3.1: LetcPC such that rankc=Ng and dgsJ−cd=0. Then it holds for alls
P img c \ h0j that

r−gisir→” 0 sr → 0d.

Proof: Assume that the proposition is violated for somesP img c \ h0j. We choose a decom-
position c=c8 % sf, where fPC`sSd* , c8PC, and rankc8=Ng−1. Since r−gisir →0 and
ifis,d,` for large,, we obviously havedgssfd=0 and thusdgsJ−c8d=0, in contradiction to the
minimality property ofNg fcf. Eq. s2.9dg. h

Certainly,c is not fixed uniquely by the conditions of Lemma 3.1. However, we shall show
that these conditions fix imgc* . To this end, we prove the following.

Lemma 3.2: Letc be as in Lemma 3.1. For arbitrarysPC`sSd, the following equivalences
hold:

sdimg c* = 0 ⇔ cssd = 0 ⇔ r−gisir → 0.

Proof: The first equivalence is obvious. Moreover, forsÞ0, the approximation property
dgsJ−cd=0 gives r−gisJ−cdssdir =r−gis−cssdir →0. So cssd=0 implies r−gisir →0. Con-
versely, if r−gisir →0, we concluder−gicssdir →0, and thuscssd=0 according to Lemma 3.1.h

Since the right-hand side of the equivalence in Lemma 3.2 does not refer toc, the space
img c* is independent ofc as well. Thus, we have established the following.

Theorem 3.3: Let the netA fulfill the microscopic phase space condition. For eachgù0,
there is a unique subspaceFg,C`sSd* of dimension Ng with the following property: IfcPC,
rankc=Ng, and dgsJ−cd=0, then img c* =Fg.

Note that the microscopic phase space condition guarantees such ac to exist for everyg. The
theorem requires the rank ofc to be “minimized”srankc=Ngd. If rank c.Ng, we can still find a
representation

c = cI % cII ,
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where imgcI
* = Fg, r−gisir → 0 ∀ s P img cII . s3.1d

fTo see this, choose a mapcI of rank Ng such thatdgsJ−cId=0, and setcIIªc−cI. It follows
that dgscIId=0, sor−gisir →0 for all sP img cII . Since Lemma 3.1 applies tocI, the intersection
of img cI with img cII is trivial; thus c=cI +cII is a direct sum.g As a consequence hereof, and
sincedgs·dødg8s·d for gøg8, we obviously haveFg,Fg8—theFg form an increasing sequence
of vector spaces.

We will show now that the elements ofFg are Wightman fields. To this end, we will approxi-
matefPFg with a sequence of bounded operators localized in smaller and smaller regions. Our
aim is the following proposition.

Proposition 3.4: LetfPFg. One can find a sequence of operators Ar PAsrd sr .0d such that

if − Aris,d → 0 for some, . 0

smore preciselyif−J*Aris,d→0d.
We will carry out—or rather sketch—the proof in four steps. We choosecPC of rank Ng

such thatdgsJ−Cd=0 and setSª img c.
sad First, consider the case of a rank-1 operatorc=sf. According to Lemma 3.1, we may

choose a null sequencer such thatisir ùc·rg for somec.0, wherer Pr. For r Pr, we defineAr

as a linear form on the one-dimensional subspace ofAsrd* spanned bysdAsrd, namely by setting
ssArd=1. We can then apply the Hahn–Banach theorem to continue this form to an operatorAr

PAsrd=sAsrd*d* ; its norm is bounded byiAriø sisird−1øc−1r−g. We must show thatif
−J*Aris,d→0: This follows from

if − J*Aris,d = ic*Ar − J*Aris,d ø ic − Jir
s,diAri ø c−1r−gic − Jir

s,d → 0 s3.2d

for large, and for r Pr. ThusAr →f on r, and we may easily find suitableAr for any r .0 by
choosingAr to be “piecewise constant.”

sbd Now let dimS.1, but let all sPS have “the same short distance behavior,” i.e., we
assume that a functionh :R+→R+ exists such that

c1ssdhsrd ù isir ù c2ssdhsrd for all r P r,s P S, s3.3d

wherer is some fixed null sequence, andc1, c2 are positive constants depending ons. We also
assumehsrdù rg for r Pr. It is easily seen thatc1, c2 can be chosen to be locally uniform inS, and
thus we can choose them uniformly on the unit sphere ofS swith respect to some fixed normi ·iS,
independent ofrd. We can find constantsc18 ,c28.0 such that

c18hsrdisiSù isir ù c28hsrdisiS for all r P r,s P S. s3.4d

Now let fPFg, and writec=s0f % c8 with some fixeds0PS and rankc8=Ng−1. Again, we
defineAr sr Prd as a linear form onSdAsrd by

s0sArd = 1, Ardimg c8e = 0, s3.5d

thus achievingc*Ar =f. The norm ofAr can be estimated as

iArdSei = sup
sPS

ussArdu
isir

ø
iAriS

c28hsrd
ø

c3

hsrd
sr P rd s3.6d

with some constantc3.0. We may now extendAr to an element ofAsrd and establish conver-
gence using the methods outlined insad.

scd More generally, let us assume thatS has the structure

S= S1 % ¯ % Sk s3.7d

with finite-dimensional spacesSj which fulfill conditions of the types3.3d with respect to functions
h jsrd and a common null sequencer; moreover, we requireh j+1srd /h jsrd→0 andhksrdù rg on r.
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fFor example, this is the situation met in free field theory, where the functionsh jsrd are powers of
r, andr is arbitrary.g We writec=c1 % ¯ % ck with respect to the direct sums3.7d, and prove the
proposition forfP img c j

* by induction onj . Let the statement be true for allj8, j in place of j
swe include the casej =1 hered. For fP img c j

* , define Ar sr Prd as a linear form onSj by
c j

*Ar =f; as insbd, we haveiArdSjiøc/h jsrd with some constantc.0, and thus we can extendAr

to an element ofAsrd with the same bounds on its norm. Now observe that for, sufficiently large,

if − J*Ar + o
m=1

j−1

cm
* Aris,d ø ic*Ar − J*Aris,d + o

m=j+1

k

icm
* Aris,d ø ic − Jir

s,diAri + o
m=j+1

k

icmir
s,diAri

ø ic − Jir
s,d c

h jsrd
+ o

m=j+1

k
hmsrd
h jsrd

· const→ 0 sr P rd. s3.8d

Thus we conclude by induction,

f P Asrd + %
m=1

j−1

img cm
* , Asrd + Asrd = Asrd for any r . 0, s3.9d

where the bar denotes closure with respect toi ·is,d.
sdd In the general case, the short distance behavior withinS may be more complicated than

assumed above, and possibly depend crucially on the choice ofr. Let r be any fixed null se-
quence. Instead of consideringdgs·d, we introduce a weaker pseudometricdg

rs·d defined as in Eq.
s2.7d, but restricting convergence tor Pr. The results established so far fordgs·d andFg hold in
an analogous way fordg

rs·d and corresponding spacesFg
r ,Fg. If r8,r is a subsequence, then

Fg
r8,Fg

r; in case equality holds here for all subsequencesr8, we will call r a stablesequence. Let
r fulfill this condition, and choose rankc8 minimal such thatdg

rsJ−c8d=0. By passing to sub-
sequences ofr, we can step by step enforce an “ordering” in the short distance behavior of the
elements of imgc8, and arrive at a situation as outlined inscd. Since r is stable, passing to
subsequences does not affect the approximation property ofc8; so we can use the methods
developed inscd to establish the proposition forfP img c8* =Fg

r.
It remains to verify thatørFg

r spans all ofFg, where the union runs over all stable sequences
r. To accomplish this, assume thatFstªspansørFg

rd is a proper subspace ofFg. Choosef
PFg \Fst and appropriates0PS, cstPC such that

c = cst % s0f, img cst
* . Fst. s3.10d

According to Lemma 3.1, we may chooser such thatis0ir ù rg ·const forr Pr, where we may
taker to be stable, possibly replacing it by a subsequence. In analogy withs3.1d, we split upc as

c = cI % cII ,

where imgcI
* = Fg

r, r−gisir→r
0 ∀ s P img cII . s3.11d

But sinceFg
r ,Fst, it follows from Eqs.s3.10d and s3.11d that s0P img cII ; thus r−gis0ir →0 on

r, which gives us a contradiction. This completes the proof. h

Having verified Proposition 3.4, we may now apply the results of Fredenhagen and Hertel,3

who consideredswhen expressed in our notationd the following set of linear forms:

FFHª hf P C`sSd* uR,fR, P ù
r.0

R,AsrdR,w
for some, . 0j, s3.12d

where —w denotes the weak closure.FFH can be interpreted as the theory’s field content. The
authors showed that anyfPFFH is a local field associated with the netA; more precisely,

052301-7 Phase space properties and short distance structure J. Math. Phys. 46, 052301 ~2005!

                                                                                                                                    



f ° fsfd =E fsxdUsxdfUsxd*ds+1x s3.13d

can be extended to an operator valued tempered distribution on the domainC`sHd=ù,.0R
,H,

which is local and relatively local;fsfd is closable, and its closurefsfd− is affiliated with the local
algebras,

fsfd−hAsOd if supp f , O. s3.14d

In particular, these statements apply to the fields constructed here, since Proposition 3.4 shows that
Fg,FFH for anygù0. In fact, we will show that our spacesFg exhaustFFH. To this end, we first
derive improved approximation properties for the fieldsfPFFH.

Lemma 3.5: LetfPFFH. One can find constants,.0, k.0 and operators Ar PAsrd for
each r.0 such that

iAr − fis,d = Osrd, iAri = Osr−kd.

Proof: We choose a test functionf PSsRs+1d with f ù0, efsxdds+1x=1, suppf ,Or=1, and set
f rª r−ss+1dfsr−1xd. Now let r be fixed, and letfsf rd−=VrDr be the polar decomposition of this
operator, whereVr is a partial isometry, andDr is self-adjoint. Sincefsf rd−hAsrd, bothVr and all
bounded functions ofDr belong toAsrd.20 Let , be sufficiently large such thatifis,d,`; for e
.0, set

Ar,e ª e−1Vr sinseDrd P Asrd. s3.15d

Using the inequality

sx − e−1 sinexd2 ø e2x4 ∀ x ù 0, e . 0, s3.16d

we can establish the estimate

isAr,e − fsf rddR4,i2 ø ise−1 sinseDrd − DrdR4,i2 ø e2iDr
2R4,i2 = e2ifsf rd*fsf rdR4,i2.

s3.17d

By repeated use of the relation

fR,fsf rdg = − iRfs]0f rdR s3.18d

fcompare Eq.s2.4d in Ref. 3g and of the boundifsgdis,døeugsxduds+1x · const, we can establish

ifsf rd*fsf rdR4,i ø r−4,c s3.19d

with some constantc.0 independent ofr. Applying Eq. s3.17d, that yields

iAr,e − fsf rdis4,d ø er−4,c. s3.20d

Using the integral representation offsf rd and the spectral properties of the translation operators,
one also verifies that

ifsf rd − fis,+1d = Osrd. s3.21d

Choosing nowArªAr,e with e=r4,+1, we can combines3.20d and s3.21d to show

if − Aris4,+1d = Osrd, s3.22d

which proves the lemma, since the required bounds oniAri are obvious. h

Remarks:Certainly,, andk can be chosen uniformly on any finite-dimensional subspace of
FFH. Furthermore, by again smearingAr,e with f r and rescaling, we may assume thatAr is of the

form Ârsf rd.

052301-8 Henning Bostelmann J. Math. Phys. 46, 052301 ~2005!

                                                                                                                                    



We are now in the position to prove that theFg exhaustFFH. To this end, letfPFFH. Choose
a sequenceAr as in Lemma 3.5, and fixg such thatiAri=Osr−gd. We will show thatfPFg:
ChoosingcPC, ,.0 such that imgc* =Fg and r−giJ−cir

s,d→0, we can achieve

iJ*Ar − c*Aris,d → 0. s3.23d

SinceiJ*Ar −fis,d→0 by constructionsif , is sufficiently larged, this means

c*Ar →
r→0

f with respect toi · is,d. s3.24d

Note that the left-hand side of Eq.s3.24d does not leave the finite-dimensional spaceFg, which is
closed; thusfPFg. We have shown the following.

Theorem 3.6: If the netA satisfies the microscopic phase space condition, then

FFH = ø
gù0

Fg.

According to the results in Ref. 3, this means that our construction describes all local fields
affiliated with the net and satisfying polynomialH-bounds.

IV. SYMMETRY ASPECTS

In this section, we will investigate the action of symmetry transformations on the pointlike
fields we have constructed, and eventually show that these fields satisfy the Wightman axioms.

First, we will revisit the structure connected with the spacesFg of local fields. Givengù0,
we choose a mapcPC of rank Ng such thatdgsJ−cd=0; then imgc* =Fg. We can define the
finite-dimensional space

Sg ª C`sSd/kerc ; s4.1d

by virtue of Lemma 3.2, this definition is independent ofc. In a natural way, we haveSg
* =Fg, and

denoting the canonical projection ontoSg by pg, its dual mappg
* is just the inclusionFg�C`sSd* .

In summary, we get the following diagram, where dashed lines connect pairs of dual spaces:

s4.2d

The elements ofSg correspond to “germs of states” as described by Haag and Ojima.13

The phase space approximation “J<c” can be introduced into this scheme in a simple way:
Let p:C`sSd* →C`sSd* be an arbitrary projection ontoFg, continuous with respect to the weak
topology onC`sSd* . Then the predual mapp* exists, and sinceFg is finite dimensional, we have

ip*is,d = sup
sPC`sSd

ip*sis,d

isis,d , ` s4.3d

for large,. This implies

iJp* − Jir
s,d ø isJ − cdp*ir

s,d + iJ − cp*ir
s,d ø iJ − cir

s,dip*is,d + iJ − cir
s,d = osrgd,

s4.4d

so we can express the approximation bydgsJp* −Jd=0, without referring to a specific mapc.
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Now we will turn to the investigation of symmetry operations. The action of such symmetries
se.g., Lorentz transformationsd is usually given onBsHd, and by virtue of diagrams4.2d we will
transfer this action to the spacesFg. First of all, let us define the class of “admissible transfor-
mations” that we will consider.

Definition 4.1: Let UPBsHd be a unitary. The transformationa=adU :BsHd→BsHd is
called amicroscopic symmetryif the following two conditions hold:

s1d For every,.0, there is an,8.0 such thatiR−,UR,8i,`.
s2d There are constants c,R.0 such thataAsrd,Asc·rd∀ r P s0,Rd.

Condition s1d allows us to extenda to a mapa :C`sSd* →C`sSd* . Regarding this extension,
we prove the following.

Proposition 4.2: Leta be a microscopic symmetry. Then

aFg , Fg ∀ g ù 0.

Proof: Using condition s1d in Definition 4.1, we can define the predual mapa* :C`sSd
→C`sSd. Let gù0 be fixed. Lemma 3.2 shows us that in diagrams4.2d,

kerpg = hs P C`sSd u r−gisir → 0j. s4.5d

Together with conditions2d in Definition 4.1, this yieldsa* kerpg,kerpg; thus a has a well-
defined action on the quotient spaceSg and on its dualFg. By construction, this action is
compatible with the inclusionpg

* :Fg�C`sSd* , which proves the proposition. h

Microscopic symmetriesa thus leave the spacesFg of pointlike fields stable. In the case of a
group representationg°asgd, we get corresponding finite-dimensional representations on every
field spaceFg. An example for this case are Lorentz transformations: EachFg carries a finite-
dimensional representation of the Lorentz group. Another example for microscopic symmetries are
dilations, provided they exist as a symmetry of the net. Furthermore, our analysis allows us to
handle inner symmetries, both broken and unbroken. In the case of a spontaneously broken
symmetry, one expects thata=adU preserves localization only in regions of some limited size—
this corresponds to the caseR,` in Definition 4.1.fCompare Ref. 21. To include the situation
considered there in our context, it is necessary to extend our framework from the observable
algebrasAsOd to the field algebrasFsOd, including also nonobservable fields, which should
however be straightforward.g

In extension of our methods introduced above, one observes that the antilinear involution
A°A* can be treated in a similar manner, showing that the field spacesFg are invariant under
Hermitean conjugationf°f* . Defining the translated fields asfsxdªUsxdfUsxd* , or passing
over to the “smeared” fieldsfsfd, we may also derive symmetry properties under thesconnected
part of thed full Poincaré group.

The only remaining part in establishing the Wightman axioms then is irreducibility, i.e., the
question whether the vacuum vectorV is cyclic for the fields. As will be discussed below, we
cannot expect this in the general case. However, for eachg we may consider a “reduced” Hilbert
space,

Hg ª PgsOdV , H, s4.6d

whereO is some open subset ofRs+1, andPgsOd is the polynomial algebra generated by the fields
fsfd with fPFg and suppf ,O. sDue to the Reeh–Schlieder theorem, the spaceHg does not
depend onO.d Considered onHg, the setFg is certainly irreducible. Thus, we have established the
following.

Theorem 4.3: Let O°AsOd satisfy the microscopic phase space condition. For every g
ù0, there exists a basishf1, . . . ,fNg

j of Fg and a Hilbert spaceHg,H such thathf °f jsfdj is
a set of quantum fields onHg in the sense of the Wightman axioms.
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Here we refer to the Wightman axioms as put forward in Ref. 22. Note that in our case, the
fields always have finite spin. In the more general framework of Ref. 3, this is not guaranteed.
Also note that we need to allowHg to grow withg: While at any fixedg, we are sure to find only
a finite number of fields, more and more independent fields may occur in the phase space approxi-
mation as we increase the energy dimension.

Let us briefly return to the question whether, or on which Hilbert space, the entire field content
FFH is irreducible. In general, we cannot expectFFH to be an irreducible set onH, since there
exist nontrivial theories which fulfill the microscopic phase space condition, but have a trivial field
content, i.e.,FFH=C1 scf. the Appendixd. These theories might always occur as a tensor factor of
A. To exclude such nonpointlike components from the theory, we can define the following subnet
AF of A using the methods exposed in Ref. 23:

AFsOd ª PsOd9, s4.7d

wherePsOd is the polynomial algebra generated byFFH, ands¯d8 denotes the weak commutant.
If A fulfills the microscopic phase space condition, then so doesAF, leading to the same field
content asA; thus we may callAF the point field part of the theory. It isHFªPsOdV which we
should consider as the natural Hilbert space for the Wightman fields. In fact, using the techniques
of Bisognano and Wichmann,24 it should be possible to show that

HF = H ⇔ AF = A, s4.8d

meaning thatFFH is irreducible onH if, and only if, the theory is completely determined by
pointlike observables.

We can incorporate derivatives of fields into our context as well. It is easy to see that together
with f, its derivatives

]mf ª

]

]xm uUsxdfUsxd* ux=0 = ifPm,fg s4.9d

are contained inFFH; so we can take]m to be a linear operator fromFg into someFg8. Usually,
we must chooseg8.g here, since the “energy dimension” of fields increases when applying time
derivatives: Ifi]0

nfis,d,` for some fixed, andany nPN, then it follows thatifVi,`; how-
ever, this is only possible iff is a multiple of the identity.25 In particular, the case of a finite-
dimensionalFFH automatically leads toFFH=C1.

V. CONCLUSIONS AND OUTLOOK

Starting from a relativistic quantum theory in the algebraic framework, i.e., expressed in terms
of observables localized at finite distances, we have shown that its field content can be character-
ized by its phase space structure in the short distance limit. We have introduced a physically
motivated phase space criterion that distinguishes a class of models with “regular” short distance
behavior. Assuming that this criterion is fulfilled, we have established very detailed results on the
approximation of pointlike fields by bounded local observables. The field content is exhausted by
an increasing sequence of finite-dimensional spacesFg, each of which is invariant under Lorentz
transformations, Hermitian conjugation and other symmetries. Their dimensionNg=dim Fg can
be read off directly from the phase space behavior. The labelg may be interpreted as a “short
distance dimension” of the fields.

In mathematical terms, we have developed a method of classifying the short distance behavior
of a net of algebrasO°AsOd; the field space dimensionsNg are “invariants” of the net. Such a
classification should depend on local properties at small distances only. Strictly speaking, this goal
is not completely reached in our analysis: We incorporate the energy operatorH as a global
property. However,H enters the construction not as the generator of a global symmetry, but only
through the more qualitative feature of energy damping, and via its role as a generator of the
unitary group used for “smearing” the fields. One should therefore be able to replace the Hamil-
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tonian with the local symmetry generators established by Buchholz, D’Antoni, and Longo26

through the use of a “universal localizing map.” It is also worth noting that with respect to certain
phase space properties,H may be replaced27 with a suitable modular operatorD. This might point
to an extension of our results even to situations without any space–time symmetries. Since −logD
corresponds to energy-momentumtransferrather than to total energy, though, it is unclear how the
concept of polynomial bounds can be substituted.

Besides a characterization of the short distance limit, our results provide a sufficient technical
basis for a rigorous proof of the existence of operator product expansions; this will be discussed in
a forthcoming paper.17
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APPENDIX: SOME SIMPLE MODELS

The claim that our phase space condition should hold in physically relevant theories may be
supported by the fact that it is fulfilled at least in some simple situations. In this appendix, we will
therefore investigate the structures introduced in the main text in specific noninteracting models.

We will first consider a real scalar free field and argue that this theory fulfills the microscopic
phase space condition insù3 spatial dimensions. Then we discuss extensions of this result to
more generalsstill noninteractingd situations.

The real scalar free field

Most of the relevant techniques that allow us to discuss the short distance structure of free
fields are already visible in the case of a single real scalar field. For this theory, the following
theorem holds.

Theorem A.1: The theory of a real scalar free field of mass mù0 in s+1 space–time dimen-
sionsl, sù3, satisfies the microscopic phase space condition.

This result was proved in Chap. 7 of Ref. 18 for a slightly modified version of the phase space
condition. The proof carries over to our situation; however, the construction is quite involved, and
it would go beyond the scope of the current paper to reproduce the complete discussion. Instead,
we shall confine ourselves to a rough and somewhat heuristic sketch of the arguments; the reader
is referred to Ref. 18 for details.

In order to fix our notation, we shall briefly recall the definition of a real scalar free field. Our
Hilbert spaceH is the symmetric Fock space over the single particle spaceK=L2sRs,dspd s“wave
functions in momentum space”d. The scalar product onK will be denoted ask·u·l, as opposed to the
scalar products·u·d on H. On K, we have the generator of time translationsv=Îp2+m2, which
fixes the HamiltonianH on Fock space by means of “second quantization.” The spectral projectors
of v will be denoted asPvsEd, those ofH asPHsEd.

The local algebrasAsrd are then generated by Weyl operatorsWsfd=expisasfd+a*sfdd with
f = f++ i f −, where f± PK are localized functions in configuration space, in the sense that the
Fourier transforms ofv±1/2f± are real-valued and smooth and have their support within the ball
uxu, r.

In order to prove Theorem A.1, we must find a series expansion of the kind

J = o
j

s jf j . sA1d
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with linear formsf j PC`sSd* and functionalss j PS, valid for localized arguments ofs j and
energy-damped expectation values off j. We will establish this expansion in four steps.

Step 1: Single particle space. For a start, we will derive a series expansion of the single–
particle scalar product

kf±ukl = kv±1/2f±uv71/2kl, sA2d

where f± is localized with radiusr sas aboved, and k is an energy-bounded function, i.e.,k
P PvsEdK for someE. Sincev71/2k is also energy bounded, its Fourier transformFfv71/2kg is
analytic, and thus we can replace it with its Taylor series,

Ffv71/2kgsxd = o
k

1

k!

]k

]xk uFfv71/2kgux=0x
k sA3d

—the sum runs over multi-indicesk here. Inserting this expansion into Eq.sA2d, and rewriting the
spatial derivatives as integrals in momentum space, we arrive at

sA4d

The scalar products with the “improper vectors”gk
± and hk

± can be justified due to the given
localization properties off± andk. Note thatgk

± andhk
± are independent not only off± andk, but

also ofE and r. Using that the coefficientskf± uhk
±l are real, we can thus write

f± = o
k

kf±uhk
±lgk, sA5d

where the sum is to be read “under energy restriction.”
We note that regarding the short-distance or high-energy behavior of the functions introduced

above, one has

iPvsEdgk
±i , Euku+ss71d/2, ukf±uhk

±lu , r uku+ss71d/2; sA6d

in particular, there are only finitely many terms in the sumsA4d which correspond to a given
“scaling dimension.”

Step 2: Expansion of Weyl operators. In order to transfer our results in single-particle space to
the theory in Fock space, we will next aim at a series expansion of local Weyl operatorsWsfd,
where f = f++ i f − as before. We can certainly expand them as

Wsfd = e−ifi2/2eia* sfdeiasfd = e−ifi2/2 o
m±,n±PNøh0j

im
++n++2m−

m+!m−!n+!n−!
a*sf+dm+

a*sf−dm−
asf+dn+

asf−dn−
.

sA7d

If this sum is evaluated in energy-restricted states, we can insert our resultsA5d here, writing, for
example,

a*sf+d = o
k

kf+uhk
+la*sgk

+d. sA8d

However, this leaves us with additionalm++m−+n++n− summationsmulti-dindices in each sum-
mand of sA7d. In order to simplify the notation, we will reorganize this multiple sum by the
following:

sid relabeling the functionsgk
± andhk

± with natural numbersj instead of multi-indicesk,
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sii d grouping terms with equal powers ofkf+ uhj
+l and kf− uhj

−l into one, and
siii d labeling these terms with two multi-indicesm±=sm1

± , . . .d, wherem1
+ counts the power of

kf+ uh1
+l, etc. Additionally, we will combinem+ and m− into a single multi-indexm

=sm+,m−d.

This leads us to an expression

Wsfd = o
k

e−ifi2/2p
j

kf+uhj
+lm j

+
kf−uhj

−lm j
−
· fm, sA9d

wherefm are quadratic forms of the sort

fm = o im
++n++2m−

m+!m−!n+!n−!
a*sg?d ¯ asg?d ¯ . sA10d

Herea*sg?d¯asg?d¯ are certain products of annihilation and creation operators ofgj
±, with their

multiplicity given bym±. Thefm can be shown to be elements ofC`sSd* . Their detailed structure
is not relevant for our purposes—see, however, the end of this section for some examples. Re-
garding the scaling properties of the expansion terms, we find

iPHsEdfmPHsEdi , Eqsmd, p
j

kf+uhj
+lm j

+
kf−uhj

−lm j
−

, rqsmd. sA11d

The exponentqsmd results from Eq.sA6d, and its detailed form is not of much importance; the
crucial point is that for everygù0, the sethm uqsmdøgj is finite, given thatsù2.

Step 3: Linear extension. Our next step is to generalize the expansionsA9d to arbitraryA
PAsrd in place of the generatingWsfd. To that end, we need to replace the numerical factors
involving f± with an expression that is linear inWsfd; i.e., we need to find linear functionalssm

such that

smsWsfdd = e−ifi2/2p
j

kf+uhj
+lm j

+
kf−uhj

−lm j
−
. sA12d

In fact, we note that functionals of the type

ss·d = sVufasbd,fa*sb8d, · ggVd with b,b8 P K sA13d

evaluate on Weyl operators to

ssWsfdd = e−ifi2/2kbui f lki f ub8l. sA14d

For a given multi-indexm=sm+,m−d, we can construct a functionaltm in a similar way such that
for given bj, bj8PK,

tmsWsfdd = e−ifi2/2p
j

kbjui f lm j
+
ki f ubj8l

m j
−
. sA15d

This is not exactly the formsA12d we need. However, insertingf = f++ i f −, we may build certain
linear combinations of thetm in order to form thesm we require; this combinatorial problem can
be solved by means of a generating function technique, which we shall not present in detail here.

After establishing the functionalssm, we can rewritesA9d as

J = o
m

smfm, sA16d

where, at this time, the series is meaningful on a sufficiently restricted domain.
Step 4: Convergence. In order to establish the phase space condition, our objective is to show

that the series expansion ofJ in Eq. sA16d holds with respect to the pseudometricd̂ defined in Eq.
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s2.8d. Loosely speaking, we have dealt with the algebraic aspects of this expansion up to now,
while we still must handle the topological problems, i.e., establish convergence. Roughly, this
includes the following tasks.

First, we need to establish precise estimates for the norms offm and sm, depending on the
energy and configuration space localizationE and r. This involves all parts of the calculation in
steps 1–3 above. The goal is to establish an estimate of the form

ismdAsrdei · iPHsEdfmPHsEdi ø cmsErdqsmd, sA17d

where the constantscm do not increase too fast when varyingm.
Second, we need to sum the terms in Eq.sA17d in order to establish norm convergence of the

seriessA16d at fixedE andr. Unfortunately, it turns out that the estimates which we can establish
in Eq. sA17d are not strict enough: We encounter convergence problems at “high particle num-
bers,” i.e., at high values ofumu. This problem is solved by handling the terms for highumu
according to a different expansion with better convergence properties, using the techniques devel-
oped by Buchholz and Porrmann.9 Their methods, however, result in expansion terms that are
explicitly dependent ofE and r, so that they are useful for discussing the convergence issues in
question, but cannot be used in our main expansion. In this part of the construction, the condition
sù3 is needed.

Third, once that the series is established at fixedE andr, we need to apply the results to the
pseudometricsdg, which means in particular to pass from the sharp energy bounds to the polyno-
mial bounds used in the main text, and to consider the limitr →0. As a result of this calculation,
we can show that for eachgù0,

dgSJ − o
qsmdøg

smfmD = 0. sA18d

This relation finally proves Theorem A.1.
It is instructive to see how the approximation termssmfm are formed explicitly. When work-

ing out the details of the construction, one easily sees that the first term of the expansion, corre-
sponding tom=s0,0,0, . . .d, leads tofm=1 and sm=sVu ·uVd. In the next termfwith the next
lowest value ofqsmdg the form fm is the usual scalar fieldfs0d. Higher-order terms involve
derivatives of the field and Wick products. Fors=3, the beginning of the expansion reads

sA19d

Hereh=hk=0 is the function introduced insA4d, the operatorx̂j stands forv1/2F−1xjFv−1/2, with F
being the operator of Fourier transformation, andsQ denotes the following functional:
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sQs·d =
1

4Î2
ssh ^ hu · uVd + sVu · uh ^ hdd +

1

4
shu · uhd −

ihi2

4
sVu · uVd. sA20d

We haveN0=1, N1=2, N2=7, andN3=21 fthe latter not being shown in Eq.sA19dg. The corre-
sponding spacesFg have the following form:

F0 = spanh1j,

F1 = spanh1,fj,

F2 = spanh1,f,] jf,]0f,:f2:j,

F3 = spanh1, f, ] jf, ]0f, :f2:, ] j
2f, ] j]kf, ]0] jf, :f] jf:, :f]0f:, :f3:j, sA21d

wherej ,k=1. . .3 ,j .k, and the argument of the field has been omitted. Note that the second-order
time derivative]0

2f lies in F3, but is a linear combination of the basis elements listed above—this
reflects the field equation of the model.

More applications

The methods we have sketched above are not restricted to the simple case of a real scalar field.
Similar results can be derived in a large class of free theories, including

sid charged fields and fields of higher spin,
sii d theories with more than one fieldsbut finitely manyd, massive or massless, insù3 dimen-

sions,
siii d massive theories ins=2,

where on the technical side, only the single particle space expansions must be adapted appropri-
ately.

It has not yet been possible to establish the criterion in thes2+1d-dimensional massless case.
This results from the model’s peculiar infrared structure that causes certain nuclearity conditions
to be violatedscf. Ref. 9d, leading to convergence problems at high particle numbers. Also, there
is no result for thes1+1d-dimensional casesirrespective ofmd; here the Wick powers :fn: have the
same energy dimension as the field itself, thus one would not expect finite-dimensional field
spacesFg to exist.

The criterion is explicitly violated in theories with infinitely many free fieldsssee Sec. 8.1 of
Ref. 18d. In this case, we findNg=` for all gù1.

In conclusion, we briefly sketch a model discussed by Lutz,19 which is interesting in this
context since its field content is trivial. We proceed from a free massless theory inss+1d+1
space–time dimensions, with the local algebras generated by Weyl operatorsWsfd as before, but
with test functionsf of the type

fspd = sps+1d2nsrdf0spd, sA22d

wherensrd is an integer function tending to infinity asr →0, andxs+1 is the “additional” spatial
coordinate. When restricting the net tos+1 space–time dimensions, we can apply the above
arguments to show that the theory fulfills the microscopic phase space condition. Indeed, we see
from sA4d that every fixed expansion termhk in the single particle space simply drops out ifnsrd
is sufficiently large, i.e., ifr is sufficiently small. This leads to the result

dgsJ − sVu · uVd1d = 0 ∀ g ù 0, sA23d

which impliesFg=C1 for all g.
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The parity operator for a parity-symmetric quantum field theory transforms as an
infinite sum of irreducible representations of the homogeneous Lorentz group.
These representations are connected with Wilson polynomials. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1870733g

I. INTRODUCTION

The objective of this paper is to determine the Lorentz transformation properties of the parity
operatorP. The operatorP for a quantum field theory has the effect

Pwsx,tdP = ws− x,td sscalar fieldd,

Pwsx,tdP = − ws− x,td spseudoscalar fieldd.

For purposes of comparison, we can also define anintrinsic parity operatorPI. This operator
has the same effect asP except that it does not reverse the sign of the spatial argument of the
quantum field,1

PIwsx,tdPI = wsx,td sscalar fieldd,

PIwsx,tdPI = − wsx,td spseudoscalar fieldd.

To determine the Lorentz transformation properties of any operator in a quantum field theory
one must calculate the commutator of this operator with the generators of the Lorentz groupJmn.
If this operator, like the parity operatorP, does not depend on the space–time coordinatessx ,td
and it commutes withJmn, then it is a scalar under Lorentz transformations.

In this paper we will assume that the HamiltonianH of our quantum field theory has parity
symmetry; that is,fP ,Hg=0. An example of such a theory is the free scalar quantum field theory
whose Hamiltonian is

H =E dxh 1
2p2sx,td + 1

2f¹wsx,tdg2 + 1
2m2w2sx,tdj .

For such a theory it is easy to see that the intrinsic parity operator is not only a rotational scalar but
also a Lorentz scalar because it commutes with all six generators of the homogeneous Lorentz
group,

fPI,J
mng = 0.

Like the intrinsic parity operatorPI, the conventional parity operatorP is a rotational scalar
because it commutes with the three generators of spatial rotations,

fP,Jijg = 0.

However, in contrast withPI, P doesnot commute with the Lorentz-boost generators. Either by
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direct calculation or by using the fact thatJ0i is a vectorslike the electric field vectord under spatial
reflection, we can show that

fP,J0ig = − 2J0iP. s1d

Therefore, the parity operatorP is not a Lorentz scalar. Furthermore, as we will see,P is not the
spin-0 component of a vector, a tensor, or indeed any finite-dimensional representation of the
Lorentz group.

This observation raises a fundamental question: How doesP transform under the Lorentz
group? In this paper we provide a partial answer to this question. We argue thatP transforms as
an infinite direct sum of finite-dimensional tensorial representations of the Lorentz group.

This paper is organized as follows: In Sec. II we review the general theory of the irreducible
representations of the Lorentz group. Then in Sec. III we show thatP transforms as a direct sum
of irreducible representations of the Lorentz group, and that to identify each of these irreducible
representations one must solve a difference-equation eigenvalue problem. In Secs. IV and V we
perform an analysis of special cases of this difference equation and show that the eigenfunctions
are closely associated with the Wilson polynomials. Finally, in Sec. VI we make some concluding
remarks about the structure of the solutions to the general difference-equation eigenvalue problem
that is derived in Sec. III. The properties of the Wilson polynomials are summarized in the
Appendixes.

II. IRREDUCIBLE REPRESENTATIONS OF THE LORENTZ GROUP

In this section we review briefly the classification of irreducible representations of the Lorentz
group. Following the exposition of the irreducible representations of the Lorentz group by
Gel’fand, Minlos, and Shapiro,2 Bender and Griffiths,3 and Griffiths,4 we note that all irreducible
representations of the Lorentz group are characterized and labeled by a pair of numberss,0,,1d.
The first number,,0, is a non-negative integer and the second number,,1, is in general complex.
Any irreducible representation of the Lorentz group is a direct sum of irreducible representations
of the rotation subgroup SOs3d and,0 is the lowest-spin of the representations contained in this
sum.

If ,1−,0=0 or noninteger, then the representation belongs to thenonsingular classof infinite-
dimensional representations. Such a representation contains an infinite tower of spins beginning
with ,0; the spins, in this representation are,=,0,,0+1,,0+2, . . .. Each spin in this sequence
occurs once and only once.

If ,1−,0 is a nonzero integer, then the representation belongs to thesingular class. For this
case if u,1u.,0, the representation is finite dimensional; it contains all spins, with ,0ø,ø u,1u
−1 and each spin occurs exactly once. Ifu,1u,,0, the representation is infinite dimensional; it
contains all spins,,, ,0ø,,` and again each spin occurs exactly once.

Since the Lorentz group is noncompact, it also has indecomposable representations. However,
this situation does not arise in this paper.

To describe the Lorentz transformation properties of a space–time-dependent quantity, such as
a quantum field, we must specify all of the spin components of the fieldsQ,0

,Q,0+1,Q,0+2, . . .d.
Let us suppose first that this field transforms irreducibly under the Lorentz group and let us also
suppose that the lowest-spin component has spin 0. Then, an infinitesimal Lorentz transformation
of the spin-0 componentQ0sx ,td has an orbital and a spin part. Specifically,

− ifQ0,J
0ig = t]iQ0 − xi]0Q0 + Q1

i , s2d

whereQ1
i is the spin-1 component of the irreducible representation. Under an infinitesimal Lorentz

transformation, this spin-1 component then transforms like

− ifQ1
j ,J0ig = t]iQ1

j − xi]0Q1
j + Q2

i j + ad i jQ0, s3d

whereQ2
i j is the spin-2 component of the representation. Note thatQ2

i j is apurespin-2 object and
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is therefore symmetric and traceless,Q2
ii =0. sRepeated indices indicate summation.d The number

a in s3d is directly related to the parameter,1 for the irreducible representation by the formula3

a = 1
3s,1

2 − 1d. s4d

This process of evaluating commutators can be used iteratively to calculate all of the spin com-
ponents of the irreducible representation.

Now suppose thatQ0 is the spin-0 component of a representation of the Lorentz group, but
that this representation is not irreducible. This means that there may be more than one component
of each spin. Thus, under an infinitesimal transformation we have

− ifQ0,J
0ig = t]iQ0 − xi]0Q0 + N1

i sQ0d, s5d

whereN1
i is one of the spin-1 components of the representation. An infinitesimal Lorentz trans-

formation of this spin-1 component produces a spin-2 componentN2
i jsQ0d, for which N2

iisQ0d=0,
and a new spin-0 componentN0sQ0d,

− ifN1
j sQ0d,J0ig = t]iN1

j sQ0d − xi]0N1
j sQ0d + N2

i jsQ0d + d i jN0sQ0d. s6d

Since this representation is not irreducible,N0sQ0d is not a multiple ofQ0.
This process of calculating commutators can again be used to generate all of the spin com-

ponents of the representation. For example, commutingN2
i jsQ0d with the Lorentz boost will define

a spin-3 componentN3
i jksQ0d. However, the procedure is significantly more complicated than that

for an irreducible representation because there may be many components for each spin. Indeed, it
may be that there are an infinite number of spin-0 components,Q0, N0sQ0d, N08sQ0d, and so on, and
we will see that this is the case with the parity operatorP.

III. INFINITESIMAL LORENTZ TRANSFORMATION OF THE P OPERATOR

Like the generators of space–time translationsPm, the parity operatorP is a global symmetry
operator and is not an explicit function of the space–time coordinatesxm; that is,]mP=0. As a
consequence, the orbital terms ins5d vanish and we getfsees1dg

N1
i sPd ; − ifP,J0ig = 2iJ0iP. s7d

This identifies the spin-1 term that arises after commuting with the generator of a Lorentz boost.
A second commutation with the Lorentz boost gives a spin-2 component and a new spin-0

component,

− ifN1
j sPd,J0ig = N2

i jsPd + d i jN0sPd, s8d

where the new spin-0 component is

N0sPd = − 4
3J0iJ0iP. s9d

SinceN0sPd is not a constant multiple ofP, we conclude immediately thatP does not belong to
an irreducible representation of the Lorentz group.

To analyze the Lorentz transformation properties of the parity operator it is convenient to
introduce the following notation. First, we define two 3-vectors:

Ki ; J0i ,

s10d
Li ; 1

2ei jkJjk.

These operator quantities satisfy the following commutation relations:

fLi,Ljg = iei jkLk,
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fKi,Ljg = iei jkKk, s11d

fKi,Kjg = − iei jkLk.

Next, we define three operator products,

W; KiKi ,

A ; LiLi , s12d

m; KiLi = LiKi .

These three operators are mutually commuting,

fW,Ag = fA,mg = fm,Wg = 0. s13d

The W, A, andm operators have the following commutation relations with the generators of the
Lorentz group:

fW,Kig = fA,Kig = − 2iei jkLjKk − 2Ki ,

s14d
fW,Lig = fA,Lig = fm,Kig = fm,Lig = 0.

Next, we define the operatorB,

B ; A − W. s15d

Observe that froms14d the operatorB commutes with the generators of the Lorentz group,

fB,Kig = fB,Lig = 0. s16d

SinceB commutes withLi, it is a rotational scalar, and since it also commutes withKi, it is either
a Lorentz scalar or a Lorentz pseudoscalar. However,B also commutes with the parity operatorP,

fB,Pg = 0. s17d

Thus,B transforms as a Lorentz scalar. The operatorm also commutes with the generators of the
Lorentz group butm is a pseudoscalar because

PmP = − m. s18d

Finally, we define the scalar operatorM by

M ; m2. s19d

The four operatorsB, M, W, and parityP are a mutually commuting set

fB,Mg = fB,Wg = fM,Wg = fB,Pg = fM,Pg = fW,Pg = 0. s20d

We know that the parity operator does not transform irreducibly under the Lorentz group. We
will assume that it transforms as a direct sum of operators thatdo transform irreducibly. From the
commutation properties of the operators defined above we know that the most general form of the
spin-0 component of any operator that could be produced by repeated commutation ofP with the
generators of the Lorentz group has the formfsB,M ,WdP, wherefsB,M ,Wd is an as yet unknown
function of the operatorsB, M, andW. Let us assume that the functionfsB,M ,Wd has a general
power series representation of the form
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fsB,M,Wd = o
l,m,n

almnB
lMmWn. s21d

Using these series as a startingansatz, we use mathematical induction to calculate the double
commutator offsB,M ,WdP with the generators of the Lorentz group, and obtain the new spin-0
component,

N0ffsB,M,WdPg = −
2

3
SW+

M

B + W
D fsB,M,WdP −

1

3Î1 + 4B + 4W

3 HF2B + 4W+ SW−
M

B + W
DsÎ1 + 4B + 4W− 1dG

3 fsB,M,W+ 1 +Î1 + 4B + 4Wd

+ F− 2B − 4W+ SW−
M

B + W
DsÎ1 + 4B + 4W+ 1dG

3 fsB,M,W+ 1 −Î1 + 4B + 4WdJP. s22d

Let us now suppose thatfsB,M ,WdP transforms as the irreducibles0,,1d representation of Lor-
entz group. Then, froms4d we have5

N0ffsB,M,WdPg = 1
3s,1

2 − 1dfsB,M,WdP. s23d

Combinings22d and s23d, we conclude thatfsB,M ,Wd satisfies the functional relation

2SW+
M

B + W
D fsB,M,Wd +

1
Î1 + 4B + 4W

3 HF2B + 4W+ SW−
M

B + W
DsÎ1 + 4B + 4W− 1dG fsB,M,W+ 1 +Î1 + 4B + 4Wd

+ F− 2B − 4W+ SW−
M

B + W
DsÎ1 + 4B + 4W+ 1dG fsB,M,W+ 1 −Î1 + 4B + 4WdJ

= s1 − ,1
2dfsB,M,Wd. s24d

This functional equation is adifference-equation eigenvalue problemin which the eigenvalue
s1−,1

2d determines the representation of the Lorentz group under which the operatorfsB,M ,WdP
transforms. We do not yet know how to find the general analytical solution to this equation.
However, in the next two sections we show how to solve analytically this master equation for two
important special cases.

IV. SPECIAL CASE I: B =0 AND M=0

In this section we solve a special case of the difference-equation eigenvalue problems24d.
This special case serves as a useful toy model that will teach us how to approach the difficult
equations24d. Let us setB=0 andM =0. Then,s24d simplifies to

2WfsWd +
s3 +Î1 + 4WdW

Î1 + 4W
fsW+ 1 +Î1 + 4Wd −

s3 −Î1 + 4WdW
Î1 + 4W

fsW+ 1 −Î1 + 4Wd

= s1 − ,1
2dfsWd. s25d

To solve this equation we make the change of independent variable
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z= ÎW+ 1
4 . s26d

In terms of this new variablefsWd= fsz2− 1
4

d. Next, we introduce the dependent variablegszd by

gszd = e−ipz
fsz2 − 1

4d
z2 − 1

4

. s27d

The functional equation satisfied bygszd is

s2z+ 1ds2z+ 3d2gsz+ 1d − 4zs2z− 1ds2z+ 1dgszd + s2z− 1ds2z− 3d2gsz− 1d = 8zs,1
2 − 1dgszd.

s28d

In order to determine the eigenvaluess,1
2−1d we must impose an eigenvalue condition, to wit,

we will assume thatfsWd is an entire function of W. This condition is difficult to justify at a
physical level but it is a natural mathematical choice because it eliminates the possibility that the
irreducible representation of the Lorentz group ins23d could be a nonsmooth function of the
physical parametersB, M, andW. The condition that we use here leads us to make a polynomial
truncation in the same way that the eigenfunctions of the quantum harmonic oscillator truncate
into Hermite polynomials.sA similar eigenvalue condition based on the entirety of a solution to a
difference equation may be found in Ref. 6.d

Imposing this constraint gives an infinite sequence of allowed values for,1,

,1snd = 2n + 1 sn = 0,1,2,3, . . .d. s29d

Note that the eigenvalues involve the square of,1 but we may assume that,1 is positive.7 The
irreducible representations of the Lorentz group corresponding to these values of,1snd are trace-
less, totally symmetric tensors of rank 2n: T, Tmn, Tmnls, and so on. Thus, we see that the parity
operator transforms as a direct sum of the spin-0 components of these tensorsfsees47dg.

The eigenfunctions corresponding to the above eigenvalues are all polynomials inz2 except
for the eigenfunction corresponding to the lowest eigenvalue for which the eigenfunction is a
rational function,

g0szd =
1

z2 − 1
4

,

g1szd = 1,

g2szd = z2 + 3
4 ,

s30d
g3szd = z4 + 7

2z2 + 117
80 ,

g4szd = z6 + 37
4 z4 + 1957

112 z2 + 2385
448 ,

g5szd = z8 + 19z6 + 747
8 z4 + 2011

16 z2 + 55575
1792 ,

and so on. We have normalized the eigenfunctions so that each of the polynomials ismonic; that
is, the coefficient of the highest power ofz2 is unity.

The polynomial eigenfunctions ins30d are Wilson polynomialsWnsx2;a,b,c,dd, where the
parameters are given bya=b=1/2 andc=d=3/2 ssee Appendix Ad,
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gnszd =
sn + 1d!
s2nd!

Wn−1S− z2;
1

2
,
1

2
,
3

2
,
3

2
D . s31d

These polynomials can be expressed as generalized hypergeometric functions,

gnszd =
sn − 1d!sn!d2sn + 1d!

s2nd! 4F3S1 − n,n + 2,
1

2
− z,

1

2
+ z;1,2,2;1D . s32d

From the solutionsg0szd in s30d andgnszd in s32d we can construct the eigenfunction solutions
to s25d,

fnsWd =5
eipÎW+1/4 sn = 0d,

eipÎW+1/4sn − 1d!sn!d2sn + 1d!
s2nd!

W

34F3S1 − n,n + 2,
1

2
−ÎW+

1

4
,
1

2
+ÎW+

1

4
;1,2,2;1D sn . 0d.

6 s33d

Here are the first six solutions,

f0sWd = eipÎW+1/4,

f1sWd = eipÎW+1/4W,

f2sWd = eipÎW+1/4WsW+ 1d,

s34d
f3sWd = eipÎW+1/4WsW2 + 4W+ 12

5 d ,

f4sWd = eipÎW+1/4WsW3 + 10W2 + 156
7 W+ 72

7 d ,

f5sWd = eipÎW+1/4WsW4 + 20W3 + 108W2 + 176W+ 480
7 d .

The difference equations28d is second order and linear, and this means that for each eigen-
value there are two linearly independent solutions. It is straightforward to use the method of
reduction of orderswhich is ordinarily used for linear differential equationsd to calculate the
second solution. We seek a second solution of the general form

hnszd = gnszdunszd, s35d

whereunszd is an unknown function to be determined. The functionunszd is easy to find because
it satisfies a first-order difference equation,

unsz+ 1d − unszd
unszd − unsz− 1d

=
s2z− 1ds2z− 3d2gnsz− 1d
s2z+ 1ds2z+ 3d2gnsz+ 1d

. s36d

From this equation we find that apart from a multiplicative constant, we have

unszd − unsz− 1d =
1

s2z− 3d2s2z− 1d3s2z+ 1d2gnsz− 1dgnszd
. s37d

Summing both sides of this equation, we getunszd sapart from an additive constantd,
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unszd = o
x=z0

z
1

s2x − 3d2s2x − 1d3s2x + 1d2gnsx − 1dgnsxd
, s38d

wherez0 is arbitrary.
This sum can be evaluated analytically for the casen=0 and we obtain

h0szd =
1

sz2 − 1
4d2 . s39d

Whenn.0 we must leave the second solution in the form of a sum,

hnszd = gnszd o
x=z0

z
1

s2x − 3d2s2x − 1d3s2x + 1d2gnsx − 1dgnsxd
. s40d

The general solution tos28d is a linear combination ofgnszd andhnszd. However, as a quantization
condition, if we demand that the solution tos25d be entire, then the coefficient ofhnszd must
vanish.

Our objective now is to reconstruct the parity operator as a direct sum over the irreducible
representations constructed by multiplyingfnsWd in s33d by the parity operatorP,

P = o
n=0

`

cnfnsWdP, s41d

wherehcnj are coefficients that must be determined from the equation

1 = o
n=0

`

cnfnsWd = eipzFc0 + Sz2 −
1

4
Do

n=1

`

cngnszdG , s42d

which is obtained froms41d by multiplying by P.
Equations42d must hold for every value ofz. Thus, if we letz= 1

2, we obtain

c0 = − i . s43d

For nù1, the coefficientscn satisfy

e−ipz + i

z2 − 1
4

= o
n=1

`

cngnszd = o
n=0

`

s− 1dncn+1Pns− z2d, s44d

wherePnsx2d is defined insA1d. We solve this formal functional equation by continuing it ana-
lytically into the complexz-plane and then making the change of variablex= iz. Equations44d
then becomes

−
4se−xp + id

1 + 4x2 = o
n=0

`

s− 1dncn+1Pnsx2d. s45d

We then multiply both sides of this equation by1
4p2xs1+4x2d2 sinhsxpdPmsx2d /cosh3sxpd and

integrate overx from 0 to`. Using the orthogonality property of the Wilson polynomials insA2d,
we obtain the following quadrature formula forcn for nù1:

cn = p2 s− 1dnfs2nd!g2s2n + 1d!
fsn − 1d!g2sn!d4fsn + 1d!g4E

0

`

dx xs1 + 4x2d
se−xp + idsinhsxpd

cosh3sxpd
Pn−1sx2d. s46d

Note that this analytic continuation is an extremely delicate process because the series ins41d
has only a formal existence. Indeed, while the Wilson polynomialssA1d are complete and orthogo-
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nal, the polynomials obtained by replacingx2 by −z2 fsees44dg are not orthogonal with a positive
weight function and not complete in the usual sense. Thus, the analytic continuation above is a
procedure that converts a purely formal series identity into a series that actually converges with
coefficients that can be determined.

If we substitute the expression forcn snù1d in s46d and also the value ofc0 in s43d into s41d,
then s41d becomes an identity. This implies that we have decomposed the representation under
which P transforms into a direct sum of finite-dimensional irreducible representations

s0,1d % s0,3d % s0,5d % s0,7d % ¯ . s47d

That is, we have shown thatP transforms as a scalar plus the spin-0 component of a two-index
symmetric traceless tensor plus the spin-0 component of a four-index symmetric traceless tensor
plus the spin-0 component of a six-index symmetric traceless tensor, and so on. This is the central
result of our analysis.

We conclude this section with the remark that the first term in the direct sum above is a scalar;
that is, the termf0sWdP transforms like a Lorentz scalar. Thus,P transforms like the elementary
structuree−ipÎW+1/4.

V. SPECIAL CASE II: M=0

In this section we solve an eigenvalue equation that is much more general than that solved in
Sec. IV. We consider here the caseM =0 but we allowB and W to be arbitrary. Now,s24d
simplifies to

2WfsB,Wd +
1

Î1 + 4B + 4W
fs2B + 3W+ WÎ1 + 4B + 4WdfsB,W+ 1 +Î1 + 4B + 4Wd

− s2B + 3W− WÎ1 + 4B + 4WdfsB,W+ 1 −Î1 + 4B + 4Wdg = s1 − ,1
2dfsB,Wd. s48d

To analyze this equation we generalize the substitution that we made ins26d and make the
change of independent variable

z= ÎW+ B + 1
4 . s49d

In terms of this new variable we havefsB,Wd= fsB,z2−B− 1
4

d. Next, we introduce the new de-
pendent variable by the substitution

gsB,zd = e−ipzfsB,z2 − B − 1
4d , s50d

which is a generalization ofs27d. We obtain the following functional equation satisfied bygsB,zd:

2Sz2 − B −
1

4
DgsB,zd −

1

2z
F3z2 − B −

3

4
+ 2zSz2 − B −

1

4
DGgsB,z+ 1d

+
1

2z
F3z2 − B −

3

4
− 2zSz2 − B −

1

4
DGgsB,z− 1d = s1 − ,1

2dgsB,zd. s51d

The solutions to this difference equation are Wilson polynomialsWnsx2;a,b,c,dd with pa-
rametersa=b= 1

2, c= 1
2 −ÎB+1, d= 1

2 +ÎB+1 ssee Appendix Bd. Thus,
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gnsB,zd =
n!

s2nd!
WnS− z2;

1

2
,
1

2
,
1

2
− ÎB + 1,

1

2
+ ÎB + 1D

=
sn!d2Gsn + 1 −ÎB + 1dGsn + 1 +ÎB + 1d

s2nd!Gs1 −ÎB + 1dGs1 +ÎB + 1d

3 4F3S− n,n + 1,
1

2
− z,

1

2
+ z;1,1 −ÎB + 1,1 +ÎB + 1;1D . s52d

The first four of these polynomials are

g0sB,zd = 1,

g1sB,zd = z2 − 1
2B − 1

4 ,

s53d
g2sB,zd = z4 − sB − 1

2dz2 + 1
6B2 − 1

4B − 3
16,

g3sB,zd = z6 − s 3
2B − 13

4 dz4 + s 3
5B2 − 57

20B + 47
80dz2 − 1

20B
3 + 2

5B2 − 63
160B − 117

320.

Correspondingly, the solutions ofs48d are

fnsB,Wd = eipÎW+B+1/4sn!d2Gsn + 1 −ÎB + 1dGsn + 1 +ÎB + 1d

s2nd!Gs1 −ÎB + 1dGs1 +ÎB + 1d 4F3S− n,n + 1,
1

2
−ÎW+ B +

1

4
,
1

2

+ÎW+ B +
1

4
;1,1 −ÎB + 1,1 +ÎB + 1;1D s54d

and the first four of these solutions are

f0sB,Wd = eipÎB+W+1/4,

f1sB,Wd = eipÎB+W+1/4s 1
2B + Wd ,

s55d
f2sB,Wd = eipÎB+W+1/4f 1

6B2 + BsW+ 1
2d + WsW+ 1dg ,

f3sB,Wd = eipÎB+W+1/4f 1
20B

3 + B2s 3
5W+ 19

20d + Bs 3
2W2 + 22

5 W+ 6
5d + WsW2 + 4W+ 12

5 dg .

It is interesting that while we are now treatingB as an arbitrary parameter, the eigenvalues are
independent ofB and thus are the same as in the case considered in Sec. IVfsees29dg. Note that
in the limit B→0 the eigenfunctions ins55d smoothly reduce to the simpler simpler eigenfunctions
in s34d.

To find the Lorentz transformation properties of the parity operator we need to reconstruct the
parity operator in terms of these solutionsfnsB,Wd,

P = o
n=0

`

cnfnsB,WdP. s56d

This requires that we find the coefficientscn in the identity

1 = o
n=0

`

cnfnsB,Wd = eipzo
n=0

`

cngnsB,zd. s57d

To analyze this identity we multiply it bye−ipz and obtain
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e−ipz = o
n=0

`

cngnsB,zd. s58d

Next, we continue analytically this formal functional equation to the complexz-plane and letx
= iz. Equations58d now becomes

e−xp = o
n=0

`

s− 1dncnPnsx2d, s59d

wherePnsx2d is defined insB1d. Next, we multiply both sides ofs59d by

4p2s2nd!s2n + 1d!x tanhsxpd
sn!d4G2sn + 1 −ÎB + 1dG2sn + 1 +ÎB + 1dfcoss2pÎB + 1d + coshs2xpdg

Pmsx2d

and then integrate overx from 0 to`. Using the orthogonality property of Wilson polynomials in
sB2d, we get the formula forcn,

cn =
4s− 1dnp2s2nd!s2n + 1d!

sn!d4G2sn + 1 −ÎB + 1dG2sn + 1 +ÎB + 1d
E

0

`

dx
xe−xp tanhsxpd

coss2pÎB + 1d + coshs2xpd
Pnsx2d.

s60d

We conclude that we have decomposed the representation under whichP transforms into a
direct sum of finite-dimensional irreducible representations. Even though the operatorB is taken to
be nonzero, the eigenvalues in the difference-equation eigenvalue problems48d remain un-
changed. Thus, the conclusion of Sec. IV that the parity operatorP transforms as the direct sum
of the spin-0 components of the finite-dimensional tensor representationss0,1d % s0,3d % s0,5d
% s0,7d %¯ remains unchanged.

Finally, as we observed at the end of Sec. IV, we point out that the first irreducible represen-
tation f0sB,WdP in the direct sums56d is a scalar. Thus, we may conclude that under a Lorentz
transformation the parity operatorP transforms as the operatore−ipÎB+W+1/4.

VI. FINAL REMARKS

The general case fors24d is obtained when all three parameters,B, M, andW, are nonzero. For
this case we cannot solves24d in terms of polynomials but we conjecture that the eigenvalues in
s29d remain unchanged.8 Assuming that this is indeed the case, we may conclude that the Lorentz
transformation properties of the parity operator are unchanged from what we found in Secs. IV
and V; namely, the parity operator transforms like the direct sum of irreducible representations in
s47d.
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APPENDIX A: PROPERTIES OF WILSON POLYNOMIALS

In this appendix, we list the properties of the Wilson polynomialsWnsx2;a,b,c,dd with
parametersa=b= 1

2, c=d= 3
2.9–11 For simplicity, we define the associatedmonicWilson polynomi-

als

Pnsx2d ;
s− 1dnsn + 2d!

s2n + 2d!
WnSx2;

1

2
,
1

2
,
3

2
,
3

2
D . sA1d
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sThe coefficient of the highest power in aMonic polynomial is unity.d These polynomials are used
in Sec. IV.

The orthogonality condition is11

p2

4
E

0

`

dx xs1 + 4x2d2 sinhsxpd
cosh3sxpd

Pnsx2dPmsx2d =
sn!d2fsn + 1d!g4fsn + 2d!g4

fs2n + 2d!g2s2n + 3d!
dnm. sA2d

The polynomialsPnsx2d satisfy a three-term recurrence relation,

Pnsx2d = Fx2 −
1

2
nsn + 1dGPn−1sx2d +

sn − 1d2n2sn + 1d2

4s2n − 1ds2n + 1d
Pn−2sx2d, sA3d

where the first two polynomials areP0sx2d=1 andP1sx2d=x2− 3
4.

Some generating functions for these polynomials are

o
n=0

`
2s2n + 2d!Pnsx2dtn

sn!d2fsn + 2d!g2 = 2F1S1

2
+ ix,

1

2
+ ix;1;− tD 2F1S3

2
− ix,

3

2
− ix;1;− tD ,

o
n=0

`
s2n + 2d!Pnsx2dtn

n!fsn + 1d!g2sn + 2d!
= 2F1S1

2
+ ix,

3

2
+ ix;2;− tD 2F1S1

2
− ix,

3

2
− ix;2;− tD , sA4d

o
n=0

`
s2n + 2d!Pnsx2dtn

sn!d2fsn + 1d!g2 =
1

s1 + td34F3F3

2
,2,

1

2
+ ix,

1

2
− ix;1,2,2;

4t

s1 + td2G .

APPENDIX B: FURTHER PROPERTIES OF WILSON POLYNOMIALS

In this appendix, we list the properties of the Wilson polynomialsWnsx2;a,b,c,dd with
parametersa=b= 1

2, c= 1
2 −ÎB+1, d= 1

2 +ÎB+1.9–11 We define the associated monic polynomials,

Pnsx2d ;
s− 1dnn!

s2nd!
WnSx2;

1

2
,
1

2
,
1

2
− ÎB + 1,

1

2
+ ÎB + 1D . sB1d

These polynomials are used in Sec. V.
Orthogonality,11

4p2E
0

`

dx x
tanhsxpd

coss2pÎB + 1d + coshs2xpd
Pnsx2dPmsx2d

=
sn!d4G2sn + 1 −ÎB + 1dG2sn + 1 +ÎB + 1d

s2nd!s2n + 1d!
dnm. sB2d

Recurrence relation,

Pnsx2d = Fx2 −
B

2
−

1

4
+

nsn + 1d
2

GPn−1sx2d +
n2fB − sn − 1dsn + 1dg2

4s2n − 1ds2n + 1d
Pn−2sx2d, sB3d

with P0sx2d=1 andP1sx2d=x2+ 1
2B+ 1

4.
Generating functions,
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o
n=0

`
s2nd!Pnsx2dtn

sn!d4 = 2F1S1

2
+ ix,

1

2
+ ix;1;− tD 2F1S1

2
− ÎB + 1 − ix,

1

2
+ ÎB + 1 − ix;1;− tD

sB4d

and

o
n=0

`
s2nd!Pnsx2dtn

sn!d2Gsn + 1 −ÎB + 1dGsn + 1 +ÎB + 1d

=
sinspÎB + 1d

pÎB + 1
2F1S1

2
+ ix,

1

2
− ÎB + 1 + ix;1 −ÎB + 1;− tD

3 2F1S1

2
− ix,

1

2
+ ÎB + 1 − ix;1 +ÎB + 1;− tD

=
sinspÎB + 1d

ps1 + tdÎB + 1
4F3S1

2
,1,

1

2
+ ix,

1

2
− ix;1,1 −ÎB + 1,1 +ÎB + 1;

4t

s1 + td2D . sB5d

1Note that bothP andPI are reflection operators in the sense that their squares are the unity operator,P2=PI
2=1.
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of the irreducibles0,,1d representation.
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1999d, pp. 231–233.

7For the irreducible representations of the Lorentz group if the parameter,0=0, thens0,,1d ands0,−,1d label exactly the
same representation. Thus, we may assume without loss of generality that,1 is a positive number. See Ref. 2.

8Verifying this claim is difficult and requires heavy numerical analysis. We believe that the situation is similar to that for
the eigenfunctions for the quantum harmonic and anharmonic oscillators. In the former case, after the Gaussian is divided
off, the eigenfunctions satisfy the boundary conditions in a simple way; namely, by truncating in the form of Hermite
polynomials. In the latter case, after the Gaussian is removed, the eigenfunctions do not truncate, but they still satisfy the
boundary conditions as one can verify numerically.
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Cauchy problems of the gauged sigma model
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We study the gauged sigma model. InR1+1 the existence of the global smooth
solution will be proved. Furthermore we show that the global weak solutions exist
in Rn+1 sn=2,3d. © 2005 American Institute of Physics.
fDOI: 10.1063/1.1869536g

I. INTRODUCTION

The O s3d sigma model is a popular one in theoretical physics. From the point of view of a
particle physicist, however, the model has one important drawback, it is scale invariant and as a
result its soliton solutions have arbitrary size, making them unsuitable as models for particles. In
Ref. 13, the new possibility of breaking the scale invariance of the sigma model was proposed by
introducing a Us1d gauge field whose dynamics is governed by Maxwell terms. Adding also a
suitable potential one obtains a field theory of Bogomol’nyi type with topological solitons. Some
analysis of the self-dual equations can be found in Refs. 3 and 21.

We will study time-dependent problems. In the usual sigma modelscalled wave mapd, evo-
lution problems have been studied extensivelyssee Refs. 16 and 18d. Let us review briefly the
results for global existence in time. Wave map ins1+1d dimension extends smoothly all the
time.6,15 In s3+1d dimension, development of singularities from smooth initial data was showed in
Ref. 15 by using the self-similar structure of the sigma model. Also Shatah proved that there exists
global weak solution to wave map which has aSn target manifold. Space two-dimensional case is
critical. Recently Tatatu19 and Tao20 proved global regularity of wave maps ins2+1d-dimension
under the assumption of small Besov norm, respectively, small energy. Also we refer to the
subsequent works by Klainerman-Rodnianski,9 Nahmod–Stefanov–Uhlenbeck,12 Shatah-Struwe,17

as well as Krieger.10

We shall pursue the similar results for the gauged sigma model. In Sec. II the equations and
basic facts will be presented. In Sec. III the global existence of a smooth solution ins1+1d will be
proved, while the global weak solution inn+1 sn=2,3d will be treated in Sec. IV.

II. EQUATIONS AND BASIC FACTS

A point in thesn+1d-dimensional Minkowski space will be denoted byst ,xd=sxad0øaøn. The
space–time derivatives of a functionfªR3Rn→R are denoted by ]f =s]t f , ¹ fd
=s]t f ,]1f , . . . ,]n fd. We raise and lower indices with the Minkowski metrich=shabd=h−1

=shabd=diags−1,1, . . . ,1d. We also use the summation convention where we sum over repeated
indices. Therefore, the wave operator is denoted byh=]a]a. Greek indices are used for denoting
0, . . . ,n while italic for 1, . . . ,n.

The target manifold off is S2, i.e., f=sf1,f2,f3d such thatf1
2+f2

2+f3
2=1. Introduce the

Maxwell field Fmn=]mAn−]n Am. The Lagrangian of the gauged Os3d model is

Lsf,Ad =
1

2
E kDmf,Dmfl + s1 − n · fd2 +

1

2
FmnFmn, s1d

wherek.,.l is usual inner product inR3 and the gauge-covariant derivatives onf are defined by

adElectronic mail: hjhuh3@math.snu.ac.kr
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Dmf = ]mf + Amsn 3 fd fn = s0,0,1dg.

The Euler–Lagrange equations are

DmDmf + s0,0,1 −f3d + fskDmf,Dmfl + f3sf3 − 1dd = 0, s2d

]mFmn = kDnf,n 3 fl. s3d

The Lagrangian action is invariant under the following gauge transformations:

f = sz,f3d → szeix,f3d, Am → Am − ]mx,

wherex :Rn+1→R is a smooth function and we use the notationsf1,f2d=z1+ iz2=z. A suitable
gauge condition will be chosen according to the problem.

The constraintufu=1 will be preserved as follows. If the equationss2d are satisfied in the
f0,Tg3Rn thenr= ufu2−1 is the solution of the following equation:

f]m]m + 2kDmf,Dmfl + 2f3sf3 − 1dgsufu2 − 1d = 0.

This is a linear Klein–Gordon equation for the functionr with external potential 2kDm ,Dml
+2f3sf3−1d. Together with the initial conditions rs0d= ufs0, ·du2−1 and ]trs0d
=kfs0, ·d ,]tfs0, ·dl=0, it implies thatr=0 in f0,Tg3Rn.

The conserved energyEstd for gauged Os3d model is

Estd =E
St

kDmf,Dmfl + s1 − n · fd2 +
1

2
FmnFmn = Es0d, s4d

whereSt=hst ,xdPRn+1u t=tj. HssRnd denotes the usual Sobolev spaceWs,2sRnd and ḢssRnd ho-

mogeneous Sobolev spaceẆs,2sRnd.

III. EXISTENCE OF A SMOOTH SOLUTION IN R1+1

Here Lorentz gauge will be considered. Equationss2d ands3d with the condition]mAm=0 can
be rewritten as

DmDmf + s0,0,1 −f3d + fskDmf,Dmfl + f3sf3 − 1dd = 0, s5d

]m]mAn = kDnf,n 3 fl, s6d

]mAm = 0. s7d

With the finite energy smooth initial datasfs0, ·d ,]tfs0, ·d ,Ams0, ·d ,]tAms0, ·dd such that
ufs0, ·du=1,kfs0, ·d ,]tfs0, ·dl=0 and]mAm=0 the Cauchy problem will be considered. Note that
the equations7d is automatically satisfied as long as the solutions of the equationss5d ands6d exist
if the initial data satisfy]mAms0, ·d=0.

The short time existence of smooth solution is classical. We introduce the pseudoenergy of the
equations

Es1dstd = o
uI uø1

i]IAast, · diL2sRd + is1 − n · fdst, · diL2sRd + o
a=0,1

i]afst, · diL2sRd.

It is seen that

Es1dstd ø Cs1 + t2dE1/2s0d.

EspeciallyiAaiL2sRd may be estimated in the following way:
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]tiAastdiL2sRd ø i]t AastdiL2sRd ø E
0

t

ikDaf,n 3 fliL2sRd dsø tE1/2s0d.

Our main purpose is toa priori estimate theL2 norm of the second derivative ofsA,fd,

Es2dstd = o
uI uø2

i] IAast, · diL2sRd + is1 − n · fdst, · diL2sRd + o
1øuI uø2

i] Ifst, · diL2sRd.

If we can controliDmDnfst , ·diL2sRd, theni]2Ast , ·diL2sRd is bounded by an energy estimate applied
to s6d. A priori bound forEs2dstd will be obtained by Gronwall’s inequality. Considering the fact
ufu=1 in f0,Tg3Rn and the definition ofDm, we know

]mkf,cl = kDmf,cl + kf,Dmcl, s8d

0 = kDmf,Dnfl + kf,DmDnfl, s9d

DmDnf − DnDmf = Fmnsn 3 fd, s10d

which are used in next inequality.

1

2

d

dt
E

R
kDmDnf,DmDnfl ø E

R
ksD0D0 − D1D1dsDnfd,D0Dnfl + F01kn 3 Dnf,D1Dnfl.

s11d

OperatingDn on the equations5d and using the fact that

kfkDDf,Dfl,DmDnfl = − kDDf,DflkDmf,Dnfl,

we obtain the following inequality:

1

2

d

dt
E

R
kDmDnf,DmDnfl ø CE

R
uDDfi]Fu + uFiDfu + uDDfiDfu + CE

R
uDDfiDfu3

+ uFiDDfiDfu, s12d

whereDf and F are used schematically. At first]F consist of]0F01 and ]1F01. Lorentz gauge
shows that

u]0F01u = u]0]0A1 − ]1]1A1u = ukD1f,n 3 flu ø uD1fu,

u]1F01u = u]0]0A0 − ]1]1A0u = ukD0f,n 3 flu ø uD0fu.

Therefore the termu]Fu may be bounded byuDfu. The most difficult terms which we must treat are
the integrand of the second line ofs12d. The formulation of the following covariant Sobolev
inequalities is essentially the same as Proposition A.1. of Ref. 5.

Proposition 3.1: Let nù1,1øqø` ,1ø r ø`, and let s and p satisfy0øsø1,1øpø`,
and 1/p=fs1−sd / rg+sfs1/qd−s1/ndg. Assume in addition that if p=`, then r,` and s,1.
Then there exists a constant C, depending only on n,p,q,r such that the following inequality
holds:

iufuiL p ø CiufuiLr
1−sH o

1ø jøn

iuDjfuiLqJs
,

provided in the case r=` and q,n, we assume in addition that eitherf tends to zero at infinity
or fPLr0 for some finite r0.0.

Using the covariant Sobolev inequality, we know
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E
R

uDDfiDfu3 ø iDfiL6sRd
3 iDDfiL2sRd ø CiDfiL2sRd

2 iDDfiL2sRd
2

and

E
R

uDDfuuDfuuFu ø CiDDfiL2sRdiDfiL4sRdiFiL4sRd ø CiDDfiL2
5/4iDfiL2

3/4iFiL2
3/4i]FiL2

1/4

ø CiDDfiL2
5/4iDfiL2i]AiL2

3/4
ø CiDDfiL2

5/4E1/2s0dS1 +E
0

t

ikDf,n 3 fliL2D3/4

ø CE1/2s0ds1 + tE1/2s0dd3/4iDDfiL2sRd
5/4 ,

where the usual Gagliardo–Nirenberg inequalityiFiL4sRdøCiFiL2sRd
3/4 i¹FiL2sRd

1/4 is used. Therefore,

we conclude that

d

dt
iDmDnfiL2sRd

2
ø CsEs0d + 1diDmDnfiL2sRd

2 + Cs1 + tE7/6s0dd3/4iDmDnfiL2sRd
5/4 .

It is sufficient to conclude thatEs2d is bounded. We can proceed to get the higher regularities by a
boostrap argument, hencesf ,Ad extends as smooth solution.

IV. EXISTENCE OF THE WEAK SOLUTION

First we shall prove the existence of weak solutions to the gauged Os3d sigma model in the
three-dimensional spatial case. Here the Coulomb gauge¹iA

i =0 will be considered. Equationss2d
and s3d under the Coulomb gauge condition can be rewritten as

DmDmf + s0,0,1 −f3d + fskDmf,Dmfl + f3sf3 − 1dd = 0, s13d

]m]mAi = kDif,n 3 fl + ]i]
0A0, s14d

DA0 = kD0f,n 3 fl, s15d

¹iA
i = 0. s16d

Following the idea of Ref. 8, we take the divergence-free projection operatorP on s14d, i.e., for
any vector fieldA,

PA = D−1s¹ 3 s¹ 3 Add.

If ¹iA
i =0 thenPA=A. In view of this, the equations14d implies

]m]mAi = PkDif,n 3 fl.

Note that the equations16d is automatically satisfied as long ass14d are satisfied if the initial data
are taken as¹iA

is0d=0. Therefore our initial value problem reduces to the following one:

DmDmf + s0,0,1 −f3d + fskDmf,Dmfl + f3sf3 − 1dd = 0, s17d

]m]mAi = PkDif,n 3 fl, s18d
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DA0 = kD0f,n 3 fl, s19d

with the initial data sf0s0, ·d−n,f1s0, ·d ,Ais0, ·d ,]Ais0, ·dd in sH1sR3d3L2sR3d3 Ḣ1sR3d
3L2sR3dd satisfying

ufs0, ·du = 1, kfs0, ·d,f1s0, ·dl = 0,

¹iAis0, ·d = 0, DA0s0, ·d = kD0fs0, ·d,n 3 fs0, ·dl.

We consider the following approximation equations:

DmDmfl + s0,0,1 −f3
l d + lsuflu2 − 1dfl = 0, s20d

hAi
l = PkDif

l,n 3 fll, s21d

DA0
l = kD0fl,n 3 fll s22d

with the same datasf0s0, ·d−n,f1s0, ·d ,Ais0, ·d ,]Ais0, ·dd. The main part of equationss20d–s22d
look like Maxwell–Klein–Gordon with potential under Coulomb gauge. The global existence of
finite energy solutions is shown in the Appendix. We will use the fact thats20d–s22d admit global
finite energy solution for alll. Then the solutionsAl ,fld satisfy the energy inequality

Elstd =E
St

kDmfl,Dmfll + s1 − n · fld2 +
1

2
uFmn

l u2 +
l

4
E

St

suflu2 − 1d2 ø Els0d = Es0d

=E
S0

kDmf,Dmfl + s1 − n · fd2 +
1

2
uFmnu2 s23d

uniformly in t for all l. Note that the initial conditionufs0, ·du=1 is used at the last equality in
s23d.

The Coulomb gauge condition impliesDAj
l =] iFij

l ,DA0
l =] iFi0

l . Thus givenFab
l PL2sR3d there

exists a uniqueAm
l which belongs to the homogeneous Sobolev spaceḢ1sR3d. Furthermore, we

have

i ¹ Am
l iL2sR3d ø CiFliL2sR3d ø CEs0d1/2, s24d

and

i]mfliL2sR3d ø iDmfliL2sR3d + iAm
l iL6sR3din 3 fliL3sR3d ø iDmfliL2sR3d + Ci ¹ Am

l iL2sR3din 3 fliL3sR3d,

s25d

where we usediAliL6sR3døCi¹AliL2sR3d for Al P Ḣ1sR3d. To estimatein3fli
L3sR3d
2 the two facts

will be used.

sid
]

]t
E

R3
un 3 flu2 dx =

]

]t
E

R3
usf1

l ,f2
l ,0du2 dx =E

R3
2ksf1

l ,f2
l ,0d,Dtsf1

l ,f2
l ,0dl

ø 2isf1
l ,f2

l ,0diL2sR3diDtf
liL2sR3d.

Therefore we have

isn 3 fldst, · diL2sR3d ø Cs1 + td,

whereC depends only on the initial data.
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sii d The algebraic inequalityx4ø10sy−1d2+10sx2+y2−1d2 implies that isn3fldi
L4sR3d
4

ø10i1−n·fli
L2sR3d
2 +10iuflu2−1i

L2sR3d
2

øCEstdøCEs0d. Note thatsid, sii d do not depend on the

dimension of space. Withsid, sii d the interpolation inequality shows that

isn 3 fldst, · diL3sR3d ø Cs1 + td,

which impliesi]mfliL2sR3døCs1+td.
To estimate]t A0

l the following lemma will be used.
Lemma 4.1: Let f be a compactly supported integrable function and u the unique solution of

the Poisson equationDu= f in Rn, sufficiently small atuxu→`. Then for fPL psRnds1,p
,nd ,1 /q=s1/pd−s1/nd,

¹u P LqsRnd and i ¹ uiLqsRnd ø CifiL psRnd.

We should mention that the equations20d implies

]akDafl,n 3 fll = 0. s26d

In fact,

]akDafl,n 3 fll = kDaDafl,n 3 fll + kDafl,Dasn 3 fldl = − lsuflu2 − 1dkfl,n 3 fll + k]afl,]asn

3 fldl + AlaAa
l kn 3 fl,n 3 n 3 fll + Aa

l k]afl,n 3 n 3 fll + Aa
l kn 3 fl,]asn

3 fldl = 0.

We differentiate equations22d with respect tot and derive, with the help ofs26d, D]t A0
l

=]ikDif
l ,n3fll. By Lemma 4.1 we show

i]t A0
l iL2sR3d ø iD−1/2]ikDif

l,n 3 flliL6/5sR3d ø iDif
liL2sR3din 3 fliL3sR3d ø Cs1 + td.

Therefore for a givenT, we can select a subsequence ofhfl ,Alj which converges to a limitf ,A
in the sense that asl →`,

]mfl → ]mf weakly! in L`sf0,Tg;L2sR3dd, s27d

fl → f locally in Lloc
2 sf0,Tg 3 R3d, s28d

]Al → ]A weakly! in L`sf0,Tg;L2sR3dd. s29d

Moreover, flstd→fstd in Lloc
2 sR3d locally uniformly in tP f0,Tg. Hence for anytP f0,Tg, by

Fatou’s lemma

E
R3

sufu2 − 1d2 ø lim inf E
R3

suflu2 − 1d2 = 0.

So we conclude thatf :R3+1→S2. Passing to the limit ins20d, we just follow the idea of Ref. 15.
We consider equivalent equations tos17d–s19d, i.e.,

DmsDmf ∧ fd + s0,0,1 −f3d ∧ f = 0, s30d

]m]mAi = PkDif,n 3 fl, s31d

DA0 = kD0f,n 3 fl. s32d

Proposition 4.2: Assumesf ,Ad satisfy the propertiess27d–s29d thensf ,Ad is a weak solution
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of s17d–s19d if and only if sf ,Ad is a weak solution ofs30d–s32d.
Proof: There is just one nontrivial relation betweens17d and s30d which we must verify. We

take the wedge product ofs17d with f to obtain

DmDmf ∧ f + s0,0,1 −f3d ∧ f = DmsDmf ∧ fd − Dmf ∧ Dmf + s0,0,1 −f3d ∧ f = 0,

i.e., DmsDmf∧fd+s0,0,1−f3d∧f=0 in the sense of distribution.
Conversely, ifDmsDmf∧fd+s0,0,1−f3d∧f=0 thenDmDmf∧f+s0,0,1−f3d∧f=0 which

implies

DmDmf + s0,0,1 −f3d + lf = 0. s33d

Multiplying equations33d by f and consideringufu=1, almost everywhere, we obtain

l = kDmf,Dmfl + f3sf3 − 1d.

Taking the exterior product ofs20d with fl and using the fact that the nonlinear term always
points in the direction offl, we obtain

DmsDmfl ∧ fld + s0,0,1 −f3
l d ∧ fl = 0 s34d

for all l. In the limit l →`, the equations34d is valid in the sense of distributions implying that
sA,fd weakly solves17d. Sincefl −nPL2sf0,Tg3R3d with ]fl PL`sf0,Tg ;L2sR3dd we havefl

→f in Csf0,Tg ;L2sR3dd. Moreover testings30d and s34d by a vectorcPC0
`sR3R3d over R3+1

and integrating by parts we get

E
h0j3R3

kD0f ∧ f − D0fl ∧ fl,cldx =E
0

` E
R3

ksDafl ∧ fld − sDaf ∧ fd,Dacldx dt

+E
0

` E
R3

ks0,0,1 −f3d ∧ f − s0,0,1 −f3
l d ∧ fl,cldx dt.

In the limit l →`, we can conclude that

D0fs0, ·d ∧ fs0, ·d − D0fls0, ·d ∧ fls0, ·d = s]tfs0, ·d − f1d ∧ f0 = 0,

i.e., ]tfs0, ·d=f1 in the sense of traces. Here we used the fact that both]tfs0, ·d and f1 are
tangent toS2 alongf0.

From now on, we are concerned about the two-dimensional spatial case. The approximate
equations can be obtained through the similar reduction procedure but we do not know if there is
a result which states that Maxwell–Higgs equations inR2+1 under the condition of Coulomb gauge

exist global in time with the initial datasf−n,]f ,A,]AdPH1sR2d3L2sR2d3 Ḣ1sR2d3L2sR2d.
Here we assume that the initial datasf−n,]f ,A,]Ad can be approximated by the smooth function
sequencessfk−n,]fk,Ak,]Akd with the constraintufks0, ·du=1. In fact we should note the fol-
lowing.

Remark:Let S be a smooth compact Riemannian surface andN be compactk-manifold. Then
by a result of Ref. 13 the spaceC`sS ;Nd of smooth mapsu:S→N,Rm is dense inH1sS ;Nd. But
we do not know what happens ifS is unbounded surface. Moreover is it possible thatsf0

−n,f1d satisfying uf0u=1, kf0,f1l can be approximated in theH1sR2d3L2sR2d norm by the
smooth function sequencessfks0, ·d−n,]tf

ks0, ·dd with the constraint ufks0, ·du=1,
kfks0, ·d ,]tf

ks0, ·dl=0? Therefore our results below are conditional.
Remark:For a domain manifoldM of dimensionm.2 a result of Ref. 1 shows that the space

C`sM ;Nd is dense inH1sM ;Nd if and only if p2sNd=0 fwherep2sNd is a second fundamental
group of Ng. Therefore in the three-dimensional spatial case we cannot assume approximation
sequencefk generally.
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We will use the fact that equationss20d–s22d with initial data ffks0d
−n,]fks0d ,Aks0d ,]Aks0dg admit global smooth solution for allk. In fact Maxwell–Higgs equations

have the global smooth solution under the Lorentz gauge]mÃm=0 ssee Ref. 2d. Then by the

suitable gauge transform the equations are changed into one with Coulomb gauge]iÃ
i =0sAm

=Ãm+]mxd. The solutionssAk,fkd satisfy the energy inequality

Eksfk,Akdstd =E
St

kDmfk,Dmfkl + s1 − n · fkd2 +
1

2
uFmn

k u2 +
l

4
E

St

sufku2 − 1d2 ø Esfk,Akds0d

= Esf,Ads0d +
1

2k . s35d

The inequalitys24d can be also obtained,

i ¹ Am
k iL2sR2d ø CiFm

k iL2sR2d ø CEs0d1/2,

and

i]mfkiL2sR2d ø iDmfkiL2sR2d + iAm
k iL4sR2din 3 fkiL4sR2d.

To estimateiAm
k iL4sR2d the two facts will be used. Note thatḢ1sR2d does not embed intoL4sR2d.

sad To estimateL2 norm of the solution itselfAi, use will be made of the following lemma. The
proof is in Ref. 11.

Lemma 4.3: If u solves the Cauchy problem,

hu = o
a=0

2

]aGa, us0, ·d = f, ]tus0, ·d = g,

then

iust, · diL2sR2d ø o
a=0

2 E iGass, · diL2sR2d ds+ Csf,g,G0s0, ·ddlogs2 + td,

where Csf ,g,G0s0, ·dd is some constant depending on some weighted Sobolev norm of initial data
f and g.

Applying Lemma 4.3 tohAj
k=]mFm j

k +]0] jA0
k we have

iAj
kstdiL2sR2d ø C logs2 + td +E

0

t

iFkssdiL2sR2d dsø Cs1 + tEs0d1/2d.

Therefore giventP f0,Tg, Aj
kstdPH1sR2d which implies

iAj
kstdiL4sR2d

2
ø iAj

kstdiL2sR2di ¹ Aj
kstdiL2sR2d ø Cs1 + tEs0d1/2d.

sbd To estimateiA0
kstdiL4sR2d we are going to estimate]t A0

k. We differentiate Eq.s22d with
respect tot and derive, with the help ofs26d, D]t A0

k=]ikDif
k,n3fkl. By Lemma 4.1 we show

i]t A0
kstdiL4sR2d ø iD−1/2]ikDif

k,n 3 fkliL4/3sR2d ø iDif
kiL2sR2din 3 fkiL4sR2d ø CEs0d1/4.

s36d

Now using the inequality
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4iA0
kiL4sR2d

3
]tiA0

kiL4sR2d = ]tE
R2

sA0
kd4 dx ø 4iA0

kiL4sR2d
3 i]tA0

kiL4sR2d,

we derive

iA0
kstdiL4sR2d ø iA0

ks0diL4sR2d +E
0

t

i]tA0
kssdiL4sR2d dsø Cs1 + tEs0d1/4d.

By the observationsad, sbd we have

i]mfkiL2sR2d ø Cs1 + td.

The remaining argument is the same as the previous one given in the case of three dimensions.
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APPENDIX

Here we show that the systems20d–s22d admits a global finite energy solution. The fine
structure was used to prove the global finite energy solution of Maxwell–Klein–GordonsMKGd
equation in Ref. 8. Following the line of Ref. 8 we check the nontrivial points. To compare with
Maxwell–Klein–Gordon equation in Ref. 8 we rewrites20d–s22d with the notation u=f1

+Î−1f2, v=f3−1, andDmu=]mu+Î−1Amu,

sA1d

]m]mv − v + lsuuu2 + v2 + 2vdsv + 1d = 0, sA2d

]m]mAi = − P ImsuDiud, sA3d

DA0 = − ImsuD0ud. sA4d

Note thatsA1d–sA4d are the same as equations in Ref. 8 except the braced part ofsA1d andsA2d.
Let A=sA1,A2,A3d and define pseudoenergy,

QsA,u,vdstd = i]Ast, · diL2 + iust, · diL2 + i]ust, · diL2 + ivst, · diL2 + i]vst, · diL2.

The main theorem is as follows.
Theorem 5.1:Consider initial data satisfying¹iA

is0, ·d=0 such thatQs0d is finite. Under this
hypothesis there exists a unique global generalized solution to the equation (A1)–(A4) verifying
the energy inequality

Elstd ø CQ2s0d

as well as

sid Qstd ø Cs1 + tdQs0d.

And on any finite intervalf0,Tg,

sii d E
0

T

sihAst, · diL2 + ihust, · diL2 + ihvst, · diL2ddt ø `.
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The first nontrivial check point is the pp. 31–35 of Ref. 8. To estimate]tA0, the precise form
of MKG equation was used. It is possible to construct the corresponding parts despite of the
different form of potential. With the help of the relations26d we have

D]tA0 = ]tkD0f,n 3 fl = ]ikDif,n 3 fl.

So we may obtain the corresponding one of Proposition 3.2 in Ref. 8.
The second part is the pp. 35–39 in Ref. 8. Following the idea of Ref. 8 we will show the

estimate

XsTd ø CT1/2s1 +Qs0d + XsTdd4, sA5d

whereXsTd=e0
TsihAst , ·diL2+ihust , ·diL2+ihvst , ·diL2ddt and 0,T,T* is small,C is indepen-

dent on bothT* andQs0d. With the standard form of the energy estimate applied tou, v, andA we
have

Qstd ø sQs0d + Xstdd.

In view of the equationsA1d–sA3d we have

XsTd øE
0

T

iP ImsuDudiL2 + 2iu]tA0iL2 + 2iA0]tuiL2 +E
0

T

iA · ¹ uiL2 + iuA0u2uiL2 + iuAu2uiL2

+E
0

T

lisuuu2 + v2 + 2vduiL2 + lisuuu2 + v2 + 2vdsv + 1diL2. sA6d

The first and second line ofsA6d can be estimated in the same way as Ref. 8 using Sobolev
inequalities, Strichartz and null form estimates. The third line can be estimated in a easier way,

E
0

T

iuv2iL2 ø E
0

T

iuiL6iviL6
2

ø CE
0

T

i ¹ uiL2i ¹ viL2
2

ø CsQs0d + XsTdd3.

We show the inequalitysA5d then the rest is straightforward as in Ref. 8.
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We calculate all symmetries of the Dirac–Pauli equation in two-dimensional and
three-dimensional Euclidean space. Further, we use our results for an investigation
of the issue of zero mode degeneracy. We construct explicitly a class of multiple
zero modes with their gauge potentials. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1884885g

I. INTRODUCTION

The abelian Dirac equation in Euclidean space in two and three dimensions is

DC ; sks− i]k − Gksr ddCsr d = 0, s1d

where, in three dimensions,r =sx,y,zdt, k=x,y,z, sk are the Pauli matrices, andGk

;sGx,Gy,Gzd is the gauge potentialswe use superscripts for the components because subscripts
will be exclusively reserved to describe partial derivativesd. In two dimensions allz components
are absent. Further,C=sF ,xdt is a two-component spinor.

The Pauli equation is obtained from the Dirac equation by simply squaring the Dirac operator
D acting onC,

ss− i]k − Gkd2 − slHldC = 0, s2d

whereHW is the magnetic field,HW = ¹ 3GW . Solutions of the Dirac equations1d are, at the same time,
solutions of the Pauli equation, therefore we shall treat them on an equal footing.

Solutions to the Pauli or Dirac equation are relevant in several instances. They describe the
behavior of nonrelativistic electrons in the presence of magnetic fields, and their existence, among
other issues, influences the stability of nonrelativistic matter.1,2 On the other hand, they influence
the behavior of the fermion determinant detD for relativistic electrons and are, therefore, relevant
for the strong field behavior of relativistic electrons,3–5 and for a proper path-integral quantization
of quantum electrodynamicssQEDd in two6–8 and three dimensions.

For the Dirac equation in two dimensions the most important information on solutions is
provided by the Aharanov–Casher theorem,9 which states that there aren square-integrable solu-
tions when the magnetic flux divided by 2p is betweenn andn+1, i.e.,n, sflux/2pdøn+1. For
the Dirac equation in three dimensions the available information is much scarcer. The first ex-
amples of solutions have been given in 1986, see Ref. 2. Further examples have been provided in
Refs. 10–12, and the existence of multiple solutionsszero mode degeneracyd has been first dem-
onstrated in Refs. 13–15. Further results on zero-mode supporting gauge potentials may be found
in Refs. 16–18. A general classification of zero-mode supporting gauge fields is still missing.
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In this paper we study the symmetries of the Dirac equations1d both in two and three
dimensions, in order to gain some further insight into the solution space of these equations. In Sec.
II we calculate the symmetries of the Dirac equation in two dimensions and briefly apply our
results to the issue of multiple zero modes. In Sec. III we calculate the symmetries of the Dirac
equation in three dimensions. We use the method of prolongations for all our symmetry calcula-
tions, which is described in detail in Ref. 19. In Sec. IV, we use our results on symmetries of the
three-dimensional Dirac equation for a discussion of the issue of zero mode degeneracysi.e.,
multiple solutionsd in three dimensions. In Sec. IV A, we discuss how our results on symmetries
can be used to construct multiple zero modes in principle. In Sec. IV B, we apply the results of
Sec. IV A for the explicit construction of a class of multiple zero modes together with their
corresponding gauge potentials.

II. SYMMETRIES OF THE DIRAC EQUATION IN TWO DIMENSIONS

For the Dirac equation in two dimensions it is known from the Aharanov–Casher theorem that
all zero modessi.e., square-integrable solutionsd are either left handedsi.e., the lower component
of C is zerod or right handedsthe upper component ofC is zerod. Further, a solution of the first
type sleft handedd may be mapped into a solution of the second type by the simple replacement
Gk→−Gk, therefore we may restrict, e.g., to the left-handed case

s− i]x − Gx + ]y − iGydF = 0. s3d

By introducing the modulus and phase ofF via ln F=r+ il we may rewrite Eq.s3d in terms of
two real first order equations as

D1 ; ry + lx − Gx = 0, s4d

D2 ; rx − ly + Gy = 0, s5d

where from now on subscripts denote partial derivatives, i.e.,rx;]xr, etc.
The vector field generating generic transformations on the independent and dependent vari-

ables is

v = X]x + Y]y + R]r + L]l + Fx]Gx + Fy]Gy, s6d

whereX,Y,R,L ,Fx,Fy may depend on all independent and dependent variables. The equationss4d
ands5d contain first derivatives of the variablesl andr, therefore we need the first prolongation
of v with respect to these variables,

pr v = v + Rx]rx
+ Ry]ry

+ Lx]lx
+ Ly]ly

, s7d

where, e.g.,

Rx = DxR− rxDxX − ryDxY. s8d

HereDx is a total derivative, and we give the explicitsrather lengthyd expressions in Appendix A.
Now, a symmetry of a partial differential equationsPDEd Fsr ,r j , . . .d=0 sof nth order, sayd is

a solution of the equation prsnd vsFd=0 which holds on-shell, i.e., when the original PDE is used
together with its prolongationssPDEs that follow fromF=0 by applying total derivativesd. As
said, for the details of the used formalism we refer to Ref. 19.

Concretely, the determination of the symmetry transformation proceeds as follows. We require
that prvsD1d=0=prvsD2d whenever the equationss4d and s5d hold. Explicitly this means that

Ry + Lx − Fx = 0, s9d
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Rx − Ly + Fy = 0, s10d

whenever the equationss4d ands5d hold. Equationss9d ands10d contain a number of algebraically
independent functionsslike rx, rxGx

y, etc.d multiplying the coefficientsslike Rx, Rr, etc.d which we
want to determine. We may use the equationss4d and s5d to eliminate, e.g.,lx and ly from the
equationss9d and s10d. Then we demand that the coefficient of each algebraically independent
function slike rx, rxGx

y, etc.d vanishes separately. This leads to more than 30 conditions for each of
the two equationss9d and s10d. Fortunately, most of these conditions are quite trivial, like, e.g.,
Xl=0=XAx, etc. The final result is that Eq.s9d leads to the conditions

X = Xsx,yd, Y = Ysx,yd, s11d

R= Rsr,l,x,yd, L = Lsr,l,x,yd, s12d

Rr − Ll = Yy − Xx, s13d

Lr + Rl = Xy + Yx, s14d

and

Fx = Lx + Ry + sLl − XxdGx + sRl − YxdGy, s15d

whereas Eq.s10d leads to the conditions

X = Xsx,yd, Y = Ysx,yd, s16d

R= Rsr,l,x,yd, L = Lsr,l,x,yd, s17d

Rr − Ll = − Yy + Xx, s18d

Lr + Rl = − Xy − Yx, s19d

and

Fy = Ly − Rx − sRl + XydGx + sLl − YydGy. s20d

For later convenience we introduce the complex notation

z; x + iy, Z ; X + iY, s ; r + il, S ; R+ iL s21d

and

G ; 1
2sGx + iGyd, F ; 1

2sFx + iFyd s22d

which implies

]s ; 1
2s]r − i]ld, s23d

etc. Compatibility between the two sets of equations requires

Xx = Yy, Xy = − Yx s24d

which are just the Cauchy–Riemann equations, and
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Lr = Ll, Rl = − Lr, s25d

which are the Cauchy–Riemann equations with respect to the target space variables=r+ il.
Therefore,X andY are the real and imaginary part of a holomorphic function,

X + iY = Zszd, z= x + iy , s26d

whereasL andR are the real and imaginary part of a holomorphic function in the variables,

R+ iL = Sss,z,z̄d, s27d

whereS may still depend onz, z̄. Finally, for F we find

F ; 1
2sFx + iFyd = − iSz̄ − GZ̄z̄ + GSs. s28d

The most general symmetry generator

v = Z]z + Z̄]z̄ + S]s + S̄]s̄ + F]G + F̄]Ḡ s29d

may be expressed as the semidirect sum of a symmetry generatorvZ with respect to the holomor-
phic functionZszd and a generatorvS with respect to the functionSss ,z, z̄d, where

vZ = Z]z + Z̄]z̄ − GZ̄z̄]G − ḠZz]Ḡ s30d

and

vS = S]s + S̄]s̄ + s− iSz̄ + GSsd]G + siS̄z + ḠS̄s̄d]Ḡ. s31d

Further, they obey the infinite-dimensional Lie algebra,

fvZ1
,vZ2

g = vZ3
, Z3 = Z1Z28 − Z2Z18, s32d

fvS1
,vS2

g = vS3
, S3 = S1S2,s − S2S1,s, s33d

which are just two copies of the Virasoro algebra in coordinate and target space, and

fvZ,vSg = vS̃, S̃ = SzZ + Sz̄Z̄. s34d

It is quite interesting that the symmetry turns out to be so large, the semidirect product of two
conformal groups in two dimensions.

fRemark:the symmetry transformations we found cover the whole solution space in the sense
that any solutionF of the Dirac equations3d for any gauge potentialG can be found by applying
a symmetry transformation to the trivial solutionF=1, G=0. In fact, a target space transformation
S of the typeS= fsz, z̄d is sufficient. For this subclass of transformations the above Lie algebra is
abelian, therefore the exponentiation for finiteS is trivial.g

As an application let us briefly discuss the issue of degeneracy of zero modessi.e., multiple
solutions of the Dirac equation for one gauge fieldGd. The condition that the gauge field does not
change is, of course, that theF in Eq. s28d is zero, which leads to the conditionsSs=Sz̄=0, that
is S=gszd is a function in the variablez only. As said, the exponentiation of suchS is trivial,
therefore a

F8 = egszdF s35d

is a local zero mode for the same gauge potential asF. Single valuedness ofF8 on the whole
Euclidean plane restricts the allowedg fexpgszd should be single valuedg and the condition of
square integrability further restricts the allowedgszd. The fact that further zero modes of the same
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Dirac operator may be produced by multiplying the given one with analytic functions ofz is, of
course, well known.

III. SYMMETRIES OF THE DIRAC EQUATION IN THREE DIMENSIONS

Introducing the real and imaginary part of the spinor components viaF=a+ ib, x=g+ id, the
Dirac equations1d in three dimensions is equivalent to the four real equations,

I ; bz + dx − gy − Gza − Gxg − Gyd = 0,

II ; az + gx + dy + Gzb + Gxd − Gyg = 0,

s36d
III ; bx + ay − dz − Gxa + Gyb + Gzg = 0,

IV ; ax − by − gz + Gxb + Gya − Gzd = 0.

If viewed as a system of algebraic equations for the three real unknownssGx,Gy,Gzd, these four
equations must be algebraically dependent. The dependence is given by the condition

V ; ¹ · SW = 2sag + bddx + 2sad − bgdy + sa2 + b2 − g2 − d2dz = 0, s37d

where

SW ; C†sW C = 1 2sag + bdd
2sad − bgd

a2 + b2 − g2 − d22 s38d

is the spin density of the spinorC.
Again, we want to study the symmetries of the above equationss36d using the method of

prolongations. The symmetry generating vector field is

v = X]x + Y]y + Z]z + A]a + B]b + C]g + D]d + Fx]Gx + Fy]Gy + Fz]Gz s39d

and its prolongation to the needed order is

pr v = v + Ax]ax
+ Ay]ay

+ Az]az
+ Bx]bx

+ By]by
+ Bz]bz

+ Cx]gx
+ Cy]gy

+ Cz]gz
+ Dx]dx

+ Dy]dy

+ Dz]dz
, s40d

where, e.g.,Ax is given by

Ax = Ax + Aaax + Abbx + Aggx + Addx − axXx − ayYx − azZx. s41d

Here, we have already used some first results of the calculation below, namely thatsanalogously
to the case in two dimensionsd no coefficient depends on the gauge potential, and that the coeffi-
cientsX, Y, Z of the translations in base space only depend on the base space coordinatesx, y, z
fotherwise the resulting expressions41d would be more complicated, analogously to theRx of the
two-dimensional case, which is given in Appendix Ag.

Acting with the prolonged vector field on the four equationss36d fpr vsId=0, etc.g leads to the
following set of four equations:
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GxC + GyD + GzA + Fxg + Fyd + Fza − Dx + Cy − Bz = 0,

GxD − GyC + GzB + Fxd − Fyg + Fzb + Cx + Dy + Az = 0,

s42d
− GxA + GyB + GzC − Fxa + Fyb + Fzg + Bx + Ay − Dz = 0,

GxB + GyA − GzD + Fxb + Fya − Fzd + Ax − By − Cz = 0.

Next we must insert the explicit expressions forAx, etc. We obtain algebraic expressions in terms
of the target space variables and their partial derivatives, where we may eliminate four derivative
terms with the help of the Dirac equationss36d. sExplicitly, we eliminateddx, dy, dz, andgz.d For
the resulting expressions one must require that the coefficient multiplying each partial derivative
of the target space variablesslike ax or Gx

xd or product of partial derivatives vanishes separately.
Doing this one realizes quickly that nothing may depend on the gauge potential and that the
coefficientsX, Y, Z may only depend onx, y, z.

The remaining coefficients which are multiplied by at least one partial derivative of a target
space variable serve to determine the coefficientsX, Y, Z andA, B, C, D. They are of two types.
The first type consists of pairs of equations like

Ad + Da = Yz + Zy, Ad + Da = − Yz − Zy ⇒ Ad + Da = 0, Yz + Zy = 0

which lead to equations for theX, Y, Z andA, B, C, D independently. The equations forX, Y, Z
are

Xx = Yy = Zz,

Xy + Yx = 0, Xz + Zx = 0, Yz + Zy = 0 s43d

and have the conformal transformations in three-dimensional space as general solutions,

X =
u1

2
sx2 − y2 − z2d + u2xy+ u3xz− l3y + l2z+ sx + x0,

Y =
u2

2
sy2 − x2 − z2d + u1xy+ u3yz+ l3x − l1z+ sy + y0, s44d

Z =
u3

2
sz2 − x2 − y2d + u1xz+ u2yz− l2x + l1y + sz+ z0.

Here ui, l i, s, and rW0 are constant parameters which parametrize the infinitesimal conformal
transformations.

The equations forA, B, C, D are

Aa = Bb = Cg = Dd,

Ab + Ba = 0, Ag + Ca = 0, Ad + Da = 0, s45d

Bg + Cb = 0, Bd + Db = 0, Cd + Dg = 0,

and have the conformal transformations in the four-dimensional target space as solutions,
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A =
z1

2
sa2 − b2 − g2 − d2d + z2ab + z3ag + z4ad + la − v3b + v2g − v1d + a0,

B =
z2

2
sb2 − a2 − g2 − d2d + z1ab + z3bg + z4bd + lb + v3a − u1g − u2d + b0,

s46d

C =
z3

2
sg2 − a2 − b2 − d2d + z1ag + z2bg + z4gd + lg − v2a + u1b − u3d + g0,

D =
z4

2
sd2 − a2 = b2 − g2d + z1ad + z2bd + z3gd + ld + v1a + u2b + u3g + d0.

Here the parametersz j, ui, vi, l anda0, b0, g0, d0 may still depend on the base space coordinates
sx,y,zd.

The second type of equations consists of equations likeCd−Ab=Xy and establishes relations
between theA, B, C, D and theX, Y, Z, thereby further restricting the possibleA, B, C, D. The
result is that the proper conformal transformation on target space must be absent,z j ;0, and that
the six target space rotation parameters are no longer independent,

u1 − v1 = l1 + u2z− u3y ; L1,

u2 − v2 = l2 + u3x − u1z; L2, s47d

u3 − v3 = l3 + u1y − u2x ; L3

leading to

A = la − v3b + v2g − v1d + a0,

B = lb + v3a − sv1 + L1dg − sv2 + L2dd + b0,

s48d
C = lg − v2a + sv1 + L1db − sv3 + L3dd + g0,

D = ld + v1a + sv2 + L2db + sv3 + L3dg + d0,

wherel, vi, anda0,¯ may still depend onsx,y,zd. By shifting vi →vi −sLi /2d theLi are distrib-
uted more symmetrically,
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A = la − Sv3 −
L3

2
Db + Sv2 −

L2

2
Dg − Sv1 −

L1

2
Dd + a0,

B = lb + Sv3 −
L3

2
Da − Sv1 +

L1

2
Dg − Sv2 +

L2

2
Dd + b0,

s49d

C = lg − Sv2 −
L2

2
Da + Sv1 +

L1

2
Db − Sv3 +

L3

2
Dd + g0,

D = ld + Sv1 −
L1

2
Da + Sv2 +

L2

2
Db + Sv3 +

L3

2
Dg + d0,

and we find the half-integer valued representation of the base space rotationsswith parametersl id
acting on thesspinord target space variables. It is interesting to note that the half-integer values
appear also for the parameters of the proper conformal transformations on base spacesremember
Li ; l i +ei jku jrkd.

fRemark: for a Dirac equation without the additional condition¹ ·SW =0, see Eq.s37d, the
above expressions would be the final result. This is the case, for instance, for the Dirac equation
for a Weyl si.e., two componentd spinor in Euclidean space in four dimensions, for which expres-
sions analogous tos49d would constitute the final resultswith the conformal base space transfor-
mations in four instead of three dimensions, of coursed.g

We have used all information from the coefficients of Eqs.s42d which contain at least one
partial derivative of a target space variable. It remains to evaluate the parts without a partial
derivativesi.e., the coefficients of the identityd. These contain the coefficientsFx, Fy, Fz linearly
and are therefore just the determining linear equations for these coefficients. However, they give
four equations for three unknowns, therefore they must be linearly dependent, which leads to one
further constraint equation. An easier way to calculate this constraint is to calculate the action of
the prolonged vector fields40d on the original constraints37d,

pr vsVd = 0 s50d

or explicitly

Axg + axC + Agx + aCx + Bxd + bxD + Bdx + bDx + Ayd + ayD + Ady + aDy − Byg − byC − Bgy

− bCy + Aza + azA + Bzb + bzB − Czg − gzC − Dzd − dzD = 0. s51d

Inserting the explicit expressions forAx, etc., leads to an expression containing both coefficients
multiplying partial derivatives of the target space variablesslike axd and a coefficient of the
identity 1. After eliminating four partial derivativesse.g.,dx, dy, dz, andgzd with the help of the
equations of motion, one realizes that the coefficients of the remaining partial derivatives vanish
identically. It remains to evaluate the coefficient of the identity. This leads in fact to four condi-
tions, because the use of the equations of motion has reintroduced the gauge potential functions
Gx, Gy, Gz into the above expression. As none of the coefficientssA, etc.d may depend on the
gauge potential, the total coefficient multiplying each gauge potential function must vanish sepa-
rately, as well as the remainder. The conditions that the coefficients multiplyingGx, Gy, Gz vanish
leads to

a0 = b0 = g0 = d0 = 0, v1 = v2 = 0, s52d

and the condition that the remainder vanishes leads to

s¹l + uWd · SW = 0. s53d

With the shift
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l → l − U, U ; uW · rW ; u1x + u2y + u3z s54d

and the definition

f ; − v3 s55d

we therefore arrive at

A = la + fb − Ua +
L3

2
b −

L2

2
g +

L1

2
d,

B = lb − fa − Ub −
L3

2
a −

L1

2
g −

L2

2
d,

s56d

C = lg + fd − Ug +
L2

2
a +

L1

2
b −

L3

2
d,

D = ld − fg − Ud −
L1

2
a +

L2

2
b +

L3

2
g,

with

s¹ld · SW = 0. s57d

Herel andf are scale and gauge transformations onsspinord target space, whereas the remainder
is the representation on spinor space of the infinitesimal base space symmetries.

However, there is a problem with the constraints57d. The constrained functionl is still

algebraically independent ofSW si.e., of thea ,b, etc.d, therefore the constraint does not contradict
our basic assumptions. The problem is that the Lie algebra of all infinitesimal transformations does
not close on the constraints57d. For example, the commutator of a target space scale transforma-
tion and a base space rotation about thez axis leads to another target space scale transformation
which no longer obeys the constraints57d,

fvl,vl3g = vl̃, s¹l̃d · SW Þ 0. s58d

This is, in fact, not a surprise, because the gradient of the rotated scale functionl̃ must be

perpendicular to the rotated vectorS̃
W
, s¹l̃d ·S̃

W
=0, and analogously for other base space transfor-

mations.
Therefore, in order to have a closing Lie algebra of base space and target space transforma-

tions, we must restrict to constant target space scale transformations,l=const.
However, as transformations with nonconstantl obeying the constraints57d map solutions of

the Dirac equation to new solutions and are of some interest as such, one may instead choose
another restriction by restricting to the target space transformations parametrized byl andf si.e.,
by setting all base space transformation parameters equal to zerod. The resulting Lie algebra is
abelian and closes therefore trivially.

We still must calculate the coefficientsFx, Fy, Fz from the coefficients of the identity of Eqs.
s42d. After a lengthy calculation one obtains the simple result

FW = − sU + sdGW + LW 3 GW − ¹ f −
1

uSW u
SW 3 ¹ l. s59d

052304-9 Symmetries of the Dirac–Pauli equation J. Math. Phys. 46, 052304 ~2005!

                                                                                                                                    



IV. MULTIPLE ZERO MODES

In this section, we would like to apply the results on symmetries of Sec. III to the issue of zero
mode degeneracysi.e., multiple solutions for a Dirac equation with the same gauge potentiald. We
shall give a more general discussion in Sec. IV A, whereas we will provide some explicit, new
examples of multiple zero modes in Sec. IV B.

A. General discussion

The condition that a target space symmetry transformation of a spinor does not change the

gauge field isFW =0, see Eq.s59d, or

¹f = −
1

uSW u
SW 3 ¹ l s60d

which, together with conditions57d, implies thatSW , ¹f, and ¹l are mutually perpendicular.

Further, Darboux’s theorem tells us thatsat least locallyd we may expressSW like

SW = ¹ j1 3 ¹ j2, s61d

where ja=jasr d, a=1,2. If we nowassume thatf and l are functions ofja only, then their

gradients are automatically perpendicular toSW , and it remains to solve

u ¹ fu = u ¹ lu, ¹ f · ¹ l = 0. s62d

This problem can be solved relatively easily for a subclass of functionsja which fulfill one
additional requirement, namely that the scalar products of the gradients of theja can be expressed
in terms of theja again, up to acommonfactor, that is

¹ja · ¹ jb = hsr dgabsjcd. s63d

Heregab plays the role of a metric in some two-dimensional space parametrized by the coordinates
ja. If Eq. s63d holds, then Eq.s60d simplifies to

faẽac = gcblb, s64d

wherefa;]jaf, etc., and

ẽab = g1/2eab, g ; detsgabd = g11g22 − g12g21, s65d

and eab is the usual antisymmetric symbol in two dimensions. Equationss64d can be solved by
observing that they just provide a generalization of the Cauchy–Riemann equations to the case of
a general surface. We must only find the coordinate transformation fromj8a to some new coor-
dinatesj8a such that the metricg8ab with respect to the new coordinates is conformally equivalent
to the flat metricdab, that is

g8ab ;
]j8a

]jc

]j8b

]jd gcd = hsj8ddcd. s66d

This problem always has a solution in two dimensions.20 In terms of the coordinatesj8a, Eq. s64d
reads

faeac = dcblb s67d

which is just the Cauchy–Riemann equation. Therefore, our problem is solved by an arbitrary
complex functionu of the complex variablez8, where
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usz8d = expsl + ifd, z8 = j81 + ij82. s68d

Here “solution” means that if a spinorC with C†sW C;SW solves a certain Dirac equation, thenuC
locally solves the same Dirac equation,

DC = 0 ⇒ DuC = 0. s69d

Regularity requirements further restrict the allowedu. For instance, the functionsja need not be
well defined in allR3 sthey usually are notd, but u certainly must be well-definedswhich may not
be possible, in which case the problem has no acceptable solutiond. The condition thatuC is
square-integrable restricts to a finite numberswhich, again, may be zerod of linearly independent
functionsu. It should be emphasized thatall known examples of multiple zero modes are of the
above types69d, see Refs. 13–15. It is an interesting open question whether there exist other types,
as well.

Finally, let us point out that the procedure described above can certainly be reversed. That is
to say, choose a pair of functionsja which obey Eq.s63d and calculate the correspondingj8a via
Eq. s66d. ThenuC with u given by Eq.s68d will provide additional local zero modes for a whole

class of spinorsC with spin densities given bySW =Fsjad¹j13 ¹j2 for salmostd arbitrary real
functionsFsjad sof course,F should be well defined in allR3d. It is not difficult to reconstruct the

spinorC from the spin densitySW and the gauge potentialGW from the spinorC ssee, e.g., Ref. 2d.
We shall explicitly demonstrate how this works by constructing a class of multiple zero modes in
the next section.

fRemark:Equationss62d can be expressed in terms of the complex variableu=expsl+ ifd
like

s¹ud2 = 0 s70d

which is the complex static eikonal equation. Further, conditions63d is equivalent to the condition
that u—when interpreted as a map from one-point compactifiedR0

3 to one-point compactified
C0—is a Riemannian submersion up to Weyl transformationsslocal conformal rescalings of the
metricd. That is to say,u is a composition of maps

u:R0
3→

W

M3 ——→
RS

N2→
W

C0, s71d

where W is a Weyl transformation, RS is a Riemannian submersion, andM3 andN2 are compact
manifolds in three and two dimensions, respectively. A detailed discussion of these issues can be
found in Ref. 21. In Ref. 15, Riemannian submersions were used to construct multiple zero modes
within a more geometrical context.g

B. A class of multiple zero modes

Here we want to construct explicitly a class of multiple zero modes by starting with a pair of
functionsja which obey Eq.s63d, as explained in the preceding section. In particular, we want to
make use of the results of Ref. 21, where a class of Hopf maps obeying the eikonal equations70d
were found, and where the geometric explanation for their existence was provided. In concordance
with these results, we therefore choose the functions

j1 = ln sinhh ; 1
2 ln T, j2 = mq + nw, s72d

where we introduced toroidal coordinatessh ,q ,wd sand, for later convenience, the variableT
;sinh2 hd related to the Cartesian coordinatessx,y,zd via
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T ; sinh2 h =
4sx2 + y2d

4z2 + sr2 − 1d2, q = arctan
2z

r2 − 1
, w = arctan

y

x
. s73d

Further,m andn are nonzero integers such that exps2pilj2d is a single-valued function for integer
l fthe geometric significance of the integersm and n is that they provide the complex function
sHopf mapd f =expsj1+ ij2d with the Hopf indexH=mng.

Following the results of Ref. 21, it can be shown that the pairj1, j2 obeys Eq.s63d, and that
a new pairj81, j82 obeying Eq.s66d can be found without difficulty. Indeed, one finds easily that
ja obey Eq.s63d with

hsr d =
scoshh − cosqd2cosh2 h

sinh2 h
, s74d

g11 = 1, g12 = g21 = 0, g22 =
m2 sinh2 h + n2

cosh2 h
. s75d

Hence, the induced metricgab is already diagonal but not yet conformally flat. However, asg22

only depends onj1 si.e., on hd, a coordinate transformation involving onlyj1 is sufficient,j1

→j81sj1d, j82;j2, such thatg11→g811=g22;g822. Explicitly, the transformation reads

j81 = lnSsinhunu h
sumucoshh + În2 + m2 sinh2 hdumu

sunucoshh + În2 + m2 sinh2 hdunu D , s76d

see Ref. 21. The functionz8=j81+ ij82 itself is not single valued, but the function

z ; expz8 = expsj81 + ij82d s77d

is. It follows that for each spinorC with spin densitySW ;C†sW C=Fsjad¹j13 ¹j2 swhich is a

formal zero mode for some gauge potential, becauseSW obeys¹ ·SW =0d, uszdC are further formal
zero modes for the same gauge potential, whereu is a rational function of its argument. A
customary basis for the functionsu is u=zl for integerl.

The formal zero modes described so farsimplicitly via their spin densityd are single-valued
functions on allR3, but we have not yet taken into account the condition of square integrability.
Before doing so, we want to make some simplifying assumptions on the type of spin density we
want to discuss. First, we assume that the functionF depends onj1 si.e., onh or Td only. Second,
we reexpressF like F=eMf4T/ s1+Td2g, where the function ofMsTd will be specified below, that
is, we write for a general spin density

SW sMd = eMsTdSW s0d, SW s0d =
4T

s1 + Td2 ¹ j1 3 ¹ j2. s78d

The reason for this is thatSW s0d is a well behaved and integrable spin density, whereas¹j1

3 ¹j2 is not sclearly, integrability of the spin densityed3r uSW u,` is the same as square integra-

bility of the corresponding spinord. Another reason for the choice ofSW s0d, which does not concern

us much here, is the fact thatSW s0d is the Hopf curvature for the Hopf map expsj1+ ij2d. In

Cartesian coordinates,SW s0d reads

SW s0d =
16

s1 + r2d31 2nxz− 2my

2nyz+ 2mx

ns1 − r2 + 2z2d
2 s79d

and its spinorCs0d with SW s0d=Cs0d†sW Cs0d is
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Cs0d =
2Î2

s1 + r2d3/2Îs1 + r2dG + ns2z2 + 1 − r2d
s80d

3Sns2z2 + 1 − r2d + s1 + r2dG
2sx + iydsnz+ imd

D , s81d

where

G ª Sn2 + m2T

1 + T
D1/2

= Sn2 + m2 sinh2 h

cosh2 h
D1/2

s82d

and we choose the gauge such that the upper component is real. The calculation of the spinorCs0d

from the spin densitySW s0d is explained in Appendix B. The spinors81d is regular everywhere.

Further, it is a zero mode for some gauge potentialGW s0d, by constructionsthis gauge potential is

well behaving and leads to a square-integrable magnetic fieldHW s0d= ¹ 3Gs0d; its explicit expres-
sion, which is quite lengthy, is displayed in Appendix B, together with an explanation of its
calculationd. Additional formal zero modeszlCs0d for the same gauge potential are not square

integrable, i.e., the corresponding spin densityuz*zulSW s0d is not integrablesfor either positive or

negative integerld, as may be inferred easily from the explicit expression forSW s0d and from the
limiting behavior,

lim
T→0

uz*zu , Tunu, lim
T→`

uz*zu , Tumu. s83d

But with an appropriate choice ofM, it is easy to find spin densitiesSW sMd such thatuz*zulSW sMd

remains integrable for some nonzero values ofl.
Concretely, we assume thatMsTd andM8sTd are finite for all finite values ofT, i.e.,

uMsTdu , ` ∧ uM8sTdu , ` for T , `, s84d

and thatM behaves for largeT like

lim
T→`

MsTd , − mk ln T + M̄sTd, s85d

wherek is a postive integer and the remainderM̄ must obey

lim
T→`

uTM̄sTdu , `. s86d

Here the conditionss84d ands86d are chosen in order to avoid both spurioussi.e., pure gauged and
physical singularities for the corresponding gauge potential, and conditions85d is chosen in order
to have a nontrivial resultsi.e., multiple square-integrable zero modesd. Conditions85d induces a
spurioussgauged singularity in the corresponding gauge potential atT=` which must be cured by

an appropriate gauge fixing. Consequently, the spinorCsMd for the spin densitySW sMd with the
appropriate gauge fixing is

CsMd
ª eM/2eikmqCs0d, s87d

where the additional factor expsikmqd provides the gauge fixing, see below. Under the above
assumptions the spinors

Cl
sMd = zlCsMd, l = 0, . . . ,k s88d

are all square-integrable zero modes for the same gauge potentialGW sMd.
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It remains to determineGW sMd explicitly, which will be obtained with Eq.s59d of Sec. III. In
fact, using Eq.s59d fwhereM /2,l andkmq,f; remember that Eq.s59d also holds for finitel
and f because of the abelian nature of the target space symmetry transformationsg one easily
calculates

GW sMd = GW s0d −
M8T

G
sm¹ q + n ¹ wd − mk¹ q s89d

sas said, the expression forGW s0d is provided in Appendix Bd. Here the additional pure gauge term
precisely cancels a pure gauge singularity atT=`, as may be checked easily. Further, we may see
how it works that multiplication of the spinorCsMd by z does not change the gauge potential. The
crucial point is that multiplication byz corresponds to choosingM = uz*zu, and for thisM it holds
that M8T/G=−1, so that theM dependent term ins89d is, in fact, pure gauge and is cancelled by
the contribution¹ argz= ¹j2, see s72d. This just shows explicitly thatM /2;j81,l and j2

,f fulfill Eq. s60d which, of course, must be true by construction.
Therefore, we have succeeded in constructing explicitly a class of multiple zero modes to-

gether with their gauge potentials starting from the functionss72d sor, equivalently, starting from
the higher toroidal Hopf maps of Ref. 21d. For the simplest Hopf mapsi.e., form=n=1d these zero
modes have already been obtained in Refs. 13–15, whereas for the higher toroidal Hopf maps they
are new.
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APPENDIX A

The coefficients for the prolongation prv of the vector fieldv in Sec. II are

Rx = DxR− rxDxX − ryDxY, sA1d

Ry = DyR− rxDyX − ryDyY, sA2d

Lx = DxL − lxDxX − lyDxY, sA3d

Ly = DyL − lxDyX − lyDyY, sA4d

whereDx andDy are total derivatives with respect tox andy, respectively. Explicitly,Rx reads

Rx = Rx + Rrrx + Rllx + RGxGx
x + RGyGx

y − rxsXx + Xrrx + Xllx + XGxGx
x + XGyGx

yd

− rysYx + Yrrx + Yllx + YGxGx
x + YGyGx

yd sA5d

and analogously for the other coefficients.

APPENDIX B

The calculation of the spinorCs0d from the spin densitySW s0d proceeds as follows. For a gauge
such that the upper component of the spinor is real, a spinorC may be obtained from its spin

densitySW formally by the algebraic relation, see Ref. 2,
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C =
1

Î2suSW u + S3d
S uSW u + S3

S1 + iS2D . sB1d

This gauge is globally admissible provided that the third component ofSW is positive whenever its
first and second component are zero, i.e.,

S1 = 0 ∧ S2 = 0 ⇒ S3 . 0 sB2d

which holds for the spin densitySW s0d of Eq. s79d. Therefore, the spinorCs0d of Eq. s80d may be
computed with the help of the above expression.

The calculation of the gauge potentialGW s0d for the spinorszero moded Cs0d proceeds as
follows. Remember that once a zero modeC is given, the Dirac equation may be viewed as an
overconstrained system of linear, algebraic equations for the three components of the gauge
potential. If the constraint is fulfilled, this system can be solved explicitly and results in the

following expression for the corresponding gauge potentialGW , see Ref. 2:

GW =
1

2uSW u
s¹ 3 SW + 2 ImsC† ¹ Cdd. sB3d

Inserting the explicit expression forCs0d into the above formula leads to the following rather

lengthy expression forGW s0d:

GW s0d =
1

Gs1 + r2d21− ns5 − r2dy + 6mxz

ns5 − r2dx + 6myz

ms6z2 + 2 − 4r2d
2 +

2

Gs1 + r2dfGs1 + r2d + ns2z2 + 1 − r2dg1− sn2z2 + m2dy
sn2z2 + m2dx
mnsr2 − z2d

2
sB4d

ffor a direct comparison with the results of Refs. 13 and 14 for the casem=n=1, one must take
into account the fact that the gauge chosen in Refs. 13 and 14 differs from the one chosen here by

the gauge functionf=arctanszdg. Further, Eq.sB3d shows thatGW is singular wheneveruSW u is zero.
This singularity may be a spurioussgauged singularity, in which case it can be cured by an
appropriate gauge fixing as in Eq.s89d, or it may be physical, in which case the corresponding
zero mode is not admissiblesof course, all the zero modes given in Sec. IV B are admissibled.

1J. Fröhlich, E. Lieb, and M. Loss, Commun. Math. Phys.104, 251 s1986d.
2M. Loss and H.-T. Yau, Commun. Math. Phys.104, 283 s1986d.
3M. P. Fry, Phys. Rev. D54, 6444s1996d.
4M. P. Fry, Phys. Rev. D55, 968 s1997d; 56, 6714sEd s1997d.
5M. P. Fry, Phys. Rev. D62, 125007s2000d.
6C. Jayewardena, Helv. Phys. Acta61, 636 s1988d.
7I. Sachs and A. Wipf, Helv. Phys. Acta65, 652 s1992d.
8C. Adam, Z. Phys. C63, 169 s1994d.
9Y. Aharonov and A. Casher, Phys. Rev. A19, 2461s1979d.

10C. Adam, B. Muratori, and C. Nash, Phys. Rev. D60, 125001s1999d.
11D. M. Elton, J. Phys. A33, 7297s2000d.
12C. Adam, B. Muratori, and C. Nash, Mod. Phys. Lett. A15, 1577s2000d.
13C. Adam, B. Muratori, and C. Nash, Phys. Lett. B485, 314 s2000d.
14C. Adam, B. Muratori, and C. Nash, Phys. Rev. D62, 085026s2000d.
15L. Erdos and J. P. Solovej, Rev. Math. Phys.13, 1247s2001d.
16A. A. Balinsky and W. D. Evans, J. Funct. Anal.179, 120 s2001d.
17A. A. Balinsky and W. D. Evans, Bull. London Math. Soc.34, 236 s2002d.
18D. M. Elton, Commun. Math. Phys.229, 121 s2002d.
19P. J. Olver,Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics 107sSpringer-Verlag,

New York, 1993d.
20B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov,Modern Geometry—Methods and Applications, Part I, Graduate

Texts in MathematicssSpringer-Verlag, Berlin, 1984d.
21C. Adam, J. Math. Phys.45, 4017s2004d; math-ph/0312031.

052304-15 Symmetries of the Dirac–Pauli equation J. Math. Phys. 46, 052304 ~2005!

                                                                                                                                    



The Kähler potential of Abelian Higgs vortices
Heng-Yu Chena! and N. S. Mantonb!

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

sReceived 16 August 2004; accepted 23 November 2004; published online 12 April 2005d

We calculate the Kähler potential for the Samols metric on the moduli space of
Abelian Higgs vortices onR2, in two different ways. The first uses a scaling
argument. The second depends on a variant of the relationship between accessory
parameters and the regularized action in Liouville field theory. The Kähler potential
on the moduli space of vortices onH2 is also derived, and we are led to a geo-
metrical reinterpretation of these vortices. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1874334g

I. INTRODUCTION

The s2+1d-dimensional Abelian Higgs model, with Lagrangian density

L = −
1

4
FmnFmn +

1

2
DmFDmF −

l

8
suFu2 − 1d2, s1.1d

is known to have static and moving vortex solutions.1,2 The static solutions are the field configu-
rations minimizing the potential energy functional. When the coupling constantl takes the critical
value of 1, there are no net forces between the vortices, and they satisfy first-order Bogomolny
equationsfsees2.3d ands2.4dd. StaticN-vortex solutions inR2 or equivalently the complex plane
C are uniquely characterized by theN unordered, and not necessarily distinct pointshZ1,… ,ZNj in
C where the Higgs fieldF vanishes. As a manifold, the moduli spaceMN of solutions is therefore
CN, with the fundamental symmetrized polynomials inhZ1,… ,ZNj as coordinates. In practice,
these are awkward to deal with, and it is more convenient to treat the vortex positionshZ1,… ,ZNj
as local coordinates on moduli space, which is justified when they are distinct. This is what we
shall do in this paper. Vortex coalescence may be investigated by a limiting procedure.

The so-called “moduli space approximation” is a powerful approach for studying the low-
energy dynamics ofN solitonic objects in field theories with Bogomolny equations.3 The idea is
that, in the low-energy limit, most of the field degrees of freedom are effectively frozen, and the
field approximately follows a trajectory in moduli space. The field is at each instant a static
solution of the Bogomolny equations, but with moduli that are time dependent. The kinetic terms
in the field theory Lagrangian restrict to a kinetic energy expression for trajectories in moduli
space. ForN vortices, the resulting quadratic form on tangent vectors toMN defines the Samols
metric onMN.4 The field potential energy in theN-vortex sector takes its minimal, constant value
on MN, and can be neglected, so the dynamical trajectories are the geodesics onMN. These
accurately model the scattering of vortices.5

Samols found a general, but not explicit, formula for the metric onMN, and using this,
showed that the metric is Kähler.4 The metric is smooth and complete, but not flat. The most
interesting geodesic describes a head-on collision, where two vortices scatter through a right
angle. Recently, an explicit formula in terms of modified Bessel functions was given forN
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well-separated vortices, and a formula for the Kähler potential was also found.6 Our main purpose
in this paper is to construct a Kähler potentialK for the Samols metric with vortices at arbitrary
separation.

We present two different approaches to calculatingK. The first is to explicitly construct it
from the quantities in Samols’ metric. This reduces to a]̄ problem, which can be solved here by
a scaling argument. The second approach is inspired by the relationship between the so-called
“accessory parameters” in the context of uniformization of Riemann surfaces, and a regularized
Liouville action. This relationship was first conjectured by Polyakov and later proved by Takhtajan
and Zograf,7 and an accessible recent account with a simplified proof can be found in Ref. 8.
Similar results on Riemann surfaces with a range of singularities have also been investigated in
Refs. 9 and 10. It turns out that in the vortex situation, there are analogous quantities to the
accessory parameters, and we can construct a modification of the regularized Liouville action as
their generating function. This regularized action is the interacting part of the Kähler potential on
MN.

Also interesting is the Abelian Higgs model for vortices defined on the hyperbolic planeH2

with Ricci scalar21. Such vortices were shown to be integrable by Witten,11 as the Bogomolny
equations in this case reduce to the Liouville equation. The metric on the moduli space ofN
hyperbolic vortices was first derived and shown to be Kähler by Strachan.12 We construct the
Kähler potential and also uncover a new geometrical interpretation of the Higgs field.

This paper is organized as follows: In Sec. II, we briefly review Abelian Higgs vortices inR2,
and the Samols metric onMN. In Sec. III, a general formula for the Kähler potential onMN is
derived using the scaling argument. In Sec. IV, we review the regularized action of Liouville field
theory and the results of Takhtajan and Zograf, and show how the interacting part of the Kähler
potential onMN can be constructed from an analogous action. In Sec. V, we discuss vortices in
the hyperbolic plane, present the geometrical interpretation of the Higgs field, and show that in
this case the regularized Liouville action is the entire Kähler potential. In Sec. VI we summarize
our results.

II. ABELIAN HIGGS VORTICES

At critical coupling,l=1, the field potential energy in the Abelian Higgs model is

E =
1

2
E d2xHF12

2 + DiFDiF +
1

4
suFu2 − 1d2J , s2.1d

whereF12=]1A2−]2A1=B is the magnetic field in the plane andDjF=] jF− iAjF, j =1, 2, is the
covariant derivative of the complex Higgs fieldF. The boundary conditions are thatuFu→1 as
uxu→`, soF becomes pure phase, and the gauge field becomes pure gauge at spatial infinity, such
thatF12 andDjF vanish. The winding number ofF at infinity is denoted byN, and is assumed to
be a positive integer.

We can rearrangeE into the Bogomolny form by completing the square

E =
1

2
E d2xHSF12 +

1

2
suFu2 − 1dD2

+ sD1F − iD2FdsD1F + iD2Fd + F12J , s2.2d

and discarding boundary terms that vanish at spatial infinity. As the first two terms ins2.2d are
both non-negative, the minimal value ofE is obtained whenAi and F satisfy the Bogomolny
equations

F12 +
1

2
suFu2 − 1d = 0, s2.3d

D1F + iD2F = 0. s2.4d

E is then related to the winding number through Stokes’ theorem,
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E =
1

2
E d2x F12 = Np, s2.5d

and it can be interpreted as the energy ofN vortices with no static interactions.
Let us rewrites2.3d and s2.4d in terms of the complex coordinatez=x1+ ix2,

iFzz̄=
1

4
suFu2 − 1d, s2.6d

Dz̄F = ]z̄F − iAz̄F = 0. s2.7d

Equations2.7d is solved byAz̄=−i]z̄ log F. Next expressF in terms of a gauge-invariant quantity
h and a phase factorx asF=es1/2dh+ix, whereh→0 as uxu→`. Substituting these intos2.6d, we
obtain the gauge-invariant, Taubes equation for the vortices1

4]z]z̄h − eh + 1 = 4po
r=1

N

dsz− Zrd, s2.8d

wherehZ1,… ,ZNj are the vortex positions inC. Here, these positions are taken as distinct, simple
zeros ofF, which fixes the strength of thed functions, although the zeros can coalesce. There is
a unique solution for any choice of positions, as proved by Jaffe and Taubes.1 Therefore, on a large
stratum of the moduli spaceMN of N-vortex solutions,hZ1,… ,ZNj are good local coordinates.
Notice that s2.8d has a form very similar to the Liouville equation on a punctured Riemann
surface. However, the constant 1 ins2.8d, the Higgs vacuum expectation value, sets the scale for
the system, and breaks conformal invariance.

Close to therth vortex positionZr, h has the following expansion:

h = loguz− Zru2 + ar +
1

2
brsz− Zrd +

1

2
brsz̄− Z̄rd + c̄rsz− Zrd2 −

1

4
uz− Zru2 + crsz̄− Z̄rd2 + ¯ .

s2.9d

The expansion coefficientsar, br, b̄r, cr, andc̄r are functions of the separations betweenZr and all

other vortex positionsZs, sÞ r. The coefficientar plays the role of a local scaling factor.br andb̄r

measure the deviation from circular symmetry ofh aroundZr due to the overlap with the other
vortices.

Starting from the field kinetic energy in the Abelian Higgs model, Samols showed thatbr and

b̄r determine the metricG on the moduli space, the formula being4

G = o
r,s=1

N Sdrs + 2
]bs

]Zr
DdZr dZ̄s. s2.10d

The drs term gives a flat, noninteracting metric, and the remaining term, which decays exponen-
tially as the vortices separate, leads to dynamical vortex interactions in the moduli space approxi-
mation. Although the coefficients ofG become singular as the vortices coalesce, these singularities
can be removed by a change of coordinates, and the metric is smooth and complete. The reality of
the field kinetic energy implies that the metric is Hermitian, so

]bs

]Zr
=

]b̄r

]Z̄s

. s2.11d

From this it follows that the metric is Kähler, and there is therefore a Kähler potentialK related to
the metric coefficients by
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]2K
]Zr ] Z̄s

= drs + 2
]bs

]Zr
. s2.12d

In addition,br has been shown to obey a symmetric identitity,13

]br

]Z̄s

=
]bs

]Z̄r

. s2.13d

Both s2.11d ands2.13d have recently been proved directly, as symmetry properties of the Green’s
function of the linearized Taubes equationssee Ref. 2 p. 209d. The Kähler property and transla-

tional invariance imply thator=1
N br =or=1

N b̄r =0, and rotational invariance implies thator=1
N Zrb̄r is

real.14

III. THE VORTEX KÄHLER POTENTIAL AND THE SCALING INTEGRAL

We seek a real functionK̃ of the coordinateshZ1,… ,ZN; Z̄1,… ,Z̄Nj such that

]K̃
]Z̄r

= 2br,
]K̃
]Zr

= 2b̄r . s3.1d

GivenK̃, the identitiess2.11d ands2.13d trivially follow. K̃ is a Kähler potential for the interacting
part of the metric. The first of Eqs.s3.1d is a ]̄ problem, and the second its conjugate. We do not
solve these equations separately, but consider the following linear combination:

o
r=1

N HZr
]

]Zr
+ Z̄r

]

]Z̄r
JK̃ = 2o

r=1

N

hZrb̄r + Z̄rbrj. s3.2d

On the left-hand side we have the overall scaling operator on the vortex moduli space acting onK̃.
We make the ansatz that allZr are parametrized by a single scale variablet, i.e., Zrstd=Zrt.

We can then express the overall scaling operator in terms oft,

t
d

dt
K̃ = o

r=1

N HZrstd
]

]Zrstd
+ Z̄rstd

]

]Z̄rstd
JK̃. s3.3d

Combining this withs3.2d, and integrating, we find

K̃ = 2È1 dt

t
o
r=1

N

(Zrstdb̄rstd + Z̄rstdbrstd). s3.4d

brstd are the expansion parametersbr in s2.9d when the vortices are atZrstd.
In an analysis of a model of first-order vortex dynamics,15 it was shown that some conserved

quantities can be expressed in terms of integrals involvingh and its derivatives. The integral ofh
itself, which remains finite despite the logarithmic divergences ofh, was also computed by using
a Pohozaev hozaev identity. ForN noncoincident vortices

E
C

d2x h= − po
r=1

N

sZrb̄r + Z̄rbr + 6d. s3.5d

This result combined withs3.4d gives the rather interesting expression
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K̃ = − 2È1 dt

t
H 1

p
E d2x hsx;td + 6NJ . s3.6d

Here,hsx ;td denoteshsxd with the vortices atZrstd. The entire Kähler potential by this scaling
argument is therefore

K = o
r=1

N

ZrZ̄r − 2È1 dt

t
H 1

p
E d2x hsx;td + 6NJ , s3.7d

where the first term gives thedrs in Samols’ metrics2.10d. With a suitable change of coordinates,
this reduces to the expression given in Ref. 16 for the case ofN=2.

As a simple test, we consider two well-separated vortices. We work in the center
of mass frame, and use the asymptoticbr values as calculated in Ref. 6. Using the notation
Z1=seiu=−Z2 and b1=bssdeiu=−b2, where s is the separation from the origin, we have

or=1
2 hZrb̄r +Z̄rbrj=4sbssd. bssd equalsÎ32K1s2sd for larges, where the prefactor derives from a

string duality argument of Tong.17 Calculating the integrals3.4d, and adding the flat term, gives the
asymptotic Kähler potential,

K = 2s2 − 8Î8K0s2sd, s3.8d

which coincides with the formula in Ref. 6safter a change in normalization conventiond. K0, K1

are the modified Bessel functions of the second kind, and we have used Bessel function identities
in deriving s3.8d.

IV. REGULARIZED LIOUVILLE ACTION AND VORTEX KÄHLER POTENTIAL

In this section we present a different approach to solving the equationss3.1d. We show thatK̃
is a suitably regularized modified Liouville action, whose variational equation is the Taubes

equations2.8d. Our motivation came from the striking similarity ofb̄r to the accessory parameters
in the Liouville field theory. We first review the relevant aspects of Liouville theory, following
Ref. 8.

Consider a Liouville fieldf, satisfying

]z]z̄f =
1

2
ef, s4.1d

and defined over ann-punctured Riemann sphere,S> Ĉ / hz1,z2,… ,znj, Ĉ=Cø h`j, wherezn−2

=0, zn−1=1, zn=` and nù3. Assume the punctures are parabolic singularities, wheref has
asymptotic behavior,

f = H− 2 loguz− zru − 2 loguloguz− zruu + Os1d, asz→ zr, r Þ n,

− 2 loguzu − 2 log loguzu + Os1d, asz→ zn = `.
s4.2d

The Liouville equations4.1d implies that the Poincaré metricds2=ef dz dz̄on S has constant Ricci
scalarRS=−2. sThe Gaussian curvature is half this.d

The zzcomponent of the energy–momentum tensor forf is defined by

Tfszd = ]z]zf −
1

2
s]zfd2, s4.3d

and the Liouville equation implies thatTfszd is a meromorphic function,]z̄Tfszd=0. For the
punctured sphere with parabolic singularities,Tfszd is given by the finite sum
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Tfszd = o
r=1

n−1H 1

2sz− zrd2 +
cr

sz− zrd
J , s4.4d

and has the expansion aroundz=`,

Tfszd ,
1

2z2 +
cn

z3 + OS 1

z4D . s4.5d

The coefficient of each term 1/sz−zrd2, r =1,… ,n−1 and also of 1/z2 for zn=`, is half the
conformal weight, so each parabolic singularityzr has conformal weight 1. The complex constants
cr, r =1,… ,n, are the accessory parameters. They are uniquely determined by the positions of the
puncturesz1,… ,zn. Matching the first expression with the second expression forTfszd asz→`,
gives the constraints

o
r=1

n−1

cr = 0, o
r=1

n−1

crzr = 1 −
n

2
, o

r=1

n−1

szr + crzr
2d = cn. s4.6d

Polyakov conjectured, and Takhtajan and Zograf then proved,7,8 that for a Riemann sphere
with n punctures, a suitably regularized Liouville action evaluated at the classical solution is the
generating function forcr, i.e.,

cr = −
1

2p

]Scl

]zr
, r = 1,…,n − 3. s4.7d

The regularized Liouville action is

Scl = lim
e→0
H i

2
E

Se

dz∧ dz̄s]zf ]z̄f + efd + 2p„n log e + 2sn − 2dlogulog eu…J , s4.8d

wheresi /2ddz∧dz̄=dx1∧dx2, and the integration region isSe=C / shør=1
n−1uz−zru,ejø huzu.1/ejd,

whose boundaries are a circle near` and infinitesimal circles around the punctures.
We now turn to the Taubes equations2.8d for N vortices inC. Define, by analogy with the

Liouville field, Th=]z]zh− 1
2s]zhd2. Using the expansion ofh around each vortex centers2.9d, we

have

Th = Thsz,z̄d = o
r=1

N H−
3

2sz− Zrd2 −
b̄r

2sz− Zrd
J + Os1d, s4.9d

where theOs1d terms are not all holomorphic. The conformal weight is23 at each pointZr, and

we may identify −b̄r /2 as the accessory parameter atZr. Notice that the constraintsor=1
N b̄r =0 and

or=1
N Zrb̄r are real, and look remarkably similar to the first two constraintss4.6d. If we consider the

Poincaré-type metricds2=eh dz dz̄, then each vortex corresponds to a conical singularity of deficit
angle −2p. For the Liouville equation onS, it would not be possible for the conformal weight at
each singularity to be negative, but for the Taubes equation with our boundary conditions, it is.

We now show that the regularized action forh is the generating function forb̄r. The unregu-
larized action forh, whose formal variation gives Taubes’ equation, is

Sh =
i

2p
E

C̃
dz∧ dz̄s2 ]zh ]z̄h + eh − h − 1d, s4.10d

where the integration regionC̃ is C with N small disks of radiuse centered at the vortex locations
hZ1,… ,ZNj being punctured out, and the limite→0 taken. As the integrals ofh and eh−1 are
known to be finite ase→0, the only singular term in the integral comes from]zh ]z̄h, which gives
a contribution of −4N log e+Os1d. This loge term needs to be removed. We also require of a
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regularized action that at a classical solution, i.e.,h satisfying the Taubes equations2.8d, the action
should be stationary against variationsdh. Now, the variation ofSh only comes from boundary
contributions, as other terms can be eliminated by usings2.8d, so we have

dSh =
i

2p
E

C̃
dz∧ dz̄(2]zsdh ]z̄hd + 2]z̄sdh ]zhd) = −

i

2p
o
r=1

N H2E
gr

dz̄dh ]z̄h − 2E
gr

dzdh ]zhJ ,

s4.11d

wheregr is the small circle of radiuse centered atZr. We allow dh to be as general as possible,
but keep the vortex centershZ1,… ,ZNj fixed, and restrict the leading-order behavior ofh around
Zr to remainh=loguz−Zru2, because the Higgs fieldF would acquire a branch point atZr if the
power dependence varied. So nearZr,

dh = dar +
1

2
db̄rsz− Zrd +

1

2
dbrsz̄− Z̄rd + Ose2d. s4.12d

Substitutings4.12d into s4.11d, we find thatdSh=−4or=1
N dar by a similar calculation to those in

Ref. 15. This variation can be cancelled by adding a term 4or=1
N ar to Sh. So combined with the

additional loge term, we obtain the regularized action

Sh
reg.= lim

e→0
H i

2p
E

C̃
dz∧ dz̄s2 ]zh ]z̄h + eh − h − 1d + 4o

r=1

N

ar + 4N log eJ , s4.13d

which is finite, and stationary for solutions of the Taubes equation.
From now on, only considerSh

reg. evaluated at the classical solutions, and hence a function of

hZ1,… ,ZN; Z̄1,… ,Z̄Nj. Then

]Sh
reg.

]Zs
=

i

2p
E

C̃
dz∧ dz̄

]

]Zs
s2 ]zh ]z̄h + eh − h − 1d + 4o

r=1

N
]ar

]Zs
−

i

2p
E

gs

dz̄s2 ]zh ]z̄h + eh − h − 1d.

s4.14d

The contribution on the second line ofs4.14d comes because a displacement ofZs, thesth vortex
position, induces a displacement of the small circlegs. One can use the field equation to derive the
useful identity

dz∧ dz̄
]

]Zs
s2 ]zh ]z̄h + eh − h − 1d = dh2 dz̄s]Zs

h ]z̄hd − 2 dzs]Zs
h ]zhdj. s4.15d

Using this, the terms on the first line ofs4.14d become boundary integrals, hence

]Sh
reg.

]Zs
= −

i

2p
o
r=1

N H2E
gr

dz̄s]Zs
h ]z̄hd − 2E

gr

dzs]Zs
h ]zhdJ + 4o

r=1

N
]ar

]Zs

−
i

2p
E

gs

dz̄s2 ]zh ]z̄h + eh − h − 1d. s4.16d

Evaluating these boundary integrals using the expansions2.9d, we find

]Sh
reg.

]Zs
= Sb̄s − 2o

r=1

N
]ar

]Zs
D + S2b̄s − 2o

r=1

N
]ar

]Zs
D + 4o

r=1

N
]ar

]Zs
− b̄s = 2b̄s, s4.17d

which is our main result. AsSh
reg. is manifestly real, we also have]Sh

reg./]Z̄s=2bs. Sh
reg. is therefore

the generating function ofbs and b̄s, and hence by the remark followings3.1d, Sh
reg. is the inter-
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acting partK̃ of the Kähler potential for the Samols metric onMN. The entire Kähler potential on
MN is

K = o
r=1

N

ZrZ̄r + Sh
reg.. s4.18d

Sh
reg. has the symmetries of theN-vortex system, namely the translational invariance,

o
r=1

N
]Sh

reg.

]Zr
= 0, s4.19d

and rotational invariance

o
r=1

N HZr
]

]Zr
− Z̄r

]

]Z̄r
JSh

reg.= 0, s4.20d

which translate intoor=1
N b̄r =0 andor=1

N Zrb̄r =or=1
N Z̄rbr, respectively. Notice that these symmetries

restrict the forms of additional holomorphic or antiholomorphic functions we could add to our
Kähler potential.

One final remark aboutSh
reg. is that it can be simplified, because 1−eh is twice the magnetic

field, whose integral over the plane is a constant in theN-vortex sector. The term proportional to
1−eh in the integrand ofs4.13d can therefore be dropped. However, this simplification only applies
to Sh

reg. evaluated on the classical solutions.

V. THE KÄHLER POTENTIAL FOR HYPERBOLIC VORTICES

Abelian Higgs vortices on the hyperbolic planeH2 with Ricci scalar21 were first considered
by Witten,11 and an expression for the Kähler metric on the moduli space was derived by
Strachan.12 A feature of the hyperbolic case is that theN-vortex system can be described by a
Liouville field c with sources, as an alternative toh.

On a general curved surface, we can always choose coordinates such that the metric isg
=essz,z̄d dz dz̄. The gauge-invariant field equation forN vortices becomes

4]z ]z̄h − essz,z̄dseh − 1d = 4po
r=1

N

dsz− Zrd, s5.1d

with the boundary conditionh→0. Solutions exist as before, with arbitrary locationsZr,
18 and the

generalized Samols metric on theN-vortex moduli space, again derived from the kinetic terms of
the Lagrangian, is19

G = o
r,s=1

N HessZr,Z̄rddrs + 2
]bs

]Zr
JdZr dZ̄s. s5.2d

The quantitiesbr are defined as earlier, through the expansions2.9d of h near the vortex centers;
the only difference being that in the middle quadratic term ofs2.9d, the coefficient14 is replaced by
1
4essZr,Z̄rd.

For vortices on the hyperbolic planeH2 in the standard disk model, with Ricci scalarR=−1,
the conformal factor is

es =
8

s1 − zz̄d2, uzu , 1, s5.3d

ands satisfies the Liouville equation]z ]z̄s= 1
4es. Now consider the conformal transformation on

the hyperbolic plane,g→ ĝ=ehg=eh+s dz dz̄. The Ricci scalar transforms to
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R̂= e−hsR− 4e−s]z ]z̄hd = e−hs− 1 − 4e−s]z ]z̄hd. s5.4d

We see that ifh satisfiess5.1d, then, away from the singularities,R̂=−1. Moreover, the fieldc
=s+h also satisfies the Liouville equation]z ]z̄c= 1

4ec.
The squared magnitude of the Higgs fielduFu2=eh of hyperbolic vortices therefore has a

geometrical interpretation; it plays the role of a conformal factor changing the hyperbolic plane

into a hyperbolic planeĤ2 of the same curvature, however, with conical singularities at
hZ1,… ,ZNj.

Sincec is a Liouville field, ec can be expressed in terms of some rational functionfszd. f
needs to satisfy the conditionuf u,1 for uzu,1, to map disk into disk, and also the boundary
condition uf u→1 asuzu→1. The metricĝ is

ĝ = ec dz dz̄=
8u df

dzu
2 dz dz̄

s1 − f f̄d2
=

8 df df̄

s1 − f f̄d2
. s5.5d

fszd is a map fromĤ2 to H2, and the metricĝ is the pull-back of the standard hyperbolic metric on

H2. Conical singularities occur onĤ2, because the inverse off is multivalued in general. Using
s5.3d, we see that

uFu2 = eh = Udf

dz
U2s1 − zz̄d2

s1 − f f̄d2
, s5.6d

and the phase ofF can be chosen so that

F = Sdf

dz
D s1 − zz̄d

s1 − f f̄d
. s5.7d

For N distinct vortices,df /dz should vanish atN distinct points within the unit disk. The general
form of f satisfying these requirements is given in Ref. 12.

Consider now the expansion ofc around therth vortex positionZr,

c = loguz− Zru2 + Ar +
1

2
B̄rsz− Zrd +

1

2
Brsz̄− Z̄rd + C̄rsz− Zrd2 + Crsz̄− Z̄rd2 + ¯ . s5.8d

Sincec=h+s=h+logs8/s1−zz̄d2d, the expansion coefficients ofc are related to those ofh by

Ar = ar + logH 8

s1 − ZrZ̄rd2J ,

B̄r = b̄r +
4Z̄r

s1 − ZrZ̄rd
, Br = br +

4Zr

s1 − ZrZ̄rd
,

C̄r = c̄r +
Z̄r

2

s1 − ZrZ̄rd2
, Cr = cr +

Zr
2

s1 − ZrZ̄rd2
. s5.9d

One can show by computing thezzcomponent of the energy–momentum tensor forc, that atZr

the conformal weight is23 and the accessory parameter is −B̄r /2.
The regularized Liouville action forc is
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Sc
reg.= lim

e→0
H i

2p
E

D̃
dz∧ dz̄s2 ]zc ]z̄c + ecd + 4o

r=1

N

Ar −
8

e
+ s4N − 8dlog eJ , s5.10d

whereD̃=D / shør=1
N uz−Zru,ejø huzu.1−ejd andD is the unit disk. As before,Sc

reg. evaluated on
an N-vortex solution becomes a function just of the vortex positions. By differentiatingSc

reg., we
obtain, by a calculation similar to that in Sec. IV.,

]Sc
reg.

]Zr
= 2B̄r,

]Sc
reg.

]Z̄r

= 2Br , s5.11d

and therefore

]2Sc
reg.

]Zs ] Z̄r

= 2
]Br

]Zs
=H 8drs

s1 − ZrZ̄rd2
+ 2

]br

]Zs
J . s5.12d

By comparing withs5.2d, we see thats5.12d is the coefficient ofdZrdZ̄s in the Samols/Strachan
metric on theN-vortex moduli space. This shows thatSc

reg. is the entire Kähler potential for the
hyperbolic vortices. Unlike vortices inR2, we do not have to add a further term.

VI. CONCLUSION

In this paper, we presented two expressions for the Kähler potential forN distinct Abelian
Higgs vortices onR2, both involving integrals of the gauge invariant quantityh=loguFu2.

Our first approach used a scaling argument and appears to be the easiest. The result agrees
with the Kähler potential for two well-separated vortices given in Ref. 6. The second approach

exploits the striking analogy between the expansion coefficientsb̄r of the fieldh, and the accessory
parameterscr in Liouville field theory. The regularized action forh evaluated on classical solutions

was shown to be the interacting part of the Kähler potential. By adding the flat partor=1
N ZrZ̄r, we

obtained the full Kähler potential on theN-vortex moduli space.
We also investigated vortices on the hyperbolic planeH2 with Ricci scalar21. It was con-

venient to describe hyperbolic vortices using the Liouville fieldc, instead of the relatedh. The

expansion coefficientsb̄r in this case are directly related to the accessory parameters of the
Liouville field. The regularized action forc was shown to be the entire Kähler potential on the
N-vortex moduli space. It would be interesting to compare theN-vortex metric and the Weil–
Petersson metric for the hyperbolic plane withN punctures.
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We consider a Dirac operatorH acting in the Hilbert spaceL2sR3;C4d ^ C2, which
describes a Hamiltonian of the chiral quark soliton model in nuclear physics. The
mass term ofH is a matrix-valued function formed out of a functionF :R3→R,
called a profile function, and a vector fieldn on R3, which fixes pointwise a
direction in the isospin space of the pion. We first show that, under suitable con-
ditions, H may be regarded as a generator of a supersymmetry. In this case, the
spectra ofH are symmetric with respect to the origin ofR. We then identify the
essential spectrum ofH under some condition forF. For a class of profile functions
F, we derive an upper bound for the number of discrete eigenvalues ofH. Under
suitable conditions, we show the existence of a positive energy ground state or a
negative energy ground state for a family of scaled deformations ofH. A symmetry
reduction ofH is also discussed. Finally a unitary transformation ofH is given,
which may have a physical interpretation. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1896388g

I. INTRODUCTION

Let s js j =1,2,3d be the Pauli matrices,

s1ªS0 1

1 0
D, s2ªS0 − i

i 0
D, s3ªS1 0

0 − 1
D s1.1d

and

a jªSs j 02

02 − s j
D s j = 1,2,3d, bªS02 12

12 02
D , s1.2d

where 02 and 12 are the 232 zero matrix and the 232 identity matrix, respectively. The matrix

g5ª − ia1a2a3 s1.3d

is Hermitian withg5
2=14 sthe 434 identity matrixd satisfying the following relations:

fa j,g5g = 0 s j = 1,2,3d, hb,g5j = 0, s1.4d

wherefA,BgªAB−BA and hA,BjªAB+BA. We set

sªss1,s2,s3d, aªsa1,a2,a3d. s1.5d

For objectsA =sA1,A2,A3d and B=sB1,B2,B3d such that the productsAjBj s j =1,2,3d and
their sum are defined, we writeA ·Bªo j=1

3 AjBj.
We consider a Dirac operator acting in the Hilbert space

adAuthor to whom correspondence should be addressed. Electronic mail: arai@math.sci.hokudai.ac.jp
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HªL2sR3;C4d ^ C2, s1.6d

where L2sR3;C4d is the Hilbert space ofC4-valued square integrable functions onR3. Let
¹ªsD1,D2,D3d with Dj the generalized partial differential operator in the variablexj, the j th
component ofx=sx1,x2,x3d[R3. Then the free Dirac operator with mass zero is defined by

H0ª − ia · ¹ ^ 12 s1.7d

acting inH. To introduce a perturbation toH0, let F :R3→R be Borel measurable and finite almost
everywheresa.e.d in R3 and set

UFªcosF + ig5 ^ t ·n sinF, s1.8d

wheretªst1,t2,t3d with t jªs js j =1,2,3d, nªsn1,n2,n3d with nj a real-valued measurable func-
tion on R3 such that

unsxdu2 = 1, a.e.x [ R3. s1.9d

Let M .0 be a constant. Then, by the second relation ins1.4d, Msb ^ 12dUF is a bounded self-
adjoint operator onH. Hence, by the Kato–Rellich theorem, the operator

HªH0 + Msb ^ 12dUF s1.10d

is self-adjoint with domainDsHd=DsH0d. This is the Dirac operator we consider in this paper. The
operatorH appears as the Hamiltonian of the so-called the chiral quark soliton model in nuclear
physicsse.g., Ref. 1 and references thereind. In this context,M and

FFªcosF + i sinF ^ t ·n s1.11d

sUF with g5 replaced by 14d denote the mass of a quark and the pion field, respectively, andF is
called a profile function. The Dirac operatorH is not only physically important, but also may have
interests from purely mathematical points of view. As far as we know, no mathematically rigorous
analysis has been made on the Dirac operatorH sa study of a Dirac operator with a variable mass
is given in Ref. 2, but, in that paper, the mass is a scalar function and the point there is to establish
self-adjointness of such a Dirac opeartor in cases where the Kato–Rellich theorem is no longer
applicable to it; in this sense Ref. 2 does not bear upon the topics of the present paperd.

The present paper is organized as follows. In Sec. II, we show that the Dirac operatorH can
be regarded as a generator of a supersymmetry, and describe its implications on the spectra ofH.
In Sec. III we identify the essential spectrum ofH. We also derive an upper bound for the number
of discrete eigenvalues ofH. In particular, for a class ofF andn, the absence of discrete eigen-
values ofH is proven. Sections IV and V are concerned with existence of discrete eigenvalues of
H. In Sec. IV we introduce a concept of a positive energy ground state and that of a negative
energy ground state ofH and show, under some condition forF, that a scaled deformation ofH
has a positive energy ground state or a negative ground state. In Sec. V we discuss a symmetry
reduction ofH to smaller mutually orthogonal closed subspaces which are indexed by triples
s, ,s,td[Z3 h±1j3 h±1j, where, denote an eigenvalue of the third component of the angular
momentum operator,s/2 the spin of the quark andt /2 the isospin of the pion. We prove that,
under suitable conditions, each reduced part ofH or its scaled version has a discrete positive
ground state or a discrete negative ground state. In the last section we present a unitary transfor-
mation which bringsH to a Dirac operator with a magnetic moment.

II. SUPERSYMMETRIC ASPECTS

In this section we assume the following.
Hypothesis (I):Eachnjs j =1,2,3d is continuously differentiable onR3 and

sn1sxd,n2sxdd Þ s0,0d, x [ R3. s2.1d
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Let

jsxdª
st1n2sxd − t2n1sxdd
În1sxd2 + n2sxd2

, x [ R3. s2.2d

Thenjsxd2=1, x[R3. For all x[R3, we can define a matrix tensor

Gsxdªa1a2a3b ^ jsxd s2.3d

acting onC4 ^ C2. It is easy to see thatGsxd is self-adjoint withGsxd2= I sI denotes identityd. By
the natural identificationH=L2sR3;C4 ^ C2d, we denote the multiplication operator by the matrix-
tensor valued functionGs·d by the same symbolG. ThenG is self-adjoint and unitary onH.

Proposition 2.1:Suppose that Hypothesis (I) holds andjsxd is a constant matrix. Then, for all
c[DsHd, Gc[DsHd and

hG,Hjc = 0, c [ DsHd. s2.4d

Proof: By direct computations, we have

ha1a2a3b,a jj = 0 s j = 1,2,3d, hjsxd,t ·nsxdj = 0. s2.5d

Using these relations and the constancy ofjs·d, we see that, for allc[DsHd=DsH0d, Gc[DsH0d
and H0Gc=−GH0c. Similarly, using s2.5d and fa1a2a3b ,bg5g=0, we see that hMsb
^ 12dUF ,Gjc=0. Thuss2.4d follows. j

Proposition 2.1 shows that the Dirac operatorH may be regarded as a generator of a super-
symmetry, i.e., a supercharge with respect toG se.g., p. 140 in Ref. 3d.

For a self-adjoint operatorT, we denote byssTd frespectively,spsTdg the spectrum ofT
srespectively, the point spectrum ofTd. The discrete spectrum ofT sthe set of isolated eigenvalues
of T with finite multiplicityd is denotedsdsTd.

Theorem 2.2:Suppose that Hypothesis (I) holds andjsxd is a constant matrix. Then

sid ssHd is symmetric with respect to the origin ofR, i.e., if l[ssHd, then−l[ssHd.
sii d s#sHds#=p,dd is symmetric with respect to the origin ofR. The multiplicity l[s#sHd

coincides with that of−l[s#sHd.

Proof: By Proposition 2.1 we haveGHG−1=−H sthe unitary equivalence ofH and −Hd. This
implies the desired results. j

Remark 2.1:The properties stated in Theorem 2.2 may differ from spectral properties of the
usual Dirac operatorH0+Mb+V, whereV is a scalar potential.

III. THE ESSENTIAL SPECTRUM AND FINITENESS OF THE DISCRETE SPECTRUM
OF H

A. Structure of the spectrum of H

For a self-adjoint operatorT, we denote bysesssTd the essential spectrum ofT.
Theorem 3.1:Suppose that

lim
uxu→`

Fsxd = 0. s3.1d

Then

sesssHd = s− `,− Mg ø fM,`d, s3.2d

sdsHd , s− M,Md. s3.3d

Proof: We write H=H0+Msb ^ I2d+V with VªMsb ^ I2dsUF− Id. We haveiVsxdiøMsu1
−cosFsxdu+ usinFsxdud→0suxu→`d. Hence we can apply Theorem 4.7, Remark 2 on p. 117 in Ref.

052306-3 Dirac operator in the chiral quark soliton model J. Math. Phys. 46, 052306 ~2005!

                                                                                                                                    



3 to H to obtains3.2d. This impliess3.3d. j

B. Bound for the number of discrete eigenvalues of H

Assumes3.1d. Then, by Theorem 3.1, we can define the number of discrete eigenvalues ofH
counting multiplicities,

NHªdim RanEHss− M,Mdd, s3.4d

whereEH is the spectral measure ofH and RanEHss−M ,Mdd means the range ofEHss−M ,Mdd. To
estimate an upper bound forNH, we introduce a hypothesis forF andn.

Hypothesis (II):

sid The functionsF andnj s j =1,2,3d are continuously differentiable onR3.
sii d The functionsDjF andDjnk s j ,k=1,2,3d are bounded onR3.

Under this assumption, we can define

VFsxdªÎu ¹ Fsxdu2 + o
k=1

3

u ¹ nksxdu2 sin2 Fsxd, x [ R3. s3.5d

Theorem 3.2:Assume (3.1) and Hypothesis (II). Suppose that

CFªE
R6

VFsxdVFsyd
ux − yu2

dx dy , `. s3.6d

Then NH is finite with

NH ø
M2CF

2p2 . s3.7d

To prove this theorem we present a general lemma. LetK be a complex Hilbert space and
BsKd be the Banach space of bounded linear operators onK. Let V:Rd→BsKd sd[Nd be a
measurable function. The functionV defines a unique multiplication operator acting in the Hilbert
spaceL2sRd;Kd of K-valued square integrable functions onRd. We denote it by the same symbol
V. We assume the followingsD is thed-dimensional generalized Laplaciand:

sV.1d Dss−Dd1/2d,DsuVu1/2dùDsuV* u1/2d and the form sum

L0ª − Du S− uVu 0

0 − uV* u
D

acting in %2L2sRd;Kd with form domain Dss−Dd1/2d defines a unique self-adjoint operator
bounded from below. Moreover,sesssL0d, f0,`d.

sV.2d The operator

Lª − D + S0 V*

V 0
D

acting in %2L2sRd;Kd is self-adjoint onDsDd, bounded from below, andsesssLd, f0,`d.
For a self-adjoint operatorA, we denote byN−sAd the number of negative eigenvalues ofA

counting multiplicities.
Lemma 3.3:Assume (V.1) and (V.2). Then N−sLdøN−sL0d.
Proof: Let
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QªS0 V*

V 0
D .

ThenQ is self-adjoint and

Q2 = SuVu2 0

0 uV* u2
D ,

which implies that

uQu = SuVu 0

0 uV* u
D .

It is obvious thatQù−uQu. HenceLùL0. This inequality and the min–max principlese.g., Theo-
rem XIII.1, Problem 1 in Ref. 4d imply the inequalityN−sLdøN−sL0d. j

Proof of Theorem 3.2:We note thatH has the operator matrix representation

H = H0 + MS 0 FF
*

FF 0
D , s3.8d

whereFF is defined bys1.11d. Hence

H2 = LsFd + M2 s3.9d

with

LsFdª − D + MS 0 WF
*

WF 0
D , s3.10d

whereWFªis ·s¹FFd. Note that, by HypothesissII d sii d, the second term on the right-hand side of
s3.10d is a bounded self-adjoint operator and henceLsFd is self-adjoint withDsLsFdd=DsDd. By
direct computations, we have

WFsxd*WFsxd = WFsxdWFsxd* = u ¹ Fsxdu2 + o
j=1

3

u ¹ njsxdu2 sin2 Fsxd,

where we have useds1.9d. Hence uWFu= uWF
* u=VF. Let L0sFdª−D−MVF. By Theorem 3.1,

sesssLsFdd=f0,`d. Conditions3.6d implies thatVF is a potential in the Rollnik classsp. 170 in Ref.
5d. Hence it follows from Example 7, p. 118 in Ref. 4 and Weyl’s essential spectrum theorem
sTheorem XIII.14, p. 112 in Ref. 4d that sesssL0sFdd=sesss−Dd=f0,`d. Therefore the assumption
of Lemma 3.3 withL=LsFd and L0=L0sFd is satisfied. HenceN−sLsFddøN−sL0sFdd. It is well
known thatN−sL0sFddø8M2CF / s4pd2 sTheorem XIII.10 in Ref. 4d, where the factor 8=dimC4

^ C2. On the other hand, by the spectral theorem,NHøN−sLFd. Thuss3.7d follows. j

Theorem 3.2 implies the absence of discrete eigenvalues ofH for F’s such that the Rollnik
norm of MVF is sufficiently small.

Corollary 3.4: Assume (3.1) and Hypothesis (II). Let M2CF,2p2. ThensdsHd=0” .

IV. EXISTENCE OF DISCRETE GROUND STATES

For a self-adjoint operatorA bounded from below, we set

E0sAdªinf ssAd.

If E0sAd[spsAd, then we say thatA has a ground state and we call a nonzero vector in kersA
−E0sAdd a ground state ofA. If E0sAd[sdsAd, then we say thatA has a discrete ground state.

Definition 4.1: Let
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E0
+sHdªinfsssHd ù f0,`dd, E0

−sHdªsupsssHd ù s− `,0gd. s4.1d

If E0
+sHd frespectively,E0

−sHdg is an eigenvalue ofH, then we say thatH has a positivesrespec-
tively, negatived energy ground state and we call a nonzero vector in kersH−E0

+sHdd frespectively,
kersH−E0

−sHddg a positivesrespectively, negatived energy ground state ofH. If E0
+sHd frespec-

tively, E0
−sHdg is a discrete eigenvalue ofH, then we say thatH has a discrete positivesrespec-

tively, negatived energy ground state.
Remark 4.1:If the spectrum ofH is symmetric with respect to the origin ofR as in Theorem

2.2, thenE0
+sHd=−E0

−sHd, andH has a positive energy ground state if and only if it has a negative
energy ground state.

We assume HypothesissII d. Then the operators

S±sFdª − D ± MsD3 cosFd = − D 7 MsD3FdsinF s4.2d

are self-adjoint withDsS±sFdd=DsDd and bounded from below.
Theorem 4.2:Assume Hypothesis (II) and (3.1). Suppose that E0sS+sFdd,0 or E0sS−sFdd

,0. Then H has a discrete positive energy ground state or a discrete negative ground state.
Proof: For eachf [DsDd andu[C2 with iui=1, we define

c f
+
ªsf ^ u,0,i f ^ u,0d [ H, c f

−
ªs0,f ^ u,0,i f ^ ud [ H.

Then we have

kc f
±,LsFdc f

±l = 2kf,S±sFdfl.

In the case whereE0sS+sFdd,0, there exists a unit vectorf [DsDd such thatkf ,S+sFdfl,0.
Hencekc f

+,LsFdc f
+l,0. By Theorem 3.1 and the spectral theorem, we have

sesssLsFdd = f0,`d. s4.3d

Thus, by the min–max principle,LsFd has a discrete ground state. Similarly, in the case where
E0sS−sFdd,0 too, LsFd has a discrete ground state. This implies thatH has a discrete positive
energy ground state or a discrete negative ground state. j

To construct examples ofF satisfying the conditions as stated in Theorem 4.2, we consider a
scaling. For a constant«.0 and a functionf on Rd, we define a functionf« on Rd by

f«sxdªfs«xd, x [ Rd.

Lemma 4.3:Let V:Rd→R be in Lloc
2 sRdd and, for a constant«.0,

S«ª − D + V«.

Suppose that the following conditions are satisfied:

sid For all «.0, S« is self-adjoint and bounded from below andsesssS«d, f0,`d.
sii d There exists a nonempty open setV, hx[RduVsxd,0j.

Then there exists a constant«0.0 such that, for all«[ s0,«0d, S« has a discrete ground state.
Proof: By conditionsii d, we can take a nonzero vectorf [C0

`sVd sthe set of infinitely differ-
entiable functions onRd with compact support inVd. Then it is easy to see thatkf« ,S«f«l
=«−dsaf«

2− ubfud, whereafªi¹ fi2, bf =kf ,Vfl,0. Hence, taking«0ª
Îubfu /af snote thataf Þ0d,

we havekf« ,S«f«l,0 for all «[ s0,«0d. Hence, by the min–max principle and conditionsid,
E0sS«d[sdsS«d. j

Lemma 4.4: Let V:Rd→R be continuous onRd with lim uxu→` Vsxd=0. Suppose that
V−ªhx[RduVsxd,0jÞ0” . Then the following hold:

sid −D+V acting in L2sRdd is self-adjoint and bounded from below.
sii d sesss−D+Vd=f0,`d.
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siii d S« has a discrete ground state for all«[ s0,«0d with some«0.0.

Proof: Part sid follows from the Kato–Rellich theorem. Partsii d is proven by a simple appli-
cation of Theorem XIII.15-sbd in Ref. 4.

SinceV is continuous, the setV− is open. Hence Lemma 4.3 implies the existence of a ground
state ofS« for all «[ s0,«0d with some«0.0. j

We consider a one-parameter family of Dirac operators,

H«ªH0 +
1

«
Msb ^ 12dUF«

, s4.4d

which is a scaled deformation ofH.
Theorem 4.5:Assume Hypothesis (II) and (3.1). Suppose that D3 cosF is not identically zero.

Then there exists a constant«0.0 such that, for all«[ s0,«0d, H« has a discrete positive energy
ground state or a discrete negative ground state.

Proof: We writeS±sF ,MdªS±sFd to make explicit the dependence ofS±sFd on M. At least one
of the setshx[R3u sD3 cosFdsxd.0j and hx[R3sD3 cosFdsxd,0j is not empty. The function
D3 cosF=−sD3FdsinF is bounded and continuous satisfying limuxu→`sD3Fdsxd=0. Hence we can
apply Lemma 4.4 to conclude thatS+sF« ,«−1Md or S−sF« ,«−1Md has a discrete ground state for all
«[ s0,«0d with some«0.0. This fact and Theorem 4.2 yield the desired result. j

V. SYMMETRY REDUCTION OF H

In this section, we show that, ifF is invariant under the rotations around thex3 axis, then there
exist infinitely many mutually orthogonal closed subspaces ofH that reduceH« for all «.0 and
each reduced part ofH« may have a positive energy ground state or a negative energy ground
state. We use the cylindrical coordinates for pointsx=sx1,x2,x3d[R3,

x1 = r cosu, x2 = r sinu, x3 = z,

whereu[ f0,2pd, r .0. We assume the following.
Hypothesis (III): There exists a continuously differentiable functionG: s0,`d3R→R such

that sid Fsxd=Gsr ,zd, x[R3\ h0j; sii d limr+uzu→` Gsr ,zd=0; siii d supr.0,z[Rsu]Gsr ,zd /]r u
+ u]Gsr ,zd /]zud,`.

We take the vector fieldn to be of the form

nsxdªssinQsr,zdcossmud,sinQsr,zdsinsmud,cosQsr,zdd, s5.1d

whereQ : s0,`d3R→R is continuous andm is a real constant.
Let L3ª− ix1D2+ ix2D1, the third component of the angular momentum. It is well known that

L3 is essentially self-adjoint onC0
`sR3d. We denote its closure by the same symbolL3. We set

S3ªs3 % s3

acting onC4 and define

K3ªL3 ^ 12 +
1

2
S3 ^ 12 +

m

2
I ^ t3, s5.2d

which is a self-adjoint operator acting inH.
We denote byT« s«.0d the unitary dilation onL2sR3d with power«,

sT«fdsxdª«3/2fs«xd, f [ L2sR3d, a.e.x. s5.3d

Lemma 5.1:For all «.0, T«L3T«
−1=L3. HencesT« ^ 12dK3sT« ^ 12d−1=K3 for all «.0.

Proof: It is straightforward to see that, for allf [C0
`sR3d, T«L3f =L3T«f. SinceC0

`sR3d is a
core of L3, this equality extends to allf [DsL3d showing thatL3,T«

−1L3T«. The both sides are
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self-adjoint. Hence they coincide. j

Lemma 5.2:Assume that

Qs«r,«zd = Qsr,zd, sr,zd [ s0,`d 3 R, « . 0. s5.4d

Then, for all t[R and «.0, the operator equality

eitK3H«e
−itK3 = H« s5.5d

holds.
Proof: We first proves5.5d with «=1. We have for allt[R,

eitK3 = eitL3eitS3/2
^ eitmt3/2.

For all f [C0
`sR3d, we have

seitL3fdsxd = fsx1 cost − x2 sin t,x1 sin t + x2 cost,zd, x [ R3.

HenceeitL3 leavesC0
`sR3d invariant. It follows that, for allf [C0

`sR3;C4d ^ C2, eitK3f [DsH0d
=DsHd and

H0e
itL3f = eitL3hs− ia1 cost + ia2 sin tdD1f + s− ia1 sin t − ia2 costdD2f − ia3D3fj. s5.6d

Using the matrix representation ofa j, one can check that

a je
itS3/2 = e−itS3/2a j s j = 1,2d, fa3,e

itS3g = 0.

It follows from these relations ands5.6d,

H0e
itK3f = eitK3H0f . s5.7d

We have

t je
itmt3/2 = eitmt3/2t je

itmt3 s j = 1,2d, t3e
itmt3/2 = eitmt3/2t3

and

e−itL3nsxdeitL3 = ssinQsr,zdcosmsu − td,sinQsr,zdsinmsu − td,cosQsr,zdd.

It follows from these relations that

b ^ 12UFeitK3f = eitK3sb ^ 12dUFf . s5.8d

Combinings5.7d together withs5.8d, we obtainHeitK3f =eitK3Hf. SinceC0
`sR3;C4d ^ C2 is a core of

H, this equality extends to allf [DsHd=DsH0d showing H,e−itK3HeitK3. The both sides are
self-adjoint. Thuss5.5d follows.

We next consider the case where«Þ1. We writeUF=UsF ,nd. By Lemma 5.1,s5.8d and the
fact that T« is a bijection from C0

`sR3d onto itself, we haveb ^ 12UsF« ,n«deitK3f =eitK3sb
^ 12dUsF« ,n«df. By condition s5.4d, n«=n. Henceb ^ 12UsF« ,n«deitK3f =eitK3sb ^ 12dUsF« ,ndf.
Therefores5.8d holds withF replaced byF«. Thus, in the same way as in the preceding paragraph,
one can proves5.5d. j

We say that two self-adjoint operators on a Hilbert space strongly commute if their spectral
measures commute.

Lemma 5.3:Assume (5.4). Then, for all«.0, H« and K3 strongly commute.
Proof: It follows from Lemma 5.2 and the functional calculus for self-adjoint operators that

eitK3eisH«=eisH«eitK3 for all s, t[R and all«.0. This implies the strong commutativity ofH« and
K3 ssee Theorem VIII.13 in Ref. 6 for general criteria of the strong commutativity of self-adjoint
operatorsd. j

Let
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Eªs0,`d 3 f0,2pd 3 R = hsr,u,zdur . 0,u [ f0,2pd,z[ Rj

and dmªr dr ^ du ^ dz, a measure onE. Then one can define a unitary operatorY:L2sR3d
→L2sE,dmd by

sYfdsr,u,zdªfsr cosu,r sinu,zd, f [ L2sR3d.

For each,[Z, we definef, : f0,2pd→C by

f,sudª
1

Î2p
ei,u, u [ f0,2pd. s5.9d

It is well known that hf,j,[Z is a complete orthonormal system ofL2sf0,2pdd. For each

f [L2sE,dmd, we definef̂ : s0,`d3Z3R by

f̂sr, , ,zdªE
0

2p

f,sud* fsr,u,zddu.

We define an operatorDu on L2sE,dmd as follows:

DsDudªH f [ L2sE,dmdu o
,=−`

`

,2E
0

`

dr rE
R

dzu f̂sr, , ,zdu2 , `J ,

sDu f̂dsr, , ,ud = i , f̂sr, , ,ud, f [ DsDud.

Then −iDu is self-adjoint with

ss− iDud = sps− iDud = h,j,[Z = Z, s5.10d

kers− iDu − , d =Hgf,ug:s0,`d 3 R → C,E
0

`

dr rE
R

dzugsr,zdu2 , `J . s5.11d

It is not so hard to see that

YL3Y
−1 = − iDu. s5.12d

Hence

ssL3d = spsL3d = Z. s5.13d

Let

M,ªkersL3 − , d = Y−1 kers− iDu − , d. s5.14d

Then we have the orthogonal decomposition

L2sR3d = %,=−`
` M,, L2sE,dmd = %,=−`

` YM,. s5.15d

By s5.13d, we have

ssK3d = spsK3d = H, + U s

2
+

mt

2
u , [ Z,s= ± 1,t = ± 1J . s5.16d

The eigenspace ofK3 with eigenvalue,+ss/2d+smt/2d is given by
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M,,s,tªM, ^ Cs ^ Tt s5.17d

under the natural identificaionH=L2sR3d ^ C4 ^ C2, where CsªkersS3−sd and Ttªkerst3− td.
ThenH has the orthogonal decomposition

H = %,[Z,s,t[h±1jM,,s,t. s5.18d

Lemma 5.3 implies the following fact.
Lemma 5.4:Assume (5.4). Then, for all«.0, H« is reduced by eachM,,s,t.
We denote byH«s, ,s,td by the reduced part ofH« to M,,s,t and set

Hs,,s,tdªH1s,,s,td, s5.19d

the reduced part ofH to M,,s,t.
For s= ±1 and,[Z, we define

SssG, , dª −
]2

]r2 −
1

r

]

]r
+

,2

r2 +
]2

]z2 + sM
]cosG

]z
s5.20d

acting inL2ss0,`d3R ,r dr dzd with domainDsSssG, , ddªC0
`ss0,`d3Rd and set

E0sSssG, , ddª inf
f[C0

`ss0,̀ d3Rd,ifiL2ss0,̀ d3R,r dr dzd=1

kf,SssG, , dfl.

Theorem 5.5: Assume Hypothesis (III). Fix an,[Z arbitrarily and s= ±1. Suppose that
E0sSssG, , dd,0. Then, for each t= ±1, Hs, ,s,td has a discrete positive energy ground state or a
discrete negative ground state.

Proof: Let

c,ª
1

Î2p
E

0

2p

due−i,u cossmud, d,ª
1

Î2p
E

0

2p

due−i,u sinsmud,

nj ,,sr,zdªssinQsr,zdc,,sinQsr,zdd,,cosQsr,zdd,

FG,,,tªcosG + io
j=1

nj ,, sinG ^ t j + itn3,, sinG,

D1,,ªc,

]

]r
−

d,

r

]

]u
, D2,,ªd,

]

]r
+

c,

r

]

]u

and

WG«,,,s,tªio
j=1

2

s jDj ,,FG«,,,t + isDzFG«,,,t, « . 0.

Then we have

sY ^ 12dH«s,,s,td2sY ^ 12d−1 = −
]2

]r2 −
1

r

]

]r
+

,2

r2 +
]2

]z2 + «−1MS 0 WG«,,,s,t
*

WG«,,,s,t
D + M2

¬L«s,,s,td + M2

on C0
`ss0,`d3Rd.

For eachf [C0
`ss0,`d3Rd and ut[C2 satisfying ifi=1, iuti=1, andt3ut= tutst= ±1d, we

define
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c f
s1d
ªsf ^ ut,0,i f ^ ut,0d [ Ms,,1,td,

c f
s−1d

ªs0,f ^ ut,0,i f ^ utd [ Ms,,− 1,td.

Then we have

kc f
ssd,YL1s,,s,tdY−1c f

ssdl = 2kf,SssF, , dfl.

By the present assumption, there exists a unit vectorf [C0
`ss0,`d3Rd such thatkf ,SssF , , dfl

,0. Note thatsesssL1s, ,s,tdd, f0,`d. Hence, by the min–max principle,L1s, ,s,td has a discrete
ground state. This implies thatHs, ,s,td has a discrete positive energy ground state or a discrete
negative ground state. j

Theorem 5.6: Assume Hypothesis (III) and (5.4). Suppose that] cosG/]z is not identically
zero. Then, for each,[Z, there exists a constant«,.0 such that, for all«[ s0,«,d, each
H«s, ,s,td has a discrete positive energy ground state or a discrete negative ground state.

Proof: We write Ss,MsF , , dªSssF , , d to make explicit the dependence ofSssF , , d on M. In
the same way as in the proof of Theorem 4.5, one can take a vectorf«[C0

`ss0,`d3Rd such that
kf« ,Ss,«−1MsF«s,ddf«l,0 for all sufficiently small«.0, where the smallness depends on,. It
follows from the proof of the preceding theorem thatL«s, ,s,td has a discrete ground state.j

Corollary 5.7: Assume Hypothesis (III) and (5.4). Suppose that] cosG/]z is not identically
zero. Let«, be as in Theorem 5.6 and, for each N[N and k.n sk,n[Zd, nk,nªminn+1ø,øk «,.
Then, for each«[ s0,nk,nd, H« has at leastsk−nd discrete eigenvalues counting multiplicities.

Proof: We havespsH«d=ø,[Z,s,t=±1spsH«s, ,s,tdd. By the preceding theorem, for each,=n
+1,… ,k, H«s, ,s,td has a discrete eigenvalue. Thus the desired result follows. j

Remark 5.1:This result is consistent with Theorem 3.2, because it reads in the present case

NH«
ø

1

«4

M2CF

2p2

and the right-hand side diverges as«→0.

VI. A UNITARY TRANSFORMATION

In this section we show that, under HypothesissII d, the HamiltonianH with n constant is
unitarily equivalent to an operator which resembles a Dirac operator with a magnetic moment.

It is easy to see that the operator

XFªSeiF ^t·n/2 0

0 e−iF ^t·n/2D s6.1d

is unitary. Under HypothesissII d, we can define the following functions:

Bjsxdª1
2DjsFsxd ^ t ·nsxdd, x [ R3, j = 1,2,3. s6.2d

We set

BªsB1,B2,B3d s6.3d

and introduce

HsBdªH0 + Mb − s ·B s6.4d

acting inH. Note that, under HypothesissII d, the operator −s ·B is a bounded self-adjoint opera-
tor. Hence, by a simple application of the Kato–Rellich theorem,HsBd is self-adjoint with
DsHsBdd=DsH0d.

Proposition 6.1:Assume Hypothesis (II) and thatn is constant. Then
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XFHXF
−1 = HsBd. s6.5d

Proof: Noting the fact thatst ·nd2=12, we have

FF = eiF ^t·n.

It follows from this fact ands3.8d that XFHXF
−1c=HsBdc for all c[ f%4C0

`sR3dg ^ C2. Since
f%4C0

`sR3dg ^ C2 is a core ofHsBd, the operator equalitys6.5d follows. j
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In this paper we study the large-Z behavior of the ground state energy of atoms
with electrons having relativistic kinetic energyÎp2c2+m2c4−mc2. We prove that
to leading order inZ the energy is the same as in the nonrelativistic case, given by
snonrelativisticd Thomas–Fermi theory. For the problem to make sense, we keep the
productZa fixed sherea is Sommerfeld’s fine structure constantd, and smaller than,
or equal to, 2/p, which means that asZ tends to infinity,a tends to zero. ©2005
American Institute of Physics.fDOI: 10.1063/1.1897645g

I. INTRODUCTION AND RESULTS

As a model for a relativistic atom with nuclear chargeZ and N electrons, we consider the
operator

Hrel = o
i=1

N HÎ− a−2Di + a−4 − a−2 −
Z

uxiu
J + o

1øi, jøN

1

uxi − xju
.

Here,xi PR3 is the coordinate of theith electron,Di is the Laplacian with respect toxi, anda is
Sommerfeld’s fine structure constantsthe physical value ofa is approximately 1/137.037d. This is
the expression one obtains usingÎp2c2+m2c4−mc2 for the kinetic energy of the electronssand
making the substitutionp→−i"¹d, measuring energiessHreld in units of Rydberg, and lengthssthe
xi’sd in units of the Bohr radius.

This model has been much studied over the past 30 years. Stability in the caseN=1 was
proved independently by Herbst9 and Weder.22 The stability of matter for the model was first
proved by Conlon,2 later by Fefferman and de la Llave,7 and also by Lieb and Yau;17 see the latter
for an overview. A nonexhaustive list of other works on this model is Refs. 10, 21, 20, 19, and 1.

It is well known that the operatorHrel is bounded from below onC0
`sR3Nd if, and only if,

Zaø2/p. Only in this case is the atom stable; and we define the operatorHrel as a self-adjoint,
unbounded operator by Friedrichs extending this semibounded operator. To study the energy of
large atoms, one would normally then consider the limit asZ→` of the infimum of the spectrum
of this operator. However, due to the upper bound onZ resulting from the restrictionZaø2/p,
this is not possible here. To overcome this problem, we consider

Hrel = a−1Ho
i=1

N HÎ− Di + a−2 − a−1 −
d

uxiu
J + o

1øi, jøN

a

uxi − xju
J ,

where d=Za is held fixed. This ensures that asZ→`, and thereforea→0, the operatorHrel

remains well defined—as long as 0ødø2/p. Also, we shall keepl;N/Z fixed. The energy of
the atom is then defined as

adOn leave from Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg East,
Denmark. Electronic mail: sorensen@mathematik.uni-muenchen.de
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ENsZ,dd ª inf sHF
sHreld,

where the spectrum ofHrel is calculated onHF=∧NL2sR3,Cqd, the Fermionic Hilbert space, de-
scribingN Fermions, each withq possible spin states. We will takeq=2 from now onsbut this is
no restrictiond. We note that sincesthe extension ofd Hrel is self-adjoint and bounded from below,
we have the Rayleigh–Ritz principle. IfC is a form core for the corresponding quadratic form, then

inf sHF
sHreld = inf

hcPCuici=1j
kc,Hrelcl.

Our main result is the following.
Theorem 1.1: Let dP s0,2/pg and l.0 be fixed and let Hrel and EN=lZsZ,dd be as above.

Then

ElZsZ,dd = − CTFsldZ7/3 + osZ7/3d, Z → `, s1.1d

where−CTFsldZ7/3 is the (nonrelativistic) Thomas–Fermi energy of the atom.
This shows that, to leading order, the ground-state energy of a relativistic atom is given by the

snonrelativisticd semiclassical Thomas–Fermi energy approximation, as it is for the nonrelativistic
atom snote that the cased=2/p is includedd. sIn the nonrelativistic case this was first proved by
Lieb and Simon;14 see also Lieb.11d This expresses the fact that for large atoms the majority of the
electrons are nonrelativistic.

The second term in the expansions1.1d will be studied in a forthcoming paper.18

The proof of Theorem 1.1 will be by finding upper and lower bounds onElZsZ,dd. Note that
the relativistic kinetic energy is always lower than the nonrelativistic one,

Îa−2q2 + a−4 − a−2 = a−2sÎ1 + saqd2 − 1d ø
q2

2
. s1.2d

sNote, since we will later make Taylor expansions of the square root in the relativistic kinetic
energy, we will have to insist on the nonrelativistic kinetic energy being −D /2.d This means that
all upper bounds derived earlier14,11 for the nonrelativistic operator

Hcl = o
i=1

N H pi
2

2
−

Z

uxiu
J + o

1øi, jøN

1

uxi − yiu

will also be upper bounds forHrel; in particular, to prove Theorem 1.1, we need only derive a
lower bound.

II. ORGANIZATION OF THE PAPER

We start in Sec. III by reducing theN-body operatorHrel to a one-particle one; having done
that, we only need to consider wave functions given as Slater determinants when trying to mini-
mize the energy. To proceed, we need to localize the kinetic energy. To do so, we usesin Sec. IVd
an analogue of the IMS localization formula for the Schrödinger operator, see Ref. 3, p.27. This
formula has already been developed by Lieb and Yau in Ref. 17 for both the operator
Î−D+a−2−a−1 and the hyperrelativistic kinetic energyupu. This is essentially done by finding the
integral kernels of these operators. ForÎ−D+a−2−a−1, this involves the modified Bessel function
K2, and the derivation of the formula and of needed properties ofK2 are carried out in Appendix
A. The localization error, given by a bounded operatorLsad expressed as an integral operator
involving K2, is then estimatedsin Sec. Vd. Estimating the error is rather technicalscalculatived
and involves localization of the operator and the above-mentioned properties ofK2. Some of the
localized terms are estimated with the localized energy itselfsSecs. VI and VIId.

Coming to the localized energy, we must estimate the kinetic energy close to the nucleus.
Since this is the high-energy region, this is where the electrons are relativistic, and so this term
should be of lower order, since, to leading order, there should be no relativistic contribution to the
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energy. As the relativistic kinetic energy is asymptotically linear inp in the high-energy
region—as opposed to the classical one which is quadratic—the singularity in the potential causes
substantially more trouble. This problem is solvedsin Sec. VId by a clever choice of parameters in
an estimate by Lieb and Yau in Ref. 17 on the sum of the eigenvalues of the energy in a ball
around the nucleus. This also determines the scale on which one can localize close to the nucleus.
A part of two of the localized terms of the operatorLsad is estimated along with this term.

In the outer region, one usessin Sec. VIIId essentially the same idea as Lieb did in the
classical case, see Ref. 12, to refind the desired phase space integral, which is to give the semi-
classical Thomas–Fermi energy. This involves introducing coherent states and estimating the error
by doing so. The formulas for the relativistic case were developed in Ref. 16, but the error
obtained there is too rough for our purposes. We therefore developsin Appendix Bd a better
estimate by a more careful analysis. In order to make all this work, one needs the coherent state to
be supported further out than the initial cutoff around the nucleus. To get this, an intermediary
zone is introducedsalso in Sec. IVd by an additional cutoff. The energy in this shell is estimated
sin Sec. VIId by a generalized version of the Lieb–Thirring inequality, proved by Daubechies in
Ref. 4. Also the other part of the previously mentioned two terms of the localized operatorLsad is
estimated in this way.sFor another work which uses coherent states in a relativistic setup, see Ref.
6.d

Finally we relatesin Sec. VIIId the energy in the outer region to the Thomas–Fermi energy
from the classicalsthat is, the Schrödingerd case. In this region, the kinetic energy is small, and
using the specific scaling property of Thomas–Fermi theory allows one to make the change from
the relativistic energyÎ−a−2D+a−4−a−2 to the nonrelativistic one, −D /2, getting errors of the
desired order.

III. REDUCTION TO A ONE-PARTICLE PROBLEM

We will use the notation

H = aHrel = o
i=1

N HÎ− Di + a−2 − a−1 −
d

uxiu
J + o

1øi, jøN

a

uxi − xju
. s3.1d

Recall thatd=Za is fixedand that the ground state energy ofHrel is to be proven to be of leading
orderZ7/3. Since we wish to considera as the free parameter, the relevant order of all error terms
will be osa−4/3d. Also, we will denote the operatorÎ−D+a−2 by Îp2+a−2, and so Tspd
=Îp2+a−2−a−1 will be the kinetic energy.

We start by reducing the problem from anN-particle problem to a one-particle one. This is
done by using an inequality on the electron–electron interactionoi, juxi −xju−1, which will reduce
this to a one-particle potential.

Choose a spherically symmetric functiongPC0
`sR3d, non-negative, supported in the unit ball

Bs0,1d of R3, and such thategsxd2d3x=1. Let fsxd=gsxd2 and let fora.0 sa to be chosen laterd,
fasxd=a−3fsx/ad, so thatefasxdd3x=1. Then for allr :R3→R we have

o
1øi, jøN

1

uxi − xju
ù o

1øi, jøN
E E fasx − xidfasy − xjd

ux − yu
d3x d3y

=
1

2 o
i,j=1

N E E fasx − xidfasy − xjd
ux − yu

d3x d3y −
1

2
NE E fasxdfasyd

ux − yu
d3x d3y

= o
i=1

N E E rsydfasx − xid
ux − yu

d3x d3y −
1

2
E E rsxdrsyd

ux − yu
d3x d3y − csfdNa−1

+
1

2
E E So

i

fasx − xid − rsxdDSo
j

fasy − xjd − rsydD
ux − yu

d3x d3y
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ù o
i=1

N E E rsydfasx − xid
ux − yu

d3x d3y −
1

2
E E rsxdrsyd

ux − yu
d3x d3y − csfdNa−1.

In the last inequality we used thatux−yu−1 is of positive typesa positive kerneld since

E E fsxdfsyd
ux − yu

d3x d3y = 4pE u f̂spdu2

upu2
d3p.

The constantcsfd is independent ofa,

csfd =
1

2
E E fsxdfsyd

ux − yu
d3x d3y = 2pE uf̂spdu2

upu2
d3p.

Noting thatsusing the spherical symmetry offad

E E rsydfasx − xid
ux − yu

d3x d3y =E E rsydfaszd
uz− sxi − ydu

d3z d3y

=E rsydsfa p u · u−1dsxi − ydd3y = sr p fa p u · u−1dsxid ; r p fa p uxiu−1,

we get the operator inequalityfsees3.1d for Hg,

H ù o
i=1

N HÎpi
2 + a−2 − a−1 −

d

uxiu
+ ar p fa p uxiu−1J −

a

2
E E rsxdrsyd

ux − yu
d3x d3y − acsfdNa−1.

s3.2d

Having reduced theN-body operatorH to a one-body operator, we only need to consider
Slater determinants when trying to minimize the energy. That is, when consideringkc ,Hcl we
need only consider thosecPHF which are given by

csx1,…,xNd =
1

ÎN!
detsmisxjdd,

where mi PL2sR3d , i =1,… ,N, are orthonormal. Note also that sinceC0
`sR3d is a core for the

operatorÎp2+a−2−a−1−d / uxu, dP f0,2/pg ssee Herbst9d, we need only considermi’s in this
space. Then, as soon ash is a one-particle operator acting onL2sR3d, we have that

Kc,o
i=1

N

hicL = o
i=1

N

smi,hmid.

Here,k,l ands,d denote inner products inL2sR3Nd, respectively,L2sR3d, both linear in the second
variable, andhi is h acting on the variablexi of c. Also, we will usei ·ip for the norm inLpsR3d.

IV. LOCALIZATION OF THE KINETIC ENERGY

In order to treat the one-body operator ins3.2d and in particular the singularity in the Coulomb
potential—which causes considerably more trouble than in the nonrelativistic case—we introduce,
following Lieb and Yau,17 a partition of unityssee also Cyconet al., Ref. 3, Definition 3.1d, For
somebP s0, 1

2
d, let u1 andu2 be monotone positive smooth functions onR+, 0øui ø1, such that
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u1sjd = H1 if j , 1 − b,

0 if j . 1 + b,
J u2sjd = H0 if j , 1 − b,

1 if j . 1 + b,
J

and such thatu1sjd2+u2sjd2=1 for all jPR+. Now define, with 8/9, r ,1 and 1/3, t,2/3
sthese choices of parameters are governed by the later analysisd, the following three functions,
which sfor a sufficiently smalld is a partition of unity inR3:

x1sxd = u1S uxu
ar D, x2sxd = u1S uxu

at Du2S uxu
ar D, x3sxd = u2S uxu

at D . s4.1d

Then, at least fora sufficiently small, we have the picture in Fig. 1.
According to Lieb and YausRef. 17, Theorem 9;a−1 corresponds tomd we have for f

PC0
`sR3d that

sf,Îp2 + a−2fd = o
j=1

3

sf,x j
Îp2 + a−2x j fd − sf,Lsadfd, s4.2d

whereLsad is a bounded operator onL2sR3d, given by the kernel

Lsadsx,yd =
a−2

4p2

K2sa−1ux − yud
ux − yu2 o

j=1

3

sx jsxd − x jsydd2.

HereK2 is a modified Bessel function, defined ons0,`d by

K2std =
1

2
E

0

`

xe−s1/2dtsx+x−1d dx.

For completeness, we derive this in Appendix A.
Using this we find, withTspd=Îp2+a−2−a−1, Vsxd=d / uxu and c a Slater determinant as

mentioned in the preceding section, that

Kc,o
i=1

N

hTspid − Vsxid + ar p fa p uxiu−1jcL = o
i=1

N

smi,hTspd − Vsxd + ar p fa p uxu−1jmid

= o
j=1

3

o
i=1

N

smi,x jhTspd − Vsxd + ar p fa p uxu−1jx jmid

− o
i=1

N

smi,L
sadmid, s4.3d

sinceo j=1
3 x jsxd2=1 for all xPR3 sanda sufficiently smalld.

FIG. 1. The partition of unity.
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V. THE LOCALIZATION ERROR

We now estimate the error introduced by the localization of the kinetic energy carried out in
the last section. This error is given by a bounded operatorLsad,

Lsadsx,yd = o
j=1

3

Lj
sadsx,yd, Lj

sadsx,yd =
a−2

4p2

K2sa−1ux − yud
ux − yu2

sx jsxd − x jsydd2.

As noted above, this expression is derived in Appendix A. We shall start by localizing this
operator, thereby splitting it into 12 terms which we will then treat individually. These terms are
going to fall into groups though, and the terms in each of these will be estimated together by
different means. Two of the terms will be estimated in later sections, together with the energies
near the nucleus and in the intermediary zone, related to, respectively,x1 andx2.

In this section, the scale of the inner cutoff will be calledl, that is,l =ar, 8 /9, r,1. Let x−

be the characteristic function of the ballBs0,2ld in R3 andx+ that for the complement of this ball.
Then eachLj

sad, j =1, 2, 3, splits into four terms,

Lj
sadsx,yd = x+sxdLj

sadsx,ydx+syd + x+sxdLj
sadsx,ydx−syd + x−sxdLj

sadsx,ydx+syd + x−sxdLj
sadsx,ydx−syd.

The following lemma will eventually take care of six of these 12 terms.
Lemma 5.1: Let l=ar, 8 /9, r ,1 and assume that, withg;1−sb/ad.0,

uxu . al and uyu , bl on suppx+sxdLj
sadsx,ydx−syd.

Then, for fPL2sR3d,

usf,x+Lj
sadx−fdu ø rsadifi2

2,

wherersad=ose−2ear−1
d as a→0 for all e such that0,e,g. In particular, rsad=osand as a

→0 for all nPN.
Remark 5.2: Note that the result with x and y interchanged also holds.
Proof: By assumption we have that

ux − yu . guxu on suppx+Lj
sadx−.

Since bothuxu−2 andK2sa−1uxud are decreasing inuxu sthe last is obvious from the definition ofK2d,
and sincesx jsxd−x jsydd2ø1, we get that pointwise,

x+sxdLj
sadsx,ydx−syd ø x+sxd

a−2

4p2

K2sa−1guxud
sguxud2 x−syd

on suppx+Lj
sadx−. Therefore

usf,x+Lj
sadx−fdu ø SE ufsydux−sydd3yDS sagd−2

4p2 E ufsxdux+sxd
K2sa−1guxud

uxu2
d3xD . s5.1d

We estimate both of these terms using the Cauchy–Schwartz inequality. For the first we get

E ufsydux−sydd3y ø ifi2ix−i2 = Cl3/2ifi2, s5.2d

and for the second

E ufsxdux+sxd
K2sa−1guxud

uxu2
d3x ø ifi2SE Sx+sxd

K2sa−1guxud
uxu2 D2

d3xD1/2

. s5.3d

Using the estimatesA7d in Appendix A onK2, we get the estimate
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E Sx+sxd
K2sa−1guxud

uxu2 D2

d3x ø 4pE
2l

` 16

uxu4
pe−2a−1guxu

2a−1guxu
s1 + s2a−1guxud−1 + s2a−1guxud−2d2uxu2duxu

= 128p2a−1gE
4gla−1

`

t−3e−tS1 +
1

t
+

1

t2
D2

dt,

where the last equality follows by the change of variablest=2ga−1uxu. Dominatinge−t in the
integrand bye−4gla−1

and working out the resulting integral, we arrive atfusings5.1d–s5.3d; recall
that l =arg

usf,x+Lj
sadx−fdu ø Cifi2

2as3r−5d/2e−2gar−1
h¯j1/2,

where

h¯j1/2 = h 1
4s4gd−4a4s1−rd + 2

5s4gd−5a5s1−rd + 1
2s4gd−6a6s1−rd + 2

7s4gd−7a7s1−rd + 1
8s4gd−8a8s1−rdj1/2.

Now, since 8/9, r ,1, this term tends to zero asa tends to zero. Also

as3r−5d/2e−2gar−1
= ose−2ear−1

d, a → 0,

for all e satisfying 0,e,g. This proves the lemma. h

We now return to investigating the above-mentioned 12 terms. First, note that two of these
terms are actually zero,

x+sxdL1
sadsx,ydx+syd ; 0,

x−sxdL3
sadsx,ydx−syd ; 0,

as is easily seen by looking at the supports ofx+, x−, x1, andx3. Next, we note that the following
three terms fulfill the conditions in Lemma 5.1 and therefore areosand, a→0, for all nPN:

x+sxdL1
sadsx,ydx−syd Þ 0 for uxu . 2l and uyu , s1 + bdl ,

x+sxdL3
sadsx,ydx−syd Þ 0 for uxu . s1 − bdat and uyu , 2l ,

x+sxdL2
sadsx,ydx−syd Þ 0 for uxu . s1 − bdat and uyu , 2l ,

and for uxu P f2l,s1 − bdatg and uyu , s1 + bdl .

This is due to the fact that fora small enough,at.ar, since t,2/3,8/9, r. The above is
symmetric inx andy, which gives another three terms.

We are then left with four terms. For these we will use that, by the mean value theorem,
sx jsxd−x jsydd2ø i¹x ji`

2 ux−yu2. Note that for the four remaining terms,

x+L2
sadx+, x−L1

sadx−, x+L3
sadx+, x−L2

sadx−, s5.4d

we only need to take the supremum ofu¹x jsjdu over thej’s betweenx andy in the support of the
relevant term. In this way we get
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usf,x±Lj
sadx± fdu øE E ufsxdux±sxdufsydux±sydLj

sadsx,ydd3x d3y

ø
cj

±sada−2

4p2 E ufsxdux±sxdssuf ux±d p Gadsxdd3x,

where Gasxd=K2sa−1uxud and cj
±sad=supuxu_2lu¹x jsxdu2. By first using the Cauchy–Schwartz in-

equality, then Young’s inequality, we get

usf,x±Lj
sadx± fdu ø

cj
±sada−2

4p2 ifx±i2isuf ux±d p Gai2 ø
cj

±sad
4p2a2ifx±i2

2iGai1.

Since

iGai1 =E K2sa−1uxudd3x = 4pE
0

`

a2t2K2stda dt = 6p2a3

fseesA6d in Appendix A for e0
`t2K2stddtg we get the following inequality:

usf,x±Lj
sadx± fdu ø

3cj
±sada
2

ifx±i2
2. s5.5d

For two of the terms ins5.4d, x+L2
sadx+ andx+L3

sadx+, this is sufficient, sincefsees4.1d; recall that
l =arg

cj
+sad = sup

uxu.2l
u ¹ x ju2 = cj

+a−2t, j = 2,3,

and sincet,2/3 we get, usings5.5d, that

o
i=1

N

smi,x+L3
sadx+mid ø N

3

2
cj

+a1−2t = osa−4/3d, a → 0,

asN=lZ=lda−1 sl andd fixedd and imii2=1. Similarly for x+L2
sadx+.

For the other two terms ins5.4d, note that

ifx−i2
2 =E ufsxdu2ux−sxdu2 d3x

=E ufsxdu2x−sxdd3x = sf,x−fd = sf,x−sx1
2 + x2

2dfd = sx1f,x−x1fd + sx2f,x−x2fd,

sincex−
2=x− andx1

2+x2
2=1 on suppx−. Using this ands5.5d, we obtainssincex−x1=x1d:

o
i=1

N

smi,x−sL1
sad + L2

saddx−mid ø Ca1−2rSo
i=1

N

sx1mi,x1mid + o
i=1

N

sx2mi,x−x2midD , s5.6d

where

C = 3
2sc1 + c2d, cja

−2r = sup
uxu,2l

u ¹ x jsxdu2, j = 1,2.

The two terms ins5.6d will be estimated in the following two sections, the first one along with the
energy at the nucleus, the second one with the energy in the intermediary zone.

VI. THE ENERGY NEAR THE NUCLEUS

In this section we estimate the energy at the nucleus, that isfsees4.3dg, the term
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o
i=1

N

smi,x1hTspd − Vsxd + ar p fa p uxu−1jx1mid. s6.1d

Also, half of the remaining terms5.6d of the localization error, treated in the preceding section,
will be estimated here. We start by noting thatrpfap uxu−1 is positive, so that we get a lower
bound to s6.1d by dropping this term. The remaining expression will be treated by using the
following result by Lieb and YausRef. 17, Theorem 11d on the hyperrelativistic operatorupu.

Theorem 6.1: Let C0.0 and R.0 and let

HC0R = upu −
2

p
uxu−1 − C0/R

be defined on L2sR3d as a quadratic form. Let0øgøq be a density matrix [that is, any bounded
operator on L2sR3d which satisfies the operator inequality0øgøq and for whichTrsgd,`g and
let x be any function with support in BR=hxu uxuøRj. Then

Trsx̄gxHC0Rd ù − 4.4827C0
4R−1qhs3/4pR3d E uxsxdu2 d3xj. s6.2d

Note, that whenx;1 in BR, then the factor in bracesh j in s6.2d is 1.
Here, Trsghd is shorthand foroksfk,hfkdgk, wheresfk,gkd are the eigenfunctions and eigen-

values ofg. For more details, see Lieb.13 In our situation,q=2. For our purpose, letP be the
projection on spanhmi u i =1,… ,Nj, thenP is a density matrix as above, and

Trsx1Px1HC0Rd = o
i=1

N

smi,x1HC0Rx1mid.

Since suppx1#Bs0,s1+bdard with 8/9, r ,1, setR=s1+bdar andC0=2s1+bdar−1. Then

Tspd − Vsxd = Îp2 + a−2 − a−1 −
d

uxu
ù upu − a−1 −

2

p
uxu−1 = HC0R + a−1,

sinceÎp2+a−2−a−1ù upu−a−1 anddø2/p. Including the first term ins5.6d we now have, apply-
ing s6.2d,

o
i=1

N

smi,x1hTspd − Vsxdjx1mid − Ca1−2ro
i=1

N

smi,x1x1mid

ù o
i=1

N

smi,x1hHC0R + a−1 − Ca1−2rjx1mid

ù o
i=1

N

smi,x1HC0Rx1mid = Trsx̄1Px1HC0Rd ù − Ca3r−4. s6.3d

The second inequality is valid fora small enough, sincer ,1, so thata2s1−rd→0 for a→0. Since
3r −4.−4/3 sas 8/9, rd, the right-hand sidesRHSd of s6.3d is osa−4/3d, a→0, which is the
desired order. Note that the above procedure is what decides the scalear, 8 /9, r ,1, on which
one can localize near the nucleus.

VII. THE INTERMEDIARY ZONE

The energy in this area is given by the termfsees4.3dg
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o
i=1

N

smi,x2hTspd − Vsxd + ar p fa p uxiu−1jx2mid. s7.1d

The zone defined by thex2 was introduced to separate the outer zone defined byx3 and the
support of the coherent states to be introduced later. As in the preceding section we note that by
dropping the term involvingrpfap uxu−1, we get a lower bound of the energy ins7.1d. The
remaining expression will be estimated by a generalization of the Lieb–Thirring inequalityssee
Lieb and Thirring15d, proved by Daubechies in Ref. 4, p. 518. See also p. 516, Ref. 4, for the
conditions on the functionTspd.

Proposition 7.1: Let Fssd=e0
sdtfT−1stdg3, where Tspd=Tsupud=Îupu2+a−2−a−1 as a function.

Then

Kc,o
i=1

N

hTspid − VsxidjcL ù − qC̃E FsuVsxdudd3x,

where C̃ø0.163.
Note that this in particular means that the negative part of the spectrum of the operator

Tspd−Vsxd is discrete and that the sum of the negative eigenvalues of this operator is bounded

from below by the quantity −qC̃eFsuVsxdudd3x. To see this, lethejj j=0
` be these negative eigenval-

ues,e0øe1ø¯, and hgjj j=0
` corresponding orthonormal eigenfunctions, and letc be the Slater

determinant of the firstN of the gj’s. Then, by the above proposition,

− qC̃E FsuVsxdudd3x øKc,o
i=1

N

hTspid − VsxidjcL = o
j=1

N

sgj,hTspd − Vsxdjgjd = o
j=1

N

ej .

s7.2d

Since the left-hand-side is independent ofN, we get the statement by taking the limitN→`. This
will, as mentioned above, be used on the energy related to the cutoffx2, but also on the remaining
half of the termx−sL1

sad+L2
saddx− discussed in Sec. V, sees5.6d. First, let us calculateF,

Tspd = Tsupud = Îupu2 + a−2 − a−1 ⇒ T−1std = Ît2 + 2a−1t.

Then

Fssd =E
0

s

st2 + 2a−1td3/2 dt =E
0

sS2t

a
D3/2S1 +

at

2
D3/2

dt.

Now, by a Taylor expansion of the second term in the integral, we get

s1 + satd/2d3/2 ø 1 +
3a

4
t +

3a2

32
t2. s7.3d

That is, forsù0,

Fssd ø S 2

a
D3/2H2

5
s5/2 +

3a

14
s7/2 +

a2

48
s9/2J . s7.4d

The two terms we wish to estimate in this section are, as mentioned above,

o
i=1

N

smi,x2hTspd − Vsxdjx2mid andCa1−2ro
i=1

N

sx2mi,x−x2mid.

In order to do so, note that on suppx−x2 we have fx− being the characteristic function of
Bs0,2ardg
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Vsxd =
d

uxu
ù

d

2ar ù Ca1−2r

for a small enough, sincer ,1, so thata1−r →0 asa→0. Therefore, by the estimates7.4d on Fssd,
and still for a small enough, we have

o
i=1

N

smi,x2hTspd − Vsxdjx2mid − Ca1−2ro
i=1

N

smi,x2x−x2mid ù o
i=1

N

smi,x2hTspd − 2V̂sxdjx2mid

s7.5d

with V̂sxd=x2sxdVsxd. Letting sej ,gjd be the negative eigenvalues and corresponding orthonormal

eigenvectors for the operatorTspd−2V̂sxd as before, we then have

o
i=1

N

smi,x2hTspd − 2V̂sxdjx2mid ù o
i=1

N

Sx2mi,Ho
j

ejsgj, · dgjJx2miD = o
j

o
i=1

N

ejusx2mi,gjdu2

= o
j

o
i=1

N

ejusmi,x2gjdu2 ù o
j

ejix2gji2 ù o
j

ej . s7.6d

Here we used Bessel’s inequalitysremember that themi’s are orthonormald, that ej ,0 and that

0øx2ø1. Usings7.2d on Tspd−2V̂sxd, in the limit N→`, we now reachfusing s7.4d–s7.6dg

o
i=1

N

smi,x2hTspd − Vsxdjx2mid − Ca1−2ro
i=1

N

smi,x2x−x2mid ù − 2C̃E
suppx2

Fs2uVsxdudd3x

ù − CE
suppx2

S 2

a
D3/2H2

5
s2uVsxdud5/2 +

3a

14
s2uVsxdud7/2 +

a2

48
s2uVsxdud9/2Jd3x

= − C4pE
ar

at S 2

a
D3/2H2

5
S2d

uxu D
5/2

+
3a

14
S2d

uxu D
7/2

+
a2

48
S2d

uxu D
9/2Juxu2duxu

= − CF4

5
sast−3d/2 − asr−3d/2d +

6d

7
saf−sr+1dg/2 − af−st+1dg/2d +

4d2

72
sas1−3rd/2 − as1−3td/2dG .

Since 8/9, r ,1 and 1/3, t,2/3, all of these terms areosa−4/3d, which is the desired order. We
note that it is this analysis that decides the scaleat of the outer cutoffx3.

VIII. THE OUTER ZONE AND THOMAS–FERMI TEORY

Up to orderosa−4/3d we are now left with

o
i=1

N

smi,x3hTspd − Vsxd + ar p fa p uxu−1jx3mid −
a

2
E E rsxdrsyd

ux − yu
d3x d3y − a csfdNa−1.

This expression will now be related to the semiclassical Thomas–Fermi energy. This is done by
introducing coherent states, following Lieb and Yau in Ref. 16, proof of Lemma B.3. Letg be the
function chosen in Sec. III, that is,gPC0

`sR3d, spherically symmetric, non-negative, supported in
the unit ball Bs0,1d of R3 and such thategsxd2d3x=1. Let gasxd=a−3s/2gsx/asd, 1 /3, t,s
,2/3, that is,fasxd=gasxd2 with a=as. In this way, sinceN=lZ=lda−1,

a csfdNa−1 = ld csfda−s = osa−2/3d,

which is alsoosa−4/3d, a→0. Define now the coherent statesga
p,q,p, qPR3 by
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ga
p,qsxd = gasx − qdeipx.

With T̃spd the functionÎp2+a−2−a−1, we then have the formulas

sf, fd =
1

s2pd3 E E d3p d3qsf,ga
p,qdsga

p,q, fd,

sf,sV p ga
2dfd =

1

s2pd3 E E d3p d3qVsqdsf,ga
p,qdsga

p,q, fd,

sf,Tspdfd ù
1

s2pd3 E E d3p d3qT̃spdsf,ga
p,qdsga

p,q, fd − osa−1/3d. s8.1d

The proof of these formulas is carried out in Appendix B. In this way, lettingṼsxd=d / uxu
−arp uxu−1 sremember thatfas=ga

2d,

o
i=1

N

smi,x3hTspd − Vsxd + ar p fa p uxu−1jx3mid

=o
i=1

N Smi,x3HTspd − Ṽsxd p fas +
d

uxu
p fas −

d

uxuJx3miD
=o

i=1

N

smi,x3hTspd − Ṽsxd p fasjx3mid

=
1

s2pd3 E E d3p d3qsT̃spd − ṼsqddSo
i=1

N

usmix3,ga
p,qdu2D − Nosa−1/3d.

The second equality follows from Newton’s theoremssincefas is spherically symmetricd, uxu−1

− uxu−1pfas;0 outside suppfas, and since suppx3ùsuppfas=x for a sufficiently smallsass
. td,

o
i=1

N Smi,x3H d

uxiu
p fas −

d

uxiu
Jx3miD = 0.

This is one of the reasons for introducing the intermediary zone by the functionx2. Note also that
Nosa−1/3d=osa−4/3d. Now, for a small enough,as−t,1/4, sinces. t, so that if uqu, 1

4at, then

ux − qu , as ⇒ uxu ,
1
2at,

and sosmix3,ga
p,qd=0, since suppga,Bs0,asd and suppx3,R3\Bs0, 1

2atd. That is, fora small
enough

suppqusmix3,ga
p,qdu2 # R3 \ Bs0,1

4atd ,

so that for anymù0 we have, withMsp,qd=oi=1
N usmix3,ga

p,qdu2 and ffg±=maxh± f ,0j,
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1

s2pd3 E E d3p d3qsT̃spd − ṼsqddSo
i=1

N

usmix3,ga
p,qdu2D

=
1

s2pd3 E E
uqu. 1

4
at

d3p d3qsT̃spd − sṼsqd − amddMsp,qd − amo
i=1

N

sx3mi,x3mid

ù −
1

s2pd3 E E
uqu. 1

4
at

d3p d3qfT̃spd − sṼsqd − amdg− − amN,

since 0øMsp,qdø1 andsx3mi ,x3midø imii2
2=1. The first is seen by Bessel’s inequality, since the

mi’s are orthonormal andix3ga
p,qi2ø iga

p,qi2=1. In this way we have shown that formø0, r :R3

→R andcPHF=∧NL2sR3,C2d,

kc,Hcl ù −
1

s2pd3 E E
uqu. 1

4
at

d3p d3qfT̃spd − sṼsqd − amdg− −
a

2
E E rsxdrsyd

ux − yu
d3x d3y − amN

− osa−4/3d. s8.2d

Choose nowr to be the Thomas–Fermi densityrTF
N,Z, that is, the function that minimizes the

Thomas–Fermi functionalfhere,g=s3p2d2/3g,

ETFsrd =
3

5
gE rsxd5/3 d3x −E rsxd

Z

uxu
d3x +

1

2
E E rsxdrsyd

ux − yu
d3x d3y s8.3d

over the set

Hr P L5/3sR3d ù L1sR3dur ù 0,E rsxdd3x ø NJ .

sFor the Thomas–Fermi theory, see Lieb and Simon14 and Lieb.11d ThenrTF
N,Z satisfies the Thomas–

Fermi equation,

grsxd2/3 = F Z

uxu
− r p uxu−1 − mG

+

s8.4d

for some uniquem=msNd. Furthermore,

for N ø Z, E rTF
N,Zsxdd3x = N and msNd . 0,

for N . Z, E rTF
N,Zsxdd3x = Z and msNd = 0

fsee Lieb and SimonsRef. 14, Theorems II.17, 18, and 20dg. In this way,erTF
N,Zsxdd3x,N implies

N.Z, and thereforemsNd=0, so that we always have

msNd E rTF
N,Zsxdd3x = msNdN. s8.5d

Let ETFsN,Zd;ETFsrTF
N,Zd and define the Thomas–Fermi potential by

VTF
N,Zsxd ; Z/uxu − rTF

N,Z p uxu−1 − msNd,

then we have the following scalingfRef. 14,s2.24d p. 608g sremember, thatl=N/Z is fixedd:
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ETFsN,Zd = Z7/3ETFsl,1d ; − CTFsldZ7/3, s8.6d

VTF
N,Zsxd = Z4/3VTF

l,1sZ1/3xd ; Z4/3VTFsZ1/3xd. s8.7d

The idea is now to estimate the difference between the integral ins8.2d fwith r=rTF
N,Z andm

=msNdg and

−
a

s2pd3 E E
uqu. 1

4
at

d3p d3qFp2

2
− S Z

uqu
− rTF

N,Z p uqu−1 − msNdDG
−

.

This is done in two step, first, we change the domain of the integration, then we change the
integrand, each time estimating the error.

First,

−
1

s2pd3 E E
uqu. 1

4
at

d3p d3qfT̃spd − aVTF
N,Zsqdg−

=
1

s2pd3 E E
uqu. 1

4
at;T̃spd,aVTF

N,Zsqd
d3p d3qsT̃spd − aVTF

N,Zsqdd

=
1

s2pd3 E E
uqu. 1

4
at;asp2/2d,aVTF

N,Zsqd
d3p d3qsT̃spd − aVTF

N,Zsqdd

+
1

s2pd3 E E
uqu. 1

4
at;T̃spd,aVTF

N,Zsqd,asp2/2d
d3p d3qsT̃spd − aVTF

N,Zsqdd.

SinceT̃spdù0, we get

E E
uqu. 1

4
at;T̃spd,aVTF

N,Zsqd,asp2/2d
d3p d3qsaVTF

N,Zsqd − T̃spdd

ø aE E
uqu. 1

4
at;T̃spd,aVTF

N,Zsqd,asp2/2d
d3p d3qVTF

N,Zsqd.

Using the scalings8.7d and the change of variablesv=d1/3a−1/3q, the above is equal to

d1/3a2/3E E
uvu. 1

4
d1/ 3at−1/ 3T̃spd,d4/ 3a−1/ 3VTFsvd,asp2/2d

d3p d3v VTFsvd. s8.8d

The limits in the integral means that

2d4/3a−4/3VTFsvd ø p2 ø 2d4/3a−4/3VTFsvds1 + 1
2d4/3a2/3VTFsvdd

so that with

X = 2d4/3a−4/3VTFsvd, Y = 1
2d4/3a2/3VTFsvd, Z = upu2, W= 1

4d1/3at−1/3,

we have
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s8.8d = s4pd2d1/3a2/3E
W

`

duvuuvu2VTFsvdSE
X

Xs1+Yd ÎZ

2
dZD

= s4pd2d1/3a2/3E
W

`

duvuuvu2VTFsvd
X3/2

3
ss1 + Yd3/2 − 1d.

By the Taylor expansions7.3d, we haves1+Yd3/2ø1+ 3
2Y+ 3

8Y2, and so

s8.8d ø Cd7/3a−4/3E
W

`

uvu2VTFsvd5/2S3

4
d4/3a2/3VTFsvd +

3

32
d8/3a4/3VTFsvd2Dduvu.

Using thatVTF
N,ZsxdøZ/ uxu, sincemsNdù0 andrTF

N,Zù0 sremember thatVTF;VTF
l,1d, we arrive at

s8.8d ø Cd11/3a−2/3E
W

`

duvuuvu−3/2 + Î2p2d5E
W

`

duvuuvu−5/2

, a−2/3W−1/2 + W−3/2 , a−2/3a1/6−t/2 + as1−3td/2 = osa−5/6d + osa−1/2d,

sincet,2/3. This means, that

−
1

s2pd3 E E
uqu. 1

4
at

d3p d3qfT̃spd − aVTF
N,Zsqdg−

ù
1

s2pd3 E E
uqu. 1

4
at;asp2/2d,aVTF

N,Zsqd
d3p d3qsT̃spd − aVTF

N,Zsqdd − osa−4/3d.

Next note that sinceuqu. 1
4at andaVTF

N,Zsqdød / uqu in the area of integration, we have that

T̃spd = Îp2 + a−2 − a−1 ù a
p2

2
− a3p4

8
.

In this way, we get

1

s2pd3 E E
uqu. 1

4
at;asp2/2d,aVTF

N,Zsqd
d3p d3qsT̃spd − aVTF

N,Zsqdd

ù
1

s2pd3 E E
uqu. 1

4
at;asp2/2d,aVTF

N,Zsqd
d3p d3qSa

p2

2
− a3p4

8
− aVTF

N,ZsqdD
=

1

s2pd3 E E
uqu. 1

4
at;asp2/2d,aVTF

N,Zsqd
d3p d3qSa

p2

2
− aVTF

N,ZsqdD
− a3 1

s2pd3 E E
uqu. 1

4
at;asp2/2d,aVTF

N.Zsqd

p4

8
d3p d3q. s8.9d

Note that
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1

s2pd3 E E
uqu. 1

4
at;asp2/2d,aVTF

N.Zsqd
d3p d3qSa

p2

2
− aVTF

N,ZsqdD
= −

a

s2pd3 E E
uqu. 1

4
at

d3p d3qFp2

2
− S Z

uqu
− rTF

N,Z p uqu−1 − msNdDG
−

ù −
a

s2pd3 E E d3p d3qFp2

2
− S Z

uqu
− rTF

N,Z p uqu−1 − msNdDG
−

.

Let us now look at the last term ins8.9d. Again using thatVTF
N,ZsxdøZ/ uxu, we have that

E E
uqu. 1

4
at;asp2/2d,aVTF

N,Zsqd

p4

8
d3p d3q

øE E
uqu. 1

4
at;asp2/2d,d/uqu

p4

8
d3p d3q

= s4pd2E
1
4

at

`

duquSuqu2E
0

Î2Z/uqu upu4

8
upu2dupuD

= 2p2E
1
4

at

`

duqusuqu2ft7/7g0
Î2Z/uqud =

2p2s2Zd7/2

7
E

1
4

at

`

uqu−3/2duqu =
8p2s2Zd7/2

7
a−t/2.

Using this, we then get the following:

1

s2pd3 E E
uqu. 1

4
at;asp2/2d,aVTF

N,Zsqd
d3p d3qsT̃spd − aVTF

N,Zsqdd

ù −
a

s2pd3 E E d3p d3qFp2

2
− S Z

uqu
− rTF

N,Z p uqu−1 − msNdDG
−

− as6−td/2s2Zd7/2

7p
.

Hence, sinced=Za is fixed andt,2/3, we have

as6−td/2s2Zd7/2

7p
=

8Î2

7p
a−s1+td/2d7/2 = osa−4/3d, a → 0.

Summing up, we have now proved that forcPHF=∧NL2sR3,C2d,

kc,Hcl ù −
a

s2pd3 E E d3p d3qFp3

2
− S Z

uqu
− rTF

N,Z p uqu−1 − msNdDG
−

−
a

2
E E rTF

N,ZsxdrTF
N,Zsyd

ux − yu
d3x d3y − amsNdN − osa−4/3d. s8.10d

Integrating first inp in the first integral ins8.10d, we get, for eachq fixed,

E d3pFp2

2
− S Z

uqu
− rTF

N,Z p uqu−1 − msNdDG
−

=E
sp2/2d,VTF

N,Z
Sp2

2
− S Z

uqu
− rTF

N,Z p uqu−1 − msNdDDd3p

= −
16Î2p

15
fVTF

N,Zsqdg+

5/2
. s8.11d
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The f¯g+, since, if the term in brackets is negative, the integrand ins8.11d will be zero.
Now, becauserTF

N,Z satifies the equations8.4d, we get, that

F Z

uqu
− rTF

N,Z p uqu−1 − msNdG
+

5/2

= g5/2rTF
N,Zsqd5/3 = g3/2rTF

N,ZsqdF Z

uqu
− rTF

N,Z p uqu−1 − msNdG .

In the last equation, nof¯g+ is needed, since, if the last term is negative,rTF
N,Z is zero, because of

s8.4d. In this way, by the above and bys8.5d,

−
a

s2pd3 E E d3p d3qFp2

2
− S Z

uqu
− rTF

N,Z p uqu−1 − msNdDG
−

−
a

2
E E rTF

N,ZsxdrTF
N,Zsyd

ux − yu
d3x d3y

− amsNdN = a
3

5
gE rTF

N,Zsqd5/3 d3q − aE rTF
N,Zsqd

Z

uqu
d3q + aE rTF

N sqdrTF
N,Z p uqu−1 d3q

+ amsNd E rTF
N,Zsqdd3q −

a

2
E E rTF

N,ZsxdrTF
N,Zsyd

ux − yu
d3x d3y − amsNdN

= aS3

5
gE rTF

N,Zsxd5/3 d3x −E rTF
N,Zsxd

Z

uxu
d3x +

1

2
E E rTF

N,ZsxdrTF
N,Zsyd

ux − yu
d3x d3yD = aETFsN,Zd.

Since Hrel=a−1H, and Z=da−1, with d fixed, 0ødø2/p, this shows, that for allcPHF

=∧NL2sR3,C2d,

kc,Hrelcl ù − CTFZ
7/3 − osZ7/3d, Z → `,

because of the scalings8.6d. This ends the proof of Theorem 1.1. h

APPENDIX A: A FORMULA FOR THE KINETIC ENERGY

In this appendix we shall prove the localization-formulas4.2d for the operatorÎp2+a−2

fwhich is the equivalent of the IMS Localization Formula for the Laplace operator −D, see Cycon
et al. sRef. 3, Theorem 3.2dg. Let first K2 be a modified Bessel function of second order, defined
on s0,`d by

K2std =
1

2
E

0

`

xe−1
2

tsx+x−1d dx.

It is easily seen thatK2 is well-defined, decreasing and differentiable. Other properties ofK2 will
be derived later. Let thenx j, j =1,… ,k be smooth positive functions onR3, such thato jx j

2sxd
=1 for all x in R3 and define onL2sR3d the bounded operatorLsad by the kernel

Lsadsx,yd =
a−2

s2pd2

K2sa−1ux − yud
ux − yu2 o

j=1

k

sx jsxd − x jsydd2.

Then for f PSsR3d one has the formula

sf,Îp2 + a−2fd = o
j=1

k

sf,x j
Îp2 + a−2x j fd − sf,Lsadfd. sA1d

The proof of the localization formulasA1d will be a consequence of the following formula.
Lemma A.1: For fPSsR3d,

sf,sÎp2 + a−2 − a−1dfd =
a−2

s2pd2 E E ufsxd − fsydu2
K2sa−1ux − yud

ux − yu2
d3x d3y. sA2d
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Proof: Let f̂ be the Fourier transform off. Note that by dominated convergence in momentum
space, we have

sf,Îp2 + a−2fd = lim
t↘0

1

t
hsf, fd − sf,e−tÎp2+a−2

fdj .

To calculate the integral kernel expf−tÎp2+a−2gsx,yd, expand the Fourier transforms:

sf,e−tÎp2+a−2
fd =E u f̂spdu2e−tÎp2+a−2

d3p =
1

s2pd3 E E fsxdfsydSE e−tÎp2+a−2
eisx−yd·p d3pDd3x d3y.

This is justified by the fact thatf PSsR3d. Now, for x,y fixed, choose polar coordinatessupu ,u ,fd,
for p such thatsx−yd ·p=−upuux−yucosu. Then

E e−tÎp2+a−2
eisx−yd·p d3p =E

0

` E
0

2p E
0

p

e−tÎp2+a−2
e−i upuux−yucosu sinu du dfupu2dupu

=2pE
0

`

upu2e−tÎp2+a−2SE
−1

1

ei upuux−yuu duDdupu, u = − cosu

=
4p

ux − yuE0

`

upue−tÎp2+a−2
sinsupuux − yuddupu

=
4p

ux − yu
ta−2ux − yusux − yu2 + t2d−1K2fa−1sux − yu2 + t2d1/2g,

where the last equality is given in Erdelyiet al. fRef. 5, p. 75, 2.4s35dg. In this way,

sf,e−tÎp2+a−2
fd =

ta−2

2p2
E E fsxdfsyd

K2fa−1sux − yu2 + t2d1/2g
ux − yu2 + t2

d3x d3y. sA3d

Now, lettingFtspd=e−tÎp2+a−2
, the above shows that

F̌tsxd =
1

s2pd3/2E Ftspdeix·p d3p =Î 2

p
ta−2K2fa−1suxu2 + t2d1/2g

uxu2 + t2
,

and therefore, for allyPR3:

ta−2

2p2
E K2fa−1sux − yu2 + t2d1/2g

ux − yu2 + t2
d3x = Fts0d = e−ta−1

. sA4d

Hence we get, usingsA3d and sA4d, which are both symmetric inx andy, that

1

t
hsf, fd − sf,e−tÎp2+a−2

fdj =
1

t
hsf, fd − sf,e−ta−1

fdj +
1

t
hsf,e−ta−1

fd − sf,e−tÎp2+a−2
fdj

= −
e−ta−1

− e−0·a−1

t − 0
sf, fd +

1

t
HE 1

2
ssufsxdu2 + ufsydu2d − fsxdfsyd − fsydfsxdd

3
ta−2

2p2

K2fa−1sux − yu2 + t2d1/2g
ux − yu2 + t2

d3x d3yJ .

Cancellingt and noting that
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lim
t↘0

e−ta−1
− e−0·a−1

t − 0
= U d

dt
se−ta−1

dU
t=0

= − a−1,

we get that

lim
t↘0

1

t
hsf, fd − sf,e−tÎp2+a−2

fdj = a−1 +
a−2

s2pd2 E E ufsxd − fsydu2
K2sa−1ux − yud

ux − yu2
d3x d3y.

This proves the lemma. h

Now, to prove the formulasA1d, we simply use the fact thato jx j
2sxd=1 for all x in R3:

o
j=1

k

ux jsxdfsxd − x jsydfsydu2 = ufsxdu2 + ufsydu2 − o
j=1

k

x jsxdx jsydsfsydfsxd + fsxdfsydd

= ufsxd − fsydu2 + o
j=1

k

x jsxdsfsydfsxd + fsxdfsyddsx jsxd − x jsydd.

Note thatx j f PSsR3d, sincex j is smooth and bounded, so that using the formulasA2d,

o
j=1

k

sf,x jsÎp2 + a−2 − a−1dx j fd = o
j=1

k

sx j f,sÎp2 + a−2 − a−1dx j fd

=
a−2

s2pd2 E E o
j=1

k

ux jsxdfsxd − x jsydfsydu2
K2sa−1ux − yud

ux − yu2
d3x d3y

=
a−2

s2pd2 E E Hufsxd − fsydu2 + o
j=1

k

x jsxdsfsydfsxd

+ fsxdfsyddsx jsxd − x jsyddJK2sa−1ux − yud
ux − yu2

d3x d3y. sA5d

Using now that

E E x jsxdfsydfsxdsx jsxd − x jsydd
K2sa−1ux − yud

ux − yu2
d3x d3y

= −E E x jsydfsxdfsydsx jsxd − x jsydd
K2sa−1ux − yud

ux − yu2
d3x d3y

simply by interchangingx andy, we finally get fromsA5d that

o
j=1

k

sf,x j
Îp2 + a−2x j fd =

a−2

s2pd2 E E ufsxd − fsydu2
K2sa−1ux − yud

ux − yu2
d3x d3y

+
a−2

s2pd2 E E fsxdfsydo
j=1

k

sx jsxd − x jsydd2K2sa−1ux − yud
ux − yu2

d3x d3y

which, usingsA2d, proves the formulasA1d. h

We now derive two facts about the functionK2,

E
0

`

t2K2stddt =
3p

2
, sA6d
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K2std ø 4Îp

2t
e−tS1 +

1

2t
+

1

s2td2D for all t P R+. sA7d

The proof ofsA6d is straightforward by using the definition ofK2,

E
0

`

t2K2stddt =E
0

`

t2S1

2
E

0

`

xe−1
2

sx+x−1d dxDdt =
1

2
E

0

`

xSE
0

`

t2e−1
2

sx+x−1d dtDdx

where the interchanging of the order of integration is allowed by Tonelli’s theorem. By applying
partial integration three times,

E
0

`

t2e−1
2

sx+x−1d dt =
16

sx + x−1d
,

and so

E
0

`

t2K2stddt =
1

2
E

0

` 16x

sx + x−1d
dx = 4E

−`

` x4

sx2 + 1d3dx = 4 · 2pi ResS z4

sz2 + 1d3,iD = 8pi
6

32i
=

3p

2
.

For the estimatesA7d, we need to rewriteK2. This is done following Gray and MathewssRef.
18, pp. 50d.

Observation A.2:

K2std =Îp

2t

1

Gs 5
2de−tE

0

`

e−jj3/2S1 +
j

2t
D3/2

dj. sA8d

To prove the observation, we start on the right-hand side ofsA8d. Settingt+j=Ît2+h, one
gets, since thenh=j2+2tj, that

RHSsA8d =Îp

2t

1

Gs 5
2dE0

`

e−Ît2+hS h

2t
D3/2 dh

2Ît2 + h
.

Using the formula

E
0

`

e−sa2j2+b2/j2d dj =
Îp

2a
e−2ab

fwhich holds since both sides satisfy the differential equation df /db=−2af, fsb=0d=Îp /2ag with
a=Ît2+h, b=1/2, wearrive at

RHSsA8d =
1

Gs 5
2ds2td2E

0

`

h3/2SE
0

`

e−sst2+hdj2+1/s2jd2d djDdh

=
1

Gs 5
2ds2td2E

0

`

e−st2j2+1/s2jd2dSE
0

`

e−hj2
h3/2 dhDdj

=
1

s2td2E
0

`

e−st2j2+1/s2jd2dj−5 dj

since one has the formula

E
0

`

e−hj2
h3/2 dh = j−5GS5

2
D .

Making the change of variablesx=1/2tj2, we finally get
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RHSsA8d =
1

2
E

0

`

xe−s1/2dtsx+x−1d dx = K2std.

Now, to prove the estimatesA7d, use the Tayloer expansions7.3d on the integrand insA8d, to get

K2std øÎp

2t

1

Gs 5
2de−tE

0

`

e−jj3/2S1 +
3

4t
j +

3

32t2
j2Ddj

=Îp

2t

1

Gs 5
2de−tSE

0

`

e−jj3/2 dj +
3

4t
E

0

`

e−jj5/2 dj +
3

32t2
E

0

`

e−jj7/2 djD
=Îp

2t

1

Gs 5
2de−tSGs 5

2d +
3

4t
Gs 7

2d +
3

32t2
Gs 9

2dD
=Îp

2t
e−tS1 +

15

8t
+

105

128t2
D ø 4Îp

2t
e−tS1 +

1

2t
+

1

s2td2D .

APPENDIX B: INTRODUCING COHERENT STATES

In this section we will introduce coherent states and prove the formulas in Sec. VIII. The error
introduced by using coherent states will also be estimated here.

Lemma B.1: Let gPC0
`sR3d be spherically symmetric, non-negative, supported in the unit ball

and such thatigi2=1, and let gp,qsxd=gsx−qdeipx. Then

sf, fd =
1

s2pd3 E E d3p d3qsf,gp,qdsgp,q, fd,

sf,sV p ugu2dfd =
1

s2pd3 E E d3p d3q Vsqdsf,gp,qdsgp,q, fd,

sf,Îp2 + a−2fd ù
1

s2pd3 E E d3p d3qÎp2 + a−2sf,gp,qdsgp,q, fd − 3ai ¹ gi`
2Volssuppgdifi2

2.

sB1d

Proof: The idea of the above formulas is to write the identity and other operators onL2sR3d as
superpositions of the one-rank operatorsppq=s ,gp,qdgp,q. To prove the above formulas, start with
the right-hand side of the second formulasthe proof of the first formula is similar, just more
simpled:

1

s2pd3 E E d3p d3qVsqdsf,gp,qdsgp,q, fd =
1

s2pd3 E E d3p d3q VsqdFE fsydgsy − qde−ipy d3yG
3FE fsxdgsx − qde−ipx d3xG . sB2d

Notice, that the function in the last brackets iss2pd3/2 times the Fourier transform of the function
Fqsxd= fsxdgsx−qd. In this way we get, by Parseval’s formula,
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sB2d =E E d3p d3q VsqduF̂qspdu2 =E d3q VsqdiF̂qi2
2 =E d3q VsqdiFqi2

2

=E d3q VsqdSE ufsxdu2ugsx − qdu2 d3xD =E d3xufsxdu2SE Vsqdugsx − qdu2 d3qD
= sf,sV p ugu2dfd.

This proves the secondsand the firstd formula.
To prove the formula for the operatorÎp2+a−2, note that

E gsx − qd2 d3q = 1 for all x in R3,

so that, by the symmetry of the operatorÎp2+a−2,

sf,Îp2 + a−2fd =
1

2
E E fsxdgsx − qd2sÎp2 + a−2fdsxdd3q d3x

+
1

2
E E sÎp2 + a−2fdsxdgsx − qd2fsxdd3q d3x

=
1

2
E E fsxdgqsxd2sÎp2 + a−2fdsxdd3q d3x

+
1

2
E E fsxdsÎp2 + a−2sgq

2fddsxdd3q d3x. sB3d

Here, gqsxd=gsx−qd. Remembering thatgqsxd2 is real and lettinggq
2 denote the multiplication

operator defined by this function, we have

sB3d =E E sgqfdsxdfÎp2 + a−2sgqfdgsxdd3q d3x +
1

2
E E fsxdfsgq

2Îp2 + a−2 + Îp2 + a−2gq
2

− 2gq
Îp2 + a−2gqdfgsxdd3q d3x =

1

2
E E fsxdsLqfdsxdd3q d3x

+E E SE Îp2 + a−2SE e−ipygqsydfsydd3yDeipx d3pDgqsxdfsxdd3q d3x, sB4d

where

sLqfdsxd =E HE fgqsyd2 + gqsxd2 − 2gqsxdgqsydgÎp2 + a−2eipsx−yd d3pJ fsydd3y. sB5d

The second term insB4d is equal to

E E d3p d3qÎp2 + a−2SE fsxdgqsxdeipxd3xDSE fsydgqsyde−ipy d3yD
=E E d3p d3qÎp2 + a−2sf,gp,qdsgp,q, fd.

The first term insB4d is the error, which will now be estimated. Keepingx andy fixed, we have,
as showed in the proof ofsA2d,
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Lqsx,yd =E fgqsyd2 + gqsxd2 − 2gqsxdgqsydgÎp2 + a−2eipsx−yd d3p

= fgqsxd − gqsydg2 a−2

4p2

K2sa−1ux − yud
ux − yu2

.

In this way, using the same ideas as in Sec. V, we reach the estimate

Lqsx,yd ø i ¹ gqi`
2 a−2

4p2K2sa−1ux − yudsxsuppgq
sxd + xsuppgq

sydd,

wherexsuppgq
is the characteristic function of suppgq. This gives us that

E Lqsx,ydd3q øE i ¹ gqi`
2 a−2

4p2K2sa−1ux − yudsxsuppgq
sxd + x suppgqsyddd3q

= 2i ¹ gi`
2 a−2

4p2K2sa−1ux − yudVolssuppgd.

By this we finally get, by using first the Cauchy–Schwartz, then Young’s inequality, that

UE E fsxd E Lqsx,ydd3q fsydd3x d3yU øE E ufsxduS2i ¹ gi`
2 a−2

4p2K2sa−1ux − yudVolssuppgdD
3ufsydud3x d3y

ø 2i ¹ gi`
2 a−2

4p2ifi2iuf u p Gai2Volssuppgd,

Gasxd = K2sa−1uxud ø i¹gi`
2 a−2

2p2ifi2
2iGai1Volssuppgd

= i ¹ gi`
2 a−2

2p26p2a3ifi2
2Volssuppgd fseesA6d for iGai1g

= 3ai ¹ gi`
2Volssuppgdifi2

2.

h

For the cases8.1d in Sec. VIII, let the coherent stategp,q be defined from the scaled version of
the functiong chosen there—that is,gPC0

`sR3d, spherically symmetric, non-negative and with
support in the unit ballBs0,1d of R3. Then the coherent states are

ga
p,qsxd = gasx − qdeipx = a−3s/2gSx − q

as Deipx.

In this way,i¹gai`
2 =a−5si¹gi`

2 and Volssuppgad=s4p /3da3s, and therefore

sf,Îp2 + a−2fd ù
1

s2pd3 E E d3p d3qÎp2 + a−2sf,ga
p,qdsga

p,q, fd − osa−1/3d,

since, ass,2/3,

3aa−5si ¹ gi`
2 4p

3
a3sifi2

2 = Ca1−2s = osa−1/3d, a → 0.

This proves the formulas8.1d, since
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sf, fd =
1

s2pd3 E E d3p d3qsf,ga
p,qdsga

p,q, fd

andTspd=Îp2+a−2−a−1.
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Local existence of quasispherical space–time initial data
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We consider the system of Einstein constraint equations in the special case when
the spacelike 3-manifold is assumed to satisfy the quasispherical ansatz of Bartnik.
We introduce two different time slicing conditions, under each of which we may
view the resulting constraint equations as a parabolic/elliptic/ODE system of partial
differential equations. We combine recent existence results for parabolic equations
in Sobolev space with an iterative method to prove local existence results for the
quasispherical Einstein constraint equations under the two different time slicing
conditions. ©2005 American Institute of Physics.fDOI: 10.1063/1.1864250g

I. INTRODUCTION

In general relativity, the Einstein field equations allow us to study the evolution of a spacelike
3-manifold, provided that its metric and extrinsic curvature satisfy a system of geometric con-
straint equations. The Einstein constraint equations, arise as a consequence of the fact that the
3-manifold in question is necessarily a submanifold of the spacetime its evolution defines. The
constraint equations on a 3-manifoldS with metric h and second fundamental formK are

Rh + strh Kd2 − iKi2 = 16pT00, s1.1d

DjKij − DistrhKd = 8pT0i, i = 1,2,3. s1.2d

Here T is the stress-energy tensor andRh and D denote the scalar curvature and Levi–Civita
connection of the metrich.

Traditionally, solutions of the constraint equations are constructed using the method of
Lichnerowicz,12 which is based on the conformal class ofh. This method has been studied exten-
sively, for example in Refs. 7–10. Accordingly, the data set

h = f4ĥ,

K = f−2Â + f−2l ĥsWd + 1
3tf4ĥ,

satisfies the initial data constraintss1.1d ands1.2d if f andW satisfy the semilinear elliptic system

8Dĥf = fRĥ − iÂ + l ĥsWdi2f−7 + 2
3t2f5 − 16pT̂00, s1.3d

D̂jfl ĥsWdgi j = 2
3f6D̂it + 8pT̂0i , s1.4d

wherelh is the conformal Killing operator;lhsWd=LWh− 1
3h trhsLWhd.

This conformal method has both advantages and disadvantages; on the one hand, every solu-

tion of s1.1d and s1.2d may be obtained in this manner from suitableĥ, t, Â, while on the other
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hand, the elliptic systems1.3d and s1.4d does not always admit solutions, it is difficult to solve
numerically in general, and distinct data can give rise to diffeomorphically equivalent solutions of
the constraint equations.5

More particularly, the conformal method has been shown to be inadequate for the solution of
a problem encountered when considering the notion of quasilocal mass in general relativity.3 In
Ref. 2 one is confronted with the following extension problem:

Given a bounded data setsS0,h0,K0d, find an asymptotically flat data setsS ,h,Kd with
boundaryG=]S.]S0 such that the complete manifoldSøGS0, obtained by gluingS and
S0 alongG, forms an initial data set.
Requiring thatsS ,hd have bounded curvature acrossG implies the boundary conditions for the

metric h and mean curvatureHG=trG K,

uhuTG = uh0uT]S0
, HG = H]S0

. s1.5d

Given a metricĥ on S \S0, for the conformal method, we must solve the semilinear elliptic
equation,3

sDĥ − 1
8Rĥdf = − 1

8f5Rh,

whereh=f4ĥ is the required 3-metric. The boundary conditionss1.5d imply that uĥuTG= uh0uT]S

without loss of generality.
Under conformal change of the metric the mean curvature ofG transforms as

HG,h = 8f−3]n̂f + f−2HG,ĥ, s1.6d

where]n̂ is the outwardĥ-unit normal derivative.
Equation s1.6d implies that the boundary conditionss1.5d are equivalent to the boundary

conditions forf on G

f = 1, ]nf = HG,ĥ − H]S0,h0
,

where HG,ĥ and H]S0,h0
are the given mean curvatures. Clearly these boundary conditions are

ill-posed.
In this paper we outline an alternative method for constructing solutions to the constraint

equations based on the quasisphericalsQSd ansatz of Bartnik.4 Moreover, we establish local
existence results for the constraint equations for a spacelike hypersurface in the QS gaugesTheo-
rems 5.25 and 5.20d. We make no mention of the generality of this gauge; the extent to which the
QS ansatz applies remains an open problem.

After briefly describing and imposing the quasispherical gauge in Sec. II, we provide an
argument to show that the resulting system of constraint equations may be viewed as a coupled
system of partial differential equations consisting of a parabolic equation, a first-order elliptic
system andsessentiallyd a system of ordinary differential equations. This system admits several
Cauchy problem formulations, depending on which fields are considered as prescribed. In Sec. III
we describe two such formulations that arise naturally through geometric considerations. In Sec.
IV we reformulate the systems via a complexification of the sphere and introduce an additional
constraint equation that allows us to write the systems in a more tractable form. In Sec. V we use
a contraction mapping argument, based on an iterative system of partial differential equations, to
prove local existence results for the two Einstein constraint systems that were formulated in the
preceding sections of the paper.

II. THE QUASISPHERICAL METHOD

We assume that the 3-manifold,S, can be foliated by surfaces of constant positive Gauss
curvaturesi.e., rescaled 2-spheresd, such that the area function 4pr2[C`sSd can be used as a
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global coordinate. Using standard polar coordinatessq ,wd on the 2-spheres, the most general
metric compatible with these assumptions may be written assRef. 4, Lemma 2.1d

ds2 = u2 dr2 + sb1 dr + r dqd2 + sb2 dr + r sinq dwd2, s2.1d

for functionsusr ,q ,wd.0, bAsr ,q ,wd, A=1,2. Wecall the metric in these coordinatesquasi-
spherical, since this naturally generalizes the class of spherically symmetric metrics.

Computing the scalar curvatureR of s2.1d we find that4

2r]ru − 2bA¹Au = gu2Du + s1 + gBdu − gs1 − 1
2Rr2du3, s2.2d

where

B = 1
2udiv bu2 + 1

2u¹sAbBdu2 − r]rsdiv bd + bA¹Asdiv bd − 3
2div b,

and

g = s1 − 1
2div bd−1, div b = ¹ AbA.

Equations2.2d is a semilinear parabolic equation onS2 for u, with bA and R regarded as pre-
scribed fields. General global existence theorems for solutions ofs2.2d have been proven in Ref. 4,
under suitable regularity and boundedness assumptions about the prescribed fields. In particular, to
ensure thats2.2d is parabolic evolution in the direction of increasingr, b is required to satisfy

2 − div b . 0. s2.3d

The parabolic equations2.2d provides a method of solving the Hamiltonian constraint. Using the
Hamiltonian constraints1.1d to define the scalar curvatureR in terms of T00,iKi2 and trh K,
specifyingb appropriately and solvings2.2d for u yields a quasispherical metric satisfying the
Hamiltonian constraint. It is of interest to point out in passing that the quasispherical form of the
metric fares much better with the extension problem than the conformal method. IfSr

2 denotes a
leaf of the quasispherical foliation, defined by

Sr
2 = hp [ S:rspd = rj

then the mean curvature ofSr
2 is

Hr = HSr
2 =

1

ru
s2 − div bd.

Therefore ifb is given and satisfiess2.3d, then prescribingHr0
.0 amounts to specifyingusr0d

which may then be taken as initial data fors2.2d. Solution of s2.2d, with initial data so defined,
then yields an extension metric, at least in the case when the mean curvature is prescribed on a
standardS2. This idea has also been exploited in recent works concerning the connectedness of the
space of initial data sets for the Einstein equations17 and in connection with the positive mass
theorem and boundary behaviour of compact manifolds.16

To solve the momentum constraintss1.2d it is convenient to reparametrizeK. We define the
quasispherical orthonormal coframe

u1 = b1 dr + r dq,

u2 = b2 dr + r sinq dw,

u3 = u dr

and write
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Kiju
iu j = shAB + 1

2mdABduAuB + kAsuAu3 + u3uAd + sH − mdu3u3, s2.4d

wherehAB is a symmetric, traceless, 2-tensor onS2. The momentum constraintss1.2d may then be
written in terms of this quasispherical parametrization as

8pT03ru = − sr]rm − bA¹Am + s3 − div bdmd + u div k + kA¹Au + hAB¹sBbAd + s2 − div bdH,

s2.5d

8pT0Âru = ¹BsuhABd + m¹Au + ¹Asus 1
2m − Hdd + r]rkA − bB¹BkA + ss3 − div bddAB − ¹

AbB
dkB.

s2.6d

Hence if we consider the scalar curvatureR as given in terms ofm, h, k, andH via s1.1d and
s2.4d; that is,

R = 16pT00 + ihi2 + 2iki2 + 3
2m2 − 2mH,

then the system of equationss2.2d, s2.5d, ands2.6d comprise the spacetime intial data constraints
in the quasispherical gauge, and so will be referred to as thequasispherical Einstein constraint
systemsQSECSd.

As mentioned already, for Eq.s2.2d to be considered parabolic it is required thatb satisfy the
condition s2.3d. To ensure that this condition is met weprescribeb as any element of the set
hf [G`sTS23 f0,`dd :2−div f .0.j. This leavesu as the only remaining metric parameter. We
therefore cannot prescribeu; it must be found by solving the QSECS subject to appropriate
boundary conditions.

Now that we have established thatu cannot be prescribed, we must consider the remaining
fields m, h11, h12, k1, k2, andH. Since we have only four equations in the QSECS, it is obvious
that we need to prescribe at least three of these fields and consider the other three as to be
determined by the QSECS, subject to suitable boundary conditions. The following question re-
mains: Which of the fieldsm, h11, h12, k1, k2, andH should we consider as prescribed? As we will
see in a moment, prescribing eitherH or m allows us to gain a certain control over the geometrical
nature of the initial data. We will thus considerm or H as prescribed, never both. This leaves us
with two remaining fields to prescribe. The only choices are the components ofh or the compo-
nents ofk sit seems implausible to prescribe one component of eachd. Seeing thatk appears more
frequently in the QSECS than doesh, we choose to prescribek. As we might have hoped, we will
see that this choice simplifies the structure of the QSECS, for only a minor cost. We make the
comment, in passing, that the case for prescribingh is potentially interesting as well. This case
will not be treated here, however.

III. TIME SLICING CONDITIONS

In the conformal method approach to constructing spacetime initial data, prescribing the mean
curvature has been made standard practice. This has many advantages both geometrically and
physically. Indeed the so-called maximal gauge or maximal time slicing, which amounts to the
assumption that the mean curvature is zero, is quite often employed since it greatly simplifies the
analysis and may be assumed, without loss of generality, for any asymptotically flat spacetime
satisfying an interior condition.1 These considerations suggest the following boundary value prob-
lem.

Problem 1a:QSECS with prescribed mean curvature. Given the prescribed fieldsT0a, b, k,
and H, do there exist solutionsu, m, and h of s2.2d, s2.5d, and s2.6d satisfying the boundary
conditionsusu,mduS1

2=su0,m0d? Note thatS1
2=hp[S : rspd=1j is the unit sphere. It may be possible

to assign boundary values on a more general 2-surface but in this work we will only treat the case
where boundary values are assigned on the unit sphere.
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Another less familiar but potentially interesting time slicing condition is given by prescribing
m. In generalm is defined as

m = gABKAB,

wheregAB, A, B=1, 2 refers to the components of the inverse of the inducedssphericald metric.
To illustrate the geometric meaning of prescribingm we consider the case of spherically

symmetric spacetimes with metric given by

ds2 = − X2 dt2 + 2Y dr dt + Z2 dr2 + r2 ds2. s3.1d

Calculatingm for the surfaces defined by constantt in this metric, we easily obtain

rm = 2X−1Y.

If it were the case that the metric were written in polar coordinatessfor which Y=0d, we would
find thatm=0. For this reason we will refer to the slicing defined bym=0 as thepolar gaugeand
we will call the quantitym the polar curvature.

Next consider a surface defined byt= fsrd in the metrics3.1d. The tangent to this surface is
given by ẋ=]r + f8]t. The normal to the surface is given byn=a]r +b]t, where a and b are
determined by the conditionsgsẋ,nd=0 andgsn,nd=−1, which lead to

a =
X2f8 − Y

Z2 + Yf8
b,

b−2 = X2 −
2YsX2f8 − Yd

Z2 + Yf8
−

sX2f8 − Yd2

sZ2 + Yf8d2 .

The polar curvature is given by

rm = 2a.

The polar gaugesm=0d then implies thatf8=YX−2 and so the tangent to the surface is given by

ẋ = ]r + YX−2]t,

while its normal is

n = X−1]t.

Calculating the gradient ofr, we have

¹r = gab]ar]b =
X2

X2Z2 + Y2s]r + YX−2]td.

Hence, at least in the case of spherically symmetric spacetimes, them=0 surfaces are those which
have¹r, the gradient ofr, as their tangent vector.

Furthermore, the polar curvature arises naturally upon consideration of the trapped surface
condition. If we condsider a spacelike 2-surfaceS, with normalN and second fundamental formII,
embedded in a spacelike 3-manifold with normalT and second fundamental formK, the expansion
of the null congruences associated withT±N are given by

u± = trSk¹eA
eB,T ± Nl, = trSsKAB ± IIABd = m ± trS II.

Thus the trapped surface condition ism= ±trSII.
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The role the polar curvature plays in more general spacetimes is potentially very interesting
but has not as yet been investigated in any detail. However, in anticipation of this investigation we
will consider the QSECS withm a prescribed field. This gives us a second formulation of the
QSECS as a boundary value problem.

Problem 2a:QSECS with prescribed polar curvature. Given the prescribed fieldsT0a, b, k and
m, do there exist solutionsu, H, andh of s2.2d, s2.5d, ands2.6d satisfying the boundary conditions
uuuS1

2=u0?

IV. REWRITING THE EQUATIONS

In this section we introduce a complex notation and a coordinate transformation that enables
us to write the QSECS in a more tractable form. We define the following complex fields:

b =
1
Î2

sb1 − ib2d,

k =
1
Î2

sk1 − ik2d,

h = h11 − ih12,

T0 =
1
Î2

sT01 − iT02d,

and the subsidiary field

r = 2 − div b = g−1.

We may considerb andk asS2 vector fields or as spin-1 sections of the complex line bundle over
S2.6,13 Similarly we may considerh as a symmetric, traceless 2-tensor overS2 or as a spin-2
section of the complex line bundle overS2. The context in which these fields are used should make
it clear which representation is being employed.

The complex notation suggests encoding the angular derivatives in terms of the differential
operator ðsa phonetic symbol pronounced “eth”13d defined on a spin-s field c by

ðc =
1
Î2

sins qs]q − i cscq ]wdsc sin−s qd.

All the standard differential operators onS2 may be expressed in terms of ð, for example,

div b = ðb + ðb,

curl b = isðb − ðb,

Dc = sðð + ððdc.

The spin-weighted spherical harmonicsYlm
s are then the eigenfields of the Laplacian, satisfying

DYlm
s = ss2 − lsl + 1ddYlm

s ,

with usuø l. The eigenfieldsYlm
s may be taken proportional to ðsYlm for sù0 andð−sYlm for s

,0, whereYlm are the usual spherical harmonics.14

An important result concerningð which will have bearing on our consideration of the QSECS
is as follows.13,14
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Lemma 4.1: Suppose sù0 and let Ls denote the space of spin-s sections. The mapping
ð:Ls+1→Ls has cokernelC=spanhYsm

s j.
We have the obvious corollary.
Corollary 4.2: Suppose sù0. The mappingð:Ls+1→spanhYlm

s : l ùs+1j is a surjection.
Due to the repeated appearance of the operatorr]r −¹b we will find it convenient to make a

change of coordinates that will simplify the structure. We introduce the diffeomorphism ofS2

3R

F:st,jAd ° set,QAst,jdd = sr,zAd, s4.1d

wherez=sq ,wd andQst ,jd is defined to be the solution of

]

]t
Qst,jd = − bset,Qst,jdd, s4.2d

subject to suitable boundary conditions,ubut=0=b0.

Hence, definingf̃st ,jd= fset ,Qst ,jdd, we then have

]t f̃st,jd = Uet] f

]r
+

] f

]zA

]QA

]t
U

sr,zd=set,Qst,jdd
= Sr

]

]r
− bA ]

]zAD fset,Qst,jdd = sr]r − ¹bdfset,Qst,jdd.

We may then writes2.2d, s2.5d, ands2.6d in terms ofst ,jd as

2r̃]tũ = ũ2D̃ũ + r̃s1 + g̃B̃dũ − s1 − 1
2R̃e2tdũ3,

8pT̃03ũet = − s]tm̃ + s1 + r̃dm̃d + ũsdiv kd˜ + skA¹Aud˜ + shAB¹sBbAdd˜ + r̃H̃,

8pT̃0ũet = ]tk̃ + sðsuhd + mðu + 1
2ðsumd − ðsuHd + s1 + rdk + kðb + kðbd .

We note that since we have employed the coordinate transformation given byF, the LaplacianD̃

appearing in the first of the above equations is with respect to the pulled back metrich̃=F*h.
As we can see, implementing the coordinate transformationF, simplifies the structure of the

system in question. It does, however, leave us with a technical hitch. Since the natural angular
derivatives will now be in terms of thejA-coordinates, when we come to differentiate the equa-
tions, terms involving derivatives ofb will arise via s4.2d. This is not a problem, as we will
assume throughout thatb is a smooth, prescribed field and so the terms that arise will be bounded
by uniform constants. Moreover, since we assume thatb is smooth, the standard regularity theory
for ordinary differential equations dependent upon a parameter implies thatF is a smooth diffeo-
morphism.

With this observation in mind we may supress the tilde’s. Introducing the notationḟ =]t f and
defining the auxiliary fieldĥ=uh we then write the QSECS as

2ru̇ = u2Du + rs1 + gBdu − s1 − 1
2Re2tdu3, s4.3d

8pT03uet = − sṁ + s1 + rdmd + u div k + kA¹Au + hAB¹sBbAd + rH, s4.4d

8pT0uet = ðsĥd + mðu + 1
2ðsumd − ðsuHd + k̇ + s1 + rdk + kðb + kðb. s4.5d

To simplify the discussion and to be in keeping with the usual notions accompanying parabolic
equations, we will callt=ln r “time” and refer to the values of the various fields on the unit sphere
as initial values.
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Unfortunately a problem arises if we considers4.5d as giving an equation forĥ. In making
such a consideration we find thats4.5d is of the formðf =g with f [L2. Observing Lemma 4.1, an
equation of this form is only solvable ifg[spanhYlm

1 : l ù2j, that is to say ifg is devoid of l =1
spherical harmonic components. Hence if we considers4.5d as giving an equation forĥ, then we
do not have the freedom to prescribe all the fields we have thus far considered prescribed.

Typically the stress-energy tensor will be determined by the matter occupying the spacetime,
and we would like to freely specifyH or m for geometric reasons. It is also best to completely
specify the metric parameterb so that there is no chance ofs2.3d being violated. That leaves us
with k, and we conclude that it is not possible to considers4.5d as giving an equation forĥ and at
the same time treatk as freely specifiable.

We thus look to constraink in such a way thats4.5d is solvable. This will produce another
equationsthe k constraintd which must then be included as part of the QSECS.

To obtain the required equation we spectrally decomposek as follows:

k = o
m=−1

1

kmY1m
1 + o

l=2

`

o
m=−l

l

klmYlm
1 = k + s,

wheres=olù2oumuølk
lmYlm

1 is devoid ofl =1 components.
Let P1 denote the projection onto the subspace spanned byhY1m

1 :m=−1,0,1j. It is easy to
check that ifk satisfies

− k̇ = P1hmðu + 1
2ðsumd − ðsuHd + s1 + rdk + kðb + kðb + 8pT0uetj s4.6d

then s4.5d reduces to

− ðĥ = ṡ + s1 −P1dhmðu + 1
2ðsumd − ðsuHd + s1 + rdk + kðb + kðb + 8pT0uetj . s4.7d

This equation is of the formðf =g with g[spanhYlm
1 : l ù2j, and so is uniquely solvable by

Corollary 4.2.
Replacings4.5d with s4.6d and s4.7d, the constraint system may now be written as

2ru̇ = u2Du − u3s1 − 1
2e2ts16pT00 + 2iki2 + 3

2m2 − 2mHdd + rs1 + 1
2ge2tiĥi2 + gBdu,

s4.8d

ṁ = divsukd − s1 + rdm + u−1ĥAB¹sBbAd + rH − 8pT03uet, s4.9d

− k̇ = P1hmðu + 1
2ðsumd − ðsuHd + s1 + rdk + kðb + kðb + 8pT0uetj , s4.10d

− ðĥ = ṡ + s1 −P1dhmðu + 1
2ðsumd − ðsuHd + s1 + rdk + kðb + kðb + 8pT0uetj . s4.11d

The problems 1a and 1b may now be stated more correctly as follows.
Problem 1b: QSECS with prescribed mean curvature. Given the prescribed fieldsT0a, b, s,

and H, do there exist solutionsu, m, ĥ, and k of s4.8d–s4.11d satisfying the initial conditions
usu,m ,kduS23h0j=su0,m0,k0d?

Problem 2b: QSECS with prescribed polar curvature. Given the prescribed fieldsT0a, b, s,
and m, do there exist solutionsu, H, ĥ, and k of s4.8d–s4.11d satisfying the initial conditions
usu,kduS23h0j=su0,k0d?

We have not yet made mention about which function spaces we will be posing Problems 1b
and 2b in. Which spaces are to be used will be made clear in the next section after we discuss an
iterative, linear system of partial differential equations based on the QSECS. In fact, the existence
of solutions to the QSECS will follow from the convergence of the iterative system to a fixed
point.
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We will begin by considering Problem 1b.

V. LOCAL EXISTENCE

In Ref. 4 the author gives a detailed proof of the global existence and uniqueness of solutions
of s2.2d with b andR prescribed, and satisfying certain conditions. When considering the QSECS
with prescribed mean curvature, however, we may not considerR as completely prescribed, but as
determined by the additional fieldsm ,ĥ, andk, each of which is constrained so as to satisfys2.5d
and s2.6d.

To prove the local existence and uniqueness of solutions to the QSECS with prescribed mean
curvature, we will not borrow from Bartnik’s treatment. Instead we will define a linear system of
partial differential equations and produce a sequence of iterates that converge to a solution of the
QSECS. In defining the iterative scheme we will see that it is imperative that we have a theory
dealing with linear parabolic equations in which the regularity of the coefficients is comparable to
that of the solution. Such results were obtained in Ref. 15 where the following general second
order parabolic equation was considered:

]tu + Atu = g on S2 3 f0,Tg,

u = u0 on S2 3 h0j. s5.1d

HereAt is a linear differentiable operator of second order onS2, which is expressible in divergence
form. That is, for a twice differentiable functionu:S23 f0,Tg→R, we may writeAtu in local
coordinates as

Atusx,td = − ¹ jsaijsx,td¹iusx,tdd + bisx,td¹iusx,td + csx,tdusx,td, s5.2d

where¹ denotes theS2 covariant derivative.
To ensure thats5.1d is a parabolic equation we assume that the operatorAt is an elliptic

operator for each value oft, in the sense that for eachj[TS2, and each fixedt[ f0,Tg we have

aijsx,tdjij j ù ugijjij j ,

for a.e.x[S2, whereu.0 is a constant and whereg is the standardS2-metric.
Before stating the existence result fors5.1d we define the parabolic Sobolev spaces in which

the solutions reside. Letf ,g:S23 f0,Tg→R be smooth functions and let

kf,glLH
n,T
s =E

0

T

e−2ntkfs·,td,gs·,tdlHssS2d dt.

We defineLHn
s to be the Hilbert space formed by completion ofC`sS23 f0,Tgd in the correspond-

ing norm. The parabolic Sobolev spaces we require may then be defined as

Pn,T
m = h f:S2 3 f0,Tg → R:i]t

i fiLH
n,T
2sm−id , `, ∀ i ø mj

and its associated inner product

kf,glP
n,T
m = o

iøm

k]t
i f,]t

iglLH
n,T
2sm−id.

Roughly speaking, a parabolic equation tells us that one time derivative is equivalent to two space
derivatives. Hence, in a sense, the Hilbert spacePn,T

m describes the set of functions that are in total
2m times differentiable. We also make the following definition in order to classify functions that
have odd total derivative:
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Pn,T
m+1/2 = h f:S2 3 f0,Tg → R:i]t

i fiLH
n,T
2sm−id+1 , `, ∀ i ø mj

and its associated inner product,

kf,glP
n,T
m+1/2 = o

iøm

k]t
i f,]t

iglLH
n,T
2sm−id+1.

We note thatPn,T
0 =LHn,T

0 andPn,T
1/2=LHn,T

1 . The required existence theorem may now be stated as
Ref. 15.

Theorem 5.1: Suppose mùm0=41
2, u0[H2msS2d and g[ Pn,T

m−1/2. There is a unique solution u
of (5.1) belonging to the class Pn,T

m+1/2 and satisfying the estimate

iuiP
n,T
m+1/2

2
ø Qsiu0iH2msS2d

2 + igiP
n,T
m−1/2

2 d . s5.3d

The constantQ depends only on m and the normsiaiP
n,T
m , ibiP

n,T
m−1/2 and iciP

n,T
m−1/2.

In addition to the already mentioned linear parabolic theory, we will need to employ results
from linear elliptic equations and linear ordinary differential equations. These will be derived as
they are needed.

We begin by proposing an iterative system of partial differential equations before going on to
prove that it is well defined.

A. The iteration scheme

Keeping in mind that we are dealing with the QSECS with prescribed mean curvature, we
may considerH as some given field. We therefore define the following iterative system for
generating the sequencehsun,mn,ĥn,kndjn=0

` :

u̇n+1 = ĝun
2Dun+1 − ĝun

3s1 − 1
2e2ts16pT00 + 2ikni2 + 3

2mn
2 − 2mnHdd + 1

2s1 + 1
2ge2tiĥni2 + gBdun,

s5.4d

ṁn+1 = divsun+1kn+1d − s1 + rdmn+1 + un
−1ĥn

AB¹sBbAd + rH − 8pT03un+1e
t, s5.5d

k̇n+1 = − P1hmn+1ðun+1 + 1
2ðsun+1mnd − ðsun+1Hd + s1 + rdkn + knðb + knðb + 8petun+1T0j ,

s5.6d

− ðĥn+1 = ṡ + s1 −P1dhmn+1ðun+1 + 1
2ðsun+1mn+1d − ðsun+1Hd + s1 + rdkn+1 + kn+1ðb + kn+1ðb

+ 8petun+1T0j . s5.7d

We have setĝ= 1
2g and r̂= 1

2r for convenience.ĝ and r̂ are still just smooth fields depending on
b. From here on, unless otherwise stated, we assume that all of the prescribable fields are elements
of C`sS23 f0,`dd. Note also thatkn=kn+s.

The proposed iteration scheme is comprised of a hierarchical system of partial differential
equations. The basic idea behind usings5.4d–s5.7d to generate a sequence of iterates may be stated
informally as follows. Define the zeroth iteratesu,m ,k,ĥd0̃, by making an identification between
the initial valuesu0, m0, andk0, and the zeroth iteratesu0̃, m0̃, andk0̃. The zerothĥ iterate,ĥ0̃, is
then defined as the solution ofs5.7d, with n=−1.

Equations5.4d is a linear parabolic equation, and so given appropriate initial datau0, we may
define its solutionun+1, a function of prescribed regularity, provided thatun, mn, kn, and ĥn are
known functions of suitable regularity. Equationss5.5d and s5.6d form a coupled system of ordi-
nary differential equations forsmn+1, kn+1d. Hence if we are given appropriate initial datasm0, k0d,
we may definesmn+1, kn+1d as thesprescribed regularityd solution ofs5.5d ands5.6d provided that
un+1, as given bys5.4d, andun, mn, kn, andĥn are functions of suitable regularity.
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The last equations5.7d, is a first order elliptic system which, by construction, may be uniquely
solved forĥn+1 provided thatun+1, mn+1, andkn+1, as given bys5.4d–s5.6d, are suitably regular.

The claim is that by iterating the procedure described above, we can construct a sequence of
iteratessu,m ,k,ĥdn. We will now make these ideas more precise by showing that the above
iteration scheme is consistently defined.

B. Consistency of the iteration scheme

As suggested by the preceding remarks about the iteration scheme, we begin by considering
Eq. s5.4d. Let us suppose thatun, mn, kn, ĥn[ P0,T

m , unsj ,tdùd1.0, for all sj ,td[S23 f0,Tg and
thatu0[H2msS2d with u0sjdùd2.0, for all j[S2. Note here that theu0 we have referred to is the
initial value, not the zeroth iterateu0̃ which is defined as the time constant extension of
u0[H2msS2d to S23 f0,`d, that is

u0̃sj,td = u0sjd.

Equations5.4d is a linear parabolic equation forun+1 subject to the initial conditionuun+1uS23h0j
=u0, which is seen to be of the form

u̇n+1 = At
nun+1 + Fn, uun+1ut=0 = u0,

where the operatorAt
n is given as

At
n = ĝun

2D.

The operatorAt
n may be written in divergence forms5.2d, with

aij = ĝun
2gij ,

bi = − sun
2¹kĝgik + 2ĝun¹kung

ikd,

c = 0. s5.8d

The source fieldFn is defined as

Fn = 1
2s1 + 1

2ge2tiĥni2 + gBdun − ĝs1 − 1
2e2ts16pT00 + 2ikni2 + 3

2mn
2 − 2mnHddun

3.

Recalling Theorem 5.1 we find that ifmùm0, un, ĥn, kn[ P0,T
m and the prescribable fields are

smooth thenun+1 is uniquely defined as an element ofP0,T
m+1/2.

It is important to note that for Theorem 5.1 to apply it is imperative thatĝun
2D be an elliptic

operator. The ellipticity of this operator is solely dependent uponun’s capacity to stay above zero.
Although we have assumed thatunsj ,tdùd1.0 for all sj ,td[S23 f0,Tg, it could happen that
un+1 falls belowd1 after some timeT* ,T. This possibility means that successive iterates might
only be defined as elements ofP0,Tn

m+1/2, with hTnj a decreasing sequence of times. We will say more
about this point later on.

Given thatun+1 exists and belongs to the classP0,T
m+1/2 we move on to consider the coupled

ordinary differential equation systems5.5d and s5.6d.
We note first that, givent[ f0,`d, ks· ,td is an element of SpanhY1m

1 :m=−1,0,1j and as such
we may equivalently considerks· ,td simply as an element ofC3. Indeed, we may write

ksj,td = kmstdY1m
1 sjd, m= − 1,0,1,

and since theY1m
1 ’s are given, we may think ofk as mappingf0,`d into C3 as follows:
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k:f0,`d → C3t ° sk−1std,k0std,k1stdd.

For simplicity, we will refer toks· ,td simply askstd. Note that there will now be an ambiguity
surrounding our use of the symbolkstd since we will use it to denote both a field overS2, and the
components of that field overC3. When we say “k[ P0,T

m ” we mean kstd[SpanhY1m
1 :m

=−1,0,1j. Drawing the distinction between this representation andk’s representation overC3, we
have that

k = sk−1,k0,k1d [ Hmsf0,Tg;C3d if and only if k = kmY1m
1 [ P0,T

m ,

whereHmsf0,Tg ;C3d is the Sobolev space with norm given by

ifiHmsf0,Tg;C3d
2 = o

i=1

m E
0

T

i]t
i fssdiC3

2 ds.

The context in which the symbolk sor knd is used should make it clear which representation we are
employing.

Furthermore, for any fixed value oft we havesmstd ,kstdd[FsS2d3C3, whereFsS2d is some
appropriate function space; we will see that the Sobolev spacesH2jsS2d, with j ùm0, will suit our
needs. Hence we can view the equationss5.5d and s5.6d as a coupled system of ordinary differ-
ential equations onEj

ªH2jsS2d3C3, and so writing

Mstdªsmstd,kstdd,

we have

Ṁn+1 = AnMn+1 + Bn, s5.9d

where

AnM = skmfðsun+1ðY1md + ðsun+1ðY1mdg − s1 + rdm − P1fmðun+1gd, s5.10d

and

Bn = sdivsun+1sd + un
−1ĥn

AB¹sBbAd + rH − 8pT03un+1e
t − P1f 1

2ðsun+1mnd − ðsun+1Hd + s1 + rdkn

+ knðb + knðb − 8pT0un+1e
tgd . s5.11d

We then have the following result, which asserts that the operatorAn is bounded, providedun+1

satisfies certain conditions. We note also, in passing, that the operatorAn is linear.
Lemma 5.2: Let un+1std[H2j+1sS2d for all t [ f0,Tg, andb[G`sTS23 f0,`dd. The operator

defined above by (5.10) satisfies

Anstd:H2jsS2d 3 C3 → H2jsS2d 3 C3

and

iAnMstdiH2jsS2d3C3 ø Cs1 + iun+1stdiH2j+1sS2ddiMstdiH2jsS2d3C3,

for each t[ f0,Tg and some constant C depending only on the smooth fieldb. That is to say that
Anstd is a uniformly bounded operator for each n, with norm given by

iAnstdi j = Cs1 + iun+1stdiH2j+1sS2dd.

Proof: Let Ej
ªH2jsS2d3C3 and note that
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iAnMiEj
2 = ikmfðsun+1ðY1md + ðsun+1ðY1mdg − s1 + rdmiH2jsS2d

2 + iP1smðun+1diC3
2

ø 2ikmfðsun+1ðY1md + ðsun+1ðY1mdgiH2jsS2d
2 + 2is1 + rdmiH2jsS2d

2 + iP1smðun+1diC3
2 .

Estimating the first term on the right-hand side we have

ikmfðsun+1ðY1md + ðsun+1ðY1mdgiH2jsS2d ø ikmðun+1ðY1miH2jsS2d + ikmðun+1ðY1miH2jsS2d

+ ikmun+1DY1miH2jsS2d ø Ciun+1iH2j+1sS2dikiC3,

s5.12d

while for the second term we have

is1 + rdmiH2jsS2d ø CimiH2jsS2d. s5.13d

The remaining term is estimated as follows:

iP1smðundiC3
2 = o

m=−1

1 U R mðun+1Y1m
1 dV2U2

ø C o
m=−1

1 SR umðun+1u dV2D2

ø CimiL2sS2d
2 iðun+1iL2sS2d

2

s5.14d

for any j ù0.
Adding s5.12d, s5.13d, ands5.14d we obtain

iAnMiEj ø Cs1 + iun+1iH2j+1sS2ddsimiH2jsS2d + ikiC3d,

as required. j

The boundedness of a linear operatorAn, such as that just established in Lemma 5.2, is the
standard property required to infer the existence of solutions ofs5.9d. The following result is a
special case of the standard local existence result for ordinary differential equations in Banach
space. See Ref. 11, for example.

Lemma 5.3: Let Ej =H2jsS2d3C3, and suppose Astd :Ej →Ej is a uniformly bounded linear
operator for each t[ f0,Tg, with norm iAstdi j. Further suppose thatM0[Ej and
B[L1sf0,Tg ;Ejd. Then there exists a uniqueM[C1sf0,Tg ;Ejd satisfying

Ṁ = AM + B,

Ms0d = M0.

The boundedness of the operatorAn is also the foundation fora priori estimates for solutions of
s5.9d. The basic result is as follows.

Lemma 5.4: Let A and B satisfy the hypotheses of Lemma 5.3 and letM be a solution of

Ṁ = AM + B,

with initial value M0. For all t [ f0,Tg, we have the estimate

iMstdiEje−tiAi j ø iM0iEj +E
0

t

iBssdiEj ds.

Proof: We note first thatEj =H2msS2d3C3 is in fact a Hilbert space and so, fixingt[ f0,Tg,

d

dt
iMstdiEj

2 = 2kMstd,ṀstdlEj ø 2iMstdiEjiṀstdiEj .

Hence we must have
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d

dt
iMstdiEj ø iṀstdiEj ø iAMstdiEj + iBstdiEj ø CiMstdiEj + iBstdiEj ,

where it is clear that the smallest suchC for which this inequality holds is the normiAi j of the
operatorA.

Gronwall’s inequality then gives

iMstdiEj ø eCtSiM0iEj +E
0

t

iBssdiEj dsD
as required. j

Applying Lemmas 5.3 and 5.4 tos5.9d, noting Lemma 5.2, we have the following result.
Corollary 5.5: Suppose that un, mn, kn, ĥn[ P0,T

m and un+1[ P0,T
m+1 / / 2 is the solution of (5.4),

subject to the initial condition u0[H2msS2d. Equation (5.9), subject to the initial condition
uMn+1ut=0=M0[Em, definesMn+1[C1sf0,Tg ;Emd, which satisfies

iMn+1stdiEme−tiAnim ø iM0iEm +E
0

t

iBnssdiEm ds, s5.15d

for all t [ f0,Tg.
Proof: Since we have already assumed thatmùm0 we have no problem meeting the condi-

tions un+1std[H2j+1sS2d and Bn[L1sf0,Tg ;Emd. Lemma 5.3 applies and soMn+1 is uniquely
defined as the solution ofs5.9d with uMut=0=M0. Lemma 5.4 also applies and givess5.15d. j

To establish the higher temporal regularity of solutions ofs5.9d we will consider the following
Banach spaces:

O0,T
m
ªP0,T

m 3 Hmsf0,Tg;C3d,

and their respective norms,

iMiO0,T
m

2 = o
l=0

m E
0

T

i]t
lMssdiEm−l

2 ds.

We note that upon inspection ofs5.5d and s5.6d, O0,T
m is the natural space in which to look for

solutions ofs5.9d given un+1[ P0,T
m+1/2.

To obtain the desired estimate, from which the higher regularity of solutions ofs5.9d will
follow, we will first need to establish somesessentially trace-typed results concerning the proper-
ties of theP0,T

m spaces.
Lemma 5.6: Suppose that Tùe.0. Let u be a function belonging to the class P0,T

k+1/2 with k
ù1. Then

ius·,tdiH2ksS2d ø CiuiP0,T
k+1/2,

for any t[ f0,Tg. The constant depends only one.
Proof: We first suppose thatu[C`sS23 f0,Tgd. We have thatus· ,td[L2sS2d, for eacht[R+,

we may writeu spectrally as follows:

usx,td = o
j

cjstdf jsxd,

where thef j’s form an orthonormal basis forL2sS2d satisfyingDf j =−l j
2f j.

We define the functionũs· ,td=us· ,t0+ tdxstd, wherex is a smooth function satisfying
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xssd =51, s,
T

4
,

0, s.
3T

4
,

so thatũs· ,Td=0 andũs· ,0d=us· ,t0d. Then given thatkù1, we have

ius·,t0diH2ksS2d
2 = o

j

ucjst0du2ul ju2k

= o
j

uc̃js0du2ul ju2k

= o
j

ul ju2kE
0

T d

ds
uc̃jssdu2 ds

ø o
j
E

0

T

uc̃jssdu2ul ju2k+1 + uċ̃jssdu2ul ju2k−1 dsø iũiP0,T
k+1/2

2
ø CiuiP0,T

k+1/2
2 .

Note that the constant depends only on the cutoff functionx. With the result now established for
smooth functions it is an easy matter to get the result foru[ P0,T

k+1/2; it follows, after mollifying u,
by a standard approximation argument. j

Corollary 5.7: Suppose that Tùe.0. Let u belong to the class P0,T
m+1/2, then

i]t
jus·,tdiH2sm−jdsS2d ø CiuiP0,T

m+1/2,

for all j øm and t[ f0,Tg. The constant depends only one.
Proof: We note thatu[ P0,T

m+1/2 means that]t
ju[ P0,T

m−j+1/2 and so applying Lemma 5.6 withk
=m− j we have the result. j

In the above trace-type results we saw that we may control the spatial norms of time deriva-
tives of functions, by a constant multiple of theP0,T

m+1/2-norm. Unfortunately the constant’s depen-
dence upone means that we lose that control ase approaches zero. The following result shows
how, with the loss of one time derivative of regularity, we may control the spatial norms of time
derivatives by a constant which approaches zero as we consider smaller and smaller time intervals.

Lemma 5.8: Let u[ P0,T
k+1, with kù0, then

iustdiH2ksS2d
2

ø iu0iH2ksS2d
2 + CTiuiP0,T

k+1
2 ,

for any t[ f0,Tg. The constant C depends only on k.
Proof: Fixing j[S2, we have

usj,td = usj,0d +E
0

t

]tusj,sdds.

It follows, using the Hölder inequality, that

u¹2jsusj,td − u0sjddu ø ÎTSE
0

T

u]t¹
2jusj,sdu2 dsD1/2

for any 0ø j øm and t[ f0,Tg. Integrating this result gives
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ius·,td − u0iH2ksS2d
2

ø CR u¹2ksu − u0du2 + uu − u0u2 dmg

øR TE
0

T

u]tuu2 + u]t¹
2kuu2 dt dmg ø TiuiP0,T

k+1
2 .

The result follows after observing the elementary inequalityixi−iyiø ix−yi. j

Remark:Applying Lemma 5.8 to]t
lu gives

i]t
lustdiH2sk−ldsS2d

2
ø i]t

lus0diH2sk−ldsS2d
2 + CTiuiP0,T

k+1
2 .

If it happened thatu was also the solution of say a parabolic equation, then we could reduce the
above estimate to

i]t
lustdiH2sk−ldsS2d

2
ø Csiu0iH2ksS2d

2 + TiuiP0,T
k+1

2 d ,

where the constantC now depends on the coefficients and source functions appearing in the
parabolic equation.

We now proceed to derive the basicO0,T
m a priori estimates forMn+1, the solutions ofs5.9d.

Proposition 5.9: Suppose un+1[ P0,T
m+1/2 and let Mn+1 be the solution ofs5.9d. ThenMn+1

satisfies the inequality,

iMn+1iO0,T
m

2
ø TCh1 + iBniO0,T

m
2 j . s5.16d

The constant C depends oniun+1iP0,T
m+1/2, iu0iH2msS2d and iM0iEm.

Proof: We begin by noting that if we square, then integrates5.15d, we obtain

E
0

T

iMn+1stdiEm
2 dt ø 2TeTCsiM0iEm

2 + iBniO0,T
m

2 d , s5.17d

where the constantC depends oniun+1iP0,T
m+1/2. This gives us a bound for the first term in the sum

iMn+1iO0,T
m

2 = o
l=0

m E
0

T

i]t
lMn+1iEm−l

2 dt. s5.18d

Considering thes j +1dth term in s5.18d we have, upon differentiatings5.24d,

E
0

T

i]t
jMn+1iEm−j

2 dt ø E
0

T

Cjo
l=0

j−1

i]t
lAn]t

j−l−1Mn+1iEm−j
2 + i]t

j−1BniEm−j
2 dt, s5.19d

whereCj is a constant dependent uponj . The expression]t
lAn]t

j−l−1Mn+1 represents the outcome of
the operator]t

lAn, given bys5.10d with un+1 replaced by]t
lun+1, acting on]t

j−l−1Mn+1. It is obvious
that results analagous to Lemma 5.2 exist for]t

lAn as well. Hence

i]t
lAn]t

j−l−1Mn+1iEm−j
2

ø Cli]t
j−l−1Mn+1iEm−j

2 ,

where, by virtue of Lemma 5.8, we see that

Cl ø Csiu0iH2msS2d
2 + Tiun+1iP0,T

m+1/2
2 d ,

where we have used the fact thatun+1 is the solution ofs4.8d to control the initial values of the
time derivatives ofun+1.

Observing that Lemma 5.8 may easily be extended to apply to theEm−j andO0,T
m spaces, the

second term on the right-hand side ofs5.19d satisfies
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i]t
j−1Bns·,sdiEm−j

2
ø Cs1 + TiBniO0,T

m
2 d ,

for all søT. The constantC depends oni]t
j−1Bns· ,0diEm−j. This quantity can be expressed in terms

of Em−j-norms of thes j −1dth time derivatives ofun+1, mn, kn, andĥn evaluated att=0. Since these
functions are themselves solutions of their respective equations, we may in turn express time
derivatives ofun+1, mn, kn, andĥn, evaluated att=0, in terms of the initial valuesu0, m0, andk0.
We therefore have

E
0

T

i]t
jMn+1iEm−j

2 dt ø Co
l=0

j−1E
0

T

i]t
j−l−1Mn+1iEm−j

2 + TiBniO0,T
m

2 + 1 dt

ø CTs1 + TiBniO0,T
m

2 d + Co
l=0

j−1E
0

T

i]t
j−l−1Mn+1iEm−j

2 dt, s5.20d

whereC depends oniun+1iP0,T
m+1/2, iu0iH2m−1sS2d, im0iH2sm−1dsS2d, andik0iC3.

The estimates5.16d is then obtained by usings5.20d to iterate fromj =1 to m starting from
s5.17d. j

Thus in light of Lemma 5.3 and Proposition 5.9, we find that ifu0[H2msS2d, M0[Em,
un[ P0,T

m+1/2, un+1[ P0,T
m+1/2, andMn[O0,T

m thenMn+1 exists and belongs toO0,T
m .

Moving now to the final equation in the iteration scheme, the elliptic system forĥn+1. We note
again that by constructions5.7d is guaranteed to have a solution. Henceĥn+1 exists and the
following results establish thatĥn+1[ P0,T

m providedsun+1,Mn+1d[ P0,T
m+1/23O0,T

m .
Lemma 5.10: Suppose g[L2sspanhYlm

1 : l ù2jd and let ĥ be the solution of

ðĥ = g. s5.21d

We have the estimate

iĥiH1sS2d
2

ø CigiL2sS2d
2 ,

where C is a constant.
Proof: The result follows easily from the observation that sinceðĥ is devoid ofl =1 spherical

harmonics, we may solves5.21d. Moreover, we are able to writeĥ explicitly, using spectral
decomposition as

ĥ = o
l=2

`

o
m=−l

l

ĥlmYlm
2 .

It follows that we may write

ðĥ = o
l=2

`

o
m=−l

l

ClĥlmYlm
1 ,

whereCl, l =0,2,3,… are constants. Checking the norms in question we then find

iðĥiL2sS2d
2 =R Uo

l,m
ClĥlmYlm

1 U2
dV2 ù o

l,m
Cl

2ĥlm
2 ,

and

iĥiH1sS2d
2 =R u ¹ ĥu2 + uĥu2 dV2 øR 2uðĥu2 + uĥu2 dV2 ø Co

l,m
Cl

2ĥlm
2 .

Thus we have
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iĥiH1sS2d
2

ø Co
l,m

Cl
2ĥlm

2 ø CiðĥiL2sS2d
2 ,

and the result follows from Eq.s5.21d. j

Lemma 5.11: Supposeĥ is a solution of (5.21), where now g[HksspanhYlm
1 : l ù2jd. We have

the estimate

iĥiHk+1sS2d
2

ø CkigiHksS2d
2 , s5.22d

where Ck is a constant depending only on k.
Proof: Estimating the right-hand side ofs5.22d we have

iĥiHk+1sS2d
2 = i¹k+1hiL2sS2d

2 + iĥiHksS2d
2

ø i¹kĥiH1sS2d
2 + CkiðĥiHk−1sS2d

2

ø Cið¹khiL2sS2d
2 + CkiðĥiHksS2d

2

= Ci¹kðĥiL2sS2d
2 + Ck8iðĥiHksS2d

2
ø CiðĥiHksS2d

2 + Ck8iðĥiHksS2d
2

ø Ck9iðĥiHksS2d
2 .

The result follows from Eq.s5.21d. j

The following result is now immediate from the definition ofP0,T
k .

Corollary 5.12: Let g, belonging to the class P0,T
k , be devoid of l=1 spherical harmonic

components so thatĥ exists as a solution of (5.21). Then

iĥiP0,T
k+1/2 ø CkigiP0,T

k .

Ck is a constant depending only on k.
The foregoing results have shown that if,

sun,mn,kn,ĥnd [ P0,T
m+1/2 3 O0,T

m 3 P0,T
m

and

su0,m0,k0d [ H2m+1sS2d 3 Em+1/2

then

sun+1,mn+1,kn+1,ĥn+1d [ P0,T
m+1/2 3 O0,T

m 3 P0,T
m

also.
For the sake of brevity we consider the four iterates as a single entity residing in the appro-

priate Banach space. In particular we define the four-tuple,

Unªsun,mn,kn,ĥnd,

residing in the Banach space,

C0,T
m
ªP0,T

m+1/2 3 P0,T
m 3 Hmsf0,Tg;C3d 3 P0,T

m .

To summarize, we have proven the following result.
Theorem 5.13:Let mùm0 and let u0[H2m+1sS2d, m0[H2msS2d, and k0[C3. There exists a

nonincreasing, but possibly decreasing sequencehTnjn=1
` with Tn.0, and a sequence of iterates

Un[C0,Tn

m which satisfy (5.4)–(5.7).
Theorem 5.13 is not ideal. It tells us that the iterates exist as elements ofC0,Tn

m , with the
possibilty ofTn→0. To be able to prove local existence for the QSECS however, we will need the
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iterates to be defined over some nonzero time interval. This means that we will need to show that
there exists ane.0 such thatTnùe, for all n. This fact will follow from the uniform estimates we
derive for the iterates in the next section.

C. Uniform estimates for the iterates

In this section we will show that all of the iterates satisfy uniform bounds, at least locally in
time. We consider the iteration scheme proposed bys5.4d–s5.7d, which we may write more simply
as

u̇n+1 = ĝun
2Dun+1 + Fn, s5.23d

Ṁn+1 = AnMn+1 + Bn, s5.24d

ðĥn+1 = Lsun+1,Mn+1d − ṡ, s5.25d

whereAn andBn are defined bys5.10d and s5.11d, respectively, and where

Fn = 1
2s1 + 1

2ge2tiĥni2 + gBdun − ĝs1 − 1
2e2ts16pT00 + 2ikni2 + 3

2mn
2 − 2mnHddun

3 s5.26d

and

Lsu,Md = s1 −P1dhmðu + 1
2ðsumd − ðsuHd + s1 + rdk + kðb + kðb + 8pT0uetj . s5.27d

The key result needed to prove that the iterates satisfy uniform bounds is the following simple
inequality.

Lemma 5.14: Suppose u belongs to the localized parabolic space P0,T
1 . Then

iuiP0,T
0

2
ø 2Tsiu0iL2sS2d

2 + iuiP0,T
1

2 d .

Proof: From the definition ofP0,T
0 we have

iu − u0iP0,T
0

2
ø E

0

TR E
0

t

u]tusj,sdu2 dsdmḡ dt ø E
0

T

sT − sdR u]tusj,sdu2 dmḡ dsø Ti]tuiP0,T
0

2 .

The result then follows sinceiu0iP0,T
0

2 =Tiu0i
L2sS2d
2 .

Corollary 5.15: Any u[ P0,T
m+1 satisfies the estimate

iuiP0,T
m

2
ø CTs1 + iuiP0,T

m+1
2 d . s5.28d

The constant C depends on m andi]t
jus· ,0diH2sm−jdsS2d, j =0,… ,m.

Proof: We need only check terms of the forme0
Ti]t

jui
H2sm−jdsS2d
2 dt. We have

E
0

T

i]t
juiH2sm−jdsS2d

2 dt ø CE
0

T

i]t
j¹2sm−jduiL2sS2d

2 + i]t
juiL2sS2d

2 dt

= Csi]t
j¹2sm−jduiP0,T

0
2 + i]t

juiP0,T
0

2 d ø 4CTsi]t
jus·,0diH2sm−jdsS2d + iuiP0,T

m+1
2 d .

The estimates5.28d is then obtained by summing the terms above fromj =0 to m. j

Remark:If we also know thatu is a solution of a parabolic equation we may express the
constantC in terms of the initial values ofu, the coefficients and source function. In particular, if
un is the solution ofs5.4d we have
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iuniP0,T
m

2
ø TCs1 + iuniP0,T

m+1
2 d , s5.29d

where the constantC depends onm, iu0iH2msS2d, im0iH2msS2d, andik0iC3.
We now prove that given suitable bounds on the initial dataswhich constituteU0d, all the

iterateshUnjn=0
` may be confined within a ball inC0,T

m , for someT.0.
Proposition 5.16: Let mùm0 and suppose u0[H2m+1sS2d, m0[H2msS2d, and k0[C3. There

exists T* .0 and N.0, depending only on m, the initial data and the prescribable fields, such that

iUniC
0,T*
m ø N

for all n[N.
Proof: Sinceu0[H2m+1sS2d, m0[H2msS2d, andk0[C3, there exist numbersN1, N2, N3, and

N4 such that

iu0iH2m+1sS2d ø N1, im0iH2msS2d ø N2, ik0iC3 ø N3, iĥ0iH2msS2d ø N4. s5.30d

Defining the zeroth iterates as the time constant extensions of these initial values and assuming,
without loss of generality, thatTø1 we find thats5.30d implies

iu0̃iP0,T
m+1/2 ø N1, im0̃iP0,T

m ø N2, ik0̃iHmsf0,Tg;C3d ø N3, iĥ0̃iP0,T
m ø N4,

where we have used the subscript 0˜ to distinguish the zeroth iteratesu0̃, m0̃, k0̃, andĥ0̃ from the

intial valuesu0, m0, k0, andĥ0. Hence Proposition 5.16 holds forn=0̃, with N=oi=1
4 Ni.

Hypothesizing then, that

iujiP0,T
m+1/2 ø N1, im jiP0,T

m ø N2, ikjiHmsf0,Tg;C3d ø N3, iĥ jiP0,T
m ø N4,

for all j [ f0,ngN and someT.0, we aim to show the same is true for thesn+1dth iterates.
We considers5.23d, which is a linear parabolic equation forun+1. Sincemùm0, s5.3d gives

iun+1iP0,T1

m+1/2
2

ø Qsiu0iH2msS2d
2 + iFniP0,T1

m−1/2
2 d .

We note that the constantQ depends on theP0,T1

m norm of the coefficients, which in this case,
observings5.8d, amount toun. Hence

Q = QsiuniP0,T1

m d.

However, sinceun is itself the solution of a linear parabolic equation,s5.29d applies and we have

iuniP0,T1

m
2

ø T1Cs1 + iuniP0,T1

m+1
2 d . s5.31d

Moreover, by inspection of the proof ofsRef. 15, Theorem 4.6, p. 132d, it can be seen that the
constantQ depends oniuniP0,T1

m in such a way that, ifiuniP0,T1

m is bounded as ins5.31d, then

QsiuniP0,T1

m d is also bounded and satisfies the inequality

QsiuniP0,T1

m d ø T1Q̃, s5.32d

where the constantQ̃ depends oniuniP0,T1

m+1.

The P0,T1

m+1 norm of un can also be estimated usings5.3d,
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iuniP0,T1

m+1
2

ø Q*siu0iH2m+1sS2d
2 + iFniP0,T1

m
2 d . s5.33d

The constantQ* depends only oniun−1iP0,T1

m+1/2 which by hypothesis is less thanN1. Similarly,

iFniP0,T1

m
2 can be controlled by a constant depending onN1, N2, N3, N4 and the prescribable fields.

HenceiuniP0,T1

m+1 is bounded by a constant that depends only onN1, N2, N3, N4 and the prescribable

fields also. This in turn implies that the constantQ̃ is also bounded by a term involving onlyN1,
N2, N3, N4 and the norms of the prescribable fields.

The above argument implies that, given the induction hypotheses, if we takeT1øT then

iun+1iP0,T1

m+1/2
2

ø T1C1, s5.34d

whereC1 is a constant depending on the prescribable fields,N1, N2, N3, andN4. Thus provided that

T1 ø minHT,
N1

2

C1
J

we have

iun+1iP0,T1

m+1/2 ø N1. s5.35d

Turning our attention now tos5.24d, Proposition 5.9 gives

iMn+1iO0,T2

m
2

ø CT2s1 + iBniO0,t2
m

2 d
provided thatT2øT1. By hypothesis again, we can control theO0,T2

m norm of Bn by a constant
depending onN1, N2, N3, andN4. That is,

iMn+1iO0,T2

m
2

ø T2C2. s5.36d

Therefore, so long as

T2 ø minHT1,
N2

2

C2
,
N3

2

C2
J ,

we have

imn+1iP0,T2

m ø N2, andikn+1iHmsf0,T2g;C3d ø N3. s5.37d

Finally, from Corollary 5.12, we have

iĥn+1iP0,T3

m ø Cmiðĥn+1iP0,T3

m−1/2 ø CmiLsun+1,Mn+1d − ṡiP0,T3

m−1/2.

Observings5.27d, we thus find that

iĥn+1iP0,t3
m

2
ø Csiun+1iP0,T3

m
2 + imn+1iP0,T3

m
2 + ikn+1iHmsf0,T3g;C3d

2 + isiP0,T3

m+1/2
2 d ø T3C3 + C4isiP0,T

m+1/2
2 ,

provided thatT3øT2, so that our use ofs5.34d and s5.36d is justified. The constantC3 depends
only on the prescribable fields,N1, N2, andN3 and the constantC4 depends only on the prescrib-
able fields.

Hence, given that
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T3 ø minHT2,
N4

2 − C4isiP0,T
m+1/2

2

C3

J ,

we find that

iĥn+1iP0,T3

m ø N4. s5.38d

Note that we requireN4
2.C4isiP0,T

m+1/2
2 , but this is easily arranged.

Hence, settingT* =T3, s5.35d, s5.37d, and s5.38d imply iun+1iP
0,T*
m+1/2øN1, imn+1iP

0,T*
m øN2,

ikn+1iHmsf0,T* g;C3døN3, andiĥn+1iP
0,T*
m øN4. The result follows by induction withN=oi=1

4 Ni. j

This last result has bearing on the problem encountered in Theorem 5.13. There we found that,
due to the possibility thatun might become negative after some ever decreasing interval of time,
the iterates were possibly only defined on the intervalf0,Tng with Tn→0. Now that we have
uniform bounds for all of the iterates in a Sobolev space of high enough order, however, we may
conclude that the supremum ofu]tunu over S23 f0,T*g is no greater thanN1. This leads to the
following result.

Theorem 5.17: Let mùm0 and let u0[H2m+1sS2d satisfy inf S2u0ù2d.0. Also suppose
m0[H2msS2d and k0[C3. There exists a T.0, depending on the initial values and prescribable
fields, such that un, as defined by (5.4), satisfies

inf
S23f0,Tg

un ù d.

Hence there exists a sequence of iterateshUnjn=0
` ,C0,T

m which satisfy (5.4)–(5.7) andiUniC0,T
m

øN.
Proof: We already mentioned above that supS23f0,Tgu]tunuøN1. This fact implies that

inf S23f0,d/N1gunùd, since

unsj,td = unsj,0d +E
0

t

]tunsj,sddsù 2d − T sup
S23f0,Tg

u]tunu ù 2d − TN1 ù d

if Tød /N1. j

D. Convergence of the iteration scheme

The uniform bounds obtained in Proposition 5.16 will now be used to prove thathUnjn=0
` is a

Cauchy sequence in an appropriate Banach space. The Banach space we will aim to show con-
vergence inC0,T

1 , for some appropriateT.0. This will be enough to infer the existence of strong
local solutions to the quasispherical constraint system; the higher regularity of these solutions will
follow from Proposition 5.16. In what follows we will use the shorthand notationfstd= fs· ,td.

If we define

wn+1 = un+1 − un,

thenwn+1 satisfies the following equation:

ẇn+1 = gun
2Dwn+1 + gwnwnDun + Fn − Fn−1, s5.39d

wherewn=un+un−1 and whereFn is given bys5.26d.
Estimating theH3sS2d-norm of wn+1 we have
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1
2]ti¹3wn+1iL2sS2d

2 = R ¹3wn+1¹
3ẇn+1 dV2 =R ¹3wn+1¹

3sgun
2Dwn+1 + gwnwnDun + Fn − Fn−1ddV2.

It is apparent upon inspection of this expression, that the highest order derivatives are fourth order
sintegrating by parts wherever necessaryd. Using the parabolic Sobolev imbeddingsRef. 14,
Lemma 3.3.5d, Proposition 5.16 gives us pointwise bounds for all such derivatives, and it is an
easy matter to obtain an expression of the form

]ti¹3wn+1stdiL2sS2d
2

ø C1iwn+1stdiH3sS2d
2 + C2iwnstdiH3sS2d

2 .

This expression should only be considered true ift[ f0,T*g. The constantsC1 andC2 depend on
the prescribable fields andN.

Estimating]ti¹2wn+1stdiL2sS2d
2 , ]ti¹wn+1stdiL2sS2d

2 , and]tiwn+1stdiL2sS2d
2 in the same way, we find

]tiwn+1stdiH3sS2d
2

ø C18siwn+1stdiH3sS2d
2 + iwnstdiH3sS2d

2 d , s5.40d

for all t[ f0,T*g.
To obtain a similar sort of control over the other fields let us also define the following

differences:

yn+1 = mn+1 − mn,

qn+1 = kn+1 − kn,

xn+1 = ĥn+1 − ĥn.

Then since the iterative system defining these quantities is linear it is a simple matter to show that
yn+1, qn+1, andxn+1 satisfy the following equations:

ẏn+1 = divsun+1qn+1d + divswn+1knd + divswn+1sd − s1 + rdyn+1 − wnun
−1un−1

−1 ĥn
AB¹sBbAd + un

−1xn¹sBbAd

− 8pT03e
twn+1, s5.41d

q̇n+1 = − P1hmn+1ðwn+1 + yn+1ðun + 1
2ðsun+1ynd + 1

2ðswn+1mn−1d − ðswn+1Hd + s1 + rdqn + qnðb

+ qnðb + 8pT0e
twn+1j , s5.42d

ðxn+1 = s1 −P1dhyn+1ðun+1 + mnðwn+1 + 1
2ðsun+1yn+1d + 1

2ðsunyn+1d − ðswn+1Hd + s1 + rdqn+1

+ qn+1ðb + qn+1ðb + 8pT0e
twn+1j . s5.43d

Focusing ons5.41d, we may again use Proposition 5.16 to infer pointwise control over spatial
derivatives of up to third order. Estimating theH2sS2d-norm of yn+1std, we then have

]ti¹2yn+1stdiL2sS2d
2 = 2R ¹2yn+1std¹2ẏn+1stddV2

ø C1iyn+1stdiH2sS2d
2 + C2iwn+1stdiH3sS2d

2

+ C3iqn+1stdiC3
2 + C4ixnstdiH2sS2d

2 + C5iwnstdiH3sS2d
2 ,

for all t[ f0,T*g. The constantsC1,… ,C5 depend only on the prescribable fields andN. Similar
estimates for]ti¹yn+1stdiL2sS2d

2 and]tiyn+1stdiL2sS2d
2 combine to give
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]tiyn+1stdiH2sS2d
2

ø C28siyn+1stdiH2sS2d
2 + iwn+1stdiH3sS2d

2 + iqn+1stdiC3
2 + ixnstdiH2sS2d

2 + iwnstdiH3sS2d
2 d ,

s5.44d

for all t[ f0,T*g. In a similar fashion we may obtain

]tiqn+1stdiC3
2

ø C38siqn+1stdiC3
2 + iyn+1stdiH2sS2d

2 + iwn+1stdiH3sS2d
2 + iqnstdiC3

2 + iynstdiH2sS2d
2 d,

s5.45d

for all t[ f0,T*g, from s5.42d.
Adding s5.40d, s5.44d, ands5.45d and integrating via Gronwall’s inequality, we find

iwn+1stdiH3sS2d
2 + iyn+1stdiH2sS2d

2 + iqn+1stdiC3
2

ø CE
0

t

iwnssdiH3sS2d
2 + iynssdiH2sS2d

2 + iqnssdiC3
2

+ ixnssdiH2sS2d
2 ds, s5.46d

for all t,T* .
Finally from the elliptic estimates5.22d and s5.43d we have

ixn+1iH2sS2d
2

ø C4siwn+1iH3sS2d
2 + iyn+1iH2sS2d

2 + iqn+1iC3
2 d . s5.47d

For convenience we define

H j
ªHj+1sS2d 3 HjsS2d3C3 3 HjsS2d,

so that upon combinings5.46d and s5.47d and integrating from 0 toT,T* , we have

E
0

T

iswn+1,yn+1,qn+1,xn+1diH2
2 dt ø CTE

0

T

iswn,yn,qn,xndiH2
2 dt. s5.48d

The constantC depends on the prescribable fields and the numberN encountered in Proposition
5.16.

Returning to Eqs.s5.39d and s5.41d–s5.43d we may uses5.48d to obtain

E
0

T

isẇn+1,ẏn+1,q̇n+1,ẋn+1diH0
2 dt ø CTE

0

T

iswn,yn,qn,xndiH2
2 dt,

with the constantC depending on the same quantities as the constant ins5.48d.
Let dUn+1=Un+1−Un denote the difference between two successive iterates, then choosing

T,1/C we have proven the following result.
Proposition 5.18: Let the initial data satisfy the hypotheses of Proposition 5.16. There exists

a T* .0, depending on the prescribable fields and the initial data, such that

idUn+1iC0,T*

1 ø aidUniC0,T*

1 ,

with a,1.
Proposition 5.18 asserts that the iteration scheme defined bys5.4d–s5.7d, when considered over

S23 f0,T*g, defines a mappingG :Un°Un+1 which is a contraction with respect to theC0,T*

1 norm.
This fact gives us the following corollary.

Corollary 5.19: Let the initial data satisfy the hypotheses of Proposition 5.16. There exists a
T* .0, depending on the prescribable fields and the initial data, such that the sequencehUnjn=0

` is
a Cauchy sequence with respect to theC0,T*

1 norm.
Proof: From Proposition 5.18 it is clear, upon iterating the result, that
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idUn+1iC0,T*

1 ø anidU1iC0,T*

1 .

Since a,1 it is obvious thatidUn+1iC0,T*

1 →0 as n→`. Clearly this means thathUnjn=0
` is a

Cauchy sequence inC0,T*

1 . j

Theorem 5.20:Let the prescribable fieldsb, H, T0a, s[C`sS23R+d and let the initial data
satisfy u0[H2m+1sS2d, m0[H2msS2d, and k0[C3, with m.m0. There exists a T.0 depending on
the prescribable fields and the initial data such that the system of equations (4.8)–(4.11) with the
above data, has a unique solution

U = su,m,k,ĥd [ C0,T
m .

Proof: Given the hypotheses of the theorem, Corollary 5.19 applies and so there exists aT
.0 such that the sequencehUnjn=0

` is Cauchy inC0,T
1 . Now C0,T

1 is a complete space, and soUn

converges toU[C0,T
1 . The limit U is the unique fixed point of the iteration and so clearly

uniquely satisfies the systems4.8d–s4.11d, with the given data. We note that sinceU[C0,T
1 , U is

regular enough to satisfy the system in the strong sense. Moreover, Proposition 5.16 states that
iUniC0,T

m øN and so there is a subsequencehUnj
j j=0

` , hUnjn=0
` and V [C0,T

m such thatUnj
⇀V in

C0,T
m . However, since the fixed pointU is unique, we conclude thatU=V [C0,T

m . j

This last result gives us a partial solution to Problem 1b. It says that the QSECS with
prescribed mean curvature is uniquely solvable at least on some finite interval of time. We will
now derive a similar result concerning Problem 2b, the QSECS with prescribed polar curvature.

E. Prescribing the polar curvature

In Sec. III we saw that we could ascribe a potentially interesting geometric nature to our
space–time initial data if we were to allow for the possibility of prescribing the polar curvature.
Our aim in this section then, is to prove a theorem analagous to Theorem 5.20, where nowm is
taken as prescribed instead ofH. Our method will again be to look at an associated linear iterative
system of partial differential equations, and infer the convergence of this system to a unique fixed
point. To this end we will consider the following iterative system of equations:

u̇n+1 = ĝun
2Dun+1 − ĝun

3s1 − 1
2e2ts16pT00 + 2ikni2 + 3

2m2 − 2mHndd + 1
2s1 + ĝe2tiĥni2 + gBdun,

s5.49d

k̇n+1 = − P1hmðun+1 + 1
2ðsmun+1d − ðsun+1Hnd + s1 + rdkn+1 + knðb + knðb + 8petun+1T0j ,

s5.50d

− ðĥn+1 = ṡ + s1 −P1dhmðun+1 + 1
2ðsmun+1d − ðsun+1Hnd + s1 + rdkn+1 + kn+1ðb + kn+1ðb

+ 8petun+1T0j , s5.51d

rHn+1 = ṁ − divsun+1kn+1d + s1 + rdm + un+1
−1 ĥn+1

AB ¹sBbAd + 8pT03un+1e
t. s5.52d

Informally, we implement the scheme as follows.
Define the zeroth iteratesu,ĥ ,k,Hd0̃ by first definingu0̃ andk0̃ as the time constant extensions

of the initial datau0 andk0, respectively. We may then use Eq.s5.50d with n=−1, to defineH−1.
Note that this is possible sinces5.50d may be considered as an algebraic equation forHn sinceP1ð
is just a multiplier. This is the only time we will considers5.50d as an equation forHn; from now
on we will consider it as an equation forkn. Moreover, we may dispense withH−1 after we
substitute it intos5.51d with n=−1, and we defineĥ0̃ as the solution of the resulting equation. With
u0̃,k0̃, and ĥ0̃ all defined, we may taken=−1 and defineH0̃ as the solution of the algebraic
equations5.52d.

052501-25 Local existence of quasispherical space–time J. Math. Phys. 46, 052501 ~2005!

                                                                                                                                    



If we takeu0[H2m+1sS2d andk0[C3 then it is clear thatsu,ĥ ,k,Hd0̃[C0,T
m .

Using Theorem 5.1, it is an easy matter to see that ifsu,ĥ ,k,Hdn[C0,T
m then un+1[ P0,T

m+1/2

exists as the solution tos5.49d with datau0, for anyT[ f0,`d.
Moving on to s5.50d, we may pose this equation equivalently as the following ordinary

differential equation overC3:

k̇n+1 = Akn+1 + Bn, s5.53d

where now

Ak= − P1hs1 + rdkj s5.54d

and

Bn = − P1hmðun+1 + 1
2ðsmun+1d − ðsun+1Hnd + s1 + rds + knðb + knðb + 8petun+1T0j .

The following result, which is analogous to Lemma 5.2, is a simple consequence of the definition
s5.54d

Lemma 5.21: Letb[G`sTS23 f0,`dd. The operator A:C3→C3 defined by (5.54) is a
bounded linear operator.

Proof: Linearity is obvious from the definition as is the fact that

iAkiC3
2

ø CrikiC3
2 .

j

We may use Lemma 5.3, substitutingC3 for Ej, to infer the unique existence of
kn+1[C1sf0,Tg ;C3d, the solution ofs5.53d subject to the initial valuek0[C3, provided that
un+1[ P0,T

m+1/2, kn[Hmsf0,Tg ;C3d, andHn[ P0,T
m . Similarly we may use Lemma 5.4 to obtain the

estimate

ikn+1stdiC3e−Crt ø ik0iC3 +E
0

t

iBnssdiC3 ds,

for all t[ f0,Tg.
It is an easy matter to amend the proof of Proposition 5.9 to give the following result which

establishes the higher regularity of solutions tos5.53d.
Lemma 5.22: Let k0[C3 and suppose un+1[ P0,T

m+1/2 and sHn,knd[O0,T
m . Then kn+1, the solu-

tion of (5.53) satisfies

ikn+1iHmsf0,Tg;C3d
2

ø TCs1 + iBniHmsf0,Tg;C3d
2 d .

The constant C depends onb, iu0iH2msS2d and ik0iC3.
Proof: The result is just Proposition 5.9 withkn+1 replacingMn+1 and the much simpler

equations5.53d replacings5.9d. Note in particular that there is no dependence of the constant on
un, only b. Other than these minor details, the proof is identical. j

In light of this last result we see that ifu0[H2msS2d, k0[C3, un+1[ P0,T
m+1/2, andsHn,knd[O0,T

m

thenkn+1 exists and belongs toHmsf0,Tg ;C3d.
As was the case withs5.7d, s5.51d is solvable by construction, with the higher regularity of

solutions being governed by Corollary 5.12. The equation forHn+1, s5.52d, is algebraic and so it is
easy to see thatĥn+1, Hn+1[ P0,T

m provided thatun+1[ P0,T
m+1/2 andkn+1[Hmsf0,Tg ;C3d.

For brevity we introduce the following notation:

Ũn = su,ĥ,k,Hdn.

Despite being rather heuristic in nature, the foregoing discussion shows how the results proven in
the preceding section can be amended to give analogous results concerning the iteration scheme
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presently under consideration. In particular, we have the following analog of Theorem 5.13.
Theorem 5.23: Let mùm0 and let u0[H2m+1sS2d and k0[C3. There exists a nonincreasing,

but possibly decreasing sequencehTnjn=1
` with Tnù0, and a sequence of iteratesŨn[C0,Tn

m which
satisfy (5.4)–(5.7).

Proposition 5.16 also has an analogous result concerning the iteration scheme presently under
consideration. In fact, using the same ideas as those found in the proof of Proposition 5.16 it is a
fairly simple matter to obtain.

Proposition 5.24: Let mùm0 and suppose u0[H2m+1sS2d and k0[C3. There exists T* .0 and

Ñ.0, depending only on m, the initial data and the prescribable fields, such that

iŨniC̃
0,T*
m ø Ñ

for all n[N.
As in Theorem 5.17, we can use Proposition 5.24 to deduce that the proposed iteration scheme

s5.49d–s5.52d is consistently defined and produces a sequence of iterateshŨnjn=0
` ,C0,T*

m . More-
over, results analogous to Proposition 5.18 and Corollary 5.19 are obtained with practically iden-
tical proofs and the counterpart to Theorem 5.20 follows easily.

Theorem 5.25: Let the prescribable fieldsb, m, T0a, s[C`sS23R+d and let the initial data
satisfy u0[H2m+1sS2d and k0[C3, with mùm0. There exists a T.0 depending on the prescrib-
able fields and the initial data such that the system of equations (4.8)–(4.11), with the above data,
has a unique solution

Ũ = su,ĥ,k,Hd [ C0,T
m .

This gives us the sought after result concerning Problem 2b.
It is clear that by construction we may transform the solutions given by Theorems 5.20 and

5.25 under the inverse ofs4.1d and thereby construct quasispherical initial data which locally
satisfies the Einstein constraint equations.7–10
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The two NUT-like solutions of Ernst equation
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By applying Ehlers transformation to Schwarzschild and Kerr solutions of Ernst
equation and choosing the suitable coordinate transformations, the two NUT-like
solutions, i.e., the so called NUT–Taub-like and the Kerr–NUT-like solutions are
obtained which not only can, respectively, reduce to Schwarzschild and Kerr solu-
tions when the parameter,8=0, but also can also reduce to the NUT–Taub metric
and Kerr–NUT metric, respectively, when,8 satisfies the some approximation.
Meanwhile it is shown that in the NUT–Taub and Kerr–NUT solutions the range of
value for the parameter, interpreted as the gravomagnetic monopole cannot be
arbitrary and should be confined by mass of the source tou,u!m. Furthermore, the
differences in the geometrical structure between the NUT–Taub-like and NUT–
Taub solutions are discussed and the physical properties of the horizons on the
Kerr–NUT-like space–time are analyzed. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1895825g

I. INTRODUCTION

The Ernst equation1 is the basic equation for finding stationary axisymmetric vacuum solu-
tions of Einstein’s equations. The symmetric groups and generation of new solutions of Ernst
equation have been extensively studied.2–9 Especially, Reina and Treves10 obtained NUT–
TaubsNTd and Kerr–NUTsKNd solutions11,12by using an unitary transformation on Schwarzschild
solutionjS and Kerr solutionjK, respectively. In this paper, by applying Ehlers transformation13 to
jS and jK we find two solutions, one with three parameters and the other with four parameters.
Furthermore, by means of the mappings and coordinates transformations given by us, we obtain
two NUT-like solutions, i.e., the so-called NUT–Taub-likesNT-liked and Kerr–NUT-likesKN-liked
solutions, which can be reduced to NT metric and KN metric, respectively, when we consider
some special case. In Sec. II, some brief recalls of the Ernst equation and its solutions, especially
the general process of the resolution are given. In Sec. III the NUT–Taub-like metric is obtained
and the differences in the geometrical structure between the NUT–Taub-like and NUT–Taub
solutions are discussed according to the curvature tensors of the NUT–Taub-like metric given by
us. The Kerr–NUT-like metric is obtained successively and the properties of the horizons on the
Kerr–NUT-like space–time are analyzed in Sec. IV. Finally, Sec. V is devoted to the conclusions.
Appendixes A and B follow.

II. BRIEF RECALL ON THE RESOLUTION OF THE ERNST EQUATION

The line element of a stationary axisymmetric Einstein vacuum field called the Papapetrou
form in the cylindrical coordinatessr ,z,fd reads

ds2 = fsdt − v dfd2 − f−1fe2gsdr2 + dz2d + r2 df2g, s1d

where the gravitational potentialsf ,v, andg are real functions ofr andz only. It is known thatg
is determined byf andv. The Ernst equation1 is

adElectronic mail: zwyb@mail.dlptt.ln.cn
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sjj̄ − 1d¹2j = 2j̄ ¹ j · ¹ j, s2d

where¹;s]r ,]zd and¹2;]r
2+r−1]r+]z

2 denote the three-dimensional divergence and Laplacian

operators, respectively,j̄ is the conjugated complex potential ofj.
The canonical coordinates of Weyl,r and z, can be given in terms of prolate spheroidal

coordinates,x andy, by the relations

r = ksx2 − 1d1/2s1 − y2d1/2 andz= kxy, s3d

with

x ù 1, − 1ø y ø 1, k = constant. s4d

In these coordinates, the line elements1d assumes the form

ds2 = fsdt − v dfd2 − k2f−1Fe2gsx2 − y2dS dx2

x2 − 1
+

dy2

1 − y2D + sx2 − 1ds1 − y2ddf2G . s5d

To determine the potentialsf ,v, and g of the metric s5d, the method often to be used is the
following relation betweenf, the twist potentialF andj:

f + iF =
j − 1

j + 1
, s6d

where F is the twist potential defined up to a constant and related to the draggingv by the
following differential equations:14

]v

]x
=

ks1 − y2d
f2

]F

]y
and

]v

]y
= −

ksx2 − 1d
f2

]F

]x
, s7d

andg is determined by the following equation:

e2g = C
A

sx2 − y2dd , s8d

whereC is integral constant, andC andd is determined by the boundary condition,

e2g → 1 whenx → `. s9d

It is well known that there are two classical solutions of the Ernst equation, one is Schwarzschild
solution,

jS= x, s10d

the other is Kerr solution,

jK = px+ iqy, s11d

wherep andq are real constants satisfying

p2 + q2 = 1. s12d

Reina and Treves performed a unitary transformation onjS andjK and obtained NUT–TaubsNTd
and Kerr–NUTsKNd solutions10 as follows:
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ds2 = S1 − 2
mr + ,2

r2 + ,2 Dsdt − 2, cosu dfd2 − S1 − 2
mr + ,2

r2 + ,2 D−1

dr2 − sr2 + ,2dsdu2 + sin2 u df2d

s13d

and

ds2 = S1 − 2
mr − a, cosu + ,2

r2 + a2 cos2 u + ,2 − 2a, cosu
DFdt − S2a sin2 u

mr − a, cosu + ,2

r2 − 2mr + a2 cos2 u − ,2

− 2, cosuDdfG2

− sr2 + a2 cos2 u + ,2 − 2a, cosudS dr2

r2 − 2mr + a2 − ,2 + du2D
−

sr2 + a2 cos2 u + ,2 − 2a, cosudsr2 − 2mr + a2 − ,2d
r2 − 2mr + a2 cos2 u − ,2 sin2 u df2. s14d

III. THE NUT–TAUB-LIKE METRIC

Let j0 and j be any two solutions of Ernst equations2d, which can be related by Ehlers
transformation,

T:j0 → j, i.e., j =
aj0 + b̄

bj0 + ā
, s15d

wherea and b are complex numbers andā,b̄ are their complex conjugate, respectively, which
satisfy

Sa b̄

b ā
D P SUs1,1d, aā− bb̄= 1. s16d

Now takingj0=jS, then we can find the potentials corresponding to the solutionj of the Ernst
equation,

f =
x2 − 1

sb1
2 + b2

2dx2 + 2sb1
2 − b2

2dx + b1
2 + b2

2 , s17d

F =
sa2b1 − a1b2dsx2 − 1d + 2sa2b1 − a1b2d

sb1
2 + b2

2dx2 + 2sb1
2 − b2

2dx + b1
2 + b2

2 , s18d

v = − 4kb1b2y, s19d

e2g =
x2 − 1

x2 − y2 , s20d

wherea and b are introduced bya=a−b, b=a+b, and can be decomposed asa=a1+ ia2, b
=b1+ ib2, wherea1,a2,b1, andb2 satisfy

a1b1 + a2b2 = 1. s21d

We see from Eqs.s17d–s21d that the solution has three free parameters.
If we let
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a1 = b1 anda2 = b2, s22d

then we can get the known NUT–TaubsKNd solution.
If taking

a1 = b1 anda2 = − b2, s23d

Eq. s21d turns into

b1
2 − b2

2 = 1. s24d

Now we introduce the hyperbolic function

b1 = cothw andb2 = sinhw, s25d

which satisfy the relations24d obviously. In order to write this metric in Boyer–Lindquist-type
coordinates4 the following mappings are introduced:

x → r − m

k
, y → cosu,

s26d

coth 2w → m

Îm2 − ,82
, sinh 2w → − ,8

Îm2 − ,82
,

with

k → m2

Îm2 − ,82
. s27d

We see from above that the value of parameter,8 has a range of

− m, ,8 , m, ,8 Þ ± m. s28d

By the complicated calculation, we can finally find the following metric:

ds2 =Îm2 − ,82

m2 S1 − 2
mr + m2

m2−,82,82

r2 + m2

m2−,82,82 DSdt − 2
m2

m2 − ,82,8 cosu dfD2

−Î m2

m2 − ,82S1

− 2
mr + m2

m2−,82,82

r2 + m2

m2−,82,82 D−1

dr2 −Î m2

m2 − ,82Sr2 +
m2

m2 − ,82,82Dsdu2 + sin2 u df2d, s29d

where r and u are spherical coordinates. When,8=0, this metric becomes the Schwarzschild
solution, which indicates that the parameterm is mass of the source and,8 is a parameter with
mass dimension obviously. It is more worthy of note that if we assume the following approxima-
tion,

1 −S,8

m
D2

< 1 whenu,8u ! m, s30d

then this metric becomes
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ds2 = S1 − 2
mr + ,82

r2 + ,82 Dsdt + 2,8 cosu dfd2 − S1 − 2
mr + ,82

r2 + ,82 D−1

dr2 − sr2 + ,82dsdu2 + sin2 u df2d.

s31d

It is just the NT solutions13d when,8=,. Thus here we call this solutions29d the NT-like metric
and give the following comments.

s1d The value of the parameter, interpreted as the gravomagnetic monopole5,12 in the NT
solution s13d is limited by the mass of source, i.e.,u,u!m. But in the NT-like solutions29d, the
parameter satisfies −m,,8,m.

s2d According to the curvature tensorsRmnlr ssee the Appendixesd corresponding to the NT
and NT-like metrics we can see the space–time structure of the NT-like solution is different from
the one for the NT solution. And the case of,8= ±m leads the curvature of NUT-like space–time
to diverge, this implies that the solution is “everywhere” singular and therefore meaningless when
,8= ±m. But in the case ofu,8u!m, the geometrical properties of both are the same owing to
having the same curvature tensors.

IV. THE KERR–NUT-LIKE METRIC

If we takej0=jK sKerr solutiond in Ehlers transformations15d, we get

j8 =
ajK + b̄

bjK + ā
. s32d

By applying the same method as Sec. III and making the complicated calculation, we can find the
potentials corresponding to the solutionj8 of the Ernst equation,

f =
p2x2 + q2y2 − 1

sb1
2 + b2

2dsp2x2 + q2y2d + 2sb1
2 − b2

2dpx− 4b1b2qy+ b1
2 + b2

2 , s33d

F =
sa2b1 − a1b2dsp2x2 + q2y2 + 2qy+ 1d − 2sa2b1 + a1b2dpx

sb1
2 + b2

2dsp2x2 + q2y2d + 2sb1
2 − b2

2dpx− 4b1b2qy+ b1
2 + b2

2 , s34d

v = −
2kq

p

1 − y2

p2x2 + q2y2 − 1
s2b1b2qy− px− b1

2 − b2
2d −

4b1b2ky

p
, s35d

e2g =
p2x2 + q2y2 − 1

p2sx2 − y2d
, s36d

where a1,a2,b1, and b2 still satisfy Eq. s21d. We easily see from Eqs.s33d–s36d the above
solution contains four free parameters, and Kerr–NUTsKNd solution is contained as a special case
which satisfies the relations22d. On the other hand, if we consider Eqs.s23d–s25d, and introduce
the following crucial mappings in Boyer–Lindquist-type coordinates:

x → r − m

k
, y → cosu,

coth 2w → m

Îm2 − ,8
2
, sinh 2w → ,8

Îm2 − ,8
2
,
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p →
Îm2 − a2

m
, q → a

m
, s37d

with

k → mÎ m2 − a2

m2 − ,82 ,

then we see from Eq.s37d that the value of parameter,8 has the same range ass28d. And under the
above mappings we can finally get the metric

ds2 =Îm2 − ,82

m2 S1 − 2

m2−,82

m2 mr − a,8 cosu + ,82

m2−,82

m2 r2 + a2 cos2 u − 2a,8 cosu + ,82DFdt

− S2a sin2 u
mr − m2

m2−,82sa,8 cosu − ,82d
m2−,82

m2 sr2 − 2mrd + a2 cos2 u − ,82
− 2

m2

m2 − ,82,8 cosuDdfG2

−Î m2

m2 − ,82Sm2 − ,82

m2 r2 + a2 cos2 u − 2a,8 cosu + ,82DS dr2

m2−,82

m2 sr2 − 2mrd + a2 − ,82

+
m2

m2 − ,82du2D −Î m2

m2 − ,82S1 − 2

m2−,82

m2 mr − a,8 cosu + ,82

m2−,82

m2 r2 + a2 cos2 u − 2a,8 cosu + ,82D−1Fr2 − 2mr

+
m2

m2 − ,82sa2 − ,82dGsin2 u df2, s38d

wherer andu are spherical coordinates. When,8=0, this metric becomes the Kerr metric which
indicates that the parametersm anda are the mass and the angular momentum per unit mass of the
source, respectively, and,8 is a parameter with mass dimension obviously. It is noted that for the
parameter,8 its range of the value and the physical explanation are the same as those in NT-like
metric. On the other hand, this metric can be reduced to NT-like metric, whena=0. It is worthy
of emphasizing that if we take the approximations28d, i.e., 1−s,8 /md2<1 whenu,8u!m, then we
find that the metrics38d can be reduced to KN metrics14d. It follows that this metric contains KN
metric as a special case. Hence here we call it the KN-like metric. Furthermore, we find the
KN-like solution has the different physical properties from the KN solution. As an example, below
we will discuss the horizons on the KN-like space–time in order to show the differences between
both.

Generally, the horizon functionfsxmd sexactly null-hypersurfaced satisfies13

nmnm = gmn ] f

]xm

] f

]xn = 0, s39d

wherenm;]f /]xm is the normal vector of the null hypersurface. For a stationary axisymmetric
space–time, Eq.s39d can be written as

ĝ00Fg11S ] f

]r
D2

+ g22S ] f

]u
D2G = 0, s40d

where

ĝ00 ; g00 −
g03

2

g33
. s41d

Thus we get the following two equations:
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g11S ] f

]r
D2

+ g22S ] f

]u
D2

= 0 or ĝ00 = 0, s42d

it is easy to identify that the two equations ins42d give the same equation as follows according to
the KN-like metrics38d:

m2 − ,82

m2 sr2 − 2mrd + a2 − ,82 = 0. s43d

The solutions of the above equation are

r±
h = mS1 ±Î m2 − a2

m2 − ,82D . s44d

These horizons split into the Cauchy horizon, with radiusrch=ms1−Îsm2−a2d / sm2−,82dd, and the

event horizon, with radiusreh=ms1+Îsm2−a2d / sm2−,82dd. Obviously by comparing with the

horizons of the KN metric,r±
hsKNd=ms1±Îsm2−a2+,2d /m2d, we can see there is the difference

between the radial location of the horizons of the KN-like and KN solutions due to the property of
the latter to hold ifu,u!m, i.e., r±

hsKNd can be deduced fromr±
h in s44d as follows:

r±
h = mS1 ±Î1 − a2

m2

1 − ,82

m2

D 8 mS1 ±Î1 −
a2

m2 +
,82

m2 −
a2,82

m4 D = mS1 ±Îm2 − a2 + ,82 − a2,82

m2

m2
D

8 mS1 ±Îm2 − a2 + ,2

m2 D = r±
hsKNd, s45d

where,8=, when u,8u!m. And this justifies neglecting the terma2,82/m2 with respect toa2 in
s45d. Especially, it should be noted that the extreme black hole of the KN-like solution satisfies the
conditiona=m which is the same as the Kerr metric’s case, but differs from the condition corre-
sponding to the extreme black hole of the Kerr–NUT metric, which isa=Îm2+,2.

V. CONCLUSIONS

So far we have obtained the NUT–Taub-like metric and the Kerr–NUT-like metric by apply-
ing Ehlers transformation to Schwarzschild and Kerr solutions of Ernst equation and choosing the
suitable mappings in Boyer–Lindquist-like coordinates. When,8=0 the two solutions can, respec-
tively, reduce to Schwarzschild and Kerr solutions; and when,8 satisfies the approximations30d
they can also reduce to the NUT–Taub metric and Kerr–NUT metric, respectively. In this sense,
we believe that in the NUT–Taub and Kerr–NUT metrics the value of the NUT parameter,
interpreted as the gravomagnetic monopole10,14 cannot be arbitrary and should be confined to
u,u!m. Whether the limit of the parameter, may influence on the prediction of observable
effects10,14 for the parameter, is worthy of taking a further investigation. In addition, as concrete
examples we not only calculated the curvature tensors of the NT-like solution and pointed out
there are the differences in the geometrical structure between the NUT–Taub-like and NUT–Taub
solutions, but also gave the horizons on the Kerr–NUT-like space–time and discussed the differ-
ence of the extreme black hole between the Kerr–NUT-like metric and the Kerr–NUT metric. For
other physical properties of the two solutions such as ergospheres, singularities, geodesics, and so
on we will investigate in our forthcoming paper. The relation among the above solutions can be
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figured as follows:

where KN and NUT–T denote Kerr–NUT and NUT–Taub solutions, while KN-L and NT-L de-
note, respectively, Kerr–NUT-like and NUT–Taub-like solutions.
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APPENDIX A: THE NONZERO CURVATURE TENSORS OF THE NUT–TAUB „NT…
METRIC

The NUT–Taub metric in spheroidal coordinates are

gmn =1
H
U 0 0 − 2, cosusH

U d
0 − s U

Hd 0 0

0 0 − U 0

− 2, cosusH
U d 0 0 4,2 cos2 usH

U d − U sin2 u
2 sA1d

and its inverse

gmn =1
sr2+,2d

sr2−2mr−,2d − 4,2 cos2 u

sr2+,2dsin2 u
0 0

−2, cosu

sr2+,2dsin2 u

0 − s r2−2mr−,2

r2+,2 d 0 0

0 0 − 1
r2+,2 0

−2, cosu

sr2+,2dsin2 u 0 0 − 1
sr2+,2dsin2 u

2 , sA2d

where

U = r2 + ,2, H = r2 − 2Mr − ,2.

The nonzero curvature tensors of the NUT–Taub metric are

R1212=
N
HU , R0101= 2

N
U3, R1301= 4

N
U3, cosu, R2301= − 2

K
U2, sinu,

R1302= −
K
U2, sinu, R2302= − 2

NH
U3 , cosu, R1203=

K
U2, sinu,

R0303= −
NH
U3 sin2 u, R2313= − 6

K
R2,2 cosu sinu, R2002=

NH
U3 ,
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R1313=
N

HRS8
H
U2,2 cos2 u + sin2 uD, R2323= − 2

N
U S2

H
U2,2 cos2 u + sin2 uD , sA3d

where

N = mr3 + 3,2r2 − 3m,2r − ,4, K = r3 − 3mr2 − 3,2r + m,2.

APPENDIX B: THE NONZERO CURVATURE TENSORS OF THE NUT–TAUB-LIKE
„NT-LIKE … METRIC

The NUT–Taub-like metric is

gmn =1
D

G
H 0 0 − 2G

HScosu

0 − D−1H
G 0 0

0 0 − D−1H 0

− 2G
HScosu 0 0 D−1S4

G

H
S2 cos2 u − H sin2 uD2 sB1d

and its inverse is

gmn =1
D−1fH

G − 4Scos2 u

H sin2 u g 0 0 − 2Scosu

H sin2 u

0 − DSG

H
D 0 0

0 0 − D
H 0

− 2Scosu

H sin2 u
0 0 − D

H sin2 u

2 , sB2d

where

D =Îm2 − ,82

m2 , G = r2 − 2mr − S2, H = r2 + S2, S =,8Î m2

m2 − ,82 .

The nonzero curvature tensors of the NUT–Taub-like metric are

R1212= D−1 N

HG
, R0101= 2D

N

H3, R1301= 4
N

H3Scosu,

R2301= − 2
K

H2Ssinu, R1302= −
K

H2Ssinu, R2302= − 2
NG

H3 Scosu,

R1203= H2Ssinu, R0303= − D
NG

H3 sin2 u, R2313= − 6D−1 K

H2S2 cosu sinu,

R2002= D
NG

H3 , R1313= D−1 N

HG
S8

G

H2S2 cos2 u + sin2 uD ,

R2323= − 2D−1N

H
S2

G

H2S2 cos2 u + sin2 uD , sB3d

where

N = mr3 + 3S2r2 − 3mS2r − S4, K = r3 − 3mr2 − 3S2r + mS2.
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We consider the low-energy effective action of the five-dimensionals5Dd Einstein–
Maxwell–Kalb–Ramond theory. After compactifying this truncated model on a
two-torus and switching off the Us1d vector fields of this theory, we recall a for-
mulation of the resulting three-dimensional action as a double Ernst system coupled
to gravity. Further, by applying the so-called normalized Harrison transformation
on a generic solution of this double Ernst system we recover the Us1d vector field
sector of the theory. Afterward, we compute the field content of the generated
charged configuration for the special case when the starting Ernst potentials corre-
spond to a pair of interacting Kerr black holes, obtaining in this way an exact field
configuration of the 5D Einstein–Maxwell–Kalb–Ramond theory endowed with
effective Coulomb and dipole terms with momenta. Some physical properties of
this object are analyzed as well as the effect of the normalized Harrison transfor-
mation on the double Kerr seed solution. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1897843g

I. INTRODUCTION

Recently some natural interest has been shown to the study of field configurations that de-
scribe interacting black holes coupled to some matter fields, both in the framework of general
relativity1,2 and string theory.3–5 One of the reasons for such an interest is the development reached
in the statistical approach to physics of single black holessfor a review, see for instance, Refs. 6
and 7d and its possible generalization to more complicated systems of interacting black holes
coupled to matter.

In this paper we construct a charged field configuration that consists of a pair of interacting
sources of black hole type coupled to an antisymmetric Kalb–Ramond tensor field and a set of
Abelian gauge fields in the framework of the truncated five-dimensional Einstein–Maxwell–Kalb–
RamondsEMKRd theory. The construction is carried out by applying the normalized Harrison
charging symmetry, which acts on the target space of the effective three-dimensional heterotic
string theory and preserves the asymptotic properties of the starting field configurations, on a seed
solution that corresponds to a double Ernst system in the framework of the toroidally reduced
five-dimensional Einstein–Kalb–RamondsEKRd theory. Several interesting results have been
achieved regarding the physical properties of five-dimensional black objects;8 it turns out that the
Bogomolnyi-Prasad-SommerfieldsBPSd bound of rotating black holes is saturated precisely in five
or more dimensions.

adElectronic mail: becerril@ifm.umich.mx
bdElectronic mail: aherrera@auth.gr
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The paper is organized as follows: in Sec. II we briefly review the matrix Ernst potential
sMEPd formalism for the effective field theory of the heterotic stringsfor an arbitrary number of
dimensionsd and its formal analogy to the stationary Einstein–MaxwellsEMd system. It turns out
that after setting to zero the dilaton and all Us1d vector fields, and considering the compactification
of this theory on a two-torus, the resulting three-dimensional subsystem admits a Kähler repre-
sentation which is defined by two vacuum Ernst potentials.

In Sec. III the parametrization which gives rise to this double Ernst system is pointed out and
a discrete transformation between the metric and Kalb–Ramond degrees of freedom is established.
In Sec. IV we recall the normalized Harrison transformationsNHTd and apply it on a generic seed
solution of the EKR theory which corresponds to two complex Ernst potentials in order to get a
charged field configuration and recover, in this way, the Us1d vector field sector of the EMKR
theory.

Further, in Sec. V we reduce the system to two effective dimensionssdependence of just two
dynamical coordinatesd in order to be able to consider as seed solution a pair of Ernst potentials
which correspond to interacting Kerr black holes. In this case, the five-dimensional line element
explicitly depends on the Ernst potentials and the resulting field configuration contains a Kalb–
Ramond dipole hidden inside a horizon. In Sec. VI we explicitly compute the generated charged
solution, study its asymptotical behavior and give an interpretation of the field configuration.
Finally, we sketch our conclusions and discuss on the further development of the present work.

II. MATRIX ERNST POTENTIAL FORMALISM

In this section we review the MEP formalism for theD-dimensional effective field theory of
the heterotic string and indicate an algorithm for generating a charged solution of the double Ernst
system starting from a neutral one by making use of a matrix Lie–Bäcklund transformation of
Harrison type.

We consider the effective action of the heterotic string theory at tree level,

SsDd =E dsDdxuGsDdu1/2e−fsDdsRsDd + f;M
sDdfsDd;M − 1

12HMNP
sDd HsDdMNP − 1

4FMN
sDdIFsDdIMNd , s1d

where

FMN
sDdI = ]MAN

sDdI − ]NAM
sDdI, HMNP

sDd = ]MBNP
sDd − 1

2AM
sDdIFNP

sDdI + cycl perms ofM,N,P.

HereGMN
sDd is the metric,BMN

sDd is the antisymmetric Kalb–Ramond field,fsDd is the dilaton,AM
sDdI is

a set of Us1d vector fieldssI =1,2, . . . ,nd, D is the original number of space–time dimensions;
capital lettersM ,N, . . . ,P are related to the whole set of space–time coordinates, lower case letters
m,n label the extra dimensions, whereas Greek lettersm ,n stand for the noncompactified coordi-
nates. In the consistent critical caseD=10 andn=16, but we shall leave these parameters arbitrary
for the time being and will fix them later in Sec. III. In Refs. 9 and 10 it was shown that after the
compactification of this model on aD−3=d-torus, the resulting three-dimensional theory pos-
sesses the SOsd+1,d+n+1d symmetry group that later was identified asU-duality11 and de-
scribes gravity through the metric tensor

gmn = e−2fsGmn
sDd − Gm+3,m

sDd Gn+3,n
sDd Gmnd,

coupled to the following set of three-dimensional fields:

sad scalar fields,

G ; Gmn= Gm+3,n+3
sDd , B ; Bmn= Bm+3,n+3

sDd , A ; Am
I = Am+3

sDdI , f = fsDd − 1
2 lnudetGu,

s2d

sbd tensor field,
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Bmn = Bmn
sDd − 4BmnAm

mAn
n − 2sAm

mAn
m+d − An

mAm
m+dd, s3d

scd vector fieldsAm
sad=ssA1dm

m,sA2dm
m+d,sA3dm

2d+Id,

sA1dm
m = 1

2GmnGn+3,m
sDd , sA3dm

I+2d = − 1
2Am

sDdI + An
I Am

n , sA2dm
m+d = 1

2Bm+3,m
sDd − BmnAm

n + 1
2Am

I Am
I+2d,

s4d

where the subscriptsm,n=1,2, . . . ,d; anda=1, . . . ,2d+n. In this paper we setBmn=0 since
an antisymmetric tensor has no dynamical degrees of freedom in three dimensions; this is
equivalent to removing the effective cosmological constant which, in general, is included in
the spectrum of the three-dimensional effective theory.

We dualize all vector fields on-shell with the aid of the pseudoscalar fieldsu, v, and s as
follows:

¹ 3 A1
W = 1

2e2fG−1s¹u + sB + 1
2AATd ¹ v + A ¹ sd ,

¹ 3 A3
W = 1

2e2fs¹s+ AT ¹ vd + AT ¹ 3 A1
W , s5d

¹ 3 A2
W = 1

2e2fG ¹ v − sB + 1
2AATd ¹ 3 A1

W + A ¹ 3 A3
W .

Thus, the effective three-dimensional theory describes gravitygmn coupled to the scalarsG, B, A,
f and pseudoscalarsu, v, s. In Ref. 12 it was shown that all these matter fields can be arranged in
the following pair of MEP:

X = S− e−2f + vTXv + vTAs+ 1
2sTs vTX − uT

Xv + u + As X
D, A = SsT + vTA

A
D , s6d

where X=G+B+ 1
2AAT, in such a way that they reproduce the field equations of the three-

dimensional theory. These matrices have dimensionssd+1d3 sd+1d and sd+1d3n, respectively.
In terms of the MEP the effective three-dimensional theory adopts the form

3S=E d3xugu1/2h− R+ Trf 1
4s¹X − ¹ AATdG−1s¹XT − A ¹ ATdG−1 + 1

2 ¹ ATG−1 ¹ Agj , s7d

whereX=G+B+ 1
2AAT, thenG= 1

2sX+XT−AATd and

G = S− e−2f + vTGv vTG

Gv G
D, B = S 0 vTB − uT

Bv + u B
D . s8d

In Ref. 12 it also was shown that there exists a map between the stationary actions of the heterotic
string and EM theories. The map reads

X ↔ − E, A ↔ F,

s9d
matrix transposition↔ complex conjugation,

whereE andF are the conventional complex Ernst potentials of the stationary EM theory.13 This
map allows us to extrapolate the results obtained in the EM theory to the heterotic string realm
using the MEP formulation.

The normalized Harrison transformation

In the language of the MEP the three-dimensional actions7d possesses a set of symmetries
which has been classified according to their charging properties in Ref. 14. Among them one finds
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the matrix Ehlers and Harrison transformations,15 which are symmetries that change the properties
of the space–time in a nontrivial way; they represent the matrix counterpart of the Bäcklund
transformation of the sine-Gordon equation in the realm of the stationary heterotic string theory.
For instance, the so-called normalized Harrison transformation allows us to construct charged
string vacua from neutral ones preserving the asymptotical values of the three-dimensional seed
fields. Namely, the matrix transformation

A → s1 + 1
2SllTds1 −A0lT + 1

2X0llTd−1sA0 − X0ld + Sl,

s10d
X → s1 + 1

2SllTds1 −A0lT + 1
2X0llTd−1fX0 + sA0 − 1

2X0ldlTSg + 1
2SllTS,

whereS=diags−1,−1,1, . . . ,1d stands for the signature that the MEPX adopts at spatial infinity
andl is an arbitrary constantsd+1d3n-matrix, generates charged string solutionsswith nonzero
potentialAd from neutral ones if we start from the seed potentials

X0 Þ 0, A0 = 0.

The parameters that enter the matrixl can be interpreted as electromagnetic charges that couple to
the original seed object. It is precisely with the aid of this Bäcklund transformation that we shall
charge the double 5D Ernst system in the next section.

III. 5D EINSTEIN–KALB–RAMOND VS DOUBLE ERNST SYSTEM

In this section we present a formulation of the resulting three-dimensional model, upon tor-
oidal compactification of the 5D EKR theory, as a double Ernst system by means of a complete
parametrization of the matricesG and B in terms of the real and imaginary parts of a pair of
complex Ernst potentials.

Let us begin by setting to zero all the Us1d gauge fields which correspond to the winding
modes of the three-dimensional theoryfthis is equivalent to dropping the matrixA in s7dg. Thus,
we obtain the following action in terms of the MEPX:

3S=E d3xugu1/2H− R+
1

4
Trf¹XG−1 ¹ XTG−1gJ =E d3xugu1/2H− R+

1

4
TrsJXJXT

dJ , s11d

where nowX=G+B, G= 1
2sX+XTd, andJX= ¹XG−1.

There are two physically different effective theories that can be expressed by the actions11d,
and hence admit a double Ernst formulation. On the one hand, we have theD=5 EKR model,
where the dilaton field is set to zero as well.3 On the other hand, we have theD=4 bosonic string
theory, for which a charged pair of rotating interacting black holes coupled to dilaton and Kalb–
Ramond fields was constructed in Ref. 5 and its charged dual string vacua were studied in Ref. 16.
Here we will consider again the 5D EKR theory in order to apply the NHT on a neutral family of
field configurations that correspond to the double Ernst system.

Thus, we start with the five-dimensional truncated action

5S=E d5xu5Gu1/2S5R−
1

12
5H2D , s12d

where5R is the Ricci scalar constructed on the five-dimensional metric5GMN and

5HMNP = ]M
5BNP + cycl perms ofM,N,P. s13d

It is worth noticing that we are considering a truncation which imposes the following condition on
the Kaluza–Klein and Kalb–Ramond vector fields:
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5Gm,n+2 = 5Bm,n+2 = 0; s14d

this implies that the vector fieldsA1 andA2 must vanish identically, and hence, the pseudoscalar
fields u and v also vanishfsees5dg. Such a restriction does not provide any constraint on the
remaining dynamical variables and can be considered as a consistent nontrivial ansatz for the EKR
theory.

After the Kaluza–Klein reduction onT2 we get the stationary effective actions11d ssee, for
instance, Refs. 3 and 10d with the matter field spectrum of the theory encoded in the
s232d-matricesG;G andB;B which can be parametrized in the following form:

G =
p1

p2
S 1 q2

q2 p2
2 + q2

2D, B = q1S0 − 1

1 0
D = q1s2, s15d

wheres2 is the Pauli matrix. Under such assumptions, the five-dimensional interval reads

ds5
2 = gmn dxm dxn + Gmn dxm dxn. s16d

By substitutings15d into s11d the action of the “matter fields” adopts the form

3Sm =
1

2
E d3xugu1/2hp1

−2fs¹p1d2 + s¹q1d2g + p2
−2fs¹p2d2 + s¹q2d2gj, s17d

which allows us to introduce two independent Ernst potentials,

e1 = p1 + iq1, e2 = p2 + iq2. s18d

In terms of these field variables, the action of the system can be rewritten as a double Ernst system
in the Kähler form,17

3S=E d3xugu1/2h− 3R+ 2sJe1Jē1 + Je2Jē2dj, s19d

whereJe1= ¹e1se1+ ē1d−1 andJe2= ¹e2se2+ ē2d−1.
A mathematically equivalent, but physically different 232-matrix representation arises from

s12d by making use of the discrete symmetryp1↔p2, q1↔q2. This fact allows us to define new
matrices

G8 =
p2

p1
S 1 q1

q1 p1
2 + q1

2D, B8 = q2s2 s20d

and, hence,X8=G8+B8 and to write down the action that corresponds to these magnitudes,

3S=E d3xugu1/2H− R+
1

4
TrsJX8JX8T

dJ =E d3xugu1/2h− R+ 2sJe18Jē18 + Je28Jē28dj, s21d

where similarly JX8= ¹X8G8−1, Je18= ¹e18se18+ ē18d
−1, Je28= ¹e28se28+ ē28d

−1, e18=p2+ iq2, and e28=p1

+ iq1.
In terms of the MEP the above-mentioned discrete transformation reads

X ↔ X8; s22d

thus, the matricesG8 andB8 must be interpreted as new Kaluza–Klein and Kalb–Ramond fields,
respectively. This symmetry mixes the gravitational and matter degrees of freedom of the theory.
It recalls the Bonnor transformation of the EM theory,18 but in the bosonic string realm. It can be
used to generate new solutions starting, for instance, from pure Kaluza–Klein string vacuassee
Ref. 16 as welld.
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IV. APPLYING THE NHT ON THE DOUBLE ERNST SYSTEM

Let us now proceed to apply the NHT on the neutral double Ernst system. This will generate
a nonzero electromagnetic potentialA which accounts for nontrivial Abelian Us1d gauge fields. In
order to achieve this aim, we must consider the following seed MEP:

X0 =1
p1

p2

p1q2 − q1p2

p2

p1q2 + q1p2

p2

p1

p2
sp2

2 + q2
2d 2, A0 = 0. s23d

In this case, the charge matrixl that parametrizes the NHT has the form

l = Sl11 l12 ¯ l1n

l21 l22 ¯ l2n
D , s24d

wherenù2 for consistency. Thus after applying the NHT on this double Ernst seed solution, the
transformed MEP read

X11 =
1

J
fs4 + L2ue2u2dRee1 + 2sl1j

2 + l2j
2 ue1u2dRee2 + 4l1jl2j Ree2 Im e1g, s25d

X12 =
1

J
hG+sRee1 Im e2 − Ree2 Im e1d + 2l1jl2jfs1 − ue1u2dRee2 − s1 − ue2u2dRee1gj, s26d

X21 =
1

J
hG−sRee1 Im e2 + Ree2 Im e1d + 2l1jl2jfs1 − ue2u2dRee1 + s1 − ue1u2dRee2gj, s27d

X22 =
1

J
fsL2 + 4ue2u2dRee1 + 2sl2j

2 + l1j
2 ue1u2dRee2 − 4l1jl2j Ree2 Im e1g, s28d

A1j =
2

J
hfs2 − l2j

2 ue1u2dRee2 − s2 − l2j
2 ue2u2dRee1 + l1jl2jsRee1 Im e2 − Ree2 Im e1dgl1j − fs2

+ l1j
2 dsRee1 Im e2 − Ree2 Im e1d + l1jl2jsue2u2 Ree1 − ue1u2 Ree2dgl2jj, s29d

A2j =
− 2

J
hfs2 + l2j

2 dsRee1 Im e2 + Ree2 Im e1d + l1jl2jsRee1 − ue1u2 Ree2dgl1j − fsl1j
2

− 2ue2u2dRee1 + s2 − l1j
2 ue1u2dRee2 + l1jl2jsRee1 Im e2 + Ree2 Im e1dgl2jj, s30d

J = 2sl1j
2 + l2j

2 ue2u2dRee1 + s4 + L2ue1u2dRee2 + 4l1jl2j Ree1 Im e2, s31d

where L2=l1j
2 l2j

2 −sl1jl2jd2, G+=4+2l1j
2 −2l2j

2 −L2, G−=4−2l1j
2 +2l2j

2 −L2, and the nontrivial
character of the matrixA is evident. The fields configurations corresponding to these potentials
live now in the 5D EMKR theory since we have recovered the Us1d vector fields of the system.

V. DOUBLE KERR SEED SOLUTION

In this section, following Ref. 3 we impose one more symmetry on the fields of the three-
dimensional effective theory under consideration in order to use as seed solution a pair of Kerr
black holes. Thus, we can write the line element in the Lewis–Papapetrou form making use of the
Weyl coordinates as follows:
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5ds2 = Gmn dxm dxn + e2gsdr2 + dz2d − r2 dt2, s32d

whereGmn andg aret-independent. Thus, a solution of our system can be constructed using the
solutions of the double vacuum Einstein equations written in the Ernst form in terms ofek and
gek sk=1,2d,

¹srJekd = rJeksJek − Jēkd,

]zg
ek = rfsJekdzsJēkdr + sJēkdzsJekdrg, s33d

]rgek = rfusJekdru2 − usJekdzu2g,

if one identifies the functiong that accounts for the general relativistic interaction between the
black holes, in the following way:g;ge1+ge2.

For instance, we can take as seed solution a double Kerr system consisting of a pair of rotating
interacting black holes. In the framework of general relativity, the Ernst potentials corresponding
to two Kerr solutions with sources in different points of the symmetry axis read

ek = 1 −
2mk

rk + iak cosuk
, s34d

wheremk andak are constant parameters which define the masses and rotations of the sources of
the Kerr field configurations. Weyl and Boyer–Lindquist coordinates are related through

r = fsrk − mkd2 − zk
2g1/2 sinuk, z= zk + srk − mkdcosuk, s35d

where the sources are located atzk andzk
2=mk

2−ak
2. Thus, for the functiongk we have

e2gk =
Pk

Qk
, s36d

wherePk=Dk−ak
2 sin2 uk, Qk=Dk+zk

2 sin2 uk, andDk=rk
2−2mkrk+ak

2.
We would like to make a remark at this point. When parametrizing the 5D intervals32d in the

Lewis–Papapetrou form, one could choose a completely spatialsEuclideand three-dimensional
interval and require that the signature of the matrixG to be negative definite, i.e.,uGu`=−I2 sthe
same signature holds for the matrixuXu`d. Thus, the five-dimensional metric would possess a
signature with two timelike coordinates. Such kind of models have been studied in Ref. 19 and
represent another line of investigation within this approach. It is clear that in order to fulfill this
condition eithere1 or e2 must adopt the asymptotic value −1, since when both potentials have the
same asymptotic behaviorswith the same signd the signature of the matrixG is positive definite.

Thus, in the language of the complex Ernst potentials the field configuration adopt the form

ds5
2 = e2gsdr2 + dz2d − r2 dt2 +

e1 + ē1

e2 + ē2

udu + i ē2 dvu2, s37d

B =
e1 − ē1

2i
s2, s38d

whereu=x4, v=x5, andg=ge1+ge2 as it was pointed out above.
In the case when the Ernst potentials correspond to two interacting Kerr black holes, the

symmetric matrixG is determined by the follow
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Guu =
sr1

2 − 2m1r1 + a1
2 cos2 u1dsr2

2 + a2
2 cos2 u2d

sr2
2 − 2m2r2 + a2

2 cos2 u2dsr1
2 + a1

2 cos2 u1d
,

Guv =
2m2a2 cosu2sr1

2 − 2m1r1 + a1
2 cos2 u1d

sr2
2 − 2m2r2 + a2

2 cos2 u2dsr1
2 + a1

2 cos2 u1d
, s39d

Gvv =
sr1

2 − 2m1r1 + a1
2 cos2 u1dsr2

2 − 4m2r2 + 4m2
2 + a2

2 cos2 u2d
sr2

2 − 2m2r2 + a2
2 cos2 u2dsr1

2 + a1
2 cos2 u1d

,

ing relations:the factore2g reads

e2g =
sr1

2 − 2m1r1 + a1
2 cos2 u1dsr2

2 − 2m2r2 + a2
2 cos2 u2d

sr1
2 − 2m1r1 + a1

2 cos2 u1 + m1
2 sin2 u2dsr2

2 − 2m2r2 + a2
2 cos2 u2 + m2

2 sin2 u2d
, s40d

and the Kalb–Ramond matrixB is defined as

B =
2m1a1 cosu1

r1
2 + a1

2 cos2 u1
s2 s41d

and can be interpreted as a matrix Kalb–Ramond dipole configuration with momentumm1a1

located atz1 and hidden inside the horizonr1=m1+Îm1
2−a1

2 of the metrics37d. Simultaneously,
the Guv metric component also constitutes a dipole configuration but possesses momentumm2a2

and is located atz2, hidden inside the horizonr2=m2+Îm2
2−a2

2.

VI. CHARGED FIELD CONFIGURATIONS IN 5D EMKR THEORY

After applying the NHT on the double Ernst seed solution we get the following field configu-
rations:

Guu = X11 − 1
2A1j

2 , Guv = 1
2sX12 + X21 − A1jA2jd, Gvv = X22 − 1

2A2j
2 , s42d

B = 1
2sX21 − X12ds2, A ; A = SA1j

A2j
D , s43d

where the appearance of the electromagnetic potential is obvious. By substituting the Ernst po-
tentialsek by the corresponding double Kerr black hole system we obtain the following charged
field configuration:

Guu =
DQD1D2 + 4m1sL2r1 + 2m1l2j

2 + 2l1jl2ja1 cosu1dD2 + 2m2fs4 − L2dr2 + 2L2m2gD1

DQD1D2 + 4m2sL2r2 + 2m2l2j
2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2

−
8sh1l1j − h2l2jd2 + 2L2sh2l1j − h3l2jd2 − 8L2sh1h3 − h2

2d
fDQD1D2 + 4m2sL2r2 + 2m2l2j

2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2g2 ,

s44d

Guv =
4m1f2l1jl2jsr1 − m1d − L2a1 cosu1gD2 + 2s4 − L2dm2a2 cosu2D1

DQD1D2 + 4m2sL2r2 + 2m2l2j
2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2

+
4sl1

2h1h4 + l2
2h2h6d + 2L2fs2 + l1j

2 dh2h5 − s2 + l2j
2 dh3h4g − 2l1jl2jf4h1h6 + L2h3h5 + s4 − L2dh2h4g

fDQD1D2 + 4m2sL2r2 + 2m2l2j
2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2g2 ,

s45d
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Gvv =
DQD1D2 − 2m2fs4 − L2dr2 − 8m2gD1 − 4m1sL2r1 − 2m1l1j

2 + 2l1jl2ja1 cosu1dD2

DQD1D2 + 4m2sL2r2 + 2m2l2j
2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2

−
8sh4h1j − h6l2jd2 + 2L2sh5l1j + h4l2jd2 + 8L2sh5h6 + h4

2d
fDQD1D2 + 4m2sL2r2 + 2m2l2j

2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2g2 ,

s46d

Buv =
2s4 − L2dm1a1 cosu1D2 + 4m2f2l1jl2jsr2 − m2d − L2a2 cosu2gD1

DQD1D2 + 4m2sL2r2 + 2m2l2j
2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2

,

s47d

A1j =
2f2h1 − l2i

2 h3 + l1il2ih2gl1j + 2fl1il2ih3 − s2 + l1i
2 dh2gl2j

DQD1D2 + 4m2sL2r2 + 2m2l2j
2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2

,

s48d

A2j =
− 2fs2 + l2i

2 dh4 + l1il2ih5gl1j + 2fl1i
2 h5 + l1il2ih4 + 2h6gl2j

DQD1D2 + 4m2sL2r2 + 2m2l2j
2 + 2l1jl2ja2 cosu2dD1 + 2m1fs4 − L2dr1 + 2L2m1gD2

,

s49d

where

h1 = 2sm1r1D2 − m2r2D1d, h2 = 2sm2a2 cosu2D1 − m1a1 cosu1D2d,

h3 = 4sm1
2D2 − m2

2D1d − h1, h4 = 2sm1a1 cosu1D2 + m2a2 cosu2D1d,

h5 = 2fm1sr1 − 2m1dD2 + m2r2D1g, h6 = 2fm1r1D2 + m2sr2 − 2m2dD1g, s50d

L2=l1j
2 −l2j

2 , lk
2=2lkj

2 +L2, Dk=rk
2−2mkrk+ak

2 cos2 uk sk=1,2d and, finally, DQ=4+2l1j
2 +2l2j

2

+L2.
A consistency checking of the generated solution consists of setting the parametersl1j andl2j

to zero in order to recover the starting field configurations39d–s41d. It is straightforward to verify
that this is indeed the case.

The asymptotical behavior of the generated three-dimensional field configurations read

uGuuu` , 1 −
2G−sm1 − m2d

DQr
+

8l1jl2jsm1a1 cosu1 − m2a2 cosu2d
DQr2 + Osr−2d, s51d

uGuvu` ,
8l1jl2jm1

DQr
−

4L2m1a1 cosu1 − 2s4 − L2dm2a2 cosu2

DQr2 + Osr−2d, s52d

uGvvu` , 1 −
2L+sm1 + m2d

DQr
−

8l1jl2jsm1a1 cosu1 + m2a2 cosu2d
DQr2 + Osr−2d, s53d

uBuvu` ,
8l1jl2jm2

DQr
+

2s4 − L2dm1a1 cosu1 − 4L2m2a2 cosu2

DQr2 + Osr−2d, s54d
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uA1ju` ,
4fs2 + l2i

2 dl1j − l1il2il2jgsm1 − m2d
DQr

−
4fl1il2il1j − s2 + l1i

2 dl2jgsm1a1 cosu1 − m2a2 cosu2d
DQr2 + Osr−2d, s55d

uA2ju` ,
− 4fl1il2il1j − s2 + l1i

2 dl2jgsm1 + m2d
DQr

+
4fs2 + l2i

2 dl1j − l1il2il2jgsm1a1 cosu1 + m2a2 cosu2d
DQr2 + Osr−2d. s56d

From this analysis it is clear that under the NHT, all the generated fieldssgravitational, Kalb–
Ramond, and electromagneticd effectively develop both Coulomb and dipole terms. Thus, from
one side, theGuu component of the constructed metric possesses mass terms defined byMuu1
=G−m1/DQ at z1 and Muu2

=G−m2/DQ at z2, and from the other side, it acquires dipole sources

with massesM̃uu1
=8l1jl2jm1/DQ, M̃uu2

=−8l1jl2jm2/DQ, and their corresponding momenta

M̃uu1
a1, M̃uu2

a2, located atz1 and z2, respectively. In a similar way theGvv component of the
metric has massesMvv1

=G+m1/DQ at z1 andMvv2
=G+m2/DQ at z2; indeed, it possesses as well

the massive dipole terms defined byM̃vv1
=−8l1jl2jm1/DQ at z1 andM̃uu2

=−8l1jl2jm2/DQ at z2

with the momentaM̃vv1
a1 andM̃vv2

a2, respectively.
The transformed Kalb–Ramond tensor field also acquires a Coulomb term determined by the

chargeMB=8l1jl2jm2/DQ located atz2 and now possesses two dipole sources with masses
MB1

=s4−L2dm1/DQ, MB2
=−4L2m2/DQ and momentaMB1

a1, MB2
a2, located atz1 and z2, re-

spectively. The same situation exactly takes place for theGuv component of the metric, which
usually corresponds to the rotation of the gravitational field. Thus, the generated gravitational
potential Guv has a Coulomb source with massMuv=8l1jl2jm1/DQ located atz1 and dipole

sources with massesM̃uv1
=−2L2m1/DQ, M̃uv2

=s4−L2dm2/DQ and momentaM̃uv1
a1, M̃uv2

a2,
located atz1 andz2, respectively.

At this point we would like to point out that the discrete symmetrys22d which relates gravi-
tational and Kalb–Ramond degrees of freedom is still present asymptotically and is quite evident
in the language of the masses and charges of the componentsGuv andBuv, since one can clearly
see that these components transform into each other under the interchange of the respective masses
and charges, even after the implementation of the nonlinear NHT.

Finally, the generated field configuration possesses an evidently nontrivial electromagnetic
sector and its asymptotic structure reveals its usual Coulomb form, defining in this way the
effective electromagnetic charges of the system. These fields also have effective dipole sources.
Thus, the electromagnetic fieldsA1j possess momenta defined by the expressions 4fl1il2il1j

−s2+l1i
2 dl2jgm1a1/DQ and −4fl1il2il1j −s2+l1i

2 dl2jgm2a2/DQ, whereas the respective momenta
for the electromagnetic fieldsA2j read 4fs2+l2i

2 dl1j −l1il2il2jgm1a1/DQ and 4fs2+l2i
2 dl1j

−l1il2il2jgm2a2/DQ.
Thus, under the NHT, the double Kerr seed solution does not acquire just the electromagnetic

charges, but it develops as well effective Coulomb and dipole terms for all the fields of the field
configuration, gravitational, Kalb–Ramond, and electromagnetic fields.

VII. CONCLUSION AND DISCUSSION

In this paper we have obtained a charged field configuration of the five-dimensional EMKR
theory starting from a neutral one that corresponds to a double Ernstsdouble Kerr, in particulard
system. The generation of the new charged solution was carried out via a matrix Lie–Bäcklund
transformation of Harrison type that preserves the asymptotical values of the seed fields.
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An interesting feature of the generated exact solution is that all the fields of the field configu-
ration develop effective Coulomb and dipole terms asymptotically. Thus, after applying the NHT,
the 5D double Kerr seed solution acquires effective Coulomb terms and dipole sources with
momenta. This is in contrast with the effect that the NHT produces on a neutral seed solution in
the framework of the general theory of relativity where it just endows the initial field configuration
with a set of electromagnetic charges.

The statistical analysis of such a configuration is an appealing direction to conduct the present
research. The equilibrium properties of the generated solution is of interest as well and would
generalize to the 5D case some previous results obtained in the framework of the four-dimensional
general relativity.2,20,21These issues are under current investigation.
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We discuss commuting flows and conservation laws for Lax hierarchies on non-
commutative spaces in the framework of the Sato theory. On commutative spaces,
the Sato theory has revealed essential aspects of the integrability for wide class of
soliton equations which are derived from the Lax hierarchies in terms of pseudo-
differential operators. Noncommutative extension of the Sato theory has been al-
ready studied by the author and Toda, and the existence of various noncommutative
Lax hierarchies are guaranteed. In this paper, we present conservation laws for the
noncommutative Lax hierarchies with both space–space and space–time noncom-
mutativities and prove the existence of infinite number of conserved densities. We
also give the explicit representations of them in terms of Lax operators. Our results
include noncommutative versions of KP, KdV, Boussinesq, coupled KdV, Sawada-
Kotera, modified KdV equation and so on. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1865321g

I. INTRODUCTION

NoncommutativesNCd extension of field theories has been studied intensively for the last
several years.1 NC gauge theories are equivalent to ordinary gauge theories in the presence of
background magnetic fields and succeeded in revealing various aspects of them.2 NC solitons
especially play important roles in the study of D-brane dynamics, such as the confirmation of
Sen’s conjecture on tachyon condensation.3 One of the distinguished features of NC theories is
resolution of singularities. This gives rise to various new physical objects such as Us1d instantons
and makes it possible to analyze singular configurations as usual.

NC extension of integrable equations such as the Korteweg–de VriessKdVd equation4 is also
one of the hot topics.5–37These equations imply no gauge field and NC extension of them perhaps
might have no physical picture or no good property on integrabilities. To make matters worse, the
NC extension ofs1+1d-dimensional equations introduces infinite number of time derivatives,
which makes it hard to discuss or define the integrability. However, some of them actually possess
integrable properties, such as the existence of infinite number of conserved quantities7–9,20and the
linearizability30,31 which are widely accepted as definition of complete integrability of equations.
Furthermore, a few of them can be derived from NCsanti-dself-dual Yang–MillssYM d equations
by suitable reductions.14,30,33This fact may give some physical meanings and good properties to
the lower-dimensional NC field equations and makes us expect that the Ward conjecture38 still
holds on NC spaces.27 So far, however, those equations have been examined one by one. Now it
is very natural to discuss their integrabilities in more general framework.

The author and Toda have studied systematic NC extension of integrable systems.27,30,36In the
previous paper,36 we have obtained wide class of NC Lax hierarchies which include various NC
versions of soliton equations in the framework of the Sato theory.39 On commutative spaces, the
Sato theory is known to be one of the most beautiful theories of solitons and reveals essential
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aspects of the integrability, such as, the construction of exact multisoliton solutions, the structure
of the solution space, the existence of infinite conserved quantities, and the hidden symmetry of
them. In the Sato theory, the soliton equations are described by Lax hierarchies in terms of
pseudodifferential operators.

In the present paper, we prove the existence of infinite conserved quantities for Lax hierar-
chies on NC spaces in the framework of the Sato theory. We show the conservation laws for them
and give the explicit representations with both space–space and space–time noncommutativities.
This suggests that the NC soliton equations are also completely integrable and infinite-dimensional
symmetries would be hidden. Our results include wide class of NC soliton equations, such as, NC
versions of Kadomtsev–Petviashvili sKPd,40 KdV, Boussinesq,41 coupled KdV,42

Sawada–Kotera,43 modified KdV smKdVd equations and so on.

II. COMMENTS ON NONCOMMUTATIVE FIELD THEORIES

NC spaces are defined by noncommutativity of the coordinates,

fxi,xjg = iui j , s2.1d

whereui j are real constants and called theNC parameters.
NC field theories are obtained from given commutative field theories by exchange of ordinary

products in the commutative field theories forstar-products. The star-product is defined for ordi-
nary fields on commutative spaces. On Euclidean spaces, it is explicitly given by

fsxd!gsxdªfsxdexpS i

2
]Q iu

i j]W jDgsxd = fsxdgsxd +
i

2
ui j]i fsxd] jgsxd + Osu2d, s2.2d

where]iª] /]xi. This explicit representation is known as theMoyal product.44

The star-product possesses associativity,f!sg!hd=sf!gd!h, and returns back to the ordinary
product in the commutative limit,ui j →0. The modification of the product makes the ordinary
spatial coordinates “noncommutative,” that is,fxi ,xjg!ªxi!xj −xj!xi = iui j .

We note that the fields themselves takec-numbers values and the differentiation and the
integration for them are well-defined as usual. NC field theories should be interpreted as deformed
theories from commutative ones. One of the nontrivial points in the NC extension is the order of
nonlinear terms. The difference between commutative equations and the NC equations arises as
commutators of fields which sometimes become serious obstructions.

Here we point out a special property of the NC commutators of fields. It is convenient to
introduce the following symbol:

Pª1
2]Q iu

i j]W j , s2.3d

and theStrachan product45

fsxd L gsxdªfsxdSo
s=0

`
s− 1ds

s2s+ 1d!
P2sDgsxd. s2.4d

A commutator of fields is straightforwardly calculated as follows:

ffsxd,gsxdg! = fsxdseiP − e−iPdgsxd = :2i f sxdssin Pdgsxd

= − ui j]i fsxd L ] jgsxd = − ui j]isfsxd L ] jgsxdd. s2.5d

In the second line, we use the fact that sinP is the composite ofP and “P−1 sin P” and the
Strachan product “L” corresponds to the latter. This derivation was first presented by Dimakis
and Müller-Hoissen in order to generate infinite number of conserved densities of the NC nonlin-
ear SchrödingersNLSd equation,7 the NC KdV equation,8 and the NC extended matrix-NLS
equation.9 Here more widely, we would like to stress thatcommutators of fields on NC spaces
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always appear as total derivatives in the NC directions.This will be crucial in the derivation of
conservation laws in Sec. V.

As a consequence, we can prove

E dDx fsxd!gsxd =E dDx fsxdgsxd, s2.6d

where the integration is taken in all NC directions.

III. NONCOMMUTATIVE LAX HIERARCHIES IN SATO’S FRAMEWORK

In this section, we derive various NC Lax equations in terms of pseudodifferential operators
which include negative powers of differential operators. We note that the present discussion in this
section can be applied to more general cases where the products are not necessarily the star-
products but noncommutative associative products with differentiations, which has already been
discussed in, e.g., Ref. 46. However, we believe that some explicit examples here are new equa-
tions and would be useful for further studies.

An Nth ordersmonicd pseudodifferential operatorA is represented as follows:

A = ]x
N + aN−1]x

N−1 + ¯ + a0 + a−1]x
−1 + a−2]x

−2 + ¯ . s3.1d

Here we introduce useful symbols,

Aùrª]x
N + aN−1]x

N−1 + ¯ + ar]x
r , s3.2d

AørªA − Aùr+1 = ar]x
r + ar−1]x

r−1 + ¯ , s3.3d

resr Aªar . s3.4d

The symbol res−1 A is especially called theresidueof A.
The action of a differential operator]x

n on a multiplicity operatorf is formally defined as the
following generalized Leibniz rule:

]x
n · fªo

iù0
Sn

i
Ds]x

i fd]n−i , s3.5d

where the binomial coefficient is given by

Sn

i
Dªnsn − 1d¯sn − i + 1d

isi − 1d¯1
. s3.6d

We note that the definition of the binomial coefficients3.6d is applicable to the case for negative
n, which just defines the action of negative power of differential operators. The examples are

]x
−1 · f = f]x

−1 − f8]x
−2 + f9]x

−3 − ¯ ,

]x
−2 · f = f]x

−2 − 2f8]x
−3 + 3f9]x

−4 − ¯ , s3.7d

]x
−3 · f = f]x

−3 − 3f8]x
−4 + 6f9]x

−5 − ¯ ,

wheref8ª] f /]x, f9ª]2f /]x2 and so on, and]x
−1 in the RHS acts as an integration operatorex dx.

The composition of pseudodifferential operators is also well-defined and the total set of
pseudodifferential operators forms an operator algebra. For more on pseudodifferential operators
and the Sato theory, see, e.g., Refs. 47–49.

Let us introduce a Lax operator as the following first-order pseudodifferential operator:
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L = ]x + u1 + u2]x
−1 + u3]x

−2 + u4]x
−3 + ¯ , s3.8d

where the coefficientsuksk=1,2,…d are functions of infinite variablessx1,x2,…d with x1;x,

uk = uksx1,x2,…d. s3.9d

The noncommutativity is arbitrarily introduced for the variablessx1,x2,…d as Eq.s2.1d here.
The Lax hierarchy is defined in Sato’s framework as

]mL = fBm,Lg!, m= 1,2,… , s3.10d

where the action of]m on the pseudodifferential operatorL should be interpreted to be coefficient-
wise, that is,]mLªf]m,Lg or ]m]x

k=0. The operatorBm is given by

s3.11d

wherer is 0 for u1=0 and 1 foru1Þ0 as commutative cases.50,51The Lax hierarchy gives rise to
a set of infinite differential equations with respect to infinite kinds of fields from the coefficients
in Eq. s3.10d for a fixedm. Hence it contains huge amount of differentialsevolutiond equations for
all m. The left-hand sidesLHSd of Eq. s3.10d becomes]muk which shows a flow in thexm

direction.
If we set the constraintLl =Bl on the Lax hierarchys3.10d, we get an infinite set of NC

sreducedd Lax hierarchies. We can easily show

]uk

]xNl = 0, s3.12d

for all N, k because

dLl

dxNl = fBNl,L
lg! = fsLldN,Llg! = 0, s3.13d

which implies Eq.s3.12d. The reduced NC hierarchy is called thel-reduction of the NC KP
hierarchy. This time, the constraintLl =Bl gives simple relationships which make it possible to
represent infinite kind of fieldsul−r+1,ul−r+2,ul−r+3,… in terms of sl −1d kind of fields
u2−r ,u3−r ,… ,ul−r scf. Appendixd.

From now on, let us see that those equations in the Lax hierarchy contain various soliton
equations with some constraints. We discuss it separately in the following two cases:u1=0sr
=0d case andu1Þ0sr =1d case. Some of them are already discussed in Ref. 36. For commutative
discussions, see also Ref. 52.

For u1= 0 (r=0) : In this case, the Lax hierarchys3.10d is just the NC KP hierarchy which
includes the NC KP equation.16,46 Let us see it explicitly.

sid NC KP hierarchy. The coefficients of each powers ofspseudod differential operators in the
Lax hierarchys3.10d yield a series of infinite NC “evolution equations,” that is, form=1,

]x
1−k ]1uk = uk8, k = 2,3,… ⇒ x1 ; x, s3.14d

for m=2,

]x
−1 ]2u2 = u29 + 2u38,

]x
−2 ]2u3 = u39 + 2u48 + 2u2!u28 + 2fu2,u3g!,

s3.15d
]x

−3 ]2u4 = u49 + 2u58 + 4u3!u28 − 2u2!u29 + 2fu2,u4g!,
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]x
−4 ]2u5 = ¯ ,

and form=3,

]x
−1 ]3u2 = u2- + 3u39 + 3u48 + 3u28!u2 + 3u2!u28,

]x
−2 ]3u3 = u3- + 3u49 + 3u58 + 6u2!u38 + 3u28!u3 + 3u3!u28 + 3fu2,u4g!,

]x
−3 ]3u4 = u4- + 3u59 + 3u68 + 3u28!u4 + 3u2!u48 + 6u4!u28 − 3u2!u39 − 3u3!u29 + 6u3!u38

+ 3fu2,u5g! + 3fu3,u4g!,

]x
−4 ]3u5 = ¯ . s3.16d

These just imply thes2+1d-dimensional NC KP equation16,46 with 2u2;u,x2;y,x3; t,

]u

]t
=

1

4

]3u

]x3 +
3

4

]su!ud
]x

+
3

4
Ex

dx8
]2usx8d

]y2 −
3

4
Fu,Ex

dx8
]usx8d

]y
G

!

. s3.17d

The important point is that infinite kinds of fieldsu3,u4,u5,… are represented in terms of
one kind of field 2u2;u as is seen in Eq.s3.15d. This guarantees the existence of the NC
KP hierarchy which implies the existence of reductions of the NC KP hierarchy. The order
of nonlinear terms are determined in this way.

sii d NC KdV hierarchy s2-reduction of the NC KP hierarchyd. Taking the constraintL2

=B2¬]x
2+u for the NC KP hierarchy, we get the NC KdV hierarchy. This time, the follow-

ing NC Lax hierarchy,

]u

]xm = fBm,L2g!, s3.18d

include neither positive nor negative power ofspseudod differential operators for the same
reason as the commutative casessee, e.g., Ref. 53d and gives rise to themth KdV equation
for eachm. For example, the NC KdV hierarchys3.18d becomes thes1+1d-dimensional
NC KdV equation8 for m=3 with x3; t,

u̇ = 1
4u- + 3

4su!ud8, s3.19d

and thes1+1d-dimensional fifth NC KdV equation23 for m=5 with x5; t,

u̇ = 1
16u9- + 5

16su!u- + u-!ud + 5
8su8!u8 + u!u!ud8, s3.20d

whereu̇ª]u/]t.
siii d NC Boussinesq hierarchys3-reduction of the NC KP hierarchyd. The 3-reductionL3=B3

yields the NC Boussinesq hierarchy which includes thes1+1d-dimensional NC Boussinesq
equation23 with t;x2,

ü = 1
3u99 + su!ud9 + sfu,]x

−1u̇g!d8, s3.21d

whereüª]2u/]t2 and]x
−1=ex dx.

sivd NC coupled KdV hierarchys4-reduction of the NC KP hierarchyd. The hierarchy includes
the s1+1d-dimensional NC coupled KdV equationt;x3,

u̇ = 1
4u- + 3

4su!ud8 + 3
4sv − f2d8 − 3

4fu,f8g!, s3.22d

and the other two equations with respect to three kinds of fieldsu, v, andf, which are
determined by Eqs.s3.15d and s3.16d. The x2-dependence of the fields is absorbed by the
fields v, f. In this way, we can generate infinite set of thel-reduced NC hierarchies. If we
take other set-up, we can get many other hierarchies.
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svd NC Sawada–Kotera hierarchys3-reduction of the NC BKP hierarchyd. The NC version of
BKP hierarchy54 is obtained from the NC KP hierarchy by the constraint that the constant
terms ofBm for m=1,3,5,… should vanish. The 3-reduction of the NC BKP hierarchy
includes thes1+1d-dimensional NC Sawada–Kotera equation witht;x5, u;3u2,

u̇ + 1
9u9- + 5

9u-!u + 5
9u9!u8 + 5

9u!u8!u = 0, s3.23d

which is new.

For u1?0(r=1) : On commutative spaces, this situation generates modified KPsmKPd hier-
archy and its reductions. On NC spaces, however, the existence of them is not always guaranteed.
For the NC KP hierarchy, infinite kinds of fields are described by one kind ofx2-flow equations
s3.15d. However, this time the flow equation becomes

]x
0 ]2u1 = u19 + 2u28 + 2u1!u18 + 2fu1,u2g!,

]x
−1 ]2u2 = u29 + 2u38 + 2u1!u28 + 2fu1,u3g!, s3.24d

]x
−2 ]2u3 = ¯ .

Hence due to the commutatorfu1,ukg, it is very hard to represent the fielduk in terms of
u1,u2,… ,uk−1. The same is true of other flows. That is why the existence of NC modified KP
hierarchy is nontrivial.

Some reduced hierarchies are obtained from constraint conditions.

sid NC mKdV hierarchys2-reduction of the “NC mKP hierarchy”d. This time, the 2-reduction
constraintL2=B2 makes it possible to represent infinite kinds of fieldsu2,u3,… in terms of
one kind of field 2u1;v. The NC mKdV hierarchy includes thes1+1d-dimensional NC
mKdV equation form=3 with t3; t,

v̇ = 1
4v- − 3

8v!v8!v + 3
8fv,v9g!. s3.25d

sii d NC Burgers hierarchy.30 This is obtained by an irregular reduction. Setting the constraint
Lø−1=0 or L¬]x+v, the Lax hierarchys3.10d yields the NC Burgers hierarchy which
includes neither positive nor negative power of differential operator. Form=2, the hierar-
chy becomes thes1+1d-dimensional NC Burgers equation witht;x2,

v̇ = fB2,Lg! = f]x
2 + 2v]x,]x + vg! = v9 + 2v!v8. s3.26d

The NC Burgers equation is linearizable and easily solved via NC Cole–Hopf
transformation.30,31 In the linearization, the order of the nonlinear term plays crucial roles.
This order is automatically realized from Sato’s framework.

The present discussion is applicable to the matrix Sato theory where the fieldsuksk
=1,2,…d areN3N matrices. ForN=2, the Lax hierarchy includes the Ablowitz–Kaup–Newell–
SegursAKNSd system,55 the Davey–Stewarson equation, the NLS equation and so on.sFor com-
mutative discussion, see, e.g., Ref. 48.d

NC version23 of the Bogoyavlenskii–Calogero–SchiffsBCSd equation56 is also derived from
this framework because the Sato theory works well on the commutative BCS equation.

IV. COMMUTING FLOWS FOR NC LAX HIERARCHIES

First let us show all flows are commuting,
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]m]nuk = ]n]muk s4.1d

for any m, n, k. The derivation in this section is straightforward as the commutative case57,53 and
already discussed in a more general situation where the products are noncommutative associative
products with differentiations.sSee, e.g., Refs. 46, 58, and 59.d

From NC Lax equations3.10d, we get

]m]nL = f]mBn,Lg! + fBn,]mLg! = f]mBn,Lg! + fBn,fBm,Lg!g!. s4.2d

Hence

f]m,]ngL = fFmn,Lg!, s4.3d

where

Fmnª]mBn − ]nBm − fBm,Bng!. s4.4d

Now we show the “zero-curvature equation”Fmn=0. We note that

]mBn = ]msLndùr = s]mLndùr = fBm,Lng!ùr = − fBm
c ,Lng!ùr = − fBm

c ,Bng!ùr , s4.5d

where the operatorBm
c is the compliment ofBm and defined by

Bm
c
ªLm − Bm, s4.6d

and the suffixr is equal to 0 foru1=0 and 1 foru1Þ0. Therefore we get

Fmn= − fBm
c ,Bng!ùr + fBn

c,Bmg!ùr − fBm,Bng! = − fBm
c ,Ln − Bn

cg!ùr + fLn − Bn,Bmg!ùr − fBm,Bng!ùr

= fBm
c ,Bn

cg!ùr = 0, s4.7d

which implies

]m]nL = ]n]mL. s4.8d

Hence Eq.s4.1d is proved.
We note that the present discussion works well for arbitrary noncommutativity. Here we call

the Eq.s4.7d the NC Zakharov–Shabat equationbecause reduces to the usual Zakharov–Shabat
equation in the commutative limit,

]mBn − ]nBm − fBm,Bng! = 0. s4.9d

Of course, we can get the conjugate of the NC Zakharov–Shabat equation in terms ofBn
c,

]mBn
c − ]nBm

c + fBm
c ,Bn

cg! = 0. s4.10d

V. CONSERVATION LAWS FOR NC LAX HIERARCHIES

Here let us prove the conservation laws for NC Lax equations, which are the main results in
the present paper.

First we would like to comment on conservation laws of NC field equations.30 The discussion
is basically the same as the commutative case because both the differentiation and the integration
are the same as the commutative ones in the Moyal representation.

Let us suppose the conservation law,

]sst,xid
]t

= ]iJ
ist,xid, s5.1d

wheresst ,xid and Jist ,xid are called theconserved densityand theassociated flux, respectively.
The conserved quantity is given by spatial integral of the conserved density,
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Qstd =E
space

dDx sst,xid, s5.2d

where the integralespacedxD is taken for spatial coordinates. The proof is straightforward,

dQ

dt
=

]

]t
E

space
dDx sst,xid =E

space
dDx ]iJist,xid =Espatial

infinity

dSi Jist,xid = 0, s5.3d

unless the surface term of the integrandJist ,xid vanishes. The convergence of the integral is also
expected because the star-product naively reduces to the ordinary product at spatial infinity due to
]i ,Osr−1d whererªuxu.

For commutative field equations, the existence of infinite number of conserved quantities is
expected to lead to infinite-dimensional hidden symmetry from Noether’s theorem. For NC field
equations, this would also be true and the existence of infinite number of conserved quantities
would be special and meaningful, and suggest an infinite-dimensional hidden symmetry deformed
from the commutative one.

In order to discuss conservation laws for the NC Lax hierarchies, let us first calculate the
differential of the residue ofLn following Wilson’s approach:57

]m res−1 Ln = res−1s]mLnd = res−1fBm,Lng!. s5.4d

Here we note that

res−1ff]x
p,g]x

qg! = S p

p + q + 1
Dsf!gsp+q+1d − s− 1dp+q+1g!f sp+q+1dd

= S p

p + q + 1
DHSo

k=0

p+q

s− 1dkf skd!gsp+q−kdD8
+ s− 1dp+qfg, f sp+q+1dg!J , s5.5d

where f sNd
ª]Nf /]xN. Hence we can see that on NC spaces, there is an additional term as a

commutator in Eq.s5.5d which vanishes in the commutative limit. However as we saw in Sec. II,
commutators of fields can be represented as total derivatives, which is very important here.

Let us describe the explicit representations of the conservation laws. From the explicit forms
of the Lax pair,

Ln = ]x
n + o

l=1

`

an−l]x
n−l ,

s5.6d

Bm = ]x
m + o

k=1

m

bm−k]x
m−k,

we can evaluate Eq.s5.4d as

]m res−1 Ln = res−1F]x
m + o

k=1

m

bm−k]x
m−k,]x

n + o
l=1

`

an−l]x
n−lG

!

= o
l=n+1

m+n S m

l − n − 1
Dan−l

sm+n−l+1d + o
k=1

m

o
l=n+1

n+1+m−k S m− k

l − n − 1
D

3 HS o
N=0

m+n−k−l

s− 1dNbm−k
sNd !an−l

sm+n−k−l−NdD8
+ s− 1dm+n−k−lfan−l,bm−k

sm+n−k−l+1dg!J
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=H o
l=n+1

m+n S m

l − n − 1
Dan−l

sm+n−ld + o
k=1

m

o
l=n+1

n+1+m−k S m− k

l − n − 1
D

3 o
N=0

m+n−k−l

s− 1dNbm−k
sNd !an−l

sm+n−k−l−NdJ8
− o

k=1

m

o
l=n+1

n+1+m−k S m− k

l − n − 1
D

3 s− 1dm+n−k−lui j]isan−l L ] jbm−k
sm+n−k−l+1dd .

This is the generalized conservation laws for the NC Lax hierarchies. The right-hand sidesRHSd
contains derivatives in all NC directions. When we interpret this as conservation laws, we must
specify what coordinates correspond to time and space and introduce the noncommutativities in
the space–time directions only.

If we identify the coordinatexm with time t, we get the conserved density as follows:

s = res−1 Ln + uimo
k=0

m−1

o
l=0

k

s− 1dk−lSk

l
Dres−sl+1d Ln L ]i]x

k−l resk Lm, s5.7d

for n=1,2,…, where the sufficesi must run in the space–time directions only. We can easily see
that deformation terms appear in the second term of Eq.s5.7d in the case of space-time noncom-
mutativity. On the other hand, in the case of space–space noncommutativity, the conserved density
is given by the residue ofLn as the commutative case.

Let us show more explicit representations as follows.

sid In the case that the space–time coordinates aresx,y,td;sx1,x2,x3d. The conserved density
is given by

s = res−1 Ln + u i3o
k=0

2

o
l=0

k

s− 1dk−lSk

l
Dres−sl+1d Ln L ]i]x

k−l resk L3, s5.8d

more explicitly, foru1=0 andft ,xg= iu, which includes the NC KP equation with space–
time noncommutativity, the NC KdV equation and so on,

s = res−1 Ln − 3ussres−1 Lnd L u38 + sres−2 Lnd L u28d, s5.9d

and foru1Þ0 andft ,xg= iu, which includes the NC modified KdV equation and so on,

s = res−1 Ln + 3ussres−1 Lnd L su2 + u1
2d9 − sres−2 Lnd L su2 − u18 − u1

2d8 − sres−3 Lnd L u18d.

s5.10d

sii d In the case that the space–time coordinates aresx,td;sx1,x2d with ft ,xg= iu. The conserved
density is given by

s = res−1 Ln − uo
k=0

1

o
l=0

k

s− 1dk−lSk

l
Dres−sl+1d LnL]i]x

k−l resk L2, s5.11d

more explicitly, foru1=0, which includes the NC Boussinesq equation and so on,

s = res−1 Ln + 2usres−1 Lnd L u28, s5.12d

and foru1Þ0:

s = res−1 Ln + 2ussres−1 Lnd L u19 − sres−2 Lnd L u18d. s5.13d

We note that for space–space noncommutativity, conserved quantitiessnot densitiesd are all
the same as commutative ones because of Eq.s2.6d. This is consistent with the present results, of
course. Furthermore, forl-reduced hierarchies, the conserved densitiess5.7d become trivial for
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n=Nl sN=1,2,…d. The NC Burgers hierarchy is obtained by a “1-reduction” and contains no
negative power of differential operators. Hence we cannot generate any conserved density for the
NC Burgers equation in the present approach. This is considered to suggest that the NC Burgers
equation is not a conservative system but a dispersive system as a commutative case.

We have one comment on conserved densities for the one-soliton configuration. One soliton
solutions can always reduce to the commutative ones becausefst−xd!gst−xd= fst−xdgst−xd.8,30

Hence the conserved densities are not deformed in the NC extension.
The present discussion is applicable to the NC matrix Sato theory, including the NC AKNS

system, the NC Davey–Stewarson equation, the NC NLS equation, and the NC BCS equation.

VI. CONCLUSION AND DISCUSSION

In the present paper, we showed that the existence of an infinite number of conserved densities
for a wide class of NC Lax hierarchies and obtained the explicit representations of them for both
space–space and space–time noncommutativities. This suggests that NC soliton equations are
completely integrable and infinite-dimensional symmetries would be hidden, which would be
considered as some deformed affine Lie algebras.

In order to reveal what the hidden symmetry is, we must first study NC extension of Hirota’s
bilinearization.60 This could be realized as a simple generalization of the Cole–Hope transforma-
tion whose extension to NC spaces are already successful in Refs. 30 and 31. Hirota’s bilinear-
ization leads to the theory of tau-functions which is essential in the discussion of the Lie algebraic
structure of symmetry of the solution space.47,54,61,62After submission of the present paper,
progress has been reported in, e.g., Refs. 63–65.

Our results guarantee that NC extension of soliton theories would be actually fruitful and
worth studying. There are many further directions, such as, the study of relation toq-deformations
of integrable systems, NC extension of ther-matrix formalism,48,66 the inverse scattering method
and the Bäcklund transformation, and so on. NC extension of the Ward conjecture38 ssee also Ref.
67d would be also very interesting.27 Some NC equations are actually derived from NCsanti-dself-
dual YM equations by reduction14,30,33and embedded15,17,68in N=2 string theories.69 This guar-
antees that NC soliton equations would have physical meanings and might be helpful to under-
stand new aspects of the corresponding string theory.
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APPENDIX: MISCELLANEOUS FORMULAS

We present explicit calculations ofLn for n=1, 2, 3, 4, 5 up to some order of the pseudodif-
ferential operator]x. We can read reduction conditions, e.g.,Ll =Bl, and the explicit representations
of resr Ln andBm.

For u1=0(r=0) :

L = ]x + u2]x
−1 + u3]x

−2 + u4]x
−3 + u5]x

−4 + u6]x
−5 + ¯ ,

L2 = ]x
2 + 2u2 + s2u3 + u28d]x

−1 + s2u4 + u38 + u2!u2d]x
−2 + s2u5 + u48 + u2!u3 + u3!u2 − u2!u28d]x

−3

+ s2u6 + u58 + u2!u4 + u4!u2 + u3!u3 − u2!u38 − 2u3!u28 + u2!u29d]x
−4 + ¯ ,
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L3 = ]x
3 + 3u2]x + 3su3 + u28d + s3u4 + 3u38 + u29 + 3u2!u2d]x

−1 + s3u5 + 3u48 + u39 + 3u2!u3 + 3u3!u2

+ u28!u2 − u2!u28d]x
−2 + s3u6 + 3u58 + u49 + 3u2!u4 + 3u4!u2 + 3u3!u3 + u2!u2!u2 + u28!u3

− u2!u38 + u38!u2 − 4u3!u28 − u28!u28 + u2!u29d]x
−3 + ¯ ,

L4 = ]x
4 + 4u2]x

2 + s4u3 + 6u28d]x + s4u4 + 6u38 + 4u29 + 6u2!u2d + s4u5 + 6u48 + 4u39 + u2- + 6u2!u3

+ 6u3!u2 + 4u28!u2 + 2u2!u28d]x
−1 + s4u6 + 6u58 + 4u49 + u3- + 6u2!u4 + 6u4!u2 + 6u3!u3

+ 4u2!u2!u2 + 4u28!u3 + 2u2!u38 + 4u38!u2 − 4u3!u28 − u28!u28 + u29!u2 + u2!u29d]x
−2 + ¯ ,

L5 = ]x
5 + 5u2]x

3 + 5su3 + 2u28d]x
2 + 5su4 + 2u38 + 2u29 + 2u2!u2d]x + 5su5 + 2u48 + 2u39 + u2- + 2u2!u3

+ 2u3!u2 + 2u28!u2 + 2u2!u28d + s5u6 + 10u58 + 10u49 + 5u3- + u299 + 10u2!u4 + 10u4!u2

+ 10u3!u3 + 10u2!u2!u2 + 10u28!u3 + 10u2!u38 + 10u38!u2 + 5u28!u28 + 5u29!u2 + 5u2!u29d]x
−1

+ ¯ .

For u1Þ0sr =1d:

L = ]x + u1 + u2]x
−1 + u3]x

−2 + u4]x
−3 + u5]x

−4 + u6]x
−5 + ¯ ,

L2 = ]x
2 + 2u1]x + s2u2 + u18 + u1

2d + s2u3 + u28 + u1!u2 + u2!u1d]x
−1 + s2u4 + u38 + u1!u3 + u3!u1

+ u2!u2 − u2!u18d]x
−2 + s2u5 + u48 + u1!u4 + u4!u1 + u2!u3 + u3!u2 − 2u3!u18 − u2!u28

+ u2!u19d]x
−3 + ¯ ,

L3 = ]x
3 + 3u1]x

2 + 3su2 + u18 + u1!u1d]x + s3u3 + 3u28 + 3u19 + 3u1!u2 + 3u2!u1 + u18!u1 + 2u1!u18

+ u1!u1!u1d + s3u4 + 3u38 + u29 + 3u1!u3 + 3u3!u1 + 3u2!u2 + u18!u2 + 2u1!u28 + u28!u1

− 2u2!u18 + u1!u1!u2 + u1!u2!u1 + u2!u1!u1d]x
−1 + ¯ ,

L4 = ]x
4 + 4u1]x

3 + s4u2 + 6u18 + 6u1!u1d]x
2 + s4u3 + 6u28 + 4u19 + 6u1!u2 + 6u2!u1 + 4u18!u1 + 8u1!u18

+ 4u1!u1!u1d]x + s4u4 + 6u38 + 4u29 + u1- + 6u1!u3 + 6u3!u1 + 6u2!u2 + 4u18!u2 + 6u1!u28

+ 4u28!u1 − 2u2!u18 + 2u19!u1 + 2u1!u19 + 3u18!u18 + 4u1!u1!u2 + 4u1!u2!u1 + 4u2!u1!u1

+ u18!u1!u1 + 2u1!u18!u1 + 3u1!u1!u18 + u1!u1!u1!u1d + ¯ ,

L5 = ]x
5 + 5u1]x

4 + 5su2 + 2u18 + 2u1!u1d]x
3 + 5su3 + 2u28 + 2u19 + 2u1!u2 + 2u2!u1 + 2u18!u1 + 4u1!u18

+ 2u1!u1!u1d]x
2 + s5u4 + 10u38 + 10u29 + 5u1- + 10u1!u3 + 10u3!u1 + 10u2!u2 + 10u18!u2

+ 20u1!u28 + 10u28!u1 + 4u2!u18 + 6u19!u1 + 15u18!u18 + 11u1!u19 + 10u1!u1!u2 + 10u1!u2!u1

+ 10u2!u1!u1 + 5u18!u1!u1 + 10u1!u18!u1 + 15u1!u1!u18 + 5u1!u1!u1!u1d]x + ¯ .
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The Kepler problem is a dynamical system that is well defined not only on the
Euclidean plane but also on the sphere and on the hyperbolic plane. First, the theory
of central potentials on spaces of constant curvature is studied. All the mathemati-
cal expressions are presented using the curvaturek as a parameter, in such a way
that they reduce to the appropriate property for the system on the sphereS2, or on
the hyperbolic planeH2, when particularized fork.0, or k,0, respectively; in
addition, the Euclidean case arises as the particular casek=0. In the second part we
study the main properties of the Kepler problem on spaces with curvature, we
solve the equations and we obtain the explicit expressions of the orbits by
using two different methods, first by direct integration and second by obtaining
the k-dependent version of the Binet’s equation. The final part of the paper, that
has a more geometric character, is devoted to the study of the theory of conics
on spaces of constant curvature. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1893214g

I. INTRODUCTION

The hydrogen atom in a spherical geometryS3 was first studied by Schrödinger1 in 1940 and
analyzed by Infeld2 and Stevenson3 at the next year; some five years later Infeld and Schild4

obtained the spectrum of this system in an “open universe of constant negative curvature”shy-
perbolic spaceH3d. Later on, Higgs5 and Leemon6 analyzed the characteristics of the two funda-
mental central potentials, Kepler problem and harmonic oscillator, on theN-dimensional sphere
and Kalninset al., in a study of the dynamicalOs4d symmetry of the hydrogen atom,7 considered
the separation of variables of the Schrödinger equation with a Coulomb potential on the sphereS3

using a classification of coordinate systems separating the Laplace equation in the Riemannian
spaces of constant curvature previously obtained by Olevskii.8 Since then, a certain number of
authors have studied this question from both the classicalsKepler problemd and the quantum
shydrogen atomd points of view.9–24 The Kepler problem and the harmonic oscillator are the two
most important superseparable systems and, because of this, their spherical and hyperbolic ver-
sions have been occasionally obtained, in some of the quoted references, as particular cases in the
study of superintegrable systems on non-Euclidean configuration spaces.

The Euclidean superintegrable systems in the plane were studied by Friset al.25 and in the
three-dimensional space by Evans;26 later on different authors have considered this question27–39

adElectronic mail: jfc@unizar.es
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from different points of view. In Ref. 16 we studied the existence of the spherical and hyperbolic
versions of these superintegrable systems taking the space curvature as a parameter; next the
properties of the isotropic and nonisotropic harmonic oscillator and of those superintegrable sys-
tems related with the harmonic oscillator were analyzed.19,20,23,24Now, our objective is the study
of the Kepler problem on the sphereS2 and the hyperbolic planeH2, both coming naturally from
reduction from the true Kepler problem in a three-dimensional curved spaceS3 or H3.

In differential geometric terms, the Euclidean planeE2 is in fact a very particular limiting case
of the constant curvature spaces; accordingly, in dynamical terms, certain classical and well-
known potentialssKepler problem, harmonic oscillator, and systems related with themd can also be
considered as very particular limiting cases of more general curved systems. If the curvaturek is
introduced as a parameter then the question is the analysis of certain potentials in the space with
constant curvaturek swe may term these ask-dependent potentialsd with appropriate flat limit. As
many differentk-dependent functions may have the same limit whenk→0 we must require that
certain fundamental properties of the Euclidean system continue to hold for the curved system. By
fundamental properties we mean those related with separabilityssuperseparabilityd and integrabil-
ity ssuperintegrabilityd. The important point is that the spherical and hyperbolic Kepler potential,
to be studied in this paper, can be characterized as a very specifick deformation of the well-known
Euclidean system, and conversely, the Euclidean Kepler potential arises as the particulark=0 case
of the k-dependent curved system.

The main purpose of this paper is to study and solve the Kepler problem in the space of
constant curvaturek. As we will see, one of the advantages of thisk-dependent formalism is that
the study runs parallel to that of the Euclidean case. So the structure of this paper is very similar
to that of the corresponding chaptersor sectionsd devoted to central potentials and Kepler problem
in some classical books of theoretical mechanics.40,41 In fact this is the idea of using the defor-
mation as an approach, the curvaturek will modify many things but will preserve the fundamental
structure; this is so because the deep properties ensuring the possibility of exact solution for the
Euclidean Kepler problem are preserved when a constant curvature is ascribed to the space. Of
course, there are significant differences; one of them will be the geometric interpretation of the
solutions that, although rather simple in the Euclidean plane, will pose some interesting geometric
questions in spaces of constant curvature.

In more detail, the plan of this paper is as follows: In Sec. II we analyze the free geodesic
motion on the spacesS2, E2, andH2, as well as the existence ofk-dependent Noether symmetries.
In Sec. III we study some general questions concerning the central potentials on spaces of constant
curvature. Section IV, that can be considered as the central part of the paper, is devoted to the
study of thek-dependent Kepler problem on the spacessS2,E2,H2d. We have divided this section
into three sections. In the first part we consider the equivalent one-dimensional problem and we
draw a rough classification of the orbits without requiring explicit solutions; in the second part we
solve explicitly the problem and we obtain the expressions of the orbits; we arrive at the results by
using two different methods. First by direct integration and second by obtaining thek-dependent
version of the Binet’s equation. The third section is devoted to the analysis and classification of the
k-dependent orbits; first on the sphereS2 sk.0d, and then in the hyperbolic planeH2 sk,0d. This
third section poses the difficult problem of interpreting thek-dependent equations as conics in
curved spaces; of course all the obtained results reduce to well-known Euclidean trajectories when
we consider the particular valuek=0. Section V, that has a geometric character, is devoted to the
study ofsnon-Euclideand conics on the sphereS2 and on the hyperbolic planeH2, which leads to
the identification of the orbits of the Kepler problem with conics for any value of the curvature.
Finally, in Sec. VI we discuss the results and make some final comments.

II. GEODESIC MOTION, NOETHER SYMMETRIES AND CONSTANTS OF MOTION ON
„S2,E2 ,H2

…

In the following we will make use of the same notation and techniques introduced for the
oscillator in the above-mentioned previous articles. That is, from now on all the mathematical
expressions will depend on the curvaturek as a parameter, in such a way that when assuming
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k.0, k=0, or k,0, we will obtain the corresponding property particularized on the sphere, on
the Euclidean plane, or on the hyperbolic plane. In order to present these expressions in a form
which holds simultaneously for any value ofk, we will use the following “tagged” trigonometric
functions:

Cksxd = 5cosÎkx if k . 0,

1 if k = 0,

coshÎ− kx if k , 0,
6 Sksxd =5

1
Îk

sinÎkx if k . 0,

x if k = 0,

1
Î− k

sinhÎ− kx if k , 0,6 s1d

and thek-dependent tangent functionTksxd defined in the natural way,Tksxd=Sksxd /Cksxd. The
fundamental properties of these curvature-dependent trigonometric functions are

Ck
2sxd + kSk

2sxd = 1,

and

Cks2xd = Ck
2sxd − kSk

2sxd,
d

dx
Sksxd = Cksxd,

Sks2xd = 2SksxdCksxd,
d

dx
Cksxd = − kSksxd. s2d

It is well known that the appropriate coordinates for the study of central potentials are polar
sr ,fd coordinatesssee the Appendixd; according to the intrinsic viewpoint, the coordinater in any
space of constant curvaturek is the actual distance measured along the geodesics emanating from
an arbitrarily chosen origin pointO, while f has the same meaning as inE2, the angle between
this geodesic and a reference geodesic throughO.42 The range ofr depends onk; specificallyr
P f0,p /2Îkg for k.0 andr P f0,`g for kø0. The range off is the intervalf0,2pg. So we start
with the following k-dependent expression:

ds2 = dr2 + Sk
2srddf2,

that represents the differential line element on the spacessS2,E2,H2d with constant curvaturek.
This metric reduces to

ds1
2 = dr2 + ssin2 rddf2, ds0

2 = dr2 + r2 df2, ds−1
2 = dr2 + ssinh2 rddf2,

in the three particular cases of the unit spherek=1, Euclidean planek=0, and unit Lobachewski
planek=−1.

The threek-dependent vector fieldsY1, Y2, YJ, with coordinate expressions given by

Y1skd = scosfd
]

]r
− SCksrd

Sksrd
sinfD ]

]f
,

Y2skd = ssinfd
]

]r
+ SCksrd

Sksrd
cosfD ]

]f
,
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YJ =
]

]f
,

are generators of three different one-parameter groups of diffeomorphisms preserving the metric
ds2 sisometries of the Riemannian manifoldd.24 In fact, the commutators of these vector fields are
given by

fY1skd,Y2skdg = − kYJ, fY1skd,YJg = − Y2skd, fY2skd,YJg = Y1skd,

so that they close the Lie algebra of the group of isometries of the sphericalsEuclidean, hyper-
bolicd space. Notice that only whenk=0 sEuclidean planed Y1 andY2 will commute. Moreover,
the Lagrangian for the geodesicsfreed motion is given by the kinetic term arising from the
Riemannian metric; that is

L0sr,f,vr,vf;kd = Tskd = s 1
2dsvr

2 + Sk
2srdvf

2d,

and is invariant under the actions ofY1skd, Y2skd, andYJskd.
A general standard Lagrangiansk-dependent kinetic term minus a potentiald has the following

form:

Lsr,f,vr,vf;kd = s 1
2dsvr

2 + Sk
2srdvf

2d − Usr,f;kd,

in such a way that fork=0 we recover a standard Euclidean system

lim
k→0

L = s 1
2dsvr

2 + r2vf
2d − Vsr,fd, Vsr,fd = Usr,f;0d.

In some particular cases this Lagrangian system possesses the vector fieldsY1, Y2, or YJ, as exact
Noether symmetries. If we denote byYs

t , s=1,2,J, the natural lift to the tangent bundlesphase
spaced of the vector fieldYs and byuL the Cartan semibasic one-form43

uL =
]L

]vr
dr +

]L

]vf

df = vr dr + Sk
2srdvf df,

then the cases with exact Noether symmetries are the following:

s1d If the potentialU is of the formU=Usz2d, with z2=Sksrdsinf, then

P1skd = isY1
t skdduL = scosfdvr − sCksrdSksrdsinfdvf

is a constant of motion.
s2d If the potentialU is of the formU=Usz1d, z1=Sksrdcosf, then

P2skd = isY2
t skdduL = ssinfdvr + sCksrdSksrdcosfdvf

is a constant of motion.
s3d If the potentialU depends only on the coordinater scentral potentiald, then

Jskd = isYJ
t duL = Sk

2srdvf

is a constant of motion.

We remark that the dependence on the curvaturek is only explicit in the radial dependence of
these functions; the angular dependence, contained in cosf or sinf, is k independent. As an
example, the vector fieldYJ is k independent but the integral of motionJskd is k dependent. These
quantitiesP1, P2, J, are thek-dependent versions of the two components of the linear momentum
and the angular momentum.
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III. CENTRAL POTENTIALS ON „S2,E2 ,H2
…

Making use of the threek-dependent functions,P1, P2, andJ, the kinetic energyTskd can be
rewritten as follows:

Tskd = s 1
2dsP1

2skd + P2
2skd + kJ2skdd,

so that the total energy becomes

Eskd = s 1
2dsP1

2skd + P2
2skd + kJ2skdd + Usr,f;kd,

showing that, on spaces ofsconstantd nonzero curvature, the angular momentum has a contribution
to the total energy of the system, proportional to the curvaturek.

A k-dependent potentialU whose expression in polar coordinatessr ,fd has the structure

U = Fsrd +
Gsfd
Sk

2srd
,

is Hamilton–Jacobi separable.24 It is, therefore, integrable and has the following two quadratic
integrals of motion:

I1skd = P1
2skd + P2

2skd + 2Fsrd +
2Gsfd
Tk

2srd
,

I2skd = J2skd + 2Gsfd.

Then, in this separable case, the total energy splits as a sum of two independent constants of
motion

Eskd = s 1
2dI1skd + s 1

2dkI2skd.

Of course, ifG=0 thenU=Fsrd is a central potential and the functionI2skd just reduces toI2

=J2skd.
The Lagrangian of ak-dependent central potential is given by

Lskd = s 1
2dsvr

2 + Sk
2srdvf

2d − Usr ;kd,

so that the dynamics is represented by the vector field

XL = vr
]

]r
+ vf

]

]f
+ f r

]

]vr
+ ff

]

]vf

with the functionsf r and ff given by

f r = SksrdCksrdvf
2 − Ur8,

ff = − 2SCksrd
Sksrd

Dvrvf.

The associated two equations are

d

dt
vr = SksrdCksrdvf

2 − Ur8, Ur8 =
dU

dr
,
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d

dt
Jskd = 0, Jskd = Sk

2srdvf,

where the time derivative d/dt can be interpreted, in geometric terms, as the Lie derivative along
XL. Thef equation just gives the conservation law of thek-dependent angular momentumsor the
law of areasd; concerning the radial equation it can be rewritten as follows:

v̇r = r̈ = −
d

dt
FS1

2
D J2

Sk
2srd

+ Usr ;kdG ,

so that, after multiplying byvr = ṙ, it leads to

d

dt
FS1

2
Dvr

2 + S1

2
D J2

Sk
2srd

+ Usr ;kdG = 0,

that represents the conservation law of the energy

S1

2
Dvr

2 + S1

2
D J2

Sk
2srd

+ Usr ;kd = E,
d

dt
E = 0.

Solving for ṙ, we obtain

dr

dt
=Î2SE − Usr ;kd − S1

2
D J2

Sk
2srdD ,

that can be solved for dt and integrated

t =E dr

Î2fE − Usr ;kd − s 1
2dsJ2/Sk

2srddg
,

so that in the particulark=0 case we recover the integral of the Euclidean case appearing in the
books of theoretical mechanics

t =E dr

Î2fE − Vsrd − s 1
2dsJ2/r2dg

.

Coming back to the generalkÞ0 case, if we consider a change of variable fromr to a new
variableuk=Cksrd /Sksrd, by usings2d we get

dr = −
duk

uk
2 + k

,

and by considering the potentialU=Usr ;kd as a function of the new radial variable,U
=Usuk ;kd, the above integral fort becomes

t =E duk

suk
2 + kdÎ2fEP − Usuk;kd − s 1

2dJ2uk
2g

,

whereEP denotes a constant of motion which plays an important role,

EP = E − s 1
2dkJ2.

sNotice the true energy for curvaturek is E and notEP; howeverEP can be seen as a kind ofk
deformation of the Euclidean energy becauseEP=E for k=0.d This integral gives the value oft as
a function ofuk and consequently also ofr; it can be inverted, at least formally, and we can obtain
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uk sor rd as a function oft and the two constantsEP andJ. The expression off as a function of
t is just given by

f = JE suk
2 + kddt + f0.

We close this section by calling attention to the factorsuk
2+kd in the above integral fort that

clearly resembles the factor appearing in the elliptic integrals of the third kind.

IV. THE KEPLER PROBLEM ON „S2,E2 ,H2
…

The following sphericalshyperbolicd Lagrangian with curvaturek,

LKskds 1
2d = svr

2 + Sk
2srdvf

2d − UKsr ;kd, UK = −
k

Tksrd
,

represents thek-dependent version of the Euclidean Kepler problem; the potentialUK reduces to

U1srd = −
k

tanr
, U0srd = Vsrd = −

k

r
, U−1srd = −

k

tanhr
,

in the three particular cases of the unit spheresk=1d, Euclidean planesk=0d, and unit Lo-
bachewski planesk=−1d; the Euclidean functionVsrd appears in this formalism as making sepa-
ration between two different behaviorsssee Fig. 1d. The global sign has been chosen so thatk
.0 corresponds to an attractive potential.

This potential is actually worthy of the name Kepler in curvaturek due to two reasons. First,
this potential is the spherically symmetric potential satisfying Gauss law in athree-dimensional
space of constant curvaturek, where the area of a sphere of radiusr is 4pSk

2srd, where the flux of
the corresponding radial force field across a sphere of radiusr, which clearly equals 4pSk

2srd
3sdUK /drd should be a constant independent ofr; this condition leads directly to the potentialUK.
fAs in the Euclidean case, the potential −sk/Tksrdd does not satisfy the Gauss law in two dimen-
sions.g The second reason is based on superintegrability; what singularizesUK among other central
potentials with the correct −k/ r Euclidean limit is the property of being a superintegrable system
for all the values of the curvaturek.16 In fact, UK is endowed with the following two additional
integrals of motion:

I3skd = P2skdJskd − k cosf,

FIG. 1. Plot of the Kepler potential as a function ofr, for the unit spherek=1 supper curved, Euclidean planek=0 sdashed
lined, and unit Lobachewski planek=−1 slower curved. The three functions are singular atr =0 but the Euclidean function
U0=V appears in this formalism as making a separation between two different behaviors. In factU0=V is the only potential
that vanishes at long distances.

052702-7 Central potentials on spaces of constant curvature J. Math. Phys. 46, 052702 ~2005!

                                                                                                                                    



I4skd = P1skdJskd + k sinf,

that represent the two-dimensional curvature versions of the Runge–Lenz constant of motion,
whose existence is a consequence of the additional separability ofUKsr ;kd in two different
systems ofk-dependent parabolic coordinatessthis superseparability is not studied in this paperd.
Of course only three of the four integrals are functionally independent; so we have several pos-
sibilities for the choice of a fundamental set ofk-dependent integrals of motion as, for example,
hEskd ,Jskd ,I3skdj, hEskd ,Jskd ,I4skdj, or hEskd ,I3skd ,I4skdj.

A. The classification of orbits and the equivalent one-dimensional problem

Let us start for an arbitrary central potentialUsrd. We have previously obtained

S1

2
Dvr

2 + Usr ;kd + S1

2
D J2

Sk
2srd

= E,

so, if we introduce the effective one-dimensional equivalentk-dependent potentialW defined as

Wksrd = Usr ;kd +
J2

2Sk
2srd

,

where the termJ2/ s2Sk
2srdd plays clearly the role of the centrifugal barrier potential, then the above

property reduces to conservation of the energy for the fictitiousk-dependent one-dimensional
problem arising from the potentialWk,

s 1
2dvr

2 + Wksrd = E,

so that we can use, also in thisk-dependent case, the method of the classification of the orbits by
analyzing the behavior ofWk.

Next we will study the main characteristics of the orbits for the Kepler potential in curvature
k whereWk is given by

Wksrd = −
k

Tksrd
+

J2

2Sk
2srd

,

so it reduces to

W1 = −
k

tanr
+

J2

2 sin2 r
,

W0 = −
k

r
+

J2

2r2 ,

W−1 = −
k

tanhr
+

J2

2 sinh2 r
,

in the three particular one-dimensional problems associated to the unit spheresk=1d, Euclidean
planesk=0d, and unit Lobachewski planesk=−1d.

s1d Analysis of the potentialsW1 andWc sc=Îk.0d.
The functionW1 satisfies the following limits in the boundaries:

lim
r→0

W1srd = + `, lim
r→p

W1srd = + `,

it cuts ther axis at the pointsr1,2 solutions of the equation sins2r1,2d=J2/k, and it has a minimum
at the pointrm

s given by rm
s =tg−1sJ2/kd. It represents, therefore, a potential well with barriers of
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infinite height at both extremes,r =0 andr =p, and one single minimum placed inside the left
half-interval srm

s ,p /2d with a valueWm
s =s1/2dsJ2−k2/J2d sFig. 2d. Thus, all the trajectories are

bounded and all of them describe nonlinear one-dimensional oscillations between the two turning
points.

In the general case of the functionWc, the points r1,2 are given by the two roots of
sins2cr1,2d=csJ2/kd and the minimum is placed in the pointrm

s =s1/cdtg−1scJ2/kd with a value
given by Wm

s =s1/2dsc2J2−k2/J2d. All these expressions arec dependent and have the correct
limits for W0,

lim
c→0

r1 =
J2

2k
, lim

c→0
r2 = + `, lim

c→0
rm

s =
J2

k
, lim

c→0
Wm

s = −
k2

2J2

ssee Fig. 3d.
s2d Analysis of the potentialsW−1 andW−c sc=Î−k.0d.
The functionW−1 satisfies the two following limits:

lim
r→0

W−1srd = + `, lim
r→`

W−1srd = − k,

it cuts ther axis in the pointr1 unique solution of the equation sinhs2r1d=J2/k and, in the case that
k and J satisfy the conditionJ2/k,1, then it has a unique minimum in the pointrm

h given by
rm

h =tanh−1sJ2/kd with the valueWm
h =−s1/2dsJ2+k2/J2d. There exist therefore two possible situa-

tions, as follows:

s1d If J2/k,1 the motion is boundedsperiodicd for small energiesWm
h øE,−k, and unbounded

for higher energiesEù−k.

FIG. 2. Plot ofWc as a function ofr, for k=1 with k andJ given by sk=1,J=1d.

FIG. 3. Plot ofWc as a function ofr, for sk=1,J=1d and three different values of the curvaturec=Îk, c=1.2 supper
curved, c=0.8 smiddle curved, andc=0.4 slower curved.
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s2d If J2/kù1 the functionW−1 will take the form of a potential barrier with infinite height at the
the originr =0; only energies satisfyingEù−k will be allowed and all the trajectories will be
unboundedsscatteringd open curves.

These two possible behaviors are represented in Fig. 4.
The general hyperbolic functionW−c satisfies

lim
r→0

W−csrd = + `, lim
r→`

W−csrd = − ck,

it cuts ther axis in the pointr1 solution of sinhs2cr1d=csJ2/kd and, if the conditioncsJ2/kd,1 is
satisfied, then it has a unique minimum in the pointrm

h =s1/cdtanh−1 csJ2/kd with a valueWm
h given

by Wm
h =−s1/2dsc2J2+k2/J2d. It is clear that the smaller the value ofc is, the easier of satisfying is

the condition for the existence of a well, so that the behaviors1d is becoming more and more
dominant. Finally, the Euclidean limit is given by

lim
c→0

r1 =
J2

2k
, lim

c→0
rm

h =
J2

k
, lim

c→0
Wm

h = −
k2

2J2 .

The convergence ofW−c into W0 is represented in Fig. 5.

B. Determination of the orbits of the k-dependent Kepler problem

1. Method I: Direct integration

We have previously obtained, making use of the conservation of the total energyE and the
angular momentumJ, two expressions forṙ and ḟ, which can be written as

FIG. 4. Plot ofW−c as a function ofr, for c=1 sk=−1d. The upper curve corresponds tosk=1,J=2d and lower curve
corresponds tosk=4,J=1d.

FIG. 5. Plot ofW−c as a function ofr, for sk=4,J=1d and three different values of the curvaturec=Î−k, c=1.5 slower
curved, c=1 smiddle curved, andc=0.5 supper curved.
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dt =
dr

Î2fE − U − s1/2dsJ2/Sk
2srddg

, dt = SSk
2srd
J

Ddf.

Eliminating t between both equations we have

df =
J dr

Sk
2srdÎ2fE − U − s1/2dsJ2/Sk

2srddg
,

that after the change of variabler →uk with uk=1/Tksrd, dr =−Sk
2srdduk, becomes

df = −
duk

ÎRsukd
,

whereRsukd denotes the following function:

Rsukd =
2E

J2 −
2U

J2 − suk
2 + rk

2d =
2EP

J2 −
2U

J2 − uk
2.

All this is valid for a general potential. Next we particularize for thek-Kepler problem,
UKsr ;kd=−k/Tksrd, and then we obtain

f = f0 −
duk

ÎRsukd
, Rsukd = a + buk + guk

2,

with coefficientsa, b, andg given by

a =
2EP

J2 , b =
2k

J2 , g = − 1.

In this particular case the integration is elementary and we arrive at

f = f0 − cos−1S uk − sk/J2d
sk/J2dÎ1 + zk

D, zk = S2J2

k2 DEP,

leading to

uksfd = S k

J2Df1 + ek cossf − f0dg, ek = Î1 + zk. s3d

This is the polar equation of the orbit in either spacesSk
2 ,E2,Hk

2d, for any value of the
curvaturek. It reduces to

1

tanr
= S k

J2Df1 + e1 cossf − f0dg,

1

r
= S k

J2Df1 + e0 cossf − f0dg,

1

tanhr
= S k

J2Df1 + e−1 cossf − f0dg,

in the three particular cases of the unit spheresk=1d, Euclidean planesk=0d, and unit Lo-
bachewski planesk=−1d, respectively.
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We recall that, as only three of the several integrals of motion can be functionally indepen-
dent, there must exist some relations between them. Concerning the coupleI3skd, I4skd, that, as
stated above, represent thek-dependent version of the Euclidean Runge–Lenz constants of mo-
tion, they are related withEP andJ by

I3
2 + I4

2 = 2EPJ2 + k2

so that we arrive to

ek =
1

k
ÎI3

2 + I4
2

that represents the natural extension to the curvature-dependent case of a well-known property of
the Euclidean case.

Let us close this direct integration approach with three observations. First, it turns out that in
any of the three manifoldssSk

2 ,E2,Hk
2d, and for any value ofk, this curve is aconic with a focus

at the origin, where conic must be taken in a metric sense, relative to the intrinsic metric in each
space. This follows from the geometrical study to be presented in Sec. V. Second, notice that the
quantityek is related to the partial energyEP exactly as the Euclidean eccentricity of the conic is
related to the total energy, yet only in the Euclidean casesk=0d this functionEP coincides withE.
In the general caseskÞ0d the characteristics of the orbit will be more easily associated to the
values of theek and/or EP than to the total energyE. Third, both the method and the results
obtained show a close similarity with the Euclidean ones. In fact, the important point is that the
classical and well known change of variabler →u=1/r admits as a generalization thek-dependent
changer →uk=1/Tksrd which affords a significant simplification for all values ofk; conversely,
this k-dependent change reduces to the Euclidean changer →u0=1/r for k=0.

2. Method II: Equation of Binet

The definition of the angular momentumJ determines ak-dependent relation between the
differentials of the timet and the anglef.

J dt = Sk
2srddf.

The corresponding relation between the derivatives with respect tot andf is

d

dt
= S J

Sk
2srdD d

df
,

so that the second derivative with respect tot is given by

d2

dt2
= S J

Sk
2srdD d

df
FS J

Sk
2srdD d

df
G .

Introducing this notation in the radial equation, it becomes

S J

Sk
2srdD d

df
FS J

Sk
2srdD dr

df
G − SCksrd

Sk
3srd DJ2 = − Ur8.

This equation can be simplified in two steps, first, the left-hand side can be rewritten by making
use of

d

df
SCksrd

Sksrd
D = − S 1

Sk
2srdD dr

df
;

second, we introduce the changer →uk in such a way that the potentialU=Usr ;kd be considered
as a function ofuk; then we have
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Ur8 = − S 1

Sk
2srdDUu8, Uu8 =

dU

duk

.

In this way we arrive at the differential equation of the orbit

d2uk

df2 + uk = − S 1

J2DUu8,

that permits us to obtainf as a function ofuk for the given potentialUsr ;kd when considered as
a function ofuk,

f =E Hc − S 2

J2DU − uk
2J−s1/2d

duk.

Let us now particularize for the Kepler problem. In this case the potentialUK is given by
UK=−kuk, and the equation reduces to a linear equation with constant coefficients,

d2uk

df2 + uk =
k

J2 ,

which has the general solution

uk = A cossf − f0d +
k

J2 = S k

J2Df1 + ecossf − f0dg, s4d

whereA for e=AsJ2/kdg andf0 are the two constants of integration.
Remark that the differential equation of the orbit, usually known as the Binet’s equation, is

preserved by thek deformation. That is,u0 deforms touk but the the equation by itself remains
invariant.

C. Analysis of the orbits

From the geometrical viewpoint, one of the integration constants ins3d or s4d can be made to
disappear by simply choosingf to be measured from the orbit position closest to the focus. Thus
the orbit is

Tksrd =
D

1 + ecosf
s5d

which depends on two geometric parameters, the constantsD ande. Comparing withs3d or s4d,
these two geometric parameters are related to the angular momentumJ and the total energyE by
means of the expressions

D =
J2

k
, ek =Î1 +

2J2

k2 SE − k
J2

2
D , s6d

remaining valid for any value of the curvaturek and reducing to the known expressions for the
Euclidean case,k=0. Thus, as advanced before, the relation between the geometric constantsD, e,
and the physical constantsJ, E−s1/2dkJ2=EP, is the same for all values of curvature; here we see
again the quantityEP plays a role; it can be considered as a kind of translational part of the energy,
not taking into account the contribution to the energy of the angular momentum.

The nature of the orbit depends on the values of these constants. We discuss separately the
cases with positive and negativek.

sid Spherical space,k.0. The polar equation of the orbits is
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1

Tksrd
=

Îk

tanÎkr
= S k

J2Df1 + ek cossf − f0dg.

The orbit is always a closed curve and for any value ofek this curve is a spherical ellipse with a
focus at the origin. For a fixedJ the minimal value of the total energy corresponds to orbits with
ek=0, which are circles with radiusr =J2/k and total energyEcir=s1/2ds−k2/J2+kJ2d swhich may
be either negative or positived. The possible energies for givenJ fill the interval fEcir ,`g and
correspond to the parameterek in the intervalf0,`g and toEP in the intervalf−s1/2dsk2/J2d ,`g.
In the following description the focus will be conventionally placed at the North pole, and upper
and lower half-spheres refer to the North and South hemispheres. This orbit has always a vertex
closest to the focus given by the unique solution of the equation 1/Tksrd=sk/J2ds1+ekd, and
depending on the value ofek we may however distinguish three possible behaviors for the second
vertex.

sad Whenek,1 the orbit is completely contained in the upper half-sphere centered at the focus,
and the values ofr always remain less than the lengthp / s2Îkd of a quadrant on the sphere
of curvaturek. In some respects this reminds the case of Euclidean ellipses.

sbd If ek=1, the ellipse has the second vertex atr =p / s2Îkd sreducing tor =p /2 whenk=1d,
and is a curve touching tangentially the equator associated to the focus at the origin. When
k→0, the limit of the distancer =p / s2Îkd between the origin and the equator on a sphere
Sk

2 is r =` and thus this curve is analogous to a Euclidean parabola, touching the spatial
infinity at a point.

scd When ek.1, the orbit has the second vertex atr .p / s2Îkd; it is a big spherical ellipse
crossing the equator of the focus and entering into the lower half-sphere. This is somehow
analogous to an Euclidean hyperbola.

sii d Hyperbolic spacek,0. Let us consider the general case of arbitrary negative curvature.
The orbit equation is now

1

Tksrd
=

Î− k

tanhÎ− kr
= S k

J2Df1 + ek cossf − f0dg, k , 0,

and the relationss6d also apply but now withk,0. For a fixed value ofJ, the diagram of the
effective equivalent potential reveals two essentially different situations for the behavior ofWsrd,
corresponding to values ofJ smaller or larger than the particular valueJ` of J,

J`
2 =

k
Î− k

.

WhenJ,J` sJ2/k,1/Î−kd, the equivalent potential is qualitatively as its Euclidean coun-
terpart; it has a minimum atr =rcir determined byTksrcird=J2/k, with a negativevalue for
Wsrcird=Ecir=−k2/2J2+kJ2/2 and whenr increases fromrcir to r →`, the effective potential tends
from below to anegativeconstant value −kÎ−k. WhenJ=J` then the minimum occurs atr =`.
When J.J` there is no longer a minimum in the equivalent potential, which is a monotone
function of r, tending whenr →` to the value −kÎ−k from above. This discussion alone suffices
to establish two landmark values for the energiessat a fixed value ofJd as follows:

sad E=Ecir=s1/2ds−k2/J2+kJ2d, with J2/k,1/Î−k, corresponding to the circular orbits with
EPcir

=−s1/2dsk2/J2d;
sbd E=E`=−kÎ−k, with EP`=−kÎ−k−s1/2dkJ`

2 =−s1/2dkÎ−k for orbits where the particle
barely reaches spatial infinity with velocity 0.

To go further in any analysis about the exact nature of the orbits is easier starting from some
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geometric knowledge of the properties of conics, to be sketched in the next section. However, at
this point we can provide a first classification into closed and open orbits, and we may discuss its
main characteristics.

When the energy is in the intervalfEcir ,E`d, the motion is bounded and periodic, while forE
in the intervalsE` ,`g, the motion is not periodic and the orbit goes to the infinity; notice thatE=0
is containedwithin this second interval, and thus isnot the separating value between bounded and
unbounded orbits. The angular momentum provides a second constant of motion, which may have
values in the two subintervalsJ2/kP fTksrcird ,1 /Î−kg or J2/kP f1/Î−k ,`g; it is pertinent to
discuss these two possibilities successively.

Let us first discuss the subcaseJ,J`, where the equivalent potential has a minimum.

s1d If the parameterek=0 then the solution is clearly a circular orbitscircle in the hyperbolic
planed of radiusrcir such thatTksrcird=J2/k which happens precisely at the minimum for the
equivalent potential. The total energy for a circular orbit is given byEcir=−s1/2dsk2/J2

−kJ2d that corresponds toEPcir
=−s1/2dsk2/J2d. This is, the angular momentum of any cir-

cular orbit should remain lower than the limit valueJ` which is approached for the circular
orbit with r →`. In the Euclidean case the value ofJ is not bounded for circular orbitssJ`

tends to infinity fork→0d.
s2d If ek is greater than 0 but in the interval 0,ek,1−Î−ksJ2/kd then the orbit will be a closed

curve not reaching the spatial infinity. As we will check in Sec. V, this curve is indeed a
hyperbolicellipse, with a focus at the potential origin. The interval of allowed values for the
total energyE turns out to be

−
k2

2J2 +
1

2
kJ2 , E , − kÎ− k,

or equivalently, if we consider the “translational” part of the energy,

−
k2

2J2 , EP ,
1

2
kJ2 − kÎ− k.

s3d If ek is in the remaining interval, 1−Î−ksJ2/kd,ek, corresponding to the values −Î−kk
,E,` of the energyE, then the motion is nonperiodic and the orbits are unbounded open
curves. The border value fore between these closed periodic and open not periodic types of
orbits is the valueek=1−Î−ksJ2/kd, which should be thought of as corresponding to the last
ellipse, orhoroellipse. It is not immediately clear whether the orbits withe above this value
areparabolasor hyperbolasin the hyperbolic plane. However, it is natural to expect some
special status for the orbits withE=0, ek=Î1−ksJ4/k2d.1, which we might expect to be
parabolasin the hyperbolic plane. This would imply that at least all orbits in a finite interval
of values of theek parameter, whose lower bound is 1−Î−ksJ2/kd and which containsek

=Î1−ksJ4/k2d are parabolas; notice that this interval should reduce to the single valueek

=1 in the Euclidean limitk→0, so the existence of many different parabolic orbits does not
spoil the known fact that there is only a parabolic orbit inE2. All these conjectural properties
are indeed true, as we will confirm in Sec. V.

We can summarize these three points as follows: the different types of trajectories inHk
2, k

,0 as a function of the parameterek are the following:

hyperbolic circle, 0 =ek,

hyperbolic ellipses, 0, ek , 1 −Î− ksJ2/kd,

hyperbolic horoellipse, 1 −Î− ksJ2/kd = ek,
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hyperbolic open conics, 1 −Î− ksJ2/kd , ek , `.

Alternatively, the landmark values can also be given for the classification as a function of the total
energyE,

hyperbolic circle, E = − s1/2dsk2/J2 − kJ2d,

hyperbolic ellipses, −s1/2dsk2/J2 − kJ2d , E , − kÎ− k,

hyperbolic horoellipse, E = − kÎ− k,

hyperbolic open conics, −kÎ− k , E , `.

Thus the behavior of the hyperbolic dynamics shows some important differences with respect to
the Euclidean case. We postpone until the next section the establishment of the particular value of
ek, or E, separating the open conics into parabolic and hyperbolic regimes, and we simply state
thatek=Î1−ksL4/k2d, corresponding toE=0, gives an orbit which is a parabola inH2. The value
of ek, or the corresponding energyE, separating from parabolic to hyperbolic trajectories is a
k-dependent positive value to be determined; this will be done in the next section. When the
parameterek is greater than the upper value for parabolic orbits, then we will have hyperbolas in
H2 as orbits.

The remaining cases happen whenJ.J`. For these values ofJ the equivalent potential is a
decreasing function ofr with no minimum at all, and hence the possible motions should have
energies aboveE`; these would be always nonperiodic motions and open orbits. We will classify
them into parabolas and hyperbolas in the next section.

V. CONICS ON SPACES OF CONSTANT CURVATURE

In this section we give a geometric description of conics in the threek.0, k=0, k,0,
constant curvature spacesSk

2, E2, Hk
2, emphasizing those aspects relevant in relation with Kepler

motion in these spaces. To stay within a reasonable extension limits we restrict to a mainly
statement of facts presentation, which should either confirm the conjectures advanced in the
dynamical part, or serve as a geometric foundation for them. The important thing is the perfect
matching between the dynamical approach in Sec. IV and the results here.

As customary in this context,lines will mean thegeodesicsof the constant curvature space.
The metric intrinsicgeometricdefinition of conics, that can be applied to any two-dimensional
s2Dd space of constant curvaturek involves focal elements, i.e., either oriented points or co-
oriented lines. In any such space, and by definition.

An ellipse/hyperbolawill be the set of points with a constant sum/difference 2a of distances
r1, r2, to two fixed pointsF1, F2, calledfoci and separated a distance 2f.

A parabolawill be the set of points with a constant sum/difference 2a of distancesr1, r̃2, to
a fixed pointF1, called focus, and to a fixed cooriented linef2, called focal line; the oriented
distance 2w betweenF1 and f2 plays here the role of focal separation.

An ultraellipse/ultrahyperbolawill be the set of points with a constant sum/difference 2a of
oriented distancesr̃1, r̃2, to two fixed intersecting linesf1, f2, separated by an angle 2F and called
focal lines.

In the generic case of constant curvaturekÞ0 these three pairs of curves, each pair sharing
the same focal elements, are thegenericconics; Euclidean plane isnot genericamong the family
of constant curvature spaces, thus some Euclidean properties of conics are very special and do not
provide a good starting viewpoint to discuss thekÞ0 properties.

Further to generic conics,particular distinguished conicsappear for instance when the focal
separation vanishessf =0,w=0,F=0d andlimiting conicswhen some focal elements go to infinity
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sif possible at alld; both particular and limiting conics can be obtained as suitable limits from the
generic ones.

We first list some particular conics. When the focal separation vanishesf =0, the ellipse is a
circle and the hyperbola is a pair of intersectinglines. No useful intuition about parabolas can be
drawn from the nongeneric Euclidean case; a parabola with vanishing focal separationw=0 is
only a particular instance of parabola, to be named hereequiparabola, but whenkÞ0 there are
other parabolas, with any positive or negativewÞ0, which are not equiparabolas. The main point
is that general parabolas arenot to be considered here as limiting conics, as usually done inE2. An
ultraellipse with focal angleF=0 is aultracircle san equidistant curve, the set of points equidistant
from a fixed lined, while an ultrahyperbola withF=0 is a pair oflines.

The threegeneric typesof conics, as well as theseparticular conics with zero focal separation
do exist in any space of constant curvaturek. Further to that, when the curvature isnegative, there
are new types oflimiting conics, where either the foci or the focal lines may go to infinity.

A. Conics in geodesic polar coordinates in a space of curvature k

Now let us describe conics in the three essentially different spacesSk
2, E2, Hk

2.
In the sphereSk

2, with k.0 the situation is rather simple. First, as there are neither points nor
lines at the infinity, there are no limiting cases in the sense they will appear inHk

2. Second, as there
is a one-to-one correspondencesthe usual polarityd between oriented points and co-oriented lines
sNorth Pole versus Equatord, with a constant distancep /2Îk separating them, it follows that any
focal elementseither point or lined implies the existence of a polar focal elementsline or pointd;
thus any conic of one of the three given type pairs may be considered as a conic of any other
prescribed type pair. And further, as the distance between two antipodal points is constantp /Îk,
by changing a focusF2 to its antipodal pointF2 swhich according to the definition is again a focus
of the conicd, an hyperbola with focusF1, F2, will be as well an ellipse with focusF1, F2. A
similar possibility exists for focal lines which may be changed to their antipodal lines, with
coorientation changed. Thus all spherical conics can be seen asspherical ellipses, including the
two particular zero focal separation cases, i.e., circlessspherical parallel circlesd and pairs of lines
sa pair of intersecting large circles in the sphered. For the purposes of getting a common view we
may still think in three generic types, keeping in mind that all three coincide and there is complete
freedom in understanding a given spherical conic as either an ellipse, or a parabola or a hyperbola
sjust as a geodesic circle can be seen at the same time as a geodesic circle, with center atO or as
an equidistant curve to the polar ofOd; more on this will be said later.

In the Euclidean planeE2 ultraellipses and ultrahyperbolasswith any focal angleFd are just
pairs of parallel lines, in directions parallel to the two bisectors of the focal angle; in the standard
algebraic classification of Euclidean conics these appear as degenerate conics. But when compared
to Sk

2 or Hk
2, another more important degeneracy happens inE2: two families of parabolas with the

same focus and any two parallel focal lines will coincidesbecause a pair of parallel lines are
equidistant inE2d. This means that theparabolic focal separationbetween the focus and the focal
line can be chosen arbitrarily for a fixed Euclidean parabola, which only determines its focus and
the direction of the focal line. As a consequence parabolas are no longer generic conics inE2.
While parabolas have always some intermediate status between ellipses and hyperbolas, in the
Euclidean case parabolas appear exclusively as limiting cases between ellipses and hyperbolas,
and not as the full fledged species of conics they are in the generickÞ0 case.

The hyperbolic caseHk
2 with negativeconstant curvature is richer. The limiting conics ob-

tained from an ellipse/hyperbola through a pointP when a focus stays fixed and the other goes to
infinity are calledhoroellipse/horohyperbola. The limiting conics obtained from an ultraellipse/
ultrahyperbola through a pointP when a focal line stays fixed and the other goes to infinity are
calledhoroultraellipse/horoultrahyperbola. These four types of conics are also limiting forms of
parabolas, with either focus fixed and focal line going to infinity, or focal line fixed and focus
going to infinity. InE2 all these limiting conics collapse precisely to either Euclidean parabolas or
pairs of lines.

There are more limiting conics inHk
2: the horocycle, obtained either from a circle throughP
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when its center goes to infinity, or from an ultracircle throughP when the baseline goes to infinity,
and theosculating parabola, the limit of a parabola when the focus goes to infinity along the fixed
focal line.

In order to make contact with the results in the dynamical part, let us draw our attention
precisely on the conics with a proper focus. From now on we completely disregard ultraellipses
and ultrahyperbolas, which have two focal lines, and osculating parabolas, which have not a
proper focus. We consider exclusively ellipses/hyperbolas and parabolas, as well as their limiting
cases—horoellipses and horohyperbolas—and particular cases—circles, lines and equiparabolas
corresponding to vanishing focal separations. All these conics have a proper focus, which we may
place at the origin point, as well as another focal element, which may be another focus or a focal
line. In either case the conics have as a symmetry axis the line joining the two foci or going
through the focus and orthogonal to the focal line. To match with the familiar Euclidean expres-
sions, we introduce polar coordinates inSk

2, E2, Hk
2, taking the origin at the fixed focus and the

symmetry axis of the conic as the half-linef=0. With this choice, the common equation of the
whole family of conics described above may be written in the form

Tksrd =
D

1 + ecosf
s7d

with D ande non-negative. This can be derived by trigonometric considerations from the defini-
tion of the conic in the space of constant curvaturek using the relations given in Ref. 44 and will
be discussed elsewhere. This relation justifies the claim made in Sec. V: the orbits of the Kepler
problem in eitherSk

2, E2, Hk
2, are conics with a focus at the origin of the potential. The dependence

on the polar anglef is exactly the same as in the Euclidean case and this may suggest to consider
e as the non-Euclidean analog of theeccentricity of the conic, though whenkÞ0 the link between
the values ofe and thetypeof the conic is not so direct as inE2. We should mention that there are
at least two other quantities keeping different properties of the Euclidean eccentricity, and no
single quantity keeps all properties; in this paper we will only be concerned withe, and for brevity
we shall refer to it as eccentricity.

For an ellipse/hyperbola with focal distance 2f and 2a as the sum/difference of distances to
the focus, and for a parabola with focal separation 2w and 2a as sum/difference of distances to
focus and focal line, the eccentricities turn out to be

eell/hyp =
Sks2fd
Sks2ad

, epar=
Cks2wd
Cks2ad

reducing in the Euclideank=0 case to the well knownf /a for ellipses/hyperbolas and 1 for
parabolas.

In the polar coordinate systemsr ,fd, whenk.0 or k=0, the range of values ofTksrd is the
whole real linescompleted with̀ d, but whenk,0, the values ofTksrd are confined to the interval
f0,1/Î−kg, or to f−1/Î−k ,1 /Î−kg if negative values forr are allowed along the opposite semi-
axis according to the usual practice.

Now, for the conics7d the minimum value forr happens whenf=0. This means thatD and
e are independent constants whenkù0 but must fulfill the inequality 0øD / s1+ed,1/Î−k when
k,0.

Notice that ins7d the periastron of the orbit is placed on the semiaxisf=0 atr =rper, and thus
rper is related toD ande by

Tksrperd =
D

1 + e

which for any value ofk has always a unique root forrper. Next, let us look for the intersection of
the conic with the line orthogonal to the conic symmetry axis through the focus, which corre-
sponds tof=p /2. The distance between this intersection point and the focus is traditionally called
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semilatus rectumof the conicsin the Euclidean cased and will be denoted byp. For k=0 all
Euclidean conicssexcept the limiting double straight line withp=`d intersect this semilatus line.
For anykÞ0, p would satisfy

Tkspd = D,

but there is a difference between the cases withkù0 or kø0. While for k.0, any D will
determine a uniquep, when k,0 this equation will define a real semilatus rectum only when
D,1/Î−k, the semilatus rectum will be formally infinite whenD=1/Î−k and will not exist at all
whenD.1/Î−k. This means that in the case of the hyperbolic planeHk

2 the family of conics we
are considering includes conics intersecting the semilatus line at a proper point, only at infinity or
not intersecting at all. We have arrived at the following situation: all conics with given fixed focus
and symmetry axis intersect this line inSk

2, exactly one does not intersect inE2, and an infinite
number of them do not intersect inHk

2.
Thus, whenkù0 the equation of the complete family of conics we are considering is

Tksrd =
Tkspd

1 + ecosf
s8d

but in the negative curvature casek,0, there will be some conics—precisely those withD
.1/Î−k—not described unders8d. To cater for these cases it will prove useful to introduce
another real distancep̃, complementary to the ideal semilatus rectum, related toD by

1

s− kdTksp̃d
= D

and in terms of this choice, whenk,0 the equation of the complete family of conics we are
considering is given by one of the two mutually exclusive possibilities,

Tksrd =
Tkspd

1 + ecosf
, Tksrd =

1

s− kdTksp̃ds1 + ecosfd
, s9d

where the ranges are 0øp,` and`. p̃ù0, respectively. The conic

Tksrd =
1

Î− ks1 + ecosfd
s10d

is the common limitp→` and p̃→` of s9d. Notice the two expressionss9d can be used as well
whenk.0 but then each of the two alternatives covers actually all cases, and are then redundant.
Only the first possibility ins9d has a sensible Euclidean limit because thek→0 limit of the p̃
family gives a straight line at the infinity of the Euclidean plane; thus the familyp̃ as a set of
conics different from thep family is specific to the hyperbolic plane.

Now the only remaining problem is to link the values of the two parametersD ande to the
type the conic belongs. When is such a conic an ellipse, a parabola or a hyperbola according to
their definitions in the space of curvaturek? When is it a particular conic, either a circle, a
equiparabola or a line? And finally, only for the hyperbolic planeHk

2, when is it a limiting
horoellipse or horohyperbola?

In the Euclidean plane the answer is well known and easy, the conic type dependsonly on e,
and not onp. This isnot sowhenkÞ0.

B. Conics on the sphere Sk
2

A given conic inSk
2 will have a unique and well defined parametere in s8d. But labelling it as

an ellipse, or parabola or hyperbola, requires to choose a particular set of two focal elements, and
a 6 sign to decide between the sum or difference in the definitions. Unlike onHk

2 where these
choices are unique, for the sphere they may be made in several ways. By means of suitable
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choices,any spherical conic with any0øeø` may be considered as an ellipse, as a parabola or
as a hyperbola. This is an unavoidable consequence of the definitions, which are clearly natural
ones for nonzero curvature.

If we want to classify conics inS2 into threedisjoint species, this would require adopting an
additional conventionssomehow bypassing the definitiond, which may be chosen in several rea-
sonable ways, but which nevertheless remains as a convention.

A possibility would be to class spherical ellipses with 0,e,1 as ellipses, those withe=1 as
parabolas, and those withe.1 as hyperbolas. This is the convention adopted by Higgs5 who
formulated it according to the property of not crossing, touching or crossing the equator, which
can be easily shown to be equivalent to the requiremente,1, e=1, ore.1, respectively. Another
different convention follows from the fact that any ellipse/hyperbola with focusF1,F2 sand focal
separation 2fd can also be considered as a hyperbola/ellipse with focusF1,F2 fand focal separation

2f̃ =2sp /2Îk− fdg. The sum of the two focal half-separationsf and f̃ is p /2Îk, this is, the length
of a quadrant on the sphere. Thus, we may consider as ellipses exclusively those spherical ellipses
with a value of the focal separation 2f less than a quadrant, that is, 2f ,p /2Îk, and as hyperbolas
exclusively those spherical ellipses with a value of 2f greater than a quadrant, that is, 2f
.p /2Îk. Within this convention, and if we want artificially to enforce nonredundancy, the name
parabolas will only be left for the spherical ellipses with precisely 2f =p /2Îk, which in our
previous nomenclature were called equiparabolasas 2f =p /2Îk between two focus means that one
focus will be incident with the polar of the other focus, which is the focal lined. In this view
ellipses are completely contained in the half-sphere with center at the ellipse center, while hyper-
bolas will go through the boundary of the half-sphere centered at the hyperbola center.

C. Conics on the hyperbolic plane Hk
2

The case of the hyperbolic planeHk
2 is different and there is no conventionality in it. In the

following paragraphs we are implicitly assumingk,0.
When is the conics9d an ellipse? In addition to the actual vertex at the point of closest

approach to the focus, placed on thef=0 axis, ellipses will have another vertex, placed on the
f=p semiaxis with apositive value for Tksrapod which anyhow should belong to the interval
fTksrperd ,1 /Î−kg. The lower bound in this interval corresponds to circular orbits while the upper
places the apoastron at the infinity, and the ellipse will go to ahoroellipse. It is easy to conclude
that the positivity condition requirese to be in the interval f0, 1g and then Tksrapod
P fTksrperid ,1 /Î−kg only happens within the first alternative ins9d, provided that the eccentricities
lie in the interval

0 , eell , 1 −Î− kTkspd.

Notice this intervaldepends on pand for anypÞ0 is strictly smaller than the Euclidean one,
which is recovered of course, whenk→0. The lower bound fore corresponds to circular orbits,
while the upper bound is the limiting value corresponding tohoroellipses,

ecir = 0, ehoroell= 1 −Î− kTkspd.

When will the conics9d be ahyperbola? In this case, in addition to the vertex at the periastron,
the conic will have another vertex pointson the other hyperbola branch, thus not actually on the
physical orbitd on thef=0 semiaxis, which will appear on the equation as anegativevalue for
Tksrapod on thef=p semiaxis. Hence, the values ofTksrd for f=p must belong to the interval
f−1/Î−k ,−Tksrperdg, with the lower value corresponding tohorohyperbolas, and the upper value
to lines. By using the same strategy, it is easy to conclude that the negativity condition requires
eP f1,`g, and thenTksrapod may lie in the required interval in either of the two alternativess9d,
with e parameters, respectively, in the intervals
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1 +Î− kTkspd , ehyp, 1 +
1

Î− kTksp̃d
, ehyp.

Notice both conditions lead to a common limit whenp, p̃→`, namely, 2,ehyperbolasfor the conics
s10d. Here particular and limiting conics correspond to

ehorohyp= 1 +Î− kTkspd, ehorohyp= 1 +
1

Î− kTksp̃d
, elines= `.

Once we have characterized the intervals of eccentricity for ellipses and hyperbolas, the
remaining gap correspond to parabolas. Thus, within the first family,

1 −Î− kTkspd , epar, 1 +Î− kTkspd,

and within the second,

1 −
1

Î− kTksp̃d
, epar.

The particular parabolas with zero focal separation, this is, the equiparabolas, corresponds to the
values,

eequipar= 1/Ckspd = Î1 + kTk
2spd, eequipar= Cksp̃d = 1/Î1 + kTk

2sp̃d,

and are different from the parabolas withe=1.
This way we get the following result. Conicss9d in the hyperbolic planeH2, with a fixed value

of p may be either ellipses, parabolas or hyperbolas, according to the value of their eccentricity as
follows:

circle, ecir = 0,

ellipses, 0, eell , 1 −Î− kTkspd,

horoellipse, ehoroell= 1 −Î− kTkspd,

parabolas, 1 −Î− kTkspd , epar, 1 +Î− kTkspd,

horohyperbolas, ehorohyp= 1 +Î− kTkspd,

hyperbolas, 1 +Î− kTkspd , ehyp , `,

and conicss9d with a fixed p̃ may be only parabolas or hyperbolas,

1 −
1

Î− kTksp̃d
, epar, 1 +

1
Î− kTksp̃d

, ehyp , `.

The most remarkable property is the existence, for a fixed value of the semilatus rectump, of a full
interval of values for eccentricity corresponding to parabolas, including always two special values,
e=1/Ckspd ande=1; in the Euclidean limitk→0 this interval collapses to the single valueepar

=1, and there is a single Euclidean parabola for a givenp.
Now let us consider the complete family of conics corresponding to trajectories with a given

periastron distance, sayrper; these would correspond to the trajectories of a particle launched
orthogonally to the radial direction from a point at distancerper from the potential origin and with
a given velocity. The corresponding pattern for the Kepler problem in the Euclidean case is well
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known, a circle, a family of ellipses of increasing eccentricity 0,e,1, a separating parabola, a
family of hyperbolas of increasing eccentricity 1,e,` and finally a limiting straight line cor-
responding to infinite velocity. How about the analog of this pattern in the nonzero curvature case?

First we require all conics will have a periastron atrper. Within the two families the relation
betweenp or p̃ with rper is given by

Tksrperd =
Tkspd
1 + e

, Tksrperd =
1

s− kdTksp̃ds1 + ed
,

and, using these expressions in the classification stated above, we get the landmark values ofp or
p̃ corresponding to the different types of conic,

Tksrperd , Tkspelld ,
2Tksrperd

1 +Î− kTksrperd
, Tksppard ,

2Tksrperd
1 −Î− kTksrperd

, Tksphypd,

which in the Euclidean limit, withk=0 andT0sxd=x, reduces to the well known

rper, pell , 2rper= ppar= 2rper, phyp, whenk = 0.

For the hyperbolicp̃ family, which has no Euclidean limit, we have

Tksp̃hypd ,
1 −Î− kTksrperd
s− 2kdTksrperd

, Tksp̃pard.

Figures 6sad and 6sbd represent a set of Kepler orbits in the hyperbolic planeH2.

VI. FINAL COMMENTS AND OUTLOOK

We have solved the Kepler problem on the three spaces of constant curvature. As we have
stated in the introduction, one of the fundamental characteristic of this approach is the use of the
curvaturek as a parameter. In this way, all thek-dependent properties that we have obtained
reduce to the appropriate property for the system on the sphereS2, or on the hyperbolic planeH2,
when particularized fork.0, or k,0, respectively; in addition, the Euclidean case arises as the
very particularsbut importantd casek=0. So, we can summarize this situation pointing out two
important facts.

s1d The Kepler problem is not a specific or special characteristic of the Euclidean space but it is
well defined in all the three spaces of constant curvature.

s2d There are not three different Kepler problems but only one that is defined, at the same time,
in three different manifolds.

Of course, since the three manifolds are geometrically different, many dynamical properties
show differences according to the characteristics of the manifolds; nevertheless, the important
point is that there is only one theory that is simultaneously valid for the three manifolds and for
any value of the curvature. We illustrate this situation recalling the following two important
results:

s1d the equation of Binet remains true in the three cases;
s2d the orbits are conics in the three cases.

It is well known that the classical Euclidean Kepler problem is one of the systems endowed
with more interesting properties. Therefore, it would be interesting to study all of them, in the
general non-EuclideankÞ0 case; as an example, we have made use, in Sec. IV, of two constants
of motion, I3skd andI4skd, that represent thek-dependent version of the Runge–Lenz vector. The
Runge–Lenz vector plays a very important role in the Euclidean case, so it is natural to suppose
that the same situation will be true for the case of the general curved system. In fact, we think that,
as the Euclidean system is just a very particular case of a much more general system, all the
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Euclidean characteristics that are obtained and discussed in the books of theoretical mechanics,
must admit ak-dependent deformed version appropriate for the general “curved” system. We think
that these questions are open problems that must be investigated. We also note that in all of this
paper we have only dealt with the two-dimensional case since we assumed that it arises from a
reduction of the three-dimensional Kepler problem onS3 and H3; this dimensional reduction is
worthy of a further study.

Finally, the analysis of the orbits has led us, in a natural way, to the theory of conics on spaces
of constant curvature. Notice that, although Secs. III and IV were mainly concerned with dynami-
cal questions, Sec. V was written emphasizing its geometrical character; in fact, it can be consid-
ered by itself and independently of the other preceding sections. It is clear that the theory of conics
on spaces of constant curvature is a geometrical matter of great importance deserving a deeper
study that we hope to present elsewhere. On the one hand, there exist some general points and

FIG. 6. sAd andsBd A set of Kepler orbits with a fixed periastron distance, depicted in the conformal Poincare disk model
of hyperbolic plane, for smallrper sAd and largerper sBd. The potential center is at the origin, which is a focus of the conics.
Thick lines represent particular and limiting conics, circle, horoellipse, horohyperbola, and straight line. A suitable selec-
tion swith the other focal elements chosen as to make the diagram cleard of ellipses, parabolas, and hyperbolas are
represented as thin lines in each of the three ranges determined by the previous conics. For ellipses and hyperbolas the
other focussnot markedd is on the horizontal line; for parabolas the focal line is perpendicular to this horizontal line. The
semilatus rectum of the conic lies on the vertical straight line through the origin; notice insAd only some hyperbolas do not
intersect this line, while insBd conics which do not intersect the semilatus line include all hyperbolas as well as many
parabolas; these are the two generic behaviors, as explained in the text.
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basic properties that, although perfectly known and clearly stated in the Euclidean plane, remain to
be studied in the case of spaces of constant curvature; on the other hand, we have already obtained
some particular points as, for example, the existence of several different parabolas in the hyper-
bolic plane, or the possibility of some different alternative ways of defining the eccentricity for a
conic in akÞ0 space, which are really noteworthy. These geometrical questions are also open
problems to be investigated.
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APPENDIX: POLAR GEODESIC COORDINATES

A two-dimensional manifoldM can be described by using different coordinate systems. If we
consider it as an imbedded submanifold ofR3, then the points ofM can be characterized by the
three external coordinates, assx,y,zd or sr ,f ,ud, plus an additional constraint relation. Neverthe-
less, in differential geometric terms, a more appropriate approach is to develop the study by using
two-dimensional systems of coordinates adapted toM.

On any general two-dimensional Riemannian space, not necessarily of constant curvature,
there are two distinguished types of local coordinate systems, “geodesic parallel” and “geodesic
polar” coordinates. They reduce to the familiar Cartesian and polar coordinates on the Euclidean
planessee Refs. 16 and 42d and both are based on an origin pointO and an oriented geodesicg1

throughO.
For any pointP in some suitable neighborhood ofO, there is a unique geodesicg joining P

with O. The sgeodesicd polar coordinatessr ,fd of P, relative to the originO and the positive
geodesic ray ofg1, are thespositived distancer betweenP andO measured alongg, and the angle
f betweeng and the positive rayg1, measured aroundO sFig. 7d. These coordinates are defined
in a neighborhood ofO not extending beyond the cut locus ofO; polar coordinates are singular at
O, andf is discontinuous on the positive ray ofg1.

In the case ofM being a space of constant curvaturek, the expression for the differential
element of distance ds2 is given by

FIG. 7. Polar geodesic coordinates in a two-dimensional Riemannian spacesM ,gd sAd and in the sphereS2 sBd.
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dsk
2 = dr2 + Sk

2srddf2,

so that we get ds2=dr2+r2 df2 for the particulark=0 Euclidean case.
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The first aim of this paper is to extend the Skinner–Rusk formalism on classical
mechanics for first-order field theories. The second is to generalize the definition
and properties of the evolutionK-operator on classical mechanics for first-order
field theories using in both cases Günther’s formalismsk-symplectic formalismd.
© 2005 American Institute of Physics.fDOI: 10.1063/1.1876872g

I. INTRODUCTION

The Skinner–Rusk formalism1 was developed in order to give a geometrical unified formal-
ism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and
Hamiltonian descriptions of these systemssincluding dynamical equations and solutions, con-
straints, Legendre map, evolution operators, equivalence, etc.d.

This formalism has been generalized to time-dependent mechanical systems,2 and also to the
multisymplectic description of first-order field theories.3,4

The first aim of this paper is to extend this unified framework to Günther’s description of
first-order classical field theories,5 and show how this description comprises the main features of
the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases.

Let us point out that Günther’s formalism should be also calledk-symplectic formalism
because the base of this formalism are the standard polysymplectic manifolds, introduced by
Günther in Ref. 5, which coincide with thek-symplectic manifolds introduced by Awane in Refs.
6–8. Günther’s paper gives a geometric Hamiltonian formalism for field theories. The crucial
device is the introduction of a vector-valued generalization of a symplectic form, called a
polysymplectic form. One of the advantages of this formalism is that only the tangent and cotan-
gent bundle of a manifold are required to develop it. In Ref. 9 Günther’s formalism was revised
and clarified. It was shown that the polysymplectic structures used by Günther to develop his
formalism could be replaced by thek-symplectic structures defined by Awane.6–8 So this formal-
ism could be calledk-symplectic formalism.

The k-symplectic formalism is the generalization to field theories of the standard symplectic
formalism in mechanics, which is the geometric framework for describing autonomous dynamical
systems. In this sense, thek-symplectic formalism is used to give a geometric description of
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bdElectronic mail: matnrr@ma4.upc.es
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certain kind of field theories: in a local description, those whose Lagrangian does not depend on
the coordinates in the basissin many of them, the space–time coordinatesd; that is, it is only valid
for LagrangianLsqi ,vA

i d and HamiltonianHsqi ,pi
Ad that depends on the field coordinatesqi and on

the partial derivatives of the fieldvA
i . A natural extension of this formalism is the so-called

k-cosymplectic formalism, which is the generalization to field theories of the cosymplectic for-
malism which describes geometrically nonautonomous mechanical systemssthis description can
be found in Refs. 10 and 11d. It is devoted to describing field theories involving the independent
parametersst1,… ,tkd on the LagrangianLstA,qi ,vA

i d and on the HamiltonianHstA,qi ,pi
Ad.

It is interesting to remark here that the polysymplectic formalism developed by Sardanashvily
et al.,12–14based on a vector valued form on some associated fiber bundle, is a different description
of classical field theories of first order than the polysymplectic formalism proposed by Günther.
sSee also Ref. 15 for more details on the polysymplectic formalism.d In addition, we must remark
that the soldering form on the linear frames bundles is a polysymplectic form, and its study and
applications to field theory constitute then-symplectic geometry developed by Norris in Refs.
16–20.

The so-calledtime-evolution K-operator in mechanicssalso known by some authors as the
relative Hamiltonian vector field21d is a tool which has mainly been developed in order to study
the Lagrangian and Hamiltonian formalisms for singular mechanical systems and their equiva-
lence. This operator was introduced in Refs. 22 and 23, and later it was defined geometrically in
two different but equivalent ways24,25 for autonomous dynamical systems. In Ref. 25, a further
different geometric construction is given, using a canonical map introduced by Tulczyjew.26 The
K-operator relates the sets of solutions of the Euler–Lagrange equations and the Hamilton equa-
tions; it also relates constraints on the Lagrangian and Hamiltonian sides, and allows us to obtain
a complete classification of constraints;22 as well as Lagrangian Noether infinitesimal symmetries
from a Hamiltonian generator of symmetries.21,27–29It is also used for studying Lagrangian sys-
tems whose Legendre map has generic singularities.21,30

The second aim of this paper is to generalize the definition and properties of this operator for
first-order field theories in order to describe the relationship between the Lagrangian and Hamil-
tonian k-symplectic formalisms. In particular we extend the results in Ref. 25, showing how to
obtain the solutions of Lagrangian and Hamiltonian field equations by means of this operator. The
same idea has been developed in Ref. 31 but using the multisymplectic description of classical
field theories.

The organization of the paper is as follows: Section II–IV are devoted to reviewing the main
features of Günther’s formalism ork-symplectic formalism5,9 of Lagrangian and Hamiltonian
field theories.

In particular, in Sec. II the field theoretic phase space is introduced as the Whitney sum

sTk
1d*Q=T*Q% …

k

% T*Q of k-copies of the cotangent bundleT*Q of a manifoldQ. This space is
the canonical example of a polysymplectic manifold. A particular case of polysymplectic mani-
folds are thek-symplectic manifoldsssee Refs. 3–5, 8, and 9d which coincide with the standard
polysymplectic manifolds.

The field theoretic state space is introduced as the Whitney sumTk
1Q=TQ% …

k

% TQ of
k-copies of the tangent bundleTQ of a manifold Q. This manifold has a canonicalk-tangent
structure defined byk tensor fields of types1, 1d satisfying certain algebraic properties. The
k-tangent manifolds were introduced in de Leónet al.,32,33 and they generalize the tangent mani-
folds ssee Refs. 34–38d.

Section III is devoted to giving a geometric interpretation of the second-order partial differ-
ential equations. Here we show that these equations can be characterized by using the canonical
k-tangent structure ofTk

1Q, which generalizes the case of classical mechanics.
The Hamiltonian and Lagrangian formalisms are developed in Sec. IV. Lagrangian formalism

is developed using the canonicalk-tangent structure ofTk
1Q, or the Legendre transformation as in

Günther.5
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In Sec. V we develop the unified formalism for field theories, which is based on the use of the
Whitney sumTk

1Q%QsTk
1d*Q of Tk

1Q and sTk
1d*Q. There are canonical presymplectic forms on it

sthe pull-back of the canonical symplectic form on eachT*Qd and a natural coupling function
which is defined by the contraction between vectors and covectors. Then, given a LagrangianL
PC`sTk

1Qd we can state a field equation onTk
1Q%QsTk

1d*Q. This equation has solution only on a
submanifoldML, which is the graph of the Legendre map. Then we prove that ifZ =sZ1,… ,Zkd is
an integrablek-vector field, solution to this equation and tangent toML, then the projection onto
the first factorTk

1Q of the integral sections ofZ are solutions of the Euler–Lagrange field equa-
tions. If L is regular the converse also holds. Furthermore, we establish the relationship betweenZ
and the Hamiltonian and the Lagrangiank-vector fields of thek-symplectic formalism,XH and
XL .

In Sec. VI we review the definition and the main properties of the evolution operatorK for
autonomous mechanics. Next we define the field operators which, as a consequence of the field
equations on thek-symplectic formalism, are given as ak-vector field along the Legendre trans-
formationFL, associated to the LagrangianL :Tk

1Q→R, satisfying certain properties. Finally we
finish with similar results for field theories to those obtained in Refs. 25 and 31.

In a forthcoming paper we shall extend the results of this paper to thek-cosymplectic
formalism.10,11

Manifolds are real, paracompact, connected andC`. Maps areC`. Sum over crossed repeated
indices is understood.

II. GEOMETRIC FRAMEWORK

A. The cotangent bundle of k1-covelocities of a manifold

Let Q be a differentiable manifold of dimensionn andt* :T*Q→Q its cotangent bundle. Let

us denote bysTk
1d*Q=T*Q% …

k

% T*Q the Whitney sum ofk copies ofT*Q, with projection map
tQ

* : sTk
1d*Q→Q, tQ

* saq
1,… ,aq

kd=q, for everysaq
1,… ,aq

kdP sTk
1d*Q.

sTk
1d*Q can be canonically identified with the vector bundleJ1sQ,Rkd0 of k1-covelocities of the

manifold Q, that is the vector bundle of 1-jets of mapss :Q→Rk with target at 0PRk and
projection maptQ

* :J1sQ,Rkd0→Q, tQ
* s jq,0

1 sd=q, say,

J1sQ,Rkd0 ; T*Q % …
k

% T*Q,

jq,0
1 s ; sds1sqd,…,dsksqdd,

wheresA=pA+s :Q→R is the Ath component ofs, andpA:Rk→R is the canonical projection
1øAøk. For this reason tosTk

1d*Q is also calledthe bundle of k1-covelocities of the manifold Q.
If sqid are local coordinates onU#Q, then the induced local coordinatessqi ,pid, 1ø i øn, on

T*U=st*d−1sUd, are given by

qisaqd = qisqd, pisaqd = aqSU ]

]qiU
q
D, aq P T*Q,

and the induced local coordinatessqi ,pi
Ad, 1ø i øn, 1øAøk, on sTk

1d*U=stQ
* d−1sUd are given by

qisaq
1,…,aq

kd = qisqd, pi
Asaq

1,…,aq
kd = aq

ASU ]

]qiU
q
D .

Let us denote byhr1,… ,rkj the canonical basis ofRk.
Definition 2.1 (Günther5): A closed nondegenerateRk-valued2-form,

v̄ = o
A=1

k

vA ^ rA
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on a manifold M of dimension N is called apolysymplectic form.The pairsM ,v̄d is a polysym-
plectic manifold.

The manifoldsTk
1d*Q is endowed with acanonical polysymplectic structure. This canonical

structurev̄=oA=1
k sv0dA ^ rA, on sTk

1d*Q is defined by

sv0dA = stA
* d*sv0d, 1 ø A ø k,

where tA
* : sTk

1d*Q→T*Q is the projection on theAth-copy T*Q of sTk
1d*Q, and v0=−du0 is the

canonical symplectic structure ofT*Q,u0 being the Liouville 1-form defined by

u0saqdsX̃aq
d = aqsst*d*saqdsX̃aq

dd, aq P T*Q, X̃aq
P Taq

sT*Qd.

One can also define the 2-formssv0dA by sv0dA=−dsu0dA wheresu0dA=stA
* d*u0.

Thus the Liouville 1-form and the canonical symplectic structure onT*Q are locally given by

u0 = pi dqi, v0 = − du0 = dqi ∧ dpi ,

and the canonical polysymplectic structuressv0d1,… ,sv0dkd on sTk
1d*Q is locally given by

sv0dA = − dsu0dA = − dspi
A dqid = dqi ∧ dpi

A. s1d

Definition 2.2 (Günther5): A polysymplectic formv̄ on a manifold M is called standard iff for
every point of M there exists a local coordinate system such thatvA is written locally as in (1).

So the canonical polysymplectic formv̄ on sTk
1d*Q is standard.

Remark 2.1: Thek-symplectic manifolds were introduced in Refs. 6–8 and they coincide with
the standard polysymplectic manifolds, as we now shall show.

Definition 2.3 (Awane6): A k-symplectic structure on a manifold M of dimension N=n+kn is
a family svA,V; 1øAøkd, where eachvA is a closed 2-form and V is an integrable
nk-dimensional distribution on M such that

sid vAuV3V
= 0, sii d ùA=1

k kervA = h0j.

In this casesM ,vA,Vd is called a k-symplectic manifold.
Theorem 2.1 (Awane6): Let svA,V; 1øAøkd be a k-symplectic structure on M. About every

point of M we can find a local coordinate systemsqi ,pi
Ad, 1ø i øn, 1øAøk, such that

vA = dqi ∧ dpi
A, 1 ø A ø k. s2d

The canonical model ofk-symplectic manifolds is alsosTk
1d*Q and the canonicalk-symplectic

structuresvA,V; 1øAøkd, on sTk
1d*Q is given by

vA = sv0dA = stA
* d*sv0d, Vs jq,0

1 sd = kerstQ
* d*s jq,0

1 sd.

Therefore, the 2-forms of the canonical polysymplectic structure and the canonical
k-symplectic structure onsTk

1d*Q coincide.
From s2d we know that the standard polysymplectic structures and thek-symplectic structures

coincide. Indeed, ifv̄=oA=1
k vA ^ rA is a standard polysymplectic structure onM, given a local

adapted coordinate systemsqi ,pi
Ad we can define, locally, the distributionV, of dimensionnk, by

dq1=¯ =dqn=0. Then,sv1,… ,vk,Vd is a k-symplectic structure onM.
Conversely ifsv1,… ,vk,Vd is a k-symplectic structure onM then v̄=oA=1

k vA ^ rA is a stan-
dard polysymplectic structure onM, because it is trivially standard and is nondegenerate as a
consequence ofsii d in Definition 2.3.

As we shall see later, in his Hamiltonian formalism, Günther uses a standard polysymplectic
manifold because he needs to have local coordinatessqi ,pi

Ad in the manifoldM where the Hamil-
tonian is defined, which is equivalent to considering ak-symplectic manifold. For this reason we
will call the Günther’s formalism, called polysymplectic formalism,k-symplectic formalism.
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B. The tangent bundle of k1-velocities of a manifold

Let t :TQ→Q be the tangent bundle ofQ. Let us denote byTk
1Q the Whitney sumTQ%¯

k

% TQ of k copies ofTQ, with projectiontQ:Tk
1Q→Q, tQsv1q,… ,vkqd=q.

Tk
1Q can be identified with the vector bundleJ0

1sRk,Qd of thek1-velocities of the manifoldQ,
that is, the vector bundle of 1-jets of mapss :Rk→Q with source at 0PRk, and projection map
tQ:Tk

1Q→Q, tQs j0,q
1 sd=ss0d=q, say

J0
1sRk,Qd ; TQ % ¯

k

% TQ,

j0,q
1 s ; sv1q,…,vkqd,

whereq=ss0d, andvAq=s*s0dfs] /]tAds0dg, 1øAøk. For this reasonTk
1Q is called thetangent

bundle of k1-velocities of Q.
If sqid are local coordinates onU#Q then the induced local coordinatessqi ,vid, 1ø i øn, on

TU=t−1sUd are given by

qisvqd = qisqd, visvqd = vqsqid, vq P TQ,

and the induced local coordinatessqi ,vA
i d, 1ø i øn, 1øAøk, on Tk

1U=tQ
−1sUd are given by

qisv1q,…,vkqd = qisqd, vA
i sv1q,…,vkqd = vAqsqid.

We now introduce thecanonical k-tangent structureon Tk
1Q.

Definition 2.4: For a vector Xq at Q, and for1øAøk, we define its vertical A-lift sXqdA as the
vector on Tk

1Q given by

sXqdAsv1q,…,vkqd =
d

ds
sv1q,…,vA−1q,vAq + sXq,vA+1q,…,vkqdus=0

for all points sv1q,… ,vkqdPTk
1Q.

In local coordinates we have

sXqdA = aiU ]

]vA
i U

q

s3d

for a vectorXq=ais] /]qidsqd.
The canonical k-tangent structureon Tk

1Q is the setsS1,… ,Skd of tensor fields of types1, 1d
defined by

SAsvdsZvd = sstQd*svdsZvddA for all Zv P TvsTk
1Qd, v = sv1q,…,vkqd,

for each 1øAøk.
From s3d we have in local coordinates,

SA =
]

]vA
i ^ dqi . s4d

The tensorsSA can be regarded as thes0, …, 0, 1
A

, 0, …, 0d-lift of the identity tensor onQ to Tk
1Q

defined by Morimoto.39

Remark 2.2:The k-tangent manifolds were introduced as a generalization of the tangent
manifolds by de Leónet al. 32,33The canonical model of these manifolds isTk

1Q with the structure
given by sS1,… ,Skd.

To develop later the Lagrangian formalism, we now construct a polysymplectic structure on
Tk

1Q, for each regular LagrangianL :Tk
1Q→R, , using its canonicalk-tangent structure.
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Definition 2.5: A Lagrangian L:Tk
1Q→R is called regular if and only if

detS ]2L

]vA
i ] vB

j D Þ 0, 1ø i, j ø n, 1 ø A,B ø k.

Let us consider the 1-formssuLdA=dL +SA, 1øAøk. In a local coordinate systemsqi ,vA
i d we

have

suLdA =
]L

]vA
i dqi, 1 ø A ø k. s5d

Introducing the following 2-formssvLdA=−dsuLdA, 1øAøk, one can easily prove the follow-
ing proposition.

Proposition 2.1: L:Tk
1Q→R is a regular Lagrangian if and only ifssvLd1,… ,svLdkd is a

polysymplectic structure on Tk
1Q.

This polysymplectic structure, associated toL, was also introduced by Günther5 using the
Legendre transformation.

The Legendre mapFL :Tk
1Q→ sTk

1d*Q, was introduced by Günther,5 and we rewrite it as
follows: if sv1q,… ,vkqdP sTk

1dqQ,

fFLsv1q,…,vkqdgAswqd =
d

ds
Lsv1q,…,vAq + swq,…,vkqdus=0,

for each 1øAøk. We deduce thatFL is locally given by

sqi,vA
i d → Sqi,

]L

]vA
i D . s6d

In fact, from s5d and s6d, we easily obtain the following Lemma.
Lemma 2.1: For every1øAøk, svLdA=sFLd*sv0dA, wheresv0d1,… ,sv0dk are the2-forms of

the canonical polysymplectic structure or canonical k-symplectic structure ofsTk
1d*Q.

Then, froms6d we get the following.
Proposition 2.2: Let L be a Lagrangian. The following conditions are equivalent.
(1) L is regular. (2) FL is a local diffeomorphism. (3)ssvLd1,… ,svLdkd is a polysymplectic

structure on Tk
1Q.

Remark 2.3:If FL is a global diffeomorphism, thenL is called ahyper-regular Lagrangian.

III. k-VECTOR FIELDS. SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS ON
Tk

1Q

A. k-vector fields

Let M be an arbitrary manifold andtM :Tk
1M→M its tangent bundle ofk1 velocities.

Definition 3.1: A sectionX :M→Tk
1M of the projectiontM will be called a k-vector fieldon

M.

SinceTk
1M is the Whitney sumTM % …

k

% TM of k copies ofTM, we deduce that ak-vector
field X defines a family ofk vector fieldshX1,… ,Xkj on M by projectingX onto every factor. For
this reason we will denote ak-vector fieldX by sX1,… ,Xkd.

Definition 3.2: Anintegral sectionof the k-vector fieldX =sX1,… ,Xkd passing through a point
xPM is a mapf :U0,Rk→M, defined on some neighborhood U0 of 0PRk, such that

fs0d = x, f*stdSU ]

]tA
U

t
D = XAsfstdd for every tP U0, 1 ø A ø k,

or equivalently, f satisfiesX +f=fs1d, wherefs1d is the first prolongation off defined by
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fs1d:U0 , Rk → Tk
1M ,

t → fs1dstd = j0
1ft, ftst̄d = fst̄ + td,

for every t̄, tPRk such that t̄+ tPU0.
In local coordinates,

fs1dst1,…,tkd = Sfist1,…,tkd,
]fi

]tA
st1,…,tkdD, 1 ø A ø k, 1 ø i ø n. s7d

We say that ak-vector fieldX =sX1,… ,Xkd on M is integrable if there is an integral section
passing through each point ofM.

We remark that ak-vector fieldX is integrable if, and only if,hX1,… ,Xkj define an involutive
distribution onM.

B. Second-order partial differential equations in Tk
1Q

The aim of this section is to characterize the integrablek-vector fields onTk
1Q such that their

integral sections are canonical prolongations of maps fromRk to Q.
In general, if F :M→N is a differentiable map, then the induced mapTk

1sFd :Tk
1M→Tk

1N
defined byTk

1sFds j0
1gd= j0

1sF +gd is given by

Tk
1sFdsv1q,…,vkqd = sF*sqdv1q,…,F*sqdvkqd,

wherev1q,… ,vkqPTqQ, qPQ, andF*sqd :TqM→TFsqdN.
Definition 3.3: A k-vector field on Tk

1Q, that is, a sectionX :Tk
1Q→Tk

1sTk
1Qd of the projection

tTk
1Q:Tk

1sTk
1Qd→Tk

1Q, is a second-order partial differential equationsSOPDEd if it is also a section
of the vector bundle Tk

1stQd :Tk
1sTk

1Qd→Tk
1Q; that is,

Tk
1stQd + X = IdTk

1Q, s8d

where Tk
1std is defined by Tk

1stQds j0
1gd= j0

1stQ+gd.
Let sqid be a coordinate system onQ andsqi ,vA

i d the induced coordinate system onTk
1Q. From

a direct computation in local coordinates we obtain that the local expression of a SOPDE
sX1,… ,Xkd is

XAsqi,vA
i d = vA

i ]

]qi + sXAdB
i ]

]vB
i , 1 ø A ø k. s9d

If w :Rk→Tk
1Q, is an integral section ofsX1,… ,Xkd locally given by wstd=swistd ,wB

i stdd then
XAswstdd=w*stdf] /]tAstdg and thus

]wi

]tA
std = vA

i swstdd = wA
i std,

]wB
i

]tA
std = sXAdB

i swstdd.

From s7d we obtain the following.
Proposition 3.1: LetX =sX1,… ,Xkd be an integrableSOPDE.If w is an integral section then

w=fs1d wherefs1d is the first prolongation of the mapf=tQ+w :Rk→
w

Tk
1Q→

tQ

Q, and satisfies

]fi

]tA ] tB
std = sXAdB

i sfs1dstdd. s10d

Conversely, iff :Rk→Q is any map satisfying (10) thenfs1d is an integral section ofsX1,… ,Xkd.
Definition 3.4: LetsX1,… ,Xkd be an integrableSOPDE.A mapf :Rk→Q is said to be a

solution to the SOPDEif the first prolongationfs1d is an integral section ofsX1,… ,Xkd.
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A k-vector field which is an integrableSOPDEis called aholonomick-vector field,and its
integral sectionsw=fs1d are calledholonomic sections.

Now we show how to characterize the SOPDE using the canonicalk-tangent structure ofTk
1Q.

Definition 3.5: TheLiouville vector field C on Tk
1Q is the infinitesimal generator of the

following flow:

R 3 Tk
1Q → Tk

1Q,

ss,sv1q
,…,vkq

dd → sesv1q
,…,esvkq

d,

and in local coordinates has the form

C = o
i,B

vB
i ]

]vB
i . s11d

We can writeC=C1+¯ +Ck where CA, 1øAøk, are the canonical vector fields onTk
1Q

given by the following flows:

R 3 Tk
1Q → Tk

1Q,

ss,sv1q
,…,vkq

dd → sv1q
,…,vA−1q

,esvAq
,vA+1q

,…,vkq
d.

In local coordinates,

CA = o
i

vA
i ]

]vA
i . s12d

From s4d, s9d, s11d, ands12d we deduce the following.
Proposition 3.2: A k-vector fieldX =sX1,… ,Xkd on Tk

1Q is a SOPDEif, and only if, SAsXAd
=CA, for all 1øAøk, wheresS1,… ,Skd is the canonical k-tangent structure on Tk

1Q.

IV. HAMILTONIAN AND LAGRANGIAN FORMALISM „Refs. 5 and 9 …

A. Hamiltonian formalism

Let sM ,vA,Vd be a k-symplectic manifold, andH :M→R a Hamiltonian function. LetX
=sX1,… ,Xkd be ak-vector field onM that satisfies the equations

o
i=1

k

ıXA
vA = dH. s13d

If XA is locally given by

XA = sXAdi ]

]qi + sXAdi
B ]

]Pi
B

in a local system of canonical coordinatessqi ,pi
Ad swhose existence is ensured by the Theorem

2.1d, thens13d is equivalent to the equations

]H

]qi = − o
A=1

k

sXAdi
A,

]H

]pi
A = sXAdi .

So if sX1,… ,Xkd is also integrable then its integral sectionsw :Rk→M, with wstd=swistd ,wi
Astdd

are solutions to theHamilton–De Donder–Weyl field equations,
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]H

]qi = − o
A=1

k
]wi

A

]tA
,

]H

]pi
A =

]wi

]tA
, 1 ø A ø k, 1 ø i ø n. s14d

So, Eq.s13d is a geometric version of the Hamilton–De Donder–Weyl field equations.

B. Lagrangian formalism

In this section, we recall the Lagrangian formalism developed by Günther.5

In general, given a Lagrangian function of the formL=Lsqi ,vA
i d, and using a variational

principle, one obtains theEuler–Lagrange field equationsfor L,

o
A=1

k
d

dtA
S ]L

]vA
i D −

]L

]qi = 0, vA
i =

]qi

]tA
. s15d

Then, letL :Tk
1Q→R be a Lagrangian, and let us consider the 2-formsssvLd1,… ,svLdkd on

Tk
1Q defined byL, and EL=CsLd−L, C being the Liouville vector field inTk

1Q. Now, let X
=sX1,… ,Xkd be ak-vector field inTk

1Q sthat is, a sectionX :Tk
1Q→Tk

1sTk
1Qdd of the projection

tTk
1Q:Tk

1sTk
1Qd→Tk

1Q. Then we have the following.
Proposition 4.1: If X =sX1,… ,Xkd is an integrableSOPDE,and c;fs1d :Rk→Tk

1Q is an
integral section ofX, thenX is a solution to the equation

o
A=1

k

ıXA
svLdA = dEL, s16d

if, and only if, f :Rk→Q is a solution to the Euler–Lagrange equations (15).
Proof: If eachXA is locally given by

XA = sXAdi ]

]qi + sXAdB
i ]

]vB
i

then, froms5d, s11d, ands16d we deduce thatsX1,… ,Xkd is a solution tos16d if, and only if, sXAdi

and sXAdB
i satisfy the system of equations

S ]2L

]qi ] vA
j −

]2L

]qj ] vA
i DsXAd j −

]2L

]vA
i ] vB

j sXAdB
j = vA

j ]2L

]qi ] vA
j −

]L

]qi , s17d

]2L

]vB
j ] vA

i sXAdi =
]2L

]vB
j ] vA

i vA
i . s18d

But, asX is a SOPDE, we have

sXAdi = vA
i , s19d

then s18d holds identically, ands17d is equivalent to

]2L

]qj ] vA
i vA

j +
]2L

]vA
i ] vB

j sXAdB
j =

]L

]qi . s20d

Now, if cstd=fs1d=sfistd ,fA
i stdd is an integral section ofX, then

sXAdiscstdd = fA
i std =

]fi

]tA
, s21d
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sXAdB
i scstdd =

]fB
i

]tA
=

]2fi

]tA ] tB
, s22d

and going tos20d we obtain that

]2L

]qi ] vA
j sfstdd

]fi

]tA
+

]2L

]vB
i ] vA

j sfstdd
]fB

i

]tA
=

]2L

]qi ] vA
j sfstdd

]fi

]tA
+

]2L

]vB
i ] vA

j sfstdd
]2fi

]tA ] tB
=

]L

]qi sfstdd

s23d

which are the Euler–Lagrange equations for the mapf.
Conversely, letX be an integrable SOPDE havingcstd=fs1d=sfistd ,fA

i stdd as integral sec-
tions, for everysfistdd solution to the Euler–Lagrange equations. Therefores21d and s22d hold
since X is a SOPDE, and thens23d, which holds becausesfistdd is a solution to the Euler–
Lagrange equations, is equivalent tos20d. HenceX is a solution tos16d. j

In this way, Eq.s16d can be considered as a geometric version of the Euler–Lagrange field
equations.

Observe that, if the Lagrangian is regular, Eq.s18d leads to conclude that every solution to
s16d is a SOPDE. In addition, Eq.s20d leads to defining local solutions tos16d in a neighborhood
of each point ofTk

1Q and, using a partition of unity, global solutions tos16d.
Now let us suppose that the LagrangianL :Tk

1Q→R is hyper-regular, that is,FL is a diffeo-
morphism. We consider the HamiltonianH : sTk

1d*Q→R defined byH=EL +FL−1 whereFL−1 is the
inverse map ofFL. Then we have the following.

Theorem 4.1: (a) If XL=ssXLd1,… ,sXLdkd is a solution to (16) thenXH=ssXHd1,… ,sXHdkd,
wheresXHdA=FL*ssXLdAd, 1øAøk, is a solution to (13) withvA=sv0dA and H=EL +FL−1.

(b) If XL=ssXLd1,… ,sXLdkd is integrable, fs1d is an integral section andf=tQ+fs1d, thenw
=FL +fs1d is an integral section ofXH=ssXHd1,… ,sXHdkd and thus it is a solution to the
Hamilton–De Donder–Weyl equations (14) for H=EL +FL−1.

Proof: sad It is an immediate consequence ofs13d and s16d using thatFL*sv0dA=svLdA and
EL=H +FL−1.

sbd It is an immediate consequence of Definition 3.2 of integral section of ak-vector field.j
Definition 4.1: A singular Lagrangian systemsTk

1Q,svLd1,… ,svLdkd is called almost regular
if PªFLsTk

1Qd is a closed submanifold ofsTk
1d*Q (we will denote the natural imbedding by

j0:P� sTk
1d*Qd, FL is a submersion onto its image, and the fibers FL−1sFLsvdd, for every v

PTk
1Q, are connected submanifolds of Tk

1Q.
In this case there existsH0PC`sPd such thatsFL0d*H0=EL, whereFL0:Tk

1Q→P is defined
by j0+FL0=FL, and the Hamiltonian field equation analogous tos13d is

o
i=1

k

ısX0dA
vA

0 = dH0, s24d

wherevA
0 = j0

*sv0dA, for every 1øAøk, andX0=ssX0d1,… ,sX0dkd sif it existsd is a k-vector field
on P.

V. SKINNER–RUSK FORMULATION

A. The Skinner–Rusk formalism for k-symplectic field theories

Let us consider theWhitney sum Tk
1Q%QsTk

1d*Q, with coordinatessqi ,vA
i ,pi

Ad. It has natural
bundle structures overTk

1Q andsTk
1d*Q. Let us denote bypr1:Tk

1Q%QsTk
1d*Q→Tk

1Q the projection
into the first factor,pr1sqi ,vA

i ,pi
Ad=sqi ,vA

i d, and pr2:Tk
1Q%QsTk

1d*Q→ sTk
1d*Q the projection into

the second factor,pr2sqi ,vA
i ,pi

Ad=sqi ,pi
Ad.

In this bundle, we have some canonical structures. First, letssv0d1,… ,sv0dkd be the canonical
polysymplectic structure onsTk

1d*Q. We shall denote bysV1,… ,Vkd the pull-back bypr2 of these
2-forms toTk

1Q%QsTk
1d*Q, that is,VA=spr2d*sv0dA, 1øAøk.
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Furthermore, thecoupling functionin Tk
1Q%QsTk

1d*Q, denoted byC, is defined as follows:

C: Tk
1Q%QsTk

1d*Q → R,

sv1q
,…,vkq,aq

1,…,aq
kd ° o

A=1

k

aq
AsvAq

d.

Given a LagrangianLPC`sTk
1Qd, we can define theHamiltonian functionin Tk

1Q%QsTk
1d*Q,

denoted byHPC`sTk
1Q%QsTk

1d*Qd, as

Hsv1q
,…,vkq

,aq
1,…,aq

kd = Csv1q
,…,vkq

,aq
1,…,aq

kd − spr1
*Ldsv1q

,…,vkq
,aq

1,…,aq
kd

which, in local coordinates, is given by

H = o
A=1

k

o
i=1

n

pi
AvA

i − Lsqi,vA
i d. s25d

Now, the problem consists in finding the integral sectionsc :Rk→Tk
1Q% sTk

1d*Q of an inte-
grablek-vector fieldZ =sZ1,… ,Zkd on Tk

1Q%QsTk
1d*Q, such that

o
A=1

k

ıZA
VA = dH. s26d

Equations26d gives a different kind of information. In fact, writing locally eachZA as

ZA = sZAdi ]

]qi + sZAdB
i ]

]vB
i + sZAdi

B ]

]pi
B ,

then, froms1d, s25d, ands26d we obtain

pi
A =

]L

]vA
i + pr1, s27d

sZAdi = vA
i , s28d

o
A=1

k

sZAdi
A =

]L

]qi + pr1, s29d

where 1øAøk,1ø i øn. Then froms28d we have thatZA is locally given by

ZA = vA
i ]

]qi + sZAdB
i ]

]vB
i + sZAdi

B ]

]pi
B . s30d

So, in particular, we have obtained information of three different classes.

s1d The constraint equationss27d, which are algebraicsnot differentiald equations defining a
submanifoldML of Tk

1Q%QsTk
1d*Q where the equations26d has solution. Let us observe that

this submanifold is just the graph of the Legendre mapFL defined by the LagrangianL. We
denote by j :ML→Tk

1Q%QsTk
1d*Q the natural imbedding, and bypr1

0:ML→Tk
1Q and

pr2
0:ML→ sTk

1d*Q the restricted projections ofpr1 andpr2.
s2d Equationss28d which are a holonomy condition similar tos19d and, as we will see in the next

sectionssee Theorem 5.1d, they force the integral sections of thek-vector fieldZ to be lifting
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of sectionsf :Rk→Q. This property is similar to the one in the unified formalism of classical
mechanics, and it reflects the fact that the geometric condition in the unified formalism is
stronger than the usual one in the Lagrangian formalism.

s3d Equationss29d which, taking into accounts27d and s28d, are just the classical Euler–
Lagrange equationsssee Theorem 5.1d.

If Z =sZ1,… ,Zkd is a solution tos26d, then eachZA is tangent to the submanifoldML if, and
only if, the functionsZAspj

B−s]L /]vB
j d +pr1d vanish at the points ofML, for every 1øA, Bøk,

1ø j øn. Then froms30d we deduce that this is equivalent to the following equations:

sZAd j
B = vA

i ]2L

]qi ] vB
j + sZAdC

i ]2L

]vC
i ] vB

j . s31d

Thus the problem to be solved is the following.
Statement 5.1: To find an integral sectionc :Rk→ML,Tk

1Q% sTk
1d*Q of an integrable

k-vector fieldZ =sZ1,… ,Zkd on Tk
1Q%QsTk

1d*Q solution to (26) taking values on ML. (This means
that Z is tangent to ML.)

Remark 5.1:s1d Equationss26d do not, in general, have a unique solution. The solutions to
s26d are given by sZ1,… ,Zkd+kerV], where sZ1,… ,Zkd is a particular solution, and
V] :Tk

1sTk
1Q%QsTk

1d*Qd→T*sTk
1Q%QsTk

1d*Qd is defined asV]sY1,… ,Ykd=oA=1
k ıYA

VA.
s2d If L is regular, then taking into accounts28d ands29d we can define a localk-vector field

sZ1,… ,Zkd on a neighborhood of each point inML which is a solution tos26d. EachZA is locally
given by

sZAdi = vA
i , sZAdi

B =
1

k

]L

]qi dA
B,

with sZAdB
i satisfying s31d. Now, by using a partition of the unity, one can construct a global

k-vector field which is a solution tos26d.
When the Lagrangian functionL is singular we cannot assure the existence of consistent

solutions for Eq.s26d. Then we must develop a constraint algorithm for obtaining a constraint
submanifoldsif it existsd where these solutions exist. Next, we outline this proceduressee also Ref.
4, where a similar algorithm is sketched in the multisymplectic formulationd.

First, in order to assure the existence of a Hamiltonian counterpart for the singular Lagrangian
system we assume, from now on, that the singular Lagrangians are almost regular.

We begin withP0=ML. Then, letP1 be the subset ofP0 made of those points where there
exists a solution tos26d, that is,

P1 = hzP P0u ∃ sZ1…,Zkd P sTk
1dzP0 solution tos26dj.

If P1 is a submanifold ofP0, then there exists a section of the canonical projectiontP0
:Tk

1P0

→P0 defined onP1 which is a solution tos26d, but that does not define, in general, ak-vector field
on P1. To find solutions taking values intoTk

1P1, we define a new subsetP2 of P1 as follows:

P2 = hzP P1u ∃ sZ1,…,Zkd P sTk
1dzP1 solution tos26dj.

If P2 is a submanifold ofP1, then there exists a section of the canonical projectiontP1
:Tk

1P1

→P1 defined onP2 which is a solution tos26d, but that does not define, in general, ak-vector field
on P2.

Proceeding further, we get a family of constraint manifolds

¯ � P2 � P1 � P0 = ML � Tk
1Q%QsTk

1d*Q.

If there exists a natural numberf such thatPf+1=Pf and dimPf .k then we callPf the final
constraint submanifoldover which we can find solutions to Eq.s26d. Let us observe that the
solutions will not be uniqueseven in the regular cased and, in general, will not be integrable. In
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order to find integrable solutions to Eq.s26d, a constraint algorithm based on the same idea must
be developed.

B. The field equations for sections

ML being the graph ofFL, it is diffeomorphic toTk
1Q sso pr1

0 is a diffeomophismd. Let Z
=sZ1,… ,Zkd be an integrablek-vector field solution tos26d. Every integral sectionc : tPRk

→ scistd ,cA
i std, ci

AstddPTk
1Q%QsTk

1d*Q of Z solution tos26d is of the formc=scL ,cHd, with cL

=pr1+c :Rk→Tk
1Q, and if c takes values inML thencH=FL +cL; in fact, from s27d we obtain

cHstd = spr2 + cdstd = scistd,ci
Astdd = SUcistd,

]L

]vA
i U

cLstd
D = sFL + cLdstd.

In this way, every constraint, differential equation, etc., in the unified formalism can be
translated to the Lagrangian or the Hamiltonian formalisms by restriction to the first or the second
factors of the product bundle. In particular, conditionss27d generate, bypr2-projection, the pri-
mary constraints of the Hamiltonian formalism for singular Lagrangiansfi.e., the image of the
Legendre transformation,FLsTk

1Qd, sTk
1d*Qg, and they can be calledprimary Hamiltonian con-

straints.
In this way the main result in this section is the following.
Theorem 5.1:Let Z =sZ1,… ,Zkd be an integrable k-vector field in Tk

1Q%QsTk
1d*Q solution to

(26) and let c :Rk→ML,Tk
1Q%QsTk

1d*Q be an integral section ofZ =sZ1,… ,Zkd, with c
=scL ,cHd=scL ,FL +cLd. Then cL is the canonical liftfs1d of the projected sectionf=tQ+pr1

+c :Rk→Q, and f is a solution to the Euler–Lagrange field equations (15).

Proof: If cstd=scistd ,cA
i std ,ci

Astdd is an integral section ofZ =sZ1,… ,Zkd, then

ZAscstdd = U ]ci

]tA
std

]

]qiU
cstd

+ U ]ci
B

]tA
std

]

]pi
BU

cstd
+ U ]cB

i

]tA
std

]

]vB
i U

cstd
. s32d

From s27d, s28d, ands32d we obtain

cA
i std = vA

i scstdd = sZAdiscstdd =
]ci

]tA
std, s33d

ci
Astd = pi

Ascstdd = S ]L

]vA
i + pr1Dscstdd = U ]L

]vA
i U

cLstd
, s34d
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]ci
B

]tA
std = sZAdi

Bscstdd. s35d

Therefore froms29d, s34d, ands35d we obtain

]L

]qi scLstdd = o
A=1

k

sZAdi
Ascstdd = o

A=1

k
]ci

A

]tA
std = o

A=1

k
]

]tASU ]L

]vA
i U

cLstd
D

and froms33d,

cA
i std =

]ci

]tA
std.

The last two equations are the Euler–Lagrange field equations for the sectionfstd=scistdd
=st +pr1+cdstd, andcL=fs1d. j

In addition, for the regular case we can prove the following.
Proposition 5.1: Under the hypothesis of Theorem 5.1, if L is regular thencH=FL +cL is a

solution to the Hamilton–De Donder–Weyl field equations (14), where the Hamiltonian H is
locally given by H+FL=EL.

Proof: SinceL is regular,FL is a local diffeomorphism and thus we can choose for each point
in Tk

1Q an open neighborhoodU,Tk
1Q such thatFLuU :U→FLsUd is a diffeomorphism. So we can

defineHU :FLsUd→R asHU=sELduU + sFLuUd−1.
Denoting byH;HU, EL;sELduU andFL;FLuU, we haveEL=H +FL where we provide the

identities

]H

]pi
A + FL = vA

i ,
]H

]qi + FL = −
]L

]qi . s36d

Now considering the open subsetV=cL
−1sUd,Rk we havecuV:V,Rk→U % FLsUd,ML,

wherescLduV:V,Rk→U,Tk
1Q and scHduV=FL + scLduV:V,Rk→FLsUd, sTk

1d*Q.
Therefore froms29d, s33d, s35d, ands36d, for everytPV,Rk we obtain

U ]H

]pi
AU

cHstd
= S ]H

]pi
A + FLDscLstdd = vA

i scLstdd =
]ci

]tA
std

and

U ]H

]qi U
cHstd

= S ]L

]qi + FLDscLstdd = −U ]L

]qiU
cLstd

= − o
A=1

k

sZAdi
Ascstdd = − o

A=1

k
]ci

A

]tA
std

from which we deduce thatscHduV is a solution to the Hamilton–De Donder–Weyl field equations
s14d. j

Conversely, we can state the following.
Proposition 5.2: If L is regular andX =sX1,… ,Xkd is a solution to (16) then

s1d The k-vector fieldZ =sZ1,… ,Zkd given by ZA=sIdTk
1Q % FLd*sXAd, 1øAøk is a solution to

(26).
s2d If cL :Rk→Tk

1Q is an integral section ofX =sX1,… ,Xkd (and thus, from Proposition 4.1, a
solution to the Euler–Lagrange field equations) thenc=scL ,FL +cLd :Rk→ML,Tk

1Q
%QsTk

1d*Q is an integral section ofZ =sZ1,… ,Zkd.

Proof:

s1d If L is regular andX =sX1,… ,Xkd is a solution tos16d, then from Proposition 4.1 we know
that XA is a SOPDE and thusXA is locally given by
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XA = vA
i ]

]qi + sXAdB
i ]

]vB
i , s37d

where sXAdB
i satisfy s20d. Since the mapIdTk

1Q % FL :Tk
1Q→ML,Tk

1Q% sTk
1d*Q, is locally

given by

sqi,vA
i d → Sqi,vA

i ,
]L

]vA
i D , s38d

from s37d and s38d we obtain

ZA = sIdTk
1Q % FLd*sXAd = vA

i ]

]qi + SvA
i ]2L

]qi ] vC
j + sXAdB

i ]2L

]vB
i ] vC

j D ]

]pj
C + sXAdB

i ]

]vB
i .

s39d

Then froms20d and s39d we have that

o
A=1

k

sZAd j
A = vA

i ]2L

]qi ] vA
j + sXAdB

i ]2L

]vB
i ] vA

j =
]L

]qj , sZAdi = vA
i , ZASpk

B −
]L

]vB
k D = 0,

that is, thek-vector fieldZ =sZ1,… ,Zkd is a solution tos26d and eachZA is tangent toML for
A:1 ,… ,k.

s2d It follows from Definition 3.2 taking into account thatpr2+c=FL +cL. j

Remark 5.2:The last result really holds for regular and almost-regular Lagrangians. In the
almost-regular case, the proof is the same, but the sectionsc ,cL, and cH take values not on
ML ,Tk

1Q, and sTk
1d*Q, but in the final constraint submanifoldPf and on the projection submani-

folds pr1sPfd�Tk
1Q andpr2sPfd� sTk

1d*Q, respectively.

C. The field equations for k-vector fields

The aim of this section is to establish the relationship betweenk-vector fields that are solu-
tions to s16d andk-vector fields that are solutions tos26d. The main result is the following.

Theorem 5.2:Let Z =sZ1,… ,Zkd be a k-vector field on ML solution to (26). Then the k-vector
field XL=ssXLd1,… ,sXLdkd on Tk

1Q defined by

XL + pr1
0 = Tk

1spr1
0d + Z s40d

is a k-vector field solution to (16) [where Tk
1spr1

0d :Tk
1sMLd→Tk

1sTk
1Qd is the natural extension of

spr1
0d*g.
Conversely, every k-vector fieldXL solution to (16) can be recovered in this way from a

k-vector fieldZ in ML solution to (26).
Moreover, the k-vector fieldZ is integrable iff the k-vector fieldXL is holonomic.
Proof: Sincepr1

0:ML→Tk
1Q is a diffeomorphism, then thek-vector fieldXL on Tk

1Q defined by
s40d is given by

sXLdA = sspr1
0d−1d*ZA, 1 ø A ø k. s41d

Now, for every 1øAøk we have that

j *VA = spr1
0d*svLdA, s42d

which follows from Lemma 2.1,

j *VA = j *spr2d*sv0dA = spr2
0d*sv0dA = sFL + pr1

0d*sv0dA = spr1
0d*FL*sv0dA = spr1

0d*svLdA.

On the other hand we obtain that
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j *H = spr1
0d*EL, s43d

from the following computation:

j *H = j *sC − spr1d*Ld = j *C − j *spr1d*L = spr1
0d*CL − spr1

0d*L = spr1
0d*EL.

From s41d and s42d we deduce that

o
A=1

k

ıZA
j *VA = o

A=1

k

ıspr1
0d* sXLdA

spr1
0d*svLdA = spr1

0d*So
A=1

k

ısXLdA
svLdAD , s44d

and froms43d we deduce that

ds j *Hd = dsspr1
0d*ELd = spr1

0d* dEL. s45d

Sincepr1
0 is a diffeomorphism, froms44d and s45d we deduce that thek-vector fieldZ is a

solution tos26d iff the k-vector fieldXL is a solution tos16d.
Let us suppose now that thek-vector fieldZ is integrable. As a consequence of Theorem 5.1,

for every integral sectionc=scL ,FL +cLd of Z, cL=fs1d, for f=t +pr1+c. Then

sXLdAspr1
0scstddd = spr1

0d*scstddsZAscstddd = spr1
0 + cd*stdSU ]

]tA
U

q
D = scLd*stdSU ]

]tA
U

q
D .

So, cL=fs1d is an integral section ofXL, and henceXL is holonomic.
Conversely, ifXL is holonomic then for every integral sectioncL=fs1d with f :Rk→Q, the

mapc=scL ,FL +cLd is an integral section ofZ. In fact, from s41d, for every 1øAøk,

ZAscstdd = sspr1
0d*sXLdAdscstdd = sspr1

0d−1d*scLstddssXLdAscLstddd

= sspr1
0d−1d*scLstddSscLd*stdS ]

]tA
stdDD

= sspr1
0d−1 + cLd*stdSU ]

]tA
U

q
D = c*stdSU ]

]tA
U

q
D .

j

If L is regular, in a neighborhood of each point ofTk
1Q there exists a local solutionXL

=ssXLd1,… ,sXLdkd to s16d. As L is regular,FL is a local diffeomorphism, so this open neighbor-
hood can be chosen in such a way thatFL is a diffeomorphism onto its image. Thus in a
neighborhood of each point ofFLsTk

1Qd we can define

sXHdA = fsFLd−1g*sXLdA, 1 ø A ø k,

or equivalently, in terms ofk-vector fields

Tk
1sFLd + XL = XH.

Proposition 5.3: (1) The local k-vector fieldXH=ssXHd1,… ,sXHdkd is a solution to (13), where
the Hamiltonian H is locally given by H+FL=EL. (In other words, the local k-vector fieldsXL and
XH solution to (13) and (16), respectively, are FL related).

(2) Every local integrable k-vector field solution to (13) can be recovered in this way from a
local integrable k-vector fieldZ in Tk

1Q%QsTk
1d*Q solution to (26).

Proof:

s1d This is the local version of Theorem 4.1sad.
s2d On the other hand, ifXH is a local integrablek-vector field solution tos13d, then we can

obtain theFL-related local integrablek-vector fieldXL solution tos16d. By Theorem 5.2, we
recoverXL by a local integrablek-vector fieldZ solution tos26d. j
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VI. FIELD OPERATORS

A. The evolution operator K in mechanics

The so-calledtime-evolutionK-operator in mechanicssalso known by some authors as the
relative Hamiltonian vector field21d is a tool which has mainly been developed in order to study
the Lagrangian and Hamiltonian formalisms for singular mechanical systems and their equiva-
lence. It was first introduced in a nonintrinsic way in Ref. 22 as an “evolution operator” to connect
both formalisms.

In classical mechanics, the evolution operatorK associated with a LagrangianL :TQ→R is a
mapK :TQ→TsT*Qd satisfying the following conditionsssee Ref. 25d.

s1d sStructural conditiond K is a vector field alongFL, that is,tT*Q+K=FL, whereFL is the
Legendre map defined byL andtT*Q:TsT*Qd→T*Q is the natural projection.

s2d sDynamical conditiond sFLd*sıKsv +FLdd=dEL, wherev is the canonical symplectic form on
T*Q andEL=CL−L, beingC the Liouville vector field onTQ.

s3d sSecond-order conditiond Tst*d +K= IdTQ, wheret* :T*Q→Q is the canonical projection.

The existence and uniqueness of this operator is studied in Ref. 25. Its local expression is

K = viS ]

]qi + FLD +
]L

]qiS ]

]pi
+ FLD .

By definition w :R→TQ is an integral curve ofK if

TsFLd + ẇ = K + w, s46d

whereẇ :R→TsTQd is the prolongation ofw to the tangent bundleTsTQd of TQ. So we have the
diagram

Moreover, s2dw=ḟ, for f :R→Q, that is,w is holonomic.
The most relevant properties of this operator are the following.

sid If there exists a Euler–Lagrange vector fieldXL on TQ, that is, a solution to the equation
ıXL

vL=dEL, thenw :R→TQ is an integral curve ofXL if, and only if, it is an integral curve
of K; that is, relations46d holds.
As a direct consequence of this fact, the relation betweenK andXL is

TsFLd + XL = K. s47d

In general, if the dynamical system is singular, the Euler–Lagrange vector fields exist only
on a submanifoldS�TQ.

sii d If there exists a Hamilton–Dirac vector fieldXH on T*Q associated with the the Lagrangian
systemsTQ,vL ,ELd sthat is, a vector field solution to the Hamilton–Dirac equations in the
Hamiltonian formalismd, thenc :R→T*Q is an integral curve ofXH if, and only if,
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ċ = K + TstQ
* d + ċ. s48d

As a consequence, the relation betweenK y XH is

XH + FL = K. s49d

siii d If jPC`sT*Qd is a Hamiltonian constraint, thenıKsdj +FLd is a Lagrangian constraint.

Relationss46d–s49d show how the Lagrangian and Hamiltonian descriptions can be unified by
means of the operatorK.

Some relevant results obtained using this operator are the following.

sid The equivalence between the Lagrangian and Hamiltonian formalisms is proved by means
of this operator in the following way: there is a bijection between the sets of solutions of
Euler–Lagrange equations and Hamilton equations, even though the dimensions of the final
constraint submanifold in both formalisms are not the same, in general.22,40

sii d The complete classification of constraints is achieved. All the Lagrangian constraints can be
obtained from the Hamiltonian ones using theK operator.22

siii d Noether’s theorem is proved and the relation between the generators of gauge and “rigid”
symmetries in the Lagrangian and Hamiltonian formalisms is studied.27–29,41

sivd This operator has been applied to studying Lagrangian systems whose Legendre map has
generic singularities; that is, it degenerates on a hypersurface.21,30

B. Field operators K in field theories

Next we generalize the definition, properties and some of the applications of the evolution
operator for thek-symplectic formulation of field theories, in order to describe the relationship
between the Lagrangian and Hamiltonian formalismssthe generalization for the multisymplectic
formulation is given31d. In particular, we will study how to obtain the solutions of Lagrangian and
Hamiltonian field equations by means of this operator, and the relation between them.

Definition 6.1: A field operatorK associated with a Lagrangian L:Tk
1Q→R is a map

K:Tk
1Q → Tk

1ssTk
1d*Qd

satisfying the following conditions.

s1d Structural condition:K is a k-vector field along FL, that is

tsTk
1d*Q + K = FL. s50d

HenceK=sK1,… ,Kkd, where eachKA, 1øAøk, is a vector field along FL.
s2d Field equation condition,

o
A=1

k

sFLd*fıKA
sv0dA + FLd = dEL. s51d
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s3d Second-order condition,

Tk
1stQ

* d + K = IdTk
1Q. s52d

Now we are going to calculate the local expression of a field operatorK. If v
=sv1q,… ,vkqdPTk

1Q then froms50d we have that

KAsvd = sKAdisvdU ]

]qiU
FLsvd

+ sKAdi
BsvdU ]

]pi
BU

FLsvd
, 1 ø A ø k.

Taking into accounts52d and that the mapTk
1stQ

* d :Tk
1ssTk

1d*Qd→Tk
1Q is locally given by

Tk
1stQ

* dsqi ,pi
A,suAdi ,suAdi

Bd=sqi ,suAdid, we obtain that

sKAdi = vA
i . s53d

Then, writing in local coordinates the expressions51d

o
A=1

k

sv0dAsFLsvddSKAsvd,sFLd*svdSU ]

]qiU
v
DD = dELSU ]

]qiU
v
D ,

we obtain that

o
A=1

k SvA
k ]2L

]qi ] vA
k svd − sKAd j

AsvdD = o
A=1

k

vA
k ]2L

]qi ] vA
k svd −

]L

]qi svd.

Therefore

o
A=1

k

sKAd j
A = sK1di

1 + sK2di
2 + ¯ + sKkdi

k =
]L

]qi , s54d

which means that every field operatorKA is locally given by

KA = vA
i S ]

]qi + FLD + sKAdi
BS ]

]pi
B + FLD, 1 ø A ø k,

where the componentssKAdi
B satisfy the identitys54d.

Equationss53d and s54d lead us to define local solutions in a neighborhood of each point of
Tk

1Q satisfying conditionss1d, s2d, ands3d in Definition 6.1,

KA = vA
i S ]

]qi + FLD +
1

k

]L

]qiS ]

]pi
A + FLD, 1 ø A ø k,

and, by using a partition of the unity, we obtain global solutions.
Definition 6.2:c :Rk→Tk

1Q is an integral section of the field operatorK if

Tk
1sFLd + cs1d = K + c.

Definition 6.2 means that, for everytPRk,

KAscstdd = sFLd*scstddSc*stdSU ]

]tA
U

t
DD, 1 ø A ø k,

because

sTk
1sFLd + cs1ddstd = Tk

1sFLds j0
1ctd = j0

1sFL + ctd,

wherectst̄d=cst+ t̄d. Thus we have the following diagram:
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C. Properties of the field operators related to the Lagrangian formalism

In this section we study the properties of the field operator in relation to the Lagrangian field
equations. In particular, we generalize the properties of the evolution operator in mechanics given
in Eq. s47d.

Proposition 6.1: Let L:Tk
1Q→R be a Lagrangian. c :Rk→Tk

1Q is an integral section ofK if,

and only if, tQ+c :Rk→
c

Tk
1Q→

tQ

Q is a solution to the Euler–Lagrange equations (15).
Proof: If c :Rk→Tk

1Q is locally given bycstd=scistd ,cA
i stdd, then froms6d we obtain that

sFL + cd*stdSU ]

]tA
U

t
D =

]c j

]tA
stdU ]

]qj U
FLscstdd

+ S ]2L

]qi ] vC
j scstdd

]ci

]tA
std +

]cB
i

]tA
std

]2L

]vB
i ] vC

j scstddD
3U ]

]pj
CU

FLscstdd
. s55d

On the other hand,

KAscstdd = vA
j scstddU ]

]qj U
FLscstdd

+ sKAd j
CscstddU ]

]pj
CU

FLscstdd
. s56d

So if c is a solution toK, then froms55d and s56d we obtain the equations

]c j

]tA
std = vA

j scstdd = cA
j std, s57d

and

U ]

]tA
U

t
S ]L

]vC
j scstddD =

]2L

]qi ] vC
j scstdd

]ci

]tA
std +

]2ci

]tA ] tB
std

]2L

]vB
i ] vC

j scstdd = sKAd j
Cscstdd,

s58d

for everyA=1,… ,k. Therefore, froms54d, s57d, ands58d we obtain

o
A=1

k U ]

]tA
U

t
S ]L

]vA
i scstddD = o

A=1

k

sKAdi
Ascstdd =

]L

]qi scstdd, cA
i std =

]ci

]tA
std,

that is stQ+cdstd=scistdd is a solution to the Euler–Lagrange equationss15d.
The proof of the converse follows the same pattern than in the proof of the converse statement

of Proposition 4.1. j

Theorem 6.1: Let L:Tk
1Q→R be a Lagrangian and letK be a k vector field along the

Legendre map FL:Tk
1Q→ sTk

1d*Q. If XL :Tk
1Q→Tk

1sTk
1Qd is a k-vector field on Tk

1Q and jS:S�Tk
1Q

is a submanifold of Tk
1Q such that
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Tk
1sFLd + XL=

S
K, s59d

then K is a field operator associated with the Lagrangian L if, and only if, XL is a SOPDE
solution to the equation (16).

Proof: We must prove that both the second-order condition, and the field equation condition
hold for K if, and only if, they hold forXL. In this proof all the equalities hold onS.

First, if K=sK1,… ,Kkd andXL=ssXLd1,… ,sXLdkd, then Eq.s59d is equivalent to

TsFLd + sXLdA=
S
KA, 1 ø A ø k.

On the other handsvLdA=sFLd*sv0dA so one easily proves that

ısXLdA
svLdA=

S
sFLd*sıKA

sv0dA + FLd,

and for the field equation we obtain

o
A=1

k

fsFLd*sıKA
svA + FLdg − dEL=

S
o
A=1

k

fıXA
svLdAg − dEL,

hence the field equation condition holds forK if, and only if, the Lagrangian field equation holds
for XL.

Furthermore, in relation to the second-order conditionssee Definition 3.3d we have that

Tk
1stQ

* d + K = IdTk
1Q ⇔ Tk

1stQ
* d + Tk

1sFLd + XL = IdTk
1Q ⇔ Tk

1stQd + XL = IdTk
1Q

becauseFL is a fiber preserving map, that istQ
* +FL=tQ, and henceTk

1stQ
* d +Tk

1sFLd=Tk
1stQd. Thus

the last equality is equivalent tos8d, and so the second-order conditions forK and XL are re-
lated. j

Finally, as an immediate consequence of Propositions 4.1 and 6.1, and Theorem 6.1, we have
the following.

Corollary 6.1: Under the hypotheses of Theorem 6.1, c :Rk→S,Tk
1Q is an integral section of

the field operatorK if, and only if, it is an integral section of theSOPDEXL. (This means thatK
is integrable if, and only if, XL is integrable).

Moreover, every integral sectionc :Rk→S,Tk
1Q is a holonomic section.

D. Properties of the field operators related to the Hamiltonian formalism

Next we analyze the properties of the field operator in relation to the Hamilton–de Donder–
Weyl field equations, generalizing the properties of the evolution operator in mechanics given in
Eqs.s48d and s49d.

Theorem 6.2: Let L be an almost-regular Lagrangian function, andK a field operator
associated with L. If there exists a k-vector fieldX0:P→Tk

1P, and a submanifold jS:S�Tk
1Q,

such that

Tk
1j0 + X0 + FL0=

S
K, s60d
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thenX0 is a solution to the equation (24) on P=FL0sSd.
Conversely, ifX0 is a k-vector field solution to the equation (24), then the above relation

defines a k-vector fieldK along FL, which satisfy conditions (1) and (2) of Definition 6.1, on S, but
not condition (3) (second-order condition) necessarily.

If L is a hyper-regular Lagrangian function, then the same results hold (with S=Tk
1Q). But in

addition, in the converse statements the k-vector fieldK along FL also satisfies the second-order
condition (3) of Definition 6.1, and hence it is a field operator for L.

Proof: Equations60d means that

s j0d*sFL0ssddssX0dAsFL0ssddd = KAssd, sP S, 1 ø A ø k. s61d

Then, sincej0+FL0=FL and s j0d*sv0dA=vA
0 we deduce froms61d that

sFLd*sıKA
ssv0dA + FLdd=

S
sFL0d*sısX0dA

vA
0d

and sincesFL0d*H0=EL we obtain

o
A=1

k

sFLd*sıKA
ssv0dA + FLdd − dEL=

S
sFL0d*So

A=1

k

sısX0dA
vA

0d − dH0D ,

where all the equalities hold onS. But, asFL0 is a submersion, we obtain that

o
A=1

k

sFLd*sıKA
ssv0dA + FLdd − dEL=

S
0 ⇔ o

A=1

k

sısX0dA
vA

0d − dH0=
P
0,

hence the field equation condition holds forK on S if, and only if, the Hamiltonian field equation
holds forX0 on P=FL0sSd.

For hyper-regular systems, the proof of these properties is the same, but taking into acount
that nowP=sTk

1d*Q, andFL0=FL. In addition, thek-vector fieldX0;X is defined everywhere in
sTk

1d*Q. Thus, the only addendum is to prove that, ifX is a solution to the equations24d, then its
associatedk-vector field alongFL ,K, satisfies the second-order condition. AsX is ak-vector field
in sTk

1d*Q, by definition it is a section oftsTk
1d*Q, thustsTk

1d*Q+X = IdsTk
1d*Q. Then, taking into account

that FL is a diffeomorphism, and thats60d reduces toX +FL=K, we have that

Tk
1stQ

* d + K = Tk
1stQ

* d + X + FL = FL−1 + tsTk
1d*Q + X + FL = IdTk

1Q

which is the second-order condition forK. j

Then assuming all these relations, we have the following
Theorem 6.3: K is integrable if, and only if,X0 is integrable. In particularwe have the

following.

s1d Let FLS:S→P be the restriction of FL0 to S (that is, jP+FLS=FL0+ jS). If c :Rk→
cS

S�
jS

Tk
1Q is

an integral section ofK on S, thenc0:Rk→
cP

P�
jP

P is an integral section ofX0 on P, where
cPªFLS+cS.

s2d Conversely, ifc0:Rk→
cP

P�
jP

P is an integral section ofX0 on P, then the sectionc :Rk

→
cS

S�
jS

Tk
1Q is an integral section ofK on S, for everycS:Rk→S#Tk

1Q such thatcP=FLS
+cS.

The sectioncS, and hencecª jS+wS, are holonomic if, and only if, K satisfies the second-
order condition (and hence it is a field operator).

Proof: If the system is almost regular, consider the diagram
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s62d

swhereX0 denotes any extension of thek-vector field solution onP to Pd.

s1d If c is an integral section ofK then

KAscstdd = sFL + cd*stdSU ]

]tA
U

t
D, 1 ø A ø k, s63d

but FL +c= j0+c0 because

FL + c = FL + jS+ cS= j0 + j P + FLS+ cS= j0 + j P + c = j0 + c0,

therefores63d is equivalent to

KAscstdd = s j0d*sc0stddSsc0d*stdSU ]

]tA
U

t
DD, 1 ø A ø k. s64d

Furthermore, froms61d and taking into account thatFL0+c=c0, we have that

KAscstdd = s j0d*sFL0scstdddsX0dAsFL0scstddd = s j0d*sc0stddssX0dAsc0stddd, s65d

then, froms64d and s65d, taking into account thatj0 is an imbedding, we deduce

sc0d*stdSU ]

]tA
U

t
D = sX0dAsc0stdd, 1 ø A ø k.

Hence,c0 is integral section ofX0.
s2d The converse is proved by reversing the above reasoning. In addition, the sectionscS and

cª jS+cS are holonomic if, and only if, they are integral sections of a second-orderk-vector
field along the Legendre map.

If the system is hyper-regular the proof is analogous, but takingP=sTk
1d*Q andFL0=FL. j

It is important to point out that, if the integrability condition holds only in a submanifold
I�S, then Theorem 6.3 only holds onI andFLsId swhich is assumed to be a submanifold ofPd.

Observe also that Theorem 6.3, together with Theorem 6.1, establish the equivalence between
the Lagrangian and Hamiltonian formalisms.
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In this paper we explore the general conditions in order that a two-dimensional
natural Hamiltonian system possess a second invariant which is a polynomial in the
momenta and is therefore Liouville integrable. We examine the possibility that the
invariant is preserved by the Hamiltonian flow on a given energy hypersurface only
sweak integrabilityd and derive the additional requirement necessary to have con-
servation at arbitrary energysstrong integrabilityd. Using null complex coordinates,
we show that the leading order coefficient of the polynomial is an arbitrary holo-
morphic function in the case of weak integrability and a polynomial in the coordi-
nates in the strongly integrable one. We review the results obtained so far with
strong invariants up to degree four and provide some new examples of weakly
integrable systems with linear and quadratic invariants. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1888565g

I. INTRODUCTION

In 1983 Hall1 published a remarkable paper devoted to a theory ofconfigurational invariants
of classical Hamiltonian systems. The main virtue of the work consisted in an elegant and pow-
erful technique to solve the equations for the existence of a second polynomial invariant of
arbitrary degree in the momenta for two-dimensional Hamiltonian systems. As a result of this
approach, Hall was able to get some new examples of integrable systems admitting a second
invariant of degree four in the momenta.

Unfortunately, the paper was flawed by a definitely wrong statement and also by many inac-
curate arguments and deductions. In fact, Hall purported to remedy supposed oversights in previ-
ous works on the search for the second invariant, in particular criticizing the classical account by
Whittaker.2 In Hall’s view, Whittaker’ssand all others’ since thend treatment provides only suffi-
cient conditions for the existence of a second invariantslinear and quadratic in the specific
instanced, whereas, due to overlooking the link established on phase-space variables by energy
conservation, it was not able to find all possible solutions. Actually, as it is, this statement is
wrong, in looking for astrongsecond invariant, namely a phase-space function which commutes
with the Hamiltonian function, Whittaker’s approach is indeed correct and leads tonecessary and
sufficientconditions for its existence. This point was already stressed by Sarletet al.3 in their
criticism to Hall’s paper.

Moreover, Hall’s discussion contained a confusion between the concept of configurationalsor
weakd invariant, as a function which exactly commutes with the Hamiltonian only on a subset
spossibly oned of the energy hypersurfacesssee again Ref. 3 and, e.g., Ref. 4d, and the notion of
what we may callformal integral as it emerges in the analysis of regular portions of the phase
space of generic nonintegrable systemsssee, e.g., Ref. 5d. In particular, the approximate invariants

adElectronic mail: pucacco@roma2.infn.it
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obtained by Hall as a result of his perturbative approach have little to do with those that can be
obtained by truncating a normal form expansion.

Nonetheless, in spite of all the above shortcomings, the form in which the problem has been
set by Hall and the approach followed for its partial solution deserve attention, since they can still
be very useful. Already Hietarinta,6 in his account of the direct methods for the search of the
second invariant, provides a review of all the known systems admitting one or more configura-
tional invariants and works out again the integrability conditions found by Hall for the existence
of weak invariants up to degree four. However, in Hietarinta’s review, the two settings of weak and
strong integrability are still kept well separated. More recently, in a series of works about a unified
approach to treat both kinds of invariants,7–10 the same integrability conditions have been ob-
tained,supplemented by the additional constraint imposed by strong integrability. This last step is
essential for a neat distinction between the two notions of weak and strong integrability. In these
works, this step is a straightforward consequence of the geometric approach in which the existence
of the second invariant is addressed by studying the corresponding Killing tensor equations for the
Jacobi metric. This metric depends on the mechanical energy as a parameter. Therefore, any tensor
object on the corresponding manifold in general depends on the energy. With due care about
formal relations between the two approaches, the geometric approach and Hall’s approach are
equivalent. The essential remark is that, to identify the cases of strong integrability, it is sufficient
that in the final results concerning the existence of the invariant, a subset can be isolated which is
independent of the energy parameter. In this framework, in Ref. 7, quadratic invariants at arbitrary
and fixed energy for two-dimensional Hamiltonian systems were treated in a unified way, whereas
in Refs. 8 and 9 the existence of, respectively,cubicandquartic invariants was discussed accom-
panied with the discovery of some new examples not given in earlier worksssee, e.g., Refs.
10–13d. In Ref. 14 the case of Hamiltonian systems with vector potentials is treated, extending
previous investigations.15–20

The aim of the present paper is to discuss the techniques for solving the equations for a second
invariant having a momentum dependence of arbitrary polynomial degree. The analysis is based
on a combination of both the above-mentioned approaches, with particular attention dedicated to
the conformal transformations used to simplify the equations. The treatment is in general effective
for both classes of invariants, configurationalsor weakd and strong. After that, we impose the
additional condition needed to isolate the class of strongly integrable systems, obtaining the
general form of the simplifying family of transformations for each degree of the strong invariant
looked for. This in turn implies determining the leading order terms in the invariant itself. An
alternative route to this result in the geometric approach is based on the invariance, under confor-
mal transformations, of the conformal part of the Killing tensor. Moreover, a general review of the
results obtained so far is provided.

The plan of the paper is as follows: in Sec. II we compare the notion of weak and strong
invariants and, working out in detail the quadratic case, we correct Hall’s misunderstanding,
providing the constraint to be satisfied in order to get strong integrability as a restriction of weak
integrability; in Sec. III we recall time reparametrization of the null Hamiltonian and complex
s“null” d coordinates used to simplify the direct approach; in Sec. IV these tools are exploited to set
the general approach to find polynomial invariants of arbitrary degree; in Sec. V we recall the
main results concerning invariants of degree up to four; in Sec. VI we present our conclusions and
the prospects for future works.

II. CONFIGURATIONAL INVARIANTS VERSUS STRONG INVARIANTS

As it is well knownssee, e.g., Ref. 21d, to grant the complete integrability of anN-dimensional
Hamiltonian system, it is necessary and sufficient to findN independent integrals of motion or
invariants, for short. In the following, we will limit ourselves to the simplest case of a conserva-
tive Hamiltonian system in two dimensionssN=2d. Since the Hamiltonian itself
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H = 1
2spx

2 + py
2d + Vsx,yd, s1d

is a conserved function, it is enough to find just a second independent invariant.
In his search for polynomial invariants, Hall1 exploits what is usually called the “direct

approach” of Darboux22 and Whittaker.2 As an “educated guess” we may start with the working
hypothesis of an invariant with a structure analogous to that of the Hamiltonian, namely a second
degree polynomial in the momenta.sSince all the work is made in a Hamiltonian context, contrary
to the original treatment by Hall, we use canonical phase-space coordinates. However, we have
tried to stay as close as possible to his treatment as refers to the procedure and notations.d Clearly,
one could start with a polynomial of arbitrary degree or even with a more general expression. In
the core part of the paper we will examine the general case. Now, as an introduction aimed at
giving the proper settings, we work out in detail the quadratic case. We may then look for a
phase-space function of the form

I2spx,py,x,yd = Apx
2 + Bpxpy + Cpy

2 + K, s2d

which is preserved along the flow given by Eq.s1d, namely

hI2,Hj = 0. s3d

In Eq. s2d, A, B, C, andK are each functions ofx andy. Actually Hall, probably motivated by his
interest in accelerator physics, manages to work out the integrability of Hamiltonians including
also a vector potential and henceforth terms which are linear in the momenta. This, in turn,
suggests the inclusion of analogous terms in the invariant. However, in the standard case of a
Hamiltonian invariant under momentum inversion,p→−p, the equations for the coefficients of
even and odd degree terms decouple, greatly reducing the complexity of the system to solve.
Therefore, since the main purpose of this paper is to fully clarify the issues of weak and strong
integrability, which are unaffected by such generalizations, we prefer to limit ourselves to the
standard case of Eq.s1d. The treatment of the vector potential is presented elsewhere14 where new
strongly integrable systems with quadratic invariants are presented.

In the direct approach, one inserts the functionss1d ands2d into the Poisson brackets3d. The
resulting polynomial in the momenta, of third degree in the present instance, must be identically
vanishing. In view of the independence and arbitrariness of the momentum coordinates, each
coefficient of the polynomial must vanish, determining in turn the following system of PDEs in the
coordinates

Ax = 0, s4d

Ay + Bx = 0, s5d

By + Cx = 0, s6d

Cy = 0, s7d

Kx = 2AVx + BVy, s8d

Ky = BVx + 2CVy, s9d

where, in order to compactify expressions, suffixes denote partial differentiation. As mentioned
above, Darboux22 addressed the problem and the equation ensuing from the integrability condition
for K, that is

BsVyy − Vxxd + 2sA − CdVxy + 3sByVy − BxVxd = 0, s10d
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is known asDarboux’s equation. Whittaker2 also analyzed the problem and, for a complete
account of the solution of this system, the standard reference is again the review by Hietarinta.6

Equations involving only the leading order termssA, B, andCd in the invariant are readily
solved,

A = ay2 + by+ c, s11d

B = − 2axy− bx− dy − e, s12d

C = ax2 + dx + f . s13d

Exploiting linear transformations of the coordinates, it can be shown6,7 that these functions can be
reduced to four canonical forms that, inserted into Darboux equations10d, lead to the complete
solution of the problem, there exist four fundamental separating coordinate systemsselliptical,
polar, parabolic, and Cartesiand in which the potential and the remaining unknown of the invariant,
K, can be expressed in terms of combinations of arbitrary functions of each of the separating
coordinates. Actually, in his reference to Whittaker’s result, Hall mentions only the elliptical
solution, but, as shown in Ref. 7ssee also Ref. 23d, using conformal transformations, all the
separable cases possess the same structure. Moreover, we remark on the additional possibility of
complex potentials, which provides four more cases with complex separating coordinates, which
are listed in Ref. 6 and can also be obtained with the techniques in Ref. 7.

At this point Hall states thatsRef. 1, p.93d “Whittaker’s work u¯u was flawed by his failure to
recognize that terms inẋ2 and ẏ2 are not independent for the purpose of setting the coefficients of
their various powers to zerou¯u. They are related by conservation of energy. Therefore, Whittak-
er’s constraints were over-restrictive; the solutions he found are valid, but others may also exist.”
On these bases, Hall elaborates a generalized approach that, in his view, provides necessary and
sufficient conditions for the existence of the given invariant. Actually, as we will shortly see, Hall
fails in recognizing that the possible extension of the family of solutions implies a different status
for the additional invariants, they are “fixed energy” orconfigurationalinvariants.

Configurationalsor “conditional” or even “weak”d integrals hold fora specified particular
value of the energy constantand were first investigated by Birkhoff24 and considered by
Fomenko,25 Kozlov,26 and others. Weak invariants enjoy weaker properties than their “nobler”
cousins, thestrong invariants, which are constant oneveryenergy hypersurface admitted by the
dynamics of the system. To clarify this essential point, let us again work with the quadratic case,
concretely introducing Hall’s argument. This goes as follows: for every valueE of the energy, the
function s1d defines the hypersurface

1
2spx

2 + py
2d + Vsx,yd = E. s14d

Let us construct the following linear combinations of the squares of the momenta:

S = px
2 + py

2, s15d

D = px
2 − py

2 s16d

and observe that, in view ofs14d, we can impose the constraint

S = 2Gsx,yd, s17d

where we have introduced the“Jacobi” potential fthe origin of this denomination comes from the
close relationship between the picture of a system constrained on the fixed energy surface and the
geometric picture of a geodesic flow over a Riemannian manifold endowed with a “Jacobi” metric
ssee, e.g., Ref. 27dg
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G = E − V. s18d

The quadratic terms in the standard form of the invariant of Eq.s2d can now be written as

Apx
2 + Bpxpy + Cpy

2 = 1
2fsA + CdS + sA − CdD + BÎS2 − D2g. s19d

Exploiting the energy constraints17d and redefining coefficients, the quadratic invariant can then
be written as

I2spx,py,x,yd = 1
2Dspx

2 − py
2d + Bpxpy + K̃, s20d

where

D = A − C, s21d

K̃ = K + sA + CdG. s22d

Now, we may proceed along the same lines followed above. The commutation relationss3d of the
weak invariants20d with the Hamiltonian reduce to the system

Dy + Bx = 0, s23d

Dx − By = 0, s24d

K̃x = BVy + DVx − GBy, s25d

K̃y = BVx − DVy − GBx. s26d

The integrability condition forK̃ is now thegeneralized Darboux equation,

BsVyy − Vxxd + 2DVxy + 3sByVy − BxVxd − 2sE − VdDxy = 0, s27d

where we have explicitly pointed out the presence of the energy parameter. In practice, since the
energy of the system is in general an arbitrary real number, we can write Eq.s27d in the form

f1E + f0 = 0, s28d

where f1, f0 are functions of the coordinates, both explicitly and throughV and its derivatives.
If we want that the looked for invariant has an identically vanishing Poisson bracket with the

Hamiltonregardless of the value of the energysin other words thatI2 should be astronginvariantd,
Eq. s28d must be satisfied for every value of the parameterE so that the two equations

f1 = 0, s29d

f0 = 0, s30d

must separately be satisfied. The first of these equations is simply

Dxy = 0. s31d

As a consequence of this, the second, by a direct comparison, turns out to coincide with the
standard Darboux equations10d. This time, the solution of Eq.s31d, together withs23d ands24d for
the leading order termssnow D andBd, gives

D = asy2 − x2d + by− dx + g, s32d
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B = − 2axy− bx− dy − e. s33d

Recallings21d and comparing withs11d–s13d, we see that we have arrived at a result completely
equivalent to that of the standard Darboux–Whittaker approach. In fact, Eq.s30d now coincides
with Eq. s10d and, therefore, the same possible separable potentials in two dimensions can be
found also following this alternative route.

In our general presentation in Sec. IV, we will see how this strategy reveals to be useful also
in the case of higher degree invariants. While used mostly for its pedagogical role in the present
instance, what is important to stress is the key role of the integrability condition in the forms28d:
in the general case of a polynomial invariant of degreeM, it turns out that Eq.s28d is a polynomial
in E of degreeM /2 for M even andsM +1d /2 for M odd.

In the case of invariance at fixed energy, the problem admits additional solutions. Now we
have that Eq.s31d is no more necessary and therefores23d and s24d are unconstrained Cauchy–
Riemann equations. Instead ofs32d and s33d, the solution is now given by an arbitrary analytic
function: its real and imaginary parts, respectively, provide the functionsD andB. Because of this
feature, we will see in the following how it is more convenient to work with complex variables.

Summarizing, the above procedure shows that the strategy for finding weak invariants is well
defined and points out where it must be constrained to get strong invariants. This objective being
the most important for applications, it may appear that, going this way, nothing is gained with
respect to the usual direct approach. However, the procedure instead proves to be very effective in
simplifying the system of equations resulting from implementing the direct approach. This sim-
plification is actually one of the reasons why Hall’s work is still useful. At the same time, since the
approach based on the constrained invariant ansatzs20d, complemented by a correct use of the
general Darboux equations28d, provides the same results as the standard approach, we get a
simple proof of the invalidity of Hall’s criticism towards Whittaker. However, Hall is right in
envisaging additional solutions to the problem, in the example we have just seen, it is conceivable
to obtain, forparticular values ofE, solutions of Eq.s28d not included in those ofs29d ands30d.
In Ref. 7, we have produced several classes of solutions corresponding toE=0.

The investigation of suchweakly integrable systemssWISd offers several additional issues to
study. We mention some of them.

sid Possible solutions defined for a continuous but finite range of energy valuesE1,E,E2.
sii d WIS which are actually SISsstrongly integrable systemsd with a more general form for the

second invariantsexamples, the Kepler problem, the Sarletet al. case3d.
siii d The main property of the integrable dynamics on theE surface may help in understanding

some of the main features in the nonintegrable regimessee, e.g., Ref. 28d.

III. THE NULL HAMILTONIAN AND TIME REPARAMETRIZATION

As already put forward by Hietarintassee Ref. 6, Sec. 7.2d, canonical point transformations
generated by analytical functions preserve the form of anull Hamiltonian. This invariance allows
a straightforward way to reduce the set of equations to be solved in the search for a polynomial
invariant. In the present section we show how, in the case of two-dimensional systems, the above
transformations are actually conformal transformations and are related with the time reparametri-
zation of the dynamics. These tools, exploited in the remaining part of the paper, were implicit in
Hall’s work.

In general the Hamiltonian itself has the form

H = T + Vsqd = E, s34d

whereT is a quadratic form in the momenta. The independent variable, let us sayt, is often but not
always the time. For any given energyE of the system, to represent the dynamics, we can use the
null Hamiltonian,
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H0 = H − E, s35d

provided that we impose the constraint

H0 = 0. s36d

For any such zero energy Hamiltonian we can reparametrize the system by introducing a new time
variable t̄ defined by the relation

dt = Nsp,qddt̄, s37d

together with a redefined Hamiltonian

H̄0 = Nsp,qdH0 = NT+ NsV − Ed = 0. s38d

The new Hamiltonian will then give the same equations of motion on the constraint surfaceH̄0

=0. We shall use the termlapse functionfor Nsp,qd which defines the independent variable gauge.
This usage is borrowed from cosmological applications where the lapse gives the rate of physical
time change relative to coordinate time. The lapse function can be taken as any nonzero function
on the phase space.

It is simpler to work with complex, or “null,” coordinates,

z= x + iy, pz = p = 1
2spx − ipyd, s39d

z̄= x − iy, pz̄ = p̄ = 1
2spx + ipyd. s40d

The null Hamiltonian can then be written in the form

H0 = 2pp̄− Gsz,z̄d = 0, s41d

whereG is the function introduced ins18d. The equations of motion given bys41d are

dz

dt
= 2p̄, s42d

dp

dt
= Gz = − Vz, s43d

and corresponding complex conjugates.G andV are always assumed to be real functions. In the
following we will spare to mention explicitly to the complex conjugates.

We use a conformal transformation to standardize the frame and coordinate representation of
the invariant. To that end we introduce a new complex coordinatew by means of the transforma-
tion

z= Fswd. s44d

The conformal transformation

z→ w = X + iY, s45d

given by the holomorphic functions44d determines the canonical point transformation

w = F−1szd, P = F8p, s46d

so thats1d transforms into the new null Hamiltonian
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H̃0 =
2PP̄− G̃sw,w̄d

uF8u2
= 0. s47d

Let us introduce the “standard” null Hamiltonian

HS= 2PP̄− G̃sw,w̄d = 0, s48d

that implies the use of the new “time”s, such that

d

ds
= uF8u2

d

dt
. s49d

Equations of motions42d and s43d becomes

dw

ds
= 2P̄, s50d

dP

ds
= G̃w. s51d

At the same time, a conserved quantity stays conserved if transformed between the two gauges
s47d and s48d. In terms of real variables,s48d is given by

HS= 1
2sPX

2 + PY
2d − G̃sX,Yd = 0. s52d

IV. INVARIANTS OF ARBITRARY DEGREE

With the choice of polynomial invariants, the time reflection symmetry of Hamiltonians1d
allows a further simplification in the procedure. In fact, it can been provedssee Hietarinta,6 Sec.
2.3 and Ref. 29d that the algebra of commuting functions with the Hamiltonian, which is an even
function with respect to time reflection, has “good” time reflection parity. Therefore, a polynomial
second invariant can be either even or odd polynomial in the momenta. We can therefore assume
a phase-space function of the following form:

IM = o
k=0

fM/2g

o
j=0

M−2k

px
j py

M−2k−jAs j ,M−2kdsx,yd, s53d

where the functionsAs j ,M−2kdsx,yd, not necessarily polynomials, must be determined. In the first
summation, withfM /2g we denote the greatest integer less thanM /2, so that if, e.g.,M =1, k takes
only the value zero.

A. The direct approach in the Cartesian frame

The simplest proceduresalso called thedirect approachd is now to compute the Poisson
brackets ofIM with H, collect terms with various power of momenta and let vanish their respective
coefficients. Using at first the forms53d in the usual Cartesian frame, we then get a system of
partial differential equations of the form

s j + 1dAs j+1,k+1d]xV + sk + 1 − jdAs j ,k+1d]yV = ]xAs j−1,k−1d + ]yAs j ,k−1d, s54d

with j =0, . . . ,k andk=M +1, M −1, M −3, . . . ,0 or 1 and it is implicit thatAss,td=0 if s,0 or s
. t and t,0 or t.M. In order to simplify formulas, in the present section we reintroduce the
standard notation] to denote partial differentiation with respect to the variable in the subscript.
The sets54d is a complicated set of PDEs, in general overdetermined: ifM is even we havesM
+2dsM +4d /4 equations forsM +2d2/4 unknowns; ifM is odd we havesM +3d2/4 equations for
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sM +1dsM +3d /4 unknowns. Actually, in the general case, to these figures the potentialV enters as
an additional unknown.

B. The direct approach in the null frame

Introducing the complex null frames39d and s40d, we have the following generic expression
of the invariant:

IM = 2 ReHo
k=0

M/2

C2kp
2kJ, M even, s55d

IM = 2 ReH o
k=0

sM−1d/2

C2k+1p
2k+1J, M odd, s56d

where the complex functionsC2k,k=0, . . . ,M /2 or C2k+1,k=0, . . . ,sM −1d /2 depend onz, z̄ and,
with the exclusion of the leading order coefficientsCM, implicitly on E. Their explicit expression
in terms of the coefficients of the invariant in Cartesian form are

C2k
sMd = o

a=0

sM/2d−k SG

2
Da

3 H o
,=0

2sa+kd

i2sa+kd−,Fo
r=0

a

s− 1drS ,

, − a + r
DS 2sa + kd − ,

2sa + kd − , − r
DGAs,,2sa+kddJ ,

s57d

whenM is even and

C2k+1
sMd = o

a=0

sM−1d/2−k SG

2
Da

3 H o
,=0

2sa+kd+1

i2sa+kd+1−,Fo
r=0

a

s− 1drS ,

, − a + r
D

3S 2sa + kd + 1 −,

2sa + kd + 1 −, − r
DGAs,,2sa+kd+1dJ , s58d

when M is odd. In these expressions a superscriptsMd has been introduced in order to let them
apply in general, namely,Ca

sMd denotes theath coefficient of the invariant of degreeM. In the
following this superscript will not be used unless it is strictly needed to prevent confusion. As
usual, ins57d and s58d,

Sn

k
D =

n!

sn − kd!k!
s59d

denotes the binomial coefficient.
The formss55d ands56d of the invariant do not contain cross terms, namely terms with powers

of pp̄, since they have been eliminated exploiting the constraint

2pp̄= Gsz,z̄d s60d

dictated bys41d. A simple check of this statement can be performed with the quadratic invariant
with which we are familiar from Sec. II. Equations57d with M =2 gives

C2
s2d = A22 − A02 + iA12, s61d

C0
s2d = A00 + sA02 + A22dG. s62d

PosingA22=A, A12=B, A02=C, A00=K andC2
s2d=D+ iB, C0

s2d=K̃ we again find relationss21d and
s22d and see that the expressions20d of the invariant is equivalent to
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I2sp,p̄,z,z̄d = C2
s2dp2 + C̄2

s2dp̄2 + K̃. s63d

The use of the energy constraint leads to the maximal reduction in the number of equations
ensuing from the direct approach. However, in the case of integrability at arbitrary energy, to this
reduced number one must add the integrability conditions which results in a set of equations
generalizings29d. The constraints60d can also be used to “homogeneize” the polynomial invari-
ant. In this form, used in the geometric framework in connection with the geodesic flow over a
Riemannian manifold, the coefficients of the invariant give rise to a symmetricM-rank tensor,
known as aKilling tensor.

The commutation relation of the functionss55d or s56d with the null Hamiltonians41d gives
the system of equations

]z̄Ck−1 + 1
2s]zCk+1dG + 1

2sk + 1dCk+1]zG = 0, k = 0,1, . . . ,M , s64d

where it is implicitly assumed thatCj =0 for j ,0 and forj .M. The set of equations64d must be
supplemented by the closure equations

]z̄CM = 0 s65d

and

Rh]zsC1Gdj = 0. s66d

Clearly, this last condition must be stated only in the case of odd degree, since forM even, a
closure condition of the form

IhC0j = 0 s67d

is implicit sinceC0 is real by definition.
In both cases, using the null complex coordinates, we haveM +2 real equations forM +1 real

unknowns: the substantial reduction of the number of independent equations with respect to that in
the Cartesian frame was already remarked by Hietarintassee Ref. 6, Sec. 7.5d. However, he
thought that reintroducing the explicit dependence on energy would reestablish the original num-
ber, whereas, as we will see, the gain in saving equation still remains when going to the Cartesian
frame.

C. Solving the equations for the Mth-degree invariant

At present a general solution of systems64d is still lacking. In Refs. 7–9 we found the general
solutions for 1øM ø4. In the present section we illustrate the aspect of the procedure which are
common to allMth-degree invariant. The first steps are essentially the same as in the original
paper by Hall.

Looking at the system above, we see that Eq.s65d is readily solved,

CM = CMszd, s68d

that isCM is an arbitrary holomorphic function. The first important result we get is therefore that
the leading order coefficient of a polynomial invariant is given by an arbitrary holomorphic
function. This fact is already known in the case of homogeneous polynomial invariants
sKolokoltsov,30 Kozlov26d and was obtained by BirkhoffsRef. 24, Chap. 2d for M ø2. We remark
that, in agreement with notations ins57d ands58d, here we are referring toCM

sMd, that is the leading
order coefficient of the polynomial invariant of degreeM with various values ofM. Therefore, in
order to avoid confusion with lower order coefficients in a polynomial with a givenM and also to
conform with the notation in previous works, in the following we will denote the leading order
coefficient withSM.
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In order to attack the remaining equations ins64d, we may further simplify them by perform-
ing a coordinate transformation. This is a conformal transformation of the forms44d, where the
generating functionFswd is chosen such that

F8swszdd = SM
1/M . s69d

In this case, we see that the first equation of the chains64d can be rewritten as

SM
s2/Md−1]w̄CM−2 +

M

2
]wG̃ = 0, s70d

where, in agreement withs47d, the new “conformal” potential

G̃sw,w̄d = uF8swdu2G = sSMS̄Md1/MG, s71d

has been introduced. Defining the function

C̃M−2sw,w̄d = SM
s2−Md/MCM−2, s72d

Eq. s70d becomes

]w̄C̃M−2 +
M

2
]wG̃ = 0 s73d

and, defining in an analogous way,

C̃2ksw,w̄d = SM
−2k/MC2k, k = 0,1, . . . ,fN/2g, s74d

the rest of the system becomes

]w̄C̃j−2 +
1

2G̃j−1
]wsC̃jG̃

jd = 0, s75d

with the rangesj =4,5, . . . ,N−2 if N is even andj =3,4, . . . ,N−2 if N is odd.

D. The Kähler potential

Equations70d, or better its transformed forms73d, plays a special role. In view of the fact that

the new potentialG̃ is still a real function,s73d can be solved introducing a real functionKsw,w̄d
such that

G̃ = ]ww̄
2 K, s76d

C̃M−2 = −
M

2
]ww

2 K. s77d

The first equation says that the Jacobi potential is the Laplacian of the functionKsw,w̄d. Since, in
the geometric picture,G is the conformal factor of the metric element, usingK it gives rise to a
Hermitian form and therefore it is referred to as theKähler potential. Without loss of generality,
in Ref. 9, Sec. IV, it has been shown that the Kähler potential can be assumed to be of the form

K = EfFswdF̄sw̄d + 2RhLszswddjg − C, s78d

whereL is an arbitrary holomorphic function independent ofE and the realprepotentialC is such
that
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]ww̄
2 C = F8F̄8]zz̄

2 C = uF8u2V. s79d

In the case of invariants up to the fourth degree,M ø4, we see that the closure equationss66d and
s67d are themselves expressed only in terms of the Kähler potential. In these cases, to get a
complete solution of the problem, it remainsonly to solve an integrability condition forKsw,w̄d.

In the cases of linear and quadratic invariants, the integrability condition is linear and we have
the general solution depending, respectively, on one and two arbitrary real functionsssee Ref. 7d.
In the higher degree cases, the integrability conditions are nonlinear and a general solution is
lacking: moreover, in general, they give rise to an overdetermined system for the unknownsL and
C. This is consistent with the fact that only isolated cases of integrable Hamiltonian systems with
invariant of degree higher than two are known. Failing to work in full generality, a useful approach
is to make an ansatz for one of the unknownsse.g.,Ld and solve forC. In this way several new
integrable and superintegrable systems have been found with a cubic8 and a quartic9 second
invariant.

E. The leading order term of strong invariants

Looking for a strong invariant, so that the integrability condition must be solved for arbitrary
values ofE, it turns out that the functionCM can no longer be arbitrary. In our previous works we
have shown its polynomial structure with degree equal toM for M ø4 and guessed that this is the
generic behavior for any value ofM. In this section we prove that this conjecture is true by
explicitly computing the function with the aid of the already known solution in the Cartesian case.

In Ref. 7 for the linear and quadratic cases we have found, respectively, the conditions

RhS18szdj = 0, s80d

IhS29szdj = 0. s81d

In Ref. 8, for the cubic case, the condition

RH d3

dz3S3J = 0 s82d

was found, whereas in Ref. 9, for the quartic case, the condition

IH d4

dz4S4J = 0 s83d

was found. Therefore we can guess the general conditions

RH dM

dzM SMJ = 0, M odd, s84d

IH dM

dzM SMJ = 0, M even. s85d

Conditions froms80d–s83d have been obtained working on the integrability condition for the
Kähler potentialK. Since it is not possible to write an explicit expression for the integrability
condition at arbitraryM, we proves84d ands85d by explicitly calculating them. The easiest way to
proceed is to exploit the solution in Cartesian coordinates and after that performing the transfor-
mation to complex coordinates: the reason for not working directly in the complex frame is that,
in s55d and s56d, part of the information on the structure ofSM is hidden in the lower order
coefficients through the energy constraint, this information could be recovered only having the
solution of the complete system of equations forCk up to the integrability forC0.

Comparings55d and s56d with s53d we get the relation
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SMsx + iyd ; CM = o
m=0

M

iM−mAsm,Mdsx,yd. s86d

As it is natural, the leading order complex coefficient depends only on leading order Cartesian
coefficients. Considerings54d with k=M +1, we get the equation for the leading order Cartesian
coefficients, namely

]xAs j−1,Md + ]yAs j ,Md = 0, j = 0,1, . . . ,M + 1, s87d

whose solution can be immediately foundssee Hietarinta,6 Sec. 3.0d:

Asm,Md = o
k=0

m

o
j=0

M−m

s− 1dks j + kd!
j !k!

as j+k,m−k,Mdx
jyk, s88d

whereas j+k,m−k,Md are real integration constants.
From the relation

]z = 1
2s]x − i]yd s89d

we have the expression for therth derivative

]z
r =

1

2r o
s=0

r
r!

sr − sd!s!
s− ids]x

r−s]y
s. s90d

In order to compute the operators90d we need the following intermediate result:

]x
r−s]y

sxjyk =
j !

s j − r + sd!
k!

sk − sd!
xj−r+syk−s, for k ù s and j ù r − s, s91d

whereas the result is zero ifk,s or j , r −s. Using it, the action of the operators90d on the
monomialxjyk is

]z
rxjyk =

1

2r o
s=0

r

s− ids r!

sr − sd!s!
j !k!

s j − r + sd!sk − sd!
xj−r+syk−s. s92d

Actually, we are interested only in the action of]z
M: in this case, since each derivative corresponds

to decreasing the degree of the monomial by one, only the highest degree terms, withj +k=M,
survive the action of]z

M. Applying s92d we get

]z
MxM−kyk =

1

2M o
s=0

M

s− ids M!

sM − sd!s!
k!sM − kd!

ss− kd!sk − sd!
xs−kyk−s. s93d

Analogously to those ins91d, we have that both conditionss−kù0 andk−sù0 must be satisfied.
This implies justs=k so thats93d turns out to be simply

]z
MxM−kyk =

1

2M s− idk M!

sM − kd!k!
k!sM − kd! = s− idk 1

2M M!. s94d

The same result holds exchangingk with M −k,

]z
MxkyM−k = s− idk 1

2M M!. s95d

Let us now denote withÂsm,Md the highest degree part ofAsm,Md,
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Âsm,Md = s− 1dm M!

sM − md!m!
asM,0,Mdx

M−mym. s96d

Using s94d we then have

]z
MAsm,Md = ]z

MÂsm,Md =
im

2M

M!2

sM − md!m!
asM,0,Md. s97d

Rememberings86d we finally get

]z
MSM = o

m=0

M

iM−m]z
MAsm,Md s98d

= o
m=0

M

iM−m im

2M

M!2

sM − md!m!
asM,0,Md s99d

=
im

2M M!asM,0,Mdo
m=0

M
M!

sM − md!m!
s100d

=imM!asM,0,Md s101d

which is just what we wanted to prove since it is equivalent tos84d and s85d.

V. EXAMPLES

We illustrate the applications of the general approach described so far with a selection of
results, many of which are new. In particular, we provide some weakly integrable systems with
linear and quadratic invariants and a recipe for higher order examples. In order to compactify
formulas, from hereinafter with the subscript we denote the partial derivative with respect to the
corresponding variablesexcept when used to denote a component of momentumd.

A. Weakly integrable systems with linear invariants

The ansatz is

I1 = Sp+ S̄p̄, s102d

where for simplicity we have suppressed the subscript in theS function. The system of equations
ensuing from the conservation condition is the following:

Sz̄ = 0, s103d

RhsGSdzj = 0. s104d

Equations103d agrees withs68d, confirming thatS can be an arbitrary analytic function,

S= Sszd. s105d

According tos69d, the conformal transformation is given by

dz

dw
= F8swd ; Sszswdd s106d

or equivalently
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w = X + iY =E dz

Sszd
. s107d

Introducing the “conformal” potential

G̃ = uF8u2G = uSu2G = SS̄G, s108d

Eq. s104d reduces to

RhG̃wj = 0, s109d

which is readily solved in

G̃ = gsYd, s110d

whereg is an arbitrary real function and, according to the definition of the coordinate transfor-
mation,Y is the imaginary part ofw. In this coordinates, the invariant assumes the normal form

I1 = P + P̄ s111d

or simply

I1 = PX. s112d

Equations104d, in view of s105d and recalling the definition ofG, can be rewritten as

RhS8sE − Vd − SVzj = 0. s113d

We recognize the structure of Eq.s28d, where now

f1 = RhS8szdj = 0 s114d

and

f0 = RhsSVdzj = 0 s115d

and we see thats114d coincides withs80d and solutions110d now applies toV, so that we have

V =
gsYsx,ydd

uSu2
, s116d

with g arbitrary. The general form of the second invariant in the original real coordinates is

I1 = RhSjpx + IhSjpy. s117d

We may provide two interesting classes of weakly integrable systems admitting linear invari-
ants. The first is obtained by the simple observation that, if we choose the level surfaceE=0, it is
no longer necessary that conditions114d be satisfied.Any analytic functionS=Sszd provides a
solution through the corresponding conformal transformation. IfY, as above, denotes the new
coordinate

Y = ImHE dz

SszdJ , s118d

then the solution is given by the pairs116d and s117d, provided we consider only motions at the
energy levelE=0.

The second class of weakly integrable systems is obtained with the following trick. Let us
consider the analytic functionfszd and consider then the conformal transformations106d with Sszd
given by
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S=
1

a + f8szd
, s119d

with a constant. Recalling definitions108d, let us consider the “flat” conformal potentialG̃=1. In
this case, relations108d, usings119d gives

G = E − V =
1

uSu2
= a2 + asf8 + f̄8d + uf8u2. s120d

We can therefore interpreta2 as the fixed value of the energy constant and get as a consequence
the family of potentials

Vsz,z̄;Ed = − ÎEsf8 + f̄8d − uf8u2. s121d

To complete the solution, we must write explicitly the coordinate transformation generated by
s119d, that is

w =E dz

Sszd
= az+ fszd. s122d

The invariant is still of the forms117d.

B. Weakly integrable systems with quadratic invariants

The ansatz is

I2 = Sp2 + S̄p̄2 + K̃. s123d

The system of equations ensuing from the conservation condition is the following:

Sz̄ = 0, s124d

K̃z̄ + SGz + 1
2S8G = 0. s125d

Equation s124d is already familiar. SinceK̃ is real, Eq.s125d has the following integrability
condition:

IhS9G + 3S8Gz + 2SGzzj = 0. s126d

However, as above, we can directly simplify Eq.s125d. According tos69d, the conformal trans-
formation is now given by

dz

dw
= F8swd ; ÎSszswdd s127d

or equivalently

w =E dz
ÎSszd

. s128d

With the conformal potential

G̃ = uF8u2G = uSuG = ÎSS̄G, s129d

Eq. s125d reduces to
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K̃w̄ + G̃w = 0, s130d

that is the first example of the sets73d. Its integrability condition is

IhG̃wwj = 0 s131d

which is readily solved by

G̃ = Ãsw + w̄d + B̃sw − w̄d, s132d

whereÃ and B̃ are arbitrary real functions. Setting this solution ins125d gives

K̃ = B̃ − Ã. s133d

Comparing withs129d and using real “separating” coordinates,

X = Rhwj, Y = Ihwj, s134d

the solution for the original functionG is then

G =
ÃsX;Ed + B̃sY;Ed

uSu
. s135d

The invariant takes the normal form

I2 = P2 + P̄2 + B̃ − Ã = 1
2sPX

2 − PY
2d + B̃ − Ã s136d

or, in the original real coordinates,

I2 = 1
2 ResSdspx

2 − py
2d + ImsSdpxpy + B̃sYsx,ydd − ÃsXsx,ydd. s137d

Equations131d can be rewritten as

IhS9sE − Vd − 3S8Vz − 2SVzzj = 0. s138d

We again recognize the structure of Eq.s28d, where now

f1 = IhS9szdj = 0 s139d

and

f0 = IhS9V + 3S8Vz + 2SVzzj = 0 s140d

and we see thats139d coincides withs81d. It can be provenssee Ref. 28, Sec. IId that this
condition, in addition to warrant strong integrability, is also necessary and sufficient in order that
the conformal factoruSu can be written as asumof two functions ofX andY, say

uSu = SXsXd + SYsYd. s141d

Since froms140d we have that solutions135d now applies toV, we get

V =
AsXd + BsYd

uSu
s142d

with suitableA and B. In this case,X and Y are properly referred to asseparablecoordinates.
From s135d and s141d, we deduce the relations

ÃsX;Ed = ESX − AsXd, s143d
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B̃sY;Ed = ESY − BsYd, s144d

so that, eliminating the energy parameter through the Hamiltonian

E = H =
1
2sPX

2 + PY
2d + A + B

SX + SY
, s145d

the general form of the strong quadratic invariant is

I2 =
SYsPX

2 + 2Ad − SXsPY
2 + 2Bd

SX + SY
. s146d

We mention here some interesting examples of weak integrability with quadratic invariants.
Consider first the polynomial functionSszd= iz2. This is the simplest polynomial which gives a
potential which is not automatically integrable at arbitrary energy. The corresponding conformal
transformation is given by

w = 2−1/2s1 − idln z s147d

or in terms of the real variables using polar coordinates

X =
1
Î2

su + ln rd, s148d

Y =
1
Î2

su − ln rd. s149d

From the relations135d it then follows that the potential given by

V = r−2fAsreud + Bsre−udg, s150d

is integrable at zero energy for arbitrary functionsA andB. In Ref. 28, the class of systems with

AsXd = 1
2sC − sinÎ2Xd, s151d

BsYd = 1
2sC − sinÎ2Yd, s152d

whereC is a real constant, has been investigated. Using polar coordinates, the explicit form of the
potential is

Vsr,ud =
C − sinu cossln rd

r2 s153d

and that of the second invariant is

I2spr,pu,r,ud = rprpu − cosu sinsln rd, s154d

where

rpr = xpx + ypy, s155d

pu = xpy − ypx. s156d

A natural question one can ask is if the system is still integrable at arbitrary energy values. As it
is well known, it is possible to answer this question by performing careful numerical investiga-
tions, but, on purely analytical grounds, the problem is in general quite difficult. In Ref. 28, this
potential has been proven to be nonintegrable at values of the energy −e1,E,e2, with small
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enoughe1,2, for every value ofC in the intervals0,1g. The proof has been obtained by applying the
Poincaré nonexistence theorem of additional invariantsssee, e.g., Refs. 31 and 32d, working in the
transformed coordinatesX, Y, taking asunperturbed part of the Hamiltonian the integrable system
at E=0 and as a small perturbation the term associated to the conformal factor.

A second example is that given by a generating function of the form

Sszd = z−2. s157d

The conformal transformation can then be written in terms of the real variables as

X = 1
2r2 cos 2u = 1

2sx2 − y2d, s158d

Y = 1
2r2 sin 2u = xy. s159d

The corresponding potential is

VsX,Yd = r2fAsXd + BsYdg, s160d

since the conformal factor is

uSsX,Ydu =
1

2ÎX2 + Y2
=

1

r2 . s161d

Choosing, for example,

AsXd = 4X2, s162d

BsYd = s2 + adY2 + b, s163d

wherea is a constant such that 0øaø2 andb.0, we get the family of potentials

Vsx,yd = r2sx4 + y4 + ax2y2 + bd. s164d

This potential has a relative maximum at the origin whereVs0,0d=0, absolute minima placed
symmetrically in the four quadrants around the origin and grows asr6 for r →`. It allows bound
motion for all the admissible values of the energy. Fora=2 it is rotationally symmetric and
therefore it is “superintegrable” at zero energy. The second invariant is

I2spx,py,x,yd =
x2 − y2

2r4 spx
2 − py

2d −
2xy

r4 pxpy + x4 + y4 − s4 + adx2y2. s165d

What is remarkable in this case is that already at energies slightly below or above the integrable
level E=0, the dynamics is stronglychaotic. This shows that identifying weakly integrable sys-
tems does not necessarily provide anearly integrable system.

C. Weakly integrable systems with higher-order invariants

Exploiting the results obtained in Refs. 8 and 9, several families of weakly integrable systems
admitting cubic and quartic invariants can be obtained. Both cases can be described with a similar
approach. The invariants have the form

I3 = 2 RehS3p
3 + R3pj, s166d

I4 = 2 RehS4p
4 + R4p

2j + C0. s167d

The conformal transformationss69d, respectively, give the normal forms
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I3 = 2 RehP3 + R̃3Pj, s168d

I4 = 2 RehP4 + R̃4P
2j + C0, s169d

with

R̃M = SM
s2−Md/MRM, M = 3,4, s170d

in agreement with definitions72d. Introducing the Kähler potential, Eq.s77d provides the solutions

for R̃M,

R̃M = −
M

2
Kww. s171d

In the cubic case, the closure equations66d expressed in terms of the Kähler potential gives

RhsKwwKww̄dwj = 0. s172d

In the quartic case, the closure equation is that determined by Eq.s75d that, with j =2 and the
notations adopted here, gives

sC0dw̄ = −
1

2G̃
sR̃4G̃

2dw. s173d

The reality ofC0 requires the integrability condition

IhsKwwwKww̄ + 2Kwww̄Kwwdwj = 0. s174d

Equationss172d and s174d illustrate the important difference between the previous linear and
quadratic casessM =1,2d and the higher ordersM .2d cases. In the linearfsee Eq.s109dg and the
quadratic casefsee Eq.s131dg, the integrability conditions arelinear differential equations: their
solution is in terms of one or two arbitrary functions, respectively. Now, Eqs.s172d ands174d are
bothnonlinearpartial differential equations, they appear very complicated and in practice impos-
sible to solve in full generality. Only isolated systems can be identified. Using the general expres-
sion s78d, we get in bothM =3 andM =4 cases aquadraticequation of the form

f2E
2 + f1E + f0 = 0, s175d

where thefk, k=0,1,2depend onS, L, C and their derivatives. Looking for strong invariants,S
is determined as abovefcf. Eq.s82d and Eq.s83dg and several solutions can be obtained by suitable
assumptions onL andC.8,9

Looking for weak invariants, a large class of solutions can be obtained in the simplest even-
tuality E=0. In fact, in this case the only condition we must satisfy isf0=0 and it can be proven
that this equation is a nonlinear PDE in the variableC only. In fact, we get, respectively,

RhsCwwCww̄dwj = 0, M = 3 s176d

and

IhsCwwwCww̄ + 2Cwww̄Cwwdwj = 0, M = 4. s177d

Now, anysolution of these equations in whatever coordinate system can be used to generate a new
weakly integrable systemsat E=0d using an arbitrary conformal transformation not included in the
families s82d and s83d.
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VI. CONCLUSIONS

Much of the structure and ideas presented in this work has come from the geometric formu-
lation using the Jacobi metric as described in Ref. 7 and further developed in Refs. 8 and 9. One
of the important results of those earlier works was the unification of the notions of weak and
strong integrability in a common framework. Another was the identification of the crucial role of
the conformal transformations for analyzing integrability in two dimensions. However, while the
geometric picture has been very useful in these and other respects, it is clear from the present work
that an approach which is more closely related to the more traditional Hamiltonian picture can also
be very effective.

The conformal transformations have provided the clue for finding explicit conditions for the
leading order term of strong invariants of arbitrary degree. The conditions, as given in Eqs.s84d
and s85d, are natural generalizations of the conditions for low order invariants. The examples
given in Sec. V provide an illustration of the apparent ease by which it is possible to construct
interesting weak invariants. We hope that this work can serve as a starting point for improving the
understanding of higher order invariants of both the strong and the weak type.
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We present the theory of higher order local variational principles in fibered mani-
folds, in which the fundamental global concept is a locally variational dynamical
form. Any two Lepage forms, defining a local variational principle for this form,
differ on intersection of their domains, by a variationally trivial form. In this sense,
but in a different geometric setting, the local variational principles satisfy analo-
gous properties as the variational functionals of the Chern–Simons type. The re-
sulting theory of extremals and symmetries extends the first order theories of the
Lagrange–Souriau form, presented by Grigore and Popp, and closed equivalents of
the first order Euler–Lagrange forms of Haková and Krupková. Conceptually, our
approach differs from Prieto, who uses the Poincaré–Cartan forms, which do not
have higher order global analogues. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1901323g

I. INTRODUCTION

It is well known that differential equations for critical points of a variational functional in a
fibered manifold can be represented by a global differential form, theEuler–Lagrange form,
whose components are the Euler–Lagrange expressions. It is also well known that there exist
differential equations, represented by similar global differential forms, thedynamical forms, which
are locally variational, but do not admit aglobal Lagrangian. A deeper understanding of this
phenomenon is provided by the variational bicomplex theorysVinogradov,31 Takens,28 Anderson
and Duchamp,2 Dedecker and Tulczyjew,6 and Tulczyjew30d, and thesfinite orderd variational
sequence theorysKrupka,20 Grigore,10,11 Vitolo,32 and Krbek and Musilová14d.

The corresponding variational principles in the first order field theory have been recently
studied by several authors. Grigore and Popp12 extended the ideas of Souriau27 on the role of
closed 2-forms in mechanics tosn+1d-forms in the variational theory forn-dimensional submani-
folds of a given manifold. They introduced theLagrange–Souriau form, representing the Euler–
Lagrange equations, and proved that this form is equal to the exterior derivative of thefundamen-
tal Lepage formin the sense of Krupka,15,18 ssee also Betounes3,4 and Rund25d. The theory
presented by Prieto23,24d, is based on the existence of the global Poincaré–Cartan form
sSniatycki,26 Goldschmidt and Sternberg,9 Krupka,17,15 and García8d, and is aimed to extend basic
properties of variational principles of the Chern–Simons typessee, e.g., Freed7d to fibered mani-
folds. Haková and Krupková13 showed that the closedsn+1d-forms related to variational systems
of first order partial differential equations are exactly the exterior derivative of the fundamental
Lepage form.
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Closed 2-forms in higher order mechanics, equivalent with the Euler–Lagrange forms, were
studied by Krupková.21,22

This paper is devoted to local variationality in the framework of thehigher ordervariational
theory on fibered spacessKrupka19,15d, and the variational sequence theory. In general, for higher
order Lagrangians in field theory a global analogue of the Poincaré–Cartan form does not exist.
We show that instead of this form one can useany Lepage form; the Poincaré–Cartan form is an
example of a first order Lepage form. Anyshigher orderd Lepage form gives rise, by means of the
global variation formula, to theshigher orderd Euler–Lagrange form. Conceptually, the theory is
quite simple and clear. In particular, it is easy to understand, in full generality, that there exist
sglobald dynamical forms, admitting local higher order Lagrangians, but not a global one.

In Sec. II we give a survey of the higher order variational theory on fibered spaces. Section III
is devoted to some new results on infinitesimal symmetries, based on the fundamental Lepage
form. In Sec. IV we introduce alocal variational principle for a locally variational dynamical
form. We give thefirst variation formulaand discuss properties of transformations, leaving in-
variant the local variational principle, and the locally variational form.

In this paper we suppose that we have a fibered manifoldp :Y→X, and writen=dim X, and
n+m=dim Y. JrY is ther-jet prolongationof Y, andpr,s:JrY→JsY, pr :JrY→X are thecanonical
jet projections. The r-jet prolongationof a sectiong is defined to be the mappingx→Jrgsxd
=Jx

rg. For any setW,Y we denoteWr =spr,0d−1sWd. Any fibered chartsV,cd, c=sxi ,ysd, on Y,
induces theassociated chartson X and on JrY, denoted bysU ,wd, w=sxid, and sVr ,crd, cr

=sxi ,ys ,yj1
s ,yj1j2

s , . . . ,yj1j2. . .j r
s d, respectively; here 1ø i øn, 1øsøm, and Vr =spr,0d−1sVd, U

=prsVd. We denotev0=dx1∧dx2∧ ¯ ∧dxn, and

vk = i]/]xkv0 = s− 1dk−1 dx1 ∧ dx2 ∧ ¯ ∧ dxk−1 ∧ dxk+1 ∧ ¯ ∧ dxn.

We define theformal derivative operatorby

di =
]

]xi + yi
s ]

]ys + yi1i
s ]

]yi1
s + ¯ + yi1i2¯iri

s ]

]yi1i2¯ir
s .

II. LAGRANGE STRUCTURES

A. Differential forms on jet spaces

For any open setW,Y, let V0
r W be the ring of functions onWr. The V0

r W-module of
differentialq-forms onWr is denoted byVq

r W, and the exterior algebra of forms onWr is denoted
by VrW. The module ofpr,0-horizontal spr-horizontald q-forms is denoted byVq,Y

r W sVq,X
r W,

respectivelyd; forms belonging to these spaces are sometimes calledpr,0-semibasic, or
pr-semibasic, respectively.

Let W,Y be an open set. The fibered structure ofY induces a morphism of exterior algebras
h:VrW→Vr+1W, called thehorizontalization. In a fibered chartsV,cd, c=sxi ,ysd, h is defined by

hf = f + pr+1,r, h dxi = dxi, h dyj1j2¯ jp
s = yj1j2¯ jpk

s dxk,

wheref :Wr →R is a function, and 0øpø r. Note thath can be defined intrinsically: for ak-form
hPVk

rW, where 0økøn, we definehh to be a uniquepr+1-horizontal form such thatJrg*h
=Jr+1g*hh for every sectiong of Y shere * denotes the pull-back operationd.

We say that a formhPVk
rW is contact, if hh=0. For any fibered chartsV,cd, c=sxi ,ysd, the

1-forms

v j1j2¯ jp
s = dyj1j2¯ jp

s − yj1j2¯ jpk
s dxk,

where 1øpø r −1, are examples of contact 1-forms. Note that these forms define a basis of
1-forms onVr, sdxi ,v j1j2¯ jp

s ,dyj1j2¯ j r
s d.

It is known that a formhPVk
rW has a unique decomposition
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spr+1,rd*h = hh + p1h + p2h + ¯ + pkh, s1d

such thatpih contains, in any fibered chart, exactlyi exterior factorsv j1j2¯ j l
s , 1ø l ø r. In particu-

lar, this gives us a simple formulation of the fact that the formsv j1j2¯ j l
s generate anideal in the

exterior algebraVrV sthe contact ideald.
hh spihd is thehorizontal sith contactd componentof h. The decompositions1d is invariant,

and is called thecanonical decompositionof h.
h is pr-horizontal if and only if spr+1,rd*h=hh. We say thath is k-contact, if spr+1,rd*h

=pkh; in this casek is theorder of contactnessof h.
Let kùn+1. Then for anyk-form hPVk

rW, hh=0, p1h=0, p2h=0, . . . ,pk−n−1h=0, because
each of these forms contains more thann exterior factors dxi. h is said to bestrongly contact, if
pk−nh=0.

B. Lagrangians

A Lagrangian sof order rd for Y is any pr-horizontal n-form on someWr ,JrY, i.e., any
element of the setVn,X

r W. In a fibered chartsV,cd, c=sxi ,ysd, a Lagrangian of orderr defined on
Vr =spr,0d−1sVd has an expression

l = Lv0, s2d

whereL :Vr →R is a functionsthe Lagrange functionassociated withl and sV,cdd. Clearly, in
general a Lagrangian cannot be determined by aglobally defined function unless a volume ele-
ment onX is specified.

A pair sY,ld, consisting of a fibered manifoldY and a Lagrangianl of orderr for Y is called
a Lagrange structuresof order rd.

Sometimes it is convenient to use Lagrangians of the forml=hh, wherehPVn
r−1W. These

Lagrangians have a certain polynomial structure in the highest order variablesyj1j2¯ j r
s . The as-

sumptionl=hh appears naturally in the variational sequence theory, but does not restrict the
generality.

Note that our definition includes Lagrangians defined over any open subsetsW,Y; we need
such a definition to describe phenomena arising in connection with the so-calledlocal variational
principles for globally definedEuler–Lagrange equations. The discussion of this situation is a
main objective of this paper.

C. Lepage forms

We now give a formal definition of a Lepage formsKrupka15d. A principal geometric meaning
of this concept consists in the fact, that Lepage forms describe the relationship between the
equations for extremals of variational principles on one side, and the exterior derivative operator,
acting on differential forms, on the other side.

A differential form rPVn
sW, where n=dim X, is called a Lepage form, if p1 dr is

ps+1,0-horizontal, i.e.,p1 drPVn+1,Y
s+1 W. A Lepage formr is a Lepage equivalentof a Lagrangian

lPVn,X
r W, if the horizontal component ofr coincides withl, i.e., hr=l spossibly up to a jet

projectiond.
If r is a Lepage equivalent of a LagrangianlPVn,X

r W, expressed bys2d, then one can get by
a direct calculation

p1 dr = EssLdvs ∧ v0, s3d

where

EssLd = o
k=0

r

s− 1dkdi1
di2

¯ dik

]L
]yi1i2¯ik

s s4d
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are theEuler–Lagrange expressionsassociated with the Lagrange functionL. In particular,p1 dr
depends on the Lagrangianl only. Thesn+1d-form

El = p1 dr

is called theEuler–Lagrange formassociated withl.
We give three examples of Lepage equivalents.
s1d Every first order LagrangianlPVn,X

1 W has a unique Lepage equivalentQlPVn,Y
1 W

whose order of contactness isø1. If l is expressed in a fibered chart byl=Lv0, then

Ql = Lv0 +
]L
]yi

svs ∧ vi .

Ql is thePoincaré–Cartan equivalentof l, or thePoincaré–Cartan form.
s2d Let lPVn,X

1 W be as above. Thefundamental Lepage equivalentFlPVn,Y
1 W of l is given

by

Fl = o
k=0

n S 1

k!
D2 ]kL

]yj1

s1]yj2

s2
¯ ]yjk

sk
vs1 ∧ vs2 ∧ ¯ ∧ vsk ∧ v j1j2¯ jk

, s5d

where

i]/]xik ¯ i]/]xi2i]/]xi1v0 = vi1i2¯ik
.

Fl has the following remarkable properties:sad dFl=0 if and only if El=0, andsbd l=hh for
somehPVn

0W if and only if El is p2,1-projectable. The formFl was introduced for the first time
by Krupka,15,18 and it was rediscovered by Betounes,3,4 and Rund25 who wrote Fl in a more
simple way as it stands ins5d.

s3d Expression

Ql = Lv0 + S ]L
]yi

s − dp

]L
]ypi

s Dvs ∧ vi +
]L
]yji

s v j
s ∧ vi s6d

generalizes the Poincaré–Cartan form tosecond orderLagrangianslPVn,X
2 W sKrupka15d, higher

order generalizations can be found in Krupka.19 It can be shown that every Lepage equivalent of
a Lagrangianl=Lv0 of order r has the chart expressionr=Ql+dm+n, where

Ql = Lv0 + o
k=0

s So
l=0

r−k

s− 1dldi1
di2

¯ dil

]L
]yi1i2¯i l j1j2¯ jk

s Dv j1j2¯ jk
s ∧ vi , s7d

m is a contact form, andn is of order of contactnessù2. Expressions6d defines a differential form
on J3Y, but for r ù3, theslocald Lepage equivalentss7d of l are no longer invariant.

D. Automorphisms, variations

By anautomorphismof Y we mean a diffeomorphisma :W→Y, whereW,Y is an open set,
such that there exists a diffeomorphisma0:psWd→X such thatpa=a0p. If a0 exists, it is unique,
and is called thep-projection of a. The r-jet prolongationof a is an automorphismJra :Wr

→JrY of JrY, defined by

JrasJx
rgd = Ja0sxd

r saga0
−1d.

Let U,X be an open set, and letg :U→Y be a section. Letj be ap-projectable vector field
on an open setW,Y such thatgsUd,W. If at is the local one-parameter group ofj, andas0dt is
its projection, then sincepat=as0dtp,
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gt = atgas0dt
−1

is one-parameter family of sections ofY, depending smoothly ont. gt is called thevariation, or the
deformationof g, inducedby j.

We define ther-jet prolongationof j to be the vector fieldJrj on JrY whose local one-
parameter group isJat

r . Thus,

JrjsJx
rgd = H d

dt
Jas0dtsxd

r satgas0dt
−1 dJ

0
.

E. Global variational functionals

Let V be a piece ofX sa compact,n-dimensional submanifold ofX with boundary]Vd, let
GV,Wspd be the set of smooth sectionsg over V such thatgsVd,W. Suppose that we have a
LagrangianlPVn,X

r sWd. This gives rise to thevariational functional, or the action function
associated withl, GV,Wspd{g→lVsgdPR, defined by

lVsgd =E
V

Jrg*l.

Choose a sectiongPGV,Wspd and a p-projectable vector fieldj on Y, and consider the
induced variationgt of g. Since the domain ofgt containsV for all sufficiently smallt, we get a
real-valued function on a neighborhoods−e ,ed of the origin 0PR,

s− e,ed { t → las0dtsVdsatgas0dt
−1 d =E

as0dtsVd
Jrsatgas0dt

−1 d*l P R.

Differentiating this function att=0 we obtain

s]JrjldVsgd =E
V

Jrg*]Jrjl, s8d

where]Jrjl is the Lie derivative ofl by Jrj. The numbers8d is thevariation of the variational
functionlV at g, inducedby the vector fieldj. This formula shows, in particular, that the function
GV,Wspd{g→ s]JrjldVsgdPR is the variational functionalsoverVd associated with the Lagrang-
ian ]Jrjl. We call this function thevariational derivative, or thefirst variation of lV by j.

We now compute the Lie derivative]Jrjl. Choose for this purpose a Lepage equivalentr of l,
and denote bys the order of r. Sincel=hr, or, which is the same,Jrg*l=Jsg*r for all sections
g, we obtain

Jrg*]Jrjl = Jsg*]Jsjr = Jsg*siJsj dr + diJsjrd.

Omitting g and using the Euler–Lagrange forms3d and s4d, we get

]Jrjl = hiJs+1jEl + h diJsjr. s9d

This is thedifferential first variation formula; the first term on the right-hand side is theEuler–
Lagrange term, and the second one is theboundary term.

Writing s9d in coordinates, we obtain the well-known classical expressions, standing behind
the variation integral.

F. Extremals

Let lPVn,X
r W be a Lagrangian, and letrPVn

sW be a Lepage equivalent ofl. We say that a
sectiongPGV,Wspd is stablewith respect to a variationj of g, if s]JrjldVsgd=0. Stable sections
with respect tofamiliesof variations are defined in an obvious way. Ifg is stable with respect to
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all j with support contained inp−1sVd, we say thatg is anextremalof lV. A sectiong which is
an extremal of everylV is called anextremalof l.

The following conditions are equivalent:s1d g is an extremal ofl, s2d g satisfies

Jsg* iJsj dr = 0

for all p-vertical vector fieldsj, and s3d for every fibered chart onY, g satisfies the system of
partial differential equations

EssLd + J2rg = 0.

G. Trivial Lagrangians

A LagrangianlPVn,X
r W is called trivial sor variationally trivial, or nulld if there exists an

sn−1d-form hPVn−1
s W such thatl=h dh. l is called locally trivial if there exists an open

coveringhWijiPI of Y, and to eachiP I an sn−1d-form hiPVn−1
s Wi, such thatl=h dhi over Wi.

The following is a standard consequence of variational sequence theory.
Theorem 1: A Lagrangianl is locally trivial if and only if El=0.

H. Locally variational forms

A 1-contact, ps,0-horizontal form «PVn+1,Y
s W is called adynamical formsKrupková22d;

Takens28 calls such formssource forms. From the definition it follows that in a fibered chart
sV,cd, c=sxi ,ysd,

« = «svs ∧ v0,

where «s=«ssxi ,ys ,yj1
s ,yj1j2

s , . . . ,yj1j2. . .js
s d. We say that a dynamical form« is variational, if «

=El for some LagrangianlPVn,X
r W. « is said to belocally variational, if there are an open

coveringhVijiPI of Y and a familyhlijiPI of LagrangiansliPVn,X
r Vi such that for everyiP I,

«uVi = Eli
.

Denote

Hs
j1j2¯ j i

ns«d =
]«n

]yj1j2¯ j i
s − s− 1di ]«s

]yj1j2¯ j i
n − o

k=i+1

s

s− 1dkSk

i
Ddji+1

dji+2
¯ djk

]«s

]yj1j2¯ j1j i+1¯ jk
n

and

H« =
1

2o
i=1

s

Hs
j1j2¯ j i

ns«dv j1j2¯ j i
s ∧ vn ∧ v0.

The functionsHs
j1j2¯ j i

ns«d, called the Helmholtz expressions, appeared for the first time in
Aldersley;1 H« is the sglobald Helmholtz formsAnderson,2 Krupka,16,20 Krbek and Musilová14d.

The following is a consequence of the variational sequence theory.
Theorem 2: A source form« is locally variational if and only if H«=0.

I. Invariant transformations

An automorphisma :W→Y of the fibered manifoldY is said to be aninvariant transforma-
tion of a form hPVp

sW, if

Jsa*h = h.

We also say thath is invariant with respect toa. Let j be ap-projectable vector field onY. We
say thatj is thegeneratorof invariant transformations ofh, if
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]Jsjh = 0.

In this case we also say thath is invariant with respect toj. These definitions include the notions
of invariance ofLagrangians, dynamical forms, and, in particular, theEuler–Lagrange forms.

Note that forany p-projectable vector fieldj, and anylPVn,X
r W,

]JsjEl = E]Jrjl, s10d

wheres is the order of the Euler–Lagrange formEl. Thus,El is invariant with respect toj if and
only if ]Jrjl is a trivial Lagrangian.

The following result is standard.
Theorem 3: Let j be ap-projectable vector field on Y, and letlPVn,X

r+1W be a Lagrangian.
The following conditions are equivalent:

sad j generates invariant transformations of the Euler–Lagrange form El.
sbd There exist an open coveringhVijiPI of Y and a system ofsn−1d-forms hhijiPI, wherehi

PVn−1
r Vi, such that

]Jr+1jl = h dhi.

The following simple consequence of the first variation formula is known as theNoether’s
theorem.

Theorem 4: Let lPVn,X
r+1W be a Lagrangian. LetrPVn

sW be a Lepage equivalent ofl, and
let g be an extremal.

sad For any generatorj of invariant transformations ofl,

dJsg* iJsjr = 0.

sbd For any generatorj of invariant transformations of El, there exist an open coveringhVijiPI

of W and a familyhhijiPI of sn−1d-formshiPVn−1
r Vi such that for everyiP I,

dJs g*siJsjr − hid = 0.

III. INVARIANCE: FIRST ORDER VARIATIONAL PRINCIPLES

One of specific features of thefirst order Lagrange structures consists in existence of two
“simple” Lepage formssSec. II Cd. The first one is thePoincaré–Cartan form, whose order of
contactness isø1 ssee, e.g., García,8 Goldschmidt and Sternberg,9 Krupka,17 Prieto24d. The second
one is thefundamental Lepage form, whose order of contactness is, in general, maximal, i.e.,øn.
We now compare invariance properties of these forms. Our results extend the usual concepts,
based on the use of the Poincaré–Cartan form. For general approach to invariance we refer to
Trautman29 and Krupka.17,15

As before, we denote byFl the fundamental Lepage equivalent, associated with a first order
Lagrangianl, and byQl the Poincaré–Cartan equivalent.

Theorem 5: For any automorphisma :W→Y of Y,

J1a*Fl = FJ1a*l. s11d

Proof: s1d Let a0 be the projection ofa, and letsV,cd, c=sxi ,ysd, andsV̄,c̄d, c̄=sx̄i , ȳsd, be

two fibered charts such thatasVd, V̄. Let sU ,wd, w=sxid, and sŪ ,w̄d, w̄=sx̄id be the associated
charts onX. Denote

x̄ia0w−1 = f i, ȳsac−1 = Fs,

and
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xpa0
−1w̄−1 = gp.

Clearly, on the corresponding domains,

f isg1sx̄1,x̄2, . . . ,x̄nd,g2sx̄1,x̄2, . . . ,x̄nd, . . . ,gnsx̄1,x̄2, . . . x̄ndd = x̄i ,

gpsf1sx1,x2, . . . ,xnd, f2sx1,x2, . . .xnd, . . . ,fnsx1,x2, . . . ,xndd = xp.

From these formulas, we can easily derive equations of the mappingJ1a :W1→J1Y in terms
of the associated coordinates. By definition, we have for everyJx

1gPW1, J1asJx
1gd

=Ja0sxd
1 saga0

−1d. On V1,W1,

x̄iJ1asJx
1gd = x̄iJa0sxd

1 saga0
−1d = x̄ia0sxd = x̄ia0w−1swsxdd,

ȳsJ1asJx
1gd = ȳsJa0sxd

1 saga0
−1d = ȳsac−1scsgsxddd,

and

ȳj
sJ1asJx

1gd = ȳj
sJa0sxd

1 saga0
−1d = Djsȳsaga0

−1w̄−1dsw̄sa0sxddd.

Computing the derivative by the chain rule, we get

Djsȳsaga0
−1w̄−1dsw̄sa0sxddd = D1,ksȳsac−1dscsgsxdddDjsxka0

−1w̄−1dsw̄sa0sxddd

+ D2,nsȳsac−1dscsgsxdddDksyngw−1dswsxdd

3Djsxka0
−1c̄−1dsc̄sa0sxddd.

We define functionsFj
s :V1→R by

Fj
ssxisJx

1gd,ytsJx
1gd,yp

tsJx
1gdd = D1,ksȳsac−1dscsgsxdddDjsxka0

−1w̄−1dsw̄sa0sxddd + D2,nsȳsac−1d

3scsgsxdddDksyngw−1dswsxddDjsxka0
−1w̄−1dsw̄sa0sxddd,

or, which is the same, by

Fj
ssxi,yt,yp

td = SS ]Fs

]xk D
sxi,ytd

+ S ]Fs

]yn D
sxi,ytd

yk
nDS ]gk

]x̄j D
sf1sxid,f2sxid,. . .,fnsxidd

= sdkF
sdsxi,yt,yj

tdS ]gk

]x̄j D
sf1sxid,f2sxid,. . .fnsxidd

.

Then

ȳj
sJ1asc1d−1 = Fj

s.

Summarizing, we see that the mappingJ1a is expressed by equations

x̄ia0w−1 = f i, ȳsac−1 = Fs,

ȳj
sJ1asc1d−1 = dkF

s ·S ]gk

]x̄j + w̄a0w−1D .

s2d We now derive chart expressions for the formsa0
*v̄0 anda0

*v̄i1i2¯ik
, where 1økøn. We

have, with obvious conventions,
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a0
*v̄0sxd = dsx̄1a0dsxd ∧ dsx̄2a0dsxd ∧ ¯ ∧ dsx̄na0dsxd = detS ]fp

]xqD
wsxd

v0sxd.

Analogously, since

Ta0sxda0
−1 ·S ]

]x̄iD
w̄a0sxd

= S ]gj

]x̄i D
a0sxd

S ]

]xjD
x

and

a0
*v̄isxdsj2,j3, . . . ,jnd = S ]sxja0

−1w̄−1d
]x̄i D

w̄a0sxd
detS ]sx̄pa0w−1d

]xq D
wsxd

v jsxdsj2,j3, . . . ,jnd

we have

a0
*v̄isxd = S ]gj

]x̄i D
w̄a0sxd

detS ]fp

]xqD
wsxd

v jsxd.

Continuing in the same way we obtain

a0
*v̄i1i2¯ik

sxdsjk+1,jk+2, . . . ,jnd = S ]gj1

]x̄i1
D

w̄a0sxd
S ]gj2

]x̄i2
D

w̄a0sxd
¯ S ]gjk

]x̄ik
D

w̄a0sxd
detS ]fp

]xqD
wsxd

3 v j1j2¯ jk
sxdsjk+1,jk+2, . . . ,jnd,

i.e.,

a0
*v̄i1i2¯ik

sxd = S ]gj1

]x̄i1
D

w̄a0sxd
S ]gj2

]x̄i2
D

w̄a0sxd
¯ S ]gjk

]x̄ik
D

w̄a0sxd
detS ]fp

]xqD
wsxd

v j1j2¯ jk
sxd.

s3d Similarly,

sJ1ad*v̄ssJx
1gd = S ]Fs

]yn D
cgsxd

vnsJx
1gd.

s4d We now prove Theorem 5. To simplify our formulas, we sometimes writex, or gsxd,
instead ofJx

1g. Let the Lagrangianl be expressed overV̄ by

l = L̄v̄0.

Then overV,

sJ1ad*lsJx
1gd = sL̄ + J1asJx

1gdddetS ]fp

]xqD
wsxd

v0sxd.

We can express the formFJ1a*l over V. Taking into account the summand containingk exterior
factorsvs, we have the form from formulas5d,

S ]ksL̄ + J1a + sc1d−1d

]yj1

s1]yj2

s2
¯ ]yjk

sk
D

c1sJx
1gd

detS ]fp

]xqD
wsxd

3 vs1sJx
1gd ∧ vs2sJx

1gd ∧ ¯ ∧ vsksJx
1gd ∧ v j1j2¯ jk

sJx
1gd. s12d

But
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S ]sL̄ + J1a + sc1d−1d

]yj1

s1 D
c1sJx

1gd

= S ]L̄
]ȳp1

n1D
c̄1J1asJx

1gd

S ]Fn1

]ys1
D

cgsxd
S ]gj1

]x̄p1
D

w̄a0sxd
,

and in the same way

S ]ksL̄ + J1a + sc1d−1d

]yj1

s1]yj2

s2
¯ ]yjk

sk
D

c1sJx
1gd

= S ]kL̄
]ȳp1

n1]ȳp2

n2
¯ ]ȳpk

nk
D

c̄1J1asJx
1gd

S ]Fn1

]ys1
D

cgsxd
S ]gj1

]x̄p1
D

w̄a0sxd
S ]Fn2

]ys2
D

cgsxd

3S ]gj2

]x̄p2
D

w̄a0sxd
¯ S ]Fnk

]ysk
D

cgsxd
S ]gjk

]x̄pk
D

w̄a0sxd
.

Consequently,s12d gives the expression

S ]kL̄
]ȳp1

n1]ȳp2

n2
¯ ]ȳpk

nk
D

c̄1J1asJx
1gd

S ]Fn1

]ys1
D

cgsxd
S ]gj1

]x̄p1
D

w̄a0sxd
S ]Fn2

]ys2
D

cgsxd
S ]gj2

]x̄p2
D

w̄a0sxd
¯ S ]Fnk

]ysk
D

cgsxd

3S ]gjk

]x̄pk
D

w̄a0sxd
detS ]fp

]xqD
wsxd

vs1sJx
1gd ∧ vs2sJx

1gd ∧ ¯ ∧ vsksJx
1gd ∧ v j1j2¯ jk

sJx
1gd. s13d

On the other hand, consider inFl the summand

]kL̄
]ȳj1

s1]ȳj2

s2
¯ ]ȳjk

sk
v̄s1 ∧ v̄s2 ∧ ¯ ∧ v̄sk ∧ v̄ j1j2¯ jk

s14d

over V̄. Computing the pull-backJ1a*Fl, and in particular, the pull-back of the differential form
s14d, we obtain

S ]kL̄
]ȳj1

s1]ȳj2

s2
¯ ]ȳjk

sk
D

c̄1J1asJx
1gd

S ]Fs1

]yn1
D

cgsxd
S ]Fs2

]yn2
D

cgsxd
¯ S ]Fsk

]ynk
D

cgsxd
S ]gl1

]x̄j1
D

w̄a0sxd

3S ]gl2

]x̄j2
D

w̄a0sxd
¯ S ]glk

]x̄jk
D

w̄a0sxd
detS ]fp

]xqD
wsxd

vn1sJx
1gd ∧ vn2sJx

1gd

∧ ¯ ∧ vnksJx
1gd ∧ vl1l2¯lk

sJx
1gd. s15d

Sinces13d and s15d agree, we are done.
Corollary 1: For everyp-projectable vector fieldj, the fundamental Lepage formFl satisfies

]J1jFl = F]J1jl.

Corollary 2: The Poincaré–Cartan formQl satisfies

J1a*Ql = QJ1a*l s16d

and

]J1jQl = Q]J1jl. s17d

Proof: From the properties of contact forms it follows that the forms of the same order of
contactness on the left- and right-hand side of formulas11d agree. Formulas16d means just the
equality of forms of order of contactnessø1.

From Theorem 5 we can easily derive, for Lagrangians of order 1, formulas10d of Sec. II I
Corollary 3: The Euler–Lagrange form El satisfies
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]J2jEl = E]J1jl. s18d

Proof: From Theorem 5 it follows that

]J2jp1 dFl = p1]J1j dFl = p1 dF]J1jl,

which is exactly formulas18d.
We are now in the position to study symmetries of the first order Lagrange structures. Ac-

cording to the definition used by Prieto,24 an infinitesimal symmetryof a first order Lagrangianl
is a vector fieldJ on J1Y such that]JQl=−dh for somesn−1d-form h. Clearly, if J is an
infinitesimal symmetry, then d]JQl=0, and the converse holds locally. In the following theorem
we consider infinitesimal symmetries of the formJ=J1j, wherej is a p-projectable vector field,
and compare them with generators of invariant transformations of the Euler–Lagrange form.

Theorem 6: Let l be a first order Lagrangian, and letj be ap-projectable vector field.
sad j is the generator of invariant transformations of the Euler–Lagrange form El if and only

if ]J1j dFl=0.
sbd If J=J1j is an infinitesimal symmetry, thenj generates invariant transformations of El.
Proof: sad Suppose that]J2jEl=0. Then from Corollary 3,E]J1jl=0, hence dF]J1jl=0 and

according to Theorem 5,]J1j dFl=0. The converse is proved by reversing the arguments.
sbd Supposing that d]J1j dQl=0 we obtain dQ]J1jl=0 sCorollary 2d and by definition,

p1 dQ]J1jl = E]J1jl = ]J2jEl = 0.

Remark 1:In Theorem 6, we give some properties of generators of invariant transformations
of the Euler–Lagrange form on one side, and infinitesimal symmetries on the other side. Note that
for several reasons, the definition of infinitesimal symmetry in its full generality does not seem
well motivated. First, variations, induced by general vector fields onJ1Y do not transform sections
of the fibered manifoldY into sections ofY; in particular, such variations do not transform
solutions of the Euler–Lagrange equations into solutions. Second, according to Theorem 6, infini-
tesimal symmetries do not include all generators of invariant transformations of the Euler–
Lagrange form. The third reason consists in impossibility to generalize the definition of an infini-
tesimal symmetry torth order Lagrange structures, because for Lagrangians of orderr ù3 we do
not have a global analogue of the Poincaré–Cartan form. For these reasons, we prefer, in the
theory of local variational principles presented below, the concept of a generator of invariant
transformations of the Euler–Lagrange form.

Remark 2:It is not known whether there exists a generalization of the fundamental Lepage
form Fl to higher order Lagrange structures.

IV. LOCAL VARIATIONAL PRINCIPLES

A. Local variational principles

Let «PVn+1,Y
s Y be a locally variational forms« is supposed to be defined globallyd. According

to Sec. II H, the fibered manifoldY can be covered by open setsVi, iP I, such that to everyi, there
exists a Lagrangianli over Vi for the form s«uVi

; over the intersectionsViùVk, the Lagrangians
li andlk differ by a trivial Lagrangian. In general, a globally defined Lagrangian for« need not
exist.

In our definition of a local variational principle, we rephrase these properties of locally
variational forms in terms of the Lepage forms. We say that a familyhsVi ,ridjiPI, in which hVijiPI

is an open covering ofY and for everyiP I, riPVn
sVi is a Lepage form, is said to be alocal

variational principle, if for every i ,kP I,

p1 dri = p1 drk

over ViùVk. The integers is called theorder of the local variational principlehsVi ,ridjiPI.
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Suppose that we have a local variational principlehsVi ,ridjiPI of orders. For everyiP I, we
denote

Ei = p1 dri.

Ei is the Euler–Lagrange form of theassociated Lagrangianli=hri, defined overVi. Since by
definition,Ei=Ek for all i ,kP I, setting

E = Ei

over Vi, we obtain a global differential formE on Js+1Y. This form is called theEuler–Lagrange
form, associated with the local variational principlehsVi ,ridjiPI. Obviously, the Euler–Lagrange
form is dynamical, locally variational form; it is not necessarilysgloballyd variational.

A local variational principle in another geometric contextsi.e., on manifolds without fibrationd
was formulated by Dedecker.5 Our definition is close to the Dedecker’s approach.

Two local variational principleshsVi ,ridjiPI, hsVk8 ,rk8djkPK are equivalent, if the associated
Euler–Lagrange formsE, E8 coincide, i.e.,E=E8.

Theorem 7: A family hsVi ,ridjiPI, in which hVijiPI is an open covering of Y and for every
iP I, riPVn

sVi is a Lepage form, is a local variational principle if and only if to everyi, kP I,
there exists a formhikPVn−1

r sViùVkd and a contact formxikPVn
r sViùVkd such that over

ViùVk,

ri − rk = dhik + xik. s19d

Proof: If ri−rk=dhik+xik, for somehik and xik, then dsri−rkd=dxik. This means that the
class ofxik is a contact Lepage form. Sincep1 dxik depends on the corresponding Lagrangian
only, that is, onhxik ssee Sec. II Cd, and this Lagrangian is zero, we havep1 dxik=0. Conse-
quently,p1 dri=p1 drk. Conversely, ifp1 dri=p1 drk, then the Euler–Lagrange formEhsri−rkd van-
ishes. This means that the Lagrangianhsri−rkd is trivial, which impliess19d.

B. First variation formula, extremals

A basic tool for an analysis of extremals and invariant transformations of a variational func-
tional is the first variation formula. We now give a formulation of the first variation formula for
local variational principles.

Let hsVi ,ridjiPI be a local variational principle of orders. Fix an indexiP I, and choose a
pieceV,psVid. Then we have the variational functional

GV,Vi
spd { g → ri,Vsgd =E

V

Jsg*ri P R.

For anyp-projectable vector fieldj on Y, we have thefirst variation formula

]Jsjri = iJsj dri + diJsjri.

This formula can easily be written by means of the associated Lagrangianli=hri. Since
]Js+1jhri=h]Jsjri=hiJsj dri+h diJsjri, we have

]Js+1jhri = hiJs+1jp dri + h diJsjri = hiJs+1jE + h diJsjri

and

]Js+1jli = hiJs+1jE + hdiJsjri,

where E is the Euler–Lagrange form ofhsVi ,ridjiPI. This is another formulation of the first
variation formula for the local variational principlehsVi ,ridjiPI.

We have the following simple observation.
Theorem 8: Let hsVi ,ridjiPI be a local variational principle of order s. Let g be a section of
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Y. The following conditions are equivalent:

sad For everyiP I, gi= ugupsVid
is an extremal of the variational functionalri,V.

sbd For everyp-projectable vector fieldj, g satisfies

Js+1g* iJs+1jE = 0.

A sectiong, satisfying any of these two equivalent conditions, is called anextremalof the
local variational principlehsVi ,ridjiPI.

C. Invariant transformations

It is straightforward to extend the theory of invariant transformations as introduced in Sec.
II I, to local variational principles. The concept of a Lagrangian in this case is defined only
locally, but we still have the notions of invariance of the Euler–Lagrange form.

Suppose that we have a local variational principlehsVi ,ridjiPI of orders, and denote byE its
Euler–Lagrange form. Leta :W→Y be an automorphism ofY. We say thata is an invariant
transformationof E, if

Js+1a*E = E.

A p-projectable vector fieldj on Y is said to be thegenerator of invariant transformationsof E,
if

]Js+1jE = 0.

The following is straightforward.
Theorem 9: Let hsVi ,ridjiPI be a local variational principle, and letj be a p-projectable

vector field. Let E be the Euler–Lagrange form ofhsVi ,ridjiPI. The following conditions are
equivalent:

sad j is a generator of invariant transformations of E.
sbd There exists a familyhhijiPI of sn−1d-formshiPVn−1

s Vi such that for everyiP I,

hiJs+1jE + hdsiJsjri − hid = 0. s20d

Proof: Let j be a generator of invariant transformations ofE, let iP I. OverVi, E=Eli
, where

li=hri, and]Js+1jE=E]Js+1jli
=0, hence by Theorem 3,]Js+1jli=h dhi for somesn−1d-form hi over

Vi. Then

]Js+1jli = hiJs+1jE + h diJsjri = h dhi,

proving s20d.
Consider the Euler–Lagrange formE of the local variational principlehsVi ,ridjiPI, and a

vector fieldj on Y. Let sV,cd, c=sxi ,ysd, be a fibered chart onY such thatV,Vi. Suppose that
over V,

hri = Liv0

and

j = j0
k ]

]xk + js ]

]ys .

Then overV,

E = EssLidvs ∧ v0,

where
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EssLid = o
k=0

r

s− 1dkdi1
di2

¯ dik

]Li

]yi1i2¯ik
s

and

hiJs+1jE = EssLidsjs − yk
sj0

kdv0. s21d

Formulas21d shows that the Euler–Lagrange equations for extremals are, overV,

EssLid = 0. s22d

Thus, if j generates invariant transformations ofE, we have aconservation law

dsi jsjri − hid = 0 s23d

salong any extremald. The arising equations23d should be considered together with Eq.s22d.
The set of generators of invariant transformations of the Euler–Lagrange form is a Lie algebra.

Indeed, if twop-projectable fieldsj andz, satisfy

]JsjE = 0, ]JszE = 0,

then sinceJsfj ,zg=fJsj ,Jszg, we have

]Jsfj,zgE = ]Jsj]JszE − ]Jsz]JsjE = 0.
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We perform complete group classification of the general class of quasilinear wave
equations in two variables. This class may be seen as a generalization of the
nonlinear d’Alembert, Liouville, sin/sinh-Gordon and Tzitzeica equations. We de-
rive a number of new genuinely nonlinear invariant models with high symmetry
properties. In particular, we obtain four classes of nonlinear wave equations that
admit five-dimensional invariance groups. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1884886g

INTRODUCTION

More than a century ago Lie introduced the concept of continuous transformation group into
mathematical physics and mechanics. His initial motivation was to develop a theory of integration
of ordinary differential equations enabling to answer the basic questions, like, why some equations
are integrable and others are not. His fundamental results obtained on this way, can be seen as a
far reaching generalization of the Galois’s and Abel’s theory of solubility of algebraic equations by
radicals. Since that time the Lie’s theory of continuous transformation groups has become appli-
cable to an astonishingly wide range of mathematical and physical problems.

It was Lie who was the first to utilize group properties of differential equations for construct-
ing of their exact solutions. In particular, he computed the maximal invariance group of the
one-dimensional heat conductivity equation and applied this symmetry to construct its explicit
solutions. Saying it the modern way, he performed symmetry reduction of the heat equation. Since
late 1970s symmetry reduction becomes one of the most popular tools for solving nonlinear partial
differential equationssPDEsd.

By now symmetry properties of the majority of fundamental equations of mathematical and
theoretical physics are well known. It turns out that for the most part these equations admit wide
symmetry groups. Especially this is the case for linear PDEs and it is this rich symmetry that
enables developing a variety of efficient methods for mathematical analysis of linear differential
equations. However, linear equations give mathematical description of physical, chemical or bio-
logical processes in a first approximation only. To provide a more detailed and precise description
a mathematical model must incorporate nonlinear terms. Note that some important differential
equations are intrinsically nonlinear and have no linear counterpart.

Hyperbolic type second-order nonlinear PDEs in two independent variables play a fundamen-
tal role in modern mathematical physics. Equations of this type are utilized to describe various
types of wave propagation. They are used in differential geometry, in various fields of hydro-
dynamics and gas dynamics, chemical technology, superconductivity, crystal dislocation to men-
tion only a few applications areas. Surprisingly the list of equations utilized is rather narrow. In
fact, it is comprised by the Liouville, sine/sinh-Gordon, Goursat, d’Alembert, and Tzitzeica equa-
tions and a couple of others. Popularity of these very models has a natural group-theoretical
interpretation, namely, all of them have nontrivial Lie or Lie–Bäcklund symmetry. By this very
reason some of them are integrable by the inverse problem methodsssee, e.g., Refs. 1–3d or
linearizable4–6 and completely integrable.7,8
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Knowing symmetry group of the equation under study provides us with the powerful equation
exploration tool. So it is natural to attempt classifying a reasonably extensive class of nonlinear
hyperbolic type PDEs into subclasses of equations enjoying the best symmetry properties. Saying
reasonably extensive we mean thatsid this class should contain the above enumerated equations as
particular cases, andsii d it should contain a variety of new invariant models of potential interest
for applications. The list of the so obtained invariant equations will contain candidates for realistic
nonlinear mathematical models of the physical and chemical processes mentioned above.

The history of group classification methods goes back to Lie itself. Probably, the very first
paper on this subject is Ref. 9, where Lie proves that a linear two-dimensional second-order PDE
may admit at most a three-parameter invariance groupsapart from the trivial infinite-parameter
symmetry group, which is due to linearityd.

The modern formulation of the problem of group classification of PDEs was suggested by
Ovsyannikov in Ref. 10. He developed a regular methodswe will refer to it as the Lie–
Ovsyannikov methodd for classifying differential equations with nontrivial symmetry and per-
formed complete group classification of the nonlinear heat conductivity equation. In a number of
subsequent publications more general types of nonlinear heat equations were classifiedsreview of
these results can be found in Ref. 11d.

However, even a very quick analysis of the papers on group classification of PDEs reveals that
an overwhelming majority of them deals with equations whose arbitrary elementssfunctionsd
depend on one variable only. The reason for this is that Lie–Ovsyannikov method becomes inef-
ficient for PDEs containing arbitrary functions of several variables. To achieve a complete classi-
fication one either needs to specify the transformation group realization or restrict somehow an
arbitrariness of the functions contained in the equation under study. We have recently, developed
an efficient approach enabling to overcome this difficulty for low dimensional PDEs.12,13Utilizing
it we have derived the complete group classification of the general quasilinear heat conductivity
equation in two independent variables. In this paper we apply the approach in question to perform
group classification of the most general quasilinear hyperbolic PDE in two independent variables.

I. GROUP CLASSIFICATION ALGORITHM

While classifying a given class of differential equations into subclasses, one can use different
classifying features, like linearity, order, the number of independent or dependent variables, etc. In
group analysis of differential equations the principal classifying features are symmetry properties
of equations under study. This means that classification objects are equations considered together
with their symmetry groups. This point of view is based on the well-known fact that any PDE
admits aspossibly triviald Lie transformation group. And what is more, any transformation group
corresponds to a class of PDEs, which are invariant under this group. So the problem of group
classification of a class of PDEs reduces to describing all possiblesinequivalentd pairs sPDE,
maximal invariance groupd, where PDE should belong to the class of equations under consider-
ation.

We perform group classification of the following class of quasilinear wave equations:

utt = uxx + Fst,x,u,uxd. s1.1d

Here F is an arbitrary smooth function,u=ust ,xd. Hereafter we adopt notationsut=]u/]t, ux

=]u/]x, utt=]2u/]t2, etc.
Our aim is describingall equations of the forms1.1d that admit nontrivial symmetry groups.

The challenge of this task is in the wordall. If, for example, we somehow constrain the form of
invariance group to be found, then the classification problem simplifies enormously. A slightly
more cumbersomesbut still tractable with the standard Lie–Ovsyannikov approachd is the problem
of group classification of equation with arbitrary functions of, at most, one variable.

As equations invariant under similar Lie groups are identical within the group-theoretic frame-
work, it makes sense to consider nonsimilar transformation groups14,15 only. The important ex-
ample of similar Lie groups is provided by Lie transformation groups obtained one from another
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by a suitable change of variables. Consequently, equations obtained one from another by a change
of variables have similar symmetry groups and cannot be distinguished within the group-
theoretical viewpoint. That is why, we perform group classification ofs1.1d within a change of
variables preserving the class of PDEss1.1d.

The problem of group classification of linear hyperbolic type equation

utx + Ast,xdut + Bst,xdux + Cst,xdu = 0 s1.2d

with u=ust ,xd, was solved by Lie9 ssee, also, Ref. 16d. In view of this fact, we consider only those
equations of the forms1.1d which are notslocallyd equivalent to the linear equations1.2d.

As we have already mentioned in the Introduction, the Lie–Ovsyannikov method of group
classification of differential equations has been suggested in Ref. 10. Utilizing this method enabled
solving the group classification problem for a number of important one-dimensional nonlinear
wave equations:

utt = uxx + Fsud sRefs. 17–19d,

utt = ffsuduxgx sRefs. 20–22d,

utt = fsuxduxx sRefs. 22,23d,

utt = Fsuxduxx + Hsuxd sRef. 24d,

utt = Fsuxxd sRef. 22d,

utt = ux
muxx + fsud sRef. 25d,

utt + fsudut = sgsuduxdx + hsudux sRef. 26d,

utt = sfsx,uduxdx sRef. 27d.

Analysis of the above list shows that most of all arbitrary elementss=arbitrary functionsd
depend on one variable. This is not coincidental. As we already mentioned, the Lie–Ovsyannikov
approach works smoothly for the case when the arbitrary elements are functions of one variable.
The reason for this is that the obtained system of determining equations is still over-determined.
So it can be effectively solved within the same techniques used to compute maximal symmetry
group of PDEs containing no arbitrary elements.

The situation becomes much more complicated for the case when arbitrary elements are
functions of twosor mored arguments. By this very reason the group classification of nonlinear
wave equations,

utt + luxx = gsu,uxd sRefs. 28,29d,

utt = ffsudux + gsx,udgx sRef. 30d,

utt = fsx,uxduxx + gsx,uxd sRef. 31d,

is not complete.
We suggest an efficient approach to the problem of group classification of low dimensional

PDEs in Refs. 12 and 13. This approach is based on the Lie–Ovsyannikov infinitesimal method
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and classification results for abstract finite-dimensional Lie algebras. It enables us to obtain the
complete solution of the group classification problem for the general heat equation with a nonlin-
ear source

ut = uxx + Fst,x,u,uxd.

Later on, we perform complete group classification of the most general quasilinear evolution
equation,32–34

ut = fst,x,u,uxduxx + gst,x,u,uxd.

We utilize the above approach to obtain complete solution of the group classification problem for
the class of Eqs.s1.1d.

Our algorithm of group classification of the class of PDEss1.1d is implemented in the fol-
lowing three stepssfurther details can be found in Ref. 34d:

sId Using the infinitesimal Lie method we derive the system of determining equations for
coefficients of the first-order operator that generates symmetry group of equations1.1d.
sNote that the determining equations which explicitly depend on the functionF and its
derivatives are called classifying equations.d Integrating equations that do not depend onF
we obtain the form of the most general infinitesimal operator admitted by Eq.s1.1d under
arbitraryF. Another task of this step is calculating the equivalence groupE of the class of
PDEss1.1d.

sII d We construct all realizations of Lie algebrasAn of the dimensionnø3 in the class of
operators obtained at the first step within the equivalence relation defined by transforma-
tions from the equivalence groupE. Inserting the so obtained operators into classifying
equations we select those realizations that can be symmetry algebras of a differential
equation of the forms1.1d.

sIII d We compute all possible extensions of realizations constructed at the previous step to
realizations of higher dimensionalsn.3d Lie algebras. Since extending symmetry algebras
results in reducing arbitrariness of the functionF, at some point this function will contain
either arbitrary functions of at most one variable or arbitrary constants. At this point, we
apply the standard classification methodswhich is due to Lie and Ovsyannikovd to derive
the maximal symmetry group of the equation under study. This completes group classifi-
cation of s1.1d.

Performing the above enumerated steps yields the complete list of inequivalent equations of
the form s1.1d together with their maximalsin Lie’s sensed symmetry algebras.

We say that the group classification problem is completely solved when it is proved that

s1d the constructed symmetry algebras are maximal invariance algebras of the equations under
consideration;

s2d the list of invariant equations contains only inequivalent ones, namely, no equation can be
transformed into another one from the list by a transformation from the equivalence groupE.

II. PRELIMINARY GROUP CLASSIFICATION OF Eq. „1.1…

We look for the infinitesimal operator of symmetry group of equations1.1d in the form

Q = tst,x,ud]t + jst,x,ud]x + hst,x,ud]u, s2.1d

wheret, j, h are smooth functions defined on an open domainV of the spaceV=R23R1 of
independentR2=kt ,xl and dependentR1=kul=ust ,xd variables.

Operators2.1d generates one-parameter invariance group ofs1.1d iff its coefficientst, j, h, e
satisfy the equationsLie’s invariance criteriond
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uwtt − wxx − tFt − jFx − hFu − wxFux
us1.1d = 0, s2.2d

where

wt = Dtshd − utDtstd − uxDtsjd,

wx = Dxshd − utDxstd − uxDxsjd,

wtt = Dtswtd − uttDtstd − utxDtsjd,

wxx = Dxswxd − utxDxstd − uxxDxsjd,

andDt, Dx are operators of total differentiation with respect to the variablest, x. As customary, by
writing s1.1d we mean that one needs to replaceutt and its differential consequences with the
expressionuxx+F and its differential consequences ins2.2d.

After a simple transformations algebra we reduces2.2d to the form

s1d ju = tu = huu = 0,

s2d tt − jx = 0, jt − tx = 0,

s2.3d
s3d 2htu + txFux

= 0,

s4d htt − hxx − 2uxhxu + fhu − 2ttg

3F − tFt − jFx − hFu − fhx + uxshu − jxdgFux
= 0.

The first two groups of PDEs froms2.3d are to be used to derive the form of the most general
infinitesimal operator admitted bys1.1d. The remaining PDEs are classifying equations.

We prove in Ref. 35 that the following assertion holds.
Theorem 1: Provided Fuxux

Þ0, the maximal invariance group of equation (1.1) is generated
by the following infinitesimal operator:

Q = slt + l1d]t + slx + l2d]x + fhsxdu + rst,xdg]u, s2.4d

wherel, l1, l2 are real constants and h=hsxd, r =rst ,xd, F=Fst ,x,u,uxd are functions obeying the
constraint

rtt − rxx −
d2h

dx2u − 2
dh

dx
ux + sh − 2ldF − slt + l1dFt − slx + l2dFx − shu+ rdFu

− Srx +
dh

dx
u + sh − lduxDFux

= 0. s2.5d

If F =gst ,x,udux+ fst ,x,ud, guÞ0, then the maximal invariance group of equation (1.1) is
generated by infinitesimal operator (2.4), wherel, l1, l2 are real constants h, r, g, f are functions
satisfying system of two equations

− 2h8 − lg = slt + l1dgt + slx + l2dgx + shu+ rdgu,

s2.6d
− h9u + rtt − rxx + sh − 2ldf = slt + l1df t + slx + l2dfx + shu+ rdfu + gsh8u + rxd.

Next, if F=gst ,xdux+ fst ,x,ud, qò0, fuuÞ0, then the infinitesimal operator of the invariance
group of equation (1.1) reads as
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Q = tst,xd]t + jst,xd]x + shst,xdu + rst,xdd]u,

wheret, j, h, r, g, f are functions satisfying system of PDEs

tt − jx = 0, jt − tx = 0,

2ht = − txg, 2hx = − ttg − tgt − jgx,

shtt − hxxdu + rtt − rxx + fsh − 2ttd − tf t − jfx − shu+ rdfu − shxu + rxdg = 0.

Finally, if F= fst ,x,ud, fuuÞ0, then the maximal invariance group of equation (1.1) is generated
by infinitesimal operator

Q = fwsud + cssdg]t − fwsud − cssdg]x + fku+ rst,xdg]u,

where kPR, u= t−x, s= t+x and functionsw, c, r, f and constant k satisfy the following equation:

rtt − rxx + fk − 2w8 − 2c8gf − sw + cdf t + sw − cdfx − sku+ rdfu = 0, w8 =
dw

du
, c8 =

dc

du
.

By virtue of the above theorem the problem of group classification of equations1.1d reduces
to the one of classifying equations of more specific forms,

utt = uxx + Fst,x,u,uxd, Fuxux
Þ 0, s2.7d

utt = uxx + gst,x,udux + fst,x,ud, gu Þ 0, s2.8d

utx = gst,xdux + fst,x,ud, gx Þ 0, fuu Þ 0, s2.9d

utx = fst,x,ud, fuu Þ 0. s2.10d

Note that conditiongxÞ0 is essential, since otherwises2.9d is locally equivalents2.10d.
Summing up, we conclude that the problem of group classification ofs1.1d reduces to classi-

fying more specific classes of PDEss2.7d–s2.10d.
First, we consider equationss2.8d–s2.10d.

III. GROUP CLASSIFICATION OF EQ. „2.8…

According to Theorem 1 invariance group of equations2.8d is generated by infinitesimal
operators2.4d. And what is more, the real constantsl, l1, l2 and functionsh, r, g, f satisfy
equationss2.6d. Systems2.6d is to be used to specify both the form of functionsf, g from s2.8d and
functionsh, r and constantsl, l1, l2 in s2.4d. It is called the determiningssometimes classifyingd
equations.

Efficiency of the Lie method for calculation of maximal invariance group of PDE is essen-
tially based on the fact that routinely system of determining equations is over-determined. This is
clearly not the case, since we have only one equation for fours!d arbitrary functions and three of
the latter depend on two variables. By this very reason direct application of Lie approach in the
Ovsyannikov’s spirit is no longer efficient when we attempt classifying PDEs with arbitrary
functions of several variables.

Compute the equivalence groupE of equations2.8d. This group is generated by invertible
transformations of the spaceV preserving the differential structure of equations2.8d ssee, e.g., Ref.
14d. Saying it another way, group transformation fromE
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t̄ = ast,x,ud, x̄ = bst,x,ud, v = Ust,x,ud,
Dst̄,x̄,vd
Dst,x,ud

Þ 0,

should reduces2.8d to equation of the same form

vt̄t̄ = vx̄x̄ + g̃st̄,x̄,vdvx̄ + f̃st̄,x̄,vd, g̃v Þ 0

with possibly differentf̃, g̃.
As proved by Ovsyannikov,14 it is possible to modify the Lie’s infinitesimal approach to

calculate equivalence group in essentially same way as invariance group. We omit the simple
intermediate calculations and present the final result.

Assertion 1: The maximal equivalence groupE of Eq. (2.8) reads as

t̄ = kt + k1, x̄ = ekx+ k2, v = Xsxdu + Yst,xd, s3.1d

where kÞ0, XÞ0, e= ±1,k,k1,k2PR, and X, Y are arbitrary smooth functions.
This completes the first step of the algorithm.

A. Preliminary group classification of Eq. „2.8…

First, we derive inequivalent classes of equations of the forms2.8d admitting one-parameter
invariance groups.

Lemma 1: There exist transformations (3.1) that reduce operator (2.4) to one of the six
possible forms,

Q = mst]t + x]xd, mÞ 0, Q = ]t + b]x, b ù 0,

Q = ]t + ssxdu]u, s Þ 0, Q = ]x, s3.2d

Q = ssxdu]u, s Þ 0,Q = ust,xd]u, u Þ 0.

Proof: Change of variabless3.1d reduces operators2.4d to become

Q̃ = kslt + l1d]t̄ + ekslx + l2d]x̄ + fYtslt + l1d + slx + l2dsX8u + Yxd + Xshu+ rdg]v. s3.3d

If lÞ0 in s2.4d, then settingk1=l−1l1k, k2=el−1l2k, and taking asX, Y sXÞ0d integrals of
system of PDEs,

X8slx + l2d + Xh= 0,

Ytslt + l1d + Yxslx + l2d + Xr = 0,

we reduces3.3d to the form

Q̃ = lst̄]t̄ + x̄]x̄d.

Providedl=0 andl1Þ0, we similarly obtain

Q̃ = ]t̄ + b]x̄, b ù 0, Q = ]t̄ + ssx̄dv]v, s Þ 0.

Next, if l=l1=0, l2Þ0 in s2.4d, then settingk=el2
−1, and taking asX, Y sXÞ0d integrals of

equations

l2X8 + hX= 0, Yx + rX = 0,

we reduce operators3.3d to becomeQ̃=]x̄.
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Finally, the casel=l1=l2=0, gives rise to operatorsQ̃=ssx̄dv]v, Q̃=ust̄ , x̄d]v.
Rewriting the above operators in the initial variablest, x completes the proof.
Theorem 2: There are exactly five inequivalent equations of the form (2.8) that admit one-

parameter transformation groups. Below we list these equations together with one-dimensional
Lie algebras generating their invariance groups (note that we do not present the full form of
invariant PDEs we just give the functions f and g),

A1
1 = kt]t + x]xl, g = x−1g̃sc,ud,

f = x−2f̃sc,ud, c = tx−1, g̃u Þ 0,

A1
2 = k]t + b]xl, g = g̃sh,ud, f = f̃sh,ud,

h = x − bt, b ù 0, g̃u Þ 0,

A1
3 = k]t + ssxdu]ul, g = − 2s8s−1 lnuuu + g̃sr,xd,

f = ss8s−1d2u ln2uuu − s8s−1g̃sr,xdu lnuuu − s−1s9u lnuuu + uf̃sr,xd,

r = u exps− tsd, s Þ 0,

A1
4 = k]xl, g = g̃st,ud, f = f̃st,ud, g̃u Þ 0,

A1
5 = kssxdu]ul, g = − 2s8s−1 lnuuu + g̃st,xd, f = ss8s−1d2u ln2uuu

− ss−1s9 + s−1s8g̃st,xddu lnuuu + uf̃st,xd, s8 Þ 0.

Proof: If Eq. s2.8d admits a one-parameter invariance group, then it is generated by operator
of the forms2.4d. According to Lemma 1, the latter is equivalent to one of the six operatorss3.2d.
That is why, all we need to do is integrate six systems of determining equations corresponding to
operatorss2.6d. For the first five operators solutions of determining equations are easily shown to
have the form given in the statement of the theorem.

We consider in more detail the operatorQ=ust ,ud]u. Determining Eqs.s2.6d for this operator
reduce to the form

utt − uxx = ufu + uxg, ugu = 0,

whence we getgu=0. Consequently, the system of determining equations is incompatible and the
corresponding invariant equation fails to exist.

Nonequivalence of the invariant equations follows from nonequivalence of the corresponding
symmetry operators.

The theorem is proved.
Note that in the sequel we give the formulations of theorems omitting routine proofs. The

detailed proofs of the most of the statements presented in this paper can be found in Ref. 35.
It is a common knowledge that there exist two inequivalent two-dimensional solvable Lie

algebras36–40

A2.1= ke1,e2l, fe1,e2g = 0,
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A2.2= ke1,e2l, fe1,e2g = e2.

To construct all possible realizations of the above algebras we take as the first basis element one
of the realizations of one-dimensional invariance algebras listed in Lemma 1. The second operator
is looked for in the generic forms2.4d.

Algebra A2.1: Let operatore1 be of the form]t+x]x and operatore2 read ass2.4d. Then it
follows from the relationfe1,e2g=0 thatl1=l2=xh8=0, tr t+xrx=0. Consequently, we can choose
basis elements of the algebra in question in the formkt]t+x]x,smu+rscdd]ul, wheremPR, c
= tx−1. Providedm=0, the operatore2 becomesrscd]u. It is straightforward to verify that this
realization does not satisfy the determining equations. Hence,mÞ0. Making the change of vari-
ables

t̄ = t, x̄ = x, v = u + m−1rscd

reduces the basis operators in question to the formt̄]t̄+ x̄]x̄, mv]v. That is why we can restrict our
considerations to the realizationkt]t+x]x,u]ul.

The second determining equation froms2.6d takes the formugu=0. Hence it follows that the
realization under consideration does not satisfy the determining equations. Consequently, the
realizationA1

1 cannot be extended to a realization of the two-dimensional algebraA2.1.
Algebra A2.2: If operatore1 is of the form t]t+x]x, then it follows fromfe1,e2g=e2 that l

=l1=l2=0, xh8=h, tr t+xrx=r.
Next, if e2 reads ast]t+x]x, then we get fromfe1,e2g=e2 the erroneous equality 1=0.
That is why, the only possible case is whene2=smxu+xrscdd]u, mÞ0, c= tx−1, which gives

rise to the following realization of the algebraA2.2: kt]t+x]x,xu]ul. This is indeed invariance
algebra of an equation from the classs2.8d and the functionsf and g read asg=−2x−1 lnuuu
+x−1g̃scd, f =x−2u ln2uuu−x−2g̃scdu lnuuu+x−2uf̃scd, c= tx−1.

Analysis of the remaining realizations of one-dimensional Lie algebras yields 10 inequivalent
A2.1- and A2.2-invariant equationsssee the assertions belowd. What is more, the obtainedstwo-
dimensionald algebras are maximal symmetry algebras of the corresponding equations.

Theorem 3: There are, at most, four inequivalent A2.1 -invariant nonlinear equations (2.8).
Below we list the realizations of A2.1 and the corresponding expressions for f and g.

s1d k]t,ssxdu]u,l, g = − 2s8s−1 lnuuu,

f = ss8s−1d2u ln2uuu − s−1s8u lnuuu + uf̃sxd, s8 Þ 0,

s2d k]t,]xl, g = g̃sud, f = f̃sud, g̃u Þ 0,

s3d k]x,]t + u]ul, g = g̃svd, f = expstd f̃svd, v = exps− td, g̃v Þ 0,

s4d kssxdu]u,]t − 1
2kssxdcsxdu]ul, g = − 2s8s−1 lnuuu + kt + g̃sxd,

f = ss8s−1d2u ln2uuu − s−1s9u lnuuu − s−1s8skt + g̃sxddu lnuuu

+ uf 1
2ks8s−1t + 1

4k2t2 + 1
2kg̃sxd + f̃sxdg ,

k Þ 0, s8 Þ 0, c =E s−1 dx.

Theorem 4: There exist, at most, six inequivalent A2.2-invariant nonlinear equations (2.8).
Below we list the realizations of A2.1 and the corresponding expressions for f and g.
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s1d kt]t + x]x,k
−1uxuku]ul, g = x−1s− 2k lnuuu + g̃scdd,

f = x−2us− k2 ln2uuu + kg̃scdlnuuu + ksk − 1dlnuuu + f̃scdd,

k Þ 0, c = tx−1,

s2d k]t + b]x,expsb−1xdu]ul, g = − 2b−1 lnuuu + g̃shd,

f = b−2u ln2uuu − sb−2 + b−1g̃shddu lnuuu + uf̃shd,

b . 0, h = x − bt,

s3d k− t]t − x]x,]t + b]xl, g = h−1g̃sud, f = h−2f̃sud, b ù 0,

h = x − bt, g̃u Þ 0,

s4d k− t]t − x]x,]t + mx−1u]ul, g = x−1s2mc + g̃svdd,

f = x−1f− 2mcu − 2mc − 2 − g̃svd + expsmcdg̃svdg,

m. 0, v = u exps− mcd, c = tx−1, g̃v Þ 0,

s5d k]x,e
xu]ul, g = − 2 lnuuu + g̃std, f = u ln2uuu − u lnuuus1 + g̃stdd + uf̃std,

s6d k− t]t − x]x,]xl, g = t−1g̃sud, f = t−2f̃sud, g̃u Þ 0.

B. Completing group classification of „2.8…

As the invariant equations obtained in the previous subsection contain arbitrary functions of,
at most, one variable, we can now apply the standard Lie–Ovsyannikov routine to complete the
group classification ofs2.8d. We give the computation details for the case of the firstA2.1-invariant
equation, the remaining cases are handled in a similar way.

Settingg=−2s8s−1 lnuuu, f =ss8s−1du ln2uuu−s−1s9u lnuuu+uf̃sxd, s=ssxd, s8Þ0 we rewrite
the first determining equation to become

− 2h8 + 2ls8s−1 lnuuu = − 2slx + l2dss8s−1dx8 lnuuu − 2hs8s−1 − 2rs8s−1u−1.

As h= fsxd, s=ssxd, r =rst ,xd, l, l2PR, the above relation is equivalent to the following ones:

h8 = s8s−1h, r = 0, ls8s−1 = − slx + l2dss8s−1d8.

If s is an arbitrary function, thenl=l2=r =0, h=Cs, CPR and we getk]t ,ssxdu]ul as the
maximal symmetry algebra. Hence, extension of the symmetry algebra is only possible when the
function c=s8s−1 is a snonvanishing identicallyd solution of the equation

sax + bdc8 + ac = 0, a,b P R, uau + ubu Þ 0.

If aÞ0, then at the expense of displacements byx we can getb=0, so thatc=mx−1, mÞ0.
Integrating the remaining determining equations yields
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g = − 2mx−1 lnuuu, f = mx−2fmu ln2uuu − sm− 1du lnuuu + nug, mÞ 0, m,n P R.

The maximal invariance algebra of the obtained equation is the three-dimensional Lie algebra
k]t , uxumu]u,t]t+x]xl isomorphic toA3.7.

Next, if a=0, thenbÞ0 andc=m, mÞ0. If this is the case, we have

g = lnuuu, f = 1
4u ln2uuu − 1

4u lnuuu + nu, n P R.

The maximal invariance algebra of the above equation reads as

k]t,]x,exps− 1
2xdu]ul .

It is isomorphic toA3.2.
Similarly, we prove that the list of inequivalent equations of the forms2.8d admitting three-

dimensional symmetry algebras is exhausted by the equations given below. Note that the presented
algebras are maximal. This means, in particular, that maximal symmetry algebra of Eq.s2.8d is, at
most, three dimensional.

A3.2-invariant equations,

s1d utt = uxx + ux lnuuu + 1
4u ln2uuu − 1

4u lnuuu + nusn P Rd,k]t,]x,exps− 1
2xdu]ul ,

s2d utt = uxx + mflnuuu − tgux + sm2/4dufslnuuu − tdslnuuu − t − 1dg + nusm. 0,n P Rd,

k]x,]t + u]u,exps− 1
2mxdu]ul .

A3.4-invariant equations,

s1d utt = uxx + x−1f2 lnuuu + mx−1t + ngux + x−2u lnuuu + smx−1t + n − 2dx−2u lnuuu + 1
4m2x−4t2u

+ 1
2msn − 3dx−3tu + px−2usmÞ 0,n,p P Rd, kt]t + x]x,x

−1u]u,]t − sm/2dx−1 lnuxuu]ul.

A3.5-invariant equations,

s1d utt = uxx + uuumux + nuuu1+2m smÞ 0,n P Rd, k]t,]x,t]t + x]x − m−1u]ul,

s2d utt = uxx + euux + ne2u sn P Rd, k]t,]x,t]t + x]x − ]ul,

s3d utt = uxx − x−1f2 lnuuu − mx−1t − ngux + x−2u ln2uuu − x−2smx−1t + ndu lnuuu + ux−2fsm/4dx−2t2

+ sm/2dsn − 1dx−1t + pgsm,n,p P Rd, kt]t + x]x,xu]u,]t + sm/4dx−1u]ul.

A3.7-invariant equations,

s1d utt = uxx − 2mx−1ux lnuuu + mx−2fmu ln2uuu − sm− 1du lnuuu + nug

3smÞ 0,1;n P Rd, k]t,uxumu]u,t]t + x]xl,

s2d utt = uxx − x−1f2k + lnuuu − mx−1t − ngux + k2x−2u ln2uuu − kx−2fmtx−1 + k + n − 1gu lnuuu + 1
2msk

− 2 +ndtx−3u + 1
4m2t2x−4u + px−2u suku Þ 0,1;mÞ 0,n,p P Rd,

kt]t + x]x,uxuku]u,]t + fm/2s1 + kdgx−1u]ul.

This completes the group classification of nonlinear equationss2.8d.

IV. GROUP CLASSIFICATION OF Eq. „2.9…

Omitting calculation details we present below the determining equations for symmetry opera-
tors admitted by Eq.s2.9d.
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Assertion 2: The maximal invariance group of PDE (2.9) is generated by the infinitesimal
operator,

Q = tstd]t + jsxd]x + fhstdu + rst,xdg]u, s4.1d

wheret, j, h, r, f, g are smooth functions satisfying the conditions

rtx + ffh − tt − jxg = grx + tf t + jfx + fhu+ rgfu,

s4.2d
ht = ttg + tgt + jgx.

Assertion 3: The equivalence groupE of (2.9) is formed by the following transformations of
the space V :

s1d t̄ = Tstd, x̄ = Xsxd, v = Ustdu + Yst,xd, t8X8U Þ 0,

s2d t̄ = Tsxd, x̄ = Xstd, v = CsxdFst,xdu + Yst,xd, t8X8C Þ 0, s4.3d

Fst,xd = expS−E gst,xddtD,gx Þ 0.

As the direct verification shows, given arbitrary functionsg and f, it follows from s4.2d that
t=h=j=r =0. So that in the generic case the maximal invariance group ofs2.9d is the trivial group
of identical transformations.

We begin classification ofs2.9d by constructing equations that admit one-dimensional sym-
metry algebras. The following assertions hold.

Lemma 2: There exist transformations (4.3) reducing operator (4.1) to one of the seven
canonical forms given below

Q = t]t + x]x, Q = ]t, Q = ]x + tu]u,

Q = ]x + eu]u, e = 0,1, Q = tu]u, s4.4d

Q = u]u, Q = rst,xd]u, r Þ 0.

Theorem 5: There exist, at most, three inequivalent nonlinear equations (2.9) that admit
one-dimensional invariance algebras. The form of functions f, g and the corresponding symmetry
algebras are given below,

A1
1 = kt]t + x]xl, g = t−1g̃svd, f = t−2fsu,vd, v = tx−1, g̃v Þ 0, fuu Þ 0,

A1
2 = k]tl, g = g̃sxd, f = f̃sx,ud, g̃8 Þ 0, f̃ uu Þ 0,

A1
3 = k]x + tu]ul, g = x + g̃std, f = etxf̃st,vd, v = e−txu, f̃vv Þ 0.

We proceed now to analyzing Eqs.s2.9d admitting two-dimensional symmetry algebras.
Theorem 6: There exist, at most, three inequivalent nonlinear equations (2.9) that admit

two-dimensional symmetry algebras, all of them being A2.2-invariant equations. The forms of
functions f and g and the corresponding realizations of the Lie algebra A2.2 read as

A2.2
1 = kt]t + x]x,t

2]t + x2]x + mut]ul smP Rd,

g = fmt+ sk − mdxgt−1st − xd−1, k Þ 0,
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f = ut − xum−2uxu−mf̃svd,

v = uut − xu−muxum, f̃vv Þ 0,

A2.2
2 = kt]t + x]x,t

2]t + mtu]ul smP Rd,

g = t−2fkx+ mtg, k Þ 0, f = utum−2uxu−mf̃svd,

v = utu−muxumu, f̃vv Þ 0,

A2.2
3 = kt]t + x]x,x

2]x + tu]ul,

g = stxd−1smx− tdsmP Rd, f = x−2 exps− tx−1d f̃svd,

v = u expstx−1d, f̃vv Þ 0.

Note that if the functionf̃ is arbitrary, then the invariance algebras given in the statement of
Theorem 6 are maximal.

It turns out that the above theorems provide complete group classification of the class of PDEs
s2.9d. Namely, the following assertion holds true.

Theorem 7: A nonlinear equation (2.9) having nontrivial symmetry properties is equivalent to
one of the equations listed in Theorems 5 and 6.

V. GROUP CLASSIFICATION OF Eq. „2.10…

As earlier, we present the results of the first step of our group classification algorithm skipping
derivation details.

Assertion 4: Invariance group of equation (2.10) is generated by infinitesimal operator

Q = tstd]t + jsxd]x + sku+ rst,xdd]u, s5.1d

where k is a constantt, j, r, f are functions satisfying the relation

rtx + fk − t8 − j8gf = tf t + jfx + fku+ rgfu. s5.2d

Assertion 5: Equivalence groupE of the class of equations (2.10) is formed by the following
transformations:

s1d t̄ = Tstd, x̄ = Xsxd, v = mu+ Yst,xd,

s5.3d
s2d t̄ = Tsxd, x̄ = Xstd, v = mu+ Yst,xd, T8X8mÞ 0.

Note that given an arbitrary functionf, it follows from s5.2d thatt=j=k=r =0, i.e., the group
admitted is trivial. To obtain equations with nontrivial symmetry we need to specify properly the
function f. To this end we perform classification of equations under study admitting one-
dimensional invariance algebras. The following assertions give exhaustive classification of those.

Lemma 3: There exist transformations from the groupE (5.3) that reduce (5.1) to one of the
four canonical forms,

Q = ]t + ]x + eu]u se = 0,1d,
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Q = ]t + eu]u se = 0,1d,

Q = u]u, Q = gst,xd]u sg Þ 0d.

Theorem 8: There exist exactly two nonlinear equations of the form (2.10) admitting one-
dimensional invariance algebras. The corresponding expressions for function f and invariance
algebras are given below,

A1
1 = k]t + ]x + eu]ul se = 0,1d, f = eet f̃su,vd, u = t − x, v = e−etu, f̃vv Þ 0,

A1
2 = k]t + eu]ul se = 0,1d, f = eet f̃sx,vd, v = e−etu, f̃vv Þ 0.

Our analysis of Eqs.s2.10d admitting higher dimensional invariance algebras yields the fol-
lowing assertion.

Theorem 9: The Liouville equation utx=leu, lÞ0, has the highest symmetry among equa-
tions (2.10). Its maximal invariance algebra is infinite-dimensional and is spanned by the follow-
ing infinite set of basis operators:

Q = hstd]t + gsxd]x − sh8std + g8sxdd]u,

where h and g are arbitrary smooth functions. Next, there exist exactly nine inequivalent equations
of the form (2.10), whose maximal invariance algebras have dimension higher that one. We give
these equations and their invariance algebras in Table I.

Details of the proof can be found in Ref. 35.

TABLE I. Invariant equationss2.10d.

Number Functionf Symmetry operators
Invariance algebra

type

1 etf̃svd, ]t+u]u, ]x A2.1

v=ue−t, f̃vvÞ0

2 et+xf̃svd, ]t+u]u, A2.1

v=ue−t−x, f̃vvÞ0 ]x+u]u

3 st−xd−3f̃svd, −t]t−x]x+u]u, A2.2

v=st−xdu, f̃vvÞ0 ]t+]x

4 x−1f̃svd, −t]t−x]x−u]u, A2.2

v=x−1u, f̃vvÞ0 ]t

5 st−xd−2f̃sud, ]t+]x, sls2,Rd

f̃ uuÞ0 t]t+x]x,

t2]t+x2]x

6 expsx−1ud −t]t+x]u, A2.2% A1

]t, x]x+u]u

7 luxu−m−2uuum+1, ]t, t]t− 1/mu]u, A2.2% A1

lÞ0, mÞ0, 2, 1−2 x]x+ m+1/mu]u

8 f̃sud, f̃ uuÞ0 ]t, ]x, −t]t−x]x A3.6

9 luuun+1, lÞ0, nÞ0, −1 t]t− 1/nu]u A2.2% A2.2

x]x− 1/nu]u

]t, ]x
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VI. GROUP CLASSIFICATION OF Eq. „2.7…

The first step of the algorithm of group classification ofs2.7d,

utt = uxx + Fst,x,u,uxd, Fuxux
Þ 0,

has been partially performed in Sec. II. It follows from Theorem 1 that the invariance group of Eq.
s2.7d is generated by infinitesimal operators2.4d. What is more, the real constantsl, l1, l2 and
real-valued functionsh=hsxd, r =rst ,xd, F=Fst ,x,u,uxd obey the relations2.5d. The equivalence
group of the class of equationss2.7d is formed by transformationss3.1d.

With these facts in hand we can utilize results of group classification of Eq.s2.8d in order to
classify Eq.s2.7d. In particular, using Lemma 1 and Lemma 2 from Ref. 35 it is straightforward to
verify that the following assertions hold true.

Theorem 10: There are, at most, seven inequivalent classes of nonlinear equations (2.7)
invariant under the one-dimensional Lie algebras.

Below we give the full list of the invariant equations and the corresponding invariance alge-
bras,

A1
1 = kt]t + x]xl, F = t−2Gsj,u,vd, j = tx−1, v = xux,

A1
2 = k]t + k]xl sk . 0d, F = Gsh,u,uxd, h = x − kt,

A1
3 = k]xl, F = Gst,u,uxd,

A1
4 = k]tl, F = Gsx,u,uxd,

A1
5 = k]t + fsxdu]ul sf Þ 0d,

F = − tf9u + t2sf8d2u − 2tf8ux + etfGsx,v,vd,

v = e−tfu, v = u−1ux − f8f−1 lnuuu,

A1
6 = kfsxdu]ul sf Þ 0d, F = − f−1f9u lnuuu − 2f−1f8ux lnuuu + f−2sf8d2u ln2uuu + uGst,x,vd,

v = u−1ux − f8f−1 lnuuu,

A1
7 = kfst,xd]ul sf Þ 0d, F = f−1sf tt − fxxdu + Gst,x,vd,

v = ux − f−1fxu.

Note that if the functionsF andG are arbitrary, then the presented algebras are maximalsin Lie’s
sensed symmetry algebras of the respective equations.

Theorem 11:An equation of the form (2.7) cannot admit Lie algebra which has a subalgebra
having nontrivial Levi factor.

With account of the above facts we conclude that nonlinear equationss2.7d admit a symmetry
algebra of the dimension higher than one only if the latter is a solvable real Lie algebra. That is
why, we turn to classifying equationss2.7d whose invariance algebras are two-dimensional solv-
able Lie algebras.

Below we present the list of invariant equations and the corresponding realizations of the
two-dimensional invariance algebras.

sId A2.1-invariant equations,
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A2.1
1 = kt]t + x]x,u]ul, F = x−2uGsj,vd,

j = tx−1, v = u−1xux,

A2.1
2 = kt]t + x]x,ssjd]ul ss Þ 0,j = tx−1d,

F = x−2fs−1ss1 − j2ds9 − 2js8du + Gsj,vdg,

v = js8u + sxux,

A2.1
3 = k]t + k]x,u]ul sk . 0d, F = uGsh,vd,

h = x − kt, v = u−1ux,

A2.1
4 = k]t + k]x,wshd]ul sk . 0,h = x − kt,w Þ 0d,

F = sk2 − 1dw9w−1u + Gsh,vd, v = wux − w8u,

A2.1
5 = k]t + k]x,]x + u]ul sk . 0d,

F = ehGsv,vd, h = x − kt, v = ue−h, v = u−1ux,

A2.1
6 = k]t,]xl, F = Gsu,uxd,

A2.1
7 = k]x,u]ul, F = uGst,vd, v = u−1ux,

A2.1
8 = k]x,wstd]ul sw Þ 0d,

F = w−1w9u + Gst,uxd,

A2.1
9 = k]t,]ul, F = Gsx,uxd,

A2.1
10 = k]t, fsxdu]ul sf Þ 0d,

F = − u−1ux
2 + uGsx,vd,

v = u−1ux − f8f−1 lnuuu,

A2.1
11 = k]t + fsxdu]u,gsxdu]ul sd = f−1f8 − g−1g8 Þ 0d,

F = − g−1g9u lnuuu − 2g−1g8ux lnuuu + g−2sg8d2u ln2uuu − 2fdtux + 2fdg8g−1tu lnuuu

+ f2d2t2u + fsg−1g9 − f−1f9dtu + uGsx,vd,

v = u−1ux − g8g−1 lnuuu − tfd,

A2.1
12 = k]t + fsxdu]u,e

tf]ul sf Þ 0d,
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F = ff2 − tf9 + t2sf8d2gu − 2tf8ux + etfGsx,vd,

v = e−tfsux − tf8ud,

A2.1
13 = kfsxdu]u,gsxdu]ul sd = f8g − g8f Þ 0d,

F = − u−1ux
2 − d−1d8ux + d−1ff9g8 − g9f8gu lnuuu + uGst,xd,

A2.1
14 = kwstd]u,cstd]ul sw8c − wc8 Þ 0d,

F = w−1w9u + Gst,x,uxd, w9c − wc9 = 0.

sII d A2.2-invariant equations,

A2.2
1 = kt]t + x]x,xu]ul, F = x−2u ln2uuu − 2x−1ux lnuuu + t−2uGsj,vd, j = tx−1,

v = xu−1ux − lnuuu,

A2.2
2 = kt]t + x]x,twsjd]ul sw Þ 0,j = tx−1d,

F = t−2s1 − j2dw−1js2w8 + jw9du + t−2Gsj,vd,

v = xwux + jw8u,

A2.2
3 = k]t + k]x,expsk−1xdu]ulsk . 0d,

F = k−2u ln2uuu − 2k−1ux lnuuu − k−2u lnuuu + uGsh,vd, h = x − kt, v = u−1ux − k−1 lnuuu,

A2.2
4 = k]t + k]x,e

twshd]ul sh = x − kt,k . 0,w Þ 0d,

F = ssk2 − 1dw9w−1 − 2kw8w−1 + 1du + Gsh,vd,

v = wux − w8u, w8 =
dw

dh
,

A2.2
5 = k− t]t − x]x,]t + k]xl sk . 0d,

F = h−2Gsu,vd, h = x − kt, v = uxh,

A2.2
6 = k− t]t − x]x + mu]u,]t + k]xl sk . 0,mÞ 0d,

F = uhu−2−mGsv,vd, h = x − kt,

v = uuhum, v = uxuhum+1,

A2.2
7 = k]x,e

xu]ul, F = u ln2uuu − u lnuuu − 2ux lnuuu + uGst,vd, v = u−1ux − lnuuu,
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A2.2
8 = k]x,e

xwstd]ul sw Þ 0d,

F = sw−1w9 − 1du + Gst,vd, v = ux − u,

A2.2
9 = k− t]t − x]x,]xl, F = t−2Gsu,tuxd,

A2.2
10 = k− t]t − x]x + ku]u,]xl sk Þ 0d,

F = utu−2−kGsv,vd, v = utuku, v = utuk+1ux,

A2.2
11 = k]t,e

t]ul, F = u + Gsx,uxd,

A2.2
12 = k− t]t − x]x,]tl, F = x−2Gsu,vd, v = xux,

A2.2
13 = k]t + fsxdu]u,e

s1+fdt]ul sf Þ 0d,

F = − stf9 − t2sf8d2 − s1 + f2ddu − 2tf8ux + etfGsx,vd, v = e−tfsux − f8st + f−1dud,

A2.2
14 = k− t]t − x]x,]t + kx−1u]ul sk . 0d,

F = − 2ktx−3u + k2t2x−4u + 2ktx−2ux + x−2 expsktx−1dGsv,vd, v = exps− kx−1tdu,

v = xu−1ux + lnuuu,

A2.2
15 = kkst]t + x]xd,uxuk

−1
u]ul sk Þ 0,1d,

F = − k−2s1 − kdx−2u lnuuu − 2k−1x−1ux lnuuu + k−2x−2u ln2uuu + x−2uGsv,vd,

v = tx−1, v = xu−1ux − k−1 lnuuu,

A2.2
16 = kkst]t + x]xd,utuk

−1
wsjd]ul sk Þ 0,1,w Þ 0,j = tx−1d, F = fk−1sk−1 − 1d + 2jsk−1

− j2dw−1w8 + j2s1 − jd2w−1w9gt−2u + t−2Gsj,vd,

v = xwux + jw8u.

In the above formulasG stands for an arbitrary smooth function. As customary, the prime
denotes the derivative of a function of one variable.

A. Group classification of the equation utt =uxx −u−1ux
2+A„x…ux +B„x…u ln zu z+uD„t ,x…

Before analyzing Eqs.s2.7d admitting algebras of the dimension higher than two we perform
group classification of the equation

utt = uxx − u−1ux
2 + Asxdux + Bsxdu lnuuu + uDst,xd. s6.1d

HereAsxd ,Bsxd ,Dst ,xd are arbitrary smooth functions. Note that the above class of PDEs contains
A2.1

13-invariant equation. Importantly, classs6.1d contains a major part of equations of the form
s2.7d, whose maximal symmetry algebras have dimension three or four. This fact is used to
simplify group classification of Eqs.s2.7d.
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The complete account of symmetry properties of PDEs6.1d is given in the following asser-
tions.

Lemma 4: If A, B, and D are arbitrary, then the maximal invariance algebra of PDE (6.1) is
the two-dimensional Lie algebra equivalent to A2.1

13 and (6.1) reduces to A2.1
13-invariant equation.

Next, if the maximal symmetry algebra of an equation of the form (6.1) is three-dimensional (we
denote it as A3), then this equation is equivalent to one of the following ones:

sId A3 , A3.1, A3 = k]t, fsxdu]u,wsxdu]ul,

A = − s−1s8, B = s−1r, D = 0, s = f8w − fw8 Þ 0,

r = w8f9 − w9f8,

sII d A3 , A3.1, A3 = kfsxdu]u,wsxdu]u,]t + csxdu]ul,

A = − s−1s8, B = s−1r,

D = ts−1fs8c8 − cr − sc9g,

s = f8w − w8f Þ 0, r = f9w8 − w9f8,

f8c − fc8 Þ 0, w8c − wc8 Þ 0,

sIII d D = x−2Gsjd, j = tx−1,G Þ 0,

s1d A3 , A3.2, A3 = kt]t + x]x,u]u,uxu1−nu]ul,

A = nx−1 sn Þ 1d, B = 0,

s2d A3 , A3.3, A3 = kt]t + x]x,u]u,u lnuxu]ul,

A = x−1, B = 0,

s3d A3 , A3.4, A3 = kt]t + x]x,Îuxuu]u,Îuxu lnuxuu]ul,

A = 0, B = 1
4x−2,

s4d A3 , A3.9, A3 = kt]t + x]x,Îuxu coss 1
2b lnuxudu]u,Îuxu sins 1

2b lnuxudu]ul,

A = 0, B = mx−2,

m.
1
4, b = Î4m− 1,

s5d A3 , A3.7, A3 = kt]t + x]x,sÎuxud1+bu]u,sÎuxud1−bu]ul,

A = 0, B = mx−2, m,
1
4, mÞ 0, b = Î1 − 4m,
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s6d A3 , A3.8, A3 = kt]t + x]x,cossÎm lnuxudu]u,sinsÎm lnuxudu]ul,

A = x−1, B = mx−2, m. 0,

s7d A3 , A3.6, A3 = kt]t + x]x,uxuÎumuu]u,uxu−Îumuu]ul,

A = x−1, B = mx−2, m, 0,

s8d A3 , A3.4, A3 = kt]t + x]x,sÎuxud1−nu]u,sÎuxud1−n 3 lnuxuu]ul,

A = nx−1 sn Þ 0,1d, B = 1
4sn − 1d2x−2,

s9d A3 , A3.9, A3 = kt]t + x]x,sÎuxud1−n coss 1
2b lnuxudu]u,sÎuxud1−n sins 1

2b lnuxudu]ul,

A = nx−1 sn Þ 0,1d,

B = mx−2 sm.
1
4sn − 1d2d, b = Î4m− sn − 1d2,

s10d A3 , A3.7, A3 = kt]t + x]x,sÎuxud1−b−nu]u,sÎuxud1−n+b 3 u]ul,

A = nx−1 sn Þ 0,1d, B = mx−2

sm,
1
4sn − 1d2,mÞ 0d, b = Îsn − 1d2 − 4m.

sIV d D = Gstd,

s1d A3 , A3.3, A3 = k]x,u]u,xu]ul,

A = B = 0,

s2d A3 = A3.2, A3 = k]x,u]u,e
xu]ul,

A = − 1, B = 0,

s3d A3 , A3.8, A3 = k]x,cossxdu]u,sinsxdu]ul,

A = 0, B = 1,

s4d A3 , A3.6, A3 = k]x,e
xu]u,e

−xu]ul,

A = 0, B = − 1,

s5d A3 , A3.4, A3 = k]x,exps 1
2xdu]u,exps 1

2xdxu]ul ,

A = − 1, B = 1
4 ,

s6d A3 , A3.7, A3 = k]x,exps 1
2s1 + bdxdu]u,exps 1

2s1 − bdxdu]ul ,
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A = − 1, B = m sm,
1
4d, mÞ 0, b = Î1 − 4m,

s7d A3 , A3.9,A3 = k]x,exps 1
2xdcoss 1

2bxdu]u,exps 1
2xdsins 1

2bxdu]ul ,

A = − 1, B = m sm.
1
4d, b = Î4m− 1,

sVd D = Gshd, h = x − kt, k . 0,

s1d A3 , A3.3, A3 = k]t + k]x,u]u,xu]ul,

A = B = 0,

s2d A3 = A3.2, A3 = k]t + k]x,u]u,e
xu]ul,

A = − 1, B = 0,

s3d A3 , A3.8, A3 = k]t + k]x,cossxdu]u,sinsxdu]ul,

A = 0, B = 1,

s4d A3 , A3.6, A3 = k]t + k]x,e
xu]u,e

−xu]ul,

A = n, B = − 1,

s5d A3 , A3.4, A3 = k]t + k]x,exps 1
2xdu]u,exps 1

2xdxu]ul ,

A = − 1, B = 1
4 ,

s6d A3 , A3.7, A3 = k]t + k]x,exps 1
2s1 + bdxdu]u,exps 1

2s1 − bdxdu]ul ,

A = − 1, B = m sm,
1
4d, mÞ 0, b = Î1 − 4m,

s7d A3 , A3.9, A3 = k]t + k]x,exps 1
2xdcoss 1

2bxdu]u,exps 1
2xdsins 1

2bxdu]ul ,

A = − 1, B = m sm.
1
4d, b = Î4m− 1.

Theorem 12: Equation utt=uxx−u−1ux
2 has the widest symmetry group amongst equations of

the form (6.1). Its maximal invariance algebra is the five-dimensional Lie algebra,

A5
1 = k]t,]x,t]t + x]x,xu]u,u]ul.

There are no equations of the form (6.1) which are inequivalent to the above equation and admit
invariance algebra of the dimension higher than four. Inequivalent equations (6.1) admitting
four-dimensional algebras are listed below together with their symmetry algebras.

sId D = 0,
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s1d A4 , A3.6 % A1, A4 = k]t,]x,u chsbxd]u,u sinhsbxd]ul,

A = 0, B = − b2, b Þ 0,

s2d A4 , A3.8 % A1, A4 = k]t,]x,u cossbxd]u,u sinsbxd]ul,

A = 0, B = b2, b Þ 0,

s3d A4 , A2.1 % A2.2, A4 = k]t,]x,u]u,e
−xu]ul, A = 1, B = 0,

s4d A4 , A3.4 % A1, A4 = k]t,]x,e
−xu]u,xe−xu]ul, A = 2, B = 1,

s5d A4 , A3.9 % A1, A4 = k]t,]x,ue−x cossbxd]u,ue−x sinsbxd]ul,

A = 2, B = m, m. 1, b = Îm− 1,

s6d A4 , A3.7 % A1, A4 = k]t,]x,ue−x chsbxd]u,ue−x sinhsbxd]ul,

A = 2, B = m, m. 1, mÞ 0, b = Î1 − m,

s7d A4 , A4.2, A4 = k]t,t]t + x]x,Îuxuu]u,uÎuxu lnuxu]ul,

A = 0, B = 1
4x−2,

s8d A4 , A4.5, A4 = k]t,t]t + x]x,uxu
1
2

+bu]u,uxu
1
2

−bu]ul, A = 0,

B = mx−2, m,
1
4, mÞ 0, b = Î1

4 − m,

s9d A4 , A4.6, A4 = k]t,t]t + x]x,Îuxu cossb lnuxudu]u,Îuxu sinsb lnuxudu]ul,

A = 0, B = mx−2, m.
1
4, b = Îm− 1

4 ,

s10d A4 , A4.3, A4 = k]t,t]t + x]x,u lnuxu]u,u]ul, A = x−1, B = 0,

s11d A4 , A3.7 % A1, A4 = k]t,t]t + x]x,uxu1−nu]u,u]ul,

A = nx−1, B = 0, n Þ 0,1,

s12d A4 , A4.5, A4 = k]t,t]t + x]x,uxu
1
2

s1−ndu]u,uxu
1
2

s1−ndu lnuxu]ul,

A = nx−1, B = 1
4sn − 1d2x−2, n Þ 0,1,

s13d A4 , A4.5, A4 = k]t,t]t + x]x,uxu
1
2

s1−n+bdu]u,uxu
1
2

s1−n−bdu]ul,
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A = nx−1, B = mx−2, m,
1
4sn − 1d2, mÞ 0, n Þ 0,

b = Îsn − 1d2 − 4m,

s14d A4 , A4.6, A4 = k]t,t]t + x]x,uxu
1
2

s1−nd cossb lnuxudu]u,uxu
1
2

s1−nd sinsb lnuxudu]ul,

A = nx−1, B = mx−2,

mÞ 0, n Þ 0, m.
1
4sn − 1d2, b = Îm− 1

4sn − 1d2,

sII d D = ktx−3, k . 0,

s1d A4 , A4.1, A4 = k]t − 1
2kx−1u]u,t]t + x]x,xu]u,u]ul, A = B = 0,

s2d A4 , A4.2, A4 = k]t − 4
9kx−1u]u,t]t + x]x,Îuxuu]u,Îuxu lnuxuu]ul ,

A = 0, B = 1
4x−2,

s3d A4 , A4.5, A4 = k]t − fk/sm+ 2dgx−1u]u,t]t + x]x,uxu
1
2

+bu]u,uxu
1
2

−bu]ul,

A = 0, B = mx−2, mÞ 0,− 2, m,
1
4, b = Î1

4 − m,

s4d A4 , A4.2, A4 = k]t + 1
9kx−1s1 + 3 lnuxuud]u,t]t + x]x,x

2u]u,x
−1u]ul, A = 0, B = − 2x−2,

s5d A4 , A4.6, A4 = k]t − fk/sm+ 2dgx−1u]u,t]t + x]x,Îuxuu cossb lnuxud]u,Îuxuu sinsb lnuxud]ul,

A = 0, B = mx−2, m.
1
4, b = Îm− 1

4 ,

s6d A4 , A4.3, A4 = k]t − kx−1u]u,t]t + x]x,u]u,u lnuxu]ul,

A = x−1, B = 0,

s7d A4 , A3.4 % A1, A4 = k]t + kx−1s1 + lnuxudu]u,t]t + x]x,u]u,x
−1u]ul,

A = 2x−1, B = 0,

s8d A4 , A3.7 % A1, A4 = k]t + fk/sn − 2dgx−1u]u,t]t + x]x,u]u,uxu1−nu]ul,

A = nx−1, B = 0, n Þ 0,1,2,

s9d A4 = A4.4, A4 = k]t − 1
2kx−1 ln2uxuu]u,t]t + x]x,x

−1u]u,x
−1 lnuxuu]ul,

A = 3x−1, B = x−2,

s10d A4 , A4.2, A4 = k]t − f4k/sn − 3d2gx−1u]u,t]t + x]x,uxu
1
2

s1−ndu]u,uxu
1
2

s1−nd lnuxuu]ul,

A = nx−1, B = 1
4sn − 1d2x−2, n Þ 0,3,
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s11d A4 , A4.5, A4 = kt]t + x]x,]t − fks2 − n + mdgx−1u]u,uxu
1
2

s1−n+bdu]u,uxu
1
2

s1−n−bdu]ul,

A = nx−1, B = mx−2,

n Þ 0,2, mÞ n − 2, m,
1
4sn − 1d2, b = Îsn − 1d2 − 4m,

s12d A4 , A4.2, A4 = kt]t + x]x,]t + fk/s3 − ndgx−1 lnuxuu]u,x
−1u]u,uxu2−nu]ul,

A = nx−1, B = sn − 2dx−2, n Þ 0,2,3,

s13d A4 , A4.6, A4 = kt]t + x]x,]t − fk/s2 − n + mdgx−1u]u,

uxu
1
2

s1−ndu cossb lnuxud]u,uxu
1
2

s1−ndu sinsb lnuxud]ul,

A = nx−1, B = mx−2, n Þ 0, mÞ 0, m.
1
4sn − 1d2,

b = Îm− 1
4sn − 1d2,

sIII d D = kt, k . 0,

s1d A4 , A4.1, A4 = k]x,]t − 1
2kx2u]u,xu]u,u]ul, A = B = 0,

s2d A4 , A4.3, A4 = k]x,]t − kxu]u,e
−xu]u,u]ul, A = 1, B = 0,

s3d A4 , A3.8 % A1, A4 = k]x,]t − kb−2u]u,u cossbxd]u,u sinsbxd]ul,

A = 0, B = b2, b Þ 0,

s4d A4 , A3.6 % A1, A4 = k]x,]t + kb−2u]u,u chsbxd]u,u sinhsbxd]ul,

A = 0, B = − b2, b Þ 0,

s5d A4 , A3.4 % A1, A4 = k]x,]t − 4ku]u,exps− 1
2xdu]u,x exps− 1

2xdu]ul ,

A = 1, B = 1
4 ,

s6d A4 , A3.7 % A1, A4 = k]x,]t − km−1u]u,exps− 1
2s1 − bdxdu]u,exps− 1

2s1 + bdxdu]ul ,

A = 1, B = m, m,
1
4, mÞ 0, b = Î1 − 4m,

s7d A4 , A3.9 % A1, A4 = k]x,]t − km−1u]u,exps− 1
2xdcossbxdu]u,exps− 1

2xdsinsbxdu]ul ,

A = 1, B = m, m.
1
4, b = Îm− 1

4 ,

sIV d D = kt−2, k Þ 0,
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A4 , A4.8 sq = − 1d, A4 = k]x,t]t + x]x,xu]u,u]ul, A = B = 0,

sVd D = msx − ktd−2, k . 0, mÞ 0,

A4 , A4.8 sq = − 1d, A4 = k]t + k]x,t]t + x]x,xu]u,u]ul, A = B = 0.

Proof can be found in Ref. 35.

B. Nonlinear equations „2.7… invariant under three-dimensional Lie algebras

Equations of the forms2.7d cannot be invariant under the algebra which is isomorphic to a Lie
algebra with a nontrivial Levi ideal.35 That is why, to complete the second step of our classifica-
tion algorithm it suffices to consider three-dimensional solvable real Lie algebras. We begin by
considering two decomposable three-dimensional solvable Lie algebras.

Note that while classifying invariant equationss2.7d we skip those belonging to the classs6.1d,
since the latter has already been analyzed.

1. Invariance under decomposable Lie algebras

As A3.1=3A1=A2.1% A1, A3.2=A2.2% A1, to construct all realizations ofA3.1 it suffices to com-
pute all possible extensions of thesalready knownd realizations of the algebrasA2.1=ke1,e2l and
A2.2=ke1,e2l. To this end we need to supplement the latter by a basis operatore3 of the forms2.4d
in order to satisfy the commutation relations

fe1,e3g = fe2,e3g = 0. s6.2d

What is more, to simplify the form ofe3 we may use those transformations fromE that do not alter
the remaining basis operators of the corresponding two-dimensional Lie algebras.

We skip the full calculation details and give a couple of examples illustrating the main
calculation steps needed to extendA2.1 to a realization ofA3.1.

Consider the realizationA2.1
1 . Upon checking commutation relationss6.2d, wheree3 is of form

s2.4d, we get

l1 = l2 = rst,xd = 0, h = k = const.

Consequently,e3 is the linear combination ofe1, e2, namely,e3=le1+ke2, which is impossible by
the assumption that the algebra under study is three dimensional. Hence we conclude that the
above realization ofA2.1

1 cannot be extended to a realization of the algebraA3.1.
Turn now to the realizationA2.1

2 . Checking commutation relationss6.2d, wheree3 is of form
s2.4d yields the following realization ofA3.1:

kt]t + x]x,ssjd]u,gsjd]ul, j = tx−1,

whereg8s−gs8Þ0 However, the corresponding invariant equations2.7d is linear.
Finally, consider the realizationA2.1

3 . Inserting its basis operators and the operatore3 of the
form s2.4d into s6.2d and solving the obtained equations gives the following realization ofA3.1:

k]t,]x,u]ul.

Inserting the obtained coefficients fore3 into the classifying equations2.5d we get invariant
equation

utt = uxx + uGsvd, v = u−1ux,

wheresto ensure nonlinearityd we need to haveGvvÞ0.
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Similar analysis of the realizationsA2.1
i si =4,5, . . . ,12,14d yields three new invariant equa-

tions. For two of thus obtainedA3.1-invariant equations the corresponding three-dimensional al-
gebras are maximal. The other two may admit four-dimensional invariance algebras provided
arbitrary elements are properly specified.

Handling in a similar way the extensions ofA2.2 up to realizations ofA3.2 gives 10 inequiva-
lent nonlinear equations whose maximal invariance algebras are realizations of the three-
dimensional algebraA3.2 and four inequivalent equationss2.7d admitting four-dimensional sym-
metry algebras.

We perform analysis of equations admitting four-dimensional algebras in the next section.
Here we present the complete list of nonlinear equationss2.7d whose maximal symmetry algebras
are realizations of three-dimensional Lie algebrasA3.1 andA3.2.

A3.1-invariant equations,

A3.1
1 = k]t,]x,u]ul,

F = uGsvd, v = u−1ux,

A3.1
2 = k]x,wstd]u,cstd]ul,

s = c8w − cw8 Þ 0, s8 = 0,

F = w−1w9u + Gst,uxd.

A3.2-invariant equations,

A3.2
1 = k]t,]x,e

xu]ul,

F = − u−1ux
2 − u lnuuu + uGsvd,

v = u−1ux − lnuuu,

A3.2
2 = k− t]t − x]x,]t + k]x,u]ul sk ù 0d,

F = uh−2Gsvd, h = x − kt,

v = hu−1ux,

A3.2
3 = k− t]t − x]x + mu]u,]t + k]x,uhu−m]ul

sh = x − kt, k = m= 0 or k . 0, mP Rd,

F = msk2 − 1dsm+ 1dh−2u + uhu−2−mGsvd,

v = uhumsmu+ huxd,

A3.2
4 = k]x,e

xu]u,]t + mu]ul sm. 0d,

F = − u−1ux
2 − ux + uGsvd,
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v = u−1ux − lnuuu + mt,

A3.2
5 = k− t]t − x]x,]x,u]ul,

F = ut−2Gsvd, v = tu−1ux,

A3.2
6 = k− t]t − x]x,]t + kx−1u]u,u]ul sk . 0d,

F = 2ktx−2ux − 2ktx−3u + k2t2x−4u + x−2uGsvd,

v = xu−1ux + ktx−1,

A3.2
7 = k− t]t − x]x,]t + kx−1u]u,expsktx−1d]ul sk . 0d,

F = 2ktx−2ux + sk2t2x−4 − 2ktx−3 + k2x−2du + x−2 expsktx−1dGsvd, v = exps− ktx−1dsxux + ktx−1ud,

A3.2
8 =K 1

2k
s]t + k]xd,ex+kt]u,e

h]uL sk . 0, h = x − ktd,

F = sk2 − 1du + Gsh,vd, v = ux − u,

A3.2
9 = k]t + fsxdu]u,e

s1+fsxddt]u, fsxdefsxdt]ul,

F = − stf9 − t2sf8d2 − s1 + fd2du − 2tf8ux + etfGsx,vd,

v = e−tfsux − f8st + f−1dud, f9 + 2f2 + f = 0, f Þ 0,

A3.2
10 = kkst]t + x]xd,utuk

−1
ujusk−1d/2k]u,ujusk−1d/2k]ul sk Þ 0;1d,

F = F1 − k

k
j2 +

1 − k2

4k2 s1 − j2dGt−2u + t−2Gsj,vd,

v = ujusk−1d/2kFxux +
k − 1

2k
uG, j = tx−1.

2. Invariance under nondecomposable three-dimensional solvable Lie algebras

There exist seven nondecomposable three-dimensional solvable Lie algebras over the field of
real numbers. All those algebras contain a subalgebra which is the two-dimensional Abelian ideal.
Consequently, we can use the results of classification ofA2.1-invariant equations in order to
describe equations admitting nondecomposable three-dimensional solvable real Lie algebras. We
remind that equations of the forms6.1d has already been analyzed and therefore are not considered
in the sequel.

Note that there are nonlinear PDEs of the considered form that admits four-dimensional
invariance algebras. As four-dimensional algebras will be considered separately in the next sec-
tion, we give below only those nonlinear invariant equations whose maximal symmetry algebras
are three-dimensional nondecomposable solvable real Lie algebras.
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A3.3-invariant equations,

A3.3
1 = ku]u,]t + k]x,m]t + k−1xu]ul sk . 0,mÞ 0d,

F = − u−1ux
2 + uGsvd, v = x − kt + mk2u−1ux,

A3.3
2 = ku]u,]x,m]t + xu]ul sm. 0d,

F = − u−1ux
2 + uGsvd, v = t − mu−1ux,

A3.3
3 = kutu

1
2]u,− utu

1
2 lnutu]u,t]t + x]x + 1

2u]ul ,

F = − 1
4t−2u + ux

3Gsj,vd, j = tx−1, v = xux
2,

A3.3
4 = k]u,− t]u,]t + k]xl sk ù 0d,

F = Gsh,uxd, h = x − kt.

A3.4-invariant equations,

A3.4
1 = kuhum−1]u,]t + k]x,t]t + x]x + smu+ tuhum−1d]ul

sh = x − kt, k . 0, mÞ 1d,

F = sk2 − 1dsm− 1dsm− 2dh−2u − 2ksm− 1dhm−2 lnuhu + uhum−2Gsvd,

v = fhux − sm− 1duguhu−m,

A3.4
2 = k]u,− t]u,]t + k]x + u]ul sk ù 0d,

F = etGsh,vd, h = x − kt, v = e−tux,

A3.4
3 = kutu

1
2]u,− utu

1
2 lnutu]u,t]t + x]x + 3

2u]ul ,

F = − 1
4t−2u + ux

−1Gsj,vd, j = tx−1, v = x−1ux
2,

A3.4
4 = kkx−1u]u,]t − kx−1 lnuxuu]u,t]t + x]xl sk . 0d,

F = − 3ktx−3u − 2x−2u lnuuu − u−1ux
2 + x−2uGsvd,

v = xu−1ux + lnuuu + ktx−1,

A3.4
5 = kexpsktx−1d]u,]t + kx−1u]u,t]t + x]x + su + t expsktx−1dd]ul sk . 0d,

F = k2x−4ust2 + x2d + 2x−1sktx−1 + 1dux + 2k expsktx−1dx−1 lnuxu + x−1 expsktx−1dGsvd,

v = exps− ktx−1dsux + ktx−2ud.
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A3.5-invariant equations,

A3.5
1 = kuhum−1]u,]t + k]x,t]t + x]x + mu]ul sk . 0, mÞ 1d,

F = sk2 − 1dsm− 1dsm− 2dh−2u + uhum−2Gsvd,

v = uhu−mfhux − sm− 1dug, h = x − kt,

A3.5
2 = k]t,]x,t]t + x]xl,

F = ux
2Gsud,

A3.5
3 = k]t,]x,t]t + x]x + mu]ul smÞ 0d,

F = uuu1−s2/mdGsvd, v = uuxumuuu1−m,

A3.5
4 = k]t,]x,t]t + x]x + ]ul,

F = e−2uGsvd, v = euux,

A3.5
5 = k]t,x

−1u]u,t]t + x]xl,

F = − u−1ux
2 − 2x−2u lnuuu + x−2uGsvd,

v = xu−1ux + lnuuu,

A3.5
6 = k]t + kx−1u]u,expsktx−1d]u,t]t + x]x + u]ul sk . 0d,

F = kx−4ufkt2 − 2tx + kx2g + 2ktx−2ux + x−1 expsktx−1dGsvd,

v = exps− ktx−1dsux + ktx−2ud,

A3.5
7 = kwstd]u,cstd]u,]x + u]ul sw8c − wc8 Þ 0d,

F = w−1w9u + uxGst,vd,

v = e−xux, w9c − wc9 = 0.

A3.6-invariant equations,

A3.6
1 = k]t + k]x,uhum+1]u,t]t + x]x + mu]ul sk . 0, mÞ − 1d,

F = msk2 − 1dsm+ 1dh−2u + uhum−2Gsvd,

v = uhu1−mfux − h−1sm+ 1dug, h = x − kt,

A3.6
2 = k]t + mx−1u]u,xu]u,t]t + x]xl smù 0d,

053301-29 Group classification of nonlinear wave equations J. Math. Phys. 46, 053301 ~2005!

                                                                                                                                    



F = − u−1ux
2 − 2mtx−3u + x−2uGsvd,

v = xu−1ux − lnuuu + 2mtx−1,

A3.6
3 = k]t + kx−1u]u,expsktx−1d]u,t]t + x]x − u]ul sk . 0d,

F = x−4fk2x2 − 2ktx+ k2t2gu + 2ktx−2ux + x−3 expsktx−1dGsvd,

v = exps− ktx−1dsx2ux + ktud,

A3.6
4 = ke−t]u,e

t]u,]t + k]xl sk ù 0d,

F = u + Gsh,uxd, h = x − kt,

A3.6
5 = kutu−

1
2]u,utu

3
2]u,t]t + x]x + 1

2u]ul ,

F = 3
4t−2u + utu−3/2Gsj,vd, j = tx−1, v = x−1ux

2.

A3.7-invariant equations,

A3.7
1 = k]t + k]x,uhum−q]u,t]t + x]x + mu]ul

sk . 0, mÞ q, 0 , uqu , 1d,

F = sk2 − 1dsm− qdsm− q − 1dh−2u + uhum−2Gsvd,

v = uhu1−mfux − sm− qdh−1ug, h = x − kt,

A3.7
2 = k]t + kx−1u]u,expsktx−1d]u,t]t + x]x + qu]ul

sk . 0,0, uqu , 1d,

F = fk2x−2 + k2x−4t2 − 2ktx−3gu + 2ktx−2ux + uxuq−2 expsktx−1dGsvd,

v = uxu1−q exps− ktx−1dsux + ktx−2ud,

A3.7
3 = kutu

1
2

q]u,utu1−1
2

q]u,t]t + x]x + s1 + 1
2qdu]ul sq Þ 0, ± 1d,

F = 1
4qsq − 2dt−2u + utu

1
2

sq−2dGsj,vd,

j = tx−1, v = utu−
1
2

qux,

A3.7
4 = kexps 1

2sq − 1dtd]u,exps 1
2s1 − qdtd]u,]t + k]x + 1

2s1 + qdu]ul

sq Þ 0, ± 1;k ù 0d,
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F = 1
4sq − 1d2u + exps 1

2s1 + qdtdGsh,vd,

h = x − kt, v = exps− 1
2s1 + qdtdux,

A3.7
5 = k]t + kx−1u]u,uxu−qu]u,t]t + x]xl sk ù 0, q Þ 0, ± 1d,

F = − u−1ux
2 − qsq + 1dx−2u lnuuu + ksq − 1dsq + 2dtx−3u + ux−2Gsvd,

v = xu−1ux + q lnuuu + ks1 − qdtx−1.

A3.8-invariant equations

A3.8
1 = kcost]u,− sint]u,]t + k]xl sk ù 0d,

F = − u + Gsh,uxd, h = x − kt,

A3.8
2 = kutu

1
2 cosslnutud]u,− utu

1
2 sinslnutud]u,t]t + x]x + 1

2u]ul ,

F = − 5
4t−2u + utu−3/2Gsj,vd,

j = tx−1, v = utu1/2ux.

A3.9-invariant equations

A3.9
1 = ksin t]u,cost]u,]t + k]x + qu]ul sk ù 0, q . 0d,

F = − u + eqtGsh,vd, h = x − kt,v = e−qtux,

A3.9
2 = kutu

1
2 sinslnutud]u,utu

1
2 cosslnutud]u,t]t + x]x + s 1

2 + qdu]ul

sq Þ 0d, F = − 5
4t−2u + utuq−3

2Gsj,vd,

j = tx−1, v = utu
1
2

−qux.

C. Complete group classification of Eq. „2.7…

The aim of this section is finalizing group classification ofs2.7d. The majority of invariant
equations obtained in the preceding section contain arbitrary functions of one variable. So that we
can utilize the standard Lie–Ovsyannikov approach in order to complete their group classification.

1. Equations depending on an arbitrary function of one variable

Note that equations belonging to the already investigated class ofs6.1d are not considered.
As our computations show, new results could be obtained for the equations,

utt = uxx + uGsvd, v = u−1ux, s6.3d

utt = uxx + Gsuxd, s6.4d

only. Below we giveswithout proofd the assertions describing their group properties.
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Assertion 6: Equation (6.3) admits wider symmetry group iff it is equivalent to the following
equation:

utt = uxx + mu−1ux
2 smÞ 0,− 1d. s6.5d

The maximal invariance algebra of (6.5) is the four-dimensional Lie algebra,

A4 , A3.5 % A1, A4 = k]t,]x,t]t + x]x,u]ul.

Assertion 7: Equation (6.4) admits wider symmetry group iff it is equivalent to one of the
following PDEs:

utt = uxx + eux, s6.6d

utt = uxx + m lnuuxu, m. 0, s6.7d

utt = uxx + uuxuk, k Þ 0,1. s6.8d

The maximal invariance algebras of the above equations are five-dimensional solvable Lie alge-
bras listed below,

A5
2 = k]t,]x,]u,t]u,t]t + x]x + su − xd]ul,

A5
3 = k]t,]x,]u,t]u,t]t + x]x + s2u + 1

2mt2d]ul ,

A5
4 =K]t,]x,]u,t]u,t]t + x]x +

k − 2

k − 1
u]uL .

Analyzing the remaining equations containing arbitrary functions of one variable we come to
conclusion that one of them can admit wider invariance groups iff either

s1d it is equivalent to PDE of the forms6.1d, or
s2d it is equivalent to PDE of the forms6.5d.

To finalize the procedure of group classification of Eqs.s2.7d we need to consider invariant
equations obtained in the preceding section that contain arbitrary functions of two variables.

2. Classification of equations with arbitrary functions of two variables

In the case under study the standard Lie–Ovsyannikov method is inefficient and we apply our
classification algorithm. In order to do this we perform extension of three-dimensional solvable
Lie algebras to all possible realizations of four-dimensional solvable Lie algebras. The next step
will be to check which of the obtained realizations are symmetry algebras of nonlinear equations
of the forms2.7d. In what follows we use the results of Ref. 41, where all inequivalentswithin the
action of inner automorphism groupd four-dimensional solvable abstract Lie algebras are given.

The computation details can be found in Ref. 35. Here we summarize the obtained results as
follows:

s1d If the functions contained in the equations under study are arbitrary, then the corresponding
realizations are their maximal invariance algebras, and

s2d Except for Eq.s6.4d, all the equations in question do not allow for extension of their
symmetry.

Below we give the complete list of PDEss2.7d invariant under four-dimensional solvable Lie
algebras that are obtained through group analysis of equations with arbitrary functions of two
variables.

A2.2% 2A1-invariant equations,
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s1d k]x,]t + u]u,e
t]u,e

−t]ul, F = u + etGsvd, v = u−tux,

s2d K 1

2k
s]t + k]xd,ex+kt]u,e

h]u,]x + u]uL sk . 0,h = x − ktd,

F = sk2 − 1du + ehGsvd, v = e−hsux − ud.

2A2.2-invariant equations,

s1d k]t + eu]u,]x,e
x+kt]u,e

x−kt]ul se = 0,1;k . 0d,

F = sk2 − 1du + eetGsvd, v = e−etsux − ud,

s2d ka]x − u]u,]t + k]x,e
−t]u,e

t]ul sk ù 0,a . 0d,

F = u + exps− a−1hdGsvd, h = x − kt, v = expsa−1hdux.

A3.3% A1-invariant equations,

s1d k]t,]x,]u,t]ul, F = Gsuxd.

A3.4% A1-invariant equations

s1d k]u,]x,t]t + x]x + su + xd]u,t]ul,

F = t−1Gsvd, v = ux − lnutu,

s2d k]t + u]u,]x,t]u,]ul, F = etGsvd,v = e−tux,

s3d kx−1]u,]x − x−1su + lnuxud]u,t]t + x]x,tx
−1]ul,

F = 2x−1ux + x−2 + t−1x−1Gsvd, v = xux + u − lnutx−1u.

A3.5% A1-invariant equations,

s1d k]x,]u,t]t + x]x + u]u,t]ul, F = t−1Gsuxd,

s2d kx−1]u,]x − x−1u]u,t]t + x]x,tx
−1]ul,

F = − 2x−2u + 2t−1sux + x−1udlnutsux + x−1udu + t−1sux + x−1udGsvd, v = xux + u.

A3.6% A1-invariant equations,

s1d k]x,t]u,t]t + x]x,]ul, F = t−2Gsvd, v = t−1ux,

s2d k]t,]x,e
t]u,e

−t]ul, F = u + Gsuxd.

A3.7% A1-invariant equations,

s1d kexps− 1
2s1 − qdtd]u,exps 1

2s1 − qdtd]u,]t + 1
2s1 + qdu]u,]xl

sq Þ 0, ± 1d, F = 1
4s1 − qd2u + exps 1

2s1 + qdtdGsvd,
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v = exps− 1
2s1 + qdtdux,

s2d k]x,utu
1
2

s1−qd]u,utu
1
2

s1+qd]u,t]t + x]x + 1
2s1 + qdu]ul

sq Þ 0, ± 1d, F = 1
4sq2 − 1dt−2u + utu

1
2

sq−3dGsvd,

v = utu
1
2

s1−qdux,

s3d Kutu−1/qujusq+1d/2q]u,]x −
1 + q

2q
x−1u]u,− qst]t + x]xd,ujus1+qd/2q]uL

sq Þ 0, ± 1d, F = F1 − q2

4q2 st−2 + x−2dGu +
1 + q

q
x−1ux + t−2ujus1+qd/2qGsvd,

j = tx−1, v = ujusq−1d/2qFxux +
q + 1

2q
uG .

A3.8% A1-invariant equations,

s1d ksin t]u,cost]u,]t,]xl, F = − u + Gsuxd.

A3.9% A1-invariant equations,

s1d ksin t]u,cost]u,]t + qu]u,]xl sq . 0d,

F = − u + eqtGsvd, v = e−qtux.

A4.1-invariant equations,

s1d k]u,− t]u,]x,]t − tx]ul, F = Gsvd, v = ux + 1
2t2,

s2d k]u,− t]u,a]x + 1
2t2]u,]t + kx]xl sk ù 0,a . 0d,

F = a−1sx − ktd + Gsuxd.

A4.2-invariant equations,

s1d kutu1−1
2

q]u,utu
1
2

q]u,]x,t]t + x]x + fs1 + 1
2qdu + xutu

1
2

qg]ul

sq Þ 0,1d, F = 1
4qsq − 2dt−2u + utu

1
2

sq−3dGsvd,

v = utu
1
2

s1−qdux − 2utu
1
2 ,

s2d k]x,Îutu]u,Îutu lnutu]u,t]t + x]x + sq + 1
2du]ul

sq Þ 0d, F = − 1
4t−2u + utuq−3

2Gsvd, v = utu
1
2

−qux.

A4.3-invariant equations,
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s1d k]x,utu
1
2]u,− utu

1
2 lnutu]u,t]t + x]x + 1

2u]ul ,

F = − 1
4t−2u + utu−

3
2Gsvd, v = utu

1
2ux,

s2d k]x,t]u,]u,t]t + x]xl, F = t−2Gsvd,v = tux,

s3d kekt]u,]t + ku]u,b]x + tekt]u,e
−kt]ul sk Þ 0,b . 0d,

F = k2u + 2kb−1xekt + ektGsvd, v = e−ktux,

s4d kex+kt]u,e
h]u,as]x + u]ud + 2kteh]u,− s1/2kds]t + k]xdl

sa Þ 0, k . 0d, F = sk2 − 1du − 4k2a−1heh + ehGsvd,

v = e−hsux − ud, h = x − kt.

A4.4-invariant equations,

s1d kutu
1
2]u,− utu

1
2 lnutu]u,]x,t]t + x]x + f 3

2u − xutu
1
2 lnutug]ul ,

F = 1
4t−2u + utu−

1
2Gsvd,v = utu−

1
2ux + 1

2 ln2utu.

A4.5-invariant equations,

s1d k]x,utum−a]u,utu1−m+a]u,t]t + x]x + mu]ul

smÞ 1
2s1 + ad, 1

2 + a;a Þ 0d ,

F = sm− adsm− a − 1dt−2u + utum−2Gsvd, v = utu1−mux.

A4.6-invariant equations,

s1d k]x,utu
1
2 sinsq−1 lnutud]u,utu

1
2 cossq−1 lnutud]u,qt]t + qx]xs 1

2q + pdu]ul sq Þ 0,p ù 0d,

F = − s 1
4 + q−2dt−2u + utuq

−1sp−3
2

qdGsvd, v = utuq
−1s1

2
q−pdux.

A4.7-invariant equations,

s1d k]u,− t]u,]t + k]x,t]t + x]x + s2u − 1
2t2d]ul sk ù 0d,

F = − lnuhu + Gsvd, v = h−1ux, h = x − kt.

A4.8-invariant equations,

s1d k]t + eu]u,]x,e
x]u,te

x]ul se = 0;1d,

F = − u + eetGsvd, v = e−etsux − ud,

s2d kuxum−q]u,]t,tuxum−q]u,t]t + x]x + mu]ul sq Þ 0, mP Rd,
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F = − sm− qdsm− q − 1dx−2u + uxum−2Gsvd,

v = uxu1−mfux − sm− qdx−1ug,

s3d k]t + k]x,]u,t]u,t]t + x]x + qu]ul sk . 0, q P Rd,

F = uhuq−2Gsvd, v = uhu1−qux, h = x − kt,

s4d kx−1]u,]t + ]x − x−1u]u,tx
−1]u,t]t + x]xl,

F = 2x−1ux + x−1st − xd−1Gsvd, v = xux + u,

s5d k]u,− t]u,]t + k]x + u]u,a]x + u]ul sa Þ 0, k ù 0d,

F = expsa−1h + tdGsvd, v = exps− a−1h − tdux, h = x − kt.

A4.10-invariant equations,

s1d ksin t]u,cost]u,]x + u]u,]t + k]xl sk ù 0d,

F = − u + ehGsvd, v = e−hux, h = x − kt.

In the above formulasG=Gsvd is an arbitrary function satisfying the conditionFuxux
Þ0.

CONCLUDING REMARKS

Let us briefly summarize the results obtained in this paper.
We prove that the problem of group classification of the general quasilinear hyperbolic type

equations1.1d reduces to classifying equations of more specific forms,

sId utt = uxx + Fst,x,u,uxd, Fuxux
Þ 0,

sII d utt = uxx + gst,x,udux + fst,x,ud, gu Þ 0,

sIII d utx = gst,xdux + fst,x,ud, gx Þ 0, fuu Þ 0,

sIV d utx = fst,x,ud, fuu Þ 0.

If we denote asDE the set of PDEssII d–sIII d, then the results of application of our algorithm
for group classification of equationssId–sIV d can be summarized as follows.

s1d We perform complete group classification of the classDE. We prove that the Liouville
equation has the highest symmetry properties among equations fromDE. Next, we prove that
the only equation belonging to this class and admitting the four-dimensional invariance
algebra is the nonlinear d’Alembert equations. It is established that there are 12 inequivalent
equations fromDE invariant under three-dimensional Lie algebras. We give the lists of all
inequivalent equations fromDE that admit one- and two-dimensional symmetry algebras.

s2d We have studied the structure of invariance algebras admitted by nonlinear equations from
the classsId. It is proved, in particular, that their invariance algebras are necessarily solvable.

s3d We perform complete group classification of nonlinear equations from the class of PDEssId.
We prove that the highest symmetry algebras admitted by those equations are five dimen-
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sional and construct all inequivalent classes of equations invariant with respect to five-
dimensional Lie algebras. We also construct all inequivalent equations of the formsId ad-
mitting one-, two-, three-, and four-dimensional Lie algebras.

In one of our future papers we intend to exploit the obtained classification results to construct
exact solutions of nonlinear wave equationssId–sIV d.
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We analyze the two- and four-point truncated function of a lattice system of un-
bounded continuous spin variables describing a large class of light-mass quantum
anharmonic crystals and some stochastic Ginzburg–Landau-type models under in-
tense noise. We develop a cluster expansion and use it to obtain the decay of the
two-point truncated functionswhich gives information about the one-particle exci-
tationsd, for the interactions with finite range or with polynomial decay. Moreover,
using a Bethe–Salpeter equation, we investigate the four-point truncated in a per-
turbative approachswhose reliability is supported by the convergence of the cluster
expansiond, and establish a condition for the existence of a two-particle bound state
in the low-lying spectrum of the system. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1895845g

I. INTRODUCTION

In this paper we develop a cluster expansion and investigate the low-lying spectrum of some
systems related to commonly used physical models, namely, to light-mass quantum crystals and to
stochastic Ginzburg–Landau-sGLd type models submitted to intense noise.

The interest of such problems is well known. The study of the basic properties of the quantum
crystals, for example, is an old problem in physics. For these crystal models we mean a system of
unbounded continuous spin variableswi PR, in a lattice space with Hamiltonian given by

H = o
iPZd

−
1

2m

]2

]wi
2 +

1

2 o
i,jPZd

wiJijw j + o
iPZd

Vswid, s1d

whereJi,j is usually taken as a positive operatorse.g., the lattice Laplacian; i.e., in some recent
rigorous works the pair interaction is restricted to the ferromagnetic cased, andV is given, e.g., by
Vswid=awi

2+bwi
4. In the present paper, we consider more general cases, we do not restrict the

quadratic interaction to ferromagnetic cases and neither the anharmonic potential to a local inter-
action. We give details later. Recently, several works have been devoted to a rigorous analysis of
the small mass behavior of such lattice modelsslight-mass means that the system is strongly
quantumd. For example, in Refs. 1 and 2 the fact that small mass implies uniqueness of Gibbs
states of a quantum crystal is rigorously establishedsthere, for the ferromagnetic case and with
local anharmonicityd, an important result about the influence of quantum effects on structural
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phase transitions. See also Ref. 3 and references therein for more recent results. Effects of non-
locality in the anharmonicity on the spectral properties of quantum crystalssin the regime of large
massd are presented in Ref. 4. In the present paper, besides other results, such as the uniqueness of
a phase given by the convergence of the cluster expansion, we will establish conditions for the
existence of a two-particle bound state in the excitation spectrum of these light-mass quantum
crystals, showing that the system, although in a single phase region, may have nontrivial spectral
excitations.

The stochastic GL-type models are also extensively investigated in physics, in particular, in
the study of dynamical critical phenomena. The spectrum of the generator of the dynamics gives
information about, e.g., the relaxation rates of the correlation functions, and so, it is of direct
physical interest. Recently, several works have been devoted to detailed investigations on the
spectral properties of such systems. For the weakly coupled GL model, the existence of an isolated
one-particle and two-particle bound states have been established perturbatively in Ref. 5, and
rigorously in Ref. 6. Effects on the spectrum due to changes in the noise strength are presented in
Refs. 7–9, for the small noise regime, and in Ref. 10 for intense noise. In Ref. 11, the one-particle
state is rigorously established for a particular case of these GL-type models under intense noise.

In order to make clear the relation between the stochastic GL system and the anharmonic
quantum crystal, we present below a brief technical description of the dynamics generator of the
stochastic model.

Consider a system of unbounded continuous spin variablesfxW,tPR, in a lattice space boxxW
PV,Zd sthe thermodynamic limit is considered whenV→Zdd, with time evolutionsLangevin
dynamicsd given by

]

]t
fxW,t = −

1

2
¹ SsfxW,td + hxW,t, fxW,t=0 = cxW , s2d

where¹S=dS/df, and the GLsspatiald interaction is

Ssfd =
1

2 o
xW,yWPV

JxW,yWfxWfyW + l o
xWPV

PsfxWd, s3d

l.0, P is a polynomial bounded from below;h is a family of Gaussian white-noise processes
with expectations

EshxW,td = 0, EshxW,thyW,t8d = gdxW,yWdst − t8d, s4d

xW PV, tP f0,`d sin principle, we extend the time interaction to −t and introduce a time regularizer
that makest discrete laterd; g.0 is the noise strength, we will treat the regimeg@1. JxW,yW is an
arbitrary summable spatial interaction, i.e., we assume thatJxW,yW is symmetric, translational invari-
ant with

sup
xWPZd

o
yWPZd

uJxW,yWu , `. s5d

Note that the pair potentialJsxW ,yWd does not have to be positive.
The time evolution of functionsf of the spin configurationf for such systems is defined by

f tscd = Esfsftdd,

wherec=ft=0 is some initial condition. From Itô calculus, it follows that
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f tscd = e−tHV
0
fscd, HV

0 f =Ho
xWPV

−
1

2
g

]2

]fxW
2 +

1

2

]S

]fxW

]

]fxW
J f . s6d

The generatorHV
0 of the strongly continuous semigroup describing the Markov dynamics above is

Hermitian and positive in the Hilbert spaceL2sdsV
0d, where dsV

0 is the invariant measure given by
the Gibbs probability distribution

dsV
0 = e−Ssfd/g dfV/normalization, where dfV = p

xWPV

dfxW . s7d

The ground state ofHV
0 is the eigenfunctionf ;1 with eigenvalue zero. We note thatHV

0 is
unitarily equivalent to a Schrödinger operator with a potential going to infinity, defining the
unitary operatorUV

0 from L2sdsV
0d→L2sdfVd as

sUV
0 fdsfd = ZV

−1/2e−s1/2gdSfsfd,

whereZV is the normalization in dsV
0, a straightforward calculation gives us

HV
0 = UV

0HV
0sUV

0d−1 = o
xWPV

−
1

2
g

]2

]fxW
2 +

1

4 o
xWPV

F 1

2g
S ]S

]fxW
D2

−
]2S

]fxW
2G . s8d

Performing the derivatives, we get

HV
0 = −

1

2
g o

xWPV

]2

]fxW
2 +

1

8g
o

xW,yWPV

fJ p JgxW,yWfxWfyW +
l

4g
o

xW,yWPV

JxW,yWP8sfxWdfyW

+ o
xWPV

F l2

8g
P8sfxWd2 −

l

4
P9sfxWd + cG , s9d

wherec is a constantsdepending ofJ anddd, andfJpJgxW,yW =ozWPVJxW,zWJzW,yW is the spatial convolution.
The relation between the spectral properties of the generator of the stochastic dynamics and

the study of the excitation spectrum of the quantum anharmonic crystals becomes evident from the
expression forHV

0 above, as we have recalled, note that the large noise intensityg above represents
the inverse of small massm of the particles for the anharmonic oscillators ins1d; note also that the
stochastic “potential” is more intricate.

It is useful to construct a Feynman–Kac integral formalism associated toHV
0 for to H s1dg. It

follows from standard procedures.12 If f1,… , fn are functions of the spin configuration inV,
Vsfd=1 is the ground state ofHV

0 and for t1ø t2ø ¯ tnPR, now ti P f−T,Tg, then we have

sV, f1e
−st2−t1dHV

0
f2 ¯ e−stn−tn−1dHV

0
fnVdL2sdsV

0d = sUV
0V, f1e

−st2−t1dHV
0
f2 ¯ e−stn−tn−1dHV

0
fnUV

0VdL2sdfVd

=E f1sfst1dd ¯ fnsfsfndddrV
0 , s10d

where the path space measure drV
0 is the weak limitT→` of

drL
0 =

e−WL
0 sfd dvL

0

E e−WL
0 sfd dvL

0

, s11d

with L;sf−T,Tg ,Vd and

WL
0 sfd =E

−T

T

dtH l

4g
o

xW,yW,PV

JxW,yWP8sfxWdfyW + o
xWPV

F l2

8g
P8sfxWd2 −

l

4
P9sfxWdGJ , s12d

and dvL
0 is a Gaussian measure with mean zero and variance given by
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gCLst,xW ;t8,yWd =E ft,xWft8,yW dvL
0 =

g

2puVuE−`

`

dp0 o
pWPṼ

eip0st−t8deipW·sxW−yWd

p0
2 + fJ̃spWdg2/4

, s13d

whereJ̃spWd is the Fourier transform ofJxW,yW; uVu is the number of points inV; Ṽ is the Fourier dual

lattice; pW =sp1,… ,pddP Ṽ andpW ·sxW −yWd=oi=1
d pisxi −yid.

The Feynman–Kac formula above and the spectral theorem for Hermitian operators give us
the connection between the spectrum of the generator of the dynamics and the behavior of the
correlation functions. For example, for the truncated two-point functionS2sx;yd;kfxfyl−kfxl
3kfyl;efxfy drV

0 −efx drV
0 efy drV

0, x;sx0,xWd, x0; tPR, xW PZd slet us assume the thermody-
namic limit in this short commentd, direct calculations lead to

S̃2spd =E
0

` E
Td

2E

E2 + sp0d2s2pdddsqW − pWddsV,fEsE,qWdfVd, s14d

where S̃2 is the Fourier transform ofS2, EsE,pWd is the spectral projection associated with the

operatorssH ,PW d sthe momentum operatorPW is the space translation generatord, the integral overE

runs from 0 tò and that overqW runs inTd. Hence, a singularity inS̃2 for imaginaryp0= ik0 gives
a point in the spectrumsone-particle sectord of the generator of the dynamics, and, by the Paley–

Wiener theorem, the singularity inS̃2 is related to the decay ofS2. Similarly, the decay of the
truncated four-point function gives us information about, e.g., the existence of two-particle bound
states. More details and comments are presented in Ref. 6 and references therein.

The rest of the paper is organized as follows.
In Sec. II we introduce the model to be treated here, describe a formalism for the correlations

sa Feynman–Kac-type integral formalismd and list the main results of the paper. In Sec. III we
present the cluster expansion, whose convergence is proved in Sec. IV. Section V is devoted to the
study of the decay of the two-point truncated correlation, and Sec. VI to the analysis of the
four-point truncated function.

II. THE MODEL AND MAIN RESULTS

In the present paper we will analyze in detail the model of unbounded continuous scalar field
variables withssayd Hamiltonian

HV = o
xWPV

−
1

2
g

]2

]fxW
2 +

1

2 o
xW,yWPV

fxWJxW,yWfyW + l o
xWPV

QsfxWd, s15d

where

QsfxWd = PsfxWd + o
i=1

c

o
yWPV

fxW
aiDxW,yW

sid fyW
bi , s16d

fxW PR, V,Zd, g.0, l.0, P is a polynomial bounded from below of degree 2m, c.0 is an
integer,ai ,bi with i =1,2,… ,c, are integers such that 1øai, bi øm. JxW,yW andDxW,yW

sid are symmetric
spatial interactions, translational invariant and such that,∀i =1,2,… ,c,

sup
xWPZd

o
yWPZd

uJxW,yWu ; JM , `, sup
xWPZd

o
yWPZd

uDxW,yW
sid u ; DM

sid , `. s17d

Analyzing these specific models, we will get properties of a large class of anharmonic quantum
crystals as well as of some stochastic GL models.

The spectral results to be presented are supported by a cluster expansion which we develop
here. To obtain these results, in a rough resume, we start from the dynamics generatorsor Hamil-
toniand, establish a lattice Feynman–Kac integral formula for the correlation functions, relating the

053302-4 Thebaldi, Pereira, and Procacci J. Math. Phys. 46, 053302 ~2005!

                                                                                                                                    



initial problem to a spatially nonlocal imaginary time quantum field theory. Then, we study the
decay of some truncated correlation functions using our “high temperature” cluster expansion for
unbounded spin systems, which is related to that recently proposed in Ref. 13. Information on the
two-particle spectrumsrelated to the four-point correlation functionsd is obtained in a perturbative
analysis only, we use the Bethe–SalpetersBSd equation with the BS kernel in a ladder approxi-
mation sdetails aheadd. The reliability of the perturbative result is supportedsagaind by the con-
vergence of the cluster expansion.

The Feynman–Kac functional integral associated toHV follows, as said, from standard pro-
cedures. Iff1,… , fn are functions of the spin configuration inV, t1ø t2ø ¯ tnPR, as described in
the introduction, we have an integral representation for the correlations

E f1sfst1dd ¯ fnsfstndddrV, s18d

where, now, the path space measure drV is the weak limitT→` of

drL =
e−WLsfd dvL

E e−WLsfd dvL

, s19d

with L;sf−T,Tg ,Vd and

WLsfd =E
−T

T

dt l o
xWPV

Qsft,xWd =E
−T

T

dt lFo
xWPV

Psft,xWd + o
i=1

c

o
xW,yWPV

ft,xW
ai DxW,yW

sid ft,yW
bi G , s20d

and dvL is a Gaussian measure with mean zero and variance given by

gCLst,xW ;t8,yWd =E ft,xWft8,yW dvL =
g

2puVuE−`

`

dp0 o
pWPṼ

eip0st−t8deipW·sxW−yWd

p0
2 + gJ̃spWd

, s21d

whereJ̃spWd is the Fourier transform ofJxW,yW; uVu is the number of points inV; Ṽ is the Fourier dual

lattice; pW =sp1,… ,pddP Ṽ andpW ·sxW −yWd=oi=1
d pisxi −yid.

For technical reasons, we will consider a time regularized version of the measure drL. Pre-
cisely, from now on, we consider only the values oft in Zù f−T,Tg, so that our Feynman–Kac
integral formulas18d becomes, say, the description of continuous spin system in a finite boxL
;sZù f−T,Tg ,Vd in Zd+1 swith periodic boundary conditions in space and free boundary condi-
tions in timed. Recall from field theory that such asultravioletd cutoff shall not change the low-
lying spectrum. We also will use the notationx=sx0,xWdPZd+1 with x0PZù f−T,Tg being the
discrete time coordinate andxW PV the space coordinate. We defineb;1/g, and so, intense noise
regimeg@1 corresponds to the smallb regime. Hence, from the path space measure drL with
discrete time, we introduce the “Gibbs measure” for such system,

mLs·d = FE e−WLsfd dvLG−1E s·de−WLsfd dvL =
1

ZL
E s·dexpH− l o

xPL

QsfxdJ
3 expH−

1

2g
o

x,yPL

fxCL
−1sx,ydfyJ p

xPL

dfx, s22d

where

053302-5 Cluster expansion for crystals and other models J. Math. Phys. 46, 053302 ~2005!

                                                                                                                                    



o
xPL

Qsfxd = o
xPL

Psfxd + o
i=1

c

o
x,yPL

fx
aiDxW,yW

sid fy
bidx0,y0

fdxW,yW + s1 − dxW,yWdg = o
xPL

FPsfxd + o
i=1

c

DxW,xW
sid fai+biG

+ o
i=1

c

o
x,yPL

fx
aiDxW,yW

sid fy
bidx0,y0

s1 − dxW,yWd, s23d

o
x,yPL

fxCL
−1sx,ydfy = o

x,yPL

fxs− dxW,yWDt + gJxW,yWdx0,y0
dfy = o

x,yPL

fxhdxW,yWs2dx0,y0
− dux0−y0u,1d

+ gJxW,yWdx0,y0
fdxW,yW + s1 − dxW,yWdgjfy = o

xPL

f2fx
2 + gJxW,xWfx

2g

+ o
x,yPL

fxf− dxW,yWdux0−y0u,1 + gJxW,yWdx0,y0
s1 − dxW,yWdgfy. s24d

We used above that, due to the discrete time, −Dt=2dx0,y0
−dux0−y0u,1. In short, we have

mLs·d =
1

ZL
E p

xPL

dfx e−bUsfxd p
hx,yj,L

ebGxysfx,fyds·d, s25d

where dfx is the Lebesgue measure inR and the partition functionZL is defined by

ZL ;E p
hx,yj,L

ebGxysfx,fyd p
xPL

dfx e−bUsfxd. s26d

Here,Usfd is a local polynomial functionson site potentiald bounded from below and given by

Usfd =
l

b
Psfd +

Js0d
2b

f2 + f2 +
l

b
o
i=1

c

fai+biDis0d, s27d

with Js0d;JsxW ,xWd and Dis0d;DsidsxW ,xWd; we assume thatJsxW ,yWd and DsidsxW ,yWd are translational
invariant andJsxW ,yWd=JsuyW −xWud, DsidsxW ,yWd=DsidsuyW −xWud. The coupling term is given by

Gxysfx,fyd = − F 1

b
JxW,yWdx0,y0

s1 − dxW,yWd − dxW,yWdux0−y0u,1Gfxfy

2
−

l

b
o
i=1

c

DxW,yW
sid dx0,y0

s1 − dxW,yWdfx
aify

bi

= Axy
s1dfxfy + o

i=1

c

Axy
si+1dfx

aify
bi = o

s=1

c+1

Axy
ssdfx

as−1
s1−ds,1d

fy
bs−1

s1−ds,1d
, s28d

where we definea0;1, b0;1, and fors=2,3,… ,sc+1d.

Axy
s1d ; −

1

2
F 1

b
JxW,yWdx0,y0

s1 − dxW,yWd − dxW,yWdux0−y0u,1G, Axy
ssd ; −

l

b
DxW,yW

ss−1ddx0,y0
s1 − dxW,yWd. s29d

Note that our problem involves, say, an unusual high temperature spin system, we have a
nonlocal anharmonic potential and the interaction decay depends on the directionspolynomial in
space, and short range in “time”d.

The two-point truncated function is given by

S2sx;yd = mLsfxfyd − mLsfxdmLsfyd. s30d

In the next section we will develop a polymer expansion for such model, which will permit us
to show thatS2sx;yd is analytic inb and admits upper and lower bounds uniform inL.

Now, let us state our main results.
Theorem 1: The two-point truncated function S2sx;yd, written as series inb, converges
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absolutely, uniformly in the volumeuLu, for b ,JM and l small enough. Moreover, S2sx;yd has the
following bounds:

uS2sx;ydu ø C8e−mux0−y0u−msuxW−yWu,

if JxW,yW and DxW,yW
sid are finite range (i.e., if∃ r .0 such that JxW,yW =0 for uxW −yWu. r, and the same for

DxW,yW
sid , where C8 is a constant uniform inb ,JM and lDM

sid; or

uS2sx;ydu ø C9e−m8ux0−y0uS1 − dxW,yW

uxW − yWup
+ dxW,yWD ,

if JxW,yW and DxW,yW
sid have polynomial decay, i.e., for xW ÞyW, JxW,yW øJ/ uxW −yWup and DxW,yW

sid
øDi / uxW −yWup; where

C9 is a constant uniform inb ,JM and lDM
sid.

Remarks:

s1d The upper bound described in Theorem 1 shall give, essentially, the asymptotic behavior of
the two-point truncated correlation. Namely, assuming that we still have lower bounds for the
interactions, e.g.,J8 / uxW −yWupø uJxW,yWuøJ/ uxW −yWup and D8i / uxW −yWupø uDxW,yW

sid uøDi / uxW −yWup, xW ÞyW, it
follows that we shall also obtain a lower bound forS2sx;yd involving C- / uxW −yWup ssee, e.g.,
Ref. 13d.

s2d The one-particle massM is directly related to the “time” decay ofS2, i.e.,m8,M ,m̃, where
m8 is the term in upper bound above, andm̃ the similar one in a possible lower bound. A
more precise estimate ofM is possible by adopting standard techniques of constructive field
theory, developed to study analyticity properties of one-particle irreducible Green’s
functions,12 taking as input the cluster expansion developed here. We do not carry out these
calculations here, but we go further on the mass spectrum and investigate the existence of
two-particle bound states. To get the results, we analyze the “time” decay of the truncated
four-point function in terms of a BS equation, and carry out the computation considering the
BS kernel up to dominant order inb only sladder approximationd. The convergence of the
cluster expansionsleading, e.g., to a convergent series inb for S2, as described in Theorem
1d supports such a perturbative analysis. We emphasize that in some related spectral prob-
lemsse.g., Refs. 6,14,15d, where a complete study has been established, the rigorous results
show that the spectral propertiesse.g., one-particle and two-particle bound state massesd are
given as small corrections of those obtained by similar perturbative approximations. For
clearness, we summarize these results on the two-particle bound states in the proposition
below.

Proposition 1: Concerning the low-lying energy-momentum spectrum of the model, for the
case of the interactions restricted to even functions of the spin variablef, for b ,JM, and l small
enough, considering the ladder approximation for the Bethe–Salpeter kernel, there is an isolated
two-particle bound state with mass M* =2M +logs1−zd, if z.0, where M is the one-particle mass
and z=fkf4l−3kf2lg / fkf4l−kf2lg, k·l is the expectation with respect to the single spin distribu-
tion dnsfd (31).

III. THE POLYMER EXPANSION

We now rewrite the expression for the partition function in terms of a polymer expansion.
First we define the single spin distributionsSSDd,

dnsfd =
e−bUsfd

Csl,bd
df, Csl,bd =E e−bUsfd df, s31d

dnsfd is a probability measure andsas usuald the partition functions26d can be rewritten as
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ZL = CuLu p
xPL

E dnsfxd p
hx,yj,L

sebGxysfx,fyd − 1 + 1d = CuLuJL, s32d

with

JL = 1 + o
nù1

1

n! o
R1,…,Rn,L

RiùRj=x,uRiuù2

rsR1d ¯ rsRnd, s33d

whereR1,… ,Rn,L is a collection of subsets ofL with cardinality greater than 1, with associated
activitiesrsRd given by

rsRd = p
xPR

E dnsfxd o
gPGR

p
hx,yj,L

sebGxysfx,fyd − 1d, s34d

whereogPGR
is the sum over the connected graphs on the setR. Given a finite setA, we define a

graphg in A as a collectionhg1,… ,gmj of distinct pairs ofA, i.e., gi =hxi ,yij,A with xi Þyi. A
graphg=hg1,… ,gmj in A is connected if for anyB,C of subsets ofA such thatBøC=A and
BùC=x, there is agi Pg such thatgi ùBÞx andgi ùCÞx. The pairsgi are called links of the
graph. We denote byugu the number of links ing.

By standard arguments one can expand logJL as

log JL = o
nù1

1

n! o
R1,…,Rn,L

uRiuù2

fTsR1,…,RndrsR1d ¯ rsRnd, s35d

with

fTsR1,…,Rnd =5
1, if n = 1,

o
fPGn

f,gsR1,…,Rnd

s− 1duf u, if n ù 2 andgsR1,…,Rnd P Gn,

0, if gsR1,…,Rnd ¹ Gn,
6 s36d

whereGn above denotes the set of the connected graphs onh1,… ,nj, andgsR1,… ,Rnd denotes
the graph inh1,2,… ,nj which has the linkhi , jj if and only if Ri ùRj Þx. The seriess35d is
known to converge absolutely, uniformly inL, if the activity rsRd is sufficiently small,16 e.g., if

sup
xPL

o
R{x

ursRdueauRu , a, s37d

for somea.0. The two-point truncated correlations30d can now be rewritten as

S2sx1;x2d = U ]2

]a1 ] a2
log J̃Lsa1,a2dU

a=0
, s38d

where

J̃Lsa1,a2d = p
xPL

E dnsfxdebGxysfx,fyds1 + a1fx1
ds1 + a2fx2

d. s39d

Note thatJ̃Lsa1=0,a2=0d=JL. Let us expandJ̃Lsa1,a2d in terms of polymers. For anyR,L,
let us denote byIR the subsetspossibly emptyd of h1, 2j such thati P IR iff xi PR, wherei =1, 2.
We get
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JLsa1,a2d = 1 + o
nù1

1

n! o
R1,…Rn,L

RiùRj=xuRiuù1

r̃sR1,ad ¯ r̃sRn,ad, s40d

where

r̃sR,ad =5p
xPR

E dnsfxd p
iPIR

s1 + aifxi
d o
gPGR

p
hx,yjPg

sebGxysfx,fyd − 1d for uRu ù 2,

p
xPR

E dnsfxd p
iPIR

aifxi
for IR Þ x,uRu = 1,

0 for IR = x,uRu = 1.
6

s41d

Note that the one-body polymersR=hxj can also contribute to the partition functions40d, but
only if x=xi for somei P h1,2j.

Taking the log ofs40d and noting, froms38d, that only the terms proportional toa1a2 give a
nonvanishing contribution to the two-point truncated correlation function, we get

S2sx1;x2d = o
nù1

1

n! o
i1,i2=1

n

o
R1,…,Rn,L,uRj uù2

Ri1
{x1Ri2

{x2

fTsR1,…,Rndr̃sR1d ¯ r̃sRnd, s42d

where

r̃sRid = p
xPRi

E dnsfxdsfx1

bi
1

+ bi
1ldsfx2

bi
2

+ bi
2ld o

gPGR

p
hx,yjPg

sebGxysfx,fyd − 1d, s43d

with bi
j =0 if i Þ i j, or 1 if i = i j and l =ednsfdf.

Note that the one-body polymers are absorbed in the activity of the many-body polymerssin
the terms proportional told, due to the fact thatR1,… ,Rn must be connected, and so each
one-body polymersif anyd is always contained insat leastd one many-body polymer.

IV. CONVERGENCE OF THE POLYMER EXPANSION

We will treat in detail here the case where the pair potentialJxW,yW andDxW,yW
sid decays polynomially

sthe more complicated oned. That is, we will assume that,∀i =1,2,… ,c, xW ÞyW,

JxW,yW ø
J

uxW − yWup
, DxW,yW

sid ø
Di

uxW − yWup
, s44d

J,Di PR are constants. We will treat the cases wherepùd+« with «.0.
The cases ofJxW,yW andDxW,yW

sid with finite range or with exponential decay are easier and can be
treated in a similar way.

In order to ensure the convergence conditions37d we will bound the factor

«nsz,z8d = o
R,L:uRu=n

z,z8PR

ursRdu, s45d

and show that «nsz,z8dø ffsb ,J,lD1,… ,lDcdgn, where fsb ,J,lD1,… ,lDcd→0 as
b ,J,lD1,… ,lDc→0.

In order to get an efficient bound for the factor
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o
gPGR

p
hx,yj,L

sebGxysfx,fyd − 1d s46d

that appears inrsRd, we use a standard cluster expansion result, namely, the Brydges–Battle–
Federbush tree graph inequality, which can be resumed in the following lemma.

Lemma 1: Let R be a finite set with cardinalityuRu and let hVxy: hx,yjPRj a set with
uRusuRu−1d /2 real numbers (withhx,yj unordered pair in R). Suppose now that there existuRu
positive numbers Vx (with xPR such that, for any subset S,R,

o
xPS

Vx + o
hx,yjPS

Vxy ù 0. s47d

Then

U o
gPGR

p
hx,yjPg

se−Vxy − 1dU ø e o
xPR

Vx o
tPTR

p
hx,yjPt

uVxyu, s48d

where TR denotes the set of the tree graphs on R.
For the proof of this lemma see, e.g., Refs. 17,18.
For any w ,fPR, we have 2uwfuø uwu2+ ufu2 and uwuaufubø uwua+b+ ufua+b. Then, for any

R,L, it follows that

o
hx,yj,R

uGxysfx,fydu ø o
hx,yj,R

U 1

b
JxW,yWdx0,y0

s1 − dxW,yWd + dxW,yWdux0−y0u,1U ufxfyu
2

+ o
i=1

c U l

b
DxW,yW

sid dx0,y0
s1

− dxW,yWdUufx
aify

biu ø o
hx,yj,R

U 1

b
JxW,yWdx0,y0

s1 − dxW,yWd + dxW,yWdux0−y0u,1U1

4
sufxu2 + ufyu2d

+ o
i=1

c U l

b
DxW,yW

sid dx0,y0
s1 − dxW,yWdUsufxuai+bi + ufyuai+bid

ø o
xPR

ufxu2

2 o
yPR

U 1

b
JxW,yWdx0,y0

s1 − dxW,yWd + dxW,yWdux0−y0u,1U
+ o

i=1

c

o
xPR

ufxuai+bi o
yPR

U2l

b
DxW,yW

sid dx0,y0
s1 − dxW,yWdU .

Note that

o
yPR

dxW,yWdux0−y0u,1 ø o
y0PZ

dux0−y0u,1 ø 2,

o
yPR

uJxW,yWudx0,y0
s1 − dxW,yWd ø sup

xWPZd
o

yWPZd

uJxW,yWu ø JM ,

o
yPR

uDxW,yW
sid udx0,y0

s1 − dxW,yWd ø sup
xWPZd

o
yWPZd

uDxW,yW
sid u ø DM

sid.

Hence,

o
hx,yj,R

uGxysfx,fydu ø o
xPR

FS JM

2b
+ 1Dufxu2 + o

i=1

c
2lDM

sid

b
ufxuai+biG .

As ufu2ø ufuai+bi ø ufuai+bi +1 if ufuù1 and ufu2ø1ø ufuai+bi +1 if ufuø1 and, defining
sa,bd;saj ,bjd for j such thataj +bj =maxha1+b1,… ,ac+bcj, it follows that
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o
hx,yj,R

uGxysfx,fydu ø o
xPR

sC1fx
a+b + C2d,

where

C1 ;
JM

2b
+ 1 +o

i=1

c
2lDM

sid

b
, C2 ;

JM

2b
+ 1. s49d

Using Lemma 1 we get

U o
gPGR

p
hx,yjPg

sebGxysfx,fyd − 1dU ø p
xPR

ebsC1fx
a+b+C2d o

tPTR

p
hx,yjPt

ubGxysfx,fydu, s50d

and so,

o
R,L:uRuù2

z,z8PR

ursRdueuRu = o
nù2

en o
R,L:uRu=n

z,z8PR

ursRdu = o
nù2

en

sn − 2d! o
x1,…,xnPL:

x1=z,x2=z8,x1Þxj

ursR= hx1,…,xnjdu

ø o
nù2

en

sn − 2d! o
x1,…,xnPL:

x1=z,x2=z8,xiÞxj

E p
i=1

n

dnsfxi
debsC1fxi

a+b+C2d o
tPTn

p
hi,jjPt

ubGxiyj
sfxi

fxj
du.

Recall nows28d and s29d, and thatutu=n−1. Hence, fixingtPTn, we have

p
hi,jjPt

uGxiyj
sfxi

fxj
du ø p

hi,jjPt
o
s=1

c+1

uAxixj

ssd uufxi

as−1
s1−ds,1d

uufxj

bs−1
s1−ds,1d

u ø o
hi,jjPt

o
sij =1

c+1

p
k=1

n

ufxk
unkssd p

hi,jjPt

uAxixj

ssij du,

wherenkssd depends ona1,… ,ac, b1,… ,bc and on the sequencehsijjhi,jjPt. In any case, we have
dkønkssdødk·maxha1,… ,ac,b1,… ,bcjømdk, where 2m is the degree of the polynomialPsfd,
andhdkjk=1

n are the incidence indices of the treetPTn, with 1ødkøn−1 andok=1
n dk=2n−2. Then

o
R,L:uRuù2

z,z8PR

ursRdueuRu ø o
nù2

enenbC2bn−1

sn − 2d! o
x1,…,xnPL:

x1=z,x2=z8,xiÞxj

E p
i=1

n

dnsfxi
debC1fxi

a+b

3 o
tPTn

o
hi,jjPt

o
sij=1

c+1

p
k=1

n

ufxk
unkssd p

hi,jjPt

uAxixj

ssij du ø o
nù2

enenbC2bn−1

sn − 2d! o
x1,…,xnPL:

x1=z,x2=z8,xiÞxj

3 o
tPTn

o
hi,jjPt

o
sij=1

c+1

p
k=1

n SE dnsfxk
debC1fxk

a+b
ufxk

unkssdD p
hi,jjPt

uAxixj

ssij du.

Lemma 2: If aøm and bøm, then∀a.0, aPR, we have

E dnsfdebC1fa+b
ufua ø

eC4−C6C3
1/2m

C5
sa+1d/2m FGS 1

2m
DG−1

GSa + 1

2m
D ,

where C3,C4,C5, andC6 are constants such that,∀fPR,

bUsfd ø C3f2m + C4, bUsfd − bC1fa+b ù C5f2m + C6.

Proof: As Psfd is a polynomial of degree 2m bounded from below, there exist contants
A1,A2,A3, andA4 swith A1 andA3.0d such that

A1f2m + A2 ø Psfd ø A3f2m + A4.
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Then, asf2øfa+b+1 andfai+bi øfa+bøf2m sinceai +bi øa+bø2m, we obtain

bUsfd = lPsfd +
Js0d

2
f2 + bf2 + lo

i=1

c

fai+biDis0d ø lsA3f2m + A4d +
Js0d

2
sfm2 + 1d + bsf2m + 1d

+ lf2mo
i=1

c

Dis0d ø C3f2m + C4,

where

C3 ; lA3 +
Js0d

2
+ b + lo

i=1

c

Dis0d, C4 ; lA4 +
Js0d

2
+ b + lo

i=1

c

Dis0d.

We also have

bUsfd − bC1fa+b = lPsfd +
Js0d

2
f2 + bf2 + lo

i=1

c

fai+biDis0d − bC1fa+b ù lsA1f2m + A2d

+ lo
i=1

c

fai+biDis0d − bC1fa+b.

If a+b=2m, we have

bUsfd − bC1fa+b ù FlA1 − bC1 + l o
i:ai+bi=2m

c

Dis0dGf2m + lA2 ù C5f2m + C6.

If a+b,2m, thenfa+bøf2m+1 and it follows that

bUsfd − bC1fa+b ù slA1 − bC1df2m + lA2 − bC1 ù C5f2m + C6.

Hence,C5=lA1−bC1+loi:ai+bi=2m
c Dis0d if a+b=2m, or C5=lA1−bC1 if a+b,2m. C6=lA2 if

a+b=2m, or C6=lA2−bC1 if a+b,2m. From the definition of the SSD dnsfd, we have

E dnsfdebC1fa+b
ufua =

1

Csl,bd E e−bUsfdebC1fa+b
ufua df.

Hence,

Csl,bd =E
R

e−bUsfd df ù e−C4E
R

e−C3f2m
df ù e−C4

1

mC3
1/2mGS 1

2m
D ,

E e−bUsfdebC1fa+b
ufua df ø e−C6E

R
e−C5f2m

ufua df ø e−C6
1

mC5
sa+1d/2mGSa + 1

2m
D ,

where we used thatC5.0 for b small enough. Lemma 2 follows from these two bounds.j
Recalling that 1ødkønkssdømdk, we get fnkssd+1g /2mø2nkssd /2mødk, and so, using

Lemma 2, we obtain
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o
R,L:uRuù2

z,z8PR

ursRdueuRu ø o
nù2

enenbC2bn−1

sn − 2d! o
x1,…,xnPL:

x1=z,x2=z8,xiÞxj

o
tPTn

o
hi,jjPt

o
sij=1

c+1

3 p
k=1

n HeC4−C6C3
1/2m

C5
dk

FGS 1

2m
DG−1

GsdkdJ p
hi,jjPt

uAxixj

ssij du

ø o
nù2

enenbC2bn−1

sn − 2d!
seC4−C6C3

1/2mdn

C5
2sn−1d FGS 1

2m
DG−n

o
tPTn

o
hi,jjPt

o
sij=1

c+1

3 p
k=1

n

Gsdkd o
x1,…,xnPL:

x1=z,x2=z8,xiÞxj

p
hi,jjPt

uAxixj

ssij du, s51d

where we use thatpk=1
n C5

dk=C5
sd1+d2+¯+dnd=C5

2sn−1d.
We note that for anytPTn, there is a unique patht̄ in t which joins vertex 1 to vertex 2.

Fixing tPTn, let t̄;h1,i1j ,hi1, i2j ,hi2, i3j ,… ,hik−1, ikj ,hik,2j andIt;h1,i1, i2,… , ik,2j the subset
of h1,2,3,… ,nj whose elements are the vertices of the patht̄. Hence,utu=n−1, ut̄u=k+1, and
ut \ t̄u=n−k−2.

From the definitionss29d of uAxy
ssdu :s=1,… ,sc+1d, we see that all the terms vanish ifux0

−y0u.1. Hence, fixingtPTn, if ∃hi , jjPt such that usxid0−sxjd0u.1 we have uAxixj

ssd u=0∀s

=1,… ,sc+1d, and so, this treet does not contribute to the sums51d. Then, givenusx1d0−sx2d0u, as
ut̄u=k+1, if usx1d0−sx2d0u.k+1 then∃hi , jjP t̄ such thatusxid0−sxjd0u.1, and so,t do not con-
tribute to s51d. As t̄,t we haven−1ùk+1. Therefore, any treetPTn such thatusx1d0−sx2d0u
.n−1ùk+1 do not contribute tos51d, in other words,rsRd vanishes ifusx1d0−sx2d0u. uRu−1, i.e.,
if uRu, usx1d0−sx2d0u+1.

So, we defineN;uz0−z80u+1, and we have

o
R,L:uRuù2

z,z8PR

ursRdueuRu ø o
R,L:uRuùN

z,z8PR

ursRdueuRu. s52d

Now, we note that

dxW,yWdux0−y0u,1 ø dxW,yWe
−ux0−y0u+1, dx0,y0

ø e−ux0−y0u.

Then,

uAxy
s1du =

1

2
U 1

b
JxW,yWdx0,y0

s1 − dxW,yWd − dxW,yWdux0−y0u,1U ø
e−ux0−y0u

2 F 1

b

J

uxW − yWup
s1 − dxW,yWd + edxW,yWG ,

uAxy
ssdu = U l

b
DxW,yW

ss−1ddx0,y0
s1 − dxW,yWdU ø

lDs−1

buxW − yWup
s1 − dxW,yWde−ux0−y0u.

Hence,∀s=1,… ,sc+1d,

uAxy
ssdu ø Ke−ux0−y0uF 1

uxW − yWup
s1 − dxW,yWd +

e

2
dxW,yWG ø eKe−ux0−y0uF s1 − dxW,yWd

uxW − yWup
+ dxW,yWG ø eKFxy

s1d,

sup
xPL

o
yPL

uAxy
ssdu ø eOs1dK,

where, we define
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K ;
1

b
maxH J

2
,lD1,lD2…,lDcJ , s53d

and, forwPR, w.0,

Fxy
swd ; e−wux0−y0uF s1 − dxW,yWd

uxW − yWup
+ dxW,yWG .

Then, fixingtPTn and the sequencehsijj, we get

o
x1,…,xnPL:

x1=z,x2=z8,xiÞxj

p
hi,jjPt

uAxixj

ssij du = o
x1,…,xnPL:

x1=z,x2=z8,xiÞxj

p
hi,jjPt\t̄

uAxixj

ssij du p
hi,jjPt̄

uAxixj

ssij du

ø feOs1dKgsn−k−2d o
xi1

,…,xik
PL:

xir
Þxiq

∀r,q=1,…,k

p
hi,jjPt̄

uAxixj

ssij du

ø feOs1dKgsn−k−2d o
xi1

,…,xik
PL:

xir
Þxiq

∀r,q=1,…,k

eKFx1xi1

s1d eKFxi1
xi2

s1d
¯ eKFxik−1

xik

s1d eKFxik
x2

s1d .

Applying iteratively the inequalitysfor w1,w2d

o
xiPL:
xiÞx,y

Fxxi

sw1dFxiy
sw2d ø Os1dFxy

sw1d, s54d

which follows from

o
xWiPZd:
xWiÞxW,yW

1

uxW − xW iup
1

uxW i − yWup
ø

Os1d

uxW − yWup
, o

z0PR:
z0Þx0,y0

e−w1ux0−z0ue−w2uz0−y0u ø Os1de−w1ux0−y0u

sthe formula is valid for anyw1,w2, specific forw1=2/3 andw2=1, which we will take hered, we
get

o
x1,…,xnPL:

x1=z,x2=z8,xiÞxj

p
hi,jjPt

uAxixj

ssij du ø feOs1dKgsn−1dFzz8
s2/3d. s55d

Recall that

o
tPTn

1 = o
d1+¯+dn=2n+2

diù1

o
tPTn:

t<sd1,…,dnd

1, s56d

where the notationt<sd1,… ,dnd means that the last sum above runs over the treestPTn that
have fixed incidence indicessd1,… ,dnd. From the Cayley formula

o
tPTn:

<sd1,…,dnd

1 =
sn − 2d!

p
i=1

n

sdi − 1d!

,

and, fixingtPTn, we have
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o
hi,jjPt

o
sij=1

c+1

1 = sc + 1dsn−1d.

Hence, usings52d, we get

o
R,L:uRuù2

z,z8PR

ursRdueuRu ø o
nùN

enenbC2bn−1

sn − 2d!
seC4−C6C3

1/2mdn

C5
2sn−1d FGS 1

2m
DG−n

3 o
tPTn

o
hi,jjPt

o
sij=1

c+1

p
k=1

n

Gsdkd

3feOs1dKgsn−1dFzz8
s2/3d

ø o
nùN

enenbC2bn−1

sn − 2d!
seC4−C6C3

1/2mdn

C5
2sn−1d FGS 1

2m
DG−n

feOs1dKgsn−1d 3 Fzz8
s2/3dsc

+ 1dsn−1d o
d1+¯+dn=2n+2

diù1

p
k=1

n

sdk − 1d !
sn − 2d!

p
i=1

n

sdi − 1d!

ø o
nùN

enenbC2bn−1seC4−C6C3
1/2mdn

C5
2sn−1d FGS 1

2m
DG−n

feOs1dKgsn−1dFzz8
s2/3dsc + 1dsn−1d4n,

where we used the inequality

o
d1+¯+dn=2n+2

diù1

1 ø 4n.

Hence,

o
R,L:uRuù2

z,z8PR

ursRdueuRu ø eNeNbC2bNseC4−C6C3
1/2mdN

C5
2N FGS 1

2m
DG−N

feOs1dKgNFzz8
s2/3d

3 sc + 1dN4No
nù0

He2ebC2b
seC4−C6C3

1/2md
C5

2 FGS 1

2m
DG−1

Os1d4sc + 1dKJn

.

In short, we have proved the following result.
Lemma 3: Ifb and bK=maxhJ/2 ,lD1,… ,lDcj are sufficiently small such that

«sb,Kd ; e2ebC24sc + 1dbK
seC4−C6C3

1/2md
C5

2 FGS 1

2m
DG−1

Os1d , 1,

then, «sb ,Kd is a positive function and, for any zPL, z8PL with zÞz8,

o
R,L:uRuù2

z,z8PR

ursRdueuRu ø f«sb,KdgNFzz8
s2/3d = f«sb,Kdguz0−z80u+1Fzz8

s2/3d. s57d

From Lemma 3, we obtain the following.
Corollary 4:

sup
xPZd+1

o
R:xPR

ursRdueuRu ø Os1d«sb,Kd.

Proof: In fact, asrsRd=0 if uRu=1, we have
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sup
xPZd+1

o
R:xPR

ursRdueuRu = sup
xPZd+1

o
R:xPR
uRuù2

ursRdueuRu ø sup
xPZd+1

o
zPZd+1:

zÞx

o
R:uRuù2
x,zPR

ursRdueuRu

ø sup
xPZd+1

o
zPZd+1:zÞx

f«sb,Kdgux0−z0u+1Fxz
s2/3d ø Os1d«sb,Kd,

since, forw.0,

o
zPZd+1:zÞx

e−wux0−z0uF s1 − dxW,zWd

uxW − zWup
+ dxW,zWG = Os1d,

and soozPZd+1:zÞxFxz
s2/3døOs1d. j

The results above establish the convergence of the cluster expansion for«sb ,Kd small enough
such thatOs1d«sb ,Kd,1 fsee conditions37dg.

V. DECAY OF TWO-POINT TRUNCATED CORRELATION

As it is well known, the convergence of the cluster expansion assures the decay of the
correlation functions and lead to direct estimates. We present the main technical details related to
the behavior of the truncated two-point function below.

Turning to the expressions43d which definesr̃sRid, we note that the indexi of the termbi
j is

the same of the polymerRi, and soi P h1,2,3,… ,nj as j P h1,2j.
Consider the expressions30d for S2sx1;x2d, and recall thati1, i2P h1,2,3,… ,nj. Then, we

have two distinct cases,i1= i2 or i1Þ i2. If i1= i2, then hx1,x2j,Ri1
, hx1,x2jùRi =x ∀ i Þ i1 and

bi1
1 =bi1

1 =bi2
2 =bi2

2 =1. If i1Þ i2, then x1PRi1
, x1¹Ri2

, x2PRi2
, x2¹Ri1

, hx1,x2jùRi

=x ∀ i ¹ hi1, i2j, bi1
1 =bi2

2 =1, andbi1
2 =bi2

1 =0.
Hence, as 1=s1−di1,i2

d+di1,i2
we rewrite

S2sx1;x2d = A1sx1,x2d + A2sx1,x2d,

where

A1sx1,x2d ; o
nù1

1

n! o
i1,i2=1

n

s1 − di1,i2
d o
R1,…,Rn,L,uRj uù2

Ri1
{x1Ri2

{x2

fTsR1,…,Rndr̃sR1d ¯ r̃sRnd

= o
nù2

1

sn − 2d! o
R1,…,Rn,L,uRj uù2

R1{x1R2{x2

fTsR1,…,Rndr̃sR1d ¯ r̃sRnd,

A2sx1,x2d ; o
nù1

1

n! o
i1,i2=1

n

di1,i2 o
R1,…,Rn,L,uRj uù2

Ri1
{x1Ri2

{x2

fTsR1,…,Rndr̃sR1d ¯ r̃sRnd

= o
nù1

1

sn − 1d! o
R1,…,Rn,L,uRj uù2

R1.hx1,x2j

fTsR1,…,Rndr̃sR1d ¯ r̃sRnd,

since, inA1sx1,x2d when n=1 we haveoi1,i2=1
1 s1−di1,i2

d=0 and, for anyn.2 the sumoi1,i2=1
n s1

−di1,i2
d leads tonsn−1d equal terms. And, inA2sx1,x2d the sumoi1,i2=1

n di1,i2
givesn equal terms.

Thus,

uS2sx1;x2du ø uA1sx1,x2du + uA2sx1,x2du.
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Comparings34d and s43d, we note that ifRi ù hx1,x2j=x then r̃sRid=rsRid. If Ri ù hx1,x2j
Þx, we can obtain the results57d of Lemma 3 forr̃sRid by changingnkssd by nkssd+1. With such
result, we changeGsdkd by Gsdk+1d in s51d and obtain an extrapk=1

n dk, which is bounded by
e2sn−1d. We use Lemma 2 to bound the factorl =ednsfdf in s43d. Hence, we can apply Lemma 3
and Corollary 4 to estimater̃sRid schanging some multiplicative constantsd.

Now, let us find an upper bound for the termuA1sx1,x2du. We have

uA1sx1,x2du ø o
nù2

1

sn − 2d!
Bnsx1,x2d,

where

Bnsx1,x2d = o
R1,…,Rn,L

uRiuù2,x1PR1,x2PR2

ufTsR1,R2,…,Rndur̃sR1dir̃sR2dir̃sR3d ¯ r̃sRndu.

Note that ins36d, for nù2, fTsR1,… ,Rnd.0 only if gsR1,… ,RndPGn. Thus,

o
R1,…,Rn,L

uRiuù2,x1PR1,x2PR2

ufTsR1,R2,…,Rnduf·g = o
gPGnU o

fPGn
,g

s− 1duf uU o
R1,…,Rn,L:uRiuù2

gsR1,…,Rnd=g,x1PR1,x2PR2

f·g.

By the Rota formula,19 we have

U o
fPGn
f,g

s− 1duf uU ø o
tPTn:t,g

1 ; Nsgd.

A proof of the Rota formula above can be found, e.g., in Refs. 19 and 20.
We recall now that

o
gPGn

f·g = o
tPTn

o
g:t,g

1

Nsgd
f·g,

since in the double sumotog.t eachg will be repeated exactlyNsgd times.
Thus,

Bnsx1,x2d ø o
tPTn

wnst,x1,x2d,

where we have defined

wnst,x1,x2d ; o
R1,…,Rn,L:uRiuù2

gsR1,R2,…,Rnd.t,x1PR1,x2PR2

ur̃sR1dir̃sR2dir̃sR3d ¯ r̃sRndu.

Using now the obvious bound

o
R:RùR8Þx

u · u ø uR8u sup
xPR8

o
R:xPR

u · u,

and denoting again ast̄ the subtree oft which is the unique path joining vertex 1 to vertex 2, and
denoting asIt=h1,i1,… , ik,2j the ordered set of the vertices oft̄, one can easily check that
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wnst,x1,x2d ø p
i¹It

n

F sup
xPZd

o
Ri:xPRi

uRiudi−1ur̃sRiduG
3 o

R1,Ri1
,…,Rik

,R2:x1PR1,x2PR2
R1ùRi1

Þx,…Rik
ùR2Þx

uR1ud1−1ur̃sR1duuR2ud2−1ur̃sR2du p
iPIt

iÞ1,2

n

uRiudi−2ur̃sRidu

ø p
i¹It

n

F sup
xPZd

o
Ri:xPRi

sdi − 1d ! ur̃sRidueuRiuGsd1 − 1d ! sd2 − 1d !

3 o
R1,Ri1

,…,Rik
,R2:x1PR1,x2PR2

R1ùRi1
Þx,…,Rik

ùR2Þx

ur̃sR1dueuR1uur̃sR2dueuR2u p
iPIt

iÞ1,2

sdi − 2d ! ur̃sRidueuRiu,

sinceuRunøn! euRu. Now, note that

o
R1,Ri1

,…,Rik
,R2:x1PR1,x2PR2

R1ùRi1
Þx,…,Rik

ùR2Þx

ø o
xi0

PZd
o

xi1
PZd

¯ o
xik

PZd
o
R1

x1,xi0
PR1

o
Ri1

xi0
,xi1

PRi1

¯ o
Rik

xik−1
,xik

PRik

o
R2

xik
,x2PR2

.

Hence, recallings57d and applying iteratively the inequalitys54d with w1=1/2 andw2=2/3,

o
R1,Ri1

,…,Rik
,R2:x1PR1,x2PR2

R1ùRi1
Þx,…,Rik

ùR2Þx

ur̃sR1dueuR1uur̃sR2dueuR2u p
iPIt

ur̃sRidueuRiu

ø o
xi0

PZd
o

xi1
PZd

¯ o
xik

PZd

f«sb,Kdgusx1d0−sxi0
d0u+1Fx1xi0

s2/3d
¯ f«sb,Kdgusxik

d0−sx2d0u+1Fxik
x2

s2/3d

ø fOs1dgk+1f«sb,Kdgusx1d0−sx2d0u+sk+2dFx1x2

s1/2d,

since«sb ,Kd,1 andusx1d0−sx2d0uø usx1d0−sxi0
d0u+ usxi0

d0−sxi1
d0u+¯ + usxik

d0−sx2d0u.
Thus, using Corollary 4 and noting thatuh1,… ,nj \ Itu=n−k−2,

wnst,x1,x2d ø sd1 − 1d ! sd2 − 1d ! Fp
i¹It

n

sup
xPZd

o
Ri:xPRi

sdi − 1d ! ursRidueuRiuG
3 3 p

iPIt
iÞ1,2

n

sdi − 2d!4f«sb,Kdgusx1d0−sx2d0u+sk+2dfOs1dgk+1Fx1x2

s1/2d

ø fOs1dgnf«sb,Kdgusx1d0−sx2d0u+nFx1x2

s1/2dp
i=1

n

sdi − 1d ! .

Finally, carrying out the sum overt sand using, once again, the Cayley formulad we obtain

Bnsx1,x2d ø sn − 2d ! f4Os1dgnf«sb,Kdgusx1d0−sx2d0u+nFx1x2

s1/2d.

Taking b ,K small enough to make 4Os1d«sb ,Kd,1, for the contribution ofA1 to the corre-
lations, we get the following bound:

uA1sx1,x2du ø o
nù2

f4Os1dgnf«sb,Kdgusx1d0−sx2d0u+nFx1x2

s1/2d ø Os1df«sb,Kdgusx1d0−sx2d0u+2Fx1x2

s1/2d.

In a similar and much easier way one can also prove a completely analogous bound foruA2sx1,x2du,
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uA2sx1,x2du ø Os1df«sb,Kdgusx1d0−sx2d0u+1Fx1x2

s1/2d.

Hence,

uS2sx;ydu ø Os1df«sb,Kdgux0−y0uFxy
s1/2d ø Os1df«sb,Kdgux0−y0ue−ux0−y0u/2S1 − dxW,yW

uxW − yWup
+ dxW,yWD

ø Os1de−m8sb,Kdux0−y0uS1 − dxW,yW

uxW − yWup
+ dxW,yWD ,

where, since«sb ,Kd,1, we write above

m8sb,Kd ; − logh«sb,Kdj + 1/2. 0.

These results prove part 2 of Theorem 1sthe part 1 is a simpler case and may be proved in a
similar wayd.

A lower bound can be obtained, as said, by analogous proceduresssee, e.g., Ref. 13d.

VI. FOUR-POINT TRUNCATED CORRELATION

Now we analyze the “time” decay of the partially truncated four-point function in order to
determine the mass spectrum in the intervalsM ,2Md, whereM is the one-particle mass. In this
section, we restrict the interaction to even function of the spin variablef.

We use the BS equation, and omit several technical detailssrelated to those presented, e.g., in
Ref. 6d. The computation is carried out in a perturbative approach, we keep only the dominant
term in ab expansion of the BS kernel.

Roughly, we show that, for the model considered here, in the intense noise regimeb!1, if the
polynomialUsfd is such thatkf4l.3kf2l2, wherek·l is the expectation with respect to the single
spin distribution dnsfd s31d, there is an isolated two-particle bound state with massM* =2M
+logs1−zd+Osbd, wherez=fkf4l−3kf2lg / fkf4l−kf2lg.

Sketch of the proof:We use the BS equation which writes the truncated four-point function
Dsx1,x2;x3,x4d=S4sx1,x2,x3,x4d−S2sx1,x2dS2sx3,x4d as

Dsx1,x2;x3,x4d = D0sx1,x2;x3,x4d + o
y1,y2,y3,y4

Dsx1,x2;y1,y2dKsy1,y2;y3;y4dD0sy3,y4;x3,x4d,

whereD0sx1,x2;x3,x4d;S2sx1,x3dS2sx2,x4d+S2sx1,x4dS2sx2,x3d.
Due to translation invariance,D depends only on difference variable, i.e.,D=Dsj ,h ,td,

where here we takej=x2−x1, h=x4−x3, andt=x3−x2. Using p,q, andk, the conjugate variable
sthe Fourier transformd of j ,h ,t, the BS equation becomes

D̃sp,q,kd = D̃0sp,q,kd +
1

s2pd2sd+1dE
Td+1

dd+1p8dd+1q8D̃sp,p8,kdK̃sp8,q8,kdD̃0sq8,q,kd,

or using the notationsD̃skdfdspd;eTd+1dd+1q D̃sp,q,kdfsqd,

D̃skd = D̃0skd +
1

s2pd2sd+1dD̃skdK̃skdD̃0skd = D̃0skdf1 − s2pd−2sd+1dK̃skdD̃0skdg−1.

We restrict the analysis to the mass spectrum, i.e., we takek=sk0,kW =0Wd, and considerfspd de-
pending only onpW . From the definition ofD0, we get

D̃0sp,q,kd = s2pdd+1fS̃2spdS̃2sqddsk − p − qd + S̃2spdS̃2sk − pddsq − pdg. s58d

Hence,sD̃0sk0dfdspd=s2pdd+1S̃2spdS̃2sk−pdffspWd+ fs−pWdg. For fspWd= fs−pWd, we obtain
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s f̃,D̃sk0d f̃d =E f̃spWdH2s2pdd+1E dp0 S̃2spdS̃2sk0 − p0,− pWdJ 3 SF1 −
1

s2pd2sd+1d K̃sk0dD̃0sk0dG−1

f̃D
3spWdddp. s59d

As h¯jsk0,pWd above is analytic inuIm k0u,2M, the singularities in such region come from where

the inverse of 1−s2pd−2sd+1dK̃sk0dD̃0sk0d does not exist.

Now we follow replacingK̃ by the leading term in the perturbation expansionsin terms ofbd,
which is named ladder approximation. We remarksonce more timed, as a comment on the reli-
ability of such procedure, that in Refs. 6,14 and 15 a rigorous analysissin similar “field theory”d
shows that the spectral properties calculated in the ladder approximation are maintained.

Using K=D0
−1−D−1 we obtain

K̃sp,q,kdOsb=0d =
kf4l − 3kf2l2

2kf2l2fkf4l − kf2l2g
= R, s60d

i.e., constantsnot depending onbd, local in space and time. Writingf1−Ag−1=1+f1−Ag−1A we
get

s f̃,D̃0sk0d f̃d =E f̃
¯spWdD̃0sp,q,k0d f̃sqWddp dq +

R8

1 − R8ID
SE f̃

¯spWdD̃0sp,q,k0ddp dqD
3SE D̃0sp8,q8,k0d f̃sqW8ddp8 dqD , s61d

where dp;dd+1p, etc.,R8=R/ s2pd2sd+1d and

ID =E dq8 dq D̃0sq8,q,k0d = 2s2pdd+1E dp S̃2spdS̃2sk0 − p0,− pWd.

Thus, the singularity, and so the bound state, comes forR8ID=1. We follow the calculations

separating in the expression forS̃2spd the dominant one-particle contributionsas usual, we take the
Lehmann spectral representation, see, e.g., Refs. 6 and 12d,

S̃2spd = s2pddc̃2spWd
sinhMspWd

coshMspWd − cosp0

+E
3M−«

` sinhE

coshE − cosp0
dhsE,pWd,

where c̃2spWd=]G̃sp0= ij ,pWd /]juj=MspWd. We have, for the sfirstd dominant term, c̃2spWd
=fkf2l / s2pddg+Osbd. Thus, for the computation ofsthe leading part ofd ID we useS̃2spd=kf2l
3hsinhMspWd / fcoshMspWd−cosp0gj. Hence,

ID = 2s2pdd+1E dpkf2l2 seMspWd − e−MspWdd2

seMspWd + e−MspWd − eip0 − e−ip0dseMspWd + e−MspWd − eik0−ip0 − e−ik0+ip0d
.

Writing ik0=2M −«, we getstaking the leading termb=0d ID=2s2pd2sd+1dkf2l2/ s1−e−«d. And for
the eigenvalue equationR8ID=1 we obtain

1 − e−« =
kf4l − 3kf2l2

kf4l − kf2l2 ; z, s62d

which leads, ifz.0, to the bound state mass

M* = 2M + lns1 − zd. s63d

j
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We have the same bound state mass expression of Ref. 15, calculated there for a ferromagnetic
system with continuous spin, nearest neighbor interaction, and even single spin distribution.

As a final comment, let us say that we expect to apply the techniques presented here in the
analysis of the correlation functions of other stochastic dynamical systems, such as those described
by an anharmonic chain of oscillators, with conservative dynamics and different stochastic
reservoirs21 sin our case, for the intense noise, i.e., “high temperature” regimed.
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We study the dynamics of a quantum particle moving in a plane under the influence
of a constant magnetic field and driven by a slowly time-dependent singular flux
tube through a puncture. The known standard adiabatic results do not cover directly
these models as the Hamiltonian has time-dependent domain. We give a meaning to
the propagator and prove an adiabatic theorem. To this end we introduce and
develop the new notion of a propagator weakly associated to a time-dependent
Hamiltonian. ©2005 American Institute of Physics.fDOI: 10.1063/1.1895865g

I. INTRODUCTION

The model under consideration originates from Laughlin’s12 and Halperin’s9 discussion of the
integer quantum Hall effect. In the mathematical physics literature Bellissardet al.5 and Avron
et al.3 used an adiabatic limit of the modelswith additional randomnessd to introduce indices. The
indices explain the quantization of charge transport observed in the experiments.14

In this paper we discuss some mathematical aspects of the existence of the propagator and the
validity of the adiabatic approximation and propose how to overcome the difficulties originating
from the strong singularity of the external field.

Let us specify the model, summarize our results and introduce the notation. The configuration
space isR2\ hs0,0dj and the model is considered in polar coordinatessr ,ud. The vector potentialA
is the sum of a part for the homogeneous magnetic field of strengthB.0,

B

2
sx1 dx2 − x2 dx1d =

Br2

2
du,

plus a part describing the fluxF which varies in time,

F

2p

1

uxWu2
sx1 dx2 − x2 dx1d =

F

2p
du;

the real-valued functionF is assumed to be monotonous andC2. With the metric coefficients
g11=1, g22=r2, g12=0, the differential expression of the Hamiltonian acting inL2sR+

3 f0,2pf ,r dr dud is

1

2m
S− i"] j −

e

c
AjDÎggjkS− i"]k −

e

c
AkD =

"2

2m
S−

1

r
]rr]r +

1

r2S− i]u −
e

"c

Br2

2
−

e

hc
FD2D .

Our purpose is to study the response of the system if flux quantahc/e are added adiabatically, i.e.,
the flux function is of the formt°Fst /td with the timet varying in f0,tg for somet@1.
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In a first step we analyze the case whenF is linear. Furthermore, we fix an angular momen-
tum sector defined by −i]ue

imu=meimu sm[Zd, and use a slow times, i.e., the substitution
s=−m+e/ shcdFst /td. Also we are not interested here in keeping track of the behavior in the
physical parameterse, ", c, 2m, so we set them all equal to one. This is our motivation to consider
the operator

Hssd = −
1

r
]rr]r +

1

r2Ss+
Br2

2
D2

in L2sR+,r drd. s1d

In a second step we shall then show that our analysis generalizes to Hamiltonians of the form
Hszssdd wherez[C2 is a monotone function.

Hssd is essentially self-adjoint onC0
`sg0,`fd iff s2ù1.13 For 0,s2,1 we impose the regular

boundary condition asr →0+ fi.e., a wave function belongs to the domain if it has no part
proportional to thessquare integrabled singularity r−usug. This is in fact the most common choice,
see Ref. 8 for a detailed discussion. The cases=0 is particular since the singularity in question is
logarithmic but otherwise the situation is similar, see Ref. 1. The HamiltonianHssd is unambigu-
ously determined by specifying a complete set of eigenfunctions with corresponding eigenvalues,
see below.

The dynamics of the model should be defined by

i]sUtss,s0dc = tHssdUtss,s0dc, Utss0,s0dc = c, s2d

whereUt is unitary andc is an arbitrary initial condition from the domain ofHss0d. The existence
of a propagator in this sense is, however, uncertain. The problem arises from the fact that the

domain ofHssd is not constant ins, respectively, thatḢssd is not relatively bounded with respect
to Hssd. Thus the usual theorems which assure the existence of the propagator13 and the validity of
the adiabatic approximation4,2 are not directly applicable.

A convenient way to see this is to consider the eigenfunctions. The operatorHssd has a simple
discrete spectrum; the eigenvalues are

lnssd = Bss+ usu + 2n + 1d, n [ h0,1,2,…j, s3d

with the corresponding normalized eigenfunctions

wnss;rd = cnssdr usuLn
susudSBr2

2
DexpS−

Br2

4
D ,

where

cnssd = SB

2
Dsusu+1d/2S 2n!

Gsn + usu + 1dD
1/2

are the normalization constants andLn
susud are the generalized Laguerre polynomialsssee, for ex-

ample, Ref. 8d.
The derivative ofHssd equals

Ḣssd =
2s

r2 + B.

Notice that ifusuø1 thenwnssd cannot belong to the domain DomḢssd sinceḢssdwnssd, r−2+usu for

r →0+. This means thatḢssd is not relatively bounded with respect toHssd.
Remark that, on the other hand, the quadratic expression
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E
0

`

wmss;rdḢssdwnss;rdr dr

makes good sense. In order to avoid a complicated notation we shall denote it by the symbol

kwmssd ,Ḣssdwnssdl even though the symbol cannot be taken literally and is therefore somewhat
misleading. Furthermore, the derivative of the eigenfunction,ẇnssd, belongs toL2sR+,r drd. Since
the eigenfunctions are chosen to be real valued it holds true that

kwnssd,ẇnssdl = 0.

Let us also note that, similarly, ifusuø1 and s2Þs82 then the eigenfunctionwnssd cannot
belong to DomHss8d. It is so becausesas formal expressionsd Hss8d−Hssd=ss82−s2d / r2+Bss8
−sd andHss8dwnss; rd has a nonintegrable singularity atr =0. Hence DomHssd depends ons.

It turns out that, following the strategy of Born and Fock,6 the problems of existence and
adiabatic approximation can both be handled.

Denote the eigenprojector ontoCwnssd by Pnssd; it is differentiable as a bounded operator. The
hard part of our work consists in showing that

io
k=0

`

ṖkssdPkssd

is a bounded operator. This is stated in Lemma 6. It requires work because its matrix elements
have bad off-diagonal decay, see Lemma 4swhich is formulated for the unitarily equivalent
operatorQd.

Now

HADssdªHssd +
i

t
o
n=0

`

ṖnssdPnssd

has a propagator which is well defined in the usual way, i.e.,

i]sUADss,s0dc = tHADssdUADss,s0dc, UADss0,s0dc = c, s4d

for c[DomsHADss0dd. To see this notice thatUAD can be computed by its action on the eigenba-
sis,

UADss,s0dwnss0d = e−ites0

s lnsudduwnssd.

Furthermore,lnssd−lns0d is bounded inn and so

UADss,s0dDomHADss0d = DomHADssd.

Since Hssd−HADssd is bounded the domains ofHssd and HADssd are identical. By time-
dependent transformation a natural candidate for the propagator ofHssd is

Utss,s0dªUADss,0dCss,s0dUADs0,s0d, s5d

whereCss,s0d is defined by

i]sCss,s0d = − QtssdCss,s0d, Css0,s0d = I, s6d

with

QtssdªUADs0,sdSio
k=0

`

ṖkssdPkssdDUADss,0d. s7d

SinceiQtssdi is locally bounded the propagatorCss,s0d is well defined by the Dyson formula.
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The adiabatic approximation problem is settled in Proposition 11 where it is shown that

iUtss,0d − UADss,0di = OS1

t
D .

It remains unclear, however, whetherCss,s0d preserves the domain ofHs0d and therefore
whether the propagatorUtss,s0d is actually related to the HamiltonianHssd in the usual sense. To
handle this problem we develop the general concept of weak association of a propagator and a
time-dependent Hamiltonian. We can show thatUt is weakly associated toHssd and that the
Schrödinger equations2d is fulfilled in the sense of distributions.

We shall use the following notation. The symbolVssd stands for the unitary operator which
sends all eigenstates at time 0 to the corresponding eigenstates at times, i.e.,

Vssdwns0d = wnssd ∀ n [ Z+ s8d

shere and everywhere in what followsZ+ stands for the set of non-negative integersd. Further set

Wssd = Vssd−1HssdVssd = o
n=0

`

lnssdPns0d s9d

and

Vssd = o
n=0

`

vnssdPns0d, s10d

where

vnssd =E
0

s

lnsuddu.

Remark that the adiabatic propagator decomposes as

UADss,s0d = Vssde−itsVssd−Vss0ddVss0d−1.

The paper is organized as follows. In Secs. II and III we do the analysis necessary to prove the
boundedness result stated in Lemma 6. Section IV is devoted to the existence problem for the
propagator. In Sec. V we prove the adiabatic theorem in Proposition 11. The result is then ex-
tended to a more general time dependence in Sec. VI.

A rather independent part of the paper is the Appendix where we propose the notion of a
propagator weakly associated to a time-dependent Hamiltonian. We indicate cases where the weak
association can be verified while the usual relationship between a propagator and a Hamiltonian is
unclear or even is not valid. In particular, this concept was inspired by the situation we encoun-
tered in the present model. We believe, however, that this idea need not be restricted to this case
only and that it might turn out to be useful in resolving this type of difficulties in other models as
well.

II. AUXILIARY ESTIMATES OF MATRIX OPERATORS

Here we derive some auxiliary estimates that will be useful later when verifying assumptions
of the adiabatic theorem.

Lemma 1:Let Assd be an operator in l2sNd depending on a parametersù0 whose matrix
entries in the standard basis equal
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Assdmn= 50 for m= n,

− i
nsm

n ds for m, n,
i
ms n

mds for m. n.

Then Assd is bounded, uniformly ins, and its norm satisfies the estimate

iAssdi ø 24.

Proof: The proof will be done in several steps.
sid Let Kssd be an integral operator acting inL2sR+,dxd with the integral kernel

Kssx,yd =H− i
ys x

yds for x , y,
i
xs y

xds for x . y.

Let us show that

iKssdi =
2

2s + 1
.

First we apply the unitary transform

U:L2sR+,dxd → L2sR,dyd, Ucsyd = ey/2cseyd. s11d

The inverse transform readsU−1ĉsxd=x−1/2ĉsln xd. Set

K̃ssd = UKssdU−1.

One finds thatK̃ssd is again an integral operator with the integral kernel

K̃ssy,zd = i sgnsy − zde−ss+1/2duy−zu.

HenceK̃ssd is a convolution operator and it is therefore diagonalizable with the aid of the Fourier
transformF on R. This means that

sFK̃ssdF−1cdszd = q̂szdcszd,

where

q̂szd =E
R

eizy sgnsyde−ss+1/2duyu dy =
2iz

ss + 1
2d2 + z2

.

It follows that

iKssdi = iFK̃ssdF−1i = iq̂i` =
1

s + 1
2

. s12d

sii d Suppose thathcjn=1
` is an orthogonal system inL2sR+,dxd such that

∀m,n [ N, kcm,Kssdcnl = Assdmn

and

∀n [ N, icni2 = k . 0.

Let P+ be the orthogonal projector onto spanhcnjn=1
` in L2sR+,dxd. Then one can identify

P+KssdP+ with k−1Assd. Hence
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iAssdi = kiP+KssdP+i ø kiKssdi. s13d

siii d We shall construct an orthogonal systemhcnjn=1
` described in the preceding point as

follows. Consider the natural embeddingL2sfn,n+1g ,dxd,L2sR+,dxd, n[N. We seek
cn[L2sfn,n+1g ,dxd in the form

cn = anun + bnvn + fn,

wherean, bn[R, un, vn, fn[L2sfn,n+1g ,dxd,

unsxd = xs, vnsxd = x−s−1 for x [ fn,n + 1g,

and fn'un, fn'vn. Suppose for definiteness thatm,n. Then

kcm,Kssdcnl =E
m

m+1

dxE
n

n+1

dy Kssx,ydcmsxdcnsyd = − ikum,cmlkvn,cnl.

Furthermore,

kcn,Kssdcnl =E
n

n+1E
n

n+1

Kssx,ydcnsxdcnsyddx dy = 0

sinceKssx,yd is antisymmetric,Kssy,xd=−Kssx,yd. Consequently, it suffices to choose the real
coefficientsan, bn so that

∀n [ N,kun,cnl = ns, kvn,cnl = n−s−1.

This system has a unique solutionsan,bnd. The functionfn can be arbitrary. Its only purpose is to
adjust the norms of the functionscn so that they are all equal. Set

Nnssd = ianun + bnvni2 =E
n

n+1

sanx
s + bnx

−s−1d2 dx

and

kssd = sup
n[N

Nnssd.

One can choose the orthogonal systemhcnjn=1
` so thaticni2=kssd for all n. According tos12d and

s13d we have

iAssdi ø
2kssd
2s + 1

. s14d

sivd It remains to find an upper bound onkssd. Set

jn = ns, hn = n−s−1.

Simple algebraic manipulations yield

Nnssd =
kvn,vnljn

2 − 2kun,vnljnhn + kun,unlhn
2

kun,unlkvn,vnl − kun,vnl2 .

Here

kun,vnl = lnS1 +
1

n
D ,
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kun,unl =
1

2s + 1
ssn + 1d2s+1 − n2s+1d,

kvn,vnl =
1

2s + 1
sn−2s−1 − sn + 1d−2s−1d.

Set

w = Ss +
1

2
DlnS1 +

1

n
D .

One can rewrite the expression forNnssd as follows:

Nnssd =
2s + 1

n

sinhswdcoshswd − w

sinh2swd − w2 .

Using an elementary analysis one can show that

sinhswdcoshswd − w

sinh2swd − w2 ø
sinhswdcoshswd − w

sinhswdssinhswd − wd
ø 4 cotghswd.

Hence

Nnssd ø
4s2s + 1d

n

S1 +
1

n
D2s+1

+ 1

S1 +
1

n
D2s+1

− 1

ø 12s2s + 1d.

Consequently,

kssd ø 12s2s + 1d. s15d

From s14d and s15d it follows that iAssdiø24. h

Lemma 2:Let Assd be an operator in l2sNd whose matrix entries in the standard basis equal

Assdmn= 50 for m= n,

− i
n fssm

n d for m, n,
i
mfss n

md for m. n,

where

fssud =
1 − us

1 − u
, fu [ g0,1f,

and s[ f0,1g is a parameter. Then Assd is bounded and its norm satisfies the estimate

iAssdi ø SÎ2

3
+ 4Dp2s.

Proof: The proof will be done in several steps.
sid Let Kssd be an integral operator acting inL2sR+,dxd with the integral kernel

Kssx,yd =H− i
y fss x

yd for x , y,
i
x fss y

xd for x . y.

Let us show that
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iKssdi ø p2s. s16d

This step is quite analogous to the proof of pointsid in Lemma 1. First we apply the unitary
transformU defined ins11d. Set

K̃ssd = UKssdU−1.

One finds thatK̃ssd is again an integral operator with the integral kernel,

K̃ssy,zd = i sgnsy − zdfsse−uy−zude−uy−zu/2.

ThusK̃ssd is a convolution operator which is diagonalizable with the aid of the Fourier transform

F on R. This means thatsFK̃ssdF−1cdszd= q̂szdcszd where

q̂szd =E
R

eizy sgnsydfsse−uyude−uyu/2 dy.

A standard estimate yields

uq̂szdu ø 2E
0

` 1 − e−sy

1 − e−y e−y/2 dy ø sE
0

` y

sinhsy/2d
dy = p2s.

It follows that

iKssdi = iFK̃ssdF−1i = iq̂i` ø p2s.

sii d Let xnsxd be the characteristic function of the intervalgn,n+1f. The linear mapping

J:l2sNd → L2sR+,dxd:hjnj ° o
n=1

`

jnxn

is an isometry. The adjoint mapping reads

J* :L2sR+,dxd → l2sNd:c ° hkxn,cljn=1
` .

Set

Lssd = JAssdJ* .

Lssd is an integral operator with the kernel

Lssx,yd = o
m=1

`

o
n=1

`

Assdmnxmsxdxnsyd.

This can be rewritten as

Lssx,yd = 5− i
fyg fss fxg

fyg d if 0 , fxg , fyg,

i
fxg fss fyg

fxg d if 0 , fyg , fxg,

0 otherwise.

Here fxg denotes the integer part ofx. Notice thatJ*J is the identity onl2sNd and soLssdJ
=JAssd. Consequently,

iAssdi = iJAssdi = iLssdJi ø iLssdi. s17d

siii d Denote byP̃n, n[Z+, the orthogonal projector ontoCxn in L2sR+,dxd. Set
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Koffssd = Kssd − P̃0Kssd − KssdP̃0 + P̃0KssdP̃0 − o
n=1

`

P̃nKssdP̃n.

In other words, we subtract fromKssd the diagonal as well as the first row and the first column
si.e., with index 0d with respect to the orthogonal systemhxnjn=0

` . We can say also that the integral
kernelKs

offsx,yd vanishes iffxg=fyg or fxg=0 or fyg=0 and otherwise it coincides withKssx,yd.
Since

IP̃0KssdP̃0 − o
n=1

`

P̃nKssdP̃nI = sup
n[Z+

iP̃nKssdP̃ni ø iKssdi,

we have

iKoffssdi ø 4iKssdi. s18d

sivd It remains to estimate the norm of the differenceLssd−Koffssd. This is a Hermitian
integral operator whose kernel does not vanish only if 0, fxg, fyg or 0, fyg, fxg. Suppose for
definiteness that 0, fxg, fyg. Then the kernel equals, up to the multiplier −i,

1

fyg
fsS fxg

fyg
D −

1

y
fsSx

y
D = S 1

fygs −
1

ysD fygs − fxgs

fyg − fxg
+

1

ysS fygs − fxgs

fyg − fxg
−

ys − xs

y − x
D .

Let us show that

0 ø
1

fyg
fsS fxg

fyg
D −

1

y
fsSx

y
D ø

2s

fxgsfyg − fxgd
. s19d

First notice that

0 ø
1

fygs −
1

ys = − sE
y

fyg

z−s−1 dzø
ssy − fygd

fygs+1

and so

0 ø S 1

fygs −
1

ysD fygs − fxgs

fyg − fxg
ø

s

fygsfyg − fxgd
. s20d

Further set temporarily

D =
fygs − fxgs

fyg − fxg
−

ys − xs

y − x
= sE

0

1

ssfxgs1 − td + fygtds−1 − sxs1 − td + ytds−1ddt.

The integrand in the last integral equals

ss1 − sdjt
s−2ssx − fxgds1 − td + sy − fygdtd,

wherejt is a real number lying betweenfxgs1−td+fygt andxs1−td+yt. Notice that

0 ø sx − fxgds1 − td + sy − fygdt ø 1.

We assume that 0øsø1. Therefore

0 ø D ø ss1 − sdE
0

1

sfxgs1 − td + fygtds−2 dt = − s
fygs−1 − fxgs−1

fyg − fxg

and so
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0 ø
1

ysD ø
sfxgs−1

yssfyg − fxgd
ø

s

fxgsfyg − fxgd
. s21d

Inequalitiess20d and s21d jointly imply s19d.
svd From estimates19d one can deduce thatLssd−Koffssd is a Hilbert–Schmidt operator and

iLssd − KoffssdiHS ø
Î2p2

3
s. s22d

Actually,

iLssd − KoffssdiHS
2 = 2E

1

`

dxE
fxg+1

`

dyuLssx,yd − Ks
offsx,ydu2 ø 8s2E

1

`

dx
1

fxg2E
fxg+1

`

dy
1

sfyg − fxgd2

= 8s2So
k=1

`
1

k2D2

.

svid Inequalitiess17d, s18d, s16d, ands22d imply that

iAssdi ø iLssdi ø iKoffssdi + iLssd − Koffssdi ø 4p2s +
Î2p2

3
s.

This shows the lemma. h

Lemma 3:Let Assd be an operator in l2sNd with the matrix entries in the standard basis

Assdmn= H0 for m= n,
i

n−mminhsm
n ds,s n

mdsj for mÞ n.

Then Assd is bounded for all0øs and its norm satisfies the estimate

iAssdi ø p + SÎ2

3
+ 4Dp2s.

Proof: Let us first show that

iAs0di ø p.

For s=0 we get

As0dmn=
i

n − m
if mÞ n.

Considering the natural embeddingl2sNd, l2sZd let us denote byP+ the orthogonal projector onto
l2sNd in l2sZd. Let B be an operator inl2sZd with the matrix

Bmn= qsn − md whereqsnd =H0 for n = 0,
i
n for n Þ 0.

One can identifyAs0d with P+BP+. B is a convolution operator and therefore it is diagonalizable
by the Fourier transformF : l2sZd→L2sf0,2pg ,dud. In more detail,

sFBF−1cdsud = q̂sudcsud whereq̂sud = o
n[Z

qsndeinu.

One finds thatq̂sud=−p+u. Consequently,
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iAs0di = iP+BP+i ø iBi = iFBF−1i = max
0[f0,2pg

uq̂sudu = p.

Suppose now that 0,m,n. Notice that

sAss + 1d − Assddmn= −
i

n
Sm

n
Ds

and

sAssd − As0ddmn= −
i

n
fsSm

n
D .

Using Lemma 1 and Lemma 2 one can estimate

iAssdi ø iAs0di + iAss − fsgd − As0di + iAss − fsg + 1d − Ass − fsgdi + ¯ + iAssd − Ass − 1di

ø p + SÎ2

3
+ 4Dp2ss − fsgd + 24fsg ø p + SÎ2

3
+ 4Dp2s.

This proves the lemma. h

III. BOUNDEDNESS OF THE OPERATOR iok=0
` Ṗk„s…Pk„s…

We consideriok=0
` ṖkssdPkssd in the time independent frame, i.e., the operatorQssd defined by

Qssd = iVssd*o
k=0

`

ṖkssdPkssdVssd = − iV̇ssd*Vssd = iVssd*V̇ssd. s23d

The operatorVssd is defined ins8d. Qssd is symmetric and its matrix entries in the basishwns0dj are

kwms0d,Qssdwns0dl = ikwmssd,ẇnssdl.

Sincewnssd depends ons only through the absolute value it holds true thatQs−sd=−Qssd for s
Þ0. Fors=0 the operator-valued functionQssd has a discontinuity. The goal of this section is to
show that the operatorQssd is in fact bounded.

To compute the matrix entries one can use the identity

kwmssd,ẇnssdl =
kwmssd,Ḣssdwnssdl

lnssd − lmssd
. s24d

Let us emphasize once more that the scalar product on the right-hand side should be interpreted as

a quadratic form since, in general,wnssd¹Dom Ḣssd. The derivation goes through basically as
usual even though one cannot use the scalar product directly. Differentiating the equation on
eigenvalues one arrives at the equality

Hssdẇnss;rd + Ḣssdwnss;rd = l̇nssdwnss;rd + lnssdẇnss;rd,

valid for any r .0, in which one should substitute forHssd and Ḣssd the corresponding formal
differential operators. Next one multiplies the equality byrwmss; rd and integrates the both sides
from « to infinity for some«.0. In the integral

−E
«

`

wmss;rd]rr]rẇnss;rddr

occurring on the left-hand side one integrates twice by parts. Checking the asymptotic behavior of
the eigenfunctions near the origin,
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wnss;rd , SB

2
Dsusu+1d/2S 2n!

Gsn + usu + 1dD
1/2

r usus1 + Osr2dd for r → 0 + , s25d

one finds that

lim
r→0+

rwmss;rd]rẇnss;rd = lim
r→0+

rs]rwmss;rddẇnss;rd = 0.

Hence sending« to 0 actually leads to equalitys24d.
Lemma 4:The matrix entries of the operator Qssd for sÞ0 are given by the formulas

kwms0d,Qssdwns0dl = 0 for m= n,

and

kwms0d,Qssdwns0dl =
i sgnssd
2sn − md

minHgmssd
gnssd

,
gnssd
gmssdJ for mÞ n,

where

gnssd = SGsn + usu + 1d
n!

D1/2

. s26d

Proof: Assume thatm,n and s.0. Using the explicit expression for the generalized La-
guerre polynomials,

Ln
sadsxd = o

k=0

n

s− 1dkSn + a

n − k
D 1

k!
xk,

one finds that

kwmssd,Ḣssdwnssdl = 2scmssdcnssdE
0

`

r2s−1Lm
ssdSBr2

2
DLn

ssdSBr2

2
DexpS−

Br2

2
Ddr

= scmssdcnssdS 2

B
Ds

Sm,n,

where

Sm,n = o
k=0

m

o
,=0

n

s− 1dk+,Gsm+ s+ 1dGsn + s+ 1dGsk + , + sd
Gsk + s+ 1dGs, + s+ 1dm!n!

Sm

k
DSn

,
D .

In this expression only the summand withk=0 does not vanish since

o
,=0

n

s− 1d,Sn

,
D, j = 0 for j = 0,1,…,n − 1.

Hence

Sm,n =
Gsm+ s+ 1dGsn + s+ 1d

Gss+ 1dm!n! o
,=0

n

s− 1d, Gs, + sd
Gs, + s+ 1d

Sn

,
D =

Gsm+ s+ 1dGsn + s+ 1d
Gss+ 1dm!n!

Bss,n + 1d

=
Gsm+ s+ 1d

sm!
.

Furthermore,lnssd−lmssd=2Bsn−md and so
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kwms0d,Qssdwns0dl = iS 2

B
Dscmssdcnssd

2Bsn − md
Gsm+ s+ 1d

m!
.

Now it suffices to plug in the explicit expressions for the normalization constantscmssd and
cnssd. h

Using the Stirling formula one can check the asymptotic behavior of the matrix entries of the
operatorQssd for m and n large. It turns out that the operatorQssd is in some sense close to a
Hermitian operatorAssd in L2sR+,r drd with the matrix entries

kwms0d,Assdwns0dl = 0 for m= n, s27d

and

kwms0d,Assdwns0dl =
i sgnssd
2sn − md

minHSm+ 1

n + 1
Dusu/2

,S n + 1

m+ 1
Dusu/2Jfor mÞ n. s28d

Note thatAs0+d=Qs0+d. We shall also writeQssdmn instead ofkwms0d ,Qssdwns0dl, and similarly
for Assd.

Lemma 5: Let Assd be the Hermitian operator in L2sR+,r drd defined by relationss27d and
s28d. Then Qssd−Assd is a Hilbert–Schmidt operator and it holds true that

iQssd − AssdiHS ø
1
2usus1 + usuds3+usud/2.

Proof: Let us suppose for definiteness thats.0 andm,n. For xù1 set

gssxd =
Gsx + sd
xsGsxd

.

One can express

uQssdmn− Assdmnu =
1

2sn − md
ugssm+ 1d1/2 − gssn + 1d1/2uSm+ 1

n + 1
Ds/2

gssn + 1d−1/2

ø
1

4
gssn + 1d−1/2E

0

1

gssm+ 1 + sn − mdtd−1/2ugs8sm+ 1 + sn − mdtdudt.

Notice that

gs8sxd
gssxd

=
G8sx + sd
Gsx + sd

−
G8sxd
Gsxd

−
s

x
.

Using the well-known formula for the logarithmic derivative of the gamma function,

−
G8szd
Gszd

=
1

z
+ g + o

n=1

` S 1

n + z
−

1

n
D , s29d

one finds that

gs8sxd
gssxd

= sSo
n=0

`
1

sn + xdsn + x + sd
−

1

x
D ø sSo

n=0

`
1

sn + xd2 −
1

x
D ø sS 1

x2 +E
x

` dy

y2 −
1

xD =
s

x2 .

Similarly,

gs8sxd
gssxd

ù sSE
x

` dy

ysy + sd
−

1

xD = lnS1 +
s

x
D −

s

x
ù −

s2

2x2 .

In particular,
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ugs8sxdu ø
sss+ 1d

x2 gssxd.

From here one derives the estimates, fort[ f0,1g,

gssm+ 1 + sn − mdtd
gssn + 1d

= expS−E
m+1+sn−mdt

n+1 gs8syd
gssyd

dyD ø expSE
m+1

n+1 S s

y
− lnSy + s

y
DDdyD

= expSsm+ 1 +sdlnS1 +
s

m+ 1
D − sn + 1 +sdlnS1 +

s

n + 1
DD ø s1 + sd1+s

and

uQssdmn− Assdmnu ø
sss+ 1d

4gssn + 1d1/2E
0

1 gssm+ 1 + sn − mdtd1/2

sm+ 1 + sn − mdtd2 dt

ø
1

4
ss1 + sds3+sd/2E

0

1 dt

sm+ 1 + sn − mdtd2 .

Let Fstd be a Hermitian operator inL2sR+,r drd with the following matrix entries in the basis
hwns0dj:

Fstdmn= 0 for m= n

and

Fstdmn= sm+ 1 + sn − mdtd−2 for m, n.

ThenFstd is a Hilbert–Schmidt operator and

iFstdiHS
2 = 2o

m=0

`

o
n=m+1

`

sm+ 1 + sn − mdtd−4 ø 2o
m=0

` E
0

` dy

sm+ 1 + tyd4 =
2

3t
o
m=0

`
1

sm+ 1d3 ø
1

t
.

Hence

iQssd − AssdiHS ø
1

4
ss1 + sds3+sd/2E

0

1

iFstdiHS dt ø
1

2
ss1 + sds3+sd/2.

This proves the lemma. h

Combining Lemma 3 and Lemma 5 we deduce that the operatorQssd is actually bounded.
Lemma 6:The operator Qssd is bounded and its norm satisfies the estimate

iQssdi ø
p

2
+ 12usu +

1

2
usus1 + usuds3+usud/2.

Proof: Let Assd be the Hermitian operator inL2sR+,r drd defined by relationss27d and s28d.
According to Lemma 3 it holds true that

iAssdi ø
1

2
Sp + SÎ2

3
+ 4Dp2usu

2
D .

Lemma 5 leads to the estimate

iQssdi ø iAssdi + iQssd − Assdi ø
1

2Sp + S 1

3Î2
+ 2Dp2usu + usus1 + usuds3+usud/2D .

Sinces1+1/s6Î2ddp2,12 the lemma follows. h
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IV. THE MEANING OF THE PROPAGATOR Ut„s ,s0…

As already discussed in the Introduction the natural propagatorUtss,s0d defined ins5d is not
related in the standard way to the HamiltoniantHssd defined ins1d. In particular it is not clear if
Utss,s0d maps the domain DomHss0d into DomHssd. This is why we propose in the Appendix the
notion of a propagator weakly associated to a Hamiltonian, see Definition A.3. We should like to
emphasize that this relationship is unique, i.e., at most one propagator can be weakly associated to
a Hamiltonian.

In this section we show thatUt is weakly associated totH and thatss,rd°Utss,s0dc0srd
satisfies the Schrödinger equation as a distribution for allc0[L2sR+,r dr dwd.

Proposition 7:The propagator Utss,s0d is weakly associated totHssd.
Proof: Relations5d means that

Utss,s0d = Vssde−itVssdCss,s0deitVss0dVss0d−1.

So starting fromCss,s0d one can reachUtss,s0d by two consecutive unitary transformations. The
propagatorCss,s0d was defined ins6d. It corresponds to the Hamiltonian −Qtssd defined ins7d.
According to Lemma 6 the functioniQtssdi=iQssdi is locally bounded and thusCss,s0d is given
by the Dyson formula, see relations31d in Sec. V.

First we apply Proposition A.4 in which we set

Astd = − Qtstd, D = DomHs0d, Tstd = exps− itVstdd,

and

Xstd = is]te
−itVstddeitVstd = tWstd.

We conclude that the propagatore−itVssdCss,s0deitVss0d is weakly associated to

tWssd − e−itVssdQtssdeitVssd = tWssd − Qssd.

Next we apply Proposition A.6 in which we setH̃std=tWstd−Qstd and Ũst ,sd
=e−itVstdCst ,sdeitVssd. Recall further thatVstd was defined in Eq.s8d. We conclude thatUtss,s0d
=VssdŨss,s0dVss0d−1 is weakly associated to

tVssdWssdVssd−1 − VssdQssdVssd−1 + iV̇ssdVssd−1 = tHssd.

The proposition is proven. h

In the studied modelH=L2sR+,r drd and so

K = L2sR,H,dsd = L2sR 3 R+,r dsdrd.

Let H=eR
%Hssdds be the direct integral of the family of self-adjoint operatorsHssd which is

nothing but a multiplication operator inK. Let Kt be the quasienergy operator associated to the
propagatorUtss,s0d ssee Appendixd. According to Proposition 7 it holds true that

Kt = − i]s + tH. s30d

To an initial conditionc0[H we relate the functioncss,rd=sUtss,0dc0dsrd which is a locally
square integrable function in the variabless and r. We now show thatcss,rd fulfills the
Schrödinger equation in the space of distributionsD8sR3 g0,`fd. Let us note that for the proof it
suffices to know that −i]s+tH,Kt, the stronger property Eq.s30d is not necessary.

Proposition 8: For every c0[H, the function css,rd=sUtss,0dc0dsrd satisfies the
Schrödinger equation in the sense of distributions.

Proof: Let j[C0
`sR3 g0, +`fd be an arbitrary real-valued test function. Setgss,rd

=jss,rd / r. Clearly, g[Doms−i]s+tHd,DomKt. Let fa,bg3 fc,dg be a rectangle containing
suppj and chooseh[C0

`sRd so thath;1 on a neighborhood of the intervalfa,bg. From Propo-
sition A.2 we know thatKtshssdcss,rdd=−ih8ssdcss,rd. From the choice ofh it follows that
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0 = − ikg,h8clK = kg,KtshcdlK = ks− i]s + tHdg,hclK.

The last term equals

E
R3R+

Si]s
1

r
jss,rd + tHssd

1

r
jss,rdDhssdcss,rdr dsdr

=E
R3R+

Si]sjss,rd + tS− ]rr]r
1

r
+

1

r2Ss+
Br2

2
D2Djss,rdDcss,rddsdr .

This means that

− i]scss,rd + tS−
1

r
]rr]r +

1

r2Ss+
Br2

2
D2Dcss,rd = 0

in the domainR3 g0, +`f in the sense of distributions. h

V. PROOF OF THE ADIABATIC THEOREM

We follow the strategy explained in the Introduction. The adiabatic propagatorUAD fsees4dg
and the propagatorUt defined ins5d differ by C defined bys6d. SinceQtssd=eitVssdQssde−itVssd,
defined ins7d, is unitarily equivalent toQssd it is bounded, uniformly ins on every bounded
interval f0,Sg. HenceCss,s0d exists and is given by the Dyson formula

Css,s0d = I + o
n=1

`

inE
s0

s

ds1E
s0

s1

ds2¯E
s0

sn−1

dsn Qtss1dQtss2d¯Qtssnd. s31d

The task is to estimate the norm of the integral ofQt. This will be done by the integration by
parts technique developed in the following two lemmas.

The first step is to find a bounded differentiable solutionXssd of the commutation equation

Qssd = ifWssd,Xssdg.

The operatorWssd was defined ins9d. The off-diagonal entries of theXssd are determined unam-
biguously,

kwms0d,Xssdwns0dl = − i
kwms0d,Qssdwns0dl

lmssd − lnssd

=−
sgnssd

4Bsn − md2minHgmssd
gnssd

,
gnssd
gmssdJ for mÞ n,

s32d

with gnssd defined ins26d. We set

kwms0d,Xssdwns0dl = 0 for m= n, s33d

and write againXssdmn instead ofkwms0d ,Xssdwns0dl.
Lemma 9: The operator Xssd defined by relations (33) and (32) is bounded and its norm

satisfies the estimate

iXssdi ø
p2

12B
.

The derivative X˙ ssd exists in the operator norm and satisfies the estimate

053303-16 Asch, Hradecký, and Šťovíček J. Math. Phys. 46, 053303 ~2005!

                                                                                                                                    



iẊssdi ø
s1 +Î2dp2

48B
.

Proof: The operator norm ofXssd is bounded from above by the Shur–Holmgren norm,

iXssdi ø iXssdiSH = sup
m[Z+

o
n=0

`

uXssdmnu ø
1

2B
o
k=1

`
1

k2 =
p2

12B
.

Suppose thats.0 andm,n. Let us estimate the derivative ofXssdmn. Using s29d one finds
that

Sgmssd
gnssd

D8
=

gmssd
2gnssdSG8sm+ s+ 1d

Gsm+ s+ 1d
−

G8sn + s+ 1d
Gsn + s+ 1d D

=
gmssd
2gnssdok=0

`
n − m

sk + m+ s+ 1dsk + n + s+ 1d
.

Hence

U d

ds
XssdmnU ø

1

8Bsn − mdS 1

sm+ 1dsn + 1d
+E

1

` dy

sy + mdsy + ndD =
1

8Bsn − mdS 1

sm+ 1dsn + 1d

+
1

n − m
lnS n + 1

m+ 1
DD .

Thus we get, formÞn,

U d

ds
XssdmnU ø

1

8B
S 1

sm+ 1dsn + 1d
+

1

un − muminhm+ 1,n + 1jD . s34d

Let Ẋssd be a Hermitian operator inL2sR+,r drd with the matrix entries dXssdmn/ds. From the

estimates34d we deduce thatẊssd is a Hilbert–Schmidt operator and

iẊssdiHS ø
1

8B
So

m=0

`
1

sm+ 1d2o
n=0

`
1

sn + 1d2D1/2

+
1

8B
S2o

m=0

`
1

sm+ 1d2 o
n=m+1

`
1

sn − md2D1/2

=
s1 +Î2dp2

48B
.

Furthermore, since estimates34d is uniform in s one can apply the Lebesgue dominated conver-
gence theorem to conclude that

lim
«→0

I1

«
sXss+ «d − Xssdd − ẊssdI

HS
= 0.

Hence the derivative of the operator-valued functionXssd exists in the operator norm and equals

Ẋssd. h

The matrix entries of the operatorQtssd defined ins7d equal

kwms0d,Qtssdwns0dl = ieitsvmssd−vnssddkwmssd,ẇnssdl.

Notice that the both operatorsVssd andWssd=V8ssd are diagonal in the basishwns0dj and there-
fore they commute.

Lemma 10:It holds true that

053303-17 Adiabatic analysis of the Landau Hamiltonian J. Math. Phys. 46, 053303 ~2005!

                                                                                                                                    



IE
0

s

QtsudduI ø S1 +
1 +Î2

8
usuD p2

6Bt
.

Proof: Suppose thats.0. The integral can be rewritten as follows:

E
0

s

Qtsuddu = iE
0

s

eitVsudfWsud,Xsudge−itVsud du

=
1

t
E

0

s

sseitVsudd8Xsude−itVsud + eitVsudXsudse−itVsudd8ddu

=
1

t
E

0

s

sseitVsudXsude−itVsudd8 − eitVsudẊsude−itVsudddu.

Consequently,

E
0

s

Qtsuddu =
1

tSeitVssdXssde−itVssd − Xs0d −E
0

s

eitVsudẊsude−itVsud duD .

More precisely, the derivation of this equality was rather formal but it becomes rigorous when
sandwiching the both sides with the scalar productkwms0d , ·wns0dl. This is to say that the both
sides have the same matrix entries in the basishwns0dj. But since the equality concerns bounded
operators it holds true.

Using Lemma 9 one arrives at the estimate

IE
0

s

QtsudduI ø
1

tSiXssdi + iXs0di +E
0

s

iẊsudiduD ø
p2

Bt
S1

6
+

1 +Î2

48
sD .

The lemma is proven. h

We can now show that the adiabatic propagatorUADss,0d fsees4dg is close to the propagator
Utss,0d=UADss,0dCss,0d defined ins5d provided the adiabatic parametert is large.

Proposition 11:It holds true that

iUtss,0d − UADss,0di ø MssdeusuMssd p

3Bt
,

where

Mssd =
p

2
+ 12usu +

1

2
usus1 + usuds3+usud/2. s35d

Proof: According to Lemma 6,iQssdiøMssd, and from Lemma 10 one easily deduces that

IE
0

s

QtsudduI ø
p

3Bt
Mssd.

Using formulas5d one can estimate

iUtss,0d − UADss,0di = iCss,0d − Ii ø o
n=1

` E
0

usu

ds1¯E
0

sn−2

dsn−1iQtss1di¯iQtssn−1di

3 IE
0

sn−1

dsn QtssndI ø
p

3Bt
o
n=1

`

MssdnE
0

usu

ds1¯E
0

sn−2

dsn−1
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=
p

3Bt
o
n=1

`

Mssdn usun−1

sn − 1d!
.

The proposition is proven. h

VI. THE GENERAL DEPENDENCE ON TIME

Here we show that the adiabatic theorem extends to Hamiltonians of the form

Hzssd = Hszssdd

where Hssd is defined ins1d and z[C2sRd is a real-valued function. In order to simplify the
discussion and to avoid considering discontinuitiesfrecall thatQssd is discontinuous ats=0g we
shall further assume thatz8ssd.0 andzs0d=0.

Set

Vzssd = Vszssdd, Wzssd = Wszssdd, Vzssd =E
0

s

Wzsuddu.

Let Czss,s0d be the propagator related via the Dyson formula to the Hamiltonian −Qt
zssd, where

Qt
zssd = expsitVzssddQzssdexps− itVzssdd, Qzssd = z8ssdQszssdd.

Exactly in the same way as in the proof of Proposition 7 one can show that the propagator

Ut
zss,s0d = Vzssdexps− itVzssddCzss,s0dexpsitVzss0ddVzss0d−1

is weakly associated to the HamiltonianHzssd. The adiabatic propagator now reads

UAD
z ss,s0d = Vzssdexps− itsVzssd − Vzss0dddVzss0d−1.

Proposition 12: Assume thatz[C2sRd, z8ssd.0 and zs0d=0. Then there exists a locally
bounded function mzssd such that

∀s[ R, iUt
zss,0d − UAD

z ss,0di ø
mzssd
Bt

.

Proof: Suppose for definiteness thats.0. Recall thatiQssd i øMssd whereMssd was defined
in s35d. The operator-valued function

Xzssd = z8ssdXszssdd,

with Xssd being defined ins32d and s33d, satisfies the commutation equation

Qzssd = ifWzssd,Xzssdg.

Quite analogously as in the proof of Lemma 10 one derives the estimate

IE
0

s

Qt
zsudduI ø

1

tSiXzssdi + iXzs0di +E
0

s

iẊzsudiduD .

In virtue of Lemma 9 we have

iXzssdi ø
p2

12B
z8ssd

and
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E
0

s

iẊzsudidu ø
p2

12B
E

0

s

uz9sududu +
s1 +Î2dp2

48B
E

0

s

z8sud2 du.

Hence

IE
0

s

Qt
zsudduI ø

qzssd
Bt

,

where

qzssd =
p2

12Sz8s0d + sup
0øuøs

z8sud +E
0

s

uz9sududu +
1 +Î2

4
E

0

s

z8sud2 duD .

Finally one can proceed similarly as in the proof of Proposition 11 to derive the estimate

iUt
zss,0d − UAD

z ss,0di = iCzss,0d − Ii ø expSE
0

zssd

MsvddvDqzssd
Bt

.

This completes the proof.
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APPENDIX: PROPAGATOR WEAKLY ASSOCIATED TO A HAMILTONIAN

By a propagatorUst ,sd we mean a family of unitary operators in a separable Hilbert spaceH
depending ont, s[R which satisfies the following conditions:

sid Ust ,sd is strongly continuous jointly int, s,
sii d the Chapman–Kolmogorov equality is satisfied, i.e.,

∀t,s,r [ R, Ust,rdUsr,sd = Ust,sd.

Let Hstd, t[R, be a family of self-adjoint operators inH. The domain may depend ont. The
standard way how one relates a propagatorUst ,sd to Hstd is based on the following two require-
ments:

sid ∀t ,s[R , Ust ,sdsDomHssdd=DomHstd,
sii d ∀c[DomHssd , ∀ t[R , i]tUst ,sdc=HstdUst ,sdc.

Clearly, if a propagator exists then it is unique. In some situations, however, these require-
ments may turn out to be unnecessarily strong. In particular this is true for the model studied in the
current paper. The heart of the problem is illustrated on the following example.

Let Astd be a family of bounded Hermitian operators inH which is uniformly bounded. Then
the propagator exits and is given by the Dyson formula. Let us call itCst ,sd. Let D,H be a dense
linear subspace, and letTstd be a strongly continuous family of unitary operators such thatD is
invariant with respect toTstd and for everyc[D there exists the derivative]tTstdc. Furthermore,

suppose thatXstd= iṪstdTstd−1, with DomXstd=D, is a self-adjoint operator for allt sthe dot
designates the derivatived. A formal computation gives
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Tstds− i]t + AstddTstd−1 = − i]t + Xstd + TstdAstdTstd−1.

If Cst ,sd preserved the domainD then the propagatorTstdCst ,sdTssd−1 would solve the
Schrödinger equation forXstd+TstdAstdTstd−1 on D. Thus it is natural to associate it to this family
of self-adjoint operators. The hypothesis onCst ,sd need not be, however, satisfied sinceAstd is an
arbitrary family of bounded operators and soCst ,sd will in general not preserve this domain.

In this appendix we propose a way how to associate a propagator to a given time-dependent
Hamiltonian in a weak sense. This association is more general than the standard oneswhich
supposes a constant domain and solving the Schrödinger equation in the strong sensed and it is still
uniquesi.e., there is at most one propagator weakly associated to a given time-dependent Hamil-
toniand.

Here we develop this approach only to an extent which makes it possible to apply these ideas
to the studied model with a time-dependent Aharonov–Bohm flux. In particular, the described
example is covered by Proposition A.4 below.

Let X be a Banach space. We shall say that a vector-valued functionf :R→X is absolutely
continuous onR if it is absolutely continuous on every compact intervalI ,R. By the symbol

AC̃sR ,Xd sor just AC̃ if there is no danger of misunderstandingd we shall denote the space of all
absolutely continuous vector-valued functionsfstd such that the derivativef8std exists almost
everywhere onR. In such a case the functionif8stdi is locally integrable andfstd= fs0d
+e0

t f8ssdds sRef. 10 Theorem 3.8.6d. If the Banach spaceX has the Radon–Nikodym property then

the spaceAC̃sR ,Xd coincides with the space of absolutely continuous vector-valued functions
ACsR ,Xd. Let us recall thatX is said to have the Radon–Nikodym property if the fundamental
theorem of calculus holds, i.e., if any absolutely continuous function is the antiderivative of a
Bochner integrable function. For example, separable Hilbert spaces are known to have the Radon–
Nikodym property.7

Clearly, if f ,g[ACsR ,Hd then the functionkfstd ,gstdl is absolutely continuous and

]tkfstd,gstdl = kf8std,gstdl + kfstd,g8stdl a.e.

Similarly, if A[AC̃sR ,BsHdd and f [ACsR ,Hd thenAstdfstd[ACsR ,Hd and

]tAstdfstd = Ȧstdfstd + Astdf8std a.e.

Let hekj be an orthonormal basis inH. A vector-valued functionfstd=ohkstdek belongs to
ACsR ,Hd if and only if the following two conditions are satisfied:

sid ∃a[R such thatokuhksadu2,`,
sii d ∀k, hk[AC, andsokuhk8stdu

2d1/2[Lloc
1 sRd.

From here one easily derives the following criterionfalternatively, one can again consultsRef.
10, Theorem 3.8.6dg.

Lemma A.1:A vector-valued function f:R→H belongs to ACsR ,Hd if and only if the fol-
lowing two conditions are satisfied:

sid there exists a total setT,H such that for allc[T, kc , fstdl is absolutely continuous,
sii d the derivative f8std exists almost everywhere andif8stdi[Lloc

1 sRd.

Set K=L2sR ,H ,dtd. Let us recall that to every propagatorUst ,sd on H one can relate a
unique self-adjoint operatorK in K which is the generator of the one-parameter group of unitary
operators exps−isKd, s[R, defined by11

se−isKfdstd = Ust,t − sdfst − sd.

K is called the quasienergy operator. Equivalently,
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K = Us− i]tdU* , whereU =E
R

%

Ust,0ddt. sA1d

So f [DomK if and only if Ust ,0d−1fstd[Doms−i]td which means thatf [L2, Ust ,0d−1fstd[AC
and sUst ,0d−1fstdd8[L2.

FromsA1d one concludes that the spectrum ofK is purely absolutely continuous and coincides
with R. So the kernel ofK is always trivial. It seems to be natural, however, to introduce a
generalized kernel ofK, called Ker0 K, as follows:

Ker0 K = hf [ Lloc
2 sR,H,dtd; ∀ h [ C0

`sRd, hf [ DomK andKshfd = − ih8fj.

SinceK can be very roughly imagined as the formal operator −i]t+Hstd the elements of Ker0 K
can be regarded as solutions of the Schrödinger equation in a weak sense.

Proposition A.2:Let Ust ,sd be a propagator and let K be the quasienergy operator associated
to it. Then it holds

Ker0 K = hUst,0dc;c [ Hj.

Proof: If fstd=Ust ,0dc, with c[H, andh[C0
`sRd then, inK, there exists the derivative

Ui
d

ds
se−isKhfdstdU

s=0
= Ui

d

ds
shst − sdUst,0dcdU

s=0
= − ih8stdfstd.

Hence, by the Stone theorem,hf [DomK andKshfd=−ih8f.
Conversely, suppose thatf [Ker0 K and setgstd=Ust ,0d−1fstd. Let h be a test function. From

sA1d one deduces thathg[Doms−i]td and

]tshstdgstdd = h8stdgstd a.e.

Since h[C0
`sRd is arbitrary this implies thatgstd[ACsR ,Hd and g8std=0a.e. Consequently,

gstd=c[H is a constant vector-valued function andfstd=Ust ,0dc. h

It is known that the correspondence between the propagators and the quasienergy operators is
one-to-onefRef. 11, Remarks1d on p. 321g. On the one hand, by the very definition,K is
unambiguously determined byUst ,sd. On the other hand, ifUst ,sd andU1st ,sd are two propaga-
tors with equal quasienergy operators,K=K1, thenUst ,sd=U1st ,sd. This uniqueness result is also
a straightforward corollary of Proposition A.2. Actually, Proposition A.2 implies that for every
c[H there existsc1[H such thatUst ,0dc=U1st ,0dc1 for all t swe use the strong continuity of
the propagatorsd. By settingt=0 one finds thatc=c1. HenceUst ,0dc=U1st ,0dc for all c[H.
Consequently,

Ust,sd = Ust,0dUss,0d−1 = U1st,0dU1ss,0d−1 = U1st,sd.

For a family of self-adjoint operatorsHstd, t[R, set H=eR
%Hstddt. This means thatf [K

belongs to DomH if and only if fstd[DomHstda.e. andiHstdfstdi[L2sR ,dtd. Then H is a
self-adjoint operator inK. In what follows we shall always suppose that the intersection
Doms−i]tdùDomH is dense inK. For example, this is true in the case when the domain
DomHstd is independent oft. Consequently, −i]t+H is a densely defined symmetric operator.

Definition A.3: We shall say that a propagator Ust ,sd is weakly associated toHstd if

K = − i]t + H. sA2d

Notice that equalitysA2d is equivalent to the following two conditions:

sid −i]t+H,K,
sii d −i]t+H is essentially self-adjoint.

053303-22 Asch, Hradecký, and Šťovíček J. Math. Phys. 46, 053303 ~2005!

                                                                                                                                    



Furthermore, it is important to note that this definition still guarantees the uniqueness, i.e., to
Hstd one can weakly associate at most one propagatorUst ,sd. Actually, if Ust ,sd andU1st ,sd are
weakly associated toHstd then K=K1 according to equalitysA2d. But due to the one-to-one
correspondence between the propagators and the quasienergy operators we haveUst ,sd=U1st ,sd.

Now we are ready to formulate and prove two propositions which are directly applicable to
the model studied in this paper.

Proposition A.4:Let Astd be a family of bounded self-adjoint operators inH which is locally
bounded. Let Cst ,sd be the propagator associated to Astd via the Dyson formula. Let D,H be a
dense linear subspace and let Tstd be a strongly continuous family of unitary operators inH
obeying the following conditions:

sid ∀t[R, TstdD=D,
sii d ∀c[D, Tstdc is continuously differentiable,

siii d ∀t[R, Xstd= iṪstdTstd−1, with DomXstd=D, is a self-adjoint operator.

Then the propagator TstdCst ,sdTssd−1 is weakly associated to the family

Xstd + TstdAstdTstd−1.

Proof: Set

Ystd = Xstd + TstdAstdTstd−1, Y =E
R

%

Ystddt, T =E
R

%

Tstddt.

Let KY be the quasienergy operator associated to the propagatorTstdCst ,sdTssd−1. Set

Cstd = Cst,0d, C =E
R

%

Cstddt.

Cstd is a family of unitary operators which satisfiesCstd[AC̃sR ,BsHdd andAstd= iĊstdCstd−1.
sid Let us verify that

− i]t + Y , KY = TCs− i]tdC−1T−1.

Suppose that a vector-valued functionf :R→H belongs to Doms−i]t+Yd. This happens if and
only if f obeys the following conditions:f [L2, f [AC, f8[L2, fstd[D a.e. andYstdfstd[L2. In
that case the functionTstd−1fstd is differentiable almost everywhere and the derivative

sTstd−1fstdd8 = Tstd−1sf8std + iXstdfstdd

is square integrable. Moreover, ifc[D then the functionkc ,Tstd−1fstdl=kTstdc , fstdl is abso-
lutely continuous. According to Lemma A.1 this implies thatTstd−1fstd[ACsR ,Hd and conse-
quentlyCstd−1Tstd−1fstd[AC as well. Furthermore, a straightforward computation yields

Ystdfstd = isṪstdTstd−1fstd + TstdĊstdCstd−1Tstd−1fstdd

=isTstdCstdd8Cstd−1Tstd−1fstd

=i f 8std − iTstdCstdsCstd−1Tstd−1fstdd8.

HencesCstd−1Tstd−1fstdd8[L2, f [DomKY and −i f 8std+Ystdfstd=KYfstd.
sii d Let us verify that −i]t+Y is essentially self-adjoint. Suppose thatg[Doms−i]t+Yd*

satisfiess−i]t+Yd*g=zg with ImszdÞ0. This means that
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∀ f [ Doms− i]t + Yd, ks− i]t + Ydf,glK = zkf,glK.

Choosefstd=hstdTstdc wherec[D andh[C0
`sRd is real valued. Thenf [Doms−i]t+Yd and an

easy computation shows that

s− i]t + Ydfstd = − ih8stdTstdc + hstdTstdAstdc.

Hence for allh[C0
`sRd we have

E
R

sih8stdkTstdc,gstdl + hstdkTstdAstdc,gstdlddt = zE
R

hstdkTstdc,gstdldt.

Setting

Fstd = kTstdc,gstdl, Gstd = kTstdAstdc,gstdl,

we find that

− i]tFstd + Gstd = zFstd sA3d

in the sense of distributions. Since bothFstd andGstd are locally integrable, a standard result from
the theory of distributions tells us thatFstd is absolutely continuous and equalitysA3d holds true
in the usual sense. Moreover, equalitysA3d implies that

]tse2 ImszdtuFstdu2d = 2e2 Imszdt ImsFstdGstdd.

Let us now choose an orthonormal basishckj whose elements all belong to the domainD. Let
us writeFk instead ofF andGk instead ofG when replacingc by ck. We have derived the equality

uFkstdu2 = e−2 Imszdst−aduFksadu2 + 2E
a

t

e−2 Imszdst−sd ImsFkssdGkssddds sA4d

which is valid for allk and alla, t[R. Observe that

o
k

uFkstdu2 = igstdi2 a.e.,

o
k

uFkssduuGkssdu ø igssdiiAssdTssd−1gssdi [ Lloc
1 sR,dsd a.e.,

and

o
k

FkssdGkssd = kgssd,TssdAssdTssd−1gssdl [ R a.e.

Summing ink in equality sA4d we find that

igstdi = e−Imszdst−adigsadi

for almost alla, t[R. Sinceigstdi is square integrable this is possible only ifgstd=0 a.e. h

Proposition A.4 has a corollary justifying the adverb “weakly” in Definition A.3.
Corollary A.5: Assume that a propagator Ust ,t0d is associated as a strong solution of the

Schrödinger equation to a time-dependent Hamiltonian Hstd which has, however, a time-
independent domain (i.e., the relationship between the propagator and the Hamiltonian is the
usual one). Then Ust ,t0d is weakly associated to Hstd.

Proof: In Proposition A.4 it suffices to setD=DomHs0d, Tstd=Ust ,0d and Astd=0. Then
Xstd=Hstd, Cst ,sd=I, andTstdCst ,sdTssd−1=Ust ,sd. h

Proposition A.6:Suppose that Vstd, t[R, is a family of unitary operators which is continu-
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ously differentiable in the strong sense. Let H˜ std, t[R, be a family of self-adjoint operators such

that Dom H̃std=D for all t [R. Set

Hstd = VstdH̃stdVstd−1 + iV̇stdVstd−1.

If the propagator Ũst ,sd is weakly associated to H˜ std then the propagator Ust ,sd
=VstdŨst ,sdVssd−1 is weakly associated to Hstd.

Proof: Set

Ũstd = Ũst,0d, Ũ =E
R

%

Ũstddt, V =E
R

%

Vstddt.

By the assumption,Ũs−i]tdŨ−1=−i]t+H̃. We must show that

VŨs− i]tdŨ−1V−1 = − i]t + H.

Since

VŨs− i]tdŨ−1V−1 = Vs− i]t + H̃dV−1 = Vs− i]t + H̃dV−1

it is sufficient to verify that

Vs− i]t + H̃dV−1 = − i]t + H.

This would also imply that Doms−i]tdùDomsHd is dense inK.

A vector-valued functionf :R→H belongs to DomsVs−i]t+H̃dV−1d if and only if it satisfies
the following conditions: f [L2, Vstd−1fstd[AC, sVstd−1fstdd8[L2, Vstd−1fstd[D a.e. and

H̃stdVstd−1fstd[L2. Let us note that from the continuous differentiability ofVstd in the strong

sense and from the uniform boundedness principle it follows thatV̇std, t[R, is a family of
bounded operators which is locally bounded. Furthermore,Vstd* =Vstd−1 is continuously differen-
tiable in the strong sense as well andVstd−1c[AC for all c[H. Suppose thatf [L2. If
Vstd−1fstd[AC then f8std exists almost everywhere andif8stdi is locally integrable, the function
kc , fstdl=kVstd−1c ,Vstd−1fstdl is absolutely continuous for allc[H and therefore, by Lemma
A.1, fstd[AC. Similarly, the converse is also true. Iffstd[AC thenVstd−1fstd[AC.

Using these facts and the relation betweenH̃std and Hstd fincluding that DomHstd=VstdDg
one easily finds that the domains ofVs−i]t+H̃dV−1 and −i]t+H coincide and that

Vstds− i]t + H̃stddVstd−1fstd = − i f 8std + Hstdfstd

for every f [Doms−i]t+Hd. h

Remark: Proposition A.6 can be easily extended to the case when the family of unitary
operatorsVstd is continuous and piecewise continuously differentiable in the strong sense and in
each point of discontinuity there exist the limits of the derivative both from the left and from the
right.
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Based on the spectral properties of Ruelle transfer operators, we establish condi-
tions for the absence of phase transitions in the continuum. Our approach differs in
several aspects from those which use Kirkwood–Salsburg and Kirkwood–Ruelle
operators. In particular the results follow in a concise and relatively direct way. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1897163g

I. INTRODUCTION

The analysis of the equilibrium behavior of systems can be done by studying thermodynami-
cal properties. One main aspect is the coexistence of two or more pure phases for “physically
acceptable” interactions. In order to investigate the uniqueness of phases it is important to analyze
the variation of some macroscopic quantities when thermodynamical parameters, such as the
temperature, are changed.

Numerical studies show that restrictions on the configuration space favor the disappearance of
phase transitions. The well known fact, stated by van Hove theorem,2,15 that when the dimension
is reduced to one is more difficult to observe phase transitions, would confirm those claims. In this
vein, instead of reducing the dimension we could consider as well the confinement of the system
configurations to a compact set. This can be achieved by considering special potentials between
pairs of particles or adequate external fields.

In this paper we shall give conditions for ensuring the absence of phase transition in more
general system of particles, in the sense that they are not necessarily confined. The systems we are
thinking of consist ofN particles into a containerV,Rd, uVu=messVdø`, interactingvia a
potential mapVN:VN→R of the form

VNsx0,x1, . . . ,xN−1d = o
i, j

wsxi,xjd + o
i

csxid, s1d

wherew :V3V→R andc :V→R are maps that represent the pair potential and an external field,
respectively.

The problem of the absence of phase transitions has been frequently treated by using spectral
properties of the Kirkwood–SalsburgsKSd and Kirkwood–RuellesKRd operators. Historically the
first contribution in that direction is the article by Pastur.10 For further contributions see for
instance Refs. 3 and 4 and 17–19. The analysis began with the consideration of confined systems
in a bounded setL and then taking the thermodynamic limit to reach an infinite volume set. Here
we propose an alternative way. In the first place, as we mentioned above, we considered a not
necessarily bounded container for the particles, and so we do not need to take the thermodynamic
limit. On the other hand, we use the Grothendieck theory of nuclear operators instead of the KR
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bdElectronic mail: vericat@iflysib.unlp.edu.ar
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and KS operators. This approach allows to get a relationship between the spectral radius of the
operators and the free energy, for any value of the temperature. The conclusions follow in a
relatively direct manner from Grothendieck results.

From the mathematical point of view the absence of phase transition is established by means
of the uniqueness of theGibbs states, which are special probability measures onV. The setG of
the Gibbs states is convex12 so, any element of it can be written as a convex combinationsmixtured
of the extremal points ofG. The extremal Gibbs states are interpreted aspure homogenous phases
and any Gibbs state admits a unique integral decomposition in terms of pure phases.

Recently, Franzosiet al.1 have given sufficient conditions for the existence of just one phase
in systems interacting via a general class of confined potentials in any dimension. These condi-
tions include the extra hypothesis that each equipotential surface isC`-diffeomorphic to the
others. This hypothesis, together with Morse theory of critical points, leads to differentiability of
the free energy.

In this paper, we study the behavior of the phases when the inverse temperatureq is varied.
We use a formalism in which a “free energy function”Tsqd is identified with the limit of the
logarithm of a partition function over the total particle number. From the Ruelle thermodynamic
formalism,12 which we can adapt for the continuous case, it is known that the Gibbs states are
functional tangents toTsqd and hence a phase transition is detected when this function has a
singularity. In order to demonstrate the uniqueness of Gibbs states, we shall introduce adequate
transfer operatorsand we will prove that expsTsqdd is an isolated eigenvalue of these operators.
This kind of analysis, for one dimensional lattices, was already done by Ruelle11,12and Sinai.13 In
Ref. 9 we extended Sinai–Ruelle approaches in some directions. Instead of a symbolic spacesa
one dimensional lattice in the statistical mechanics terminologyd, we have considered a compact
submanifoldX,Rd. On the other hand, the dynamics were more generally given by continuous
maps f :X→X and we introduced a free energyTsqd adequate to that context. In that case the
partition function is defined by summing over the set of microstatessthe periodic points offd,
which will be finite by the conditions imposed on the dynamics.

Under the conditions assumed here, the states belong to a continuum, so that partition func-
tions must be defined by mean of integrals. Moreover we emphasize the statistical mechanical
more than the dynamic character of the system under study. Also, in our previous paper9 we have
considered systems which can be “discretized” and, because of this, the transfer operators are
defined as sums. Here, the discretization property is relaxed and the operators are integral ones.

The paper layout is as follows: in the next section we review the concept of Gibbs states, in
any dimension and introduce the formalism to define the partition functions and free energy
functions. In Sec. III we use the transfer operators and prove the absence of phase transition in the
models considered.

II. THE FREE ENERGY FUNCTION AND GIBBS STATES

Let us denote byGsqd the space of theGibbs statesfor a system at inverse temperatureq and
described by a total potential of the form of Eq.s1d. It is constituted by the probability measures
mq which are infinite volume limits asN→` of the finite volume ensembles,

mq,Nsx0,x1, . . . ,xN−1d =
exps− qVNd

ZNsqd
dsx0,x1,. . .,xN−1d. s2d

Heredx is the point mass measure inx and the configurational partition function for the system
reads

ZNsqd =E
VN

exps− qVNddx0 dx1 ¯ dxN−1. s3d

Therefore thefree energy function per particleis, provided the limit exists,
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Tsqd = lim
N→`

1

N
log ZNsqd. s4d

It may be interesting to notice how this formalism could read in the context of dynamical
systems. Let us consider a pairsX, fd with X be a compact subset ofRd sd.0d and f :X→X, a
continuous map. For a potentialwPCsXd we define thestatistical sumby

SNsxd = o
i=0

N−1

wsf isxdd. s5d

Let us assume that the dynamical mapf beexpansive,i.e., there is a constantd.0, such that
dsfNsxd , fNsydd,d, for any integerN implies x=y. Under these conditions the set of periodic
points,PNsfdªhx: fNx=xj, is sN,dd-separated and, sinceX is compact, then it is finitesthese are
standard facts in topological dynamics, see Ref. 16 or Ref. 7d. Now, as a set of “microstates,” we
can consider the whole set of periodic points. The configurations can be given by the orbits of the
pointsxPX, i.e.,xi = f isxd, i =0,1, . . . ,N−1, and so the “Hamiltonian of a dynamical system ofN
particles” can be defined as the statistical sumVN=SN. A construction of a Gibbs state in this
context can be done by defining the ensembles supported on periodic points off,7,14

mq,N =
exps− qVNsxdddx

ZNsqd
, s6d

with the corresponding partition function given by

ZNsqd = o
xPPNsfd

exps− qVNsxdd. s7d

III. ANALYSIS OF PHASE TRANSITIONS

By A`sUd, U,Cd, we denote the space of functions holomorphic inU and bounded on the
closure ofU swith the supreme normd. We consider the Gibbs–Boltzmann factor,

Gsx,yd = expf− wsx,ydgexps− 1
2fcsxd + csydgd

and impose the following condition.
There exists an open neighborhoodW of V such thatG:V3V→R has an analytic extension

to a mapĜ:U3U→C, whereU is a complex open neighborhood ofW in Cd and such thatĜ
belong toA`sU3Ud. This requirement is of course fulfilled ifw :V3V→R satisfies such ana-
lytic extension andc :V→R also does.

We introduce next the transfer operators, in the sense of Ruelle thermodynamic formalism.
They will be defined on the space of functionsA`sUd, for an adequate domainU.

For any value of the temperature parameterq, let us introduce thetransfers operators
Lq:A`sUd→A`sUd according to

Lqsûdszd =E
V

expf− qwsz,wdgexpS−
q

2
fcszd + cswdgDxswddw. s8d

Lemma 1:The spectral radiusrsLqd of operatorsLq equals expsTsqdd.
Proof: Let Eq be the maximal eigenvalue, in modulus, ofLq, so we have for any functionj

PCsVd : limN→` Eq
−N log Lq

N=yqsjdcq, whereyq is some functional onCsVd andcq is the eigen-
function corresponding toEq. If there is a unique Gibbs statemq associate toqw then yq is
preciselymq, seen in this case as a functional. This arises from an adaptation of the Ruelle–
Perron–Frobenius theorem. Now takingj;1, we obtain
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log Eq = lim
N→`

1

N
log Lq

Ns1dsx0,x1, . . . ,xN−1d = lim
N→`

1

N
logE

VN
exps− qVNddx0 dx1 . . . dxN−1

= lim
N→`

1

N
logZNsqd = Tsqd.

ThereforersLqd=expsTsqdd.
j

One main fact about these operators is that they arenuclear.Let us recall that a mapL acting
on a Banach spaceB is nuclear if there exist sequencessxnd,B, sfnd,B* sthe dual space ofBd
with ixni=1, ifni=1 and numberssrnd with on=0

` urnu,` such thatLsxd=on=0
` rnfnsxdxn for every

xPB. This notion can be generalized to maps from complete metric topological spacessFrechet
spacesd to Banach spaces. For more details see Refs. 5 and 8. There is a particular classF of
Frechet spaces with the property that any bounded mapL :F→B, with B an arbitrary Banach
space is nuclear. Such spaces are also called nuclear.

Proposition 2:The transfer operatorsLq:A`sUd→A`sUd, for a domainU,Cd, are nuclear
for any q.

Proof: The demonstration is an application of the Grothendieck theory.5,6 We analyze the
kernel of these operators which are operators of the following type:

PĜsxdszd = Ĝszdxszd.

We shall consider an adequate nuclear spaceF and we prove thatPĜ defined onF is bounded.
This space will beHsUd equal to the space of holomorphic functions in a domainU,Cd

equipped with the seminormifiK=supzPKufszdu, K is a compact subset ofCd. It is known that the
spaceHsUd with the topology of the seminormsi • iK is nuclear.8 Now by proving that the
operatorsPĜ:HsUd→A`sUd are bounded in the spaceHsUd we ensure that they are nuclear.

Let K be a compact subset ofU, such thatĜsŪd,K,U, and we setBMªhf PHsUd : ifiK

,Mj. ThusiPĜsxdi=supzPŪhuĜszdxszdujø iĜiKixiK,M2.
So that the setBM is carried byPĜ in a bounded set inA`sUd. To show thatPĜ is defined on

A`sUd we change the composition ofPĜ with the canonical injectioni :A`sUd�HsUd. Thus
PĜ+ i :A`sDd→A`sDd is nuclear.

j

Let us recall that theFredholm determinantof Lq is

dets1 − zLqd = expS− o
N=1

`
zN

N
TrsLq

NdD, zP C.

From the fact thatLq is nuclear it follows that the function dets1−zLqd is entire in both two
variablesz, q. Besides the set of zerosz of the Fredholm determinant agree with the set of the
nonzero eigenvalues ofLq.

The following formula8 is useful to obtain a development of TrsLq
Nd,

dets1 −Ld = o
k=0

d

s− 1dk Trs∧
k
Ld,

here∧kL is the k-fold exterior product. Then we can define operatorsLq
skd, ∧kFsUd→∧kFsUd,

where ∧kFsUd denotes the Banach space of differentialk-forms holomorphic inU. Now the
operators are defined as

Lq
skdsvkdszd =E

V

expf− qwsz,wdgexpS−
q

2
fcszd + cswdgD∧kDswsz,wd + cszd + cswddsvkddw
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Here∧kDf means thek-fold exterior product of the linear operatorDf.
The Fredholm determinant is related with theRuelle zeta function12 which is defined as

zsz,qd = expSo
n=1

`
zN

N
ZNsqdD .

This series converges inhz: uzu,exps−Tsqddj. The Fredholm determinant is used to show that the
Ruelle zeta function may have a meromorphic extension to the whole complex plane. For instance
if k=1 holds,8

zsz,qd =
dets1 − zLq

s1dd

dets1 − zLq
s0dd

.

Therefore thez poles ofzsz,qd are found among thez zeros of dets1−zLq
s0dd, i.e., the nonzero

eigenvalues ofLq
s0d;Lq. The zeta function has a pole localized in expsTsqdd, i.e., in the leading

eingenvalue ofLq. Then since expsTsqdd is an isolated singularity of the mapz the leading
eigenvalue ofLq is isolated. As we pointed out in the introduction, in this way the nonexistence of
phase transition is proved.

From the above results and considerations we can state the following.
Theorem 3:For systems of particles inRd with a Gibbs–Boltzmann factor belonging to the

classA`sU3Ud, for some domainU,Cd, and with transfer operators acting onA`sUd there is
no phase transition.
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Following Fröhlich and Spencer, we study one dimensional Ising spin systems with
ferromagnetic, long range interactions which decay asux−yu−2+a, 0øaø1/2. We
introduce a geometric description of the spin configurations in terms of triangles
which play the role of contours and for which we establish Peierls bounds. This in
particular yields a direct proof of the well-known result by Dyson about phase
transitions at low temperatures. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1897644g

I. INTRODUCTION

A rigorous proof of liquid–vapor phase transitions is a long standing challenge for mathemati-
cal physicists. A clear understanding of the phenomenon goes back to van der Waals, but a
mathematically consistent theory is still lacking. Lebowitz, Mazel, and Presutti,14 have tried to
capture van der Waals ideas by considering an Hamiltonian which has a term given by an attrac-
tive, two-body Kac potential. The effort was to study the model without taking the Kac scaling
parameterg→0, as in the original works of Kac, Uhlenbeck, and Hemmer,13 and Lebowitz and
Penrose.15 Technically, the idea was to study the system as a perturbation of mean field, which
corresponds to the limit caseg=0, and to adapt to such a context the Pirogov–Sinai theory of finite
temperature perturbations of ground states. To carry through the program, one needs a good
control of an approximate model where the Kac potential term in the Hamiltonian is replaced by
a self-consistent, external one-body field, whose intensity depends on the true value of the order
parametersthe particles densityd at equilibrium. In the continuum, the Hamiltonian cannot consist
of just the attractive Kac potentialsas in Ising models with Kac potentialsd and a repulsive force
is needed to prevent a collapse of matter. The natural choicesas proposed originally by Kacet al.
f13gd is then to add a hard-core interaction, but, at the required values of the particles density, the
cluster expansion results for the system with only hard cores are not valid and the implementation
of the Pirogov–Sinai methods collapses. In Ref. 14 the problem has been avoided by using
repulsive forces which are also given by Kac potentials, in particular four-body positive interac-
tions. The escamotage is physically not totally satisfactory, as the phase transition should arise
from a competition between the short range repulsive and the much longer range attractive inter-
molecular forces. Several efforts to extend14 to such a context and in particular to the model with
hard core plus attractive two-body Kac potentials have failed.

adElectronic mail: marzio.cassandro@roma1.infn.it
bdElectronic mail: pablo@ime.usp.br
cdElectronic mail: merola@mat.uniroma2.it
ddElectronic mail: presutti@mat.uniroma2.it
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There is however some margin left if we restrict to one dimensions, because the pure hard
rods system is isomorphic to an ideal gas. Unfortunately, there is a price to pay, to have a phase
transition ind=1, we need to consider long range forcesspotentials which decay asux−yu−2+a,
a[ f0,1dd which are not covered by the traditional Pirogov–Sinai theory. Prior to Ref. 14, the
problem of phase transition in the continuum ind=1 with such long range interactions had already
been considered by Johansson,11,12 who studied the system in the canonical ensemble, proving
phase transition for the thermodynamic potentials. The existence of distinct DLR measures at the
proper values of chemical potential and temperature remains however open.

The Pirogov–Sinai theory seems the natural way to answer these questions, as it provides
powerful tools for investigating phase transitions at low temperatures and at low effective tem-
peratures as well, with a quite satisfactory description of systems in dimensions larger or equal to
two. In view of the desired applications to continuum particle models, our mid-term program is to
extend Pirogov–Sinai to one-dimensional spin systems with long range interactions. The content
of this paper will be the definition of contours and the establishment of Peierls estimates, as a
preliminary step in this direction. After the papers by Dyson,6,7 on a model with hierarchical
interactionsswhich, by ferromagnetic inequalities, prove phase transitions in Ising systems as
welld, we find in the literature the fundamental paper by Fröhlich and Spencer,8 where the critical
casea=0 is studied by deriving Peierls estimates for suitably defined contours. A further step
forward has then been done by Imbrie,9 who proved the validity of the cluster expansion for this
gas of contours. A different approach, based on inequalities, has instead been followed by Dümcke
and Spohn,5 and Spohn,18 to prove phase transitions for systems of61 spins onR with long range
interactions,a[ f0,1d. The results were used in the analysis of ground states for some quantum
systems.

In this paper we revisit Fröhlich and Spencer8 and extend it to the casea[ s0,1/2g. In
particular we prove that the probability of occurrence of a droplet of the opposite phase is de-
pressed at least byc exph−bzLaj, c and z positive constants,L the length of the droplet. The
analogy withd.1 where the bound goes asc exph−bzLsd−1d/dj, is evidentsour proof applies
essentially unchanged througha=0, where it yields the boundc exph−bz ln Lj, losing however
the analogy withd.1d. Comforted by these results and the analogy withd.1, we plan, in the
future, to extend the analysis to Ising systems with Kac potentials and then, hopefully, to prove
phase transitions for hard rods with attractive Kac potentials, at least fora.0.

The bibliography on the subject should also include the papers,1,2,16,10,17which refer tod=1,
long range percolation. In fact, using the Fortuin and KasteleynsFKd representation, the results
can be transferred to Ising systems, but it is not clear whether the approach could extend to the
continuum particle systems where ferromagnetic inequalities are absent.

The techniques which have been developed in Ref. 8 and in the successive papers mentioned
above can be used to prove the occurrence of a phase transition at largeb also in the model we
consider heresa.0d. In Ref. 8 Fröhlich and Spencer consider the sets of local fluctuations with
the same energy and estimate their entropy. The hard part of the proof is to get a suitable lower
bound for the energy.

Our approach based on a graphical representation of the spin configurations, gives a geometri-
cal picture of the local fluctuations and allows to derive in easy and transparent way, estimates for
their contribution to the total energy.

This more detailed description, that we developed for future applications, implies longer and
more complex estimates but makes explicit hierarchical structure of the model and its relation with
the original analysis of Dyson.6,7

Thus, the model we consider here is an Ising ferromagnet on a one dimensional lattice, with
total energy

hssd =
1

2 o
x,y[Z

Jsux − yud1ssxdÞssyd, s1.1d
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Jsnd = 5Js1d @ 1 with a [ f0,1/2g,

1

n2−a if n . 1.
s1.2d

which will be studied at equilibrium withb@1. In the sequel, for notational convenience, we
restrict a[ s0,1/2g, the analysis of the casea=0 is analogous and treated in Appendixes A, E,
and F.

In this paper we will show that the equilibrium configurations for the system associated to the
Hamiltonians1.1d can be described in terms of contours whose weights satisfy a Peierls bound.
These contourssas in Pirogov–Sinaid are defined as regions which collect close-by deviations from
the ground states. The Peierls bound follows from the fact that the excess energy of the associated
interfaces is bounded from below proportionally to the size of the region to a positive power. To
illustrate this point consider the simple case of three contiguous intervalsB−, A, andB+. Let A be
of sizeL andB± of size larger or equal toL and callC the set of configurations so thats= +1 for
all sites belonging toA and s=−1 for all sites belonging toB±. An explicit calculation, see
Appendix A, shows that for all configurations inC the variation of energy obtained by flipping the
spins insideA sthus getting all spins equal to11 in AtB+tB−d is bounded from below byzaLa,
with za.0 for a[ s0,1/2g and if Js1d is large enough.

In Sec. II we give a graphical description of a spin configuration in terms of a configuration
of triangles, which allows to introduce the notion of internal and external interfacesslike in d
.1 dimensionsd, see Fig. 1 in Sec. II.

In Sec. III we introduce the notion of contours as clusters of nearby triangles and prove Peierls
bounds for their energy. Our definition is very similar to that in Ref. 8, but our aim is to get a
geometric representation of the contours more explicit and better suited for further generalizations.

In Sec. IV we prove that forb large enough the Peierls estimates on the energy of contours
enable to control their entropy.

The approach we use can be generalized to a larger class of long range attractive forces where
the assumptionJs1d@1 is dropped anda[ s0,1d. We will discuss this point in a forthcoming
paper together with a characterization of the typical configurations for slow decreasing ferromag-
netic Kac potentials. As mentioned the ultimate goal is the extension to a one-dimensional system
of hard-core particles interacting via such long range attractive forces, but at the moment we do
not have concrete results in this direction.

II. SPIN AND TRIANGLE CONFIGURATIONS

We will consider in this paper homogeneous boundary conditions, i.e., the spins in the bound-
ary conditions are either all11 or all 21. By the spin–flip symmetry, we may and will restrict to
the former, so that we will only study configurationss=hsx,x[Zj[X+, namely such thatsx

FIG. 1. External and internal interfaces ind=1 andd=2.
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=1 for all uxu large enough. Our aim here is to recover a picture as ind.1, where the configu-
rations are described by a collection of interfaces. In one dimensions, an interface atsx,x+1d
meanssxsx+1=−1. The precise location of the interface in the interval is immaterial and we will
use it to our advantage by choosing a point in each intervalsx+1/2d±dsd[ s0,1/4dd, x[Z, with
the property that for any four distinct pointsr i, i =1,… ,4, ur1−r2uÞ ur3−r4u. We suppose the
choice done once for all, so that hereafter an interface point betweenx andx+1 is uniquely fixed.
This will avoid ambiguities in the construction that follows.

Any interface point, by its definition, represents a change of phase so that after the first
interface pointscoming from the leftd, the second one corresponds to a reestablishing of the
original phase, and so on. However, this is not the most convenient way to look at the spin
configurations. Our construction is similar to that in Ref. 8swhere interface points were called
spin–flip pointsd and it is based on suitably coupling together pairs of interface points. To this end
we will use the criterion of minimal distance, which will be made geometrically intuitive by using
a graphical representation where each spin configuration is mapped into a set of triangles. The
endpoints of the triangles will be the pairs of coupled interface points.

Due to the above choice of the boundary conditions, anys[X+ has a finite, even number of
interface points. We then let each interface point evolve into two trajectories represented in the
sr ,td plane by the two linesr ± t, tù0. We have thus a bunch of growingv-lines each one
emanating from an interface point. Once twov-lines meet, they are frozen and stop their growth,
while the others are undisturbed and keep growing. Our choice of the location of the interface
points ensure that collisions occur one at a time so that the above definition is unambiguous.

The collision of two points is represented graphically in thesr ,td plane by a triangle whose
basis is the line joining the two interface points and whose sides are the two arms of thev-lines
which enter into contact at the time of collision. Triangles will be usually denoted byT and we
will write

uTu = cardinality ofT u Z, distsT,T8d = cardinality ofI u Z, s2.1d

whereI is the interval betweenT andT8 if T andT8 are disjoint; ifT andT8 are one contained in
the othersno other possibility may arise in the above constructiond then I denotes the minimal
interval between the two.

We have thus represented a configurations[X+ as a collectionT=sT1,… ,Tnd of triangles in
the sr ,td plane. The set of configurations of triangles obtained in this way are denoted byhTj, and
the above construction defines a one-to-one map fromX+ onto hTj. It is easy to see that a triangle
configurationT belongs tohTj iff for any pair T andT8 in T,

distsT,T8d ù minhuTu,uT8uj. s2.2d

The two endpoints of a triangle play the role which has the interface in higher dimensions and
we thus have, also ind=1, a notion of external and internal interfacesssee Fig. 1d.

Figure 1 is taken from a model ford=1 coarsening, see Derrida,4 Carr and Pego,3 and also
some old, unpublished notes of two of the present authorssP.F. and E.P.d. The general context is
“spinodal decomposition,” namely the phenomena which occur when an initial unstable state
develops into a state where the stable state nucleate into droplets. Coarsening describes the evo-
lution of these droplets where some of them grow to the expenses of the others. Ind=1 this
process is extremely slow and it is often a good approximation to say that in a given sequence of
intervals of alternating phases, the shortest one disappears first, while all the others are unchanged.
The dynamics is then described in terms of triangles by calling the first interval which disappears
as the basis of the smallest triangle and then iterating the procedure. The interesting setup when
studying coarsening is to have initially infinitely many phase changes and one of the aims is to
understand if and which are the self-similar structures which emerge from the triangles picture.
Here our task is simpler, we have finitely many phase changes and want to prove that each one of
them has a small Gibbs weight.
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Writing

HsTd = hssd, s [ X+ ⇔ T [ hTj, s2.3d

and callingT=sT1,… ,Tnd with uTiuø uTi+1u, we have

HsTd = HsT1uT \ T1d + HsT \ T1d, HsSuTdªHsSt Td − HsTd. s2.4d

In fact if T[ hTj, andT[T, thenT\T obviously satisfiess2.2d and therefore it is inhTj. T\T is
obtained from the configurations corresponding toT by flipping all the spins inside the basis of
T. By iteration,

HsTd = o
i=1

n

HsTiuT \ fT1 t ¯ t Tigd. s2.5d

Lemma 2.1:For any i,

HsTiuT \ fT1 t ¯ t Tigd ù WsuTiud, s2.6d

where

WsLd = o
x=1

L

S o
y[fL+1,2Lg
y[f−L+1,0g

Jsux − yud − o
y[f2L+1,̀ g
y[f−`,−Lg

Jsux − yudD . s2.7d

Proof: Call I i
± the two intervals inZ which are to the right and to the left ofTi, each one

consisting ofuTiu sites. There is no interface point insideTi, and insideI i
± as well, becauseuTiu is

the minimal length inT\ fT1t¯tTi−1g and all Tj, j . i, have distance fromTi which is ùuTiu.
Then, if s corresponds toT\ fT1t¯tTi−1g, the spins inTi uZ are all equal to each other and
opposite to those inI i

±. Instead, in the configurations8 which corresponds toT\ fT1t¯tTig, the
spins are all the same insTi uZdt I i

+t I i
−. By s2.4d, HsTi uT\ fT1t¯tTigd=hssd−hss8d, so that

s2.6d and the lemma are proved. h

In Lemma A.1 it is proved that forJs1d large enough, there isz.0 so that

WsLd ù zhasLd wherehasLdªHLa, a [ s0,1/2g,

ln L + 4, a = 0
s2.8d

in the sequel we fix our attention on the casea[ s0,1/2g, and discuss the casea=0 in Appendixes
A, E, and F. Thus

HsTd ù zo
i=1

n

uTiua, T = sT1,…,Tnd. s2.9d

The inequality must be seen as an analogue of the Peierls estimate ind.1 where the excess
energy of a configuration of interfaces is bounded from below proportionally to the surface area of
such interfaces. SinceuTiu is the volume surrounded by the interface,a is identified to the ratio
sd−1d /d, with d an “effective dimension” of the system.

This is however only an analogy. To really implement a Peierls bound in our setup, we need
to “localize the estimates,” being able to compute the weight of a given triangle in a generic
configuration. The previous bound was easy, because we could estimate successively the weights
of the triangles in the same order as their lengths. If we want to bound the energy of a generic
triangleT in configurationT, uTu may not be the smallest length so that we are confronted with
cases where there are other triangles inTt I+t I− ssee Lemma 2.1 for notationd. Indeed, we could
add to T smaller trianglesT8 in Tt I+t I− without violating s2.2d. Our approach will be • to
“connect” triangles if they are “dangerously close” to each other, • to define contours as “con-
nected clusters” of triangles, and • to compute probabilities of contours rather than of single
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triangles. To compute the probability of a contour, we first order increasingly the triangles in the
contour, according to their lengths. Then the previous argument can be generalized, exploiting the
fact that the triangles which are not in the contour are “sufficiently far away”sby the way contours
are definedd. In the next section we will see how triangles can be clustered into contours and then
extend Lemma 2.1 to contours, thus concluding the analysis of the energy of contours; in Sec. IV
we will prove entropy boundsson the number of contoursd, which show that forb large enough,
energy wins against entropy.

III. CONTOURS AND PEIERLS ESTIMATES

In Sec. III A we will define a functionR which associates to any configurationT[ hTj a
configurationhG jj of contours, eachG j being a subset of triangles inT. The crucial point in the
definition is that the triangles in a contour are “close to each other,” while all the other triangles
are “far away;” using such a property we will be able to extend to contours the energy estimate of
the preceding section, thus deriving the Peierls estimates of Sec. III B. In Sec. III C we will recall
the classical argument for existence of a phase transition, using the Peierls bound proved in Sec.
III B and the entropy estimates which will be proved in Sec. IV.

A. Contours

A contourG is a collectionT of trianglessT in this section will always, and sometimes tacitly,
denote an element inhTjd joined together by a hierarchical network of connections, under which
all the triangles of a contour become mutually connected. The structure has a self-similar property
which we will exploit when counting the contours. The coarsest picture of a contourG is the pair
hTsGd , uG u j, TsGd a triangle,uGu its mass.TsGd is the triangle whose basis is the smallest interval
which contains all the triangles of the contour, the right and left endpoints ofTsGduZ are denoted
by x±sGduGu, the mass of the contour, is the sum of the masses of all the triangles inG, the massuTiu
of a triangle being defined ins2.1d.

Our aim is to define an algorithmRsTd on hTj, which associates to any configurationT a
configurationhG jj of contours with the following properties.

P.0.Let RsTd=sG1,¯ ,Gnd, Gi =hTj ,i ,1ø j økij, thenT=hTj ,i ,1ø i øn,1ø j økij.
P.1.Contours are well separated from each other.Any pair GÞG8 in RsTd verifies one of the

following two alternatives:sid TsGduTsG8d=x, in which case

distsG,G8d . c minhuGu3,uG8u3j, s3.1d

wherec is as ins3.15d below and dists·,·d means distance as defined ins2.1d between the set of all
the triangles inG from the corresponding set inG8,

distsG,G8dª min
T[G

T8[G8

distsT,T8d

fwhich in the present case is equal to the distance between the two trianglesTsGd andTsG8dg.
sii d TsGduTsG8dÞx, then eitherTsGd@TsG8d or TsG8d@TsGd; moreover, supposing for in-

stance that the former case is verifiedsin which case we callG an inner contourd, then for any
triangleTi8[G8, eitherTsGd@Ti8 or TsGduTi8=x; and

distsG,G8d . cuGu3, if TsGd@ TsG8d. s3.2d

P.2. Independence:Let hTs1d ,… ,Tskdj, be k.1 configurations of triangles;RsTsidd=hG j
sid , j

=1,… ,nij the contours of the configurationTsid. Then, if any distinct pairG j
sid and G

j8
si8d satisfies

P.1,

RsTs1d…,Tskdd = hG j
sid, j = 1,…,ni ; i = 1,…,kj. s3.3d
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It is a nice fact of life that not only P.0, P.1, and P.2 can be actually implemented by some
algorithmR, but also that such an algorithm is unique. In Appendix B we will prove the following
theorem.

Theorem 3.1: sExistence and uniquenessd There is a unique algorithmRsTd which satisfies
P.0, P.1, and P.2.

B. Peierls estimates

The idea behind the proof of the Peierls estimates, Theorem 3.2 below, is that the property P.1
will ensure that the triangles which do not belong to a contour are so far away that, to leading
order, they can be neglected and the bonds2.6d can be extended to contours.

Theorem 3.2: Let the constant c in the definition of the contours (see P.1) be so large that
s3.15d below holds. For anyT[ hTj, let G0[RsTd, Ts0d the triangles inG0, z.0 as in s2.8d. Then

HsTs0duT/Ts0dd ø
z

2 o
T[Ts0d

uTua s3.4d

ffor a=0, s3.4d holds withuTua replaced byloguTu+4g.
Proof: Calling Ts0d=sT1,… ,Tkd, uTiuø uTi+1u, i =1,… ,k−1,

HsTs0duT \ Ts0dd = o
i=1

k

HsTiuT \ hT1,…,Tijd. s3.5d

As a difference with Sec. II, here we may have triangles inI i
±, but, by the argument afters2.4d,

sI i
+ t I i

−d u Tj = x, for all j . iTjA” Ti . s3.6d

We also have, callinghG j , j ù1j, the other contours ofT, different fromG0,

sI i
+ t I i

−d u T = x, for all T [ G j, TA” Ti, j ù 1 such thatuG ju ù uG0u s3.7d

because, by property P.1 of Sec. IV, distsTi ,G jdù distsG0,G jdùcuG0u3ù uTiu.
Finally, using again P.1,

distsTi,Td . cuG ju3, for all T [ G j, j ù 1 and such thatuG ju , uG0u. s3.8d

With the notation introduced afters2.6d, and with

AsTi ;G jd = t
T[G j,Ti@” T

T u Z, uGu = o
T[G

uTu s3.9d

we claim that

HsTiuT \ fT1 t ¯ t Tigd ù WsuTiud − 2o
M

o
j=1

n

1uG j u=M o
x[TiuZ

o
y[I i

±

Jsux − yuds1y[AsTi;G jd
+ 1x[AsTi;G jd

d.

s3.10d

To proves3.10d, we observe that the contribution ofsx andsy fx andy as in s3.10dg is the same
as in WsuTiud wheneversxsy=−1; on the other hand, ifsx=sy then there must exist a triangle
distinct fromTi which contains one site and not the other one. We thus automatically exclude the
triangles which containTi, as, bys2.2d, they will also containI i

±; by s3.6d, sTi+1,… ,Tkd are also
excluded. Thens3.10d follows after noticing that ifsx=sy, the pairsx,sy contributes with the
opposite sign to the energy as forWsuTiud, hence the factor 2 in the second term on the right-hand
sidesrhsd of s3.10d. In s3.10d we have also split the sum over all contours setting together contours
with the same mass, the mass of a contourG being defined ins3.9d.
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Call y0 the rightmost point ofZ in Ti, y1[ I i
+ the point, if it exists, separated fromy0 by fcM3g

sites,f·g the integer part of · . Bys3.7d ands3.8d the following holds: anyG j with uG ju=M is such
that all its triangles which do not containTi and are to its right, have their left endpoint to the right
of y1. After changing labels, letG1 be the contour of massM with the closest triangle toy1 sand
to its rightd. The triangles inG j, j .1, with massM, cannot be closer thany2[ I i

+, wherey2 sif it
existsd is separated fromy1 by fcM3g sites. By iteration we defineyj, j .2, and have that thenth
closest contour toTi of massM and to its right, is to the right ofyj. Calling yn the last of such
points in I i

+, we have, for anyx[Ti,

o
j=1

n

1uG j u=M o
y[I i

+

Jsux − yud1y[AsT;G jd
ø Mo

k=1

n

Jsux − ykud s3.11d

becauseJsux−yud=Jsy−xd is a decreasing function ofy and the total number of sites in the
triangles of a contourG is not larger thanuGu snot necessarily equal because a triangle might be
contained in another oned. Moreover, by monotonicity,

Jsux − ykud ø
1

fcM3g o
y[syk−1,ykd

Jsux − yud s3.12d

so that

o
j=1

n

1uG j u=M o
y[I i

+

Jsux − yud1y[AsT;G jd
ø

M

fcM3g o
y[I i

+

Jsux − yud. s3.13d

The sum is the same as inWsuTiud. Repeating the same procedure forTi and I i
− we finally get

HsTiuT \ fT1 t ¯ t Tigd ù WsuTiudS1 − o
M

4M

fcM3gD . s3.14d

By choosingc so large that

o
M

4M

fcM3g
ù

1

2
s3.15d

and recallings2.8d we then prove the theorem. h

C. Phase transitions

To prove phase transitions we follow the well-known argument ford.1. LetL be an interval
containing the origin,mL

+ the Gibbs measure inL with 1 boundary conditions. Then

mL
+ ss0 = − 1d ø mL

+ sh0 [ Gjd, s3.16d

whereh0[Gj denotes the event that there is a contourG which has a triangleT which contains the
origin. Then

mL
+ sh0 [ Gjd =

1

ZL
+ o

G]0
o

T:G[RsTd
e−bHsTd.

Calling Ts0d the collection of triangles inG, RsTs0dd=G, by Theorem 3.2,

e−bHsTd ø e−bHsT\Ts0ddwzb/2sGd, s3.17d

where, forb.0,
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wbsGdªp
T[G

e−buTua, s3.18d

wbsGd is called theb-weight of the contourG. Then, usings3.17d,

mL
+ sh0 [ Gjd ø o

G]0
wzb/2sGd = o

m
o

G:uGu=m,0[G

wzb/2sGd s3.19d

and, bys4.1d below, valid forb large enough,

mL
+ sh0 [ Gjd ø 2o

m

me−zbma/2. s3.20d

Since the sum starts frommù1, the right-hand sidesrhsd is ,1/2 if b is large enough, hence the
spin–flip symmetry is broken and there is a phase transition.

IV. ENTROPY OF CONTOURS

The main result in this section is Theorem 4.1 below, where we proves3.20d, and hence that,
for b large, entropy is controlled by energy and a phase transition occurs.

Theorem 4.1:For any b large enough and any m.0,

o
G:uGu=m,0[G

wbsGd ø 2me−bma
, s4.1d

wherewbsGd has been defined ins3.18d.
The theorem is proved in Secs. IV C, by exploiting a self-similarity property of the contours

which is the argument of the next two sections.

A. An auxiliary branching process

Contours can be described in terms of trees with a self-similar, hierarchical structure. We will
first describe abstractly the trees and then relate them to the contours.

The nodes of the tree are “individuals” of two species, heavy triangles,h-triangles in short,
and spheres; theh-triangles can be either black or white. Only black triangles can procreate and
their offsprings contain at least twoh-triangles. The offsprings in a branching are ordered, the
h-triangles are drawn sequentially, the spheres, also drawn sequentially, can lie in each one of the
intervals in between two consecutiveh-triangles, but also “inside” the white triangles, the latter
will be called “attached” to the white triangle in which they are contained.

Finally the tree has a root which consists either of a single black triangle or of a single white
triangle with possibly spheres inside the white triangle. In the second alternative the tree consists
of only its root, as white triangles and spheres cannot procreate. An example of tree is drawn in
Fig. 2.

We will construct an algorithm which associates to any contour a tree with the above prop-
erties and later use such a correspondence to proves4.1d. We will in fact organize the sum over
contours ins4.1d by summing over trees after having summed over all contours which produce the
same tree. The identification of the nodes of the tree in terms of contours will allow for an
inductive procedure which greatly reduces the complexity of the computation. We describe here
the main features of the algorithm, which are those used in the proof ofs4.1d, while the existence
of the algorithm itself will be proved in Sec. IV B, by exploiting a graphical representation of
contours.

We will restrict in the sequel to configurationsT such thatRsTd is a singleton. As mentioned,
the basic property of the algorithm which associates a tree toT, is that each node of the tree is
representative of a subsetT8 of T such thatRsT8d is a singleton.
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The root corresponds to the fullT. Moreover the collection of all the triangles associated to all
the individuals of an offspring is the same as the set of triangles associated to the parent, so that
a branching is nothing else than a partition of the triangles present in the branching node. In
particular mass is conserved in a branching.

White triangles are associated to contours consisting of a single triangle, such triangle must be
maximal, i.e., not contained in any other triangle ofT. Take notice, however, that the converse
may not be true, as it may happen that a maximal triangle is one of the triangles associated to a
black triangle or a sphere. If a maximal triangleT corresponds to a white triangle, then the spheres
in the white triangle are associated to the contours of the configurationT8 made of all the triangles
of T which are contained inT.

The next properties we mention establish a quantitative relation between the ordering of the
offsprings in the tree and the location of the corresponding triangles. If a black triangle generates
nù2 h-triangles labeled consecutively, callGi, 1ø i øn, the triangle associated to theith
h-trianglesby itself eachGi is a contour, hence the notationd. Then the triangleshTsGidj frecall that
TsGd is the minimal triangle which contains all the triangles formingGg are consecutive from left
to right and

distsTsGid,TsGi+1dd ø c minhuGiu3,uGi+1u3j, i = 1,…,n − 1. s4.2d

Moreover, if there areki spheres between theith andsi +1dth h-triangle, callG j
sid, j =1,… ,ki,

the contours associated to these spheres. Then allTsG j
sidd are in betweenTsGid and TsGi+1d,

hTsG j
siddj is sequential and the following constraint on their mutual distances holds. Lettingx±sGd

as in the beginning of Sec. III A, the set of endpointshx±sG j
sidd ,a=x+sGid ,b=x−sGi+1dj is such that

there ispi, 0øpi øki so that

0 ø x−sG1
sidd − a ø cuG1

sidu3 + 1,

0 ø x−sG2
sidd − x+sG1

sidd ø cuG2
sidu3 + 1,…,…,x−sGpi

sidd − x+sGpi−1
sid d ø cuGpi

sidu3 + 1,

0 ø b − x+sGki

sidd ø cuGki

sidu3 + 1,

0 ø x+sGki

sidd − x−sGki−1
sid d ø cuGki−1

sid u3 + 1,…,…,x+sGpi+1
sid d − x−sGpi+2

sid d ø cuGpi+1
sid u3 + 1. s4.3d

Finally if G j, j =1,… ,k, are the sets of triangles associated to the spheres inside a white triangle,
represented byT, then the trianglesTsG jd satisfy the analogue ofs4.3d with a=x−sTd+1 andb
=x+sTd−1. These are the only properties on the structure of contours that we will use in the proof
of s4.1d in Sec. IV C, the next section is only an existence proof of the algorithm for associating

FIG. 2. Example of tree.
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a tree to a contour with the properties we have been describing so far, and, to a first reading, it may
be skipped.

B. Graphical construction

We will construct here an algorithm which associates a treeswith the properties described in
the preceding sectiond to anyT such thatRsTd is a single contour. The algorithm is obtained via
a graphical representation ofT, where we draw at any integer timet[ h0,1,…j a configuration of
mutually disjoint squares with a side inR, called the basis of the square. Each squareS is
representative of a clusterhTjS of triangles inT, with the property thatRshTjSd is a singleton; the
name “squares” is just to avoid confusion with the original triangles and theh-triangles of the tree.
The mass of a squareSequals the sum of the masses of the triangles inhTjS sthe mass of a triangle
being the number of integers contained in its basisd. The configurations of squares at the different
times will be viewed as the successive applications of a renormalization group transformation.

1. The time t =0 configuration

This is obtained by associating to each “maximal” triangle ofT a square with the same basis,
T[T is maximal if it is not contained in any other triangle ofT. By definition of maximality the
set of maximal triangles, hence of squares, is sequential. The cluster of triangleshTjS represented
by the squareS consists of a maximal triangleT and of all the triangles contained inT. The mass
of S, according to the general rule, is then the sum of all the masses inhTjS. Statementsii d in
Lemma 4.2 below, proves that these squares verify the property that the setshTjS form a single
contour, thus our definition of the square configuration att=0 is well posed. In Appendix C we
will prove the following.

Lemma 4.2:Let S be a square corresponding to a maximal triangle T. Then (i)RshTjS\Td
=hG jj is sequential and the sequencehTsG jdj satisfies the analogue ofs4.3d with a=x−sTd and b
=x+sTd; moreover, (ii)RshTjSd consists of a single contour.

By sid the sequencehTsG jdj satisfies the same properties as the sequence of triangles obtained
from the spheres attached to a white triangle, as described in the preceding section. Together with
sii d, this shows that each one of the squares at timet=0 is a candidate for being a white triangle.
Whether this will really happen, does depend in a complex way on the relative positions of the
other triangles ofT, as we will see after completing the construction of the square process.

2. The next time-step configuration

The construction of the configuration of squares at timet=n+1 only depends on the configu-
ration at timet=n, namely on the location of the squares in the configuration and on their masses.
Like at time t=0, each squareS is representative of a collectionhTjS of triangles inT, more and
more complex as time increases, but, as said, the construction of the configurations at the succes-
sive time will only depend on locations and masses of the squares, the latter being the sum of all
the masses of the triangles represented. The rule for constructing the configuration at timet=n
+1 given the one at timet=n, defines the action of the renormalization group transformation
mentioned at the beginning of this section.

We start by drawing oriented arrows between pairs of squares, we set an arrowsS,S8d from S
to S8 if uSuø uS8u, uSu the mass of the squareS sin case of equality ifS is beforeS8, going from left
to rightd and if the distance betweenSandS8 is øcuSu3. Arrows define a connection, which will be
referred to asa-connectionsa represents arrowd, to distinguish it from the connection used in the
definition of contours. Two squares area-connected if they can be joined via a chain of pairs of
squares, each pair linked by an arrowsindependently of the direction of the arrowd.

To eacha-connected component we associate a protosquare, which is the minimal square
which contains all the squares in that component, we call them protosquares because some of the
protosquares will become a square in the configuration at timet=n+1. We will prove below that
any two such protosquares are either disjoint or one contained in the other. We call maximal those
which are not contained in any other one.The maximal protosquares are the squares at time
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t=n+1. The sethTjS represented by a maximal protosquareS, is the collection of allhTjS8, with S8
running over all the squares at timet=n which are contained inS. By maximality the new squares
at time t=n+1 are sequential. In Lemma C.2, we will prove thatRshTjSd consists of a single
contour, thus legitimating the present definition of the square configuration at timet=n+1.

We next state some features of the construction needed later for the identification of a tree
structure. To this end it is convenient to erase some arrows, thus we will call “old arrows” the
arrows defined so far andsold ad-connected squares connected by old arrows. Old arrows are
erased with the following rule: if there are several arrows emanating from the same square, all in
the same directionsi.e., right or leftd, we keep only the minimal one and erase all the others. This
is done for all squares and all directions. The arrows which are left are the new arrows, and we
will call snewad-connected, squares connected by the new arrows. In Lemma D.1, it is proved that
a set issnew ad-connected iff it issold ad-connected. We will hereafter in this section call arrows
the new arrows anda-connected,snew ad-connected sets.

The “shadow” of the arrowsS,S8d is the interval between the two endpoints ofS and S8
which face each other. If two shadows have nonempty intersection, they must be one contained in
the other, Lemma D.2; such a statement proves the above property about the fact that the pro-
tosquares are either disjoint or one contained in the other.

We then callprimary an arrow with maximal shadow, i.e., which is not contained in any other
shadow, andprimary the two squares connected by aprimary arrow. The sethT8j of all triangles
in T whose basis are contained in the shadowsa,bd of a primary arrowsS1,S2d is such that we
have the following.

Lemma 4.3:With the above notation, (i)RsT8d=hG jj andhTsG jdj is a sequence which satisfies
the analogue ofs4.3d with a=x+sS1d and b=x−sS2d supposing for instance that S1 is before S2;
moreover, (ii)RsT9d consists of a single contour,T9 being the union of all triangles inT8 and
those associated to S1 and S2.

Lemma 4.3 is proved in Appendix C. The primary squares may thus becomeh-triangles, as
they form a sequence which satisfys4.2d, while all the squares in a shadow, calledsecondary, are
eligible for being the spheres which lie between twoh-triangles in the tree.

We finally observe that after a finite number of iterations the process stabilizes, the final
configuration consisting of a single squareS, hTjS=T, its mass therefore being the sum of alluTu
over T; the basis ofS is TsGd, the triangle representative of the contourG=RsTd. Any other final
state would in fact contradict the assumption thatRsTd consists of a single contour.

3. The tree structure

We have constructed so far, for any contour, a process, called the square process, evolving at
integer times, whose state space is a square configuration, each square with its own mass. The
evolution consists of a clustering mechanism, for which a cluster of squares at timet becomes a
single square at timet+1. We have also distinguished in a forming cluster some squares which are
primary, the others being called secondary. Our purpose now is to identify a tree structure fromT
via the realization of the square process. To this end, lettf be the first time when the final
configuration, consisting of a single square, is reached. This is identified to the root of the tree we
are going to construct. Iftf =0 the root is a white triangle, otherwise it is black. In the former case,
the configuration at time 0 has only one square,S, which, recalling the definition, means that there
is a unique maximal triangle,T, in T, andS has the same basis asT. The spheres attached to the
white triangle root of the tree, are identified to the contoursRsT\Td, by Lemma 4.2 such an
identification respects the requests of Sec. IV A. Notice that the identification of the spheres
attached to a white triangle requires the knowledge ofT and cannot be read only from the square
process, which, as we will see, only identifies white and black triangles and spheres between
h-triangles, all with their masses, but it does not give any information on the structure of the
spheres inside the white triangles, except for their masses.

If tf .0, the root is a black triangle and its offspring is the configuration at timetf −1,
identifying primary squares withh-triangles and secondary squares with spheres, consistently with
the properties of such objects, by Lemma 4.3. LetS be one of the primary squares andtS, tf
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−1 the time in the square process when there is a cluster of more than one square which at time
tS+1 becomesS; if such a time does not exist, thenSwas present also at time 0, and it is identified
to a white triangle with the same procedure as above. OtherwiseS is identified to a black triangle,
whose offspring is determined by the configuration of squares at timetS which merge intoS at
time tS+1, with the same rules as those described for the branching of the root. By iterating the
procedure we complete the identification of the tree.

C. Proof of Theorem 4.1

Since the number of translates of a contour with the property 0[G, is bounded byuGu, the
proof of Theorem 4.1 reduces to proving that for anyb.0 large enough and anym.0,

Gmª o
G:uGu=m,x−sGd=0

wbsGd ø 2e−bma
. s4.4d

The proof is by induction on the massm of the contour, recall that the mass of a contour is
necessarily an integer. We thus supposes4.4d proved whenevermøM −1 and want to prove it for
M. We have

GM = GM8 + GM9 , s4.5d

GM8 = o
uGu=M,x−sGd=0

root of G is white

wbsGd, GM9 = o
uGu=M,x−sGd=0

root of G is black

wbsGd. s4.6d

We start by boundingGM8 . We call ,= uTsGdu, n the number of contourssspheresd attached to
the white triangle;m1,… ,mn their masses. These variables are not independent, as, for instance,
we must havem1+¯+mn+ , =M. We organize the sum ins4.6d by fixing ,, n, m1,… ,mn, then
summing over all the contours compatible with such specifications and withs4.3d and finally
summing over the specifications,, n, m1,… ,mn.

Let G1,… ,Gn be n contours whose masses arem1,… ,mn and all with x−sGid=0. We call
Xns, ,G1,… ,Gnd the set of allsx1,… ,xnd such that the collectionhSxi

sGidj, Sx denoting translation
by x, fulfills s4.3d with a=0, b=,, andki =n. We then have

GM8 ø o
,.0

e−b,a o
nù0

o
m1,…,mn

m1+m2+¯+mn+,=M

o
G1,…,Gn

uGiu=mi,x−sGid=0

uXns,,G1,…,Gndup
i=1

n

wbsGid.

Writing fa∧bgªminha,bj, we have

uXns,,G1,…,Gndu ø sn + 1dp
i=1

n

fcmi
3 ∧ , g,

wheren+1 counts the number of values thatpi can take whenki =n in s4.3d. Using the induction
assumption we then get

GM8 ø o
,.0

o
nù0

o
m1,…,mn

m1+m2+¯+mn+,=M

2ne−bs,a+m1
a+¯+mn

adsn + 1dp
i=1

n

fcmi
3 ∧ ,g.

To select the maximal among all masses, we rewrite the above as
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GM8 ø o
,.0

o
nù0

2nsn + 1d o
m1,…,mn

m1+m2+¯+mn+,=M

e−bs,a+m1
a+¯+mn

adp
i=1

n

fcmi
3 ∧ ,g 3 f1h,ùmi∀ij + 1Hm1ùmi∀iÞ1

m1ù, J
+ ¯ + 1Hmnùmi∀iÞn

mnù, Jg . s4.7d

In the term where the maximum ismi, we boundfcmi
3∧ , g= , øc,3 and get

GM8 ø o
nù0

2nsn + 1d2 o
x1+¯+xn+y=M

0øxiøy

e−byap
i=1

n

fe−bxi
a
scxi

3dg ø o
nù0

sn

+ 1d2s2cdn o
x1+¯+xn+y=M

0øxiøy

e−bya+oi

n
sb−adxi

ap
i=1

n

fe−axi
a
xi

3g. s4.8d

By Lemma E.1, ifb/a is large enough,

expH− bya + o
i

n

sb − adxi
aJ ø exph− bfy + x1 + ¯ + xngaj, s4.9d

so that

GM8 ø e−bMa o
n.0

sn + 1d2s2cdnSo
x

e−axa
x3Dn

.

Calling dsad the sum in the last parentheses and noticing thatdsad→0 as a→`, for a large
enough,

GM8 ø e−bMaS1 + o
nù1

sn + 1d2s2cdnfdsadgnD ø
3

2
e−bMa

.

Bound onGM9 : We now callnù2 the number ofsblack and whited triangles generated by the
root, mi their masses. We fix all the contours with such specifications and sum over the spheres
between two consecutive triangles. Denote byki ù0 the number of spheres between theith and
si +1dth triangles,mj

i their masses. The space interval where such spheres can be located is
determined by the position of the trianglesi and i +1, by s4.2d its length is bounded bycmi,i+1

3 ,
wheremi,i+1ªfmi ∧mi+1g. Then the sum over the spheres, once their number and masses are fixed,
is bounded as ins4.7d. We can also sum over all possible realizations of then black and white
triangles, given their number and masses usings4.2d and the induction assumption. We then get
swith an extra 2n factor counting the number of ways to color, either black or white, then
trianglesd

GM9 ø o
nù2

2n o
m1,…,mn

mi.0

Hp
i=1

n−1

cmi,i+1
3 JHp

i=1

n

f2e−bmi
a
gJ 3 o

k1ù0
o

m1
1…,mk1

1

mj
1.0

Hsk1 + 1dp
j=1

k1

cfsmj
1d3 ∧ m1,2

3 gJ
3Hp

j=1

k1

f2e−bsmj
1da

gJ 3 ¯ o
kn−1ù0

o
m1

n−1
¯mk1

n−1

mj
n−1.0

Hskn−1 + 1dp
j=1

kn−1

cfsmj
n−1d3 ∧ mn−1,n

3 gJ
3 Hp

j=1

kn−1

f2e−bsmj
kn−1da

gJ1hoi
mi+ok,l

mk
l =Mj.
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We fix n,k1,… ,kn−1 and sum over all masses. As ins4.8d we split the sum by fixing which one of
the masses is larger. This will give a factorsn+k1+¯+kn−1d equal to the number of masses which
are present. Except for the largest mass we write the generic factore−bma

=e−sb−adma
e−ama

. In order
to apply Lemma E.1 and get the analogue ofs4.9d, we must check that there is not a term with the
maximal mass to the cube. If the maximal is one of the massesmi, then it does not appear because
we have products ofmi,i+1

3 which automatically select the smaller and avoid the larger. If the
maximal mass is one of those relative to spheres, saymj

i , we use the same trick as forGM8 and
boundfsmj

i d3∧mi,i+1
3 gømi,i+1

3 , so that the termsmj
i d3 does not appear. Notice that in this way there

could be factorsmi,i+1
6 . We then get

øe−bMa o
nù2

2n o
k1ù0,…,kn−1ù0

sn + k1 + ¯ + kn−1dsk1 + 1d 3 ¯skn−1 + 1d

3So
xù1

e−axa
s2cdx6Dsn−1+k1+¯+kn−1d

,

calling d=oxù1e
−axa

s2cdx6,

øe−bMa o
nù2

2ndn−1 o
k1ù0

dk1sk1 + 1d¯ o
kn−1ù0

dkn−1 3 skn−1 + 1dsn + k1 + ¯ + kn−1d.

Sincesn+k1+¯+kn−1d=fsk1+1d+¯+skn−1+1d+1gø2fsk1+1d+¯+skn−1+1dg,

øe−bMa o
nù2

2ndn−12nSo
kù0

dksk + 1d2Dn

øe−bMa o
nù2

dn−122n+1n ø
e−bMa

2

because fora large enough

o
kù0

dksk + 1d2 ø 2, o
nù2

dn−122n+1n ø 1/2.

We have thus proved that

GM = GM8 + GM9 ø s 3
2 + 1

2de−bMa
,

hences4.4d and Theorem 4.1 are proved.
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APPENDIX A

In this appendix we will proves2.8d identifying the value of the parameterz. We set

zaª1 − 2s2a − 1d . 0, 0, a , a+ª
ln 3

ln 2
− 1 sA1d

observing thata+.1/2. We callWasLd the rhs ofs2.7d, the subscript underlining the dependence
on a.
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Lemma A.1:Givena[ f0,a+d, for Js1d large enough

WasLd ù HzaLa, if a . 0,

2 ln L + 8, if a = 0.
sA2d

Proof: We first consider the casea.0 and callWa8sLd=WasLd−2sJs1d−1d. Using s1.2d and
s2.7d reads

Wa8sLd = o
x=1

L S o
y[fL+1,2Lg
y[f−L+1,0g

1

ux − yu2−a − o
y[f2L+1,̀ g
y[f−`,−Lg

1

ux − yu2−aD = 2o
x=1

L S o
y=L+1

2L
1

ux − yu2−a

− o
y=2L+1

`
1

ux − yu2−aD = 2o
x=1

L S o
y=L+1−x

2L−x
1

y2−a − o
y=2L+1−x

`
1

y2−aD
and using monotonicity to replace sums by integrals,

ù2o
x=1

L FE
L+1−x

2L+1−x dz

z2−a −E
2L−x

` dz

z2−aG ù 2o
x=1

L
1

a − 1
hfs2L − xda−1 − sL + 1 −xda−1g + s2L − xda−1j

ù 2o
x=1

L
1

1 − a
hf− 2s2L − xda−1 + sL + 1 −xda−1gj ù

2

1 − a
F− 2o

y=0

L−1

sL + yda−1 + o
y=0

L−1

sy + 1da−1G
ù

2

1 − aF− 2E
y=−1

L−1

sL + yda−1 +E
y=0

L

sy + 1da−1G ù
2

as1 − ad
f− 2fs2L − 1da − sL − 1dag

+ sL + 1da − 1g

hence, recalling thatWasLd=Wa8sLd+2sJs1d−1d and thata[ s0,a+d, we getWasLdùzaLa for L
large enough, and for allL, if Js1d is large enough.

In the casea=0 we can repeat the same computations obtaining

W0sLd ù 2 lnsL + 2d + f2Js1d − 4 lns3d − 2g ù 2 ln L + 8

for Js1d large enough. The lemma is proved. h

APPENDIX B

We start by a preliminary lemma.
Lemma B.1:LetRsTd satisfy P.0, P.1, and P.2,G[RsTd andT8 the configuration of triangles

in G. ThenRsT8d=hGj.
Proof: Writing RsTd=hGi , i =1,… ,nj, denote byTsid the triangles inGi and write

RsTsidd = hG1
sid,…,Gni

sidj.

Each pairsGi ,G jd, i Þ j , verifies P.1, we want to show that P.1 is also verified by each distinct pair

G j
sid, G

j8
si8d. This is by definition if i = i8, let us then supposei Þ i8. If TsGiduTsGi8d=x, then the

same holds forTsG j
sidd and TsG

j8
si8dd and s3.1d holds. If insteadTsGid@TsGi8d sor vice versad, if

instead TsGid@TsGi8d sor vice versad then distsG j
sid ,G

j8
si8ddùdistsG j

sid ,Gi8dùdistsGi ,Gi8dùcuGiu3

ùcuG j
sidu3ùc minhuG j

sidu3, uG
j8
si8du3j so thatG j

sid, G
j8
si8d verifies P.1.

By applying P.2,RsTd=hG j
sidj which must therefore coincide withhGij. Hence the decompo-

sition of eachGi into G j
sid is trivial, i.e., ni =1 andG1

sid=gi. The lemma is proved. h

Proof of Theorem 3.1:Uniqueness:Suppose there are two algorithms,Rsid, i =1,2 which both
satisfy P.1 and P.2 and letRsidsTd=hG j

sid , j =1,… ,nij. Let
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Ah
s1d = G1

s1d u Gh
s2d sB1d

be the collection of those triangles which are both inG1
s1d andGh

s2d. Of course the union ofAh
s1d over

h is equal toG1
s1d.

Call hKh,j
s1d , j =1,… ,mhj=Rs1dsAh

s1dd. Each distinct pairKh,j
s1d, K

h8,j8
s1d verifies P.1, by an argument

similar to that used in the proof of Lemma B.1 and which is omitted. Then, by P.2,hKh,j
s1d ,h

=1,… ,n2, j =1,… ,mhj=Rs1dsTs1dd, Ts1d the collection of all triangles inG1
s1d. By Lemma B.1 the

decomposition is then trivial, which means thatG1
s1d=Gi

s2d for somei. By iteration we then con-
clude that the two systems of contourshG j

s1dj and hGi
s2dj are identical. ThusRs1d=Rs2d.

Existence:Given a configurationT of triangles, we callC the collection of all partitionsC
=sC1,… ,Cnd of T so that each pairsCi ,Cjd, i Þ j , verifies P.1 and P.0srelative toTd. C is nonempty
as the trivial partition in a single atom verifies P.0 and P.1sas in that case there is nothing to
checkd. We orderC by settingCùC8 if the partition C is finer thanC8. We claim thatC has a
unique maximal element, which will be calledMsTd; we will then prove thatMs·d satisfies P.1
and P.2 and conclude the proof of existence.

The claim will follow from showing that the partition

C ∨ C8 = hCi u Cj8j, C = sC1,…,Cnd, C8 = sC18,…,Cm8 d

is in C, if also C andC8 are inC.
Without loss of generality we must thus prove that any distinct pairsCi uCj8 ,Ci8uCj8

8 d verifies
the alternatives in P.1. By symmetry between the two clusters, we may supposei Þ i8. If
TsCiduTsCi8d=x, then alsoTsCi uCj8duTsCi8uCj8

8 d=x and s3.1d holds. Let us supposesagain
without loss of generalityd that TsCid@TsCi8d, then for any Tk[Ci8, either TsCid@Tk or
TsCiduTk=x. If Tk[Cj8

8 , in correspondence with the previous alternative, eitherTsCi uCj8d@Tk

or TsCi uCj8duTk=x. If insteadTk¹Cj8
8 , then Tk¹Ci8uCj8

8 and there is nothing to check. In
conclusion the pairsCi uCj8 ,Ci8uCj8

8 d verifies the alternativessid and sii d and in case the latter is
verified, s3.2d holds.

To complete the proof we must show thatMsTd satisfies P.2. LetT andTsid : tTsid=T be as in
P.2 and suppose that the elements ofhMsTsidd , i =1,… ,kj satisfy s3.1d and s3.2d. Suppose by
contradiction thatMsTd is not equal tohMsTsidd , i =1,… ,kj, since the latter is inC srelative toTd,
MsTd must then be finer thanhMsTsidd , i =1,… ,kj. But then we would have a finer partition of
Tsid, for somei, which still verifies P.1. We have thus reached a contradiction.

The theorem is proved. h

As a consequence of P.1 and P.2 we have the following obvious property, namely that by
adding triangles it cannot happen that contours split; the new triangles can either form separate
contours or join other preexistent ones and possibly cause them to merge.

Lemma B.2:Monotonicity.
Let T, T8 be two configurations of triangles,T@T8, then for any G[RsTd, there is

G8[RsT8d so thatG@G8.
Proof: Let G0[RsTd, RsT8d=hG j8j andfrecalling the notation insB1dg AjªG0uG j8. We must

prove that for anyj , eitherAj =x or Aj =G0. Suppose by contradiction that this is not the case. We
then consider the new partition ofT:CªfRsTd∨ hsRsTd \G0d ,A1,… ,Amjg. C is then inC srelative
to Td and is finer thanRsTd, which contradicts the fact thatRsTd is the unique, finest partition of
T verifying P.0, P.1, and P.2. The lemma is proved. h

APPENDIX C

An interval fa,bg is compatible withT if a is an endpoint of a triangle ofT, b is also an
endpoint of a triangle ofT and for allT[T, Tu sa,bd is either void or equal tosa,bd.

Lemma C.1: Let T9@T, with RsT9d a singleton; fa,bg a T9-compatible interval;T8 the
collection of all triangles ofT with basis insa,bd. Then ifRsT8 ,T9d is not a singleton, alsoRsTd
is not a singleton.
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Proof: SinceRsT9d is a singleton, by Lemma B.2 there is a contourG0 in RsT8 ,T9d which
containsT9. In order to prove the lemma we must consider the case

RsT8,T9d = hG0,…,Gnj, n ù 1.

SinceGi, i ù1, is distinct fromG0, it is a subset ofT8 and thereforeTsGid is strictly contained in
sa,bd. Let

RshT \ T8j t G0d = hG18¯Gk8j.

We claim that

RsTd = hG1,…,Gn,G18¯Gk8j sC1d

henceRsTd is not a singleton and the lemma is proved.
To provesC1d, it is enough to show thathG1,… ,Gn,G18¯Gk8j satisfy properties P.0 and P.1 in

the definition of contours, see Sec. III, becausesC1d would then follow from P.2.
P.0 is obviously satisfied. PairsGi, G j andGi8, G j8 satisfy P.1 by definition, it thus remains to

check P.1 for pairsGi, G j8. By Lemma B.2,G0 is contained in one of the contoursG j8, sayG18, and
let us start from this case. Then distsGi ,G18d=distsGi ,G0d fbecause the triangles inG18 \G0 are
outsidefa,bg, while G0 contains trianglessd whose endpoints area, b and Gi has support inside
sa,bdg. Since the pairGi, G0 satisfies P.1 then alsoGi, G18 satisfies P.1. For the same reason as
before, also forj .1, distsGi ,G j8dùdistsTsGid ,ha,bjd=distsGi ,G0d.cuGiu3 fthe latter inequality by
sii d of P.1g. Hence distsGi ,G j8d.c minhuGiu3, uG j8u

3j. We have thus completed the proof of P.1,sC1d
and Lemma C.1 are thus proved. h

Proof of (ii) of Lemma 4.2:We apply Lemma C.1 withT9=T sthe maximal triangled, a, b the
endpoints ofT. Since RsT9d=T, RsT9d is a singleton;T8=hTjS\T. By assumptionRsTd is a
singleton, then, by Lemma C.1, alsoRsT8 ,T9d is a singleton, hencesii d of Lemma 4.2 because
RsT8 ,T9d=RshTjSd. h

Proof of (ii) of Lemma 4.3:RshTjSi
d, i =1, 2, are singletonssby definition of squaresd; then

RshTjS1
,hTjS2

d is a singleton as well, becauseS1 andS2 area-connected. We then apply Lemma
C.1, identifyingT9=hhTjS1

,hTjS2
j anda, b as the endpoints of the squaresS1, S2 which face each

other. The argument is hereafter the same as in the proof ofsii d of Lemma 4.2. h

Lemma C.2:Let S be the square configuration at time t=n. Call S8 the collection of squares
in a maximal a-connected component ofS, shTjS8d the set of triangles represented by the squares
in S8. ThenRshTjS8d is a singleton andS8 will be represented by a square in the square configu-
ration at time t=n+1.

Proof: SupposeS8 is not a singletonsotherwise the statement of the lemma would trivially
holdd. If S1[S8 there must beS2[S8 with S1 andS2 endpoints of an arrow. Then eitherS1 is an
endpoint of a primary arrow, or it is in a shadow of a primary arrow. By the assumed maximality
of S8 it then follows thatS8 is made of a sequence of squares each one connected by a primary
arrow to the successive one and all other squares contained in the shadow of these primary arrows.

By sii d of Lemma 4.3, the collection of all the triangles in the shadow of a primary arrow and
those in the two squares connected by the primary arrow form a single contour. The statement of
the lemma then follows by monotonicity, Lemma B.2.

Proof of (i) of Lemma 4.2:We will first prove thatG1,… ,Gn are sequential, where

hG1,…,Gnj = RshTjS \ Td. sC2d

Suppose by contradiction thatTsGid@TsG jd, i Þ j . By property P.1 in the definition of contours,
there is a minimal contourGk distinct fromGi such thatTsGid@TsGkd. Let fa,bg be the smallest
interval containingTsGid and compatible withGk. Let T8 be the collection of triangles with basis
in sa,bd. ThenRsT8 ,Gkd contains at leastGi and Gk sby Lemma B.2d, so that, by Lemma C.1,
RsTd is not a singleton, against the assumption. ThereforeG1,… ,Gn are sequential.
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We will next prove the analogue ofs4.3d, calling a* , b* the endpoints ofT, shorthanding
hGijªhG1,… ,Gnj and labelling the contours so thatGi is beforeG j when i , j swe have already
proved that hGij is sequentiald. There is G j such that distsG j ,ha* ,b*jd;distsTsG jd ,ha* ,b*jd
øcuG ju3, otherwise allGi would be contours inRsTd, by the argument already used several times
above. Supposing for the sake of definiteness that distsG j ,a

*døcuG ju3, we then claim that

distsG1,a
*d ø cuG1u3. sC3d

Suppose by contradiction that there is 1,kø j so that for anyi ,k, distsGi ,a
*d.cuGiu3 while

distsGk,a*døcuGku3. This would imply that, for any i ,k, cuGiu3,distsGi ,a
*dødistsGk,a*d

øcuGku3. Thus uGiuø uGku for any i øk. Since hG1,… ,Gnj are distinct contours, distsGi ,Gkd
.c minhuGiu3, uGku3j=cuGiu3, for any i ,k.

Call T8 the collection of all triangles inhG1,… ,Gk−1j, fa,bg=fa* ,x−sGkdg, T9=hT,Gkj. We can
then apply Lemma C.1 becauseRsT9d is a singleton, since distsGk,a*døcuGku3: thenhG1,… ,Gk−1j
are contours forRsTd which contradicts the assumption that the latter is a singleton. EquationsC3d
is proved.

By sC3d, RshTjG1
,Td is a singleton, so that the previous analysis applies again withT replaced

by hG1,Tj and a* replaced bya1
* =x+sG1d, showing that if distsG j ,a

*døcuG ju3 with j .2, then
distsG2,a1

*døcuG2u3. By iterating the argument we then conclude the proof ofsid of Lemma 4.2.h
Proof of (i) of Lemma 4.3: SinceRshS1,S2jd is a singletonfsee the proof above ofsii d of

Lemma 4.3g the previous applies unchanged witha* andb* the endpoints ofS1 andS2 which face
each other. h

APPENDIX D

Lemma D.1:A squares configurationS is (new a)-connected iff it is (old a)-connected.
Proof: If S is snewad-connected, then it is alsosold ad-connected, as the new arrows are also

old arrows. We thus only need to prove the reverse implication, we supposeS sold ad-connected
but not snew ad-connected and want to show that this leads to a contradiction.

We call “odd” a pairSandS8 of squares when there is an old arrow betweenSandS8 fdenoted
by sS,S8doldg while S and S8 are not snew ad-connected. We will first show that ifS is sold
ad-connected but notsnew ad-connected then there exist odd pairs; we will then prove that odd
pairs “can be shortened” in the sense that ifS andS8 is an odd pair, then there is another square
S9 in betweenS andS8 such that eitherS andS9 or S8 andS9 is an odd pair. The endless iteration
of the argument leads to a contradiction.

Existence of odd pairs:If S is notsnewad-connected, there are two squaresSandS8 which are
not snew ad-connected; sinceS andS8 are sold ad-connected, there is a sequencehS,i

, i =1,… , jj
such that each pairS,i

,S,i+1
is connected by an old arrow, andS,1

=S andS, j
=S8. Then one of the

pairsS,i
,S,i+1

must be odd, otherwiseS andS8 would besnew ad-connected.
Shortening odd pairs:Writing SaS8 if the squareS is beforeS8 srecall that a square configu-

ration is sequentiald, we labelS so thatS1aS2a¯aSn. Let Sk, Sm be an odd pair and suppose,
without loss of generality, thatSkaSm and that the old arrow which connects them goes fromSk

to Sm. The old arrow which connectsSk to Sm is not a new arrow, otherwiseSk andSm would be
snewad-connected, therefore there existsS, :SkaS,aSm; uS,uù uSku such that there is a new arrow
from Sk to S,. Consider separately the two possible casess1d uS,uø uSmu and s2d uS,u. uSmu.

s1d SincecuS,u3ùcuSku3ùdistsSk,Smd.distsSm,S,d, there is an old arrow connectingS, and
Sm; on the other hand, by definition,S, andSk aresnew ad-connected, henceS, andSm cannot be
snew ad-connected, henceS,, Sm is an odd pair.

s2d As in s1d, cuSmu3.distsSm,S,d, which implies that there is an old arrow fromSm to S,, as
well as an old arrow fromSk to S,. There are two subcases,sad Sm andS, are also connected by
a new arrow or elsesbd they are not. In subcasesad, S, is snewad-connected toSm, hence it cannot
be snew ad-connected toSk, thus Sk, S, is an odd pair. In subcasesbd, there is Sh:S,aSh
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aSm; uShuù uSmu, such that there is a new arrow fromSm to Sh. Again, asSh is snew ad-connected
to Sm, it is not snewad-connected toSk. On the other hand,uShuù uSmuù uSku, hence there is an old
arrow fromSk to Sh, thusSk, Sh is an odd pair.

This concludes the analysis of cases2d, and the proof of the shortening property of odd pairs.
Thus the lemma is proved. h

Proposition D.2:The shadows of two new arrows have either empty intersection or else, one
is contained in the other.

Proof: Suppose by contradiction that there are four squaresSaaSuaSbaSz, with the crossing

arrowsjWab sdenoting a new arrow froma to bd andjWuz. By definition of new arrow, this implies

that there is no arrowjWau sthere could be however an arrow in the opposite directionjWuad and that

distsSa,SbdøcuSau3. Recalling thatSuaSb the only compatible sizes with the new arrowjWa,b are
uSuu, uSau, uSbu. On the other hand, distsSu,Sbd,distsSu,SzdøcuSuu3 then, beinguSbu. uSuu there

should be an arrowjWu,b:Su→Sb contradicting the factjWuz is a new arrowsi.e., thatSz is the first
square connected withSud.

Consider now the case in which the crossing arrows arejWb,a and jWu,z sthat implies thatuSbu
. uSau and uSzu. uSuud. The existence of these arrows implies that there are no arrowsjWb,u andjWu,b,
and, since distsSb,Sud,distsSa,SbdøcuSbu3, this implies thatuSuuøcuSbu. We get a contradiction by

observing that, since distsSu,SbdødistsSu,Szdø uSuu3, there should be an arrowjWu,b that is incom-

patible withjWu,z.
The other possible crossing cases are reduced to those above by reflection and the proposition

is proved. h

APPENDIX E

Lemma E.1:Let a[ f0,1/2g, a and b positive and b/a large enough. Then for any nù2, any
x1,… ,xn−1, y such that1øxi øy,

bhasyd + sb − ado
i=1

n−1

hasxd ù bhaSo
i=1

n−1

xi + yD , sE1d

where hasLd is defined ins2.8d.
Proof: We will prove sE1d by induction onnù2 showing that

fnsx1,…,xn−1,ydª
b

b − a
hasyd + o

i=1

n−1

hasxd −
b

b − a
haSy + o

i=1

n−1

xiD
is non-negative in the set 1øxi øy.

We start the induction by supposing that forn.2, for any 2ømøn, fmù0 and want to prove
that fn+1sx1,… ,xn,ydù0. Sincefn+1 is symmetric in the firstn variables, we may suppose, without
loss of generality, thatxi øxnøyøx1+¯+xn−1+y¬L. Then

fn+1sx1,…,xn,yd = fnsx1,…,xn−1,yd + hasxnd +
b

b − a
hasLd −

b

b − a
hasL + xnd = fnsx1,…,xn−1,yd

+ f2sxn,Ld ù 0.

To complete the induction we need to prove thatf2sx,ydù0.
The casea.0. We havef2sx,yd=yagsx/yd where

gsxdªxa +
b

b − a
−

b

b − a
sx + 1da, 0 ø x ø 1.

If b/a is large enough,g8sxd.0 andgsxdùgs0d=0 and the induction is proved. ThussE1d is
proved in the casea.0.
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The casea=0.
Let

pª
b

b − a
, choosea so that 1, p , 2.

We have

f2sx,yd = psln y + 4d + sln x + 4d − pslnfx + yg − 4d = − p lns1 + x/yd + ln x + 4 ù − 2p + 4 + lnx ù 0

becausexù1 andp,2. h

APPENDIX F

In this appendix we sketch the proof of the analogue ofs4.1d in the casea=0, namely that

o
G:uGu=m,0[G

wb
0sGd ø 2me−bsln m+4d, sF1d

where

wb
0sGdªp

T[G

e−bslnsuTu+4dd = p
T[G

suTu−be−4bd.

EquationsF1d yields the analogue ofs3.20d, i.e.,

mL
+ sh0 [ Gjd ø 2 o

mù1
me−bslnsmd+4d = 2e−4b o

mù1
m1−b. sF2d

The sum insF1d is bounded using the same iterative procedure as whena[ s0,1/2g, with the
fundamental inequalitys4.9d replaced by the “convexity” inequality

bh0syd + sb − ado
i=1

n−1

h0sxd ù bh0So
i=1

n−1

xi + yD
proved in Appendix D for 0,a,b/2. The proof ofsF1d then follows closely that ofs4.1d for
a.0, and it is omitted. h
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By considering the master equation of the partially asymmetric diffusion process on
a one-dimensional lattice, the most general boundary conditionsi.e., interactionsd
for the multispecies reaction–diffusion processes is considered. The resulting sys-
tem has various interactions including diffusion to the left and right, two-particle
interactionsAaAb→AgAd, and the extendedn-particle drop–push interactions to the
left and right. We obtain three distinct new models. The conditions on reaction rates
to ensure the solvability of the resulting models are obtained. The two-particle
conditional probabilities are calculated exactly. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1897664g

I. INTRODUCTION

The understanding of nonequilibrium statistical physics is still much more incomplete than
that of equilibrium theory, due to the absence of an analogue of the Boltzman–Gibbs approach and
in spite of considerable recent progress.1 Therefore nonequilibrium systems must be specified by
some defining dynamical rules which are then analyzed. The topic has received a lot of attention
and many reviews exist, e.g., Refs. 2–7.

One of the interesting and important examples of the nonequilibrium systems is the one-
dimensional reaction–diffusion processes, which have application in various fields of physics like
study of the shocks,8 noisy Burgers equation,9 polymers in random media,10 traffic models,11 and
biopolymerization.12 As these systems are interacting systems withN-particle, even simple models
may pose a formidable problem if one wants to approach them analytically. See Refs. 13–16 for
more recent references.

The simplest reaction–diffusion process is the totally asymmetric simple exclusion process
sTASEPd. In this model, each lattice site is occupied by at most one particle and all particles can
only hop with equal rate to their right-neighboring sites, if these sites are not occupied. TASEP has
been studied in Ref. 17 by introducing a master equation which describes the evolution equation
of the particles when they are not in neighboring sites, and a so-called boundary condition, which
specifies the situation in which the probabilities go outside the physical regions. This happens
when some of the particles are in adjacent sites and the master equation cannot be applied to them.
It has been shown that the model is integrable in the sense that theN-particleS-matrix is factor-
ized into a product of two-particleS-matrices. The coordinate Bethe ansatz has been used in this
proof.

The interesting observation is that if one chooses other boundary conditions, with the same
master equation, one can in principle introduce other interactionssbesides diffusion to right-
neighboring sitesd, which may be integrable in the above-mentioned sense. This is what is first
done in Ref. 18, in which the so-called drop–push model has been studied by this method. In this
model the particle hops to the next right site, even if it is occupied. It can hop by pushing all the
neighboring particles to their next right sites, with a rate depending on the number of these
particles. Some other generalization of TASEP can be found in Refs. 19–21.
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The generalization of one-species reaction–diffusion processes top-species is an important
task. The main problem in this generalization, besides introducing a set of suitable boundary
conditions to model an interacting system, arises from the above-mentioned factorization of
N-particle scattering matrix. It was shown in Ref. 22 that in order that a more-than-one species
system to be solvable, in the sense of the Bethe ansatz, certain relations should be satisfied
between the rates. These relations can be written as some kind of a spectral Yang–BaxtersSYBd
equation. By this method, all the solvable two-species reaction–diffusion models, without annihi-
lation and creation reactions and with equal reaction rates, have been obtained in Ref. 22.

The multispecies generalization of the reactions considered in Ref. 22 has been studied in Ref.
23, and the drop–push reaction of Ref. 18 has been generalized top-species in Ref. 24. The most
general totally asymmetric reaction–diffusion processes have been recently studied in Ref. 25.
These processes are

Aa0” → 0”Aa with rateDR,

AaAb → AgAd with ratecgd
ab, s1d

AaAb0” → 0”AgAd with ratebgd
ab,

¯ ,

where the dots indicate the other drop–push reactions withn-adjacent particles, in which in the
mean time the types of the particles can also be changed. These latter reactions are called the
extended drop–push processes. It has been shown that the reaction rates of processess1d must
satisfy some specific constraints, in order that we have a set of consistent evolution equations.
Also the corresponding two-particleS-matrices must satisfy the SYB equation. Some classes of
the solutions of these equations have been discussed in Ref. 25.

In all of the above studies, only the totally asymmetric exclusion processes have been con-
sidered, i.e., the particles can only diffuse to their next right neighboring sites. If one wants to
consider the left and right diffusions simultaneously, one must consider a more general master
equation with suitable boundary conditions and then seek the situations in which the model is
integrable. In Ref. 17, one-species model with only simple diffusion to left and rightsi.e., partially
asymmetricd has been considered, and in Ref. 26, the one-species partially asymmetric drop–push
model has been studied. Finally a two-species model in which the particles, besides diffusion to
the left and right, have exchange-reaction has been studied in Ref. 27.

In this paper we want to study the most generalp-species integrable models with partially
asymmetric reaction–diffusion processes, which all the previous studied models are the special
cases of them. These general models may have some or all of the following reactions:

Aa0” → 0”Aa with rateDR, s2d

0”Aa → Aa0” with rateDL, s3d

AaAb → AgAd with rateEgd
ab, s4d

AaAb0” → 0”AgAd with rateRgd
ab, s5d

¯

and

0”AaAb → AgAd0” with rateLgd
ab, s6d
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¯ .

In the above equationsa ,b , . . . =s1, . . . ,pd ,0” stands for vacancy, and dots in Eqs.s5d and s6d
indicate the drop–push ofn-adjacent particles to the right and left sites, respectively, in which in
the mean time the types of the particles can also be changed. We call interactionss5d and s6d as
right-drop–pushing and left-drop–pushing, respectively. We show that there are three distinct
models which are integrable and each of these models contains reactionss2d and s3d and one or
two of the reactionss4d–s6d.

The scheme of the paper is as follows. There are two kinds of boundary conditions that can be
generalized top-species cases. In Sec. II, we generalize the first kind of boundary condition,
which was introduced in Ref. 26, to the most generalp-species case. Using the law of conserva-
tion of the number of particles, it is shown that there exists five constraints that must be satisfied
by reaction rates of Eqs.s2d–s6d, in order to have a set of consistent evolution equations to express
the interactionss2d–s6d. But it is seen that there is no solution for these constraints. The situation
does not change even if we relax one of the constraints by including the annihilation processes.
Therefore one cannot explain all the reactionss2d–s6d by this method. But it will be shown that we
can have two distinct models. In the first type model the reactions are Eqs.s2d–s5d and in the
second type the reactions are Eqs.s2d–s4d and s6d.

The second kind of boundary condition, which was used in Refs. 17 and 27, is generalized to
the most generalp-species case in Sec. III. We show that the resulting consistent boundary
condition can explain the reactionss2d–s4d. This is the type 3 model. It must be mentioned that the
type 3 model is not a subclass of types 1 and 2 and is a new distinct one. In Sec. IV we investigate
the Bethe ansatz solution for these models and discuss the solutions of the corresponding SYB
equations. We see that theS-matrix of type 3 model is much more involved than two other ones
and therefore only some special classes of solutions of its SYB equation can be obtained. Finally
we study the conditional probabilities of these models and in special two-particle sector, we obtain
the exact expressions.

II. FIRST KIND GENERALIZATION

Consider ap-species system with particlesA1,A2, . . . ,Ap. The basic objects we are interested
in are the probabilitiesPa1¯aN

sx1, . . . ,xN; td for finding at timet the particle of typea1 at sitex1,
particle of typea2 at site x2, etc. We take the physical region of coordinates asx1,x2, ¯

,xN. The master equation for a partially asymmetric exclusion process is

]

]t
Pa1¯aN

sx1, . . . ,xN;td = DRo
i=1

N

Pa1¯aN
sx1, . . . ,xi−1,xi − 1,xi+1, . . . ,xN;td

+ DLo
i=1

N

Pa1¯aN
sx1, . . . ,xi−1,xi + 1,xi+1, . . . ,xN;td

− NPa1¯aN
sx1, . . . ,xN;td. s7d

This equation describes a collection ofN particles, diffusing to the next-right sites by rateDR and
to the next-left sites by rateDL. In Eq. s7d we have used a time scale so that

DR + DL ; 1. s8d

This master equation is only valid forxi ,xi+1−1. Forxi =xi+1−1, there will be some terms with
xi =xi+1 in the right-hand side of Eq.s7d which are out of the physical region. But one can assume
that s7d is valid for all the physical regionsxi ,xi+1 by imposing certain boundary conditions for
xi =xi+1. Different boundary condition introduces different interactions for particles. Following the
argument given in Ref. 25, it can be easily seen that the master equations7d leads to the following
relation for two-particle probabilities:
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]

]t
o
x2

o
x1,x2

Pa1a2
sx1,x2;td = o

x

fDRPa1a2
sx,x;td + DLPa1a2

sx + 1,x + 1;tdg − o
x

Pa1a2
sx,x + 1;td

= o
x

Pa1a2
sx,x;td − o

x

Pa1a2
sx,x + 1;td. s9d

This equation leads us to takePa1a2
sx,x; td as linear combination ofPb1b2

sx,x+1;td and
Pb1b2

sx−1,x; td’s as the only choice for having a consistent set of evolution equations in more-
than-two-particle sectors.25 Therefore the most general boundary condition is

Pa1a2
sx,xd = o

b

ba1a2

b1b2Pb1b2
sx − 1,xd + o

b

ca1a2

b1b2Pb1b2
sx,x + 1d. s10d

b stands forsb1b2d and b and c are p23p2 matrices which determine the interactions. In the
probabilities of Eq.s10d, we have suppressed all the other coordinates and the timet for simplicity.
In fact Pa1a2

sx,xdªPg1¯gia1a2gi+3¯gN
sx1, . . . ,xi ,x,x,xi+3, . . . ,xNd. In the first step, let us exclude

the creation and annihilation processessit can be shown that one cannot study the creation pro-
cesses by this method, so in fact in this step, we exclude the annihilation processesd. Since the
number of particles is constant in time, summing overa1 anda2 makes the left-hand side ofs9d
zero and results in

− o
x

o
a

Pa1a2
sx,x + 1d + o

x
o
b
So

a

sb + cda1a2

b1b2DPb1b2
sx,x + 1d = 0, s11d

in which Eq.s10d has been used. Clearly Eq.s11d gives

o
a

sb + cda1a2

b1b2 = 1 constraintsId. s12d

Note that inp=1, the boundary conditions10d and constraints12d reduce to those considered in
Ref. 26. Also in the case of totally asymmetric processes in whichDL=0, our problem reduces to

one considered in Ref. 25. Following the same steps as Ref. 25, we first considerṖa1a2
sx,x+1d.

Using Eqs.s7d and s10d, it is found

Ṗa1a2
sx,x + 1d = DRPa1a2

sx − 1,x + 1d + DLPa1a2
sx,x + 2d + DRo

b

ba1a2

b1b2Pb1b2
sx − 1,xd

+ DLo
b

ca1a2

b1b2Pb1b2
sx + 1,x + 2d + SDRo

b

ca1a2

b1b2 + DLo
b

ba1a2

b1b2DPb1b2
sx,x + 1d

− 2Pa1a2
sx,x + 1d = DRPa1a2

sx − 1,x + 1d + DLPa1a2
sx,x + 2d + DRo

b

ba1a2

b1b2Pb1b2

sx − 1,xd + DLo
b

ca1a2

b1b2Pb1b2
sx + 1,x + 2d + o

bÞa

sDRca1a2

b1b2 + DLba1a2

b1b2dPb1b2
sx,x + 1d

− FDR + DL + o
bÞa

sDRcb1b2

a1a2 + DLbb1b2

a1a2d + o
b

sDRbb1b2

a1a2 + DLcb1b2

a1a2dGPa1a2
sx,x + 1d,

s13d

in which we use Eqs.s8d and s12d. The latter can be written as

ca1a2

a1a2 = 1 −o
b

bb1b2

a1a2 − o
bÞa

cb1b2

a1a2 s14d

or
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ba1a2

a1a2 = 1 − o
bÞa

bb1b2

a1a2 − o
b

cb1b2

a1a2. s15d

It is seen that the evolution equations13d describes the following two-particle interactions:

Aa0” → 0”Aa with rateDR,

0”Aa → Aa0” with rateDL,

AaAb → AgAd with rateDRcgd
ab + DLbgd

ab,

s16d
AaAb0” → 0”AgAd with rateDRbgd

ab,

0”AaAb → AgAd0” with rateDLcgd
ab.

To study the consistency of our formalism and also deriving the more-than-two particle interac-

tions, we considerṖa1¯an
sx,x+1, . . . ,x+n−1d. In n=3, we encounter two boundary terms

Pa1a2a3
sx,x+1,x+1d andPa1a2a3

sx+1,x+1,x+2d. Using s10d, the first one becomes

Pa1a2a3
sx,x + 1,x + 1d = o

bg

ba2a3

b2b3fba1b2

g1g2Pg1g2b3
sx − 1,x,x + 1d + ca1b2

g1g2Pg1g2b3
sx,x + 1,x + 1dg

+ o
b

ca2a3

b2b3Pa1b2b3
sx,x + 1,x + 2d s17d

which describes the boundary termPa1a2a3
sx,x+1,x+1d as a linear combination of other bound-

ary terms, i.e.,Pg1g2b3
sx,x+1,x+1d’s. As has been shown in Ref. 25, the only consistent solution

to this problem is the vanishing of these terms on the right-hand side of Eq.s17d, which results in

o
b2

ca1b2

g1g2ba2a3

b2b3 = 0 constraintsII d s18d

or

s1 ^ bdsc ^ 1d = 0, s19d

in which 1 stands for thep3p identity matrix. The second boundary term is

Pa1a2a3
sx + 1,x + 1,x + 2d = o

b

ba1a2

b1b2Pb1b2a3
sx,x + 1,x + 2d + o

bg

ca1a2

b1b2fbb2a3

g2g3Pb1g2g3

sx + 1,x + 1,x + 2d + cb2a3

g2g3Pb1g2g3
sx + 1,x + 2,x + 3dg, s20d

which again leads us to take

o
b2

ca1a2

b1b2bb2a3

g2g3 = 0 constraintsIII d, s21d

or

sc ^ 1ds1 ^ bd = 0. s22d

Assuming constraintss18d and s21d and using Eqs.s7d and s10d, ṖaWsx,x+1,x+2d is
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ṖaWsx,x + 1,x + 2d = DRPaWsx − 1,x + 1,x + 2d + DLPaWsx,x + 1,x + 3d + DRo
b

ba1a2

b1b2Pb1b2a3

sx − 1,x,x + 2d + DLo
b

ca2a3

b2b3Pa1b2b3
sx,x + 2,x + 3d + o

bÞa

sDRca1a2

b1b2

+ DLba1a2

b1b2dPb1b2a3

sx,x + 1,x + 2d + o
bÞa

sDRca2a3

b2b3 + DLba2a3

b2b3dPa1b2b3
sx,x + 1,x + 2d + DRo

g

baW
gW PgW

sx − 1,x,x + 1d + DLo
g

caW
gW PgWsx + 1,x + 2,x + 3d − FDR + DL + DRo

b

bb1b2

a1a2

+ DLo
b

cb1b2

a1a2 + DRo
b

bb2b3

a2a3 + DLo
b

cb2b3

a2a3 + o
bÞa

sDRcb1b2

a1a2 + DLbb1b2

a1a2d

+ o
bÞa

sDRcb2b3

a2a3 + DLbb2b3

a2a3dGPaWsx,x + 1,x + 2d, s23d

in which we have used Eqs.s14d ands15d for diagonal elements of matrixDRc+DLb. baW
gW andcaW

gW are
defined as follows:

baW
gW = o

g

ba1b
g1g2ba2a3

bg3 , s24d

caW
gW = o

g

ca1a2

g1b cba3

g2g3. s25d

Looking at source terms of Eq.s23d, it is obvious that they describe the reactionss16d and the
following three-particle drop–push reactions:

Ag1
Ag2

Ag3
0” → 0”Aa1

Aa2
Aa3

with rateDRbaW
gW s26d

and

0”Ag1
Ag2

Ag3
→ Aa1

Aa2
Aa3

0” with rateDLcaW
gW . s27d

The sink terms are consistent with this description, provided

o
b

b
bW
aW

= o
bg

bb1g
a1a2bb2b3

ga3 = o
b

bb1b2

a1a2 constraintsIV d s28d

and

o
b

c
bW
aW

= o
bg

cb1b2

a1g cgb3

a2a3 = o
b

cb2b3

a2a3 constraintsVd. s29d

By calculating otherṖaWsx,x+1, . . . ,x+n−1d’s it can be shown that we do not need any more
constraints and therefore the master equations7d with boundary conditions10d and five constraints
sId–sVd can consistently describe the following reactions:

Aa0” → 0”Aa with rateDR, s30d

0”Aa → Aa0” with rateDL, s31d

AaAb → AgAd with rateDRcgd
ab + DLbgd

ab, s32d
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Aa0
¯ Aan

0” → 0”Ag0
¯ Agn

with rateDRsbn−1,n ¯ b0,1dg0¯gn

a0¯an, s33d

0”Aa0
¯ Aan

→ Ag0
¯ Agn

0” with rateDLsc0,1¯ cn−1,ndg0¯gn

a0¯an. s34d

In the above equations we use the following definition forbk,k+1 andck,k+1:

s35d

Note that forDL=0, the five classes of the above reactions reduce to three classes discussed in
Ref. 25. In Ref. 25, the constraints between reaction rates are three relationssId, sII d, and sIV d.
Note that atDL=0, the constraintssIII d and sVd do not appear since the multiplication factors of
their corresponding terms in evolution equation isDL, which is zero.

To find the set of solutions of five constraintssId–sVd, one can consider the solutions of
equationssId, sII d, andsIV d, that is the solutions derived in Ref. 25, and then considers the subset
of them satisfiessIII d andsVd. We must note that in our models, the diagonal elements of matrix
c are the reaction rates of the last line of Eq.s16d and must be positive. This is in contrast to the
case studied in Ref. 25 in which the diagonal elements ofc can be negative.

We can also follow another approach. That is trying to find the solution of equationssII d–sIV d
and then seek ones which satisfy relationsId. As these relations are rather complex, we cannot
completely solve them for arbitraryp, but we try them as much as possible.

As all the matrix elements of matricesb andc are reaction rates, they cannot be negative, so
the only solution of Eq.s18d is

ca1b2

g1g2ba2a3

b2b3 = 0 swithout sum overb2d. s36d

This relation has the two following solutionss for eachb2d:

ca1b2

g1g2 = 0 andba2a3

b2b3 = 0. s37d

So for eachb2 we have two solutions, and asb2 runs from 1 top, we have 2p−2 set of solutions
for constraintsII d. We exclude two of the solutions in which all of the elements ofc or b is zero,
since we look for the situations in whichbÞ0 andcÞ0. We will later study the casesb=0 orc=0
in which the number of independent classes of reactionss30d–s34d reduces to four. By the same
argument, the solutions of Eq.s21d are sfor eachb2d

ca1a2

b1b2 = 0 andbb2a3

g2g3 = 0, s38d

and therefore we again have 2p−2 set of solutions for constraintsIII d. Note that from 2p−2
solutions of constraintssII d fand sIII dg only sp−1d of them are independent, that is, does not
transform to each other under interchanging of the labels of the species of the particles. So the
number of independent solutions of constraintssII d and sIII d are sp−1ds2p−2d. For example, in
p=2, the independent solutions ofsII d and sIII d are

hca11
g1g2 = 0,ba2a3

2b3 = 0,ca1a2

b11 = 0,b2a3

g2g3 = 0j,

s39d
hca11

g1g2 = 0,ba2a3

2b3 = 0,ca1a2

b12 = 0,b1a3

g2g3 = 0j,

which can be written as
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b =1
b11 b12 0 0

b21 b22 0 0

0 0 0 0

0 0 0 0
2, c =1

0 0 0 0

0 c22 0 c24

0 0 0 0

0 c42 0 c44

2 s40d

and

b =1
0 0 0 0

0 0 0 0

b31 b32 0 0

b41 b42 0 0
2, c =1

0 0 0 0

c21 0 c23 0

0 0 0 0

c41 0 c43 0
2 , s41d

respectively. We label the states asu1l=s1,1d, u2l=s1,2d, u3l=s2,1d and u4l=s2,2d. Setting Eqs.
s40d and s41d into the constraintssIV d and sVd fEqs.s28d and s29dg results in

b =1
1 1 0 0

b21 b21 0 0

0 0 0 0

0 0 0 0
2, c =1

0 0 0 0

0 c22 0 c22

0 0 0 0

0 1 0 1
2 s42d

and

b =1
0 0 0 0

0 0 0 0

1 1 0 0

b41 b41 0 0
2, c =1

0 0 0 0

1 0 1 0

0 0 0 0

c41 0 c41 0
2 , s43d

respectively. Now Eq.s12d fconstraintsIdg says that the sum of the elements of each column of
matrix sb+cd must be one, which unfortunately does not satisfy bys42d ands43d. The sum of the
elements of the second column ofsb+cd of Eq. s42d and the first column of Eq.s43d are greater
than sor equal tod 2. So reactionss30d–s34d have not any representation inp=2, the situation
which we expect to be true for otherp’s. For example, inp=3, constraintssII d and sIII d have 12
independent solutions, which are in two categories, the number of constraints onbi

j andck
l’s are

equal sthree onbi
j and three onck

ld, and one which these numbers differ, i.e., 4 and 2. As an
example of the first category, we consider the case in whichca1

j =0, ca2
j =0, ci

b1=0, bk
3g=0,

b1a
k=0, b3a

k=0. It means that in matrixc, the rows 1,2,4,5,7,8 and columns 2,5, and 8 are zero,
so it has 18 nonzero elements, andb is a matrix in which the rows 1,2,3,7,8,9 and columns 7,8,
and 9 are zero so it also has 18 nonzero elements. Setting theseb andc matrices in constraintssIV d
and sVd results in two of the following solutions for eachb andc:

c1:hc31 = c34 = c37 = 1,c33 andc36 arbitraryj,

c2:hc93 = c96 = c99 = 1,c91 andc94 arbitraryj,

s44d
b1:hb41 = b42 = b43 = 1,b44 andb45 arbitraryj,

b2:hb54 = b55 = b56 = 1,b51 andb52 arbitraryj,

in which we only write down the nonzero elements. It can be easily seen that none of the
combinationsb1+c1, b1+c2, b2+c1, b2+c2 are acceptable in the sense of constraintsId, as at least
the sum of the elements of one of the columns of these matrices are greater thansor equal tod 2.
We have checked that the same situation arises in other 11 solutions. So again inp=3, we have no
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representation. We cannot generally prove this, but we believe that the set of constraintssId–sVd
have no solution for arbitraryp.

One may suppose that if we somehow change the constraintsId, then it may be possible to find
some solution for our equations. So we add the annihilation processes to our previous interactions.
Note that these interactions appear only in the sink terms of the evolution equation, as if we
consider the initial state withn particles, no annihilation processes can lead to an-particle state at
any other timet. So if we change the constraintsId to sas we do not have the conservation of
particlesd

o
a

sb + cda1a2

b1b2 = 1 −lb1b2
, s45d

and using it in the calculation ofṖa1a2
sx,x+1d, we find the same equation ass13d, except an extra

term la1a2
Ṗa1a2

sx,x+1d which is added to sink terms. Sola1a2
is the sum of the rates of all

annihilation processes with initial statesa1a2d and therefore is a positive quantity. Therefore
adding the annihilation processes to interactionss30d–s34d means that the sum of the elements of
each column ofsb+cd can now be less than or equal to 1. But as we have shown in Eqs.s42d–s44d,
the sum of the elements of some of the columns ofsb+cd in these examples are at least 2, which
differs from what is suggested by Eq.s45d. In brief, including the annihilation processes cannot
alter our result and the set of processess30d–s34d have no representation, with or without adding
the annihilation processes.

Now it is interesting to note that even if one of the matricesb or c is equal to zero, we have
yet all four desired reactions, diffusion to leftand right, two-particle reactionsAaAb→AgAd, and
the extended drop–push reactions, which the latter occur only on one sidesleft or rightd. These are
almost the general reactions that one can study in this framework. Let us check the constraints in
these cases.

A. Type 1 model

Takec=0. Equations12d becomes

o
a

ba1a2

b1b2 = 1. s46d

ConstraintssII d, sIII d, andsVd are satisfied trivially and constraintsIV d is also satisfied: using Eq.
s46d, both sides of constraintsIV d become one. Therefore master equations7d with boundary
condition

Pa1a2
sx,xd = o

b

ba1a2

b1b2Pb1b2
sx − 1,xd, s47d

and constraints46d, describe consistently the following reactions:

Aa0” → 0”Aa with rateDR,

0”Aa → Aa0” with rateDL,

s48d
AaAb → AgAd with rateDLbgd

ab,

Aa0
¯ Aan

0” → 0”Ag0
¯ Agn

with rateDRsbn−1,n ¯ b0,1dg0¯gn

a0¯an.

B. Type 2 model

In the same way, forb=0 it can be seen that the master equations7d with boundary condition
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Pa1a2
sx,xd = o

b

ca1a2

b1b2Pb1b2
sx,x + 1d, s49d

and constraint

o
a

ca1a2

b1b2 = 1, s50d

describe successfully the reactions

Aa0” → 0”Aa with rateDR,

0”Aa → Aa0” with rateDL,

s51d
AaAb → AgAd with rateDRcgd

ab,

0”Aa0
¯ Aan

→ Ag0
¯ Agn

0” with rateDLsc0,1¯ cn−1,ndg0¯gn

a0¯an.

The condition of solvability of these models will be discussed in the next sections.

III. SECOND KIND GENERALIZATION

By noting the first line of Eq.s9d, it is seen that Eq.s10d is not the only possiblep-species
boundary condition. In fact, one can instead consider the following boundary condition:

DRPa1a2
sx,xd + DLPa1a2

sx + 1,x + 1d = o
b

ba1a2

b1b2Pb1b2
sx − 1,xd + o

b

ca1a2

b1b2Pb1b2
sx,x + 1d.

s52d

This is the multispecies generalization of the boundary condition considered in Refs. 17 and 27.

To study the interactions introduced bys7d and s52d, we must again considerṖa1¯an
sx,x

+1, . . . ,x+n−1d. In n=3, we encounter the boundary termDRPa1a2a3
sx,x+1,x+1d

+DLPa1a2a3
sx,x+2,x+2d, where using s52d results in obba2a3

b2b3Pa1b2b3
sx,x,x+1d

+obca2a3

b2b3Pa1b2b3
sx,x+1,x+2d. But the first termPa1b2b3

sx,x,x+1d cannot be written in terms of
physical probabilities, since in this case only the linear combinationDRPa1a2¯

sx,x, . . .d
+DLPa1a2¯

sx+1,x+1, . . .d can be written in terms of physical functionfEq. s52dg. This is in
contrast with the case studied in Sec. II. The only solution to this problem is taking

b = 0. s53d

So our second kindp-species model is defined through the master equations7d and the following
boundary condition:

DRPa1a2
sx,xd + DLPa1a2

sx + 1,x + 1d = o
b

ca1a2

b1b2Pb1b2
sx,x + 1d. s54d

Conservation of the number of particles gives

o
a

ca1a2

b1b2 = 1, s55d

and calculatingṖa1a2
sx,x+1d results in
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Ṗa1a2
sx,x + 1d = DRPa1a2

sx − 1,x + 1d + DLPa1a2
sx,x + 2d + o

bÞa

ca1a2

b1b2Pb1b2
sx,x + 1d

− SDR + DL + o
bÞa

cb1b2

a1a2DPa1a2
sx,x + 1d. s56d

This equation describes the following reactions as source and sink terms:

Aa0” → 0”Aa with rateDR,

0”Aa → Aa0” with rateDL, s57d

AaAb → AgAd with ratecgd
ab.

Calculating otherṖa1¯an
sx,x+1, . . . ,x+n−1d’s confirms these reactions without any further con-

straint. So thetype 3 model is defined by the master equations7d, boundary conditions54d,
constraints55d, and reactionss57d.

IV. BETHE ANSATZ SOLUTION

Until now, we have constructed a consistent formalism to study some reaction–diffusion
processes. Now we want to solve the resulting evolution equations and check the solvability of
these models. To solve the master equations7d, we consider the following Bethe ansatz:

Pa1¯aN
sx;td = e−ENtca1¯aN

sxd, s58d

with

Csxd = o
s

Aseisspd·x. s59d

C is a tensor of rankN with componentsca1¯aN
sxd and the summation runs over the elements of

the permutation group ofN objects.28,29 Insertings58d in s7d, results in

EN = o
k=1

N

s1 − DRe−ipk − DLeipkd. s60d

Insertings58d in boundary conditions47d gives

Cs. . .,xk = x,xk+1 = x, . . . d = bk,k+1Cs. . .,xk = x − 1,xk+1 = x, . . . d, s61d

which usings59d results

f1 − e−isspkdbk,k+1gAs + f1 − e−isspk+1dbk,k+1gAssk
= 0. s62d

sk is an element of permutation group which only interchangespk andpk+1,

sk:sp1, . . . ,pk,pk+1, . . . ,pNd → sp1, . . . ,pk+1,pk, . . . ,pNd. s63d

Equations62d givesAssk
in terms ofAs as follows:

Assk
= Sk,k+1

s1d ssspkd,sspk+1ddAs, s64d

where

s65d

andSs1dsz1,z2d is the followingp23p2 matrix:
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Ss1dsz1,z2d = − s1 − z2
−1bd−1s1 − z1

−1bd, s66d

in which zk=eipk. The same procedure for boundary conditionss49d and s54d, i.e., the type 2 and
type 3 models, results in

Ss2dsz1,z2d = − s1 − z1cd−1s1 − z2cd s67d

and

Ss3dsz1,z2d = − sDR + z1z2DL − z1cd−1sDR + z1z2DL − z2cd, s68d

respectively. Equations64d allows one to compute allAs’s in terms ofA1 swhich is set to unityd.
As the generators of permutation group satisfysksk+1sk=sk+1sksk+1, so one also needs

Asksk+1sk
= Ask+1sksk+1

. s69d

This, in terms ofS-matrices becomes

S12sz2,z3dS23sz1,z3dS12sz1,z2d = S23sz1,z2dS12sz1,z3dS23sz2,z3d. s70d

In the terms ofR-matrix defined through

Sk,k+1¬ Pk,k+1Rk,k+1, s71d

whereP is the permutation matrix, Eq.s70d is transformed to

R23sz2,z3dR13sz1,z3dR12sz1,z2d = R12sz1,z2dR13sz1,z3dR23sz2,z3d. s72d

This is the spectral Yang–Baxter equation.
The Bethe ansatz solution exists, if the scattering matrix satisfiess70d. In other words, the

matrix b in s66d andc in s67d ands68d is acceptable only if the resultingS-matrices satisfys70d.
This is a very restricted condition and needed for having the solvability.

TheS-matricess66d ands67d are exactly the ones considered in Refs. 24 and 23, respectively.
Using the fact thatSs1d is a binomial of degree one with respect toz1

−1=e−ip1 andSs2d is of degree
one with respect toz2, it can be shown that SYB equations70d for Ss1d andSs2d reduces to

b23fb23,b12g = fb23,b12gb12 s73d

and

c12fc12,c23g = fc12,c23gc23, s74d

respectively.23,24 Note that although the above equations are much simpler than Eq.s70d, but they
are very complicated yet. Inp-species, each one is an equality between twop33p3 matrices which
results a system ofp6 equations to be solved forp4−p2 elements ofb sor cd, which may or may
not have solutionfEq. s46d and s50d reduce the number of independent elements ofb and c to
p4−p2g. The general properties of the solutions of Eq.s73d and Eq.s74d have been discussed in
Refs. 24 and 23, respectively, which can be directly used here. In other words, for every solution
of Eq. s74d, there exists a corresponding solvable model which has been discussed in Ref. 23, i.e.,

Aa0” → 0”Aa with rate 1,

s75d
AaAb → AgAd with ratecgd

ab.

and a type 2 model with reactions written in Eq.s51d fnote that the reactionss75d are a subset of
s51d with DL=0g. The same is true for solutions ofs73d. They can describe the following solvable
model sdiscussed in Ref. 24d:

Aa0” → 0”Aa with rate 1,
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Aa0
¯ Aan

0” → 0”Ag0
¯ Agn

with ratesbn−1,n ¯ b0,1dg0¯gn

a0¯an, s76d

and a type 1 model with reactions48d fagain atDL=0, s48d reduces tos76dg.
The reasoning which leads the SYB equations ofSs1d andSs2d to s73d ands74d does not work

for Ss3d since it is not a binomial of degree one with respect toz1 or z2, in fact it contains all powers
of z1 andz2. So obtaining the solutions ofs70d for Ss3d is more difficult than forSs1d andSs2d, even
in the simplest casep=2. In thep=2 case we encounter a system of 64 equations that must be
solved for 12 nondiagonal elements ofc fthe diagonal elements are determined by Eq.s55dg. The
solution must be momentum independentsindependent ofz1, z2, and z3d and non-negative. We
cannot solve this equation generallystaking all cij Þ0d by standard mathematical softwares and
therefore restrict ourselves to some specific cases. For example, taking

c =1
c11 0 0 c14

c21 1 0 c24

1 − c11 − c21 0 1 1 − c14 − c24

0 0 0 0
2 , s77d

or

c =1
0 0 0 0

c21 1 0 c24

c31 0 1 c34

1 − c21 − c31 0 0 1 − c24 − c34

2 , s78d

which are the four-parameters cases, one obtains two solutions

c =1
0 0 0 0

DR 1 0 DL

DL 0 1 DR

0 0 0 0
2 , s79d

and one withDL↔DR. Taking

c =1
1 − c41 1 − c42 1 − c43 0

0 0 0 0

0 0 0 0

c41 c42 c43 1
2 s80d

or

c =1
1 1 − c42 1 − c43 1 − c44

0 0 0 0

0 0 0 0

0 c42 c43 c44

2 , s81d

as some three-parameters cases, we find four solutions
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c =1
1 1 − c42 1 − c43 0

0 0 0 0

0 0 0 0

0 c42 c43 1
2 , s82d

where each ofc42 andc43 are eitherDR or DL. Taking A1;A andA2;B, the interactions intro-
duced bys79d, for instance, are

A0” ——→
DR

0”A,

B0” ——→
DR

0”B,

0”A ——→
DL

A0” ,

0”B ——→
DL

B0” ,

s83d

AA ——→
DR

AB,

BB ——→
DL

AB,

AA ——→
DL

BA,

BB ——→
DR

BA.

The model built on the reactionss83d is integrable.
Assuming that the solvability conditions70d is satisfied, it is easy to see that the conditional

probability sthe propagatord is

Usx;tuy;0d =E dNp

s2pdNe−ENte−ip.yo
s

Aseisspd·x, s84d

where the integration region for eachpi is f0,2pg andA1=1. The singularity inAs is removed by
settingpj →pj + i«, where one should consider the limit«→0+. Using this propagator, one can
write the probability at the timet in terms of the initial value of probability,

uPsx;tdl = o
y

Usx;tuy;0duPsy;0dl. s85d

Note that althoughSs1d andSs2d are similar to ones considered in Refs. 24 and 23, the propagators
Us1d andUs2d are different since the energy spectrum of our models differs from those considered
there. InDL=0, our results must coincide with those obtained in Refs. 23 and 24.

For the two-particle sector, there is only one matrix in the expression ofUsids sb in Us1d andc
in Us2d andUs3dd. So it can be treated as ac-number. Using calculation similar to what has been
done in Refs. 23–25, one arrives at
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Us1dsx1,x2;tuy1,y2;0d = e−2t o
n,m=0

` HDL
nDR

x1−y1+ntx1−y1+2n

n!sx1 − y1 + nd!
DL

mDR
x2−y2+mtx2−y2+2m

m!sx2 − y2 + md!

+ o
l=0

`
DL

nDR
x2−y1+ntx2−y1+2n

n!sx2 − y1 + nd!
DL

mDR
x1−y2−l+mtx1−y2−l+2m

m!sx1 − y2 − l + md!

3 blF− 1 +
x2 − y1 + n

DRt
bGJ , s86d

and

Us2dsx1,x2;tuy1,y2;0d = e−2t o
n,m=0

` HDL
nDR

x1−y1+ntx1−y1+2n

n!sx1 − y1 + nd!
DL

mDR
x2−y2+mtx2−y2+2m

m!sx2 − y2 + md!

+ o
l=0

`
DL

nDR
x2−y1+l+ntx2−y1+l+2n

n!sx2 − y1 + l + nd!
DL

mDR
x1−y2+mtx1−y2+2m

m!sx1 − y2 + md!

3 clF− 1 +
DRt

x1 − y2 + m+ 1
cGJ . s87d

Similarly one can obtain a more lengthy expression forUs3d. Note that atDL=0, Eqs.s86d ands87d
lead Eqs.s38d of Ref. 24 ands30d of Ref. 23, respectively.

To investigate the large-time behaviors of the probabilitiesUs1d, Us2d, andUs3d, it is useful to
decompose the vector spaces on whichb sin type 1 modeld andc sin types 2 and 3 modelsd act, in
two subspaces invariant under the action ofbscd, the first subspace corresponding to eigenvalues
with modulus one, and another invariant subspace. For types 1 and 2 models with conditionss46d
ands50d, as all the elements of matrixbscd are non-negative, the second subspace corresponds to
eigenvalues with modulus less than 1. By focusing on type 1 model, this decomposition can be
done by introducing two projectorsQ andR, satisfying

Q + R= 1,

QR= RQ= 0, s88d

fb,Qg = fb,Rg = 0.

Q projects on the first subspace andR projects on the second. Following Ref. 23, we multiplyUs1d

by Q+R=1:

Us1dsx;tuy;0d = Us1dQ + Us1dR. s89d

In the terms multiplied byR, one can treatb as a number with modulus different from 1. So the
integrand ins84d is nonsingular at pointspj =0, which have the main contributions at large times.
Settingpj =0, we haveSs1d<−1 andAs<s−1dfsg, and Eq.s84d results in

the second term ofUs1d =
1

2pt
he−hfx1 − y1 − sDR − DLdtg2+fx2 − y2 − sDR − DLdtg2j/s2td

− e−hfx1 − y2 − sDR − DLdtg2+fx2 − y1 − sDR − DLdtg2j/s2tdjR, t → `, s90d

which is independent ofb. So at large time, the second term ofUs1d tends to zero faster thant−1

and the leading term inUs1d, which is ordert−1, does not involve the second term.
If the only eigenvalue ofb with modulus 1 is 1, thenbQ=Q andUs1d has a simple behavior

at t→`,
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Us1dsx1,x2;tuy1,y2;0d = e−2t o
n,m=0

` HDL
nDR

x1−y1+ntx1−y1+2n

n!sx1 − y1 + nd!
DL

mDR
x2−y2+mtx2−y2+2m

m!sx2 − y2 + md!

+ o
l=0

`
DL

nDR
x2−y1+ntx2−y1+2n

n!sx2 − y1 + nd!
DL

mDR
x1−y2−l+mtx1−y2−l+2m

m!sx1 − y2 − l + md!

3 F− 1 +
x2 − y1 + n

DRt
GJQ. s91d

This is simply the propagator of a single-species model with diffusions to the right and left and
drop–push to the rightsi.e., thel=0 case of the reactions studied in Refs. 26 and 30d, multiplied
by Q. In fact Eq.s91d is l=0 case of Eq.s30d of Ref. 26, timesQ.

For Us2d, the same decomposition leads to Eq.s90d for its second term and in the casecQ
=Q, Us2d tends tos87d, with c=1, timesQ, at t→`. The resulting one-species model is them
=0 case of the reactions studied in Refs. 26 and 30. ForUs3d, we again finds90d and the one-
species partially asymmetric simple exclusion process of Ref. 17.
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In this paper, we give a condition on the bicharacteristic which guarantees the
global existence of the mild solution to the Boltzmann equation with an external
force for the hard-sphere model and potentials with angular cutoff in infinite
vacuum. This generalizes the previous results to the case when the force can have
arbitrary strength. The constructive condition on the bicharacteristic is used to
obtain the pointwise estimates on the collision operator so that the global existence
comes from the contraction mapping theorem. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1899985g

I. INTRODUCTION

The purpose of this paper is to study the global existence of mild solutions to the initial value
problem for the Boltzmann equation with an external force for the hard-sphere model and some
angle cutoff potential. Letf = fst ,x,vd be the density distribution function of the interacting gas
particles at timetù0 and positionxPR3 with velocity vPR3 for rarefied gases. In the presence
of external forces depending only on space and time variables, the evolution off is described by
the Boltzmann equation

f t = v ·¹x f + Est,xd ·¹v f = Qffg, s1.1d

with initial data

fs0,x,vd = f0sx,vd, s1.2d

whereEst ,xdPR3 is an external force andQ is a nonlinear collision operator capturing the binary
collisions between particles whose specific form will be given below.

Let sv ,v*d and sv8 ,vp8d be velocities before and after the collision, respectively. Under the
assumption of elastic collision, the conservation of the momentum and energy:

v + v* = v8 + vp8,

uvu2 + uv* u2 = uv8u2 + uvp8u
2,

yields

adAuthor to whom correspondence should be addressed. Electronic mail: cjzhu@mail.ccnu.edu.cn
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v8 = v − fsv − v*d · vgv, vp8 = v* + fsv − v*d · vgv, s1.3d

wherevPS+
2=hvPS2: sv−v*d ·vù0j. Moreover, the collision termQffg takes the form

Qffgsvd =
1

«
E

R33S+
2
Bsuv − v* u,udhfsv8dfsvp8d − fsvdfsv*djdv* dv, s1.4d

where« is the Knudsen number proportional to the mean free path. For simplicity of notation, we
sometimes usefsvd to denote fst ,x,vd without any ambiguity. In s1.4d, the function
Bsuv−v* u ,ud is the collision cross section with

u = cos−1S sv − v*d · v

uv − v* u D P F0,
p

2
G s1.5d

being the scattering angle betweenv−v* and v. The definition ofB depends on the physics of
collision. In fact, for the inverse power interaction potential,B takes the form of

Bsuv − v* u,ud = bgsuduv − v* ug, − 3, g , 1, s1.6d

with g=0 corresponding to the Maxwellian molecules,g.0 corresponding to the hard interaction
and g,0 corresponding to the soft interaction. Moreover, the hard-sphere model satisfies
Bsuv−v* u ,ud=suv−v* ucosu with s being the radius of the hard sphere.

For later use, as in Ref. 11 we denoteu=v−v* , ui=su·vdv andu'=u−ui so that

v8 = v − ui, vp8 = v − u'. s1.7d

Then the collision termQffg becomes

Qffgsvd =
1

«
E

R33S+
2
Bsuuu,udhfsv8dfsvp8d − fsvdfsv − udjdu dv, s1.8d

wherev8 andvp8 are given bys1.7d. Furthermore, let us denote the collision operator

Qsf,gd = Q+sf,gd − Q−sf,gd s1.9d

with the gain termQ+ and the loss termQ− given by

Q+sf,gdst,x,vd =
1

«
E

R33S+
2
Bsuuu,udfst,x,v8dgst,x,vp8ddu dv s1.10d

and

Q−sf,gdst,x,vd =
1

«
E

R33S+
2
Bsuuu,udfst,x,vdgst,x,v − uddu dv. s1.11d

Clearly,

Qffg = Qsf, fd. s1.12d

For any fixed pointst ,x,vd in R+3R33R3, we now consider the bicharacteristic equations of
s1.1d in R33R3,

dX

ds
= V,

dV

ds
= Ess,Xd,

s1.13d
sX,Vdus=t = sx,vd.

Suppose that the above ODE system have smooth solutions globally in time denoted by
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fXss;t,x,vd,Vss;t,x,vdg s1.14d

for any st ,x,vdPR+3R33R3. Then integratings1.1d along the bicharacteristic, we obtain the
representation of the mild solution to the Boltzmann equation,

fst,x,vd = f0sXs0;t,x,vd,Vs0;t,x,vdd +E
0

t

Qsf, fdss,Xss;t,x,vd,Vss;t,x,vddds. s1.15d

In fact, the mild solution can be defined as follows:
Definition 1.1: A non-negative function fst ,x,vdPCsf0,Td ;L+

1sR33R3dd is a mild solution to
s1.1d with a non-negative initial data f0 if and only if f satisfies the integral equations1.15d for all
tP f0,Td and a.e.sx,vdPR33R3.

The function spaces onR+3R33R3 for the solutions constructed later can be defined in the
following. For anyp.0,q.0, let Sp,q be the completion of the set consisting of the continuous
functions of compact support with respect to the norm

uuuf uuu = sup
t,x,v

s1 + uXs0;t,x,vdu2dp exphquVs0;t,x,vdu2jufst,x,vdu. s1.16d

And for any fixed timet, define the norm

i fstdi = sup
x,v

s1 + uXs0;t,x,vdu2dp exphquVs0;t,x,vdu2jufst,x,vdu, s1.17d

in particular,

if0ip,q = sup
x,v

s1 + uxu2dpequvu2uf0sx,vdu. s1.18d

Throughout this paper, the assumptions onp,q, the collision kernel and the external force can
be summarized as follows:

(A1) p.
1
2.

(A2) The cross sectionB is in the form ofs1.6d with −2,gø1 satisfying

E
0

p/2

bgsuds1 + tanuddu ø b0, s1.19d

whereb0 is a positive constant.
(A3) The external forceEst ,xd is C0 in st ,xd. Furthermore, for any fixed pointst ,x,vdPR+

3R33R3, the first order ODE systems1.13d has global smooth solutionss1.14d satisfying the
following constructive condition:

Xs0;s,Xss;t,x,vd,Vss;t,x,vd − jd = Xs0;t,x,vd + a1ss;t,x,vdj,

s1.20d
Vs0;s,Xss;t,x,vd,Vss;t,x,vd − jd = Vs0;t,x,vd − a2ss;t,x,vdj,

for any sPR+ andjPR3, wherea1ss; t ,x,vd ,a2ss; t ,x,vdPC1ssd satisfy the following inequali-
ties:

aiss;t,x,vd . 0, i = 1,2,

ass;t,x,vd ; a18ss;t,x,vda2ss;t,x,vd − a1ss;t,x,vda28ss;t,x,vd . 0, s1.21d

sa2ss;t,x,vddg+1ass;t,x,vd ù a0 . 0,

wherea0 is a positive constant independent ofs andst ,x,vd. Here and in the sequelai8ss; t ,x,vd
represent the derivative with respect tos.
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Now we can state the main result of this paper as follows:
Theorem 1.2: Under the assumptions (A1)–(A3), there is a sufficiently small positive constant

d0.0 such that if0ø f0sx,vd and if0ip,qø«d0, then there exists a unique global in time mild
solution fst ,x,vd to the initial value problems1.1d and s1.2d satisfyinguuuf u uuø2«d0.

Remark 1.3: For the moment let us discuss the assumptionssA1d–sA3d. First, sA1d means that
initial data decays with algebraic rate in the space variablex, and decays with exponential rate in
the velocity variablev. ThensA2d holds for the collision kernels satisfying the inverse power law
with an angular cutoff assumption and the hard-sphere model. Finally,sA3d is a constructive
assumption on the external forces which can be satisfied by forces without decay or smallness
assumption on their strength. In the following, we will give two examples of external forces
satisfyingsA3d. Even though in general the assumptionsA3d is difficult to verify and is in some
sense unsatisfactory, it can be viewed as the improvement of the previous results on the study on
the Boltzmann equation with the external force.

Remark 1.4: Based on the estimates on the cross section from Refs. 2 and 22, similar argu-
ment in this paper holds for the polynomial decay norm in the velocity. That is, define

uuuf uuu8 = sup
t,x,v,

s1 + uXs0;t,x,vdu2dps1 + uVs0;t,x,v,du2dqufst,x,vdu

and

if0ip,q8 = sup
x,v

s1 + uxu2dps1 + uvu2dquf0sx,vdu.

Moreover, instead of the assumptionssA1d and sA2d, we assume the following:
sA1d8p.

1
2 andq.

3
2.

sA2d8 The cross sectionB is in the form ofs1.6d with −2,gø1 and satisfying

Ubgsud
cosu

U ø b08,

whereb08 is some positive constant.
Then similar to Theorem 1.2, we also have that under the assumptionssA1d8 , sA2d8, and

sA3d, there is a sufficiently small positive constantd08.0 such that if 0ø f0sx,vd and if0ip,q8
ø«d08, then there exists a unique global in time mild solutionfst ,x,vd to the initial value problem
s1.1d and s1.2d satisfyinguuuf u uu8ø2«d08.

Now to understand the assumptionsA3d, we give the following two examples:
Example 1.4: Let Est ,xd;Estd. For any fixedst ,x,vd, the bicharacteristic equationss1.13d

have solutions

Xss;t,x,vd = x + vss− td +E
t

sE
t

h

Estddt dh,

Vss;t,x,vd = v +E
t

s

Estddt.

Hence,

Xs0;t,x,vd = x − vt −E
0

t E
t

h

Estddt dh,

Vs0;t,x,vd = v −E
0

t

Estddt.

Therefore,sA3d holds with
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a1ss;t,x,vd = s anda2ss;t,x,vd = 1,

when 0,a0ø1 and −2,gø1.
In fact, notice that for this case when external forces depend only on the timet, the Boltzmann

equation with external forces can be rewritten to the Boltzmann equation without forces by the
following transformation of independent variables, cf. Ref. 8:

t̃ = t,

x̃ = x −E
0

t E
0

h

Estddt dh, s1.22d

ṽ = v −E
0

t

Estddt.

Therefore, the existence of mild and classical solutions andL1 stability around vacuum to the
Boltzmann equation without forces, cf. Refs. 13, 25, and 12, can be applied to this case without
any difficulty.

Example 1.5: Let Est ,xd=a2x+E0std, with a.0 being a constant. For any fixedst ,x,vd, the
bicharacteristic equationss1.13d have solutions

Xss;t,x,vd =
ax+ v

2a
eass−td +

ax− v
2a

e−ass−td −
E2std
2a

eass−td +
E3std
2a

e−ass−td + E1ssd,

Vss;t,x,vd =
ax+ v

2
eass−td −

ax− v
2

e−ass−td −
E2std

2
eass−td −

E3std
2

e−ass−td + E18ssd,

whereE1ssd is some special solution to the second order linear ODE,

d2E1ssd
ds2 = a2E1ssd + E0ssd,

and sE2std ,E3stdd are defined by

E2std = E18std + aE1std,

E3std = E18std − aE1std.

Hence,

Xs0;t,x,vd =
ax+ v

2a
e−at +

ax− v
2a

eat −
E2std
2a

e−at +
E3std
2a

eat + E1s0d,

Vs0;t,x,vd =
ax+ v

2
e−at −

ax− v
2

eat −
E2std

2
e−at −

E3std
2

eat + E18s0d.

Straightforward calculation shows that

a1ss;t,x,vd =
1

2a
seas− e−asd anda2ss;t,x,v,d =

1

2
seas+ e−asd.

Thus,
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ass;t,x,vd = a18ss;t,x,vda2ss;t,x,vd − a1ss;t,x,vda28ss;t,x,vd ; 1 . 0

and

a2ss;t,x,vd ù 1.

If 0 ,a0ø1 and −1øgø1, thensA3d holds.
Notice that the positive coefficient in front ofx in the force term of Example 1.5 implies that

the bicharacteristic curves go to infinity in space as time tends to infinity. If the coefficient is
negative, then the bicharacteristic is oscillating in the space ofsX,Vd and there is no known
existence results on this interesting case for the nonlinear Boltzmann equation. However, for the
linearized Boltzmann equation, the case whenEst ,xd=−x was studied by Tabata20 using the
semigroup approach. This result was later generalized in Ref. 21 to the case of linearized Boltz-
mann equation with an unbounded external force potential that is spherically symmetric and
satisfies some differential inequalities.

Now we compare Theorems 1.2 with the previous related work. First, ifp.3/2, the bound on
the initial dataf0 implies the total mass satisfies

E
R33R3

uf0sx,vdudx dv ø C«d0,

whereC is a generic positive constant. This requires that the mean free path is sufficient large if
total mass is finite becaused0 is sufficiently small. This is exactly the requirement on the Boltz-
mann equation without forces in infinite vacuum considered by Illner and Shinbrot in Ref. 13. On
the other hand, as in Ref. 2, if 1 /2,pø3/2, then the initial total mass can be infinite. For the
method of proof, as in Refs. 11 and 25. Theorem 1.2 is obtained by using the contraction mapping
theorem. Precisely, we obtain the following estimates:

uuuT f uuu ø Cif0ip,q + Cuuuf uuu2,

s1.23d
uuuT f − Tguuu ø Csuuuf uuu + uuuguuuduuuf − guuu,

whereT is a mapping fromSp,q to Sp,q defined bys3.18d in Sec. III. In order to proves1.23d, we
need to control the time integration of the collision termQsf ,gd along the bicharacteristic,

E
0

t

Qsf,gdss,Xss;t,x,vd,Vss;t,x,vddds.

The estimation on this integral is based on the constructive assumptionsA3d and is given in
Lemma 3.1 of Sec. III.

There have been extensive studies on the mathematical aspects on the Boltzmann equation,
see Refs. 2, 4, and 5. For the Boltzmann equation in the absence of an external force in infinite
vacuum, the global existence of mild solutions tos1.1d was first given by Illner–Shinbrot13 fol-
lowing the work on local existence by Kaniel–Shinbrot in Ref. 14. For perturbation of a global
Maxwellian, Ukai,24 Nishida–Imai,16 Shizuta–Asano,19 and Uaki–Asano,26 and others showed the
global existence of solutions to the initial or initial boundary value problem of the Boltzmann
equation in various situations. For other interesting issues, such as large data existence theory,
stability and convergence to the Maxwellian, see Refs. 6, 15, 18, and 23, and references therein.

However, there are fewer works done for the Boltzmann equation with an external force.
Glikson9,10 obtained the unique local existence of solutions to the initial value problem for suffi-
ciently small initial data. When the initial data was arbitrary large, the local existence of solutions
to the initial and initial boundary value problem was obtained by Asano.1 And a general frame-
work on the global existence solutions in infinite vacuum is given in Ref. 3. Recently, Guo11

proved the global existence of classical solutions with small amplitude to the initial value problem
for the Boltzmann equation with an external force and a “soft” potential when the external force
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decays in timessee also Ref. 7d. Moreover, the global existence and stability of the stationary
solutions to time independent potential force was obtained by Ukai–Yang–Zhao in Ref. 27 through
the energy method. Our result is new in the sense that a constructive condition is given for the
global existence of mild solutions in infinite vacuum when external force can be arbitrary large.

The rest of this paper is organized as follows. In Sec. II, we give some preliminary estimates
for later use. In Sec. III, we study the integration of the collision term to obtain the global in time
estimate. And then the existence of the mild solution to the initial value problems1.1d and s1.2d
follows from the contraction mapping theorem.

II. PRELIMINARIES

In this section, we give some preliminary lemmas which will be used in the proof of the global
existence of solutions in the next section. First we borrow three lemmas from Refs. 12 and 17 for
the completeness of the paper. Interested readers please refer to these two papers for their proofs.

Lemma 2.1: For any zPR3, hPR and sui ,u'dPR33R3 with ui ·u'=0, we have

uz+ huiu2 + uz+ hu'u2 = uzu2 + uz+ hsui + u'du2. s2.1d

Lemma 2.2: For any p.
1
2 and sz,udPR33R3 with uÞ0, we have

E
0

`

s1 + uz+ huu2d−p dh ø
4p

uuus2p − 1d
. s2.2d

Moreover, for any q.0,−2,gø1 and zPR3, we have

E
R3

uuug−1 exph− quz− uu2jdu ø Ig,q
1 , s2.3d

where

Ig,q
1 =

4p

g + 2
+

p

q3/2, s2.4d

is a positive constant depending only ong and q.
Lemma 2.3: For any p.0, zPR3, sPR+ andsui ,u'dPR33R3 with ui ·u'=0, we have that

s1 + uz+ suiu2d−ps1 + uz+ su'u2d−p ø s1 + uzu2d−phs1 + uz+ suiu2d−p

+ s1 + uz+ su'u2d−p + s1 + uz+ ssui + u'du2d−pj. s2.5d

In order to control the integration of the collision termQsf ,gd along the bicharacteristic

E
0

t E
R33S+

2
s¯dss,Xss;t,x,vd,Vss;t,x,vdddu dv ds,

we consider the following two integrals:

I2,1sz1,z2,t,x,vd =E
0

` E
R33S+

2
bgsuduuugs1 + uz1 + a1ss;t,x,vduu2d−p

3 exph− quz2 − a2ss;t,x,vduu2jdu dv ds s2.6d

and
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I2,2sz1,z2,t,x,vd =E
0

` E
R33S+

2
bgsuduuughs1 + uz1 + a1ss;t,x,vduiu2d−p + s1 + uz1 + a1ss;t,x,vdu'u2d−pj

3 exph− quz2 − a2ss;t,x,vduu2jdu dv ds, s2.7d

for any sz1,z2dPR33R3 and st ,x,vdPR+3R33R3. Herea1ss; t ,x,vd and a2ss; t ,x,vd satisfy
the assumptionsA3d. The estimates ons2.6d and s2.7d are given in the following lemma:

Lemma 2.4: Under the assumptions (A1)–(A3), it holds that

supI2,isz1,z2,t,x,vd ø Ig,p,q
2 , i = 1,2, s2.8d

where

Ig,p,q
2 =

8ppb0Ig,q
1

a0s2p − 1d
, s2.9d

is a positive constant depending only ong ,p,q,a0, and b0.
Proof: For i =1, fix sz1,z2dPR33R3 and st ,x,vdPR+3R33R3. Sincea2ss; t ,x,vd.0, we

let

a2ss;t,x,vdu = ū,

to obtain

I2,1sz1,z2,t,x,vd =E
0

` E
R33S+

2
bgsuduūugsa2ss;t,x,vdd−g−3S1 +Uz1 +

a1ss;t,x,vd
a2ss;t,x,vd

ūU2D−p

3exph− quz2 − ūu2jdū dv ds. s2.10d

Since

d

ds
Sa1ss;t,x,vd

a2ss;t,x,vdD =
a18ss;t,x,vda2ss;t,x,vd − a1ss;t,x,vda28ss;t,x,vd

sa2ss;t,x,vdd2 =
ass;t,x,vd

sa2ss;t,x,vdd2 . 0,

by the assumptionsA3d, we can let variable

h =
a1ss;t,x,vd
a2ss;t,x,vd

,

to have

I2,1sz1,z2,t,x,vd ø E
0

` E
R33S+

2
bgsuduūug

1

sa2ss;t,x,vddg+1ass;t,x,vd
s1 + uz1 + hūu2d−p

3exph− quz2 − ūu2jdū dv dh ø
1

a0
E

0

` E
R33S+

2
bgsuduūugs1 + uz1 + hūu2d−p

3exph− quz2 − ūu2jdū dv dh. s2.11d

Then it follows from the Lemma 2.2 and the assumptionsA2d that
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I2,1sz1,z2,t,x,vd ø
4p

a0s2p − 1dER33S+
2
bgsuduūug−1 exph− quz2 − ūu2jdū dv

=
8pp

a0s2p − 1dE0

p
2 bgsudsinu duE

R3
uūug−1 exph− quz2 − ūu2jdū ø

8ppb0Ig,q
1

a0s2p − 1d
.

s2.12d

This completes the proof fori =1.
For the case ofi =2, similar tos2.11d and s2.12d, we have

I2,2sz1,z2,t,x,vd ø
4p

a0s2p − 1dER33S+
2
bgsuduūugS 1

uūiu
+

1

uū'uDexph− quz2 − ūu2jdū dv

=
8pp

a0s2p − 1dER3
E

0

p/2

bgsuduūugS 1

uūucosu
+

1

uūusinu
Dexph− quz2 − ūu2jsinu dū du

=
8pp

a0s2p − 1dE0

p/2

bgsuds1 + tanudduE
R3

uūug−1 exph− quz2 − ūu2jdū ø
8ppb0Ig,q

1

a0s2p − 1d
.

s2.13d

Hence,s2.12d and s2.13d yields the proof of Lemma 2.4.

III. EXISTENCE OF THE MILD SOLUTION

In this section, we give the crucial estimate for the global existence of the solution by the
contraction mapping theorem.

First, similar tos1.9d–s1.11d, denote

Nsf,gd = N+sf,gd − N−sf,gd, s3.1d

by

N+sf,gdst,x,vd =E
0

t

Q+sf,gdss,Xss;t,x,vd,Vss;t,x,vddds

=
1

«
E

0

t E
R3S+

2
bgsuduuugfss,Xss;t,x,vd,Vss;t,x,vd − uidgss,Xss;t,x,vd,

3Vss;t,x,vd − u'ddu dv ds s3.2d

and

N−sf,gdst,x,vd =E
0

t

Q−sf,gdss,Xss;t,x,vd,Vss;t,x,vddds

=
1

«
E

0

t E
R3S+

2
bgsuduuugfss,Xss;t,x,vd,Vss;t,x,vddgss,Xss;t,x,vd,

3Vss;t,x,vd − uddu dv ds. s3.3d

From s1.9d, we have

Nsf,gdst,x,vd =E
0

t

Qsf,gdss,Xss;t,x,vd,Vss;t,x,vddds. s3.4d

Lemma 3.1: Under the assumptions (A1)–(A3), it holds that
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uuuNsf,gduuu ø
1

«
Ig,p,quuuf uuu 3 uuuguuu, s3.5d

where Ig,p,q is a positive constant.
Proof: We first estimate the loss termN−sf ,gd in s3.1d. Let st ,x,vd fixed. From the definition

s1.17d of the normi ·i and the assumptionsA3d, we have for anys in s0,td,

ufss,Xss;t,x,vd,Vss;t,x,vddu

ø ifssdis1 + uXs0;s,Xss;t,x,vd,Vss;t,x,vddu2d−p

3 exph− quVs0;s,Xss;t,x,vd,Vss;t,x,vddu2j

= ifssdis1 + uXs0;t,x,vdu2d−p exph− quVs0;t,x,vdu2j s3.6d

and

ugss,Xss;t,x,vd,Vss;t,x,vd − udu

ø igssdis1 + uXs0;s,Xss;t,x,vd,Vss;t,x,vd − udu2d−p

3 exph− quVs0;s,Xss;t,x,vd,Vss;t,x,vd − udu2j

= igssdis1 + uXs0;t,x,vd + a1ss;t,x,vduu2d−p 3 exph− quVs0;t,x,vd

− a2ss;t,x,vduu2j. s3.7d

Hence, froms3.3d, we have

uN−sf,gdst,x,vdu ø
1

«
E

0

t E
R33S+

2
bgsuduuugifssdiigssdis1 + uXs0;t,x,vdu2d−pexph− quVs0;t,x,vdu2j

3s1 + uXs0;t,x,vd + a1ss;t,x,vduu2d−pexph− quVs0;t,x,vd

− a2ss;t,x,vduu2jdu dv dsø
1

«
s1 + uXs0;t,x,vdu2d−p exph− quVs0;t,x,vdu2j

3uuuf uuuuuuguuuE
0

` E
R33S+

2
bgsuduuugs1 + uXs0;t,x,vd + a1ss;t,x,vduu2d−p

3 exph− quVs0;t,x,vd − a2ss;t,x,vduu2jdu dv ds. s3.8d

By Lemma 2.4, we have

uN−sf,gdst,x,vdu ø
1

«
Ig,p,q
2 s1 + uXs0;t,x,vdu2d−p exph− quVs0;t,x,vdu2juuuf uuu 3 uuuguuu. s3.9d

Multiplying s3.9d by s1+uXs0;t ,x,vdu2dp exphquVs0;t ,x,vdu2j and taking the supremum with re-
spect tost ,x,vd in R+3R33R3, we have bys1.16d that

uuuN−sf,gduuu ø
1

«
Ig,p,q
2 uuuf uuu 3 uuuguuu. s3.10d

Next for the gain termN+sf ,gd, similar to s3.6d and s3.7d, we have for anys in s0,td,

053307-10 Duan, Yang, and Zhu J. Math. Phys. 46, 053307 ~2005!

                                                                                                                                    



ufss,Xss;t,x,vd,Vss;t,x,vd − uidu

ø ifssdis1 + uXs0;s,Xss;t,x,vd,Vss;t,x,vd − uidu2d−p 3 exph

− quVs0;s,Xss;t,x,vd,Vss;t,x,vd − uidu2j

= ifssdis1 + uXs0;t,x,vd + a1ss;t,x,vduiu2d−pexph− quVs0;t,x,vd

− a2ss;t,x,vduiu2j s3.11d

and

ugss,Xss;t,x,vd,Vss;t,x,vd − u'du

ø igssdis1 + uXs0;s,Xss;t,x,vd,Vss;t,x,vd − u'du2d−p

3 exph− quVs0;s,Xss;t,x,vd,Vss;t,x,vd − u'du2j

= igssdis1 + uXs0;t,x,vd + a1ss;t,x,vdu'u2d−p

3 exph− quVs0;t,x,vd − a2ss;t,x,vdu'u2j. s3.12d

Settings3.11d and s3.12d into s3.2d, we have that

uN+sf,gdst,x,vdu ø
1

«
E

0

t E
R33S+

2
bgsuduuugifssdiigssdis1 + uXs0;t,x,vd + a1ss;t,x,vduiu2d−p

3 s1 + uXs0;t,x,vd + a1ss;t,x,vdu'u2d−p 3 exph− quVs0;t,x,vd − a2ss;t,x,vduiu2

− quVs0;t,x,vd − a2ss;t,x,vdu'u2jdu dv dsø
1

«
uuuf uuu 3 uuuguuuE

0

` E
R33S+

2
bgsud

3uuugs1 + uXs0;t,x,vd + a1ss;t,x,vduiu2d−p 3 s1 + uXs0;t,x,vd

+ a1ss;t,x,vdu'u2d−p 3 exph− quVs0;t,x,vd − a2ss;t,x,vduiu2 − quVs0;t,x,vd

− a2ss;t,x,vdu'u2jdu dv ds. s3.13d

By Lemmas 2.1 and 2.3, we have

uN+sf,gdst,x,vdu ø
1

«
uuuf uuu 3 uuuguuuE

0

` E
R33S+

2
bgsuduuugs1 + uXs0;t,x,vdu2d−p

3 hs1 + uXs0;t,x,vd + a1ss;t,x,vduiu2d−p + s1 + uXs0;t,x,vd + a1ss;t,x,vdu'u2d−p

+ s1 + uXs0;t,x,vd + a1ss;t,x,vduu2d−pj 3 exph− quVs0;t,x,vdu2 − quVs0;t,x,vd

− a2ss;t,x,vduu2jdu dv dsø
1

«
s1 + uXs0;t,x,vdu2d−p exph− quVs0;t,x,vdu2juuuf uuu

3 uuuguuu 3 E
0

` E
R33S+

2
bgsuduuughs1 + uXs0;t,x,vd + a1ss;t,x,vduiu2d−p + s1

+ uXs0;t,x,vd + a1ss;t,x,vdu'u2d−p + s1 + uXs0;t,x,vd + a1ss;t,x,vduu2d−pj

3 exph− quVs0;t,x,vd − a2ss;t,x,vduu2jdu dv ds. s3.14d

Thus, it follows from Lemma 2.4 that

uN+sf,gdst,x,vdu ø
2

«
Ig,p,q
2 s1 + uXs0;t,x,vdu2d−p exph− quVs0;t,x,vdu2juuuf uuu 3 uuuguuu,

That is,
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uuuN+sf,gduuu ø
2

«
Ig,p,q
2 uuuf uuu 3 uuuguuu. s3.15d

Combinings3.10d and s3.15d, we have

uuuNsf,gduuu ø uuuN+sf,gduuu + uuuN−sf,gduuu ø
3

«
Ig,p,q
2 uuuf uuu 3 uuuguuu. s3.16d

Take Ig,p,q=3Ig,p,q
2 and then it follows froms2.4d and s2.9d that

Ig,p,q =
24ppb0Ig,q

1

a0s2p − 1d
=

24ppb0

a0s2p − 1dS 4p

g + 2
+

p

q3/2D . s3.17d

Therefore,s3.16d yields s3.5d and this completes the proof of Lemma 3.1.
Finally, we prove Theorem 1.2. For this purpose, we define the mappingT :Sp,q→Sp,q by

T fst,x,vd = f0sXs0;t,x,vd,Vs0;t,x,vdd + Nsf, fdst,x,vd s3.18d

for any f PSp,q. For the mappingT, we have the following lemma.
Lemma 3.2: For any f, gPSp,q, it holds that

uuuT f uuu ø if0ip,q +
1

«
Ig,p,quuuf uuu2,

s3.19d

uuuT f − Tguuu ø
1

«
Ig,p,qsuuuf uuu + uuuguuuduuuf − guuu,

where Ig,p,q is defined bys3.17d.
Proof: Fix f PSp,q. Multiplying s3.18d by s1+uXs0;t ,x,vdu2dp exphquVs0;t ,x,vdu2j and taking

the supremum with respect tost ,x,vd over R+3R33R3, by Lemma 3.1, we obtain the first
estimate ins3.19d. Then, notice that

T f − Tg = Nsf − g, fd + Nsg, f − gd. s3.20d

The second estimate ins3.19d follows similarly.
Proof of Theorem 1.2: We only need to show thatT has a fixed point by the contraction

mapping theorem. In fact, let us denote the closed subsetS0 of Sp,q by

S0 = hf P Sp,q:uuuf uuu ø 2«d0j, s3.21d

whered0 is a sufficiently small positive constant such that

l0 ; 4d0Ig,p,q , 1. s3.22d

Let if0ip,qø«d0 and then we have from Lemma 3.2 that

T f P S0 and uuuT f − Tguuu ø l0uuuf − guuu, s3.23d

for any f , gPS0. Thus the mappingT :S0→S0 is a contraction and hence has a fixed pointf in
S0=hf PSp,q: uuuf u uuø2«d0j. This implies that the initial value problems1.1d ands1.2d has a unique
solution f such thatuuuf u uuø2«d0. It then follows from the same argument as the one in Ref. 25 that
if f0sx,vdù0 then fst ,x,vdù0. Hence, the proof of Theorem 1.2 is complete.
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We present a classification of the hyperbolic Kac–MoodysHKM d superalgebras.
The HKM superalgebras of rankr ù3 are finite in numbers213d and limited in rank
s6d. The Dynkin–Kac diagrams and the corresponding simple root systems are
determined. We also discuss a class of singular subssuperdalgebras obtained by a
folding procedure. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1851605g

I. INTRODUCTION

Affine Kac–Moody are presently well established tools of theoretical physics. The indefinite
Kac–MoodysKM d algebras1 form a so general set of algebras that they defy any general classi-
fication. A subclass of these KM algebras, called hyperbolic, which are defined by the property
that the diagramssgenerally disconnectedd obtained taking away a dot from their defining dia-
grams define a direct sum of finite and/or affine KM algebras have been classified in Refs. 2 and
3. It has been found that these algebras are finite in numbers238 in which 142 have a symmetric
or symmetrizable Cartan matrixd and bounded in ranks10d. These algebras have in the last decade
attracted the attention of physicists, as they appear in a variety of physical models in two-
dimensional field theoriesssupergravity, string theory, cosmological billiardsd.4–7 Therefore it
seems natural to study the corresponding partners in the realm of Kac–Moody superalgebras.8–10

From these motivations, the authors of Ref. 11 have recently classified hyperbolic Kac–Moody
sHKM d superalgebras by a procedure quite close to that followed to classify the hyperbolic
Kac–Moody ones, showing that they are limited in rank, now the maximum rank being 6, and that
they are finite in numbersfor rank .2d. However, as we remarked that many diagrams are
missing, while some of the proposed Dynkin–Kac diagrams correspond in fact to diagrams of
untwisted or twisted affine Lie superalgebrasssometimes in the not distinguished basisd, we
present here a, hopefully exhaustive, classification of HKM superalgebras, together with a corre-
sponding simple roots basis and we discuss a class of singular subalgebras.

The paper is organized as follows: in Sec. II we recall the definition of a superalgebra, the
relation between Dynkin–Kac diagrams and generalized Cartan matrices, the action of the
ssuperdWeyl or generalized Weyl transformations on the simple roots systems and the structure of
the supplementary or non-Serre relations. Although most of the material is not new, we believe it
is worthwhile to report it in some details for several reasons:sid the standard rules of translating
matrices in diagrams must be slightly and suitably defined to include the case of indefinite, in
particular hyperbolic, KM superalgebras;sii d the deformation of the Dynkin–Kac diagrams must
be carefully handled, otherwise one is lead to naively include diagrams for HKM superalgebras,
which really correspond to more general indefinite KM superalgebras;siii d the action of the
generalized Weyl transformations, which provides also in the case of HKM superalgebras all the
not equivalent simple roots systems, allows one not to be worried about the appearance of new
non-Serre relations. In Sec. III and the related appendixes we present the diagrams corresponding
to HKM superalgebras, together with theirsnot uniqued system of simple roots and with their
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maximal regular subalgebras; in Sec. IV we list the singular subalgebras, obtained by the proce-
dure of folding.

II. KAC–MOODY SUPERALGEBRAS

A. Generalized Cartan matrices and Dynkin diagrams

Let A be a r 3 r matrix andhi1,… , ipj be a subset of indices ofI =h1,… ,rj. The principal
hi1,… , ipj-submatrix ofA, of order r −p, is a matrix obtained fromA by deleting the rows and
columns labelled byi1,… , ip. A principal submatrix of orderr −1 is called leading.

We start by defining the notion of the generalized Cartan matrix. In the case ofZ2-graded
algebras, it is convenient to deal with a recursive definition.

Definition 2.1: A r3 r matrix A with integral entries aij is called ageneralized Cartan matrix
if for each i[ h1,… ,rj, the leading principalhij-submatrix of A is a generalized Cartan matrix
(which may be of block diagonal form).

The Cartan matrices of the simple Lie algebras—An, Bn, Cn, Dn, E6,7,8, F4, and G2—and of
the basic Lie superalgebras—Asm,nd, Bsm,nd, Csn+1d, Dsm,nd, Fs4d, Gs3d, and Ds2,1,ad—are
generalized Cartan matrices.

The matrix A is calledsymmetrizableif it exists an invertible diagonal matrix D such that DA
is a symmetric matrix. The matrix A is calledindecomposableif it cannot be reduced to a block
diagonal form by reordering rows and columns.

We will only consider generalized Cartan matrices which are indecomposable and symmetri-
zable. Moreover, we assume that the generalized Cartan matrices are properly normalized, i.e.,
aii =2 or aii =0 for eachi. If one defines the matrixDij =didi j where the rational coefficientsdi

satisfydiaij =djaji , the symmetric Cartan matrixA8 is given from the generalized Cartan matrixA
by A8=DA. Note that, due to the fact that off-diagonal entries of a row of a Cartan matrix
corresponding toaii =0 may have different signs, the diagonal entries of the symmetric Cartan
matrices are not necessarily positive.

Remark 2.1:It follows from the definition that the Cartan matrices of the affinesuntwisted or
twistedd Kac–Moody algebras and superalgebras are generalized Cartan matrices.

Definition 2.2: Let t be a subset of I=h1,… ,rj. To a given generalized Cartan matrix A and
subsett, we associate a complex contragradient Lie superalgebraGsA,td—called Kac–Moody
superalgebra—with3r generators hi, ei

± and Z2-gradation defined bydegei
±=0 if i ¹t, degei

±

=1 if i [t and deghi =0 for all i . The generators hi and ei
± are subject to the following set of

relations:

fhi,hjg = 0, s2.1d

fhi,ej
±g = ± aijej

±, s2.2d

vei
+,ej

−b = di jhi , s2.3d

vei
±,ei

±b = 0 if aii = 0 s2.4d

and

sadei
±d1−ãi jej

± = 0 s2.5d

where the matrix A˜ =sãijd is deduced from the Cartan matrix A=saijd of GsA,td by replacing all its
positive off-diagonal entries by21. Here ad denotes the adjoint action

sadXdY = vX,Yb = XY− s− 1ddegX·degYYX. s2.6d

We denote byG0 and G1 the even and odd parts of the Kac–Moody superalgebraGsA,td. Let
H,G0 be the subalgebra ofG generated by thehi sCartan subalgebrad. The superalgebraGsA,td
can be decomposed asG= %aGa whereGa=hx[G u fh,xg=ashdx,h[Hj. By definition, the root
system of G is the setD=ha[H* uGaÞ0j. A root a is called evensrespectively, oddd if
GaùG0Þx srespectively,GaùG1Þxd. The set of evensrespectively, oddd roots is denoted byD0
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srespectively,D1d. SinceGsA,td clearly admits a Borel decomposition, one defines as usual the
notion of simple root system.8,12

To each superalgebraGsA,td can be associated a Dynkin diagram according to the following
rules.12 We will always assume thati [t if aii =0.

s1d Using the generalized Cartan matrixA,

sad one associates to eachi such thataii =2 andi ¹t a white dot, to eachi such thataii
=2 andi [t a black dot, to eachi such thataii =0 andi [t a grey dot,

s
white dot

P
black dot

^

grey dot

.

sbd The ith and j th dots will be joined byhi j lines where

hi j = maxsuaij u,uaji ud if aii Þ 0 or/andajj Þ 0 anduaijaji u ø 4,

hi j = uaij u = uaij u if aii = ajj = 0 anduaij u,uaji u ø 4.

Otherwise, theith and j th dots will be joined by a boldface line equipped with an
ordered pair of integerssuaij u , uaji ud. Note that this latter case does not appear for finite
or affine Kac–Moody superalgebras.

scd We add an arrow on the lines connecting theith and j th dots whenhi j .1 and uaij u
Þ uaji u, pointing from j to i if uaij u.1.

sdd For Ds2,1;ad, hi j =1 if aij Þ0 and hi j =0 if aij =0. No arrow is set on the Dynkin
diagram.

s2d Using the symmetric Cartan matrixA8,

sad one associates to eachi such thataii8Þ0 and i ¹t a white dot, to eachi such thataii8
Þ0 and i [t a black dot, to eachi such thataii8 =0 andi [t a grey dotssee pictures
aboved.

sbd The ith and j th dots will be joined byhi j lines where

hi j =
2uaij8 u

minsuaii8u,uajj8 ud
if aii8 ·ajj8 Þ 0 andaij8

2 ø uaii8 ·ajj8 u,

hi j =
2uaij8 u

minsuaii8u,2d
if aii8 Þ 0, ajj8 = 0 andhi j ø 4,

hi j = uaij8 u if aii8 = ajj8 = 0 anduaij8 u ø 4.

Otherwise, theith and j th dots will be joined by a boldface line equipped with an
ordered pair of integerssuaij u , uaji ud.

scd We add an arrow on the lines connecting theith and j th dots whenhi j .1, pointing
from i to j if aii8 ·ajj8 Þ0 anduaii8u. uajj8 u or if aii8 =0, ajj8 Þ0, uajj8 u,2, and pointing from
j to i if aii8 =0, ajj8 Þ0, uajj8 u.2.

sdd For Ds2,1;ad, hi j =1 if aij8 Þ0 and hi j =0 if aij8 =0. No arrow is set on the Dynkin
diagram. Although the rules seem more complicated when using the symmetric Cartan
matrix A8, the computation of the Cartan matrixA is often more involved than the
symmetric Cartan matrixA8.

Remark 2.2:The entries of the symmetric Cartan matricesA8 can be obtained as the scalar
products of the simple roots, i.e.,aij8 =sai ,a jd sup to a multiplication by a suitable factor in order
to get integer entriesd.

Remark 2.3:The above rules imply that two white/black dots of square lengthL and scalar
productS are connected byu2S/Lu lines. With this convention, the Dynkin diagram of the affine
Kac–Moody algebraA1

s1d is simply given by two white dots connected by two lines without any
arrow.
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Note that for superalgebras Dynkin–Kac diagrams with the same “topology” may be different.
For example the diagrams drawn below represent, respectively, the superalgebras sls2u2d,
osps4u2d, osps4u4d and a hyperbolic Kac–Moody superalgebra of rank fourssee Definition 3.1d.
The root systems are described in terms of the orthogonal vectors«i, di, andK± ssee Appendix B
for conventionsd,

B. Non-Serre-type relations and generalized Weyl transformations

In the case of finite and affine Kac–Moody superalgebras, it is known that the description
given by the Serre relationss2.1d to s2.4d may lead to superalgebras with nontrivial ideals.13,14 In
order to obtain a simple superalgebra, it is necessary to write supplementary relations involving
more than two generators, in order to quotient the bigger superalgebra. These supplementary
non-Serre-type conditions appear when one deals with isotropic odd rootssthat isaii =0d.

The supplementary conditions depend on the different kinds of vertices which appear in the
Dynkin diagrams. The vertices for finite and affine superalgebras can be of the following type:

where the small black dots represent either white dots associated to even roots or grey dots
associated to isotropic odd roots. Hyperbolic superalgebras exhibit also more complicated vertices.

The supplementary conditions take the following form:13–15

type I, IIa, and IIb vertices, vem
± ,vem+1

± ,vem
± ,em−1

± bbb = 0,

type III vertex, vem
± ,vem+1

± ,em−1
± bb − vem+1

± ,vem
± ,em−1

± bb = 0,

type IV vertex, vem
± ,vvem+1

± ,vem
± ,em−1

± bb,vem
± ,em−1

± bbb = 0,

type V vertex, vem
± ,vem−1

± ,vem
± ,vem+1

± ,vem
± ,vem−1

± ,em−2
± bbbbbb = 0,
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type VI vertex, ve2
±,ve1

±,ve3
±,ve2

±,ve1
±,e0

±bbbbb − 2ve1
±,ve2

±,ve3
±,ve2

±,ve1
±,e0

±bbbbb = 0,

type VII vertex, 2ve2
±,ve1

±,ve3
±,ve2

±,ve1
±,e0

±bbbbb − 3ve1
±,ve2

±,ve3
±,ve2

±,ve1
±,e0

±bbbbb = 0.

For Kac–Moody superalgebras, there are in general many inequivalent simple root systemsswhen
they contain isotropic odd rootsd, up to a transformation of the Weyl groupWsGd of G. Following
Ref. 16, the Weyl groupWsGd is extended by adding the following transformationsscalled gen-
eralized Weyl transformationsd associated to the isotropic odd roots ofG. For a[D1, one defines

wasbd = b − 2
sa,bd
sa,ad

a if sa,ad Þ 0,

wasbd = b + a if sa,ad = 0 andsa,bd Þ 0,

wasbd = b if sa,ad = 0 andsa,bd = 0,

wasad = − a. s2.7d

The transformation associated to an isotropic odd roota cannot be lifted to an automorphism of
the superalgebra sincewa transforms even roots into odd ones, and vice versa, and the
Z2-gradation would not be respected.

Let D0 be a simple root system ofG anda an isotropic odd root. Then one has for any root
gÞnaa,

g = o
bÞa[D0

aabÞ0

nbb + o
bÞa[D0

aab=0

nbb + naa = o
bÞa[D0

nbwasbd + sgwasad, s2.8d

where the coefficientsna, nb[Zù0 andsg is given by

sg = o
bÞa[D0

aabÞ0

nb − na. s2.9d

Then, by induction on the height of the rootg, one can prove thatsg is a non-negative number,
which shows that the transformed simple root systemwasD0d is again a simple root system.16 The
generalization of the Weyl group gives a method for constructing all the simple root systems ofG
and hence all the inequivalent Dynkin diagrams. A simple root systemD0 being given, from any
isotropic odd roota[D0, one constructs the simple root systemwasD0d wherewa is the general-
ized Weyl reflection with respect toa and one repeats the procedure on the obtained system until
no new basis arises.

Note that this procedure is in fact very general and apply for any Kac–Moody superalgebra
whose simple root systems contain isotropic odd roots. However, for Kac–Moody superalgebras
which are neither of finite type nor of affine one, one may obtain in certain cases simple root
systems containing even or odd rootssd of very large negative length. We will comment this point
in the next section in the peculiar case of hyperbolic KM superalgebras.

III. HYPERBOLIC KAC–MOODY SUPERALGEBRAS

A. Definition

Let GsA,td be a Kac–Moody superalgebra with generalized Cartan matrixA andZ2-gradation
t. By convention, it will be called indefinite Kac–Moody superalgebra if it is neither of finite nor
of affine type. Of course, when theZ2-gradationt is trivial, one recovers the usual classification of
the Kac–Moody algebras.

Definition 3.1: LetGsA,td be an indefinite Kac–Moody superalgebra with generalized Cartan
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matrix A and nontrivialZ2-gradation t corresponding to a connected Dynkin–Kac diagram.
GsA,td is called ahyperbolic Kac–MoodysHKM d superalgebra if every leading principal sub-
matrix of A decomposes into constituents of finite or affine type, or equivalently, if deleting a
vertex of the Dynkin diagram, one gets Dynkin diagrams of finite or affine type.

The hyperbolic superalgebras are divided into the following classes:

s1d strictly hyperbolic if every leading principal submatrix ofA decomposes into constituents of
finite type,

s2d purely hyperbolic if every leading principal submatrix ofA decomposes into constituents of
affine type,

s3d hyperfinite if at least one leading principal submatrix ofA decomposes into constituents of
finite type,

s4d hyperaffine if at least one leading principal submatrix ofA decomposes into constituents of
affine type.

Theorem 3.2: The hyperbolic Kac–Moody superalgebras of rank rù3 are finite in number
(213) and limited in rank (6). They are listed in Appendix A.

Remark 3.1:As in the algebraic case, the HKM superalgebras arenot of finite growth.10,17Let
us remind the notion of growth: letGsA,td be a Kac–Moody superalgebra andI,G a finite subset
of G. The growth ofG is by definition the number

rsGd = sup
I

lim
n→`

sln dsI,nd/ln nd, s3.1d

whereI runs over all finite subsets ofG and dsI ,nd is the dimension of the linear span of the
commutators of length at mostn of elements ofI. The superalgebraG is of finite growth if
rsGd,`.

By applying the Definition 3.1, one gets a Dynkin diagram for a given HKM superalgebra.
The other Dynkin diagrams are obtained by means of generalized Weyl transformations. Gener-
ally, the transformed Dynkin diagrams do not satisfy the Definition 3.1ssee example belowd. We
conjecture that it always exists only one Dynkin diagram with the minimal number of odd roots
satisfying Definition 3.1. Such a Dynkin diagram will be called distinguished.

B. Example

As an illustration of the generalized Weyl transformations procedure, we give below the
different inequivalent simple root systems with the corresponding Dynkin diagrams and symmet-
ric Cartan matrices of a HKM superalgebra of rank 6. Lets«+=K+,«−=K−,«1,«2,«3,«4,«5=dd be
a basis ofRs5,2d with metric gij =s«i ,« jd such thatg+−=g−+=g11=g22=g33=g44=−g55=1 and all
other values are zero.

sid Simple root system D0=ha1=d−«1−K−,a2=«1−«2,a3=«2−«3,a4=«3−«4,a5=«3

+«4,a6=K+−«1−«2j,

sii d Simple root systemD0=ha1=K−−d+«1,a2=d−«2−K−,a3=«2−«3,a4=«3−«4,a5=«3

+«4,a6=K+−«1−«2j,
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siii d Simple root systemD0=ha1=«1−«2,a2=K−−d+«2,a3=d−«3−K−,a4=«3−«4,a5=«3

+«4,a6=K+−«1−«2j,

sivd Simple root systemD0=ha1=«1−«2,a2=«2−«3,a3=K−−d+«3,a4=d−«4−K−,a5=d
+«4−K−,a6=K+−K−+d−«1−«2−«3j,

svd Simple root system D0=ha1=«1−«2,a2=«2−«3,a3=«3−«4,a4=K−−d+«4,a5=2d
−2K−,a6=K+−2K−+2d−«1−«2−«3−«4j

The explicit form of the non-Serre-type supplementary relations for HKM superalgebras is not
known yet, at least for the vertices which are not of finite nor of affine type. However, another
alternative way of describing the HKM superalgebras is to considerall inequivalent Dynkin
diagrams and write the usual Serre relationss2.1d and s2.2d sof course this leads to redundant
informationd. Indeed, the non-Serre-type relations become Serre relations after a generalized Weyl
reflection with respect to an appropriate isotropic odd root.18

Note nevertheless that in the case of HKM superalgebras, one may produce by generalized
Weyl transformations some exotic simple root systems corresponding to Cartan matrices with
nonintegersrationald entries associated to weird nonstandard Dynkin diagramssthis wasnot the
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case in the above exampled. As in the usual case, one gets supplementary non-Serre-type relations,
but now also associated to nonisotropic even simple roots.

C. Rank two HKM superalgebras

Clearly any rank 2 HKM superalgebra is described by a Dynkin–Kac diagram of the form

where the dot can be a white, black or grey dot. Both dots cannot be either white, as this diagram
describes KM algebras, or grey, as this diagram is isomorphic to the diagram, in the nondistin-
guished basis, of sls1/2d. The Dynkin–Kac diagrams corresponding to rank 2 finite and affine KM
superalgebras, up to generalized Weyl transformations, are listed below

In Refs. 17 and 10, it is proven that any superalgebra associated to a 232 matrix not appearing in
the above list is ofinfinite growth. It follows.

Theorem 3.3:The hyperbolic Kac–Moody superalgebras of rank two are infinite in number.
Their generalized Cartan matrix and Dynkin diagram are, up to generalized Weyl transformations,
reducible to one of the following list:

sid with Z2-gradationt=h1j,

S 2 − k

− k8 2
D with sk,k8d = s1,k8d, k8 ø 4, sk,k8d = s3,1d or k,k8 [ Z.0, kk8 . 4,

S 0 1

− k 2
D with k[ Z.0, k . 2,

sii d with Z2-gradationt=h1,2j,

S 2 − k

− k8 2
D with sk,k8d = s1,k8d, k8 ø 4 or k,k8 [ Z.0, kk8 . 4,

S 0 1

− k 2
D with k[ Z.0, k Þ 2.
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We denote them as BWsk,k8d, GWskd, BBsk,k8d, and GBskd, with corresponding Dynkin
diagrams,

Note that in order to write only one type of diagram, we have not strictly followed the rules given
in Sec. II.

The simple root systems of the HKM superalgebrasBWsk,k8d andBBsk,k8d are given by

a = o
i=1

n

ki«i + kaK+ anda8 = − o
i=1

n8

ki8«i − ka8K−, s3.2d

whereki, ki8, ka, ka8 [Zù0 satisfykk8=kaka8 +oi=1
minsn,n8dkiki8, k2=oi=1

n ki
2, andk82=oi=1

n8 ki8
2, while for

the HKM superalgebrasGWskd andGBskd the simple roots area=−kK− anda8=«1−«2+K+.

IV. SUBALGEBRAS OF HYPERBOLIC KM SUPERALGEBRAS

Let G be a Kac–Moody superalgebra, and consider its canonical root decomposition

G = H % %
a[D

Ga,

whereH is the Cartan subalgebra ofG andD its corresponding root system. A subssuperdalgebra
G8 of G is called regular ifG8 has the root decomposition

G8 = H8 % %

a8[D8
Ga8

8 ,

whereH8,H andD,D8.
Consider a HKM superalgebraG. Deleting a dot in the distinguished Dynkin diagram ofG

leads to regular subssuperdalgebras ofG of finite or affine type by definition. In Appendix C, we
list these regular subssuperdalgebras corresponding to the Dynkin diagrams of Appendix A. Note
that in several cases, the diagram of the subsuperalgebra is not the distinguished one.

A subssuperdalgebraG8 of G is called singular if it is not regular. The folding method allows
one to obtain some singular subssuperdalgebras of the HKM superalgebras. LetG be a HKM
superalgebra with a distinguished Dynkin diagram exhibiting aZN symmetry. ThisZN symmetry is
generated by an automorphismt of orderNstN=1d acting on the root system. The automorphism
t can be lifted at the algebra level by settingtsead=etsad for a generatorea associated to a simple
root a. The symmetry of the Dynkin diagram induces a direct construction of the subssuperdalge-
bra G8 invariant under theG automorphism associated tot. Indeed, if the simple roota is
transformed intotsad, thena8=a+tsad+¯+tN−1sad is t-invariant sincetN=1, and appears as a
simple root ofG8 associated to the generatorea8=ea+etsad+¯+etN−1sad, whereetksad is the gen-
erator corresponding to the roottksad sk=0,… ,N−1d. A Dynkin diagram ofG8 will therefore be
obtained by folding theZN-symmetric Dynkin diagram ofG, that is by transforming eachN-uple
sa ,tsad ,… ,tN−1sadd into the roota8=a+tsad+¯+tN−1sad of G8. It is easy to convince oneself
that for G8 the defining relationss2.1d–s2.5d of a HKM superalgebra holdfbe aware that, in
particular for the Serre relationss2.5d, the entries of the Cartan matrix are now those ofG8g.

We present in Table I the list of HKM superalgebrasG to which the folding procedure can be
applied and the corresponding singular subsuperalgebrasG8. Note that in general the obtained
singular subsuperalgebras are also HKM superalgebras. However, in the case of the HKM supe-
ralgebra #6 of rank 6, one obtains forG8 the simple Lie superalgebraFs4d fnote that for affine Lie
ssuperdalgebras the folding procedure always leads tossuperdalgebras of affine typeg. This is due
to the fact that for HKM superalgebras the root system containstwo isotropic roots whose scalar
product is not trivial.

Remark 4.1:The folding procedure cannot be applied to the rank four HKM superalgebras
labelled by the numbers #59 to #62, despite the apparentZ2-symmetry of the distinguished Dynkin
diagram, as theZ2-grading of the invariant generators would not be respected.
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TABLE I. Folding of the HKM superalgebras.

Rank ofG G label Order oft Rank ofG8 G8 label

3 #24 2 2 BWs4,2d

3 #25 2 2 BWs2,4d

3 #27 2 2 BBs2,4d

3 #28 2 2 BBs4,2d

3 #31 2 2 BWs8,1d

4 #33 2 4 #37

4 #34 2 4 #39

4 #40 2 3 #57

4 #41 2 3 #5

4 #42 2 3 #21

4 #44 2 3 #26

4 #45 2 3 #15

4 #46 2 3 #13

4 #47 2 3 #14

4 #48 2 3 #34

4 #55 2 3 #52

4 #56 2 3 #54

4 #57 2 3 #53

4 #58 2 3 #47

4 #63 2 3 #37

4 #64 2 3 #5

4 #65 2 3 #1

4 #66 2 3 #9

4 #67 2 3 #6

4 #68 2 3 #24

4 #68 2 4 #28

4 #69 2 4 #7

4 #70 2 4 #42

4 #71 2 4 #51

4 #72 2 4 #50

4 #73 2 4 #58

5 #28 2 4 #14

5 #30 2 4 #8

5 #31 2 4 #9

5 #32 2 4 #11

5 #33 2 4 #5

5 #34 2 4 #7

5 #35 3 3 #2

5 #36 2 4 #1

5 #37 2 4 #13

5 #38 3 3 #36

6 #6 2 4 Fs4d

6 #12 2 4 #1

6 #14 3 4 #21

6 #15 3 4 #26
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APPENDIX A: DYNKIN DIAGRAMS OF THE HYPERBOLIC SUPERALGEBRAS

Rank 3 hyperbolic superalgebras (87 diagrams):
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Rank 4 hyperbolic superalgebras (73 diagrams):
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Rank 5 hyperbolic superalgebras (38 diagrams):
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Rank 6 hyperbolic superalgebras (15 diagrams):

APPENDIX B: SIMPLE ROOT SYSTEMS

We describe in this section the simple root systems corresponding to the Dynkin diagrams of
Appendix A sas usual, the parametrization is not uniqued. We give below the conventions used to
describe the simple root systems depending on the topology of the considered Dynkin diagrams. In
any case, the simple roots are written in terms of orthogonal vectors«i, di, K+, andK− such that
s«i ,« jd=1, sdi ,d jd=−1, sK+,K−d=1 and all other scalar products are zero. It is also convenient to

introduced̃=d1+d2+d3 which satisfiessd̃ , d̃d=−3 andsd̃ ,«id=sd̃ ,K+d=sd̃ ,K−d=0.
Rank 3 hyperbolic superalgebras: Conventions for the simple root systemsD0

=ha1,a2,a3j,
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#1:D0 = h2«1 − «2 − «3 − K−,«2 − «1,2K+ + «1j,

#2:D0 = h 1
3s2«1 − «2 − «3d − K−,«2 − «1,

2
3K+ + «1j ,

#3:D0 = h− 1
2s«1 + «2 + «3 + «4d − K−,«1,− «1 + 1

2K+j ,

#4:D0 = h− 2«1 + 2«2 − K−,«1 − «2,2K+ + «2j,

#5:D0 = h− 1
2s«1 − «2d − K−,«1 − «2,

1
2K+ + «2j ,

#6:D0 = h− «1 − K−,«1,− «1 + K+j,

#7:D0 = h− «1 + «2 − K−,«1,− «1 + K+j,

#8:D0 = h 1
2s− «1 + «2d − K−,«1,− «1 + 1

2K+j ,

#9:D0 = h− 2«1 − K−,«1,− «1 + 2K+j,

#10:D0 = h− 1
2s3«1 + «2 + «3 + «4d − 3

2K−,«1,− «1 + K+j ,

#11:D0 = h− 1
6s3«1 + «2 + «3 + «4d − 1

2K−,«1,− «1 + K+j ,

#12:D0 = h− 1
2«1 − K−,«1,− «1 + 1

2K+j ,

#13:D0 = h2«1 − 2«2 − K−,2«2,2K+ − «2j,

#14:D0 = h«1 − «2 − K−,2«2,K
+ − «2j,

#15:D0 = h«1 + «2 + «3 + «4 − K−,− 2«1,K
+ + «1j,

#16:D0 = h2«1 − «2 − «3 − K−,«2 − «1,
3
2K+ + 1

2s«1 − «2dj ,

#17:D0 = h 1
3s2«1 − «2 − «3d − K−,«2 − «1,

1
2K+ + 1

2s«1 − «2dj ,

#18:D0 = h2«1 − K−,− 2«1,2K+ + «1j,

#19:D0 = h− 4«1 − K−,2«1,− «1 + 4K+j,

#20:D0 = h− «1 − K−,2«1,K
+ − «1j,

#21:D0 = h− «1 + «2 − K−,«1 − «2,K
+ + «2j,

#22:D0 = h− «1 − 2K−,«1,− 2«1 + K+j,

#23:D0 = h«1 − «2 − 2K−,«2,K
+ − 2«2j,
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#24:D0 = h− 2«1 − 2K−,«1,2K+ − 2«1j,

#25:D0 = h− «1 − K−,«1,− «1 + K+j,

#26:D0 = h− «1 − K−,«1,− «1 + «2 + K+j,

#27:D0 = h− «1 − K−,«1,− «1 + K+j,

#28:D0 = h− «1 − K−,«1,− «1 + K+j,

#29:D0 = h− «1 − 1
2K−,«1,−

1
2s«1 − «2d + K+j ,

#30:D0 = h− «1 − 1
2K−,«1,−

1
2«1 + K+j ,

#31:D0 = h− «1 − K−,2«1,K
+ − «1j,

#32:D0 = h− «1 − K−,«1,− «1 + K+j,

#33:D0 = h− «1 − K−,«1,− «1 + «2 + K+j,

#34:D0 = h− «1 − 1
2K−,«1 − «2,−

1
2s«1 − «2d + K+j ,

#35:D0 = h− «1 − 2K−,«1,− 2«1 + K+j,

#36:D0 = hd1 − «2 − K−,«2 − «1,
1
3K+ + 1

3s2«1 − «2 − «3dj ,

#37:D0 = hd1 − «1 − K−,«1 − «2,−
1
2s«1 − «2d + 1

2K+j ,

#38:D0 = hd1 − «1 − K−,«1 − «2,− 2«1 + 2«2 + 2K+j,

#39:D0 = hd1 − «1 − K−,«1 − «2,− «1 + «2 + K+j,

#40:D0 = h«1 − d1 − K−,− «1,
1
2s«1 + «2 + «3 + «4d + 1

2K+j ,

#41:D0 = h«1 − d1 − K−,− «1,
1
2s«1 − «2d + 1

2K+j ,

#42:D0 = h«1 − d1 − K−,− «1,«1 − «2 + K+j,

#43:D0 = hd1 − «1 − K−,«1,−
1
2«1 + 1

6s«2 + «3 + «4d + 1
2K+j ,

#44:D0 = hd1 − «1 − K−,«1,−
3
2«1 + 1

2s«2 + «3 + «4d + 3
2K+j ,

#45:D0 = h«1 − d1 − 4K−,− 2«1,4«1 + K+j,

#46:D0 = hd1 − «1 − K−,2«1,− «1 + 1
3s«2 + «3 + «4d + K+j ,
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#47:D0 = hd1 − «1 − K−,«1,− 3«1 + «2 + «3 + «4 + 3K+j,

#48:D0 = h«1 − d1 − K−,− 2«1,«1 + K+j,

#49:D0 = h«1 − d1 − 1
2K−,− «1,

1
2«1 + K+j ,

#50:D0 = h«1 − d1 − 2K−,− «1,2«1 + K+j,

#51:D0 = h«1 − «2 − d1 + d2 − 2K−,− «1 + «2,«1 − «2 + K+j,

#52:D0 = h«1 − d1 − K−,− 2«1,«1 + «2 + «3 + «4 + K+j,

#53:D0 = h«1 − d1 − K−,− 2«1,«1 − «2 + K+j,

#54:D0 = h«1 − d1 − 2K−,− 2«1,2«1 − 2«2 + K+j,

#55:D0 = h«1 − d1 − 2K−,− 2«1,2«1 + K+j,

#56:D0 = hd1 − «1 − K−,«1 − «2,− «1 + «2 + K+j,

#57:D0 = hd1 − «1 − 1
2K−,«1 − «2,−

1
2s«1 − «2d + K+j ,

#58:D0 = h«1 − d1 − K−,− «1,«1 + K+j,

#59:D0 = h«1 − d1 − K−,− «1,
1
2s«1 − «2d + 1

2K+j ,

#60:D0 = h«1 − d1 − 1
2K−,− «1,

1
2«1 + K+j ,

#61:D0 = h«1 − d1 − 2K−,− 2«1,2«1 + K+j,

#62:D0 = h«1 − d1 − K−,− 2«1,«1 − «2 + K+j,

#63:D0 = h«1 − d1 − K−,− 2«1,«1 − «2 + K+j,

#64:D0 = h− «1 + «2 − 3K−,− «1 + «2 + K+,«1 − «2j,

#65:D0 = h«1 + «2 − 3K−,«1 + «2 + K+,− «1j,

#66:D0 = h− 2«1 − 3K−,− 2«1 + 2K+,«1j,

#67:D0 = h«1 − «2 − 2K−,− «2 + K+,«2j,

#68:D0 = h− 2«2 − 2K−,«1 − «2 + 2K+,«2j,

#69:D0 = h«1 − «2 − 2K−,«1 − «2 + 2K+,− «1 + «2j,
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#70:D0 = h«1 − «2 − 2K−,«1 − «2 + 2K+,− «1j,

#71:D0 = h«1 − «2 − 2K−,«1 − «2 + 2K+,− 1
2s«1 − «2dj ,

#72:D0 = h«1 − 2K−,«1 + K+,− «1j,

#73:D0 = h«1,− «1 − 2K−,«2 − «1 + K+j,

#74:D0 = h«1,− «1 − 2K−,− 2«1 + 2K+j,

#75:D0 = h«1 − 2K−,«1 + K+,− «1j,

#76:D0 = h«1 − «2 − K−,«1 + «2 + K+,d1 − «1j,

#77:D0 = h2«1 − 3K−,2«1 + 2K+,d1 − «1j,

#78:D0 = h«1 − 3
2K−,«1 + K+,d1 − «1j ,

#79:D0 = h«1 − «2 − 2K−,«1 − «2 + 2K+,d1 − «1j,

#80:D0 = h2«1 − 4K−,2«1 + 2K+,d1 − «1j,

#81:D0 = h«1 − 2K−,«1 + K+,d1 − «1j,

#82:D0 = h«1 − d1 − 2K−,«1 − «2 + K+,− «1j,

#83:D0 = h«1 − d1 − 2K−,«1 − «2 + K+,− 2«1j,

#84:D0 = h2«1 − 2K−,«1 + 2K+,d1 − «1j,

#85:D0 = h«1 − d1 + K−,«1 − d1 + K+,− «1j,

#86:D0 = h«1 − d1 + K−,«1 − d1 + K+,− 2«1j,

#87:D0 = h«1 + d1 − K−,«1 + d1 + K+,− «1j.

Rank 4 hyperbolic superalgebras: Conventions for the simple root systemsD0

=ha1,a2,a3,a4j
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#1:D0 = h«1 + «2 + «3 + «4 − K−,− 2«1,«1 − «2,K
+ + «2j,

#2:D0 = h2«1 + 2«2 − K−,− 2«1,«1 − «2,2K+ + «2j,

#3:D0 = h«1 + «2 − K−,− 2«1,«1 − «2,K
+ + «2j,

#4:D0 = h 1
2s«1 + «2 + «3 + «4d − K−,− «1,«1 − «2,

1
2K+ + «2j ,

#5:D0 = h«1 + «2 − K−,− «1,«1 − «2,K
+ + «2j,

#6:D0 = h 1
2s«1 + «2d − K−,− «1,«1 − «2,

1
2K+ + «2j ,

#7:D0 = h«1 − «2 − K−,«2 − «3,«3,K
+ − «2 − «3j,

#8:D0 = h− 2«1 − K−,«1 − «2,«2,2K+ − «1 − «2j,

#9:D0 = h− «1 − K−,«1 − «2,«2,K
+ − «1 − «2j,

#10:D0 = h«1 + «2 − K−,− 2«1,«1 − «2,K
+ + «2j,

#11:D0 = h«1 + «2 − K−,− «1,«1 − «2,K
+ + «2j,

#12:D0 = h− 2«1 − 2«2 − K−,2«2,«1 − «2,d1 − «1 + 2K+j,

#13:D0 = h− «1 − «2 − K−,2«2,«1 − «2,d1 − «1 + K+j,

#14:D0 = h− «1 − «2 − K−,«2,«1 − «2,K
+ + d1 − «1j,

#15:D0 = h− 1
2s«1 + «2 + «3 + «4d + K−,«2,«1 − «2,

1
2K+ + «2 − d1j ,

#16:D0 = h 1
2s«1 + «2d − K−,− «1,«1 − «2,

1
2K+ + «2 − d1j ,

#17:D0 = hd1 − «1 − K−,«1 − «2,«2,−
1
2s«1 + «2d + 1

2K+j ,

#18:D0 = hd1 − «1 − K−,«1 − «2,2«2,− «1 − «2 + K+j,
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#19:D0 = hd1 − «1 − K−,«1 − «2,«2,K
+ − «1 − «2j,

#20:D0 = h2«3 − «1 − «2 − K−,«2 − «3,«1 − «2,K
+ − «1 + d1j,

#21:D0 = h 1
3s2«3 − «1 − «2d − K−,«2 − «3,«1 − «2,

1
3K+ − «1 + d1j ,

#22:D0 = h2«3 − «1 − «2 − K−,2«2 − «1 − «3 − K−,«1 − «2,d1 − «1 + K+j,

#23:D0 = h2«2 − «1 − «3 − K−,«1 − «2,d1 − «1 + K+,− 2d1j,

#24:D0 = h2«2 − «1 − «3 − K−,«1 − «2,d1 − «1 + K+,− d1j,

#25:D0 = h2«2 − «1 − «3 − K−,«1 − «2,d1 − «1 + K+,d2 − d1j,

#26:D0 = h 1
3s2«3 − «1 − «2d − K−,«2 − «3,«1 − «2,

1
3K+ − «1j ,

#27:D0 = h2«3 − «1 − «2 − K−,«2 − «3,«1 − «2,K
+ − «1j,

#28:D0 = h2«2 − «1 − «3 − K−,«1 − «2,d1 − «1 + K+,− d1j,

#29:D0 = hd1 − «2 − K−,«2 − «3,2«3,K
+ + «1 − «2j,

#30:D0 = hd1 − «2 − K−,«2 − «3,«3,K
+ + «1 − «2j,

#31:D0 = h− 2«2 − K−,«2 − «3,«3,2K+ + «1 − «2j,

#32:D0 = h− «2 − K−,«2 − «3,«3,K
+ + «1 − «2j,

#33:D0 = h− «1 − K−,«1 − «2,«2,K
+ + d1 − «1j,

#34:D0 = h− 2«1 − K−,«1 − «2,2«2,2K+ + d1 − «1j,

#35:D0 = h− 2«1 − K−,«1 − «2,«2,2K+ + d1 − «1j,

#36:D0 = h«1 − «2,«2 − «3,2«3 − «1 − «2 − K−,2K+ + «3 − d1j,

#37:D0 = h«1 − «2 − K−,«2 − «3,«3,K
+ + d1 − «2j,

#38:D0 = h− 2«1 − K−,«1 − «2,«2,2K+ + d1 − «1j,

#39:D0 = h− «1 − K−,«1 − «2,«2,K
+ + d1 − «1j,

#40:D0 = h− «1 − K−,«1 − «2,«2,K
+ + d1 − «1j,

#41:D0 = h− «1 − K−,«1 − «2,«2,K
+ − «1j,
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#42:D0 = h− 2«1 − K−,«1 − «2,2«2,2K+ − «1j,

#43:D0 = h− 2«1 − K−,«1 − «2,«2,2K+ − «1j,

#44:D0 = h«1 − «2 − K−,«2,− «1 − «2,2K+ + «1 − «2j,

#45:D0 = h− «2 − K−,«2 − «3,«3,K
+ + «1 − «2j,

#46:D0 = h− «1 − 2K−,«1 − «2,«2,K
+ − 2«1j,

#47:D0 = h− «1 − K−,«1 − «2,«2,K
+ − «1j,

#48:D0 = h− «1 − K−,«1 − «2,«2,K
+ − «1j,

#49:D0 = hd1 − «1,«1 + «2 − K−,«1 − «2,«2 − «3 + K+j,

#50:D0 = hd1 − «1,«1 + «2 − K−,«1 − «2,«2 + K+j,

#51:D0 = hd1 − «1,«1 + «2 − 2K−,«1 − «2,2«2 + K+j,

#52:D0 = hd1 − «1,«1 + «2 − K−,«1 − «2,2«2 − «1 − «3 + K+j,

#53:D0 = hd1 − «1,«1 + «2 − K−,«1 − «2,«2 + K+j,

#54:D0 = hd1 − «1 − K−,«1 − «2,«1 + «2,«3 − «4 + K+j,

#55:D0 = hd1 − «1 − K−,d2 − «1 + K+,«1 − «2,«2 − «3j,

#56:D0 = hd1 − «1 − K−,d2 − «1 + K+,«1 − «2,2«2j,

#57:D0 = hd1 − «1 − K−,d2 − «1 + K+,«1 − «2,«2j,

#58:D0 = hd1 − «1 − K−,− d2 + «2 − 2K−,«1 − «2,K
+ + 2«2 − «1 − «3j,

#59:D0 = hd1 − «1,«2 − d1 − K−,«1 − «2,K
+ + «2 − «3j,

#60:D0 = hd1 − «1,«2 − d1 − 2K−,«1 − «2,K
+ + 2«2j,

#61:D0 = hd1 − «1,«2 − d1 − K−,«1 − «2,K
+ + «2j,

#62:D0 = hd1 − «2 − K−,«3 − d1 − 2K−,«2 − «3,K
+ + 2«3 − «1 − «2j,

#63:D0 = h«1 − «2,«3 − «1 − K−,«2 − «3,K
+ + «3 − d1j,

#64:D0 = h«1 − «2,«3 − «1 − K−,«2 − «3,K
+ + «3j,
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#65:D0 = hd1 − «2 − K−,− d1 − «2 − K−,«2 − «3,K
+ + 2«3 − «1 − «2j,

#66:D0 = h− 2«1 − K−,«1 − «2,«1 + «2,2K+ − «1j,

#67:D0 = h− «1 − K−,«1 − «2,«1 + «2,K
+ − «1j,

#68:D0 = h− «1 − K−,«1 − «2,«1 + «2,K
+ − «1j,

#69:D0 = h«1 − «2 − K−,«2 − «3,«2 + «3,K
+ − «2j,

#70:D0 = hd1 − «1 − K−,«1 − «2,«1 + «2,K
+ − «1 + «3j,

#71:D0 = hd1 − «1 − K−,«1 − «2,«1 + «2,K
+ − «1j,

#72:D0 = hd1 − «1 − 2K−,«1 − «2,«1 + «2,K
+ − 2«1j,

#73:D0 = hd1 − «1 − K−,«1 − «2,«1 + «2,K
+ − «1j.

Rank 5 hyperbolic superalgebras: Conventions for the simple root systemsD0

=ha1,a2,a3,a4,a5j,

#1:D0 = h 1
2sd̃ − «1 − «2 − «3d − K−,«3,«2 − «3,«1 − «2,

1
2K+ + «4 − «1j ,

#2:D0 = h 1
2s«4 − «1 − «2 − «3d − K−,«3,«2 − «3,«1 − «2,

1
2K+ − «1 + d1j ,

#3:D0 = h 1
2sd̃ − «1 − «2 − «3d − K−,«3,«2 − «3,«1 − «2,

1
2K+ + d4 − «1j ,

#4:D0 = h«1 − «2 − K−,«2 − «3,«3,
1
2sd̃ − «1 − «2 − «3d,K+ + «1j ,

#5:D0 = h 1
2sd̃ − «1 − «2 − «3d − K−,«3,«2 − «3,«1 − «2,K

+ − 2«1j ,

#6:D0 = h 1
2sd̃ − «1 − «2 − «3d − K−,«3,«2 − «3,«1 − «2,

1
2K+ − «1j ,

#7:D0 = h«1 + «2 + «3 + «4 − K−,− 2«1,«1 − «2,K
+ + «2 − d1,2d1j,

#8:D0 = h«1 + «2 + «3 + «4 − K−,− 2«1,«1 − «2,K
+ + «2 − d1,d1j,

#9:D0 = h«1 + «2 + «3 + «4 − K−,− 2«1,«1 − «2,«2 − «3,K
+ + «3j,
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#10:D0 = h 1
2s«4 − «1 − «2 − «3d − K−,«3,«2 − «3,«1 − «2,

1
2K+ − «1j ,

#11:D0 = h 1
2sd̃ − «1 − «2 − «3d − K−,«3,«2 − «3,«1 − «2,

1
2K+ − «1j ,

#12:D0 = h«1 + «2 + «3 + «4 − K−,− 2«1,«1 − «2,K
+ + «2 − d1,d1j,

#13:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,2«3,K
+ − «1 − «2 − «3 − «4j,

#14:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3,K
+ − «1 − «2j,

#15:D0 = h− «1 − K−,«1 − «2,«2 − «3,2«3,K
+ − «1 − «2j,

#16:D0 = h«1 − «2 − K−,«2 − «3,«3 − «4,«4,K
+ − «2 − «3j,

#17:D0 = h− 2«1 − K−,«1 − «2,«2 − «3,«3,2K+ − «1 − «2j,

#18:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3,K
+ − «1 − «2j,

#19:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3,K
+ − «1 − «2j,

#20:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3,K
+ − «1 − «2j,

#21:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3 − d1,K
+ − «1 − «2j,

#22:D0 = h«1 − «2 − K−,«2 − «3,«3 − «4,«4 − d1,K
+ − «2 − «3j,

#23:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3 − d2,K
+ − «1 − «2j,

#24:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,2«3,K
+ − «1 − «2j,

#25:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3,K
+ − «1 − «2j,

#26:D0 = h− 2«1 − K−,«1 − «2,«2 − «3,«3 − d1,2K+ − «1 − «2j,

#27:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3 − d1,K
+ − «1 − «2j,

#28:D0 = h«4 − d1 − K−,«3 − «4,«2 − «3,K
+ + «4 − «1,«1 − «2j,

#29:D0 = h− «1 − «2 − K−,«2 − «3,«3 − d1,«1 − «2,K
+ + d1 − «1j,

#30:D0 = h− 2«2 − K−,«1 + «2,d1 − «1,− d1 − «1,2K+ + «1 − «2j,

#31:D0 = h− «2 − K−,«1 + «2,d1 − «1,− d1 − «1,K
+ + «1 − «2j,

#32:D0 = h− «2 − K−,«1 + «2,d1 − «1,− d1 − «1,K
+ + «1 − «2j,
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#33:D0 = h«4 − K−,«3 − «4,«2 − «3,K
+ + «4 − «1,«1 − «2j,

#34:D0 = h«3 − «2 − K−,«1 + «2,d1 − «1,− d1 − «1,K
+ + «1 − «2j,

#35:D0 = h− «2 − K−,«2 − «3,«3 − «4,«3 + «4,K
+ + «1 − «2j,

#36:D0 = hd1 − «1 − K−,− d1 − «1 − K−,«1 − «2,2«2,− «1 − «2 − «3 − «4 + K+j,

#37:D0 = h«1 − «2,K
+ − «1 − «2,«2 − «3,«3,

1
2sd̃ − «1 − «2 − «3d − K−j ,

#38:D0 = hd1 − «2 − K−,«2 − «3,«3 − «4,«3 + «4,K
+ + «1 − «2j.

Rank 6 hyperbolic superalgebras: Conventions for the simple root systemsD0

=ha1,a2,a3,a4,a5,a6j,

#1:D0 = h− «1 + d1 − 1
2K−,«1 − «2,«2 − «3,«3 − «4,«4,K

+ − 1
2s«1 + «2 + «3 + «4dj ,

#2:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3 − «4,2«4,K
+ − s«1 + «2 + «3 + «4dj,

#3:D0 = h− «1 − 1
2K−,«1 − «2,«2 − «3,«3 − «4,«4,K

+ − 1
2s«1 + «2 + «3 + «4dj ,

#4:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3 − «4,2«4,K
+ − s«1 + «2 + «3 + «4dj,

#5:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3 − «4,«4 − «5,K
+ − «1 − «2j,

#6:D0 = h 1
2sd̃ − «1 − «2 − «3d − 3K−,«3 + «4,«2 − «3,«3 − «4,

1
2s− d̃ − «1 − «2 − «3d + 1

2K+,«1 − «2j ,

#7:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3 − «4,2«4,K
+ − «1 − «2j,

#8:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3 − «4,«4,K
+ − «1 − «2j,

#9:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3 − «4,«4 − «5,K
+ − «1 − «2j,

#10:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3 − «4,«4,K
+ − «1 − «2j,

#11:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3 − «4,2«4,K
+ − «1 − «2j,

#12:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3 − «4,«4,K
+ − «1 − «2j,
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#13:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3 − «4,«4,K
+ − «1 − «2j,

#14:D0 = hd1 − «1 − K−,«1 − «2,«2 − «3,«3 − «4,«3 + «4,K
+ − «1 − «2j,

#15:D0 = h− «1 − K−,«1 − «2,«2 − «3,«3 − «4,«3 + «4,K
+ − «1 − «2j.

APPENDIX C: SUBALGEBRAS OF THE HYPERBOLIC KM SUPERALGEBRAS

Rank 3 hyperbolic superalgebras:

#1:G2,osps1u2d % sls2d ,osps1u4d #2:G2,osps1u2d % sls2d ,osps1u4d
#3:sls1u3ds4d ,osps1u2d % sls2d ,sls3d #4:osps1u4d ,osps1u2d % sls2d ,sls3ds2d

#5:osps1u4d ,osps1u2d % sls2d ,sls3ds2d #6:sls1u3ds4d ,osps1u2d % sls2d ,sls2ds1d

#7:sls1u3ds4d ,osps1u2d % sls2d ,sps4d #8:sls1u3ds4d ,osps1u2d % sls2d ,sps4d
#9:sls1u3ds4d ,osps1u2d % sls2d ,sls3ds2d #10:sls1u3ds4d ,osps1u2d % sls2d ,G2

#11:sls1u3ds4d ,osps1u2d % sls2d ,G2 #12:sls1u3ds4d ,osps1u2d % sls2d ,sls3ds2d

#13:osps1u2ds1d ,osps1u2d % sls2d ,sps4d #14:osps1u2ds1d ,osps1u2d % sls2d ,sps4d
#15:osps1u2ds1d ,osps1u2d % sls2d ,sls3d #16:osps1u2ds1d ,osps1u2d % sls2d ,G2

#17:osps1u2ds1d ,osps1u2d % sls2d ,G2 #18:osps1u2ds1d ,osps1u2d % sls2d ,sls2ds1d

#19:osps1u2ds1d ,osps1u2d % sls2d ,sls3ds2d #20:osps1u2ds1d ,osps1u2d % sls2d ,sls3ds2d

#21:osps1u4d ,osps1u2d % sls2d ,sls2ds1d #22:osps1u2ds1d ,2sls2d ,sls1u3ds4d

#23:osps1u2ds1d ,2sls2d ,osps1u4d #24:osps1u2ds1d ,2sls2d
#25:sls1u3ds4d ,2sls2d #26:sls1u3ds4d ,2sls2d ,osps1u4d
#27:osps2u2ds2d ,2osps1u2d #28:sls1u3ds4d ,2osps1u2d
#29:osps1u4d ,2osps1u2d ,sls1u3ds4d #30:osps1u2ds1d ,2osps1u2d ,sls1u3ds4d

#31:osps1u2ds1d ,2osps1u2d #32:sls1u3ds4d ,osps1u2d % sls2d ,osps2u2ds2d

#33:osps1u4d ,osps1u2d % sls2d ,osps2u2ds2d #34:osps1u2ds1d ,2osps1u2d ,osps1u4d
#35:osps1u2ds1d ,osps1u2d % sls2d ,osps2u2ds2d #36:G2,sls1u1d % sls2d ,sls1u2d
#37:sls3ds2d ,sls1u1d % sls2d ,sls1u2d #38:sls3ds2d ,sls1u1d % sls2d ,sls1u2d
#39:sls2ds1d ,sls1u1d % sls2d ,sls1u2d #40:sls3d ,sls1u1d % sls2d ,osps3u2d
#41:sps4d ,sls1u1d % sls2d ,osps3u2d #42:sps4d ,sls1u1d % sls2d ,osps3u2d
#43:G2,sls1u1d % sls2d ,osps3u2d #44:G2,sls1u1d % sls2d ,osps3u2d
#45:sls3ds2d ,sls1u1d % sls2d ,osps2u2d #46:G2,sls1u1d % sls2d ,osps2u2d
#47:G2,sls1u1d % sls2d ,osps2u2d #48:sls3ds2d ,sls1u1d % sls2d ,osps2u2d
#49:sls3ds2d ,sls1u1d % sls2d ,osps3u2d #50:sls3ds2d ,sls1u1d % sls2d ,osps3u2d
#51:sls2ds1d ,sls1u1d % sls2d ,osps3u2d #52:sls3d ,sls1u1d % sls2d ,osps2u2d
#53:sos5d ,sls1u1d % sls2d ,osps2u2d #54:sps4d ,sls1u1d % sls2d ,osps2u2d
#55:sls2ds1d ,sls1u1d % sls2d ,osps2u2d #56:sls1u3ds4d ,sls1u1d % osps1u2d ,sls1u2d
#57:osps1u2ds1d ,sls1u1d % osps1u2d ,sls1u2d #58:sls1u3ds4d ,sls1u1d % osps1u2d ,osps3u2d
#59:osps1u4d ,osps1u2d % sls1u1d ,osps3u2d #60:osps1u2ds1d ,osps1u2d % sls1u1d ,osps3u2d
#61:sls1u3ds4d ,sls1u1d % osps1u2d ,osps2u2d #62:osps1u4d ,osps1u2d % sls1u1d ,osps2u2d
#63:osps1u2ds1d ,osps1u2d % sls1u1d ,osps2u2d #64:sls1u3ds4d ,sls3d
#65:osps1u4d ,sls3d #66:osps1u2d1d ,sls3d
#67:osps1u4d ,sps4d ,sls1u3ds4d #68:osps1u4d ,osps1u2ds1d ,sps4d
#69:sls1u3ds4d ,sls2ds1d #70:osps1u4d ,sls2ds1d

#71:osps1u2ds1d ,sls2ds1d #72:osps2u2ds2d ,sls1u3ds4d

#73:osps2u2ds2d ,osps1u4d #74:osps2u2ds2d ,osps1u2ds1d

#75:osps2u2ds2d #76:sls1u2d ,sls3d
#77:osps2u2d ,sls3d #78:osps3u2d ,sls3d
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#79:sls1u2d ,sls2ds1d #80:osps2u2d ,sls2ds1d

#81:osps3u2d ,sls2ds1d #82:sos5d ,sls1u2d ,osps3u2d
#83:sps4d ,sls1u2d ,osps2u2d #84:sls3ds2d ,osps3u2d ,osps2u2d
#85:osps3u2d ,sls1u2d #86:osps2u2d ,sls1u2d
#87:osps3u2d ,sls1u2d

Rank 4 hyperbolic superalgebras:

#1:osps1u4ds1d,sls2d % osps1u4d,sls3d % osps1u2d,sos7d,

#2:osps1u4ds1d,sls2d % osps1u4d,sos5d % osps1u2d,sls5ds2d,

#3:osps1u4ds1d,sls2d % osps1u4d,sps4d % osps1u2d,sls4ds2d,

#4:sls1u5ds4d,sls2d % osps1u4d,sls3d % osps1u2d,sps6d,

#5:sls1u5ds4d,sls2d % osps1u4d,sps4d % osps1u2d,sps4ds1d,

#6:sls1u5ds4d,sls2d % osps1u4d,sps4d % osps1u2d,sls5ds2d,

#7:sls1u4ds2d,sls2d % osps1u4d,sls3d % sls2d,osps1u6d,

#8:sls1u4ds2d,sls2d % osps1u4d,sps4d % sls2d,osps1u4ds1d,

#9:sls1u4ds2d,sls2d % osps1u4d,sps4d % sls2d,sls1u5ds4d,

#10:osps1u4ds1d,osps1u2d % osps1u4d,sls1u5ds4d,

#11:osps2u4ds2d,sls2d % osps1u4d,osps1u4d % osps1u2d,sls1u4ds2d,

#12:osps2u4d,sls2d % sls1u2d,sps4d % sls1u1d,sls5ds2d,

#13:osps2u4d,sls2d % sls1u2d,sos5d % sls1u1d,sls4ds2d,

#14:osps5u2d,sls2d % sls1u2d,sps4d % sls1u1d,sps4ds1d,

#15:osps5u2d,sls2d % sls1u2d,sls3d % sls1u1d,sps6d,

#16:osps5u2d,sls2d % sls1u2d,sps4d % sls1u1d,sls5ds2d,

#17:osps1u4ds1d,sls1u1d % osps1u4d,sls1u2d % osps1u2d,osps5u2d,

#18:sls1u5ds4d,sls1u1d % osps1u4d,sls1u2d % osps1u2d,osps2u4d,

#19:sls1u4ds2d,sls1u1d % osps1u4d,sls1u2d % sls2d,osps3u4d,

#20:sls1u3d,sls2d % sls1u2d,G2 % sls1u1d,D4
s3d,
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#21:sls1u3d,sls2d % sls1u2d,G2 % sls1u1d,G2
s1d,

#22:Gs3d,sls2d % sls1u2d,sls3d % sls1u1d,G2
s1d,

#23:osps4u2d,sls2d % osps2u2d,G2 % sls2d,Gs3d,

#24:osps3u4d,sls2d % osps3u2d,G2 % sls2d,Gs3d,

#25:sls2u2d,sls2d % sls1u2d,G2 % sls2d,Gs3d,

#26:osps1u6d,sls2d % osps1u4d,G2 % osps1u2d,G2
s1d,

#27:osps1u6d,sls2d % osps1u4d,G2 % osps1u2d,D4
s3d,

#28:osps5u2d,sls2d % osps3u2d,G2 % osps1u2d,Gs3d,

#29:sps6d,sls1u1d % 2 sls2d,sls1u3d,osps2u4d,

#30:sos7d,sls1u1d % 2 sls2d,sls1u3d,osps5u2d,

#31:osps1u6d,osps1u2d % 2 sls2d,sps6d,osps1u4ds1d,

#32:osps1u6d,osps1u2d % 2 sls2d,sos7d,sls1u5ds4d,

#33:osps5u2d,sls1u1d % 2 sls2d,sls4ds2d,

#34:osps2u4d,sls1u1d % 2 sls2d,sps4ds1d,

#35:osps2u4d,sls1u1d % 2 sls2d,osps5u2d,sls5ds2d,

#36:Gs3d,sls1u1d % 2 sls2d,sls1u3d,D4
s3d,

#37:osps3u4d,osps1u2d % sls1u1d % sls2d,sls1u3d,osps1u6d,

#38:osps3u4d,osps1u2d % sls1u1d % sls2d,osps2u4d,osps1u4ds1d,

#39:osps3u4d,osps1u2d % sls1u1d % sls2d,osps5u2d,sls1u5ds4d,

#40:osps3u4d,2 osps1u2d % sls1u1d,osps2u4ds2d,

#41:sls1u5ds2d,osps1u2d % 2 sls2d,sls4ds2d,

#42:osps1u4ds1d,osps1u2d % 2 sls2d,sps4ds1d,

#43:osps1u4ds1d,osps1u2d % 2 sls2d,sls1u5ds4d,sls5ds2d,
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#44:sls1u4ds2d,3 sls2d,

#45:osps1u6d,2 osps1u2d % sls2d,sls1u5ds4d,

#46:osps1u4ds1d,2 osps1u2d % sls2d,sls1u5ds4d,

#47:osps2u4ds2d,2 osps1u2d % sls2d,sls1u5ds4d,

#48:sls1u5ds4d,3 osps1u2d,

#49:sls1u3d,sls2d % sls3d,sls1u2d % sls2d,osps4u2d,

#50:osps5u2d,sls2d % sos5d,sls1u2d % sls2d,osps4u2d,

#51:osps2u4d,sls2d % sps4d,sls1u2d % sls2d,osps4u2d,

#52:Gs3d,sls2d % G2,sls1u2d % sls2d,osps4u2d,

#53:osps3u4d,sls2d % osps1u4d,sls1u2d % osps1u2d,osps4u2d,

#54:osps4u2d ,3 sls2d,
#55:sls1u3d ,sls2d % 2 sls1u1d ,sls2u2d, #56:osps2u4d ,sls2d % 2 sls1u1d ,sls2u2d,
#57:osps5u2d ,sls2d % 2 sls1u1d ,sls2u2d, #58:Gs3d ,sls2d % 2 sls1u1d ,sls2u2d,
#59:sls1u2ds1d ,sls1u2d % sls2d ,sls1u3d, #60:sls1u2ds1d ,sls1u2d % sls2d ,osps2u4d,
#61:sls1u2ds1d ,sls1u2d % sls2d ,osps5u2d, #62:sls1u2ds1d ,sls1u2d % sls2d ,Gs3d,
#63:sls3ds1d ,sls3d % sls1u1d ,sls1u3d, #64:sls3ds1d ,sls3d % osps1u2d ,osps1u6d,
#65:osps2u4d ,osps2u2d % sls2d ,Gs3d, #66:sls1u4ds2d ,osps1u4ds1d ,sls4ds2d,
#67:sls1u4ds2d ,sls1u5ds4d ,sps4ds1d, #68:sls1u4ds2d ,osps2u4ds2d,
#69:sls1u4ds2d ,osps1u6d ,sls4d, #70:sls4d ,sls1u3d ,sls2u2d,
#71:sps4ds1d ,osps5u2d ,osps4u2d, #72:sls4ds2d ,osps2u4d ,osps4u2d.
#73:sls1u4ds2d ,sls2u2d ,osps3u4d,

.
Rank 5 hyperbolic superalgebras:

#1:sos9d,sls4d % sls1u1d,sls3d % sls1u2d,osps2u4d % sls2d,Fs4d,

#2:osps7u2d,sls2d % sls1u3d,sls3d % sls1u2d,sps6d % sls1u1d,F4,

#3:osps7u2d,sls1u3d % sls1u1d,2 sls1u2d,osps2u4d % sls1u1d,Fs4d,

#4:osps4u4d,sls2u2d % sls2d,sls3d % sls1u2d,sos7d % sls2d,Fs4d,

#5:sls7ds2d,sps6d % sls1u1d,sps4d % sls1u2d,osps2u4d % sls2d,Fs4d,

#6:sos8ds2d,sos7d % sls1u1d,sos5d % sls1u2d,osps2u4d % sls2d,Fs4d,

#7:sls2u4ds2d,osps4u2d % sls2d,osps2u2d % sls3d,sos7d % sls2d,Fs4d,
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#8:osps3u4ds1d,osps3u4d % sls2d,osps3u2d % sls3d,sos7d % sls2d,Fs4d,

#9:osps1u6ds1d,osps1u6d % sls2d,osps1u4d % sls3d,osps1u2d % sos7d,F4,

#10:sls1u7ds4d,osps1u6d % sls2d,osps1u4d % sls3d,osps1u2d % sps6d,F4,

#11:sls1u7ds4d,osps1u6d % sls1u1d,osps1u4d % sls1u2d,osps2u4d % osps1u2d,Fs4d,

#12:sls5u2ds2d,osps5u2d % sls2d,osps3u2d % sls3d,sos7d % osps1u2d,Fs4d,

#13:F4,sos7d % sls1u1d,sls3d % sls1u2d,sls2d % sls1u3d,osps2u6d,

#14:sos7ds1d,sos7d % osps1u2d,osps1u4d % 2sls2d,osps1u8d,sls1u7ds4d,

#15:sls6ds2d,sps6d % osps1u2d,osps1u4d % 2sls2d,osps1u8d,osps1u6ds1d,

#16:sls1u6ds2d,osps1u6d % sls2d,sls3d % sls2d % osps1u2d,sls5d,osps1u8d,

#17:sls1u6ds2d,osps1u6d % sls2d,sps4d % osps1u2d % sls2d,sps8d,osps1u6ds1d,

#18:sls1u6ds2d,osps1u6d % sls2d,sos5d % osps1u2d % sls2d,sos9d,sls1u7ds4d,

#19:sls1u6ds2d,osps1u6d % osps1u2d,osps1u4d % osps1u2d % sls2d,osps1u8d,osps2u6ds2d,

#20:sls1u6ds2d,osps1u6d % sls1u1d,sls1u2d % osps1u2d % sls2d,sls1u4d,osps3u6d,

#21:osps6u2d,osps1u2d % sls1u3d,osps1u4d % sls1u1d % sls2d,osps1u8d,osps3u6d,

#22:osps6u2d,sls2d % sls1u3d,sls3d % sls2d % sls1u1d,sls5d,sls1u4d,

#23:osps6u2d,sls1u3d % sls1u1d,sls1u2d % sls1u1d % sls2d,sls1u4d,sls2u3d,

#24:sls6ds2d,sps6d % sls1u1d,sls1u2d % 2sls2d,sls1u4d,osps2u6d,

#25:sos7ds1d,sos7d % sls1u1d,sls1u2d % 2sls2d,sls1u4d,osps7u2d,

#26:osps6u2d,sls2d % sls1u3d,sps4d % sls2d % sls1u1d,sps8d,osps2u6d,

#27:osps6u2d,sls2d % sls1u3d,sos5d % sls2d % sls1u1d,sos9d,osps7u2d,

#28:sls4ds1d,sls4d % sls1u1d,sls1u4d,osps6u2d,

#29:sls1u3ds1d,sls1u3d % sls2d,sls1u4d,osps6u2d,

#30:sls2u4ds2d,osps2u4d % sls2d,osps4u4d,osps2u4ds1d,
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#31:sls2u4ds2d,osps2u4d % sls2d,osps5u4d,sls5u2ds2d,

#32:sls2u4ds2d,osps2u4d % osps1u2d,osps5u4d,osps3u4ds1d,

#33:sls4ds1d,sls4d % osps1u2d,sls1u6ds2d,osps1u8d,

#34:sls2u4ds2d,osps2u4d % sls2d,sls2u3d,osps2u6d,

#35:sos8d,osps1u2d % 3 sls2d,sls1u6ds2d,

#36:Fs4d,osps2u2d % sls3d,osps2u4d % sls2d,osps2u4ds1d,

#37:Fs4d,sls1u2d % 2sls2d,sls4d % sls1u1d,sos7ds1d,

#38:sos8d,osps6u2d,sls1u1d % 3 sls2d,

Rank 6 hyperbolic superalgebras:

#1:F4
s1d,sls1u1d % F4,sls1u2d % sps6d,sls1u3d % sls3d,sls1u4d % sls2d,osps9u2d,

#2:E6
s2d,sls1u1d % F4,sls1u2d % sos7d,sls1u3d % sls3d,sls1u4d % sls2d,osps2u8d,

#3:F4
s1d,osps1u2d % F4,osps1u4d % sps6d,osps1u6d % sls3d,osps1u8d % sls2d,sls1u9ds4d,

#4:E6
s2d,osps1u2d % F4,osps1u4d % sos7d,osps1u6d % sls3d,osps1u8d % sls2d,osps1u8ds1d,

#5:sos10d,sls1u1d % sls5d,sls1u2d % sls3d % sls2d,sls1u4d % sls2d,osps8u2d,sls1u5d,

#6:osps8u2d,sls1u1d % sls1u4d,sls2d % 2sls1u2d,sls2u4d,

#7:sls8ds2d,sls1u1d % sps8d,sls1u2d % sls2d % sps4d,sls1u4d % sls2d,osps8u2d,osps2u8d,

#8:sos9ds1d,sls1u1d % sos9d,sls1u2d % sls2d % sos5d,sls1u4d % sls2d,osps8u2d,osps9u2d,

#9:sos10d,osps1u2d % sls5d,sls2d % sls3d % osps1u4d,sls2d % osps1u8d,sls1u8ds2d,osps1u10d,

#10:sos9ds1d,osps1u2d % sos9d,osps1u4d % sls2d % sos5d,osps1u8d % sls2d,sls1u8ds2d,sls1u9ds4d,

#11:sls8ds2d,osps1u2d % sps8d,osps1u4d % sls2d % sps4d,osps1u8d % sls2d,sls1u8ds2d,osps1u8ds1d,

#12:sls1u8ds2d,osps1u2d % osps1u8d,osps1u4d % sls2d % osps1u4d,osps2u8ds2d,

#13:sls1u8ds2d,sls1u1d % osps1u8d,sls1u2d % sls2d % osps1u4d,sls1u4d % osps1u2d,osps8u2d,osps3u8d,

#14:sos8ds1d,sls1u1d % sos8d,sls1u2d % 3 sls2d,osps8u2d,

#15:sos8ds1d,osps1u2d % sos8d,osps1u4d % 3 sls2d,sls1u8ds2d .
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The theory of unitary, irreducible representations of the proper, orthochronous Lor-
entz group is presented by means of the usual tensor calculus in Minkowski space–
time. This makes all steps manifestly Lorentz invariant. Explicit expressions for
spherically symmetric eigenfunctions of the first Casimir operatorC1 of the proper,
orthochronous Lorentz group are calculated and their completeness is proved. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1869537g

I. INTRODUCTION

Unitary, irreducible representations of the proper, orthochronous Lorentz group were discov-
ered simultaneously and independently by Gelfand and Neumark,1 Bargmann,2 and
Harish-Chandra.3 They are described in several textbooks, both mathematical4,5 and physical.6,7 In
all those textbooks the functions spanning the representation space depend on one complex vari-
able. The connection with the Lorentz group arises from the well-known isomorphism between the
group of proper, orthochronous Lorentz transformations of null directions and the group of ho-
mographic transformations of the complex plane. However, the existence of this isomorphism
allows only to check the Lorentz invariance, which in the tensor calculus in Minkowski space–
time is manifest.

In this paper we shall construct the representations of the proper, orthochronous Lorentz group
by analogy with the representations of the rotation group SOs3d. The spherical functionsYlm,
which span the unitary, irreducible representations of the rotation group SOs3d, can be obtained as
the solutions of the Laplace equation

Df ;
]2f

]x2 +
]2f

]y2 +
]2f

]z2 = 0, s1d

which have a fixed degree of homogeneityd,

fslx,ly,lzd = ldfsx,y,zd for eachl . 0. s2d

Solving the Laplace equation we obtain

fsx,y,zd = rlYlmsu,wd, s3d

where r, u, and w are the usual spherical coordinates,l =0,1,2,… and m=−l ,… , l. Thus d= l
=0,1,2,… .

By analogy, we shall consider the solutions of the d’Alembert equationsc=1d,
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hf ;
]2f

]t2
−

]2f

]x2 −
]2f

]y2 −
]2f

]z2 = 0, s4d

which have a fixed degree of homogeneityd,

fslt,lx,ly,lzd = ldfst,x,y,zd for eachl . 0. s5d

This approach allows to use the tensor calculus in Minkowski space–time, thus making the Lor-
entz invariance manifest at each step. Moreover, it reveals the spatiotemporal shape of solutions
which is completely absent in the standard expositions mentioned above.

We use units in which"=1=c. We use the metric tensorgmn such thatxx=gmnx
mxn;sx0d2

−sx1d2−sx2d2−sx3d2. Finally, we restrict our treatment to the spinless caseC2=0, whereC2 is the
second Casimir operator of the proper, orthochronous Lorentz group. The reason is thatC2=0 for
the so-called supplementary series, which is the hardest case from the point of view of the Lorentz
invariance and quantum-mechanical significance.

II. THE INTERNAL GEOMETRY OF THE LIGHT CONE

We describe the internal geometry of the light cone, following Gelfand, Graev, and Vilenkin4

scf. p. 426d, and Staruszkiewicz.8

The upper light coneshere in the momentum spaced is a figure formed by positive frequency
null vectorskk=0, k0.0. It consists of null directions. A null direction is a set of null vectors
parallel to a given null vector. Null directions generate two Lorentz invariant measures on the
upper light cone, the projective distance along the null directions,

Udk0

k0 U k1:k2:k3 = const s6d

and the volume of the set of null directions

d2k =
k1 dk2∧dk3 + k2 dk3∧dk1 + k3 dk1∧dk2

k0 . s7d

Here ∧ denotes the outer product. The well-known Lorentz invariant volume of the upper light
cone

dk =
dk1∧dk2∧dk3

k0 s8d

can be written as the outer product of the projective distance along the null directions and the
volume of the set of null directions,

dk =
dk0

k0 ∧d2k. s9d

The Lorentz invariant measure d2k is applicable when one integrates a homogeneous of degree22
function ofk because then one obtains a manifestly Lorentz invariant integral. This allows, e.g., to
calculate many difficult integrals in a simple way.8

Consider, for example, the simplest integral of this form

Isud =E d2k

sukd2 , s10d

whereu is a timelike vectoruu.0. In the spherical coordinates,

k0 = v,
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k1 = v sinu cosw,

k2 = v sinu sinw,

k3 = v cosu, s11d

d2k=v2 sinu du∧dw. The integralIsud is manifestly Lorentz invariant and therefore can be cal-
culated in the rest frame ofu, in which it is equal to

Isud =E v2 sinu du dw

su0d2v2 =
4p

su0d2 =
4p

uu
. s12d

Someone who does not know that the integralIsud is Lorentz invariant will use only its rotational
invariance and will have to take an additional integral overu. In this case the use of the Lorentz
invariance is a matter of convenience but in more complicated cases it makes a difference between
what can and what cannot be done.

III. SOLUTIONS OF THE D’ALEMBERT EQUATION WITH A FIXED DEGREE OF
HOMOGENEITY

The generators of the proper, orthochronous Lorentz group for the spinless case in Minkowski
space–time written in a manifestly Lorentz covariant form are

Mmn = xmpn − xnpm = iSxm

]

]xn − xn

]

]xmD . s13d

The Casimir operators of the proper, orthochronous Lorentz group for the spinless case in
Minkowski space–time written in a manifestly Lorentz invariant form are

C1 = − 1
2MmnM

mn = xxh − xm ]

]xmSxn ]

]xn + 2D , s14d

C2 = 1
8emnrsMmnMrs ; 0. s15d

Hereh denotes the d’Alembert operator,emnrs denotes the Levi–Civita symbol,e0123=1.
Assume thatf is a solution of the d’Alembert equationhf =0 with a fixed degree of homo-

geneityd. The Euler theorem on homogeneous functions states that

xm ]

]xm f = df. s16d

Then

C1f = − dsd + 2df , s17d

which shows that the degree of homogeneityd fixes the eigenvalue of the Casimir operatorC1.
Hence irreducible representations can be classified according to the degree of homogeneity.

To have unitarity we need a positive definite scalar product. It is well known that such a scalar
product is obtained when the standard sesquilinear, Hermitian form

sf, fd = iE
CS

dSmS f
] f

]xm −
] f

]xm fD , s18d

where CS is an arbitrary Cauchy surface and dSm is the volume element on this surface, is
restricted to positive frequency solutions, i.e., to solutions whose Fourier transform has the support
on the upper light cone in the momentum space.
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This closes our construction for the so-called main series.

IV. THE MAIN SERIES

The Casimir operatorC1 for the main series has values4 C1=1+n2ù1, which means that the
degree of homogeneityd=−1−in with n real. Positive frequency solutions of the d’Alembert
equation, which are homogeneous of degree −1−in can be represented by the Fourier transform

fsxd =E dk e−ikxfskd, s19d

where the functionfskd, defined on the upper light cone in the momentum space, is homogeneous
of degree −1+in. Expressing the sesquilinear, Hermitian formsf , fd from the preceding section by
the Fourier transformfskd we obtain

sf, fd = 2s2pd3E
0

` dk0

k0 ·E d2k fskdfskd. s20d

Dropping the infinite constant 2s2pd3e0
`dk0/k0 we have the local scalar product in the momentum

space appropriate for the main series

kf ufl =E d2k fskdfskd, s21d

which is manifestly Lorentz invariant and positive definite. In this manner we obtain a Hilbert
space, in which irreducible representations of the proper, orthochronous Lorentz group are unitary.
The functions belonging to this Hilbert space are square integrable.

It is clear that a spherically symmetric functionfskd must be proportional to

sk0d−1+in. s22d

This gives spherically symmetric solutionsfsxd in Minkowski space–time proportional tossee
Appendix Ad

1

r
HFcoshSp

2
nD + signst − rdsinhSp

2
nDGut − r u−in − FcoshSp

2
nD + signst + rdsinhSp

2
nDGut + r u−inJ ,

s23d

wheret=x0, r =Îsx1d2+sx2d2+sx3d2, sign is the signum function.
The functions belonging to the main series form a complete setssee Appendix Bd. Thus

someone who knows quantum mechanics would suspect that these are all representations. There
exists, nevertheless, the supplementary series.

V. THE SUPPLEMENTARY SERIES

The existence of the supplementary series, undoubtedly surprising from the point of view of
quantum mechanics, can be inferred as follows. Consider the hyperboloidxx=−1. This hyperbo-
loid is a three-dimensional space–time analogous to the four-dimensional de Sitter space–time
used sometimes in cosmology. The operator −C1=s1/2dMmnM

mn, given by Eq. s14d, is the
d’Alembert operator in this space–time. Therefore the eigenequation

C1f = − dsd + 2df s24d

is the Klein–Gordon equation in the three-dimensional de Sitter space–timexx=−1. For the main
series the square of the “mass” −dsd+2d=1+n2ù1. Physically this is of course the square of the
product of physical mass and radius; the condition −dsd+2d=1+n2ù1 means simply that the
square of this product is bigger than the critical value equal to 1. There is no reason, however, to
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assume the condition −dsd+2dù1. Space–time, in this case the three-dimensional de Sitter space–
time xx=−1, is simply a container in which we should be able to place a quantum particle of
arbitrary real and positive physical mass. Using this physically obvious principle we set4

n = is, 0 , s , 1, s25d

which means that 0,C1=−dsd+2d=1−s2,1 and fsxd is now homogeneous of degree −1+s
while fskd is homogeneous of degree −1−s.

The de Sitter space–timexx=−1 has a compact Cauchy surface which means that the standard
sesquilinear, Hermitian form

sf, fd = iE
CS

dSkS f
] f

]jk −
] f

]jk fD , s26d

where j1, j2, j3 are arbitrary internal coordinates in this space–time, is always perfectly well
defined. We assume the definition of a positive frequency solution in the de Sitter space–time
xx=−1 first given by Staruszkiewicz:9 a solution of the Klein–Gordon equation with the square of
the “mass” −dsd+2d in the de Sitter space–timexx=−1 is a positive frequency one if it is a
restriction to the hyperboloidxx=−1 of a homogeneous of degreed, positive frequency solution of
the d’Alembert equation in Minkowski space–time. Thus we obtain a Lorentz invariant and posi-
tive definite scalar product, which we need to have a unitary representation.

Let us express the sesquilinear, Hermitian formsf , fd by the Fourier transformfskd which now
is homogeneous of degree −1−s. Since sf , fd is a Lorentz invariant scalar product, there is a
function Kssd such that

sf, fd =E d2k d2l

skld1−s fskdfsld ·Kssd. s27d

Dropping the irrelevant functionKssd we have the nonlocal scalar product in the momentum
space appropriate for the supplementary series

kf ufls =E d2k d2l

skld1−s fskdfsld, s28d

which is manifestly Lorentz invariant. The reader is invited to compare this expression with the
same scalar product given by Mukunda and Simon10 in Eq. s5.4d of their paper to see the im-
provement brought about by the use of the Lorentz invariant measure d2k. In this manner we
obtain a Hilbert space, in which irreducible representations of the proper, orthochronous Lorentz
group are unitary.

It is clear that a spherically symmetric functionfskd must be proportional to

sk0d−1−s. s29d

This gives spherically symmetric solutionsfsxd in Minkowski space–time proportional tossee
again Appendix Ad

1

r
HFcosSp

2
sD + i signst − rdsinSp

2
sDGut − r us − FcosSp

2
sD + i signst + rdsinSp

2
sDGut + r usJ .

s30d
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APPENDIX A: THE USEFUL INTEGRAL

Let us consider the integral analytic in the lower half-plane of complex time Imx0,0,

E dk e−ikxsk0d−1−C, sA1d

which is to be understood as the limit of the integral

E dk e−iksx−i«dsk0d−1−C, sA2d

where « is an infinitesimal future oriented timelike vector««.0, «0.0. The last integral is
convergent for ReC,1 and in the limit it equals11

2pGs− Cd
i

1

r
HFcosSp

2
CD + i signst − rdsinSp

2
CDGut − r uC

− FcosSp

2
CD + i signst + rdsinSp

2
CDGut + r uCJ , sA3d

wheret=x0, r =Îsx1d2+sx2d2+sx3d2, G is the gamma function, sign is the signum
function.

APPENDIX B: PROOF OF COMPLETENESS

All functions defined on the upper light cone in the momentum space with a given degree of
homogeneity can be obtained from the spherically symmetric function by application of Lorentz
“boosts.” Thus, in order to prove that the functions belonging to the main series form a complete
set, it is sufficient to show that spherically symmetric ones form a complete set in the subspace of
spherically symmetric functions.

It is easy to calculate that

E dksk0d−1+imsk0d−1+in = 8p2dsm − nd. sB1d

Using this result we get the decomposition of an arbitrary spherically symmetric functioncsk0d
defined on the upper light cone in the momentum space,

csk0d =E
−`

+`

dnsk0d−1+incsnd,

sB2d

csnd =
1

2p
E

0

`

dk0sk0d−incsk0d,

which boils down to the pair of Mellin transforms and gives all the results known for this pair.
Thus we see that spherically symmetric functions from the main series form a complete set in the
subspace of spherically symmetric functions.
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We prove existence of standing wave solutions for a nonlinear Schrödinger equa-
tion onR3 under the influence of an external magnetic fieldB. In particular we deal
with the physically meaningful case of a constant magnetic fieldB=s0,0,bd having
source in the potentialAsxd=sb/2ds−x2,x1,0d corresponding to the Lorentz
gauge. ©2005 American Institute of Physics.fDOI: 10.1063/1.1874333g

I. INTRODUCTION

In quantum mechanics the introduction of an external magnetic fieldB : R3→R3 involves
replacing the gradient operator¹ with ¹+ iAsxd whereA is a vectorsor magneticd potential and
satisfies curlAsxd=Bsxd. The Schrödinger operator with a magnetic field having source inA and a
scalarselectricd potentialW has the following expression:

LA,W
" = S"

i
¹ − AD2

+ Wsxd = − "2D −
2"

i
A · ¹ + uAu2 −

"

i
div A + Wsxd, s1d

wherei2=−1 and" is the Planck constant. We notice that if we replace the magnetic potentialA

by Ãsxd=Asxd+ ¹wsxd for some real-valuedC2 function w then B̃sxd=curl Ãsxd=curl Asxd=Bsxd
and

e−iwFS1

i
¹ − ÃsxdD2

+ WsxdGeiw = S1

i
¹ − AsxdD2

+ Wsxd,

so that the spectral properties ofLA,W
" andL

Ã,W

"
are the same. The above properties is called the

gauge invarianceof the magnetic Schrödinger operator and it is in accordance with the fact that
the physically relevant quantity is the magnetic fieldB and not its vector potentialA scf. Ref. 6d.

Motivated by the theory of superconductivity, a lot of papers are devoted to the analysis of the
spectrum ofLA,W

" in a semiclassical regime, namely as,"→0. We quote in particular the works by
Bernoff-Stenberg,7 Del Pino–Felmer–Stenberg,16 Lu–Pan,7,26 devoted to the analysis, in a semi-
classical regime, of the lowest eigenvalue of the magnetic Schrödinger operator. Finally we men-
tion a recent paper by Helffer and Morame,20 concerning the localization of the ground state in the
case of a constant magnetic field.
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In the present work we study, in a semiclassical regime, a nonlinear Schrödinger equation with
an additional cubic term, which arises in many fields of physics, in a particular condensed matter
physics and nonlinear opticsssee Ref. 33d. More precisely, we are looking for stationary states to
the evolution equation

i"
]c

]t
= LA,W

" c − ucu2c in R+ 3 R3, s2d

as"→0. Theansatzthat the solutioncsx,td to s2d is a standing wave of the form

cst,xd = e−iE"−1tusxd,

with E[R andu: R3→C, leads us to solve the semilinear elliptic equation

LA,W
" u = Eu+ uuu2u in R3. s3d

In the work we consider an electric potentialWsxd which is bounded from below onR3, and we
chooseE such thatVsxd=Wsxd−E is strictly positive. Hence Eq.s3d becomes

LA,V
" u = uuu2u in R3, s4d

whereV is a strictly positive potential.
While there is an extensive literature dealing withs4d in the caseA=0 ssee Refs. 3, 4, 9, 10,

13, 15, 14, 19, 24, 27, and 29d, there are few papers concerning the nonlinear Schrödinger
equation with magnetic fields.

To our knowledge, the first paper, in which semilinear Schrödinger equations4d with external
magnetic field is considered, is by Esteban and Lions.18 The authors proved the existence of
standing wave solutions tos4d, by a constrained minimization in the caseVsxd=1 on R3 and "
.0 is fixed. Concentration and compactness arguments are applied to solve such minimization
problems for special classes of magnetic fields.

Afterward, in Ref. 21, Kurata has proved the existence of least energy solutions tos4d for any
fixed ".0, under some assumptions linking the magnetic fieldB and the electric potentialV ssee
also Ref. 32d.

A first multiplicity result for standing wave solutions tos4d, as "→0, has been proved by
Cingolani in Ref. 8, using topological arguments that allow to relate the number of standing wave
solutions tos4d to the topologyof the set of global minima ofV. This result covers the case of
magnetic potentials having polynomial growths, having special physical interest, but the used
approach works only near global minima ofV.

In a recent paper,11 the more general case, in which the electric potentialV has a manifoldM
of stationary points, not necessarily global minima, has been considered. For bounded electric and
magnetic potentials, it has been proved a multiplicity result of semiclassical standing waves ofs4d,
following the new perturbation approach contained in the paper4 by Ambrosetti, Malchiodi, and
Secchi ssee also Refs. 2 and 3d. Precisely, by means of a finite dimensional reduction, the
complex-valued solutions tos4d are found near least energy solutions of the complex-valued
limiting equation

S¹

i
− As"jdD2

u + u + Vs"jdu = uuu2u in R3, s5d

where"j belongs to a neighborhood ofM. We remark that in Ref. 11 the boundedness of the
scalar and magnetic potentials onR3 is a crucial assumption to guarantee that the variational
framework, in which problems4d is set up, becomesequivalentto the spaceH1sR3,Cd, which is
the variational setting of the limiting problems5d, independently of the vector potentialA.

Concerning other papers on this topic, we mention a recent work31 by Secchi and Squassina in
which the authors have established necessary conditions for a sequence of standing wave solutions
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to s4d to concentrate, in different senses, around a given point. Finally we quote the paper by Arioli
and Szulkin5 where existence of infinitely many solutions ofs5d is proved assuming thatV andB
are periodic and" fixed.

In the present work we are concerned with the study of standing wave solutions tos4d in a
semiclassical regime, in the presence of a magnetic field, having source in a vector potentialA
possibly unbounded onR3. This is a relevant case in physics, since constant magnetic fieldsB lead
to vector potentialsA, having polynomial growths onR3. For instance, ifB is the constant
magnetic fields0,0,bd, then a suitable vector field is given byAsxd=sb/2ds−x2,x1,0d. In physical
literature the potentialA corresponds to the so-calledLorentz gaugessee Ref. 18d.

In Main Theorem, which is the main result, we prove that for each topologically nontrivial
critical point x0 of the scalar potentialV, there exists a standing wave solutionc" of s2d whose
modulus concentrates atx0 for " small. The magnetic field only influences the phase factor of the
standing wave as" is small.

The used approach is variational and is based on a penalization procedure, introduced by Del
Pino and Felmer in Ref. 13 for studying nonlinear Schrödinger equations withAsxd=0 in the
semiclassical limit.

We point out that in the presence of a magnetic field new difficulties arise in order to carry out
a penalization procedure as in Ref. 13. First, the problem is complex valuedsunlessA;0d and the
penalization acts only on the modulus of the functions. Moreover differently from Refs. 11 and 13,
if A is an unbounded function onR3, there is no kind of relationship between the variational
settingHA,V

" associated to problems4d, and the limit spaceH1sR3,Cd as"→0 ssee Remark 3.1d.
Kato’s inequality for magnetic fields and delicate subsolution estimates will provide the tools to
extend the results in Ref. 13 for nonlinear Schrödinger equations in presence of an external
magnetic field.

We use the following notations:

s1d The complex conjugate of any numberz[C will be denoted byz.
s2d The real part of a numberz[C will be denoted by Rez.
s3d The ordinary inner product between two vectorsa,b[R3 will be denoted bya·b.
s4d From time to time, when no confusion can arise, we omit the symbol dx in integrals overR3.
s5d The letterC denotes a generic positive constant, which may vary inside a chain of inequali-

ties.
s6d We use the Landau symbols. For example,Os«d is a generic function such that

lim sup«→0fOs«d /«g,`, andos«d is a function such that lim«→0 fos«d /«g=0.

II. STATEMENT OF THE MAIN RESULT

In the work we consider, more generally, with the semilinear elliptic equation

S"

i
¹ − AsxdD2

u + Vsxdu = fsuuu2du in R3, s6d

where" is regarded as a small parameter andf : f0, +`f→R satisfies the following assumptions.
sf1d f is of classC1 increasing,fs0d=0 and

lim
s→`

fssd

s
p−1
2

= 0 and 0, qFssd ø fssds

for somep[ s1,5d andq.2, whereFssd= 1
2e0

sfstddt, for s[R+.
sf2d For eacha.0, the limiting functionalIa:H1sR3,Rd→R, defined as
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Iasvd =
1

2
E

R3
fu ¹ vu2 + auvu2g −E

R3
Fsuvu2d, s7d

possesses a unique critical point, whose critical value is denoted byba.
Throughout the paper we also make the following mild assumptions on the vector and scalar

potentials.
sA1d A: R3→R3 is a C1-vector field such that, for some positive constantsC andg,

uJAsxdu ø Ceguxu, s8d

whereJAsxd denotes the Jacobian matrix ofA at x.
sV1d V : R3→R is a positiveC1 function such that infx[R3 Vsxd=V0.0 and for some positive

constantsC1 andg1,

u ¹ Vsxdu ø C1e
g1uxu. s9d

sV2d There is an open, bounded setL,R3 with smooth boundary and there exist closed
subsetsB, B0 of L such thatB is connected andB0,B. Let G be the family of all continuous
functionsf: B→L with the property thatfsxd=x wheneverx[B0. Define

c = inf
f[G

max
x[B

Vsfsxdd. s10d

Moreover we assume that supx[B0
Vsxd,c and for allf[G,

c ø inf
x[B

Vsfsxdd.

sV3d For all x[]L such thatVsxd=c, there holds]tVsxdÞ0, where]t stands for the tangen-
tial derivative.

We notice that assumptionssV2d andsV3d express a local linking forV in L ssee for instance
Ref. 14d and guarantee the existence of a critical point forV insideL at levelc. Particular cases
of local linking of V in L are local maxima, local minima or saddle points forV insideL.

We can state the main result of this work, which is going to be proved in the last section.
Main Theorem: Assumesf1d andsf2d, sA1d, sV1d–sV3d. Then there is a number"0.0 such

that for all 0,","0, there exists a solution u" to Eq. s6d such that

E
R3
US"

i
¹ − AsxdDu"U2

dx +E
R3

Vsxduu"u2 dx , + `. s11d

Furthermore u"[Cloc
2,asR3d, with a[ s0,1d.

We remark that assumptionsf1d is clearly satisfied if the nonlinear term ins6d is homoge-
neous, namelyfstd= utusp−2d/2. In this case, assumptionsf2d is also satisfied by the uniqueness results
in Ref. 22. By Main Theorem, we deduce the following corollary.

Corollary 2.1: AssumesA1d, sV1d–sV3d. Then there is a number"0.0 such that for all
0,","0, there exists a solution u" to Eq. s4d such thats11d holds. Furthermore u"[Cloc

2,asR3d,
with a[ s0,1d.

We remark that in Main Theorem we deal with a nonlinear Schrödinger equation inR3 as this
is the main relevant case in quantum mechanics. Actually, the result of Main Theorem also holds
for nonlinear Schrödinger equations inRN, assuming the following.

sf28d The nonlinearityf is of classC1, increasing,fs0d=0 and
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lim
s→`

fssd

s
p−1
2

= 0 and 0, qFssd ø fssds

for some p.1 if N=1, 2 and p[f1, sN+2d/ sN−2dg if Nù3 and q.2, where Fssd
= 1

2e0
sfstddt, for s[R+.

III. MAGNETIC FIELDS: THE SPACE HA

In this section we recall some classical results on Schrödinger operators with magnetic field,
which are useful in the proof of Main Theorem.

We consider the spaceHAsR3,Cd consisting of all the functionu[L2sR3,Cd with
s] j + iAjdu[L2sR3,Cd for any j =1,2,3 endowed with the norm

iuiHA

2 =E
R3

us¹ + iAduu2 dx +E
R3

uuu2 dx.

Remark 3.1: We do not assume that¹u or Au are separately in L2sR3,Cd. Therefore, in
general, there is no relationship between the spaces HAsR3,Cd and H1sR3,Cd, namely
HAsR3,CdúH1sR3,Cd or H1sR3,CdúHA

"sR3,Cd (see Ref. 18).
Theorem 3.2:Let A: R3→R3 be in Lloc

2 sR3d and let u[HA
1sR3,Cd. Thenuuu[H1sR3,Rd and

the diamagnetic inequality

u¹ uuusxdu ø us¹ + iAdusxdu s12d

holds for almost every x[R3.
By the diamagnetic inequality, the following result followsssee Ref. 18d.
Theorem 3.3:The space C0

`sR3,Cd is dense in HA
1sR3,Cd.

Furthermore we recall the following Kato’s inequalityssee Ref. 30d.
Theorem 3.4:Let u[Lloc

1 sR3,Cd with ¹u[Lloc
1 sR3,Cd. Define

ssignudsxd = 5 usxd
uusxdu

if usxd Þ 0,

0 if usxd = 0,

s13d

we have thatsignu[L`sR3d and ssignud¹usxd is locally L1 and hence a distribution. Moreover
we have

Duuu ù RefssignudDug.

We furthermore recall the application of Kato’s inequality to the Schrödinger operator with
magnetic fieldssee Ref. 30d.

Theorem 3.5: Let A: R3→R3 be a C1 real vector valued function. Let Dku=s1/ids]u/]xkd
−Aku, for any k=1,2,3 and DA

2 =ok=1
3 Dk

2. Then for any u[Lloc
1 sR3,Cd and D2u[Lloc

2 sR3,Cd we
have

Duuu ù − RefssignudDA
2ug.

Throughout the paper, we set"=« and denote byD« andD« for each«.0 thesformald differential
operators

D« =
«

i
¹ − Asxd, s14d
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D« =
¹

i
− As«xd. s15d

As in Sec. II, we introduce the real Hilbert spaceHA,V
« as the completion ofC0

`sR3,Cd with respect
to the inner product

ku,vlHA,V
« = ReE

R3
D«u ·D«v dx + ReE

R3
Vsxduv dx. s16d

As remarked above, this space has in general no relationship withH1sR3,Cd. Anyway, by Theorem
3.2, we have the followingdiamagnetic inequality:

E
R3

«2u ¹ uuuu2 dx ø E
R3

uD«uu2 dx, for everyu [ HA,V
« . s17d

It is easy to check that, under our assumptions, the functional

F«sud =
1

2
E

R3
uD«uu2 dx +E

R3
Vsxduuu2 dx −E

R3
Fsuuu2ddx s18d

is of classC2, so that solutions tos6d correspond to critical points ofF«.

IV. A PENALIZATION ACTING ON THE MODULUS

In this section we perform a penalization of the Euler functionalF«, inspired by Refs. 13 and
14. To this order, we begin to assume, without loss of generality, that the infimum ofV in L is very
close toc. Let d.0 be a small but fixed number, we can assume thatL=hxuVsxd.c−dj and

B , hx[LuVsxd ù cs«dj, B0 , hx[LuVsxd = cs«dj,

where c−d,cs«d,c, lim«→0 cs«d=c−d and distsB0,]Ld=Î«. In fact as in Ref. 14, we can
redefineLd=Lù hxuVsxd.c−dj and

Bd,« = B ù hxuVsxd ù cs«dj, s19d

B0
d,« = B0 ù hxuVsxd = cs«dj, s20d

where

cs«d = infhjudistshx [ LuVsxd = jj,Ldd ù Î«j

without affecting conditionsV3d in the definition of linking. We notice that the setB0
d,« is not

empty asB is connected. Then iff: Bd,«→Ld is a continuous map withfsxd=x for everyx[B0
d,«,

we can define its extensionf̃ as the identity onB\Bd,«. Thus f̃: B→L and supx[B Vsf̃d
=supx[Bd,« Vsf̃dùc.

We consider a modification of the nonlinear term ins6d, that will prevent concentration
outside L. We remark that differently from Ref. 13, as our problem is complex valued, the
penalization affects only the modulus of the functions.

Let q be the number defined insf1d and choosek.0 such thatk.q / sq−2d. Since f is
increasing, we can fix a numbera.0 with fsad=V0/k. Set

f̃ssd = H fssd if sø a,

V0/k if s. a,
s21d

we defineg: R33R+→R by
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gsx,sd = xLsxdfssd + s1 − xLsxdd f̃ssd, s22d

wherexL is the characteristic function of the setL and we consider the modified equation

S«

i
¹ − AsxdD2

u + Vsxdu = gsx,uuu2du in R3. s23d

Weak solutions of Eq.s23d correspond to critical points of theC1 functionalJ«: HA,V
« →R,

J«sud =
1

2
E

R3
uD«uu2 + Vsxduuu2 −E

R3
Gsx,uuu2ddx, s24d

whereGsx,sd= 1
2e0

sgsx,tddt.
For the sake of convenience, we highlight some obvious properties ofg, which follow directly

from sf1d and sf2d.
sg1d lims→0+ gsx,sd=0, uniformly with respect tox[R3.
sg2d There exist a bounded subsetK of R3 and a numberq.2 such that

0 , qGsx,sd ø gsx,sd

for all x[K.
sg3d For all sù0, x¹K,

0 ø 2Gsx,sd ø gsx,sd ø
1

k
Vsxd

with a constantk.q / sq−2d.
We begin to show that the penalized functionalJ« satisfies the Palais–Smale condition. This

may not be true for the functionalF«.
Lemma 4.1: For any«.0 fixed, the penalized functional J« satisfies the Palais–Smale con-

dition at all positive levels.
Proof: Let «.0 be fixed. Lethunj be a sequence inHA,V

« such thathJ«sundj is bounded and
J«8sund→0. First we prove thathunj is bounded. Bysg3d, it follows that

1

2
E

K

gsx,uunu2duunu2 + osiunid ø
1

2
E

R3
uD«unu2 + Vuunu2 ø E

K

Gsx,uunu2d +
1

2k
E

R3\K
Vuunu2 + Os1d,

where i ·i denotes the norm inHA,V
« induced by the scalar product ins16d. Thus the above

inequality andsg2d imply

Sq

2
− 1DE

R3
uD«unu2 + Vuunu2 ø

q

2k
E

R3\K
Vuunu2 + osiunid + Os1d.

In particular, it follows thathunj is bounded inHA,V
« . We choose a subsequence, still denoted by

hunj for simplicity, that converges weakly to someu in HA,V
« . we claim thatun→u strongly in

HA,V
« . To this aim, it suffices to show that for any givend.0 there existsR.0 such that

lim sup
n→`

E
uxu.R

suD«unu2 + Vsxduunu2ddx , d.

Without loss of generality, we can takeR so large thatK,BR/2. Fix a smooth cutoff functionhR

such thathR=0 on BR/2, hR=1 outsideBR/2, 0øhRø1 and u¹hRuøc/R for some constantc
.0. Sincehunj is a bounded Palais–Smale sequence, we have
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J8sundfhRung = os1d,

so that

E
R3

suD«unu2 + Vuunu2dhR + ReE
R3

unD«un ·D«hR = ReE
R3

gsx,uunu2dhRuunu2 + os1d

ø
1

k
E

R3
Vuunu2hR + os1d.

We conclude that

E
uxu.R

uD«unu2 + Vsxduunu2 ø
C

R
iuniL2iD«uniL2 + os1d,

which clearly proves the claim. h

V. THE MINIMAX SCHEME

By assumptionsf2d the limiting functionalIa defined ins7d has a unique critical value, which
we can characterize as

ba = inf
v[H1sR3d\h0j

sup
t.0

Iastvd. s25d

It can be shown that the mapa°ba, with a.0, is strictly increasing and continuous. Associated
to the critical valueba there exists a radially symmetric solutionva[H1sR3,Rd of the scalar
equation

Dv − av + fsuvu2dv = 0. s26d

Fix a small numberd0.0. For eachy[R3 with distsy,]Ld.d0 we denote byw«
y the function in

HA,V
« given by

w«
ysxd = eiAsydfsy−xd/«ghsux − yu/d0dvVsydSy − x

«
D , s27d

whereh is a smooth cutoff function that equals 1 ons0, 1d and 0 ons2, +`d.
Define now the classG« of all continuous mapsf: B«→M« such that

fsyd = ts«,ydw«
y for all y [ B0

«, s28d

where

M« =Hu [ HA,V
« \ h0juE

R3
uD«uu2 + Vsxduuu2 =E

R3
gsx,uuu2duuu2j

is the Nehari manifold associated to the polarized functionalJ« and ts« ,yd is the unique positive
number such thatts« ,ydw«

y[M«. We define a minimax value as follows:

g« = inf
f[G«

sup
y[B«

J«sfsydd. s29d

By slightly deformingw«
y and recalling the definitions ofB« andB0

«, one can show that

bc ù lim sup
«→0

«−3g« ù lim inf
«→0

«−3g« ù bc−d. s30d
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We show that the last inequality ins30d is strict. We begin to prove the following useful
lemma, which generalizes Lemma 2.3 in Ref. 14ssee also Ref. 17d to the case of a complex valued
equation.

Lemma 5.1: Letv[H1sR3,CdùCsR3d be a weak solution of the equation

Dv − Vsjdv + xhx1,0jfsuvu2dv + xhx1.0j f̃suvu2dv = 0, s31d

wherej[R3. ThenuvuøÎa for any x1.0 and v actually solves the equation

Dv − Vsjdv + fsuvu2dv = 0.

Proof: We test Eq.s31d by ]v /]x1 and we derivefx8 stands for =sx2,x3dg

E
R2

dx8E
−`

` ]

]x1
fu ¹ vu2 + Vsjduvu2gdx1 +E

R2
fFsuvs0,x8du2d − F̃suvs0,x8du2dgdx8 = 0. s32d

We notice thatFssdù F̃ssd with inequality if søa. Thus uvs0,x8duøÎa. Finally we show that
uvsx1,x8du2øÎa for any x1.0.

By Kato’s inequality we derive that

Duvu ù Vsjduvu − xhx1,0jfsuvu2duvu − xhx1.0j f̃suvu2duvu. s33d

Now we can tests33d by f=xhx1.0jsuvu−Îad+[H1sR3,Rd and we derive

E
R3

xhx1.0ju¹suvu − Îad+u2 + qsxdxhx1.0jsuvu − Îad+
2 + Îaqsxdxhx1.0jsuvu − Îad+ ø 0, s34d

where

qsxd = Vsjd − f̃suvu2dxhx1.0j.

For sùa, f̃ssd=sV0/kd,Vsjd, so thatqsxd.0 and all the terms ins34d are necessarily zero, and
f=xhx1.0jsuvu−Îad+=0. We conclude that

uvsx1,x8du ø Îa ∀ x1 . 0, x8 [ R2.

h

Lemma 5.2: There results

lim inf
«→0

«−3g« . bc−d. s35d

Proof: We argue by contradiction, following arguments strictly related to Ref. 14, Lemma 1.1.
If s35d is not true, then there exists a sequence«n→0 such that

«n
−3g«n

ø bc−d + os1d.

Fix somefn[G«n
with the property that

«n
−3 sup

y[B«n

J«n
sfnsydd ø bc−d + os1d. s36d

For the reader’s convenience, we split the proof in several steps.
Step I:SettingLn=hx[R3udistsx,Ld,Î«nj, we claim that
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lim
n→`

«n
−3 sup

y[B«n

E
R3\Ln

ufnsxdu2 = 0. s37d

To prove this claim, we fixyn[B«n and simplify notation by introducingun=fnsynd.
Sinceun[M«n

, we have

J«n
sund ù J«n

stund

for any t.0. Let us set

Ensvd =
1

2
E

Ln

uD«n
vu2 + Vsxduvu2 −E

Ln

Gsx,uvu2ddx,

and choose numberstn.0 with the property that

Enstnund = max
t.0

Enstund.

Now, from the properties of the penalizationg, it follows that

Vsxd
2

− Gsx,sd ù g for all x [ R3 \ L ands. 0.

This and Eq.s36d imply that

Enstnund + gtn
2E

R3\Ln

uunu2 ø «n
3sbc−d + os1dd

with an erroros1d uniform with respect tohynj. Furthermore, we claim that there existss.0 such
that

inf
nù1

tn ù s. s38d

First we notice that from the relationJ«n
sundøC«n

3, the diamagnetic inequality and again the
properties ofg, the existence of a constantC0, independent ofhynj, such that

E
R3

uD«n
unu2 + uunu2 ø C0«n

3 s39d

follows easily. Set nowvnsxd= tnuns«nxd and L̃n=«n
−1Ln. The definition oftn implies

E
L̃n

uD«nvnu2 + Vs«nxduvnu2 =E
Ln
˜

gs«nx,uvnu2duvnu2 dx ø E
Ln
˜

C0uvnup+1 + ruvnu2, s40d

wherer.0 can be fixed as small as we please. We can deduce from the Sobolev embedding
theorem as stated in Ref. 1, Lemma 5.10 that there exists a constantC.0, independent ofn, such
that

E
L̃n

uvnup+1 ø CSE
L̃n

u ¹ uvnuu2 + uvnu2Dsp+1d/2

ø CSE
L̃n

uD«nvnu2 + uvnu2Dsp+1d/2

. s41d

By combinings41d with Eq. s40d, we see that
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E
L̃n

uvnup+1 ù s . 0,

and in particulareL̃n
uD«nvnu2+ uvnu2ùs.0 for a suitables.0 independent ofn, and so

tn
2E

Ln

suD«n
unu2 + uunu2d ù s«n

3.

This provess38d.
Observe now that, from the definition oftn and from the diamagnetic inequality, we get

Enstnund ù inf
u[H1sLnd

sup
t.0

Enstud ; bn.

If we prove that

lim
n→`

«n
−3bn = bc−d, s42d

then Eq.s37d follows from our previous arguments.
Step II: We prove that identitys42d holds.
We follow Ref. 15, with minor changes. By a deformation argument, it is easy to see that

bn ø sbc−d + os1dd«n
3. s43d

We prove the opposite inequality. Since the functionalEn satisfiessPSd, by standard Critical Point
Theory, the numberbn is a critical value forEn. Let wn[H1sLnd be an associated critical point. As
such, it satisfies the equation

5S
«n

i
¹ − AD2

wn + Vwn = gsx,uwnu2dwn in Ln,

]wn

]n
= 0 on ] Ln.

In particular, by Kato’s inequality,uwnu solves the differential inequality

5«n
2Duwnu − Vsxduwnu + gsx,uwnu2duwnu2 ù 0 in Ln,

]wn

]n
= 0 on ] Ln.

s44d

By the maximum principle,uwnu cannot attain a local maximum insideLn\L, thanks to the
Neumann boundary condition ins44d. If xn is a maximum ofuwnu, then necessarilyxn[L. More-
over, infn maxLn

uwnu.0. Assume, without loss of generality, thatxn→x* [L. Scalingwn to a map
on Vn;«n

−1sLn−xnd defined byvnsxd=wnsxn+«nxd, we have thatvn satisfies the equation

− Dvn −
2

i
Asxn + «nxd · ¹ vn + uAsxn + «nxdu2vn −

«n

i
div Asxn + «nxdvn

+ Vsxn + «nxdvn = gsxn + «nx,uvnu2dvn in Vn s45d

with Neumann boundary condition, and, again by Kato’s inequality,

Duvnu ù Vsxn + «nxduvnu − gsxn + «nx,uvnu2duvnu in Vn.

From s43d we deduce that
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sup
nù1
E

Vn

fuD«nvnu2 dx + Vnuvnu2gdx , + `,

whereAnsxd=Asxn+«nxd andVnsxd=Vsxn+«nxd. Take an arbitrary open setV, relatively compact
in R3. Since we may assume thatV,Vn for all n sufficiently large, Eq.s43d and the diamagnetic
inequality s12d, entail that the sequencehuvnuj is bounded inH1sV ,Rd and, up to subsequences,
converges weakly inH1sV ,Rd and strongly inLqsV ,Rd with q,5 to somev* [H1sV ,Rd. More-
over hvnj is a bounded sequence inH1sV ,Cd. SinceV is arbitrary, the limitv* can be extended to
a function defined onR3. Thus by applying the subsolution estimatesssee Theorems 13.1, 14.1 in
Ref. 23d we infer that the sequencehvnj is bounded inL`sVd. By Schauder estimates, the sequence
hvnj is bounded inC2,asKd for somea[ s0,1d and thus, up to subsequences,vn converges tov in
Cloc

2 sR3d and also weakly inLqsR3,Rd with q,5. It follows thatuvu=v* [H1sR3,Rd andvÞ0 as
infnuvns0duùb.0. Therefore,

− Dv −
2

i
Asx*d · ¹ v + uAsx*du2v + Vsx*dv = gsx,uvu2dv in R3, s46d

in the sense of distributions, wheregsx,sd=xsxdfssd+s1−xsxdd f̃ssd andx is the weak* limit of the
sequencehxLsxn+«ndjnù1 in L`sR3d. Sinceuvu[H1sR3,Rd and by definition ofg, we deduce that
eR3gsx, uvu2duvu2 dx is finite and bys46d we havev[H1sR3,Cd and thusv solvess46d in weak
sense. By performing a rotation, Lemma 5.1 can be applied to prove that the functionvsxd
=e−iAsx* d·xṽsxd satisfies

Dv − Vsx*dv + fsuvu2dv = 0.

We must have

lim inf
n→`

«n
−3Enswnd = lim inf

n→`
Ensvnd ù IVsx* dsvd.

Indeed, asvn converges tov in Cloc
2 sR3d, we derive that

lim
n→+`

E
BR

sn =
1

2
E

BR

US¹

i
− Asx*dDvU2

+
Vsx*d

2
E

BR

uvu2 −E
BR

Gsx,uvu2d, s47d

where

snsxd =
1

2
FUS¹

i
− AnsxdDvnU2

+ Vnsxduvnu2G − Gsx,uvnu2d.

Sincev[H1sRN,Cd, we have that for eachd.0 there existsR.0 so large that

lim
n→+`

E
BR

sn ù IVsx* dsvd − d.

To complete the proof, we need to show that

lim inf
n→`

E
«n

−1sLn−xnd\BR

snsxddx ù − d s48d

for R sufficiently large. Choose a smooth cutoff functionh such thath=0 on BR−1, h=1 on
R3\BR, andu¹huøC whereC is a positive constant, independent ofR andn. Now test the identity
Jn8svnd=0 against the functionhvn[HAn,Vn

1 to obtain
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0 = Jn8svndfhvng = Hn +E
«n

−1sLn−xnd\BR

s2sn + gnd

with gnsxd=2Gsxn+«nx, uvnu2d−gsxn+«nx, uvnu2duvnu2 and

Hn = ReE
BR\BR−1

¹ vn ·¹shvnd +E
BR\BR−1

uAsxn + «nxdu2huvnu2 − Re
2

i
E

BR\BR−1

Asxn + «nxd · ¹ vnhvn

+E
BR\BR−1

Vsxn + «nxdhuvnu2 −E
BR\BR−1

gsxn + «nx,uvnu2dhuvnu2.

From the localC1 convergence ofhvnj to v and the fact thatv[H1sRN,Cd, we deduce that there
existsR.0 so large that limn→`uHnuød. Recalling thatgnø0 because of the properties ofg, one
easily getss48d. But Vsx*dùc−d so that IVsx* dsvdùbc−d. We conclude thatbnù sbc−d+os1dd«3.
Equations37d follows easily froms42d and s38d.

Step III: We now introduce the well-known tool of thecenter of massfor anL2 function, and
apply it to ourfn.

Let u[L2sR3d be a given map. We define its center of massbsud[R3 as

bsud =
eL+xuusxdu2 dx

eR2uusxdu2 dx
,

whereL+ is a fixed small neighborhood ofL. We may of course assume thatd0,dists]L+,Ld
whered0 is fixed in s27d. We claim that

bsfnsydd [ L+ ù Hx [ R3UVsxd ø c −
d

2
J for all y [ B«n. s49d

Again, the proof of this fact is by contradiction. Ifs49d is false, then, passing to some subsequence,
the existence ofyn[B«n is assured, such that

bsfnsyndd ¹ L+ ù Hx [ R3UVsxd ø c −
d

2
J s50d

for all n[N. If we setun=fnsynd andvnsxd=uns«nxd, we have

sup
t.0

Ic−dstuvnud ø bc−d + os1d. s51d

This inequality is proved as follows: it is already known froms36d ands17d that huvnuj is bounded
in H1sR3,Rd. Moreover, it follows from

E
R3

suD«nvnu2 + Vs«nxduvnu2ddx =E
R3

gs«nx,uvnu2duvnu2 ø E
R3

fsuvnu2duvnu2

that

inf
n
E

R3
uvnup+1 = s . 0.

By virtue of Lions’ vanishing lemmasRef. 25, Lemma I.1d we may find a sequencehBnj of balls
of fixed radiusssay 1d with
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inf
n
E

Bn

uvnu2 ù s . 0.

For eachn, select a numbertn.0 such thatIc−dstnuvnud=supt.0 Ic−dstuvnud. From the boundedness
of huvnuj in H1sR3,Rd, we get

Ctn
2 −E

R3
Fsutnvnu2d ù Ic−dstnuvnud ù bc−d.

Recalling assumptionsH2d, we have

tn
q−2E

R3
uvnuq ø C

with 2,q,5. Thushtnj is bounded, and froms37d we have

lim
n→`

E
R3\s«n

−1
L+d

utnvnu2 = 0. s52d

Finally, from s36d we have

bc−d + os1d ù «n
−3J«n

stnund ù Ic−dstnuvnud −
tn
2

2
E

R3\s«n
−1

L+d
sc − d + os1dduvnu2,

and s51d follows from s52d.
Set nowwn= tnuvnu, with the sametn as before. The functionwn belongs to the Nehari manifold

of Ic−d and s51d implies thatwn is a minimizing sequence ofIc−d constrained on the Nehari
manifold. A standard application of Ekeland’s variational principle yields asPSd sequencehw̃nj for
Ic−d such thatuwnu−w̃n→0 in H1sR3,Rd. By concentration-compactness arguments, there exists a
sequencehznj of points inR3 such thatwns·−znd converges inH1 to somew which solves

Dw − sc − ddw + fsuwu2dw = 0 in R3.

Denoteyn=«nzn. From s37d, we can assume that, up to a subsequence,yn→y in L. Since

bc−d ù lim
n→`

«n
−3J«n

stnund ù lim
n→`

Istnuvnud = IVsydsvd,

we havebc−dùbVsyd, so thatVsydøc−d. But bsund→y[L ands50d implies Vsyd.c−d /2. This
contradiction provess49d.

Step IV:We are going to find a contradiction that provess35d, which will complete the proof.
Recall the validity ofs49d. Let wnsyd=psbsfnsyddd wherep: L+→L is a continuous mapping that
equals the identity onL and L+ is a fixed small neighborhood ofL fixed in Step III. Now,
fnsyd=w«n

w for eachy[B0
«n, andw«n

y is radially symmetric with respect to the pointy. Thereforefn

acts as the identity onB0
«n. As such, mapfn is admissible in the class of functions that defines the

level c. AssumptionsV2d implies now thatcøsupy[B
0
en Vswnsydd for all nù1. If n is large enough,

this contradictss49d, and we have proved thats35d is true. h

Proposition 5.3: For each« sufficiently small, the numberg« defined by (29) is a critical value
for the functional J«. As a consequence, there exists a solution u«[HA,V

« to Eq. (23) such that
J«su«d=g«. Furthermore u«[Cloc

2,asR3d, with a[ s0,1d.
Proof: We already know from Lemma 4.1 thatJ« satisfies thesPSd condition, provided« is

small enough. Moreover, the last lemma implies that«−3g«ùbc−d+os1d for all « small. If f[G«,
thenfsyd=w«

y whenevery[B0
«. This entails that
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sup
y[B0

«
«−3J«sfsydd ø bc−d + os1d.

The proof is completed by a standard deformation argument. By standard regularity results,
u«[Cloc

2,asR3d. h

VI. PROOF OF THE MAIN THEOREM

First we derive the following proposition in which the asymptotic behavior of max]L uu«u is
described.

Proposition 6.1: Let

m« = max
x[]L

uu«sxdu,

then

lim
«→0

m« = 0. s53d

Proof: We split again the proof.
Step I:We begin to establish the following fact: if«n→0 andxn[L are such thatuu«n

sxndu
ùb.0, then

lim sup
n→`

Vsxnd ø c.

By contradiction, we assume, up to a subsequence, thatxn→x* [L and Vsx*d.c. Set vnsxd
=uen

sxn+enxd, we have thatvn satisfies the equation

− Dvn −
2

i
Asxn + «nxd · ¹ vn + uAsxn + enxdu2vn −

«n

i
div Asxn + «nxdvn

+ Vsxn + «nxdvn = gsxn + «nx,uvnu2dvn in R3 s54d

By reasoning as in Step II of Lemma 2,hvnj converges inCloc
2 sR3d to somev. Let x be the

weak * limit in L`sR3d of the sequencehxLsxn+«n·dj, v[Cloc
2 sR3d solves the equation in each

compact set

− Dv −
2

i
Asx*d · ¹ v + uAsx*du2v + Vsx*dv = gsx,uvu2dv in R3, s55d

wheregsx,sd=xsxdfssd+s1−xsxdd f̃ssd and 0øxø1. Sincev[H1sR3,Cd, we infer v solvess46d
in weak sense. Settingṽsxd=e−iAsx* d·xvsxd, we see thatṽ weakly solves

− Dṽ + Vsx*dṽ = gsx,uṽu2dṽ in R3 s56d

Let J: H1sR ,Cd→R be the functional defined by

Jsud =
1

2
E

R3
u ¹ uu2 + Vsx*duuu2 −E

R3
Gsx,uuu2d,

whereGsx,sd=e0
sgsx,tddt, we observe thatṽ is a critical point ofJ. Following Step II of Lemma

5.2, one can prove that

Jsṽd ø lim inf
n→`

J«n
svnd. s57d

By s57d and taking into accounts30d we deduce thatbcùJsṽd. Sincehssdù h̃ssd for all s we derive
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bc ù Jsṽd = max
tù0

Jstvd ù max
tù0

IVsx* dstvd ù bVsx* d,

where

IVsx* dsud =
1

2
E

R3
u ¹ uu2 + Vsx*duuu2 −E

R3
Fsuuu2d.

It follows that Vsx*døc, which contradicts the fact thatVsx*d.c.
Step II: Now we pass to proves53d. By contradiction, we assume, up to a subsequence, that

there exists a sequencexn[]L such thatxn→x[]L and

uu«n
sxndu ù g . 0. s58d

It follows that Vsxdøc. We claim thatVsxd.c−d. By contradiction, we suppose thatVsxd=c
−d.

Arguing as before, we can consider the scaled sequencevnsxd=u«n
sxn+«nxd, and we can

deduce thatvn solvess45d and it converges to somev[H1sR3,Cd in Cloc
2 sR3d, up to subsequences

andvÞ0. Moreoverv weakly solves the equation

− Dv −
2

i
Asxd · ¹ v + uAsxdu2v + Vsxdv = gsx,uvu2dv in R3, s59d

wheregsx,sd=xsxdfssd+s1−xsxdd f̃ssd.
Settingṽsxd=e−iAsxd·xvsxd, we see thatṽ weakly solves

− Dṽ + Vsxdṽ = gsx,uṽu2dṽ in R3 s60d

and thusṽ is a critical point of the functionalI: H1sR3,Cd→R defined by

Isud =
1

2
E

R3
u ¹ uu2 + Vsxduuu2 −E

R3
Gsx,uuu2d,

whereGsx,sd=e0
sgsx,tddt.

Now for anyn[N we consider the positive measuremnsVd=eVu¹ uvnuu2+Vsxn+«nxduvnu. We
have that the sequencehmnsR3djn is bounded and, up to subsequences,mn tends to somec̃.

Therefore there exists a subsequence ofhmnjn swithout relabellingd for which one of the three
possibilities of Lions’ concentration-compactness lemmassee Ref. 25d holds. First we notice that
vanishing cannot occur, asuvs0du.0.

If we have tightness, we derive that there existszn with the following property: for anyg
.0 there existsr.0 such that

E
Brsznd

u ¹ uvnuu2 + Vsxn + «nxduvnu ù c̃ − g.

If «nzn tends to some pointy[R3, then we derive thatuvnu tends touvu strongly inH1sR3,Rd and
thus uvnu tends touvu strongly inLqsR3,Rd with q,5.

Testing Eq.s45d we get that

E
R3
US¹

i
− AnsxdDvnU2

+ Vnsxduvnu2 =E
R3

gsx,uvnu2duvnu2

and, sinceegsx, uvnu2duvnu2→egsx, uvu2duvu2 andv solvess60d we deduce
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E
R3
US¹

i
− AnsxdDvnU2

+ Vnsxduvnu2 → E
R3
US¹

i
− AsxdDvU2

+ Vsxduvu2 s61d

and so

bc ù lim
n

«n
−3J«n

sund = Isṽd.

After a rotation, by Lemma 5.1,ṽ solves

− Dṽ + Vsxdṽ = fsuṽu2dṽ

and since we have assumedVsxd=c−d, we getIsṽd=bc−d. This is a contradiction tos35d.
Conversely, ifu«nznu→`, we can conclude that

bc ù lim
n

«n
−3J«n

sund = bc−d + bV0

which, by the continuity ofa°ba, is not possible ifd is chosen sufficiently small. In a similar way
we can infer that dichotomy cannot occur.

ThereforeVsxd.c−d and uvnu→ uvu strongly inH1sR3,Rd asn→ +`.
Step III: Observe that we can assume thatd was fixed so thatx lies in a region where]L is

smooth and]tVsxdÞ0.
Arguing as in Ref. 14 we can assumex=0 and the domainL can be described as

L ù Bs0,2rd = hsx,x8d [ Bs0,2rdux8 [ R2, x3 , csx8dj,

wherec is a smooth function such thatcs0d=0 and¹cs0d=0. So we have that inBs0,r /«ndvn

satisfies

− Dvn −
2

i
Asxn + «nxd · ¹ vn + uAsxn + «nxdu2vn −

«n

i
div Asxn + «nxdvn + Vsxn + «nxdvn

= xhz3,«−1cs«z8djfsuvnu2dvn + xhz3.«−1cs«z8dj f̃suvnu2dvn. s62d

Sinceuvnu converges touvu strongly inH1sR3,Rd, arguing as in Ref. 21 or in Ref. 31 we derive that
uvnszduøCe−buzu for some constantsC, b independent ofn. Recalling that eachvn is complex
valued, it is not so easy to prove a similar decaying behavior for the gradients¹vn, too. Hence we
need to modify the proof in Ref. 14. The main tool is a kind of variational identity inspired to the
celebrated Pucci–Serrin identity in Ref. 28ssee also Ref. 12d. Since all the details for deriving this
identity for complex-valued solutions to the Schrödinger equation with magnetic field can be
found in Ref. 31, we will be rather sketchy. Fix the indexnù1, and choose a sequencehchjh[N of
functions fromC0

`sBs0,r /«ndd such that their supports converge toBs0,r /«nd as h→ +`. Now
multiply equations62d by chs]vn/]xkd sk=1,2d and integrate by parts. By reasoning as in Ref. 31
and exploitings8d ands9d, we can show that it is possible to take first the limit ash→` and then
the limit n→`, finally deducing that

E
R3

]A

]xk
s0d ·As0duvu2 dx − Re

1

i
E

R3
¹ v ·

]A

]xk
s0dv dx +

]V

]xk
s0dE

R3

uvu2

2
dx

=E
R2

fFsuvu2d − F̃suvu2dgz8 · ¹
]c

]xk
s0ddz8.

If we defineU0 by vsxd=eiAs0d·xU0sxd, thenU0[H1sR3,Cd satisfies the identity
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− DU0 + Vs0dU0 = xhz3,cs0djfsuU0u2dU0 + xhz3.cs0dj f̃suU0u2dU0.

Hence by Lemma 5.1safter a suitable rotationd and an elementary calculation we conclude that

]A

]xk
s0d ·E

R3
ResiU0 ¹ U0ddx +

]V

]xk
s0dE

R3

uU0u2

2
dx = 0.

But by the uniqueness of critical points for the functionalIa fsee assumptionsf2d and the argu-
ments in Ref. 31g, ResiU0¹U0d=0 a.e. inR3. This immediately implies thats]V/]xkds0d=0 for
k=1,2 and so]tVsxd=0. This contradiction complete the proof. h

Finally we prove the main result. For the reader’s convenience, we repeat its statement below.
Main Theorem: Under assumptionssf1d and sf2d, sA1d, sV1–V3d, there is a number«0.0

such that for all«,«0, there exists a solution u«[HA,V
« of Eq. s6d. Furthermore u«[Cloc

2,asR3d with
a[ s0,1d.

Proof: By Proposition 6.1, for all« small enough,

uu«sxdu , Îa for all x [ ]L.

The functionu« satisfies the equation

S«

i
¹ − AD2

u« + Vu« = gsx,uu«u2du« in R3. s63d

Therefore we can tests63d againstsuu«u−Îad+, and recalling Kato’s inequality we find

E
R3\L

«2u ¹ suu«u − Îad+u2 + csxdsuu«u − Îad+
2 + csxdÎasuu«u − Îad+ ø 0, s64d

where

csxd = Vsxd − gsx,uu«sxdu2d.

By definition of g, we havec.0 in R3\L. Hence all terms ins64d are necessarily zero, and in
particular

uu«sxdu ø Îa for all x [ R3 \ L.

This, of course, implies thatu« is a solution ofs6d. h
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It is well known that integrable models associated to rationalR matrices give rise to
certain non-Abelian symmetries known as Yangians. Analogously boundary sym-
metries arise when general but still integrable boundary conditions are imple-
mented, as originally argued by Delius, Mackay, and Short from the field theory
point of view, in the context of the principal chiral model on the half-line. In the
present study we deal with a discrete quantum mechanical system with boundaries,
that is theN site glsnd open quantum spin chain. In particular, the open spin chain
with two distinct types of boundary condition known as soliton preserving and
soliton nonpreserving is considered. For both types of boundaries we present a
unified framework for deriving the corresponding boundary nonlocal charges di-
rectly at the quantum level. The nonlocal charges are simply coproduct realizations
of particular boundary quantum algebras called boundary or twisted Yangians, de-
pending on the choice of boundary conditions. Finally, with the help of linear
intertwining relations between the solutions of the reflection equation and the gen-
erators of the boundary or twisted Yangians we are able to exhibit the exact sym-
metry of the open spin chain, namely we show that a number of the boundary
nonlocal charges are in fact conserved quantities. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1888029g

I. INTRODUCTION

Symmetry breaking mechanisms have been the subject of immense interest in modern phys-
ics. A well-known symmetry breaking process in the context of two dimensional integrable sys-
tems is the implementation of general boundaries that preserve however integrability.1,2 The pres-
ence of general integrable boundaries usually reduces the original symmetry of the system giving
rise to boundary algebraic structures known as boundary quantum groupssalgebrasd ssee, e.g.,
Refs. 3–6d. The boundary quantum groups are essentially subalgebras of the usual quantum
groups,7–10 and they provide the underlying algebraic structures in the reflection equation1 exactly
as quantum groups do in the Yang–Baxter equation.11–13As is well known the Yang–Baxter and
reflection equations are collections of algebraic constraints ruling two dimensional integrable
models with boundaries. The study of such boundary symmetries for a particular class of inte-
grable systems will be the main objective of this investigation.

The present work may be seen as the continuation of the investigation undertaken in Ref. 6,
where the boundary quantum group generators for the open XXZ spin chain, were constructed by
studying the asymptotics of the open spin chain. Historically, boundary quantum group generators
were obtained for the first time in the context of the sine-Gordon model in the free fermion point,3

whereas in Ref. 14 realizations of such generators were constructed for models associated to
higher rank algebras. In Ref. 4 the boundary quantum group was derived for the affine Toda field
theories on the half-line, and solutions of the reflection equation associated to a certain type of
boundary conditions were found. Also, boundary nonlocal charges were constructed classically, in
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the framework of the principal chiral model on the half-line,5 for two distinct types of boundary
conditions known as soliton preservingsSPd sRefs. 15–18d and soliton nonpreservingsSNPd.19–22

In this paper we focus on the quantum mechanical system that is theN site glsnd open
quantum spin chain, and we consider two types of boundary conditions, i.e., SP and SNP. For both
types of boundaries the corresponding nonlocal charges are constructed in a systematic way by
studying the asymptotics of the glsnd open spin chain. It turns out that the nonlocal charges are
simply coproducts of certain boundary quantum algebras called boundary or twisted Yangians,23–25

depending on the choice of boundary conditions. It is worth remarking that in Ref. 5 linear
intertwining relations involving the boundary algebra generators were used as the starting point for
deriving solutions of the reflection equation for both types of boundary conditions. In the present
study on the other hand we start our analysis having at our disposalc-number solutions of the
reflection equation, and we simply exploit the existence of the intertwining relations in order to
derive the symmetry of the open spin chainssee also Ref. 6d. In fact, we show explicitly that a set
of the boundary nonlocal charges are conserved quantities, that is they commute with the transfer
matrix of the open spin chain. It should be pointed out that our results rely on purely algebraic
grounds, and therefore they are independent of the choice of representation.

II. THE UNDERLYING ALGEBRAS

In general, two types of spin chains exist known as closedse.g., periodic boundary conditionsd
and open. To construct and study a periodic spin chain one must first introduce the basic building
block, namely theRsLd matrix satisfying the Yang–Baxter equation.11–13 The construction of an
open spin chain on the other hand requires the consideration of one more fundamental object
called theK matrix, which satisfies another set of algebraic constraints known as the reflection
equation.1 The main objective of the two subsequent sections is to introduce the aforementioned
fundamental objects, and also briefly describe the corresponding algebraic framework.

A. The Yang–Baxter equation

Let us first introduce the glsndR matrix, which is a solution of the Yang–Baxter equation,11–13

R12sl1 − l2dR13sl1dR23sl2d = R23sl2dR13sl1dR12sl1 − l2d, s2.1d

acting onV ^ V ^ V, and as usualR12=R^ I, R23=I ^ R, and so on. TheR matrix may be written
in the following compact form:

Rsld = I +
i

l
P, s2.2d

whereP is the permutation operator, acting onsCnd^2 with

Psa ^ bd = b ^ a andP2 = I. s2.3d

In addition, theR matrix satisfies the unitarity condition,

RsldR̂s− ld ~ I whereR̂sld = P RsldP. s2.4d

Notice thatRsldPEndsCn ^ Cnd, however in general one may define the objectLsldPEndsCnd
^ Yfl−1g, where the second space is not represented, but it is occupied by elements of the algebra
Y called the glsnd Yangian,8,9 and defined by the following fundamental algebraic relation:

R12sl1 − l2dL13sl1dL23sl2d = L23sl2dL13sl1dR12sl1 − l2d. s2.5d

It is worth pointing out that the asymptotic expansion ofLsld to powers ofl−1 yields the
generators of the Yangian, which satisfy exchange relations dictated bys2.5d. A more detailed
analysis on the Yangian will be presented in Sec. III. A solution of the fundamental equations2.5d,
which we shall use hereafter, may take the following simple form:
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Lsld = I +
i

l
P. s2.6d

P is ann3n matrix with entriesPabPglsnd.
The Yangians2.5d is a Hopf algebra equipped with a coproductD :Y→Y ^ Y,

sid ^ DdLsld = L13sldL12sld, s2.7d

and by treatingL as ann3n matrix with entriesLab being elements ofY, we conclude that

DsLabsldd = o
c=1

n

Lcbsld ^ Lacsld, a,b P h1,…,nj. s2.8d

It will be helpful for the following to also introduceD8 :Y→Y ^ Y obtained fromD by permuta-
tion. In particular, letP be the shift operatorP :O1 ^ O2→O2 ^ O1 then one may write

D8sxd = P + Dsxd, x P Y. s2.9d

Also, by iteration thel coproductDsld :Y→Y^sld may be written as

Dsld = sid ^ Dsl−1ddD. s2.10d

By considering tensor products ofY one may construct the periodic spin chain. Let us first define
the algebraic monodromy matrixT as tensor product ofN L matrices, i.e.,

T0sld = sid ^ DsNddLsld = L0Nsld ¯ L01sld, s2.11d

the monodromy matrixTPEndsCnd ^ Y^N is also a solution ofs2.5d. Traditionally the indicesi
P h1,… ,Nj are associated to the quantum spaces and they are suppressed from the monodromy
matrix s2.11d, whereas the index 0 corresponds to the so-called auxiliary space. Finally, the
transfer matrix of the periodic spin chain is derived by simply taking the trace over the auxiliary
space,

tsld = Tr0T0sld, s2.12d

and it is clear thattsldPY^N. It follows immediately froms2.5d that the transfer matrixs2.12d
provides a family of commuting operators,

ftsld,tsl8dg = 0, s2.13d

ensuring the integrability of the model. Each quantum space ins2.11d and s2.12d is associated to
a copy ofY, and the corresponding sequence ofN copies ofY described bys2.11d ands2.12d is a
purely algebraic construction. It acquires a physical meaning as a spin chain once the quantum
spaces are mapped to finite or infinite dimensional spaces. Then the spectrum of the transfer
matrix and the corresponding Bethe ansatz equations can be derived and the physically relevant
quantities may be computed.26

B. The reflection equation

In the following two distinct types of boundary conditions SP, SNP are described using a
unified framework, and the corresponding spin chains are constructed. As mentioned, in order to
build the open spin chain an additional fundamental object needs to be considered, that is theK*

matrix, which is a solution of the reflection equation1

R12sl1 − l2dK1
*sl1dR21

* sl1 + l2dK2
*sl2d = K2

*sl2dR12
* sl1 + l2dK1

*sl1dR21sl1 − l2d s2.14d

acting onV ^ V, and as customaryK1
* =K* ^ I, K2

* =I ^ K* . We also introduce the notation,

K*sld = Ksld, R*sld = Rsld for SP b . c . ,
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K*sld = K̄sld, R*sld = R̄sld for SNP bc . , s2.15d

and we define

R̄12sld = fsldV1R12
t2 s− l − irdV1 = fsldV2

t2R12
t1 s− l − irdV2

t2,

r =
n

2
, fsld =

l + ir

l
, s2.16d

R̄21sld=R̄12sldt1t2, ti denotes the transposition on theith space.V is the charge conjugation being
of the form

V = antidiags1,1,…,1,1d, n odd and even, or

V = antidiagsi,− i,…,i,− id, n even only. s2.17d

The R̄ matrix may be also written in a compact form as

R̄sld =
l + ir

l
I −

i

l
K = I +

i

l
P̌, s2.18d

whereK is a one-dimensional projector satisfying

K P = P, K = ± K, K2 = nK, s2.19d

and consequentlyP̆2=r2I. For the special casen=2, it is clear thatP̌=P. Relations2.14d defines
the so-called reflection algebrasboundary Yangiand2,27–30or the twisted Yangian23–25depending on
the action ofp s2.15d. Let us denote the boundary or twisted Yangian asB* , more specifically

B* = B boundary Yangian for SPb . c . , B* = B̄ twisted Yangian for SNP b . c.

s2.20d

It should be noted that from the physical point of view SP b.c. describe the reflection of a soliton
to a soliton, while SNP b.c. describe the reflection of a soliton to an antisoliton.

The general form of the glsndc-numberK* matrix is given by1

K*sld = lk* + f* , s2.21d

where f* ,k* aren3n l independent matrices withf* = f or f̄ andk* =k or k̄ for SP and SNP bc.,
respectively. For SP b

c. in particular,f = ijI andk is a n3n l independent matrix with nonzero entries given by17

k11sld = − 1, knnsld = 1, k1nsld = kn1sld = 2k,

kjjsld = 1 + 2c, j = 2,…,n − 1, s2.22d

with j arbitrary constant, andc,k constants satisfyingk2=csc+1d ssee also Ref. 17d, so there are
two arbitrary boundary parametersj andk. Notice that the entries of theK matrix are simplyc
numbers and this is the reason whys2.22d is called ac-number solution of the reflection equation.

Although certain solutionsK̄ sSNPd of s2.14d have been derived for the trigonometric4,20 and
rational case,5,22 the situation is not completely clear yet for this type of boundary conditions.

Nevertheless, assuming the general forms2.21d for the c-numberK̄ matrix is sufficient for our

analysis. It is evident that the gls2d case is rather special, becauseR12−R̄12 fby choosing the

secondV in s2.17dg, and consequentlyK=K̄.
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Having at our disposalc-number solutions ofs2.14d we may build the more general form of
solution. To do so it is first necessary to define the following objects:

L̂12sld = L12
−1s− ld, L̄8sld = fsldV1

t1L12
t1 s− l − irdV1

t1 s2.23d

and

L*sld = L̂sld, for SP b . c . , L*sld = L̄8sld for SNP b . c. s2.24d

It will be instructive for the following to present explicit expressions of theL* . Although the

expressions forL−1 and consequentlyL̂ are quite intricate, fortunately for our purposes it is only
necessary to consider the asymptotic behavior asl→`, keeping terms up to 1/l2,

L̂12sl → `d ~ I +
i

l
P12 −

1

l2P12
2 + OS 1

l3D andL̄128 sld = I +
i

l
P̌12, s2.25d

where

P̌12 = rI − V1
t1P12

t1 V1
t1. s2.26d

And more specifically,R̂sld is provided bys2.4d, andR̄8sld=P R̄sldP.
The more general solution ofs2.14d is then given by2

K*sld = Lsl − UdsK*sld ^ IdL*sl + Ud. s2.27d

U some times is called inhomogeneity and henceforth for simplicity we shall consider it to be
zero. The entries ofK* are elements of theB* algebra defined bys2.14d. It is clear that the general
solution s2.27d allows the expansion in powers ofl−1 as we shall see in subsequent sections,
providing the generators of the boundary Yangiansfor SPd or the twisted Yangiansfor SNPd, which
obey commutation relations dictated by the defining algebraic relationss2.14d. The algebraB* is
also endowed with a coproduct inherited essentially from the Yangian. In particular, let us first
derive the coproduct forL* , i.e.,

sid ^ DdL*sld = L12
* sldL13

* sld → DsLab
* sldd = o

c=1

n

Lac
* sld ^ Lcb

* sld, a,b P h1,…,nj.

s2.28d

Then it is clear froms2.8d ands2.28d that the elements ofB* form coproductsD :B* →B* ^ Y, such
that ssee also Refs. 4 and 5d

DsKab
* sldd = o

k,l=1

n

Kkl
* sld ^ LaksldLlb

* sld, a,b P h1,…,nj. s2.29d

Our final aim of course is to build the corresponding quantum system that is the open quantum
spin chain. For this purpose we shall need tensor product realizations of the general solution
s2.27d. We define

T0
*sld = sid ^ DsNddL*sld = L01

* sld ¯ L0N
* sld s2.30d

then the general tensor type solution of thes2.14d takes the form

T0
*sld = T0sldK0

*sldT0
*sld, s2.31d

with entries being clearly coproducts of theB* algebra, namely
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Tab
* sld = DsNdsKabsldd s2.32d

recall thatDsNd is defined vias2.10d, and DsKabd is given in s2.29d. Finally, we introduce the
transfer matrix of the open spin chain,2 which may be written as

t*sld = Tr0K0
s+d*sldT0

*sld, s2.33d

Ks+d*sld=Ksld*s−l− ird, where Ksld*sld is also a solution ofs2.14d, but here for simplicity is
considered to beI. The p notation for the aforementioned objects is applied as follows:

T *sld = T̂sld, T *sld = Tsld, t*sld = tsld, for SP b . c . ,

T *sld = T̄sld, T *sld = T̄sld, t*sld = t̄sld, for SNP b . c. s2.34d

It can be shown,2,21 using the fact thatT * is a solution of the reflection equations2.14d, that the
transfer matricess2.33d provide families of commuting operators, i.e.,

ft*sld,t*sl8dg = 0. s2.35d

The latter commutation relationss2.35d ensure the integrability of the relevant models.

III. MORE ON YANGIANS

It is instructive for what follows to recall in more detail the basic definitions associated to
Yangians8,31 sfor a review on Yangians see, e.g., Ref. 32d. The glsnd YangianY, is a non-Abelian
algebra—a quantum group9,10—with generatorsQab

spd and defining relations given below

fQab
s0d,Qcd

s0dg = idcbQad
s0d − idadQcb

s0d,

fQab
s0d,Qcd

s1dg = idcbQad
s1d − idadQcb

s1d,

fQab
s1d,Qcd

s1dg = idcbQad
s2d − idadQcb

s2d +
ih2

4
Qad

s0dSo
e

Qce
s0dQeb

s0dD −
ih2

4 So
e

Qae
s0dQed

s0dDQcb
s0d,

a,b P h1,…,nj, s3.1d

and also relations

fQab
s0d,fQcd

s1d,Qef
s1dgg − fQab

s1d,fQcd
s0d,Qef

s1dgg =
h2

4 o
p,q

sfQab
s0d,fQcp

s0dQpd
s0d,Qeq

s0dQqf
s0dgg

− fQap
s0dQpd

s0d,fQcd
s0d,Qeq

s0dQqf
s0dggd. s3.2d

As already mentioneds2.8d the Yangian is endowed with a coproductD :Y→Y ^ Y. In particular,
the coproducts of the generatorsQab

spd may be written as

DsQab
s0dd = Qab

s0d
^ I + I ^ Qab

s0d,

DsQab
s1dd = Qab

s1d
^ I + I ^ Qab

s1d +
h

2o
d=1

n

sQad
s0d

^ Qdb
s0d − Qdb

s0d
^ Qad

s0dd, s3.3d

also forD8 similar expressions may be deduced. In fact the only difference between expressionsD

and D8 is a minus sign in front ofh in the coproduct ofQab
s1d. Using s2.10d we can get explicit

expression for thel coproducts,
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DsldsQab
s0dd = o

i=1

l

sQab
s0ddi ,

DsldsQab
s1dd = o

i=1

l

sQab
s1ddi +

h

2 o
j.i=1

l

o
d=1

n

ssQad
s0ddi ^ sQdb

s0dd j − sQdb
s0ddi ^ sQad

s0dd jd, s3.4d

where the indicesi , j denote the site in thel coproduct sequence. We may also defineD8sld :Y
→Y^sld as

D8sld = sid ^ Dsl−1ddD8. s3.5d

Note that there also exists the opposite coproductDopsld=sid ^ Dopsl−1ddDop with Dop=D8. For
generic values ofl, DopsldÞD8sld and they only coincide forl =2. Expressions similar tos3.4d may
be derived forD8sld, but we omit them here for brevity.

Realizations of Yangian generators:As is known the asymptotic behavior of the monodromy
matrix T s2.11d asl→` provides tensor product representations ofY. Let us briefly review how
this process works. Recall that the operatorsL and T are treated asn3n matrices with entries
being elements ofY ,Y^N, respectively. The monodromy matrixT asl→` may be written assfor
simplicity we suppress the auxiliary space index 0 fromT in the followingd

Tsl → `d ~ I + o
m=0

`

l−m−1tsmd. s3.6d

Exchange relations among the chargestab
smd sthe entries oftsmdd may be derived by virtue of the

fundamental algebraic relations2.5d, as li →`. To extract the Yangian generators we study the
asymptotic expansions3.6d keeping higher orders in the 1/l expansion. Recalling the form ofL
s2.6d andT s2.11d we conclude that

Tsl → `d ~ I +
i

l
o
i=1

N

P0i −
1

l2 o
i. j=1

N

P0iP0j + OS 1

l3D . s3.7d

Now consider the quantities below written as combinations oftspd , pP h0,1j,

Qs0d = ts0d, Qs1d = ts1d − 1
2Qs0dQs0d, s3.8d

where the form oftspd is defined bys3.6d ands3.7d. ThenQspd may be written as combinations of
the operatorsP0i, each acting onCn ^ Y, namelyffrom now on we considerh=−1 in s3.3dg

Qs0d = io
i=1

N

P0i, Qs1d =
1

2o
i=1

N

P0i
2 +

1

2 o
j.i=1

N

sP0iP0j − P0jP0id. s3.9d

Note that for simplicity both quantum and auxiliary indices inQspd s3.9d are omitted. The entries
of the matricesQspd are the nonlocal chargesQab

spdPY^N being coproduct realizations of the
Yangian, i.e.,

Qab
spd = DsNdsQab

spdd, p P h0,1j, a,b P h1,…,nj. s3.10d

The chargesQab
s0d in particular, are coproducts of the generators of the glsnd Lie algebra. It is also

apparent froms3.10d that for N=1, Qab
spd→Qab

spd.

IV. BOUNDARY AND TWISTED YANGIAN GENERATORS

After the brief review on Yangians we are in the position to deal with realizations of boundary
or twisted Yangians. As already mentioned two different types of boundary conditions, the SP and
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the SNP19–22,33will be investigated using a unified framework. The SNP boundary conditions were
studied for the first time in the context of integrable lattice models in Ref. 21, whereas a gener-
alized description of these boundaries is presented in Ref. 33.

As we have seen in Sec. II B the entries ofT * are coproducts of theB* algebra. The main
objective now is to obtain, as in the case of Yangians, the exact form of tensor products of the
generators ofB* via the asymptotic expansion ofT * . Again LsL*d , TsT *d, and consequentlyT *

s2.33d are treated asn3n matrices with entries being elements ofY ,Y^N, respectively. Recall also
thatK* s2.22d is an3n matrix with c-number entries. The expansion ofT* s2.33d asl→` reads
sagain for simplicity we suppress the auxiliary space index 0 fromT,T * , andT * in the followingd

T *sl → `d ~ I + o
m=0

`

l−m−1t̃ smd, s4.1d

while exchange relations among the chargest̃ab
smd may be now found by virtue of the algebraic

relationss2.14d.
As in the bulk case to extract the boundary or twisted Yangian generators we shall keep higher

order terms in the expansions4.1d. We need first the asymptotic behavior of the matricesT,T * as
well asK* . The expansion ofT is given bys3.7d, while T * reads asl→`,

T*sl → `d ~ I +
i

l
o
i=1

N

P0i
* −

1

l2S o
i, j=1

N

P0i
* P0j

* + Y*D + OS 1

l3D , s4.2d

where

P* = P for SP b . c . , P* = P̌ for SNP b . c, s4.3d

and

Y* = o
i=1

N

P0i
2 for SP b . c . , Y* = 0 for SNP b . c.

Before we continue with the asymptotics ofT * it is necessary for our purposes to derive the

charges from the expansion ofT̄ asl→` fthe expansion ofT̂ yields the same charges as ins3.9dg.
Note thatT̄ also satisfies the defining relation of the Yangians2.5d, therefore the corresponding
charges are expected to be coproducts of the Yangian generators. In fact, the asymptotic expansion

of T̄ sup to 1/l2d provides the following operators:

Q̌s0d = io
i=1

N

P̌0i, Q̌s1d = −
1

2o
i=1

N

P̌0i
2 +

1

2 o
j.i=1

N

sP̌0iP̌0j − P̌0jP̌0id. s4.4d

The entries of the matricess4.4d may be indeed written as coproducts of an alternative set of

generators of the YangianQ̌ab
spd,

Q̌ab
spd = DsNdsQ̌ab

spdd, p P h0,1j, a,b P h1,…,nj, s4.5d

where Q̌ab
spd are the entries of the matrices derived ins4.4d for N=1. The generatorsQ̌ab

spd are
isomorphic toQab

spd, and their exact correspondence may be found by exploiting the relation

betweenP and P̌ given by s2.26d.
Recall also that theK* matrix is given by the general forms2.21d for any solution of the

reflection equations2.14d, associated to the glsndR matrix. Having derived the expansions of
T, T * , andK* we may now come to the asymptotic behavior ofT * asl→` swe keep here up to
1/l2 termsd, i.e.,
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T *sl → `d ~ k* +
1

l
S f * + ik*o

i=1

N

P0i
* + io

i=1

N

P0ik
*D +

1

l2S− k* o
i, j=1

N

P0i
* P0j

* − o
i. j=1

N

P0iP0jk
*

− o
i,j=1

N

P0ik
*P0j

* + i f *o
i=1

N

P0i
* + io

i=1

N

P0i f
* − k*Y*D + OS 1

l3D , s4.6d

which provides the form oft̃ spd , pP h0,1j s4.1d. Consider now the following combinations oft̃spd:

Q̃s0d = t̃ s0d − f * , Q̃s1d = t̃s1d − 1
2Q̃s0dsk*d−1Q̃s0d, s4.7d

where for the general glsnd solutions2.22d k−1=f1/s1+4k2dgk, andk̄ sSNP b.c.d is also invertible
ssee, e.g., Ref. 20d. Let us also introduce the following objects:

D = sPk* − k*P*d, S = sk*P* + Pk*d, s4.8d

Q* spd = Qspd for SP b . c . , Q* spd = Q̌spd for SNP b . c. s4.9d

Then according tos3.9d, s4.4d, s4.7d, ands4.8d the matricesQ̃spd may be written as

Q̃s0d = io
i=1

N

S0i ,

Q̃s1d = f *Q* s0d + Qs0df * +
1

2 o
i, j=1

N

sS0isk*d−1D0j − D0jsk*d−1S0id − k*Y* +
1

2
k*o

i=1

N

P0i
*2 +

1

2o
i=1

N

P0i
2 k*

+
1

2o
i=1

N

sk*P0i
* sk*d−1P0ik

* − P0ik
*P0i

* d. s4.10d

The corresponding entriesQ̃ab
spd a,bP h1,… ,nj are the boundary nonlocal charges. Notice that the

two last terms ins4.10d vanish for the special case of SP wherek=I. K* =I sk* =I, f* =0d is a valid

solution ofs2.14d for both boundary conditions. We should point out that forK=I sSP b.c.d Q̃ab
s1d=0

s4.10d, so the only charges that survive are theQ̃ab
s0d~Qab

s0d. There exist of course higher nonlocal
charges that may be obtained by keeping higher order terms in the asymptotic expansions4.6d.
This is a significant investigation, which will be undertaken however in a forthcoming work.

The nonlocal chargesQ̃ab
spd s4.10d may be written as combinations of the Yangian coproducts

Qab
spd ,Q̌ab

spd s3.9d and s4.4d,

Q̃ab
s0d = kac

* Qcb
* s0d + Qac

s0dkcb
* ,

Q̃ab
s1d = − kac

* Qcb
* s1d + Qac

s1dkcb
* + fac

*Qcb
* s0d + Qac

s0dfcb
* − 1

2skac
* Qcd

* s0dsk*dde
−1Qef

s0dkfb
* − Qac

s0dkcd
* Qdb

* s0dd,

a,b P h1,…,nj. s4.11d

Note that the summation over repeated indices is omitted from now on. The quantitieskab
* , fab

* are
c numberssthe entries of the matricesk* , f *d, Qab

spd are given bys3.9d and Qab
* spd by s4.9d. The

derivation of the boundary nonlocal chargess4.11d is one of the main results of this study. It is
worth emphasizing that the nonlocal chargess4.11d were derived independently of the choice of
representation.
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V. THE SYMMETRY

Our ultimate goal is to study the symmetry of the open spin chain, namely to derive conserved
quantities commuting with the open transfer matrix. This may be achieved by using linear inter-
twining relations between representations of the boundary Yangian generators and the solutions of
the reflection equation.

In the preceding section we derived the boundary nonlocal chargess4.11d as coproducts of the
boundary or twisted Yangian generators. It is evident that from the expressionss4.11d for N=1,
one may write down the corresponding abstract generators ofB* ,

Q̃ab
s0d = kac

* Qcb
* s0d + Qac

s0dkcb
* ,

Q̃ab
s1d = − kac

* Qcb
* s1d + Qac

s1dkcb
* + fac

*Qcb
* s0d + Qac

s0dfcb
* − 1

2skac
* Qcd

* s0dsk*dde
−1Qef

s0dkfb
* − Qac

s0dkcd
* Qdb

* s0dd,

a,b P h1,…,nj. s5.1d

The quantitiesQ̃ab
s0d are simply linear combinations of the generators of the glsnd Lie algebra. For

SNP b.c. in particular the conjugate generatorsQ̌ab
s0d are combined together withQab

s0d in the

expressions5.1d for Q̃ab
s0d, a fact that implies the folding of the glsnd algebra fork* =I sfor more

details on this subject see, e.g., Refs. 21 and 33d.
As an immediate consequence ofs3.10d, s4.11d, ands5.1d the boundary nonlocal charges may

be written in a more compact form as

Q̃ab
spd = DsNdsQ̃ab

spdd, p P h0,1j. s5.2d

The main advantage when deriving generators ofB* via the asymptotics of the spin chain is that
one directly obtains the explicit form of the coproducts ofB* generatorss3.10d ands4.11d. Bearing
in mind the coproducts of the Yangian generatorss3.3d and also equationss3.10d and s4.11d for
N=2 one may derive the following more convenient expressions forD :B* →B* ^ Y:

DsQ̃ab
s0dd = I ^ Q̃ab

s0d + Q̃ab
s0d

^ I,

DsQ̃ab
s1dd = I ^ Q̃ab

s1d + Q̃ab
s1d

^ I −
sk*dcd

−1

2
sQ̃ac

s0d
^ Q̃db

s0d− − Q̃db
s0d

^ Q̃ac
s0d−d, s5.3d

where

Q̃ab
s0d− = Qac

s0dkcb
* − kac

* Qcb
* s0d. s5.4d

Similarly, with the help ofs2.9d one obtainsD8 :B* →Y ^ B* ,

D8sQ̃ab
s1dd = I ^ Q̃ab

s1d + Q̃ab
s1d

^ I +
sk*dcd

−1

2
sQ̃ac

s0d−
^ Q̃db

s0d − Q̃db
s0d−

^ Q̃ac
s0dd, s5.5d

and thel coproducts are deduced in a straightforward manner vias2.10d and s3.5d. Note that
expressions similar tos5.1d, s5.3d, ands5.5d, but not exactly the same, were also derived in Ref. 5
from a field theoretical point of view.

Consider now the evaluation representationpl :Y→EndsCnd such that

plsQab
* s1dd = ilPab

* , plsQab
* s0dd = iPab

* , a,b P h1,…,nj. s5.6d

P* is ann3n matrix, with entriesPab
* being operators which act onCn. The generatorss5.1d are

then expressed in terms of the operatorsPab
* as

plsQ̃ab
s0dd = ikac

* Pcb
* + iPackcb

* ,
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plsQ̃ab
s1dd = − ilkac

* Pcb
* + ilPackcb

* + i f ac
*Pcb

* + iPacfcb
* + 1

2skac
* Pcd

* sk*dde
−1Pef kfb

* − Packcd
* Pdb

* d.

s5.7d

We shall henceforth restrict our attention to SP boundary conditions only, and we shall derive
certain intertwining relations between the chargess5.7d and theK matrix s2.22d. More specifically,
it may be directly deduced from the reflection equations2.14d that all the elements of the algebra
B commute with theK matrix ssee also Refs. 4 and 5d. Indeed, by acting with the evaluation
representation on the second space ofs2.27d we obtain

sid ^ p±ldKsl8d = Rsl8 7 ldsKsl8d ^ IdR̂sl ± l8d. s5.8d

Now recalling the reflection equations2.14d and because of the form of the above expressions it is
straightforward to show that

sid ^ pldKsl8dsI ^ Ksldd = sI ^ Kslddsid ^ p−ldKsl8d. s5.9d

As a consequence the entries ofK in the evaluation representation commute with thec-numberK
matrix s2.22d,

plsKabsl8ddKsld = Ksldp−lsKabsl8dd, a,b P h1,…,nj. s5.10d

In addition, as we have seen from the analysis of the preceding section, the elementsKabsl8
→`d provide essentially the generatorss5.1d, and therefore we conclude that

plsQ̃ab
spddKsld = Ksldp−lsQ̃ab

spdd. s5.11d

Note that we also verified by inspection, taking into account the form of the glsndK matrices
s2.21d, s2.22d, ands5.7d, that the latter relationss5.11d are indeed satisfied.

Equationss5.11d are the boundary analogues of the bulk intertwining relations for theL
matrix, i.e.,

spl ^ iddD8sQab
spddLsld = Lsldspl ^ iddDsQab

spdd,

sp−l ^ iddDsQab
spddL̂sld = L̂sldsp−l ^ iddD8sQab

spdd. s5.12d

Relations of the forms5.11d should also hold for solutionsK̄ of s2.14d for the general glsnd case,
which however merits further study and it will be the subject of a forthcoming work. It is worth
remarking that in Refs. 4 and 5 intertwining relations such as ins5.11d were used as a starting
point for deriving solutions of the reflection equation.

Expressions of the types5.11d may be obtained forT s2.31d as well ssee also Ref. 6d. To
derive the generalized intertwining relations for theT matrix we first need to show relations

similar tos5.12d for the monodromy matricesT andT̂. Indeed, it immediately follows by induction
using s5.12d and the definitionss2.11d and s2.30d that

spl ^ id^NdD8sN+1dsQab
spddTsld = Tsldspl ^ id^NdDsN+1dsQab

spdd,

sp−l ^ id^NdDsN+1dsQab
spddT̂sld = T̂sldsp−l ^ id^NdD8sN+1dsQab

spdd, p P h0,1j. s5.13d

It should be stressed that the latter relations provide also an effective means for studying the
symmetry of the periodic glsnd spin chain. Froms5.11d and because of the form of the coproducts
s5.3d we conclude also that
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spl ^ id^NdDsN+1dsQ̃ab
spddKsld = Ksldsp−l ^ id^NdDsN+1dsQ̃ab

spdd. s5.14d

Recalling that the generators ofB s5.1d are written exclusively in terms ofQab
spd we conclude that

the intertwining relationss5.13d hold also forQ̃ab
spd. Then taking into account relationss5.13d for

Q̃ab
spd, s5.14d, and alsos2.31d, we may derive the following relations:

spl ^ id^NdD8sN+1dsQ̃ab
spddTsld = Tsldsp−l ^ id^NdD8sN+1dsQ̃ab

spdd, s5.15d

which hold for the general glsnd case. The derivation of the representationss5.7d and the inter-
twining relationss5.11d and s5.15d are also among the main results of this paper. The latter
relationss5.15d in particular are of great significance as we shall see below, because they facilitate
the study of the exact symmetry of the open spin chain.

Before we continue with the investigation of the symmetry it will be instructive to write
explicitly the following coproducts, which are valid for the glsnd casefsee alsos2.10d, s3.5d, s5.2d,
s5.3d, ands5.5dg:

spl ^ id^NdDsN+1dsQ̃ab
s0dd = plsQ̃ab

s0dd ^ I + I ^ Q̃ab
s0d,

spl ^ id^NdDsN+1dsQ̃ab
s1dd = plsQ̃ab

s1dd ^ I + I ^ Q̃ab
s1d −

sk*dcd
−1

2
splsQ̃ac

s0dd ^ Q̃db
s0d− − plsQ̃db

s0dd ^ Q̃ac
s0d−d,

spl ^ id^NdD8sN+1dsQ̃ab
s1dd = plsQ̃ab

s1dd ^ I + I ^ Q̃ab
s1d +

sk*dcd
−1

2
splsQ̃ac

s0d−d ^ Q̃db
s0d − plsQ̃db

s0d−d ^ Q̃ac
s0dd,

s5.16d

where

Q̃ab
s0d− = DsNdsQ̃ab

s0d−d. s5.17d

The crucial point is that Eqs.s5.15d bear algebraic relations between the entries of the operatorT
and the boundary nonlocal chargess4.11d. For simplicity we use the XXXsgls2dd model to exhibit
the symmetry of the open transfer matrixs2.33d, although the following procedure may be easily
generalized for the glsnd case. Note that the gls2d case is quite special, because the twisted Yangian

coincides essentially with the boundary Yangian, recall thatR12sld=R̄12sld sandP=P̌d, neverthe-
less it provides an illuminating paradigm. Let

T0sld = SA1 B
C A2

D and tsld = A1 + A2 s5.18d

then from the commutation relationss5.15d and alsos5.1d, s5.6d, ands5.16d we obtain

fQ̃aa
s0d,A1g = 2iksB − Cd, fQ̃aa

s0d,A2g = − 2iksB − Cd, a P h1,2j,

fQ̃ab
s0d,A1g = fQ̃ab

s0d,A2g = fQ̃ab
s0d,Bg = fQ̃ab

s0d,Cg = 0, a Þ b,

fQ̃aa
s0d,Bg = 2iksA1 − A2d + 2iB, fQ̃aa

s0d,Cg = − 2iksA1 − A2d − 2iC, s5.19d

and it follows that

ftsld,Q̃ab
s0dg = 0, a,b P h1,2j. s5.20d

From the intertwining relationss5.15d and with the help ofs5.19d it also follows that

053504-12 Anastasia Doikou J. Math. Phys. 46, 053504 ~2005!

                                                                                                                                    



ftsld,Q̃11
s1dg = − ftsld,Q̃22

s1dg = ftsld,ksQ̃12
s1d + Q̃21

s1ddg = 4kisl + idsB − Cd, s5.21d

and consequently

ftsld,Q̃11
s1d + Q̃22

s1dg = ftsld,ksQ̃12
s1d + Q̃21

s1dd + s− daQ̃aa
s1dg = 0. s5.22d

It should be pointed out that the combinations of nonlocal charges appearing ins5.22d are ex-

pressed solely in terms ofQ̃ab
s0d’s, which means that the only conserved charges entailed so far are

theQ̃ab
s0d’s. In fact the first combination is trivial, becauseQ̃11

s1d+Q̃22
s1d~ I, and it is also expected from

the commutation relations2.35d asl8→`. The existence of higher nontrivial conserved charges is
an intriguing question that will be examined in detail elsewhere. It is clear that generalized

commutation relations between the generatorsQ̃ab
spd ,a,bP h1,… ,nj and the entries of the glsndT

matrix may be now deduced in an analogous, although technically more complicated way.
It is finally worth emphasizing that the general intertwining relationss5.15d and the discovered

symmetry s5.20d and s5.22d are independent of the choice of representation on the quantum
spaces, and therefore they are universal results. In the special case where the quantum spaces are
mapped via the evaluation representations5.6d, andL→R the relationss5.15d, s5.16d, s5.20d, and
s5.22d are of course still valid, but with id^N→p0

^N.

VI. DISCUSSION

Let us briefly review the main results of this investigation. The main objective of this work
was the study of the remaining symmetries of rational integrable spin chainssglsndd once nondi-
agonal integrable boundaries are implemented. We considered two types of boundary conditions
known as soliton preserving and soliton nonpreserving. For both types of boundaries nonlocal
chargess4.11d were derived explicitly by means of the study of the asymptotic behavior of the
coproduct type solution of the reflection equationT. The nonlocal chargess4.11d were simply
coproducts of generators of the boundary or twisted Yangians5.1d depending on the choice of
boundary conditionss2.14d. Furthermore, by using the intertwining relationss5.11d ands5.15d we
were able to derive the symmetry of the open spin chains5.20d. Relations of the forms5.11d
provide also an alternative way of finding solutions of the reflection equations2.14d ssee, e.g.,
Refs. 4 and 5d, although there exist other effective algebraic techniques allowing the solution of
the reflection equationssee, e.g., Ref. 34d.

It should be finally emphasized thatR matrices associated to, e.g., osnd, spsnd algebras enjoy

crossing symmetry, i.e.,R12sld=R̄12sld s2.16d, and therefore in this case the boundary Yangian
coincides with the twisted Yangianssee also Refs. 29 and 35d.
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On a spseudo-d Riemannian manifold of dimensionnù3, the space of tensors
which transform covariantly under Weyl rescalings of the metric is built. This
construction is related to a Weyl-covariant operatorD whose commutatorfD ,Dg
gives the conformally invariant Weyl tensor plus the Cotton tensor. So-called gen-
eralized connections and their transformation laws under diffeomorphisms and
Weyl rescalings are also derived. These results are obtained by application of
Becchi Rouet Stora Tyutin techniques. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1896381g

I. INTRODUCTION

Recently,1 a purely algebraic method was used to solve the problem of constructing and
classifying all the local scalar invariants of a conformal structure on aspseudo-d Riemannian
manifold of dimensionn=8. The approach, however, is not confined ton=8, and one of the
purposes of this paper is to explain the derivation of the so-called Weyl-covariant tensors, the
building blocks of the local conformal invariants in arbitrary dimensionnù3.

In the context of local gauge field theory, the determination of quantities which are invariant
under a given set of gauge transformations can be rephrased in terms of local Becchi Rouet Stora
Tyutin sBRSTd cohomology. Within the BRST framework, the gauge symmetry and its algebra are
encoded in a single differentials.2–5 Powerful techniques for the computation of BRST cohomolo-
gies are proposed in Ref. 6ssee also Ref. 7d, that apply to a large class of gauge theories and relate
the BRST cohomology to an underlying gauge covariant algebra. At the core of this analysis is a
definition of tensor fields and connections on which an underlying gauge covariant algebra is
realized. Such a characterization of tensor fields, connections and the corresponding transforma-
tion laws has the advantage that it is purely algebraic and does not invoke any concept in addition
to the BRST cohomology itself.

In the present paper, we consider theories where the only classical field is the metricgmn

=gnm and the gauge symmetries are diffeomorphisms plus Weyl rescalings. Explicitly, the infini-
tesimal gauge transformations read

dgmn = Lzgmn + df
Wgmn = zr]rgmn + ]mzrgrn + ]nzrgmr + 2fgmn. s1d

Our aim is to construct the spaceW of tensors and generalized connections that transform cova-
riantly with respect to diffeomorphisms and Weyl transformations. The latter property means that,
under Weyl rescalings, the tensors belonging toW will make appear at most the first derivative
]mf of the Weyl parameterf, and no derivative]m1

¯]mk
f with kù2.

Knowing the spaceW, we are able to define an operatorD acting in W and such that

fD ,Dg,C+C̃, whereC andC̃, respectively, denote the conformally invariant Weyl tensor and the
Cotton tensor. The Weyl-covariant derivativeD generates the whole space of tensor fields belong-

ing to W by successive applications onC sandC̃ in n=3d. The rule for the commutatorfD ,Dg is
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at the basis of the Weyl-covariant tensor calculus utilized in Ref. 1. Other useful relations are
obtained which are nothing but the Jacobi identities for the underlying gauge covariant algebra
alluded to before.

The generalized connections play no role in the construction of local Weyl invariants, but are
of prime importance in many other issues, like for example in the determination of the counter-
terms, the consistent interactions and the conservation laws that a gauge theory admits. They are
also relevant for the classification of the Weyl anomalies, the solutions of the Wess–Zumino
consistency condition for a theory describing conformal massless matter fields in an external
gravitational background.

II. BRST FORMULATION

A. Some definitions

As mentioned above, the derivation of the spaceW of Weyl-covariant tensors and generalized
connections is purely algebraic and requires no dynamical information. As a consequence, all that
we need is contained in Eq.s1d and the BRST differentials reduces tog, the differential along the
gauge orbits. We refer to Refs. 8 and 9 for more details on the BRST formalism as used throughout
the present work. For an application of this formalism in the context of Weyl gravity, see Ref. 10.

A Z-grading calledghost numberis associated to the differentialg. The latter raises the ghost
number by one unit and is decomposed according to the degree in the Weyl ghoststhe fermionic
field associated to the Weyl parameterd, g=g0+g1. The first partg0 contains the information about
the diffeomorphisms. The second part,g1, corresponds to Weyl rescalings of the metric and
increases the number ofspossibly differentiatedd Weyl ghosts by 1.

The action ofg on the fieldsFA sincluding the ghostsd is given as follows:

g0gmn = jr]rgmn + ]mjrgrn + ]njrgmr, g1gmn = 2vgmn, s2ad

g0jm = jr]rjm, g0v = jr]rv, g1jm = 0, g1v = 0. s2bd

The fieldv is the Weyl ghost, the anticommuting field associated to the Weyl parameterf, while
jm is the anticommuting diffeomorphisms ghost associated to the vector fieldzm of Eq. s1d. By
definition, the Grassmann-odd fieldsv and jm have ghost number +1. The last equality ofs2bd
reflects the Abelian nature of the algebra of Weyl transformations. From the above equations and
by using the fact thatg is an odd derivation, it is easy to check thatg is indeed a differential.

One unites the BRST differentialg and the total exterior derivatived into a single differential
g̃=g+d. Then, the Wess–Zumino consistency condition and its descent are encapsulated in

g̃ã = 0, ã Þ g̃b̃ + constant s3d

for the local total formsã and b̃ of total degreesG=n+1 andG=n.6 Total local forms are by
definition formal sums of local forms with different form degrees and ghost numbers,ã
=op=0

n ap
G−p, where subscriptssrespectively, superscriptsd denote the form degreesrespectively, the

ghost numberd. A local p-form vp depends on the fieldsFA and their derivatives up to some finite
sbut otherwise unspecifiedd order, which is denoted byvp=s1/p!ddxm1

¯dxmp vm1¯mp
sx,fFAgd.

The relationss3d imply that ã is a nontrivial element of the cohomology groupHsg̃d in the
algebra of total local forms. As shown in Ref. 6, the cohomology ofg in the space of local
functionalssintegrals of localn formsd is indeed locally isomorphic to the cohomology ofg̃ in the
space of local total forms. In other words, the solutionsan

g of the Wess–Zumino consistency
condition

gan
g + dan−1

g+1 = 0, an
g Þ gbn

g−1 + dbn−1
g s4d

correspond one-to-onesmodulo trivial solutionsd to the solutionsã of s3d at total degreeG=g
+n, tot degsãd=g+n.
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The solutions ofs3d or s4d determine the general structure of the counterterms that an action
admits, the possible gauge anomalies, the conserved currents, the consistent interactions, etc.9 In
the next sections and in the appendix, we determine the restricted spaceW of the space of total
local forms in which these solutions naturally appear, for a gravity theory invariant under the
transformationss1d.

We close this section with some more definitions and conventions. The conformally invariant

Weyl tensorCb
gd«, the tensorKab and the Cotton tensorC̃amn are given by

Ca
bgd ª Ra

bgd − 2sdfgg
a Kfdgb − gbfggKfdg

ad, s5ad

Kab ª
1

n − 2
SRab −

1

2sn − 1d
gabRD , s5bd

C̃amn ª
1
2¹fngKfmga. s5cd

The Ricci tensor isRbd=Ra
bad, whereRa

bgd=s]gGbd
a+Ggl

aGbd
ld−sg↔dd is the Riemann tensor.

The Christoffel symbols are given byGab
g= 1

2ggls]agbl+]bgal−]lgabd. Curved brackets denote
strength-one complete symmetrization, whereas square brackets denote strength-one complete
antisymmetrization. We have¹mgab=0, where the symbol¹ denotes the usual torsion-free cova-
riant derivative associated toGab

g. Finally, the derivative]av of the Weyl ghost will sometimes be
notedva;]av.

B. Contracting homotopy

A well-known technique in the study of cohomologies is the use of contracting homotopies.
The idea is to construct contracting homotopy operators which allow to eliminate certain local jet
coordinates, calledtrivial pairs, from the cohomological analysis. This reduces the cohomological
problem to an analogous one involving only the remaining jet coordinates. For that purpose one
needs to construct suitable sets of jets coordinates replacing the fields, the ghosts and all their
derivatives and satisfying appropriate requirements.

The following lemma is at the basis of the contracting homotopy techniques. We use the
notations of Ref. 6 to which we refer for more details.

Lemma 1. Suppose there is a set of local jet coordinates,

B = hU,,V,,WLj,

such that the change of coordinates fromJ=hfFAg ,xm ,dxmj to B is local and locally invertible
and

g̃U, = V, ∀ ,, s6ad

g̃WL = RLsWd ∀ L. s6bd

Then, locally theU’s and V’s can be eliminated from theg̃-cohomology, i.e., the latter reduces
locally to theg̃-cohomology on total local forms depending only on theW’s.

Note that boths6ad and s6bd must hold in order to eliminate theU’s and V’s from the
cohomology. It is important to stress that the existence of a pair of jet coordinates satisfyings6ad
does in generalnot guarantee the existence of complementaryW’s satisfyings6bd. Clearly, the aim
is to construct a set of local jet coordinates containing as many trivial pairs as possible. The
difficulty of this construction is in generalnot the finding of pairs satisfyings6ad, but the con-
struction of complementaryW’s satisfyings6bd. There is no general rule to deal with the latter,
nontrivial problem.
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To our knowledge, theU-V-W decomposition had never been done in the context of Weyl
gravity theories in arbitrary dimensionnù3. Here, we fill this gap and compactly summarize our
main results in the following proposition.

Proposition 1: LetJ be the jet spaceJ=hfgmng ,fvg ,fjmg ,xm ,dxmj and g̃=g0+g1+d the
differential acting onJ according to

g0gmn = jr]rgmn + ]mjrgrn + ]njrgmr, g1gmn = 2vgmn,

s7d
g0jm = jr]rjm, g0v = jr]rv, g1jm = 0, g1v = 0.

Then, thehU ,V ,Wj-decomposition ofJ corresponding tog̃ is

hU,j = hxm,]sm1¯mkdGsmk+1mk+2d
n,¹sm1¯mkdKsmk+1mk+2d,k P Nj,

hV,j = hg̃U,j, hWLj = hTi,C̃Nj,

hT ij = hgmn,Dsm1d ¯ Dmk
Cb

sgdd«,k P Nj, s8ad

hC̃Nj = h2v,j̃n,C̃n
r,ṽaj, s8bd

j̃n
ª jn + dxn, C̃n

r
ª ]njr + j̃aGan

r, ṽa ª va − j̃bKab.

The rest of the paper contains the definition of the operatorD together with theg̃-transformation
rules for the elements ofW. A remark will also be made for the casen=3. In order to derive the
results of Proposition 1, we used the fact that every function of the Riemann tensor and its
covariant derivatives can be written as a function of the Weyl tensor, its covariant derivatives and
the completely symmetric tensors¹sl1l2¯lkdKsabd. A proof of the latter statement can be found in
the appendix of Ref. 1. The same proof can be used to show that, inn=3, every function of the
Ricci tensor and its covariant derivatives can be written as a function of the Cotton tensor, its
covariant derivatives and the completely symmetric tensors¹sl1l2¯lkdKsabd.

It is understood that only the algebraically independent components ofgmn and Cb
gd« enter

into s8ad. fTogether with the symmetrization of the indices ins8ad, this guarantees the absence of
algebraic identities between the generatorsT i, taking into account the second equation ofs13cd
and the Bianchi identitys14bd.g

The tensor fieldshT ij have total degree zero whereas the generalized connectionshC̃Nj have
total degree 1. They decompose into two parts, the first of ghost number 1 and form degree zero,
the second of ghost number zero and form degree 1,

tot degsT id = 0, tot degsC̃Nd = 1, C̃N = ĈN + AN,

ghsĈNd = 1 = form degsANd, ghsANd = 0 = form degsĈNd,

where, froms8bd,

hĈNj = h2v,jn,Ĉn
r
ª ]njr + jaGan

r,v̂a ª va − jmKmaj, s9ad

hANj = h0,dxm dm
n ,dxm Gmn

r,− dxm Kmaj. s9bd

The AN’s and ĈN’s are called, respectively, connection 1-forms and covariant ghosts.6 Since g̃
raises the total degree by one unit, we have
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g̃T i = C̃NDNT i ⇔HgT i = ĈNDNT i ,

dT i = ANDNT i ,
J s10ad

hDNj = hD,Dn,Dr
n,Gaj. s10bd

C. BRST covariant algebra for Weyl gravity

The Weyl-covariant derivativeD is given by

Dm ª ]m − Gmn
rDr

n + KmaGa. s11d

The aim of this section is to make precise the above definition by explicitly defining the three
operatorshD ,Dr

n ,Gaj introduced ins10d. An underlying gauge covariant algebra will be exhibited,
which provides a compact formulation of the BRST algebra on tensor fields and generalized
connections.

s1d The operatorD corresponds to the dimension operator. It counts the number of metrics that
explicitly appear in a given expression,

D ª gmn

]expl

]gmn

.

For example,Dsggm2glm1Dm1
Cb

gd«d=−2sggm2glm1Dm1
Cb

gd«d and Dsgabggdd=0. As a conse-
quence ofs10ad, s10bd, and s9ad, we can writeg1

Îugu=2vDÎugu=2vfsn/2dÎugug=nvÎugu,
where ugu denotes the absolute value of the determinant ofgmn ssupposed invertibled.

s2d The operatorDm
r generates GLsnd-transformations of world indices according to

Dm
nTa

b = da
nTm

b − dm
bTa

n ,

whereTa
b is a s1,1d-type tensor under GLsnd transformations. The usual torsion-free cova-

riant derivative can thus be written¹m=]m−Gmn
rDr

n. Note that this expression must be
completed bypGma

a if one takes the covariant derivative¹m of a weight-p tensor density,

so ¹=dxm ¹m=dxm ]m−C̃n
rDr

n+pC̃m
m.

s3d In order to conveniently define the action of the generatorGa, we first define the so-called
W-tensors carrying superindicesVk,

WV0
ª Cb

gd«, WV1
ª Da1

Cb
gd«, . . . ,

WVk
ª Dak

Dak−1
¯ Da2

Da1
Cb

gd«.

Then, we can writehT ij, hgmn ,hWVk
j :k=0,1, . . .j and the operatorGa acts on space of the

W-tensors according to

GaWV j
= fTagV j

V j−1WV j−1
, Ga

ª fTagVi

Vi−1DVi−1

Vi , s12d

where DV j

VkWVi
=dVi

VkWV j
and where the symboldVi

Vk is such thatdVi

VkWVk
=WVi

. We use
Einstein’s summation conventions for theW-tensor superindicesVi. The matricesfTagV j

V j−1

are obtained by recursion in the appendix, withfTagV j

V j−1=0∀ j ø0. The action ofGa gives
zero on everything but theW tensors. In particular,Gagmn=0.

The W-tensors transform underg̃ according tos10d ands9d. They are the building blocks for
the construction of Weyl invariants.1 Note that the Bach tensor is nothing but the following double
trace ofWV2

:
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Bmn ; ¹aC̃mna − KlrClmn =
1

s3 − nd
garDaDbCb

mnr.

For the action ofg̃ on the generalized connections, we find

g̃v = j̃mṽm,

g̃j̃m = j̃rC̃r
m,

g̃C̃m
n = C̃m

aC̃a
n + 1

2j̃rj̃sCn
mrs + Pmb

an ṽaj̃b,

g̃ṽa = 1
2j̃rj̃sC̃ars + C̃a

bṽb,

wherePmb
an

ª s−gangmb+dm
adb

n +db
adm

n d. Note the relationsCm
nab=Rm

nab−2Pnfag
mr Kfbgr and g1Gmb

n

=Pmb
an va.
From g̃2T i =0, we derive the gauge covariant algebra generated byhD ,Dn ,Dr

n ,Gaj,

fDn
r,Gag = − dn

aGr, fGa,Gbg = 0, s13ad

fDn
r,Dmg = dm

r Dn, fDm
r,Dn

sg = dn
rDm

s − dn
rDm

s, s13bd

fGa,Dbg = − Pmb
an Dn

m, fDm,Dng = Cmnr
sDs

r − C̃amnGa, s13cd

where the operatorD commutes with everything. The second equality ofs13ad reflects the Abelian
nature of the Weyl transformations, while the second equality ofs13cd displays the commutator of
two Weyl-covariant derivatives in terms of the Weyl tensor and the Cotton tensor. Note that the
commutator of two covariant derivatives readsf¹m ,¹ng=Rmnr

sDs
r.

From g̃2C̃N=0, we find the following set of Bianchi identities:

g̃2v = 0 ⇒ C̃fmrsg = 0, s14ad

g̃2C̃m
n = 0 ⇒ ¹fggCfd«gab − C̃afgdggf«gb + C̃bfgdggf«ga = 0, s14bd

g̃2j̃m = 0 ⇒ HPfrng
am = 0,

Cm
fnrsg = 0,J s14cd

g̃2ṽa = 0 ⇒HGaC̃brs + Ca
brs = 0,

DfbgC̃frsga = 0
J s14dd

which are nothing but the Jacobi identities for the algebras13d.
Note that the casen=3 proceeds in exactly the same way, provided one setsCm

nrs to zero and

one definesWV0

s3d
ª C̃ars. In other words, the relationss13d and s14d still hold, settingCm

nrs=0.
The representation matricesGa and the Weyl-covariant derivatives11d are unchanged as well.
More explicitly, we have

n ù 4, g1Da1
Cb

gd« = vas− Pma1

an Dn
mdCb

gd« g1WV1
= vaGaWV1

,
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n = 3, g1Da1
C̃gd« = vas− Pma1

an Dn
mdC̃gd« g1WV1

s3d = vaGs3d
a WV1

s3d ,

which shows that the representation matricesGa and Gs3d
a are essentially the same. Indeed, the

iterative procedure given in the appendix reproduces itself in exactly the same way whenn=3,

with the convention thatWV0

s3d ; C̃ars.

ACKNOWLEDGMENTS

The author is grateful to G. Barnich, H. Baum, X. Bekaert, J. Erdmenger, M. Henneaux, and
Ch. Schomblond for stimulating remarks and encouragements. F. Brandt is acknowledged for his
comments. This work was partly done at the DAMTPsCambridge, UKd, where the author was
Wiener-Anspach postdoctoral fellowsBelgiumd.

APPENDIX: W-TENSORS AND THEIR TRANSFORMATIONS

The W-tensors are computed iteratively, together with their transformation laws under Weyl
rescalings of the metric.

sAd First, we haveg1WV0
=vaGaWV0

=0. Then, we formWV1
=¹a1

WV0
. Taking the Weyl

variation gives

g1WV1
= g1fs]a1

− Ga1m
nDn

mdWV0
g = − vlPma1

ln Dn
mWV0

= vlfTlgV1

V0WV0
,

where the last equality serves as a definition for the tensorfTlgV1

V0, which satisfiesg1fTlgV1

V0

=0=¹mfTlgV1

V0. We also use the notationg1WV1
=vaGaWV0

, cf. Eq. s12d.
Continuing, we compute the Weyl variation of¹a2

WV1
,

g1¹a2
WV1

= ¹a2
svlfTlgV1

V0WV0
d − vlPma2

ln Dn
mWV1

= s− g1Kla2
dfTlgV1

V0WV0
+ vlfTlgV1

V0¹a2
WV0

− vlPma2

ln Dn
mWV1

.

Using g1sfTlgV1

V0WV0
d=0, we obtain

g1s¹a2
WV1

+ Kla2
fTlgV1

V0WV0
d = vlsd

a2V0

V81 fTlgV1

V0 − dV1

V81Pma2

ln Dn
mdWV18

which we rewrite

g1WV2
= vlfTlgV2

V1WV1
= vaGaWV2

,

whereWV2
;Da2

WV1
=¹a2

WV1
+Kla2

fTlgV1

V0WV0
.

Calculating g1g1WV2
, we find 0=vavbGaGbWV2

, or fGa ,Gbg=0, cf. second equation of
s13ad. Also, since

WV2
; Da2

WV1
; Da2

Da1
WV0

= s¹a2
¹a1

+ Kla2
fTlgV1

V0dWV0
,

we find that

fDa2
,Da1

gWV0
= Ca2a1m

nDn
mWV0

,

in agreement with the second equation ofs13cd andGaWV0
=0 sequivalent tog1WV0

=0d.
sBd Suppose that we haveWVk

;Dak
¯Da2

Da1
WV0

, kù2. In other words, we know that

WVk
= s¹ak

+ Klak
GldWVk−1

,
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g1WVk
= vaGaWVk

= vafTagVk

Vk−1WVk−1
,

and

GfagGfbgWVk
= 0.

We want to obtain the next tensor,WVk+1
;Dak+1

WVk
, and its transformation rule.

As before, we first compute the Weyl transformation of¹ak+1
WVk

,

g1¹ak+1
WVk

= ¹ak+1
svaGaWVk

d − vaPnak+1

am Dm
nWVk

= s− g1Kaak+1
dGaWVk

+ vafTagVk

Vk−1¹ak+1
WVk−1

− vaPnak+1

am Dm
nWVk

.

Hence, we get

g1s¹ak+1
WVk

+ Kaak+1
GaWVk

d = Kaak+1
vbGaGbWVk

− vaPnak+1

am Dm
nWVk

+ vafTagVk

Vk−1¹ak+1
WVk−1

.

Using

¹ak+1
WVk−1

= Dak+1
WVk−1

− Kbak+1
GbWVk−1

and posing

Dak+1
WVk

= ¹ak+1
WVk

+ Kak+1lGlWVk
,

we find

g1Dak+1
WVk

= Kaak+1
vbGaGbWVk

− Kbak+1
vaGaGbWVk

− vaPnak+1

am Dm
nWVk

+ vadak+1Vk−1

Vk8 fTagVk

Vk−1WVk8

= vlsdak+1Vk−1

Vk8 fTagVk

Vk−1 − dVk

Vk8Pnak+1

lm Dm
ndWVk8

= vlfTagak+1Vk

Vk8 WVk8
,

where we usedGfagGfbgWVk
=0. h
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This paper is the first in a series that lays the groundwork for a structure and
classification theory of second-order superintegrable systems, both classical and
quantum, in conformally flat spaces. Many examples of such systems are known,
and lists of possible systems have been determined for constant curvature spaces in
two and three dimensions, as well as few other spaces. Observed features of these
systems are multiseparability, closure of the quadratic algebra of second-order sym-
metries at order 6, use of representation theory of the quadratic algebra to derive
spectral properties of the quantum Schrödinger operator, and a close relationship
with exactly solvable and quasi-exactly solvable systems. Our approach is, rather
than focus on particular spaces and systems, to use a general theoretical method
based on integrability conditions to derive structure common to all systems. In this
first paper we consider classical superintegrable systems on a general two-
dimensional Riemannian manifold and uncover their common structure. We show
that for superintegrable systems with nondegenerate potentials there exists a stan-
dard structure based on the algebra of 232 symmetric matrices, that such systems
are necessarily multiseparable and that the quadratic algebra closes at level 6.
Superintegrable systems with degenerate potentials are also analyzed. This is all
done without making use of lists of systems, so that generalization to higher di-
mensions, where relatively few examples are known, is much easier. ©2005
American Institute of Physics.fDOI: 10.1063/1.1897183g

I. INTRODUCTION AND EXAMPLES

The goal of this series of papers is a structure and classification theory of second-order
superintegrable systems, both classical and quantum, in conformally flat spaces. A classical super-
integrable systemH=oi jg

ij pipj +Vsxd on ann-dimensional local Riemannian manifold is one that
admits 2n−1 functionally independent symmetriessi.e., constants of the motiond Sk, k
=1, . . . ,2n−1 with S1=H. That is,hH ,Skj=0 where

hf,gj = o
j=1

n

ss]xj
f]pj

g − ]pj
f]xj

gdd

is the Poisson bracket for functionsfsx ,pd ,gsx ,pd on phase space.1–8 Note that 2n−1 is the
maximum possible number of functionally independent symmetries and, locally, such symmetries
always exist. The main interest is in symmetries that are polynomials in thepk and are globally
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defined, except for lower dimensional singularities such as poles and branch points. Many tools in
the theory of Hamiltonian systems have been brought to bear on superintegrable systems, such as
R-matrix theory, Lax pairs, exact solvability, quasi-exact solvability, and the Jacobi metric.9–13

However, the most detailed and complete results are obtained from separation of variables meth-
ods in those cases where they are applicable. Standard orthogonal separation of variables tech-
niques are associated with second-order symmetries, e.g., Refs. 14–20 and multiseparable Hamil-
tonian systems provide numerous examples of superintegrability. In these papers we shall
concentrate on second-order superintegrable systems, that is, those in which the symmetries take
the formS=oaijsxdpipj +Wsxd, quadratic in the momenta.

There is an analogous definition for second-order quantum superintegrable systems with
Schrödinger operator

H = D + Vsxd, D =
1
Îg

o
i j

]xi
sÎggijd]xj

,

whereD is the Laplace–Beltrami operator on a Riemannian manifold, expressed in local coordi-
natesxj.

15 Here there are 2n−1 second-order symmetry operators

Sk =
1
Îg

o
i j

]xi
sÎgaskd

i j d]xj
, k = 1, . . . ,2n − 1

with S1=H and fH ,Skg;HSk−SkH=0. Again multiseparable systems yield many examples of
superintegrability. However, as we shall show, not all multiseparable systems are superintegrable
and not all second-order superintegrable systems are multiseparable. There is also a quantization
problem in extending the results for classical systems to operator systems. This problem turns out
to be very easily solved in two dimensions and not difficult in higher dimensions for nondegen-
erate systems.

Superintegrable systems cans1d be solved explicitly, ands2d they can be solved in multiple
ways. It is the information gleaned from comparing the distinct solutions and expressing one
solution set in terms of another that is a primary reason for their interest.

To illustrate some of the main features of superintegrable systems we give a simple example
in real Euclidean space.sTo make clearer the connection with quantum theory and Hilbert space
methods we shall, for this example alone, adopt standard physical normalizations, such as using
the factor −1

2 in front of the free Hamiltonian.d Consider the Schrödinger eigenvalue equation
HC=EC or

−
1

2
S ]2

]x2 +
]2

]y2DC +
1

2
1v2sx2 + y2d +

k1
2 −

1

4

x2 +

k2
2 −

1

4

y2 2C = EC. s1d

This equation separates in three systems:Cartesian coordinatessx,yd; polar coordinatesx
=r cosu, y=r sinu, andelliptical coordinates

x2 = c2su1 − e1dsu2 − e1d
se1 − e2d

, y2 = c2su1 − e2dsu2 − e2d
se2 − e1d

.

The bound states are degenerate with energies given byEn=vs2n+2+k1+k2d for integern. The
corresponding wave functions ares1d Cartesian:

Cn1,n2
sx,yd = 2vs1/2dsk1+k2+2dÎ n1!n2!

Gsn1 + k1 + 1dGsn2 + k2 + 1d
xsk1+1/2dysk2+1/2de−sv/2dsx2+y2dLn1

k1svx2d

3Ln2

k2svy2d, n = n1 + n2, s2d

and theLn
ksxd are Laguerre polynomials.21 s2d Polar:
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Csr,ud = Fq
sk1,k2d

3sudvs1/2ds2q+k1+k2+1dÎ 2m!

Gsm+ 2q + k1 + k2 + 1d
es−vr2/2dr s2q+k1+k2+1dLm

2q+k1+k2+1svr2d,

n = m+ q, s3d

Fq
sk1,k2dsud =Î2s2q + k1 + k2 + 1d

q!Gsk1 + k2 + q + 1d
Gsk2 + q + 1dGsk1 + q + 1d

scosudk1+s1/2dssinudk2+s1/2dPq
sk1,k2d

3scos 2ud, s4d

and thePq
sk1,k2dscos 2ud are Jacobi polynomials.21 s3d Elliptical:

C = e−vsx2+y2dxk1+1/2yk2+1/2p
m=1

n S x2

um − e1
+

y2

um − e2
− c2D

where

x2

u − e1
+

y2

u − e2
− c2 = − c2su1 − udsu2 − ud

su − e1dsu − e2d
s5d

are ellipsoidal wave functions.22,23A basis for the second-order symmetry operators is

L1 = ]x
2 +

S1

4
− k1

2D
x2 − v2x2, L2 = ]y

2 +
S1

4
− k2

2D
y2 − v2y2,

s6d

L3 = sx]y − y]xd2 + S1

4
− k1

2Dy2

x2 + S1

4
− k2

2Dx2

y2 −
1

2
.

sNote that −2H=L1+L2.d The separable solutions are eigenfunctions of the symmetry operators
L1, L3 andL3+e2L1+e1L2 with eigenvalues

lc = − vs2n1 + k1 + 1d, lp = s2q + k1 + k2 + 1d2 + s1 + k1
2 + k2

2d,

le = 2s1 − k1ds1 − k2d − 2e2vsk1 + 1d − 2e1vsk2 + 1d − v2e1e2 − 4o
m=1

q Fe2
k1 + 1

um − e1
+ e1

k2 + 1

um − e2
G ,

respectively. The algebra constructed by repeated commutators is

fL1,L3g = fL3,L2g ; R, fLi,Rg = − 4hLi,Ljj + 16v2L3, i Þ j , i, j = 1,2,

fL3,Rg = 4hL1,L3j − 4hL2,L3j + 8s1 − k2
2dL1 − 8s1 − k1

2dL2,

R2 = 8
3hL1,L2,L3j + 64

3 hL1,L2j + 16v2L3
2 − 16s1 − k2

2dL1
2 − 16s1 − k1

2dL2
2 − 128

3 v2L3

− 64v2s1 − k1
2ds1 − k2

2d. s7d

Note that these relations are quadratic. HerehA,Bj=AB+BA, is a double symmetrizer and there is
a corresponding definition for the triple symmetrizer. The important fact to observe about the
algebra generated byL1,L2,L3, R is that it isclosed under commutation.24,25This is a remarkable
fact, but typical of superintegrable systems with nondegenerate potentials, as we shall show.
Indeed the closure is at level 6, since we have to express the square of the third-order operatorR
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in terms of theLj basis of second-order operators. Note that the degeneracy of the energy eigens-
pace is broken by the alternate separated bases of eigenfunctions. The eigenfunctions of one
separable system can be expanded in terms of the eigenfunctions of another, and this is the source
of nontrivial special function expansion theorems.26 The symmetry operators are in formal self-
adjoint form and suitable for spectral analysis. Also, the quadratic algebra identities allow us to
relate eigenbases and eigenvalues of one symmetry operator to those of another. Indeed the
representation theory of the abstract quadratic algebra can be used to derive spectral properties of
the generatorsLj, in a manner analogous to the use of Lie algebra representation theory to derive
spectral properties of quantum systems that admit Lie symmetry algebras.26–29sNote however that
for superintegrable systems with nondegenerate potential, there is no first-order Lie symmetry.d

A common feature of quantum superintegrable systems, exhibited in the above-given ex-
ample, is that after splitting off a multiplicative functional factor,xsk1+1/2dysk2+1/2de−sv/2dsx2+y2d in the
example, the Schrödinger and symmetry operators are acting on a space of polynomials.30 This is
closely related to the theory of exactly and quasi-exactly solvable systems.11,31,32In the example
the one-dimensional ordinary differential equationssODEsd obtained by separation in the Carte-
sian and polar systems are exactly solvable, in terms of hypergeometric functions, i.e., there is an
infinite set of nested invariant subspaces under the Cartesian or polar separated ODEs, and the
energy eigenvalues are easily obtained. The elliptic system separated equations are quasi-exactly
solvable, i.e., there is a single invariant finite dimensional subspace of a separated ODE and only
for certain parameter choices, and polynomial solutions are obtained for only particular values of
E. However, these values are just the energy eigenvalues obtained in the Cartesian and polar
systems. This characterization of quasi-exactly solvable systems as embedded in PDE superinte-
grable systems provides insight into the nature of these phenomena.

The classical analog of the above-given example is obtained by the replacements]x→px,
]y→py. Commutators go over to Poisson brackets. The operator symmetries become second-order
constants of the motion. Symmetrized operators become products of functions. The quadratic
algebra relations simplify: the highest order terms agree with the operator case but there are fewer
nonzero lower order terms. Indeed, the classical algebra has basis

S1 = px
2 +

1

4
− k1

2

x2 − v2x2, S2 = py
2 +

1

4
− k2

2

y2 − v2y2,

s8d

S3 = sxpy − ypxd2 + S1

4
− k1

2Dy2

x2 + S1

4
− k2

2Dx2

y2, − 2H = S1 + S2.

The classical quadratic algebra relations are

hS1,S3j = hS3,S2j ; R, hSi,Rj = 8SiS j + 16v2S3, i Þ j , i, j = 1,2,

hS3,Rj = 8S1S3 − 8S2S3 + s4 − 16k2
2dS1 − s4 − 16k1

2dS2, s9d

R2 = 16S1S2S3 − 16v2S3
2 + s4 − 16k2

2dS1
2 − s4 − 16k1

2dS2
2 + 4v2s1 − 4k1

2ds1 − 4k2
2d.

In the example the potential

Vsx,yd =
1

2
1v2sx2 + y2d +

k1
2 −

1

4

x2 +

k2
2 −

1

4

y2 2
is nondegeneratein the sense that at any pointx0,y0 where the potential is defined and analytic
and the Sk are functionally independent, we can prescribe the values of
V1sx0,y0d ,V2sx0,y0d ,V11sx0,y0d arbitrarily by choosing appropriate values for the parameters
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v ,k1,k2. Here,V1=]V/]x, V2=]V/]y, etc. fAnother way to look at this is to say that

V1sx0,y0d,V2sx0,y0d,V11sx0,y0d

are the parameters.g This is in addition to the trivial constant that we can always add to a potential.
As we shall show, this requirement for a superintegrable system implies that the potential is any
solution of a system of coupled PDEs of the form

V22 = V11 + A22sx,ydV1 + B22sx,ydV2, V12 = A12sx,ydV1 + B12sx,ydV2,

where the functionsAij ,Bij are subject to certain compatibility conditions, so that the solution
space is of dimension four. Innù2 dimensions the analogous nondegenerate potentials depend on
n+2 parameters. Systems with nondegenerate potentials have the most beautiful properties but
there are also superintegrable systems with degenerate potentials depending on,n+2 parameters.
For n=2 we will show that all of these systems depending on two or three parameters are in a
certain sense specializations of the nondegenerate systems.sFor degenerate systems, first-order
symmetries may exist.d However, superintegrable systems with one parametersi.e., constantd
potentials are in general not restrictions of systems with nondegenerate potentials.fNote that in the
classical case the symmetries corresponding to a constant potential are just Killing tensors.15g
Indeed superintegrable systems with constant potential do not necessarily have a closed quadratic
algebra. See Ref. 44 for a counterexample.

Many examples of such systems are known, and lists of possible systems have been deter-
mined for constant curvature spaces in two and three dimensions, as well as a few other
spaces.33–38 Here, rather than focus on particular spaces and systems, we employ a theoretical
method based on integrability conditions to derive structure common to all such systems. In this
paper we consider classical superintegrable systems on a general two-dimensionals2Dd Riemann-
ian manifold, real or complex, and uncover their common structure. We show that for superinte-
grable systems with nondegenerate potentials there exists a standard structure based on the algebra
of 232 symmetric matrices, that such systems are necessarily multiseparable, and that the qua-
dratic algebra closes at level 6. Superintegrable systems with degenerate potentials are also ana-
lyzed. This is all done without making use of lists of such systems, so that generalization to higher
dimensions, where relatively few examples are known,38 is much easier.

In the next paper in this series we will study the Stäckel transform, or coupling constant
metamorphosis,39,40 for 2D classical superintegrable systems. This is a conformal transformation
of a superintegrable system on one space to a superintegrable system on another space. We will
prove that all nondegenerate 2D superintegrable systems are Stäckel transforms of constant cur-
vature systems and give a complete classification of all 2D superintegrable systems. The following
papers will extend these results to three-dimensionals3Dd systems and the quantum analogs of 2D
and 3D classical systems.

II. SECOND-ORDER KILLING TENSORS FOR 2D COMPLEX RIEMANNIAN MANIFOLDS

Before proceeding to the study of superintegrable systems with potential, we review some
basic facts about second-order symmetriesswithout potentiald of the underlying 2D complex
Riemannian spaces, i.e., second-order Killing tensors.15 These were worked out by Koenigs,41

though here we make an alternate presentation suggested by Refs. 42, 43, and 17. It is always
possible to find a local coordinate systemsx,yd;sx1,x2d defined in a neighborhood ofs0,0d on the
manifold such that the metric is

ds2 = lsx,ydsdx2 + dy2d = ldzdz̄, z= x + iy, z̄= x − iy ,

and the Hamiltonian isH0=sp1
2+p2

2d /l. We can consider a second-order Killing tensorssymmetryd
as a quadratic formL=oi,j=1

2 aijsx,ydpipj , aij =aji , that is in involution with the free Hamiltonian
H0: hH0,Lj=0. The conditions are
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ai
ii = −

l1

l
ai1 −

l2

l
ai2, i = 1,2,

s10d

2ai
ij + aj

ii = −
l1

l
aj1 −

l2

l
aj2, i, j = 1,2, i Þ j .

From these conditions we easily obtain the requirements

2a1
12 = − sa11 − a22d2, 2a2

12 = sa11 − a22d1.

From the integrability conditions for these last equations we see that

Da12 = 0, Dsa11 − a22d = 0, D = ]x
2 + ]y

2

and that there exist analytic functionsfszd, gsz̄d such that

2a12 = fszd + gsz̄d, a11 − a22 = isfszd − gsz̄dd.

Substituting these results in the remaining equations we find

sa11ld1 = − 1
2l2sf + gd, sa22ld2 = − 1

2l1sf + gd.

The integrability condition for these last equations is

]12sslsf − gddd +
i

2
]1ssl1sf + gddd −

i

2
]2ssl2sf + gddd = 0

or

f9 + 3f8
lz

l
+ 2f

lzz

l
= − g9 − 3g8

lz̄

l
− 2g

lzz

l
. s11d

If the space admits at least one Killing tensor independent of the Hamiltonian, then we can always
assume that it is of the formsf ,gd=s1,1d, i.e., we can make the change of coordinatesZ

=edz/Îfszd, Z̄=edz̄/Îgsz̄d so thats11d implies

lzz= lzz.

Prescribing the values ofgs0d ,g8s0d ,g9s0d , fs0d , f8s0d, we can uses11d to computef9s0d. Differ-
entiating this equation successively with respect toz andz̄ we can compute all derivatives off and
g. Thus any solutionsf ,gd of the integrability conditions is uniquely determined by the five
prescribed values. Oncef andg are given, the Killing tensoraij is determined to within addition
of an arbitrary multiple of the HamiltonianH0. Thus the maximum dimension of the space of
second-order Killing tensors is six. As is very well known, this maximum is actually achieved for
flat space and spaces of nonzero constant curvature. Recall that a 2D manifold is of constant
curvature if and only ifk=s]zz̄ ln ld /l is a constant. The space is flat if and only ifk;0.

Note that the maximum dimension of six is achieved if and only if the integrability conditions
for s11d are themselves satisfied identically. Applying the operator]zz̄ to both sides of this expres-
sion we find

3]z̄Slz

l
D f9 + S2]z̄Slzz

l
D + 3]zz̄Slz

l
DD f8 + 2]zz̄Slzz

l
D f

= − 3]zSlz̄

l
Dg9 − S2]zSlzz

l
D + 3]zz̄Slz̄

l
DDg8 − 2]zz̄Slzz

l
Dg. s12d
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If dimension six is achieved then this last condition onf andg cannot be independent ofs11d.
Hence, either the coefficients off9 , f8 , f ,g9 ,g8 ,g all vanish identically, in which case]zz̄ ln l
;0 and the space is flat, or]zz̄ ln lÞ0 ands12d is obtained froms11d through multiplication by
]zz̄ ln l. In the second case one can easily see that

]zS ]zz̄ ln l

l
D = ]z̄S ]zz̄ ln l

l
D = 0

so the space is of nonzero constant curvature.
If the dimension of the space of symmetries is less than six thens12d is independent ofs11d.

In this case we can eliminatef9 andg9 between these two equations and obtain a condition relating
only f8 , f ,g8 ,g:

F2Slzz

l
D

z̄
− 9klz + 3Slz

l
D

zz̄
G f8 + F2Slzz

l
D

zz̄
− 6klzzG f

= − F2Slzz

l
D

z
− 9klz + 3Slz

l
D

zz̄
Gg8 − F2Slz̄z̄

l
D

zz̄
− 6klzzGg. s13d

Thus the remaining systems have spaces of symmetries of dimensionsø4. A straightforward
computation shows that this last equation can be rewritten as

f5lkzgf + f2lkzz+ 8lzkzgf8 = − f5lkz̄gg8 − f2lkz̄z̄ + 8lz̄kz̄gg s14d

where 2lkzz+8lzkz=2lkzz+8lz̄kz̄. If the space of symmetries is of dimension four then the inte-
grability conditions for this last equation are satisfied identically. The systems with dimension four
swhich we call the Darboux spacesd were classified by Koenigs and are four in number.41 If the
equations are not satisfied identically, then we can repeat this procedure and find integrability
conditions for the spaces of symmetries of dimension three. These spaces were also classified by
Koenigs. In the next paper in this series we will find an alternate, much simpler derivation of these
spaces that shows that they all admit superintegrable systems with nondegenerate potentials.

Functional independence and functional linear independence of superintegrable systems. Sup-
pose we have a HamiltonianH=H0+V=oi,j=1

2 gij pipj +Vsx,yd and constants of the motionLk

=Lk+Wskd=oi,j=1
2 askd

i j pipj +Wskdsx,yd, for k=1,2. We saythat such a system issuperintegrable
provided the two functionsLh together with H are functionally independent in the four-
dimensional phase space.sHere the possibleV will always be assumed to form a vector space and
we require functional independence for each suchV and the associatedWskd. This means that we
require that the three quadratic formsLk,H0 are functionally independent.d

In the work to follow it will be important that the functionally independent symmetries also be
functionally linearly independent. It is clear that there are no constantsa ,b ,g not all 0 such that
aL1+bL2+gH0;0. However such a relation is possible ifa ,b ,g are functions. Indeed we have
the example

H0 = pzpz̄ + Vsz̄d, L1 = pz
2, L2 = pzszpz − z̄pz̄d,

Ws1d = 0, Ws2d = Ws2dsz̄d, s15d

where −z̄Vz̄=Wz̄
s2d. Here L2=zL1− z̄H0. sThis superintegrable system is in Lie form.41 It is not

multiseparable.d The following result shows that this example is unique.
Theorem 1: The flat space systems15d is the only superintegrable system in a 2D complex

Riemannian space such that the functionally independent symmetries are functionally linearly
dependent.

Proof: SupposeL1,L2,H are functionally independent symmetries that are functionally lin-
early dependent. Without loss of generality we can assume that
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L2 = fsx,ydL1 + gsx,ydH, df Þ 0, dgÞ 0.

SinceL2 is a symmetry we have the conditionhf ,H0jL1+hg,H0jH0=0 or

fxa
11 + gx/l = 0,

fya
22 + gy/l = 0,

s16d
fya

11 + 2fxa
12 + gy/l = 0,

fxa
22 + 2fya

12 + gx/l = 0.

Thusgx=−lfxa
11, gy=−lfya

22 and the remaining conditions take the form

S2a12 a11 − a22

a22 − a11 2a12 DS fx

fy
D = S0

0
D .

SincedfÞ0 the determinant of the 232 matrix must be zero:

4sa12d2 + sa22 − a11d2 = 0.

We consider the casea22−a11=−2ia12. Then fx=−i f y, so f = fszd. From the Killing equationss10d
we see thata2

12= ia1
12 so, a12=a12szd. The symmetry conditions forV,Ws1d,W2 are Wk

s jd=ak1V1

+ak2V2, j ,k=1,2 and theintegrability conditions for these equations are the Bertrand–Darboux
sBDd conditionssW1

s jdd2=sW2
s jdd1, j =1,2, which in this case simplify to

V22 − V11 + 2iV12 = − F3
a2

12

a12 + 2i
l1

l
+ 2

l2

l
GsV2 + iV1d,

V22 − V11 + 2iV12 = − F3
a2

12

a12 + 2i
l1

l
+ 2

l2

l
GsV2 + iV1d − 3

f2

f
sV2 + iV1d.

Subtracting the second BD equation from the first, we findV1− iV2=0 or V=Vsz̄d. The remaining
Killing tensor equations are

sa11ld1 = − l2a
12, sa11ld2 = 2isa12ld2 − l1a

12,

with integrability condition

− sl2a
12d2 = 2isla12d12 − sl1a

12d1.

At this point it is useful to write all equations in terms of the variablesz, z̄. Then the Killing
tensor equations become

lzz= 0, SlFa11 −
i

2
GD

z

= 0 s17d

and the previous integrability condition becomes

s9 + 3s8
lzz

l
+ 2

lzz

l
= 0,

where
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2a12 = sszd, a11 − a22 = isszd.

We can change to new variablesZszd,Z̄sz̄d= z̄ such that this last equation becomesssZd;1, lZZ

=0. From now on, we assume that the original coordinatesz,z̄ were chosen so thatlzz=0, 2a12

=1, a11−a22= i. In the new coordinates we have

H0 = 2
pzpz̄

l
, L1 = 2ipz

2 + 4Sa11 −
i

2
Dpzpz̄, gz̄ = − ilf8szd,

gz = − 2lSa11 −
i

2
D f8szd,

so the integrability equation forg is

− ilz f8 − ilf9 = − 2lz̄ fSa11 −
i

2
D f8 − 2laz̄

11f8,

which simplifies toslf8szddz=0. Froms17d we see that there are functionsMsz̄d,Nsz̄d such that

l = izM8sz̄d + Nsz̄d, a11 −
i

2
=

Msz̄d
izM8sz̄d + Nsz̄d

.

If M8sz̄dÞ0 then we can choose a new variableZ̄sz̄d such thatM8sZ̄d=−i. Assume that we have
made this choice forz̄ from the beginning. Then the equationslf8szddz=0 implies zf8szd
+Nsz̄df8szd=Qsz̄d, soN8sz̄df9szd=0. If f9szd=0 thenf is linear inz and this is impossible unlessf
is constant, a contradiction. ThusL8=0 and we can takel=z, fszd=lnszd, a11− i /2=−iz̄/z which
implies that the space is flat. Further we can introduce a new variableZszd such that in the new
variablesl=1. If on the other handM8sz̄d;0, then again the space is flat and we can introduce a

new variableZ̄sz̄d such thatl=1 with respect to the new variables. In the case thata22−a11

= +2ia12 the argument is the same, but with the roles ofz and z̄ interchanged. Q.E.D.

III. MAXIMUM DIMENSIONS OF THE SPACES OF POLYNOMIAL CONSTANTS IN 2D
FOR TWO-PARAMETER POTENTIALS

In order to demonstrate the existence and structure of quadratic algebras for 2D superinte-
grable systems, it is important to compute the dimensions of the spaces of symmetries of these
systems that are of orders 2, 3, 4, and 6. These symmetries are necessarily of a special type. The
highest order terms in the momenta are independent of the parameters in the potential, while the
terms of order 2 less in the momenta are linear in these parameters, those of order 4 less are
quadratic, and those of order 6 less are cubic. We will obtain these dimensions exactly, but first we
need to establish sharp upper bounds.

Consider a Hamiltonian in a general two-dimensional space of the form

H =
p1

2 + p2
2

l
+ a1V

1 + a2V
2. s18d

Here,l and the terms in the potentialVi depend on the coordinatesxi while theai are arbitrary
parameters. We say thatV is a two-parameter potentialif the gradients ofV1 andV2 are linearly
independent, that isV1

1V2
2−V2

1V1
2Þ0. We are free to redefineV1 andV2 by taking linear combina-

tions and so we will also assume thatV1
1Þ0 andV2

2Þ0.
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A. Quadratic constants

We wish to determine how large the space of second-order constants of the motion can be
whenV is a two-parameter superintegrable potential, i.e., it admits three functionally independent
constants of the motion. The general constant of second order in the momenta is

L = a11p1
2 + a22p2

2 + 2a12p1p2 + a1b
1 + a2b

2 s19d

with aij andbi being functions of the coordinates alone.
Since hH ,Lj is polynomial inp1, p2, a1 and a2, and theaij , bi and Vi depend only on the

coordinatesx1 andx2, the vanishing ofhH ,Lj gives eight equations for the derivatives ofaij and
bi. Introducing two new symbols,c1=a1

12 andc2=a2
12, we solve these equations to obtain

a1
11 = −

l1

l
a11 −

l2

l
a12, b1

1 = V1
1la11 + V2

1la12,

a2
11 = − 2c1 −

l2

l
a22 −

l1

l
a12, b2

1 = V1
1la12 + V2

1la22,

a1
22 = − 2c2 −

l1

l
a11 −

l2

l
a12, b1

2 = V1
2la11 + V2

2la12,

a2
22 = −

l2

l
a22 −

l1

l
a12, b2

2 = V1
2la12 + V2

2la22. s20d

Without expressions for the derivatives ofc1 and c2 the system is not involutive. However, the
integrability conditions forb1 andb2 give equationssthe Bertrand–Darboux equationsd that can be
used to expressc1 and c2 entirely in terms of theaij . Calculating each ofb12

1 and b12
2 in two

different ways and replacing derivatives of the formaj
ii with the above-given expressions leads to

two equations forc1 andc2,

− 3V1
1lc1 + 3V2

1lc2 = sV1
1l2 + V2

1l1 + lV12
1 dsa22 − a11d + sV1

1l1 + V11
1 l − V2

1l2 − V22
1 lda12,

s21d
− 3V1

2lc1 + 3V2
2lc2 = sV1

2l2 + V2
2l1 + lV12

2 dsa22 − a11d + sV1
2l1 + V11

2 l − V2
2l2 − V22

2 lda12.

These can be solved forc1 andc2 since the gradients ofV1 andV2 are linearly independent.
Since all of the derivatives ofa11, a22, anda12 can be expressed in terms of theaij , at any

regular point, the second-order part ofL is determined by three numbers.
Theorem 2: The space of second-order constants for a 2D superintegrable potential with two

parameters is exactly three-dimensional.

B. Cubic constants

Theorem 3: The space of third-order constants for a 2D superintegrable potential with two
parameters is at most one-dimensional.

Proof: The general constant of third order in the momenta has the form

L = a111p1
3 + a222p2

3 + 3a112p1
2p2 + 3a122p1p2

2 + sa1b
11 + a2b

12dp1 + sa1b
21 + a2b

22dp2. s22d

As for the second-order constants, we demand that the coefficients ofp1, p2, a1, anda2 vanish.
The terms of zeroth order in the momenta lead to

V1
1b11 + V2

1b21 = 0, V1
2b12 + V2

2b22 = 0,

s23d
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V1
1b12 + V2

1b22 + V1
2b11 + V2

2b21 = 0.

Since we have chosenV1 andV2 such thatV2
2Þ0, we can solve forb11, b22, andb21 in terms ofb12,

and find

b11 = −
V2

1

V2
2b12, b22 =

V2
1

V2
2b12, b21 = −

V1
1

V2
2b12. s24d

The coefficients inhH ,Lj that are first order in the momenta give the six equations,

3V1
1a111+ 3V2

1a112=
2

l
b1

11 +
l1

l2b11 +
l2

l2b21,

3V1
2a111+ 3V2

2a112=
2

l
b1

12 +
l1

l2b12 +
l2

l2b22,

3V1
2a122+ 3V2

2a222=
2

l
b2

22 +
l1

l2b12 +
l2

l2b22,

s25d

3V1
1a122+ 3V2

1a222=
2

l
b2

21 +
l1

l2b11 +
l2

l2b21,

3V1
1a112+ 3V2

1a122=
2

l
b1

21 +
2

l
b2

11,

3V1
2a112+ 3V2

2a122=
2

l
b1

22 +
2

l
b12.

The first four of these, together withs24d, allow a111, a222, a112, anda122 to be expressed in terms
of b12 and its derivatives, provided that, as assumed,V1

1V2
2−V2

1V1
2Þ0. Then, substituting these

expressions ands24d into the last two equations we obtain two equations forb1
12 and b2

12 of the
form

− V1
1b1

12 + V2
1b2

12 =
f1sl,li,Vk

j d
lsV1

1V2
2 − V2

1V1
2dV2

2b12, s26d

− V1
2b1

12 + V2
2b2

12 =
f2sl,li,Vk

j d
lsV1

1V2
2 − V2

1V1
2dV2

2b12, s27d

where the two functionsfmsl ,li ,Vk
j d are polynomial in their arguments. So the derivatives ofb12

are multiples ofb12 providedV1
1V2

2−V2
1V1

2Þ0 andV2
2Þ0. Hence at any regular point, all of theaijk

and bij are determined by one number and so the space of third-order constants is at most
one-dimensional. Q.E.D.

C. Fourth- and sixth-order constants

Theorem 4: The space of fourth-order constants for a 2D superintegrable potential with two
parameters is at most six-dimensional.

Proof: The general constant of fourth order has the form
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L = o
i,j ,k,l=1,2

aijklpipjpkpl + o
i,j ,k=1,2

bij ,kakpipj + o
i,j=1,2

c,i jaia j . s28d

The vanishing of the coefficients ofpi in hH ,Lj allow all of the derivative of thec,i j to be
expressed in terms of thebij ,k,

c1
,11= lV1

1b11,1+ lV2
1b12,1,

c2
,11= lV1

1b12,1+ lV2
1b22,1,

c1
,12= lV1

1b11,2+ lV2
1b12,2+ lV1

2b11,1+ lV2
2b12,1,

s29d
c2

,12= lV1
1b12,2+ lV2

1b12,2+ lV1
2b11,1+ lV2

2b12,1,

c1
,22= lV1

2b11,2+ lV2
2b12,2,

c2
,22= lV1

2b12,2+ lV1
2b22,2.

The integrability conditions of these equations, that is, equations of the formc12
,i j =c21

,i j , along with
terms fromhH ,Lj that are cubic in the momenta, provide eleven equations for the twelve deriva-
tives of the bij ,k. If we define b=sb1

11,1,b2
11,1,b1

11,2,b2
11,2,b1

12,1,b1
12,2,b2

12,2,b1
22,1,b2

22,1,b1
22,2,b2

22,2d,
i.e., all of the derivatives of theb’s excludingb2

12,1, then when these equations are written in matrix
form as Ab =B, the coefficient matrixA has determinant that is a constant multiple of
l−5V1

1sV1
1V2

2−V2
1V1

2d. Hence all of the derivative of theb’s exceptb2
12,1 can be expressed in terms of

the bij ,k and theaijkl provided thatV1
1Þ0 andV1

1V2
2−V2

1V1
2Þ0. For the remaining derivative, we

defined1=b2
12,1.

Now, the integrability conditions for thebij ,k and the equations obtained from the terms of
hH ,Lj that are of fifth order in the momenta give twelve equations for the ten derivatives ofaijkl ,m

and the two derivativesd1
1 and d2

1. The coefficient matrix of these terms in the equations has
determinant that is a constant multiple ofsV1

1V2
2−V2

1V1
2d3slV1

1d−2, hence these equations can be
solved providedV1

1V2
2−V2

1V1
2Þ0 andV1

1Þ0.
So, the 5aijkl , 6 bij ,k, 3 c,i j andd1 form an involutive system. Each of these symbols can be

specified arbitrarily at a point. The threec,i j give rise to three zeroth-order constants, the sixbij ,k

give rise to six quadratic constantssthree multiplied bya1 and three multiplied bya2d, and so
there are at most5+1=6 genuinely fourth-order constants. Q.E.D.

For the general sixth-order constant

L = o
i,j ,k,l,m,n=1,2

aijklmnpipjpkplpmpn + o
i,j ,k,l,m=1,2

bijkl ,mampipjpkpl + o
i,j ,k,l=1,2

cij ,klakalpipj

+ o
i,j ,k=1,2

d,i jkaia jak s30d

the argument proceeds similarly.
Theorem 5: The space of sixth-order constants for a 2D superintegrable potential with two

parameters is at most ten-dimensional.
We will show that the space is exactly ten-dimensional.

IV. NONDEGENERATE SUPERINTEGRABLE SYSTEMS IN TWO DIMENSIONS

Now we take up our main topic: a nondegenerate superintegrable system on a two-
dimensional manifold. In earlier work we have classified the possible superintegrable systems on
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2D complex flat space, the two-sphere, and on Darboux spaces.44,45,34–36. The theory we present
here applies to all 2D spaces and adds greater understanding of the structure of these systems. The
Hamiltonian system is

H =
p1

2 + p2
2

lsx,yd
+ Vsx,yd s31d

in local orthogonal coordinates. We say that the system issecond-order superintegrablewith
nondegenerate potentialif it admits three functionally independent second-order symmetries and
the potential is three-parametersin addition to the usual additive parameterd. That is, at each point
where the potential is defined and analyticsa regular pointd, we can prescribe the value ofV1, V2

andV11 for some unique choice of parameters. Using the two Bertrand–Darboux equations satis-
fied by the potentialscoming from the two symmetries other than the Hamiltoniand we can solve
for V22−V11 andV12 in terms of the first derivatives ofV.

Thus a nondegenerate potentialVsx,yd obeys

V22 = V11 + A22V1 + B22V2,

s32d
V12 = A12V1 + B12V2.

Here,V1,V2,V11 can be prescribed arbitrarily at a fixed regular point.
A seemingly weaker requirement for a superintegrable system is that, as usual, it admits three

functionally independent constants of the motion, but only for a two-parameter family of poten-
tials Vsx,yd=aVs1dsx,yd+bVs2dsx,yd, where the gradients ofVs1d,Vs2d are linearly independent.

Lemma 1: “Two implies three.” If the system (31) admits three functionally independent
constants of the motion and a two-parameter family of potentials, then it admits a three-parameter
family (32).

Proof: The system admits a symmetryoaij pipj +W if and only if the Bertrand–Darboux
equation is satisfied. This is] jWi =]iWj or

sV22 − V11da12 + V12sa11 − a22d = F sla12d1 − sla11d2

l
GV1 + F sla22d1 − sla12d2

l
GV2.

We can always find a symmetry such thata11,a12,a22 take on any prescribed values at a regular
point x0. Thus we can solve the three Bertrand–Darboux equations for the potential to obtain the
system

V22 = V11 + A22V1 + B22V2,

V12 = A12V1 + B12V2,

0 = A3V1 + B3V2.

Case 1. A3;B3;0. Then the equations ares32d and the system admits a three-parameter
family of potentials.

Case 2. A3ò0. ThenV1=D4V2 so we findV11=D5V2, V22=D6V2, V12=D7V2. ThusV depends
on only one parameter. Impossible!

Case 3. B3ò0. ThenV2=E4V1 so we findV11=E5V1, V22=E6V1, V12=E7V1. ThusV depends
on only one parameter. Impossible! Q.E.D.
fNote added in proof. There is a fourth case to consider. It could be thatV satisfiess32d but that
the integrability conditions are not satisfied indentically, and this yields a further conditionV11

=A11V1+B11V2. The lemma still holds but the proof for this case requires the Stäckel transform
and will be given later in this series.g

To obtain the integrability conditions for Eq.s32d we introduce the dependent variables
Ws1d=V1, Ws2d=V2, Ws3d=V11, the vector
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w = 1Ws1d

Ws2d

Ws3d 2 , s33d

and the matrices

A s1d = 1 0 0 1

A12 B12 0

A13 B13 B12 − A222 , s34d

A s2d = 1A12 B12 0

A22 B22 1

A23 B23 A122 , s35d

where

A13 = A2
12 − A1

22 + B12A22 + A12A12 − B22A12,

B13 = B2
12 − B1

22 + A12B12, s36d

A23 = A1
12 + B12A12, B23 = B1

12 + B12B12. s37d

Then the integrability conditions for the system

]xj
w = A s jdw, j = 1,2, s38d

must hold. These conditions are

Ai
s jd − Aj

sid = AsidAs jd − As jdAsid ; fAsid,As jdg. s39d

If and only if these conditions hold, the system has a solutionV depending on three parameters.
From the conditions that

L = o
k,j=1

2

akjsx,ydpkpj + Wsx,yd, akj = ajk,

be a symmetry of the Hamiltonian and relationss32d we can solve for all of the first partial
derivatives]islajkd to obtain
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]1sla11d = −
l2

l
sla12d, ]2sla22d = −

l1

l
sla12d,

3]2sla12d = sla11 − la22dS− B12 −
l1

l
D + sla12dS− B22 +

l2

l
D ,

3]1sla22d = sla11 − la22dS2B12 −
l1

l
D + sla12dS2B22 +

l2

l
D , s40d

3]1sla12d = sla11 − la22dSA12 +
l2

l
D + sla12dSA22 +

l1

l
D ,

3]2sla11d = sla11 − la22dS− 2A12 +
l2

l
D + sla12dS− 2A22 +

l1

l
D .

This system closes, so the space of solutions is at most three dimensional. However, by the
assumption of superintegrability there are at least three functionally independent symmetries.
Hence the space of second-order symmetries is exactly three dimensional. A symmetry is uniquely
determined by the 232 symmetric matrixsAijsx0dd of its values at a regular pointx0, and any such
matrix corresponds to a symmetry.

To determine the integrability conditions for systems40d we define the vector-valued function

hsx,y,zd = 1a11

a12

a222
and directly compute the 333 matrix functionsAs jd to get the first-order system

]xj
h = As jdh, j = 1,2. s41d

The integrability conditions for this system are

A1
s2d − A2

s1d = As1dAs2d − As2dAs1d ; fAs1d,As2dg. s42d

Now we investigate the space of third-order constants of the motion:

K = o
k,j ,i=1

2

akjisx1,x2dpkpjpi + b,sx1,x2dp,, s43d

which must satisfyhH ,Kj=0. Hereakji is symmetric in the indicesk,j ,i.
The conditions are

2
]aiii

]xi
= − 3S ] ln l

]xi

aiii +
] ln l

]xj

ajiiD, i Þ j ,

3
]ajii

]xi
+

]aiii

]xj
= 3S−

] ln l

]xi

aii j −
] ln l

]xj

aij jD, i Þ j ,

2S ]a122

]x1
+

]a112

]x2
D = −

] ln l

]x1

a122−
] ln l

]x1

a111−
] ln l

]x2

a222−
] ln l

]x2

a112, s44d
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]b1

]x2
+

]b2

]x1
= 3o

s=1

2

las21]V

]xs
,

]bj

]xj
=

3

2o
s=1

2

asjj ]V

]xs
−

1

2o
s=1

2
] ln l

]xs
bs, j = 1,2, s45d

and

o
s=1

2

bs]V

]xs
= 0. s46d

The general solution for the terms third order in thepj is a sum of third-order monomials in thepj

andJ3=x1p2−x2p1. The akji is just a third-order Killing tensor. We require the potentialV to be
superintegrable and nondegenerate, and that the highest order terms, theakji in the constant of the
motion, be independent of the three parameters inV. The b, must depend on these parameters
linearly. We set

b,sx1,x2d = o
j=1

2

f,,jsx1,x2d
]V

]xj
sx1,x2d.

sWe are excluding the purely first order symmetries.d Substituting this expression intos46d we see
that

f,,j + f j ,, = 0, 1ø ,, j ø 2.

Further

b1
1 = f1

1,2V2 + f1,2V12, b2
1 = f2

1,2V2 + f1,2V22,

b1
2 = f1

2,1V1 + f2,1V11, b2
2 = f2

2,1V1 + f2,1V12,

where the subscriptj denotes the partial derivative with respect toxj. Substituting these results and
expressionss32d into the defining equationss45d and equating coefficients ofV1, V2, V11, respec-
tively, we obtain the independent conditions:

la111= 1
3 f1,2s2A12 − sln ld2d,

la222= 1
3 f1,2s− 2B12 + sln ld1d,

s47d
la112= 1

9 f1,2s2A22 + 2B12 + sln ld1d,

la122= 1
9 f1,2s− 2A12 + 2B22 − sln ld2d,

f1
1,2= 1

3 f1,2sA22 − 2B12 − sln ld1d,

s48d
f2
1,2= 1

3 f1,2s− 2A12 − B22 + sln ld2d,

Note thats47d yields expressions for allaijk in terms off1,2 and theAij ,Bij , functions. Similarly
s48d yields expressions forfk

1,2 in terms of f1,2 and theAk,,Bk, functions. Thus we have an
involutive system forf1,2, possibly subject to additional conditions froms45d. Thus any third-order
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constant of the motion defined byf1,2sx,yd is uniquely determined by its valuef1,2sx0,y0d at some
regular pointsx0,y0d. This means that the space of third-order constants of the motion is at most
one-dimensional.

There are two cases to consider.
Case 1:2A12=B22=sln ld2, 2B12=−A22=sln ld1. Then it follows froms47d that all aijk ;0.

The integrability conditions requiresln ld11+sln ld22=0, which is the condition for flat space,
Thus by an appropriate orthogonal change of coordinates we can assume thatl;1. In these new
coordinates we see thatAij =Bij ;0 for all i,j . The general solution is

f1,2= c1,

wherec1, is a constant. This is thehomogeneous isotropic oscillator:

Vsx,yd = ax + by + gsx2 + y2d. s49d

Note that for this very special case a nonzero Poisson bracket of two second-order constants of the
motion must be first order.

Case 2:The conditions for Case 1 do not hold for allAij ,Bij . Now s47d yield expressions for
all aijk in terms of f12 and theAij ,Bij functions and not allaijk vanish. Similarlys48d yields
expressions for allf i

1,2 in terms of f1,2 and theAk,,Bk, functions. We will show that the space of
symmetries is exactly one dimensional.

Theorem 6: Let K be a third-order constant of the motion for a superintegrable system with
nondegenerate potential V:

K = o
k,j ,i=1

2

akjisx,ydpkpjpi + o
,=1

2

b,sx,ydp,.

Then

b,sx,yd = o
j=1

2

f,,jsx,yd
]V

]xj
sx,yd s50d

with

f,,j + f j ,, = 0, 1ø ,, j ø 2,

and the aijk, b, are uniquely determined by the number f1,2sx0,y0d at some regular pointsx0,y0d of
V.

Let

L1 = o as1d
kj pkpj + Ws1d, L2 = o as2d

kj pkpj + Ws2d

be second-order constants of the the motion for a superintegrable system with nondegenerate
potential and letAsidsx,yd=hasid

kj sx,ydj, i =1,2 be 232 matrix functions. Then the Poisson bracket
of these symmetries is given by

hL1,L2j = o
k,j ,i=1

2

akjisx,ydpkpjpi + b,sx,ydp, s51d

where

fk,, = 2lo
j

sas2d
kj as1d

j, − as1d
kj as2d

j, d. s52d

Thus hL1,L2j is uniquely determined by the skew-symmetric matrix
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fAs2d,As1dg ; As2dAs1d − As1dAs2d, s53d

hence by the constant matrixfAs2dsx0,y0d ,As1dsx0,y0dg evaluated at a regular point.
Corollary 1: Let V be a superintegrable nondegenerate potential. The space of third-order

constants of the motion is one-dimensional and is spanned by Poisson brackets of the second-
order constants of the motion.

Corollary 2: Let V be a superintegrable nondegenerate potential and L1,L2 be second-order
constants of the motion with matricesAs1d,As2d, respectively. Then

hL1,L2j ; 0 ⇔ fAs1d,As2dg ; 0 ⇔ fAs1dsx0d,As2dsx0dg = 0

at a regular pointx0.

A. A standard form for 2D superintegrable systems

For superintegrable nondegenerate potentials there is a standard structure allowing the iden-
tification of the space of second-order constants of the motion with the space of 232 symmetric
matrices, as well as identification of the space of third-order constants of the motion with the space
of 232 skew-symmetric matrices. Indeed, ifx0 is a regular point then there is a 1−1 linear
correspondence between second-order operatorsL and their associated symmetric matricesAsx0d.
Let hL1,L2j8=hL2,L1j be the reversed Poisson bracket. Then the map

hL1,L2j8 ⇔ fAs1dsx0d,As2dsx0dg

is an algebraic isomorphism. Here,L1,L2 are in involution if and only if matricesAs1dsx0d, As2d
3sx0d commute. IfhL1,L2jÞ0 then it is a third-order symmetry and can be uniquely associated
with the skew-symmetric matrixfAs1dsx0d ,As2dsx0dg. Since commutators of second-order con-
stants of the motion span the space of third-order constants, we can identify these 1−1 with 2
32 skew-symmetric matrices. LetEi j be the 232 matrix with a 1 in row i, column j and 0 for
every other matrix element. Then the symmetric matrices

Asi j d = 1
2sEi j + E jid = As ji d, i, j = 1,2 s54d

form a basis for the three-dimensional space of symmetric matrices. Moreover,

fAsi j d,Ask,dg = 1
2sd jkBsi,d + d j,Bsikd + dikBs j,d + di,Bs jkdd s55d

where

Bsi j d = 1
2sEi j − E jid = − Bs ji d, i, j = 1,2.

HereBsii d=0 andBs12d forms a basis for the space of skew-symmetric matrices. Thuss55d gives the
commutation relations for the second-order symmetries. IfV is the isotropic oscillator then there
is no truly third-order symmetry. For any other nondegenerate potential, the space of symmetries
is exactly one dimensional.

To gain a deeper understanding of this structure, it is useful to reformulate the problem of
determining the second-order symmetries ofs31d. We set

Wsxd = f1V1 + f2V2 + f11V11

and substitute this result intoWi =lo j=1
2 aijVj. Additionally we must impose the Killing tensor

conditions

ai
ii = − sln ld1a

1i − sln ld2a
2i, 2ai

ij + aj
ii = − sln ld1a

1j − sln ld2a
2j, i Þ j .

From the expressions forWi we obtain the equations for theaij :
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la11 = f1
1 + f2A12 + f11A13,

la12 = f2
1 + f1A12 + f2A22, s56d

la22 = f2
2 + f1B12 + f2B22

and the condition on the first derivatives of thef i:

f2
1 − f1

2 = − f1A12 + f2sA22 − B12d − f11B13. s57d

Note the expressions forf1
11 and f2

11 in terms of f1, f2, f11:

f1
11 + f1 + f11sB12 − A22d = 0, f2

11 + f2 + f11A12 = 0.

Differentiating s57d with respect to each ofx1 and x2 and substitutings56d into the Killing
equations we see that we can express each of the second derivatives off1,f2 in terms of lower
order derivatives off1,f2,f11. Thus the system is in involution at the second derivative level, but
not at the first derivative level because we have only one condition for the six derivatives
f1
1, f2

1, f1
2, f2

2. We can uniquely determine a symmetry at a regular point by choosing the six param-
eterssf1, f2, f11, f1

1, f2
1, f2

2d. The values off1,f2,f11 at the regular point are analogous to the three
parameters that we can add to the potentials in the three parameter family. For our standard basis,
we fix sf1, f2, f11dx0

=s0,0,0d. Then froms56d and s57d we have

S f1
1 f2

1

f1
2 f2

2D = lSa11 a12

a21 a22D .

Thus we can define a standard set of basis symmetriesSs jkd=oi,has jkd
ih sxdpiph+Ws jkdsxd correspond-

ing to a regular pointx0 by

S f1
1 f2

1

f1
2 f2

2D
x0

= lsx0dSa11 a12

a21 a22D
x0

= lsx0dAs jkd, Ws jkdsx0d = 0.

The condition onWs jkd is actually three conditions sinceWs jkd depends on three parameters.

B. Multiseparability of 2D systems

From the general theory of variable separation for Hamilton–Jacobi equations19,20 we know
that a second-order symmetryL defines a separable system for

H =
px

2 + py
2

lsx,yd
+ Vsx,yd = E

if and only if

1. The symmetriesH, L form a linearly independent set as quadratic forms.
2. The two quadratic forms have a common eigenbasis of differential forms.

This last requirement means that, expressed in Cartesian coordinates, the matrixAsxd can be
diagonalized by conjugacy transforms in a neighborhood of a regular point.

Corollary 3: Let V be a superintegrable nondegenerate potential and L be a second-order
constant of the motion with matrix functionAsxd. If at some regular pointx0 the matrixAsx0d has
two distinct eigenvalues, then H,L characterize an orthogonal separable coordinate system.

Note: Since a generic 232 symmetric matrix has distinct roots, it follows that any superin-
tegrable nondegenerate potential is multiseparable.
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C. The quadratic algebra

Next we investigate the space of fourth-order constants of the motion for 2D systems in some
detail. We already know that the dimension of this space is at most 6. Here a constant of the
motion

F = o
,,k,j ,i=1

2

a,kjisx,y,zdp,pkpjpi + o
m,q=1

2

bmqsx,y,zdpmpq + Wsx,y,zd, s58d

must satisfyhH ,Fj=0. Againa,kji, bmq are symmetric in all indices.
The conditions are

]aiiii

]xi
= − 2o

s=1

2

asiii ] ln l

]xs
, s59d

4
]ajiii

]xi
+

]aiiii

]xj
= − 6o

s=1

2

asiij ] ln l

]xs
, i Þ j , s60d

3
]ajjii

]xi
+ 2

]aiii j

]xj
= − o

s=1

2

asiii ] ln l

]xs
− 3o

s=1

2

asij j ] ln l

]xs
, i Þ j ,

2
]bij

]xi
+

]bii

]xj
= 6lo

s=1

3

asjii ]V

]xs
− o

s=1

2

bsj] ln l

]xs
, i Þ j ,

]bii

]xi
= 2lo

s=1

3

asiii ]V

]xs
− o

s=1

2

bsj] ln l

]xs
, s61d

and

lo
s=1

3

bsi ]V

]xs
=

]W

]xi
. s62d

Note that thea,kji is a fourth-order Killing tensor. We require the potentialV to be superintegrable
and nondegenerate and that the highest order terms, thea,kji in the constant of the motion, be
independent of the three parameters inV. The bmq must depend linearly andW quadratically on
these parameters.

We set

bjk = o
a=1

3

f jk,aWsad, f jk,a = fkj,a,

whereWsad is defined by

1Ws1d

Ws2d

Ws3d 2 = 1 V1

V2

V11
2 .

Then conditionss61d become
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]

]xh

f jk,a +
]

]xk

fhj,a +
]

]xj

fkh,a − 2laahjk = − o
g=1

3

sf jk,gAga
shd + fhj,gAga

skd + fkh,gAga
s jd d

− o
s=1

2

sfsk,adhk + fsj,adkh + fsh,ad jkd
]

]xs

ln l, s63d

where 1ø j ,k,hø2 and we seta3hjk;0. From the integrability conditionss] /]xj
ds]W/]xid

=s] /]xi
ds]W/]xjd, i Þ j for Eq. s62d we obtain the conditions

]xj
fbk,a + ]xj

fak,b − ]xk
fb j ,a − ]xk

fa j ,b = o
s=1

2

sAbs
skdfsj,a + Aas

skdfsj,b − Abs
s jdfsk,a − Aas

s jdfsk,bd

+ o
g=1

3

sfb j ,gAga
skd + fa j ,gAgb

skd − fbk,gAga
s jd − fak,gAgb

s jd d

− sfbk,a + fak,bd
]

]xj

ln l + sfb j ,a + fa j ,bd
]

]xk

ln l, s64d

where j Þk, 1øa , bø3 and we setf3j ,a;0.
There are eight independent equationss63d with aÞ3 and we use five of these to define the

five componentsaihjk as linear combinations ofs] /]xh
df jk,a and f jk,a. We can then eliminate the

aihjk from the remaining three equations to obtain three conditions relatings] /]xh
df jk,a and f jk,a.

There are six terms of the forms] /]xh
df jk,3. Equations64d with a=b=3 is satisfied identically.

There are two equationss64d with b=3, 1øaø2 and four equationss63d with a=3. Thus all six
terms of the forms] /]xh

df jk,3 can be expressed as linear combinations off jk,a. There are a total of
twelve distinct terms of the forms] /]xh

df jk,m, 1øh, j ,k,mø2. We have seen that there are three
conditions on these terms remaining froms63d; there are an additional three such conditions from
s64d with a ,bÞ3. Thus there is a shortfall of six conditions on the first derivativess] /]xh

df jk,m.
There are a total of eighteen distinct terms of the forms]2/]xh

]x,
df jk,m with 1øh, j ,k,, ,m

ø2. Differentiating with respect tox1,x2 the three first-order conditions ofs63d, from which the
aihjk have been eliminated, we obtain six independent conditions on these second derivatives.
Differentiating each of our expressions for theaihjk and substituting into Eq.s59d we find six
additional conditions on the second derivatives. Also, we can differentiate the three equations from
s62d with a ,bÞ3 to obtain six additional conditions on the second derivatives. This allows us to
express each second-order derivative as a linear combination of lower order derivatives, Thus the
system is in involution.

We conclude that any fourth-order symmetry is uniquely determined by the valuesf jk,asx0d
and a subset of six of the valuess] /]xh

df jk,msx0d at a regular pointx0. Note that by adding an
appropriate linear combination of purely second-order symmetries to the fourth-order symmetry
we can achievef jk,asx0d=0 for all j ,k,a, so the maximum possible dimension of the space of
purely fourth-order symmetries is six. However any second-order polynomial in the second-order
symmetries is a fourth-order symmetry, and the subspace of polynomial symmetries is at least five
and at most six. We show that it is exactly six.

Theorem 7: The six distinct monomials

sSs11dd2, sSs22dd2, sSs12dd2, Ss11dSs22d, Ss11dSs12d, Ss12dSs22d,

form a basis for the space of fourth order symmetries.
Proof: Since the three symmetriesSs11d, Ss22d, Ss12d are functionally independent, the six

monomials listed above are linearly independent. Hence they form a basis. Q.E.D.
We can use this result to explicitly expand a general fourth-order symmetry
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F = o
,,k,j ,i=1

2

a,kjisx,y,zdp,pkpjpi + o
m,q=1

2

bmqsx,y,zdpmpq + Wsx,y,zd

in terms of the standard basis. Without loss of generality we can assume thats0,0d=0 is a regular
point. ThenF is uniquely determined by the dataa,kjis0d, ]ma,kjis0d, bmqs0d, Ws0d. We can
uniquely match the dataa,kjis0d by taking a linear combination of the basis symmetries

sSs11dd2, sSs22dd2, sSs12dd2, Ss11dSs12d, Ss12dSs22d.

This leaves the symmetrySs11dSs22d−sSs12dd2, whose leading order terms vanish at the regular
point. The expansion coefficient for this term is obtained uniquely from the derivative data
]ma,kjis0d. Now we have matched all of the fourth order terms inF with an expansion of the form
F=oji jk,Ssi j dSsk,d. The differenceF−F is a second-order symmetry. It is uniquely determined by
the databmqs0d,Ws0d, which has not changed sinceWsi j ds0d=0 for all terms in the standard basis,
Thus F−F=obmqs0dSsmqd+Ws0d and we have expanded the original symmetry in terms of
second-order polynomials in the standard basis.

Similarly we see that the maximal dimension of ten sixth-order symmetries is achieved by
monomials in the second order symmetries.

Theorem 8: The ten distinct monomials

sSsii dd3, sSsi j dd3, sSsii dd2Ss j j d, sSsii dd2Ssi j d, sSsi j dd2Ssii d, Ss11dSs12dSs22d,

for i , j =1,2, i Þ j form a basis for the space of sixth-order symmetries.
Proof: Since the three symmetriesSs11d, Ss22d, Ss12d are functionally independent, the ten

monomials listed above are linearly independent. Hence they form a basis. Q.E.D.
These theorems establish the closure of the quadratic algebra for 2D superintegrable poten-

tials: All fourth-order and sixth-order symmetries can be expressed as polynomials in the second-
order symmetries.

Again, we can use these results to explicitly expand a general sixth-order symmetry

G = o
i,j ,k,l,m,n=1,2

aijklmnpipjpkplpmpn + o
i,j ,k,l=1,2

bijklpipjpkpl + o
i,j=1,2

cij pipj + W s65d

in terms of the standard basis. Without loss of generality we can assume thats0,0d=0 is a regular
point. ThenG is uniquely determined by the dataaijklmns0d, ]qa

ijklmns0d, bijkls0d, ]mbijkls0d, Ws0d.
We can uniquely match the dataaijklmns0d by taking a linear combination of the seven symmetries

sSsii dd3, sSsi j dd3, sSsii dd2Ss j j d, sSsii dd2Ssi j d,

for i , j =1,2, i Þ j . This leaves the three symmetries

Ss11dsSs11dSs22d − sSs12dd2d, Ss12dsSs11dSs22d − sSs12dd2d, Ss22dsSs11dSs22d − sSs12dd2d

whose leading order terms vanish at the regular point. The expansion coefficients for these three
terms are obtained uniquely from the derivative data]qa

ijklmn. Now we have matched all of the
sixth order terms inG with an expansion of the formG=oji jklmnSsi j dSskldSsmnd. The differenceG
−G is a fourth-order symmetry. It is uniquely determined by the databijkls0d, Ws0d bmqs0d, Ws0d
fwhich has not changed sinceWsi j ds0d=0 for all terms in the standard basisg, and the data]mb̃ijkls0d
which has changed. Now we can use the argument presented above to expand this fourth-order
symmetry in terms of polynomials in the standard basis.

Example:We indicate, briefly, how the example that we started with,s1d, fits into the present
structure. In the example the potential is
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Vsx,yd =
1

2
1v2sx2 + y2d +

k1
2 −

1

4

x2 +

k2
2 −

1

4

y2 2 ,

where v, k1 and k2 are arbitrary parameters. It is easy to verify that, apart from an additve
constant, this is the general solution of the system

V22 − V11 =
3

x
V1 −

3

y
V2, V12 = 0.

Hence we have a nondegenerate potential with

A22 =
3

x
, B22 = −

3

y
, A12 = B12 = 0.

A natural basis of functionally independent second-order symmetries ishS1,S2,S3j, s8d. To apply
the above results directly, we need to choose a standard basis at a regular point. We choose the
regular pointx0=s1,1d. Then the standard second-order symmetriesSs11d, Ss22d, Ss12d are the
unique symmetries that restrict topx

2, py
2,pxpy, respectively, atx0. Thus

Ss11d = px
2 + S1

4
− k1

2DS 1

x2 − 1D + v2s1 − x2d,

Ss22d = py
2 + S1

4
− k2

2DS 1

y2 − 1D + v2s1 − y2d,

Ss12d =
1

2
spx

2 + py
2 − sxpy − ypxd2d +

1

2
SS1

4
− k1

2D1 − y2

x2 + S1

4
− k2

2DS1 − x2

y2 DD + v2s2 − x2 − y2d.

The bases are related by

S1 = Ss11d + v2 + k1
2 − 1

4, S2 = Ss22d + v2 + k2
2 − 1

4 ,

S3 = Ss11d + Ss22d − 2Ss12d + 1
2 − k1

2 − k2
2.

Using these relations and our theory we can verify the quadratic algebra structure fors8d.

V. FINE STRUCTURE FOR 2D SUPERINTEGRABLE SYSTEMS: A ONE-PARAMETER
POTENTIAL

Here we consider a superintegrable system that admits three functionally independent con-
stants of the motion, but only for a one-parameter family of potentialsVsx,yd=aVs0dsx,yd, where
the gradient ofVs0d is nonzero. If the one-parameter family of potentials cannot be extended to a
two-parameter family, then by the proof of Lemma 1 the system must admit a four-dimensional
family of symmetriesoaskd

i j pipj +Wskd, k=1, . . . ,4. The Bertrand–Darboux equations for the poten-
tial are equivalent to a single first-order equation that, without loss of generality, we can write as

V1 + DV2 = 0. s66d

We change variables to a new orthogonal coordinate systemhu,vj so that s66d transforms to
]uV=0. In these coordinates the Bertrand–Darboux equation for a symmetry becomes

− Vvvla12 = fsla12dv − sla22dugVv s67d

where
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− la12Asvd = sla12dv − sla22du

for all symmetriesaij . Thus the equation for the potentialVsvd becomesVvv=AsvdVv.
The equations for a second-order symmetry are now

sla11du = − lva
12,

sla22du = 2
3Asvdla12 + 1

3lva
12 + 1

3lusa22 − a11d,

sla22dv = − lua
12, s68d

sla12dv = − 1
3Asvdla12 + 1

3lva
12 + 1

3lusa22 − a11d,

2sla12du + sla11dv = lua
12 + lvsa11 − a22d.

From the integrability condition]usla22dv=]vsla22du and s68d we can derive an equation of
the form luav

22=¯ where the right-hand side does not depend on the derivatives of theaij . If
luÞ0 then we have an involutory systemau

ij =¯, av
i j =¯ at the first derivative level. Hence the

space of symmetries would be at most three-dimensional. This is a contradiction, so we must have
lu=0. This implies that the system admits the first-order symmetryL=pu as well as a second-order
symmetrypu

2.
Introducing these simplifications intos68d and settingav

11=s we obtain the involutive system

au
11 = −

l8

l
a12,

au
22 =

2

3
Asvda12 +

1

3

l8

l
a12,

av
22 = −

l8

l
a22,

av
12 = − S1

3
Asvd +

2

3

l8

l
Da12, s69d

au
12 = −

1

2
Sl8

l
a22 + sD ,

su = S− Sl8

l
D8

+
1

3

l8

l
S2

l8

l
+ AsvdDDa12,

sv =
1

3
S2

l8

l
+ AsvdDS−

l8

l
a22 − sD + SSl8

l
D2

− Sl8

l
D8Da22,

wherel=lsvd. This system can depend on at most four constantsa11, a12, a22, s at a regular point.
Since the system is at least four-dimensional, we see that it isexactlyfour-dimensional and that the
integrability conditions must be satisfied.sThus the system corresponds to a Darboux
space.41,35,36d The only nontrivial integrability condition is]uav

22=]vau
22 or
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2A8 −
2

3
A2 +

1

3
A

l8

l
+

1

3
Sl8

l
D2

+ Sl8

l
D8

= 0. s70d

In terms of the potential functionV, this condition can be expressed as

l8

l
+ 2

V9

V8
= al−1/3sV8d1/3

for a a constant.
Theorem 9: Every system with a one-parameter potential and three functionally independent

second-order symmetries is the restriction of some three-parameter potential to a single param-
eter, such that the restricted potential is annihilated by some first-order symmetry of the Darboux
space.

Proof: From the discussion above, we can pass to coordinatesu,v such that the system takes
the form

H =
pu

2 + pv
2

lsvd
+ gVsvd.

The Poisson brackethpu,Sj for any second-order symmetryS=oaij pipj +W of our system is also
a second-order symmetryoau

ij pipj +Wu. Thus the linear operation of differentiating with respect to
u leaves the four-dimensional space of second-order symmetries invariant. We can get more
detailed information about this space by choosing a basis in which]u is in Jordan canonical form.
A two-dimensional subspace of the symmetries is spanned byH and pu

2, which are in the null
space of]u. Thus the possible Jordan forms for]u are

sid:1
j1 0 0 0

0 j2 0 0

0 0 0 0

0 0 0 0
2, sii d:1

j 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0
2 ,

siii d:1
0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0
2, sivd:1

j 1 0 0

0 j 0 0

0 0 0 0

0 0 0 0
2 ,

svd:1
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0
2 ,

wherej andj1 are nonzero.
We will use these canonical forms to show that there always exists a three-dimensional

subspace of the four parameter subspace of second-order symmetries and a nondegenerate poten-

tial Ṽ, containing,V as a special case, such that the subspace is spanned byH̃=spu
2+pv

2d /l+Ṽ,

pu
2+W̃1, and oaij pipj +W̃2 where oaij pipj +Wk is one of the symmetries of the one-parameter

system. First note from the Bertrand–Darboux equations and Eq.s69d that the defining equations
for the nondegenerate potential associated to these three symmetries must be
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Ṽvv = Ṽuu + 3sln a12duṼu + AsvdṼv,

s71d

Ṽuv = −
l8

l
Ṽu.

Heresln a12duv=0 andoaij pipj +Wk is the third symmetry. The integrability conditions for Eq.s71d
reduce to the single requirement

ASl8

l
D8

+ A8Sl8

l
D + 2Sl8

l
DSl8

l
D8

− Sl8

l
D9

= 0. s72d

Consider the case where]u acting on the space of second-order symmetries has an eigenvector
S with eigenvaluejÞ0. Then this symmetry must have the form

a11 = b11svdeju, a12 = b12svdeju, a22 = b22svdeju.

Substituting these expressions into Eq.s69d we obtain the conditions

2j2 − Sl8

l
D8

+ Sl8

l
D2

+ A
l8

l
= 0, sln a12du = j s73d

which, together withs70d, implies s72d. Further, the integrability conditions for the three symme-

tries H̃, pu
2+W̃, S to correspond to a nondegenerate potential are

18j2 = 12Sl8

l
D8

− 8Sl8

l
D2

− 8A
l8

l
+ 6A8 − 2A2, 2j2 = Sl8

l
D8

− Sl8

l
D2

− A
l8

l
, s74d

and these are also implied bys73d and s70d.
For the remaining systems there is a second-order symmetry whose quadratic terms areS2

=oaij pipj such that the quadratic terms inS1=]uS2 also correspond to a symmetry, and]uS1;0.
Clearly, there are constantsa,b with uau2+ ubu2.0 and

S1 = a
pu

2 + pv
2

l
+ bpu

2, S2 = uS1 + T2svd,

whereT2 is a quadratic form inpu,pv that depends only onv. From conditionss69d it is straight-
forward to compute that

a12 = b12svd, a22 =
au + b

l
, a11 = −

l8

l
b12svdu + c12svd,

and, finally, that

− Sl8

l
D8

+ Sl8

l
D2

+ A
l8

l
= 0, sln a12du = j. s75d

The integrability conditions for the three symmetriesH̃, pu
2+W̃, S2+W̃2 to correspond to a non-

degenerate potential are

0 = 12Sl8

l
D8

− 8Sl8

l
D2

− 8A
l8

l
+ 6A8 − 2A2, 0 =Sl8

l
D8

− Sl8

l
D2

− A
l8

l
, s76d

and these, as well ass72d are implied bys73d and s70d. Q.E.D.
Remark:It is easy to show using conditionss69d that the Jordan formsivd does not, in fact,

occur.
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VI. CONCLUSIONS AND FURTHER WORK

In this paper we have uncovered the structure of 2D classical superintegrable systems with
nondegenerate potential and verified the existence of a quadratic algebra of symmetries for all
such systems. We have shown how to compute the quadratic algebra relations in general. We have
shown that superintegrable systems with degenerate one and two parameter potentialssin addition
to the trivial added constantd can be considered as restrictions of nondegenerate systems. We have
verified that, with one exception, all nondegenerate superintegrable 2D systems are multisepa-
rable. In the next paper in this series we will develop the properties of the Stäckel transform
between superintegrable systems and verify that all nondegenerate 2D systems are Stäckel trans-
forms of 2D constant curvature systemssalready classified44,45d. This will lead to a simple classi-
fication of all 2D nondegenerate superintegrable systems. Koenigs41 in a remarkable paper has
already classified all 2Dszero potentiald spaces that admit three second-order Killing tensors. Our
classification, considerably simpler than Koenigs’, will show that all of his spaces also admit
nondegenerate potentials. The next papers will extend these results to the casen=3, a prelude to
a treatment for generaln. The casen=2 is very special and new techniques have to be developed
for highern. However the basic conclusions and structure theorems can be generalized. We will
also show how to solve the quantization problem and carry over the structure theory to the
operator case.

1S. Wojciechowski, “Superintegrability of the Calogero-Moser System,” Phys. Lett.95A, 279–281s1983d.
2N. W. Evans, “Superintegrability in classical mechanics,” Phys. Rev. A41, 5666–5676s1990d; “Group theory of the
Smorodinsky–Winternitz system,” J. Math. Phys.32, 3369s1991d.

3N. W. Evans, “Super-integrability of the Winternitz system,” Phys. Lett. A147, 483–486s1990d.
4J. Friš, V. Mandrosov, Ya. A. Smorodinsky, M. Uhlír, and P. Winternitz, “On higher symmetries in quantum mechanics,”
Phys. Lett. 16, 354–356s1965d.

5J. Friš, Ya. A. Smorodinskii, M. Uhlír, and P. Winternitz, “Symmetry groups in classical and quantum mechanics,” Sov.
J. Nucl. Phys.4, 444–450s1967d.

6A. A. Makarov, Ya. A. Smorodinsky, Kh. Valiev, and P. Winternitz, “A systematic search for nonrelativistic systems with
dynamical symmetries,” Nuovo Cimento A52, 1061–1084s1967d.

7F. Calogero, “Solution of a three-body problem in one dimension,” J. Math. Phys.10, 2191–2196s1969d.
8A. Cisneros and H. V. McIntosh, “Symmetry of the two-dimensional hydrogen atom,” J. Math. Phys.10, 277–286
s1969d.

9E. K. Sklyanin, “Separation of variables in the Gaudin model,” J. Sov. Math.47, 2473–2488s1989d.
10L. D. Faddeev and L. A. Takhtajan,Hamiltonian Methods in the Theory of SolitonssSpringer, Berlin, 1987d.
11A. G. Ushveridze,Quasi-Exactly Solvable Models in Quantum MechanicssIoP, Bristol, 1993d.
12J. Harnad, “Loop groups, R-matrices and separation of variables,” inIntegrable Systems: From Classical to Quantum,

edited by J. Harnad, G. Sabidussi, and P. Winternitz,fCRM Proceedings and Lecture Notes 26, 21–54,s2000dg.
13M. Karlovini and K. Rosquist, “A unified treatment of cubic invariants at fixed and arbitrary energy,” J. Math. Phys.41,

370–384s2000d.
14L. P. Eisenhart, “Enumeration of potentials for which one-particle Schrödinger equations are separable,” Phys. Rev.74,

87–89s1948d.
15L. P. Eisenhart,Riemannian Geometry, 2nd printingsPrinceton University Press, Princeton, 1949d.
16W. Miller, Jr., Symmetry and Separation of VariablessAddison-Wesley, Providence, RI, 1977d.
17E. G. Kalnins and W. Miller, Jr., “Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations,”

SIAM J. Math. Anal. 11, 1011–1026s1980d.
18W. Miller, “The technique of variable separation for partial differential equations,”Proceedings of School and Workshop

on Nonlinear Phenomena, Oaxtepec, Mexico, 29 November–17 December, 1982, Lecture Notes in Physics Vol. 189
sSpringer, New York, 1983d pp. 184–208.

19E. G. Kalnins,Separation of Variables for Riemannian Spaces of Constant Curvature, Pitman, Monographs and Surveys
in Pure and Applied Mathematics, Vol. 28sLongman, Essex, 1986d.

20W. Miller, Jr., “Mechanisms for variable separation in partial differential equations and their relationship to group
theory,” in Symmetries and Non-linear PhenomenasWorld Scientific, Singapore, 1988d, pp. 188–221.

21A. Erdélyi, W. Magnus, F. Oberhëttinger, and F. G. Tricomi,Higher Transcendental FunctionssMcGraw-Hill, New York,
1953d, Vol. II.

22E. T. Whittaker and G. N. Watson,A Course of Modern Analysis, 4th ed.sCambridge University Press, Cambridge,
1958d.

23F. M. Arscott,Periodic Differential EquationssMacmillan, New York, 1964d.
24Ya. A. Granovsky, A. S. Zhedanov, and I. M. Lutzenko, “Quadratic algebra as a ‘hidden’ symmetry of the Hartmann

potential,” J. Phys. A24, 3887–3894s1991d.
25L. G. Mardoyan, G. S. Pogosyan, A. N. Sissakian, and V. M. Ter-Antonyan, “Elliptic basis for a circular oscillator,”

Nuovo Cimento Soc. Ital. Fis., B88, 43–56s1985d; “Two-dimensional hydrogen atom. I. Elliptic bases,” Theor. Math.

053509-27 Second-order superintegrable systems. 1 J. Math. Phys. 46, 053509 ~2005!

                                                                                                                                    



Phys. 61, 1021–1039s1984d; “Hidden symmetry, separation of variables and interbasis expansions in the two-
dimensional hydrogen atom,” J. Phys. A18, 455–466s1985d.

26E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Superintegrability and associated polynomial solutions. Euclidean
space and the sphere in two dimensions,” J. Math. Phys.37, 6439–6467s1996d.

27D. Bonatos, C. Daskaloyannis, and K. Kokkotas, “Deformed oscillator algebras for two-dimensional quantum superin-
tegrable systems,” Phys. Rev. A50, 3700–3709s1994d.

28C. Daskaloyannis, “Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic
associate algebras of quantum superintegrable systems,” J. Math. Phys.42, 1100–1119s2001d.

29S. P. Smith, “A class of algebras similar to the enveloping algebra ofsls2d,” Trans. Am. Math. Soc.322, 285–314s1990d.
30E. G. Kalnins, W. Miller, and M. V. Tratnik, “Families of orthogonal and biorthogonal polynomials on then-sphere,”

SIAM J. Math. Anal. 22, 272–294s1991d.
31P. Letourneau and L. Vinet, “Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians,”

Ann. Phys. 243, 144–168s1995d.
32P. Tempesta, A. V. Turbiner, and P. Winternitz, “Exact solvability of superintegrable systems,” J. Math. Phys.42,

4248–4257s2001d.
33C. Grosche, G. S. Pogosyan, and A. N. Sissakian, “Path integral discussion for Smorodinsky-Winternitz potentials. I.

Two- and three dimensional Euclidean space,” Fortschr. Phys.43, 453–521s1995d.
34E. G. Kalnins, J. M. Kress, W. Miller, Jr., and G. S. Pogosyan, “Completeness of superintegrability in two-dimensional

constant curvature spaces,” J. Phys. A34, 4705–4720s2001d.
35E. G. Kalnins, J. M. Kress, and P. Winternitz, “Superintegrability in a two-dimensional space of non-constant curvature,”

J. Math. Phys.43, 970–983s2002d.
36E. G. Kalnins, J. M. Kress, W. Miller, Jr., and P. Winternitz, “Superintegrable systems in Darboux spaces,” J. Math. Phys.

44, 5811–5848s2003d.
37M. F. Rañada, “Superintegrablen=2 systems, quadratic constants of motion, and potentials of Drach,” J. Math. Phys.38,

4165–4178s1997d.
38E. G. Kalnins, W. Miller, Jr., G. C. Williams, and G. S. Pogosyan, “On superintegrable symmetry-breaking potentials in

n-dimensional Euclidean space,” J. Phys. A35, 4655–4720s2002d.
39C. P. Boyer, E. G. Kalnins, and W. Miller, “Stäckel-equivalent integrable Hamiltonian systems,” SIAM J. Math. Anal.

17, 778–797s1986d.
40J. Hietarinta, B. Grammaticos, B. Dorizzi, and A. Ramani, “Coupling-constant metamorphosis and duality between

integrable Hamiltonian systems,” Phys. Rev. Lett.53, 1707–1710s1984d.
41G. Koenigs, “Sur les géodésiques a intégrales quadratiques.” A note appearing inLecons sur la théorie générale des

surfaces, edited by G. DarbouxsChelsea, New York, 1972d, Vol. 4, pp. 368–404.
42G. H. Katzin and J. Levine, “Quadratic first integrals of the geodesics in spaces of constant curvature,” Tensor16,

97–104s1965d.
43I. Hauser and R. J. Malhiot, “Structural equations for Killing tensors of order two, II,” J. Math. Phys.16, 1625–1629

s1975d.
44E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Completeness of multiseparable superintegrability inE2,C,” J. Phys.

A 33, 4105–4120s2000d.
45E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, “Completeness of multiseparable superintegrability on the complex

2-sphere,” J. Phys. A33, 6791–6806s2000d.

053509-28 Kalnins, Kress, and Miller J. Math. Phys. 46, 053509 ~2005!

                                                                                                                                    



Second order superintegrable systems in conformally flat
spaces. II. The classical two-dimensional Stäckel
transform

E. G. Kalnins
Department of Mathematics and Statistics, University of Waikato, Hamilton,
New Zealand

J. M. Kressa!

School of Mathematics, The University of New South Wales, Sydney NSW 2052, Australia

W. Miller, Jr.
School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455

sReceived 30 November 2004; accepted 22 February 2005; published online 21 April 2005d

This paper is one of a series that lays the groundwork for a structure and classifi-
cation theory of second order superintegrable systems, both classical and quantum,
in conformally flat spaces. Here we study the Stäckel transformsor coupling con-
stant metamorphosisd as an invertible mapping between classical superintegrable
systems on different spaces. Through the use of this tool we derive and classify for
the first time all two-dimensionals2Dd superintegrable systems. The underlying
spaces are exactly those derived by Koenigs in his remarkable paper giving all 2D
manifoldsswith zero potentiald that admit at least three second order symmetries.
Our derivation is very simple and quite distinct. We also show that every superin-
tegrable system is the Stäckel transform of a superintegrable system on a constant
curvature space. ©2005 American Institute of Physics.fDOI: 10.1063/1.1894985g

I. INTRODUCTION

This is a sequel to our first paper.1 Our purpose is to lay the groundwork for a structure and
classification theory of second order superintegrable systems, both classical and quantum, in
complex conformally flat spaces. Real spaces are considered as restrictions of these to the various
real forms. In Ref. 1 we have given examples, described the background as well as the interest and
importance of these systems in mathematical physics and given many relevant references. Ob-
served features of the systems are multiseparability, closure of the quadratic algebra of second
order symmetries at order 6, use of representation theory of the quadratic algebra to derive spectral
properties of the quantum Schrödinger operator, and a close relationship with exactly solvable and
quasiexactly solvable problems.2–9 Our approach is, rather than focus on particular spaces and
systems, to use a general theoretical method based on integrability conditions to derive structure
common to all systems.

In this paper we study the Stäckel transform, or coupling constant metamorphosis,10,11 for
two-dimensionals2Dd classical superintegrable systems. Recall that for a classical 2D system on a
Riemannian manifold we can always choose local coordinatesx,y, not unique, such that the
Hamiltonian takes the form

H =
p1

2 + p2
2

lsx,yd
+ Vsx,yd.
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This system issecond order superintegrablewith nondegeneratepotentialV=Vsx,y,a ,b ,gd if it
admits three functionally independent quadratic constants of the motion

Sk = o
i j

askd
i j pipj + Wskdsx,y,a,b,gd.

sWe also refer to these constants of the motion as symmetries because; each leads to a conserved
quantity for the associated physical system; their Poisson brackets with the Hamiltonian vanish, so
that they are generalized symmetries in the Lie sense; and their quantizations lead to second order
partial differential operators that commute with the Schrödinger operator, so are again generalized
symmetries in the Lie sense.d The potentialV is nondegenerate in the sense that at any regular
point x0,y0 where the potential is defined and analytic and theSk are functionally independent, we
can prescribe the values ofV1sx0,y0d ,V2sx0,y0d ,V11sx0,y0d arbitrarily by choosing appropriate
values for the parametersa ,b ,g. Here,V1=]V/]x, V2=]V/]y, etc. fAnother way to look at this
is to say thatV1sx0,y0d ,V2sx0,y0d ,V11sx0,y0d are the parameters.g This is in addition to the trivial
constant that we can always add to a potential. This requirement implies that the potential satisfies
a system of coupled PDEs of the form

V22 = V11 + A22sx,ydV1 + B22sx,ydV2, V12 = A12sx,ydV1 + B12sx,ydV2.

The Stäckel transform is a conformal transformation of a superintegrable system on one space
to a superintegrable system on another space. We prove that all nondegenerate 2D superintegrable
systems are Stäckel transforms of constant curvature systems and give a complete and simple
classification of all 2D superintegrable systems. The following papers will extend these results to
three-dimensionals3Dd systems and the quantum analogs of 2D and 3D classical systems.

II. THE STÄCKEL TRANSFORM FOR TWO-DIMENSIONAL SYSTEMS

The Stäckel transform10 or coupling constant metamorphosis11 plays a fundamental role in
relating superintegrable systems on different manifolds. The basic idea behind this transform has
long been observed in various important classical and quantum mechanical systems. One of the
most familiar is the Hamilton–Jacobi equation for the classical Coulomb problemH;p1

2+p2
2

+p3
2+Z/ r =E wherer is the radial coordinate andZ is the charge. Division of the equation by the

potential termr−1 converts it into the pseudo-Coulomb problemH8; rsp1
2+p2

3+p3
2d−Er=−Z,

much easier to solve from a group theoretic point of view, where the space has changed and the
energy and charge have switched roles. In Ref. 11 it was pointed out that ifH+ZVsxd=E is an
integrable Hamiltonian system for some additive potentialV and all values of the parametersZ,E,
then the systemH /V−E/V=Z is also integrable, where the parametersE and Z have changed
roles. This general transformation was called coupling constant metamorphosis. Independently in
Ref. 10 it was observed that if the Hamilton–Jacobi equationsSgij p1pj +Vsqd=E, Sgij p1pj

+Usqd=E each admit a complete integral via separation of variables in the orthogonal coordinates
q, whereU is nonzero, then the systemU−1Sgij p1pj +U−1Vsqd=E8 also admits a complete integral
via separation in the same coordinates, but on a different manifold. The second order constants of
the motion that describe the separation and the corresponding Stäckel matrices are mapped into
one another by the transformation. We called this the Stäckel transform since it preserved the
Stäckel form of the separable system. All of these observations have straightforward extensions to
n dimensions and to the corresponding quantum mechanical operators.

Suppose we have a superintegrable system

H =
p1

2 + p2
2

lsx,yd
+ Vsx,yd s1d

in local orthogonal coordinates, with nondegenerate potentialVsx,yd,
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V22 = V11 + A22V1 + B22V2,

s2d
V12 = A12V1 + B12V2

and supposeUsx,yd is a particular solution of equationss2d, nonzero in an open set. Then the
transformed system

H̃ =
p1

2 + p2
2

l̃sx,yd
+ Ṽsx,yd s3d

with nondegenerate potentialṼsx,yd,

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2,

s4d
Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2

is also superintegrable, where

l̃ = lU, Ṽ =
V

U
,

Ã12 = A12 −
U2

U
, Ã22 = A22 + 2

U1

U
, B̃12 = B12 −

U1

U
, B̃22 = B22 − 2

U2

U
.

Let S=Saij pipj +W=S0+W be a second order symmetry ofH andSU=Saij pipj +WU=S0+WU be
the special case of this that is in involution withp1

2+p2
2/l+U. Then

S̃= S0 −
WU

U
H +

1

U
H

is the corresponding symmetry ofH̃. Since one can always add a constant to a nondegenerate

potential, it follows that 1/U defines an inverse Stäckel transform ofH̃ to H. See Refs. 10 and 12
for many examples of this transform. We say that two superintegrable systems are Stäckel equiva-
lent if one can be obtained from the other by a Stäckel transform.

A. A Stäckel transform approach to the classification of nondegenerate
superintegrable systems

Through the use the Stäckel transform we can develop a method for classifying 2D nonde-
generate superintegrable systems that is differential equations based.sIn particular it is distinct
from the Koenigs analytic function approach to finding spaces that admit at least three second
order Killing tensors.d Let

ds2 = lsx,ydsdx2 + dy2d

be a metric for a nondegenerate superintegrable system. We recall from Sec. 2 of Ref. 1 that
necessary and sufficient conditions foraij to be a second order Killing tensor forl are that

Da12 = 0, Dsa11 − a22d = 0, D = ]x
2 + ]y

2,

where

sa22 − a11d2 = 2a1
12, sa22 − a11d1 = − 2a2

12,

and theaij satisfy the integrability condition

053510-3 Second order superintegrable systems. II J. Math. Phys. 46, 053510 ~2005!

                                                                                                                                    



sl22 − l11da12 − l12sa22 − a11d = 3l1a1
12 − 3l2a2

12 + sa11
12 − a22

12dl. s5d

Sincel is nondegenerate superintegrable we have three independent symmetries of the formS
=Saij pipj +W and a nondegenerate potentialV satisfying the Bertrand–Darboux equations

sV22 − V11da12 + V12sa11 − a22d = F sla12d1 − sla11d2

l
GV1 + F sla22d1 − sla12d2

l
GV2 s6d

for all symmetries with quadratic termsaij .
For a superintegrable system we can always use the independent symmetries to solve equa-

tions s6d for V22−V11,V12 in the form s2d. If these two equations are the only conditions on the
potential functionV then it will depend on four parameters, the maximum number possible. Thus
we can prescribe the derivativesV1,V2,V11 and the value ofV at a fixed point. This is the case of
a nondegenerate potential. If, however, the equationss6d put additional conditions on the potential
then there will be a restriction on the first derivatives and the potential will depend on fewer
parameters than four. In this case the potential is degenerate. In Ref. 1 we showed that superin-
tegrable systems with three and two parameter potentials were, essentially, just restrictions of the
four parameter nondegenerate potentials. One parameter potentialssi.e., constant potentialsd are
different. They in general are not restrictions of nondegenerate potentials and, indeed, the qua-
dratic algebra structure may not hold. See Ref. 13 for a counterexample.

Returning to our nondegeneracy assumption, the system of equationss6d has a four parameter
family of solutionsV, counting the addition of a scalar toV as a parameter. Also, every Stäckel

transform of this system to a system with metricm must be of the formV̂=m /l whereV=V̂ is
some particular solution of the equationss6d. Thus it is of interest to determine the equations that
characterizem.

To simplify the computations to follow, we recall that we can choose our orthogonal coordi-
natesx,y such that one of our symmetries takes the forma12;0, a22−a11=1. In this system the
symmetry ands5d imply l12=0, and, as we will see,m12=0. A second symmetry is defined by the
Hamiltonian itself,a11=a22=1/l, a12=0, which clearly always satisfies equationss5d ands6d. Due
to nondegeneracy, for the third symmetry we must havea12Þ0 and it is on this third symmetry
that we will focus our attention in the following. Now the fundamental integrability conditions can
be rewritten as

l12 = 0, l22 − l11 = 3l1A1 − 3l2A2 + sA11 + A1
2 − A22 − A2

2dl, s7d

whereA=ln a12 and the subscripts denote differentiation. Similarly, using this result ands6d we
find that the equations characterizingm are

m12 = 0, m22 − m11 = 3m1A1 − 3m2A2 + sA11 + A1
2 − A22 − A2

2dm. s8d

Note that these two equations appear identical. However they have different interpretations. The
fixed metricl satisfiess7d and is a special solution ofs8d. Herem designates a four-parameter
family of solutions, of whichl is a particular special case. It follows thatA satisfies the integra-
bility conditions for this system.

Let us apply]12 to both sides ofs8d. The result, usingm12=0 andDa12=0, is

0 = 3A12sm11 − m22d + s3A112+ 2fA11 + A1
2g2dm1 + s− 3A122+ 2fA11 + A1

2g1dm2 + 2msA11 + A1
2d12.

s9d

There are two possibilities here.

s1d Case I: A12=0. Then every term in the preceding equation vanishes identically. We
conclude thata12 factors asa12=XsxdYsyd, whereDa12=0. Thus there is a constanta
such that
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X9 = a2X, Y9 = − a2Y.

We have solutions

Xsxd = b1e
ax + b2e

−a2x, Ysyd = g1e
iay + g1e

−iay.

Variables separate in the equations form into two ODEs. Thus for every choice ofa12

we can find all solutionsm explicitly.
s2d Case II: A12Þ0. Now the coefficients ofm11,m22 in s9d are nonvanishing. The equation can

be rewritten as

m22 − m11 = m1F3A112+ 2sA11 + A1
2d2

3A12
G + m2F− 3A122+ 2sA11 + A1

2d1

3A12
G + 2msA11 + A1

2d12.

Sincem is a four-parameter solution, the coefficients ofm1,m2, andm can be equated. Thus
we have three new identities, which together withDa12=0 give

sid 9A1A12 = 3A112+ 2sA11 + A1
2d2, sii d 9A2A12 = 3A122+ 2sA22 + A2

2d1,

s10d
siii d 3sA11 + A1

2dA12 = sA11 + A1
2d12, sivd A11 + A1

2 + A22 + A2
2 = 0.

The first two identities implyA12=CeA for some nonzero constantC. This is the Liouville
equation with general solution

a12 = eA =
2X8sxdY8syd

CsXsxd + Ysydd2 ,

whereXsxd andYsyd are functions such thatX8sxdY8sydÞ0. At this point it is convenient to
useX,Y as new coordinates. Thus there are functionsFsXd ,GsYd such that

sX8d2 = FsXd, X9 = 1
2F8sXd, sY8d2 = GsYd, Y9 = 1

2G8sYd.

Substituting these expressions into the identitiessid–sivd we obtain a system of functional
differential equations forF ,G with the general solution

FsXd =
a

24
X4 +

g1

6
X3 +

g2

2
X2 + g3X + g4,

GsYd = −
a

24
Y4 +

g1

6
Y3 −

g2

2
Y2 + g3Y − g4,

wherea ,g j are constants. Note that the equations forx,y in terms ofX,Y take the form of
elliptic integrals,

x =E dX

Î a
24X

4 +
g1

6 X3 +
g2

2 X2 + g3X + g4

,

y =E dY

Î−a
24Y4 +

g1

6 Y3 −
g2

2 Y2 + g3Y − g4

.

Again, variables separate into two ODEs in the equations form. Thus for every choice ofa12

we can find all solutionsm explicitly.

Theorem 1: If ds2=lsdx2+dy2d is the metric of a nondegenerate superintegrable system
sexpressed in coordinatesx,y such thatl12=0d thenl=m is a solution of the system
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m12 = 0, m22 − m11 = 3m1sln a12d1 − 3m2sln a12d2 + Sa11
12 − a22

12

a12 Dm, s11d

where either

sId a12 = XsxdYsyd, X9 = a2X, Y9 = − a2Y,

or

sII d a12 =
2X8sxdY8syd

CsXsxd + Ysydd2 ,

sX8d2 = FsXd, X9 =
1

2
F8sXd, sY8d2 = GsYd, Y9 =

1

2
G8sYd,

where

FsXd =
a

24
X4 +

g1

6
X3 +

g2

2
X2 + g3X + g4,

GsYd = −
a

24
Y4 +

g1

6
Y3 −

g2

2
Y2 + g3Y − g4.

Conversely, every solutionl of one of these systems defines a nondegenerate superintegrable
system. Ifl is a solution then the remaining solutionsm are exactly the nondegenerate superin-
tegrable systems that are Stäckel equivalent tol.

This result provides the basis for a simple classification of all nondegenerate superintegrable
systems. In fact the spaces that arise correspond one-to-one with Koenigs’ tables of 2D spaces that
admit at least three second order symmetries. Indeed, from the fact thatFsXd andGsYd are fourth
order polynomials we can determine which solutions of the functionsXsxd andYsyd yield the lists
drawn up by Koenigs in his two tables.sWe give the details of these tables in Sec. II B.d

To understand more clearly the significance of casessId andsII d in the preceding theorem, we
make use of the symmetry of equationss8d, first exploited by Koenigs. We write the system in the
form

a11
12 + a22

12 = 0, m12 = 0, a12sm11 − m22d + 3m1a1
12 − 3m2a2

12 + sa11
12 − a22

12dm = 0, s12d

Lemma 1: Supposem=lsx,yd, a12=asx,yd satisfy s12d. Then m= ãsx,yd, a12= l̃sx,yd also
satisfy s12d where

ãsx,yd = asx + y,ix − iyd, l̃sx,yd = lsx − iy,y − ixd.

This transformation is invertible.

Proof: It is straightforward to check thatã12=0, l̃11+ l̃22=0. The symmetry of the third
equation under this invertible transform is obvious. Q.E.D.

Theorem 2: Systems12d characterizes a nondegenerate superintegrable system if and only if
the metricã12sx,yd is of constant curvature. Equivalently, the systems12d characterizes a nonde-

generate superintegrable system if and only if the symmetrya12 is the imagea12= l̃ where the
metric l swith l12=0 is of constant curvatured.

Proof: Systems12d characterizes a nondegenerate superintegrable system if and only if the
symmetrya12 satisfies the Liouville equationsln a12d12=Ca12 for some constantC. fIf C=0 we
have casesId, and if CÞ0 we have casesII d.g It is straightforward to check that this means that
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ã11
12 + ã22

12

sã12d2 −
sã12

1d2 + sã2
12d2

sã12d3 = 4iC,

so the scalar curvature of metricã12sdx2+dy2d is constant. Similarly, ifl is of constant curvature

then l̃ satisfies Liouville’s equation. Q.E.D.
Theorem 3: Every nondegenerate superintegrable 2D system is Stäckel equivalent to a non-

degenerate superintegrable system on a constant curvature space.
Proof: Every nondegenerate superintegrable 2D system with metriclsdx2+dy2d corresponds

to a functiona0
12 and a system of equationss12d swith a12=a0

12d wherem=l is a solution and the
integrabilty conditions are satisfied identically, so that the space of solutionsm is four dimen-
sional. From Theorem 1 we see thata0

12 must satisfy the Liouville equation, so by Theorem 2 the
metric j= ã0

12 is of constant curvature. Recall that the space of second order symmetries of a
constant curvature space is six dimensional. Consider the possible symmetriesa12 such that stan-
dard equations

a11
12 + a22

12 = 0, a12sj11 − j22d + 3j1a1
12 − 3j2a2

12 + sa11
12 − a22

12dj = 0

are satisfied. One constant curvature space symmetry witha12=0 determines the separable coor-
dinateshx,yj and one symmetry is the Hamiltoniansp1

2+p2
2d /l. A basis for the remaining sym-

metries consists of four linearly independent symmetries witha12 harmonic and nonzero. It is clear
that the Koenig duality mappingm̃ for m a solution of systems12d maps the four-dimensional
space of solutionsm sexceptm=0d one-to-one onto the constant curvature space symmetries with
a12 harmonic and nonzero. For constant curvature spaces we know that there are symmetriesa12

that define nondegenerate superintegrable systemssthe systems on flat space and the 2-sphere.d Let
a12=b12 be one such symmetry. By Theorem 1b12 satisfies the Liouville equation. Since the
Koenigs duality map is onto, there must exist a solutionm=n of systems12d such thatñ=b12. By
Theorem 2n is the metric of a constant curvature space. This means that the system with metric
l is Stäckel equivalent to the constant curvature system with metricn. Q.E.D.

B. Examples and relationship with the Koenigs tables

In a tour de force, Koenigs14 has classified all 2D manifolds that admit exactly three second
order Killing tensors and listed them in two tables, Table VI and Table VII.

In each case Koenigs gave the terms that give rise to the leading coefficients of the additional
quadratic constant of the motion not implicitly defined by the Liouville form of the metric. We
have given these metrics in a symmetric orthogonal form.

We can now reproduce the tables via the duality between separable coordinate systems on
spaces of constant curvature and the form of the Killing tensors admitted in these particular
coordinate systems.

For example, takinga=1 in casesId, a solution fora12 is

Xsxd = sinx, Ysyd = sinhy ⇒ a12 = sinx sinhy.

Now m12=0⇒m= fsxd+gsyd and so Eq.s11d for m becomes

g9 − f9 = 3f8 cotx − 3g8 cothx − 2sf + gd

which separates into a pair of ordinary differential equations,

g9 + 3 cothyg8 + 2g = K, f9 + cotxf8 − 2f = K,

for some separation constantK. These equations have solutions

fsxd =
c1 cosx + c2

sin2 x
−

1

2
K, gsyd =

c3 coshy + c4

sinh2 y
+

1

2
K

and so
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m =
c1 cosx + c2

sin2 x
+

c3 coshy + c4

sin2 y
. s13d

In the preceding, we have used coordinates in which the metric was a multiple of dx2+dy2,
while Koenigs used coordinates in which the metric was a multiple of dx dy. To bridge this gap,
we make the change of coordinatesx→a, y→ ib to obtain swith a trivial redefinition of the
parameterscid the first metric in Table VI.

The remaining metrics in Table VI are obtained by similar calculations using the following
particular solutions to the casesId equations in Theorem 1:

s1d X = sinx, Y = sinhy,

s2d X = sinhx, Y = eiy ,

s3d X = ex, Y = eiy ,

s4d X = x, Y = y,

s5d X = x, Y = 1,

s6d X = Y = 1,

The metrics in Table VII are obtained from particular solutions to the casesII d equations in
Theorem 1 in the same way as described for Table VI.

s1d BothFsXdandGsYdare general fourth order polynomials,

s2d H4FsXd = 1 −X2

4GsYd = Y2 − 1
J ⇒ HX = − 2 cos 2x,

Y = cosh 2y,
J

s3d H FsXd = X2sX − 1d2

GsYd = − Y2sY + 1d2J ⇒ 5 X =
1

1 + ex ,

Y =
1

− 1 +eiy ,6
s4d H FsXd = X3sX − 1d

GsYd = − Y3sY + 1d J ⇒5 X =
1

1 − 1
4x2

,

Y = −
1

1 + 1
4y2

,6
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s5d HFsXd = 1

GsYd = 1
J ⇒ HX = x,

Y = y,
J

There are clearly other choices possible forX andY but they revert to various versions of the
cases given in Koenigs’ tables. Since a single space may have more than one nondegenerate
potential, our classification may include a space more than once.

Next, we examine each of his spaces and show in detail what was proved in the last section:
that every superintegrable system on the space can be obtained as the Stäckel transform of a
constant curvature space with respect to Koenigs Table VI,

s1d ds2 = Fc1 cosa + c2

sin2 a
+

c3 cosb + c4

sin2 b
Gsda2 − db2d

s2d ds2 = Fc1 cosha + c2

sinh2 a
+

c3e
b + c4

e2b Gsda2 − db2d

s3d ds2 = Fc1e
a + c2

e2a +
c3e

b + c4

e2b Gsda2 − db2d

s4d ds2 = Fc1sa2 − b2d +
c2

a2 +
c3

b2 + c4Gsda2 − db2d

s5d ds2 = Fc1sa2 − b2d +
c2

a2 + c3b + c4Gsda2 − db2d

s6d ds2 = fc1sa2 − b2d + c2a + c3b + c4gsda2 − db2d

and Koenigs Table VII,

s1d ds2 = Fc1S 1

sn2sa,kd
−

1

sn2sb,kdD + c2S 1

cn2sa,kd
−

1

cn2sb,kdD + c3S 1

dn2sa,kd

−
1

dn2sb,kdD + c4ssn2sa,kd − sn2sb,kddGsda2 − db2d

s2d ds2 = Fc1S 1

sin2 a
−

1

sin2 b
D + c2S 1

cos2 a
−

1

cos2 b
D + c3scos 2a − cos 2bd

+ c4scos 4a − cos 4bdGsda2 − db2d

s3d ds2 = fc1ssin 4a − sin 4bd + c2scos 4a − cos 4bd + c3ssin 2a − sin 2bd

+ c4scos 2a − cos 2bdgsda2 − db2d

s4d ds2 = Fc1S 1

a2 −
1

b2D + c2sa2 − b2d + c3sa4 − b4d + c4sa6 − b6dGsda2 − db2d

s5d ds2 = fc1sa − bd + c2sa2 − b2d + c3sa3 − b3d + c4sa4 − b4dgsda2 − db2d

to a nondegenerate superintegrable potential. In Refs. 3–16 the authors have computed all the
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nondegeneratesand degenerated superintegrable potentials for complex 2D flat space, potentials
fE1g–fE20g, and nonzero constant curvature space, potentialsfS1g–fS9g, and we identify the
relevant potentials on the list that is given in Ref. 16.

1. Table VI

s1d In this case the infinitesimal distance has the form

ds2 = Sc1 cosa + c2

sin2 a
+

c3 cosb + c4

sin2 b
Dsda2 − db2d.

If we rewrite the Hamilton–Jacobi equation on the sphere,

H = p1
2 + p2

2 + p3
2 + ĉ1 +

iĉ2s3

Îs1
2 + s2

2
+

ĉ3s2

s1
2Îs1

2 + s2
2

+
ĉ4

s1
2 = E,

using a variant of spherical coordinates

s1 =
sinb

sina
, s2 =

cosb

sina
, s3 = − i

cosa

sina

we obtain the form

pb
2 − pa

2 −
E + ĉ1

sin2 a
−

ĉ2 cosa

sin2 a
−

ĉ3 cosb

sin2 b
−

ĉ4

sin2 b
= 0.

Thus the potential from which this metric has been derived via Stäckel transform isfS7g.
s2d In this case the metric is

ds2 = Sc1 cosha + c2

sinh2 a
+ c3e

−b + c4e
−2bDsda2 − db2d

Choosing Euclidean space coordinates of the form

x = exps− 1
2udcoshs 1

2vd, y = i exps− 1
2udsinhs 1

2vd
and substituting into the Hamilton–Jacobi equation

H = px
2 + py

2 + ĉ1sx2 + y2d +
ĉ2

x2 +
ĉ3

y2 + ĉ4 = E

we obtain the form

pu
2 − pv

2 +
1

4
ĉ1e

−2u + C2
coshv
sinh2 v

+ C3
1

sinh2 v
+

1

4
sĉ4 − Ede−u,

whereC2= 1
2sĉ2+ ĉ3d andC3= 1

2sĉ3− ĉ2d. From this it follows that the potential from which this
metric is derived via Stäckel transform isfE1g.

s3d In this case the infinitesimal distance has the form

ds2 = sc1e
−a + c2e

−2a + c3e
−b + c4e

−2bdsda2 − db2d.

In the variables

x = e−a coshb, y = − ie−a sinhb

this metric assumes the form

ds2 = S c1

Îx2 + y2
+ c2 +

c3

Îx2 + y2sx + iyd
+

c4

sx + iyd2Dsdx2 − dy2d.
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We recognize this as arising via Stäckel transform fromfE17g. Indeed note that if we write
out the equationH=E in suitable coordinates we obtain

p1
2 + p2

2 +
ĉ1

Îx2 + y2
+

ĉ2

sx + iyd2 +
ĉ3

Îx2 + y2sx + iyd
− E = 0

from which we can clearly see the identification.
s4d In this case the infinitesimal distance is

ds2 = Sc1sa2 − b2d +
c2

a2 +
c3

b2 + c4Dsda2 − db2d,

and by settinga=x, b= iy this metric can be clearly related to a Stäckel transform from the
potentialfE1g.

s5d Here

ds2 = Sc1sa2 − b2d +
c2

a2 + c3b + c4Dsda2 − db2d.

It is clear that this metric is derived by Stäckel transform from the potential

V = ĉ1sx2 + y2d +
ĉ2

x2 + ĉ3y + ĉ4,

wherea=x, b= iy. As we do not distinguish the use of Cartesian coordinates in any way it is
always possible to rotate and translate them. If we do this then for the various choices ofĉi
we have the following potentials from our complete list.

sid ĉ1Þ0: We can translate with respect toy and makeĉ3=0 to obtain a special case of
fE1g. If further ĉ2=0 then we obtainfE3g.

sii d ĉ1=0: We have a special case offE2g if ĉ2,ĉ3Þ0. If ĉ3=0 we obtainfE6g, and if ĉ2
=0 we obtainfE5g.

s6d Here

ds2 = sc1sa2 − b2d + c2a + c3b + c4dsda2 − db2d

and this is easily recognized to be in the form corresponding to the potential

V = ĉ1sx2 + y2d + ĉ2x + ĉ3y + ĉ4.

This can easily be interpreted. Ifĉ1Þ0 then we can takeĉ2 andĉ3=0 by suitable translations
and relate our system to a Stäckel transform offE3g. If ĉ1=0 thenV can take one of the two
forms

sid V=asx+ iyd+b corresponding tofE4g or
sii d V=ax corresponding tofE6g.

2. Table VII

s1d Here the metric has the form

ds2 = c1sPsad − Psbdd + c2sPsa + v1d − Psb + v1dd + c3sPsa + v2d − Psb + v2dd

+ c4sPsa + v3d − Psb + v3ddsda2 − db2d,

wherePsad is the Weierstrass function.17 If we make the choicee1=1/k2, e2=1, ande3=0 in
the standard formulas for these functions we can relate them directly to the Jacobi elliptic
functions,17 via the formulas
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Pskzd =
1

k2 sn2sz,kd
, Pskz+ v1d =

1

k2 −
k82 sn2sz,kd
k2 cn2sz,kd

,

Pskz+ v2d = sn2sz,kd, Pskz+ v3d = 1 −k82sn2sz,kd
cn2sz,kd

.

With these formulas the relationship to a constant curvature superintegrable system becomes
clear. Indeed if we write the Hamilton–Jacobi equation

H = p1
2 + p2

2 + p3
2 +

ĉ1

s1
2 +

ĉ2

s2
2 +

ĉ3

s3
2 + ĉ4 = E

using conical coordinates in Jacobi elliptic function form,17 viz.

s1 = k snsa,kdsnsb,kd, s2 = i
k8

k
cnsa,kdcnsb,kd,

s3 =
k8

k
dnsa,kddnsb,kd, s1

2 + s2
2 + s3

2 = 1,

then it becomes

pa
2 + pb

2 +
ĉ1

k2S 1

sn2sa,kd
−

1

sn2sb,kdD +
ĉ2k82

k2 S 1

cn2sa,kd
−

1

cn2sb,kdD
+

ĉ3k82

k2 S 1

dn2sa,kd
−

1

dn2sb,kdD + sĉ4 − Edssn2sa,kd − sn2sb,kdd = 0

which has the form we expect. This system is therefore related tofS9g on the sphere, via a
Stäckel transform.

s2d In this case

ds2 = Sc1S 1

sin2 a
−

1

sin2 b
D + c2S 1

cos2 a
−

1

cos2 b
D + c3scos 2a − cos 2bd

+ c4scos 4a − cos 4bdDsda2 − db2d.

If we write out the Hamilton–Jacobi equation

H = p1
2 + p2

2 + ĉ1sx2 + y2d +
ĉ2

x2 +
ĉ3

y2 + ĉ4 = E

using coordinatesx=cosa cosb, y= i sina sinb we obtain

pa
2 − pb

2 + ĉ1scos4 b − cos4 bd + ĉ2S 1

cos2 a
−

1

cos2 b
D + ĉ3S 1

sin2 a
−

1

sin2 b
D

+ sĉ4 − Edscos2 b − cos2 ad = 0.

The potential for this case arises fromfE1g via the choice of elliptic coordinates. This is clear
from the usual multiplication formulas

cos 2x = 2 cos2 x − 1, cos 4x = 8 cos4 x − 8 cos2 x + 1.

s3d Here
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ds2 = sc1ssin 4a − sin 4bd + c2scos 4a − cos 4bd + c3ssin 2a − sin 2bd

+ c4scos 2a − cos 2bddsda2 − db2d.

If we write the Hamilton–Jacobi equation

H = p1
2 + p2

2 + ĉ1 +
ĉ2sx − iyd

Îsx − iyd2 + 4
+

ĉ3sx + iyd
ssx − iyd2 + 4dsx − iy + Îsx − iyd2 + 4d2

+ ĉ4sx2 + y2d = E,

using the coordinatesx=2i cosu cosv, y=2 sinu sinv we obtain

pu
2 − pv

2 + 2sĉ1 − 2Edscos 2u − cos 2vd + ĉ2ssin 2u − sin 2vd

+ 1
4ĉ3scos 4u + i sin 4u − cos 4v − i sin 4vd + 2ĉ4scos 4v − cos 4ud = 0

which gives rise to a metric of this type. This corresponds to systemfE7g.
s4d Here

ds2 = Sc1S 1

a2 −
1

b2D + c2sa2 − b2d + c3sa4 − b4d + c4sa6 − b6dDsda2 − db2d.

In the coordinatesx= 1
2sj2+h2d, y= ijh the Hamilton–Jacobi equation

p1
2 + p2

2 + ĉ1s4x2 + y2d + ĉ2x +
ĉ3

y2 + ĉ4 = E

is equivalent to

pj
2 − ph

2 + sĉ4 − Edsj2 − h2d + ĉ1sj6 − h6d +
1

2
ĉ2sj4 − h4d + ĉ3S 1

j2 −
1

h2D = 0,

from which we see that this system is obtained fromfE2g.
s5d The infinitesimal distance has the form

ds2 = sc1sa4 − b4d + c2sa3 − b3d + c3sa2 − b2d + c4sa − bddsda2 − db2d.

Consider the Hamilton–Jacobi equation

H = pzpz̄ + ĉ1 + ĉ2z+ ĉ3Sz̄−
3

8
iz2D −

i

8
ĉ4sz3 + 8izz̄d = E,

wherez=x+ iy, z̄=x− iy. In coordinatesz=4isu+wd, z̄=2isu−wd2 this equation is equivalent
to

pu
2 − pw

2 + 16sĉ1 − Edsu − wd + 64iĉ2su2 − w2d + 128iĉ3su3 − w3d − 256ĉ4su4 − w4d = 0

from which we see that this system is Stäckel equivalent tofE10g with some minor
corrections.

In the last section we gave a simple derivation of all 2D superintegrable systems with non-
degenerate potential. Such systems must admit at least three second order Killing tensors. Koenigs
solved a different and more general problem. He found all spaces that admit at least three second
order Killing tensors. It is a remarkable fact that the lists are the same. Thus from our point of
view the Koenigs derivation is a proof of the following result.

Theorem 4: Every 2D Riemannian space with at least three linearly independent second order
Killing tensors admits a superintegrable system with nondegenerate potential.

Corollary 1: Necessary and sufficient conditions for a superintegrable system with nonde-
generate potential on a 2D Riemannian manifold are that there are local orthogonal coordinates
x,y such that the system takes the formH /Usx,yd where
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H =
px

2 + py
2

lsx,yd
+ Vsx,yd

is a superintegrable system on a constant curvature space with nondegenerate potential

Vsx,yd = aVs1dsx,yd + bVs2dsx,yd + gVs3dsx,yd + d

and

Usx,yd = a0V
s1dsx,yd + b0V

s2dsx,yd + g0V
s3dsx,yd + d0.

Corollary 2: Necessary and sufficient conditions for a 2D Riemannian manifold to admit a
three dimensional space of second order Killing tensors are that there are local orthogonal coor-
dinatesx,y such that the metric takes the form ds2=lsx,ydUsx,ydsdx2+dy2d wherelsx,ydsdx2

+dy2d is a metric on a constant curvature space with nondegenerate potential,

Vsx,yd = aVs1dsx,yd + bVs2dsx,yd + gVs3dsx,yd + d

and

Usx,yd = a0V
s1dsx,yd + b0V

s2dsx,yd + g0V
s3dsx,yd + d0.

III. CONCLUSIONS AND FURTHER WORK

In this paper we have shown that every 2D nondegenerate superintegrable system is Stäckel
equivalentsor equivalent via coupling constant metamorphosisd to a 2D nondegenerate superinte-
grable system on a constant curvature space. We found a simple derivation of all such spaces and
potentials. We found that the list of spaces with nondegenerate potentials coincided with the
Koenigs list of all 2D manifolds with three linearly independent second order Killing tensors.
Thus any 2D space with three second order Killing tensors necessarily admits a nondegenerate
potential.

In a forthcoming paper we will extend these results to 2D quantum systems, where the same
spaces and potentials will occur. We will uncover the structure of the quantum quadratic algebra
generated by the second order symmetry operators and show how to compute it in general.

Extension of our results to 3D systems is more challenging. Here the spaces we consider are
conformally flat, since the Stäckel transform is conformal and the best known examples of super-
integrable systems are in constant curvature spaces. Now for a superintegrable system we must
have five functionally independent symmetries. Although several technical problems related to
dimension must be overcome, we will be able to show that the structure theory for the quadratic
algebras works in analogy to the 2D case. The extension to the quantum case is again more
challenging, but the basic structure results for the quadratic algebra carry over for suitably modi-
fied potentials.
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An eigenfunction expansion method involving hypergeometric functions is used to
solve the partial differential equation governing the transport of radiation in an
x-ray pulsar accretion column containing a radiative shock. The procedure yields
the exact solution for the Green’s function, which describes the scattering of mono-
chromatic radiation injected into the column from a source located near the surface
of the star. Collisions between the injected photons and the infalling electrons cause
the radiation to gain energy as it diffuses through the gas and gradually escapes by
passing through the walls of the column. The presence of the shock enhances the
energization of the radiation and creates a power-law spectrum at high energies,
which is typical for a Fermi process. The analytical solution for the Green’s func-
tion provides important physical insight into the spectral formation process in x-ray
pulsars, and it also has direct relevance for the interpretation of spectral data for
these sources. Additional interesting mathematical aspects of the problem include
the establishment of a closed-form expression for the quadratic normalization inte-
grals of the orthogonal eigenfunctions, and the derivation of a new summation
formula involving products of hypergeometric functions. By taking various limits
of the general expressions, we also develop new linear and bilinear generating
functions for the Jacobi polynomials. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1894965g

I. INTRODUCTION

In this paper, methods of classical analysis are employed to obtain the exact solution for the
Green’s function describing the spectrum of radiation emitted by an x-ray pulsar. Beyond the
direct physical relevance of the Green’s function, the method of solution also yields several
additional results of mathematical interest, including a new summation formula involving products
of two hypergeometric functions, as well as new linear and bilinear generating functions for the
Jacobi polynomials. We also obtain an exact expression for the quadratic normalization integrals
of the orthogonal hypergeometric eigenfunctions. Before proceeding with the main derivation,
some physical background is called for. The radiation produced in bright x-ray pulsars is powered
by the gravitational accretionsinflowd of ionized gas that is channeled onto the poles of a rotating
neutron star by the strong magnetic field. In these sources, the radiation pressure greatly exceeds
the gas pressure, and therefore the pressure of the photons governs the dynamical structure of the
accretion flow. It follows that the gas must pass through a radiation-dominated shock on its way to
the stellar surface, and the kinetic energy of the gas is carried away by the high-energy radiation
that escapes from the column.1 The strong gradient of the radiation pressure decelerates the
material to rest at the surface of the star, and the compression of the infalling gas drives its
temperatures up to a few million Kelvins. The gas therefore radiates x-rays, which appear to
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pulsate due to the star’s spin. However, the observed x-ray spectrum is nonthermal, indicating that
nonequilibrium processes are playing an important role in the formation of the radiation distribu-
tion.

The nonthermal shape of the spectrum is primarily due to the flow compression, which causes
Fermi energization of the photons as they collide with infalling electrons in the column, until the
radiation escapes from the column into space. Our primary goal in this paper is to obtain an exact
solution for the Green’s function describing the upscattering of soft, monoenergetic photons in-
jected by a source located in the base of the accretion column, near the surface of the star. The
Green’s function contains a complete representation of the fundamental physics governing the
propagation of the photons in the physical and energy spaces. Since the transport equation gov-
erning the radiation spectrum is linear, we can compute the solution associated with an arbitrary
source distribution via convolution. Hence the Green’s function provides the most direct means for
exploring the relationship between the physics occurring in the accretion shock and the production
of the observed nonthermal x radiation.

II. FUNDAMENTAL EQUATIONS

We assume that the accretion column is cylindrical, and we definex as the spatial coordinate
measured along the column axis. The gas flows through the column onto the stellar surface with
velocity v. We define the Green’s function,fGsx0,x,e0,ed, as the radiation distribution at location

x and energye resulting from the injection ofṄ0 photons per second with energye0 from a
monochromatic source at locationx0 inside the column. In a steady-state situation,fG satisfies the
transport equation2,3

v
]fG

]x
=

dv
dx

e

3

]fG

]e
+

]

]x
S c

3nesi

]fG

]x
D +

Ṅ0dse − e0ddsx − x0d
pr0

2e0
2 −

fG

tesc
− bv0dsx − x0dfG, s1d

wherene is the electron number density,si is the electron scattering cross section for photons
propagating parallel to thex axis,r0 is the radius of the column,v0 is the flow speed at the source
location, c is the speed of light, andtesc is the mean time photons spend in the column before
escaping through the walls into space. The total radiation number and energy densities associated
with the distribution functionfG are, respectively,

nGsxd ; E
0

`

e2fG de, UGsxd ; E
0

`

e3fG de. s2d

The terms ins1d represent, from left to right, the comovingsconvectived time derivative, first-order
Fermi energizations“bulk comptonization”d of the radiation in the converging flow, spatial diffu-
sion of the photons parallel to the column axis, the monochromatic photon source, escape of
radiation from the column, and the possible absorption of radiation at the source location, respec-
tively. In physical terms, the first-order Fermi energization corresponds to theP dV work done on
the radiation by the compression of the background plasma as it accretes onto the stellar surface.3

The dimensionless constantb expresses the strength of the absorptionsif anyd occurring at the
source location, and the mean escape time is given by

tesc=
r0

2nes'

c
, s3d

where s' is the electron scattering cross section for photons propagating perpendicular to the
column axis. In general,siÞs' due to the influence of the strong magnetic field, which is
directed parallel to the axis of the column. Absorption at the source location is expected if the
photons are produced in a black-body “mound” of dense gas near the base of the accretion
column,1 because a perfect black body acts as both a source and a sink of radiation.4
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The flux of electrons flowing down the column is denoted byJ;nev. In our cylindrical,
steady-state problem,J maintains a constant value. Becker5 demonstrated that in order for the
inflowing matter to come to rest at the stellar surface as required, the parametersr0, J, si, ands'

must satisfy the dynamical constraint

r0
2J2s'si = 3

4c2. s4d

In general, radiation-dominated shocks are continuous velocity transitions, with an overall thick-
ness of a few Thomson scattering lengths, unlike standardsdiscontinuousd gas-mediated shocks.6

The exact solution for the inflow velocityv as a function of the spatial coordinatex is given by5,7

vsxd
vc

=
7

4
F1 −S7

3
D−1+x/xstG , s5d

wherevc is the flow velocity at the sonic point, which is related to the stellar massM* , the stellar
radiusR* , and the gravitational constantG via5

vc =
4

7
S2GM*

R*
D1/2

. s6d

The quantityxst appearing ins5d is the distance between the sonic point and the stellar surface,
which can be evaluated using Eq.s4.16d from Ref. 5 to obtain

xst =
r0

2Î3
Ss'

si
D1/2

lnS7

3
D . s7d

According to s5d, the flow does come to rest at the surface of the star as required, sincevsxstd
=0. Furthermore, the constancy of the electron fluxJ in our cylindrical, steady-state problem
implies that the electron number densityne is a function ofx becausev varies with the height
inside the columnfsee Eq.s5dg.

Further simplification is possible if we work in terms of the new spatial variabley, defined by

ysxd ; S7

3
D−1+x/xst

. s8d

Note that y→0 in the far upstream regionsx→−`d, and y→1 at the surface of the starsx
→xstd. Based ons5d ands8d, we find that the variation of the velocityv as a function of the new
variabley is given by the simple expression

vsyd
vc

=
7

4
s1 − yd. s9d

By combinings3d, s4d, ands9d with the derivative relation

dx

dy
=

r0

2Î3
Ss'

si
D1/2

y−1, s10d

we can transform the transport equations1d for fG from x to y to obtain

ys1 − yd
]2fG

]y2 + S1 − 5y

4
D ]fG

]y
−

e

4

]fG

]e
+ Sy − 1

4y
D fG =

3bv0dsy − y0dfG

7vc
−

3Ṅ0dse − e0ddsy − y0d
7pr0

2e0
2vc

,

s11d

wherey0;ysx0d denotes the value ofy at the source location. According tos9d, the flow velocity
at the source,v0, is related tovc andy0 by
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v0

vc
=

7

4
s1 − y0d. s12d

Note that we can write the Green’s function as eitherfGsx0,x,e0,ed or fGsy0,y,e0,ed since the
parameterssx,x0d and sy,y0d are interchangeable vias8d.

III. SOLUTION FOR THE GREEN’S FUNCTION

The physical model considered here includes Fermi energization, which tends to boost the
energy of the injected photons as they collide with high-energy electrons streaming down through
the accretion column towards the surface of the neutron star. Moreover, since no process that can
lower the photon energy is included in the model, all of the photons injected from a source of
monochromatic radiation with energye=e0 must at later times have energye.e0. It follows that
fG=0 for e,e0. Whene.e0, s11d is separable in energy and space using the functions

flse,yd = e−lgsl,yd, s13d

wherel is the separation constant, and the spatial functiong satisfies the differential equation

ys1 − yd
d2g

dy2 + S1 − 5y

4
Ddg

dy
+ Sly + y − 1

4y
Dg =

3bv0dsy − y0d
7vc

g. s14d

In order to avoid an infinite spatial diffusion flux aty=y0, the functiong must be continuous there,
and consequently we obtain the condition

uDfgsl,ydguy=y0
; lim

«→0
gsl,y0 + «d − gsl,y0 − «d = 0. s15d

We can also derive a jump condition for the derivative dg/dy at the source location by integrating
s14d with respect toy in a small region aroundy=y0. The result obtained is

UDFdg

dy
GU

y=y0

=
3b

4y0
gsl,y0d, s16d

where we have useds12d to substitute forv0.
The homogeneous version ofs14d obtained whenyÞy0 has fundamental solutions given by

w1sl,yd ; yFsa,b;c;yd, s17d

w1
*sl,yd ; y−1/4Fsa − 5/4,b − 5/4;2 −c;yd, s18d

where Fsa,b;c;zd denotes the hypergeometric function,8 and the parametersa, b, and c are
defined by

a ;
9 −Î17 + 16l

8
, b ;

9 +Î17 + 16l

8
, c ;

9

4
, s19d

and thereforea+b=c.

A. Asymptotic analysis

The source photons injected into the flow are unable to diffuse very far upstream due to the
high speed of the inflowing electrons. Most of the photons escape through the walls of the column
within a few scattering lengths of the source, and therefore we conclude that the functiong must
vanishin the upstream limit,y→0. Asymptotic analysis indicates that the functionw1sl ,yd→0 in
the limit y→0 as required, butw1

*sl ,yd diverges and therefore it cannot be utilized in the upstream
regionsyøy0d. Henceg must be given byw1 for yøy0. Conversely, in the downstream limit, the
gas settles onto the surface of the star and thereforeg should approach a constant asy→1. These
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conditions are satisfied ifl is equal to one of the eigenvalues,ln, which are associated with the
spatial eigenfunctions,gnsyd, defined by

gnsyd ; gsln,yd. s20d

In order to obtain a complete understanding of the global behavior of the eigenfunctions, we must
also consider the asymptotic behaviors of the two functionsw1 andw1

* in the downstream region,
which are discussed below.

The hypergeometric functions appearing ins17d and s18d can be evaluated aty=1 using Eq.
s15.1.20d from Abramowitz and Stegun,8 which gives for general values ofa, b, andc,

Fsa,b;c;1d =
GscdGsc − a − bd
Gsc − adGsc − bd

. s21d

However, for the values ofa, b, andc in s17d and s18d, we find thatfsee Eq.s19dg

c − a − b = 0, s22d

and therefore the hypergeometric functionsFsa,b;c;yd and Fsa−5/4,b−5/4;2−c;yd eachdi-
verge in the downstream limity→1. Since the eigenfunctiongn should approach a constant as
y→1 based on physical considerations, we conclude that in the downstream regionsyùy0d, gn

must be represented by a suitable linear combination ofw1 andw1
* that remainsfinite asy→1. In

order to make further progress, we need to employ Eq.s15.3.10d from Abramowitz and Stegun,8

which yields for generala, b, andy,

Fsa,b;a + b;yd =
Gsa + bd
GsadGsbdon=0

`
sadnsbdn

sn!d2 f2Csn + 1d − Csa + nd − Csb + nd − lns1 − ydgs1 − ydn,

s23d

where

Cszd ;
1

Gszd
dGszd

dz
. s24d

Asymptotic analysis of this expression reveals that in the limity→1, the logarithmic divergences
of the two functionsw1 andw1

* can be balanced by creating the new function

w2sl,yd ;
Gsbd

GscdGs1 − bd
w1sl,yd −

Gs1 − ad
Gs2 − cdGsad

w1
*sl,yd, s25d

which remains finite asy→1. Hencew2 represents the fundamental solution forgn in the region
downstream from the source. We can use the asymptotic behaviors ofw1 andw1

* to show that

lim
y→1

w2sl,yd =
pfcotspad + cotspbdg

GsadGs1 − bd
. s26d

Since the solutionsw1 andw2 are applicable in the upstream and downstream regions, respec-
tively, the global expression for the eigenfunctiongn is therefore given by

gnsyd = Hw1sln,yd, y ø y0,

Bnw2sln,yd, y ù y0,
J s27d

where the constantBn is evaluated using the continuity conditionfEq. s15dg, which yields
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Bn =
w1sln,y0d
w2sln,y0d

. s28d

It follows from s26d–s28d that the downstream value ofgn is given by

lim
y→1

gnsyd =
pfcotspad + cotspbdg

GsadGs1 − bd
w1sln,y0d
w2sln,y0d

. s29d

Conversely, in the upstream region,w1→y, and therefore we have the asympototic behavior

lim
y→0

gnsyd
y

= 1. s30d

B. Eigenvalue equation

We can combines16d, s27d, ands28d to show that the eigenvaluesln satisfy the equation

Wsln,y0d −
3bw1sln,y0dw2sln,y0d

4y0
= 0, s31d

where the Wronskian of the two functionsw1 andw2 is defined for general values ofl andy by

Wsl,yd ; w1
dw2

dy
− w2

dw1

dy
. s32d

Further progress can be made by deriving an analytical expression for the Wronskian. We begin by
writing the differential equations14d governing the two functionsw1 and w2 in the self-adjoint
form

d

dy
Fy1/4s1 − yd

dw

dy
G +

l

4y3/4w − Tw = 0, s33d

where

T ;
1 − y

4y7/4 +
3bv0dsy − y0d

7vcy
3/4 . s34d

By applying s33d to the functionw2 and multiplying the result byw1, and then subtracting from
this the same expression withw1 andw2 interchanged, we obtain

w1
d

dy
Fy1/4s1 − yd

dw2

dy
G − w2

d

dy
Fy1/4s1 − yd

dw1

dy
G = 0, s35d

which can be rewritten as

y1/4s1 − yd
dW

dy
+ W

d

dy
fy1/4s1 − ydg = 0, s36d

where we have made use of the result

dW

dy
= w1

d2w2

dy2 − w2
d2w1

dy2 . s37d

Equations36d can be rearranged in the form
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d ln W

dy
= −

d

dy
lnfy1/4s1 − ydg, s38d

which can be integrated to obtain the exact solution

Wsl,yd =
Dsld

y1/4s1 − yd
, s39d

whereDsld is an integration constant that depends onl but not ony. The exact dependence ofD
on l can be derived by analyzing the behaviors of the functionsw1 andw2 in the limit y→0. For
small values ofy, we have the asymptotic expressions8

w1 → y, y → 0,

w2 → −
Gs1 − ad

GsadGs2 − cd
y−1/4, y → 0. s40d

Combinings32d and s40d, we find that asymptotically,

W→ 5

4

Gs1 − ad
GsadGs2 − cd

y−1/4, y → 0. s41d

Comparing this result withs39d, we conclude that

Dsld =
5

4

Gs1 − ad
GsadGs2 − cd

, s42d

and therefore the exact solution for the Wronskian for general values ofl andy is given by

Wsl,yd =
5

4

Gs1 − ad
GsadGs2 − cd

y−1/4

1 − y
. s43d

Substituting forW in s31d using s43d, we can rewrite the eigenvalue equation in the equivalent
form

5

3

Gs1 − ad
GsadGs2 − cd

y0
3/4

1 − y0
= bw1sln,y0dw2sln,y0d, s44d

wherea andb are functions ofln by virtue of s19d, andc=9/4. Theroots of this expression are
the eigenvaluesln, and the associated eigenfunctions are evaluated usings27d. The first eigen-
value,l0, is especially important because it determines the power-law shape of the high-energy
portion of the Green’s functionfsee Eq.s13dg.

In Fig. 1 we plot the first eigenvaluel0 as a function of the dimensionless parametersb and
y0. Note thatl0 is a double-valued function ofy0 for fixed b, which is a consequence of the
imposed velocity profilefEq. s5dg. Physically, this behavior reflects the fact that it is always
possible to achieve a desired amount of compressionsfirst-order Fermi energizationd by placing
the source in a specific location in either the upstream or downstream regions of the flow. We also
observe that if we increase the absorption parameterb while holdingy0 fixed, thenl0 increases
monotonically, and therefore the high-energy spectrum becomes progressively steeper. This be-
havior is expected physically because as the absorption parameter is increased, the injected pho-
tons spend less time on average being energized by collisions with electrons before either escaping
from the column or being absorbed at the source location. The decreased amount of energization
naturally leads to a steepening of the radiation spectrum. Whenb=0, no absorption occurs, and
the indexl0 achieves its minimumslimitingd value of 4. This limit is, however, unphysical since
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it yields a divergent result for the total photon energy densityUG according tos2d. Nonetheless,
the case withb=0 is interesting from a mathematical viewpoint, and for that reason it is further
discussed in Sec. V.

C. Orthogonality of the eigenfunctions

We shall next demonstrate that the eigenfunctionsgnsyd form an orthogonal set, which is an
extremely useful property. This is a standard Sturm–Liouville problem and therefore we follow the
usual procedure. Let us suppose thatgnsyd andgmsyd are two eigenfunctions corresponding to the
distinct eigenvaluesln andlm, respectively. The functionsgn andgm each satisfy the differential
equations14d, and therefore we can utilize the self-adoint form to writefcf. Eq. s33dg

gmH d

dy
Fy1/4s1 − yd

dgn

dy
G +

ln

4y3/4gn − TgnJ = 0 s45d

and

gnH d

dy
Fy1/4s1 − yd

dgm

dy
G +

lm

4y3/4gm − TgmJ = 0, s46d

whereT is given bys34d. Subtracting the second equation from the first yields, after integrating by
parts with respect toy from y=0 to y=1,

sln − lmdE
0

1

y−3/4gnsydgmsyddy = 4y1/4s1 − ydUFgn
dgm

dy
− gm

dgn

dy
GU

0

1

. s47d

Based on the asymptotic behaviors of the eigenfunctionsgn andgm given bys29d ands30d, we find
that the right-hand side ofs47d vanishes exactly, and therefore we obtain

sln − lmdE
0

1

y−3/4gnsydgmsyddy = 0, s48d

which establishes the orthogonality of the eigenfunctions. The set of eigenfunctions is also com-
plete according to the Sturm–Liouville theorem. Since the eigenfunctions are orthogonal, the
Green’s function can be expressed as the infinite series

FIG. 1. First eigenvaluel0 of the Green’s function expansion plotted as a function of the source locationy0 for the
indicated values of the absorption parameterb. Note the steepening of the radiation spectrum that occurs whenb is
increased for a fixed value ofy0, which reflects the decreasing residence time for the photons in the plasmassee the
discussion in the textd.
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fGsy0,y,e0,ed = o
n=0

`

AnS e

e0
D−ln

gnsyd, s49d

for eùe0, where the expansion coefficientsAn are computed by employing the orthogonality of
the eigenfunctions along with the condition

ufGsy0,y,e0,edue=e0
=

12Ṅ0

7pr0
2e0

3vc

dsy − y0d, s50d

which is obtained by integrating the transport equations11d with respect toe in a small range
surrounding the injection energye0. The result obtained for thenth expansion coefficient is

An =
12Ṅ0y0

−3/4gnsy0d
7pr0

2e0
3vcCn

, s51d

where the quadratic normalization integrals,Cn, are defined by

Cn ; E
0

1

y−3/4gn
2syddy. s52d

As an alternative to numerical integration, in Sec. III D we derive a closed-form expression for
evaluating the normalization integrals based directly on the associated differential equation.

D. Quadratic normalization integrals

The direct computation of the normalization integralsCn via numerical integration is costly
and time consuming, and therefore it is desirable to have an alternative procedure available for
their evaluation. In fact, it is possible to derive an analytical expression for the normalization
integrals based on manipulation of the fundamental differential equations14d governing the eigen-
functionsgnsyd.

Let us suppose thatgsl ,yd is a general solution tos14d for an arbitrary value ofl si.e., not
necessarily an eigenvalued with the asymptoticsupstreamd behavior

gsl,yd → y, y → 0, s53d

which is the same as the upstream behavior of the eigenfunctiongnsyd fsee Eq.s30dg. We also
stipulate thatg must be continuous aty=y0, and that it satisfies the derivative jump condition
given by s16d. After a bit of algebra, we find that the global solution forg consistent with these
requirements can be expressed as

gsl,yd =Hw1sl,yd, y ø y0,

s1 + âdw1sl,yd + b̂w2sl,yd, y ù y0,J s54d

where the coefficientsâ and b̂ are are given by

â = −
3bw1sl,y0dw2sl,y0d

4y0Wsl,y0d
, b̂ =

3bw1
2sl,y0d

4y0Wsl,y0d
, s55d

and the WronskianW is evaluated usings43d.
Comparing the general solution forgsl ,yd with the solution for the eigenfunctiongnsyd given

by s27d, we note that

lim
l→ln

â = − 1, lim
l→ln

b̂ = Bn. s56d

We can now use the self-adoint form ofs14d to write fcf. Eqs.s45d and s46dg
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gnH ]

]y
Fy1/4s1 − yd

]g

]y
G +

l

4y3/4g − TgJ = 0 s57d

and

gH d

dy
Fy1/4s1 − yd

dgn

dy
G +

ln

4y3/4gn − TgnJ = 0, s58d

whereT is defined bys34d. Subtracting the second equation from the first and integrating by parts
from y=0 to y=1 yields

sl − lndE
0

1

y−3/4gsl,ydgnsyddy = 4y1/4s1 − ydUFgsl,yd
dgn

dy
− gnsyd

]g

]y
GU

0

1

. s59d

Sinceg→y andgn→y asy→0, we conclude that the evaluation at the lower boundy=0 on the
right-hand side yields zero, and consequently in the limitl→ln we obtain for the quadratic
normalization integralCn fsee Eq.s52dg,

Cn =E
0

1

y−3/4gn
2syddy = U lim

l→ln

4y1/4s1 − ydfgsl,ydsdgn/dyd − gnsyds]g/]ydg
l − ln

U
y=1

. s60d

The numerator and denominator on the right-hand side ofs60d each vanish in the limitl
→ln, and therefore we can employ L’Hôpital’s rule to show thatse.g., Becker9d

Cn = lim
l→ln

4y1/4s1 − ydUF ]g

]y

dgn

dy
− gn

]2g

]y]l
GU

y=1
. s61d

Substituting the analytical forms forgnsyd andgsl ,yd given bys27d ands54d, respectively, we find
that s61d can be rewritten as

Cn = lim
y→1

4y1/4s1 − ydBnUFWsl,yd
dâ

dl
+ Bn

]w2

]l

]w2

]y
− Bnw2sl,yd

]2w2

]y]l
GU

l=ln

, s62d

where we have also utilizeds32d ands56d. Based on the asymptotic behavior ofw2 fsees26dg, we
conclude that the final two terms on the right-hand side ofs62d contribute nothing in the limity
→1, and therefore our expression forCn reduces to

Cn = lim
y→1

4y1/4s1 − ydBnWsl,ydU dâ

dl
U

l=ln

. s63d

Sincey=1 is a singular point of the differential equations14d, it is convenient to employ the
relation fsee Eq.s39dg

Wsl,ydy1/4s1 − yd = Wsl,y0dy0
1/4s1 − y0d, s64d

which allows us to transform the evaluation ins63d from y=1 to y=y0 to obtain the equivalent
result

Cn = 4y0
1/4s1 − y0dâWsl,y0d

w1sln,y0d
w2sln,y0d

Ud ln â

dl
U

l=ln

, s65d

where we have also substituted forBn using s28d. The derivative on the right-hand side can be
evaluated usings55d, which yields
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d ln â

dl
=

] ln w1

]l
+

] ln w2

]l
−

] ln W

]l
, s66d

where the derivative of the Wronskian is given byfsee Eqs.s19d and s43dg

] ln W

]l
=

Csad + Cs1 − ad
s17 + 16ld1/2 s67d

and

Cszd ;
1

Gszd
dGszd

dz
. s68d

Combinings55d ands65d–s67d, we find that the quadratic normalization integrals can be evaluated
using the closed-form expression

Cn = Ksln,y0d, s69d

where

Ksl,yd ; 3by−3/4s1 − ydw1
2sl,ydFCsad + Cs1 − ad

s17 + 16ld1/2 −
] ln w1

]l
−

] ln w2

]l
G . s70d

This formula provides an extremely efficient alternative to numerical integration for the compu-
tation of Cn.

E. Numerical examples

In this section we illustrate the computational method by examining the dependence of the
Green’s functionfGsy0,y,e0,ed on the spatial locationy and the energye. We remind the reader
that the solution for the Green’s function represents the photon spectrum inside the accretion
column at the specified position and energy, resulting from the injection of monochromatic pho-
tons with energye0 from a source located aty0. Hence analysis offG allows us to explore the
competing effects of Fermi energization and diffusion as photons travel through the column. The
Green’s function can be computed by combinings49d, s51d, ands69d once the eigenvaluesln have
been determined usings44d. The eigenfunction expansion forfG converges fairly rapidly, and in
general one obtains at least five decimal digits of accuracy if the series ins49d is terminated after
the first 20 terms.

The Green’s functionfGsy0,y,e0,ed is plotted as a function of the energy ratioe /e0 and the
locationy in Fig. 2 for the parameter valuesb=0.4 andy0=0.9. In this case the first eigenvalue is
given byl0=4.231ssee Fig. 1d, which is equal to the high-energy slope of the Green’s function in
the log–log plots in Fig. 2. The selected value ofy0 corresponds to a source located near the
bottom of the accretion column, just above the stellar surface. At the source location,y=y0=0.9,
the energy spectrum extends down to the injection energy,e0. However, at all other radii the
spectrum displays a steep turnover above that energy because all of the photons have experienced
Fermi energization due to collisions with the infalling electrons. The photons with energye=e0 at
the source location have been injected so recently that they have not yet experienced significant
energization. Note that in the far upstream regionsi.e., for small values ofyd, the spectrum is
greatly attenuated due to the inability of the photons to diffuse upstream through the rapidly
infalling plasma. In this example, the average photon energy achieves its maximum value in the
upstream region because these are the photons that have resided in the flow the longest and
therefore experienced the most energy amplification. However, due to the attenuation mentioned
above, there are not many of these photons.

In Fig. 3 we plot the Green’s functionfG for the case withb=4 andy0=0.4, which yields for
the first eigenvaluel0=6.325. The source is now located in the upstream region and the absorption
is stronger, and consequently the behavior is somewhat different from that displayed in Fig. 2. In
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particular, the photons experience less overall compression in the flow and therefore the spectrum
is steeper at high energies, as evidenced by the increase in the primary eigenvaluel0. This is
mainly due to the larger value ofb, which causes the photons to spend less time on average in the
flow being energized by collisions with the electrons before they escape from the column or are
“recycled” by absorption. We also note that in this case the average radiation energy displays its
maximum value in the downstream region. This is the reverse of the behavior displayed in Fig. 2
because in the present situation, the source is located in the upstream region and therefore the
photons that diffuse further upstream do not experience as much energization as those considered
in Fig. 2. The radiation distribution in the far upstream region is greatly attenuated due to diffusion
against the current of infalling electrons, as in Fig. 2. The analytical results for the Green’s
function obtained here provide the basis for the consideration of any source distribution since the
fundamental differential equations1d is linear. This is further discussed in Sec. IV.

IV. HYPERGEOMETRIC SUMMATION FORMULA

We can derive two interesting summation formulas for the hypergeometric eigenfunctions by
using the transport equations11d to study the behavior of the “energy moments,”I,, defined by

FIG. 2. Green’s functionfGsy0,y,e0,ed fEq. s49dg plotted in units ofṄ0/ sr0
2e0

3vcd as a function of the photon energy ratio
e /e0 for the indicated values of the spatial variabley. In this example we have set the absorption constantb=0.4 and the
source location parametery0=0.9, so that the source is located near the base of the accretion column.

FIG. 3. Same as Fig. 2, exceptb=4.0 andy0=0.4. In this case the source is located in the upstream region, and the average
photon energy achieves its maximum value in the downstream region.
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I,syd ; E
e0

`

e,fGde. s71d

The lower bound ofe0 is chosen becausefG=0 for e,e0 as explained in the discussion preceding
s13d. Note that according tos2d, the number and energy densities are given bynG= I2 and UG

= I3, respectively. The differential equation satisfied byI, is obtained by operating ons11d with
ee, de, which yields

ys1 − yd
d2I,

dy2 + S1 − 5y

4
DdI,

dy
+ S,y + 2y − 1

4y
DI, =

3bv0dsy − y0dI,

7vc
−

3Ṅ0e0
,−2dsy − y0d
7pr0

2vc

.

s72d

The energy momentI, must be continuous aty=y0 in order to avoid generating an infinite spatial
diffusion flux there, and consequently we have

DufI,sydguy=y0
= 0. s73d

By integratings72d in a small region aroundy=y0, we can show thatI, also satisfies the derivative
jump condition

DUFdI,

dy
GU

y=y0

=
3bI,sy0d

4y0
−

3Ṅ0e0
,−2

7pr0
2vcy0s1 − y0d

, s74d

where we have also utilizeds12d.
The homogeneous version ofs72d obtained whenyÞy0 is equivalent tos14d for g if we

replacel with ,+1. Since the energy momentsI, must satisfy the same upstream and downstream
boundary conditions that apply to the separation eigenfunctionsgn, we can therefore write the
general solution forI, as

I,syd =HC,w1s, + 1,yd, y ø y0,

D,w2s, + 1,yd, y ù y0,
J s75d

where the constantsC, and D, are computed by satisfying the continuity and derivative jump
conditions given bys73d and s74d. Upon substitution, we obtain after some algebra

C, =
12Ṅ0e0

,−2

7pvcr0
2

s1 − y0d−1w2s, + 1,y0d
3bw1s, + 1,y0dw2s, + 1,y0d − 4y0Ws, + 1,y0d

, s76d

D, =
12Ṅ0e0

,−2

7pvcr0
2

s1 − y0d−1w1s, + 1,y0d
3bw1s, + 1,y0dw2s, + 1,y0d − 4y0Ws, + 1,y0d

, s77d

whereWs,+1,y0d is computed usingfcf. Eq. s43dg

Ws, + 1,y0d =
5

4

Gs1 − a,d
Gsa,dGs− 1/4d

y0
−1/4

1 − y0
s78d

and

a, ;
9 −Î33 + 16,

8
. s79d

The energy momentsI,syd can also be calculated by substituting for the Green’s function in
the fundamental integrals71d usings49d. Reversing the order or summation and integration yields
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I,syd = e0
,+1o

n=0

`

Ansln − , − 1d−1gnsyd, s80d

wheregnsyd andAn are given bys27d ands51d, respectively. Note that the expression forgnsyd can
be rewritten as

gnsyd =
w1sln,ymindw2sln,ymaxd

w2sln,y0d
, s81d

where

ymin ; minsy,y0d, ymax; maxsy,y0d. s82d

Eliminating I,syd betweens75d ands80d and making use ofs51d, s76d, s77d, ands81d, we find after
some simplification that

o
n=0

`
w1sln,y0d
w2sln,y0d

w1sln,ymindw2sln,ymaxd
sln − , − 1dCn

=
y0

3/4s1 − y0d−1w1s, + 1,ymindw2s, + 1,ymaxd
3bw1s, + 1,y0dw2s, + 1,y0d − 4y0Ws, + 1,y0d

,

s83d

where the eigenvaluesln are computed usings44d. Equations83d is a new hypergeometric sum-
mation formula that has not appeared previously in the literature. This relation holds for all real
values of,.

V. LINEAR AND BILINEAR GENERATING FUNCTIONS

The case withb=0 is interesting from a mathematical point of view because in this limit, the
hypergeometric eigenfunctions reduce to Jacobi polynomials. We can therefore combine various
results from Secs. III and IV to obtain two new summation formulassi.e., linear and bilinear
generating functionsd for the Jacobi polynomials that have not appeared previously in the litera-
ture. In the limitb→0, the eigenvalue equations31d reduces to

Wsln,y0d =
5

4

Gs1 − ad
GsadGs− 1/4d

y0
−1/4

1 − y0
= 0, s84d

where we have also made use ofs43d. Roots of this expression occur whereuGsadu→`, which
corresponds to

a = − n, n = 0,1,2, . . . . s85d

In this situation, we can uses19d to demonstrate that the exact solution for the eigenvaluesln is
given by

ln = 4n2 + 9n + 4. s86d

Next we note thata+b=9/4 in general according tos19d, and therefore we find that

b = 9
4 + n. s87d

The corresponding expression for the fundamental upstream eigensolution,w1sln,yd, is given in
this case by the polynomialfsee Eq.s17dg

w1sln,yd = yFs− n, 9
4 + n; 9

4 ;yd , s88d

and the fundamental eigensolution in the downstream region,w2sln,yd, likewise reduces tofsee
Eq. s25dg
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w2sln,yd =
Gsn + 9/4d

Gs9/4dGs− n − 5/4d
w1sln,yd. s89d

Hence the two eigensolutionsw1sln,yd andw2sln,yd arelinearly dependent functionsin this case,
which is expected since the WronskianWsln,y0d=0 according tos84d. This in turn reflects the fact
that there is no derivative jump in the global separation eigenfunctiongnsyd at y=y0 whenb=0
fsee Eq.s16dg.

Due to the linear dependence ofw1sln,yd andw2sln,yd, Eq. s81d for the global eigenfunction
gnsyd now simplifies to

gnsyd = w1sln,yd, s90d

and therefore the summation formula presented ins83d can be rewritten in theb=0 case as

o
n=0

`
w1sln,y0dw1sln,yd

sln − , − 1dCn
= −

w1s, + 1,ymindw2s, + 1,ymaxd

4y0
1/4s1 − y0dWs, + 1,y0d

, s91d

whereymin andymax are defined bys82d andWs,+1,y0d is computed usings78d.
We are now in a position to derive an interesting summation formula for products of Jacobi

polynomials. Using Eq.s15.4.6d from Abramowitz and Stegun,8 our expression for the eigensolu-
tion w1sln,yd can be rewritten as

w1sln,yd =
n!

s9/4dn
yPn

s5/4,0ds1 − 2yd, s92d

where

Pn
s5/4,0ds1 − 2yd =

s9/4dn

n!
FS− n,

9

4
+ n;

9

4
;yD s93d

represents the Jacobi polynomial, andsadn denotes the Pochhammer symbol, defined by8

sadn ;
Gsa + nd

Gsad
. s94d

In the present application, withb=0, we can combines52d, s90d, ands92d to express the quadratic
normalization integrals,Cn, as

Cn = F n!

s9/4dn
G2E

0

1

y5/4fPn
s5/4,0ds1 − 2ydg2 dy, s95d

which can be evaluated using Eq.s7.391.1d from Gradshteyn and Ryzhik10 to obtain

Cn = F n!

s9/4dn
G2S2n +

9

4
D−1

. s96d

Equationss78d, s86d, s91d, s92d, and s96d can be combined to derive a newbilinear generating
function for the Jacobi polynomials, which can be written as

o
n=0

`

s9 + 8nd
Pn

s5/4,0ds1 − 2y0dPn
s5/4,0ds1 − 2yd

4n2 + 9n + 3 −,
=

16

5

Gs3/4dGsa,d
Gs1 − a,d

w1s, + 1,ymindw2s, + 1,ymaxd
yy0

,

s97d

wherea, is defined bys79d. Note that the functionsw1s,+1,ymind andw2s,+1,ymaxd appearing on
the right-hand side ofs97d arenot eigenfunctions since in general the quantity,+1 is not equal to
one of the eigenvaluesln.
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An interesting special case occurs in the limity0→0. Making use of the relationfsee Eq.s93dg

Pn
s5/4,0ds1d =

s9/4dn

n!
, s98d

and the identity

Gs 3
4dGs 9

4d = 5
16p21/2, s99d

we now find thats97d reduces to thelinear generating function

o
n=0

`
s9 + 8ndGsn + 9/4d

s4n2 + 9n + 3 −,dn!
Pn

s5/4,0ds1 − 2yd =
p21/2Gsa,d
Gs1 − a,d

w2s, + 1,yd
y

, s100d

which is valid for all real values of,. Equationss97d ands100d are new results that are useful for
the evaluation of infinite sums containing either products of Jacobi polynomials or single Jacobi
polynomials, respectively.

VI. CONCLUSION

In this paper we have employed methods of classical analysis to obtain the exact solution for
the Green’s function describing the Fermi energization of photons scattered by infalling electrons
in a pulsar accretion column. This process is of central importance in the development of theo-
retical models for the production of the x-ray spectra observed from these objects, which are
among the brightest sources in the Milky Way galaxy. As demonstrated in Fig. 1 and Eq.s49d, the
Green’s function is characterized by a power-law shape at high photon energies, which is typical
for a Fermi process. In this scenario, photons gain their energy by diffusing back and forth across
the shock many times. The probability of multiple shock crossings decreases exponentially with
the number of crossings, and the mean energy of the photons increases exponentially with the
number of crossings. This combination of factors naturally gives rise to a power-law energy
distribution.11 Hence shock energization in the pulsar accretion column provides a simple expla-
nation for the spectrum of the high-energy radiation produced by x-ray pulsars. Specific examples
of the Green’s function are plotted in Figs. 2 and 3.

Due to the linearity of the transport equations1d, we can employ the Green’s function to
calculate the radiation spectrum inside the accretion column resulting from an arbitrary source
spectrum using the convolution12

fsy0,y,ed =E
0

`

jse0d
fGsy0,y,e0,ed

Ṅ0

de0, s101d

where jse0dde0 represents the number of photons injected per unit time into the accretion column
at locationy0 with energy betweene0 ande0+de0. The source distribution of greatest astrophysical
interest is the “thermal mound” source located near the base of the accretion column, where the
gas has decelerated almost to rest and is therefore extremely dense. This hot plasma is in full
thermodynamic equilibrium, and consequently it radiates a black-body spectrum.1 The absorption
parameterb has been included in the transport equations1d in order to account for the fact that a
black body acts as both a source and a sink of radiation.4 The fundamental results for the Green’s
function obtained in the present paper will be used to study the reprocessing of the black-body
radiation emitted from the thermal mound in a subsequent paper.

In addition to the analytical results for the Green’s function, we have also obtained an inter-
esting formula for the evaluation of an infinite series involving products of the orthogonal hyper-
geometric eigenfunctionsfsee Eq.s83dg. This derivation was based on the simultaneous calcula-
tion of the energy momentsI,syd using both an expression based on term-by-term integration of
the Green’s function expansions49d, and an independent solution developed via direct integration
of the fundamental transport equations1d. In the special caseb→0, which corresponds physically
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to the neglect of absorption at the source location, our general formula for the hypergeometric
summation reduces to a bilinear generating function for the Jacobi polynomials given bys97d.
This relation in turn simplifies to yield a linear generating function for the Jacobi polynomials in
the limit y0→0, which corresponds physically to a source located in the far upstream regionfsee
Eq. s100dg.

The results derived in this paper for the linear and bilinear generating functions of Jacobi
polynomials are related to various similar expressions obtained previously by Chen and
Srivastava,13,14 Srivastava,15 Rangarajan,16 and Pittaluga, Sacripante, and Srivastava.17 However,
our results are not identical to any of their formulas and therefore they represent an interesting new
family of relations. Although the linear and bilinear generating functions developed here relate
specifically to the properties of the polynomialsPn

s5/4,0ds1−2yd, we expect that some level of
generalization may be possible. We plan to pursue this question in future work.
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We describe the behavior of the generalized theta function with respect to the
Hecke transformations. LetE be a holomorphic vector bundle over rankr and
degreersg−1d over a compact Riemann surfaceX of genusg. Let PsEd frespec-
tively, PsEdg be the space of all linessrespectively, hyperplanesd in the fibers ofE.
Certain Zariski open subsets ofPsEd3 3 PsEd andPsEd3PsEd3 PsEd3 PsEd pa-
rametrize holomorphic families of vector bundles overX of rank r and degree
rsg−1d. We describe the generalized theta line bundle for these families. ©2005
American Institute of Physics.fDOI: 10.1063/1.1879082g

I. INTRODUCTION

In a well known paper, Hawley and Schiffer5generalized the notion of a Szegö kernel from a
domain in the complex planeswith smooth boundaryd to a compact connected Riemann surfaceX
of arbitrary genusg. More recently, it was observed by physicists that the Szegö kernel could be
identified as the “two-point function” of a model two-dimensional quantum field theory appearing
in conformal field theory and string theoryssee Ref. 10 for referencesd. It was shown by Raina10,11

that the physics could be in a natural way reformulated in the language of algebraic geometry.
Given a line bundlea on X of degreeg−1 lying outside the theta divisor, i.e., a holomorphic line
bundle a with H0sX,ad=0=H1sX,ad, a “2n-point function” is interpreted as a meromorphic
section with certain physically required zeros and poles of the line bundle overX2n which is
constructed using thesexternald tensor product ofn copies ofa and n copies of its Serre dual
KX ^ a−1. The line bundleKX is the holomorphic cotangent bundle ofX. A proof of the uniqueness
of the 2n-point functions and an application of a “Riemann lemma” enabled the explicit determi-
nation of these sections in terms of theta functions associated with the Riemann surface. In the
case of the four-point function, this led to a proof of the trisecant identity for theta functions
associated to a Jacobian.10

A subject of much speculation has been whether there is an interesting analog of these results
when the line bundlea is replaced by a vector bundleE of rank r and degreersg−1d. Indeed, it
was remarked by Rainassee Ref. 10, Remark 5.7d that the proof of the uniqueness of the 2n-point
function remained valid ifE has no holomorphic sections and is simple. However, the interesting
question is to relate the sections togeneralized theta functionsand possibly to arrive at a corre-
sponding generalization of the trisecant identity. We shall carry out the first part and give indica-
tions towards the second. In a recent paper,2 David Ben-Zvi and one of ussI.B.d studied the
corresponding Szegö kernel and its relationship with generalized theta functions. We remark that,
while there have been other works thematically related to the present one,ssee Refs. 3 and 8d, the
present work is quite different from these. While in Polishchuk8, the approach to the higher rank
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generalization of the trisecant identity is through generalized determinants, and in Gómez and
González3, the natural embedding ofX3X in the moduli space of vector bundles overX defined
by sx,yd°E^ OXsx−yd is investigatedsjust as done in the case of line bundlesd, the aim here is
to investigate the relationship between the Hecke transformations and the Quillen determinant line
bundle. The relationships between them established here turn out to suggest a possible approach to
the higher rank generalization of the trisecant identity.

Remark 5.7 of Ref. 10 also provided motivation for the construction of a higher rank analog
of the bc-system carried out by Schork.12,13 The generalized theta functions on the parameter
spaces considered here are related to the correlation functions of that system.

To describe the results proved here, letE be a holomorphic vector bundle of rankr and degree
rsg−1d over X, with PsEd frespectively,PsEdg being the space of all linessrespectively, hyper-
planesd in the fibers ofE. Given a line, or a hyperplaneH in the fiberEx of E over xPX, the
Hecke transformation gives vector bundles defined by the exact sequences

0 → V → E → Ex/, → 0

and

0 → W→ E → Ex/H → 0.

So V andW are canonically identified withE over X\ hxj.
Now, given a point ofPsEd and a point ofPsEd, a new vector bundle overX can be con-

structed by combining the above constructions. Therefore, we have a family of vector bundles
over X parametrized by a Zariski open dense subsetU,PsEd3 PsEd. This construction does not
give a vector bundle if the hyperplane contains the line in the fiber ofE; therefore, that family is
actually parametrized by an open subset ofPsEd3 PsEd.

In Lemma 2.1 we identify the generalized theta line bundles= determinant line bundled for
this family. Since the complement ofU in PsEd3 PsEd is of codimension at least two, the gener-
alized theta line bundle as well as its section given by the generalized theta function extend to
PsEd3 PsEd.

A family of vector bundles overX can similarly be constructed which is parametrized by a
Zariski open dense subset

U2 , PsEd 3 PsEd 3 PsEd 3 PsEd.

For any pointsy1,y2,z1,z2dPU2, the corresponding vector bundle overX is constructed by per-
forming Hecke transformations using the linesz1, z2 as well as the hyperplanesy1, y2. In Lemma
2.3 we identify the determinant line bundle overU2 for this family. In Theorem 3.1 it is shown that
this line bundle overU2 has the property that the space of its global holomorphic sections is one
dimensional, provided dimH0sX,Ed=0=dimH0sX,EndsEdd−1.

For any vector bundleE satisfying the above cohomology conditions, letq and q2 be the
generalized theta functions onPsEd3 PsEd andPsEd3PsEd3 PsEd3 PsEd, respectively, for the
above families of vector bundles overX sthe functions extendd. Considerq13

* q ^ q24
* q−q14

* q
^ q23

* q, whereqij , 1ø i , j ø4, is the projection ofPsEd3PsEd3 PsEd3 PsEd to the product of
the ith and j th factor, that is,qijsa1,a2,a3,a4d=sai ,ajd. If r =1, thenPsEd>X> PsEd, and hence
this section vanishes over the two images ofX3 in X4 defined by sx,y,zd° sx,x,y,zd and
sx,y,zd° sx,y,z,zd. This immediately implies that the above defined section coincides withq2.
This equality of sections is the trisecant identity. However, ifr .1, then we do not know if the
section vanishes over the two images ofX3. If it does, then a similar identity for the generalized
function would follow immediately.

II. THE DETERMINANT LINE BUNDLE

Let X be a compact connected Riemann surface, or equivalently, a connected smooth projec-
tive curve defined overC. The genus ofX will be denoted byg.
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Fix a holomorphic vector bundleE over X of rank r and degreersg−1d. Let PsEd frespec-
tively, PsEdg be the projective bundle overX parametrizing all hyperplanessrespectively, linesd in
the fibers ofE. Let OPsEds1d frespectively,OPsEds1dg be the tautological line bundle overPsEd
frespectively,PsEdg whose fiber over any point is the quotient by the hyperplanesrespectively,
dual of the lined represented by the point.

For notational simplicity, the varietyPsEd frespectively,PsEdg will be denoted byY srespec-
tively, Zd. For the same reason, the line bundleOPsEds1d frespectively,OPsEds1dg will be denoted by
z srespectively,hd.

Let f2: Z→X be the natural projection. Note that we have a natural inclusion ofOPsEds−1d
ªh* in f2

*E as a subbundle. LetQ be the vector bundle overPsEd=Z of rank r −1 that fits in the
following exact sequence of vector bundles

0 → OPsEds− 1d = h* → f2
*E → Q → 0 s2.1d

over Z.
Let f1: Y→X be the natural projection. Note that the vector bundlef1

*E has a natural projec-
tion to the line bundlez. Let Q8 srespectively,z8d over X3Z srespectively,X3Yd be the direct
image ofQ srespectively,zd by the embedding that sends any pointzPZ srespectively,yPYd to
sf2szd ,zdPX3Z frespectively,sf1syd ,ydPX3Yg. So bothQ8 andz8 are torsion sheaves.

Consider the Cartesian productX3Y3Z, which is a projective variety of dimension 2r +1.
Let

p1:X 3 Y 3 Z → X

be the projection to the first factor. So we have a homomorphism

a = a1 % a2:p1
*E → p12

* z8 % p13
* Q8, s2.2d

wherep12 srespectively,p13d is the projectionX3Y3Z to X3Y srespectively,X3Zd; the homo-
morphisma2 is the pullback of the projection map ins2.1d, anda1 is the pullback of the projection
f1
*E→z. Let pY andpZ be the projections ofY3Z to Y andZ, respectively.

We note thatp12
* z8 srespectively,p13

* Q8d is identified with the direct image ofpY
* z srespec-

tively, pZ
* Qd by the embedding ofY3Z in X3Y3Z that sends any pointsy,zd to sf1syd ,y,zd

frespectively,sf2szd ,y,zdg.
Let

E8 ª kernelsad , f*E s2.3d

be the kernel of the homomorphisma defined ins2.2d ssee Ref. 7, Sec. 4 for this construction
which is known as the Hecke transformationd. The torsionfree coherent sheafE8 on X3Y3Z is
not locally free in general. The projection ofX3Y3Z to Y3Z will be denoted byp23. Consider
the closed subvarietyS,Y3Z defined by all points of the formsy,zd satisfying the two condi-
tions thatf1syd= f2szd and the hyperplane in the fiberEf1syd defined byy contains the line inEf2szd
defined byz. Let

U ª sY 3 Zd \ S s2.4d

be the complement. The coherent sheafE8 is locally free overp23
−1sUd,X3Y3Z. Indeed, this

follows from the fact that for anysy,zdPU, the two subspaces ofEf1syd, namelyh f2szd and the
kernel of the projectionEf1syd→z f1syd, are transversal. Note that the codimension ofS in Y3Z is
two if ranksEdù2, and ifE is a line bundle, thenS is the empty set. Although we do not need it,
it may be mentioned thatE8 fails to be locally free exactly over the subvariety ofX3Y3Z defined
by all pointssx,y,zd satisfying the two conditions thatsy,zdPS andx= f1syd.

Since E8 is a vector bundle overp23
−1sUd, we can—and we will—consideruE8up23

−1sUd as an
algebraic family of vector bundles overX parametrized byU. Note that for any pointsy,zdPU
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with f1syd= f2szd, the corresponding vector bundle overX for this family sthat is, the restriction of
E8 to X3 hyj3 hzjd is canonically identified with the vector bundleE^ OXs−f1sydd.

Let pi, i =1,2,3, be theprojection ofX3Y3Z to theith factorsthe projectionp1 was defined
earlierd. So thenp1j =p13pj, where j =2,3, and wealso havep2=pY+p23 andp3=pZ+p23.

Let D,X3X be thesreducedd diagonal divisor defined by all points of the formsx,xd, where
xPX. Let

LD ª sp1 3 sf2 + p3dd*OX3XsDd s2.5d

be the line bundle overX3Y3Z.
Define the vector bundle

E ª E8 ^ LD s2.6d

over p23
−1sUd>X3U, whereE8 is defined ins2.3d andLD is defined ins2.5d. We will considerE as

an algebraic family of vector bundles overX parametrized byU. For any pointtPU, the vector
bundle overX obtained by restrictingE to X3 htj will be denoted byEt. Note that if f1+pYstd
= f2+pZstdPX, where tPU, then Et is identified with E. Indeed, this follows from the earlier
observation thatuE8uX3hyj3hzj>E^ OXs−f1sydd.

Let

L ª dsEd s2.7d

be the determinant line bundle overU for the family of vector bundles overX defined byE ssee
Refs. 9 and 1 for the determinant line bundled. So, for any pointtPU the fiberLt is canonically
identified with the lines∧topH0sX,Etd*d ^ s∧topH1sX,Etdd. These lines fit together in a natural fash-
ion to define a holomorphic line bundle over the parameter spacesnamely,Ud.

For a holomorphic vector bundleF over X, we will denote bydsFd the complex line
s∧topH0sX,Fd*d ^ s∧topH1sX,Fdd.

Lemma 2.1: The determinant line bundleL overU is canonically isomorphic to the restriction
to U,Y3Z of pY

* z ^ pZ
* sh* ^ f2

*KXd ^ sf13 f2d*OX3XsDd ^ l, where KX is the holomorphic cotan-
gent bundle of X and l is the trivial line bundle over Y3Z with fiber dsEd, where dsEd is the line
defined above.

Proof: The natural isomorphism betweenpY
* z ^ pZ

* sh* ^ f2
*KXd ^ sf13 f2d*OX3XsDd ^ l and L

over U asserted in the lemma is produced by identifying the fibers of the two line bundles.
Take any pointt=sy,zdPU,Y3Z. Set x1= f1syd and x2= f2szd. The vector bundleEt is

identified with the kernel of the subjective homomorphism

E^OX
OXsx2d → szy ^ OXsx2dx1

d % sQz ^ OXsx2dx2
d, s2.8d

whereOXsx2dx is the fiber of the line bundleOXsx2d overx. Note that this description ofEt implies
that if x1=x2, thenEt is identified withE. Indeed, in that case the fiberEx2

^ OXsx2dx2
is mapped

isomorphically toszy ^ OXsx2dx1
d % sQz^ OXsx2dx2

d by the homomorphism defined ins2.8d. Con-
sequently, the kernel of the homomorphism ins2.8d is identified with the image ofE in E
^OX

OXsx2d by the inclusion map.
For an exact sequence of coherent sheaves

0 → A → B → C → 0

overX, whereA andB are locally freesvector bundlesd andC is a torsion sheaf supported over a
point with dimC C=n, we have an isomorphism

dsAd > dsBd ^ ∧nC s2.9d

srecall that dsFdª∧topH0sX,Fd* ^ ∧topH1sX,Fdd. Consequently, settingA=E and B=E
^OX

OXsx2d we obtain
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dsE^OX
OXsx2dd > dsEd ^ ∧rsEx2

^ Tx2
Xd* , s2.10d

wherer =ranksEd.
Let V be the vector bundle overX defined by the exact sequence of coherent sheaves

0 → V → E^OX
OXsx2d → Qz ^ OXsx2dx2

→ 0,

whereQz is the quotient ofEx2
defined by the pointzPZ. Using s2.9d and s2.10d it follows that

dsVd > dsEd ^ Kx2
^ hz, s2.11d

whereKx2
is the fiber overx2 of the holomorphic cotangent bundleKX.

The vector bundleEt over X srecall thatt=sy,zdd fits in the exact sequence

0 → Et → V → zy ^ OXsx2dx1
→ 0.

Therefore, usings2.9d and s2.11d we have

dsEtd > dsVd ^ zy ^ OXsx2dx1
> dsEd ^ Kx2

^ hz ^ zy ^ OX3XsDdsx1,x2d

asOXsx2dx1
is identified with the fiber over the pointsx1,x2d,X3X of the line bundleOX3XsDd.

This completes the proof of the lemma. h

Since we havexsEd=0, the determinant line bundledsEd in s2.7d has a canonical section,
which is know as thegeneralized theta function1,9. This section vanishes at a pointuPU if and
only if H0sX, uEuX3hujdÞ0. Let

u P H0sU,dsEdd s2.12d

be the generalized theta function. We recall thatu vanishes at a pointtPU if and only if
H0sX,EtdÞ0. In particular, ifEt is not semistable, thenustd=0.

Let

q P H0sU,pY
* z ^ pZ

* sh*
^ f2

*KXd ^ sf1 3 f2d*OX3XsDd ^ ld s2.13d

be the section overU defined byu fin s2.12dg using the isomorphism in Lemma 2.1. Note that the
complement ofU in Y3Z is of codimension at least two. Therefore,q extends toY3Z; the
extended section will also be denoted byq.

We will now identify the determinant line bundle overY3Y3Z3Z for a family of vector
bundles constructed also using Hecke transformation.

Let DY,Y3Y and DZ,Z3Z be the diagonals. Letqij , 1ø i , j ø4, be the projectionY
3Y3Z3Z to the product of theith and thej th factor. Therefore,qij sends any pointsx1,x2,x3,x4d
of Y3Y3Z3Z to sxi ,xjd. Set

S2 ª q12
−1sDYd ø q34

−1sDZd ø
i=1,2;j=3,4

qij
−1sSd , Y 3 Y 3 Z 3 Z, s2.14d

whereS,Y3Z is the subvariety ins2.4d. Let

U2 ª S2
c = sY 3 Y 3 Z 3 Zd \ S2 , Y 3 Y 3 Z 3 Z s2.15d

be the complement ofS2 fdefined ins2.14dg, which is a Zariski open dense subset.
As before, there is a natural family of vector bundles overX parametrized byU2. We will

describe this family.
Let fi, 1ø i ø5, be the projection ofX3Y3Y3Z3Z to the ith factor. The projection of

X3Y3Y3Z3Z to the product of theith factor and thej th factor, where 1ø i , j ø5, will be
denoted byfi j . Sofi srespectively,fi jd sends any pointsx1,x2,x3,x4,x5d of X3Y3Y3Z3Z to
xi frespectively,sxi ,xjdg.

Consider the homomorphism
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b ª sb11 % b12d % sb21 % b22d:f1
*E → sf1 3 f24d*sp12

* z8 % p13
* Q8d % sf1 3 f35d*sp12

* z8 % p13
* Q8d

s2.16d

over X3Y3Y3Z3Z, wherebi j , i , j P h1,2j, is the pullback toX3Y3Y3Z3Z of the homo-
morphisma j in s2.2d. Thusb11:f1

*E→ sf13f24d*p12
* z8 and b21:f1

*E→ sf13f35d*p12
* z8 are the

pullbacks ofa1 fdefined ins2.2dg using the projectionsf13f24 andf13f35, respectively. The
homomorphismsb12 andb22 are constructed froma2 in a similar fashion.

Proposition 2.2: The kernel of the homomorphismb constructed in (2.16) is locally free over
X3U2, whereU2 is defined in (2.15).

Proof: Let D1 srespectively,D2d be the reduced divisor onX3Y3Y3Z3Z defined by all
points sx1,x2,x3,x4,x5d with f1sx2d=x1 srespectively,f1sx3d=x1d, where, as before,f1 is the pro-
jection of Y to X. On Di, i =1,2, wehave a subbundleVi , usf1

*EduDi
of rank r −1 defined as the

kernel of the natural projection ofusf1
*EduDi

to sufi+1uDi
d*z.

Similarly, defineD3 srespectively,D4d to be the reduced divisor onX3Y3Y3Z3Z defined
by all pointssx1,x2,x3,x4,x5d with f2sx4d=x1 frespectively,f2sx5d=x1g, wheref2 is the projection
of Z to X. Let Vi =sufi+1uDi

d*h* , i =3,4, be theline subbundle ofusf1
*EduDi

defined usings2.1d.
The union

D̄ ª o
i=1

4

Di

constitutes a normal crossing divisor onX3Y3Y3Z3Z. Over any connected component of
Di ùD j ù sX3U2d, where 1ø i , j ø4, the intersection of the two subbundlesVi andVj is again a
subbundle ofusf1

*EduDiùD jùsX3U2d. In other words, the dimension ofsVidyù sVjdy, sf1
*Edy is inde-

pendent ofy, wherey runs over a connected component ofDi ùD j ù sX3U2d.
The same assertion holds for each connected component of each triple intersection

Di ùD j ùDl ù sX3U2d, where 1ø i , j ,kø4, that is, dimsVidyù sVjdyù sVkdy does not change
while y runs over a connected component. This also holds for the total intersectionùi=1

4 Di.
These observations immediately imply that the kernel of the homomorphismb is locally free

over X3U2, completing the proof of the proposition. h

Thus kernelsbd fas in s2.16dg defines a vector bundle overX3U2; this vector bundle will be
denoted byE28.

Now, define the vector bundle

E2 ª E28 ^ sf1 3 f24d*LD ^ sf1 3 f35d*LD s2.17d

over X3U2, whereLD is the line bundle overX3Y3Z defined in s2.5d. Note that bothsf1

3f24d*LD and sf13f35d*LD are pullbacks toX3Y3Y3Z3Z of line bundles overX3Y3Z.
Let

L2 ª dsE2d s2.18d

be the determinant line bundle overU2 for the algebraic family, defined byE2, of vector bundles
over X parametrized byU2. We will identify the line bundledsE2d in the spirit of Lemma 2.1.

Let

d ª pY
* z ^ pZ

* sh*
^ f2

*KXd ^ sf1 3 f2d*OX3XsDd s2.19d

be the line bundle overY3Z ssee Lemma 2.1d. Let

LYª sf1 3 f1d*OX3XsDd

be the line bundle overY3Y. Similarly, define the line bundleLZªsf23 f2d*OX3XsDd over Z
3Z. Let
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L8 ª sf1 3 f2d*OX3XsDd s2.20d

be the line bundle overY3Z.
Lemma 2.3: The determinant line bundleL2 over U2 [defined in (2.18)] is canonically iden-

tified with the line bundle

l2 ^ q13
* d ^ q24

* d ^ sq12
* LY ^ q34

* LZd*
^ q14

* L8 ^ q23
* L8

where l2 is the trivial line bundle overU2 with fiber dsEd; the line bundlesd and L8 are defined,
respectively, in (2.19) and (2.20), and LY, LZ are defined above.

Proof: The proof of this lemma is very similar to the proof of Lemma 2.1. However, for the
sake of completeness, we give the details.

Take a pointt=sy1,y2,z1,z2dPU2. Setxi = f2szid, i =1,2.Consider the vector bundleW overX
defined by the exact sequence

0 → E → W→ A1 → 0

of coherent sheaves, whereA1 is a torsion sheaf of dimension one supported at thesreducedd point
x1, and the kernel of the homomorphismEx1

→Wx1
is the line inEx1

represented byz1. Note that
sincez2Þz1, the line in the fiberEx2

represented byz2 defines a line inWx2
. Let W8 be the vector

bundle overX defined by the exact sequence

0 → W→ W8 → A2 → 0

of coherent sheaves, whereA2 is a torsion sheaf of dimension one supported at thesreducedd point
x2, and the kernel of the homomorphismWx2

→Wx2
8 is the line defined byz2.

From the definition ofW andW8 it follows immediately thatA1>hz1
^ Tx1

X and

A2 > hz2
^ Tx2

X ^ OX3XsDdsx1,x2d

as the fiberOX3XsDdsx1,x2d of the line bundleOX3XsDd over the pointsx1,x2d is identified with the
fiber of OXsx1d over x2. Now using the isomorphism ins2.9d we conclude that

dsW8d > dsEd ^ hz1

*
^ Kx1

^ hz2

*
^ Kx2

^ OX3Xs− Ddsx1,x2d, s2.21d

whereKx is the fiber over the pointx of the holomorphic cotangent bundle ofX.
Setx1

0= f1sy1dPX. Let V be the vector bundle overX defined by the exact sequence

0 → V → W8 → zy1
^COXsx1 + x2d → 0.

Note thatzy1
^COXsx1+x2d is a torsion sheaf of dimension one supported on the reduced pointx1

0.
The projection ofW8 to zy1

^COXsx1+x2d is defined by the natural projectionEx1
0→zy1

. The
identity s2.9d for this exact sequence gives

dsVd > dsW8d ^ zy1
^ OX3XsDdsx1

0,x1d ^ OX3XsDdsx1
0,x2d. s2.22d

Similarly, setx2
0= f1sy2dPX. The vector bundleuE2ut over X, obtained by restrictingE2 to X

3 htj,X3Y3Y3Z3Z, fits in the following exact sequence

0 → uE2ut → V → zy2
^COXsx1 + x2 − x1

0d → 0,

wherezy2
^COXsx1+x2−x1

0d is the torsion sheaf of dimension one supported onx2
0, and the projec-

tion of V to zy2
^COXsx1+x2−x1

0d is defined by the natural projectionEx2
0→zy2

. The identitys2.9d
gives

dsuE2utd > dsVd ^ zy1
^ OX3XsDdsx2

0,x1d ^ OX3XsDdsx2
0,x2d ^ OX3Xs− Ddsx2

0,x1
0d. s2.23d
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Finally, s2.21d–s2.23d together complete the proof of the lemma.
h

Let

u2 P H0sU2,L2d s2.24d

be the generalized theta function for the family of vector bundles overX defined byE2. Set

L2 ª l2 ^ q13
* d ^ q24

* d ^ sq12
* LY ^ q34

* LZd*
^ q14

* L8 ^ q23
* L8 s2.25d

to be the line bundle overY3Y3Z3Z, wherel2 as before is the trivial line bundle with fiber
dsEd ssee Lemma 2.3d. Let

q2 P H0sU2,uL2uU2
d s2.26d

be the section defined byu2 using the isomorphism in Lemma 2.3.
Assume thatr =ranksEdù2. Consequently, the codimension of the subvarietyS2 defined in

s2.14d is at least two.sNote that ifr =1, then bothDY andDZ coincide with the diagonal divisor in
X3X.d Therefore,q2 extends to a section ofL2 over Y3Y3Z3Z. This extended section will
also be denoted byq2.

If r =1, thenE2 extends naturally toX3Y3Y3Z3Z as a line bundle. So even in the case
r =1, the sectionq2 is defined overY3Y3Z3Z ssee Ref. 6, Chap. 11, p. 357, Proposition 10.2d.

In the next section we will describeq2 using the sectionq over Y3Z constructed ins2.13d.

III. SECTIONS OF THE PULLBACK BUNDLE

Assume thatH0sX,Ed=0. Consequently,H1sX,Ed=0, as degreesEd=rsg−1d. Note that the
conditionH0sX,Ed=0 implies that the vector bundleE is semistable. Let

j ª L2 ^ l2
* = q13

* d ^ q24
* d ^ sq12

* LY ^ q34
* LZd*

^ q14
* L8 ^ q23

* L8 s3.1d

be the line bundle overY3Y3Z3Z, whereL2 is defined ins2.25d.
Theorem 3.1: Let E be a holomorphic vector bundle with HisX,Ed=0, i =0,1, and

H0sX,EndsEdd>C. Then we have

dim H0sY 3 Y 3 Z 3 Z,jd = 1,

wherej is the line bundle defined above.
Proof: Let

F:Y 3 Y 3 Z 3 Z → X4

be the natural projection defined by

sy1,y2,z1,z2d ° sf1sy1d, f1sy2d, f2sz1d, f2sz2dd.

The fibers ofF are products of projective spaces. Note that for any pointxPX4, we have
HisF−1sxd , ujuF−1sxdd=0 for eachi ù1. Indeed, this follows from the Künneth formula and the fact
that j is relatively ample for the projectionF.

Therefore, we have

H0sY 3 Y 3 Z 3 Z,jd > H0sX4,F*jd. s3.2d

Let ci :X
4→X, 1ø i ø4, be the projection to theith factor. For 1ø i , j ø4, letci j =ci 3c j be

the projection ofX4 to X2. The divisorci j
−1sDd,X4 will be denoted byDi j .

Since f1*z>E and f2*h>E* , we have
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F*j > WE ª c1
*sEd ^ c2

*sEd ^ c3
*sE*

^ KXd ^ c4
*sE*

^ KXd ^

OX4sD13 + D24 + D14 + D23 − D12 − D34d

over X4.
Now, dimH0sX4,WEd=1 as dimH0sX,EndsEdd=1 fsee Ref. 10, p. 239, Remark 5.7g. As

noted in Ref. 10, Remark 5.7, the proof of Theorem 5.5 in Ref. 10, p. 239swhich is for line
bundlesd goes through for vector bundles under that assumption that the vector bundle is simple.
This completes the proof of the theorem. h

Note thatX admits a stable vector bundleE of rank at least two withH0sX,EndsEdd>C if and
only if the genus ofX is at least two.

For any vector bundleE with H0sX,Ed=0=H1sX,Ed, the line

dsEd ª ∧topH0sX,Ed*
^ ∧topH1sX,Ed

is canonically identified withC, as the conditionHisX,Ed=0 gives a nonzero element indsEd. Let

q P H0sY 3 Z,pY
* z ^ pZ

* sh*
^ f2

*KXd ^ sf1 3 f2d*OX3XsDdd

be the section constructed using this identification ofdsEd with C from the section defined in
s2.13d srecall that the section ins2.13d extends toY3Zd.

Note that both the tensor productsq13
* q ^ q24

* q andq14
* q ^ q23

* q are sections of

q13
* d ^ q24

* d ^ q14
* L8 ^ q23

* L8 > j ^ q12
* LY ^ q34

* LZ

overY3Y3Z3Z, wherej is defined ins3.1d; the line bundlesd andL8 are defined ins2.19d and
s2.20d, respectively, and the projectionsqij are as ins2.14d. Hence

q13
* q ^ q24

* q − q14
* q ^ q23

* q P H0sY 3 Y 3 Z 3 Z,j ^ q12
* LY ^ q34

* LZd. s3.3d

Since the line bundleq12
* LY ^ q34

* LZ is defined by the effective divisorssf13 f1d +q12d−1sDd
+ssf23 f2d +q34d−1sDd, there is a natural inclusion ofH0sY3Y3Z3Z,jd in H0sY3Y3Z3Z,j
^ q12

* LY ^ q34
* LZd.

Assume that dimH0sX,EndsEdd=1. If the section ins3.3d is contained in the image

H0sY 3 Y 3 Z 3 Z,jd � H0sY 3 Y 3 Z 3 Z,j ^ q12
* LY ^ q34

* LZd

by the above inclusion map, then it is easy to check that the section ins3.3d coincides with the
sectionq2 fconstructed ins2.26dg after using the isomorphism ofdsEd with C. Note that from
Theorem 3.1 it follows that the section ins3.3d must be a constant scalar multiple ofq2 fif the
section ins3.3d comes from a section ofjg.

If r =1, then clearly the section ins3.3d comes from a section ofj. Therefore, it coincides with
q2 sif r =1d. The equality ofq2 with the section ins3.3d is the well known trisecant identitysfor
r =1d; see Ref. 6, Chap. 11, p. 357, Proposition 10.2, and Ref. 10 for the details.
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Di Bartolo, Dolgert, and Dorsey �Phys. Rev. B 53, 5650–5660 �1996�� have con-
structed asymptotic matched solutions at order 2 for the half-space Ginzburg–
Landau model in the weak-� limit. These authors deduced a formal expansion for
the superheating field hsh��� up to order 4, extending the de Gennes formula �Pro-
ceedings of the Eighth Latin American School of Physics, Caracas, 1966� and the
two terms in Parr’s formula �Z. Phys. B 25, 359–361 �1976��. On the other hand,
the present author �Eur. J. Appl. Math 13, 519–547 �2002�� obtained two terms in
the lower bound for hsh���. In this paper, we prove rigorously that the second term
of the expansion of hsh��� is of the order of O��1/2� and we get the Parr formula.
We improve the upper bound obtained by Bolley and Helffer �Ann. Inst. Henri
Poincaré, Anal. Non Linéaire 14, 597–613 �1997�� and we get ��hsh����2�2−3/2

+ 15
32�+O��1+��, ��0. The proof is based on new estimates for f�, A, and A�. To

achieve this, we are guided by the analysis of the properties of the approximate
solution constructed previously in �Del Castillo, Math Modell. Numer. Anal. 36,
971–973 �2002�; J. Math. Phys. 44, 2416–2450 �2003�; Dolgert et al., Phys. Rev. B
53, 5650–5660 �1996��. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1900292�

I. INTRODUCTION

The states of a superconducting material in an exterior magnetic field are described by the
Ginzburg–Landau theory which introduces a functional depending in particular on a complex
wave function and on the magnetic potential A. These states are characterized as global or local
minima of this functional. When the sample is a film and the exterior magnetic field is parallel to
the surface, the Ginzburg–Landau model reduces to a one-dimensional problem where the wave
function is real �and denoted by f� and where the functional is the following:

�d�f ,A;h� = �
−d/2

d/2 �1

2
�1 − f�x�2�2 −

1

2
+ �−2f��x�2 + f�x�2A�x�2 + �A��x� − h�2�dx ,

with �f ,A�� �H1��−d /2 ,d /2���2. Here, d is proportional to the thickness of the film, h is propor-
tional to the exterior magnetic field, and � is the Ginzburg–Landau �GL� parameter characterizing
the properties of the material. The value of � determines the type of superconductor according to
the type of phase transition which takes place between the normal phase and the superconducting
phase. � small describes what is known as a type I superconductor and � large as a type II. More
precisely, for a type I superconductor, there is a critical magnetic field hc such that h�hc, the
material is entirely superconducting, and the magnetic field is expelled from the sample apart from
a boundary layer of size �. This is called the Meissner effect. If h�hc, superconductivity is

a�Electronic mail: pierre.delcastillo@u-picardie.fr
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destroyed and the material is in the normal state, that is f �0 and A��h. For a type II supercon-
ductor, the phase transition is different and there are two critical field hc1

and hc2
. For h�hc1

, the
exterior magnetic field is expelled from the sample and there is a Meissner effect as for type I
superconductors. When h increases above hc1

, superconductivity is not destroyed straight away,
since the superconducting and the normal phase coexist under the form of filaments or vortices. As
h increases further, the vortices become more numerous until the critical value hc2

is reached at
which superconductivity is destroyed. For h�hc2

, the material is in the normal state. The way
superconductivity is nucleated is highly dependent on d and � �see, for example, Ref. 25�.

In the following, we restrict ourselves to the research of symmetric solutions. By symmetric
solutions, we mean solutions �f ,A� such that f is even and A is odd. Hence, we reduce the study
of �d to the interval �−d ,0� and then to �0,d� by a translation �the edge of the film is then at 0�.
A reduced GL functional is then defined by

�d�f ,A;h� = �
0

d �1

2
f4 − f2 + �−2�f��2 + f2A2 + �A� − h�2�dx , �1�

for the pairs �f ,A� of H1��0,d��2 such that A�d�=0.
When the width d of the film is large �in the sense that �d is large�, a slightly different

modelization is considered, which was first introduced by Ginzburg and which is usually called
the superconducting half-space. To get formally the limiting problem on the interval �0, +��, we
put d= +� in the definition of the GL functional �1� after a renormalization obtained by adding the
term �h2− 1

2
�d. We then get

���f ,A� = �
0

+� �1

2
�1 − f�x�2�2 + �−2f��x�2 + f�x�2A�x�2 + A��x�2�dx + 2hA�0� , �2�

defined for �f ,A��E�= 	�f ,A� ; �1− f��H1��0, +��� ,A�H1��0, +���
. The corresponding
Ginzburg–Landau equations expressing the necessary conditions for minima are then

�GL����a� − �−2f� − f + f3 + fA2 = 0 on �0, + �� ,

�b� − A� + Af2 = 0 on �0, + �� ,
� �3�

with the boundary conditions

f��0� = 0, A��0� = h . �4�

The problem �GL�� is called the half-space model and was studied in Refs. 18 and 19 where
numerical solutions are given.

We consider the set H��R+ of the h’s such that there exist solutions of the �GL� system with
f �0. We know that H� is a bounded interval �0,h+� �see Ref. 4, Proposition 2.1� and we then
introduce the superheating field hsh���, defined as the supremum of the interval H�. This critical
field is very important for many applications. For instance, measuring the superheating field
provides one of the few methods of experimentally determining the Ginzburg–Landau parameter
� in type-I superconductors �see Ref. 10 and also Ref. 1 for other properties and developments�.

P. G. de Gennes12 �see also Ref. 22� has proposed the formula

lim
�→0

��hsh����2 = 2−3/2. �5�

In Refs. 4 and 6, Bolley and Helffer have rigorously proved �5�. To get an upper bound for
A��0�, these authors have proved the following estimates, for any pairs �f ,A� solutions of �GL��:

A��0�2 � 2��1 − f�0�2�f�0�2�−1 − 5A�0�f�0�−1� , �6�
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�A��0�2 	 2�1 − f�0�2�f�0�2. �7�

On the other hand, in Ref. 9 �see Proposition 3, p. 361�, these authors have proved the following
estimate:

Proposition 1.1: There exist �0 and C such that, for all ���0 and any solution �f ,A) of
(GL��, we have

A��0�2 = h2 �
1

2
+ C

f�0�
�

. �8�

From �6�, taking the maximum of �1− f�0�2�f�0�2 on the interval �0,1�, and from �8�, they have
deduced the upperbound

�h2 � 2−3/2 + O��1/2� , �9�

for all h�H� and for � small enough.
Parr23 has proposed on the basis of some heuristic computations, the more general formula

��hsh����2 = 2−3/2 + 15
32� + o��� . �10�

In Ref. 17, using the method of matched asymptotic expansions,21–26 Dorsey, Di Bartolo, and
Dolgert have obtained a formal expansion in powers of �1/2 up to order 4 for the superheating field
hsh���, recovering in particular formula �10� at a formal level. On the other hand, in Ref. 8, Bolley
and Helffer have shown that numerical computations fit very well with the Parr formula.

Constructing subsolutions and supersolutions of �GL�� based on the existence of formal
solutions of the half-space Ginzburg–Landau model obtained in Ref. 17, we have proved in Ref.
14 the following theorem:

Theorem 1.2: There exist �0�0 and C such that, for all ���0, we have

��hsh����2 	 2−3/2 + 15
32� + C�2. �11�

In this paper, to get a complete and rigorous proof of the Parr formula, we prove the following
theorem:

Theorem 1.3: There exist �0 and ��0, such that, for all pairs �f ,A� solution of (GL)�, for all
���0, we have

�A��0�2 = �h2 � 2−3/2 + 15
32� + O��1+�� . �12�

The approach proposed by the physicists Dorsey, Di Bartolo, and Dolgert and the approach
exposed here are distinct. The first uses the method of asymptotic matched expansions and leads
in particular to a formal proof of the Parr formula. The second one is essentially based on the
maximum principle and leads to a rigorous proof of this formula. Nevertheless, we are guided in
our analysis by the structure of the formal construction.

The key of Theorem 1.3 is the improvement of estimates for f�, A, and A� obtained in Refs.
4 and 5. Notably, we get an estimate for f� on �0,�−��, ��0 coinciding with the formal estimate
given in Ref. 17.

The plan of this paper is the following. In Sec. II, we first recall some estimates for the
functions f , A, f� and, A� obtained in Refs. 4 and 6. We get new estimates for A and A�. In Sec.
III, we analyze the estimate for A��0�=h obtained by Bolley and Helffer in Ref. 6. We get the
estimate for f�. In Sec. IV, we improve the upper bound for A��0� given in �6� and get Theorem
1.3. We deduce the Parr formula �10�.
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II. PROPERTIES OF SOLUTIONS OF „GL…�

A. General properties of the Ginzburg–Landau equations

Let us recall some properties of the functions f , A, f�, and A� obtained in Refs. 4 and 5.
Proposition 2.1: Let �f ,A� be a solution of (GL)�.

1. f is increasing on R+ and we have

0 � f�x� � tanh� �x
2

+ x0�, tanh�x0� = f�0� . �13�

2. A is strictly increasing on �0, +�� and we have

0 � A��x� � h, ∀ x � �0, + �� . �14�

3. f� satisfies the inequalities

0 � f��x� �
�

2
, ∀ x � �0, + �� . �15�

4. The pair �f ,A� satisfies the following energy conservation:

�−2f��x�2 + A��x�2 = A�x�2f�x�2 +
�1 − f�x�2�2

2
, ∀ x � �0, + �� . �16�

5. The pair �f ,A� satisfies the inequalities

0 � − Af � A�, ∀ x � �0, + �� . �17�

Remark 2.2: From Proposition 2.1 [see (13)], we deduce that in a region �0,�−��, ��0, we
have for some c�0,

f�0� � f�x� � f�0� + c�1−�. �18�

B. New estimates for f�, A, and A�

In the next sections, we use two useful versions of the maximum principle �cf. Refs. 6 and 3�.
Lemma 2.3: Let d�R+� 	+�
. Let C be a bounded function on �0,d� such that

C�x� 	 0, ∀ x � ��0,d� ,

and let u�C2��0,d�� be a function such that

− u�x�� + C�x�u�x� � 0 �on �0,d� ,

�19�
u��0� 	 0.

If d�R+, we assume that u�d��0, and if d= +�, u��x�→0 when x→ +�.
Then, in these two cases,

u�x� � 0 �on �0,d� .

From Proposition 1.1, we deduce that Inequality �12� is true for any pairs �f ,A� solutions of
(GL)� such that f�0��1/10C. In all the following sections, we will restrict ourselves to the pairs
�f ,A� such that
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f�0� 	
1

10C
. �20�

Some inequalities on the functions f�, A, and A� are not optimal in �0,�−��. In this section, we get
a better control on A and A�. Let us recall that in Ref. 4, Bolley and Helffer have obtained the
following control for A:

h exp�− x� � − A �
h

f�0�
exp�− f�0�x�, ∀ x � R+. �21�

In Ref. 15 �see also Refs. 13 and 17�, we have constructed an asymptotic matched solution
�fvd,�n� ,Avd,�n�� of �GL��. Let us recall that

fvd,�0��x� = tanh� �x
2

+ x0� , �22�

and

�1/2Avd,�0��x� = − 21/4�1 − A0
2�1/2exp�− A0x� , �23�

where A0=tanh�x0�, x0	0.
The comparison with the behavior of the formal solution suggests that the lower bound for −A

is not optimal in the interval �0,�−��. We get a better lower bound for −A in the following
proposition:

Proposition 2.4: Let �� �0, 1
2 �. There exist �0�0 and C�0 such that, for all ���0, for all

pairs �f ,A� solutions of (GL)� satisfying (20), the function A satisfies the inequality

∀x � �0,�−��, − A 	
h

f�0�
�1 − C�1−2��exp − �f�0�x� . �24�

Proof: We set

v2�x� ª tanh� �x
2

+ x0�, tanh�x0� = f�0� . �25�

From �13�, we get

f � v2. �26�

Let us consider the unique solution in H2��0, +��� of the problem

− W� + v2
2W = 0,

�27�
W��0� = h .

From �27�, and applying Lemma 2.3 with d= +�, C=v2
2, and u=W, we get W�0 on R+. From

�3�b, �26� and �27�, we get −�A−W��+ f2�A−W��0. Applying again Lemma 2.3 with d= +�, C
= f2, and u=A−W, we get

A � W . �28�

We set


�x� ª �
0

x

�v2 + c1��dt , �29�

where c1 is a strictly positive parameter, which will be determined later. We consider
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z�x� = z�0�exp�− 
�x�� , �30�

where z�0� is determined by the condition z��0�=h. We get z��0�=−�v2�0�+c1��z�0�=h. Hence,
from �25�, it derives that

z�0� = −
h

f�0� + c1�
. �31�

We have

− �W − z�� + v2
2�W − z� = z�0�exp�− 
�x���−

�

2

1

cosh2���x/2� + x0�
+ 2v2c1� + c1

2�2� .

�32�

From the definition of the function v2, we get

−
1
2

cosh−2� �x
2

+ x0� + 2v2c1 + c1
2� 	 2c1 tanh�x0� −

1
2

cosh−2�x0� . �33�

We choose c1 such that

c1 �
1

22
�sinh�x0�cosh�x0��−1. �34�

From �31�, as z�0��0 and according to �32�–�34�, we get −�W−z��+v2
2�W−z��0. Applying

Lemma 2.3 on �0, +�� with C=v2
2 and u=W−z, we deduce that W−u�0. From �30� and �31�, it

results that

− W 	 − z =
h

f�0� + c1�
exp�− 
�x�� . �35�

From �29�, we get


�x� = 
��0�x + x2�
0

1


���x�d� .

According to �25� and �29� it derives that there exists ��0 such that

∀x � �0,�−��, 
�x� � �f�0� + c1��x +
�1−2�

2
. �36�

Finally, from �28�, �35�, and �36�, we get the inequality

− A 	 − W 	
h

f�0� + c1�
exp�− f�0�x − c1�x −

�1−2�

2
� .

From �20�, we deduce that there exist C�0 and �0, such that, for all �� �0,�0�, for all x
� �0,�−��, we have the inequality

− A 	
h

f�0�
�1 − C�1−2��exp�− f�0�x� .

The proof of Proposition 2.4 follows.
We also have to get a lower bound and an upper bound for A�. In Ref. 4, Bolley and Helffer

get in Proposition 2.4 the following estimate for A�:
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h exp�− x� � A��x� �
h

f�0�
exp�− f�0�x�, ∀ x � R+. �37�

Equalities �22� and �23� suggest that these estimates are not optimal in �0,�−��. We get a better
control for A� in the following proposition:

Proposition 2.5: Let ���0, 1
4
�. There exists �0�0 such that, for all ���0 and for all �f ,A�

solutions of (GL)� satisfying (20), we have the following estimate for A�:

A� = �h + O��1/2−2���exp�− f�0�x�, ∀ x � �0,�−�� . �38�

Proof: From �3�b, the function A� satisfies

− �A��� + f2A� = − 2f�fA, A��0� = A�0�f�0�2. �39�

From �13�, �15�, and �21�, we get the inequality

− 2f�fA �
2�h

2f�0�
exp�− f�0�x�, ∀ x � R+. �40�

We can compare A� with the unique solution in H2�R+� of

− y� + f�0�2y =
2�h

f�0�
exp�− f�0�x� ,

�41�
y��0� = A�0�f�0�2,

given by

y�x� = �− A�0�f�0� +
2�h�1 + f�0�x�

2f�0�3 �exp�− f�0�x� . �42�

According to �39�–�41�, we get −�A�−y��+ f2A�− f�0�2y�0. Applying the principle maximum
�see Lemma 2.3� with d= +�, C�x�= f�0�2, and u=A�−y, we get A��y on R+. From �17� at the
point x=0, it results that −A�0�f�0��h. From �9�, we have h=O��−1/2�. As 1/10C� f�0��1, for
x� �0,�−��, we deduce the estimate

2�h�1 + f�0�x�
2f�0�3 = O��1/2−�� .

As A��y, and from �42�, it results that

A� � �h + O��1/2−���exp�− f�0�x� . �43�

To get a lower bound for A�, we proceed as in Proposition 2.4. We compare A� solution of �39�
with the unique solution in H2��0, +��� of

− W� + v2
2W = 0,

�44�
W��0� = A�0�f�0�2,

where v2 is defined in �25�. From Lemma 2.3 with u=−W and C=v2
2, let us remark that we have

W	0 on R+. Applying again this lemma with d= +�, C= f2, and u=W−A�, we deduce W�A�.
Now, we compare W with the function z defined in �30� and satisfying z��0�=A�0�f�0�2. The
function z−W satisfies �32� �replacing z�0� with −z�0�� and taking c1 as in �34�, we get −�z
−W��+v2

2�z−W��0. Applying Lemma 2.3 with d= +�, u=z−W, and C=v2
2, we get
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z�x� = −
A�0�f�0�2

f�0� + c1�
exp�− 
�x�� � W�x� .

Following Proposition 2.4, for x� �0,�−��, we get

−
A�0�f�0�2

f�0� + c1�
exp�− f�0�x − c1� −

�1−2�

2
� � z�x� .

It derives that

− A�0�f�0��1 − C�1−2��exp�− f�0�x� � A�. �45�

From �24� at the point x=0, we get

h�1 − C�1−2�� � − A�0�f�0� .

From �45�, it results that

h�1 − C�1−2��exp�− f�0�x� � A�. �46�

According to �43� and �46�, the proof of Proposition 2.5 follows.

III. ESTIMATES FOR A�„0…

A. Preliminaries

First, we show that Inequality �12� is true for some pairs �f ,A� such that

f�0� � �0,
1
2

− ��� � � 1
2

+ ��,1�,��,� � �R+�2.

Lemma 3.1: There exist ��0 and �0, such that, for all ���0, for all pairs �f ,A� solutions of
(GL)� such that

f�0� � �0,
1
2

− ��1/4� � � 1
2

+ ��1/4,1� ,

we have

��A��0��2 � 2−3/2. �47�

Proof: We set


0�y� = 2y2�1 − y2� . �48�

This function achieves its unique maximum on �0,1� at the point y=1/2, and 
0�1/2�=2−3/2.
We have seen that Inequality �47� is satisfied for f�0��1/10C. If f�0�	1/10C, then from �38�,
we have

A��0�
f�0�

= O��−1/2� .

From �6�, with the choice f�0�=1/2+��1/4, we get for some C̃,

��A��0��2 � 2−3/2 +
1

2

0�� 1

2
��2�1/2 + C̃�1/2 + O���3/4� .

We choose first � such that 1
2
0��1/2��2+ C̃�−1 and then ���0 for �0 small enough. The proof

of Lemma 3.1 follows.
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From now on, � is fixed according to Lemma 3.1 and we assume that

f�0� � � 1
2

− ��1/4,
1
2

+ ��1/4�, � � 0. �49�

From �7�, for all pairs �f ,A� solution of �GL�� satisfying �49�, we have

�h2 	 2−3/2 + O��1/4� . �50�

From �9� and �50�, we deduce that

�h2 = 2−3/2 + O��1/4� , �51�

for all pairs �f ,A� solution of �GL�� satisfying �49�. In order to get Inequality �12�, let us analyze
the proof by Bolley and Helffer of the De Gennes formula �Ref. 6, p. 604�, and improve some of
their estimates. For doing this, we are guided by the analysis of the properties of the approximate
solution constructed in Ref. 15. To get an upper bound on A��0�, Bolley and Helffer start by the
identity

h2 = − 2�
0

+�

A��t�A��t�dt .

Then, from �3��b�, they get

h2 = 2�
0

+�

A��t��− A�t�f�t�2�dt . �52�

Then, using Inequality �17�, they obtain

h2 � 2�
0

+�

f�t�A��t�2dt . �53�

We suspect that something has been lost when writing

− Af � A�.

Then, using �3��a� and the energy conservation �16�, they get

h2 � 2�
0

+�

f�t�A��t�2dt = �
0

+�

f�x��1 − f�x�4�dx − 6�−2�
0

+�

f�x�f��x�2dx . �54�

In order to get the control of the right-hand side of Inequality �54�, in particular the two terms f�
and 1− f2, they use the conservation law �16�. If we rewrite the energy conservation in the form

��−1f��x� + A��x��2 = A�x�2f�x�2 + 2�−1f��x�A��x� + 1
2 �1 − f�x�2�2,

we observe that these authors have neglected the positive term A�x�2f�x�2+2�−1f��x�A��x� for
getting the inequality

�−1f��x� + A��x� 	
1
2

�1 − f�x�2� .

To improve Inequality �54�, in the next sections, we get an upper bound and a lower bound for the
difference �A��2−A2f2. Moreover, we improve the control on f� given in �15�. This is the object of
the following subsection.
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B. Estimate for f�

In order to get an estimate on f� on the interval �0,�−��, we establish the following lemma:
Lemma 3.2: Let ���0, 1

4
�. There exists �0 such that, for all ���0, for all pairs �f ,A�

solutions of (GL)� satisfying (49), we have the following estimate:

A�f� =
�2h3

2f�0�2 exp�− f�0�x��1 − exp�− 2f�0�x� + O�����, ∀ x � �0,�−�� . �55�

Proof: Step 1: Estimate for A�f� at the point x=�−�. Let ���0, 1
4
�. We set Y =A�f�. As f�

	0 and A�	0, we have Y 	0. In order to use Lemma 2.3 with d=�−�, we estimate A�f� at the
point x=�−�. From �13� and �16� at the point x=�−� and �17�, we deduce that

f���−�� �
�

2
�1 − f��−��2� �

�

2
�1 − tanh�x0�2� .

According to �38�, and as tanh�x0�= f�0� with

f�0� � � 1
2

− ��1/4,
1
2

+ ��1/4� ,

we deduce that there exists Ĉ such that

�A�f����−�� � � �h

22
+ Ĉ�3/4�exp�− f�0��−�� . �56�

To get a lower bound for �A�f����−��, let us remark that, from �21� and �37� at the point x=�−�, for
� small, we have �A2f2−A�2���−��=O��−1�exp�−f�0��−��=O��2�. From �16� at the point x=�−�,
we deduce that

�−2f���−��2 =
�1 − f��−��2�2

2
+ O��2� 	

1

2�1 − tanh2��1−�

2
+ x0��2

+ O��2� .

Hence, from �49�, we get

f���−�� 	
�

22
�1 + O��3/4�� .

According to �38�, it results that there exists C̃ such that

� �h

22
+ C̃�3/4�exp�− f�0��−�� � �A�f����−�� . �57�

Step 2: Upper bound for Y. Using the Ginzburg–Landau equations �3�, we get

Y� = Af2f� + �2A��− f + f3 + A2f� .

We observe that Y��0�=hf��0�. Differentiating once more and using �3�, we deduce that the
function Y is the unique solution in H2�R+� of the problem

Y� − f2Y = 2f f�2A + 2�2Af2�− f + f3 + A2f� + �2A��− f� + 3f�f2� + 2�2A�2Af + 2�2A�A2f�,

Y��0� = hf��0� .

Hence, we get

− Y� + GY = − 2f f�2A − 2�2Af2�f3 − f� − 2�2A3f3 − 2�2A�2Af ,
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Y��0� = hf��0� , �58�

where

G ª f2 + �2�− 1 + 3f2 + A2� . �59�

According to �18� and �21�, for x� �0,�−��, we get

f�0�2 � G�x� � f�0�2 + O��1−�� . �60�

In order to get an upper bound for Y, we look for an upper bound of the right-hand side of �58�.
First, let us analyze the main term of �58� which is given by −2�2Af�A2f2+A�2�. According to �18�
and �21�, it derives that there exists C2 such that, for x� �0,�−��, we get

− 2�2Af�A2f2 + A�2� � �4�2h3 + C2�1−��exp�− 3f�0�x� .

As 0� f �1 and A�0 on R+, we get

− 2f f�2A − 2�2Af2�f3 − f� � − 2f f�2A .

As h=O��−1/2� �see �9��, and from �15�, �21�, �38�, and �49�, there exists C1 such that, for all x
� �0,�−��, we get

− 2f f�2A � C1�3/2 exp�− f�0�x� .

Then, to get an upper bound for Y, we compare this function with the solution in H2��0,�−��� of

− y1� + f�0�2y1 = �4�2h3 + C2�1−��exp�− 3f�0�x� + C1�3/2 exp�− f�0�x� , �61�

satisfying

y1��0� = Y��0�, y1��−�� = � �h

22
+ Ĉ�3/4�exp�− f�0��−�� . �62�

From �60� and as Y 	0, we have

− �Y − y1�� + f�0�2�Y − y1� � − �Y − y1�� + GY − f�0�2y1 � 0.

From �56� and �62�, we have �Y −y1���0�=0 and �Y −y1���−���0. Applying Lemma 2.3 with d
=�−�, C= f�0�2, and u=Y −y1, for x� �0,�−��, we get Y �y1 on �0,�−��. The solution of �61� is
given by

y1�x� = C̃1���exp�− f�0�x� + C̃2���exp�f�0�x� −
1

8f�0�2 exp�− 3f�0�x��4�2h3 + �C2�1−���

+ exp�− f�0�x�� C1

4f�0�2�3/2�1 + 2f�0�x�� . �63�

For x� �0,�−��, ���
1
4

�, we have �3/2�1+2f�0�x�=O���. Hence, from �62� and �63�, we get

y1��−�� = C̃2���exp�f�0��−�� + �C̃1��� + O����exp�− f�0��−�� = � �h

22
+ Ĉ�3/4�exp�− f�0��−�� .

�64�

As �h=O��1/2�, from �64�, it results that

C̃2��� = �− C̃1��� + O��1/2��exp�− 2f�0��−�� . �65�

From �63�, we have
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y1��0� = f�0�C̃2��� − f�0�C̃1��� +
1

8f�0�
�12�2h3 − 2C1�3/2 + 3C2�1−�� .

From �65� and the condition y1��0�=Y��0�=hf��0�, we get for � small

C̃1��� = −
hf��0�

f�0�
+

3

2

�2h3

2�0�2 + O��1−�� .

From �3�, �21�, and �24�, we get

f��0� =
�2h2

f�0�
+ O��2� . �66�

Hence, we get

C̃1��� =
�2h3

2f�0�2 + O��1−�� . �67�

According to �63� and �65�, for x� �0,�−��, we get

y1�x� = −
�2h3

2f�0�2 exp�− 3f�0�x� + exp�− f�0�x��C̃1��� + �− C̃1��� + O��1/2��exp�2f�0��x − �−���� .

�68�

From �67�, we have C̃1���=O��1/2�. Let us remark that, for x� �0,�−� /2�, for all n�N, we have

�− C̃1��� + O��1/2��exp�2f�0��x − �−��� = O��n� .

From �67� and �68�, for x� �0,�−� /2�, it results that

Y � y1�x� = −
�2h3

2f�0�2 exp�− 3f�0�x� + � �2h3

2f�0�2 + O��1−���exp�− f�0�x� . �69�

If we make �0 smaller, we get �55� on �0,�−��.
Step 3: Lower bound for Y. According to �13�, �15�, and �21�, and as A�	0 and A�0, we

deduce that there exists C3 such that, for x� �0,�−��, we get

− 2f f�2A + 2�2Af2�f − f3� 	 2�2Af2�f − f3� 	 C3�3/2 exp�− f�0�x� .

On the other hand, from �24� and �38�, it results that there exists C4 such that

− 2�2Af�A2f2 + A�2� 	 �4�2h3 + C4�1−��exp�− 3f�0�x�, ∀ x � �0,�−�� .

From Remark 2.2, we can compare Y with the solution in H2��0,�−��� of

− y2� + �f�0�2 + C5�1−��y2 = �4�2h3 + C4�1−��exp�− 3f�0�x� − C3�3/2 exp�− f�0�x� �70�

satisfying the conditions

y2��0� = Y��0�, y2��−�� = � �h

22
+ C̃�3/4�exp�− f�0��−�� . �71�

According to �57�, �70�, and �71�, Lemma 2.3 with d=�−�, C�x�= f�0�2+C5�1−�, and u=y2−Y, we

get y2�Y on �0,�−��. We set C̄ªf�0�2+C5�1−�. The solution of �70� is given by

y2�x� = Ĉ1���exp�− C̄x� + Ĉ2���exp�C̄x� + F�x�exp�− f�0�x� , �72�

where
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F�x� = −

4�2h3 exp�− 2f�0�x� + 8
C3

C5
�1/2+�f�0�2 − C3�3/2 + C4�1−� exp�− 2f�0�x�

8f�0�2 − C5�1−� exp�− f�0�x� .

From �51�, we have �2h3=O��1/2�, hence

F��−�� = O��1/2+�� .

From �70� and �72� at the point x=�−�, it results that

Ĉ2��� = − Ĉ1���exp�− 2C̄�−�� + O��1/2�exp�− �C̄ + f�0���−�� . �73�

From �72�, we get

y2��0� = −

8
C3

C5
�1/2+�f�0�3 + 12�2h3f�0� + 3�1−�C4f�0� − f�0�C3�3/2

�− 8f�0�2 + C5�1−��
+ C̄�Ĉ2��� − Ĉ1���� .

The condition y2��0�=hf��0�, �66� and �73� lead to

− Ĉ1���C̄ +
3�2h3

2f�0�
+ O��1/2+�� = hf��0� ,

hence, as C̄=f�0�2+C5�1−�,

Ĉ1��� = −
hf��0�

f�0�
+

3�2h3

2f�0�2 + O��1/2+�� .

Following step 1, we restrict ourselves to �0,�−� /2� and from �66�, we get

Y�x� 	
�2h3

2f�0�2 exp�− f�0�x��1 − exp�− 2f�0�x� + O����� . �74�

From �69� and �74�, we deduce that there exists �0 such that, for all ���0, for all pairs �f ,A�
satisfying �49�, Estimate �55� is true on �0,�−��. The proof of Lemma 3.2 follows.

From Lemma 3.2, we deduce an estimate for f� in the following proposition:
Proposition 3.3: Let ���0, 1

8
�. There exists �0 such that, for all ���0, for all pairs �f ,A�

solutions of (GL)� satisfying (49), we have the estimate

f��x� = �2h2�1 − exp�− 2x� + O�����, ∀ x � �0,�−�� . �75�

Proof: According to Proposition 2.5 and Lemma 3.2, we get

f��x� =
�2h3

2f�0�2 �1 − exp�− 2f�0�x� + O����� . �1

h
+ O��3/2−2��� .

For

f�0� =
1
2

+ O��1/4� ,

and for x� �0,�−��, we have exp�−2f�0�x�=exp�−2x�+O��1/4−��. As ���0, 1
8
�, Estimate �75�

follows and this achieves the proof of Proposition 3.3.
Remark 3.4: For n=1, at the superheating field, we have shown in Ref. 15 (see also Ref. 17)

that
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fvd,�1��x� = tanh� �x
2

+ x0� +
�

4
exp�− 2x� , �76�

where

tanh�x0� =
1
2

.

From (76), it results that, for x� �0,�−��, we have

�fvd,�1����x� =
2

4
��1 − exp�− 2x�� + O��2−�� . �77�

According to (7) and (8) with f�0�=1/2, the main term of Estimate (75) is the one of Estimate
(77). Therefore, we suspect that Estimate (75) is optimal.

C. Estimate for A�+Af

To get an estimate for A�+Af , we use Lemma 2.3 and estimates for A�, A, f�, and f obtained
in Propositions 2.4 and 2.5.

Lemma 3.5: Let ���0, 1
8
�. There exists �0 such that, for all ���0, for all pairs �f ,A�

solutions of (GL)� satisfying (49), we have the following estimate:

A� + Af =
1

2
exp�−

1
2

x��− �2h3 exp�− 2x� −
1

8h
+ 3�2h3 + O��1/2+���, ∀ x � �0,�−�� .

�78�

Proof: Step 1: Upper bound for A�+Af . We introduce the function ZªA�+Af . From �17�, this

function is positive. At the point x=�−�, from �21�, �24�, and �38�, we deduce that there exist Ĉ

and C̃ such that

Ĉ�1/2−2� exp�− f�0��−�� � Z��−�� = �A� + Af���−�� � C̃�1/2−2� exp�− f�0��−�� . �79�

From �3��b�, we have

Z� = Af2 + A�f + Af�.

Differentiating more, and using the GL equations, we get

Z� = A�f2 + 2Af�f + Af3 + 2A�f� + �2A�− f + f3 + A2f� .

It results that the function Z satisfies

− Z� + �f2 + 2f��Z = − �2A�− f + f3 + A2f� . �80�

Let us estimate Z��0�. As f��0�=0 and from �16� at the point x=0, we get

Z��0� = f�0��h + A�0�f�0�� =
f�0��1 − f�0�2�2

2�h − A�0�f�0��
.

From �17� and �24� at the point x=0, we get h�2+O��3/2−2����h−A�0�f�0��2h. It results that

f�0��1 − f�0�2�2

4h
� Z��0� �

f�0��1 − f�0�2�2

4h�1 + O��3/2−2���
.

Hence, as
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f�0� =
1
2

+ O��1/4� ,

we get

Z��0� =
1

162h
�1 + O��1/4�� . �81�

Now, we can estimate the term −�2A�−f + f3+A2f�. First, for x�R+, as A�0 and 0� f �1, we
have −�2A�−f + f3��0. According to �18� and �21� and using

f�0� =
1
2

+ O��1/4� ,

we deduce that there exists C6 such that, for x� �0,�−��, we get the estimate

− �2A3f � �2�2h3 + C6�3/4�exp�− 3f�0�x� .

To get an upper bound for Z, as f2+2f�	 f�0�2, we compare this function with the solution in
H2��0,�−��� of

− V� + f�0�2V = �2�2h3 + C6�3/4�exp�− 3f�0�x� , �82�

and satisfying

V��0� = Z��0�, V��−�� = C̃�1/2−2� exp�− f�0��−�� . �83�

According to �79�, �80�, �82�, and �83� and as Z	0, we can apply Lemma 2.3 with d=�−�, C
= f�0�2 and u=Z−V and we get Z�V. For x� �0,�−��, the solution of �82� is given by

V�x� = C̃3���exp�− f�0�x� + C̃4���exp�f�0�x� − � �2h3

4f�0�2 +
C6

8f�0�2�3/4�exp�− 3f�0�x� . �84�

From �83� and �84�, we get

C̃4��� = �− C̃3��� + O��1/2−2���exp�− 2f�0��−�� . �85�

From �84�, we deduce that

V��0� = − f�0�C̃3��� + f�0�C̃4��� +
3�2h3

4f�0�
+

3C6

8f�0�
�3/4.

From �85� and taking account the condition V��0�=Z��0� �see �81�� and replacing f�0� with

1
2

+ O��1/4� ,

we get

C̃3��� = −
1

16h
�1 + O��1/4�� +

3�2h3

2
. �86�

We have

exp�− f�0�� = exp�−
1
2

x��1 + O��1/4−���

on �0,�−��. From �84�–�86�, we get the estimate, for x� �0,�−� /2� and for � small enough
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Z � V�x� =
1

2
exp�−

1
2

x��− �2h3 exp�− 2x� −
1

8h
+ 3�2h3 + O��3/4−��� . �87�

Step 2: Lower bound for A�+Af . First, from �24�, we remark that there exists C7 such that, for
x� �0,�−��,

− �2A�− f + f3� 	 C7�3/2 exp�− f�0�x� .

According to �15� and �18�, we deduce that there exists C8 such that f2+2f�� f�0�2+C8�1−�. To
get a lower bound, we compare Z with the solution of

− W� + �f�0�2 + C8�1−��W = �2�2h3 + C6�3/4�exp�− 3f�0�x� + C7�3/2 exp�− f�0�x� ,

�88�
W��0� = Z��0�, W��−�� = Ĉ�1/2−2� exp�− f�0��−�� .

Following Step 1, we apply Lemma �2.3� with d=�−�, C= �f�0�2+C8�1−��, and u=W−Z, and we
get W�Z on �0,�−��. Following Step 2, in the proof of Lemma 3.2, one can prove that

W�x� =
1

2
exp�−

1
2

x��− �2h3 exp�− 2x� −
1

8h
+ 3�2h3 + O��1/2+��� � Z�x� . �89�

Taking into account �87� and �89�, we deduce that there exists �0 such that, for all ���0, for all
pairs �f ,A� satisfying �49�, we get Estimate �78� on �0,�−��. The proof of Lemma 3.5 follows.

Then, from Lemma 3.5, we can improve Inequality �17� and get the following proposition:
Proposition 3.6: There exists �0 such that, for all ���0, for all pairs �f ,A� solutions of (GL)�

satisfying (49), we have the following estimate:

− Af = A� − B, ∀ x � �0,�−�� , �90�

where B is defined by

B�x� ª
1

2
exp�−

1
2

x��− �2h3 exp�− 2x� −
1

8h
+ 3�2h3 + O��1/2+��� . �91�

D. Control of the function Sª„A�…2−A2f2

In all the following sections, we set

S2
ª �A��2 − A2f2. �92�

From Proposition 3.5, we can state the following proposition:
Proposition 3.7: Let ���0, 1

8
� and S2 be the function defined in (92). There exists �0 such

that, for all ���0, for all pairs �f ,A� solutions of �GL�� satisfying (49), we have the following
estimate:

S2 = 1
8 �− 8�2h4 exp�− 2x� − 1 + 24�2h4 + O�����exp�− 2x�, ∀ x � �0,�−�� . �93�

Proof: According to �21�, �24�, �37�, and �38�, for x� �0,�−��, we deduce the estimate

A� − Af = 2�h + O��1/2−2���exp�− f�0�x� . �94�

From �94� and Lemma 3.5 �see �78��, we can write

S2 = �A� − Af� . �A� + Af� = 1
8 �− 8�2h4 exp�− 2x� − 1 + 24�2h4 + O�����exp�− 2x� .

The proof of Proposition 3.7 follows.
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IV. PROOF OF THE PARR FORMULA

In this section, first, using Propositions 3.3, 3.6, and 3.7, we get Inequality �12� for all pairs
�f ,A� solution of �GL�� such that

f�0� � � 1
2

− ��1/4,
1
2

+ ��1/4� .

In the following, we use the elementary equality, for a�0 and b�0,

a2 + b2 = a + b −
2ab

a + b + a2 + b2
. �95�

Proof of Inequality (12): Step 1: New estimate for A��0�. According to �52� and Proposition
3.6 �see �90��, we get the upper bound for A��0�2,

h2 � 2�
0

�

f�t�A��t�2dt − 2�
0

�−�

A��t�f�t�B�t�dt ,

where B is defined in �91�. From �54�, we get

h2 � − 2�
0

�−�

A��t�f�t�B�t�dt +�
0

+�

f�x��1 − f�x�4�dx − 6�−2�
0

+�

f�x�f��x�2dx . �96�

According to �16� and �95� with the choice a=�−1f� and b=S, the following equality results:

1
2

�1 − f2� = �−1f� + S − T , �97�

where T is defined on R+ by

T�x� ª
2�−1f�S

S + �−1f� + S2 + �−2�f��2
. �98�

From �97� and following Ref. 6 �see Proposition 3.1, p. 604�, we get

�
0

�

�1 − f4�x��f�x�dx =
1

22
�−1�1 − f�0�2��3 + f�0�2� + 2�

0

�

f�x��1 + f�x�2� . S�x�dx

− 2�
0

�

f�x��1 + f�x�2�T�x�dx ,

and

�
0

�

f�x�f��x�2dx =
�

42
�1 − f�0�2�2 − ��

0

�

f�x�f��x�S�x�dx + ��
0

�

f�x�f��x�T�x�dx .

Hence, from �96� we get

h2 � �−1
0�f�0�� + I1 + I2 + I3,

where 
0 is defined in �48�,

I1 ª − 2�
0

�−�

A��t�f�t�B�t�dt , �99�
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I2 ª
2�

0

�

f�x��1 + f�x�2�S�x�dx + 6�−1�
0

�

f�x�f��x�S�x�dx , �100�

I3 ª − 2�
0

�

f�x��1 + f�x�2�T�x�dx − 6�−1�
0

�

f�x�f��x�T�x�dx . �101�

For all f�0�� �0,1�, we have 
0�f�0���2−3/2. Then, we get

h2 � �−12−3/2 + I1 + I2 + I3. �102�

For �� �0, 1
8 �, we cut the integration interval in �0,�−�� and ��−� , +��. As the functions f and f�

are bounded and the function S admits for upper bound and lower bound an exponential polyno-
mial in the form of P�x�exp�−2x�, the integrals in �100� and �101� on the interval ��−� , +�� are
equal to O��n� for all n�N. According to �18�, �38�, and �91�, we get

− 2�
0

�−�

A��t�f�t�B�t�dt � − f�0��
0

�−�

exp�− 2x���2h4 exp�− 2x� −
1

8
+ 3�2h4 + O�����dx .

From �51� and as e−2�−�
=O��n� for � small, it results that

I1 � − 3
32 + O���� . �103�

Step 2: Estimate for I2. On the other hand, using Proposition 3.7, and making the scaling u
=exp�−2x�, we get

�
0

�−�

S�x�dx =
1

4
�

e−2�−�

1 2u − u2

u
du + O����

= �1

4
2u − u2 +

1

4
arcsin�u − 1��

e−2�−�

1

+ O����

hence, for � small

�
0

�−�

S�x�dx =
�

8
+

1

4
+ O���� . �104�

From �18� and �104� and Proposition 3.3 �see �75��, it results that

6�−1�
0

�−�

f�x�f��x�S�x�dx � 6�−1�f�0� + c�1−���
0

�−�

�2h2�1 − exp�− 2x�� . S�x�dx .

From �51� and making the scaling u=exp�−2x�, we get

�
0

�−�

�1 − exp�− 2x�� . S�x�dx =
1

4
�

e−2�−�

1 �1 − u�
u

2u − u2du + O����

= ��3

8
−

u

8
�2u − u2 +

1

8
arcsin�u − 1��

e−2�−�

1

+ O���� ,

hence

�
0

�−�

�1 − exp�− 2x�� . S�x�dx =
�

16
+

1

4
+ O���� .

From �49� and �51�, we get
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6�−1�
0

�−�

f�x�f��x�S�x�dx �
3

2
� �

16
+

1

4
� + O���� . �105�

According to �18� and �104�, we deduce that

2�
0

�−�

f�x��1 + f�x�2�S�x�dx � 2�f�0� + c�1−���1 + �f�0� + c�1−��2��
0

�−�

S�x�dx .

From �104�, we get

2�
0

�−�

f�x��1 + f�x�2�S�x�dx �
3

2
��

8
+

1

4
� + O���� . �106�

According to �100�, �105�, and �106�, we get

I2 �
9�

32
+

3

4
+ O���� . �107�

Step 3: Estimate for I3. From Proposition 3.3 �see �75�� and �51�, on the interval �0,�−��, we
have

T 	 U ª

B

C
, �108�

where

B�x� ª
2

2
�1 − exp�− 2x� + O����� . S , �109�

and

C�x� ª S +
2

4
�1 − exp�− 2x� + O����� . S +S2 +

1

8
�1 − exp�− 2x� + O�����2. �110�

As the functions f� and S are positive on R+, from �98�, we deduce that T	0. Thus, from �18� and
�108�, we get

− 2�
0

�

f�x��1 + f�x�2�T�x�dx � −
3

2
�

0

�−�

U�x�dx + O���� . �111�

Moreover, we have

− 6�−1�
0

�

f�x�f��x�T�x�dx � −
3

2
�

0

�−�

�1 − exp�− 2x�� . U�x�dx + O���� . �112�

Making the scaling u=exp�−2x�, from �51� and �108�–�110�, we get

�
0

�−�

U�x�dx =
1
2
�

e−2�−�

1 1
2u

u�2 − u��u − 1�

u − 2 − u�2 − u�
du + O���� , �113�

and

�
0

�−�

�1 − exp�− 2x�� . U�x�dx =
1
2
�

e−2�−�

1

−
1

2u

u�2 − u��u − 1�2

u − 2 − u�2 − u�
du + O���� . �114�

For u� �0,2�, we have
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� 1
2u

u�2 − u��u − 1�

u − 2 − u�2 − u�
du =

2

4
�arcsin�u − 1� − u + 2u − u2� ,

and

� −
1

2u

u�2 − u��u − 1�2

u − 2 − u�2 − u�
du =

1

8
arcsin�u − 1� +

2

8
2u − u2�3 − u� −

2

4
u�1 −

u

2
� .

From �113�, it results that

�
0

�−�

U�x�dx =
�

8
+ O���� . �115�

Moreover, from �114�, we get

�
0

�−�

�1 − exp�− 2x�� . U�x�dx =
1

8
�1 +

�

2
� + O���� . �116�

From �111�, �112�, �115�, and �116�, we get

I3 � −
9�

32
−

3

16
+ O���� . �117�

Step 4: Upper bound for A��0�. According to �102�, �103�, �107�, and �117�, we deduce that
there exists �0, such that, for all ���0 and all pairs �f ,A� solutions of �GL�� satisfying �49�, we
have

h2 � �−12−3/2 + 15
32 + O���� . �118�

From Lemma 3.1 and �118�, the proof of Theorem 1.3 follows.
According to �11� and Theorem 1.3, we deduce the Parr formula �10�.
Theorem 4.1 (Parr formula): There exists �0 such that, for all �0��, we have

��hsh����2 = 2−3/2 +
15

32
� + o��� .

Remark 4.2: In Ref. 2, Bolley and the authors have proved that the set 	�f0 ,h�� �0,1�� �0,
+��s.t. ∃ �f ,A� solution of (GL)� with f�0�= f0
 is a graph of a map � from �0,1� into �0, +��.
From Theorem 1.3, we deduce an upper bound for the maximum of � on �0,1�.

V. CONCLUSION

In the weak-� limit, we have rigorously proved that the second term in the expansion of
�1/2hsh��� is of order of O��� and we have recovered the constant of Parr. In Ref. 23, this author
associated the initial condition

f0 =
1
2

−
7

32
�

to the superheating field. An open problem is to prove that the second term in the expansion of f0

is of the order of O���. Consequently, we will prove the following conjecture introduced in Ref.
15 �see also Ref. 24�. At the superheating field, there exists �0 such that, for all ���0, we have
the asymptotic expansion
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−
A��0�
A���0�

= 2 +
3

16
� + O��2� . �119�

More generally, in Ref. 15 �see also Ref. 17�, as a consequence of the construction of an
asymptotic matched solution, we have obtained a complete expansion for the superheating field,
denoted by hsh,f���=�−1/2�i=0

� hi�
i. In Ref. 16, we have rigorously proved that for all n�N, there

exist �0 and C such that, for all ���0, we have

�1/2hsh��� 	 �
i=0

n

hi�
i + C�n+1.

An open problem is to prove that for all n�N, we have

�1/2hsh��� = �
i=0

n

hi�
i + o��n� . �120�

It seems difficult to extend the approach presented here to obtain the coefficients of higher order
terms. It is necessary to recover the asymptotic matched solution at all orders constructed in Ref.
15 to get these terms.

In the large-� limit, using a method of matched asymptotic expansions, Chapman11 �see also
Refs. 7 and 20� has formally proved the formula

hsh��� =
1
2

+ C�−4/3 + o��−4/3� �121�

for some C�0.3. This suggests that the superheating field hsh��� admits an expansion in powers
of �−4/3 when � is large. The rigorous proof of formula �121� is also an open problem.
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We develop and describe continuous and discrete transforms of class functions on
compact semisimple Lie groupG as their expansions into series of uncommon
special functions, called here C-functions in recognition of the fact that the func-
tions generalize cosine to any dimensionn,`. A uniform discretization of the
problem on lattices of any density is described. Continuous and discrete orthogo-
nality of C-functions is shown. Discrete transform is known in the casen=1 as the
cosine transform. Continuous extension of the discrete transform is described. In
general, C-functions are the contributions to irreducible characters from just one
orbit of the Weyl group ofG. Their products are fully decomposable to the sums of
C-functions, so are the reductions to subgroups of the Lie group. They are eigen-
functions of Laplace operator, satisfying Neumann conditions at the boundary of
the fundamental region ofG, etc. A ready-to-use presentation is made of two of the
four variants of the two-dimensional transforms. Both variants have in common
exploitation of square lattices for the discrete version of the transforms. They are
based on the compact Lie groups SUs2d3SUs2d and Os5d, or, equivalently, Sps4d.
Remaining two groups, SUs3d and Gs2d, involve triangular lattices. They are con-
sidered separately. Processing digital data, sampled on square lattices, is our moti-
vating application. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1897143g

I. INTRODUCTION

This is the first in the series of three papers1,2 dealing with two families of special functions,
called here C- and S-functions, whose many properties, very useful for applications, apparently
went mostly unnoticed, although the functions have been known in Lie theory for decades. The
C-functions were called “orbit functions” or “orbit sums” since Ref. 3, while the S-functions
appear in Weyl’s character formula under the name “characteristic functions.”

The aim of the series is twofold,sid to formulate, derive, and bring forward practically useful
properties of these functions and their discretization in general, andsii d to work out all the details
of all the four variants in two dimensions.

In this paper we consider two of the four variants of C-functions, since both of them involve
rectangular lattices. Two other cases, which involve triangular lattices, are given in Ref. 1. The
S-functions for all four cases are described in Ref. 2.

The present approach can be viewed as originating from three sources. First it is the traditional
theory of compact semisimple Lie groups and their finite dimensional representations. Indeed,
from there we take the definition of C- and S-functionssthough under different names and to be
used for a very different purposed, second is the general discretization of the Fourier-like trans-
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forms involving C-functions,3 and finally it is the observation, made in Ref. 4, that the continuous
extensions of discrete C-expansions interpolates smoothly between points where digital data are
given.

Two and three dimensional digital data is often collected in physical experiments, the largest
and, probably, the most costly of them being the elaborate batteries of particle counters in high-
energy experimental astrophysics and particle physics. In the recent years digital images have also
been generated in innumerable applications. Quite often processing such data involves Fourier
analysis and discrete transforms.5

In this paper we describe a new versatile approach to the treatment of such data, which has
been mostly unexplored so far. One of our objectives is to make the approach as ready to use as
possible. Its one-dimensionalsdiscreted version was discovered some 30 years ago and is exten-
sively used ever since under the name of the cosine transform.6,7 Its straightforward generalization
to two dimensions is, in our notation, thesdiscreted case of A13A1 fequivalently SUs2d
3SUs2dg. Apparently, the first exploitation of the caseA2 fequivalently SUs3dg is quite recent,4,8,9

although the problem of processing the digital data sampled on triangular lattices is not new.10

The important difference between the presented method and the traditional decomposition into
Fourier series is not in that here we consider other compact semisimple Lie groups of rank 2 rather
than the traditional SUs2d3SUs2d. This is merely a technicality; the reason for the approach lies
elsewhere. Traditionally, in any dimension 1ønø`, one uses the periodicity of the functionssthe
functions to be decomposed as well as the expansion functionsd. The underlying group in that case
is the Us1d of our examples2.2d, or a product ofn of them. Thus, the involved group is the group
of discrete translations. In our method a larger group is involved, the affine Weyl group, which
contains the translations as its subgroup. It requires the use of more complicated functionssthe
C-functions or S-functionsd, but, in comparison, it involves lower harmonics in the expansions,
which in turn results in much smoother interpolation between digital points during the continuous
extension of the method,4 etc.

As a quantitative measure of the difference between the two methodssthe number of “har-
monics,” for exampled, we can take the comparison of the area of the fundamental region for the
affine Weyl group and for its translation subgroup, assuming we have the grids of comparable
densities. The fundamental regionsF of the affine groups are shown in Fig. 1, the fundamental
region of the translation subgroup is the Voronoi domain11 salso called the proximty celld of the
corresponding root lattice. ForA1 the ratio is 1 : 2, forA13A1,A2,C2, andG2 the ratio is 1 : 4,
1 : 6, 1 : 8, and 1 : 12,respectively.

FIG. 1. The simple roots, the fundamental weights, along with their duals, and the fundamental region for the casesA1

3A1 andC2.
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There are three compact simple Lie groups of rank 2, namely the following: SUs3d, Os5d or
Sps4d, and Gs2d. There is only one nonsimple but semisimple compact Lie group, SUs2d
3SUs2d. In this paper, we use the notation more familiar in Lie algebra theory,

A1 ↔ SUs2d,

and

A1 3 A1 ↔ SUs2d 3 SUs2d,

s1.1d
A2 ↔ SUs3d,

C2 ↔ Os5dor Sps4d,

G2 ↔ Gs2d.

In principle, one could also consider the compact Lie groups of rank 2, Us1d3Us1d and Us1d
3SUs2d, which are not semisimple. In view ofs2.2d, that would lead to the traditional Fourier
decompositions. Here we disregard those cases.

In Sec. II, our general goals are compared with the traditional approach, namely, with the
decomposition of a class functionf into series irreducible characters. It is pointed out that our
expansion functions are different, and that we are considering in parallel continuousf as well as
f sampled on a discrete lattice of any density. Section III deals with the one-dimensional case, both
continuous and discrete. It serves as a didactic illustration and an introduction to higher rank cases.
General continuous case of any semisimple compact Lie group is presented in a uniform way in
Sec. IV. Properties of C-functions are our main target. Sections V and VI contain, respectively, all
the details for exploitation of the method forA13A1 andC2. Discretization of two-dimensional
cases in general, as well as the specialization toA13A1 and C2 is the subject of Sec. VII.
Examples are shown. Concluding remarks and related problems are brought forward in Sec. VIII.

Let us underline some notations used throughout the paper. The symbolsR ,Z, andN denote
the real numbers, integers, and positive integers, respectively. The scalar product ofa,bPR2 in a
real Euclidean spaceRn of dimensionn, is denoted bykaubl. The same notation is used for the
Hermitian product of the class functions in the functional space spanned by irreducible characters
sor C-functionsd.

II. GENERAL GOALS

The standard general problem of harmonic analysis on a compact Lie groupG, is to consider
the functions depending on conjugacy classes of elements of the group, i.e., such that

fsg8d = fsg0g g0
−1d, for all g,g0 P G,

and to find their expansions, along with their inversions

fsgd = o
l

dlxlsgd, dl =E
F

fsgdxlsgddg, s2.1d

in terms of irreducible charactersxl. The inversion is possible due to the orthogonality of the
characters when integrated over the fundamental regionF of the group.

The simplest example ofs2.1d is the case whenG is the 1-parametric compact Lie group Us1d.
In this case the irreducible characters are the exponential functions,
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xmsud = e2pimu, wheremP Z andu P R. s2.2d

We take a similar problem, but it differs froms2.1d in two important ways.

sid Our expansions are into series of C-functionss4.7d, rather than irreducible characters of
compact semisimple Lie groups. It offers a considerable practical advantage, since the
C-functions, unlike the characters, do not get more complicated asl increases. The second
advantage has yet to be utilized, the C-functions are the eigenfunctions of the correspond-
ing Laplace operator12 and their eigenvalues are explicitly known.

sii d We are interested in discrete expansionss7.7d besides the continuous ones. That is, expan-
sions of functions given digitally by their values on a discrete grid of pointsFM in F. Those
functions are then expanded into a series in terms of C-functions given on the same grid.
Inversion of such expansions is possible because of the discrete orthogonality of
C-functionss7.4d established in Ref. 13 for any semisimple compact Lie group. Practically
useful appears to be subsequent continuous extensions of discrete expansionss7.9d.

Also it is difficult to overestimate the versatility of different choices of the gridFM in F
offered by our approach, which are equivalent to choosing, for eachM PN, the finite Abelian
subgroup of the maximal torus of the Lie group generated by all elements of orderM.

III. DISCRETIZATION IN THE CASE OF A1

Leaving aside the simplest cases2.2d, there remains only one other compact Lie group of rank
1, namelyA1. One can recognize a familiar situation in this one-dimensional setup, without any
group theory, once the C-functionsVmsud are explicitly written below, ins3.1d. In spite of that, it
is useful to go through it using terms and notions that are indispensable in the case of higher ranks.

A. The continuous case

The Weyl group ofA1 has two elementsW=h1,rj, wherer is the reflection in the origin. The
weight latticePsA1d consists of all the pointsx=Zv, whereZ stands for any integer, while the root
lattice QsA1d consists of the even points ofP. Symbolically, we write it as

QsA1d = Za = 2Zv,

PsA1d = Zv = QsA1d ø sv + QsA1dd.

Herea is called the simple root ofA1 andv is the fundamental weight. Hence the relative lengths
of the basis vectors ofQ andP are fixed,a=2v. We fix also their absolute length by choosing the
value of the scalar productka ual=4kv uvl=2. The root system,DsA1d=h±aj has just two roots.

Given a pointl=mvP P, its Weyl group orbitWl is the following:

Wl ; Wm = Hh0j, if m= 0,

hmv,− mvj, if 0 Þ mP Z.J
The A1 C-functionVlszd;Vmsud is defined foruPR as

Vmsud =
def

o
mPWl

e2pikmuzl = H1, for m= 0,

2 cospmu, for mP N.J s3.1d

Here we have usedkm uzl= ±mukv uvl= ± 1
2mu. Sometimes it is convenient to introduce a

different normalization of the C-functions, namely the following one:

Fmsud = 2 cospmu, for all mP Zù0. s3.2d

The fundamental regionFsA1d is the closed segment with the end points 0 andv. Its length is
uvu=1/Î2. Hence 0øuø1 within FsA1d.
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It is straightforward to verify the decomposition of the products,

FmsudFm8sud = Fm+m8sud + Fm−m8sud, for m,m8 P Zù0.

Any two functionsVmsud ,Vm8sud, wheremÞm8, are orthogonal, i.e.,

E
0

1

VmsudVm8suddu = 50, if mÞ m8,

1, if m= m8 = 0,

2, if m= m8 . 0.
6 s3.3d

It is useful to notice the special case ofs3.3d arising form.0 andm8=0,

E
0

1

Vmsuddu = 0, for anymP N.

The orthogonality can be used to invert the Fourier seriess2.1d on FsA1d in the traditional way.
Every element of the groupA1 is conjugate to an element of its torus. Elements of the torus are

parametrized by points of a circle. Every point ofF stands for one conjugacy class of the elements
of A1.

B. Discretization of A1

The objective of this section is the description of theA1 version of the discrete orthogonality
s7.4d of the C-functions.

Here we are interested in the elementssvPF with rational values ofs. They are specified by
two non-negative integerss0 ands1. It is convenient to set it up as follows:

F { sv =
s1

M
v, wheres0 + s1 = M . 0, s0,s1 P Zù0.

Fixing M determines an equidistant grid ofM +1 pointssvPF. The setFM of their coordinates is

FM =
defH0,

1

M
,

2

M
,

3

M
,…,

M − 1

M
,1J .

C. Scalar product on the grid FM

The points ofF are in one-to-one correspondence with conjugacy classes of elements ofA1.
They represent the conjugacy classes of elements of orders equal toM, as well as all the divisors
of M.

In general, one introduces a scalar product in the space of functions defined digitally onFM,

kf uhlM =
def

o
sPTM

fssdhssd = o
sPFM

csfssdhssd. s3.4d

HereTM stands for the Abelian subgroup of the maximal torus ofA1, which is generated by all
the elements of orderM. The coefficientscs in the sum overFM count the number of points in the
torus that are conjugate tos. One has

c0 = c1 = 1, andc1/M = c2/M = ¯ = csM−1d/M = 2. s3.5d

The C-functions take the following values on the points of the grid:

V0ssd = 1, Vmssd = 2 cospms, for sP FM andmP N. s3.6d

In order to reduce the number of calculations, it is more convenient to utilize in the discreti-
zation the normalized form of the C-functions given ins3.2d.
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Fmssd = 2 cospms, for sP FM and allmP Zù0. s3.7d

The crucial discrete orthogonality property of the normalized C-functions overFM is the
following:

kFmuFm8lM = 58M, if m= m8 = 0 modM ,

4M, if m= m8 Þ 0 modM ,

0, if mÞ m8 modM .
6 s3.8d

Note that the orthogonalitys3.8d is valid not only whenm andm8 are constrained to the range
h0,1,… ,Mj.

Examples of severalA1 normalized C-functions on the gridF3 are given in the Table I.
Our aim in the development of the formalism so far is to use it for the expansion in terms of

the C-functions of any functionfssd, given by its values on the gridFM.
More precisely, a functionfssd, with known real values onFM, can be decomposed as follows:

fssd = o
k=0

M

dkFkssd, sP FM . s3.9d

Then we can compute the coefficientsdk from

kf uFklM = o
sPFM

csfssdFkssd = H8Mdk, if k = 0 or k = M ,

4Mdk, if k = 1,2,…,M − 1.
J s3.10d

After the coefficientsdk have been calculated, one can replaces in s3.9d by the continuous
variableu,

fcontsud =
def

o
k=0

M

dkFksud, whereu P R. s3.11d

At u=sPFM, the continuous functionfcontsud coincides withfssd.
The all-important property that distinguishess3.11d from the standard Fourier transform and

that was apparently established only recently,4 is the smoothness of the interpolation offcont

between the points of the gridFM.

TABLE I. Values of several normalized C-functions ofA1 on the points of
the gridFM with M =3. Note that only the first four C-functions are pairwise
orthogonal. The higher ones repeat the values of the lowest four.cs are the
coefficients fromss3.5dd.

s 0 1
3

2
3 1

F0ssd 2 2 2 2
F1ssd 2 1 −1 −2
F2ssd 2 −1 −1 2
F3ssd 2 −2 2 −2
F4ssd 2 −1 −1 2
F5ssd 2 1 −1 −2
F6ssd 2 2 2 2

cs 1 2 2 1
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IV. HIGHER RANK CASES IN GENERAL

The basic tools that we need, in order to develop the formalism of every case, can be intro-
duced equally simply for all the cases at once and for any rankn,`. Thus, we do not always
require thatn=2. The rank of the Lie group is the dimension of the decomposition problem, i.e.,
the number of variables in a C-function.

A. The a and v bases and their dual bases

The root system DPRn contains k distinct vectors/roots. A suitable basisP
=ha1,… ,anj,D consists of the simple rootssa basisd. For any simple Lie algebra, its simple
roots are of at most of two different lengths.

Relative lengths and angles between simple roots of the basisP are concisely specified in
terms of the elements of the Cartan matrixC,

Cjk =
2ka juakl
kakuakl

= ka juâkl, for j ,k = 1,…,n, s4.1d

whereâk is the simple root of the dual root systemD̂. Adopting the standard convention for the
lengths of the long root ofP, namelykal uall=2, the elements of the Cartan matrix become the
smallest possible integers. During the dualization,

a ↔ â =
2a

kaual
of a P D,

the long roots do not change, while the short ones become longssee Fig. 1d.
In addition to thea and â bases, we introduce the basis of the fundamental weights and its

dual basis, calledv and v̂ basis, respectively. In the matrix form, usings4.1d, we have

a = Cv, v = C−1a, â = CTv̂, v̂ = CT−1â. s4.2d

Given a specific Cartan matrix, one can verify the following frequently used multiplication
rules:

kâ juvkl = ka juv̂kl =
2ka juvkl
ka jua jl

= d jk. s4.3d

B. Reflections of the finite Weyl group

For eachjPD there are reflectionsrj, which act inRn according to

rjx = x −
2kxujl
kjujl

j, wherej P D, x P Rn. s4.4d

Those withjPP generate the finite Weyl groupW.
Observe thatrj does depend on the direction ofj, but not on its length or orientation along

that direction. In particular, it is easy to check thatrjj=−j and also that

rjrjx = rjSx −
2kxujl
kjujl

jD = rjx −
2kxujl
kjujl

rjj = x.

The application ofW to the basisP yields the root system,WP=D. Consequently, one has the
W invariance,D=WD. Thus, a root is transformed into a root of the same system by any element
of W. Each root appears exactly once inD. It is known that for simple Lie groups the root system
is obtained by applyingW to either one, or at most two roots of the basisP.
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C. The affine Weyl group

The groupW contains the reflectionsrj in mirrors, which are orthogonal to anyjPD and pass
through the origin. The affine Weyl groupWaff contains all the reflectionsRNj in mirrors, which
are orthogonal toj and displaced from the origin by anyNj, whereNPZ. HenceWaff is of infinite
order, andW,Waff.

One has the affine reflectionsRNj,

RNjx=
def

Nj + rjx, wherex P Rn, N P Z andj P D. s4.5d

Note thatR0j=rj and thatRNjÞR−Nj. In particular,RNj0=Nj is the reflection of the origin in
the midpoint1

2Nj, andRNjsNjd=0. In general, one has

RNjRNjx = RNjsNj + rjxd = Nj + rjsNj + rjxd = Nsj + rjjd + rjrjx = x.

It is useful to note the presence of a translation subgroupT,Waff. It is an Abelian subgroup
of Waff, whose elements are all the translationstNj , NPZ,

tNjx=
def

RNjrjx = rjR−Njx = sNj + rj
2xd = x + Nj, whereN P Z, j P D andx P Rn. s4.6d

As an example, one may verify thatt−Njx=rjRNjx.
In general,Waff can be defined as the semidirect productW›T.

D. Root and weight lattice

The root latticeQ consists of all the elements that can be written symbolically as

Za1 + ¯ + Zan P Q, wherea1,…,an P P,

in which Z stands for any integer chosen independently in each term of the sum. In particular,
D,Q.

We will mainly consider the weight latticeP and its positive chamberP+,

Zv1 + ¯ + Zvn P P, andZù0v1 + ¯ + Zù0vn P P+.

In all casesQ# P.

In addition to the root and weight latticesQ andP, we have also their dual latices,Q̂ and P̂,
each along with its basis, namely thea ,v ,â ,v̂ basis, respectively.

E. Weyl group orbits

Let lP P,Rn. The Weyl group orbitWl of l is the set of distinct elements ofP obtained by
all possible applications ofW to l. We writeWl=Wl. In a similar way, one definesWl

aff=Waffl.
The orbitWl is always finite, whileWl

aff is infinite. The sizeuWlu of Wl is the number of distinct
points which are generated froml by W. The maximal value ofuWlu equals to the orderuWu of the
Weyl group. Other possible values ofuWlu are some of the divisors ofuWu.

In particular, we are interested in the following properties:

W0 = 0 andWP = D.

In general,P is a union of severalWaff orbits.
EachlP P is contained in precisely oneW-orbit Wl. Elements ofWl are called weights. Each

W orbit contains a unique element belonging toP+, called the dominant weight ofWl. The
dominant weight is easy to recognize since its coordinates inv basis are non-negative integers. It
is then usually taken as thel to be used in the symbolWl.
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F. C-functions

The definition of a C-functionVlszd involveslP P+ andzPRn. It requires also theW-orbit
Wl of l. The compact semisimple Lie group figures only through its Weyl group. One has

Vlszd =
def

o
mPWl

e2pikmuzl, wherel P P+ andzP Rn. s4.7d

The number of summands ins4.7d is the numberuWlu of weights inWl,

uWlu =
uWu

uStabWsldu
,

where StabWsld is the stabilizer ofl in W, the subgroup ofW generated by reflections which do
not movel.

A different normalization of C-functions thans4.7d may occasionally be more convenient. We
will use the following one:

Flszd =
def

uStabWslduVlszd. s4.8d

All C-functions, renormalized in such way, take the same value at the origin,

Fls0d = Fl8s0d, for all l,l8 P P+.

In order to make explicit the dependencies of C-functions onl and z, one needs to fix a
particular semisimple Lie group, or, equivalently, a Weyl group, choose the weightl, and provide
more details on how to calculate the productskm uzl. That is, in which bases one hasz andl. In the
rest of this paper it is done explicitly for the cases of interest, wheren=2. Most oftenl is given
relative to eitherv or a basis, whilez is taken relative tov̂ basis.

G. Other properties of C-functions

Important symmetry properties of C-functions are the following:

Vsa,bdszd = Vsa,bdswzd,

Vsa,bdszd = Vsa,bdsRNgzd = Vsa,bdsrgz+ Ngd = Vsa,bdsrgzd, s4.9d

Vsa,bdszd = Vsa,bdsrgRNgzd = Vsa,bdsRNgrgzd = Vsa,bdsz± Ngd,

wherewPW, gP D̂, andNPZ.0.

In view of s4.3d, kl ugl for all gPQ̂, lP P take integer values. Hence, they do not change the
value of a C-functions4.7d. The first property ins4.9d follows from kh uzl=kwh uwzl for all w
PW andhPWl.

Another useful property of C-functions is the complete decomposability of their products into
a linear combination of C-functions with positive integer coefficients,

VlVl8 = Vl+l8 + ¯ . s4.10d

The problem of finding the remaining terms of the sum and their multiplicities is a question of
computation. Many examples are found in Refs. 14,15.

H. The fundamental region

The fundamental regionF of a group, in general, is a finite region, where every conjugacy
class of the elements of the group is represented precisely by one point. For a compact simple Lie
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group of rankn, F is a simplex inRn. Whenn=2, it forms a triangle. For a nonsimple group, it
is a Cartesian product of corresponding simplexes. Thus, forA1, F is a segment, forA13A1, a
square.

The definitions4.7d of the C-function clearly allows one to considerz in the entire spaceRn.
However, due to the symmetriess4.9d, we are mainly interested in the C-functions withz in the
fundamental region of the corresponding semisimple Lie group.

The fundamental region of a simple Lie group consists of the pointsx such that 0ø kxujhl
ø1, wherejh is the highest root ofD. Suppose,

jh = q1a1 + q2a2 + ¯ + qnan, s4.11d

whereq1,… ,qn are well-known positive integers for each root system. Then the vertices of the
simplexF are the following:

F:H0,
1

q1
v̂1,

1

q2
v̂2,…,

1

qn
v̂nJ . s4.12d

I. C-functions and irreducible characters

The characterxl of a finite-dimensional irreducible representation of a groupG is a linear
combination of C-functions,

xlszd = o
m

mlmVmszd, s4.13d

where the summation extends over the set of distinct dominant weights in the weight systemVl of
the representation labeled byl. Coefficientsmlm are the multiplicities of the dominant weights in
Vl. It is a well-known computational problem in Lie theory to find the multiplicitiesmlm for a
given l, see, for example, the tables16 and references therein. The matrixsmlmd is nonsingular. A
suitable ordering of the dominant weights makes it triangular. Hence, it can be inverted, so that
one has

Vlszd = o
m

nlmxmszd, s4.14d

wherenlm are thesintegerd matrix elements of the inverse matrix of dominant weight multiplici-
ties. The summation ins4.14d ranges over the same finite set of dominant weights as ins4.13d.

Consequently, C-functions form another basis in the space spanned by irreducible characters
of G.

J. Orthogonality of C-functions

The orthogonality property of C-functions,

E
F

VlszdVl8szddF = 0, wherel,l8 P P+ andl Þ l8, s4.15d

is a consequence of the orthogonality of characters of irreducible representations and the decom-
posability of productss4.10d of C-functions. Indeed, let the zero weight be denoted 0 for any rank.
BecauseW0=0, one hasV0szd=1 for every group and allzPRn. Settingl8=0 in s4.15d, we have

E
F

VlszddF = 0, for any 0Þ l P P+. s4.16d
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Complex conjugateVl is a C-function with anotherscontragredientd dominant weight, sayl8.
ThereforeVlszdVl8szd decomposes according tos4.10d. The decomposition containsV0 precisely

if l8= l̄. Therefore, only in that case, the integrals4.15d is not zero.

K. Eigenfunctions of the Laplace operator

Consider the differential operator

L = sa1]1 + a2]2 + ¯ + an]nd2. s4.17d

Since the matrix of scalar products of simple roots is positive definite, by a suitable choice of
basis, the operator can be brought to the sum of second derivatives with positive coefficients.
Hence, one is justified in callingL the Laplace operator.

Subsequently, we will verify the validity of the eigenvalue equation17

LVlszd = − 4pklullVlszd, for all l P P+ andzP Rn. s4.18d

From s4.7d it is clear that C-functions are continuous functions with continuous derivatives of
all orders inRn. Then it follows froms4.9d that their derivatives, normal to the boundary of the
fundamental region, must be equal to zerosNewmann boundary value conditiond.

V. THE CASE A1ÃA1

This is a simple concatenation of two cases ofA1 described in Sec. III.

A. Roots and weights

Relative length and angles of the simple roots are given by the scalar products,

ka1ua2l = 0, ka1ua1l = ka2ua2l = 2.

The Cartan matrix and its inverse are the following:

C = S2 0

0 2
D andC−1 = S 1

2 0

0 1
2

D .

Consequently,a1=2v1 and a2=2v2. Their dualsâk and v̂ j coincide withak and v j. The root
systemD=h±a1, ±a2j geometrically represents the vertices of a square of a side length 2Î2.

B. Weyl group orbits

Supposel=av1+bv2P P. Then the Weyl group orbitWl is given by

Wl ; Wsa,bd =5
hs0,0dj, if a,b = 0,

h±sa,0dj, if a Þ 0 andb = 0,

h±s0,bdj, if a = 0 andb Þ 0,

h±sa,bd, ± sa,− bdj, if a,b Þ 0.
6

C. C-functions

The C-functions ofA13A1, with l=av1+bv2 and z=xv1+yv2, are products of twoA1

C-functions,

Va.bsx,yd = VasxdVbsyd.

They are the following:

Vs0,0dsx,yd = 1,
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Vsa,0dsx,yd = 2 cosspaxd,

Vs0,bdsx,yd = 2 cosspbyd,

Vsa,bdsx,yd = 4 cosspaxdcosspbyd. s5.1d

The C-functions, normalized as ins4.8d, are written for alla,bPZù0 in one expression,

Fsa,bdsx,yd = 4 cosspaxdcosspbyd.

D. Orthogonality of C-functions

The fundamental region ofA13A1 here is

FsA1 3 A1d = hxv1 + yv2 u 0 ø x,y ø 1j,

its vertices being 0,v1,v2, and v1,v2 ssee Fig. 1d. Hence its sides have lengthuv1u= uv2u
=1/Î2.

Orthogonality of the functions is readily verified directly,

E
F

Vsa,bdsx,ydVsc,ddsx,yddF =
1

2
E

0

1

dxE
0

1

Vsa,bdsx,ydVsc,ddsx,yddy

=5
0, if a Þ c andb Þ d,
1
2, if a = b = c = d = 0,

1, if a = c . 0 andb = d = 0,

or a = c = 0 andb = d . 0,

2, if a = b . 0 andc = d . 0.
6 s5.2d

E. Laplace operator

The Laplace operator in this case is

L = 2]xx + 2]yy.

The C-functions are its eigenfunctions, and

LVl = − 4p2klullVl = − 2p2sa2 + b2dVl,

where the scalar product forl=av1+bv2 is computed using the inverse Cartan matrixC−1:

klull = sa bdC−1Sa

b
D =

1

2
sa2 + b2d.

VI. THE CASE C2

A. Roots and weights

Relative length and angles of the simple roots ofC2 are given by

ka1ua2l = − 1, ka1ua1l = 1, ka2ua2l = 2.

The Cartan matrix and its inverse are
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C = S 2 − 1

− 2 2
D andC−1 = S1 1

2

1 1
D .

Consequently,

a1 = 2v1 − v2, v1 = a1 + 1
2a2, â1 = 2a1, v̂1 = â1 + â2,

a2 = − 2v2 + 2v2, v2 = a1 + a2, â2 = a2, v̂2 = 1
2â1 + â2.

The root systemD=h±a1, ±a2, ±sa1+a2d , ±s2a1+a2dj geometrically represents the vertices and
midpoints of a square. The highest root isjh=2a1+a2.

B. Weyl group orbits

Let l=av1+bv2P P+. Then the Weyl group orbitWl;Wsa,bd contains one, four, or eight
points. More precisely,

Wsa,bd =5
hs0,0dj, if a = b = 0,

h±sa,0d, ± s− a,adj, if a Þ 0 andb = 0,

h±s0,bd, ± s2b,− bdj, if a = 0 andb Þ 0,

h±sa,bd, ± s− a,a + bd, ± sa + 2b,− bd, ± sa + 2b,− a − bdj, if a,b Þ 0.
6

In particular,D=Ws2,0døWs0,1d.

C. C-functions

The C-functions ofC2, with l=av1+bv2 andz=xv̂1+yv̂2, are the following:

Vs0,0dsx,yd = 1,

Vsa,0dsx,yd = 2 cosspayd + 2 cosspas2x + ydd,

Vs0,bdsx,yd = 2 coss2pbxd + 2 coss2pbsx + ydd,

Vsa,bdsx,yd = 2 cossps2bx+ sa + 2bdydd + 2 cosspss2a + 2bdx + sa + 2bdydd

+ 2 cosspsay+ s2a + 2bdxdd + 2 cossps2bx− aydd, wherea,b . 0. s6.1d

C-functions, normalized as ins4.8d, are written for alla,bPZù0 in one expression,

Fsa,bdsx,yd = 2 cossps2bx+ sa + 2bdydd + 2 cosspss2a + 2bdx + sa + 2bdydd

+ 2 cosspsay+ s2a + 2bdxdd + 2 cossps2bx− aydd.

D. Decomposition of products of C-functions

Products of the C-functions decompose into sums of C-functionss4.10d. For example, one has

Vs0,adVs0,bd = Vs0,a+bd + Vs2a,b−ad + Vs0,b−ad, whena , b,

Vs0,adVsb,0d = Vsb,ad + Vs2a−b,b−ad, whena , b , 2a,

Vsa,0dVs0,bd = Vsa,bd + Vsa,b−2ad, whenb . 2a.
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It is possible to build up recursively the higher C-functions, starting from the lowest three,
namely,Vs0,0d ,Vs1,0d, andVs0,1d,

Vs1,1d = Vs1,0dVs0,1d − 2Vs1,0d,

Vs2,0d = Vs1,0dVs1,0d − 4Vs0,0d − 2Vs0,1d,

Vs0,2d = Vs0,1dVs0,1d − 4Vs0,0d − 2Vs2,0d,

Vs2,1d = Vs0,1dVs2,0d − 2Vs0,1d,

Vs3,0d = Vs1,0dVs2,0d − Vs1,0d − Vs1,1d,

Vs1,2d = Vs0,1dVs1,1d − 2Vs1,0d − Vs1,1d − 2Vs3,0d,

¯ .

E. Orthogonality of C-functions

The fundamental regionFsC2d is defined as follows:

FsC2d = hxv̂1 + yv̂2 u x,y ù 0 and 2x + y ø 1j.

Therefore, its vertices are 0,v̂1/2, andv̂2. Geometrically it is a triangle with anglesp /2 ,p /4, and
p /4 ssee Fig. 1d.

Orthogonality of C-functions ofC2 can be verified, if somewhat laboriously, by usings6.1d in
s4.15d,

E
F

Vsa,bdsx,ydVsc,ddsx,yddF =E
0

1
2 dxE

0

1−2x

Vsa,bdsx,ydVsc,ddsx,yddy

=5
0, if a Þ c andb Þ d,
1
4, if a = b = c = d = 0,

1, if a = c . 0 andb = d = 0,

or a = c = 0 andb = d . 0,

2, if a = c . 0 andb = d . 0.
6 s6.2d

In particular, we have for anysa,bdÞ s0,0d and sc,dd=s0,0d

E
F

Vsa,bdsx,yddF = 0.

F. Laplace operator

The Laplace operators4.17d specializes toC2 as follows:

L = sa1]x + a2]yd2 = ]xx − 2]xy + 2]yy.

Applying L to C-functions, we see that they are its eigenfunctions,
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LVl = − 4p2klullVl = − 2p2sa2 + 2ab+ 2b2dVl,

where the scalar productkl ull is computed forl=sav1+bv2d;sa bd, using the quadrature ma-
trix Q,

klull = lQlT =
1

2
sa bdS1 1

1 2
DSa

b
D =

1

2
a2 + ab+ b2.

G. The branching rules for C-functions of C2 to the subgroup A1ÃA1

The problem considered here is to calculate the “branching rules” for C-functions. There are
two rather different ways how a semisimple Lie group of rank 2 is related toC2. In both cases the
group is of typeA13A1. In order to distinguish the two cases we use the notationsA13A1

, and
A13A1

,. The C-functions ofC2 are completely reducible with respect to either ofA13A1. The
possibility of such reduction is a direct consequence of the corresponding reduction ofW orbits.15

The first case is the maximal subgroupA13A1
, of C2. Its root system is the subset of long

roots ofC2. In the second case,A13A1
, is not a subgroup. It is the maximal subjoint groupA1

3A1 to C2. Its root system consists of the short roots ofC2. For more about subjoining, see Refs.
18 and 19.

Using the matrices

B1 = S0 1
2

1 − 1
2

D andB2 = S1 − 1

0 1
D

to transform the variables in the C-functions ofC2, we can obtain the decompositions ofC2

C-functions into C-functions of its subgroup and subjoint group, demonstrated in Table II. The
general rules for such decompositions are given by

fVsa,bdgC2
= fVsa+b,bd + s1 − da,0dVsb,a+bdgA13A1

, s6.3d

and

fVsa,bdgC2
= fVsa+2b,ad + s1 − db,0dVsa,a+2bdgA13A1

,. s6.4d

TABLE II. Examples of the decomposition of C-functions ofC2 sleft col-
umnd into C-functions of the maximal subgroupA13A1

, smiddle columnd
and of the maximal subjoint groupA13A1

, sright columnd.

C2 A13A1
, A13A1

,

Vs0,0d Vs0,0d Vs0,0d

Vs1,0d Vs1,0d+Vs0,1d Vs1,1d

Vs0,1d Vs1,1d Vs2,0d+Vs0,2d

Vs2,0d Vs2,0d+Vs0,2d Vs2,2d

Vs1,1d Vs2,1d+Vs1,2d Vs3,1d+Vs1,3d

Vs0,2d Vs2,2d Vs4,0d+Vs0,4d

Vs3,0d Vs3,0d+Vs0,3d Vs3,3d

Vs2,1d Vs3,1d+Vs1,3d Vs4,2d+Vs2,4d

Vs1,2d Vs3,2d+Vs2,3d Vs5,1d+Vs1,5d

Vs0,3d Vs3,3d Vs6,0d+Vs0,6d

Vs4,0d Vs4,0d+Vs0,4d Vs4,4d
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VII. DISCRETIZATION OF TWO-DIMENSIONAL TRANSFORMS

In this section we describe all the necessary tools, which allow one to decompose a function
fssd, given by its values on pointss of certain two-dimensional gridsFM, M =1,2,…,`, in terms
of finite series of C-functions. Such decomposition is possible, due to the discrete orthogonality of
C-functions on the points ofFM, i.e., its coefficients can be computed.

A. Equidistant grids of points in the fundamental region

The fundamental regionF can be used to tile the entire plane by its copies,WaffF=R2. Our
next task is to describe gridsFM of discrete points inF of any density, specified by a positive
integerM, which extends into a lattice with the tiling ofR2 by copies ofF.

The pointss of FM are conveniently described in barycentric coordinates. That is, by three
non-negative integers,fs0,s1,s2g. A point s belongs the gridFM, provided

s=
s1

M
v̂1 +

s2

M
v̂2, wheres0,s1,s2 P Zù0 andM = s0 + q1s1 + q2s2 . 0. s7.1d

Hereq1 andq2 are positive integers, specific for each Lie group. They are the coefficients of the
highest root ofD in a basis. Equivalently, we write

FM =
defHS s1

M
,
s2

M
D u s0,s1,s2 P Zù0,s0 + q1s1 + q2s2 = M . 0J . s7.2d

B. Bilinear form on FM

Given the set of pointsFM in the fundamental region, and two functionsfssd andhssd, given
by their values at the pointssPFM, one defines a Hermitian form as follows:3

kf uhlM =
def

o
sPFM

csfssdhssd. s7.3d

The line overhssd stands for complex conjugation. The coefficientscs are positive integer numbers
for each Lie group. They are given below for the groups of rank 2, for a general case, see Ref. 3.

C. Discrete orthogonality of C-functions

For a fixed value ofM PN, the discrete orthogonality of C-functions onFM ,F is crucial for
this study,

kFsa,bduFsa8,b8dlM = o
sPFM

csFsa,bdssdFsa8,b8dssd = da,a8db,b8kFsa,bduFsa,bdlM . s7.4d

The orthogonalitys7.4d holds forFsa,bd ,Fsa8,b8d from a finite subsetSM of C-functions.
In general, for all cases of rank 2, we can constructsinfinitely manyd such subsetsSM by using

the following:

SM =
defHFsa,bduS b

M
,

a

M
D = rS s1

M
,
s2

M
D, whereS s1

M
,
s2

M
D P FM andr P WaffJ . s7.5d

As an easy example, one can obtain the set of the lowestFsa,bdPSM, by takingr =1 anda,b
that satisfy the inequality

aq2 + bq1 ø M ⇒ Fsa,bd P SM , s7.6d

whereq1,q2 are the same as ins4.11d.
From the definition ofSM it is easy to see that
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uSMu = uFMu.

The numberskFsa,bd uFsa,bdlM in s7.4d take only a few integer values for eachM. Subsequently,
we will provide them for all 0øa,b,`, for all the cases considered in this paper.

D. Decomposition into C-functions and continuous extension

A function fssd, with known values on points of the gridFM, can be decomposed as follows:

fssd = o
Fsa,bdPSM

dsa,bdFsa,bdssd, sP FM . s7.7d

Orthogonalitys7.4d makes it possible to compute the coefficientsdsa,bd from

dsa,bd =
kf uFsa,bdlM

kFsa,bduFsa,bdlM
, wherekf uFsa,bdlM = o

sPFM

csfssdFsa,bdssd. s7.8d

After dsa,bd have been calculated, one can replaces in s7.7d by the continuous variablesx and
y,

fcontsx,yd =
def

o
Fsa,bdPSM

dsa,bdFsa,bdsx,yd, x,y P R. s7.9d

The function fcontsx,yd is the continuous extension of the decompositions7.7d. Both functions
coincide at the pointssx,yd=ss1/M ,s2/Md=sPFM.

E. Discretization in the case of A1ÃA1

The fundamental region in the case ofA13A1 is a Cartesian product of two fundamental
regions ofA1. It forms a square described by the following:

F = hxv1 + yv2 u 0 ø x,y ø 1j.

A square latticeFM of order M is a Cartesian product of two latticesFMsA1d, built on F the
following way:

FM =
defHS s1

M
,
s2

M
D u s1,s2 P Zù0, s1,s2 ø M P NJ .

Coefficientscs are in this case

cs ; css1/M,s2/Md =5
1, if s2 = s2 = 0,

or s1 = s2 = M ,

or s1 = 0 ands2 = M ,

or s1 = M ands2 = 0,

2, if s1 = 0 and 0, s2 , M ,

or s2 = 0 and 0, s1 , M ,

or s1 = M and 0, s2 , M ,

or s2 = M and 0, s1 , M ,

4, if 0 , s1,s2 , M .

6
The C-functions are orthogonal,

kFsa,bduFsa8,b8dlM = 0, if a Þ a8 andb Þ b8,

otherwise, for the set of the lowest pairwise orthogonal normalized C-functions,
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kFsa,bduFsa,bdlM = 16M2 35
1, if 0 , a,b , M ,

2, if 0 , a , M andb = 0,

or a = 0 and 0, b , M ,

or 0, a , M andb = M ,

or a = M and 0, b , M ,

4, if a = b = 0,

or a = 0 andb = M ,

or a = M andb = 0,

or a = b = M ,

6
with the higher C-functions repeating the values of the lowest ones.sSee Fig. 2.d

For example,F2 consists of the nine points given asfs1,s2g=ss1/2 ,s2/2d,

f0,0g = s0,0d, f0,1g = s0,1
2d, f0,2g = s0,1d,

f1,0g = s 1
2,0d, f1,1g = s 1

2, 1
2d, f1,2g = s 1

2,1d , s7.10d

f2,0g = s1,0d, f2,1g = s1,1
2d, f2,2g = s1,1d,

while F1 has only four points,

f0,0g = s0,0d, f0,1g = s0,1d, f1,0g = s1,0d, f1,1g = s1,1d.

F. Discretization in the case of C2

The highest root ofC2 is 2a1+a2. Therefore,

FM =
defHS s1

M
,
s2

M
D u s0,s1,s2 P Zù0, s0 + 2s1 + s2 = M . 0J .

Vertices ofF ares0,0d, s0,1d, s 1
2 ,0d, relative tov̂ basis.sSee Fig. 3.d Coefficientscs are in this

case,

cs ; css1/M,s2/Md =5
1, if s1 = 0 ands2 = 0,

or s1 = 0 ands2 = M ,

2, if s1 = 0 ands2 = M
2 ,

4, if s1 = 0 and 0, s2 , M ,

or s2 = 0 and 0, s1 , M ,

or s1,s2 . 0 and 2s1 + s2 = M ,

8, if s1,s2 . 0 and 2s1 + s2 , M .

6 s7.11d

The discrete orthogonality,

kFsa,bduFsa8,b8dlM = 0, if a Þ a8 andb Þ b8,

otherwise, for the set of the lowest pairwise orthogonal normalized C-functions,
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kFsa,bduFsa,bdlM = 16M2 35
1, if 0 , a,b anda + 2b , M ,

2, if 0 , a , M andb = 0,

or a = 0 and 0, 2b , M ,

or 0, a,b anda + 2b = M ,

4, if a = 0 and 2b = M ,

8, if a = b = 0,

or a = M andb = 0,

6
with the higher C-functions repeating the values of the lowest ones.sSee Fig. 4.d

FIG. 2. The set of nine lowest pairwise orthogonal normalized C-functions ofA13A1 for the gridF2.
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For example,F3 consists of the six points given asfs0,s1,s2g=ss1/M ,s2/Md,

f1,0,0g = s0,0d, f0,0,1g = s0,1d, f1,1,0g = s 1
3,0d ,

s7.12d
f0,1,1g = s 1

3, 1
3d, f1,0,2g = s0,2

3d, f2,0,1g = s0,1
3d ,

while F2 has only four points,

f1,0,0g = s0,0d, f0,0,1g = s0,1d, f0,1,0g = s 1
2,0d, f1,0,1g = s0,1

2d .

As an example, the values ofC2 normalized orbit functions on the gridF3 are given in Table
III.

VIII. MOTIVATING EXAMPLES

Comparison of expansions of into series of both groups considered here, as well as the two
additional groups of Ref. 1, will require further study. Related questions are illustrated by the
following examples.

There are two examples shown in this section, involving decomposition of the same function
fsx,yd into series of C-functions ofA13A1 andC2. Goal of the examples issid to illustrate discrete
decomposition of a given function followed by the continuous extension, andsii d to compare the
continuous extensions in both cases.

We choose forfsx,yd the square step function with sharp edges,

fsx,yd = H1 for 0.30, x , 0.45, and 0.05, y , 0.20,

0 elsewhere inF.
J s8.1d

In order to make the comparison, we set up the vertices of the two fundamental regions as
follows srelative to an orthonormal basisd:

FsA1 3 A1d = hs0,0d,s 1
2,0d,s0,1

2d,s 1
2, 1

2dj , s8.2d

FsC2d = hs0,0d,s 1
2,0d,s 1

2, 1
2dj . s8.3d

ThusFsC2d is exactly half ofFsA13A1d with three vertices in common. In order to have the grid
of the same density in both regions, one must make sure that there is the same number of points
along the edges of sides ofF adjacent to anglep /2.

SupposeM is fixed. Then each side ofFsA13A1d containsM +1 points each. For a givenM8,
the FsC2d-edges0,0d, s 1

2 ,0d containsfM8 /2g points, wherefM8 /2g stands for the integer part of
M8 /2. Consequently, to have the same density of the grid in both cases, we have to haveM +1
=fM8 /2g.

FIG. 3. The lattice points ofF2,F3, andF4 in the fundamental regionF for the casesC2 andA13A1.
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Figures 5 and 6 contain results of our two examples. The same functionfsx,yd of s8.1d is
placed into the fundamental regionsF of the two groups, their values are sampled at the pointss
of the gridsFM s7.2d and taken as our digital datafssd. Then the functions are expandeds7.7d into
C-functions ofA13A1 and of C2 on the corresponding gridFM, i.e., expansion coefficients are
calculateds7.8d. After that, continuous extensions of the discrete expansions offssd are mades7.9d
by replacing the C-functions of the discrete arguments in the expansions by the same functions of
the continuous argument, while keeping the expansion coefficients unchanged. Each figure shows
the functionfcontsx,yd resulting from the continuous extension of discrete expansions. More pre-
cisely, four different continuous extensions are shown in each figure. They differ by the densities

FIG. 4. The set of nine lowest pairwise orthogonal normalized C-functions ofC2 for the gridF4.
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of the gridFM, namelyM =4, 8, 16, and 32, from which the continuous extension is made. For the
same value ofM, the densities of grids ofA13A1 andC2 are the same. The points of the grids are
not shown in the figures.

Inspecting and comparing the two figures, one readily observes the following:

sid Increasing density of the grid, i.e., increasing the value ofM, makes the continuous exten-
sion to match more closely the given model functionfsx,yd of s8.1d.

sii d Quality of the extension, i.e., the match between the continuous extensionfcontsx,yd and the
original function fsx,yd, is comparable for the same density of the grid in both cases,
thoughC2 expansion may be slightly superior, as noticeable by comparing the two atM
=32.

The observations have important consequences.
The number of points ofFMsA13A1d andFMsC2d are approximately in the ratio 2:1, due to

the ration of the areas of the fundamental regionsssee Fig. 1d and to the equal density of the points
in both cases.

TABLE III. Values of several normalized C-functions ofC2 at the points of the gridF3. Note that only the first
six C-functions are pairwise orthogonal. The higher ones repeat the values of the lowest six. Thecs are the
coefficients fromss7.11dd.

s s0, 0d s0, 1
3

d s0, 2
3

d s 1
3 ,0d s 1

3 , 1
3

d s0, 1d

Fs0,0dssd 8 8 8 8 8 8

Fs0,1dssd 8 2 2 −4 −4 8

Fs1,0dssd 8 4 −4 2 −2 −8

Fs1,1dssd 8 −2 2 −4 4 −8

Fs2,0dssd 8 −4 −4 2 2 8

Fs3,0dssd 8 −8 8 8 −8 −8

Fs2,1dssd 8 −4 −4 2 2 8

Fs3,1dssd 8 −2 2 −4 4 −8

Fs1,2dssd 8 4 −4 2 −2 −8

Fs0,2dssd 8 2 2 −4 −4 8

Fs0,3dssd 8 8 8 8 8 8

cs 1 4 4 4 4 1

FIG. 5. Decomposition and continuous extension of a square step function placed in the fundamental region ofA13A1 on
the grids of ordersM =4, 8, 16, and 32.
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The number of terms in the expansions equals the number of points in the correspondingFM.
Hence theC2 expansions are half as long as those ofA13A1 for the same quality of continuous
expansion.

Consequently, as much as one can draw a conclusion from an example of using only one
function fsx,yd, it appears that theC2 expansions are considerably more efficient than theA1

3A1 ones.
In a way of objection to the conclusion just made, one may point out that C-functions ofC2

are formed as sums of twice as many exponential functionssup to eightd, in comparison with
C-functions ofA13A1 ssums of up to four exponentialsd. Consequently, computing the values of
more complicated C-functions ofC2 on half as many points of its grid, may require comparable
computational efforts to those for the simpler C-functions ofA13A1 on larger number of points.
Although such an objection is undoubtedly true, it is hardly pertinent. Indeed, in any extensive
computations of the expansions, the values of C-functions at the grid points would be calculated
in advance, and used as a look-up table during the actual expansions. Size of such a look-up table
is given by the number of points inFM, and by, what is the same, the number of discretely
orthogonal C-functions in the setSM. Moreover, the same table should be used for expansion of
any function on the same grid.

IX. CONCLUDING REMARKS

s1d In general terms, the families of C- and S-functions, based on any compact semisimple Lie
group, have all the properties of traditional special functions, and more.12 Indeed, discreti-
zation, as demonstrated in this paper and generally in Ref. 3, is not a standard feature of
traditional special functions.

s2d The application, which mostly motivated our interest in rank-2 group transforms, like the
two considered in this paper, is the decomposition of functions sampled on two-dimensional
lattices into finite sums of discretized C-functions. The remaining two cases, the groupsA2
andG2, are considered in a similar manner in Ref. 1.

s3d Recently it was recognized4 that the continuous extension of the decompositions on the grid
FM is particularly useful. Once coefficients of a discrete expansion are found, one replaces in
the expansion the C-functions, sampled onFM, by their continuous versions. Unlike similar
extension of conventional Fourier expansions, continuous extensions of C-function expan-
sions smoothly interpolate between grid points ofFM. This property is likely to turn out
extremely useful for various methods of image enhancement and data compression.4,8

s4d In parallel with cosine transform, there exists a sine transformssee for example, Ref. 20d.
Similarly, as C-function transforms generalize cosine transform to any compact semisimple

FIG. 6. Decomposition and continuous extension of a square step function placed in the fundamental region ofC2 on the
grids of ordersM =4, 8, 16, and 32.
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Lie group, the sine transforms generalize as S-function transforms2 scontinuous and dis-
creted. Most of the properties of C-transforms carry over as properties of S-transforms, one
of the noticeable differences being their behaviors at the boundary ofF.

s5d In our opinion, independent interest represents the construction of the lattices inRn through
the grids inFM, even without the problem of expansion of functions onF,. The flexibility
and uniformity of its construction for any density specified by just one natural numberM,
should be exploited in other applications. Let us also single out the fact that the gridFM, for
anyM, is group-theoretically defined. It represents an Abelian subgroup of the maximal torus
generated by the elements of orderM. Each pointsPFM is a representative of a conjugacy
class of elements of finite order in the Lie group.

s6d Among problems of interest related to this paper and to Refs. 1 and 2, one can point out the
following ones:

sid The fact, that the C- and S-functions are the eigenfunctions of the Laplace operator with
known eigenvalues and known value at the boundary ofF, should find a number of
useful applications in physics. That property, along with their relative simplicity, distin-
guishes them from the irreducible characters. Equally useful should prove to be the fact
that they form bases for lattice problems.

sii d Also, we are interested in the question of identification of the types of functions onF,
which are most efficiently decomposed into C- and/or S-function series for each of the
four semisimple Lie groups of rank 2. Examples of comparison are given in Sec. VIII
and in Ref. 1, but more conclusive and more definite results would be interesting.

siii d Practical processing of two-dimensional digital data often involves grids with millions
of points. The question of computational efficiency in large scale applications needs to
be investigated. Furthermore, rational coordinates of pointssPFM make C-functions
into linear combinations ofMth roots of unity. It was shown in Ref. 3 that some, even
very large, decomposition problems can be reformulated and done entirely in integers,
for example, Ref. 14.

sivd There exists a similarity to fast Fourier transform, which merits further investigation.
Indeed, one has the freedom to work with series of gradually refining grids, for example,
F2,F22, ¯ ,F2k,¯ .

s7d Every C- or S-function is a sum of a finite number of exponential functions. In rank 2, that
is

e2pikluzl = e2pisA/uCudu1+2pisB/uCudu2,

whereA andB are integers anduCu is the determinant of the corresponding Cartan matrix.
The substitution

e2pisu1/uCud → x, e2pisu2/uCud → y

transforms any C- and S-function into a polynomial inx and y. Indeed, one getse2pikluzl

=xAyB.

Thus, C- and S-functions are families of orthogonal polynomials, each related to a particular
semisimple Lie group and to a particularW orbit, in as many variables as is the rank of the group.
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We consider how the continuous spin representation �CSR� of the Poincaré group in
four dimensions can be generated by dimensional reduction. The analysis uses the
front-form little group in five dimensions, which must yield the Euclidean group
E�2�, the little group of the CSR. We consider two cases, one is the single spin
massless representation of the Poincaré group in five dimensions, the other is the
infinite component Majorana equation, which describes an infinite tower of massive
states in five dimensions. In the first case, the double singular limit j, R→�, with
j /R fixed, where R is the Kaluza–Klein radius of the fifth dimension, and j is the
spin of the particle in five dimensions, yields the CSR in four dimensions. It
amounts to the Inönü–Wigner contraction, with the inverse Kaluza–Klein radius as
contraction parameter. In the second case, the CSR appears only by taking a triple
singular limit, where an internal coordinate of the Majorana theory goes to infinity,
while leaving its ratio to the Kaluza–Klein radius fixed. © 2005 American Institute
of Physics. �DOI: 10.1063/1.1897663�

I. INTRODUCTION

As shown in Wigner’s classic work1 in four dimensions, there are four types of irreducible
representations of the Poincaré group. Two describe massless and massive elementary particles
with definite helicity and spin, respectively. However, nature does not seem to use the other two,
one that describes particles with spacelike momenta,2 tachyons which move faster than the speed
of light, and the others that describe massless states with an infinite number of integer or half-odd
integer unit-spaced helicities, dubbed by Wigner continuous spin representations �CSRs�.

When tachyons occur in field and string theories, it is as symptoms of an unstable theory, a
malady whose cure is known, by shifting the vacuum through spontaneous symmetry breaking as
in field and string field theory, or by extending to supersymmetry as in string theory.

There is no analogous cure for the CSR, for which the obstacles are indeed formidable,
negative norm states, nonlocality, and acausality,3 and according to Wigner himself,4 infinite heat
capacity of the vacuum.

The bosonic CSR necessarily contains one massless graviton, but accompanied by an infinite
tower of massless helicity states. Therefore it should be viewed in the context of theories that
extend general relativity, such as M- or string theories, where a naive application of the infinite
slope limit to their spectrum leads to an infinite array of massless states with unit-spaced helicities.
Like the tachyonic representation, the CSR may also be symptomatic of a diseased theory, but is
there a cure for it?

Such considerations merit further studies. In a previous paper,5 Wigner’s bosonic and fermi-
onic CSR in four dimensions were found to be supersymmetric partners of one another. Interest-
ingly, the supersymmetric CSR does not have infinite heat capacity as it cancels between bosons
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and fermions. We also showed how to generalize them to higher dimensions by using Dirac’s front
form �also known as light cone� where the CSRs are linked to representations of the Euclidian
group in the transverse plane in any dimensions.

The purpose of this paper is to seek CSR’s in familiar mathematical structures which contain
the Poincaré group in four dimensions: the conformal group SO�4,2�, the Poincaré group in higher
dimensions, and in the de Sitter and anti-de Sitter groups in five dimensions. The latter require
group contraction, introduced by Inönü and Wigner �IW�,6 in order to generate the Euclidean
group from the rotation group. We show that, while the CSR do not appear as representations of
the conformal group,7,8 they can be generated from the five-dimensional Poincaré group by a
combination of group contraction and Kaluza–Klein9 dimensional reduction. We apply the same
procedure to a more complicated theory, Majorana’s infinite component wave equation10 in five
dimensions. We do not consider how string theories in higher dimension can yield CSR’s in lower
dimensions, our considerations indicate a connection between group contraction and their infinite
slope limit.

II. FRONT FORMS OF THE POINCARÉ AND CONFORMAL ALGEBRAS

In this section, we briefly review the light-cone forms of the Poincaré and conformal algebras
in arbitrary dimensions.

A. Poincaré algebra

In d dimensions, the generators of the Poincaré algebra satisfy the commutation relations

�P�,P�� = 0,

�M��,P�� = i����P� − ���P�� ,

�M��,M��� = i����M�� + ���M�� + ���M�� + ���M��� ,

where ���= �−1,1 ,… ,1� and �,�,�,�=0,… , �d−1�.
Introduce the light-cone coordinates,11,5

x± =
1
�2

�t ± xd−1� and p± =
1
�2

�p0 ± pd−1� ,

where i,j=1,2 ,… , �d−2� are the transverse directions. The commutation relations satisfied by the
momenta and positions are

�x−,p+� = − i and �xi,pj� = i�ij .

Following Dirac, we set x+=0 and use the mass-shell condition to express its conjugate variable p−

in terms of the remaining variables. The translation generators become

P− =
pipi + M2

2p+ , P+ = p+, Pi = pi;

P− is called the light-cone Hamiltonian. The Lorentz generators are given by

M+i = − xip+, �1�

M+− = − x−p+, �2�

Mij = xipj − xjpi + Sij , �3�
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M−i = x−pi −
1

2
�xi,P−� +

1

p+ �Ti − pjSij� . �4�

The generators, Sij, form the SO�d−2� transverse light-cone little group and obey,

�Sij,Skl� = i��ikSjl + �kjSli + � jlSik + �liSkj� . �5�

The T i ’ s transform as SO�d−2� vectors, called the light-cone translation vectors and satisfy

�Sij,Tk� = i��ikTj − � jkTi� , �6�

�Ti,Tj� = iM2Sij . �7�

The difference between the various representations is easily understood in terms of these variables.

�i� When M �0, we can divide Eq. �7� by M, so that

Sij and
Ti

M

generate the massive little group SO�d−1�. The representations are therefore labelled by
the massive little group.

�ii� When M =0, the T i ’s are still SO�d−2� vectors, but they commute with one another. This
leads us to consider two cases.

�1� Ti=0, yields the regular massless representation labelled by a representation of the SO�d
−2� little group generated by Sij, with a finite number of helicity states.

�2� Ti�0. In this case, the Sij and T i ’ s form the inhomogeneous light-cone little group in �d
−2� dimensions, which has infinite-dimensional representations, yielding the continuous spin
massless representations of the Poincaré group.

B. Conformal algebra

The Poincaré group is a subgroup of the conformal group SO�d ,2� which contains dilatation
and conformal transformations. The concept of mass makes sense in the conformal sense only if
it is zero, to preserve scale invariance. Thus one expects massless representations of the Poincaré
group to appear naturally in those of the conformal group.

It has been known7,8 for some time that the CSR do not appear in this decomposition. We can
show it elegantly using light-cone coordinates, and expressing the generators of the conformal
algebra using the same variables as for the Poincaré algebra. We need to add to the Poincaré
generators the dilatation generator

D = 1
2 �x · p + p · x� , �8�

for the scale transformation and the special conformal transformations generated by

K� = 2x�M
�� + x2p� = 2x�D − x2p� + 2x�S��, �9�

where �=0,1 ,…�d−1�, and

M�� = x�p� − x�p� + S��. �10�

In addition to those of the Poincaré algebra, these two generators satisfy the following commuta-
tion relations:

�M��,D� = 0, �D,p�� = ip�, �D,K�� = − iK�,
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�M��,K�� = i����K� − ���K��, �p�,K�� = − 2i����D − M��� .

To obtain the light-cone forms of the dilatation and the conformal translation generators, we first
express the dilation and conformal generators in light-cone coordinates,

D = 1
2 �− �x−,p+� − �x+,p−� + �xi,pi�� ,

K+ = − 2x+M+− + x2p+ + 2xiM+i,

K− = 2x−M+− + 2xiM−i + x2p−,

Ki = 2x−M+i + 2x+M−i + 2xjMij + x2pi,

where i,j=1,… , �d−2�. Using the light-cone forms of the Poincaré generators from Eqs. �1�–�4�
and setting x+=0, K−, and Ki can be written as

K− = 2x−�− x−p+ + xipi� − xixip− +
2

p+ �xiTi − xipjSij� , �11�

Ki = 2xi�− x−p+ + xipi� − xjxjpi + 2xjSij . �12�

To check if these satisfy the algebra, we calculate the commutators �P− ,Ki� and �pi ,K−�. Substi-
tuting the light-cone forms, we find

�P−,Ki� = 2i�x−pi −
1

2
�xi,P−� −

pj

p+Sij	 , �13�

− �pi,K−� = 2i�x−pi −
1

2
�xi,P−� +

1

p+ �Ti − pjSij�	 . �14�

But to satisfy the conformal algebra, these two commutators must be equal, requiring Ti=0.
Therefore, the front forms of the conformal generators are

K+ = − xixip+, Ki = 2xiD − xjxjpi + 2xjSij , �15�

K− = 2x−D − xixip− −
2

p+xipjSij , �16�

D = 1
2 �− �x−,p+� + �xi,pi�� . �17�

This shows that Ti=0, which imply regular massless representations, not the CSR.
We conclude that in order to generate a CSR by embedding the Poincaré algebra into larger

algebraic structures, we must consider singular limits. The CSRs require the transverse little group
to be the Euclidean group E�2�, the semidirect product of translations and rotations. It is the very
same group that Inönü and Wigner6 obtained by contracting the homogeneous SO�3� group. As
this group is the massless transverse little group in five dimensions, we are led to consider
dimensional reduction as well as group contraction of the Poincaré group in higher dimensions.

III. KALUZA–KLEIN REDUCTION OF THE 5D POINCARÉ ALGEBRA

Kaluza and Klein9 reduced one dimension by setting it on to a circle of finite radius. We apply
it to the five-dimensional Poincaré algebra, by setting the third direction on to a circle of radius R,
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x3 = x3 + 2�R .

The generators act on functions of the form

	�x� = 

n

	n�x��einx3/R, �18�

where �=+,
,1,2 and n is the mode number. The momentum along the third direction is quan-
tized

p3 =
n

R
, �19�

and the light-cone Hamiltonian becomes

P− =
pipi + �p3�2 + M2

2p+ �
pipi + Mn

2

2p+ , �20�

where

Mn
2 = M2 +

n2

R2 , �21�

is the Kaluza–Klein �KK� mass. The single state of mass M in five dimensions generates an
equally spaced tower of states of mass Mn. To find their spin, observe that the two transverse boost
generators are

M−i = x−pi −
1

2
�xi,P−� +

1

p+�Ti +
n

R
S3i − pjSij	 , �22�

for i=1, 2, leading us to define new light-cone translation vectors

T̂i = Ti +
n

R
S3i, �23�

which satisfy the algebra

�Sij,T̂k� = i��ikT̂j − � jkT̂i�, �T̂i,T̂j� = iMn
2Sij . �24�

The generators

S12,
T̂i

Mn
,

form the SO�3� light-cone little group in four dimensions. Analyzing the mass term, the mass Mn

increases with the mode number and gives the well-known infinite �KK� tower of masses starting
at M0=M. The remaining Lorentz generators of the four-dimensional group, M+−, M12, and M+i

for i=1, 2 are not changed. Note that when evaluated at x3=2�R, the generators that rotate into
the third direction become �for large R� like the momenta

M−3

R
=

n

R2x− − 2�p− +
1

Rp+ �T3 − piS3i� , �25�

M3i

R
= 2�pi −

nxi

R2 +
1

R
S3i, �26�

053515-5 CSR from group contraction J. Math. Phys. 46, 053515 �2005�

                                                                                                                                    



M+3

R
= − 2�p+. �27�

When the starting representation is massive �M �0�, the KK procedure yields massive represen-
tations in lower dimensions, but even if M =0, the ground floor of a KK tower is the usual
massless representation in four dimensions, not the CSR. In the simple limit R→�, the KK mass
tower collapses without any sign of a CSR.

IV. INÖNÜ–WIGNER CONTRACTION

This section presents the original Inönü–Wigner6 contraction procedure. Starting from the
homogeneous SO�3� group, they generated the Euclidean group E�2�, in a singular limit with an
arbitrary contraction parameter that tends to zero. They considered the algebra’s generators, iden-
tifying those which are well defined under contraction, as well as to the two-dimensional wave
function on which the Euclidean translation vectors act, which they show to be Bessel’s functions
Jn.

They begin with the SO�3� generators Li in the �2l+1�-dimensional representation, which
satisfy

�Li,Lj� = i�ijkLk, LiLi = l�l + 1�, L3 = m .

They introduce a contraction parameter � and the vectors

Ti � �Li. �28�

They observe that in the limit �→0, these, together with L3, satisfy the commutation relations of
the Euclidean algebra

�L3,Ti� = �ijTj, �Ti,Tj� = 0. �29�

Multiplying the Casimir operator with �2 yields

��m�2 + T1
2 + T2

2 = �2l�l + 1� . �30�

The Inönü–Wigner contraction is the double limit

l → �, � → 0, �l � � fixed, �31�

in which the Euclidean translations have a finite length

T1
2 + T2

2 = �2. �32�

In their original paper, Inönü and Wigner applied their method to the Poincaré group, using the
inverse of the speed of light as a contraction parameter, and find it to contract to the nonrelativistic
Galilei group �but only if the starting point is the tachyonic representation�.

The representation function of E�2� in a space labelled by the polar coordinates  and � are of
the form



n

cnJn���ein�. �33�

In the Appendix we show how to obtain these results directly by imposing periodic boundary
conditions à la Kaluza–Klein.
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V. THE CSR À LA KALUZA–KLEIN–INÖNÜ–WIGNER

The results of the preceding two sections hints on how to proceed. The contraction parameter
� is simply the inverse of the Kaluza–Klein radius. We start from the usual massless Poincaré
group in five dimensions, and apply the KK procedure to the third direction. The dynamical boosts
are

M−i = x−pi −
1

2
�xi,P−� +

1

p+� n

R
S3i − pjSij	 . �34�

Comparison with the results of the preceding section leads us to identify the IW contraction
parameter as

� =
n

R
. �35�

This yields the CSR boosts, where the translations are given by

T̂i =
n

R
S3i. �36�

We mimic the IW procedure and consider the Casimir operator of the SO�3� light-cone little
group, where j is the spin of the massless particle in five dimensions,

�S12�2 + �S23�2 + �S31�2 = j�j + 1� .

Dividing both sides by R2, we obtain

�T̂1�2 + �T̂2�2 =
n2j2

R2 � �2 � 0. �37�

The length of the translation vector is nothing but the Pauli–Lubanski Casimir operator of the
Poincaré group. This shows that it is possible to generate the CSR as long as one takes the double
limit

R → �, j → �,
j

R
fixed. �38�

In the next section, we apply the same method to a more complicated theory.

VI. CSR FROM MAJORANA’S THEORY

In this section, we consider the contraction of the five-dimensional massive representations. A
simple, yet nontrivial model for the massive relativistic particle is the infinite component Majorana
theory, introduced by Majorana long ago.10 Its spectrum can be inferred from Poincaré generators
with a massive SO�4� little group. Amusingly the mathematics of this SO�4� are exactly the same
as those of Bohr’s nonrelativistic hydrogen atom. We want to apply contraction to this theory and
investigate under what circumstances a CSR can be generated.

In the following, we construct the mass operator and other generators of the little group in
terms of internal coordinates. This can be thought of as the nonlinear realization of the homoge-
neous SO�4� group. We start with applying the contraction to the SO�4� little group algebra and
find the Casimirs in five and four dimensions which label the representations. We will then find the
conditions necessary for the existence of the CSRs. We will also find the representation of the
wave functions in four dimensions and compare with the IW paper.

A. Majorana’s theory

We start with the five dimensional light-cone realization of the dynamical Poincaré boosts
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M−i = x−pi −
1

2
�xi,P−� +

1

p+ �Ti − pjSij� ,

with i, j=1,2,3.
The little group generators are built in terms of three “internal variables” �i and their conju-

gates �i,

��i,� j� = i�ij, i, j = 1,2,3, �39�

in the form

Sij = �ijkLk = �i� j − � j�i, �40�

and with the nonlinear Laplace–Runge–Lenz �LRL� vectors

Ti = �ijk� jLk − �
�i

�
− i�i, �41�

where �=��i�i and � is a mass parameter �we have set the “electron charge” to one�. They obey
the commutation relations

�Ti,Tj� = i�− 2�H��ijkLk, �42�

where H is the same as Bohr’s Hamiltonian

H =
�i�i

2�
−

1

�
. �43�

�In Bohr’s case, of course, the SO�4� generators are written in terms of coordinates and momenta
in real three-dimensional space.�

Comparison between Eqs. �7� and �42� yields the mass squared operator

M2 = − 2�H , �44�

which must then appear in the light-cone Hamiltonian,

P− =
pipi + M2

2p+ =
pipi − 2�H

2p+ .

Each mass level has the same degeneracy as that of the hydrogen atom. Two commuting SO�3�’s
are generated by the combinations

1

2�Lk +
Tk

�− 2�H
	,

1

2�Lk −
Tk

�− 2�H
	 ,

corresponding to SO�4��SO�3��SO�3�. Since

LkTk = TkLk = 0, �45�

they have the same Casimir operator

C2 =
1

4
�LkLk −

TkTk

2�H
	 = j�j + 1� , �46�

where j is related to the mass operator by
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Mj
2 =

�2

4C2 + 1
=

�2

�2j + 1�2 , �47�

so that �2j+1� is Bohr’s principal quantum number. At each mass level, these states assemble in
a representation of SO�4� and generate the spectrum of the infinite component Majorana wave
equation. Since SO�4��SO�3��SO�2�, we need to contract at least twice to obtain a CSR in four
dimensions. One contraction parameter is of course the inverse radius of the compactified direc-
tion and the other one is not yet defined. There are two ways to proceed with the contractions.

�1� We contract, staying in five dimensions first, and then use KK reduction and contract to four
dimensions, i.e.,

SO�4� ——→
contraction

1st

E�3� ——→
reduction

KK

SO�3� ——→
contraction

2nd

E�2� .

�2� We apply the KK reduction first and then contract, i.e.,

SO�4� ——→
reduction

KK

SO�3� ——→
contraction

Double

E�2� .

We consider both cases in the following and find the conditions for these procedures to lead
to the CSR in four dimensions.

1. Case 1: Contraction to E„3…

In the Majorana theory, the degeneracy at each mass level is generated by the addition of two
angular momenta j. The states are eigenstates of their SO�3� diagonal subgroup �the angular
momentum in Bohr’s model�, so that

LkLk = l�l + 1� , �48�

where l=0,1 ,2 ,… ,2j. This is the analog of the magnetic quantum number in the SO�3�→E�2�
contraction process, its range goes to infinity while its value remains finite. This leads us to
consider the contraction where all three Lk that generate SO�3� remain finite as j→�.

In that limit, the mass vanishes and the Tk become commuting translations

Mj =
�

2j + 1
→ 0, �Ti,Tk� → 0, �49�

producing E�3�, the Euclidean group in three dimensions. This contraction of the transverse little
group yields a CSR in five dimensions. To see this explicitly, we multiply the SO�4� Casimir
operator by the contraction parameter �,

��Lk���Lk� +
�2

Mj
2TkTk = 4�2j�j + 1� .

As �→0 and j→�, for fixed �j we get

TkTk = �2, �50�

so that the length of the translation vector is fixed.
In five dimensions, the Poincaré group has three Casimir operators, the momentum squared

�zero in this case�,

W��W
�� and W = �����PM��M��, �51�

where
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W�� = �����PM��. �52�

In this case,

W��W
�� = �2 and W = TkLk = 0. �53�

These two Casimirs characterize a unique CSR in five dimensions. The dimensionality of space–
time does not change, but the contraction parameter � does not have an obvious physical meaning.

We can use this contracted theory as a starting point to obtain a four-dimensional theory. So
we apply the KK reduction to the E�3� algebra to get down to four dimensions. The mass operator
and the light-cone vector now takes the following form:

Mn
2 =

n2

R2 and T̂a = Ta +
n

R
S3a, a = 1,2, �54�

which can be checked by analyzing the light-cone Hamiltonian and the dynamical boosts, respec-

tively. The generators S12 and T̂a now form SO�3�, the massive little group in four dimensions. The
contraction parameter is now ��=1/R. Let j̃� j̃+1� be the eigenvalue of this SO�3� angular mo-
mentum algebra. It is quite clear that to get a CSR, we take the limits,

R → �, j̃ → � with
j̃

R
fixed.

Therefore we obtain,

T̂aT̂a =
n2 j̃2

R2 � �̃2, �55�

which is the Casimir of the E�2� algebra. The other Casimir is of course the mass squared which
is zero. These two uniquely determines the CSR in four dimensions.

Notice that the first contraction parameter could have been identified with 1/ j or �; both
would have yielded a zero mass, but it is only the first case that leads to the CSR; the other �
→0 generates a normal massless representation of definite helicity.

2. Case 2: KK reduction first

In this case, we apply the KK reduction first. The massive SO�4� little group in five dimen-
sions now reduces to the massive little group in four dimensions. The light-cone Hamiltonian
becomes

P− =
1

2p+ �papa + Mjn
2 � , �56�

for a=1, 2, with

Mjn
2 =

�2

�2j + 1�2 +
n2

R2 , �57�

using Eq. �19�. The generators of the SO�3� little group are

L3 and T̂a = �Ta +
n

R
S3a	, a = 1,2 �58�

deduced by looking at M−a.
The quadratic Casimir is
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�L3�2 +
1

Mjn
2 �Ta +

n

R
S3a	�Ta +

n

R
S3a	 = j��j� + 1� . �59�

The mass operator in Eq. �57� clearly shows that we need to take the double limit j,R→� to
obtain the massless case. However this is not enough to get a CSR, because from Eq. �59�, it is
also clear that the ratio j� /R must also remain finite and nonzero. To see it explicitly, we divide
Eq. �59� by R2 and rearrange to get

T̂aT̂a = � �2

�2j + 1�2/R2 + n2	� j�

R
	2

− Mjn
2 m2, �60�

where we have used L3=m. The double limit certainly does not give any nonzero value, but the
following triple limit,

j, j�,R → �, such that
j

R
,
j�

R
remain finite �nonzero� , �61�

does give a finite value. Therefore, in this triple limit, we find,

�T̂a�2 = � �2

�2j/R�2 + n2	� j�

R
	2

� ��2, �62�

which is the Casimir in four dimensions. This and the mass squared �which is zero� uniquely
labels the representation. The difference between Case 1 and Case 2 is the length of the light-cone
vector. This feature is what we expected, because the generator S12 was not affected by any of the
reduction and/or contraction processes. The contraction only affected the quadratic Casimir eigen-
values which sets the range of quadratic Casimir of its maximal subgroup. Therefore, the repre-
sentations of the contracted algebra of these two cases should differ by the length of the light-cone
vectors and that is what we have found. These representations are also consistent with Inönü and
Wigner’s result with different lengths of the Euclidean light-cone vectors.

B. Representation of the wave function

Since we have the form of the Ti’s in terms of the internal variables, we can explicitly find the

representation of the wave function for the light-cone vectors T̂a. First note that in T̂a the contrac-
tion parameter j is not explicitly present. Therefore if we apply the contraction it will only include
the R→� limit, not the j→�. As a result we will not obtain a commuting vector which is required
to obtain the CSR. Since the contraction parameter j appears through the Hamiltonian when it acts
on the wave function, we rewrite Ti in terms of the Hamiltonian as in the following:

Ti = �ijk�
jLk −

��i

�
− i�i = �i�2�H +

�

�
	 − �� · � − i��i, �63�

where we used H as given by Eq. �43�. Therefore the light-cone vector, T̂a, can be expressed as

T̂a = �2��aH +
��a

�
−

n

R
�a�3 − ���a,H�	 + �y + 2i − � · ���a, �64�

where

y =
n�3

R
. �65�

The first term is dependent on the contraction parameters whereas the second term is independent
and also both terms are separately Hermitian. Since H�O�1/ j2� and 1/��O�1/R�, the first term
vanishes as j, R→�.
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It should be noted that if we evaluate the commutator in the first term in Eq. �64� and then
consider the contraction, the resulting light-cone vector becomes non-Hermitian and the whole
analysis becomes physically meaningless. It is not well understood why this happens, but to
maintain the hermiticity, we must consider the contraction without computing the commutator.
Using

� · � = �a�a − iy
�

�y
,

and dropping the first term, the light-cone vector becomes

T̂a = �y + 2i + iy
�

�y
− �b�b	�a. �66�

It can be easily checked that the above form satisfies the E�2� algebra,

�T̂a,T̂b� = 0 and �Sab,T̂c� = i��acT̂b − �bcT̂a� ,

which is required to obtain any CSR in four dimensions. We now find the representation of the
wave function for this E�2� algebra.

The square of the light-cone vector is

�T̂a�2 = ��b�b�2 − i�b�b�− 2iy + 5 + 2y
d

dy
	 − �y2 d2

dy2 − �2iy2 − 6y�
d

dy
− �y2 + 6iy − 6�	���2� .

On a wave function of the form,

	��i� = eiy���a,y� ,

this gives the following form of the differential equation:

��b�b�2 − i�b�b�5 + 2y
d

dy
	 − �y2 d2

dy2 + 6y
d

dy
+ 6	���2� = �2, �67�

where �=�̃ or �� corresponding to Case 1 and Case 2, respectively. To solve the above equation,
let

��a�2 = �2�y� �68�

when it acts on ���a ,y�, that is the representation of the �a dependent part of the wave function
is the Bessel function, namely,

���a,y� = Jm���y��eim�F�y� ,

where F�y� is a real function and we used the polar coordinates, �1= cos � and �2= sin �. In
polar coordinates, we use,

− i�a�a = − 
d

d
,

��a�a�2 = − �2 d2

d2 + 
d

d
	 ,

and we rewrite Eq. �67� as
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2 d2

d2 + �6 + 2y
d

dy
	

d

d
+ �y2 d2

dy2 + 6y
d

dy
+ 6	���2JmF� = − �2JmF . �69�

Making use of the following identities:

d

d
Jm���y�� =

�

2
�Jm−1 − Jm+1� , �70�

d

dy
Jm���y�� =



2

d�

dy
�Jm−1 − Jm+1� , �71�

and after straightforward algebra, the left-hand side of Eq. �69� can be expressed as a linear
combination of Bessel function of different orders,

�2�4F

4
+

2y�3��F

2
+

2y2�2��2F

4
	�Jm−2 + Jm+2�

+ �3�3F + 6y�2��F + y�3F� + 2y2���2F + y2�2��F� +
y2�2��F

2
	�Jm−1 − Jm+1�

+ �−
2�4F

2
− 2y�3��F + 2y2��2F + 2y2���F + 4y2���F� + y2�2F�

−
2y2�2��2F

2
+ 12y���F + 6y�2F� + 6�2F	Jm,

where the prime denotes derivative with respect to the argument. By matching the coefficients of
Bessel functions of different order with the right-hand side of Eq. �69�, we get three constraints.
Equating the coefficient of Jm±2 to zero gives the first constraint,

2�2

4
��2 + 2y�

d�

dy
+ y2�d�

dy
	2	F�y� = 0,

which is satisfied if

�2 + 2y�
d�

dy
+ y2�d�

dy
	2

= 0. �72�

The solution to this equation is given by

��y� =
�0

y
, �73�

where �0 is a constant. The constraint obtained by equating the coefficients of Jm±1 provides no
new result. Finally the remaining constraint is from the coefficients of Jm which gives a differen-
tial equation for F�y�,

d2F

dy2 +
2

y

dF

dy
+

�2

�0
2F = 0, �74�

where we used ��y�=�0 /y and its derivatives. The solution is given by

F�y� =
1

y
�A sin��y

�0
	 + B cos��y

�0
		 , �75�

where A and B are constants, and the regularity condition at y=0 implies B=0. Therefore the
complete wave function can be written as
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	�,�,y� = 

m

Nm� eiy

y
sin��y

�0
		eim�Jm��0

y
	 , �76�

where Nm is the overall normalization constant.
In their paper,6 IW found the following wave function for the E�2� algebra,

	IW�,�� = 

m

cmeim�Jm��� , �77�

where �2, the square of the Pauli–Lubanski vector, is the second Casimir of the Poincaré group,
and labels the CSR in four dimensions. The Euclidean vector is linear in �a and as a result its
length appeared as a scale factor in the Bessel function. In four dimensions there are only two
types of CSRs, fermionic and bosonic types corresponding to half-odd and integer values of m.
The amplitude is also constant.

Although similar in form, there are differences between Eq. �76� and the IW form in Eq. �77�.
In our case, the internal momentum �Eq. �73�� and amplitude are not constant, but functions of y
which is the ratio of the internal and external coordinates. It is due to the fact that the Euclidean

light-cone vector T̂a is not linear in �a �in addition to the y dependence�. Moreover, unlike the IW
case, the length of the light-cone vector does not appear as a scale factor in the Bessel function,
even though it is the CSR. To find how our CSR is related to IW’s CSR, we must find a relation
between � and �. Let us assume �=�=�0 /y. The only solution we get, following Eq. �72�, is
�=0 which corresponds to the regular massless representation, not the CSR. Therefore ��� is
the only possibility and these are quite new. On the other hand, we may assume that, instead of �,
�0=�. Substituting this into Eq. �76� and setting y=1, the solution becomes exactly the same as
that of Wigner’s CSR apart from the overall phase factor which has no physical effect �the overall
constant factor can be absorbed into the normalization factor�. For any other values of y, we have
a different kind of CSR because of the nonequality between the scale factor and length of the
Euclidean vector. There is no physical reason for �0 and � to be equal and y=1, but this is the
only condition to obtain IW’s result.

Finally, the raising and lowering operators are defined as

T̂± = T̂1 ± iT̂2.

In polar coordinates, these become

T̂+ = ei��2 + y
d

dy
+ 

d

d
	� d

d
+

i



d

d�
	 , �78�

T̂− = e−i��2 + y
d

dy
+ 

d

d
	� d

d
−

i



d

d�
	 , �79�

which acts on �� ,� ,y�. It is quite obvious that the states T̂+�� and T̂−�� have helicities �m
+1� and �m−1�, respectively. The remaining generator T3 /R becomes

T3

R
= ��a�2,

under contraction. The complete Poincaré wave function is

	�x+,xa;,�,y� = 

m

Nm
eiy

y
sin��y

�0
	e−i�x−p+−xapa�eim�Jm��0

y
	 .

The physical meaning of the new parameter y is not clear to us, but it links the external to the
internal coordinates of the Majorana theory. This type of limit links the internal structure to that of
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space–time. If we view, as we have, the Majorana theory as a warm-up for string theory, it may
correspond to compactifying a string with its vibrational modes stuck along an extra dimension.
This may help define the infinite slope limit of string theory.

VII. CONCLUSION

In this paper, we showed that if we dimensionally reduce from five to four dimensions, the
compactified algebra is the regular representation of the Poincaré group in four dimensions with
mass Mn for all modes. For the infinite radius limit, we find that the KK mass spectra collapses to
the lowest mass state and gives the regular representation of the Poincaré group in four dimen-
sions. Only for nonzero modes and infinite radius limit, we obtain CSR if the j /R remains constant
as R→�, otherwise we will get the regular representation.

We constructed explicitly the representation of the Euclidean group in a system with periodic
boundary condition for internal coordinates and found the condition to obtain nonzero Euclidean
vectors using IW contraction method. We found that for nonzero and finite Euclidean vector, the
eigenvalue of the uncontracted group must be proportional to the radius of the compactified
direction. This condition is similar to that of the CSR where the spin is proportional to the radius,
apart from the mode number. Therefore finding the representations of any Euclidean group pro-
vides the representations of the inhomogeneous light-cone little group which is the CSR.

We have applied the contraction technique to both regular massless and massive representa-
tions in five dimensions. In the regular massless case, the contraction yields the E�2� little group
under the double limits j, R→�, keeping j /R finite and nonzero.

The massive case is not as straightforward as the regular massless case. We have considered
Majorana theory as a model in the five-dimensional massive case. We have found that the double
limits are not enough to get a CSR, even though the mass operator vanishes. We must consider
triple singular limits j, j�, R→� such that both j /R and j� /R remain fixed and nonzero. There are
two ways to consider the contraction limits, in the sequence of contraction, KK reduction and
contraction, or KK reduction and double contraction. Both of these yield the CSR in four dimen-
sions. The difference is in the length of the light-cone vector. The representation wave function of
the contracted algebra is the Bessel function, however as in Wigner’s solution, the length of the
light cone vector does not appear as a scale factor in the Bessel factor. In our case both the
amplitude and the scale factor are a function of the parameter y which is a ratio of the internal and
external coordinates. We have found that the contracted algebra is identical to that of Wigner’s
CSR only if �0 which is the magnitude of the internal momenta at y=1, equals the length of the
light-cone vector �apart from an overall phase factor�.

Thus, the CSR can arise in the Majorana theory, but with an extra variable. Its physical
interpretation may provide clues when we apply our techniques to string theory in the hope of
identifying the CSR with its infinite slope limit.

Our technique may also prove useful when the starting point is curved space in higher dimen-
sions, particularly anti-de-Sitter. There the starting group is the conformal, not the Poincaré group.
This possibility, though interesting in its own right, will not be discussed here.
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APPENDIX: INÖNÜ–WIGNER À LA KALUZA–KLEIN

In this Appendix we reproduce their results by a different method. We consider the full SO�3�
algebra which acts on three-dimensional vector space with periodic boundary condition along one
direction The contraction parameter is in the inverse radius of that direction. After the contraction,
the three-dimensional wave function reduces to Bessel functions in the radial coordinate. In the
following we retrace IW’s steps, stressing the geometrical picture of the contraction procedure.
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The IW contraction of SO�3� to E�2� amounts to the study of a dynamical system with SO�3�
symmetry restrained to a space whose boundary condition breaks that symmetry. We switch to
cylindrical coordinates, and seek solutions which are periodic in z,

z → z + 2�R , �A1�

	�,�,z� = 

n

	n�,��einz/R, �A2�

where n is the mode number. In the following we will use 1/R as the contraction parameter. The
angular momentum operators are given by

S12 = − i
�

��
, �A3�

S23 = − i�− z sin �
�

�
+  sin �

�

�z
−

z cos �



�

��
	 , �A4�

S31 = − i�z cos �
�

�
−  cos �

�

�z
−

z sin �



�

��
	 . �A5�

Acting on the wave function, the factor � /�z can be replaced by in /R. When R is very large
�ultimately we will take it to ��, we drop all terms proportional to � /�z, yielding

S31 → − iz�cos �
�

�
−

sin �



�

��
	 , �A6�

S32 → iz�− sin �
�

�
−

cos �



�

��
	 . �A7�

However z is no longer well defined on the wave function. The Casimir operator now becomes

�S12�2 + �S31�2 + �S32�2 = j�j + 1� , �A8�

→− z2� �2

�2 +
1



�

�
+ � 1

2 +
1

z2	 �2

��2	 . �A9�

The wave function on which this differential operator acts is of the form

	�,�� = R������ ,

with eigenvalue s2. Since there is no mode dependence, we have dropped the subscript n from the
wave function. For the above form of the wave function, the angular part decouples from the radial
part and can be written as

1

�

d2�

d�2 � − m2, �A10�

where m, the azimuthal quantum number, is an integer or half-odd integer depending on whether
the wave function is single or double valued. Let us also define the dimensionless variable
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̃ =
�s2 − m2

z
 � q�s,m� .

Substituting the angular part, the eigenvalue equation for the differential operator in Eq. �A9�
becomes Bessel’s differential equation

̃2
d2R
d̃2 + ̃

dR
d̃

+ �̃2 − m2�R = 0, �A11�

whose solutions are well known. The regularity condition at the origin implies that the physically
relevant solution is the Bessel function Jm�̃�. Therefore the wave functions for the E�2� group are
linear combinations of the form

	�,�� = Jm�q�eim�. �A12�

We let

Ta � lim
R→�

S3a

R
, �A13�

that is

T1 = �cos �
�

�
−

sin �



�

��
	, T2 = �− sin �

�

�
−

cos �



�

��
	 .

It can easily be checked that the Ta, a=1, 2, commute and that they transform as a 2-vector
under S12, forming a representation of the E�2� algebra. The length of the Euclidean vector is now

�2 � TaTa = − � �2

�2 +
1



�

�
+

1

2

�2

��2	 . �A14�

The wave function for the above differential equation is the same as in Eq. �A12� with scale factor
q defined as

q��� =
�

z/R
. �A15�

Since in the infinite radius limit these two scale factors are the same, the eigenvalues, � and s,
must be related by

� = 2�q =
s

R
. �A16�

This solution is of course the same as that of Inönü and Wigner, because s and j are the same when
both are large. The generalization of the above construction to any dimensions is also quite
straightforward.
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Quantum integrability of classical integrable systems given by quadratic Killing
tensors on curved configuration spaces is investigated. It is proven that, using a
“minimal” quantization scheme, quantum integrability is ensured for a large class
of classic examples. ©2005 American Institute of Physics.
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I. INTRODUCTION

One of the main goals of this paper is to present a somewhat general framework for the
quantization of classical observables on a cotangent bundle which are polynomials at most cubic
in momenta. This approach enables us to investigate the quantization of classically Poisson-
commuting observables, and hence to tackle the problem of quantum integrability for a reasonably
large class of dynamical systems.

What should actually be the definition of quantum integrability is a long standing issue, see,
e.g., Ref. 37. The point of view espoused in this paper is the following. Start with a complete set
of independent Poisson-commuting classical observables, and use some quantization rule to get a
corresponding set of quantum observables; if these operators appear to be still in involution with
respect to the commutator, the system will be called integrable at the quantum level.

Our work can be considered as a sequel to earlier and pioneering contributions11,4,5,22,34that
provide worked examples of persistence of integrability from the classical to the quantum regime.
The general approach we deal with in this paper helps us to highlight the general structure of
quantum corrections and to show that the latter actually vanish in most, yet not all, interesting
examples.

Returning to the general issue of quantization, let us mention that our choice of quantization
procedure, which we might call “minimal,” does not stem from first principles, e.g., from invari-
ance or equivariance requirements involving some specific symmetry. Although this “minimal”
quantization only applies to low degree polynomials on cotangent bundles, it has the virtue of
leading automatically to the simplest symmetric operators that guarantee quantum integrability in
many cases. In order to provide the explicit form of the quantization scheme, hence of the
quantum corrections, we need a symmetric linear connection to be given on the base of our
cotangent bundle. In most examples where aspseudo-dRiemannian metric is considered from the
outset, this connection will be chosen as the Levi-Civita connection.

To exemplify our construction, we consider a number of examples of classical integrable
systems together with their quantization. For instance, our approach for dealing with quantum

adElectronic mail: duval@cpt.univ-mrs.fr
bdUMR 6207 du CNRS associée aux Universités d’Aix-Marseille I et II Université du Sud Toulon-Var; Laboratoire affilié

à la FRUMAM-FR2291.
cdElectronic mail: gvalent@lumimath.univ-mrs.fr
ddUMR 7589 du CNRS associée aux Universités Paris VI et Paris VII.

JOURNAL OF MATHEMATICAL PHYSICS46, 053516s2005d

46, 053516-10022-2488/2005/46~5!/053516/22/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1899986


integrability in somewhat general terms allowed us to deduce the quantum integrability of the
Hamiltonian flow for the generalized Kerr–Newman solution of the Einstein–Maxwell equations
with a cosmological constant first discovered by Carter.9–11Also our quantization scheme leads us
to an independent proof of the quantum integrability for Stäckel systems originally due to Benenti,
Chanu, and Rastelli.4,5

The paper is organized as follows. In Sec. II we gather the definitions of the Schouten bracket
of symmetric contravariant tensor fields on configuration space,M. We make use of Souriau’s
procedure to present, in a manifestly gauge invariant fashion, the minimal coupling to an external
electromagnetic field; this enables us to provide a geometric definition of the so-called Schouten–
Maxwell bracket. The related definitions of Killing and Killing–Maxwell tensors follow naturally
and will be used throughout the rest of the article. We recall the basics of classical integrable
systems, with emphasis on the Stäckel class. The main objective of the present section is then to
revisit some classic examples of integrable systems involving Killing tensors. Naturally starting
with the Jacobi system on the ellipsoid, we prove,en passant, that it is locally of the Stäckel type,
even allowing for an extra harmonic potential. This extends previous work of Benenti3 related to
the geodesic flow of the ellipsoid. Similarly, we show that the Neumann system is also locally
Stäckel. A number of additional examples, not of Stäckel type, e.g., the Di Pirro system, and the
geodesic flow on variousspseudo-dRiemannian manifolds such as the Kerr–Newman–de Sitter
solution and the multi-center solution are also considered.

We introduce, in Sec. III, a specific “minimal” quantization scheme for observables at most
cubic in momenta on the cotangent bundleT*M of a smooth manifoldM endowed with a sym-
metric connection¹, extending a previous proposal.11 This quantization mapping is shown to be
equivariant with respect to the affine group ofsM , ¹ d. The computation of the commutators of
quantum observables is then carried out and yields explicit expressions for quantum corrections.
We also provide the detailed analysis of quantum integrability for a wide class of examples within
the above-mentioned list.

The concluding section includes a discussion and brings together several remarks about the
status of the “minimal” quantization that has been abstracted from the various examples dealt with
in this paper. It also opens some prospects for future investigations related to quantum integrability
in the spirit of this work.

II. CLASSICAL INTEGRABLE SYSTEMS

A. Killing tensors

Let us start with the definition of the Schouten bracket of two polynomial functions on the
cotangent bundlesT*M ,v=dji ∧dxid of a smooth manifoldM. Consider two such homogeneous
polynomialsP=Pi1. . .iksxdji1

. . .jik
andQ=Qi1. . .i,sxdji1

. . .ji,
of degreek and,, respectively; we will

identify these polynomials with the corresponding smooth symmetric contravariant tensor fields
P]=Pi1. . .iksxd]i1

^ ¯ ^ ]ik
andQ]=Qi1. . .i,sxd]i1

^ ¯ ^ ]i,
.

The Schouten bracketfP] ,Q]gS of the two contravariant symmetric tensorsP] and Q] sof
degreek and,, respectivelyd is the symmetric contravariantsk+,−1d-tensor corresponding to the
Poisson bracket ofP andQ, namely

fP],Q]gS= hP,Qj]. s2.1d

Using the Poisson brackethP,Qj=]ji
P]iQ−]ji

Q]iP, and s2.1d, we readily get the local ex-
pression of the Schouten bracket ofP] andQ]. If the manifoldM is endowed with a symmetric
connection¹, the latter can be written as

fP],Q]gS
i1. . .ik+,−1 = kPisi1. . .ik−1d¹iQ

sik. . .ik+,−1d − ,Qisi1. . .i,−1d¹iP
si,. . .ik+,−1d. s2.2d

fIn this paper the roundsrespectively, squared brackets will denote symmetrizationsrespectively,
skew-symmetrizationd with the appropriate combinatorial factor.g If M is, in addition, equipped
with a spseudo-dRiemannian metric,g, we denote by
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H = 1
2gijjij j s2.3d

the Hamiltonian function associated with this structure. The Hamiltonian flow associated withH is
nothing but the geodesic flow onT*M.

A symmetric contravariant tensor fieldP] of degreek satisfyinghH ,Pj=0 is called a Killing
sor Killing–Stäckeld tensor; now using the Levi-Civita connection¹ in s2.2d, this condition reads

¹sidPsi1. . .ikd = 0. s2.4d

B. Killing–Maxwell tensors

1. Souriau’s coupling

In the presence of an electromagnetic field,F, Souriau33 has proposed to replace the canonical
symplectic structure,v, of T*M by the twisted symplectic structurevF=dji ∧dxi + 1

2Fijdxi ∧dxj.
The sgauge-invariantd Poisson bivector now reads

pF = ]ji
∧ ]i − 1

2Fij]ji
∧ ]j j

.

The Poisson bracket of two observablesP,Q of T*M is now

hP,QjF = pFsdP,dQd = ]ji
P]iQ − ]ji

Q]iP − Fij]ji
P ∧ ]j j

Q, s2.5d

and the Schouten–Maxwell bracket of two polynomialsP andQ is then defined by

fP],Q]gS,F = hP,QjF
].

If the manifoldM is endowed with a symmetric connection¹, the Schouten–Maxwell bracket
takes on the following form:

fP],Q]gS,F = fP],Q]gS
i1. . .ik+,−1]i1

^ ¯ ^ ]ik+,−1
− k,Fij P

isi1. . .ik−1dQsik. . .ik+,−2d j]i1
^ ¯ ^ ]ik+,−2

s2.6d

with the expressions2.2d of the Schouten bracketf· , ·gS.
Suppose now that the manifoldM is endowed with a metricg; the Hamiltonian vector field on

sT*M ,vFd for the HamiltonianH given by s2.3d yields the Lorentz equations of motions for a
charged test particle moving onsM ,gd under the influence of an external electromagnetic fieldF.

A symmetric contravariant tensor fieldP] of degreek on sM ,gd is now called a Killing–
Maxwell tensor ifhH ,PjF=0. The Killing–Maxwell equations then read, usings2.6d,

¹sidPsi1. . .ikd = 0, Pisi1. . .ik−1dFi
sikd = 0, s2.7d

whereFi
j =gjmFmi, in accordance with previous results11 obtained with a slightly different stand-

point.
The conditionss2.7d are of special importance for proving the classical and quantum integra-

bility of the equations of motion of a charged test particle in the generalized Kerr–Newman
background.

2. Standard electromagnetic coupling

A more traditional, though equivalent, means to deal with the coupling to an electromagnetic
field, F=dA slocallyd, is to keep the canonical one-form,a=jidxi, on T*M unchanged, and hence
to work with the original Poisson bracketh· , ·j, but to replace the Hamiltonians2.3d by

H̃ = 1
2gi jsji − Aidsj j − Ajd, s2.8d

where the tilde makes it clear that the expressions to consider are actually polynomials in the
variablesji −Ai, for i =1, . . . ,n; for example, ifP=Pi1¯ikji1

. . .jik
, then
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P̃ = Pi1. . .iksji1
− Ai1

d . . . sjik
− Aik

d. s2.9d

The equations of motion given by the Hamiltonian vector field for the Hamiltonians2.8d on
sT*M ,dad are, again, the Lorentz equations of motion.

The Schouten–Maxwell brackets and Schouten brackets for the electromagnetic coupling are
related as follows via the corresponding Poisson brackets, viz.

hP,QjF = hP̃,Q̃j.

In this framework, a Killing–Maxwell tensor,P], of degreek on sM ,gd is defined by the

equationhH̃ , P̃j=0. The resulting constraints are, again, given bys2.7d.
From now on, and in order to simplify the notation, we will omit the]-superscript and use the

same symbol for symmetric contravariant tensors and the corresponding polynomial functions on
T*M.

C. General definition of classical integrability

Let us recall that a dynamical systemsM ,v ,Hd is sLiouvilled integrable if there existn
= 1

2 dim M independent Poisson-commuting functionsP1, . . . ,PnPC`sMd—that is
dP1∧ ¯ ∧dPnÞ0 andhPk,P,j=0 for all k,,=1, . . . ,n—such thatP1=H.

We will, in the sequel, confine considerations to the case of cotangent bundles,sM
=T*M ,v=dud where u is the canonical one-form, and of polynomial functions,P1, . . . ,Pn, on
T*M, that is to the case ofn Schouten-commuting Killing tensors. Moreover, all examples that we
will consider will be given by polynomials of degree two or three.

D. The Stäckel systems

These systems onsT*M ,v=dji ∧dxid are governed by the Hamiltonians

H = o
i=1

n

aisxds 1
2ji

2 + f isxidd s2.10d

where theith function f i depends on the coordinatexi only, and the functionsai are defined as
follows. Let B denote a GLsn,Rd-valued function defined onM and such that

Bsxd = sB1sx1dB2sx2d . . .Bnsxndd,

where theith columnBisxid depends onxi only si =1, . . . ,nd; such a matrix will be called a Stäckel
matrix. Then take

asxd = 1a1sxd
A

ansxd
2

to be the first columnA1sxd of the matrixAsxd=Bsxd−1.
The integrability of such a system follows from the existence ofn quadratic polynomials

I, = o
i=1

n

A,
i sxds 1

2ji
2 + f isxidd, , = 1, . . . ,n, H = I1. s2.11d

We call Stäckel potential every function of the form
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U,sxd = o
i=1

n

A,
i sxdf isxid, , = 1, . . . ,n; s2.12d

the potential appearing in the Hamiltonian is justU1.
One can checkssee, e.g., Ref. 28, p. 101d that then independent quantitiesI, are such that

hI,,Imj = o
s,t=1

n

sA,
s]sAm

t − Am
s ]sA,

t djsS1

2
jt

2 + f tD, , Þ m.

The relationA=B−1, gives the useful identitysthe Einstein summation convention is not usedd

]kAj
i = − Ck

i Aj
k, Ck

i = o
s=1

n

As
i dBk

s

dxk , s2.13d

which implies

A,
s]sAm

t − Am
s ]sA,

t = 0, , Þ m, s,t = 1, . . . ,n s2.14d

and therefore the so-defined Stäckel systems are classically integrable.
Remark 2.1:Let us mention an interesting result due to Parsssee Ref. 28, p. 102d: for a system

whose Hamiltonian is of the forms2.10d, the Hamilton–Jacobi equation is separable if and only if
this system is Stäckel.

Although these systems constitute quite a large class of integrable systems, they do not
exhaust the full class. A simple example of a non-Stäckel integrable system was produced by Di
Pirro ssee Sec. II Id.

E. The Jacobi integrable system on the ellipsoid

Let E,Rn+1 be then-dimensional ellipsoid defined by the equationQ0sy,yd=1 where we
define, fory,zPRn+1,

Qlsy,zd = o
a=0

n
yaza

aa − l
, s2.15d

with 0,a0,a1, . . .,an; the equationsQlsy,yd=1 define a family of confocal quadrics.
It has been proved by Jacobisin the casen=2d that the differential equations governing the

geodetic motions on the ellipsoid,E, form an integrable system. The same remains true if a
quadratic potential is admittedssee Ref. 27d. The Hamiltonian of the system, prior to reduction,
reads

Hsp,yd =
1

2o
a=0

n

pa
2 +

a

2o
a=0

n

ya
2 s2.16d

wherep,yPRn+1 anda is some real parameter.
Moser has shown26 that the following polynomial functions

Fasp,yd = pa
2 + aya

2 + o
bÞa

spayb − pbyad2

aa − ab

with a = 0,1, . . . ,n, s2.17d

are in involution onsT*Rn+1,oa=0
n dpa∧dyad. Those will generate the commuting first integrals of

the Jacobi dynamical system on the cotangent bundleT*E of the ellipsoid.
Our goal is to deduce from the knowledge ofs2.17d the independent quantities in involution

I1, . . . ,In on sT*E ,dji ∧dxid from the symplectic embedding
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i:T*E � T*Rn+1

given byZ1sp,yd=Q0sy,yd−1=0 andZ2sp,yd=Q0sp,yd=0.
Proposition 2.2: The restrictionsuFauT*E=Fa + i of the functions (2.17) Poisson-commute on

T*E.
Proof: We get, using Dirac brackets,

huFauT*E,uFbuT*Ej = uhFa,FbjuT*E −
1

hZ1,Z2j
ufhZ1,FajhZ2,Fbj − hZ1,FbjhZ2,FajguT*E s2.18d

for second-class constraints. Now, the denominatorhZ1,Z2j=−2oa=0
n sya /aad2 does not vanish

while hZ1,Faj=4spaya /aadZ1−4sya
2 /aadZ2 is zero on T*E, for all a=0, . . . ,n. The fact that

hFa ,Fbj=0 completes the proof. h

The reduced Hamiltonian for the Jacobi system on the ellipsoidE is plainly

H =
1

2o
a=0

n

uspa
2 + aya

2duT*E =
1

2o
a=0

n

uFauT*E. s2.19d

In order to provide explicit expressions for the function in involutionI1, . . . ,In, we resort to
Jacobi ellipsoidal coordinatesx1, . . . ,xn on E. Those are defined by

Qlsy,yd = 1 −
lUxsld
Vsld

, s2.20d

where

Uxsld = p
i=1

n

sl − xid, Vsld = p
a=0

n

sl − aad s2.21d

and are such thata0,x1,a1,x2, . . .,xn,an. The induced metric,g=oi,j=1
n gijsxddxidxj, of the

ellipsoid E is given by

gijsxd =
1

4o
a=0

n
ya

2

saa − xidsaa − xjd

and retains the form26

g = o
i=1

n

gisxdsdxid2 where gisxd = −
xi

4

Ux8sx
id

Vsxid
, s2.22d

which is actually Riemannian because of the previous inequalities. We put for convenience
gisxd=1/gisxd.

Using s2.20d and s2.21d, we find the local expressionsyasxd via the formula

ya
2 = aa

P
i=1

n

saa − xid

P
bÞa

saa − abd
s2.23d

and then obtain the constrained coordinate functions

pasj,xd = −
1

2
yao

i=1

n
gisxdji

saa − xid
s2.24d

given by the induced canonical one-formoi=1
n jidxi =i* soa=0

n padyad.
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The Hamiltonians2.19d on sT*E ,dji ∧dxid is then found to be

H =
1

2o
i=1

n

gisxdji
2 +

a

2Fo
a=0

n

aa − o
i=1

n

xiG . s2.25d

Note that the potential term is obtained from the largel behavior

Qlsy,yd ,
1

l
o
a=0

n

ya
2 +

1

l2 o
a=0

n

aaya
2 + ¯ ,

which can be computed using relations2.20d. One gets

Qlsy,yd ,
1

l
Fo

a=0

n

aa − o
i=1

n

xiG + ¯ .

One relates the conserved quantitiess2.17d to their reduced expressions onT*E by computing,
using s2.24d and s2.23d, the expression ofuFauT*E. One gets

Proposition 2.3: The Moser conserved quantitiessuFauT*Eda=0,. . .,n retain the form

uFauT*E =
aaGaa

sj,xd

P
bÞa

saa − abd

where

Glsj,xd = o
i=1

n

gisxdp
jÞi

sl − xjdji
2 + ap

i=1

n

sl − xid. s2.26d

It is useful to introduce the notationsk
i sxd for the symmetric functions of orderk

=0,1, . . . ,n−1 of the variablessx1, . . . ,xnd, with the exclusion of indexi, namely

p
jÞi

sl − xjd = o
k=1

n

s− 1dk−1ln−ksk−1
i sxd. s2.27d

We note that, from the above definition,s0
i sxd=1.

It is also worthwhile to introduce other symmetric functions,sksxd, via

p
j=1

n

sl − xjd = o
k=0

n

s− 1dkln−ksksxd. s2.28d

We thus have

Glsj,xd = o
i=1

n

s− 1di−1ln−iI isj,xd + as− ldn, s2.29d

where the independent functionsI i si =1, . . . ,nd are in involution and can be written as

I isj,xd = o
j=1

n

Ai
jsxdj j

2 − asisxd with Ai
jsxd = gjsxdsi−1

j sxd. s2.30d

In the casei =1, we recover the Hamiltonians2.25d, i.e.,

H =
1

2
I1 +

a

2o
a=0

n

aa.
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Proposition 2.4: The Jacobi system on T!E defines a Stäckel system, with Stäckel matrix

Bk
i sxkd = s− 1di sx

kdn+1−i

4Vsxkd
s2.31d

and potential functions

fksxkd = a
sxkdn+1

4Vsxkd
s2.32d

for i ,k=1, . . . ,n.
Proof: It is obvious from its definition thatB is a Stäckel matrix. We just need to prove that

A=B−1. To this aim we first prove a useful identity. Let us consider the integral in the complex
plane

1

2ip
E

uzu=R

zn−i

sz− ld
Uxsld
Uxszd

dz.

WhenR→` the previous integral vanishes because the integrand vanishes as 1/R2 for largeR. We
then compute this integral using the theorem of residues and we get the identity

o
k=1

n
sxkdn−i

Ux8sx
kd pjÞk

sl − xjd = ln−i . s2.33d

Equipped with this identity let us now prove that

o
k=1

n

Bk
i Aj

k = d j
i .

Multiplying this relation bys−1d j−1ln−j and summing overj from 1 to n, we get the equivalent
relation

o
k=1

n

Bk
i o

j=1

n

s− 1d j−1ln−jAj
k = s− 1di−1ln−i ,

which becomes, usings2.30d and s2.27d:

o
k=1

n

Bk
i gksxdp

jÞk

sl − xjd = s− 1di−1ln−i .

Using the explicit form ofgksxd given in s2.22d and of the matrixB, this relation reduces to the
identity s2.33d and this completes the derivation ofs2.31d.

In order to get the functionsf isxid as in s2.10d, let us resort tos2.30d and solve, for the
unknown f i, the following

− asisxd = o
j=1

n

Ai
jsxdf j .

Multiplying both sides byBk
i , summing overi from 1 to n, and usings2.31d we get

fk = − ao
i=1

n

Bk
i sisxd = −

a

4Vsxkdoi=1

n

s− 1disxkdn+1−isisxd = −
a

4VsxkdFo
i=0

n

s− 1disxkdn+1−isisxd − sxkdn+1G .

In view of s2.28d, we haveoi=0
n s−1disxkdn−isisxd=p j=1

n sxk−xjd=0, which completes the proof.h
Remark 2.5:1. The fact that the geodesic flow onT!E is a Stäckel system was first proved by
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Benenti in Ref. 3. We have given here a new derivation, which makes the link between Moser’s
conserved quantities onT*Rn+1 and the Stäckel conserved quantities onT*E. We have extended
this link to the case where Jacobi’s potential is admitted.

2. Checking that the unconstrained observablesI i are in involution is most conveniently done
using their generating functions2.26d. Indeed it is easy to verify the relation

hGlsj,xd,Gmsj,xdj = 0, l,m P R,

which implies, vias2.29d, and upon expansion in powers ofl andm, the relationshI i ,I jj=0 for
any i , j =1, . . . ,n.

3. Some authors2,22 have quantized the full set of commuting observables for the geodesic
flow of the ellipsoidE,Rn+1 in its unconstrained form, namely onT*Rn+1. Notice though that in
the reduction process fromT*Rn+1 to T*E quantum corrections may prove necessary in order to
ensure self-adjointness of the quantized observables. Our point of view will be to perform the
classical reduction in the first place and then to quantize the observables directly onT*E via a
specific procedure that will be described in Sec. III.

F. The Neumann system

The Neumann Hamiltonian onsT*Rn+1,oa=0
n dpa∧dyad is1

H =
1

2o
a=0

n

spa
2 + aaya

2d s2.34d

with the real parameters 0,a0,a1, . . .,an. Under the symplectic reduction, with the second
class constraints

Z1sp,yd = o
a=0

n

ya
2 − 1 = 0, Z2sp,yd = o

a=0

n

paya = 0, s2.35d

it becomes a dynamical system onsT*Sn,dji ∧dxid.
This system is classically integrable, with the following commuting first integrals of the

Hamiltonian flow inT*Rn+1:

Fasp,yd = ya
2 + o

bÞa

spayb − pbyad2

aa − ab

with a = 0,1, . . . ,n. s2.36d

The symplectic embedding

i:T*Sn
� T*Rn+1

given byZ1sp,yd=0 andZ2sp,yd=0 preserves the previous conservation laws. Indeed the Poisson
brackets of the restrictionsuFauT*E=Fa + i of the functionsFa are still given by the Dirac brackets
s2.18d of the second class constraintss2.35d. This time we have

hZ1,Z2j = − 2o
a=0

n

ya
2 Þ 0, hZ1,Faj = 0,

which gives again

huFauT*E,uFbuT*Ej = 0.

Let us introduce an adapted coordinate system onsT*Sn,dji ∧dxid much in the same manner as
for the ellipsoid.

We start with the following definition26 of a coordinate systemsx1, . . . ,xnd on Sn:
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Qlsy,yd = o
a=0

n
ya

2

aa − l
= −

P
i=1

n

sl − xid

P
a=0

n

sl − aad
.

The following inequalities hold: 0,a0,x1,a1, . . .,xn,an. We get, in the same way as be-
fore,

ya
2 =

P
i=1

n

saa − xid

P
bÞa

saa − abd
s2.37d

together with the following expression of the round metricg=oa=0
n udya

2uSn in terms of the newly
introduced coordinates, namely

g = o
i=1

n

gisxdsdxid2 with gisxd = −
Ux8sx

id
4Vsxid

s2.38d

with the notations2.21d. Again, we put for conveniencegisxd=1/gisxd.
Our goal is to deduce from the knowledge ofs2.36d the independent quantities in involution

I1, . . . ,In on sT*Sn,dji ∧dxid. The formulas2.24d relating unconstrained and constrained momenta
still holds and yields

Proposition 2.6: The Neumann systemsuFauT*Snda=0,. . .,n retains the following form:

uFauT*Sn = −
Gaa

sj,xd

P
bÞa

saa − abd
,

where

Glsj,xd = o
i=1

n

gisxdp
jÞi

sl − xjdji
2 + p

j=1

n

sl − xjd.

Let us, again, posit

Glsj,xd = o
i=1

n

s− 1di−1ln−iI isj,xd + ln

where the independent functionsI i si =1, . . . ,nd are in involution and can be written as

I isj,xd = o
j=1

n

Ai
jsxdj j

2 − sisxd with Ai
jsxd = gjsxdsi−1

j sxd, s2.39d

where the symmetric functionssisxd are as ins2.28d.
Using the relations

s1sxd = o
i=1

n

xi, o
a=0

n

aaya
2 = o

a=0

n

aa − o
i=1

n

xi ,

one can check that the Hamiltonians2.34d is H= 1
2I1.

Proposition 2.7: The Neumann flow onsT*Sn,Hd defines a Stäckel system, with Stäckel matrix
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Bk
i sxkd = s− 1di sxkdn−i

4Vsxkd

and potential functions

fksxkd =
sxkdn

4Vsxkd
s2.40d

for i ,k=1, . . . ,n.
Proof: To check thatA=B−1, it is enough to use the identitys2.33d. The computation of the

potential functionsfk proceeds along the same lines as in the proof of Proposition 2.4. h

Remark 2.8:The involution propertyhI i ,I jj=0 for i , j =1, . . . ,n, similar to the case of the
ellipsoid, is seen to follow from the relationhGlsj ,xd ,Gmsj ,xdj=0.

G. Test particles in generalized Kerr–Newman background

Plebanski and Demianski have constructed in Refs. 29 and 30 a class of metrics generalizing
the Kerr–Newman solution in four-dimensional space-time. The former are also known as the
Kerr–Newman–Taub–NUT–de Sitter solutions of the Einstein–Maxwell equations. The metric, in
the coordinate systemsx1,x2,x3,x4d=sp,q,s ,td, retains the form

g =
X

p2 + q2sdt + q2dsd2 −
Y

p2 + q2sdt − p2dsd2 +
p2 + q2

X
dp2 +

p2 + q2

Y
dq2 s2.41d

with

X = g − g2 + 2np− ep2 −
L

3
p4, Y = g + e2 − 2mq+ eq2 −

L

3
q4, s2.42d

wheresm,gd are related to the mass and angular momentum of the Kerr black hole,se,gd to the
electric and magnetic charge;n is the NUT charge, andL the cosmological constant. The remain-
ing parametere can be scaled out to ±1 or 0.

This metric,g, together with the electromagnetic field, locally given byF=dA where

A =
1

p2 + q2fseq+ gpddt + pqsgq− epddsg, s2.43d

provide an exact solution of the Einstein–Maxwell equations with cosmological constantL. Let us
notice for further use that

¹iA
i = 0. s2.44d

Upon defining the one-forms

K =Î Y

2sp2 + q2d
sdt − p2dsd +Îp2 + q2

2Y
dq,

L =Î Y

2sp2 + q2d
sdt − p2dsd −Îp2 + q2

2Y
dq,

M1 =Îp2 + q2

X
dp,
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M2 =Î X

p2 + q2sdt + q2dsd,

one constructs the two-form

Y = pK ∧ L − qM1 ∧ M2. s2.45d

One can check that the twice-symmetric tensorP=−Y2, namely Pij =−YikY, jg
k,, is a Killing–

Maxwell tensorfsees2.7dg, given by

P = p2sK ^ L + L ^ Kd + q2sM1 ^ M1 + M2 ^ M2d. s2.46d

We thus recover Carter’s result11 about the integrability of the Hamiltonian flow for a charged test
particle in the generalized Kerr–Newman background in a different manner.

Remark 2.9:The two-formY in s2.45d defines what is usually called a Killing–Yano tensor.20,8

The four conserved quantities in involution for the generalized Kerr–Newman system are,
respectively,

H̃ = 1
2gijsji − Aidsj j − Ajd, P̃ = Pijsji − Aidsj j − Ajd s2.47d

whereP is as ins2.46d, and

S̃= j3 − A3, T̃ = j4 − A4. s2.48d

H. The multi-center geodesic flow

The class of multi-center Euclidean metrics in four dimensions retain, in a local coordinate
systemsxid=st ,syaddPR3R3, the form

g =
1

Vsyd
sdt + Aasyddyad2 + Vsydg s2.49d

with g=dabdyadyb the flat Euclidean metric in three-space, and dV= ±!sdAd where! is the Hodge
star forg. These conditions ensure that the metrics2.49d is Ricci-flat.

For some special potentialsVsyd, the geodesic flow is integrable as shown in Refs. 21, 13, and
35. The four conserved quantities in involution are given by

H = 1
2gi jjij j, K = Kiji, L = Liji, P = Pijjij j , s2.50d

whereK andL are two commuting Killing vectors andP a Killing two-tensor whose expressions
can be found in the previous references.

I. The Di Pirro system

Di Pirro has provedssee, e.g., Ref. 28, p. 113d that the Hamiltonian onT*R3,

H =
1

2sgsx1,x2d + csx3dd
fasx1,x2dj1

2 + bsx1,x2dj2
2 + j3

2g s2.51d

admits one and only one additional first integral given by

P =
1

sgsx1,x2d + csx3dd
fcsx3dsasx1,x2dj1

2 + bsx1,x2dj2
2d − gsx1,x2dj3

2g. s2.52d

In the case where the metric defined byH in s2.51d possesses a Killing vector, the system
becomes integrable though not of Stäckel type. This happens, e.g., ifsid csx3d=const., orsii d a
=b andg depend onr =Îsx1d2+sx2d2 only.
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III. A QUANTIZATION SCHEME FOR INTEGRABLE SYSTEMS

We wish to deal now with the quantum version of the preceding examples. Let us start with
some preliminary considerations:

1. There is no universally accepted procedure of quantization, i.e., of a linear identification,Q,
of a space of classical observables with some space of linear symmetric operators on a
Hilbert space. One—among many—of the pathways to construct such a quantization map-
ping has been to demand that the mappingQ be equivariant with respect to some Lie group
of symplectomorphisms of classical phase space.

2. Similarly, there is no universally accepted notion of quantum integrability. However, given a
classical integrable systemP1, . . . ,Pn on a symplectic manifoldsM ,vd, and a quantization

mappingQ :Pi ° P̂i, we will say that such a system is integrable in the quantum sense if

fP̂i , P̂jg=0 for all i , j =1, . . . ,n.
3. A large number of integrable systems involvequadraticobservables. We will thus choose to

concentrate on this important—yet very special—case, both from the classical and quantum
viewpoint.

4. Among all possible quantization procedures, the search for integrability-preserving onessif
anyd should be of fundamental importance. The quantization of quadratic observables we
will present in the following might serve as a starting point for such a program.

A. Quantizing quadratic and cubic observables

Let us recall that the spaceFlsMd of l-densities onM is defined as the space of sections of
the complex line bundleuLnT*Mul ^ C. In the case where the configuration manifold is orientable,
sM ,vold, such al-density can be, locally, cast into the formf= f uvolul with f PC`sMd which
means thatf transforms under the action ofaPDiff sMd according tof °a* f usa*vold /volul.

The completionHsMd of the space of compactly supported half-densities,l= 1
2, is a Hilbert

space canonically attached toM that will be used throughout this paper. The scalar product of two
half-densities reads

kf,cl =E
M

f̄c,

where the bar stands for complex conjugation.
We will assume that configuration space is endowed with aspseudo-dRiemannian structure,

sM ,gd; and denote byuvolgu the corresponding density and byGi j
k the associated Christoffel

symbols.
The quantization now introduced is a linear invertible mapping from the space of quadratic

observablesP=P2
jksxdj jjk+P1

j sxdj j +P0sxd to the space of second-order differential operators on

HsMd, viz. A= P̂=A2
jksxd¹ j¹k+A1

j sxd¹ j +A0sxd1 where the covariant derivative of half-densities
¹ jf=] jf− 1

2G jk
k f sor, locally, ¹ jf=s] j fduvolgu1/2d has been used. We furthermore require that the

principal symbol be preservedfsee in the followings3.1d–s3.3dg, and thatP̂ be formally self-

adjoint, i.e.,kf , P̂cl=kPf ,cl for all compactly supportedf ,cPF1/2sMd.
The quantization reads

A2
jk = − P2

jk, s3.1d

A1
j = iP1

j − ¹kP2
jk, s3.2d
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A0 = P0 +
i

2
¹ jP1

j s3.3d

and admits the alternative form

P = − ¹ j + P2
jk + ¹k +

i

2
sP1

j + ¹ j + ¹ j + P1
j d + P01, s3.4d

which makes clear the symmetry of the quantum operators.
Remark 3.1:The formula s3.4d was originally used by Carter11 for proving the quantum

integrability of the equations of motion of charged test particles in the Kerr–Newman solution.
Remark 3.2:It is worth mentioning that formulas3.4d actually corresponds at the same time to

the projectively equivariant quantization24,17 and to the conformally equivariant quantization15,16

Q0,1sPd :F0sMd→F1sMd restricted to quadratic polynomials.
One can check the relations:

fP̂0,Q̂1g = ifP0,Q1gS= ihP0,Q1̂j, s3.5d

fP̂0,Q̂2g = − 1
2s¹ j + fP0,Q2gS

j + fP0,Q2gS
j + ¹ jd = ihP0,Q2̂j, s3.6d

fP̂1,Q̂1g = − 1
2s¹ j + fP1,Q1gS

j + fP1,Q1gS
j + ¹ jd = ihP1,Q1̂j. s3.7d

Quantum corrections appear explicitly wheneverk+,.2, as can be seen from the next com-
mutators:

fP̂1,Q̂2g = ihP1,Q2̂j + iÂP1,Q2
s3.8d

where

AP1,Q2
= 1

2¹ j + Q2
jk + ¹ks¹,P1

,d s3.9d

is a scalar quantum correction that may vanish in some special instances, e.g., if the vector-fieldP1

is divergence-freesin particular if it is a Killing vector-fieldd.
The previous formulas can be found, in a different guise, in Ref. 11. Here, we will go one step

further and compute the commutatorsfP̂2,Q̂2g which involve third-order differential operators. To
that end, we propose to quantize homogeneous cubic polynomials according to

P̂3 = −
i

2
s¹ j + P3

jk,
+ ¹k + ¹l + ¹ j + ¹k + P3

jk,
+ ¹,d s3.10d

as a “minimal” choice to ensure the symmetry of the resulting operator.
Remark 3.3: The formula s3.10d precisely coincides with the projectively equivariant

quantization7 Q0,1sPd :F0sMd→F1sMd restricted to cubic polynomials.
The previously mentioned commutator is actually given by

fP̂2,Q̂2g = fP2,Q2gS
jk,¹ j + ¹k + ¹, + 3

2s¹ jfP2,Q2gS
jk,d¹k + ¹, + f 1

2s¹ j¹kfP2,Q2gS
jk,d + 2

3s¹kBP2,Q2

k, dg¹,,

s3.11d

where the skew-symmetric tensor
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BP,Q
jk = P,f jg¹,¹mQfkgm + P,f jgRm,n,

fkg Qmn− sP ↔ Qd − ¹,P
mf jg¹mQfkg, − P,f jgR,mQfkgm

s3.12d

satisfies, in addition,BP,Q=−BQ,P. We have used the following convention for the Riemann and
Ricci tensors, viz.R,

i,jk=] jGik
, −s j ↔kd+. . ., andRij =Rk

i,kj.
We can rewrite the commutators3.11d with the help of the quantization prescriptions3.4d and

s3.10d as

fP̂2,Q̂2g = ihP2,Q2̂j + iÂP2,Q2
s3.13d

where

AP2,Q2
= − 2

3s¹kBP2,Q2

k, dj, s3.14d

is a divergence-free vector-field associated with the tensors3.12d and providing the potential

quantum correction for quadratic polynomials; recall that, according tos3.4d, one hasÂP2,Q2
=si /2dsAP2,Q2

, +¹,+¹,+AP2,Q2

, d.
We thus have

Proposition 3.4: The commutator of the quantum operators Pˆ and Q̂ associated with two
general quadratic polynomials P=P2+P1+P0 and Q=Q2+Q1+Q0 reads

1

i
fP̂,Q̂g = hP,Qĵ + ÂP2,Q2

+ ÂP1,Q2
− ÂQ1,P2

s3.15d

where the third-order differential operatorhP,Q̂j is given bys3.10d.
Proof: The formulas3.15d results trivially from the previously computed commutators and

from collecting the anomalous terms appearing ins3.8d and s3.13d only. h

Remark 3.5:In the special case whereQ2=H as given bys2.3d, the anomalous tensors3.12d
takes the form

BP,H
jk = − 1

2¹f jg¹,P
fkg, − P,f jgR,

fkg

and reduces to

BP,H
jk = − P,f jgR,

fkg s3.16d

if P is a Killing tensor.11

Remark 3.6.In the particular case whereH= 1
2gjksj j −eAjdsjk−eAkd is the Hamiltonian of the

electromagnetic coupling, our quantum commutators3.15d reduces to Carter’s formulas6.16d in
Ref. 11.

The purpose of our paper is, indeed, to study, using explicit examples, how classical integra-
bility behaves under the “minimal” quantization rules proposed in Ref. 11 and somewhat extended
here. The next section will be devoted to the computation of the quantum corrections ins3.8d and
s3.13d for all the examples that have been previously introduced.

B. The equivariance Lie algebra

So far, the transformation property of the quantization ruless3.4d ands3.10d under a change of
coordinates has been put aside. It is mandatory to investigate if these rules are consistent with the

mapQ :P° P̂ swhich has been defined for cubic polynomials,P=ok=0
3 Pi1¯ikji1

. . .jik
, onlyd being

equivariant with respect to some Lie subgroup of the group of diffeomorphisms of configuration
space,M.

Restricting considerations to the infinitesimal version of the sought equivariance, we will
therefore look for the setg of all vector fieldsX with respect to which our quantization is

053516-15 Quantum integrability of quadratic Killing tensors J. Math. Phys. 46, 053516 ~2005!

                                                                                                                                    



equivariant, namelyLXQ=0. From its very definition,g is a Lie subalgebra of the Lie algebra,
VectsMd, of vector fields ofM. The previous condition means that, for each polynomialP, the
following holds:

LXsQsPdfd − QsLXPdf − QsPdLXf = 0, s3.17d

whereLXf denotes the Lie derivative of the half-densityf of M with respect to the vector field
XPg andLXP=hX,Pj is the Poisson bracket ofX=Xiji andP.

Let us recall that, putting locallyf= f uvolu1/2PF1/2 with f PC`sMd, we get the following
expression for the Lie derivative:LXf=sXf+1/2divsXdfduvolu1/2, or with a slight abuse of nota-
tion, LXf=Xj¹ jf+ 1

2s¹ jX
jdf= 1

2sXj +¹ j +¹ j +Xjdf, that is

LXf =
1

i
X̂f s3.18d

for any XPVectsMd.
The equivariance conditions3.17d must hold for anyfPF1/2 and thus translates into

fX̂,P̂g = ihX,Pĵ s3.19d

for any XPg and any cubic polynomialP. The conditions3.19d characterizes the Lie algebrag
we are looking for. We will consider successively the case of polynomials of increasing degree:

sid Returning to the previous relationss3.5d ands3.7d together withX=P1 andP=Q0+Q1, we
readily find that the Lie algebrag1 spanned by the solutions ofs3.19d restricted to polynomialsP
of degree one isg1=VectsMd.

sii d Let us now proceed to the case of quadratic polynomialsP=Pjkj jjk. The relationss3.7d
and s3.9d give, in that case, the following equivariance defect:

fX̂,P̂g − ihX,Pĵ =
i

2
¹ j + Pjk + ¹ks¹,X

,d1. s3.20d

This defect vanishes for any suchP iff ¹ks¹,X
,d=0, i.e.,

dsdivsXdd = 0. s3.21d

The vector fieldsX with constant divergence now span a subspaceg2,g1 which is, indeed, an
infinite dimensional Lie subalgebra of VectsMd. The “minimal” quantization restricted to qua-
dratic polynomials is therefore equivariant with respect to the group of all diffeomorphisms which
preserve the volume up to a multiplicative nonzero constant.

siii d Let us finally consider homogeneous cubic polynomialsP=Pjk,j jjkj, and compute the
equivariance defect in this case. A tedious calculation leads to

fX̂,P̂g − ihX,Pĵ = iẐ, Z = Zjj j , s3.22d

with

Zj = ¹kfPjk,¹, divsXd − P,mf jgLXG,m
fkgg s3.23d

where

LXG,m
k = ¹,¹mXk − Rk

m,n,X
n s3.24d

is the Lie derivative of the symmetric linear connection¹ with respect to the vector fieldX.
Proposition 3.7: The Lie algebrag,VectsMd with respect to which the “minimal” quanti-

zation s3.4d and s3.10d is equivariant isaffsM , ¹ d, the Lie algebra of affine vector fields of
sM , ¹ d.

Proof: The equivariance conditions3.19d, defining the Lie algebrag3 we are looking for, is
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equivalent toZ=0 in s3.22d for all symmetric tensor fieldsPjk,, i.e., thanks tos3.23d to

Tk
jk,¹, divsXd − Tk

,mf jgLXG,m
fkg = 0

for all tensor fieldsTk
,mj=Tk

s,mjd. This readily implies that

2dsid
j d,

k¹smd divsXd + dsid
j LXGs,md

k − dsid
k LXGs,md

j = 0.

Summing overi = j , one gets

2ndm
k ¹, divsXd + 4d,

k¹m divsXd + sn + 1dLXG,m
k − dm

k LXG,i
i − d,

kLXGmi
i = 0,

wheren=dimsMd, hence¹idivsXd=0 andLXGi j
k =di

kw j +d j
kwi for some one-formw depending upon

the sprojectived vector field X. The expressions3.24d of the Lie derivative of the symmetric
connection¹ then yieldsLXGi j

j =sn+1dwi =0 since we have found that¹i¹ jX
j =0. This entails

LXGi j
k =0, proving thatg=g3 is nothing but the Lie algebra affsM , ¹ d of affine vector fields. h

We thus obtain the nested equivariance Lie algebras

g = affsM, ¹ d , g2 , g1 = VectsMd,

whereg2 is the Lie algebra of vector fields with constant divergence.sNote that ifM is compact
without boundary,g2 reduces to the Lie algebra of divergence-free vector fields.d

Conspicuously, our quantization scheme turns out to be equivariant with respect to a rather
small Lie subgroup of DiffsMd, namely of the affine group ofsM , ¹ d. It would be interesting to
investigate to what extent the equivariance under the sole affine group, GLsn,Rd›Rn, of a flat
affine structuresM , ¹ d allows one to uniquely extend to the whole algebra of polynomials the
quantization scheme we have devised for cubic polynomials.

C. The quantum Stäckel system

The quantization of the general Stäckel systemssee Sec. II Dd has first been undertaken by
Benenti, Chanu, and Rastelli in Refs. 4 and 5. We will derive here the covariant expression of the
quantum correction associated to the “minimal” quantization, with the help of the results obtained
in Sec. III A.

Denote byI i = I2,i + I0,i the ith Stäckel conserved quantity,i =1, . . . ,n, in s2.11d where the
indices 0 and 2 refer to the degree of homogeneity with respect to the coordinatesj. Applying
s3.15d with P1=Q1=0, P2= I2,i, andQ2= I2,j one gets

fÎ i, Î jg = fÎ2,i, Î2,jg = iÂI2,i,I2,j
= 2

3s¹kBI2,i,I2,j

k, d¹,.

Remark 3.8:This result shows that there are no quantum corrections produced by the potential
term. More generally, start with a system defined by independent, homogeneous, quadratic ob-
servablesH1, . . . ,Hn which is integrable at the classical and quantum levels. Consider a new set of
observablesH1+U1, . . . ,Hn+Un obtained by adding potential termsU1, . . . ,Un; if the new system
is classically integrable, it will remain integrable at the quantum level.

We are now in position to prove the following
Proposition 3.9: The quantum corrections3.12d of a general Stäckel system, with commuting

conserved quantities I1, . . . ,In defined bys2.11d, retains the form

BI2,i,I2,j

k, = − 2I2,i
sfkgRstI2,j

f,gt s3.25d

for i , j =1, . . . ,n, where Rst denotes the components of the Ricci tensor of the metric associated
with the Hamiltonian I1.

Proof: As a preliminary remark, let us observe that the Stäckel metric, given bys2.10d, needs
not be Riemannian. So we will write it
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g = o
i=1

n
sdxid2

A1
i sxd

= o
a=1

n

hasuad2, s3.26d

wheresua=dxa/ÎuA1
auda=1,. . .,n is the orthonormal moving coframe and the signature ofg is given by

ha=signsA1
ad. We will denote bysea=ÎuA1

au]ada=1,. . .,n the associated orthonormal frame with re-
spect to the metrichab=hadab used to raise and lower frame indices.

Let us recall, in order to fix the notation, that the connection formv satisfies the structure
equation dua+va

b∧ub=0 and the associated curvature form,V, given byVa
b=dva

b+va
c∧vc

b, is
expressed in terms of the Riemann tensor byVa

b= 1
2Ra

b,cdu
c∧u d. The indicesa, . . . ,d run from 1

to n and the Einstein summation convention is used when no ambiguity arises. Denoting byR,
i,jk

the local components of the Riemann tensor, we haveRa
b,cd=u,

aR,
i,jkeb

i ec
j ed

k.
We start off with the calculation of the connection form,v, and of some components of the

curvature form,V. Straightforward computation, using relations2.13d, then yields for the non-
vanishing components of the connection

vab,a = 1
2hbCb

auA1
bu3/2

uA1
au

, a Þ b, vab,c = vabsecd,

the other nontrivial componentsvab,b are obtained accordingly. For the curvature, a lengthy
computation gives the special components

Rac,cb = 3s− havca,cvab,a − hbvcb,cvba,b + hcvca,cvcb,cd, a Þ b, s3.27d

which will be needed in the sequel.
Two last ingredients are the introduction of the frame components of various objects. We will

denote the Killing tensorI2,i srespectively,I2,jd as P srespectively,Qd. Their frame components
P=Pbceb ^ ec, and similarly forQ, will be

Pbc = pbdbc, pb =
Ai

b

2uA1
bu

, Qbc = qbdbc, qb =
Aj

b

2uA1
bu

. s3.28d

The covariant derivative will have the frame components

DcPab = ecsPabd − vs
a,cPsb− vs

b,cPas.

The equations which express thatPab is a Killing tensor are now

ebspad = 2vab,ashapa − hbpbd, a Þ b,

s3.29d
easpad = 0,

where the repeated indices are not summed over. One can check that they hold true using the
explicit form of pa given in s3.28d and the identitys2.13d.

Using all of the previous information one can compute the frame components of the various
pieces appearing in the tensorBP,Q

ij . We have successively

Psfig¹s¹tQ
f jgt − sP ↔ Qd = o

lÞi,j
s4vli ,lvl j ,l − 3hlhivli ,lvi j ,i − 3hlh jvl j ,lv ji ,jd

3fpiqj − hlplhiqj + hlqlhipj − si ↔ jdg

and

¹sP
tfig¹tQ

f jgs = 1
2o

l

vli ,lvl j ,lfpiqj − hlplhiqj + hlqlhipj − si ↔ jdg.

Combining these relations, and usings3.27d, we get
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Psfig¹s¹tQ
f jgt − sP ↔ Qd − ¹sP

tfig¹tQ
f jgs = 1

2o
l

hlRil ,l jfpiqj − hlplhiqj + hlqlhipj − si ↔ jdg.

Let us then compute

PsfigRf jg
u,vsQ

uv − sP ↔ Qd = 1
2o

l

hlRil ,l jfhlplhiqj − hlqlhipj − si ↔ jdg.

Collecting all the pieces leaves us with

Psfig¹s¹tQ
f jgt + PsfigRf jg

u,vsQ
uv − sP ↔ Qd − ¹sP

tfig¹tQ
f jgs = 1

2o
l

hlRil ,l jspiqj − pjqid.

s3.30d

The last sum is nothing but the frame components of the tensor −PsfigRstQ
f jgt, so that we have

obtained the tensorial relation

Psfig¹s¹tQ
f jgt + PsfigRf jg

u,vsQ
uv − sP ↔ Qd − ¹sP

tfig¹tQ
f jgs = − PsfigRstQ

f jgt, s3.31d

which implies

Bij
P,Q = − 2PsfigRstQ

f jgt, s3.32d

in agreement with Ref. 5. This ends the proof of Proposition 3.9. h

Now we can come to the central point of our analysis: is a Stäckel system integrable at the
quantum level? The answer is given by the following

Corollary 3.10: sRefs. 4 and 5d A Stäckel system is integrable at the quantum level iff

Rij = 0 for i Þ j , wherei, j = 1, . . . ,n, s3.33d

in the special coordinates which are constituent to this system.
Proof: The Killing tensorsI2,i are diagonal, fori =1, . . . ,n, in the Stäckel coordinate system,

and the proof follows froms3.25d. h

The conditionss3.33d are known as the Robertson conditions,31 as interpreted by Eisenhart.18

Quite recently, Benentiet al.4 have refined the definition of the separability of the Schrödinger
equation and shown that, for Stäckel systems, the Robertson conditions are necessary and suffi-
cient for the separability of the Schrödinger equation. As mentioned in Remark 2.1, the classical
integrability is equivalent to the separability of the Hamilton–Jacobi equation; the situation for
these systems can therefore be summarized by the following diagram:

Classical integrability ⇔ separable Hamilton-Jacobi

⇓ provided Rij = 0 si Þ jd
Quantum integrability ⇔ separable Schrödinger.

D. The quantum ellipsoid and Neumann systems

It is now easy to prove that the ellipsoid geodesic flowssee Sec. II Ed, including the potential
given ins2.16d, is integrable at the quantum level. Using the coordinatessxid and thesRiemanniand
metric given bys2.22d, one can check that the Ricci tensor has components

Rij =
N
xi o

sÞi

1

xsgij , N =
a0a1 ¯ an

x1
¯ xn ,

and therefore satisfies the Robertson conditions. As already emphasized, the occurrence of an
additional potential is irrelevant for the quantum analysis since the potential terms do not generate
quantum correctionsssee Remark 3.8d.
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Similarly we get the quantum integrability for the Neumann systemssee Sec. II Fd using the
metric onSn given by s2.38d. The Ricci tensor being given by

Rij = sn − 1dgij ,

the Robertson conditions are again satisfied.

E. The quantum generalized Kerr–Newman system

The quantization of the four commuting observabless2.47d and s2.48d is straightforward.

In view of the relations given in Sec. III all quantum commutators vanish except forfH̃ˆ , P̃
ˆ g;

this is due to the fact that the conserved quantitiesS̃andT̃ fsees2.48dg are Killing–Maxwell vector
fields.

The anomalous terms in the previous commutator areAP2,H2
, AP1,H2

, and AP2,H1
where P2

=Pijjij j, H2= 1
2gijjij j, P1=−2PijjiAj, andH1=−gijjiAj.

The vector field AP2,H2
given by s3.14d actually vanishes because, cf.s3.16d, BP2,H2

jk

=−P,f jgR,
fkg=0 as a consequence ofs2.7d; indeed the tensorP anti-commutes with the electromag-

netic field strengthF, implying that it commutes with the stress-energy electromagnetic tensor,
hence with the Ricci tensor in view of the Einstein–Maxwell equations.11

The two other anomalous termss3.9d also vanish as it turns out that¹ jA
j =0 fsees2.44dg and

¹ jsPjkAkd=0.
This derivation reproduces and extends Carter’s results to the generalized Kerr–Newman

solution, in a somewhat shorter manner.
Remark 3.11:Our analysis of quantum integrability for the generalized Kerr-Newman solution

in four dimensions can be carried over into recent work19,23,32dealing with five-dimensional black
holes. In these cases, classical integrability follows from the existence of three Killing vectors and
one quadratic Killing tensor, besides the Hamiltonian. These metrics being Einstein, the above
arguments given for the generalized Kerr–Newman case apply just as well, ensuring quantum
integrability. This fact is in agreement with the separability of the Laplace operator.

F. The quantum multi-center system

For this example too, the quantization is straightforward. The single point to be checked for

quantum integrability is just the commutatorfĤ , P̂g, with the possible quantum corrections3.16d
given by −P,f jgR,

fkg. Here it vanishes trivially since these metrics are Ricci-flat.

G. The quantum Di Pirro system

As seen in Sec. II I, the classical integrability of this system is provided by three commuting
observables: on the one handH, P, respectively, given bys2.51d and s2.52d, andT=j3 if csx3d
=const., and on the other handH, P andJ=j1x

2−j2x
1 if a=b,g depend onr only.

At the quantum level, the Killing vectorsT̂ and Ĵ do commute withĤ according tos3.8d and

s3.9d. As for the commutatorfP̂,Ĥg of the quantized Killing tensors, it is given bys3.16d, namely
BP,H=−1

2P,f jgR,
fkg] j ∧]k, and one finds

BP,H = −
3

16

c8sx3d
sgsx1,x2d + csx3dd3sasx1,x2d]1gsx1,x2d]1 ∧ ]3 + bsx1,x2d]2gsx1,x2d]2 ∧ ]3d.

For the systemsH ,P,Td, this quantum correction vanishes sincec8sx3d=0, implying quantum
integrability. However, for the systemsH ,P,Jd, in the generic casegÞconst., we getBP,HÞ0,
showing that the minimal quantization rules may produce quantum corrections.
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IV. DISCUSSION AND OUTLOOK

It would be worthwhile to get insight into the status of our “minimal” quantization rules and
to their relationship with other bona fide quantization procedures. Among the latter, let us mention
those obtained by geometric means, and more specifically by imposing equivariance of the quan-
tization mapping,Q, with respect to some symmetry group,G, e.g., a group of automorphisms of
a certain geometric structure on configuration space,M. We refer to Refs. 24, 15–17, and 6 for a
detailed account on equivariant quantization. The two main examples are, respectively, the pro-
jectively, G=SLsn+1,Rd, and conformally,G=Osp+1,q+1d, equivariant quantizations which
have been shown to be uniquely determined.24,15–17 For instance, the conformally equivariant
quantizationQ1/2:F1/2sMd→F1/2sMd has been explicitly computed for quadratic16 and cubic25

observables; for example, ifP=Pijjij j we then have

Q1/2sPd = P̂ + b3¹i¹ jsPijd + b4g
ijgk,¹i¹ jsPk,d + b5Rij P

ij + b6Rgij P
ij s4.1d

where the “minimal” quantum operator

P̂ = − ¹i + Pij + ¹ j s4.2d

is given by s3.4d, together withb3=−n/ s4sn+1dd, b4=−n/ s4sn+1dsn+2dd, b5=n2/ s4sn−2dsn
+1dd, b6=−n2/ s2sn2−4dsn2−1dd, assumingn=dimsMd.2. In s4.1d we denote byRij the compo-
nents of the Ricci tensor and byR the scalar curvature. The formulas4.1d provides a justification

of the term “minimal” for the mappingP° P̂ given by s3.4d and s3.10d.
We have checked that, in the special instance of the geodesic flow of the ellipsoid discussed

in Sec. II E, the quantum commutators of the observablesI i defined in s2.30d, namely
fQ1/2sI id ,Q1/2sI jdg, fail to vanish fori Þ j =1, . . . ,n. Had we started from the expressions4.1d with
adjustable coefficientsb3, . . . ,b6, the requirement that the latter commutator be vanishing imposes
b3= . . . =b6=0, leading us back to the minimal quantization rules4.2d.

Despite their nice property of preserving, to a large extent, integrabilitysfrom classical to
quantumd, the “minimal” quantization rules still remain an ad hoc procedure, defined for observ-
ables at most cubic in momenta, and do not follow from any sound constructive principle, be it of
a geometric or an algebraic nature. The quest for a construct leading unambiguously to a genuine
“minimal” quantization procedure remains an interesting challenge. As discussed in Sec. III B, the
equivariance assumption with respect to the affine group might be helpful for determining the
sought “minimal” quantization of polynomials of higher degree. This analysis is required for the
quantization of, e.g., the newly discovered integrable systems14 which involve cubic Killing ten-
sors.

Another field of applications of the present work could be the search for quantum integrability
of the geodesic flow on the higher dimensional generalizations of the Kerr metric which have been
under intense study lately.19,12,36

Still another perspective for future work would be to generalize the previous computation of
quantum corrections to the case of classical integrability in the presence of an electromagnetic
field in a purely gauge invariant manner. In particular the approach presented in Sec. II B should
be further extended at the quantum level via the quantization of the Schouten–Maxwell brackets.
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We present Noether’s second theorem for graded Lagrangian systems of even and
odd variables on an arbitrary body manifoldX in a general case of BRST symme-
tries depending on derivatives of dynamic variables and ghosts of any finite order.
As a preliminary step, Noether’s second theorem for Lagrangian systems on fiber
bundlesY→X possessing gauge symmetries depending on derivatives of dynamic
variables and parameters of arbitrary order is proved. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1899988g

I. INTRODUCTION

Different variants of Noether’s second theorem state that, if a Lagrangian admits symmetries
depending on parameters, its variational derivatives obey certain relations, called the Noether
identities. We present Noether’s second theorem in the case of BRST transformations depending
on derivativessjetsd of dynamic variables and ghosts of arbitrary order. In particular, this is the
case of the field-antifield BRST theory and BV quantization.1,2 Special attention is paid to global
aspects of Noether’s second theorem as a preliminary step of the global analysis of BV
quantization.3,4

We start with a classical Lagrangian system on a fiber bundleY→X subject to even gauge
transformations depending on even dynamic variables, even parameters, and their derivatives of
any order. For this purpose, we consider Lagrangian formalism on the composite fiber bundleE
→Y→X, whereE→Y is a vector bundle of gauge parameters. Accordingly, gauge transforma-
tions are represented by a linear differential operatorv onE taking its values in the vertical tangent
bundleVY of Y→X sSec. IId. The Noether identity for a LagrangianL is defined as a differential
operatorD on the fiber bundles13d which takes its values in the density-dual

E*
^
Y

∧
n

T*X, n = dim X, s1d

of E and whose kernel contains the image of the Euler–Lagrange operatordL of L, i.e., D +dL
=0 sDefinition 4d. Expressed in these terms, Noether’s second theoremsSec. III, Theorem 5d
follows at once from the properties of differential operators on dual fiber bundlessAppendix A,
Theorem 16d. Namely, there exists the intertwining operatorhsvd=D, hsDd=v such that

hshsvdd = v, hshsDdd = D, s2d

adElectronic mail: bashkir@phys.msu.ru
bdElectronic mail: giovanni.giachetta@unicam.it
cdElectronic mail: luigi.mangiarotti@unicam.it
ddElectronic mail: sard@grav.phys.msu.su

JOURNAL OF MATHEMATICAL PHYSICS46, 053517s2005d

46, 053517-10022-2488/2005/46~5!/053517/23/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1899988


hsv + v8d = hsv8d + hsvd, hsD8 + Dd = hsDd + hsD8d. s3d

The appropriate notions of reducible Noether identities and gauge symmetries are formulated, and
their equivalence with respect to the intertwining operatorh is provedsSec. IVd.

This formulation of Noether’s second theorem is generalized to the case of graded Lagrangian
systems of even and odd variables and BRST symmetriessSec. VII, Theorem 15d. We describe
odd variables and their jets on an arbitrary smooth manifoldX as generating elements of the
structure ring of a graded manifold whose body isX.4,5 This definition differs from that of jets of
a graded fiber bundle,6 but reproduces the heuristic notion of jets of ghosts in the above-mentioned
field–antifield BRST theory.1,7

We consider BRST symmetries of a graded Lagrangian, i.e., its nilpotent odd symmetries
depending on ghosts as parameterssSec. VId. In particular, BRST symmetries come from the
above-mentioned gauge symmetries by replacement of even parameters with odd ghostssExample
5d. In this case, the nilpotency condition implies that original gauge symmetries form an algebra.

The key point is that, in order to define the Noether identity associated to BRST symmetries,
one should introduce antifields and the Koszul–Tate differential. If a Noether identity is reducible,
s0økd-stage ghosts and antighosts are called into playsSec. VIIId, and we come to the complete
tuple of fields, ghosts, and antifields in the field–antifield BRST theory.1 We, however, leave this
theory outside the scope of the present work, and keep an original graded Lagrangian independent
of ghosts and antifields.

II. GAUGE SYSTEMS ON FIBER BUNDLES

Recall that anr-order Lagrangian on a fiber bundleY→X is defined as a density

L = Lv:JrY → ∧
n

T*X, v = dx1 ∧ ¯ ∧ dxn, s4d

on ther-order jet manifoldJrY of sections ofY→X. Jet manifolds ofY→X make up the inverse
system

X←
p

Y←
p0

1

J1Y ← ¯Jr−1Y←
pr−1

r

JrY ← ¯. s5d

In the sequel, the indexr =0 stands forY. Accordingly, we have the direct system

O*X→
p*

O*Y→
p0

1*

O1
*Y → ¯Or−1

* Y→
pr−1

r*

Or
*Y → ¯ s6d

of graded differential algebrasshenceforth GDAsd Or
pY of exterior forms on jet manifoldsJrY with

respect to the pull-back monomorphismspr−1
r* . Its direct limit O`

p Y is a GDA consisting of all
exterior forms on finite order jet manifolds modulo the pull-back identification.

The projective limitsJ`Y,pr
` :J`Y→JrYd of the inverse systems5d is a Fréchet manifold.8 A

bundle atlashsUY;xl ,yidj of Y→X yields the coordinate atlas

hssp0
`d−1sUYd;xl,yL

i dj, yl+L8i =
]xm

]x8ldmyL8
i, 0 ø uLu, s7d

of J`Y, whereL=slk…l1d is a symmetric multi-index,l+L=sllk…l1d, and

dl = ]l + o
0øuLu

yl+L
i ]i

L, dL = dlr
+ ¯ + dl1

s8d

are the total derivatives. There is the restriction epimorphismO`
p Y→O`

p UY. Therefore,O`
p Y can

be written in a coordinate form where the horizontal one-formshdxlj and the contact one-forms
huL

i =dyL
i −yl+L

i dxlj are generating elements of theO`
0UY-algebraO`

p UY. ThoughJ`Y is not a
smooth manifold, elements ofO`

p Y are exterior forms on finite order jet manifolds and, therefore,
their coordinate transformations are smooth.
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There is the canonical decompositionO`
p Y= % O`

k,mY of O`
p Y into O`

0Y-modulesO`
k,mY of

k-contact andm-horizontal forms together with the corresponding projectorshk:O`
* Y→O`

k,*Y and
hm:O`

* Y→O`
*,mY. Accordingly, the exterior differential onO`

* Y is split into the sumd=dH+dV of
the nilpotent total and vertical differentials

dHsfd = dxl ∧ dlf, dVsfd = uL
i ∧ ]i

Lf, f [ O`
* Y.

One also introduces theR-module projector

% = o
0,k

1

k
%̄ + hk + hn, %̄sfd = o

0øuLu
s− 1duLuui ∧ fdLs]i

L c fdg, f [ O`
.0,nY, s9d

of O`
* Y such that% +dH=0, and the nilpotent variational operatord=% +d on O`

*nY. Let us put
Ek=%sO`

k,nYd. Then the GDAO`
* Y is split into the well-known variational bicomplex.4,8–10Here,

we are concerned with its variational subcomplex

0 → R → O`
0Y→

dH O`
0,1Y¯→

dH O`
0,nY→

d

E1→
d

E2 → ¯ s10d

and the subcomplex of one-contact forms

0 → O`
1,0Y→

dH O`
1,1Y¯→

dH O`
1,nY→

%

E1 → 0. s11d

They possess the following cohomology.3,4,11

Theorem 1: The cohomology of the variational complexs10d equals the de Rham cohomol-
ogy of Y.

Theorem 2: The complexs11d is exact.
Any finite order LagrangianL s4d is an element ofO`

0,nY, while

dL = Eiu
i ∧ v = o

0øuLu
s− 1duLudLs]i

LLdui ∧ v [ E1 s12d

is its Euler–Lagrange operator taking the values in the vector bundle

T*Y∧
Y

s∧
n

T*Xd = V*Y^
Y

∧
n

T*X. s13d

The componentsEi of dL are called the variational derivatives. We further abbreviateA<0 with
an equality which holds on-shell. This means thatA is an element of a module over the idealIL of
the ring O`

0Y which is locally generated by the variational derivativesEi s12d and their total
derivativesdLEi. Thus,IL is a differential ideal.

By virtue of Theorem 1, everyd-closed LagrangianL[O`
0,nY is the sum

L = h0c + dHs, s [ O`
0,n−1Y, s14d

wherec is a closedn-form on Y. Theorem 2 provides theR-module decomposition

O`
1,nY = E1 % dHsO`

1,n−1Yd.

Given a LagrangianL[O`
0,nY, we have the corresponding decomposition

dL = dL − dHJ s15d

whereJL=J+L is a Lepagean equivalent ofL.
Let dO`

0Y be theO`
0Y-module of derivations of theR-ring O`

0Y. Any q[dO`
0Y yields the

graded derivationsthe interior productd qcf of the GDAO`
* Y given by the relations

qdf = qsfd, f [ O`
0Y,
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qsf ∧ sd = sq c fd ∧ s + s− 1dufuf ∧ sq c sd, f,s [ O`
* Y,

and its derivationsthe Lie derivatived

L qf = q c df + dsq c fd, f [ O`
* Y,

s16d
L qsf ∧ f8d = L qsfd ∧ f8 + f ∧ L qsf8d.

Relative to an atlass7d, a derivationq[dO`
0Y reads4

q = ql]l + qi]i + o
uLu.0

qL
i ]i

L, s17d

where the tuple of derivationsh]l ,]i
Lj is defined as the dual of the sethdxl ,dyL

i j of generating
elements for theO`

0Y-algebraO`
* Y with respect to the interior productc, and local functionsql,

qi, qL
i [O`

0Y obey the transformation law

q8l =
]x8l

]xm qm, qL8
i = o

uSuøuLu

]yL8
i

]yS
j qS

j +
]yL8

i

]xm vm. s18d

Note that the tuple of derivationsh]i
Lj is the dual of the basishuL

i j of contact forms.
A derivationq is called contact if the Lie derivativeL q s16d preserves the contact ideal of the

GDA O`
* Y generated by contact forms. A derivationq s17d is contact iff

qL
i = dLsqi − ym

i qmd + ym+L
i qm, 0 , uLu. s19d

Any contact derivation admits the horizontal splitting

q = qH + qV = qldl + Svi]i + o
0,uLu

dLvi]i
LD, vi = qi − ym

i qm, s20d

relative to the canonical connection¹=dxl ^ dl on theC`sXd-ring O`
0Y.5,12 Its vertical partqV is

completely determined by the first summand

v = visxl,yL
i d]i, 0 ø uLu ø k. s21d

This is a section of the pull-backVY3
Y

JkY→JkY of the vertical tangent bundleVY→Y ontoJkY,13

i.e., v s21d is a k-order VY-valued differential operator onY ssee Appendix Ad. One calls this
differential operator thegeneralized vector fieldon Y.

Proposition 3:It follows from the splittings15d that the Lie derivative of a LagrangianL s4d
along a contact derivationq s20d fulfills the first variational formula

L qL = v c dL + dHsh0sq c JLdd + LdVsqH c vd, s22d

whereJL is a Lepagean equivalent ofL.4

A contact derivationq s20d is called variational if the Lie derivatives22d is dH-exact, i.e.,
L qL=dHs, s[O`

0,n−1. A glance at the expressions22d shows that:sid a contact derivationq is
variational only if it is projected ontoX si.e., its componentsql depend only on coordinates onXd,
sii d q is variational iff its vertical partqV is variational,siii d it is variational if vcdL is dH-exact.

By virtue of item sii d, we can restrict our consideration to vertical contact derivationsq
=qV. A generalized vector fieldv s21d is called avariational symmetryof a LagrangianL if it
generates a variational vertical contact derivation.

One can also consider locally variational contact derivations when the Lie derivatives22d is
d-closed, but any locally variational gauge symmetry is always variationalssee Remark 1 in the
followingd.
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Turn now to the notion of a gauge symmetry. A Lagrangian system on a fiber bundleY→X is
said to be a gauge theory if its LagrangianL admits a family of variational symmetries param-
etrized by elements of a vector bundleE→Y as follows.

Let E→Y be a vector bundle coordinated bysxl ,yi ,jrd. Given a LagrangianL on Y, let us
consider its pull-back, say againL, onto E. Let qE be a vertical contact derivation of theR-ring
O`

0E whose restriction

q = uqEuO
`
0Y = o

0øuLu
dLvi]i

L s23d

to O`
0Y,O`

0E is linear in coordinatesjJ
r . It is determined by a generalized vector fieldsi.e., a

VE-valued differential operatord vE on E whose canonical projection

v:JkE→
vE

VE→ E3
Y

VY

fsee the exact sequences35d belowg is a linearVY-valued differential operator

v = o
0øuJuøm

vr
i,Jsxl,yS

i djJ
r ]i s24d

on E. Let qE be a variational symmetry of a LagrangianL on E, i.e.,

vE c dL = v c dL = dHs. s25d

Then one says thatv s24d is a gauge symmetryof a LagrangianL on Y.
Remark 1:As was mentioned above, any locally variational gauge symmetryqE, when the Lie

derivativeL qE
L is d-closed, is variational. By virtue of Theorem 1,L qE

L takes the forms14d
wherec is a closed form onE. SinceE→Y is a vector bundle,Y is a strong deformation retract
of E and, consequently, the de Rham cohomology ofE equals that ofY. Then any closed form on
E is the sum of the pull-back of a closed form onY and an exact form onE. The former is
independent of fiber coordinatesjr on E→Y. Since the Lie derivativeL qL is linear in jL

r , it is
alwaysdH-exact, i.e.,qE is variational.

III. NOETHER’S SECOND THEOREM I

Let us start with the notion of the Noether identity.
Definition 4:Given a LagrangianL s4d and its Euler–Lagrange operatordL s12d, let E→Y be

a vector bundle andD a linear differential operator of order 0øm on the vector bundles13d with

the values in the density-dualĒ* s1d of E such that

D + dL = 0. s26d

This condition is called theNoether identity, andD is theNoether operator.
Given bundle coordinatessxl ,yi , ȳid on the fiber bundles13d and sxl ,yi ,jrd on E, a Noether

operatorD in Definition 4 is represented by the density

D = Drj
rv = o

0øuLuøm

Dr
i,Lsxl,yS

j dȳLij
rv [ O`

0,nfE3
Y

V*Yg, 0 ø uSu ø m, s27d

ssee Appendix Ad. Then the Noether identitys26d takes the coordinate form

F o
0øuLuøm

Dr
i,LdLEiGjrv = 0, s28d

whereEi are variational derivativess12d.
Remark 2:We further use the relations
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o
0øuLuøk

BLdLA8 = o
0øuLuøk

s− 1duLudLsBLdA8 + dHs, s29d

o
0øuLuøk

s− 1duLudLsBLAd = o
0øuLuøk

hsBdLdLA, s30d

hsBdL = o
0øuSuøk−uLu

s− 1duS+LuCuS+Lu
uSu dSBS+L, Cb

a =
b!

a!sb − ad!
, s31d

sh + hdsBdL = BL, s32d

for any exterior formsA8[O`
*,nZ, A[O`

* z and any local functionBL[O`
0Z on jet manifolds of

a fiber bundleZ→X.
Theorem 5:If a LagrangianL s4d admits a gauge symmetryv s24d, its Euler–Lagrange

operator obeys the Noether identitys28d where

Dr
i,L = hsvdr

i,L = o
0øuSuøm−uLu

s− 1duS+LuCuS+Lu
uSu dSvr

i,S+L. s33d

Conversely, if the Euler–Lagrange operator of a LagrangianL obeys the Noether identitys28d, this
Lagrangian admits a gauge symmetryv s24d where

vr
i,L = hsDdr

i,L = o
0øuSuøm−uLu

s− 1duS+LuCuS+Lu
uSu dSDr

i,S+L. s34d

The relationss2d hold.
Proof: Given a differential operatorv s24d, the operatorD=hsvd expressed in the coordinate

form s33d is defined in accordance with Theorem 16. Since the density

v c dL = viEiv = o
0øuJuøm

vr
i,JjJ

r Eiv

is dH-exact, the Noether identity

dsv c dLd = hsvd + dL = 0

holds. Conversely, any Noether operatorD s27d defines theVY-valued differential operatorv
=hsDd on E expressed in the coordinate forms34d. This differential operator gives rise to a
VE-valued differential operatorsi.e., a generalized vector fieldd vE on E and, thus, defines a contact
derivationqE of O`

0E. Indeed, let us consider the exact sequence of vector bundles

0 → VYE → VE→ E3
Y

VY→ 0, s35d

whereVYE is the vertical tangent bundle ofE→Y. Any splittingG of this exact sequence liftsv to
the generalized vector fieldvE=G +v onE, but the Lie derivativeL qE

L is independent of the choice
of a splittingG. Due to the Noether identitys28d, we obtain

0 = o
0øuLuøm

jrDr
i,LdLEiv = o

0øuLuøm

s− 1duLudLsjrDr
i,LdEiv + dHs

= o
0øuJuøm

vr
i,JjJ

r Eiv + dHs = v c dL + dHs,

i.e., v is a gauge symmetry ofL. Due to the equalitys32d, the relationss2d hold.
Example 3:If a gauge symmetry
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v = svr
i jr + vr

i,mjm
r d]i s36d

is of first jet order in parameters, the corresponding Noether operator and Noether identity read

Dr
i = vr

i − dmvr
i,m, Dr

i,m = − vr
i,m, s37d

fvr
iEi − dmsvr

i,mEidgjrv = 0. s38d

Any LagrangianL has gauge symmetries. In particular, there always exist trivial gauge sym-
metries

v = o
L

hsMdr
i,LjL

r , Mr
i,L = o

S

Ti,j ,L,SdSE j, Tr
j ,i,L,S = − Tr

i,j ,S,L,

corresponding to the trivial Noether identity

o
S,L

Tr
j ,i,L,SdSE jdLEi = 0.

Furthermore, given a gauge symmetryv s24d, let h be a linear differential operator on some vector
bundleE8→Y, coordinated bysxl ,yi ,j8sd, with values in the vector bundleE. Then the compo-
sition

v08 = v + h = vs8
i,LjL8

s]i, vs8
i,L = o

J+J8=L

o
0øuSuøm−uJu

vr
i,J+SdShs

r,J8,

is a variational symmetry of the pull-back ontoE8 of a LagrangianL on Y, i.e., a gauge symmetry
of L. In view of this ambiguity, we agree to say that a gauge symmetryv s24d of a LagrangianL
is complete if a different gauge symmetryv08 of L factors throughv as

v08 = v + h + T, T < 0.

A complete gauge symmetry always exists, but the vector bundle of its parameters need not be
finite-dimensional.

Accordingly, given the Noether operators27d, let H be a linear differential operator onĒ* with

values in the density-dualĒ8* s1d of some vector bundleE8→Y. Then the compositionD8=H
+D is also a Noether operator. We agree to call the Noether operators27d complete if a different
Noether operatorD8 factors throughD as

D8 = H + D + F, F < 0.

Proposition 6:A gauge symmetryv of a LagrangianL is complete iff so is the associated
Noether operator.

Proof: The proof follows at once from Proposition 17 in Appendix A. Given a gauge sym-
metry v of L, let v08 be a different gauge symmetry. Ifhsvd is a complete Noether operator, then

hsv08d = H + hsvd + F, F < 0,

and, by virtue of the relationss3d, we have

v08 = v + hsHd + hsFd,

wherehsFd<0 becauseIL is a differential ideal. The converse is similarly proved.
Example 4:Let us consider the gauge theory of principal connections on a principal bundle

P→X with a structure Lie groupG.12 These connections are represented by sections of the
quotient
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C = J1P/G → X, s39d

called the bundle of principal connections. This is an affine bundle coordinated bysxl ,al
r d such

that, given a sectionA of C→X, its componentsAl
r =al

r +A are coefficients of the familiar local
connection formsi.e., gauge potentialsd. Let J`C be the infinite order jet manifold ofC→X
coordinated bysxl ,aLl

r d, 0ø uLu. We consider the GDAO`
* C. Infinitesimal generators of local

one-parameter groups of automorphisms of a principal bundleP areG-invariant projectable vector
fields onP→X. They are associated to sections of the vector bundleTGP=TP/G→X. This bundle
is endowed with the coordinatessxl ,tl= ẋl ,jrd with respect to the fiber basesh]l ,erj for TGP,
whereherj is the basis for the right Lie algebrag of G such thatfep,eqg=cpq

r er. If

u = ul]l + urer, v = vl]l + vrer , s40d

are sections ofTGP→X, their bracket reads

fu,vg = sum]mvl − vm]muld]l + sul]lvr − vl]lur + cpq
r upvqder . s41d

Any sectionu of the vector bundleTGP→X yields the vector field

uC = ul]l + scpq
r al

puq + ]lur − am
r ]lumd]r

l s42d

on the bundle of principal connectionsC s39d. It is an infinitesimal generator of a one-parameter
group of automorphisms ofC.12 Let us consider the bundle product

E = C3
X

TGP, s43d

coordinated bysxl ,tl ,jr ,al
r d. It can be provided with the generalized vector field

vE = v = scpq
r al

pjq + jl
r − am

r tl
m − tmaml

r d]r
l. s44d

For instance, this is a gauge symmetry of the global Chern–Simons Lagrangian.14 Let us consider
a subbundleVGP=VP/G→X of the vector bundleTGX coordinated bysxl ,jrd. Its sectionsu
=urer are infinitesimal generators of vertical automorphisms ofP. Let us restrict the bundle
products43d to

E = C3
X

VGP. s45d

It is provided with the generalized vector field

vE = v = scpq
r al

pjq + jl
r d]r

l. s46d

This is a gauge symmetry of the Yang–Mills Lagrangians,14 and yields the well-known Noether
identity

fcpq
r al

pEr
l − dlsEq

ldgjqv = 0.

IV. REDUCIBLE GAUGE THEORIES

Recall that the notion of a reducible Noether identity has come from that of a reducible
constraint,15 but it involves differential relations.

Definition 7:A complete Noether operatorD<” 0 s27d and the corresponding Noether identity
s26d are said to beN-stage reduciblesN=0,1,…d if there exist vector bundlesEk→Y and differ-
ential operatorsDk, k=0,… ,N, such that:

sid Dk is a linear differential operator on the density-dualĒk−1
* of Ek−1 with values in the

density-dualĒk
* of Ek, whereE−1=E;

sii d Dk<” 0 for all k=0,… ,N;
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siii d Dk+Dk−1<0 for all k=0,… ,N, whereD−1=D;
sivd if Dk8 is another differential operator possessing these properties, then it factors throughDk

on-shell.

In particular, a zero-stage reducible Noether operator is called reducible. In this case, given

bundle coordinatessxl ,yi , j̄rd on Ē* and sxl ,yi ,jr0d on E0, a differential operatorD0 reads

D0 = o
0øuJuøm0

Dr0

r,Jj̄Jrj
r0v. s47d

Then the reduction conditionD0+D<0 takes the coordinate form

o
0øuJuøm0

Dr0

r,JdJS o
0øuLuøm

Dr
i,LȳLiDjr0v < 0, s48d

i.e., the left-hand side of this expression takes the form

o
0øuSuøm0+m

Mr0

i,SȳSij
r0 ^ v,

where all the coefficientsMr0

i,S belong to the idealIL.
Definition 8:A complete gauge symmetryv<” 0 s24d is said to beN-stage reducible if there

exist vector bundlesEk and differential operatorsvk, k=0,… ,N, such that:

sid vk is a linear differential operator on the vector bundleEk with values in the vector bundle
Ek−1;

sii d vk<” 0 for all k=0,… ,N;
siii d vk−1+vk<0 for all k=0,… ,N, wherevk, k=−1, stands forv;
sivd if v8k is another differential operator possessing these properties, thenvk factors throughv8k

on-shell.

Theorem 9:A gauge symmetryv is N-stage reducible iff so is the associated Noether identity.
Proof: The proof follows at once from Theorem 16 and Proposition 17. Let us putDk

=hsvkd, k=0,… ,N. If vk<0, thenhsvkd<0 becauseIL is a differential ideal. By the same reason,
if vk−1 andvk obey the reduction conditionvk−1+vk<0, then

hsvk−1 + vkd = hsvkd + hsvk−1d < 0.

The converse is justified in the same way. The equivalence of the conditions in itemssivd of
Definitions 7 and 8 is proved similarly to that in Proposition 6.

V. GRADED LAGRANGIAN SYSTEMS

Recall that, by virtue of Batchelor’s theorem,16 any graded manifoldsU ,Xd with a bodyX is
isomorphic to the one whose structure sheafUQ is formed by germs of sections of the exterior
product

∧Q* = R%
X

Q*
%
X

∧
2

Q*
%
X
¯, s49d

whereQ* is the dual of some real vector bundleQ→X of fiber dimensionm. In field models, a
vector bundleQ is usually given from the beginning. Therefore, we consider graded manifolds
sX,UQd where Batchelor’s isomorphism is fixed, and callsX,UQd the simple graded manifold
constructed fromQ. The structure ringAQ of sections ofUQ consists of sections of the exterior
bundles49d called graded functions. Given bundle coordinatessxl ,qad on Q with transition func-
tions q8a=rb

aqb, let hcaj be the corresponding fiber bases forQ* →X, together with transition
functionsc8a=rb

acb. Then sxl ,cad is called the local basis for the graded manifoldsX,UQd. With
respect to this basis, graded functions read
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f = o
k=0

m
1

k!
fa1¯ak

ca1
¯cak,

wherefa1¯ak
are local smooth real functions onX, and we omit the symbol of the exterior product

of elementsca.
Given a graded manifoldsX,UQd, let dAQ be theAQ-module ofZ2-graded derivations of the

Z2-graded ring ofAQ, i.e.,

usf f8d = usfdf8 + s− 1dfugffgfusf8d, u [ dAQ, f, f8 [ AQ,

where f.g denotes the Grassmann parity. Its elements are calledZ2-gradedsor, simply, gradedd
vector fields onsX,UQd. Due to the canonical splittingVQ=Q3Q, the vertical tangent bundle
VQ→Q of Q→X can be provided with the fiber basesh]aj which is the dual ofhcaj. Then a
graded vector field takes the local formu=ul]l+ua]a, whereul, ua are local graded functions. It
acts onAQ by the rule

usfa…bc
a
¯cbd = ul]lsfa…bdca

¯cb + udfa…b]d c sca
¯cbd. s50d

This rule implies the corresponding transformation law

u8l = ul, u8a = r j
auj + ul]lsr j

adcj .

Then one can show5,12 that graded vector fields on a simple graded manifold can be represented by
sections of the vector bundleVQ→X which is locally isomorphic to the vector bundle∧Q*

^XsQ%XTXd.
Using this fact, we can introduce graded exterior forms on the simple graded manifoldsX,UQd

as sections of the exterior bundle∧VQ
* , whereVQ

* →X is the∧Q* -dual ofVQ. They are character-
ized both by the Grassmann parity and the familiar form degree. Relative to the dual local bases
hdxlj for T*X and hdcbj for Q* , graded one-forms read

f = fldxl + fadca, fa8 = ra
−1bfb, fl8 = fl + ra

−1b]lsr j
adfbc

j ,

where dxl are even and dcb are odd. The duality morphism is given by the interior product

bucf = ulfl + s− 1dffaguafa.

Graded exterior forms constitute the bigraded differential algebrashenceforth BGDAd CQ
* with

respect to the bigraded exterior product

f ∧ f8 = s− 1dufuuf8u+ffgff8gf8 ∧ f, f,f8 [ CQ
* ,

and the exterior differential

dsf ∧ f8d = df ∧ f8 + s− 1dufuf ∧ df8, f,f8 [ CQ
* .

Since the jet bundleJrQ→X of a vector bundleQ→X is a vector bundle, let us consider the
simple graded manifoldsX,UJrQd constructed fromJrQ→X. Its local basis ishxl ,c∧

aj, 0ø uLu
ø r, together with the transition functions

cl+L8a = dlsr j
acL

j d, dl = ]l + o
uLu,r

cl+L
a ]a

L, s51d

where the graded derivations]a
L are the duals ofcL

a . Let CJrQ
* be the BGDA of graded exterior

forms on the graded manifoldsX,UJrQd. A linear bundle morphismpr−1
r : JrQ→Jr−1Q yields the

corresponding monomorphism of BGDAsCJr−1Q
* →CJrQ

* . Hence, there is the direct system of BG-
DAs
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CQ
* →

p0
1*

CJ1Q
*

¯ →
p

r − 1*
r

CJrQ
* → ¯. s52d

Its direct limitC`
* Q consists of graded exterior forms on graded manifoldssX,UJrQd, r [N, modulo

the pull-back identification, and it inherits the BGDA operations intertwined by the monomor-
phismspr−1

r* . It is locally a freeC`sXd-algebra locally generated by the elementss1,cL
a ,dxl ,uL

a

=dcL
a −cl+L

a dxld, 0ø uLu, wherecL
a anduL

a are odd.
In order to regard even and odd dynamic variables on the same footing, letY→X hereafter be

an affine bundle, and letP`
* Y,O`

* Y be theC`sXd-subalgebra of exterior forms whose coefficients
are polynomial in the fiber coordinates on jet bundlesJrY→X. This notion is intrinsic since any
element ofO`

* Y is an exterior form on some finite order jet manifold and all jet bundlesJrY
→X are affine. One can think of the GDAP`

* Y as being the BGDA whose elements are even. Let
us consider the product

S`
* fQ;Yg = C`

* Q ∧ P`
* Y s53d

of bigraded algebrasC`
* Q andP`

* Y over their common graded subalgebraO*X of exterior forms
on X.4 It consists of the elements

o
i

ci ^ fi, o
i

fi ^ ci, c [ C`
* Q, f [ P`

* Y,

modulo the commutation relations

c ^ f = s− 1ducuufuf ^ c, c [ C`
* Q, f [ P`

* Y,

s54d
sc ∧ sd ^ f = c ^ ss ∧ fd, s [ O*X.

These elements are endowed with the total form degreeuc ^ fu= ucu+ ufu and the total Grassmann
parity fc ^ fg=fcg. Their multiplication

sc ^ fd ∧ sc8 ^ f8dªs− 1duc8uufusc ∧ c8d ^ sf ∧ f8d s55d

obeys the relation

w ∧ w8 = s− 1duwuuw8u+fwgfw8gw8 ∧ w, w,w8 P S`
* fQ;Yg,

and makesS`
* fQ;Yg s53d into a bigradedC`sXd-algebra. For instance, elements of the ring

S`
0fQ;Yg are polynomials of oddcL

a and evenyL
i with coefficients inC`sXd.

The algebraS`
* fQ;Yg is provided with the exterior differential

dsc ^ fdªsdCcd ^ f + s− 1ducuc ^ sdPfd, c P C`
* Q, f P P`

* Y, s56d

wheredC anddP are exterior differentials on the differential algebrasC`
* Q andP`

* Y, respectively.
It obeys the relations

dsw ∧ w8d = dw ∧ w8 + s− 1duwuw ∧ dw8, w,w8 P S`
* fQ;Yg,

and makesS`
* fQ;Yg into a BGDA, which is locally generated by the elements

s1,cL
a ,yL

i ,dxl,uL
a = dcL

a − cl+L
a dxl,uL

i = dyL
i − yl+L

i dxld, 0 ø uLu,

wherecL
a , uL

a are odd andyL
i , dxl, uL

i are even. The cohomology of its de Rham complex

0 → R → S`
0fQ;Yg→

d

S`
1fQ;Yg¯→

d

S`
k fQ;Yg → ¯ s57d

equals the de Rham cohomologyH*sXd of X.4 We agree to call elements ofS`
* fQ;Yg the graded

exterior formson X.
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Hereafter, let the collective symbolssL
A and uL

A stand for both even and odd generating
elementscL

a , yL
i , uL

a , uL
i of the C`sXd-algebraS`

* fQ;Yg which, thus, is locally generated by
s1,sL

A ,dxl ,uL
Ad, uLuù0. SincesL

A =dLsA anduL
A =dsL

A +sl+L
A dxl, the BGDAS`

* fQ;Yg is completely
specified by the elementssA together with their transition functions. Therefore, we agree to call
hsAj the local basisfor S`

* fQ;Yg.
Similarly to O`

* Y, the BGDAS`
* fQ;Yg is decomposed intoS`

0fQ;Yg-modulesS`
k,rfQ;Yg of

k-contact andr-horizontal graded forms together with the corresponding projectionshk and hr.
Accordingly, the exterior differentiald s56d onS`

* fQ;Yg is split into the sumd=dH+dV of the total
and vertical differentials

dHsfd = dxl ∧ dlsfd, dVsfd = uL
A ∧ ]A

Lf, f P S`
* fQ;Yg.

The projection endomorphism% of S`
* fQ;Yg is given by

% = o
k.0

1

k
%̄ + hk + hn, %̄sfd o

0øuLu
s− 1duLuuA ∧ fdLs]A

Lcfd g , f P S`
.0,nfQ;Yg,

similar to s9d. The graded variational operatord= % +d is introduced. Then the BGDAS`
* fQ;Yg is

split into theZ2-graded variational bicomplex analogous to the above-mentioned variational bi-
complex ofO`

* Y.
We restrict our consideration to the short variational subcomplex

0 → R → S`
0fQ;Yg→

dH S`
0,1fQ;Yg¯→

dH S`
0,nfQ;Yg→

d

E1 s58d

and the subcomplex of one-contact graded forms

0 → S`
1,0fQ;Yg→

dH S`
1,1fQ;Yg¯→

dH S`
1,nfQ;Yg→

%

E1 → 0, s59d

of the BGDAS`
* fQ;Yg. They possess the following cohomology.4

Theorem 10:The cohomology of the complexs58d equals the de Rham cohomologyH*sXd of
X.

Theorem 11: The complexs59d is exact.
One can think of the elements

L = Lv P S`
0,nfQ;Yg, dL = uA ∧ EAv = o

0øuLu
s− 1duLuuA ∧ dLs]A

LLdv P E1 s60d

of the complexess58d–s59d as being agraded Lagrangianand its Euler–Lagrange operator, re-
spectively. The componentsEA of dL are graded variational derivatives.

By virtue of Theorem 10, everyd-closed graded LagrangianL s60d is the sum

f = c + dHj, j P S`
0,n−1fQ;Yg, s61d

wherec is a nonexactn-form on X.
The global exactness of the complexs59d at the termS`

1,nfQ;Yg results in the following.4

Proposition 12:Given a graded LagrangianL=Lv, there is the decomposition

dL = dL − dHJ, J P S`
1,n−1fQ;Yg, s62d

J = o
s=0

uns…n1

A ∧ FA
lns…n1vl, FA

nk…n1 = ]A
nk…n1L − dlFA

lnk…n1 + hA
nk…n1, s63d

where local graded functionsh obey the relationsha
v=0, ha

snknk−1d…n1=0.
Proposition 12 states the existence of a global finite order Lepagean equivalentJL=J+L of

any graded LagrangianL. Locally, one can always chooseJ s63d where all functionsh vanish.
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VI. BRST SYMMETRIES

A graded derivationqPdS`
0fQ;Yg of the R-ring S`

0fQ;Yg is said to be contact if the Lie
derivativeL q preserves the ideal of contact graded forms of the BGDAS`

* fQ;Yg. With respect to
the local basishsAj for the BGDAS`

* fQ;Yg, any contact graded derivation takes the form

q = qH + qV = qldl + SqA]A + o
uLu.0

dLqA]A
LD , s64d

where tuple of graded derivationsh]l ,]A
Lj is defined as the dual of the tuplehdxl ,dsL

Aj of gener-
ating elements of theS`

0fQ;Yg-algebraS`
* fQ;Yg, and ql, qA are local graded functions.4 The

interior productqcf and the Lie derivativeL qf, fPS`
* fQ;Yg, are defined by the same formulas

q c f = qlfl + s− 1dffAgqAfA, f P S`
1fQ;Yg,

q c sf ∧ sd = sq c fd ∧ s + s− 1dufu+ffgfqgf ∧ sq c sd, f,s P S`
* fQ;Yg,

L qf = q c df + dsq c fd, L qsf ∧ sd = L qsfd ∧ s + s− 1dfqgffgf ∧ L qssd,

as those on a graded manifold. One can justify that any vertical contact graded derivationq s64d
satisfies the relations

q c dHf = − dHsq c fd, L qsdHfd = dHsL qfd, f P S`
* fQ;Yg. s65d

Proposition 13:It follows from the splittings12d that the Lie derivativeL qL of a Lagrangian
L along a contact graded derivationq s64d fulfills the first variational formula

L qL = qV c dL + dHsh0sq c JLdd + dVsqH c vdL, s66d

whereJL=J+L is a Lepagean equivalent ofL given by the coordinate expressions63d.4

A contact graded derivationq is said to be variational if the Lie derivatives66d is dH-exact. A
glance at the expressions66d shows that:sid a contact graded derivationq is variational only if it
is projected ontoX, sii d q is variational iff its vertical partqV is variational.

Therefore, we restrict our consideration to vertical contact graded derivations

q = o
0øuLu

dLvA]A
L, s67d

where the tuple of graded derivationsh]A
Lj is defined as the dual of the tuplehuA

Lj of contact graded
forms. Such a derivation is completely determined by its first summand

v = vAsxl,sL
Ad]A, 0 ø uLu ø k, s68d

which is also a graded derivation ofS`
0fQ;Yg. It is called thegeneralized graded vector field.A

glance at the first variational formulas66d shows thatq s67d is variational iff vcdL is dH-exact.
A vertical contact graded derivationq s67d is said to be nilpotent if

L vsL vfd = o
uSuù0,uLuù0

svS
B]B

SsvL
Ad]A

L + s− 1dfsBgfvAgvS
BvL

A]B
S]A

Ldf = 0 s69d

for any horizontal graded formfPS`
0,*fQ;Yg. One can show4 that q is nilpotent only if it is odd

and iff the equality

L qsvAd = o
uSuù0

vS
B]B

SsvAd = 0 s70d

holds for allvA.
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Example 5:Let Y→X be an affine bundle,L s4d a Lagrangian of a gauge theory onY andv
s24d its gauge symmetry where

E = Y3
X

V

is the pull-back ontoY of a vector bundleV→X coordinated bysxl ,jrd. Let us consider the
BGDA S`

* fV;Yg=C`
* V∧P`

* Y possessing a local basishcr ,yij. Let LPO`
0,nY be a polynomial inyL

i ,
0ø uLu. Then it is a graded LagrangianLPP`

0,nY,S`
0,nfV;Yg in S`

* fV;Yg. SinceE→Y is the
pull-back bundle, a gauge symmetryv s24d gives rise to the generalized vector fieldvE=v on E,
and the latter defines the generalized graded vector fieldv s68d by the formula

v = o
0øuJuøm

vr
i,Jsxl,yS

i dcJ
r ]i . s71d

It is easily justified that the vertical contact graded derivationq s67d generated byv s71d is
variational for the graded LagrangianL. It is odd, but need not be nilpotent. However, one can try
to find a nilpotent contact graded derivation generated by some generalized graded vector field

v = o
0øuLuøm

vr
i,LcL

r ]i + ur]r s72d

which coincides withq on P`
* Y. In this case, the nilpotency conditionss70d read

o
S

dSSo
J

vr
i,JcJ

r Do
L

]i
Ssvs

j ,LdcL
s + o

L

dLsurdvr
j ,L = 0, s73d

o
L
So

J

dLsvr
i,JcJ

r d]i
L + dLsurd]r

LDuq = 0 s74d

for all indices j andq. They are equations for graded functionsur PS`
0fV;Yg. Since these func-

tions are polynomials

ur = us0d
r + o

G

us1dp
r,G cG

p + o
G1,G2

us2dp1p2

r,G1G2 cG1

p1cG2

p2 + ¯ s75d

in cL
s , Eqs.s73d and s74d take the form

o
S

dSSo
J

vr
i,JcJ

r Do
L

]i
Ssvs

j ,LdcL
s + o

L

dLsus2d
r dvr

j ,L = 0, s76d

o
L

dLsuskÞ2d
r dvr

j ,L = 0, s77d

o
L

o
J

dLsvr
i,JcJ

r d]i
Lusk−1d

q + o
m+n−1=k

dLsusmd
r d]r

Lusnd
q = 0. s78d

One can think of equalitiess76d and s78d fand, consequently, the nilpotency conditionss73d and
s74dg as being the generalized commutation relations and generalized Jacobi identities of gauge
transformations, respectively.17 For instance, let us consider a gauge system on a principal bundle
and the generalized vector fieldv s44d in Example 4. Following the procedure above, we replace
parametersjr and tl with the odd ghostsCr and Cl, respectively, and obtain the generalized
graded vector field
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v = scpq
r al

pCq + Cl
r − am

r Cl
m − Cmaml

r d]r
l + s− 1

2cpq
r CpCq − CmCm

r d]r + Cm
lCm]l s79d

such that the vertical contact graded derivations67d generated byv s79d is nilpotent. In the case of
the vertical gauge symmetrys46d, we obtain the familiar BRST transformation

v = scpq
r al

pCq + Cl
r d]r

l − 1
2cpq

r CpCq]r s80d

of Yang–Mills theory.
Generalizing Example 5, we describe BRST symmetries in a general setting as follows.
Let S`

* fQ;Yg be the BGDAs53d and LPS`
0,nfQ;Yg a graded Lagrangian. We agree to call

generating elementssA of S`
* fQ;Yg the fields. LetV→X be a vector bundle coordinated by

sxl ,jrd. By analogy withS`
* fQ;Yg, we consider the BGDA,

S`
* fQV;Yg = C`

* fQ3
X

Vg ∧ P`
* Y, s81d

whose local basis ishsA,crj. Obviously,L is also a graded Lagrangian inS`
* fQV;Yg. Let

q = o
0øuLu

sdLvA]A
L + dLvr]r

Ld s82d

be a graded contact derivation of theR-ring S`
0fQV;Yg generated by an odd generalized graded

vector field

v = vA]A + vr]r s83d

whose restriction toS`
* fQ;Yg is linear incL

r , i.e.,

v = o
0øuJuøm

cJ
r vr

A,Jsxl,sS
Bd]A + vr]r . s84d

If q s82d is variational forL and nilpotent, we say thatv s84d is aBRST symmetryof L. Following
the terminology of BRST theory, we agree to call generating elementscr of S*fQV;Yg theghosts.

VII. NOETHER’S SECOND THEOREM II

In order to introduce Noether identities in the case of BRST symmetries, let us extend the
BGDA S*fQV;Yg s81d to the BGDA

S̀* fQȲ*V;YQ̄*g = C`
* fQ3

X
Ȳ*3

X
Vg ∧ P`

* fY3
X

Q̄*g, s85d

whereQ̄* is the density-dual ofQ andȲ* is the density dual of the vector bundleỸ→X which the

affine bundleY is modeled onse.g.,Ỹ=Y if Y is a vector bundled. The local basis for the BGDA

S`
* fQȲ*V;YQ̄*g is hsA,cr , s̄Aj. Following the terminology of the field–antifield BRST theory, we

call generating elementss̄A of S`
* fQȲ*V;YQ̄*g the antifields. Their Grassmann parity isfs̄Ag

=sfsAg+1dmod 2.

The BGDAS`
* fQȲ*V;YQ̄*g s85d is provided with theKoszul–Tate differentialdefined as the

nilpotent contact graded derivation

d̄ = o
0øuLu

]QLAdLEA, s86d

whereEA are the graded variational derivativess60d and the tuple of graded right derivations]QLA

is the dual of the tuple of contact graded formshuLAj, i.e.,
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uLAb]QSB = dL
SdB

A,

where multi-indicesS andL are regard modulo permutations. Because of the expressions60d for
dL, it is convenient to describe the Koszul–Tate differential as a graded derivation acting on
graded functions and formsf on the right by the rule

d̄sfd = dfbd̄ + dsfbd̄d, d̄sf ∧ f8d = s− 1dff8gd̄sfd ∧ f8 + f ∧ d̄sf8d.

Definition 14:Given a graded LagrangianLPS`
* fQ;Yg,S`

* fQȲ*V;YQ̄*g s60d, we say that its

Euler–Lagrange operatordL s60d obeys a Noether identity if there exists ad̄-closed even graded
density

D = crDrv = o
0øuLuøm

crDr
A,Lsxl,sS

Bds̄LAv P S`
0,nfQȲ*V;YQ̄*g, s87d

which is linear both in ghostscr and antifieldss̄A and their jetss̄LA. The above-mentionedNoether
identity reads

d̄sDd = crF o
0øuLuøm

Dr
A,LdLEAGv = 0. s88d

Then Noether’s second theorem for BRST symmetries is formulated as follows.
Theorem 15: If v s84d is a BRST symmetry of a graded LagrangianL, then

D = hsvd = o
0øuLuøm

crhsvdr
A,Ls̄LAv,

s89d
hsvdr

A,L = o
0øuSuøm−uLu

s− 1duS+LuCuS+Lu
uSu dSvr

A,S+L,

is a d̄-closed graded densitys87d. Conversely, if ad̄-closed graded densityD s87d exists, the
generalized graded vector field

v = hsDd = o
0øuJuøm

cJ
r hsDdr

A,J]A,

s90d
hsDdr

A,L = o
0øuSuøm−uLu

s− 1duS+LuCuS+Lu
uSu dSDr

A,S+L,

generates a contact graded derivations82d which is variational for the graded LagrangianL, but it
need not be nilpotent. The relationss2d hold.

Proof: The first summand of the generalized vector fields84d defines the graded function

v = o
0øuJuøm

cJ
r vr

A,Jsxl,sS
BdsA P S`

* fQQ*V;YỸ*g, s91d

andvice versa. Then the proof follows from Theorem 18 in Appendix B. By virtue of this theorem,
the graded functions91d yields the graded densitys89d. Since the graded densityvcdL is dH-exact,
we obtain the equality

dsv c dLd = d̄shsvdd = 0.

Conversely, the graded densitys87d yields the graded functions91d wherevr
A,J=hsDdr

A,J. SinceD

s87d is d̄-closed, we have
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0 = o
0øuLuøm

crDr
A,LdLEAv = o

0øuLuøm

s− 1duLudLscrDr
A,LdEAv + dHs

= o
0øuJuøm

cJ
r vr

A,JEAv + dHs = v c dL + dHs,

i.e., the graded contact derivation generated byv s90d is variational forL. Due to the equalitys32d,
the relationss2d hold.

Bearing in mind the field–antifield BRST theory and BV quantization, the Noether identity

s88d can be rewritten as follows. Let us consider the BGDAS`
* fQȲ*V;YQ̄*V̄*g possessing the

local basishsA,cr , s̄A, c̄rj, where even elementsc̄r are calledantighostsof the ghostscr. Clearly, the

graded densityD s87d is an element ofS`
* fQȲ*V;VQ̄*V̄*g. Then this BGDA is provided with the

contact graded right derivation

d̄c = o
0øuLu

s]QLAdLEA + ]QLrdLDrd , s92d

where the tuple of graded right derivations]QLr is the dual ofuLr. It is easily justified that the

graded densityD s87d obeys the Noether identitys88d iff the graded right derivationd̄c s92d is
nilpotent. It is the extension of the Koszul–Tate differentials86d to antighosts. For instance, the

graded densityD is alwaysd̄c-exact.

VIII. REDUCIBLE BRST SYMMETRIES

The notion of a reducible Noether identity in Sec. IV is straightforwardly generalized to BRST
symmetries, but we formulate it in terms of the Koszul–Tate differential. We say that the Noether
identity s88d is N-stage reducible if the following conditions hold.

sad There exists a set of vector bundlesV−1=V, V0,… ,VN overX, and we consider the BGDA

S̄`
* hNj = S`

* fQȲ*VV1…V2k−1…V̄0
*…V̄2k

* …;YQ̄*V0…V2k…V̄*V̄1
*…V̄2k−1

* …g. s93d

It possesses a local basis

hsA,s̄A,cr,cr0,…,crN,c̄r,c̄r0
,…,c̄rN

j, fcrkg = k mod 2, s94d

wherecrk and c̄rk
are called thek-stage ghosts and antighosts, respectively..

sbd The BGDA s93d contains the graded densityD s87d and a set of even graded densities

Dskd = crkDrk
v = o

L

crkDrk

rk−1,Lsxl,sS
Bdc̄Lrk−1

v, k = 0,…,N, s95d

such that the contact graded derivation

d̄N = o
0øuLu

s]QLAdLEA + ]QLrdLDr + ]QLr0dLDr0
+ ¯ + ]QLrNdLDrN

d s96d

is weakly nilpotent, i.e.,d̄Nsd̄Nsfdd is d̄-exact for any graded functionf P S̄`
0hNj. This nilpotency

condition is equivalent to the requirement that all the compositions

o
J

crkDrk

rk−1,JdJSo
L

Drk−1

rk−2,Lc̄Lrk−2D, k = 1,…,N, s97d

are d̄-exact. The graded derivationd̄N s96d is called theN-stage Koszul–Tate differential.

scd No graded densityD, Dskd, k=0,… ,N, is d̄-exact. LetV08 ,… ,VN8
8 , be another set of vector

bundles such thatVkøN8 containsVk as a direct summand. Then the corresponding BGDAS̄`
* hN8j

s93d contains the graded densitiesD s87d, Dskd s95d, k=0,… ,N, and it is provided with the contact
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graded derivationd̄N s96d. If there exists another setDskd8 , k=0,… ,N8, of graded densities obeying

the conditions in itemsbd, then any graded densityDskd8 of this set isd̄N-exact.
Note, that following the arguments in Sec. III, one can say that the Noether identitys88d is

complete if it obeys the conditionscd.
If the Noether identitys88d is reducible, the associated BRST symmetrys90d is reducible as

follows.
Let us consider the BGDA

S`
* hNj = S`

* fQQ*VV*V1V1
*…V2k−1V2k−1

* …;YỸ*V0V0
*…V2kV2k

* …g, s98d

possessing the local basishsA,sA,cr ,cr0,… ,crN,cr ,cr0
,… ,crN

j. By virtue of Theorem 18, each
graded densityDskd s95d, k=0,… ,N, defines the graded function

vskd = o
J

cJ
rkhsDskddrk

rk−1,Jcrk−1
P S`

0shNj

and, consequently, the generalized graded vector field

vskd = o
J

cJ
rkhsDskddrk

rk−1,J]rk−1
P S`

0hNj, s99d

which yields a contact graded derivation of the BGDAS̄`
* hNj. Similar to the proof of Theorem 9,

one can show that they possess the following properties.
sa8d Contact graded derivationsq andqskd generated by the generalized graded vector fieldsv

s90d andvskd s99d are not weaklyd̄-exact, i.e.,qsfd and qskdsfd are notd̄-exact for some graded

function f P S̄`
* hNj.

sb8d Contact graded derivations generated by the generalized graded vector fields

o
L

dLSo
J

cJ
r0hsDs0ddr0

r,JDhsDdr
A,L]A, s100d

o
L

dLSo
J

cJ
rkhsDskddrk

rk−1,JDhsDsk−1ddrk−1

rk−2,L]rk−2
, k = 1,…,N, s101d

are weaklyd̄-exact. This condition can be reformulated as follows. Let us consider the BGDA

S`
* fQQȲ*VV1…V2k−1…V̄0

*…V̄2k
* …;YỸQ̄*V0…V2k…V̄*V̄1

*…V̄2k−1
* …g

whose basis consists of elementss94d and the elementss8A associated to the additional bundlesQ

and Ỹ. Let us replace the generalized graded vector fieldv s90d with

v8 = o
0øuJuøm

cJ
r hsDdr

A,Jsxl,sS
Bd]A8 , s102d

where the graded derivations]A8 are dual of the basis elementss8A. Then the contact graded
derivation generated by the generalized graded vector field

vN = v8 + vs0d + ¯ + vsNd s103d

is weakly nilpotent.
sc8d Let vN8 be the generalized graded vector fields103d defined by the graded densitiesDskd8

in item scd above. Then there exists some generalized graded vector fieldu such thatvN8
−fu,vNg is weakly d̄-exact.

Conversely, one can show the following. Letv s90d be a BRST symmetry of a graded
LagrangianL. Let us assume that there exists a set of generalized graded vector fields
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vskd = o
J

cJ
rkvrk

rk−1,J]rk−1
P S`

0hNj, s104d

which obey the conditions in itemssa8d–sc8d. Then the graded densitys15d defines a complete
reducible Noether identity where the graded densities

Dskd = o
L

crkhsvskddrk

rk−1,Lsxl,sS
Bdc̄Lrk−1

obey the conditions in itemssad–scd.
In contrast with the generalized graded vector fieldvN s103d, the contact graded derivation

generated by the generalized graded vector fieldv+vs0d+¯+vsNd need not be weakly nilpotent. Its
extension to the nilpotent one provides a BRST symmetry of the field–antifield BRST theory
whose Lagrangian depends on ghosts and antifields.

APPENDIX A

A k-order differential operator on a fiber bundleY→X with values in a fiber bundleZ→X is
defined as a sectionD of the fiber bundle

JkY3
X

Z → JkY.

It admits anm-order jet prolongationDsmd as a section of the fiber bundle

Jm+kY3
X

JmZ → Jm+kY.

By a differential operator throughout is meant its appropriate finite order jet prolongation. Given
bundle coordinatessxl ,yid on Y and sxl ,zAd on Z, a differential operatorD reads

zA + D = DAsxl,yL
i d, zS

A + Dsmd = dSDA, 0 ø uLu ø k, 0 ø uSu ø m.

If Z is a composite fiber bundlep +pZY:Z→Y→X and the relationpZY+D=p0
k holds, a

differential operatorD is identified to a section of the fiber bundle

JkY3
Y

Z → JkY

or, equivalently, a bundle morphism

JkY→
Y

Z.

Let E→Y and Q→Y be vector bundles. Ak-order Q-valued differential operatorv on E
→X is called linear onE→Y sor, simply, lineard if v :JkE→Q is a morphism of the vector bundle
JkE→JkY to the vector bundleQ→Y overp0

k :JkY→Y. Given bundle coordinatessxl ,yi ,jrd on E
and sxl ,yi ,qad on Q, such an operator is represented by the function

v = vaqa = o
0øuLuøm

vr
a,Lsxl,yS

i djL
r qa P O`

0fE3
Y

Q*g, 0 ø uSu ø m. sA1d

Let us consider the density-dualĒ* s1d of a vector bundleE→Y and thatQ̄* of Q→Y

coordinated bysxl ,yi ,q̄ad. Let D be a linearĒ* -valued differential operator onQ̄* . It is represented
by the density

D = Drj
rv = o

0øuLuøm

Dr
a,Lsxl,yS

i dq̄Lajrv P O`
0,nfE3

Y
Q*g, 0 ø uSu ø m. sA2d
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Theorem 16: Any linear Q-valued differential operatorv sA1d on E yields the linear

Ē* -valued differential operator

hsvd = o
0øuLuøm

hsvdr
a,Lq̄Lajrv,

sA3d
hsvdr

a,L = o
0øuSuøm−uLu

s− 1duS+LuCuS+Lu
uSu dSsvr

a,S+Ld,

on Q̄* . Conversely, any linearĒ* -valued differential operatorD sA2d on Q̄* defines the linear
Q-valued differential operator

hsDd = o
0øuLuøm

hsDdr
a,LjL

r qa,

sA4d
hsDdr

a,L = o
0øuSuøm−uLu

s− 1duS+LuCuS+Lu
uSu dSsDr

a,S+Ld,

on E. The relationss2d hold.
Proof: The functionv sA1d defines the density

v̄ = o
0øuLuøm

vr
a,LjL

r q̄av P O`
0,nfE3

Y
Q*g. sA5d

Its Euler–Lagrange operator

dsv̄d = Eidyi ∧ v + Erdjr ∧ v + Eadq̄a ∧ v

takes its values in the fiber bundle

V*sE3
Y

Q*d ^

E3
Y

Q*
∧
n

T*X, sA6d

where

V*sE3
Y

Q*d

is the vertical cotangent bundle of the fiber bundle

E3
Y

Q* → X.

Let

aE:V*sE3
Y

Q*d → VY
* sE3

Y
Q*d → VY

* E sA7d

be the canonical projection of

V*sE3
Y

Q*d

onto the vertical cotangent bundle

VY
* sE3

Y
Q*d

of the fiber bundle
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E3
Y

Q* → Y

and, afterwards, onto the vertical cotangent bundleVY
* E of E→Y. Then we obtain a differential

operatorsaE+ddsv̄d on

E3
Y

Q*

with values in the fiber bundle

VY
* E^

E
∧
n

T*X.

It reads

saE + ddsv̄d = Erd̄jr
^ v = o

0øuLuøm

s− 1duLudLsvr
a,Lq̄add̄jr

^ v,

wherehd̄jrj is the fiber basis forVY
* E→E. Due to the canonical isomorphism

VY
* E = E*3

Y
E,

this operator defines the density

o
0øuLuøm

s− 1duLudLsvr
a,Lq̄adjrv P O`

0,nfE3
Y

Q*g

and, by virtue of the formulas30d, the desired differential operatorsA3d. Conversely, the Euler–
Lagrange operator of the densitysA2d takes its values in the fiber bundlesA6d and reads

dsv̄d = Eidyi ∧ v + Erdjr ∧ v + Eadq̄a ∧ v. sA8d

In order to repeat the above-mentioned procedure, let us consider a volume formJv on X and
substitute dq̄a∧v=Jdqa∧v into expressionsA8d. Using the projection

aQ:V*sE3
Y

Q*d → VY
* Q*

similar to aE sA7d and the canonical isomorphism

VY
* Q* = Q3

Y
Q* ,

we come to the density

o
0øuLuøm

s− 1duLudLsDr
a,LjrdqaJv P O`

0,nfE3
Y

Q*g

and, hence, the function

o
0øuLuøm

s− 1duLudLsDr
a,Ljrdqa P O`

0,nfE3
Y

Q*g,

defining the desired operatorsA4d. The relationss2d result from the relations32d.
Relationss2d show that the intertwining operatorh sA3d and sA4d provides a bijection be-

tween the sets DiffsE,Qd and DiffsQ̄* ,Ē*d of differential operatorssA1d and sA2d.
Proposition 17:Compositions of operatorsv +v8 andD8 +D obey the relationss3d.
Proof: It suffices to prove the first relation. Letv +v8PDiff sE8 ,Qd be a composition of differ-
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ential operatorsvPDiff sE,Qd andv8PDiff sE8 ,Ed. Given fiber coordinatessjrd on E→Y, sepd on

E8→Y and sq̄ad on Q̄* →Y, this composition defines the densitysA5d

v + v8 = o
L

vr
a,LdLSo

S

vp8
r,SeS

pDq̄av.

Following the relations29d, one can bring this density into the form

o
S

vp8
r,SeS

po
L

s− 1duLudLsvr
a,Lq̄adv + dHs = o

S

vp8
r,SeS

po
L

hsvdr
a,Lq̄Lav + dHs.

Its Euler–Lagrange operator projected toVY
* E8^

E8

T*X is

o
S

s− 1duSudSSvp8
r,So

L

hsvdr
a,Lq̄LaDd̄ep

^ v = o
S

hsv8dp
r,SdSSo

L

hsvdr
a,Lq̄LaDd̄ep

^ v,

which leads to the desired compositionhsv8d +hsvd.

APPENDIX B

The following is a graded counterpart of Theorem 16.

Let T→X andW→X be vector bundles,W* the dual ofW, andW̄* the density-duals1d of W.
Given the BGDAS`

* fQ;Yg s53d, let us consider its extensions to a BGDAS`
* fT,W*g with the local

basishsA,tr ,waj, where elementstr and wa are either even or odd, and to a BGDAS`
* fT,W̄*g

possessing the local basishsA,tr ,w̄aj, wherefw̄ag=sfwag+1dmod 2.
Theorem 18: Given a graded function

v = o
0øuLuøm

tL
r vr

a,Lsxl,sS
Adwa P S`

0fT,W*g, sB1d

linear in tL
r andwa, there exists a graded density

hsvd = o
0øuLuøm

trhsvdr
a,Lw̄Lav P S`

0,nfT,W̄*g,

sB2d
hsvdr

a,L = o
0øuSuøm−uLu

s− 1duS+LuCuS+Lu
uSu dSsvr

a,S+Ld,

linear in tr and w̄La
. Conversely, such a density

D = o
0øuLuøm

trDr
a,Lw̄Lav sB3d

defines the graded function

hsDd = o
0øuLuøm

tL
r hsDdr

a,Lwa P S`
0fT,W*g,

sB4d
hsDdr

a,L = o
0øuSuøm−uLu

s− 1duS+LuCuS+Lu
uSu dSsDr

a,S+Ld,

linear in tL
r andwa.

Proof: The graded functionv sB1d defines the graded density
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v̄ = o
0øuLuøm

tL
r vr

a,Lsxl,sS
Adw̄av P S`

0fT,W̄*g.

Its Euler–Lagrange operatordsv̄d s60d contains the summand

Eru
r ∧ v = o

0øuLuøm

s− 1duLuur ∧ dLsvr
a,Lw̄adv,

which defines the graded density

o
0øuLuøm

s− 1duLutrdLsvr
a,Lw̄adv

owing to the canonical isomorphismV*T=T* 3T. Using the relations30d, we come to the formula
sB2d. The converse is proved similarly to the proof of Theorem 16.
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In the spirit of some earlier work on the construction of vector coherent states
sVCSd over matrix domains, we compute here such states associated to some physi-
cal Hamiltonians. In particular, we construct vector coherent states of the Gazeau–
Klauder type. As a related problem, we also suggest a way to handle degeneracies
in the Hamiltonian for building coherent states. Specific physical Hamiltonians
studied include a single photon mode interacting with a pair of fermions, a Hamil-
tonian involving a single boson and a single fermion, a charged particle in a three-
dimensional harmonic force field and the case of a two-dimensional electron placed
in a constant magnetic field, orthogonal to the plane which contains the electron. In
this last example, which is related to the fractional quantum Hall effect, an inter-
esting modular structure emerges for two underlying von Neumann algebras, re-
lated to opposite directions of the magnetic field. This leads to the existence of
coherent states built out of Kubo-Martin-SchwingersKMSd states for the
system. ©2005 American Institute of Physics.fDOI: 10.1063/1.1901343g

I. INTRODUCTION

In some earlier work,4,20 a fairly systematic method has been introduced for constructing
vector coherent statessVCSd over various types of matrix domains. The construction included
earlier types of vector coherent states, arising mainly in nuclear physical problems, under the
additional assumption of the existence of a resolution of the identity.sA detailed discussion of this
point, as well as an exhaustive reference to the earlier literature is given in Ref. 4.d In the present
paper we apply the method developed in Refs. 4 and 20 to construct vector coherent states arising
from various physical Hamiltonians. The kind of coherent states we generate are thus vectorial
generalizations of the Gazeau–Klauder type10 of coherent states. Some of the Hamiltonians we
consider have degenerate spectra and in order to deal with this situation, we attempt a second
generalization of the Gazeau–Klauder formalism. There have been earlier attempts in the literature
for handling degeneracies when constructing coherent states associated to Hamiltonians.8,15 The
method we suggest here is somewhat different from the one suggested in Ref. 15 and radically
different from that suggested in Ref. 8. However, we feel that the present method is more eco-
nomical in the introduction of additional parameters defining the coherent states—we only need
one additional parameter. We also look at situations where the degeneracy is countably infinite. In
this context, in the case of a two-dimensional electron placed in a constant magnetic field, or-
thogonal to the plane which contains the electron, we encounter a highly interesting modular
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algebraic structure generated by the observables of the problem, leading to the rather unexpected
appearance of equilibrium statistical mechanical states of the well-known Kubo-Martin-Schwinger
sKMSd type.14 It is worth recalling that this model, while well known even from textbooks on
quantum mechanics, is of additional interest in that it is the building block for writing down the
many-body Hamiltonian for the fractional quantum Hall effect, see Ref. 7 and references therein.
It is well known that the eigenspectrum of the single electron Hamiltonian can be found explicitly,
and that there exists an infinite degeneracy for each eigenvaluesthe so-calledLandau levelsd.5

The rest of this paper is organized as follows: In Sec. II we review the Gazeau–Klauder
construction within the framework of reproducing kernel Hilbert spaces. This general framework
is then used in Sec. III to construct vector coherent states of the Gazeau–Klauder type. We
illustrate the method with a couple of physical examples. Section generalizes the treatment to
Hamiltonians with degeneracies. We treat the cases of finite and infinite degeneracies separately
and illustrate the finite situation with a number of physical examples. In Section V we work out,
in detail, a physical example in which infinite degeneracies occur. In this example we also observe
the existence of a modular algebraic structure and the appearance of KMS states, familiar from
equilibrium statistical mechanics. Finally, in the Appendix we collect together explicit computa-
tions of some of the more unfamiliar formulas in Secs. IV A and V.

II. THE GAZEAU–KLAUDER SCHEME REVISITED

The Gazeau–Klauder scheme10 is a method for constructing coherent statesuJ,gl, whereJ
ù0 andgPR, associated to physical HamiltoniansH, which have discrete nondegenerate spectra.
The states must satisfy the following properties:

sid Continuity, the mappingsJ,gd→ uJ,gl is continuous in some appropriate topology.
sii d Resolution of the identity, euJ,gl ,kJ,gudmsJ,gd= I, where I is the identity in the Hilbert

space and dm is some appropriate measure.
siii d Temporal stability, e−iHtuJ,gl= uJ,g+vtl, for some constantv.
sivd Action identity, kJ,guHuJ,gl=vJ.

Their construction, which we shall review below, works ifH has no degenerate eigenstates
and, furthermore, if the lowest eigenvalue is exactly zero. This second requirement can always be
imposed for reasonable physical systems, since all physically relevant HamiltoniansH must be
bounded from below, in order to admit a ground state. This means that there exists a lowest

eigenvalueEmin.−`, so that we can define a new Hamiltonian,H̃=H−EminI, whose lowest

eigenvalue is clearly zero. FurthermoreH andH̃ haveexactlythe same dynamical content, since
they obey the same commutation relations with all the observables of the system. For such a
Hamiltonian, in the Gazeau–Klauder scheme, one writes the eigenvalues asEn=ven by introduc-
ing a sequence of dimensionless quantitieshenj ordered as 0=e0,e1,e2,¯. Then, the Gazeau–
Klauder coherent states are defined as

uJ,gl ª NsJd−1/2o
k=0

`
Jn/2e−i«ng

Îrn

unl, s2.1d

whereN is a normalization factor, which turns out to be dependent onJ only, the unl are the
eigenstates ofH and thern are positive numbers, which are fixed by the requirement of the action
identity to bern=e1e2¯en.

In the rest of this section we recapitulate the Gazeau–Klauder construction, with the aim of
putting the discussion in a somewhat more general context, which will also enable us to extend the
construction to include vector coherent states and to cases where each energy level issad finitely
degenerate andsbd infinitely degenerate. The essential mathematical ingredient in the construction
is a reproducing kernel Hilbert space. Although this concept is a familiar one, both in the physical
and the mathematical literature, we summarize below some essential features, putting them in the
context of the present discussion.
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A. Some generalities

Recall that a reproducing kernel Hilbert spacessee, for example, Refs. 2, 6, and 16 for detailed
discussionsd Hker, consists of functionsf :X→C on some topological spaceX, with the property
that, for allxPX, the evaluation mapEx: Hker→C, Exsfd= fsxd, is continuous. Such a space may
or may not be anL2-space or a subspace of anL2-space and its scalar product, which we denote
by k·u ·lker, may be given in more general ways.sAlthough the spaceHker could be finite or infinite
dimensional, we shall only be interested in the infinite dimensional case here.d The continuity of
the evaluation map implies that for eachxPX, there exists a vectorjxPHker such that

fsxd = kjxuflker, for any f PHker. s2.2d

The vectorsjx, xPX, are total inHker si.e., their linear span is dense in the spaced, as can be easily
seen. Furthermore, they can be used to define the reproducing kernel,K :X3X→C, for this space,

Ksy,xd ª kjyujxlker = jxsyd, s2.3d

the second equality following froms2.2d. If now hCnjn=0
` is an orthonormal basis ofHker, then

writing

jx = o
n=0

`

lnsxdCn, lnsxd = kCnujxlker = Cnsxd,

and taking account ofs2.3d, we get

Ksx,yd = o
n=0

`

CnsxdCnsyd. s2.4d

It should be noted that the above equation is true for any orthonormal basis, so that the kernel
Ksx,yd is independent of the basis chosen to express it. An equivalent condition for the existence
of a reproducing kernel is that there be an orthonormal basis for which,

o
n=0

`

uCnsxdu2 , `, for all x P X. s2.5d

If we symbolicallywrite the scalar product ofHker as

kf uglker =E
X

fsxdgsxddmsxd,

then usings2.2d and s2.3d we may also write

kjxujylker =E
X

jxszdjyszddmszd =E
X

kjxujzlkerkjzujylker dmszd.

Referring again tos2.3d and noting that the vectorsjx are total inHker, the above equation may be
re-expressed either as

Ksx,yd =E
X

Ksx,ydKsz,yddmszd, s2.6d

or as

E
X

ujxlkjzudmszd = Iker, s2.7d
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whereIker is the identity operator onHker. Thus, these equations appear now as the well-known
reproducing propertyfor the kernelKsx,yd and theresolution of the identitygenerated by the
vectorsjx, respectively. Once more we emphasize that in general, Eqs.s2.6d and s2.7d only have
symbolic meaning. However, if in factHker is anL2 space with respect to some real measure dm
on X sor a subspace of such a spaced, then the above equations do make literal sense. In view of
equationss2.6d and s2.7d, we may call the vectorsjx the coherent statesdefined by the kernel
Ksx,yd and they in fact characterize the reproducing kernel Hilbert spaceHker. However, since
ijxi2=Ksx,xd, these states are generally not normalized. IfKsx,xdÞ0, we may define the normal-
ized vectorszx=fKsx,xdg−1/2jx, for which we would have the “resolution of the identity”

E
X

uzzlkzzuKsz,zddmszd = Iker.

Coherent states, of all types appearing in the physical literature, can be built by simply
transporting the above structure to some other appropriate Hilbert space by a basis change. To see
this, letH be an abstractsseparable, complexd Hilbert space andhfnjn=0

` an orthonormal basis of
it. Define the unitary map,V:Hker→H by VuCnl= ufnl, n=0,1,2, . . ..Then the vectors

uhxl ª Vujxl = o
n=0

`

Cnsxdufnl, s2.8d

definesnon-normalizedd coherent states onH. They are associated to the same reproducing kernel
as thejx since,

Ksx,yd = khxuhylH = kjxujylker

and satisfy a “resolution of the identify” similar tos2.7d:

E
X

uhzlkhzudmszd = IH,

where again, this equation is to be generally interpreted in the sense ofs2.6d. Furthermore, for
arbitraryfPH, the functionfsxd=khxuflH defines a vector inHker and it is easy to see that the
inverse of the isometryV is given by this relation, i.e.,sV−1fdsxd=khxuflH. Usually, in the
physical literature one works with the normalized vectors

uxl = fKsx,xdg−1/2uhxl = fKsx,xdg−1/2o
n=0

`

Cnsxdufnl. s2.9d

It will later become apparent that the above coherent states coincide withuJ,gl in s2.1d upon
identifying Cnsxd with Jn/2eieng /Îrn, rn with e1e2¯en=en! and NsJd with Ksx,xd.

To summarize the preceding discussion, coherent states are linear superpositions of the ele-
ments of a basis in a Hilbert space, the components in the expansion being the values taken at a
point by a set of vectors forming a basis in a reproducing kernel Hilbert space. Alternatively,
referring tos2.5d, we may identify the reproducing kernel Hilbert spaceHker with a subspace of
,2 generated by the infinite sequences,hC0sxd ,C1sxd ,C2sxd , . . . ,Cnsxd , . . .j, xPX. An
associated family of coherent states is then simply given by the vectors,
hC0sxd ,C1sxd ,C2sxd , . . . ,Cnsxd , . . .j, xPX, in this subspace. To see that this way of looking at
coherent states does indeed include all the standard types of coherent states, let us assume that we
are given a family of coherent states,ull, lPL, on some Hilbert spaceR. The parameter space
L is assumed to be a topological space. Being coherent states means that the vectors either satisfy
a resolution of the identity,
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E
L

ullkludwsld = IK,

with respect to some measure dw defined onL, or else that the mappingf→ f, with fsld
=kl ufl, wheref runs throughR, is an isometry betweenR and a reproducing kernel Hilbert
spaceRker of functions onL. sIn fact the first case implies the second.d In either case, if we choose
an orthonormal basishfnjn=0

` in R and expand the coherent states in this basis,

ull = o
n=0

`

fnsldufnl, fnsld = klufnl,

then the functionsfn are easily seen to form a basis for the Hilbert spaceRker with reproducing
kernelKsl ,l8d=kl ul8l.

The above considerations can also be generalized to the case whereHker is a space of vector
valued functions and the kernelKsx,yd is matrix valued, yielding vector coherent statesssee Refs.
4 and 20d.

B. The Gazeau–Klauder situation

In the light of the preceding discussion, in order to develop a systematic method for generat-
ing coherent states and vector coherent states of the Gazeau–Klauder type, we begin by defining
a Hilbert space,Hns, of functions f :R→C, which is complete with respect to the scalar product

kf uglns= lim
T→`

1

2T
E

−T

T

fsgdgsgddg. s2.10d

The vectorsfx, xPR,

fxsgd = eixg, s2.11d

are of unit norm and for any two distinct numbersx,x8, the corresponding vectorsfx and fx8 are
orthogonal. This also means that the spaceHns is nonseparable. Although this space is not anL2

space, by abuse of notation we shall still symbolically write the scalar product as

kf uglns= lim
T→`

1

2T
E

−T

T

fsgdgsgddg ª E
R

fsgdgsgddmBsgd, s2.12d

sdmB is usually referred to as theBohr measured. If henjn=0
` is a sequence of numbers inR swe

assume thatenÞem if nÞmd, then the set of vectors

fnsgd = eieng, n = 0,1,2, . . . , s2.13d

forms a countable orthonormal set and hence the closure of their linear span is a separable
subspace ofHns. We denote this subspace byHangand it is such subspaces ofHns that we shall use
for constructing coherent states. The reason for the subscript will become clear presently. Suppose
next, that the sequencehenjn=0

` is so chosen that the following conditions are satisfied:
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s1d e0=0 and the series

o
n=0

`
Jn

en!
, J P R+, en! = e1e2e3 ¯ en, e0! = 1,

has a radius of convergenceL.0.
s2d There exists a measure dn on R+ which solves the moment problem

E
0

L

Jn dnsJd = en!, E
0

L

dnsJd = 1.

Then the vectorsrn, n=0,1,2, . . ., inL2ss0,Ld ,dnd defined by

rnsJd =
Jn/2

Îen!
, s2.14d

are of unit norm and span the space. Thus the vectors

Cn = rn ^ fn, CnsJ,gd =
Jn/2eieng

Îen!
, n = 0,1,2,3, . . . , s2.15d

form anorthonormal basisin the Hilbert spaceHac-ang=L2ss0,Ld ,dnd ^ Hang. Since the vectorsCn

satisfy the conditionfanalogous tos2.5dg,

o
n=0

`

uCnsJ,gdu2 = o
n=0

`
Jn

en!
ª NsJd , `, s2.16d

for all sJ,gdP s0,Ld3R+, the spaceHac-angis a reproducing kernel Hilbert space with kernel

KsJ,g;J8,g8d = o
n=0

`

CnsJ,gdCnsJ8,g8d = o
n=0

`
sJJ8dn/2eiensg−g8d

en!
. s2.17d

By s2.3d, thesnon-normalizedd coherent states,jJ,g, defined onHac-angand associated to this kernel
are then

jJ,gsJ8g8d = KsJ8,g8;J,gd = kjJ8,g8ujJ,glac-ang, s2.18d

while for anyCPHac-ang, we have the relation,

kjJ,guClac-ang= CsJ,gd.

Adopting the notation ofs2.12d, we may also symbolically write a resolution of the identity as

E
0

L FE
−`

`

ujJ,glkjJ,gudmBsgdGdnsJd = Iac-ang, s2.19d

whereIac-angdenotes the identity inHac-ang. The above equation is to be understood in the sense
that for arbitraryF, CPHac-ang,

E
0

L FE
−`

`

kCujJ,glkjJ,guFldmBsgdGdnsJd =E
0

L F lim
T→`

1

2T
E

−T

T

CsJ,gdFsJ,gddgGdnsJd = kCuFl.

In the Gazeau–Klauder construction of coherent states, related to Hamiltonians with discrete
spectra, one assumes that the Hamiltonian is given on some abstract Hilbert spaceH in the
orthonormal basishfnjn=0

` by
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H = vo
n=0

`

enufnlkfnu, e0 = 0, s2.20d

where v is a constant with the dimensions of energyswe take"=1d. The variableJ is then
generally identified with the classical action andg with the conjugate angle. It is this identification
that prompted our choice of the subscripts for the Hilbert spacesHang andHac-ang.

Following s2.8d we can now construct thenon-normalizedGazeau–Klauder-type coherent
states inH using the vectorss2.15d,

uhJ,gl = o
n=0

`

CnsJ,gdufnl = o
n=0

`
Jn/2e−ieng

Îen!
ufnl. s2.21d

Once again, the map

W:H → Hac-ang, sWfdsJ,gd = khJ,guflH,

is unitary. If instead, we use the normalized vectors,

uJ,gl = NsJd−1/2uhJ,gl, s2.22d

with N as in s2.16d, the resolution of the identity becomes

E
0

L FE
R

uJ,glkJ,guNsJddmBsgdGdnsJd = IH. s2.23d

We also have the formal reconstruction formula,

ufl =E
0

L FE
R

FsJ,gduJ,glNsJddmBsgdGdnsJd, FsJ,gd = kJ,guflH, s2.24d

which easily follows froms2.23d.
The Gazeau–Klauder coherent states are characterized by thetemporal stabilityproperty,

e−iHtuJ,gl = uJ,g + vtl, s2.25d

and theaction identity,

kJ,guHuJ,glH = vJ. s2.26d

If for a given Hamiltonian,e0Þ0, then as discussed in Sec. II, we work with the shifted
HamiltonianH8=H−ve0IH, and use«n=en−e0 to construct coherent states. In this case,

e−iHtuJ,gl = e−iH8te−ive0tuJ,gl = e−ive0tuJ,g + vtl,

s2.27d
kJ,guHuJ,glH = kJ,guH8 + ve0uJ,glH = vJ + ve0.

One final comment about coherent states of the types2.21d, there are two probability densities
naturally associated with them. The first is the one associated with the measure dn sover the
interval f0,Jgd. The second is the discrete density associated with the “event”hfnj, given by

ukfnuJ,glu2 =
Jn

en!NsJd
.

The physical meaning of these and their inter-relation are discussed in detail in Ref. 11.
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III. VECTOR COHERENT STATES OF THE GAZEAU–KLAUDER TYPE

Suppose now that the HamiltonianH sacting on the Hilbert spaceHd has a discrete positive
spectrum and that the eigenvectorsf jk, j =1,2,3, . . . ,N,`, k=0,1,2,3, . . . ,̀ , can be grouped
into N families, each containing an infinite number of vectors.sSuch a situation could arise, for
example, through the lifting of anN-fold degeneracy in the energy spectrum, by an interaction.
Thereforek labels themain energy levels whilej labels thesublevelsgenerated by, e.g., a small
perturbation.d Furthermore, assume that the corresponding eigenvaluesEjk=ve jk satisfye j0=0, j
=1,2,3, . . . ,N, ande jkÞe j8, if kÞ, and∀ j , j8. Denote byH j the subspace ofH spanned by the
vectorsf jk, k=0,1,2, . . . ,̀ , and byP j the projection operator onto this subspace. ThenH=
% j=1

N Hj, with Hj =vok=0
` e jkuf jklkf jku, which leavesH j stable. We will give an example of such a

decomposition in the first application below. InH j we define the coherent states,

uJj,g jl = NsJjd−1/2o
k=0

`
Jj

k/2e−ie jkg j

Îe j1e j2 . . . e jk

uf jkl. s3.1d

Here −̀ ,g j ,` and 0øJj ,Lj =limk→` e jk, and we assume thatLj .0. The normalization factor
NsJjd is chosen so that

kJj,g juJk,gkl = d jk. s3.2d

These states also satisfy

e−iH jtuJj,g jl = uJj,g j + vtl, kJj,g juHkuJk,gkl = vJjd jk, s3.3d

and the “partial resolution of the identity”

E
0

Lj FE
R

uJj,g jlkJj,g juNsJjddmBsg jdGdn jsJjd = P j , s3.4d

where dmB is as ins2.12d and the measure dn jsJjd is defined through the moment problem

E
0

Lj

Jn dn jsJd = e j1e j2 ¯ e jn, E
0

Lj

dn jsJd = 1. s3.5d

Next, introducing the diagonal matrices,

J = diagsJ1,J2, . . . ,JNd, «k = diagse1k,e2k, . . . ,eNkd,

s3.6d
g = diagsg1,g2, . . . ,gNd, «k! = «1,«2 ¯ «k,

and the vectors

uFk; jl =1
0

]

uf jkl
]

0
2, j = 1,2, . . . ,N, k = 0,1,2, . . . , s3.7d

we may rewrite the vectorss3.1d as
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uJ,g; jl ª NsJjd−1/2o
n=0

`

f«k!g−1/2Jk/2 expf− i«kgguFk; jl =1
0

]

uJj,g jl
]

0
2 . s3.8d

We call these statesvector coherent statesfor the HamiltonianH. Note that, in this representation,
H is a diagonal operator,H=diagsH1,H2, . . . ,HNd, eachHj being an infinite diagonal matrix with
eigenvaluesve jk, k=0,1,2, . . ..

e−iHtuJ,g; jl = uJ,g + vtd j ; jl, kJ,g; j uHuJ,g; jl = vJj , s3.9d

whered j is the diagonal matrix with one in thej j position and zeroes elsewhere. Furthermore, we
have the resolution of the identity onH,

o
j=0

N E
0

LN

¯ E
0

L1FE
RN

uJ,g; jlkJ,g; j uNsJjddmBsgdGdnsJd = IH, s3.10d

with

dnsJd = dnsJ1ddnsJ2d ¯ dnsJNd, dmBsgd = dmBsg1ddmBsg2d ¯ dmBsgNd.

In view of the fact thatfsee alsos3.2dg

kJ,g; j uJ,g;,l = d j,, s3.11d

a general vector coherent state for such a system may be written as a linear combination,

uJ,gl = o
j=0

N

cjuJ,g; jl.

However, such a state would, in general, not be of the Gazeau–Klauder type, unless the levelse jk,
j =1,2, . . . ,N, are degenerate for allk. Associated to the vector coherent statess3.8d is thematrix-
valuedreproducing kernel,K sJ ,g ,J8 ,g8d, with matrix elements

K sJ,g;J8,g8d j, = kJ,g; j uJ8,g;,l. s3.12d

This kernel has the properties,

K sJ,g;J,gd j j = iuJ,g; jli2 . 0, K sJ,g;J8,g8d j, = K sJ8,g8;J,gd, j ,

o
j8=0

N E
0

LN

¯ E
0

L1FE
RN

K sJ,g;J9,g9d j j 8K sJ9,g9;J8,g8d j8,NsJ,ddmBsg9dGdnsJ9d = K sJ,g;J8,g8d j,.

s3.13d

Some examples:Let us consider a model described by the Hamiltonian

H = va†a + e1c1
†c1 + e2c2

†c2 + sg1c1
†c1 + g2c2

†c2dsa + a†d, s3.14d

where the following commutation rules hold:

fa,a†g = hc1,c1
†j = hc2,c2

†j = I s3.15d

and
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fa],ai
]g = hc1,c1j = hc2,c2j = 0, s3.16d

wherea# stands fora or a†, fA,Bg=AB−BA andhA,Bj=AB+BA. This model, which describes an
interaction between a single mode,sa,a†d, of the radiation field with two Fermi-type modes, has
been analyzed quite recently in Ref. 17.

A convenient feature of the above Hamiltonian is that its spectrum can be obtained explicitly,
as well as its eigenvectors. In fact, considering thefermionicpart, it is clear that all the eigenstates
of H must be of the following form:

F = w ^ Ckl, whereCkl = sc1
†dksc2

†dlC00, s3.17d

with k, l =0,1, andwhereC0,0 is the fermionic vacuum,cjC00=0, for j =1,2. Thevectorw must
still be determined, but it is clear that it cannot, in general, be proportional tosa†dn·w0, where
aw0=0, since the interaction part ofH is not diagonal on these vectors. However it is a rather
simple exercise to check that

Hsw ^ C00d = va†asw ^ C00d,

Hsw ^ C10d = sva†a + e1 + g1sa + a†ddsw ^ C10d,

s3.18d
Hsw ^ C01d = sva†a + e2 + g2sa + a†ddsw ^ C01d,

Hsw ^ C11d = sva†a + e1 + e2 + sg1 + g2dsa + a†ddsw ^ C11d.

To proceed further, we observe that in each of the four cases above,w is an eigenvector of a
self-adjoint operator of the type,

Bkl = vAkl
† Akl + S«kl −

gkl
2

v
DI, Akl = a +

gkl

v
, fAkl,Akl

† g = 1, k,l = 0,1, s3.19d

where,

«kl = l«1 + k«2, gkl = lg1 + kg2, l,k = 0,1.

We know, however, that

Akl = expFiÎ2
gkl

v
PGa expF− iÎ2

gkl

v
PG, whereP =

a − a†

iÎ2
.

Thus, the eigenvectors ofBkl are,

uFn
kll = expFiÎ2

gkl

v
PGunl =

sAkl
† dn

În!
uF0

kll, s3.20d

whereunl=an/În! u0l are the eigenvectors of the usual number operatorN=a†a.
The diagonalization ofH is now complete. Our results can be summarized as follows:
eigenstates of H, hwn

kl
ªFn

kl
^ Ckl, wheren=0,1,2, . . ., andk, l =0,1j,

eigenvalues of H, hEn
kl, with n=0,1,2, . . ., andk, l =0,1j,
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where the relevant quantities are shown in the following table.

k, l En
kl= Ckl= Fn

kl= where and

0, 0 vn C00

sa†dn

În!
F0

00
aF0

00=0

1, 0 vn + e1 −
g1

2

v c1
†C00

sA10
† dn

În!
F0

10
A10F0

10=0 A10 = a +
g1

v

0, 1 vn + e2 −
g2

2

v c2
†C00

sA01
† dn

În!
F0

01
A01F0

01=0 A01 = a +
g2

v

1, 1

vn+e1+e2

−
sg1 + g2d2

v
c1

†c2
†C00

sA11
† dn

În!
F0

11
A11F0

11=0 A11 = a +
g1 + g2

v

From s3.20d it is also clear that the vectorsF0
kl are just the well-known canonical coherent

statesuzl, with z=−gkl /v. Thus, in the position space representation these vectors are shifted
Gaussians,

F0
klsxd . e−1/2sx + Î2gkld

2
, k = 0,1.

In order to build Gazeau–Klauder type of coherent states for this Hamiltonian, we see now
that it breaks up into four orthogonal parts,

H = %k,l=0,1Hkl, whereHkl = o
n=0

`

En
kluwn

kllkwn
klu. s3.21d

Since the lowest eigenvalueE0
kl, for the component HamiltonianHkl, is zero only fork= l =0, we

work with H8= %k,l=0,1Hkl8 , whereHkl8 =on=0
` sEn

kl−E0
klduwn

kllkwn
klu. But En

kl−E0
kl=vn. sNote thatH and

H8 commute.d Thus, the vector coherent states of the present model are 4-component vectors,
involving the standard canonical coherent states,uzkll, k, l =0,1, zklPC, built on the bosonic
vacuum stateF0

kl. Thus, introducing the diagonal matrixZ=diagsz00,z10,z01,z11d, we can write the
vectorss3.8d for the present case as

uZ;kll = uzklluCkll = e−uzklu
2/2o

n=0

`
Zn

În!
uCklluFn

kll, j ,k = 1,2, s3.22d

where in the present representation, the vectorsCkl form the canonical basis ofC4,

C00 =1
1

0

0

0
2, C10 =1

0

1

0

0
2, C01 =1

0

0

1

0
2, C11 =1

0

0

0

1
2 .

These then are the Gazeau–Klauder-type vector coherent states for the Hamiltonians3.14d. Equa-
tions s3.9d and s3.10d have obvious transcriptions for these states.
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One could also consider the following variant of the Hamiltonians3.14d:

H = va†a + e1c1
†c1 + e2c2

†c2 + o
i,j=1

2

gijci
†cjsa + a†d, s3.23d

where the same commutation ruless3.15d and s3.16d are assumed and

g = Sg11 g12

g21 g22
D

is a 232 Hermitian matrix,g= ḡT. Let V be the unitary matrix which diagonalizesg,

VgV−1 = gd ª Sg1 0

0 g2
D ,

so that, defining

d = Sd1

d2
D = Vc= VSc1

c2
D ,

and d†=c†V†=sd1
†,d2

†d, the operatorsdj again obey the same anticommutation relations as the
cj. Also, oi,j=1

2 gijci
†cj =g1d1

†d1+g2d2
†d2. However, if e1Þe2, this change of variables would make

the free fermionic Hamiltoniane1c1
†c1+e2c2

†c2 no longer diagonal, while ife1=e2=e we get

H = va†a + ed1
†d1 + ed2

†d2 + sg1d1
†d1 + g2d2

†d2dsa + a†d,

for which the entire analysis performed above can be repeated.
Remark:A possible method for describing a nondegenerate two-level atomsi.e., e1Þe2d,

which is the one considered in Ref. 17, can be obtained by adapting the previous procedure as
follows: we consider a fictitious three-level atom interacting with the radiation field in the follow-
ing way:

H = va†a + esc1
†c1 + c2

†c2 + c3
†c3d + o

i,j=1

3

gijci
†cjsa + a†d,

where nowhgijj is a 333 Hermitian matrix. We recover a two-level system by considering a
subspace of the complete Hilbert space spanned by the vectorsCkl ^ Fn

kl, where theFn
kl are

constructed by trivially extending the foregoing procedure. Next we takeC0
00=C0 to be the

ground state ofcj, j =1,2,3 and setC10=c1
†C0, C01=c2

†c3
†C0, andC11=c1

†c2
†c3

†C0. sThe interpre-
tation is clear,C0 corresponds to both levels of our atom being empty, whileC10, C01, andC11

correspond, respectively, to the first, second, and both levels being occupied.d
If it is now possible to ensure that the resulting energy spectrumEn

kl, n=0,1,2, . . .,k, l =0,1,
has no degeneracies, we could build Grazeau–Klauder-type coherent states for this system. On the
other hand, it is easily verified that degeneracy will be avoided if the physical constants of the
model satisfy the following inequalities:

0 , e1 −
g1

2

v
, e2 −

g2
2

v
, e1 + e2 −

sg1
2 + g2

2d
v

, v.

In this case we setE0=E0
00=0, E1=E0

10=e1−g1
2/v, E2=E0

01=e2−g2
2/v, E3=E0

11=e1+e2

−fsg1
2+g2

2d /vg, E4=E1
00=v, and so on and write, for the corresponding eigenstatesw0=w0

00, w1

=w0
10, w2=w0

01, w3=w0
11, w4=w1

00, and so on. Finally, definingen=En/v, we recover a sequence of
quantities satisfying the inequalities 0=e0,e1,e2,¯, as required in Ref. 10. Thus we obtain
the coherent statesuJ,gl=NsJd−1/2on=0

` fsJn/2e−igend /Îen!gwn, with all the required properties.
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IV. HAMILTONIANS WITH DEGENERACIES

Here we extend the preceding construction to the situation in which somesor perhaps alld of
the eigenvalues of the given Hamiltonian have degeneracies. We will consider two situations, first,
where all the degeneracies are finite and second, where they are all countably infinite. In the first
case, we will show that a natural way to recover all the required properties of the Gazeau–Klauder-
type coherent states, such as the resolution of the identity, temporal stability, and the action
identity, among others, is to introduce a third parameter into the definition of the coherent states,
replacing uJ,gl by uJ,g ,ul. The extension we are proposing is somewhat different from that
suggested in Refs. 8 and 15, since it only involves one extra parameter. Moreover, as we will
demonstrate, our method can also be adapted to the case of infinite degeneracies.

A. Finite degeneracies

Let us now consider a HamiltonianH, the eigenvalues of which are all discrete with the
lowest eigenvalue being again zero. Assume that thenth level,En=ven, has a degeneracydsnd, in
general different from 1. We assumedsnd,`, for all n. Denote by un, jl, n=0,1,2, . . ., j
=1,2, . . . ,dsnd, the eigenvectors of the HamiltonianH so thatHun, jl=Enun, jl, with n labeling the
level and j counting the degeneracy. As usual we introduce the dimensionless quantityen and
again, without loss of generality, arrange them in the sequence 0=e0,e1,e2,¯. This means
that the Hamiltonian isH=von=0

` o j=1
dsndenun, jlkn, j u. We next introduce the parameteruP f0,2pd

and define

uJ,g,ul ª NsJd−1/2o
n=0

`

o
j=1

dsnd
Jn/2e−ienge−i j u

Îrn

un, jl, s4.1d

with J andg as before. We now prove that, for appropriate choice ofrn, these states satisfy the
following properties, which naturally generalize the analogous ones stated at the beginning of Sec.
II:

sid Continuity, if sJ,g ,ud→ sJ8 ,g8 ,u8d then uJ,g ,ml→ uJ8 ,g8 ,m8l.
sii d Resolution of the identity, euJ,g ,ulkJ,g ,uudmsJ,g ,ud= I, for some appropriately chosen

measure dm.
siii d Temporal stability, e−iHtuJ,g ,ul= uJ,g+vt ,ul, for some constantv.
sivd Action identity, kJ,g ,uuHuJ,g ,ul=vJ.

Indeed, continuity follows automatically from the definition itself. As for normalization, we
observe that

kJ,g,uuJ,g,ul = NsJd−1 o
n,m=0

`

o
j=1

dsnd

o
l=0

dsmd
Jn/2+m/2e−isen−emdge−is j−ldu

Îrnrm

km,l un, jl = NsJd−1o
n=0

`

o
j=1

dsnd
Jn

rn

= NsJd−1o
n=0

`
Jndsnd

rn
,

from which we conclude thatkJ,g ,u uJ,g ,ul=1 if and only if

NsJd = o
n=0

`
Jndsnd

rn
. s4.2d

Of course, this is a power series inJ and we assume that it has a radius of convergenceL.0.
The proof of temporal stability is easy,
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e−iHtuJ,g,ul = e−iHtNsJd−1/2o
n=0

`

o
j=1

dsnd
Jn/2e−ienge−i j u

Îrn

un, jl = NsJd−1/2o
n=0

`

o
j=1

dsnd
Jn/2e−ienge−i j u

Îrn

e−iventun, jl

= uJ,g + vt,ul.

In order for the action identity to be satisfied, we need a condition on thern. Sincee0=0, we
get

kJ,g,uuHuJ,g,ul = vJFNsJd−1o
n=1

`
enJ

n−1dsnd
rn

G .

Thus, in order for the action identity to hold the expression within the square brackets must equal
one. This can be achieved if we require that

endsnd
rn

=
dsn − 1d

rn−1
, n = 1,2,3, . . . ,

for then

rn = en
dsnd

dsn − 1d
rn−1 = ¯ = en!

dsnd
ds0d

r0, by iteration.

We chooser0=ds0d so that

rn = en!dsnd, n = 0,1,2, . . . , and NsJd = o
n=0

`
Jn

en!
. s4.3d

Thus the coherent statess4.1d become

uJ,g,ul ª NsJd−1/2o
n=0

`

o
j=1

dsnd
Jn/2e−ienge−i j u

Îen!dsnd
un, jl. s4.4d

It remains only to determine the measure dm in order for the resolution of the identity to be
satisfied. Proceeding as in Sec. II, and assuming that the measure dn solves the moment problem

E
0

L

Jn dnsJd = en!dsnd, n = 0,1,2, . . . , s4.5d

we take

dmsJ,g,ud =
NsJd
2p

dnsJddmBsgddu, s4.6d

where dmB is the symbolic measure defined ins2.12d. Then, we prove exactly as in Sec. II, the
identity fsees2.23dg

1

2p
E

0

L HE
2

2p FE
R

uJ,g,ulkJ,g,uuNsJddmBsgdGduJdnsJd = IH. s4.7d

Remark:If dsnd=1 for all n, the above coherent states coincide, apart from an inessential
overall phasee−iu, with the usual Gazeau–Klauder coherent statess2.1d. However, when the
HamiltonianH has a nontrivial degeneracy, it is interesting to notice the presence ofdsnd in the
denominator of the expression for the coherent states ins4.4d, which implies that the radius of
convergenceL depends not only on the eigenvalues of the Hamiltonian but also on their degen-
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eracies. Similarly, the measure dn, solving the moment problems4.5d and appearing in the reso-
lution of the identity, depends on the degeneracy.

Example 1:Consider the following simple example, consisting of a single boson and a single
fermion:H=vsa†a+c†cd, wherefa,a†g=hc,c†j= I andfa#,c#g=0, x# beingx or x†. Introducing the
vacuumF0 of a, and C0 of c and taking, as usualFn=fsa†dn/În!gF0, n=0,1,2, . . ., andC j

=sc†d jC0, j =0,1, we canwrite the eigenvectors ofH as wn,j =F0 ^ C0 if n= j =0, and wn,j

=Fn−j ^ C j, if n=1,2,3, . . ., andj =0,1. Thecorresponding eigenvalues areEn,j =nv, so that they
turn out to be degenerate inj . In particular we haveds0d=1 and dsnd=2 for all nù1. The
normalization can be computed usings4.2d, and we get

NsJd = o
n=0

`
Jndsnd

rn
= 1 + 2o

n=1

`
Jn

rn
= 1 + o

n=1

`
Jn

n!
= eJ.

Definition s4.1d yields therefore,

uJ,g,ul ª e−J/2Fe−iuuw00l + o
n=1

`

o
j=1

2
Jn/2e−inge−i j u

Î2n!
uwnjlG . s4.8d

Actually, this time we can restrict the variableg to the intervalf0,2pd and use the measure
dmBsgd=s1/2pddg in s4.6d instead of the one ins2.12d. Furthermore, 0øJ,` and the measure
dnsJd must solve the moment problem

E
0

`

Jn dnsJd = H 1, if n = 0,

2n!, if n ù 1.
J

It is then easily seen that dnsJd=f2e−J−dsJdgdJ. Thus, writing

dmsJ,g,ud =
eJ

4p2f2e−J − dsJdgdJ dg du,

we can prove the resolution of the identity,

E uJ,g,ulkJ,g,uudmsJ,g,ud = I .

Finally, introducing the complex variablez=re−ig=J1/2e−ig, zPC, we can rewrites4.8d as

uz,ul = e−uzu2/2Fe−iuuw00l + o
n=1

`

o
j=1

2
zne−i j u

Î2n!
uwnjlG . s4.9d

Example 2:As a second example consider a particle of massm constrained to move on thexy

plane and subject to the forceFW =s−kx−by,−ky−bx,0d, derivable from the potentialVsx,yd
= 1

2ksx2+y2d+bxy. In the rotated coordinatesj±=s1/Î2dsx±yd, this potential assumes the form
Vsj+,j−d= 1

2msv+
2j+

2+v−
2j−

2d, where v±
2=s1/mdsk±bd. The Hamiltonian looks like a two-

dimensional harmonic oscillator since, in an obvious notation, we also havepx
2+py

2=p+
2+p−

2. In-
troducing finally the creation and annihilation operators for the6 modes and adding an inessential
constant we getH=v+a+

†a++v−a−
†a−. The eigenvalues are thereforeEn+,n−

=v+n++v−n− and the
corresponding eigenstates arewn+,n−

=fsa+
†dn+sa−

†dn−/În+!n−!gw00, where a−w00=a+w00=0. Let us
now take, as a concrete example,b=3k/5. Then the eigenvalues can be written asEn+,n−
=v−s2n++n−d and the degeneracy can be simply deduced, we notice that the spectrum isv−n,
n=2n++n−=0,1,2, . . ., andds2nd=ds2n+1d=n+1. Therefore, sincer2n=s2nd!sn+1d and r2n+1

=s2n+1d!sn+1d, we may write

053518-15 Vector coherent states J. Math. Phys. 46, 053518 ~2005!

                                                                                                                                    



uJ,g,ul = e−J/2o
l=0

`

o
j=1

l+1
Jle−2igle−iu j

Îs2ld!sl + 1d
FuC2l,jl +

ÎJe−ig

Î2l + 1
uC2l+1,jlG , s4.10d

where we have introduced the statesCn,j, n=0,1,2, . . ., andj =1,2, . . . ,dsnd, in order to keep
track of the degeneracy ofH. It is trivial to check that these states display temporal stability and
the action identity, while it does not seem to be an easy task to find an explicit expression for a
measure with respect to which a resolution of the identity would be satisfied. However, as we will
discuss in the Appendix, it is possible to find weight functions, which are not necessarily every-
where positive, with respect to which a resolution of the identity could be defined in aweaksense.

Example 3:Let us consider now a particle of massm and electric chargee, subject to a

three-dimensional harmonic forceFW =−ksx,y,zd and placed in a uniform magnetic field, oriented

along thez axis and given by the vector potentialAW =sB/2ds−y,x,0d. The Hamiltonian

H =
1

2m
Spx +

eB

2
yD2

+
1

2m
Spy −

eB

2
xD2

+
1

2m
pz

2 +
1

2
ksx2 + y2 + z2d,

can be rewritten as

H = N+sṽ + Vd + N−sṽ − Vd + Nzv,

where we have introduced

V =
eB

2m
, v2 =

k

m
, ṽ2 = V2 + v2,

au =
1
Î2
SÎmṽu +

i

Îmṽ
puD, u = x,y, az =

1
Î2

SÎmvz+
i

Îmv
pzD ,

a± =
ax ± iay

Î2
, N± = a±

†a±, Nz = az
†az.

The eigenvalues and the eigenstates ofH are easily found to be

En+,n−,nz
= n+sṽ + Vd + n−sṽ − Vd + nzv,

wn+,n−,nz
=

sa+
†dn+sa−

†dn−saz
†dnz

În+!n−!nz!
w000,

wherea−w000=a+w000=azw000=0. In order to simplify the computation of the degeneracy of this
Hamiltonian we assume thatV!v. In this approximationH can be written asH.vsN++N−

+Nzd, which means that the eigenvalues really depend only onn=n++n−+nz. As in the previous
examples we can introduce the eigenvaluesEn=vn while the degeneracy of thenth energy level
is dsnd=ok=1

n+1k= 1
2sn+1dsn+2d. If we denote the corresponding eigenstates byCnj, n=0,1,2, . . .,

j =1,2, . . . ,dsnd, we find

uJ,g,ul ª Î2e−J/2o
n=0

`

o
j=1

dsnd
Jn/2e−inge−i j u

Îsn + 2d!
uCnjl. s4.11d

Once again, in this case we may introduce the complex variablez=re−ig=J1/2e−ig, zPC, and write
these coherent states as
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uz,ul = Î2e−uzu2/2o
n=0

`

o
j=1

dsnd
zne−i j u

Îsn + 2d!
uCnjl. s4.12d

In this case the resolution of the identity takes the form,

1

4p2E
0

` E
0

2p E
0

2p

uz,ulkz,uur5 dg du dr = I . s4.13d

It is trivial to check that all the other stated properties are satisfied as well. We should mention
here that coherent states for this Hamiltonian have been constructed beforessee Refs. 9 and 12d.
However the treatment there is somewhat different, in that the authors obtain multidimensional
coherent states which allow them to study the Berezin–Lieb inequalities for the associated ther-
modynamic potential.

B. Infinite degeneracies

We are now in a position to construct coherent states for Hamiltonians with infinite degen-

eracies. LetH̃ be an abstract Hilbert space andhfk,jk,,=0
` an orthonormal basis in it,

kfk,ufk8,8l = dkk8d,,8.

Using these and the basis vectorsCn fsees2.15dg of Hac-ang we now build several families of

coherent states onH̃

s1d Vector coherent states, VCS1.
These are infinite component vector coherent states,

uJ,g; J8g8; ,l1 =
C,sJ8,g8d

fNsJdNsJ8dg1/2o
n=0

`

CnsJ,gdufn,l =
J8,/2eie,g8

fNsJdNsJ8dg1/2o
n=0

`
Jn/2e−ieng

fe,!en!g1/2ufn,l,

s4.14d

with components,=0,1,2, . . .,whereNsJd=on=0
` sJn/en!d. These vectors satisfy the normal-

ization

o
,=0

`

1kJ,g; J8,g8; ,uJ,g; J8,g8; ,l1 = 1

snote that according to our present convention, the individual vectors are not normalizedd and
the resolution of identity condition,

o
,=0

` E
R
E

R
FE

0

L E
0

L

uJ,g; J8,g8; ,l11kJ,g; J8,g8; ,u

3 dmBsgddmBsg8dGNsJdNsJ8ddnsJddnsJ8d = IH̃. s4.15d

Notice thatC,sJ8 ,g8dCnsJ,gd in s4.14d could be replaced byC,sJ8 ,g8dCnsJ,gd without
affecting any of the results stated here, this would simply amount to replacingg andg8 by
−g and −g8. The same remark also holds for formulass4.22d ands4.25d below. However, a
deeper significance of this interplay between the two options will emerge when we discuss
modular structures in Sec. V below.
Consider now the Hamiltonian
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H1 = o
n,,=0

`

venufn,lkfn,u = vA1
†A1, s4.16d

whereA1, A1
† are the operators

A1fn, = Îenfn−1,, A1
†fn, = Îen+1fn+1,. s4.17d

Each levelven of this Hamiltonian is infinitely degenerate, with, counting the degeneracy.
Thus the statess4.14d are Gazeau–Klauder-type vector coherent states for this Hamiltonian.
Indeed, they satisfy the time stability condition,

e−iH1tuJ,g; J8g8; ,l1 = uJ,g + vt; J8g8; ,l1, s4.18d

and an action identity, which we could write either as

1kJ,g; J8g8; ,uH1uJ,g; J8g8; ,l1

iuJ,g; J8g8; ,l1i2 = vJ, s4.19d

or as

o
,=0

`

1kJ,g; J8,g8; ,uH1uJ,g; J8,g8; ,l1 = vJ, s4.20d

where we have summed over the degenerate levels.
Note that we could just as well have constructed vector coherent states in this example, using
an orthonormal basishCnjn=0

` in an arbitrary reproducing kernel Hilbert spaceHker,

uJ,g; x; ,l =
C,sxd

fKsx,xdNsJ8dg1/2o
n=0

`
Jn/2e−ieng

fe,!en!g1/2ufn,l, s4.21d

with Ksx,xd as ins2.5d and the degeneracies would again be handled as before. However, the
special choice made ins4.14d enables us to write down the related family of vector coherent
states, appearing ins4.22d below, which are the coherent states of a second Hamiltonian,
acting on the degeneracy levels.

s2d Vector coherent states, VCS2.
These are a second set of similar vector coherent states

uJ,g; J8g8; nl2 =
CnsJ,gd

fNsJdNsJ8dg1/2o
,=0

`

C,sJ8,g8dufn,l =
Jn/2e−ieng

fNsJdNsJ8dg1/2o
,=0

`
J8,/2eie,g8

fe,!en!g1/2ufn,l,

s4.22d

with componentsn=0,1,2, . . ..Defining a second Hamiltonian,

H2 = o
n,,=0

`

ve,ufn,lkfn,u = vA2
†A2, s4.23d

whereA2, A2
† are the operators

A2fn, = Îe,fn,−1, A2
†fn, = Îe,+1fn,+1, s4.24d

we see that the statess4.22d are Kazeau–Klauder-type coherent states for this Hamiltonian.
The two HamiltoniansH1 andH2 commute and, in fact,H2 lifts the degeneracy ofH1 and
vice versa.
Finally, we can define a third set of coherent states as below.

s3d Bicoherent states, BCS.
These are basically the summed-over versions of the previous two
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uJ,g; J8,g8lBCS=
1

fNsJdNsJ8dg1/2 o
n,,=0

`

CnsJ,gdC,sJ8,g8dufn,l

=
1

fNsJdNsJ8dg1/2 o
n,,=0

`
Jn/2J8,/2e−iseng−e,g8d

fen!e,!g1/2 ufn,l, s4.25d

which can be considered as being the multidimensional coherent statesssee Ref. 12d of the
Hamiltonian,

H = H1 − H2 = o
n,,=0

`

vsen − e,dufn,lkfn,u = vfA1
†A1 − A2

†A2g. s4.26d

These coherent states are normalized to unity; they satisfy the resolution of the identity,

E
R
E

R
FE

0

L E
0

L

uJ,g; J8,g8lBCS BCSkJ,g; J8,g8udmBsgddmBsg8dGNsJdNsJ8ddnsJddnsJ8d = IH̃,

s4.27d

temporal stability condition,

e−iHtuJ,g; J8,g8lBCS= uJ,g + vt; J8,g8 + vtlBCS, s4.28d

and the action identity,

BCSkJ,g; J8,g8uHuJ,g; J8,g8lBCS= vsJ − J8d. s4.29d

A physical example of a Hamiltonian admitting such infinite degeneracies is worked out in the
following section.

V. ELECTRON IN A MAGNETIC FIELD

A single electron of unit charge, placed in thexy plane and subjected to a constant magnetic
field, pointing along the negativez direction, has the classical Hamiltonian,

Helec=
1

2
spW + AW d2 =

1

2
Spx +

y

2
D2

+
1

2
Spy −

x

2
D2

, s5.1d

where we have chosen the magnetic vector potential to beAW = 1
2sy,−x,0d, using the convenient

units introduced in Ref. 7. In this reference it is shown thatHelec is the single-electron free
Hamiltonian related to the so-calledfractional quantum Hall effect, FQHE, whose static and
dynamical behaviors are yet to be fully understood.13 In particular, different copies ofHelec are
used to build up the free Hamiltonian for theN-electron system as follows:H0

sNd=oi=1
N Helecsid. The

many-body model of the FQHE consists, then, of a two-dimensional electron gas, 2DEGsthat is
a gas of electrons constrained to a two-dimensional layerd in a positive uniform background and
subjected to a uniform magnetic field alongz, whose Hamiltoniansfor N electronsd is sRef. 7d
HsNd=H0

sNd+lsHC
sNd+HB

sNdd, with H0
sNd as above,HC

sNd is the canonical Coulomb interaction
between charged particles,HC

sNd= 1
2oiÞ j

N s1/ur i −r jud, andHB
sNd is the interaction of the charges with

the positive background.
One usually considerslsHC

sNd+HB
sNdd as a perturbation on the free HamiltonianH0

sNd, and looks
for the eigenstates ofH0

sNd in the form of a Slater determinant built up with single electron wave
functions, the eigenstates ofHelec. Already, the solution of this static problem is very hard and
many proposals exist in literature. Moreover, a completely satisfactory explanation of the plateau
observed for the resistivity tensor is still far from being at hand. For these reasons all possibilities
for getting a deeper understanding of this phenomenon would appear relevant. With this in mind
we study below a modular structure associated with the single electron model and construct vector
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coherent states for the associated Hamiltonians. In a later publication we intend to report on
results, using these coherent states, which shed light on the FQHE. We might add, however, that
the appearance of this rather sophisticated mathematical structure in this context, is in itself
interesting.

On H̃=L2sR2,dx dyd we introduce the quantized observables,

px +
y

2
→ Q1 = − i

]

]x
+

y

2
; py −

x

2
→ P1 = − i

]

]y
−

x

2
, s5.2d

which satisfyfQ1,P1g= iI H̃ and in terms of which the quantum Hamiltonian, corresponding toHelec

becomes

H1 = 1
2sP1

2 + Q1
2d. s5.3d

This is just the oscillator Hamiltonian in one dimension, with eigenvaluesEn=vsn+ 1
2

d, n
=0,1,2, . . . ,̀ . Each level is infinitely degenerate, and we will denote the corresponding normal-
ized eigenvectors byCn,, ,=0,1,2, . . . ,̀ . If the magnetic field were aligned along the positivez

axis fwith AW = 1
2s−y,x,0dg, the corresponding quantum Hamiltonian would have been

H2 = 1
2sP2

2 + Q2
2d. s5.4d

with

Q2 = − i
]

]y
+

x

2
, P2 = − i

]

]x
−

y

2
, s5.5d

and fQ2,P2g= iI H̄. The two sets of operatorshQi ,Pij, i =1,2, mutually commute,

fQ1,Q2g = fQ1,P2g = fP1,Q2g = fP1,P2g = 0. s5.6d

(Note that at the classical level, the transformationsx,y,px,pyd→ fx8=px+sy/2d ,y8=py

+sx/2d ,px8=py−sx/2d ,py8=py−sy/2dg is canonical, i.e., dx∧dpx+dy∧dpy=dx8∧dpx8
+dy8∧dpy8.) Thus,fH1,H2g=0 and the eigenvectorsCn, of H1 can be so chosen that they are also
the eigenvectors ofH2 in the manner

H1Cn, = vsn + 1
2dCn,, H2Cn, = vs, + 1

2dCn,, s5.7d

so thatH2 lifts the degeneracy ofH1 and vice versa. We shall assume that this has been done.
While we shall follow the technique outlined in the preceding section to construct vector

coherent states for the above two Hamiltonians, we shall first analyze the algebraic structures
generated by these operators, to get a deeper insight into the nature of the resulting coherent states.
In the process we shall display some von Neumann algebraic properties, the appearance of KMS
states and, as stated earlier, a certainmodular structurecarried by the above model. The appear-
ance of KMS states in the present context is interesting since, as is well known, KMS states are
equilibrium states for infinite-dimensional quantum systems and the associated modular structures,
being linked to theseffectived Hamiltonian of the system, are closely related to their dynamical
behavior Both these aspects may therefore shed additional light on some still unclear aspects of
the FQHE. Details of the mathematical theory underlying modular these structures may be found
in Refs. 2, 3, 14, 18, and 19.

On H=L2sRd let Q andP be the usual position and momentum operators in the Schrödinger

representation. Denote byB2sHd.H ^ H̄ the space of Hilbert–Schmidt operators onH. This is
again a Hilbert space, with the scalar productkXuYl2=TrfX*Yg. Let hfnjn=0

` be the orthonormal
basis ofH consisting of the eigenvectors of the oscillator HamiltonianHosc=

1
2sP2+Q2d, i.e.,

Hoscfn=vsn+ 1
2

dfn, n=0,1,2, . . ..Then,
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fn, ª ufnlkf,u, n,, = 0,1,2, . . . ,̀ , s5.8d

is an orthonormal basis forB2sHd. On H define the unitary operators,

Usx,yd = e−isxQ+yPd, sUsx,ydfdsjd = e−ixfj−sy/2dgfsj − yd, sx,yd P R2, f P H. s5.9d

Then, it is well knownssee, for example, Ref. 2d that the map,

W:B2sHd → L2sR2,dxdyd = H̃, sWXdsx,yd =
1

s2pd1/2TrfUsx,yd*Xg, s5.10d

is unitary. Next, ifA andB are two operators onH, we define byA∨B the operator

A ∨ BsXd = AXB* , X P B2sHd.

For a large class of operatorsA,B sin particular whenA andB are both bounded operatorsd, A∨B
defines a linear operator onB2sHd. Then straightforward computationssas shown in the Appendixd
yield,

WSQ ∨ IH
P ∨ IH

DW−1 = SQ1

P1
D, WSIH ∨ Q

IH ∨ P
DW−1 = SP2

Q2
D , s5.11d

and

WSHosc∨ IH
IH ∨ Hosc

DW−1 = SH1

H2
D, Wfn, = Cn,, s5.12d

where thefn, are the basis vectors defined ins5.8d and theCn, are the normalized eigenvectors

defined ins5.7d. This also means that these latter vectors form a basis ofH̃=L2sR2,dx dyd.
In the sequel we shall also need the thermal equilibrium state, at inverse temperatureb,

corresponding to the HamiltonianHosc. This is the density matrix,

rb =
e−bHosc

Trfe−bHoscg
= s1 − e−vbdo

n=0

`

e−nvbufnlkfnu. s5.13d

On H̃, for eachsx,ydPR2, define the operators

U1sx,yd = WfUsx,yd ∨ IHgW−1, U2sx,yd = WfIH ∨ Usx,yd*gW−1, s5.14d

and let Ai i =1,2, be thevon-Neumann algebrassee, e.g., Ref. 19d generated by the unitary
operatorshUisx,yd u sx,ydPR2j. Then using the unitary mapW, the following modular structure
can easily be inferred for the pair of von Neumann algebrasA1 andA2 sfor details on modular
structures see Ref. 18 and for the particular type of algebras appearing here, see Refs. 2 and 3d.

s1d The algebraA1 is the commutant of the algebraA2 and vice versa andA1ùA2=CIH̃.
s2d If hlnjn=0

` is a sequence of nonzero positive numbers such thaton=0
` ln=1, then the vector

F=on=0
` ln

1/2Cnn is cyclic and separating forA1. In particular, we shall work with the vector
F=Fb, for which theln correspond to the thermal staterb in s5.13d:

Fb = f1 − e−vbg1/2o
n=0

`

e−nvb/2Cnn, i.e., ln = s1 − e−ivbde−nvb. s5.15d

s3d The map

Sb:H̃ → H̃, SbfU1sx,ydFbg = U1sx,yd*Fb, s5.16d

is closable and has the polar decomposition,
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Sb = JbDb
1/2, s5.17d

whereJb is theantiunitary operator:

JbCn, = C,n, Jb
2 = IH̃, JbFb = Fb, s5.18d

so thatJbA1Jb=A2, andDb is the self-adjoint operator,

Db = o
n,,=0

`
ln

l,

uCn,lkCn,u = e−bH whereH = H1 − H2, s5.19d

the HamiltoniansH1 andH2 being as ins5.7d. fWe reproduce the derivation ofs5.17d–s5.19d
in the Appendix.g The operatorDb defines a one parameter group of evolution,t→abstd on
the algebraA1,

abstdfAg = Db
−it/bADb

it/b = eitHAe−itH = eitH1Ae−itH1, A P A1. s5.20d

s4d The statewb, defined on the algebraA1 by the vectorFb,

kwb;Al = kFbuAFblH̃, A P A1, s5.21d

is a faithful normal vector state which is invariant under the evolutionab,

kwb;abstdfAgl = kwb;Al. s5.22d

Furthermore,wb is a KMS state14,18in the following sense: forA, BPA1, define the function
FA,B of the real variablet,

FA,Bstd = kwb;AabstdfBgl. s5.23d

Then this function has an analytic extension to the open striphz= t+ iv u0,v,bj and fur-
thermore,

FA,Bst + ibd = kwb;abstdfBgAl. s5.24d

Going back now to the problem of constructing coherent states for this system we can imme-
diately write down three types of states, in analogy withs4.14d, s4.22d, ands4.25d.

s1d Vector coherent states of the HamiltonianH1−sv /2dIH̃.

These are the states onH̃=L2sR2,dx dyd,

uz,z̄8;,l1 = e−suzu2+uz8u2d/2z̄8,o
n=0

`
zn

În!,!
uCn,l, , = 0,1,2, . . . ,̀ . s5.25d

They are obtained by replacingJn/2e−ieng by zn=rneinu and J8,/2e−ie,g8 by z8,=r8,ei,u8 in
s4.14d, with z, z8PC. The resolution of the identity now takes the form

1

s2pd2o
,=0

` E
C3C

uz,z̄8;,l11kz,z̄8;,udx dx8 dy dy8 = IH̃, s5.26d

wherez=s1/Î2dsy− ixd and z8=s1/Î2dsy8− ix8d. Let us introduce the operators,

A, =
1
Î2

sQ, + iP,d, A,
† =

1
Î2

sQ, − iP,d, H, = A,
†A, +

v

2
, , = 1,2. s5.27d

Then, it is not hard to see that,

053518-22 S. T. Ali and F. Bagarello J. Math. Phys. 46, 053518 ~2005!

                                                                                                                                    



U1szd ª U1sx,yd = ezA1
†−z̄A1 = e−1

2
uzu2ezA1

†
e−z̄A1. s5.28d

Also, since

A1uCn,l = ÎnuCn−1,l, A1
†uCn,l = În + 1uCn+1,l,

it easily follows that,

uz,z̄8;,l1 = e−uz8u2/2 z̄8,

Î,!
U1szduC0,l. s5.29d

s2d Vector coherent states of the HamiltonianH2−sv /2dIH̃.
Following s4.22d, we have the analogous set of vector coherent states

uz,z̄8;nl2 = e−suzu2+uz8u2d/2zno
,=0

`
z̄8,

În!,!
uCn,l = e−uzu2/2 zn

În!
U2sz8duCn0l, n = 0,1,2, . . . ,̀ ,

s5.30d

with U2sz8d=WfIH∨Usz8d*gW−1 fsees5.14dg, which satisfy a resolution of the identity simi-
lar to s5.26d.

s3d Coherent states of the HamiltonianH=H1−H2.
These are the “bicoherent states,” analogous tos4.25d,

uz,z̄8lBCS= e−suzu2+uz8u2d/2 o
n,,=0

`
znz̄8,

În!,!
uCn,l = U1szdU2sz8duC00l. s5.31d

s4d Coherent states built from the thermal equilibrium state.
As yet another example related to this system, we build coherent states, starting with the
thermal stateFb fsees5.15d and s5.21dg. We define these states as

uz,z̄,blKMS = U1szduFbl = ezA1
†−z̄A1uFbl. s5.32d

In view of the fact that for any normalized vectorfPH, the vectorsUszdf, zPC, where
UszdªUsx,yd fsees5.9dg, satisfy

1

2p
E

C
uUszdflkUszdfudx dy = IH,

we deduce, using the isometryW in s5.10d that the coherent statess5.32d satisfy the resolu-
tion of the identity condition

1

2p
E

C
uz,z̄,blKMS KMSkz,z̄,budx dy = IH̃. s5.33d

Also, since

U1szduCnnl =
1

În!
sA1

† − z̄IH̃dnU1szduC0nl =
1

În!
S ]

]z
−

z̄

z
IH̃Dn

U1szduC0nl, s5.34d

which follows from the fact that

sA1
†dnuC0nl = În! uCnnl andU1szduC0nl = e−uzu2/2o

k=0

`
szA1dk

k!
uC0nl,

we may rewrites5.32d as

053518-23 Vector coherent states J. Math. Phys. 46, 053518 ~2005!

                                                                                                                                    



uz,z̄,blKMS = f1 − e−vbg1/2o
n=0

`

În!e−nvb/2S ]

]z
−

z̄

2
Dn

uz;nl, s5.35d

where we have set

uz;nl = U1szduC0nl.

Furthermore, using the fact that

sA2
†dnuCn0l = În! uCnnl,

we may also write

uz,z̄,blKMS = f1 − e−vbg1/2o
n=0

`

e−nvb/2S ]

]z
−

z̄

2
Dn

A2
nuz;0l. s5.36d

It should be pointed out that the coherent statess5.32d are not of the Gazeau–Klauder type.
States of the type

S ]

]z
−

z̄

2
Dn

uz;nl = sA1
† − z̄IH̃dnuz;nl,

are finite linear combinations ofphoton-added coherent statesssee Ref. 1d, which have been
studied extensively in the optical literature. Note that

kz;nuz8;ml = e−suzu2+uz8u2d/2ez̄z8dnm. s5.37d

Finally, note that sinceU1sx,yd* =U1s−x,−yd, using s5.16d we can get another family of
coherent states built on the thermal stateFb:

Sbuz,z̄,blKMS = u− z,− z̄,blKMS.

Obviously, these also satisfy the same resolution of the identity ass5.33d.

We shall consider in more detail the relationship between the above algebraic structure and the
different kinds of coherent states discussed here, as well as their use in the analysis of the quantum
Hall effect, in a subsequent paper.
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APPENDIX

We work out here some of the results quoted in the preceding two sections.

The measure in Example 2 of Sec. IV A

The proof of the existence of the measure in Example 2 of Sec. IV A will be considered as a
particular case of a more general situation.

We are looking for a “density”fsxd such that, given a sequence of numbersrn, the following
equation holds:
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E
0

`

fsxdxn dx = rn, n = 0,1,2, . . . .

It is convenient to introduce a new functionf̃sxd as fsxd=e−xf̃sxd and restate the problem as

follows: we are looking for a functionf̃sxd such that

E
0

`

f̃sxdxnse−x dxd = rn, n = 0,1,2, . . . . sA1d

As is well known, the orthonormalization procedure inL2sR+,e−x dxd for xn produces the Laguerre
polynomials,

xn → Lnsxd = o
k=0

n S n

n − k
D s− 1dk

k!
xk, sA2d

and kLnuLll=dnl, where the scalar product is, of course, the one inL2sR+,e−x dxd. If we consider
the linear combination ofsA1d with the coefficients given insA2d we get

E
0

`

f̃sxdLnsxdse−x dxd = o
k=0

n S n

n − k
D s− 1dk

k!
rk ¬ dn. sA3d

It is clear then that we must takef̃sxd=on=0
` dnLnsxd, provided this sum converges and conse-

quently, the required “density” isfsxd=e−xfon=0
` dnLnsxdg. Note however, that this function is not

everywhere positive.
We can say more on the coefficientsdn by recalling thatr2n=s2nd!sn+1d and r2n+1=s2n

+1d!sn+1d. It is an easy exercise to check that

dn = o
l=0

fn/2g S n

n − 2l
Dsl + 1d − o

l=0

fsn−1d/2g S n

n − s2l + 1d
Dsl + 1d,

where frg stands for the integer part of the rational numberr. This implies thatd1=0 anddn

=2n−2 for all nù2, so thatf̃sxd cannot be a square-integrable function. However, if we consider

the sequenceh f̃NuNPNj, where f̃Nsxd=on=0
N dnLnsxd, it is possible to show that it converges with

respect to a certain family of test functions. For that we define

Db =H f P Dsf0,1gdUE
0

1 UU dk

dxk fsxdUdx ø 1, ∀ k = 0,1,2, . . .J . sA4d

This is a nonempty subset ofDsf0,1gd. We can check that

INM ª E
0

`

s f̃Nsxd − f̃Msxddwsxddx → 0, sA5d

asN,M→` for all wPDb. This follows from the fact that

Lnsxd =
1

n!
ex dn

dxnse−xxnd

and from the properties ofDb. Thus, using integration by parts
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uINMu ø o
n=M+1

N udnu
n!
E

0

1 UxnS1 +
d

dx
Dn

wsxdUdx ø o
n=M+1

N
2n−2 · 2n

n!
→ 0,

asN,M→`.
It may be worth remarking that the setDb could be replaced by some larger set without

affecting the final result. However, the estimates above would have been harder to obtain. Thus,
since such a stronger result would not be very relevant in the present context, we will not consider
this generalization here.

Proof of „5.11…

We only demonstrate the first two relations ins5.11d, since the other two follow in an entirely
analogous manner. Moreover,s5.12d is a direct consequence ofs5.11d. ConsiderXPB2sHd of the
type X= uflkcu, such that bothf andc are in the domains of the operatorsQ and P, are differ-
entiable and vanish at infinity. Then,

sWXdsx,yd =
1

s2pd1/2TrfUsx,yd*Xg =
1

s2pd1/2kUsx,ydcuflH =
1

s2pd1/2E
R

eixfj−sy/2dgcsj − ydfsjddj.

Thus,

sWQ ∨ IHsXddsx,yd =
1

s2pd1/2kUsx,ydcuQflH =
1

s2pd1/2E
R

eixfj−sy/2dgcsj − ydjfsjddj

= S− i
]

]x
+

y

2
D

3F 1

s2pd1/2E
R

eixfj−sy/2dgcsj − ydfsjddjG ,

implying

sWQ ∨ IHsXddsx,yd = S− i
]

]x
+

y

2
DsWXdsx,yd.

Extending by linearity on appropriate domains, we get

WQ ∨ IHW−1 = − i
]

]x
+

y

2
= Q1.

Next,

sWP ∨ IHsXddsx,yd =
1

s2pd1/2kUsx,ydcuPflH =
1

s2pd1/2E
R

eixfj−sy/2dgcsj − ydS− i
]

]j
Dfsjddj.

Now,

− i
]

]j
feixfj−sy/2dgcsj − ydfsjdg = xeixfj−sy/2dgcsj − ydfsjd + eixfj−sy/2dgS− i

]

]j
Dcsj − ydfsjd

+ eixfj−sy/2dgcsj − ydS− i
]

]j
Dfsjd.

Integrating both sides of this equation with respect toj from −` to ` and noting thatcsjd,
fsjd→0 asj→ ±`, ands] /]jdcsj−yd=−s] /]ydcsj−yd, we get
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0 =
x

s2pd1/2E
R

eixfj−sy/2dgcsj − ydfsjd +
1

s2pd1/2E
R

eixfj−sy/2dgSi
]

]y
Dcsj − ydfsjd

+
1

s2pd1/2E
R

eixfj−sy/2dgcsj − ydS− i
]

]j
Dfsjd.

Thus,

sWP ∨ IHsXddsx,yd = S− i
]

]y
−

x

2
DsWXdsx,yd,

and again, extending by linearity on appropriate domains we get

WP ∨ IHW−1 = − i
]

]y
−

x

2
= P1.

Proof of „5.17…–„5.19…

Since the vectorsC jk, j ,k=0,1,2, . . . ,̀ , form a basis ofH̃f=L2sR2,dx dydg, we may write

U1sx,ydFb = o
i=0

`

li
1/2U1sx,ydCii = o

i,j ,k=0

`

li
1/2kC jkuU1sx,ydCiilH̃C jk.

Now, using the isometryWf jk=Wsuf jlkfkud=C jk fsees5.8d ands5.12dg, the first relation ins5.14d
and the fact that the vectorsfi, i =0,1,2, . . . ,̀ , form an orthonormal basis ofH, we obtain

kC jkuU1sx,ydCiilH̃ = Trfufklkf juUsx,ydufilkfiug = kf juUsx,ydfildik = s2pd1/2C jisx,yddik,

the second equality following froms5.10d. Thus,

U1sx,ydFb = s2pd1/2o
i,j=0

`

li
1/2C jisx,ydC ji . sA6d

Similarly,

U1sx,yd*Fb = s2pd1/2o
i,j=0

`

l j
1/2Ci jsx,ydC ji = s2pd1/2o

i,j=0

`

l j
1/2C jisx,ydCi j . sA7d

Next, applying the operatorSb to both sides ofsA6d and taking account of the fact that this
operator is antilinear, we get

SbfU1sx,ydFbg = U1sx,yd*Fb = s2pd1/2o
i,j=0

`

li
1/2C jisx,ydSbC ji .

Comparing this equation withsA7d we immediately see that

SbC ji = Fl j

li
G1/2

ci j ,

from which s5.17d–s5.19d follow directly.
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Universal Drinfeld twists are inner automorphisms which relate the coproduct of a
quantum enveloping algebra to the coproduct of the undeformed enveloping alge-
bra. Even though they govern the deformation theory of classical symmetries and
have appeared in numerous applications, no twist for a semisimple quantum envel-
oping algebra has ever been computed. It is argued that universal twists can be
reconstructed from their well-known representations. A method to reconstruct an
arbitrary element of the enveloping algebra from its irreducible representations is
developed. For the twist this yields an algebra valued generating function to all
orders in the deformation parameter, expressed by a combination of basic and
ordinary hypergeometric functions. It is shown how the generating function can be
expanded to the formal power series of the twist. An explicit expression for the
universal twist of sus2d is given up to third order. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1901344g

I. INTRODUCTION

Quantum enveloping algebras are formal deformations of the enveloping Hopf algebras of Lie
algebras.1 While the notion of quantum enveloping algebras is very general, comprising arbitrary
deformations, the most famous examples are the Drinfeld–Jimbo deformations2,3 which act as
natural symmetry structures on quantum spaces.4–6 Drinfeld observed that every quantum envel-
oping algebra is related to the corresponding undeformed enveloping algebra by an inner auto-
morphism which he called universal twist7 and which now bears his name. Given the universal
Drinfeld twist one can reconstruct the corresponding quantum enveloping algebra up to isomor-
phism. In this sense, the twist contains all information on the quantum deformation of a classical
symmetry.8

Due to their pivotal role for the deformation theory of symmetries, universal Drinfeld twists
have found numerous important applications beyond the structure theory of quantum enveloping
algebras, such as to quantum statistics on quantum spaces,9 quantum spin chains,10,11 noncommu-
tative quantum field theory,12 or to algebraic geometry,13 just to name a few recent examples. Our
original motivation was the observation that certain twists yield a covariant realization of quantum
spaces by a star product14,15 within the framework of deformation quantization.16 Such a descrip-
tion of noncommutative spaces by formal deformations of algebras17 has appeared naturally in the
context of string theory,18 the construction of gauge theories on noncommutative spaces,19,20 and
the subsequent development of noncommutatvie quantum field theories.sFor reviews of noncom-
mutative field theories see Refs. 21 and 22.d

The noncommutative geometry on which so far most noncommutative quantum field theories
have been constructed is defined by constant commutators of the space–time observables. Such a
noncommutativity breaks Lorentz symmetry, which had to be expected because the constant
commutator can be viewed as due to a constant background field, in string theory a constant
B-field on a D-brane. It was hoped that a small noncommutativity would lead to an equally small
violation of Lorentz symmetry. However, on the level of regularization of loop diagrams an
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interdependence of ultraviolet and infrared cutoff scales appears23,24which seems to put even large
scale Lorentz symmetry and weakened notions of locality of noncommutative quantum field
theory into doubt,25 indicating that the breaking of symmetries is not under good control—at least
for the case of constant noncommutativity. These serious deficiencies seem to be reason enough to
reconsider such deformations, for which the symmetry structure can be deformed together with the
space, so that covariance is preserved. That is, quantum spaces4–6 which carry a covariant repre-
sentation of the Drinfeld–Jimbo deformation2,3 of the enveloping symmetry algebra. Three par-
ticularly important quantum spaces, the quantum plane, quantum Euclidean 4-space, and quantum
Minkowski space, have been shown to be realizable as deformation quantization8,14 by universal
Drinfeld twists.15 sFor more information on the relation between quantum groups and deformation
quantization we refer the reader to Ref. 26.d

While the quantum enveloping algebra can be reconstructed rather easily given the universal
Drinfeld twist, there is no general soution for the inverse problem of calculating the Drinfeld twist
for a given quantum deformation. The existence of twists is proved by homological methods
which are inherently nonconstructive. To our best knowledge, no universal Drinfeld twist for the
Drinfeld–Jimbo deformation of a semisimple Lie algebra has ever been computed successfully, not
even for the simplest possible case of su2. sIn Refs. 27 and 28 the nonsemisimple case of the
Heisenberg algebra was studied.d It could be argued that the universal twist is more or less the
square root of the universalR-matrix, so that Drinfeld’s ingenious but simple construction of the
R-matrix by the dual pairing of the Borel–Hopf subalgebras might be used. For the case of
triangular deformations this reasoning appears to lead, indeed, to a method to construct the twist.29

For the nontriangular Drinfeld–Jimbo deformations, however, this argument falls short, as is
confirmed by the complexity of the expressions derived in Ref. 30. But even though there are no
closed form expressions or simple constructions for the twist, one might expect that a brute force
calculation by means of a computer algebra system should be possible up to an order of the
perturbation parameter high enough for all reasonable applications. However, it turns out that the
naive attempt of an algebraic order by order calculation quickly runs into overwhelming combi-
natorial problems, as it was described in Ref. 30 where the authors did not go beyond the second
order.

A closer inspection of the brute force approach reveals, first, that the number of operations
which must be carried out increases at least exponentially with the order of the perturbation
parameter, so the algorithm is certainly nonpolynomial. Second, the results expressed in terms of
the Poincaré–Birkhoff–Witt basis of the enveloping algebra are extremely lengthy and do not
appear to provide any structural insight. Third, it is unclear how to implement the algorithm such
that it yields the particular twist which realizes the star product of quantum spaces. In conclusion,
it is fair to say that the calculation of universal Drinfeld twists turns out to be a computational
problem in any respect.

While little is known about the calculation of universal twists in the enveloping algebra, their
representations are well understood and have been computed explicitly. They are essentially given
by a contraction of deformed and undeformed Clebsch–Gordan coefficients as it was first observed
in Ref. 31. For the Drinfeld–Jimboq-deformation the Clebsch–Gordan coefficients are known
explicitly, so we obtain the representations of the twist in a closed form, expressed by basic and
ordinary hypergeometric functions. The approach to the calculation of universal twists presented
here is to reconstruct the twists from their representations. The obvious advantage of this approach
is that, rather than starting with algebraic calculations from scratch, it builds on the computational
effort which has gone into the calculation ofq-Clebsch–Gordan coefficients. The explicit calcu-
lations in this paper are carried out forUqssu2d although the methods will be seen to be generic.

We will proceed as follows: In order to make this paper reasonably self-contained we will start
in Sec. II with a short introduction to universal Drinfeld twists, giving some basic results which
will be referred to in the following. Moreover, we briefly explain why universal twists appear
naturally in the context of star products. In Sec. III we will develop a method to reconstruct an
element in the enveloping algebra from its irreducible representations. From Lie theory it is clear
that in the semisimple case the representations determine the algebra element uniquely. But how
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do we actually compute it? The key to developing a constructive method is the choice of a suitable
basis ofUqssu2d. We will choose the basis of tensor operators because the matrix elements satisfy
useful orthogonality relations, which then lead to the desired reconstruction method. The results
are given in Proposition 2 and Eq.s27d. In Sec. IV we apply the reconstruction method to the
representations of the universal Drinfeld twist. This leads to the main result presented here, a
formula for the the universal Drinfeld twist, given in Eq.s46d by an algebra-valued generating
function inq=e". In order to obtain the twist to each order in the perturbation parameter", we yet
need to expand the generating function in powers of". Surprisingly, the problem of perturbative
expansion of basic hypergeometric functions has recieved little attention in the literature. In
particular, no closed formulas for such expansions have been derived as yet. While a thorough
study of this problem is beyond the scope of this paper, we present the first few steps in this
direction which suffice to make the order of order expansion of the generating function of the twist
accessible to efficient computer algebra calculations. This is exemplified in Eq.s59d where the
universal twist ofU"ssu2d was computed up to third order. In Sec. V we concludingly assess the
computational value of the generating function of the twist and indicate how the approach pre-
sented here will be naturally continued.

II. BRIEF INTRODUCTION TO DRINFELD TWISTS

For the reader’s convenience we briefly review how Drinfeld twists appear naturally in the
study of formal deformations of algebras and Hopf algebras. The approach and the results de-
scribed here are essentially due to Gerstenhaber17 and Drinfeld.1,7 The formal perturbation param-
eter is ", the completion of a complex vector space or algebraA with respect to the"-adic
topology by formal power series is denoted as usual byAff"gg.

An "-adic algebraA8 is called a deformation of an algebraA if A8 /"A8 andA are isomorphic
as algebras. Analogously, an"-adic Hopf algebraH8 is called a deformation of a Hopf algebraH
if H8 /"H8 andH are isomorphic as Hopf algebras. Recall, thatUsgd is a Hopf algebra with the
canonical Lie–Hopf structure defined on the generatorsgPg by the coproductDsgd=g^ 1+1
^ g, counit«sgd=0, and antipodeSsgd=−g. The Drinfeld–Jimbo algebraU"sgd is a deformation of
this Hopf algebraUsgd. This can be seen by developing the commutation relations and the Hopf
structure ofU"sgd as formal power series in" and keeping only the zeroth order terms, which
yields the commutation relations and the Lie–Hopf structure ofUsgd.

Gerstenhaber has shown17 that whenever the second Hochschild cohomology ofA with coef-
ficients inA is zero,H2sA,Ad=0, then all deformations ofA are trivial up to isomorphism. That is,
any deformationA8 of A is isomorphic to the"-adic completion of the undeformed algebra,A8
>Aff"gg. Algebras with this property are called rigid. The second Whitehead lemma states that the
second Lie algebra cohomology of a semisimple Lie algebrag and, hence, the second Hochschild
cohomology of its enveloping algebra is zero. Therefore, the enveloping algebraUsgd of a semi-
simple Lie algebrag is rigid. In particular, there is an isomorphism of algebrasa :U"sgd
→Usgdff"gg, by which the the Hopf structureD8 , «8 , S8 of U"sgd can be transfered to
Usgdff"gg,

D" ª sa ^ ad + D8 + a−1, «" ª «8 + a−1, S" ª a + S8 + a−1, s1d

such thata becomes an isomorphism of Hopf algebras fromU"sgd to Usgdff"gg with this deformed
Hopf structure. Leta8 be another such isomorphism andD"8 , «"8 , S"8 be defined as in Eq.s1d with
a8 instead ofa. Thena8 is an isomorphism of Hopf algebras fromU"sgd to Usgdff"gg with the
primed Hopf structure,

sUsgdff"gg,D",«",S"d←
a

U"sgd→
a8

sUsgdff"gg,D"8,«"8,S"8d, s2d

hence,a8 +a−1 is an isomorphism of Hopf algebras. We conclude that, while the Hopf structures1d
may depend on the isomorphisma, it is unique up to an isomorphism of Hopf algebras.
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As a consequence of the first Whitehead lemma, the first Hochschild cohomology of the
enveloping algebraUsgd of a semisimple Lie algebra is zero. This implies, that the two homomor-
phismsD andD" from Usgdff"gg to sUsgd ^ Usgddff"gg with D"=D+Os"d are related by an inner
automorphism, as it was observed by Drinfeld.1,7

Theorem 1 (Drinfeld): Let g be a semisimple Lie algebra, and letD" be defined as in Eq. (1).
Then there is an invertible elementFP sUsgd ^ Usgddff"gg such thatD"sgd=FDsgdF−1, which is
called a Drinfeld twist fromD to D".

It can be shown that such a Drinfeld twist not only relates the deformed and undeformed
coproducts but also the counits and antipodes. Hence, a universal Drinfeld twist uniquely deter-
mines the corresponding quantum enveloping algebra. In that sense the twist contains the entire
structural information on a quantum deformation of an enveloping algebra. The twist of Theorem
1 is not unique. For a given quantum enveloping algebra any two twists are related by a noncom-
mutative 2-coboundary in the sense of Ref. 32.

Drinfeld has shown, that the isomorphism ofUsgdff"gg andU"sgd can be chosen to leave a
given Cartan subalgebra invariant.

Theorem 2 (Drinfeld,1 Proposition 4.3): Let g be a semisimple Lie algebra andh,g a
Cartan subalgebra. Then there exists an isomorphism of"-adic algebrasa :U"sgd→Usgdff"gg
such thata=id+Os"d and auh=idh.

The important consequence of this theorem for representation theory is that weight vectors
and weight spaces of representations of the deformed and underformed algebras can be identified.
While in this sense, the irreducible representations of quantum alebras are equivalent to the usual
representations, the nonequivalent coproducts on the enveloping algebra and its quantum defor-
mation lead to different tensor representation in the deformed and undeformed case. For Drinfeld–
Jimbo deformationsU"ssu2d, which are the Hopf duals of quantum groups, the reduction of tensor
representations are given byq-deformed Clebsch–Gordan coefficients. As the deformed and un-
deformed coproducts are related by a Drinfeld twist, it was quickly realized31 that the represen-
tations of Drinfeld twists ought to be given by a combination of deformed and undeformed
Clebsch–Gordan coefficients. Indeed, one can rigorously prove the following proposition.15

Proposition 1: There is a universal Drinfeld twistF from Ussu2d to U"ssu2d, the inverse of
which has the matrix elements

k j1,m18; j2,m28uF−1u j1,m1; j2,m2l = o
j ,m

SU j1 j2
m18 m28

U j

m
D

q
SU j1 j2

m1 m2
U j

m
D s3d

in an irreducible representation ofUssu2d ^ Ussu2d with weights j1, j2 and basisu j1,m1; j2,m2l
ª u j1,m1l ^ u j2,m2l, where the expressions in parentheses denote the q-deformed and undeformed
Clebsch–Gordan coefficients.

Here, we gave the formula for the representations of the inverse of the twist, because the
inverse realizes the covariant star product of the corresponding quantum space: Recall that the
action of an enveloping algebraUsgd on an algebraX is called covariant if for allx, yPX and
gPUsgd,

gxsxyd = sgs1dxxdsgs2dxyd, s4d

using the Sweedler notationgs1d ^ gs2d;D"sgd for the coproduct. In mathematical terminologyX
is called a module algebra. For the undeformed coproduct Eq.s4d simply means that the elements
of the Lie algebrag,Usgd act as derivations onX. A quantum space, which is by definition a
module algebra of the quantum deformationU"sgd, is realized by a star product on a function
algebra in a covariant manner only if the analogous condition

gxsx ! yd = sgs1"dxxd ! sgs2"dxyd s5d

holds, wheregs1"d ^ gs2"d;D"sgd is the Sweedler notation for the deformed coproduct. If we define
the star product map by
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x ! yª sFf1g
−1xxdsFf2g

−1xyd, s6d

where we use the Sweedler-type notationFf1g
−1

^ Ff2g
−1 ;F−1, covariance conditions5d is satisfied

becauseD"sgd=FDsgdF−1. But are there twists for which Eq.s6d also defines an associative
product, thus realizing the algebra of a quantum space? It turns out that the twist of Proposition 1
realizes the quantum plane and, essentially, also quantum Euclidean 4-space, and quantum
Minkowski space.15

III. THE RECONSTRUCTION METHOD

A. The tensor operator basis

We want to find a method to reconstruct elements of the enveloping algebraUssu2d from their
irreducible representations. Consider the Cartan–Weyl basishE,H ,Fj of su2 with commutation
relations

fH,Eg = 2E, fH,Fg = − 2F, fE,Fg = H, s7d

the compact real form being given by thep-structureE* =F , H* =H , F* =E. For our purposes the
usual Poincare–Birkhoff–Witt basis of ordered monomials of the generators

BPBW = hEiHjFkui, j ,k P N0j s8d

turns out to be not particularly convenient. The irreducible representations of the ordered mono-
mials do not satisfy any obvious orthogonality relations which would allow us to draw immediate
conclusions from the representations of a given algebra element to its coefficients with respect to
this basis. Recall that for each half-integer weightj P 1

2N0 there is one irreducible unitary repre-
sentation ofUssu2d defined on the orthonormal weight-j sor spin-jd basis hu j ,ml ,m=−j ,−j
+1,… , jj by

Eu j ,ml = Îs j + m+ 1ds j − mdu j ,m+ 1l,

Fu j ,ml = Îs j + mds j − m+ 1du j ,m− 1l,

Hu j ,ml = 2mu j ,ml. s9d

The structure homomorphismr j :Ussu2d→EndsC2j+1d is given by the matrix elements,r jsgdm8
m

ª k j ,m8ugu j ,ml. Since the Lie algebra su2 is simple, any representation ofUssu2d can be decom-
posed into a direct sum of irreducible subrepresentations, each of which is isomorphic to a
representation given bys9d. This is in particular true for the adjoint action ofUssu2d on itself
which is defined on the generators as

adgxuª fg,ug, g P su2 , Ussu2d, u P Ussu2d. s10d

Let hTm
j PUssu2d um=−j ,… , jj be a weight basis of a weight-j subrepresentation of the adjoint

representation, that is,

fg,Tm
j g = o

m8

Tm8
j

r jsgdm8
m ; o

m8

Tm8
j k j ,m8ugu j ,ml s11d

for all gPsu2. Such a basishTm
j j is called a weight-j tensor operator of su2. The set of all weight-0

operators is the center ofUssu2d. As commutative algebra, the center is generated by the canonical
quadratic Casimir elementCª2oi jgigjK

ij , where hgij is a basis of the Lie algebra,Kij is the
inverse of the Killing metricKij ª trsadgi adgjd, and where the factor 2 was insterted for conve-
nience. In the Cartan–Weyl basis we obtain
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C = 1
2EF + 1

2FE + 1
4H2 = EF + 1

4HsH − 2d, s12d

such that the polynomial algebraCfCg is the center ofUssu2d. The representations of the Casimir
element,

Cu j ,ml = js j + 1du j ,ml, s13d

show thatC is the ususal square of angular momentum.
By definition, Tj

j is the highest weight vector of a weight-j subrepresentation of the adjoint
representation, sosadEdxTj

j ;fE,Tj
jg=0 andsadCdxTj

j = js j +1dTj
j. From these two equalities it

follows, thatTj
j =zEj, wherez is some element of the center. If we pickz from the number field we

get the tensor operators

TJ
J
ª aEJ, a P C, s14d

from which all other tensor operators can be obtained by multiplication by a central element. Here
a is a normalization constant, which will later be chosen for convenience. From now on we denote
by TM

J always the tensor operator which is generated byaEJ. We use capital letters for the indices
in order to allow in the formulas which we will derive below for a clear disctinction of the weights
pertaining to the adjoint action from those pertaining to matrix representations. The fact that, as
module with respect to the adjoint action,Ussu2d can be completely decomposed into irreducible
submodules implies that

Btensor= hCkTM
J uk,J P N0,M = − J,− J + 1,…,Jj s15d

is a basis ofUssu2d, which we will call the tensor basis. The fact thats15d is a basis ofUssu2d
means that the tensor operators are a basis ofUssu2d as free module over its center. Thus, every
elementaPUssu2d can be written uniquely as

a = o
J,M

aM
J TM

J , aM
J P CfCg, s16d

where the sum runs over a finite subset of all allowed integer values ofJ andM. Reconstructing
the elementa from its representations now amounts to finding the polynomialsaM

J .

B. The reconstruction method

Let us compute the irreducible representations of Eq.s16d. First, we consider the central
coefficientsaM

J . SinceaM
J is a polynomial in the Casimir, the matrix element is a polynomial of the

weight j of the representation,

k j ,muaM
J u j ,ml ¬ aM

J s jd P Cf jg. s17d

Due to Eq.s13d this polynomial satisfies

aM
J = aM

J s− j − 1d, s18d

since it is actually a polynomial injs j +1d or, equivalently, a quadratic polynomial inj + 1
2. Con-

versely, given a polynomialps jdPCf jg which satisfiesps jd=ps−j −1d there exists a unique poly-
nomial in the Casimir which hasps jd as its matrix elements. For an intuitive notation we will
denote this polynomial byps ĵdPCfCg, such that its defining equation takes the suggestive form

k j ,mups ĵdu j ,ml = ps jd. s19d

The mapps jd°ps ĵd could be viewed as substitution
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j ° ĵ = 1
2sÎ4C + 1 − 1d, s20d

where the relationps jd=ps−j −1d guarantees that the square roots drop out such thatps ĵd is a
polynomial inC only. We emphasize that we do not add such a square root of the Casimir to the
algebra, though. We viewps ĵd merely as a suggestive notation for the element of the center which
is uniquely defined by Eq.s19d.

The matrix elements of the tensor operators are given by the Wigner–Eckhart theorem,

k j ,m8uTM
J u j ,ml = k jiTJi jlSU J j

M m
U j

m8
D , s21d

where the reduced matrix elementk jiTJi jl does not depend onm, m8, or M, and where the
expression in parentheses denotes the Clebsch–Gordan coeffient. The explicit form and some
properties of Clebsch–Gordan coefficients and theirq-deformations can be found for example in
Ref. 33. The reduced matrix elements will be computed below.

The irreducible representations of Eq.s16d now take the form

k j ,m8uau j ,ml = o
J,M

aM
J s jdk jiTJi jlSU J j

M m
U j

m8
D . s22d

The main advantage of using the tensor basiss15d instead of the Poincaré–Birkhoff–Witt basiss8d
is the fact, that the Clebsch–Gordan coefficients satisfy orthogonality relations which can be used
in order to solve Eq.s22d for aM

J s jd. Using the well-known orthogonality relation

o
m,m8

SU J j

M m
U j

m8
DSU J8 j

M8 m
U j

m8
D =

2j + 1

2J + 1
dJJ8dMM8 s23d

we thus arrive at the following.
Proposition 2: Let aPUssu2d be an element of the enveloping algebra with matrix elements

k j ,m8uau j ,ml with respect to the irreducible representations defined in Eqs. (9). Let TM
J PUssu2d be

the minimal degree tensor operators generated by TJ
J,EJ and k jiTJi jl their reduced matrix

elements. Then we have the following:

sid For all integers Jù0 and M, uMuøJ the expression

aM
J s jd ª

s2J + 1d
s2j + 1dk jiTJi jl o

m,m8

SU J j

M m
U j

m8
Dk j ,m8uau j ,ml s24d

defines a polynomial in j which is nonzero for only a finite number of values of J and M.
sii d The polynomials aM

J s jd are quadratic in j+ 1
2, the substitution

s j1 + 1
2d2 ° C + 1

4 s25d

yielding polynomials in the Casimir element C which are denoted by aM
J s ĵd.

siii d The element a can be written as

a = o
J,M

aM
J s ĵdTM

J . s26d

This reconstruction method can be readily generalized to the tensor productUssu2d ^ Ussu2d.
Let aPUssu2d ^ Ussu2d be an element of the tensor product, letk j1,m18 ; j2,m28uau j1,m1; j2,m2l
denote its matrix elements with respect to irreducibles representation of each tensor factor. First
we need to calculate
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aM1M2

J1J2 s j1, j2d ª
s2J1 + 1ds2J2 + 1d

s2j1 + 1ds2j2 + 1dk j1iTJ1i j1lk j2iTJ2i j2l o
m1,m18

m2,m28

SU J1 j1
M1 m1

U j1
m18

DSU J2 j2
M2 m2

U j2
m28

D
3k j1,m18; j2,m28uau j1,m1; j2,m2l, s27d

which defines polynomials, which are quadratic ins j1+ 1
2

d and s j2+ 1
2

d. Then we substitute

s j1 + 1
2d2 ° sC + 1

4d ^ 1, s j2 + 1
2d2 ° 1 ^ sC + 1

4d s28d

in order to obtain the unique central elements

aM1M2

J1J2 s ĵ1, ĵ2d P CfC ^ 1,1 ^ Cg, s29d

the representations of which are given by the polynomialss27d. Finally, reconstruct the element of
the tensor algebra by

a = o
J1,M1

J2,M2

aM1M2

J1J2 s ĵ1, ĵ2dTM1

J1 ^ TM2

J2 . s30d

We will now apply this reconstruction method to the Drinfeld twists3d.

IV. RECONSTRUCTION OF THE UNIVERSAL DRINFELD TWIST

A. Calculation of the tensor basis

In order to obtain explicit formulas from the reconstruction method of Proposition 2 we need
to calculate the tensor operatorsTM

J in terms of the Poincaré–Birkhoff–Witt basis as well as the
reduced matrix elementsk jiTJi jl. We start with the reduced matrix elements.

From Eq.s9d we can derive the representation of powers of the generators

EJu j ,ml = Îs− 1dJs j + m+ 1dJsm− jdJu j ,m+ Jl,

FJu j ,ml = Îs− 1dJs j − m+ 1dJs− m− jdJu j ,m− Jl, s31d

where

sxdJ ª sxdsx + 1d ¯ sx + J − 1d s32d

denotes the Pochhammer symbol. From Eqs.s31d we obtain for the irreducible representations of
the tensor operators14d on the one hand,

k j , j uTJ
Ju j , j − Jl = k j , j uaEJu j , j − Jl = aÎ s2jd!J!

s2j − Jd!
s33d

for Jø2j . On the other hand, we have due to the Wigner–Eckhart theorems21d,

k j , j uTJ
Ju j , j − Jl = k jiTJi jlSUJ j

J j− J
U j

j
D = k jiTJi jlÎ s2j + 1d!s2Jd!

s2j + J + 1d!J!
, s34d

where we have inserted the explicit expression for the Clebsch–Gordan coefficient. We conclude
that

k jiTJi jl = aÎ s2j + J + 1d!J!J!

s2j + 1ds2j − Jd!s2Jd!
. s35d

For our purposes, it is convenient to choose the normalization constanta such that
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kJiTJiJl = 1, s36d

for which we must set

a ªÎ s2J + 1d!
s3J + 1d!J!

. s37d

From now on we will assume this choice ofa, for which the value of the reduced matrix element
s35d becomes

k jiTJi jl =Î s2J + 1ds2j + J + 1d!J!

s2j + 1ds3J + 1d!s2j − Jd!
. s38d

From the heighest weight vectorTJ
J we obtain the weight basis by repeated action of the lowering

operator adF. More precisely, from Eq.s31d we conclude that

TM
J = fs− 1dJ−MsJ − Md!s− 2JdJ−Mg−1/ 2sadFdJ−MxTJ

J =Î s2J + 1dsJ + Md!
s3J + 1d!J!sJ − Md!

sadFdJ−MxEJ

s39d

for uMuøJ. The remaining computational problem for an explicit expression ofTm
j in terms of the

Poincaré–Birkhoff–Witt basis is the lexicographic reordering ofsadFdJ−MxEJ. Details of the
computation are provided in Appendix A. As result we obtain

TM
J = s− 1dJ+MÎs2J + 1dJ!sJ − Md!sJ + Md!

s3J + 1d!

3 o
p=0

pøsJ−Md/2
s− 1dp

p!sp + Md!
Ep+MS J + H − 1

J − M − 2p
DFp for M ù 0, s40ad

TM
J = s− 1dJ−MÎs2J + 1dJ!sJ − Md!sJ + Md!

s3J + 1d!

3 o
p=0

pøsJ+Md/2
s− 1dp

p!sp − Md!
EpS J + H − 1

J + M − 2p
DFp−M for M , 0, s40bd

where the algebra valued binomial coefficient is defined by

SX

k
Dª s− 1dks− Xdk

k!
, s41d

denoting a polynomial inX. For a complete expansion in terms of ordered monomials we yet must
expand the binomials in powers ofH,

S J + H − 1

J ± M − 2p
D = o

n=0

J±M−2p

Hn o
k=n

J−M±2p
1

k!
S J − 1

J ± M − 2p − k
Dssk,nd, s42d

wheressk,nd are Stirling numbers of the first kind.

B. The generating function for the Drinfeld twist

We will now apply the reconstruction method of Sec. III to the inverse of the universal
Drinfeld twist F−1 of Proposition 1. Inserting the representationss3d of the twist into Eq.s27d the
inverse twist can be expressed according to Eq.s30d as
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F−1 = o
J1,M1

J2,M2

s2J1 + 1ds2J2 + 1d

s2ĵ1 + 1ds2ĵ2 + 1dk ĵ1iTJ1i ĵ1lk ĵ2iTJ2i ĵ2l
o

m1,m18

m2,m28

SU J1 ĵ1
M1 m1

U ĵ1
m18
DSU J2 ĵ2

M2 m2
U ĵ2

m28
D

3 o
j ,m

m2 m2SU ĵ1 ĵ2
m18 m28

U j

m
DSU ĵ1 ĵ2

m1 m2
U j

m
D

q

TM1

J1 ^ TM2

J2 , s43d

where we recall that the hats onĵ1 and ĵ2 indicate that the coefficients of the tensor operators are
polynomials inC^ 1 and 1̂ C which we obtain after substitutions28d. Equations43d does in
general not yield an element ofUssu2d ^ Ussu2d for any fixed value ofq. It must be understood as
algebra valued generating function inq=e" which produces in each order of" an element of
Ussu2d ^ Ussu2d proper. An explicit expansion up to third order in" will be given in the next
section.

Note that while the entire dependence on" is contained in theq-deformed Clebsch–Gordan
coefficient, the arguments of the latter are contracted with the arguments of undeformed Clebsch–
Gordan coefficients. We can confine the"-dependence further by using the following identity for
the Clebsch–Gordan coefficients which is derived in Appendix B:

SU J1 j1
M1 m1

U j1
m18

DSU J2 j2
M2 m2

U j2
m28

DSU j1 j2
m18 m28

U j

m
D

= o
J,j8

b5J1 j1 j1
J2 j2 j2
J j8 j

6SU J1 J2

M1 M2
U J

M
DSU j1 j2

m1 m2
U j8

m8
DSU J j8

M m8
U j

m
D , s44d

where the expression in braces denotes the 9j symbol, the factorb is defined as

b ª
Îs2J + 1ds2j8 + 1ds2j1 + 1ds2j2 + 1d, s45d

and m18=M1+m1, m28=M2+m1, M =M1+M2, m8=m1+m2. Inserting Eq.s44d into Eq. s43d we
obtain

F−1 = o
J1,J2,J

o
j ,j8

s2J1 + 1ds2J2 + 1d

k ĵ1iTJ1i ĵ1lk ĵ2iTJ2i ĵ2l
Î s2J + 1ds2j8 + 1d

s2ĵ1 + 1ds2ĵ2 + 1d5J1 ĵ1 ĵ1

J2 ĵ2 ĵ2
J j8 j

6
3 o

m
SUJ j8

0 m
U j

m
D o

m1,m2

SU ĵ1 ĵ2
m1 m2

U j8

m
DSU ĵ1 ĵ2

m1 m2
U j

m
D

q
o
M
SUJ1 J2

M − M
UJ

0
DTM

J1 ^ T−M
J2 ,

s46d

where we have used that from conditionm18+m28=m=m1+m2 in Eq. s43d it follows thatM =0 and
m8=m.

In the form of Eq.s46d the generating function gives us some insight into the structure of the
the twist. The first line of Eq.s46d and the first Clebsch–Gordan coefficient on the second line do
not depend on the deformation parameter" and contain only well-known functions, the 9j symbol
and the Clebsch–Gordan coefficient essentially being given by hypergeometric functions.

The summation overM in the last line eliminates the dependence on the magnetic quantum
numbersM1 andM2 of the tenor operator basis. The fact that the magnetic quantum number of the
tensor operatorsTM1

J1 ^ TM2

J2 which appear in the Drinfeld twist add up to zero,M1+M2=M =0, can
also be understood on a more abstract level. Up to isomorphism, the quantum deformation of an
enveloping algebra does not affect the Cartan subalgebra as it was stated in Theorem 2. For the
Drinfeld–Jimbo deformationU"ssu2d which we consider here this means that
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DsHd = D"sHd = H ^ 1 + 1 ^ H, s47d

which implies that the Drinfeld twistF must commute withDsHd. From

fDsHd,TM1

J1 ^ TM2

J2 g = 2sM1 + M2dsTM1

J1 ^ TM2

J2 d s48d

we conclude that only those products of tensor operators can appear inF and F−1 for which
M1+M2=0.

The dependence of Eq.s46d on the deformation parameter is contained in the contraction of
the deformed and undeformed Clebsch–Gordan coefficient overm1 andm2 in the second line. The
representation theoretic interpretation of this term is the following: We can use both, the unde-
formed and the deformed coproduct, to define a tensor product representation of two irreducible
representations with weightsj1 and j2, defining the undeformed and deformed structure maps as

r j1^ j2
ª sr j1 ^ r j2d + D andr"

j1^ j2
ª sr j1 ^ r j2d + D". s49d

Both representations can be reduced into irreducible components. Denoting the basis vectors of the
irreducible weight-j subrepresentation of the undeformed and deformed tensor representation by
u j1, j2→ j ,ml and u j1, j2→ j ,ml", respectively, we obtain

k j1, j2 → j8,mu j1, j2 → j ,ml" = o
m1,m2

SU j1 j2
m1 m2

U j8

m
DSU j1 j2

m1 m2
U j

m
D

q
. s50d

In other words the deformation is now expressed as the change of basis from the irreducible
components of tensor representations with respespect to the undeformed coproductD to those with
respect to the deformed coproductD". Again, the expression on the right-hand side of Eq.s50d is
to be understood as generating function. While theq-Clebsch–Gordan coefficient are well-known
functions for a given value ofq, little is known about its perturbative expansion in powers of".

C. Perturbative expansion

Ideally, we would like to find a closed form expression for the Drinfeld twist in each order of
". This would require a closed form expansion of Eq.s50d, which is essentially given by a sum of
the product of the ordinary hypergeometric function3F2 and its basicsq-deformedd counterpart

3w2. To our best knowledge such hybrid combinations of ordinary and basic hypergeometric
functions have not been studied in the literature yet and little is known about the perturbative
expansion of basic hypergeometric functions in powers of"=ln q or other possible perturbation
parameters such asq−q−1 and q−1. Studying the general problem of perturbative expansion of
basic hypergeometric functions is beyond the scope of this paper. This is ongoing research and
will be presented elsewhere. Here we will only expand theq-deformed Pochhammer symbol,
which is the building block of basic hypergeometric functions. This will enable us to carry out the
explicit calculation of each order of the Drinfeld twist by a Taylor series expansion of the gener-
ating functionss43d and s46d.

For our purposes it is convenient to consider theq-Pochhammer symbolfxgn which is defined
by symmetric quantum numbersfxg,

fxgn ª fxg · fx + 1g ¯ fx + n − 1g, fxg =
ex" − e−x"

e" − e−" =
sinhx"

sinh"
. s51d

Considering the logarithm of the Pochhammer symbols will turn the product of theq-numbers into
the sum of their logarithms. Using the well-known formula
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ln
sinhx

x
= o

k=1

`
22k−1B2k

ks2kd!
x2k, s52d

where B2k are Bernoulli numbers, we obtain for the expansion of the logarithm of a quantum
number

ln
fxg
x

= o
k=1

`
22k−1B2k

ks2kd!
sx2k − 1d"2k. s53d

The Pochhammer symbol can then be expressed as exponential of the sum of this power series,

fxgn

sxdn
= expSo

k=1

`
22k−1B2k

ks2kd! o
j=0

n−1

hsx + jd2k − 1j"2kD . s54d

The sum is carried out using

o
j=0

n−1

sx + jd2k =
B2k+1sx + nd − B2k+1sxd

2k + 1
, s55d

whereBksxd denotes Bernoulli polynomials. We thus get

fxgn

sxdn
= expSo

k=1

`
22k−1B2k

ks2kd! HB2k+1sx + nd − B2k+1sxd
2k + 1

− nJ"2kD . s56d

This formula could serve as starting point for a perturbative expansion of general
q-hypergeometric functions. Here it suffices to deduce from Eq.s56d the expansion of the Poch-
hammer symbol in". Up to third order we obtain

fxgn

sxdn
= 1 +

1

3
B2hB3sx + nd − B3sxd − 3nj"2 + Os"4d

= 1 +
1

36
s− 5n − 3n2 + 2n3 − 6nx+ 6n2x + 6nx2d"2 + Os"4d. s57d

This expression is polynomial inn andx to each order of". Inserting it into Eq.s27d yields the
searched-for polynomials inC^ 1 and 1̂ C. From the generating functionss43d or s46d we then
obtain the universal Drinfeld twist up to third order in".

Each orderFk
−1 of the expansionF−1=okFk

−1"k is alternatingly symmetric or antisymmetric
with respect to the exchange of tensor factors by the transposetsa^ bd=b^ a according to

tsFk
−1d = s− 1dkFk

−1. s58d

This property can be derived from the fact that the transpose of the deformed coproduct amounts
to a change of sign of the perturbation parameter, from which it follows thattsF−1s"dd
=F−1s−"d. Alternatively, it can be derived from the symmetry properties of theq-Clebsch–Gordan
coefficients with respect to the transformationq°q−1. The explicit expressions for the first three
orders of the twist we finally obtain are

F1
−1 = 2sT−1

1
^ T1

1 − T−1
1

^ T1
1d = 2T−1

1
^ T1

1 − transpose, s59ad

F2
−1 = −

1

18
C ^ C +

Î14

6
T0

2
^ C +

Î21

6
sT1

1
^ T−1

2 − T−1
1

^ T1
2d +

21

2
T−2

2
^ T2

2 −
7

4
T0

2
^ T0

2 + transpose,

s59bd
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F3
−1 =

Î2

180
s3 − 4CdT0

1
^ C +

Î7

30
T0

2
^ s9 − 2CdT0

1 +
1

75
f7 − 21sC ^ 1 + 1 ^ Cd − 12C ^ CgT−1

1
^ T1

1

+
7

2
T−2

2
^ T2

2 +
Î6

3
T0

3
^ C +

2Î2

5
fT1

3
^ s1 − 3CdT−1

1 − T−1
3

^ s1 − 3CdT1
1g + Î21T0

2
^ T0

3

+ Î105sT−2
3

^ T2
2 + T2

3
^ T−2

2 d + 18s5T−3
3

^ T2
3 + T−1

3
^ T1

3d − transpose, s59cd

where “transpose” is shorthand for the tensor transpose of all preceding terms such that each
expression becomes symmetric or antisymmetric, respectively. One can use Eqs.s40d in order to
express the result in terms of the Poincaré–Birkhoff–Witt basis. However, this yields expressions
which are much longer than those of Eqs.s59d, indicating that the tensor operator basis seems to
be the better choice within the context of Drinfeld twists.

The calculations leading to Eqs.s59d are elementary but lengthy and are best carried out using
computer algebra. With the expansions56d of theq-Pochhammer symbol at hand the Taylor series
expansion of the generating functions43d is reduced to addition and multiplication of polynomials,
operations which are implemented efficiently by all common computer algebra systems. Hence,
the explicit calculation of the Drinfeld twist to third order is not significantly limited by computing
resources in any way. In any case, by the method presented here it is possible to compute the twist
explicitly to orders which are high enough for the applications of Drinfeld twists to mathematical
physics which we had in mind.

V. CONCLUSION

Although the existence of universal Drinfeld twists can be proved rather easily, their calcula-
tion is a notoriously difficult and long standing problem. While we still did not derive a closed
form for each order in the perturbation parameter of the universal twist ofU"ssu2d, significant
progress towards this goal was presented here. In Eq.s46d we have given a generating function for
the twist to all orders which can be easily expanded in powers of", as demonstrated in Eq.s59d.
Moreover, the generating function, which is expressed in terms of basic and ordinary hypergeo-
metric functions, gives new insight into the general structure of the twist.

It is not difficult to understand why the proof of existence of the twist is so easy but the
computation is so hard. The existence proof relies mainly on the fact that the first Hochschild
cohomolgy of the enveloping algebra is zero. This means that every 1-cocycle is the coboundary
of a 0-cocycle or, in other words, every derivation is inner. But we do not know how to compute
this 0-cocycle. If in analogy to differential forms we view the inversion of the coboundary opera-
tor as a sort of integration, then the nonconstructive existence proof uses integrability but does not
tell us how to actually integrate. Just as in differential calculus, this cohomological type of
integration turns out to be a difficult problem. In contrast, the series expansion of the generating
function s46d in powers of" is a problem of differentiation. While integration is an art, differen-
tiation is a simple technique which can be left to a computer algebra system. This is the reason
why we consider the availability of a generating function as significant progress.

The computer algebra expansion of the generating function is computationally cheap and
produces expansions of the twist which will suffice for many applications. However, it is not
completely satisfactory as it produces expansion formulas like Eq.s59d containing a lot of “magi-
cal” combinatorial numbers which cannot be explained any further. In Eq.s46d the dependence of
the twist on the perturbation parameter is entirely confined to theq-Clebsch–Gordon coefficient,
that is, essentially to the basic hypergeometric function3w2 with basisq=e". Hence, the remaining
problem which still separates us from a truly closed form expression for the universal twist is the
perturbative expansion of this basic hypergeometric function in powers of". To our best knowl-
edge, the question of perturbative expansion of basic hypergeometric functions, which seems so
obvious in the context of quantum groups, has so far not recieved any systematic treatment in the
special functions literature. Therefore, we had to make in Sec. IV C our own first step in this
direction, computing a closed form expression for theq-deformed Pochhammer symbol in Eq.
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s56d. We believe that, further pursuing this approach, a closed form expansion of basic hypergeo-
metric functions and, hence, a closed form of the universal Drinfeld twist ofU"ssu2d can be
achieved.
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APPENDIX A: CALCULATION OF THE TENSOR OPERATOR BASIS

Expressing the tensor operator basis in terms of the Poincaré–Birkhoff–Witt basis amounts to
the normal ordering of Eq.s39d. While it is possible to carry out the normal ordering using the
commutation relations ofUssu2d, this turns out to be surpisingly cumbersome. Therefore, we
present an alternative approach which is much more in the spirit of this paper: We deduce the
normal ordered expression from the representations of the tensor operators.

Let us assume thatM ù0. Starting from the Wigner–Eckart theorems21d, usings38d for the
reduced matrix elements and the well-known explicit formula

SU j1 j2
m1 m2

U j

m
D = s− 1dm1−j1Î s2j + 1ds j1 + j2 − jd!

s j1 + j2 + j + 1d!s j1 − j2 + jd!s j2 − j1 + jd!

3
s j2 + j − m1d!
s j2 − j + m1d!

Îs j1 + m1d!s j2 − m2d!s j + md!
s j1 − m1d!s j2 + m2d!s j − md!

3 3F2S m1 − j1, j1 + m1 + 1,m− j

j2 − j + m1 + 1,− j − j2 + m1
D sA1d

for the Clebsch–Gordan coefficients,33 we derive for the matrix elements of the tensor operators

k j ,m8uTM
J u j ,ml = s− 1dJ+MÎ s2J + 1dsJ − Md!

s3J + 1d!sJd ! sJ + Md!
dm8,m+M

Îs− 1dMs j + m+ 1dMs− j + mdM

3 o
k

s− 1dkSJ + M

k
Ds− j − m− kdJs j + 1 −m− kdJ. sA2d

We want to deduce the element of the algebra in the Poincaré–Birkhoff–Witt basis from these
representations. Towards this end we will compare Eq.sA2d with the matrix elements of mono-
mials

k j ,m8uEpFpu j ,ml = dm8ms− 1dps− j − mdps j − m+ 1dp,

sA3d
k j ,m8uEMu j ,ml = dm8,m+M

Îs− 1dMs j + m+ 1dMs− j + mdM .

We immediately see that the second line of Eq.sA2d is the matrix element ofEM. The last line has
yet to be written in a different form. For this, we need a variant of the Pfaff–Saalschütz summation
formula

sa − cdnsb − cdn = o
p=0

n Sn

p
Ds− cdn−psa + b − c + pdn−psadpsbdp, sA4d

from which we get fora=−j −m, b= j −m+1, c=k, n=J,
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s− j − m− kdJs j − m+ 1 −kdJ = o
p=0

J SJ

p
Ds− kdJ−ps− 2m+ 1 −k + pdJ−ps− j − mdps j − m+ 1dp,

sA5d

and a variant of the Vandermonde summation formula

o
k=0

n

s− 1dkSn

k
Ds− kdqs− k − xdq = s− 1dnn ! S q

n − q
Ds− x − qd2q−n. sA6d

Inserting first Eq.sA5d and then Eq.sA6d into the last line of Eq.sA2d we obtain

o
k=0

J+M

s− 1dkSJ + M

k
Ds− j − m− kdJs j + 1 −m− kdJ = o

p=0

pøJ−M / 2
J!sJ + Md!
p!sM + pd!

S2m− 2p + J − 1

J − M − 2p
D

3s− j − mdps j − m+ 1dp, sA7d

Comparing this with the matrix elementsA3d, we obtain the equality of matrix elements,

k j ,m8uTM
J u j ,ml = s− 1dJ+MÎs2J + 1dJ ! sJ − Md ! sJ + Md!

s3J + 1d!

o
p=0

pøJ−M / 2
s− 1dp

p!sM + pd!
k j ,m8uEp+MS J + H − 1

J − M − 2p
DFpu j ,ml, sA8d

from which we can deduce Eq.s40ad. The analogous calculations forM ø0 lead to Eq.s40bd.

APPENDIX B: DERIVATION OF EQ. „44…

In order to derive Eq.s44d we recall that, while the Clebsch–Gordan coefficients reduce tensor
representations, this reduction is neither commutative nor associative. Let us denote byDj the
irreducible weight-j representation. The isomorphism which corresponds to the exchange of the
order in a product representation,Dj1 ^ Dj2→Dj1 ^ Dj2, is given by a change of sign

SU j1 j2
m1 m2

U j

m
D = s− 1d j−j1−j2SU j2 j1

m2 m1
U j

m
D , sB1d

where j1+ j2− j is always an integer. The associator which corresponds to changing the order of
reduction of a product of three irreducible representations,Dj1 ^ sDj2 ^ Dj3d j23

→ sDj1 ^ Dj2d j12
^ Dj2 is by definition given by the Racah coefficients,

SU j2 j3
m2 m3

U j23

m23
DSU j1 j23

m1 m23
U j

m
D = o

j12

SU j1 j2
m1 m2

U j12

m12
DSU j12 j3

m12 m3
U j

m
DR j12j23j

j1j2j3 , sB2d

where m12=m1+m2, m23=m2+m3. Using Eqs.sB1d and sB2d the change of the reduction of a
tensor product of four representations according to

sDj1 ^ Dj2d j12
^ sDj1 ^ Dj1d j34

→ ssDj1 ^ Dj2d j12
^ Dj3d j8 ^ Dj4 → sDj3 ^ sDj1 ^ Dj2d j12

d j8 ^ Dj4

→ ssDj3 ^ Dj1d j13
^ Dj2d j8 ^ Dj4 → sDj1 ^ Dj3d j13

^ sDj2 ^ Dj4d j24

sB3d

is then expressed as
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SU j1 j2
m1 m2

U j12

m12
DSU j3 j4

m3 m4
U j34

m34
DSU j12 j34

m12 m34
U j

m
D

= o
j8

SU j1 j2
m1 m2

U j12

m12
DSU j12 j3

m12 m3
U j8

m8
DSU j8 j4

m8 m4
U j

m
DR j8 j34j

j12j3j4

= o
j8

SU j1 j2
m1 m2

U j12

m12
DSU j3 j12

m3 m12
U j8

m8
DSU j8 j4

m8 m4
U j

m
DR j8 j34j

j12j3j4s− 1d j8−j12−j3

= o
j13,j8

SU j3 j1
m3 m1

U j13

m13
DSU j13 j2

m13 m2
U j8

m8
DSU j8 j4

m8 m4
U j

m
DR j13j12j8

j3j1j2 R j8 j34j
j12j3j4s− 1d j8−j12−j3

= o
j13,j24

SU j1 j3
m1 m3

U j13

m13
DSU j2 j4

m2 m4
U j24

m24
DSU j13 j24

m13 m24
U j

m
D

3 o
j8

R j8 j24j
j13j2j4R j13j12j8

j3j1j2 R j8 j34j
j12j3j4s− 1d j8−j12+j13−j1−2j3, sB4d

wheremij =mi +mj for i , j P h1,2,3,4j , i , j . Next we express the Racah coefficients in terms of
6j symbols,

R j12j13j
j1j2j3 = s− 1d j1+j2+j3+jÎs2j12 + 1ds2j13 + 1dH j1 j2 j12

j3 j j 13
J . sB5d

Using the symmetries of the 6j symbol and the definition of the 9j symbol we can rewrite the last
line of Eq. sB4d as

o
j8

R j8 j24j
j13j2j4R j13j12j8

j3j1j2 R j8 j34j
j12j3j4s− 1d j8−j12+j13−j1−2j3

= ao
j8

s− 1d2j8s2j8 + 1dH j13 j2 j8

j4 j j 24
JH j3 j1 j13

j2 j8 j12
J

3H j12 j3 j8

j4 j j 34
J = ao

j8

s− 1d2j8s2j8 + 1d

3H j3 j13 j1
j2 j12 j8

JH j4 j24 j2
j13 j8 j

JH j34 j j 12

j8 j3 j4
J

= a5 j1 j2 j12

j3 j4 j34

j13 j24 j
6 , sB6d

where the factora is defined as

a ª s− 1d2jÎs2j12 + 1ds2j34 + 1ds2j13 + 1ds2j24 + 1d. sB7d

From Eqs.sB4d and sB6d we finally obtain

SU j1 j2
m1 m2

U j12

m12
DSU j3 j4

m3 m4
U j34

m34
DSU j12 j34

m12 m34
U j

m
D

= o
j13,j24

a5 j1 j2 j12

j3 j4 j34

j13 j24 j
6SU j1 j3

m1 m3
U j13

m13
DSU j2 j4

m2 m4
U j24

m24
DSU j13 j24

m13 m24
U j

m
D . sB8d

053519-16 Christian Blohmann J. Math. Phys. 46, 053519 ~2005!

                                                                                                                                    



1V. G. Drinfeld, Leningrad Math. J.1, 321 s1990d.
2V. G. Drinfeld, Sov. Math. Dokl.32, 254 s1985d.
3M. Jimbo, Lett. Math. Phys.10, 63 s1985d.
4Y. I. Manin, Quantum Groups and Non-Commutative GeometrysCentre de Recherche Mathématiques, Montréal, 1988d.
5L. D. Faddeev, N. Y. Reshetikhin, and L. A. Takhtajan, Leningrad Math. J.1, 193 s1990d.
6U. Carow-Watamura, M. Schlieker, M. Scholl, and S. Watamura, Z. Phys. C48, 159 s1990d.
7V. G. Drinfeld, Leningrad Math. J.1, 1419s1990d.
8M. Gerstenhaber, A. Giaquinto, and S. D. Schack, “Quantum symmetry,” inQuantum Groups (Leningrad, 1990),
Lecture Notes in Math. Vol. 1510sSpringer, Berlin, 1992d, pp. 9–46.

9G. Fiore and P. Schupp, Nucl. Phys. B470, 211 s1996d.
10V. Terras, Lett. Math. Phys.48, 263 s1999d.
11J. M. Maillet and J. Sanchez de Santos, “Drinfeld twists and algebraic Bethe ansatz,”L. D. Faddeev’s Seminar on

Mathematical Physics, Am. Math. Soc. Transl. Vol. 201, Ser. 2sAmerican Mathematical Society, Providence, RI, 2000d,
pp. 137–178.

12H. Grosse, J. Madore, and H. Steinacker, “Field theory on the q-deformed fuzzy sphere. II: Quantization,” J. Geom.
Phys. 43, 205 s2002d.

13G. Racinet, “Doubles mélanges des polylogarithmes multiples aux racines de l’unité,” Publ. Math., Inst. Hautes Etud.
Sci., 2002, No. 95, pp. 185–231.

14A. Giaquinto, J. Pure Appl. Algebra79, 169 s1992d.
15C. Blohmann, J. Math. Phys.44, 4736s2003d.
16F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Ann. Phys.sN.Y.d 111, 61 s1978d.
17M. Gerstenhaber, Ann. Math.79, 59 s1964d.
18N. Seiberg and E. Witten, J. High Energy Phys.09, 032 s1999d.
19J. Madore, S. Schraml, P. Schupp, and J. Wess, Eur. Phys. J. C16, 161 s2000d.
20B. Jurco, L. Moller, S. Schraml, P. Schupp, and J. Wess, Eur. Phys. J. C21, 383 s2001d.
21M. R. Douglas and N. A. Nekrasov, Rev. Mod. Phys.73, 977 s2001d.
22R. J. Szabo, Phys. Rep.378, 207 s2003d.
23S. Minwalla, M. Van Raamsdonk, and N. Seiberg, J. High Energy Phys.02, 020 s2000d.
24A. Matusis, L. Susskind, and N. Toumbas, J. High Energy Phys.12, 002 s2000d.
25L. Alvarez-Gaume and M. A. Vazquez-Mozo, .Nucl. Phys. B668, 293 s2003d.
26P. Bonneau, M. Gerstenhaber, A. Giaquinto, and D. Sternheimer, J. Math. Phys.45, 3703s2004d.
27F. Bonechi, R. Giachetti, E. Sorace, and M. Tarlini, Commun. Math. Phys.169, 627 s1995d.
28G. Fiore, Rev. Math. Phys.12, 327 s2000d.
29A. A. Stolin, P. P. Kulish, and E. V. Damaskinski�, Zap. Nauchn. Semin. S.-Petersburg. Otdel. Mat. Inst. SteklovsPOMId,

291, 2002; Vopr. Kvant. Teor. Polya i Stat. Fiz., pp. 17, 228–244, 282.
30L. Dąbrowski, F. Nesti, and P. Siniscalco, “On the Drinfeld twist forUhsls2d,” General Relativity and Gravitational

Physics (Rome, 1996)sWorld Scientific River Edge, NJ, 1997d, pp. 293–297.
31T. L. Curtright, G. I. Ghandour, and C. K. Zachos, J. Math. Phys.32, 676 s1991d.
32S. Majid, Foundations of Quantum Group TheorysCambridge University Press, Cambridge, 1995d.
33A. Klymik and K. Schmüdgen,Quantum Groups and Their RepresentationssSpringer, New York, 1997d.

053519-17 Reconstruction of universal Drinfeld twists J. Math. Phys. 46, 053519 ~2005!
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We study bifurcations of eigenvalues from the endpoints of the essential spectrum
in the linearized nonlinear Schrödinger problem in three dimensions. We show that
a resonance and an eigenvalue of positive energy at the endpoint may bifurcate
only to a real eigenvalue of positive energy, while an eigenvalue of negative energy
at the endpoint may also bifurcate to complex eigenvalues. ©2005 American In-
stitute of Physics.fDOI: 10.1063/1.1901345g

I. INTRODUCTION

We consider the nonlinear SchrödingersNLSd equation in three dimensions,

ict = − Dc + Usxdc + Fsucu2dc, s1.1d

wheresx,tdPR33R andcPC. For suitable functionsUsxd andFsucu2d, the NLS equations1.1d
possesses special solutions,

c = fsxdeivt, v . 0, s1.2d

wherefsxd is an exponentially decreasing solution of the elliptic problem,

− Df + vf + Usxdf + Fsf2df = 0, s1.3d

such thatf :R3→R and fPC`. Linearization of the nonlinear Schrödinger equations1.1d with
the ansatz,

c = sfsxd + wsxdeizt + ūsxde−iz̄tdeivt, s1.4d

leads to the spectral problem,

Lc = zc, s1.5d

wherec=sw ,udT and the linear operatorL on L2sR3°C2d takes the formL=s3H, where

s3 = S1 0

0 − 1
D, H = S− D + v + fsxd gsxd

gsxd − D + v + fsxd
D , s1.6d

and

fsxd = Usxd + Fsf2d + F8sf2df2, gsxd = F8sf2df2.

We assume thatUsxdPC` is exponentially decreasing andFPC` ,Fs0d=0, such thatf ,g:R3

→R are exponentially decayingC`-functions.
We denote the point spectrum ofL as spsLd and the essential spectrum ofL as sesLd. We

have shown in Cuccagnaet al. s2005d that the spectrum ofL is associated to the sign of the energy
functional defined inH1sR3°C2d,
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h = kc,Hcl. s1.7d

In particular, an eigenvalue is of positivesrespectively, negatived energy ifh.0 srespectively,h
,0d. We showed in Cuccagnaet al. s2005d that the nonsingular part ofsesLd has always positive
energy. We also proved that an embedded eigenvaluez of positive energyh.0 disappears under
a generic perturbation in the context of operatorL, while one of negative energyh,0 bifurcates
into isolated complex eigenvalues ofspsLd. The latter result generalizes an older work by Gril-
lakis s1990d, while the former one is new and consistent with the theory of embedded eigenvalues
for standard Schrödinger operators.

In this paper we apply a generic perturbation toL in the case when the pointsz= ±v, that are
thresholds ofsesLd, are either eigenvalues or resonances of rank one. We show how the resonance
or eigenvalue can either disappear in a different sheet of the Riemann surface associated to the
resolvent ofL or move away from the essential spectrum becoming an isolated real eigenvalue, or
a pair of isolated complex eigenvalues. Furthermore we study the dependence of this singularity
on the perturbation, obtaining an analogue of the similar work by Klaus and Simons1980d on
standard Schrödinger operators. We note that the resonance and eigenvalues at the endpoints are
typically eliminated by hypothesis in the analysis of the NLS equations1.1d and the linearized
NLS problems1.5d fCuccagnas2001d, Perelmans2004d, Schlags2004dg

One application of our result is the analysis of the NLS equations1.1d in the case when
operatorH0=−D+Usxd supports −m1, ¯ ,−mN negative eigenvalues and when the threshold 0
is either a resonance or an eigenvalue. It is well knownfTsai and Yaus2002dg that the NLS
equations1.1d admits then nonlinear standing wave solutions of forms1.2d with v close tomn for
any preassignedn and these standing wave solutions are small. Their stability properties depend
crucially on the spectral properties of the relatedL which turns out to be a small perturbation of
s3sH0+vd by the smallness of the standing wave. In the case ofn=1, the discrete spectrum ofL
is close to that ofs3sH0+vd, in particular has at least 2N elements with the point 0 of multiplicity
2. Our paper can be used to track the threshold singularity of operatorL under perturbation.

Another possible application occurs when we add a small nonlinear perturbationedFsucu2dc to
the main equations1.1d. Under appropriate conditions, the ground state can be shown to depend
smoothly one. Now, if for e=0 and a given value ofv operatorL has resonances or eigenvalues
at the thresholds, one can ask what happens to these singularities for nearbyeÞ0. The present
paper gives a tool for analysis, avoiding details of specific applications.

For earlier work on “edge bifurcations,” which is the name for bifurcations of resonances from
the endpoints, see Kapitula and Sandstedefs2002d, s2004dg where the main tool is the Evans
function. Since the Evans function seems better suited to one-dimensionals1Dd problems, our
present work is based on theory by Jensen and Katos1979d for scalar Schrödinger operators,
applied here to the linearized NLS problems1.5d. Notice that our work is more general than
Kapitula and Sandstedefs2002d, s2004dg since it allows also eigenvalues at the endpoints and it
does not depend on whether the solutionfsxd is a ground state. Furthermore we answer to a
specific questionfsee Corollary 5.4 in Kapitulaet al. s2004dg by showing that it is impossible for
a resonant pole to become an unstablescomplexd eigenvalue.

Our paper is structured as follows. The formalism of operator resolvent near the endpoints is
exposed in Sec. II. Bifurcations of a simple resonance and a simple eigenvalue from the endpoint
are described in Secs. III and IV, respectively. Section V gives the proof of Lemma 4.7.

II. OPERATOR RESOLVENT NEAR THE ENDPOINTS

Using standard Pauli matricess2 ands3, we writeL explicitly as

L = s− D + v + fsxdds3 + igsxds2, s2.1d

such thats3Ls3=L* . We also decompose the operatorL into the unbounded differential partL0

and bounded potential partVsxd as L=L0+Vsxd, where L0=s−D+vds3 and Vsxd= fsxds3
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+ igsxds2. We assume thatVsxd is continuous, exponentially decaying matrix-valued function, such
that

uVi,jsxdu ø Ce−auxu, ∀ x P R3, 1 ø i, j ø 2, s2.2d

for somea.0,C.0. In these notations, the spectral problems1.5d is rewritten as

sL0 − zdc = − Vsxdc. s2.3d

We use the weightedHs
t andLs

2 spaces defined as

Hs
t = h f:sv − Ddr/2f P Ls

2j , s2.4d

Ls
2 = h f:s1 + uxu2ds/2f P L2j . s2.5d

We also use the standard Fourier transform inL2,

fspd =
1

s2pd3/2E
R3

fsxdeipx dx, fsxd =
1

s2pd3/2E
R3

fspde−ipx dp. s2.6d

We denote the operator resolvent asRszd=sL−zd−1 andR0szd=sL0−zd−1, such that

Rszd = sI + R0szdVd−1R0szd. s2.7d

The domain of the essential spectrumsesLd is located atDe=s−` ,−vgø fv ,`d, such that the
pointsz= ±v are endpoints ofsesLd.

Let us consider bifurcations from the endpointz=v, since bifurcations from the other end-
point z=−v are obtained from the symmetry of the problems2.3d. Whenz¹De but uz−vu is small,
we introduce the parametrization,

z= v − z2, Rez . 0, s2.8d

and consider the kernel ofR0szd;R0sv−z2d ,Rez.0 in the explicit form

R0szd =
s3

4pux − yuFe−zux−yu 0

0 e−Î2v−z2ux−yu G . s2.9d

Whenz→0, the resolventR0szd has the Taylor series expansion inBsHs
−1,H−s

1 d ,s.
3
2,

R0szd = R0 − zR1 + z2R2 − z3R3 + Osz4d, Rez . 0, s2.10d

where

R0 =
s3

4pux − yuF1 0

0 e−Î2vux−yu G, R1 =
1

4p
F1 0

0 0
G , s2.11d

R2 =
s3

8p3ux − yu 0

0
e−Î2vux−yu

Î2v
4, R3 =

1

24p
F1 0

0 0
Gux − yu2. s2.12d

If the functioncsxd solves the problems2.3d for z=v, the componentsc1sxd andc2sxd satisfy the
equations
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Dc1 = fc1 + gc2, s2.13d

sD − 2vdc2 = gc1 + fc2. s2.14d

Define

C0 =E
R3

sfc1 + gc2ddx. s2.15d

The bounded linear operatorsI +R0Vd is defined inL−s
2 ,s.

1
2. When it has a kernel, thenuC0u

,` for the functioncsxd. The following two cases are different:sid C0Þ0 andsii d C0=0. The
first case is referred to as the resonance and the second case is referred to as the eigenvalue of the
linearized NLS problems2.3d.

Since sfc1+gc2dPHs
2,s.0 and fsxd ,gsxd decay exponentially, it follows froms2.14d that

c2sxd decays exponentially too, such thatc2PHs
2,s.0. WhenC0Þ0,c1sxd decays algebraically

as 1/uxu, such thatc1PH−s,s.
1
2. When C0=0,c1sxd decays more rapidly as 1/uxu2, such that

c1PH−s,s.−1
2, including the energy spaceH0

1,L2. We summarize that

C0 Þ 0, KersI + R0Vd P H−s
1 , s.

1
2 , s2.16d

C0 = 0, KersI + R0Vd P H−s
1 , s.

1
2 . s2.17d

In either case, we study the kernel of the adjoint operator KersI +V*R0d and the generalized kernel
NgsI +R0Vd=øn=1

` KersI +R0Vdn in the following two lemmas.
Lemma 2.1: Let cPKersI +R0Vd ,cPH−s

1 ,s.
1
2. Then, f=V*s3cPKersI +V*R0d ,f

PHs
−1,s.

1
2, such that V*s3 is an injection ofKersI +R0Vd to KersI +V*R0d.

Proof: It follows from direct computations forcÞ0 that

sI + V*R0dV*s3c = V*sI + R0V
*ds3c = V*s3sI + R0Vdc = 0,

such thatf=V*s3cPKersI +V*R0d and fPHs
−1,s.

1
2. We show thatfÞ0. SinceV*s3=s3V,

thenf=s3Vc=0 implies thatVc=0 and sL0−vdc=0, or equivalently,Dc1=0 andsD−2vdc2

=0. However, ifcPH−s
1 ,s.

1
2, then the latter equations imply thatc=0, which is impossible.j

Lemma 2.2: The generalized kernel NgsI +R0Vd in H−s
1 ,s.

1
2, coincides withKersI +R0Vd.

Proof: Let cPKersI +R0Vd. The generalized kernelNgsI +R0Vd is bigger than the kernel
KersI +R0Vd iff there exists a solution of the derivative equation,

sI + R0Vdc1 = c, c1 P H−s
1 , s.

1
2 . s2.18d

Then,

kc,V*s3cl = ksI + R0Vdc1,V
*s3cl = kc1,V

*sI + R0V
*ds3cl = kc1,V

*s3sI + R0Vdcl = 0,

such thatkc ,s3Vcl=−kc ,s3sL0−vdcl=0. Sinces3sL0−vd=−D+v−vs3 and cÞ0, the qua-
dratic form kc ,s3Vcl is nonzero forcPH−s

1 ,s.
1
2, such that no solutionc1sxd exists in the

problems2.18d. j

Since geometric and algebraic dimensions of the kernel ofsI +R0Vd coincide inH−s
1 ,s.

1
2, we

introduce a natural splitting,

H−s
1 = KersI + R0Vd % fKersI + V*R0dg', s2.19d

Hs
−1 = fKersI + R0Vdg'

% KersI + V*R0d, s2.20d

where' is defined in terms of the pairing ofH−s
1 andHs

−1. We denoteS0 as the projection ofH−s
1

to KersI +R0Vd, associated to the splittings2.19d, andS0
* as the dual projection in the dual space
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Hs
−1, associated to the splittings2.20d. In what follows, we assume that the dimension of KersI

+R0Vd is one. The two cases ins2.16d and s2.17d are considered separately in Secs. III and IV.

III. BIFURCATION OF A SIMPLE RESONANCE

Here we assume that KersI +R0Vd�H0
1, such thatz=v is a resonance ofsesLd but not an

eigenvalue. It is clear froms2.13d in the case ofC0Þ0 that there is only one eigenvectorcsxd
which decays as 1/uxu and belongs toH−s

1 ,s.
1
2. Therefore, the resonance atz=v is always simple,

such that the dimension of KersI +R0Vd in H−s
1 ,s.

1
2 is one. SinceC0Þ0, we normalize the

eigenvectorcPKersI +R0Vd by the condition

E
R3

sfc1 + gc2ddx = Î4p, s3.1d

such that

R1Vc =
1

Î4p
e1, e1 = F1

0
G .

By Lemma 2.2, we havekc ,V*s3clÞ0, such that the spectral projection, associated with the
splitting s2.19d, is

S0 = c
k·,V*s3cl
kc,V*s3cl

. s3.2d

Following the analysis of Jensen and Katos1979d, we study the Taylor series expansions ofsI
+R0szdVd nearz=v, or equivalentlyz=0.

Lemma 3.1: LetS=I−S0. The following statements are true:

sid OperatorSsI +R0VdS is invertible inBsSH−s
1 ,SH−s

1 d with the inverse denoted byK.
sii d Operator S0

*V*s3R1VS0=S0
*V*R1VS0 is invertible in BsS0H−s

1 ,S0
*Hs

−1d with the inverse
ck· ,cl.

Proof: To provesid, we notice that the splitting ins2.19d ands2.20d is invariant forsI +R0Vd,
such thatSsI +R0VdS is the restriction ofsI +R0Vd on fKersI +V*R0dg'. Since it has an empty
kernel andR0V is compact, the statementsid follows from the Fredholm alternative theorem.

To prove sii d, we denote the dual ofc as fPS0
*Hs

−1#KersI +V*R0d, such thatkc ,fl=1.
ThenS0

* =fk· ,cl and

S0
*V*R1VS0c =

1
Î4p

S0
*V*e1 =

1
Î4p

fke1,Vcl = f,

where the last equality is due to normalizations3.1d. Therefore,S0
*V*R1VS0=fk· ,fl, which has

the inverseck· ,cl. j

Lemma 3.2: The following expansion is valid inBsH−s
1 ,H−s

1 d for s.
5
2 near z=0:

sI + R0szdVd−1 = − z−1ck·,V*s3cl + K + Oszd, Rez . 0. s3.3d

Proof: Let

X = SH−s
1

% S0H−s
1 = H−s

1 , Y = SH−s
1

% S0
*Hs

−1

and
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B =FS 0

0 z−1
2S0

G, C =FS 0

0 z−1
2S0

*V*s3
G .

If Su=0, thenuPS0H−s
1 andS0

*V*s3 is injective by Lemma 2.1 and definition ofS0
* . As a result,

B :X°H−s
1 is an isomorphism, whileC :H−s

1 °Y is injective. LetA;CsI +R0szdVdB. Then,

A = CsI + R0VdB − zCR1VB + Osz2d = FSsI + R0VdS 0

0 − S0
*V*s3R1VS0

G + Oszd.

If A is invertible,B is surjective, andC is injective, then, by Lemma 3.12 of Jensen and Kato
s1979d, we have

sI + R0szdVd−1 = BA−1C,

such that the expansions3.3d holds by the Neumann expansion argument. j

Using s2.7d, s2.10d, ands3.3d, we have the following result.
Corollary 3.3: The following expansion is valid inBsHs

−1,H−s
1 d for s.

5
2 near z=0:

Rszd = z−1ck·,s3cl + Os1d, Rez . 0. s3.4d

In order to work inL2 rather than in a weighted spaceL−s
2 ,s.

1
2, we use the Birman–Schwinger

formulation of the spectral problems2.3d for V=B*A fCuccagnaet al. s2005dg;

sI + Q0szddC = 0, Q0szd = AR0szdB* , zP C \ De, s3.5d

where

C = − Ac, c = R0szdB*C. s3.6d

It is clear from s2.9d that Q0szd;Q0sv−z2d, initially defined for Rez.0, admits an analytical
extension in an open set aroundz=0 with values inBsL2,H2d, such thatQ0=Qs0d is well defined.
Moreover, for any positive integern, the mapc°−Ac is an isomorphism,

KersI + R0Vdn , L−s
2 ° KersI + Q0dn , L2, s.

1
2 , s3.7d

such that the inverse map isC°R0B
*C. By Lemma 2.2, there exists ansI +Q0d-invariant split-

ting,

L2 = KersI + Q0d % fKersI + Q0
*dg'. s3.8d

We denoteP0 by the projection ofL2 on KersI +Q0d andP0
* by the dual projection.

With the use of Corollary 3.3, we consider the family of operatorsL1=L+eV1, where the
perturbation potentialV1sxd satisfies the same assumption as the potentialVsxd, while the unper-
turbed operatorL has a simple resonance. LetR1szd=sL1−zd−1 and defineQszd=A1RszdB1

* and
Q1szd=A1R1szdB1

* =sI +eQszdd−1Qszd, whereV1=B1
*A1. We can always factorizeV1 so thatA1

=A. It follows from s2.7d with A1=A that

Qszd = sI + AR0szdB1
*d−1AR0szdB1

* = sI + Q0szdd−1AR0szdB1
* .

We again use parametrizations2.8d and denoteQszd;Qsv−z2d ,Rez.0. SincesI +Q0szdd−1 can
be extended meromorphically from Rez.0 to Rezø0, thenQszd is a meromorphic function of
zPC. Similarly, Q1szd is also a meromorphic function ofzPC.

The main results of this section are formulated in the following two propositions.
Proposition 3.4: Lete be a small positive parameter. Ifkc ,V1

*s3cl,0, thenspsL1d includes
a real eigenvalue zsed ,zsed,v, such that

zsed = v − e2kc,V1
*s3cl2 + ose2d. s3.9d
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If kc ,V1
*s3cl.0, then spsL1d does not include an eigenvalue in the neighborhood of z=v. In

both cases, resonance at z=v disappears ateÞ0.
Proof: It follows from Corollary 3.3 that

Qszd = z−1Ack·,B1s3cl + Qcszd,

whereQcszd is bounded for smalluzu. Then for Rez.0, we have

Q1szd = fI + ez−1sI + eQcszdd−1Ack·,B1s3clg−1sI + eQcszdd−1Qszd, s3.10d

which can be extended meromorphically from Rez.0 to Rezø0. By Fredholm theorem, the first
factor on the right-hand side ofs3.10d has singularities atz=zsed, wherezsed is the solution of the
linear equation,

z + ekc,V1
*s3cl − e2kQcs0dAc,B1s3cl + Ose3d = 0. s3.11d

By implicit function theorem, there is a unique solutionz=zsed for small e, such that

zsed = − ekc,V1
*s3cl + 0se2d. s3.12d

The mapz=Îv−z transforms the domainD=hzPC :z¹ fv ,`dj into the first sheet of the Riemann
surfaceD1=hzPC :Rez.0j, which is connected with the second sheetD2=hzPC :Rez,0j.
When the root ofs3.11d belongs toD1, the corresponding pointzPD is the eigenvalue ofL1, at
least for smalle, since the singularities ofQ1szd=AR1szdB1

* coincide with the singularities of
R1szd. When the root ofs3.11d belongs toD2, the corresponding pointz belongs to the compliment
of the closure ofD in the Riemann surface, which continuesD acrosszP fv ,`d. As a result, it
does not belong to the closure ofD, such that it is not an eigenvalue. j

Proposition 3.5: Ife.0 and kc ,V1
*s3cl,0, the new eigenvalue zsed with the corresponding

eigenvectorcesxd has the positive energy norms1.7d, such that

kce,Hcel . 0, ∀ e . 0. s3.13d

Proof: Using s3.5d, we look for a solution of the problem:

sI + AR0szseddsB* + eB1
*ddsC + C̃ed = 0,

whereC=−Ac andC̃eP fKersI +Q0
*dg'. Projecting the equation onfKersI +Q0

*dg' with operator
P0

* , we have the problem,

FsC̃e,ed = P0
*sI + AR0szseddsB* + eB1

*ddC̃e + eP0
*AR0szseddB1

*C + P0
*AfR0szsedd − R0gB*C = 0,

whereFs0,0d=0 and

]F

]C̃e

s0,0d = P0
*sI + Q0

*d.

SinceP0
*sI +Q0

*d is an isomorphism infKersI +Q0
*dg', the functionC̃e is a smooth function ofe, by

implicit function theorem. Therefore, we define

ce = R0szseddsB* + eB1
*dsC + C̃ed.

Since R0szseddPBsLs
2,H−s

2 d and sB* +eB1
*dsC+C̃edPLs

2,s.
1
2 are continuous ine at e=0, we

conclude that
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lim
e→0+

cesxd = csxd, ce P L−s
2 , s.

1
2 .

It follows from the systems2.13d ands2.14d in the cases2.16d thatc1¹L2sRd andc2PL2sRd. By
Fatou lemma, we have the limit

lim
e→0

kce,Hcel = vic1iL2
2 − vic2iL2

2 = + `.

By continuity, the inequalitys3.13d holds fore.0. j

IV. BIFURCATION OF A SIMPLE EIGENVALUE

Here we assume that KersI +R0Vd#H0
1, such thatz=v is an eigenvalue ofspsLd. Let c

PKersL−vd,L2 and we assume that dim KersL−vd=1. Let P0 be the spectral projection inL2

onto KersL−vd, such that

P0 = c
k·,s3cl
kc,s3cl

. s4.1d

It is proved in Cuccagnaet al. s2005d, Sec. III that a simple eigenvalue has non zero energys1.7d
such thatkc ,s3clÞ0. SinceC0=0 in s2.15d, it is clear thatR1Vc=0. Furthermore, we have the
following result.

Lemma 4.1: Letu ,v be two functions in Hs
−1,s.

5
2, such that R1u=R1v=0 and ke1,ul

=ke1,vl=0, wheree1=s1,0dT. Then,

kR2u,vl = − kR0u,R0vl. s4.2d

Proof: The proof is given with a direct computation

kR2u,vl = lim
z→0

z−2kfR0szd − R0gu,vl = lim
z→0

z−27s33
1

p2 + z2 −
1

p2 0

0
1

p2 + 2v − z2 −
1

p2 + 2v
4û,v̂8

= −73
1

p4 0

0
1

sp2 + 2vd2
4û,v̂8 = − kR0u,R0vl,

whereûspd is the Fourier transform ofusxd, defined bys2.6d. j

We apply the splitting ofH−s
1 ,s.−1

2, defined bys2.19d, with projectionS0 to KersI +R0Vd,
such thatS=I−S0.

Lemma 4.2: The following statements are true:

sid P0
*V*R2s3VP0=−P0

*s3P0 and S0
*V*s3R2VS0=−S0

*s3S0.
sii d OperatorS0

*s3S0 is invertible inBsS0H−s
1 ,S0

*Hs
−1d, with the inverseP0s3.

Proof: To provesid, we note thats3VP0u andVP0v for anyu ,vPH−s
1 ,s.−1

2 satisfy assump-
tions of Lemma 4.1 and, therefore,
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kR2s3VP0u,VP0vl = − kR0s3VP0u,R0VP0vl = − ks3P0u,P0vl = − kP0
*s3P0u,vl.

The second part ofsid follows from the relationsP0S0=S0 andS0
*P0

* =S0
* .

To provesii d, let fPS0
*Hs

−1#KersI +V*R0d be the dual ofc, such thatkc ,fl=1. Therefore,

S0 = ck·,fl, S0
* = fk·,cl, S0

*s3S0 = fk·,flkc,s3cl,

such that

sS0
*s3S0d−1 = c

k·,cl
kc,s3cl

= P0s3.

j

Lemma 4.3: The following expansion is valid inBsH−s
1 ,H−s

1 d for s.
5
2 near z=0:

sI + R0szdVd−1 = − z−2P0V + z−1P0VR3VP0V + Os1d, Rez . 0. s4.3d

Proof: The proof is similar to that of Lemma 3.2. Let

X = SH−s
1

% S0H−s
1 = H−s

1 , Y = SH−s
1

% S0
*Hs

−1

and

B = FS 0

0 z−1S0
G, C = FS 0

0 z−1S0
*V*s3

G .

If Su=0, thenuPKersI +R0Vd andV*s3 is injective in KersI +V*R0d by Lemma 2.1. As a result,
B :X°X is surjective, whileC :X°Y is injective. LetA;CsI +R0szdVdB. Using the Taylor series
expansions2.10d, we have

A = A0 − zA1 + Osz2d,

where

A0 = FSsI + R0VdS 0

0 S0
*V*s3R2VS0

G, A1 = FSR1VS 0

0 S0
*V*s3R3VS0

G .

By Neumann expansions, we haveA−1=A0
−1+zA0

−1A1A0
−1+Osz2d, such that

A−1 = FK0 0

0 − sS0
*s3S0d−1G + zFK0SR1VSK0 0

0 sS0
*s3S0d−1S0

*V*s3R3VS0sS0
*s3S0d−1G + Osz2d,

whereK0=sSsI +R0VdSd−1. SincesI +R0szdVd−1=BA−1C, the expansions4.3d holds. j

Using s2.7d, s2.10d, and s4.3d, as well asP0VR0=−P0 andPVR1=0, we have the following
result.

Corollary 4.4: The following expansion is valid inBsHs
−1,H−s

1 d for s.
5
2 near z=0:

Rszd = z−2P0 − z−1P0VR3VP0 + Os1d, Rez . 0. s4.4d

Similar to Sec. III, we use Corollary 4.4 and consider the family of operatorsL1=L+eV1sxd,
where the perturbation potentialV1sxd satisfies the same assumption as the potentialVsxd, while
the unperturbed operatorL has a simple eigenvalue. LetR1szd=sL1−zd−1 and defineQszd
=ARszdB1

* and Q1szd=AR1szdB1
* =sI +eQszdd−1Qszd, where V1=B1

*A. As in Sec. III, functions
Qszd andQ1szd can be meromorphically extended from Rez.0 to Rezø0. The main result of
this section is formulated in the following proposition.

Proposition 4.5: Lete be a small positive parameter and letkR3Vc ,V*s3clÞ0. Then,

sid eigenvalue at z=v disappears aseÞ0.
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sii d Let kc ,s3cl,0. Then spsL1d near z=v includes one real eigenvalue zsed,v if
kc ,V1

*s3cl.0 and two complex eigenvalues z1,2sed if kc ,V1
*s3cl,0. Asymptotic approxi-

mations of the eigenvalues zsed and z1,2sed are given by

zsed = v + e
kc,V1

*s3cl
kc,s3cl

+ Ose3/2d s4.5d

and

Resz1,2sedd = v + e
kc,V1

*s3cl
kc,s3cl

+ Ose2d, s4.6d

Imsz1,2sedd = ± e3/2Îkc,V1
*s3cl

kc,s3cl
kR3Vc,V*s3clkc,V1

*s3cl
kc,s3cl2 + Ose2d. s4.7d

siii d Let kc ,s3cl.0. ThenspsL1d near z=v includes one real eigenvalue zsed,v, given by
s4.5d, if kc ,V1

*s3cl,0 and no eigenvalues ifkc ,V1
*s3cl.0.

The proof of Proposition is based on the following elementary result.
Lemma 4.6: Consider a quadratic equation,

z2 − ezFse,zd + eGse,zd = 0, s4.8d

where Fse ,zd and Gse ,zd are analytic ine and z at the points0, 0d, such that Gs0,0dÞ0 and

U ]Fs0,zd
]z

U
z=0

= U ]Gs0,zd
]z

U
z=0

= 0. s4.9d

Then, for smalle, the quadratic equations4.8d has exactly two solutionsz1,2sed, such thatuz jsed
−z j0sedu=Ose3/2d, wherez j0sed , j =1, 2, are solutions of the quadratic equation

z2 − ezFs0,0d + eGs0,0d = 0. s4.10d

Proof: Let m=e1/2 and substitutez=mj. Introducing another parameterl, we rewrite the
quadratic equations4.8d in the form,

j2 − mjFslm2,lmjd + Gslm2,lmjd = 0. s4.11d

The casel=1 givess4.8d, while the casel=0 givess4.10d. SinceGs0,0dÞ0 by assumption, there
exist two analytical solutions ofs4.11d, by the implicit function theorem, which are defined for
small m.0 andlP f0,1g. Since

js1,md − js0,md =E
0

1

]ljsl,mddl,

we apply implicit differentiation ofs4.11d and find that

f2j − mFslm2,lmjd − lm2j]2Fslm2,lmjd + lm]2Gslm2,lmjdg]lj − m3j]1Fslm2,lmjd

− m2j2]2Fslm2,lmjd + m2]1Gslm2,lmjd + mj]2Gslm2,lmjd = 0,

where]1 and]2 are derivatives in the first and second arguments. Under constraintss4.9d, we have
]lj=Osm2d, such thatuzs1,md−zs0,mdu=Osm3d. j

Proof of Proposition 4.5:It follows from Corollary 4.4 that

Qszd = z−2AP0B1
* − z−1AP0VR3VP0B1

* + Qcszd, s4.12d

whereQcszd is bounded for smallz. As a result, for Rez.0, we have
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Q1szd = fI + esI + eQcszdd−1fz−2AP0B1
* − z−1AP0VR3VP0B1

*gg−1sI + eQcszdd−1Qszd,

which can be extended meromorphically for Rezø0. Singularities ofQ1szd nearz=0 correspond
to zeros of

detFz2 + esI + eQcszdd−1SAc
kB1

* · ,s3cl
kc,s3cl

− zAc
kR3VP0B1

* · ,V*s3cl
kc,s3cl

DG .

The determinant equation can be written as the quadratic equations4.8d, whereFse ,zd andGse ,zd
are defined for Rez.0 as

Fse,zd =
kR3Vc,V*s3cl

kc,s3cl2 kB1
*sI + eQcszdd−1Ac,s3cl, s4.13d

Gse,zd =
1

kc,s3cl
kB1

*sI + eQcszdd−1Ac,s3cl, s4.14d

and they can be analytically continued to Rezø0. It is clear froms4.13d and s4.14d that

Fs0,zd =
kR3Vc,V*s3clkc,V1

*s3cl
kc,s3cl2 , Gs0,zd =

kc,V1
*s3cl

kc,s3cl
,

such that the conditions4.9d is satisfied. By Lemma 4.6, there exist two solutions ofs4.8d in the
Ose3/2d-neighborhood of solutions ofs4.10d, when kc ,V1

*s3clÞ0. Solutions ofs4.10d are ex-
panded as

z±0sed = ± e1/2Î−
kc,V1

*s3cl
kc,s3cl

+
e

2

kR3Vc,V*s3clkc,V*s3cl
kc,s3cl2 + Ose3/2d. s4.15d

Whenkc ,V1
*s3cl / kc ,s3cl,0, there is a unique real eigenvalue of operatorL1 in the neighbor-

hood of z=v, such thatz=v−z+0
2 +Ose3/2d, which results ins4.5d. The other solutionz−0sed

corresponds to Rez,0 and, by arguments in the proof of Proposition 3.4, it does not correspond
to an eigenvalue of operatorL1.

Whenkc ,V1
*s3cl / kc ,s3cl.0, we have to consider the Osed term of the asymptotic expan-

sion s4.15d. Due to the constraintC0=0 in s2.15d, we have

kR3Vc,V*s3cl = −
1

12p
o
j=1

3

usxj, fc1 + gc2du2 ø 0. s4.16d

SincekR3Vc ,V*s3clÞ0, thenkR3Vc ,V*s3cl,0. Therefore, it follows froms4.15d that

Im z±0sed = ± e1/2Îkc,V1
*s3cl

kc,s3cl
+ Ose3/2d,

Rez±0sed =
e

2

kR3Vc,V*s3clkc,V1
*s3cl

kc,s3cl2 + Ose3/2d.

In the casekc ,s3cl.0 andkc ,V1
*s3cl.0, we have Rez±0,0, such that no eigenvalues ofL1

exist in the neighborhood ofz=v. In the casekc ,s3cl,0 and kc ,V1
*s3cl,0, we have

Rez±0.0, such that two complex eigenvalues ofL1 exist in the neighborhood ofz=v, with the
asymptotic approximationss4.6d and s4.7d. j

A more special result occurs in the case whenkR3Vc ,V*s3cl=0, which includes spherically
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symmetric potentialVsxd with spherically symmetric eigenvectorcsxd, sees4.16d. In order to
study this special case, we need to extend the theory of wave operators from Katos1966d and
Cuccagnaet al. s2005d. Following Cuccagnaet al. s2005d, we consider a decomposition ofL2 into
the L-invariant Jordan blocks:

L2 = o
zPspsLd

NgsL − zd % XcsLd, XcsLd = F o
zPspsLd

NgsL* − zdG'
, s4.17d

and, equivalently,

L2 = o
zPspsLd

NgsL* − zd % XcsL*d, XcsL*d = F o
zPspsLd

NgsL − zdG'
, s4.18d

wherespsLd=spsL*d and NgsL−zd=øn=1
+` KersL−zdn. The invariant splittingss4.17d and s4.18d

hold in the assumption thatspsLdùsesLd is a union of simple eigenvalues, such thatNgsL−zd
=KersL−zd for zPDe. The action ofL in XcsLd is given by the scattering theory of wave
operators Katos1966d, which is based on the following existence result.

Lemma 4.7: Let Asxd and Bsxd be exponentially decaying potentials andspsLdùsesLd be a
union of simple eigenvalues, which includes the endpoints z= ±v without resonance. Let
kR3Vc ,V*s3cl=0. There exist isomorphisms W:L2°XcsLd and Z:XcsLd°L2, which are inverse
of each other, defined as follows:

∀u P L2, ∀ v P XcsL*d,kWu,vl = ku,vl + lim
e→0+

1

2pi
E

−`

+`

kAsL0 − l − ied−1u,BsL* − l + ied−1vldl,

s4.19d

and

∀u P XcsLd, ∀ v P L2,kZu,vl = ku,vl + lim
e→0+

1

2pi
E

−`

+`

kAsL − l − ied−1u,BsL0 − l + ied−1vldl.

s4.20d

We prove this result in Sec. V. Using Lemma 4.7, we consider bifurcation of the simple eigenvalue
in the special case whenkR3Vc ,V*s3cl=0.

Proposition 4.8: Lete be a small positive parameter andkR3Vc ,V*s3cl=0. Then, Proposi-
tion 4.5 holds, but the asymptotic expansions4.7d is modified as follows:

Imsz1,2sedd = ± e5/22p2uĉ1s0du2

kc,s3cl
Îkc,V1

*s3cl
kc,s3cl

+ Ose3d, s4.21d

wherec̃=ZPcV1c and ĉspd is the Fourier transform ofc̃sxd.
Proof: We use the splittingss4.17d ands4.18d and define operatorPc as the projection ofL2 on

XcsLd. It is clear froms4.12d that

Qcszd = AsI − P0dRszdB1
* = o

zPspsLd\hvj
APzRszdB1

* + APcRszdB1
* .

In the special casekR3Vc ,V*s3cl=0, the quadratic equations4.8d hasFse ,zd=0 and

Gse,zd = Gs0,zd + e]1Gs0,zd + Ose2d,

where
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Gs0,zd =
kc,V1

*s3cl
kc,s3cl

,

and

]1Gs0,zd = −
kB1

*QcszdAc,s3cl
kc,s3cl

= −
ksI − P0dRszdV1c,V1

*s3cl
kc,s3cl

.

The term]1Gs0,zd consists of the contribution from all eigenvalues ofspsLd different from z
=v and from the contribution fromXcsLd. The first contribution can be estimated as follows:

Im o
zPspsLd\hvj

kPzRszdV1c,V1
*s3cl = Osz2d.

This estimate is based on the expansion for real-valuedV1sxd and csxd fsee Cuccagnaet al.
s2005dg,

o
zPspsLd\hvj

kPzRszdV1c,V1
*s3cl = o

zjPR
sz− zjd−1kPzj

V1c,V*s3cl + o
zjPC

fsz− zjd−1kPzj
V1c,V*s3cl

+ sz− z̄jd−1kPz̄j
V1c,V*s3clg. s4.22d

SincePzj
s3 is self-adjoint forzj PR, the factorkPzj

V1c ,V*s3cl is real. Then, the first term in
s4.22d has the imaginary part of order OsIm zd or Osz2d for z=v−z2. Similarly, the operator
sRez−zjd−1Pzj

s3+sRez− z̄jd−1Pz̄j
s3 is self-adjoint forzj PC, such that the second term ins4.22d

has the imaginary part of order OsIm zd or Osz2d. The second contribution in]1Gs0,zd can be
estimated by using wave operators, which satisfy the following identitiesfCuccagnaet al. s2005dg:

Pc
*s3 = s3Pc, W*s3 = s3Z, Z*s3 = s3W, ZL = L0Z. s4.23d

SincePcV1cPXcsLd, there existsc̃PL2, such thatPcV1c=Wc̃. As a result, we have

kPcRszdV1c,V1
*s3cl = kRszdV1c,s3Wc̃l = kZRszdV1c,s3c̃l = kR0szdc̃,s3c̃l.

SincekR0c̃ ,s3c̃l and kR1c̃ ,s3c̃l are real valued, we finally have

Im ]1Gs0,zd =
kR1c̃,s3c̃l
kc,s3cl

Im z + Osz2d. s4.24d

The quadratic equations4.8d is now read as follows

z2 + eGse,zd = 0. s4.25d

In the caseGs0,0d.0, we have from Lemma 4.6 that

Im z1,2sed = ± e1/2Îkc,V1
*s3cl

kc,s3cl
+ Ose3/2d,

in addition, by expansions4.24d, we have froms4.25d that 2 Rez Im z=−e2 Im z]1]2Gs0,0d
+Ose3,e2z2d, such that

Rez1,2sed = −
e2

2

kR1c̃,s3c̃l
kc,s3cl

+ Ose5/2d.

Direct computations froms2.11d show that

053520-13 Bifurcations from the endpoints J. Math. Phys. 46, 053520 ~2005!

                                                                                                                                    



kR1c̃,s3c̃l =
1

4p
SE

R3
c̃1 dxDSE

R3
c̃1

* dxD = 2p2uĉ1s0du2 ù 0,

whereĉ1spd is the Fourier transform ofc1sxd, defined bys2.6d. Again, we have Rez1,2sed.0 in

the casekc ,s3cl,0 andĉ1s0dÞ0, such that two complex eigenvalues ofL1 exist in the neigh-
borhood ofz=v, with the asymptotic approximationss4.6d and s4.21d. j

V. PROOF OF LEMMA 4.7

According to Katos1966d, Lemma 4.7 is valid if we can prove that there existsc.0 such that
∀eÞ0, the following bounds are true:

E
−`

`

iAsL0 − ie − ld−1ui2 dl ø ciui2, u P L2, s5.1d

E
−`

`

iBsL0 − ie − ld−1ui2 dl ø ciui2, u P L2, s5.2d

E
−`

`

iBsL* − ie − ld−1ui2 dl ø ciui2, ∀ u P XcsL*d, s5.3d

E
−`

`

iAsL − ie − ld−1ui2 dl ø ciui2, ∀ u P XcsLd. s5.4d

The boundss5.1d ands5.2d are proved in Corollary to Theorem XIII.25 in Reed and Simons1978d.
We prove the bounds5.4d, while the bounds5.3d can be proved similarly. Following Cuccagnaet
al. s2005d, we write

AsL − zd−1v = sI + Q0
+szdd−1AsL0 − zd−1v, v P XcsLd, s5.5d

where Q0
+szd is continuation ofQ0szd from Im z.0 to Imzù0. The operatorsI +Q0

+szdd−1 is
uniformly bounded inz away from the eigenvalues ofspsLd. It has pole singularities at the
eigenvalues ofspsLd, which were considered in Cuccagnaet al. s2005d, Lemma 4.3. The endpoint
eigenvaluesz= ±v were excluded from Cuccagnaet al. s2005d. Here we shall consider the eigen-
valuez=v. We need to show thatAsL−zd−1v hasL2-norm which is uniformly bounded ine.0,
for Im z=e and Rez<v. Nearz=v, we have the following expansion in the space of operators
L2→L2:

sI + Q0
+szdd−1 =

1

v − z
AP0B

* + Os1d.

Due to the boundss5.1d ands5.2d, we only need to studysv−zd−1AP0VR0szdv, for vPXcsLd near
z=v. We use the relation

kVR0v,s3cl = − kv,s3cl = 0, ∀ v P XcsLd.

As a result,

1

v − z
P0VR0szdv =

c

v − z

kVR0szdv,s3cl
kc,s3cl

=
c

v − z

kVuR0szd − R0uv,s3cl
kc,s3cl

= − c
kVR0R0szdv,s3cl

kc,s3cl

= c
kR0szdv,s3cl

kc,s3cl
.
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We need to show thatkR0szdv ,s3cl is in Hardy spaceH2 for Im z.0, which is true ifcsxd
belong to the space of Rollnick potentials,

E
R
E

R

ucsxduucsxdu
ux − yu2

dxdy , `. s5.6d

It is clear from s2.14d that c2sxd decays exponentially asuxu→`. Since C0=0 in s2.15d and
sxj , fc1+gc2d=0,j =1, 2, 3 in s4.16d, it follows from s2.13d that c1sxd decays algebraically as
uxu−3. As a result, the eigenvectorcsxd satisfies the conditions5.6d.
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Erratum: Coherent states on spheres
†J. Math. Phys. 43, 1211 „2002…‡
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Jeffrey J. Mitchell
Department of Mathematics, Baylor University, Waco, Texas 76798

sReceived 10 February 2005; accepted 11 February 2005; published online 11 April 2005d

fDOI: 10.1063/1.1884887g

We have identified three minor errors in our paper, none of which affects the overall logical
structure.

First, the differential equation fornss,Rd in Theorem 2 contains a sign error. The correct
equation is

dnss,Rd
ds

=
1

2
F ]2n

]R2 + sd − 1d
coshR

sinhR

]n

]R
G .

The above equation is the one used in the proof of Theorem 2; compare Lemma 4.
Second, on page 1227, in the proof of Theorem 2, we assert that the operatorsJa

2 andJā
2 are

self-adjoint. This is not correct. However,Ja
2+Jā

2 is self-adjoint, and this is all that is needed in the
proof.

Third, in Sec. IX, we assert that the action of the little group is trivial if and only if Eq.s57d
holds. This assertion is not correct in the cased=1. What we actually prove is thatsfor all d
ù1d the action of the Lie algebra of the little group is trivial if and only if Eq.s57d holds. When
dù2, the little group is connected and so the triviality of the action of the Lie algebra implies the
triviality of the action of the little group itself. Whend=1, however, the little group is discon-
nected and its action may be nontrivial even when the action of the Lie algebra is trivial.

In the cased=1, our results hold under the stronger assumption that the action of the little
group is trivial. This assumption impliessbut is not implied byd Eq. s57d.

We thank Boonyong Sriponpaew for pointing out the first error and Wicharn Lewkeeratiyutkul
and Areerak Kaewthep for pointing out the second error.
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This article was originally published online on 22 March 2005 without some of the authors’
proof corrections. These corrections involvedsid Corollary 2,sii d the matrix in the first complete
sentence after Eq.s25d, siii d the phrase preceding Eq.s35d, andsivd horizontal rules in Table I. AIP
apologizes for these errors. All online versions of the article have been corrected. The article as it
appeared in the printed version of the journal contained all corrections, with the exception of the
addition of parentheses arounds1−cd in the line preceding Eq.s35d.
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Scattering kernel for polyatomic molecules
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Energétique, 5 rue Enrico Fermi 13453, Marseille Cedex 13, France

sReceived 8 July 2004; accepted 11 March 2005; published online 12 May 2005d

A polyatomic scattering kernel phenomenologically presented in a previous paper is
derived from an integral operator formulation. The five parameters involved in the
scattering kernel expression are shown to be equal to the accommodation coeffi-
cients of various fluxes at the wall, namely, the fluxes of the three components of
the momentum and the fluxes of the rotational and vibrational energies of mol-
ecules. Under its present form the model is especially convenient for the diatomic
molecules. ©2005 American Institute of Physics.fDOI: 10.1063/1.1904703g

I. INTRODUCTION

During the last 20 years a need of new knowledge appeared concerning the interaction of
gases with solid surfaces in order to formulate realistic boundary conditions in rarefied gas
dynamics.1–4 In spatial research the challenge was especially to predict correct heat fluxes and
drag forces on engines reentering in planetary atmospheres. With the recent developments of the
gaseous microflows, where the flow fields are characterized by moderately high Knudsen numbers,
this topic acquired still more interest. This paper is devoted to the derivation of realistic laws
linking the distribution functions of the reflected and the incoming particles at the wall. As it is
well known such laws may be used as boundary conditions in order to resolve the Boltzmann
equation. Moreover, in the slip regime, these laws also allow us to obtain more accurate velocity
slip and temperature jumps at the wall, so the validity domain of the continuum equations is
extended up to higher Knudsen numbers when these equations are associated to the correct bound-
ary conditions.

In a previous paper5 we developed a model of a scattering kernel for unstructured molecules
using an integral operator formulation as illustrated by Cercignani.6,7 At the end of this previous
work the proposed scattering kernel was extended to the case of molecules with internal structure
on the basis of brief phenomenological arguments. In the present paper, the integral operator
formulation is generalized to a polyatomic gas, then the polyatomic scattering kernel is method-
ologically derived from the study of an eigenvalue equation and the meaning of the five param-
eters introduced in the kernel is clarified.

In Sec. II we deduced the polyatomic scattering kernel, investigating the associated integral
operator. In its fully developed form the scattering kernel appears as a linear combination of 32
partial kernels declining all the possible associations of, respectively, diffusive and specular pro-
cessessaccording to three directionsd and elastic or inelastic processessfor the internal modesd.
The 32 coefficients of this combination are the weight of the various accommodation processes
and they depend on five basic parameters. These five parameters are shown to be, respectively,
equal to the accommodation coefficients of the momentum components and of the internal ener-
gies. In Sec. III, we present a general comment on this method of integral operator in the frame-
work of scattering kernel derivation.

adElectronic mail: gilbert.meolans@polytech.univ-mrs.fr
bdElectronic mail: kokou.dadzie@polytech.univ-mrs.fr; URL: http://www.polytech.univ-mrs.fr
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II. POLYATOMIC SCATTERING KERNEL DERIVATION

We consider the problem of finding the scattering kernel,

BsV8,Eir8,Eiv8,gir8,V,Eir ,Eiv,gird,

governing the reflection of polyatomic molecules at the wall.V8 is the velocity of the impinging
gas particle referred to the wall,V8=sVx8 ,Vy8 ,Vz8dP hV8=Vx8ÃVy8ÃVz8=R−ÃRÃRj and V the
velocity of the reflected one referred to the wall,V=sVx,Vy,VzdP hV=VxÃVyÃVz

=R+ÃRÃRj. These velocities reduce to the peculiar velocities when the slip velocity at the wall
is neglected.VR is defined asVR=s−Vx,Vy,Vzd, andsx,y,zd are the three spatial coordinates with
x the normal axis to the wall oriented from the wall towards the gas.Eir8 andEiv8 are, respectively,
the rotational energy and the vibrational energy of an incident particle at the wall. SimilarlyEir

andEiv are, respectively, the rotational energy and the vibrational energy of a reflected particle at
the wall. Then the subscriptsir and iv are the quantum numbers related to the internal energy of
a particle, hence they are integers;gir is the weight of the rotational degeneracy and will be taken
here equal tos2ir +1d. The kernelB, which is the density of probability that a molecule in a state
sV8 ,Eir8 ,Eiv8d hitting the wall at any pointX of the wall is reflected at the same point in a state
sV,Eir ,Eivd, must satisfy the following conditions detailed in Ref. 5:1–3 the non-negativity,

BsV8,Eir8,Eiv8,gir8,V,Eir ,Eiv,gird ù 0, s1d

the normalization,

o
ir ,iv

E
V

BsV8,Eir8,Eiv8,gir8,V,Eir ,Eiv,girddV = 1, s2d

and the reciprocity relation,

uVx8ue
−iV8i2/Cw

2
e−«ir 8e−«iv8gir8BsV8,Eir8,Eiv8,V,Eir ,Eivd

= Vxe
−iVi2/Cw

2
e−«ire−«ivgirBs− V,Eir ,Eiv,− V8,Eir8,Eiv8d, s3d

where

«ir =
Eir

kTw
, «iv =

Eiv

kTw
s4d

with k the Boltzmann constant andTw the wall temperature.

A. Analytical derivation from integral operator

Let us write the transformation

KsV,Eir ,Eiv,gir ,V8,Eir8,Eiv8,gir8d = fuVx8uf0sV8,Eir8,Eiv8dg
1/2fuVxuf0sV,Eir ,Eivdg−1/2

3BsVR8,Eir8,Eiv8,gir8,V,Eir ,Eiv,gird, s5d

wheref0sV,Eir ,Eivd is the local equilibrium distribution function at the temperatureTw of the wall,
defined by

f0sV,Eir ,Eivd =
n

sCw
Îpd3

e−iVi2/Cw
2 gire

−«ire−«iv

QrQv
s6d

with

062101-2 J. G. Méolans and S. K. Dadzie J. Math. Phys. 46, 062101 ~2005!

                                                                                                                                    



Qr = o
ir

gire
−«ir, Qv = o

iv
e−«iv, Cw

2 =
2kTw

m
. s7d

Since f0 is a known function the problem of findingB is equivalent to findingK. The normaliza-
tion condition and the non-negativity conditions onB imply obviously the same conditions onK.

Note Fr the set of the rotational energy statesEir , andFv the set of the vibrational energy
statesEiv. Consider the five elementary Hilbert spaces of statesL2sVkdk=x,y,z, L2sFrd, andL2sFvd of
square summable functions with their corresponding usual scalar product

kwk1,wk2lk =E
Vk

wk1sVdwk2sVddV for all wk1,wk2 P L2sVkd, k = x,y,z,

kwr1,wr2lr = o
ir

wr1sEirdwr2sEird for all wr1,wr2 P L2sFrd,

kwv1,wv2lv = o
iv

wv1sEivdwv2sEivd for all wv1,wv2 P L2sFvd.

Consider the tensor product£=L2sVxd ^ L2sVyd ^ L2sVzd ^ L2sFrd ^ L2sFvd of the five Hilbert
spaces of states. Let us remark that this tensor product of Hilbert space£ is dense in the Hilbert
spaceH=L2sVd ^ L2sFrd ^ L2sFvd where the scalar product is defined by

kw1,w2l = o
ir ,iv

E
V

w1sV,Eir ,Eivdw2sV,Eir ,EivddV for all w1,w2 P H. s8d

Instead of studying the problem of the kernelK, we study the linear integral associated
operatorA defined onH by

Ascd = o
ir8,iv8

E
V8

KsV,Eir ,Eiv,gir ,V8,Eir8,Eiv8,gir8dcsV8,Eir8,Eiv8,gir8ddV8. s9d

Assume that the operatorA has a purely discrete spectrum, and assume that its eigenfunctions are
all in the Hilbert space£. The kernelK can be written in the form

K = o
jx,jy,jz,j r,jv=0

`

l jx,jy,jz,j r,jv
c jx

sVxdc jy
sVydc jz

sVzdc j r
sEirdc jv

sEivd

3c jx
sVx8dc jy

sVy8dc jz
sVz8dc j r

sEir8dc jv
sEiv8d, s10d

where the functionsc jx
sVxdc jy

sVydc jz
sVzdc j r

sEirdc jv
sEivd are the eigenfunctions ofA with their

corresponding eigenvaluesl jx,jy,jz,j r,jv
. According to the non-negativity and the normalization con-

ditions, the eigenvalues must satisfyl jx,jy,jz,j r,jv
P f0,1g for all jx, j y, jz, j r , jvPN. Moreover, one

can see that, in the tensor product space£, the scalar products8d equals the scalar product defined
in this tensor product space£ by the product of the five elementary scalar productss8d. So, we can
suppose that the eigenvalues have the forml jx

l jy
l jz

l j r
l jv

and that the set of functions
c jx

sMxd , jxPN, is a function basis of thex corresponding Hilbert spacex=x,y,z,r ,v. Therefore,
the expressions10d can be written as a product of five infinite sums,

K = p
xPhx,y,z,r,vj

o
j=0

`

l jx
c jx

sMxdc jx
sMx8d, Mx = Vx,Vy,Vz,Eir ,Eiv. s11d

Definec0=c0x
c0y

c0z
c0r

c0v
by
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c0x
sVxd =

Î2

Cw
uVxu1/2e−Vx

2/2Cw
2
, c0y

sVyd = sCw
Îpd−1/2e−Vy

2/2Cw
2
,

c0z
sVzd = sCw

Îpd−1/2e−Vz
2/2Cw

2
, c0r

sEird =Îgir

Qr
e−1/2eir, c0v

sEivd =
e−1/2eiv

ÎQv

.

Let us prove thatc0 is an eigenfunction ofA. Mathematically, the normalization condition can be
also written

o
ir8,iv8

E
V8

Bs− V,Eir ,Eiv,gir ,− VR8,Eir8,Eiv8,gir8ddV8 = 1, s12d

from this relations12d, the reciprocity relations3d leads to

o
ir8,iv8

E
V8

uVx8uf0sV8,Eir8,Eiv8dBsVR8,Eir8,Eiv8,gir8,V,Eir ,Eiv,girddV8 = uVxuf0s− V,Eir ,Eivd.

s13d

Using the relation s13d, the calculation of Asc0d gives Asc0d=c0. Consequently
c0=c0x

c0y
c0z

c0r
c0v

is an eigenfunction of the operatorA associated to the eigenvalue 1.
Now, following the five state parameters, let us introduce five parameters related to the

eigenvalues as follows:l0x
=1, and forj Þ0,l jx

=s1−axd for all x=x,y,z,r ,v. The relations11d
becomes

K = p
xPhx,y,z,r,vj

Fc0x
sMxdc0x

sMx8d + s1 − axdo
j=1

`

c jx
sMxdc jx

sMx8dG
which may be written

K = p
xPhx,y,z,r,vj

Faxc0x
sMxdc0x

sMx8d + s1 − axdo
j=1

`

c jx
sMxdc jx

sMx8dG .

Finally, using the following property,

o
j=0

`

c jx
sMxdc jx

sMx8d = dsMx − Mx8d,

whered is the dirac function, it is obtained

K = haxc0x
sVxdc0x

sVx8d + s1 − axddsVx − Vx8djhayc0y
sVydc0y

sVy8d + s1 − ayddsVy − Vy8dj

3hazc0z
sVzdc0z

sVz8d + s1 − azddsVz − Vz8djharc0r
sVrdc0r

sVr8d + s1 − arddsVr − Vr8dj

3havc0v
sVvdc0v

sVv8d + s1 − avddsVv − Vv8dj. s14d

Applying inversely the transformations5d, the operatorB corresponding to the kernelK above
frelationships14dg is
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BsV8,Eir8,Eiv8,gir8,V,Eir ,Eiv,gird = Hs1 − axddsVx8 + Vxd + ax
2Vx

Cw
2 e−Vx

2/Cw
2J

3Hs1 − ayddsVy8 − Vyd + ay
1

Cw
Îp

e−Vy
2/Cw

2J
3Hs1 − ayddsVz8 − Vzd + az

1

Cw
Îp

e−Vz
2/Cw

2J
3Hs1 − arddsEir8 − Eird + ar

gir

Qr
e−eirJ

3Hs1 − avddsEiv8 − Eivd + av
1

Qv
e−eivJ . s15d

In the further calculations, we will note the scattering kernels15d simply as

B = PxPyPzPrPv,

where Px,Py,Pz,Pr ,Pv correspond, respectively, to the five factors of the expressions15d. It
would be seen that these five factors satisfy

E
0

+`

PxdVx
=E

−`

+`

PydVy
=E

−`

+`

PzdVz
= o

ir

Pr = o
iv

Pv = 1. s16d

On the other hand when developing the expressions15d one obtains the kernelB as combination
of 32 elementary scattering kernels where the coefficients are functions of theax.

B. On the coefficient ax

In this section we prove that the five coefficientsax involved in the scattering kernel equal,
respectively, the accommodation coefficients of the various fluxes of the five microscopic state
parameterssMx=Vx,Vy,Vz,Eir ,Eivd.

The accommodation coefficientbx of a physical propertyMx at the wall is defined through the
relation3,4,8

bx =
Fx

− − Fx
+

Fx
− − Fx

e , s17d

whereFx
− is the incoming flux at the wall of the propertyMx ,Fx

+ is the corresponding reflected
flux, and Fx

e is the reflected flux in the hypothetical situation of perfect accommodation to the
wall. These various fluxes are written

Fx
− = o

ir8,iv8
E

V8
muVx8uMx8 f−sV8,Eir8,Eiv8,gir8ddV8, s18d

Fx
+ = o

ir ,iv
E

V

muVxuMxf+sV,Eir ,Eiv,girddV, s19d

wheref− and f+ are, respectively, the incident and the reflected distribution functions linked by the
relation
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uVxuf i
+sV,Eir ,gir ,Eivd = o

ir8,iv8
E

V8
uVx8uf

−sV8,Eir8,gir8,Eiv8dBsV8,Eir8,gir8,Eiv8,V,Eir ,gir ,EivddV8.

s20d

Accounting fors20d, the reflected fluxFx
+ fexpressions19dg may be rewritten as

Fx
+ = o

ir8,iv8
E

V8
muVx8uf

−sV8,Eir8,gir8,Eiv8dFo
ir ,iv

E
V

MxPxPyPzPrPvdVGdV8 s21d

and the reflected flux in the case of perfect accommodation is written as

Fx
e = o

ir8,iv8
E

V8
muVx8uf

−sV8,Eir8,gir8,Eiv8dFo
ir ,iv

E
V

MxBedVGdV8, s22d

whereBe, the perfect accommodation scattering kernel, is defined by

Be =
2gir

QrQvCw
4p

Vxe
−iVi2/Cw

2
e−eire−eiv. s23d

1. Calculation of by and bz

The tangential accommodation coefficient,by is obtained by substitutingMx=Vy in the defi-
nition relations17d. In this case it is easily seen thatFy

e=0. Then accounting for the propertys16d
the expressions21d leads to

Fy
+ = s1 − ayd o

ir8,iv8
E

V8
mVy8uVx8uf

−sV8,Eir8,gir8,Eiv8ddV8.

It results immediately from expressions17d

by = 1 −
Fy

+

Fy
− = ay.

Similarly it is found,

bz = 1 −
Fz

+

Fz
− = az.

2. Calculation of bx

The normal accommodation coefficient is obtained by substitutingMx= uVxu in the definition
s17d. In this case, accounting for the propertys16d and the expressio of the partial operatorPx, it
is obtained

o
ir ,iv

E
V

uVxuPxPyPzPrPvdV = − s1 − axdVx8 + ax
Cw

Îp

2

then the expressions21d yields.

Fx
+ − Fx

− = ax o
ir8,iv8

E
V8

muVx8uf
−sV8,Eir8,Eiv8,gir8dSVx8 +

Cw
Îp

2
DdV8.

The calculation ofFe leads easily to
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Fx
e − Fx

− = o
ir8,iv8

E
V8

muVx8uf
−sV8,Eir8,Eiv8,gir8dSVx8 +

Cw
Îp

2
DdV8.

Consequently we obtained from the relations17d,

bx = ax.

3. Calculation of br and bv

Now substituteMx=girEir in the relations17d. Accounting for the propertys16d it is obtained

o
ir ,iv

E
V

girEirPxPyPzPrPvdV = o
ir

girEirPr = s1 − ardgir8Eir8 + ar

Qr
*

Qr
,

where we have noted

Qr
* = o

ir

gir
2Eire

−«ir .

Then the expression ofF+ leads to

FEir

− − FEir

e = ar o
ir8,iv8

E
V8

muVx8uf
−sV8,Eir8,Eiv8,gir8dSgir8Eir8 −

Qr
*

Qr
DdV8.

Using the expressions23d of Be, we obtain

o
ir ,iv

E
V

girEirBedV =
Qr

*

Qr

and then

FEir

− − FEir

e = o
ir8,iv8

E
V8

muVx8uf
−sV8,Eir8,Eiv8,gir8dSgir8Eir8 −

Qr
*

Qr
DdV8

consequently,

br = ar .

In the same way, substitutingMx=Eiv, it is found

bv = av.

In conclusion, the five parametersax involved in the scattering kernels15d are the accommodation
coefficients corresponding to the five state parameters, namely the three momentum components
and the two internal energy degrees.

III. COMMENT ON THE METHOD USED IN SCATTERING KERNEL DERIVATION

TheH Hilbert space corresponds generally to the Hilbert space used in the framework of the
modelling of the Boltzmann equation in polyatomic gases. Following the quantum mechanic
concept, the wall and then the boundary conditions can be represented by an operator defined on
this H Hilbert space.4,6,8,9Therefore the problem of boundary condition for the Boltzmann equa-
tion can be basically formulated through the integral operators9d, so this formulation is convenient
for solving the linearized Boltzmann equation. The reciprocity relation assumption globally means
that the local equilibrium distribution function must be invariant by the kernelB.8,9 This last
condition, which contains thermodynamic properties is the most important condition. In addition,
it is the only one condition containing physical meaning. This condition leads to the first eigen-
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function representationc0. The other eigenfunctions remain unknown. At this step of the scatter-
ing kernel construction, one should suggest to choose the set of the other eigenfunctions10 or a
finite number of them. But, such a way would be a purely mathematical construction without real
physical justifications.4,7

Then, another way consists to analyze physically the accommodation process. Let us consider
the couple gas/surface characterized by its macroscopic properties. It seems convenient to assume
that for each microscopic propertyp of the molecules, the solid surface behaves in a way perfectly
defined in the accommodation process. In other worlds, in a gas/surface configuration, physically
and geometrically given, for each microscopic property there is a linear relation between the
amount of thep flux accommodated by the wall and the amount of thep incoming flux. So the
accommodation at the wall of any physical microscopic property provides a physical information
through a corresponding accommodation coefficient. Thus, five elementary accommodation coef-
ficients associated to the five basic parameters defining the molecule statessthe three momentum
components, rotational energy, vibrational energyd are naturally introduced completely describing
the molecules behavior in the reflection process. In this way, the present construction of the
polyatomic scattering kernel is based on five accommodation coefficients, and corresponds to an
integral operator partially degenerated involving 32 different eigenvalues in its expansion: from
our point of view, this construction appears physically founded and completely describing the
reflection process.

IV. CONCLUDING REMARKS

We have established a scattering kernel for structured molecules involving one rotational and
one vibrational energy mode. A convenient integral operator formulation is used assuming a purely
discrete spectrum and assuming eigenvalues depending on five basic parameters in respect to the
five state parameters of the moleculessand then assuming a partial degeneracy of the integral
operatord. These five basic parameters are shown to be the accommodation coefficients of, respec-
tively, the three momentum accommodation coefficients and the accommodation coefficients of
the two internal energy modes.

Under its factorized forms15d, the proposed scattering kernel is easy to use in analytical
calculations or to be implemented in numerical modelling. In order to show its physical meaning,
the expressions15d may be developed. Under its developed form, the scattering kernel appears as
a linear combination of 32 elementary scattering kernelsslisted in the Appendixd. All these el-
ementary kernels correspond to various situations of accommodation at the wall which have been
described in Ref. 5. The linear combination coefficients, which represent the weight of the various
types of accommodation in the reflection process, are combinations of the factorsax and s1
−axd ssee the Appendixd. In each elementary kernel each molecule state accommodates indepen-
dently from the others. So the new kernel allows us to take into account the interplay between the
molecule freedom degrees when interacting at the wall.11 Up to now, the data available concerning
the whole set of accommodation coefficients involved in the proposed scattering kernel are rare;
that makes a complete validation of the model difficult.

Finally, let us add that, in the form presented here, the scattering kernel accounts for a single
rotational and a single vibrational mode. This description is sufficient in any condition for diatoms.
In the case of more complex polyatomic structures, involving various vibrationalsor rotationald
modes, the present form of scattering kernel remains directly usable, as long as the various
vibrational sor rotationald modes remain in the same thermodynamics statesi.e., in local equilib-
rium the ones with the othersd. In a contrary situationsfor example, in strong vibrational nonequi-
librium conditionsd it may be pertinent—depending on the considered time scale—to distinguish
various vibrationalsor rotationald accommodation coefficients to describe the reflection process. In
such a case, the scattering kernel should be written in the same way as previously, but it should
involve more than five state parameters, and thus more than five accommodation coefficients.
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APPENDIX: DIFFERENT WRITING OF THE SCATTERING KERNEL B OF RELATION „15…

Let

P̃0 = dsEir8 − EirddsEiv8 − Eivd, P̃rv =
e−«ir

Qr
gir

e−«iv

Qv
,

P̃v = dsEir8 − Eird
e−«iv

Qv
, P̃r =

e−«ir

Qr
girdsEiv8 − Eivd. sA1d

Develop partially the expressions15d. The scattering kernel can be written in the form presented
in Ref. 5, as follows:

B = So
k

mkBksV8,VdDs1 − ards1 − avdP̃0 + avs1 − ardP̃v + ars1 − avdP̃r + avarP̃rv, sA2d

whereBk the elementary scattering kernels, andmk their corresponding coefficients in the case of
unstructured molecule given in Ref. 5, are recalled below,

B0sV8,Vd = dsVx + Vx8ddsVy − Vy8ddsVz − Vz8d,

ByzsV8,Vd =
1

pCw
2 dsVx + Vx8de

−Vy
2/Cw

2
e−Vz

2/Cw
2
,

BxzsV8,Vd =
2

Cw
3Îp

VxdsVy − Vy8de
−Vx

2/Cw
2
e−Vz

2/Cw
2
,

BxysV8,Vd =
2

Cw
3Îp

VxdsVz − Vz8de
−Vx

2/Cw
2
e−Vy

2/Cw
2
,

BxyzsV8,Vd =
2

pCw
4 Vxe

−Vx
2/Cw

2
e−Vy

2/Cw
2
e−Vz

2/Cw
2
,

BzsV8,Vd =
1

Cw
Îp

dsVx + Vx8ddsVy − Vy8de
−Vz

2/Cw
2
,

BysV8,Vd =
1

Cw
Îp

dsVx + Vx8ddsVz − Vz8de
−Vy

2/Cw
2
,

BxsV8,Vd =
2

Cw
2 VxdsVy − Vy8ddsVz − Vz8de

−Vx
2/Cw

2
,

and

mxz= axazs1 − ayd, mxy = axays1 − azd, myz= ayazs1 − axd, mx = axs1 − ayds1 − azd, mxyz

= axayaz, m0 = s1 − axds1 − ayds1 − azd, my = ays1 − axds1 − azd, mz = azs1 − axds1 − ayd.

A complete development of expressions15d yields the scattering kernel written as a sum of 32

elementary polyatomic scattering kernelsBkP̃in as follows:
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B = o
k,in

mkminBkP̃in,

whereP̃in refers to the four partial operatorsP̃0, P̃v , P̃r , P̃rv defined in the relationshipsA1d andmin

to their respective coefficients in the formulasA2d. In this developed form it is clear that this
scattering kernel describes various types of accommodation processes at the wall. Each of the

partial scattering kernelsBkP̃in corresponds to a particular type of accommodation. There are
exactly 32 types.
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The quantum effects for a physical system can be described by the setEsHd of
positive operators on a complex Hilbert spaceH that are bounded above by the
identity operator. While a general effect may be unsharp, the collection of sharp
effects is described by the set of orthogonal projectionsPsHd#EsHd. Under the
natural order,EsHd becomes a partially ordered set that is not a lattice if dimH
ù2. A physically significant and useful characterization of the pairsA,BPEsHd
such that the infimumA∧B exists is called the infimum problem. We show that
A∧ P exists for allAPEsHd, PPPsHd and give an explicit expression forA∧ P.
We also give a characterization of whenA∧ sI −Ad exists in terms of the location of
the spectrum ofA. We present a counterexample which shows that a recent con-
jecture concerning the infimum problem is false. Finally, we compare our results
with the work of Ando on the infimum problem. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1904704g

I. INTRODUCTION

A quantum mechanical measurement with just two values 1 and 0sor yes and nod is called a
quantum effect. These elementary measurements play an important role in the foundations of
quantum mechanics and quantum measurement theory.3–5,7,14,16,18We shall follow the Hilbert
space model for quantum mechanics in which effects are represented by positive operators on a
complex Hilbert spaceH that are bounded above by the identity operatorI. In this way the set of
effectsEsHd becomes

EsHd = hA P BsHd:0 ø A ø Ij.

The set of orthogonal projectionsPsHd#EsHd corresponds to sharp effects while a generalA
PEsHd may be unsharpsfuzzy, imprecised. Employing the usual orderAøB for the set of
bounded self-adjoint operatorsSsHd on H, we see thatsEsHd , ø d is a partially ordered set. It is
well known thatsEsHd , ø d is not a lattice if dimHù2. However, if the infimumA∧B of A,B
PEsHd exists thenA∧B has the important property of being the largest effect that physically
implies bothA and B. It would thus be of interest to give a physically significant and useful
characterization of whenA∧B exists. This so-called infimum problem has been considered for at
least 10 years.2,10–12,17,19

Before discussing the progress that has been made toward solving the infimum problem, let us
compare the situation with that of the partially ordered setsSsHd , ø d. Of course, if A,B

adElectronic mail: aurelian@fen.bilkent.edu.tr and gheondea@imar.ro
bdElectronic mail: sgudder@math.du.edu
cdElectronic mail: jonas@math.tu-berlin.de
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PSsHd are comparable, that is,AøB or BøA, thenA∧B exists and is the smaller of the two. A
surprising result of Kadison15 states that the converse holds. Thus, forA,BPSsHd, A∧B exists in
SsHd if and only if A andB are comparable. We conclude thatsSsHd , ø d is an antilattice which
is as far from being a lattice as possible. The situation is quite different insEsHd , ø d. In fact it is
well known thatP∧Q exists inEsHd for all P,QPPsHd. More generally, we shall show that
A∧ P exists inEsHd for all APEsHd, PPPsHd and give an explicit expression forA∧ P. The
existence ofA∧ P has already been proved in Ref. 18 but we present a different proof here.

For A,BPEsHd let PA,B be the orthogonal projection onto the closure of
RansA1/2dùRansB1/2d. It is shown in Ref. 19 that if dimH,` thenA∧B exists inEsHd if and
only if A∧ PA,B andB∧ PA,B are comparable and in this caseA∧B is the smaller of the two. This
was considered to be a solution to the infimum problem for the case dimH,` and it was
conjectured in Ref. 19 that this result also holds in general. One of our main results is that this
conjecture is false. We shall present an example of a pairA,BPEsHd with dim H=` for which
A∧B exists inEsHd but A∧ PA,B and B∧ PA,B are not comparable. In addition, we prove that,
assumingA∧B exists,PA,B is the smallest of all orthogonal projectionsP having the property that
sA∧ Pd∧ sB∧ Pd exists andsA∧ Pd∧ sB∧ Pd=A∧B. Combined with the counter-example as de-
scribed before, this means that, in the infinite dimensional case, there is no orthogonal projection
to replacePA,B and have a positive solution to the infimum problem.

Thenegation A8 of an effectA is defined to be the effectA8= I −A. Physically,A8 is the effect
A with its values 1 and 0 reversed. We also present a simple spectral characterization of when
A∧A8 exists inEsHd. The result is essentially the same as Theorem 2 in Ref. 2, with the difference
that we express the condition in terms of the location of the spectrum ofA and the proof is based
on the matrix representations obtained in the preceding section.

Ando has given a solution to the infimum problem in terms of a generalized shorted operator.2

However, in our opinion, these shorted operators do not have a physical significance in contrast to
the operationally defined operatorsA∧ PA,B and B∧ PA,B. Finally, we discuss the relationship
between our work and that of Ando. First, we show that the shorted operator ofA by B is always
smaller thanA∧ PA,B. Actually, it is the fact, that in the infinite dimensional case, the shorted
operator ofA by B can be strictly smaller thanA∧ PA,B, that is responsible for the failure of a
solution of the infimum problem similar to the finite dimensional case. This can be viewed from
the counter-example as before, but we record also a simpler one that illustrates this situation.

We now briefly discuss connections between the infimum problem and physics. Quantum
effects have been studied by mathematicians and physicists for over 40 years.5,16,17 Besides the
applications of effect-valued measures in quantum measurement theory, many researchers consider
effects to be the basic elements of important quantum structures. In recent times quantum effects
have been organized into a structure called an effect algebra7,10 and their order properties have
been studied.11,12,17Among other things, the effect algebraEsHd is a partially ordered set and if
A∧B exists for A,B, PEsHd, then this effect has important physical properties. In particular,
among all the effects that have a smaller probability of occurring than bothA andB, A∧B has the
largest probability. Thus ifA∧B exists, thenA∧B has a crucial physical significance. In the case
whereA andB are sharp,A andB are projections,A∧B always exists and is the projection onto
the intersection of their ranges. But ifA andB are not sharp, the situation is much more compli-
cated. An interesting special case is whenAPEsHd andPPPsHd. In this caseA∧ P always exists
and if A andP commutesare compatibled thenA∧ P=AP. However, ifA andP do not commute
an explicit closed form expression forA∧ P has been difficult to obtain and is now presented in
Theorem 2.2. We can now define conditional probabilities

probsAuPd = probsA ∧ Pd/probsPd

and conditional measurements and these may have useful physical applications. Finally, our Ex-
ample 4.2 gives a surprising phenomenon that does not occur in finite dimensional Hilbert spaces.
The existence of effects such as those in this example may have interesting physical significance.
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II. INFIMUM OF A QUANTUM EFFECT AND A SHARP EFFECT

We first record a parametrization of bounded positive 232 matrices with operator entries, in
terms of operator balls.

In the following we make use of theFrobenius-Schur factorization: for T, X, Y, Z bounded
operators on appropriate spaces andT boundedly invertible, we have

FT X

Y Z
G = F I 0

YT−1 I
GFT 0

0 Z − YT−1X
GF I T−1X

0 I
G . s2.1d

For instance, by using Frobenius–Schur factorizations and a perturbation argument one can obtain
the following classical result of Shmulyan.21

Theorem 2.1: Let APBsHd be self-adjoint andH=H1 % H2 an orthogonal decomposition of
H. Then Aù0 if and only if it has a matrix representation of the following form:

A = F A1 A1
1/2GA2

1/2

A2
1/2G*A1

1/2 A2
G with respect toH = H1 % H2, s2.2d

where A1PBsH1d+, A2PBsH2d+, and GPBsH2,H1d is contractive.
In addition, the operatorG can be chosen in such a way thatKersGd$KersA2d and

KersG*d$KersA1d, and in this case it is unique.
For two effectsA,BPEsHd we denote byA∧B, the infimum, equivalently, thegreatest lower

bound, of A andB over the partially ordered setsEsHd , ø d, if it exists. To be more precise,A∧B
is an operator inEsHd uniquely determined by the following properties:A∧BøA, A∧BøB, and
an arbitrary operatorDPEsHd satisfies bothDøA and DøB if and only if DøA∧B. Charac-
terizations of the existence of infimum for positive operators have been obtained for the finite-
dimensional case in Ref. 19, and in general in Ref. 2.

In Theorem 4.4 of Ref. 19 it is proved that the infimumA∧ P exists for anyAPEsHd and
PPPsHd. As a consequence of Theorem 2.1 we can obtain an explicit description ofA∧ P,
together with another proof of the existence.

Theorem 2.2:For any APEsHd and PPPsHd the infimum A∧ P exists, more precisely, if A
has the matrix representation as ins2.2d with respect to the orthogonal decompositionH
=RansPd % KersPd, where A1PEsRansPdd, A2PEsKersPdd, and GPBsKersPd, RansPdd, with
iGiø1, KersGd$KersA2d and KersG*d$KersA1d, then

A ∧ P = FA1
1/2sI − GG*dA1

1/2 0

0 0
G with respect toH = RansPd % KersPd. s2.3d

Proof: Let APEsHd andPPPsHd. In the following we consider the orthogonal decomposi-
tion H=RansPd % KersPd. By Theorem 2.1A has a matrix representation as ins2.2d, with A1

PBsRansPdd+, A2PBsKersPdd+, andGPBsKersPd ,RansPdd, with iGiø1, KersGd$KersA2d and
KersG*d$KersA1d. SinceAø I it follows that A1ø IRansPd andA2ø IKersPd. Consider the operator
DPBsHd, defined by the matrix ins2.3d. Clearly 0øDø P, in particularDPEsHd. In addition,

A − D = FA1
1/2GG*A1

1/2 A1
1/2GA2

1/2

A2
1/2G*A1

1/2 A2
G = fG*A1

1/2A2
1/2g*fG*A1

1/2A2
1/2g ù 0,

henceAùD.
Let CPEsHd be such thatCøA, P. From Cø P it follows that CP=PC=C and hence

C = FC1 0

0 0
G with respect toH = RansPd % KersPd.

Then
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0 ø A − C = F A1 − C1 A1
1/2GA2

1/2

A2
1/2G*A1

1/2 A2
G . s2.4d

The matrix with operator entries ins2.4d can be factored as

FIRansPd 0

0 A2
1/2GFA1 − C1 A1

1/2G

G*A1
1/2 IKersPd

GFIRansPd 0

0 A2
1/2G . s2.5d

Note that by KersGd$KersA2d or, equivalently,RansG*d#RansA2d, A−C and each of the factors
of s2.5d map the subspaceH8=RansPd % RansA2d into itself. Since diagsIRansPdA2

1/2d regarded as an
operator onH8, is symmetric and has dense range,A−Cù0 implies that the middle term ins2.5d
regarded as an operator inH8 is non-negative. By performing a Frobenius–Schur factorization of
this middle term, we findA1

1/2GG*A1
1/2øA1−C1, that is, C1øA1

1/2sIRansPd−GG*dA1
1/2, or, equiva-

lently, CøD.
We thus proved thatA∧ P exists and has the matrix representation as ins2.3d. h

Remark 2.3:If APEsHd, EA is the spectral function ofA andD is a Borel subset off0, 1g,
then A∧EAsDd=AEAsDd. This is an immediate consequence of Theorem 2.2. The second to last
sentence in the proof of Theorem 2.2 can also be demonstrated by using the well-known fact that
any operator matrix of the form

F A B

B* I
G s2.6d

is positive if and only ifAù0 andBB* øA.
Let A,BPEsHd. By PA,B we denote the orthogonal projection onto the closure of

RansA1/2dùRansB1/2d. As mentioned in the introduction, the infimum problem for a finite dimen-
sional spaceH was solved in Ref. 19 by showing thatA∧B exists if and only ifA∧ PA,B and
B∧ PA,B are comparable, and thatA∧B is the smaller ofA∧ PA,B and B∧ PA,B. The following
proposition shows that for dimH=` the infimum problem forA andB can be reduced to the same
problem for the “smaller” operatorsA∧ PA,B andB∧ PA,B. In Sec. IV we will see that in this case
the infimum problem cannot be solved in the same fashion, as conjectured in Ref. 19.

Proposition 2.4: Let A,BPEsHd. Then A∧B exists if and only ifsA∧ PA,Bd∧ sB∧ PA,Bd exists.
In this case A∧B=sA∧ PA,Bd∧ sB∧ PA,Bd.

Proof: Note first that the operatorsA∧ PA,B andB∧ PA,B exist, e.g., by Theorem 2.2.
Let us assume thatsA∧ PA,Bd∧ sB∧ PA,Bd exists and letCPEsHd be such thatCøA,B, thus

we have RansC1/2d#RansA1/2dùRansB1/2d#RansPA,Bd and hence Cø PA,B. Therefore, C
øA∧ PA,B and CøB∧ PA,B and hence, by the majorization theorem as in Ref. 6,C
ø sA∧ PA,Bd∧ sB∧ PA,Bd. Taking into account thatsA∧ PA,Bd∧ sB∧ PA,BdøA,B it follows thatA∧B
exists and equalssA∧ PA,Bd∧ sB∧ PA,Bd.

Conversely, let us assume thatA∧B exist. Then,A∧Bø PA,B. This relation andA∧BøA,B
give A∧BøA∧ PA,B, A∧BøB∧ PA,B. Let CPEsHd be such thatCøA∧ PA,B, B∧ PA,B. ThenC
øA, B, PA,B and, in particular,CøA∧B. h

One may ask for which orthogonal projectionsP exceptPA,B the statement of Proposition 2.4
is true. It turns out thatPA,B is the infimum of the set of those projectionsP.

Theorem 2.5: Let A,BPEsHd such that A∧B exists. LetPA,B be the set of all orthogonal
projections subject to the properties thatsA∧ Pd∧ sB∧ Pd exists andsA∧ Pd∧ sB∧ Pd=A∧B. Then

PA,B = hP P PsHduPA,B ø Pj.

In order to prove the above stated proposition, we first consider the connection of parallel sum
with the infimum of quantum effectsssee also Ref. 2d. To see this, instead of giving the original
definition as in Ref. 8, we prefer to introduce the parallel sum of two quantum effects by means of
the characterization of Pekarev–Shmulyan,20
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ksA:Bdh,hl = infhkAa,al + kBb,bluh = a + bj,for all h P H. s2.7d

Theorem 2.6: sRefs. 8 and 20d Let A,BPBsHd+. Then

sid 0øA: BøA, B,
sii d A:B=B:A,
siii d RanssA:Bd1/2d=RansA1/2dùRansB1/2d,
sivd if A1,B1PBsHd+ are such that AøA1 and BøB1, then A:BøA1:B1,
svd if A+B is boundedly invertible, theniA:Bi=AsA+Bd−1B,
svid If An↘A and Bn↘B strongly, then An:Bn↘A:B strongly.

In view of the properties of the parallel sum listed above, a moment of thought shows that if
P,QPPsHd, that is,P andQ are orthogonal projections inH, thenP∧Q overEsHd always exists
and coincides with the orthogonal projection onto RansPdùRansQd. By Theorem 4.3 in Ref. 8 we
also haveP∧Q=2sP:Qd.

Lemma 2.7: Let A,BPEsHd be such that A∧B exists. Then

sid RanssA∧Bd1/2d=RanssA:Bd1/2d,
sii d sA∧Bd1/2=sA:Bd1/2V for some boundedly invertible operator VPBsHd,
siii d A:BøA∧BøgsA:Bd, for someg.0.

Proof: Since A∧BøA it follows that RanssA∧Bd1/2d#RansA1/2d. Similarly we have
RanssA∧Bd1/2d#RansB1/2d, hence RanssA∧Bd1/2d#RansA1/2dùRansB1/2d=RanssA:Bd1/2d.

For the converse inclusion, note thatA:BøA andA:BøB; sinceA:BøA: I =AsA+ Id−1øA.
Thus, by the definition ofA∧B, it follows that A:BøA∧B. In particular, this proves that
RanssA∧Bd1/2d$RanssA:Bd1/2d, and hencesid is proved.

The assertionssii d and siii d are consequences ofsid and the majorization theorem as in Ref.
6. h

Lemma 2.8: If A,BPEsHd and A∧B exists, then A∧Bø PA,B and RansA∧Bd is dense in
RansPA,Bd.

Proof: This is a consequence of Theorem 2.6 and Lemma 2.7. h

We now come back to Theorem 2.5.
Proof of Theorem 2.5:Let PPPA,B. ThenA∧Bø P and henceRansA∧Bd#RansPd. There-

fore, by Lemma 2.8 RansPA,Bd#RansPd, that is,PA,Bø P.
Assume thatPù PA,B. We claim that thensA∧ Pd∧ sB∧ Pd exists and it coincides with

sA∧ PA,Bd∧ sB∧ PA,Bd. Evidently, sA∧ PA,Bd∧ sB∧ PA,BdøA∧ P,B∧ P. Let CPEsHd with C
øA∧ P, B∧ P. ThenCøA∧Bø PA,B and hence,

C ø sA ∧ PA,Bd ∧ sB ∧ PA,Bd.

Therefore,sA∧ Pd∧ sB∧ Pd exists and, by Proposition 2.4 it coincides withA∧B. h

III. INFIMUM OF A QUANTUM EFFECT AND ITS NEGATION

Thenegation A8 of an effectA is defined to be the effectA8= I −A. Physically,A8 is the effect
A with its values 1 and 0 reversed. In the following we present a characterization of whenA∧A8
exists inEsHd in terms of the location of the spectrum ofA. The theorem essentially coincides
with the result of AndosRef. 2, Theorem 2d, the difference consists on that we express the
condition with the help of the spectrum ofA and the proof is based on the matrix representations
as in Sec. II. There is also a similar characterization in Ref. 13.

Theorem 3.1: Let A be a quantum effect on the Hilbert spaceH. Then the following asser-
tions are equivalent:

sid A∧ sI −Ad exists,
sii d ssAd, the spectrum of A, is contained either inh0jøf 1

2 ,1g or in f0, 1
2
gø h1j,

siii d A∧ PA,I−A and sI −Ad∧ PA,I−A are comparable, that is, either A∧ PA,I−Aø sI −Ad∧ PA,I−A or
sI −Ad∧ PA,I−AøA∧ PA,I−A.

062102-5 On the infimum of quantum effects J. Math. Phys. 46, 062102 ~2005!

                                                                                                                                    



In addition, if either of the above holds, letting gPCsf0,1gd be the function

gstd = minst,1 − td =Ht, 0 ø t ø
1
2 ,

1 − t, 1
2 ø t ø 1,

J s3.1d

we have, by continuous functional calculus, A∧ sI −Ad=gsAd.
Proof: Let EA denote the spectral function ofA. In view of Proposition 2.4,A∧ sI −Ad exists

if and only if sA∧ PA,I−Ad∧ ssI −Ad∧ PA,I−Ad exists. A moment of thought shows thatPA,I−A

=EAss0,1dd and hence, by Remark 2.3, we have thatA∧ PA,I−A=AEAss0,1dd and sI −Ad∧ PA,I−A

=sI −AdEAss0,1dd. Thus, without restricting the generality, we can and will assume in the follow-
ing that 0 and 1 are not eigenvalues ofA. Now, the equivalence ofsii d with siii d is a matter of
elementary spectral theory for selfadjoint operators, hence we will prove only the equivalence of
sid and sii d.

To prove thatsii d implies sid, let us assume thatssAd is contained either inh0jøf 1
2 ,1g or in

f0, 1
2
gøh1j. To make a choice, let us assume thatssAd# h0jøf 1

2 ,1g. Since, by assumption, 0 is
not an eigenvalue ofA, it follows that ssAd#f 1

2 ,1g. ThenAù I −A and clearlyA∧ sI −Ad= I −A
=gsAd, where the functiong is defined as ins3.1d. A similar argument holds in case we assume
ssAd#f0, 1

2
gøh1j; in this caseA∧ sI −Ad=A=gsAd.

Conversely, let us assume thatA∧ sI −Ad=D, the infimum ofA and I −A over EsHd, exists.
Using the spectral measureEA of A, let E1=EAsf0,1/2g, A1=AuE1H, E2=EAss1/2,1gd, A2

=AuE2H. We writeD as an operator matrix with respect to the decompositionH=E1H % E2H,

D = F D1 D1
1/2GD2

1/2

D2
1/2G*D1

1/2 D2
G ,

with contractiveGPBsE2H ,E1Hd, cf. Theorem 2.1. SincegsAdøA, I −A, by the definition ofD
we have

0 ø D − gsAd = F D1 − A1 D1
1/2GD2

1/2

D2
1/2G*D1

1/2 D2 − sI2 − A2d G . s3.2d

Therefore, 0øD1−A1 while taking into account thatDøA it follows that D1øA1, henceD1

=A1. Similarly, 0øD2−sI2−A2d and, sinceDø I −A it follows D2ø I2−A2, henceD2= I2−A2.
Thus, the main diagonal of the matrix ins3.2d is null, hencese.g., by Theorem 2.1d it follows that
D=gsAd.

Further, let«P s0,1/4d, and consider the operators

E«,1 = EAss«,− « + 1/2dd, E«,2 = EAss« + 1/2,1 −«dd. s3.3d

DenoteE«=E«,1+E«,2 andA«=AuE«H. We show thatA«∧ sI −A«d exists. To see this, we remark
that, as proven before,gsAd=A∧ sI −Ad, so we actually show thatD«=D uE«H=gsA«d coincides
with A«∧ sI −A«d. Indeed, assume that for someC«PEsE«Hd we haveC«øA«, I −A«. Then, letting
C=C«E«PEsHd it follows that CøA, I −A. SinceD=A∧ sI −Ad this implies CøD and hence
C«øD«. Therefore,D« coincides withA«∧ sI −A«d.

We finally prove thatsid implies sii d. Assume thatsid holds andsii d is not true. Then there
exists«P s0,1/4d such thatE«,1Þ0 andE«,2Þ0, where we use the notation as ins3.3d. Letting

A«,1 = AuE«,1H, A«,2 = AuE«,2H,

and d=«s1+Î3d−1, consider an arbitrary contractionTPBsE«,2H ,E«,1Hd. In the following all
operator matrices are understood with respect to the decompositionE«,1H % E«,2H. Then, letting
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C = FA«,1 − dI«,1 Î3 dT

Î3 dT* I«,2 − A«,2 − dI«,2
G = FA«,1 − «I«,1 + Î3 dI«,1

Î3dT

Î3 dT* I«,2 − A«,2 − «I«,2 + Î3 dI«,2
G

= FA«,1 − «I«,1 0

0 I«,2 − A«,2 − «I«,2
G + Î3dFI«,1 T

T* I«,2
G ù 0,

we have

A« − C = FdI«,1 − Î3 dT

− Î3 dT* 2A«,2 − I«,2 + dI«,2
G = F0 0

0 2A«,2 − I«,2 − 2 dI«,2
G + dFI«,1 − Î3T

− Î3T* 3I«,2
G ù 0

and

I − A« − C = FI«,1 − 2A«,1 + dI«,1 − Î3T

− Î3 dT* dI«,2
G = FI«,1 − 2A«,1 − 2 dI«,1 0

0 0
G + dF3I«,1 − Î3T

− Î3 dT* I«,2
G

ù 0.

But, the operator

sA« ∧ sI« − A«dd − C = gsA«d − C = dFI«,1 − Î3T

− Î3T* I«,2
G

is not non-negative for some choices ofT, unless at least one of the spectral projectionsE«,1 and
E«,2 is trivial. Since« is arbitrarily small, it follows thatA cannot simultaneously have spectral
points in s0,1/2d and s1/2,1d. Therefore,sid implies sii d. h

IV. TWO EXAMPLES

In this section we answer in the negative a question raised in Ref. 19. First we recall how the
problem of the existence of the infimum ofA and B in EsHd can be reduced to the infimum
problem for some quantum effects and their negations. Assume, in addition, that KersA+Bd=0.
Let fA+B be the affinesthat is, linear on convex combinationsd mapping defined as in Ref. 9 by

fA+B:hCu0 ø C ø A + Bj → hDu0 ø D ø PA+Bj, s4.1d

with C=sA+Bd1/2fA+BsCdsA+Bd1/2. By Theorem 2.2 in Ref. 9,fA+B is well defined. SincefA+B is
an affine isomorphism,A∧B exists if and only iffA+BsAd∧ fA+BsBd exists. As

fA+BsAd + fA+BsBd = fA+BsA + Bd = I

we are in the situation of Theorem 3.1.
Actually, the following more general fact holds.
Lemma 4.1: Let APEsHd, 0øC, DøA, and consider the mapping fA as defined ins4.1d.

Then C∧D exists if and only if fAsCd∧ fAsDd exists and, in this case, we have

fAsC ∧ Dd = fAsCd ∧ fAsDd.

Proof: This is a consequence of Theorem 2.5 in Ref. 9. h

By Proposition 2.4, the infimum ofA andB exists if and only if the infimum ofA∧ PA,B and

B∧ PA,B exists or, equivalently, the infimum of the restrictionsÃªA∧ PA,Bu PA,BH and B̃

ªB∧ PA,Bu PA,BH exists. Since KersÃ+B̃d=h0j, Ã∧ B̃ exists if and only iff Ã+B̃sÃd∧ f Ã+B̃sB̃d exists,

and for the pairf Ã+B̃sÃd , f Ã+B̃sB̃d we observe that Theorem 3.1 applies. Therefore, under the

additional assumptions that 0 and 1 are not eigenvalues off Ã+B̃sÃd and f Ã+B̃sB̃d, Ã∧ B̃ exists if and
only if A∧ PA,B andB∧ PA,B are comparable; in this case,A∧B coincides with the smaller of the
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A∧ PA,B and B∧ PA,B. For a finite dimensional Hilbert space it was proven in Ref. 19 that the
infimum of the operatorsA∧ PA,B andB∧ PA,B exists if and only if they are comparable.

The next example shows that, contrary to the finite dimensional case, we may have two
quantum effectsB1 and B2 for which B1∧B2 exists, butsB1∧ PB1,B2

d and sB2∧ PB1,B2
d are not

comparable.
Example 4.2:Let H=L2f−1,1g andA be the operator of multiplication with the square of the

independent variable onH, sAxdstd= t2xstd, for all xPL2f−1,1g. ThenA is a non-negative con-
traction onH, that is, a quantum effect, and the same is its square rootA1/2, that is, sA1/2xdstd
= utuxstd, xPL2f−1,1g. Note thatA, and henceA1/2, are injective.

Let 1 be the constant function equal to 1 onf−1,1g, ustdªsgnstd, and x±ª
1
2s1±ud, the

characteristic functions off0, 1g and, respectively,f−1,0g. All these functions are inL2f−1,1g.
Note that1 andu span the same two dimensional space asx±. Denote

H0 = H * spanh1,uj = H * spanhx+,x−j.

With respect to the decomposition

H = C1 % C u % H0

consider two quantum effectsC1 andC2 on H defined by

C1 = 30 0 0

0 1 0

0 0 1
2I0

4, C1 = 31 0 0

0 0 0

0 0 1
2I0

4 ,

whereI0 is the identity operator onH0. Clearly we haveC1+C2= I and letting

B1 = A1/2C1A
1/2, B2 = A1/2C2A

1/2,

we have

B1 + B2 = A.

Comparing the spectra ofC1 andC2 and using Theorem 3.1, it follows thatC1∧C2 exists, but
C1 andC2 are not comparable. Therefore, using Lemma 4.1, it follows thatB1∧B2 exists, butB1

and B2 are not comparable. In the following we will prove thatPB1,B2
= I, that is,

RansB1
1/2dùRansB2

1/2d is dense inH. We divide the proof in several steps.
Step 1: A1/2H0 is dense inH.
Indeed, letf PH=L2f−1,1g be a function such that for allh0PH0 we have

0 = kA1/2h0, fl = kh0,A
1/2fl.

ThenA1/2f is a linear combination of the functions1 andu, that is, there exist scalarsa andb such
that

utufstd = a + b sgnstd, t P f− 1,1g

and hence

fstd =
a + b sgnstd

utu
=5

a + b

t
, 0 , t ø 1,

b − a

t
, − 1 ø t , 0.6

Since f PL2f−1,1g this shows thatf =0 and the claim is proven.
Let us consider the following linear manifolds inH:
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F ª hf P L2f− 1,1guf piecewise constantj,

F0 ª hf P Fu ∃ « . 0 s . t . f us− «,«d = 0,kf,x−l = kf,x+l = 0j.

Step 2:F0 is dense inH0.
Indeed, to see this, let us first note thatF0,H0. If h0 is an arbitrary vector inH0 and «

.0, there existsf1PF such that

ih0 − f1i ø
«

8
henceukh0 − f1,x±lu ø

«

8
. s4.2d

Moreover, there existsf2PF such that it is zero in a neighbourhood of zero and

i f1 − f2i ø
«

8
. s4.3d

Consequently,

ih0 − f2i ø
«

4
and henceukh0 − f2,x±lu ø

«

4
. s4.4d

Let

f3 = f2 + 2xf1/2,1gkh0 − f2,x+l + 2xf−1,−1/2gkh0 − f2,x−l.

Then, from the choice off2 it follows

kf3,x+l = kf2,x+l + kh0 − f2,x+l = kh0,x+l = 0

and

kf3,x−l = kf2,x−l + kh0 − f2,x−l = kh0,x−l = 0,

hencef3PF0. Finally, from s4.2d, s4.3d, ands4.4d we get

ih0 − f3i ø ih0 − f1i + i f1 − f2i + i f2 − f3i ø «,

and the claim is proven.
Finally, we prove the following.
Step 3: PB1,B2

= I, that is, RansB1
1/2dùRansB2

1/2d is dense inH.
In the following we are using the inverse operatorA−1/2 on its range. By the preceding claim,

A1/2sA−1/2F0d is a linear submanifold inH0 and dense in it. Since the restrictions ofC1 andC2 to
H0 coincide with 1

2I0, it follows that the linear manifoldsC1A
1/2sA−1F0d andC2A

1/2sA−1F0d coin-
cide and are dense inH0. Consequently, the linear manifoldsA1/2C1A

1/2sA−1F0d and
A1/2C2A

1/2sA−1F0d coincide and, by Step 1 and Step 2, they are dense inH. Thus, the linear
manifold,

L = B1sA−1/2F0d = B2sA−1/2F0d # RansB1d ù RansB2d # RansB1
1/2d ù RansB2

1/2d,

is dense inH. This concludes the proof of the last step, and the example.
In order to explain the connection with the characterization of the existence of infimum

obtained by Ando in Ref. 2 we consider the comparison ofA∧ PA,B with the generalized shorted
operator, as considered in Ref. 2.

Lemma 4.3: Let A,BPEsHd. Then, for any sequencean of positive numbers that converge
increasingly to infinity, we have

SO- lim
n→`

sA:anBd ø A ∧ PA,B, s4.5d
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and the limit does not depend on the sequencesand.
Proof: First note that the sequence of positive operatorsA:anB is nondecreasing and bounded

by A, cf. Ref. 8. Consequently, the strong operator limit exists and does not depend on the
sequencean increasing to infinity. We thus can takean=n. Since the parallel sum is strongly
continuous in the second variable with respect to nondecreasing sequences, cf. Theorem 2.6, we
have A:nBøA and, since RanssA:nBd1/2d=RansA1/2dùRansB1/2d it follows A:nBø PA,B and
hences4.5d holds. h

Given two positive operatorsA andB, thegeneralized shorted operatorfBgA is definedssee
Ref. 1d by

fBgA = lim
n→`

A:snBd.

The main result in Ref. 2 states that the infimumA∧B exists if and onlyfBgA and fAgB are
comparable and, in this case,A∧B is the smaller offAgB andfBgA. In view of this result and our
Example 4.2, it follows that, in general,s4.5d cannot be improved to equality. Here we have a
simpler example emphasizing this fact.

Example 4.4:Let H=L2f0,1g andA the operator of multiplication with the functiont2. Then
A is bounded, contractive, and positive. In addition,A1/2 is the operator of multiplication with the
independent variablet. Note that bothA andA1/2 are injective.

Further, let1 be the function constant 1 inL2f0,1g and note that it does not belong to the
range of eitherA or A1/2. Let C be a non-negative contraction inH with kernel C1 and define
B=A1/2CA1/2. Then the operatorB is injective and hence its range is dense inH. Since
RansBd#RansB1/2d and, by construction, RansBd#RansA1/2d as well, it follows that
RansA1/2dùRansB1/2d is dense inH, hencePA,B= I.

For eachnù1 consider the functionvnPL2f0,1g defined by

vnstd = H0, 0ø t ø 1/n,

1/t 1/n , t ø 1.
J

Note thatA1/2vn=xs1/n,1g, the characteristic function of the intervals1/n,tg. Taking into account
that the sequence of functionsxs1/n,1g converges in norm to the function1, it follows that

kBvn,vnl = kCA1/2vn,A
1/2vnl = kCxs1/n,1g,xs1/n,1gl → kC1,1l = 0.

Let an be a sequence of positive numbers increasing to +` and such thatankBvn,Bvnl
converges to 0. It is easy to see that this is always possible. Then using the characterization of the
parallel sum as in Theorem 2.6.svid, for arbitrarynùm.2 we have

ksA:anBdvmvml = infhkAu,ul + ankBv,vluvm = u + vj = infhkAsvm − vd,vm − vl + ankBv,vluv P Hj

= infhkAvm,vml − 2 RekAvm,vl + kAv,vl + ankBv,vluv P Hj ø kAvm,vml

− 2 RekAvm,vnl + kAvn,vnl + ankBvn,vnl = 1 −
1

m
− 2 +

2

m
+ 1 −

1

n
+ ankBvn,vnl

=
1

m
−

1

n
+ ankBvn,vnl → 1

m
,

1

2
asn → `.

On the other hand,

kAvm,Avml = 1 −
1

m
ù

1

2
.

Hence, we have strict inequality ins4.5d.
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Distinguishing bipartitite orthogonal states using LOCC:
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Two types of results are presented for distinguishing pure bipartite quantum states
using local operations and classical communications. We examine sets of states that
can be perfectly distinguished, in particular showing that any three orthogonal
maximally entangled states inC3 ^ C3 form such a set. In cases where orthogonal
states cannot be distinguished, we obtain upper bounds for the probability of
error using LOCC taken over all sets ofk orthogonal states inCn ^ Cm. In the
process of proving these bounds, we identify some sets of orthogonal states for
which perfect distinguishability is not possible. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1914731g

I. INTRODUCTION

There is much interest in understanding what can and cannot be achieved using local opera-
tions and classical communicationssLOCCd on a composite quantum system, pursued with an eye
towards applications in communication and cryptography. One of the first and most basic prob-
lems in LOCC is that of distinguishing orthogonal quantum states. While some direct applications
of this problem do existsfor instance, data hiding13 and corrected channels8,9d, these are limited by
the usual assumption that no additional entanglement exists between the two parties. However, the
problem of LOCC discrimination has proved a fertile area for attempts to better understand the
relationship between entanglement and locality, the mysterious interplay that underlies virtually all
quantum communication and cryptography protocols. It is in this spirit that the current work is
undertaken.

The setup for bipartite LOCC is quite simple: Two partiessby convention Alice and Bobd are
physically separate but share a quantum state. Each may perform local quantum operations on
his/her piece of the system, but the two may only communicate through a classical channel. In this
paper, we will suppose that Alice and Bob share one of a known set of orthogonal states; their task
is to determine the identity of this stateseven if it is destroyed in the processd. Since the possible
states are orthogonal, they clearly could be distinguished and preserved were global operations
permitted.

The most fundamental and surprising results in this area are those of Walgateet al.,15 thatany
two orthogonal states can be locally distinguished; and of Bennettet al.,2 that there exists a basis
of product states that cannot be distinguished with LOCC. These two facts demonstrate that there
is no simple relationship between entanglement and locality, which has led to further exploration,
e.g., Refs. 10 and 14.

Following the definitive result for two states,15 work has been done to identify larger sets of
orthogonal states that can and cannot be perfectly distinguished with LOCC. Both Refs. 5 and 6
looked at generalized Bell bases inCn ^ Cn. Fan5 showed that anyk such states can be perfectly
distinguished ifn is prime andksk−1dø2n, in particular, in the casek=n=3. The question was
posed in Ref. 6 whetherany three maximally entangled states could be distinguished; we answer
this question in the affirmative. We also also give a sufficient condition for perfect distinguish-
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ability among maximally entangled states inCn ^ Cn using unbiased bases, thus providing an
alternative proof of the result in Ref. 5.

It not always possible to perfectly distinguishk orthogonal vectors whenk.2. For instance,
Ghoshet al. showed thatk generalized Bell states inCn ^ Cn cannot be distinguished with LOCC
if k.n.6,7 In the second part of this paper we establish lower bounds on the effectiveness of
probabilistic LOCC discrimination of orthogonal vectors. If Alice and Bob share one ofk arbitrary
orthogonal vectors inCn ^ Cn, what is their guaranteed minimal probability of correctly identify-
ing it? And which sets of states achieve this minimum? These questions have an immediate
application to a data hiding setup, as described in Ref. 13 in which a “Boss” can clear prior
entanglement between Alice and Bob before giving them pieces of a secret quantum state to work
on.

It is shown that for 2økø4, k arbitrary orthogonal vectors inCm^ Cn can be correctly
identified with probability at least 2/k, and this bound is tight. An interesting fact is that this does
not depend on the dimension of the overall space—the worst case occurs when the states are
embedded in aC2 ^ C2 subspace. Our final result translates these ideas into the more familiar
language of mutual information and recovers a bound implied by Ref. 1.

The bounds from these propositions identify sets of vectors for which perfect distinguishabil-
ity is impossible. In particular, we generalize Ref. 6 to show that nok maximally entangled states
can be perfectly distinguished ifk.n. The bounds also lead to the well-known result of Horodecki
et al.10 that a complete basis of perfectly distinguishable vectors must be a product basis.

As a final comment, we note the distinction made in Ref. 4 between LOCC protocols that have
so-called infinite resources and those that use a finite number of rounds of communication and
remain in finite-dimensional ancillary spaces. The results in this paper are established under the
assumption that all protocols terminate with probability one and that each ancillary system is finite
dimensional.

The paper is organized as follows: In Sec. II we state the results and give the necessary
background, and in Secs. III and IV we provide the proofs.

II. STATEMENT OF RESULTS

Following the result in Ref. 15, we would like to identify sets ofk orthogonal vectors that can
be perfectly distinguished with LOCC fork.2. For instance, it is immediate that any three
orthogonal states can be perfectly distinguished if two of them are product states. Also, from Ref.
5, any 3 states of a generalized Bell basis ofCn ^ Cn can be distinguished ifnù3; the question for
general maximally entangled vectors inC3 ^ C3 is noted but not answered in Ref. 6.

Proposition 1: Any three orthogonal maximally entangled states in C3 ^ C3 can be perfectly
distinguished using LOCC.

It is not clear whether any 3 orthogonal maximally entangled states are distinguishable in
Cn ^ Cn. However, the following proposition gives a sufficient condition for distinguishing maxi-
mally entangled states using the idea of mutually unbiased bases, which arise in several areas of
quantum informationssee, for instance Refs. 11 and 16d. The more general notion of a common
unbiased basis is not well studied but is defined here for convenience.

Definition 2: Let A=hAi : i PIj be a family of orthonormal bases of Cn, with Ai

=huai1l , uai2l , . . . ,uainlj and I some indexing set.
A basisB of Cn is a common unbiased basis forA if, for all ublPB and for all iPI, 1ø j

øn:

ukbuaijlu2 =
1

n
. s1d

So, a set of basesA is mutually unbiased if and only if for alli PI, Ai is a common unbiased
basis forA−hAij.

In the following proposition, we write our states in terms of asnoncanonicald standard maxi-
mally entangled state ofCn ^ Cn:
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uMEnl ª
1
În

o
j=0

n−1

u jlu jl. s2d

Proposition 3: LetuC1l, uC2l , . . . ,uCkl be orthogonal, maximally entangled vectors in Cn ^ Cn,
with uCil=sI ^ BiduMEnl.

For each pairsi , jd, let Ai j be a basis of eigenvectors of Bi
†Bj, and let

A = hAi j :1 ø i , j ø kj.

If the familyA has a common unbiased basis, then the k states can be perfectly distinguished
by LOCC.

The result is actually more general—we do not require that the states be maximally entangled,
only that the matricesBi

†Bj be diagonalizable. For instance, we could use the same proof to show
that any simultaneously diagonalizable orthogonal states can be locally distinguished. These are
sets of the form

Huwil = o
j=0

n−1

uij u j j l,1 ø i ø nJ , s3d

whereu is ann3n unitary matrix.
The main result of Ref. 5 follows from Proposition 3. It involves the generalized Pauli

matricesZ=o je
2pi j /nu jlk j u andX=o ju jlk j +1u and the generalized Bell basis,

BBn ª hsI ^ XmZlduMEnl:0 ø m,l ø n − 1j , Cn
^ Cn. s4d

Corollary 4 (H. Fan): Let uC1l, uC2l , . . . ,uCkl be orthogonal, maximally entangled vectors in
Cn ^ Cn, with n prime anduCilPBBn.

Then if ksk−1d /2øn, the k vectors can be perfectly distinguished by LOCC.
Proof: This follows from the fact that forn prime, the eigenbases ofhXmZl :0ø l ,m,nj form

a maximum set ofsn+1d mutually unbiased bases inCn.11 Up to a global phase,

sXmiZlid†sXmjZl jd ; Xmj−miZl j−l i , s5d

so the eigenbases of the pairwise products also belong to the set of mutually unbiased bases. As
long as the number of pairssi , jd is less than the number of mutually unbiased bases, then there
exists a common unbiased basis and the proposition can be applied. But this is the condition that
ksk−1d /2,n+1.

It is not always possible to distinguish maximally entangled statessRef. 7d, which raises the
question of how bad it can besor conversely, what minimal level of success is guaranteedd. When
perfect discrimination is not possible, one possible strategy is unambiguous discrimination, in
which either the correct identity of the state is discovered or else a generic error message is
returned. Another strategy is minimum error discrimination, in which the protocol always pro-
duces one of the possible states, but this identification might be incorrect. The challenge in this
case is to find a protocol that minimizes the probability of error. It is this problem of minimum
error discrimination that we will consider throughout the rest of the paper.

Suppose Alice and Bob share one of the orthogonal vectorshuCilj with a priori probabilities
hpij. They apply a LOCC protocol, which produces a best guess as to the identity of their state.
Define PshuCilj ,hpijd as the probability that Alice and Bob correctly identify which vector they
share, assuming an optimal strategy is used. We are interested in the worst case scenario–what
ensembles ofk orthogonal vectors are hardest to distinguish using LOCC? Initially, we restrict
ourselves to maximally entangled states and define
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fmesk,nd ª min
huCilj,hpij

PshuCilj,hpijd, s6d

where the minimum is taken over probability distributionspi and sets of orthogonal maximally
entangled stateshuC1l , . . . ,uCklj,Cn ^ Cn.

We immediately observe thatfme is a nonincreasing function in bothk and n; as k and n
increase, the minimum is taken over larger nested sets. We note that for alln, fmes2,nd=1, since
two orthogonal states can always be distinguished by LOCC.15 Proposition 1 is equivalent to the
fact that fmes3,3d=1.

But there are limitations to what can be done if the number of vectors is bigger than the
dimension.

Proposition 5: For all2ønøkøn2,

2

k
ø fmesk,nd ø

n

k
. s7d

In the case n=3økø9,

fmesk,3d =
3

k
. s8d

.
We can also define a more general function in which we remove the assumption that the states

are maximally entangled,

fsk,nd ª min
huCilj,hpij

PshuCilj,hpijd, s9d

where the minimum is taken over probability distributionspi and all sets of orthogonal states
huC1l , . . . ,uCklj,Cn ^ Cn.

Again, f is nonincreasing with respect ton and k and fs2,nd=1. Also, for køm2øn2, k
maximally entangled vectors inCm^ Cm can be embedded inCn ^ Cn, so fsk,ndø fmesk,md. The
previous results forfme imply bounds onf.

Proposition 6: For2ønøkøn2,

2

k
ø fsk,nd ø

dÎke
k

. s10d

In particular,

fs3,nd =
2

3
, fs4,nd =

1

2
. s11d

.
The functionfsk,nd is defined only when the two spaces have the same dimension. We could

just as easily have definedfsk,m,nd for k vectors inCm^ Cn and applied Lemma 8 to that.
However, we have discovered no bounds on this that do not follow from inclusion; that is, for
møn, the best we can say is

fsk,nd ø fsk,m,nd ø fsk,md, k ø m2, s12d

fsk,nd ø fsk,m,nd ø
n

k
, m2 , k ø mn. s13d

.
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We note that forkø4, fsk,nd is independent ofn; the k vectors are most difficult to distin-
guish when they are squeezed into the smallest possible space. It seems entirely possible that
fsk,nd will remain independent ofn, even for higher values ofk.

Propositions 5 and 6 are proved using the following lemmas. In fact, most of the work goes
into the proof of Lemma 8, as it requires us to analyze Alice and Bob’s protocol in detail.

Lemma 7: For all2ø j økøn2,

j

k
fmes j ,nd ø fmesk,nd, s14d

j

k
fs j ,nd ø fsk,nd. s15d

Lemma 8: Given k equally probable vectorshuC1l , . . . ,uCklj,Cm^ Cn, nøkømn, with the
property that for each i, uCil=sI ^ UiduC1l for Ui unitary. Then the k vectors can be distinguished
using LOCC with probability that is at most n/k.

The assumption in Lemma 8 is equivalent to the fact that theCn party can unilaterally
transformuCil into uC jl for any i , j . The lemma includes the special case in which all the states are
maximally entangled. Also, note that there is no assumption here that the states are orthogonal,
though this is clearly the most interesting case.

Examples:Given a basis of four orthogonal maximally entangled states inC2 ^ C2, one naive
notion is to ignore two of the possible states and perfectly distinguish the remaining two, thus
achieving the lower bound in Lemma 7. Lemma 8 states that this, in fact, is an optimal strategy for
identifying the given state. Proposition 6 combines the lemmas to say that this is the worst case for
trying to distinguish four orthogonal states.

Likewise, givenk.3 orthogonal maximally entangled states inC3 ^ C3, one can discard all
but three of them and then perfectly distinguish those that remain using Proposition 1. Again, the
lemma states that this is optimal. However, fork=4 or k=5, this succeeds with probability greater
than 1

2 and so is no longer the worst case inC3 ^ C3. A worse case would be four equally probable
maximally entangled states in aC2 ^ C2 subspace.

Finally, we look at an example using the generalized Bell basis BBn defined ins4d. Suppose
we wish to distinguish the states in a setT,BBn with uTu=k. If n is prime, then the argument in
Ref. 5 implies that Alice and Bob can correctly identify their vectors with probabilityn/k; Lemma
8 shows that this is in fact optimal.

The following modification of Lemma 8 establishes a necessary condition to distinguish a set
of states.

Proposition 9: Given k equally probable vectorshuC1l , . . . ,uCklj,Cm^ Cn and letlM be the
largest Schmidt coefficient in any of theuCil. Then the k vectors can be distinguished using LOCC
with probability that is at mostlMmn/k.

In particular, if k vectors can be perfectly distinguished with LOCC, thenlM ùk/mn.
It is interesting to note that in the case of perfect distinguishability, this proposition gives a

lower bound on the maximal Schmidt coefficient, while the result of Chen and Li3 gives an upper
bound on the number of nonzero Schmidt coefficients.

The following generalizes the work of Ref. 6 by settinglM =1/n above.
Corollary 10: No k maximally entangled states in Cn ^ Cn can be perfectly distinguished with

LOCC if k.n.
Both Proposition 9 and the result in Ref. 3 imply the fundamental result of Horodeckiet al.,

that a distinguishable basis must be a product basis.10

Corollary 11 (Horodecki et al): LethuC1l , . . . ,uCmnlj be an orthonormal basis of Cm^ Cn, and
suppose these vectors can be perfectly distinguished using LOCC. Then each of the vectors is a
product vector.
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To see this as a consequence of Proposition 9, suppose we have have one of theuCil with
equal probability. Then clearlylM =k/mn=1. Examining the proof of Proposition 9 reveals that if
uCil has maximal Schmidt coefficientli ,lM, then eitherPsZ= id=0 or else the inequality on
PsZ=Vd is strict. Neither of these is possible with perfect distinguishability, which meansli

=lM =1 anduCil is a product state for alli.
These types of results are useful in that they allow us to identify classes of sets ofk vectors in

Cm^ Cn that cannot be perfectly distinguished. Also, they provide an upper bound on the prob-
abilities and allow us to deduce optimal strategies for correct identification.

The functionfsk,nd is one way of assessing how much information Alice and Bob can gain
from LOCC measurements on their vectors. Another approach would be to use the classical
mutual information between the identityV of the vector sent and the outcomes of Alice and Bob’s
measurements.sThis idea was explored, for instance, with reference to the specific nine-state
ensemble in Ref. 2.d Let Y represent the outcomes of the firstr −1 measurements andZ indicate
the final measurement, i.e., the conclusion as to the value ofV, and write

IsV;YZd = HsVd − HsVuYZd, s16d

whereH is the Shannon entropy.
As we definedfsk,nd, we define a functiongsk,nd based on mutual information. Assuming

that Alice and Bob use optimal measurements, we can considerIsV;YZd to be the optimal mutual
information between the input vectorV and the measurement results:

gsk,nd ª min
huCilj

IsV;YZd. s17d

Note that we now assume that all thek vectors are equally likely; there is no sensible lower bound
if the entropy of thea priori probability distribution is allowed to approach zero.

Proposition 12: The function gsk,nd defined above for1,køn2 satisfies the following
bounds:

2

k
log 2ø gsk,nd ø logdÎke. s18d

This proposition is proved as a consequence of Lemma 8. The same upper bound can be seen as
a consequence of the following inequality given in Ref. 1:

Iacc
LOCC ø SsrAd + SsrBd − o

i

piSsrA
i d, s19d

where Iacc
LOCC is the classical mutual accessible information using LOCC,S is the von Neumann

entropy,r=opiuCilkCiu, andrA andrB are the partial traces.
Let the uCil be maximally entangled states inCn ^ Cn. Then

rA
i = rA = rB =

1

n
In, ∀ i , s20d

Iacc
LOCC ø SsrAd + SsrBd − o

i

piS„TrAsuCilkCiud…, s21d

ø log n + log n − o
i

piS„TrAsuCilkCiud… = log n. s22d

This gives another way to see thatk maximally entangled states inCn ^ Cn cannot be distinguished
if k.n.
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Example:Recall the set BBn defined ins4d; it is a generalized Bell basis forCn ^ Cn. Suppose
Alice and Bob share a stateuCl=sI ^ XmZlduMEnl, uniformly chosen from BBn. Each measures in
the standard basis, allowing them to perfectly determine the value ofm but giving no information
aboutl.

If at this point they make a guess as to the value ofl, they will be correct with probabilty 1/n,
which saturates the inequality in Lemma 8, and hence is optimal forPsZ=Vd.

Perhaps more surprising, this protocol is also optimal with respect to classical mutual infor-
mation, asIsV;YZd=log n and the proof of the upper bound in Proposition 12 shows that this is
maximal.

III. PROOFS OF PROPOSITIONS FOR DISTINGUISHING MAXIMALLY ENTANGLED
STATES

A. Preliminaries

As has been previously notedsfor instance in Ref. 12d, there is one-to-one correspondence
between statesuClPCn ^ Cm andm3n complex matricesB given by uCl=sI ^ BduMEnl, where
uMEnl is the standard maximally entangledCn ^ Cn state defined ins2d. Throughout the paper, we
will use the following property, which was noted in Ref. 12 and implicitly used in Ref. 15.

Lemma 13: For any m3n matrix A written in the standard basis,

ÎnsI ^ AduMEnl = ÎmsAT
^ IduMEml. s23d

In particular, setting m=1,

ÎnsI ^ kvuduMEnl = uv̄l ^ I , s24d

whereuv̄l denotes the entrywise complex conjugate ofuvl in the standard basis.
We adopt the convention of associating statesuCl with kC uCl=1 andm3n matricesB with

Tr B†B=n. This correspondence has the following immediate properties:

s1d If uCil=sI ^ BiduMEnl for i =1,2, then kC1uC2l=1/n Tr B1
†B2.

s2d iB†Bi`=nlM, wherelM is the largest Schmidt coefficient ofuCl.
s3d uCl=sI ^ BduMEnlPCn ^ Cn is maximally entangled if and only ifB is unitary.

We will use this correspondence throughout what follows.

B. Proof of proposition 1

For i =1,2,3,write uCil=sI ^ BiduME3l with Bi unitary and TrBi
†Bj =3di j . The matrixB2

†B1 is
a traceless 333 unitary matrix, so its eigenvalues areh1,v ,v2j, with v=ei2p/3. The same is also
true for B3

†B2. We write these matrices in terms of their eigenvectors:

B2
†B1 = o

i=0

2

viueilkeiu, B3
†B2 = o

i=0

2

viuf ilkf iu. s25d

Given uCil, for i unknown, choose a unitaryU and measure the first system in the basishŪu jl : j

=0,1,2j, whereŪ indicates the entrywise complex conjugate ofU. If the outcome of the mea-
surement isxP h0,1,2j, then Lemma 13 implies the state now looks like
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sŪuxlkxuUT
^ IduCil = sŪuxlkxuUT

^ BiduMEnl, s26d

=sŪuxl ^ BidskxuUT
^ IduMEnl, s27d

=
1
În

sŪuxl ^ BidsI ^ Uuxld, s28d

=
1
În

Ūuxl ^ BiUuxl. s29d

In particular, after normalization, the second system is in the state

BiUuxl. s30d

We want to show that for an appropriate choice ofU, the vectorshB1Uuxl ,B2Uuxl ,B3Uuxlj are
orthogonal for allx. The proof is constructive and is achieved in three steps:

s1d Observe that the quantityukei u f jlu2 depends only ons j − id mod 3.
s2d Show that we can adjust the phases of theueil and uf jl so that we may assume thatkei u f jl

depends only ons j − id mod 3.
s3d Let our unitary U be the Fourier matrix in the basishueilj and show that the vectors

hB1Uuxl ,B2Uuxl ,B3Uuxlj are orthogonal for allx.

The proof of each step is given below. Note that all operations on indices are assumed to be
taken modulo 3.

s1d Since TrB3
†B1=0:

0 = Tr B3
†B2B2

†B1 = o
i,j

vi+jukeiuf jlu2 = o
i,k

vkukeiufk−ilu2. s31d

For anyakù0, ok=0
2 vkak=0 implies that all theak are the same. Therefore,

o
i

ukeiuf−ilu2 = o
i

ukeiuf1−ilu2 = o
i

ukeiuf2−ilu2. s32d

Combining with the normalization conditions for anyi , j ,

o
k

ukekuf jlu2 = o
k

ukeiufklu2 = 1 s33d

gives a linear system of seven independent equations in the nine unknownsukei u f jlu2 whose
solutions look like this:

sukeiuf jlu2di j = 1uau2 ucu2 ubu2

ubu2 uau2 ucu2

ucu2 ubu2 uau2
2 . s34d

That is, the quantityukei u f jlu2 depends only ons j − id mod 3.
s2d Let V be the unitary matrix whosesi , jd entry is given bykei u f jl. From above,uVi,ju depends

only on s j − id mod 3. We would like to haveVi,j itself depend only ons j − id mod 3. We accom-
plish this by adjusting the phases ofueil and uf jl, which is equivalent to finding diagonal unitaries
U1 andU2 such that
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V8 = U1VU2
† = 1a c b

b a c

c b a
2 , s35d

for somea,b,cPC. Write mij =argskei u f jld and

U1 = 11 0 0

0 eia 0

0 0 eib2, U2 = 11 0 0

0 eig 0

0 0 eid2 .

Solving a system of three linear equations in the phases of the first two columns ofV allows us to
set

g =
1

3o
j=0

2

sm1j − m0jd, s36d

a = m00 − m11 + g, s37d

b = m01 − m20 − g. s38d

Put these values intoU1 andU2 and choosed to adjust the top right corner, which gets our matrix
into the form

V8 = 1a c b

b a ceid1

c b aeid2
2 . s39d

The fact thatV8 is unitary implies its columns are orthogonal, yielding the three equations:

1 1 1 1

eid1 1 eid2

e−id2 e−id1 1
21āc

c̄b

b̄a
2 = 10

0

0
2 . s40d

The determinant of the above matrix cannot be zero unlesseid1=eid2=1, which means that in fact
V8 is already in the desired forms35d.

Adjusting our matrixV was equivalent to adjusting the phases of the vectorsueil and uf jl.
Therefore, without loss of generality, we assume thatkei u f jl depends only ons j − id mod 3 and
define

Ak ª keiufk+il, s41d

which is independent ofi.
s3d For xP h0,1,2j define

Uuxl =
1
Î3

o
i=0

2

vixueil. s42d

Explicit calculation shows that for allx, the vectorsB1Uuxl, B2Uuxl, B3Uuxl are pairwise orthogo-
nal:
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3kxuU†B2
†B1Uuxl = o

k

v−kxvkvkx = 0, s43d

3kxuU†B3
†B2Uuxl = o

k,i,l
v−kxvivlxkekuf ilkf iuell, s44d

=o
k,i,l

vsl−kdxviAi−kAi−l , s45d

= o
k8,l8

svsk8−l8dxAk8Al8do
i

vi = 0, s46d

3kxuU†B3
†B1Uuxl = kxuU†B3

†B2B2
†B1Uuxl, s47d

=o
k,i,l

vsl−kdxvi+lAi−kAi−l , s48d

= o
k8,l8

svsk8−l8dxv−l8Ak8Al8do
i

v2i = 0. s49d

This proves that, for allx, the vectorsB1Uuxl, B2Uuxl, B3Uuxl are orthogonal and hence can be
perfectly distinguished.

C. Proof of proposition 3

Let B=hub1l , . . .ubnlj be the common unbiased basis. We need to show that for anyi Þ j and
any k, the vectorsBiubkl andBjubkl are orthogonal. Using the eigenbasisAi j , write

Bi
†Bj = o

s

lsueslkesu. s50d

Then for allk,

kbkuBi
†Bjubkl = o

s

lsukbkueslu2, s51d

=
1

n
o

s

ls, s52d

=
1

n
Tr Bi

†Bj = 0. s53d

IV. PROOFS ON THE WORST CASES FOR DISTINGUISHING ORTHOGONAL
STATES

Throughout what follows, letV be the true identity of the vectoruCil, and letZ be Alice and
Bob’s best guess of the value ofV, which we assume is also the outcome of the final measurement.
Their goal, then, is to maximizePsZ=Vd.
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A. Proof of propositions 5 and 6 using the lemmas

Setting j =2 in Lemma 7 gives us the desired lower bounds, sincefmes2,nd= fs2,nd=1. As
long askøn2, there existk orthogonal maximally entangled vectors inCn ^ Cn, so Lemma 8
implies thatfmesk,ndøn/k. In the casekø9, we knowfmes3,3d=1 so

3

k
=

3

k
fmes3,3d ø fmesk,3d ø

3

k
, s54d

so fmesk,3d=3/k. Similarly, if køm2øn2, thenfsk,ndø fmesk,md, since we can embed maximally
entangledCm^ Cm vectors intoCn ^ Cn. The minimum value ofm for which we can do this isdÎke,
which implies

fsk,nd ø
dÎke
k

. s55d

In the case 2økø4, dÎke=2 and

2

k
=

2

k
fs2,nd ø fsk,nd ø

2

k
, s56d

which implies

fsk,nd =
2

k
. s57d

B. Proof of lemma 7

We prove the lemma for the functionfsk,nd; the proof forfme is identical. Given any orthogo-
nal vectorsuCilP huC1l , . . . ,uCklj with probabilitiesp1ùp2ù ¯ ùpk. There exists an algorithm
that can distinguish the firstj of these vectors with probability that is at leastfs j ,nd. Applying this
algorithm to the received vectoruCil cannot succeed ifi . j , but clearly

PsZ = Vd ù PsZ = V,i ø jd, s58d

=Psi ø jdPsZ = Vui ø jd, s59d

ù
j

k
fs j ,nd, s60d

which gives the desired lower bound onfsk,nd.

C. Proof of lemma 8

For this proof, we will need to examine the measurement process more closely. As mentioned
earlier, we will assume that the protocol terminates with probability 1. In fact, through the calcu-
lation, we will assume there exists anr such that the protocol terminates after at mostr rounds of
communication. Completing the argument for arbitraryr is sufficient. LetR be the actual number
of rounds needed to complete to protocol and letpr be the probability that more thanr rounds are
needed. Then
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PsZ = Vd = s1 − prdPsZ = VuRø rd + prPsZ = VuR. rd, s61d

øPsZ = VuRø rd + pr . s62d

Our proof will show that for anyr, PsZ=VuRø rdøn/k. Taking the limit asr →`, pr gets
arbitrarily small and we can boundPsZ=Vd by n/k.

The actions of Alice and Bob will consist of adding ancilla systems, performing unitary
operations, and performing measurements. All of these can be encoded into a POVM. Alice
measures first; we write her POVM asXT=hX1

T,X2
T, . . . ,Xk1

T j. sBecause we will eventually apply
Lemma 13 to show the effect of Alice’s POVM on Bob’s system, we write it in terms of the
transpose.d Suppose Alice gets the resultj1; then Bob uses a POVM that depends onj1: E j1
=hEs j1d1,Es j1d2, . . . ,Es j1dk2

j. Alice then measures in a POVM that depends onj1 and j2, and so
on. After r rounds of measurement, Alice and Bob have effectively measured, using the POVM,

hsX j1,j2,. . .j r−1

T
^ E j1,j2,. . .j r

d: j1, j2, . . . ,j r ù 0j, s63d

which are defined recursively as in Ref. 2:

X j1,j2,. . .j r−1

T = XTs j1, j2, . . . ,j r−2d j r−1
X j1,j2,. . .j r−3

T ,

s64d
E j1,j2,. . .j r

= Es j1, j2, . . . ,j r−1d j r
E j1,j2,. . .j r−2

.

The subscripts show that each measurement depends on the previous outcomes. Here eachXTsm0d
andEsm1d is a POVM, wherem0 is a vector encoding an even number of previous outcomes and
m1 encodes an odd number. This corresponds to the fact that Alice and Bob alternate measure-
ments, so Alice’s action will always depend on an even number of previous results while’s Bob’s
will always depend on an odd number. As usual, we have the normalization

o
i

„Xsm0di
T
…

†Xsm0di
T = IdAsm0d = o

i

Xsm0diXsm0di
†, s65d

o
i

Esm1di
†Esm1di = IdBsm1d, s66d

wheredAsm0d anddBsm1d are sufficiently large dimensions to include any ancilla spaces.
Alice and Bob start with the stateuCil=sI ^ BiduMEnl and then apply the POVM above,

getting resultsm=s j1, j2, . . . ,j r−1d and j r, for r an even number. Then, using Lemma 13, their state
now looks like

sXm
T

^ Em,j r
dsI ^ BiduMEnl = I ^ sEm,j r

BiXmduMEnl. s67d

This state is not normalized—its magnitude indicates the probability of this outcome. Without loss
of generality, we assume that the final measurement identifies the best guess of the value ofV.
This gives us a more formal definition of our optimal measurement, where we sum over all
outcomes with the final output equal to the correct state identity:

PshuCilj,hpijd ª sup
X,E

PsZ = Vd, s68d
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PsZ = Vd = o
i

PsZ = V = id, s69d

=o
i,m

pikCiusX̄mXm
T

^ Em,i
† Em,iduCil, s70d

=o
i,m

pikMEnusI ^ Xm
† Bi

†Em,i
† Em,iBiXmduMEnl s71d

=
1

n
o
i,m

pi TrsXm
† Bi

†Em,i
† Em,iBiXmd. s72d

The measurements might make use of ancilla systems, so we writePA andPB as the projec-
tions back onto our original Alice and Bob spaces; since eachBi maps Alice’s space to Bob’s, we
see thatPBBi =BiPA=Bi. Recall also that TrBi

†Bi =n by assumption.
We may now turn to the lemma, which assumes thatuCil=sI ^ UiBduMEnl with Ui unitary and

B fixed. Suppose Alice and Bob maker measurements with the POVMs described ins64d. We
assume thatr is even so Bob measures last—we can always append a trivial measurement to make
this so. Suppose that the firstr −2 measurement outcomes are contained in the vectorm
=s j1, j2, . . . ,j r−2d. For simplicity we writej r−1 as j and assume thatZ=V if and only if Bob’s final
measurementj r = i. Plugging this intos72d and settingpi =1/k yields

PsZ = Vd =
1

kn
o
m,j ,i

TrsXm
† Bi

†Em,i
† Em,iBiXmd, s73d

=
1

kn
o
m,j ,i

TrsXm
† Bi

†PBEm,i
† Em,iPBBiXmd, s74d

ø
1

kn
o
m,j ,i

sTr PBEm,j ,i
† Em,j ,iPBdsTr BiXm,jXm,j

† Bi
†d, s75d

=
1

kn
o
m,j ,i

sTr PBEm,j ,i
† Em,j ,idsTr B†BXm,jXm,j

† d. s76d

In s75d, we use the fact that for matricesA,Bù0, Tr ABø sTr AdsTr Bd, and in s76d we use the
assumption of the lemma thatBi =UiB. The key observation now is that there is noi in the second
term of s76d; rewriting the first term as ins64d shows that summing the first term overi yields the
identity matrix on the inside, allowing us to drop two subscripts, not just one:

TrSo
i

PBEm,j ,i
† Em,j ,iD = TrSo

i

PBEm
† Esm, jdi

†Esm, jdiEmD , s77d

=TrsPBEm
†Emd. s78d

This corresponds to the fact that Alice does nothing during Bob’s measurement phase. We now
have
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PsZ = Vd ø
1

kn
o
m,j

sTr PBEm
†EmdsTr B†BXm,jXm,j

† d. s79d

Now, there is noj in the first term, only in the second, so we can likewise sum to get the identity
on the inner term. Alternating in this way, we can count back through the measurements until they
all sum to the identity and we are left with

PsZ = Vd ø
1

kn
TrsPBdTrsB†Bd =

1

kn
sndsnd =

n

k
. s80d

This shows that even if Alice and Bob add ancilla systems to do their measurements, the
relevant bound comes from the dimension of Bob’s system. This proves the lemma.

D. Proof of proposition 9

In Eq. s75d, we insert the projection onto Alice’s spacePA and use Hölder’s inequality to note
that

Tr BiXm,jXm,j
† Bi

† = Tr BiPAXm,jXm,j
† PABi

†, s81d

øiBi
†Bii` Tr PAXm,jXm,j

† PA, s82d

ønlM Tr PAXm,jXm,j
† PA, s83d

sinceiBi
†Bii`ømaxiiBi

†Bii`=nlM. Aside from the new factor ofnlM, the rest of the calculation
from Lemma 8 remains unchanged, insertingPA for B so thats80d becomes

PsZ = Vd ø
1

kn
snlMdTrsPBdTrsPAd =

lM

k
sndsmd =

lMmn

k
. s84d

E. Proof of proposition 12

The lower bound comes from the idea of tossing out all but two of the vectors and distin-
guishing them perfectly. At worst, this process gives yous2/kdlog 2 bits of information. The upper
bound arises in the case ofk states to which Lemma 8 applies. The joint probability distribution on
sV,Y,Zd must have two properties. First, that the marginal distribution onV is uniform, since the
states are equally likely. Second, by relabeling in Lemma 8, we see that for any permutations
PSk,P(Z=ssVd)øn/k. The set of distributions with these properties is a convex set on which the
mutual information is convex. The extreme points of this set are distributions for whichZ takes on
only n values andY is a function ofZ. Hence the maximum happens at an extreme point and

IsV;YZd ø HsYZd = HsZd ø log n. s85d

This implies that the maximum mutual information in this case is logn. Making n as small as
possible, we see that

gsk,nd ø logdÎke. s86d

V. CONCLUSION

In summary, we have demonstrated that several classes of maximally entangled states that can
be distinguished using LOCC. By examining the measurement process itself, we have explored
bounds on both the success probability and the mutual information and shown that the well-
understoodC2 ^ C2 Bell basis provides the worst case of three or four vectors with respect to
either of these measures. In the process, we have identified some sets of states that cannot be
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perfectly distinguished. It is hoped that through better understanding best and worst cases of the
distinguishing problem, we can further our understanding of the interplay between locality and
entanglement.
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On pure states ofn quantum bits, theconcurrence entanglement monotonereturns
the norm of the inner product of a pure state with its spin-flip. The monotone
vanishes forn odd, but forn even there is an explicit formula for its value on mixed
states, i.e., a closed-form expression computes the minimum over all ensemble
decompositions of a given density. Forn even a matrix decompositionn=k1ak2 of
the unitary group is explicitly computable and allows for study of the monotone’s
dynamics. The side factorsk1 andk2 of this concurrence canonical decomposition
sCCDd are concurrence symmetries, so the dynamics reduce to consideration of the
a factor. This unitarya phases a basis of entangled states, and the concurrence
dynamics ofu are determined by these relative phases. In this work, we provide an
explicit numerical algorithm computingn=k1ak2 for n odd. Further, in the odd case
we lift the monotone to a two-argument function. Theconcurrence capacityof n
according to the double argument lift may be nontrivial forn odd and reduces to the
usual concurrence capacity in the literature forn even. The generalization may also
be studied using the CCD, leading again to maximal capacity for most unitaries.
The capacity ofn ^ I2 is at least that ofn, so odd-qubit capacities have implications
for even-qubit entanglement. The generalizations require considering the spin-flip
as a time reversal symmetry operator in Wigner’s axiomatization, and the original
Lie algebra homomorphism defining the CCD may be restated entirely in terms of
this time reversal. The polar decomposition related to the CCD then writes any
unitary evolution as the product of a time-symmetric and time-antisymmetric evo-
lution with respect to the spin-flip. En route we observe a Kramers’ nondegeneracy:
the existence of a nondegenerate eigenstate of anytime reversal symmetric n-qubit
Hamiltonian demandssid n even andsii d maximal concurrence of said eigenstate.
We provide examples of how to apply this work to study the kinematics and
dynamics of entanglement in spin chain Hamiltonians. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1900293g

I. INTRODUCTION

The entanglement theory of two quantum bits is now well understood. Letr be a mixed
two-qubit quantum state, described by a 434 Hermitian density matrix. Hill and Wootters22

describe all classes ofr up to evolution by unitaries in terms of the concurrence. This concurrence
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is explicitly a function of the eigenvalues ofrssyd^2r̄ssyd^2, where the factorr̃=ssyd^2r̄ssyd^2

may be interpreted as the spin-flip ofr. Further, for pure states the entropy of the partial trace to
either one-qubit subsystem is a one-to-one function of the concurrence, so that both measures
agree as to which two-qubit states are more or less entangled. Local statesstensorsd are unen-
tangled, while states locally equivalent to Bell states have maximal entropy and concurrence.

For other systems, entanglement theory is more complicated. Even for twod-level systems
squditsd it is not typical to use a single function to quantify entanglement,45 and research into
generalized concurrences continues.20 Instead we focus on the multi-partite qubit case. The key
point is that it is not sensible inn-qubits to speak of auniquemaximally entangled state. More
precisely, suppose nowr is a 2n32n Hermitian density matrix describing a mixedn-qubit state. A
unitary evolution is given by a 2n32n unitary matrix, sayn, with the evolution beingr°nrn†. A
partial ordering of suchr as more or less entangled follows by stipulating thatsid for n= ^ j=1

n n j

local unitary,r and nrn† are equally entangled, whilesii d the r becomes no more entangled on
average after applying any sequence of local measurements and local unitaries, i.e., after applying
local completely positive maps.23 More entangled is a partial order which has distinct maximal
elements fornù3. For example, in three qubits, two states which are maximally entangled yet
locally inequivalent are given as follows:16

uGHZl = s1/Î2dfu000l + u111lg, uWl = s1/Î3dfu001l + u010l + u100lg. s1d

There are nine distinct maxima of the partial order in four qubits,44 and strong theoretical evidence
suggests that the number of suchentanglement typesgrows quite rapidly withn se.g., Ref. 33d.

To quantify multi-partite entanglement, one often uses functions known as entanglement
monotones.3,45All such monotones must vanish on any local state. A monotone might also vanish
on certain entangled states but definitively reports that a state is not local should its value be
nonzero. The value on a mixed stater is defined to be the minimum over all ensemble decom-
positions ofr of the ensemble weighted-average. A monotone is convex on density matrices, since
entanglement does not increase under mixing of states. Monotones are also nonincreasingon
averageunder local quantum operations and classical communication. Among popular monotones
are Meyer’sQ-measure,6,32 the Schmidt measure,18 and certain polynomial invariants3 of eigen-
values of density matrices representing stochastic mixtures of pure data states.

Then-qubit concurrence is an entanglement monotone. To define the monotone, we first note
that throughout* refers to the spin-flip of then-qubit state space. Concurrence for a pure state48

is the component on a pure state of its spin-flip:

Cnsucld = ukcu*uclu/kcucl,

where

*ucl = s− isyd^nucl = s− isyd^nucl. s2d

The concurrence of ann qubit state withn odd vanishes identically. This monotone is noteworthy
for two reasons. First, there is an explicit, computable closed-form expression for the minimum
Cnsrd which is again defined in terms of the eigenvalues ofrr̃=rssyd^nr̄ssyd^n.7,42 Second, in the
context of concurrence dynamics we may study entanglement dynamics. This paper concerns itself
with the latter topic, and we henceforth consider only pure states and unitary maps.

The primary mathematical tool used in this paper is the concurrence canonical decomposition
sCCDd. This is discussed in detail in Sec. II. Briefly, it is a way to decompose a unitary onn qubits
into a factor that changes concurrence and factors that do not. Letn :Hn→Hn be a unitary
evolution. Consider the CCDn=k1ak2.

8 Now k1 andk2 are symmetries of the concurrence, reduc-
ing concurrence dynamics to the second factor. Thisa factor applies relative phases to a basis of
GHZ-like states. Such phases are not unique due to choices of diagonalization while computing
the CCD, but the spectrum specsa2d is uniquely determined byn. Moreover, the two-qubit test for
maximal entanglement capacity49 generalizes ton qubit concurrence capacities ifn is even:
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Let n=k1ak2 be a CCD ofn. Consider specsa2d as a subset of the unit circle. Then forn
=2p, there is auclPHn with Cnsucld=0 andCnsnucld=1 if and only if 0 is within the convex hull
of specsa2d.8,49

Also, for evenn there is an explicit numerical algorithm for computing the CCD and hence
specsa2d.8

This work presents three new results. The first is an extension of concurrence capacities to the
casen odd. Forn even, the concurrence symmetry groupK to which k1, k2 belong is up to a
similarity transform an orthogonal group. Forn odd, K is not orthogonal but symplectic,a has
repeat eigenvalues, andC2p−1sucld=0 for all ucl. Nonetheless, we define a two-argument lift of the
usual concurrence, sayCsufl , ucld. fSee Eq.s7d.g Suppose we define the amount of concurrence an
odd-qubit unitaryn creates to be

ksnd = maxhCsnufl,nucld;Csufl,ucld = 0j. s3d

This generalized capacity has the following properties:

• For n even, the one-argument concurrence capacity and the two-argument capacity ofn
coincide.

• For n odd, oftenknsndÞ0 for the pairwise capacity despiteCnsucld;0. Further,knsnd=1 if
and only if 0 lies within the convex hull of specsa2d for any CCD byn=k1ak2.

• Concurrence capacity monotonicity:Using double argument capacities, the capacity ofn
^ I2 is always at least that ofn.

Hence there exists a theory of odd-qubit concurrence dynamics, even though concurrence vanishes
identically son the diagonald in odd qubits.

Second, we present an explicit numerical algorithm for computing the odd-qubit CCD. Vari-
ous matrix logarithms must be computed, after which one invokes work in the numerical analysis
literature15 to diagonalize a time reversal symmetric Hamiltonian using symplectic matrices.

We close with the third observation, which we will refer to asKramers’ nondegeneracy:
On then-quantum bit state space, suppose that a*-time reversal symmetric HamiltonianH

has a nondegenerate eigenstateull. Then sid n is even andsii d Cnsulld=1. In particular,ull is
entangled, i.e.ullÞ ^ j=1

n uc jl.
The proof follows from viewing* as a time reversal symmetry operator in Wigner’s axioma-

tization, a point of view which also simplifies the derivation of the CCD. Kramers’ nondegeneracy
leads one to wonder whether useful entangled states may be produced by cooling the system of
qubits coupled to a*-time reversal symmetric Hamiltonian. We consider the perturbative stability
of this entanglement while breaking the time reversal symmetry here, while the thermal stability of
the Kramers’ nondegeneracy for the quantum XY model is considered elsewhere.7

II. BACKGROUND AND PRIOR WORK

Since our key tool is a generalized canonical decomposition,8 we review the canonical de-
composition literature. The two-qubit canonical decompositionsCDd states that any two-quantum
bit unitary evolutionn, i.e., any 434 unitary matrixn, may be written:

n = eiwsu1 ^ u2dasu3 ^ u4d. s4d

Hereu1, u2, u3, u4 are one-qubits232d unitary matrices, which may be chosen to have determi-
nant one. The unitarya is diagonal in the Bell basis and may be thought of as applying relative
phases to this basis. However, it is better computationally to think ofa as phasing themagic
basis4,29 instead:

um0l = su00l + u11ld/Î2, um1l = su01l − u10ld/Î2,
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um2l = si u00l − i u11ld/Î2, um3l = si u01l + i u10ld/Î2. s5d

Let E be defined byEu jl= um jl, and let SUs2nd denote the Lie group of determinant one 2n32n

unitary matrices, SOs2nd denotes determinant one orthogonal matrices, and Ds2nd denotes the
diagonal 2n32n unitary matrices. A diagonalization argument shows SUs4d=SOs4dDs4dSOs4d.
Moreover, the magic basis has the property thatE†SUs2d ^ SUs2dE=SOs4d, i.e., determinant one
tensors have real matrix coefficients in the basis. Thus the canonical decomposition may be
computed by transforming the diagonalization throughE:

SUs4d = fESOs4dE†gfEDs4dE†gfESOs4dE†g = SUs2d ^ SUs2dsEDs4dE†dSUs2d ^ SUs2d.

s6d

We next provide a brief account and references for the best known applications and generaliza-
tions of the CD.

Makhlin31 anticipates the canonical decomposition by directly computing that the double
cosetsfSUs2d ^ SUs2dg \SUs4d / fSUs2d ^ SUs2dg are parametrized by three real parameters, the
number of parameters ina given detsad=1. The CD appears explicitly in Kraus and Cirac.28 In an
important paper, Khaneja, Brockett, and Glaser point out that one may view the CD as an example
of the G=KAK decomposition theorem forG=SUs4d, K=SUs2d ^ SUs2d, andA=D the commu-
tative Lie group that phases the magicsor Belld basis.24 They also consider the matrix factorization
from the point of view of control theory in order to compute minimum times for applying a given
two-qubit unitary evolution. Zhang, Vala, Sastry, and Whaley made use of this observation to
describe which 434 unitariesn are equivalent up to tensors of one-qubit rotations. The factor
aPD is not unique but depends on choices of diagonalization, and these are described geometri-
cally using Weyl chambers. Specifically, the Weyl group orbit of anya produces all possiblea, and
each orbit intersects the Weyl chamber once. ForG=SUs4d, the Weyl chamber is a tetrahedron.49

The terms canonical decomposition and magic basis are by now standard, and there are published
surveysse.g., Ref. 13, Sec. II.Bd. Moreover, explicit control sequences for two-qubit unitary
evolution have been mapped using the CDfRef. 37, Eq.sB2dg.14 The timing arguments of Khaneja
et al.24 have been recently verified in liquid-state NMR.35

There are many applications of the two-qubit CD. In addition to timing as above, they include
sid studying the entanglement capacity of two-qubit operations,49 sii d building efficient ssmalld
quantum circuits in two qubits,10,41,43,46andsiii d classifying which two-qubit computations require
fewer than average multiqubit interactions.41,46

Besides the CCD,8 there is anothern-qubit generalization of the canonical decomposition due
to Khaneja and Glaser.25 It is also defined in terms of aG=KAK decomposition. LabelN=2n for
the remainder. The type of aG=KAK decomposition follows from a classification theorem of
Cartan involutions and determines the groupsK andA up to Lie isomorphism.fThe classification
appears in HelgasonsRef. 21, p. 518, see the same for detailsd.g Given G=SUsNd, the three
possible types demandK>SOsNd stype AI d, K>SpsN/2d a symplectic groupstype AII d, or K
>SfUspd % Usqdg for p+q=N a block unitarystype AIII d. In theAII case, the structure of theA
group also demands anyaPA has even-degenerate eigenvalues. The two-qubit canonical decom-
position is typeAI , and indeed the similarity transform byE shows SUs2d ^ SUs2d>SOs4d. The
CCD alternatesAI and AII as n is even or odd. The KGD of Khaneja and Glaser technically
contains twoG=KAK decompositions, the first of which is typeAIII for n.2. In fact, the KGD
is similar to the cosine sine decompositionsCSDd of numerical linear algebra11 and so may be
computed numerically. Physically, theK>SfUsN/2d % UsN/2dg group of the KGD may be viewed
as those unitaries commuting with measurements in thez basis of the least significant qubit, i.e.,
commuting withIN/2 ^ sz.

We next recall notation from quantum computing. The one-qubit state space isH1=Chu0lj
% Chu1lj. For n quantum bits,Hn=sH1d^n=H1 ^ ¯ ^ H1. sSee Ref. 36.d A local stateucl is any
state which may be written aŝ j=1

n uc jl for uc jlPH1, while anentangledstate is any state which
is not local. Notations such as, e.g.,u7l refer not to the state of a qudit but rather to a multiqubit
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state, e.g.,u7l= u1l ^ u1l ^ u1l. Then-concurrence of Eq.s2d is an entanglement monotone.8 Besides
the well-known two-qubit concurrence,22 even qubit concurrencesn-qubitsfRef. 48, Ref. 40—Eq.
s62d, Ref. 8g have also been studied. Since the single-argument concurrence vanishes forn odd, we
introduce a two-argument generalization.

For * per Eq.s2d, theconcurrence bilinear form8 is the mapCn:Hn3Hn→C given by

Cnsufl,ucld = kfu*ucl. s7d

The complex conjugate forces the two-argument function to be complex bilinear rather than
complex bi-antilinear, and the concurrence monotone is the norm of the form on the diagonal:
Cnsufld= uCnsufl , ufldu. The bilinear formCn is symmetric forn even and antisymmetric forn odd,
which causes vanishing of the monotonebut not the formin the odd-qubit case.

The CD is an example of theG=KAK decomposition theoremsRef. 21, Theorem 8.6, Sec.
VII.8d for G=SUsNd. This theorem produces a decomposition of a reductive Lie groupG for any
u, a as follows:

• The mapu :g→g for g=LiesGd is a Cartan involutionsRef. 21, Sec. X.6.3, p. 518d. By
definition,50 sid u2=1g and sii d ufX,Yg=fuX,uYg for all X,YPg. As is standard, we write
g=p % k for the decomposition ofg into the −1 and +1 eigenspace ofu.

• Given u, a,p is a commutative subalgebra which is maximal commutative inp.

Note thatk is closed under the Lie bracket, while this is trivially true fora. Thus the exponential
of each is a group. LabelK=expk, A=expa, where for linearG,GLsn,Cd the exponential may
be interpreted as a matrix exponential. The theorem then asserts thatG=KAK=hk1ak2;k1,k2

PK ,aPAj.
The CD is seen to be an example as follows, cf. Ref. 24. Takeu :sus4d→sus4d by usXd

=s−isyd^2X̄s−isyd^2 and a=spanRhi u0lk0u− i u1lk1u− i u2lk2u+ i u3lk3u , i u0lk3u+ i u3lk0u , i u1lk2u+ i u2l
3k1uj. Extending these choices ton qubits produces the CCD:

Definition II.1: fCCD, Ref. 8g Defineu :susNd→susNd by usXd=fs−isyd^ng†X̄s−isyd^n. Then
k denotes the +1-eigenspace ofu while p denotes the −1-eigenspace. Finally, in casen is even we
define

a = spanRshi u jlk j u + i uN − j − 1lkN − j − 1u − i u j + 1lk j + 1u − i uN − j − 2lkN − j − 2u; 0 ø j ø 2n−1

− 2j t hi u jlkN − j − 1u + i uN − j − 1lk j u;0 ø j ø 2n−1 − 1j,d s8d

with A=expa. In casen odd, we drop the second set:

a = spanRshi u jlk j u + i uN − j − 1lkN − j − 1u − i u j + 1lk j + 1u − i uN − j − 2lkN − j − 2u;

0 ø j ø 2n−1 − 2jd. s9d

The concurrence canonical decomposition (CCD)in n-qubits is the resulting matrix decomposi-
tion SUsNd=KAK. Note thatn may be even or odd.

In an earlier work,8 computations in Diracsbra-ketd notation show thatusXd is a Cartan
involution anda is maximal-commutative inp. TheG=KAK theoremsRef. 21, Theorem 8.6, Sec.
VII.8d then shows that the CCD exists. Further, the CCD may be computed numerically in the
even qubit case.8

The CCD is a useful tool for studying concurrence capacities sinceK=expskd consists of
symmetries of the concurrence form of Eq.s7d, wherek is given per Definition II.1,8

sn P Kd ⇔ fCnsnufl,nucld = Cnsufl,ucld for all ufl,ucl P Hng. s10d

In particular, the above may be used to verify that SUs2d^n#K as a subgroup of large codimen-
sion. One explanation for the fact thatK alternates between orthogonal and symplectic groups is
to note that the formCn is symmetric or antisymmetric asn is even or odd.8 Another outlook,
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illustrated in Sec. V, is that the spin-flip* is a bosonic or fermionic time reversal symmetry
operator asn is even or odd, i.e.,*−1=s−1dn*.

III. ODD-QUBIT CONCURRENCE CAPACITIES

The main results of this section are summarized in Theorem III.11. Each is proven in turn.

A. Double-argument capacities generalize single-argument capacities

To begin, we introduce a pairwise concurrence capacityknsnd and denote earlier concurrence
capacities8 with a tilde,

k̃nsnd = maxhCnsnucld;kcucl = 1,Cnsucld = 0j,

s11d
knsnd = maxhuCnsnufl,nucldu;kfufl = kcucl = 1,Cnsufl,ucld = 0j.

Due to Eq.s10d, any CCD of a unitaryn=k1ak2 implies k̃nsnd= k̃nsad8 andknsnd=knsad.
Proposition III.1: Suppose n=2p is an even number of qubits. Thenknsnd= k̃nsnd.
The proof requires certain results from the literature.8,49

• There is ann=2p qubit entanglerE0 so that for anykPK, E0kE0
† is a real unitary matrix, i.e.,

orthogonal. The columns ofE0 resembleuGHZl states.
• For thisE0, any CCDn=k1ak2 moreover hasd=E†aE for d=o j=0

N−1dju jlk j u diagonal. Asd is
unitary diagonal, eachdj is on the unit circle withinC.

• The concurrence spectrum becomeslcsnd=hdj
2j j=0

N−1. Then k̃2nsnd=1 if and only if 0PC lies
within the convex hull oflcsnd, a subset of the unit circlesRef. 8, Lemma III.2d.

• A corollary sRef. 8, Scho. 2.18d of the symmetry group theorem shows thatE0 also translates
betweenCns−,−d and a simpler bilinear form:CnsE0z1,E0z2d=z1

Tz2.

Example III.2: We use the CD to compute a two-qubit concurrence capacity. Consider a
family of controlled-phase gates, e.g.,nstd=e−itu0lk0u+e−itu1lk1u+e−itu2lk2u+e3itu3lk3u with
detfnstdg=1. A possible CD is:

nstd = se−itsz
^ I2deitsz

^sz
sI2 ^ e−itsz

d. s12d

The central factor is a valid choice fora in nstd=k1ak2, sinceeitsz
^sz

is also diagonal in the magic
basis. Thuslcfnstdg=specse2itsz

^sz
d=he2it ,e2it ,e−2it ,e−2itj. Only for tPp /4Z do we have 0 within

the convex hull oflcfnstdg, and the convex hull theorem assertsk̃2fnsp /4dg=1. Indeed, up to
phasensp /4d= u0lk0u+ u1lk1u+ u2lk2u− u3lk3u. Moreover, if

H =
1
Î2

S1 1

1 − 1
D

is the Hadamard gate,36 a standard identity convertsnsp /4d into the quantum controlled-not:

CNOT = u00lk00u + u01lk01u + u10lk11u + u11lk10u = sI2 ^ Hdnsp/4dsI2 ^ Hd. s13d

Thus nsp /4d carries an unentangled state to a maximally entangled state, since CNOTsH
^ I2du00l=CNOTs1/Î2dsu00l+ u10ld=s1/Î2dsu00l+ u11ld. More intricate examples in
two-qubits41,49 and an even number of qubits9 are available in the literature.

Lemma III.3: Suppose the number of qubits is even. Let z1=o j=0
N−1aju jl, z2=o j=0

N−1bju jl, and z3
=o j=0

N−1cju jl throughout, and letlcsnd=hl jj j=0
N−1. Then we have the following:

k̃nsnd = maxHUo
j=0

N−1

cj
2l jU ;z3

†z3 = 1,z3
Tz3 = 0J ,
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knsnd = maxHUo
j=0

N−1

ajbjl jU ;z1
†z1 = z2

†z2 = 1,z1
Tz2 = 0J . s14d

Proof of Lemma III.3:The first equation appears in Ref. 8; cf. Ref. 49. For the second, take
vectorsz1, z2 and labelx=E0z1, y=E0z2. Then

fCnsx,yd = 0g ⇔ fCnsE0z1,E0z2d = 0g ⇔ fz1
Tz2 = 0g. s15d

Moreover, without loss of generality by choice ofz1, z2, and symmetry we may supposen
=E0dE0

† for d2=o j=0
N−1l ju jlk j u. ThenCnsE0dE0

†x,E0dE0
†yd=CnsE0dz1,E0dz2d=sz1

TdTddz2=o j=0
N−1ajbjl j.

Proof of Proposition III.1:Let aj, bj be chosen so as to maximize the expression forknsnd per
Lemma III.3, i.e.,knsnd= uo j=0

N−1ajbjl ju. Now choose complex numberscj so thatcj
2=ajbj, and put

z3=o j=0
N−1cju jl. We note thatz3

Tz3=0. Moreover,z3
†z3ø1, for

o
j=0

N−1

ucju2 = o
j=0

N−1

ucj
2u = o

j=0

N−1

uajbju ø o
j=0

N−1
1

2
uaju2 +

1

2
ubju2 = 1. s16d

Label t2=z3
†z3, noting t2ø1. Thenst−1z3d†st−1z3d=1, so by definition ofk̃2psnd we have

knsnd ù k̃nsnd ù Uo
j=0

N−1

t−2cj
2l jU = t−2Uo

j=0

N−1

ajbjl jU = t−2knsnd. s17d

Thus t=1 and henceknsnd= k̃nsnd. h

B. Monotonicity

We next demonstrate concurrence capacity monotonicity, i.e., thatj °kn+jsn ^ I2
^ jd is mono-

tonic. It provides another justification for odd-qubit concurrence capacities, despiteC2p−1;0. For
if k2p−1snd.0, then there is a 2p-qubit state ucl with C2psucld=0 while C2pfsn ^ I2duclg
ùk2p−1snd.

Proposition III.4: Let n be either even or odd, nPSUsNd an n-qubit computation, and let I2

denote the trivial one-qubit computation. Thenkn+1sn ^ I2dùknsnd.
Proof: Chooseufl, ucl such thatknsnd=Cnsnufl ,nucld while Cnsufl , ucld=0. Thenufl ^ u0l

and ucl ^ u1l are a null-concurrent pair ofsn+1d-qubit states:

Cn+1sufl ^ u0l,ucl ^ u1ld = skfu ^ k0uds− isyd^n+1sucl ^ u1ld = fCnsufl,ucldgsk0us− isydu1ld.

s18d

Now sk0us−isydu1l=1, so the above expression isf0gs1d=0. A similar argument demonstrates that

Cn+1fsn ^ I2dsufl ^ u0ld,sn ^ I2dsucl ^ u1ldg = fCnsnufl,nucldgfC1su0l,u1ldg. s19d

The second term of the product is one, while the first isknsnd. Thus we have exhibited a pair for
which n ^ I2 raises the pairwise concurrence by at leastknsnd. Sincekn+1sn ^ I2d is the maximum
over all null-concurrent pairs, whileufl ^ u0l, ucl ^ u1l is such, we seekn+1sn ^ I2dùknsnd. h

C. Parity-independent concurrence spectra

We extend the maximal concurrence capacity condition of Zhanget al.and Bullock, Brennen8

to odd-qubit systems. The first step is a definition valid in either parity.
Definition III.5: Let nPSUsNd, N=2n. For n of either parity, the concurrence spectrumlcsnd

is the setlcsnd=specsfs−isyd^ng†ns−isyd^nnTd. Viewing n as an R-linear map, equivalently
lcsnd=specsn*n†*−1d.
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We briefly show this coincides with the definition of the even-qubit concurrence spectrum of
the literature.8 The definition ibid. states that the concurrence spectrum is the spectrum of
sE0

†nE0dsE0
†nE0dT. Indeed, givenE0E0

T=s−isyd^n per the classification ofE with ESOsNdE†=K
ibid.,

specsE0
†nE0dsE0

†nE0dT = specsE0
†nE0E0

TE0̄d = specfsE0E0
Td†nE0E0

TnTg = specfs− isyd^nns− isyd^nnTg.

s20d

In fact, the same argument shows thatlcsnd is the spectrumsE†nEdsE†nEdT for anyE as above, cf.
Ref. 31.

The odd-qubit case requires different similarity matrices, sayF,8 which translateK not into an
orthogonal group but rather a symplectic group per Eq.s22d. For the concurrence formCns−,−d
n-odd is antisymmetric, and symplectic rather than orthogonal groups are the appropriate symme-
tries of antisymmetric bilinear formssi.e., two-formsd. For a standard similarity matrix, we take

F0 = o
j=0

N/2−1

u jlk j u + uN − j − 1lk j u + i jsu jlkN/2 + j u − uN − j − 1lkN/2 + j ud,

where

hi jj j=0
N/2−1 , h±1j by s− isyd^n = o

j=0

N/2−1

i jsuN − j − 1lk j u − u jlkN − j − 1ud. s21d

Also, label throughoutJN=s−isyd ^ IN/2. Before showing thatF0 translatesK into the standard
symplectic group, we show thatF0 carriesCs−,−d to the standard two-formAs−,−d.

Lemma III.6: ForAsufl , ucld=kfuuJNukcl, CnsF0ufl ,F0ucld=Asufl , ucld for all ufl , uclPHn.
Proof: CnsF0ufl ,F0ucld=kfuF0

Ts−isyd^nuF0ukcl. Now F0JNF0
T=s−isyd^n fRef. 8, Proposition

II.14g, whenceF0
Ts−isyd^nF0=JN. h

Now SpsN/2d is that copy of the symplectic group which embeds within SUsNd as the
symmetries ofAs−,−d, i.e., satisfyingAsnufl ,nucld=Asufl , ucld for all ufl , uclPHn. In block
form:

SpsN/2d = hn P SUsNd;nTJNn = JNj

= HSA B

C D
D P SUsNd;

ATC is symmetric,BTD is symmetric,

ATD − CTB = I
J s22d

As E0SOsNd E0
†=K2p, so tooF0SpsN/2d F0

T=K2p−1.
We next associatelcsnd to specsa2d for n=k1ak2 in the odd-qubit case. Suppose we labelD to

be the following diagonal subalgebra of SUsNd:

D =H o
j=0

N/2−1

djsu jlk j u + uN/2 + jlkN/2 + j ud; p
j=0

N/2−1

dj = ± 1J . s23d

Now there is a standard SUsNd=KAK decomposition which follows fromuAII siHd=JNs−iHTdJN
†

sRef. 21, Sec. X.2, p. 452d anda=log D as above. Given anPSUs22p−1d, it writesn=v1dv2, with
v j PSpsN/2d, j =1,2 anddPD.

Suppose givennPSUs22p−1d, we then writeF0
TnF0=v1dv2, with v j PSpsN/2d, j =1,2 and

dPD. The odd-qubit CCD again follows by a similarity transform:n=sF0v1F0
TdsF0dF0

Td
3sF0v2F0

Td with a=F0dF0
TPA, kj =F0v jF0

TPK, j =1,2 is aCCD. Note thata is diagonal on the
GHZ-like basis stateshF0u jlj.

Lemma III.7: Let n=2p−1. Then forn=sF0v1F0
TdsF0dF0

TdsF0v2F0
Td the CCD as above with

d=o j=0
N/2−1djsu jlk j u+ uN/2+ jlkN/2+ j ud diagonal and determinant one, we havelcsnd

=hdj
2j j=0

N/2−1t hdj
2j j=0

N/2−1 scounted with multiplicity.d
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Proof: Given A, B, invertible, specsABd=specsBAd. Also, Eq. s10d is equivalent to a matrix
equationkTs−isyd^nk=s−isyd^n for all kPK. RecallF0JNF0

T=s−isyd^n. Then

lcsnd = specsfs− isyd^ng†ns− isyd^nnTd = specsfs− isyd^ng†k1ak2s− isyd^nk2
TaTk1

Td

= specsk1
Tfs− isyd^ngk1ak2fs− isyd^ngTk2

TaTd = specsk1
Tfs− isyd^ngk1afk2

Ts− isyd^nk2gTaTd

= specsfs− isyd^ngafs− isyd^ngTaTd = specs− fF0JNF0
TgF0dF0

TfF0JNF0
TgF0d

TF0
Td

= specs− F0JNdJNdTF0
Td = specs− JNdJNdd = specsd2d. s24d

The last equality makes use ofdPD repeat diagonal. h

D. A convex hull argument in odd qubits

Definition III.8: Supposen=2p−1. Thereduced concurrence spectruml̃csnd of nPSUsNd is
the set hl jj j=0

N/2−1 for n=k1sF0dF0
Tdk2 a canonical decomposition ofn and d=o j=0

N/2−1Îl jsu jlk j u
+ uN/2+ jlkN/2+ j ud. Theconvex hullCHfl̃csndg of l̃csnd is the set of convex linear combinations

of the points ofl̃csnd, i.e.,

CHfl̃csndg =H o
j=0

N/2−1

tjl j ;0 ø tj ø 1, o
j=0

N/2−1

tj = 1,l j P l̃csndJ . s25d

Proposition III.9: Suppose n=2p−1 is an odd number of qubits. Throughout, label z1

=o j=0
N−1aju jl, z2=o j=0

N−1bju jl, and l̃csnd=hl jj j=0
N/2−1. Then the following hold:

• knsnd=maxhuo j=0
N/2−1l jsaN/2+jbj −ajbN/2+jdu ;z1

TJNz2=0,z1
†z1=z2

†z2=1j,
• sknsnd=1d⇔ s0PCHfl̃csndgd.

Proof: The first item follows from Lemma III.6, substitutingx=F0z1, y=F0z2. We continue to
the next item.

For the second item, we first prove⇒. If knsnd=1, then we may choosez1, z2 so that

1 =U o
j=0

N/2−1

l jsaN/2+jbj − ajbN/2+jdU ø o
j=0

N/2−1

uaN/2+jbj − ajbN/2+ju

ø o
j=0

N/2−1

Îuaju2 + uaN/2+ju2Îubju2 + ubN/2+ju2 ø 1. s26d

Here, note that the second inequality is an iterate ofC1sufl , ucldøÎkf uflkc ucl, for all ufl , ucl
PH1. The last inequality in Eq.s26d is the Schwarz inequality.

Now labela j =aN/2+jbj −ajbN/2+j, for 0ø j øN/2−1. Then by Eq.s26d,

1 =U o
j=0

N/2−1

l ja jU = o
j=0

N/2−1

ul ja ju = o
j=0

N/2−1

ua ju. s27d

Thus there must exist somezPC, zz̄=1, so thatl ja j =zua ju, and moreovero j=0
N/2−1ua ju=1. On the

other hand,z1
TJNz2=0 demands that 0=o j=0

N/2−1a j =zo j=0
N/2−1ua jul̄ j. Multiplying by z̄ and taking the

complex conjugate, 0=o j=0
N/2−1ua jul j which given o j=0

N/2−1ua ju=1 by Eq. s27d demands 0

PCHfl̃csndg.
Consider now the converse case, i.e., 0PCHfl̃csndg. Then there existtj real, non-negative so

that 0=o j=0
N/2−1tjl j. For 0ø j øN/2−1, label complex numbersa j = tjl̄ j, so that we have 1

=o j=0
N/2−1ua ju and moreover 0=0=̄o j=0

N/2−1tjl̄ j =o j=0
N/2−1a j. We are reduced to the following question:

May we choosehajj j=0
N−1, hbjj j=0

N−1 so that
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a j = aN/2+jbj − ajbN/2+j, o
j=0

N−1

uaju2 = o
j=0

N/2−1

ubju2 = 1. s28d

To do this, write a j = ua juei arg a j, and take aj =Îua ju, aN/2+j =0, bj =0, and bN/2+j

=−ei arg a jÎua ju. Then we see thataN/2+jbj −ajbN/2+j =a j. Moreover,

uaju2 + uaN/2+ju2 = ua ju, ubju2 + ubN/2+ju2 = ua ju, o
j=0

N/2−1

ua ju = 1. s29d

Thus the vectorsz1, z2 per the statement of the proposition are normalized to be norm one.h

Hence, as in the even-qubit case, a convex hull criterion on the middle factor of the CCD
determines which odd-qubit unitariesn have concurrence capacity equal to the maximal possible
capacity, i.e., one. The new feature, doubly degenerate eigenvalues inlcsnd arising from theD
above required for typeAII will a posterioribe an instance of Kramers’ degeneracy; see Sec. V.

Corollary III.10: For n=2p−1, limp°` dashaPA;knsad=1jd=1.
The proof of the Corollary follows by considering probability density functions on the unit

circle,8 given that the number of concurrence eigenvalues grows exponentially withn. Thus most
unitary evolutions for largen sof either parityd are maximally entangling as measured by concur-
rence. It would be interesting but technically challenging to restate this in terms of Haar measure
du on SUsNd. The difficulty is that the pullback measure from theK3A3K to SUsNd is singular,
namely singular near the set where theA factor is an identity. For future reference, we summarize
the concurrence capacity results of this section.

Theorem III.11: Let knsnd, k̃nsnd be the pairwise concurrence capacity and concurrence
capacity, respectively.

1. The pairwise capacity and the capacity are equal in any even number of qubits. Thus,

k̃nsnd = Hknsnd, n = 2p even

0, n = 2p − 1 odd.
J s30d

2. For n either even or odd, any CCD byn=k1ak2 satisfiesknsn=k1ak2d=knsad.
3. For any n, we must havekn+1sn ^ I2dùknsnd.
4. Suppose n=2p−1 is odd. Then for da the Haar measure on A,

lim
p°`

Probsknsad = 1d = lim
p°`

dasha P A;knsad = 1jd = 1. s31d

IV. AN ALGORITHM COMPUTING THE ODD-QUBIT CCD

In this section, we close a gap in the literature. Specifically, we present an algorithm for
computing the CCD when the number of qubits is odd. We make use of an algorithm15 by
Dongarra, Gabriel, Koelling, and Wilkinson cited in a survey12 of diagonalization arguments. The
algorithm,15 which appears in the numerical matrix analysis literature, improves the numerical
stability and computational efficiency of the earlier work on time reversal by Dyson.17

Recall from Sec. III C that it suffices to compute the standard typeAII KAK decomposition
given by SUsNd=SpsN/2dDSpsN/2d with D the repeat diagonal subgroup of SUsNd. For given
nPSUs22p−1d for which we wish to compute the CCD, suppose we obtainF0

TnF0=v1dv2, with
v j PSpsN/2d, j =1,2 anddPD. Then n will have CCD n=k1ak2=sF0v1F0

TdsF0dF0
TdsF0v2F0

Td.
Before computing SUsNd=SpsN/2dDSpsN/2d, we make one new definition.

Definition IV.1:Let HPCN3N be Hermitian. RecallJN=s−isyd ^ IN/2. We say that the Hamil-
tonianH is JN-skew symmetriciff HJN−JNHT=0.

Remark IV.2:In Ref. 15, the above is the definition of “H has a time reversal symmetry.”
Indeed, time reversal symmetry follows for the operatorQ=JNt, st complex conjugationd per the
upcoming Definition V.1. Moreover, for the standard typeAII Cartan involutionsRef. 21, p. 452d
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uAII sXd=JNX̄JN
T, let susNd=pAII % kAII for the corresponding Cartan decomposition into −1 and +1

eigenspaces. ThenH is JN skew-symmetric if and only ifiH PpAII . Indeed onsusNd, X̄=−XT.
Hence −iH =JNiHJN

T =−JNiHTJN
T if and only if HJN=JNHT.

A. Algorithm for the standard AII KAK decomposition, SU „N…=Sp„N/2…DSp„N/2…

The outline below for computing the standard SUsNd=KAK decomposition of typeAII ssee
Sec. III Cd is similar to theAI case used in Ref. 8 to compute the even-qubit CCD. The added
difficulties aresid a more complicated formula forp2 and sii d a more delicate diagonalization
argument forp2 once computed. In fact, the latter requires the symplectic diagonalization argu-
ment referenced above.

Lemma IV.3: SupposenPSUsNd with n=pk for p=expsiHd with H a JN skew-symmetric
Hamiltonian and kPSpsN/2d. Then p2=−nJNnTJN.

Proof: We have HT=−JNHJN, given JN
† =JN

T =−JN. Thus for any tPR, fexpsiHtdgT

=JN
† expsiHtdJN=−JN expsiHtdJN. This holds in particular forp. Now putw=n†, so thatw= k̃p̃ for

k̃=k†, p̃=p†. Thusp̃T=JN
† p̃JN. Moreover,kPSpsN/2d demandsk̃TJNk̃=JN, as SpsN/2d is a group.

Thus −JNwTJNw= p̃2. Taking the adjoint of each side produces the result. h

With this lemma, we now present the algorithm for computing the standard typeAII decom-
position.

1. Supposen=pk per Lemma IV.3. Computep2=−nJNnTJN.
2. We may writep=expsiHd for someJN skew-symmetric HamiltonianH. Compute a logarithm

of p2=exps2iHd. The diagonalizing matrix implicit in computing the matrix log need not be
symplectic, and generic logarithms will take the form 2iH for some s2dH which is JN

skew-symmetric.
3. Compute a symplectic matrixv1PSpsN/2d so thatiH2=v1

†siHdv1 is repeat diagonal, per
Sec. IV B.

4. Labelp=v1 expsiH2dv1
† andd=expsiH2d. Computev3=p†n. Thenv3PSpsN/2d.

5. Putv2=v1
†v3PSpsN/2d. Note thatv1dv1

†=p. Thus the typeAII decomposition isn=fv1g
3fdgfv1

†v3g=v1dv2.

This concludes the overview of computing SUsNd=SpsN/2dDSpsN/2d. The next section details
step 3.

B. Symplectic diagonalization

In this section we address the problem of finding the eigendecomposition of a matrixH which
is JN skew-symmetric. Generically, these techniques work on any square matrix with an even
number of rows and columns, and there are no simplifications when the size is a power of two.
Thus we describe the generic case where

J2, = S0 − I,

I, 0
D

andH=H† is alsoJ2, skew symmetric.
Explicitly, J2,-skew symmetric means

H = S A B

− B̄ Ā
D ,

whereA=A† andB=−BT are,3, matrices. We will construct a unitary skew-symmetric Hamil-
tonian matrixv of the form
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v = S U V

− V̄ Ū
D ,

so that the columns ofv are thesrightd eigenvectors ofH. Each eigenvaluelk for k=1, . . . ,, of
H is real and of multiplicity 2. In particular, both thekth and thes,+kdth columns ofv are
eigenvectors ofH corresponding tolk. Also, given the block form,vPSpsN/2d up to global
phase.

The algorithm of Dongarraet al.15 proceeds in two major steps. First we reduceH to block
diagonal form using a similarity transformation, and then we use the QR algorithm to find the
eigenvalues of the blocks. We consider each of these phases in turn.

First, we construct a skew-symmetric Hamiltonian unitary matrixQ of the form

Q =S Q1 Q2

− Q2 Q1
D

so that

QHQ† = ST 0

0 T
D

whereT is real, symmetric, and tridiagonal. We initializeQ to be the 2,32, identity matrix. In
order to preserve the structure, we constructQ as the product of two simple types of matrices:

• The product of 232 skew-symmetric Hamiltonian matrices is also skew-symmetric Hamil-
tonian, and if we letr2= uau2+ ubu2, then a matrix of the form

Sā/r − b/r

b̄/r a/r
D

is unitary. In addition,

Sā/r − b/r

b̄/r a/r
DS a b

− b̄ ā
D = S r 0

0 r
D

so the unitary matrix can be used to introduce zeros. Choosej between 1 and, and construct
a matrix R as the 2,32, identity matrix except that entriesR,+j ,,+j =Rj ,j =a/ r and Rj ,,+j
=−R,+j ,,+j =−b/ r. Then the productRH is equal toH except that the entries in rowsj and
,+ j become

S sRHd j ,k sRHd j ,,+k

sRHd,+j ,k sRHd,+j ,,+k
D = 1ā/r − b/r

b̄/r a/r 2S Aj ,k Bj ,k

− Bj ,k Aj ,k
D , s32d

k=1, . . . ,,. Since this product is skew-symmetric Hamiltonian, so isRH, and it can be shown
in a similar way thatsRHdR† is skew-symmetric Hamiltonian. Thus we can useR as a
similarity transformation that preserves the structure.

• Let S be a real orthogonal matrix of dimension,3,. Then

SS 0

0 S
DS A B

− B̄ Ā
DSS† 0

0 S†D = S SAS† SBS†

− SB̄S† SĀS†D s33d

is skew-symmetric Hamiltonian.
Using these matrices, our construction takes,−1 steps. We describe the first step in detail.
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The first step places zeros in the first column of the matrix in rows 3 through 2,. To put a zero
in position s,+ j ,1d s j =1, . . . ,nd, we construct anR matrix involving rows j and ,+ j . If r j

2

= uAj ,1u2+ uBj ,1u2, then this matrixRj is the identity matrix except that entriesR,+j ,,+j =Rj ,j =Aj ,1/ r j

andRj ,,+j =−R,+j ,,+j =−Bj ,1/ r j. We replaceH by sRHdR† and updateQ by premultiplying byRj,
repeating this forj =1, . . . ,,.

We complete the first step by putting zeros in rows 3 through, of column 1. Note that these
elements are now real, since elements 2 through, are just the valuesr j. Thus we can construct a
real orthogonal reflectionsHouseholderd matrix of the form S= I −2ssT where ŝ=f0,r2

+iri ,r3, . . . ,rngT ands= ŝ/ iŝi. A similarity transformation ofH by

SS 0

0 S
D

produces the required zeros, andQ is updated by premultiplying by this matrix.
Steps 2 through,−1 are similar; in stepk we first put zeros in theB portion of columnk using

R matrices and then zero elementsk+2 through, of the A portion using a reflection matrix. The

final result is that the transformedH has a real tridiagonal matrixT in place ofA andĀ and zeros
elsewhere.

The QR algorithm is considered to be the algorithm of choice for determining all of the
eigenvalues and eigenvectors of a real symmetric tridiagonal matrix. We use the algorithm to form
X, the matrix of eigenvectors ofT. Implementation of the algorithm requires care, and high quality
implementations are available, for example, inLAPACK.2 Other codes are available at http://
www.netlib.org.

We construct the eigenvector matricesU and V as U=Q1
†X and V=Q2

TX. Note that most
implementations of the QR algorithm do not guarantee that the eigenvalues are ordered, so a final
sort of the eigenvalues and the columns ofU andV should be done at the end if desired.

V. TIME REVERSAL, THE CCD, AND KRAMERS’ NONDEGENERACY

The section presents three topics, all following from an interpretation of* from Eq. s2d as a
time reversal symmetry operator. First, the Cartan involution defining the CCD may be rewritten
entirely in terms of the spin-flip, and the eigenspaces ofusiHd are associated to time symmetric
and antisymmetric HamiltoniansH in a natural way. Second, a well-known procedure exists to
convert anyG=KAK decomposition into a polar decomposition, and the polar decomposition
associated to the CCD writes a unitarynPSUsNd as a product of two factors, one evolution by a
time symmetric Hamiltonian and one evolution by a time anti-symmetric Hamiltonian. Third, we
demonstrate the entangled eigenstates of Kramers’ nondegeneracy as described in the introduction
and consider the perturbative stability of this entanglement under time reversal symmetry break-
ing.

A. Spin-flips as time reversal symmetry operators

Recall theBloch spherese.g., Ref. 36d, which provides a picture of the data space of one
qubit. As a remark, the Bloch sphere may be thought of as a parametrization of the complex
projective lineCP1 se.g., Ref. 34, Sec. 40d. Briefly, CP1 is the set of all equivalence classes of
vectors inC2 up to multiple by a nonzero complex scalar. To associate such a class with a Bloch
vector, normalizeucl as above so as to writeucl=reitfcossu /2du0l+eiw sinsu /2du1lg. The Bloch
sphere vector ofucl, sayfuclg, is given in spherical coordinates bys1,u ,wd sRef. 36, p. 15d. Recall
also that the north pole isfu0lg and fu1lg is the south pole.

Now let bW P sF2dn be ann-bit string. The typical procedure when quantizing a classical com-
putation is to extend the classical outputs linearly without phases. Thus, a reasonable interpretation
of quantum bit-flip would bessxd^n. This is the common interpretation, but note that in one qubit
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sx is not reflection on the Bloch sphere and indeed has a fixed state,s1/Î2dsu0l+ u1ld. Rather, the
odd reflection of a single qubit under the Bloch parametrization ofCP1 is the spin-flip
ucl° s−isyducl=s−isyducl.

The appropriate physical interpretation of the spin-flip is as a time reversal symmetry operator
sRef. 47, Chap. 26, Ref. 19, pp. 314–322, Refs. 27 and 39d. Wigner defined a generic time reversal
symmetry operatorQ as anyR-linear involutive map of the quantum Hilbert space which is

antiunitary, i.e., complex anti-linearsQsauc1l+buc2ld=āQuc1l+b̄Quc2ld, and orthogonal in the
induced real inner-product onR2p>Cp. Generic time reversal symmetry operators are usually
denoted by a capitalQ; we ask the reader’s forebearance in distinguishing this from the lower-case
u describing a Cartan involution.

Such a time reversal symmetry operatorQ maps the state of a system to its motion-reversed
state, so that momentum eigenstates transform asQupl= u−pl. In particular, if our qubit is a spin12
particle, e.g., withu0l= u↑ l and u1l= u↓ l, then* per Eq.s2d reverses the one-qubit spin vector on
the Bloch sphere and so is the natural quantum angular momentum reversal inn-qubits. Indeed,

the total spin angular momentum,SW =o j=1
n sW j, is inverted under time reversal:*SW*−1=−SW. Spin-flip

operators may be defined ford-level systemssquditsd but may not both preserve pure states and
commute with local unitaries.38

We note in passing that the spin-flip picture also allows one to quickly rederive one of the
monotone properties. Namely, antipodal points in the Bloch sphere parametrization of the complex
projective lineCP1 correspond to Hermitian-orthogonal states ofH1. Hence,Cnsucld= ukcu*uclu
=0 if ucl= ^ j=1

n uc jl sthe monotone property,d since in this eventkcu*ucl has a factorkc ju*uc jl
=0. More generallyCnsucld=0 wheneverucl= uc1l ^ uc2l for uc1lPHn−1 andfuc2lg a point on the
Bloch sphere. However, the latter is not an equivalence forn even. ConsideruW4l=s1/2d
3su0001l+ u0010l+ u0100l+ u1000ld.

B. Time reversal and the CCD Cartan involution

We next show that physically, the eigenspaces of the Cartan involution producing the CCD
correspond to*-time symmetric and*-time antisymmetric Hamiltonians. They are then explicitly
described in the Pauli-tensor basis ofsusNd in much more compact form than in Dirac notation.8

Definition V.1:ConsiderH a Hamiltonian on a finite dimensional Hilbert spaceH, i.e., H is
self-adjoint within EndCsHd,EndRsHd. Then H is time reversal symmetric with respect to
Q iff H=QHQ−1 as elements of EndRsHd. A Hamiltonian is time reversal anti-symmetric with
respect toQ iff H=−QHQ−1.

Proposition V.2: Let usXd per Definition II.1. Label susNd=p % k as the −1 and
+1-eigenspaces ofu. Let * be the spin-flip. Then (i) for H a traceless Hamiltonian, so that iH
PsusNd, usiHd=*siHd*−1, with the right-hand side viewed as a composition ofR-linear maps.
Also (ii) sH has time reversal symmetry with respect to*d ⇔siH Ppd, and (iii) sH has time
reversal anti-symmetry with respect to*d ⇔siH Pkd.

Proof: Let t denote the complex conjugation operatorucl° ucl. Then *=s−isyd^nt
=ts−isyd^n, given −isy real. So*−1=tfs−isyd^ng†. Moreover, fs−isyd^ng†=s−INdns−isyd^n. Fi-
nally, tsiHdt= iH. Thus,

*siHd*−1 = s− isyd^ntsiHdtfs− isyd^ng† = s− INdns− isyd^nsiHdfs− isyd^ng = usiHd. s34d

The latter two items follow at once. h

With the above proposition, we may describe the infinitesimal Cartan decompositionsusnd
=p % k directly in terms of tensors of Pauli operators. Letj denote either 0,x, y, or z, with s j

= I2 in case j =0 and Pauli matricessx, sy, or sz as appropriate otherwise. A multi-indexJ
= j1j2¯ j k¯ jn denotes a string of lengthn, andJ will be said to be nonzero if somejkÞ0. Finally,
let is^J denotei ^k=1

n ss jkd. Then susNd= %all nonzeroJRhis^Jj. We have the following corollary,
discovered independently by Bremneret al. sRef. 5, Theorem 5d which has recently reappeared in
a different contextsRef. 1, p. 243d.

Corollary V.3: Continue the convention of the previous paragraph, and write
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susNd = s %
#J=0 mod 2

Rhis^Jjd % s %
#J=1 mod 2

Rhis^Jjd . s35d

The above is the infinitesimal Cartan decomposition ofusiHd, i.e., p= %#J=0 mod 2Rhis^Jj, and k

= %#J=1 mod 2Rhis^Jj. In particular, K is the Lie group of those unitaries which are exponentials of
Hamiltonians with time reversal anti-symmetry with respect to*.

Proof: Distinct Pauli matrices anti-commute, each hasss jd2= I2, andsy is purely imaginary
while sx, sz, andI2 are real. Considering the tensors case by case completes the proof.h

C. A time reversal polar decomposition

We next consider the polar decomposition which may be derived from the CCD. In most
treatments, the polar decomposition of a general Cartan involution is proven and then aG
=KAK theorem is derived from it. We next use the CCD to produce a polar decomposition for time
reversal symmetry. This practical decision avoids rearguing theG=KAK theorem for compact
groupssRef. 21, Theorem 8.6, Sec. VII.8d.

Corollary V.4: SupposenPSUsNd is a phase normalized quantum computation in n qubits.
Then we may writen=expsiHpdexpsiHkd for some Hamiltonians Hp, Hk such that Hp has time
reversal symmetry and Hk has time reversal anti-symmetry with respect to the spin-flip*.

Proof: Let n=k1ak2 be the CCD ofnPSUsNd. Then in particularn=sk1ak1
†dsk1k2d. SinceK is

a group,k1k2 is a time antisymmetric evolution by Proposition V.2. Moreover, leta=expiH for
iH Pa,p a time symmetric Hamiltonian. AsiH Pp, we haveusiHd=fs−isyd^ng†siHds−isyd^n=
−iH. Moreover, kPK is a symmetry of the concurrence formfEq. s10dg which as a matrix
equation demandskTs−isyd^nk=s−isyd^n. Hencek1

Ts−isyd^n=s−isyd^nk1
†, and fork1iHk1

†Pp:

usk1iHk1
†d = fs− isyd^ng†k̄1siHdk1

Ts− isyd^n = k1fs− isyd^ng†siHds− isyd^nk1
† = − k1siHdk1

†.

s36d

Thusk1siHdk1
† has time reversal symmetry, and the usual matrix exponential formulafvalid since

SUsNd is linearg showsk1ak1
†=expfk1siHdk1

†g. h

Remark V.5:Note that the vector space decompositionsusNd=p % k makes clear any suchn
may be approximated by rapid pulsing of the time symmetric and anti-symmetric factors, by
applying the Trotter formulase.g., Ref. 36, Sec. 4.7.2d. However, the decomposition above re-
quires no such pulsing of the time-symmetric and time-antisymmetric Hamiltonians.

D. Kramers’ nondegeneracy

Finally, we rederive Kramers’ degeneracy in the case of* and note a further,*-specific
nondegeneracy property. Recall Kramers’ degeneracy26,27 proves that the eigenstates of a collec-
tion of an odd number of spin12 electrons become doubly degenerate in the exclusive presence of
a time-reversal-symmetric interaction, such as an electric field. The degeneracy is broken with the
introduction of a magnetic field. In terms of an energy HamiltonianH of the system, the degen-
eracy corresponds to 2 or greater dimensional eigenspace for energy eigenstates.

Lemma V.6: Suppose thatuclPHn is an eigenstate of some traceless Hamiltonian H which
has time reversal symmetry, with eigenvaluelPR. Then the spin-flip*ucl is also an eigenstate of
eigenvaluel.

Proof: Since iH has time reversal symmetry,usiHd=−iH. Thus s−isyd^nsiHd+siHds−isyd^n

=0, and taking a complex conjugate producess−isyd^nsiHd+siHds−isyd^n=0. Now siHducl
=lucl, so that

siHd*ucl = siHds− isyd^nucl = − s− isyd^nsiHducl = − s− isyd^nilucl = il*ucl. s37d

This concludes the proof. h

Theorem V.7 fcf. Kramers’ degeneracy—Refs. 26, 27, and 39sp. 281dg. Let H be a traceless
Hamiltonian on some number n of quantum-bits. Suppose H has time reversal symmetry with
respect to*. Let l be a fixed eigenvalue of H. Then either (i)l is degenerate with even multiplicity
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or (ii) the normalized eigenstateull has Cnsulld=1. For n odd, case (i) holds: alll are degenerate
with even multiplicity.

Proof: Let l j be some eigenvalue ofH. By Lemma V.6, bothul jl and *ul jl are energy
eigenstates. Should these two states be linearly independent, thenl j is degenerate. If any eigen-
value is nondegenerate, saylk, then by antiunitarity of*, we must have*ulkl=eiwulkl for some
global phasew. UsingCnsulkld= uklku*ulklu we see that this eigenstate must have concurrence one.

Suppose in particularn=2p−1. ThenCns−,−d is antisymmetric and vanishes on the diagonal,
implying kl ju*ul jl=0 for all j . Consequently,ul jl and*ul jl are Hermitian orthogonal and may not
be dependent, implying casesid. h

Thus, for the spin-flip* there is in addition to the Kramers’ degeneracy a Kramers’ nonde-
generacy. As always, ifn is odd so that the totaln-qubit system is a fermion, then a time reversal
symmetric Hamiltonian implies that all energy eigenstates are degenerate. Yet moreover in the
specific case of* andn even, a nondegenerate eigenstate must also have maximal concurrence and
hence be entangled.

We provide some illustrative examples. First note that there are many systems endowed with
time reversal symmetric Hamiltonians. In particular, any system withsexclusivelyd pairwise near-
est neighbor coupling between qubits hasiH Pp, by Corollary V.3. An example of an interaction
that occurs in many solid state systems is the quantum XYZ model:

HXYZ = o
k j ,kl

Jxs j
xsk

x + Jys j
ysk

y + Jzs j
zsk

z s38d

with Jx,y,zPR where the sum is taken over all nearest neighbor pairs and the boundaries may be
fixed or periodic. In one dimension, these nearest neighbor coupled systems are known as spin
chains. Spin chain Hamiltonians are of great theoretical interest, for under the appropriate param-
eter regime they exhibit long range classical correlations near a quantum phase transition.30 We
can characterize the dynamics of entanglement in spin chains using the concurrence capacity. With
this goal in mind we observe the following useful fact:

Proposition V.8: Letp, k be as in Corollary V.3. If iHPp and HPRN3N, then lcsu=e−iHtd
=he−2il j tj where tPR parameterizes time andl j PR are the eigenvalues of H.

Proof: By Definition III.5 the concurrence spectrum of the unitary generated byiH, u=e−iHt is

lcsud = specfs− isyd^n†eiHts− isyd^nse−iHtdTg = specse−iHte−iHTtd

= specse−2iHtd = he−2il j t;l j P specsHdj. s39d

We have useds−isyd^n†iHs−isyd^n=−iH and therefores−isyd^n†Hs−isyd^n=H becauseH is real.
The third line is a consequence ofH being Hermitian. h

The quantum XYZ Hamiltonian has time reversal symmetry with respect to the spin-flip*.
We next demonstrate how to build up entanglement with such a system. Consider a collection of
n qubits laid out in a cyclic array interacting under the Ising class of Hamiltonians given byHXYZ

with Jx=Jy=0: HIs=o j=1
n Jzs j

zs j+1
z , where we identifysn+1

z =s1
z.

The eigenvalues are given byhl jj=hJzsn−2okjk % jk+1d ; j = j1j2. . . jnj,30 where the addition is
done modulo 2 over the componentsjk of the binary expansion ofj . For n even, each eigenvalue
l j is paired with another of opposite sign and in particular,l0=−lN−1 with ul0u=nuJzu=lmax. The
concurrence spectrum ofu=e−iHIst is composed of complex conjugate pairs and the concurrence
capacityk̃nsud may be computed explicitly. Thenk̃nsud=maxhuo j=0

N−1aj
2e−2il j tu ;z†z=1,zTz=0j where

z=o j=0
N−1aju jl, per Eq. s14d. Maximum capacity is obtained when the convex hull condition is

satisfied which occurs precisely when the concurrence spectrum extends outside the right half of
the complex plane. The minimum time at which this occurs is given bye−2ilmaxtmin= i or tmin

=p /4ul0u=p /4nuJzu.
The existence of a time reversal symmetry in the interaction between qubits gives us impor-

tant information about the nature of quantum correlations in the energy eigenstates. Applying
Theorem V.7, we immediately find that the ground state of a HamiltonianH with time reversal
symmetry has maximumn-concurrence if it is unique. Examples of interactions satisfying these
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conditions are the XYZ Hamiltonian withsJx=Jy=Jz=J.0d, denoted the XXX Hamiltonian, and
the XY HamiltoniansJx=Jy,Jz=0d.30 In particular, the XXX Hamiltonian withJ.0 has been
shown to have nondegenerate ground states in any number of dimensions, with or without periodic
boundary conditions, provided the underlying lattice has a reflection symmetry about some plane
sibid.d.

To illustrate this phenomenon we consider what happens when the time reversal symmetry is
broken by adding a time-antisymmetric term to the XY Hamiltonian:

H = o
j=1

n

JS1 + g

4
s j

xs j+1
x +

1 − g

4
s j

ys j+1
y D +

hz

2
s j

z, s40d

wheresn+1
a ;s1

a. The presence of the linear term proportional to the total spin projection operator
Sz=o j=1

n s j
z, breaks the time reversal symmetry so thatiH ¹p whenhzÞ0. For zero magnetic field

and 0øg,1, the Hamiltonian is time reversal symmetric and the ground state is nondegenerate
meaning the concurrence is maximal. In the isotropic casesg=0d, the Hamiltonian commutes with
Sz and eigenstates are independent ofhz. For magnetic field strengths below some critical value,
uhu,hcrit the ground state corresponds to an eigenstate with eigenvaluesz=0 of the operatorSz.
This ground state has maximal concurrence. Foruhzu.hcrit, the ground state corresponds to an
eigenvalueszÞ0 and the concurrence is zero.7

VI. CONCLUSIONS

We show that the odd-qubit concurrence canonical decomposition admits generalizations of
all constructions studied on the even qubit CCD. In particular, a generalized pairwise concurrence
capacity may be defined, and the operators for which this is maximal are characterized by a
convex hull condition on the concurrence spectrum. Again for an odd number of qubits, we find
that for large oddn most unitaries have maximal concurrence capacities. Moreover, we provide an
explicit algorithm for computing the odd-qubit CCD.

These advances are complemented by new interpretation of the original inputs to theG
=KAK theorem which define the CCD. Specifically, they may be rewritten in terms of time
reversal symmetry* which is the spin-flip inn quantum bits, and the CCD is best understood in
terms of such symmetries. For example, the odd-qubit CCD is a typeAII KAK decomposition,
and as such must have degenerate eigenvalues. In fact, this recaptures Kramers’ degeneracy for the
odd-qubit spin-flip, and a more careful study of the arguments reveals a Kramers’ nondegeneracy:
Nondegenerate eigenstates of* time reversal symmetric Hamiltonians only exist when the number
of quantum bits is even andmoreovermust be highly entangled. Specifically, suchull are highly
entangled in the sense that the concurrenceCnsulld= uklu*ullu=1. Finally, the polar decomposition
extracted from the CCD in the usual way accomplishes the following: any unitaryn-qubit evolu-
tion is a product of precisely one time reversal symmetric and one time reversal antisymmetric
evolution.
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We consider a class of Hamiltonians inL2sR2d with attractive interaction supported
by piecewiseC2 smooth loopsG of a fixed lengthL, formally given by −D
−adsx−Gd with a.0. It is shown that the ground state of this operator is locally
maximized by a circularG. We also conjecture that this property holds globally and
show that the problem is related to an interesting family of geometric
inequalities concerning mean values of chords ofG. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1914728g

I. INTRODUCTION

There is a small number of topics which can be regarded as a trademark for mathematical
physics. One of them without any doubt concerns relations between geometric properties of
constraints and/or interaction and extremal values of a spectral quantity; classical examples are the
Faber–Krahn inequality12,14 or the PPW conjecture proved by Ashbaugh and Benguria.3

A common feature of these and analogous problems is that the extremum is reached by shapes
having a rotational symmetry. At the same time, the nature of the extremum may be different.
While a ball minimizesthe principal eigenvalue of the Dirichlet Laplacian among regions of a
fixed volume, for nonsimply connected regions like annular strips or layers considered in Refs. 8
and 13, built over a curvessurfaced of a fixed lengthsaread, the circular shape is on the contrary
a maximizer. A natural topological way to understand this difference becomes smeared, however,
when the particle is not localized by boundary conditions but by a potential, a regular or a singular
one.

In this paper we consider such a problem associated with a class of operators inL2sR2d which
are given formally by the expression

Ha,G = − D − adsx − Gd, s1.1d

wherea.0 andG is a C2 loop in the planessee below for exact assumptionsd having a fixed
length L.0. A motivation to study these operators comes from the theory ofleaky quantum
graphs—see Refs. 5 and 9 and related papers, a bibliography can be found in Ref. 1—aiming at
a more realistic model of quantum wire structures which would take quantum tunneling into
account.

Our aim is to show that the ground-state energy ofHa,G is ssharplyd maximized whenG is a
circle. We will be able to prove that this property holdslocally conjecturing its global validity.
There are several reasons why one may expect this result to be valid. On one hand, we know from
Ref. 11 that in the limit of strong coupling,a→`, the ground-state dependence onG is given in
the leading order by the lowest eigenvalue of the operator −d2/ds2− 1

4gssd2 on L2sf0,Lgd with
periodic boundary conditions whereg is the curvature ofG, and the latter is easily seen to be
globally sharply maximized wheng is constant alongG. On the other hand, by Ref. 10 the
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operatorHa,G can be approximated in the strong resolvent sense by point interaction Hamiltonians
with the point interactions equidistantly spaced alongG and properly chosen coupling constants,
and from Ref. 7 we know that the ground state of such an operator is locally maximized by a
regular polygon.

Needless to say, neither of the above observations proves the desired result. The first one is
global, but it holds only asymptotically and we do not know whether the error term will not spoil
the inequality. The second argument holds for anya.0, suggesting the local validity, but the
polygons approximating the circle do not have exactly the same lengths.

Our main tools in this paper are the generalized Birman–Schwinger principle in combination
with the convexity of the Green’s function. They allow us to reformulate the problem in a purely
geometric way, in terms ofmean value of chordsof arc segments ofG. Since such geometric
inequalities are of an independent interest, we discuss them in Sec. IV separately in a broader
context, including the discrete version which arose in connection with the polygon problem treated
in Ref. 7. Before doing that, we will formulate in the next section the problem and state our main
result, Theorem 2.1, and provide the mentioned reformulation in Sec. III. After the discussion of
the inequalities we will finish the proof of Theorem 2.1 and present some concluding remarks.

II. FORMULATION AND THE MAIN RESULT

We will assume throughout thatG : f0,Lg→R2 is a closed curve,Gs0d=GsLd, parametrized by
its arclength, which is C1-smooth, piecewise C2, and has no cusps.sThere are, of course, no local
cusps under theC1 assumption, but we have not excluded self-intersections, so the last require-
ment means that the curve meets itself at such a point at a nonzero angle. In fact, our main result

can be pushed through under a slightly weaker regularity assumption, namely thatĠ is absolutely
continuous.d Unless stated otherwise, we will mean by the curveG for simplicity both the above-
mentioned function and its image in the plane. Furthermore, we introduce the equivalence relation:
G and G8 belong to the same equivalence class if one can be obtained from the other by a
Euclidean transformation of the plane. Spectral properties of the correspondingHa,G andHa,G8 are
obviously the same, and we will usually speak about a curveG having in mind the corresponding
equivalence class. It is clear that the stated regularity assumptions are satisfied, in particular, by
the circle, sayCªh(sL /2pdcoss,sL /2pdsins) :sP f0,Lgj, and its equivalence class.

First of all we have to give a rigorous meaning to the operators1.1d. Following Refs. 4 and 5,
we can do that in two ways. The more general one is to consider a positive Radon measurem on
R2 anda.0 such that

s1 + adE
R2

ucsxdu2 dmsxd ø aE
R2

u = csxdu2 dx + bE
R2

ucsxdu2 dx, s2.1d

holds for allc from the Schwartz spaceSsR2d and somea,1 andb. The mapIm defined onSsR2d
by Imc=c extends by density uniquely to

Im:W1,2sR2d → L2smd ª L2sR2,dmd; s2.2d

abusing notation we employ the same symbol for a continuous function and the corresponding
equivalence classes in bothL2sR2d and L2smd. The inequalitys2.1d extends toW1,2sR2d with c
replaced byImc at the left-hand side. This makes it possible to introduce the following quadratic
form:

E−amsc,fd ª E
R2

=csxd = fsxddx − aE
R2

sImc̄dsxdsImfdsxddmsxd, s2.3d

with the domainW1,2sR2d; it is straightforward to see that under the conditions2.1d it is closed and
below bounded, withC0

`sR2d as a core, and thus associated with a unique self-adjoint operator.
Furthermore,s2.1d is satisfied with anya.0 providedm belongs to the generalized Kato class,

062105-2 Pavel Exner J. Math. Phys. 46, 062105 ~2005!

                                                                                                                                    



lim
e→0

sup
xPR2

E
Bsx,ed

ulnux − yuudmsyd = 0, s2.4d

whereBsx,ed is the ball of radiuse and centerx. Choosing now form the Dirac measure supported
by the curve one can check easily that the conditions2.4d is satisfied under our assumptions about
G, hence we may identify the above mentioned self-adjoint operator with the formal one given by
s1.1d.

The described definition applies naturally to a much wider class of perturbations than we need
here. SinceG is supposed to be smooth, with the normal defined everywhere, we can defineHa,G

alternatively through boundary conditions. Specifically, it acts as −Dc on anyc from the domain
consisting of functions which belong toW2,2sR2\Gd, they are continuous at the curveG and their
normal derivatives have a jump there,

]csxd
]n+

−
]csxd
]n−

= − acsxd, for x = Gssd, ∀ sP f0,Lg.

It is straightforward to check that such an operator is e.s.a. and its closure can be identified with
s1.1d defined in the above described way.4 The advantage of the second definition is that it has an
illustrative meaning which corresponds well to the concept of ad interaction in the cross cut of the
curve.

Since the curve is finite, by Refs. 4 and 5 we havesesssHa,Gd=f0,`d while the discrete
spectrum is nonempty and finite, so that

e1 ; e1sa,Gd ª inf ss− Da,Gd , 0;

we ask for whichG the principal eigenvalue is maximal. The main result of this paper is a partial
answer to this question, namely, the following.

Theorem 1: Within the specified class of curves,e1sa ,Gd is for any fixeda.0 and L.0
locally sharply maximized by a circle.

While we do not give a general answer here, we suggest what it should be.
Conjecture 2.2: The circle is a sharp global maximizer, even under weaker regularity assump-

tions.

III. BIRMAN–SCHWINGER REFORMULATION

For operators associated with the quadratic forms2.3d, one can establish a generalized
Birman–Schwinger principle—we refer to Ref. 4 for a detailed discussion. In particular, ifk2

belongs to the resolvent set ofHa,G we putRa,G
k

ª sHa,G−k2d−1. The free resolventR0
k is defined for

Im k.0 as an integral operator inL2sR2d with the kernel

Gksx − yd =
i

4
H0

s1dskux − yud.

Next we have to introduce embedding operators associated withR0
k. Let m ,n be arbitrary positive

Radon measures onR2 with msxd=nsxd=0 for anyxPR2. By Rn,m
k we denote the integral operator

from L2smdªL2sR2,dmd to L2snd with the kernelGk, in other words, we suppose that

Rn,m
k f = Gk p fm,

holdsn—a.e. for allfPDsRn,m
k d,L2smd. In our case the two measures will be the Dirac measure

supported byG, denoted bym if necessary, and the Lebesgue measure dx on R2, in different
combinations. With this notation one can express the generalized BS principle as follows.

Proposition 3.1: (i) There is ak0.0 such that the operator I−aRm,m
ik on L2smd has a bounded

inverse for anykùk0.
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(ii) Let Im k.0. Suppose that I−aRm,m
k is invertible and the operator

Rk
ª R0

k + aRdx,m
k fI − aRm,m

k g−1Rm,dx
k

from L2sR2d to L2sR2d is everywhere defined. Then k2 belongs torsHa,Gd and sHa,G−k2d−1=Rk.
(iii) dim kersHa,G−k2d=dim kersI −aRm,m

k d for any k withIm k.0.
(iv) An eigenfunction of Ha,G associated with such an eigenvalue k2 can be written as

csxd =E
0

L

Rdx,m
k sx,sdfssdds,

wheref is the corresponding eigenfunction ofaRm,m
k with the eigenvalue one.

Proof of sid–siii d is given in Ref. 4, forsivd see Ref. 15. j

Denoting conventionallyk= ik with k.0 as corresponding to the bound-state energy −k2, we
can thus rephrase our problem as a search for solutions to the integral-operator equation,

Ra,G
k f = f, Ra,G

k ss,s8d ª
a

2p
K0„kuGssd − Gss8du…, s3.1d

on L2sf0,Lgd, whereK0 is the Macdonald function. Referring again to Refs. 4 and 15 we find that
the operator-valued functionk°Ra,G

k is strictly decreasing ins0,`d andiRa,G
k i→0 ask→`. In

fact, the two properties can be checked also directly. The first one follows from the one-to-one
correspondence of the eigenvalue branchessas functions ofkd to those ofHa,G which are obvi-
ously strictly monotonous as functions ofa; the second one in turn comes from the explicit form
of the kernel together with the dominated convergence theorem.

Next we use the fact that the maximum eigenvalue ofRa,G
k is simple. This conclusion results

from the following considerations: the kernel of the operator is bys3.1d strictly positive, soRa,G
k

is positivity improving. It further means that for any nonzerof ,xù0 the functionsRa,G
k f, Ra,G

k x
are also strictly positive. Hencesf ,sRa,G

k d2xdÞ0, and as a consequence,Ra,G
k is ergodic; then the

claim follows from Theorem XIII.43 of Ref. 16. In view of Proposition 3.1siii d the ground state of
Ha,G is, of course, also simple.

If G is a circle the operatorHa,C has a full rotational symmetry, so the corresponding eigen-
space supports a one-dimensional representation of the groupOs2d. Let us denote the ground-state
eigenfunction ofHa,C as −k̃1

2 swe will use an overtilde to distinguish quantities referring to the
circled. The correspondence between the eigenfunctions given by Proposition 3.1sivd then requires
that the respective eigenfunction ofRa,C

k̃1 corresponding to the unit eigenvalue is constant; we can
choose it asf̃1ssd=L−1/2. Then we have

maxssRa,C
k̃1 d = sf̃1,Ra,C

k̃1 f̃1d =
1

L
E

0

L E
0

L

Ra,C
k̃1 ss,s8ddsds8,

and, on the other hand, for the same quantity referring to a generalG a simple variational estimate
gives

maxssRa,G
k̃1 d ù sf̃1,Ra,G

k̃1 f̃1d =
1

L
E

0

L E
0

L

Ra,G
k̃1 ss,s8ddsds8.

Hence to check that the circle is a maximizer it sufficient to show that

E
0

L E
0

L

K0skuGssd − Gss8duddsds8 ù E
0

L E
0

L

K0„kuCssd − Css8du…dsds8, s3.2d

holdsfor all k.0 andG of the considered class, or at least forG in the vicinity of C to prove the
local result in Theorem 2.1. Since the kernel is symmetric with respect to the two variables, we
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can replace the double integral by 2e0
Ldse0

sds8. By another simple change of variables we find that
the above claim is equivalent to positivity of the functional

FksGd ª E
0

L/2

duE
0

L

dsfK0skuGss+ ud − Gssdud − K0„kuCss+ ud − Cssdu…g,

where the second term in the integrand is, of course, independent ofs being equal to
K0(skL /pdsinspu/Ld). Now we employ thesstrictd convexity ofK0 which yields by means of the
Jensen inequality the following estimate:

1

L
FksGd ù E

0

L/2FK0Sk

L
E

0

L

uGss+ ud − GssdudsD − K0SkL

p
sin

pu

L
DGdu,

where the inequality is sharp unlesse0
LuGss+ud−Gssduds is independent ofs. Finally, we observe

that K0 is decreasing ins0,`d; hence it is sufficient to check the inequality

E
0

L

uGss+ ud − Gssdudsø
L2

p
sin

pu

L
, s3.3d

for all uP s0, 1
2Lg and to show that is sharp unlessG is a circle.

IV. MEAN-CHORD INEQUALITIES

The inequalitys3.3d to which we have reduced our problem can be regarded as an element of
a wider family which we are now going to describe. LetG: f0,Lg→R2 be again a loop in the
plane; for the moment we do not specify its regularity properties. Let us consider all the arcs ofG
having lengthuP s0, 1

2Lg. The mentioned inequalities are the following:

CL
psud: E

0

L

uGss+ ud − Gssdup dsø
L1+p

p p sinp pu

L
, p . 0, s4.1d

CL
−psud:E

0

L

uGss+ ud − Gssdu−p dsù
p pL1−p

sinp pu

L

, p . 0. s4.2d

They have also a discrete counterpart for an equilateral polygonPN of N vertices and side length
l .0. Let hynj be the family of its vertices, where the index values are identified moduloN; then
we introduce

DN,l
p smd: on=1

N
uyn+m − ynup ø

Nlp sinp pm

N

sinp p

N

, p . 0, s4.3d

DN,l
−psmd: on=1

N
uyn+m − ynu−p ù

N sinp p

N

lp sinp pm

N

, p . 0, s4.4d

for any m=1, . . . ,f 1
2Ng, wheref·g denotes as usual the entire part.

In all the cases the right-hand side corresponds, of course, to the case with maximal symmetry,

i.e., to the circle and regular polygonP̃N, respectively.We conjecturethat without regularity
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restrictionsCL
±psud holds for any pø2 and the same is true for DN,l

±psmd, and furthermore, we

expect the inequalitiesto be sharp unlessG=C or PN=P̃N, respectively. In the polygon case it is
clear that the claim may not be true forp.2 as the example of a rhomboid shows:D4,l

p s2d is
equivalent to sinp f+cosp fø21−p/2 for 0,f,p. We are unable at this moment to demonstrate
the inequalitiess4.1d–s4.4d in full generality; below we will present a few particular cases.

It is obvious that the inequalities have a scaling property, so without loss of generality one can
assume, e.g.,L=1 andl =1; in such a case we drop the corresponding symbol from the label. If
necessary we can include also the casep=0 when the inequalities turn into trivial identities.

Proposition 4.1: CL
psud⇒CL

p8sud and DN,l
p smd⇒DN,l

p8 smd if p.p8.0.
Proof: The claim follows from the convexity ofx°xa in s0,`d for a.1,

L1+p

pp sinp pu

L
ù E

0

L

suGss+ ud − Gssdup8dp/p8 dsù LS 1

L
E

0

L

uGss+ ud − Gssdup8 dsDp/p8
.

It is now sufficient to take both sides to the powerp8 /p; in the same way one checks the second
implication. j

Proposition 4.2: CL
psud⇒CL

−psud and DN,l
p smd⇒DN,l

−psmd for any p.0.
Proof: The Schwarz inequality implies

E
0

L

uGss+ ud − Gssdu−p dsù
L2

E
0

L

uGss+ ud − Gssdup ds

ù
L2p p

L1+p sinp pu

L

,

and similarly for the polygon case. j

These simple relations mean that to check the above stated conjecture one needs only to verify
C2sud andDN

2smd. We will address the continuous case in the next section; here we notice that the
results of Ref. 7 in combination with the last two propositions leads to the following conclusions.

Theorem 4.3:(a) DN,l
1 smd holds locally for any N and m=1, . . . ,f 1

2Ng, i.e., in a vicinity of the
regular polygon, and, consequently, DN,l

±psmd holds locally for any pP s0,1g.
(b) DN,l

1 s2d holds globally for any N, and so does DN,l
±ps2d for each pP s0,1g.

V. PROOF OF THEOREM 2.1

After this interlude let us return to our main problem. Notice first that our regularity hypoth-

esis allows us to characterizeG by its ssignedd curvaturegª Ġ2G̈1−Ġ1G̈2 which is by assumption
a piecewise continuous function inf0,Lg. The advantage is thatg specifies uniquely the equiva-
lence class related by Euclidean transformations which can be represented by

Gssd = SE
0

s

cosbss8dds8,E
0

s

sinbss8dds8D , s5.1d

wherebssdªe0
sgss8dds8 is the bending angle relative to the tangent at the chosen initial point,

s=0. To ensure that the curve is closed, the conditions

E
0

L

cosbss8dds8 =E
0

L

sinbss8dds8 = 0, s5.2d

must be satisfied. Using this parametrization we can rewrite the left-hand side of the inequality
s4.1d in the form

E
0

L FSE
s

s+u

cosbss8dds8D2

+ SE
s

s+u

sinbss8dds8D2Gp/2

dsª cG
psud,

or, equivalently,
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cG
psud =E

0

L

dsFE
s

s+u

ds8E
s

s+u

ds9 cos„bss8d − bss9d…Gp/2

.

By Propositions4.1d it is sufficient to check that the quantitycG
2sud is maximized by the circle, i.e.,

by bssd=2ps/L. Rearranging the integrals we get

cG
2sud =E

0

L

ds8E
s8−u

s8+u

ds9E
maxhs8−u,s9−uj

minhs8,s9j
dscos„bss8d − bss9d…

=E
0

L

ds8E
s8−u

s8+u

ds9fminhs8,s9j − maxhs8 − u,s9 − ujgcos„bss8d − bss9d…,

or

cG
2sud =E

0

L

ds8E
s8−u

s8+u

ds9fu − us8 − s9ugcos„bss8d − bss9d….

Next, we change the integration variables toxªs8−s9 andzª 1
2ss8+s9d,

cG
2sud =E

−u

u

dxsu − uxudE
0

L

dzcosSbSz+
1

2
xD − bSz−

1

2
xDD ,

and since the functions involved are even w.r.t.x we finally get

cG
2sud = 2E

0

u

dxsu − xdE
0

L

dzcosSE
z−1/2x

z+1/2x

gssddsD . s5.3d

As a certain analogy to Theorem 4.3b we can prove the sought global inequality in the case when
the curve arcs in question are sufficiently short and/or the tangent vector direction does change too
fast.

Proposition 5.1: Suppose thatG has no self-intersections and the inequalitybsz+ 1
2ud−bsz

− 1
2udø

1
2p is valid for all zP f0,Lg, then CL

2sud holds.
Proof: We employ concavity of cosine ins0, 1

2pd obtaining

cG
2sud ø 2LE

0

u

dxsu − xdcosS 1

L
E

0

L

dzE
z−s1/2dx

z+s1/2dx

gssddsD
= 2LE

0

u

dxsu − xdcosS 1

L
E

0

L

dsgssdE
s−s1/2dx

s+s1/2dx

dzD
= 2LE

0

u

dxsu − xdcos
2px

L
=

L3

p2 sin2 pu

L
,

since e0
Lgssdds= ±2p for a curve without self-intersections. Moreover, the function

z°ez−s1/2dx
z+s1/2dxgssdds is constant forxP s0,ud iff gs·d is constant; hence the circle corresponds to a

sharp maximum. j

This result, however, does not help us with our main problem, because we need the inequality
to be valid for all arclengths. As indicated before, we can prove a local result which will imply
Theorem 2.1.

Theorem 5.2:Under the regularity assumptions of Sec. III, the inequality CL
2sud holds locally

for any L.0 and uP s0, 1
2Lg, and, consequently, CL

±psud holds locally for any pP s0,2g.
Proof: Gentle deformations of a circle can be characterized by the curvature

062105-7 Isoperimetric problem and mean-chord inequalities J. Math. Phys. 46, 062105 ~2005!

                                                                                                                                    



gssd =
2p

L
+ gssd,

where g is a piecewise continuous functions which is small in the sense thatigi`!L−1 and
satisfies the conditione0

Lgssdds=0. The function in the last integral ofs5.3d can be then expanded
as

cos
2px

L
− sin

2px

L
E

z−s1/2dx

z+s1/2dx

gssdds−
1

2
cos

2px

L SE
z−s1/2dx

z+s1/2dx

gssddsD2

+ Osg3d,

where the error term is a shorthand forOsiLgi`
3d. Substituting this expansion intos5.3d we find

that the term linear ing vanishes, because

E
0

L

dzE
z−s1/2dx

z+s1/2dx

gssdds=E
0

L

ds gssdE
s−s1/2dx

s+s1/2dx

dz= 0,

and thus

cG
2sud =

L3

p2 sin2 pu

L
− Igsud + Osg3d, s5.4d

where

Igsud ª E
0

u

dxsu − xdcos
2px

L
E

0

L

dzSE
z−s1/2dx

z+s1/2dx

gssddsD2

.

We need to show thatIgsud.0 unlessg=0 identically. Notice that foruø
1
4L this property

holds trivially. ForuP s 1
4L , 1

2Lg we use the fact thatg is periodic and piecewise continuous, so we
can write it through its Fourier series,

gssd = o
n=1

` San sin
2pns

L
+ bn cos

2pns

L
D ,

with the zero term missing, whereonsan
2+bn

2d is finite sand smalld. Using

E
z−s1/2dx

z+s1/2dx

gssdds=
L

p
o
n=1

`
1

n
San sin

2pnz

L
+ bn cos

2pnz

L
Dsin

pnx

L
,

together with the orthogonality of the Fourier basis we find

Igsud =E
0

u

dxsu − xdcos
2px

L
o
n=1

`
L3

2p2

an
2 + bn

2

n2 sin
pnx

L
.

Since the summation and integration can be obviously interchanged, we have

Igsud =
L5

2p4o
n=1

`
an

2 + bn
2

n2 FnSpu

L
D , s5.5d

where

Fnsvd ª E
0

v

sv − ydcos 2y sinny dy.

These integrals are equal to
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F1svd =
1

18
s9 sinv − sin 3v − 6vd,

F2svd =
1

32
s4v − sin 4vd,

Fnsvd =
nv

n2 − 4
−

sinsn − 2dv
2sn − 2d2 −

sinsn + 2dv
2sn + 2d2 , n ù 3.

Using the fact that sinx,x for x.0 we see immediately thatFnsvd.0 for v.0 andnù2. On the
other hand,F1svd has in the intervals0,p /2d a single positive maximum, at somev.p /4, from
which it decreases to the valueF1sp /2d= 1

18s10−3pd.0. Summing up this argument, we have
found that the quantitys5.5d is positive unless all the coefficientsan, bn are zero. j

Remark 5.3:One may wonder what happened with the closedness requirements5.2d. As the
argument shows we were able to demonstrate the claim using only the weaker property that
bs0d=bsLd. This is possible, of course, for small deformations only! As an illustration, considerG
in the form of an “overgrown paperclip” which satisfies the conditionbs0d=bsLd but not s5.2d,
i.e., a line segment with two U turns at the ends. Making the latter short one can getcG

2s 1
2Ld

arbitrarily close to1
3L3 which is larger thanL3/p2.

VI. EXTENSIONS AND CONCLUSIONS

To support our expectations that the result given in Theorem 2.1 holds globally and under
weaker regularity assumptions, consider a simple example.

Example 6.1:Let G be a curve consisting of two circular segments of radiusR.L /4p, i.e., it
is given by the equations

Sx ± Rcos
L

2R
D2

+ y2 = R2, for ± x ù 0. s6.1d

For R.L /2p it is “lens shaped,” forL /4p,R,L /2p “apple shaped;” it is not smooth except in
the trivial case of a circle,R=L /2p. The curvature of thisG equals

gssd =
1

R
+ Sp −

L

2R
D„dssd + dss− L/2d…;

hence

cG
2sud = 2E

0

u

dxsu − xdFsL − 2xdcos
x

R
− 2x cos

L − 2x

2R
Gdx,

and evaluating the integral, we arrive at

cG
2sud = 8R3H L

2R
sin2 u

2R
+ 4S u

2R
cos

u

2R
− sin

u

2R
Dcos

L

4R
cos

L − 2u

4R
J .

This function has for eachuP s0, 1
2Lg a maximum atR=L /2p and one can check directly that its

value is smaller for any otherR. In particular, in the limitR→` we havecG
2sud→Lu2− 4

3u3 as one
can find also directly with the “lens” degenerate into a double line segment; this value is less than
sL3/p2dsin2spu/Ld because sin2 x.x2−s4/3pdx3 holds in s0,p /2d.

To summarize our discussion, to prove Conjecture 2.2 it is sufficient to verify the inequality
CL

psud for somepù1 under appropriate regularity hypothesis. Naturally, one can ask also about
the ground-state maximizer in smaller families of curvesG which do not contain the circle;
examples could be polygonal loops with a fixed or limited number of vertices, or various pre-
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scribed compositions of arcs belonging to specific classes, circular, elliptic, parabolic, etc. Obvi-
ously a reasonable strategy is to look first for curves as close to the circle as possible within the
given class. Sometimes one expects that the answer will be the curve with maximum symmetry as
in the polygon case, in other situations it may not be true.

Another, and maybe more important extension of the present problem concerns a maximizer
for the generalized Schrödinger operator inR3 with an attractived interaction supported by a
closed surface of a fixed areaA, and its generalization to closed hypersurfaces of codimension one
in Rd, d.3. In the case ofd=3 we have a heuristic argument relying on Refs. 6 and 8 similar to
that used in the Introduction, which suggests that the problem is solved by the sphere, provided the
discrete spectrum is not empty, of course, which is a nontrivial assumption in this case—for
properties of the corresponding operators, see Ref. 2. The Birman–Schwinger reduction of the
problem similar to that of Sec. III can be performed again and the task is thus reduced to
verification of a geometric inequality analogous tos4.1d which we can label asCA

d,psud. We will
discuss this problem in a following paper.
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We define and study a fidelity criterion for quantum channels, which we term the
minimax fidelity, through a noncommutative generalization of maximal Hellinger
distance between two positive kernels in classical probability theory. Like other
known fidelities for quantum channels, the minimax fidelity is well defined for
channels between finite-dimensional algebras, but it also applies to a certain class
of channels between infinite-dimensional algebrassexplicitly, those channels that
possess an operator-valued Radon-Nikodym density with respect to the trace in the
sense of Belavkin-Staszewskid and induces a metric on the set of quantum channels
that is topologically equivalent to the CB-norm distance between channels, pre-
cisely in the same way as the Bures metric on the density operators associated with
statistical states of quantum-mechanical systems, derived from the well-known fi-
delity s“generalized transition probability”d of Uhlmann, is topologically equivalent
to the trace-norm distance. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1904510g

I. INTRODUCTION

Many problems in quantum information science,1,2 both in theory and in experiment, involve
finding a set of quantum-mechanical states or channels that solve some sort of an optimization
problem, typically formulated in terms of a numerical criterion that measures how close a given
pair of states or operations are to each other.sMany such criteria have been proposed to date, each
defined with specific theoretical or experimental considerations in mind; see Ref. 3 for a recent
comprehensive survey.d

Let us first consider the case of quantum states, i.e., density operators. Leth be a complex
separable Hilbert space associated to a quantum-mechanical system. Given a pair of density
operatorsr ,s, i.e., positive trace-class operators with unit trace, one can use either thefidelity4–7

Fsr,sd ª Trfsr1/2sr1/2d1/2g s1d

or the trace-norm (half-) distance

adE-mail address: vpb@maths.nott.ac.uk
bdAuthor to whom correspondence should be addressed. E-mail address: dariano@unipv.it
cdE-mail address: maxim@ece.northwestern.edu
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Dsr,sd ª 1
2ir − siT, s2d

whereiriTªTruru anduruªsr†rd1/2.8,9 Loosely speaking, two statesr ands are close to each other
if Fsr ,sd is large, or ifDsr ,sd is small. In fact, as follows from the key inequality5,10

1 − Fsr,sd ø Dsr,sd ø Î1 − F2sr,sd, s3d

the fidelity and the trace-norm distance are equivalent in the sense that any two density operators
that are close to one another in the sense ofs1d are also close in the sense ofs2d, and vice versa.

As for quantum channels, i.e., normal completely positive unital mappings from an operator
algebraB=Bshd into another algebraA=Bsgd, whereg and h are complex separable Hilbert
spaces, things get somewhat complicated. Consider, for instance, the case wheng is finite-
dimensional, and letmªdim g. Fix an orthonormal basishu jlj j=1

m of g, and let uclªm−1/2o j=1
m u jl

^ u jl be the normalized maximally entangled vector in the product spaceg ^ g. Given two quan-
tum channelsF ,C :B→A, one can measure their closeness in terms of the fidelity of the states on
B ^ A, obtained from the maximally entangled statep= uclkcu by applying the predual channels
FT andCT scf. Sec. II for precise definitionsd to the first factor in the tensor product:

FT ^ idspd =
1

m
o
i=1

m

o
k=1

m

FTsuilkkud ^ uilkku ; r,

CT ^ idspd =
1

m
o
i=1

m

o
k=1

m

CTsuilkkud ^ uilkku ; s.

The fidelity Fsr ,sd, taken as thechannel fidelity

FsF,Cd ª FsFT ^ idspd, CT ^ idspdd, s4d

by Raginsky in Ref. 11, enjoys many properties parallel to those of the fidelitys1d for quantum
states. Alternatively, one can adopt theshalf-d distance1,12,13

DsF,Cd ª 1
2iF − CiCB, s5d

wherei ·iCB denotes the so-callednorm of complete boundednesssor CB-norm for short; cf. Sec.
II C for detailsd. We note that the CB-norm half-distances5d can be given in terms of the trace-
norm distances2d between density operators by means of the variational expression1,12,13

DsF,Cd = sup
p

DsFT ^ idspd, CT ^ idspdd, s6d

where the supremum is taken over all density operatorsp on the tensor product spaceg ^ g. By
analogy with density operators of the states, we are tempted to say that two quantum channels,F
and C, are close either ifFsF ,Cd is large or ifDsF ,Cd is small. However, in addition to the
finite-dimension restriction dimg,` fthe only case under which the definitions4d of the channel
fidelity makes senseg, we encounter the following difficulty. It turns out11 that, as a criterion of
closeness, the CB-norm distances5d is strictly stronger than the fidelity measures4d in the sense
that even whenDsF ,Cd is large,FsF ,Cd may be quite large as well, and may even become
equal to one in the limit dimg→`. Consider, for instance, the caseC=id. Then one can show11

that

1 −DsF, idd ø FsF, idd ø Î1 − s1/4dD2sF, idd, s7d

and we immediately see that whenF is such thatDsF , idd attains its maximum value of unity, the
fidelity FsF , idd is still bounded between 0 andÎ3/2. To make matters worse, the only bound on
s5d in terms ofs4d known so far is
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1 ù DsF,Cd ù 1 −FsF,Cd, s8d

as follows readily from Eqs.s3d and s6d. Furthermore, one can easily find sequenceshFmj, hCmj
of channelsFm,Cm:BsCmd→BsCmd, such thatDsFm,CmdÞ0 for all m, while

lim
m→`

FsFm,Cmd = 1.

Indeed, consider the unitarily implemented channels

FmsBd = Um
† BUm, CsBd = Vm

† BVm

with the unitariesUm,Vm chosen in such a way thatUmÞVm but

lim
m→`

1

m
TrsUm

† Vmd = 1.

Thus, the channel fidelitys4d, apart from being applicable only in finite-dimensional settings, has
the distinct disadvantage of not being equivalent to the CB-norm distance, in contrast to the case
of the Uhlmann fidelitys1d and the trace-norm distances2d on the state space of a quantum-
mechanical system.

The goal of this paper is to define and study a new fidelity criterion for quantum channels,
which we term theminimax fidelityand which is a noncommutative generalization of maximal
Hellinger distance between two positive kernels in classical probability theory. Unlike the channel
fidelity s4d of Ref. 11, the minimax fidelity is not only well defined for channels between finite-
dimensional algebras, but also applies to a certain class of channels between infinite-dimensional
algebrassexplicitly, those channels that possess an operator-valued Radon-Nikodym density with
respect to the trace in the sense of Belavkin-Staszewski14d and is equivalent to the CB-norm
distance, echoing the way the Uhlmann fidelitys1d for density operators is equivalent to the
trace-norm distances2d.

Apart from these technical features, the minimax fidelityfsF ,Cd between two quantum
channelsF ,C has a directoperationalmeaning: intuitively, it is defined as the minimum overlap
of output statessdensity operatorsd of the predual channelsFT ,CT, when the operator-sum
decompositions2 of the latter are chosen to be maximally overlapping; this is spelled out in precise
terms in Sec. IV E. Our central resultsTheorem 1d demonstrates that the minimax fidelity is
independent of the order of these two optimizations. Furthermore, the equivalence of our minimax
fidelity to the CB-norm distance, which is stated precisely in Sec. V in terms ofdimension-free
bounds, is a promising avenue for the study and characterization of dimension-free boundsswhen-
ever they existd on other operationally meaningful distance measures for quantum operations3 in
terms of the CB-norm distance. As pointed out in Ref. 15, such bounds are crucial for a successful
generalization of the usual quantum capacity of a channel1,2 si.e., with respect to the identity
channeld to the case of comparing quantum channels to an arbitrary reference channel. We plan to
pursue these matters further in a future publication.

The paper is organized as follows. In Sec. II we fix the definitions and notation used through-
out the paper. The minimax fidelity is then introduced in Sec. III. Section IV is devoted to the
evaluation of the minimax fidelities in the various mathematical settings that arise in quantum
information theory. Next, in Sec. V, we list key properties of the minimax fidelity. Finally, in Sec.
VI we sketch some example applications of the minimax fidelity to several problems of quantum
information theory.

II. PRELIMINARIES, DEFINITIONS, NOTATION

A. Pairings, states, operations

Let h be a complex separable Hilbert space; letB denote the Banach algebraBshd of all
bounded linear operators onh with the usual operator normi ·i; and letBT denote the Banach
spaceBTshd of trace-class operators onh with the trace normi ·iT. The set of normal states onB,
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i.e., ultraweakly continuous positive unital linear functionals onB, will be denoted bySsBd or,
whenever we need to exhibit the underlying Hilbert space explicitly, bySshd. Generic elements of
SsBd will be denoted by the stylized Greek lettersÃ ,% ,§. Note that the operator norm onB can
be written asiBi=suph%suBud :%PSsBdj.

We equiph sand shall equip all Hilbert spaces introduced in the sequeld with an isometric
involution J=J†, J2=1h, having the properties of complex conjugation,

Jo
j

l jh j = o
j

l jJh j, ∀ l j P C, h j P h.

We can thus define thetransposeof anyBPB asB̃ªJB†J, as well as introduce the trace pairing16

sB,rd ª TrsBr̃d = TrsB̃rd, ∀ B P B, r P BT s9d

of B andBT. Under this pairing, which differs from the usual one in thatBPB is paired with the
transpose ofrPBT rather than directly withr, normal linear functionals onB are in a one-to-one
correspondence with the elements ofBT. Thus to each normal state% we associate a unique
positive trace-class operator with unit trace, denoted by the standard Greek letterr and referred to
as thedensity operatorcorresponding to%, via %sBd=sB,rd for all BPB. Similarly, density
operators corresponding to states denoted byÃ and§ will be denoted byp ands, respectively.

Apart from natural arguments from standard representation theory of operator algebras, one
reason why we chose to pairB with the transposed operatorr̃=Jr†J, rather than withr, is to be
able to keep all notations conveniently parallel to the classicalscommutatived case, as will be
amply demonstrated throughout the paper. Note also that we can fix a complete orthonormal basis
hu jlj of h and express the pairings9d in terms of the matrix elements ofB andr as

sB,rd = o
j ,k

k j uBukl · k j urukl ; o
j ,k

Bjkr jk,

where we have used the covariant indices for the matrix elements of bounded operators inB and
the contravariant indices for the matrix elements of trace-class operators inBT, when the latter are
identified via the pairings9d with normal linear functionals onB. Yet another reason to opt for the
pairing of B with the transposed operatorr̃, further elaborated upon in Sec. II B, is that then the
density operatorr of a normal state% will coincide with the operational density of%, understood
as a quantum operation fromB into the Abelian algebraC.

Introducing another Hilbert spaceg, the algebraAªBsgd, and the trace classATªBTsgd, let
us considerquantum operations, i.e., the completely positive normal linear mappingsF :B→A
such thatFs1hdø1g; if Fs1hd=1g, then F is referred to as aquantum channel. Any quantum
operationF possesses a uniquepredualFT :AT→BT, defined as the transpose ofF with respect
to the trace pairings9d, i.e.,

sFsBd,rd = sB,FTsrdd, ∀ B P B, r P AT. s10d

Conversely, given a normal completely positive linear mapF :AT→BT such that TrhFsrd
øTrgr for all rPAT, we define itsdual with respect to the trace pairings9d as the unique
mappingFT :B→A for which

sB,Fsrdd = sFTsBd, rd, ∀ B P B,r P AT. s11d

Using these definitions, one readily obtains thatFT
T=F for any normal completely positive map

F :B→A. Alternatively, one may define the predual of a normal completely positive mapF :B
→A as the unique normal completely positive mapFT :AT→BT such thatFT

T=F.
If F is given in the Kraus form17 FsBd=SFj

†BFj, or more generally as an integral
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FsBd =E
Z

Fszd†BFszddmszd, s12d

with respect to a positive measurem on a measurable spacesZ,BZd, where the integration is
understood in the sense of Bochner,18 then the predual mapFT has the transposed integral form

FTsrd =E
Z

FTszd†rFTszddmszd,

where g{j° kjuFTszd are Hilbert-transposed to the operatorsh{h° khuFszd, that is FTszd
=Fszd̃ for all zPZ.

Any normal state%PSsBd is automatically a quantum channel fromB into the Abelian
algebraC, and it is readily seen that the density operatorr of %, understood as acting onlPC on
the right,C{l°lr, is precisely the predual%T :C→BT. Indeed, givenBPB andlPC, we have

s%sBd,ld = sB,lrd = sB,%Tsldd,

which proves our claim thatr=%T. Thus we also have that%=%T
T=rT.

B. Operational densities

In order to avoid technicalities involving unbounded operators, we shall henceforth assume
that all quantum operations we deal with arecompletely majorizedby the trace, considered as the
maptssd=1gTr s of BT into A=Bsgd, in the sense14 that there exists a constantl.0 such that the
differencelt−F is a completely positive mapBT→A. For example, this condition is satisfied by
all quantum operations between finite-dimensional algebras.19 As was proven in Ref. 14, in this
case there exists a unique positive operatorFt on the Hilbert spaceHªg ^ h, called thedensity
of F with respect to the tracet, such that

FsBd = Trhfs1g ^ B̃dFtg, s13d

where Trh Y, YPBsHd, denotes the partial trace ofY with respect toh,

sTrhY,rd = sY,r ^ 1hd, ∀ r P BTsgd.

Moreover,Ft as a linear operator onH is bounded and majorized byl :0øFtøl1H, and the
operation is unital,Fs1hd=1g fcontractive,Fs1hdø1gg if and only if Trh Ft=1g sTrh Ftø1gd. This
is equivalent to saying that the predual mapFT :AT→BT, which, using Eqs.s10d ands13d, can be
written as

FTsrd = TrgfFtsr̃ ^ 1hdg, s14d

is trace preservingstrace decreasingd.
As an example, consider a normal state% on B, which, being a quantum channel intoC,

satisfies the complete majorization condition withl=iri, wherer is the density operator of%.
Furthermore, it is easy to see that%t=r. Indeed, we can write

%sBd = sB,rd = TrsBr̃d = TrsB̃rd = Trhfs1C ^ B̃drg,

and the desired result follows upon comparing this with Eq.s13d. This provides additional justi-
fication for our definition of the trace pairing in Eq.s9d, since we then have that%T=r=%t for any
normal state%.

If the operationF :B→A is given in the generalized Kraus forms12d, we can write down its
operational densityFt explicitly. To this end, suppose that all operatorsFszd are determined by
generalized bra-vectorsGszd=sFszdu, densely defined as the linear functionals
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Gszduj ^ hl = kjuFszduhl ; sFszduuj ^ hld

on the linear span of the ket-vectorsuj ^ hl;j ^ h̃ in H=g ^ h, wherejPg is also treated as a

bra-vector such thatJj=kju and ujl= j̃. Then the operational densityFt of F is given by the
corresponding decomposition

Ft =E Gszd†Gszddmszd ; G†G, s15d

where the integral is, again, understood in the sense of Bochner.

C. Completely bounded maps

Completely positive linear maps between operator algebras are a special case ofcompletely
boundedmaps.20 Consider, as before, the algebrasB=Bshd andA=Bsgd. For eachnPN define
the nth matrix level MnsBd.B ^ Mn, whereMn denotes the algebra ofn3n matrices with
complex entries. That is,MnsBd is the space ofn3n matrices withB-valued entries,

MnsBd ª hfBijg:Bij P B,1 ø i, j ø nj.

Analogous construction can also be applied toA to yield the matrix levelsMnsAd. Each matrix
level MnsBd inherits a *-algebra structure fromB through

fBijgfCijg ª Fo
k=1

n

BikCkjG, fBijg†
ª fBij

†g.

In fact, by identifyingMnsBd via a natural *-isomorphism with the algebraBshsndd of bounded
linear operators onhsnd, the direct sum ofn copies ofh, one can makeMnsBd into a C*-algebra.
Thus, each matrix level ofB possesses a unique C*-norm.

Now, for anynPN a linear mapL :B→A induces the mapLsnd
ªL ^ idn from MnsBd into

MnsAd, defined byLsnd : fBijg° fLsBijdg. Let us define thenorm of complete boundednesssor
CB-normd by iLiCBªsuphiLsndi :nPNj, where

iLsndi ª sup
BPMnsBd,iBiø1

iLsndsBdi

is the usual operator norm ofLsnd. A linear map L :B→A is called completely boundedif
iLiCB,`. Every completely positive mapF :B→A is automatically completely bounded, with
iFiCB=iFs1hdi. For a general completely bounded mapL, one has, by definition,iLs1hdiø iLi
ø iLiCB.

Passing to the predual mapLT :AT→BT, we can similarly define induced maps
LT

snd :MnsATd→MnsBTd, nPN, and the predual CB-norm

iLiCB
T

ª sup
nPN

iLsndiT,

where

iLsndiT ª = sup
rPMnsATd:iriTø1

iLsndsrdiT.

It is easy to see thatiLsndi=iLT
sndiT for all nPN, so thatiLiCB=iLTiCB

T . It is also straightforward
to see that the “unstabilized” normsi ·i and i ·iT are tensor supermultiplicativesi.e., iL1 ^ L2i
ù iL1i iL2id, whereas the corresponding CB-norms are tensor multiplicativesi.e., iL1 ^ L2iCB

=iL1iCBiL2iCBd.
There is also a useful nonvariational formula for the CB-norm of a mapL :B→A. Namely, let

,2 denote the Hilbert space of square-summable infinite sequences of complex numbers, and let
Ks,2d denote the space of compact operators on,2. Then iLiCB=iL ^ idKs,2di. Since we have
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assumed thatB=Bshd with h a complex separable Hilbert space, and since all complex separable
Hilbert spaces are canonically isomorphic to,2, we may also writeiLiCB=iL ^ idKshdi.

D. Miscellany

Any positive operatorBPBshd has a unique positive square root, denoted byB1/2 and defined
as the positive operatorXPBshd such thatB=X2. This definition can be extended to any operator
A that is similar to a positive operatorDPBshd, in the sense that there exists an operatorS
PBshd such thatA=SDS+, whereS+ is the pseudoinverse ofS, equal toS−1 on ranS and to 0 on
ker S. In that case, we maydefineÎAªSD1/2S+. From now on, in order to distinguish this
extended definition of the square root from the usual one, we shall always use the square root
symbolÎ· for this extended definition, and reserve the exponent notation·1/2 for the usual defini-
tion.

Consider now two positive operatorsA,BPBshd. It is easy to see that their productAB
is similar toA1/2BA1/2 with S=A1/2. Note that the operatorAB is positive when restricted to the
closure of ran A, when the latter is equipped with the weighted inner product
ky uxlAª kA−1/2y uA−1/2xl:

kyuABylA = kA−1/2yuA−1/2AByl = kyuByl ù 0, ∀ y P ranA.

Thus we may defineÎABªSsA1/2BA1/2dS+ with S=A1/2.
This notation, again, allows for a convenient parallelism between the classicalscommutatived

formalism and the quantumsnoncommutatived one. Indeed, consider two mutually commuting
positive trace-class operatorsr, s, let huxlj denote the set of their common eigenvectors, and let
rx;kxuruxl, sx;kxusuxl denote the corresponding eigenvalues. ThenÎrs is also trace-class, and

TrÎrs = o
x

Îrxsx.

If Tr r=1=Tr s, thenPª hrxj andQª hsxj are probability distributions, and TrÎrs then gives
the classical fidelitysalso known as theBhattacharyya coefficientd10 FsP,Qd betweenP andQ.

Our main technical tool in this paper is given by the following:
Lemma 1: LetH be a complex separable Hilbert space, and let R, SPBsHd be positive

operators such that R1/2SR1/2 is trace class. Then the supremum

sup
X,YPBsHd

hTrsX†Y + Y†Xd:X†X = R,Y†Y = Sj = 2 TrÎRS s16d

is achieved on any XPBsHd satisfying the condition X†X=R, say X=R1/2, and Y=Yo satisfying
the equation

YoX
† = sXSX†d1/2 = XYo

†. s17d

Proof: To prove the lemma one can use either the polar decomposition or the method of
Lagrange multipliers. We shall use the latter. Fixing anX satisfyingX†X=R, we can write the
Lagrange function as

L = TrsX†Y + Y†X − Y†YLd,

whereL=L†PBsHd is the operator-valued Lagrange multiplier corresponding to the hermiticity
conditionS=Y†Y=S†. At the stationary point

dL = TrsX† − LY†ddY + sX − YLddY† = 0,

so Y=Yo must satisfy the equationYL=X sthe other equation,LY†=X†, corresponding toY†=Yo
†,

is obtained by taking the Hermitian adjointd. ThusYo=XL−1, whereL−1 should be determined from
L−1X†XL−1=S. Multiplying this on the left byX and on the right byX† yields sXL−1X†d2=XSX†, or
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XL−1X†=sXSX†d1/2. Thus, we indeed have thatYoX
†=sXSX†d1/2=XYo

†, and therefore that

TrsYoX
† + XYo

†d = 2 TrssXSX†d1/2d. s18d

This extremal value is precisely the maximal value due to convexity of the function being maxi-
mized in Eq.s16d. Note that, sincesU†XSX†Ud1/2=U†sXSX†d1/2U for any unitaryU, the value of
the supremum in Eq.s16d, which coincides with Eq.s18d, does not depend on the choice ofX
satisfyingX†X=R. Indeed, by virtue of the polar decompositionX=UR1/2,

2 TrsXSX†d1/2 = 2 TrsU†sXSX†d1/2Ud = 2 TrssR1/2SR1/2d1/2d.

Rewriting this trace in the equivalent form 2 TrsX†Yod with

X†Yo = R1/2sR1/2SR1/2d1/2R−1/2 ; ÎRS

corresponding toX=R1/2, we obtain the extremal value in Eq.s16d. h

We shall also need the following simple, but useful, result:
Lemma 2: Let S be a compact subset of a complex Banach space V, such that xPS implies

lxPS for all lPC with ulu=1. Let f:V→C be a continuous function which is homogeneous of
order 1, i.e., fslxd=lfsxd for all lPC and all xPV. Then

sup
xPS

ufsxdu = sup
xPS

Re fsxd. s19d

Proof: Let x* PS be such thatufsx*du=supxPSufsxdu, with fsx*d= ufsx*duei arg fsx* d. Let x**

ªe−i arg fsx* dx* . By the homogeneity off,

fsx** d = e−i arg fsx* dfsx*d = ufsx*du.

But thenufsx** du= fsx** d=Re fsx** d. Since Relø ulu for all lPC, the lemma is proved. h

III. OPERATIONAL FIDELITIES AND DISTANCES

A. Classical kernel fidelity

The fidelity distinguishing different quantum operations without the restriction on the Hilbert
space dimensionality was suggested by Belavkin in Ref. 21 on the basis of a noncommutative
generalization of the maximal Hellinger distance between two positive kernels. Namely, given a
locally compact spaceX and a measure spacesY,BY,md, wherem is a positive measure, let us
denote byA the algebraCsXd of bounded continuous functions onX, and byBT;CTsYd the space
of absolutelym-integrable complex functions onY. A positive kernelP is then given in terms of
a function ps·u ·d :Y3X→R+, such thatPxªps·uxdPBT for all xPX, while PªeYpsy u ·ddmsyd
PA. Given two positive kernelsP andQ, the squared pointwise Hellinger distance

dH
2 sPx,Qxd ª

1

2
E sÎpsyuxd − Îqsyuxdd2dmsyd =E F1

2
spsyuxd + qsyuxdd − ÎpsyuxdqsyuxdGdmsyd

s20d

is well defined and finite for eachxPX, so that we can define

dH
2 sP,Qd ª

1

2
sup
xPX

E sÎpsyuxd − Îqsyuxdd2dmsyd ; idH
2 sPx,Qxdi, s21d

the last expression indicating the fact thatdH
2 sP,Qd is given by the supremum of the squared

pointwise Hellinger distances20d over allxPX. Note that the squared Hellinger distancedH
2 sP,Qd

between two positive distributionsP=ps·d andQ=qs·d is the minimal mean quadratic distance
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dH
2 sP,Qd =

1

2
inf

x,cPCsYd
HE uxsyd − csydu2dmsyd:uxs·du2 = ps·d,ucs·du2 = qs·dJ

= s1,1
2sP + Qdd − sup

c:ucs·du2=qs·d
E Îpsyd Recsyddmsyd, s22d

wheresf ,Pd=efsydpsyddmsyd denotes the integral pairing off PCsYd with PPCTsYd. Therelative
fidelity

fsP,Qd =
1

Îs1,Pds1,Qd
sup

c:ucs·du2=qs·d
E Îpsyd Recsyddmsyd =

s1,ÎPQd
Îs1,Pds1,Qd

s23d

of the distributionsP andQ is obviously related to the distances22d by

dH
2 sP,Qd + Îs1,Pds1,QdfsP,Qd = s1,1

2sP + Qdd . s24d

If Pxªps·uxd and Qxªqs·uxd are conditional distributions with constant integralss1,Pxd and
s1,Qxd, e.g., normalized to unity, this relation also remains valid for the minimal fidelity

fsP,Qd = inf
xPX

fsPx,Qxd,

which can alternatively be defined by the minimax formula

fsP,Qd = inf
xPX

sup
c:ucs·uxdu2=Qxs·d

s1,ÎPx Recs·uxdd
Îs1,Pxds1,Qxd

, s25d

where the supremum is achieved oncs·uxd;c+s·uxd satisfyingcsy uxd=Îqsy uxd. In particular, ifP
andQ are probability kernels,s1,Pxd=1=s1,Qxd for all xPX, then

dH
2 sP,Qd = 1 − inf

xPX
E Îpsyuxdqsyuxddmsyd ; 1 − fsP,Qd,

where

fsP,Qd = inf
xPX

E Îpsyuxdqsyuxddmsyd ; inf
xPX

s1,ÎPxQxd s26d

is the minimax fidelity of the classical channels described by these kernels.

B. Quantum operational fidelity

Generalizing Eq.s21d, one can define the squared Hellinger distance between quantum opera-
tions F andC with the respective operational densitiesFt ,CtPBsHd, H=g ^ h, as

dH
2 sF,Cd = 1

2 inf
G,YPBsHd

hiTrhsG − Yd†sG − Ydi:G†G = Ft,Y
†Y = Ctj. s27d

The operatorsG ,YPBsHd, such thatG†G=Ft and Y†Y=Ct, are naturally thought of as the
purificationsof Ft andCt, respectively. This means that we can fix an orthonormal basishu jlj of
H, say the product basisu jl= uil ^ ukl;ui ,kl, where huilj and huklj are some fixed orthonormal
bases ofg andh, respectively, and represent any suchG andY as strongly convergent sums

G = o
j

u jlk j uG ; o
j

u jlsFju, Y = o
j

u jlk j uY ; o
j

u jlsVju, s28d

where the generalized bra-vectorssFju define the bounded operatorsFj ,Vj :g→h through
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kkuFjuil = sFjusuil ^ ukld = k j iGui,kl, kkuVjuil = sVjusuil ^ ukld = k j iYui,kl.

As seen directly from this definition, the mappingsFu°F is linear: saF+bGu°aF+bG. Using
Eq. s28d, we may write

Ft = o
j

uFjdsFju ; G†G, Ct = o
j

uVjdsVju ; Y†Y, s29d

where the sums converge in the strong operator topology. This determines the Kraus
decompositions17 FsBd=o jFj

†BFj, CsBd=o jVj
†BVj of the mapsF ,C :B→A. Analogously, upon

defining the mappingsF ,V:g→h ^ H by

Fy ª o
j

Fjy ^ u jl, Vy ª o
j

Vjy ^ u jl,

we can write the mapsF ,C in the Stinespring form22 as FsBd=F†sB^ 1HdF and CsBd=V†sB
^ 1HdV.

Taking into account the fact thatiA†Ai=sup%PSsgd%sA†Ad and defining the positive function

cs·; · d:BsHd 3 BTsgd → R,

csA;rd ª 1
2TrsAsr ^ 1hdA†d,

we can rewrite the fidelity distances27d in the following minimax form:

dH
2 sF,Cd = inf

G,YPBsHdh sup
%PSsgd

csG − Y;rd:G†G = Ft,Y
†Y = Ctj . s30d

On the other hand, generalizing Eq.s20d to quantum operations, we can define the squared
pointwise distance

dH
2 sF,Cds%d ª inf

G,YPBsHd
hcsG − Y;rd:G†G = Ft,Y

†Y = Ctj s31d

betweenF and C on the setSsgd of all normal states onA=Bsgd. Just as with the probability
kernels in the commutative setting described in the preceding section,dH

2 sF ,Cd coincides with the
supremum ofdH

2 sF ,Cds%d over all normal states%PSsgd wheneverF andC are sproportional
tod quantum channels:

Theorem 1: Let F ,C :B→A be quantum operations with the respective operational densities
Ft ,CtPBsHd. Suppose that for all%PSsgd the pairings

sFt,r ^ 1hd ; %fFs1hdg, sCt,r ^ 1hd ; %fCs1hdg s32d

are constant. Then

dH
2 sF,Cd = sup

%PSsgd
dH

2 sF,Cds%d. s33d

Furthermore, then we have that

dH
2 sF,Cd + ÎiFi iCifsF,Cd = 1

2siFi + iCid, s34d

where

fsF,Cd = inf
%PSsgd

sup
YPBsHd:Y†Y=Ct

Re TrfFt
1/2Ysr ^ 1hdg

Î%fFs1hdgÎ%fCs1hdg
s35d

is theminimax fidelity betweenF and C.
Proof: Fix an arbitrary%PSsgd. From Eq.s32d it follows that
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iFi = sup
%PSsgd

%fFs1hdg = %fFs1hdg,

and the same goes forC. Therefore, given any pairG ,YPBsHd such thatG†G=Ft and Y†Y
=Ct, we can write

csG − Y;rd = 1
2TrssG − Yd†sG − Ydsr ^ 1hdd = 1

2TrssFt + Ctdsr ^ 1hd − sG†Y + GY†dsr ^ 1hdd

= 1
2siFi + iCi − TrfsG†Y + GY†dsr ^ 1hdgd,

whence it follows that

dH
2 sF,Cds%d = inf

G:G†G=Ft

Y:Y†Y=Ct

csG − Y;rd = 1
2SiFi + iCi − sup

G:G†G=Ft

Y:Y†Y=Ct

TrfsG†Y + GY†dsr ^ 1hdgD .

Taking the supremum of both sides over all%PSsgd, we obtain

sup
%PSsgd

dH
2 sF,Cds%d = 1

2SiFi + iCi − inf
%PSsgd

sup
G:G†G=Ft

Y:Y†Y=Ct

TrfsG†Y + GY†dsr ^ 1hdgD . s36d

On the other hand,

dH
2 sF,Cd = inf

G:G†G=Ft

Y:Y†Y=Ct

sup
%PSsgd

csG − Y;rd = 1
2 inf

G:G†G=Ft

Y:Y†Y=Ct

sup
%PSsgd

siFi + iCi − TrfsG†Y + GY†dsr ^ 1hdgd,

which yields

dH
2 sF,Cd = 1

2SiFi + iCi − sup
G:G†G=Ft

Y:Y†Y=Ct

inf
%PSsgd

TrfsG†Y + GY†dsr ^ 1hdgD . s37d

Note that the right-hand sides of Eqs.s36d ands37d differ only in the order of the extrema. Thus,
establishing the validity of Eq.s33d amounts to justifying the interchange of the extrema.

According to Lemma 1, the supremum overG andY in Eq. s36d can be evaluated by fixing
G=Ft

1/2 first and then varying only over allYPBsHd such thatY†Y=Ct. By the polar decom-
position, any suchY has the formUCt

1/2 for some partial isometryU. Thus we have

sup
G:G†G=Ft

Y:Y†Y=Ct

TrfsG†Y + GY†dsr ^ 1hdg = 2 sup
Y:Y†Y=Ct

Re TrfFt
1/2Ysr ^ 1hdg

= 2 sup
U

Re TrfFt
1/2UCt

1/2sr ^ 1hdg, s38d

where the supremum in Eq.s38d is taken over all partial isometriesU such that

Ct
1/2U†UCt

1/2 = Ct.

Since the expression being minimized is linear inU and the isometries are the extreme points of
the unit ball B1sHdª hXPBsHd : iXiø1j of all bounded operators,23 we may instead take the
supremum over the entire unit ball:

sup
Y:Y†Y=Ct

Re TrfFt
1/2Ysr ^ 1hdg = sup

XPB1sHd
Re TrfFt

1/2XCt
1/2sr ^ 1hdg. s39d

Since the expression being maximized in the right-hand side of Eq.s39d is affine in bothX andr,
and sinceB1sHd andSsgd are closed convex subsets ofBsHd andBTsgd, respectively, it follows
from standard minimax arguments24 that we can indeed interchange the extrema to obtain
f−sF ,Cd= f+sF ,Cd, where
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f−sF,Cd ª inf
%PSsgd

sup
XPB1sHd

Re TrfFt
1/2XCt

1/2sr ^ 1hdg

f+sF,Cd ª sup
XPB1sHd

inf
%PSsgd

Re TrfFt
1/2XCt

1/2sr ^ 1hdg,

which proves the claim of Eq.s33d. The rest is straightforward. h

As seen immediately from Theorem 1, whenF andC are quantum channels, then

dH
2 sF,Cd + fsF,Cd = 1,

with the minimax fidelity given by

fsF,Cd = inf
%PSsgd

sup
Y:Y†Y=Ct

Re TrfFt
1/2Ysr ^ 1hdg. s40d

IV. EVALUATING THE FIDELITY DISTANCES

A. Fidelities for quantum states and quantum effects

Consider two normal states% ,§ on B=Bshd as quantum channels fromB into the Abelian
algebraA=Bsgd with g.C. In this case, the operational densities%t ,§t of % ,§ coincide with the
corresponding density operatorsr ,s :%t=r and§t=s. The predual maps%T ,§T :AT.C→BT can
then be thought of as thestate creation operations, %Tsld=lr and§Tsld=ls for lPC.

In order to compute the minimax fidelityfs% ,§d, we have to consider allx ,cPB that give the
decompositionsr=x†x and s=c†c. Note that we can always write these decompositions as
purifications

r = o
j

ux jlkx ju, s = o
j

uc jlkc ju,

whereux jlªxu jl , uc jlªcu jl with respect to a fixed orthonormal basishu jlj of h. We then have the
minimum quadratic distance

dH
2 s%,§d = 1

2 inf
xPB:x†x=r

cPB:c†c=s

sup
ÃPSsgd

Ãfsx − cd†sx − cdg ; 1
2 inf

xPB:x†x=r

cPB:c†c=s

Trfsx − cd†sx − cdg,

where the last equality is due to the fact that dimg=1. Expanding the product under the trace, we
can write

dH
2 s%,§d = 1

2fTrsr + sd − sup
x,cPB

hRe Trsx†cd:x†x = r,c†c = sjg s41d

=1 − sup
xPB:x†x=r

cPB:c†c=s

Re Trsx†cd s42d

;1 − fs%,§d. s43d

According to Lemma 1, the supremum in Eq.s42d is attained at anyxPB satisfying the condition
x†x=r, sayx=r1/2, andc=c+ satisfying the equationc+x

†=sxsx†d1/2=xc+
†:

fs%,§d = sup
xPB:x†x=r

cPB:c†c=s

Re Trsx†cd = sup
cPBshd

hReTrsr1/2cd:c†c = sj = Tr Îrs.

Observe that the standard Uhlmann fidelity between the density operatorsr ands ,Fsr ,sd in Eq.
s1d, can be written asFsr ,sd=ir1/2s1/2iT=Tr Îrs. Thus the minimax fidelity between two normal
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states% and § on B, or, equivalently, between the state creation operations%T ,§T :C→BTshd,
agrees with the Uhlmann fidelity between the respective density operatorsr ands of % and§.

Next we turn to the other extreme case, namely that of thestate annihilation operationsF ,C
with the predualsFTsrd=sFt ,rd ,CTsrd=sCt ,rd, corresponding to dimh=1. They are completely
specified by theeffects, i.e., the positive operatorsFt ,CtPBsgd satisfying 0øFt ,Ctø1g, which
can be purified as ins29d, whereG j =k j uG ,Y j =k j uY are the bra-vectors corresponding to an ortho-
normal basishu jlj in g. The squared pointwise minimax distance between the state annihilation
operationsF ,C, or, equivalently between the effectsFt ,Ct, on the setSsgd of normal states%
=rT on Bsgd is given by the minimum

dH
2 sF,Cds%d = 1

2 inf
G,YPBsgd

hTrfsG − Yd†sG − Ydrg:G†G = Ft,Y
tY = Ctj

of the quadratic distance between their purificationsG ,YPBsgd. The solution of this problem is
likewise given by Lemma 1 withR=Ft andS=rCtr. Thus the optimum

dH
2 sF,Cds%d = 1

2TrfsFt + Ctdrg − TrÎFtsrCtrd

is attained at anyGPB satisfying the conditionG†G=Ft, sayG=Ft
1/2, and the correspondingY

=Y+ satisfying the equationY+rG†=ÎGrCtrG†=GrY+
†. The maximum of this distance over all

states,

dH
2 sF,Cd = sup

%PSsgd
dH

2 sF,Cds%d

; sup
%PSsgd

s 1
2 TrfsFt + Ctdrg − TrÎFtsrCtrdd

= sup
%PSsgd

inf
G,YPBsgd

hTrfsG − Yd†sG − Ydrg:G†G = Ft,Y
†Y = Ctj,

is given by the minimax quadratic distance

dH
2 sF,Cd = 1

2 inf
G,YPBsgd

hiG − Yi2:G†G = Ft,Y
†Y = Ctj,

interchange of the extrema following from standard minimax arguments,24 and the fact that allG,
Y satisfying, respectively,G†G=Ft andY†Y=Ct are contained in the unit ball ofBsgd.

B. Semiclassical fidelity

It is straightforward to extend the formalism of Sec. III A involving the commutative Hell-
inger distance between two positive kernels to the case of mappings from a setX into positive
trace-class operators on the Hilbert spaceh, i.e., r :xPX°rsxdPBTshd and s :xPX°ssxd
PBTshd with rsxd ,ssxdù0 for all xPX. We thus have the pointwise Hellinger distance

dH
2 srsxd,ssxdd = s1, 1

2frsxd + ssxdgd − Îs1,rsxdds1,ssxddfsrsxd,ssxdd

in terms of the trace pairingsB,rd=TrsBr̃d of BPB=Bshd andrPBT=BTshd, where

fsrsxd,ssxdd =
s1,Îrsxdssxdd

Îs1,rsxdds1,ssxdd
=

TrÎrsxdssxd
ÎTr rsxdTr ssxd

.

The semi-classical operational distance betweenr=rs·d ands=ss·d can then be defined as

dH
2 sr,sd = sup

xPX
dH

2 srsxd,ssxdd ; idH
2 srs·d,ss·ddi. s44d

When Trrsxd=1=Tr ssxd for all xPX, i.e., whenr and s are classical-to-quantum, c-q sor
semiclassicald, channels, Eq.s44d can be written asdH

2 sr ,sd=1−fsr ,sd, where
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fsr,sd = inf
xPX

Trfrsxd1/2ssxdrsxd1/2g1/2 = inf
xPX

TrÎrsxdssxd ; inf
xPX

Fsrsxd,ssxdd

is the minimax fidelity ofs relative tor.

C. Semiquantum fidelity

Next we consider the opposite of semiclassical operations—namely, thesemiquantum opera-
tions which correspond to quantum measurements as quantum-to-classicalsq-cd channels. Such
operations are given as

Fsbd =E
Y

bsydFtsyddmsyd ; sb,Ftd

on the algebraB=CsYd of continuous bounded functionsb:Y→C, wheresY,BY,md is a measure
space, by specifying the positive operator-valued Bochnerm-integrable functionsFt :Y→A
=Bsgd. If

Fs1d = s1,Ftd = 1g,

the predual mapsA{r°FTsrds·dPCTsYd,

FTsrdsyd ª sFtsyd,rd ; %fFtsydg,

define for each input quantum state%PSsgd a classical probability density onsY,BY,md, that is,
they describe quantum measurements by the positive operator-valued measuressPOVMsd
Msdyd=Ftsyddmsyd.

In order to avoid technicalities in defining the semi-quantum fidelity distance between two q-c
channelsF ,C :B→A, we shall assume thatFtsyd ,Ctsyd are weakly continuous bounded func-
tions onY. Then the squared distancedH

2 sF ,Cd can be written as

dH
2 sF,Cd = inf

G,Y:G†G=Ft,Y
†Y=Ct

IE sGsyd − Ysydd†sGsyd − YsydddmsydI , s45d

where the decompositionsG†G=Ft andY†Y=Ct are understood in the pointwise sense as

Ftsyd = Gsyd†Gsyd, Ctsyd = Ysyd†Ysyd, ∀ y P Y.

The infimum in Eq.s45d is achieved at anyGPA ^ CTsYd satisfying the conditionG†G=Ft, say
Gsyd=Ftsyd1/2, and the correspondingY=Yo satisfying the equation

YosydrGsyd† = fGsydrCtsydrGsyd†g1/2 = GsydrYosyd†.

The maximum of this minimal distance over all states,

dH
2 sF,Cd = sup

%PSsgd
E S1

2
TrfsFtsyd + Ctsyddrg − TrÎFtsydsrCtsydrdDdmsyd,

is equal todH
2 sF ,Cd=1−fsF ,Cd in the measurement operation caseFs1d=1g=Cs1d, where

fsF,Cd = inf
%PSsgd

E TrÎFtsydsrCtsydrddmsyd. s46d

D. Operational fidelity formula

Now we can easily evaluate the minimax formulas30d for the fidelity of two general quantum
operationsF ,C :B→A, B=Bshd, A=Bsgd. The solution of this problem is also given by Lemma
1 with R=Ft andS=sr ^ 1hdCtsr ^ 1hd. For a given%PSsgd, the supremum in
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dH
2 sF,Cds%d = 1

2sTrfsFt + Ctdsr ^ 1hdg − 2 sup
G,YPBsHd

hRe TrfG†Ysr ^ 1hdg:G†G = Ft,Y
†Y = Ctjd

is equal to TrÎFtfsr ^ 1hdCtsr ^ 1hdg, and is achieved at anyGPBsHd satisfying the condition
G†G=Ft, sayG=Ft

1/2, and the correspondingY=Yo satisfying the equation

Yosr ^ 1hdG† = fGsr ^ 1hdCtsr ^ 1hdG†g1/2 = Gsr ^ 1hdYo
†.

WhenF ,C are quantum channels, or, equivalently, when the predualsFT ,CT are trace preserv-
ing, Theorem 1 says that the maximum of this distance over all states,

dH
2 sF,Cd = sup

%PSsgd
Trs 1

2sFt + Ctdsr ^ 1hd − ÎFtfsr ^ 1hdCtsr ^ 1hdgd , s47d

can be written asdH
2 sF ,Cd=1−fsF ,Cd, where

fsF,Cd = inf
%PSsgd

TrÎFtfsr ^ 1hdCtsr ^ 1hdg s48d

is the minimax fidelity betweenF andC.

E. Operational fidelity in terms of Kraus and Stinespring decompositions

Consider, as before, two quantum channelsF ,C :B→A, whereB=Bshd andA=Bsgd. Given
the minimax fidelity

fsF,Cd = inf
%PSsgd

sup
G:G†G=Ft

Y:Y†Y=Ct

Re TrfG†Ysr ^ 1hdg = inf
%PSsgd

sup
G:G†G=Ft

Y:Y†Y=Ct

uTrfG†Ysr ^ 1hdgu

betweenF andC, where the second equality follows from Lemma 2, the supremum over allG
andY satisfying, respectively,G†G=Ft andY†Y=Ct can be replaced with the supremum over all
Kraus decompositions ofF and C, i.e., over all collectionshFjj, hVjj of bounded operatorsg
→h, determined fromFt ,Ct via Eqs.s29d and s28d:

fsF,Cd = inf
%PSsgd

sup
hFjj,hVjj

Uo
j

%sFj
†VjdU . s49d

Just as in the proof of Theorem 1, we may restrict ourselves only to thoseG ,Y that can be written
asG=UFt

1/2,Y=VCt
1/2 for some isometriesU ,V. Thus, if we writeFt

1/2 andCt
1/2 in the form of

Eq. s28d as

Ft
1/2 = o

j

u jlsF̂ju, Ct
1/2 = o

j

u jlsV̂ju,

then it follows that, given isometriesU, we can write

G = UFt
1/2 = o

j

u jlSo
,

Uj,F̂,U ; o
j

u jlsF̂jsUdu,

and similarly forY=VCt
1/2. Thus

fsF,Cd = inf
%PSsgd

sup
U,V
Uo

j

%fF̂jsUd†V̂jsVdgU = inf
%PSsgd

sup
U
Uo

j

%fF̂jsUd†V̂jgU .

Turning now to the infimum over all normal states% on A;Bsgd, we may equivalently consider
all pairs hw ,Kj, wherew is a normalp-representation ofA on a Hilbert spaceK:
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fsF,Cd ª inf
hw,Kj;yPK,iyi=1

sup
U
Uo

j

kyuwfF̂jsUd†V̂jguylU .

Since all normalp-representations of the full operator algebraBsgd are unitarily equivalent to an
amplificationB°B^ 1k for some Hilbert spacek, we can write

fsF,Cd ª inf
yPg^k;iyi=1

sup
U
Uo

j

kyuF̂jsUd†V̂j ^ 1kuylU . s50d

Introducing the vectorsuy ,Fl , uy ,ClPg ^ k ^ H, defined by

uy,Fl ª o
j

sF̂j ^ 1kdy ^ u jl, uy,Cl ª o
j

sV̂j ^ 1kdy ^ u jl,

we obtain yet another form of the minimax fidelity:

fsF,Cd = inf
yPg^k

sup
U

uky,Fu1g^k ^ Uuy,Clu. s51d

For a fixedyPg ^ k, taking the supremum overU is tantamount to taking the supremum ofukx ujlu
over all pairs of unit vectorsx ,jPg ^ k ^ H such that

TrHuxlkxu = o
j

sF̂ j̃ ^ 1kduylkyusF̂ j̃ ^ 1kd† ; FT ^ idsuylkyud,

TrHujlkju = o
j

sV̂j̃ ^ 1kduylkyusV̂j̃ ^ 1kd† ; CT ^ idsuylkyud,

which, in conjunction with the standard results on the Uhlmann fidelitys1d between density
operators,6,7 finally yields

fsF,Cd = inf
yPg^k:iyi=1

FsFT ^ idsuylkyud,CT ^ idsuylkyudd = inf
%PSsg^kd

FsFT ^ idsrd,CT ^ idsrdd.

Note that we may always takek isomorphic tog:

fsF,Cd = inf
yPg^g,iyi=1

FsFT ^ idsuylkyud,CT ^ idsuylkyudd. s52d

Given some Kraus decompositionshFjj, hVjj of F and C, respectively, we may define the
operators

Fj ª o
j

Fjj ^ u jl, Vj ª o
j

Vjj ^ u jl

from g into h ^ H and expressF and C in the Stinespring formFsBd=F†sB^ 1HdF, CsBd
=V†sB^ 1HdV scf. Sec. III Bd. Then we may rewrite Eq.s49d as

fsF,Cd = inf
%PSsgd

sup
F,V

uTrsFrV†du,

where the supremum is over allF ,V:g→h ^ H giving the Stinespring decompositions ofF and
C, respectively. We may, as before, fixF and V, say, by considering the “canonical” Kraus

decompositionshF̂jj, hV̂jj, and instead take the supremum over all unitariesUPUsHd:

fsF,Cd = inf
%PSsgd

sup
U

uTrfs1h ^ UdFrV†gu = inf
%PSsgd

sup
U

uTrfU TrhsFrV†dgu,

which yields another useful formula
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fsF,Cd = inf
%PSsgd

iTrhsFrV†diT s53d

for the minimax fidelity between the channelsF ,C. It is, in fact, not hard to show that the
right-hand side of Eq.s53d does not depend on the particular choice of the Stinespring operators
F ,V, as long as we agree to dilate the input Hilbert spaceh by the “canonical” auxiliary Hilbert
spaceH=g ^ h.

We note that the constructions of this section are valid more generally for channels given in
terms of the continual Kraus decompositions

FsBd =E
Z

Fszd†BFszddmszd, CsBd =E
Z

Vszd†BVszddnszd,

provided that the measuresm andn are equivalent, i.e., absolutely continuous with respect to each
other. Then Eq.s49d is a special instance of the more general expression

fsF,Cd = inf
%PSsgd

sup
hFszdj,hVszdj

U%SE
Z

Îdn/dmFszd†VszddmszdDU ,

where dn /dm is the Radon-Nikodym derivative ofn with respect tom, for the case when bothm
andn are counting measures, dm=dn=1, on a finite or countably infinite set.

V. PROPERTIES OF THE OPERATIONAL FIDELITY

In this section we establish several key properties of the minimax fidelity between quantum
operations. These properties follow almost immediately from the corresponding properties en-
joyed by the fidelitys1d on density operators:

sF.1d F is symmetric,Fsr ,sd=Fss ,rd, bounded between 0 and 1, andFsr ,sd=1 if and only
if r=s.

sF.2d F is jointly concave over all pairs of density operators.
sF.3d F is unitarily invariant, i.e.,Fsr ,sd=FsUrU†,UsU†d for any unitaryU.
sF.4d F is monotone with respect to quantum channels:FsFTsrd ,FTssddùFsr ,sd for every

quantum channelF.
sF.5d The Bures distance dBs·, ·dªÎ1−Fs·, ·d is topologically equivalent to the trace-norm

half-distanceDs·, ·d:

2−1/2Dsr,sd ø dBsr,sd ø ÎDsr,sd

fcf. Eq. s3dg. PropertysF.2d, in fact, follows fromstrong concavityof F,2 i.e.,

FSo
i

piri,o
i

qisiD ù o
i

ÎpiqiFsri,sid s54d

for all 0øpi ,qi ø1 such thatoipi =1=oiqi.
Using Eq.s52d, we can immediately obtain for the minimax fidelityfs·, ·d on pairs of quantum

channels the following analogs of propertiessF.1d–sF.4d of the fidelity Fs·, ·d on pairs of density
operators:

sf.1d f is symmetric, bounded between 0 and 1, andfsF ,Cd=1 if and only if F=C.
sf.2d f is jointly concave over all pairs of channels.
sf.3d f is invariant under both left and right composition with unitarily implemented channels,

i.e.,

fsUU + F,UU + Cd = fsF,Cd

and
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fsF + UV,C + UVd = fsF,Cd

for any two channelsF ,C :Bshd→Bsgd and any two unitariesUPUsgd, VPUshd, where
UUsBdªU†BU, andUV is defined analogously.

sf.4d f is monotone with respect to both left and right composition with quantum channels, i.e.,
fsF +F1,C +F1dù fsF ,Cd and fsF2+F ,F2+Cdù fsF ,Cd for any two channelsF ,C :B→A, all
channelsF1 into B, and all channelsF2 on A. Just as in the case of the fidelity between density
operators, the minimax fidelityf possesses the strong concavity property

fSo
i

piFi,o
i

qiCiD ù o
i

Îpiqi fsFi,Cid. s55d

On the other hand, deriving for the minimax fidelityf an analog of propertysF.5d of the Uhlmann
fidelity F requires a bit more work. To this end, let us consider two channelsF ,C :B→A ,B
=Bshd ,A=Bsgd. Suppose first thatg is infinite dimensional and separable. Theng.,2, and we
can rewrite Eq.s55d as

fsF,Cd = inf
yPg^,2;iyi=1

FsFT ^ idsuylkyud,CT ^ idsuylkyudd.

The space,2 contains, as a dense subset, the pre-Hilbert space,0
2 of all infinite sequences of

complex numbers with all but finitely many components equal to zero. Using this fact and the
continuity propertysF.5d of the fidelity F, we obtain

fsF,Cd = inf
yPg^,0

2;iyi=1

FsFT ^ idsuylkyud,CT ^ idsuylkyudd.

Using this expression in conjunction with Eq.s3d, we get the bounds

fsF,Cd ù 1 − sup
yPg^,0

2:iyi=1

DsFT ^ idsuylkyud,CT ^ idsuylkyudd, s56d

f2sF,Cd ø 1 − sup
yPg^,0

2:iyi=1

D2sFT ^ idsuylkyud − CT ^ idsuylkyudd. s57d

Now, for any completely bounded mapL :Bshd→Bsgd, the image of the sethuylkyu :yPg

^ ,0
2,iyi=1j under the predual mapLT ^ id:BTsg ^ ,0

2d→BTsh ^ ,0
2d is contained in the trace-

norm closure of the linear span ofhujlkju :jPh ^ ,0
2,iji=1j, which is dual to the tensor product

Bshd ^ Ks,2d, whereKs,2d is the space of compact operators on,2. Thus, by duality we have

sup
yPg^,0

2:iyi=1

DsFT ^ idsuylkyud,CT ^ idsuylkyudd = 1
2isF − Cd ^ idKs,2di ; DsF,Cd,

whereDsF ,Cd denotes the CB-norm half-distance1
2iF−CiCB, and the last equality follows from

the formulaiLiCB=iL ^ idKs,2di for any completely bounded mapL.
On the other hand, when dimg=m,`, we can use the fact20 that, for any completely

bounded mapL into Bsgd,

iLiCB = iL ^ idMm
i = iLT ^ idMm

iT,

whereMm denotes the algebra ofm3m complex matrices, it follows that

sup
yPg^g:iyi=1

DsFT ^ 1suylkyud,CT ^ 1suylkyudd = DsF,Cd.

In either case, we immediately derive the inequality
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1 −DsF,Cd ø fsF,Cd ø Î1 −D2sF,Cd, s58d

which, when expressed in terms of the Hellinger distancedHs·, ·dªÎ1− fs·, ·d as

2−1/2DsF,Cd ø dHsF,Cd ø ÎDsF,Cd, s59d

yields the desired property
sf.5d the Hellinger distancedHs·, ·dªÎ1− fs·, ·d is topologically equivalent to the CB-norm

distancefcf. Eq. s59dg.
This completes our survey of the basic properties of the minimax fidelityf.

VI. SOME EXAMPLES AND APPLICATIONS

The expressions for the minimax fidelity, derived in Sec. IV for different kinds of quantum
operations encountered in quantum information theory, share the common feature of being set up
as variational problems, namely, as minimizations of a concave functional over a convex set. This
feature of the minimax fidelity renders the problem of computing it amenable to robust numerical
methodsssee Ref. 3 for detailed discussion of numerical optimization methods for the calculation
of fidelitylike measures in quantum information theoryd. However, there are instances in which the
minimax fidelity between two quantum channels can be written down in a more explicit form. In
this section we sketch some examples of such instances.

Before we proceed, we would like to remind the reader of the assumption we made in Sec.
II B, namely that all the channels we deal with are completely majorized by the trace in the sense
of Ref. 14. This assumption, while allowing us to circumvent certain technicalities involving
unbounded operators, is somewhat restrictive, as one can easily find examples of quantum chan-
nels between infinite-dimensional algebrasse.g., unitarily or isometrically implemented channels;
see Ref. 21 for detailsd that do not satisfy this condition of complete majorization. However,
owing to the CB-continuity of the minimax fidelityscf. Sec. Vd, we may always regard such
channels as CB-limits of sequences of channels with finite-dimensional output algebras. Thus,
given a channelF :B→A ,B=Bshd ,A=Bsgd with dim g=`, we consider a sequencehPnj of
finite-dimensional projections such thatPn→1g strongly, and the corresponding sequencehFnj of
quantum operationsFnsBdªPnFsBdPn, so thatFnsBd→FsBd uniformly as n→` for eachB
PB, and eachFn is a channel fromB into PnAPn, with limn→`iF−FniCB=0.

With this in mind, in the examples below we shall not worry about the issue of bounded
versus unbounded operational densities.

A. Unitary maps

In the case of channelsUU ,UV implemented by the unitariesU ,V:h→h, i.e., UUsBd
=U†BU andUVsBd=V†BV, the minimax fidelityfsF ,Cd is easily evaluated using Eq.s49d:

fsUU,UVd = inf
%PSsgd

u%sWdu,

where we have definedWªU†V. Let SpsWd denote the spectrum ofW, which is a closed compact
subset of the unit circleT in the complex plane, and letEWsdzd denote the corresponding spectral
measure ofW. Then we can write

fsUU,UVd = inf
%PSsgd

UE
SpsWd

zMW,%sdzdU ,

whereMW,%sdzd is the probability measure%fEWsdzdg;sEWsdzd ,rd. Thus
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fsUU,UVd = dists0,coSpsWdd, s60d

whereco SpsWd denotes the closed convex hull of SpsWd, and distsz,Sdª infhuz−z8u :z8PSj for
any zPC and S,C. Clearly, fsUU ,UVd=1 if and only if co SpW,T, i.e., if and only if W
=l1h with ulu=1, which is equivalent toUU=UV.

When dimh,`, SpsWd is a finite subset ofT, so thatco SpsWd is a polygon in the complex
plane, and Eq.s60d shows thatfsUU ,UVd is simply the distanced from this polygon to the origin.
On the other hand, recalling the formula12 DsUU ,UVd=Î1−d2, we see that the upper bound in Eq.
s58d is saturated by the unitarily implemented channels.

B. Random unitary channels

Continuing with the setup from the preceding example, let us consider channels of the form

FsBd = o
i

piUUi
sBd, CsBd = o

i

qiUUi
sBd, s61d

whereUUi
are unitarily implemented channels andp;hpij, q;hqij are probability distributions. It

then follows immediately from the strong concavity propertys55d of the minimax fidelity that

fsF,Cd ù o
i

Îpiqi ; Fsp,qd. s62d

When dimh,`, the inequality ins62d becomes equality when the unitariesUi are orthogonal
in the Hilbert-Schmidt sense, TrUi

†Uk=dimh ·dik. On the other hand, whenh is infinite dimen-
sional, this orthogonality condition does not make sense unless we consider channels given in
terms of continual Kraus decompositions, so that the sums in Eq.s62d are replaced with integrals
with respect to some positive measurem, and agree to understand orthogonality in the sense of
operator-valued Schwartz distributions. As an example, consider the following.

Let h=F, the boson Fock space, leta anda† be the field annihilation and creation operators,
and letDszdªexpsza†− z̄ad, zPC, be the unitary displacement operators obeying the Weyl rela-
tion DszdDsz8d=ei Im zz8Dsz+z8d. Given a functionf PL2sC ,dzd, where dzªdsRezddsIm zd, we
define itsWeyl-Fourier transformasDsfdªp−1/2eCfszdDszddz. Sincef is square integrable,Dsfd
is a Hilbert-Schmidt operator, and it can be easily shown that

TrfDsfd†Dsgdg =E
C

fszdgszddz; kf,glL2sCd, ∀ f,g P L2sCd

so that TrfDszd†Dsz8dg=pds2dsz−z8d ,z,z8PC, where ds2dsldªdsRelddsIm ld is the Dirac
d-function in the complex plane.

With this in mind, consider the family of channelsGsmd :BsFd→BsFd ,mPR+, with the predu-
als given by

GT
smdsrd ª

1

pm
E

C
DszdrDszd† exps− uzu2/mddz

sin quantum optics these channels model the so-calledGaussian displacement noise25d. Then the
minimax fidelity betweenGsmd andGsnd is given by

fsGsmd,Gsndd =
smnd1/2

1

2
sm + nd

. s63d

Owing to the inequality between the geometric and the arithmetic means, the right-hand side of
Eq. s63d is always bounded between 0 and 1, and the maximum value of 1 is attained if and only
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if m=n, i.e.,Gsmd=Gsnd. This, of course, agrees with the properties of the minimax fidelityscf. Sec.
Vd.

C. Master equation

Consider a strongly continuous semigroup of channelshFstd :Bshd→BshdjtPR+, with the
predualsFT

std satisfying the Lindblad master equation26

dFT
stdsrd
dt

= XrX† −
1

2
sX†Xr + rX†Xd s64d

for someXPBshd. Introducing the dilating Hilbert spaceH=h ^ h with the basishu0l , u1l , . . .j, we
can, for an infinitesimal timet=«, write the predual of the channelFs«d in the Stinespring form

FT
s«dsrd = TrHA«rA«

†, s65d

where the mapA« :h→h ^ H is given by

A«y ª s1h − 1
2«X†Xdy ^ u0l + Î«Xy ^ u1l + Os«2d, s66d

Os«2d indicating terms with norm bounded from above byM«2 for some constantM ù0. Note that
A0y=y ^ u0l, so thatTs0d=id. We can then evaluate the partial trace

TrhfA«rA0
†g = s1 − 1

2«kX†Xlrdu0lk0u + Î«kXlru1lk0u + Os«2d, s67d

wherekBlrªTrsBrd for BPBshd. Then, again up to an additive term of operator normOs«2d,

TrhfA«rA0
†g†TrhfA«rA0

†g < fs1 − 1
2«kX†Xlrd2 + «ukXlru2gu0lk0u, s68d

which allows us to compute, up toOs«2d, the minimax fidelity between the channelTs«d after an
infinitesimal time« and the identity map. Using Eq.s53d, we obtain

fsTsed, idd = inf
%PSsgd

iTrhfA«rA0
†giT < Î1 − «C, s69d

where

C = inf
%PSsgd

skX†Xlr − ukXlru2d. s70d

D. Impossibility of quantum bit commitment

The statement of topological equivalence of the noncommutative Hellinger distance and the
CB-norm distance between a pair of quantum channels, i.e., Eq.s59d, is essentially the “continuity
argument” at the heart of a proof of “impossibility of quantum bit commitmentsQBCd.”27 Quan-
tum bit commitment is a cryptographic objective in which one party, Alice, commits a bit to
another party, Bob, in such a way that the corresponding protocol isconcealingsi.e., Bob is not
able to retrieve the bit before the openingd andbinding si.e., Alice cannot change the bit after the
commitmentd. The impossibility proof asserts that if the protocol is perfectly concealing, then it is
necessarily not binding, and invokes a continuity argument for “asymptotically” concealing pro-
tocols, stating that Alice’s probability of successful cheating approaches unity, while Bob’s cheat-
ing probability becomes close to the value1

2 spure guessingd. sThe reader should be aware that the
impossibility proof in Ref. 27 is valid for a restricted class of protocols, i.e., those that are
nonaborting and have a single commitment step. For wider classes of protocols, it is still a matter
of debate whether a secure QBC protocol exists.28d In this example we derive the continuity
argument from the expression of Alice’s and Bob’s respective cheating probabilities as a conse-
quence of the topological equivalence between the Hellinger distance and the CB-norm distance in
Eq. s59d.
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From the point of view of Bob, Alice’s action of committing the bit is equivalent to a channel
FAsbd on an algebraBshd, dimh,`, for each value of the committed bitb=0,1, where A sbd

;hAj
sbdj j=1

k is a collection of operators satisfying the Kraus conditiono j=1
k Aj

sbd†Aj
sbd=1, andFAsbd

denotes the channel induced by this Kraus decomposition. At the opening, Alice informs Bob
about which element of the Kraus decompositionA sbd she actually used in the commitment.
However, prior to unveiling the labelj , Alice can perform anEPR attackwith the purpose of
changing the Kraus decomposition to another equivalent decompositionA sbdsVd;hAj

sbdsVdj, where
Aj

sbdsVdªo,Al
sbdVj, for someVPUsCkd. The EPR attack is achieved by Alice via the unitary

transformationV on an ancillaryk-dimensional spaceH. The conditional probability that Alice
can cheat successfully by convincing Bob that she has committed, say,b=1, while having suc-
cessfully committedb=0 instead, is given by

Pc
AsV,yd = o

j

ukyuAj
s0d†sVdAj

s1d
^ 1Huylu2

isAj
s1d

^ 1Hdyi2 , s71d

where isAj
s0d

^ 1Hdyi2 is the probability that thej th Kraus element is unveiled. WhichV should
Alice use? Without any knowledge ofuyl, the best she can do is to adopt a conservative strategy
of choosing theV that will maximize her cheating probability in the worst-case scenario, namely
for the anonymous stateuyl chosen by Bob to minimizePc

AsV,yd. This is theminimaxchoice ofV,
corresponding to the cheating probability

P̄c
A
ª sup

VPUsCkd
inf

yPh^H;iyi=1
Pc

AsV,yd. s72d

On the other hand, for equiprobable bit valuesbP h0,1j Bob’s optimal probability of cheating is
given by the probability of error in discriminating between the corresponding output states, more
precisely

P̄c
B = 1

2 + 1
4 sup

yPh^H;iyi=1
irAs0d

y − rAs1d
y iT = 1

2f1 +DsFAs0d,FAs1ddg, s73d

where we have definedrA
y
ªFA ^ idsuylkyud. Using Jensen’s inequality, we can bound Alice’s

cheating probabilityPc
AsV,yd from below as

Pc
AsV,yd ù Uo

j

ukyuAj
s0dsVd†Aj

s1d
^ 1HuyluU2

. s74d

Note that the value of the max-min in Eq.s72d will not change if we perform the maximization
over the closed convex hull ofUsCkd, i.e., the setKsCkd of all linear contractions onCk, and the
minimization over the closed convex hull of the pure states onh ^ H, i.e., the setSsh ^ Hd of
states onBsh ^ Hd, thus completing the domain of the max-min to the productKsCkd3Ssh
^ Hd of compact convex sets. Now, the functional

FsV,rd ª o
j

Re TrhrfAj
s0dsVd†Aj

s1d
^ 1Hgj s75d

is affine in bothVPKsCkd andrPSsh ^ Hd, so that we can use standard minimax arguments24 to
justify the interchange of extrema in Eq.s72d, and then apply Lemma 2 to obtain

sup
VPUsCkd

inf
yPh^H

uFsV,uylkyudu = sup
VPKsCkd

inf
%PSsh^Hd

uFsV,rdu s76d

= inf
%PSsh^Hd

sup
VPKsCkd

uFsV,rdu s77d
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= inf
yPh^H;iyi=1

sup
VPUskd

uFsV,uylkyudu. s78d

Now, since a monotone function does not affect the saddle point, we can use Eqs.s50d, s72d, s74d,
and s78d to obtain

P̄c
A ù f2sFAs0d,FAs1dd.

Using Eq.s59d and then Eq.s73d, we finally obtain the chain of estimates

P̄c
A ù f2sFAs0d,FAs1dd ù f1 −DsFAs0d,FAs1ddg2 ù f1 − 2sP̄c

B − 1/2dg2,

where it follows that, for “asymptotically” concealing protocols, i.e., those for whichP̄c
B→ 1

2,
Alice’s probability of cheating will approach unity, and the protocol will not be binding.
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Generalized density functional theories
using the k-electron densities: Development
of kinetic energy functionals
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Several explicit formulas for the kinetic energy of a many-electron system as a
functional of thek-electron density are derived, with emphasis on the electron pair
density. The emphasis is on general techniques for deriving approximate kinetic
energy functionals and features generalized Weisacker bounds and methods using
density-matrix reconstruction. Adapting results from statistical mechanics, a hier-
archy of equations is derived that links electron pairs, triplets, quadruplets, etc.; this
may be used to derive more accurate approximations. Several methods for defining
the exact kinetic energy functional are presented, including the generalizations of
the Levy and Lieb formulations of density-functional theory. Together with
N-representability constraints on thek-density, this paper provides the basis for
“generalized density functional theories” based on the electron pair density. There
are also implications for conventional density-functional theory, notably regarding
the development of more accurate density functionals for the kinetic energy. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1922071g

I. INTRODUCTION

Due to the prohibitive cost associated with accurate solutions to the many-electron
Schrödinger equation, most computational modeling of many-electron systems does not use the
many-electron wave function. Instead, one typically considers some simpler descriptor of the
system, typically a few-electron Green’s function, density-matrix, or electron density.1–3 For sys-
tems with more than a hundred electrons, these approaches provide the basis for almost every
study of many-electron phenomenon. While some of these techniques are exact in principle,
practical applications always use approximations, commonly neglecting or approximating certain
aspects of electron correlation. One particularly popular method, especially for systems containing
hundredssor even thousands!d of electrons, is density-functional theory.4,5 In density-functional
theory, the electron density is the fundamental descriptor of the system. While there exists an exact
formulation of density-functional theory,6–8 all practical calculations use approximations to the
kinetic energy of and the electron–electron repulsion energy between the electrons. Finding accu-
rate approximate functionals is very important, but also very difficult.

Partly motivated by the difficulties one encounters when approximating the kinetic energy and
electron–electron repulsion energy in terms of the electron density, there has been recent interest
in “higher-order” density-functional theories,4,5 in which either the first-order reduced density
matrix7,9–31 or the electron pair density28,32–40shereafter called the 2-densityd is used as the fun-
damental variable. In the first case, the kinetic energy functional is known exactly, leaving only the
electron–electron repulsion energy to be approximated. When the 2-density

adElectronic mail: ayers@mcmaster.ca
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r2sx1,x2d ; KCUo
i=1

N

o
jÞi

N

dsr i − x1ddsr j − x2dUCL s1d

is used as the fundamental variable, the electron–nuclear attraction and electron–electron repulsion
energies are known exactly,

Vnefr2,vg =E E r2sx1,x2d
fvsx1d + vsx2dg

2sN − 1d
dx1dx2, s2d

Veefr2g =
1

2
E E r2sx1,x2d

ux1 − x2u
dx1dx2, s3d

but no explicit expression for the kinetic energy functional is known. However, because the
electron–electron repulsion energy is known exactly, there is no need for an adiabatic connection
formalism in 2-density functional theorys2-DFTd, and the kinetic energy functional of the pair
density is homogeneous of degree two with respect to coordinate scaling:28

Tfr2sx1,x2dg = g2Tfr2sgx1,gx2dg. s4d

Equation s4d is to be contrasted with the much more complicated scaling behavior of the
exchange-correlation energy with respect to the electron density.41

The kinetic energy component of the exchange-correlation energy,Tcfrg, also has a very
complicated scaling with respect to the electron density.41 This implies that it may be much easier
to develop accurate and robust kinetic energy functionals for the 2-density than it is to develop
kinetic energy functionals of the 1-density.42 sThe 1-density is the usual electron density used in
density-functional theory.d

There is another obstacle, however, in developing computational methods based on the elec-
tron pair density, and that is theN-representability problem: given a kinetic energy functional, the
energy and ground state 2-density may be obtained using the variational principle

Eu
gs= min

r2PN
fTfr2g + Veefr2g + Vnefr2,vgg,

s5d
r2

gssx,x8d = arg min
min

r2PN

fTfr2g + Veefr2g + Vnefr2,vgg,

but the search is restricted to 2-densities that areN-representable. The studies of Davidson,43

Samveylan,34 and Pistol38 demonstrate that forcing theN-representability constraints is not a
trivial matter. sNote, in particular, that the explicit constructions of Samveylan and Pistol scale
exponentially with the number of electrons.34,38d

There has been some recent progress in characterizing the ensemble-N-representability con-
straints for thek-electron spin-densitiesshereafter referred to as thek-densityd, rk

s1. . .sksr1, . . . ,rkd.
rk

s1. . .sksx1, . . . ,xkd denotes the probability that there is as1-spin electron atx1, a s2-spin electron
at x2, . . ., and ask-spin electron atxN. Thus,

rk
s1s2. . .sksx1,x2, . . . ,xkd ; KCU o

ikÞi1,i2,. . .,ik−1

N

¯ o
i2Þi1

N

o
i1=1

N

p
j=1

k

dsi j
,s j

dsr i j
− x jdUCL . s6d

If rk
s1. . .sksx1, . . . ,xkd is ensemble-N-representable, then there is an “ensemble average” of elec-

tronic states,
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GN
sNdsz1,z2, . . . ,zN;z18,z28, . . . ,zN8 d ; o

n

wnCnsz1,z2, . . . ,zNdCn
*sz18,z28, . . . ,zN8 d s7d

s0øwnø1; onwn=1d, such that

rk
s1. . .sksx1, . . . ,xkd = o

n

wnKCnU o
ikÞi1,i2,. . .,ik−1

N

¯ o
i2Þi1

N

o
i1=1

N

p
j=1

k

dsi j
,s j

dsr i j
− x jdUCnL . s8d

In Eq. s7d and in the following,z is often used as a shorthand for the spatial and spin coordinates
of an electron,zi =sr i ,sid.

Even if theN-representability problem for thek-density was solved, the problem of construct-
ing the kinetic energy as a functional of thek-density, however, still remains. This paper addresses
this issue by presenting approximate functionals, developing general techniques for deriving new
functionals, deriving useful bounds for the kinetic energy, and revealing the links between this
problem and other, more conventional, approaches to many-body quantum mechanics. To this end,
in Sec. II we prove that exact kinetic energy functionals exist. The construction is explicitsalbeit
computationally intractabled, and is modeled after Levy’s and Lieb’s constructions of exact func-
tionals in density-functional theory.7,8 The Levy-constrained search approach has been presented
before,38 but the approach using Lieb’s search is new. Section III is concerned with approximate
functionals and proving bounds for the kinetic energy. Specificially, two different approaches to
the kinetic energy functional are developed, one of which generalizes the Weisacker bounds from
density-functional theory39,40,44and the other of which is based on density-matrix reconstruction,
recovering in a special case the results of March and Santamaria.45 Section IV points out connec-
tions between this approach and other methods in the literature, with emphasis on how extensions
to the Lee–Jackson–Feenberg hierarchy of equations can be used to systematically obtain more
accurate functionals. Implications for practical computational approaches, including density-
functional theory, are discussed in Sec. V.

II. EXACT FUNCTIONALS FROM THE CONSTRAINED-SEARCH
AND LEGENDRE-TRANSFORM PROCEDURES

Perhaps the simplest approaches to the kinetic energy functional of thek-density are obtained
by extending the methods used to define density-functionals in density-functional theory. For
instance, adapting Valone’s17 constrained search7,46 over ensemble-N-representable density matri-
ces, we have37

s9d

whereGN
sNd is a convex sum or “ensemble” of antisymmetricN-electron wave functionsfcf. Eq.

s7dg and the notation indicates that the search includes only the density matrices that satisfy Eq.
s8d. This approach to the kinetic energy functional was presented, over a decade ago, in a prescient
paper by Ziesche.39,40

Note that the electron–nuclear and electron–electron energies are explicit functionals of the
k-density, and do not depend on the particularN-electron state with which thek-density is asso-
ciated; Eq.s9d is then derived directly from the variational principle for the energy, Eq.s5d. Note
that we can only write Eq.s9d for k-densities that are ensemble-N-representable, as otherwise there
will be no GN

sNd consistent with thek-density in question.
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Equivalent to Eq.s9d is the generalization of Lieb’s Legendre transform spin-density
functional,8,47 which we state only for the 2-density

s10d

whereEfhvs ,Vr
ss8j ;Ng is the energy of anN-electron system with spin-dependent external poten-

tials hvssrdjs=a,b and interelectronic interaction potentialshVr
ss8sr1,r2djs,s8=a,b,

s11d

The Legendre-transform approach to thek-density withk.2 is similar, but complicated by the
fact that the supremum must includek-body potentials. For this reason we will only derive Eq.
s10d in the present work. The spin-free analogues of Eqs.s9d ands10d are perhaps more useful for
formal theory: such functionals depend on the components of the spin-resolved 2-density only
through

r2sx,x8d = o
s,s8

r2
ss8sx,x8d. s12d

The derivation of Eq.s10d will be familiar to density-functional aficionados but, for the sake
of completeness, the proof follows. Suppose we are given two systems, with external potentials

vszdÞ ṽszd and interelectron potentialsVrsz,z8dÞ Ṽrsz,z8d, where it is understood that external
potentials and/or the interelectronic potentials differ by more than just an additive constant. Given

the 2-density,r2
ss8sz,z8d of the former system, it follows from the variational principle that

Tfr2
ss8g +E E r2sz1,z2d

fvsz1d + vsz2dg
2sN − 1d

dz1dz2 +
1

2
E E r2sz1,z2dVrsz1,z2ddz1dz2 . Efṽ,Ṽr ;Nsg.

s13d

Clearly, then, the maximum value in Eq.s10d is obtained when the search over potentials finds the
potentials appropriate tor2sz,z8d, namelyvszd andVrsz,z8d. At the maximum, then, Eq.s10d is an
identity,
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Tfr2g ; Efv,Vr ;Nsg −E E r2sz1,z2d
fvsz1d + vsz2dg

2sN − 1d
dz1dz2 −

1

2
E E r2sz1,z2dV2sz1,z2ddz1dz2,

s14d

which established the exactness of the generalized Lieb functional, Eq.s10d.
Just as someN-representable electron densities are not ensemble-v-representable,8,48 some

ensemble-N-representable 2-pair densities will not be ensemble-sv ,Vrd-representable.fA 2-density
is not ensemble-sv ,Vrd-representable if there are no potentials,svszd ,Vrsz,z8dd for which the
2-density can be expressed as a convex sum of degenerateN-electron ground statessd.g For such
states, the maximum in Eq.s10d does not exist, and is replaced by a supremum.sThe supremum
exists because the kinetic energy of any ensemble-N-representable density-matrices is finite.d
Because a supermum is never achieved, ifr̃2sz,z8d is not ensemble-sv ,Vrd-representable, then

Ev,Vr
fr̃2

nvg . Efv,Vr ;Ng. s15d

Because 2-densities that are not ensemble-sv ,Vrd-representable do not minimize the energy for
any choice of potentials, the generalized Lieb functional is consistent with the variational prin-
ciple. Just as with their density-functional analogues, the constrained search functional, Eq.s9d,
and the Legendre-transform functional, Eq.s10d, are equivalent.8 The proof, however, is rather
more involved than the preceding analysis.

III. APPROXIMATE KINETIC ENERGY FUNCTIONALS

A. Kinetic energy from the N-electron distribution function

For real-valued wave functions and pure states, the kinetic energy of theN-electron distribu-
tion function,

nN
sNdsz1, . . . ,zNd = sCsz1, . . . ,zNdd2 s16d

is given by49,50

TfnN
sNdg = o

i=1

N K¹inN
sNdsz1, . . . ,zNd ·¹inN

sNdsz1, . . . ,zNd
8nN

sNdsz1, . . . ,zNd L
1. . .N

= − o
i=1

N KnN
sNdsz1, . . . ,zNd¹i

2fln nN
sNdsz1, . . . ,zNdg

8
L

1. . .N
, s17d

where k l1. . .N is a convenient shorthand for the integration over the coordinates of electrons
1,2, . . . ,N. For nN

sNd that do not correspond to pure states, the kinetic energy functional is signifi-
cantly more complicated, requiring a constrained search over ensemble-N-representable density
matrices,GN

sNd,

TfnN
sNdg ; min

GN
sNd→nN

sNd
TrfT̂GN

sNdg. s18d

If one naively applies Eq.s17d to an nN
sNd that is ensemble-N-representable, one obtains a lower

bound to the true answer,

TfnN
sNdg ; min

GN
sNd→nN

sNd
TrfT̂GN

sNdg ù o
i=1

N K¹inN
sNdsz1, . . . ,zNd ·¹inN

sNdsz1, . . . ,zNd
8nN

sNdsz1, . . . ,zNd L
1. . .N

. s19d

Equations19d follows directly from the triangle inequality for the SobolevsH1d norm. For com-
pleteness, however, an elementary proof of this inequality is provided in the Appendix.

The importance of Eq.s17d fand even Eq.s18dg is that one canreconstructthe N-electron
density from the 2-density by a variety of methods: cluster expansion techniques, hierarchies of
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equations, etc. Though such methods are not practical computational techniques for large numbers
of electrons, their mere existence is important, suggesting ways to construct systematically im-
provable families of approximations to the exact kinetic-energy functional. In particular, methods
originally developed for statistical-mechanical simulations of fermions51 may be profitably applied
to computing the kinetic energy of molecular systems.

It is frequently convenient to consider an alternativek-electron density,nk
sNdsz1, . . . ,zkd, which

is normalized to one,

nk
sNdsz1,z2, . . . ,zkd ; E E E ¯E E E GN

sNdsz1, . . . ,zN;z1, . . . ,zNddzk+1 . . . dzN. s20d

To obtain thek-density fromnk
sNdsz1, . . . ,zNd, one simply multiplies by the appropriate normaliza-

tion factor, obtaining

rk
s1. . .sksx1,x2, . . . ,xkd = S Na!Nb!

sNa − mad!sNb − mbd! Dnk
sNdss1,x1; . . . ;sk,xkd, s21d

whereNa andNb are the number ofa-spin andb-spin electrons andma andmb are the number of
a-spin andb-spin indices inrk

s1. . .sksx1,x2, . . . ,xkd,

ms ; o
i=1

k

dssi
. s22d

B. Generalized-Weisacker bounds for the kinetic energy

Using Eq.s17d, one expects approximations to the kinetic energy may be obtained from the
k-density. To this end, we writenN

sNdsz1, . . . ,zNd in terms ofnk
sNdsz1, . . . ,zkd using Bayes’ theorem,

fk
sNdsz1, . . . ,zkuzk+1, . . . ,zNd ;

nN
sNdsz1, . . . ,zNd

nk
sNdsz1, . . . ,zkd

. s23d

Because fk
sNdsz1, . . . ,zkuzk+1, . . .zNd represents the probability of observing electrons at

szk+1, . . . ,zNd given that there are electrons atsz1, . . . ,zkd,

E E . . .E fk
sNdsz1, . . . ,zkuzk+1, . . . ,zNddzk+1 . . . dzN = 1: s24d

that is, the probability of observing electronsk+1,k+2, . . . ,N somewhereis unity. fAlternatively,
Eq. s24d follows directly from the definitions, Eqs.s20d and s23d.g With this background we can
prove the following theorem:

Theorem 1: (Lower bounds on the kinetic energy of pure states.)If hrk
s1. . .skjk=1

N are
N-representable, the Weisacker-type bounds,

s25d
provide a nondecreasing set of bounds on the true kinetic energy of the system,

Tw
s1dfr1

s1g ø Tw
s2dfr2

s1s2g ø ¯ ø Tw
sNdfrN

s1. . .sNg ø Texact. s26d

The inequalities are strict unlessfk
sNdsz1, . . . ,zkuzk+1, . . .zNd is constant for allz1 for somek,N, in

which caseTw
skd=Tw

sk+1d=¯ =Tw
sNd. fIn Eq. s25d, it is understood that the variation over spin states
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is restricted by the multiplicity of the system. That is, the number ofs-spin electrons,ms, in Eq.
s25d cannot exceed the total number of electrons with this spin,Ns.g

Proof: The Weisacker functional can be shown to be a lower bound to the true kinetic energy
using the Cauchy–Schwarz inequality,52 and Eq.s26d follows from a straightforward generaliza-
tion of that argument. A more elementary method of proof will suffice here, however. Substituting
the definition offk

sNdsz1, . . . ,zkuzk+1, . . . ,zNd into Eq. s17d, we can write49,53

TfnN
sNdg = o

s1=a,b
Ns1E K u¹1snk

sNdsr1,s1,z2, . . . ,zkdfk
sNdsr1,s1,z2, . . . ,zkuzk+1, . . . ,zNddu2

8nk
sNdsr1,s1,z2, . . . ,zkdfk

sNdsr1,s1,z2, . . . ,zkuzk+1, . . . ,zNd L
2. . .N

dr1

= o
s1=a,b

Ns1E K u¹1nk
sNdsr1,s1,z2, . . . ,zkdu2

8nk
sNdsr1,s1,z2, . . . ,zkd

fk
sNdsr1,s1,z2, . . . ,zkuzk+1, . . . ,zNdL

2. . .N

dr1

+ o
s1=a,b

Ns1E 1

4
k¹1nk

sNdsr1,s1,z2, . . . ,zkd ·¹1fk
sNdsr1,s1,z2, . . . ,zkuzk+1, . . . ,zNdl2. . .Ndr1

+ o
s1=a,b

Ns1E K nk
sNdsr1,s1,z2, . . . ,zkd

8fk
sNdsr1,s1,z2, . . . ,zkuzk+1, . . . ,zNd

·

3 u¹1fk
sNdsr1,s1,z2, . . . ,zkuzk+1, . . . ,zNdu2L

2. . .N

dr1

= o
s1=a,b

Ns1E K u¹1nk
sNdsr1,s1,z2, . . . ,zkdu2

8nk
sNdsr1,s1,z2, . . . ,zkd

L
2. . .k

dr1

+ o
s1=a,b

Ns1E 1

4
k¹1nk

sNdsr1,s1,z2, . . . ,zkd · ¹ s1dl2. . .kdr1

+ o
s1=a,b

Ns1E Knk
sNdsr1,s1,z2, . . . ,zkd

u¹1fk
sNdsr1,s1,z2, . . . ,zkuzk+1, . . . ,zNdu2

8fk
sNdsr1,s1,z2, . . . ,zkuzk+1, . . . ,zNd L

2. . .N

dr1.

s27d

The normalization offk
sNdsz1, . . . ,zkuzk+1, . . . ,zNd fEq. s24dg is used to make the second simplifica-

tion in Eq. s27d. Note that the last term in Eq.s27d, as a product of two non-negative functions,
will be positive unless fk

sNdsz1, . . . ,zkuzk+1, . . . ,zNd is a constant, independent with respect
to changes inz1, so that¹1fk

sNdsz1, . . . ,zkuzk+1, . . . ,zNd=0. For this reason,

TfnN
sNdg ù o

s1=a,b
Ns1E K u¹1nk

sNdsr1,s1,z2, . . . ,zkdu2

8nk
sNdsr1,s1,z2, . . . ,zkd

L
2. . .k

dr1. s28d

Next, note that the result is independent of the spins of electrons2. . .N, provided the total
number ofa-spin electrons andb-spin electrons in Eq.s27d areNa andNb, respectively. That is,
due to the symmetry ofnN

sNd with respect to interchange of electronic coordinatessboth space and
spind, we need not sum over spin in evaluating the angular brackets in Eqs.s17d, s27d, ands28d
sprovided we renormalizenk

sNd so thatknk
sNdl1. . .k=1d. It follows from the derivation, then, that Eq.

s28d holds regardless how we choose the spins of electrons2. . .N. Choosing the spins to make the
bound as tight as possible gives
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s29d

Equation s25d follows from the relation betweennk
N and rk

s1. . .sk,. Noting that Tw
s1dfr1

s1g is
the Weisacker bound on the kinetic energy,44 we call Tw

skdfrk
s1. . .skg the kth-Weisacker bound.44

SinceTw
sNdfrN

s1. . .sNg is given by Eq.s17d, theNth-Weisacker bound is a lower bound for ensemble-
N representablerk

s1. . .sk, and exact for pure-state-N-representablerk
s1. . .sk.

It remains to show that the Weisacker bounds,Tw
k frk

s1. . .skg, are an increasing sequence of
approximations to the true kinetic energy. Defining

bk−1
skd sz1, . . . ,zk−1uzkd ;

nk
sNdsz1, . . . ,zkd

nk−1
sNd sz1, . . . ,zk−1d

s30d

and repeating the argument in Eq.s27d, we find that

Tw
sk−1dfrk−1

s1. . .sk−1g ø Tw
skdfrk

s1. . .skg s31d

with the equality holding only if

o
s1=a,b

Ns1Knk−1
sNd sr1,s1, . . . ,rk−1,sk−1d

u¹1bk−1
skd sz1, . . . ,zk−1uzkdu2

8bk−1
skd sz1, . . . ,zk−1uzkd

L
1. . .k

= 0 s32d

for some choice of the electron spins,hsiji=2
k . But this would indicate that

bk−1
skd =

fk−1
sNd

fk
sNd

is constant with respect to changes in any of the firstk−1 electronic coordinates. Becausefk−1
sNd

has the coordinate of thesk−1dst electron as a variable, whilefk
sNd does not, this implies thatfk−1

sNd

sand hencefk
sNdd is also constant with respect to changes in any of the firstk−1 electronic coor-

dinates. That the Weisacker bounds form an increasing sequence immediately follows.h
We conclude this section by discussing the accuracy of the Weisacker bounds. Clearly, the

Weisacker bound from the 2-density will be tighter than that from the usual electron density. That
is, just because the Weisacker kinetic energy functional is not suitable for density-functional
theory does not mean thatTw

skdfrk
s1. . .skg is similarly poor. In particular, the derivation of Eq.s27d

shows that the error inTw
skdfrk

s1. . .skg is caused by neglecting the correlated motions between group-
ings containing more thank electrons. While assuming that electrons act totally independently is
a poor assumption, we might expect that except for those rare instances where more than two
electrons are close together, the effect of correlations between threesor mored electrons can be
safely neglected. It is reasonable to hope thatTw

s2dfr2
s1s2g is already a good approximation to the

kinetic energy and, by the same argument, that the quality of the Weisacker bounds rapidly
improves with increasingk.

Another perspective on the Weisacker bounds is obtained by considering the
N-representability of the underlying density matrices.Tw

skdfrk
s1. . .skg can be derived by assuming that

the kth order reduced density matrix,

Gk
sNdsz1, . . . ,zk;z18, . . . ,zk8d = o

i=1

`

vi
sk,Ndci

sk,Ndsz1, . . . ,zkdci
sk,Ndsz18, . . . ,zk8d s33d

has only one occupied “natural”k-electron function,ci
sk,Ndsz1, . . . ,zkd;Înk

sNdsz1, . . . ,zkd. That is,
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Gk
sNdsz1, . . . ,zk;z18, . . . ,zk8d < Înk

sNdsz1, . . . ,zkdÎnk
sNdsz18, . . . ,zk8d. s34d

Note that the maximumsin this case, onlyd occupation number ofGk
sNd is 1, which violates an

N-representability condition on the occupation numbers,hvi
sk,Ndji=1

` of the kth-order reduced den-
sity matrix,54–57

s35d

unlessk=N. That is, the Pauli exclusion principle prevents all the electrons in anN-electron
system for being described by the samek-electron state.

We may profitably construct approximate kinetic energy functionals based on the analysis in
Eq. s27d. For instance, one may consider

Tfrk
s1. . .skg < Tw

skdfrk
s1. . .skg + o

s1=a,b
Ns1

S sNa − mad!sNb − mbd!
Na!Nb!

D
3Krk

s1. . .sksr1, . . . ,rkd
u¹1f̃ k

sNdsr1,s1;, . . . ;rk,skurk+1,sk+1;, . . . ;rNsNdu2

8f̃ k
sNdsr1,s1;, . . . ;rk,skurk+1,sk+1;, . . . ;rNsNd

L
1. . .N

,

s36d

where f̃ k
sNd denotes an approximation to the exact conditional probability distribution function

defined by Eq.s23d. Since Eq.s36d requires performing a 3N-dimensional integration, it will
probably be more practical to settle for approximations of a high-order Weisacker approximation.
For example, a functional of the form

Tw
sndfrn

s1. . .sng < Tw
skdfrk

s1. . .skg + o
s1=a,b

Ns1
S sNa − mad!sNb − mbd!

Na!Nb!
D

3Krk
s1. . .sksr1, . . . ,rkd

u¹1b̃k
sndsr1,s1;, . . . ;rk,skurk+1,sk+1;, . . . ;rnsndu2

8b̃k
sndsr1,s1;, . . . ;rk,skurk+1,sk+1;, . . . ;rnsnd

L
1. . .n

,

s37d

where b̃k
snd approximates the conditional distribution function defined by Eq.s30d, could be sig-

nificantly more accurate than thekth-order Weisacker approximation. Based on the preceding
arguments, one expects functionals like Eq.s37d will typically underestimate the kinetic energy of
a system.

C. Weisacker functionals for the kinetic energy of the 2-density

The form of the Weisacker functional for the 2-density is of special interest in the present
work, as the 2-density is the simplest quantity for which the electron–electron repulsion energy
can be evaluated exactly. Define the pair correlation function,

g2
s1s2sr1,r2d ;

r2
s1s2sr1,r2d

r1
s1sr1dr1

s2sr2d
, s38d

and the hole correlation function,

h2
s1s2sr1,r2d ; g2

s1s2sr1,r2d − 1. s39d

Recalling the normalization of the exchange-correlation hole,
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E r1
s2sr2dhs1s2sr1,r2ddr2 = − ds1s2

, s40d

Tw
2fr2

s1s2g can be simplified to

s41d

Corrections to the second-order Weisacker functional can be constructed using Eq.s37d. Since
relatively simple methods for constructing the 3-density and 4-density from the 2-density are
knownssee, for example, Secs. III G and III Hd, approximations toTw

s3d andTw
s4d should be feasible.

After this paper was submitted, results equivalent to those of this section were published by
Furche.40 There is also a strong connection between this model for the kinetic-energy of the
2-density and the equations forÎr2sr1,r2d proposed by Nagy32,39 sand later by Furche40d; the
“uncorrected” kinetic energy computed in such theories is implicitly identical to Eq.s41d salbeit
without the maximization over the choice of spinsd. The derivations and explanation in these
references offer an instructive perspective that is often complementary to that presented here.

D. Kinetic energy from reduced density matrices

To this point we have focused on the idea that the kinetic energy can be computedseither
approximately or exactlyd from thek-density. A more common approach, however, is to use the
kth-order reduced density matrix,Gk

sNdsz1, . . . ,zk;z18 , . . . ,zk8d fcf. Eq. s34dg.54,55 From the definition
of the reduced density matrix,

s42d

That is, we need only evaluate the kinetic energy of a single electronsall electrons are identicald,
with the kinetic energy appropriately weighted by the number of electrons of each spin. From Eq.
s42d, just the first-order density matrix is sufficient to compute the kinetic energy,

TfG1
sNdg ; o

s=a,b
NsE E dsx − x8dS−

¹x
2

2
DG1

sNdsx,s;x8,sddx dx8. s43d

The importance of Eq.s43d arises from the existence of methods for constructing the reduced
density matrices and Green’s functionssof which the reduced density matrices can be regarded as
initial valuesd from k-densities. The first-order reduced density matrix is of special interest: not
only is Eq. s43d an especially simple functional, but also because the known ensemble-
N-representability conditions forG1

sNd constrain the derivation of methods for constructing approxi-
mate first-order density matrices from 2-densities.
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Even though exact reconstruction is probably computationally impracticable, approximate
reconstructions may be useful insofar as the reduced density matrices so constructed should be
“close to” ensemble-N-representable,” in the sense that thesunknown and/or unenforcedd
N-representability constraints will be only “slightly” violated.sSimilar considerations presumably
underlie the computational utility of the contracted Schrödinger equation, whereby the interrela-
tions between the density matrices seems to help solve theN-representability problem by severely
restricting the number of permissible density matrices.d58–63

The significance of the preceding abstract discussion is bolstered by the existence of a general
method for constructing thesk−1d-order reduced density matrix from thek-density. To this end,
write the cumulant expansion forGk

sNdsz1, . . . ,zk;z18 , . . . ,zk8d in terms of reduced density matrices of
lower order plus a “connected piece,”Dk

sNdsz1, . . .zk;z18 , . . . ,zk8d, correcting this form.64–66 The
sequential relation between the density matrices,

G j
sNdsz1, . . . ,zj ;z18, . . . ,zj8d =E E E Gk

sNdsz1, . . . ,zk;z18, . . . ,zk8ddzj+1 . . . dzk, s44d

allows us to write the lower-order density matrices in the cumulant expansion in terms ofGk−1
sNd , so

that the cumulant expansion equation can be written in the form

Gk
sNdsz1, . . . ,zk;z18, . . . ,zk8d = fsGk−1

sNd sz1, . . . ,zk−1;z18, . . . ,zk−18 dd + Dk
sNdsz1, . . . ,zk;z18, . . . ,zk8d.

s45d

The connected piece,Dk
sNd, is either neglected or approximated using thek-density and/or thesk

−1d-order density matrix. Setting the primed variables equal to the unprimed variables in Eq.s45d
gives a nonlinear equation forGk−1

sNd sz1, . . . ,zk−1;zk,z2, . . . ,zk−1d in terms of the k-density.
Gk−1

sNd sz1, . . . ,zk−1;zk,z2, . . . ,zk−1d can then be used to approximate the kinetic energy,

s46d

For k.2, the kinetic energy constructed using this procedure,TDM
skd frkg, is an upper bound on

the true kinetic energy if

• the k-density and thesk−1d-order density matrix constructed therefrom have the same
2-density andGk−1

sNd is ensemble-N-representable
or

• there exists an ensemble-N-representablesk−1d-order density matrix with the correct
2-density and a lower kinetic energy than theGk−1

sNd determined from Eq.s45d.

The second condition is sufficient to ensure that the kinetic energy functional using the first-order
density matrix,TDM

s1d fr2g, will be an upper bound to the true kinetic energy.

E. Density-matrix functionals for the kinetic energy of the 2-density

In general, there is no explicit solution to Eq.s45d, which must then be solved numerically.
However, when the 2-density is used, the cumulant expansion takes a simple form, namely

g2
s1s18s2s28sr1,r2;r18,r28d = g1

s1s18sr1;r18dg1
s2s28sr2;r28d − g1

s1s2sr1;r28dg1
s18s28sr18;r2d + D2

s1s18s2s28sr1,r2;r18,r28d,

s47d

where, for convenience, we have used density matrices,
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gk
s1. . .sks18. . .sk8sr1, . . . ,rk;r18, . . . ,rk8d ; S Na!Nb!

sNa − mad!sNb − mbd! DGk
sNdsz1, . . . ,zk;z18, . . . ,zk8d,

s48d

with the same normalization as thek-densities.fThe relationship betweenGk
sNd and gk

s1. . .sk8 is
directly analogous to that betweennk

Nsz1, . . . ,zkd andrk
s1. . .sksr1, . . . ,rkd, cf. Eq. s21d.g

Setting the primed and unprimed variables equal in Eq.s47d, and using the definition of the
hole correlation functionfEq. s39dg, one finds

r1
s1sr1dr1

s2sr2dhs1s2sr1,r2d = − ug1
s1s2sr1;r2du2 + D2

s1s2s1s2sr1,r2;r1,r2d. s49d

Renewed interest in natural orbital functional theories has seen the proliferation of a variety of
expressions forD2

s1s2s1s2sr1,r2; r1,r2d in terms of the natural orbitals of the first-order density
matrix,13,15,20,21,26

g1
ssr1;r18d ; o

i=1

`

pi,s
s1dxi,s

s1dsrdsxi,s
s1dsr8dd* . s50d

fComparing Eq.s50d to Eq. s34d, we see that

xi,s
s1dsrd ; ci

s1dszd,

s51d
pi,s

s1d ; Ns · vi,s
s1d,

so the ensemble-N-representability constraints on the natural orbital populations is simply 0
øpi,s

s1dø1.12,29,55–57,67g While these approximations seem to have severe shortcomings when they
are used to approximate the hole-correlation functionsand thereby the electron–electron repulsion
energyd,14,22,25,27,31,68the approximation might provide adequate accuracy for the kinetic energy
when the procedure is inverted, with a given 2-density used to compute the natural orbitals and
their occupation numbers or, equivalently, the first-order density matrix.

Equation s49d can be solved exactly when the connected piece is ignored, recovering the
independent particle result,

r1
s1sr1dr1

s2sr2dhs1s2sr1,r2d ; − ug1
s1s2sr1;r2du2. s52d

It follows that

habsr,r8d ; 0 s53d

and

hsssr,r8d ø 0, s = a,b. s54d

Unless Eqs.s53d ands54d are satisfied, Eq.s52d does not have a solution. If Eq.s52d does have a
solution and the resulting density matrix is ensemble-N-representable, then the kinetic energy from
g1

sssr ,r8d is an upper bound to the exact kinetic functional defined by Eqs.s9d and s10d.
Because Eq.s52d gives an expression for the squared magnitude of the density matrix, rather

than the density matrix itself, it is useful to derive a kinetic energy functional forug1
s1s2sr1; r2du2.

Selecting the phase of the natural orbitals so that the first-order density matrix is real, one
obtains45
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TMSfg1g ; o
s=a,b

E E ¹rsg1
sssr1,r2dd2 ·¹rsg1

sssr1,r2dd2

8sg1
sssr1,r2dd2 dr1dr2

= o
s=a,b

o
i=1

`

spi,s
s1dd2E ¹ ci,s

s1dsrd · ¹ ci,s
s1dsrddr

ø o
s=a,b

o
i=1

`

spi,s
s1dd E ¹ ci,s

s1dsrd · ¹ ci,s
s1dsrddr ; Texactfg1g, s55d

where the equality holds only in the independent particle model, where all the natural orbital
occupations are zero or one. Substituting Eq.s52d into Eq. s55d, one obtains the result of March
and Santamaria,45

TMSfr2
ssg ; o

s=a,b
S−

1

8
D E E ¹1r1

ssr1dr1
ssr2dhsssr1,r2d ·¹1r1

ssr1dr1
ssr2dhsssr1,r2d

8r1
ssr1dr1

ssr2dhsssr1,r2d
dr1dr2

= o
s=a,b

FTw
s1dfr1

sg −
1

8
E E r1

ssr1dr1
ssr2d

¹1h
sssr1,r2d ·¹1h

sssr1,r2d
hsssr1,r2d

dr1dr2G . s56d

Equations56d is similar to the second Weisacker approximation, Eq.s41d, and recalls the form of
many previous “full Weisacker plus correction” results in density-functional theory.49,53,69–72Equa-
tion s56d can be applied even when Eq.s54d does not hold. However, the March–Santamaria
functional is not generally a rigorous upper bound to the true kinetic energy. Because Eq.s56d is
an exact expression for the noninteracting kinetic energy if the exchange-hole is used instead of
the exchange-correlation hole in Eq.s56d, and because the noninteracting kinetic energy is only
slightly less than the true kinetic energy,73–75 Eq. s56d should provide the basis for quantitative
approximations to the true kinetic energy.

F. A tool for checking the accuracy of approximate functionals

Suppose one has, using the variational principle or some other means, arrived at an approxi-
mate 2-density for the electronic system with external potentialvsrd. Were the 2-density exact, the
virial theorem would imply that

2Tfrg + Veefr2g =E rsrdr · ¹ vsrddr , s57d

whereVeefr2g is given by Eq.s3d and the electron density is given by

rsrd ; r1
asrd + r1

bsrd. s58d

For an approximate 2-density and/or an approximate kinetic energy functional, Eq.s57d will
usually not be exactly satisfied, and so can be used to estimate the error in the approximation.
fEquation s57d will, however, be satisfied if the kinetic energy functional has the appropriate
scaling; cf. Eq.s4d. The author thanks Mel Levy for making this important observation.g It should
be noted that the same approach could be used to assess the accuracy of electron–electron repul-
sion functionals in theories based on the first-order reduced density matrix. In all cases, however,
Eq. s57d is not a practical functional, since it requires knowledge of the external potential for
which the given 2-density is the ground state. This is impossible to find for non-v-representable
densities and, even when a density isv-representable, it is difficult to construct the external
potential computationally.76
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IV. FROM THE 2-DENSITY TO THE KINETIC ENERGY

A. Survey of the literature

Accurately calculating the kinetic energy of a given 2-density,r2
s1s2sr1,r2d, seems to require

expressions relating the 2-density to the many-electron distributions of higher ordersSec. II Bd
and/or expressions for the cumulants of the reduced density-matrices. Both problems have been
explored in many different contexts over a long period of time, and so a concise and selective
survey of the literature is appropriate.

The first methods for constructing thek-density from the 2-density were in classical statistical
mechanics, where both exact expressions77–80 and accurate approximate representations50,80–87

have been extensively explored. The possibility of extending the classical results to quantum
mechanical systems was recognized by Abe in his 1959 paper,78 with early published results from
De Dominiciis and Martin.88–92 Concurrently, researchers were developing sequential relations
between the Green’s functions in quantum physics and statistical mechanics.93–95 Insofar as the
density matrices can be regarded as initial values of the Green’s functions, we recognize relation-
ships between the first-order Green’s function and the higher-order Green’s functions have impli-
cations for constructing kinetic energy functionals using the approach of Secs. III D and III Efcf.
Eqs.s45d and s47dg. The early work of Martin and Schwinger is directly relevant.95 Bridging the
gap between these two lines of research is the work of Lee and Yang, who showed how a system
of fermions can be modeled as a collection of classical particles subject to additional one-body,
two-body,…, andN-body potentials.96 Motivated by the success of hierarchies of equations and
diagrammatic expansion techniques for the closures thereof in simulations of classical systems,
analogues to these results were derived for quantum systems. One may cite the work on the family
of Fermi-hypernetted chain approximations97–103 and the Chakravarty–Woo equations104–107 as
representative examples.

Foreshadowing the Hohenberg–Kohn theorem,6 the preceding results are typically derived by
using a Legendre transformation to change the variables of the system from the one- and two-body
potentials to the one- and two-body distribution functions, density matrices, or Green’s functions.
Then, known expressions for the properties of a system in terms of the potentials were converted
to expressions in terms of the appropriate distribution functions. Later researchers derived exact
expressions for higher-order Green’s functions in terms of the lower order Green’s functions,
proved the Legendre transform existed, and proved that the theoretical results can be derived
without making unwarranted assumptions about the convergence of various perturbation
series.108–114

These threads of research continue at present. For example, recent studies where electronic
systems are treated as classical systems with an effective “Pauli repulsion potential”51,103,115and
“classical temperature”116,117can be viewed as approximations to the Lee–Yang quantum-classical
mapping. The contracted Schrödinger equation and the methods employed for constructing higher-
order density matrices from their lower-order counterparts64,118,119recall the equation-of-motion
method95 and the similar closures used therein.

The relevance of this prior work to constructing approximations for the kinetic energy from
the 2-density places computational techniques based on the 2-density into context, and allow us to
draw on these related results in further development of this theory. In particular, developing
accurate kinetic energy functionals of thek-density using the general techniques in Secs. III B and
III D should be a relatively straightforward theoretical exercise. Finding functionals that are both
accurate and computationally efficient, so that the resulting theory compares favorably to tradi-
tional ways of addressing electron correlation, is expected to be more difficult, and some sugges-
tions along these lines follow.

B. The Hierarchy of Lee, Jackson, and Feenberg

Given a 2-density,r2
s1s2sr1,r2d, constructing an accurate kinetic energy functional using either

the Weisacker-based functionals or the density-matrix based approach will often rely on express-
ing thek-densityswith k.2d as a functional of the 2-density, so that higher-order kinetic energy
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functionals like Eq.s25d or s46d can be used. This problem is similar to the problem of construct-
ing closures in statistical mechanics. For example, one might employ the convolution approxima-
tion for the 3-density,

r3,conv
s1s2s3sr1,r2,r3d ; r1

s1sr1dr1
s2sr2dr1

s3sr3d1
1 + hs1s2sr1,r2d + hs1s3sr1,r3d + hs2s3sr2,r3d
+ hs1s2sr1,r2dhs2s3sr2,r3d + hs1s3sr1,r3dhs3s2sr3,r2d
+ hs3s1sr3,r1dhs1s2sr1,r2d

+E rs8sx8dhs1s8sr1,x8dhs2s8sr2,x8dhs3s8sr3,x8ddx8
2
s59d

or the superposition approximation,

r3,sup
s1s2s3sr1,r2,r3d ; r1

s1sr1dr1
s2sr2dr1

s3sr3d1
1 + hs1s2sr1,r2d + hs1s3sr1,r3d + hs2s3sr2,r3d
+ hs1s2sr1,r2dhs2s3sr2,r3d + hs1s3sr1,r3dhs3s2sr3,r2d
+ hs3s1sr3,r1dhs1s2sr1,r2d
+ hs1s2sr1,r2dhs2s3sr2,r3dhs3s1sr3,r1d

2 .

s60d

As noted by Lee, Jackson, and Feenberg,50 however, neither of these approximations is entirely
satisfactory. In particular, the convolution approximation does not always satisfy the electron
coalescenceN-representability condition,

r3
s1,s2,s3sr,r,rd = 0. s61d

The superposition approximation satisfies Eq.s61d, but it does not generally satisfy the sequential
relations,

rk−1
s1s2. . .sk−1sx1, . . . ,xk−1d = S 1

Nsk
− msk

D E rk
s1s2. . .sksx1, . . . ,xkddxk s62d

fmsk
was defined in Eq.s22dg. sThe convolution approximation does satisfy the sequential

relations.d50 Unfortunately, the author knows of no closed formsseries solutions are
available50,77,78,120d that satisfies both the sequential relations and the electron coalescence crite-
rion. Still, one might hope that the 3-densities constructed using the convolution approximation
fEq. s59dg or the superposition approximationfEq. s60dg “inherit” near-N-representability from
their underlying 2-density, so that kinetic energy formulas employing Eqs.s59d ands60d might, at
least, provide some improvement over forms in which the 3-density was never constructed. It
should be noted that higher-order convolution approximations50 and superposition
approximations81 are available.

Without an acceptable closed form for the closure, one might explore the possibility of using
a hierarchy of equations to determinerk.2

s1. . .sksr1, . . . ,rkd from r2
s1s2sr1,r2d. The following analysis

adapts one hierarchy of this type, derived by Lee, Jackson, and Feenberg for quantum fluids in the
absence of an external electrostatic potential,50 to the electronic structure problem. From the
Schrödinger equation for the ground state wave function,Csz1, . . . ,zNd,

0 = C0sz1, . . . ,zNdSo
i=1

N

−
¹i

2

2
+ o

i=1

N Svsr id + o
j=i+1

N
1

ur i − r ju
D − E0DC0sz1, . . . ,zNd, s63d

whereE0 is the ground state energy. To express the ground state energy and the ground state wave
function in terms of thek-densities, we start by writing Eq.s63d in terms of uC0u2, using the
identity fcf. Eq. s17dg
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C0sz1, . . . ,zNd
¹i

2

2
C0sz1, . . . ,zNd ;

¹i
2

8
sC0sz1, . . . ,zNdd2 + sC0sz1, . . . ,zNdd2¹i

2

8
ln sC0sz1, . . . ,zNdd2,

s64d

where it is assumed that the wave function is real. Substituting Eq.s64d into Eq.s63d, one obtains

o
i=1

N
¹i

2

8
sC0sz1, . . . ,zNdd2 = sC0sz1, . . . ,zNdd2

3o
i=1

N S−
¹i

2

8
ln sC0sz1, . . . ,zNdd2 + vsr id + o

j=i+1

N
1

ur i − r ju
− E0D .

s65d

In order to eliminate the dependence on the energy and obtain a hierarchy reminiscent of those
from the classical theory of fluids, we introduce a function reminiscent of the partition function,

Qsbd ; kC0sz1, . . . ,zNdue−bWsz1,. . .,zNduCsz1, . . . ,zNdl, s66d

where

Wsz1, . . . ,znd ; o
i=1

N S−
¹i

2

8
ln sC0sz1, . . . ,zNdd2 + vsr id + o

j=i+1

N
1

ur i − r ju
D . s67d

Equations65d can then be rewritten as

o
i=1

N
¹i

2

8
sC0sz1, . . . ,zNdd2 = U ]

]b
S sC0sz1, . . . ,zNdd2e−bWsz1,. . .,zNd

Qsbd
DU

b=0
. s68d

The kth order in the hierarchy is obtained by defining, in analogy to Eq.s8d,

rk
s1s2. . .sksx1,x2, . . . ,xk,bd

=
kCusoikÞi1,i2,. . .,ik−1

N
¯ oi2Þi1

N oi1=1

N p j=1

k
dsi j,s j

dsr i j
− x jdde−bWsr1,. . .,rNduCl

Qsbd
.

s69d

Then, from Eq.s68d

o
i=1

k
¹i

2

8
rk

s1. . .sksr1, . . . ,rk,0d = U ]rk
s1. . .sksx1, . . . ,xk,bd

]b
U

b=0
, s70d

whererk
s1. . .sksr1, . . . ,rk,0d is just the usualk-density,rk

s1. . .sksr1, . . . ,rkd. In deriving Eq.s70d it is
helpful to remember that

0 =E ¹i
2

2
uCsz1, . . . ,zNdu2dr i = lim

ri→`
E

0

2p E
0

p

s¹iuCsz1, . . . ,zNdu2 · r̂ idr i
2 sinuiduidfi; s71d

the surface of integration is a sphere whose radius,r i, tends to infinity.
The reason Eq.s70d constitutes a hierarchy of equations is because it is difficult to evaluate
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U ]rk
s1. . .sksr1, . . . ,rk,bd

]b
U

b=0

directly from the definition Eq.s69d. However, suppose one is given an expression for the
k-density,rk

s1. . .sksr1, . . . ,rk,bd, in terms of thel-densitiessl ,kd. Using the chain rule for func-
tional derivatives, Eq.s70d yields

s72d
Equations72d will not be satisfied by an inexact closure. However, if one proposes a general form
of the closure, wherein the weight or functional form of various terms depends on some param-
eters, one may regard Eq.s72d as a nonlinear equation for those parameters, with the “optimal”
choice of parameters being that which minimizes the residual error in Eq.s72d.

The most important cases of Eq.s72d are probably the case wherek=2,

s¹1
2 + ¹2

2dr2
s1s2sr1,r2,0d =E dr2

s1s2sr1,r2,bd
dr1

ssxd
s¹x

2r1
ssxdddx s73d

swhich might be useful for deriving hole-correlation functionals for use in density-functional
theoryd andk=3,

s¹1
2 + ¹2

2 + ¹3
2dr3

s1s2s3sr1,r2,r3,0d =E dr3
s1s2s3sr1,r2,r3,bd
dr2

s1s2sx1,x2,bd
fs¹x1

2 + ¹x2

2 dr2
s1s2sx1,x2dgdx1dx2,

s74d

which is useful for approximating the 3-density in terms of the 2-density. One might, for example,
seek to find the linear combination of the convolution and superposition approximations, Eqs.s59d
and s60d, which minimizes the residual error in Eq.s74d.

V. DISCUSSION

A. Implications for computational methods based on the k-density

In combination withN-representability conditions on thek-density, the path to accurate kinetic
energy functionals developed in this paper provides the basis for computational approaches to
quantum chemistry using thek-densityskù2d. This approach, based on the minimization of the
energy as a functional of thek-density subject to the constraints imposed by ensemble-
N-representability, is sketched in Sec. I, with Eq.s5d encapsulating the essence of the approach for
the case that is probably most important, withk=2. Such methods may be termed
k-density-functional theory, and constitute a hierarchy of methods bridging the gap between the
usual density-functional theorysk=1d and direct approaches to the Schrödinger equationsk=Nd.
Just as Sham, Görling, Levy, Bartlett, and others have shown how the exact exchange-correlation
density-functional can be constructed by adapting standard approaches to the quantum many-body
problem,113,114,121–124the techniques in Secs. III and IV show how existing approaches to the
quantum many-body problem can inform the construction of an accurate kinetic energy functional.
The computational demands and accuracy of such approaches will necessarily resemble the many-
body methods on which they are based, limiting the utility of such approaches. However, insights
gleaned from these well-understood techniques can guide the development of more practical and
efficient methods. In particular, just as a combination of physical insight and parameter-fitting has
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rendered density-functional theory the method of choice for quantum mechanical simulations of
large systems, one may expect physical insights from exact and systematic formulations of the
kinetic-energy functionals, possibly coupled with limited fitting of parameters, to produce accurate
kinetic-energy functionals of thek-density.

When one restricts oneself to the 2-density, there is the prospect of using one of the simpler
kinetic-energy functionals presented in Secs. III C and III E. In this case, the resulting theory will
be approximate, but as argued in those sections, there are reasons to believe the errors may be
small. In addition, because the 2-density is a function of only two spatial coordinates, such
methods should be competitive with methods based on the first-order density matrix and, implic-
itly, not much more expensive than Kohn–Sham density-functional theory,125 which can also be
considered a first-order density matrix method.

B. Implications for density-functional theory

One of the most important outstanding problems in density-functional theory is the lack of a
satisfactory kinetic-energy density functional for atoms and molecules.42 Present functionals give
poor results when used for variational all-electron calculations on atoms and molecules, presum-
ably because theN-representability constraints on the first-order density matrix implicit in such
functionals are insufficient.126,127 In addition, as first pointed out by Levy, Perdew, Parr, and
Balduz, if the total energy functional employed in a calculation can be functionally differentiated,
then the dissociation of molecules into fragments will be described incorrectlyssince the number
of electrons in the fragments will be nonintegerd.128–131The Kohn–Sham kinetic energy is simi-
larly nondifferentiable,132 but present orbital-free approximations to the Kohn–Sham kinetic-
energy violate this constraint.

All these issues are surmounted in the Kohn–Sham implementation of density-functional
theory: by using the kinetic energy of the Kohn–Sham reference system of noninteracting fermi-
ons,Tsfrg, theN-representability constraints and derivative discontinuity are largely accounted for,
with residual errors confined to the small correlation-kinetic energy correction,
Tcfrg;Tfrg−Tsfrg.125The computational cost of this ansatz is the self-consistent determination of
the first-order density matrix for the Kohn–Sham reference system, which renders Kohn–Sham
calculations much more costly than calculations based on orbital-free functionals for the kinetic
energy. From this perspective, one can consider the Kohn–Sham kinetic energy to be a composite
functional of the electron density: the Kohn–Sham kinetic energy is an explicit functional of the
Kohn–Sham orbitalssor Kohn–Sham density matrixd, which is determined implicitly from the
electron density via the Kohn–Sham equations.

The development in Sec. III shows that the kinetic energy is readily approximated from the
2-density. Hence, by formulating an approach whereby the 2-density is generated from the elec-
tron density, one could construct kinetic energy functionals using the 2-density as an “auxiliary
functional” of the electron density. An added benefit of this approach is that the unknown, but less
problematic, electron–electron repulsion energy density functional is supplanted by the exact
expression, Eq.s3d. That is, by using the 2-density as an intermediary between the electron density
and the kinetic-energy and electron–electron repulsion energy, one can avoid the ubiquitous
Kohn–Sham reference system, leading to an entirely new perspective on practical methods for
density-functional theory computation. Insofar as the March–Santamaria form for the kinetic
energy, Eq.s56d, is exact for the noninteracting reference system, even the simplest kinetic-energy
functionals of the 2-density may be expected to give accuracy approaching that of conventional
Kohn–Sham DFT.

The outstanding problem is that the 2-density must be expressed as functional of the 1-density.
Such a pursuit can be guided by the Lee–Jackson–Feenberg hierarchy, cf. Eq.s73d. The author’s
work along these lines will be communicated separately.
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C. Summary

In constructing an approach to quantum chemistry based on thek-density, there are two main
requirements. First of all, one must know the ensemble-N-representability constraints on the
k-density,rk

s1. . .sksr1, . . . ,rkd. With these constraints either known or effectively approximated, one
can minimize an energy functional of thek density over the set of ensemble-representable
k-densities, and obtain

Ev
gs= min

rk
s1. . .skPN

fTfrk
s1. . .skg + Veefrk

s1. . .skg + Vnefrk
s1. . .sk,vgg,

s75d
rk

s1. . .sksr1, . . . ,rkd = arg min
min

rk
s1. . .skPN

fTfrk
s1. . .skg + Veefrk

s1. . .skg + Vnefrk
s1. . .sk,vgg,

where the notation has the same meaning as that in Eq.s5d. In order to use Eq.s75d, one has to
express the kinetic energy as a functional of thek-density. In Sec. II, exact approaches based on
the Levy–Valone constrained searchfEq. s9dg and Lieb’s generalized Legendre transformfEq.
s10dg are presented. While these do not represent practical approaches to the kinetic energy func-
tional, they do set the standard by which all approximate functionals must be judged, and can be
used to establish analytic constraints on the properties of the exact functional.

Unlike exact approaches based on the constrained-search or Legendre-transform, the emphasis
in Sec. III is on controlled and systematic approximations to the kinetic energy functionals.
Section III B develops a series of lower bounds on the kinetic energy of pure states; these are
essentially generalizations of the Weisacker functional for density-functional theory. Section III C
applies this analysis to the 2-density, deriving the simple working formula, Eq.s41d, which is a
lower bound to the true kinetic energy. The leading order correction to Eq.s41d, involves three-
electron correlations; these terms could be considered analogous to triple-excitations in conven-
tional multi-configuration approaches to the electron correlation problem, and might be suspected
to be negligible except when three or more electrons are close together. For this reason, we may
hope that Eq.s41d is a reasonably tight lower bound to the true kinetic energy.

Section III D uses the technique of density-matrix reconstruction to construct a different
kinetic energy functional—one that is often an upper bound. Section III E uses this technique to
derive a simple kinetic energy functional of the 2-density, Eq.s56d. Equations56d is exact for a
system of noninteracting electrons. Because the correction to the noninteracting kinetic energy
soften called the correlation-kinetic energy and denotedTcfrgd is small and readily approximated
using density-functionals, we suspect that Eq.s56d can be used as the basis for practical compu-
tational methods based on the 2-density.

The easiest way to improve these functionals for the kinetic energy in terms of thek-density
is to introduce information aboutl-electron correlations, which can be done by constructing
rl.k

s1. . .slsx1. . .xld as a functional ofrk
s1. . .sksx1. . .xkd. Techniques for this reconstruction are analo-

gous to methods used in wave-function-based quantum chemistry and statistical mechanics, and
are reviewed in Sec. IV A. Section IV B discusses the possibility of constructing thel-density
using approximate closures and hierarchies of equations. Together with the results from Secs. III B
and III D, this leads to families of systematically improvable kinetic energy functionals, so that
one can construct a kinetic energy functional of any desired accuracy. At present, it is unclear
whether the reconstruction of higher-order electron densities is preferable to a direct treatment
using the higher-order densities; this, as well as computational implementation of the ideas con-
tained herein, is a topic for further research.
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APPENDIX: DERIVATION OF EQ. „19…

Suppose thatnN
sNd is not pure-stateN-representable, but can be represented in terms of an

ensemble with only two components,

nN
sNdsz1, . . . ,zNd ; w1sC1sz1, . . . ,zNdd2 + w2sC2sz1, . . . ,zNdd2. sA1d

sFor ensembles with more than two components, the argument proceeds by induction from the
two-component case.d In this case, the exact kinetic energy can be written as

TexactfnN
sNdg ;

1

2
k¹Îw1sC1d2 · ¹ Îw1sC1d2l +

1

2
k¹Îw2sC2d2 · ¹ Îw2sC2d2l

ù Tw
sNdfrN

s1. . .sNg ;
1

2
k¹ÎnN

sNd · ¹ ÎnN
sNdl. sA2d

In Eq. sA2d, the gradient is evaluated in 3N-dimensions. The inequality on the second line of Eq.
sA2d is the statement we wish to prove.

To derive Eq.sA2d, merely note that

1

2
k¹Îf · ¹ Îfl +

1

2
k¹Îg · ¹ Îgl −

1

2
k¹Îf + g · ¹ Îf + gl

=K¹ f · ¹ f

8f
L +K¹g · ¹ g

8g
L −K¹sf + gd · ¹ sf + gd

8sf + gd L
=Kg2 ¹ f · ¹ f

8fgsf + gdL +K f2 ¹g · ¹ g

8fgsf + gdL − 2K fg
¹sf + gd · ¹ sf + gd

8fgsf + gd L
=K g4

8fgsf + gd
¹ S f

g
D · ¹ S f

g
DL ù 0 sA3d

Identifying f =w1sC1d2 andg=w2sC2d2, Eq. sA2d immediately follows. Excepting the trivial cases
where sad w1 or w2 is zero orsbd sC1d2=sC2d2, the inequality is strict—the kinetic energy is
strictly larger than theN-electron Weisacker approximation,Tw

sNdfrN
s1. . .sNg.
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We solve the Schrödinger equation for a quark–antiquark system interacting via a
Coulomb-plus-linear potential, and obtain the wave functions as power series, with
their coefficients given in terms of the combinatorics functions. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1931041g

I. INTRODUCTION

The Coulomb-plus-linear potential,Vsrd=−a/ r +br, also known as the Cornell potential, has
received a great deal of attention both in particle physics, more precisely in the context of meson
spectroscopy where it is used to describe systems of quark and antiquark bound states, and in
atomic and molecular physics where it represents a radial Stark effect in hydrogen.

The Coulomb-plus-linear potential was used with considerable success in models describing
systems of bound heavy quarks.1–5 It was introduced as a mathematically simple potential incor-
porating characteristics of interquark interactions and accounting for the features of the spectrum
of charmed quark–antiquark bound states. The potential includes the short distance Coulombic
interaction of quarks, known from perturbative quantum chromodynamicssQCDd, and the large
distance quark confinement, known from lattice QCD, via the linear term in a simple form. It is
also in good agreement with the central part of the static heavy quark potential derived from dual
QCD sRef. 6d and from lattice QCD.7,8

Solutions of the Schrödinger equation for the Coulomb-plus-linear potential have been inves-
tigated with a large number of techniques and also as a special case of the generalized Killingbeck
potential,Vsrd=−a/ r +br+cr2.

In the context of perturbation theory, Mehta and Patil9 showed that the eigenvalues of the
Coulomb-plus-linear potential have an asymptotic perturbation series in the linear coupling pa-
rameterb. Killingbeck10 showed how the hypervirial theorem could be used to calculate the
perturbation series for the energy of spherically symmetricsl =0d states without calculation of the
perturbed wave functions. Padé approximants to the divergent energy series were used to obtain
the eigenvalues. Austin11 extended the calculation of the perturbation series to higher order and to
a broader range of values of the perturbation parameter. Using the same technique, Lai and Lin12

obtained the eigenvalues for different values of the orbital angular momentum quantum number.
In the framework of the WKB approximation, Seetharamanet al.13 obtained a nonperturbative

approximate analytic expression for the energy in terms of complete elliptic integrals. Thidé and
Linnaeus14 and Brau15 also obtained approximate analytical results for the eigenvalues using,
respectively, higher-order phase integral quantization and Bohr–Sommerfeld quantization.

Chhajlany and Letov16 obtained exact results for the Coulomb-plus-linear potential for spe-
cific values of the coupling parameters following a technique used by Saxena and Varma17 to find
exact solutions for the problem of a Coulomb potential with a polynomial radial perturbation
2lr +2l2r2. The technique works by searching a solution in the form of a product of an interpo-
lating function and two functions with the correct endpoint behavior. If the coefficients of the
power series of the interpolating function are related by aNth order recursion relation, then the
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eigenvalues are obtained by requiring that the interpolating function be a polynomial of degreen,
i.e., by explicitly settingN successive coefficients of its power series to zero. This arbitrary
condition also results in the quantization of some of the coupling parameters of the potential. The
eigenvalues found converge to the true eigenvalues as the degree of the polynomial goes to
infinity.

In Ref. 16, this technique is applied to the case of a Coulomb potential with a radial pertur-
bationmr +a2r2. The requirement that the solution be polynomial leads to the quantization of the
quadratic couplinga which now depends on the linear couplingm and on the orbital angular
momentum quantum number. The eigenvalues of the Coulomb-plus-linear potential are recovered
becausea goes to zero as the degree of the polynomial goes to infinity, letting the generalized
Killingbeck potential go to the desired potential.

Solutions for the Coulomb-plus-linear potential have also been investigated using the Hill
determinant method by Chaudhuriet al.18 where the eigenvalues are obtained as the zeros of an
infinite dimensional determinant associated with the infinite system of linear equations relating the
coefficients of the power series of the solution.

Fulcheret al.19 showed that analytic expressions for the eigenvalues of the low-lying states
can be obtained by expanding the radial part of the wave function in a basis of functions given by
the product of a centrifugal barrier, an exponential function, and a Laguerre polynomial. Their
approach transforms the problem of the Schrödinger equation for the Coulomb-plus-linear poten-
tial to a matrix diagonalization problem where the matrix elements are given by analytic expres-
sions. The eigenvalues of the matrix converge to the true eigenvalues when the size of the basis
becomes sufficiently large.

The solutions of the Schrödinger equation for a central polynomial type potentialVsrd
=oi=1

I air
ni with ni ù−1 can be written as the product of a spherical harmonic, a centrifugal barrier

r l, a decreasing exponential function and an unknown functionhsrd that admits a power series
expansion. The factorr l dominates near the origin, the exponential factor is the function with the
correct asymptotic behavior andhsrd is the solution that dominates at intermediate distances.
Explicit solutions in terms of special functions exist in only two special cases of the potential,
n1=−1 andn1=2 both with I =1. This is due to the fact that, only in these two cases, are the
expansion coefficients of the functionhsrd related by a two-term recursion relation. In all other
cases they are related by a three- or more-term recursion relation.

The usual method used to solve multiterm linear recursion relations with nonconstant coeffi-
cients is to compute the first terms of the series, guess the general solution and prove it by
mathematical induction. While this is easily achieved for two term recursion relations, it is almost
impossible for recursion relations with three or more terms. Antippa and Phares developed a
general formalism for solving linear multiterm recursion relations with nonconstant coefficients20

in terms of algebraic combinatorial expressions called combinatorics functions. The first applica-
tion of this formalism to the solution of the Schrödinger equation with polynomial type central
potentials was to the case of the linear potential.21,22The wave functions were obtained as power
series expansions with their coefficients given in terms of functionals called structure functions, a
special kind of combinatorics function. The energy eigenvalue equation was obtained by requiring
that the asymptotic behavior of the wave function be that of the asymptotic solution of the
Schrödinger equation for the linear potential. The eigenvalues were given by the roots of an
infinite order polynomial.

The series solution of the Schrödinger equation for the Coulomb-plus-linear potential leads to
a four-term recursion relation with nonconstant coefficients. The same method used to solve the
Schrödinger equation for the linear potential can be used to obtain a solution for the Coulomb-
plus-linear potential. The purpose of this paper is to obtain an analytic expression for the nonrel-
ativistic Schrödinger wave functions of the Coulomb-plus-linear potential.

The organization of the paper is as follows: in Sec. II we set up the problem and obtain the
coefficients of the power series expansion of the wave functions in terms of structure functions, in
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Sec. III we derive recursion relations for the structure functions and in Sec. IV we present the
general expression for the wave functions of the Coulomb-plus-linear potential and give explicit
expressions for the first six coefficients of the power series.

II. RADIAL EQUATION

A. Dimensionless radial equation

Consider a quark-antiquark system interacting via a Coulomb-plus-linear potential,

Vsrd = V0 + kr −
a

r
. s1d

Since the potential has spherical symmetry, then the solutions of the time-independent Schrödinger
equation are of the form

cnlmsrWd = RnlsrdYl
msu,fd, s2d

whereRnlsrd=unlsrd / r, andunlsrd is a solution of the radial Schrödinger equation,

F−
"2

2m

d2

dr2 +
lsl + 1d"2

2mr2 + VsrdGunlsrd = Enlunlsrd. s3d

Inserting the expression for the potential as given by Eq.s1d, into Eq. s3d, leads to

F−
"2

2m

d2

dr2 +
lsl + 1d"2

2mr2 + V0 + kr −
a

r
Gunlsrd = Enlunlsrd. s4d

Applying the scale transformationx=ar to the above equation, and dividing through by −"2a2/2m,
leads further to

F d2

dx2 −
lsl + 1d

x2 −
2mkx

"2a3 +
2ma

"2ax
+

2m

"2a2sEnl − V0dGunlsxd = 0. s5d

Setting the parametera to

a = S2mk

"2 D1/3

s6d

gives it the dimensions of inverse length, and consequentlyx becomes dimensionless. Substituting
the above expression fora, into Eq. s5d reduces this latter to

F d2

dx2 −
lsl + 1d

x2 − x +
1

x
S4m2a3

"4k
D1/3

+ SÎ2m

"k
D2/3

sEnl − V0dGunlsxd = 0. s7d

By defining the dimensionless coupling constantr and the dimensionless energy parametertnl,
respectively, by

r = S4m2

"4k
D1/3

a s8d

and

tnl = S 2m

"2k2D1/3

sEnl − V0d s9d

we finally obtain the radial Schrödinger equation in terms of dimensionless parameters, as
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F d2

dx2 −
lsl + 1d

x2 − x +
r

x
+ tnlGunlsxd = 0. s10d

Solving the Schrödinger Eq.s1d, for the Coulomb-plus-linear potential, has thus been reduced to
solving the radial equations10d, for the functionsunlsxd.

B. Series solutions for unl„x…

Equations10d has the generic form

d2unl

dx2 + psxd
dunl

dx
+ qsxdunl = 0 s11d

with

psxd = 0, s12d

qsxd = −
lsl + 1d

x2 − x +
r

x
+ tnl. s13d

Sincexpsxd and x2qsxd are entire functions, then Eq.s10d has a series solution with an infinite
radius of convergence, of the form23

vnlsx,sd = o
i=0

`

aissdxi+s s14d

with the coefficientsaissd given by the recursion relation

Fss+ idaissd + o
j=0

i−1

fs j + sdpi−j + qi−jgajssd = 0, s15d

whereFssd is defined by

Fssd = sss− 1d + p0s+ q0 s16d

andpk andqk are the coefficients of the power series expansions ofxpsxd andx2qsxd, respectively.
That is

pk =
1

k!
Udksxpsxdd

dxk U
x=0

, s17d

qk =
1

k!
Udksx2qsxdd

dxk U
x=0

. s18d

Independent solutions of Eq.s11d are obtained, via Eq.s14d, by setting the value ofs equal to the
roots

s± =
s1 − p0d ± Îs1 − p0d2 − 4q0

2
s19d

of the indicial equation

Fssd = 0. s20d

From Eqs.s12d ands13d we see that in the case of the second order differential equations11d,
pk=0 for k=0,1,2, . . . ,̀ andqk=0 for k=4,5,6, . . . ,̀ , while the nonzero values ofqk are
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q0 = − lsl + 1d, q1 = r, q2 = tnl, q3 = − 1. s21d

Consequently, the recursion relations15d reduces to

Fss+ idaissd + rai−1ssd + tnlai−2ssd − ai−3ssd = 0 s22d

with ai =0 for i ,0. The functionFssd as given by Eq.s16d takes the special form

Fssd = sss− 1d − lsl + 1d. s23d

The roots, as given by Eq.s19d, of the indicial equations20d, reduce to the simple form

s+ = l + 1 ands− = − l . s24d

When the above values for the indices are used with Eq.s23d, they lead, respectively, to

Fss+ + id = isi + 2l + 1d s25d

and

Fss− + id = isi − 2l − 1d. s26d

Since the roots of the indicial equation differ by an integer then the general solution of Eq.
s11d is given by23

hnlsxd = Aunlsxd + Bwnlsxd, s27d

where

unlsxd = vnlsx,s+d = xl+1o
m=0

`

bmxm, bm = uamssdus=l+1 s28d

and

wnlsxd = unlsxdln x + vnlsx,s−d = xl+1 ln xo
m=0

`

bmxm + x−l o
m=0

`

cmxm, cm = uamssdus=−l . s29d

For Rnlsrd to be regular at the origin,hnlsxd /x must be regular at the origin. At threshold
unlsxd /x,x→0x

l and is regular for all non-negative values ofl. On the other hand, the first term in
wnlsxd /x has a threshold behaviorfwnlsxdg1/x,x→0x

l ln x and has a logarithmic singularity at the
origin, while the second term ofwnlsxd /x has a threshold behaviorfwnlsxdg2/x,x→0x

−l−1, and has
an l +1 order pole at the origin for all non-negative values ofl. Consequently, the regularity of
Rnlsrd at the origin requires settingB=0, and the solution of Eq.s11d with the boundary conditions
imposed isAunlsxd. Since the recursion relation does not determineb0, then the coefficientA can
be absorbed inb0. Hence the solution of Eq.s11d which is regular at the origin is given by

unlsxd = xl+1o
m=0

`

bmxm s30d

with the coefficientsbm=amss+d determined by the recursion relations22d with s=s+. Combining
Eqs.s22d and s25d we obtain the recursion relation forbm as

msm+ 2l + 1dbm + rbm−1 + tnlbm−2 − bm−3 = 0 m= 0,1,2, . . . ,̀ s31d

subject to the boundary conditionsbm=l0dm0 for mø0. Hence, the solution of the radial equation
s10d for the functionunlsxd has been reduced to the solution of the recursion relations31d for the
coefficientsbm.
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C. Solution of the recursion relation

We define the functionfsm, ld by

fsm,ld =
1

Fss+ + md
=

1

msm+ 2l + 1d
s32d

so that the above recursion relation can be rewritten as

bm = − rfsm,ldbm−1 − tnlfsm,ldbm−2 + fsm,ldbm−3. s33d

Furthermore, we define

f1smd = − rfsm,ld, f2smd = − tnlfsm,ld, f3smd = fsm,ld s34d

to obtain

bm = f1smdbm−1 + f2smdbm−2 + f3smdbm−3, m= 0,1,2, . . . ,̀ s35d

subject to the boundary conditions

bm = l0dm0 for mø 0. s36d

The recursion relations35d, subject to boundary conditionss36d, is cast in standard form.20

Equations35d is a four-term linear recursion relation with variable coefficients. A solution of
this equation in terms of the special combinatorics functions can be obtained using the method
introduced by Antippaet al.20 The solution of a linear recursion relation of the form

bm = o
k=1

N

fak
smdbm−ak

for m. j0 s37d

with boundary conditions

bj0−i = li for i = 0,1,2, . . . ,aN − 1, s38d

is20

bm = o
i=0

aN−1

liC̄2s j0 − i,m,id, s39d

whereC̄2sm1,m2,dd is a constrained combinatorics function of the second kind. The solution of
the recursion relations35d has thus been reduced to the evaluation of the combinatorics function

C̄2s j0− i ,m, id.

D. The combinatorics functions

The constrained combinatorics function of the second kindC̄2sm1,m2,dd is a discrete func-
tional defined over the ordered partitions of the intervalfm1,m2g with the first part of the ordered
partition constrained to be of length greater thand. The partsai available for partitioning, are the
elements of a setA,

A = ha1,a2, . . . ,aNj, 0 , a1 , a2 , ¯ , aN. s40d

The subintervals of an ordered partition are denoted byd j, and a possible ordered partition is
represented bysd1,d2, . . . ,dnd, whered j PA. The points at which subintervals end are denoted by
sj,
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s0 = m1, sj = m1 + o
i=1

j

di, sn = m2. s41d

The building blocks from which the combinatorics functions are constructed are the functionals
Fn

qsm1,m2d defined over theqth ordered partition of the intervalfm1,m2g into n parts belonging to
the setA, according to20

Fn
qsm1,m2d = p

j=1

n

fd j
ssjd. s42d

The special combinatorics functions of the first kind,C1sm1,m2,nd, are obtained by summing the
Fn

qsm1,m2d over the ordered partitions of the intervalfm1,m2g into n parts,

C1sm1,m2,nd = o
q=1

qmaxsm1,m2,nd

Fn
qsm1,m2d. s43d

The special combinatorics functions of the second kind are obtained by summing the special
combinatorics functions of the first kind over the possible values ofn,

C2sm1,m2d = o
nPNsm2−m1d

C1sm1,m2,nd, s44d

where the setNsm2−m1d is the set of all the number of partsn into which an interval of length
m2−m1 can be partitioned. The special combinatorics functions of the second kind can thus be
expressed as the sum of theFn

r sm1,m2d over all ordered partitions of the intervalfm1,m2g,

C2sm1,m2d = o
r=1

rmaxsm1,m2d

Fnsrd
r sm1,m2d, s45d

where the number of partsnsrd is now a function of the partition numberr. The constrained
combinatorics functions of the second kind are related to the special combinatorics functions of
the second kind by24

C̄2sm1,m2,dd = o
akPA
ak.d

fak
sm1 + akdC2sm1 + ak,m2d. s46d

In the special case ofd=0, the above equation reduces to

C̄2sm1,m2,0d = o
akPA

fak
sm1 + akdC2sm1 + ak,m2d s47d

but the special combinatorics functions obey the recursion relation25

C2sm1,m2d = o
akPA

fak
sm1 + akdC2sm1 + ak,m2d. s48d

Hence combinings47d and s48d,

C̄2sm1,m2,0d = C2sm1,m2d. s49d

Note that Eq.s49d is also a coherence condition which can be derived directly from the respective
definitions of the special and constrained combinatorics functions of the second kind.

E. Reduction of the combinatorics functions

In the case of Eq.s35d, the setA of allowed parts is given byssee Ref. 20d
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A = h1,2,3j. s50d

ThusN=3, a1=1, a2=2, anda3=3. Furthermore, the boundary conditions are given by

bm = l0dm0 for mø 0 s51d

thus j0=0. Hence, in the case of Eq.s35d subject to boundary conditionss36d, the solution forbm

as given by Eq.s39d reduces to

bm = o
i=0

2

b−iC̄2s− i,m,id = o
i=0

2

l0d−i0C̄2s− i,m,id = l0C̄2s0,m,0d s52d

and using Eq.s49d,

bm = l0C2s0,md. s53d

The special combinatorics functions of the second kindC2s0,md are given, via Eq.s45d, in terms
of the functionalsFnsrd

r sm1,m2d. So we need to evaluate these latter functionals.
We define the tripletsp1,p2,p3d representing the number of parts of lengthss1, 2, 3d for a

possible ordered partitionr of an intervalf0,mg into n parts, wherepi is the number of parts of
length i. Examining Eq.s34d we notice that thefd j

ssjd are equal to a constant timesf sm, ld. The
number of times these constants will appear in expressions42d as multiplicative factors is related
to the number of parts of length 1 for −r, the number of parts of length 2 for −tnl and the number
of parts of length 3 for 1. In order to simplify the notation, we will, from now on, drop the
subscriptsn and l on t. TheFnsrd

r s0,md can therefore be expressed as

Fnsrd
r s0,md = s− rdp1s− tdp2p

j=1

nsrd

fssj,ld, s54d

while the special combinatorics functions of the second kind become26

C2s0,md = o
r=1

rmaxs0,md

s− rdp1s− tdp2p
j=1

nsrd

fssj,ld s55d

leading, via Eq.s53d, to the following expression forbm:

bm = l0 o
r=1

rmaxs0,md

s− rdp1s− tdp2p
j=1

nsrd

fssj,ld, s56d

wheresj is given by Eq.s41d, and fssj , ld is given, via Eq.s32d as

fssj,ld =
1

sjssj + 2l + 1d
. s57d

Evaluating the product overfssj , ld in Eq. s56d is an algebraic combinatorial ordered partitioning
problem, and so is the sum overr.

F. Partitions

A partition psm,nd=1p12p23p3 of an interval of lengthm into n parts belonging to the seth1, 2,
3j is subject to the constraints

p1 + p2 + p3 = n, s58ad
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p1 + 2p2 + 3p3 = m. s58bd

Subtractings58bd from l times s58ad we obtain

o
i=1

3

sl − idpi = ln − m. s59d

By settingl successively equal to 1, 2, and 3 we eliminatepi, for i =1,2,3,respectively, from
the equations, leading to

usl − jdpju j=sl+1dmod 3+ usl − jdpju j=sl+2dmod 3= ln − m s60d

from which we obtain the results presented in Table I. The results of Table I will be used through-
out. For example, from the fourth row of the table we see that an intervalf0,mg can be partitioned
into n parts belonging toh1, 2j if and only if m=n+p2 or m=2n−p1. Similarly it can be partitioned
into n parts belonging toh2, 3j if and only if m=2n+p3 or m=3n−p2. Finally it can be partitioned
into n parts belonging toh1, 3j if and only if m=n+2p3 or m=3n−2p1.

Equations58d imposes two linear constraints on the five parametersm, n, p1, p2, andp3, and
hence only three of them are independent. Thus, givenm, knowledge of any two other parameters,
uniquely determines the partitionpsm,nd=1p12p23p3. This result is also explicitly evident from
Table I. Specifically, givenm, p2 andp3 uniquely determine the partitionpsm,nd=1p12p23p3. From
Table I, the number of partsn is then given by

nsm,p2,p3d = m− p2 − 2p3 s61d

while the number of parts of length 1 is given by

p1sm,p2,p3d = m− 2p2 − 3p3. s62d

G. The sum over r

The results obtained in Sec. II F allow us to evaluate the sum over ordered partitionsssum
over rd appearing in Eqs.s55d and s56d of Sec. II E.

Let Osm1,m2d designate the set ofordered partitionsof an intervalfm1,m2g into parts be-
longing to h1, 2, 3j, and letOp3

sm1,m2d designate a subset ofOsm1,m2d, all of whose elements
have exactlyp3 parts of length 3. Since the minimum number of parts of length 3 is 0 and the
maximum isbsm2−m1d /3c then the setOsm1,m2d can be expanded as

Osm1,m2d = ø
p3=0

bsm2−m1d/3c
Op3

sm1,m2d. s63d

Furthermore, letOp3,p2
sm1,m2d designate a subset ofOp3

sm1,m2d, all of whose elements have
exactlyp3 parts of length 3 andp2 parts of length 2. The minimum number of parts of length 2 is

TABLE I. Relations betweenm, n, p1, p2, andp3.

l 1 2 3

oi=1
3 sl− idpi =ln−m p2+2p3=m−n p3−p1=m−2n 2p1+p2=3n−m

n=l−1sm+oi=1
3 sl− idpid n=m−p2−2p3 n= b sm+p1−p3d/2c n= b sm+2p1+p2d/3c

m=ln−oi=1
3 sl− idpi m=n+p2+2p3 m=2n+p3−p1 m=3n−2p1−p2

sl− jdupju j=sl+1dmod 3=
ln−m−sl− jdupju j=sl+2dmod 3

p2=m−n−2p3 p3=m−2n+p1 p1= b s3n−m−p2d/2c

sl− jdupju j=sl+2dmod 3=
ln−m−sl− jdupju j=sl+1dmod 3

p3= b sm−n−p2d/2c p1=2n−m+p3 p2=3n−m−2p1
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0 and since the partitions containp3 parts of length 3 then the maximum isbsm2−m1−3p3d /2c.
Hence the set of ordered partitions of the intervalfm1,m2g containing exactlyp3 parts of length 3
can be expanded as

Op3
sm1,m2d = ø

p2=0

bsm2−m1−3p3d/2c
Op3,p2

sm1,m2d s64d

leading, via Eq.s63d, to

Osm1,m2d = ø
p3=0

bsm2−m1d/3c
ø

p2=0

bsm2−m1−3p3d/2c
Op3,p2

sm1,m2d. s65d

The ordered partitions of the setOp3,p2
sm1,m2d all correspond to the same partitionpsm,nd

=1p12p23p3 since knowledge of the length of the interval and ofp2 andp3 completely specifies it.
Furthermore the different subsetsOp3,p2

sm1,m2d are disjoint

Op3,p2
sm1,m2d ù Op38,p28

sm1,m2d = 0” for p3 Þ p38 or p2 Þ p28. s66d

Hence

o
oPOsm1,m2d

= o
p3=0

bsm2−m1d/3c

o
p2=0

bsm2−m1−3p3d/2c

o
oPOp3,p2

sm1,m2d
. s67d

The sum overr sthe sum over ordered partitionsd appearing in Eqs.s55d ands56d of Sec. II E can
thus be evaluated as follows:

o
r=1

rmaxs0,md

= o
p3=0

bm/3c

o
p2=0

bsm−3p3d/2c

o
oPOp3,p2

sm1,m2d
. s68d

Let omaxspd, be the number of ordered partitions corresponding to a given partitionpsm,nd
=1p12p23p3 fthe cardinality ofOp3,p2

sm1,m2dg, then27

omaxspd =
n!

p1!p2!p3!
, n = p1 + p2 + p3. s69d

Furthermore, letOp2
sm1,m2,nd be the set of ordered partitions of the intervalfm1,m2g into n parts

corresponding to the partition 1p12p23p3. Note that since any three parameters of Eqs.s58d uniquely
determines the partitionpsm,nd=1p12p23p3, then

Op3,p2
sm1,m2d = uOp2

sm1,m2,ndun=m2−m1−p2−2p3
. s70d

Making use of Eqs.s68d and s70d, the combinatorics function given by Eq.s55d can be
rewritten as

C2s0,md = o
p3=0

bm/3c

o
p2=0

bsm−3p3d/2c S o
oPOp2

s0,m,nd
s− rdp1s− tdp2p

j=1

n

fssj,ldD , s71d

wheren andp1 are, respectively, given by Eqs.s61d ands62d. Sincep1 andp2 do not depend on
orderingson od, then they can be taken outside the second summation to obtain

C2s0,md = o
p3=0

bm/3c

o
p2=0

bsm−3p3d/2c
s− rdp1s− tdp2S o

oPOp2
s0,m,nd

p
j=1

n

fssj,ldD . s72d
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In analogy with the structure functions introduced in Ref. 21, we introduce the structure
functionsblsm1,m2;n,p2d defined over the ordered partitions of the intervalfm1,m2g into n parts,
p2 of which are of length 2, as

blsm1,m2;n,p2d = o
oPOp2

sm1,m2,nd
p
j=1

n

fssj,ld s73d

so that Eq.s72d may be expressed as, replacingp1 andn by their respective expressions in terms
of m, p2 andp3 fEqs.s61d and s62dg,

C2s0,md = o
p3=0

bm/3c

o
p2=0

bsm−3p3d/2c
s− rdm−2p2−3p3s− tdp2bls0,m;m− p2 − 2p3,p2d. s74d

Inserting the above expression for the combinatorics function of the second kind in Eq.s53d and
rearranging we finally find that the coefficientsbm are given by

bm = l0s− 1dmo
j=0

bm/3c
s− 1d j o

i=0

bsm−3jd/2c
s− 1dibls0,m;m− 2j − i,idrm−3j−2iti . s75d

The coefficientsbm are polynomials int of orderm/2 if m is even orsm−1d /2 if m is odd.

III. STRUCTURE FUNCTIONS

A. Fundamental cases

The blsm1,m2;n,p2d are, in general, complicated expressions. However, in three particular
cases, they can be expressed compactly. These cases areblsm1,m1+n;n,0d, blsm1,m1+2n;n,nd,
andblsm1,m1+3n;n,0d. They all have in common the fact thatomaxspd=1, that is, there is only
one possible ordered partition for each partitionp. The three structure functionsblsm1,m1

+n;n,0d, blsm1,m1+2n;n,nd, andblsm1,m1+3n;n,0d correspond to the valuesp1=n, p2=n, and
p3=n, respectively.

1. Segments of length 1 „m =n and p 1=n…

In the case ofblsm1,m1+n;n,0d, the length of the interval to be partitioned ism=n, and
p2=0. Hence from Table I, we havep1=n and p3=0, and that is the interval is partitioned
exclusively into segments of unite length. Thusomaxspd=1 andsj =m1+ j leading to

blsm1,m1 + n;n,0d = o
oPOp2=0sm1,m1+n,nd

p
j=1

n

fssj,ld = p
j=1

n

fsm1 + j ,ld s76d

and using Eq.s32d, we have

blsm1,m1 + n;n,0d = p
j=1

n
1

sm1 + jdpj=1

n
1

sm1 + 2l + 1 + jd
. s77d

Making use of the Pochhammer notationssee Appendix Ad, the above equation can be rewritten as

blsm1,m1 + n;n,0d = hsm1 + 1dfngsm1 + 2l + 2dfngj−1. s78d

2. Segments of length 2 „m =2n and p 2=n…

In the case ofblsm1,m1+2n;n,nd, the length of the interval to be partitioned ism=2n, and
p2=n. Hence from Table I, we havep1=0 andp3=0, that is the interval is partitioned exclusively
into segments of length 2. Thusomaxspd=1 andsj =m1+2j leading to
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blsm1,m1 + 2n;n,nd = o
oPOp2=nsm1,m1+2n,nd

p
j=1

n

fssj,ld = p
j=1

n

fsm1 + 2j ,ld

= p
j=1

n
1

sm1 + 2jdpj=1

n
1

sm1 + 2j + 2l + 1d

=
1

22np
j=1

n
1

sm1/2 + jdpj=1

n
1

ssm1 + 1d/2 + l + jd
. s79d

The above equation can be rewritten as

blsm1,m1 + 2n;n,nd = h22nfsm1 + 2d/2gfngfsm1 + 2l + 3d/2gfngj−1. s80d

3. Segments of length 3 „m =3n and p 3=n…

In the case ofblsm1,m1+3n;n,0d, the length of the interval to be partitioned ism=3n, and
p2=0. Hence from Table I, we havep3=n and p1=0, in other words the interval is partitioned
exclusively into segments of length 3. Thusomaxspd=1 andsj =m1+3j leading to

blsm1,m1 + 3n;n,0d = h32nfsm1 + 3d/3gfngfsm1 + 2l + 4d/3gfngj−1. s81d

B. Recursion relations for the structure functions

To determine the structure functions, we proceed in two steps. First, using the results of the
preceding section as initial conditions, we establish a recursive procedure for determining
blsm1,m2;n,0d. Next, we use these values ofblsm1,m2;n,0d as initial conditions, and determine
a recursive expression forblsm1,m2;n,p2d in the casep2Þ0.

1. Structure functions of the form bl„m1,m2; n ,0…

Following the procedure of Ref. 21, the structure functions of the formblsm1,m2;n,0d will be
determined recursively by establishing a relation between the structure functionsblsm1,m2;n,0d
corresponding to partitions withp3 parts of length 3, and the structure functionsblsm1,m28 ;n8 ,0d
corresponding to partitions with a smaller number of parts of length 3.

Let Tsm1,m2,nd be the set of allordered partitions, of fm1,m2g into n parts, corresponding to
thepartition 1p1203p3. Since, givenm1, m2, andn, the value ofp2 uniquely determines the partition
psm2−m1,nd=1p12p23p3, then

Tsm1,m2,nd = Op2=0sm1,m2,nd s82d

and

o
oPOp2=0sm1,m2,nd

= o
pPTsm1,m2,nd

. s83d

Let Tism1,m2,nd, i =0,1,2, . . . ,p3, be a subset ofTsm1,m2,nd whose elements satisfy two addi-
tional constraints:sid the lasti parts of the ordered partition are of length 3 andsii d thesn− idth part
of the ordered partition is of length 1ssee Fig. 1d. Note that

Tsm1,m2,nd = ø
i=0

p3

Tism1,m2,nd s84d

and that the subsetsTism1,m2,nd are disjoint,
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Tism1,m2,nd ù T jsm1,m2,nd = 0” for i Þ j , s85d

hence

o
pPTsm1,m2,nd

= o
i=0

p3

o
pPTism1,m2,nd

. s86d

Combining Eqs.s83d and s86d we have the summation equation,

o
oPOp2=0sm1,m2,nd

= o
i=0

p3

o
pPTism1,m2,nd

. s87d

Note also ssee Fig. 1d, that there is a one-to-one correspondence between the elements of
Tism1,m2,nd and the elements ofOp2=0sm1,m2−3i −1,n− i −1d,

Tism1,m2,nd ↔ Op2=0sm1,m2 − 3i − 1,n − i − 1d, s88d

hence

o
pPTism1,m2,nd

= o
oPOp2=0sm1,m2−3i−1,n−i−1d

. s89d

The structure functionblsm1,m2;n,0d is given via Eq.s73d as

blsm1,m2;n,0d = o
oPOp2

sm1,m2,nd
p
j=1

n

fssj,ld s90d

and due to Eq.s87d, it can be rewritten as

blsm1,m2;n,0d = o
i=0

p3 S o
pPTism1,m2,nd

p
j=1

n

fssj,ldD . s91d

Now

p
j=1

n

fssj,ld = S p
j=1

n−i−1

fssj,ldDS p
j=n−i

n

fssj,ldD s92d

and since all partitions belonging to the setTism1,m2,nd have their lasti parts of length 3, then
from Eq. s41d, with d j =3 for n− i +1ø j øn, andsn−i =m2−3i we have

sn−i+j8 = sn−i + 3j8 = m2 − 3si − j8d for j8 = 1,2, . . . ,i s93d

and consequently

FIG. 1. Graphical representation of the partitions which are elements of the setTism1,m2,nd and their corresponding
structure functions.
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p
j=n−i

n

fssj,ld = p
j8=0

i

fssn−i+j8,ld = p
j8=0

i

fsm2 − 3si − j8d,ld = p
j=0

i

fsm2 − 3j ,ld. s94d

Combining Eqs.s89d, s92d, ands94d, Eq. s91d can be rewritten as

blsm1,m2;n,0d = o
i=0

p3 Sp
j=0

i

fsm2 − 3j ,ld o
oPOp2=0sm1,m2−3i−1,n−i−1d

p
j=1

n−i−1

fssj,ldD . s95d

But

o
oPOp2=0sm1,m2−3i−1,n−i−1d

p
j=1

n−i−1

fssj,ld = blsm1,m2 − 3i − 1;n − i − 1,0d. s96d

Hence Eq.s95d becomes

blsm1,m2;n,0d = o
i=0

p3

blsm1,m2 − 3i − 1;n − i − 1,0dp
j=0

i

fsm2 − 3j ,ld. s97d

The fourth cell of the fourth row of Table I gives an expression for the length of an interval in
terms ofn, p2, andp3. Settingp2=0, we obtain the length of intervals that can be partitioned into
n parts belonging toh1, 3j asm2−m1=n+2p3. Inserting this results in Eq.s97d, we obtain

blsm1,m1 + n + 2p3;n,0d = o
i=0

p3

blsm1,m1 + n + 2p3 − 3i − 1;n − i − 1,0dp
j=0

i

fsm1 + n + 2p3 − 3j ,ld.

s98d

The product can be expressed as

p
j=0

i

fsm1 + n + 2p3 − 3j ,ld = p
j=0

i
1

sm1 + n + 2p3 − 3jdpj=0

i
1

sm1 + n + 2p3 − 3j + 2l + 1d

=
1

32si+1dp
j=0

i
1

ssm1 + n + 2p3d/3 − jdpj=0

i
1

ssm1 + n + 2p3 + 2l + 1d/3 − jd

s99d

or in Pochhammer notation

p
j=0

i

fsm1 + n + 2p3 − 3j ,ld =
3−2si+1d

fsm1 + n + 2p3d/3gsi+1dfsm1 + n + 2p3 + 2l + 1d/3gsi+1d . s100d

Substituting this result in Eq.s98d, we finally obtain

blsm1,m1 + n + 2p3;n,0d = o
i=0

p3 3−2si+1dblsm1,m1 + n + 2p3 − 3i − 1;n − i − 1,0d
fsm1 + n + 2p3d/3gsi+1dfsm1 + n + 2p3 + 2l + 1d/3gsi+1d .

s101d

The recursion equations101d, can alternatively be written as a recursion relation inp1, by making
use of the relationp3=n−p1 to obtain
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blsm1,m1 + 3n − 2p1;n,0d = o
i=0

n−p1 3−2si+1dblsm1,m1 + 3n − 2p1 − 3i − 1;n − i − 1,0d
fsm1 + 3n − 2p1d/3gsi+1dfsm1 + 3n − 2p1 + 2l + 1d/3gsi+1d .

s102d

In the appendix we evaluate the above Eq.s102d for p1=n and reproduce Eq.s78d.

2. Structure functions of the form bl„0,m ; n ,p2…

In this section, we derive a recursion relation for the structure functionsbls0,m;n,p2d, evalu-
ated over the ordered partitions of the intervalf0,mg into n parts belonging toh1, 2, 3j, and
corresponding to the partition 1p12p23p3.

To this end we note that the structure functionsblsm1,m2;n,p2d are combinatorics functions
ssee Secs. II C and II Dd evaluated over the set of ordered partitionsOp2

sm1,m2,nd, with the set of
partsA=ha1,a2, . . . ,aNj given byA=h1,2,3j, and the corresponding variable coefficients,fai

smd
for ai =1,2,3,given by

f1smd = f2smd = f3smd = fsm,ld, s103d

where fsm, ld is given by Eq.s32d. Hence,blsm1,m2;n,p2d is obtained fromOp2
sm1,m2,nd by a

homomorphismH from sO* , ø , ^ d to sR, + ,3 d, where thep indicates the power setssee Ref. 25
Sec. II C, or Ref. 28 Sec. III A, or Ref. 29 Sec. 2.2.1d:

sO* , ø , ^ d→
H

sR, + , 3 d s104d

and Eq.s90d can be rewritten as

blsm1,m2;n,p2d = HsOp2
sm1,m2,ndd. s105d

Let Sp2

n8,m8s0,m,nd be the set of ordered partitions of the intervalf0,mg into n partssp1,p2,p3d
swith p2ù1 andmù2d, subject to the following constraintssid the lastn8 parts are not of length
2, sii d the sn−n8dth part is of length 2, andsiii d the total length of the lastn8 parts ism8. Thus

n8 = p18 + p38, s106d

m8 = p18 + 3p38, s107d

wherep18 and p38 are the number of parts of lengths 1 and 3, respectively, to the right of thesn
−n8dth part of length 2. Their ranges are 0øp18øp1 and 0øp38øp3. The ordered partitions of the

setSp2

n8,m8s0,m,nd are presented in Fig. 2.

The setSp2

n8,m8s0,m,nd can be expressed as followsssee Fig. 2d:

FIG. 2. Graphical representation of the relation between the partitions which are elements of the setOp2−1s0,m−m8

−2,n−n8−1d and the partitions which are elements of the setsOp2=0sm−m8 ,m,n8d and Sp2

n8,m8s0,m,nd, as well as their
corresponding structure functions.
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Sp2

n8,m8s0,m,nd = Op2−1s0,m− m8 − 2,n − n8 − 1d ^ hm− m8 − 2,m− m8j ^ Op2=0sm− m8,m,n8d.

s108d

Furthermore, the set of all ordered partitions of the intervalf0,mg into n partssp1,p2,p3d swith

p2ù1 andmù2d is given by the union of the setsSp2

n8,m8s0,m,nd over all possible values ofn8 and
m8, that is,

Op2
s0,m,nd = ø

n8
Sø

m8
Sp2

n8,m8s0,m,ndD . s109d

Combining Eqs.s108d and s109d we have

Op2
s0,m,nd = ø

n8
ø
m8

Op2−1s0,m− m8 − 2,n − n8 − 1d ^ hm− m8 − 2,m− m8j ^ Op2=0sm− m8,m,n8d.

s110d

Applying the homomorphismH to Eq. s110d leads to

HsOp2ù1s0,m,ndd = o
n8

o
m8

HsOp2−1s0,m− m8 − 2,n − n8 − 1dd

3 Hshm− m8 − 2,m− m8jdHsOp2=0sm− m8,m,n8dd s111d

which evaluates to

bls0,m;n,p2d = o
n8

o
m8

bls0,m− m8 − 2;n − n8 − 1,p2 − 1df2sm− m8dblsm− m8,m;n8,0d

s112d

and due to Eq.s103d becomes

bls0,m;n,p2d = o
n8

o
m8

bls0,m− m8 − 2;n − n8 − 1,p2 − 1dblsm− m8,m;n8,0d
sm− m8dsm− m8 + 2l + 1d

. s113d

Making use of Eqs.s106d ands107d, the double sum over the values ofm8 andn8 can be converted
into a double sum overp18 and p38, ranging, respectively, from 0 top1 and from 0 top3, and we
finally obtain

bls0,m;n,p2d = o
p18=0

p1

o
p38=0

p3 blsm− p18 − 3p38,m;p18 + p38,0d
sm− p18 − 3p38dsm− p18 − 3p38 + 2l + 1d

3 bls0,m− p18 − 3p38 − 2;n − p18 − p38 − 1,p2 − 1d. s114d

IV. THE WAVE FUNCTIONS

In this section we use the results of the preceding sections to obtain the wave functions of the
Coulomb-plus-linear potential and then proceed to calculate the first six coefficients of the power
series expansion of the wave functions.

A. General expression for the wave functions

The wave functions for the Coulomb-plus-linear potential are given by Eq.s2d as

cnlmsrWd = r−1unlsrdYl
msu,fd. s115d

The functionsunlsrd are given by Eq.s30d, with x=s2mk /"2d1/3r, leading to
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unlsrd = r l+1o
k=0

`

bkS2mk

"2 Dsk+l+1d/3

rk. s116d

Substituting the above expression forunlsrd in Eq. s115d, inserting the expression for the coeffi-
cientsbk fEq. s75dg and replacingr andt by Eqs.s8d ands9d, respectively, we finally find that the
wave functions for the Coulomb-plus-linear potential are given by

cnlmsrWd = l0Yl
msu,fdr lS2mk

"2 Dsl+1d/3

o
k=0

`

s− 1dko
j=0

bk/3c
s− 1d j o

i=0

bsk−3jd/2c
s− 1di

3 S2m

"2 Dk−2j−i

bls0,k;k − 2j − i,idk jak−3j−2isEnl − V0dirk. s117d

B. Explicit expressions for the power series coefficients

We now give expressions for the first six coefficientsbm, m=1,2,3,4,5,6 of thepower series.
The computation of a coefficient proceeds in the following way:sid Eq. s75d is used to obtain an
expression for the coefficientbm in terms of structure functions.sii d Recursion relationss102d and
s114d, obtained in Sec. III B, are used to bring the expression for the coefficient to a form
containing only fundamental structure functions, that is, structure functions of the form
blsm1,m1+n;n,0d or blsm1,m1+2n;n,nd or blsm1,m1+3n;n,0d. The upper summation limits of
Eq. s114d are obtained using Table I.siii d The fundamental structure functions can then be evalu-
ated using Eqs.s78d, s80d, ands81d.

The coefficientb0 was arbitrarily chosen asl0 and we can verify that Eq.s75d with m=0 leads
to

b0 = l0bls0,0;0,0d = l0. s118d

The coefficientsb1 to b6 are given by

b1 = − l0bls0,1;1,0dr, s119d

b2 = l0fbls0,2;2,0dr2 − bls0,2;1,1dtg, s120d

b3 = l0f− bls0,3;3,0dr3 + bls0,3;2,1drt + bls0,3;1,0dg, s121d

b4 = l0fbls0,4;4,0dr4 − bls0,4;3,1dr2t + bls0,4;2,2dt2 − bls0,4;2,0drg, s122d

b5 = − l0fbls0,5;5,0dr5 − bls0,5;4,1dr3t + bls0,5;3,2drt2 − bls0,5;3,0dr2 + bls0,5;2,1dtg,

s123d

b6 = l0fbls0,6;6,0dr6 − bls0,6;5,1dr4t + bls0,6;4,2dr2t2 − bls0,6;3,3dt3 − bls0,6;4,0dr3

+ bls0,6;3,1drt + bls0,6;2,0dg. s124d

Evaluating the structure functions we find that

b1 = − l0
r

s2l + 2df1g , s125d

b2 =
l0

2!s2l + 2df2g fr
2 − s2l + 2dtg, s126d
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b3 =
l0

3!s2l + 2df3g h− r3 + f2s2l + 3d + s2l + 2dgrt + 2s2l + 2df2gj, s127d

b4 =
l0

4!s2l + 2df4g hr
4 − f3s2l + 4d + 2s2l + 3d + s2l + 2dgr2t + 3s2l + 2ds2l + 4dt2 − f2s2l + 2df2g

+ 6s2l + 3df2ggrj, s128d

b5 =
− l0

5!s2l + 2df5g hr
5 − f4s2l + 5d + 3s2l + 4d + 2s2l + 3d + s2l + 2dgr3t + f8s2l + 3ds2l + 5d + 4s2l

+ 2ds2l + 5d + 3s2l + 2ds2l + 4dgrt2 − f2s2l + 2df2g + 6s2l + 3df2g + 12s2l + 4df2ggr2 + f8s2l

+ 2df2gs2l + 5d + 12s2l + 2ds2l + 4df2ggtj, s129d

b6 =
l0

6!s2l + 2df6g hr
6 − f5s2l + 6d + 4s2l + 5d + 3s2l + 4d + 2s2l + 3d + s2l + 2dgr4t + h5s2l + 6df3s2l

+ 4d + 2s2l + 3d + s2l + 2dg + 4s2l + 5df2s2l + 3d + s2l + 2dg + 3s2l + 4ds2l + 2djr2t2 − 15s2l

+ 2ds2l + 4ds2l + 6dt3 − f2s2l + 2df2g + 6s2l + 3df2g + 12s2l + 4df2g + 20s2l + 5df2ggr3 + h5s2l + 6d

3f2s2l + 2df2g + 6s2l + 3df2gg + 8s2l + 2df2gs2l + 5d + 12s2l + 2ds2l + 4df2g + 20fs2l + 2d + 2s2l

+ 3dgs2l + 5df2gjrt + 40s2l + 2df2gs2l + 5df2gj. s130d

In the a→0 limit, the Coulomb-plus-linear potential, parametrized as ins1d, reduces to the
linear potential. A consistency check would be to reproduce, in this limit, the coefficients obtained
in the case of the linear potential. Settinga=0 in the potential corresponds, via Eq.s8d, to setting
r=0 in the expressions for the coefficients. In the caser=0, Eqs.s119d–s124d reduce to

ub1ur=0 = 0, s131d

ub2ur=0 = − l0bls0,2;1,1dt, s132d

ub3ur=0 = l0bls0,3;1,0d, s133d

ub4ur=0 = l0bls0,4;2,2dt2, s134d

ub5ur=0 = − l0bls0,5;2,1dt, s135d

ub6ur=0 = l0f− bls0,6;3,3dt3 + bls0,6;2,0dg. s136d

Note that the structure functions appearing in these expressions are all of the form
bls0,m;n,3n−md, that is, they are defined over partitions containing only parts of length 2 or 3
ssee Table Id. Since the structure functionsbls0,m;n,p2d and the structure functionsbls0,m;nd of
Ref. 21 are defined in an analogous mannerfsee Eq.s73d of this paper ands3.14ad of Ref. 21g and
since thefsm, ld function fEq. s57d of this paper and Eq.s3.3bd of Ref. 21g is the same in both
cases, then the structure functionsbls0,m;n,3n−md are equal to the structure functions
bls0,m;nd of Ref. 21. With this in mind, it can easily be checked that the above expressions
reproduce the coefficients given by Eqs.s3.17ad ands3.17bd of Ref. 21, repeated here for conve-
nience
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b2k
lin = l0o

j=0

bk/3c
bls0,2k;k − jds− tdk−3j sk ù 1d, s137d

b2k+1
lin = l0 o

j=0

bsk−1d/3c
bls0,2k + 1;k − jds− tdk−1−3j sk ù 1d. s138d

V. CONCLUSION

We solved the Schrödinger equation for a quark–antiquark system interacting via a Coulomb-
plus-linear potential. The series solution of the Schrödinger equation involved a four-term recur-
sion relation relating the coefficients of the power series expansion of the wave function. This
recursion relation was solved in terms ofcombinatorics functionswhich were then reduced to
structure functions. Finally, recursion relations were derived to explicitly calculate thesestructure
functions. The present work on the wave functions of the Schrödinger equation for the Coulomb-
plus-linear potential lays the mathematical framework necessary to formulate and solve the cor-
responding eigenvalue equation.
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APPENDIX A: POCHHAMMER SYMBOLS

The following notation is used for the Pochammer symbols:30

xsnd = xsx − 1d ¯ sx − n + 1d = p
i=1

n

sx + 1 − id =
Gsx + 1d

Gsx − n + 1d
, sA1d

xfng = xsx + 1d ¯ sx + n − 1d = p
i=1

n

sx − 1 + id =
Gsx + nd

Gsxd
, sA2d

wherexsnd is the descending Pochhammer symbolsor falling factoriald and xfng is the ascending
Pochammer symbolsor rising factoriald. An ascending Pochammer can be converted to a descend-
ing Pochhammer, and vice versa, via

xsnd = sx − n + 1dfng, xfng = sx + n − 1dsnd. sA3d

Furthermore, the Pochhammer symbols can be factorized using the following properties:

xsnd = xsidsx − idsn−id, xfng = xfigsx + idfn−ig. sA4d

APPENDIX B: THE RECURSIVE RELATION FOR bl„m1,m2; n ,0…

In this appendix we demonstrate that the recursive relation for the structure function
blsm1,m2;n,0d, as given by Eq.s102d, in the special case ofp1=n, reduces to the expression of
the fundamental structure function in which all parts are of unit lengthfEq. s78dg. Settingp1=n in
Eq. s102d, we obtain

blsm1,m1 + n;n,0d =
blsm1,m1 + n − 1;n − 1,0d

32fsm1 + nd/3gs1dfsm1 + n + 2l + 1d/3gs1d sB1d

062108-19 Analytic solution of the Schrödinger equation. I J. Math. Phys. 46, 062108 ~2005!

                                                                                                                                    



=
blsm1,m1 + n − 1;n − 1,0d
sm1 + ndsm1 + n + 2l + 1d

sB2d

but

blsm1,m1 + n − 1;n − 1,0d = hsm1 + 1dfn−1gsm1 + 2l + 2dfn−1gj−1. sB3d

Hence

blsm1,m1 + n;n,0d = hsm1 + ndsm1 + 1dfn−1gsm1 + n + 2l + 1dsm1 + 2l + 2dfn−1gj−1 sB4d

leading to

blsm1,m1 + n;n,0d = hsm1 + 1dfngsm1 + 2l + 2dfngj−1 sB5d

which is identical to Eq.s78d.
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We study the spectrum in such aPT-symmetric square wellsof a diameterLø`d
where the “strength of the non-Hermiticity” is controlled by the two parameters,
viz., by an imaginary couplingig and by the distance,,L of its onset from the
origin. We solve this problem and confirm that the spectrum is discrete and real in
a nonempty interval ofgøg0s, ,Ld. Surprisingly, a specific distinction between the
bound states is found in their asymptotic stability/instability with respect to an
unlimited growth ofg beyondg0s, ,Ld. In our model,all of the low-lying levels
remain asymptotically unstable at the small,!L and finiteL while only the stable
levels survive near,<L,` or in the purely imaginary force limit with 0,,
,L=`. In between these two extremes, an unusual and tunable, variable pattern of
the interspersed “robust” and “fragile” subspectra of the real levels is obtained. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1925249g

I. INTRODUCTION

Around 1992, Bessis succeeded in attracting attention of a few people to a certain toy Hamil-
tonian swith some relevance in quantum field theoryd which appeared to produce the real and
discrete spectrum of energies in spite of being manifestly non-Hermitian.1 A few years later,
Bender and Boettcher returned to his mind-boggling problem and published a numerical study2 of
the whole class of the perceivably more general one-dimensional Schrödinger equations

F−
d2

dx2 + Vsxd + iWsxdGcsxd = Ecsxd, s1d

where, in our present perspective, the real component of the potential was assumed spatially
symmetric while its Hermiticity-violating partner was chosen as spatially antisymmetric,

PVsxdP = Vs− xd = + Vsxd, PWsxdP = Ws− xd = − Wsxd.

The latter study confirmed that the similar modelsfexhibiting, obviously, the paritysPd times
time-reversalsTd symmetryg may possessboth the purely real and partiallysor, perhaps, com-
pletelyd complex spectra. The Bender’s and Boettcher’s Fig. 1sloc. cit.d illustrated the existence of
the spectrum which proved “robustly real,” i.e., real in a wide range of parameters of their
“massless”PT-symmetric model. In contrast, a merely slightly modified “massive”PT-symmetric
model of their Fig. 3sloc. cit.d behaved quite differently. The values of many of its energy levels
proved extremely sensitive to the very small variations of the parameters and, moreover, even the
very reality of some energies proved “fragile” in the sense that after a very small change of a
parameter of the model, certain energy pairs merged and disappeared forming, presumably, the
complex conjugate pairs. At present, many more similar and more or less purely numerical ex-
amples existsscf., e.g., the recent paper3 for a sample of referencesd.
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The recent progress in our understanding of the variousPT-symmetric quantum Hamiltonians
H may be briefly summarized as an observation that their symmetry is important. First, it was
established that the time-reversal-type antilinear operator factorT merely mediates the Hermitian
conjugationA→A†.4,5 The role of parityP is more subtle and seems to offer the main mathemati-
cal key to the study of thePT-symmetric quantum HamiltoniansH within the so-called Krein-
space theoryscf., e.g., Ref. 6 for a nice as well as concise introduction to this languaged.

On the background of thesemathematicalobservations, the formalism lost its originally
highly enigmatic features in the context ofphysics. During the last two or three years, the use of
thePT-symmetric quantum models has in fact been accepted as just opening new horizons within
the standard quantum mechanics. At present, virtually all the people active in the field would agree
that it is only necessary to make the resulting physical picture complete by a revitalization of its
probabilistic contents and tractability. This is being achieved via an introduction of the “missing”
sand, in fact, quite nontriviald metric hÞ I in the Hilbert space of states.6–8

The temporary doubts and puzzles related, typically, to the applicability of the formalism look,
at least roughly, clarified. One feels urged to return to many recently neglected and apparently
evasive and mathematically more subtle questions like the problems of the robustness/fragility of
the individual energies or of a global typology of the spectra. We believe that it is time for their
deeper and more technical study via, say, simplified and, first of all,non-numerically tractable
models. A new one, with rather surprising properties and descriptive features of the spectrum, is to
be proposed and analyzed in what follows.

A. Non-Hermitian square-well-type models

Within PT-symmetric quantum mechanics a one-parametric non-Hermitian square well
sNSWd model has been described in Ref. 9. A key merit of the NSW model lies in a combination
of its straightforward mathematical solvability with an exceptional transparency of its applications.
In this way, the NSW model was able to offer an insight into the mechanism of the spontaneous
PT-symmetry breaking.10 Next, due to its elementary character, the NSW model has been selected
by Bagchi et al.11 as a starting point of a systematic supersymmetric generation of solvable
non-Hermitian Hamiltonians withPT-symmetry and real spectra. Last but not least, Mostafazadeh
and Batal7 choose the NSW model in their very recent illustrative application of thePT-symmetric
quantum mechanics in its present, mathematically as well as physically more or less consistent
updated formsreaders may consult some of the available reviews for more details.12d

In our recent paper13 we revealed that a certain “hidden” shortcoming of the NSW model may
be seen in its “fragility,” i.e., in an instability of all the higher energy levels with respect to a
certain highly speculative form of a complex-coordinate perturbation. Although such an observa-
tion does not have anyimmediateimpact on the applications of the NSW model in Refs. 7, 10, and
11, certain doubts survive concerning the possible manifestations of some more serious instabili-
ties in some of the generalized, NSW-typesNSWTd models.

For our present purposes let us vaguely characterize the latter NSWT potentials as piecewise
constant. Then we may immediately recollect the existence of several “user-friendly” NSWT
examples incorporating square-well models on a compact domain14 or systems based on the use of
point interactions.15 Unfortunately, even within this class, the expectations concerning the stability
of the spectrum are not always fulfilled. One may recollect, e.g., a spontaneous complexification
of the high-lying part of many NSWT spectra as detected in very early numerical studies of certain
particular potentials in Ref. 16. The phenomenon looks puzzling and makes all the NSWT models
worth a more detailed non-numerical study.

B. The choice of a specific example

In applied quantum mechanics the construction of the majority of phenomenological models
relies quite heavily on the correspondence principle which tries to connect each quantum model
with its classical predecessor.PT-symmetric quantum mechanics offers a weakening of this
connection.17 The operator of parityP is indefinite so that, as we already mentioned, the formal-
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ism requires an explicitadditional construction of a Hamiltonian-dependent positively definite
metric h.0 in Hilbert space. Equivalently, this may be mediated by the construction of a quasi-
parityQ sRef. 18d or chargeC,19 both defined as a producthP. In practical calculations this means
that the metric is often being introduced in a suitably factorized form.20

It is worth adding that the quasiparity inh=QP is easily defined in some exactly solvable
examples18 while the charge inh=CP has immediate connotations in field theory.19 In between
these two extremes the authors of Ref. 7 revealed that the application of the formalism to the
particular NSW model proves facilitated by a perturbative connection between the NSW model
and a Hermitian square well. Their construction ofhsNSWd profited from the existence of a finite-
dimensional matrix approximation of the non-Hermitian part of the NSW Hamiltonian. A transi-
tion to the extended NSWT class of models looks promising and comotivates also our present
project.

Within such a framework we intend to pay attention to the family of Schrödinger equationss1d
where the interaction is non-Hermitian but manifestlyPT-symmetric. For the sake of definiteness
we shall contemplate the less interesting real part of the potential just in the most elementary
infinitely deep square-well form,

Vsxd = 5+ `

0

+ `
6 for 5x . L,

− L , x , L,

x , − L.
6 s2d

This means that all our wave functions must vanish at its walls,

cs− Ld = csLd = 0. s3d

By adding any imaginary interaction we break the Hermiticity of the Hamiltonian. By doing so in
the PT-symmetric manner we preserve a chance and good hope of having the energies real.2

For the sake of definiteness and in a way generalizing the NSW model of Ref. 9 we shall
assume that the Hermiticity-breaking termW is composed of two purely imaginary steps which
both vanish inside a subintervals−, ,,d of the intervals−L ,Ld,

Wsxd = 5+ ig,

0

− ig
6 for 5Rex . , . 0,

Rex P s− ,,,d,

Rex , − ,.
6 s4d

A priori, the strength of the Hermiticity-violating imaginary force may be expected proportional to
the couplingg.0 and inversely proportional to,,L.

Our interest in the particular two-parametric models4d results from the obvious need of an
enhancement of flexibility of its one-parametric NSW predecessor and also from the lasting
possibility of its rigorous mathematical description by means of the efficient moving-lattice
method of Ref. 13sreviewed also briefly in Appendix A belowd. Among additional purposes of the
study of the similar NSWT models one may list a search for reliable comparisons between
different potentials revealing, hopefully, some new, unnoticed characteristic features of their spec-
tra. One would like to understand, e.g., how the details of the shape ofWsxd could influence the
stability of the spectrum, or how one could control the domain of parameters where all the
energies remain real.

Some of the NSWT studies have been motivated by their potential capacity of mimicking the
properties of unsolvable models and, in particular, of one of the most popularPT-symmetric toy
interactionsWsxd= ix3.21 Some parallels are definitely there since in the latter unsolvable case the
spectrum was proved real, non-negative and discrete.22 Of course, there are always good reasons
for an introduction of more parameters in NSW. Thus, the new freedom of a weakening of the
non-Hermiticity by the choice of,.0 might simulate analogies with the Bender’s and Boettcher’s
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generalizedPT-symmetric familyWsxd=−sixd3−m characterized by an abrupt change of its spectral
properties atm=1 and by the spontaneous complexification of all the sufficiently high-lying
energies inside the intervalmP s1,2d of the shape parameter.2

The possibility of the latter correspondence passes an easy test at,=0 andL=` when the
general solutions of our Schrödinger Eq.s1d are mere exponentials at any realg.0. Once we
demand that they vanish in infinity we have

csxd =HB+ exps− sxd, s2 = ig − E, Re s . 0, x P s0,`d,

B− expss8xd, s82 = − ig − E, Re s8 . 0, x P s− `,0d.
J s5d

Whenx→0± the coincidence of the right and left limit ofcsxd itself specifies the normalization,
B+=B−, while the second matching rulec8s0+d=c8s0−d implies thats=−s8, i.e., Eq.s5d has no
solutions atg.0. It is of no avail to admit thatRe s→0 andRe s8→0 and to employ the
scattering boundary conditions since, unlessg=0, the matching-compatible states remain always
incompatible with our differential Schrödinger equation on a half-line.

We may conclude that both the discrete and continuous spectra are empty at,=0 for g.0 and
L=`. This reconfirms our above expectations since the emptiness of the spectrum also character-
izes the Bender’s and Boettcher’s toy interactionWsxd=−sixd3−m at the Herbst’s extreme shape
parameterm=2.23 At the same time, the spectrum abruptly ceases to be empty atm,2 sRef. 2d as
well as at,.0 while L=` scf. the proof of this assertion as given in Appendix B belowd.

II. THE METHOD

A. Wave functions and their matching

As long as our potential is piecewise constant at 0,,,L,` we may postulate

csxd = 5c−sxd = B− sinhk*sL + xd, x P s− L,− ,d,

c0sxd = C coskx+ iD sinkx, x P s− ,,,d,

c+sxd = B+ sinhksL − xd, x P s,,Ld,
6 s6d

wherek=s+ it, E=k2= t2−s2, g=2st.0 and wheres, t, andk are assumed real and, for the sake
of definiteness, positive. In other words, we assume that within a not yet specified nonempty
domain of parametersg and, the PT-symmetry of the wave functions remains unbroken. In the
way proposed in Ref. 9 we prescribe the phase,

csxd = real symmetric + imaginary antisymmetric

and deduce thatC andD are real. Next, we differentiate

c8sxd = 5c−8sxd = k*B− coshk*sL + xd, x P s− L,− ,d,

c08sxd = − kCsinkx+ ikD coskx, x P s− ,,,d,

c+8sxd = − kB+ coshksL − xd, x P s,,Ld,
6

and write down the following four matching conditions:

c−s− ,d = c0s− ,d, i.e., B− sinhk*sL − ,d = C cosk, − iD sink,,

c−8s− ,d = c08s− ,d, i.e., k*B− coshk*sL − ,d = kCsink, + ikD cosk,,

c+s,d = c0s,d, i.e., B+ sinhksL − ,d = C cosk, + iD sink,,
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c+8s,d = c08s,d, i.e., −kB+ coshksL − ,d = − kCsink, + ikD cosk,.

Two of them define thescomplexd values ofB± so that we are left with the pair of the matching
constraints,

skCsink, + ikD cosk,dsinhk*sL − ,d = sC cosk, − iD sink,dk* coshk*sL − ,d,

skCsink, − ikD cosk,dsinhksL − ,d = sC cosk, + iD sink,dk coshksL − ,d.

These two relations are complex conjugate of each other so that we must consider just one of
them, say,

skCsink, − ikD cosk,dsinhss+ itdsL − ,d = sC cosk, + iD sink,dk coshss+ itdsL − ,d s7d

with kù0.

B. Matching equations in the s–t–% space

After we abbreviates=ssL−,d, t= tsL−,d, and%=k,, Eq. s7d reads

%sL − ,dsC sin% − iD cos%dfsinhs cost + i coshs sintg = ,ss + itdsC cos% + iD sin%d

3fcoshs cost + i sinhs sintg. s8d

We must keep in mind that

t2 = s2 +
sL − ,d2

,2 %2

while the respective real and imaginary parts of Eq.s8d must be treated as independent equations

%sL − ,dsC sin% sinhs cost + D cos% coshs sintd

= ,fssC cos% coshs cost − D sin% sinhs sintd

− tsC cos% sinhs sint + D sin% coshs costdg s9d

and

%sL − ,dsC sin% coshs sint − D cos% sinhs costd

= ,fssC cos% sinhs sint + D sin% coshs costd

+ tsC cos% coshs cost − D sin% sinhs sintdg. s10d

In the next step we notice that the latter equations form a linear algebraic homogeneous set for the
two coefficientsC andD. They possess a nontrivial solution if and only if the secular determinant
D vanishes. After we abbreviateV=tan% s5 a quickly oscillating function of%d, T=tant s5 a
quickly oscillating function oftd andS=tanhs s5 a monotonous and bounded function ofsd we
can evaluateD. After a lengthy calculation the secular conditionD=0 acquires the following
compact form:

Xssd + Ystd + FsRdfxssd + ystdg = 0, s11d

where

Xssd =
1 + S2

1 − S2s2 = s2 cosh 2s,
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Ystd =
1 − T2

1 + T2t2 = t2 cos 2t,

xssd =
S

1 − S2s =
1

2
s sinh 2s,

ystd =
T

1 + T2t =
1

2
t sin 2t,

FsRd =
1 − V2

V
R=

2R

tan 2%
, % = %sRd =

,

L − ,
R.

We may rescale our couplingg=2Z/ sL−,d2 and conclude that ourZ-independent secular equation
s11d,

sin 2%sRdfs2 cosh 2s + t2 cos 2tg + Rcos 2%sRdfs sinh 2s + t sin 2tg = 0 s12d

only must be complemented by the two trivial constraints,

st = Z, t2 − s2 = R2. s13d

The triplets of rootsRn, sn, and tn of this triplet of equations withn=0,1, . . . define all the
bound-state energiesEn by the elementary formula

En =
1

sL − ,d2Rn
2 ;

1

sL − ,d2stn
2 − sn

2d. s14d

In an indirect check of the recipe we may recollect its,→0 si.e., %→0d limit and conclude that
our present Eq.s12d degenerates smoothly and correctly back to the known secular,=0 equation
fcf. Eq. s9d in Ref. 9g.

C. Matching in the moving-lattice representation

The basic tool for a rigorous analysis of the form of the solutions of our matching constraints
is the moving-lattice method of Ref. 13 as reviewed in Appendix A below. Skipping the majority
of details let us only note that for an analysis of this type, one of the recommended techniques
seems to be the reduction of the problem tos–t plane. Preserving the definition oft=tsN,td of
Appendix A and replacing the definition ofs=ssN,td by another formula,

s = ssN,t,K,rd = p 3ÎfN + tg2 + FL − ,

2,
sK + rdG2

,

we eliminate the coordinateR. A shortcoming of this approach is that our matching conditions12d
transferred into thes–t plane must be understood as the following quadratic equation fort:

Ftt
2 + vK,r,tt + VK,r,tssd = 0, s15d

where we abbreviated

vK,r,t =
sL − ,dpCt

2,Jr
sK + rd, VK,r,tssd = JrFs2 cosh 2s +

vK,r,t

Ct
s sinh 2sG .

This definest=tK,r,tsNd on the lattice, the “motion” of which will be controlled not only byt and
r but also, not so strongly, byK. Technically, the price to be paid is still reasonable—we get the
closed form of the matching-compatible functiont=tssd as the two well-known root formulas
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from Eq.s15d. Nevertheless, significant simplifications of the resulting picture may be mediated by
the direct inspection of the equations in question.

III. SOLUTIONS

A. Matching equations in the s–t plane

Building far-reaching analogies with the,=0 special case would be misleading because the
form of our matching constraints12d is discontinuous in the limit,→0. Thus, let us assume that
,Þ0 and study Eq.s12d in its full-fledged form. First, we abbreviateMss ,td=s sinh 2s
+t sin 2t and Nss ,td=s2 cosh 2s+t2 cos 2t and rewrite our matching constraints12d as the
secular equation

Dss,t,Rd = Qss,td +
tan 2%sRd

R
= 0, Qss,td =

Mss,td
Nss,td

. s16d

This enables us to formulate several obvious observations.
fO1g The shape of both the functionsMss ,td andNss ,td of two variables is easily deduced

using their separability,Xss ,td=Xss ,0d+Xs0,td, X=M ,N.
fO2g The smoothness of thes andt dependence of the denominatorNss ,td facilitates also

the determination of the shape ofFss ,td=1/Nss ,td.
fO3g In s–t plane we may visualize the shape of the second fraction ins16d as a function

which is constant along hyperbolasRss ,td=Ît2−s2=fixed.
All these innocent-looking observations have several far-reaching though not always obvious

consequences and form in fact a background for a rigorous analysis of the spectrum.

B. A rigorous graphical interpretation of Q„s ,t…

In more detail, observationfO1g means that the surfaces defined by the two non-negative
functionssd Xss ,0dù0 have the form of the two only slightly different parabolic valleys with the
same degenerate minimums=zerod which coincides with the axiss=0. The pertaining second
componentsXs0,td differ more from each other but both are adding a structurally similar perpen-
dicular set of infinitely many parallel hills and valleys possessing a steadily increasingsthough
always finited amplitude. As an obvious result of the superposition, both the resulting surfaces
Xss ,td cross the zero plane merely along certain ovalsOn

X, and both of them only get negative in
their interior.

The precise shape of these ovalssnumbered byn=0,1, . . .d may fully rigorously be deter-
mined using the moving-lattice methodscf. Appendix Ad but even without any use of the moving
lattices the qualitative character of their shape is obvious and we may conclude that the zero lines
of Mss ,td and Nss ,td form the families of ovalsOn

M and On
N located within the stripes oft

P fsn+1/2dp ,sn+1dpg and tP fsn+1/4dp ,sn+3/4dpg, respectively. All of them are symmetric
with respect to the reflections→−s and their size in thes direction increases witht.

Examples of these structures may be found in both Refs. 9 and 13 and another illustration
appears in Fig. 1 here. In fact, the figure displays another surfaceQss ,td=Mss ,td /Nss ,td
swithin a narrow window of 0øQø0.05d but the shape of the curve whereM vanishessO1

M

;V1d appears there clearly since the denominatorFss ,td=1/Nss ,td has its zeros, generically,
elsewherescf. observationfO2gd. Besides the ovalV1 sand a part ofO0

M;V0d the picture displays
another ovalO1

N;D1 of the zeros of the denominatorN. Incidentally it lies within the chosen
interval oftP s3,7d and remains visible due to a numerical artifact of a spurious projection of an
infinite discontinuity of the functionFss ,td.

Although the visibility of the discontinuities reflects just an imperfection of the graphical
representation of the surface, it will prove useful in what follows.
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C. The role of the second component of D†s ,t ,R„s ,t…‡

The presence of the subsurface generated by the second,R-dependent component
DsRdfRss ,tdg in Eq. s16d does not violate the separation betweens andt too muchscf. observa-
tion fO3gd. At the smallest absolute values ofs we may safely return to the approximation of
DsRdfRss ,tdg by a function of a single variable,ftan 2%sRdg /R<ftan 2,t / sL−,dg /t. This picture
only becomes deformed, at the largers, by being bent to the right, i.e., along hyperbolas
Rss ,td=constant.

A clear understanding of thet-dependence of the whole surfaceDfs ,t ,Rss ,tdg will be
obtained when we distinguish between the domain of the “smallt” (where ftan 2,t / sL−,dg /t
<2, / sL−,d is positive and virtually constant), “mediumt” (with the repeated quick growth of the
curve ftan 2,t / sL−,dg /t from minus infinity up to plus infinity within each interval of the con-
stant lengthDt=psL−,d /2,) and “larget” (where the values ofDsRdfRss ,tdg<1/t become very
small up to the very thin layers near the singularity hyperbolasHn). Due to the local dominance of
the latter singularitiesHn at anyn=0,1, . . . it iseasy to imagine that the sign of the whole function
Dfs ,t ,Rss ,tdg is positive and negative in their left and right vicinity, respectively. This “rule of
thumb” enables us to deduce the sign of the whole functionDfs ,t ,Rss ,tdg in all our figures.

D. The left-moving hyperbolic discontinuities Hn

In the domain of the small shifts,!1 the numerical values of theR-dependent component
DsRdfRss ,tdg of Eq. s16d remain almost constant and small. In this regime the above-mentioned
“small-t” constraintt! sL−,d /, is not particularly restrictive so that the matching-compatible
roots of equationD=0 remain very similar to their,=0 predecessors in quite a large leftmost
portion of thes–t plane. In our notation, the first few ovalsOn

D;Vn of the zeros of the secular
determinant stay only perturbatively shifted and deformed by an increase of,!1.

With the growth of, or l=, / sL−,d the leftmost discontinuity-hyperbolaH0 of the surface
Dfs ,t ,Rss ,tdg moves to the left and emerges in the right half of Fig. 2 where we choose the
scale-independent parameterl=11/40 which corresponds to,=11L /51. This means that we are
just leaving the domain of the small shifts,!1 so that the deformation of the nodal ovalO1

D

;V1 becomes perceivable, caused by the closeness ofH0 to the,-independent discontinuity oval
D1;O1

N inherited from the never-vanishing factorFss ,td=1/Nss ,td.
In a way which generalizes the illustrative Fig. 2, each hyperbolic singularityHk fdefined by

the equationRss ,td=sL−,dsk+1/2dp /, with k=0,1, . . .g moves to the left with the growth of,

FIG. 1. A thin slice through the surfaceQss ,td=M /N.
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and l. Once it gets close to theNth singularity ovalDN−1, it touches it at a point with the
coordinatesssind

sN,kd=0 andtsind
sN,kd=sN−1/4dp at the critical valuel=2, / sL−,d=s4k+2d / s4N−1d

;lsind
sN,kd of the shift.

With the further growth ofl the intersection of the hyperbola with the standing oval moves to
the left and disappears, curiously enough, at a certain pair of points with the “last-contact”usu
= ussoutd

sN,kdu.0 andt=tsoutd
sN,kd

, sN−3/4dp. The latter value lies slightly below the oval’s end. Let us

skip here the proof of this subtlety as not too relevant.

E. A completion of the list of the nodal lines

We are now prepared to detectall the nodal curves ofDfs ,t ,Rss ,tdg and to determine their
qualitative,-dependence in all the interval of,P s0,Ld and/or ofl=ls,dP s0,`d. For the first
inspiration we return to Fig. 2 where the oval of zerosO1

D;V1 cannot be interpreted as a mere
small perturbation ofO1

M in spite of the fact that the singularity hyperbolaH0 still did not touch
the singularity ovalO1

N;D1 sincel=0.275,lsind
s2,1d=2/7<0.286.

Still, the much more important observation made in Fig. 2 concerns the emergence of the new
curveW0 of the new zeros of the functionD. At the chosenl this curve just entered Fig. 2 at its
right side. Our next Fig. 3 confirms that the new nodal curveW0 moves to the left and gets
deformed in a way reflecting the presence of a steep oval dip inQss ,td belowt=2p. We choose
l=0.355 which is still safely smaller than the lower estimates4k−2d / s4N−3d=0.4 of the singu-
larity hyperbola’s “jumped-over” parameterlsoutd

s2,1d<0.403.

The “next-step snapshot” of Fig. 4 atl=0.395 shows how the same dip deforms the shape of
the ovalO1

D;V1 in the domain where the function ofR is small. In the subsequent Fig. 5 we
finally see how the two curves of the zeros merge while a topologically new situation is created
and sampled atl=0.415.lsoutd

s2,1d.

We may summarize that for the growingl the motion of the singular component tan 2%sRd /R
of our secular determinantDss ,td to the left gives a clear guide how to keep the, dependence of
its zero lines under full control. The emergence and the asymptotically hyperbolic shape of the
new sand, in fact, not quite expectedd nonoval curvesWm of zeros follows immediately from the
asymptotic smallness of the positive componentQss ,td,1/s2 of Dss ,td at the largerusu@1.

Due to the reasonably elementary character of the functionDss ,td we are able to understand

FIG. 2. A thin slice through the surface of the secular determinantDss ,td at l=, / sL−,d=0.275.
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that the pattern sampled by Figs. 2–5 is entirely universal. Always, step by step, the nodal ovalsVn

as well as their asymptotically hyperbolic nodal-line partnersWm become deformed by the exis-
tence of the dip in the numerator functionMss ,td.

Of course, after the hyperbola of singularitiesHk as well as its strongly deformed trailing
nodal curveWk “creep” over the fixed singularity ovalDj sas well as over its attached and strongly
deformed zero curveVjd, the smoother shapes of both the nodal curvesWk andVj are more or less
recovered, and only their ordering remains permanently reversed. In spite of the apparent nonlin-
earity of the “creeping-over” effects, their details might again be analyzed algebraically, using an
adapted version of the moving-lattice method of Sec. II C.

The most important reward compensating an increase in complexity of the latter recipe is that
one becomes able to treat one of the two roots of Eq.s15d, say, as a “nonperturbative” solution at
the small,. The most important example of its role are the hyperbolic nodal curvesWm which
move to the right int with the decrease of, and which disappear in infinity in the NSW limit of
,→0.

FIG. 3. Same as Fig. 2,l=0.355.

FIG. 4. Same as Fig. 2,l=0.395.
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IV. ENERGIES

A. Graphical representation and classification

On the background of the preceding material, what remains for us to do is a combination of
the above-described knowledge of the nodal lines ofDfs ,t ,Rss ,tdg with the coupling-
dependence constraints3t=Z=sL−,d2g/2. A sample of the intersections of this typesi.e., of a
typical final solutiond is offered in Fig. 6 wherel=2.40 is neither small nor large and where we
chooseZ=Zsad=1.00 andZ=Zsbd=2.24 s5 the critical “exceptional-point” value of Ref. 9d for
illustration. The conclusions which are illustrated by this graph have a general validity:

sid We always havet.s.0 which means that all the real bound-state energiesEn remain
positive atZ.0.

sii d Some of the energies remain real atanyvalue ofZ.0. They correspond to the intersections
of the hyperbolas=Z/t with the hyperbolic nodal linesWm and may be called “stable,”
E=Em

ssd.
siii d All the other energiesE=En

sud correspond to the intersections of the hyperbolas=Z/t with
the nodal ovalsVk. At a sufficiently smallZ the latter intersections remain realfsee the line
sad with Z=1 in Fig. 6g.

FIG. 5. Same as Fig. 2,l=0.415.

FIG. 6. Solutions atZsad=1.00 andZsbd=2.24, intersections marked by circles,l=2.4.
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sivd We may call the latter energies “unstable” as they merge in pairs and form complex
conjugate doublets4 beyond certain “exceptional-point”24 values of, andZ fillustration, the
line sbd in Fig. 6g.

The decomposition of the spectrum into its stable and unstable parts varies with, or l
=, / sL−,d in an obvious manner. Hence, the stability pattern in the spectrum will be entirely
different at the small and largel since in the former case the hyperbolic curvesWn only generate
the high-lying energies andvice versa.

B. Numerical construction

After all our previous detailed analysis of the qualitative features of the spectrum the numeri-
cal determination of energies becomes fully routine. Indeed, as long as we knowt=Z/s, the rule
t2−s2=R2 leads immediately to the definition of

s = ssRd =Î 2Z2

R2 + ÎR4 + 4Z2
. s17d

In parallel to such an introduction of the closed functions=ssRd of R we may return once more
to the recipet=Z/ssRd and re-read it as another explicit definition of the second auxiliary func-
tion tsRd=Z/ssRd of R.

In such a setting, the purely numerical determination of the bound-state energies is reduced to
the search for the rootsRn of Eq. s12d, i.e., of the zeros of the secular determinant,

D̂sRd = fs2sRdcosh 2ssRd + t2sRdcos 2tsRdgsin 2lR+ RfssRdsinh 2ssRd + tsRdsin 2tsRdgcos 2lR

s18d

converted now in the function of the single variableR,ÎE. An illustration of such a search is
given in Fig. 7 at a fixed choice ofZ=2. The quadruplet of the graphs of the secular determinant

FIG. 7. Four rescaled graphs of the functionD̂sRd.
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D̂sRd=DfssRd ,tsRd ,Rg is presented there at the four different values 1.25, 1.35, 1.45, and 1.55 of
l sindicated along the vertical axisd. In each of these graphs we magnified the vertical units near

D̂sRd<0 and compressed them to a single point representing all the bigger values ofuD̂sRduù«.
In this way the picture samples the left-hand side of Eq.s18d solely near its zeros. Our magnifi-
cation of the vertical dimension marks these zeros by the virtually straight parts of the curve which
are seen as practically perpendicular to the horizontal axis.

The set of graphs in Fig. 7 illustrates thel dependence of the bound-state rootsRn. We see
that a pair of the unstable energies may merge and cease to be real after a fine-tuned growth ofl.
This illustrates the complexification of the unstable energies which isnot caused by the growth of
Z but rather by the growth ofl. At the first sight this phenomenon looks like a paradox because
we are nowweakeningthe non-Hermiticity in fact. Fortunately, this paradox is still easily under-
stood once we imaginesand check, say, in the spirit of Figs. 2 and 3d that the growth ofl “pushes”
all the zerossincluding of course also the nodal oval in questiond to the left. Of course, this oval
cannot get prolonged in thes direction because the functionMss ,td itself grows too quickly with
s. This implies that the two real intersections of the oval with the hyperbolas=Z/t disappear
because the latter curve grows to the left.

In the light of an additional scaling in Eq.s14d one may only admire the subtlety of the
phenomenon, the verification of which very much profits from the exact solvability of the model.
An independent confirmation of the absence of any contradictions may be also offered via a
further simplification of mathematics. This inspires us to pay particular attention to the “most
counterintuitive” limiting case whereL→`. Such an analysis may be of an independent interest as
it simulates, very roughly, the shape of the most popular antisymmetric and purely imaginary
potentialVsxd, ix3 with real spectrum.22 As long as this discussion already lies somewhat beyond
the scope of the present text, it is moved to Appendix B.

V. CONCLUSIONS

After more than 10 years of an intensive research many people now seem to believe that we
now better understand the key problems related to the so-calledPT-symmetric as well as to many
other similar non-Hermitian models or, in the more rigorous terminology, to all the models where
the metric remains nontrivial,hÞ I.25 By the way, not all the related results are new. For example,
Scholzet al.26 sinspired, presumably, by a few earlier mathematical as well as physical publica-
tionsd studied the similarhÞ I models more than 10 years ago and coined the name “quasi-
Hermitian” for them.

Still, one cannot deny that during the last 7 years, a new and intensive excitement has been
caused by the discoveries of the reality of the spectra in manyPT-symmetric models. The em-
phasis of the research has been shifted, typically, to the explicit constructions of the chargeC sRef.
20d or to the more detailed analysis of what happens at the “exceptional” points where the reality
of the spectrum is being lost.24,27A few unusual features exhibited by our present model seem to
offer another welcome and clear intuitive guidance in this area.

We found our results interesting since the merger and subsequent spontaneous complexifica-
tion of some “twin” pairsEs±twind of the energies cannot be easily described within the usual
textbook models where the metric is “trivial,”hstriviald= I. It is also in this context where consid-
erations based on our present model could lead to a deeper insight in the underlying mechanisms
and mathematics, not only because our model is solvable but also because it proves able to provide
different “twin-merging” patterns in the spectrum. Indeed, by the choice of the shape parameter,
we may, up to a large extent, prescribewhich particular excitationsssay, in the low-lying spec-
trumd should remain robustly stable and which ones should form the unstable, fragile “twins”
merging at some sufficiently large couplingsgscriticald.

In the similar constructions and studies, one might feel hesitant whether his/her models should
be simpler or more realistic. We believe that one should transfer the insight gained in the solvable
modelsslike in the present oned to all the more realistic applications where just some approximate
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methods can be used. In this sense we already mentioned a parallelism between the role of the
shift , in our solvable model and of the exponentm in the power-law potentials with
PT-symmetry.

It is encouraging to see that a certain nontrivial enrichment of the merging pattern has been
detected, more or less in parallel, within the class of the power-law forces.27 In this comparison,
our present model’s merit lies in its exact solvability. Definitely, it proves able to offer a compa-
rably rich pattern of the mergers of the levels.

This being said, thekeyphenomenological and “model-building” specific merit of our present
new version of thePT-symmetric square-well model is still to be seen in the “global” structure of
its spectrum. There, one observes that the “fragile” and the “robust” levels seem to form the two
sets which may be moved with respect to each other as a whole. Thus, thewhole spectrum
becomes “almost completely robust” in one extremeswhich is “almost Hermitian”d and “almost
all fragile” in another extreme which is, near,<0, “maximally non-Hermitian.”
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APPENDIX A: THE METHOD OF MOVING LATTICE

Secular Eq.s12d and its descendants contain quickly oscillating trigonometric functions of
arguments 2t and 2%. In the spirit of Ref. 13 it makes sense to reparametrize both these variables
according to the rules

t = tsN,td = pN + pt, N = 0,1, . . . , t P s0,1d,

% = pK + pr, K = 0,1, . . . , r P s0,1d

which separate their “large” changesby an integer multiple of the period 2p so that the trigono-
metric function itself remains unchangedd from a “small” changefwithin one periods0,2pdg.
Thus, once we define

C = sin 2t = sin 2pt, F = cos 2t = cos 2pt,

J = − tan 2% = − tanpr ,

all our trigonometric functions in question become independent of both the integer variables.
Thus, once we decide to work, say, in thes–R plane, we simply introduce a latticeLt,r of points
with coordinates

s = ssN,td =
Z

tssd
=

Z

pN + pt

and

R=
L − ,

,
%sRd =

psL − ,d
2,

sK + rd,

where tP s0,1d and r P s0,1d are fixed whileN=0,1, . . . andK=0,1, . . . remain variable. Our
secular equations12d then becomes more easily analyzed at the fixedtP s0,1d andr P s0,1d when
it may be re-read as a simplified mappings→R with

R= Rt,rssd = Jr 3
s4 cosh 2s + Z2Ft

s3 sinh 2s + sZCt
, sA1d

i.e., Rt,r <Jrusu at usu@1 while
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Rt,r <
Z

s
3

FtJr

Ct

at usu!1, etc. In the subsequent step, remembering that the latter formulas hold on the lattice
Lst ,rd only, we must let this lattice move with the variation oft and/or r. Within each box
numbered by the pairsN,Kd of non-negative integers we would be able to rederive all the quali-
tative geometric considerations of Sec. III in an alternative, quantitative manner.

APPENDIX B: SHALLOW WELL

In the infinite-size limitL→` our model degenerates to a purely imaginary square well with
asymptotic boundary conditions

cs±`d = 0 sB1d

and with thePT-symmetric matching conditions in the origin,

cs0d = 1, ]xcs0d = iG. sB2d

This means that we have the general solution

csxd = Hcoskx+ B sinkx, x P s0,,d, k2 = E,

sL + iNdexps− sxd, x P s,,`d, s2 = iT2 − k2,
J sB3d

with T=Îg and with the the purely imaginary constantB= iG /k.

1. Matching conditions at x =ø

Let us splits=p+ iq in its real and imaginary part withp,qù0. This gives the rulesp2+k2

=q2 and 2pq=T2, easily reparametrized in terms of a single variablea,

p = q cosa, k = q sina, q =
T

Î2 cosa
, a P s0,,/2d. sB4d

The standard matching at the point of discontinuity is immediate,

cosk, + B sink, = sL + iNdexps− s,d,

− sink, + B cosk, = −
s

k
sL + iNdexps− s,d.

After we abbreviates /k=−tanV,, we get an elementary complex condition of the matching of
logarithmic derivatives atx=,,

G = − ik tansk + Vd,. sB5d

Its real part defines our first unknown parameter,G=Gsad. Due to our normalization conventions,
the imaginary part of the right-hand-side expression must vanish, Reftansk+Vd,g=0. An elemen-
tary rearrangement of such an equation acquires the form of an elementary quadratic algebraic
equation forX=tank,. Its two explicit solutions read

X1 =
p + q

k
, X2 =

p − q

k
sB6d

or, after all the insertions,

tanF ,T sinas+d

Î2 cosas+dG = tanF, − as+d

2
G , sB7d
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tanF ,T sinas−d

Î2 cosas−dG = tanF−
as−d

2
G . sB8d

These equations specify, in implicit manner, the two respective infinite series of the appropriately
bounded real rootsa=an

s±dP s0,, /2d.

2. Energies

For aP s0,, /2d the left-hand-side arguments in Eqs.sB7d andsB8d run from zero to infinity
and the functions oscillate infinitely many times from minus infinity to plus infinity. In contrast,
the limited variation of the argumenta makes both the right-hand side functions monotonic, very
smooth and bounded, tanfs,−as+dd /2gP s1,`d and tanfas−d /2gP s0,1d. This indicates that our
rootsk=ksan

s±dd will all lie within well determined intervals,

kn
s+d P Sn +

1

4
,n +

1

2
D, n = 0,1, . . . ,

km
s−d P Sm+

3

4
,m+ 1D, m= 0,1, . . . .

An additional merit of parametrizationsB4d lies in an unambiguous removal of the tangens
operators from both Eqs.sB7d and sB8d. This gives

kn
s+d = n +

1

2
−

vn
s+d

4
, km

s−d = m+ 1 −
vm

s−d

4
, vn

s±d =
2an

s±d

,
P s0,1d.

After a change of notation withvn
s+d=v2n andvn

s−d=v2n+1, we may finally combine the latter two
rules in the single secular equation

sinS,

2
vND =

2N + 2 −vN

4T
·Î2 cosS,

2
vND, N = 0,1, . . . . sB9d

In a graphical interpretation this equation represents an intersection of a tangenslike curve with the
infinite family of parallel lines. This is illustrated in Fig. 8. The equation generates, therefore, an
infinite number of real rootsvNP s0,1d at all the non-negative integersN=0,1, . . .. Thediscrete
spectrum is unbounded from above and remains constrained by the inequalities

sN + 1/2d2

4
ø EN ø

sN + 1d2

4
sB10d

independently of the couplingT.

3. Wave functions

EquationsB5d in combination with Eqs.sB7d and sB8d determines the real parameter

G = Gs±d = −
k2

q ± p
sB11d

responsible for the behavior of the wave functions near the originfremember thatB= iG /k in Eq.
sB3dg. For its deeper analysis let us first introduce an auxiliary linear function ofv andN,
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ÎRsvN,Nd =
2N + 2 −vN

4T
P SN + 1/2

2T
,
N + 1

2T
D

and reinterpret our secular Eq.sB9d as an algebraic quadratic equation with the unique positive
solution,

cosS,

2
vND =

1

RsvN,Nd + ÎR2svN,Nd + 1
. sB12d

This is an amended implicit definition of the sequencevN. As long as the right-hand side expres-
sion is very smooth and never exceeds one, the latter formula reverifies that the rootvN is always
real and bounded as required.

In the weak coupling regimesi.e., in the domain of the large and almost constantR@1 with
the small square-well heightT or at the higher excitationsd, our new secular equationsB12d gives
a better picture of our bound-state parametersvN=1−hN which all lie very close to one. The
estimate

,

2
hN = arcsin

1

R+ ÎR2 + 1
<

1

2R
−

5

48R3 + ¯

represents also a quickly convergent iterative algorithm for the efficient numerical evaluation of
the rootsvN. One can conclude that in a way compatible with oura priori expectations, the value
of p=pN=Res<q/2R is very close to zero and, as a consequence, the asymptotic decrease of our
wave functions remains slow. We haveq=qN=Im s<k so that, asymptotically, our wave func-
tions very much resemble free waves exps−ikxd. In the light of Eq.sB11d we have alsocsxd
<exps−ikxd near the origin.

In the strong coupling regimesi.e., for very smallR representing, say, the low-lying excita-
tions in a deep well withT@1d we get an alternative estimate

FIG. 8. Graphical solution of Eq.sB9d sy=vN/2 ,T=1d
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,

4
vN = arcsinÎ1

2
fR− sÎ1 + R2 − 1dg <

1

2
R−

1

4
R2 + ¯ !

,

4
.

In the extreme ofR→0 the present spectrum of energies moves towardssand precisely coincides
withd the well-known levels of the infinitely deep Hermitian square well of the same width
I =s−, ,,d. In this sense, the “complex-rotation” transition from the Hermitian well to its present
non-HermitianPT-symmetric alternative proves amazingly smooth.

The wave functions exhibit the similar tendency. In the outer region, they are proportional to
exps−pxd and decay very quickly sincep=OsR−1/2d. The parameterGs±d becomes strongly super-
script dependent,

Gs+d = −
k2

q + p
= OsR3/2d, Gs−d = − sq + pd = OsR−1/2d.

This means that in the interior domain ofxP s−, ,,d, the wave functions with the superscript
s+d and s−d become dominated by their spatially even and odd components coskx and sinkx,
respectively. In this sense, the superscript mimicssor at least keeps the trace ofd the quantum
number of the slightly broken spatial parityP.
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In the hydrodynamic formulation of the scale relativity theory one shows that a
stable vortices distribution of bipolaron type induces superconducting pairs by
means of the quantum potential. Then, usual mechanismssas, for example, the
exchange interaction used in the bipolaron theoryd are reduced to the coherence on
the subquantum medium, the superconducting pairs resulting as a one-dimensional
projection of a fractal. The temperature dependences of the superconducting pa-
rametersscoherence length, critical speed, pair breaking time, carriers concentra-
tion, penetration depth, critical field, critical currentd and the concordance with the
experimental data and other theories are analyzed. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1904163g

I. INTRODUCTION

One of the modern theories which deals with high-temperature superconductivity is the bipo-
laron theory.1,2 The bipolarons are pairs of spin polarons with zero total spin like the Cooper pairs
from the Bardeen–Cooper–SchrieffersBCSd theory,3 but unlike the Cooper pairs, the spin polarons
form pairs in the real space and not only close to the energy intervalD centered on the Fermi level.
The bonding forces acting between the spin-polarons constituting the bosonsbipolarond are
exchange-type forces. Under these circumstancesD corresponds to the superconducting gap, and
TC is the temperature for Bose–Einstein gas to become degenerate. As an example, between the
Cu–O planes spin polarons are formed, and they consist of holes and electrons; the holes originate
from O–2p and the electrons from the Cu–3d orbitals. They become ordered as in Fig. 1sad.1,2 The
exchange mechanism between the spin-polarons leads to a stable distribution—the bipolarons
fFig. 1sbdg which endow the material with superconducting properties.

More recently, some superconducting properties have been explained by considering the
charge carriersselectrons and holesd are quantized vortexlike objects, ordered in two vortex streets
having antiparallel vortices.4 The interaction between these vortexlike objects is mediated by a
subquantum level with superfluid properties. For superconducting matter the status of such a
medium is imposed by the hydrodynamic formulation of the scale relativitysSRd theory,5 a unique
mechanism inducing superconductivity, by means of a fractal stringsa string in a fractal space–
timed.

Having in view these results, in the present paper we suggest new mechanisms for approach-
ing superconductivity. Accordingly, once given the distribution from Fig. 1sad we substitute the

adAuthor to whom correspondence should be addressed: Stradela Florilor, nr. 2, Iasi - 700514, Romania. Electronic mail:
magop@phys.tuiasi.ro
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exchange interactionsused in the bipolaron theoryd by the sub quantum medium interaction.
Superconducting pairs result, as being a one-dimensionals1Dd projections of a fractal and the
temperature dependences of the superconducting parameters.

II. SCALE RELATIVITY HYDRODYNAMIC EQUATIONS, QUANTUM POTENTIAL,
DYNAMIC AND STATIC STATES

The SR theory extends Einstein’s principle of relativity to scale transformation of resolution.
It is based on the giving up of the axiom of differentiability of the space–time continuum. Three
consequences arise from this withdrawal5 sfor details see Appendix Ad: sid The geodesics of a
nondifferentiable space–time are fractal and in infinite number, this leads one to use a fluidlike
descriptionv=vfxstd ,tg and implies adding new terms in the differential equations of the mean
motion; sii d the geometry of space–time become fractal, i.e., explicitly resolution dependent; this
allows one to describe a nondifferentiable physics in terms of differential equation acting in the
scale space. The requirement that these equations satisfy the principle of SR leads to introduce
scale laws having a Galilean formsconstant fractal dimensiond, then a log-Lorentzian form. In this
framework, the Planck length-time scale becomes minimal impassable scale, invariant under di-
latations, and the cosmic length scalesrelated to the cosmological constantd a maximal one. Recent
measurements of the cosmological constant have confirmed the theoretical predicted value.6 Then
we attempt to construct a generalized SR, which includes nonlinear scale transformations and
scale-motion coupling. In this last framework, one can interpret gauge invariance as scale invari-
ance on the internal resolutions. This approach allowed us to make theoretical predictions con-
cerning coupling constants and elementary particle massesselectron, Higgs boson, vacuum energy
of Higgs fieldd. These predictions are successfully checked using recently improved experimental
values. Each elementary displacement is then described in terms of the sum, dX=dx+dj, of a
mean classical displacement dx=v dt and of a fractal fluctuation dj, whose behavior satisfies the
principle of SR. It is such thatkdjl=0 andkdj2l=2D dt. The existence of this fluctuation implies
introducing new second order terms in the differential equation of motion;siii d time reversibility
is broken at the infinitesimal level, this can be described in terms of a two-valuedness of the
velocity vector, for which we use a complex representation,V =sv++v−d /2−isv+−v−d /2.

These three effects can be combined to construct a complex time-derivative operator

d/dt = ]t + V · ¹ − iDD, s1d

where the mean velocityV =dx/dt is now complex, andD is a parameter characterizing the fractal
behavior of trajectoriessfor details of this problem see Appendix Ad.

FIG. 1. sad The holes and electrons distribution between the Cu–O planes associated to the distribution of zeros and poles
of the potentials63d. sbd The bipolarons distribution induced by means of the exchange mechanism.
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Let us consider the covariant derivatives1d and theV complex velocity5

V = − 2iD ¹ ln c s2d

Applying thed /dt covariant derivative to theV complex velocity, we obtain

sd/dtdV = − 2iDf]ts¹ ln cd − 2iDs¹ ln c · ¹ ds¹ ln cd − iDDs¹ ln cdg s3d

or still, considering the identity5

¹sDc/cd = Ds¹ ln cd + 2s¹ ln c · ¹ ds¹ ln cd,

s4d
sd/dtdV = − 2D ¹ fis]tc/cd + DsDc/cdg.

For a fractal space–time, Newton’s second principle takes the form

msd/dtdV = − ¹ U s5d

or explicitly

¹U = f2imDs]tc/cd + 2mD2sDc/cdg s6d

with U the potential.
Integrating this equation yields

D2Dc + iD]tc =
U

2m
c s7d

up to an arbitrary phase factorastd which may be set to zero by a suitable choice of the phase of
c. If there is no external fied,U=0, the convariance is explicit, since Newton’s equation of inertial
motion

sd/dtdV = 0.

The hydrodynamic model in the nondifferentiable space–time is built, replacing the complex
velocity V=−2iD ¹ lnsAeiSd sA the amplitude andS the phased, i.e.,

V = v + iu, s8ad

v = 2D ¹ S, s8bd

u = − iD ¹ ln r, s8cd

r = A2 s8dd

in s3d and replacing it ins5d. It first follows that

− m−1 ¹ ·U = h]tsv − iD ¹ ln rd + fsv − iD ¹ ln rd · ¹ gsv − iD ¹ ln rd − iDDsv − iD ¹ ln rdj.

s9d

Using the identities

D ¹ = ¹ D, s10ad

s¹ f · ¹ ds¹ fd = 2−1 ¹ s¹ fd2, s10bd
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f−1Df = D ln f + s¹ ln fd2, s10cd

and separating ins9d the real and the imaginary partsfup to an arbitrary phase factorbstd which
may be set to zero by a suitable choice of the phase ofcg we obtain

ms]tv + sv · ¹ dvd = − ¹ sU − Qd, s11ad

]tr + ¹ · srvd = 0, s11bd

whereQ is the quantum potential and has the expression7

Q = − 2mD2¹2Îr

Îr
. s12d

Another form ofs12d, i.e.,

Q = − mD¹ ·u − 1
2mu2 s13d

is obtained combining the imaginary partu, s8cd of the complex velocitys8ad, with the relation
s12d using the identitys10cd. Thus, the quantum potential depends only on the imaginary part of
the complex velocity. Sinceu arises of nondifferertiability according to the nondifferentiable space
model of quantum mechanics, it might be stressed that the quantum potential comes from the
nondifferentiability of the quantum space–timessubquantum mediumd.

The wave function ofCsr ,td is invariant when its phase changes by an integer multiple of 2p.
Indeed, Eq.s8bd gives

R mv dr = 2mDR dS= 4pnmD, n = 0, ± 1, ± 2, . . . s14d

a condition of compatibility between the SR hydrodynamic model and the wave mechanics.8

For D=" /2m* with m* =2me the mass of the Cooper pair the relations14d becomesrp ·dr
=nh. This result can be identified with the quantification law of the gravitomagnetic fluxfg

=nf0g with f0g=h/2me the gravitational fluxoid. Indeed, the generalized momentum of the Coo-
per pair in the gravitomagnetic fieldBg= ¹ 3Ag with Ag the potential vector of the gravitomag-
netic field,Pg=2mev+2meAg="¹S+2meAg is null, i.e.,Pg;0.9

Through integration we obtain

qR ¹ S= ± 2pnq = 2meR Ag · dr = 2meE E
]S

Bg · dÓ = 2mefg,

i.e.,9

fg = nf0g, f0g = h/2me.

In the magnetic fieldB= ¹ ÃA with A the potential vector of the electromagnetic field, the
generalized momentum of the Cooper pairP=q¹S+2eA is null, i.e.,P=0.2 From here, by means
of integration follows that

"R ¹ S= ± 2pnq = 2eR A dr = 2eE E
]S

B · dÓ = 2efe.

the quantization law of the magnetic flux,2

fe = nf0e, f0e = h/2e,

with f0e the magnetic fluxoid.
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The set of Eqs.s11ad ands11bd represents a complete system of differential equations for the
fields rsr ,td andvsr ,td; relation s14d relates each solutionsr ,vdn with the wave solutionC in a
unique way.

The fieldrsr ,td is a probability distribution, namely the probability of finding the particle in
the vicinity dr of the pointr at time t,

dP = r dr , s15ad

eeer dr = 1, s15bd

the space integral being extended over the entire area of the system. Any time variation of the
probability densityrsr ,td is accompanied by a probability currentrv pointing towards or outward
from the corresponding field pointr fEq. s11bdg.

The position probability of the real velocity fieldvsr ,td fEq. s11adg, varies with space and time
similar to a hydrodynamic fluid placed in the force field of an external potentialUsr ,td and a
quantum potentials12d. The fluid sin the sense of a statistical particles ensembled exhibits, how-
ever, an essential difference compared to an ordinary fluid, in a rotation motionvsr ,td increases
sdecreasesd with the decreasingsincreasingd distancer from the centerfEq. s14dg.

The expectation values for the real velocity field and the velocity operatorv̂=−2iD¹ sRef. 5d
of wave mechanics are equal,

kvl = eee rv dr = eee C* v̂C dr = kv̂lWM, s16d

but in the higher order,unu.2, similar identities are invalid, namelykvnlÞ kvnlWM. The expecta-
tion for the quantum force vanishes at all timesstheorem of Ehrenfest8d, i.e.,

k− ¹ Ql = eee rs− ¹ Qddr = 0 s17d

or explicitly

2mD2 eee r ¹ S¹2Îr

Îr
Ddr = mD2R sr ¹ ¹ ln rd · dó = 0. s18d

Two types of fractal stationary states are to be distinguished.sid Dynamic states. For] /]t
=0 andvÞ0, Eqs.s11ad and s11bd give

¹S1

2
mv2 + U − 2mD2¹2Îr

Îr
D = 0, s19ad

¹srvd = 0, s19bd

namely

1

2
mv2 + U − 2mD2¹2Îr

Îr
= E, s20ad

rv = ¹ 3 F. s20bd

Consequently, inertiamv ·¹v, exterior forcess−¹Ud, and quantum forcess−¹Qd are in balance
at every field pointfEq. s19adg. The sum of the kinetic energymv2/2, externalsUd, and quantum
potential energysQd is invariant, i.e., equal to the integration constantEÞEsr d fEq. s20adg. E
;kEl represents the total energy of the dynamic system. The probability flow densityrv has no
sourcesfEq. s19bdg, i.e., its streamlines are closedfEq. s20bdg. sii d Static states. For] /]t=0 and
v=0, Eqs.s11ad and s11bd give
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¹SU − 2mD2¹2Îr

Îr
D = 0, s21d

i.e.,

U − 2mD2¹2Îr

Îr
= E. s22d

The exterior forces−¹Ud is balanced by the quantum forces−¹Qd at any field pointfEq. s21dg.
The sum of the exteriorsUd and interior sQd potential energy is invariant, i.e., equal to the
integration constantEÞEsr d fEq. s22dg. E;,E. represents the total energy of the fractal static
system.

In the general case, makingU=0 in Eq. s11ad, multiplying it by r and taking into account
s11bd, it becomes10

]tsmrvkd + ]xi
smrvivkd = − r]xk

f2mD2r−1/2]xl
]xl

r1/2g. s23d

Using the notation10

pik = mrvivk − sik, s24ad

sik = mrD2]xl
]xk

sln rd, s24bd

Eq. s23d takes the simple form10

]tsmrvkd = − ]xl
pik. s25d

The analogy with classical fluid mechanics works will if one introduces the cinematic10

n = D/2 s26d

and dynamic

h = 1
2mDr s27d

viscosities. Under these circumstancespik defines the momentum flux density tensor andsik the
internal stress tensor

sik = hs]xk
ui + ]xl

ukd. s28d

Since froms24ad and s24bd one can see that the internal stress tensor is built using the quantum
potential, the equations of hydrodynamic model in the nondifferentiable space–time are nothing
but a system of equations of the Navier–Stokes type where the quantum potential plays the role of
an internal stress tensor. Then the dynamical regime implies the system of equations of Navier–
Stokes type, a system which is generally difficult to be solved.

III. STATIC STATES AND KINK TYPE SOLUTIONS

Assimilating the coherent quantum fluid particlesof superfluid or superconducting typed with
the vortex type objects, one finds thatU=Ar with A=AsG ,ŝd=const—see Appendix Bsfor details
on this problem see also Ref. 8d. First, from s22d it results

Dsrd1/2 +
E

2mD2r1/2 −
A

2mD2r3/2 = 0 s29d

and with the substitutions
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j = sE/2mD2d−1/2, s30ad

f = sAr/Ed1/2, s30bd

xr = sx/jd, s30cd

yr = sy/jd, s30dd

zr = sz/jd, s30ed

it results in the non linear differential equation

Df + fs1 − f2d = 0. s31d

We will restrict to thes1Dd case, this is

d2f

dxr
2 = f3 − f , s32d

Multiplying both sides of Eq.s32d by sdf /dxrd, and performing integration overxr we obtain

df

dxr
=Î1

2
f4 − f2 + C, s33d

where

C = FS df

dxr
D2

−
1

2
f4 + f2G

x=xr
0
. s34d

Equations34d is obviously a restriction imposed on the order parameter,f, showing the boundary
conditions. A further integration of Eq.s33d leads to

xr − xr
0

Î2
=E

0

f df

Îsf1
2 − f2dsf2

2 − f2d
, s35d

where

f1,2
2 = 1 7 Î1 − 2C. s36d

By the change of variablew= f / f1, Eq. s35d becomes

f2
xr − xr

0

Î2
=E

0

f/f1 dw

Îs1 − w2ds1 − k2w2d
, s37d

where we made the notation

k ; f1/f2. s38d

Writing f1 and f2 in terms ofk, f1
2=s2k2/1+k2d , f2

2=s2/1+k2d, Eq. s37d becomes

xr − xr
0

Î1 + k2
=E

0

w1 dw

Îs1 − w2ds1 − k2w2d
, s39d

where the superior limit is
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w1 = fÎ1 + k2

2k2 .

We distinguish two cases,sid kø1 andsii d kù1. In both cases, Eq.s39d can be solved in the
terms of the Jacobian elliptic functions, snsuukd, of argumentu and modulusk.11

sid For kø1, the class of solutions of Eq.s39d becomes

f =Î 2k2

1 + k2snSU xr − xr
0

Î1 + k2UkD . s40d

In the limit k→0, Eq. s40d can be approximated as

f =Î 2k2

1 + k2sinS xr − xr
0

Î1 + k2D → 0 s41d

and fork→1 one obtains the kink solution

f =Î 2k2

1 + k2thS xr − xr
0

Î1 + k2D . s42d

It is well known that the Ginzburg–Landau modelsGLMd also supports two solutions, zero
and hyperbolic tangent which correspond to the Cooper pair.2

sii d If k.1, by the substitutionh= fw, Eq. s39d becomes

k
xr − xr

0

Î1 + k2
=E

0

h1 dh

Îs1 − h2/k2ds1 − h2d
s43d

with

h1 = fÎ1 + k2

2

which gives the class of solutions

f =Î 2

1 + k2snSU xr − xr
0

Î1 + k2
kU1

k
D . s44d

We are able now to get the expressions of some superconducting parameters. Thus, from Eqs.
s39d ands43d, by integration and using the relation which defines the relative coherence length,2 it
results in

jr = H s1 + k2d1/2Kskd, k ø 1, s45ad
k−1s1 + k2d1/2Ks1/kd, k . 1, s45bd

whereKskd is the complete elliptic integral of the first kind,11 Kskd=e0
p/2s1−k2 sin2 wd−1/2 dw.

The relative critical speed

vr = H s1 + k2d−1/2K−1skd, k ø 1, s46ad
ks1 + k2d−1/2K−1s1/kd, k . 1, s46bd

and the relative pair breaking time

tr = H s1 + k2dK2skd, k ø 1, s47ad
k−2s1 + k2dK2s1/kd, k . 1 s47bd

are deduced froms45ad and s45bd and the relations which define these parameters.2
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In the 1D case, we can express the relative superconducting carrier concentration as

nr = uf u2 = 5
2k2

1 + k2sn2SU xr − xr
0

Î1 + k2UkD, k ø 1, s48ad

2

1 + k2sn2SU ksxr − xr
0d

Î1 + k2 U1

k
D, k . 1. s48bd

In order to establish a direct connection with experimental observations in the physical systems,
the acquired spatial dependence ofnr can be cancelled by averaginguf u2 on a period, 2K,

nr =5
2

1 + k2S1 −
Eskd
Kskd

D, k ø 1, s49ad

2

ks1 + k2dS1 −
Es1/kd
Ks1/kdD, k . 1, s49bd

where Eskd is the complete elliptic integral of the second kind of modulusk sRef. 11d Eskd
=e0

p/2s1−k2 sin2 wd1/2 dw.
By using Eqs.s49ad ands49bd and the London definition of the penetration depth,2 we obtain

the relative penetration depth in the case of spatial gradients

lr =5 F 2

1 + k2S1 −
Eskd
Kskd

DG−1/2

, k ø 1, s50ad

F 2

ks1 + k2dS1 −
Es1/kd
Ks1/kdDG−1/2

, k . 1. s50bd

For the relative critical field, we derive the expression

Br =5
2

1 + k2Î2S1 −
Eskd
Kskd

D , k ø 1, s51ad

2

ks1 + k2d
Î2S1 −

Es1/kd
Ks1/kdD , k . 1. s51bd

The relative critical current density

j r =5
2

s1 + k2d3/2S 1

Kskd
−

Eskd
K2skd

D , k ø 1, s52ad

2

s1 + k2d3/2S 1

Ks1/kd
−

Es1/kd
K2s1/kdD , k . 1 s52bd

is obtained froms46ad, s46bd, s49ad, ands49bd and the expression which definesj r.
The important characteristics of the material versusk are illustrated in Figs. 2sad–2sgd. One

can notice a clear discontinuity atk=1 for all superconducting parameters. This leads to the idea
that the pointk=1, could be associated with the transition from superconducting into normal state.

IV. TEMPERATURE DEPENDENCES OF THE SUPERCONDUCTING PARAMETERS

Probably the most important physical consideration which concerns our results, from the
applicative point of view, is that we need to introduce the temperature dependences of the super-
conducting parameters. Taking into account that all the superconducting parameters suffer a dis-
continuity for k=1 fas can been seen in Figs. 2sad–2sgdg, one can admit the following functional
dependence of the modulus of the elliptic function on the reduced temperature:
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k = t = T/TC. s53d

To avoid the confusion and to obtain the exact temperature dependences of the superconducting
parameters, we will admit adequate normalizations of these parameters and the restrictionk,1.
Thus, the dependence ont of the coherence length is

sjstd/js0dd = s2/pds1 + t2d1/2Kstd. s54d

Figure 3sad shows the relations54d in comparison with the one given by the BCS theory,2 i.e.,
sjstd /js0dd=s1−t2d−1/2 sdashed lined. In the relations54d Kstd=e0

p/2s1−t2 sin2 wd−1/2 dw.
The dependence ont of the critical speed is

svCstd/vCs0dd = sp/2ds1 + t2d−1/2K−1std. s55d

In Fig. 3sbd one can see the comparison between thes55d dependence and the one given by the
BCS theory,2 i.e., svCstd /vCs0dd=s1−t2d1/2 sdashed lined.

The dependence ont of the pair breaking time is

ststd/ts0dd = s4/p2ds1 + t2dK2std. s56d

Figure 3scd presents together the dependences56d and the one given by BCS theory,2 i.e.,
ststd /ts0dd=s1−t2d−1 sdashed lined.

Comparing with the BCS theory,2 similar behaviors of the coherence lengthfFig. 3sadg, critical
speedfFig. 3sbdg and pair breaking timefFig. 3scdg can be observed.

In order to get the dependence of the concentration ont one admits first that

snstd/ns0dd = r = sE/Adf2 < sjs0d/jstdd2f2 = 3.7 ·s1 + t2d−1K−2stdf2 s57d

with

FIG. 2. sad Thek dependence of the relative coherence length.sbd Thek dependence of the relative critical speed.scd The
k dependences of the relative pair breaking time.sdd The k dependences of the average relative concentration.sed The k
dependences of the relative penetration depth.sfd Thek dependences of the relative critical field.sgd Thek dependences of
the relative critical current density.
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s2mD2/Ad = j2s0d, s58ad

s2mD2/Ed = j2std. s58bd

By inserting Eq.s49ad in Eq. s57d one finds

FIG. 3. sad The t dependence of the relative coherence length in comparison with the one given by BCS theory.sbd The t
dependences of the relative critical speed in comparison with the one given by BCS theory.scd The t dependence of the
relative pair breaking time in comparison with the one given by BCS theory.sdd The t dependence of the average relative
concentration in comparison with the experimental one.sed The t dependence of the relative penetration depth in com-
parison with the one given by bifluid model.sfd The t dependences of the relative critical field in comparison with the one
given by BCS theory.sgd The t dependence of the relative critical current density in comparison with the one given by BCS
theory.
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snstd/ns0dd = 3.7 ·s1 + t2d−2K−2stdf1 − sEstd/Kstddg. s59d

The concordance with the experimental data described bysnstd /ns0dd=s1−t4d sRef. 2d
sdashed lined is good in the limits 0.5, t,1, as can be seen in Fig. 3sdd. As temperature de-
creases, the superconducting concentration is recovered. Consequently, our equation can describe
the superconducting behavior starting from temperatures equal to 0.5Tc until the critical tempera-
ture.

The reduced temperature dependence of the penetration depth

slstd/ls0dd = 0.55 ·s1 + t2dKstdf1 − sEstd/Kstddg−1/2 s60d

is in agreement with the data of the bifluid modelslstd /ls0dd=s1−t4d−1/22 fdashed line, Fig. 3sedg,
for 0.5, t,1.

In the case of the critical field,

sBCstd/BCs0dd = 7.67 ·s1 + t2d−2K−2stdf1 − sEstd/Kstddg1/2 s61d

the concordance with the experimental data, which is well described bysBCstd /BCs0dd=s1−t2d2

sdashed lined, can be seen in Fig. 3sfd, where Eq.s61d fits data for 0.4, t,1.
The dependence ont of the critical current density is

s jCstd/ jCs0dd = 26.7 ·s1 + t2d−3/2K−3stdf1 − sEstd/Kstddg. s62d

In Fig. 3sgd one can see the comparison between thes62d dependence and the one given by the
BCS theory,2 i.e., s jCstd / jCs0dd=s1−t2d1/2s1−t4d1/2 sdashed lined. The concordance is good in the
limits 0.5, t,1.

Summarizing this section, we would emphasize that the derived expressions of the supercon-
ducting parameterssnstd ,lstd ,BCstd , jCstdd are amendable to experimental verifications in the
range about 0.5, t,1. At the same time,jstd ,vCstd ,tstd have similar behaviors for 0, t,1.

V. NONDIFFERENTIABILITY AND SUPERCONDUCTIVITY

The choiceU=Ar—see Sec. III, induces nondifferentiability through the imaginary speedu.
In particular, fork→0, x0/j;Kskd and an adequate normalization, froms40d, s44d, and s8cd it
resultsu=D]x lnscnsxrdd=sD /jdssnsxrddnsxrd /cnsxrdd. From here, the two-dimensionals2Dd gen-
eralization of the real speed field,V=lnsuj /Dd, i.e.,

V = G lnFsnsuI ddnsuI d
cnsuI d G s63d

with

uI =
K

a
zI , s64ad

zI = x + iy , s64bd

K/K8 = b/a, s64cd

K =E
0

p/2

s1 − k2 sin2 wd−1/2 dw, s64dd

K8 =E
0

p/2

s1 − k82 sin2 wd−1/2 dw, s64ed
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k2 + k82 = 1 s64fd

describes the stable distribution—the bipolarons1,2,12 from Fig. 1sbd.
In relationss63d ands64ad–s64dd cn, dn are the Jacobi elliptic functions,11 K ,K8 the complete

elliptic integrals of first kind ofk modulus,11 a,b the lattice constants along Ox and Oy axis,
respectively, andG the vortex constant.13 In Figs. 4sad–4skd one shows the equipotential curves
ReV=0 for k=0–1 and in Fig. 5 the corresponding fractal dimensionD sRef. 14d dependence
with k, i.e., D=Dskd. The following aspects result.

sid The parameterk gives the vortices coherence in the latticesthe phase and amplitude
correlation of the vortices13,15d. For k=0 andk=1 the coherence is maximum through vortex pairs
forming, along Ox axis fFig. 4sadg or Oy axis fFig. 4skdg, respectively. Fork=0.5 the coherence is
minimum through vortex individualizingfFig. 4sfdg.

FIG. 4. sad–skd Thek dependences, of the equipotential lines corresponding to the real part of the complex potentials63d.
Superconducting pairs along the Ox and Oy axes.
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Mathematically, the vortices coherence impliesVsud=Vsu8d. Such a relation occurs if, and
only if, betweenu andu8 it exists the homography

u =
au8 + b

cu8 + d
,

wherea, b, c, dPN, ad−bc;1, u=v2/v1, u8=v28 /v18 , sv2/v1d and sv28 /v18d being the fun-
damental period pairs of a two equivalent elliptic functionssn·dn/cnd—the equivalence theorem
of elliptic functions.11 In particular, forc=1 andd=0, the vortices coherence is generated by the
«s`d space–time16—see Appendix C. Therefore, the vortices amplitude and phase correlations in
the lattice are of Cantorian typeffor example, in the vortices synchronization by frequency look-
ing, the frequency ratio isv=1/s2n+1d sRef. 2dg. Such result implies the fractionar statistics, i.e.,
the anyonic mechanism.2

sii d TheD=Dskd curve symmetry shows the simultaneous coherence extension along this two
axis, i.e., in plane. Besides, for the high temperature superconductivity, the coherence in the
superconducting pairs form is achieved only in Cu–O planes.2,17

siii d The fractal dimension varies from the minimumD<1.445, and local minimaD
<1.755, to maximaD<1.850 and local maximaD<1.80, respectively. Moreover, the observa-
tions superconducting pair–superconducting pair correlations can be associated with aslimitedd
fractal with dimension ofD<1.80.2,14This fractal dimension represents a manifestation of the fact
that the observed fractal should have emerged from two-dimensional sheetlike objectsssupercon-
ductivity is a property characterizing 2D objects2,17d.

sivd Figures 4sad and 4skd correspond to the final structures developed in the coherence
process and Figs. 4sed–4sgd to the initial ones. Furthermore, the time evolution of the coherence
process given by the iterated map of thessn dn/cnd function shows that this is generated by means
of a fractal ssuperconducting fractald sFig. 6d fits fractal dimensionsor Hausdorff–Besicovich
dimension14d, D<2.4 is greater than the topological oneD<2g In such a context, the structures
described by Figs. 4sad–4skd, i.e., the coherence sequences, are projections of the superconducting
fractal.

VI. ONE-DIMENSIONAL PROJECTION OF A SUPERCONDUCTING FRACTAL: COOPER
PAIRS

Let us demonstrate that the superconducting pairs are 1D projections of the superconducting
fractal from Fig. 6. Having this aim in view, let us consider the potential projection along Ox axis,
i.e.,

FIG. 5. Thek dependence of the fractal dimension. It results that throughk the fractal dimension is a measure of the
coherence degree.
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Vsx;kd = G ln3snSK

a
x;kDdnSK

a
x;kD

cnSK

a
x;kD 4 . s65d

The quantum states, being stationary and withE=0 sfor details see Refs. 8 and 17d, Eq. s22d,
with U=Vsx;kd and substitutions

Îr = f , s66ad

sKx/ad = u s66bd

takes the form

d2f

dx2 − S G

2mD
DlnSsnsuddnsud

cnsud D f = 0, s67d

The nonlinear Helmholtz like Eq.s67d can be solved only approximately. Using the WKBJ
method8,12 we get

FIG. 6. The superconducting fractal given by an iterated map of thessn dn/cnd function.
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f ,
A
Îp

e7ep dx, s68ad

A = const s68bd

with

p2 =
1

L2lnSsnsuddnsud
cnsud D s69ad

1

L2 ;
G

2mD2 , s69bd

L being a dissipation characteristic lengthsKolmogorov modeld,14 i.e., the minimal dimension of
a vortexlike particle. Then, the density of probabilityr becomes

ñ <
A2Ë2

lnSsnsuddnsud
cnsud DexpF7

2a

ËKskd
EÎlnSsnsuddnsud

cnsud DduG . s70d

The integral from Eq.s70d can be rewritten in the form

I =EÎlnSsnsuddnsud
cnsud Ddu = 7

1

2
E Îm dm

Îcosh2 m − k2
, s71d

for

m = lnSsnsuddnsud
cnsud D . s72d

In the general case this integral cannot be evaluated. However, fork=0 the integrals71d takes the
form

I = 7
1

2o
n=0

`
E2n

s2nds2n + 3
2dms2n+3/2d Sumu ,

]

2
D s73d

with E2n the Euler constantssE0=1,E1=0,E2=−1,E3=0d. Finally, substituting in the integrals71d

snsu,0d = sinu, cnsu,0d = cosu, dnsu,0d = 1, Ks0d = ]/2, s74d

the densityr becomes

ñ <
AË2

lnFtgS ]x

2a
DGexpH7

2a

]x
o
n=0

`
E2n

s2nds2n + 3
2dFlnStg

]x

2a
DGs2n+3/2dJ . s75d

The relations75d works only with the restriction

1

p

d

dx
sln pd ! 1 s76d

that is true for domains closed to the zeros of the same sign of the potentials63d sfor details see
Ref. 15d. In the relations75d we can consider only the first four series terms because the others are
negligible—Fig. 7. In Fig. 8 the densityr is plotted as a function ofx anda/L. One notices that
for a/L ratio values greater than 103, the density splits into two parts, signifying the formation of
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the superconducting pairs. In such a context, ifL<LC<3.8310−13 m sthe minimal dimension of
the vortexlike particle is the electron wavelength2,17d thana.3.8310−10 m. Such a value corre-
sponds to the minimum distance between two vortices to form a pairscoherence length—for
details see Refs. 2 and 17d.

The casek=1 is presented in Figs. 9sad and 9sbd. It also results the superconducting pair
sCooper paird forming—the states density is symmetric onx=0 and increases towardk=1.

VII. CONCLUSIONS

The main conclusions of the present paper are as follows.
sid In the hydrodynamic formulation of the SR theory one obtains the conservation equations

of momentum and probability density.
sii d Through momentum conservation law one introduces the quantum potential as a measure

of nondifferentiability of the quantum space–time. In such a frame, the quantum space–time is
identified with a subquantum medium of superfluid properties.

siii d One finds the compatibility relation between the SR hydrodynamic model and the wave
mechanics and one defines the dynamic and static states.

FIG. 7. The representation of the first four series terms ofs75d.

FIG. 8. 2D dependence of the densitys75d on x anda/L.
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sivd One defines a stable vortex lattice of bipolaron type by means of the potentials63d and
one specifies some of its propertiessthe equipotential curves, the fractal dimensions variation, etcd.
In such a context, by an iterated map, one builds the superconducting fractal.

svd One demonstrates that the superconducting pairs are 1D projections of this fractal. Math-
ematically, the problem resumes to the determination of the probability field obtained by identi-

FIG. 9. sad 3D dependence of the densitys75d on x andk. sbd 2D dependence of the densitys75d on x andk.
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fying the quantum potentials12d with the projection on Ox axis of complex potentials63d. It
results the splitting of the probability field that in our opinion corresponds to a superconducting
pair sCooper paird. In such a context, one gives an evaluation of the coherence length.

svid The superconductivity in such structures is achieved through the coherence on the sub-
quantum medium.

svii d The temperature dependences of the superconducting parameters are given and the con-
cordances with experimental data and other theories are analyzed.

sviii d If S=const and¹ ·u=D ln r=0 sthe quantum fluid is incompressibled, the 1D Eq.s22d
admits forE=A=const the speed fields

ux = ifs2A/mds1 − rdg1/2.

Then, the quantum potential takes a very simple expression which is proportional to the density of
states of the Cooper pairs, i.e.,

Q = − smux
2/2d = As1 − rd.

When the density of states of the Cooper pairs becomes zerosi.e., the material is normald the
quantum potential takes a finite value,A, and when it becomes 1si.e., the entire material becomes
superconductingd, the quantum potential turns to zero—the entire quantity of energy from the
subquantic medium transfers to the superconducting pairs. Consequently, one can assume the
energy from the background subquantic medium can be stoked by transforming all the particles
from the environment into Cooper pairs and then “freezing” them. The superconductor acts like a
subquantic medium energy accumulator.

sixd In the SR theory the space–time of quantum mechanics is continuous and nondifferen-
tiable. Nondifferentiability is induced by means of the fractal, a global mechanism when explain-
ing superconductivity, the 2D projection of the fractal generates the mechanism responsible of the
type II superconductivitysthe anyonic mechanism2d and the 1D projection the mechanism respon-
sible of the type I superconductivitysthe Cooper pairsd. In such a context, by means of the
generalized coherence of the quantum fluid the superconducting parameters occur as intrinsic
properties of this fluid.
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APPENDIX A

Strictly, the nondifferentiability of the coordinates means that the velocityV=dX/dt is no
longer defined. However, continuity and nondifferentiability implies scale divergence.5,14 There-
fore, the basis of the method consists in replacing the classical velocity by a function that explic-
itly depends on the resolution,V=Vs«d. Only Vs«d is undefined, whileVs«d is now defined for any
nonzero«. The scale dependence of the velocity forces one to complete the standard equations of
physics by differential equations of scale. The simplest possible equation that one can write forV
is a first order, renormalization-group-like differential equation, written in terms of the dilatation
operatord/d ln «,5 in which the infinitesimal scale dependence ofV is determined by the fieldV
itself, namely,

dV

d ln «
= GsVd. sA1d

The -function here isa priori unknown, but we can use the fact thatV,1 sin motion-relativistic
unitsd to expand it in terms of a Taylor expansion. One obtains
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dV

d ln «
= a + bV+ OsV2d, sA2d

wherea andb are constantssindependent of«, but possibly dependent on the space–time coor-
dinatesd. Settingb=−d anda=rd, we obtain the solution of this equation under the form

V = v + k«−d, sA3d

wherek is an integration constantsindependent of«d. From the dimensional analysis, we can write
it under the formk=zld, with I=Istd dimensionless,kz2l=1 and _ a constant length scale. We get

V = v + zSl

«
Dd

. sA4d

We recognize here a typical fractal behavior with fractal dimensionD=Dt+d, whereDt is the
topological dimensions=1 here, since the description concerns displacements along geodesical
curvesd. However, at large scales«@l, the velocity shows a classicalsi.e., scale independentd
behavior,V<v, while at small scales«lll, it shows a power law, scale divergent behaviorV
<zsl«−1dd. The transition scale _sthat will be interpreted in what follows as the Compton scaled
thus stands out as a fractal–nonfractal transition scalesthat takes place not in space, but in the new
resolution dimensiond.

The resolution« in the above formula is a space resolution,«=dX. We can relate it to time
resolution by writingsA4d in the asymptotic domain«,l under the form

dX

cdt
< S l

dX
DD−1

. sA5d

This provides us with a fundamental, well-known formula on fractals,

dXD = lD−1cdt. sA6d

By reinserting this result insA4d, we obtain the following expressionswhere we have reinserted
the indicesd for the elementary displacement in terms of time-resolution:5

dXi = v dt + ll−1/Dzisc dtd1/D, sA7d

where we have identified the time resolution with the time differential element.
As we shall see in what follows, the first terms yields classical physics while the second is one

of the sources of quantum behavior. They are both present whatever the scale, but the classical
term is dominant at large scales while the quantum term is dominant at small scales. Then, the
quantum and classical laws are irreducible to each other, but they both find their origin in a single,
more profound, scale-dependent description whose equations take the form given bysA1d in the
simplest case. In the special case of fractal dimensionD=2, the time transition is easily identified
with the de Broglie time scalet<cl /v2=q /mv2, by writing sA7d under the form

dX = v dtf− zscl/v2 dtd1/2g , sA8d

The nondifferentiable nature of space–time implies an even more dramatic consequence,
namely, a breaking of differential time reflection invariance. Let us consider indeed the usual
definition of the derivative of a given function with respect to time

Sdf

dt
D = lim

dt→0

fst + dtd − fstd
dt

= lim
dt→0

fstd − fst − dtd
dt

. sA9d

The two definitions are equivalent in the differentiable case. One passes from one to the other by
the transformation dt→−dt stime reflection invariance at the infinitesimal leveld. In the nondiffer-
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entiable situation considered here, both definitions fail, since the limits are no longer defined. The
scale-relativistic method solves this problem in the following way.

We attribute to the differential element dt the new meaning of a variable, identified with a time
resolution, dt=dt ssubstitution principled. The passage to the limit dt→0 is actually devoid of
physical meaningsan infinite energy would be needed to really perform a measurement at zero
time resolution intervald. The physics is now in the behavior of the function during the zoom
operation on dt. The two functionsf+8 and f−8 are now defined as explicit functions oft and of dt,

f+8st,dtd =
fst + dtd − fstd

dt
,

sA10d

f−8st,dtd =
fstd − fst − dtd

dt
.

When applied to the space variable, we get for each geodesic two velocities that are fractal
functions of resolution,v+st ,dtd and v−st ,dtd. In order to go back to the classical microscopic
domain, we smooth out each geodesic with balls of radius larger than _sthe fractal/nonfractal
transitiond, then we take the average on the whole set of geodesics. We get two mean velocities
v+std=kv+st ,dt@tdl andv−std=kv−st ,dt@tdl, but after this double averaging process, there is no
reason for these two velocities to be equal, contrarily to what happens in the classical, differen-
tiable case.5

In summary, while the concept of velocity was classically a single concept, we must introduce,
if space–time is nondifferentiable, two velocities instead of one even when going back to the
classical domain. Such a two valuedness of the velocity vector is a specific consequence of
nondifferentiability that has no standard counterpartsin the sense of differential physicsd, since it
finds its origin in a breaking of the symmetrysdt→−dtd. Such a symmetry was considered
self-evident up to now in physicsssince the differential element dt disappears when passing to the
limit d, so that it has not been analyzed on the same footing as the other well-known symmetries.
Note that it is actually different from the time reflection symmetryT, even though infinitesimal
irreversibility implies global irreversibility.

Now, at the level of our description, we have no way to favorv+ rather thanv−. Both choices
are equally qualified for the description of the laws on nature. The only solution to this problem is
to consider both the forwardsdt.0d and backwardsdt,0d processes together. The number of
degrees of freedom is doubled with respect to the classical, differentiable descriptionssix velocity
components instead of threed.

A simple and natural way to account for this doubling of the needed information consists in
complex number and the complex product. As we shall recall hereafter, this is the origin of the
complex nature of the wave function in quantum mechanics, since the probability amplitude is
defined in terms of the complex action that is naturally introduced in such a theory. But one can
demonstrate that the complex calculus is nothing but a particular choice of representation that
achieves the simplest description. Namely, using a different product would introduce additional
terms in the Schrödinger equation.5 Note also that the new complex process, as a whole, recovers
the fundamental property of microscopic reversibility.

We then can write

dX±
i = dx±

i + dj±
i , sA11d

respectively, for the forward processs+d and backward processs−d. From our above discussion,
the fluctuationdz± is written
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Kdj±
i

dt

dj±
j

dt
L = ± di j c2S l

c dt
D2−2/D

. sA12d

This relation is invariant under translations and rotations in space between Cartesian coordinate
systems. In the special, Galilean scale-relativistic case that we consider here, the scale invariant is
the fractal dimension itself. The fractal dimension of typical quantum mechanical paths isD=2.
We shall reduce our discussion in what follows to this particular case. WhenD=2, sA12d becomes

kdj±
i dj±

j l = ± ldi j c dt. sA13d

We can now jump to the second step of the fractal-space description, by constructing the covariant
derivative that describes the combined effects of the new displacement laws and scale laws. We
define mean forwards+d and backwards−d derivatives, which, once applied tox8, yield the above
forward and backward mean velocities

d+xistd
dt

= v+
i , sA14ad

d−xistd
dt

= v−
i . sA14bd

The averaging is here taken on the family of geodesics. As a consequence, the Born statistical
interpretation of quantum mechanics will be ensured from the very beginning of our construction,
since the particle can be identified with one random geodesic among their infinite setsmore
generally, with the subset of the geodesics that share the geometric properties that correspond to a
given measurement resultd. The forward and backward derivatives ofsA14ad and sA14bd can be
combined in terms of a complex derivative operator,5

d

dt
=

sd+ + d−d − isd+ − d−d
2 dt

sA15d

which, when applied to the position vector, yields a complex velocity

Vi =
d

dt
xi = Vi − iUi =

v+
i + v−

i

2
− i

v+
i − v−

i

2
. sA16d

Consider a functionfsX,td, and expand its total differential to second order. We get

df

dt
=

] f

]t
+ ¹ f ·

dX

dt
+

1

2o
i,j

]2f

]xi ] xj

]Xi ] Xj

dt
. sA17d

We may now compute the forward and backward derivatives off. In this averaging procedure, the
mean value of dXi /dt amount tod±xi /dt=v±i, while kdXi dXjl reduces tokdj±i dj± jl, so that the last
term of sA17d amounts to a Laplacian thanks tosA13d. We obtain

d± f/dt = ]/]t + v±
1
2lcD. sA18d

By combining them we get our final expression for the complex scale-covariant derivative,

d

dt
=

]

]t
+ V · ¹ − i

1

2
lcD. sA19d

We now apply the principle of scale covariance, and postulate that the passage from classical
sdifferentiabled mechanics to the new nondifferentiable mechanics that is considered here can be
implemented by replacing the standard time derivatived/dt by the complex operatord /dt. As a
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consequence, we are now able to write the equation of geodesics of the fractal space under its
covariant form,

d2

dt2
xi = 0. sA20d

In the present paper betweenl andD measures,

D = 1
2lc. sA21d

APPENDIX B

Let us consider a quantum fluid of identical particles. To each particle of fluid one can
associate by means of its spin the vector potentialA and the vortex fieldV,

A = curlsGŝ/rd, sB1ad

U = curl A , sB1bd

and by self-interaction the potential

W= − Gŝ · Ù = G2fŝ curl curlsŝ/rdg = G2fsŝ · ¹ dsŝ · ¹ ds1/rd − sŝ · ŝd¹2s1/rdg. sB2d

Since

sŝ · ¹ dsŝ · ¹ d = s1/3dsŝ · ŝd¹2, sB3ad

¹2s1/rd = − 4pdsrd, sB3bd

one gets

W= s8p/3dG2sŝ · ŝddsrd. sB4d

Then, the mean value of the potential is

U = kWl =
8p

3
G2sŝ · ŝd E c*dsrdcd3x = AsG,ŝducs0du2. sB5d

In the previous relations,i =Gŝ is the vortex momentum,G is the vortex constant, andAsG ,ŝd is
a constant. Consequently, assimilating the quantum fluid particles with vortex type objects, the
potentialU will be proportional with the concentration of the particles.

APPENDIX C

VI sud=VI su8d if and only if betweenu and u8 it exists the transformationu=sau8+bd / scu8
+dd ,a,b,c,dPN,ad−bc=1, with u=sv2/v1d ,u8=sv82/v81d, and sv1,v2dsv81,v82d the funda-
mental periods pairs of a two equivalent elliptic functionssn dn/cnd sthe equivalence theorem of
elliptic functions7d.

Let us consider a transformation element in the matrix form

M = Sa b

c d
D .

Under the special conditionsc=1,d=0 we can calculate the eigenvalues as follows: The charac-
teristic equation of this matrix is
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Sa − l b

1 − l
D = 0,

l2 − al − b = 0, l1,2= 1
2fa ± sa2 + 4bd1/2g.

For different values ofa andb we obtain members which are irrational numbers. Let us begin with
the quadratic equations andb=1 or b=−1. In this case, the quadratic equations are of the follow-
ing type: x2−anx−1=0,x2−anx+1=0 or x2−anx+s−1dn=0. For a1=1,a2=3,a3=4,a4=7 one
finds

a1 = 1, x2 − 1x − 1 = 0, x1
s1d = − f, x2

s1d = 1/f = s1 + fd,

a2 = 3, x2 − 3x + 1 = 0, x1
s2d = f2, x2

s2d = 1/f2 = s3 − f2d,

a3 = 4, x2 − 4x − 1 = 0, x1
s3d = − f3, x2

s3d = 1/f3 = s4 + f3d,

a2 = 7, x2 − 7x + 1 = 0, x1
s4d = f4, x2

s4d = 1/f4 = s7 − f4d.

Consequently, one can write that foran=an−2+an−1,a1=1,a2=3,n.2, one findsx2−anx+s−1dn

=0,x1
snd=s−fdn,x2

snd=1/fn=san−2+an−1d+s−1dn−1fn.
Under these special conditions we obtain the irrational roots,x1

snd=s−fdn,x2
snd=s1/fdn which

are contained in the limit set. This clearly shows the connection between the geometry induced by
the previous transformation, KAM theorem, the VAK and El Naschie’s«s`d theory for determining
the mass spectrum of high elementary particles as a function of the golden meanf=sÎ5−1d /2.16

Consequently, the vortex coherence in the lattice implies the«s`d space.
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We continue the development of a so-called contextual statistical modelshere con-
text has the meaning of a complex of physical conditionsd. It is shown that, besides
contexts producing the conventional trigonometric cos-interference, there exist con-
texts producing the hyperbolic cos-interference. Starting with the corresponding
interference formula of total probability we represent such contexts by hyperbolic
probabilistic amplitudes or in the abstract formalism by normalized vectors of a
hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born’s
rule. Incompatible observables are represented by noncommutative operators. This
paper can be considered as the first step towards hyperbolic quantum probability.
We also discuss possibilities of experimental verification of hyperbolic quantum
mechanics: in physics of elementary particles, string theory as well as in experi-
ments with nonphysical systems, e.g., in psychology, cognitive sciences, and
economy. ©2005 American Institute of Physics.fDOI: 10.1063/1.1931042g

I. INTRODUCTION

In Ref. 1 there was presented a so-called contextual viewpoint of the origin of quantum
sconditionald probabilitiesshere acontexthas the meaning of a complex of physical conditionsd.
Such an approach gives the possibility to unify classical Kolmogorovsmeasure theoreticald and
quantumsHilbert spaced probability theories by constructing a natural representation of the Kol-
mogorov model in a complex Hilbert space. Thus in the contextual approach quantum probabilis-
tic behaviorsin particular,interference of probabilitiesd is simply a consequence of a very special
representation of Kolmogorov probabilities—by complex amplitudessvectors in a complex Hil-
bert spaced. Each representation is based on a fixed pair of observablessKolmogorov random
variablesd a andb—reference observables—which produce the contextual image of a Kolmogorov
probability space in a complex Hilbert space. The crucial point is that all Kolmogorov probabili-
ties should be considered as conditionalsor better to say contextuald probabilities, cf. Accardi,2–4

Ballentine,5,6 W. De Muynck,7,8 S. Gudder,9,10 A. Lande,11 G. Mackey.12

In Ref. 1 we introduced a classCtr of contextss“trigonometric contexts”d which can be
represented by complex probabilistic amplitudes inducing the representation in the complex Hil-
bert space. TheCtr consists of context producing the conventional trigonometric cos-interference.
However, in general the set of contexts is not reduced to the class of trigonometric contextsCtr.
There exist contexts producing the hyperbolic cosh-interference. The set of hyperbolic contexts is
denoted by the symbolChyp.

In this paper we show that it is possible to represent contexts belonging toChyp by so-called
hyperbolic amplitudes. Such amplitudes take values in the set of “hyperbolic numbers”stwo-
dimensional Clifford algebrad. It will be demonstrated that in the hyperbolic framework we can
proceed quite far in the same directions as in the trigonometric framework. We obtain hyperbolic
analogues of the interference of probabilities, probability amplitudes, Born’s rule, representation

adInternational Center for Mathematical Modeling in Physics and Cognitive Sciences. Electronic mail:
andrei.khrennikov@msi.vxu.se; supported by EU-Network QP and Applications.
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of incompatible observables by noncommuting operators. The crucial difference between two
representations is that in the hyperbolic case the principle of superposition is violated.

II. CONTEXTUAL VIEWPOINT TO THE KOLMOGOROV MODEL AND INTERFERENCE
OF PROBABILITIES

In this section we repeat the main points of contextual measure-theoretical approach to inter-
ference of probabilities, see Ref. 1 for details.

Let sV ,F ,Pd be a Kolmogorov probability space:V is an arbitrary set,F is a s-field of
subsets ofV andP is a countably additive measure onF taking values inf0, 1g and normalized
by onesKolmogorov probabilityd. By the standard Kolmogorov axiomatics setsA[F represent
events. In our simplest model ofcontextual probabilityswhich can be called the Kolmogorov
contextual spaced the same system of sets,F, is used to represent complexes of experimental
physical conditions—contexts.

Thus depending on circumstances a setO[F will be interpreted either as event or as context.
We shall sharply distinguish events and contexts on phemenological level, but we shall use the
same mathematical objectF to represent both events and contexts in a mathematical model. In
principle, in a mathematical model events and contexts can be represented by different families of
sets, e.g., in Renye’s model. We will not do this from the beginning. But later we will fix families
of contexts, e.g.,Ctr or Chyp, which are proper subfamilies ofF.

The conditional probability is mathematically defined by the Bayes’ formula:PsA/Cd
=PsACd /PsCd, PsCdÞ0. In our contextual model this probability has the meaning of the prob-
ability of occurrence of the eventA under the complex of physical conditionsC. Thus it would be
more natural to callPsA/Cd a contextual probabilityand notconditional probability. Roughly
speaking to findPsA/Cd we should find parametersvA favoring for the occurrence of the eventA
among parametersvC describing the complex of physical conditionsC.

Let A=hAnj be finite or countablecomplete group of disjoint contextssor in the event-
terminology—complete group of disjoint eventsd,

AiAj = x, i Þ j , øiAi = V.

Let B[F be an event andC[F be a context and letPsCd.0. We have the standardformula of
total probability: PsB/Cd=onPsAn/CdPsB/AnCd. Let a=a1,… ,an and b=b1,… ,bn be discrete
random variables. Then

Psb = bi/Cd = o
n

Psa = an/CdPsb = bi/a = an,Cd. s1d

We remark that sets

Bx = hv [ V:bsvd = xj andAy = hv [ V:asvd = yj s2d

have two different interpretations. On the one hand, these sets represent events corresponding to
occurrence of the valuesb=x anda=y, respectively. On the other hand, they represent contexts
scomplexes of physical conditionsd corresponding to selections of physical systems with respect to
valuesb=x anda=y, respectively. The main problem with the formula of total probability is that
in general it is impossible to construct a context “AyC” corresponding to a selection with respect
to the valuea=y which would not disturb systems prepared by the contextC. But only in the
absence of disturbance we can use the set theoretical operation of intersection. This paper would
like to modify the formula of total probability by eliminating sets “AyC” which in general do not
represent physically realizable contexts.

A set C belonging toF is said to be anondegenerate contextwith respect toA=hAnj if
PsAnCdÞ0 for all n. We denote the set of such contexts by the symbolCA,nd.

Let A=hAnj and B=hBnj be two complete groups of disjoint contexts. They are said to be
incompatibleif PsBnAkdÞ0 for all n and k. Thus B and A are incompatible iff everyBn is a
nondegenerate context with respect toA and vice versa. Random variablesa andb inducing, see
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s2d, incompatible complete groupsA=hAnj andB=hBnj of disjoint contexts are said to beincom-
patible random variables.

Theorem 2.1: sInterference formula of total probabilityd Let A=hA1,A2=V \A1j and B
=hB1,B2=V \B1j be incompatible and let a context C[CA,nd. Then, for any B[B,

PsB/Cd = o
j=1

2

PsAj/CdPsB/Ajd + 2lsB/A,CdÎp
j=1

2

PsAj/CdPsB/Ajd,

where

lsB/A,Cd =

PsB/Cd − o
j=1

2

PsB/AjdPsAj/Cd

2ÎPsA1/CdPsB/A1dPsA2/CdPsB/A2d
.

To prove the theorem, we set the expression forl into the sum and obtain identity. In fact, this
formula is just a representation of the probabilityPsA/Cd in a special way. ThelsB/A ,Cd are
calledcoefficients of statistical disturbance.We shall use at few occasions the following result:

Lemma 2.1:Let conditions of Theorem 2.1 hold true. Then

o
k

lsBk/A,CdÎPsA1/CdPsA2/CdPsBk/A1dPsBk/A2d = 0. s3d

Proof: We have

1 = o
k

PsBk/Cd = o
k

o
n

PsAn/CdPsBk/And + o
k

lsBk/A,CdÎPsA1/CdPsA2/CdPsBk/A1dPsBk/A2d.

But onsokPsBk/AnddPsAn/Cd=1.
s1d Suppose that for everyB[B , ulsB/A ,Cduø1. In this case we can introduce statistical

parametersusB/A ,Cd[ f0,2pg and represent the coefficients of statistical disturbance in the
trigonometric form,lsB/A ,Cd=cosusB/A ,Cd. ParametersusB/A ,Cd are said to berelative
phasesof an eventB with respect toA sin the contextCd. We have the following interference
formula of total probability,

PsB/Cd = o
j=1

2

PsAj/CdPsB/Ajd + 2 cosusB/A,CdÎp
j=1

2

PsAj/CdPsB/Ajd.

This is nothing other than the famousformula of interference of probabilities.
In Ref. 1 there was shown that by starting with this formula we can construct the represen-

tation of the set of trigonometric contexts

Ctr = hC [ Ca,nd:ulsBj/a,cdu ø 1,j = 1,2j

in the complex Hilbert space, obtain Born’s rule and represent incompatible variablesa andb by
snoncommutatived operators.

s2d Suppose that for everyB[B, ulsB/A ,Cduù1. In this case we can introduce statistical
parametersusB/A ,Cd[ s−` , +`d and represent the coefficients of statistical disturbance in the
trigonometric form,lsB/A ,Cd= ±coshusB/A ,Cd. ParametersusB/A ,Cd are said to be hyper-
bolic relative phases. In this case we obtain the formula of total probability with hyperbolic
cosh-interference,

PsB/Cd = o
j=1

2

PsAj/CdPsB/Ajd ± 2 coshusB/A,CdÎp
j=1

2

PsAj/CdPsB/Ajd. s4d
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The aim of this paper is to show that by starting with this formula we can construct the
representation of the set of hyperbolic contexts,

Chyp = hC [ Ca,nd:ulsBj/a,cdu ù 1,j = 1,2j

in the hyperbolic Hilbert space, obtain an analogue of Born’s rule and represent incompatible
variablesa andb by snoncommutatived operators.

We can also consider the case of mixed hypertrigonometric behavior, one of the coefficients is
larger than 1 and one is smaller than 1. However, in this paper we shall discuss only the case of
the hyperbolic interference.

In our further considerations the complete groups of disjoint contextsA andB will correspond
to some incompatible random variablesa andb. We shall use the symbolslsb=x/a,Cd instead of
lsb=x/A ,Cd.

III. REPRESENTATION OF CONTEXTS BY HYPERBOLIC AMPLITUDES, HYPERBOLIC
HILBERT SPACE REPRESENTATION

Everywhere below we study contexts producing the hyperbolic interference for incompatible
dichotomous random variablesa=a1, a2, b=b1, b2. This pair of variables will be fixed. We call
such variables reference variables. For each paira, b of reference variables we construct a repre-
sentation of the set of contextsChyp in hyperbolic Hilbert spaces“quantumlike representation”d.

A. Hyperbolic algebra

Instead of the field complex numbersC, we shall use so-called hyperbolic numbers, namely
the two-dimensional Clifford algebra,G. We call this algebrahyperbolic algebra.

Remark 3.1:Of course, it is rather dangerous to invent an own name for a notion established
almost as firm as complex numbers. We use a new name, hyperbolic algebra, for the well-known
algebraic object, the two-dimensional Clifford algebra, by the following reasons. First we explain
why we dislike to use the standard notion Clifford algebra in this particular case. The standard
Clifford machinery was developed around noncommutative features of general Clifford algebras.
The two-dimensional Clifford algebra, hyperbolic algebra in our terminology, is commutative.
Commutativity ofG is very important in our considerations. We now explain why we propose the
name hyperbolic algebra. Hyperbolic functions are naturally related to the algebraic structure ofG
through a hyperbolic generalization of Euler’s formula for the complex numbers. This is the
crucial point of our considerations—the possibility to use this algebraic structure to represent
some special transformations for hyperbolic functions.

Denote by the symbolj the generator of the algebraG of hyperbolic numbers,

j2 = 1.

The algebraG is the two-dimensional real algebra with basise0=1 ande1= j . Elements ofG have
the form z=x+ jy, x, y[R. We havez1+z2=sx1+x2d+ jsy1+y2d and z1z2=sx1x2+y1y2d+ jsx1y2

+x2y1d. This algebra is commutative. It is not a field—not every element has the inverse one.
We introduce an involution inG by settingz̄=x− jy and setuzu2=zz̄=x2−y2. We remark that

uzu=Îx2−y2 is not well defined for an arbitraryz[G. We setG+=hz[G : uzu2ù0j. We remark that
G+ is a multiplicative semigroup as follows from the equality

uz1z2u2 = uz1u2uz2u2.

Thus, for z1, z2[G+, we have thatuz1z2u is well defined anduz1z2u= uz1uuz2u. We define a
hyperbolic exponential function by using a hyperbolic analogue of the Euler’s formula,

eju = coshu + j sinhu,u [ R.

We remark that
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eju1eju2 = ejsu1+u2d, eju = e−ju, uejuu2 = cosh2 u − sinh2 u = 1.

Hence,z= ±eju, always belongs toG+. We also have

coshu =
eju + e−ju

2
, sinhu =

eju − e−ju

2j
.

We setG+
* =hz[G+: uzu2.0j. Let z[G+

* . We have

z= uzusx/uzud + jsy/uzud = signxuzuSx signx

uzu
+ j

y signx

uzu D .

As sx2/ uzu2d−sy2/ uzu2d=1, we can representx signx=coshu and y signx=sinhu, where the
phaseu is unequally defined. We can represent eachz[G+

* as

z= signxuzueju.

By using this representation we can easily prove thatG+
* is a multiplicative group. Here

1/z=−ssignx/ uzude−ju. The unit circle in G is defined asS1=hz[G : uzu2=1j=hz= ±eju ,u[
s−` , +`dj. It is a multiplicative subgroup ofG+

* .
To construct aG-linear representation of the setChyp of hyperbolic contexts, we shall use the

following elementary formula:

D = A + B ± 2ABcoshu = uÎA ± ejuÎBu2, s5d

for real coefficientsA, B.0.

B. Hyperbolic probability amplitude, hyperbolic Born’s rule

We setY=ha1,a2j, X=hb1,b2j s“spectra” of random variablesa andbd. Let C[Chyp. We set

pC
asyd = Psa = y/Cd, pC

bsxd = Psb = x/Cd, psx/yd = Psb = x/a = yd,

x[X, y[Y. The interference formula of total probabilitys4d can be written in the following form:

pC
bsxd = o

y[Y

pC
asydpsx/yd ± 2 coshuCsxdÎPy[YpC

asydpsx/yd, s6d

whereuCsxd=usb=x/a,Cd= ±arccoshulsb=x/a,Cdu, x[X, C[Chyp. Here the coefficientl is de-
fined by

lsb = x/a,Cd =

pC
bsxd − o

y[Y

pC
asydpsx/yd

2ÎPy[YpC
asydpsx/yd

. s7d

By using s5d we can represent the probabilitypC
bsxd as the square of the hyperbolic amplitude,

pC
bsxd = uwCsxdu2, s8d

where

wsxd ; wCsxd = ÎpC
asa1dpsx/a1d + eCsxdejuCsxdÎpC

asa2dpsx/a2d. s9d

HereeCsxd=signlsx/a,Cd. We remark that by Lemma 2.1,

o
x[X

eCsxd = 0. s10d

Thus we have ahyperbolic generalization of Born’s rulefor the b variable, sees8d.
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C. Hyperbolic Hilbert space

Hyperbolic Hilbert space isG-linear spacesmoduled E with a G-linear scalar product, a map
s·,·d : E3E→G that is

s1d linear with respect to the first argument,saz+bw,ud=asz,ud+bsw,ud, a, b[G, z, w, u[E;
s2d symmetric,sz,ud=su,zd;
s3d nondegenerate,sz,ud=0 for all u[E iff z=0.

Remark 3.2:If we considerE as just aR-linear space, thens·,·d is a bilinear form which is not
positive defined. In particular, in the two-dimensional case we have the signatures1, 2, 1, 2d.

D. Hyperbolic Hilbert space representation

We introduce the spaceFsX,Gd of functions,w :X→G. SinceX=hb1,b2j, theFsX,Gd is the
two-dimensionalG module. We define theG-scalar product by

sw,cd = o
x[X

wsxdc̄sxd s11d

with conjugation in the algebraG. The system of Diracd-functionshex
b;dxjx[X is an orthonormal

basis in the hyperbolic Hilbert spaceHhyp=sFsX,Gd ,s· , ·dd. Thus we have the hyperbolic ana-
logue of the Born’s rule inHhyp,

pC
bsxd = uswC,ex

bdu2. s12d

Let X,R. By using the hyperbolic Hilbert space representations12d of the Born’s rule we
obtain the hyperbolic Hilbert space representation of the expectation of thesKolmogoroviand
random variableb,

Esb/Cd = o
x[X

xpC
bsxd = o

x[X

xuwCsxdu2 = o
x[X

xswC,ex
bdswC,ex

bd = sb̂wC,wCd, s13d

where thesself-adjointd operatorb̂:Hhyp→Hhyp is determined by its eigenvectors,b̂ex
b=xex

b, x[X.
This is the multiplication operator in the space ofG-valued functionsFsX,Gd,

b̂wsxd = xwsxd.

By s13d the conditional expectation of the Kolmogorovian random variableb is represented with

the aid of the self-adjoint operatorb̂.
Thus we constructed aG-linear representation of the contextual Kolmogorov model,

Jb/a:Chyp→ Hhyp.

We set SChyp=Jb/asChypd. This is a subset of the unit sphereS of the Hilbert spaceHhyp. We
introduce the coefficients

uj
a = ÎpC

asajd, uj
b = ÎpC

bsbjd, pij = psbj/aid, uij = Îpij , u j = uCsbjd, s14d

and ei =esbid. We remark that the coefficientsuj
a, uj

b depend on a contextC; so uj
a=uj

asCd, uj
b

=uj
bsCd. We also consider thematrix of transition probabilitiesPb/a=spijd. It is always astochastic

matrix, pi1+pi2=1, i =1, 2. In further considerations we shall also considerdouble stochastic
matrices, p1j +p2j =1, j =1, 2.

We represent a statewC by wC=v1
be1

b+v2
be2

b, wherevi
b=u1

au1i +eiu2
au2ie

jui. So
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pC
bsbid = uvi

bu2 = uu1
au1i + eiu2

au2ie
juiu2.

This is theG-linear representation of the hyperbolic interference of probabilities. This formula can
also be derived in the formalism of the hyperbolic Hilbert space, see Sec. IV. We remark that here
the G-linear combinationu1

au1i +eiu2
au2ie

jui belongs toG+
* .

Thus for any contextC0[Chyp we can representwC0
in the form

wC0
= u1

ae1
a + u2

ae2
a,

where

e1
a = su11,u12d, e2

a = se1e
ju1u21,e2e

ju2u22d.

As in the C case,1 we introduce the matrixV with coefficients v11=u11, v21=u21, and v12

=e1e
ju1u21, v22=e2e

ju2u22. We remark that here coefficientsvi j [G+
* . In the same way as in the

complex case the Born’s rule

pC0

a said = uswC0
,ei

adu2 s15d

holds true in thea-basis iff hei
aj is an orthonormal basis inHhyp. The latter is equivalent to theG

unitary of the matrixV scorresponding to the transition fromhei
bj to hei

ajd: V̄*V= I, or

v̄11v11 + v̄21v21 = 1, v̄12v12 + v̄22v22 = 1, s16d

v̄11v12 + v̄21v22 = 0. s17d

Thus 1=u11
2 +u21

2 =psb1/a1d+psb1/a2d and 1=u12
2 +u22

2 =psb2/a1d+psb2/a2d. Thus the first two
equations of theG unitary are equivalent to the double stochasticity ofPb/a sas in theC case1d. We
remark that the equationss16d can be written as

uv11u2 + uv21u2 = 1, uv12u2 + uv22u2 = 1, s18d

cf. Sec. IV. The third unitarity equations17d can be written as

u11u12e1e
−ju2 + u21e2e

−ju2u22 = 0. s19d

By using double stochasticity ofPa/b we obtaineju1=eju2. Thus

u1 = u2. s20d

Lemma 3.1:Let a and b be incompatible random variables and letPb/a be double stochastic.
Then

coshuCsb2d = coshuCsb1d s21d

for any context C[Chyp.
Proof: By Lemma 2.1 we have

o
x

esxdcoshuCsxdÎPypC
asydpsx/yd = 0.

Double stochasticity ofPb/a implies s21d.
The constraints21d induced by double stochasticity can be written as the constraint to phases

uCsb2d = ± uCsb1d. s22d

To obtain unitary of the matrixV of transitionhei
bj→ hei

aj we should choose phases according to
s20d. And by s22d we can always do this for a double stochastic matrix of transition probabilities.
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By choosing such a representation we obtain the hyperbolic generalization of the Born’s rule
for the a variable,

pC
asajd = usw,ej

adu2. s23d

We now investigate the possibility to use one fixed basishej
a;ej

asC0dj, C0[Chyp, for all stateswC,
C[Chyp. For anyC[Chyp we would like to have the representation

fC = v1
asCde1

asC0d + v2
asCde2

asC0d, whereuv j
asCdu2 = pC

asajd. s24d

We have

fCsb1d = u1
asCdv11sC0d + eCsb1deC0

sb1dejfuCsb1d−uC0
sb1dgu2

asCdv12sC0d,

fCsb2d = u1
asCdv21sC0d + eCsb2deC0

sb2dejfuCsb2d−uC0
sb2dgu2

asCdv22sC0d.

Thus to obtains24d we should have

eCsb1deC0
sb1dejfuCsb1d−uC0

sb1dg = eCsb2deC0
sb2dejfuCsb2d−uC0

sb2dg.

Thus

uCsb1d − uC0
sb1d = uCsb2d − uC0

sb2d, or uCsb1d − uCsb2d = uC0
sb1d − uC0

sb2d.

By choosing the representation withs20d we satisfy the above condition.
Theorem 3.1: We can construct the quantumlike (Hilbert space) representation of a contex-

tual Kolmogorov space such that the hyperbolic Born’s rule holds true for both reference variables
a and b iff the matrix of transition probabilitiesPb/a is double stochastic.

We remark that basic contextsBx=hv[V :bsvd=xj, x[X, always belong toChyp, so
wBx

[Hhyp; and Bx[CtrùChyp iff a and b are uniformly distributedsPa/b and Pb/a are double
stochasticd.

IV. HYPERBOLIC QUANTUM MECHANICS

As in the ordinary quantum formalism, we represent physical states by normalized vectors of
a hyperbolic Hilbert spaceE :w[E and sw ,wd=1. We shall consider only dichotomous physical
variables and quantum states belonging to the two-dimensional Hilbert space. Thus everywhere
belowE denotes the two-dimensional space. Leta=a1, a2 andb=b1, b2 be two physical variables.

We represent them byG-linear operators,â=a1ua1lka1u+a2ua2lka2u and b̂=b1ub1lkb1u+b2ub2lkb2u,
where huailji=1,2 and hubilji=1,2 are two orthonormal bases inE. The latter condition plays the
fundamental role in hyperbolic quantum mechanics. This is an analogue of the representation of
physical observables by self-adjoint operators in the conventional quantum mechanicssin the
complex Hilbert spaced.

Let w be a statesnormalized vector belonging toEd. We can perform the following operation
swhich is well defined from the mathematical point of viewd. We expend the vectorw with respect
to the basishubilji=1,2,

w = v1
bub1l + v2

bub2l, s25d

where the coefficientsscoordinatesd vi
b belong to G. We remark that we consider the two-

dimensionalG-Hilbert space. There existssby definitiond a basis consisting of two vectors. As the
basishubilji=1,2 is orthonormal, we havesas in the complex cased that

uv1
bu2 + uv2

bu2 = 1. s26d

However, we could not automatically use Born’s probabilistic interpretation for normalized vec-
tors in the hyperbolic Hilbert space, it may be thatvi

b[” G+ and henceuvi
bu2,0 sin fact, in the
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complex case we haveC=C+; thus there is no problem with positivityd. Since we do not want to
consider negative probabilities, in such a case we cannot use the hyperbolic version of Born’s
probability interpretation.

Definition 4.1: A state w is decomposable with respect to the system of stateshubilji=1,2

(b-decomposable) if

vi
b [ G+. s27d

In such a case we can use generalization of Born’s probabilistic interpretation for a hyperbolic
Hilbert space. Numbers

pw
bsbid = uvi

bu2, i = 1,2,

are interpreted as probabilities for valuesb=bi for the G-quantum statew.
We remark that in this frameworkshere we started with a hyperbolic Hilbert space and not

with a contextual statistical model, cf. Sec. IIId a hyperbolic generalization of Born’s rule is a
postulate.

Thus decomposability is not a mathematical notion. This is not just linear algebraic decom-
position of a vector with respect to a basis. This is a physical notion describing the possibility of
probability interpretation of a measurement over a state. As it was already mentioned, in hyper-
bolic quantum mechanics a statew[E is not always decomposable. Thus for an observableb
there can exist a statew such that the probabilitiespw

bsbid are not well defined. One of the reasons
for this can be the impossibility to perform theb-measurement for systems in the statew. Such a
situation is quite natural from the experimental viewpoint. Moreover, it looks surprising that in
ordinary quantumsas well as classicald theory we can measure any observable in any state. I think
that this is just a consequence of the fact that there was fixed the set of states corresponding to a
rather special class of physical observables. Thus in the hyperbolic quantum formalism for each
statew[E there exists its own set of observablesOswd. And in generalOswdÞOscd. We cannot
exclude another possibility. The set of observablesO does not depend on a statew. And the result
of an individual measurement of anyb[O is well defined for any statew. But relative frequencies
of realizations of the valueb=bk do not converge to any limit. Therefore probabilities are not well
defined. Thus the principle of the statistical stabilization should be violated, cf. Ref. 13.

Let K be a Kolmogorov probability model and letw[SChyp. Thus w=wC for some context
C[Chyp. Let the matrix of transition probabilitiesPb/a be double stochastic. Thenw is decompos-
able with respect to both reference variablesb and a. Moreover, basis vectorsei

b= ubil are a
decomposable and vice versa.

We now start the derivation of the hyperbolic probabilistic rule by using the hyperbolic
Hilbert space formalism. Suppose that a statew[E is a decomposable,

w = v1
aua1l + v2

aua2l

and the coefficientsvi
a[G+.

We also suppose that each stateuail is decomposable with respect to the system of states
hubilji=1,2. We have

ua1l = v11ub1l + v12ub2l, ua2l = v21ub1l + v22ub2l, s28d

where the coefficientsvik belong toG+. We havessince both bases are orthonormald

uv11u2 + uv12u2 = 1, uv21u2 + uv22u2 = 1, s29d

cf. s18d. We can use the probabilistic interpretation of numberspik= uviku2, namelypik=puail
sbkd is

the probability forb=bk in the stateuail.
Let us consider matrixV=svikd. As in the complex case, the matrixV is unitary, since vectors

ua1l=sv11,v12d and ua2l=sv21,v22d are orthonormal. Hence we have normalization conditionss29d
and the orthogonality condition,
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v11v̄21 + v12v̄22 = 0, s30d

cf. s17d. It must be noticed that in general unitarity does not imply thatvik[G+. The latter
condition is the additional constraint on the unitary matrixV. Let us consider the matrixPb/a

=spikd. This matrix is double stochasticssinceV is unitaryd.
By using theG-linear space calculationsthe change of the basisd we getw=v1

bub1l+v2
bub2l,

wherev1
b=v1

av11+v2
av21 andv2

b=v1
av12+v2

av22.
We remark that decomposability is not transitive. In principlew may not be decomposable

with respect tohubilji=1,2, despite the decomposability ofw with respect tohuailji=1,2 and the
decomposability of the latter system with respect tohubilji=1,2.

The possibility of decomposability is based on twostotally differentd conditions,s26d, nor-
malization, ands27d, positivity. Any G-unitary transformation preserves the normalization condi-
tion. Thus we get automatically thatuv1

bu2+ uv2
bu2=1. However, the condition of positivity in general

is not preserved, it can be thatvi
b[” G+ even if we havevi

a[G+ and the matrixV is G unitary.
Finally, suppose thatw is decomposable with respect tohubilji=1,2. Thusvk

b[G+. Therefore
coefficientspw

bsbid= uvi
bu2 can be interpreted as probabilities forb=bk for the G-quantum statew.

Let us consider states such that coefficientsvi
a, vik belong toG+

* . We can uniquely represent
them as

vi
a = ± Îpw

asaidejji, vik = ± Îpike
jgik, i,k, = 1,2.

We find that

pw
bsb1d = pw

asa1dp11 + pw
asa2dp21 + 2e1 coshu1

Îpw
asa1dp11pw

asa2dp21, s31d

pw
bsb2d = pw

asa1dp12 + pw
asa2dp22 + 2e2 coshu2

Îpw
asa1dp12pw

asa2dp22, s32d

where ui =h+gi and h=j1−j2, g1=g11−g21, g1=g12−g22, and ei =±. To find the right relation
between signs of the last terms in equationss31d and s32d, we use the normalization condition

uv2
bu2 + uv2

bu2 = 1 s33d

swhich is a consequence of the normalization ofw and orthonormality of the systemhubilji=1,2d.
We remark that the normalization conditions33d can be reduced to relations between coeffi-

cients of the transition matrixV. So it does not depend on the originala-decomposition ofw,
namely coefficientsvi

a. Condition of positivity, uvi
bu2ù0, could not be written by using only

coefficients ofV. We also need to use coefficientsvi
a. Therefore it seems to be impossible to find

such a class of linear transformationsV that would preserve condition of positivity, “decomposi-
tion group” of operators.

Equations33d is equivalent to the equation

Îp12p22 coshu2 ± Îp11p21 coshu2 = 0. s34d

Thus we must choose opposite signs in Eqs.s31d and s32d. Unitarity of V also implies thatu1

−u2=0, sog1=g2. We recall that in the ordinary quantum mechanics we have similar conditions,
but trigonometric functions are used instead of hyperbolic and phasesg1 and g2 are such that
g1−g2=p.

Finally, we get that unitary linear transformations in theG-Hilbert spacesin the domain of
decomposable statesd represent the following transformation of probabilities:
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pw
bsb1d = pw

asa1dp11 + pw
asa2dp21 ± 2e1 coshu1

Îpw
asa1dp11pw

asa2dp21, s35d

pw
bsb2d = pw

asa1dp12 + pw
asa2dp22 7 2e2 coshu2

Îpw
asa1dp12pw

asa2dp22. s36d

This is hyperbolic interference. In Sec. II it was derived from the contextual statistical model and
then in Sec. III by using interference formulas we obtained the hyperbolic Hilbert space represen-
tation for contexts. In this section we started directly from the hyperbolic Hilbert space represen-
tation and derived interference of probabilities.

V. EXPERIMENTAL VERIFICATION OF HYPERBOLIC QUANTUM MECHANICS

This paper contains an important experimental prediction.
In statistical experiments with physical (micro as well as macro) systems there could be

produced not only the ordinary trigonometric, but also the hyperbolic interference picture.
We start with the general description of interference experiments for discrete observables.

There are considered two dichotomous observables,a, “slit number;” andb, “position of a particle
on the registration screen.” The observablea is measured in the following way. Particle detectors
are placed behind the screen having two open slits. The observablea= j if the detector behind the
j th slit clicks. To define another observable, we choose some domainD on the registration screen
and we setb=1 if a particle is registered insideD andb=0 if outside. The complex of physical
conditions under considerationscontextd C is screen with two open slits and the registration
screen. We find frequency probabilitiespC

bs1d andpC
bs0d by counting the number of particles inside

and outside the domainD on the registration screen. Then we perform the measurement of thea
variable by placing detectors behind the first screen. We find frequency probabilitiespC

as1d and
pC

as2d by counting the numbers of particles passing through the first screen and the second screen,
respectivelyfif the source is located symmetrically with respect to screens, thenpC

asa=1d=pC
asa

=2d=1/2g. We also find transition probabilitypb/asi / jd by closing thej th slit and performing the
b measurement under this complex of physical conditions. For systems described by classical
snoncontextuald probability theory we get the well-known formula of total probability,

pC
bsxd = pC

as1dpb/asx/1d + pC
as2dpb/asx/2d.

Here the coefficient of statistical disturbancelsb=x/a,Cd=0. For systems described by quantum
probability, we get the interference formula,

pC
bsxd = pC

as1dpb/asx/1d + pC
as2dpb/asx/2d + 2 cosuÎpC

as1dpb/asx/1dpC
as2dpb/asx/2d.

This formula is usually derived in the Hilbert space formalism. In the book of Feynman and Hibs14

violation of the formula of total probability was considered as the most important exhibition of
difference between probabilistic laws for classical and quantum systems. However, in papers of
some authors, e.g., Refs. 2, 5–8, and 13 there was pointed out that violation of the formula of total
probability is just an exhibition of contextuality of quantum probabilities.

In this paper we predict that contextual statistics produced by experiments of two slit type is
not reduced to classical and quantum. Besides the absence of interference and the quantum trigo-
nometric interference, we predict a type of interference—the hyperbolic interference. In our ap-
proach it is very easy to find the type of interference of probabilities. In a statistical test for some
contextC we calculate the coefficient

lsa = x/b,Cd =
pC

bsxd − pC
as1dpb/asx/1d − pC

as2dpb/asx/2d

2ÎpC
as1dpb/asx/1dpC

as2dpb/asx/2d
.

An empirical situation withlsa=x/b,Cd.1 would yield evidence for quantumlike hyperbolic
behavior. The coefficientlsa=x/b,Cd can be easily calculated on the basis of statistical data.

Thus our hyperbolic quantum mechanics predicts a testable result, namely the hyperbolic
interference, that ordinary quantum mechanics does not.
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We wrote about experiments of “two slit type.” They need not be precisely experiments with
space variables. Thea and b can be any pair of incompatible observables. Incompatibility is
understood as the impossibility to escape mutual disturbances in the process of measurement. The
coefficientlsa=x/b,Cd gives the measure of statistical disturbance. Classical measurements are
characterized bysstatisticallyd negligibly small mutual disturbances, so herelsb=x/a,Cd=0 sand
we have the conventional formula of total probabilityd. Quantum measurements are characterized
by mutual disturbances which are not negligiblesstatisticallyd. Here lsb=x/a,Cd[ s0,1g. The
conventional formula of total probability is violated and we have the conventional trigonometric
interference. However, the quantum case, i.e.,lsb=x/a,Cd[ s0,1g, does not describe all nonclas-
sical measurements. There can exist incompatible observables which produce mutual disturbances
which aresstatisticallyd essentially larger than the conventional quantum disturbances. In such a
caselsa=x/b,Cd.1. As in the quantum case, the conventional formula of total probability is
violated, but we have nonconventional hyperbolic interference.

Thus hyperbolic interference might be found in experiments with systems which are essen-
tially more sensitive to disturbance effects of measurement devices than quantum systems. So to
find such an interference we should go to scales of space, time, and energy, distances and time
intervals which are essentially smaller than approached in the conventional quantum experiments.
One may speculate that there can be some connections with string theory and cosmology. It may
be that quantum mechanics for string theory and cosmology is hyperbolic quantum mechanics.

Another possibility to find hyperbolic interferenceswhich looks more realizable at the present
technological leveld is to look for observables on ordinary quantum or classical systems which
would produce very strong statistical disturbances.

Since we derived the hyperbolicsas well as the conventional trigonometricd interference in the
general contextual probabilistic approach, our formalism can be applied to any kind of system, for
example, cognitive systems. Experiments of the two slit type can be done for cognitive systems,
e.g., human beings. Here observablesa andb are given in the form of questions. It might be that
cognitive systems can produce hyperbolic interference and should be described by hyperbolic
quantum mechanics.
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A Bell inequality defined for a specific experimental configuration can always be
extended to a situation involving more observers, measurement settings, or mea-
surement outcomes. In this article, such “liftings” of Bell inequalities are studied. It
is shown that if the original inequality defines a facet of the polytope of local joint
outcome probabilities then the lifted one also defines a facet of the more complex
polytope. ©2005 American Institute of Physics.fDOI: 10.1063/1.1928727g

I. INTRODUCTION

In a typical Bell experiment, two or more entangled particles are distributed to separate
observers. Each observer measures on his particle one from a set of possible observables and
obtains some outcome. One of the most striking features of quantum mechanics is that the result-
ing joint outcome probabilities can violate a Bell inequality,1 indicating that quantum mechanics is
not, in Bell’s terminology, locally causal. This prediction has been confirmed, up to some loop-
holes, in numerous laboratory experiments.2,3 The implications of nonlocality for our fundamental
description of nature4,5 have long been discussed; more recently, nonlocality has also acquired a
significance in quantum information science.6–12 From this perspective, being able to decide
whether a joint probability distribution can be reproduced with classical randomness only, or
whether entanglement is necessary, is an important issue.

For a given number of observers, measurement settings, and measurement outcomes, the set
of joint probabilities accessible to locally causal theories is a convex polytope.13 It is therefore
completely characterized by a finite number of linear inequalities that these probabilities must
satisfy—that is, by a finite number of Bell inequalities. Each of these inequalities corresponds to
a facetof the local polytope. Note, however, that not every Bell inequality represents a facet. Facet
inequalities are the ones which characterize precisely the border between the local and the non-
local region. They form a minimal and complete set of Bell inequalities.

In the simple situation where they are only two observers, two measurement choices, and two
outcomes per measurement, all the facet inequalities are known:14,15 up to permutation of the
outcomes, they correspond to the Clauser–Horne–Shimony–HoltsCHSHd inequality.16 Beyond
this, little is known. It is in principle possible to obtain all the facet inequalities of an arbitrary Bell
polytope using specific algorithms. In practice this only allows one to extend the range of solved
cases to a few more observers, measurements, or outcomes,17,18 as these algorithms are exces-
sively time-consuming. The problem of listing all facet inequalities has in fact been demonstrated
to be NP-complete;19 it is therefore unlikely that it could be solved in full generality. Discouraging
as this result may seem, it nevertheless leaves open several possibilities. First, complete sets of
facet inequalities may be obtained for particular classes of Bell polytopes or for simplified ver-
sions of them. For instance, in the case where “full correlation functions” are considered instead of
complete joint probability distributions, all facet inequalities are known for Bell scenarios con-
sisting of an arbitrary number of parties with two measurement choices and two outcomes.20,21
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Second, in more complicated situations it may still be possible to obtain partial lists of facets. For
instance, families of facet inequalities are known for arbitrary number of measurements19 or
outcomes.22

Further progress in the derivation of Bell inequalities would certainly benefit from a better
characterization of the general properties of Bell polytopes. This is the motivation behind the
present article. The question that we will investigate is how, and to what extent, the facial structure
of a Bell polytope determines the facial structure of more complex polytopes. More specifically
consider a bipartite Bell experiment characterized by the probabilitypk1k2u j1j2

for the first observer
to obtain outcomek1 and for the second one to obtain outcomek2, given that the first observer
measuresj1 and the second onej2. Suppose that each observer chooses one from two dichotomic
observables, that is,k1, k2P h1,2j and j1, j2P h1,2j. A necessary condition for this experiment to
be reproducible by a local model is that the joint probabilities satisfy the CHSH inequality

p11u11 + p11u12 + p11u21 − p11u22

+ p22u11 + p22u12 + p22u21 − p22u22 ù 0. s1d

Although this inequality is defined for the specific Bell scenario that we have just described, it also
constrains the set of local joint probabilities involving more observers, measurements, and out-
comes. Indeed, as was noted by Peres23 there are obvious ways to extend Bell inequalities to more
complex situations, or tolift them following the terminology of polytope theory. As an illustration,
let us consider the following three possible extensions of our CHSH scenario.

sid More observers. Consider a tripartite Bell experiment with joint probability distribution
pk1k2k3u j1j2j3

, wherek1, k2, k3P h1,2j and j1, j2, j3P h1,2j. A necessary condition for this
tripartite distribution to be local is that the probabilitiesp̃k1k2u j1j2

for the first two observers
to measurej1 and j2 and to obtain outcomesk1 and k2 conditional on the third observer
measuringj3=1 and obtainingk3=1 satisfy the CHSH inequality. These conditional prob-
abilities are given by p̃k1k2u j1j2

=pk1k21u j1j21/p13u13
, where the marginal p13u13

=ok1,k2
pk1k21u j1j21 is independent ofj1 and j2 by no signalingssee Sec. III Ad. Inserting these

probabilities ins1d and multiplying both sides byp13u13
leads to

p111u111+ p111u121+ p111u211− p111u221

+ p221u111+ p221u121+ p221u211− p221u221ù 0, s2d

a natural extension of the CHSH inequality to three parties.
sii d More measurements. Consider our original bipartite Bell scenario, but assume that the

second observer may choose between three different measurement settingsj2P h1,2,3j.
Clearly, a necessary condition for the corresponding joint distribution to be reproducible by
a local model is that, when restricted to the probabilities involvingj2P h1,2j, it satisfies the
CHSH inequality. Therefore, inequalitys1d is, as such, a valid Bell inequality for this
three-measurement scenario.

siii d More outcomes. Suppose now that the measurement apparatus of the second observer may
output one out of three distinct valuesk2P h1,2,3j. Merging the outcomesk2=2 andk2

=3, we obtain an effective two-outcomes distribution with probabilitiesp̃k11u j1j2
=pk11u j1j2

and p̃k12u j1j2
=pk12u j1j2

+pk13u j1j2
. The existence of a local model for the original distribution

obviously implies a model for the coarse-grained one. Expressing the fact that thep̃k1k2u j1j2
should satisfys1d, we thus deduce the following lifting

p11u11 + p11u12 + p11u21 − p11u22

+ p22u11 + p22u12 + p22u21 − p22u22

+ p23u11 + p23u12 + p23u21 − p23u22 ù 0 s3d

of the CHSH inequality to three outcomes.
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These three examples can be combined and used sequentially to lift the CHSH inequality to an
arbitrary number of observers, measurements, and outcomes. It is also straightforward to gener-
alize them to other Bell inequalities than the CHSH one. How strong are the constraints on the
joint probabilities obtained in this way? We will show that if the original inequality describes a
facet of the original polytope, then the lifted one is also a facet of the more complex polytope. This
implies, for instance, that the CHSH inequality is a facet of every Bell polytope since it is a facet
of the simplest one.

This article is organized as follows. Section II introduces the concepts and notations that will
be used in the remainder of the paper. In particular, we briefly review the definition of Bell
polytopes and elementary notions of polytope theory. In Sec. III, we derive some basic properties
of Bell polytopes that are necessary to prove our main results concerning the lifting of facet
inequalities. These results are presented in Sec. IV. We conclude with a discussion and some open
questions in Sec. V.

II. DEFINITIONS

A. Bell scenario

Considern systems and assume that on each systemi a measurementj P h1,… ,mij is made,
yielding an outcomekP h1,… ,vi jj. Note that the number of possible measurementsmi may be
different for each systemi, and that the number of possible outcomesvi j may be different for each
measurementj on systemi. Such a Bell scenario is thus characterized by the triplesn,m,vd where
m=sm1,… ,mnd specifies the number of possible measurements per system, and where the table
v=fsv11,… ,v1m1

d ;… ; svn1,… ,vnmn
dg specifies the number of possible outcomes per measurement

on each system. When notations such assn,2 ,vd are used, it should be understood thatmi =2 for
all i.

The joint probability of obtaining the outcomessk1,… ,knd given the measurement settings
s j1,… , jnd will be denotedpk1…knu j1… jn

. We will view theset=pi=1
n so j=1

mi vi jd probabilities as forming
the components of a vectorp in Rt. For a given observeri P h1,… ,nj, measurementj
P h1,… ,mij and outcomekP h1,… ,vi jj, we will often be interested in the subset of the compo-
nents ofp that have the indiceski and j i corresponding to observeri fixed, and equal, respectively,
to k and j . In other words, we will be interested in the variablespk1…ki−1k ki+1…knu j1… j i−1j j i+1… jn

. The
restriction ofp to these components will be denotedpsi , j ,kd.

B. Bell polytopes

The setB#Rt of correlations reproducible within a locally causal model is the set of corre-
lationsp satisfying

pk1…knu j1… jn
=E dmqsmdPsk1u j1,md…Psknu jn,md,

where qsmdù0, edm qsmd=1, andPski u j i ,md is the probability of obtaining the measurement
outcomeki given the settingj i and the hidden-variablem.1,4 From this definition it is easily
deducedssee Ref. 13 for instanced thatp is generated by specifying probabilities for every assign-
ment of one of the possible outcomes to each of the measurement settings. More precisely, let the
table l=fsl11,… ,l1m1

d ;… ; sln1,… ,lnmn
dg assign to each measurementj on systemi the out-

comeli j . The sfinited set of all such possible assigmenents will be denotedL. Let

pk1…knu j1… jn

l =H1 if l1j1
= k1,…,lnjn

= kn

0 otherwise
J s4d

be the deterministic vector corresponding to the assignmentl. Then
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B = Hp P Rtup = o
lPL

qlpl,ql ù 0, o
lPL

ql = 1J . s5d

The setB of local correlations is thus the convex hull of a finite number of points, i.e., it is a
polytope. The deterministic vectorshpl ulPLj form the extreme points of this polytope.

C. Notions of polytope theory

We review in this section some elementary notions of polytope theory. For more detailed
introductions, see Refs. 24–26.

The pointsp1,… ,pn in Rt are said to be affinely independent if the unique solution to
oimipi =0, oimi =0 is mi =0 for all i, or equivalently, if the pointsp2−p1,… ,pn−p1 are linearly
independent. They are affinely dependent otherwise. The affine hull of a set of points is the set of
all their affine combinations. An affine set has dimensionD, if the maximum number of affinely
independent points it contains isD+1.

Let B#Rt be a polytope defined as ins5d. Let sb,b0dPRt+1 define the inequalityb·pùb0. If
this inequality is satisfied for allpPB, it is called a valid inequality for the polytopeB, or a Bell
inequality in the context of Bell polytopes. Note that to check whether an inequality is a valid
inequality, it is sufficient, by convexity, to check whether it is satisfied by the extreme points
hpl ulPLj. Given the valid inequalityb·pùb0, the setF=hpPB ub·p=b0j is called a face ofB
and the inequality is said to supportF. If FÞx andFÞB, it is a proper face. The dimension of
F is the dimension of its affine hull. Proper faces clearly satisfy dimFødim B−1. Proper faces of
maximal dimension are called facets. An inequalityb·pùb0 thus supports a facet ofB if and only
if dim B affinely independent ofB satisfy it with equality.

A fundamental result in polyhedral theory, known as Minkowski–Weyl’s theorem, states that
a polytope represented as the convex hull of a finite number of points, as ins5d, can equivalently
be represented as the intersection of finitely many half-spaces:

B = hp P Rtubi · p ù b0
i , for all i P Ij, s6d

where hbi ·pùb0
i , i P Ij is a finite set of inequalities. The inequalities supporting facets ofB

provide a minimal set of such inequalities.27 In particular, any valid inequality forB can be
derived from the facet inequalities.

Given a Bell scenariosn,m,vd, the task of finding all the Bell inequalities is thus the problem
of finding all the facets of the convex polytopeBsn,m,vd defined bys4d ands5d. This connection
between the search for optimal Bell inequalities and polyhedral geometry was observed by differ-
ent authors.14,23,28,29For discussions on the complexity of this facet enumeration task see Refs. 19
and 30. For the instances for which this problem has been partially or completely solved, see Refs.
14, 15, 17–22, 31, and 32.

III. BASIC PROPERTIES OF BELL POLYTOPES

A. Affine hull

Local correlationspPB satisfy the following equality constraints:the normalization condi-
tions

o
k1…kn

pk1…knu j1… jn
= 1 s7d

for all j1,… , jn; and the no signaling conditions

o
ki

pk1…ki…knu j1… j i… jn
= o

ki

pk1…ki…knu j1… j i8… jn
s8d

for all i, k1,…ki−1, ki+1,… ,kn and j1,… j i−1, j i , j i8 , j i+1,… , jn.
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The no signaling conditions imply that for each subsethi1,… , iqj of sizeq of the observers,
the q-marginalspki1

…kiq
u j i1

… j iq
=okiq+1

…okin
pk1…knu j1… jn

are well-defined, that is, are independent of

the precise value of the measurement settingsj iq+1
… j in.

The two conditionss7d and s8d also imply that the polytopeB is not full dimensional inRt,
i.e., it is contained in an affine subspace. The following theorem generalizes results given in Refs.
22 and 19.

Theorem 1: The constraintss7d and s8d fully determine the affine hull ofB and

dim B = p
i=1

n So
j=1

mi

svi j − 1d + 1D − 1. s9d

Proof: Consider the marginalspki1
…kiq

u j i1
… j iq

as defined above for all possible subsetshi1,… , iqj
of sizeq, and for allq=1,… ,n. Of these marginals retain only the ones such thatki Þ1 for all
i P hi1,… , iqj. These probabilities define in totalD=pi=1

n so j=1
mi svi j −1d+1d−1 numbers. It is

straightforward to check that their knowledge is sufficient to reconstruct, using the normalization
and no signaling conditions, the originalpk1…knu j1… jn

. This implies that the affine subspace defined
by s7d and s8d is of dimensionøD.

Let us now show that dimBùD, or equivalently thatB containsD+1 affinely independent
points. For this, note that the definitions4d implies that an extreme pointpl can be written as the
productpk1…knu j1… jn

l =pk1u j1
l …pknu jn

l , wherepkiu j i
l is a vector of lengtho j=1

mi vi j such that

pkiu j i
l =H1 if li j i

= ki

0 otherwise.
J s10d

For fixed i, consider, for eachj i8P h1,… ,mij and for eachki8P h2,… ,vi j i8
j, the pointspkiu j i

l

defined byli j i
=1 for all j i Þ j i8 andli j i8

=ki8. In addition, consider the vectorpkiu j i
l defined byli j i

=1 for all j i. Theseo j=1
mi svi j −1d+1 points are linearly independent. The productspk1…knu j1… jn

l

=pk1u j1
l …pknu jn

l of all these points thus definepi=1
n so j=1

mi svi j −1d+1d=D+1 linearly independent ex-
treme points ofB, which are therefore also affinely independent. h

SinceB is not full dimensional, it follows that there is no unique way to write down a valid
inequality forB. More specifically, the inequalitiesb·pùb0 and sb+mcd ·pù sb+mc0d, wherem
PR and wherec·p=c0 is a linear combination of the equalitiess7d and s8d, impose the same
constraints onB. In particular, it is always possible to use the normalization conditions to rewrite
an inequality such that its lower bound is 0, that is, in the formb·pù0. This fact will be used later
on.

B. Trivial facets and nontrivial polytopes

In addition to the normalization and no signaling conditions,B also satisfy the following
positivity conditions:

pk1…knu j1… jn
ù 0 s11d

for all k1,… ,kn and j1,… , jn.
Theorem 2: The positivity conditions support facets ofB.
Proof: Without loss of generality, suppose thatpk1…knu j1… jn

ù0 is such that thek1,… ,kn are all
different than 1. Then, in the proof of Theorem 1, we enumerated dimB+1 affinely independent
points, dimB of which satisfypk1…knu j1… jn

=0. h

The normalization, no signaling, and positivity conditions are obviously not only satisfied by
local probabilities, but also by all no signaling nonlocal ones, and in particular by quantum ones.
The only useful constraints that separate the local region from the nonlocal thus correspond to the
facets ofB that are not of the forms11d.
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Let us also note that when determining the facets of a Bell polytope, we can always assume
thatn, mi andvi j are allù2 because otherwise all the corresponding facets are trivial or belong to
simpler polytopes. Indeed,

sid the only facet inequalities of one-partite polytopes are the positivity constraints,
sii d all the facet inequalities of a polytope wheremi =1 for some partyi are equivalent to the

facet inequalities of the polytope obtained by discarding that party,
siii d a polytope withvi j =1 for some measurementj of party i is equivalent to the polytope

obtained by discarding that measurement choice.

Point sid is easily established. To showsii d, assume thatB is a polytope such that for partyi the
only measurement choice isj P h1j. A valid inequality forB can thus be written as

o
k

bk · psi, j ,kd ù 0, s12d

where, without loss of generality, the right-hand side is equal to zero. It then follows that for all
kP h1,… ,vi jj the following inequalities

bk · psi, j ,kd ù 0 s13d

are also valid forB. Indeed, for each extreme pointpl, either the assignmentl is such thatli j

=k and s12d and s13d impose the same constraints onpl, or li j Þk and s13d gives the trivial
inequality 0ù0. Every extreme point satisfyings12d thus also satisfiess13d. Note further that
every extreme point satisfyings12d with equality also satisfiess13d with equality. This implies that
the face supported bys12d cannot be—unlesss12d is itself equivalent to one of the inequalities
s13d—a facet ofB, because it lies in the intersection of the faces supported bys13d and is therefore
of dimension,dim B−1. We can thus assume that all facet inequalities ofB are of the forms13d.
It will be shown in Sec. IV A that all these facet inequalities are equivalent to facet inequalities of
the polytope obtained by discarding partyi. Finally, point siii d follows immediately when we
notice that a polytope withvi j =1 for some measurementj of party i and the polytope obtained by
discarding that measurement have the same dimension and have their extreme points in one-to-one
correspondence.

C. A useful lemma

As we have reminded earlier an inequality defines a facet of a polytopeB if and only if it is
satisfied by dimB affinely independent points ofB. To prove the results of the next section
concerning the lifting of facet inequalities, we will then need to count the number of affine points
that a facet contains. The following lemma will be our main tool to achieve this task.

Lemma 3: Let the inequality b·pùb0 support a facet ofBsn,m,vd. Let i8P h1,… ,nj, j8
P h1,… ,mi8j and k8P h1,… ,vi8 j8j. Then there are at exactly r extreme points pl of B such that
b·pl=b0, li8 j8=k8, and such that the r restrictions plsi8 , j8 ,k8d are affinely independent, where

sid r =piÞi8so j=1
mi svi j −1d+1d−1, if b ·pùb0 is equivalent to an inequality of the form

c·psi8 , j8 ,k8dù0;
sii d r =piÞi8so j=1

mi svi j −1d+1d, otherwise.

Proof: Let hpd udPD#Lj be dimB affinely independent extreme points which belong to the
facet supported byb·pùb0. Among these, lethpg ugPG#Dj be the extreme points satisfying
gi8 j8=k8 and such that their restrictionshpgsi8 , j8 ,k8d ugPGj are affinely independent.

Consider the polytopeBn−1 obtained fromB by discarding partyi8. The components ofp
PBn−1 are thus of the formpk1…ki8−1ki8+1…knu j1… j i8−1j i8+1… jn

. Given thatpgsi8 , j8 ,k8d corresponds to

the components ofpg where the indices associated to thei8th party are fixed and satisfyki8
=k8 , j i8= j8, given thatgi8 j8=k8, and given definitions4d, it follows that eachpgsi8 , j8 ,k8d can be
identified with an extreme point of thesn−1d-partite polytopeBn−1 fand conversely, each extreme
point of Bn−1 can be identified with the restrictionpgsi8 , j8 ,k8d of some extreme pointpgPB
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satisfyinggi8 j8=k8g. Thus no more than dimBn−1 of the pgsi8 , j8 ,k8d can be affinely independent,
andr ødim Bn−1+1=piÞi8soi=1

mi svi j −1d+1d. Alternatively, one could have deduced the same result
starting from the fact that thepg satisfy the implicit equalitiess7d ands8d, and counting the number
of constraints that these equalities impose on thepgsi8 , j8 ,k8d.

Suppose thatr ,dim Bn−1+1. Then thehpg ugPGj satisfy at least one constraint

c · psi8, j8,k8d = 0 s14d

linearly independent from the implicit equalities ofB. Following the remark at the end of Sec.
III A, we have not lost generality by taking the right-hand side ofs14d equal to zero. Note that the
constraints14d is in fact satisfied by allhpd udPDj. Indeed, eitherdi8 j8Þk8 and s14d gives the
trivial equation 0=0, orpdsi8 , j8 ,k8d is affinely dependent from thepgsi8 , j8 ,k8d, which satisfy
s14d.

As the hpd udPDj form a set of dimB independent extreme points, they can satisfy at most
one constraint linearly independent from the implicit equalities ofB, i.e., there can only be one
constraint of the forms14d. Thus at mostr =dimBn−1=piÞi8soi=1

mi svi j −1d+1d−1. Furthermore, as
the hpd udPDj already satisfy the equalityb·p=b0, this can only be the case ifs14d is equivalent
to b·p=b0, that is if b·pùb0 is equivalent either toc·psi8 , j8 ,k8dù0 or s−cd ·psi8 , j8 ,k8dù0. h

IV. LIFTING BELL INEQUALITIES

We now move on to study the liftings of Bell inequalities that we have presented in Sec. I and
their natural generalizations. We will prove that these liftings are facet-preserving. It was already
shown in Ref. 19 that a Bell inequality that supports a facet ofBs2,m,2d also supports a facet of
Bs2,m8 ,2d for all m8ùm. Furthermore, in Ref. 33 liftings of “partial constraint satisfaction
polytopes”spolytopes encountered in certain optimization problemsd were considered. Although
such liftings were studied independently from any potential relation to Bell inequalities, it turns
out that partial constraint satisfaction polytopes over a complete bipartite graph are bipartite Bell
polytopessin particular, the “4-cycle inequality” introduced in Ref. 33 corresponds to the CHSH
inequalityd. The results presented in Ref. 33 then imply that an inequality that supports a facet of
Bs2,m,vd also supports a facet ofBs2,m8 ,v8d for all m8ùm, v8ùv. It is in fact these results that
inspired the ones that are presented here.

In Secs. IV A–IV C, we will see that the lifting of an arbitrary inequality to a situation
involving, respectively, one more observer, one more measurement outcome, and one more mea-
surement setting are facet-preserving. Combined together these results imply that a Bell inequality
that supports a facet of a Bell polytopeBsn,m,vd, also supports, when lifted in the appropriate
way, a facet of any higher dimensional polytopeBsn8 ,m8 ,v8d with n8ùn, m8ùm, v8ùv.

A. One more observer

Consider a polytopeB;Bsn,m,vd, where then parties are labeledh1,… , i8−1,i8+1… ,n
+1j for some valuei8. Let the inequality

b · p ù 0 s15d

be valid forB. Note that we have taken, without loss of generality, the right-hand side ofs15d to
be equal to 0. Let us extend the polytopeB by inserting an additional observer in positioni8. The
resultingsn+1d-partite polytope will be denotedBn+1.

Given a pointpPBn+1, remember thatpsi8 , j8 ,k8d represents the probabilities ofp for which
the indices corresponding to the measurement setting and the outcome of partyi8 are fixed, and are
equal, respectively, toj8 and k8. Thereforepsi8 , j8 ,k8d /pk

i8
8 u j

i8
8 , wherepk

i8
8 u j

i8
8 denotes the marginal

probability for observeri8 to measurej8 and obtaink8, is the joint outcome probability distribution
for the n observersh1,… , i8−1,i8+1,…n+1j conditional on partyi8 measuringj8 and obtaining
k8. Either this conditional probability is equal to zero, or it corresponds to a point ofB. In both
cases, it satisfiess15d. It thus follows immediately that the following inequality

062112-7 Lifting Bell inequalities J. Math. Phys. 46, 062112 ~2005!

                                                                                                                                    



b · psi8, j8,k8d ù 0 s16d

is valid for Bn+1. Further, this lifting is facet-preserving.
Theorem 4: The inequalitys15d supports a facet ofB if and only if s16d supports a facet of

Bn+1.
Proof: As we have noted in the proof of Lemma 3, the restrictionplsi8 , j8 ,k8d of an extreme

point pl of Bn+1 satisfyingli8 j8=k8 can be identified with an extreme point ofB, and conversely.
Moreover, it is clear that ifplsi8 , j8 ,k8d satisfys16d with equality the corresponding extreme point
of B satisfy s15d with equality, and the other way around.

Assume thats16d supports a facet ofBn+1. Then it follows from Lemma 3 that they are
piÞi8so j=1

mi svi j −1d+1d−1=dimB extreme points ofBn+1 that satisfys16d with equality, such that
li8 j8=k8 and for which the restrictionsplsi8 , j8 ,k8d are affinely independent. By the above remark,
these extreme points define dimB affinely independent extreme points ofB that satisfys15d with
equality, hence this inequality supports a facet ofB.

To prove the converse statement, suppose now thats15d defines a facet ofB, that is, there exist
dim B affinely independent extreme points ofB that satisfy it with equality. By the above remark,
there thus exist dimB extreme points ofBn+1 that satisfys16d with equality, such thatli8 j8=k8 and
for which the restrictionsplsi8 , j8 ,k8d are affinely independent. To show thats16d defines a facet
of Bn+1, it thus remains to find dimBn+1−dimB affinely independent points satisfying it with
equality. For this, consider34 the extreme points ofBn+1 with li8 j8Þk8. They form an affine
subspace of dimension dimBn+1−piÞi8so j=1

mi svi j −1d+1d=dimBn+1−dimB−1 since they can be
identified with the extreme points of the polytope involving one outcome less thanBn+1 for the
measurementj8. Moreover, because they verifyplsi8 , j8 ,k8d=0, they satisfys16d with equality,
and are affinely independent from the extreme points for whichli8 j8=k8. h

We thus have just shown that any facet inequality of ann-partite polytope can be extended to
a facet inequality for a situation involvingn+1 parties. This result can be used sequentially so that
facets ofn-party polytopes are lifted tosn+kd-partite polytopes. For instance, the positivity con-
ditions s11d can be viewed as the successive lifting of 1-party inequalities.

The result holds in the other direction as well, since any facet inequality of the forms16d is the
lifting of an n-partite inequality. When studying Bell polytopes, it is thus in general sufficient to
considergenuinely n-partite inequalities, that is, inequalities that cannot be written in a form that
involves only probabilities associated with one specific measurement settingj8 and one specific
outcomek8 for some partyi8. Note that we can extend this definition to also exclude all inequali-
ties such ass12d that involve only probabilities associated to one measurement settingsbut pos-
sibly several outcomes corresponding to this measurementd. Indeed, we have noted at the end of
Sec. III B that such inequalities cannot be stronger than inequalities of the forms16d.

B. One more measurement outcome

Consider a polytopeB;Bsn,m,vd, where for measurementj8 of party i8 the vi8 j8 outcomes
are labeledh1,… ,k8−1,k8+1,… ,vi8 j8+1j for somek8. Let

b · p ù b0 s17d

be a genuinelyn-partite inequality valid forB. Let us consider the polytopeBv+1 obtained fromB
by allowing an extra outcomek8 for the measurementj8 of party i8. To lift the inequalityb·p
ùb0 to the polytopeBv+1, we can merge the additional outcomek8 with some other outcomek*

P h1,… ,k8−1,k8+1,… ,vi8 j8+1j, and insert the resulting probability distribution ins15d. This
results in the inequality

b · p + bsi8, j8,k*d · psi8, j8,k8d ù b0. s18d

Theorem 5: If the genuinely n-partite inequalitys15d supports a facet ofB, thens18d supports
a facet ofBv+1.

Proof: The dimension ofBv+1 equals dimB+piÞi8so j=1
mi svi j −1d+1d. The extreme points ofB
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that belong to the facetb·pùb0 provide dimB affinely independent points satisfyings18d with
equality. By Lemma 3, there existpiÞi8so j=1

mi svi j −1d+1d extreme pointspl with li8 j8=k* that
saturates15d, and thuss18d, and for which theplsi8 , j8 ,k*d are affinely independent. Replacek* by
k8 in these extreme points. These new extreme points still satisfys18d with equality and are
affinely independent with all the previous ones, since they are the unique extreme points with
plsi8 , j8 ,k8dÞ0. In total, we thus enumerated dimBv+1=dimB+piÞi8so j=1

mi svi j −1d+1d affinely
independent point satisfyings18d with equality. h

C. One more measurement setting

Consider a polytopeB;Bsn,m,vd, where for partyi8 the mi8 measurements are labeled
h1,… , j8−1,j8+1,… ,mi8+1j for somej8. Let the polytopeBm+1 be the polytope obtained fromB
by allowing the additional measurement settingj8 for party i8. An inequalityb·pùb0 valid for B
is also clearly valid forBm+1. Moreover, the following stronger result holds.

Theorem 6: Let b·pùb0 be a genuinely n-partite inequality supporting a facet ofB. Then it
is also support a facet ofBm+1.

Proof: Consider the polytopeB̃m+1 defined asBm+1 but such that for the measurementj8 of
party i8 is associated a single possible outcome, i.e.,vi8 j8=1. The inequalityb·pùb0 is a valid

genuinelyn-partite inequality forB̃m+1. Further, sinceB̃m+1 andB have the same dimension, it is

also facet defining forB̃m+1. Following the procedure to lift an inequality to more outcomes

delineated in Sec. IV B, this inequality can be lifted fromB̃m+1 to Bm+1. Sinceb·pùb0 does not
involve components associated with the measurementj8 of party i8, this results in the inequality
b·pùb0 itself. By Theorem 5, this inequality is facet defining forBm+1. h

V. CONCLUSION

We have shown that the facial structure of Bell polytopes is organized in a hierarchical way,
with all the facets of a given polytope inducing, through their respective liftings, facets of more
complex polytopes. Instead of considering the entire set of facets of a Bell polytope, it is thus in
general sufficient to characterize the ones that do not belong to simpler polytopes. It would be
interesting to investigate whether this fact could be exploited to improve the efficiency of the
algorithms used to list facet inequalities or to simplify analytical derivations of Bell inequalities.

Note that for certain polytopes, the complete set of facet inequalities is constituted entirely by
inequalities lifted from more elementary polytopes. For instance for Bell scenarios involving two
observers, the first having a choice between two dichotomic measurements and the second one
between an arbitrary number of them, all the facet-defining inequalities correspond to liftings of
the CHSH inequality.18,31A natural extension of the results reported in this article would then be
to investigate more generally when inequalities lifted from simpler polytopes describe complete
sets of facets. Progress along this line would allow one to narrow down the class of Bell scenarios
that have to be considered to find new Bell inequalities. Following this approach, all the polytopes
for which the only facets correspond to liftings of the CHSH inequality have recently been
characterized.35

Finally, let us note that while the facet-preserving liftings that we have considered are inter-
esting because they throw light on the structure of Bell polytopes, the inequalities obtained in this
way are not essentially different from the original ones, they are merely re-expressions of these
inequalities adapted to more general scenarios. However, it is also in principle possible to consider
more complicated generalizations of Bell inequalities that alter significantly their intrinsic struc-
ture. For instance, the family of Bell inequalities introduced in Ref. 36 can be understood as being
generated by successive nontrivial liftings of the CHSH inequality. Studying such liftings, as well
as the other possible extensions of our results, seems a promising path toward a more accurate
characterization of the constraints that separate the set of local joint probabilities from the set of
nonlocal ones.
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We argue that a semi-infinite D6-brane ending on an NS5-brane can be obtained
from the condensation of the tachyon on the unstable D9-brane of type IIA theory.
The construction uses a combination of the descriptions of these branes as solitons
of the worldvolume theory of the D9-brane. The NS5-brane, in particular, involves
a gauge bundle which is operator valued, and hence is better thought of as a
gerbe. ©2005 American Institute of Physics.fDOI: 10.1063/1.1922069g

I. INTRODUCTION

In type IIA string theory a D6-brane can end on a Neveu–SchwarzsNSd fivebrane in a
supersymmetric configuration.1 The simplest way to see this is to start from a fundamental string
ending on a D5-brane in type IIB theory. Indeed this defines aDirichlet fivebrane. Now by
S-duality followed by T-dualities along all the spatial directions of the worldvolume of the result-
ing NS5-brane we reach the desired configuration. Recall that this systemsand its T-dual cousinsd
are essential ingredients in “brane engineering” of gauge theory dynamics following Ref. 2.

Naively a semi-infinite brane in a flat space cannot exist by charge conservation. There is a
quantized charge of a D6-brane through a two-sphere enclosing it. However, in case of a semi-
infinite brane thisS2 can just be “slipped off” the end and collapsed, leading to an apparent
contradiction. This argument fails because we are in a situation with a nontrivial Neveu–Schwarz
B-field provided by the fivebrane. The gauge-invariant field strength is not simply the curvature of
the RR one-form gauge field.3 The NSB-field also couples to the Chan–Paton gauge field modi-
fying the Bianchi identity4 to dF,H.

We would like to obtain the semi-infinite D6-brane ending on a NS5-brane via tachyon
condensation on the unstable D9-brane. According to Sen,5 all D-branes in type IIA string theory
arise as solitons of the worldvolume theory on the D9-branes.sFor early work on tachyon con-
densation in string theory, see Ref. 6.d In particular, the stable D6-brane is an ’t Hooft-Polyakov
monopole of the gauge field-tachyon system on at least two D9-branes.7 The situation is more
complicated in the presence of the nontrivialB-field due to the fivebranessee Ref. 8 where many
configurations involving D-branes and the NS5-brane were discussedd. Any configuration must
satisfy the modified Bianchi identity. In our case, the relationdF,H must hold for both the final
D6-NS5-brane configurationafter the tachyon condensation, as well asbeforeit, for the D9-NS5-
brane system. The problem of tachyon condensation in the presence of anH field whose quantized
charges areZn valued was analyzed in Ref. 4. This was generalized to the usual integrally
quantized case in Ref. 9, which argues that in this situation one needs to consider the group of
unitary operators in a Hilbert space as the gauge group on the D9-brane. Operator valued gauge
fields appear in a natural way in the solitons of noncommutative gauge theory.10,11 Indeed, Harvey
and Moore12 have suggested a configuration to describe a NS5-brane as a noncommutative soliton
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of open string theoryssee also Ref. 13d. We present our arguments in this setup.
It turns out that our construction is related to one version of what is called agerbe,14 one in

which it is described by operator valued gauge fields.sLet us note parenthetically that in their
study of the antisymmetric tensor gauge fields, Freund and Nepomechie15 discovered gerbes in
string theory. Some recent applications to string theory may be found in Refs. 16 and 17.d As a
matter of fact, the NS5-D6-brane configuration has been obtained as a stable solution of massive
type IIA supergravity,16 in the language of gerbes. However, a different description of gerbes in
terms of local Us1d bundles was used in Ref. 16, which did not discuss tachyon condensation
either.

II. FIELD THEORY ANALOG

It is instructive to look at a simpler field theory model, in four space–time dimension, which
share the essential features of the brane configuration we wish to obtain after tachyon condensa-
tion. This model consists of a semi-infinite Nielsen–Olesen vortex of the Abelian Higgs model
ending on a Dirac monopole. We can think of this monopole as a singular limit of the ’t Hooft-
Polyakov monopole in the SOs3d Georgi–Glashaw model. With the Higgs field pointed radially
outwards in the field space, this is a nonsingular solution to the equations of motion with mass
proportional toMW/gYM

2 . The Nielsen–Olesen vortex, on the other hand, has constant finite energy
per unit length. A semi-infinite vortex ending on a monopole is then an infinite energy configu-
ration. To minimize its energy, the vortex will reduce its length thereby pulling the monopole
along all the way to infinity. Hence the semi-infinite vortex string ending on a monopole is
unstable.

There exists a remarkable way to stabilize this configuration by putting the monopole inside
an accelerating black hole.18 Here we begin with the Abelian Higgs model coupled to gravity. This
model has cosmic string, i.e., Nielsen–Olesen vortex solution as well as, say, a Schwarzschild
black hole solution. Let us consider a configuration in which the vortex ends on a black hole. In
this case one finds an axisymmetric metric with a conical singularity on the accelerating Schwarzs-
child black hole, whose metric up to a conformal factor isssee the third reference in Ref. 19d,

ds2 = fsrddt2 − f−1srddr2 − r2du2 − r2s1 − ad2 sin2 u df2, s1d

where

fsrd = S1 −
2M

r
− A2r2D

andA is the acceleration of the black hole. The deficit angle of the conical singularity is propor-
tional to a. This is a reflection of the fact that the vortex is piercing the black hole horizon. The
Schwarzschild black hole horizon has the topology of a two sphere. Suppose in the frame of an
asymptotic observer the vortex ends on the south pole of the horizon, then we can take a loop on
the horizon around the south pole and measure the magnetic flux of the vortex. For one vortex
configuration, theangle valuedHiggs field F winds once around this loop. Now, by deforming
this loop we can shrink it at the north pole. Since the vortex pierces the horizon only once, the
shrinking of the loop at the north pole seems to lead to a contradiction. However, this result is
misleading as the value ofF is gauge dependent. The vortex is also accompanied by a topologi-
cally nontrivial gauge field configuration. A consistent solution corresponds to defining the Hopf
fibration overS2. This can be achieved by defining two charts onS2,

UN = hu,f:u , pj, US= hu,f:u . 0j. s2d

On the overlap, the fields are related by the transition functiongNS=exps−ifd as
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expsiFNd = gNSexpsiFSd, ANm = ASm + igNS
−1]mgNS. s3d

Since the vortex is on the lower hemisphere, we can takeFN=0 and AN=0 on the northern
hemisphere and connect it to the vortex configuration on the southern hemisphere via the topo-
logically nontrivial transition function. This configuration makes sense as long as theS2 horizon
does not shrink to zero size. This is ensured by the fact that the extended Schwarzschild geometry
in the Kruskal coordinates is a wormhole with topologyS23R, the minimum radius of the sphere
being 2GM. In the extended geometry, absence of the vortex in the northern hemisphere can be
explained in the following manner. As the vortex approached the south pole of the horizon it goes
down the throat of the wormhole and reappears through the horizon in the other asymptotic region.

Let us now get back to the winding number ofF. This quantity is not gauge invariant in the
presence of a nontrivial gauge field configuration. The fieldF is also not single valued everywhere
on the sphere. We can, however, define a quantity

A = dF − A, s4d

which is both gauge invariant and single valued. In the northern hemisphere we have chosen
FN=0 andAN=0, which implies even in the southern hemisphere the net winding charge should
vanish. ClearlyA being single valued has zero winding charge. On the other hand, we saw that a
vortex solution near the south pole has dF winding number one. Hence we conclude that the
integral ofA around the loop near the south pole also has unit winding charge.

III. NEVEU–SCHWARZ FIVEBRANE IN OPEN STRING THEORY

The NS5-brane is a soliton of the closed string theory. Therefore one does not expect to see
detailed features of it in open string theory. Nevertheless, it turns out that some topological aspect
of the NS5-brane can be captured in terms of open strings. Harvey and Moore12 have a configu-
ration with the rightH-flux. In fact they have argued that the NS5-brane may be thought of as a
particular soliton in the noncommutative gauge theory of the unstable D9-brane in type IIA theory.
This is inspired by the idea of a noncommutative tachyon.11

We will now review this construction. In Ref. 12, the space–time topology is chosen to be
R1,4ÃRNC

2 3S23S1 and theH-flux is through the 3-cycleS23S1. This is based on an example in
Ref. 20. We will work, however, withR1,4ÃRNC

2 3S3, which is the space–time topology, at least
in the near horizon limit, of the NS5-brane.21 There is aconstantNS B-field alongRNC

2 . It should
be emphasized that this is not theB-field that contributes to theH-flux, but has the effect of
making thesthe RNC

2 part ofd space–time noncommutative. Therefore we may treat the tachyon,
gauge, and other fields as operator valued onR1,43S3. Henceforth we will concentrate only on the
S3 part.

In Refs. 9 and 22, it was argued that the gauge group in noncommutative gauge theory is
UcptsHd, a subgroup of unitary operators in a Hilbert spaceH of the form u=1+K, whereK
PKsHd is a compact operator. Conjugation by elements of the group UsHd are automorphisms of
the corresponding Lie algebraKsHd of compact operators. However, since the Us1d center of
UsHd acts trivially, the automorphism ofKsHd, fand hence of UcptsHdg, is really PUsHd
=UsHd /Us1d. The Lie algebra valued gauge field and the tachyon which transform in the adjoint
representation are therefore valued inKsHd. A nontrivial gauge bundle may be constructed with a
twist by an element of AutsKsHdd=PUsHd. The proposal of Ref. 12 is that an appropriate non-
trivial PUsHd bundle onS3, with the tachyon field at the maximum of the potential, represents a
D9-brane and a NS5-brane. Moreover, when the tachyon condenses to a minimum of the potential,
there is only a NS5-brane as the D9-brane ought to have disappeared according to Sen’s
conjecture.5

The key to the construction of this PUsHd bundle is the fact thatp2sPUsHdd=Z. It is then
possible to patch together trivial bundles on local coordinate charts ofS3 along their overlaps. This
is a one higher dimensional generalization of the construction of a monopole onS2, which used the
fact thatp1sUs1dd=Z. As we have mentioned before, the base space in Ref. 12 isS23S1. The
Hopf fibrationS3→S2 and the covering space of the fiberR→S1 defines a naturalS13Z bundle
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on it. This is embedded in PUsHd by lifting the circle coordinate to an angle valued position

operatorV̂ and itssintegrally quantizedd conjugate momentumL̂ satisfying a Heisenberg algebra

fV̂,L̂g = i1̂. s5d

Let us review some details of this construction following Ref. 20. One starts with a principle
Us1d bundle PsUs1dd over a base manifoldX and the universal covering spaceR of S1. This
defines a principlePsUs1dÃZd bundle over the base spaceX3S1. In the following we will
consider the specific example of the Hopf bundleX=S2 andPsUs1dd=S3. Given asvectord space
V on which the groupG acts, it is possible to define a fiber bundleEV→X3S1 associated to the
principle G bundle by the quotientsPsGd3Vd /G. The fiber of this bundlefrecall that in the
associated bundle the sections coming from a quotient action ofG on G3V are identified as
ss,vd,ssg,g−1vd providing a twistg is isomorphic toV. The frame bundle and the tangent bundle
to a manifold is an example of such a pair. Another natural association is one in whichV is the Lie
algebraĝ of G or any of its representations. TheG action onV, in turn, induces an adjoint action
on the space of linear operatorsLsVd on V. One can, therefore, construct an associated “bundle”
whose fiber isLsVd and the transition functionsgij act by adjoint actionswith the center acting
trivially d. In particular, our objective will be to construct a bundle whose fiber consists of operators
in the Hilbert spaceH of square integrable functionsL2sS1d of a projective representation of the
Heisenberg groupH, which is a central extension of the groupS13Z.

In order to specify the bundle, it will be sufficient to give a local trivialization over open sets
Ui, in which we specify the Hilbert space of functions and provide the transition functions. Let
sx=sc ,ud ,fd be points inS23S1 and

p:S3 Ã R → S2 3 S1

be the projection map of the smaller bundle with which the construction proceeds. The fiberp−1sxd
is a circleSx

1 without any fixed base point. The universal coverS̃x
1,Rx is ambiguous up to the

cyclic group generated byT which shifts the coordinate ofRx by s2p timesd an integer. Consider
the Hilbert space of functions

Hsx,fd = hf:Rx → RxufsTsjdd = eif · fsjd,j̃ P Rxj. s6d

Of course, the space depends on the choice of coordinates on the universal cover, but the ambi-
guity is up to an action ofT, which acts as multiplication by a scalar leading to a unique projective
Hilbert space. LetS1 be a circle which we can identify with the fiberSx

1. With an abuse of notation
we will use the same angular coordinatej on both these circles. Consider the square integrable
functions fsjd on the circle satisfying the following property under the isomorphism
lsx,fd :L

2sS1d,Hsx,fd:

lsx,fdsfsjdd = expS i

2p
jfD fsjd.

This specifies the local trivialization. It is easy to check that the above satisfies the property
required ofHsx,fd defined above.

The Lie algebraĥ of the groupH has generators

sL̂,1̂d = S− i
d

dj
,1̂D .

Since the spectrum of the angular momentumL̂ is discrete, there is no Lie algebra associated with

the generatorV̂ of the Heisenberg algebras5d. Rather exps2piV̂d,T is the generator of the

automorphism discussed earlier. The groupH acts by adjoint action onĥ. While the action of the

center and the shift inS1 generated byL̂ is trivial, theZ acts nontrivially as follows:
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e2pi,V̂L̂e−2pi,V̂ = L̂ − 2p,1̂. s7d

The sections of the associated PUsHd bundle are vectorsvsx,fd in ĥ satisfying

vsx,f + 2p,d = e2pi,V̂vsx,fde−2pi,V̂.

Writing v in terms of the basis elements asv=v1sx,fd1̂+v2sx,fdL̂, we get: v1sx,f+2p,d
=v1sx,fd−2p,v2sx,fd andv2sx,f+2p,d=v2sx,fd.

The final ingredient is a linear function from the PUsHd bundle toR. In order to motivate this,

let us start with the exact sequence of vector spacesVC sgenerated by 1ˆ d, ĥ andVL̂ sgenerated by

L̂d. The exact sequence of bundles

ER → Eĥ → EVL̂

follows from it, moreover,ER,RÃ sS23S1d is a trivial bundle. However, while in the former

sequenceĥ cannot be written as a direct sum ofVC and VL̂, it is possible to do so in the latter
salthough the Lie algebra will not be respected in the processd. The linear function, which we will
call “tr,”

tr:Eĥ → R,

provides this decomposition. For a vectorvP ĥ, which can be written in terms of the basis

elements asv=v1sx,fd1̂+v2sx,fdL̂, we define

trsvd = sv1sx,fd − fv2sx,fdd. s8d

It is clear froms7d that the function tr is well defined on the PUsHd bundle. In particular, when
v1=0, v2=1, we have

trsL̂d = f.

We will use this in a moment.
In order to specify a connection on this bundle, we start with a connection on the priciple Us1d

bundlep:S3→S2, which is the familiar monopole gauge field configurationAsMd. The gauge field
of this bundle is a one-form onS2 valued in the Lie algebra generated by −isd/djd. The gauge

connection of the PUsHd bundle is a one-form valued inĥ and is taken to beAsMd. Sinceĥ is
Abelian, the curvature of this connection is a two-form,

FsMd = dAsMdL̂,

where we have displayed theĥ dependent part explicitlysthis is the same as writingF=FaTa in
YM theoriesd. Acting with the linear function tr, we obtain trFsMd=dAsMdf. This is called the
“scalar curvature” in Ref. 20. It is a two-form which is not closed, rather d trFsMd,volsS23S1d.

In case of theS3 base, once again we use the Hopf fibration, however, this time, following
Ref. 23 the Us1d action along the fiber is lifted to a Us1d action in PUsHd with the help of a
cocycle. Let us considerS3 as the unit sphere defined byx1

2+x2
2+x3

2+x4
2=1, which may be written

as

uz0u2 + uz1u2 = 1,

in terms of complex coordinates ofC2fx1+ ix2,x3+ ix4g. Let us coverS3 by charts
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U0 = hsz0,z1d P S3:uz0u ù uz1uj,

s9d
U1 = hsz0,z1d P S3:uz0u ø uz1uj.

EachUi is topologically a disc timesS1 and they overlap on a two-torus

U0 ù U1 = T2 = hsz0,z1d P S3:uz0u = uz1u = 1/Î2j. s10d

The simplest way to see thatS3 has this topological structure is to thinkS3=R3ø h`j. Now, if we
remove a solid torus fromR3, what remains, together with the point at infinity, is also a solid torus.
Introduce coordinatessc ,u ,fd on S3 such thatz0=cossc /2deisf+ud/2 andz1=sinsc /2deisf−ud/2. The
bundle structure of Hopf fibration is given by the local trivializations

U0 , Sz1

z0
,

z0

uz0uD, U1 , Sz0

z1
,

z1

uz1uD , s11d

along with the transition functionz0/z1 on the overlap. The Us1d action

sz0,z1d → se−ivz0,e
−ivz1d s12d

along the fiber is an isometry ofS3. fThe metric in these coordinates is ds2= 1
4sdc2+sin2 c du2

+sdf+cosc dud2d.g
The PUsHd bundle onS3 is specified by a map

g01:U0 ù U1 = T2 → PUsHd. s13d

Local trivializations

f0:U0 → KsHd, f1:U1 → KsHd

are related byf0=g01sf1d=g01f1g01
−1 on the overlap. The topological properties of the bundle are

characterized by the homotopy class ofg01, an element of maps fromT2 to PUsHd. Now since
pnsUsHdd=0 for all n,24 we havepn−1sUs1dd=pnsPUsHdd, hence the only nonvanishing homo-
topy group of PUsHd is p2 and this isZ. The homotopy classes of mapsg01 of interest is therefore
isomorphic toH2sT2,Zd ssee, for example, Ref. 25 Chap. 1d. Now, using the relation26 between the
differential complexes onU0, U1, U0øU1=S3 and U0ùU1=T2, we haveH2sT2,Zd=H3sS3,Zd
=Z.

Let us define the Us1d action s12d on the PUsHd bundle as

Vv:sf0, f1d → sf0
v, f1

vd,

where, f0
vsz0,z1d = f0se−ivz0,e

−ivz1d, s14d

f1
vsz0,z1d = hsv,z0,z1dsf1se−ivz0,e

−ivz1dd,

for a functionhsv ,z0,z1d :S13U1→PUsHd which satisfy

hsv,z0,z1d = g01
−1sz0,z1dg01se−ivz0,e

−ivz1d for sz0,z1d P U0 ù U1,

s15d
hsv1 + v2,z0,z1d = hsv1,z0,z1dhsv2,e

−iv1z0,e
−iv1z1d for sz0,z1d P U1.

The first of the conditionss15d ensures that the patching condition given bys13d is respected. In
other words,Vv is an automorphism of the triplesf0, f1;g01d used to define the PUsHd bundle.
The second condition is a group homomorphism that identifies anS1 in PUsHd. The existence of
Vv with the required properties is proven in Ref. 23.fThe PUsHd bundle onS3 has also been
defined through local trivializationsS3=D+

3øD−
3, D+

3ùD−
3=S2 at the equator.27 The topological
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properties of the bundle are characterized by maps fromS2 to PUsHd. This, however, does not
seem suitable for our purpose as there is no natural Us1d action.g

We will use the above to propose a construction along the lines of Ref. 12, withVv playing

the role ofV̂ in s5d. We cannot identifyL̂ explicitly in PUsHd, but proceed with the assumption

that there is one suchL̂ such thats5d is true. This assumption is not untenable since the size of the

fiber in Hopf fibration is fixed, namely 4p, therefore the spectrum ofL̂ is discrete. Motivated by
the construction inS23S1 and the Hopf bundle description ofS3 outlined above, we propose the
following expression for the gauge fields using the two chartss11d of S28.

A0 = +
i

2
s1 − coscddu · L̂,

s16d

A1 = −
i

2
s1 + coscddu · L̂,

where we have displayed the algebra generator explicitly. Recall the charts overlap forc=p /2,
where the transition functionssc ,ud→ sp−c ,−ud of the Hopf bundle ensures thatA0 andA1 differ
by a gauge transformation.

The “scalar curvature” of the gauge fields16d is obtained by taking the tr:

tr F =
i

2
sinc dc ∧ dusf + ud,

where, in analogy withs8d, we have used trL̂=f+u, the value of the coordinate of the Hopf fiber
of the base space. Notice that this is a well-defined two-form. Finally,

d tr F =
i

2
sinc dc ∧ du ∧ df s17d

is the volume form onS3 yielding a unit three-form flux through it. It is assumed here that the
tachyon is trivial, it is zero corresponding to the maximum of the potential. In other words, this
gauge field configuration describes the unstable D9-brane in presence of the NS5-brane.

The NS5-brane so constructed has its worldvolume alongR1,4 as well as along one of the
noncommutative dimensions inRNC

2 . We refer to Ref. 12 for some subtleties with this description.
Finally, although we have been talking about a PUsHd bundle, the above construction is not a

bundle in the usual sense. In the Appendix, we show how it satisfies the conditions required of a
gerbe.

IV. SEMI-INFINITE D6-BRANE AND NS FIVEBRANE

In Sec. III we have constructed a configuration of the operator valued gauge fields in the
noncommutative worldvolume theory of the unstable D9-brane of type IIA theory. This configu-
ration carries a unitH-flux throughS3, and satisfies the modified Bianchi d trF=H. It is argued12

that for the tachyon at the maximum of the potential, this configuration describes the D9-NS5-
brane system, while at a minimum there is only a NS5-brane. One expects that, when the tachyon
is nontrivial, we should have a configuration of the NS5-brane together with a D-brane of appro-
priate codimension.

Recall, that in the absence of anyH-flux sno NS5-braned, all the stable Dp-branes may be
obtained as odd codimension soliton solutions of the tachyon and gauge field theory. In particular
the D6-brane is the ’t Hooft-Polyakov monopole of the Us2d theory on two D9-branes.7 Let
sx1,x2,x3d be the space transverse to the would be D6-brane. Identifying SUs2d,Us2d with the
scovering spaced of the SOs3d group of rotations, the configuration is
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T , xis
i ,

s18d
Ai , ei jkxjsk,

wheresi are the Pauli matrices. There should also be some convergence factors on the right-hand
side. One important feature of this construction is that it is local, i.e., it relies only on coordinates
in a small neighborhood of the origin where the D6-brane is located.

The configuration we would like to obtain is that of a semi-infinite D6-brane that ends on the
NS5-brane. The fivebrane shares all its worldvolume dimensions with the D6-brane, whose addi-
tional dimension has a boundary on which the NS5-brane lies. Let us put the NS-brane at the
origin of its transverseR4 directions. This space is foliated byS3 of varying radii, with the size
finally saturating to give the “throat” geometry.21 The D6-brane appears to be a string which
pierces theS3’s at, say, the south pole. Although, to an observer far away from the origin, it would
seem that the D6-brane ends on the NS5-brane at the origin, it would be more correct to say that
it goes down the “throat.” Actually for our case, where there are two noncommutative dimensions
and the D6-brane worldvolume extends along both, this picture is an extrapolation from the
commutative limit. In particular, the radial direction inR4, i.e., the direction transverse toS3 is one
of the noncommutative directions.

We would like to argue that the situation is differentafter tachyon condensation. The operator

V̂ is a shift along the Hopf fiber ofS3. The process of tachyon condensation selects a special point,
which we may choose to be the south pole. The fields are localized around this point, in particular,

also along the Hopf fiber through it. This in turn, determines the value of the operatorV̂ to be, say,
zero, to an accuracyDV,«. As a result, there is a large uncertainty in the value of the conjugate

variableL̂ :DL,1/«. This, in effect, makes the spectrum ofL̂ continuous for sufficiently small«.

Therefore, after the tachyon has condensed, it should be possible to shiftL̂ by an arbitrary amount.
This is in contrast to the previous section in which the fields are not localized inS3.

We can follow the field theory example in Sec. II and use continuous gauge transformation of

the form expsixV̂d sfor any realxd available now to propose the following gauge field configura-
tions:

A0 = +
i

2
s1 − coscddu · L̂,

s19d

A1 = −
i

2
s1 + coscddu · sL̂ + sf − ud1̂d.

At the overlap, an operator valued Us1d gauge transformation,

A1 = e−isf−udV̂A0e
isf−udV̂, s20d

relates the gauge configurations from the chartU0 to U1.
An operator valued Us1d gauge transformation is in fact equivalent to the gauge transforma-

tion of theB field ssee the Appendix and Ref. 17d. The field configurations19d has the property
that in the chartU0, d tr F0,volsS3d as before, but inU1, tr F1 and hence d trF1 vanish. Hence
there is a NSH-flux throughU0 but none throughU1.

Continuing to follow the field theory example, we now need to show that the operator valued
Us1d gauge field configurations19d arises from a configuration of the tachyon and gauge fieldssin
the S3 part of the worldvolume of the non-BPS D9-braned. This ought to localize the energy
around the south pole ofS3, which we assume is at the origin ofU0. Unfortunately, we are not able
to write this explicitly. However, the operator corresponding to the tachyon field is expected to be
of the form
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T ,E dwuwlkwue−w2/«2
, s21d

which is a projection operator. Interestingly, in Ref. 7, it is shown that the configurations18d can
also be thought of as a two step process of a vortex and a kink. This seems more natural in the
present situation as the local symmetry group around the south pole is SOs2d3R, sinceU0 has the
topology of a cylinderD0

23S1, which naturally accommodates this break up.

V. BIANCHI IDENTITIES AND CHARGE CONSERVATION

In Ref. 16 the NS5-D6-brane configuration described in Sec. IV was shown, following a
construction in Ref. 14, to be a solution of type IIA supergravity using a description of gerbes as
local line bundles. There the various charge conservation conditions are discussed in detail.
Briefly, consider anS2 surrounding the D6-brane. There is a flux of the RR one-form gauge field
CRR

s1d through it. In the absence of anyH-flux, this measures the quantized RR charge of the
D6-brane. This arises from the Chern–Simons couplings,sdT∧FCP∧Cs7d, dT∧dT∧dT∧Cs7d, etc.d,
on the D9-brane. When a NSB-field is present, the correct gauge invariant field strength for this
field is3

GRR
s2d = dCRR

s1d + mB, s22d

whereB is the NS two-form andm is the mass parameter. Similarly,

F = dACP − B s23d

is a gauge invariant combination of the field strength involving the Chan–Paton gauge field.
In our description, the flux is through a two-cycleT2 at the overlap ofU0 and U1. This is

assumed to enclose D6-brane at the south pole ofS3. Since the D6-brane is semi-infinite, there is
no Chan–Paton gauge field flux through the chartU1. We can also choose to setB=0 here. This
meansF=0 in U1, and in particular, there is noF-flux through it. Notice thatF is gauge invariant
and thereforeF-flux must vanish everywhere. The overlapT2 is the boundary of a three-spaceU0,
which is that part of theS3 through which there is a nontrivialH-flux. The anomalous Bianchi
identity3 from s22d ensures that there is no net six-brane charge. By drawing analogy with the field
theory example, it now follows that the net monopole charge through aT2 sat the overlap ofU0

andU1 or any deformation of it inU0d, enclosing the south pole ofS3 should also vanish. Since
F-flux throughT2 vanishes and the flux of dACP does not, we conclude that the monopole charge
evaluated by integrating dACP over aT2 enclosing the south pole is equal to the boundary value of
the H-flux through the three-spaceD0

23S1 enclosed byT2, i.e.,

R
T2

dACP =E
D0

23S1
H =R

T2
B. s24d

This in effect implies a modified Bianchi identity

dFCP = H s25d

for the NS5-D6-brane configuration.

VI. DISCUSSION

We have argued how to realize a configuration in which a semi-infinite D6-brane ends on a
NS5-brane via condensation of the tachyon field on the worldvolume of unstable D9-branes. Both
the five- as well as the six-brane are solitonic configurations in the noncommutative field theory on
the D9-brane. Let us emphasize that although the six-brane by itself is a solution of this field
theory, the NS5-brane is only a configuration. In the framework of open string theory, it is as yet
unclear in what sense a solitonic object of closed string theory can be realized as a solution. Some
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topological aspect of the NS5-brane can, however, be reproduced. Our intersecting brane configu-
ration, in which we have combined features of Refs. 7 and 12, is also not a solution of the open
string equations of motion.

The geometrical description we have used is strictly valid for large values of NS5-brane
charge, or far away from the core of the fivebrane. Moreover, two of the longitudinal directions of
our D6-brane carry a constantB field. This is theB field introduced to have a noncommutative
worldvolume theory. The Chern–Simons couplingB∧CRR

s5d therefore results in an induced D4-
brane charge in the configuration.

Let us end by some speculative remarks on D3-branes in SUs2d WZW model. In this case, it
is well-known that the symmetries allow only D2-branes and D0-branes along conjugacy classes
of the group manifold.28 These areS2’s at some fixed “latitudes” ofS3. On the other hand, Ref. 29
argued in favor of D3-branes which wrap almost all ofS3 except for a set of points. More recently,
based on consistency with T-duality, Ref. 30 showed that there should be D3-branes which are
“fat” D-strings. These have the topology of a cylinder reminiscent of the coordinate charts we
have used in our construction of the NS5-D9-brane configuration. While a single fat string cannot
cover the entire group manifold without having a singularity, it seems possible for a configuration
of two fat D-strings “linked” together to do so. A nontrivial linking should capture the fact that this
configuration is a gerbe. This may be possible with operator valued gauge fields on the fat strings.
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APPENDIX: GERBES

Gerbes are generalization of Us1d bundlessmore generally line bundlesd on a manifold. This
appendix contains a quick description of gerbes. Further details and references can be found in the
expository article by Hitchin.14 Reference 17 is an incomplete list of their applications in string
theory.

Consider a manifoldM and a set of open chartshUij that covers it:M=øiUi. We will
assume, for simplicity, that eachUi is contractible. A1-gerbeG on M is defined by a set of Us1d
bundlesLi j on eachsorderedd overlapUi ùU j, satisfying the following conditions

sid L ji =Li j
* , swhereL* is the bundle dual toLd,

sii d on triple overlapsUi ùU j ùUk, the tensor product bundleLi j ^ L jk ^ Lki has a nowhere
vanishing sectionsijk,

siii d on quadruple overlapsUi ùU j ùUkùUl, the sectionsijk ^ sijl
*

^ sikl ^ sjkl
* =1.

Notice that in the last condition, the tensor product of the sections is that of a trivial bundle
M3Us1d, as follows from the other two conditions. Let us also note that if we takeLi j =Li

^ L j
* , whereLi are Us1d bundles onUi, then all the conditions are trivially satisfied. Therefore this

is called a trivial gerbe.
The above may be generalized tok-gerbes by defining line bundles onsk+1d-fold overlaps

with appropriate conditions. An ordinary line bundle is a 0-gerbe from this point of view. It should
be noted thatsexcept fork=0d the “total space” of a gerbe is not a manifold, as the definition
involves conditions on more than two overlaps.

A connectionon a 1-gerbe is specified by connectionsAij for eachLi j and a two-formBi on
each chartUi, such that

sid Aij =−Aji ,
sii d sijk is flat with respect to the induced connection,
siii d on Ui ùU j, we haveBi −Bj =dAij .
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The “curvature”H=dB of this connection is independent of the chart and hence makes sense
globally. The cohomology ofH is characterized byH3sM ,Zd. The quantization is analogous to
the case of usual Us1d gauge fields.31

As an example, let us describe the “NS5-brane.” Consider space–time of the formR1,5ÃR
3S3, the geometry of the NS5-brane. The only relevant part of it isS3, on which we will construct
a gerbe such that it carries anH-flux. This example is due to Hitchin14 sand has been used in Ref.
16d. First, we coverS3 with two open 3-discsD±

3, which overlap around a region around the
equatorialS2. The overlapD+

3ùD−
3 has the topology of a “cylinder”S2ÃR. For the Us1d bundle

on the overlap, we take the monopole bundle onS2 smore precisely, the pull-back of this bundled.
Let A+− be the gauge field andF=dA+− be its curvature. In order to give their concrete forms, let
us introduce coordinatessa ,b ,gd on S3, such that the metric is

ds2 = da2 + sin2 asdb2 + sin2 b dg2d.

The overlap region isp /2−e,a,p /2+e, andF+−,sinb db∧dg. We need to specify the gerbe
connectionsB±. To this end, consider a partition of unityw±. Recall that these are functions with
supports, respectively, inD±

3, such that 0øw± ø1 andw++w−=1 at each point. We write,

B± = ± w±F+−,

which satisfy the conditionB+−B−=F+−. It is easy to check that the curvatureH=dB is indepen-
dent of the chart. In fact it equalsF+−∧dw+, which is supported on the overlap. Therefore, using
the quantization of the monopole fieldF+−, we see that theH-flux throughS3 is integrally quan-
tized. It is curious that the gerbe defining an NS5-brane is roughly like a monopolesF partd times
a kink sw partd, quite similar to, say, the soliton description of D6-brane in Ref. 7. Reference 16
describes the NS5- and semi-infinite D6-brane configuration in this language.

Finally, let us show how theKsHd valued gauge fields patched together by AutsKsHdd
=PUsHd satisfy the axioms of a gerbe. In the construction of Sec. III, we have only two coordinate
charts, so there is not much to check. Consider, instead, a general setup where we have local
trivializations given by maps

f i:Ui → KsHd,

which satisfyf i =gijsf jd=gij f jgij
−1, for gij PPUsHd, on twofold overlaps. Hence, on triple overlaps

hijk =gijgjkgki must be an element of Us1d, fsince action of the Us1d center of UsHd is trivialg.
Thesehijk’s may be taken as the sectionssijk’s of striviald Us1d bundles on threefold overlaps. It is
also easy to check that the conditions on fourfold overlaps is satisfied.
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Boundary conditions play a nontrivial role in string theory. For instance, the rich
structure of D-branes is generated by choosing appropriate combinations of Dirich-
let and Neumann boundary conditions. Furthermore, when an antisymmetric back-
ground is present at the string end pointsscorresponding to mixed boundary con-
ditionsd space time becomes noncommutative there. We show here how to build up
normal ordered products for bosonic string position operators that satisfy both
equations of motion and open string boundary conditions at the quantum level. We
also calculate the equal time commutator of these normal ordered products in the
presence of an antisymmetric tensor background. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1914727g

I. INTRODUCTION

Recent progress in string theory1 indicates a scenario where our four-dimensional space-time
should correspond to a D-brane2 representing the boundary of a larger manifold. This idea also
proved useful indicating a possible explanation for the hierarchy problem.3,4 One important con-
sequence of such a model is the noncommutativity of space-time coordinates in our four-
dimensional world.5–7 The reason is that D-branes correspond to the space where open string end
points are located and where the corresponding string boundary conditions must be satisfied. In the
presence of an antisymmetric tensor background these conditions are incompatible with commut-
ing coordinates.

Since antisymmetric fields show up in the massless spectrum of closed strings living on the
D-branes it is reasonable to suspect that our physical world could be noncommutative at very
small length scales. This is one of the reasons for the increasing interest in studying many aspects
of noncommutative quantum field theories as can be seen, for example, in Refs. 7,8. Furthermore,
this fact illustrates the nontrivial role of boundary conditions in string theory and the importance
of taking them into account when considering the quantization of open strings.

In quantum field theory, products of quantum fields at the same space-time points are, in
general, singular objects. The same thing happens in string theory if one multiplies position
operators, that can be taken as conformal fields on the world sheet. This situation is well known
and one can remove the singular part of the operator products by defining normal ordered well-
behaved objects.9 This is important, for example, when one builds up the generators of conformal
transformations and investigate the realization, at the quantum level, of the classical symmetries.
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Normal ordered products of operators are usually defined so as to satisfy the classical equa-
tions of motion at quantum level. Our purpose in this article is to define normal ordered products
for open string position operators that additionally satisfy the boundary conditions. This way we
will define a normal ordering that will be valid also at string end points. We will also investigate
the relation between this new definition for normal ordering and the noncommutativity of space-
time coordinates.

II. STRING POSITION OPERATOR PRODUCTS

The classical action for a bosonic string in the presence of a constant antisymmetric back-
ground taking a world sheet with a Euclidean signature is

S=
1

4pa8
E

S

d2ssgabhmn]aX
m ]bX

n − ieabBmn ]aX
m ]bX

nd, s1d

where Xm are the space-time string coordinates andBmn is the antisymmetric field. The string
world sheetS is represented by the parameterss1;t ,s2;s with, as usual, the boundarysstring
end pointsd at s=0,p. The Euclidean world sheet metric isgtt=gss=1 and the antisymmetric
tensor is chosen byets=1.

The variation of the action gives us a volume term that vanishes imposing the equations of
motion,

s]t
2 + ]s

2dXm = 0, s2d

plus a boundary term that vanishes if we additionally impose that the string coordinates satisfy the
boundary conditions

ushmn ]sXn + iBmn ]tX
ndus=0 = 0,

ushmn ]sXn + iBmn ]tX
ndus=p = 0. s3d

These boundary conditions, when imposed at the quantum level, are responsible for the
noncommutativity of the position operators.5,7 We can infer this result by realizing that these
conditions represent constraints in phase space relating position and conjugate momenta.

It is convenient, for studying the quantum operators, to introduce complex world sheet coor-
dinates:z=t+ ıs, z̄=t− ıs; ]z=1/2s]t− ı]sd, ]z̄=1/2s]t+ ı]sd.

The action takes the form

S=
1

2pa
E dz2fhmn ]zX

m ]z̄X
n − Bmn ]zX

m ]z̄X
ng, s4d

while classical equations of motion and boundary conditions take the form

]z̄]zX
i = 0, s5d

u„hmns]z − ]z̄d + Bmns]z + ]z̄d…Xnuz=z̄ = 0,

u„hmns]z − ]z̄d + Bmns]z + ]z̄d…Xnuz=z̄+2pi = 0. s6d

We can study the properties of quantum operators by considering the expectation values of the
corresponding classical objects. Defining the expectation value of an operatorsF as9
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kFfXgl =E fdXgexps− SfXgdFfXg, s7d

and using the fact that the path integral of a total derivative vanishes one finds that the equations
of motion and boundary conditions are realized for the expectation values of string coordinatesXn,

0 =E fdXg
d

dXnsz8,z̄8d
exps− SfXgd =K 1

pa8
]z̄8]z8Xnsz8,z̄8dL +

1

2pa8
R

]S

d 2sz− z8dk„hnms]z − ]z̄d

+ Bnms]z + ]z̄d…Xmsz,z̄ddzl = 0. s8d

The lastssingulard term is integrated over the boundary, wheredz=dz̄. This equation implies that
both string equations of motion and the boundary condition hold as expectation values. So the
corresponding quantum position operators satisfy the equivalent conditionssas long as they are not
multiplied by other operators located at the same world sheet pointd

]z̄]zX̂
nsz,z̄d = 0, s9d

u„hnms]z − ]z̄d + Bnms]z + ]z̄d…X̂mu
z=z̄ = 0,

u„hnms]z − ]z̄d + Bnms]z + ]z̄d…X̂mu
z=z̄+2pi = 0. s10d

Products of operators at the same point will have a singular behavior. We can see this by
calculating

0 =E fdXg
d

dXnsz8,z̄8d
exps− SfXgdXrsz9,z̄9d =Kd 2sz8 − z9dd n

r + S 1

pa8
]z̄8]z8Xnsz8,z̄8dXrsz9,z̄9dD

+
1

2pa8
R

]S

d 2sz− z8d„hnms]z − ]z̄d + Bnms]z + ]z̄d…Xmsz,z̄dXrsz9,z̄9ddzL = 0. s11d

The volume term gives an extra singular term to the equation of motion for a product of two fields,

1

pa8
k]z8]z̄8X

msz8,z̄8dXnsz9,z̄9dl = − hmnkd2sz8 − z9,z̄8 − z̄9dl, s12d

while the boundary terms vanishes if this product of two fields satisfies the same boundary
condition as the single field

ku„hnms]z8 − ]z̄8d + Bnms]z8 + ]z̄8d…X
msz8,z̄8dXrsz9,z̄9duBound.l = 0, s13d

where Bound. means that we are taking this condition both atz= z̄ and atz= z̄+2pi. Thus the
products of operators will satisfy

]z̄8]z8X̂
msz8,z̄8dX̂nsz9,z̄9d = − pa8hmnd2sz8 − z9,z̄8 − z̄9d, s14d

u„hnms]z8 − ]z̄8d + Bnms]z8 + ]z̄8d…X̂
msz8,z̄8dX̂rsz9,z̄9duBound.= 0. s15d

If we define a normal ordered product of two position operators in the standard way,9

:X̂msz,z̄dX̂nsz8,z̄8d: = X̂msz,z̄dX̂nsz8,z̄8d +
a8

2
hmn lnuz− z8u2, s16d

it satisfies the equation of motion at the quantum level:
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]z̄]z:X̂
msz,z̄dX̂nsz8,z̄8d: = 0, s17d

but fails to satisfy the boundary conditions. So we will introduce a different kind of normal
ordered product satisfying both the equation of motion and boundary conditions.

The mathematical problem posed by defining the normal ordering is related to that of calcu-
lating the Green’s functions.10–13 The normal ordered product is defined by subtracting out the
corresponding Green’s functions. So we can find normal ordered products satisfying open string
boundary condition using the solutions to open the string Green’s functions.

At this point it is more convenient to choose world sheet coordinates that simplify the repre-
sentation of the boundary. In the present coordinates the boundarys=0 corresponds toz= z̄, and
s=p to z= z̄+2pi. Introducing

w = et+is; w̄ = et−is,

the complete boundary corresponds just to the regionw=w̄. On the other hand, the factorww̄ in
]z]z̄=ww̄]w]w̄ cancel out precisely the Jacobian of the coordinate transformation in such a way that
the action in terms ofw,w̄ has still the same form as in Eq.s4d. The boundary conditions take the
form

u„hmnsw]w − w̄]w̄d + Bmnsw]w + w̄]w̄d…X̂nu
w=w̄ = u„hmns]w − ]w̄d + Bmns]w + ]w̄d…X̂nu

w=w̄ = 0.

s18d

This implies that starting with a solution in coordinatesz, z̄ that satisfies the boundary condi-
tions just ats=0 and replacing everywherez, z̄ by w,w̄ we get a new solution that satisfies the
boundary conditions both ats=0 ands=p.

So our new normal ordering is defined as

:X̂msw,w̄dX̂nsw8,w̄8d: = X̂msw,w̄dX̂nsw8,w̄8d +
a8

2
hmn lnuw − w8u2 +

a8

2
sfh + Bg−1fh − Bgdmn lnsw

− w̄8d +
a8

2
sfh + Bgfh − Bg−1dmn lnsw̄ − w8d + a8Dmn, s19d

whereDmn is a constant that may depend onB but not on the coordinates.
It is important to note that even when the antisymmetric tensor background is not present

sBmn=0d the normal ordering of expressions19d does not reduce to the standard normal ordering
of Eq. s16d, discussed in the literature. This is a new result: for open strings one must always use
the normal orderings19d rather thans16d otherwise the boundary conditions will not be satisfied.

III. EQUAL TIME COMMUTATORS

It is important to investigate the effect of this normal ordering on the commutators of position
operators to check if the noncommutativity of space-time coordinates in the presence of the
antisymmetric tensor background is changed. We can rewrite Eq.s19d in a more convenient form
for calculating the commutators:

:X̂msw,w̄dX̂nsw8,w̄8d: = X̂msw,w̄dX̂nsw8,w̄8d +
a8

2
hmn lnuw − w8u2 − a8hmn lnuw − w̄8u

+ a8Gmn lnuw − w̄8u2 +
1

2p
Qmn lnSw − w̄8

w̄ − w8
D + a8Dmn, s20d

where we introduced
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Gmn = sfh + Bg−1hfh − Bg−1dmn,

Qmn = − 2pa8sfh + Bg−1Bfh − Bg−1dmn. s21d

Now we calculate the normal ordered commutator at boundary pointsw=w̄=t ,w8=w̄8=t8
using the same choice for the constantDmn and the same procedure as in Ref. 7,

:fX̂mstd,X̂nst8dg: ; :X̂mstdX̂nst8d:− :X̂nst8dX̂mstd: = fX̂mstd,X̂nst8dg + a8Gmn ln„st − t8d2
…

−
i

2
Qmnest − t8d − a8Gnm ln„st8 − td2

… +
i

2
Qnmest8 − td = fX̂mstd,X̂nst8dg.

s22d

So the commutator does not get any extra contribution from the new normal ordering pre-
scription. The equal time commutator thus keeps the same form calculated in Ref. 7ssee also Refs.
14,15d:

:fX̂mstd,X̂nstdg: = iQmn. s23d

This is a nontrivial result. The commutator of position operators was calculated by Seiberg
and Witten7 using the open string Green’s function. Here we have defined a normal ordering by
subtracting precisely this Green’s function from the product of position operators. So one could
think that the commutator of two normal ordered products would be zero. However, we have
shown that this is not the case because the extra terms cancel and the commutator is unchanged.

Concluding, the new normal ordering for position operators that is consistent with both equa-
tions of motion and boundary conditions at the quantum level does not spoil the previous results
related to the noncommutativity of space-time coordinates.
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Local scalar quantum field theorysin Weyl algebraic approachd is constructed on
degenerate semi-Riemannian manifolds corresponding to Killing horizons in space-
time. Covariance properties of theC* -algebra of observables with respect to the
conformal group PSLs2,Rd are studied. It is shown that, in addition to the state
studied by Guido, Longo, Roberts, and Verch for bifurcated Killing horizons, which
is conformally invariant and KMS at Hawking temperature with respect to the
Killing flow and defines a conformal net of von Neumann algebras, there is a
further wide class of algebraicscoherentd states representing spontaneous breaking
of PSLs2,Rd symmetry. This class is labeled by functions in a suitable Hilbert
space and their GNS representations enjoy remarkable properties. The states are
nonequivalent extremal KMS states at Hawking temperature with respect to the
residual one-parameter subgroup of PSLs2,Rd associated with the Killing flow. The
KMS property is valid for the two local subalgebras of observables uniquely de-
termined by covariance and invariance under the residual symmetry unitarily rep-
resented. These algebras rely on the physical region of the manifold corresponding
to a Killing horizon cleaned up by removing the unphysical points at infinity
fnecessary to describe the whole PSLs2,Rd actiong. Each of the found states
can be interpreted as a different thermodynamic phase, containing Bose–Einstein
condensate, for the considered quantum field. It is finally suggested that the
found states could describe different black holes. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1917310g

I. INTRODUCTION

In a remarkable paper,11 among other results, Guido, Longo, Roberts, and Verch show that, in
a globally hyperbolic spacetime containing a bifurcate Killing horizon,17 the local algebra of
observablessrealized as bounded operators associated to bounded space–time regions in a suitable
Hilbert spaced may induce a local algebra of observables localized at the horizon itself with
interesting properties. In fact, the induced local algebra turns out to be covariant with respect to a
unitary representation of Möbius group of the circle PSLs2,RdªSLs2,Rd / h±Ij defined in the
Hilbert space of the system. The covariance property is referred to the geometric action of the
Möbius group of the circle on the horizon as explained below. The work, on one hand, uses
general theorems due to Wiesbrock39,40 establishing the existence of SLs2,Rd representations
related to modular operators of von Neumann algebras. On the other hand, it enjoys some inter-
play with several “holographic” ideassincluding LightFront Holographyd in quantum field theory
sQFTd.34,25–27

The central mathematical object employed in Ref. 11 is a net of von Neumann algebras built
upon a certain state which is assumed to exist and satisfy the following requirement. Its restriction
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to the subnet of observables which are localized at the horizon, must be KMS at Hawking
temperature for the Killing flow. In that case, the net of observables localized at the future horizon
F ssee Fig. 1d is shown to support a unitary representation of PSLs2,Rd giving rise to aconformal
net ssee for instance Refs. 4, 8, 10, and 5, and references thereind.

It is worth noticing that the full PSLs2,Rd-covariance of the observables of the conformal net
is apparent when one extends the future Killing horizonF by adding points at infinity obtaining a
manifold S13S , S being the transverse manifold at the bifurcation of horizons.S1 represents
nothing but the historyR of a particle of light living on the future horizon compactified into a
circle by means of the addition of a point at infinity. The addition of points at infinity is necessary
because PSLs2,Rd acts properly as a subgroup of the diffeomorphisms of the circleS1 and not the
line R. In particular the action of PSLs2,Rd on S1 includes arbitrary rotations of the circle itself
which shift the point at infinity in the physical regionR.

From a physical point of view these transformations have no meaning. So it seems that the
found covariance of the observables localized at the horizon under the full group PSLs2,Rd is
actually too large. The problem could be traced back to the state used to construct the von
Neumann net of observables.

In spite of this drawback, the results proved in Ref. 11 show the existence of a nice interplay
of Killing horizons, thermal states at the correct physical temperature, and conformal symmetry.
This result is strongly remarkable in its own right.

In the first part of this paper we give an explicit procedure to build up a local algebra of
observables localized on a degenerate semi-Riemannian manifoldMªS13S sobtained from fu-
ture or past Killing horizons in particulard based on Weyl quantization procedure. This is done
without referring to externalsbulkd algebras and states and restriction procedures. We find, in fact,
a conformal net of observables relying on a PSLs2,Rd-invariant vacuuml. At algebraic level
there is a representationa of PSLs2,Rd made ofp-automorphisms of the Weyl algebraWsMd and
there is a statel on WsMd which is invariant undera. In the GNS representation ofl ,a is
implemented covariantly by a unitary representation U of PSLs2,Rd. Moreover it is shown thatl
is KMS at Hawking temperature, with respect to the generator of conformal dilatations, in suitable
regionsF± of M ssee Fig. 1d. F± do not include points at infinity and are the two disjoint regions
in F, respectively, in the past and in the future of the bifurcation surface.

In the second part we try to solve the problem focused above concerning the physical inap-
propriateness of the full PSLs2,Rd covariance wheneverM is realized by addingsunphysicald
points at infinity to a future Killing horizonF.

To this end, it is proven that it is possible to get rid of the unphysical action of PSLs2,Rd and
single out the physical part of the horizon atquantum level, i.e., in Hilbert space, through a sort
of spontaneous breaking ofPSLs2,Rd symmetry. In fact, we establish the existence of other,
unitarily inequivalent, GNS representations ofWsMd based on new coherent KMS stateslz at
Hawking temperature. Herez denotes any functions inL2sSd. Those states are no longer invariant
under the whole representationa and in particular they are not invariant under the unphysical
transformations of PSLs2,Rd. However the residual symmetry still is covariantly and unitarily
implementable and singles out the algebrasAsF+d andAsF−d as unique invariant subalgebras. The
stateslz represent differentthermodynamical phaseswith respect tol sthis is because the states

FIG. 1. Carter–Penrose conformal diagram of Kruskal space–time.
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lz are extremal KMS statesd at Hawking temperature. Those states have different properties in
relation with the appearance of a Bose–Einstein condensate localized at the horizon. Finally we
suggest that these states could, in fact, denote different black holes. In this view the bosonic field
f generating the Weyl representations could represent a noncommutative coordinate in the physi-
cal regionsF±, whereas its mean value represents the classical coordinate describing the parameter
of integral curves of the Killing vector restricted to the horizon.

Several comments concerning the representation of the whole group Diff+sS1d and in particu-
lar its Lie algebra in the presence of the transverse manifoldS, are spread throughout the work.

II. SCALAR FREE QFT ON DEGENERATE SEMI-RIEMANNIAN MANIFOLDS

A. Basic definitions and notation

In this paper we deal with metric-degenerate semi-Riemannian manifolds of the product form
S13S, whereS is a connected orientedd-dimensional manifold equipped with a positive metric.
S1 is assumed to be oriented and endowed with the null metric.S13S itself is oriented by the
orientation induced from those ofS1 and S. S13S will be called degenerate manifold in the
following and it will be denoted byM throughout. A standard frameu on the factorS1 of M is a
positive-oriented local coordinate patch onS1 which mapsS1\ h`j bijectively to the segment −p
,u,p , ` being a point ofS1. ThroughoutCc

`sM ;Rd andCc
`sM ;Cd denote the space of compactly

supported real-valued, respectively, complex-valued, smooth functions onM andvS is the volume
form on S induced by the metric ofS. Cc

`sM ;Cd is endowed with a natural symplecticsi.e.,
bilinear and antisymmetricd form given by, if c , c8PCc

`sM ;Cd,

Vsc,c8d ª E
M

c8ec − cec8, whereec ª dc ∧ vS. s1d

Concerning KMS states we adopt the Definition 5.3.1 in Ref. 2ssee also Chap. V of Ref. 13 where
the s-weak topology used in the definition above in the case of a von Neumann algebra is called
weakp-topology, also known asultraweak topologyd.

The symbolN denotes the set of natural numbersh0,1,2,…j, whereasN8 meansN \ h0j.

B. Bifurcate Killing horizon and Kruskal cases

A simple example of three-dimensional degenerate manifold can be obtained from a submani-
fold of Kruskal manifold. However, everything that follows is valid, more generally, for anysd
+2d-dimensional globally hyperbolic space–time containing a bifurcate Killing horizon17 if replac-
ing S2 with a genericd-dimensional spacelike submanifoldS. A basis of Killing vector fields of
Kruskal space–time is made of three fields: two generating theS2 symmetry andj generating the
time evolution in the two static open wedges wherej is timelike. The region wheresj ,jd=0 is
made of the union of two three-dimensional submanifolds,P andF, which we call, respectively,
the past and the future Killing horizon of the manifold in reference to Fig. 1.PùF is the
bifurcation surface, i.e., a spacelike two-dimensional oriented submanifold wherej=0, given by
S2 equipped with the Euclidean standard metric of a two-sphere with radius given by a Schwarzs-
child oners. That metric is induced from the space–time metric.F is isometric to the degenerate
manifoldR3S2. R is made of the orbits of the null Killing vectorj restricted toF. We assume that
the origin ofR is arranged to belong to the bifurcation manifoldS2. The metric induced onF is
degenerate alongR and invariant underR displacements. A degenerate manifoldM=S13S can,
obviously, be obtained fromF by adding a point at infinitỳ to R producingS1. In this caseM
=S13S2. Orientation ofS1 is that induced byR. ThenusVd=2 tan−1 V, with VPR, is a standard
frame onS1.

Other examples of degenerate manifold arise from the event horizon of topological
black-holes,36,21 whereS is replaced by a compact two-dimensional manifold of arbitrary non-
negative genus.
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C. Weyl/symplectic approach

In Refs. 25–27 we have considered the limit case of a degenerate manifoldM=S1 where
M \ h`j is as part of its boundary made of a bifurcate Killing horizon in two-dimensionals2Dd
Minkowski space–time. In that case local QFT can be induced onM, by means of a suitable
restriction procedure of standard linear QFT in the bulk space–time. This restriction actually
enjoys some holographic properties because it preserves information about bulk quantum field
theory. Here we construct QFT on a general degenerate manifoldM=S13S without referring to
any restriction procedure. The restriction procedure with holographic properties could be gener-
alized to more complicated manifoldssKruskal manifold in particulard and this issue will be
investigated elsewhere. The formulation of real scalar QFT on a degenerate manifoldM we
present here is an adaptation of the theory of fields obeying linear field equations in globally
hyperbolic space–times.2,17,37,38sIn this paper, barring few differences, we make use of conven-
tions and notation of Ref. 38.d The starting point of QFT is the real vector space of wave functions
SsMdªCc

`sM ;Rd /,, wherec,c8 iff ec=ec8. V induces a symplectic form onSsMd still indi-
cated byV and defined by, iffcg , fc8gPSsMd,

Vsfcg,fc8gd ª Vsc,c8d. s2d

Remarks:

s1d Two facts hold,sad c,c8 iff ]sc−c8d /]r=0 everywhere, andsbd ec=s]c /]rddr∧vS , r
being anyslocald coordinate onS1. Using sad and sbd one proves straightforwardly that
Vsfcg ,fc8gd is well defined, that is it does not depend on the representativesc , c8 chosen in
the classesfcg , fc8g.

s2d V is nondegenerateon SsM ;Rd, that isVsfcg ,fc8gd=0 for all fc8gPSsMd implies fcg=0.
The definitionSsMdªCc

`sM ;Rd /, gets rid of the degenerateness ofV on Cc
`sM ;Rd due to

functions constant inS1. Nondegenerateness allows the use of standard procedure to build up
QFT within the Weyl formalism as explained below. Another possibility to remove degen-
erateness is to defineSsMd as the space ofCc

`sM ;Rd functions with vanishing integral with
respect to some measure dr induced by a coordinater on S1. Such a definition, different to
that given above, would break invariance under orientation-preserving diffeomorphisms of
S1, which is a natural physical requirement due to the absence of a metric onS1. Breaking
diffeomorphism invariance will enter the theory through the choice of a reference quantum
state.

s3d Henceforth we indicate a wave functionfcg by c if the notation is not misunderstandable.

“Wave function” is quite an improper term, due to the absence of any equation of motion on
M, nevertheless the “wave functions” introduced here play a role similar to that of the smooth
solutions of Klein–Gordon equation in a globally hyperbolic space–time. AsSsMd is a real vector
space equipped with anondegeneratesymplectic formV, there exist a complexC* -algebrasTheo-
rem 5.2.8 in Ref. 2d generated by elements,Wscd with cPSsMd satisfying, for all c , c8
PSsMd,

sW1d Ws− cd = Wscd* , sW2d WscdWsc8d = eiVsc,c8d/2Wsc + c8d.

That C* -algebra, indicated byWsMd, is unique up tosisometricd p-isomorphismssTheorem 5.2.8
in Ref. 2d. As consequences ofsW1d andsW2d, WsMd admits unitI =Ws0d, eachWscd is unitary
and, from the nondegenerateness ofV , Wscd=Wsc8d if and only if c=c8. WsMd is called Weyl
algebra associated withSsMd and V whereas theWscd are called symplectically smearedsab-
stractd Weyl operators. The formal interpretation of elementsWscd is Wscd;eiVsc,f̂d where
Vsc ,f̂d are symplectically smeared scalar fields as we shall see shortly.
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D. Implementing locality: Fields smeared with forms

In a globally hyperbolic space–timeX the local smearing is obtained employing real com-
pactly supported functionsf instead of solutions of field equations38 to smear field operator. In
particular one gives a rigorous meaning to

f̂sfd =E
X

f̂sxdfsxddmsxd, s3d

m being the measure induced by the metric ofX. The support of the smearing functionf gives a
suitable notion of support of the associated observablef̂sfd. In this way locality can be imple-
mented by stating that observables with causally disjoint supports commute. In our case it is
impossible to assign a unique support to a class of equivalencefcg and thus implementation of
locality is not very straightforward in the symplectic approach. Furthermore, there is no natural
measurem on M as that present ins3d becauseS1 is metrically degenerate. Both problems can be
solved by using compactly supported forms instead of compactly supported functions. Let us
indicate byDsMd the space of real formsec fsees1dg with cPCc

`sM ;Rd. In a globally hyperbolic
space–time38 the relation between wave functions and smooth compactly supported functions
fnow elements ofDsMdg used in s3d, is implemented by thecausal propagator, E:DsMd
→SsMd.38 It is a R-linear surjective map which associates a smooth function with wave functions
ssupported in the causal set generated by the support of the smooth functiond and satisfies several
properties. The crucial property describing the interplay ofE and V reads, if Esv ,v8d
ªeMEsvdv8,

VsEv,Ev8d = Esv,v8d for all v,v8 P DsMd. s4d

In our cases4d and surjectivity determineE uniquely onM.
Proposition 2.1:On a degenerate manifoldMªS13S there is a unique surjectiveR-linear

map E:DsMd→SsMd satisfying (4). Moreover the following facts hold.

sad If u is a standard frame onS1 and vPDsMd is realized as a2p-periodic form inu viewed
as positive-oriented coordinateR and sPS , E admits the representation

sEsvddsu,sd = F1

4
E

u8Pf−p,pgs8PS

Ssignsu8d −
u8

p
Ddss,s8dvsu − u8,s8dG . s5d

sbd E is bijective and in particular, forcPSsMd , vPDsMd, one has

Esecd = 1
2c and eEsvd = 1

2v. s6d

Thussv ,v8d°Esv ,v8d is a nondegenerate symplectic form onDsMd.

Proof: The fact thatE defined ins5d satisfiess4d can be proved straightforwardly by direct
computation. Direct computation shows also the validity ofs6d proving injectivity and surjectivity.
Any linear surjective mapE satisfyings4d fulfills also Vsc ,Ev8d=eMcv8 for everycPSsMd and
v8PDsMd. If E, E8 are surjective linear maps satisfyings4d, one hasVsc ,Ev−E8vd=eMcsv
−vd=0 for everycPSsMd. V is nondegenerate and thusEv−E8v=0 for everyvPDsMd. Hence
E=E8. The final statement is now obvious. h

We shall call the bijective mapE in s5d causal propagator, regardless of the partial inappro-
priateness of the name due to the lack of field equations. In space–times, existence of field
equations is responsible for the failure of the injectivity of the causal propagator.dss,s8d in s5d has
an evident physical meaning ifsS1\ h`jd3S is thought as the future Kruskal Killing horizon and
E is interpreted as the limit case of a properly defined causal propagator. As the boundary of a
causal setJsSd, for S,S, is made of portions of the factorS1, causal separation of setsS, S8,S
assigned at different “times” ofS1\ h`j, is equivalent toSùS8=x.

As in space–times, ifvPDsMd, the form-smearedsabstractd Weyl field is defined as
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Vsvd ª WsEvd. s7d

With this definition one immediately gets Weyl relations once again. For allv , hPDsMd,

sV1d Vs− vd = Vsvd* , sV2d VsvdVshd = eiEsv,hd/2Vsv + hd.

SinceE is injective, differently from the extent in a space–time,Vsvd=Vsv8d if and only if v
=v8. A notion of locality on M sin a straightforward extension of an original idea due to Sewell35d
can be introduced at this point by the following propositionsthe proof is in the Appendixd.

Proposition 2.2:fVsvd ,Vsv8dg=0 for v , v8PDsMd if one of the conditions is fulfilled:

sad there are two open disjoint segments I, I8,S1 with suppv, I 3S and suppv8, I83S,
sbd there are two open disjoint sets S, S8,S with suppv,S13S and suppv8,S13S8.

The p-algebraWsMd is local in the sense stated in the thesis of Proposition 2.2. Notice that
suppvùsuppv8=x does not imply commutativity ofVsvd andVsv8d in general.

E. Fock representations

Breaking invariance under orientation-preservingS1-diffeomorphisms, Fock representations
of WsMd can be introduced as follows generalizing part of the construction presented in 2.4 of
Ref. 12 and in Ref. 27. From a physical point of view, the procedure resembles quantization with
respect to Killing time in a static space–time. Fix a standard frameu on S1. Any representativec
of fcgPSsMd can be expanded in Fourier series in the parameteru, whereN8ªN \ h0j,

csu,sd , o
nPN8

e−inucss,nd+̃

Î4pn
+ o

nPN8

einucss,nd+̃

Î4pn
= c+su,sd + c+su,sd. s8d

c+ is theu-positive frequency part ofc. The term withn=0 was discarded due to the equivalence

relation used definingSsMd, the remaining terms depend onfcg only. S{s°css,nd+̃ is smooth,
supported in a compact set ofS independent fromn and, using integration by parts, for anyg

.0, there isCgù0 with ics· ,nd+̃i`øCgn−g for nPN8 so that the series ins8d converges uni-
formly andu-derivative operators can be interchanged with the symbol of summation. The found
estimation and Fubini’s theorem entail that the sesquilinear form

kc+8,c+l ª − iVsc+8,c+d s9d

on the space of complex linear combinations ofu-positive frequency parts satisfies

kc+8,c+l = o
n=1

` E
S

c8ss,nd+̃css,nd+̃vSssd =E
S
o
n=1

`

c8ss,nd+̃css,nd+̃vSssd. s10d

Thus it is positive and defines a Hermitian scalar product. The one-particle spaceH is now defined
as the completion with respect tok· , ·l of the space of positiveu-frequency partsc+ of wave
functions. Due tos10d, H is isomorphic to,2sNd ^ L2sS ,vSd. fThe construction ofH is equivalent
to that performed in the approach of Ref. 38ssee also Ref. 17d using the real scalar product on
SsMd , msc ,c8dª−Im Vsc+,c+8d and the mapK :SsMd{c°c+PH.g F+sHd is the symmetrized
Fock space with vacuum stateC and one-particle spaceH. The field operator symplectically
smeared withcPSsMd and the field operator smeared with the formvPDsMd are, respectively,
the operators

Vsc,f̂d ª iasc+d − ia†sc+d and f̂svd ª VsEv,f̂d, s11d

where the operatorsa†sc+d andasc+d sC-linear inc+d, respectively, create and annihilate the state
c+. The common invariant domain of all the involved operators is the dense linear manifoldFsHd
spanned by the vectors with finite number of particle.Vsc ,f̂d and f̂svd are essentially self-
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adjoint onFsHd fthey are symmetric andFsHd is dense and made of analytic vectorsg and satisfy
bosonic commutation relationssCCRd,

fVsc,f̂d,Vsc8,f̂dg = − iVsc,c8dI and ff̂svd,f̂sv8dg = − iEsv,v8dI .

The definition f̂svdªVsEv ,f̂d is here nothing but a rigorous interpretation of the formula
f̂svd=eMf̂sxdvsxd. Finally the unitary operators

Ŵscd ª eiVsc,f̂d and, equivalently, V̂svd ª ŴsEvd = eif̂svd s12d

enjoy propertiessW1d, sW2d and, respectivelysV1d, sV2d, so that they define a unitary represen-

tation ŴsMd of WsMd which is also irreducible. The proof of these properties follows from
Propositions 5.2.3 and 5.2.4 in Ref. 2.fThere the symplectic form iss=−2V and the field operator
Fsc+d of Proposition 5.2.3 of Ref. 2 isFsc+d=2−1/2VsJc ,f̂d where Jc=−ic++ ic+ if c=c+

+c+. Notice thatJsSsMdd,SsMd, that is false in general with other definitions ofSsMd!g
If P :WsMd→ŴsMd denotes the uniquesV being nondegenerated C* -algebra isomorphism

between those two Weyl representations,sF+sHd ,P ,Cd coincides, up to unitary transformations,
with the GNS triple associated with the algebraic pure statel on WsMd uniquely defined by the
requirementssee the Appendixd

lsWscdd ª e−kc+,c+l/2. s13d

III. CONFORMAL NETS ON DEGENERATE MANIFOLDS

A. Diff +
„S1

… , PSL„2,R… and associated p-automorphisms on M

We recall here some basic notions of conformal representations onS1. Let VectsS1d be the
infinite-dimensional Lie algebra of the infinite-dimensional Lie groupssee Milnor23d of
orientation-preserving smooth diffeomorphisms of the circle Diff+sS1d. VectsS1d is the real linear
space of smooth vector fields onS1 whose associated one-parameter diffeomorphisms preserve the
orientation ofS1. VectCsS1d denotes the complex Lie algebra VectsS1d % i VectsS1d with usual Lie

bracketsh·,·j and involutionı :X°−X̄ for XPVectCsS1d, so thatıshX,Yjd=hısYd ,ısXdj. VectsS1d is
the sreald sub-Lie-algebra of VectCsS1d of anti-Hermitian elements with respect toı. a denotes the
Lie subalgebra of VectCsS1d whose elements have a finite number of Fourier component with
respect to a standard frameu which is supposed to be fixed from now on. A basis fora is made of
fields

Ln ª ieinu]u with n P Z. s14d

They enjoy the so-calledHermiticity condition, ısLnd=L−n and the well-knownVirasoro commu-
tation ruleswith vanishing central charge,fLn,Lmg=sn−mdLn+m.

We remind that SLs2,Rd and SUs1,1d are isomorphic through the map SLs2,Rd{h°g
PSUs1,1d where

gª S z h̄

h z̄
D, h = Sa b

g d
D, and z ª

a + d + isb − gd
2

, h ª

d − a − isb + gd
2

.

Diff +sS1d includes the Möbius group of the circle PSLs2,RdªSUs1,1d / h±Ij as a finite-
dimensional subgroup: ThinkingS1 as the unit complex circle parametrized byu, an elementg
PPSLs2,Rd is injectively associated with the diffeomorphismgPDiff +sSd,
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g:eiu °
zeiu + h̄

heiu + z̄
, with u P f− p,pg. s15d

The corresponding inclusion of Lie algebras is illustrated by the fact that the threeı-anti-Hermitian
linearly independent elements ofa,

K ª iL0 = − ]u, S ª i
L1 + L−1

2
= − cosu]u, D ª i

L1 − L−1

2
= − sinu]u s16d

enjoy the commutation rules of the elementsk, s, d of the basis of the Lie algebra sls2,Rd with

k =
1

2
F 0 1

− 1 0
G, s=

1

2
F0 1

1 0
G, d =

1

2
F1 0

0 − 1
G . s17d

In particular k is the generator of the subgroup of rotations SOs2d / ± I ,PSLs2,Rd given by
dispacements inu. Diff +sS1d acts naturally as a group ofisometrieson the semi-Riemannian
manifold M=S13S. If gPDiff +sS1d, we shall use the same symbol to indicate the associated
diffeomorphism ofM.

B. Invariance with respect to PSL „2,R…

From now on we use the following notation. IfgPDiff +sS1d andcPCc
`sM ;Cd , csgd

ªc +g. If
fcgPSsMd, the elementfcgsgd

ª fcsgdg is well defined and it will be indicated bycsgd simply if the
meaning is clear from the context. The usual pull-back action on formsvPDsMd will be denoted
similarly, vsgd

ªg*v. Notice thatg* leavesDsMd fixed. Usings6d, it results that ifc=Ev with
vPDsMd thenvsgd=2ecsgd PDsMd. V andE are invariant under Diff+sS1d. That is, for allc , f
PCc

`sM ;Cd, gPDiff +sS1d andv , hPDsMd,

Vsc,fd = Vscsgd,fsgdd, and Esv,hd = Esvsgd,hsgdd. s18d

Therefore, as a consequence of general resultsfs4d in Theorem 5.2.8 of Ref. 2g, Diff +sMd admits
a representationa :g°ag made ofp-automorphisms of the algebraWsMd induced by

agsVsvdd ª Vsvsg−1dd. s19d

In the following we employ onlythe restrictionof the representationa to the Möbius group of the
circle PSLs2,Rd{g°ag in terms ofp-automorphisms ofWsMd.

The definition of the statel s13d is not Diff+sS1d invariant since it relies upon the choice of a
preferred standard frameu. Let us show that actually a different standard frameu8 produces the
samel provided the coordinate transformationu8=u8sud belongs to PSLs2,Rd.

Theorem 3.1:Let u be a standard frame onS1 of MªS13S, consider the state onWsMd , l
s13d and the representationa of PSLs2,Rd defined above. The following hold.

sad l is invariant undera, that is lsagswdd=lswd for all gP PSLs2,Rd and wPWsMd.
sbd If u8 is another standard frameS1 such that the coordinate transformationu8=u8sud belongs

to PSLs2,Rd, thenl8=l wherel8 is the analog ofl referred tou8.

The proof arises froms13d using the invariance ofV under Diff+sS1d and the following
lemma.

Lemma 3.1: Let u be a standard frame onS1 of MªS13S. The action of
PSLs2,Rd,Diff +sS1d preserves positive frequency parts. That is, if gP PSLs2,Rd , cPSsMd , v
PDsMd,

scsgdd+ = sc+ + gd and svsgdd+ = g*v+, s20d

wherev+ªef+
is called theu-positive-frequency partof any formvªef in DsMd.
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Proof: From Remark on p. 271 of Ref. 27 one finds thatscsgdd+=sc++gd for all g
PPSLs2,Rd andcPSsMd. The result straightforwardly extends tovPDsMd using the definition
of DsMd. h.

We stress thats20d doesnot hold for generic diffeomorphismsgPDiff +sS1d.

C. Virasoro representations and conformal nets

Let us investigate on the existence of operator representations of Virasoro algebra and the real
subalgebra sls2,Rd in the Fock spaceF+sHd introduced above focusing, in particular, on the

relationship with the algebraŴsMd. Fix a standard frameu onS1 and build up the associated Fock
space and the Weyl representation. It is possible to introduce inF+sHd a new class of operators
which generalizes chiral currents straightforwardly. IfN8ª h1,2,3,…j and hujj jPN8 is a Hilbert
basis ofL2sS ,vSd the vectors

Zjnsu,sd ª
ujssde−inu

Î4pn

define a Hilbert basis of the one-particle spaceH. We can always reduce to the case ofreal vectors
uj and we assume that henceforth.fL2sS ,vSd is separable since the Borel measure induced byvS

is s-finite and the Borels-algebra ofS is countably generatedsthe topology ofS being second
countable by definition of manifoldd. If hujj is a Hilbert basishujj is such. Orthonormalization
procedure of a maximal set of linearly independent generators in the set of alluj +uj , isuj −ujd
yields a real Hilbert basis.g The functionsDsMd{v°asEvd andDsMd{v°a†sEvd, where the
operators work on the domainFsHd, can be proved to be distributions using the strong-operator
topologyfto show it essentially uses1d in Proposition 5.2.3 in Ref. 2g and the usual test-function
topology onDsMd induced by families of seminorms referred to derivativessof any orderd in
coordinates of components of formsv ssee 2.8 in Ref. 7d. DsMd{v° f̂svd admits the distribu-
tional kernel

f̂su,sd =
1

iÎ4p
o

sn,jdPZ3N8

ujssde−inu

n
Jn

s jd, s21d

where thesgeneralizedd chiral currentsJn
s jd :FsHd→FsHd are defined as follows:

J0
s jd = 0, Jn

s jd = iÎnasZjnd if n . 0 and Jn
s jd = − iÎ− na†sZj ,−nd if n , 0.

They satisfy onFsHd both the Hermiticity conditionJn
s jd†�FsHd=J−n

s jd and the oscillator commutation
relationsfJn

s jd ,Jm
sidg=ndi jdn,−mI. Introducing the usual normal order prescription :··: “operatorsJp

s jd

with negative indexp must precede those with positive indexp,” one can try to define the linearly
independent operators, withcPN8ø h`j,

Lk
scd

ª

1

2 o
nPZ,jøc

:Jn
s jdJk−n

s jd :, Lk ª Lk
s`d s22d

on some domain inF+sHd. We shall denote the complex infinite-dimensional algebra spanned by

Lk
scd by d̂c. One can formally show thatLk have two equivalent geometric expressions

Lk =
1

2i
:Vsf̂,Lksf̂dd: , s23d
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Lk =E
M

:]uf̂]uf̂:su,sdeiku du ∧ vS, s24d

Lksf̂d is the “scalar field” obtained by the action of the differential operatorLk snaturally extended
from S1 to the productM=S13Sd on the “scalar field”f. The same formulas hold if replacingLk

scd

for Lk and replacingf̂ with f̂scd given by the right-hand side ofs21d with the sum overj restricted
to the seth1,2,…, cj. If c is finite the following proposition can be proved by direct inspection.

Proposition 3.1:Fix a standard frameu on S1 of M=S13S, take cPN8 and consider the real
vector spaceâc generated by the operators Ln

scd in s22d equipped with the commutatorf·, ·g and the
involution âc{a°a†�FsHdd. The following holds.

sad The elements ofâc are well defined on FsHd which is a dense invariant space of common
analytic vectors.

sbd sâc,f· , ·g , ·†�FsHdd is a central representation, with central charge c, of the algebra
sa ,h· , ·j ,ıd (that is a unitarizable Virasoro representation) since the following relations hold:

L−n
scd = Ln

scd†�FsHd, s25d

fLn
scd,Lm

scdg = sn − mdLn+m
scd +

sn3 − ndc
12

dn+m,0I . s26d

scd The representation ispositive energy,i.e., the generators of rotations L0
s jd is non-negative.

sdd Each operator Ln
scd does not depend on the choice for the real basehujj jøc (but depends on

the finite dimensional subspace spanned by those vectors).

Notice that the found Virasoro representations are strongly reducible.15 Once they are decom-
posed into unitarizable irreducible highest-weight representations,15 they can be exponentiated
sRefs. 9, 18, and 5d obtaining unitary strongly continuous representations of Diff+sS1d.

In general there is no physical reason to single out a Hilbert basishujj or equivalently a
sequence ···Hk,Hk+1 ··· of finite dimensional subspace ofL2sS ,vSd. In the presence of particular
symmetries forS a class of finite dimensional subspaces can be picked out referring to the
invariant subspaces with respect to a unitary representation onL2sS ,vSd of the symmetry group.
For instance, think ofS=S2, in that case one may decomposecPL2sS2d usingsreal and imaginary
parts ofd spherical harmonicsYm

l . Hence a suitable class of finite dimensional subspaces are those
with fixed angular momentuml =0, 1, 2,… . The sphereS2 is reconstructed as a sequence offuzzy
spheressRef. 20d with greater and greater angular momentuml. The associated Virasoro repre-
sentations have central chargescl =2l +1.

In the absence of symmetries only the casec=` seems to be physically interesting. Let us turn
attention on this case. Serious problems arise when trying to give a rigorous meaning to all the
operatorsLn. First of all s26d becomes meaningless due toc=` in the right-hand side. Further-
more, by direct inspection one finds that, ifn,−1, the domain ofLn cannot include any vector of
FsHd due to an evident divergencesthis drawback would arise also forunu=1 if J0

s jd=0 were falsed.
However, by direct inspection, one finds thatLn with nù−1 are well defined onFsHd which is, in
fact, a common invariant dense domain made of analytic vectors, moreoverLnC=0. The central
charge does not appear considering commutators of those operators. The complex spacesfinitelyd
spanned by those vectors is closed with respect to the commutator but, unfortunately, it isnot with
respect to the Hermitian conjugation so that they cannot represent a Lie algebra of observables.
However, restricting to the caseunuø1 everything goes right and one gets a Lie algebra closed
with respect to the Hermitian conjugation. Anti-Hermitian linearly independent operators gener-
ating that Lie algebra are
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iK ª iL0, iSª i
L1 + L−1

2
, iD ª

L1 − L−1

2
. s27d

They enjoy the commutation rules of the elementsk,s,d of the basis of the Lie algebra sls2,Rd
s17d. As a consequence a representationR:sls2,Rd→LsFsHdd can be realized by assumingiK
=Rskd , iS=Rssd , iD =Rsdd and R:ak+bs+gd°aiK +biS+giD for all a ,b ,gPR. One expects
that this representation is associated, via exponentiation, with a strongly continuoussprojectived
unitary representation of the universal covering of SLs2,Rd , SLs2,Rd̃. Let us prove that such a
representation does exist and enjoys remarkable properties.

Theorem 3.2: Fix a standard frameu on S1 of M=S13S and construct the GNS (Fock)
realization ofWsMd associated with the statel in s13d and the representation R. It turns out that
the Hermitian operators iRsxd, with xPsls2,Rd, are essentially self-adjoint on FsHd and there is
a unique strongly continuous representation PSLs2,Rd{g°Usgd :F+sHd→F+sHd with

Usexpstxdd = etRsxd for all x P sls2,Rd and tP R. s28d

The following further facts hold.

sad U is a positive-energy representation of PSLs2,Rd—that is the self-adjoint generator K¯ of

the subgroup of rotations, has non-negative spectrum—and furthermoressK̄d=h0,1,2,…j.
sbd U and its generators do not depend on the choice of the basishujj jPZ,L2sS ,vSd. In

particular, U is the tensorialization of U�H. Referring to the factorization of the one-particle
spaceH=,2sCd ^ L2sS ,vSd, it holds U�H=V^ I, where V is the restriction to the one-
particle space of the representation U in the simplest caseM=S1.

scd Each subspace ofF+sHd with finite number of particles is invariant under U.
sdd The GNS representative ofl , C, is invariant under U and it is the only unit vector ofF+sHd

invariant underheitD̄jtPR up to phases.

The proof of the theorem is given in the Appendix. The following further theorem states that

ŴsMd transform covariantly under this representation with respect to the action of the diffeomor-
phisms of PSLs2,Rd,Diff +sS1d seen in Sec. II B.

Theorem 3.3:With hypotheses and notation of Theorem 3.2, the following holds.

sad U is PSLs2,Rd covariant. In other words it implements unitarily the representationa of
PSLs2,Rd defined in Theorem 3.2: For all gP PSLs2,Rd,

UsgdwUsgd† = agswd for all w P ŴsMd. s29d

sbd The one-parameter group ofp-automorphisms associated with the one-parameter group of
diffeomorphisms, respectively, generated by vector fieldsK , S , D correspond, through (29),
to the one-parameter unitary subgroups of U, respectively, generated by iK, iS, iD. fSign
conventions should be clear, anyway to fix them notice that formallyfiK ,f̂su ,sdg
=−]uf̂su ,sd.g

The proof of the theorem is given in the Appendix. Theorems 3.2 and 3.3 have a remarkable
consequence concerning the existence of a so-calledconformal net onS1 associated with the

algebraŴsMd. This fact has a wide spectrum of relevant consequences in physics and in math-
ematics, see for instance Refs. 4, 8, 10, and 5, and references therein. We remind the reader that
any weakly closedp-subalgebra of the unitalC* -algebra of all bounded operators on a Hilbert
space is calledvon Neuman algebraif it contains the unit operator. For several theoretical reasons
ssee Ref. 13d the largest set of bounded observables of a quantum system represented in a Hilbert
space may be assumed to be made of the self-adjoint elements of a suitable von Neumann algebra.
If X is a p-algebra of bounded operators over a Hilbert space,X8 denotes the algebra of the
bounded operators which commute with each element ofX and it results that13 X is a von

062303-11 Breaking of SLs2,Rd symmetry on horizons J. Math. Phys. 46, 062303 ~2005!

                                                                                                                                    



Neumann algebra if and only ifX=sX8d8. In any case,X9ª sX8d8 is the minimal von Neumann
algebra which containsX. It is called thevon Neumann algebra generated by X.

Definition 3.1: Let I be the set of nonempty, nondense, open intervals ofS1. Assume thatS1

is equipped with a standard coordinate frameu. A conformal net onS1 is any triple sA ,C ,Ud
whereA is any familyhAsId u I PIj of von Neumann algebras on an infinite-dimensional separable
complex Hilbert spaceHA, and the following properties hold.

sC1d Isotony: AsId,AsJd, if I ,J with I,JPI.
sC2d Locality: AsId,AsJd8, if I ùJ=x with I ,JPI.
sC3d Möbius covariance:UsgdAsIdUsgd†=AsgId , I PI , gP PSLs2,Rd, where U is a strongly

continuous unitary representation of PSLs2,Rd in HA and g denotes the Möbius transfor-
mation (15) associated withu.

sC4d Positivity of the energy:The representation U is a positive-energy representation.
sC5d U-invariance and uniqueness of the vacuum:CPHA is the unique (up to phases) unit

vector invariant under U.
sC6d Cyclicity of the vacuum:C is cyclic for the algebraAsS1dª∨IPIAsId.

We have the following theorem.
Theorem 3.4: Fix a standard frameu on S1 of M=S13S and define the associated Weyl

algebra ŴsMd in the Fock spaceF+sHd with vacuum stateC and the representation of
PSLs2,Rd , U of Theorems 3.2 and 3.3. With those hypotheses the family

A = hAsIduI P Ij with AsId = hV̂svdusuppv , I 3 Sj9, s30d

together withC and U form a conformal net onS1 such thatŴsMd,AsS1d.
Proof: sC1d, sC2d, andsC3d are straightforward consequences of the definitions30d using the

fact thatsvon Neumann’s density theoremd AsKd is the closure with respect to the strong operator

topology of the p-algebra generated by the elements inhŴsvd usuppv,K3Sj, employing
Proposition 2.2 concerningsC2d and Theorem 3.3 concerningsC3d. sC4d and sC5d are part of

Theorem 3.2.sC6d is a consequence of the fact thatC is cyclic with respect toŴsMd ssee the

Appendixd and ŴsMd,AsS1d. This inclusion is a consequence of the fact that, ifI , JPI and

S1= I øJ, then, due to sW2d, each element ofŴsMd has the form cŴsvdŴsv8d where

suppv, I 3S , suppv8,J3S and ucu=1, so thatŴsMd,AsId∨AsJd,AsS1d. h

Remarks:

s1d Our construction of a conformal net for, in particular, a bifurcate Killing horizon in a
globally hyperbolic space–time, is explicit in giving the effective form of the unitary repre-
sentation of PSLs2,Rd and the relationship with the whole Virasoro algebra. It does not
require any assumption on the existence of any algebra of observables in the space–time
where sS1\ h`jd3S can be viewed to be embedded, or any KMS state on that algebra. A
different approach was presented in Ref. 11 where it is shown that, in a globally hyperbolic
space–time containing a bifurcate Killing horizon, a conformal net can be obtained by
restriction to the horizon of a local algebra in the space–time realized using a GNS repre-
sentation with cyclic vector which satisfies the KMS condition with respect to the Killing
time flow. The unitary representation of PSLs2,Rd was obtained there making use of relevant
results by Weisbrocket al.40,39,12on the interplay of modular theory and conformal theory. It
seems plausible that our construction can be recovered also using the approach of Ref. 11
defining a bulk algebra of observables and a KMS state appropriately. This topic will be
investigated elsewhere.

s2d Conformal nets enjoy relevant properties.4,8,10,5

Reeh–Schlieder property:C is cyclic and separating for everyAsId.
Bisognano–Wichmann property:The modular operatorDI associated with everyAsId satis-
fies DI

it =Usexps2pDIdd for every tPR , hexpstDIdjtPR,PSLs2,Rd being the one-parameter
subgroup which leavesI invariant fwith DI defined as in remarks2d after Theorem 4.1
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belowg so thatC is a KMS state forAsId at inverse temperature 2p with respect to −DI for
Ass0,pdd.
Haag duality:AsId8=AsIntsS1\ Idd for everyAsId.
Irreducibility: AsS1d includes all of bounded operators onHA.
Factoriality: EachAsId is a typeIII 1 factor.
Additivity: For everyAsId, it holdsAsId,∨JPSAsJd if øJPSJ. I.

s3d With obvious changes, Theorems 3.2, 3.3, and 3.4 are still valid if one considers operators
Ln

scd with c,` , unuø1 and the real basisuj is made of smooth functions withj øc.

IV. SPONTANEOUS BREAKING OF SL „2,R… SYMMETRY AND THERMAL STATES

A. Back to physics

Consider the degenerate manifoldM=S13S2 obtained by the future Killing horizonF;R
3S2 of the Kruskal manifold as discussed in Sec. II A.sHowever what we say can be generalized
to globally hyperbolic space–times with a bifurcate Killing horizon.d In particular the orientation
of S1=Rø h`j is that induced onR from time orientation of the space–time. Letu be a standard
frame onS1 such that, withD given in s16d,

j�F = − kD, s31d

j being the global Killing field defining Schwarzschild time in both static wedges andk being the
surface gravitywhich is constant on the Killing horizonF , k=s4GMd−1, M being the mass of the
black hole.37,38 Equation (31) does not fix a standard frame uniquely. However the remaining
freedom does not affect the construction we present as a consequence of Theorem 4.3 below. The
requirements31d implies that theadimensionalparametervPR of the integral curves of −D on F
coincides, up the factork−1 and the choice for the origin, with the usual light-coordinatefthis fact
is evident using well-known global Kruskal null coordinatesU , V sRef. 37dg: v=kst+r*d. Therer*

is the usualRegge–Wheeler tortoise coordinateandt the Schwarzschild time, that is the parameter
of the integral curves ofj in any Schwarzschild wedge. In our picture the point` of S1

=Rø h`j corresponds tou=p whereasu=0 corresponds to the bifurcation surface ofF ssee Sec.
II A d.

Let us illustrate the physical consequences of the choices31d for bosonic QFT built up on the
future Horizon together with a Möbius-covariant representation of PSLs2,Rd everything associ-
ated with the preferred choice for the coordinateu on S1.

A celebrated result by Kay and Wald17 states that any globally defined quasifree state on a
globally hyperbolic space–time with a bifurcate Killing horizonsKruskal manifold in particulard
which is invariant underj and satisfies some further requirementsHadamard conditionimposed
on the two-point function of the quasifree state in particulard17 must be unique and KMS with
respect toj with theHawking inverse temperaturebH=2p /k. From a physical point of view, one
expects that the system of the field defined on the horizon be in thermal equilibrium with the state
in the bulk. More precisely, since]kt reduces to −D on the future horizon due tos31d, one might
assume that the natural state on the Killing horizon is a KMS state with respect to −D at the
inverse temperature 2p: That coincides with Hawking inverse temperature referred to the adimen-
sional “time” v on F. A first-glance candidate for such a state is just the restriction tol to the
algebra of observables supported in the future Killing horizonsomitting the unphysical points
h`j3S2d. This is becausel enjoys the very inverse temperature 2p referred to as −D. On the
other hand, there are physical reasons to reject that candidate. Indeed, the circleS1=Rø h`j
admits two physically distinguishable points: The point at infinity, which cannot be reached physi-
cally because it corresponds to a surface which does not belong to the Kruskal manifold. The other
point corresponds to the bifurcation manifold wherej vanishes.sIn the general caseMªS13S
considered in this work,M itself cannot represent a portion of space–time due to the presence of
closed causal curves lying inS1 and thus one point ofS1 at least must be removed to make contact
with physics.d The remaining points ofS1 are physically equivalent barring the fact that they are
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either in the past or in the future ofu=0. This determines two regionsF−;s−p ,0d3S2 andF+

;s0,pd3S2 in the physical partR3S1, of the manifoldS13S2, corresponding to, respectively,
the future and past part—with respect to the bifurcation manifold—of the future Killing horizon of
Kruskal space–time. Conversely, the whole PSLs2,Rd unitary representation, referred to the Fock
spaceF+sHd built uponl, which, in turn, is invariant under the whole representation U, cannot
select those physical regions. In particular PSLs2,Rd includes arbitrary displacements of the
coordinateu. Those transformations connect the physical regions with the points at infinity. For
these reasonsl seems not to be completely satisfactory from the point of view of physics in spite
of its relevant thermal properties.

Once a reference statem is fixed on WsMd, the physical regionsF± correspond to von
Neumann algebrasAsF+d andAsF−d sbased upon the GNS representation ofmd representing the
observables in those regions.

In the following we show that it is possible to single out those physical regions atquantum,
i.e., Hilbert space, levelthrough a sort ofspontaneous breaking ofSLs2,Rd symmetryreferring to
a new statelzÞl which preservesthe relevant thermal properties. We mean that the following
facts, actually valid for any manifoldM=S13S, hold true. At algebraic level there is a represen-
tation a of Möbius group of the circle PSLs2,Rd made ofp-automorphisms of the Weyl algebra
WsMd. Moreover, we have seen in Theorems 3.2 and 3.3 that there is a statel on WsMd which is
invariant undera and, in the GNS representation ofl , a is implemented unitarily and covariantly
by a representation U of PSLs2,Rd. We show below that there are other, unitarily inequivalent,
GNS representations ofWsMd based on new stateslz which are no longer invariant under the
wholea, but such that, the residual symmetry is still covariantly and unitarily implementable and
singles out the algebrasAsF+d andAsF−d as unique invariant algebras. We show also that everylz

enjoys the same thermalsKMSd properties asl and it represents a different thermodynamical
phase with respect tol.

B. Symmetry breaking

We need some definitions to go on. Coming back to the general caseM=S13S whereS is
any Riemannian manifold, fix a standard frameuP s−p , +pd on S1. The regionsF± are defined as
those containing the pointss0,pd3S and s−p ,0d3S, respectively. Consider the one-parameter
subgroup of Möbius transformationsR{ t→expstDd whereDª−sinus] /]ud in M. It admits 0
and p as unique fixed points. On the other hand, it is simply proven thatsup to nonvanishing
factorsd D is the unique nonzero vector field in the representation of sls2,Rd which vanishes at 0
andp. As a consequence that subgroup is the uniquesup to rescaling of the parameterd nontrivial
one-parameter subgroup of PSLs2,Rd which admitss0,pd ands−p ,0d as invariant segments. The
origin of the parameterv of the integral curves of −D can be arranged in order that

v = Gsud ª lnUtan
u

2
U , s32d

wherev ranges monotonically inR with dv /du.0 for uP s0,pd, whereas it ranges monotonically
in R with dv /du,0 for uP s−p ,0d. In spite of its singularity atu=0, the functionG in s32d is
locally integrable. Thus for any fixed functionzPL2sS ,vSd , LzsVsvddªlsVsvddeieMGszv++zv+d is
well defined if vPDsMd. Let us show thatLz extends to a state onWsMd. It holds LzsVs0dd
=1. Using sV1d, sV2d and imposing linearity,Lz defines a linear functional on thep-algebra
generated by all objects ofVsvd. As l is positive, Lz turns out to be positive too, finallyR
{ t°LzsVsvdd is continuous. For known theorems19 there is a unique extensionlz of Lz to a state
on WsMd: If the real functionzPLloc

1 sS ,vSd is fixed, it is the unique state satisfying,

lzsVsvdd = lsVsvddeieMGszv++zv+d s33d

for all vPDsMd. Similar states, obtained by linear deformation of the vacuum state of a Fock
representation of Weyl algebra, are known in the literature ascoherent states. They were studied
in Ref. 33 for photons in flat space–time and in Ref. 22ssee also Ref. 32d. Several propositions
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presented in those works could be readapted to our case with some effort. We think anyway that
the shortest way consists of giving independent proofs based on more modern general results of
local quantum physics13 as the proofs of our propositions are not very complicated. Similar states
for free QFT defined in globally hyperbolic spacetimes containing a bifurcate Killing horizon give
rise to the failure of the uniqueness property proven in Ref. 17ssee the first footnote on p. 70 in
Ref. 17d.

lz and its GNS triplesHz ,Pz ,Czd enjoy the remarkable properties stated in the theorems
below.

Theorem 4.1:Fix a standard frameu on S1 of M=S13S, defineD as in (16) and the group
of p-automorphismsa representing PSLs2,Rd as in Theorem 3.1, hat

sXdjtPR being any one-
parameter subgroup associated with the vector fieldX. If zPL2sS ,vSd andlz is the state defined
in (33) with GNS triplesHz ,Pz ,Czd, the following holds:

sad The map Vsvd°VsvdeieMGszv++zv+d , vPDsMd, uniquely extends to ap-automorphismgz on
WsMd and

lzswd = lsgzwd, for all w P WsMd, s34d

gz + at
sDd = at

sDd
+ gz, for all t P R. s35d

sbd sid lz is pure, sii d if zÞz8 i.e., lz andlz8 are not quasiequivalent, siii d lz is invariant under
hat

sDdjtPR, but it is not under any other one-parameter subgroup ofa (barring those asso-
ciated with cD for cPR constant) whenzÞ0 almost everywhere.

scd Hz identifies with a Fock spaceF+sHzd with vacuum vectorCz and, for all vPDsMd,

Pz:Vsvd ° V̂zsvd ª eif̂zsvd, wheref̂zsvd ª f̂0svd +HE
M

Gszv+ + zv+dJI , s36d

f̂0svd being here the standard field operator in the Fock spaceF+sHzd as in Sec. II E.
sdd There is a strongly continuous one-parameter group of unitary operatorshUz

sDdstdjtPR with

at
sDdswd = Uz

sDdstdwUz
sDd†std for all t P R and wP ŴzsMd ª PzsWzsMdd. s37d

Moreover (the derivative is performed in the strong sense where it exists)

d

dt
U t=0Uz

sDdstd =
− i

2
:Vsf̂0,Df̂0d: . s38d

The proof is in the Appendix.
Theorem 4.2: In the hypotheses of Theorem 4.1 the following holds for net of von Neumann

algebras,

Az = hAzsIduI P Ij, with AzsId = hV̂zsvdusuppv , I 3 Sj9. s39d

sad Az.ŴzsMd and it enjoys the following properties:sid isotony, sii d locality, siii d
hexpstDdjtPR-covariance, sivd Uz

sDd-invariance and uniqueness of the vacuumCz, svd cyclic-
ity of the vacuumCz, svid Reeh–Schlieder, svii d Haag duality, sviii d factoriality, sixd irre-
ducibility, sxd additivity.

sbd If zÞ0 i.e., AzsF+dªAzss0,pdd and AzsF−dªAzss−p ,0dd are the unique
hUt

sDdjtPR-invariant algebras inAz.
scd If D is the modular operator associated withAzsF+d then

Dit = Uz
sDds2ptd, for all t P R. s40d
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Thus lz is a KMS state onAzsF+d with temperature T=1/2p, with respect tohat
s−DdjtPR

[extended tos-weak one-parameter group ofp-automorphisms ofAzsF+d through s37dg.

Proof: sad and scd Since the difference betweenV̂zsvd and eif̂0svd amounts to a phase only,

each algebraAzsId of Az coincides with the analog constructed starting from operatorseif̂0svd and
using the sameI PI. Hence Theorem 3.4 and subsequent Remarks2d hold using the fieldf̂0,
replacingC with Cz and employing the representation U of PSLs2,Rd which leavesCz un-
changed. Notice that U does not implementa! In this way all the properties cited in the thesis turn
out to be automatically proved with the exception ofsiii d and sivd. However usings35d and s38d
and sdd of Theorem 3.2 also those properties can be immediately proved. The proof ofscd is

straightforward.Azss0,pdd coincides with the analog constructed starting from operatorseif̂0svd.

In that case the thesis holds with respect to the subgroup of U,et:Vsf̂0,Dsf̂0dd : / 2 fRemarks2d after
Theorem 3.4g. Now s38d implies the validity of the thesis in our case.

sbd Since D admits the only zeros atu=0 and u=p;−p, the only open nonempty and
nondense intervals ofS1 which are invariant under the one-parameter grouphgt

sDdjtPR generated by
D are s0,pd and s−p ,0d. D-covariance readsUz

sDdstdAzsIdUz
sDd†std=Azsgt

sDdsIdd and thus
Azss0,pdd andAzss−p ,0dd are invariant underhUz

sDdstdjtPR. Let us prove their uniqueness. Con-
sider the case ofI =sa,bd with 0øa,b,p. There aret8.0 anda8.0, with a8,b and such that
g

t8
sDdsa8 ,bdù sa,bd=x. Therefore, by locality it holdsfUz

sDdst8dAzssa8 ,bddUz
sDd†st8d ,Azssa,bddg

=0, i.e. fAzssa8 ,bdd ,Uz
sDds−t8dAzssa,bddUz

sDd†s−t8dg=0. If Azssa,bdd were invariant under
hUz

sDdstdjtPR, the latter identity above would imply thatfAzssa8 ,bdd ,Azssa,bddg=0, and thus in

particularAzssa8 ,bdd,Azssa8 ,bdd8 which is trivially false because elementsV̂zsvdPAzssa8 ,bdd
generally do not commute. All the remaining cases can be reduced to that studied above with
obvious adaptations. h

Remarks:

s1d scd in the last theorem is valid also replacingF− for F+ andD for −D as well. Theorems 4.1
and 4.2 hold in particular forS=S2 andM=S13S2. In that case one finds easily thatlz is
invariant under the group ofp-automorphisms induced by the action of SOs3d as isometry
group onS2 if and only if z is constant i.e. onS2.
GenericS do not admit SOs3d as a group of isometries, in that caselz is invariant under the
relevant isometry group ofS provided z is so. Finally we notice that the hypothesesz
PL2sS ,vSd can be relaxed inzPLloc

1 sS ,vSd sthe space of locally integrable functions onS
with respect tovSd both in Theorems 4.1 and 4.2, the only result that could fail to hold issii d
in sbd of Theorem 4.1.

s2d Theorems 4.1 and 4.2 refer to the pair of segmentss0,pd and s−p ,0d in the circle realized
as the segmentf−p ,pg with −p;p. From a physical point of view there is no way to
distinguish between the pair of regionss0,pd , s−p ,0d and any other pair of open nonempty
segmentsI , J,S1 such thatJ=intsS1\ Id. This is because there is no way to measure seg-
ments onS1 as the metric is degenerate therein. In fact the theorem can be stated for any pair
of such segments. To prove it we notice that there exists a Möbius diffeomorphismg:S1

→S1 with I =gss0,pdd andJ=gss−p ,0dd. fAssume that, in coordinatesu , I has length equal
or shorter thanJ. The diffeomorphismg−1 is the composition of a rigid rotation generated by
K which maps the center ofI in 0, a dilatation generated byD which enlarges the trans-
formed I up to s−p /2 ,p /2d and another anticlockwise rigid rotation ofp /2.g Hence, Theo-
rems 4.1 and 4.2 can be restated replacings0,pd and s−p ,0d with, respectively,I and J,
replacing the states33d with the state and assuming to have fixed somezPL2sS ,vSd,

lIsVsvdd ª lsVsvddeiGIsvd, with GIsvd ª E
M

Gszg*v+ + zg*v+d

and replacingD with the generatorDI of the one-parameter subgroup of PSLs2,Rd R
{ t°expstDIdªg+expstDd +g−1 which leaves invariantI and J sDI does not depend on
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the choice ofgd.
Notice also that ifI , J is a pair of segments as said above andh is any Möbius transforma-
tion, hsId , hsJd still is a pair of open nonempty segments withhsJd=intsS1\hsIdd and it holds
susing also Lemma 3.1d

lhsIdsVsvdd = lIsVsh*vdd.

This fact means that the PSLs2,Rd symmetry, broken at Hilbert-space level, is restored at
an algebraic level by considering the whole class of stateslI. The residual Virasoro
representation after breaking PSLs2,Rd symmetry is analyzed in the Appendix.

s3d Considering again the particular case of the Kruskal manifold, the requirements31d, that is
−sinu]u=−k−1j�F, fixes the standard frame only up to a coordinate transformationu8
=u8sud, where u8 being any other positive oriented coordinate frame onS1 satisfying
sinu8]u8=sinu]u. Since our construction of quantum field theory onM relies upon the
choice of a standard frame onS1, a natural question is the following:Are quantum field
theories based onlz and its analoglz8 with obvious notation, unitarily equivalent?sNotice
that z is the same for both statesd. The answer is strongly positive because of the following
general result.

Theorem 4.3:With the same hypotheses as in Theorem 4.1, letu8 be another standard frame
on S1. Referring to the coordinate frameu8, let D8 be the vector field analog ofD and letlz8 be
the state analog oflz fboth states defined onWsMdg. If D8=D then, for anyzPL2sS ,vSd,

lz8 = lz. s41d

Proof: In our hypothesesu8sud=2 tan−1sec tansu /2dd for somecPR. The transformationu
→u8sud interpreted as an active diffeomorphismis nothing but the action of the elementa−c

sDd of
the one-parameter group generated byD. Sincelz is invariant under that groupfsbd in Theorem
4.1g the thesis is true. h

V. TOWARDS PHYSICAL INTERPRETATIONS

Consider the case ofM constructed by the future Killing horizon of Kruskal manifoldshow-
ever Theorem 5.1 below holds true for a generic degenerate manifoldM=S13Sd. As is well
known the complete maximal Kruskal solution of Einstein equation describes a space–time with
an eternal pair of black hole–white hole. However, some featuresse.g., Hawking radiationd of real
black holes produced by collapse can be modelled by using the right Schwarzschild wedge and the
region containing the future singularity in Kruskal manifold, the region aboutF+ ssee Refs. 37 and
38d in particular.F+ itself can be considered assan extension of thed actual event horizon of a
physical black hole. The space–time of a physical black hole obtained by stellar collapse has no
white hole neither Killing bifurcate horizon. Nevertheless, in the sense stated below a physical
black hole will asymptotically approach such a space–timesat least a space–time including a
bifurcate Killing horizond. Indeed, in Ref. 31 Racz and Wald considered a globally hyperbolic,
stationary space–time containing a black hole but no white hole, assuming, further, that the event
horizonE of the black hole is a Killing horizon with compact cross sections. With those hypoth-
eses they proved that if surface gravity is nonzero and constant throughout the horizon, one can
globally extend the initial space–time so that the image ofE is a proper subset of a regular
bifurcate Killing horizon in the enlarged space–time. In that paper they also provided necessary
and sufficient conditions for the extendibility of matter fields to the enlarged space–time. These
results support the view that any space–time representing the asymptotic final state of a black hole
formed by gravitational collapse may be assumed to possess a bifurcate Killing horizonssee Ref.
31 for detailsd. Therefore, from a physical point of view, it is worth investigating the physical
meaning for the theory referred to as the GNS representation oflz when restricting to the region
F+.
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A. Extremal KMS states: Existence of different thermodynamical phases

By constructionlz are KMS states on theC* -algebraWsF+d, the Weyl algebra generated by
Weyl operatorsVsvd with suppv,F+ which is contained inAzsF+d. As states onWsF+d, lz and
lz8 can be compared also ifzÞz8 fthey do not belong to a common folium ifsii d in sbd of
Theorem 4.1 holds, so they cannot be compared on a common von Neumann algebra of observ-
ables in that caseg. The next theorem, valid for the general caseM=S13S, shows that
hlzjzPL2sS,vSd is a family of extremal states in the convex space of KMS states overWsF+d at
inverse temperature 2p with respect to −D.

Theorem 5.1:With the same hypotheses as in Theorem 4.1 the following holds.

sad Any statelz fwith zPL2sS ,vSdg defines an extremal state in the convex set of KMS states on
the C* -algebraWsF+d at inverse temperature2p with respect tohat

s−DdjtPR.
sbd Different choices ofz individuate different states onWsF+d which are not unitarily equiva-

lent as well.

Proof: Let sHz ,Pz ,Czd be the GNS representations oflz. The GNS representations of
lz�WsF+d must besup to unitary equivalencesd sHz ,Pz�WsF+d ,Czd due to Reeh–Schlieder property
fsad in Theorem 4.2g of AzsF+d. Since AzsF+d=Pz�WsF+d9 is a stype III1d factor, the state
lz�WsF+d—namelyPz�WsF+d—is primaryssee Sec. III.2.2 in Ref. 13d. As a consequence, by Theo-
rem 1.5.1 in Ref. 13, the KMS statelz�WsF+d is extremal in the space of KMS states onWsF+d
with respect toat

s−Dd at the temperature oflz�WsF+d itself. Obviouslylz�WsF+dÞlz8�WsF+d because,
if z−z8 is not zero almost everywhere, the integrals in the exponentials defininglz and lz8
produce different results when applied toVsvd with suppv,F+ with a suitable choice ofv. The
proof of nonequivalence is the same as donessee the Appendixd for the states defined in the whole
von Neumann algebras. h

The natural interpretation of this fact is that the stateslz, restricted to the observables in the
physical regionF+, are nothing butdifferent thermodynamical phasesof the same system at the
Hawking temperaturessee Sec. V.1.5 in Ref. 13d.

B. Bose–Einstein condensate and states lz with z real

In the following we assume thatz is real. Let us examine some features of the generatorsf̂z

of the Weyl representation associated withlz when restricted to the physical regionF+. Consider
vPDsMd such that suppv,F+ and such thatvsv ,sd can be rewritten asf]csv ,sd /]vgdv∧vS

wherec is smooth and compactly supported inF+. Similar “wave functions”c have been con-
sidered in Ref. 26 building up scalar QFT on a Killing horizonsF+ in our cased. Usings32d we can
write the formal expansion

f̂zsvd =E
F+

f̂0su+svddvsv,sd +E
F+

zssdvvsv,sd. s42d

In terms of wave functions, ifVF+
is the restriction of the right-hand side of the definition ofV

given in s1d to real smooth functions compactly supported inF+, it holds

Vsc,f̂zd = VF+
sc,f̂0d −E

S
SE

−`

+`

csv,sddvDzssdvSssd. s43d

The group of elementseitHz : =Uz
s−Ddstd ,tPR generates displacementsv°v− t in the variablev in

the argument of the wave functionsc, sincev is just the parameter of the integral curves of −D
which takes the form] /]v in F+. Using Fourier transformation with respect tov we can write
down
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csv,sd =
1

Î2p
E

R+

dE c+sE,sd̃e−iEv + c+sE,sd̃eiEv. s44d

In heuristic senseHz acts on the wave functionsc as the multiplicative operator

c+sE,sd̃°Ec+sE,sd̃. Physically speaking, thermal properties oflz are referred just to the energy
notion associated with that Hamiltonian. Actually, as is well known, this interpretation must be

handled with great care, the interpretation ofc+̃ as a representative of a one-particle quantum state
can be done in a Fock space whose vacuum state does not coincide with the KMS statelz ssee
Sec. V.1.4 and the discussion on p. 219 of Ref. 13.d Using s44d and s43d can be rewritten as

Vsc,f̂zd = VF+
sc,f̂0d − Î2pE

S

zssdcs0,sd+̃vSssd. s45d

From s45d it is apparent thatf̂z gets contributions fromzero-energy modessE=0d as it happens in
Bose–Einstein condensate. To this end see Chap. 6 of Ref. 30 and 5.2.5 of Ref. 2, especially p. 72,
where in the decomposition of the KMS statev safter the thermodynamical limitd in Rn-ergodic
states, the mathematical structure of the latter states resemble that of the stateslz. The decompo-
sition of the field operators42d into a “quantum”swith vanishing expectation valued and a “clas-
sical” si.e., commuting with all the elements of the algebrad part is typical of the theoretical
description of a boson system containing a Bose–Einstein condensate; the classical part plays the
role of anorder parameter.6,30

Let us focus attention on the generator ofUz
s−Ddstd=eitHz in the representation of a statelz.

Using Theorem 4.1 we findfboth sides are supposed to be restricted to the coreFsHzdg

Hz =E
M

sinsud:
]f̂z

]u

]f̂z

]u
:su,sddu ∧ vSssd.

Indeed, if u±svd= ±2 tan−1sevd are the inverse functions ofv=Gsud in F+ and F−, respectively,
passing from coordinatessu ,sd to coordinatessv ,sd and employing the fieldf̂0 the right-hand side
of the formula above can be rearranged as

Hz = lim
N→+`

HE
F+

xNsvd:
]f̂0

]v

]f̂0

]v
:su+svd,sddv ∧ vSssd + izi2E

R
xNsvddv

−E
F−

xNsvd:
]f̂0

]v

]f̂0

]v
:su−svd,sddv ∧ vSssd − izi2E

R
xNsvddvJ ,

where the functionxN is smooth with compact support inf−N,Ng and becomes the constant
function 1 forN→ +`. The two constant terms in brackets cancel out each other, they have the
opposite sign, and the final form ofHz is just that insdd of Theorem 4.1. The normal ordering
prescription used in the integrals is defined by subtractingsC ,f̂0su8 ,s8df̂0su ,sdCd before apply-
ing derivatives and then smoothing with a product of delta inu , u8 ands, s8. We do not enter into
mathematical details here which are quite standard procedures of applied microlocal analysis
similar to that used in Hadamard regularization.3,14,24

From the decomposition ofHz written above, we see that it is made of two contributions
Hz

s−d , Hz
s+d, respectively, localized at the two disjoint regions ofF , F−, andF+. The two terms have

the same value with opposite sign as one expects from the indefiniteness of the self-adjoint
generatorD scorresponding to the fact that the Killing vector −D changes orientation passing from
F+ to F−d. Let us concentrate on the second term in the contributionHz

s+d to Hz due toF+. It is a
volume divergence
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Ez ª izi2E
R

dv.

This can be interpreted as the energy of the BE condensate localized atF+ whose density isfinite
and amounts toizi2.

C. Conclusions: Can the condensate describe physical properties of a black hole?

Here, to conclude, we try to give some hints to relate the properties of the condensate with
space–time, i.e., Schwarzschild black hole, properties. To do it we start from a deeper point of
view. The only difference between two different Schwarzschild black holes concerns their masses,
that is their Schwarzschild radii. Since we want to ascribe this difference to a feature of a state, the
background and the system supporting the state must be independent from the black-hole radius.
In this way the stateslz must be referred to as a quantum field theory on an abstract manifold
M=S13S2 with a metric onS2 which does not coincide with the actual metric of a particular black
hole. We assume the hypothesis of spherical symmetry so that the metric onS2 is determined by
fixing the value of an adimensional parameter onlysthe radius rate for instanced. In this view a
statelz on the scalar fieldf̂ must fix the geometry of the black hole under the constraints of the
presence of a Killing horizon and spherical symmetry. Since we are in fact dealing with quantum
gravity we adopt natural Planck unitss"=c=G=1d so that we can employ pure numbers in the
following. In particular, the pure number defining the radius ofS2 will be denoted byr0.

The idea that the assignment of asclassicald scalar field fixes the metric of a space–time
ssolution of Einstein equationsd when other constraints are given on the metric is not new, the
so-called dimensional-reduction theory for gravitation leads to such a scenariose.g., see Ref. 29
with cited referencesd where the scalar field is related to the dilation field. Now we adopt a similar
point of view but, in addition, we assume also that the assignment of the configuration of the
scalar field is due to the assignment of a quantum state of that field. Let us see how this idea can
be implemented from the following remark.

Spherical symmetry implies thatz must be constant onS2 fsee Remarks1d after Theorem 4.2g.
Since the considered states are coherent the field admits a nonvanishing averaged value. Formally
it holds

lzsf̂zsu,sdd = yzsud. s46d

sSee remarks below.d Hence the mean value off̂z with respect tolz picks out a preferred
coordinate frame along the light lines ofF+. So, up to the choice of the origin, the mean value of
the fieldf̂z defines a preferred coordinateyz in the physical regionF+. Now the natural hypotheses
is thatyz is the parameter of the Killing fieldj�F+

of the considered black hole as in Sec. IV A. In
other words we are saying thatz determines a black hole in the class of Schwarzschild ones by
determining its surface gravity through the identitysboth sides are pure numbers since we are
employing natural Planck unitsd,

z = k−1. s47d

Such a black hole must have horizon surfaceSz=pz2. As a consequence we find that

izi2 = 4pz2r0
2 s48d

scales as the actual surface of the black hole horizonsand it is exactly the measure of the surface
providedr0=1/2d. This provides some clues for an interpretation ofizi2 that is, equivalently, the
density of energyof the condensateEz /eRdy.

Remarks:A pair of mathematical remarks are necessary to interprets46d.

s1d lzsf̂zsu ,sdd is not well defined and it could be thought of as the weak limit of a sequence

lzsf̂zsvndd where the formsvn regularize Dirac’ s delta centered insu ,sdPF.
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s2d Furthermore, one must take into account that the allowable forms have the shapevnsu ,sd
=f]fnsu ,sd /]ugdu∧vS wherefn is periodic in u. It is not possible to produce a regularization
sequence fordss,s8df]dsu8−ud /]ugdu∧vS in this way due to the periodic constraint. The
drawback can easily be skipped by fixing an originyz0 for yz scorresponding to someu0d for
the coordinatex. In other words one considers a sequence of formsvn

su,sd induced by smooth
u-periodic functionsfn

su,sdsu8d=dnss8−sdfQnsu−u8d+Qnsu8−u0dg, where hdnss8dj regularize
dss8d andhQnsu8dj regularize the step distribution whose derivative is justdsu8d. In this sense

lim
n→+`

lzsf̂zsvn
su,sddd = yzsud − yz0.

The presented results could lead to an interesting scenario which deserves future investigation.
The Kruskal space–time could be a classical object arising by spontaneous breaking of SLs2,Rd
symmetry as well as Bose–Einstein condensation due to a state of a local QFT defined on a certain
conformal net. In particular the abstract field operatorf can be seen as a noncommutative coor-
dinate on F+. fObviously noncommutativity arises from canonical commutation relations
ffsu ,sd ,fsu8 ,s8dg= iEsu ,s,u8 ,s8d.g Commutativity is restored under the choice of an appropriate
coherent state on thatp-algebra considering the averaged values of the field. This state also fixes
the actual black hole.sA recent remarkable application of some ideas of noncommutative geom-
etry to conformal net theory and black holes appears in Ref. 16.d With a pair of fieldsf defined
on F and the other defined on the past Killing horizonP we may define, through the outlined way,
global null coordinates in the completer , t section of right Schwarzschild wedge. A subject
deserving future investigation concerns the issue if, in addition to the null coordinates in the plane
r , t, it is possible to give a quantum interpretation to the transverse coordinate and the whole
metric of the Kruskal manifold.
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APPENDIX

A.1. Fock representation and GNS theorem:The interplay of the Fock representation pre-
sented in Sec. III and GNS theorem13,1 is simply sketched. Using notation introduced therein, if

P :WsMd→ŴsMd denotes the uniquesV being nondegenerated C* -algebra isomorphism between
those two Weyl representations, it turns out thatsF+sHd , P , Cd is the GNS triple associated with
a particular pure algebraic statel squasifree1,17 and invariant under the automorphism group
associated with]ud on WsMd we go to introduce. Define

lsWscdd ª e−kc+,c+l/2

then extendl to the p-algebra finitely generated by all the elementsWscd with cPSsMd, by
linearity and usingsW1d, sW2d. It is simply proven that,lsId=1 andlsa*adù0 for every element
a of that p-algebra so thatl is a state. As the mapR{ t°lsWstcdd is continuous, known
theorems19 imply thatl extends uniquely to a statel on the complete Weyl algebraWsMd. On the

other hand, by direct computation, one finds thatlsWscdd=kC ,ŴscdCl. Since a state on aC*

algebra is continuous, this relation can be extended to the whole algebras by linearity and conti-
nuity and usingsW1d, sW2d so that a general GNS relation is verified,

lsad = kC,PsadCl for all a P WsMd. sA1d

To conclude, it is sufficient to show thatC is cyclic with respect toP. Let us show it. IfF̂sMd
denotes thep-algebra generated by field operatorsVsc ,f̂d , cPSsMd, defined onFsHd , F̂sMdC
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is dense in the Fock spacessee Proposition 5.2.3 in Ref. 2d. Let FPF+sHd be a vector orthogonal

to both C and to all the vectorsŴst1c1d¯ŴstncndC for n=1,2,… and ti PR and ci PSsMd.
Using Stone theorem to differentiate inti for ti =0, starting fromi =n and proceeding backwards up
to i =1, one finds thatF must also be orthogonal to all of the vectorsVsc1,f̂d¯Vscn,f̂dC and

thus vanishes becauseF̂sMdC is dense. This result means thatPsWsMddC is dense in the Fock
space too, i.e.,C is cyclic with respect toP. SinceC satisfies alsosA1d, the uniqueness of the
GNS triple proves that the triplesF+sHd , P , Cd is just sup to unitary transformationsd the GNS
triple associated withl. Since the Fock representation is irreducible,l is pure.

A.2. Residual Virasoro representation after breaking PSLs2,Rd symmetry:The complex Lie
algebrasa ,h· , ·j ,ıd of vector field onS1 ssee discussion in Sec. III Ad is made of vector fields on
S1 whose diffeomorphism groups, generated by their real and imaginary parts, do not admitsin
generald F± as invariant regions, when extended toM=S13S. This happens in particular for
generatorsLn= ieinu]u. However, it is possible to rearrange that basis in order to partially over-
come the problem. Consider the equivalent basis ofa made of the following real vector fields
−iL0, Enª s1−cosss2ndudd]u , Onª s1+cosss2n+1dudd]u , Gnª−sinsnud]u with n=1,2,… . Bar-
ring −iL0 andOn, the other fields admitF± as invariant regions. Moreover the fieldsGn define a
Lie algebra with respect to the usual Lie bracket whereasEn, or En togetherGn, do not. However
allowing infinite linear combinations of vector fields—using for instanceL2-convergence for the
components of vector fields with respect to]u sthe same result holds anyway using stronger
notions of convergence as uniform convergence of functions and their derivatives up to some
orderd—one sees that eachEn can be expanded as an infinite linear combination ofGn. From these
considerations one might expect, at least, that fieldsEn, butnot the vectorsLn andOn, admit some
operator representation inHz in terms of the field operatorf̂z. In fact this is the case ifz is a real
function in L2sS ,dSd. If one tries to define operatorsLzn

scd as in s23d with f̂scd replaced withf̂z
scd

ª f̂scd+zG, one immediately faces ill-definiteness of those operators due to infinite additive terms
and the same problem arises for formal operatorsOn

scd
ªLz0

scd+sLz2n+1
scd +Lz−2n−1

scd d /2 and also for
En

scd
ªLz0

scd−sLz2n
scd +Lz−2n

scd d /2. However these terms cancel out if considering the operatorsGn
scd

ª sLz−n
scd −Lzn

scdd / s2id with n=1,2,…, which are well defined and essentially self-adjoint onFsHzd.
Moreover, the operatorsGn

scd define a Lie algebra with respect to the commutator.fDirect inspec-
tion shows that ifc=` none of the considered operators is well defined onFsHzd.g It is plausible
that operatorsGn

scd define one-parameter groups which implement covariance with respect to
analogous groups of diffeomorphisms generated by associated vector fieldsGn, and that the expo-
nentiation of the algebra ofGn

scd produces a unitary representation of asperhaps thed subgroup of
Diff +sS1d of the diffeomorphisms which leavesF± invariant. However, it is worth stressing that,
barring the caseG1

scd which generates justUz
sDdstd , Cz is not invariant under the remaining unitary

groups.
A.3. Proofs of some theorems:
Proof of Proposition 2.2:Let u be a standard frame onS1. Assume the conditionsad holds. We

can writev=e f andv8=e f8 for some functionsf , f8PC`sS13S ;Cd. To use these facts we notice
that, in the general case, it holdsEse f ,e f8d=Vsf , f8d /4 by Proposition 2.1. Therefore, bysV2d, to
conclude the proof it is sufficient to show thatVsf , f8d=0. Let us prove it. In our hypothesesf8 is
constant in the variableu in I 3S since]f8su ,sd /]u=0 therein andI 3S is connected by paths
with s constant. Moreover, ift , t8 are the endpoints ofI, it must hold fst ,sd= fst8 ,sd for everys
PS. Indeed]fsu ,sd /]u=0 vanishes outsideI 3S—and thusf is constant inu in that set as
before—andf is periodic inu at s fixed by hypotheses. Integrating by parts in the right-hand side
of the definition ofV given in s1d with f and f8 in place ofc andc8,

Vsf, f8d = 2E
S

vSssdE
S1

f8su,sd
] f

]u
su,sddu = 2E

S

vSssdE
I

f8su,sd
] f

]u
su,sddu.

f8 is constant inu in I 3S and fst8 ,sd= fst ,sd , t , t8 being the extreme points ofI, so that
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1

2
Vsf, f8d =E

I

f8su,sd
] f

]u
su,sddu = f8ssdE

I

] f

]u
su,sddu = f8ssdsfst8,sd − fst,sdd = 0.

Now suppose thatsbd holds true. In this case one has

iVsf, f8d = 2E
S

vSssdE
S1

f8su,sd
] f

]u
su,sddu = 2E

S

vSssdE
S1

f8su,sd
] f

]u
su,sddu.

Since]f8su ,sd /]u=0 in the setS13S which is connected by paths withs constant,f8 does not
depend onu in that set and thus

1

2
Vsf, f8d = 2E

S

vSssdf8ssdE
S1

] f

]u
su,sddu = 2E

S

vSssdf8ssd = 0.

Finally sW2d or equivalentlysV2d entails the thesis. h

Proof of Theorem 3.2:The operatorLªK2+S2+D2 is essentially self–adjoint onFsHd since
the dense invariant spaceFsHd is made of analytic vectors. The proof is straightforward by direct
estimation ofiLnCi with CPFsHd sthere is a constantCCù0 with iLnCiøCC

n d. As a conse-
quence of some results by NelsonsTheoem 5.2, Corellary 9.1, Lemma 9.1, and Lemma 5.1 in Ref.
28d the Hermitean operatorsiRsxd with xPsls2,Rd are essentially self-adjoint onFsHd and there
is a unique strongly continuous representation SLs2,Rd{g°Usgd :F+sHd→F+sHd such thats28d
holds true.

sad k generates the one-parameter subgroupS1 in SLs2,Rd—that isR{ t°expstkd with period
4p—as well as the one-parameter subgroupR{ t° lstd isomorphic toR in SLs2,Rd. From the
general theory of SLs2,Rd representations, a representation SLs2,Rd{g°Vsgd is in fact a rep-
resentation of SLs2,Rd if t°Vslstdd has period 4p /k for some integerkÞ0. It is simply proved
that the operatorK is the tensorialization of the operator defined on,2sCd ^ L2sS ,vSd by extend-
ing

hCnjn=1,2,… ^ uj ° hnCnjn=1,2,… ^ uj

by linearity. As a consequence the spectrum ofK̄ is the setssK̄d=h0,1,2,…j where the eigens-
pace with eigenvalue 0 is one dimensional and it is generated by the vacuum stateC. This implies

that R{ t°eitK̄ =Uslstdd has period 2p. As a first consequence U is a proper representation of

SLs2,Rd. Furthermore, sincessK̄d is non-negative, the representation is a positive-energy repre-

sentation. Finally, notice that −I =e2pk and thus Us−Id=ei2pK̄= I and so U is a representation of
PSLs2,RdªSLs2,Rd / ± I.

sbd andscd. From direct inspection one sees that the operatorsK , S, D are tensorializations of
the respective operatorsK�H , S�H , D�H, in particular their restriction to the space generated by
the vacuum vector coincide with the operator 0. Moreover, decomposingH=,2sCd ^ L2sS ,vSd,
one finds

K�H = K0 ^ 0, S�H = S0 ^ 0, D�H = D0 ^ 0,

where K0, S0, andD0 are obtained by restricting to the one-particle space the operators
K , S, andD defined in the caseM=S1 swithout transverse manifoldd. Using again Nelson results
these operators give rise to a representation SLs2,Rd{g°Vsgd ^ I in H. sThis representation is,
in fact, an irreducible representation of SLs2,Rd, see Ref. 27.d By tensorialization this represen-
tation extends to a representation U8 in the whole Fock space. By construction, the generators
iK8 , iS8 , iD8 of this representation ad associated withk, s, d, respectively, coincides with
iK , iS, iD, on FsHd, respectively. Nelson’s uniqueness property implies that U8=U. By construc-
tion U s=U8d admits every space with finite number of particles as invariant space, including the
space with zero particles spanned by the vacuum state.
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sdd First of all, as said above, U leaves invariant the space generated by the vacuum vectorC
so that it is an invariant vector up to a phase. Let us show that this is the only unit vector with this

property. Bysbd, the operatorD̄ is the tensorialization ofD0 % I =D0 % I where the generator of
V, D0, is defined on the one-particle space in the case of the absence ofS, ,2sCd, and I acts on
L2sS ,vSd. In Refs. 26 and 27 the representationV has been studied, realized, under a suitable
Hilbert space isomorphism, in the spaceL2sR+,dEd. In that spaceD0 is the closure of the essen-
tially self-adjoint operator −isEd/dE+1/2d. The original dense, invariant domain of −isEd/dE
+1/2d is a core forD0 made of smooth functions ons0, +`d ssee Ref. 26 for detailsd of the form
ÎEe−bEPsEd with b.0 a constant not depending on the considered function andP any polyno-
mial. Under the unitary transformation U, which takes the formsUcdsxd
ª s2pd−1/2e0

+`e−ix ln EcsEd /ÎE dE on the domain of −isEd/dE+1/2d, this operator becomes the
operator positionX fi.e., sXcdsxd=xcsxdg on L2sR ,dxd restricted to a core contained in the
Schwartz space. As a consequencessD0d=scsD0d=ssXd=R and, similarly, ssD0 % Id
=scsD0 % Id=R. Therefore, passing to the tensorialization,ssD̄d=R and spsD̄d=h0j with, up to
phases, unique eigenvector given by the vacuum vectorC. If F is a unit vector which is up-to-

phases invariant underU, it must be in particulareitX̄F=uXstdF where X is any real linear
combination ofK , S, D and uuXu=1. As the domain ofX is dense, it contains a vectorF8 with

kF8 ,FlÞ0 and thusuXstd=ke−itX̄F8 ,Fl / kF8 ,Fl is differentiable att=0 by Stones’ theorem. As a

consequence, the left-hand sideeitX̄F=uXstdF must be differentiable att=0. By Stone theoremF

belongs to the domain ofX̄ and it holdsX̄F=lXF where lX=−i duX/dtut=0. Specializing the

identity to X=D, from the spectral structure ofD̄, one concludes that it must belD=0 and, up to
phases,F=C. h

Proof of Theorem 3.3:sad andsbd To establishs29d it is sufficient to prove those identities for

w=V̂svd with vPDsMd andgP PSLs2,Rd. Actually, with the said choices forw,

UsgdaU†sgd = ag8sad for all a P F̂sMd. sA2d

implies s29d. For if sA2d holds, taking the adjoint twice for both sides one gets the relations for

self-adjoint field operatorsUsgdf̂svdU†sgd=f̂svsg−1dd. Then s12d implies s29d for w=V̂svd via
standard spectral theory. To conclude the proof ofsad it is now sufficient to show the validity of
sA2d with a=f̂svd or of the equivalent statement

UsgdVsc,f̂dU†sgd = Vscsg−1d,f̂d for all c P SsMd and g P PSLs2,Rd. sA3d

In turn, using the fact that U preserves the vacuum vector and is the tensorialization of U�H
sTheorem 3.2d as well ass11d one sees thatsA3d is equivalent to

csgd = Usg−1d�Hc+ + Usg−1d�Hc+ for all c P SsMd and g P PSLs2,Rd. sA4d

Let us provesA4d. If cPSsMd andgPDiff +sS1d the mapc°csgd induces aR-linear map from
the space ofu-positive frequency partsc+ to the same space given by

c+ ° Ssgdc+ ª ssc+ + c+dsg−1dd+.

In this way the action ofg on the wave functionc is equivalent to the action ofSsgd on its positive
frequency partc+:

csg−1d = Ssgdc+ + Ssgdc+. sA5d

However, in general,Ssgd is notC-linearsand thus it cannot be seen as a mapH→Hd since, using
x+ª ic+ above, one gets Ssgdsic+d=ssic+− ic+dsg−1dd+= issc+−c+dsg−1dd+Þ issc++c+dsg−1dd+

= iSsgdc+. Actually, if gPPSLs2,Rd, it turns out thatsc++g−1d+=0 so thatSsgdc+=sc++g−1d+ and
S is C-linear. This nontrivial result was proven in Lemmasid 3.1. To conclude the proof it is
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sufficient to show thatSsgd=Usgd�H for all gPPSLs2,Rd. To establish such an identity we first
notice thatSsgd :H→H is a unitary representation of PSLs2,Rd. The only fact non-self-evident is
that Ssgd preserve the scalar product. It is however true because, ifxª ic+− ic+, it holds

kc+,c+8l = − iVsc+,c+8d =
− i

2
sVsc,c8d + iVsx,c8dd

now, due tosA5d we can replace the argumentsc+,c+8 by, respectively,Ssgdc+, Ssgdc+8 and the
argumentsc , c8 , x, by csg−1d , c8sg−1d , xsg−1d, respectively, obtaining a similar identity; finally,
since the action of positive-oriented diffeomorphisms ofS1 preserves the symplectic form, one has
Vscsg−1d ,c8sg−1dd+ iVsxsg−1d , c8sg−1dd=Vsc ,c8d+ iVsx ,c8d and thuskSsgdc+,Ssgdc+8l=kc+,c+8l. To
conclude the proof it is sufficient to notice that, by direct inspection making use of Stone theorem
one findssdetails are very similar to those in the corresponding part of Theorem 2.4 in Ref. 27d
that, if cnj=hdnpjp=1,2,… ^ uj P,2sCd ^ L2sS ,vSd=H,

iXcnj =
d

dt
Ssexpstxddcnj,

where X=K , S, D, and, respectively,x=k, s, d fk, d, s being the basis of sls2,Rd introduced
aboveg. On the other hand, the same result holds, by construction, for the representation U�H

iXcnj =
d

dt
Usexpstxddcnj.

Since the elementscnj span a dense space of analytic vectors forK�H2 +S�H2 +D�H2 , by the results
by Nelson cited in the proof of Theorem 3.2,S=U�H. Now sA5d implies sA4d and this concludes
the proof. h

Proof of Theorem 4.1:sad Consider the closureWzsMd of the p-algebra inWsMd spanned
elementsVzsvdªVsvdeieMGszv++zv+d with vPDsMd. Obviously the obtainedC* -algebra coincides
with WsMd itself. On the other hand, its generatorsVzsvd satisfy sV1d and sV2d and thus, by
Theorem 5.8.8 in Ref. 2 there is a uniquep-isomorphismgz :WsMd→WzsMd=WsMd with
gzsVsvdd=VsvdeieMGszv++zv+d. Finally, by constructionlsgzsVsvddd=lzsVsvdd and thus, linearity
and continuity implys33d. Let us proofs35d. Due to linearity and continuity, it is sufficient to show
the validity of the relation when restricting to elementsVzsvd. In turn, sinceVsvd is invariant
undergtªexpstDd and using Lemma 3.1, the validity ofs35d for those elements is a consequence
of the invariance of the integraleMzGv+ under the action ofgt

* on the argumentv+ which we go
to prove. IfDsMd{v=f]fsu ,sd /]ugdu∧vSssd and definingu±svd= ±2 tan−1sevd, direct computa-
tion yields

E
M

zGv+ = − lim
N→+`

E
−N

N

dvE
S

vSssdzssdff+su+svd,sd − f+su−svd,sdg + boundary terms.

Using periodicity off+ in u, boundary terms can be rearranged into a term

lim
Q↗p

FsQ − pdlnSUtan
Q

2
UDE

S

zssd
f+sQ,sd − f+sp,sd

Q − p
vSG

and three other similar terms where −p or 0 replacesp. The last integral can be bounded uni-
formly in Q using Lagrange theorem since]f+/]u is continuous and compactly supported. As a
consequence the limit vanishes and the boundary terms can be dropped. Finally, using the fact that
v is the parameter of the integral curves ofD one has,
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E
M

zGgt
*v+ = − lim

N→+`
E

−N

N

dvE
S

vSssdzssdff+su+sv − td,sd − f+su−sv − td,sdg

= − lim
N→+`

E
−N+t

N+t

dvE
S

vSssdzssdff+su+svd,sd − f+su−svd,sdg =E
M

zGv+,

so that the invariance of the integral functional under expstDd is evident.
sbd Let us start from the bottom. Sincel is invariant under the whole PSLs2,Rd group,

invariancesnoninvarianced of lz is equivalent to invariancesnoninvarianced of the integral func-
tional in the right-hand side of s33d. Let us study that integral. Takevsu ,sd
=f]fsud /]vghssddu∧vSssd wheres are coordinates onS and the real functionsf andh are smooth
with the latter compactly supported as well. AssumezÞ0 almost everywhere. We can fixh such
that eSzh=eia. In this case

E
M

Gszv+ + zv+d =E
S1

GsudSeia] f+

]u
du + c . c.D .

As a consequence, ifhgtjtPR denotes the one-parameter subgroup of PSLs2,Rd generated byX
=sa+b cosu+c sinud]u, with a,b,cPR, one has

d

dtU t=0E
M

Gszgt
*v+ + zgt

*v+d =E
S1

GsudSeia ]

]u
Ssa + b cosu + c sinud

] f+

]u
Ddu + c . c.D .

The invariance of the integral implies that the left-hand must vanish no matter the choice off

E
S1

Gsud
]

]u
Ssa + b cosu + c sinud

]eiaf+

]u
Ddu + c . c . = 0.

Using fsudªcossu−ad one finds that it must bea=0 as a consequence of the identity above. Then
using fsudªcoss2u−ad one finds that it must also beb=0. We conclude that the integral func-
tional is invariant at most under the group generated byc sinu] /]u=−cD. On the other hand, the
proof of such an invariance arises directly froms34d and s35d using the fact thatl is invariant
underat

sDd as stated inscd in Theorem 3.4.
The fact thatlz is puresthat is extremald is an immediate consequence ofs33d using the fact

that gz is bijective andl is pure. As thelz are pure their GNS representations are irreducible.
Therefore the proof of the fact thatlz andlz8 are not quasiequivalent ifzÞz8, almost everywhere,
reduces to the proof that, ifzÞz8 almost everywhere, there is no unitary transformation

U:F+sHzd→F+sHz8d such that UV̂zsvdU−1=V̂z8svd for all vPDsMd. We shall make use of the
first statement inscd which will be proved independently from the following. Suppose that there is
such a unitary transformation for some choice ofzÞz8. As a consequence one also gets the

identity oUV̂zsvde−iseMzGv++c.c.dU−1=V̂z8svde−iseMzGv++c.c.d. That is, redefiningz8−z→zÞ0, one

has Ueif̂zsvdU†=eif̂0svd where we have also identified the one-particle Hilbert spacesH0 andHz

with the one-particle spaceH of the GNS representation ofl sand thus the Fock spacesd. Via

Stone theorem susing above v= tv and tPRd one gets Uf̂zsvd=f̂0svdU, that is
iUasc+d−a†sc+d+seMzGec+

+c.c.dU= iasc+d−a†sc+dU where c+=Ev+ according with sbd in
Proposition 2.1. Using the analogous relation forc8ª ic+− ic+ one gets in the end

Ufasc+d − a†sc+d + asc+d + a†sc+dg − S4iE
M

z̄Gec+DU = fasc+d − a†sc+d + asc+d + a†sc+dgU.

Applying both sides to the vacuum stateCz and computing the scalar product of the resulting
vectors withCz itself, the identity above implies that
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− S2iE
M

z̄Gec+DkCz,UCzl = ka†sc+dCz,UCzl.

If hc+mjmPN8 is a Hilbert base ofHz, iteration of the procedure sketched above produces

kCz,UCzlp
n

lm
Nm

ÎNm!
= kN1,N2,…,Nm,…uUCzl sA6d

for any vector with finite number of particlesuN1,N2,… ,Nm,…l , Nm being the occupation num-

ber of the statec+m and wherelmª−2ieMz̄Gec+m
. It must bekCz ,UCzlÞ0, otherwise all com-

ponents ofUCz would vanish producing UCz=0 which is impossible since U is unitary. Con-
versely, asiCzi2=1, it must holdiUCzi2=1. This identity can be expanded with the basis of states
uN1,N2,… ,Nm,…l and a straightforward computation which employssA6d produces

iUCzi2 = ukCz,UCzlu2 expSo
m=1

+`

ulmu2D . sA7d

The series can explicitly be computed using a basiscsn,jdsu ,sd=ujssdse−inu /Î4pnd, whereuj is any
basis ofL2sS ,vSd made of compactly supported real smooth functions.fThe spaceC of smooth
compactly supported functions onS is dense inL2sS ,vSd. As the latter is separableC contains a
countable subsetC8 still dense inL2sS ,vSd. In turn one may extract fromC8 a subsetC9 of linearly
independent elements which span the same dense space asC8. Usual orthonormalization procedure
applied toC9 gives a Hilbert basis forL2sS ,vSd made of smooth compactly supported functions.

One obtains the wanted basis ofuj.g In that caseeSz̄ujvSÞ0 for some j = j0 fotherwise the

function z on S would haveL2sS ,vSd-norm zerog. One findsul2n+1,j0
u2=CueSz̄uj0

vSu2s2n+1d−1

with C.0 so that the series insA7d diverges and the found contradiction shows that U cannot
exist.

scd By direct inspection one finds that the operatorsVzsvd enjoy sV1d and sV2d. Therefore,

sTheorem 5.2.8, in Ref. 2d the C* -algebraŴzsMd given by the closure of thep-algebra generated
by Vzsvd is a representation of Weyl algebra and there is ap-algebra isomorphism ofC* algebras,

Pz :WsMd→ŴzsMd which satisfiess36d. The vacuum vector ofHz=F+sHzd is cyclic with respect

to Pz becauseŴzsMdCz is the same space as the dense spacessee part A.1 of this Appendixd
spanned by vectorseif̂sv1d…eif̂svndCz , n= ,1,2,… . Finally it holds

lzsVsvdd = lsVsvddeiseMzGv++c.c.d = kCz,e
if̂svdCzleiseMzGv++c.c.d = kCz,e

isf̂svd + eMzGv+ + c.c.dCzl

= kCz,V̂zsvdCzl,

that islzsVsvdd=kCz ,PzsVsvddCzl. By linearity and continuity this relation extends to the whole
algebras,lzswd=kCz ,PzswdCzl , wPWsMd. We conclude thatsF+sHzd ,Pz ,Czd is thesunique, up
to unitary transformationsd GNS triple forlz.

sdd Let us denote byhgtjtPR the one-parameter group of Möbius transformations generated by
D. The statementssad andsbd in Theorem 3.3 imply that ifD is defined ass1/2id :Vsf̂0,Dsf̂0dd:
theneitDeif̂0svde−itD =eif̂0sgt

−1*
vd. SinceeMzGv++c.c. isinvariant under the action ofgt on v as seen

in the proof ofsad, we have also
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eitDeif̂0svdeiseMzGv++c.c.de−itD = eif̂0sgt
−1*vdeiseMzGgt

−1*v+c.c.d

that can be rewritten aseitDV̂zsvde−itD =V̂zsvsgt
−1dd and thus extends to the whole Weyl algebra

proving s37d. h
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The paper aims at investigating perturbative quantum field theory in the approach
of Epstein and GlasersEGd and, in particular, its formulation in the language of
graphs and Hopf algebrassHAsd. Various HAs are encountered, each one associ-
ated with a special combination of physical concepts such as normalization, local-
ization, pseudounitarity, causal regularization, and renormalization. The algebraic
structures, representing the perturbative expansion of theS-matrix, are imposed on
operator-valued distributions equipped with appropriate graph indices. Translation
invariance ensures the algebras to be analytically well defined and graded total
symmetry allows to formulate bialgebras. The algebraic results are given embedded
in the corresponding physical framework, covering the two EG versions by Fre-
denhagen and Scharf that differ with respect to the concrete recursive implemen-
tation of causality. Besides, the ultraviolet divergences occurring in Feynman’s
representation are mathematically reasoned. As a final result, the change of the
renormalization scheme in the context of EG is modeled via a HA and interpreted
as the EG analog of Kreimer’s HA. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1893215g

I. INTRODUCTION

In perturbative quantum field theoryspQFTd interaction of elementary particles is modeled to
describe the outcomes of scattering experiments. In the approach of Epstein and GlasersEGd the
scattering matrix is investigated as a formal power series,

Ssatd = o
n=0

`
an

n!
Tnst^nd, Ha couplingsconstantd,

t infrared regularizationstest functiond,
s1d

representing an operator-valued distribution acting on the Fock space of free quantum fields,
where in the adiabatic limit,t→1, the square of the corresponding scalar product,
ukfinaluSsatduinitial lu2, is supposed to yield the scattering probability. Based on the interaction term
T1, which is assumed to be local, the higer order termsTn, n.1, of the perturbative expansion can
be deduced by “only” applying causality. In general the series does not converge in any norm, but
in a few cases it is at least Borel summablescf. Ref. 1, Sec. 41.4d. Despite this fact, conceptually,
the theory is determined only up to the so-called renormalization freedom. However, renormal-
ization in the usual sense, as a subtraction of counterterms, does not have to be performed. This
actually reflects the original motivation of EG,2 namely, to give a proof of localitysi.e., renormal-
izability by local countertermsd just by proceeding the sketched way which can be seen as a
parallel road to the well-known BPHZ approach3–5 although, referring to the abstract intial setting
s1d, coming from the same junction.
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The specified title of this paper refers to terminology which so far has not properly been
implemented into the considered approach. Graphs do not appear in the EG framework and its
recent versions,6,7 and Hopf algebrassHAsd, from the perspective of physics, constitute a well-
developed concept only in the subject of quantum groups, having decent applications in statistical
physicsscf. Ref. 8, Secs. 3.7, 7.6, 8.7d. Here, graphs serve as indices for then-point distributions
Tn, and the inductive method to obtain the latter is modeled by various HAs.

In 1997, Kreimer9 discovered that the counterterms in Zimmermann’s forest formula,5 which
underlies renormalization in the Feyman graph approach, can be interpreted as an antipode con-
dition of a HA. By then one has obviously overcome the mathematical lack which had been
associated with renormalization before. But the finding of the mathematical structure alone could
not fully eliminate the mysticism involved—the occurance of a combinatorial HA in this context
requires further explanation. The method developed by EG would give a closer look at the physics
involved. From a similar point of viewscf. Ref. 10, p. 689d, in 2000, Kreimer11 formulated the
research problem of investigating the EG approach under the aspect of HAs; the content of Ref. 12
was not considered as the solution.

The brief history of contributions to the topic of EG-relevant HAs in pQFT starts in 2000
when Fauser13 describes a HA that combines normal and time ordering. In the same year, based on
the work of Fredenhagen and co-workers,7,14–16Pinter17 discusses the question of uniqueness of
EG’s n-point distributions to establish a link to Kreimer’s HA. In 2002, Brouderet al.18,19 have
taken up the previous two results again; they revive the work of Rota and Stein20,21 about com-
binatorial HAs and present a link to quantum groups. Recent publications along this line are Refs.
22 and 23.

In the present paper, which uses a very general formulation of pQFT, Kreimer’s HA is
reconstructed in the EG approach via a scheme of HAs associated with different physical concepts
such as normalizationsreferring to the normal product constructiond, localization, pseudounitarity,
causality and an associated regularization, and eventually renormalization, cf. Fig. 1. The overall
strategy has been to represent iterated solutionsse.g., of the pertubative expansiond in terms of
antipode conditions. At the beginning of this project, which was the topic of the author’s thesis,24

it was not clear what the involved physical instances would be and neither whether one would be
able to realize the aimed correspondence at all.

According to recent results, the starting point for the construction of the sketched HAs can be
fixed by a bialgebra which most naturally models the quantum character of the considered physical
objects. The algebra formalizes products of free quantum fields and the coalgebra normal products

FIG. 1. Hopf algebras modeling pQFT in the EG approach.
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of the latter. By switching the coalgebra into an algebra and adding a shuffling coalgebra which
respects graded total symmetrysGTSd one can easily construct a HA which encodes normal
ordering. Going over to a ring of scalars containing delta distributions, one can as well include the
concept of localization. Extending this ring by propagators that satisfy the spectral condition and
by translation invariantsTId distributions, one obtains an algebra which formalizes the Wick
expansion. The product is again the composition, i.e., the circle product, which defines a so-called
twist with respect to the localized normal product. With the shuffling coproduct and an antipode
given by Schmitt’s formula, which implements pseudounitarity, the resulting Laplace25 HA models
the perturbative expansion. This structure must be extended again to explicitly implement causal-
ity. In accordance with the well-known ultraviolet problems of pQFT, causality requires an ad-
equate regularization. For the three considered approches, i.e., the two recent EG versions of
FredenhagensEGFd and ScharfsEGSd as well as the Feynman approach of Bogoliubov–Shirkov
sBSd, which vary with respect to the concrete product and antipode, this is realized by localization
on causally determined space–time regions. In order to finally reestablish the concept of renor-
malization in the language of HAs one must consider graded commutative versions of the causally
regularizing HAs. Then one can, in analogy to Kreimer’s achievements, via some kind of defor-
mation, describe the change of the renormalization scheme in terms of HAs.

The content has been arranged according to the items just given. This organizes the paper as
follows. Free quantum fields and their algebraic structures with respect to normalization and
localization are introduced in Sec. II. Including interaction, Sec. III continues with the formal
expansion of theS-matrix and the construction of associatedsHopfd algebras. In Sec. IV, causality
and renormalization get explicitly implemented into pQFT, leading to various HAs. More detailed
explanation is given at the beginning of the sections.

Some technical remarks:Independent of its mathematical importance, only propositions
which immediately refer to the table of Fig. 1 are called theorems. To keep the number of pages
in reasonable bounds, most of the proofs are only sketched, especially when they can be found in
Ref. 24 or in some other reference. The remaining calculations are provided in Appendix A.
Furthermore, one finds appended examples illustrating the text and a list of symbols and abbre-
viations that are less standard.

II. LOCAL INTERACTION OF FREE QUANTIZED FIELDS

A. Free quantized fields

The basic physical objects in pQFT, the free quantized fields, are given here in a rather
abstract way, emphasizing on physical aspects such as the causal and the spectral condition but
also on mathematical ones. For instance, free fields are shown to form a bialgebra where the
normal product serves as a coproduct.

1. The physical setup

The inner product of the one particle Hilbert spaceHp,

1

i"
sf,gdp

+ ~ Dp
+sf,gdªsDp

+ * gdsf*d, f,g [ Dp, s2d

is induced by the fundamental solutions of a wavesi.e., a TI and relativistically covariant linear
hyperbolicd operator, whereDp

+, given via Fourier transformationsFDp
+dskd=usk0dsFDpdskd, is the

positive frequency part of the differenceDp=Dp
R−Dp

A between the retarded and advanced Green’s

functions ffulfilling suppDp
RuAs·−yd#y+V̄+u−, ∀y[R1+d, where V̄+u− is the closed

forwardubackward lightcone, i.e.,V̄+=hx[R1+duÎx1
2+¯+xd

2øx0j=−V̄−g. The appropriate test
function space, of Schwartz class say, is denoted byDp. In addition to the adjointf* of a test

function f [Dp, one will also have to apply the transposed of the former,f̃ªf* t. Notice, Planck’s
constant" has been implemented and the velocity of lightcª1.
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Following a notation similar to Ref. 26se.g., covariance is not simulated hered, general indices
n sand m, respectivelyd are supposed to determine derivedsantidparticles,p=vnb sand p̃=vmb,
respectivelyd, representing propagators including derivatives in terms of the Pauli Jordan function,
i.e.,

Dp = sDnmdvnb=p,vmb=p̃, whereDnm,
]¯

Dmn
= Dmn

+ + Dmn

− s3d

andDmn

± sxd= ± fi / s2pd1+dgedkWfe7ikx/2vnskWdg wherevnskWd=ÎkW2+smn
2/"2d. Antiparticles p̃=vñb are

always assumed to exist, at least formally, defined by

Dp̃
+sxd = − spDp

−s− xdt, wherespªs− 1d2 spinspd s4d

and whereDp
− symbolizes the negative frequency part.

Quantum fieldswp associated with particlesp are defined as operators onsthe dense subspace
ofd Fock spaceDp

F= %nù0Sn
spDp

^n,Hp
F, i.e., in terms of annihilation and creation operators,

Swpsfd

wp̃s f̃d
D = Ap

−Sapsfd

ap̃s f̃d
D + Ap

+Sap
* sfd

ap̃
* s f̃d D, f [ Dp, s5d

where for the considered theories

Ap
− = S1 0

0 gp
D andAp

+ = S0 1

1 0
D , s6d

so that by the choice ofgp=−1[ h±1j one can also model ghost fields. As usual, onDp
F{ uhl

=sh0,h1s·d ,h2s· , ·d ,…d,

sapsfduhldn = În + 1sf,hn+1s·,…ddp
+, s7d

sap
* sfduhldn = ÎnSn

spsf ^ hn−1d, s8d

wheresantidsymmetrization characterizes bosonssfermions, respectivelyd,

Sn
sphn =

1

n!
o

p[Sn

spspdhn + p, s9d

andsps·d defines thegrading with respect to the statisticssp,

spspd = H1

ssgnpd
if sp = H+ 1

s− 1, respectivelyd.
s10d

Derived fieldswp8=]¯wp are as well, in order to be treated as free, considered to be given by
derived particles p8[A8spd,

s q
m[I

]mdwnsfdªwnss− 1duI us q
m[I

]md fd, I depends onsn,p8d. s11d

The graded commutators of free fields have been defined to fulfill thecausal property, i.e.,
gp=1/spsp;spsp, which imposes them,

fwnsfd,wmsg̃dgsp

+
ªwnsfd + wmsg̃d − spwmsg̃d + wnsfd s12d

=i"gpDnmsf,gdidF¬i"Dg
nmsf,gd, s13d

to have a causal support, i.e.,
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fwnsfd,wmsg̃dgsp

+ = 0 if suppf # R1+d \ ssuppg + sV̄+ ø V̄−dd, s14d

wherevnb=p andvmb= p̃8. Whenever spin and statistics do not coincide the particle is a ghost, cf.
Ref. 27. The annihilation and creation part commutators readsi.e., in density notation, with
x,y[R1+dd

fw7
n sxd,w±

msydgsp

+ = i"D±g
nmsx − yd. s15d

The upper case, representing the positive frequency part, reflects thespectral conditionwhich,
applied by Wick’s theorem later in the text, ensures the propagators’ multiplication as distributions

to be well defined. Namely, asFDi
+[S8sV̄+d, i.e.,

suppFDi
+ # V̄+, ∀ i ø n, s16d

the so-called Fourier product28

p
iøn

Di
+sxdªF−1sFsD1

+sxdd * … * FsDn
+sxddd [ S8sR1+dd. s17d

Moreover, as the associative and commutative convolution lies inS8sV̄+d again,29 the resulting
product satisfies the spectral condition as well.

The relevant counter example isFeynman’s (time-ordered) propagator

DF
ªTD+. s18d

Applying the causality condition, this leads to the well-known representation,

Dp
Fgsxd = TDp

+gsxdªusx0dDp
+gsxd + spus− x0dDp̃

+gs− xd s19d

=usx0dDp
+gsxd − us− x0dDp

−gsxd, s20d

which shows that the spectral condition does not hold true.

2. The initial bialgebra

Starting the algebraic considerations for an arbitrarily chosen pQFT, let P denote the finite set
of particles andA8spd the class of derived particles associated withp[P. Then the common Fock
space is formed by a symmetrized tensor product,HP

F
ªsSuPu^p[Pds^q[A8spdHq

Fd. Compatible with
this definition, the composition of field operatorsFpªhfi ;wpi

sxid u i [Nj, that are fixed by a given
surjective map p:N] i °pi [P which models the whole scattering scenario, is commutative only,
cf. s13d, if the associated particles do not belong to the same class of derived particles, i.e.,
fwp1

sx1d ,wp2
sx2dg+=0 if p2¹A8sp1d.

The admissible compositionsF=CkFp,+ , + l / s¯ +f +¯ +f +¯d of field operatorsFp, where
multiple occurances are excluded, generate an algebrasF ,C , + , + ,hd with unity smaphª · idHP

Fd.
In accordance with the following rule of resolving brackets, “qiønfi with brackets” =f1+ s¯
+ sfn−1+fnd¯d, the composition is always assumed to be associative. In a similar spirit, as these
field operators act linearly on their domain, which is a dense subspace of the Fock spaceHP

F,
distributivity is implemented. However, repeating the statement above, the composition algebra of
free fields is not graded commutative.

To model local interaction, as the following example shows, the composition is not a good
product. In the limit of coinciding space–time points the vacuum expectation is not defined,

s21d
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The vanishing expectation, i.e., the first expression on the right-hand sidesrhsd is induced by the
so-called normal product,

wnsxd N wmsyd = w+
nsxd + w−

msyd + spwm + syd + w−
nsxd. s22d

As already applied ins15d, left-hand sideslhsd, the subscript sign +u− denotes the projection
pr± :f°f± onto the creationuannihilation part, cf.s5d. For more than two factors the normal
product is defined by

Nf^J
ª o

J+[P2
0sJd

sJsJ±dqf+
^J+ + qf−

^J−, s23d

wheresJ denotes the grading sign formulated on tuples^J;sJ1,… ,Jnd[NÞ
n of n[N distinct

numbers si.e., Ji ÞJj if i Þ j , ∀i,j ønd that representsindices ofd particles pJi, where J±

=sJ+,J−d[P2
s0dsJd denotes a 2-partition ofJ srespectively, including empty partsd, and where

f^J
ª^ j[Jf

j. The gradings :Sn→Z2, sJ°Kd=p°sspd=sJsKd is a representation of the per-

mutation groupsSn, + d on sZ2, ·d. In accordance with the definition of the common Fock spaceHP
F

it can be given in terms of the statistical coefficientssp, i.e.,

sspdªp
p[P

spsupupd = p
p[P

sgnsuxupd=sp=−1

spsupupd andspsxdª1, s24d

where upup: uJup°psuJupd denotes a subpermutation ofp which exclusively applies to derived
particlesA8spd with respect top, defined on the subtupleuJupªsJids∃iøndpJi

[A8spd.

Important for thesHopf/bi-d algebraic scenario going to be presented is the fact that the
normal product can be denoted with the help of a coproduct,

DN
ªspr+ ^ pr−d + D, s25d

which is based on the graded shuffling coproduct,

DsfqJd = o
J±[P2

0sJd

sJsJ±dfqJ+
^ fqJ−. s26d

Immediately one observes that

N = q + DN + q, s27d

and Lemma A.2 in the appendix verifies the implicit claim aboutD and DN being coproducts.
Therefore, as one easily verifies,sF ,C , + ,DsNdd forms asnondcocommutative coalgebrasrespec-
tivelyd where onlyD comes with a counit,

«sfd = Hc if f = c1,

0 otherwise.
s28d

Moreover,DsNd as well as«, can be shown to define homomorphisms with respect to the compo-
sition product. This leads to the main result of this section.

Theorem 2.1: sF ,C , + , + ,h ,DsNd ,«d forms a bialgebra (without counit, respectively).
Proof: All that is left to show is an immediate consequence of Lemma A.3. h

Remark 2.2:Because ofs21d, only the structure in parentheses is relevant for local pQFT.
Furthermore, one observes that the latterly introduced objects are equipped with the very

quantum theoretic property of GTS, which models indistinguishable particles governed by par-
ticular statistics.

Proposition 2.3: The normal productN, as well as the associated (and, respectively, the
shuffling) coproductDsNd, and the Feynman propagatorDF are all GTS.
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Proof: GTS ofDsNd, which holds true because of Lemma A.1, immediately implies GTS ofN.
Applying s19d, one gets

Dp
Fgsxd = spDp̃

Fgs− xd s29d

which, due to the propagator’s TI, just expresses GTS. h

B. Normalization and localization

The composition algebra of free fields does not provide an adequate algebraic structure for
modeling local interaction. As only the normal product is suitable for such a purpose, indicated by
s21d, the bialgebraic structure must be modified again.

1. An appropriate weakening of structure

In fact, one drops the “co” again andswitchesthe previously constructed coalgebra into an
algebra. AsDN is coassociative the normal productN is associative, and therefore, the normal
C-compositionsNªhq +DNsfd uf[Fj constitute a graded commutative algebra with unity, i.e.,
sN ,C , + ,N ,hd. Notice, graded cocommutativity has switched to graded commutativity. Because
of its shared GTS property, the right candidate for an additional coalgebra is the one with the
shuffling coproduct, i.e.,sN ,C , + ,D , e d. Together with an appropriate antipode the structure of
normally ordered free field operatorsN turns out to be a HA.

Theorem 2.4:sN ,N ,h ,D ,«d forms [both] a graded [co]commutative bialgebra which more-
over, with the antipodeSªs−1du·u,, i.e.,

SsfNJd = s− 1dnfNJ̃, ∀ J [ NÞ
n , ∀ n [ N s30d

fwhere J̃ªsJn,… ,J1dg, defines a HA.
Proof: The bialgebra part follows from Lemma A.3. Notice that gradedfcogcommutativity is

nothing else than GTS, thus realized forN sandDN, respectivelyd. It remains to prove theantipode
condition, i.e., N + sS^ idd +D=h +«=N + sid ^ Sd +D. For the nontrivial case, i.e.,n.0, where
h +«=0, one can write the rhssand similarly the lhsd as a sum over vanishing pairs,

whereK+ªJ+8 ^ s jd ^ J+9 andK−ªJ−8 ^ J−9 providedJ+=J+8 ^ J+9 andJ−=J−8 ^ s jd ^ J−9. The first brace
results from GTS ofN and the second from the composition laws of the gradings being a group
representation. h

Going over from the bialgebra of free field operators to the bialgebra of normally ordered field
operators, i.e.,F→N,

fqJ
° fNJ, q ° N andDN ° D s31d

sas well ash°hd, referred to asnormalizationhere, this defines a functor that switching from a
nonfcogcommutative to a gradedfcogcommutative bialgebra weakens the considered algebraic
structure.
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2. Another ring of scalars

In order to model local interaction one must describe different free particles localized at the
same space–time point. In the chosen mathematical context of distributions this is done by apply-
ing Dirac’s delta distributions. The implementation of the latter within thesHopfd algebraic for-
malism can be realized by changing to another ring of scalars.

With tuplesJ[Nn of n[N numbers representing particles one associates the following prod-
ucts of delta distributions:

d pJ ; p d^J
ªHp

i,n

dsxJi+1
− xJi

d if J [ NÞ
n ,

0, otherwise.
s32d

Generated by these distributions and its derivatives, one obtains an algebra of localizing scalars,

LªC % Ckh]bdKub [ N2,K [ NÞ
2 j, + , ·l/sdK · ]bdK,dK − dK̃d, s33d

i.e., having excluded multiple occurances ofd pJ, even with respect to permuations of its indices,
and added the unity. The localized quantum field operatorsfLJ

ªd pJfNJ are introduced as a
C-submodule,

Lª %
J[NÞ

n ,nù0

ChfLJuf j [ Fp,∀ j [ Jj, s34d

of L ^ N¬NL equipped with ansassociative and distributived product,L :fLJ ^ fLK°fLsJ^Kd,
which varies from the one that is naturally given onNL i.e., p ^ N + sid ^ t ^ idd¬N, wheret :J
^ K°K ^ J denotes the flip operation. The latter two spaces as well carry the all over announced
stucture.

Theorem 2.5: sNL ,L , + ,N ,h ,D ,« ,Sd and its substructuresL ,C , + ,L ,h ,D ,« ,Sd form
graded [co]commutative HAs over the ringL and, respectively, the fieldC.

Proof: Except for the explained modifications, this is again the content of Theorem 2.4.h

C. Interaction

Utilizing EG’s language of distributions, interaction of quantum fields naturally implements
the concept of classical background fields. The Hamiltonian modeling local interaction is formed
by the adiabatic limit of coupled localized field operators. The presentation concludes this pre-
liminary section. Throughout the paper, only polynomial interaction is considered, leading to the
well-known identification of graphs as applied to the EG approach in the two subsequent sections.

1. Monomial couplings and the adiabatic limit

In the considered physical setup the couplingSb is given by a monomial inL. Let M [NÞ
m

symbolize a tuple ofm[N particles. Then

SbsfLMd = o
m̄[M

o
uauøvb

ba,m̄s]ad pm̄dfNm̄ s35d

formalizes a coupling monomial,b labels the associated coupling coefficientsba,m̄[C wherea
serves as a suitable multi-index, andvbù0 denotes the order of singularity. Spelled out explicitly,
SbfLM ;SbwLMsxd formally depends onm space–time variablesx;sx1,… ,xmd[Rs1+dd3m, even
thoughsbecause of the localization which uses delta distributionsd only one of them is indepen-
dent.

The adiabatic limit replaces thosem variables by a single one, i.e.,

Axi
SbfLM

ªlim
t→1

kSbwLMsxd,tsx1,…,xi−1,xi+1,…,xmdlm−1 s36d
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=kSbwLMs…,xi,…d,1sx1,…,xi−1,xi+1,…,xmdlm−1, s37d

where, as well as in general,ktsxd ,tsxdlmªeRs1+dd3mtsxdtsxddx1¯dxm denotes the distributions’

dual bracket and 1sxd symbolizes an arbitrary test function inDpM

^
ª^ iømDpMi

with value “1” in

a neighborhood of the originx=0[Rs1+dd3m. Of course, one may introduce another variable
x•[R1+d. Then

Ax•
SbfLM = dsx•d * Ax1

SbfLM = kdsx• − x1dSbwLMsxd,1pMsxdlm, s38d

which yields the prototype of a so-called interaction Hamiltonian.
In the algebraic context of normalization and localization the composition of monomial cou-

plings and adiabatic limits is quite straightforward. For anyi øn, let M̄i [NÞ
mi denote anmi [N

tuple of particles andbi the associated coupling of orderv̄bi
. Furthermore, form tuples of the latter

objects and lety[Rs1+dd3n. Then

NiønAyi
Sbi

fLM̄i = Ay
^M̄SpbfN+LM̄ , s39d

whereAy
^M̄ =Ay1

M̄1
¯Ayn

M̄n specifies the application of the adiabatic limitsin the obvious wayd and

SpbfN+LM̄ = o
m̂[M̄

o
uāuøv̄b

p
iøn

bi
āi,m̂is]pādP2m̂dfN+2m̂. s40d

2. Physical supplements

To make a coupling monomial a physical magnitude it might be supplemented by another
coupling constant, and to get a reasonable physical theory some of those prototype Hamiltonians
with vanishing order of singularity might be additively combined.

Moreover, the concrete physical model, fixed by the interaction Hamiltonian, contains classi-
cal background fields that are given by scalarse.g., real or Grassmannd valued test functions
tp[Dp, supposed to smear the operator valued distributions. Those are nonquantized fields that,
in order to be equipped with the required indices, are as well labeled by particlesp[C;P\Q,
referred to as virtual ones. The particles considered so far are renamed Q#P. Notice that virtual
particlespÞ sxd[C, if not just representing a nonindexed real valued test functiontsxd, may also
have to follow nontrivial statistics.

Let the disjoint unionI=Cø̇Q,PsNd denote a system of subsets of basic indices, i.e.,
hcjj[C and Q j [Q where j øm[N, which is supposed to specify virtual particlespj =pcj

[C,
that label associated couplingsapj

, bpj
, as well as tuples of particlesQj =spidi[Q j

,Q and their
coordinates,xcj

andxQj
=sxidi[Q j

. Then the smeared abstract interaction Hamiltonian reads

HIst%Cd = o
jøm

apjkAxcj
sSbpj

wLQjsxQj
dd,tcj

sxcj
dl1

. s41d

Example 2.6:Quantum electrodynamicssQEDd in an external electromagnetic field is, using

the conventional notionsse.g.,c̄, c for the spinorial positron and electron,Acl, A for the classical
and quantized electromagnetic field, all equipped with localized space–time indices, and colons for

the normal productd, described by the interaction Hamiltonian,se/ i"d :c̄sxdgmcsxd: sAmsxd
+Am

clsxdd. Therefore, one must identifya=e/ i", c=g, and w[ hc̄ ,c ,Aj. The two sorts of test
functions are real and Grassmann valued, i.e.,t[ htsxd ,A

clj.

III. PERTURBATIVE EXPANSION

Underlying the expansion of theS-matrix, there is a HA whose antipode condition represents
the property of pseudounitarity, cf. Fig. 1. This result will be achieved at the end of the section
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having constructed an algebra of operator-valued distributions modeling Wick-expansion without
explicit implementation of causality enriched by a graded shuffling coalgebra and an antipode
given by Schmitt’s formula.

A. The concept of graphs

In addition to vertex tuples and rather unusual for the EG approach, graphs and their GTS
versions are chosen as indices for then-point distributions, constructed to provide a direct corre-
spondence with the configuration space variables that determine the support of the latter.

1. Vertices and graphs

The elements of the index setI in Sec. II C 2, and correspondingly the prototype interaction
Hamiltonians, are interpreted as vertices, cf. Fig. 2.

Starting from an initial set U of vertices, the perturbative expansion leads to objects that can
be interpreted as graphs GU=GsUd formed by these vertices. Renormalization then allows, by
forgetting about the inner graph structure, to reinterpret graphs as vertices, i.e.,V :GU→W, which
produces new vertices in W\U. With all these vertices one as well forms graphs in GW=GsWd that
can again beshrunkento vertices via the mapV :GW→W. This rough description of the vertex-
generating induction, illustrated in Fig. 3, must be supplemented by the remark that physical
conditions such as symmetries, discussed in Sec. IV B 2, restrict the number of physically relevant
vertices, to V#W say.

Formally, the pairsv;sP,bd[Qn3CuPnsvbdu3puPu of particle tuplesP=Psvd and coupling co-
efficientsb=bsvd, wherePnsvbd=ha[Nnuoiønai ;uauøvbj and n;uPu, are supposed to define
verticesv[ hU,V,Wj. Graphs are defined as pairsG;sv̄ , ld of a vertex tuplev̄=VsGd and a
uv̄u3 uv̄u matrix l =lsGd of ssets of internald lines l rs# hsi , jd[Nup̄u3Nuq̄u ugp̄iq̄j

Þ0,p̄; v̄r ,q̄; v̄sj that
form a collection of index pairs representing two matching particles where so-called tadpoles are
excluded, i.e.,l rr =x.

Keeping the notations, the iterated tuple IsGd;sIrdrøuv̄u of particles that support the internal
lines of a graphG, referred to as representing the internal half-lines, can be reobtained byIr

=sPisv̄rddi[lr
where lr =hpr1 l ul[ l rs,sø uv̄uj. Hence, the tuple EsGd;sErdrøuv̄u representing the

external half-lines is given byEr =sPisv̄rddi[l̄r
, where l̄r =NuPsv̄rdu

\ l r.

FIG. 2. A vertex.

FIG. 3. Generation of graphs and ofsnewd vertices.

062304-10 Alexander Lange J. Math. Phys. 46, 062304 ~2005!

                                                                                                                                    



In order to introduce graph related cardinalities Euler’s formula is stated, i.e.,

uGu = #G − ul u + uv̄u,
where 5

uGu
#G denotes the

ul u number of

uv̄u
5

connected components,

independent loops,

sinternald lines,

vertices.

s42d

The number of lines can be obtained byul u=or,søuv̄uul rsu.
The map p which identifies particles pi via basic indicesi [ I ,N and thus provides a corre-

spondence with space–time variablesxi [R1+d can consistently be extended to identify vertex
tuples and associated classes of graphs as well. One must only consider a bigger system

JªCø̇Q#PsNd of subsets of indices thanI in Sec. II C 2, i.e.,cJªø̇ j[Jhcjj and QJªø̇ j[JQj

satisfyingcJùcK=x andQJùQK=x, for J, K[PsNd.
Lemma 3.1:There are a systemJ and a surjective mapp:N→P,

n ° Hpn
C [ C

pn
Q [ Q

if n [ HNC,

NQ,
whereNC ù NQ = x, such that

s∀v̄[ønù0W
nds∃J[NÞ

n ds∀ j [Jdsbsv̄ jd=bpcscjd
∧Psv̄ jd=spQsiddi[Qj

d.
Proof: Decompose the operation of forming graphs, i.e.,G=ønø0Gn, so that Gn:PsWd

→PsGWd, Wk°GnsWkd yields graphsG with n= uVsGdu vertices, VsGd[Wk
3n. Then the existence

of J and p is guaranteed by the inductive construction of W=øk.1Wk, and thus GW
=ønù1GnsWnd, from finite sets Wk+1=hVsGd[W uG[GksWkdj starting with W1=U. h

Consequently, pC realizes the announced correspondence. As vertices of tuplesv̄ or of graphs
G;sv̄ , ld are now associated with virtual particles,v̄ j =G j ,pi

C, the former are associated with
space–time variablesxi as well, i.e.,

x•:v̄ j ° xv j
ªxi and G j ° xG j

ªxi, respectively. s43d

This will be essential to incorporate causality, cf. Sec. IV.

2. Algebras of graphs

For the algebraic considerations graphs are always assumed to form a complex vector space
which respects theN-grading corresponding to the number of vertices, i.e.,sGV ,C , +d where

GV = % nù0CGnsVd.
Let Gi ;sv̄i , l id, for i ø2, denote two graphs. Then there areuv̄1u3 uv̄2u matrices

l12[Muv̄1u3uv̄2usPsN32dd yielding a new graph by combining the formerscf. Example B.1d, i.e.,

G1tl12G2
ªSv̄1

^ v̄2,S l1 l12

l̃ 12 l2
DD , s44d

so that the required symmetry,l rs= l̃ srªhspr2l ,pr1ld ul[ lsrj, is realized. The admissible ones, i.e.,
l12[1sG1,G2d, are called concatenation matrices. In contrast to the matrices of lines,l12

=orøuv̄1u,søuv̄2uul rs
12u.

The previous composition defines the Wick product of graphs, i.e.,to=ol12[1s·,·d +tl12. Re-
spectively, by linear extension one considers GTS versions of graphs,tG
ªs1/n!dop[Sn

sspdpsGd[%nù0Sn
sCGnsVd¬GV

s , where the permutationpsGdªspsv̄d ,psldd acts
on the vertex tuple as well as on the matrix of lines, i.e.,psv̄dªsv̄psrddrøn andpsldªslpsrdpssddr,søn,
and the grading is reduced to the graph’s vertex tuple, i.e.,sGspsGddªsVsGdsV+psGdd, discussed
right below in Sec. III B 1.

Lemma 3.2: sGV
fsg ,C , + ,to ,xd forms an algebra [in both cases] where the empty graph

serves as unity.
Proof: Compare Sec. 3.2.2 in Ref. 24, pp. 75ff. h
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Associativity can be illustrated introducing the inverse concept of concatenation, i.e., separa-
tion into subgraphs that, with respect to the reference graph, are completely determined by their
vertices. LetsG1,… ,Gkd[Pk

s0dsGd denote ak-partition swith possibly empty subgraphs, respec-
tivelyd of the graphG[GV

fsg iff there are a permutationp[Sk and appropriate concatenation
matrices,l1,… , lk−1, such thatpsGd=G1tl1 s¯tlk−1Gkd¯d fappropriately extended, respectivelyg.

Let G[GV
ssd. Then GG

fsg
ªPsGd=hG8 u sG8 ,…d[P2

0sGdj,GV
fsg denotes the power set which

contains all subgraphs ofG. Graphs in GV
fsg can be composed asG-restricted graphs, i.e., viatG

=ssG
0 +todto, where

sG
0:GV

fsg → h− 1,0,1j, G8 ° HsGsG8d if G8 [ GG
fsg,

0 otherwise,
s45d

andsGsG8d=sG8sGd;sspd, regardingp :G8°G as a permutation inSuVsG8du.
Proposition 3.3:sGV

fsg ,C , + ,tG ,xd forms an algebra, andsGG
fsg ,…d identifies its largest zero

divisor free subalgebrasGG8
s ,…d, G8[GV

fsg.
Proof:Associativity oftS implies associativity oftG. The other statements required are rather

obvious, cf. Ref. 24, Sec. 3.2.2. h

B. The expansion of the S-matrix

In the EG approach theS-matrix is expanded in terms of operator-valued GTSn-point distri-
butions. In contrast to the conventional approach, Wick and time ordering are not mixed. This
allows to construct analytically well-defined algebrassrelevant for the distribution’s scalar partsd
ensured alone by the presumed physical properties, i.e., TI and the spectral condition.

1. Infrared regularization, the ansatz, and GTS

The S-matrix is supposed to depend on coupling constantsap and normalized test functions
tp[Dp fi.e., tps0d=1g that, representing external classical fieldsp[C, serve as an infrared regu-
larization. To obtain concrete physical quantities, the following adiabatic limit must be taken:

SssatdC
%d = lim

e→0
SssatedC

%d, ∀ t :t + e ; te ——→
L`sKd

e→01, ∀ Kb R1+d. s46d

This task, however, will not be regarded in this paper. Notice, as the vertices in V correspond to
the setC in Sec. II C 2, which specifies the virtual particles C=hpi u i [Cj, the former are used as
indices as well.

The expansion of theS-matrix is given with respect to a renormalization schemeR sonly
discussed in Sec. IV Bd and thessomehow relatedd set V of vertices. The ansatz, chosen in
accordance with the original ones of Bogoliubov and ShirkovsBSd,30 EG, and Scharf,31 reflects
the Dyson seriesscf. Example B.2d, i.e.,

SV
Rssatd%Vd = o

nù0

1

n!
o

v̄[Vn

aPv̄kTv̄
Rsyd,tuv̄sydln

, s47d

whereTv̄[CsSuv̄u
s Dv̄

^ ,HP
Fd are operator-valuedn-point distributions, i.e., strongly continuous map-

pings, indexed by vertices. The interaction Hamiltonian prototypes can be reidentified asHp

= i"apTspd.
The vertex distributions are assumed to be GTS, i.e.,Tv̄=sspdTpsv̄d +p, ∀p[Sn. Here, s

symbolizes the grading on vertex tuples, given again bys24d, but upup: uv̄up°psuv̄upd denotes a
subpermutation ofp defined onuv̄up=sv̄kdk8odd, wherek8=oq[A8spd1q=vi∧v=v̄k

scf. Ref. 24, p. 45d.
This is again a representation ofSn on Z2; and one also writessUsVdªssU°Vd, for vertex tuples
U, V[NÞ

n .
Lemma 3.4:The two definitions ofs are consistent, i.e., sUsVd=sfUgsfVgd where, only here,
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f·g symbolizes the formal transfer from a vertex tuple into a particle tuple by simply omitting
brackets and couplings.

Proof: Compare Lemma 2.1.7 in Ref. 24, p. 45. h

Of course, the test functions associated with vertex tuples are GTS as well,tuv̄

;tuc̄
ªSn

st^ c̄[Sn
sDc̄

^ ;Sn
sDv̄

^, wherec̄[CÞ
n denotes the corresponding tuple of virtual particles.

Again, the definitions are consistent.
Lemma 3.5:sv̄spsv̄dd=sc̄spsc̄dd, ∀p[Sn.
Proof: Applying the permutationp to both sides of the dual brackets ins47d, this results in

sv̄spsv̄ddsc̄spsc̄dd=1. Therefore, the statement is due to the fact thatsspd[ h±1j. h

2. Algebras of n-point distributions

Founded on Wick’s theorem, referring to the expansion rule of normal products with respect
to the composition productsalso regarded as twist or Cliffordizationd, one constructs an algebra of
graph distributions over a carefully chosen ring of TI scalar distributions. Those TI distributions
tJ[S8sRs1+dd3nd, J[NÞ

n , i.e.,

tJ ; tJstd = tJsts·−z3ndd, ∀ t [ SsRs1+dd3nd, ∀ z[ R1+d, s48d

are supposed to form anN-graded algebra with respect to the direct product,

TªC % CkhtKuK [ NÞ
n ,n [ Nj, + , ·l / sts…,k,…d · ts…,k,…dd, s49d

covering thesalgebra ofd localizing scalarsL as well as the positive frequency part propagators
with derivativesD+

J ;DpJ1

+g sxJ1
−xJ2

d, i.e.,

PªC % Ckh]bD+
Kub [ N2,K [ NÞ

2 ,gK Þ 0j, + , ·l / sD+
K̃ · ]bD+

Kd, s50d

that, with respect to the Fourier product and in accordance with the spectral conditionscf. end of
Sec. II A 1d, form an algebra as well. Notice,L and P are ideals inT. Combining the two
previously defined algebras, one gets another commutative algebra,

s51d

which, on the level of distributions, encodes the Fourier and the direct product, and additionally,
the well-defined product of distributions with continuous functions. Including localization, the
related commutative algebrasTPL ,C , + , · ,1d is given by

s52d

Again, the substructures are ideals, i.e.,TPL,TP,T. Similar to Sec. II B 2, those algebras will
mainly be applied as rings.

Turning to the operator side, letTVª%nù0ø hTG uG[GV , uVsGdu=nj be theN-graded space of
graph-indexedn-point distributions

TG = hSbsVGdtIsGds•dA•
^VsGdfN+LEsGd [ CsSn

sDVsGd
^ ,HP

FdutIsGd [ Tj, s53d

where, in terms of the couplings at the vertices of VsGd, the coupling at the vertexVG reads

bsVGd = p
r,søn

p
si,jd[lrssGd

o
m

vmb[Pri

o
n

vnb[Psj

p
køn

bVksGd
ak,Pk . s54d

ThenTV is obviously a submodule ofTPL ^ N, and it is algebraically closed with respect to the
composition product.
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Proposition 3.6:sTV ,TPL , + , + ,hd forms an algebra.
Proof: This is the content of Proposition 3.3.2 in Ref. 24, p. 85, which in the presented

approach serves as the alternative to EG’s Theorem 0 in Ref. 2, p. 229. In order to illustrate the
crucial points, letT i [TGi with scalarsti ; tIsGid[T, for Gi [GV and i ø2, and use the abbrevia-

tion Ns•dªA
xVs•d

^

^Vs•d
fN+LEs•d. Then

T1 + T2 = o
l[1sG1,G2d

si"dul uSbsVsG1tlG
2ddt

lNsG1tlG
2d [ TV , s55d

having a well-defined associated scalar distribution that is again TI, i.e.,

tlsy1
^ y2d = t1sy1dt2sy2dqsG1,G2d

l sy1,y2d [ TP. s56d

The most rhs expression abbreviates a certain product of positive frequency propagatorssalso
referred to as Wick contractions, cf. belowd,

qsG1,G2d
l sy1,y2dª p

røuP1u,søuP2u
p

si,jd[lrs

D+g
Pri

1 Psj
2

syr
1 − ys

2d [ P, s57d

which is well defined due to the spectral conditions16d. Besides TI, for the analytical part, the
proof of the algebraic part rests upon the following. h

Lemma 3.7:sWick’s theorem.d Keeping the notations, then

NsG1d + NsG2d = o
l[1sG1,G2d

si"dul uqsG1,G2d
l NsG1tlG

2d. s58d

Proof: On the level of free field operators, and providedf· , ·gs
^ ~ idHP

F, the expansion reads

fNI
^ fNJ = o

L#NuI u3NuJu
S p

l[L

ff−
Il1,f+

Jl2gs
^DfNsI ^LJd, s59d

where I ^L J=sI idi[NuI u\hl1ul[Lj ^ sJidi[NuJu\hl2ul[Lj, for tuples I, J. This is proven by successive
insertion of Wick contractions,

f−
i

^ f +
j = ff−

i ,f +
j gs

^ + ssi,jdss j ,iddf +
j

^ f−
i ,

moving thef +
j ’s to the left and thef−

i ’s to the right. Due tos15d, the brackets ins59d can be
replaced by propagators. In accordance with the definition ofTPL, the localizing delta distribu-
tion’s are supposed to dominatesi.e., erased the propagators, which reducess58d and s59d. h

Remark 3.8:Associativity of the algebra, i.e.,NsG1d + sNsG2d +NsG3dd=sNsG1d +NsG2dd +NsG3d,
is equivalent to the 2-cocycle condition forq, i.e., qsG1,G2tGG3dqsG2,G3d=qsG1,G2dqsG1tGG2,G3d,
∀Gi [GG, i ø3, which is obviously fulfilled. In the context of Refs. 20 and 21,qs·,·d is called a
Laplace pairand the relations58d, regarded as a so-calledtwist scf. Ref. 22d, is understood as
Cliffordization.

3. Graph and vertex distributions

In the present context the physically relevant solution of the perturbation expansion is as-
sumed to be given—formally, without having introduced the essential concepts of their derivation
yet, cf. Sec. IV.

Graph distributionsRGV

T
ª% nù0ChTG

R uG[GV , uVsGdu=nj, supposed to solve the perturbative
expansion by respecting causality, are introduced via a vector space homomorphism,
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T•
R:GV → TG, G ° TG

R
ªsi"d#G−uGuSbsVGdtIsGd

R NsGd, s60d

fixing the associated scalar valuedn-point distributionstIsGd
R [Sn

sDVsGd
^ ,T, that are supposed to be

given with respect to a renormalization schemeR, and via a GTS requirement,

TpsGd
R = sspdTG

R, ∀ p [ SuVsGdu s61d

swhich can only be motivated in Sec. IV cf. Remark 4.17d.
Remark 3.9:According to GTS, one may alternatively have introducedT•

R as a vector space
isomorphism, GV

s →TG.
Lemma 3.10:Let G1, G2 be independent, i.e.,∃”c[C s.t. uG1=cuG2. Then c1TG1+c2TG2=0,

∀c1, c2[C, implies that T
G1
R =T

G2
R =0.

Proof: This is an immediate consequence of the previous remark. h

Defining the homomorphismT•
R only for graphs GG,GV, this leads to the vector spaceRGG

T

of G-restricted graph distributions with a finite grading. On this space, a product is given by

+G
T:T

G1
R

^ T
G2
R

° T
G1tGG2
R . s62d

Lemma 3.11:Let G, G8[GV and* [ hV, G8j. ThensRG*

T ,C , + ,+G
T ,hd forms an algebra (which

is free of zero divisors only if* #G).
Proof: Obviously,T•

R :G* →RG*

T defines an algebra homomorphism.fCompares45d, if G1£G

or G2£G thenTG1+G
TTG2;TG1tGG2=T0;0.g h

Consider the following restrictions of the composition product obtained by redefining the
right-hand side ofs55d:

T1 + T2
¬ o

l[1sG1,G2d

T1+lT
2
¬ o

Y[GV,sG1,G2d[P2
0sYd

T1+YT2, s63d

whereT1+lT
2=T1+YT2 iff ∃p[SuYu s.t. l =sI xd ·1sp +Yd ·sx Idt. For any fixed graphG[GV, this

induces aG-restricted product on the TI distributionsTV, i.e., +G :TG1 ^ TG2→TG1tGG2,

T1+GT2
ªHsYsGdT1+YT2 if ∃ !Y [ PsGds.t.sG1,G2d [ P2

0sYd,

0, otherwise.
s64d

ThenRGG
ª% nù0ChqG% iørTGi

R uGi [GG ,oiøruVsGidu=nj denotes the corresponding space of dis-

tributions defining aC-submodule ofTV and thus aC-algebra,sRGG
,C , + ,+G ,hd.

Remark 3.12:The consistency of the choice of the scalarsi"d#G−uGu in s60d can be checked
with the help of Euler’s formulas42d, cf. Corollary 3.3.8 in Ref. 24, p. 90.

Now, the vertex distributions used in Ansatzs47d reappear as a sum over graph distributions,

Tv̄
R = o

G[GV,VsGd=v̄
TG

R, ∀ v̄ [ V, s65d

so that the space of vertex distributions,RV
T
ª% nù0ChTv̄

R u v̄[V, uv̄u=nj, can be introduced by

restricting the homomorphismT•
R to be defined on the vector space of vertex tuples, i.e.,

% nù0Chv̄ u uv̄u=nj;V →TV, v̄°Tv̄
R.

Lemma 3.13:Let +T :Tv̄1
R

^ Tv̄2
R →Tv̄1^ v̄2

R . ThensRV
T ,C , + ,+T ,hd forms an algebra.

Proof: Obviously,T•
R :V →TV defines an algebra homomorphism. h

Furthermore,RVª% nù0ChqiørTv̄i
R u v̄i [V, oiøruv̄iu=nj denotes the space of vertex distribu-

tions which defines aC-submodule ofTV and thus aC-algebra,sRV ,C , + ,+ ,hd.
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4. HAs underlying pseudounitarity

The perturbative expansion can now be modeled by a HA. In accordance with the power
series ansatzs47d, let

o
nù0

1

n! o
v̄[Vn

apv̄kT̃v̄
Rsyd,tuv̄sydln

ªSV
Rssatd%Vd−1, s66d

where the inversen-point distributionsT̃v̄[CsSuv̄u
s Dv̄

^ ,HP
Fd, supposed to be GTS as well, are

denoted by a tilde. Formally, the inverse of theS-matrix is characterized by therelation of
pseudounitarity, i.e.,

SV
Rsjd−1 + SV

Rsjd = idHP
F = SV

Rsjd + SV
Rsjd−1, ∀ j [ DV

%sR1+dd. s67d

Remark 3.14:The probabilistic interpretation of quantum theory is ensured by requiring
unitarity. But, for gauge theories and their unphysical states, unitarity can only be pseudosi.e., true
on a subspace of the Fock spaceHP

Fd, i.e.,Ssjd−1=SsjdK, whereK is a pseudoadjointsi.e., adjoint
for a subdomaind. Questions of that kind were investigated extensively by Scharf and collaborators
in the 1990s, cf. Refs. 32–34.

In terms ofn-point distributions the relation of pseudounitarity reads as follows.
Lemma 3.15:Let TY, TZ[RV, where Y, Z[V, and letxÞX[V. Then

o
sY,Zd[P2

0sXd

sXsY ^ ZdT̃Y + TZ = 0= o
sY,Zd[P2

0sXd

sXsY ^ ZdTY + T̃Z. s68d

Moreover, T̃Y, T̃Z[RV and therefore the inverse distributions are GTS.
Proof: To obtains68d, perform the power expansionscf. Lemma 3.3.15 in Ref. 24, p. 94d. The

other claim is a side result. h

This statement can be rewritten assuming the tilde to be linear, i.e., assigning the tilde to graph
distributions in the following straightforward manner:

o
G[GV,VsGd=v̄

T̃G
R
ªT̃v̄

R. s69d

Corollary 3.16:Let xÞG8[GG and G[GV. Then

o
sG1,G2d[P2

0sYd

sGsG1tGG2dT̃
G1
R

+GT
G2
R = 0 = o

sG1,G2d[P2
0sYd

sGsG1tGG2dT
G1
R

+GT̃
G2
R . s70d

Proof: Insert the expansionss65d and s69d into s68d and apply Lemma 3.10scf. Corollary
3.3.17 in Ref. 24, p. 97d.

The previous two equations, if interpreted as antipode conditions, motivate to considerRV

andRGG
, respectively, as HAs.

Theorem 3.17:sR* ,C , + ,+sGd ,h ,D ,« ,Ss+Gdd, where*=V (respectively,=GG, for anyG[GV),

forms a HA. The tilde serves as antipode, i.e.,Ss+GdTªT̃, which, e.g., inRGG
, is explicitely given

by

S+G
T

G8
R = o

r=1

uVsG8du

s− 1dr o
sG1,…,Grd[PrsG8d

sGsG1tG¯tGGrdT
G1
R

+G¯+GT
Gr
R . s71d

Proof: It only remains to show the representation of the antipode. This will be done by
induction over the number of vertices. Assumes71d is fulfilled for uVsG8du=n, which is true for
n=1. Then, starting with the antipode condition, one reproducess71d,
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S+G
TY

R = − TY
R − o

sG8,G9d[P2sYd

sGsG8tGG9dS+G
T

G8
R

+GT
G9
R

= − TY
R − o

r=1

n

s− 1dr o
sG8,G9d[P2sYd

o
sG1,…,Grd[PrsG8d

3sGsG8tGG9dsGsG1tG¯tGGrdT
G1
R

+G¯+GT
Gr
R

+GT
G9
R

= − o
r=0

n

s− 1dr o
sG8,…,Gr,G9d[Pr+1sYd

sGsG1tG¯tGGrtGG9d¯ = o
r=1

n+1

s− 1dr o
sG1,…,Gr,G9d[PrsYd

¯,

for the graphY with uVsYdu=n+1 and hence for any such graph. h

Remark 3.18:Rota and Stein20,21 have obtained this kind of antipode for theirplethystic HAs
and refer to the general version ofs71d asSchmitt formulasindicated by “o” in Fig. 1d.

IV. RENORMALIZED CAUSAL pQFT

This section provides an algebraic formalism for the main qualities determining theS-matrix
in the considered framework of pQFT, i.e., causality and renormalization. As the EG approach is
a recursive method it is free of subdivergences. A change of the renormalization scheme, however,
indicates all the structure contained in Kreimer’s HA. In contrast to most of the existing work on
EG and following the preceding section, the presentation here is given in terms of graph instead of
vertex distributions.

A. Causal regularization

Causality defines the graph distributions only outside the so-called diagonals. The required
regularization, performed as a localization on the corresponding causally determined space–time
region in configuration space, allows a characterization in terms of HAs. In addition to two EG
versions, that vary with respect to the concrete but recursive implementation of causality, Feyn-
man’s approach to pQFT is recalled, which due to the mixing of Wick with time ordering yields
an explicit representation of graph distributions. However, the unavoidable coarse localization
reasons the occurrence of subdivergences.

1. Causality

Preparing the two EG versions, two relations of causality are formulated for sets of space–
time points,X, Y#R1+d, i.e., causal ordering&, given by

X ù sY + V̄+d = x ⇔ :X & Y ⇔ Y * X, s72d

andweak causal ordering&∃s$& d, given by

∃sx,yd [ X 3 Y s.t. hxj & hyj ⇔ :X&∃Y ⇔ Y*∃X. s73d

Both these relations are not reflexive, i.e.,∃X&” s∃dX. Coinciding space–time points cannot be
compared with respect to causality. This fact reasons the necessity of renormalization and makes
it look acceptable from the physics’ point of view.

Accordingly, one distinguishes two sorts of configuration space regions. For the one sort, the
causal cones, the space–time points are causally related, whereas for the other, thediagonals, that
model coinciding space–time points, they are not. LetP[PrsGd where G[GV and r øn
;uVsGdu. Then
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coneP
s∃d
ªhy [ Rs1+dd3nuhyP1

^ j*s∃d
¯*s∃dhyPr

^ jj s74d

definesrespectively, twod TI open cones on the configuration spaceRs1+dd3n
ª3iønR1+d. Further-

more, the sets ofr coinciding points,

diagPªhy [ Rs1+dd3nuyi = yj, ∀ i, j [ Ps, ∀ sø rj, s75d

are called thessubddiagonals with respect toP fif PÞ sGd, respectivelyg. Subtracting

diagr
n
ª ø

s,r
ø

P[PssId
diagP s76d

from the configuration space, one obtains thecausally determined regionwhich contains at leastr
noncoinciding space–time points, i.e.,

RrÞ
s1+dd3n

ªRs1+dd3n \ diagr
n. s77d

One uses the following abbreviations,R3
s1+dd3n

ªR2Þ
s1+dd3n andRÞ

s1+dd3n
ªRnÞ

s1+dd3n.
Lemma 4.1:Let G[GV and røn;uVsGdu. Then

ø
P[PrsGd

coneP = RrÞ
s1+dd3n. s78d

Let G, G1, G9[GV wheresG1,G9d[P2sGd and uVsG1du=1. Then

conesG1,G9d
∃

ø conesG9,G1d
∃ = R3

s1+dd3n, s79d

where the two cones are represented by

coneHsG1,G9d

sG9,G1d

∃
= ø

sGQ,GPd[P2sGd,G1#HGQ

GP

conesGQ,GPd. s80d

Proof: Thesesfourd relations follow immediately from the definitions above. h

Utilizing only the causal relation, theS-matrix is called causal iff,

suppj1 * suppj2 ⇒ SV
Rsj1 + j2d = SV

Rsj1d + SV
Rsj2d, s81d

∀ji [DV
%sR1+dd, i ø2. There is an equivalent characterization in terms of graph distributions.

Proposition 4.2:The S-matrix is causal iffsuppj1*suppj2 implies

T
G8
R sj1 u j2d = sG8sG

1tGG2dT
G1
R sj1d+GT

G2
R sj2d, s82d

∀sG1,G2d[P2sG8d, ∀G8#G[GV, and ∀ji [D
VsGid
^ , i ø2.

Proof: This is due to power expansionscf. Lemma 4.1.4 in Ref. 24, p. 103d. h

In the EG approach, i.e., in the sequel, theS-matrix is assumed to be causal.

2. Regularization of two EG versions

EG’s method is an implicit induction over subgraphs where the implementation of causality
leads to localizedn-point distributionssbeing GTS and having TI scalar partsd of the form
T G8

rÞ
ªuT

G8
R uR

rÞ
s1+dd3n[RGG

T sRrÞ
s1+dd3nd, for r øn;uVsG8du, G8[PsGd, andG[GV.

EG à la Fredenhagen (EGF):For each graphG and eachr øn one chooses a partition of
unity sxPdP[PrsGd of classC` subordinate to the finite open coveringsconePdP[PrsGd of the metric
spaceRrÞ

s1+dd3n, i.e.,

o
P[PrsGd

xPsxd = 1, ∀ x [ RrÞ
s1+dd3n, s83d
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where 0ø xP [ C`sRrÞ
s1+dd3nd s84d

and suppxP , coneP. s85d

It is well known that partitions of this kind existse.g., cf. Ref. 35, p. 214d.
Proposition 4.3:The graph distributions are (uniquely) determined by

TG8
x
ª o

sG1,…,Grd[PrsG8d

xsG1,…,GrdsGsG1tG…tGGrdT
G1
R

+G…+GT
Gr
R s86d

(independently ofx), i.e., TG8
rÞ= uTG8

x uR
rÞ
s1+dd3n[RGG

T sRrÞ
s1+dd3nd.

Proof: By applying s78d one can straightforwardly generalize Ref. 7 where only the case of
r =2 is consideredscf. Proposition 4.2.6 in Ref. 24, p. 110d. h

EG à la Scharf (EGS):The genuine approach is based on two expressions,

the Hretarded

advanced
distribution HRsG1,G9dªTG8 + RsG1,G9d

8 ,

AsG1,G9dªTG8 + AsG1,G9d
8 ,

s87d

where, applying Scharf’s notation,

RsG1,G9d
8 ª o

sG1,G2d[P2sG8d,G1#G1

sGsG1 t G2dT
G1
R

+GT̃
G2
R , s88d

AsG1,G9d
8 ª o

sG1,G2d[P2sG8d,G1#G2

sGsG1 t G2dT̃
G1
R

+GT
G2
R . s89d

These expressions vanish when restricted to appropriate cones.
Lemma 4.4:Let G, G1, G9[GV wheresG1,G9d[P2sGd and uVsG1du=1. Then

uAsG1,G9ducone
sG9,G1d
∃ = 0 = uRsG1,G9ducone

sG1,G9d
∃ . s90d

Proof: One must apply the propertys80d of cones of weak causality, cf. Lemma 4.2.12 in Ref.
24, pp. 113ff. h

Again, but formally varying from the named versionscf. Remark 4.7 belowd, one considers a
partition of unity. For each triple of graphsG, G1, G9[GV where sG1,G9d,P2sGd and uVsG1du
=1 one chooses a partition of unitysxs

∃d, sø2 of classC` subordinate to the finite open covering
cone∃ªsconesG1,G9d

∃ ,conesG9,G1d
∃ d of the metric spaceR3

s1+dd3n, i.e.,

x1
∃sxd + x2

∃sxd = 1, ∀ x [ R3
s1+dd3n, s91d

where 0ø xs
∃ [ C`sR3

s1+dd3nd s92d

and suppxs
∃ , cones

∃, sø 2. s93d

Example 4.5:One may use the partitions of unityx introduced for the EGF approach to define
such ax∃, i.e., xs

∃
ªoP[P2sG8d,G1#Ps

xP, sø2.
Proposition 4.6:The graph distributions are (uniquely) determined by

TG8
∃
ª − x1

∃R8sG1,G9d − x2
∃A8sG1,G9d s94d

(independently ofx∃), i.e., TG8
3 = uTG8

∃ uR
3
s1+dd3n[RGG

T sR3
s1+dd3nd.

Proof: This is a consequence ofs80d and Lemma 4.4scf. Prop. 4.2.15 in Ref. 24, p. 116d.h
Remark 4.7:In the original EGS version then-point distribution is obtained actually via a
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so-calledsplitting of the causal distribution DªR8−A8=R−A. Here, the mappingD°x2
∃D de-

fines a regularized splitting, i.e.,

TG8
3 = ux2

∃DsG1,G9duR
3
s1+dd3n − uRsG1,G9d

8 uR
3
s1+dd3n. s95d

3. Regularizing HAs

As causal regularization is understood to be a localization of distributions on subregions of
noncoinciding space–time points in configuration space it can be modeled algebraically via

A0-modulesĀ=A01̄% % nù0Ā
n that are extensions ofN-gradedsconfiguration space dependingd

modulesA= % nù0A
n, whereĀn= % rønA

nsRrÞ
s1+dd3nd and 1̄denotes the formally defined unity. In

concrete cases they will be used as algebras. The instances of those modulessrespectively, alge-

brasd are thesalgebra ofd n-point distributionsRGG
as well as the tensor product structureC`

^ RGG
, with C` functions multiplied pointwise.

The regularization for the EGFsrespectively, EGSd version is given as a subalgebra of

C` ^ RGG
which is isomorphic toR̄GG

as an algebra, i.e.,sR̂GG

s∃d ,C , + , ∧
+ G

s∃d,1̄d, where

R̄GG
>
i

R̂GG

s∃d
�

qs∃d

C`
^ RGG

s96d

and, for at leastr [N noncoinciding space–time points, the embedding algebra homomorphism

qs∃d:q̂G
s∃disuTP

^uRrÞ
s1+dd3nd¬q̂G

s∃dT̂P
^ ° qP

s∃d
^ qGuTP

^uRrÞ
s1+dd3n s97d

is realized via functionsqP
s∃d[C`sRrÞ

s1+dd3nd indexed with r-partitions P[Pr
0sG8d of graphs

G8[GG, where r øn;uVsG8du. Thosecausally ordering functionswill be used to model the
considered regularizing algebra. One of their general properties is according to the defining iso-
morphism, i.e.,q

sG8d
s∃d

=1, ∀G8[GG. The costructure is introduced by the graded shuffling coprod-

uct, whereDs1̄d=1̄^ 1̄ and«s1̄d=1. Moreover, thesrespectively, twod algebras above define bial-
gebrassR̂GG

s∃d ,C , + , ∧
+ G

s∃d ,h ,D ,«d.
Notice, one always applies the following abbreviation,TG8=T̂sG8d[R̂GG

s∃d.
Modeling EGF: The causally ordering functions are given in terms of the partition of unity,

qp ª
1
2xP̆, ∀ P [ Pr

0sG8d, ∀ G8 [ GG, ∀ r ø uVsG8du, s98d

whereP̆[PssG8d, for sø r, denotes the tupleP reduced by empty graph entries. This motivates a
further general property ofq, i.e.,

qP = qQ if P̆ = Q̆ and uPu = uQu. s99d

Theorem 4.8: sR̂GG
,C , + , ∧

+ G ,h ,D ,« ,S∧
+ Gd forms a HA where

S∧
+ G

TG8 = HTx if G8 = x,
− TG8, otherwise.

s100d

Proof: It remains to check the antipode condition. This can be done by rewriting EGF’s
induction sProposition 4.3d, i.e., 0=1

2TG8
3 −TG8

x/2. Let LªR3
s1+dd3n, then

062304-20 Alexander Lange J. Math. Phys. 46, 062304 ~2005!

                                                                                                                                    



0 =US1 −
1
2DxsG8dTG8U

L
U −

1
2 o

sG1,G2d[P2sG8d

xsG1,G2dsG8sG
1tGG2dTG1+GTG2U

L

= UqsG8,xd ^ TG8uL − Uqsx,G8d ^ TG8uL − U o
sG1,G2d[P2sG8d

qsG1,G2d ^ sG8s¯d¯U
L

= TG8
∧
+ GTx + Tx

∧
+ Gs− TG8d + o

sG1,G2d[P2sG8d

sG8sG
1tGG2dTG1

∧
+ Gs− TG2d

= q̂G + sid ^ S∧
+ G

d + DTG8.

The other side of the antipode condition follows similarly. h

Modeling EGS:There are two extra properties ofq∃, i.e.,

qP
∃ =Hqs¯tGPi−1,Pi,Pi+1tG¯d

∃ if ∃ G1 # Pi s.t. y1 = xG1,

qtG
∃ P, otherwise,

s101d

and

qp
∃ =HqsG1,G9d

∃

qsG9,G1d
∃ if ∃ G1 # HP1

Pr
s.t. y1 = xG1

, s102d

so that the causally ordering functions can also be given in terms of the partition of unity,

qP
∃
ªHxs

∃ if ∃ G1 # Ps s.t. y1 = xG1
andP [ P2sG8d,

0, otherwise,

∀P[Pr
0sG8d, G8[GG, r ø uVsG8du.

Theorem 4.9: sR̂GG

∃ ,C , + , ∧
+ G

∃ ,h ,D ,« ,S∧
+ G

∃d forms a HA where

S∧
+ G

∃TG8 =H0 if ∃ G1 # G8 s.t. y1 = xG1
,

S+G
TG8, otherwise.

s103d

Proof: Again, it remains to check the antipode condition. By rewriting theR-part of EGS’
induction scf. Lemma 4.4d, i.e., u0=x1

∃RsG1,G9duL= ux1
∃TG8

∃ +x1
∃RsG1,G9d

8 uL, whereLªR3
s1+dd3n, one ob-

tains

0 =Ux1
∃TG8uL + x1

∃U o
sG1,G2d[P2sG8d,G1#G1

sGsG1tGG2dTG1+GS+G
TG2U

L

= UqsG8,ud
∃

^ TG8uL + U o
sG1,G2d[P2sG8d,G1#G1

qsG1,G2d
∃

^ sG8sG
1tGG2dTG1+GS+G

TG2U
L

= U o
sG1,G2d[P2

0sG8d,G1#G1

qsG1,G2d
∃

^ sG8sG
1tGG2dTG1+GS+G

TG2U
L

= o
sG1,G2d[P2

0sG8d

sG8sG
1tGG2dTG8

∧
+ G

∃ S∧
+ G

∃TG2 ; q̂G
∃ + sid ^ S∧

+ G
∃d + DTG8.

Similarly, the other side of the antipode condition follows from theA-part.

4. BS’ Feynman approach

The conventional approach to pQFT is written in terms of Feynman propagators. This leads to
an explicit representation of graph distributions in momentum space which, without iterated renor-
malization as indicated below, suffers from so-called ultraviolet subdivergences. When going over
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to configuration space this means that the distributions are determined only onLªRÞ
s1+dd3n. Even

if the aspect of causality has already been investigated by BS30 only the work of BPHZ3–5 could
verify the correctness of the common method of curing subdivergences via renormalization over
so-called forests of subgraphsswhich is the main application of Kreimer’s HA9d.

Lemma 4.10:Let G8=G1tlG
2 be a graph and P8; P1 ^ P2=sP+V isG8ddiøn, n;uVsG8du, the

associated tuples of particles. Localized on L, time-ordered [cf. (B2) in the Appendix B] Wick
contractions can be represented by Feynman contractions, i.e.,

usT q dsG1,G2d
l u

L
= upsG1,G2d

l u
L
, wherepsG1,G2d

l
ª p

si,jd[lrs

røuP1u,søuP2u

DFg
Pri

1 Psj
2

. s104d

Proof: As chronological cyclesC,M can be excluded by localization onL, one confirms

upsG1,G2d
l u

L
= p

si,jd[lrs

røuP1u,søuP2u

ususr,sdD+g
Pri

1 Psj
2

+ suss,rdD+g
Psj

2 Pri
1

duL = o
M#M12øM21

su,vd[M⇔sv,ud[” M

p
si,jd[ l̄ uv
su,vd[M

uusu,vdsIsG8d

3sPu8,Pv8dD+g
Pui8 Pv j8 u

L = o
M#M12øM21

∃”C,Mcycle

p
su,vd[M

Uusu,vdsIsG8dsGu8txGv8dqsGu8,Gv8d
l̄uv U

L

= o
p[Sn

upsG8dsIsG1tlG
2dspsG8dd p

i, jøn
Upsp+Gi8,p+G j8d

p+l̄ i j U
L

= usT q dsG1,G2d
l u

L
,

where the omitted variables inD+g
** sy** d are related as follows:

yuvªyu8 − yv8 = Hyr − ys¬yrs

ys − yr¬ysr
if su,vd = Hst,s+ un1ud,

ss+ un1u,rd.

The setsh M12

M21 collect the corresponding pairssu,vd[Nn3Nn of indices, and the bar over the

concatenation matrixl [ lsG1,G2d denotes its conversion into a matrix of lines,l̄ªs x l

l̃ x
d. h

Remark 4.11: Restricted toxuv[RÞ
13n3Rd3n,L, the products of step functions vanish

whenever their variables form a chronological cycleC, i.e.,

p
su,vd[C

usu,vdsxuvd ; p
su,vd[C

usxuv
0 d = 0 if o

su,vd[C

xuv
0 = 0.

The localization onL is sufficient, namely suppD+g
** # V̄+ø V̄−¬V̄, yielding suppus*,* dD+g

**

#Lù V̄,RÞ
13n3Rd3n.

Without localization, a simple consideration about the role of cycles, that correspond to
so-called loops in Feyman diagrams, motivates the phenomenon of renormalization freedom.

Example 4.12: Let sr ,s,td be a cycle, i.e.,uusxrs
0 dusxst

0 dusxtr
0 duR

Þ
1333Rd33=0, and apply TI. Then,

on the subspace generated byxr =xt,

uusx0dus− x0dusR\h0jd3Rd = 0, wherexªxrs = − xst.

The restriction cannot be dropped, as one realizes by applying the 1hs to certain distributionst.
For example, lett=d be the Dirac distribution, and let the product be defined via a regularization
of u, e.g.,unsx0dª 1

2s1+tanhsnx0dd. Then, induced by this particular regularization,

usx0dus− x0dtsxdª lim
n→`

unsx0duns− x0dtsxd = 1
4dsx0d,

which obviously spoils associativitysi.e., the algebraic structured,
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1
4dsxd = usx0dus− x0ddsxd Þ susx0dus− x0dddsxd = 0dsxd.

This is consistent with the no-go theorem of Schwartz.36

Proposition 4.13:Localized on L, graph distributions can be represented by time-ordered

productsuTG8
Þ =T

G1
R

+G
T
¯+G

TT
Gr
RuL[RGG

T sLd, where

UTG8
Þ = usi"d#G8−uG8uSbsVG8dtIsG1d

R
t
IsG2d
R p

sG1,G2d

l

NsGldU
L

, s105d

for rª2 and G8;G1tlG
2.

Proof: The scalar part rests upon Lemma 4.10 and the structural part upon the following.h

Lemma 4.14: sWick’s theorem of time ordering.d Keeping the notations,

NsG1d+G
TNsG2dL = o

l[lsG1,G2d
G1tlG

2=G1tGG2

Usi"dul u p
sG1,G2d

l

NsG1tlG
2dU

L

. s106d

Proof: This follows from s58d and s104d scf. Lemma 4.2.25 in Ref. 24, p. 122d. n
Remark 4.15:Associativity of +G

T corresponds withPs·,·d being a 2-cocyle. In addition toq,
alsop can be considered as a Laplace pairing.

Explicitly, the graph distributionss60d can be characterized by the following.
Proposition 4.16:sFeynman diagramsd Localized on L, graph distributions are (uniquely)

determined by their scalar parts,

utIsG8d
R u

L
= uPG8

G uL, wherePG8
G = p

r,søn
p

Gr8tGGs8[PsG8d

PsGr8,Gs8d
lsG8drs s107d

(independent of the renormalization schemeR).
Proof: This is a consequence of Proposition 4.13. The calculation ofs107d is similar to the one

in the proof of Lemma 4.10fcf. s4.139d in Ref. 24, p. 127g.
Remark 4.17:Immediately,s29d, s104d, ands107d imply GTS of utIsG8duL.
For completion, one can as well present an algebraic formulation of the BS regularization in

the sense of Sec. IV A 3. The corresponding causally ordering functions read

uqT:q̂G
TT̂P

^ ° qP
T

^ qG
TTP

^uL, whereuqP
T
ª1uL, s108d

∀P[Pr
0sG8d, ∀G8[GG, ∀r ø uVsG8du.

Theorem 4.18:sR̂GG

T ,C , + ∧
+ G

T ,h ,D ,« ,S∧
+ G

Td forms a HA where

S∧
+ G

TTG8 = s− 1duVsG8duTG̃8. s109d

Proof: It remains to check the antipode condition. Due to the claimed form of the antipode, the
calculation is analogous to the one that proves Theorem 2.4. Formally, one would only have to
substituteNªT andfqJ

ªTG8. h

B. Renormalization

For both EG versions the concept of renormalization can be implemented using EGF’s
method7 of extending localized distributions to the smallest diagonal. For the remaining text, let
* [ hF , ∃ ,Tj symbolize the reference to one of the three causal regularizations where, to include

EGF, R̂GG

F
ªR̂GG

and ∧
+ G

F
ª

∧
+ G.

062304-23 The Epstein–Glaser approach to pQFT J. Math. Phys. 46, 062304 ~2005!

                                                                                                                                    



1. Implementation via an extension of distributions

Renormalization can be understood as a method tosredobtain elements ofR̂GG

* which are not
determined by causality, introduced here without reference to the concrete regularization via a
projective map,

renˆ ; ˆ + ren:R̂GG

*n sRrÞ
s1+dd3nd → RGG

*n
� R̂GG

*n , urenˆ uR̂GG

*n sRs1+dd3nd = id. s110d

In particular, when performing the causally regularizing induction step, this map is supposed to
implement the renormalization schemeR depending on the underlying graphG8,

ren
G8
R :T G 8

rÞ ° T
G8
R , ∀ r ø n. s111d

For both EG versions, renormalization is performed as an extension of the considered graph
distributionfi.e., s86d ands94d, whererª2g to the diagonal diag2

n, performed on its scalar partfcf.
s60dg, i.e.,

T
G8
R
ªren

G8
R TG8

3 ; si"d#G8−uG8uSbsVG8dextG8
%,kstIsGd

3 dNsG8d, s112d

where reflecting the involved renormalization freedomsi.e., ambiguityd, the extension
extG8

%,k:D
IsG8d
8^ sR3

s1+dd3nd→D
IsG8d
8^ is indexed by an auxiliary function%[SsRs1+dd3nd and a setsab-

breviated bykd of complex constantsk
G8
a,IsG8d, for uauøvG8. Depending on the associated graphG8,

the instances for% andk can up to a few restrictions be chosen arbitrarily. The concrete choice of
s%G8 ,kG8d fixes a particular renormalization scheme, i.e.,R=hs%G8 ,kG8d uG8 divergentj. According
to the assumed property of TI, the relevant dimension reduces to dim=s1+ddsn−1d, and hence,
the diagonal diag2

n,Rs1+dd3n goes over into the originh0j,Rdim.
For the BS approach, renormalization can only be given formally due to its coarse regular-

ization, i.e.,T
G8
R
ªrenRsT

G1
R ∧

+ G
TT

G2
R d;T

G1
R

+G
TT

G2
R whereG8;G1tGG2. For a concrete realization one

must apply EG.
In the EG framework renormalization is as well based on power counting. This can be

realized, as in the EGF version, via the so-called scaling degree,

sdstdªinf hru liml→0
lr−dimtstsl−1 · dd = 0, ∀ t [ DsRdimdj,u s113d

which counts the inverse power of distributionst[D8sRdimd at the origin of Rdim, i.e., tsxd
=Osuxusdd as uxu→0. Then the extension of distributions is characterized as follows.

Proposition 4.19:Let t3[SsRdim\ h0jd with scaling degreerªsdst3d,`. Then there exist
extensions t%,k;ext%,kst3d[SsRdimd with the same finite scaling degreesdst%,kd=r, i.e., t%,kst3d
= t3st3d, ∀t3[SsRdim\ h0jd. Two cases have to be distinguished. If the distribution t3 is not
singular, i.e., if its singular orderv is negative, then the extended distribution t%,k is uniquely
determined. Otherwise, if thesingular ordervªr−dimù0, uniqueness is violated. Then the
extension depends, first, on an arbitrarily chosen tempered function%[SsRdimd which satisfies
%s0d=1 and ]a%s0d=0, and second, on an arbitrary set of constants ka[C which defines the
extended distribution on a set of test functions, x°xa%sxd, i.e., t%,ks·a%s·dd=ka, ∀a, uauøv.

Proof: Compare Theorems 5.2 and 5.3 in Ref. 7, pp. 645ff. h

Remark 4.20:More precisely, the extended distribution reads

t%,kstd = t3sWv,%td + o
uauøv

ka

a!
]ats0d, s114d

so that in thesecond case, where an associated graph would be calleddivergent, the following
projection cannot be the identity,Wv,% :SsRdimd→SvsRdimd, t°Wv,%t where sWv,%tdsxd=tsxd
−ouauøvs]ats0d /a!dxa%sxd, and whereSv=hj[S u]ajs0d=0,uauøvj denotes test function space
appropriate for the unique extensiont in the first case, i.e., tstv

3d= t3stv
3d, ∀tv

3[SvsRdim\ h0jd.
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As the singular order is supposed to be preserved by the extension,s114d and the following
lemma allow to describe the difference of the scalar distributionstIsGd

Ri
ªtIsGd

%,ki with respect to renor-

malization schemesRi, i ø2, by a polynomial in derivatives of the delta distribution, i.e.,

tIsGd
R2 − tIsGd

R1 = o
uauøvG

kG
a,IsGd]ad PVsGd, s115d

with coefficientska=k2
a−k1

a formed by the difference of the renormalization constants inR2 and
R1, provided that% has been fixed.

Lemma 4.21: Let t[S8sRdimd and suppt=h0j. Then ∃!hka[C u uauøv;fsdstdgj s.t. tsxd
=ouauøvkaPiødim]aidsxid.

Proof: Compare a textbook on distributions, e.g., Ref. 37, Sec. 8.4. h

2. On the physical meaning

The diagram in Fig. 3, especially the “laws of physics” arrow, will now be supplemented with
more detail.

Classification of theories:By applying the scaling degree’s additive properties that, based on
the scaling degree 2rp8ªsdsDp8

+gdø2up8u+sdsDp
+gd of the propagatorDp8

+g;s−1dup8u]p8]p̃8Dp
+g, lead

to

rv = o
iøuPsvdu

rPisvd andrG = o
køuIsGdu

rIksGd, s116d

one determines the singular ordervG=rG−dim of the graphG, i.e.,

vG = o
køuVsGdu

vVksGd − vVsGd, wherevvªrv − s1 + dd. s117d

Power counting therefore reproduces the well-known classes, called

5nonrenormalizable

renormalizable

super-renormalizable

if 5s∃v [ Udvv . 0,

s∀v [ Udvv ø 0,s∃v [ Udvv = 0,

s∀v [ Udvv , 0,

s118d

or as usual, in numbers of divergent graphs Gdiv and vertices Vdiv,

if 5uVdivuH=`,

,`, where
Vdiv = hv [ Wus∃G [ Gdivdv = VGj,

uGdivu , `, Gdiv = hG [ GWuvG ù 0j.

s119d

This is illustrated for a “toy pQFT” withuUu=1 initial vertex which couplesm scalar fieldsf.
Example 4.22:Let HI~ :fm:. SinceDf

+sxd=Osuxu−2d asx→0, rf=1, andrfm=m. Then, for a
graphG consistingsexclusivelyd of fm vertices,

vG = uVsGdusm− s1 + ddd − uEsGdu + s1 + dd. s120d

Depending on the considered space–time dimension 1+d, i.e.,

5,m,

=m, so that

.m,
5Vdiv = W,

Vdiv = hv [ Wu uPsvdu ø mj,

Gdiv # hG [ GWu uVsGdu ø
1+d

1+d−mj ,

s121d

one reproduces the above classes of renormalizable theories.
Renormalization freedom:Besides TI, which was implemented explicitly,kG must satisfy

other symmetries. For instance, GTS is ensured by the conditionkG
a,IsGd=sGsIsp +GddkpsGd

psad,Isp+Gd,
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∀a, uauøvG. The requirements for Lorentz invariance are investigated in Ref. 38. Moreover, the
physicists’ strategy of selecting new vertices produced by renormalization is to implement further
sphysicald symmetries, e.g., C,P,T, invariance, pseudounitarity, and gauge invariance; Scharf6 calls
this the principle of perturbative gauge invariance.

Example 4.23: sScalar QEDd Let HI=e:f*s]mfdAm :−e: s]mf*dfAm:. Then there are two
initial vertices,

Consider d=3. ThenvG=−vVsGd;1+d−rVsGd, i.e., a graphG is divergent only if EsGdø4 and
“]f ” ¹EsGd. Therefore, three candidates V\U#Vdiv of new physical vertices are generated by
renormalization,

However, onlyv1 andv2 are relevantscf. Ref. 31, pp. 335ffd. In accordance with pseudounitarity,
Tsv1dsxd= :f*2sxdf2sxd:, where av1

=l[ iR, and in accordance with gauge and C invariance,
Tsv2dsxd=s1/i"dgmn :f*sxdfsxdAmsxdAnsxd: where av2

=e2/ i". In the conventional approach, one
would then rewrite the interaction Hamiltonian by summing over V, i.e.,HI= i"ov[VavTv.

3. EG counterparts of Kreimer’s HA

The goal is to model the change of the renormalization scheme via a HA similar to Kreimer’s.9

Formally, this is in contrast with the literature12,17 where it has been claimed having extracted
Kreimer’s HA of renormalization in the EG approachswhich should be impossibled. In fact,
similar to Kreimer’s approach in Ref. 11, one can deform graded commutative versions ofsthe
threed causally regularizing HAs in order to construct the aimed HA. However, the resulting HAs
are still coassociative. This is in contrast with Kreimer’s structure, which is noncoassociative and
precisely referred to as a quasi-HA.

Graded commutative versions of the causally regularizing HAs are given as quotient algebras,
RGG

* =R̂GG

* / ∧
+ G

* f· , ·gs
^, divided by the ideal which is generated by the graded commutator, i.e.,

sRGG

* ,C , + , +G
* ,h ,D ,« ,S+G

* d where the product reads

TG1+G
* TG2 = 1

2fT̂G1,T̂G2g−s

∧
+ G

*
, ∀ TG1,TG2 [ RGG

T . s122d

Again, one abbreviates the new representatives by the former notation,TG8=TsG8d[RGG

* . Notice,

due to graded commutativity,RGG

T =R̂GG

T and +G
T= ∧

+ G
T.

As another prerequisite one introduces the algebra of tuples of strongly decreasing graphs,
sGG

. ,C , + , · ,xd, which is defined as the quotient of the tensor algebra of graphs divided by an
ideal of nondecreasing graphs,

GG
. = %

nù0
GG

^n/ ss…,G2d ^ sG1,…d, u G2 ¢ u G1, s123d

s…,G2,G1,…d − s…,G1,…d,s u G2 = u G1d . s124d

The EG counterpart of Kreimer’s HA, providing the transitionsR→R8d¬K of renormalization
schemes, is a HAKGG

* which defines an extension ofRGG

* . This HA can be constructed in

complete analogy to the latter, starting with the counterpart ofRGG

T , i.e., KGG

T
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ª% nù0ChkḠ8TG8
R u Ḡ8[GG

. ,Ḡ8uḠ8u=G8 , uVsG8du=nj where, analogous tos60d,

kḠ8TG8
R
ªsi"d#G8−uG8uSbsVG8dkḠ8tIsG8d

R
NsG8d s125d

which, chosen in accordance withs115d, is determined by its scalar part,

T ] kḠ8tIsG8d
R

ª5t
IsG8d
R

if Ḡ8 = x,

o
uauøvG8

k
Ḡ8·sG8d
a,IsG8d

]adPVsG8d, otherwise.
s126d

The complex constantsk
Ḡ8·sG8d

a,IsG8d
with multi-index a and particle indices IsG8d, depending on the

product of the graphG8 with an appropriate tuple of decreasing graphsḠ8, fix the transitionK. As
an empty sums is zero,kḠ8TG8

R vanishes for nondivergent graphsG8, i.e., if vG8,0.
The additional structure inKGG

si.e., the HA analogous toRGG
d can be introduced as an action

of an algebra,k• :GG
.→EndsKGG

d skḠ8TG8
R =0 if tḠuḠ8u

8 ¢ uG8d, i.e., kḠ2+kḠ1=kḠ1·Ḡ2, ∀Ḡ1,Ḡ2[GG
.,

so that,∀Ḡ8[GG
., kḠ8 defines a HA homomorphism, i.e.,kḠ8 +qG=qG + skḠ8 ^ kḠ8d, D +kḠ8=skḠ8

^ kḠ8d +D, and S+G
+kḠ8=kḠ8 +S+G

. Along this line, starting with Sec. III B 3, one repeats all the
algebraic constructions forK. As far as renormalization is involved, the scheme is stillR. One
must only require that transition and renormalization exchange, i.e.,kḠ8 + ren

G8
R
ªren

G8
R

+kḠ8, when-

ever ḠuḠ8u
8 . tG8.

Theorem 4.24: sKGG

* ,C , + ,+G8
* ,h ,D ,e ,S+G

* d forms a HA which extendsRGG

* , and k• :GG
.

→EndsKGG

* d defines an action of an algebra where, ∀Ḡ8[GG
., kḠ8 is a HA homomorphism. More

precisely, s∀T8[KGG

* d s∃!T[RGG

* d s∃!Ḡ8[GG
.d s.t. kḠ8T=T8, i.e., k• :GG

.→HomsRGG

* ,KGG

* d
whereT8[RGG

* ,KGG

* requires T=T8;kxT.
Proof: This is the result of the constructions in the preceding sections, but in the context ofK

instead ofR. h

The theorem gets meaning when claiming the concrete embedding of the new schemeR8, i.e.,

RGG

* >
i

RGG
8* ,KGG

* ,

i:TG8
R ° TG8

R8
ªTG8

R + S+G
*

k,1TG8
R ∀ G8 [ GG, s127d

where S+G
*

k TG8
R ;k• +S+G

* TG8
R
ªS+G

* sksG8dTG8
R d, n;uVsG8du, and S+G

*
k,1TG8

R =S+G
*

k TG8
R , except forn=1, where

S+G
*

k,1TG8
R =0. The correctness of this setting rests upon the requirement that suppsT

G8
R8

−T
G8
R d#diagn

n, which is guaranteed by the following fact.
Lemma 4.25:suppsS+G

*
k,1TG8

R d#diagn
n.

Proof: This can be shown by expansion of the antipode, i.e.,

S+G
*

k TG8
R = rensG8d

R
+ ksG8dS− TG8

R − o
sG1,G2d[P2sG8d

sGsG1tGG2dS+G
*

k TG8
R +G

* TG2
R D , s128d

and applying an adequate induction argument. For example, ifKGG

* and suppKi #diagni

ni, i ø2,
wheren=n1+n2, then suppsK1+G

* K2d#diagn
n. h

For the case, *=T, one can state the transition between the schemes explicitly.
Example 4.26: Let P[PrsG8d, r øn. Then R is called a P-tree iff R[GG

.3r, s∀ j , rd
sRijdiø j [P jsG8d and∃! i j [ hi j−1, i j−1+1js.t.sRi j j+1,Ri j+1j+1d[P2sRi j j

d wherei1=1, andsRirdiør =P.
Applying this notation, one obtains
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T
G8
R8 = T

G8
R + o

r,n
o

P[PrsG8d

sG8sPd o
R P−tree

sG
T

iør
kRi

TPi

R . s129d

For thesmostd trivial transition sin this contextd, i.e., kḠ8ªksGd, ∀Ḡ8[GG
., this reduces to

T
G8
R8 = T

G8
R + o

r,n
o

P[PrsG8d

sG8sPdsG
T

iør
kPi

TPi

R , s130d

corresponding to Pinter’s result, cf. Eq.s14d in Ref. 17, p. 6.
Starting the comparison with the conventional approach, the following two examples illustrate

how overlapping divergences are treated in the EG framework.
Example 4.27:ConsiderHI~f3 for d=2 and, especially, the graph in Fig. 4. Then the

singular order of the divergent subgraphsY=Pi is given byvY=3−uEsYdu, i.e.,

vY = H1 if V sYd [ hs4,5,6d,s1,…,6dj,

0, otherwise.

Notice, the two subgraphs with loops, i.e.,ss1,2,5,6d ,…d andss2,3,4,5d ,…d, which because of
their 4 s.3d external lines are not divergent, do not contribute to the so-called forest formula
s129d.

Here, loops obviously do not play the distinguished role they play in the conventional ap-
proachscf. Example 4.12d. That holds true for tree graphs as well.

Example 4.28:Consider scalar QED for d=3 and, especially, the graph in Fig. 5. Then the
singular order of the divergent subgraphsY=Pi is given byvY=4−uEsYdu=0. Notice, also tree
graphs, i.e.,ss1,2d ,…d and ss3,4d ,…d, do represent divergent subgraphs.

Even if the structure of graphs presented here varies from Kreimer’sswhich is only pre-Lied,
one can identify the following connection.

Remark 4.29:Let R be Kreimer’s map which is supposed to leave the short distance singu-
larities unaltered, e.g., if regs«d=on=−p

` cn«n,p.0, denotes a regularization for«→0 then

FIG. 4. A sample graph off3 theory and itssfived partitionsP of divergent subgraphs.

FIG. 5. A sample graph of scalar QED and itssfived partitionsP of divergent subgraphs.
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R: regs«d° regs«d−onø0cn8«
n. Then one observes the following correspondence between the pre-

sented and Kreimer’s HA:

k• ↔ R si.e., S+G
*

k ↔ SRd and renR ↔ id − R, s131d

reflecting the algebraic structure and, respectively, the function of renormalization.
In order to ensure that the deformed antipode SR defines a homomorphismswhich, for S+G

* , is
fulfilled for freed the mapR, and thus id−R, have to satisfy a multiplicativity constraint, i.e.,

RsXYd + RsXdRsYd = RsXRsYdd + RsRsXdYd, s132d

the so-called Rota–Baxter relation, cf. Ref. 39.
Moreover, one can motivate the quasiness of Kreimer’s deformed HA.
Remark 4.30:In the spirit of Kreimer’s presentation, e.g., in Ref. 11, one may interpret the

functor HomsRGG

* ,KGG

* d as a deformation of HAs induced by deforming,

either the antipode, S+G
* ° S+G

*
k ; k• + S+G

* , s133d

or the coproduct, D ° Dk ; sk• ^ k•d + D, s134d

while keeping the coproduct or antipode, respectively, fixed. Then it is obvious why the deformed
HA in Kreimer’s original approach is only quasisi.e., noncoassociatived. Namely, sid ^ Dkd
+DkT

G8
R =sDk+ idd +DkT

G8
R is true only if the transitionk• is trivial.

A more detailed presentation of the content of this section will be given elsewhere.40

V. CONCLUSIONS AND OUTLOOK

About 10 years ago HAs entered the framework of pQFT. At that time Wick and Feynman
contractionssi.e., q andPd have been identified, by Rota and Stein,20,21 as examples for Laplace
pairs in the context of combinatorial HAs. Since then, the formal perturbative expansion could
have been considered as given by a Laplace HA. However, only recently has this been done, cf.
Refs. 13 and 22. The knowledge about it did not get that popular among physicists as Kreimer’s
Hopf algebraic description of renormalization9 in the late 1990s.

In this paper, both these HA approaches to pQFTsi.e., Entries 4 and 7 and, respectively, Entry
8 in the table of Fig. 1d get represented in the EG framework. The causally regularizing HAs
sEntries 5–7d can therefore be regarded as a bridge between them. Furthermore, as an EG only
feature, the HAs modeling normalization and localization of free fieldssEntries 2–3d appear as the
stucture that Cliffordization twists into the Laplace HA representing the perturbative expansion.

Topics for further research supplementing and extending the presented scenario of HAs, which
apparently underlies the EG approach to pQFT, could read as followssenumerated from the
physical to the mathematical oned:

i In the spirit of Kreimer’s more recent work,41,42 one might also think about implementing
Scharf’s principle6 of perturbative gauge invariance into the HA context.

ii As Laplace pairs can be interpreted as objects in the theory of quantum groupsscf. Refs.
18, 19, and 22d, namely as so-called R-formsscf. Ref. 43, Sec. VIII.5d, investigations in
this direction, e.g., incorporating broader algebraic concepts as done in Ref. 23, still seem
to be fruitful.

iii Following an idea of Kontsevich,44 one might try to understand renormalization as a dual
procedure to the compactification of the configuration space;45 see also Ref. 46.
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APPENDIX A: CALCULATIONS

Lemma A.1:DsNd, i.e., D and DN, are GTS.
Proof: The two claims can be proven at once, where the possible empty alternative is sym-

bolized by brackets. LetX#Pn, n[N, and letp[Sn be a permutation onX. Then

DsNdswqpsXdd = o
P±[P2

0spsXdd

spsXdsP±d¯

= o
P±[P2

0sXd

spsXdsXdsXsP±d¯ = sspdDsNdswqXd,

where the following identity for sets of partitions, i.e.,P2
0=P2

0+p, ∀p[Sn, and following the
group representation rule for the grading sign,sYsZd=sYsXdsXsZd, ∀X, Y, Z[Pn, were used.h

Lemma A.2:D and DN are coassociative where, for the first coproduct, « also satisfies the
counit property.

Proof: The three calculations below verify the claims. LetX[Pn, n[N. First,

sid ^ Dd + DswqXd = o
P[P2

0sXd

sXsPdwqP1 ^ DswqP2d

= o
P[P2

0sXd

sXsPdwqP1 ^ o
Q[P2

0sP2d

sP2
sQdwqQ1 ^ wqQ2

= o
sP1,Q1,Q2d[P3

0sXd

sXsP1,Q1,Q2dwqP1 ^ wqQ1 ^ wqQ2

¯

=sD ^ idd + DswqXd,

second

sid ^ «d + DswqXd = o
P[P2

0sXd

sXsPdwqP1 ^ «swqP2d

=sXsX ^ xdwqX
^ 1=wqX

¯

=s« ^ idd + DswqXd,

which have been rather standard, and third,

sid ^ DNd + DNswqXd = o
P[P2

0sXd

sXsPdpr+ + wqP1 ^ pr− + DNswqP2d
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= o
P[P2

0sXd

sXsPdw+
qP1 ^ o

Q[P2
0sP2d

sP2
sQdpr− + w+

qQ1 ^ pr− + w−
qQ2

= o
P[P2

0sXd

sXsPdw+
qP1 ^ sP2

sx ^ P2d1 ^ w−
qP2

= o
P[P2

0sXd

sXsPdw+
qP1 ^ 1 ^ w−

qP2

¯

=sDN
^ idd + DNswqXd,

where the projection properties, pr±
2=pr± and pr7 +pr±=0, were applied. h

Lemma A.3:DsNd and « define homomorphisms with respect to the productsh[ h+ ,Nj.
Proof: Let X1, X2,Pn, n[N. Then

«swhX1
hwhX2

d ; «swhX1
d«swhX2

d = H1 if X1 = X2 = x,

0, otherwise,
sA1d

and

where a decomposition of the grading sign based on the group representation were applied.h

APPENDIX B: ILLUSTRATIONS

Example B.1:Illustrated for two graphs of QEDscf. Example 2.6d, e.g., for

with verticessc̄ ,c ,Ad, except ofX2
2=sc̄ ,c ,Acld, and matrices of lines

L1 = S x hs1,2dj
hs2,1dj x

D, L2 = 1 x hs2,1dj hs3,3dj
hs1,2dj x hs2,1dj
hs3,3dj hs1,2dj x

2 ,

the concatenation with the matrix
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L12 = Shs2,1dj x x

x x hs1,2dj
D ,

yields the graph

Example B.2:Consider the following quantum model, where the time evolution is determined
by the Schrödinger equation,i"]twst ,xWd=Hstdwst ,xWd, and an interaction Hamiltonian,Hstd
=eRddx Hst ,xWd. The S-matrix S=limt±→±` Ust+,t−d is the limit of an unitary operatorU which
describes the time evolution of an incoming free field. By repeatedly applying the integrated
Schrödinger equation,wst ,xWd=wss,xWd−si /"des

tdt1 Hst1dwst1,xWd, one obtains the so-calledDyson
series,

Ust,sd = 1 + o
n=1

`
s− idn

"n E
s

t

dt1¯E
s

tn−1

dtnHst1d¯Hstnd.

By inserting the time-ordering operation, i.e.,

Tshst1,…,tndd = o
p[Sn

ustp1
,…,tpn

dsspdhstp1
,…,tpn

d, sB1d

where

ust1,…,tndªust1 − t2d¯ustn−1 − tnd = H1 if t1 . ¯ . tn,

0, otherwise
sB2d

denotes a product of step functions, the limit can be performed,

S= 1 + o
n=1

`
1

n!si"dnE
R1+d

dt1 dx1¯E
R1+d

dtn dxn TsHst1,xW1d¯Hstn,xWndd.

APPENDIX C: SYMBOLS AND ABBREVIATIONS

GTS graded total symmetryssymmetric, respectivelyd
TI translation invariancesinvariant, respectivelyd
fhJ, fJ

h fhJ
ªh j[Jf

j andfJ
h
ªh j[Jf j, for any kind of product “h”

f· , ·gs
^ graded commutator, cf.s12d

N normal product, cf.s27d and s39d
L localization, cf.s34d
S… coupling monomial, cf.s35d, s41d, ands54d
V :GV→V shrinking of graphsGv to vertices V, cf. Sec. III A 1
tG composition of graphs withG being a reference graph, cf.s44d
q Wick contractions, cf.s57d; in accordance with BS’ notation:

qsi,jdªNs… ^ fi ^¯^ f j ^ …d=ff−
i ,f+

j gs
^Ns… ^¯^ …d

+G
p product of distributions withG being a reference graph, cf.s62d and s64d

coneP
s∃d sweakd causal cone with respect to a partitionP, cf. s74d

RÞr
dim causally determined spacetime region, cf.s77d

∧
+ G

p product of causally regularized distributions, cf.s97d
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P Feynman contractions, cf.s104d; in accordance with BS’ notation:
Psi,jdªNs¯^ fi ^¯^ f j ^¯d=Tff−

i ,f+
j gs

^Ns¯^¯^¯d
+G

p graded commutative product of regularized distributions, cf.s122d
p= ∃ ,F ,T referring to the method of EGS, EGF, BS, respectively
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We derive classical particle, string, and membrane motion equations from a rigor-
ous asymptotic analysis of the Born–Infeld nonlinear electromagnetic theory. We
first add to the Born–Infeld equations the corresponding energy-momentum con-
servation laws and write the resulting system as a nonconservative symmetric 10
310 system of first-order PDEs. Then we show that four rescaled versions of the
system have smooth solutions existing in thesfinited time interval where the corre-
sponding limit problems have smooth solutions. Our analysis is based on a con-
tinuation principle previously formulated by Yong forssingulard limit problems. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1925248g

I. INTRODUCTION

The Born–InfeldsBId equations were originally introduced in Ref. 1 as a nonlinear correction
to the standard linear Maxwell equations for electromagnetism. They form a 636 system of
conservation laws, together with two solenoidal constraints on the magnetic field and electric
displacement. This system has many remarkable physical and mathematical features. Introduced in
1934, the BI model was designed to cure the classical divergence of the electrostatic field gener-
ated by point charges, by introducing an absolute limit to itsjust like the speed of light is an
absolute limit for the particle velocity in special relativityd. The value of the absolute field was
fixed by Born and Infeld according to physical considerations. As a result, for moderate electro-
magnetic fields, the discrepancy between the BI model and the classical Maxwell equations is
noticable only at subatomic scaless10−15 metersd. However, for very large values of the field, the
BI model gets very different from the Maxwell model and, as will be rigorously established in this
paper, rather describes the evolution of point particles along straight lines, or vibrating strings or
vibrating membranes, depending on the considered scales.

Although the BI model was rapidly given up due to the emergence of quantum electrodynam-
ics sQEDd in the 1940s, there has been a lot of recent interest in it. In high energy physics,
D-branes can be modelled according to a generalization of the BI model.14,5 In differential geom-
etry, the BI equations are closely related to the study of extremal surfaces in the Minkowski space.
From the partial differential equationssPDEsd viewpoint, the initial value problemsIVPd has been
recently investigated by Lindbladsin the “scalar case” of extremal surfaces12d and by Chae and
Huh.3 They show the existence of global smooth solutions, for small initial datasin a regime
sufficiently close to the Maxwell limitd, using Klainerman’s null forms and energy estimates. In
mathematical physics, QED has recently been revisited by Kiessling who used a quantization
technique well suited to nonlinear PDEs, involving a relativistic version of the Fisher
information.9

adElectronic mail: brenier@math.unice.fr
bdElectronic mail: yong.wen-an@iwr.uni-heidelberg.de
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In Ref. 2, Brenier exploited the fact that the energy density and the Poynting vector satisfy
certain additional conservation laws and lifted the Born–Infeld model to a 10310 system of
conservation laws, by using the energy density and the Poynting vector as new unknown variables.
The resulting ABI saugmented Born–Infeldd system provides a set of equations coupling the
electromagnetic field and a virtual fluid having the electromagnetic energy as mass and the Poyn-
ting vector as momentum. It was pointed out that the ABI system has some remarkable structural
properties like existence of a strictly convex entropy, Galilean invariance of fluid mechanics, and
full linear degeneracy.

Moreover, three asymptotic regimes of the ABI system are studied in Ref. 2, using Dafermos’
relative entropy method4 to analyze the resultingssingulard limit problems. With such analysis, the
linear Maxwell equations are derived for low fields, some pressureless MHD equations, describing
vibrating strings, for high fields, and pressureless gas equations for very high fields. Unfortunately,
these results postulate the existence of global weak solutions for the ABI systemsalthough they do
not requirea priori bounds on themd. This is a major weakness, since the global existence of weak
solutions to the IVP remains an outstanding open problem for essentially all multidimensional
system of nonlinear hyperbolic conservation laws.

The goal of this paper is to use the framework of smooth solutions and energy estimates to get
definite asymptotic results, using a nonconservative form of the ABI system. It will be shown that
IVPs of the rescaled ABI systems have smooth solutions existing in thesfinited time interval where
the corresponding reduced problems have smooth solutions. The analysis is based on a continua-
tion principle previously formulated in Ref. 17 forssingulard limit problems, and combines formal
asymptotic expansions with error estimates of energy type for symmetrizable hyperbolic systems.
We also consider a high field regime, involving vibrating membranes, which was disregarded in
Ref. 2.

The use of the continuation principle makes our analysis quite different from the classical one
due to Klainerman and Majda.10,11,13 With the latter, one shows the existence in a scaling-
independent time interval, which may be properly contained in the time interval where the corre-
sponding reduced problems have smooth solutions. The difference of the two approaches makes
significant sense when the reduced problems have global smooth solutions. Such an example is
given in Sec. VI D for low fields. See also Sec. III.

As a by-product and first step of our analysis, we observe that the nonconservation form of the
ABI equations constitutes asymmetricsnot onlysymmetrizabled hyperbolic system. Thus, the local
well-posedness of the ABI system becomes obvious. Note that the symmetry does not follow
directly from the existence of a strictly convex entropy proved in Ref. 2, since the latter involves
the solenoidal constraints and thus the entropy is not that in the usual sense. About this point see
also Serre.15 Moreover, we show that the solenoidal constraints are compatible with the symmetric
hyperbolic systems and point out a few possibly important structural properties thereof. In addi-
tion, the nonconservative ABI system, remarkably enough, is well defined for all states inR10, in
sharp contrast with the conservative version, which requires the density fieldh to be non-negative.
Indeed, the nonconservative system involves the inverse density fieldt, which substitutes forh−1

and can take any real values, negative, positive, or null. As a consequence, the previously men-
tioned asymptotic results trivially follow from the symmetry of the nonconservative ABI system,
at least for short time intervals. So an important technical issue of this paper is to extend these
time intervals according to the existence time interval of the solutions to the limit equations, by
using the method discussed above.

The paper is organized as follows. In Sec. II, we introduce the nonconservative augmented
Born–Infeld equations and point out some of its structural properties. In Sec. III, we introduce
three high field limits of the ABI equations and show that they, respectively, describe particle,
string, and membrane motions. In Sec. IV, a crude asymptotic analysis is performed just by using
the symmetric structure of the nonconservative ABI system. In Sec. V, an abstract theorem is
established for the rescaled ABI systems. This theorem is applied to four concrete asymptotic
regimes in Sec. VI to get sharper results. The paper ends with an appendix, which contains the
continuation principle forssingulard limit problems of symmetrizable hyperbolic systems.
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Notation: Let V=Rd or Td sthe d-dimensional torusd. L2 is the space of square integrable
svector- or matrix-valuedd functions onV and its norm is denoted byi·i. In caseA depends on
another variablet as well as onxPV, we write iAstdi or iAs· ,tdi to recall that the norm is taken
with respect tox while t is viewed as a parameter. Similar notation will be adopted for the function
spaces introduced below. For a non-negative integerk, the Sobolev spaceHk=HksVd is defined as
the space of functions whose distributional derivatives of orderøk are all inL2. We usei ·ik to
denote the norm ofHk. Furthermore,CsJ,Hkd denotes the space of continuous functions on the
interval J with values inHk. Finally, partial time derivatives will be frequently denoted byut,
instead of]tu.

II. THE BORN–INFELD SYSTEM AND ITS NONCONSERVATIVE AUGMENTED VERSION

Let B andD be time-dependent vector fields inR3. The Born–InfeldsBId equations readssee,
e.g., Ref. 2d

Bt + ¹ 3 SB 3 V + D

h
D = 0, Dt + ¹ 3 SD 3 V − B

h
D = 0, divB = div D = 0, s2.1d

where

h = Î1 + uBu2 + uDu2 + uD 3 Bu2, V = D 3 B, s2.2d

and u·u stands for the Euclidean norm. Immediately notice that the classicalshomogeneousd Max-
well equations

Bt + ¹ 3 D = 0, Dt − ¹ 3 B = 0, divB = div D = 0 s2.3d

can be seen as the limit of the BI equations for weak fieldsB,D!1.
In Ref. 2, Brenier exploited the fact that, for smooth solutions of the BI system, the energy

densityh and the Poynting vectorV satisfy additional conservation laws—the first two lines in
s2.4d below, and usedh andV as unknown variables to augment the BI model as a 10310 system
of conservation laws. Set

v = V/h, b = B/h, d = D/h.

The ABI saugmented Born–Infeldd system can be written as

ht + divshvd = 0,

shvdt + divshv ^ v − hb ^ b − hd ^ dd = ¹ h−1,

s2.4d
shbdt + divshb ^ v − hv ^ bd + ¹ 3 d = 0,

shddt + divshd ^ v − hv ^ dd − ¹ 3 b = 0

along with

divshbd = divshdd = 0. s2.5d

See Ref. 2 for further discussions about this ABI system.
Here we only consider smooth solutions to the ABI system. Therefore, we may focus on the

nonconservative form ofs2.4d with s2.5d. Sett=h−1. By using the identity

divsd ^ bd = sb · ¹ + div bdd,

we can easily verify that smooth solutions tos2.4d with s2.5d satisfy
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tt + v · ¹ t − t div v = 0,

vt + v · ¹ v − b · ¹ b − d · ¹ d − t ¹ t = 0,

s2.6d
bt + v · ¹ b − b · ¹ v + t ¹ 3 d = 0,

dt + v · ¹ d − d · ¹ v − t ¹ 3 b = 0.

This is a symmetric hyperbolic system,

Wt + o
j=1

3

AjsWdWxj
= 0 s2.7d

for W=st ,vT,bT,dTdT, with homogeneous quadratic nonlinearities. Here the superscript “T” de-
notes the transpose operation and the coefficient matrix is

AjsWd = v jI10 +1
0 − tej

T 03
T 03

T

− tej 0333 − bjI3 − djI3

03 − bjI3 0333 tej 3

03 − djI3 − tej 3 0333

2 s2.8d

with v j the j th component ofv, Ik the unit matrix of orderk, ej the j th column ofI3, 03 the origin
of R3, and 0333 the origin ofR333. Notice thats2.7d makes sense for all states

W= st,vT,bT,dTdT P R10, s2.9d

not only for t.0 and even if the solenoidal constraintss2.5d do not hold.
It is remarkable that the coefficient matrixAjsWd linearly depends onW and the symmetry is

independent of the solenoidal constraints, which are needed in Ref. 2 to show the existence of a
strictly convex entropy function.

Also notice that, in the original BI equations,B, D, h, and V are linked together by the
algebraic relationss2.2d. This means that the original BI equations exactly correspond to the
nonconservative formulations2.6d, with the further restriction thatW=st ,vT,bT,dTdT must be
valued in the “BI manifold” defined by

t . 0, t2 + b2 + d2 + v2 = 1, tv = d 3 b. s2.10d

Of course, as for the original ABI system, the BI manifold is an invariant set for systems2.6d.
The equivalence ofs2.6d and s2.4d with s2.5d is illustrated here.
Proposition 2.1: If initial data for (2.6) satisfy the constraints in (2.5), then the corresponding

smooth solutions to (2.6) satisfy (2.4) as well as (2.5).
Proof: It suffices to verifys2.5d. To do this, we notice that the smooth solutions tos2.6d satisfy

ht+divshvd=0 and

shbdt + ¹ 3 shb3 vd + ¹ 3 d + divshbdv = 0,

whereh=t−1. Thus, we have

sdivshbddt + v · ¹ sdivshbdd + divshbddiv v = 0.

Since divshbd=0 initially, we have divshbd=0 for all t. Similarly, we can show divshdd=0. This
completes the proof. h

Furthermore, we point out the following important property of the symmetric hyperbolic
systems2.6d or s2.7d with s2.8d.

Proposition 2.2: Let W=st ,vT,bT,dTdT be a smooth solution to (2.6) witht.0. Then
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]tshI10d + o
j

]xj
shAjsWdd = divshbdC1 + divshddC2

holds with C1 and C2 constant symmetric matrices and h=t−1. In particular, if intial data for (2.6)
satisfy the solenoidal constraints in (2.5), then

]tshI10d + o
j

]xj
shAjsWdd = 0.

Proof: From the explicit expression of the coefficient matrix given ins2.8d it follows that

]tshI10d + o
j

]xj
shAjsWdd = sht + divshvddI10 + o

j

]xj1
0 − ej

T 03
T 03

T

− ej 0333 − hbjI3 − hdjI3

03 − hbjI3 0333 ej 3

03 − hdjI3 − ej 3 0333

2
= −1

0 03
T 03

T 03
T

03 0333 divshbdI3 divshddI3

03 divshbdI3 0333 0333

03 divshddI3 0333 0333

2 .

This completes the proof. h

III. HIGH FIELD LIMITS: PARTICLE, STRING, AND MEMBRANE MOTIONS

Observe that, for the nonconservative systems2.6d, the statesW=s0,vT,bT,dTdT, for which
t=0, are not singular, while, for the conservative ABI systems2.4d, they correspond to fields
sB,Dd of infinite intensity.sIndeedt=h−1.d sLet us recall that, for classical gas dynamics equa-
tions, the statet=0 is always singular.d

Due to the special structure ofs2.6d, the corresponding “reduced” statessvT,bT,dTdT solve the
following “reduced” system

vt + v · ¹ v − b · ¹ b − d · ¹ d = 0,

bt + v · ¹ b − b · ¹ v = 0, s3.1d

dt + v · ¹ d − d · ¹ v = 0.

A further reduction is obtained asd=0, which leads to

vt + v · ¹ v − b · ¹ b = 0,

s3.2d
bt + v · ¹ b − b · ¹ v = 0.

Finally, t=0 andb=d=0 reduces2.6d to a single equation

vt + v · ¹ v = 0. s3.3d

Notice the parallel reduction of the BI manifolds2.10d to the following reduced manifolds

b2 + d2 + v2 = 1, d 3 b = 0, v ·b = v ·d = 0, s3.4d

b2 + v2 = 1, v ·b = 0, s3.5d
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v2 = 1, s3.6d

respectively, associated tos3.1d–s3.3d.
These three sets of “high field” equations have a simple physical and geometrical interpreta-

tion. Indeed, systems3.3d describes a continuum of particles moving along straight lines with
constant speed, as well known. If, in addition,s3.6d holds true, these particles can be interpreted as
massless particles with unit velocities. Systems3.2d is more subtle and describes collections of
vibrating strings, as will be shown below. Conditions3.5d guarantees that these strings are genuine
relativistic strings. Notice thats3.2d can also be interpreted as a shallow water MHD equation
swithout gravity termsd, following Ref. 6. Similarly, systems3.1d describes vibrating membranes.
These statements follow from the following observation.

Proposition 3.1: Letss,r ,udPR3→Xst ,s,r ,ud be a smooth family of diffeomorphisms ofR3,
depending on tP f−T,Tg. Let l, m be two non-negative real constants. Assume that

]ttX = l]ssX + m]rrX s3.7d

holds true. Implicitly define

bst,Xst,s,r,udd = ]sXst,s,r,ud, s3.8d

dst,Xst,s,r,udd = ]rXst,s,r,ud, s3.9d

vst,Xst,s,r,udd = ]tXst,s,r,ud. s3.10d

Thensb,d,vd, respectively, is a smooth solution to system (3.1) ifl=m=1, system (3.2) ifl=1 and
m=0, and equation (3.3) ifl=m=0.

Proof: The proof is a straightforward application of the chain rule: differentiates3.8d–s3.10d
with respect tot, use Eq.s3.7d and get the desired equationss3.1d–s3.3d.

Geometrical interpretation:According to s3.7d, in the casel=m=0, each trajectoryt
→Xst ,r ,s,ud is a straight line, assr ,s,ud varies inR3. In the casel=1 andm=0, each surface
st ,sd→Xst ,r ,s,ud solves the wave equation

]ttX = ]ssX,

and describes a vibrating string, assr ,ud varies inR2. Notice that the algebraic constraints3.5d
reads

]tX
2 + ]sX

2 = 1, ]tX · ]sX = 0,

which, together with the wave equation, means that these strings are genuinely relativisticsi.e.,
they are extremal surfaces in the Minkowski spaced. Similarly, in the casel=m=1, eachst ,s,rd
→Xst ,r ,s,ud describes a vibrating membrane asu varies along the real line.

Global smooth solutions to the string system (3.2). From Proposition 3.1, we see that the high
field equations3.2d has nontrivial global smooth solutions for smooth initial conditions sufficiently
close to suitable trivial solutions. Any constant vectorB0Þ0 provides a trivial solutionb=B0, v
=0 and a corresponding family of diffeomorphisms isXst ,s,r ,ud=sB0+rD0+uB03D0, where
D0Þ0 is arbitrarily chosen such thatB0·D0=0. Then, for any initial conditionsb,vd chosen
sufficiently close to the trivial solution, Eq.s3.2d has a global smooth solution. Indeed, it is enough
to sid introduce an initial diffeomorphismXs0,s,r ,ud implicitly defined by

]sXs0,s,r,ud = bs0,Xs0,s,r,udd,

sii d for each fixedss,ud solve the wave equations3.7d with m=0 and
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]tXs0,s,r,ud = vs0,Xs0,s,r,udd,

siii d ensure that, for allt, ss,r ,ud→Xst ,s,r ,ud still is a diffeomorphism ofR3, by choosing initial
datasb,vds0,xd sufficiently close tosB0,0d, sivd globally define a solutionsb,vd to s3.2d by

]sXst,s,r,ud = bst,Xst,s,r,udd, ]tXst,s,r,ud = vst,Xst,s,r,udd.

So, we see that the high field limit equations formally derived from the ABI system do have global
smooth solutions in the neighborhood of some trivial solutions. This is also true for the original BI
equations, as shown by Chae and Huh.3 We conjecture the same property for the ABI system.
sConcerning the existence of global classical solutions for the gas dynamics equations, we refer to
Ref. 7.d

IV. A CRUDE ASYMPTOTIC ANALYSIS

According to well-known results on symmetric system of first-order PDEs,13 there is a posi-
tive continuous functionu attached to systems2.6d such that, for all initial conditionsW0 belong-
ing to theshomogeneousd Sobolev spaceHs, wheres.3/2+1 isfixed ssays=3d, there is a unique
strong solutiont→Wstd to s2.6d such thatWs0d=W0, defined at least in the time interval
f−T,Tg whereT=usiW0isd. In addition, this solution depends continuously onW0 in the space
C0sf−T,Tg ,Hs8d for all s8,s. Thus, we get without effort the following asymptotic result.

Theorem 4.1:Let eP g0,1g. Let W0e=st0e ,v0e ,b0e ,d0ed be a smooth initial condition, depend-
ing one, uniformly bounded in Hs for some s.3/2+1,distant from W0=s0,v0,b0,d0d by e in Hs8

norm for some s8,s. Then, there is a time intervalf−T,Tg, where T.0 does not depend one,
such that systems (2.6) and (3.1) both have a unique strong solution We=ste ,ve ,be ,ded and
sv ,b,dd, with respective initial condition W0e and sv0,b0,d0d on f−T,Tg. Moreover, their distance
in C0sf−T,Tg ,Hsd norm is of ordere.

Of course, in the special case whend0=0, the limit equations3.1d reduces to the “string
equation” s3.2d. Similarly, asb0=d0, s3.1d reduces tos3.3d. Let us point out that this result is
obtained without effort, because of the remarkable structure of the nonconservative augmented
version of the BI equations. A direct asymptotic analysis of theoriginal BI equationss2.1d would
have been considerably more difficult.

Need for refined asymptotic results:The main weakness of Theorem 4.1 is that the uniform
existence timeT is not at all optimal. Indeed,T depends on theHs norm of the initial conditions,
which is very far from being sharp. As a matter of fact, in many situations the optimal existence
timesT* for the limit systemss3.1d–s3.3d can be explicitly computed. Therefore, we want a sharper
existence time of formT=T* +Osed. This goal will be achieved in the next section through more
refined arguments.

V. REFINED ASYMPTOTIC ANALYSIS

Consider IVPs of the ABI systems2.6d for s2.7d with s2.8dg with initial data W0e, which
depends one in a certain topological space. Suppose an approximate smooth solutionWe

=Wesx,td has been constructedssee the next sectiond and is well defined forsx,tdPV3 f0,T*g
with a certainT* .0. HereV stands for the three-dimensional torussfor simplicity, we consider
periodic initial data onlyd. Definethe residualof We as

R= RsWed ª Wet + o
j=1

3

AjsWedWexj
. s5.1d

This section is devoted to the proof of the following general result.
Theorem 5.1: Let sù3 be an integer. Suppose W0ePHs for eache different from a certain

singular pointssay0d, Wes· ,tdPHs+1, and
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d ª iW0e − Wes·,0dis
2 +E

0

T*

iRs·,tdis
2 dt → 0

as e approaches to the singular point0. Moreover, suppose there is a10310-matrix Le, which is
bounded and invertible foreÞ0, such that uLe

−1uÎd→0 as e→0, supeiLe
−1W0eis,`, and

supt,eiLe
−1Wes· ,tdis+1,`.

Then there is a neighborhood ofe=0 such that, for alle in the neighborhood, the ABI system
(2.6) with initial data W0e has a unique classical solution

We P Csf0,T*g,Hsd.

Moreover, the error estimate

iWes·,td − Wes·,tdis ø KÎd, ∀ t P f0,T*g, s5.2d

holds with K a constant independent ofe.
Proof: SetUe=Le

−1We for eÞ0. Thens5.1d becomes

Uet + o
j=1

3

AjsUe,edUexj
= Le

−1R s5.3d

with

AjsU,ed = Le
−1AjsLeUdLe.

Accordingly, we consider the following IVP

Ut + o
j

AjsU,edUxj
= 0,

Usx,0d = Ūsx,ed ª Le
−1W0e. s5.4d

This is a symmetrizable hyperbolic system withA0sU ,edªLe
TLe as its symmetrizer.

Since supeiŪs· ,edis,` and supt,eiUes· ,tdis+1,` with sù3, we deduce from the Sobolev

embedding theorem that bothŪ and Ue take values in a bounded subset of the state spaceR10.
Namely, there is an open setG such that

ø
x,t,e

hŪsx,ed,Uesx,tdj , G , , R10.

Thus, we can chooseG1 so that

G , , G1 , , R10.

For each fixedesÞ0d, sinceŪsx,edPG, ,G1 for all xPV and Ūs· ,edPHs with sù3, it
follows from the local-in-time existence theory13 for IVPs of symmetrizable hyperbolic systems
that there is a maximal timeTe=TesG1d.0 so that the rescaled problems5.4d has a unique
classical solution

Ue P Csf0,Ted,Hsd andUesx,td P G1 ∀ sx,td P V 3 f0,Ted.

Thus we only need to showTe.T* and the error estimate ins5.2d. Moreover, it suffices to prove
the estimates5.2d for tP f0,minhT* ,Tejd, thanks to the continuation principlesLemma 9.1 in Ref.
17, see also the Appendix of this paperd and uLe

−1uÎd→0 ase→0.
Now we turn to derive the error estimates5.2d for tP f0,minhT* ,Tejd. Notice that, in that time

interval, bothUe and Ue are regular. We compute froms5.3d and s5.4d that E=We−We=LesUe

−Ued satisfies
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Et + o
j

AjsWedExj
= R− o

j

AjsEdWexj
.

Here we have used the linearity ofAj =AjsWd with respect toW. Differentiating this equation with
]a for a multi-indexa satisfyinguauøs and settingEa=]aE, we get

Eat + o
j

AjsWedEaxj
= Ra + Fa. s5.5d

Here

Fa = o
j

fAjsWed,]agExj
− Ho

j

AjsEdWexjJ
a

.

Recall thatAjsWeds j =1,2, . . . ,dd are all symmetric. Multiplying the equations5.5d with Ea
T from

the left, we get

suEau2dt + o
j

hEa
TAjsWedEajxj

= 2 ReEa
TsRa + Fad + Ea

THo
j

]AjsWed
]xj

JEa. s5.6d

The right-hand side ofs5.6d is treated as follows:

2 ReEa
TsRa + Fad ø 2uEau2 + uRau2 + uFau2,

s5.7d

o
j

]AjsWed
]xj

ø Co
j

uWxj

e u ø CiWeis,

whereC is a generic constant and the well-known Sobolev inequality has been used. Moreover,
we apply the Moser-type calculus inequalities in Sobolev spaces13 to Fa and obtain

iFai ø CiWexj
isiEiuau + CiWeisiExj

iuau−1

ø CiWeis+1iEiuau + CsiWeis + iEisdiEiuau ø Cs1 + iEisdiEiuau. s5.8d

Here the boundedness ofiWeis+1 is used. Integratings5.6d over sx,tdPV3 f0,Tg with T
,minhTe ,T*j and usings5.7d and s5.8d yields

iEasTdi2 ø iEas0di2 +E
0

T

iRastdi2 dt + CE
0

T

s1 + iEstdis
2diEstdiuau

2 dt. s5.9d

Summing ups5.9d for all multi-indicesa with uauøs, we get

iEsTdis
2 ø iEs0dis

2 +E
0

T

iRstdis
2 dt + CE

0

T

s1 + iEstdis
2diEstdis

2 dt ø d + CE
0

T

s1 + iEstdis
2diEstdis

2 dt.

Applying the Gronwall lemma to the last inequality yields

iEsTdis
2 ø d expFCE

0

T

s1 + iEstdis
2ddtG ; FsTd. s5.10d

Thus, we have

F8std = Cs1 + iEstdis
2dFstd ø CFstd + CF2std.

Applying the nonlinear Gronwall-type inequality in Ref. 16 to the last inequality yields
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iEstdis
2 ø Fstd ø expsCT*d s5.11d

for tP f0,minhTe ,T*jd if Fs0d=d,exps−CT*d. From s5.10d and s5.11d it follows that

iEstdis ø KÎd

for all tP f0,minhTe ,T*jd. This completes the proof. h

We conclude this section with a remark.
Remark 5.1:In caseWesx,td is defined globally in time and the conditions of Theorem 5.1

hold for T* =`, we actually prove the following existence result for the ABI systems2.6d: For any
T,`, there is a neigborhood ofe=0 such that, for alle in the neighborhood, the ABI systems2.6d
with initial dataW0e has a unique classical solution

We P Csf0,Tg,Hsd.

Moreover, the error estimate ins5.2d holds for tøT and the constantK depends onT.

VI. ASYMPTOTIC REGIMES

In this section, we apply Theorem 5.1 to four concrete asymptotic regimes. For simplicity, we
will always take

W0esxd = Wesx,0d.

In addition, we do not make remarks parallel to Remark 5.1.

A. Membrane motion equations

Let e be a small parameter. If the ABI systems2.6d is solved with initial data of the form

tsx,0d = Osed, vsx,0d = Os1d, bsx,0d = Os1d, dsx,0d = Os1d,

it is natural to take

Le = diagse,I3,I3,I3d

in Theorem 5.1. ThisLe is bounded fore!1, invertible foreÞ0 anduLe
−1u=e−1. This is a high field

regime disregarded in Ref. 2. It might be incompatible with the BI regimes2.10d, contrary to the
other ones to be discussed in the following subsections. The rescaled systems5.4d reads

t̃t + ṽ · ¹ t̃ − t̃ div ṽ = 0,

ṽt + ṽ · ¹ ṽ − b̃ · ¹ b̃ − d̃ · ¹ d̃ − e2t̃ ¹ t̃ = 0,

s6.1d
b̃t + ṽ · ¹ b̃ − b̃ · ¹ ṽ + et̃ ¹ 3 d̃ = 0,

d̃t + ṽ · ¹ d̃ − d̃ · ¹ ṽ − et̃ ¹ 3 b̃ = 0.

Here t̃, ṽ, b̃, andd̃ denote the components of the scaled variableU=Le
−1W=st̃ , ṽT,b̃T,d̃TdT.

In order to apply Theorem 5.1 to this regime, we drop the tildes ins6.1d and seek an approxi-
mate solutionWe of the form

We = LeUe, Ue = U0sx,td + eU1sx,td

with the first component ofU1 being 0. Plugging this ansatz intos6.1d, we see thatU0

=st0,v0,b0,d0d solves
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tt + v · ¹ t − t div v = 0,

vt + v · ¹ v − b · ¹ b − d · ¹ d = 0,

s6.2d
bt + v · ¹ b − b · ¹ v = 0,

dt + v · ¹ d − d · ¹ v = 0

andU1=s0,v1,b1,d1d satisfies

vt + v0 · ¹ v − b0 · ¹ b − d0 · ¹ d = − v · ¹ v0 + b · ¹ b0 + d · ¹ d0,

bt + v0 · ¹ b − b0 · ¹ v = b · ¹ v0 − v · ¹ b0 − t0 ¹ 3 d0, s6.3d

dt + v0 · ¹ d − d0 · ¹ v = d · ¹ v0 − v · ¹ d0 + t0 ¹ 3 b0.

Notice that the last three equations ins6.2d are justs3.1d.
Now we solves6.2d ands6.3d to obtainU0 andU1. Note that the last three equations ins6.2d

form a symmetric hyperbolic system of nonlinear equations. By the local existence theory8,13 for
IVPs of symmetrizable hyperbolic systems, ifsv0,b0,d0ds· ,0dPHs with sù3, then there isT*

.0 such that the corresponding IVP has a unique classical solutionsv0,b0,d0dPCsf0,T*g ,Hsd.
With v0 thus obtained, we obtaint0PCsf0,T*g ,Hs−1d by solving the first equation ins6.2d:

tt + v0 · ¹ t − t div v0 = 0,

which is a linear equation, withts· ,0dPHs−1. Similarly, by using the existence theory8 for IVPs of
linear symmetrizable hyperbolic systems, we obtainU1=s0,v1,b1,d1dPCsf0,T*g ,Hs−1d by solv-
ing s6.3d with appropriate initial data.

With Ue=U0+eU1PCsf0,T*g ,Hs−1d thus obtained, it is easy to see that the residualR, defined
in s5.1d, satisfies

R= e2Os1d P Csf0,T*g,Hs−2d.

Thus, we deduce the following conclusion from Theorem 5.1, together with Corollary 1 of Theo-
rem 2.2 in Ref. 13—a continuation principle.

Corollary 6.1: Let sù3 be an integer. Assume W0esxd=Wesx,0dPHs+2. Then there exists T*
.0 and e0.0 such that, for eacheP s0,e0g, the ABI system (2.6) with initial data W0e has a
unique classical solution

We = ste,ve,be,ded P Csf0,T*g,Hs+2d.

Moreover, the error estimates

iste − et0,v
e − v0 − ev1,b

e − b0 − eb1,d
e − d0 − ed1ds·,tdis ø Ke2,

for tP f0,T*g, hold with K a constant independent ofe. In particular, we have

iste,ve − v0,b
e − b0,d

e − d0ds·,tdis = eOs1d.

Remark 6.1:Theorem 5.1 claims thatWePCsf0,T*g ,Hsd. SinceW0e=Wes· ,0dPHs+2, it fol-
lows from Corollary 1 of Theorem 2.2 in Ref. 13 that this solutionWe has better regularity, that is,

We P Csf0,T*g,Hs+2d.

This argument applies to Corollaries 6.2–6.4 in the following subsections.
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B. String motion equations

Consider the ABI systems2.6d with initial data of the form

tsx,0d = Osed, vsx,0d = Os1d, bsx,0d = Os1d, dsx,0d = Osed

with e!1. This is the high field regime considered in Ref. 2. As in the preceding subsection, we
take

Le = diagse,I3,I3,eI3d

in Theorem 5.1. ThisLe is bounded fore!1, invertible foreÞ0 anduLe
−1u=e−1. Then the rescaled

systems5.4d reads

tt + v · ¹ t − t div v = 0,

vt + v · ¹ v − b · ¹ b − e2d · ¹ d − e2t ¹ t = 0,

s6.4d
bt + v · ¹ b − b · ¹ v + e2t ¹ 3 d = 0,

dt + v · ¹ d − d · ¹ v − t ¹ 3 b = 0.

Dropping thee2 terms, we obtain

tt + v · ¹ t − t div v = 0,

vt + v · ¹ v − b · ¹ b = 0,

s6.5d
bt + v · ¹ b − b · ¹ v = 0,

dt + v · ¹ d − d · ¹ v − t ¹ 3 b = 0.

Notice that the second and third equations ins6.5d are justs3.2d.
To solves6.5d, we note that the second and third equations ins6.5d form a symmetric hyper-

bolic system of nonlinear equations. Thus, ifsv ,bds· ,0dPHs with sù3, then there isT* .0 such
that the corresponding IVP has a unique classical solutionsv0,b0dPCsf0,T*g ,Hsd. With v0 andb0

thus obtained, we see from the existence theory8 for linear problems that the decoupled hyperbolic
system of linear equations,

tt + v0 · ¹ t − t div v0 = 0,

dt + v0 · ¹ d − d · ¹ v0 − t ¹ 3 b0 = 0,

with appropriate initial data, has a unique classical solutionst0,d0dPCsf0,T*g ,Hs−1d.
Now we takeWe=LeUe in Theorem 5.1 withUe obtained above. It is clear that the residualR,

defined ins5.1d, satisfies

sup
t

ie−2Rs·,tdis−2 , `.

Thus we deduce the following conclusion from Theorem 5.1, together with Corollary 1 of Theo-
rem 2.2 in Ref. 13.

Corollary 6.2: Let sù3 be an integer. Assume W0e=Wes· ,0dPHs+2. Then there ise0.0 such
that, for all eP s0,e0g, the ABI system (2.6) with initial data W0e has a unique classical solution

We = ste,ve,be,ded P Csf0,T*g,Hs+2d.
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Moreover, the error estimates

iste − et0,v
e − v0,b

e − b0,d
e − ed0ds·,tdis ø Ke2, ∀ t P f0,T*g,

hold with K a constant independent ofe.
The interested reader can derive Corollary 6.2 directly from Corollary 6.1 with initial data

satisfyingsv1,b1,d0dsx,0d=0.

C. Particle motion equations

Now we consider the ABI systems2.6d with initial data of the form

tsx,0d = Ose2d, vsx,0d = Os1d, bsx,0d = Osed, dsx,0d = Osed

with e!1. This is the very high field regime considered in Ref. 2. As in the preceding subsections,
we take

Le = diagse2,I3,eI3,eI3d

in Theorem 5.1. ThisLe is bounded fore!1, invertible foreÞ0 anduLe
−1u=e−2. Then the rescaled

systems5.4d reads

tt + v · ¹ t − t div v = 0,

vt + v · ¹ v − e2b · ¹ b − e2d · ¹ d − e4t ¹ t = 0,

s6.6d
bt + v · ¹ b − b · ¹ v + e2t ¹ 3 d = 0,

dt + v · ¹ d − d · ¹ v − e2t ¹ 3 b = 0.

In order to see what Theorem 5.1 means for this rescaled system, we look for an approximate
solutionWe of the form

We = LeUe, Ue = st0,v0 + e2v1,b0,d0dsx,td.

Plugging this ansatz intos6.6d, we see thatst0,v0,b0,d0d should solve

tt + v · ¹ t − t div v = 0,

vt + v · ¹ v = 0,

s6.7d
bt + v · ¹ b − b · ¹ v = 0,

dt + v · ¹ d − d · ¹ v = 0

andv1 should satisfy

vt + v0 · ¹ v + v · ¹ v0 = b0 · ¹ b0 + d0 · ¹ d0. s6.8d

Notice that the second equation ins6.7d is just s3.3d.
As in the preceding subsections, Eqs.s6.7d ands6.8d can be solved by using the local-in-time

existence theorey8,13 for IVPs of quasilinear and linear symmetrizable hyperbolic systems. In
particular, if initial data fors6.7d satisfy v0s· ,0dPHs+3 and st0,b0,d0ds· ,0dPHs+2, then there
existsT* .0 so that the corresponding IVP has a unique classical solutionst0,v0,b0,d0d satisfying

v0 P Csf0,T*g,Hs+3d, st0,b0,d0d P Csf0,T*g,Hs+2d.

Moreover, ifv1s· ,0dPHs+1, then the IVP ofs6.8d has a unique classical solution
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v1 P Csf0,T*g,Hs+1d.

With We thus obtained, it is easy to see that the residualR, defined ins5.1d, satisfies

R= e3 diagse,eI3,I3,I3dOs1d P Csf0,T*g,Hsd.

Thus we haveiRs· ,tdis=e3Os1d and the following corollary from Theorem 5.1 together with
Corollary 1 of Theorem 2.2 in Ref. 13.

Corollary 6.3: Let sù3 be an integer. Assume W0e=Wes· ,0dPHs+3. Then there ise0.0 such
that, for all eP s0,e0g, the ABI system (2.6) with initial data W0e has a unique classical solution

We = ste,ve,be,ded P Csf0,T*g,Hs+3d.

Moreover, the error estimates

iste − e2t0,v
e − v0 − e2v1,b

e − eb0,d
e − ed0ds·,tdis ø Ke3,

for tP f0,T*g, hold with K a constant independent ofe.

D. The Maxwell equations

Finally, we consider the ABI systems2.6d with initial data of the form

tsx,0d = 1 +Ose2d, vsx,0d = Ose2d, bsx,0d = Osed, dsx,0d = Osed

with e!1. This is the low field regime considered in Ref. 2. As in the preceding subsections, we
take

Le = diags1,e2I3,eI3,eI3d

in Theorem 5.1. ThisLe is bounded fore!1, invertible foreÞ0 anduLe
−1u=e−2. Then the rescaled

systems5.4d reads

tt + e2v · ¹ t − e2t div v = 0,

vt + e2v · ¹ v − b · ¹ b − d · ¹ d − e−2t ¹ t = 0,

s6.9d
bt + e2v · ¹ b − e2b · ¹ v + t ¹ 3 d = 0,

dt + e2v · ¹ d − e2d · ¹ v − t ¹ 3 b = 0.

In order to apply Theorem 5.1 to this case, we seek an approximate solutionWe of the form

We = LeUe, Ue = s1 + e2t1,v0,b0,d0d.

Plugging this ansatz intos6.9d, we see thatsv0,b0,d0d solves

vt − b · ¹ b − d · ¹ d − ¹ t1 = 0,

bt + ¹ 3 d = 0, s6.10d

dt − ¹ 3 b = 0

andt1 satisfies

tt − div v0 = 0. s6.11d
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Having s6.10d ands6.11d, we determineUe as follows. By solving the last two lines ins6.10d
sthe standard linear Maxwell equationsd, we obtainb0 andd0. Thenv0 andt1 solve the inhomo-
geneous linear hyperbolic system

vt − ¹ t = b0 · ¹ b0 + d0 · ¹ d0,

tt − div v = 0.

Note that here solved are only hyperbolic systems of linear equations with constant coefficients.
Assumesb0,d0,v0,t1ds· ,0dPHs. It is easy to see thatWePCsf0,`d ,Hs−1d and the residualR

satisfies

R= e3 diagse,eI3,I3,I3dOs1d P Csf0,`d,Hs−2d.

ThusiRs· ,tdis−2=e3Os1d. In conclusion, from Theorem 5.1 and Corollary 1 of Theorem 2.2 in Ref.
13 we have the following.

Corollary 6.4: Let sù3 be an integer. Assume W0e=Wes· ,0dPHs+2. Then for any T.0 there
is e0.0 such that, for eacheP s0,e0g, the ABI system (2.6) with initial data W0e has a unique
classical solution

We = ste,ve,be,ded P Csf0,Tg,Hs+2d.

Moreover, the error estimates

iste − 1 −e2t1,v
e − e2v0,b

e − eb0,d
e − ed0ds·,tdis ø Ke3,

for tP f0,Tg, hold with K a constant independent ofe but dependent on T.
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APPENDIX: A CONTINUATION PRINCIPLE FOR SINGULAR LIMIT PROBLEMS

For the convenience of the reader, we present in this appendix the convergence-stability
lemma previously formulatedsYong thanks Heinrich Freistühler and Denis Serre for pointing out
two errors in an earlier version of this formulation. Thanks also go to Ya-Guang Wang for valuable
discussions which improve the presentationd by Yong in Ref. 17 for IVPs of quasilinear symme-
trizable hyperbolic systems dependingssingularlyd on parameters

Ut + o
j=1

d

AjsU,edUxj
= QsU,ed sA.1d

for xPV=Rd or Td sthe d-dimensional torusd. Here e represents a parameter in atopological
space, AjsU ,eds j =1,2, . . . ,dd andQsU ,ed are smatrix- or vector-valuedd smooth functions ofU
PG,Rn sstate spaced for eache spossibled different from a certain singular point, say 0.

For each fixedesÞ0d, consider the IVP ofsA.1d with initial data Ūsx,ed. AssumeŪsx,ed
PG0, ,G for all xPV and Ūs· ,edPHs with s.d/2+1 aninteger. LetG1 be a subset of the
state space and satisfyG0, ,G1 fsee sA.3d belowg. According to the local-in-time existence
theory for IVPs of symmetrizable hyperbolic systemsssee Theorem 2.1 in Ref. 13d, there exists

T.0 so thatsA.1d with initial dataŪsx,ed has a unique classical solution,

Ue P Csf0,Tg,Hsd andUesx,td P G1 ∀ sx,td P V 3 f0,Tg.

Define
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Te = suphT . 0:Ue P Csf0,Tg,Hsd andUesx,td P G1 ∀ sx,td P V 3 f0,Tgj. sA.2d

Namely,f0,Ted is the maximal time interval for the existence ofHs-solutions with values inG1.
Note thatTe=TesG1d depends onG1 and may tend to zero ase approaches to the singular point 0.

In order to show thatlime→0 Te.0, we make the following assumption.
Convergence assumption:there existsT* .0 andUe=Uesx,td defined forsx,tdPV3 f0,T*g

andesÞ0d, satisfying

ø
x,t,e

hUesx,tdj , , G, Ues·,td P Hs, and sup
t,e

iUes·,tdis , `,

such that fortP f0,minhT* ,Tejd,

sup
x,t

uUesx,td − Uesx,tdu = os1d,

sup
t

iUes·,td − Ues·,tdis = Os1d,

ase goes to the singular point.
Under this assumption, we slightly modify the argument in Ref. 16 to prove the following.

Lemma 6.5: Suppose Us̄x,edPG0, ,G for all xPV and esÞ0d, Ūs· ,edPHs with s.d/2
+1 an integer, and the convergence assumption holds. Then, for each G1 satisfying

G0 ø
x,t,e

hUesx,tdj , , G1 , G, sA.3d

there is a neighborhood of the singular point such that

TesG1d . T*

for all e in the neighborhood.
Proof: Otherwise, there is aG1 satisfying sA.3d and a sequencehekjkù1 such that limk→`ek

=0 andTek
=Tek

sG1døT* . Thanks tosA.3d and the convergence assumption, there existsG̃, satis-

fying øx,t,ehUesx,tdj, ,G̃, ,G1, and a certaink such thatUeksx,tdPG̃ for all sx,tdPV
3 f0,Tek

d. On the other hand, we deduce from

iUes·,tdis ø iUes·,td − Ues·,tdis + iUes·,tdis

and the convergence assumption thatiUeks· ,tdis is bounded uniformly with respect totP f0,Tek
d.

Now we could apply Theorem 2.1 in Ref. 13, beginning at a timet less thanTek
sk is fixed hered,

to continue the solution beyondTek
sG1d. This contradicts the definition ofTek

sG1d in sA.2d and,
hence, the proof is complete. h

To our knowledge, such a sharp continuation principle has not appeared explicitly in the
published literature other than Ref. 17. Thanks to this lemma, the study of the singular limit
problems is reduced to find aUesx,td such that the convergence assumption holds. In verifying the
two error estimates in the convergence assumption, we often takeG1 satisfyingG1, ,G and
being convex. Furthermore, we notice that, in the time intervalf0,minhT* ,Tejd, bothUe andUe are
regular and take values in the precompact subsetG1.

Remark:Similar lemmas can be easily formulated for other evolution differential equations. In
fact, such a lemma can be regarded as a part of the local-in-time existence theory of any evolution
equations.
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We discuss the asymptotic behavior of regulated field commutators for linearly
polarized, cylindrically symmetric gravitational waves and the mathematical tech-
niques needed for this analysis. We concentrate our attention on the effects brought
about by the introduction of a physical cutoff in the study of the microcausality of
the model and describe how the different physically relevant regimes are affected
by its presence. Specifically we discuss how genuine quantum gravity effects can
be disentangled from those originating in the introduction of a regulator. ©2005
American Institute of Physics.fDOI: 10.1063/1.1864251g

I. INTRODUCTION

Linearly polarized cylindrical waves, also known as Einstein-Rosen waves,1,2 provide a sym-
metry reduction of general relativity that can be used as a test bed for the quantization of the
theory. This system displays several interesting features that contribute to its relevance. On one
hand, it has an infinite number of local degrees of freedom and, hence, it is a genuine quantum
field theorysin contradistinction to other symmetry reductions, such as Bianchi models, that have
a finite number of global degrees of freedomd. On the other, the system is tractable both classically
and quantum mechanically, thus allowing us to derive exact consequences independent of any
approximation scheme.3–8 The main reason behind this success and tractability is the fact that the
gravitational degrees of freedom of the model are encoded in a free, massless, axially symmetric,
scalar field that evolves in an auxiliary Minkowskian background.

In previous papers we have analyzed the issue of microcausality in this system; in particular,
we have studied in detail the smearing of light cones owing to the quantization of the gravitational
field.7,8 The main tool for this type of analysis is the studyin vacuo of the field commutator
evaluated at different space–time points. As is well known, the commutator of quantum fields
reflects the causal structure of space–timesMinkowskian space–time in ordinary perturbative
quantum field theoryd in the sense that the quantum fields in spatially separated space–time points
commute. This is true for all standard types of quantum fields, i.e., scalar, fermion, or vector fields,
though issues related to gauge invariance must be carefully considered in this last case. In the
specific model that we are interested in, gauge invariance has been discussed in Ref. 9. The
authors of that paper conclude that it is correct to use the Ashtekar-Pierri gauge fixed action,
written in terms of the axially symmetric scalar field, to derive gauge invariant information about
the model.

adElectronic mail: fbarbero@iem.cfmac.csic.es
bdElectronic mail: mena@iem.cfmac.csic.es
cdElectronic mail: ejsanche@math.uc3m.es
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In a recent work8 we discussed the situation when no cutoff is introduced in the system,
studying the unregulated commutator. The main results reached were the following. First, one can
clearly see that light cones are smeared by quantum gravity effects; in fact it is possible to obtain
a quantitative measure of this smearing and show how sharp light cones are recovered in the limit
of large distances as compared to the natural length scale of the model, the Planck length. It is also
interesting to point out that the asymptotic behavior of the commutator in the different physically
relevant regimes strongly depends on the causal relationship between the different space–time
points involved. Second, one finds a singularity structure in the commutator that differs from that
of the free theory; in particular, the field commutator for equal values of the radial coordinateR is
singular. Finally, one observes that, in the case when one of the space–time points that appear in
the commutator corresponds to the symmetry axis, there are quantum effects that persist for large
values of the difference of the time coordinates. This effect is reminiscent of the large quantum
gravity effects first discussed by Ashtekar.4,6,10,11

The purpose of this paper is to study how the conclusions of Ref. 8 are changed by the
introduction of a cutoff. As is well known, regulators are generally necessary in order to have
well-defined quantum field theories. One can justify its use, for example, by noticing that the
action of the field operator on the vacuum in a Fock space is not a vector in the Hilbert space
because it has infinite norm. In order to have a well-defined action of the field operator one
regulates it by introducing smearing functions that render the norms of these states finite. The
problem then consists in removing these regulatorssor rather showing that the physical results are
independent of themd.

In principle, it is possible to argue that the results derived in the absence of regulators
somehow approximate those derived after their introduction; this is straightforward to see in the
case of cutoffs. In the presence of a cutoffL, the improper integrals that define the field commu-
tator become proper because the integration region is a closed intervalf0,Lg. For a given value of
the parameters that appear in the integralsinvolving the values of the space–time coordinates of
the quantum fields and the gravitational constantd it is always possible to choose a value forL

such that the integral with the cutoff is well approximated by the integral extended tof0,`d.
Of course it is conceivable that the cutoff is not just a mathematical device but rather a

physical scale defining a fundamental limit for the resolution of our measurements. If space–time
becomes discrete at short distancesssuch as the Planck lengthd, the continuum space–time picture
breaks down and, certainly, it would be difficult to justify the extension of the integrals involved
in the definition of field commutatorssor Smatrix elements, for that matterd to infinite intervals in
momentasinverse lengthd. Our point of view here is that the introduction of a cutoff can mimic
some of the effects appearing after a successful quantization of gravitysfor example, in the loop
quantum gravity approachd, and hence we plan to study its effect within the consistent framework
provided by the Einstein-Rosen waves. It is also interesting to point out here that the cutoff by
itself can produce some of the effects expected from quantum gravity. In particular, it is possible
to show that light cones are also smeared by cutoffs.12 In our opinion this makes it necessary to
study in detail how the effects of the cutoff and quantum gravity can be disentangled.

The paper is organized as follows. After this introduction, we briefly review the main results
about microcausality in quantum cylindrical gravitational waves and introduce the commutators
that we will discuss in the rest of the paper. We will then study the field commutators in the
presence of a cutoff with the help of the asymptotic techniques already employed in Ref. 8. Here
the situation is simpler because we will only have to consider integrals over closed intervals. We
will discuss one by one the asymptotic behaviors in the different parameters involved. In Sec. VI
we will derive a power series expansion in the gravitational constant for the commutator in the
presence of a cutoff in the spirit of ordinary perturbative quantum field theory, and discuss the
uniform convergence of this series under appropriate conditions on the cutoff in Sec. VII. We end
the paper with a discussion of our results and our conclusions.
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II. THE FIELD COMMUTATOR

Einstein-Rosen waves describe topologically trivial space–times with two linearly indepen-
dent, commuting, spacelike, and hypersurface orthogonal Killing vector fields1,2,13 endowed with
a metric that can be written as

ds2 = eg−cs− dT2 + dR2d + e−cR2du2 + ecdZ2. s1d

Here we use the coordinatessT,R,u ,Zd, TPR, RP f0,`d, uP f0,2pd, ZPR, andc and g are
functions only ofR andT. The Einstein field equations are very simple. The scalar fieldc satisfies
the wave equation for a massless, axially symmetric scalar field in three dimensions,

]T
2c − ]R

2c −
1

R
]Rc = 0,

and the functiong can be expressed in terms of this field3,6 as

gsRd =
1

2
E

0

R

dR̄R̄fs]Tcd2 + s]R̄cd2g.

We will use in the following a system of units such thatc="=1 and defineG;"G3, whereG3

denotes the gravitational constant per unit length in the direction of the symmetry axis.14 The
function gsRd sapart from a factor of 8Gd has a simple physical interpretation: it is the energy of
the scalar field in a ball of radiusR whereasg` denotes limR→`gsRd sthe energy of the whole
two-dimensional flat spaced. It is also possible to show3,7 that g` / s8Gd coincides with the Hamil-
tonianH0 of the system obtained by a linearization of the metrics1d.

In order to have a unit asymptotic timelike Killing vector and a physical notion of energysper
unit lengthd we introduce the coordinatesst ,R,u ,Zd defined byT=e−g`/2t. In these coordinates the
metric takes the form2,13

ds2 = eg−cs− e−g`dt2 + dR2d + e−cR2du2 + ecdZ2.

By taking a sufficiently fast fall-off forc as R→`, this metric describes asymptotically flat
cylindrical space–times such that]t is a unit timelike Killing vector in the asymptotic region. In
the 2+1-dimensional framework these space–times are asymptotically flat at spacelike and null
infinities15,16 sthe appropriate introduction of null infinity will be needed in order to study theS
matrix of the modeld. It is also worthwhile noting that these space–times have a nonzero deficit
angle.

The Einstein field equations can be obtained from a Hamiltonian action principle.13,17,18A
remarkablesand usefuld feature of the physical HamiltonianH sassociated with the physical time
td is the fact that it is a function of the Hamiltonian corresponding to the free scalar field,H0:

H = EsH0d =
1

4G
s1 − e−4GH0d.

In terms of theT-time and imposing regularity at the axisR=03, the classical solutions for the
field c can be written as

csR,Td = Î4GE
0

`

dkJ0sRkdfAskde−ikT + A†skdeikTg,

whereAskd and its complex conjugateA†skd are fixed by the initial conditions. The free Hamil-
tonianH0 can be written now as
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g`

8G
= H0 =E

0

`

dkkA†skdAskd.

Using this expression, we obtain thet-evolution of the field

cEsR,td = Î4GE
0

`

dkJ0sRkdfAskde−ikte−g`/2
+ A†skdeikte−g`/2

g.

The quantization can be carried out in the usual way by introducing a Fock space where

ĉsR,0d, the quantum counterpart ofcsR,0d, is the operator-valued distribution19 given by20

ĉsR,0;L = `d = ĉEsR,0;L = `d = Î4GE
0

`

dkJ0sRkdfÂskd + Â†skdg. s2d

Its action on Fock space is determined by those ofÂskd and Â†skd, the annihilation and creation

operators, with nonvanishing commutators given byfÂsk1d ,Â†sk2dg=dsk1,k2d.
We can regulate the field by introducing suitable functionsgskd that render finite the norms of

the states obtained by acting with the quantum field on Fock space vectors. In the following we
will make the simplest choicegskd=xf0,Lkgskd sherexfa,bg denotes the characteristic function of the
interval fa,bgd. By doing this the integration region ins2d becomes compact and we have

ĉsR,0d = ĉEsR,0d = Î4GE
0

Lk

dkJ0sRkdfÂskd + Â†skdg. s3d

Evolution in T is given by the unitary operatorÛ0sTd=exps−iTĤ0d, where

Ĥ0 =E
0

`

dkkÂ†skdÂskd

is the quantum Hamiltonian operator of a three-dimensional, axially symmetric scalar field. The
cutoff-regulated quantum scalar field in the Heisenberg picture is hence given by

ĉsR,Td = Û0
†sTdĉsR,0dÛ0sTd = Î4GE

0

Lk

dkJ0sRkdfÂskde−ikT + Â†skdeikTg.

If we describe the evolution in our model in terms of the physical timet, the quantum Hamiltonian

is Ĥ=EsĤ0d=s1−e−4GĤ0d / s4Gd and unitary evolution is given byÛstd=exps−itĤd. With this time
evolution the annihilation and creation operators in the Heisenberg picture are

ÂEsk,td ; Û†stdÂskdÛstd = expf− itEskde−4GĤ0gÂskd,

ÂE
†sk,td = Â†skdexpfitEskde−4GĤ0g,

whereEskd=s1−e−4Gkd / s4Gd, and the regulated field operator evolved with the physical Hamil-

tonian fthat we denote asĉEsR,tdg is given by

ĉEsR,td = Î4GE
0

Lk

dkJ0sRkdfÂEsk,td + ÂE
†sk,tdg.

The field commutatorfĉEsR1,t1d ,ĉEsR2,t2dg can be computed from these expressions.7 Since we
are dealing with an effectively interacting theory this operator is not proportional to the identity in
the Fock space basis that we are using and, hence, we have to consider its matrix elements. As in
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previous work we will concentrate on the vacuum expectation value. If a cutoffLk is introduced,
this is given by

1

8iG
k0ufĉEsR1,t1d,ĉEsR2,t2dgu0l =E

0

Lk

dkJ0sR1kdJ0sR2kdsinF t2 − t1
4G

s1 − e−4GkdG , s4d

which can be seen to depend on the time coordinates only through their differencet2− t1, which we
will assume in the following to be positive. Notice that it depends symmetrically onR1 andR2.
The functional dependence inG is less trivial, a fact that requires special attention when studying
the limit in which the relevant lengths and time differences are much larger than the Planck
length.8

It is convenient to refer the dimensional parameters of these integrals to another length scale,
which we choose asR1. We hence introduceR2=rR1, t2− t1=R1t, andl=R1/4G and rewrites4d as

1

8iG
k0ufĉEsR1,t1d,ĉEsR2,t2dgu0l =

l

R1
JHE

0

Lq

dqJ0slqdJ0srlqdeitls1−e−qdJ s5d

after introducing the new variablek=q/ s4Gd. HereJ denotes the imaginary part andLq=4GLk.
Physically, the cutoffLk swhich in principle has the dimensionality of an inverse lengthd could

be interpreted as having its origin in the existence of a minimum length. This comes out naturally
in loop quantum gravity where space is discrete and the area and volume operators have minimum
eigenvalues of the order of the Planck area and volume, respectively. In fact, the existence of a
minimum lengthsof the size of the Planck scaled can be considered a generic feature of essentially
every quantum theory.21 The interpretation of the adimensional cutoffLq would follow from that
of Lk, so it may be reasonable to expect that it be a number of order unity; nevertheless we will
treat it as a free parameter in the following.

III. ASYMPTOTIC BEHAVIOR IN r

Let us start by considering the behavior ofs5d when the parameterr grows to infinite or
approachesr=0. This integral can be written as a standardh-transform22 by the change of vari-
ablest=ql. The most convenient way to get its asymptotic behavior inr→` is by rewriting it in
the form

1

R1
JFE

0

`

dtJ0srtdJ0stdeitls1−e−t/ld −E
R1Lk

`

dtJ0srtdJ0stdeitls1−e−t/ldG . s6d

One can then use the asymptotic behavior obtained for the first integral in Ref. 8, and find the
asymptotics of the second integral by standard integration by partsfemploying the fact that23

J0skd=−J08skd /k−J09skdg. By doing this one gets the following two contributions:

1

R1
F t

2lr3 +
1

r5S 9t

8l
−

3t

8l3 +
9t2

2l
DG + OS 1

r7D ,

1

rR1
JfJ1sLkR1rdJ0sLkR1deitls1−e−LkR1/ldg + OS 1

r5/2D .

The first one is cutoff independent but subdominant with respect to the second, hence we see
that the presence of a cutoff changes the asymptotic behavior inr. This is the kind of behavior that
one would expect even in a Lorentz covariant theory after the introduction of a cutoff because of
the breaking of the Lorentz symmetry. The novel feature here is the presence of cutoff independent
terms. Although the cutoff-dependent one dominates in the asymptotic limit, there may be a
transient regime, whose onset will be controlled by the value ofLk, in which the asymptotic
behavior is given by the first term. This will be most evident whenLk→`.
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In the r→0 limit we get

1

R1
JE

0

R1Lk

dtJ0stdeitls1−e−t/ld + Osrd =
l

R1
JE

0

Lq

dqJ0slqdeitls1−e−qd + Osrd, s7d

as a result of the continuity atr=0 of the integral defining the commutators5d.

IV. ASYMPTOTIC BEHAVIOR IN t

The integral ins5d has the convenient form of anh-transform and, hence, it can be studied by
standard Mellin transform methods22 if the asymptotic parameter is chosen to ber; however, this
is no longer true if the asymptotic parameter is taken to bet swhich corresponds to considering
large separations in the time coordinatesd. This fact introduces some mathematical difficulties in
the asymptotic analysis. In this case one has to consider the casesr=0 andrÞ0 separately.

If r=0, one finds that the asymptotic behavior whent→` without the cutoff is given by8

1

R1
Î l

2p log t
Jheifsp/4d+tl−l logstldgesp/2dlGsild + e−ifsp/4d−tl−l logstldge−sp/2dlGs− ildj + OS 1

log t
D ,

s8d

whereas forrÞ0 we get

1

2pR1
Îr log t

Jheifsp/2d+tl−ls1+rdlogstldgesp/2dls1+rdGfils1 + rdg

+ e−ifsp/2d−tl−ls1+rdlogstldge−sp/2dls1+rdGf− ils1 + rdg

+ eiftl−ls1−rdlogstldgesp/2dls1−rdGfils1 − rdg

+ eiftl−lsr−1dlogstldgesp/2dlsr−1dGfilsr − 1dgj + OS 1

slog td2D . s9d

The most interesting feature of these expressions is their unusual dependence on the asymptotic
parametert ; in fact, the dependence on inverse powers of logarithmssespecially on the inverse
square root of logtd cannot be obtained by direct application of the usual asymptotic expressions
derived by Mellin transform techniques.8 It is also remarkable how slowly the commutator decays
in t, in particular in the axisr=0, a fact that is suggestive of the large quantum gravity effects
discussed by Ashtekar.4 Outside the axis the decay is faster but still quite slow. A consequence of
the different asymptotic behaviors int for r=0 andrÞ0 is the impossibility to recovers8d as the
limit when r→0 of s9d. As we can see, the frequency of the oscillations of the commutator int
is controlled byl sproportional to the inverse ofGd in such a way that although the amplitude of
the oscillations decays very slowly, they will average to zero on scales larger than the Planck
length.

When we introduce a cutoffLk, the above asymptotic expressions change to

1

R1
JH i

t
f1 − eitls1−e−LkR1/ldeLkR1/lJ0sLkR1dJ0srLkR1dgJ + OS 1

t2D , s10d

valid both for r=0 andrÞ0. This can be obtained by straightforward integration by parts. An
interesting situation develops at this point because the asymptotic behavior of the integral int
behaves in a discontinuous way in the cutoff. In the analysis carried out to study the asymptotic
behavior inr we found out that the cutoff-dependent term, in spite of being dominant, goes to zero
in the limit Lk→`. Here the situation is different: taking nowLk→` in s10d does not lead to the
asymptotic expressions corresponding toLk=`. That is, the asymptotic behavior of the improper
integral in s4d is not the limit whenLk→` of s5d. As in the case of the asymptotics inr, one
expects that there must be a transient regime in which the behavior int of s5d is given bys8d and
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s9d. We will not consider here a precise characterization of this transient behavior for arbitrary
values of the relevant parameters because its main properties can be conveniently discussed, at
least for largel, by looking at thel→` asymptotics of the commutator in thesr ,td plane.

The t→0 limit is easy to analyze. In fact what we find, both with and without the cutoff, is
that the series obtained by expandingeitls1−e−t/ld in powers ofe−t/l, exchanging integration and
infinite sum, and computing the resulting integrals gives a series that converges to the value of the
commutator.

V. ASYMPTOTIC BEHAVIOR IN l

The asymptotic behavior inl is studied by following the procedure described in Ref. 8. It is
worth remarking that the limitl→` of the regulated field commutator cannot be identified with
that in which the gravitational constantG vanishes if one admits that the dimensionful cutoff
Lk,` is kept constant in principle. On the contrary, the two limits could be considered equivalent
only under the assumption thatLk increases as the inverse ofG for small gravitational constant, so
that its dimensionless counterpartLq=4GLk may remain fixed.

The analysis of the asymptotics inl when the cutoff is present is simultaneously simpler in
some respects and more complicated in others compared with the case when no cutoff is intro-
duced. It is simpler because the lengthy analysis needed to discuss the asymptotics of the improper
integral is not necessary now. It is more complicated in the sense that the final asymptotic expres-
sions contain additional terms and also because the number of regions with differentl-asymptotic
regimes in thesr ,td plane increases.

We have to consider now the casesr=0 andrÞ0 separately. Let us consider firstr=0 and
write the rhs ofs5d as8

JH−
ileitl

2pR1
E

0

Lq

dqR
g

dt
1

t
elfsq/2dst−1/td−ite−qgJ , s11d

after using the usual integral representation for the Bessel functionsJn sn=0,1, . . .d,

Jnszd =
1

2pi
R

g

dt

tn+1esz/2dst−1/td,

whereg is a closed, positively oriented, simple path in the complex plane surrounding the origin.
Notice that we are integrating an integrable function in a compact region, so we can write the
integrals in any order we want. The asymptotic analysis ofs11d can be carried out by following the
same steps as in Ref. 8. As we did there, it is useful to introduce neutralizers to split the integral
in three piecesI j, j =1,2,3, andchoose appropriate contours for each of them. These integrals are

I j ; JH−
ileitl

2pR1
E

0

Lq

dqR
g

dtn jsqd
1

t
elfsq/2dst−1/td−ite−qgJ ,

where we have introduced the neutralizer functionsn jsqd, j =1,2,3,satisfyingn1+n2+n3=1 in
f0,Lqg and

n1sqd = 1 if q P f0,a1g,

n1sqd = 0 if q P fa2,Lqg,

n2sqd = 0 if q P f0,a1g ø fb2,Lqg,

n2sqd = 1 if q P fa2,b1g,
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n3sqd = 0 if q P f0,b1g,

n3sqd = 1 if q P fb2,Lqg,

with 0,a1,a2,b1,b2,Lq sthese parameters are chosen as in Ref. 8d. By doing this the
effective integration regions inq aref0,a2g, fa1,b2g, andfb1,Lqg and the boundaryq=0 appears
only in the first.

The asymptotics inl of the integralI1 is best obtained by choosing an integration contour
satisfyingRst−1/tdø0 sthat passes necessarily throught= i andt=−id. By using the same method
of Ref. 8 we see that the first two relevant terms are given by the contour integrals

1

pR1
JHiR

g

dt

t2 + 2itt − 1J ,

−
1

2pR1
JH i

l
R

g

dt
8itt2

st2 + 2itt − 1d3J ,

whose sum gives

1

R1
Ît2 − 1

for t . 1

and

ts1 + 2t2d
2R1ls1 − t2d5/2 for t , 1.

Although the second term will be subdominant with respect to some of the contributions coming
from I2 and I3, it improves the approximation of the full commutator obtained from the asymp-
totics in l in the regiont,1.

The contribution ofI3 to the asymptotics inl is obtained from the contour integralscorre-
sponding to the boundary atq=Lqd

JH ieitl

2pR1
R

g

dt
2

t

st − 1/t + 2ite−LqdeslLq/2dst−1/td−ite−Lq

Lq
2st + 1/td2 − st − 1/t + 2ite−Lqd2 J .

The asymptotics inl of this integral can be easily studied by using the method of steepest
descents. This gives

JH 2ieitls1−e−Lqd

R1st2e−2Lq − 1dÎ2plLq
Fite−Lq sinSlLq −

p

4
D − cosSlLq −

p

4
DGJ .

Finally, the integralI2 sfor which we choose forg the curveutu=1d only contributes when the
stationary points of the exponent are in the integration region. This happens only when 1,t
,eLq. The contribution to the first relevant order inl is8

JH 1

R1

eilst−log t−1d

Îlog t
J .

Adding up the different terms we get
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us1 − td
ts1 + 2t2d

2R1ls1 − t2d5/2 + ust − 1d
1

R1
Ît2 − 1

+ ust − 1duseLq − tdJH 1

R1

eilst−log t−1d

Îlog t
J

+ JH 2ieitls1−e−Lqd

R1st2e−2Lq − 1dÎ2plLq
Fite−Lq sinSlLq −

p

4
D − cosSlLq −

p

4
DGJ , s12d

whereu denotes the step function.
We see that the final result consists of several contributions: the free commutator for an

infinite cutoff, a 1/l correction fort,1, the term with the 1/Îlog t dependence for 1,t,eLq,
and a cutoff-dependent contribution for all values oft that fall off to zero whenLq→`. If the
cutoff goes to infinity, the commutator can be approximated by the one obtained in Ref. 8;
however, if it is of order onesas would be the case if it is defined by the Planck lengthd, then that
approximation is no longer valid. Notice that the values oftP s1,eLqd are those for which the
asymptotics provided by the unregulated commutator are a correct approximation. This is roughly
the transient region in thet parameter mentioned in the previous subsection.

Figures 1–3 show the behavior of the field commutatorsover 8iGd whenr=0 as a function of
t for several values ofLq. As we can see, the asymptotic approximation becomes singular between
regions with different asymptotic regimes, but approximates well the exact value of the commu-
tator sobtained by numerical methodsd for the remaining values oft. Notice that the singularity at
t=eLq of the asymptotic expansion lies outside the plotted region in Figs. 2 and 3.

In order to study therÞ0 case we start by writing the rhs ofs5d as

JH−
leitl

4p2R1
E

0

Lq

dqR
g1

dt1R
g2

dt2
1

t1t2
elfsqdst1−1/t1d/2+rqst2−1/t2d/2−ite−qgJ s13d

after employing the usual integral representation for the Bessel functionsJn sn=0,1, . . .d. Again it
is helpful to introduce the same neutralizers as above to split the integral in three piecesI j, j
=1,2,3.

FIG. 1. Asymptotic approximation inl for the field commutator over 8iG as a function oft for r=0, G=0.02, andLq

=2. We compare it both with a numerical computation of the integral that defines it and with the unregulated free
commutator. As we can see, the approximation is good except at the points where the asymptotic behavior changesst
=1 andt=eLqd. Notice the difference in the amplitude of the oscillations fort,eLq andt.eLq.
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The integralI1 gives the following two contributions:

JH 1

2p2R1
R

g1

dt1R
g2

dt2
1

rt1st2
2 − 1d + t2st1

2 + 2itt1 − 1dJ s14d

and

JH−
2it

p2R1l
R

g1

dt1R
g2

dt2
t1
2t2

2

frt1st2
2 − 1d + t2st1

2 + 2itt1 − 1dg3J . s15d

Both integrals can be computed exactly8 in terms of complete elliptic integrals of first and second
kinds. The first one gives the contribution of the unregulated free commutatorsi.e., with infinite
cutoffd.

In order to describe it we define regions I, II, and III by 0,t, ur−1u, ur−1u,t,r+1, and
r+1,t, respectively. They are shown in Fig. 4. In region I the free commutator is zero, whereas
in regions II and III it is given by

region II,

1

pR1
Îr

KSÎt2 − sr − 1d2

4r
D ,

FIG. 2. Asymptotic approximation inl for the field commutator over 8iG as a function oft for r=0, G=0.02, andLq

=4 scompared both with a numerical computation of the integral that defines it and with the unregulated free commutatord.
As we can see, the asymptotic approximation is good except att=1. Notice that the cutoff introduces a modulation of the
amplitude in the region 1,t,eLq. The singularity of the asymptotic approximation att=eLq lies outside the plotted
region.
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region III,

2

pR1

1
Ît2 − s1 − rd2

KSÎ 4r

t2 − s1 − rd2D .

The second contributions15d can be computed by the method outlined in Appendix IV of Ref. 8,
obtaining

region I,

t

2pR1l
H2f1 + r4 + 2t2 − 3t4 + 2r2st2 − 1dgÎs1 + rd2 − t2

s1 + r − td2s1 − r + td2s− 1 +r + td2s1 + r + td2 ESÎ 4r

s1 + rd2 − t2D
−

2t2

fr4 + st2 − 1d2 − 2s1 + t2dr2gÎs1 + rd2 − t2
KSÎ 4r

s1 + rd2 − t2DJ , s16d

region II,

t

2pR1l
H1 − 2r2 + r4 + t2 − 2rt2 + r2t2 − 2t4

Îrfs1 − rd2 − t2gfs1 + rd2 − t2g2
KSÎs1 + rd2 − t2

4r
D

+
4Îrf1 − 2r2 + r4 + 2t2 − 3t4 + 2r2t2g

fr4 + st2 − 1d2 − 2s1 + t2dr2g2 ESÎs1 + rd2 − t2

4r
DJ . s17d

The value ofs15d in region III is zero.

FIG. 3. Asymptotic approximation inl for the field commutator over 8iG as a function oft for r=0, G=0.02, andLq

=10 scompared both with a numerical computation of the integral that defines it and with the unregulated free commuta-
tord. As we can see, the asymptotic approximation is good except att=1. The asymptotic approximation obtained in Ref.
8 is good in a large region in thet axis. The singularity of the asymptotic approximation att=eLq lies outside the plotted
region.
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The integralI3, on the other hand, can also be studied by the methods described in Ref. 8. The
first relevant term to its asymptotic expansion in inverse powers ofl is derived from the double
contour integral

JH eitl

4p2R1
R

g1

dt1R
g2

dt2
2

t1t2

ft1 − 1/t1 + rst2 − 1/t2d + 2ite−LqgelfsLq/2dst1−1/t1d+rsLq/2dst2−1/t2d−ite−Lqg

Lq
2fst1 + 1/t1d2 + r2st2 + 1/t2d2g − ft1 − 1/t1 + rst2 − 1/t2d + 2ite−Lqg2J ,

s18d

corresponding toq=Lq and whose asymptotic behavior can be determined by employing standard
techniques for multiple integrals.22 In this way we obtain the following contribution:

1

2pR1LqlÎr
HsinflLqs1 + rd − tls1 − e−Lqdg

1 + r − te−Lq
−

sinflLqs1 + rd + tls1 − e−Lqdg
1 + r + te−Lq

+
cosflLqs1 − rd − tls1 − e−Lqdg

1 − r − te−Lq
−

cosflLqs1 − rd + tls1 − e−Lqdg
1 − r + te−Lq

J . s19d

Finally, the integralI2 is written in terms of a neutralizer that vanishes atq=0 andq=Lq. This
integral is best studied by choosing the unit circumference centered in the origin of the complex
plane as the integration contourg. The contributions of this integral to the asymptotics ofs13d
come from the stationary points of the exponent in the integrand whenever they are within the
integration region. This fact is controlled by the value of the cutoffLq. The result is

hust − r + 1dufsr − 1deLq − tgusr − 1d

+ ust + r − 1dufs1 − rdeLq − tgus1 − rdjJH e−ip/4eilft+ur−1us1+logt/ur−1udg

R1
Î2plru1 − rulogt/u1 − ruJ

+ ust − r − 1dufsr + 1deLq − tgJH eip/4eilft+sr+1dslog1+r/t−1dg

R1
Î2plrs1 + rdlogt/1 + r

J ,

where the step functions define the regions where the different stationary points contribute. As we
can see and it is explained in Fig. 5, there are two contributions in some parts of thesr ,td plane,

FIG. 4. Regions in thesr ,td plane used in the discussion of thel asymptotics and the free commutator. Region I is defined
by 0,t, ur−1u, region II by ur−1u,t,r+1, and region III byr+1,t.
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only one in some other parts, and no contribution in the remaining ones. Notice that, whenever
they differ from zero, these contributions are dominant with respect to those coming from the
other integrals.

Several points are now in order. First it is interesting to realize that the singularity atr=1 that
exists when the cutoff is taken to be infinitesand is obviously absent nowd shows up as the region
defined by the linest=eLqs1−rd, t=eLqsr−1d, and t=eLqsr+1d shrinks with growingLq. An-
other interesting feature of the commutator when the cutoff is present is the appearance of some
regions where the leading asymptotic behavior is not given by the expressions obtained in Ref. 8
for infinite cutoff, namely the regions witht. u1−ru labeled 0 in Fig. 5 and the region labeled 1
that connects them. On the contrary, there are two regions where two stationary points contribute
to the asymptotics just as in theLq→` case, showing the characteristic slow decay in thet
direction.24 Of these two regions, the one closer to the axis is bounded, whereas the second one

FIG. 5. Regions in thesr ,td plane used in the discussion of thel asymptotics in the presence of a cutoffLq=1. The label
of each region indicates how many critical points contribute to the asymptotic expansion inl.
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fdefined by the linest=eLqsr−1d andt=r+1g is not. The effect of the symmetry axis is evident
in the sense that it is precisely there where one of the lines that limits the boundary of this region
starts, namelyt=r+1.

As we can see, the influence of the cutoff is important in some parts of thesr ,td plane, but
there are others where the asymptotic behavior is described at leading orderssd by the unregulated
l→` limit. The consideration of these different regions helps in describing the intermediate
regimes where the infinite cutoff approximation is expected to work, at least for large values ofl.
Finally, we want to point out that the most dramatic quantum effect observed when the cutoff is
infinite, the very slow falloff of the commutator at the axis in thet direction, is no longer present
after introducing a regulator. This casts some doubts about the “observability” of large quantum
gravitational fluctuations at the axis. These behaviors can be visually appreciated in Figs. 6–9.

VI. POWER EXPANSION IN G

In the above sections we have discussed the asymptotics of the regulated field commutator as
a function ofr, l, andt. These are dimensionless parameters obtained by usingR1 as a length
scale. We want to discuss now the possibility of expanding this commutator as a power series in
G. The main motivation to consider this issue is that one would expect to arrive at an expansion
of this kind when adopting a standard perturbative approach for the treatment of the problem. As
we will see, this can be done in a rather straightforward way if a cutoff is introduced in the system.
However, our description breaks down when the cutoff is removed.

Let us analyze then the expansion of the vacuum expectation value of the commutator in
powers of the quantum gravitational constant25 G=G3". To this end we rewrites4d as

FIG. 6. Density plots of the commutator forG=0.02 and different values ofLq. Comparing the results with those of Ref.
8, we can see that the commutator in the regions labeled 2 in Fig. 4 is essentially equal to the one corresponding to an
infinite cutoff. Notice also the process by which the singularity atR1 appears.
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FIG. 7. Asymptotic approximation inl for the field commutator over 8iG as a function oft for G=0.02,r=3, andLq

=1 compared with a numerical approximation. The regions with different asymptotic regimes are shown. The asymptotic
approximation is good except at the boundaries between these regions. The different types of behavior are also evident.

FIG. 8. Asymptotic approximation inl for the field commutator over 8iG as a function oft for G=0.02,r=1.25, and
Lq=4 compared with a numerical approximation.
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1

8iG
k0ufĉEsR1,t1d,ĉEsR2,t2dgu0l =E

0

Lk

dkJ0sR1kdJ0sR2kdsinFkR1t
s1 − e−qd

q
G . s20d

With our conventions, bothkR1t andq=Gk are dimensionless, whereask can be regarded to have
dimensions of an inverse length. Note that all the dependence onG is contained inq, accepting
that the cutoffLk is fixed. Thus, in order to arrive at the desired series, we will expand the
integrand in powers of the variableq. At this point, it is worth remarking that, had we described
the regulated commutator by means of the dimensionless cutoffLq=4GLk as in previous
sections,26 it would not have been possible to single out the dependence on the gravitational
constant via that onq.

We will use the following formulas for the Taylor expansion of the functions involved in our
expressions20d and the composition of the resulting series, assuming for the moment their con-
vergence:

gsqd ª
1 − q − e−q

q
= o

n=1

`
s− qdn

sn + 1d!
, s21d

sinskR1t + yd = sinskR1tdo
m=0

`

s− 1dm y2m

s2md!
+ cosskR1tdo

m=0

`

s− 1dm y2m+1

s2m+ 1d!
, s22d

fgsqdgm = Fo
n=1

`
s− qdn

sn + 1d!Gm

= o
p=m

`

apfmgs− qdp, s23d

FIG. 9. Asymptotic approximation inl for the field commutator over 8iG as a function oft for G=0.02,r=1.25, and
Lq=10 compared with a numerical approximation.
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apfmg ª o
sspumd

p
i=1

m
1

sni + 1d!
, s24d

where the range of the last sum extends to the sets ofm integersni given by

sspumd ª Hni ù 1;o
i=1

m

ni = pJ . s25d

Interchanging the sum and integration orders, one then obtains the formal series

1

8iG
k0ufĉEsR1,t1d,ĉEsR2,t2dgu0l = o

p=0

` E
0

Lk

dkJ0sR1kdJ0sR2kds− 4GkdpFpskR1td, s26d

with

FpskR1td ª sinskR1td o
m=1

intfp/2g
s− 1dm

s2md!
apf2mgskR1td2m

+ cosskR1td o
m=0

intfsp−1d/2g
s− 1dm

s2m+ 1d!
apf2m+ 1gskR1td2m+1, p ù 1,

F0skR1td ª sinskR1td. s27d

Here, the function intfxg is the integer part ofx, and the sum overm that multiplies the function
sinskR1td is understood to vanish whenp=1. Note that, in the case of infinite cutoff, the first
sp=0d term reproduces the commutator of the free-field theory. Moreover, then all thepù1
additions to the free field contribution are integrals overf0,`d of oscillating, nonbounded func-
tions and, hence, at best conditionally convergent. So, in the unregulated theorysLk=`d, the
above expansion should be taken only as a formal expression, and therefore we expect that the
corresponding vacuum expectation value of the field commutator is not analytic inG.

Of course these problems disappear when we admit the existence of a finite cutoff 0,Lk

,`. Taking into account that all the functionsFpskR1td are analytic ink around the positive real
axis, becauseFp is a finite combination of products of analytic functions, and that so are the
zeroth-order Bessel functions that appear in the integrals ofs26d, it is easy to conclude that all
those integrals are well defined when they are restricted to a compact intervalf0,Lkg. Thus, each
term in the power seriess26d is finite for any finite positive value ofLk.

In the rest of this section, we will discuss the formal manipulations that we have carried out
with infinite sums in order to deduce the above expansion. First, notice that the Taylor series in
s21d, which is obtained from that of the exponential function, has an infinite convergence radius.
When this series is substituted ins20d, one obtains a trigonometric function similar to that on the
lhs of s22d, but with y=kR1tgsqd expanded in powers ofq. On the other hand, relations22d is just
the formula for the sine of the sum of two angles, with the resulting functions siny and cosy
replaced with their Taylor expansion. The series compositions sinfkR1tgsqdg and cosfkR1tgsqdg
can then be rearranged without problems employing forfgsqdgm the value given ins23d because
gsqd swhich we recall that converges for allqPR+d is always smaller than the convergence radii
of the sine and cosine series, which are in fact infinite.

In this way, one arrives at an expectation value of the regulated commutator that is equal to an
integral over the intervalkP f0,Lkg of the series of functionsopfpskuR1,R2,td, with

fpskuR1,R2,td ª J0sR1kdJ0sR2kds− 4GkdpFpskR1td. s28d

Since the functionsfpskd are clearly continuous inkP f0,Lkg sfor all allowed values ofR1, R2, and
td and this interval is compact, they are all integrable in that region. As a consequence, it is
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sufficient that the considered series of functions converges uniformly inkP f0,Lkg to guarantee
that the integration can be interchanged with the infinite sum. We will postpone to the next section
the proof of this uniform convergence, at least for a convenient choice of the cutoff.

In conclusion, we have seen that the field commutatorin vacuo, regulated with asdimension-
fuld fixed cutoff, can be expanded as a power series in the gravitational constantG, each term in
the series being finite. Besides, all the manipulations performed to deduce this series are rigorously
justified provided that the cutoff is chosen so that the seriesopfpskuR1,R2,td converges uniformly
in kP f0,Lkg. Furthermore, in fact, this requirement of uniform convergence automatically ensures
that the corresponding integrated power seriess26d converges, and that it does so to the actual
value of the expectation value of the regulated commutator.

VII. UNIFORM CONVERGENCE

We want to demonstrate that there exists a nonzero value of the cutoff for which the series
opfpskuR1,R2,td converges uniformly inkP f0,Lkg for any fixed non-negative value ofR1, R2,
and t. Let us start by finding a convenient upper bound for the coefficientsapfmg, with mù1,
defined ins24d. First, note thatapfmg=0 unlesspùm, because no set of the formsspumd exists
with ni ù1 if oi=1

m ni =p,m. In addition, sincesni +1d! ù2 for ni ù1, we have that

apfmg ø
1

2m o
sspumd

1. s29d

From our definitions25d, the last sum equals the different ways to arrangep−m nondistin-
guishable elementsfnamely, the excess about its minimum of the sum ofm elementsni ù1, which
equalsp−m for sspumdg betweenm different setsswhich correspond to them integersnid. The
result is given by the permutations ofsp−md+m−1 elementssthe latterm−1 elements represent-
ing movable delimiters between them setsd with possible repetition inp−m sthe genuine, non-
distinguishable elementsd and inm−1 sthe imaginary delimitersd. Thus,

apfmg ø
1

2m

sp − 1d!
sp − md!sm− 1d!

ø
1

2m

p!

sp − md!
. s30d

In the last inequality we have employed thatsm−1d!pù1 for all pùmù1.
Using that the absolute value of the sine and the cosine is never greater than the unity, it is not

difficult then to deduce froms27d the following bound forFpskR1td, with pù1:

uFpskR1tdu ø o
m=1

p
kmR1tm

m!
apfmg ø o

m=1

p SkR1t

2
DmSp

m
D = S1 +

kR1t

2
Dp

− 1. s31d

In the last step, we have employed the formula of the binomial expansion. Likewise, since the
zeroth-order Bessel function is bounded by the unity in the positive real axis, we get that, for all
non-negative values ofR1 andR2,

ufpskuR1,R2,tdu ø s4GkdpFS1 +
kR1t

2
Dp

− 1G ø F4GkS1 +
kR1t

2
DGp

. s32d

The last inequality is trivial, given that 4Gkù0. Note also that the bound on the rhs is valid even
in the casep=0, taking into accounts28d.

Finally, since 4Gks1+kR1t /2d is a strictly increasing function ofk in f0,Lkg, we obtain a
bound independent of the variablek in the interval considered:

ufpskuR1,R2,tdu ø F4GLkS1 +
LkR1t

2
DGp

. s33d

To obtain the desired convergence properties, it will suffice to require that
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4GLkS1 +
LkR1t

2
D , 1. s34d

We then get that bothufpskuR1,R2,tdu and its integral overf0,Lkg are small corrections for large
p, which tend to zero in the limitp→`.

In order to prove the uniform convergence of the seriesopfpskuR1,R2,td, we have to check
that, for eache.0, there exists an integerP such that, for everykP f0,Lkg,

Uo
p=P

`

fpskuR1,R2,tdU ø e. s35d

Taking into account inequalitys34d, it is clear that, givene.0, we can always find a sufficiently
large integerP for which

F4GLkS1 +
LkR1t

2
DGP

, eF1 − 4GLkS1 +
LkR1t

2
DG . s36d

Note that the choice of thisP depends only on the values ofe, Lk, G, andR1t. Usings33d, we then
have

Uo
p=P

`

fpskuR1,R2,tdU ø o
p=P

` F4GLkS1 +
LkR1t

2
DGp

=
f4GLks1 + LkR1t/2dgP

1 − 4GLks1 + LkR1t/2d
ø e.

So, inequalitys35d is valid for all k in the considered intervalf0,Lkg, as we wanted to prove.
We have thus shown that, for a givent, every choice of the cutoffLk.0 that satisfies

conditions34d leads to a convergent power series in the gravitational constantG for the expecta-
tion vacuum of the regulated commutator, regardless of the radial coordinatesR1 andR2. More-
over, the power expansion converges indeed to the true value of this regulated commutatorin
vacuo.

VIII. CONCLUSIONS AND COMMENTS

We have studied in this paper the issue of microcausality for quantum Einstein-Rosen waves
after a suitable cutoff is introduced to regulate the quantum fields. In more detail, we have
considered the introduction of a momentum cutoffLk sor its dimensionless counterpartLqd. We
have discussed first the asymptotic expansions in terms of the dimensionless parametersr, t, and
l along the lines of Ref. 8. Owing to the fact that these parameters are defined with the help ofR1,
in principle one does not need to make explicit the dependence of the cutoffLk on G in this case.
On physical grounds, one could view this cutoff, for example, as the inverse of the Planck length.

We have seen that the introduction of a finite cutoff modifies some of the conclusions obtained
in Ref. 8. In particular we have seen that some of the most dramatic effects present when the
cutoff is infinitesin particular the behavior of the field commutators in the symmetry axisd are now
somewhat mitigated. Nevertheless, we have been able to show that the approximation provided by
the unregulated field commutator is a good one in some regions of thesr ,td plane, and, in fact,
there is an unbounded region where that approximation prevails. This indicates that, even though
the influence of the cutoff is felt in some regions of the parameter space, it is irrelevant in others.

In Secs. VI and VII, on the other hand, we have considered the expansion of the field
commutator in terms of the gravitational constantG. We notice, nonetheless, that conditions34d
on the cutoffLk, which guarantees the convergence of the series, depends onG. At this stage, one
possibility would be to admit that the cutoff depends on the gravitational constant; however, the
expansion obtained would then fail to provide a genuine power series inG, because this parameter
would also enter the different terms in the series via the implicit dependence ofLk on it. Another
possibility that indeed respects the interpretation of our expansion as a power series inG is the
following. Employing that conditions34d is an inequality equation forLk given in terms of a
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function ofG that is strictly increasing, it is easy to see that the inequality is satisfied for all values
of G in a certain intervalf0,GMg if and only if it is satisfied forGM. Something similar happens
with respect to the dependence on the value ofR1t= ut2− t1u, so that if we want to consider a whole
time interval of the formut2− t1uP f0,tMg, we only have to evaluate our condition at the maximum
time lapse. In other words, to ensure the convergence of the series forGP f0,GMg and any time
difference inf0,tMg, we only have to demand the requirements34d at G=GM andR1t= tM, because
then

4GLkS1 +
LkR1t

2
D , 4GMLkS1 +

LktM
2

D , 1. s37d

In this way we arrive at a cutoff that is independent of the particular values considered for
ut2− t1u and the gravitational constantsin the commented intervalsd, and our expansion becomes a
true power series inG. The above inequality leads to the following positive upper bound forLk:

Lk ø
1

tM
SÎ1 +

tM
2GM

− 1D . s38d

Therefore, with a cutoff that satisfies this condition, the power seriess26d converges in the interval
f0,GMg for all radial positionsR1 andR2 andR1t= ut2− t1uP f0,tMg.

WhentM is small, the bound onLk is approximately 1/s4GMd, whereas for largetM it is nearly
equal to 1/Î2GMtM. In particular, with this bound the cutoff would have to be vanishingly small
if we want a good convergent behavior in an infinitely large time intervalstM→`d. An open
question is whether it is possible or not to find a different, nonzero time-independent cutoff such
that the expansion of the regulated commutator converges for any value of the time elapsed, i.e.,
for all ut2− t1uPR+. We expect to encounter convergence problems when the time interval is
unbounded; for instance, one can prove that the seriess26d does not converge uniformly int
PR+ with any choice of the cutoffLk sfor genericR1 and R2d. Nonetheless, one can in fact
consider a kind of semi-classical limit in whichGM tends to zerosand hence so does the value of
the gravitational constant, which had been restricted tof0,GMgd, while the time interval where the
convergence is granted reaches infinity.

In order to do this, one only needs to allow a dependence oftM on GM, so that the assumed
maximum value of the time difference varies with that of the gravitational constant. Suppose, let
us say, thattMsGMd=GM

−a with 0,a,1. Then, the bounds38d on the cutoff becomes

Lk ø GM
a SÎ1 +

1

2GM
sa+1d − 1D . s39d

Thus, whenGM tends to zero, we get the asymptotic behaviorLkøGM
sa−1d/2/Î2. SinceGM

sa−1d/2 and
GM

−a diverge for vanishingGM, because 0,a,1, we therefore conclude that the cutoff can be
removed in the limitGM→0 while ensuring that the time intervalf0,tMsGMdg, where the expan-
sion is well defined, covers the positive real axis.

We finally discuss the physical interpretation of this type of cutoff. It turns out to be intimately
related to the maximum resolution that can be reached for the physical time when a certain
perturbative approach is adopted to describe the quantum dynamics.27 In such an approach, one
expands the evolution generator in powers ofG and regards the free-field Hamiltonian as the
dominant contribution, with the higher powers seen as corrections. The auxiliary timeT, associ-
ated with the free-field Hamiltonian, then plays the role of evolution parameter in the quantum
theory, whereas the physical time becomes an operator. It was shown in Ref. 27 that, under these
circumstances, a resolution limitDt emerges for the physical time,

fDtg2 ù 4G2 + 4GT. s40d

Employing the inequalityÎ1+xøx/ sÎ1+x−1d for x.0, evaluated atx= tM / s2Gd, one can
easily check from conditions38d that the inverse of the cutoff satisfies
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Lk
−1 ù Î4GM

2 + 2GMtM . s41d

Therefore, the bound onLk
−1 equals that on the time resolutionDt for a valueG=GM of the

gravitational constant and a time elapsedT=2tM sand thus of the same order astMd. In this sense,
one can assign toLk

−1 the interpretation of a genuine resolution limit in the physical time.
The future prospects for this line of work will focus on the issue of deriving and obtaining

meaningful physical information from theS matrix of the model. We feel that the mathematical
techniques employed here to study the asymptotics of field commutators, with and without a
cutoff, will also be helpful in analyzing this issue. We plan to concentrate on this problem in the
future.
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We investigate a one-parameter family of quantum Harish–Chandra modules of
Uqsl2n. This family is an analog of the holomorphic discrete series of representa-
tions of the group SUsn,nd for the quantum groupUqsun,n. We introduce aq-analog
of “the wave” operatorsa determinant-type differential operatord and prove certain
covariance property of its powers. This result is applied to the study of some
quotients of the above-mentioned quantum Harish–Chandra modules. We also
prove an analog of a known result by J. Faraut and A. Koranyi on the expansion of
reproducing kernels which determines the analytic continuation of the holomorphic
discrete series. ©2005 American Institute of Physics.fDOI: 10.1063/1.1927077g

I. INTRODUCTION

We start with recalling classical known results about analytic continuation of the weighted
Bergman spaces in the unit disk and their explicit realization.

Recall that the group SU1,1 acts on the unit disk by fractional-linear transformations. Many
important representations of the group are realized geometrically in various functional spaces on
the disk and on the unit circle. In particular, representations of the discrete series admit a realiza-
tion of that kind. Namely, consider the kernels1−zw̄d−l in the unit disk. Forl.1 it is the
reproducing kernel for the so-called weighted Bergman space consisting of holomorphic functions
that are square integrable with the weights1−uzu2dl−2dmszd fhere dmszd is the normalized Le-
besgue measureg. The group SU1,1 acts in the space via change of variable and a multiplier:

plsgdsfszdd = fsg−1zd · scz+ dd−l, g−1 = Sa b

c d
D s1.1d

sfor nonintegerl’s one should consider the universal covering SU˜
1,1 instead of SU1,1d. Thus

obtained unitary representation belongs to the discrete series and is said to be a representation of

the holomorphic discrete series for SU1,1 or SŨ1,1.
The reproducing kernels1−zw̄d−l has analytic continuation in the parameterl. This is ob-

tained from the formula

s1 − zw̄d−l = o
m=0

`

sldm
szw̄dm

m!
, sldm = l · sl + 1d · ¯ · sl + m− 1d. s1.2d
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For l.0 the kernel is still positive definite, and the SU1,1-action s1.1d in the associated
Hilbert space is also unitary. Forl=1, the Hilbert space is the Hardy space of holomorphic
function on the closed disk whose boundary values are square integrable on the circle.

For further study of the previous representations, it is convenient to pass to the corresponding
Harish–Chandra modules. Consider the spaceCfzg of polynomials onC. The representationpl

induces a representation ofsl2sCd=su1,1^ C on Cfzg which may be defined for anylPR sand
even forlPCd. Let us denote byPl the spaceCfzg endowed with the above-mentioned action of
sl2sCd. Pl is irreducible for all positivel’s. However, ifl=1−l for some positive integerl then
Pl=P1−l has the following composition series:

h0j , P1−l
s0d , P1−l , s1.3d

whereP1−l
s0d is the submodule of polynomials of degreeøl −1. The natural problem is to study the

quotientP1−l /P1−l
s0d . This is the point where covariant differential operators appear on the scene.

They play an important role in an explicit realization of the quotient. Namely, one checks that the
differential operators] /]zdl intertwines the actionsp1−l andp1+l:

S ]

]z
Dl

· p1−lsjd = p1+lsjd ·S ]

]z
Dl

, j P sl2sCd. s1.4d

Clearly, s] /]zdl induces an isomorphism fromP1−l /P1−l
s0d into P1+l, and this, in particular, proves

unitarizability of the former module.
The unit disk is the simplest example of a bounded symmetric domain.1 The above-mentioned

results admit appropriate generalization for any such domainsof course, the group SU1,1 is re-
placed by the group of biholomorphic automorphisms of the domain under considerationd.

For the so-called tube domains, some generalizations of the covariance propertys1.4d have
been obtained by Shimura,19 Arazy,1 Jakobsen,9 Jakobsen and Vergne,13 and Jakobsen and
Harris.12 For example, in the case of the tube domain of typeIn,n sthe unit ball in the space of
complex n3n matricesd the analog ofs1.4d is a statement about an intertwining property of
powers of the operatorh=dets] /]za

ada,a=1,…,n with respect to certain “twisted” action of the group
SUn,n analogous tos1.1d.

The generalized covariance propertys1.4d has turned out to be useful beyond the problems we
mentioned previously. It has been applied also to computing the Harish–Chandra homomorphism
of invariant differential operators.28

Now for symmetric bounded domains the expansions1.2d has been found by Ørsted18 for type
I matrix domains and in a general case by Faraut and Koranyi.5 From this expansion one can read
off the composition series analogous tos1.3d; the covariant property of the intertwining operators
is related to the classical Cayley–Capelli type formula. We note that the unitarity of the highest
weight modules had been classified earlier by Jakobsen8 using algebraic method; however the
analytic approach as in Refs. 18 and 5 generated some other interesting analytic subjects and is
related to many problems in special functions and orthogonal polynomials. For quantum groups
the classification of unitary highest weight representations has also been done recently,11 and we
believe however that an analytic and concrete approach deserves pursuing.

In the present article we obtain analogs ofs1.2d, s1.3d, ands1.4d for a quantum matrix ball, an
analog of the tube domain of typeIn,n which has been defined in framework of quantum group
theory by Vaksmanet al.21

In Ref. 22, the authors defined analogs of the weighted Bergman spaces on the quantum
matrix ball. Also, they constructed analogs of the corresponding reproducing kernels and the
twisted unitary action of the group SUn,n. From the representation theoretic point of view, Ref. 22
presents aq-analog of the holomorphic discrete series of the group SUn,n smore precisely, analogs
of the associated Harish–Chandra modulesd.

The natural problem now is to investigate those representations, particularly, to define their
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“analytic continuation” and to study composition series of the resulting Harish–Chandra modules.
In the casen=2, these problems were treated in Ref. 23. In the present paper, we deal with the
case of arbitraryn.

The role of covariant differential operators in the classical theory of bounded symmetric
domains and related Harish–Chandra modules is very well known.9,12,13,19Our intention is to bring
covariantq-differential operators into the study of quantum Harish–Chandra modules and thus to
demonstrate their importance in the quantum setting as wellfnote that similar questions have been
already treated in the literaturessee Ref. 3 and, especially, Ref. 10dg. We introduce a determinant-
type q-differential operator similar toh and prove aq-analog of the covariance property. In the
last section, this result is applied to investigation of certain quotients of the above quantum
Harish–Chandra modules.

Another goal of the paper is to obtain an analog of the aforementioned result by Faraut and
Koranyi5 which has allowed them to solve the problem of analytic continuation of the holomor-
phic discrete series in the classical setting.

As we already mentioned, there is a complete classification of unitarizable highest-weight
modules over quantum groupsssee Ref. 11d. Thus, neither the holomorphic discrete series of the
quantum group SUsn,nd, constructed in Ref. 22, nor its analytic continuation, obtained in the
present paper, give us a new family of unitary modules. The principal aim of the present paper, as
well as other papers,22,23 is to develop an “analytic and geometric” framework for studying quan-
tum Harish–Chandra modules related to quantum Cartan domains, particularly, to show that there
are substantial generalizations of known classical constructions and results connected with the
holomorphic discrete series.

The paper is organized as follows. Sections II and III contain some preliminary material. In
Sec. II, we recall some basic notions and results of quantum group theorysparticularly, the notion
of quantum space of matrices and of the quantized universal enveloping algebraUqslnd. This is
done mainly for the purpose to set the notation we use further. Also, we recall certain hidden
quantumUqsl2n symmetry of the quantum matrix space discovered in Ref. 25.sThis hidden
symmetry was one of the first hints that there should be a substantial theory ofq-bounded sym-
metric domains. These objects were invented a little later in Ref. 24d. In the end of Sec. II we
describe a twisted actionsdepending on a parameterld of Uqsl2n on the quantum matrix space. For
l large enough the corresponding Harish–Chandra modules are unitarizable representations of
Uqsun,n, which we call the holomorphic discrete series due to the previous motivation. Section III
is devoted toq-differential operators. We recall there the notion of aq-differential operator with
constant coefficients and describe certain properties of the algebra of such operators. Also, we
introduce an analog of the operatorh and derive its “obvious” quantum symmetry which amounts
to an intertwining property of the operator with an action of Hopf subalgebraUqsln
^ Uqsln,Uqsl2n. This obvious symmetry is extended to a large hidden symmetry, namely, the
intertwining property of the operatorsand of its powersd with the twistedUqsl2n actions. This
covariance property is formulated and proved in Sec. IV. In the course of the proof, we use a
number of results from the theory of quantum bounded symmetric domains, in particular, those
obtained in Ref. 20 and, especially, results of Ref. 27. To keep the size of the paper reasonable, we
have to be more sketchy in this part of the paper. We omit proofs of those results giving appro-
priate references instead. In the last section of the paper we investigate the holomorphic discrete
series forUqsun,n. First of all, we use computations of Sec. IV to produce an analog of the result
by Faraut and Koranyi5 we mentioned earlier. Then we derive some applications of the covariance
property.

II. QUANTUM SPACE OF MATRICES AND ITS SYMMETRIES

In this paper, the parameterq is supposed to be a number from the intervals0, 1d.
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A. Quantum space of matrices

Let us start with the definition of the algebraCfMngq of polynomials on the quantum matrix
space. It is the unital algebra given by its generatorsza

a shere,a, a=1,… ,n, a is the column index
anda is the row indexd and the following relations:

za
azb

b = 5 qzb
bza

a, a = b and a , b or a , b and a = b

zb
bza

a, a , b and a . b

zb
bza

a + sq − q−1dza
bzb

a, a , b and a , b.
6 s2.1d

These commutation relations, along with the relation

detqszd = o
sPSn

s− qdlssdza1

ass1dza2

ass2d
¯ zan

assnd = 1, s2.2d

appeared for the first time in Ref. 4 as the relations between generators in the algebraCfSLngq of
regular functions on the quantumSLn. It was suggested in Ref. 6 to discards2.2d from the list of
relations and to regards2.1d as the defining relations of the algebra of polynomials on the quantum
space of matrices. The algebraCfSLngq is then the quotient ofCfMngq by the two-sided ideal
generated by the element detqszd−1 hnote that theq-determinant detqszd belongs to the center of
CfMngq sf2, Sec. VII C 2gdj. Also, the algebraCfMngq is used to define the algebra of regular
functions on the quantumGLn. The latter is just the localization of the former with respect to the
multiplicative system detqszdm, m=1,2,… .

The crucial observation concerning the algebraCfMngq was the discovery of the comultipli-
cation

CfMngq → CfMngq ^ CfMngq, za
a ° o

j

za
j

^ zj
a

which, along with the initial multiplication, makesCfMngq into a bialgebra. The comultiplication
maps theq-determinant detqszd to detqszd ^ detqszd and thus induces a comultiplication on the
algebraCfSLngq. The latter, along with certain antipode and counit, makesCfSLngq into a Hopf
algebra.

All the above structures allow one to produceq-analogs of the left and right actions

Lsgd:fszd ° fsg−1 ·zd, Rsgd:fszd ° fsz ·gd

of SLn in CfMng. Theseq-analogs are usually described in terms of comodule algebras.2 However,
it is more convenient for us to use an “infinitesimal” version of those actions which is based on the
notion of the quantum universal enveloping algebraUqsln due to Drinfeld4 and Jimbo.15

First, we recall the definition ofUqsln swe follow the notation of Ref. 14d. The quantum
universal enveloping algebraUqsln is the unital algebra generated by the elementsEi , Fi , Ki

±1, i
=1,… ,n, which satisfy the relations

KiKj = KjKi, KiKi
−1 = Ki

−1Ki = 1,

KiEj = qaijEjKi, KiFj = q−aijFjKi ,

EiFj − FjEi = di jsKi − Ki
−1d/sq − q−1d,

Ei
2Ej − sq + q−1dEiEjEi + EjEi

2 = 0, ui − j u = 1

Fi
2Fj − sq + q−1dFiFjFi + FjFi

2 = 0, ui − j u = 1
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fEi,Ejg = fFi,Fjg = 0, ui − j u Þ 1

with saijd being the Cartan matrix of typeAn−1. Moreover,Uqsln is a Hopf algebra. The comulti-
plication D, the antipodeS, and the counit« are determined by

DsEid = Ei ^ 1 + Ki ^ Ei, DsFid = Fi ^ Ki
−1 + 1 ^ Fi, DsKid = Ki ^ Ki , s2.3d

SsEid = − Ki
−1Ei, SsFid = − FiKi, SsKid = Ki

−1, s2.4d

«sEid = «sFid = 0, «sKid = 1. s2.5d

It is observed in Ref. 4 that the Hopf algebrasUqsln andCfSLngq are dual to each other. This,
in particular, allows one to use the language ofUqsln-module algebras instead of that of
CfSLngq-comodule algebras mentioned previously. This is what we do in the present paper.

Let us recall now what the terminology “Uqsln-module algebra” means. LetA be a Hopf
algebra. A unital algebraF is said to be anA-module algebra ifF is anA-module, the unit ofF is
A-invariant fwhich meansjs1d=«sjd ·1 for anyjPAg, and, finally, the multiplicationF ^ F→F
intertwines theA-actionsswe recall that for anyA-modulesV1, V2 their tensor product is endowed
with an A-module structure via the comultiplicationD :A→A^ Ad.

Remark: In the sequel, we shall sometimes consider Hopf algebras with an additional struc-
ture, namely, Hopfp-algebrassa Hopf p-algebra is a pairsA, p d whereA is a Hopf algebra andp
is an involution inA with certain properties; see Ref. 2d. In the case of Hopfp-algebras the
above-mentioned definition includes an additional requirement. Namely, letA0=sA, p d be a Hopf
p-algebra andF an algebra. ThenF is said to be anA0-module algebra if, first,F is anA-module
algebra in the previous sense, and, second,F is involutive and the involutions inA andF agree as
follows:

sjsfdd* = Ssjd*sf*d, j P A, f P F. s2.6d

fThe notion of module algebras can be clarified in the classical setting of a Lie groupG acting
on a smoothG-spaceX. Denote byg the Lie algebra ofG. Then the universal enveloping algebra
Ug acts on the spaceC`sXd via differential operators. The usual Leibnitz rule means thatC`sXd is
a Ug-module algebra.g

Let us turn back to the quantum space of matrices. Now we are in position to describe the very
well known “infinitesimal version” of the left and right actions of the quantum groupSLn in
CfMngq. Note, however, that the left action we present below is not an analog of the classical one,
mentioned earlier. It is more convenient for us to use an action that differs from the usual left one
by a simple automorphism ofUqsln.

Proposition 2.1:

sid There exists a unique structure of Uqsln-module algebra inCfMngq such that

RsKidza
a = 5qza

a, a = i

q−1za
a, a = i + 1

za
a, otherwise,

6 s2.7d

RsFidza
a = Hq1/2za+1

a , a = i

0, otherwise,
J RsEidza

a = Hq−1/2za−1
a , a = i + 1

0, otherwise.
J s2.8d

sii d There exists a unique structure of Uqsln-module algebra inCfMngq such that
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LsKjdza
a = 5qza

a, a = n − j

q−1za
a, a = n − j + 1

za
a, otherwise,

6 s2.9d

LsFjdza
a = Hq1/2za

a+1, a = n − j

0, otherwise,
J LsEjdza

a = Hq−1/2za
a−1, a = n − j + 1

0, otherwise.
J

s2.10d

siii d For any j ,hPUqsln the endomorphisms Rsjd , Lshd commute

RsjdLshdf = LshdRsjdf, f P CfMngq.

Note that by statementsiii d in the above-mentioned proposition, the algebraCfMngq is acted
upon by the tensor productUqsln ^ Uqsln:

j ^ hsfd = RsjdLshdf .

One can check that theq-determinant detqszd s2.2d is invariant with respect to both left and
right Uqsln-actions, i.e.,

Rsjddetqszd = Lsjddetqszd = «sjd · detqszd

for any jPUqsln. Thus the formulas from Proposition 2.1 define left and rightUqsln-actions in
CfSLngq. By analogy with the classical case, one has the following propositionssee Ref. 2d.

Proposition 2.2: The Uqsln ^ Uqsln-moduleCfSLngq splits into direct sum of simple pairwise
nonisomorphic submodules whose lowest vectors are given via q-minors as follows:

szn
nda1szhn−1,nj

∧2hn−1,njda2szhn−2,n−1,nj
∧3hn−2,n−1,njda3

¯ szh2,…,nj
∧sn−1dh2,…,njdan−1.

We recall that theq-minors are defined by

sz∧kdha1,a2,…,akj
ha1,a2,…,akj =

def

o
sPSk

s− qdlssdza1

ass1dza2

ass2d
¯ zak

asskd s2.11d

with a1,a2, ¯ ,ak, a1,a2, ¯ ,ak, and lssd being the length ofsPSk. In particular,
detqszd=sz∧ndh1,2,…,nj

h1,2,…,nj.

Let us denote the tensor productUqsln ^ Uqsln with the canonical Hopf algebra structure by
Uqssln3slnd. Thus,CfMngq is aUqssln3slnd-module algebra. It follows from the definition of the
quantum universal enveloping algebraUqsln that there is an embedding of Hopf algebrasUqssln
3slnd�Uqsl2n determined by

1 ^ Ei ° Ei, 1 ^ Fi ° Fi, 1 ^ Ki
±1 ° Ki

±1, i = 1,…,n − 1,

Ei ^ 1 ° En+i, Fi ^ 1 ° Fn+i, Ki
±1

^ 1 ° Kn+i
±1 , i = 1,…,n − 1.

This is aq-analog of the embeddingSLn3SLn�SL2n given, in the matrix realization, by

sA,Bd ° SA 0

0 B
D .

In the next subsection we shall extend the aboveUqssln3slnd-module algebra structure inCfMngq

to a structure ofUqsl2n-module algebra.
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B. A structure of Uqsl2n-module algebra on C†Mn‡q

In this subsection we describe a “hidden”Uqsl2n-module algebra structure inCfMngq. It was
discovered in Ref. 25. Its classical counterpart comes from an embedding of the matrix spaceMn

into the Grassmannian GrnsC2nd as the affine cellU,GrnsC2nd defined by the inequalitytÞ0 with
t being a distinguished Plücker coordinate. Aq-version of the embedding is described in Ref. 25,
Proposition 0.7ssee also Proposition 5.4 from Ref. 21d.

Let us turn to the quantum case. The following statement was proved in Ref. 21, Sec. 2.
Proposition 2.3: There exists a unique Uqsl2n-module algebra structure inCfMngq given on

the Hopf subalgebra Uqssln3slnd by the formulas from Proposition 2.1 and on the remaining
generators Kn

±1, Fn, En by

Knza
a = 5q2za

a, a = n and a = n

qza
a, a = n and a Þ n or a Þ n and a = n

za
a, otherwise,

6 s2.12d

Fnza
a = q1/2H1, a = n and a = n

0, otherwise,
J Enza

a = − q1/25q−1za
mzn

a, a Þ n and a Þ n

szn
md2, a = n and a = n

zn
mza

a, otherwise.
6
s2.13d

Let us point out some straightforward but essential properties of thisUqsl2n-action inCfMngq.
Denote byUqssgln3glnd the Hopf subalgebra inUqsl2n derived fromUqssln3slnd by adding the
generatorsKn

±1. Clearly, elements ofUqssgln3glnd preserve the naturalZ+-grading in CfMngq

given by powers of monomials. It is also obvious, that the generatorsFn, En act in CfMngq as
endomorphisms of degrees −1 and 1, respectively. All this may be derived also from the following
convenient description of theZ+-grading inCfMngq:

degf = N ⇔ K̂f = q2Nf , s2.14d

whereK̂ is the element of the center ofUqssgln3glnd given by

K̂ = sKndn · p
j=1

n−1

sKjK2n−jd j . s2.15d

For computational purposes, it is important to understand the structure ofCfMngq as a
Uqssgln3glnd-module in greater detail. The following statement is a straightforward consequence
of Proposition 2.2.

Proposition 2.4: The Uqssgln3glnd-moduleCfMngq splits into direct sum of simple pairwise
non-isomorphic submodulesCfMngq

sk1,k2,…,knd , k1ùk2ù ¯ ùknù0, whose lowest vectors are
given by

szn
ndk1−k2Sz∧2hn−1,nj

hn−1,nj
Dk2−k3Sz∧3hn−2,n−1,nj

hn−2,n−1,nj
Dk3−k4

¯ sdetqzdkn.

In what follows, the aboveUqsl2n-action inCfMngq will be sometimes called “the initial” one,
in contrast to a twisted action described in the next subsection.

Let us present another view on the aboveUqsl2n-action in CfMngq. The point is that the
corresponding classicalUsl2n-action is well known in the theory of bounded symmetric domains
ssee, for instance, Ref. 1d. In framework of this theory, it is constructed as follows. The vector
spaceMn contains the so-called matrix ballsthe boundary symmetric domain of typeIn,nd
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D = hz P Mnuzz* , 1j

swith p being the hermitian conjugation and 1 the unit matrixd. It is known that the real simple Lie
group SUn,n acts onD via biholomorphic automorphisms, andSsUn3Und,SUn,n is the isotropy
subgroup of the center 0PD. Thus elements of the universal enveloping algebraUsun,n, and hence
elements of its complexificationUsl2n, act on the space of holomorphic functions onD via
differential operators. These differential operators have polynomial coefficients and, thus, preserve
CfMng. The resultingUsl2n-action inCfMng is what we call the initial one. In framework of this
approach, the result of Proposition 2.4 is just aq-analog of the famous Hua–Schmid
decomposition1 whereas the quantum enveloping algebraUqssgln3glnd itself is an analog of the
universal enveloping algebra of the complexified Lie algebra of the isotropy subgroupSsUn

3Und.

C. A twisted Uqsl2n-action on C†Mn‡q

In this subsection we introduce a one-parameter familypl , lPR, of Uqsl2n-actions in
CfMngq such that the initialUqsl2n-action, defined in the previous subsection, corresponds tol
=0. In the classical case the corresponding twistedUsl2n-actionpl for lPZ can be produced by
trivializing the homogeneous line bundleOs−ld on the Grassmannian GrnsC2nd over the affine cell
U. Namely, we identify the space of polynomials onMn with the space of sectionsGsU ,Os−ldd by
fszd, fszd ·t−l shere t is the distinguished Plücker coordinate mentioned at the beginning of the
previous subsectiond and define theUsl2n-actionpl as follows:

splsjdfd · t−l = jsf · t−ld, j P Usl2n. s2.16d

Note that, among the actionspl, the initial actionp0 is the only one which makesCfMng into a
Usl2n-module algebra. This is true in theq-setting as well.

Let us define a quantum version of theUsl2n-action s2.16d
Proposition 2.5: For any lPR the formulas

plsKj
±1df = HKj

±1f , j Þ n

q±lKn
±1f , j = n,

J
plsFjdf = HFj f , j Þ n

q−lFnf , j = n,
J plsEjdf = 5Ej f , j Þ n

Enf − q1/21 − q2l

1 − q2 sKnfdzn
n, j = n 6

define a Uqsl2n-action in CfMngq sin the right-hand sides the initial Uqsl2n-action is usedd.
This proposition was proved in Ref. 22sProposition 6.2d. Note thatp0 coincides with the

initial Uqsl2n-action. For brevity, we shall denote theUqsl2n-module, corresponding tol, by Pl,
namelyPl=sCfMngq,Uqsl2n,pld.

The classical counterpart of the above twistedUqsl2n-action is also well known in the theory
of bounded symmetric domains. The corresponding SUn,n-actionsmore precisely, the action of the

universal covering SU˜
n,nd is defined by

plsgd:fszd ° fsg−1zd ·Jg−1szdl/2n s2.17d

with Jg−1szd being the Jacobian of the biholomorphic mapz°g−1z ssee Ref. 1 for detailsd. For
l.2n−1 the actionpl on a weighted Bergman space defines a holomorphic discrete scries

representation ofSŨn,n. In the last section of the paper we will describe a unitary structure onPl

which formally tends to the classical setting asq→1.
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III. SOME q-DIFFERENTIAL OPERATORS

A. Basic definitions

One of our results is connected with aq-analog of the wave operator

h = detS ]

]za
aD .

We start with some general consideration ofq-differential operators with constant coefficients.
To produceq-analogs of the partial derivatives, we use certain known first order differential

calculus overCfMngq, see Ref. 2. LetV1sMndq be theCfMngq-bimodule given by its generators
dza

a , a,a=1,… ,n, and the relations

zb
bdza

a = o
a8,b8=1

n

o
a8,b8=1

n

Rba
b8a8Rba

b8a8dza8
a8 ·zb8

b8,

with

Rba
b8a8 =5

q−1, a = b = a8 = b8

1, a Þ b anda = a8 andb = b8

q−1 − q, a , b anda = b8 andb = a8

0, otherwise.
6

The mapd:za
a°dza

a can be extended to a linear operatord:CfMngq→V1sMndq satisfying the
Leibnitz ruledsf1f2d=dsf1df2+ f1dsf2d. The pairsV1sMndq,dd is the first order differential calculus
over CfMngq we need.

The calculus itself has been known for a long time.2 However, its hiddenUqsl2n-symmetry
was observed much later in Ref. 25. To be more precise, it is proved in Ref. 27 that there exists a
unique structure of aUqsl2n-module in V1sMndq such that, first, the mapd is a morphism of
Uqsl2n-modules, and, second, the left and right multiplications

CfMngq ^ V1sMndq → V1sMndq, V1sMndq ^ CfMngq → V1sMndq

are morphisms ofUqsl2n-modules. This is usually expressed by saying that the first order differ-
ential calculus sV1sMndq,dd is Uqsl2n-covariant. Before Ref. 25 appeared, only
Uqssln3slnd-covariance of the calculus was known.

The first order differential calculus allows us to define theq-analogs of partial derivatives as
follows: Set

df = o
a=1

n

o
a=1

n
] f

]za
a ·dza

a, f P CfMngq.

Here the left-hand side defines the right-hand one.
It is quite reasonable to regard the unital subalgebra in EndsCfMngqd generated by all the

derivatives as an analog of the algebra of differential operators with constant coefficients. This
algebra seems to be interesting in itself. First of all, it admits a very explicit description. Namely,
it is observed in Ref. 20sSection 2d that the mapza

a°] /]za
a may be extended to an algebra

homomorphismY :CfMngq→EndsCfMngqd which means that the operators] /]za
a satisfy the same

commutation relations as the generatorsza
a of CfMngq do. Further, the algebra is invariant with

respect to a certain naturalUqssln3slnd-action in EndsCfMngqd defined via aq-analog of the
commutator. Let us describe this latter observation in full detail.

Endow the space EndsCfMngqd with a structure ofUqssln3slnd-module as follows: Forj
PUqssln3slnd ,TPEndsCfMngqd put
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jsTd = o
j

j j9 ·T ·S−1sj j8d,

whereS jj j8 ^ j j9=Dsjd fhereD denotes the comultiplication inUqssln3slndg, S is the antipode of
Uqssln3slnd, and the elements in the right-hand side are multiplied within EndsCfMngqd. It is
explained in Ref. 20 that theUqssln3slnd-covariance of the first order differential calculus
sV1sMndq,dd and the explicit formulas for theUqssln3slnd-action inCfMngq, presented in Propo-
sition 2.1, allow one to proveUqssln3slnd-invariance of the linear span of all] /]za

a in
EndsCfMngqd and to describe theUqssln3slnd-action on the partial derivatives explicitly. The
explicit description is based on the following intertwining property of the homomorphismY

Ysjfd = vsjdYsfd, ∀ j P Uqssln 3 slnd, ∀ f P CfMngq

with v being the automorphism ofUqssln3slnd sthe “Chevalley involution”d given by

vsEid = − Fi, vsFid = − Ei, vsKi
±1d = Ki

71.

B. A q-wave operator

Here we apply the results from the previous subsection to study theq-wave operator given by

hq = o
sPSn

s− qdlssd ·
]

]z1
ss1d ·

]

]z2
ss2d · ¯ ·

]

]zn
ssnd .

Clearly, theq-wave operator belongs to the center of the algebra of quantum differential operators
with constant coefficients sincehq=Ysdetqszdd. The latter formula, together with
Uqssln3slnd-invariance of theq-determinant and the above intertwining property ofY, implies
also that the operatorhq commutes with the action ofUqssln3slnd in CfMngq. Also, we can easily
prove that

Kn · hq = q−2hq ·Kn. s3.1d

Indeed, the degree of the operatorhq in CfMngq is equal to −n which meansK̂ ·hq=q−2n·hq·K̂
fsees2.14dg. The latter equality impliess3.1d sincehq commutes with all theKi

±1’s for i Þn.

IV. A COVARIANCE PROPERTY

A. Formulation

The intertwining properties of theq-wave operator derived above may be written in a unified
way as follows:

hq
l · pn−lsjd = pn+lsjd · hq

l , j P Uqssgln 3 glnd. s4.1d

It turns out that this obvious symmetry of the operatorhq
l is a part of a large hidden symmetry.

Theorem 4.1: For any lPN the linear operator hq
l :CfMngq→CfMngq intertwines the

Uqsl2n-actionspn−l and pn+l:

hq
l · pn−lsjd = pn+lsjd · hq

l , j P Uqsl2n

(in other words, the maphq
l :Pn−1→Pn+1 is a morphism of Uqsl2n-modules).

We will prove Theorem 4.1 in Sec. IV E. The proof uses some results from the theory of
quantum bounded symmetric domains which we recall in the subsequent three subsections. Very
briefly, the idea is as followsscompare with Ref. 1d: We use theq-Cauchy-Szegö integral formula
to rewrite the operatorhq

l as aq-integral operator; then, using some standard technique, we prove
that theq-integral operator intertwines theUqsl2n-actionspn−l andpn+l.
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B. A q-analog of the Cauchy-Szegö integral representation

For any bounded symmetric domain there is a multivariable generalization of the famous
Cauchy formula, the so-called Cauchy-Szegö integral representation.1,7 This integral formula re-
stores a holomorphic function on the domain from its boundary value on the Shilov boundary. In
the case of the unit matrix ball the Cauchy-Szegö formula looks as follows:

fszd =E
SsDd

fszd
dets1 − zz*dndnszd.

HereSsDd is the Shilov boundary of the unit matrix ballDPMn

SsDd = hz P Mnuzz* = 1j,

and dn is the uniqueUn-invariant normalized measure onSsDd which, of course, coincides with
the Haar measure under the identificationSsDd=Un.

A q-analog of this formula was found in Ref. 27 in framework of quantum bounded symmetric
domain theory. Particularly, in that paperq-analogs of the Shilov boundarySsDd, the measure dn,
and the kernel dets1−zz*d−n were found. In this subsection we recall all these results. We omit
proofs. An interested reader might want to look into Ref. 27 which is the main reference for this
section.

The q-analog of the Shilov boundary is described by asnoncommutatived p-algebraof func-
tions on it. It is also natural to require the quantum Shilov boundary to be a homogeneous space
of the quantumgroup SUn,n. Here is an explicit construction.

The localization ofCfMngq with respect to the multiplicative system detqszdN is called the
algebra of regular functions on the quantumGLn and is denoted byCfGLngq ssee Sec. II Ad. It was
observed in Ref. 27sLemma 2.1d that there exists a unique involutionp in CfGLngq such that

sza
ad* = s− qda+a−2ndetqszd−1 ·z∧sn−1d

Ja

Ja, s4.2d

with Jc =
def

h1,2,… ,nj \ hcj fhere we use the notations2.11dg. The p-algebra PolsSsDddq

=sCfGLngq, p d is a q-analog of the polynomial algebra on the Shilov boundary of the matrix ball
D. Note that

detqszddetqszd* = detqszd*detqszd = q−nsn−1d. s4.3d

Let’s describe a structure of homogeneous space of the quantum group SUn,n on the quantum
Shilov boundary. Recall that theq-determinant detqszd belongs to the center ofCfMngq and is a
“relative invariant” with respect to theUqssgln3glnd-action:

jdetqszd = «sjd · detqszd, j P Uqssln 3 slnd, Kndetqszd = q2detqszd. s4.4d

Using s4.4d, one can make PolsSsDddq into a Uqssgln3glnd-module algebra.fMore precisely, we
can use the above formulas to define aUqssgln3glnd-action on negative powers of detqszd which
suffices to extend theUqssgln3glnd-action fromCfMngq to PolsSsDddq.g

In fact fsee Ref. 27sSection 2dg, the aboveUqssgln3glnd-module algebra structure in
PolsSsDddq may be extended to a structure ofUqsl2n-module algebra which coincides on the
subspaceCfMngq,PolsSsDddq with the Uqsl2n-module algebra structure described in Proposition
2.3.

Let us recall the definition of the “real form”Uqsun,n of the quantum universal enveloping
algebraUqsl2n. Uqsun,n is simply the pairsUqsl2n, p d with p being an involution inUqsl2n deter-
mined by

En
* = − KnFn, Fn

* = − EnKn
−1, sKn

±1d* = Kn
±1,
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Ej
* = KjFj, Fj

* = EjKj
−1, sKj

±1d* = Kj
±1, for j Þ n.

It is not difficult to verify thatUqsun,n=sUqsl2n, p d is a Hopfp-algebrassee Ref. 2 for definitionsd.
Evidently, the involutionp keeps the Hopf subalgebrasUqssln3slnd andUqssgln3glnd invariant,
and we shall denote the corresponding Hopfp-subalgebras inUqsun,n by Uqssun3sund and
Uqssun3und, respectively.

The crucial property of the involutions4.2d is the following observation: it makes PolsSsDddq

into aUqsun,n-module algebrasthis is explained in Ref. 27 after Proposition 2.7d. It is in this sense
that the quantum Shilov boundary is a homogeneous space of the quantum group SUn,n.

To define aq-analog of the measure dn on SsDd, we notefsee Ref. 27sSection 3dg that the
p-algebra PolsSsDddq is closely related to thep-algebraCfUngq=sCfGLngq, ! d of regular functions
on the quantum groupUn where, we recall, the involution! is defined by sza

ad!

=s−qda−asdetqzd−1·z∧sn−1d
Ja

Ja. sThe quantum groupUn is one of the most well studied objects in
quantum group theory. We refer to Ref. 16 for basic definitions and facts about this quantum
group. Of course, there are many other good references.d

It is easy to check thatp=u−1·! ·u whereu :CfGLngq→CfGLngq is an automorphism given by
u :za

a°qa−nza
a. It is known that the compact quantum groupUn possesses a unique normalized

invariant integral, an analog of the Haar integral. The isomorphismu of p-algebras PolsSsDddq

→CfUngq allows us to “transfer” the invariant integral onto PolsSsDddq. In this way we get a
positiveUqssgln3glnd-invariant linear functional PolsSsDddq→C , f °eSsDdq

fdn which is the ana-
log of the integral with respect to dn. TheUqssgln3glnd-invariance means

E
SsDdq

jfdn = «sjd ·E
SsDdq

fdn, ∀ j P Uqssgln 3 glnd. s4.5d

Finally let us describe the analog of the Cauchy-Szegö kernel dets1−zz*d−n.
Consider the algebra PolsMn3SsDddq=CfMngq

op
^ PolsSsDddq with “op” indicating the change

of the multiplication to the opposite one. Equip it with aZ+-grading by setting degsza
a

^ fd=1 for
any f PPolsSsDddq. Its completion with respect to this grading is denoted by FunsMn3SsDddq.
The elements of FunsMn3SsDddq are q-analogs of kernels of integral operators, while the ele-
ments of the subalgebra PolsMn3SsDddq areq-analogs of polynomial kernels.

Let us comment on the replacement of the multiplication law in the first tensor multiplier in
the definition of the algebra PolsMn3SsDddq. Given a Hopf algebraA and twoA-module algebras
F1, F2, A-invariant elements inF1 ^ F2 do not form a subalgebra. However, they do form a
subalgebra inF1

op
^ F2.

26 Almost all the kernels we encounter in the present paper areUqssgln
3glnd-invariant in PolsMn3SsDddq or FunsMn3SsDddq and so, as we have explained, form a
subalgebra.

Let us explain now why we are interested inUqssgln3glnd-invariant kernels. It is not difficult
to prove that there is a one-to-one correspondence betweenUqssgln3glnd-invariant elements in
FunsMn3SsDddq and endomorphisms of theUqssgln3glnd-moduleCfMngq, explicitly given as
follows: the elementKPFunsMn3SsDddq defines the morphismf ° s1^ eSsDdq

dsK ·s1^ fdd. In
other words, a linear operator onCfMngq intertwines theUqssgln3glnd-action if and only if it is a
q-integral operator with an invariant kernel.

It is convenient to choose some generators of PolsMn3SsDddq and express all other invariant
kernels from PolsMn3SsDddq or FunsMn3SsDddq assfinite or formald series in those generators.

Consider the elementsxkPPolsMn3SsDddq, k=1,… ,n, given by

xk = o z∧k
J9
J8

^ sz∧k
J9
J8

d* s4.6d

where the sum is taken over the pairs of subsetsJ8 , J9, h1,2,… ,nj of cardinalityk. It turns out
that the elementsxk are pairwise commuting andUqssgln3glnd-invariant fRef. 22sSection 10dg.

Proposition 4.2: The elementsx1,… ,xn generate the subalgebra of Uqssgln3glnd-invariant
kernels inPolsMn3SsDddq swhich is therefore a commutative algebrad.
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Sketch of a proof: Recall ssee Proposition 2.4d that theUqssgln3glnd-moduleCfMngq splits
into direct sum of simple pairwise nonisomorphic submodulesCfMngq

k with k
=sk1,k2,… ,knd , k1ùk2ù ¯ ùknù0. Thus, any endomorphism of theUqssgln3glnd-module
CfMngq is a sin general infinited series of the formokck ·Pk wherePk stands for the projection in
CfMngq onto CfMngq

k parallel to the sum of otherUqssgln3glnd-submodules andck are complex
numbers. It is sufficient to show that each projectionPk is aq-integral operator whose kernel is a
function of x1,… ,xn. This may be done by using well known orthogonality relations for the
quantum groupUn ssee Ref. 16d and the precise relation between the quantum Shilov boundary
and the quantumUn described previously. j

The projection Pk can be written as aq-integral operator with a kernelPk PPolsMn

3SsDddq. Namely, letuk be a polynomial such thatPksz,z*d=uksx1,x2,… ,xnd. Consider the
isomorphism

FunsMn 3 SsDddq
Uqssgln3glnd → Cffx1,x2,…,xnggSn, xk ° sk, k = 1,2,…n s4.7d

from the subalgebra FunsMn3SsDddq
Uqssgln3glnd of Uqssgln3glnd-invariants in FunsMn3SsDddq to

the algebra of symmetric formal series of the variablesx1,x2,… ,xn, wheresk is theith elementary
symmetric polynomial inx1,x2,… ,xn. The image ofuksx1,x2,… ,xnd under the above isomor-
phism differs only by a constant from the so-called Schur polynomialsk associated to the partition
k ssee Ref. 17d viz.

ukss1,s2,…,snd = Cskd ·sksx1,x2,…,xnd. s4.8d

We compute the coefficientsCskd in the next subsection.
From now on, for a kernelKPFunsMn3SsDddq we shall sometimes write

Ksz,z*d, E
SsDdq

Ksz,z*d · fszddnszd,

instead ofK and s1^ eSsDdq
dsK ·s1^ fdd, respectively.

Now we are ready to present theq-analog of the Cauchy-Szegö integral formula found in Ref.
27. In short, it represents the identity operator onCfMngq in the form of aq-integral operator.

Theorem 4.3: fRef. 27 sSec. 5dg For any element fPCfMngq one has

fszd =E
SsDdq

Cqsz,z*dfszddnszd

where Cq=p j=0
n−1s1+ok=1

n s−q2jdkxkd−1 sa q-analog of the Cauchy-Szegö kerneld.

C. q-analogs of the kernels det „1−zz*
…

−N

Consider the familyKN, N=1, 2, …, of Uqssgln3glnd-invariant kernels given by

KN = p
j=0

N−1S1 + o
k=1

n

s− q2jdkxkD−1

. s4.9d

Clearly, theq-Cauchy-Szegö kernelCq defined in the previous subsection coincides withKn. One
also has

lim
q→1

KNsz,z*d = dets1 − zz*d−N

sthe limit should be understood formallyd. The aim of this subsection is to study these kernels and
the associatedq-integral operators in detail.

Let K N be theUqssgln3glnd-intertwiningq-integral operator corresponding to the kernelKN:
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K Nfszd =E
SsDdq

KNsz,z*d · fszddnszd.

Then

K N = o
k

cN
k ·Pk s4.10d

wherePk stands for the projection defined in the previous subsectionssee the proof of Proposition
4.2d. We are interested in an explicit formula for the coefficientscN

k .
One may writes4.10d as an equality of kernels:

KNsz,z*d = o
k

cN
k · Pksz,z*d. s4.11d

This approach, along with formulas4.8d, allows us to use some identities for the Schur functions17

to computecN
k .

Our first step toward computing the coefficients ins4.10d consists in computing the constants
Cskd in s4.8d. For that purpose, we note that

Knsz,z*d = o
k

Pksz,z*d

sthis is just another way to formulate Theorem 4.3d. In view of the explicit form of the
q-Cauchy-Szegö kernelsTheorem 4.3d and the isomorphisms4.7d, the latter can be written as
follows:

p
j=0

n−1S1 + o
k=1

n

s− q2jdkskD−1

= o
k

ukss1,s2,…,snd,

or, by taking into accounts4.8d

p
j=0

n−1S1 + o
k=1

n

s− q2jdkskD−1

= o
k

Cskd ·sksx1,x2,…,xnd. s4.12d

Recall, for any integerNù0, theq-Pochhammer symbolsx;q2dN=p j=0
N−1s1−xq2jd. We have then,

p
j=0

N−1S1 + o
k=1

N

s− q2jdkskD−1

= p
j=0

N−1Sp
i=1

n

s1 − q2jxidD−1

= p
i=1

n
1

sxi ;q
2dN

;

in particular forN=n the equalitys4.12d reads

p
i=1

n
1

sxi ;q
2dn

= o
k

Cskd ·sksx1,x2,…,xnd.

Now we are in position to make use of the following formula from:17

p
i=1

n
saxi ;q

2d`

sxi ;q
2d`

= o
k

Csk ;ad ·sksx1,x2,…,xnd s4.13d

where
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Csk ;ad = p
i=1

n saq2−2i ;q2dki
·q2si−1dki

sq2;q2dki+n−i
. p

1øi, jøn

s1 − q2ki−2kj−2i+2jd. s4.14d

In our casea=q2n and thus the equalitys4.8d acquires the form

ukss1,s2,…,snd = Csk ;q2nd ·sksx1,x2,…,xnd, s4.15d

where

Csk ;q2nd = p
i=1

n
q2si−1dki

sq2;q2dn−i
. p

1øi, jøn

s1 − q2ki−2kj−2i+2jd.

We turn back now to computing the coefficients ins4.10d. IdentifyingKN with its image under
the isomorphisms4.7d, we have, in view ofs4.9d,

KN = p
j=0

N−1S1 + o
k=1

n

s− q2jdkskD−1

= p
i=1

n
1

sxi ;q
2dN

.

By s4.13d and s4.15d

KN = o
k

Csk ;q2Nd ·sksx1,x2,…,xnd = o
k

Csk ;q2Nd
Csk ;q2nd

ukss1,s2,…,snd. s4.16d

We have thus obtained the following proposition
Proposition 4.4: The coefficients ins4.10d are given by

cN
k =

Csk ;q2Nd
Csk ;q2nd

= p
i=1

n sq2N+2−2i ;q2dki

sq2n+2−2i ;q2dki

.

D. A q-analog of the Fock inner product

The aim of this subsection is to describe some results on aq-analog of the Fock inner product
in CfMng obtained in Ref. 20. At the end of the subsection we shall prove aq-analog of one known
result by Faraut and Koranyi5 which compares the Fock inner product with the one in the Hilbert
space of square-integrable functions on the Shilov boundary of the matrix ball.

Recall that the Fock inner product in the spaceCfMng is defined by

sf1, f2dF =E
Mn

f1szdf2szde−trszz* ddz s4.17d

with dz being the Lebesgue measure onMn normalized so thats1,1dF=1. The inner product
possesses the following remarkable property:

S ] f1

]za
a , f2D

F

= sf1,za
af2dF, ∀ a,a. s4.18d

This property, along withSsUn3Und-invariance of the inner product, is quite useful in explicit
computations of various norms.

Below we present aq-analog of the Fock inner product. But first we have to explain what is
understood by an invariance of an inner product in theq-setting.

Let A0=sA, p d be a Hopfp-algebra. An inner products,d on anA-module V is said to be
A0-invariant if for all v1,v2PV and anyjPA

sjv1,v2d = sv1,j
*v2d.
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The following is one of the main results of Ref. 20.
Proposition 4.5: There exists a (unique) Uqssun3und-invariant inner products· , ·dF in CfMngq

satisfying the properties

s1,1dF = 1,

S ] f1

]za
a , f2D

F

= sf1, f2 ·za
adF, ∀ a,a.

Let s· , ·dSsDd be the inner product inCfMngq defined via theUqssgln3glnd-invariant integral on
the quantum Shilov boundary

sf1, f2dSsDd =E
SsDdq

f2szd* f1szddnszd.

Clearly, the inner product isUqssun3und-invariant. This is a consequence ofs4.5d and the con-
dition s2.6d. Sinces· , ·dF and s· , ·dSsDd areUqssun3und-invariant, the subspacesCfMngq

k are pair-
wise orthogonal with respect to both inner products, and the corresponding norms are proportional
by the Schur lemma. The proportionality constant is computed in the classical setting by Faraut
and KoranyifRef. 5 sCorollary 3.5dg. Here we present aq-analog of their result.

Proposition 4.6:

sf1, f2dF =

p
i=1

n

sq2n+2−2i ;q2dki

s1 − q2dk1+k2+…+kn
· sf1, f2dSsDd, f1, f2 P CfMngq

k . s4.19d

Proof: To prove the proposition, we need an explicit description of the inner products· , ·dF.
Consider the algebraCfMn3Mngq=CfMngq ^ CfMngq. Equip it with the natural bigrading by

setting degsf1 ^ f2d=sdegsf1d ,degsf2dd for any f1, f2PCfMngq. Its completion with respect to this
bigrading is denoted byCffMn3Mnggq.

Let

x̂k = o
J8,J9,h1,2,…,nj

cardsJ8d=cardsJ9d=k

z∧k
J9
J8

^ z∧k
J9
J8

P CfMn 3 Mngq, k = 1,…,n.

Note thatx̂k are similar to the kernelsxk defined ins4.6d. Since the latter pairwise commute, the
elementsx̂k pairwise commute as well. Put

K̂` = p
j=0

` S1 + o
k=1

n

s− q2jdkx̂kD−1

P CffMn 3 Mnggq.

Let k· , ·l be the inner product inCfMngq so thatK̂` is the reproducing kernel, namely, writing

K̂`=o jkj8 ^ kj9 we have then

f = o
j

kj8 · kf,kj9l

Lemma 4.7:

K ] f1

]za
a , f2L =

1

1 − q2 · kf1, f2 ·za
al, ∀ a,a.

Sketch of a proof: The inner productk· , ·l is described in a slightly different way in Ref. 20
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sTheorem 6.1d. The equivalence of the two definitions may be deduced from Theorem 9.1 in Ref.
22 via the limitl→`. j

The above lemma allows us to express the inner productk· , ·l via theq-Fock one

kf1, f2l = s1 − q2dk · sf1, f2dF s4.20d

for f1, f2 homogeneous of degreek. Thus, to prove the theorem it suffices to show that

kf1, f2l = p
i=1

n

sq2n+2−2i ;q2dki
· sf1, f2dSsDd, f1, f2 P CfMngq

k .

It follows from theq-Cauchy-Szegö formulasTheorem 4.3d that the inner products· , ·dSsDd is the
one associated to the kernel

K̂n = p
j=0

n−1S1 + o
k=1

n

s− q2jdkx̂kD−1

P CffMn 3 Mnggq

in the same sense as described above forK̂`. It remains to use the same arguments as in the
previous subsection and to compare the coefficientsCsk ;0d andCsk ;q2nd fsees4.14dg. j

In the last section of the present paper we shall present a more general result which is due to
Ørsted,18 and Faraut and Koranyi5 in the classical setting.

E. Proof of the covariance property

Now we are in position to prove Theorem 4.1.
In view of Theorem 4.3,hq

l is the integral operator with the kernelhq
l Knsz,z*d shere and

further we assume that the operatorhq acts on a kernel in the first argumentzd. We are going to
compute the kernel explicitly.

Recall the notationPksz,z*d for the kernel of theq-integral operatorPk :CfMngq→CfMngq
k

ssee Sec. IV Cd

Pk fszd =E
SsDdq

Pksz,z*dfszddnszd.

By Theorem 4.3,

Cqsz,z*d = o
k

Pksz,z*d.

Thus to compute the kernelhq
l Cqsz,z*d it suffices to computehq

l Pksz,z*d. We observe that

hqsCfMngq
kd = HCfMngq

k−1, kn ù 1

h0j, otherwise.
J s4.21d

fWe use the notationk − l =sk1− l ,k2− l ,… ,kn− ld.g Indeed, the operatorhq is, in particular, a
morphism ofUqssln3slnd-modules, and allUqssln3slnd-modules, isomorphic toCfMngq

k, have the
form CfMngq

k+m for some spositive or negatived m. The left-hand side is then a subspace of
right-hand side bys3.1d. On the other hand, ifknù1 and hqsCfMngq

kd'CfMngq
k−1 then

hqsCfMngq
kd=h0j sinceCfMngq

k andCfMngq
k−1 are simple isomorphicUqssln3slnd-modules. This,

however, contradicts positive definiteness of theq-Fock inner product: we havehqsdetqszd · fd
=0 for arbitrary elementf PCfMngq

k−1 and so

0 = shqsdetqszd · fd, fdF = sdetqszd · f,detqszd · fdF.

The equalitys4.21d, together withs4.3d and s4.4d, implies that for certain constantcsk , ld
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hq
l Pksz,z*d = csk,ldPk−lsz,z*ddetqszd* l .

Indeed, theq-integral operators with the kernelshq
l Pksz,z*d andPk−lsz,z*ddetqszd* l belong to

HomUqssln3slndsCfMngq
k,CfMngq

k−ld,

and thus differ by a constantsthe latter space is one-dimensional sinceCfMngq
k andCfMngq

k−l are
isomorphic irreducibleUqssln3slnd-modulesd. Our immediate aim is to computecsk , ld.

Given an inner products· , ·d in CfMngq and a kernelPsz,z*d=o jpj8 ^ pj9PPolsMn3SsDddq we
shall write sfszd ,Psz,z*dd instead ofo jsf ,pj8d ·spj9d

* .
Recall the notations· , ·dSsDd for the inner product defined in Sect. IV D via the invariant

integral on theq-Shilov boundary. It is not difficult to observe that the reproducing property of the
kernelPksz,z*d is equivalent to

sfszd,Pksz,z*ddSsDd = f, ∀ f P CfMngq
k .

We have

hq
l Pksz,z*d = csk,ldPk−lsz,z*ddetqszd* l

or

sfszd,hq
l Pksz,z*ddSsDd = csk,ld · sfszd,Pk−lsz,z*ddetqszd* ldSsDd,

for any f PCfMngq
k−l. By Theorem 4.6

s1 − q2dk1+k2+…+kn−2ln

p
i=1

n

sq2n+2−2i ;q2dki−l

sfszd,hq
l Pksz,z*ddF = csk,ld · fszd · detqszdl ,

and, due to the main property of theq-Fock product,

s1 − q2dk1+k2+…+kn−2ln

p
i=1

n

sq2n+2−2i ;q2dki−l

sfszddetqszdl,Pksz,z*ddF = csk,ld · fszd · detqszdl .

Apply Theorem 4.6 once again:

p
i=1

n

sq2n+2−2i ;q2dki

s1 − q2d2ln ·p
i=1

n

sq2n+2−2i ;q2dki−l

sfszddetqszdl,Pksz,z*ddSsDd = csk,ld · fszd · detqszdl .

The reproducing property of the kernelPksz,z*d implies that

p
i=1

n

sq2n+2−2i ;q2dki

s1 − q2d2ln ·p
i=1

n

sq2n+2−2i ;q2dki−l

· fszd · detqszdl = csk,ld · fszd · detqszdl ,

consequently,
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csk,ld =

p
i=1

n

sq2n+2−2i ;q2dki

s1 − q2d2ln ·p
i=1

n

sq2n+2−2i ;q2dki−l

.

We then get

hq
l Knsz,z*d = o

k:knùl

p
i=1

n

sq2n+2−2i ;q2dki

s1 − q2d2ln ·p
i=1

n

sq2n+2−2i ;q2dki−l

· Pk−lsz,z*ddetqszd* l

= o
k

p
i=1

n

sq2n+2−2i ;q2dki+l

s1 − q2d2ln ·p
i=1

n

sq2n+2−2i ;q2dki

· Pksz,z*ddetqszd* l .

Finally, Proposition 4.4 implies

hq
l Knsz,z*d =

p
i=1

n

sq2n+2−−2i ;q2dl

s1 − q2d2ln ·Kn+lsz,z*d · detqszd* l .

We have thus obtained
Proposition 4.8: For any element fPCfMngq one has

hq
l fszd =

p
i=1

n

sq2n+2−2i ;q2dl

s1 − q2d2ln ·E
SsDdq

Kn+lsz,z*ddetqszd* l fszddnszd.

Proposition 4.8 reduces the statement of Theorem 4.1 to the following proposition.
Proposition 4.9: The integral operator

fszd ° E
SsDdq

Kn+lsz,z*ddetqszd* l fszddnszd

intertwines the Uqsl2n-actionspn−l and pn+l.
Proof: We shall use a quantum version of the descriptions2.16d of the twisted actionpl.
Let us extend the algebraCfMngq by adding one more generatort fan analog of the distin-

guished Plücker coordinatet in s2.16dg such that

tza
a = q−1za

at, a,a = 1,2,…,n.

The localization of the resulting algebra with respect to the multiplicative systemtN will be
denoted byCfMngq,t. It was noted in Ref. 21 that there exists a unique extension of the
Uqsl2n-module algebra structure inCfMngq to the one inCfMngq,t such that

Ejt = Fjt = sKj
±1 − 1dt = 0 s j Þ nd, Fnt = sKn

±1 − q71dt = 0, Ent = q−1/2tzn
n. s4.22d

It is clear that the subspaceCfMngq·t−l,CfMngq,t is Uqsl2n-invariant for anylPZ. The following
is an equivalent definition of theUqsl2n-actionpl:
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splsjdfd · t−l = jsf · t−ld, j P Uqsl2n, f P CfMngq.

In other words, the linear map

CfMngq → CfMngq · t−l, f ° f · t−l

intertwines theUqsl2n-actionpl and the naturalUqsl2n-action inCfMngq·t−l.
We also need certain extension of the algebra PolsSsDddq. Let us add to PolsSsDddq two

generatorst , t* such that

tt* = t* t, tza
a = q−1za

at, t*za
a = q−1za

at* , a,a = 1,2,…,n.

Denote this new algebra by PolsŜsDddq and its localization with respect to the multiplicative

systemstt*dN by PolsŜsDddq,x. The involution in PolsSsDddq can be extended to an involution in

PolsŜsDddq,x by setting p : t° t* . It is proved in fRef. 27 sSec. 2dg that there exists a unique

structure ofUqsun,n-module algebra in PolsŜsDddq,x which coincides with the original one on

PolsSsDddq,PolsŜsDddq,x and satisfiess4.22d. Following fRef. 27sSec. 3dg, we equip PolsŜsDddq,x

with a bigrading:

degt = s0,1d, degt* = s1,0d, degsza
ad = degsza

ad* = s0,0d, a,a = 1,2,…,n.

Obviously, the homogeneous components

PolsŜsDddq,x
si,jd = hf P PolsŜsDddq,xudegf = si, jdj = t* i · PolsSsDddq · tj

are submodules of theUqsl2n-module PolsŜsDddq,x.
Proposition 4.9 is an immediate consequence of the following statement.

Lemma 4.10: The linear operator fromPolsŜsDddq,x
s0,l−nd to CfMngq·t−l−n given by

f · tl−n ° SE
SsDdq

Kn+lsz,z*ddetqszd* l fszddnszdD · t−l−n

is a morphism of Uqsl2n-modules.
Proof of the lemma: The proof may be easily reduced to the following three statements:

sid The linear map

PolsŜsDddq,x
s0,l−nd → PolsŜsDddq,x

sl,−nd, fszd · tl−n ° detqszd* l fszd · t* lt−n s4.23d

is a morphism ofUqsl2n-modules. This statement follows from the results of Secs. II
and III in Ref. 27.

sii d Let Kn+lsz,z*d=o jkj8szd ^ kj9sz
*d. Then the element

o
j

kj8szd · t−l−n
^ t* s−l−nd ·kj9sz

*d P sCfMngq · t−l−nd^̂ PolsŜsDddq,x
s−l−n,0d

is a Uqsl2n-invariant shere the symbol̂ˆ has the same meaning as the one in the

equalityCfMngq^̂PolsSsDddq=FunsMn3SsDddqd. The statement is a consequence of
results of Sec. 8 in Ref. 22. This, together with statementsid, implies that the map

PolsŜsDddq,x
s0,l−nd → sCfMngq · t−l−nd^̂ PolsŜsDddq,x

s−n,−nd,

fszd · tl−n ° o
j

kj8szd · t−l−n
^ t* s−l−nd ·kj9sz

*ddetqszd* l fszd · t* lt−n s4.24d

is a morphism ofUqsl2n-modules.
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siii d The linear functional

PolsŜsDddq,x
s−n,−nd → C, t* s−nd · f · t−n ° E

SsDdq

fszddnszd

is a Uqsl2n-invariant integral. This is proved in Sec. III of Ref. 27. As a conse-
quence of this statement and statementssid andsii d we get: the linear operator from

PolsŜsDddq,x
s0,l−nd to CfMngq·t−l−n given by

fszd · tl−n ° o
j

kj8szd · t−l−n ·E
SsDdq

Qiskj9sz
*ddetqszd* l fszdddnszd s4.25d

is a morphism ofUqsl2n-modulesshereQl means the automorphism of the algebra
PolsSsDddq given by f ° t* s−ld · f ·t* ld.

Lemma 4.10 follows from the latter statement and the equality

E
SsDdq

Qlsfszdddnszd =E
SsDdq

fszddnszd, ∀ f

which is due to the simple observation that the functionaleSsDdq
fszddnszd “picks up” the constant

term of f and the constant terms ofQlsfd and f are the same. j

Proposition 4.9, consequently Theorem 4.1, is now proved. j

V. HOLOMORPHIC DISCRETE SERIES FOR Uqsun,n

In this last section we study the holomorphic discrete series representations forUqsun,n and
study their analytic continuation.

After giving a definition of the holomorphic discrete series forUqsun,n, we prove an analog of
a classical known result by Faraut and Koranyi5 which allows one to express the inner product in
a module of the holomorphic discrete series via the Fock inner product. We use the result to prove
unitarizability of the modulesPl with l.n−1; the discrete series parameters arel.2n−1. We
apply then the covariance property, proved earlier, to studying certain quotients of the modulesPl.

A. Definition of the holomorphic discrete series

We start by recalling the definition of the holomorphic discrete series for SUn,n. Fix l.2n
−1 and consider the Hilbert space of holomorphic functions on the unit matrix ballD which are
square integrable with respect to the measure dets1−zz*dl−2ndz shere dz is the normalized Le-
besgue measure:eDdz=1d. It is known1 that the operatorss2.17d are unitary on that Hilbert space.

The corresponding representation of SU˜
n,n is said to be a representation of the holomorphic

discrete series.
Now let us turn to the quantum setting. SupposeA0=sA, p d is a Hopfp-algebra. AnA-module

V is said to be a unitarizableA0-module if there exists an inner products,d on V such that for all
v1,v2PV and anyjPA

sjv1,v2d = sv1,j
*v2d

sthat is,V possesses anA0-invariant inner product, see Sec. IV Dd.
Unitarizable Uqsun,n-modules substitute unitary representations of SUn,n sor SŨn,nd in the

quantum setting. The following statement was proved in Ref. 22sCorollary 6.5d.
Proposition 5.1: For l.2n−1 there exists a unique inner products,dl in Pl such that for all

f1, f2PPl and jPUqsl2n
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splsjdf1, f2dl = sf1,plsj*df2dl,

with the normalizations1,1dl=1.
Clearly, the unitarizableUqsun,n-modulesPl , l.2n−1, areq-analogs of unitary representa-

tion of the holomorphic discrete series for SU˜
n,n.

The inner products,dl may be described explicitly as follows. Let us use the notation from the
proof of Proposition 4.6. Consider the element

K̂l =

p
j=0

` S1 + o
k=1

m

s− q2sl+jddkx̂kD
p
j=0

` S1 + o
k=1

m

s− q2jdkx̂kD P CffMn 3 Mnggq. s5.1d

Then the inner products,dl is the one associated with the previous element, i.e.,

f = o
j

kj8 · sf,kj9dl s5.2d

providedK̂l=o jkj8 ^ kj9 ssee Theorem 9.1 in Ref. 22d.

B. A q-analog of a result by Faraut and Koranyi „Ref. 5…

In this subsection, we present aq-analog of Corollary 3.7 in Ref. 5 wheresin the classical
settingd the Fock inner product and the inner productss,dl are compared. We then apply the result
to the problem of analytic continuation of the holomorphic discrete series forUqsun,n.

Using the arguments preceding Proposition 4.6 we deduce that the inner products,dl and the
q-Fock inner product on a particular simpleUqssgln3glnd-submoduleCfMngq

k ,CfMngq are pro-
portional. The proportionality constant is given by the following formula.

Proposition 5.2: Let l.2n−1. Then

sf1, f2dF =

p
i=1

n

sq2l+2−2i ;q2dki

s1 − q2dk1+k2+¯+kn
· sf1, f2dl, f1, f2 P CfMngq

k . s5.3d

Proof: Consider the reproducing kernel

Kl =

p
j=0

` S1 + o
k=1

m

s− q2sl+jddkxkD
p
j=0

` S1 + o
k=1

m

s− q2jdkxkD
associated to the elements5.1d. The image of this kernel under the isomorphisms4.7d is given by

p
i=1

n
sq2lxi ;q

2d`

sxi ;q
2d`

.

By repeating the computation from Sec. IV C, one gets

sf1, f2dSsDd = p
i=1

n sq2l+2−2i ;q2dki

sq2n+2−2i ;q2dki

· sf1, f2dl, f1, f2 P CfMngq
k .

What remains is to apply Proposition 4.6. j
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The result of the above proposition has an important application to the problem of analytic
continuation of the holomorphic discrete series. The point is thats5.3d allows one to define the
sesquilinear forms,dl on CfMngq for anylPR for which all the multiplierspi=1

n sq2l+2−2i ;q2dki
are

nonzero. It is not difficult to prove that the resulting form is stillUqsun,n-invariant with respect to
the corresponding twisted action. Indeed, the invariance is equivalent to the infinitely many equali-
ties of the form

splsjdf1, f2dl = sf1,plsj*df2dl, j P Uqsl2n, f1, f2 P CfMngq.

After simple transformations, each equality becomes an equality of two Laurent polynomials inql

which is known to hold forl.2n−1 by Proposition 5.1, and, thus, for anyl. It is natural to pose
the problem of finding thosel’s for which the corresponding sesquilinear form is positive definite,
i.e. the correspondingUqsun,n-modules are unitarizable. In the classical setting, suchl’s are said
to belong to the continuous part of the Wallach set.1

The above-mentioned proposition implies positive definiteness of the inner productsf1, f2dl

for any l.n−1:
Corollary 5.3: The Uqsun,n-modulesPl are unitarizable forl.n−1.
For n=2, this statement was obtained in Ref. 23ssee Proposition 6.1d.

C. Some consequences of the covariance property

In the previous subsection, we were able to deduce some irreducibility and unitarity property
of Uqsl2n-modulesPl for anyl from the results obtained earlier. We will not pursue all the details
here. It is immediate thatPl is reducible forl=n−1, n−2,… for the following obvious reason: by
the covariance property,Pn−l

s0d =Ker hq
l is a submodule inPn−l. A related application of the cova-

riance property is the following.
Proposition 5.4: For any lPN Pn−l /Pn−l

s0d is a unitarizable Uqsun,n-module isomorphic toPn+l.
Proof: Unitarizability follows from the covariance property, Corollary 5.3, and injectivity of

the induced morphismPn−1/Pn−1
s0d →Pn+l of Uqsl2n-modules. Actually, this latter morphism is an

isomorphism. To prove this, it suffices to show that the operator

hq
l :CfMngq → CfMngq

is surjective. In turn, it suffices to prove the latter statement forl =1, i.e. to show thathq is
surjective. But this follows froms4.21d. j

ACKNOWLEDGMENTS

This research was supported by Royal Swedish Academy of Sciences under the program
“Cooperation between researchers in Sweden and the former Soviet Union.” The authors are
indebted to Leonid Vaksman for sharing with us many of his results and ideas. Moreover, results
of Sec. V B are joint with him, and we are grateful to him for generously allowing us to publish
those results here.

1J. Arazy, “A Survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains,” Contemp. Math.
185, 7–64s1995d.

2V. Chari and A. Pressley,A Guide to Quantum GroupssCambridge University Press, Cambridge, MA, 1995d.
3V. K. Dobrev, “Subsingular vectors and conditionally invariantsq-deformedd equations,” J. Phys. A28, 7135–7155
s1995d.

4V. G. Drinfeld, “Quantum groups,” inProceedings of the International Congress of Mathematicians, Berkeley, 1986,
edited by A. M. GleasonsAmerican Mathematical Society, Providence RI, 1987d, pp. 798–820.

5J. Faraut and A. Koranyi, “Function spaces and reproducing kernels on bounded symmetric domains,” J. Funct. Anal.88,
64–89s1990d.

6L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, “Quantization of Lie groups and Lie algebras,”Algebraic
Analysis, edited by M. Kashiwara and T. KawaisAcademic, Boston, 1988d, Vol. 1; LOMI preprint E-14-87s1987d.

7L.-K. Hua, “Harmonic analysis of functions of several complex variables in the classical domains,”Translation Math-
ematical MonographsAMS, Providence, RI, 1963d, Vol. 6.

8H. P. Jakobsen, “Hermitian symmetric spaces and their unitary highest weight modules,” J. Funct. Anal.52, 385–412

062307-23 Covariant q-differential operators J. Math. Phys. 46, 062307 ~2005!

                                                                                                                                    



s1983d.
9H. P. Jakobsen, “Intertwining differential operators forMpsn,Rd and SUsn,nd,” Trans. Am. Math. Soc.246, 311–337
s1978d.

10H. P. Jakobsen, “Q-differential operators,” math.QA/9907009.
11H. P. Jakobsen, “Unitarity of highest-weight modules for quantum groups,” Lett. Math. Phys.41, 119–133s1997d.
12H. P. Jakobsen and M. Harris, “Covariant differential operators,” inGroup Theoretical Methods in Theoretical Physics,

Proceedings, Istanbul 1982, Lecture Notes in Physics Vol. 180sSpringer, Berlin, 1983d, pp. 16–32.
13H. P. Jakobsen and M. Vergne, “Wave and Dirac operators, and representations of the conformal group,” J. Funct. Anal.

24, 25–106s1977d.
14J. C. Jantzen,Lectures on Quantum GroupssAMS, Providence, RI, 1996d.
15M. Jimbo, “A q-difference analog ofUsgd and the Yang-Baxter equation,” Lett. Math. Phys.10, 63–69s1985d.
16H. T. Koelink, “On p-representations of the Hopfp-algebra associated with the quantum groupUqsnd,” Compos. Math.

77, 199–231s1991d.
17S. C. Milne, “A triple product identity for Schur functions,” J. Math. Anal. Appl.160, 446–458s1991d.
18B. Ørsted, “Composition series for analytic continuations of holomorphic discrete series representations of SUsn,nd,”

Trans. Am. Math. Soc.260, 563–573s1980d.
19G. Shimura, “Differential operators, holomorphic projection, and singular forms,” Duke Math. J.76, 141–173s1994d.
20D. Shklyarov, “On aq-analog of the Fock inner product,” in Lectures onq-analogs of Cartan domains and associated

Harish-Chandra modules, edited by L. Vaksman, math.QA/0109198, pp. 73–93.
21D. Shklyarov, S. Sinel’shchikov, and L. Vaksman, “Quantum matrix ball: Differential and integral calculi,” math.QA/

9905035.
22D. Shklyarov, S. Sinel’shchikov, and L. Vaksman, “Quantum matrix ball: The Bergman kernel,” math.QA/9909036.
23D. Shklyarov, S. Sinel’shchikov, and L. Vaksman, “Geometric realization for some series of representation of the

quantum groupSU2,2,” Matematicheskaya fizika, analiz, geometriya8, 90–110s2001d; in Lectures onq-Analogs of
Cartan Domains and Associated Harish-Chandra Modules, edited by L. Vaksman, math.QA/0109198, 94–110.

24S. Sinel’shchikov and L. Vaksman. “Onq-analogs of bounded symmetric domains and Dolbeault complexes,” Math.
Phys., Anal. Geom.1, 75–100s1998d; q-alg/9703005.

25S. Sinel’shchikov and L. Vaksman, “Hidden symmetry of the differential calculus on the quantum matrix space,” J. Phys.
A 30, 23–26s1997d; “in Lectures onq-Analogs of Cartan Domains and Associated Harish-Chandra Modules, edited by
L. Vaksman, math.QA/0109198, pp. 136–140.

26L. Vaksman, “Intertwining operators and quantum homogeneous spaces,” q-alg/9511007.
27L. Vaksman, “Quantum matrix ball: The Cauchy-Szegö kernel and the Shilov boundary,” Matematicheskaya fizika,

analiz, geometriya8, 366–384s2001d; math.QA/0101179.
28G. Zhang, “Shimura invariant differential operators and their eigenvalues,” Math. Ann.319, 235–265s2001d.

062307-24 D. Shklyarov and G. Zhang J. Math. Phys. 46, 062307 ~2005!

                                                                                                                                    



Energy transport in the Vaidya system
J. P. Krisch and E. N. Glass
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109

sReceived 15 February 2005; accepted 18 March 2005; published online 16 May 2005d

Energy transport mechanisms can be generated by imposing relations between null
tetrad Ricci components. Several kinds of mass and density transport generated by
these relations are studied for the generalized Vaidya system. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1915290g

I. INTRODUCTION

The Vaidya1 space–time generalized the Schwarzschild vacuum solution by allowing mass
parameterm0 to be a function of retarded time. The extension created a spherically symmetric null
fluid atmosphere. Glass and Krisch2 pointed out that allowing the mass function to also depend on
the radial coordinate created a more complex atmosphere containing an anisotropic string fluid in
addition to Vaidya radiation.

The fluid parameters for the Vaidya atmospherehr ,pr ,p'j all depend on time through their
relationship to the time-dependent mass functionmsu,rd; they control the motion of matter
through the atmosphere. The Ricci tensor null tetrad componentssi.e., Ricci spinor componentsd,
F11 andF22, for the generalized Vaidya space–time also depend on both spatial and time deriva-
tives of the mass function. If we impose relations between these components then those relations
will, in turn, impose matter transport in the Vaidya system. Conversely, if a particular mode of
matter transport were assumed for the mass or one of the fluid parameters, it would contain within
it a Ricci relation. Relating Ricci components is a way of imposing and classifying a range of
atmospheric matter transport mechanisms. In this paper we consider the generalized Vaidya
metric,2,3 and examine how functional relations betweenF11 and F22 lead to mass transport
described by the diffusion equation, by the wave equation, and by a dissipative transport equation
of Telegrapher type.

In studying fluid transport, the transport equations are often reducible to ordinary differential
equations by introducing a similarity variable; a well-known example of this is the diffusion
variable,h, r /Ît, suggested by Boltzmann4 in 1894. All the transport equations studied in this
paper have similarity solutions. The physical similarity of matter fields has been discussed by
many authors.5–8 The matter transport considered here is in the atmosphere around a compact
object or an already existing black hole. By examining the similarity structure of the mass solution
to the transport equations, we are able to relate the function of proportionality between the Ricci
components to the spatial part of a similarity variable.

The paper is structured as follows: In the next section we briefly review the generalized
Vaidya space–time. Matter transport mechanisms and their similarity structure are discussed in
Sec. III. Some explicit examples are given in Sec. IV. Metric and tetrad details are provided in the
Appendix.

Our sign conventions are 2An;fabg=AmRm
nab, Rmn=Ra

mna, and metric signatures1, 2, 2, 2d.
Greek indices range overs0,1,2,3d=su,r ,q ,wd. ṁ abbreviates]m/]u, m8 abbreviates]m/]r,
with another prime for each higher derivative. Overhead carets denote unit vectors. Field equa-
tions areGmy=−8pTmy.

II. GENERALIZED VAIDYA SPACE–TIME

The Vaidya metric generalizes vacuum Schwarzschild whenm0→msud,
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gab
vaddxa dxb = Avaddu2 + 2 du dr − r2sdq2 + sin2 q d w2d, s1d

where Avad=1−2msud / r. The only nonzero Weyl null tetrad component isC2=−msud / r3. The
Ricci tensor, withla dxa=du, is

Rab
vad=

2ṁ

r2 lalb.

The Vaidya metric has been generalized so thatmsud→msu,rd and Avad→Agv=1
−2msu,rd / r,

gab
gv dxa dxb = Agv d u2 + 2 du dr − r2sdq2 + sin2 q dw2d. s2d

The metric is Petrov typeD with lm andnm principal null vectorssdetails are in the Appendixd,

lm dxm = du, s3ad

nm dxm = sAgv/2ddu + dr , s3bd

mm dxm = − sr/ Î 2dsdq + i sinq dwd. s3cd

Basis vectors for the generalized Vaidya metric are the unit vector setsv̂m , r̂m ,q̂m ,ŵmd and the
related null setslm ,nm ,mm ,m̄md such that

gmn
gv = v̂mv̂n − r̂mr̂n − q̂mq̂n − ŵmŵn = lmnn + nmln − mmm̄n − m̄mmn. s4d

In terms of the basis vectors, metricggv has energy-momentum2

− 8pTmn
gv = clmln + rv̂mv̂n + prr̂mr̂n + p'sq̂mq̂n + ŵmŵnd s5d

with components

4pc = − ṁ/r2, s6ad

4pr = − 4ppr = m8/r2, s6bd

8pp' = − m9/r . s6cd

The Einstein tensor is computed fromggv and given by

Gmy
gv = − 2F11slmny + nmly + mmm̄y + m̄mmyd − 2F22lmly − sR/4dgmy

gv , s7d

with components

F11 = s2m8 − rm9d/s4r2d = 2psp' − prd, s8ad

F22 = − ṁ/r2, s8bd

R = 2srm9 + 2m8d/r2 = − 16psp' + prd. s8cd

An inspection of Eq.s8d shows that a relation betweenF11 andF22 will generate matter transport.
Smn= 1

2
sRmn

gv − 1
4Rgvgmnd is the trace-free Ricci tensor. Its eigenspectrum determines the Segre

type of metricgmn
gv . The characteristic equation, detfS−lIg=0, is
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l4 − sF22dl3 − 2sF11
2 dl2 + sF11

2 F22dl + F11
4 = 0, s9d

with factors

sl − F11dsl + F11dsl2 − F22l − F11
2 d. s10d

This set corresponds to Segre typef2,s11dg. The Ricci relations established below will not change
the Segre type.

III. GEOMETRY AND TRANSPORT OF MATTER

A. Mass diffusion from fluid relations

The fluid components of the energy-momentum in Eq.s6d depend on both time and spatial
derivatives, so matter transport will occur. Implicit in these equations is the relation

4pr2ṙ = ]rṁ.

If one also assumes

ṁ= 4pD0r
2]rr

then both the mass and density obey diffusion equations, the mass diffusing in a space whose
determinant is dual to Vaidya,2

ṙ = D0¹
2r, s11ad

ṁ= D0¹
−2m s11bd

with ¹2=r−2s] /]rdr2s] /]rd, ¹−2=r2s] /]rdr−2s] /]rd, andD0 the diffusion constant. Equating the
nonzero Ricci components will also produce motion of the mass and density.

B. Mass diffusion from Ricci components

Consider the quantitiess4rF11d and sr2F22d. Equationss8ad and s8bd swith no assumptionsd
allow the relation between these quantities to be written as

]us4rF11d = r2]rF ]rsr2F22d
r2 G . s12d

If there is a general linear relation betweenF11 andF22 such as

F22 = hdsrdF11, s13d

then both Ricci components will evolve diffusively. We will show in the next section thathdsrd is
related to a spatial similarity variable for the diffusion equation. For exact solutions mass is a more
physical quantity and, if we impose this relation and examine mass transport, Eqs.s8ad and s8bd
imply

F11 = − sr/4d]rsm8/r2d, s14ad

F22 = − ṁ/r2 = − srhd/4d]rsm8/r2d. s14bd

The linear relations13d together withs14bd yields

ṁ= sr3hd/4d]rsm8/r2d s15d

and so the mass will also move diffusively.
The homogeneous solution of Eq.s15d is
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m= r3c1sud + c2sud, ċ2 + r3ċ1 = 0,

8pr = − 8ppr = 6c1sud, s16d

pr = p'.

Equationċ2+r3ċ1=0 is satisfied only forc1 andc2 both constant.

C. Mass transport by wave motion

The basic relation between the Ricci components, Eq.s12d, is

]us4rF11d = r2]rF ]rsr2F22d
r2 G .

If one assumes the Ricci components are related by

]uF22 = hwsrdF11 s17d

thenr2F22 will evolve as a wave equation solution. Focusing again on the mass behavior, Eq.s8ad
for F11 and Eq.s8bd for F22 provide a wave equation for the mass,

m̈− shw/4dr3m= 0

or

m̈− shw/4dr5]rsr−2]rmd = 0. s18d

Classical wave motion provides shape preserving traveling solutions to the wave equations for
functions with argumentskr−vtd. Therefore, consider a variable of the formh=Rsrd−Tsud. The
wave equation becomes

fṪ2 − shw/4dr3sR8d2gmhh − fT̈ + shw/4dsr3R9 − 2r2R8dgmh = 0. s19d

The transport equation is

amhh − bmh = 0,

Ṫ2 − shw/4dr3sR8d2 = a,

T̈ + shw/4dsr3R9 − 2r2R8d = b.

The simplest solutions requirea andb to be separately zero. These are

hw =
4c1

r3sR8d2, R= c2r
3 + c3, T = T0u + T1, s20d

and, as in diffusive transport, the proportionality function between the Ricci components is related
to the similarity variable. The mass is given by any function of argumenth, m=Fshd.

D. Dissipative transport

It is clear that the mode of matter transport depends on the relation chosen betweenF22 and
F11. Dissipative waves obey a Telegrapher equation,9 combining both wave and diffusive ele-
ments,
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ẍ − c0
2¹2x + c1ẋ = 0, s21d

where¹2x=s1/r2d]rsr2]rxd. The relationship

s]u + a0dF22 + htsrdF11 = 0 s22d

will generate an equation of Telegrapher form for mass,

m̈− sht/4dr¹−2m+ a0ṁ= 0. s23d

This form of causal dissipative transport provides a richer tool for modeling than a pure diffusion
equation, since it avoids the infinite propagation speeds associated with parabolic diffusion
equations.10 Causal transport has recently been discussed by Herrera and Santos.11 As before, the
function of proportionalityht is related to a similarity variable.

E. Similarity and hd

To see the relation of the proportionality function to the similarity structure of the diffusion
equation, assume a mass solution and similarity variable with forms

m− m0 = TsudFshd,

h = Rsrd/Lsud.

Rewriting the mass diffusion equations15d, with Fh=dF /dh results in

Fhh + FhFLH R9

sR8d2 −
2

rR8
J +

4R

hdrsR8d2L̇G − F 4

hdrsR8d2L2Ṫ

T
GF = 0. s24d

This diffusion equation should have similarity form4

Fhh + 2ahFh − bF = 0.

We look for solutions with the same similarity form, and so the coefficients impose constraints.
The coefficient ofF relatesb andhdsrd,

b =
4

hdrsR8d2L2Ṫ

T
. s25d

Removingr-dependence provides the relation betweenRsrd andhdsrd,

hd =
4c0

rsR8d2 . s26d

With this hd constraint, theu-dependent part of the coefficientb implies

L2Ṫ

T
= bc0. s27d

This allows Eq.s24d to be written as

Fhh + FhFLH R9

sR8d2 −
2

rR8
J + sR/c0dL̇G − bF = 0.

The coefficient ofFh requires
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2ah = 2asR/Ld = LF R9

sR8d2 −
2

rR8
G + sR/c0dL̇. s28d

Solutions of this equation depend on the value ofa. Some example solutions will be given in Sec.
IV. We note here that the choiceR=R0r

3+R1, which solves

R9/R8 − 2/r = 0, s29d

provides an analog of the Boltzman similarity variable. For this choice Eq.s28d yields

L2 = 4c0au + L0
2

with similarity variableRsrd /Lsud

h =
R0r

3 + R1

Î4c0au + L0
2

and proportionality function

hd =
4c0

r5R0
2 .

If c0=D0R0
2 thenhd=4D0/ r5. This choice yields a simple diffusion equation for mass.

F. Similarity and ht

Assuming a mass and similarity variable of the form

m− m0 = TsudFshd, h = Rsrd/Lsud

we find

F L̇2

L2

R2

T
− Sht

4
DrsR8d2GFhh − FRS2L̇

Ṫ

T
+ L̈ − 2

L̇2

L
+ a0L̇D + Sht

4
DLsrR9 − 2R8dGFh

+ FL2S T̈

T
+ a0

Ṫ

T
DGF = 0.

The relationship ofht to the scaling variable in this similarity equation depends on the form of the
time scaling function. The example that we shall use in the next section hasL=L0, and for this
choice the similarity equation becomes

−
ht

4
rsR8d2Fhh + L0

ht

4
s2R8 − rR9dFh + L0

2S T̈

T
+ a0

Ṫ

T
DF = 0. s30d

For this choice ofL, we see the diffusive relation between the proportionality function and the
spatial scaling function again emerges as

ht =
4c0

rsR8d2 . s31d

Telegrapher transport could allow many other relations to be imposed, reflecting the richer
solution structure of this transport mechanism. In the next section we give some examples.
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IV. TRANSPORT EXAMPLES

A. Similarity solutions

As an example of the mass transport solutions based on similarity, we consider a single
scenario to which we apply all three transport mechanisms. The physical setting considered is a
compact object of massmsu,hd with an atmosphere in which transport is occurring. We use
solutions where the scale variableR and proportionality functionhsrd are the same for all trans-
ports,

R=
R0

3
r3, L = L0, hsrd =

4c0

R0
2r5 . s32d

In simple diffusion problems, the choiceL=L0 is applied to bounded systems whereL0 can be
identified with a natural physical scale. For the Vaidya black hole, the Schwarzschild radius
provides a physical distance scale and we could identifyL0 with an associated distance.

1. Diffusive transport

For diffusive transport with the choices above, the equations describing the evolution of the
mass function are

Fhh − bF = 0, Ṫ/T = bc0/L0
2. s33d

The mass function, with time parametert0
−1=bD0R0

2/L0
2, will be given by

m= m0 + T0e
u/t0Fshd,

s34d
Fshd = F0 sinsÎubuh + dd, b , 0 = F0 sinhsÎbh + dd, b . 0.

For b,0, the atmosphere is decaying in time as the Vaidya photons carry energy out of the
system, while forb.0, mass is accreting. From the field equations, the density of the atmosphere
is described by

r = r0e
−u/t0 cossÎubuh + dd = r0e

u/t0 coshsÎbh + dd, s35d

where we have identified the initial atmospheric density and a time constant for the accretion or
decay

r0 =
T0F0

Îubu
2pL0

. s36d

The similarity variable in this example is simply a distance coordinate. The decaying solution
could describe a bounded atmosphere whose density decreases with distance away from the
surface. There is zero radial pressure outer boundary described byÎubuhB+d=p /2. In the decay-
ing solutions, the atmosphere will go asymptotically to zero leaving a compact object of massm0.
Because of the outgoing Vaidya radiation, there is no vacuum match until the atmosphere is gone.
For the accreting solution, there is no zero radial pressure boundary. Since the accreting mass is
entering the atmosphere from the exterior, this is expected. The density profile depends strongly on
the phased. For d=0, the density increases as one looks upward from the core surface. For
nonzerod, the density decreases going up from the surface, reaching a minimum value which
might be identified with the boundary between the atmosphere and the source of the accreting
mass.
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2. Telegrapher transport

The equations for Telegrapher transport with the scaling functions chosen are

Fhh − bF = 0,

L0
2

c0
S T̈

T
+ a0

Ṫ

T
D = b.

Telegrapher transport has a wider set of solutions for the scaling choice than pure diffusive
transport. One solution, usingb=0, is

T = T0e
−a0u,

F = F0h, s37d

m= m0 + r1r
3e−a0u, r1 = T0F0/L0.

The atmospheric density is related to the mass through the field equations byr=m8 / s4pr2d. The
density for this case does not vary with radial distance from the black hole but does reflect the
atmospheric decay, approaching zero as the atmosphere vanishes and the mass becomesm0,

r = r0e
−a0u, r0 = 3R0r1/4p. s38d

The bÞ0 solutions are similar to the diffusive solutions,

T = T0e
gu, b = sL0

2/c1dsg2 + a0gd,

F = F0 sinsÎubuh + dd, b , 0,

s39d
F = F0 sinhsÎbh + dd, b . 0,

m= m0 + TsudFshd.

B. A diffusively evaporating atmosphere

sad The boundary behavior:In this example, we consider a compact object whose atmosphere
is diffusively evaporating. An exact mass solution, given in Ref. 2, is

m= m0 + s4p/3dr3r0 − s4p/3dk2sr5/10 +D0ur3d. s40d

For this example the proportionality function follows directly from the diffusion equation:

hd = 4D0/r .

The atmospheric density associated with this mass is

r = r0 − k2sr2/6 +D0ud. s41d

A boundary can be defined by requiring the radial pressuresand density, from the equation of
stated to be zero. Solving the density equation for a boundary radius gives the boundary as a
function of retarded time,
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Rb
2 =

6

k2
sr0 − k2D0ud.

Let the boundary move inward as the atmosphere evaporates until the atmosphere is gone and the
radius is at the compact object boundary,Rc. This happens in timeu0, thus

Rc
2 =

6

k2
sr0 − k2D0u0d. s42d

It follows that

Rb
2sud = Rc

2 + 6D0su0 − ud. s43d

The bounding surface of the core is parametrized asRc=2m0a. Substituting intos43d provides

Rb
2sud = 4m0

2a2 + 6D0su0 − ud. s44d

The mass function places a constraint on the parameters. From Eq.s42d at timeu0,

sa − 1dm0 =
128

45
k2pm0

5a5. s45d

Using Eqs.s42d and s45d, the time for the evaporation process to complete is

D0u0 =
2

3
a2m0

2F64pr0m0
2a3

15sa − 1d
− 1G . s46d

The density and mass evolve as

r =
k2

6
sRc

2 − Rb
2d + k2D0su0 − ud, s47d

m= m0 +
4pk2

45
Rb

5 +
4p

3
k2Rb

3FRc
2 − Rb

2

6
+ D0su0 − udG . s48d

sbd Extremal case:The time at which the evaporation of the atmosphere is complete has an
extremal value. Extremising Eq.s46d one finds

2sa − 1d2

a3s4a − 5d
=

64pr0m0
2

15
.

The extremal time for the evaporation is

D0u0 =
2

3
a2m0

2F3 − 2a

4a − 5
G . s49d

The second derivative shows this is a minimum. For positive times, we require

1.25, a , 1.5.

scd Time estimates:Takem0 to be a solar size,m0,1.53103 m. The diffusivity constantD0

is related to the constancy of the jump distancesLd and frequencysfd.4 D0 can be estimated as

D0 , L2f .

For example, if the Debye frequency in a solid is the same as the jump frequency, we would have
f ,1013 Hz and the jump distance could be of the order of an angstrom, so that an estimate for the
diffusivity is
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D0 , 10−7 m2/s.

Using these estimates, the time for the atmosphere to vanish by diffusion is roughly

u0 = 107S2

3
Da2 3 2.253 106F3 − 2a

4a − 5
G , 1.53 1013F3 − 2a

4a − 5
Ga2.

For a=1.4, the time is about 1013 s,105 years. The diffusivity is much larger than is normally
measured since not all atomic oscillations will have an associated jump. A smaller diffusivity
would increase the time.

V. DISCUSSION

In this paper we have examined some of the atmospheric matter transport mechanisms intro-
duced by imposing a relation between Ricci components of the generalized Vaidya space–time. We
found that diffusive, wave, and general Telegrapher-type transport can all follow from such a
relation. Imposing a Ricci relation is a way of unifying matter transport mechanisms; if one started
with a particular transport mechanism then a Ricci relation would emerge.

Examples of the matter transport mechanisms were given. All of the exact solutions describe
atmospheres that are either accreting or decaying. The first two examples had the same similarity
function but the density profiles in each solution were very different. The first Telegrapher solution
describes a core object with a decaying atmospheric density varying only with time, and whose
tangential and radial stress are all spatially constant tensions. In the pure diffusive solution, the
densities vary with both distance from the core surface and time. The decaying atmospheres could
be bounded by an exterior fluid of Vaidya radiation. The accreting solutions were surrounded by
the source of accreting matter and Vaidya radiation. The third example, with a different propor-
tionality function, examined a diffusing atmosphere around a core object of radiusRc in the range
2.5m0,Rc,3m0. For anRc=2.8m0 object with a diffusivity based on a solid Debye frequency
there was a minimum evaporation time of about 105 years. Jump frequencies based on the actual
atmospheric fluid would increase this time. Apart from the actual size of the evaporation time for
a specific object, the model predicts that atmospheres around smaller core objects, near the lower
end of the range, will take very much longer to diffusively evaporate than the atmospheres of
larger core objects. This can be understood by looking at the initial size of the atmosphere. Using
Eq. s44d at u=0, Eq. s49d, and the parametrized boundary surfaceRc=2m0a, the initial atmo-
spheric radius is

uRb
2uu=0 = 2Rc

2F a − 1

4a − 5
G, 1.25, a , 1.5.

The smaller core objects have larger atmospheric envelopes, taking longer to evaporate. The
smaller core has an extended atmosphere because its gravitational field is not strong enough to
hold the atmosphere compactly.

Some additional insights into the meaning of the proportionality function can be seen for
diffusive and wave transport by writing the transport equations in terms of variablew=r3. The
diffusive and wave transport equations become

ṁ= S9r5hd

4
Dmww,

m̈= S9r5hw

4
Dmww.

In each case we can find the functional form ofhsrd that will produce the simplest transport and
can relate that value to the diffusion constant or the wave velocity. Our example solutions include
this simple case and a case where the mass and density evolution are more complex.
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The choicehdsrd=4D0/ r5 yields a simplesu,wd diffusion equation for mass. From the Ricci
relations and the field equations we see that

ṁ/r2 = 2phdspr − p'd

indicating that, with the Ricci relations, mass transport is driven by the pressure anisotropy. This
also illustrates a drawback of the mass transport ansatz.F11 is certainly zero for isotropic pres-
sures with a string equation of statefEq. s8ad with p'=prg. The assumed relation,F22

=hdsrdF11, then says that there is no time variation in the mass for isotropic pressures. In general,
when the two Ricci components are not related, the mass can vary with time, even in the case of
isotropic pressures.

We list the assumptions that lead to matter transport. For diffusion the specific choicehd

=4D0/ r5 is used.

Assumption Transport

ṁ=4pD0r
2]rr ṁ−D0¹

−2m=0, ṙ−D0¹
2r=0

F22=s4D0/ r5dF11 ṁ−D0¹
−2m=0

]uF22=hwsrdF11 m̈−shw/4dr3¹−2m=0
s]u+a0dF22+htsrdF11=0 m̈−sht /4dr¹−2m+a0ṁ=0

We have seen that imposing a Ricci relation provides a broad arena to investigate a range of
atmospheric transport processes in the generalized Vaidya space–time and is a rich source of new
analytic mass solutions. The mass solutions that we presented focused on the growth or depletion
of an atmosphere around a central object. They can be used to describe the behavior, for example,
of isolated black hole atmospheres but also offer simple models of galaxies with a massive black
hole at the center. The relationships we imposed on the Ricci components were investigated in
terms of mass transport although the fundamental relationships described the evolution of the
Ricci components themselves. The Ricci evolution is an interesting avenue for further investiga-
tion as they are input functions for the Riemann invariants. The evolution of the invariants and
their syzigies will be discussed elsewhere.

APPENDIX: GENERALIZED VAIDYA PRINCIPAL NULL FRAME

The principal null frame Eq.s3d of the Petrov typeD metric gmn
gv obeys

lm;n = sAgv8 /2dlmln − s1/rdsmmm̄n + m̄mmnd, sA1ad

nm;n = − sAgv8 /2dnmln + sAgv/2rdsmmm̄n + m̄mmnd, sA1bd

mm;n = sAgv/2rdlmmn − s1/rdnmmn + scotq/Î2rdsmmmn − mmm̄nd. sA1cd

with both principal null vectorslm andnm geodesic.

For tetradhv̂ , r̂ ,q̂ ,ŵj and metricgmn
gv = v̂mv̂n− r̂mr̂n−q̂mq̂n−ŵmŵn, the basis vectors are related

by

v̂m dxm = Agv
1/2 du + Agv

−1/2 dr = Agv
−1/2fnm + sAgv/2dlmgdxm, sA2ad

r̂m dxm = Agv
−1/2 dr = Agv

−1/2fnm − sAgv/2dlmgdxm, sA2bd

q̂m dxm = r dq = s1/ Î 2dsmm + m̄mddxm, sA2cd
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ŵm dxm = r sinq dw = − si/ Î 2dsmm − m̄mddxm. sA2dd

The kinematics of thev̂ flow, acceleration, expansion, and shear, are described by

v̂m
;n = amv̂n + sm

n − sQ/3dsr̂mr̂n + q̂mq̂n + ŵmŵnd, sA3d

where

am = fṁ/r + Agv]rsm/rdgAgv
−3/2r̂m, sA4ad

sm
n = sQ/3ds− 2r̂mr̂n + q̂mq̂n + ŵmŵnd, sA4bd

Q = sṁ/rdAgv
−3/2. sA4cd

Spherical symmetry allows the functionmsu,rd to be identified as the mass within two sur-
faces of constantu and r, and invariantly defined from the sectional curvature of those surfaces,

− 2m/r3 = Rabmnq̂aŵbq̂mŵn. sA5d
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We study a collection of Markov chains with values in the collection of partial
orderings of the natural numbers. These systems arise naturally in the causal set
approach to discrete quantum gravity and include the well-studied random partial
orders of Alon, Bollobas, Brightwell, and JansonfAnn. Appl. Probab.4, 108–123
s1994dg. We prove that under the dynamics associated to Markov chains in our
collection, posts occur infinitely often, almost surely. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1922070g

I. INTRODUCTION

The causal set approach to quantum gravity posits that the deep structure of space–time should
be modeled on discrete structures admitting a causal orderscf. Bombelliet al., 1987; Brightwellet
al., 2002a, 2002b; Dou and Sorkin, 2003; Martinet al., 2002; Rideout and Sorkin, 2000; Sorkin,
2000, 1997, and references thereind. Such discrete structures are calledcausets, and much work
has been done to construct stochastic classical dynamics for causet evolution in hopes that this
might serve as a guide to developing corresponding quantum dynamics. There is an attractive
classification for possible stochastic dynamics for causets which satisfy a discrete version of
covariance and relativistic causality: such dynamics are given by Markov chains which are defined
by a sequence of coupling constants,tn, nù0, wheret0=1 andtnù0 for all n.0 scf. Rideout and
Sorkin, 2000d. Such dynamics are collectively referred to as “classical sequential growth models”
sCSGd.

In seeking to understand the possible role of CSG models in dealing with problems involving
the unexplained “large numbers” in cosmology related to the size of the universe and its high
degree of homogeneity and isotropy, Sorkins2000d relates such problems to the number of cycles
of contraction and re-expansion through which the universe has gone to date. He then notes that
contraction followed by re-expansion has the effect of “renormalizing” the coupling constants of
a CSG model in a definite mannerfcf. s2.13d belowg, and argues that this observation provides a
possible method for isolating a collection of dynamical laws which might play a distinguished
physical role: those CSG models which are attractors under cycles of contraction and re-
expansion. A study of such models was undertaken by Dous1999d and further developed in Martin
et al. s2002d, where the authors note that the question ofwhich dynamical laws lead to cycles of
contraction followed by re-expansionis very much open.

The results of the above-mentioned studies suggest a natural avenue for further constraining
the coupling constants defining the class of CSG models: consider those models which are stable
“under cycles of contraction and re-expansion.” A representation theorem for the corresponding
class of Markov chainsfwhich we callGCD chainsscf. Definition 2.4dg was established in Ash
and McDonalds2003d. This paper continues the study of GCD chains.
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The fixed points under renormalization play a fundamental role in understanding GCD chains
and their relation to general CSG models. Every such fixed point is represented by the much-
studied random graph process investigated by Barak and Erdós twenty years ago and known in the
physics literature astransitive percolation.

Transitive percolation, the standard model for producing random partial orders on the natural
numbers, is easy to describe inductively: Fix 0,p,1 and suppose that we already have our
randomly chosen partial order onn nodes labeled0,1, . . . ,n−1 swhich is always assumed to be
consistent with the natural ordering given by the node labelingsd. Introduce a new nodeslabelednd
and with probabilityp introduce an edge directed to the new node from each of the existing nodes,
the addition of each edge being independent of all other edges. Finally, take the transitive closure
of the partial order obtained once the random edges are determinedscf. Sec. II for examplesd.

A great deal is known about transitive percolation; the associated literature falls under a
number of titles related to “random graphs” and there are many applicationsfcf. Bollobás and
Brightwell s1997d, and references thereing. Our interest is primarily directed toward the existence
of postswhich are defined to be nodes in a partial order ofN which are ordered with respect to
every other node inN.

Posts were introduced by Alon, Bollobás, Brightwell, and Janson ins1994d where their prop-
erties with respect to transitive percolation were first studied. In particular, it was shown in Alon,
Bollobás, Brightwell, and Jansons1994d that, under transitive percolation with any fixedp, an
infinite number of posts occur, almost surely. Our main goal is to establish the same result for each
of a certain dense family of GCD chains. Postponing the technicalities to Sec. II, we can give a
statement of our main result:

Theorem 1.1:Let M be a Markov chain taking values in the partial orderings on the natural
numbers. Suppose that M exhibits general covariance, Bell causality and renormalizability (cf.
Definition 2.1, Definition 2.3). Suppose further that the support of M (cf. Definition 2.6) is com-
pact and that the supremum of the support is isolated. Then under the dynamics generated by M,
an infinite number of posts occur, almost surely.

In addition to providing new examples of dynamics which produce an infinite number of
posts, almost surely, our result indicates that our notion of CSG models is consistent: If the
dynamical laws are renormalizableswhich follows from a hypothetical past with infinitely many
cycles of contraction and re-expansiond, then they will generate cycles of contraction and re-
expansion infinitely often in the future. We expect our result to have a number of applications both
in physics sdiscrete universes satisfying the hypotheses of our theorem will have an infinite
number of cycles of expansion and contraction, almost surelyd and in mathematicssvarious other
properties of transitive percolation should also be inherited by random partial orders which satisfy
the hypotheses of our theoremd.

The paper is organized as follows: In Sec. II we provide the necessary background informa-
tion and notation, including a mathematical introduction to causet dynamics and a discussion of
the notion of “posts” in random partial orders. In Sec. III we provide a proof of our main result,
Theorem 1.1.

In Sec. IV we prove a related theorem about the asymptotic behavior of GCD chains. Namely,
in a sense made precise there, any GCD chain approaches a transitive percolation in the limit of
large time. This result is illustrative of our viewpoint: We view transitive percolations as the
building blocks of GCD chains and, in the limit of large timesagain, in a sense made precise in
Sec. IVd, the behavior of any given GCD chain will be given by a transitive percolation associated
to this chain. Unfortunately, this asymptotic property appears to be too weak in itself to imply the
existence of infinitely manysor even just oned posts, almost surely.

Throughout the paper we usually work withlabeledcausets. In particular, references to “time”
are usually references to a “gauge time” associated to a particular Markov chain and not to the
physical time of space–time. Similarly, references to the “state of the system” involve references
to the state of a particular Markov chain and not to the state of the physical universe at a particular
time.
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II. BACKGROUND

Let fng denote the seth0,1,2, . . . ,nj with the natural partial order denoted by,. Let Cn be the
collection of all subgraphs of the complete graph on the vertex setfng. Suppose thatCPCn has an
edge,i j , given by verticesi and j with i , j . We introduce a direction along edges by requiring that
i j be directed fromi to j . The graphC with edges so directed induces a partial order onfng; we
say i a j if there is a directed edge inC from i to j . This provides an identification of a subset of
the directed graphs onfng sthose with edge directions consistent with the natural labeling of the
verticesd with the collection of partial orders onfng which are extendible to the natural order on
fng. Allowing n to vary we define a set

C = ø
nPN

Cn. s2.1d

We call elements ofC labeled causets. We call any equivalence class of labeled causets under
sorder preservingd isomorphisms acauset. We will denote the equivalence classes by a tildesfor

example,C̃ is the set of all causetsd. In the calculations which follow, we usually work with labeled
causets.

It is clear that form,n, there is a natural inclusionCm,Cn which induces a partial order on
C. This partial order extends to causets, two causets being ordered if they admit representatives in
Cn, andCm with n,m and there exists an order preserving functionf :C→D such thatfsCd is an
initial segment ofD. We will denote the partial order on both causets and labeled causets with the
symbolaa.

Recall, alink in a partially ordered set is an irreducible relationsi.e., a relation that contains
no other relationd. A path in a partially ordered set is a sequence of elements of the set, each
related to the next by a link.

Given CPC and an elementxPC, we define the past ofx by

pastCsxd = hy P C:y a xj. s2.2d

We will regard pastcsxd as a poset with partial order given by the partial order ofC. Similarly, the
future of an elementxPC is defined to be

futureCsxd = hy P C:x a yj. s2.3d

GivenCPCn, we will define the family ofC, denotedFsCd, as those elementsDPCn+1 such
that Ca aD:

FsCd = hD P Cn+1:C a a Dj. s2.4d

Given CPCn andDPFsCd, theprecursor set of the transition C→D, denoted PrecsC,Dd, is the
past of the elementxPD \C:

PrecsC,Dd = pastDsxd , C. s2.5d

Note that PrecsC,Dd is a poset with partial order given by its description as the past of an
elementxPD. The collection ofmaximal elements associated to the transition C→D is the
collection of elements ofC with links to the elementx:

maxsC,Dd = hy P D:y linked to x, hxj = D \ Cj. s2.6d

While the above-mentioned material is described in the context of labeled causets, a com-
pletely parallel development can be given for causets.

Before giving the formal definition of the Markov chains upon which our work will focus, we
give an informal description of the processes with which we will deal.

Initially, the state of our system is given by the trivial poset consisting of a single point. At
each increment of time, an element comes into existence as the “offspring” of elements already in
existence. That is, at the beginning of thenth increment of time we have an elementCPCn which
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we evolve to an elementDPCn+1 by adding an element toC together with relations between the
new element and a subset of elements ofC sthose elements in the past of the new element, i.e.,
those which bear some causal relationship to the new elementd. The new relations are determined
randomly; the probability that any given collection of relations is added is given by a collection of
transition probabilities which define the process.

We define a collection of Markov chains with state spaceC as follows:
Definition 2.1:We say that a Markov chainM with state spaceC belongs to the collectionM

if the transition probabilities ofM satisfy:

s1d Given CPCn, let ProbsC→Dd denote the transition probability corresponding to an evolu-
tion from causet C to causet D. Then ProbsC→Dd=0 if D¹FsCd and oDPFsCd
ProbsC→Dd=1.

s2d sGeneral Covarianced Let C̃P C̃n. SupposeP1 andP2 are two paths from the trivial causet

consisting of a single point toC̃ and writePI =hl i1, . . . ,l inj where thel i j are the links defining
the pathPi. Then

p
k=1

n

Probsl1kd = p
k=1

n

Probsl2kd.

s3d sCausalityd Suppose thatCPCn and fori =1,2,suppose thatCi PFsCd. Let BPCm, møn, be
defined by

B = PrecsC,C1d ø PrecsC,C2d

with poset structure induced by that ofC. Let Bi PCm+1 be B with an element added in the
same manner as in the transitionsC→Ci. Then we require

ProbsC → C1d
ProbsC → C2d

=
ProbsB → B1d
ProbsB → B2d

. s2.7d

For a detailed discussion of these restrictions and results related to the corresponding dynam-
ics, see Rideout and Sorkins2000d and Dous1999d.

A special role in the theory will be played by those causets with no relations. We will denote
the element ofCn with no relations byAn. We note that there is a unique path inC of lengthn from
A0 to An.

Definition 2.2:Let M PM and suppose thatAn is the causet onn nodes with no relations.
Associate toM a sequence of positive constantshqnjn=0

` defined by

q0 = 1, s2.8d

qn = ProbsAn → An+1d, s2.9d

where, as above, the expression appearing on the right-hand side ofs2.9d denotes the probability
of transition fromAn to An+1. We call the sequencehqnj defining probabilities for the chain M. If
qn.0 for all n we say that the chainM is generic.

Rideout and Sorkins2000d prove that for genericM, the sequencehqnjn=0
` completely deter-

mines the theory associated toM. More precisely, given an elementCPCn, and DPFsCd fcf.
s2.4dg, let m be the number of maximal elements associated to the transitionC→D fcf. s2.6dg and
let r be the cardinality of the precursor set of the transitionC→D fcf. s2.5dg. Then the transition
probability for the evolutionC→D is given byscf. Rideout and Sorkin, 2000d

ProbsC → Dd = qno
k=0

m

s− 1dkSm

k
D 1

qr−k
. s2.10d

Following Rideout and Sorkins2000d, we define a sequencetn by
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tn = o
k=0

n

s− 1dn−kSn

k
D 1

qk
. s2.11d

Then we can recover the probabilitiesqn from the sequence oftn:

1

qn
= o

k=0

n Sn

k
Dtk. s2.12d

We call the collectionhtnj the coupling constantsof the associated Markov chain. We note that if
S1 is the collection of sequences of non-negative real numbersT=htnjn=0

` such thatt0=1, then there
is a bijection between generic elements ofM and elements ofS1 given by associating to each
element ofS1 the associated collection of defining probabilitieshqnjn=0

` given by s2.12d.
We constrain the class of Markov chains defined by Definition 2.1 further by requiring that

they berenormalizable under cycles of expansion and contraction. We can state this requirement
concisely in terms of a renormalization operatorR :S1→S1 defined by

sRsTddn =
tn+1 + tn
t0 + t1

. s2.13d

We define the stable set of the operatorR by

StabsRd = hT P S1:T P ù
nPN

RnsS1dj . s2.14d

Definition 2.3:Let M be a Markov chain with coupling constantsT satisfyingTPS1. We say
that M is renormalizable ifTPStabsRd.

Using Definition 2.3 we define the Markov chains upon which we will focus:
Definition 2.4:Suppose thatM PM has coupling constantsTPS1. If M is renormalizable,

we say thatM defines ageneric causet dynamicsor GCD chain. We denote the collection of
systems which are GCD chains byM.

We denote byS the collection of coupling constants given by

S = S1 ù StabsRd. s2.15d

From the relevant definitions it is clear that there is a bijection between elements ofM and
elements ofS afforded by restricting the identification betweenM andS1.

The main result of Ash and McDonalds2003d is the following more subtle characterization of
GCD chains:

Theorem 2.5: fcf. Ash and McDonalds2003dg Suppose that MPM has associated coupling
constants T=htnj. Then MPM if and only if there is a non-decreasing functiona :R+→R such
that

tn =E
0

`

sndassd. s2.16d

Definition 2.6:Let M be a GCD chain defined by coupling constantshtnj. If a :R+→R is a
nondecreasing function satisfyings2.16d we say thata represents M. If M PM is represented by
a, we define the support ofM to be the support of the measureda.

We can use Theorem 2.5 to give a second definition of transitive percolation:
Definition 2.7: Fix p, 0,p,1. Transitive percolation is the GCD chain whose defining

probabilities and coupling constants are given by

qn = s1 − pdn

s2.17d
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tn = S p

1 − p
Dn

.

Settingd=p/ s1−pdPR+, we see froms2.17d ands2.16d that transitive percolation corresponds to
choosinga in Theorem 2.5 to be given by the appropriate Heaviside function:

asxd = H0 if x , d

1 if x ù d.
J s2.18d

It is a corollary of Theorem 2.5fcf. Ash and McDonalds2003dg that for any GCD chain, we
can write the transition probability for an arbitrary evolution using a representation. More pre-
cisely, givenCPCn and DPFsCd, evolution fromC to D is effected by the addition of a new
vertex,xD, and a number of new edges. The transition probability for evolution fromC to D under
the GCD chain represented bya is given byfcf. Ash and McDonalds2003dg

ProbsC → Dd =

E
0

`

sms1 + sdr−mdassd

E
0

`

s1 + sdndassd
, s2.19d

wherem is the number of maximal elements in the past ofxD fcf. s2.6dg andr is the number of
elements in the past ofxD fcf. s2.5dg. In particular, for transitive percolation as given in Definition
2.7, the transition probabilities associated to the evolutionCn{C→DPFsCd given bys2.19d are
given by

ProbsC → Dd = dms1 + ddr−m−n. s2.20d

In the sequel we will have use for the measure space machinery associated to a Markov chain.
To fix notation, we recall the standard constructions:

Let V be the collection of paths inC. Thus, if f PV, then f is a function fromN to C and for
eachnPN, fsnd is linked to fsn+1d.

Given a finite collection of sets of causets,hA1,A2, . . . ,Anj with Aj ,Ci j
, we define a subset

Ai1,. . .,in
,V by

Ai1,. . .,in
= hSP V:Ssi jd P Ajj. s2.21d

We callAi1,. . .,in
the cylinder set defined by the sequenceA1,A2, . . . ,An. We letS denote the sigma

algebra generated by the collection of cylinder sets.
Let M be a GCD chain,Mskd the state of the system at timek. Given a cylinder setA

=Ai1,. . .,in
, we can associate a probability toA:

PMsAd = ProbsMs jd P Aj for j = i1, . . . ,ind. s2.22d

More generally, givenCPCm, we can regardC as an initial segment of a path generated byM swe
call such an initial segment astemd. Given a cylinder setA=Ai1,. . .,in

we can consider starting the
process atC and associate a probability toA,

PM
C sAd = ProbsMs jd P AjuMsmd = C for j = i1, . . . ,ind. s2.23d

By standard arguments,PM
C extends to a probability measure onsV ,Sd. WhenDPFsCd we can

think of D as a cylinder set and the above convention gives

PM
C sDd = ProbsC → Dd. s2.24d

WhenC=h0jPC0 we will, as above, drop the reference toC and writePM
C =PM scf. Brightwell et
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al. s2002d for further study of this sigma algebra and measure and their invariance properties under
relabeling the vertices of the causetsd.

Let

H = hf P V:fs0d P C0, fsn + 1d P Fsfsnddj.

We call elements ofH histories and we note that the measures constructed above charge the
collection of histories. Given an elementHPH, we can define a partial order onN by constructing
a formal limit. More precisely, giveni, j PN, we say thati a j with respect to limH if for all n
sufficiently large,i a j with respect toHsnd. This partial order facilitates discussion of posts:

Definition 2.8:The vertexi is a post in the historyHPH if every vertex j Þ i satisfiesi a j
with respect to limH or j a i with respect to limH.

Note that the sets

Pi = hH P H:i is a post inHj s2.25d

are in the sigma algebraS generated by the cylinder sets. LetP` be the event that an infinite
number of posts occur. Then

P` = ùn=1
` øi=n

` Pi . s2.26d

We note that it is a theorem of Alon, Bollobas, Brightwell, and Jansons1994d that for any
transitive percolationM with associated parameterd.0,

PMsP`d = 1.

Our goal is to extend this result to a large family of GCD chains.

III. PROOF OF THE MAIN RESULT

Suppose that 0,x1,x2, . . .,xL,` and letdxi
be the delta mass concentrated atxi. Let m

be a convex combination of thedxi
:

m = o
i=1

L

gidxi
, s3.1d

where 0øgi ø1 andoi=1
L gi =1. Then by Theorem 2.5 and Definition 2.7,m represents a GCD

chain.
Lemma 3.1: Lete.0. Suppose thatm is as given in (3.1). Then there exists N such that for

any N̄ùN, and any causet CN̄ on N̄ elements, the probability that a post develops after time N¯

under dynamics generated bym, given stem CN̄, is greater than1−e.
Proof: Let e.0 and suppose thatm is as given ins3.1d. Let Cn be a causet onn elements. Let

Cn+1 be in the family ofCn and suppose that the transitionCn→Cn+1 is characterized bym
maximal elements and a precursor set of sizer. By s2.19d, under the dynamics generated bym,

Pm
CnsCn+1d =

oi=1

L
gixi

ms1 + xidr−m

oi=1

L
gis1 + xidn

.

Let Gi =s1+xid / s1+xLd. Then

Pm
CnsCn+1d =

oi=1

L−1
gixi

ms1 + xidr−m

oi=1

L
gis1 + xidn

+
PxL

CnsCn+1d

1 + oi=1

L−1 gi

gL
Gi

n

,

wherePxL
denotes probability with respect to transitive percolation with delta mass atxL. Thus,
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Pm
CnsCn+1d ù PxL

CnsCn+1d
1

1 + oi=1

L−1 gi

gL
Gi

n

. s3.2d

GivenCNPCN, let SCN
be the collection of histories with stemCN which develop a post after

time N. For k.N, let SCN
skd,SCN

be the collection of histories with stemCN that develop their
first post after time greater thanN at vertexk. Given N8.N, let SCN

sk,N8d be the cylinder set
consisting of those histories which coincide with an element ofSCN

skd up to timeN8. Thus, for
N8ùk, elements ofSCN

sk,N8d consist of histories of the formCN→CN+1→¯→CN8→¯ where
the node labeledk is ordered with respect to all other nodes inCj, j økøN8 and k is the least
integer insN,N8g with that property. It follows easily that

SCN
skd = ù

N8.N

SCN
sk,N8d

and for any GCD chainn,

Pn
CNsSCN

skdd = lim
N8→`

Pn
CNsSCN

sk,N8dd. s3.3d

We can writePm
CNsSCN

sk,N8dd as a sum of products:

Pm
CNsSCN

sk,N8dd = o
SCN

sk,N8d
p
n=N

N8−1

Pm
CnsCn+1d, s3.4d

where the notation indicates that the sum is over all paths fromCN to CN8 which develop a first
post at nodek, N,køN8. We estimate each term in the product usings3.2d. Thus,

Pm
CNsSCN

skdd ù lim
N8→`

o
SCN

sk,N8d
p
n=N

N8−1

PxL

CnsCn+1d
1

1 + oi=1

L−1 gi

gL
Gi

n

= lim
N8→`

o
SCN

sk,N8d
S p

n=N

N8−1

PxL

CnsCn+1dD1 p
n=N

N8−1
1

1 + oi=1

L−1 gi

gL
Gi

n2 . s3.5d

For 0øz,1 andg positive, the infinite product

p
n=1

`
1

1 + gzn

converges. ChooseN so large that

p
n=N

`
1

1 + oi=1

L−1 gi

gL
Gi

n

ù 1 − e. s3.6d

From s3.4d–s3.6d we have for anyN̄ùN, for k. N̄ and for any causetCN̄PCN̄,
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Pm
CNsSCN̄

skdd ù s1 − ed lim
N8→`

o
SCN

s̄k,N8d
p
n=N̄

N8−1

PxL

CnsCn+1d. s3.7d

By s3.3d the limit on the right-hand side ofs3.7d is the probability that a first post occurs at node

k, given stemCN̄, under transitive percolation. Since identification of the first post after timeN̄
partitionsSCN̄

, we have

Pm
CNsSCN̄

d = o
kùN̄

Pm
CNsSCN̄

skdd ù s1 − ed o
kùN̄

lim
N8→`

o
SCN

s̄k,N8d
p
n=N̄

N8−1

Px:L

CnsCn+1d

= s1 − ed o
kùN̄

lim
N8→`

PxL

CNsSCN̄
sk,N8dd. s3.8d

It follows from the work of Alon, Bollobas, Brightwell, and Jansons1994d that the sum on the
right-hand side ofs3.8d is equal to one, which finishes the proof of the lemma. h

Lemma 3.2: Suppose thatm is as in (3.1) and letPm be the associated probability measure. Let
P` be the event that an infinite number of posts occur [cf. (2.26)]. Then

PmsP`d = 1.

Proof: Let e.0. As in s2.25d, let Pi be the collection of histories which develop a post at node
i. GivenCNPCN, let SCN

be as in the proof of Lemma 3.1. By Lemma 3.1, there existsN such that

for all N̄ùN, for all historiesH,

Pm
HsN̄dsSHsN̄dd ù 1 − e.

Since

ø
HPH

SHsN̄d , ø
i=N̄

`

Pi s3.9d

we conclude that

PmSø
i=N̄

`

PiDù1 − e. s3.10d

Sincee was arbitrary, we conclude that for alln,

PmSø
i=n

`

PiD = 1.

Noting thatP`=lim inf Pi fcf. s2.26dg, the proof is complete. h

The proof of Lemma 3.2 uses only the conclusion of Lemma 3.1. This being the case, we
have:

Corollary 3.3: Suppose thatn is a GCD chain and letPn be the associated probability

measure. Suppose for everye.0 there exists N such that for every N¯ùN and every CN̄PCN̄, the

probability that a post develops after time N¯under the dynamics associated ton, given stem CN,
is greater than or equal tos1−ed. Let P` be the event that an infinite number of posts occur. Then

PnsP`d = 1.

Proof of Theorem 1.1:Suppose thatM is a compactly supported GCD chain represented by
a :R+→R. Let e.0 and write
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c = infhx:x P supportsdadj,

d = suphx:x P supportsdadj.

Choose a partitionI =hxiji=0
L , c=x0,x1, . . . ,,xL=d and setgi =asxid−asxi−1d. Then, sinceda is

a probability measure anda is nondecreasing, we have 0øgi ø1 andoi=1
L gi =1. With notation as

in s3.1d, let mI be defined by

mI = o
i=1

L

gidxi
. s3.11d

ThenmI is a GCD chain.
Given CnPCn andCn+1PFsCnd we uses2.19d and we approximate

PM
CnsCn+1d =

e sms1 + sdr−mda

e s1 + sdnda
s3.12d

by

PmI

CnsCn+1d =
oi=1

L
gixi

ms1 + xidr−m

oi=1

L
gis1 + xidn

. s3.13d

As in the proof of Lemma 3.1, chooseN so large that

p
n=N

`
1

1 + oi=1

L−1 gi

gL
S1 + xi

1 + d
Dn ù 1 −

e

8
. s3.14d

Let I8 be a refinement ofI, I8=hxi8ji=0
L8 , with xL8−1

8 =xL−1. For xi8P I8, write gi8=asxi8d−asxi−18 d.
Writing xL−2=xL8−k

8 , we note that for allj , 1, j øk, xL8−j
8 ,xL8−1

8 and thus

o
i=L8−k+1

L8−1

gi8S1 + xi8

1 + d
Dn

ø o
i=L8−k+1

L8−1

gi8S1 + xL8−1
8

1 + d
Dn

= sasxL8−1
8 d − asxL8−k

8 ddS1 + xL8−1
8

1 + d
Dn

= gL−1S1 + xL−1

1 + d
Dn

.

Continuing inductively we conclude

1

1 + oi=1

L−1 gi

gL
S1 + xi

1 + d
Dn ø

1

1 + oi=1
L8−1 gi8

gL
S1 + xi8

1 + d
Dn . s3.15d

Thus, the estimates3.14d is uniform in N under refinements of the partitionI which do not affect
the last subinterval of the partitionI. With SCN

, SCN
skd, andSCN

sk,N8d as defined in the proof of
Lemma 3.1, we thus obtain that there existsN such that for all refinementsI8 of I which do not
affect the last subinterval ofI and allk.N, we have, for allN8.k,
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PmI8

CNsSCN
sk,N8dd ù S1 −

e

6
D o

SCN
sk,N8d

p
n=N

N8−1

Pd
CnsCn+1d. s3.16d

Because the sum on the right-hand side ofs3.16d is PdsSCN
sk,N8dd, we have that there existsN

such that for all refinementsI8 of I which do not affect the last subinterval ofI,

PmI8

CNsSCN
sk,N8dd ù S1 −

e

6
DPd

CNsSCN
sk,N8dd s3.17d

for all CNPCN and allk.N, all N8.k. Using the fact that the setsSCN
skd partition SCN

and that
Pd

CNsSCN
d=1, we chooseJ so large that

PM
CNsSCN

d − o
k=N

J

PM
CNsSCN

skdd ø
e

6
, s3.18d

o
k=N

J

Pd
CNsSCN

skdd ù 1 −
e

8
. s3.19d

Having chosenJ, chooseN8 so large that for allk, NøkøJ, for all N9ùN8,

PM
CNsSCN

skdd − PM
CNsSCN

sk,N9dd ø
e

6sJ − Nd
, s3.20d

o
k=N

J

Pd
CNsSCN

sk,N9dd ù 1 −
e

6
. s3.21d

Now suppose thatd is an isolated point of support and choose an open intervalI containingd such
that sI \ hdjdùsupportsdad is empty. Choose a partitionI which includes a single point inI \ hdj.
Then, by the above, there existsN such that for allCNPCN, for all k.N, for all J and allN8 large
enough, and all partitionsI8 refining I, s3.17d–s3.21d hold.

Having chosenJ and N8 as above, note that under refinements3.13d converges tos3.12d.
Choose a refinementI8 such that for allk, NøkøJ,

uPM
CNsSCN

sk,N8dd − PmI8

CNsSCN
sk,N8ddu ø

e

6sJ − Nd
. s3.22d

Then

PM
CNsSCN

d = SPM
CNsSCN

d − o
k=N

J

PM
CNsSCN

skddD + So
k=N

J

PM
CNsSCN

skdd − o
k=N

J

PM
CNsSCN

sk,N8ddD
+ So

k=N

J

PM
CNsSCN

sk,N8dd − o
k=N

J

PmI8

CNsSCN
sk,N8ddD + o

k=N

J

PmI8

CNsSCN
sk,N8dd

= T1 + T2 + T3 + o
k=N

J

PmI8

CNsSCN
sk,N8dd.

Using s3.18d we see thatuT1u,e /6. Usings3.20d we see thatuT2u,e /6. Usings3.22d we see that
uT3u,e /6. Thus,
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PM
CNsSCN

d ù o
k=N

J

PmI8

CNsSCN
sk,N8dd −

e

2
.

Using s3.17d we conclude

PM
CNsSCN

d ù S1 −
e

6
Do

k=N

J

Pd
CNsSCN

sk,N8dd −
e

2
. s3.23d

From s3.21d and s3.23d, we conclude

PM
CNsSCN

d ù S1 −
e

6
DS1 −

e

6
D −

e

2
ù s1 − ed.

Thus, we have proven that there existsN such that for allCNPCN, given stemCN, a post develops
after timeN under the dynamics generated byM with probability one. From our proof it is clear

that for anyN̄ùN, for any CN̄PCN̄, the probability that a post develops after timeN̄ under the
dynamics generated byM, given stemCN̄, is one. Given Corollary 3.3, this proves the theorem.

IV. RENORMALIZATION FLOW

In this section we study the behavior of sequences of coupling constants associated to systems
described in Sec. II. In particular, we study the asymptotic behavior of such sequences under the
repeated action of the operatorR sthe so-called renormalization flowd. We show that in the limit
of large time, the transition probabilities approach those of a transitive percolation.

Theorem 4.1: Suppose that TPS1 defines the coupling constants for a GCD chain. Let
a :R+→R be a nondecreasing function representing T as in (2.16). Suppose thathqnjn=0

` are the
defining probabilities given in (2.9). Then

s1d If the support of the measure da is compact with

t = suphx:x P supportsdadj, s4.1d

then

lim
m→`

qm+n

qm
=

1

s1 + tdn . s4.2d

s2d If the support of the measure da is not compact, then

lim
m→`

qm+n

qm
= H1 if n = 0

0 if n Þ 0.
J s4.3d

Proof: We denote byLqsR+,dad the Banach space with norm

ifiq = SE
0

`

fqdaD1/q

.

Sinceda is a probability measure, the functiongsxd=1 is inLqsR+,dad for all q. Let k be positive,
m.k. Let q be defined by

1

q
+

k

m
= 1.

By Hölder’s inequality,

062502-12 A. Ash and P. McDonald J. Math. Phys. 46, 062502 ~2005!

                                                                                                                                    



is1 + sdik ø is1 + sdim. s4.4d

Sincea is nondecreasing and the functions1+sdk is continuous and strictly increasing onR+, there
is a unique positive real numbertk such that

E
0

`

s1 + sdkda = s1 + tkdk. s4.5d

From s4.4d and s4.5d, the sequencehtkj is increasing.
Suppose that the support of the measureda is compact with t as in s4.1d. Suppose

limk→~ tk=t* with t* , t. Chooset* satisfyingt* ,t* , t. Then

E
0

`

s1 + sdkda =E
0

t*

s1 + sdkda +E
t*

t

s1 + sdkda.

As in s4.5d we can find uniquemkP f0,t*d andnkP ft* ,tg such that

E
0

`

s1 + sdkda = s1 + mkdkE
0

t*

da + s1 + nkdkE
t*

t

da.

By the argument used to establish that thetk are increasing, we have that themk and thenk are
increasing. By assumption,da is supported neart and thus,et*

t daÞ0 and, fork large enough and
e small enough,nkùt* +e. From this we conclude thate0

`s1+sdkda is, for largek, at least of the
order ofs1+t* +edk, contradictings4.5d and the choice oft* . We conclude thatt* = t, which proves
the first claim of the theorem.

To prove the second claim of the theorem, note that either the sequencehtkj converges to a
real number or it does not. If it does not converge to a real number, then it converges to`, and we
are done. If we assume that it does converge to a real number, the construction of the sequences
mk andnk lead to a contradiction. h
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The Wyman solution depends on two parameters, the massM and the scalar charge
S. If one fixesM to a positive value, sayM0, and letsS2 take values along the real
line, we show that this solution exhibits a type of critical behavior, in analogy with
the nonstatic massless scalar field solutions. ForS2.0 the space-times have naked
singularities, forS2=0 one has a Schwarzschild black hole of massM0 and finally
for −M0

2øS2,0 one has “wormhole-like” solutions. We also show that the Wy-
man solution is not self-similar, i.e., it does not admit a homothetic Killing
vector. ©2005 American Institute of Physics.fDOI: 10.1063/1.1920308g

I. INTRODUCTION

The four-dimensional space-time generated by a minimally coupled, spherically symmetric,
static, massless scalar field has been studied by many authors.1–5 The general solution was found
by Wyman in Ref. 2. From a particular case of the general Wyman’s solution, Roberts showed how
to construct a time-dependent solution.3 The Roberts’ solution has an important physical interest
because it may represent the gravitational collapse of a scalar field. Later, Brady, and indepen-
dently Oshiroet al.,6 showed that Roberts’ solution could be derived from the appropriated,
time-dependent, Einstein-scalar equations by using a continuous self-similarity. They also showed
that the Roberts’ solution exhibits a critical behavior qualitatively identical to the one found
numerically by Choptuik,7 studying the same system of equations.

Using a discrete self-similarity of the system, Choptuik explicitly showed that the collapse
results in two families of solutions depending on the value of a certain parameterp, which
characterizes the scalar charge. In the first family, whenp,pc, the scalar field collapses up to a
certain surface and then disperses. In the other family, whenp.pc, the scalar field collapses to
form a black hole. The critical valuepc separates the two end states of the collapse. The critical
solutionsp=pcd represents a naked singularity. Therefore, since it is given by a single value of the
parameter, it has zero measure in the parameter space. In fact, the above results confirmed early
studies of Christodoulou, who pioneered analytical studies of that model.8

The Wyman solution is not usually thought to be of great importance for the issue of gravi-
tational collapse because it is static and the naked singularities derived from it are unstable against
spherically symmetric linear perturbations of the system.4,5 On the other hand, as we saw above,
from a particular case of the Wyman solution one may derive the Roberts’ one, which is of great
importance for the issue of gravitational collapse. Also, it was shown that there are nakedly
singular solutions to the static, massive scalar field equations which are stable against spherically
symmetric linear perturbations.5 Therefore, we think it is of great importance to gather as much
information as we can about the Wyman solution for it may be helpful to better understand the
scalar field collapse.

Self-similarity is an important symmetry that has been extensively used in order to study
Einstein’s equations describing the gravitational collapse. As was mentioned above, Roberts’
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solution admits a homothetic Killing vector; one may wonder if the Wyman solution also has this
property. In the present work, we would like to show that the Wyman solution is not self-similar,
i.e., it does not admit a homothetic Killing vector.

Wyman’s solution depends on two parameters, the massM and the scalar chargeS. As we
have seen above, Choptuik found a critical behavior in the solutions to the Einstein-scalar equa-
tions in terms of the parameter describing the scalar charge. Therefore, one may try to find critical
behavior in Wyman’s solution by fixingM and lettingS vary. We would like to show that, if one
fixesM to a positive value, sayM0, and letS2 take values along the real line, this solution exhibits
a type of critical behavior, in analogy with the nonstatic massless scalar field solutions.

In Sec. II, we demonstrate that the Wyman’s solution is not self-similar, or, in other words, it
does not admit a homothetic Killing vector.

In Sec. III, we show that Wyman’s solution exhibits a type of critical behavior, in analogy with
the nonstatic massless scalar field solutions.

Finally, in Sec. IV, we summarize the main points and results of the paper.

II. WYMAN’S SOLUTION AND CONTINUOUS SELF-SIMILARITY

In the present paper we work with the double-null coordinatessu,vd; therefore, our starting
point is Wyman’s line element given in Eq.s14d of Ref. 3

ds2 = − S1 −
2h

r
DM/h

dv du+ S1 −
2h

r
D1−M/h

r2dV2, s1d

whereM is the mass parameter,h2=M2+S2, andS is the scalar charge. The functionrsv ,ud may
be obtained if we integrate the following equation:

dv − du= 2S1 −
2h

r
D−M/h

dr. s2d

The above equation was derived by combining Eq.s10d of Ref. 3 with the analogous one for the
coordinateu, for advanced null coordinates.

Let us now demonstrate that the Wyman solution is not self-similar, or, in other words, it does
not admit a homothetic Killing vector. In order to do that, we start writing the most general form
of a “radial” homothetic Killing vector for a spherically symmetric space-time in double null
coordinates

ja = jvdv
a + judu

a, s3d

wherejv andju are both functions ofv andu. Now, the condition for self-similarity is given by
the equationLjg=a0g, whereLj denotes the Lie derivative with respect toj, g is the space-time
metric,j is a vector field, anda0 is a real constant. This last equation may, equivalently, be written
in the following way:

ja;b + jb;a = a0gab, s4d

wheref;g means covariant differentiation.
With the aid of Eqs.s1d–s3d, the conditions4d leads us to the following set of equations:

r,vjv + r,uju =
a0

2

r2s1 − 2h/rd
r − M − h

, s5d

jv
,v + ju

,u +
2M

r2s1 − 2h/rd
sr,vjv + r,ujud = a0, s6d

ju
,v = 0, s7d
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jv
,u = 0. s8d

The solutions to Eqs.s7d and s8d are, respectively

jv = jvsvd andju = jusud, s9d

wherejv depends only onv, andju depends only onu.
Now, introducing the right-hand side of Eq.s5d in Eq. s6d, we may write

jv
,v + ju

,u = a0
r − 2M − h

r − M − h
. s10d

We may obtain independently the expressions forjv
,v andju

,u and introduce them in the left-hand
side of Eq.s10d. The resulting equation should be an identity, if the system of Eqs.s5d–s8d admits
the solutions given in Eq.s9d.

In order to obtainjv
,v andju

,u, we start using Eq.s2d to find

r,v =
1

2
S1 −

2h

r
DM/h

= − r,u. s11d

Now, we introduce both values ofr ,v and r ,u of Eq. s11d in Eq. s5d and write

jv − ju = a0
r2

r − M − h
S1 −

2h

r
D1−sM/hd

. s12d

Then, we may differentiate Eq.s12d with respect tov and, using the information from Eq.s9d, we
derive the following expression forjv

,v:

jv
,v = a0

r,v
sr − M − hd2

1

s1 − 2h/rdM/h sr2 − 4Mr − 2hr + 4Mh + 2h2 + 2M2d. s13d

Proceeding in an analogous manner, we derive the following expression forju
,u:

ju
,u = − a0

r,u
sr − M − hd2

1

s1 − 2h/rdM/h sr2 − 4Mr − 2hr + 4Mh + 2h2 + 2M2d. s14d

Finally, introducing the values ofjv
,v andju

,u coming, respectively, from Eqs.s13d ands14d in the
left-hand side of Eq.s10d, we find

− Mr + Mh + h2 = 0. s15d

This equation is not an identity; therefore, we may conclude that there are no self-similar solutions
for the systems5d–s8d. In fact, this result was expected since the caseS=0 is the Schwarzschild
space-time,3 which is not a self-similar solution.

III. WYMAN’S SOLUTION AND CRITICAL BEHAVIOR

Depending on the value of the parametersM andS, Wyman’s solution may represent different
static, asymptotically flat space-times.1,3 When one setsS=0, the scalar fieldsFd vanishes, as can
be seen from Eq.s9d of Ref. 3

F =
S

2h
lnS1 −

2h

r
D , s16d

and one obtains the Schwarzschild solution with a massM. Therefore, it is usual to considerM
positive. It is important to introduce the functionR
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R2 = S1 −
2h

r
D1−M/h

r2, s17d

which is a function ofr and, from Eq.s1d, the quantity 4pR2 represents the proper area of each
two-dimensional sphere obtained by fixingt andr. R can be written as a function ofv andu with
the aid ofr, which is a function ofv andu; rsu,vd is obtained by the integration of Eq.s2d.

For positiveM one may letS2 take values over the real line. ForS2.0, the solution repre-
sents space-times with a naked time-like singularity located atR=0 sr =2hd. This singularity is
sometimes called a “central singularity” and is similar to that appearing in the “extreme”
Reissner–Nordstrøm black hole and in the negative mass Schwarzschild space-timessee Fig. 1d.
From Eq.s16d, the scalar field vanishes asymptotically,R→` swhich is equivalent tor →` in the
present cased, and diverges at the singularity. ForS2,0, one considers the domain: −M2øS2

,0, because ifS2,−M2 from Eq.s1d the metric gets complex. The caseS2=−M2 is well known
in the literature as the Yilmaz–Rosen space-time.9 In the space-times with −M2øS2,0, R is
never zero. If one starts with a large value ofR it diminishes, as we let it vary as a function ofr,
until it reaches a minimum valuehRmin=fsM −hd / sM +hdg1−M/hsM +hd2j. Then, it starts to in-
crease again without limit, giving rise to a new asymptotically flat region. An important property
of this space-time is that the scalar field equations16d is imaginary. The imaginary scalar field also
known as the ghost Klein–Gordon field10 is an example of the type of matter calledexoticby some
authors.11 It violates most of the energy conditions and is repulsive. This property helps explain
why the collapsing scalar field never reachesR=0. Recently, the exotic matter has been in evi-
dence due to the discovery that the universe is expanding at an accelerated rate.12 This implies that
the universe must be filled with matter which violates at least the strong energy condition.12 This
is the type of matter associated with the formation and stability of traversible wormholes.11,13 In
particular, the ghost Klein–Gordon field has been used as one of the first specificexotic matter
models to explain the formation and stability of traversible wormholes.10 Besides the above
motivations for the use ofexoticmatter, which involve classical fields, one must not forget about
the negative energy densities very common in quantum field theories.14 We may interpret this case
−M2øS2,0 as a “wormhole-like” solution.

FIG. 1. Conformal diagram for a typical element of the setN. The time-like singularity lies atR=0 and spatial infinity at
R→` sv−u→`d.
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Based on the above properties of Wyman’s solution, and taking in account the results of Refs.
6–8, on critical behavior in the spherical symmetric, massless, scalar field collapse, we conclude
that Wyman’s solution also shows a type of critical behavior, in analogy with the nonstatic
massless scalar field solutions. Although the critical solution is of a different kind from the one
discovered in the above-mentioned references, one may proceed here in the same way as the
authors there, in order to show the critical behavior. One fixes the mass parameterM and considers
the scalar chargeS as the only free parameter. In the present case, as discussed above, we fixM
to a positive value, sayM0. S2 may take values in the domain,s−M0

2,`d. For S2 positive s0
,S2,`d, we have a setsNd of solutions representing asymptotically flat, time-like, naked sin-
gularities. We show the conformal diagram of a typical element of the setN in Fig. 1. ForS2

negative s−M0
2,S2,0d, we have a setsWd of solutions representing asymptotically flat,

wormhole-like space-times. Figure 2 shows the conformal diagram of a typical element of the set
W. Finally, for S2=0, we obtain the critical solution. For fixedM this solution is a point in the
parameter space of solutions and represents the Schwarzschild black hole with massM0.

IV. CONCLUSIONS

In the present work, we showed that the Wyman’s solution is not self-similar or, in other
words, it does not admit a homothetic Killing vector. We also showed that Wyman’s solution
exhibits a type of critical behavior in analogy with the dynamical massless scalar field case. We
did that by fixing the massM to a positive value, sayM0, and lettingS2 takes values along the real
line. ForS2.0 the space-times have naked singularities; forS2=0 one has a Schwarzschild black
hole of massM0, and finally for −M0

2øS2,0 one has wormhole-like solutions. Here, the critical
solution is a Schwarzschild black hole. Although this behavior is very different from the one
discovered by Choptuik, one may have other kinds of critical solutions in the Einstein-scalar
system, as demonstrated by Brady in Ref. 15.
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We present an exact solution to the Einstein field equations which is Ricci
and Riemann flat in five dimensions, but in four dimensions is a good model
for the early vacuum-dominated universe. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1926168g

I. INTRODUCTION

There has recently been an uprising in interest in finding exact solutions of the Kaluza–Klein
field equations in five dimensionss5Dd which reproduce and extend known solutions of the
Einstein field equations in four dimensionss4Dd.1–5 Particular interest revolves around solutions
which are not only Ricci flatsRAB=0;A,B,…P h0,1,2,3,4j whereRAB is the 5D Ricci tensord,
but also Riemann flatsRABCD=0, where the vanishing of the Riemann–Christoffel tensor means
that we are considering the analog of the Minkowski metric in 5Dd.6–11 This is because it is
possible to have a flat 5D manifold which contains a curved 4D submanifold, as implied by
Campbell’s embedding theorem.12–18 So, the universe may be “empty” and simple in 5D, but
contain matter of complicated forms in 4D.19,20 sThis idea has been extended to higher-
dimensional manifolds that are not Ricci flat, in particular manifolds with nonzero cosmological
constant,21,22 scalar field sources,23 as well as manifolds with an arbitrary nondegenerate Ricci
tensor.24 In addition, the Campbell–Magaard theorem has been used to study the embedding of
Randall–Sundrum-type branes in 5D manifolds,25 suggesting that the curvature of any given brane
is not necessarily determined by its stress-energy content.d

Despite the physical appeal of this idea, it is mathematically nontrivial to realize. This is
because solutions of the flat and empty Einstein equations in 5D which correspond to solutions of
Gab=Tabsa ,b ,…P h0,1,2,3jd in 4D with acceptable physics, are rare.sHere Gab is the 4D
Einstein tensor andTab is the induced stress-energy tensor obtained via the standard reduction of
the 5D equations to their 4D counterparts; see Ref. 20. We use units throughout which render the
speed of light and Newton’s gravitational constant invisible viac=1,8pG=1.d In what follows,
we present and derive the properties of an exact 5D solution which provides a good 4D model for
the vacuum-dominated early universe.

II. A NEW SOLUTION AND ITS PROPERTIES

Consider the five-dimensional line element with coordinatest ,r ,u ,f ,, such that

dS2 =
,2

L2dt2 − F, sinhS t

L
DG2

ds3
2 − d,2
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ds3
2 = S1 +

kr2

4
D−2

sdr2 + r2 du2 + r2 sin2 u df2d andk = − 1. s1d

In five dimensions this defines a manifoldsM ,gABd that is indeed both Ricci flat and Riemann flat,
thus giving Minkowski spaceM5 in a different coordinate system. Thats1d satisfies the Ricci-flat
equationsRAB=0 may be shown by tedious algebrase.g., using the equations of Ref. 20d, and
confirmed by computerse.g., using the program GRTensor of Ref. 26d. The only humanly practical
way to show thats1d also satisfies the Riemann-flat equationsRABCD=0 is by computer, as may be
verified.

The physical properties of the matter associated withs1d may, again, be derived either ana-
lytically or computationally. The basic procedure, in either approach, is to separate the purely 4D
terms in RAB=0 from the other ones, compare withGab=Tab, and thereby obtainTab

=Tabsx4,]gAB/]xCd. Since the Einstein equationsGAB=0 in empty 5D are equivalent toRAB=0 by
straight algebra, what we are doing here is simply solving in effect the 5D Einstein equations,
comparing the results to the 4D Einstein equations, and thereby evaluating the stress-energy tensor
Tab necessary to balance the latter set of equations.

This procedure has in recent years been much used. A review of the algebraic technique and
a list of applications is available.20 Here we note that the procedure has been applied to cosmolo-
gies of the Friedmann–Robertson–WalkersFRWd type,27 3D spherically symmetric solutions,28

solutions with off-diagonal metrics,29 Gödel-type space–times,30 and solutions containing a big
bounce.31–35 General theorems have also been proven, having to do with the field equations,36

dynamics37 and the algebraic classification of 5D solutions with their associated 4D stress-energy
tensors.38 However, there is the constraint that theTab given by algebra should correspond to the
properties of matter indicated by observational cosmology. For the early universe, this means that
the equation of state for the matter should be close to that of the “classical vacuum.” Here, the sum
of the densityr and pressurep is zero, as in inflationary cosmology.39 We now proceed to this and
other consequences of metrics1d, to investigate its physical acceptability.

The line elements1d can be written in the useful “canonical” form40 such that

dS2 =
,2

L2Fdt2 − FL sinhS t

L
DG2

ds3
2G − d,2. s2d

So with the 4D space–time metric

gab = diagf1,−Fkst,rd,− r2Fkst,rd,− r2 sin2 uFkst,rdg,

s3d

Fkst,rd = FL sinhS t

L
DG2S1 +

kr2

4
D−2

,

we find the components of the stress-energy tensorTab=Gab to beT0
0=3/L2,T1

1=T2
2=T3

3=3/L2. In
comoving coordinates this defines an energy densityr=T0

0=3/L2 and pressurep=−sT1
1+T2

2

+T3
3d /3=−3/L2 for a vacuum with cosmological constantL=3/L2 and equation of stater+p=0.

The 4D Ricci scalar isR=Rabgab=12/L2, and the 4D curvature scalar isK=RabgdR
abgd=24/L4.

This latter scalar implies that there are no singularities in the manifold because the constantL
Þ0.

Let us now look ats1d, viewing its 4D part as describing an FRW model. The 4D hypersur-
faces,=constant therefore describe cosmologies with scale factor given byS=Sstd=L sinhst /Ld.
Here the Hubble parameterH; Ṡ /S and deceleration parameterq;−SS̈ / Ṡ2 swith Ṡ=dS /dtd are
found to be
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H =
1

L tanhS t

L
D and q = − tanh2S t

L
D . s4d

We note thatH is infinite att=0 and goes to 1/L=ÎL /3 ast→`, which is the Hubble parameter
for de Sitter space–time. Also,q starts at zero whent=0 and goes to −1 fort→`. This is in line
with astrophysical data which currently constrain the deceleration parameter to −1øqø1. Thus
we conclude that our solutions1d describes an inflationary space–time on,=constant hypersur-
faces, where the vacuum has repulsive properties.

The preceding paragraphs show thats1d has physical properties consistent with those of
inflationary cosmology. However, the motivating factor for the latter approach to cosmology is
that thes4Dd horizon should grow fast enough to resolve certain problems of astrophysical nature,
primarily to do with the 3 Kelvin microwave background.41,42 First, we recall that the horizon
distance at timet for any FRW model can be defined43 such that

E
r

0

drS1 +
kr2

4
D−1

=E
0

t dt8

Sst8d
. s5d

Multiplying both sides by the scale factorSstd then gives

dPH = SstdE
r

0

drS1 +
kr2

4
D−1

= SstdE
0

t dt8

Sst8d
, s6d

which defines the proper distance to the particle horizon at timet. For the space–times3d this is

dPH = 2L sinhS t

L
DFarctanhs1d − arctanhSexpS t

L
DDG . s7d

Here we see thatdPH is infinite because arctanhs1d is infinite. This means that during the infla-
tionary period that the solutions1d describes on,=constant hypersurfaces, the entire universe is in
causal contact. This is in line with the apparent isotropy of the microwave background.

Finally, we would like to point out an interesting coordinate transformation of the solutions1d.
Recall that sinhstd=sexpstd−exps−tdd /2, which with the coordinate changet→ tL in s1d gives

dS2 = ,2 dt2 −
1

4
,2set + ke−td2 ds3

2 − d,2 with k = − 1. s8d

This form of the metric resembles a solution noted by McManus.9 For the solutions8d, all 4D
physical quantities are the same as those calculated for the solutions1d, but with the replacement
L→,. The 4D space–time contained ins8d therefore still describes an inflationary vacuum with
equation of stater+p=0. An important difference is that the 4D curvature scalar fors8d is K
=24/,4, which implies that the space–time ins8d has a singularity at the point where,=0. This is
in contrast to the solutions1d, for which all physical quantities of spacetime were calculated to be
sfinited constants. Evidently the simple coordinate transformationt→ tL castss1d into a form
where the vacuum evolves in accordance with howx4=, is determined by the extra component of
the geodesic equation. This issue from the mathematical side has to do with whether we take the
whole of the 4D part of the 5D manifold as defining the geometry of space–time, or whether we
take the 4D part of the 5D manifold without its prefactor. This 5D issue resembles the 4D one in
scalar-tensor theory, where it manifests itself as a choice between what are commonly called the
Jordan and Einstein frames. From the physical side, the choice has to do with how we define
space–time as a 4D slice of a 5D manifold; and we suggest that since the two choices only become
differentiated over cosmological time scales, that it is essentially one of observation to decide.
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Dixon’s multipoles for a system ofN relativistic positive-energy scalar particles are
evaluated in the rest-frame instant form of dynamics. The Wigner hyperplanes
sintrinsic rest frame of the isolated systemd turn out to be the natural framework for
describing multipole kinematics. Classical concepts like thebarycentric tensor of
inertia turn out to be extensible to special relativity only by means of the quadru-
pole moments of the isolated system. Two new applications of the multipole tech-
nique are worked out for systems of interacting particles and fields. In the rest
frame of the isolated system of either free or interacting positive energy particles it
is possible to define a unique world line which embodies the properties of the most
relevant centroids introduced in the literature as candidates for the collective mo-
tion of the system. This is no longer true, however, in the case of open subsystems
of the isolated system. While effective mass, 3-momentum and angular momentum
in the rest frame can be calculated from the definition of thesubsystem energy-
momentum tensor, the definitions of effective center of motion and effective intrin-
sic spin of the subsystem are not unique. Actually, each of the previously consid-
ered centroids corresponds to a different world line in the case of open systems.
The pole–dipole description of open subsystems is compared to their description as
effective extended objects. Hopefully, the technique developed here could be in-
strumental for the relativistic treatment of binary star systems in metric gravity. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1897841g

I. INTRODUCTION

An important area of research is nowadays the construction of templates for gravitational
waves emitted by binary systems. Analytically, this can be done within the framework of post-
NewtoniansPNd approximations by means of essentially nonrelativistic multipole expansions for
compact bodies. On the other hand, since the main emission are supposed to take place in a region
where the PN approximation fails, it would be desirable to have at disposal a relativistic treatment
of multipolar expansions as a preliminary kinematical tool for dealing with open gravitating
systems. This paper focuses just on the construction of a suitable relativistic kinematical back-
ground by exploiting anN-body system as a tool. A preliminary extension of the results of this
paper to special relativistic perfect fluids is given in Ref. 1. Then using the framework of the
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rest-frame instant form of tetrad gravity developed in Refs. 2,3, the relativistic perfect fluids will
be coupled to tetrad gravity and the relativistic multipolar expansion will be used in the weak field
Hamiltonian linearization3 leading to background-independent gravitational waves.4

The description of either extended or point-particle classical relativistic systems by means of
multipolar expansions both in special and general relativity began at the end of the 1930s5–10 and
after many developments11–19 was set in a final form by Dixon. His special20 and general21

relativistic formulation has been the reference standard for recent improvements.22–24 Then, be-
cause of the difficulties in actual evaluations of general relativistic multipoles,21 the studies of
gravitational radiation in the PN regime led to the introduction of the more manageable irreducible
symmetric trace-free Cartesian tensorssSTF tensorsd.25–28

The multipolar expansion has been mainly used to makepole–dipoleapproximations of ex-
tended objects and to replace their equations of motion with the Papapetrou–Dixon–Souriau equa-
tions of motion11,20–22,24for the 4-momentum and the spin tensor of the objects. However, since in
all these approaches the multipoles are defined as moments of the energy-momentum tensor of the
system with respect to the world line of an arbitrarycentroidsthe center of motiond, the intrinsic
weakness of multipolar expansions lies in the absence of aconstitutive relationconnecting the
4-velocity of the centroid to the 4-momentum of the system. As a consequence, both from a
practical and a theoretical point of view it is not known which is the most convenient choice for
the definition of center of motion among, e.g., Pirani centroid,14 Tulczyjew centroid,15,18,23Møller
center of energy,29 Corinaldesi–Papapetrou centroid,12 Fokker–Pryce center of inertiasor of
spind30–32 and many other possible centroids.

In this paper we will face these problems in the framework of special relativity from a
viewpoint which can be generalized and adapted to the new canonical formulation of metric and
tetrad gravity of Refs. 2 and 3. Our starting point are the results recently obtained33 about a
complete treatment of the kinematics of the relativisticN-body problem in therest-frame instant
form of dynamics.34–37This program required a reformulation of the theory of isolated relativistic
systems and was essentially grounded upon Dirac’s reformulation38 of classical field theoryssuit-
ably extended to particlesd on arbitrary spacelike hypersurfaces.39,40 For each isolated system
scontaining any combination of particles, strings and fieldsd one obtains in this way a reformula-
tion of the standard theory as a parametrized Minkowski theory.34,37 This program contains the
extra bonus of being naturally prepared for the coupling to gravity in its ADM formulation. The
price to be paid is that the functionszmst ,sW d describing the embedding of the spacelike hypersur-
face in Minkowski space–time become configuration variables in the action principle. Since the
action is invariant under separatet-reparametrizations and space diffeomorphisms, first class
constraints emerge ensuring the independence of the description of the choice of the 311 splitting.
The embedding configuration variableszmst ,sW d are thus thegaugevariables associated with this
particular kind of general covariance.41

In parametrized Minkowski theories in the case of particles, each particle must havea well
defined sign of the energy, since the intersection of a timelike world line with a spacelike hyper-
surface corresponding to a valuet of the time parameter is identified by three numberssW =hW std
instead of four. Therefore, the two topologically disjoint branches of the mass hyperboloid cannot
be simultaneously described as in the standard manifestly Lorentz-covariant theory, so that no
mass-shell constraint appears. Each particle with a definite sign of the energy is described by the
canonical coordinateshW istd ,kW istd while the 4-position of the particles are given byxi

mstd
=zmst ,hW istdd. The following 4-momentapi

mstd are kW i-dependent solutions ofpi
2−mi

2=0 with the
chosen sign of the energy.

In order to exploit the separate spatial and time reparametrization invariances of parametrized
Minkowski theories, we can first of all restrict the foliation to spacelikehyperplanesas leaves. For
each configuration of the isolated system with timelike 4-momentum, we further restrict to the
special leaves defined by hyperplanes orthogonal to the conserved system 4-momentumsWigner
hyperplanesd. This foliation is fully determined by the configuration of the isolated system. One
gets in this way34 the definition of theWigner-covariant rest-frame instant form of dynamicsfor
any isolated system whose configurations have well defined and finite Poincaré generators with
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timelike total 4-momentumssee Ref. 42 for the traditional forms of dynamicsd. Finally, this
formulation casts new light on the long standing problem of defining a relativistic center of mass.
As well known, no definition of this concept can enjoy all the properties of its nonrelativistic
counterpart. See Refs. 30–32, 43, and 44 for a partial bibliography of all the existing attempts.

We summarize here the main previous results necessary to understand all the subsequent
technical developmentssfurther details can be found in Appendix A of Ref. 33 and Sec. IId:

sad The Wigner hyperplanes are described by the embeddingzmst ,sW d=xs
mstd+er

msuspsddsr,

wherexs
mstd=zmst ,0Wd is an arbitrary centroidsorigin of the 3-coordinatessW d playing the role

of the center of motionfor multipolar expansions.
sbd The canonical variables describing the remaining freedom in the embedding are anoncova-

riant canonical so-called external 4-center-of-massconfigurational variablex̃s
mstdÞxs

mstd
and the conjugate 4-momentumps

m, weakly equal to the total 4-momentum of the isolated
system and orthogonal to the Wigner hyperplanes. The timelike unit vectorumspsd
=ps

m /Îps
2 fpsmer

msuspsdd=0g describes the orientation of Wigner hyperplanes in the chosen
inertial system. These canonical variables describe a decoupled free pointspoint particle
clockd.

scd The mathematical timet is identified with the Lorentz scalar timeTs= x̃s·ps/Îps
2

=xs·ps/Îps
2 of this decoupled point by means of the gauge fixingTs−t<0, which implies

es=Îps
2=Msys,x̃

.

s
mstd=umspsd and ẋs

mstd=umspsd+er
msuspsddlrstd flrstd are three arbitrary

Dirac multipliersg. Here Msys is the invariant mass of the isolated system. The decoupled
point is now described by canonical 3-coordinateszWs=esfx̃s

W −spWs/ps
odx̃og sthe external

3-center of massd andkWs=pWs/es.
45

sdd There is anexternal realization of the Poincaré group, whose Lorentz transformations
schange of the inertial observerd induce aWigner rotation of the 3-vectors inside each
Wigner hyperplane. As shown in Ref. 33, theexternalPoincaré generators allow to define
three concepts of theexternalcollective variable,sid the externalnoncovariant canonical

4-center of masssalso named4-center of spind x̃s
m swith 3-location s̃W d; sii d the external

noncovariant noncanonical Møller4-center of energy Rs
m swith 3-locationsW Rd; siii d the ex-

ternal covariant noncanonical Fokker–Pryce4-center of inertia Ys
m swith 3-location sW Yd.

Only the canonical noncovariant center of massx̃s
mstd is relevant to the Hamiltonian treat-

ment with Dirac constraints, while only the Fokker–PryceYs
m is a 4-vector by construction.

See Ref. 33 for the construction of the4-centersstarting from the corresponding3-centers
s3-center of spin,31 3-center of energy,29 3-center of inertia30,31d, which are group-
theoretically defined in terms of generators of the external Poincaré group.

sed Inside the Wigner hyperplanes the particles are described by Wigner spin-1 canonical
3-vectorshW istd ,kW istd restricted by the three first class constraintssthe rest-frame conditionsd
kW+=oi=1

N kW i <0, whose associated Dirac multiplierslrstd describe the freedom in the choice
of the centroidxs

mstd. The rest-frame conditions imply that aninternal 3-center-of-mass
variablesW c.m. is a gauge variable, whose elimination through a gauge fixing46 is equivalent
to a definite choice of the world-linexs

mstd of the centroid. Inside Wigner hyperplanes there
is an unfaithfulinternal realization of the Poincaré algebra, the totalinternal 3-momentum
of the isolated system vanishes due to the rest-frame conditions. Theinternal energy and
angular momentum are the invariant massMsys and the spinfthe angular momentum with
respect tox̃s

mstdg of the isolated system, respectively. By means of theinternal realization of
the Poincaré algebra we can define threeinternal 3-centers of mass, theinternal canonical

3-center of masssor 3-center of spind qW+, the internal Møller 3-center of energyRW +, and the
internal Fokker–Pryce 3-center of inertiayW+. However, because of the rest-frame condition

kW+<0, they all coincide, qW+<RW +<yW+. As a natural gauge fixing to the rest-frame conditions,

we can add the vanishing of theinternal Lorentz boostsKW srecall that they are equal to

−RW +/Msysd. This is equivalent to locate the internal canonical 3-center of masssW c.m.=qW+ in

sW =0, i.e., in the centroidxs
mstd=zmst ,0Wd. Upon such gauge fixings, the world-linexs

mstd
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becomes uniquely determined except for the arbitrariness in the choice ofxs
ms0d,

xs
sqW+dmstd = xs

ms0d + umspsdTs, s1.1d

and, moduloxs
ms0d, it coincides with theexternal covariant noncanonical Fokker–Pryce

4-center of inertia,xs
mstd=xs

ms0d+Ys
m.33

In the gauge wherees;Msys, andTs;t, the canonical basiszWs,kWs,hW i ,kW i is restricted by the
three pairs of second class constraintskW+=oi=1

N kW i <0, qW+<0, so that 6N canonical variables de-
scribe theN particles as in the nonrelativistic case. We still need a canonical transformation
hW i ,kW i °qW+f<0g ,kW+f<0g ,rWa,pW a fa=1,… ,N−1g identifying a set of relative canonical variables.
The final 6N-dimensional canonical basis iszWs,kWs,rWa,pW a. To get this result we need a highly
nonlinear canonical transformation,33 which can be obtained by exploiting the Gartenhaus–
Schwartz singular transformation.47

At the end we obtainthe Hamiltonian for the relative motions as a sum of N square roots,
each one containing a squared mass and a quadratic form in the relative momenta, which goes into
the nonrelativistic Hamiltonian for relative motions in the limitc→`. This fact has the following
implications.

sad If one tries to make the inverse Legendre transformation to find the associated Lagrangian,
it turns out that, due to the presence of square roots, the Lagrangian is a hyperelliptic

function of rW ȧ already in the free case. A closed form exists only forN=2, m1=m2=m, L

=−mÎ4−rW 2̇. This exceptional case already shows that the existence of the limiting velocity
c forbids a linear relation between the spinscenter-of-mass angular momentumd and the
angular velocity.

sbd The N quadratic forms in the relative momenta appearing in the relative Hamiltoniancannot
be simultaneously diagonalized. The Hamiltonian is anyway a sum of square roots, so that
concepts likereduced masses, Jacobi normal relative coordinates, and tensor of inertia
cannot be extended to special relativity. As a consequence, for example, a relativistic static
orientation-shape SOs3d principal bundle approach48,49 can be implemented only by using
non-Jacobi relative coordinates.

scd The best way of studying rotational kinematics,viz. the non-Abelian rotational symmetry
associated with the conservedinternal spin, is based on the concept ofcanonical spin bases
with the associated concepts ofspin framesanddynamical body framesintroduced in Ref.
33. It is a remarkable fact that they can be built, just as in the nonrelativistic case,50 starting
from the canonical basisrWa,pW a.

As anticipated at the outset, our aim is to complete the study of relativistic kinematics for the
N-body system by first evaluating the rest-frame Dixon multipoles20 and then by analyzing the role
of Dixon’s multipoles foropen subsystems. The basic technical tool will be the standard definition
of theenergy momentum tensorof theN positive-energyfreeparticles on the Wigner hyperplane.
It will be seen that, in order to get a sensible extension of this definition to open subsystems, a
physically significant convention is required. On the whole, it turns out that the Wigner hyperplane
is the natural framework for reorganizing a lot of kinematics connected with multipoles, but only
when the gauge fixingTs−t<0 identifies the mathematical timet with the rest-frame scalar time
Ts. Only in this way, moreover, a concept like thebarycentric tensor of inertiacan be introduced
in special relativity, specifically by means of the quadrupole moments.

A first application of the formalism is done for an isolated system ofN positive-energy
particles withmutual action-at-a-distance interactions. The formalism is then applied to the case
of anopen n,N particle subsystemof an isolated system consisting ofN charged positive-energy
particles swith Grassmann-valued electric charges introduced to regularize the Coulomb self-
energiesd plus the electromagnetic field.36 In the rest frame of the isolated system, asuitable
definition of the energy-momentum tensor of the open subsystem allows to define its effective
mass, 3-momentum, and angular momentum.

Then we evaluate the rest-frame Dixon multipoles of the energy-momentum tensor of the
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open subsystem with respect to various centroids describing possiblecollective centers of motion.
Unlike the case of isolated systems, each centroid generates a different world line and there are
many candidates as effective centers of motion and effective intrinsic spin. Two centroidssnamely
the so-calledcenter of energyand Tulczyjew centroidd show particularly interesting properties.
The casen=2 is studied explicitly. It is also shown that the pole–dipole description of the two-
particle cluster can be replaced by a description of the cluster as an extended systemsits effective
spin frame can be evaluatedd. This can be done, however, at the price of introducing an explicit
dependence on the action of the external electromagnetic field upon the cluster. By comparing the
effective parameters of an open cluster ofn1+n2 particles to the effective parameters of the two
clusters withn1 andn2 particles, it turns out in particular that only the effectivecenter of energy
appears to be a viable center of motion for studying the interactions of open subsystems.

For the sake of simplicity, we shall omit many explicit calculations. The interested reader may
find them in an extended version of this paper given in Ref. 51.

A review of the rest-frame instant form of dynamics forN scalar free positive-energy particles
and some new original results on the canonical transformation to the internal center of mass and
relative variables are given in Sec. II.

In Sec. III we evaluate the energy momentum tensor in the Wigner hyperplanes.
Dixon’s multipoles are introduced in Sec. IV. A special study of monopole, dipole, and quad-

rupole moments is given and the multipolar expansion is defined.
After the extension of the previous results to isolated systems with mutual action-at-a-distance

interactions, in Sec. V we study the behavior of open subsystems of isolated systems, the centroids
which are good candidates for the description the collective center of motion, and discuss the
determination of the effective parameterssmass, spin, momentum, variables relative to the center
of motiond for the open subsystem.

Some comments about standing problems are given in the Conclusions.
The Gartenhaus–Schwartz transformation is summarized in the Appendix.

II. REVIEW OF THE REST-FRAME INSTANT FORM

We briefly review the treatment ofN free scalar positive-energy particles in the framework of
parametrized Minkowski theoryssee Appendixes A and B and Sec. II of Ref. 33d.

The foliation associated to a 311 splitting of Minkowski space–time is defined by an embed-
ding R3S→M4, sA=st ,sW d°zmst ,sW d, with S an abstract 3-surface diffeomorphic toR3. St is
the Cauchy surface ofequal time. The 4-metric induced onSt is gABfzg=zA

mhmnzB
n , a functional of

zm, and the embedding coordinateszmst ,sW d are considered as independent fields. ThezA
mssd

=]zmssd /]sA are flat cotetrad fields on Minkowski space–time with thezr
m’s tangent toSt . The

vectors zr
mst ,sW d are tangent toSt , whose unit normal field islmst ,sW d=em

abgfz1
az2

bz3
gg

3st ,sW d 1/Îgst,UW d . The dual tetrad fields arezm
Assd=]sAszd /]zm, zm

Ast ,sW dzB
mst ,sW d=d B

A. The inverse
of the 3-metricgrs is denotedg rs, g rugus=d s

r. While in Ref. 33 we used the metric convention
hmn=es+−−−d with e=±, in this paper we shall usee=1 like in Ref. 34.

Each particle is described by a configuration 3-vectorhW istd. The particle world line isxi
mstd

=zmst ,hW istdd, wherezmst ,sW d are the embedding configuration variables describing the spacelike
hypersurfaceSt .

The system of configuration variableszmst ,sW d ,hW istd, is described by the action34–36

S=E dt d3s Lst,sW d =E dt Lstd,

Lst,sW d = − o
i=1

N

d3ssW − hW istddmi
Îgttst,sW d + 2gtrst,sW dḣi

rstd + grsst,sW dḣi
rstdḣi

sstd. s2.1d

The action is invariant under separatet and sW reparametrizations. Therefore the canonical mo-
mentarmst ,sW d=−]Lst ,sW d /]zt

mst ,sW d andkirstd=−]Lstd /]ḣi
rstd satisfy the primary first class con-

straints
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Hmst,sW d = rmst,sW d − lmst,sW do
i=1

N

d3ssW − hW istddÎmi
2 − grsst,sW dkirstdkisstd

− zrmst,sW dg rsst,sW do
i=1

N

d3ssW − hW istddkis < 0, s2.2d

so that the Dirac Hamiltonian isHD=ed3s lmst ,sW dHmst ,sW d, wherelmst ,sW d are Dirac multipliers.
The standard particle 4-momentum is the following solution ofpi

2−mi
2=0: pi

mstd
= lmst ,hW istddÎmi

2−g rsst ,hW istddkirstdkisstd+zmst ,hW istddg rsst ,hW istddkisstd.
The conserved Poincaré generators aresthe suffix “s” denotes the hypersurfaceStd

ps
m =E d3s rmst,sW d,

Js
mn =E d3sfzmst,sW drnst,sW d − znst,sW drmst,sW dg. s2.3d

After the restriction toWigner hyperplane,52 zmst ,sW d=xs
mstd+er

msuspsddsr, the independent
degrees of freedom of the embedding are reduced to the canonical coordinatesxs

m, ps
m=esu

mspsd of
a point particle and we have the following constraints and Dirac Hamiltonian34,36 sthe symbol =˚
means evaluated on the solutions of the equations of motiond:

H̃mstd = umspsdFes − o
i=1

N

Îmi
2 + kW i

2G + er
msuspsddo

i=1

N

kir < 0,

or

es − Msys< 0, Msys= o
i=1

N

Îmi
2 + kW i

2, pWsys= kW+ = o
i=1

N

kW i < 0,

HD = lmstdH̃mstd = lstdfes − Msysg − lW stdo
i=1

N

kW i ,

ẋs
mstd=̊hxs

mstd,HDj < − lmstd = − lstdumspsd + er
msuspsddlrstd,

⇒xs
mstd = xs

ms0d − umspsdE
0

t

dt1lst1d + er
msuspsddE

0

t

dt1lrst1d. s2.4d

While the Dirac multiplierlstd is determined by the gauge fixingTs−t<0, implying es

;Msys, and the valuelstd=−1, the three Dirac’s multiplierslW std describe the classical Zitter-

bewegung of the centroidxs
mstd=zmst ,0Wd which is the origin of the 3-coordinates on the Wigner

hyperplane. Each gauge-fixingxW std<0 to the three first class constraintskW+<0 sdefining the

internal rest-frame3-center of masssW c.m.d gives a different determination of the multiplierslW std.53

Therefore each gauge-fixing identifies a different world line for the covariant noncanonical cen-
troid xs

sxW dmstd. Of course, inside the Wigner hyperplane, three degrees of freedom of the isolated
system become gauge variables. The natural gauge fixing for eliminating the first class constraints
kW+<0 is xW std=sW c.m.=qW+<0 fvanishing of the location of the internal canonical 3-center of mass,
see after Eq.s2.12dg. We have thatqW+<0 implies lrstd=0: in this way theinternal 3-center of

mass is located in a unique centroidxs
sqW+dmstd=zmst ,sW =0d fẋs

sqW+dm= ẋ̃s
m=umspsdg.

Note that the constantxs
ms0d fand, therefore, alsox̃s

ms0dg is arbitrary, reflecting the arbitrariness
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in the absolute location of the origin of theinternal coordinates on each hyperplane in Minkowski
space–time. The centroidxs

mstd corresponds to the unique special relativistic center-of-mass-type
world line for isolated systems of Refs. 54–56, which unifies previous proposals of Synge, Møller,
and Pryce.

The only remaining canonical variables describing the Wigner hyperplane in the final Dirac
brackets are a noncovariant canonical coordinatex̃s

mstd sRef. 57d and ps
m. The point with coordi-

natesx̃s
mstd is the decoupled canonicalexternal 4-center of massof the isolated system, which can

be interpreted as a decoupled observer with his parametrized clockspoint particle clockd. Its

velocity ẋ̃s
mstd is parallel tops

m, so that it has no classical Zitterbewegung.

The relation betweenxs
mstd and x̃s

mstd ss̃W is its 3-location on the Wigner hyperplaned is33,34

x̃s
mstd = sx̃s

ostd; x̃Wsstdd = zmst,s̃W d = xs
mstd −

1

essps
o + esd

FpsnSs
nm + esSSs

om − Ss
on psnps

m

es
2 DG ,

s2.5d

and we getẋ̃s
mstd=hx̃s

mstd ,HDj=−lstdumspsd f=umspsd whenlstd=−1g. After the separation of the
relativistic canonical noncovariantexternal4-center of massx̃s

mstd, the N particles are described
on the Wigner hyperplane by the 6N Wigner spin-1 3-vectorshW istd ,kW istd restricted by the rest-
frame conditionkW+=oi=1

N kW i <0.
The various spin tensors and vectors are34

Js
mn = xs

mps
n − xs

nps
m + Ss

mn = x̃s
mps

n − x̃s
nps

m + S̃s
mn,

Ss
mn = fumspsder

nsuspsdd − unspsder
msuspsddgS̄s

tr + er
msuspsddes

nsuspsddS̄s
rs ; fer

msuspsddunspsd

− er
nsuspsddumspsdgo

i=1

N

hi
rÎmi

2c2 + kW i
2 + fer

msuspsddes
nsuspsdd − er

nsuspsddes
msuspsddgo

i=1

N

hi
rki

s,

S̄s
AB = em

Asuspsdden
BsuspsddSs

mn,

S̄s
rs ; o

i=1

N

shi
rki

s − hi
ski

rd, S̄s
tr ; − o

i=1

N

hi
rÎmi

2c2 + kW i
2,

S̃s
mn = Ss

mn +
1

Îps
2sps

o + Îps
2d

fpsbsSs
bmps

n − Ss
bnps

md + Îps
2sSs

omps
n − Ss

onps
mdg,

S̃s
ij = d ird jsS̄s

rs, S̃s
oi = −

d ir S̄s
rsps

s

ps
o + Îps

2
,

S̄
W

= o
i+1

N

hW i 3 kW i < o
i=1

N

hW i 3 kW i − hW + 3 kW+ = o
a=1

N−1

rWa 3 pW a. s2.6d

Note that whileLs
mn=xs

mps
n−xs

nps
m andSs

mn are not constants of the motion due to the classical

ZitterbewegungfwhenlW stdÞ0g, both L̃s
mn= x̃s

mps
n− x̃s

nps
m and S̃s

mn are conserved.
The canonical variablesx̃s

m ,ps
m for the external 4-center of mass, can be replaced by the

canonical pairs58
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Ts =
ps · x̃s

es
=

ps ·xs

es
, es = ± Îps

2, zWs = esSx̃Ws −
pWs

ps
ox̃s

oD, kWs =
pWs

es
,

x̃s
o = Î1 + kWs

2STs +
kWs ·zWs

es
D, x̃Ws =

zWs

es
+ STs +

kWs ·zWs

es
DkWs, ps

o = es
Î1 + kWs

2,

pWs = eskWs, s2.7d

which make explicit the interpretation of it as apoint particle clock.
This nonpoint canonical transformation can be summarized asfes−Msys<0, kW+=oi=1

N kW i <0g

s2.8d

After the addition of the gauge-fixingTs−t<0, the invariant massMsys of the system, which
is also theinternal energy of the isolated system, replaces the nonrelativistic HamiltonianHrel for
the relative degrees of freedom: this reminds of the frozen Hamilton–Jacobi theory, in which the
time evolution can be reintroduced by using the energy generator of the Poincaré group as Hamil-
tonian.

After the gauge fixingsTs−t<0, the final Hamiltonian, the embedding of the Wigner hyper-
plane into Minkowski space–time and the Hamilton equations become

HD = Msys− lW std · kW+,

zmst,sW d = xs
mstd + er

msuspsddsr = xs
ms0d + umspsdt + er

msuspsddSsr +E
o

t

dt1lrst1dD ,

hẆ istd=̊
kW istd

Îmi
2 + kW l

2std
− lW std, ⇒ kW istd=̊mi

hẆ istd + lW std

Î1 − fhẆ i
2std + lW stdg2

,

kẆ istd=̊0. s2.9d

The particles’ world lines in Minkowski space–time and the associated momenta are

xi
mstd = zmst,hW istdd = xs

mstd + er
msuspsddhi

rstd,

pi
mstd = Îmi

2 + kW i
2stdumspsd + er

msuspsddkirstd ⇒ pi
2 = mi

2. s2.10d

The external rest-frame instant form realization of the Poincaré generators59 with nonfixed

invariantsps
2=es

2<Msys
2 , −ps

2S̄
W

s
2<Msys

2 S̄
W2, is obtained from Eq.s2.6d:

ps
m = o

i=1

N

pi
m, Js

mn = x̃s
mps

n − x̃s
nps

m + S̃s
mn,

ps
o = Îes

2 + pWs
2 = es

Î1 + kWs
2 < ÎMsys

2 + pWs
2 = Msys

Î1 + kWs
2,

pWs = eskWs < MsyskWs,
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Js
ij = x̃ s

i ps
j − x̃ s

jps
i + d ird jso

i=1

N

shi
rki

s − hi
ski

rd = zs
i ks

j − zs
jks

i + d ird jsersuS̄s
u,

Ks
i = Js

oi < x̃s
ops

i − x̃ s
iÎMsys

2 + pWs
2 −

d irps
sersuS̄s

u

Msys+ ÎMsys
2 + pWs

2
. s2.11d

On the other hand theinternal realization of the Poincaré algebra is built inside the Wigner

hyperplane by using the expression ofS̄s
AB given by Eq.s2.6d sII and W2 are the two nonfixed

invariants of this realizationd

Msys= HM = o
i=1

N

Îmi
2 + kW i

2, kW+ = o
i=1

N

kW i s<0d,

JW = o
i=1

N

hW i 3 kW i, Jr = S̄r = 1
2eruvS̄uv ; S̄s

r ,

KW = − o
i=1

N

Îmi
2 + kW i

2hW i = − MsysRW +, Kr = Jor = S̄s
tr ,

P = Msys
2 − kW+

2 < Msys
2 . 0, W2 = − sMsys

2 − kW+
2dS̄Ws

2 < − Msys
2 S̄

W
s
2. s2.12d

The constraintses−Msys<0,kW+<0 have the following meaning.

sid The constraintes−Msys<0 is the bridge connecting theexternaland theinternal realiza-
tions fthe external spin coincides with the internal angular momentum due to Eq.sA11d of
Ref. 33g.

sii d The constraintskW+<0, together withKW <0 si.e., RW +<qW+<yW+<0d, lead to an unfaithful
internal realization, in which the only nonzero generators are the conserved energy and spin
of an isolated system.

The determination ofqW+ for the N particle system has been carried out by the group theoretical
methods of Ref. 60 in Sec. III of Ref. 33. As said in the Introduction there are three internal

position variablesqW+,RW +,yW+, which can be defined in terms of the internal Poincaré generators

s2.12d. It can be shown33 that, due tokW+<0, they allcoincide, qW+<RW +<yW+.

Therefore the gauge fixingsxW std=qW+<RW +<yW+<0 imply lW std<0 and identify the special

centroids1.1d. As shown in Sec. IV, the addition of the gauge fixingsxW std=qW+<RW +<yW+<0 also
implies that the Dixon center of mass of an extended object20 and the Pirani14 and Tulczyjew15,18,23

centroids61–63 all simultaneously coincide with the centroidxs
sqW+dmstd.

The external realizations2.11d allows to build the analogousexternal3-variablesqWs,RW s,YW s.
Equations4.4d of Ref. 33 shows the construction of the associatedexternal4-variablesx̃s

m ,Ys
m ,Rs

m

and their locationss̃W ,sW Y,sW R on the Wigner hyperplane. The relevant point is that theexternal
Fokker–Pryce noncanonical covariant 4-center of inertiaYs

m coincides with the centroid Eq.s1.1d.
Finally, in Ref. 33 there is the definition of the following sequence of canonical transforma-

tions:

s2.13d
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leading to the canonical separation of the internal 3-center of masssqW+,kW+d from the internal
relative variablesrWqa,pW qa. Since the rest-frame conditionkW+<0 implies33 rWqa<rWa,pW qa<pW a, in the
gaugeqW+<0 and in terms of the associated Dirac brackets we get an internal reduced phase space
whose canonical basis isrWqa;rWa, pW qa;pW a, a=1,… ,N−1.

The intermediate linear point canonical transformation ins2.13d is factually this is a family of
canonical transformations, since thegai’s are any set of numbers satisfyingoigai=0, oagaigaj

=di j −s1/Nd, oigaigbi=dabg

hW i = hW + +
1

ÎN
o
a

gairWa,

kW i =
1

N
kW+ + ÎNo

a

gaipW a,

hW + =
1

N
o

i

hW i, rWa = ÎNo
i

gaihW i ,

kW+ = o
i

kW i, pW a =
1

ÎN
o

i

gaikW i . s2.14d

The second canonical transformation has been defined in Sec. V of Ref. 33 by using a singular
Gartenhaus–Schwartz transformationssee the Appendixd, but there it was not written explicitly for
kW+Þ0. For completeness its explicit form has been found and it is given at the end of the
Appendix of this paper.

III. THE ENERGY-MOMENTUM TENSOR ON THE WIGNER HYPERPLANE

The Euler–Lagrange equations associated with the Lagrangians2.1d are

S ]L
]zm − ]A

]L
]zA

mDst,sW d = hmn]AfÎgTABzB
ngst,sW d=̊0,

]L

]hW i

− ]t

]L

]hẆ i

= − F1

2

TAB

Îg
GUsW=hW i

]gAB

]hW i

− ]t

gtr + grsḣi
s

Îgtt + 2gtuḣi
u + guvḣi

uḣi
vUsW=hW i

=̊ ] hẆ i

where we have introduced the energy-momentum tensorfhereḣi
Astd=s1;hW i

.

stddg,

TABst,sW d = − F 2
Îg

dS

dgAB
Gst,sW d = − o

i=1

N

d3ssW − hW istdd
miḣi

Astdḣi
Bstd

Îgtt + 2gtuḣi
u + guvḣi

uḣi
v
st,sW d. s3.2d

Because of the delta functions, the Euler–Lagrange equations for the fieldszmst ,sW d are trivial
s0=̊0d everywhere except at the positions of the particles. They may be rewritten in a form valid
for every isolated system as

]ATABzB
m=̊ −

1
Îg

]AfÎgzB
mgTAB. s3.3d

When]AfÎgzB
mg=0, as it happens on the Wigner hyperplanes in the gaugeqW+<0 andTs−t<0, we

get the conservation of the energy-momentum tensorTAB, i.e., ]ATAB=̊0. Otherwise, there is a
compensation coming from the dynamics of the surface.

On the Wigner hyperplane the energy-momentum tensorTABst ,sW d takes the form
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Tttst,sW d = − o
i=1

N

d3ssW − hW istdd
mi

Îẋs
2std + 2ẋsmstder

msuspsdd − hW
.

i
2std

,

Ttrst,sW d = − o
i=1

N

d3ssW − hW istdd
miḣi

rstd

Îẋs
2std + 2ẋsmstder

msuspsdd − hW
.

i
2std

,

Trsst,sW d = − o
i=1

N

d3ssW − hW istdd
miḣi

rstdḣi
sstd

Îẋs
2std + 2ẋsmstder

msuspsdd − hW
.

i
2std

. s3.4d

With the positionxm=zmst ,sW d, the same form is obtained from the energy momentum tensor
of the standard manifestly Lorentz covariant theory with LagrangianSS=edt LSstd
=−oi=1

N mi edtÎẋi
2std, restricted to positive energies64

Tmnszst,sW dd = − S 2
Îg

dSS

dgmn
DUx=zst,sW d = o

i=1

N

mi E dt1
ẋi

mst1dẋi
nst1d

Îẋi
2st1d

d4sxist1d − zst,sW dd

= o
i=1

N
1

m1
E dt1

Îẋi
2st1dpi

mst1dpi
nst1dd4sxist1d − zst,sW dd = eA

msuspsddeB
nsuspsddTABst,sW d.

s3.5d

As shown explicitly in Ref. 51, on Wigner hyperplanes but only witht;Ts fso thatẋs
mstd

=umspsd+er
msuspsddlrstd andxs

mstd=xs
ms0d+tumspsd+er

msuspsdde0
tdt1 lrst1dg, we get for every value

of the Dirac multiplierlW std,

Tmnfxs
bsTsd + eu

bsuspsddsug = eA
msuspsddeB

nsuspsddTABsTs,sW d = o
i=1

N

d3ssW − hW isTsdd

3FÎmi
2 + kW i

2sTsdumspsdunspsd + ki
rsTsdsumspsder

nsuspsdd

+ unspsder
msuspsddd +

ki
rsTsdki

ssTsd
Îmi

2 + kW i
2sTsd

er
msuspsddes

nsuspsddG ,

TttsTs,sW d = o
i=1

N

d3ssW − hW isTsddÎmi
2 + kW i

2sTsd,

TtrsTs,sW d = o
i=1

N

d3ssW − hW isTsddki
rsTsd,

TrssTs,sW d = o
i=1

N

d3ssW − hW isTsdd
ki

rsTsdki
ssTsd

Îmi
2 + kW i

2sTsd
,

PT
m =E d3s Tmnfxs

bsTsd + eu
bsuspsddsugunspsd = ps

m = Msysu
mspsd + er

msuspsddk+
r < Msysu

mspsd,
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Msys= PT
mumspsd = o

i=1

N

Îmi
2c2 + kW i

2sTsd, s3.6d

where PT
m and Msys are the total 4-momentum and the invariant mass of the isolatedN-body

system.

IV. DIXON’S MULTIPOLES FOR FREE PARTICLES ON THE WIGNER HYPERPLANE

In this section we will define the special relativistic Dixon multipoles on the Wigner hyper-
plane withTs−t;0 for theN-body problemfsee Eqs.s2.9d with xs

mstd=xo
m+umspsdTs+er

msuspsdd

eo
tdt1 lrst1d=xs

s q
→

+dmstd+eo
tdt1 lrst1dg. By comparison, a list of thenonrelativistic multipolesfor N

free particles is given in Appendix A of Ref. 51.
Consider an arbitrary timelike world-linewmstd=zmst ,hW stdd=xs

mstd+er
msuspsddhrstd

=xs
sqW+dmstd+er

msuspsddh̃rstd fh̃rstd=hrstd+eo
tdt1 lrst1dg and evaluate the Dixon multipoles20 on the

Wigner hyperplanes in the natural gauge with respect to the given world line. A generic point will
be parametrized by

zmst,sW d = xs
mstd + er

msuspsddsr = xs
sqW+dmstd + er

msuspsddFsr +E
0

t

dt1 lrst1dG
= wmstd + er

msuspsddfsr − hrstdg =
def

wmstd + dzmst,sW d, s4.1d

so thatdzmst ,sW dumspsd=0.

While for h̃W std=0 fhW std=eo
tdt1 lrst1dg we get the multipoles relative to the centroidxs

mstd, for

hW std=0 we get those relative to the centroidxs
sqW+dmstd. In the gaugeRW +<qW+<yW+<0, wherelW std

=0, it follows thathW std= h̃
→

std=0 identifies thebarycentricmultipoles with respect to the centroid
xs

sqW+dmstd, which now carries the internal 3-center of mass.

A. Dixon’s multipoles

Lorentz covariantDixon’s multipolesand their Wigner covariant counterparts on the Wigner
hyperplanes are then defined as

tT
m1¯mnmnsTs,hW d = tT

sm1¯mndsmndsTs,hW d = er1

m1suspsdd ¯ ern

mnsuspsddeA
msuspsddeB

nsuspsddqT
r1¯rnABsTs,hW d

=E d3s dzm1sTs,sW d ¯ dzmnsTs,sW dTmnfxs
sqW+dbsTsd + eu

bsuspsddsug

= eA
msuspsddeB

nsuspsdd E d3s dzm1sTs,sW d ¯ dzmnsTs,sW dTABsTs,sW d,

qT
r1¯rnABsTs,hW d =E d3sfsr1 − hr1sTsdg ¯ fsrn − hrstsdgTABsTs,sW d = dt

Adt
Bo

i=1

N

fhi
r1sTsd

− hr1sTsdg ¯ fhi
rnsTsd − hrnsTsdgÎmi

2 + kW i
2sTsd + du

Adv
Bo

i=1

N

fhi
r1sTsd

− hr1sTsdg ¯ fhi
rnsTsd − hrnsTsdg

ki
usTsdki

vsTsd
Îmi

2 + kW i
2sTsd

+ sdt
Adu

B + du
Adt

Bdo
i=1

N

fhi
r1sTsd

− hr1sTsdg ¯ fhi
rnsTsd − hrnsTsdgki

rsTsd,
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um1
spsdtT

m1¯mnmnsTs,hW d = 0. s4.2d

Related multipoles are

pT
m1¯mnmsTs,hW d = tT

m1¯mnmnsTs,hW dunspsd = er1

m1suspsdd ¯ ern

mnsuspsddeA
msuspsddqT

r1¯rnAtsTs,hW d

= er1

m1suspsdd ¯ ern

mnsuspsddo
i=1

N

fhi
r1sTsd − hr1sTsdg ¯ fhi

rnsTsd − hrnsTsdg

3 fÎmi
2 + kW i

2stdumspsd + ki
rsTsder

msuspsddg , um1
spsdpT

m1¯mnmsTs,hW d = 0,

pT
m1¯mnmsTs,hW dumspsd = t̃T

m1¯mnsTs,hW d,

n = 0 ⇒ pT
msTs,hW d = eA

msuspsddqT
AtsTsd = PT

m < ps
m. s4.3d

The inverse formulas, giving themultipolar expansion, are

TmnfwbsTsd + dzbsTs,sW dg = Tmnfxs
sqW+dbsTsd + er

bsuspsddsrg = eA
msuspsddeB

nsuspsddTABsTs,sW d

= eA
msuspsddeB

nsuspsddo
n=0

`

s− 1dnqT
r1¯rnABsTs,hW d

n!

]n

]sr1
¯ ]srn

d3ssW − hW sTsdd

= o
n=0

`

s− 1dntT
m1¯mnmnsTs,hW d

n!
er1m1

suspsdd ¯ ernmn
suspsdd

]n

]sr1
¯ ]srn

d3ssW − hW sTsdd. s4.4d

Note however that, as pointed out by Dixon,20 the distributional equations4.4d is valid only if
analytic test functions are used, defined on the support of the energy-momentum tensor.

The quantitiesqT
r1¯rnttsTs,hW d, qT

r1¯rnrtsTs,hW d=qT
r1¯rntrsTs,hW d, qT

r1¯rnuvsTs,hW d are themass den-
sity, momentum density, and stress tensor multipoleswith respect to the world-linewmsTsd sbary-
centric forhW =h̃=0d.

B. Monopoles

Themonopolescorrespond ton=0 and have the following expression65 ssee the Appendix for
the definition of→a→`d:

qT
ABsTs,hW d = dt

Adt
BM + du

Adv
Bo

i=1

N
ki

uki
v

Îmi
2 + kW i

2
+ sdt

Adu
B + du

Adt
Bdk+

u <

→a→`dt
Adt

Bo
i=1

N

Îmi
2 + No

de

gdigeipW qd · pW qe+ du
Adv

BNo
i=1

N o
ab

1¯N−1

gaigbipW qa · pW qb

Îmi
2 + No

de

gdigeipW qd · pW qe

qT
ttsTs,hW d→c→`o

i=1

N

mic
2 +

1

2 o
ab

1¯N−1

o
i=1

N
Ngaigbi

mi
pW qa · pW qb + Os1/cd = o

i=1

N

mic
2 + Hrel,nr + Os1/cd,

qT
rtsTs,hW d = k+

r < 0, rest-frame conditionsalso at the non relativistic leveld,
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qT
uvsTs,hW d→c→` o

ab

1¯N−1

o
i=1

N
Ngaigbi

mi
pqa

u pqb
v + Os1/cd = o

ab

1¯N−1

kab
−1pqa

u pqb
v + Os1/cd = o

ab

1¯N−1

kabṙa
uṙb

v

+ Os1/cd s4.5d

where we have exploited Eqs.s5.10d, s5.11d of Ref. 33 to obtain the expression in terms of the
internal relative variables.

Therefore, independently of the choice of the world-linewmstd, in the rest-frame instant form
the mass monopole qT

tt is the invariant massMsys=oi=1
N Îmi

2+kW i
2, while themomentum monopole

qT
rt vanishes andqT

uv is thestress tensor monopole.

C. Dipoles

The mass, momentum, and stress tensordipolescorrespond ton=1,

qT
rABsTs,hW d = dt

Adt
BMsysfR+

r sTsd − hrsTsdg + du
Adv

BFo
i=1

N
hi

rki
uki

v

Îmi
2 + kW i

2
sTsd − hrsTsdqT

uvsTs,hW dG + sdt
Adu

B

+ du
Adt

BdFo
i=1

N

fhi
rki

ugsTsd − hrsTsdk+
uG . s4.6d

The vanishing of themass dipole qT
rtt implies hW std= h̃

→
std−e0

tdt1lW st1d=RW + and identifies the

world-line wmstd=xs
sqW+dmstd+er

msuspsdd fR+
r +e0

tdt1lrst1dg. In the gaugeRW +<qW+<yW+<0, where

lW std=0, this is the world-linewmstd=xs
sqW+dmstd of the centroid associated with theinternal Møller

3-center of energyand, as a consequence of the rest-frame condition, also with therest-frame
internal 3-center of mass qW+. Therefore we get the implications following from the vanishing of

the barycentricfi.e., lW std=0g mass dipole:

qT
rttsTs,hW d = em1

r1 suspsddt̃T
m1sTs,hW d = MsysfR+

r sTsd − hrsTsdg = 0, andlW std = 0,

⇒hW sTsd = h̃
→

sTsd = RW + < qW+ < yW+. s4.7d

In the gaugeRW +<qW+<yW+<0, Eq. s4.7d with hW = h̃
→

=0 implies the vanishing of the time
derivative of the barycentric mass dipole, this identifies thecenter-of-mass momentum-velocity
relation sthe so-calledconstitutive equationd for the system

dqT
rttsTs,hW d
dTs

=̊k+
r − MsysṘ+

r = 0. s4.8d

The expression of the barycentric dipoles in terms of the internal relative variables, whenhW

= h̃
→

=RW +<qW+<0 andkW+<0, is obtained by using the results of the Appendix,

qT
rttsTs,RW +d = 0,

qT
rutsTs,RW +d = o

i=1

N

hi
rki

u − R+
r k+

u = o
a=1

N−1

ra
r pa

u + sh+
r − R+

r dk+
u→a→`o

a=1

N−1

rqa
r pqa

u →c→`o
a=1

N−1

ra
r pqa

u

= o
ab

1¯N−1

kabra
r ṙb

u,
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qT
ruvsTs,RW +d = o

i=1

N

hi
r
ki

uki
v

Hi
− R+

r o
i=1

N ki
uki

v

Hi
=

1

ÎN
o
i=1

N

o
a=1

N−1

gaira
r
ki

uki
v

Hi
+ sh+

r − R+
r do

i=1

N ki
uki

v

Hi

→a→`o
a=1

N−11cÎN o
i j

1¯N

sgai − gajd
Îmj

2 + Node
gdjgejpW qd · pW qe

Îmi
2 + Node

gdigeipW qd · pW qe

3
obc

1¯N−1
gbigcipqb

u pqc
v

ok=1

N Îmk
2 + Node

gdkgekpW qd · pW qe
2rqa

r

= →c→` o
i j

1¯N

o
a=1

N−1 gai − gaj

ÎN
ra

r
mjN

mim
o
bc

1¯N−1

gbigcipqb
u pqc

v + Os1/cd

=
1

ÎN
o
abc

1¯N−1FNo
i=1

N gaigbigci

mi
−

o j=1

N
mjgaj

m
Gra

r pqb
u pqc

v + Os1/cd. s4.9d

The antisymmetric part of the related dipolepT
m1msTs,hW d identifies thespin tensor. Indeed, the

spin dipoleis

ST
mnsTsdfhW g = 2pT

fmngsTs,hW d = 2er
fmsuspsddeA

fngsuspsddqT
rAtsTs,hW d = MsysfR+

r sTsd − hrsTsdg

3fer
msuspsddunspsd − er

nsuspsddumspsdg + o
i=1

N

fhi
rsTsd − hrsTsdgki

ssTsdfer
msuspsddes

nsuspsdd

− er
nsuspsddes

msuspsddg,

muspsd
n sTs,hW d = umspsdST

mnsTsdfhW g = − er
nsuspsddfS̄s

tr − Msysh
rsTsdg = − er

nsuspsddMsysfR+
r sTsd − hrsTsdg

= − er
nsuspsddqT

rttsTs,hW d,

⇒umspsdST
mnsTsdfhW g = 0, ⇒ hW = RW +,

⇓barycentric spin forhW = h̃
→

= 0, see Eq. (2.9),

ST
mnsTsdfhW = 0g = Ss

mn=̊o
i=1

N
mihi

rsTsd

Î1 − hW
.

i
2sTsd

fer
msuspsddunspsd − er

nsuspsddumspsdg

+ o
i=1

N
mihi

rsTsdḣi
ssTsd

Î1 − hW
.

i
2sTsd

fer
msuspsddes

nsuspsdd − er
nsuspsddes

msuspsddg

=̊o
i

hi
rsTsdÎmi

2 + kW i
2fer

msuspsddunspsd − er
nsuspsddumspsdg + ersuS̄s

uer
msuspsddes

nsuspsdd.

s4.10d

This explains whymuspsd
m sTs,hW d is also called themass dipole moment.

We find, therefore, that in the gaugeRW +<qW+<yW+<0 with PT
m=Msys umspsd=Msysẋs

sqW+dmsTsd the
Møller and barycentric centroidxs

sqW+dmsTsd is simultaneously theTulczyjew centroid15,18,23fdefined
by ST

mnsTsdfhW gPTn
=0, namely bySs

or=0 in the momentum rest frameg and also thePirani centroid14
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fdefined byST
mnsTsdfhW gẋsn

sqW+d=0, namely bySs
or=0 in the instantaneous-velocity rest frameg. In

general, lacking a relation between 4-momentum and 4-velocity, they are different centroids.66

Note that noncovariant centroids could also be connected with the noncovariant external
center of massx̃s

m and the noncovariant external Møller center of energy.

D. Quadrupoles and the barycentric tensor of inertia

The quadrupolescorrespond ton=2,

qT
r1r2ABsTs,hW d = dt

Adt
Bo

i=1

N

fhi
r1sTsd − hr1sTsdgfhi

r2sTsd − hr2sTsdgÎmi
2 + kW i

2sTsd + du
Adv

Bo
i=1

N

fhi
r1sTsd

− hr1sTsdgfhi
r2sTsd − hr2sTsdg

ki
uki

v

Îmi
2 + kW i

2
sTsd + sdt

Adu
B + du

Adt
Bdo

i=1

N

fhi
r1sTsd − hr1sTsdg

3fhi
r2sTsd − hr2sTsdgki

usTsd. s4.11d

When the mass dipole vanishes, i.e.,hW =RW +=SihW i
Îmi

2+kW i
2/Msys, we get

qT
r1r2ttsTs,RW +d = o

i=1

N

shi
r1 − R+

r1dshi
r2 − R+

r2dÎmi
2 + kW i

2sTsd,

qT
r1r2utsTs,RW +d = o

i=1

N

shi
r1 − R+

r1dshi
r2 − R+

r2dki
u,

qT
r1r2uvsTs,RW +d = o

i=1

N

shi
r1 − R+

r1dshi
r2 − R+

r2d
ki

uki
v

Îmi
2 + kW i

2sTsd
=

1

N
o
i jk

1¯N

o
ab

1¯N−1

sgai − gajd. s4.12d

Following the nonrelativistic pattern, Dixon starts from themass quadrupole,

qT
r1r2ttsTs,RW +d = o

i=1

N

fhi
r1hi

r2Îmi
2 + kW i

2gsTsd − Msys R+
r1R+

r2, s4.13d

and defines the followingbarycentric tensor of inertia:

IDixon
r1r2 sTsd = dr1r2o

u

qT
uuttsTs,RW +d − qT

r1r2ttsTs,RW +d = o
i=1

N

fsdr1r2shW i − RW +d2 − shi
r1 − R+

r1dshi
r2

− R+
r2ddÎmi

2 + kW i
2gsTsd = →a→` o

ab

1¯N−11 1

N
o
i jk

1¯N

sgai − gajdsgbi − gbkd

3

Îmi
2 + No

de

gdigeipW qd · pW qe

So
h=1

N

Îmh
2 + No

de

gdhgehpW qd · pW qeD2
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3 Îmj
2 + No

de

gdjgejpW qd · pW qeÎmk
2 + No

de

gdkgekpW qd · pW qe2frWqa · rWqbd
r1r2 − rqa

r1 rqb
r2 g

→c→` o
ab

1¯N−1

o
i jk

1¯N mimjmk

Nm2 sgai − gajdsgbi − gbkdrWqa · rWqbd
r1r2 − rqa

r1 rqb
r2

3 31 +
1

c
1N o

cd

1¯N−1

gcigdipW qc · pW qd

2mi
2 +

N o
cd

1¯N−1

gcjgdjpW qc · pW qd

2mj
2 +

N o
cd

1¯N−1

gckgdkpW qc · pW qd

2mk
2

−
1

m
o
h=1

N N o
cd

1¯N−1

gchgdhpW qc · pW qd

mh
2 + Os1/c2d4 = o

ab

1¯N−1

kabfrWqa · rWqbd
r1r2 − rqa

r1 rqb
r2 g

+ Os1/cd = Ir1r2fqWnrg + Os1/cd. s4.14d

Note that in the nonrelativistic limit we recover thetensor of inertiaof Eqs.sA11d of Appen-
dix A of Ref. 51.

On the other hand, Thorne’s definition ofbarycentric tensor of inertia27 is

IThorne
r1r2 sTsd = dr1r2o

u

qT
uuA

AsTs,RW +d − qT
r1r2A

AsTs,RW +d

= o
i=1

N mi
2sdr1r2shW i − RW +d2 − shi

r1 − R+
r1dshi

r2 − R+
r2dd

Îmi
2 + kW i

2
sTsd→a→` o

ab

1¯N−11 c

N
o
i jk

1¯N

sgai − gajd

3sgbi − gbkd

mi
2Îmj

2 + No
de

gdjgejpW qd · pW qeÎmk
2 + No

de

gdkgekpW qd · pW qe

Îmi
2 + No

de

gdigeipW qd · pW qeSo
h=1

N

Îmh
2 + No

de

gdhgehpW qd · pW qeD22
3 frWqa · rWqbd

r1r2 − rqa
r1 rqb

r2 g = →c→` o
ab

1¯N−1

o
i jk

1¯N mimjmk

Nm2 sgai − gajdsgbi − gbkdrWqa · rWqbd
r1r2

− rqa
r1 rqb

r2 3 31 +
1

c
1−

N o
cd

1¯N−1

gcigdipW qc · pW qd

2mi
2 +

N o
cd

1¯N−1

gcjgdjpW qc · pW qd

2mj
2

+

N o
cd

1¯N−1

gckgdkpW qc · pW qd

2mk
2 −

1

m
o
h=1

N N o
cd

1¯N−1

gchgdhpW qc · pW qd

mh
2 + Os1/c2d4

= o
ab

1¯N−1

kabfrWqa · rWqbd
r1r2 − rqa

r1 rqb
r2 g + Os1/cd = Ir1r2fqWnrg + Os1/cd. s4.15d

In this case too we recover thetensor of inertiaof Eq. sA11d of Appendix A of Ref. 51.
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Note that the Dixon and Thorne barycentric tensors of inertia differ at the post-Newtonian
level

IDixon
r1r2 sTsd − IThorne

r1r2 sTsd =
1

c
o
ab

1¯N−1

o
i jk

1¯N mjmk

Nm2 sgai − gajdsgbi − gbkdfrWqa · rWqbd
r1r2

− rqa
r1 rqb

r2 g

N o
cd

1¯N−1

gcigdipW qc · pW qd

mi
+ Os1/c2d.

E. The multipolar expansion

By further exploiting the types of Dixon’s multipoles analyzed in Appendix D of Ref. 51
swhere there is also the proof of some basic formulas of Ref. 20 along the lines of this paperd as
well as the consequences of Hamilton equations for an isolated systemsequivalent to]mTmn=̊0d, it
turns out that themultipolar expansions4.4d can be rearranged in the following form:

Tmnfxs
sqW+dbsTsd + er

bsuspsddsrg = TmnfwbsTsd + er
bsuspsddssr − hrsTsddg = usmspsdeA

sndsuspsddfdt
AMsys

+ du
Ak+

ugd3ssW − hW sTsdd +
1

2
ST

rsmsTsdfhW gusndspsder
r suspsdd

]

]sr

d3ssW − hW sTsdd

+ o
n=2

`
s− 1dn

n!
IT

m1¯mnmnsTs,hW dem1

r1 suspsdd ¯ emn

rn suspsdd

]n

]sr1
¯ ]srn

d3ssW − hW sTsdd, s4.16d

where, fornù2 andhW =0, IT
m1¯mnmnsTsd=

4sn−1d

n+1 JT
sm1¯mn−1umumndnsTsd, with JT

m1¯mnmnrssTsd being the
Dixon 22+n-pole inertial moment tensorsgiven in Eqs.sD10d of Ref. 51. With this form of the
multipolar expansion, the quadrupole termsn=2d takes the formfsee Eq.sD11d of Ref. 51g

1
2s 5

3umspsdunspsdqF
r1r2ttsTs,hW d + 1

2fumspsdeu
nsuspsdd + unspsdeu

msuspsddgqT
r1r2utsTs,hW d

+ eu1

m suspsddeu2

n suspsddfqT
r1r2u1u2sTs,hW d − 3

2sqT
sr1r2u1du2sTs,hW d + qT

sr1r2u2du1sTs,hW dd + qT
sr1r2u1u2dsTs, hW dgd .

Note that, as said in Appendix D of Ref. 51, Eq.s4.16d holds only if the multipoles are
evaluated with respect to world-lineswmstd=zmst ,hW stdd with hW std=hW =const, namely with respect
to one of the integral lines of the vector fieldzt

mst ,sW d]m.
On the Wigner hyperplane, the content of these 2n+2-pole inertial moment tensorsis replaced

by theEuclidean Cartesian tensors qT
r1¯rntt ,qT

r1¯rnrt ,qT
r1¯rnrs. As shown in Appendix B of Ref. 51,

we can decompose these Cartesian tensors in their irreducible STFssymmetric trace freed parts
sthe STF tensorsd.

For an isolated system described by the multipoles appearing in Eq.s4.16d fthis is not true for
those in Eq.s4.4dg the equations]mTmn=̊0 fsee Eqs.sD4d andsD7d of Ref. 51g imply no more than
the following Papapetrou–Dixon–Souriau equations of motion11,21,22,24for the total momentum
PT

msTsd=eA
msuspsddqT

AtsTsd<ps
m and the spin tensorST

mnsTsdfhW =0g,

dPT
msTsd
dTs

=̊0,
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dST
mnsTsdfhW = 0g

dTs
=̊2PT

fmsTsdufngspsd = 2k+
ueu

fmsuspsddufngspsd < 0,

or
dMsys

dTs
=̊0,

dkW+

dTs
=̊0,

dSs
mn

dTs
=̊0. s4.17d

For open systems, subsystems of an isolated system like in Sec. V, we have]nT
mn=̊FmÞ0,

with Fm an external force. As shown in Ref. 20 for the case in whichFm=−FmnJns]mJm=̊0d is the
Lorentz force, the multipolar expansions4.16d is still valid, while the equations of motions4.17d
becomesPm andTs are the conserved 4-momentum and the rest-frame time of the global isolated
systemd

dPc
msTsd
dTs

=̊ E d3s FmsTs,sW d,

dSc
mnsTsdfhW = 0g

dTs
=̊2pc

fmsTsdufngsPd −E d3s srfer
msusPddFnsTs,sW d − er

nsusPddFmsTs,sW dg.

s4.18d

V. DIXON’S MULTIPOLES AND RELEVANT CENTROIDS FOR CLOSED AND OPEN
SYSTEMS OF INTERACTING RELATIVISTIC PARTICLES

In this section we present new applications of the multipolar expansion to interacting systems
of particles and fields. We first deal with the case of an isolated system of positive-energy rela-
tivistic particles with mutual action-at-a-distance interactionssee Sec. VIII of Ref. 33 and Sec. VI
of Ref. 36d; then we deal with the case of anopen particle subsystemof an isolated system
consisting ofN charged positive-energy relativistic particlesswith Grassmann-valued electric
charges to regularize the Coulomb self-energiesd plus the electromagnetic field.36

A. An isolated system of positive-energy particles with action-at-a-distance interactions

As mentioned in Sec. VIII of Ref. 33, the most general expression of the internal energy for
an isolated system ofN positive-energy particles with mutual action-at-a-distance interactions, in
the rest-frame instant form, is

M = o
i

Îmi
2 + Ui + skW i − VW id2 + V, s5.1d

where all the potentialsUi ,VW i ,V are functions ofkW i ·kW j , uhW i −hW ju ,kWk·shW i −hW jd. On the other hand, as
shown at the end of Sec. II, in the free case we have

Msfreed = o
i

Îmi
2 + kW i

2 = ÎMsfreed
2 + kW+

2 < Msfreed = o
i
Îmi

2 + No
ab

gaigbipW qa · pW qb. s5.2d

Since the 3-centersRW + andqW+ become interaction dependent, in the interacting case we do not
know the final canonical basisqW+,kW+,rWqa,pW qa explicitly. For an isolated system, however, we have
M =ÎM2+kW+

2<M with M independent ofqW+ shM ,kW+j=0 in the internal Poincaré algebrad. This
suggests that also in the interacting case the same result should hold true. Indeed, by its very
definition, the Gartenhaus–Schwartz transformation givesrWqa<rWa,pW qa<pW a also in presence of
interactions, so that we get
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uMukW+=0
= So

i

Îmi
2 + Ui + skW i − VW id2 + VDUkW+=0 = ÎM2 + kW+

2ukW+
= MukW+=0

= o
i

Î
mi

2 + Ũi + skW i − Ṽi

→
d2 + Ṽ, s5.3d

where the potentialsŨi ,Ṽi

→
,Ṽ are now functions ofpW qa·pW qb,pW qa·rWqb,rWqa·rWqb.

A relevant example of this type of isolated system has been studied in Ref. 36 starting from
the isolated system ofN charged positive-energy particlesswith Grassmann-valued electric
chargesQi =u* u, Qi

2=0, QiQj =QjQi Þ0 for i Þ jd plus the electromagnetic field. After a Shan-
mugadhasan canonical transformation, this system can be expressed only in terms of transverse
Dirac observables corresponding to a radiation gauge for the electromagnetic field. The expression
of the energy-momentum tensor in this gauge will be shown in the next section. In the semiclas-
sical approximation of Ref. 36, the electromagnetic degrees of freedom are reexpressed in terms of
the particle variables by means of the Lienard–Wiechert solution in the framework of the rest-
frame instant form. In this way it has been possible to derive the exact semiclassical relativistic
form of the action-at-a-distance Darwin potential in the reduced phase space of the particles. Note
that this form is independent of the choice of the Green function in the Lienard–Wiechert solution.
In Ref. 36 the associated energy-momentum tensor for the caseN=2 fEqs.s6.48dg is also given.

The internal energy is M =ÎM2+kW+
2<M=oi=1

2 Îmi
2+pW 2+sQ1Q2/4prdf1+ṼspW 2,pW ·srW /rddg

whereṼ is given in Eqs.s6.34d, s6.35d fin Eqs.s6.36d, s6.37d for m1=m2g. The internal boostKW
fEq. s6.46dg allows the determination of the 3-center of energyRW +=−KW /M <qW+<yW+ in the present
interacting case.

The knowledge of the energy-momentum tensorTABst ,sW d and ofRW +<qW+ allows to apply our
formalism to find thebarycentric multipoles of this interacting case. It turns out that, in the gauge

RW +<qW+<yW+<0, all the formal properties studied in the preceding sectionslike the coincidence of
all the relevant centroidsd are reproduced in presence of mutual action-at-a-distance interactions.

B. Open subsystem of the isolated system of N positive-energy particles with
Grassmann-valued electric charge plus the electromagnetic field

Let us now consider an open subsystem of the isolated system ofN charged positive-energy
particles plus the electromagnetic field in the radiation gauge. The energy-momentum tensor and
the Hamilton equations on the Wigner hyperplane of the isolated system areskW+=oikW i; to avoid
degenerations we assume that all the massesmi are differentd

Tttst,sW d = o
i=1

N

d3ssW − hW istddÎmi
2 + fkW istd − QiAW 'st,hW istddg2 +

1

2FSpW ' + o
i=1

N

Qi
]W

D
d3ssW − hW istddD2

+ BW 2Gst,sW d = o
i=1

N

d3ssW − hW istddÎmi
2 + fkW istd − QiAW 'st,hW istddg2 + o

i=1

N

QipW 'st,sW d

3
]W

D
d3ssW − hW istdd +

1

2
fpW '

2 + BW 2gst,sW d +
1

2 o
i,k,iÞk

1¯N

QiQk
]W

D
d3ssW − hW istdd ·

]W

D
d3ssW − hW kstdd,

Tttst,sW d = o
i=1

N

d3ssW − hW istddfki
rstd − QiA'

r st,hW istddg + FSpW ' + o
i=1

N

Qi
]W

D
d3ssW − hW istddD 3 BWGr

st,sW d,
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Trsst,sW d = o
i=1

N

d3ssW − hW istdd
fki

rstd − QiA'
r st,hW istddgfki

sstd − QiA'
s st,hW istddg

Îmi
2 + fkW istd − QiAW 'st,hW istddg2

− F1

2
drsFSpW ' + o

i=1

N

Qi
]W

D
d3ssW − hW istddD2

+ BW 2G − FSpW ' + o
i=1

N

Qi
]W

D
d3ssW − hW istddDr

3SpW ' + o
i=1

N

Qi
]W

D
d3ssW − hW istddDs

+ BrBsGGst,sW d, s5.4d

hW i

.

std=̊
kW istd − QiAW 'st,hW istdd

Îmi
2 + skW istd − QiAW 'st,hW istddd2

,

kW i

.

std=̊o
kÞi

QiQkshW istd − hW kstdd
4puhW istd − hW kstdu3

+ Qiḣi
ustd

]

]hW i

A'
u st,hW istdd,

Ȧ'rst,sW d=̊ − p'rst,sW d,

ṗ'
r st,sW d=̊DA'

r st,sW d − o
i

QiP'
rsssW dḣi

sstdd3ssW − hW istdd,

kW+std +E d3sfpW ' 3 BW gst,sW d < 0 srest-frame conditiond. s5.5d

Let us note that in this reduced phase space there are only either particle-field interactions or
action-at-a-distance two-body interactions.

The particle world lines arexi
mstd=xo

m+umspsdt+er
msuspsddhi

rstd, while their 4-momenta are

pi
mstd=Îmi

2+fkW i −QiAW 'st ,hW idg2umspsd+er
msuspsddfki

r −QiA'
r st ,hW idg.

The generators of the internal Poincaré group are

Psintd
t = M = o

i=1

N

Îmi
2 + skW istd − QiAW 'st,hW istddd2 +

1

2o
iÞ j

QiQj

4puhW istd − hW jstdu
+E d3s

1

2
fpW '

2 + BW 2gst,sW d,

PW sintd = kW+std +E d3sfpW ' 3 BW gst,sW d < 0,

J sintd
r = o

i=1

N

shW istd 3 kW istddr +E d3sssW 3 fpW ' 3 BW grst,sW d,

Ksintd
r = − o

i=1

N

hi
rstdÎmi

2 + fkW istd − QiAW 'st,hW istddg2 +
1

2FQio
i=1

N

o
jÞi

1¯N

Qj E d3s srcWssW − hi
rstdd

·cWssW − h j
rstdd + Qi E d3s p'

r st,sW dcssW − hi
rstddG −

1

2
E d3s srspW '

2 + BW 2dst,sW d, s5.6d

with cshW i −hW jd=1/s4puhW j −hW iud fDcssW d=d3ssW d, D=−]W2, cWssW d=]W cssW d=sW / s4pusW u3dg.
Note thatPsintd

t =qtt andPsintd
r =qrt are the mass and momentum monopoles, respectively.
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For the sake of simplicity, consider the subsystem formed by the two particles of massm1 and
m2. Our considerations may be extended to any cluster of particles both in this case and in the case
discussed in the preceding section. This subsystem isopen, besides their mutual interaction, the
two particles share Coulomb interaction with the otherN−2 particles and are acted upon by the
transverse electromagnetic fields.

By using the multipoles we select a set ofeffective parameterssmass, 3-center of motion,
3-momentum, spind describing the two-particle cluster as a global entity subject to external forces
in the global rest-frame instant form. This was the original motivation of the multipolar expansion
in general relativity, replacing an extended objectsan open system due to the presence of the
gravitational fieldd with a set of multipoles concentrated on a center of motion. In the rest-frame
instant form it is then possible to show that, unlike the case of isolated systems where, in the rest
frame kW+<0, different conventions identify the same centroid, in the case of an open system
different conventions lead to different centers of motion, although a preferred choice seems to
stand out on the basis of some reasonable properties.

Given the energy-momentum tensorTABst ,sW d s5.4d of the isolated system, it would seem
natural to definethe energy-momentum tensor Tcsnd

AB st ,sW d of an open subsystem composed by a
cluster of nøN particlesas the sum of all the terms in Eq.s5.4d containing a dependence on the
variableshW i ,kW i, of the particles of the cluster. Besides kinetic terms, this tensor would contain
internal mutual interactions as well as external interactions of the cluster particles with the envi-
ronment composed by the otherN−n particles and by the transverse electromagnetic field. An
ambiguity, however, appears, why should we attributeall the external interactions with the other
N−n particles to the clustersnote that no such ambiguity exists for the interaction with the
electromagnetic fieldd? Since we have two-body interactions, it seems more reasonable to attribute
only half of these external interactions to the cluster and consider the other half as a property of
the remainingN−n particles. In particular, according to the first choice if we consider two clusters
composed by two nonoverlapping sets ofn1 and n2 particles, respectively, we would get
Tcsn1+n2d

AB ÞTcsn1d
AB +Tcsn2d

AB , since the mutual Coulomb interactions between the two clusters are
present in bothTcsn1d

AB and Tcsn2d
AB . On the other hand according to the second choice we get

Tcsn1+n2d
AB =Tcsn1d

AB +Tcsn2d
AB . Since this property is important for studying the mutual relative motion of

two clusters in actual cases, we will adoptthe convention that the energy-momentum tensor of a n
particle cluster contains only half of the external interaction with the other N−n particles.

Let us remark that, in the case ofk-body forces, this convention should be replaced by the
following rule: sid for each particlemi of the cluster and eachk-body term in the energy-
momentum tensor involving this particle, writek=hi +sk−hid, wherehi is the number of particles
of the cluster participating to this particulark-body interaction;sii d only the fractionhi /k of this
particulark-body interaction term containingmi must be attributed to the cluster.

Consider now the cluster composed by the two particles with massm1 andm2. The knowledge

of Tc
AB=

def

Tcs2d
AB on the Wigner hyperplane of the global rest-frame instant form allows to find the

following 10 nonconservedchargesfdue to Qi
2=0 we haveÎmi

2+fkW i −QiAW 'st ,hW idg2=Îmi
2+kW1

2

−QifkW i ·AW 'st ,hW id /Îmi
2+kW i

2gg:

Mc =E d3s Tc
ttst,sW d = o

i=1

2

Îmi
2 + fkW istd − QiAW 'st,hW istddg2 +

Q1Q2

4puhW 1std − hW 2stdu2

+
1

2o
i=1

2

o
kÞ1,2

QiQk

4puhW istd − hW kstdu2
= Mcsintd + Mcsextd,

Mcsintd = o
i=1

2

Îmi
2 + kW i

2 −
Q1Q2

4puhW 1std − hW 2stdu2
,
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PW c = HE d3s Tc
rtst,sW dJ = kW1std + kW2std,

JW c = HeruvE d3sfsuTc
vt − svTc

utgst,sW dJ = hW istd 3 kW1std + hW 2std 3 kW2std,

KW c = −E d3s sWTc
ttst,sW d = − o

i=1

2

hW istdÎmi
2 + fkW istd − QiAW 'st,hW istddg2 − o

i=1

2

Qi E d3s pW 'st,sW d

3cssW − hW istdd − Q1Q2E d3s sWcWssW − hW 1stdd ·cWssW − hW 2stdd −
1

2o
i=1

2

Qi o
kÞ1,2

Qk

3E d3s sWcWssW − hW istdd ·cWssW − hW kstdd = KW csintd + KW csextd,

KW csintd = − o
i=1

2

hW istdÎmi
2 + kW i

2 − Q1Q2E d3s sWcWssW − hW 1stdd ·cWssW − hW 2stdd, s5.7d

which do not satisfy the algebra of an internal Poincaré group because of the openess of the
system. Since we are working in an instant form of dynamics, only the cluster internal energy and
boosts depend on thesinternal and externald interactions. AgainMc=qc

tt andPc
r =qc

rt are the mass
and momentum monopoles of the cluster.

Another needed quantity is the momentum dipole

pc
ru =E d3s srTc

utst,sW d = o
i=1

2

hi
rstdki

ustd − o
i=1

2

Qi E d3s cssW − hW istddf]rA'
s + ]sA'

r gst,sW d,

pc
ru + pc

ur = o
i=1

2

fhi
rstdki

ustd + hi
ustdki

rstdg − 2o
i=1

2

Qi E d3s cssW − hW istddf]rA'
s + ]sA'

r gst,sW d,

pc
ru − pc

ur = eruvJc
v. s5.8d

The time variation of the 10 chargess5.7d can be evaluated by using the equations of motion
s5.5d,

dMc

dt
= o

i=1

2

QiSkW istd · pW 'st,hW istdd
Îmi

2 + kW i
2

+
1

2 o
kÞ1,2

QkF kW istd
Îmi

2 + kW i
2

+
kWkstd

Îmk
2 + kWk

2G ·
hW istd − hW kstd

4puhW istd − hW kstdu3D ,

dPc
r

dt
= o

i=1

2

QiS kW istd
Îmi

2 + kW i
2

·
]A'

r st,hW istdd
]hW i

+ o
kÞ1,2

Qk

hi
rstd − hk

rstd
4puhW istd − hW kstdu3D ,

dJW c

dt
= o

i=1

2

QiS kW istd
Îmi

2 + kW i
2

3 AW 'st,hW istdd + hW istd 3 F kW istd
Îmi

2 + kW i
2

·
]

]hW i
GAW 'st,hW istdd

− o
kÞi

Qk
hW istd 3 hW kstd

4puhW istd − hW kstdu3D ,
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dKc
r

dt
= − Pc

r − o
i=1

2

Qihi
rstd

kW istd
Îmi

2 + kW i
2std

·FpW 'st,hi
rstdd + o

kÞi

QkcWshi
rstd − hk

rstddG
+ o

i=1

2

QiFo
kÞi

Qk
kWkstd

Îmk
2 + kWk

2std
cshi

rstd − hk
rstdd −E d3s pW 'st,sW d

kW istd ·cWssW − hi
rstdd

Îmi
2 + kW i

2std
G

+ o
i=1

2

Qi o
kÞ1

QkE d3s cssW − hi
rstddS kWkstd

Îmk
2 + kWk

2std
· ]WDcWssW − hk

rstdd

= Q1Q2E d3s sWSFS kW1std
Îm1

2 + kW1
2std

· ]WDcWssW − h1
r stddG ·cWssW − h2

r stddD
+ cWssW − hW 1stdd ·FS kW2std

Îm2
2 + kW2

2std
· ]WDcWssW − h2

r stddG
−

1

2o
i=1

2

Qi o
kÞ1,2

QkE d3s sWSFS kW istd
Îmi

2 + kW i
2std

· ]WDcWssW − hi
rstddG ·cWssW − hk

rstddD
+ cWssW − hi

rstdd ·FS kWkstd
Îmk

2 + kWk
2std

· ]WDcWssW − hk
rstddG . s5.9d

Let us remark that, if we have two clusters ofn1 andn2 particles, respectively, our definition
of cluster energy-momentum tensor implies

Mcsn1+n2d = Mcsn1d + Mcsn2d,

PW csn1+n2d = PW csn1d + PW csn2d,

JW csn1+n2d = JW csn1d + JW csn2d,

KW csn1+n2d = KW csn1d + KW csn2d. s5.10d

Then the main problem is the determination of an effective center of motionzc
rstd with

world-line wc
mstd=xo

m+umspsdt+er
msuspsddzc

rstd in the gaugeTs;t, qW+=RW +=yW+;0 of the isolated

system. The unit 4-velocity of this center of motion isuc
mstd=ẇc

mstd /Î1−zẆ2
cstd with ẇc

mstd
=umspsd+er

msuspsddżc
rstd. By usingd zmst ,sW d=er

msuspsddssr −zrstdd we can define the multipoles of
the cluster with respect to the world-linewc

mstd,

qc
r1¯rnABstd =E d3sfsr1 − zc

r1stdg ¯ fsrn − zc
rnstdgTc

ABst,sW d. s5.11d

The mass and momentum monopoles and the mass, momentum, and spin dipoles are

qc
tt = Mc, qc

rt = Pc
r ,

qc
rtt = − Kc

r − Mczc
rstd = McsRc

rstd − zc
rstdd,

qc
rut = pc

rustd − zc
rstdPc

u,
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Sc
mn = fer

msuspsddunspsd − er
nsuspsddumspsdgqc

rtt + er
msuspsddeu

nsuspsddsqc
rut − qc

urtd = fer
msuspsddunspsd

− er
nsuspsddumspsdgMcsRc

r − zc
rd + er

msuspsddeu
nsuspsddferuvJc

v − szc
rPc

u − zc
uPc

rdg,

⇒mcspsd
m = − Sc

mnunspsd = − er
msuspsddqc

rtt. s5.12d

Let us now consider the following possible definitions of effective centers of motionsmany
others are possibled.

s1d Center of energy29 as center of motion, zWcsEdstd=RW cstd, whereRW cstd is a 3-center of energy
for the cluster built by means of the standard definition

RW c = −
KW c

Mc
. s5.13d

It is determined by the requirement that either the mass dipole vanishes,qc
rtt=0 or the mass

dipole moment with respect toumspsd vanishes,mcspsd
m =0.

The center of energy seems to be the only center of motion enjoying the simple composition
rule

RW csn1+n2d =
Mcsn1dRW csn1d + Mcsn2dRW csn2d

Mcsn1+n2d
. s5.14d

The constitutive relation betweenPW c andRW
.

cstd, see Eq.s4.8d, is

0 =
dqc

rtt

dt
= − K̇c

r − ṀcRc
r − McṘc

r ,

⇓

PW c = McRW
.

c + ṀcRW c − o
i=1

2

QihW istd
kW istd

Îmi
2 + kW i

2std
·FpW 'st,hW istdd + o

kÞi

QkcWshW istd − hW kstddG
+ o

i=1

2

QiFo
kÞi

Qk
kWkstd

Îmk
2 + kWk

2std
cshW istd − hW kstdd −E d3s pW 'st,sW d

kW istd ·cWssW − hW istdd
Îmi

2 + kW i
2std

G
+ o

i=1

2

Qio
kÞi

QkE d3s cssW − hW istddS kWkstd
Îmk

2 + kWk
2std

· ]WDcWssW − hW kstdd

= Q1Q2E d3s sWSFS kW1std
Îm1

2 + kW1
2std

· ]WDcWssW − hW 1stddG ·cWssW − hW 2stdd

+ cWssW − hW 1stdd ·FS kW2std
Îm2

2 + kW2
2std

· ]WDcWssW − hW 2stddGD
−

1

2o
i=1

2

Qi o
kÞ1,2

QkE d3s sWSFS kW istd
Îmi

2 + kW i
2std

· ]WDcWssW − hW istddG ·cWssW − hW kstdd
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+ cWssW − hW istdd ·FS kWkstd
Îmk

2 + kWk
2std

· ]WDcWssW − hW kstddGD . s5.15d

From Eq.s4.10d the associated cluster spin tensor is

Sc
mn = er

msuspsddeu
nsuspsddfqc

rut − qc
urtg = er

msuspsddeu
nsuspsdderuvfJc

v − sRW c 3 PW cdvg.

s5.16d

s2d Pirani centroidzWcsPdstd sRef. 14d as center of motion. It is determined by the requirement that
the mass dipole moment with respect to 4-velocityẇc

mstd vanishessit involves the antisym-
metric part ofpc

urd

mcsẇcd
m = − Sc

mnẇcn = 0, ⇒ zW
.

csPd · zWcsPd = zW
.

csPd ·RW c,

⇓

zWcsPdstd =
1

Mc − PW c · zW
.

csPdstd

fMcRW c − RW c · zW
.

csPdstdPW c − zW
.

csPdstd 3 JW cg. s5.17d

Therefore this centroid is implicitly defined as the solution of these three coupled first order
ordinary differential equations.

s3d Tulczyjew centroidzWcsTdstd sRefs. 15,18, and 23d as center of motion. If we define the cluster

4-momentumPc
m=Mcu

mspsd+Pc
ses

msuspsdd fPc
2=Mc

2−PW c
2 =
def

Mc
2g, its definition coincides with

requiring the vanishing of the mass dipole moment with respect toPc
m sit involves the

antisymmetric part ofpc
urd

mcsPcd
m = − Sc

mnPcn = 0, ⇒ PW c · zWcsTd = PW c ·RW c,

⇓

zWcsTdstd =
1

Mc
2 − PW c

2
fMc

2RW c − PW c ·RW cPW c − PW c 3 JW cg. s5.18d

Let us show that this centroid satisfies the free particle relation as constitutive relation,

PW c = Mcz
W
.

csTd,

⇓

Pc
m = Mcfumspsd + żcsTd

s es
msuspsddg,

qcsTd
rtt =

Mc

Mc
2 − PW c

2
fPW c

2RW c + PW c ·RW cPW c + PW c 3 JW cg,
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Sc
mn = fer

msuspsddunspsd − er
nsuspsddumspsdgqcsTd

rtt + er
msuspsddeu

nsuspsdderuvfIc
v − szWcsTd 3 PW cdvg.

s5.19d

If we use Eq.s5.17d to find a Pirani centroid such thatzW
.

c=PW c/Mc, it turns out that the
condition s5.17d becomes Eq.s5.18d and this implies Eq.s5.19d.

The equations of motion,

McstdzẄcsTdstd = PW
.

cstd − ṀcstdzW
.

csTdstd, s5.20d

contain both internal and external forces. In spite of the nice propertiess5.19d ands5.20d of
the Tulczyjew centroid, this effective center of motion suffers the drawback of lacking a
simple composition property. The relation among the Tulczyjew centroids of clusters with
n1,n2 andn1+n2 particles, respectively, is much more complicated of the compositions5.14d
of the centers of energy.

All the previous centroids coincide for an isolated system in the rest-frame instant form with

PW c=kW+<0 in the gaugeqW+<RW +<yW+<0.
s4d The Corinaldesi–Papapetrou centroid12 with respect to a timelike observer with, 4-velocity

vmstd ,zcsCPd
svd std as center of motion.

mcsvd
m = − Sc

mnvn = 0. s5.21d

Clearly these centroids are unrelated to the previous ones being dependent on the choice of
an arbitrary observer.

s5d The Pryce center of spin30–32 or classical canonical Newton–Wigner centroidzWcsNWd. It
defined as the solution of the differential equations implied by the requirement
hzcsNWd

r ,zcsNWd
s j=0, hzcsNWd

r ,Pc
sj=drs. Note that, being in an instant form of dynamics, we

havehPc
r ,Pc

sj=0 also for an open system.

The two effective centers of motion which look more useful for applications seems to be the

center of energyzWcsEdstd and Tulczyjew’s centroidzWcsTdstd, with zWcsEdstd preferred for the study of
the mutual motion of clusters due to Eq.s5.14d.

Therefore, in the spirit of the multipolar expansion, our two-body cluster may be described by
an effective nonconserved internal energysor massd Mcstd, by the world-linewc

m=xo
m+umspsdt

+er
msuspsdd zcsE or Td

r std associated with the effective center of motionzWcsE or Tdstd and by the

effective 3-momentumPW cstd, with zWcsE or Tdstd and PW cstd forming a noncanonical basis for the
collective variables of the cluster. A noncanonical effective spin for the cluster in thes1d and s3d
cases is defined by the following:

sad case of the center of energy,

SW csEdstd = JW cstd − RW cstd 3 PW cstd,

dzWcsEdstd

dt
=

dJW cstd
dt

−
dRW cstd

dt
3 PW cstd − RW cstd 3

dPW cstd
dt

,

sbd case of the Tulczyjew centroid,
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SW csTdstd = JW cstd − zWcsTdstd 3 PW cstd =
Mc

2stdSW csEdstd − PW cstd ·JW cstdPW cstd

Mc
2std − PW c

2std
,

dzWcsTdstd

dt
=

dJW cstd
dt

− zWcsTdstd 3
dPW cstd

dt
. s5.22d

Since our cluster contains only two particles, this pole–dipole description concentrated on the
world-line wc

mstd is equivalent to the original description in terms of the canonical variables
hW istd ,kW istd sall higher multipoles are not independent quantities in this cased.

Then, let us see whether it is possible to replace the description of the two-body system as an
effective pole–dipole system, by a description of it as an effective extended two-body system
obtained by introducing two noncanonical relative variablesrWcsE or Tdstd, pW csE or Tdstd through the
following definitions:

hW 1=
def

zWcsE or Td + 1
2rWcsE or Td, zWcsE or Td = 1

2shW 1 + hW 2d,

hW 2=
def

zWcsE or Td − 1
2rWcsE or Td, rWcsE or Td = hW 1 − hW 2,

kW1=
def

1
2PW c + pW csE or Td, PW c = kW1 + kW2,

kW2=
def

1
2PW c − pW csE or Td, pW csE or Td = 1

2skW1 − kW2d,

JW c = hW 1 3 kW1 + hW 2 3 kW2 = zWcsE or Td 3 PW c + rWcsE or Td 3 pW csE or Td,

⇒SW csE or Td = rWcsE or Td 3 pW csE or Td. s5.23d

Note that, even if it is suggested by a canonical transformation, the above transformation is in fact
not a canonical transformation and it can only be defined since we are working in an instant form

of dynamics, in which bothPW c andJW c do not depend upon the interactions.
Note finally that we know everything about this new basis except for the unit vector

rWcsE or Td / urWcsE or Tdu and the momentumpW csE or Td. However, this relevant lacking information can
be extracted from the symmetrized momentum dipolepc

ru+pc
ur, which is a known effective quan-

tity since Eq.s5.9d has the following expression in terms of the variabless5.23d:

pc
ru + pc

ur + 2o
i=1

2

Qi E d3s cssW − hW istddf]rA'
s + ]sA'

r gst,sW d = o
i=1

2

shi
rki

u + hi
uki

rd = zcsE or Td
r Pc

u

+ zcsE or Td
r Pc

r + rcsE or Td
r pcsE or Td

u + rcsE or Td
u pcsE or Td

r . s5.24d

A strategy for working out this information explicitly is provided by the construction of aspin

frame which, following Ref. 33 for theN−2 case, is defined byŜcsE or Td=SW csE or Td / uSW csE or Tdu,
R̂csE or Td, V̂csE or Td=R̂csE or Td3 ŜcsE or Td, with ŜcsE or Td ·R̂csE or Td=0, ŜcsE or Td

2 =R̂csE or Td
2

=V̂csE or Td
2 =1. Then we get the following decompositionsScsE or Td= uSW csE or Tdud:

rWcsE or Td = rcsE or TdR̂csE or Td, rcsE or Td = uhW 1 − hW 2u,
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pW csE or Td = p̃csE or TdR̂csE or Td −
ScsE or Td

rcsE or Td
V̂csE or Td, p̃csE or Td = pW csE or Td ·

rWcsE or Td

rcsE or Td
,

s5.25d

wherercsE or Td is just the relative variable appearing in the Coulomb potential. Equationss5.25d
show that only the three variablesp̃csE or Td and R̂csE or Td=rWcsE or Td /rcsE or Td are still unknown.
Then from Eqs.s5.23d and s5.24d we obtain

rcsE or Td
r pcsE or Td

u + rcsE or Td
u pcsE or Td

r = 2 rcsE or Tdp̃csE or TdR̂csE or Td
r R̂csE or Td

u − ScsE or Td

3sR̂csE or Td
r V̂csE or Td

u + R̂csE or Td
u V̂csE or Td

r d = pc
ru + pc

ur

− szcsE or Td
r Pc

u + zcsE or Td
u Pc

rd + 2o
i=1

2

Qi E d3s cssW − hW istdd

3f]rA'
u + ]uA'

r gst,sW d =
def

FcsE or Td
ru ,

FcsE or Td
ru ScsE or Td

u ; 0. s5.26d

Now, these are three independent equations forp̃csE or Td and for the two degrees of freedom

in the unit vector R̂csE or Td in terms of the known quantitiesFcsE or Td
ru ,ScsE or Td, rcsE or Td

= uhW 1−hW 2u. For instance we getp̃csE or Td=sorFcsE or Td
rr d /2 rcsE or Td, which is independent of the

vector potential because of the transversality of the latter. In conclusion, the external electromag-

netic potentialAW ' enters only in the determination of the axisR̂csE or Td of the spin frame.
This completes the construction of the effective relative variables and of the effective spin

frame using the extra input of the 3-momentum dipole.In this way we get a description of the
two-body cluster as an effective two-body system instead of a pole–dipole system. The weak point
of this description of the open system as an extended object is that, whatever definition of effective
center of motion one exploits, the symmetrized momentum dipolepc

ru+pc
ur does not dependon the

cluster propertiesonly but also on the external electromagnetic transverse vector potential at the
particle positions, as shown by Eq.s5.8d. As a consequence the spin frame, or equivalently the
three Euler angles associated with the internal spin, depends upon the external fields.

If we accept this drawback, it is reasonable to expect that, taking into account higher multi-
poles, be possible to give a description of a cluster ofnù3 particles in terms of as many effective
n-body systems as effective dynamical body frames following the scheme of Ref. 33.

This would open the possibility of obtaining effective descriptions of two clusters ofn1 andn2

particles, respectively, and comparing it with the effective description of the cluster composed by
the samen1+n2 particles. Then it should be possible to find the relations among the three centers
of motion of thesn1+n2d , n1, andn2 clusters and the relative motion of the twon1 andn2 clusters.
With this in view, adoptingthe center of energy as center of motionseems unavoidable because of
the simple composition laws5.14d. Whatever choice one adopts, however, it turns out that the
relative motion of the two clusters depends on the external fields besides the effective parameters
of the clusters.

These techniques can be extended to relativistic perfect fluids, if described in the rest-frame
instant form as done in Ref. 1. Moreover, they are needed for the determination of the post-
Minkowskian approximation to the quadrupole formula for the emission of gravitational waves
sresummation of the post-Newtonian approximationsd in the background-independent Hamiltonian
linearization of tetrad gravity plus a perfect fluid.4
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VI. CONCLUSIONS

A relativistic description of open systems like binary stars embedded in the gravitational field
would be nowadays an important achievement in view of the construction of templates for the
gravitational radiation. Even by approximating such description by means of a multipolar expan-
sion in a way suitable for actually doing either analytical or numerical calculations, a big amount
of kinematical technical preliminaries is needed anyway. With this in view, we had in mind to
develop methods which could be useful in general relativity with relativistic perfect fluids as
matter, where single or binary stars could be described by open fluid subsystems of the isolated
system formed by the gravitational field plus the fluid in the rest-frame instant form of either
metric or tetrad gravity.2–4

To pursue our program, in the present paper we have first of all completed the study of the
relativistic kinematics of the system ofN free scalar positive-energy particles in the rest-frame
instant form of dynamics on Wigner hyperplanes, initiated in Ref. 33.

Then, we have evaluated the energy momentum tensor of the system on the Wigner hyper-
plane and then determined Dixon’s multipoles for theN-body problem with respect to theinternal
3-center of mass located at the origin of the Wigner hyperplane. For an isolated system most of the
existing definitions of a collective centroid identify a unique world line, associated with the
internal canonical 3-center of mass. In the rest-frame instant form these multipoles areCartesian
(Wigner-covariant) Euclidean tensors. While the study of themonopoleanddipolemoments in the
rest frame gives information on the mass, the spin and theinternal center of mass, thequadrupole
moment provides the onlysthough not uniqued way of introducing the concept ofbarycentric
tensor of inertiafor extended systems in special relativity.

By exploiting thecanonical spin basesof Refs. 33 and 50 after the elimination of the internal
3-center of masssqW+=kW+=0d, the Cartesian multipolesqT

r1¯rnAB can be expressed in terms of six
orientationalvariablessthespin vectorand the threeEuler anglesidentifying thedynamical body
framed and of 6N−6 srotational scalard shapevariables, i.e., in terms of the canonical pairs of a
canonical spin basis.

Having completed the discussion of the isolated system ofN positive energy free scalar
particles the formalism has been applied to an isolated system ofN positive-energy particles with
mutual action-at-a-distance interactions. Here again we find a unique world line describing the
collective motion of the system.

On the other hand, in the case of anopen n,N particle subsystemof an isolated system
consisting ofN charged positive-energy particles plus the electromagnetic field a more complex
description surfaces. In the rest frame of the isolated system a suitable definition of the energy-
momentum tensor of the open subsystem allows to define itseffective mass, 3-momentum, and
angular momentum. However, unlike the case of isolated systems, each centroid putatively de-
scribing thecollective centers of motion, gives rise to a different world line. Starting from the
evaluation of the rest-frame Dixon multipoles of the energy-momentum tensor of the open sub-
system with respect to various centroids, we get therebymany candidates for the effective center
of motion and the effective intrinsic spin. Two centroidssviz. the center of energy and Tulczyjew’s
centroidd stand out because of their specific properties. In the casen=2 the pole–dipole description
of the two-particle cluster can be replaced by a description of the cluster as an extended system
swhose effective spin frame can be evaluatedd at the price of introducing an explicit dependence
on the cluster in the action of the external electromagnetic field.

Finally, by comparing the effective parameters of an open cluster ofn1+n2 particles with the
effective parameters of the two clusters withn1 andn2 particles, it is shown that only the effective
center of energycan in fact play the role of a useful center of motion,

The kinematical concepts we have defined for closed and openN-body systems are sufficient
for the treatment of relativistic continua like relativistic fluids. In Ref. 1 a preliminary extension to
closed relativistic fluids is given.
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APPENDIX: THE GARTENHAUS–SCHWARTZ TRANSFORMATION

In Ref. 33 we defined canonical internal relative variables with respect to the internal 3-center
of massqW+ by exploiting aGartenhaus–Schwartzcanonical transformation. Let us stress thatwhile
at the nonrelativistic level the transformation is a point-transformation both in the coordinates
and the momenta, in the relativistic case we get a point-transformation only in the momenta.

The canonical generator of the transformation is

G = qW+ · kW+, sA1d

so that the finite transformation, depending on a parametera, on a generic functionF on the phase
space is

Fsad = F +E
0

`

dahFsad,Gsadj. sA2d

In particular we have

lim
a→`

kW+sad = 0, lim
a→`

qW+sad = `. sA3d

As mentioned in Sec. II, if we define the canonical transformations2.14d, then the quantities

pW qa = lim
a→`

pW asad, rWqa = lim
a→`

rWasad, sA4d

are well defined and the transformation

hW i,kW i → kW+,qW+,rWqa,pW qa, sA5d

is a canonical transformation

hq+
r ,k+

sj = drs, hrqa
r ,pqb

s j = drsdab, sA6d

as said in Eq.s2.13d.
The quantitiesrWqa,pW qa are the searched internal relative variables, they describe the system

after the gauge fixingqW+<0,kW+<0. We have also

kW+ < 0 ⇒ rWqa < rWa, pW qa < pW a. sA7d

Thanks to these results, we can calculate a functionF independent ofqW+ on the phase space,
under the constraintkW+<0, by simply performing the limit

FukW+<0srWqa,pW qad = lim
a→`

Fsad. sA8d

This method is applied in Sec. IV for calculating the multipoles after the gauge fixingqW+

<0,kW+<0. These multipoles depend onkW i, so thatssee Ref. 33d

lim
a→`

kW isad = ÎNo
a=1

N−1

gaipW qa, sA9d

and onshW i −RW +d, so that

hW i − RW + = o
j

shW i − hW jd
Îmj

2 + kW j
2

SkÎmk
2 + kWk

2
= o

j
o
a

ÎNsgai − gajdrWa

Îmj
2 + kW j

2

SkÎmk
2 + kWk

2
. sA10d

Then usingsA9d and sA4d we have
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lim
a→`

shW isad − RW +sadd = o
j

o
a

ÎNsgai − gajdrWqa

Îmj
2 + NSabpW qa · pW qbgajgbj

SkÎmk
2 + NSabpW qa · pW qbgakgbk

. sA11d

The following notation is used to denote the limitssA8d:

uF→a→`FukW+<0srWqa,pW qad. sA12d

For example, Eqs.sA9d and sA11d become

kW i→a→`ÎNo
a=1

N−1

gaipW qa,

hW i − RW +→a→`o
j

o
a

ÎNsgai − gajdrWqa

Îmj
2 + NSabpW qa · pW qbgajgbj

Sk
Îmk

2 + NSabpW qa · pW qbgakgbk

. sA13d

The closed formsA16d–sA18d of the canonical transformationsA5d was not given in Ref. 33,
but it can derived from the following two equations of that paperfits Eq. s5.13d and s5.24dg:

pW asad =
1

ÎN
o
i=1

N

gaikW isad,

pW qa=
def

pW as`d =
1

ÎN
o
i=1

N

kW is`d

= pW a +
nW+

M fsMsys− MdnW+ · pW a − ukW+uHag

= pW a −
kW+

ÎMsys
2 − kW+

2FHa −
Msys− ÎMsys

2 − kW+
2

kW+
2 kW+ · pW aG < pW a,

Ha =
1

ÎN
o
i=1

N

gaiHi =
1

ÎN
o
i=1

N

gai
Îmi

2 + kW i
2,

kW is`d = ÎNo
a=1

N−1

gaipW qa,

Hsreldi = His`d =Îmi
2 + N o

ab

1. . .N−1

gaigbipW qa · pW qb,

Msys= o
i=1

N

Hi = ÎM2 + kW+
2 < Hsreld = HMs`d = M = o

i=1

N

His`d = o
i=1

N Îmi
2 + N o

ab

1. . .N−1

gaigbipW qa · pW qb,

sA14d
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rWqa=
def

rWas`d = rWa − o
i,j=1

N

o
b=1

N−1

gajsgbi − gbjd
Hi

Msys
F ukW+ukW js`d

Hjs`dÎP
+ SMsys

ÎP
− 1DnW+GnW+ · rWb

= rWa − o
i,j=1

N

o
b=1

N−1

gajsgbi − gbjd
Hi

Msys

kW js`d

Hjs`dÎP
kW+ · rWb < rWa. sA15d

Let us end by giving the explicit expression of the second canonical transformations2.13d. By
using Eqs.sA14d and sA15d we get the following results.

s1d For N=2sg11=−g12=1/Î2d we have

hW 1 = hW + + 1
2rW, kW1 = 1

2kW+ + pW ,

hW 2 = hW + − 1
2rW, kW2 = 1

2kW+ − pW ,

hW + = 1
2shW 1 + hW 2d, kW+ = kW1 + kW2,

rW = hW 1 − hW 2, pW = 1
2skW1 − kW2d,

JW = hW 1 3 kW1 + hW 2 3 kW2 = hW + 3 kW+ + SW = qW+ 3 kW+ + SWq, SW = rW 3 pW , SWq = rWq 3 pW q,

RW + =
Îm1

2 + kW1
2hW 1 + Îm2

2 + kW2
2hW 2

Îm1
2 + kW1

2 + Îm2
2 + kW2

2
= hW + +

1

2

Îm1
2 + kW1

2 − Îm2
2 + kW2

2

Îm1
2 + kW1

2 + Îm2
2 + kW2

2
rW ,

qW+ = RW + +
SWq 3 kW+

sÎm1
2 + kW1

2 + Îm2
2 + kW2

2dsÎm1
2 + kW1

2 + Îm2
2 + kW2

2 + ÎsÎm1
2 + kW1

2 + Îm2
2 + kW2

2d2 − kW+
2d

.

sA16d

Then after some straightforward algebra we getsnote that in Ref. 33 we used the notation
Msfreed=Msys andMsfreed

2 =Pd

Îmi
2 + kW i

2 =
1

2
ÎMsfreed

2 + kW+
2S1 + s− di+1m1

2 − m2
2

Msfreed
2 D + s− di+1pW q · kW+

Msfreed
,

Msfreed = Îm1
2 + kW1

2 + Îm2
2 + kW2

2 = ÎMsfreed
2 + kW+

2 < Msfreed =
def

Îm1
2 + pW q

2 + Îm2
2 + pW q

2,

Îm1
2 + kW1

2 − Îm2
2 + kW2

2 =
2pW q · kW+

Msfreed
+

m1
2 − m2

2

Msfreed
2

ÎMsfreed
2 + kW+

2 =
def

E,

pW = pW q +
kW+

MsfreedÎMsfreed
2 + kW+

2FpW q · kW+S1 − sÎMsfreed
2 + kW+

2 − Msfreedd
Msfreed

kW+
2 D

+ sm1
2 − m2

2dÎMsfreed
2 + kW+

2G =
def

pW q + FkW+,
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rW = rWq −
A

B

kW+ · rWqpW q

MsfreedÎMsfreed
2 + kW+

2
=
def

rWq + CpW q,

A =
Îm1

2 + kW1
2

Îm2
2 + pW q

2
+

Îm2
2 + kW2

2

Îm1
2 + pW q

2
, B = 1 +

ApW q · kW+

MsfreedÎMsfreed
2 + kW+

2
,

pW q = pW −
kW+

ÎMsfreed
2 − kW+

2S1

2
sÎm1

2 + kW1
2 − Îm2

2 + kW2
2d −

kW+ · pW

kW+
2 fMsfreed − ÎMsfreed

2 − kW+
2gD=

def

pW

− DkW+,

rWq = rW +
AkW+ · rW

MsfreedÎMsfreed
2 − kW+

2
pW q,

SWq = SW − DrW 3 kW+,

qW+ = RW + + GSWq 3 kW+,

G =
1

MsfreedsMsfreed + ÎMsfreed
2 − kW+

2d
=

1

ÎMsfreed
2 + kW+

2sÎMsfreed
2 + kW+

2 + Msfreedd
,

hW + = qW+ −
E

2ÎMsfreed
2 + kW+

2
frWq + CpW qg − GSWq 3 kW+,

hW i = qW+ +
1

2Ss− di+1 −
E

ÎMsfreed
2 + kW+

2DsrWq + CpW qd − GSWq 3 kW+,

kW i = s 1
2 + s− di+1FdkW+ + s− di+1pW q. sA17d

s2d For N.2 the results concerning the coordinatessand alsoqW+d are much more involved due
to the complexity of Eqs.sA15d so that we give only the following results for the momenta:

Msfreed = o
i

Îmi
2 + kW i

2 = ÎMsfreed
2 + kW+

2 < Msfreed = o
i
Îmi

2 + No
ab

gaigbipW qa · pW qb,

Îmi
2 + kW i

2 =
1

Msfreed
SÎNo

a

gaikW+ · pW qa +Îmi
2 + No

ab

gaigbipW qa · pW qbÎMsfreed
2 + kW+

2D ,

kW i =
kW+

N
+ ÎNo

a

gaiFpW qa + S Msfreed

Msfreed
− 1DkW+ · pW qa

kW+
2 kW+

+
kW+

MsfreedÎN
o

i

gaiÎmi
2 + No

ab

gaigbipW qa · pW qbG . sA18d
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special relativistic limit of the general relativistic Dixon centroid of Ref. 21 gives the centroidxs
mstd: it coincides with the

special relativistic Dixon centroid of Ref. 20 defined by using the conserved energy momentum tensor, as we shall see
in Sec. IV.

56I. Bailey and W. Israel, Ann. Phys.sN.Y.d 130, 188 s1980d.
57It describes a point living on the Wigner hyperplanes and has the covariance of the little group Os3d of timelike Poincaré

orbits like the Newton–Wigner position operator.
58G. Longhi and L. Lusanna, Phys. Rev. D34, 3707s1986d.
59As in every instant form of dynamics, there are four independent Hamiltoniansps

o andJs
oi, functions of the invariant mass

Msys; we give also the expression in the basisTs,es,zWs,kWs.
60M. Pauri and G. M. Prosperi, J. Math. Phys.16, 1503s1975d.
61See Ref. 62 for the application of these methods to find the center of mass of a configuration of the Klein-Gordon field

after the preliminary work of Ref. 63 on thecenter of phasefor a real Klein–Gordon field.
62L. Lusanna and M. Materassi, Int. J. Mod. Phys. A15, 2821s2000d.
63G. Longhi and M. Materassi, Int. J. Mod. Phys. A14, 3387s1999d; J. Math. Phys.40, 480 s1999d.
64pi

o=misẋi
o/Îẋi

2d.0, soi=1
N pi

md2=foi=1
N misẋi

m /Îẋi
2dg2.0.

65They arehW independent; see Appendix C of Ref. 33 and Appendix A of Ref. 51 for the nonrelativistic limit.
66For instance, the so-calledbackground Corinaldesi-Papapetrou centroidsRef. 12d is defined by the conditionST

mnsTsd
3fhW gvn=0, wherevm is a given fixed unit 4-vector.
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We give a definition and discuss main properties of the asymptotic Hopf invariant,
or helicity, for Hamiltonian systems. The definition relies on a technical construc-
tion which is a definition of a relative Hopf invariant for divergence-free vector
fields in multiconnected domains of the following type:sflat domain inR2d
3 scircled. We prove correctness of the definitions, and discuss ergodic interpreta-
tion of the Hamiltonian Hopf invariant, together with its relation with the Calabi
invariant. ©2005 American Institute of Physics.fDOI: 10.1063/1.1904511g

I. INTRODUCTION

The asymptotic Hopf invariant, or helicity of a divergence-free vector fieldswhich, for ex-
ample, can be a magnetic fieldd is an invariant, known in fluid dynamics and plasma physics.
Being an invariant means that the helicity integral is preserved under an action on the vector field
by an arbitrary volume-preserving diffeomorphism. Helicity was introduced in Refs. 14 and 15
and has been widely studied thereafter, see e.g., Ref. 3. One of the important applications of
helicity is that it provides a lower bound for the magnetic energy, see, e.g., Ref. 5, and we also
refer to Ref. 9 for explicit estimates for the lower bound for the energy, as well as a discussion of
the geometry of the extremal vector fields.

We briefly remind the definition of helicity see, e.g., Ref. 3. LetM be a simply connected
three-dimensional Riemannian manifold with boundary]M, let a 3-formm be a volume form on
M, and letj be a divergence-free vector field onM, tangent to the boundary]M. Consider a
2-form Vj= ijm. As M is simply connected, the formVj is exact.

By definition, theasymptotic Hopf invariant, or helicity of the fieldj on M is an integral

Hsjd =E
M

Vj ∧ d−1Vj. s1d

Topological properties of helicity were discovered in Ref. 2, given a vector field on a three-
dimensional simply connected domain, its helicity measures the average linking of the trajectories
of this field. This property is also referred to asergodic, as the proofs rely on Birkhoff’s ergodic
theorem. The topological description has also been generalized to higher dimensions, see, e.g.,
Refs. 16, 12, 13, and 6.

It is natural to try to extend the asymptotic Hopf invariant to Hamiltonian systems, indeed,
one notices that in the extended phase space, a Hamiltonian vector field is acurl of a 1-form
p dq−H dt, see, e.g., Ref. 1. Thus one can at least formally write down the same helicity integral
ass1d ssee Ref. 10d. The problem is that Hamiltonian systems have no bounded simply connected
invariant manifolds in the extended phase spaceswhile multiconnected invariant manifolds cer-
tainly exist, for example, KAM-tori in Hamiltonian systems, close to integrable onesd, while the
asymptotic Hopf invariant does not exist for vector fields on multi-connected manifolds.3

First we define arelativeHopf invariant and a relative cross-helicity invariant for divergence-
free vector fields in multiconnected domains of the typesflat domain inR2d3 scircled. Note that
the simplest multiconnected manifold, invariant for a Hamiltonian system, is a solid torus, and it
is clearly of the above type. The invariant we define describes the asymptotic linking of trajecto-
ries of these vector fields for some proper embedding of this domain into a sphere, assuming that
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the domain itself is unlinked. We also discuss generalizations, when linking of the domain itself
can be nontrivial. Then we consider Hamiltonian systems and discuss the relation of this invariant
with the Calabi invariant.8

II. THE RELATIVE HOPF INVARIANT

As noted above, for vector fields in multiconnected manifoldssi.e., with nontrivial first ho-
mology groupd there is no asymptotic Hopf invariant, the value of the integrals1d depends on a
choice of a potential 1-formd−1Vj. We show that this choice can be made in some natural way for
one case, important for applications.

Let a setV be a direct product of a circlesbased S1 and a ringR2PR2. Let m be a volume
3-form, and letj be a divergence-free vector field, tangent to the boundary]V. Consider a 2-form
Vj

2= ijm. This form is closed, sincej is divergence-freesthus the Lie derivativeLjm=dijm=0d,
and one can see that it is also exactsthus any divergence-free field tangent to the boundary]V is
null-homologiousd. Indeed, the 2-cycle, on which the values of closed 2-forms are defined, is a
two-torus, obtained by shrinking the ringR2 to a circle. Integral of any closed 2-form over this
torus equals the integral over any component of the boundary. But our 2-formVj

2 is identically
zero on the boundary]V, as the fieldj is tangent to it.

We assume that in polar coordinatesr, f smod 2pd the ringR2 is given byr P fr1,r2g. We take
r, f smod 2pd, t smod 2pd as local coordinates onV.

Let g1 be a closed curve on the boundary]V, given by conditionst=const,r =r1, and let a
closed curveg2 be given by conditionf=const,r =r2.

We choosea 1-formvj
1=d−1Vj

2 such that

E
g1

vj
1 = 0, E

g2

vj
1 = 0. s2d

Note that conditionss2d define a coset of 1-formsfvj
1g, i.e., a 1-form modulo differentialsas they

define the values of a 1-formv1 on the fundamental groupd.
Definition 1: We call an integral

Hsjd =E
V

Vj
2 ∧ vj

1,

a relative Hopf invariant for the fieldj in V.
Let another divergence-free vector fieldh be given onV, also being tangent to the boundary

]V.
Definition 2: We call an integral

Hsj,hd =E
V

Vj
2 ∧ vh

1 ,

where 1-formvh
1 satisfies conditions2d, a relative cross-helicity of the fieldsj, h. This choice of

the potential 1-form is explained by the following crucial observation.
Assume thatV is embedded into a sphereS3, V is unlinked, and assume that the volume form

m=r dr ∧df∧dt. Let r =r1, j=s0,1,0d on the inner component of the boundary, andr =r2, j
=s0,0,1d on the outer component.

Consider a setṼ=R̃23S1, where the ringR̃2PR2 is given by conditionr P fr̃1, r̃2g, where

r1. r̃1 and r2, r̃2. We continue the volume formm and the fieldj on Ṽ swhere the same local
coordinates can be introduced as aboved such, thatm remains the same, whilej;s0,1,0d at r
, r1 andj;s0,0,1d at r . r2.
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As none of the trajectories of the fieldj in the domainṼ\V is linked with the trajectories of

the field j in the domainṼ, we should expect that for a well-defined invariant, the relative

helicities in domainsV and Ṽ are equal.
Proposition 1: Integrals

E
V

Vj
2 ∧ vj

1 =E
Ṽ

Vj
2 ∧ vj

1

for any r̃1, r̃2 if and only if conditionss2d are satisfied.
Proof: We consider the case whenr̃1=r1, r̃2Þ r2, the general case is similar. In the domain

Ṽ\V, the 2-formVj
2=r dr ∧df, thusvj

1=sr2/2+ fsfdddf+gstddt for some 2p-periodic functionsf,
g. Conditions2d means thate0

2pgstddt=0. However, this integral is zero if and only if

E
Ṽ\V

Vj
2 ∧ vj

1 = psr̃2
2 − r2

2dE
0

2p

gstddt = 0.

h

Remarks:The condition for the ringR2 beingflat is of uttermost importance, if we drop this
condition, then for different embeddings of the ring intoR2 the same vector field may have
different asymptotic linkings. A fiber can be more complicated, say, a disk with some number of
holes, and the setV itself can be a nontrivial fibration overS1. One can show that still any
divergence-free vector field, tangent to the boundary, is null-homologious, as the corresponding
2-form is zero on every component of the boundary. As the fundamental group becomes more
complicated, the number of conditions of the types2d will grow.

It follows from Proposition 1 that conditions2d is necessarysuch that the relative Hopf
invariant could be equal to asymptotic linking of the trajectories under an “appropriate” embed-
ding of the setV into S3, namely, the boundary torus should not be linked and the measure should
be continued to the whole sphere. One can prove that this condition is alsosufficient, say, by
realizing this embedding. Instead, we demonstrate in an example that under our choice of a coset
fvj

1g the relative Hopf invariant equals the asymptotic linking of the vector fieldj.
Let the fieldj be the Hopf vector field on a sphereS3, in coordinatesx1,x2,x3,x4PR4, where

the sphere is given by relationx1
2+x2

2+x3
2+x4

2=1, it is given byj=sx2,−x1,x4,−x3d.
Consider a solid torusV, x1

2+x2
2øa2. We introduce local coordinates in the solid torusV fx1,

x2, t smod 2pdg. In these coordinates the Hopf field isj=sx2,−x1,1d. As the volume form we take,
as above, the 3-formm=dx1∧dx2∧dt.

Proposition 2: Asymptotic linking of the Hopf field in the solid torus x1
2+x2

2øa2, a2,1 equals
the relative Hopf invariantHsjd.

Proof: The asymptotic linking of any two trajectories equals 1/4p2, see Ref. 3, example 4.5,
the linking number for any two trajectories is 1, and all trajectories are periodic with the period
2p. Thus the asymptotic linking of the Hopf field in the solid torusV equalslj=volsVd2/4p2

=p2a4. Now one can check by direct calculation thatHsjd=p2a4=lj. h

Remark:The asymptotic Hopf invariant for a vector field in a solid torus is usually calculated
inserting the solid torus into a three-dimensional sphere, and setting the field being zero outside of
the solid torus, see, e.g., Ref. 3sas above the boundary torus should not be linked itselfd. However
the integral formof such an invariant with conditions2d to the best of our knowledge has not been
used before.

III. CORRECTNESS OF DEFINITIONS

Having justified the choice of the potential 1-forms, we now prove that the definitions above
are consistent.

Lemma 1: The values of the relative Hopf invariant and the relative cross-helicity do not
depend on a choice of 1-formsvj

1, vh
1, that satisfy conditions2d.

062701-3 Hamiltonian asymptotic Hopf invariant J. Math. Phys. 46, 062701 ~2005!

                                                                                                                                    



Proof: Conditionss2d define a coset of 1-formsfv1g, i.e., if v1+a1=d−1V2, thena1 is exact.
Now, the integral

E
V

V2 ∧ a1 =E
V

dsFV2d =E
]V

FV2 = 0.

h

From Lemma 1 we have the following.
Theorem 1: The relative Hopf invariant and the relative cross-helicity do not change under the

action on the fieldsj, h of a volume-preserving diffeomorphism that maps the boundary]V on
itself.

Proof: By Lemma 1, the definition of the integralH is invariant under coordinate transfor-
mations. h

Let now two divergence-free fieldsj1, j2 be given.
Theorem 2: Relative cross-helicities are symmetric, Hsj1,j2d=Hsj2,j1d.
Proof: We denote the 2-formsVi

2= iji
m, vi

1=d−1Vi
2, i =1,2. Let, as above,r ,f ,t be the

coordinates inV, and let the volume form bem=r dr ∧df∧dt snote that this can be done by a
variable changed.

We first note that cross-helicities for an arbitrary fieldj and fieldsh=s0,1,0d fand thush*

=s0,0,1dg are symmetric. Proof relies on direct computation, one just has to check that

E
V

Vj
2 ∧ vh

1 −E
V

Vh
2 ∧ vj

1 =E
]V

vj
1 ∧ vh

1 = 0.

We next prove the following.
Lemma 2: Suppose that the integrals of the 2-formsV1

2 and V2
2 are equal over the surfaces

St=ht=0j and Sf=hf=0j. Then relative cross-helicities of the fieldsj1 and j2 are symmetric.
Proof of Lemma 2:Consider a 1-formv1

1−v2
1 on the boundary]V, which consists of two tori,

]V1=hr =r1j and]V2=hr =r2j. This form is closed, as each of the 2-formsV1
2 andV2

2 equal zero on
both components of the boundary]V. Besides, the value of the 1-formv1

1−v2
1 on cyclesg1, g2 is

zero fby condition s2dg, and on cycless1=]St \g1, s2=]Sf \g2 is zero by the condition of the
lemma. Thus the 1-formv1

1−v2
1 is exactboth on]V1 and]V2. But the integral

E
]V

v1
1 ∧ dF = −E

]V

dsFv1d = 0

for any functionF. Thus,

E
V

V1
2 ∧ v2

1 −E
V

V2
2 ∧ v1

1 = 0.

To prove the theorem in the general case, it is sufficient to represent the fieldj2 as a sum,j2

=j2
* +h1+h2 where the fieldsh1=s0,0,c1d, h2=s0,c2,0d, c1,2=const are such that the fieldsj1 j2

*

satisfy condition of Lemma 2. h

Remark:The above results remain true if one replaces zero in thesecondconditions2d by an
arbitrary constant,

E
g2

v1 = k.

This can be done to relate the relative Hopf invariant with the asymptotic linking of the vector
field, realizing nontrivial embeddings of the solid torus into the sphereS3 snote that in Proposition
2 this embedding was triviald.
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IV. THE HOPF INVARIANT FOR HAMILTONIAN SYSTEMS

Let M be a smooth 2n-dimensionalexact symplectic manifoldspossibly unboundedd. The
condition forM to be exact means, that the symplectic 2-formV2 is globally a differential of some
1-form. For example, one can consider cotangent bundles with a natural symplectic structure, see,
e.g., Ref. 1.

Let p,q be local coordinates onM: V2=dp∧dq. Consider a Hamiltonian system that is given
by a function Hsp,q,td, that is 2p-periodic in time t, on the extended phase spaceM 3S1

ft smod 2pdPS1g. The corresponding Hamiltonian vector field in the extended phase space
j=s−]H /]q,]H /]p,1d annihilates the 2-formVH=V2−dH∧dt, ijVH=0. Hamilton’s equations
are written in the standard form

ṗ = −
]H

]q
, q̇ =

]H

]p
. s3d

Let a 1-formvH=d−1VH. In local coordinatesp,q one can write it asvH=p dq−H dt. The form
vH is defined globally onM 3S1, up to a closed 1-form. Note that having a Hamiltonian vector
field, the corresponding Hamilton function cannot be uniquely reconstructed either, for example,
add a constant to the functionH, and the values of the 1-formvH 1-cycles will be changed.

Let, as above,V,M 3S1 be a direct product of a ring and a circle,V=R23S1, R2,M is a
2-disk,S1=ht smod 2pdj. Assume thatV is an invariant set for the Hamiltonian systems3d. Then
on the boundary]V the 2-formVH=0. These invariant sets exist in Hamiltonian systems with
one-and-a-half degrees of freedom, both integrable ones and close to integrable. We will assume
that the restriction of the symplectic 2-form toR2 is nondegenerate.

We define a coset of 1-formsfvHg by the following conditions:

E
g1

vH = 0, E
g2

vH = 0, s4d

whereg1,2P]V are the cycles defined for conditionss2d in Sec. II.
Definition 3: We call an integral

HsHd =E
V

vH ∧ VH,

wherevH satisfies conditions4d, an asymptotic Hopf invariant for the Hamiltonian vector field
with a HamiltonianH.

Definition 4:An integral

HsH,Fd =E
V

vH ∧ VF,

wherevH, vF satisfies conditions4d, will be referred to as across-helicity of Hamiltonian vector
fieldswith HamiltoniansH, F.

Remarks:Instead of the volume formm we use here the 3-formm=dp∧dq∧dt. As in Sec. II,
one can define the Hamiltonian Hopf invariants for fibrations over a circle with multiconnected
fibers.

As a consequence of the corresponding results for the relative Hopf invariantsSec. IIId, we get
their symplectic versions.

Theorem 3: The valuesHsHd, HsH ,Fd do not depend on a choice of the 1-formvH from the
cosetfvHg, and they are invariant under symplectic diffeomorphisms, given by a single-valued
generating function on V and sending the boundary to itself.

Proof: Take an invariant 3-formm=dp∧dq∧dt, then VH= ijm and we can use Theorem 1.
Note that since under symplectic coordinate transformationp,q→P=Psp,q,td, Q=Qsp,q,td with
a generating functionS the new Hamiltonian equalsH1sP,Q,td=HspsP,Q,td ,qsP,Q,td ,td
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+]S/]t, the 1-formvH will becomep dq−H dt=P dQ−H1 dt+dSsP,Q,td. Thus the formP dQ
−H1 dt belongs to the same cosetfvHg and the value of the integral

H =E
V

sP dQ − H1 dtd ∧ sdP ∧ dQ − dH1 ∧ dtd

does not change. In a similar way, the integralHsH ,Fd can be treated. h

Corollary: The Hamiltonian Hopf invariantHsHd is a symplectic invariant of the Hamiltonian
system with the Hamiltonian H.

The comparison of these two systems must be done in the following way. Let us compare two
systems with invariant domainsD1

2 and D2
2 shomotopically equivalent, i.e., disks with the same

number of holesd in the phase spaceM, such that the areas of these domains coincide. Then, if the
Hamiltonian Hopf invariants for these two systems are different, the systems are not symplecto-
morphic.

Remark:This invariant is finer than, say, the topological invariants of integrable Hamiltonian
systems:7 for example, it separates systems with proportional Hamiltonians, even if the relation of
the Hamiltonians is a constant. This is clear from the invariant construction: as the Hamiltonian is
multiplied by a constant, an asymptotic linking of the trajectories is changed.

An immediate corollary of Theorem 2 is the following.
Theorem 4: Hamiltonian cross-helicities are symmetric, HsH ,Fd=HsF ,Hd.
Note that both integrals of the 2-formsVH, VF upon the sectionS=ht=0j are equal to the sum

of the areas of the projection ofS to 2-planespi, qi.

V. THE HAMILTONIAN HOPF INVARIANT AND THE CALABI INVARIANT

The choice of conditions4d makes it possible to give a simple form for the relation of the
asymptotic linking invariant in a solid torus with the Calabi invariant.8

We first remind the definition of the Calabi invariant. Letf be a symplectic diffeomorphism
of the 2-diskD2, equipped with an area formm, identical near the boundary]D. Take a 1-forma,
such thatm=da. As the 1-formf*a−a is closed and vanishes near the boundary, there is a
function hsfd :D2→R, which vanishes near the boundary]D and satisfies

dhsfd = f*a − a.

By definition, theCalabi invariantof the area-preserving diffeomorphismf is the integral,

E
D2

hsfdm,

see Ref. 11. This definition also extends to higher dimensions, see, e.g., Ref. 3.
One can show3 that, provided the symplectic diffeomorphismf is defined by a Poincaré

mapping of a period 2p for a Hamiltonian systems3d, the Calabi invariant equals

2nE
0

2p E
D2n

Hsp,q,tdsV2dn dt.

We will see that it is the latter definition that provides the relation of the Calabi invariant with the
relative asymptotic Hopf invariant.

Let V be a solid torus.
Proposition 3: Let the differential dH be identically zero in a neighborhood of the boundary

]V. Then under condition (4) the Hamiltonian Hopf invariantH equals (minus) the Calabi in-
variant of the symplectic diffeomorphism of the 2-disk D2,M, defined by a Poincaré mapping of
a period2p for the Hamiltonian systems3d.

Proof: Assume first that the dimension dimM =2. Let the differential dH be identically zero in
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a neighborhood of the boundary]V. ThenH=const on]V. Conditions4d means that this constant
must be equal to zero. Consider now an integral

H =E
V

vH ∧ VH = −E
V

H dp ∧ dq ∧ dt −E
V

p dq ∧ dH ∧ dt = − 2E
V

H dp ∧ dq ∧ dt

+E
]V

Hp dq ∧ dt.

The last integral equals zero, asH=0 on the boundary]V. The integral,

2E
V

H dp ∧ dq ∧ dt,

is exactly the Calabi invariant.
Suppose now that the dimension dimM =2n.2. As we assumed above, the restriction of the

symplectic 2-form on the invariant setD2 is nondegenerate. Then one can show that the restriction
of the original Hamiltonian system toV=D23 ht smod 2pdj is a Dirac constrained Hamiltonian
system, cf. Ref. 4. Namely, the Hamiltonian vector fieldj in the solid torusV is given by the
standard conditionijv

2=dF, wherev2 is the restriction of the symplectic 2-form, and the function
F is the restriction of the Hamiltonian onV. h

An important corollary of this observation is related to ergodic properties of the Calabi
invariant, this invariant describesrelative asymptotic linking of the trajectories of the Hamiltonian
vector field in the solid torus, cf. Proposition 2.

In higher-dimensional cases, ergodic properties of the Calabi invariant can be deduced from
general results on higher-dimensional analogues of the asymptotic Hopf invariant, see, e.g., Ref.
13.

Let a be an exact 2-form of rank 2 in a simply connected domainM sthus it defines a foliation
of codimension 2d. Let the vector fieldj be chosen by the conditionijm=b, wherem is the volume
form, and the formb is exact. Then an integral,

lkjsFd =E
M

d−1a ∧ b,

equals the average linking of the foliationF, defined by the 2-forma, and the vector fieldj, see
Refs. 3 and 13.

The formsa andb are easily defined for the Calabi invariant: the 2-forma is dH∧dt swhile
the 1-form d−1a=H dtd, and b=sV2dn. One can see that rank dH∧dt=2. Thus, as in the
3-dimensional case, the Calabi invariant equalsrelative asymptotic linking of the foliation, defined
by the 2-form dH∧dt, with the vector fieldj, which in canonical coordinatessp1,q1, . . . ,pn,qn,td
looks like j=s0, . . . ,0 ,1d. Note that instead of the vector fieldj one can take the Hamiltonian
vector field with the HamiltonianH, the formb certainly changes, but the value of the integral
lkjsFd is preserved.

Remark:If the phase space is two dimensional, one can give another definition of the Calabi
invariant in terms of the average orbit braiding, see, e.g., Ref. 11. Lethftj, tP f0,1g be a Hamil-
tonian isotopy of the two-diskD2 to itself. Consider the map

Angf:sD2 3 D2d \ D → R2

swhereD is the diagonald, that associates to any pair of pointsxÞy the angular variation of the
vector fromftsxd to ftsyd, whent goes from 0 to 1. Then the Calabi invariant is the integral of this
function:
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Hsfd =E E
D23D2

Angfsx,ydmxmy,

wherem is the area 2-form on the diskD2. Our construction shows that the average orbit braiding
in this case equals the average linking of the trajectories. However, while a higher-dimensional
analog of the angular definition of the Calabi invariant is unknown, its ergodic definition in terms
of average linking of the field with the foliation is straightforward, as shown above.

VI. CONCLUSION AND ACKNOWLEDGMENTS

In this paper we considered a generalization of the asymptotic and cross-Hopf invariants for
divergence-free vector fields in multiconnected domains of the typesflat domaind3S1. For a
vector field in a solid torus one must choose a potential 1-form such that its integral along the torus
meridian equals zero. Under this choice the value of the relative Hopf invariant becomes well-
defined, and one can show that for the “correct” embedding of the solid torus into a 3-sphere it
coincides with asymptotic linking of this field. For Hamiltonian vector fields the relative Hopf
invariant is equal to the Calabi invariant, under the condition that the differential dH=0 on the
boundary of the domain. Ergodic properties of the Calabi invariant follow from this observation:
the Calabi invariant describes relative asymptotic linking of the trajectories of the Hamiltonian
vector field with the HamiltonianH with the foliation, defined by the 2-form dH∧dt.
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We study the presence of a logarithmic time scale in discrete approximations of
sawtooth maps on the 2-torus. The techniques used are suggested by quantum
mechanical similarities, and are based on a particular class of states on the torus,
that fulfill dynamical localization properties typical of quantum coherent states. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1917283g

I. INTRODUCTION

Under the term of quantum chaos goes a rich phenomenology of behaviors1–3 proper to
quantum systems whose classical limit presents typical chaotic features as positive Lyapunov
exponentsshyperbolic regimed.4–6

The footprints of classical chaos are usually studied semiclassically when a suitable “"”-like
quantization parameter goes to zero; one then examines the differences between quantum and
classical behaviors. In the hyperbolic case, quantum chaos reveals itself through the presence of a
time scale, over which quantum and classical motions mimic each other, that increases as
−log ".1–3,7–9 This peculiar logarithmic time scale has to be compared with the scaling"−a, a
.0, which is proper of quantum systems with regular classical limit.1

Heuristical explanations of the logarithmic time scale already indicate that the phenomenon is
not exclusive of quantum systems, and thus of noncommutativity, but that it should also be present
when the classical dynamics is looked at as the continuous limit of a family of discrete classical
systems.10

Intrinsically discrete systems11 and discretized classical continuous systems12–14have recently
been objects of numerical analysis concerning the entropy production and the presence of a
logarithmic time scale, whereas the ergodic properties of discretized discontinuous maps have
been addressed in Ref. 15.

In the following, we shall rigorously show this fact to be true for sawtooth maps on the
two-dimensional torus:16–18 this will be done by forcing them to move on a square lattice and by
retrieving the continuous dynamics when the lattice spacing goes to zero. Because of the analogies
between quantization and discretization, we will make use of technologies strictly resembling the
so-calledanti-Wickquantization.19

We shall prove that a time-scale logarithmic in the lattice spacing appears; in comparison to
previous results obtained studying numerically the entropy production,14 a rigorous continuous
limit is established that succeeds in controlling the discontinuities of sawtooth maps. Despite their
classical nature, the entropy previously investigated was quantum mechanical; somewhat analo-
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gously, in this article, sawtooth maps will be studied by means of states, which play a role similar
to quantum coherent states, whose choice is naturally provided by the lattice structure of dis-
cretized sawtooth maps. They will be shown to satisfy adynamical localization propertythat
makes them remain localized around the trajectories of the continuous dynamics, but only on a
logarithmic time scale.

II. CLASSICAL DYNAMICAL SYSTEMS

Classical dynamics is usually described by means of a measure spacex, the phase space,
endowed with the Borels algebra and a normalized measurem, msxd=1. The “volumes”

msEd =E
E

msdxd

of measurable subsetsE#x represent the probabilities that a phase-pointxPx belong to them:
the measurem defines the statistical properties of the system and represents a possible state, which
is taken to be an equilibrium state with respect to the given dynamics.

In such a scheme, a reversible discrete time dynamics amounts to an invertible measurable
map S:x°x such thatm +S=m and to its iterateshSkukPZj: phase trajectories passing through
xPx at time 0 are then sequenceshSkxjkPZ.

6

Classical dynamical systems are thus conveniently described by tripletssx ,m ,Sd; in the
present work, we shall focus upon the following choices:

x: the two-dimensional torusT2=R2/Z2=hx=sx1,x2dPR2 smod 1dj;
m: the Lebesgue measure,msdxd=dx1dx2, on T2;
S: an invertible measurable transformation onT2 that preserves the Lebesgue measure.
It is convenient to associate an algebraic triplesM ,v ,Qd to the measure-theoretic triple

sT2,m ,Sd, consisting of
M: the sAbeliand Von Neumannp-algebraLm

`sT2d of essentially bounded functions onT2.20,21

vm: the statesexpectationd on M, given by

vm:Lm
`sT2d { f ° vmsfd ª E

T2
msdxdfsxd P R+. s1d

Q: the automorphism ofM such thatQsfd= f +S, v +Q=v.
In the following, we shall consider a discretized version ofsT2,m ,Sd which arises by forcing

the continuous classical system to live on a square latticeLN#T2 of spacing 1/N:

LN ª HU p

N
Up P sZ/NZd2J , s2d

wheresZ /NZd denotes the residual classsmodNd, that is 0øpi øN−1.
Taking theN2 points as labels of the elementshuøljøPsZ /NZd2 of an orthonormal basisso.n.b.d of

the N-dimensional Hilbert spaceHN, NªN2, we will consider discrete algebraic triples
sDN ,tN ,QNd, consisting of

DN: an N3N matrix algebra diagonal in the orthonormal basis introduced previously;
tN: the uniform statesexpectationd on DN defined by

tN:DN { D ° tNsDd ª
1

NTrsDd P R+; s3d

QN: an automorphism ofDN suitably reproducingQ whenN→` ssee Sec. IV Bd.
Remark 2.1:As it will become evident in the following, up to a certain extent, discretization

resembles quantization; in the latter case, instead ofDN, one deals with noncommutative matrix
algebras, the typical instance being the finite dimensional quantization of the Arnold cat map.22,23
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III. DISCRETIZATION OF PHASE SPACE

As sketched in the previous Remark, we proceed now to setup a discretization procedure close
to the so-called anti-Wick quantization.19

Given the classical algebraic triplesLm
`sT2d ,vm ,Qd, the aim of a discretization–

dediscretization proceduresspecifically anN-dimensional discretizationd is twofold:

• finding a pair of p-morphisms,JN,` mappingLm
`sT2d into the abelian finite dimensional

algebraDN andJ`,N mapping backwardDN into Lm
`sT2d;

• providing an automorphismQN, the discrete dynamics, acting onDN such that it approxi-
mates the continuous one,Q, on Lm

`sT2d as follows:

J`,N + QN
j + JN,` ——→

N→`
Q j . s4d

The latter requirement can be seen as a modification of the so-called Egorov’s propertyssee
Ref. 24d. Intuitively, a discrete description of the measure-theoretic triplesT2,m ,Sd becomes finer
when we increaseN, the number of points per linear dimension on the gridLN in s2d: this
corresponds to enlarging the dimension of the Hilbert spaceHN associated to the corresponding
algebraic triplesDN ,tN ,QNd. In this sense, the lattice spacingaª1/N of the gridLN is a natural
“discretization parameter” playing an analogous role to the quantization parameter".

The difficulty is to find convenientp-morphismsJN,` and J`,N that set up a rigorous
asymptoticsin Nd correspondence, of functions onLm

`sT2d and matrices inDN and, above all,
between the discrete dynamicsQN and the continuous oneQ.

Due to the similarities with quantization, we shall consider a discretization procedure based on
states that we shall refer to as lattice statessLS for shortd which mimic the use of coherent states
in the study of the semiclassical limit. In the next section we will give a suitable definition of LS
belonging to the Hilbert spaceHN, that we shall use to discretizesLm

`sT2d ,vm ,Qd.

A. Lattice states on T2

In analogy with the properties of quantum coherent states, we shall look for a class
huCNsxdl uxPT2jPHN of vectors, indexed by pointsxPT2, satisfying the following conditions
which are borrowed from analogous quantum ones.25

Properties 3.1:
1. Measurability:x° uCNsxdl is measurable onT2;
2. Normalization:iCNsxdi2=1, xPT2;
3. Completeness:NeT2msdxduCNsxdlkCNsxdu=1;
4. Localization: givene.0 andd0.0, there existsN0se ,d0d such that forNùN0se ,d0d and

dT2sx ,ydùd0 one has

NukCNsxd,CNsydlu2 ø e.

The symboldT2sx ,yd used in the localization property stands for the length of the shorter segment
connecting the two pointsx ,yPT2, namely

Definition 3.1:We shall denote bydT2sx ,ydªminnPZ2ix−y+niR2 the distance onT2.
We shall now construct a family ofuCNsxdl. Let b·c denote the integer part of a real number,

namelyx−1, bxcøx is the largest integer smaller thanx; further, letk·l denote the fractional parts,
that is kxlªx− bxc. Thus we will write

T2 { x = S bNx1c
N

,
bNx2c

N
D + S kNx1l

N
,
kNx2l

N
D ,

or, more compactly,
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x =
bNxc
N

+
kNxl

N
.

We proceed by associating to points ofT2 specific lattice points.
Definition 3.2 (lattice states):Given xPT2, we shall denote byx̂N the element ofsZ /NZd2

given by

x̂N = sx̂N,1,x̂N,2d ª sbNx1 + 1
2c,bNx2 + 1

2cd , s5d

and call lattice states onT2 the vectorsuCNsxdl defined by

T2 { x ° uCNsxdl ª ux̂Nl P HN. s6d

Remark 3.1:The family of statesuCNsxdl is constructed by choosing, for eachxPT2, that
element of the basis ofHN which is labeled by the closest element ofLN to x.

Figure 1 represents a square latticesL5d of spacing1
5 by circles and connecting lines.

Proposition 3.1: The family ofLS huCNsxduj satisfies Properties 3.1.
Proof: Measurability and normalization are straightforward. Completeness can be expressed

as

NE
T2

msdxdkøuCNsxdlkCNsxduml = dø,m
sNd , ∀ ø,m P sZ/NZd2,

where we have introduced the periodic Kronecker delta, that isdn,0
sNd=1 if and only if n;0

smodNd. This is proved as follows:

NE
T2

msdxdkøuCNsxdlkCNsxduml

= NE
0

1

dx1E
0

1

dx2køux̂Nlkx̂Numl

= Nd,1,m1

sNd d,2,m2

sNd FE
0

1

dx1d,1,bNx1+1/2c
sNd GFE

0

1

dx2d,2,bNx2+1/2c
sNd G

= Nsd,1,m1

sNd d,2,m2

sNd dFE
,1−1/2/N

,1+1/2/N

dx1GFE
,2−1/2/N

,2+1/2/N

dx2G = N2dø,m
sNd 1

N2 = dø,m
sNd .

Localization comes as follows: from Definition 3.2ssee Remark 3.1 and Fig 1d, it turns out that
uCNsxdl is orthogonal to every basis element labeled by a point ofLN whose toral distancedT2 ssee

FIG. 1. All points in the shadowed squareI s3/5,3/5dªf 5
10 , 7

10
d3f 5

10 , 7
10

d,T2 are associated with the grid points 3
5 , 3

5
d sblack

dotd. Thus, for allxP I s3/5,3/5d, it turns out thatuCNsxdl= us3,3dlPHN.
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Definition 3.1d from x is greater than 1/NÎ2. As a consequence, the quantitykCNsxd ,CNsydl=0 if
the distance on the torus betweenx andy is greater thanÎ2/N. Thus, givend0.0, it is sufficient
to chooseN0se ,d0d.Î2/d0, to have

N . N0se,d0d ⇒ NkCNsxd,CNsydl = 0.

j

Remarks 3.2:

s1d The last result in the previous proposition amounts to an even stronger localization property
than Property 3.1.4; this is due to our particular choice of lattice states, which, as we shall
see, is suited to the task of controlling sawtooth maps. In general, one can hardly hope to
achieve orthogonality and must be content with the weaker localization condition 3.1.4.

s2d Although the set of LS of Definition 3.2 fulfill Properties 3.1, which are typical of coherent
states, LS differ from them in that the context we are considering is commutative. In spite of
this, it is convenient to adopt the formalism of quantum mechanics; in particular the set of
LS is interpreted as a Hilbert orthonormal basis of Dirac kets, whose corresponding projec-
tors form a partition of unit into indicator functions having support on small squares of the
torus, as in Figure 1, whose side scales as 1/N.

B. Anti-Wick discretization and its continuous limit on T2

In order to study the continuous limit and, more generally, the quasicontinuous behavior of
sDN ,tN ,QNd whenN→`, we follow the semiclassical technique known as anti-Wick quantiza-
tion. The other standard quantization technique, namely the Weyl procedure, despite being more
straightforward and less technically heavy, is nevertheless more suited to smooth spaces of func-
tions and was indeed instrumental in the study of discretized cat maps.14 Instead, in our case, the
anti-Wick procedure is a better choice due to the discontinuous character of the dynamics, as it
will clearly appear in the next section.

We start choosing concrete discretization/de-discretizationp-morphisms.
Definitions 3.3:Given the familyhuCNsxdlj of lattice states inHN, the anti-Wick-like discreti-

zation schemesAW, for shortd will be described by a one parameter family ofscompletelyd
positive unital mapJN,` :Lm

`sT2d→DN

Lm
`sT2d { f ° NE

T2
msdxdfsxduCNsxdlkCNsxdu ¬ JN,`sfd P DN.

The corresponding de-discretization operation will be described by thescompletelyd positive unital
mapJ`,N :DN→Lm

`sT2d

DN { X ° kCNsxd,XCNsxdl ¬ J`,NsXdsxd P Lm
`sT2d.

Remarks 3.3:sid Both maps are identity preservingsunitald because of the conditions satisfied
by the family of lattice states and are completely positive, since bothLm

`sT2d andDN are commu-
tative algebras. One can also check that

iJ`,N + JN,`sgdi` ø igi`, g P Lm
`sT2d.

sii d Definition 3.3 yieldstN +JN,`=vm, with tN given in s3d.
In Appendix A, more operative details are presented, whereas in the following we prove some

simple properties that incorporate minimal requests for rigorously defining the sense in which the
discrete dynamical systemssDN ,tN ,QNd tends tosLm

`sT2d ,vm ,Qd, when 1/N→0.
Proposition 3.2:
s1d For all f PLm

`sT2d andXPDN,

vmsḡJ`,NsXdd = tNsJN,`sgd*Xd;
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s2d For all f ,gPLm
`sT2d

lim
N→`

tNsJN,`sfd*JN,`sgdd = vms f̄gd =E
T2

msdxdfsxdgsxd;

s3d For all XPDN, and for allNPN+,

JN,` + J`,NsXd = X;

s4d For all f PLm
`sT2d

lim
N→`

J`,N + JN,`sfd = f m − a.e.

Proof: The first two statements in the above proposition directly follow from Definitions 3.3
together withs6d; the latter two are equivalent and their proof can be found in Ref. 25, the only
difference being the dimensionN of the Hilbert spaceHN, hereN=N2, thereN=N. j

Remark 3.4:Properties 1 and 2 in the previous proposition show howsGNSd scalar products
in the discrete, respectively continuous limit, are related; Properties 3 and 4 concern instead the
direct-inverse relations between the discretization and the de-discretization maps.

IV. DISCRETIZATION OF THE DYNAMICS

A. Classical description of sawtooth maps

We shall now focus on a special class of automorphisms of the torus, namely the sawtooth
maps16,17 sSM for shortd, that is on triplessT2,m ,Sad where

SaSx1

x2
D = S1 + a 1

a 1
DSkx1l

x2
D smod 1d, a P R = Sks1 + adkx1l + x2l

kakx1l + x2l
D . s7d

Remarks 4.1
i. In the following, a pointx of the torus, will correspond to an equivalence class ofR2 points

whose coordinates differ by integer values;
ii. without the fractional part,s7d is not well defined onT2 for nonintegera; indeed, the same

point x=x+nPT2,nPZ2, would havesin generald SasxdÞSasx+nd. Of course,k·l is not neces-
sary whenaPZ;

iii. the Lebesgue measure onT2 is invariant for all aPR;
iv. if a¹Z, theSa are known as sawtooth maps;
v. whenaPZ, we shall writeTa instead ofSa. T1= s 2 1

1 1
d is the Arnold cat map.6 In general,

T1P hTajaPZ,SL2sZd,GL2sZd,M2sZd where M2sZd is the subset of 232 matrices with integer
entries, GL2sZd the subset of invertible matrices and SL2sZd the subset of matrices with determi-
nant one: the dynamics generated byTaPSL2sZd is calledUnimodular Group6 sUMG for shortd;

vi. after identifyingx with canonical coordinatessq,pd and imposing thesmod 1d condition on
both of them, the previous dynamics reads

q8 = q + p8

p8 = p + akql
smod 1d. s8d

This is nothing but the Chirikov standard map3 in which −s1/2pdsins2pqd is replaced bykql. The
dynamics ins8d can also be thought of as generated by thessingulard Hamiltonian

Hsq,p,td =
p2

2
− a

kql2

2
dpstd,

wheredpstd is the periodic Dirac delta which makes the potential act through periodic kicks with
period 1;26
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vii. Sawtooth maps are invertible and the inverse is given by the expression

Sa
−1Sx1

x2
D = S 1 0

− a 1
DKS1 − 1

0 1
DSx1

x2
DL smod 1d = S kx1 − x2l

kkx2l − akx1 − x2ll
D s9d

or, in other words,

q = q8 − p8

p = − aq + p8
smod 1d.

It can indeed be checked thatSasSa
−1sxdd=Sa

−1sSasxdd=x, ∀xPT2.
Further,Sa

−1 preserves the Lebesgue measure onT2.
We now list a set of properties16–18 of sawtooth maps that will be used in the following.
Properties 4.1 (of sawtooth maps)
s1d Sawtooth mapshSaj are discontinuouson the subsetg0ª hx=s0,pd ,pPTjPT2: two

points close tog0, Aª s« ,pd andBª s1−« ,pd, have images that differ, in the«→0 limit, by a
vectordSa

s1dsA,Bd=sa ,ad smod 1d.
s2d Inverse sawtooth mapshSa

−1j are discontinuouson the subsetg−1ªSasg0d=hx=sp,pd ,p
PTjPT2: two points close tog−1, namelyAª sp+« ,p−«d andBª sp−« ,p+«d, have images that
differ, in the «→0 limit, by a vectord

S
a
−1

s1d sA,Bd=s0,ad smod 1d.

s3d The mapsTa andTa
−1 arecontinuous: aPZ⇒dTa

s1dsA,Bd=d
T

a
−1

s1d sA,Bd=s0,0d smod 1d.

s4d The eigenvalues of the matrixSa= s 1+a 1
a 1

d are sa+2±Îsa+2d2−4d /2. They are conjugate
complex numbers ifaP f−4,0g, whereas one eigenvaluel.1 if a¹ f−4,0g. In this case, dis-
tances are stretched along the direction of the eigenvectorue+l, Saue+l=lue+l, contracted along that
of ue−l, Saue−l=l−1ue−l: log l is a spositived Lyapunov exponent.

For sucha’s all periodic points are hyperbolicssee Fig. 2d.18

Remarks 4.2:Because of the presence of the fractional part ins7d and s9d, we have to
distinguish the action ofSa and Sa

−1 from a mere matrix action. We shall adopt the following
notations.

i. With Sa the matrix s 1+a 1
a 1

d in Property 3.1.4, the expressionSasxd will denote the action
represented bys7d, whereasSa ·x will denote the matrix action ofSa on the vectorx.

ii. When the dynamics arises from the action of the UMGssee Remark 4.1.v.d, so, in particu-
lar, whenhTajaPZ is the family of toral automorphisms, Eq.s7d assumes the simpler formTasxd
=Ta ·x smod 1d.

iii. Analogously, expressions likeTa ·x, Ta
tr ·x, Ta

−1·x, andsTa
trd−1·x, will denote the actions by

Ta itself, its transposed, its inverse, and the inverse of the transposed, respectively.

FIG. 2. In the upper row, we depict the effects of the discontinuities of a SM witha= 1
2; the picture in the middle shows

the discontinuity linesg0 andg−1, whereas those on the right and left show how they evolve backward and forward in time.
The different parallel bands help the reader to figure out the toral periodicity and the discontinuous character of the map,
also highlighted by the aperiodic splits of two spots. Further, for sake of comparison, the lower row presents the same case
of the upper one but for the continuous dynamicssa=1d.
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B. Algebraic description of continuous and discretized sawtooth maps

In this section we make use of the commutativesVon Neumannd algebraLm
`sT2d introduced in

Sec. II and consider the algebraic description of sawtooth maps by triplessLm
`sT2d ,vm ,Qad, where

vm has been defined ins1d and Qa :Lm
`sT2d°Lm

`sT2d is the discrete-time dynamics generated as
follows:

Uasfdsxd ª fsSasxdd, a P R.

The mapsQa
j , j PZ are automorphisms ofLm

`sT2d and leave the statevm invariant.
Our aim is now to define a suitable discrete evolutionQN,a on DN, such that the discretized

triplets sDN ,tN ,QN,ad converge to the continuous SM.
We start by introducing two different kinds of maps: the first ones,Ua

± j, j PZ, are defined on
the torusT2sf0,Nd2d, namelyf0,Nd3 f0,Nd smod Nd, and given by

T2sf0,Nd2d { x ° Ua
0sxd ª x = NSa

0S x

N
D P T2sf0,Nd2d, s10ad

T2sf0,Nd2d { x ° Ua
±1sxd ª NSa

±1S x

N
D P T2sf0,Nd2d, s10bd

=NSa
± jS x

N
D P T2sf0,Nd2d. s10cd

The second class consists of mapsVa
± j from T2sf0,Nd2d onto its subsetsZ /NZd2, whose actions are

as follows:

T2sf0,Nd2d { x ° Va
0sxd ª bxc = ± b±Ua

0sbxcdc P sZ/NZd2, s11ad

T2sf0,Nd2d { x ° Va
±1sxd ª ± b±Ua

±1sbxcdc P sZ/NZd2, s11bd

s11cd

Remark 4.3:The mapsUa
j are extensions of theSa

j on the enlarged torusT2sf0,Nd2d; however,
they do not map the latticeLN into itself, therefore we are forced to use the mapsVa

j to define a
consistent discretized dynamics.

Definition 4.1:QN,a will denote the map:

DN { X ° QN,asXd ª o
øPsZ/NZd2

XVasød,Vasøduølkøu P DN. s12d

QN,a is a p-automorphism ofDN; indeed, the map

sZ/NZd2 { ø ° Vasød P sZ/NZd2

is a bijection, so thats12d can be rewritten in the more convenient form

QN,asXd = o
øPsZ/NZd2

XVasød,Vasøduølkøu = o
Va

−1ssdPsZ/NZd2
Xs,suVa

−1ssdlkVa
−1ssdu
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ssee Remark 4 . 4iii .d = WaNS o
all equiv.

classes

Xs,suslkslDWa,N
* = Wa,NXWa,N

* , s13d

where the operatorsWa,N, defined by linearly extending the maps

HN { uøl ° Wa,Nuøl ª uVa
−1sødl P HN, s14d

to HN, are unitary:Wa,N
* uølª uVasødl.

For the same reason the statetN is QN,a-invariant andVa is invertible too. Note that

Remarks 4.4:
i. The double6 sign in front and within every floor function in equationss11d is needed in

order to haveVa
± jsVa

7 jsxdd=Va
0sxd sthe identity whenxP sZ /NZd2d; the reason is that, in general,

b−xcÞ−bxc, for x¹Z ssee Ref. 27d.
ii. When aPZ, sZ /NZd2{ø°Vasød=Ta ·øP sZ /NZd2, namely the action of the mapVa

becomes that of a matrixsmodNd. Moreover, in that case,Ua andVa coincide.
iii. Since ø°Va(ød is a bijection, ins13d one can sum over the equivalence classes.

V. CONTINUOUS LIMIT OF THE DYNAMICS

One of the main issues in the semiclassical analysis is to compare if and how the quantum and
classical time evolutions mimic each other when a suitable quantization parameter goes to zero.

In this article we are instead considering the possible agreement between the dynamics of
continuous classical systems and that of a class of discrete approximants. In practice, in our case,
we will study the difference

Qa
j − J`,N + QN,a

j + JN,` s15d

which represents how much the discrete dynamics at timestepj differs from the continuous one at
the same timestep.

For quantum systems, whose classical limit is chaotic, the situation is strikingly different from
those with regular classical limit. In the former case, classical and quantum mechanics agree, that
is a difference as ins15d is negligible, only over timesj which scale logarithmicallysand not as a
power lawd in the quantization parameter.

As we shall see, such a type of scaling is not exclusively related with noncommutativity; in
fact, the quantization-like procedure developed so far, exhibits a similar behavior whenN→` and
we recoversLm

`sT2d ,vm ,Qad as a continuous limit ofsDN ,tN ,QN,ad.

A. Continuous limit for sawtooth maps

Later on we shall show that the difference ins15d goes to zero in a suitable topology; for the
moment we just note that the major difficulties in the proof are due to the discontinuous character
of the fractional part that appears ins7d.

It is therefore important to briefly discuss the discontinuities of the mapsSa.16–18

As already noted in Property 4.1.1,Sa is discontinuous on the circleg0; thereforeSa
n will be

discontinuous on the preimages

gmª Sa
−msg0d for 0 ø m, n, s16ad

whereas the discontinuities ofSa
−n lie on the sets

g−mª Sa
msg0d for 0 , mø n. s16bd

Apart fromg−1, whose projection on thef0,1d2 square is its diagonalssee Fig. 5d, each set of the
typegm sfor g−m the argument is similard is thesdisjointd union of segments parallel to each other
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whose endpoints lie either on the same segment belonging togp, p,m, or on two different
segments belonging togp and gp8, with p8øp,m.17 It proves convenient to introduce thedis-
continuity setof Sa

n,

T2 . Gn ª ø
p=0

n−1

gp, s17d

and its complementary set,GnªT2\Gn.
We now enlarge the previous definition from continuous sawtooth maps, to discretized ones.
Definitions 5.1:We shall call, “segment,” denoted bysA,Bd, the shortest curve joiningA,B

PT2, by lsgpd the length of the curvegp and by

ḡps«d ª hx P T2udT2sx,gpd ø «j s18d

the strip aroundgp of width «, where the distancedT2 s·,·d on the torus has been introduced in
Definition 3.1.

Further, we shall denote by

Ḡns«d ª ø
p=0

n−1

ḡps«d s19d

the union of the strips up top=n−1 and byGn
Ns«d the subset of points

Gn
Ns«d ª UHx P T2U x̂N

N
¹ Ḡns«dJ , s20d

where the lattice pointsx̂N have been introduced in Definition 3.2.
As already observed, in order to prove that the discretized SM tend to continuous SM when

N→`, the main problem is to control the discontinuities. It proves convenient to subdivide the
lattice points into agoodandbad set and show that, on the former,Va

q .Ua
q, at least on a certain

time scalessee Remark 4.3d. This will not turn out to be true for the bad set, however we shall
show that the latter tends withN to a set of zero Lebesgue measure and thus becomes ineffective.

Following this strategy, we shall concretely show that the differences15d goes to zero with
N→` in the strong topology over the Hilbert spaceLm

2sT2d. More precisely, we have the following
theorem.

Theorem 1:
Let sDN ,tN ,QN,ad be a sequence of discretized SM as defined in Sect. IV: for allg.3,

∀ f P Lm
`sT2d, s-lim

j ,N → `
j,1/gslog N/log hd

sQa
j − J`,N + QN,a

j + JN,`dsfd = 0, s21d

where the limit is in the strong topology over the Hilbert space Lm
2sT2d and h.Î2 is the largest

eigenvalue of the matrixuSauªÎSa
†Sa, with Sa defined in Property4.1.4.

The previous theorem indicates that the time limit and the continuous limit do not commute.
In particular, the difference between the discretized dynamics and the continuous one can be made
small by increasingN, while it becomes large beyond the time scalej .s1/gdslog N/ log hd. This
phenomenon is the same as in quantum chaos and points to discretization of phase spacesin the
traditional semi-classical treatment of quantum systemsd, rather than to noncommutativity, as the
source of the so-calledlogarithmic breaking time. The constantg is a form factor, which reflects
the fine structure of the dynamics: for instance, in the case of quantum cat maps,25 g=2.

Remark 5.1:The parameterg.3 in Theorem 1 may seem overestimated if compared with the
case of the quantum cat map, whereg=2. As we shall seesin particular in the next Propositiond,
the upper bound forg is dictated by the discontinuities of the sawtooth maps, and not by com-
mutativity. The corresponding exponent assumes the lower valueg.1 in the case of discretized
cat maps, that include sawtooth maps with integera. This result will be presented in a forthcoming
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paper,28 in which we study the breaking timetBsNd, here s1/gdslog N/ log hd, relative to the
chaotic or nonchaotic properties of the dynamics. In particular, in the hyperbolic regime, the
parameter logh of Theorem 1 is replaced by the Lyapunov exponent logl whereas, in the elliptic
regime, the two limitsj ,N→` do commute and in the parabolic one, the breaking time is given
by tBsNd=N1/g.

The proof of Theorem 1 consists of several steps, among which the most important is a
property, satisfied by our choice of lattice states, which we shall calldynamical localization.

We give a full proof that our choice of lattice states satisfies such property, since it represents
a natural request that should be fulfilled by any consistent discretization/de-discretization
squantization/de-quantizationd scheme.

Remarks 5.2:
s1d In analogy to the quantum case, dynamical localization is what one expects from a good

choice of states suited to the study of the continuous limit: in fact, it essentially amounts to asking
that LS remain decently localized around the continuous trajectories while evolving with the
corresponding discrete evolution. As we shall see this is the case only on logarithmic time scales.
Informally, whenN→`, the quantities

Kjsx,yd ª kCNsxd,Wa,N
j CNsydl

should behave as ifNuKjsx ,ydu2.dsSa
j x−yd: this would make the discretization analogous to the

notion of regular quantizationdescribed in Sec. V of Ref. 29. Actually, with our choice of LS, the
quantityKjsx ,yd is a Kronecker delta.

s2d In quantum chaos, instead of seeking for the dynamical localization, one can study the
dynamical spreadingof coherent states. Consider for instance the classical functionf over the
phase space, its corresponding quantum observable Op"sfd and a coherent stateuC"sxdl centered at
the point x. The time needed for the quantum mechanical expectationkC"sxd ,Op"sfdC"sxdl to
converge to the average off over a suitable invariant measure can be explicitly analyzed. Recent
work 7,9 shows also that this time scales logarithmically in", at least for the automorphisms on the
2-torus.

s3d The constraintj øC log N is typical ofhyperbolicbehavior with Lyapunov exponent logl
and comes heuristically as follows: the expansion of an initial small distanced can be exponential
until the distance becomes the largest possible, namelydlTB.1. After discretization, the minimal
distance givesd=1/N, therefore one estimatesTB. log N/ log l, which is calledbreaking time
and sets the time scale over which continuous and discretized dynamics mimic each other.

s4d In quantum chaos, the semiclassical analysis leads to an estimate ofTB exactly as above;
further, the logarithmic dependence on" of TB is a signature of the hyperbolic character of the
classical limit. Conversely, if the classical limit is regular, then the time scale when quantum and
classical behaviors are more or less indistinguishable goes as"−b,b.0. Another interpretation of
the breaking time is given in Ref. 8, where it is related to the shortest time needed for the system
to transfer all scales 1ù,ù" down to the “quantum scale”". Indeed, this is the scale at which the
differences among quantum and classical mechanics come up. Regarding the SM, the hyperbolic
case corresponds toSa with eigenvaluel.1, whereas the regular cases are theelliptic one stwo
complex eigenvaluesd and theparabolic one sonly one eigenvalue=1d.

s5d The dynamical localization property has fruitfully been used in several quantum
contexts;25 however, to our knowledge, this is the first instance, though not properly quantal,
where dynamical localization is fully exposed.

Before proceeding with the proof of Theorem 1, it is important to notice that in its statement
the Lyapunov exponent logl does not appear but logh, instead; of coursel andh are related for
l is eigenvalue ofSa, andh of ÎSa

†Sa ssee Remark 5.1d.
As will become clear during the proof, the use ofh and not ofl is required by the discon-

tinuous character of SM. In fact, the discontinuities do not allow us to control the difference
between thenth iterates of the discretized and the continuous dynamics, but instead force us to
estimate that difference at each single time step up ton and to put all the estimates together. In the
single time-step estimate, independently of whether the map is continuous or not, one must useh,
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which coincides withl only when the dynamical matrixSa is symmetric. Indeed, Fig. 3 shows
that the eigenvalueh correctly describes how volumes behave under a single application of the
dynamics, whereasl underestimates it. On the contrary, it isln which asymptotically controls the
stretching, whereashn largely overestimates it. In the regular elliptic case, wherel=0 andh
ùÎ2, the use ofh gives the impression of hyperbolic stretching, whereas the elliptic motion is
confined: from the lower strip in Fig. 3 it is apparent that such hyperbolicity is spurious.

Theorem 2 (Dynamical localization with huCNsxdlj states):
For aPR, bPR+\ s0,2g and d0.0, there exists N0=N0sa ,b ,d0dPN+ with the following

property: if N.N0 and n, s1/bdslog N/ log hd, then

dT2sSa
nsxd,yd ù d0 ⇒ kCNsxdluWa,N

n CNsydl = 0,

for all yPT2 and xPGn
NsÑ/2Nd, where Wa,N

n is the unitary operator defined ins14d, Ñ
=2Î2sÎ2+1dh2n and Gn

Ns«d has been introduced in Definitions 5.1.
In order to prove Theorem 2, we need the following result, whose proof can be found in

Appendix B.
Proposition 5.1: With the notation of Definitions 3.1 and 5.1, and withfEg+ denoting the

complement ofE#T2, fEg+
ªT2\E, the following inclusions hold:

FḠnS« +
1

Î2N
DG+

# Gn
Ns«d # FḠnS« −

1
Î2N

DG+

. s22d

Further, foraPR andnPN+, if

N . Ñ = 2Î2sÎ2 + 1dh2n

and

FIG. 3. In plots A, B, and C we compare the estimates of thesmaximumd stretching given by the action of the SMS1/10

and its temporal iteratesS1/10
n snø5d given byl, respectivelyh, on a small ballBv

0 of radiusv, centered ins 1
2 , 1

2
dPT2. The

five evolved images of the ball, namelyhBv
n,1,nø5j, are plotted together withBv

0, using different colors. In A we
surround every evolved ballBv

n with the smallest circle containing it. We compare that plot with B and C, in which the
surrounding circles have radii proportional tolnv, respectively,hnv; in both cases the correct radii of A are overestimated
although, on the long run, circles in B provide a good approximation. The fake hyperbolicity given byh is clearly shown
in D and E, where a parabolic SMS0 and an elliptic oneS−1/20 are presented: in the first case the maximum spreading grows
linearly, whereas in the second one it remains confined, and the estimate given by the surrounding circles of radii growing
as powers ofh is inappropriate. Note that in all examples C–E, the black circles of radiihv rightly surroundBv

1.
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x P Gn
NS Ñ

2N
D

then

dT2SUa
psNxd
N

,
Va

psx̂Nd
N

D ø
Î2

N
Sh p+1 − 1

h − 1
D, ∀ p ø n. s23d

Proof of Theorem 2: Using the definition ofhuCNsxdlj in s6d, we easily compute

kCNsxdluWa,N
n CNsydl = kx̂NluVa

−nsŷNdl = dV
a
nsx̂Nd,ŷN

sNd . s24d

Using the triangular inequality, we get:

dT2SUa
nsNxd
N

,yD ø dT2SUa
nsNxd
N

,
Va

nsx̂Nd
N

D + dT2SVa
nsx̂Nd
N

,
ŷN

N
D + dT2S ŷN

N
,yD

or equivalently, using the definitionss10d,

dT2SVa
nsx̂Nd
N

,
ŷN

N
D ù dT2sSa

nsxd,yd − dT2SUa
nsNxd
N

,
Va

nsx̂Nd
N

D − dT2S ŷN

N
,yD .

Now, sincedT2sSa
nsxd ,ydùd0 by hypothesis, usingsB1d in Appendix B and observing that

xPGn
NsÑ/2Nd permits us to uses23d in Proposition 5.1, namely that

N . Ñ ⇒ dT2SUa
nsNxd
N

,
Va

nsx̂Nd
N

D ø
Î2

N
Shn+1 − 1

h − 1
D , s25d

we can derive

dT2SVa
nsx̂Nd
N

,
ŷN

N
D ù d0 −

Î2

N
Shn+1 − 1

h − 1
D −

1
Î2N

.

The r.h.s. of the previous inequality can always be made strictly larger than 1/N,

dT2SVa
nsx̂Nd
N

,
ŷN

N
D .

1

N
, s26d

by choosing anN larger than

NMsnd = maxH 1

d0
F1 +Î2Shn+1 − 1

h − 1
D +

1
Î2
G, Ñ = 2Î2sÎ2 + 1dh2nJ , s27d

so that the condition on the l.h.s. ofs25d is also satisfied. Froms24d and s26d, we have

N . NMsnd ⇒ kCNsxdluWa,N
n CNsydl = 0. s28d

Indeed, if the toral distance between two pointssz,wd exceeds 1/N, then the corresponding grid
points sẑN,ŵNd are different and then the periodic Kronecker delta ins24d vanishes.

Since thesnondecreasingd functionNM in s27d is eventually bounded byhbn sb being strictly
greater than twod, we define n̄ as the time whenNMsn̄d=hbn̄

¬N0, and chooseN.N0, x
PGn

NsÑ/2Nd. Thus, if 0,n, n̄, then N.N0=NMsn̄d.NMsnd, whereas if n̄øn, s1/
bdslog N/ log hd, thenN.hbn.NMsnd and s28d holds for all 0,n, s1/bdslog N/ log hd. j

In order to proceed with the proof of Theorem 1, we need another auxiliary result which is
proved in Appendix C.
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Proposition 5.2:With the notation of Definition 5.1, the following relations hold for allp
PN, nPN+ and«PR+:

lsgpd ø h p, s29ad

msḡps«dd ø 2«h p + p«2, s29bd

msḠns«dd ø 2sÎ2 + 1d«hn + pn«2. s29cd

Moreover, ifNPN+ and Ñ=2Î2sÎ2+1dh2n fcfr. Eq. s23d in Proposition 5.1g:

N . Ñ ⇒ mSFGn
NS Ñ

2N
DG+D ø

38h3n

N
. s29dd

We are finally in position to conclude with
Proof of Theorem 1:We subdivide the proof in two steps: in the first we concentrate on

continuousf, that is f PC0sT2ds,Lm
2sT2dd; in the second one we extend the result to essentially

bounded function by applying the following corollary of Lusin’s theorem:21,30,31

Given fPLm
`sxd, with x compact, there exists a sequencehfnj of continuous functions onx

such thatufnuø ifi` and converging to fm—almost everywhere.
s1d Let f PC0sT2d and Opj ,Nsfdª sQa

j −J`,N +QN,a
j +JN,ad sfd: notice that Opj ,Nsfd is a multi-

plication operator onLm
2sT2d, but also anLm

`sT2d sand thus also anLm
2sT2dd function. According to

s21d, we must show that

∀g P Lm
2sT2d, lim

j ,N→`

j,
1
g

log N
log h

iOpj ,Nsfdgi2 = 0.

Using Schwartz’s inequality first withg in the class ofsimple functionsand then using their
density inLm

2sT2d, we have to show only that

lim
j ,N→`

j,
1
g

log N
log h

iOpj ,Nsfdi2 = 0.

Explicitly, using s1d, we write:

iOpj ,Nsfdi2
2 = vmsOpj ,Nsfd*Opj ,Nsfdd = vmfsQa

j fd*sQa
j fdg

+ vmfsJ`,N + QN,a
j + JN,`dsfd*sJ`,N + QN,a

j + JN,`dsfdg

− 2 RehvmfsQa
j fd*sJ`,N + QN,a

j + JN,`dsfdgj,

which via Proposition 3.2.1, becomes

vmfQa
j s f̄dQa

j sfdg − 2 RehtNfJN,`sQa
j fd*sQN,a

j + JN,`dsfdgj

+ tNfsJN,` + J`,N + QN,a
j + JN,`dsfd*sQN,a

j + JN,`d

3sfdg,

that, using Proposition 3.2.3, can be recast as
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svm + Qa
j ds f̄ fd + tNfsQN,a

j + JN,`dsfd*sQN,a
j + JN,`dsfdg

− 2 RehtNfsJN,` + Qa
j dsfd*sQN,a

j + JN,`dsfdgj

= vmsuf u2d + stN + QN,a
j dfJN,`sfd*JN,`sfdg − 2 ResI j ,Nsfdd,

with

I j ,Nsfd ª tNfsJN,` + Qa
j dsfd*sQN,a

j + JN,`dsfdg

= NE
T2

msdxdE
T2

msdydfsydfsSa
j xdukCNsxd,Wa,N

j CNsydlu2.

Now, Proposition 3.2.2 yields

stN + QN,a
j dfJN,`sfd*JN,`sfdg = tNfJN,`sfd*JN,`sfdg ——→

N→`
vmsuf u2d,

so that the strategy is to prove also thatI j ,Nsfd goes tovmsuf u2d=eT2msdxdufsxdu2 when j ,N→`
with j , s1/gdslog N/ log hd.

Resorting to Gn
NsN̂/2Nd in Definition 5.1, and to its complementary setfGn

NsÑ/2Ndg+

=T2\Gn
NsÑ/2Nd, we can write

UI j ,Nsfd −E
T2

msdydufsydu2U
= UE

T2
msdxdE

T2
msdydfsydsfsSa

j xd − fsyddNukCNsxd,Wa,N
j CNsydlu2U

ø UE
fGn

NsÑ/2Ndg+
msdxdE

T2
msdydfsydsfsSa

j xd − fsyddNukCNsxd,Wa,N
j CNsydlu2U

+ UE
Gn

NsÑ/2Nd
msdxdE

T2
msdydfsydsfsSa

j xd − fsyddNukCNsxd,Wa,N
j CNsydlu2U . s30d

For the first integral in the r.h.s. of the previous expression we have

UE
fGn

NsÑ/2Ndg+
msdxdE

T2
msdydfsydsfsSa

j xd − fsyddNukCNsxd,Wa,N
j CNsydlu2U

ø 2sifi`d2E
fGn

NsÑ/2Ndg+
msdxdE

T2
msdydNuksWa,N

* d jCNsxd,CNsydlu2

ø 2sifi`d2mSFGn
NS Ñ

2N
DG+D ø

76h3j

N
sifi`d2

where we have used completeness and normalization Properties 3.1 and Eq.s29dd from Proposi-

tion 5.2; this term becomes negligible for largeN. Ñ iff j , s1/gdslog N/ log hd, with g.3.
Now it remains to prove that the second term ins30d is also negligible for largeN: selecting

a ball BsSa
j x ,d0d, one derives
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UE
Gn

NsÑ/2Nd
msdxdE

T2
msdydfsydsfsSa

j xd − fsyddNukCNsxd,Wa,N
j CNsydlu2U

ø UE
Gn

NsÑ/2Nd
msdxdE

BsSa
j x,d0d

msdydfsydsfsSa
j xd − fsyddNukCNsxd,Wa,N

j CNsydlu2U
+ UE

Gn
NsÑ/2Nd

msdxdE
T2\BsSa

j x,d0d
msdydfsydsfsSa

j xd − fsyddNukCNsxd,Wa,N
j CNsydlu2U .

Applying the mean value theorem in the first double integral, we get that∃cPBsSa
j x ,d0d such that

UE
Gn

NsÑ/2Nd
msdxdE

T2
msdydfsydsfsSa

j xd − fsyddNukCNsxd,Wa,N
j CNsydlu2U

ø E
Gn

NsÑ/2Nd
msdxdufscdsfsSa

j xd − fscdduE
BsSa

j x,d0d
msdydNuksWa,N

* d jCNsxd,CNsydlu2

+ 2ifi`
2E

Gn
NsÑ/2Nd

msdxdE
T2\BsSa

j x,d0d
msdydNukCNsxd,Wa,N

j CNsydlu2.

Finally, using completeness and normalizationsProperties 3.1d, we arrive at the upper bound

øifi` sup
zPT2

cPBsz,d0d

usfszd − fscddu + 2ifi`
2 N sup

xPGn
NsÑ/2Nd

y¹BsSa
j x,d0d

ukCNsxd,Wa,N
j CNsydlu2.

By uniform continuity, the first term can be made arbitrarily small, provided we choosed0

small enough. For the second integral, we use Theorem 2, which provides us withN0=N0sd0d
depending on the samed0, such that the second term vanishes for allN.N0 and for all
j , s1/gdslog N/ log hd.

s2d In order to extend the result of points1d to f PLm
`sT2d, we use the corollary of Lusin’s

theorem, choose a sequencehfnjn as in its statement and estimate

lim
j ,N→`

j,s1/gdslog N/log hd

iOpj ,Nsfdi2 ø lim
j ,N→`

j,s1/gdslog N/log hd

iOpj ,Nsf − fndi2 + lim
j ,N→`

j,s1/gdslog N/log hd

iOpj ,Nsfndi2.

Using point s1d, the second term in the r.h.s. of the previous equation can be bounded by
arbitrarily small«, indeedfnPC0sT2d.

For the first term we proceed as follows: using Definition 4.1 together with Eqs.sA5d and
sA6d of Appendix A, we find

sJ`,N + QN,a
j + JN,`dsgdsxd = o

øPsZ/NZd2
GNsgdSVasød

N
DXQNsø/Ndsxd, s31d

whereg is any measurable function onT2. Then, because of how the running average operator
sRAOd GN is defined, for allgPLm

1sT2d it follows that

isJ`,N + QN,a
j + JN,`dsgdi1 ø isJ`,N + QN,a

j + JN,`dsugudi1 = igi1,

wherei ·i1 denotes theLm
1sT2d-norm, and that
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isJ`,N + QN,a
j + JN,`dsgdi` = sup

øPsZ/NZd2
HUGNsgdS ø

N
DUJ ø iGNsgdi0 ø igi`.

Indeed, the first equality in the last formula comes from the definition of essential norm21 swhich
in this case amounts to the greater absolute value assumed by the simple functionJ`,N +QN,a

j

+JN,`d, whereas the first inequality is a consequence of the continuity ofGN and the last one from
Proposition A.1. Putting last two inequalities together, we obtain

isJ`,N + QN,a
j + JN,`dsgdi2 ø igi`igi1,

whence, settingg= f − fn,

iOpj ,Nsf − fndi2 = iQa
j sf − fnd − J`,N + QN,a

j + JN,`sf − fndi2

ø if − fni2 + if − fni`if − fni1, ∀ j ,N. s32d

Now convergence follows from Lusin’s corollary. j

VI. CONCLUSIONS

In this article we have considered discrete approximants of sawtooth maps on the torus and we
have studied them in an algebraic framework modeled on the so-called anti-Wick quantization. In
fact, finite-dimensional discretization and quantization can be seen as similar procedures in that
they map an abelian Von Neumann algebrasof essentially bounded functions on phase spaced into
finite-dimensional matrix subalgebras, the only difference being whether the latter are diagonal
scommutatived or not.

In the semiclassical analysis of classically chaotic quantum systems, the correspondence
classical/quantum is usually observed only on time scales that are logarithmic in the quantization
parameter". The motivation of our study was to show that the same phenomenon arises when a
hyperbolic classical system is discretized, namely forced to move on a lattice, and afterwards the
lattice spacing is set to zero.

Previous results14 based on the numerical investigation of the entropy production indicate that
it should indeed be so; however, these results were not supported by a solid framework where to
analyze the continuous limit of the family of discrete approximants. This is the content of this
article.

The major difficulty was represented by the need of controlling the discontinuous character of
sawtooth maps, which was made possible by an appropriate choice of lattice states. In fact,
similarly to the entropic approach which, despite the dynamics being classical, was based on a
quantum dynamical entropy, the discretization/de-discretization procedure we set up is based on
quantum tools.

The choice of lattice states was naturally pointed to by the lattice structure of the discrete
phase-space and turned out to possess the right localization properties for mastering the disconti-
nuities. The result is the appearance of a logarithmic time scale when the discrete hyperbolic SM
tend to their continuous limit; namely, the continuous and discrete dynamics agree up to abreak-
ing timewhich is proportional to the logarithm of the lattice spacing.

The proportionality constant does not involve the Lyapunov exponent, that is the eigenvalue
l.1 of the dynamical matrixSa, rather the largest eigenvalue,h, of ÎSa

†Sa. In the case of elliptic
SM, ulu=1, h.Î2; however the resulting breaking time is a spurious effect, while whenl.1, the
presence ofh in the breaking time seems to be an unavoidable consequence of the discontinuous
dynamics.

APPENDIX A: ANTI-WICK DISCRETIZATION OF L m
`
„T2

…

In this appendix we will apply Definitions 3.3 and discretizeLm
`sT2d by means of the LS set

huCNsxdl uxPT2jPHN introduced in Sec. III A.
In this framework, the discretizing/de-discretizing operators of Definitions 3.3 read:
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Lm
`sT2d { f ° N2E

T2
msdxdfsxdux̂Nlkx̂Nu ¬ JN,`sfd P DN, sA1d

DN { x ° kx̂NuXux̂Nl ¬ J`,NsXdsxd P SsT2d , Lm
`sT2d, sA2d

whereSsT2d denotes the set ofsimple functions21 on the torus. The matrix elements ofJN,`sfd are
as follows:

Mø,m
sfd

ª køuJN,`sfduml = N2E
T2

msdxdfsxdkøux̂Nlkx̂Numl

= N2E
0

1

dx1E
0

1

dx2fsxdd,1,x̂N,1

sNd d,2,x̂N,2

sNd dm1,x̂N,1

sNd dm2,x̂N,2

sNd

= N2d,1,m1

sNd d,2,m2

sNd E
0

1

dx1E
0

1

dx2fsxdd,1,bNx1+1/2c
sNd d,2,bNx2+1/2c

sNd .

This implies

Mø,m
sfd = N2dø,m

sNd E
,1−1/2/N

,1+1/2/N

dx1E
,2−1/2/N

,2+1/2/N

dx2fsxd, sA3d

so that varyingf PLm
`sT2d yields RansJN,`d=DN. In order to recastsA3d into a nicer expression,

we introduce
Definition A.1 (Running Average Operator):Let QNsxd denote the square of side 1/N, oriented

parallel to the axis of the torus and centered aroundx; then, the running average operator
GN:Lm

`sxd°C0sT2d, is defined by

Lm
`sT2d { fsxd ° GNsfdsxd ¬ N2E

QNsxd
msdydfsyd P C0sT2d.

Proposition A.1:Given f PLm
`sT2d, the functionfN

sQd
ªGNsfd is uniformly continuous onT2;

moreover, the running average operator has norm

iGNiB ª sup
fPLm

`sT2d

iGNsfdi0

ifi`

= 1. sA4d

Proof: Let x0PT2, xPQNsx0d andxE denote the characteristic function ofE,T2. By Defi-
nition A.1:

ufN
sQdsx0d − fN

sQdsxdu = N2UE
T2

msdydfsydsxQNsx0dsyd − xQNsxdsyddU
ø N2ifi`E

T2
msdyduxQNsx0dsyd − xQNsxdsydu

= N2ifi`fmsQNsx0d ø QNsxdd − msQNsx0d ù QNsxddg.

According to our hypothesis,xPQNsx0d, thus geometrical considerations lead to:

msQNsx0d ø QNsxdd ø S 1

N
+ ux1 − x01uDS 1

N
+ ux2 − x02uD
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msQNsx0d ù QNsxdd = S 1

N
− ux1 − x01uDS 1

N
− ux2 − x02uD

msQNsx0d ø QNsxdd − msQNsx0d ù QNsxdd ø
2

N
sux1 − x01u + ux2 − x02ud ø

2Î2

N
ix0 − xi,

so thatufN
sQdsx0d− fN

sQdsxduø2Î2Nifi`ix0−xi, which proves the continuity offN
sQd, while uniform

continuity comes fromT2 being compact.
Concerning the norm insA4d, the upper boundiGNiBø1 is clear and the maximum is reached

by choosingf constant. j

By means of the running average operatorsRAOd, the discretization operator insA1d can be
conveniently written as

JN,`sfd = o
øPsZ/NZd2

fN
sQdS ø

N
Duølkøu. sA5d

Analogously, the de-discretization operator insA2d can be recast as

J`,NsXdsxd = o
øPsZ/NZd2

Xø,ødø,x̂N

sNd = o
øPsZ/NZd2

Xø,øXQNsø/Ndsxd, sA6d

thus proving that RansJ`,Nd=SsT2d.
Moreover, combining equationssA5d and sA6d, we explicitly get the simple function arising

from f PLm
`sT2d, via AW discretization/de-discretization:

sJ`,N + JN,`dsfdsxd = o
øPsZ/NZd2

GNsfdS ø

N
DxQNsø/Ndsxd. sA7d

The action of the operatorJ`,N +JN,` can be seen in Figs. 4 and 5.

APPENDIX B: PROOF OF PROPOSITION 4.1

We start by proving the inclusionss22d.
For every real numbert, we have 0ø kNt+1/2l=Nt+1/2−bNt+1/2c,1, so that

Ut −
bNt + 1

2 c
N

U ø
1

2N
, ∀ t P R.

From s5d in Definition 3.2, we derive

dT2Sx,
x̂N

N
D ø

1
Î2N

, ∀ x P T2. sB1d

Then, let us consider the triangular inequality

dT2sx,yd ø dT2Sx,
x̂N

N
D + dT2S x̂N

N
,yD, ∀ y P T2, sB2d

and let us take the infimum over the setyPGn defined ins17d

dT2S x̂N

N
,GnD ù dT2sx,Gnd − dT2Sx,

x̂N

N
D ù dT2sx,Gnd −

1
Î2N

,

where we usedsB1d. Therefore, considering the complementfḠns«dg+ of the union of strip of width

«, Ḡns«d defined ins19d, we get that
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x P fḠns«dg+ ⇒
x̂N

N
P FḠnS« −

1
Î2N

DG+

.

Further, froms20d, it follows that, if the lattice pointx̂N/N does not belong toḠns«−1/Î2Nd, then
the corresponding pointxPT2 must belong toGn

Ns«−1/Î2Nd. Changing«−1/Î2N°« we obtain
the first inclusion relation in Eq.s22d; the second one follows by interchanging the role played by
x̂N/N andx in sB2d.

In order to proves23d, we start by considering the matricesSa= s 1+a 1
a 1

d and its inverseSa
−1

= s 1 −1
−a 1+a

d. Let h be the largestspositived eigenvalue ofÎSa
†Sa; its characteristic polynomial forh

is h4−s2a2+2a+3dh2+1=0, whereh attains its minimumhmin=Î2 at a=−1
2. Then, we setÑ

ª2Î2sÎ2+1dh2n, nPN, chooseN. Ñ and proceed by induction.
p=0: from definitionss10d and s11d, it follows

FIG. 4. These two plots show how the difference betweenJN,` +Qa and QN,a +JN,` becomes smaller withN. For the
continuous SM,Q1, the actionsJN,` +Q1 andQN,1+JN,` on f PLm

`sT2d sleft part of both plotsd are plotted for two different
N: N=16 stopd and N=48 sbottomd. The resulting matrices are mapped back, together with the functionQ1sfd, on the
unfolded torus, by means of the de-discretization operatorJ`,N.
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dT2SUa
0sNxd
N

,
Va

0sx̂Nd
N

D = dT2Sx,
x̂N

N
D ,

1
Î2N

,
Î2

N
,

where the first inequality follows fromsB1d, thus relations23d holds forp=0.
p=q−1, 1øqøn: since

dT2SUa
qsNxd
N

,
Va

qsx̂Nd
N

D ø dT2SUasUa
q−1sNxdd
N

,
UasVa

q−1sx̂Ndd
N

D + dT2SUasVa
q−1sx̂Ndd
N

,
VasVa

q−1sx̂Ndd
N

D ,

usings10d in the first term and noting that, from definitionss10d ands11d, the second term is less
or equal toÎ2/N, we get

dT2SUa
qsNxd
N

,
Va

qsx̂Nd
N

D ø dT2SSaSUa
q−1sNxd

N
D, SaSVa

q−1sx̂Nd
N

DD +
Î2

N
.

By the induction hypothesis we have

dT2SUa
q−1sNxd

N
,
Va

q−1sx̂Nd
N

D ø
Î2

N
Shq − 1

h − 1
D ø

Î2

N

1
Î2 − 1

hq sB3d

FIG. 5. Here, the same picture as in Fig. 4, is represented, with a finer discretization given byN=120 and a different
functiongPLm

`sT2d, for a discontinuous SM,Q3/2, acting two times. Choosing a functiong with sharp variation acrossg0,
the preimage ofg−1, the discontinuity ofQ3/2 makes it evident how the differences betweenJ14 400,̀ +Qa

2 and Q14 400,a
2

+J14 400,̀ are the greater the closer they are to the discontinuity lineg−1. Of course, the longer the temporal evolution, the
worse the correspondence, in the sense that several new discontinuity lines come to play a role. In the case at hand, the map
acts twice, andg−2 is felt by Q14400,a

2 +J14400,̀ , as expected.
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sh . Î2,1ø q ø n ⇒ d ,
1

2
hq−2n ,

1

2
h−1. sB4d

Now we set«=Ñ/2N, taking into account thatnùÎ2 and use the right inclusion ins22d to deduce
that

x P Gn
NS Ñ

2N
D ⇒ x ¹ ḠnS Ñ

2N
−

1
Î2N

D .

At this point, we make use of the following result, which shall be proven in Lemma B.1.3: it states

that if a point does not belong toḠns«d, the union of the the strips of width«ø
1
2 up to timen, then

its orbit underSa up to timen−1 is farther away than«h−q, 0øq,n from the discontinuity line
g0. Explicitly

x ¹ Ḡns«d ⇒ dT2sSa
qsxd,g0d . «h−q, ∀ 0 ø q , n,

where

dT2SUa
q−1sNxd

N
,g0D . S Ñ

2N
−

1
Î2N

Dh1−q .
Î2

N
Sh2n−1 − hq−1

h − 1
Dh1−q ù

Î2

N
Shq − 1

h − 1
D , sB5d

where the second inequality comes fromhùÎ2, the relationshn−1d / sh−1dø f1/sÎ2−1dghn and
the following estimates:

S Ñ

2N
−

1
Î2N

D =
Î2

N
SsÎ2 + 1dh2n −

1

2
D ù

Î2

N
FsÎ2 + 1dsÎ2 − 1d

h2n − h + h − 1

h − 1
−

1

2
G

ù
Î2

N
Fh

h2n−1 − 1

h − 1
+

1

2
G ù

Î2

N
Sh2n−1 − hq−1

h − 1
D .

Therefore, comparingsB5d with sB3d

dT2SUa
q−1sNxd

N
,
Va

q−1sx̂Nd
N

D , dT2SUa
q−1sNxd

N
,g0D, ∀ q ø n.

As a consequence, the segmentsUa
q−1sNxd /N,Va

q−1sx̂Nd /Nd cannot cross the lineg0. This condi-
tion, together withsB4d, allows us to use another result proven in Lemma B.1.1b, which states that
if a segmentsA,Bd on the torus does not cross the discontinuity lineg0 then dT2sSasAd ,SasBdd
øhdT2sA,Bd. We can finally conclude with

dT2SUa
qsNxd
N

,
Va

qsx̂Nd
N

D ø h
Î2

N
Shq − 1

h − 1
D +

Î2

N
=

Î2

N
Shq+1 − 1

h − 1
D .

j

The following Lemma, which has been used in the proof of the previous proposition, deals
with the geometrical properties of the sawtooth dynamics.

Lemma B.1:With h the largestspositived eigenvalue ofÎSa
†Sa and A, BPT2 such that

dT2sA,Bd,
1
2h−1, it follows:

s1ad If the segmentsA,Bd does not crossg−1, then

dT2sSa
−1sAd,Sa

−1sBdd ø hdT2sA,Bd. sB6ad

s1bd If sA,Bd does not crossg0, then

dT2sSasAd,SasBdd ø hdT2sA,Bd. sB6bd
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s2d For any givenaPR, pPN+ and 0ø«ø
1
2h−1,

x P ḡp−1s«d ⇒ Sa
−1sxd P sḡpsh«d ø ḡ0sh«dd.

s3d For any givenaPR, nPN+ and 0ø«ø
1
2, with Ua

q as in s10d,

x ¹ Ḡns«d ⇒ dT2SUa
qsNxd
N

,g0D . «h−q, ∀ 0 ø q , n.

Proof: In the course of the proof, we shall use that

iSa
±1 ·viR2 ø hiviR2, sB7ad

iSa
±1 ·viR2 ù h−1iviR2, sB7bd

which directly follows from the definition ofh, wherev is any two-dimensional real vector.
In order to provesB6d, it is convenient to unfoldT2 and the discontinuity ofSa on the plane

R2. This is most easily done as follows. PointsAPT2=R2/Z2 are represented by equivalence
classes

fag ª ha + n,n P Z2j, a P f0,1d2. sB8d

Given A, BPT2, let AbP fag be such that

dT2sfag,fbgd = iAb − biR2.

Notice that

dT2sfag,fbgd = ia − biR2 iff ia − biR2 ø
1

2
sB9d

s1ad sA,Bd not crossingg−1 means that the segmentsAb,bd does not intersectg−1. Periodically
covering the planeR2 by squaresf0,1d2, the g−1 lines form a set ofsparalleld straight linesx1

−x2=nPZ; it follows that sAb,bd does not crossg−1 iff

bA1
b − A2

bc = bb1 − b2c, sB10d

where the integral part on the r.h.s. takes values 0, −1, depending on which side of the diagonal
g−1 the pointb lies within.

As Sa
± are not sensitive to the integer part of their arguments, their actions are the same on all

elements of the equivalence classessB8d, that is

dT2sSa
−1sAd,Sa

−1sBdd = dT2sSa
−1sfagd,Sa

−1sfbgdd = dT2sSa
−1sAbd,Sa

−1sbdd.

By expandingkxl=x− bxc, using the definition ofSa
−1s·d and putting together all integral contribu-

tions, conditionsB10d yields

dT2sSa
−1sAd,Sa

−1sBdd = min
mPZ2

iSa
−1sAd − Sa

−1sBd + miR2

= min
m8PZ2

iSa
−1 · sAb − bd + m8iR2 = dT2sSa

−1 · sAb − bd,0d.

Applying sB7d, since we assumeddT2sA,Bd,
1
2h−1, we estimate

iSa
−1 · sAb − bdiR2 ø hiAb − biR2 = hdT2sA,Bd ,

1

2
.

In particular, usingsB9d, the previous inequalities imply
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dT2sSa
−1 · sAb − bd,0d = iSa

−1 · sAb − bdiR2 ø hdT2sA,Bd.

s1bd Using the same argument ass1ad, the union ofg0 lines constitute a set of straight lines
x1=nPZ; therefore the segmentsAb,bd does not crossg0 iff

bA1
bc = bb1c. sB11d

As done before, by means ofsB11d, we arrive at

dT2sSasAd,SasBdd = dT2sSasAbd,Sasbdd = dT2sSa · sAb − bd,0d.

The proof can now be completed exactly as for points2ad before.
s2d We denote bydT2sx ,gd=infyPg dT2sx ,yd the distance of the pointxPT2 from a curveg

PT2. Then, from definitions18d we have:

x P ḡp−1s«d ⇒ « ù dT2sx,gp−1d = dT2sx,y!d, sB12d

wherey! is the nearest point tox belonging togp−1.
We distinguish two cases:
s28d The segmentsx ,y!d does not crossswe stipulate that, ify!Pg−1 or xPg−1, we are still

in a noncrossing conditiond g−1: From sB12d and points1ad, sinceSa
−1sy!dPgp fsees16adg, we get

dT2sSa
−1sxd,gpd ø dT2sSa

−1sxd,Sa
−1sy!dd ø hdT2sx,y!d ø h«.

ThereforeSa
−1sxdP ḡpsh«d.

s29d The segmentsx ,y!d crossesg−1: In this case, there existszPg−1 such that

dT2sx,y!d = dT2sx,zd + dT2sz,y!d. sB13d

Then, fromsB12d and sB13d,

« ù dT2sx,y!d ù dT2sx,zd.

Since, according tos16d, Sa
−1szdPg0, from point s1ad we get

dT2sSa
−1sxd,g0d ø dT2sSa

−1sxd,Sa
−1szdd ø h«,

that isSa
−1sxdP ḡ0sh«d.

s3d From points2d, it follows that when 0ø«ø
1
2, for pPN+,

x ¹ sḡps«d ø ḡ0s«dd ⇒ Sasxd ¹ ḡp−1sh−1«d. sB14d

We prove by induction that when 0ø«ø
1
2, for mPN+,

x ¹ ø
p=0

m

ḡps«d ⇒ Sasxd ¹ ø
p=0

m−1

ḡpsh−1«d. sB15d

For m=1, sB15d follows from sB14d; if sB15d holds form=r, then take

x ¹ ø
p=0

r+1

ḡps«d.

This means that

x ¹ ø
p=0

r

ḡps«d

andx¹ sḡr+1s«dø ḡ0s«dd. Now, using the induction hypothesis andsB14d, we get
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x ¹ ø
p=0

r+1

ḡps«d ⇒ Sasxd ¹ ø
p=0

r−1

ḡpsh−1«d

Sasxd ¹ ḡrsh−1«d.

Settingm=n−1 and iteratingq times the implicationsB15d argument, we get

x ¹ ø
p=0

n−1

ḡps«d ⇒ Sa
qsxd ¹ ø

p=0

n−1−q

ḡpsh−q«d, ∀ 0 ø q , n.

In particularSa
qsxd¹ ḡ0sh−q«d, which leads to the lower bound

dT2sSa
qsxd,g0d . h−q«, ∀ 0 ø q , n,

where the result follows in view of definitionss10d and s19d. j

APPENDIX C. PROOF OF PROPOSITION 4.2

sad In s16ad, we have definedgp=Sa
−psg0d where Sa

−1sxd sas well asSa
−psxdd is a piecewise

continuous mapping ontoT2 with jump discontinuities across thegp lines due to the presence of
the functionk·l in s9d. Away from the discontinuities,Sa

−psxd behaves as the matrix actionSa
−p·x.

We now want to estimate the lengthlsgpd; in order to do that, we unfoldgp on the plane and
calculate the length of the segmenthxPR2ux=Sa

−p·s 0
yd ,yP f0,1dj, which, in its turn, is the image

of g0 under the matrix action given bySa
−p·x. Therefore, usingsB7d, the result follows.

sbd Let L̄s«d denote the set of points having distance from a segment of lengthL smaller or
equal than«: it has a volumesunder the Lebesgue measuremd given by

msL̄s«dd = 2L« + p«2,

where the last term on the r.h.s. takes into account rounding of the extremes of the strip by to
semicircle of radius«. Thens29bd follows from s29ad.

scd This follows from definitions19d:

msḠns«dd = mSø
p=0

n−1

ḡps«dD ø o
p=0

n−1

msḡps«dd.

Using s29bd, we can write:

msḠns«dd ø 2«o
p=0

n−1

hp + o
p=0

n−1

p«2 = 2«
hn − 1

h − 1
+ np«2.

Finally the estimatesxp−1d / sx−1dø sÎ2+1dxp, valid for x.Î2, yields

msḠns«dd ø 2«sÎ2 + 1dhn + np«2.

sdd By writing the left inclusion ins22d in terms of complementary sets, with«=Ñ/2N, we get

FGn
NS Ñ

2N
DG+

# ḠnS Ñ

2N
+

1
Î2N

D
and so
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mSFGn
NS Ñ

2N
DG+D ø mSḠnS Ñ

2N
+

1
Î2N

DD .

By substituting ins29cd sÑ+Î2d /2N=Ñ/2N+1/Î2N in the place of«, we get

mSFGn
NS Ñ

2N
DG+D ø

Ñ + Î2

2N
sÎ2 + 1dS2hn +

n
Î2 + 1

p
Ñ + Î2

2N
D . sC1d

Finally, the r.h.s ofsC1d can be estimated by the following upper bounds:

p
Ñ + Î2

2N
, 2

n
Î2 + 1

, hn

sÑ + Î2dsÎ2 + 1d , 19h2n

which hold for∀N. Ñ, hùÎ2, and∀nPN+. This ends the proof. j
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The existence of a Lagrangian description for the second-order Riccati equation is
analyzed and the results are applied to the study of two different nonlinear systems
both related with the generalized Riccati equation. The Lagrangians are non-natural
and the forces are not derivable from a potential. The constant valueE of a pre-
served energy function can be used as an appropriate parameter for characterizing
the behavior of the solutions of these two systems. In the second part the existence
of two-dimensional versions endowed with superintegrability is proved. The ex-
plicit expressions of the additional integrals are obtained in both cases. Finally it is
proved that the orbits of the second system, that represents a nonlinear oscillator,
can be considered as nonlinear Lissajous figures ©2005 American Institute of
Physics.fDOI: 10.1063/1.1920287g

I. INTRODUCTION

Ince studied, in his well-known book of differential equations,1 the following equation,

w9 + 3ww8 + w3 = qszd

and proved that it has the general solutionw=u8 /u, whereu is a general solution of the linear
equation of the third orderu-=qszdu. This equation was also studied by Davis in Ref. 2 as a
particular case of the generalized Riccati equationssaccording to Davis the family of these non-
linear equations was first studied by E. Vessiot in 1895 and G. Vallenberg in 1899; see Refs. 3–5
for some more recent studies related with higher-order Riccati equationsd. Later on Leachet al.6,7

considered the equation

q̈ + qq̇+ b q3 = 0 s1d

and pointed out that “forb=1/9 is linearizable, possesses eight symmetries and is completely
integrable” and they add “consequently, we could expect that this remarkable mathematical prop-
erty corresponds to an important physical one appearingsor disappearingd for this value which
consequently would appear as a critical one.” This particularb=1/9 equation was also obtained in
Ref. 8 in the study of nonlinear equations with the maximum number of symmetriesssee Refs.
9–12, for the Lie symmetry approach to dynamical systemsd.
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Recently Chandrasekaret al.13 have studied a generalization of this equation obtained as a
particular case of the Lienard equation

ẍ + fsxdẋ + gsxd = 0

given by fsxd=k x andgsxd=s1/9dk x3+lx. Although this new equation also belongs to the gen-
eralized Riccati family studied by Davis and Leachet al., they make use of a two step procedure
to solve the problem: first they use the so-called Prelle-Singer method14–17 for obtaining a set of
time-dependent integrals of motion and secondly they use this time-dependent family in order to
compute the solution. The result is interpreted, whenl.0, as an “unusual Liénard type oscillator
with properties of a linear harmonic oscillator.” But we wish to call attention to one property
discussed in the final part of the articlesafter finalizing with the Prelle-Singer methodd: the
existence of a Lagrangian description.

The main objective of this article is to develop a deeper analysis of these nonlinear equations
using the Lagrangian formalism as an approach. In fact, the starting point of our approach is the
fact that the Riccati equation belongs to a family of nonlinear equations admitting a Lagrangian
description. This has interesting consequences, the most important of them is that Riccati systems
are systems endowed with a preserved energy function. We study the two nonlinear systems first
in one dimension and then in two dimensions. Moreover we prove that the two-dimensional
extensions are not only integrable but also superintegrable. We note that this situation has a certain
similarity with the one-dimensional nonlinear oscillator studied by Mathews and Lakshmanan18

that has been proved to admit a superintegrable two-dimensional version.19

The plan of this article is as follows: In Sec. II we present a Lagrangian approach to a family
of nonlinear equations that includes the second-order Riccati equation as a particular case. Section
III, devoted to the first nonlinear systems“dissipative”-looking systemd, is divided in three parts
corresponding to the one-dimensional system, geometric formalism and symmetries, and two-
dimensional system and super-integrability, respectively. Section. IV, that is devoted to the second
nonlinear systems“nonlinear oscillator”d, also first studies then=1 system and then the two-
dimensional system that, as we have pointed out, is also endowed with super-integrability. Finally
in Sec. V we make some comments.

II. LAGRANGIAN FORMALISM AND SECOND-ORDER RICCATI EQUATIONS

In this article we shall consider the following nonlinear second-order equation

y9 + fb0std + b1stdygy8 + a0std + a1stdy + a2stdy2 + a3stdy3 = 0, s2d

where we suppose thata3.0 and the two functionsb0,b1, are not independent but satisfy

b0 =
a2

Îa3

−
a38

2a3
, b1 = 3Îa3.

The more important property of this equation is that it can be transformed into a third-order linear
equation by the substitution

ystd =
1

Îa3std
v8std
vstd

.

Thus Eq.s2d, that is the natural second-order generalization of the wellknown Riccati equation, is
therefore a nonlinear equation the solution of which can be expressed in terms of solutions of a
linear equation of the third order. In fact, it can be considered as the particularn=2 case of a more
general situation that can be approached by Lie theory or by the action of an operatorR. From the
Lie theory of symmetries of differential equations, the invariance of then-order linear equation,
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vsnd + p1stdvsn−1d + ¯ + pnstdv = 0,

under the vector fieldX=vs] /]vd, that represents the infinitesimal generator of dilations, means
the existence of a changev=eu such thatX becomesX=] /]u, and the transformed equation
reduces to an equation of ordersn−1d for y=u8 that for then=2 reduces to the usual first-order
Riccati equation. Alternatively ifR denotes the following differential operator:

R=
d

dt
+ ystd,

then the Riccati equation of ordern is given by

sRn + p1R
n−1 + ¯ + pn+1R+ pndy + pn+1 = 0,

where pj =pjstd , j =1,2,… ,n+1, aren+1 arbitrary functions. We note that these two methods
lead to the subfamily of the nonlinear equations with the coefficient of the higher power equal to
one; nevertheless the general Riccati equation is generated by the changet= fstd of the indepen-
dent variable; for example forn=2 we obtain

y9 + fp1 + 3ygy8 + p3 + p2y + p1y
2 + y3 = 0,

and after the time reparametrization we arrive at

d2y

dt2 + FS f8p1 −
f9

f8
D + 3f8yGdy

dt
+ sf82p3d + sf82p2dy + sf82p1dy2 + f82y3 = 0.

We are interested in the study of nonlinear systems given bys2d but first, in this section, we
consider a more general family from which the second-order Riccati equation appears as a par-
ticular case.

At this point we recall that a Lagrangian functionL is called ‘natural’ or ‘of mechanical type’
when it is of the formL=T−V, whereT is a quadratic kinetic term andV is a potential function.
Most of the known Lagrangian equations arise from Lagrangians of this particular type; neverthe-
less the Lagrangian formalism is well defined, not only for these specific functions but also for
more general Lagrangian functions.

Proposition 1:The nonlinear second-order Riccati equation admits a Lagrangian description.
Proof: We first consider the following one degree of freedom Lagrangian:

L =
1

vx + kUsx,td
. s3d

Then we arrive at the following second-order nonlinear equation:

d2x

dt2
+ S3

2
DkUx8Sdx

dt
D + S1

2
Dk2UUx8 + kUt8 = 0. s4d

In the particular case of the functionU=Usx,td being a quadratic function

U = c0std + c1stdx + c2stdx2,

Eq. s4d reduces to

d2x

dt2
+ sb0 + b1xdSdx

dt
D + a0 + a1x + a2x

2 + a3x
3 = 0, s5d

where the four functionsa0,a1,a2,a3, are given by

a0 = 1
2c0c1 + c08, a1 = c0c2 + 1

2c1
2 + c18,
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a2 = 3
2c1c2 + c28, a3 = c2

2,

and the two functionsb0 andb1 satisfy the appropriate restrictions

b0 = 3
2c1, b1 = 3c2.

Thus, the second-order Riccati equationfEq. s5dg, that is a particular case of Eq.s4d, is the
Euler-Lagrange equation of the Lagrangian functions3d in the particular case of a quadratic
function U.

As a corollary of this proposition we can state that, if the functionU is time independent, then
the nonlinear equations4d has a first integral that can be interpreted as a preserved energy. The
idea is as follows: if we restrict our study to the case of time-independent systems, that is, to
nonlinear equations arising from a Lagrangian of the form

L =
1

vx + kUsxd
s6d

then we can define an associated Lagrangian energyEL by the usual procedure

EL = DsLd − L, D = vx
]

]vx
,

and we arrive to

EL =
− s2vx + kUsxdd
svx + kUsxdd2 ,

d

dt
EL = 0.

Note thatL is non-natural and, as there is neither kinetic termT nor potential functionV, the
energy cannot be of the formEL=T+V. Note also that a Lagrangian is defined up to certain

ambiguities; that is,L̃=c1L+c0 determines the same differential equation but it leads to an slightly

different energyEL̃ given byEL̃=c1EL−c0. In the natural case,c1 is determined by the correspond-
ing Riemannian metricshence the classical one-half coefficientd andc0 is absorbed in the poten-
tial; here we have just takenc1=1,c0=0. Concerning the negative sign, that could be considered
as something inconvenient, it does not matter at allsit is only an aesthetic questiond; in fact it can

be removed just by chosenL̃=−L as a new Lagrangian.
As for the natural case we can obtain the solution of the dynamics from the conservation law

of the energy. If we assume thatEL takes the constant valueEL=E, then we arrive at

E vx
2 + 2s1 + k E Usxddvx + ks1 + k E UsxddUsxd = 0

and on solving forvx and making separation of variables we arrive at

t − t0 = −E
x0

x E dx

s1 + kEUsxdd ± Î1 + kEUsxd
. s7d

The motion is confined to the region whereEù−1/skUd. To sum up, a time-independent system
described by the nonlinear equations4d is solvable and the solution of the dynamics is givensup
to one integrationd by s7d.

A remarkable property is that the conservation of the energyEL leads to a plus/minus sign in
the expression for the velocity

dx

dt
=

− s1 + kEUsxdd ± Î1 + kEUsxd
E

.

Thus, we obtain two different values for the velocity at the same pointx. It is known that in the
standard case of a particle in a potentialVsxd we also have two possibilities but both with the same
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modulussthe positive value for the motion from left to right and the negative for the opposite
motion from right to leftd. In this case the situation is different; we have a Lagrangian but not a
potential and the two possible values differ, not just in the sign, but in the absolute value; thus the
motions from left to right and from right to left take place at different velocities.

We close this section with the problem of the existence of alternative Lagrangians.
In differential geometric terms a time-independent Lagrangian functionL determines an exact

two-form vL defined as

uL = S ]L

]vx
Ddx, vL = − duL,

in such a way that, whenL is nonsingular,vL is symplectic and the dynamics is given by the
vector fieldGL solution of the equation

isGLdvL = dEL.

In this particular casevL andGL are given by

vL =
2dx ∧ dvx

svx + kUsxdd3, GL = vx
]

]x
+ Fx

]

]vx
, Fx = − S1

2
Dks3vx + kUsxddUx8.

An important property of the Lagrangian formalism is that for one degree of freedom systems
there exist many different equivalent Lagrangians.20,21 A sketch of the proof is as follows: in a
two-dimensional manifold all the symplectic forms must be proportional. Hence, for a one degree
of freedom Lagrangian, any other symplectic formv2 must be proportional tovL, that is v2

= fvL. Then

isGLdv2 = f isGLdvL = fdEL.

The right-hand side is an exact one form if, and only if, df ∧dEL=0, which shows thatf must be
a function ofEL. In this case it can be proved that the new symplectic formv2 is derivable from
an alternative LagragianL2?L for GL.

In this particular case, starting with the Lagrangians6d and assuming for the constant of
motion f the particular expressionf =s−1/ELd3/2, we have obtained the following function

L2 = Î2vx + kUsxd s8d

as a new alternative Lagrangian for thet-independent version of Eq.s4d. This new Lagrangian,
that is neither natural or of mechanical type, is equivalent toL in the sense that both determine the
same dynamics. Nevertheless we must say that it is not clear whetherL2 will lead to simpler
expressions for other dynamical properties; so, in the following, we only use the original Lagrang-
ian s6d.

III. LAGRANGIAN CONSERVATIVE APPROACH TO A “DISSIPATIVE”-LOOKING
NONLINEAR SYSTEM

A. One-dimensional nonlinear system: Energy and integrability

We now apply the formalism introduced in Sec. II to the study of the following nonlinear
equation:

d2x

dt2
+ 3kxSdx

dt
D + k2x3 = 0. s9d

It is a special case of Eq.s2d and because of this is a Lagrangian equation. In fact, it is easy to
verify that it can be obtained from the following Lagrangian function:
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L =
1

vx + kx2 . s10d

Two important properties are as follows.
sid We note that the valueb=1/9, pointed out by Leachet al.7 as the particular value intro-

ducing a high degree of regularity in the nonlinear problems1d, appears now as related with the
Lagrangian origin of the equation. That is, only ifb=1/9, then Eq.s1d belongs to the Lagrangian
family s9d arising froms10d.

sii d This equation looks like a dissipative equation with the damping term proportional toxvx;
nevertheless it is in fact a conservative system because of its Lagrangian origin. What happens is
that the term conservative is usually considered in the Newtonian sense, that is, a particle moving
in a one-dimensional potential and forces determined as the gradient of the potential. Here the
force is a velocity-dependent force and conservative just means the existence of a preserved
snon-Newtoniand energy function that is given by

EL =
− s2vx + k x2d
svx + k x2d2 .

Next we turn to the solution of the dynamics. Instead of considering directly the nonlinear
equation we can solve this problem by making use of the conservation law of the energy; if we
assumeEL=E, then we arrive at

E vx
2 + 2s1 + k Ex2dvx + ks1 + k Ex2dx2 = 0

and solving forvx we obtain

dx

dt
=

− s1 + k Ex2d ± Î1 + k Ex2

E
.

So, after integration, we arrive at

t =
1

kx
s1 ± Î1 + k Ex2d

which yields

x =
2t

kt2 − E

that represents the solution of the dynamics as a function of the constant valueE of the Lagrangian
energysfor ease of notation we give the solution for the particular initial conditionsst0=0,x0

=0dd. The system is well defined forsk.0,E,0d and sk,0,E.0d, but for sk,0,E,0d or sk
.0,E.0d it is singular att= ±ÎuEu / uku. In fact the double changesk,Ed→ s−k,−Ed is equivalent
to a time-inversionssee Fig. 1d.

Sincexstd is the quotient of two polynomials int, with the denominator of a higher degree
than the numerator, the trajectories approach the origin whent increases. How can this behavior be
compatible with the conservation of the energy? An analysis of the expression thatEL takes on the
trajectories shows that it reduces to the quotient of two functions both going down ast→`, but in
such a way that the ratio remains constant. Moreover it can also be proved that the velocityvx

decreases ast→` in such a way that the particle approaches but never reaches the origin in the
phase plane. The important point is that the dependence ofEL with respect tovx is defined in such
a way that even when dx/dt decreases the value ofEL remains constant.

The phase space analysis shows that the origin is a nonelementary critical point for which the
linear approximation is not valid. If we consider a small neighborhood of the point, then we find,
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when k.0, that it has four different sectors22 ssee Fig. 2d: an elliptic sectorsupper sided, a
hyperbolic sectorslower sided and two parabolic sectorssa source on the left and a sink on the
rightd.

B. Symplectic formalism and master symmetries

It is known that the nonlinear equations9d admits constants of motion depending explicitly on
the timet.13,16 Now we prove that this property is related with the fact that the Lagrangians10d
admits “master symmetries.” This is in fact an important property, not only from the geometric
point of view but also because it is directly related with the superintegrability of the two-
dimensional version of this system.

A function T that satisfies the following property:

d

dt
T Þ 0,…,

dm

dtm
T Þ 0,

dm+1

dtm+1T = 0,

is called a generator of integrals of motion of degreem. Notice that this means that the functionT
is a nonconstant function generating a constant of motion by time derivation. If we denote byTx1

andTx2, the functions

FIG. 1. Plot ofx as a function oft, for k=1 and three different values of the energy:E=−0.5, E=−1.0, andE=−1.5.

FIG. 2. Phase space trajectories, fork=1, in the neighborhood of the origin.
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Tx1 =
1

vx + k x2, Tx2 =
x

vx + k x2 ,

then we have

d

dt
Tx2 = 1,

d

dt
Tx1 = k Tx2,

d2

dt2
Tx1 = k,

d3

dt3
Tx1 = 0.

HenceTx1 andTx2 are generators of integrals of motion for the Lagrangians10d.
In geometric terms this property is related with the existence of master symmetries.23–27If the

dynamics is represented by a certain vector fieldG; then a vector fieldZ that satisfies the following
two properties

fZ,Gg = Z̃ Þ 0, fZ̃,Gg = 0,

is called a “master symmetry” of degreem=1 for G. If Z is such that

fZ,Gg = Z̃ Þ 0, fZ̃,Gg Þ 0, ffZ̃,Gg,Gg = 0,

then it is called a master symmetry of degreem=2.

We focus our attention in the case of master symmetries given rise viaZ̃ to constants of
motion. Let L be a time-independent Lagrangian,Z the Hamiltonian vector field of a certain
function T, and suppose thatZ is a stime-independentd master symmetry ofGL. Then the time-
dependent vector fieldYZ determined byZ and defined as

YZ = Z + tfZ,GLg + 1
2t2ffZ,GLg,GLg + …

is a time-dependent symmetry ofGL that, in the casem=1, satisfies

isYZdVE = dfT − t GLsTdg

whereVE=vL+dEL∧dt. Hence the time-dependent functionJt=T− t GLsTd is a time-dependent
constant of motionsfor m=2 the corresponding constantJt is quadratic intd.

We now return to the Lagrangians10d and denote byZx1 andZx2, the Hamiltonian vector fields
of Tx1 andTx2,

isZx1dvL = dTx1, isZx2dvL = dTx2,

which are given by

Zx1 = −
1

2
MxS ]

]x
− 2kx

]

]vx
D ,

Zx2 = −
1

2
MxSx

]

]x
+ svx − kx2d

]

]vx
D ,

whereMx denotesMx=vx+k x2. Then we have

fZx1,GLg = − k Zx2, ffZx1,GLg,GLg = 0.

It is clear thatZx1 is a master symmetry. ConcerningZx2 it has some very interesting characteris-
tics; it is a dynamical symmetrysi.e., fZx2,GLg=0d and it is a symplectic symmetrysthat is,
LZx2

vL=0d, but nevertheless it is not a Cartan symmetry of the Lagrangian systemGL because
Zx2sELdÞ0. Recall that the two propertiesLXvL=0 andfX,GLg=0 imply thatLXdEL=0, but from
this we only obtain thatXsELd must be a numerical constant.

As explained previously, the vector fieldsZx1 andZx2, determine two new vector fieldsY1 and
Y2, given by
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Y1 = Zx2 + tfZx2,GLg = Zx2,

Y2 = Zx1 + tfZx1,GLg + 1
2t2ffZx1,GLg,GLg = Zx1 − k t Zx2,

such that they satisfy

isY1dVE = isZx2dvL + Zx2sELddt = dfTx2 − tg,

isY2dVE = isZx1 − ktZx2dvL + Zx1sELddt − ktZx2sELddt = dfTx1 − ktTx2 + 1
2kt2g .

Hence the two following functions:

Jx1
t = Tx2 − t, Jx2

t = Tx1 − ktTx2 + 1
2kt2

are time-dependent integrals of motion determined byZx1,Zx2, via Y1,Y2.
In the next subsection we see that these symmetries and these time-dependent integrals are the

origin of then=2 superintegrability.

C. Two-dimensional nonlinear system: Lagrangian formalism and superintegrability

We now want to study the nonlinear system

d2x

dt2
+ 3k1xSdx

dt
D + k1

2x3 = 0,

d2y

dt2
+ 3k2ySdy

dt
D + k2

2y3 = 0, s11d

representing then=2 version of the nonlinear equation,fEq. s9dg. It is clear, from the results of
n=1, that these two equations can be considered as the Lagrange equations arising from the
following two-dimensional Lagrangian

L =
1

vx + k1x
2 +

1

vy + k2y
2 . s12d

Therefore the dynamics is characterized by preserving the following Lagrangian energy:

EL = −
s2vx + k1x

2d
svx + k1x

2d2 −
s2vy + k2y

2d
svy + k2y

2d2 .

The first consequence of the Lagrangian character of the equations is that, as there is no coupling
between the two degrees of freedom, the two one-dimensional energies are integrals of motion

I1 = −
s2vx + k1x

2d
svx + k1x

2d2 , I2 = −
s2vy + k2y

2d
svy + k2y

2d2 ,
d

dt
I i = 0, i = 1,2.

Our main goal in the study of this nonlinear problem is to prove that this system possesses the
rather unusual property of superintegrability. At this point we recall that a system is called super-
integrable if it is integrable in the Liouville–Arnold sense and, in addition, possesses more inde-
pendent first integrals than degrees of freedomssee Refs. 28–36 for some articles published in
these last years and Ref. 37 for a recent workshop on superintegrabilityd. It is clear that, for this
particularn=2 system, superintegrability means the existence of a third independent integralI3

coupling the two degrees of freedom in similar way as the angular momentum for the isotropic
linear harmonic oscillator.

The four functions
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Jx1
t = Tx2 − t, Jx2

t = Tx1 − k1t Tx2 + 1
2k1t

2,

Jy1
t = Ty2 − t, Jy2

t = Ty1 − k2t Ty2 + 1
2k2t

2,

are time-dependent constants of motion

d

dt
Jxi

t = 0,
d

dt
Jyi

t = 0, i = 1,2.

We can eliminate the timet by pairing these functions in two different ways and obtain the
following two integrals of motion

I3 = Tx2 − Ty2,

I4 = k2Tx1 + k1Ty1 − k1k2Tx2Ty2

that take the form

I3 =
x

vx + k1x
2 −

y

vy + k2y
2 ,

I4 =
k2

vx + k1x
2 +

k1

vy + k2y
2 −

k1k2xy

svx + k1x
2dsvy + k2y

2d
.

Hence, the nonlinear system given by the Eq.s11d and characterized by Lagrangians12d is a
superintegrable system.

In geometric terms the symplectic formvL and the dynamical vector fieldGL are given by

vL =
2 dx ∧ dvx

svx + kx2d3 +
2 dy ∧ dvy

svy + k2y
2d3 ,

GL = vx
]

]x
+ vy

]

]y
+ Fx

]

]vx
+ Fy

]

]vy
,

whereFx=−k1xs3vx+k1x
2d andFy=−k2ys3vy+k2y

2d. If we denote byZxr andZyr, the Hamiltonian
vector fields ofTxr andTyr , r =1,2, then the vector field

X3 = Zx2 − Zy2

is a dynamical symmetry,

fX3,GLg = 0,

as well a Cartan symmetry,

X3sELd = 0, LX3
vL = 0.

It determines the functionI3 as the corresponding Hamiltonian

isX3dvL = dI3.

Similarly the vector fieldX4 given by

X4 = k2Zx1 + k1Zy1 − sk1k2dsTy2Zx2 + Tx2Zy2d

is also a dynamical symmetry as well a Cartan symmetry,
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fX4,GLg = 0, X4sELd = 0, LX4
vL = 0

and determines the functionI4 as the corresponding Hamiltonian

isX4dvL = dI4.

The main difference between these two symmetries is thatX3 is an exact symmetry of the
Lagrangian, that isX3sLd=0, andX4 is a nonexact generalized Noether symmetry

X4sLd =
d

dt
F4, F4 = −

1

2
S k2

Mx
+

k1

My
D ,

so thatI4 is given by

isX4duL − F4 = I4.

An important property related with superintegrability is the existence of periodic orbits as, for
example, in the Kepler problem or in the harmonic oscillator. This particular system is superinte-
grable but the motion, although bounded, is not periodic; instead, the trajectories are “almost
closed.” We have found that the trajectories in the planesx,yd are in fact “figure eight” curves with
the particle making a complete circuit ast goes from −̀ to +`. The trajectory starts very close to
the origin, passes throughs0,0d only once and returns once more to the origin, but fort→−` and
t→` only approachess0,0d as a limit. Figure 3 shows two curves in the planesx,yd corresponding
to two different values ofE1 andE2.

IV. LAGRANGIAN CONSERVATIVE APPROACH TO A NONLINEAR OSCILLATOR

A. One-dimensional system: Lagrangian formalism and integrability

We now consider the following non-natural Lagrangian

L =
1

kvx + k2x2 + w2 , s13d

wherek andw are arbitrary constants; the notationw2 for the new parameter clearly advances that
it will be interpreted as a frequency. We arrive at the following nonlinear equation:

d2x

dt2
+ 3kxSdx

dt
D + k2x3 + w2x = 0 s14d

as well as to the following expression for the Lagrangian energy:

FIG. 3. “Figure eight” in the planesx,yd corresponding tok1=k2=1 and energiesE1=−1,E2=−5 sthick curved andE1=
−1,E2=−10 sdash curved.
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EL =
− s2kvx + k2x2 + w2d
skvx + k2x2 + w2d2 .

We can solve this new nonlinear problem by using the same technique as in Eq.s9d. Never-
theless we see that this new nonlinear equation is in fact a nonlinear oscillator and, because of this,
we will use an approach that is as close as possible to the linear oscillator.

We denote byX andWx the following two functions:

X =
x

skvx + k2x2 + w2d
, Wx =

vx + kx2

skvx + k2x2 + w2d
.

Then we have the following two properties:

sid The time evolution ofX andWx is given by

d

dt
X = Wx,

d

dt
Wx = − w2X.

sii d X andWx are related by

w2X + kxWx = x.

Next we see that propertysid is related to the conservation of energy and propertysii d to the
solution of the dynamics. In fact, fromsid we conclude that the functionIXW defined as

IXW= Wx
2 + w2X2,

is an integral of the motion. We remark that, as the system is one-dimensional, the two integrals,
EL andIXW, cannot be independent; in factIXW turns out to be the energy associate to an equivalent

LagrangianL̃ of the form L̃=c1L+c2. A simple calculation gives

EL̃ = DsL̃d − L̃ = IXW with L̃ = Sw

k
D2

L −
1

k2 .

Also from sid we arrive at

d2

dt2
X + w2X = 0,

d2

dt2
Wx + w2Wx = 0

so thatX andWx are given by

X = S 1

w
DA sinswt + fd, Wx = A cosswt + fd, A = ÎE,

whereE is the constant value of the new energy functionEL̃= IXW. These two expressions, together
with propertysii d, lead to the following trigonometric function for the solution of the dynamics:

x =
wÎE sinswt + fd

1 − kÎE cosswt + fd
.

Figure 4 representsxstd as a function oft for several values of the energyE in the regular
oscillatory regions0,E,1/k2d. It is clear that for small values ofE the oscillations are rather
similar to the oscillations of the linear system, but for other values ofE sroughly speaking, for
E.0.3/k2d the nonlinearity introduces deformations in the oscillations. For higher values ofE the
nonlinearity drastically changes the aspect of the solution. Figure 5 shows the phase portrait; it
clearly shows that the motions from left to right and from right to left take place at different
velocities.
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B. Two-dimensional system: Superintegrability and nonlinear Lissajous figures

We now turn our attention to the two-dimensional version of this nonlinear oscillator. If we
consider the following Lagrangian:

L =
1

k1vx + k1
2x2 + w1

2 +
1

k2vy + k2
2y2 + w2

2 s15d

then we arrive at the following equations:

d2x

dt2
+ 3 k1xSdx

dt
D + k1

2x3 + w1
2x = 0,

d2y

dt2
+ 3 k2ySdy

dt
D + k2

2y3 + w2
2y = 0 s16d

and to the following expression for the energy function:

FIG. 4. Plot ofx as a function oft, for sk=1,w=1d and three different values of the energy:E=0.2 ssmall thick curved,
E=0.5 smiddle curved, andE=0.8 scurve with great oscillationsd. TheE=0.2 curve is very similar to a pure sine or cosine
curve but, for higher values ofE, the plot shows clearly the effects of the nonlinearity.

FIG. 5. Phase trajectories corresponding to four different values of the energysE=0.2, 0.4, 0.6, and 0.8d. The trajectories
are closed curves representing periodic motions that for small values ofE can be considered as rather similar to ellipses;
for other values ofE the curves modify their shape and they lengthen toward the upper side of the phase plane. The motion
is asymmetric in the sense that the particle moves from right to left in a slowly way but returns, from left to right, with a
much higher velocity that takes its maximum value at the center pointx=0.
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EL = −
s2 k1vx + k1

2x2 + w1
2d

sk1vx + k1
2x2 + w1

2d2 −
s2 k2vy + k2

2y2 + w2
2d

svy + k2y
2 + w2

2d2 .

In this n=2 case we have two pairs of functionssXj ,Wjd , j =1,2,

X1 =
x

k1vx + k1
2x2 + w1

2, W1 =
vx + k1x

2

k1vx + k1
2x2 + w1

2 ,

X2 =
y

k2vy + k2
2y2 + w2

2, W2 =
vy + k2y

2

k2vy + k2
2y2 + w2

2

in such a way that we have

d

dt
Wj = − wj

2Xj,
d

dt
Xj = Wj

and

d2

dt2
Xj + wj

2Xj = 0,
d2

dt2
Wj + wj

2Wj = 0.

A similar calculation shows that

x =
w1

2X1

1 − k1W1
, y =

w2
2X2

1 − k2W2
,

from which we obtain solution of the dynamics

x =
w1

ÎE1 sinsw1t + f1d
1 − k1

ÎE1 cossw1t + f1d
, y =

w2
ÎE2 sinsw2t + f2d

1 − k2
ÎE2 cossw2t + f2d

.

We now study the superintegrability of the rational case, that is,w1=n1w0 andw2=n2w0, with
n1 andn2 positive integral numbers.

Proposition 2:Let K1 andK2 be the following two functions:

K j = Wj + i njw0Xj, j = 1,2.

Then the complex functionsKi j defined as

Ki j = Ki
njsK j

*dni, i, j = 1,2,

are constants of the motion.
Proof: The time evolution of the functionsK1 andK2 is given by

d

dt
K j =

d

dt
Wj + i njw0

d

dt
Xj = i njw0K j, j = 1,2.

On the other side we have

d

dt
Ki j = Ki

nj−1sK j
*dni−1SnjK j

* d

dt
Ki + niKi

d

dt
K j

*D
and from here the property follows by direct calculus.

Thus the three functions
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I1 = uK1u2, I2 = uK2u2, I12 = K1
n2sK2

*dn1,

are constants of the motion. The two first functions,I1 and I2, are the two one degree of freedom
energies; concerningI12, as it has complex value

I12 = I4 + i I3,

it determines not just one but two real constants of motion. Of course, if we considerI3 as the new
additional constant,I4 is a function of I1, I2, and I3. We thus conclude that the existence of
superintegrabilty and periodic trajectoriessLissajous figuresd is preserved by the nonlinearity.

We particularize these results for the two first commensurable cases. In the isotropic case,
w1=w2=w0, the two functions,I3 and I4, are given by

I3 = X1W2 − X2W1 =
sxvy − yvxd + sk2y − k1xdxy

sk1vx + k1
2x2 + w0

2dsk2vy + k2
2y2 + w0

2d
,

I4 = W1W2 + w0
2X1X2 =

svx + k1x
2dsvy + k2y

2d + w0
2xy

sk1vx + k1
2x2 + w0

2dsk2vy + k2
2y2 + w0

2d
,

representing the nonlinear versions of the angular momentum and the nondiagonal component of
the Fradkin tensor respectively.38,39 In fact, whenk1,k2→0, these two function reduce to the
appropriate expressions

limk→0I3 = S 1

w0
4Dsxvy − yvxd,

limk→0I4 = S 1

w0
4Dsvxvy + w0

2xyd.

Of course, forw0→0, we recover theI3 obtained in the previous section;I4 just reduces to a trivial
numerical constant.

limw→0I3 =
sxvy − yvxd + sk2y − k1xdxy

k1k2svx + k1x
2dsvy + k2y

2d
,

limw→0I4 =
1

k1k2
.

Figure 6 represents some closed trajectories in the planesx,yd; it is clear that for small energies the
curves look rather similar to the ellipses of the linear case, but for othersnot so smalld values of
E the curves lose their elliptic shape and adopt other not so symmetric forms.

Now, we consider the anisotropic casew1=w0,w2=2w0. ThenI3 and I4 are given by

I3 = sX1W2 − X2W1dW1 + w0
2X1

2X2 =
svx + k1x

2dfsxvy − yvxd + sk2y − k1xdxyg + w0
2x2y

sk1vx + k1
2x2 + w0

2d2sk2vy + k2
2y2 + 4w0

2d
,

I4 = W1
2W2 + w0

2s4X2W1 − X1W2dX1 =
svx + k1x

2d2svy + k2y
2d + w0

2f4yvx − xvy + s4k1x − k2ydxygx
sk1vx + k1

2x2 + w0
2d2sk2vy + k2

2y2 + 4w0
2d

.

Figure 7 represents two nonlinear Lissajous figures in the planesx,yd. The situation is similar to
that of Fig. 6; close resemblance with the linear figures for small values of the energies and rather
strange figures for other values ofE. We must say that, in this case, the form is strongly dependent
on the phase differencef12=f1−f2.
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V. FINAL COMMENTS

We have studied two nonlinear systems using, as starting point, the important property of the
Lagrangian origin of the second-order Riccati equations. In this way we could use the constant
value E of the energy as an appropriate parameter for characterizing the behavior of these two
systems. Moreover we have proved the existence of two–dimensional versions endowed with
superintegrability and we have obtained the explicit expressions of the additional integrals.

Concerning the superintegrability, we recall that most known superintegrable systems are
superseparable systems, that is, systems that admit Hamilton–Jacobi separation of variables
sSchrödinger in the quantum cased in more than one coordinate system. Nevertheless as all the
systems studied in this paper are nonlinear systems with a nonstandard Lagrangian, the superin-
tegrability has been proved by considering a different approach and without making use of the
multiple separability. In spite of this the possible separation of variables in other coordinate
systems than Cartesian ones must be studied.

We also mention that these two nonlinear systems can be generalized in several different ways
by making use of the Lagrangian approach. First, we recall that we have proved in Sec. II the
Lagrangian origin not only of the Riccati systems but also of the more general equations4d; this
means that these more general equations could also be studied by making use of the conservation
of the energy. Second, the Lagrangians6d admits the following natural generalization

FIG. 6. Closed trajectoriessellipses in the linear cased in the planesx,yd corresponding tow1=1,w2=1 and four different
values of the energysE1=E2=0.2, 0.4, 0.6 and 0.8d.

FIG. 7. Nonlinear Lissajous figures in the planesx,yd corresponding to “figure eight” trajectories associated tow1

=1,w2=2 and energiesE1=E2=0.2 ssmall eight-looking curved andE1=E2=0.6 sbig butterfly-looking curved.
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L =
1

msxdvx + k Usxd
s17d

that leads to a nonlinear second-order equation with a position-dependent effective mass and an
additional dissipative-looking term of the formm8sxdvx

2. This new Lagrangians17d seems inter-
esting, not only because it generalizess6d but also because it has a more direct geometrical
interpretation since the linear functionmsxdvx can be considered as associated to the one-form
m=msxddx.

The Lagrangians6d has, as associated Hamiltonian, the following function:

H = − 2Î− px − kUsxdpx s18d

that, in addition to its nonnatural charactersas was to be expectedd, has the annoying presence of
the momentum inside a root. In the particular case of the nonlinear oscillator the Hamiltonian is
given as follows:

H = − F2w

k2
Î− kpx + Skx2 +

w2

k
DpxG +

1

k2 . s19d

Nevertheless in this case we have an important property; in fact, if we make use of the canonical
transformationsx,pxd→ sQ,Pd given by

Q = SÎ2

w
DxÎ− kpx, P = SÎ2

k
Df1 − wÎ− kpxg,

then we arrive at

H = 1
2sP2 + w2Q2d.

Hence the very peculiar Hamiltonians19d and the standard linear oscillator are canonically related.
Nevertheless note that this transformation has a nonpoint character and, because of this, it cannot
be directly used in the Lagrangian approach. This brings up the question of the possible existence
of similar nonpoint transformations for Hamiltonians obtained from other Riccati Lagrangians. We
think that this possibility is an open question to be studied.

Finally, we mention the study of the quantized versions of all these nonlinear systems. We
note that this question must be carried out only after the obtaining of the appropriate Hamiltonian
versionssthe direct quantum study of the Lagrangian equations appears as a difficult taskd. Nev-
ertheless as the Lagrangians are nonstandard the Hamiltonians also appear with an unusual de-
pendence of the momentassee the previous expressionsd. In any case the possibility or impossi-
bility of quantizing these systems is a matter that must be investigated.
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We consider a class of second order ordinary differential equations describing
one-dimensional systems with a quasiperiodic analytic forcing term and in the
presence of damping. As a physical application one can think of a resistor–
inductor–varactor circuit with a periodicsor quasiperiodicd forcing function, even if
the range of applicability of the theory is much wider. In the limit of large damping
we look for quasiperiodic solutions which have the same frequency vector of the
forcing term, and we study their analyticity properties in the inverse of the damping
coefficient. We find that even the case of periodic forcing terms is nontrivial, as the
solution is not analytic in a neighborhood of the origin: it turns out to be Borel
summable. In the case of quasiperiodic forcing terms we need renormalization
group techniques in order to control the small divisors arising in the perturbation
series. We show the existence of a summation criterion of the series in this case
also; however, this cannot be interpreted as Borel summability. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1926208g

I. INTRODUCTION

Consider the ordinary differential equation

«ẍ + ẋ + «x2 = «fsvtd, s1.1d

wherevPRd is the frequency vector,fscd is an analytic function,

fscd = o
nPZd

ein·cfn, s1.2d

with averagea=a2, with a.0 shencekfl; f0=ad, and«.0 is a real parameter. Here and hence-
forth we denote with · the scalar product inRd. By the analyticity assumption off there are two
strictly positive constantsF andj such that one hasufnuøFe−junu for all nPZd.

By writing g=1/« the equation becomes

ẍ + gẋ + x2 = fsvtd, s1.3d

which describes a nonlinear electronic circuit, known as resistor–inductor–varactor circuit, subject
to a quasiperiodic forcing function. Takingd=1 and fsvtd=a+b sin t, this equation has been
studied in Ref. 1, where, among other things, it has been found numerically that forg large enough
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there exists only one attracting periodic orbit and the corresponding period is 2p /v=2p, the same
as the forcing term. Furthermore one can prove analytically that such a periodic orbit is the only
one in a neighborhood of radiusOs1/gd around the pointsa,0d.

Here we give some further analytical support to such numerical findings. In particular we
show that, if we take as forcing term an analytic periodic function,

fscd = o
nPZ

eincfn, f0 = a . 0, s1.4d

then for« small enough there is a 2p /v-periodic solution, but this is not analytic in«=1/g in a
neighborhood the origin in the complex«-plane. We find that such a solution is Borel summable.

We also show that by considering quasiperiodic forcing terms, as ins1.3d, we still have a
quasiperiodic solution with the same frequency vectorv as the forcing term, but we can only say
in general that such a solution is analytic in a domain with boundary crossing the origin.

Finally we shall see that considering more general nonlinearities introduces no further diffi-
culties, and equations like

ẍ + gẋ + gsxd = fsvtd, lim
uxu→`

ugsxdu
uxu

= `, s1.5d

with g and f both analytic in their arguments, can be dealt with essentially in the same way.
Simply, we must impose a nondegeneracy condition on the functiong, which reads as

∃x0 such thatgsx0d = f0 andg8sx0d Þ 0. s1.6d

In the particular case of homogeneousgsxd, that isgsxd=sxp, with pù2 an integer andsPR, the
condition is automatically satisfied ifp is oddsfor any value ofsd, while it requiressf0.0 for p
even, as assumed ins1.1d.

The paper is organized as follows. For expository clearness we start with the case of periodic
forcing terms. In Secs. II and III we show that a periodic solution with frequencyv in the form of
a formal power series in« sperturbation seriesd is well defined to all orders, and it admits a natural
graphical representation. In Sec. IV we study further such a series, and we see that there is strong
evidence to show that it divergesseven if we cannot exclude convergence definitelyd. The best
bounds that we are able to provide for the coefficients grow as factorials. To obtain bounds which
allow summability of the perturbation series we must perform a suitable summation in order to
give the series a meaning. This is done in Sec. V, and the resummed series is found to represent a
2p /v-periodic solution which is Borel summable in«. To prove the latter property we rely on
Nevanlinna’s improvement of Watson’s theorem.12 In Sec. VI we consider the case of quasiperi-
odic forcing terms. We find that the perturbation series is well defined if the frequency vector of
the forcing term satisfies a Diophantine condition, and, by using renormalization group techniques
in order to deal with the small divisors problem, we find that the resummed series still converges
to a quasiperiodic solution, and it defines a function analytic in a domain containing the origin in
its boundary. We shall see that the bounds we find do not allow us any more to obtain Borel
summability, unlike the case of periodic forcing terms. In Sec. VII we discuss how to extend the
analysis to more general nonlinearitiesgsxd, by requiring the conditions1.6d to be satisfied.

The interest of the approach we propose is that it allows the use of perturbation theory which
can be very natural in problems in which a small parameter appears. In fact analyticity in« for «
close to 0sthat is ing for g large enoughd could be proved very likely with other techniquessat
least for periodic solutions in the case of periodic forcing termsd, but a naive expansion in powers
of « is prevented by the lack of analyticity in a neighborhood of the origin. On the other hand, the
perturbation series gives a very accurate description of the solution, hence it is important to know
that such a series is an asymptotic series, and its use is fully justified. Finally we mention that the
quasiperiodic solution we investigate is of physical relevance, hence it is useful to study its
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properties. For instance in the case of the aforementioned resistor–inductor–varactor circuit in Ref.
1, for damping large enough, the 2p /v-periodic solution is numerically found to attract any
trajectory which remains bounded in phase space.

The techniques we use have been recently developed for problems of Hamiltonian stability,
and are based on resummation methods that are familiar in quantum field theoryssee Ref. 7 and
references quoted thereind. Here we show that they can be useful even in non-Hamiltonian prob-
lems with viscosity acting. We leave as an open problem to show whether the formal series of the
periodic or quasiperiodic solutions are really divergent. We also note that we are not able to prove
uniqueness of the quasiperiodic solutions we find by the resummation procedure, as in that case
there is no uniqueness result as for analytic or Borel summable functions which one can rely upon.
Furthermore, both for periodic and for quasiperiodic solutions, we cannot exclude existence of
other solutions with the same rotation vector, which either are of a different form or even admit the
same formal series, without being obtained through the same resummation procedure. Problems of
the same kind were met in the study of hyperbolic lower-dimensional tori.6

II. FORMAL ANALYSIS

Consider firsts1.1d for d=1, that is

«ẍ + ẋ + «x2 = «fsvtd, s2.1d

with fscd given bys1.4d. We look for bounded solutionssif anyd which are analytic in«, that is of
the form

xstd = o
k=0

`

«kxskdstd. s2.2d

Insertings2.2d into s2.1d and equating terms of the same Taylor order we find the set of recursive
equations

ẋs0d = 0,

ẋs1d = − ẍs0d − xs0d2 + f , s2.3d

ẋskd = − ẍsk−1d − o
k1+k2=k−1

xsk1dxsk2d, k ù 2.

From the first equationszeroth orderd we obtain thatxs0d must be constant, sayxs0d=c0 with c0 to
be determined. The second equationsfirst orderd can give a bounded solution only if −c0

2+a=0,
which fixesc0=Îa=a and givesxs1dstd as a periodic function with the same period of the forcing
term,

xs1dstd = xs1ds0d +E
0

t

dt8sfsvt8d − ad. s2.4d

As eachxskdstd depends on the functionsxsk8dstd with k8,k, we expect that if there is any periodic
solution then it must have the same period as the forcing term.

To continue the analysis to all orders it is more convenient to write the recursive equations
s2.3d in Fourier space. The analysis to first order and the considerations above motivate us to write
in s2.2d,

xstd = o
k=0

`

«kxskdstd = o
k=0

`

«ko
nPZ

einvtxn
skd, s2.5d

which inserted intos2.3d gives fornÞ0,
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xn
s0d = 0,

xn
s1d =

fn

ivn
, s2.6d

xn
skd = − sivndxn

sk−1d −
1

ivn
o

k1+k2=k−1

k1,k2ù0

o
n1+n2=n

xn1

sk1dxn2

sk2d, k ù 2,

provided that one has forn=0,

0 = −x0
s0d2 + f0,

s2.7d
0 = o

k1+k2=k

k1,k2ù0

o
n1+n2=0

xn1

sk1dxn2

sk2d, k ù 1.

If we setx0
skd=ck then the first ofs2.7d fixes, as already noted,

c0 = a = Îa, s2.8d

because one hasf0=a.0, while the second ofs2.7d gives

o
k8=0

k

o
n1PZ

xn1

sk−k8dx−n1

sk8d = 0. s2.9d

The latter equation, by taking into accounts2.8d and the first ofs2.6d, can be more conveniently
written as

c1 = 0, ck = −
1

2c0
o
k8=1

k−1

o
n1PZ

xn1

sk−k8dx−n1

sk8d, k ù 2, s2.10d

which provides an iterative definition of the coefficientsck as the right-hand side depends only on
the coefficientsck8 with k8,k. To deducec1=0 we used the first ofs2.6d, which, inserted into
s2.9d for k=1, gives 2c0c1=0, hencec1=0 asc0Þ0.

The following result holds.
Lemma 2.1: Consider (2.1) with f given by (1.4). Then there exists a formal power series

solution (2.2) whose coefficients xskdstd are analytic in t. If f is a trigonometric polynomial, that is
in (1.4) one hasunuøN for some NPN, then for all kù0 the functions xskdstd are trigonometric
polynomials of orderfsk+1d /2gN, where f·g denotes the integer part. This means that one has
xn

s2kd=0 and xn
s2k−1d=0 for unu.kN.

Proof: The existence of a formal solutions2.2d, with coefficientsxskdstd analytic in t for all
kù0, follows from the analysis above. Iff is a trigonometric polynomial of degreeN, that the
coefficientsxn

skd are trigonometric polynomials with the stated properties can be proved froms2.6d
by induction onk. j

Then the functionsxskdstd are well defined to all orders. Before discussing the issue of con-
vergence of the formal power series defining such functions we look for a graphical representation
of the coefficientsxn

skd.

III. GRAPHICAL REPRESENTATION AND TREE FORMALISM

We start by giving some abstract definitions.
Definition 3.1 (trees): A treeu is a graph, that is a connected set of points and lines, with no
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cycle, such that all the lines are oriented toward a unique point which has only one incident line.
Such a point is called the root of the tree. All the points in a tree except the root are denoted nodes.
The line entering the root is called the root line. The orientation of the lines in a tree induces a
partial ordering relation between the nodes. We denote this relation byd, given two nodesv and
w, we shall write wdv every timev is along the path (of lines) which connects w to the root.

Given a treeu, we can identify the following subsets inu.
Definition 3.2 (endpoints): We call Esud the set of endpoints inu, that is the nodes which have

no entering line. The endpoints can be represented either aswhite bulletsor as black bullets.We
call EWsud the set of white bullets and EBsud the set of black bullets. Of course EWsudøEBsud
=Esud. With eachvPEWsud we associate amodelabel nv=0, an order label kvPZ+ and anode
factor Fv=ckv

. With eachvPEBsud we associate amode label nvPZ \ h0j, and anode factorFv
= fnv

.
Definition 3.3 (lines): We denote with Lsud the set oflines in u. Each line,PLsud leaves a

point v and enters another one which we shall denote byv8. Since, is uniquely identified withv
(the point which, leaves), we may write,=,v. With each line, we associate amomentumlabel
n,PZ and apropagator

g, = H1/sivn,d, n, Þ 0,

1, n, = 0,
J s3.1d

and we say that the momentumn, flows through the line,. The modes and the momenta are
related as follows: if,=,v one has

n, = o
i=1

sv

n,i
= o

wPEBsud
wdv

nw, s3.2d

where,1,… ,,sv
are the lines enteringv.

Definition 3.4 (vertices): We denote by Vsud the set ofverticesin u, that is the set of points
which have at least one entering line. If VsudÞx we call the vertexv0 connected to the root the
last vertexof the tree. If sv denotes the number of lines enteringv call maxvPVsud sv thebranching
number.One can have either sv=1 or sv=2. We set Vssud=hvPVsud :sv=sj for s=1, 2; of course
V1sudøV2sud=Vsud. We define also V0sud=hvPVsud :n,v

=0j; one has V0sud,V2sud. We require
that either V0sud=x or V0sud=hv0j, and that one can havevPV1sud only if n,v

Þ0. We associate
with each vertexvPVsud a node factor

Fv = 5− 1, sv = 2 and v ¹ V0sud,

− 1/2c0, sv = 2 and v P V0sud,

− sivn,v
d2, sv = 1,

6 s3.3d

which is always well defined as c0Þ0.
We call equivalent two trees which can be transformed into each other by continuously

deforming the lines in such a way that they do not cross each other.
Let Tk,n be the set of inequivalent treesu such that

s1d the number of vertices, the number of black bullets, and the order labels of the white bullets
are such that we have

k1 + k2 + k3 = k, if n Þ 0,

k1 + k2 + k3 = k + 1, if n = 0, s3.4d

if we setk1= uVsudu, k2= uEBsudu, andk3=ovPEWsudkv.
s2d The momentum flowing through the root line isn.
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We refer toTk,n as theset of trees of order k and total momentumn.
With the above definitions the following result holds.
Lemma 3.5: For all kù1 and all nÞ0 one has

xn
skd = o

uPTk,n

Valsud, Valsud = S p
,PLsud

g,DS p
vPEsudøVsud

FvD , s3.5d

whereVal:Tk,n→C is called thevalueof the tree. For kù2 and n=0 one has

x0
skd ; ck = o

uPTk,0

*Valsud, s3.6d

wherep means that there are two lines entering the last vertexv0 of u0 and neither one exits from
an endpointv with order label kv=0.

Proof: We can represent graphicallyx0
skd=ck as in Fig. 1sad, xn

s1d , nÞ0, as in Fig. 1sbd, and,
more generally,xn

skd as in Fig. 1scd.
Then the third equation ins2.6d can be represented graphically as in Fig. 2, if we associate

with the nodes and to the lines the node factors and the propagators, respectively, according to the
definitionss3.1d and s3.3d.

Analogously s2.10d is represented graphically as in Fig. 3, again if we use the graphical
representations in Fig. 1 and associate with the lines and vertices the propagatorss3.1d and the
node factorss3.3d, respectively.

Note that in this way we represent graphically each coefficientxn
skd in terms of other coeffi-

cientsx
n8
sk8d, with k8,k, so that we can apply iteratively the graphical representation in Fig. 2 until

only trees whose endpoints represent eitherxn
s1d with nÞ0 sblack bulletsd or ck are left swhite

bulletsd. This corresponds exactly to the expressions ins3.5d and s3.6d. j

To get familiar with the graphical representations3.5d and s3.6d one should try to draw the
trees which correspond to the first orders, and check that the sum of the values obtained with the
graphical rules listed above gives exactly the same analytical expression which can be deduced
directly from s2.6d and s2.10d.

For instance fork=2 we obtain forxn
s2d , nÞ0, the graphical representation in Fig. 4 and for

c2=x0
s2d the graphical representation in Fig. 5.

For k=3 we obtain forxn
s3d , nÞ0, the graphical representation in Fig. 6 and forc3=x0

s3d the
graphical representation in Fig. 7, where we have explicitly used thatc1=0.

This can be continued to higher orders. In general a treeuPTk,n looks like in Fig. 8, where for
simplicity no labels have been drawn other than the order labels of the white bullets. Note that
each node can have only one or two entering lines, while the endpoints have no entering line at all.
Moreover the momentum flowing through the line exiting a vertexv is equal to the sum of the

FIG. 1. Graphical representation ofx0
skd, xn

s1d, andxn
skd. For n=0 the latter reduces to the first graph, while fork=1 andn

Þ0 it reduces to the second graph. In the first graph the momentum is not shown as it is necessarilyn=0.

FIG. 2. Graphical representation of the third equation ins2.6d expressing the coefficientxn
skd for kù2 andnÞ0 in terms of

the coefficientsx
n8
sk8d with k8,k. In the last graph one has the constraintsk1+k2=k−1 andn1+n2=n.
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momenta flowing through the lines enteringv, according tos3.2d; this is a sort of conservation law.
The order of the tree is given by the number of vertices and black bullets plus the sum of the order
labels of the white bullets minus the number of vertices inV0sud. The latter is justuV0sudu=0 if
uPTk,n, nÞ0, anduV0sudu=1 if uPTk,0.

If a vertexv hassv=1, that is it has only one entering line,, the latter cannot come out of a
white bullet. Indeed if this occurs one should haven,v

=n,=0, henceFv=0 by s3.3d, so that the
value of the tree containing such a vertex is zero.

Given a tree as in Fig. 8 we can represent each white bullet according to the graphical
representation in Fig. 3, corresponding to the analytic formulas3.6d, and expand again the two
contributionsxn1

sk1d and xn2

sk2d as sums of trees, and so on, iteratively, until the only white bullets
which are left are the ones with order labelk=0. In this way we obtain a new graphical represen-
tation where the trees still look like those in Fig. 8, but now there are a few differences as follows:

s1d all the white bulletsvPEWsud have order labelskv=0, and
s2d there can be lines,PLsud with momentumn,=0 which come out of vertices, that isV0sud

can contain no element or more than one element.

Note that only lines coming out either from nodes inV0sud,V2sud or from white bullets have
vanishing momentum.

The order of the tree is then given by the number of elements ofVsudøEBsud minus the
number of elements ofV0sud, that isk= uVsudu+ uEBsudu− uV0sudu. Of coursev0PV0sud if and only
if the momentum of the root line is vanishing, that isuPTk,0 for somekù2. It is important to
stress that no line entering a vertexvPV0sud can come out of a white bulletswhich now has
necessarily an order label 0d, because this would be against the constraint in the sums3.6d. This
means that if two lines carrying zero momentum enter the same vertexv fso that vPV0sud
according tos3.2dg, then none of them can exit from a white bullet.

But up to these minor differences a tree representation like ins3.5d and s3.6d still holds. The
advantage of these modified rules is that now the tree values are expressed no longer in terms of
constantsck to be determined, but only in terms ofc0 which is known. A tree drawn according
these new rules is represented as in Fig. 8 withk1=k2=k3=0 sand in particular a tree of this kind
can contribute only toxn

skd with nÞ0d. Note that we could avoid drawing the order labels associ-
ated with the endpoints, as they are uniquely determined ask=0 for the white bullets andk=1 for
the black bullets. Of course, with respect to the caption of that figure, now the orderk is given by
the number of elements inVsud plus the number of elements inEBsud minus the number of
elements inV0sud.

FIG. 3. Graphical representation of the equations2.10d expressing the coefficientck for kù2 in terms of the coefficients

x
n8
sk8d with k8,k. Both k1 andk2 are strictly positive andk1+k2=k; moreovern1+n2=0.

FIG. 4. Graphical representation ofxn
s2d for nÞ0. The second contribution must be counted twice, because there is also a

tree with the white and black bullets exchanged; of course the latter has the same value.
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IV. FORMAL SOLUTIONS

The sum over the trees ins3.5d and s3.6d, with the new definition of the setTk,n given at the
end of Sec. II, can be performed by summing over all possible “tree shapes”sthat is trees without
labels orunlabeled treesd and, for a fixed shape, over all possible assignments of mode labels. In
the case of a trigonometric polynomial of degreeN the latter can be bounded bys2NduEsudu, because
each endpointv can have either a mode labelnvÞ0, with unvuøN, or the mode labelnv=0, while
the case of analytic functionssor even to obtain bounds which are uniform inNd must be discussed
a little more carefully. The number of unlabeled trees withP nodessvertices and endpointsd can be
bounded by 22P.

Recall thatVssud denotes the set of verticesv such thatsv=s; of courseV1sudøV2sud=Vsud,
andV0sud,V2sud. Analogously we can set

L0sud = h, P Lsud:n, = 0,j,

L1sud = h, P Lsud:, = ,v,v P V1sudj, s4.1d

L2sud = Lsud \ sL0sud ø L1sudd,

with the splitting made in such a way that one has

U p
vPV1sud

FvUU p
,PL1sud

g,U ø p
,PL1sud

uvn,u, U p
,PL2sud

g,U ø p
,PL2sud

1

uvn,u
,

U p
vPV0sud

FvU ø S 1

2c0
DuV0sudu

, U p
vPEWsud

FvU ø c0
uEWsudu, s4.2d

FIG. 5. Graphical representation ofc2=x0
s2d. There is no contribution with any white bullet carrying order labelk=0 and

k=1 because of the restriction in the sum appearing ins3.6d and of the fact thatc1=0, respectively.

FIG. 6. Graphical representation ofxn
s3d for nÞ0. The second and fourth contributions must be counted twice, while the

third one must be counted four times. There is no contribution with any white bullet carrying the order labelk=1 asc1

=0.
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U p
vPEBsud

FvU ø FuEBsudu p
vPEBsud

e−junvu,

where for each line, one hasun,uøovPEWsudunvu.
The following result is useful when looking for bounds on the tree values.
Lemma 4.1: Given a treeu with branching number s one hasuEsuduø ss−1duVsudu+1. If k

denotes the order of the treeu, that is uVsudu− uV0sudu+ uEBsudu=k, one has the identityuL1sudu
+ uL2sudu=k, and the boundsuV1suduøk, uV0suduøk−1, uEsuduøk and uEsudu+ uVsuduø2k−1.

Proof: It is a standard result on trees that one hasovPVsudssv−1d= uEsudu−1, so that the first
bound follows. The bounds onuV1sudu, uV0sudu, uEsudu and uEsudu+ uVsudu can be easily proved by
induction, while the identityuL1sudu+ uL2sudu=k follows from the observation that all lines inL1sud
and L2sud come out either of vertices or of black bullets, and they have nonvanishing momen-
tum. j

Hence the number of lines inL1sud is bounded byk, so that ins4.2d we can bound

S p
,PL1sud

uvn,uDS p
vPEBsud

Fe−junvuD ø S p
vPEBsud

Fe−junvu/2DS p
,PL1sud

e−jun,u/2kuvn,uD
ø S p

vPEBsud
Fe−junvu/2DS2kuvu

j
Dk

, s4.3d

and in the second line the product can be used to perform the sum over the Fourier labels—this
gives a factorFkB2

k, with B2=2e−j/2s1−e−j/2d−1—while the last factor is bounded byA1B1
kk!, for

some constantsA1 andB1.
We can bound the value of a treeu by using the boundss4.2d ands4.3d, and Lemma 4.1. If we

define

«1
−1 = maxhB1,uvu−1jmaxhc0,FB2jmaxh1,s2c0d−1j, s4.4d

with c0=Îa, and take into account that the number of unlabeled trees inTk,n is bounded by 22k−1

sbecause each tree inTk,n has at most 2k−1 nodesd, then

FIG. 7. Graphical representation ofc3=x0
s3d. The second contribution must be counted twice, while the first one must be

counted four times. There is no contribution with any white bullet carrying the order labelk=1 asc1=0.

FIG. 8. Example of tree appearing in the graphical expansionss3.5d ands3.6d. The number of lines entering any vertexv
can be only eithersv=1 or sv=2, while no line enters the endpoints. The order of the tree is given by the number of
elements inVsud \V0sud plus the number of elements inEBsud plus the sum of the order labels of the white bullets. Then,
if k1, k2, and k3 are the order labels of the white bullets in the figure, the order of the tree isk=k1+k2+k3+10 if v0

PV0sud and k=k1+k2+k3+9 if v0¹V0sud. In the latter case one must havek1.0 because of the constraint in the sum
appearing ins3.6d.
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uxn
skdu ø A1«2

−kk ! , uxskdstdu ø A1«2
−kk ! , s4.5d

where we have set«2=«12
−2.

A bound like s4.5d is obtained also in the case of forcing terms which are trigonometric
polynomials, because in general we can bound the factorsuvn,u in s4.2d only with kN ssee Lemma
2.1d, and this produces an overall bound proportional tok! Note that in that case the boundB2,
arising from the sum over the Fourier labels, can be replaced with a factor 2N, andB1 can be
replaced withuvuN.

Then we have proved the following result.
Proposition 4.2: Given the equation (2.1) with f as in (1.4), there is only one periodic solution

in the form of a formal power series, and the corresponding period is the same period2p /v as the
forcing term. The coefficients of such a formal power series satisfy the bounds (4.5).

One could ask if the factorials arising in the bounds are only a technical problem, or whether
they are a sign that the series really diverges. To orderk one can easily provide examples of trees
which grow like factorials; see for instance the tree represented in Fig. 9, where there arek−1
vertices with only one entering line. Then the corresponding value is

Valsud = sivnd2sk−1d 1

sivndk fn = sivndk−2fn, s4.6d

which behaves ask! for large k. Furthermore it is unlikely that there are cancellations with the
values of other trees because the value of any other treeuPTk,n can be proportional at most to
sivndp, with p,k−2 sstrictlyd. Hence we expect that the coefficientsun

skd, even if well defined to
all orders, grow like factorials, so preventing the convergence of the series.

The lack of analyticity is further supported by the following fact. If we considers2.1d without
the quadratic term and witha=0, that is

«ẍ + ẋ = fsvtd, f0 = 0, s4.7d

in Fourier space, we findx0=0 andivns1+i«vndxn= fn for nÞ0. Hence the equation is trivially
solvable, and it gives

xstd = o
nÞ0

fn

ivns1 + i«vnd
eivnt. s4.8d

Of course the solutionxstd of the linear equation is not analytic in« sin a neighborhood of the
origind when f is an analytic function containing all the harmonics, as each point«= i /vn repre-
sents a singularity point forxstd, and such points accumulate to the origin asn→`. Then it is
likely that also when the quadratic terms are taken into account the solution cannot be analytic.
Therefore giving a meaning to the perturbation series requires some more work, and we discuss
this next.

An important remark is that for anykù1 there is no tree whose value can be bounded worse
than proportionally to a factorial, as the estimatess4.5d show, indeed they have been obtained by
bounding separately the value of each single tree. This observation will play an important role in
the forthcoming analysis.

FIG. 9. Example of tree whose value grows as a factorial. Ifk is the order of the treeshence there arek−1 vertices and 1
black bulletd, then the value of the tree is given ins4.6d.
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V. PERIODIC FORCING TERMS

To deal completely with the case of analytic functions and prove existence of the periodic
solution, we must modify the graphical expansion envisaged in the preceding sections.

Let us come back to the equations2.1d, and write it in Fourier space. FornÞ0 and denoting
with xn the nth Fourier coefficient, we obtain

«sivnd2xn + ivn xn + « o
n1+n2=n

xn1
xn2

= «fn, s5.1d

provided that forn=0 we have

o
n1+n2=0

xn1
xn2

= 0. s5.2d

Let us rewrites5.1d as

«sivnd2xn + ivn xn + m« o
n1+n2=n

xn1
xn2

= m«fn, s5.3d

and look for a solutionxstd which is analytic inm, which suggests us to write

xstd = o
k=0

`

mkxfkgstd. s5.4d

Of course we want the valuem=1 to be inside the analyticity domain. Note also that nowxfkg, the
coefficient to orderk, has a different meaning with respect to the previous expansions1.4d in
powers of«, and for this reason with use a different symbol to denote it. We shall call the series
s5.4d the resummed series, because the coefficientsxfkgstd depend on«, and are given by the sum
of infinitely many terms of the formal seriess2.5d.

Again for k=0 we must takexn
f0g=0 for nÞ0 and fixc0;x0

f0g=Îa, with a; f0.
To orderkù1 sin md we obtain fornÞ0,

ivns1 + i«vndxn
fkg = «fndk,1 − « o

k1+k2=k−1
o

n1+n2=n

xn1

fk1gxn2

fk2g, s5.5d

while for n=0 we require

o
k1+k2=k

o
n1+n2=n

xn1

fk1gxn2

fk2g = 0. s5.6d

By settingck=x0
fkg the latter equation can be written asfcf. s2.10dg

c1 = 0, ck = −
1

2c0
o
k8=1

k−1

o
nPZ

xn
fk−k8gx−n

fk8g, k ù 2. s5.7d

Then we can proceed as in Sec. III, with some slight changes that we now explain. First of all
note thats5.5d gives fornÞ0,

xn
f0g = 0,

xn
f1g =

«fn

ivns1 + i«vnd
,
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xn
fkg = −

«

ivns1 + i«vnd o
k1+k2=k−1

o
n1+n2=n

xn1

fk1gxn2

fk2g, k ù 2. s5.8d

Then the graphical representations ofx0
fkg, xn

f1g, andxn
fkg are as in the previous case, with the only

change in the representation of the order labelssbecause of the square brackets instead of the
parenthesesd; see Fig. 10.

On the contrary the graphical representation of the third equation ins5.8d is as in Fig. 11.
At the end we obtain a tree expansion where the trees differ from the previous ones as they

contain no vertex with only one entering line. With the previous notations this means thatL1sud
=x andV1sud=x, henceVsud=V2sud. Moreover also the propagators and the node factors of the
vertices are different, ass3.1d and s3.2d must be replaced with

g, = H1/ssivn,ds1 + i«vn,dd, n, Þ 0,

1, n, = 0,
J s5.9d

and, respectively,

Fv = H− «, v ¹ V0sud,

− 1/2c0, v P V0sud,
J s5.10d

and we recall once more that only verticesv with sv=2 are allowed. Finally, the node factors
associated with the endpoints areFv=ckv

if v is a white bullet andFv=«fnv
if v is a black bullet.

As in Sec. III we can envisage an expansion in which all white bulletsv havekv=0 ssimply
by expanding iteratively in trees the white bullets of higher orderd. A tree appearing in this new
expansion is represented in Fig. 12.

With the notationss4.1d, we obtain the bounds

U p
vPVsud\V0sud

FvU ø u«uuVsudu, U p
,PLsud

g,U ø p
,PL2sud

1

uvn,uu1 + i«vn,u
,

U p
vPV0sud

FvU ø S 1

2c0
DuV0sudu

, U p
vPEWsud

FvU ø c0
uEWsudu, s5.11d

FIG. 10. Graphical representation ofx0
fkg, xn

f1g, andxn
fkg. Forn=0 the latter reduces to the first graph, while fork=1 andnÞ0

it reduces to the second graph. In the first graph the momentum is not shown as it is necessarilyn=0.

FIG. 11. Graphical representation of the second equation ins5.8d expressing the coefficientxn
fkg for kù2 andnÞ0 in terms

of the coefficientsx
n8
fk8g with k8,k. In the right-hand graph one has the constraintsk1+k2=k−1 andn1+n2=n.
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U p
vPEBsud

FvU ø FuEBsudu p
vPEBsud

e−junvu,

where we have again used the boundufnuøFe−junu, for suitablesstrictlyd positive constantsF and
j, which follows from the analyticity assumption onf.

For real« we can bound each propagator by

ug,u ø
1

uvn,u
ø

1

uvu
, s5.12d

so that the value of any treeuPTk,n can be bounded by

uValsudu ø u«ukuvu−ksmaxhc0,Fjdksmaxh1,1/2c0jdk p
vPEBsud

e−junvu, s5.13d

where we have again used Lemma 4.1. If we write

p
vPEBsud

e−junvu ø e−junu/2S p
vPEBsud

e−junvu/2D , s5.14d

we can proceed as in Sec. IV; we use the last product to perform the sum over the Fourier labels,
which gives a factorB2

k, whereas the sum over the unlabeled trees gives a factor 22k−1. At the end
we obtain

uxn
skdu ø m2

−k, uxskdstdu ø m2
−k, s5.15d

where we have setm2
−1=4uvu−1 maxh1,1/2c0jmaxhFB2,c0ju«u. Hence the radius of convergencem0

of the series expansions5.4d is bounded asm0ùm2=Os1/u«ud, so that for« small enough, say
u«u,«3=s4uvu−1 maxh1,1/2c0jmaxhFB2,c0jd−1, the valuem=1 is inside the analyticity domain.

We can summarize the results found so far as follows.
Theorem 5.1: Given the equation (2.1) with f analytic, there exists«0.0 such that for all real

« with u«u,«0 there is only one periodic solution which admits a formal expansion in powers of
«, and the corresponding period is the same period2p /v as the forcing term. An explicit bound
is «0ù«3=Osvd.

Note that ifv is very large then very large values of« are allowed.
We can investigate further the regularity properties in« of the periodic solution found in

Theorem 5.1, and see what happens for complex values of«.

FIG. 12. Example of tree appearing in the new graphical expansion. The number of lines entering any vertexv can be only
sv=2. The order of the tree is given byuBsudu− uV0sudu. All the white bullets have order labelss0d, and additionally all the
black bullets carry a labels1d; hence we can avoid drawing explicitly such labels.

FIG. 13. sad RegionCR in the complex«-plane andsbd striplike region of analyticitySB of the Borel transform. The region
CR is the union of two discs of radiusR/2 and centerss±R/2 ,0d.
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We need the following preliminary resultfsee Fig. 13sad for the regionCRg.
Lemma 5.2: Given v.0 and 0,R,1/4v let CR be the pair of discsCR=h« : uRe«−1u

.R−1j. For all «PCR and all nPZ \ h0j one hasuivns1+i«vnduùv /2.
Proof: Write «=a+ ib andx=vn, so that one hasuivns1+i«vndu= uxuÎs1−bxd2+saxd2;Fsxd.

If «PCR one has uauùb2/2R. Fix 0,A,1. If u1−bxuøA then Îs1−bxd2+saxd2ù uaxu
ùb2uxu /2Rù ubus1−Ad /2R, so thatFsxdù s1−Ad2/2R. If u1−bxuùA then Îs1−bxd2+saxd2ùA,
henceFsxdùAuxuùvA. Then chooseA=1−ÎvRù1/2; this givesFsxdùv /2. j

Now fix 0,R, R̄;«3 so small thatuvuR,1/4, and consider the corresponding domainCR.
We can apply Lemma 5.2 and deduce that any propagatorg, is bounded byug,uø2/uvu for all
«PCR.

This allows us to obtain the following result.
Proposition 5.3: There exists R.0 small enough such that in the domainCR one has the

asymptotic expansion

xstd = o
k=0

N−1

«kxskdstd + RNs«d, uRNs«du ø ABNN ! u«uN, s5.16d

where the constants A and B are uniform in N and in«.
Proof: Write xstd asxstd=xNstd+RNstd, wherexNstd is given by the sum of the firstN−1 orders

of the formal power series expansion of the solutionxstd as ins5.16d. For «PCR the functions5.4d
with m=1 is C` in «, hence we can estimateRNs«d with a bound on theNth derivative ofxstd in
CR, and this gives the bound ins5.16d. j

Of course the constantsA andB in s5.16d are explicitly computable; in particular one finds
B=Os«3

−1d.
Then we are under the assumptions where Nevanlinna’s theorem11 ssee also Ref. 12d can be

applied, and hence the series for

Bst;«d = o
k=0

`
1

k!
«kxskdstd s5.17d

converges for u«u,B fwith B given in s5.16dg and has an analytic continuation toSB

=h« :dists« ,R+d,Bj fsee Fig. 13sbdg, satisfying for some constantK the bound uBst ;«du
øKeu«u/R uniformly in everySB8 with B8,B. The functionxstd can be represented as the abso-
lutely convergent integral

xstd =
1

«
E

0

`

e−s/«Bst;sdds s5.18d

for all «PCR, and this property can be stated by saying thatxstd is Borel summablesin «d and
Bst ;«d is its Borel transform.9 This implies that the function given by the summation procedure
described in Theorem 1 is unique. Therefore we have obtained the following result, which
strengthens Theorem 1.

Theorem 5.4: The solution given by Theorem 1 is Borel summable at the origin.
Note that Watson’s theorem cannot be invoked to obtain this result because the singularities

are along the imaginary axis.
In particular if fsvtd=a+b sin t then there is a periodic solutionxstd=a+«b cost+Os«2d,

with a=Îa, which has period 2p and moves around the fixed pointsx, ẋd=sa,0d, and close to it
within Os«d. No other periodic solution analytic in« can exist.

We conclude this section with two remarks. The summation criterion envisaged in this section
is reminiscent of that usedsin a more difficult situationd in Ref. 6 for hyperbolic lower-
dimensional tori. However in that case we are not able to prove Borel summability because to
order k the bounds were likesk! da for some a.1. Neither extension to Watson’s theorem9
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analogous to the Nevanlinna–Sokal resultsas those developed in Ref. 5d can be used because the
exponenta is too large. We shall find a very similar situation in next section.

The lack of analyticity in« in a neighborhood of the origin is due to the accumulation of
singularity points along the imaginary axis in the complex«-planeswhere the quantity 1+i«vn
vanishes fornPZd. The analyticity domain is tangential to the imaginary axis, and this allows us
to apply Nevanlinna’s theorem. We find that this situation has some analogies with a different
problem, the analyticity properties of rescaled versions of some dynamical systems, such as
Siegel’s problem4 sand its linearization as considered in Ref. 10d, the standard map2 and general-
ized standard maps,3 for complex rotation numbers tending to rational values in the complex
plane. In those cases, however, only nontangential limits could be considered. Of course the
situation is slightly more complicated there, because the set of accumulating singularity points is
dense—and not only numerable as in the present case.

VI. QUASIPERIODIC FORCING TERMS

In the case of analytic quasiperiodic forcing terms, we shall assume a Diophantine condition
on the rotation vectorv, that is

uv · nu ù C0unu−t ∀ n P Zd \ h0j, s6.1d

whereunu= unu1;un1u+¯ + undu, andC0 andt are positive constants. We needtùd−1 in order to
have a nonvoid set of vectors satisfying the conditions6.1d, andt.d−1 in order to have a full
measure set of such vectors. For simplicitysand without loss of generalityd we can assumeC0

,g /2, with g=minh1,ucuj, wherec is a suitable constant to be fixed asc=−2c0, with c0=Îa.
The equation of motion can be written in Fourier space as

iv · ns1 + i«v · ndxn + « o
n1+n2=n

xn1
xn2

= «fn, s6.2d

and the formal expansion for a quasiperiodic solution with frequency vectorv reads as

xstd = o
k=0

`

«kxskdstd = o
k=0

`

«k o
nPZd

ein·vtxn
skd, s6.3d

and to see that the coefficientsxn
skd are well defined to all orderskù0 one can proceed as in Sec.

II, with no extra difficulty. In particular the Diophantine conditions6.1d is sufficient to assure
analyticity in t of the coefficientsxskdstd.

Also the graphical representation can be worked out as in Sec. III. The only difference is that
now the propagators of the lines with nonvanishing momentumn,, which is defined according to
s3.2d, with the vectors replacing the scalars, are given by 1/siv ·n,d, the node factors associated
with the verticesv with sv=1 are given byFv=−siv ·n,v

d2, and the node factors associated with
the black bulletsv are given byFv= fnv

, with nvPZd\ h0j. All the other notations remain un-
changed.

This yields that the propagators and the node factors can be bounded as ins4.2d ands4.3d, with
just a few differences of notation. More precisely one has

U p
vPV1sud

FvUU p
,PL1sud

g,U ø p
,PL1sud

uvuun,u, U p
,PL1sud

g,U ø p
,PL1sud

1

uv · n,u
ø C0

−1un,ut,

U p
vPV0sud

FvU ø S 1

2c0
DuV0sudu

, U p
vPEWsud

FvU ø c0
uEWsudu, s6.4d
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U p
vPEBsud

FvU ø FuEBsudu p
vPEBsud

e−junvu,

where the only bound which introduces a real difficulty with respect to the case of periodic forcing
terms is the second one in the first line. Indeed it is the source of a small divisors problem, which
cannot be set only through the Diophantine conditions6.1d.

To each orderk we obtain forxskdstd a bound likeABkk!maxh1,tj, where the factor 1 arises from
the propagators of the lines inL1sud and the factort from those of the lines inL2sud in s6.3d. The
last assertion is easily proved by reasoning as ins4.3d, with maxhuvuun,u ,C0

−1un,utj
ømaxhC0

−1, uvujun,umaxh1,tj replacingn,. In particular only ford=2 andt=1 we obtain the same
bound proportional tok! as in the case of periodic solutionsof course with different constantsA
andBd. Note that the vectors satisfying the Diophantine conditions6.1d with t=1 for d=2 is of
zero measure but everywhere dense. An example of vector of this kind isv=s1,g0d, whereg0

=sÎ5−1d /2 is the golden section.
However, to deal with the problem of accumulation of small divisors and discuss the issue of

convergence of the series, we need renormalization group techniques. The first step is just to
introduce a multiscale decomposition of the propagators, and this leads naturally to the introduc-
tion of clusters and self-energy graphs into the trees. The discussion can be performed either as in
Ref. 6 or as in Ref. 8sand in Ref. 7d. We choose to follow Ref. 8, which is more similar to the
present problem because the propagators are scalar quantities and not matrices. In any case, with
respect to the quoted reference, we shall use a multiscale decomposition involving only the
quantitiesuv ·n,u, that is without introducing any dependence on« in the compact support func-
tions. Indeed this is more suitable to investigate the analyticity properties in«, and, as we shall
see, we shall not need to exclude any real value of« in order to give a meaning to the resummed
series, a situation more reminiscent of Ref. 6 than of Ref. 8.

In the following we confine ourselves to outlining the main differences with respect to Ref. 8.
Let us introduce the functionscn andxn, for nù0, as in Ref. 8, Sec. 5. In particularcnsuxudÞ0
implies uxuù2−sn+1dC0 and xnsuxudÞ0 implies uxuø2−nC0. We shall define recursively therenor-
malized propagators g,

fng=gfngsv ·n, ;«d and thecountertermsMfngsv ·n ;«d on scalesn as

gf−1gsx;«d = 1, Mf−1gsx;«d = 0,

gf0gsx;«d =
c0suxud

ixs1 + i«xd
, Mf0gsx;«d = o

k=1

`

o
TPSk,0

R
VTsx;«d,

gfngsx;«d =
x0suxud ¯ xn−1suxudcnsuxud
ixs1 + i«xd + Mfn−1gsx;«d

, s6.5d

Mfngsx;«d = Mfn−1gsx;«d + x0suxud ¯ xn−1suxudxnsuxudMfngsx;«d,

Mfngsx;«d = o
k=1

`

o
TPSk,n

R
VTsx;«d,

where the set of renormalized self-energy graphsSk,n
R and the self-energy graphsVTsx;«d are

defined as in Ref. 8, Sec. 6. We have explicitly used the fact that the first contribution to the
self-energy graphs is of orderk=1 ssee Fig. 14d. Note that one hasx0suxud¯xn−1suxudxnsuxud
=xnsuxud, so that ifgfngsx;«dÞ0 then one has 2−sn+1dC0ø uxuø2−sn−1dC0.

Then one defines forkù1
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xn
fkg = o

uPTk,n

Valsud, x0
fkg ; ck = o

uPTk,0

*Valsud, s6.6d

where the tree value is defined as

Valsud = S p
,PLsud

g,
fn,gDS p

vPEsudøVsud
FvD , s6.7d

and, as before,p means that there are two lines entering the last vertexv0 of u0 and neither one
exits from an endpointv with order labelkv=0. Fork=1 the second ofs6.7d must be interpreted
asc1=0.

Furthermore one has

Mf0gsx;«d = Mf0gs0;«d + Os«2xd,

s6.8d
Mf0gs0;«d = − 2«c0 + M2

f0gs0;«d, M2
f0gs0;«d = Os«2d,

and an easy computation showsscf. Fig. 14d that

M2
f0gs0;«d = «3 1

c0
o
nÞ0

c0
2suv · nud

ufnu2

sv · nd2s1 + s«v · nd2d
+ Os«4d, s6.9d

so that in fact one hasM2
f0gs0;«d=Os«3d.

Moreover to higher scales one hasMfngsx;«d=Mfngs0;«d+Os«3xd, with

Mfngs0;«d = − «3 1

c0
o
nÞ0

o
n1+n2=n

cn1
suv · nudcn2

suv · nud
ufnu2

sv · nd2s1 + sv · nd2d
+ Os«4d,

s6.10d

so that eachMfngs0;«d is a higher order correction toMf0gs0;«d and it decays exponentially inn
sbecause of the compact support functionsd.

The following result holds.
Lemma 6.1: Assume that the renormalized propagators up to scale n−1 can be bounded as

ug,
fn,gu ø C1

−12bn, s6.11d

for some positive constants C1 and b. Then for all n8øn−1 the number Nn8sud of lines on scale
n8 in u is bounded by

Nn8sud ø K2−n8/t o
vPEBsud

unvu, s6.12d

for some positive constant K. If u«u,«0, with «0 small enough, then for all n8øn one has

uMfn8gsx;«du ø D1u«u3e−D22n8/t
, u]xM

fn8gsx;«du ø D1u«u3e−D22n8/t
, s6.13d

FIG. 14. Lower order contributions to the counterterm arising from self-energy graphs of orderk=1 andk=3. Thesdashedd
external lines do not enter into the definition of self-energy graph, and they have been drawn only with the aim of helping
to visualize the structure of the self-energy graph.
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for some C1-independent positive constants D1 and D2. Only the constant D1 depends onb. The
constant«0 can be written as«0=C1C2

−bC3, with C2 and C3 two positive constants independent of
b and C1.

Proof: The proof can be easily adapted from the proofs of Lemma 1 and Lemma 2 of Ref. 8.j

So we are left with the problem of proving that the renormalized propagators satisfy the
boundss6.11d. To this end let us introduce the notation

Fsxd = F0sxd + c1s«d« + c2s«,xd«2x, F0sxd = ixs1 + i«xd, s6.14d

with x=v ·n and the functionsc1s«d andc2s« ,xd such thatc1s«d=c+c3s«d«, with cÞ0, and the
functions uc2s« ,xdu and uc3s«du bounded by a constantc8 uniformly sin « and xd. Recall thatg
=minh1,ucuj andC0,g /2.

Fix lP f0,1g. Set BRs0d=h«PC : u«u,Rj and DR,l=h«=a+ ibPBlRs0d : uauùlubuj ssee Fig.
15d. The following result refines Lemma 5.2.

Lemma 6.2: Given0,R,1/4C0, let CR be defined as in Lemma 5.2. For all«PCR and all
x one hasuF0sxduùminhC0, uxuj /2, while for all «PDR,l one hasuF0sxduùluxu /2.

Proof: Write «=a+ ib, so thatuF0sxdu= uxuÎs1−bxd2+saxd2. For «PCR setA=1−ÎC0R. If uxu
ùC0, for u1−bxuøA one hasuF0sxduù uax2uùb2x2/2RùC0/2, while for u1−bxuùA one has
uF0sxduùAuxuù uxu /2ùC0/2. If uxuøC0, for u1−bxuøA one hasuF0sxduù uax2uùC0/2ù uxu /2,
while for u1−bxuùA one hasuF0sxduùAuxuù uxu /2. For «PDR,l set A=1/2, onefinds uF0sxdu
ùluxu /2. j

Then the following result holds.
Lemma 6.3: Set x=v ·n and assumeuxuøC0. Then if R is small enough one hasuFsxdu

ùlguxu /8 for all «PDR,l.
Proof: Set F1sxd=F0sxd+c« and «=a+ ib. Then F1sxd= isx+bsc−x2dd+asc−x2d, and uFsxdu

ù uF1sxdu−c8u«u2s1+uxud. If ux+bsc−x2duù uxu /2 and ubcuù4uxu one has uF1sxduù ucuÎb2+a2/2
;uc«u /2, so that uFsxduù uc«u /4ù ucbu /4ù uxu. If ux+bsc−x2duù uxu /2 and ubcuø4uxu one has
uF1sxduùg maxhÎx2+a2, u«u /4j /2, so thatuFsxduùgÎx2+a2/4ùguxu /4. If ux+bsc−x2duø uxu /2 one
has ubsc−x2duù uxu /2 and ubcuø3uxu, which give u«u2ø3u«uÎa2+x2/gø3lRsuau+ uxud /g, and
uF1sxduù uasc−x2duù uasc−x2du /2+sluxu /2d /2ùglsuau+ uxud /4, so thatuFsxduùgluxu /8. j

Then we can come back to the bounds of the renormalized propagators, and prove the fol-
lowing result.

Lemma 6.4: If R is small enough for all nù0 and all «PDR,l the renormalized propagators
gfngsx;«d satisfy the bounds (6.11) withb=1 and C1=lC4, with a l-independent constant C4.

Proof: The proof can be done by induction onn. For n=0 the bound is trivially satisfied by
Lemma 6.2. Assuming that the bounds hold for alln8,n then we can apply Lemma 6.1 and
deduce the boundss6.13d. In turn this implies that the renormalized propagators on scalen can be
written asgfngsx;«d=1/Fsxd, with Fsxd written as ins6.14d for c=−2c0 fcf. s6.8dg, and for suitable
functionsc1s«d and c2s« ,xd, depending onn and satisfying the properties listed afters6.14d for
some n-independent constantc8. Then by Lemma 6.3 the renormalized propagatorsgfngsx;«d
satisfy the same boundss6.11d with C1=Osld for «PDR,l. j

Of course for real« the bounds6.11d is trivially satisfied, withC1=2−1C0. This follows from
Lemma 6.4 withl=1, but it is obvious independently of that result because one hasc1s«d=c«
+Os«2d, with c=−2c0PR. If we want to take also complex values of«, we have analyticity in a

FIG. 15. RegionDR,l in the complex«-plane forl=tanp /6 sad and forl=1 sbd. One can writel=tanw, wherew is the
angle between the imaginary axis and the linea=lb.
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domainD which can be written asDR=ølPf0,1gDR,l. One can easily realize that the regionCR is
contained inside the domainDR scf. Fig. 16d. Fix l=tanw, with wP f0,p /4g ssee Fig. 15d, for all
suchw the line which forms an anglew with the imaginary axisssee Fig. 15d and passes through
the origin intersects the boundary ofDR at a distanceR tanw from the origin and the boundary of
CR at a distanceRsinw. Hence we have an analyticity domain of the same form as in the case of
periodic forcing terms. Nevertheless the results found so far do not allow us to obtain Borel
summability, notwithstanding a circular analyticity domainCR is found, as the bounds which are
satisfied inside the regionCR are not uniform in« sbecause of the dependence onld.

Note thatb=1 in s6.11d is the same exponent appearing in the bounds of the propagators in
the formal expansion. To obtain uniform bounds in a domainCR, for some value ofR, we must
allow larger values ofb. The following result is obtained.

Lemma 6.5: Set x=v ·n and assumeuxu,C0. If R is small enough one hasuFsxdu.guxu2/2 for
all «PCR.

Proof: SetF1sxd=F0sxd+c« and«=a+ ib. If ux+bsc−x2duø uxu /2 one hasubsc−x2duù uxu /2 and
3uxuù ubcuù uxu /4. Hence uasc−x2duùb2uc−x2u /2Rù uxu2/16Rucu, so that one hasuF1sxduù uasc
−x2duù uacu /4+uasc−x2du /2ùgsuau+x2/16Rcd /2. On the other hand, one hasu«u2=a2+b2øa2

+9x2/c2, so thatuFsxduù uF1sxdu−2c8u«u2ù uF1sxdu /2ùgx2/2. The caseux+bsc−x2duù uxu /2 can be
discussed as in Lemma 6.3, and it givesuFsxduùguxu /4. j

Then we can prove the following result by proceeding exactly as in the proof of Lemma 8.
Lemma 6.6: If R is small enough for all nù0 and all «PCR the renormalized propagators

gfngsx;«d satisfy the bounds (6.11) withb=2 and C1 a suitable constant.
The advantage of Lemma 6.4 with respect to Lemma 6.6 is that the bound ofR is better, which

means that the domainCR contained insideDR in the first case is larger than the domainCR of the
second case. The advantage of Lemma 6.6 is that it allows uniform bounds inside the correspond-
ing domainCR to be obtained. Nevertheless, because of the factorb=2, a boundABkk!2t is
obtained for the coefficientsxskdstd of the formal solution, and a result analogous to Proposition 2
can be proved also for the present case, withN!2t replacingN!; we do not give the details as the
proof is identical. Hence the bounds that we have are not good enough to obtain Borel summa-
bility in the case of quasiperiodic forcing terms, a situation strongly reminiscent of that encoun-
tered in Ref. 6. In fact at best one can sett=1 for d=2 swhich, as noted above, corresponds to a
set of Diophantine vectors of zero measure but everywhere densed, but this in turn implies a bound
proportional toN!2, which is not enough to apply Nevanlinna’s theorem.

The conclusion is that the resummed series

xstd = o
k=0

`

mkxfkgstd, s6.15d

where the coefficientsxfkgstd are given by

FIG. 16. RegionsDR andCR in the complex«-plane,DR is the entire grey region, whileCR is the region contained inside
the two circles.
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xfkgstd o
nPZd

ein·vtxv
fkg, s6.16d

with xn
fkg defined bys6.6d, is well defined and converges. In general it is not obvious—even if

expected—thats6.15d solves the equation of motions1.1d. Indeed, unlike the case of periodic
forcing terms, we have no result, such as Nevanlinna’s theorem on Borel summability, which we
can rely upon in order to link the resummed series to the formal series. Therefore we must check
by hand that by expanding in powers of« the resummed series we recover the formal power series
s6.3d. This means that the resummed series, which in principle could be unrelated to the equation
of motion sbecause of the way it has been definedd, in fact solves such an equation. Such a
property can be proved by reasoning as in Ref. 8, Sec. 8. Again we omit the details, which can be
easily worked out.

We can summarize our results in the following statement.
Theorem 6.7: Given the equation (1.1) with f analytic in its argument andv satisfying the

Diophantine condition (6.1), there exists«0 such that for all real« with u«u,«0 there is a quasi-
periodic solution with the same frequency vector as the forcing term. Such a solution extends to a
function analytic in the domainDR shown in Fig. 16, with R=«0.

The conclusion is that the summation criterion described here gives a well defined function,
which is quasiperiodic and solves the equation of motions1.1d, but the criterion is not equivalent
to Borel summability any more. In particular the issue of whether such quasiperiodic solutions are
unique or not remains open, as in Ref. 6.

VII. EXTENSION TO MORE GENERAL NONLINEARITIES

When considering the equations1.5d the formal analysis of Sec. IIsand of Sec. VI in the case
of quasiperiodic forcing termsd can be performed essentially in the same way. If we write

gsxd = o
p=0

`
1

p!
gpsx − c0dp, gp =

dpg

dxpsc0d,

s7.1d

fgsxdgn
skd = o

p=0

`
1

p!
gp o

k1+¯+kp=k

n1+¯+np=n

xn1

sk1d
¯ xnp

skpd, k ù 0,

then the recursive equations fornÞ0 are

xn
s0d = 0,

xn
s1d =

fn

iv · n
, s7.2d

xn
skd = − siv · ndxn

sk−1d −
1

iv · n
fgsxdgn

sk−1d, k ù 2,

while the compatibility condition becomesfgsxdg0
skd= f0dk,0 for kù0. The latter fork=0 gives

gsc0d= f0, while for kù1 gives g8sc0dck+Rsc0,c1,… ,ck−1d=0, where the function
Rsc0,c1,… ,ck−1d depends on the coefficients to all ordersk8,k, hence, in particular, on the
constantsc0,… ,ck−1. Therefore the constantsck can be fixed iteratively as
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ck = −
1

g8sc0d
Rsc0,c1,…,ck−1d, s7.3d

provided that one hasg8sc0dÞ0, so that under the conditionss1.6d one has the formal solubility of
the equations of motions1.1d. Note that the first condition ins1.6d requiresf0PRansgd, and if such
a condition is satisfied then the condition on the derivative is a genericity condition. Note also that
the class of functionsgsxd which are not allowed depends onf smore precisely on its averagef0d.
For instance an explicit example of a function which does not satisfys1.6d is gsxd=3x2−2x3 if
f0=1.

The graphical representation differs from that of the preceding sections as now the number of
lines entering a vertexv can assume any valuesvPN, and if v¹V0sud the corresponding node
factor is

Fv = −
«

sv!
gsv

, s7.4d

which is bounded proportionally to some constantG to the powersv. Since ovPVsudssv−1d
= uEsudu−1øk−1 sby Lemma 4.1d this produces an overall constantG2k in the tree value. Also the
study of the convergence of both the formal series and the resummed series can then be performed
as in the previous case, and no further difficulty arises. The constantc appearing afters6.14d
becomes −g8sc0d, instead of −2c0, so that still one hascÞ0 by the assumptions1.6d.
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A time discretization that preserves the super-integrability of the Calogero model is
obtained by application of the integrable time discretization of the harmonic oscil-
lator to the projection method for the Calogero model with continuous time. In
particular, the difference equations of motion, which provide an explicit scheme for
time integration, are explicitly presented for the two-body case. Numerical results
exhibit that the scheme conserves all thes=3d conserved quantities of thestwo-
bodyd Calogero model with a precision of the machine epsilon times the number of
iterations. ©2005 American Institute of Physics.fDOI: 10.1063/1.1931043g

I. INTRODUCTION

Numerical analysis of dynamical systems has great importance and a wide variety of appli-
cations in science and engineering. The elaboration of schemes for numerical analysis has a long
and continuous history of studies as well as a rich accumulation of techniques. Whenever one
applies numerical analysis to the equations of motion, one must discretize the time evolution of the
dynamical system that is originally described by differential equations because of the lack of the
notion of infinity in numerical analysis. This leads to difference equations, which do not usually
describe the same dynamical system as the original one: time discretization is typically accompa-
nied by modification of the original system, which may cause a significant difference in the
behavior of the solution from that of the original system, particularly after integration over a long
period. Understanding and controlling such modifications are thus important in the quest for more
accurate long-time integration in numerical analysis.

The symplectic integration methodssee, for instance, Refs. 1–3d, or the symplectic integrator,
is one of the time discretizations that was invented in such a quest. Given a HamiltonianHs0d, it is
designed so that its one-steps=td time evolution gives the exact one-step time evolution of a

modified HamiltonianH̃ªHs0d+tHs1d+t2Hs2d+¯ . Since the modified Hamiltonian is conserved
by the flow of the symplectic integrator, the fluctuation of the value of the original Hamiltonian
Hs0d, i.e., the total energy of the system with continuous time, is bounded, which is far more
favorable than unbounded increase or decrease of the total energy that one usually observes in
other nonsymplectic discretizations. This is the reason why the symplectic integration method
shows better accuracy even after long-time integration.
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bdElectronic mail: luc.vinet@mcgill.ca
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However, even the symplectic integration method does not usually have modified constants of
motion for all the constants of motion of a system, which often causes secular increase or decrease
of the values of the constants of motion after long-time integration. For example, nonexistence of
the modified constants of motion is proved for the two super-integrable models discretized by the
symplectic integrator: the two-dimensional Harmonic oscillator with integer frequency ratiosex-
cept for the isotropic cased and the two-dimensional Kepler problem.4,5 The orbits generated by the
symplectic integrator are not closed, though those of the exact analytic solutions are closed,
indeed.

Thus the following question naturally arises: are there any discretization schemes that pre-
serve thessuper-dintegrability of ssuper-dintegrable models? Actually, an extensive collection of
the known integrable discretizations of integrable models is now available in the monograph6 that
was published in recent years. However, the super-integrable discretization of super-integrable
models has not been studied that far yet. Quite recently, an affirmative answer to the question on
the super-integrable discretization is shown for the Kepler problem for two- and three-dimensional
cases,7,8 where the integrable discretization of the harmonic oscillator9 plays an essential role. The
above super-integrable discretization conserves all the constants of motion, i.e., the Hamiltonian,
the angular momentum and the Runge–Lenz vector, and generates a sequence of discrete points on
the orbit of the exact analytic solution of the Kepler problem. And, of course, the orbit with the
eccentricity less than unity is closed.

The purpose of this paper is to present a super-integrable discretization of the Calogero
model,10,11

H ª

1

2o
i=1

N

spi
2 + v2xi

2d +
1

2 o
i,j=1

iÞ j

N
a2

sxi − xjd2 . s1.1d

The real-valued quantitiespi, xi, v, anda in the Hamiltonian are the canonical momentum and
coordinate of theith particle, the strength of the external harmonic confinement and the interaction
parameter, respectively. The Calogero modelsvÞ0d with N degrees of freedomscorresponding to
theN-body cased is maximally super-integrable in the sense that it has 2N−1 constants of motion
which are independent of each other.12 The super-integrable structure of the Calogero model is
built up by the Lax formulation,13,14 with which the eigenvalue problem of an oscillating Hermit-
ian matrix15 is intrinsically involved. We shall present a discretization that preserves the above
super-integrable structure of the Calogero model for the generalN-body case. It gives, in particu-
lar, the explicit form of the difference equations of motion of the Calogero model for the two-body
case that conserves all the three constants of motion as

D+x1,n =
1

1 +
v2Dt2

4

Fp1,n −
v2

2
x1,nDtG +

1

1 +
v2Dt2

4

2a

x1,n − x2,n
Mi,nDt − 231 −

v2Dt2

4

1 +
v2Dt2

4

x1,n

+
1

1 +
v2Dt2

4

p1,nDt4Mr,nDt + 31 −
v2Dt2

4

1 +
v2Dt2

4

sx1,n + x2,nd +
1

1 +
v2Dt2

4

sp1,n + p2,ndDt4
3sMi,n

2 + Mr,n
2 Dt2dDt,
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D+p1,n = −
v2

1 +
v2Dt2

4

Fx1,n +
1

2
p1,nDtG +

1 −
v2Dt2

4

1 +
v2Dt2

4

2a

x1,n − x2,n
Mi,n − 231 −

v2Dt2

4

1 +
v2Dt2

4

p1,n

−
v2

1 +
v2Dt2

4

x1,nDt4Mr,nDt + 31 −
v2Dt2

4

1 +
v2Dt2

4

sp1,n + p2,nd −
v2

1 +
v2Dt2

4

sx1,n + x2,ndDt4
3sMi,n

2 + Mr,n
2 Dt2dDt,

D+x2,n = uD+x1,nu1↔2, D+p2,n = uD+p1,nu1↔2, s1.2d

with

Mi,n ª
a

Î4a2Dt2 + Yn
2
, Mr,n ª

2a2

4a2Dt2 + Yn
2 + Yn

Î4a2Dt2 + Yn
2
,

Yn ª F1 −
v2Dt2

4
Gsx1,n − x2,nd2 + sp1,n − p2,ndsx1,n − x2,ndDt,

wherexi,n, pi,n, i =1,2, are thecoordinate and the momentum of theith particle at thenth discrete
time. The symbolD+ denotes the advanced time difference defined by

D+An ª
An+1 − An

Dt
, s1.3d

for an arbitrary variableAn se.g.,An=xi,n,pi,nd with the discrete timen.
The paper is organized as follows. In Sec. II, we present a brief summary of the projection

method15 sfor review, see Refs. 16–18, for exampled, which gives a solution to the initial value
problem of the Calogero model with continuous time. The Lax equations for the Calogero model
provide a map from the Calogero model into the matrix-valued harmonic oscillator and also play
an essential role in our discretization. Applying the integrable discretization for the harmonic
oscillator,9 we discretize the projection method in Sec. III. A discrete analogue of the Lax equa-
tions, which we call the dLax equations, is derived as a natural consequence of the discretization.
In Sec. IV, we present the explicit forms of the dLax equations of the Calogero model for the
two-body case, which are equivalent to the difference equations of motions1.2d. They provide an
explicit scheme for the time integration of the model. Numerical results obtained by our integrable
discretization as well as by two other discretization schemes, namely, the symplectic Euler and
energy conservation methods, are also presented. Section V is dedicated to the summary and
concluding remarks.

II. PROJECTION METHOD

In terms of the Lax pair for the Calogero–Moser model,14

Lijstd ª pistddi j +
ia

xistd − xjstd
s1 − di jd,
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Mijstd ª o
ksÞid

ia

sxistd − xkstdd2di j −
ia

sxistd − xjstdd2s1 − di jd, i, j = 1,2, . . . ,N, s2.1d

as well as a diagonal matrix

Dstd ª diagsx1std,x2std, . . . ,xNstdd,

the canonical equation of motion for the Calogero models1.1d can be cast into the Lax form,

dL

dt
= fL,Mg − v2D,

dD

dt
= fD,Mg + L,

wherefA,BgªAB−BA, or equivalently,

dL±

dt
= fL±,Mg ± ivL±, s2.2d

where

L±std ª Lstd ± ivDstd. s2.3d

The Lax equationss2.2d allow the following relation between the products ofL+ andL− and
the Hamiltonian

d

dt
ssL+dl1sL−dm1

¯ d = fsL+dl1sL−dm1
¯ ,Mg + ivsl1 + ¯ − sm1 + ¯ ddsL+dl1sL−dm1

¯ ,

for any non-negative integersl1,m1, . . . . Iterated use of the above formula yields

d

dt
Sp

i

TrSp
j

→
sL+dl i,jsL−dmi,jDD = o

i
p
iÞk

TrSp
j

→
sL+dl i,jsL−dmi,jDTrFp

l

→
sL+dlk,lsL−dmk,l,MG

+ o
k,l

slk,l − mk,ldp
i

TrSp
j

→
sL+dl i,jsL−dmi,jD

= o
k,l

slk,l − mk,ldp
i

TrSp
j

→
sL+dl i,jsL−dmi,jD ,

where

p
j

→
Aj ª A1A2 ¯ .

Thus the constants of motion of the Calogero model can be constructed by taking the trace of any
products ofL+ andL− of the following form:

p
i

TrSp
j

→
sL+dl i,jsL−dmi,jD, if o

i,j
l i,j = o

i,j
mi,j , s2.4d

which includes the constants of motion given in Ref. 12. Considering the casea=0 where the
matricesL± become diagonal, one can confirm the quantities given Eq.s2.4d above include at least
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sand also at mostd 2N−1 constants of motion that are independent of each other. For example, one
confirms

C1 ª Tr L+ Tr L− = So
i=1

N

piD2

+ v2So
i=1

N

xiD2

,

I1 ª Tr L+L− = 2H, I2 = TrsL+d2TrsL−d2, s2.5d

are constants of motion of the Calogero models1.1d that are independent of each other. Note that
the relations satisfied by the Lax pairs19,20

fL+,L−g = − 2ivfL,Dg = − 2vasT − Ed, Tij ª 1, Eij ª di j ,

Mtf1, . . . ,1g = 0, f1, . . . ,1gM = 0, f⇔TM = MT = 0g, s2.6d

particularly the relations in the second line of Eq.s2.6d which we call the sum-to-zero property,
have played a crucial role in the quantum analogue of the Lax formulation.

The initial value problem of the Calogero model can be solved by the projection method,15 in
which the Lax formulation presented above plays a crucial role. This method can be formulated in
an analogous way to the Dirac picture in the time-dependent perturbation theory of quantum
mechanics. Let us introduceLD

± , theL± matrix in the “Dirac picture” by

L±std ¬ e±ivtLD
± std, L±s0d = LD

± s0d. s2.7d

Then the Lax equations2.2d is rewritten as

dLD
±

dt
= fLD

± ,Mg,

which has the same form as the Heisenberg equation in the Dirac picture with the time-dependent
perturbationMstdªMsx1std ,x2std , . . . ,xNstdd.

The above equation allows the formal solution as

LD
± std = U†s0,tdL±s0dUs0,td, s2.8d

where the time-evolution unitary matrixUst8 ,td is given by the Dyson series ofMstd,

Ust8,td ª o
k=0

` E
t8

t

dtkE
t8

tk

dtk−1¯ E
t8

t2

dt1Mst1d ¯ Mstk−1dMstkd, s2.9d

which has the semigroup property,

Us0,td ª Ufxs0d,ps0d;a,v;tg = Ufxs0d,ps0d;a,v;t8gUfxst8d,pst8d;a,v;t − t8g = Us0,t8dUst8,td,

U†s0,td = Ust,0d. s2.10d

Note thatUst8 ,td has a constant eigenvectortf1, . . . ,1g whose eigenvalue is unity,

Ust8,tdtf1, . . . ,1g = tf1, . . . ,1g, f1, . . . ,1gUst8,td = f1, . . . ,1g ⇔ Ust8,tdT = TUst8,td = T.

s2.11d

This property ofUst8 ,td is a consequence of the sum-to-zero property of the matrixM in Eq. s2.6d.
Substitution of the formal solutions2.8d into Eqs.s2.3d ands2.7d gives the following solution

of the initial value problem of the Lax equations2.2d:
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Dstd = U†s0,td
eivtL+s0d − e−ivtL−s0d

2iv
Us0,td,

Lstd = U†s0,td
eivtL+s0d + e−ivtL−s0d

2
Us0,td, s2.12d

which means that the eigenvalues of the time-dependent Hermitian matrixfeivtL+s0d
−e−ivtL−s0dg /2iv give the solution of the initial value problem of the Calogero model. The time-
evolution unitary matrixUs0,td, which has been formally introduced as the Dyson series ofMstd,
is given here as the diagonalizing matrix.

The unitary matrixUs0,td provides a map of the Calogero model into the matrix-valued
harmonic oscillator. Let us introduce the matrices

X±std ª Us0,tdL±stdU†s0,td = Pstd ± ivQstd,

Pstd ª Us0,tdLstdU†s0,td, Qstd ª Us0,tdDstdU†s0,td. s2.13d

SubstitutingX± into the Lax equations2.2d, we have

dX±

dt
= ± ivX±, s2.14d

which are equivalent to the equations of motion of the harmonic oscillator,

dP

dt
= − v2Q,

dQ

dt
= P. s2.15d

Thus we confirm that the Lax equations of the Calogero models2.2d can be mapped to the
equations of motion of the matrix-valued harmonic oscillator, Eqs.s2.14d ands2.15d. Though the
Hermitian matricesPstd andQstd can possess 2N2 parameters for their initial values, their defini-
tions s2.13d introduce the restriction in the initial values,

Ps0d = Ls0d, Qs0d = Ds0d, s2.16d

whose number 2N is the same as that of the Calogero model. The solution of the initial value
problem of the above equations of motion is given by

Qstd = Ds0dcosvt +
Ls0d

v
sinvt, Pstd = Ls0dcosvt − vDs0dsinvtf⇔X±std = e±ivtL±s0dg.

s2.17d

Substitution of the above solutions2.17d into the definition ofPstd andQstd in Eq. s2.13d repro-
duces the solution of the initial value problem of the Calogero models2.12d. In particular, the
coordinates of the Calogero model is given by the eigenvalues of the matrix-valued harmonic
oscillatorQstd in Eq. s2.17d. That is the essence of the projection method.

The restrictions on the initial valuess2.16d can be explained in terms of the constraints on the
variablesQstd andPstd. From Eqs.s2.6d and s2.13d, one can derive

fQstd,Pstdg = Us0,tdfDstd,LstdgU†s0,td = iaUs0,tdsT − EdU†s0,td.

By use of the property of the time-evolution unitary matrixs2.11d, one obtains

fQ,Pg = iasT − Ed, s2.18d

which posesNsN−1d constraints on the “unconstrained” variablesQstd and Pstd given by two
Hermitian matrices whose off-diagonal elements are pure imaginaries, i.e.,
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Qijstd ª qiistddi j + iqijstd, Pijstd ª piistddi j + ipijstd,

qiistd, qijstd, piistd, pijstd P R, qijstd = − qjistd, pijstd = − pjistd. s2.19d

The above restrictions2.19d is consistent with the solution of the initial value problems2.17d. The
number of the independent variables inQstd and Pstd given by Eq.s2.19d is NsN+1d. One thus
reproduces the number of the initial values 2N as the degrees of freedom of the constrained
system,NsN+1d−NsN−1d=2N. The transformations2.13d thus should be interpreted as a map of
the Calogero model into the harmonic oscillators2.15d of the Hermitian matrix given by Eq.s2.19d
with the constraintss2.18d.

III. INTEGRABLE DISCRETIZATION

As we have discussed in the preceding section, the equations of motionsthe Lax equationd of
the Calogero model can be mapped to those of the matrix-valued harmonic oscillator. We thus
begin with the integrable discretization of the matrix-valued harmonic oscillator, whose difference
equations of motion are given as

D+Qn = 1
2sPn+1 + Pnd,

D+Pn = − 1
2v2sQn+1 + Qnd, s3.1d

where Qn and Pn are Hermitian matrices whose initial values are fixed asQ0=Ds0d and P0

=Ls0d so as to relate them with the difference analogue of the Calogero model. The difference
equations given above have the same form as those for one-dimensional harmonic oscillator
discretized by the energy conservation scheme,9 which is nothing but the implicit midpoint rule
giving a symplectic integration method of order 2ssee Theorem VI.3.4 in Ref. 1d.

As in Eq. s2.13d, we introduce the variables

Xn
±
ª Pn ± ivQn.

This brings the difference equations of motion into

D+Xn
± = ± 1

2ivsXn+1
± + Xn

±d,

which is equivalent to

s1 7
1
2ivDtdXn+1

± = s1 ± 1
2ivDtdXn

±. s3.2d

Defining the rescaled time step by

Dt ª
2

v
arctan

vDt

2
, s3.3d

the recursion relations3.2d is rewritten as

Xn+1
± =

1 ±
ivDt

2

1 7
ivDt

2

Xn
± = e±ivDtXn

±.

Thus the solution of the initial value problem of the discrete harmonic oscillator is

Xn
± = e±invDtX0

±,

or
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Qn = Ds0dcosnvDt +
1

v
Ls0dsinnvDt,

Pn = Ls0dcosnvDt − vDs0dsinnvDt, s3.4d

in terms of Qn and Pn. The above solutions3.4d is exactly the same as that for the harmonic
oscillator with the continuous times2.17d up to time rescales3.3d.

The recursion relations3.2d provides us with an efficient way to construct the constants of
motion of the discrete harmonic oscillator. Consider an arbitrary product ofXn+1

+ and Xn+1
− like

sXn+1
+ dl1sXn+1

− dm1
¯, for l1, m1=0,1,2, . . . , andreverse the time for one discrete time step using the

recursion relations3.2d. Then one obtains

sXn+1
+ dl1sXn+1

− dm1
¯ = eivl1DtsXn

+dl1e−ivm1DtsXn
−dm1

¯ = eivsl1+¯−sm1+¯ddDtsXn
+dl1sXn

−dm1
¯ .

s3.5d

Taking the trace of the above relation, one obtains

TrSp
j

→
sXn+1

+ dl jsXn+1
− dmjD = expSivDto

k

slk − mkdDTrSp
j

→
sXn

+dl jsXn
−dmjD .

Thus one can construct constants of motion of the discrete harmonic oscillator in a way parallel to
what is done for the Calogero models2.4d by

p
i

TrSp
j

→
sXn

+dl i,jsXn
−dmi,jD, wheno

i,j
l i,j = o

i,j
mi,j

as well as the matrix-valued constants of motion by

sXn+1
+ dl1sXn+1

− dm1
¯ = sXn

+dl1sXn
−dm1

¯ ,

when l1+¯ =m1+¯ . In particular, the following quantity,

fXn
+,Xn

−g = − 2vasT − Edf=fX0
+,X0

−gg s3.6d

is conserved since it is a special case of the above matrix-valued constants of motion. Note that the
constants of motion of the matrix-valued harmonic oscillator with continuous time can be given by
the same formulas.

As we have confirmed, the solution of the harmonic oscillator with discrete times3.4d and that
with the continuous times2.17d agree up to time rescales3.3d. Thus the eigenvalue ofQn must
trace the same trajectory of the Calogero model with continuous time. We shall discuss it more in
detail.

Since the relationsQn=QsnDtd andPn=PsnDtd hold as a consequence of Eqs.s2.17d, s3.3d,
and s3.4d, we also have analogous relations withs2.13d for Qn andPn,

Dn = Un
†QnUn = DsnDtd, Ln = Un

†PnUn = LsnDtd,

sDndi j ª xi,ndi j , sLndi j ª pi,ndi j +
ia

xi,n − xj ,n
s1 − di jd, s3.7d

where the unitary matrixUn is also given by the corresponding matrix in the theory for the model
with continuous time

Un = Us0,nDtd. s3.8d

IntroduceLn
± in analogy withL± in Eq. s2.3d, i.e.,
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Ln
±
ª Ln ± ivDn = Un

†Xn
±Un s3.9d

and substitute it into the recursion relations3.2d. Then one obtains

s1 7
1
2ivDtdUn+1Ln+1

± Un+1
† = s1 ± 1

2ivDtdUnLn
±Un

†.

By multiplying with Un
† on the left andUn+1 on the right, one obtains a recursion relation of the

matricesLn
±,

s1 7
1
2ivDtdSnLn+1

± = s1 ± 1
2ivDtdLn

±Sn,

Sn ª Un
†Un+1, s3.10d

which we shall call the discrete Lax equations, or in short, the dLax equations. They will play an
essential role in the construction of the constants of motion for the discrete time model. From the
definition of the unitary matrixSn and using the semigroup property of the time-evolution unitary
matrix Ust8 ,td s2.10d, one obtains

Sn ª Un
†Un+1 = UsnDt,sn + 1dDtd = Snfxn,pn;a,v;Dtg,

Un = S1S2 ¯ Sn−1, U0 = E. s3.11d

This indicates thatSn is the one-step time-evolution matrix. We should note thatthe discrete
inhomogeneous Lax’s equationintroduced for the Calogero–Moser modelfthe Hamiltonians1.1d
with v=0g in Ref. 21 inspired us with the above recursion equations3.10d. However, the explicit
forms of the Lax pair and the derivation of the recursion relation of this paper are different from
those in Ref. 21.

The recursion relations3.10d can be interpreted as the discrete time analogue of the Lax
equation of the Calogero model because of the following two reasons. The first reason is that the
dLax equationss3.10d reduces to the Lax equations of the Calogero models2.2d in the continuous
time limit, Dt→0. The other reason is that the dLax equations also conserve the constants of
motion of the Calogero model with continuous time. We shall discuss them more in detail.

From the Taylor expansions ofLn+1=Lssn+1dDtd and Sn=Ust8=nDt ,t=sn+1dDtd together
with the expression in the formal Dyson seriess2.9d at t=nDt, one obtains

Ln+1
± , Ln

± +
dLn

±

dt
Dt + OsDt2d,

Sn , E + MnDt + OsDt2d, Mn ª MsnDtd. s3.12d

Substitution of the above expressions into the dLax equationss3.10d yields

S1 7
1

2
ivDtDsE + MnDtdSLn

± +
dLn

±

dt
DtD = S1 ±

1

2
ivDtDLn

±sE + MnDtd.

Dividing the above relation byDt and taking the limitDt→0, one gets

dLn
±

dt
= fLn

±,Mng ± ivLn
±,

which is nothing but the Lax equation of the Calogero model with continuous time.
In a way parallel to the construction of the constants of motion of the discrete harmonic

oscillator, one can construct the constants of motion of the dLax equationss3.10d. Using the
definition s3.9d of Ln

± in Eq. s3.5d and multiplying byUn
† andUn+1, respectively, from the left and

the right, one gets
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SnsLn+1
+ dl1sLn+1

− dm1
¯ = eivl1DtsLn

+dl1e−ivm1DtsLn
−dm1

¯ Sn = eivsl1+¯−sm1+¯ddDtsLn
+dl1sLn

−dm1
¯ Sn.

Thus one has

sLn+1
+ dl1sLn+1

− dm1
¯ = eivsl1+¯−sm1+¯ddDtSn

†sLn
+dl1sLn

−dm1
¯ Sn.

Since the trace of an arbitrary product of matrices is invariant under any cyclic change of the order
of the matrices, one has

TrSp
j

→
sLn+1

+ dl jsLn+1
− dmjD = expSivDto

k

slk − mkdDTrSp
j

→
sLn

+dl jsLn
−dmjD ,

which leads to

p
i

TrSp
j

→
sLn+1

+ dl i,jsLn+1
− dmi,jD = expSivDto

k,l
slk,l − mk,ldDp

i

TrSp
j

→
sLn

+dl i,jsLn
−dmi,jD .

One thus concludes that

p
i

TrSp
j

→
sLn

+dl i,jsLn
−dmi,jD s3.13d

gives the constant of motion of the dLax equationss3.10d when

o
i,j

l i,j = o
i,j

mi,j .

This is in complete agreement with the situation for the Calogero model with continuous time
s2.4d.

SinceLn
± should have the same form asL± for the continuous time model, the commutator

betweenLn
+ andLn

− also should be a constant matrix as in Eq.s2.6d. In the continuous time theory,
this constant matrix is associated with the nontrivial constraints of the matrix-valued harmonic
oscillator s2.18d. One can observe the same situations in our discrete time models3.10d. Substi-
tution of Eq.s3.9d into fLn

+,Ln
−g with the help of Eq.s3.6d yields

fLn
+,Ln

−g = Un
†fXn

+,Xn
−gUn = Un

†s− 2vasT − EddUn.

SinceUn and alsoSn are made from the time-evolution unitary matrixUst8 ,td as in Eqs.s3.8d and
s3.11d, they also have a constant eigenvectortf1, . . . ,1g whose eigenvalues are unity,

Un
tf1, . . . ,1g = tf1, . . . ,1g, f1, . . . ,1gUn = f1, . . . ,1g ⇔ UnT = TUn = T,

Sn
tf1, . . . ,1g = tf1, . . . ,1g, f1, . . . ,1gSn = f1, . . . ,1g ⇔ SnT = TSn = T. s3.14d

Thus one immediately obtains

fLn
+,Ln

−g = − 2vasT − Ed, s3.15d

using the propertys3.14d of Un. The relations3.15d is also equivalent to

fDn,Lng = iasT − Ed.

Note that Eq.s3.7d provides the most general form ofLn that satisfies the above relation together
with the diagonal matrixsDndi j =xidi j .
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IV. DIFFERENCE EQUATIONS OF MOTION

Though we have developed an integrable discretization for the Calogero model in the preced-
ing section, the difference equations of motion we have obtained is nevertheless a formal expres-
sion. An explicit expression forSn is necessary in order to obtain the dLax equations for the
Calogero model explicitly. To do this, we restrict the number of particles to two in the discussion
of the explicit form of theSn matrix.

From the dLax equationss3.10d, one obtains

Ln+1 ± ivDn+1ª Ln+1
± =

1 ± 1
2ivDt

1 7
1
2ivDt

Sn
†Ln

±Sn.

Solution of the above equations with respect toDn+1 andLn+1 are given by

Dn+1 =
1

2iv
Sn

†F1 + 1
2ivDt

1 − 1
2ivDt

Ln
+ −

1 − 1
2ivDt

1 + 1
2ivDt

Ln
−GSn,

Ln+1 =
1

2
Sn

†F1 + 1
2ivDt

1 − 1
2ivDt

Ln
+ +

1 − 1
2ivDt

1 + 1
2ivDt

Ln
−GSn. s4.1d

SinceDn+1 is diagonal,Sn diagonalizes

1 + 1
2ivDt

1 − 1
2ivDt

Ln
+ −

1 − 1
2ivDt

1 + 1
2ivDt

Ln
−.

Sn thus can be constructed from the eigenvectorsvi,n, i =1, . . . ,N of the above matrix. Normalized
eigenvectorssi,n that constituteSn=fs1,n¯sN,ng should have the following form,

si,n =
vi,n

o j=1

N
svi,nd j

⇒ o
j=1

N

ssi,nd j = 1 s4.2d

so as to satisfy the conditions3.14d. Ordering of the eigenvectorssi,n is uniquely determined by the
Taylor expansion ofSn s3.12d, or equivalently

lim
Dt→0

Sn = E. s4.3d

Considering the Eqs.s4.1d–s4.3d all together, one confirms that

Sn = E +
2aiDt

Yn − 2aiDt + Î4a2Dt2 + Yn
2F 1 − 1

− 1 1
G = E + siM i,nDt − Mr,nDt2dF 1 − 1

− 1 1
G

, E + MnDt sDt → 0d s4.4d

gives the explicit form of theSn matrix of the dLax equations for the Calogero model for the
two-body case. It is straightforward to verify that the dLax equationss3.10d with the aboveSn

matrix s4.4d yields the difference equations of motions1.2d shown in the introduction.
In order to confirm how well the dLax equationss3.10d with the Sn matrix s4.4d or the

difference equations of motions1.2d of the Calogero model with discrete time trace the behavior
of that with continuous time, the explicit expression of the analytic solution for the continuous-
time model is of great help, which is given by the eigenvalues ofQstd in Eq. s2.17d. But there is
another derivation. SinceUst8 ,td is related toSn according to Eq.s3.11d with t8ªnDt and t
ª sn+1dDt, one can obtain the explicit form ofUst8 ,td for the two-body case from that ofSn

s4.4d,
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Ust8,td = E +

2ai sinvst − t8d
v

Y −
2ai sinvst − t8d

v
+Î4a2 sin2 vst − t8d

v2 + Y2

F 1 − 1

− 1 1
G ,

Y ª sx1 − x2d2cosvst − t8d + sp1 − p2dsx1 − x2d
sinvst − t8d

v
. s4.5d

Substitution of the explicit forms ofUs0,td s4.5d andL±s0d for the two-body case into Eq.s2.12d,
one obtains the explicit form of the analytic solution of the two-body Calogero model with
continuous time,

x1std =
1

2
Fsx1,0+ x2,0dcosvt +

1

v
sp1,0+ p2,0dsinvtG

+
1

2sx1,0− x2,0d
Î4a2 sin2 vt

v2 + Fsx1,0− x2,0d2cosvt + sp1,0− p2,0dsx1,0− x2,0d
sinvt

v
G2

¬x1fx0,p0;a,v;tg,

p1std =
1

2
fsp1,0+ p2,0dcosvt − vsx1,0+ x2,0dsinvtg

+
1

2sx1,0− x2,0dÎ4a2 sin2 vt

v2 + Fsx1,0− x2,0d2cosvt + sp1,0− p2,0dsx1,0− x2,0d
sinvt

v
G2

3 F2a2 sin 2vt

v
+ Fsx1,0− x2,0d2cosvt + sp1,0− p2,0dsx1,0− x2,0d

sinvt

v
G

3 f− vsx1,0− x2,0d2sinvt + sp1,0− p2,0dsx1,0− x2,0dcosvtgG¬p1fx0,p0;a,v;tg,

x2std = ux1stdu1↔2, p2std = up1stdu1↔2. s4.6d

The above expressions are used to numerically display the exact analytic results in the following
figures. The initial values, the interaction parameter, the strength of the external harmonic well are
set atusx1,p1,x2,p2dut=0=s−4.00,5.00,2.00,1.00d, a=3.00 andv=0.314 throughout the numerical
calculation in the following.

Figure 1 presents the time evolution of the coordinates and the momenta generated by the
analytic solution and the difference equations of motions1.2d that gives the super-integrable
discretization. The time step in the super-integrable discretization is set atDt=1.00. The relation
between the timet and the number of iterationsn is given byn= t /Dt whereDt=0.991 903. The
time interval 2403 s2p /vd=4802ø tø4842=2423 s2p /vd corresponds to 4841ønø4881 in
terms of the number of iterations for the discrete case. As has been confirmed by the correspon-
dence between the matricesL and D for the super-integrable discretization and those for the
continuous time models3.7d, the solution of the discrete equations of motions1.2d gives a se-
quence of canonical variables that are “sampled” from the orbit of the exact analytic solution, i.e.,

xi,n = xist = nDtd, pi,n = pist = nDtd. s4.7d

Even though the coordinates and the momenta generated by the difference equations of motion
s1.2d are computed through sufficiently large numbers of iterations, they are in quite good agree-
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ment with those of the exact analytic solution, which gives a good numerical confirmation of the
correspondences4.7d.

One can confirm the precise agreement of the two solutions in a more reliable manner by
observing the relative errors of the constants of motion. Using Eq.s2.4d for Eq. s3.13dg, we have
already given three constants of motion of the Calogero models2.5d. Note thatC1 and I1 corre-
spond to the Hamiltonian for the center of mass and the Calogero Hamiltonian, respectively. Those
three constants of motion give a set of independent conserved quantities. But just for convenience,
we introduce a set of slightly modified constants of motion,

C1 = sp1 + p2d2 + v2sx1 + x2d2,

C2 ª 2I1 − C1 = sp1 − p2d2 + v2sx1 − x2d2 +
4a2

sx1 − x2d2 ,

C3 ª
I1
2 − I2

4v2 = sx1p2 − x2p1d2 +
2a2sx1

2 + x2
2d

sx1 − x2d2 . s4.8d

Note that C2 is the Hamiltonian for the relative coordinates andC3 can be interpreted as a
“modified quadratic angular momentum.” We use the aboveCi’s, i =1,2,3, fornumerical calcu-
lation.

Figure 2 presents the relative errors of the constants of motionCi
si
ªCi,n/Ci,0, n= t /Dt of the

discrete solutions given by the super-integrable discretizations1.2d. The offsetsf=si −1d31.0g are
added for convenience of presentation. Even though one sees the growth of errors caused by
round-off errors that is inevitable in any numerical analysis, one confirms that all the constants of
motion are conserved with a precision of the machine epsilon times the number of iterations. Thus

FIG. 1. The time evolution of the coordinates and the momenta generated by the analytic solution and the difference
equations of motions1.2d.
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one concludes that Fig. 2 presents a direct numerical verification of the fact that the difference
equation of motions1.2d preserves the super-integrability of the Calogero model.

Let us compare the above results with numerical demonstrations by two other discretizations.
The first one is the energy conservation schemessee pp. 159–161 in Ref. 1d,

D+xi,n = 1
2spi,n+1 + pi,nd,

D+pi,n = −
1

2
v2sxi,n+1 + xi,nd + o

j=1

jÞi

N
a2ssxi,n+1 − xj ,n+1d + sxi,n − xj ,ndd

sxi,n+1 − xj ,n+1d2sxi,n − xj ,nd2 , s4.9d

which keeps two constants of motionC1 andI1 sconsequently,C2d exactly for arbitrary number of
particlesN. As one can see, the schemes4.9d is an implicit scheme, which involves numerical
solution of simultaneous algebraic equations. The other scheme is the symplectic Euler method
ssee Theorem VI.3.3 in Ref. 1d,

D+xi,n = pi,n,

D+pi,n = − v2xi,n+1 + o
j=1

jÞi

N
2a2

sxi,n+1 − xj ,n+1d3 , s4.10d

which is an explicit scheme. Note thatD+ denotes the advanced time differences1.3d.
Figures 3 and 4 present the relative errorsCi

ec,se
ªCi,n/Ci,0, n= t /Dt of the discrete solution

given by the energy conservation schemesecd and the symplectic Euler methodssed for the two
body casesN=2d. We should note that we do not present all the data of each relative errors to keep
the size of the data file reasonable and that the offsetsf=si −1d31.0g are added for convenience of
presentation. The initial condition, the coupling parameter and the strength of the harmonic con-
finement are the same as those given for the numerical calculation that gives Figs. 1 and 2. The
discrete time step is set atDt=0.200 for these schemes.

One observes that the relative errors of the energiessC1
ec and C2

ecd calculated by the energy
conservation schemes4.9d remain within the order of the machine epsilons=10−16d times the
number of iterations=t /Dtd, which gives a numerical confirmation that the energies are conserved

FIG. 2. The relative errors of the constants of motionCi
si
ªCi,n/Ci,0, n= t /Dt, of the discrete solutions given by the

super-integrable discretizations1.2d.
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by the scheme. On the other hand, one also confirms that the relative errorssexcept forC1
ec and

C2
sed are much larger than the order of machine epsilon times the number of iteration, even though

one cannot observe growth of the relative errors in both two figures. These errors are not brought
about by the round-off errors at the order of machine epsilon times the number of iteration, but by
the schemes themselves. One perceives that there is a clear distinction between Fig. 2 or the
super-integrable discretizations1.2d and Figs. 3 and 4 or the energy conservation schemes4.9d and
the symplectic Euler methods4.10d.

One of the characteristics of the super-integrable system is that its bounded orbit is always
closed in the phase space and, in particular, in the configuration space. As presented in Fig. 5, the
orbit in thex1–x2 plane, or the “Lissajous plot” in other words, thus provides the distinctest way
of comparing the three discretizations. The time interval of the Lissajous plots is 0ø tø200,
which corresponds to 10 periods of motion. While the orbits generated by the energy conservation

FIG. 3. The relative errors of the constants of motion,Ci
ec
ªCi,n/Ci,0, n= t /Dt, of the discrete solution given by the energy

conservation schemes4.9d.

FIG. 4. The relative errors of the constants of motion,Ci
se
ªCi,n/Ci,0, n= t /Dt, of the discrete solution given by the

symplectic Euler methods4.10d.
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scheme and the symplectic Euler method are not closed, the orbit by the super-integrable discreti-
zation is always on that of the exact analytic solution, which is, of course, closed.

V. SUMMARY AND CONCLUDING REMARKS

The aim of the paper was to present a time discretization for the Calogero model that main-
tains its super-integrable structure. As discussed in Sec. II, the super-integrable structure of the
original Calogero model is provided by the Lax formulation and the projection method, which are
closely related to the equations of motion of the harmonic oscillator. With the help of the inte-
grable discretization of the harmonic oscillator,9 the Lax formulation and the projection method
are discretized. As a consequence, a time discretization that preserves the super-integrability of the
Calogero model is presented in Sec. III. In particular for the two-body case, an explicit form of the
difference equations of motions1.2d is obtained in Sec. IV. The difference equations give an
explicit scheme for time integration. Numerical results by the super-integrable discretizations1.2d
together with comparison with those by the energy conservation schemes4.9d as well as the
symplectic Euler methods4.10d are presented in five figures in Sec. IV, which give a intuitive
numerical verification of the super-integrability of the scheme.

Last, we should give several remarks on previous studies that are relevant to the present work.
In Refs. 21–23sand also in Ref. 6d, integrable discretizations of the rational Calogero–Moser
model sthe casev=0d and its trigonometric, elliptic and “relativistic”sa q-difference generaliza-
tion with respect to space coordinatesd generalizations were presented. The structure of the pro-
jection method also underlies these integrable discretizations, but the interaction parameter of the
continuous-time models and the time step of the discrete-time models are related with each other
in the integrable discretizations above. On the other hand, our discretization preserves not only the
integrability but also the super-integrablity of the Calogero model and both the time-stepDt and
the interaction parametera independently appear in the discrete equations of motion. Thus our
discretization is apparently different from that of the previous studies. The possibility of the
mutual penetration of the particles in the time-discrete model was reported in Ref. 21, which is
certainly unlike the continuous-time case. But the scheme given there is implicit and it could not
provide a way to verify this possibility. In our super-integrable discretization of the present work,

FIG. 5. The “Lissajous plots.”
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however, we gave an explicit scheme of the Calogero model for the two-body cases1.2d and
numerically observed in Fig. 1 that there was no penetration of the particles. And this observation
should be the same for the Calogero–Moser case corresponding to the limitv→0 of the present
work. The comparison of the two different discretizations together with additional consideration
on the super-integrability of the rational Calogero–Moser model24 will be presented in a separate
paper. Further studies on the trigonometric, elliptic and relativistic Calogero–Moser model along
the line of our super-integrable discretization of the Calogero model as well as to obtain explicit
forms of the difference equations of motion for generalN-body casesor at least three-body cased
is worthy of interest.
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We use algebraic Bäcklund transformationssBTsd to construct explicit solutions of
the modified 2+1 chiral model fromT23R to SUsnd, whereT2 is a 2-torus. Alge-
braic BTs are parametrized byzPC spolesd and holomorphic mapsp from T2 to
Grsk,Cnd. We apply Bäcklund transformations with carefully chosen poles andp’s
to construct infinitely many solutions of the 2+1 chiral model that aresid doubly
periodic in space variables and periodic in time, i.e., triply periodic,sii d homoclinic
in the sense that the solutionu has the same stationary limitu0 as t→ ±` and is
tangent to a stable linear mode ofu0 ast→` and is tangent to an unstable mode of
u0 as t→−`. © 2005 American Institute of Physics.fDOI: 10.1063/1.1929688g

I. THE 2+1 CHIRAL MODEL

A wave map J:R2,1→SUsnd is a critical point of the functional

EsJd =E
R3

iJ−1Jxi2 + iJ−1Jyi2 − iJ−1Jti2dx dy dt,

whereiji2=−trsj2d, andx, y, t are the standard space–time variables. The Euler–Lagrange equa-
tion of E is

sJ−1Jtdt − sJ−1Jxdx − sJ−1Jydy = 0. s1.1d

This equation is also calledthe 2+1 chiral model.
The Ward equationsor themodified2+1 chiral modeld is the following equation forJ:R2,1

→SUsnd:

sJ−1Jtdt − sJ−1Jxdx − sJ−1Jydy − fJ−1Jt,J
−1Jyg = 0. s1.2d

This equation is obtained by a dimension reduction and a gauge fixing of the self-dual Yang–Mills
equation onR2,2 scf. Ref. 11d. We call a solution of the Ward equation aWard map. The Ward
equation is completely integrable and many techniques from integrable systems can be used to
construct explicit solutions.8,10,12

We consider Ward maps satisfying the doubly periodic boundary condition in the space vari-
ables, i.e., Ward maps fromT23R to SUsnd, where T2=S13S1. Using the standard trick of
writing a second order differential equation as a first order system on the tangent bundle of the

adElectronic mail: daibo@math.pku.edu.cn
bdElectronic mail: cterng@math.uci.edu
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phase space, we can view the Ward equation as a dynamical system on the tangent bundle
TsC`sT2,SUsnddd. The goal of this paper is to construct periodic and homoclinic orbits of this
dynamical system.

A Ward mapJ:T23R→SUsnd independent oft is a harmonic map fromT2 to SUsnd. Equa-
tion for harmonic maps fromT2 to SUsnd is integrable. Techniques from integrable systems were
used to construct harmonic maps fromT2 to SUs2d by Hitchin sRef. 3d, and fromT2 to SUsnd by
Burstall,et al.1

A Ward map fromS13S13R to SUsnd independent of the second variable is a wave map
from S13R to SUsnd. Such wave maps were studied by Terng and Uhlenbeck in Ref. 9.

A solution u of an evolution PDE ishomoclinicif u tends to the same stationary solutionu0

as t→ ±` and is tangent to a stable linear mode ofu0 as t→ +` and is tangent to an unstable
linear mode ofu0 ast→−`. The existence of homoclinic orbits for a finite dimensional dynamical
system indicates the chaotic behavior of the systemscf. Ref. 4d. It is known that soliton equations
in one space and one time variablesfor example, sine-Gordon, KdV, and NLSd, viewed as dy-
namical systems on certain function spaces, admit homoclinic orbits. Shatah and Strauss6 proved
that there are homoclinic wave maps fromS13R to S2, and Terng and Uhlenbeck9 proved the
same result for wave maps fromS13R to any compact symmetric space. There have been many
works concerning whether homoclinic orbits persist under small perturbation of these soliton
equations in one space and one time variablescf. Refs. 5 and 7, and references thereind.

One result of this paper is the existence of infinitely many Ward maps fromT23R to SUsnd
that are periodic in time. In other words, we prove that there are infinitely many triply periodic
solutions of the Ward equation. Another result of this paper is to show that the Ward equation has
infinitely many homoclinic orbits. We give an outline of our method next.

The 1-soliton Ward maps fromR2,1 to SUsnd can be constructed as followsscf. Ref. 11d. Let
zPC \R be a constant,V=svi jd a meromorphic map fromC to the spaceMn3k

0 of rankk complex
n3k matrices,psx,y,td the Hermitian projection ofCn onto the subspace spanned by thek
columns ofVswd, where

w = x +
sz− z−1dy

2
+

sz+ z−1dt
2

.

Let p'= I −p. Then

Ĵz,Vsx,y,td = p'sx,y,td +
z̄

z
psx,y,td

is a solution of the Ward equation. It has constant determinant, so we can normalize it to get a
Ward map fromR2,1 to SUsnd,

Jz,Vsx,y,td = Sz

z̄
Dk/nSp'sx,y,td +

z̄

z
psx,y,tdD .

Jz,V sor Ĵz,Vd will be called aWard1-soliton. If all entries ofVswd are rational functions inw, then
Jz,V is a smooth Ward map and is asymptotically constant asusx,ydu→`. If all entries ofV are
elliptic functions of same periods, thenJz,V is a smooth Ward map fromT23R to SUsnd.

Algebraic Bäcklund transformationssBTsd for the Ward equation were constructed in Ref. 2.
These are transformations that generate new Ward maps from a given Ward map and 1-solitons
Jz,V by a simple algebraic method.

We apply algebraic Bäcklund transformations repeatedly to 1-solitons associated to elliptic
functions to construct infinitely many triply periodic Ward maps to SUsnd.

Note that if the image ofJ lies in an Abelian subgroup of SUsnd, then the Ward equation for
J becomes the linear wave equation. For example, letm be an integer, anda=diagsim,−imd. Then

062706-2 B. Dai and C.-L. Terng J. Math. Phys. 46, 062706 ~2005!

                                                                                                                                    



J0sx,y,td = exps− sx + ydad

is a doubly periodic, stationary Ward map, whose image lies in SOs2d.
We apply algebraic BTs 2k times toJ0 with carefully chosen poles and projections to construct

homoclinic Ward mapsJ2k from T23R to SUsnd, and prove thatJ2k tends tos−1dkJ0 asutu→` and
J2k are homoclinic.

This paper is organized as follows: We review the Lax pair and algebraic Bäcklund transfor-
mations for the Ward equation in Sec. II, and use elliptic functions to construct triply periodic
Ward maps in Sec. III. In the last section, we constructsid homoclinic Ward maps fromT23R to
SUsnd that tend to stationary solutions,sii d homoclinic Ward maps that tend to periodic solutions.

II. EXTENDED WARD MAPS AND BÄCKLUND TRANSFORMATIONS

The Ward equation is integrable in the sense that it can be written as the compatibility
condition for a system of linear equations involving a spectral parameterlPC. In fact, we have
the following theoremscf. Ref. 11d:

Theorem 2.1:Let J:R2,1→SUsnd be a Ward map, dx2+dy2−dt2 be the Lorentzian metric on
R2,1,

u =
t + y

2
, v =

t − y

2
, s2.1d

A=J−1Ju, and B=J−1Jx. Then the following linear PDE system is solvable forc :R2,13C
→GLsn,Cd:

sl]x − ]udc = Ac,

s2.2d
sl]v − ]xdc = Bc.

Conversely, supposeO is an open subset of0 in C and c :R2,13O→GLsn,Cd is a smooth
map so that

Aª slcx − cudc−1, Bª slcv − cxdc−1

are independent oflPO and c satisfies the Usnd-reality condition

csx,u,v,l̄d*csx,u,v,ld = I , s2.3d

Then

Jsx,y,td = csx,y,t,0d−1

is a smooth solution of the Ward equation and J−1Ju=A and J−1Jx=B.
A solution csx,y,t ,ld of s2.2d that satisfies theUsnd-reality condition s2.3d is called an

extended Ward mapandJ=cs¯ ,0d−1 the associated Ward map.
Given zPC and a Hermitian projectionp of Cn, let

hz,psld = p' +
l − z

l − z̄
p = I +

z̄− z

l − z̄
p,

wherep'= I −p. A direct computation implies thathz,p satisfies theUsnd-reality conditions2.3d.
Let V=svi jd :C→Mn3k

0 sCd be a meromorphic map, andpsx,y,td the Hermitian projection
onto the subspace spanned by the columns ofVswd, where

w = x + zu+ z−1v,

andu, v are the light cone coordinates in theyt plane defined bys2.1d. Since the entries ofV are
meromorphic functions, the projectionp is smooth onR2,1. Set
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csx,y,t,ld = hz,psx,y,tdsld = p'sx,y,td +
l − z

l − z̄
psx,y,td.

A direct computation implies that bothslcx−cudc−1 and slcv−cxdc−1 are independent ofl. By
Theorem 2.1,c is an extended solution of the Ward equation and the associated Ward map is the
1-soliton,

Jz,Vsx,y,td = Sz

z̄
Dk/n

csx,y,t,0d−1 = Sz

z̄
Dk/nSp'sx,y,td +

z̄

z
psx,y,tdD ,

wheresz/ z̄dk/n is a normalizing constant to make detsJz,Vd=1.
The 1-soliton Ward mapJz,V is a travelling wave because

w = x + zu+ z−1v = sx − v1td + k1sy − v2td + ik2sy − v2td,

wherez=reiu, v1=−2r cosu / s1+r2d, v2=s1−r2d / s1+r2d, and k1+ ik2=sz−z−1d /2. ThusJz,V is a
travelling wave with constant velocityvW =f−2r cosu / s1+r2d ,s1−r2d / s1+r2dg on thexy plane. In
particular,Ji,V is a stationary Ward map, i.e., a harmonic map fromC to SUsnd.

The following theorem was proved in Ref. 2, which gives an algebraic method to produce new
extended Ward maps from a given one.

Theorem 2.2sBäcklund transformationd: Let csx,y,t ,ld be an extended solution of the Ward
equation and J=cs¯ ,0d−1 the associated Ward map fromR2,1 to SUsnd. Choose zPC \R such
that csx,y,t ,ld is holomorphic and nondegenerate atl=z. Let hz,psx,y,tdsld be an extended
1-soliton solution, andp̃sx,y,td the Hermitian projection ofCn onto

csx,y,t,zdImspsx,y,tdd.

Then

c1sx,y,t,ld = hz,p̃sx,y,tdsldcsx,,y,t,ld

is a new extended solution to the linear system (2.2) with

sA,Bd → sA + sz̄− zdp̃x,B + sz̄− zdp̃vd,

and the new Ward map is

J1sx,y,td = Sz

z̄
Dk/n

Jsx,y,tdS z̄

z
p̃sx,y,td + p̃'sx,y,tdD .

We will denotec1=hz,ppc andJ1=hz,ppJ, the Bäcklund transformation generated byhz,p.

III. PERIODIC WARD MAPS FROM T2ÃR TO SU„n…

We use algebraic BTs to construct Ward maps into SUsnd that are either doubly periodic in
space variables or triply periodic.

First we construct 1-soliton Ward maps that are doubly periodic. Letz=reiu,

wsx,y,td = x + zu+ z−1v = x +
z− z−1

2
y +

z+ z−1

2
t,

anda=a+ ib. A direct computation shows that

wSx + a −
k1

k2
b,y +

b

k2
,tD = wsx,y,td + a,

wherek1+ ik2=sz−z−1d /2. Let f :C→C be a meromorphic function such thatfsw+ad= fswd si.e.,
periodic with periodad, and
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gsx,y,td = fswd = fsx + zu+ z−1vd.

A direct computation shows that

gsx,y,td = gSx + a −
k1

k2
b,y +

b

k2
,tD .

Hence

s1d if a=2p, theng is 2p-periodic inx;
s2d if a=2psk1+ ik2d=psz−z−1d, theng is 2p-periodic iny.

This shows that if each entryvi j of the meromorphic mapV=svi jd :C→Mn3k
0 sCd satisfies

vi jsw+2pd=vi jsw+psz−z−1dd=vi jswd, i.e., an elliptic function with periods 2p andpsz−z−1d, then
the 1-solitonJz,V is a doubly periodic Ward map with respect to the lattice 2psZ3Zd. An example
of elliptic function is the well-known Weierstrass̀-function

`swd =
1

w2 + o
gPL\h0j

S 1

sw − gd2 −
1

g2D ,

whereL is the lattice inC generated by 2p andpsz−z−1d. Other elliptic functions can be gener-
ated by Weierstrass̀-functions and Jacobi elliptic functions. It is clear thatJz,V is time periodic if
and only if the ratio of the velocity,v1/v2=s−2r cosud / s1−r2d, is rational.

Similar computation implies that given any rank 2 latticeL of C there are 1-soliton Ward
maps fromC /L3R to SUsnd. Moreover, some of these 1-solitons are periodic in time, i.e., triply
periodic. In particular, we get the following.

Theorem 1: Let t=c1+ ic2 with c2Þ0, L=Z2p+Zt, z=reiu a constant, and a+ ib=c1+fsz
−z−1d /2gc2. If each entryvi j of the meromorphic map V:C→Mn3k

0 sCd is an elliptic function with
periods2p and a+ ib, then the extended1-soliton solution hz,p is doubly periodic with periods2p
and t and the associated1-soliton,

Jz,V = ei2ku/nhz,ps0d−1 = ei2ku/nsp' + e−2iupd

is a Ward map fromC /L3R to SUsnd, where ei2ku/n is a normalizing constant, andpsx,y,td is the
projection onto the subspace spanned by the columns of Vsx+zu+z−1vd. Moreover,

s1d if r Þ1 and there exist integers m1, m2 such that

2 cosu

r − r−1 =
2pm1 + m2c1

m2c2
,

then Jz,V is periodic in time with period T=fm2c2sr +r−1d / sr −r−1dg,
s2d if r =1 and cosuÞ0, then Jz,V is periodic in time with period T=2p /cosu.

In the rest of the section we consider only the square torus. We will constructk-soliton Ward
maps fromT23R to SUsnd that are also time periodic. To do this, we define

Z = hz= reiu P C \ Ruz= eiu Þ ± i or cosu/sr − r−1d P Qj,

whereQ denotes the set of rational numbers. We have seen that for eachzPZ, we can construct
time periodic 1-solitons to the Ward equation. Moreover, the time periodT depends onz only. In
fact, the period functionT:Z→R is defined as follows:
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Tszd =5
2p

cosu
, if z= eiu Þ ± i ,

2pm2sr + r−1d
r − r−1 , if z= reiu,

2 cosu

r − r−1 =
m1

m2
.6 s3.1d

Apply Bäcklund transformations repeatedly with some rational conditions on the polesz1, . . . ,zm

to get the following.
Theorem 3.2:Let hz1, . . . ,zmj be a set of finite points inZ such that zi Þzj, z̄j for all i Þ j , and

hzi,pi
sld extended1-soliton solutions leading to doubly periodic Ward maps, where i, j =1, . . . ,m.

Let Ti =Tszid be the time period defined ins3.1d. Let J1 be the Ward map associated to hz1,p1
, i.e.,

J1=hz1,p1
s0d−1. Let Jm be the Ward map obtained by applying m−1 Bäcklund transformations to

J1,

Jm = hzm,pm
p s¯ p shz2,p2

p J1d ¯ d. s3.2d

If Tj /T1 are rational numbers for all2ø j øm, then Jm is a Ward map from T23R to SUsnd and
is periodic in time. In other words, Jm is a triply periodic solution of the Ward equation.

Proof: We prove the two-soliton case. By Theorem 2, we have

hz2,p2
p hz1,p1

= hz2,p̃2
hz1,p1

,

where Imp̃2=hz1,p1
sz2dIm p2=fI +sz̄1−z1d / sz2− z̄1dp1gIm p2. Note thatp̃2 is periodic in time be-

causep1 and p2 are time periodic andT2/T1 is rational. Thus we see thathz2,p2
phz1,p1

is time
periodic, and so is the associated Ward map. The general case can be proved by induction.h

IV. HOMOCLINIC WARD MAPS

It is known that solutions of the sine-Gordon equationsSGEd

qtt − qxx = sinq

give rise to wave maps fromR1,1 to S2. Breather solutions are 2-soliton solutions of the SGE that
are periodic in thex variable. Shatah and Strauss proved in Ref. 6 that wave maps fromS13R to
S2 corresponding to breather solutions of the sine-Gordon equation are homoclinic wave maps.
Applying Bäcklund transformation 2k times with carefully placed poles, Terng and Uhlenbeck
constructed 2k soliton solutions for the sine-Gordon equation that are periodic in the space vari-
able, and showed that the corresponding wave maps fromS13R to S2 are also homoclinic. More
generally they proved that there are homoclinic wave maps fromS13R into any compact sym-
metric space.9

In this section, we apply Bäcklund transformations with carefully chosen poles and Hermitian
projections even times to certain stationary wave map into SOs2d to construct homoclinic Ward
maps fromT23R to SUsnd. To make the construction more illuminating, we will work on the
SUs2d model. The SUsnd model is similar.

Let m.0 be an integer, anda=diagsim,−imdPsus2d. It is easy to check that

csldsx,y,td = csx,y,t,ld = ess1−ldx+s1+l−l2du−vda. s4.1d

is an extended Ward map. So

J0sx,y,td = csx,y,t,0d−1 = e−sx+u−vda = e−sx+yda

is a stationary Ward map, which is doubly periodic in the space variables. Note thatJ0 is a
harmonic map fromT2 to SOs2d.
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Next we compute the linearization of the Ward equation at the stationary solutionJ0

=e−sx+yda, as well as its stable and unstable subspaces. LetM=C`sT23R ,SUs2dd. Then we can
give a natural trivialization of the tangent bundleTM as follows. Given a curveg : s−e ,ed→M
with gs0d=J, we identify the tangent vectorg8s0d as

sgs0d,gs0d−1g8s0dd = sJ,J−1dJd.

This identifiesTM=M3C`sT23R ,sus2dd.
SetJ−1dJ=h. Compute directly to get

dsJ−1Jxd = − sJ−1dJdJ−1Jx + J−1sdJdx

= − hsJ−1Jxd + J−1sJhdx = − hsJ−1Jxd + J−1sJxh + Jhxd = hx + fJ−1Jx,hg.

The computation fordsJ−1Jyd anddsJ−1Jtd is similar. So the linearization of the Ward equation at
J0=e−sx+yda is

sht + fJ−1Jt,hgdt − shx + fJ−1Jx,hgdx − shy + fJ−1Jy,hgdy − fht + fJ−1Jt,hg,J−1Jyg

− fJ−1Jt,hy + fJ−1Jy,hgg = htt − hxx − hyy + fa,hx + hy − htg = 0. s4.2d

We note that the linearization atJ=−e−sx+yda is the same one. Writes4.2d in terms of entriesh
=s ir j

−j̄ −ir
d to get

rtt − rxx − ryy = 0, s4.3ad

jtt − jxx − jyy + 2imsjx + jy − jtd = 0. s4.3bd

This system is linear with constant coefficients, so it can be solved by Fourier series. Let

j = o
j ,lPZ

bjlstdeis jx+lyd

be the Fourier series expansion ofj. Then bys4.3bd, we have

bjl9 − 2imbjl8 + s j2 + l2 − 2ms j + lddbjl = 0,

where 8 means differentiation with respect tot. Its auxiliary equation is

g2 − 2img + j2 + l2 − 2ms j + ld = 0.

It has roots

g = im ± Îm2 − s j − md2 − sl − md2.

Stable sunstable, respectivelyd modes come from Resgd,0 fResgd.0, respectivelyg. So for
s j , ldPZ2 with s j −md2+sl −md2,m2, there are stable and unstable modes corresponding to roots
im7Îm2−s j −md2−sl −md2, respectively. Similar computation shows that the auxiliary equation
for s4.3ad has only purely imaginary roots. So the above computation gives the following.

Proposition 4.1: Let a=diagsim,−imd and J= ±e−sx+yda, where m.0 is an integer. Let

BZm = hs j ,ld P Z2us j − md2 + sl − md2 , m2j.

Then

s1d the unstable subspace of the linearization of the Ward equation at J is

% hWjl
+us j ,ld P BZmj,

where Wjl
+ is spanned by
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h jl
+scd = e

Îm2−s j − md2−sl − md2tS 0 ceis jx+ly+mtd

− c̄e−is jx+ly+mtd 0
D

with constant cPC.
s2d The stable subspace at J is

% hWjl
−us j ,ld P BZmj,

where Wjl
− is spanned by

h jl
−scd = e−Îm2−s j − md2−sl − md2tS 0 ceis jx+ly+mtd

− c̄e−is jx+ly+mtd 0
D

with cPC.

Let z=reiuPC \R, fswd a meromorphic function onC, qswd=s 1
fswd d, w=x+zu+z−1v, and

psx,y,td the Hermitian projection ofC2 ontoCqswd. Let c be the extended solution given bys4.1d
andJ0= uc−1ul=0=e−asx+yd the associated Ward map. Consider the Bäcklund transformationhz,ppc.
We will find conditions onz and fswd so thathz,ppJ0 is doubly periodic in space variables. By
Theorem 2.2, we have

c1 = hz,p p c = hz,p̃c, s4.4d

where Imp̃=Cq̃ and

q̃sx,y,td = cszdqswd = ess1−zdx+s1+z−z2du−vdaS 1

fswd
D , S 1

e2imssz−1dx+sz2−z−1du+vdfswd
D .

Here “q1,q2” meansCq1=Cq2. From the formula

J1 = hz,p p J0 = J0
1

uzu
sz̄p̃ + zp̃'d,

we see that it is doubly periodic if and only ifq̃ is. For this purpose, we try the following form of

fswd = e2imsa−zdw,

whereaPC is a constant. Substitute this intoq̃sx,y,td to get

e2imssz−1dx+sz2−z−1du+vdfswd = e2imssa−1dx+ssa−1dz−1du+az−1vd = eims2sa−1dx+ssa−1dz−az−1−1dy+ssa−1dz+az−1−1dtd.

It is doubly periodic inx andy with period 2p if and only if

2msa − 1d ª − j P Z, s4.5ad

mssa − 1dz− az−1 − 1d ª − l P Z. s4.5bd

From s4.5ad, we havea=s2m− jd /2m. Compute the imaginary part ofs4.5bd to get

sa − 1dr sinu + ar−1 sinu = 0.

Sincer .0, we see 0,a,1. This implies that 0, j ,2m, and r =Îs2m− jd / j . By s4.5bd again,
we have

mssa − 1dz− az−1 − 1d = − Îjs2m− jd cosu − m= − l .

It follows that
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Îjs2m− jd cosu = l − m.

Hencel must satisfy

ul − mu , Îjs2m− jd, s4.6d

and cosu=fsl −md /Îjs2m− jdg. It is easy to verify that the conditions fors j , ld are equivalent to
s j , ldPZ2, s j −md2+sl −md2,m2, i.e., s j , ldPBZm. Therefore if we choose the following data:
s j , ldPBZm, z=reiu with r =Îs2m− jd / j , cosu=sl −md /Îjs2m− jd, sinu.0, a=s2m− jd /2m, then
Im p̃sx,y,td=Cq̃sx,y,td, where

q̃sx,y,td = S 1

e
Îm2−s j − md2−sl − md2te−is jx+ly+mtd D

is doubly periodic inx andy. It follows that

p̃sx,y,td =
1

1 + e2AS 1 eAeis jx+ly+mtd

eAe−is jx+ly+mtd e2A D ,

whereA=Îm2−s j −md2−sl −md2t. Therefore we obtain the following Ward map fromT23R to
SUs2d:

J1 = e−sx+yda 1

uzu
sz̄p̃sx,y,td + zp̃'sx,y,tdd = e−sx+ydase−iup̃sx,y,td + eiup̃'sx,y,tdd. s4.7d

We now analyze the asymptotic behavior ofJ1 as t→ ±`. It is easy to see that

p̃ → S0 0

0 1
D as t → + `,

and

p̃ → S1 0

0 0
D as t → − `.

So

J1 → e−sx+ydaSeiu 0

0 e−iu D as t → + `

and

J1 → e−sx+ydaSe−iu 0

0 eiu D as t → − `.

Thus J1:T23R→SUs2d is a heteroclinic Ward map. To construct homoclinic maps, we apply
Bäcklund transformation again.

Choosez2=−z̄, and p2sx,y,td Hermitian projection ofC2 onto Cq2, where q2=s 1
f2sw2d d,

f2sw2d=e2imsa+z̄dw2, a=s2m− jd /2m, andw2=x− z̄u− z̄−1v. Now apply Bäcklund transformation to
c1 fdefined bys4.4dg generated byh−z̄,p2sx,y,td to get

c2 = h−z̄,p2sx,y,td p c1 = h−z̄,p̃2sx,y,tdc1,

where Imp̃2sx,y,td=Cq̃2sx,y,td and
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q̃2 = c1s− z̄dq2 = hz,p̃sx,y,tds− z̄dcs− z̄dS 1

f2sw2d
D , SI +

z̄− z

− 2z̄
p̃sx,y,tdDS 1

eAe−is jx+s2m−ldy+mtd D .

s4.8d

HereA=Îm2−s j −md2−sl −md2t. Note thatq̃sx,y,td is doubly periodic inx andy. Therefore

J2 = J0
1

uzu
sz̄p̃ + zp̃'d

1

uz2u
sz̄2p̃2 + z2p̃2

'd = J0se−iup̃ + eiup̃'ds− eiup̃2 − e−iup̃2
'd

is a Ward map fromT23R to SUs2d, whereJ0=e−sx+yda.
Next we study the asymptotic behavior ofJ2. First look at the behavior ofJ2 as t→−`. Set

j = e
Îm2−s j − md2−sl − md2t, f1 = e−is jx+ly+mtd, f2 = e−is jx+s2m−ldy+mtd.

Then limt→−` j=0. Write

q̃1 = q̃ = S 1

jf1
D = S1

0
D + jf1S0

1
D .

So the projectionp̃1=p̃ onto Cq̃1 is

p̃1 = S1 0

0 0
D + jS 0 f̄1

f1 0
D + Osj2d.

Write a1=sz− z̄d /2z̄. Then bys4.8d we have

q̃2 = sI + a1p̃1dS 1

jf2
D = sI + a1p̃1dSS1

0
D + jf2S0

1
DD = S1 + a1

0
D + a1jf1S0

1
D + jf2S0

1
D + Osj2d

, S1

0
D + b1jf1S0

1
D + b2jf2S0

1
D + Osj2d,

whereb1=a1/ s1+a1d, b2=1/s1+a1d. So the projectionp̃2 onto Cq̃2 is

p̃2 = S1 0

0 0
D + jS 0 b̄1f̄1

b1f1 0
D + jS 0 b̄2f̄2

b2f2 0
D + Osj2d.

From the above computation, we see

lim
t→−`

p̃i = S1 0

0 0
D, i = 1,2.

Substitutep̃i into J2 to get

J2 = J0se−iup̃ + eiup̃'ds− eiup̃2 − e−iup̃2
'd

= J0SSe−iu 0

0 eiu D + jS 0 − 2i sinu f̄1

− 2i sinuf1 0
D + Osj2dD

3 SS− eiu 0

0 − e−iu D + jS 0 − 2i sinub̄1f̄1

− 2i sinub1f1 0
D + jS 0 − 2i sinub̄2f̄2

− 2i sinub2f2 0
D

+ Osj2dD = J0S− I + jS 0 c1f̄1

− c̄1f1 0
D + jS 0 c2f̄2

− c̄2f2 0
D + Osj2dD ,

wherec1, c2PC are constants. It follows that limt→−` J2=−J0. Note that
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jS 0 ci f̄ i

− c̄i f i 0
D, i = 1,2

is equal to the unstable modeh j i,l i
+ scid at −J0 given in Proposition 4.1, wheres j1, l1d=s j , ld and

s j2, l2d=s j ,2m− ld. In other words, we have shown

lim
t→−`

SJ2 + J0 + J0o
i=1

2

h j i,l i
+ scidD = 0. s4.9d

To analyze the asymptotic behavior ofJ2 as t→ +`, we set

r = e−Îm2−s j − md2−sl − md2t, h1 = eis jx+ly+mtd,h2 = eis jx+s2m−ldy+mtd.

Then limt→+` r=0. A similar computation implies that

s1d q̃1 is parallel tos rh1

1
d.

s2d

p̃1 = S0 0

0 1
D + rS 0 h1

h̄1 0
D + Osr2d,

and

p̃2 = S0 0

0 1
D + rS 0 g1h1

ḡ1h̄1 0
D + rS 0 g2h2

ḡ2h̄2 0
D + Osr2d

for some constantsg1, g2.
s3d

J2 = J0S− I + rS 0 d1h1

− d̄1h̄1 0
D + rS 0 d2h2

− d̄2h̄2 0
D + Osr2dD

for some constantsd1, d2. It follows that limt→+` J2=−J0.
s4d

lim
t→+`

SJ2 + J0 + J0o
i=1

2

h j i,l i
− sdidD = 0. s4.10d

Formulass4.9d and s4.10d imply that J2:T23R→SUs2d is a homoclinic Ward map.
Applying Bäcklund transformations even times, with pairs of poles and Hermitian projections

chosen as above, we obtain more homoclinic Ward maps. The case form,0 is similar. We
summarize the above discussion to give the following.

Theorem 4.2: Let m be a nonzero integer, a=diagsim,−imd, and J0=e−sx+yda. Choose
s j2k−1, l2k−1dPZ2 such that

s j2k−1 − md2 + sl2k−1 − md2 , m2, m, l2k−1

and s j2k−1, l2k−1dÞ s j2h−1, l2h−1d for 1øk,høN. Let s j2k, l2kd=s j2k−1,2m− l2k−1d,

zs=Îs2m− jsd / f jsgeius with cosus=sgnsmdfsls−md /Îjss2m− jsdg, and sinus=sgnsmdÎ1−cos2 us,

s=1, . . . ,2N. Let ps be the Hermitian projection ontoCs 1
fsswsd d, where fsswsd=eis2m−js−2mzsdws and

ws=x+zsu+zs
−1v. Let

J2Nsx,y,td = hz2N,p2N
p s¯ p shz1,p1

p J0sx,y,tdd ¯ d s4.11d

be the Ward map obtained by applying2N Bäcklund transformations to J0. Then J2N:T23R
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→SUs2d is a homoclinic Ward map. Moreover, J2N→ s−1dNJ0 as t→ ±`.
Proof: We have shown theN=1 case. For generalN, we use induction and the calculation is

similar. h

The above construction can be generalized to SUsnd model easily.
Corollary 4.3: Let m, p be integers, mÞ0, 1øpøn−1,

a = Sisn − pdmIp 0

0 − ipmIn−p
D P susnd,

c=ess1−ldx+s1+l−l2du−vda the extended solution, and J0=e−sx+yda the associated Ward map. Choose
s j2k−1, l2k−1dPZ2 such that

S j2k−1 −
nm

2
D2

+ Sl2k−1 −
nm

2
D2

, Snm

2
D2

,
nm

2
, l2k−1

and s j2k−1, l2k−1dÞ s j2h−1, l2h−1d for 1øk,høN. Let s j2k, l2kd=s j2k−1,nm− l2k−1d,

zs=Îsnm− jsd / f jsgeius with cosus=sgnsmdfsls−nm/2d /Îjssnm− jsdg, and

sinus=sgnsmdÎ1−cos2 us, s=1, . . . ,2N. Let pssx,y,td be the Hermitian projection ofCn onto

Cs1, . . . ,1,fsswsd, . . . fsswsddT,

where1 is repeated p times, fsswsd=eisnm−js−nmzsdws is repeatedsn−pd times, ws=x+zsu+zs
−1v. Let

J2Nsx,y,td = hz2N,p2N
p s¯ p shz1,p1

p J0sx,y,tdd ¯ d s4.12d

be the Ward map obtained by applying2N Bäcklund transformations to J0. Then J2N:T23R
→SUsnd is a homoclinic Ward map. Moreover, J2N→ s−1dNJ0 as t→ ±`.

The method discussed above can also produce Ward maps, which are homoclinic tostimed
periodic orbits. There are only some minor changes in the construction, so we just list the main
steps for the SUs2d model.

sid Let m.0 be an integer, andb=diagsim,−imd. Then

c = esx+sl+2dudb

is an extended solution, and the associated Ward map is

J0 = uc−1ul=0 = e−sx+2udb = e−sx+y+tdb,

which is triply periodic in the variablesx, y, t.
sii d Seth=J−1dJ. Then the linearization of the Ward equation atJ0 is

htt − hxx − hyy + fb,hx + 2hy − 2htg = 0.

The unstable subspace of the linearization of the Ward equation atJ0 is %Wjl
+, where

s j , ldPZ2, s j −md2+sl −2md2,m2, andWjl
+ is spanned by

e
Îm2−s j − md2−sl − 2md2tS 0 ceis jx+ly+2mtd

− c̄e−is jx+ly+2mtd 0
D

with constantcPC. The stable subspace atJ0 is %Wjl
−, where s j , ld satisfies the same

condition, andWjl
− is spanned by

e−Îm2−s j − md2−sl − 2md2tS 0 ceis jx+ly+2mtd

− c̄e−is jx+ly+2mtd 0
D

with constantcPC.
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siii d Chooses j , ldPZ2 with s j −md2+sl −2md2,m2. Apply Bäcklund transformationhz1,p1
pc,

wherez1=reiu with r =Îs2m− jd / j , cosu=sl −2md /Îjs2m− jd, sinu.0, p1sx,y,td is the
Hermitian projection ofC2 onto Cs 1

e2ima1w1
d, a1=s2m− jd /2m, andw1=x+z1u+z1

−1v. Then

c1 = hz1,p1
p c = hz1,p̃1

c,

wherep̃1 is the projection onto

csz1dIm p1 = CS 1

e
Îm2−s j − md2−sl − 2md2te−is jx+ly+2mtd D .

sivd Chooses j2, l2d=s j ,4m− ldPZ2. Apply Bäcklund transformation again to get

c2 = hz2,p2
p c1 = hz2,p̃2

c1.

Here z2=−z̄1, and p2sx,y,td is the Hermitian projection ontoCq, whereq= s 1
e2ima2w2

d, a2

=a1, andw2=x− z̄1u− z̄1
−1v. Thenp̃2sx,y,td is the projection onto

Chz1,p̃1
s− z̄1dS 1

e
Îm2−s j − md2−sl − 2md2te−is jx+s4m−ldy+2mtd D .

svd

J2 = uc2
−1ul=0 = J0se−iup̃1 + eiup̃1

'ds− eiup̃2 − e−iup̃2
'd

is a Ward map fromT23R to SUs2d. Analyzing the asymptotic behavior ofJ2 as t
→ ±`, we see thatJ2 is transversal and homoclinic to the periodic orbit −J0. Applying
Bäcklund transformations even times with pairs of poles and Hermitian projections chosen
similarly, we obtain more Ward maps which are homoclinic to ±J0.

The construction of homoclinic orbits tostimed periodic solutions for the SUsnd model is
similar. Thus we have the following.

Theorem 4.4:Let m, p be integers, mÞ0, 1øpøn−1,

b = Sisn − pdmIp 0

0 − ipmIn−p
D P susnd,

c=esx+sl+2dudb the extended solution, and J0=e−sx+y+tdb the associated Ward map. Choose
s j2k−1, l2k−1dPZ2 such that

S j2k−1 −
nm

2
D2

+ sl2k−1 − nmd2 , Snm

2
D2

, nm, l2k−1

and s j2k−1, l2k−1dÞ s j2h−1, l2h−1d for 1øk,høN. Let s j2k, l2kd=s j2k−1,2nm− l2k−1d,

zs=Îsnm− jsd / f jsgeius with cosus=sgnsmdfsls−nmd /Îjssnm− jsdg, and sinus=sgnsmdÎ1−cos2 us,
s=1, . . . ,2N. Let pssx,y,td be the Hermitian projection ofCn onto

Cs1, . . . ,1,fsswsd, . . . fsswsddT,

where1 is repeated p times, fsswsd=eisnm−jsdws is repeatedsn−pd times, and ws=x+zsu+zs
−1v. Let

J2Nsx,y,td = hz2N,p2N
p s¯ p shz1,p1

p J0sx,y,tdd ¯ d

be the Ward map obtained by applying2N Bäcklund transformations to J0. Then J2N:T23R
→SUsnd is a homoclinic Ward map. Moreover, J2N→ s−1dNJ0 as t→ ±`.
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In this paper we study the integrability of natural Hamiltonian systems with a
homogeneous polynomial potential. The strongest necessary conditions for their
integrability in the Liouville sense have been obtained by a study of the differential
Galois group of variational equations along straight line solutions. These particular
solutions can be viewed as points of a projective space of dimension smaller by one
than the number of degrees of freedom. We call them Darboux points. We analyze
in detail the case of two degrees of freedom. We show that, except for a radial
potential, the number of Darboux points is finite and it is not greater than the degree
of the potential. Moreover, we analyze cases when the number of Darboux points is
smaller than maximal. For two degrees of freedom the above-mentioned necessary
condition for integrability can be expressed in terms of one nontrivial eigenvalue of
the Hessian of potential calculated at a Darboux point. We prove that for a given
potential these nontrivial eigenvalues calculated for all Darboux points cannot be
arbitrary because they satisfy a certain relation which we give in an explicit form.
We use this fact to strengthen maximally the necessary conditions for integrability
and we show that in a generic case, for a given degree of the potential, there is only
a finite number of potentials which satisfy these conditions. We also describe the
nongeneric cases. As an example we give a full list of potentials of degree four
satisfying these conditions. Then, investigating the differential Galois group of
higher order variational equations, we prove that, except for one discrete family,
among these potentials only those which are already known to be integrable are
integrable. We check that a finite number of potentials from the exceptional discrete
family are not integrable, and we conjecture that all of them are not integrable. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1917311g

I. INTRODUCTION

We considerC2n as a symplectic linear space with canonical variablesq=sq1, . . . ,qnd, p
=sp1, . . . ,pnd. We are interested in Hamiltonian systems defined by Hamilton’s function of the
form
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H =
1

2o
i=1

n

pi
2 + Vsqd, s1.1d

whereV=VsqdPCfqg is a homogeneous polynomial of degreek.2. The canonical Hamilton’s
equations have the well-known form

d

dt
q = p,

d

dt
p = − V8sqd, s1.2d

where byV8sqd we denote the gradient ofVsqd. The classical problem concerns integrability of
such systems.

To simplify our further exposition it is convenient to notice the following fact. It is easy to
show that if Hamilton’s equationss1.2d are integrable with potentialVsqd, then they are integrable
also with potentialVAsqdªVsAqd, whereAPPOsn,Cd,GLsn,Cd. Here by POsn,Cd we denote a
group of n3n complex matricesA such thatAAT=aE where aPC!. Thus, when we discuss
integrability, we identify potentialsV and VA, for all APPOsn,Cd, and we say that they are
equivalent. Later in this paper often a potential means a class of equivalent potentials and the
phrase “potentialV is integrable” means that the corresponding systems1.2d is integrable. By
integrability we understand the integrability in the Liouville sense with first integrals which are
complex meromorphic functions.

In spite of a very long history and numerous approaches little is known about the integrability
of s1.2d. In fact, an application of the direct method,16,15and the Painlevé test9–12,20,39,40gave only
several examples of integrable systems for which additional first integrals are polynomials of low
degrees. The most general result based on the direct method was obtained by Nakagawa and
Yoshida.37 These authors proved that if Hamiltonian systems1.2d with two degrees of freedom and
a homogeneous potential of degreekù5 admits an additional polynomial first integralF such that
degpFø4, then it admits an additional polynomial first integralF such that degpFø2.

At the beginning of the 1980s Ziglin43,44 developed an elegant theory which relates the
integrability of Hamiltonian systems with properties of the monodromy group of variational equa-
tions along a particular solution. The Ziglin theory gives conditions necessary for integrability of
a complex system with an arbitrary holomorphic Hamiltonian. Yoshida42 used this theory to
formulate a criterion for the integrability of systems1.2d with a homogeneous potential which is
not necessarily a polynomial. The Yoshida criterion was formulated only for systems with two
degrees of freedom and it has the form of inequalities. Thus, for systems depending on parameters,
these values of parameters for which the system satisfies the necessary conditions for integrability
form open sets in the space of parameters.

At the end of the previous century the Ziglin theory was considerably extended. Roughly
speaking, the necessary conditions for integrability were expressed in terms of the differential
Galois group41 of variational equations. This approach was developed by Baider, Churchill, Mo-
rales, Ramis, Rod, Simó, and Singer, see Refs. 5 and 30, and references therein. It was shown that
if the investigated system is integrable in the Liouville sense, then the identity component of the
differential Galois group of the variational equations along a particular solution is Abelian, see
Ref. 30 and Sec. I of Appendix A. For Hamiltonian systemss1.2d with homogeneous potential
these conditions, as shown in Refs. 30 and 32, are much stronger than those given by Yoshida and
they are applicable for systems with an arbitrary number of degrees of freedom. To describe them
we have to introduce several definitions.

A nonzero pointdPCn is called aDarboux pointof systems1.2d if it is a solution of

V8sdd = gd, s1.3d

where gPC!=C \ h0j. A Darboux point defines a two-dimensional plane inC2n invariant with
respect to the flow of the systems1.2d. In fact, if d satisfiess1.3d, then
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qstd = wstdd, pstd = ẇstdd s1.4d

is a solution of the systems1.2d, provided thatwstd satisfies

ẅ = − gwk−1.

From our definition of a Darboux point it follows that it is a pointfd1:d2: ¯ :dng of projective
spaceCPn−1 for which its homogeneous coordinates satisfys1.3d.

The variational equations along solutions1.4d have the form

ẋ = y, ẏ = − wstdk−2V9sddx. s1.5d

HessianV9sdd of the potentialV calculated at a Darboux pointd is a symmetric matrix. Hence, in
a generic case, there exists a complex orthogonaln3n matrix A such that the canonical transfor-
mation

x = Ah, y = Aj,

transforms systems1.5d to the form

ḣi = ji, j̇i = − l̂iwstdk−2hi, i = 1, . . . ,n,

or simply

ḧi = − l̂iwstdk−2hi, i = 1, . . . ,n, s1.6d

wheresl̂1, . . . ,l̂nd are eigenvalues ofV9sdd. One of them, let us sayl̂n, is equal togsk−1d. For a
given energyePC! the phase curveGe associated with particular solutionwstd is, for kÞ0, a
hyperelliptic curve given by

ẇ2 = 2
g

k
s« − wkd, e=

g

k
«. s1.7d

As was observed by Yoshida,42 each of equationss1.6d can be transformed to the hypergeometric
equation. It can be done by the following change of the independent variable:

t → zª
1

«
wstdk. s1.8d

As

d2

dt2
x = ż2x9 + z̈x8, 8 ;

d

dz
,

after transformations1.8d Eq. s1.6d reads

zs1 − zdhi9 + Sk − 1

k
−

3k − 2

2k
zDhi8 +

li

2k
hi = 0, s1.9d

wherei =1, . . . ,n, andli = l̂i /g. Here we note thatli are eigenvalues ofg−1V9sdd. Equations1.9d
is a hypergeometric differential equation for which the differences of exponents atz=0, z=1, and
z=` are

1

k
,

1

2
,

1

2k
Îsk − 2d2 + 8kli ,

respectively.
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Now, as variational equations have the form of a direct product of Eq.s1.9d, their differential
Galois group is also a direct product of the differential Galois groups of Eq.s1.9d. All cases when
the identity component of the differential Galois group of hypergeometric differential equation is
solvable are known, see Ref. 17. This fact combined with Theorem A.1 was used by Morales-Ruiz
and Ramis to formulate in Ref. 34 a general theorem concerning the integrability of Hamiltonian
systems with a homogeneous potential. Here, we formulate this theorem for a polynomial homo-
geneous potential.

Theorem 1.1: If Hamiltonian system (1.2) with polynomial homogeneous potential Vsqd of
degree k.2 is meromorphically integrable in the Liouville sense, then for Darboux point values
of sk,lid for i =1, . . . ,n belong to the following list

1 . Sk,p +
k

2
psp − 1dD, 2 . Sk,

1

2
Fk − 1

k
+ psp + 1dkGD ,

3 . s3,− 1
24 + 1

6s1 + 3pd2d, 4 . s3,− 1
24 + 3

32s1 + 4pd2d ,

5 . s3,− 1
24 + 3

50s1 + 5pd2d, 6 . s3,− 1
24 + 3

50s2 + 5pd2d ,

7 . s4,− 1
8 + 2

9s1 + 3pd2d, 8 . s5,− 9
40 + 5

18s1 + 3pd2d ,

9 . s5,− 9
40 + 1

10s2 + 5pd2d ,

where p is an integer.
Note that for a givenk the eigenvalueln=k−1 does not give a restriction for integrability. We

called it the trivial eigenvalue. Here it is important to notice the following fact. Letd be a Darboux

point of potentialV. Then an equivalent potentialVA has a Darboux pointd̃=ATd as we have

VA8sd̃d = ATV8sAATdd = ATV8sadd = ak−1ATV8sdd = g̃d̃,

where g̃=gak−1. Moreover, g−1V9sdd and g̃−1VA9sd̃d have the same eigenvalues. Hence, these
eigenvalues and the number of Darboux points characterize classes of equivalent potentials.

Theorem 1.1 gives the strongest known necessary conditions for the integrability of system
s1.2d. However, a problem appears again when the potential depends on parameters. Applying it
we quickly distinguishinfinitely many families of potentials for which these conditions are satis-
fied.

Although it seems that this problem is unavoidable, the aim of this paper is to show that at
least for systems with two degrees of freedom it is not like that.

First of all, it is obvious that the more Darboux points of considered potential we know, the
more conditions for its integrability we have. Hence, it is crucial to know how many Darboux
points for a given potential exist, and how the number of Darboux points depends on parameters.

The second problem is more delicate and less obvious. Assume that for a given potential we
found all Darboux points. Each of them gives usn−1 nontrivial eigenvalues which appear in the
necessary conditions for integrability. The question is if all of these eigenvalues can be arbitrary.
In other words, we ask if there exists a universal relation between all the eigenvalues calculated
for all Darboux points.

In this paper we analyze the above-noted problems for the case of two degrees of freedom. In
this case for a Darboux pointd there is only one nontrivial eigenvalue

l = g−1Tr V9sdd − sk − 1d.

We show that for a generic homogeneous polynomial of degreek there existk Darboux points. For
each Darboux point we calculate the “shifted” nontrivial eigenvalue
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L = l − 1 =g−1Tr V9sdd − k.

Then, one of the main results of this paper is following.
Theorem 1.2:Assume that a homogeneous polynomial potential Vsq1,q2d of degree k.2 has

k different Darboux points. Then the shifted eigenvaluesLi calculated for these points satisfy the
following relation

o
i=1

k
1

Li
= − 1. s1.10d

Our next result shows the importance of the above theorem. To formulate it let us denote by
Vk the set of all homogeneous potentialsV of degreek which havek different Darboux points. For
eachVPVk we have properly defined a collectionLV=hL1, . . . ,Lkj of the shifted eigenvalues. Let
Lk denote a set of allLV, for VPVk, andIk a set of those elements ofLk which correspond to the
integrable potentials. Combining Theorem 1 with our Theorem 2 we prove the following.

Theorem 1.3:For all k.2 setIk is at most finite.
As we will show, the assumption about the number of Darboux points in the above-mentioned

theorems can be relaxed.
Having the above-noted results it is natural to ask for more. For example, it is natural to ask

if we can give necessary and sufficient conditions for the integrability of systems1.2d for a
polynomial potential of a fixed degreek. Obviously Theorem 1.1 and our above-mentioned results
are not sufficient for this task—we need stronger necessary conditions for the integrability than
those in Theorem 1.1. Hopefully, there exists a theorem by Morales-Ruiz, Ramis, and Simó31

which gives the desired conditions. These conditions are expressed in terms of properties of the
differential Galois group of higher order variational equations around a particular solution, see
Sec. II of Appendix A.

In Ref. 23 we performed a detailed analysis of homogeneous potentials of degree three.
Investigating this case we found a particular case of relations1.10d and we noticed that without
this relation it is hopeless to distinguish all integrable potentials. However, using the above-
mentioned theorem of Morales-Ruiz, Ramis, and Simó we were able to give necessary and suffi-
cient conditions for integrability of a homogeneous potential of degree three.

In this paper we investigate the case of a homogeneous potential of degreek=4. It appears
that casek=4 is much more complicated than casek=3. Nevertheless, we performed our analysis
almost up to the end, i.e., we give a full list of integrable potentials of degree four and we show
that, except for one discrete but infinite family, the remaining potentials are not integrable. It
seems that all potentials from the exceptional discrete family are not integrable but we are able to
show this only for a finite number of potentials from this family.

The plan of this paper is the following. Section II contains general results concerning systems
with two degrees of freedom. In Sec. III we analyze Hamiltonian systems1.2d with a homoge-
neous potential of degree 4. Section IV contains some general remarks and comments.

As to Sec. II, after showing some preliminary facts in Sec. II A, we analyze in Sec. II B the
question about the number of Darboux points for a given homogeneous potential. The main results
of this section are Lemma 2.2, which characterizes potentials without Darboux points, and Lemma
2.3 together with Corollary 2.2 which explain how the positions of Darboux points determine the
potential. In Sec. II B we analyze the question about the number of Darboux points for a given
potential. First we reduce the problem to counting the number of equilibria of an auxiliary system.
Then the problem is reduced to an investigation of roots of two polynomials. Here, besides general
facts about the finiteness of the number of Darboux points, in Lemma 2.2 we characterize cases
when there are no Darboux points. In Sec. II C we introduce a meromorphic differential form such
that the Darboux points are contained in its poles. The residue of this form at a simple Darboux
point is the inverse of the shifted eigenvalue. Theorem 2.1 is a more general version of Theorem
1.2 formulated above. However, as we believe, the most important result in this section is Theo-
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rem 2.3, which generalizes Theorem 1.2 “almost” maximally. We close this section with Theorem
2.4 showing that, generically, when the number of Darboux points is not maximal, then the
potential is not integrable.

An analysis of integrability of homogeneous polynomial potentials of degree four given in
Sec. III, starts from distinguishing cases when there are no Darboux points, when there is a
multiple or exactly one Darboux point. In all these cases the potential depends on parameters and
either Theorem 1.1 or our Theorem 1.2 is not applicable. In Sec. III B we give a list of all
potentials satisfying the necessary conditions of Theorems 1.1 and 1.2. It contains only nine
potentials. Three of them are known integrable potentials. The remaining ones are not integrable
as we show in Sec. III C using the higher order variational equations. We also prove that potentials
without Darboux points and those with a multiple Darboux point are not integrable. The only case
when our investigation of the integrability is not performed until the end is a discrete but infinite
family of potentials with one simple Darboux point. We were able to show only that a finite
number of potentials from this family is not integrable.

In the Appendices, to make the paper self-contained, we give formulation of basic theoretical
facts about differential Galois approach to the integrability.

II. TWO DEGREES OF FREEDOM

A. Preliminaries

As we already mentioned, a Darboux point can be considered as a point in a projective space.
For n=2 it is CP1. This is why it is convenient to consider coordinatessq1,q2dPC2 as the
homogeneous coordinatesfq1:q2g on CP1. We identify the affine part ofCP1 with points f1:q2g
PCP1 and we parametrize it by coordinatez=q2/q1, q1Þ0. The other coordinatez=q1/q2 is used
to parametrize points in a neighborhood of infinity.

A linear transformationq°Aq, APPOs2,Cd, induces an action of POs2,Cd onCP1 defined in
the following way. ForAPPOs2,Cd given by

A = F a b

− b a
G, a2 + b2 Þ 0, s2.1d

we havetA:CP1→CP1 given by

tAsfq1:q2gd = faq1 + bq2:− bq1 + aq2g.

Thus, in the affine part ofCP1 this action is

tAszd =
az− b

bz+ a
, s2.2d

and the image of the line at infinityf0:q2g is tAs`d=a/b.
The group of matricess2.1d forms a proper subgroup POs2,Cd+ of POs2,Cd. It is the identity

component of POs2,Cd. Group POs2,Cd also contains a diagonal subgroup Da which consists of
matricesA=diagsa,−ad, aPC!. For APDa we havetAszd=−z, andtAs`d=`. It is easy to check
that tA+tAT= id.

The following two propositions characterize the basic properties of the above-defined Möbius
action. The easy proofs of them we left to the reader.

Proposition 2.1: If for pPCP1 we havetAspd=p for all APPOs2,Cd+, then p=f1: ± ig.
Proposition 2.2: For p, p̃PCP1\ hf1: +ig ,f1:−igj there exists APPOs2,Cd such that p˜

=tAspd.
Let VPCfq1,q2g be a homogeneous polynomial of degreek.0. We have

Vsq1,q2d = q1
kVs1,q2/q1d = q2

kVsq1/q2,1d,

and we definevszdªVs1,zd andwszdªVsz ,1d. Obviouslyv andw are nonzero polynomials of
degree not greater thank. Moreover, we have
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wszd = zkvs1/zd. s2.3d

Hence if we write

vszd = o
i=0

k

vk−iz
i , s2.4d

then

wszd = o
i=0

k

viz
i . s2.5d

If VA is equivalent toV, i.e. VAsqd=VsAqd for someAPPOs2,Cd+, thenvAszdªVAs1,zd is given
by

vAszd = sa + bzdkvstAszdd, s2.6d

and similarly,wAszdªVAsz ,1d has the form

wAszd = s− bz + adkwstATszdd. s2.7d

Simple calculations show the following.
Proposition 2.3: If z! is a root of polynomialv, thentATsz!d is a root of polynomialvA. If z!

is a root of polynomial w, thentAsz!d is a root of polynomial wA.
By the above-mentioned property and Proposition 2.2 we can choose among all equivalent

potentials such a representativeV, for which polynomialv sor wd has one root in an arbitrary point
of CP1\ hf1: +ig ,f1:−igj. This is always possible except for cases when all linear factors ofV have
the form sq2± iq1d, i.e., when potentialV has the following form:

Vk,l = asq2 − iq1dlsq2 + iq1dk−l, l = 0, . . . ,k, a P C!. s2.8d

We called the above potentials exceptional.
To prove some general statements it is convenient to assume that for a given potentialV we

can find an equivalent oneVA such that it contains monomialq1q2
k−1 with a nonzero coefficient.

Lemma 2.1: Assume that VÞVl,l. If for all potentials VA equivalent to V coefficient of mono-
mial q1q2

k−1 vanishes, then V=0.
Proof: For a givenV of degreek the coefficient of monomialq1q2

k−1 is equal tov1 in s2.4d.
From s2.5d it follows that vi =w8s0d. Let us assume that for allAPPOs2,Cd+ we havewA8s0d=0.
Then froms2.5d and s2.7d we obtain

wAszd = ako
i=0

k

visz + xdis1 − xzdk−i , s2.9d

wherex=b/a. Thus

wA8s0d = ako
i=0

k

visixi−1 − sk − idxi+1d = ako
j=0

k

fs j + 1dv j+1 − sk − j + 1dv j−1gxj , s2.10d

where we assumed thatv−1=vk+1=0. The above expression vanishes for allxÞ ± i, hence it
vanishes for allx. This implies that

s j + 1dv j+1 − sk − j + 1dv j−1 = 0 for j = 0, . . . ,k.

Puttingv=fv0, . . . ,vkgT, we rewrite the above-noted equation in the form
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Mv = 0, v = fv0, . . . ,vkgT, s2.11d

wheresk+1d3 sk+1d matrix M has the form

s2.12d

Its determinant is given by

detM = Hsk!! d2 for odd k

0 otherwise.
J

The above finishes the proof for oddk. Whenk=2l for somel PN, then, as it is easy to show, the
rank of matrixM is k. Hence, it has a one-dimensional kernel. This kernel is spanned by vector
vr =fv0

r , . . . ,v2l
r gT, where

v2i+1
r = 0, v2i

r = S l

i
D, for i = 0, . . . ,l .

To finish the proof it is enough to notice that

s1 + z2d2l = o
i=0

2l

vi
rzi .

h

As it is well known a homogeneous polynomialVPC2fq1,q2g of degreek can be written
uniquely as a product of linear forms

V = p
i=1

k

saiq1 + biq2d, s2.13d

where

uaiu + ubiu Þ 0 for i = 1, . . . ,k.

Thus, forAPPOs2,Cd we have

VA = p
i=1

k

sai8q1 + bi8q2d, s2.14d

where
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fai8,bi8g = fai,bigA for i = 1, . . . ,k.

If ai
2+bi

2=0 for i =1, . . . ,k, then V=Vk,l for somel P h0, . . . ,kj. Assume thatVÞVk,l. Then for
somei0P h0, . . . ,kj, we haveai0

2 +bi0
2 Þ0, and we can findAPPOs2,Cd such thatbi0

8 =0 or ai0
8

=0.
Proposition 2.4: Assume that a homogeneous potential of degree k is not exceptional, then it

is equivalent to V=q1Ṽ, where Ṽis a homogeneous polynomial of degree k−1.
The above observation was made by Hietarinta in Ref. 16. The above proposition shows that

we can assume thatvk=0 in s2.4d if the potential is not exceptional. Additionally, a nonzero
coefficient of the potential can be normalized to one, so an equivalent class of potentials depends
at most onk−1 parameters.

In the literature concerning searches for integrable potentials it is customary to assume that we
can always normalize a homogeneous potential in such a way that the coefficient of monomial
q1q2

k−1 vanishes, see, e.g., Ref. 37. But, generally this claim is wrong even if we exclude the
exceptional potentials, see Ref. 11.

Remark 2.1: As it was shown in Ref. 16, exceptional potentials Vk,0, V0,k, Vk−1,1, V1,k−1, and
Vk,k are integrable for all k. Nothing is known about the integrability of the remaining exceptional
potentials.

B. Darboux points

It is convenient to introduce the following auxiliary system:

q̇1 = − gq1 +
]V

]q1
, q̇2 = − gq2 +

]V

]q2
, g P C!. s2.15d

The Jacobian matrix of the right-hand sides of the above-noted system is

Jsqd = V9sqd − gE. s2.16d

A Darboux point of potentialV is a nonzero equilibrium of systems2.15d. Moreover, if d is an
equilibrium of s2.15d, then the matrix of linearizations ofs2.15d at d is

Jsdd = V9sdd − gE.

Hence, if slg ,gsk−1dd are the eigenvalues ofV9sdd, then the eigenvalues ofJsdd are sgL ,gsk
−2dd, whereL=l−1. Notice that

L =
1

g
Tr V9sdd − k =

1

g
Tr Jsdd − sk − 2d. s2.17d

We show that this quantity does not depend on a representative of the Darboux point and hence it

is a well-defined function of a Darboux point. In fact, letd and d̃ represent the same Darboux

point, i.e.,d=ad̃ for someaPC!. Thus we have

V8sdd = gd, V8sd̃d = g̃d̃, whereg̃ =
g

ak−2 .

As a consequence

L =
1

g
Tr V9sdd − k =

ak−2

g
Tr V9sd̃d − k =

1

g̃
Tr V9sd̃d − k.

Let us introduce new coordinatesx=q1 andz=q2/q1. In new variables Eq.s2.15d has the form
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ẋ = − gx + xk−1hszd, ż= xk−2gszd, s2.18d

where

hszd = kvszd − zv8szd, gszd = s1 + z2dv8szd − kzvszd,

s2.19d

vszd = Vs1,zd = o
i=0

k

vk−iz
i .

Notice that deggøk and deghøk−1. To express the coefficients of polynomialsh andg in terms
of coefficients ofv, let us write

gszd = o
i=0

k

gk−iz
i, hszd = o

i=0

k−1

hk−1−iz
i . s2.20d

Then, from the definition of polynomialsg andh we obtain

gj = − s j + 1dv j+1 + sk − j + 1dv j−1, j = 0, . . . ,k, s2.21d

and

hj = s j + 1dv j+1, j = 0, . . . ,k − 1, s2.22d

where we assumed thatv−1=vk+1=0. From the above it follows thatg0=−v1, andh0=v1.
A direct inspection of the highest order terms of the right-hand sides of the definitions ofg and

h shows the following.
Proposition 2.5: Let us denote l=degv. If l ,k, then degg= l +1 and degh= l. If l =k, then

deggøk anddeghøk−1. Moreover, ifv1Þ0, thendegg=k anddegh=k−1.
Proposition 2.6: If V is a homogeneous potential of degree k and VÞVl,l when k=2l, then the

number of Darboux points is finite and it is at most k.
Proof: Darboux pointsfq1:q2g with q1Þ0 are given by solutionssx,zd, xÞ0 of the following

system:

xk−2hszd = g, xk−2gszd = 0. s2.23d

Hence, theirz coordinates are roots ofgszd. Thus their number is finite provided thatgÞ0. If g
=0, then solving differential equations2.19d we find thatvszd=as1+z2dk/2, i.e., V=asq1

2+q2
2dk/2.

Let us note that we can always assume that for all Darboux pointsq1Þ0. In fact, if f0:d2g,
d2Þ0, is a Darboux point, then

]V

]q1
s0,d2d = v1d2

k−1 = 0.

But from Lemma 2.1 it follows that we can always assume thatv1Þ0. Hence,d2=0. We have a
contradiction.

By Proposition 2.5 the highest possible degree ofg is k, and this is why the number of
Darboux points cannot be greater thank. h

Corollary 2.1: For a generic homogeneous potential of degree k there exist k Darboux points.
It is important to underline that not all roots ofgszd are Darboux points. Note that it can

happen thatgszd and hszd have a common rootz!, and then for thisz=z! systems2.23d has no
solution.

Proposition 2.7: Polynomials gszd and hszd have a common root z! if and only if z! is a
multiple root ofvszd.

Proof: If z! is a multiple root ofvszd, thenvsz!d=v8sz!d=0, and froms2.19d it follows that
gsz!d=hsz!d=0.
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From s2.19d we havezhszd+gszd=v8szd. Thus if gsz!d=hsz!d=0, then v8sz!d=0, but this,
together withhsz!d=0, implies thatvsz!d=0. Hence,z! is a multiple root ofvszd. h

Now we want to check if there exists at least one Darboux point for a given potential. To this
end it is important to know a relation between the multiplicities of common roots of polynomials
v andg.

For a polynomialpPCfzg by multsp,z!d we denote the multiplicity ofpszd at z=z!.
Let us assume thatvszd=sz−z!dlṽszd wherel ù1 andṽsz!dÞ0. Then from the definition ofg

we obtain

gszd = sz− z!dl−1hs1 + z2dflṽszd + sz− z!dṽ8szdg − kzsz− z!dṽszdj. s2.24d

Thus,gszd is divisible by sz−z!dl−1. We havegszd=sz−z!dl−1g̃szd where

g̃szd = s1 + z2dflṽszd + sz− z!dṽ8szdg − kzsz− z!dṽszd.

This implies that

g̃sz!d = ls1 + z!
2dṽsz!d.

But ṽsz!dÞ0, hence, ifz!Þ ± i we haveg̃sz!dÞ0, and the multiplicity ofz! as a root ofg is l
−1. Hence, we conclude with the following.

Proposition 2.8: Assume that z!Þ ± i and l=multsv ,z!dù1, thenmultsg,z!d= l −1.
Let z!= i, then instead ofs2.24d we obtain

gszd = sz− idlflsz+ idṽszd + s1 + z2dṽ8szd − kzṽszdg. s2.25d

Thusgszd is divisible by sz− idl, sogszd=sz− idlg̃szd where

g̃szd = lsz+ idṽszd + s1 + z2dṽ8szd − kzṽszd. s2.26d

Hence we have

g̃sid = s2l − kdiṽsid. s2.27d

As we obtain similar relations forz!=−i, we can formulate the following proposition.
Proposition 2.9: Assume that l=multsv ,z!dù1 for z!= ± i. If 2l =k, then multsg,z!d. l else

multsg,z!d= l.
Applying a similar reasoning it is easy to prove the following proposition.
Proposition 2.10: If l=multsv ,z!dù1, thenmultsh,z!d= l −1.
Now, we are ready to characterize potentials without Darboux points more precisely.
Lemma 2.2: If potential V of degree k.2 does not have Darboux points, then all its linear

factors are multiple. Moreover, V=Vk,l for some l=2, . . . ,k−1, except for the case when k=2l and
V has a factorsq2± iq1d with multiplicity l.

Proof: By Proposition 2.7, if potentialV has no Darboux points, then all roots of polynomial
v are multiple and all of them are roots of polynomialsg andh. Moreover, the only roots ofg are
those ofv.

We have to prove only the second part of the proposition. By Lemma 2.1 we can assume that
v1Þ0, and hence degv=k−1 or degv=k. Moreover, under this assumption degg=k, see Propo-
sition 2.5. Polynomialv can be written in the form

v = ap
i=1

s

sz− zidl i, o
i=1

s

l i = mP hk − 1,kj,

where integersl i .1, for i =1, . . . ,s. By assumption, the only roots ofg arezi, so we can write it
in the following form:
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g = bp
i=1

s

sz− zidni, o
i=1

s

ni = k,

where integersni .0 for i =1, . . . ,s. If zi Þ i, then, by Proposition 2.8,ni = l i −1, and we have

k = o
i=1

s

ni = o
i=1

s

l i − s= m− s,

and this is only possible whens=0. Hence, amongzi we must have one or two equal to ±i. Let us
put zs−1= i andzs=−i. For evenk we assume thatls−1Þk/2 andls−1Þk/2. Then, by Proposition
2.9, we havens−1= ls−1 andns= ls. Thus we obtain

k = o
i=1

s

ni = o
i=1

s

l i − ss− 2d = m+ 2 −s.

So,k−m=2−sù0, and hence there are at most two roots ofv which are ±i. h

In a case when ±i is a root ofv with multiplicity k/2, as two examples in the following show,
there exist potentialsVÞVk,l without a Darboux point.

Example 1:

V = sq2 − iq1d2sq2 − aq1d2, a Þ − i , s2.28d

then

vszd = sz− id2sz− ad2, gszd = 2sa + idsz− adsz− id3.

Thus, in fact, the above potential does not have any Darboux point for an arbitrary aÞ 7 i.
Example 2: Potential

V = sq2 − iq1d4sq2 − aq1d2sq2 − bq1d2

has no Darboux points provided ab=−1 or a=b.
Thus, one parameter families of potentials without Darboux points can appear. This is not

incidental—it can be proved that potentials of even degreek with factor sq2± iq1dk/2 and without
Darboux points form at most one parameter families.

To determine the position of Darboux points for a given potential of degreek.2 we have to
solve a polynomial equation of degreek. Thus it seems that in a general case whenk.4 there are
no analytical tools to study the integrability by means of Darboux points. We show that it is not
like that.

Lemma 2.3: For odd k.2, the roots of polynomial g determine polynomialv uniquely up to
a multiplicative constant.

Proof: Without any loss of the generality we can assume that degg=k. Let zi for i =1, . . . ,k be
roots ofg. To prove our lemma, we need to show that coefficients of polynomialv are uniquely
determined by coefficients of polynomialg. For an arbitraryk we have relations2.21d which can
be rewritten as a system of linear equations

g = Mv, gT = fg0, . . . ,gkg, vT = fv0, . . . ,vkg,

where matrixM is given bys2.12d. As we know that for oddk detM Þ0, this finishes the proof.h

Corollary 2.2: For odd degree k, the positions of k Darboux points of a potential determine
this potential uniquely up to a multiplicative constant.

For evenk the rank of matrixM is k. Hence, for evenk we have one parameter families of
potentials having the same Darboux points. The reason for this fact is obvious if we notice that at
a Darboux point the gradient of the potential is parallel to the radius vector. Hence, for evenk
potentialV andV+asq1

2+q2
2dk/2 have the same Darboux points.
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C. Necessary conditions for integrability

Now, we want to define a functionL :CP1→C which for a Darboux point with coordinatez
givesLszd—the eigenvalue defined bys2.17d for this point.

The Jacobian matrix of the right-hand sides ofs2.18d has the form

J = F− g + sk − 1dxk−2hszd xk−1h8szd
sk − 2dxk−3gszd xk−2g8szd G , s2.29d

hence

1

g
Tr J − sk − 2d = s1 − kdg + xk−2fsk − 1dhszd + g8szdg.

The above quantity, when evaluated at a Darboux point, is equal to the eigenvalue defined by
s2.17d. To eliminatex from the above expression we notice that at a Darboux point we have

xk−2 =
g

hszd
.

The above considerations lead to the following definition ofLszd:

Lszd =
g8szd
hszd

. s2.30d

Notice that ifz! is a multiple Darboux point, thenLsz!d=0.
On the projective lineCP1, where Darboux points are located, we define a meromorphic

differential formv which in coordinatez is given by

v =
hszd
gszd

dz, s2.31d

and in coordinatez=1/z by

v = −
hs1/zd
gs1/zd

dz

z2 . s2.32d

Let us denote byV̂k,l a set of homogeneous potentials of degreek which satisfy the following
conditions:

C1: potentialVP V̂k,l has 0, l øk simple Darboux points, and
C2: if s±iq1+q2d is a linear factor ofV, then it has multiplicity 1.
We prove the following.

Theorem 2.1:For VP V̂k,l the following relation holds true:

o
i=1

l
1

Li
= − 1. s2.33d

Proof: For a given potentialVP V̂k,l we choose such a representative thatv1Þ0. Then all its
Darboux points are located in the affine part ofCP1, and degg=k and degh=k−1. Let zi, for i
=1, . . . ,k, denote roots of polynomialg. First we consider the casel =k. By assumption all roots
of g are simple and, moreover, polynomialsg andh are relatively prime. We putLi =Lszid for i
=1, . . . ,k. The residue ofv at zi for i =1, . . . ,k is given by
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ressv,zid =
hszid
g8szid

=
1

Li
. s2.34d

Moreover, the residue ofv at infinity is

ressv,`d = −
h0

g0
= 1. s2.35d

Thus, by the Residue Theorem28 we prove the theorem forl =k.
If l ,k we can assume that firstl roots ofg are simple and they are the Darboux points, and

we put againLi =Lszid for i =1, . . . ,l. But now polynomialsg andh are not relatively prime. Let
p be a monic common factor ofg andh. Then we can writeg=pg1 andh=ph1 whereg1 andh1

are relatively prime. We show that degp=k− l. In fact, hsz!d=gsz!d=0 if and only if z!

P hzl+1, . . . ,zkj. By Proposition 2.7z! is also a multiple root ofv. It is important to notice that
z!Þ ± i by condition C2. So, from Propositions 2.8 and 2.9 we deduce that multsg,z!d
=multsh,z!d. This proves our claim that degp=k− l.

Thus, we have

v =
hszd
gszd

dz=
h1szd
g1szd

dz, s2.36d

and all finite poles of this form are Darboux pointszi, i =1, . . . ,l. Moreover

1

Li
=

hszid
g8szid

=
pszidh1szid

p8szidg1szid + pszidg18szid
=

h1szid
g18szid

= ressv,zid, s2.37d

for i =1, . . . ,l, and ressv ,`d=1. This finishes the proof. h

For eachVP V̂k,l we have properly defined a collectionLV=hL1, . . . ,Llj. Let Lk,l denote a set

of all LV, for VP V̂k,l, andIk,l a set of those elements ofLk,l which correspond to the integrable
potentials. Our main result in this section is formulated in the following theorem.

Theorem 2.2:For all k.2 setsIk,l for l =1, . . . ,k are at most finite.
Proof: For a potentialVPVk,l its Darboux points are simple, henceLi Þ0 for i =1, . . . ,l. Thus,

we can introduce quantitiesXi =1/Li. Using them we rewrites2.33d in the form

o
i=1

l

Xi = − 1. s2.38d

If the system is integrable, then, according to Theorem 1.1, eachLi belongs to a certain infinite set
Ik for i =1, . . . ,l. From the list given in the thesis of Theorem 1.1 we deduce that setsIk have the
following properties:

1. Ik=han
skdPQ \ h0j uan

skd.−1,nPNj,
2. for eachk the sequencehan

skdj has only one accumulation point at infinity.

HenceXi belong to a setXk with the properties

1. Xk=hxn
skdPQ \ h0j uxn

skdP s−` ,−1dø s0,`d ,nPNj.
2. For eachk the sequencehxn

skdj has only one accumulation point at 0. In particular, for eachk
only a finite number ofxn

skd take negative values not greater than −1.

From relations2.38d it follows that at least one ofXi is negative. However, ifXi is negative, then
it is not greater than −1. Hence, not all ofXi are negative. So assume thatXi for i =m+1, . . . ,l are
negative for some 0,m, l. There is only finitely many choices forXm+1, . . . ,Xl. For each of them
we can rewrite relations2.38d in the form

062901-14 A. J. Maciejewski and M. Przybylska J. Math. Phys. 46, 062901 ~2005!

                                                                                                                                    



o
i=1

m

Xi = c . 0. s2.39d

But by Lemma B.1, the above equation has at most a finite number of solutionssX1, . . . ,Xmd
PXk

m. As we have finitely many possibilities for a choice ofm, this finishes the proof. h

It is important to remark that these potentialsVPVk,l for which LVPIk,l satisfy only the
necessary conditions for integrability of Theorem 1.1 thus, not all of them are integrable.

A natural question appears: what happens when a potentialV has a multiple Darboux point?
To answer it let us rewrites2.33d in the following form:

o
i=1

l

p
j=1

jÞi

L j = − p
j=1

l

L j . s2.40d

Assume now that two Darboux points, let us sayzl−1 andzl, coincide, andhszldÞ0. Then, from
s2.30d, we have immediately thatLl−1=Ll =0. But whenLl andLl−1 tend to 0, then both sides of
s2.40d vanish and hence, in such a case,Li for i =1, . . . ,l −2 can be arbitrary. Hence, condition C1
imposed on potentials in Theorem 2.1 cannot be weakened.

The following example shows that condition C2 cannot be weakened either.
Example 3: Let

V = sq2 − iq1d2sq2 − aq1d, a Þ ± i .

For this potential we have

v = sz− id2sz− ad, g = sz− id2fsa + 2idz+ 1 − 2iag, h = − sz− idfsa + 2idz− 3iag.

Thus, if aÞ−2i, then z!=s2ia−1d / sa+2id is the only simple Darboux point. It is easy to check
that for this point we haveLsz!d=1. Hence, for the considered potential, relation (2.33) is not

valid, but, of course, it is not a counterexample for Theorem 2.1 as V¹ V̂3,1. In fact, one can show

that V̂3,1=x.
The above example shows, among others, the need for a more careful investigation of condi-

tion C2.
Assume that potentialV of degreek contains a linear factorsq2− iq1d with multiplicity r .1,

r Þk/2, but, if V has also a factorsq2+ iq1d, then its multiplicity is one. Moreover, we assume that
V has the maximal numberl =k−r of simple Darboux points. For such potential we have

v = sz− idrṽszd,

whereṽszd has only simple roots. By the results of Sec. II B, we also have

g = sz− idrg̃szd, h = sz− idr−1h̃szd,

where

g̃szd = fsr − kdz+ ir gṽszd + s1 + z2dṽ8szd,

h̃szd = fsk − rdz− ikgṽszd − zsz− idṽ8szd,

and polynomialsg̃szd and h̃szd are relatively prime andhsidÞ0. Hence, we have
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v =
hszd
gszd

dz=
h̃szd
g1szd

dz, g1szd = sz− idg̃szd.

Now, if zi, for i =1, . . . ,k−r, denote the Darboux points, then, by the same arguments as in the
proof of Theorem 2.1, we have

ressv,zid =
1

Li
.

But now, differential formv has one additional simple pole atz= i. The residue ofv at this point
is equal to

ressv,id =
h̃sid
g18sid

.

But

g18szd = g̃szd + sz− idg̃8szd,

so

g1sid = g̃sid = is2r − kdṽsid.

As h̃sid=−ir ṽsid, we have

ressv,id =
r

k − 2r
.

The residue ofv at infinity is 1, hence, invoking the Residue Theorem, we obtain the following
relation:

o
i=1

l
1

Li
= − 1 −

r

k − 2r
. s2.41d

One can notice that in the above reasoning we can drop the assumption that the number of
Darboux points is maximal, provided that ifV has the factorsq2+ iq1d, then it has multiplicity one.

We can apply formulas2.41d to the potential from Example 3. Fork=3, l =1 andr =2 from
s2.41d we haveL1=1, i.e., exactly what we obtained by direct calculation.

The above considerations show that we can strengthen considerably our results modifying

condition C2. Thus, instead ofV̂k,l, we define a bigger class of potentialsVk,l. A homogeneous
potentialV belongs toVk,l iff it satisfies two conditions:

V1: V has 0, l øk simple Darboux points, and
V2: if sq2± iq1d is a linear factor ofV, then its multiplicity is notk/2.
For x,yPR we define

ux,y ª H0 for x , y,

1 for x ù y.
J

The following theorem is a generalization of Theorem 2.1.
Theorem 2.3:Let VPVk,l, and r± be the respective multiplicities of linear factorssq2± iq1d of

V. Then

o
i=1

l
1

Li
= − 1 −ur+,2

r+

k − 2r+
− ur−,2

r−

k − 2r−
. s2.42d

Proof: We have already proved this theorem for a case whenr+ or r− is smaller than 2. Thus
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let us assume thatr± ù2. Under this assumption, for a potentialV, we have

v = sz− idr+sz+ idr−ṽszd,

whereṽszd is not divisible bysz± id. Moreover, we also have

g = sz− idr+sz+ idr−g̃szd, h = sz− idr+−1sz+ idr−−1h̃szd,

where

g̃szd = sz2 + 1dṽ8szd + fzsr+ + r− − kd + isr+ − r−dgṽ8szd,

h̃szd = fz2sk − r+ − r−d + zsr− − r+d + kgṽszd − zsz2 + 1dṽ8szd.

Let us assume for simplicity that the number of Darboux points is maximal, i.e.,l =k−r+−r−. Now,
the differential formv can be written as

v =
hszd
gszd

dz=
h̃szd
g1szd

dz, g1szd = sz2 + 1dg̃szd,

whereh̃szd andg1szd are relatively prime. The only polesv are all Darboux pointszi, the infinity
and ±i. Notice that

h̃s± id = 2r±ṽs± id,

and

g18s± id = ± 2ig̃s± id = 2sk − 2r±dvs± id.

Hence, we have

ressv, ± id =
r±

k − r±
.

As the residue ofv at a Darboux pointzi is 1/Li, and at infinity it is 1, we have formulas2.42d.
We analyze a case when the number of Darboux points is smaller than maximal similarly as in the
proof of Theorem 2.1. h

For Vk,l, we keep the definitions of setsLk,l and Ik,l. An easy modification of the proof of
Theorem 2.2 allows one to formulate the following.

Corollary 2.3: The thesis of Theorem 2.2 is valid for classes of potentialsVk,l.
It is not difficult to write a general algorithm allowing one to find all elements of setsIk,l.

Relations2.33d, or s2.42d gives a strong restriction, and setsIk,l contain only a few elements. We
analyzed casek=3 in detail in Ref. 23. As it was shown in that paper setI3,3 contains only four
elements

I3,3= hh− 1,− 1,1jh− 2/3,4,4j,h− 7/8,14,14j,h− 2/3,7/3,14jj.

For further usage, we determined setI4,4. It has five elements listed in Table I. Moreover, we find
that I4,3=I4,2=x.

Remark 2.2: One can ask if there exists a relation of the forms2.42d for a potential of degree
k=2l with a factor sq2− iq1dl. For such case we can try to calculate the residue of formv at z
= i, however, this residue depends on the coefficients of the potential.
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D. Reconstruction of the potential

When we try to apply the results obtained in Sec. II C for an investigation of potential of a
given degree we meet the following problem: how to determine the coefficients of the potential
knowing hL1, . . . ,Ll ,jPIk,l.

A possible approach to this problem is the following. Let us assume a generic situation:
potentialV of degreek has the maximal number of simple Darboux points. Letzi andLi denote
their coordinates and eigenvalues, fori =1, . . . ,k. Then, pointsszi ,Lid are contained in an algebraic
subsetD of C2 defined by zeros of two polynomialsg, f PCfz,Lg:

gszd = 0, fsz,Ld ª hszdL − g8szd = 0. s2.43d

If by I =kg, fl we denote the ideal inCfz,Lg generated byg and f, thenD is just an algebraic
variety associated with this ideal, i.e., in the algebraic geometry notationD=VsId. Under our
genericity assumption, the resultantG=Rsg, f ,zdPCfLg of g and f with respect toz does not
vanish, and degGøk. Moreover, by the extension theorem, see Ref. 8, Chap. 3, for each rootL!

of G there exitsz! such thatsz! ,L!dPD. On the other hand, ifz! is a Darboux point andL! the
corresponding eigenvalue, thenL! is a root of the resultantG. Hence,hL1, . . . ,Lkj are roots of the
resultantG.

The above observation allows one to investigate the general case when coefficients of poly-
nomialV are unspecified. Again we make the assumption that there exists the maximal number of
Darboux points, and without loss of generality we putv1=−1. Theng, f PCfz,L ,v0,v2, . . . ,vkg,
andD,Ck+2. The resultantG=Rsg, f ,zd is an element ofCfL ,v0,v2, . . . ,vkg, and degL Gøk, but
using the genericity arguments we can assume that degL G=k. If we write

G = o
m=0

k

Gk−mLm,

where GmPCfv0,v2, . . . ,vkg for m=0, . . . ,k, then the basic symmetric polynomialstm of
sL1, . . . ,Lkd are given by the well-known formulas:

tm = s− 1dmGm

G0
P Csv0,v2 . . . ,vkd, m= 1, . . . ,k. s2.44d

When sL1, . . . ,Lkd is given, then we have to solve the above equations for unknown
sv0,v2, . . . ,vkd.

Notice thatsL1, . . . ,Lkd is not an arbitrary point inCn. According to our assumptions, relation
s2.33d is satisfied and this implies thattk=−tk−1, sees2.40d. Hence, among all equationss2.44d
only k−1 are independent. As we havek unknowns, the solutions of these equations generically
form one parameter families. But we know that the equivalent potentials have the same eigenval-
ues. Thus we can choose a representative in each class of equivalent potentials. e.g., fixing the
value of one coefficient. Then, solvings2.44d we obtain at most a finite number of solutions.

The above ideas need modifications when the number of Darboux points is smaller than
maximal. We do not discuss this question here, but an example of such an analysis is given in the
next section.

TABLE I. Elements of setI4,4.

Element hL1,L2,L3,L4j

1 h−1,−1,2,2j
2 h−5/8,5,5,5j
3 h−5/8,2,20,20j
4 h−5/8,27/8,27/8,135j
5 h−5/8,2,14,35j
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Theorems 2.1 and 2.3 cannot be applied in a case when the investigated potential has a
non-simple Darboux point. Let us describe such potentials.

Proposition 2.11: If a homogeneous potential V has a multiple Darboux point z!PCP1, then
z!Þ ± i.

Proof: If i is a Darboux point, thenvsid=0, sees2.19d. Hence,vszd=sz− idṽszd, and, moreover,
ṽsidÞ0, for otherwisei is not a Darboux point. Hence, multsv , id=1, and, by Proposition 2.9,
multsg, id=1, soi is a simple Darboux point. h

By the above proposition, ifV has a multiple Darboux point, we can assume that it is located
in an arbitrary point ofCP1, except points ±i. If we locate it atz=0, thengszd has a root at this
point with multiplicity greater than one andhs0dÞ0. Thus,

gk = vk−1 = 0, gk−1 = − kvk + 2vk−2 = 0, hk−1 = kvk Þ 0.

Hence we can formulate the following proposition.
Proposition 2.12: If a homogeneous potential of degree k.2 has a nonsimple Darboux point,

then it is equivalent to the following one:

V = o
i=1

k

vk−iq1
k−iq2

i , where vk−1 = 0, vk−2 =
k

2
vk, vk Þ 0. s2.45d

Thus, in the space of all homogeneous potentials of degreek those with a multiple Darboux
point are contained in a hyperplane of codimension two.

E. A case when the number of Darboux points is not maximal

If a potential does not have the maximal number of Darboux points, then, as we showed, it has
a linear factorsaq1+bq2d with multiplicity l .1. By a generic potential without the maximal
number of Darboux points we understand a potential for whichl =2, i.e., when we have the
smallest possible degeneration, and additionally,a2+b2Þ0. The aim of this section is to show
that such potentials are not integrable, or, more precisely, Hamiltonian systems1.2d does not admit
an additionalrational first integral.

If V is a generic potential without the maximal number of Darboux points, then we can
assume that it has the form

V = q2
2Ṽsq1,q2d, s2.46d

where degṼ=k−2 andṼsq1,0dÞ0.
Theorem 2.4: Hamiltonian systems1.2d with potential s2.46d does not admit an additional

rational first integral.
Proof: Equations of motion have the following form:

q̇1 = p1, ṗ1 = − q2
2 ]Ṽ

]q1
,

s2.47d

q̇2 = p2, ṗ2 = − q2
2 ]Ṽ

]q2
− 2q2Ṽ.

Hence, they admit the following particular solution:

q1std = At + B, p1std = A, q2std = p2std = 0, s2.48d

whereA,BPC. The variational equations for this solution have the form
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ẍ1 = 0, ẍ2 = − 2Ṽsq1std,0dx2, s2.49d

and the second one is the normal variational equation. According to our assumptionṼsq1,0dÞ0,
we have

Ṽsq1std,0d = CsAt + Bdk−2, C Þ 0. s2.50d

We fix B=0 and takeA such that 2CAk−2=−1. Then the normal variational equation reads

ẍ = tmx, m= k − 2 . 0. s2.51d

For this equation the infinity is the only singular point and it is an irregular singularity. We show
that for an arbitrarym.0 this equation has no Liouvillian solutions, and, hence its differential
Galois group is SLs2,Cd. To this end we apply the Kovacic algorithm18 which is formulated for an
equationẍ=rx with an arbitrary rationalr =rstd. Three cases are distinguished in this algorithm.
For Eq.s2.51d only Case 1 is possible. For an oddm the necessary conditions for the existence of
a Liouvillian solution, given in Ref. 18sTheorem, p. 8d are not satisfied. This proves our claim for
odd m. Whenm=2l is even we have to pass the first step of the algorithm for Case 1. According
to it, we have to calculate the following numbers:

a`
± =

1

2
S±

b

a
− nD , s2.52d

wherea, b, andn are defined as follows. Let us expandÎr into the Laurent series at infinity, and
let

fÎrg` = atn + ¯ + d,

be the indicated part of this series. So, for our casen= l anda=1. Numberb is the coefficient of
tn−1 in r −fÎrg`

2. Hence in our caseb=0, and thusa`
± =−l /2,0. But this, according to the next step

of the algorithm, implies that the considered equation does not pass the algorithm for Case 1. As
it is the only possible case, this proves our claim.

Thus the differential Galois group of the normal variational equations2.51d is SLs2,Cd, so it
is not Abelian. By Theorem 4.3 from Ref. 30 this shows that the considered Hamiltonian system
does not admit an additional rational first integral. h

III. APPLICATION: INTEGRABLE POTENTIALS OF DEGREE FOUR

Whenk=4 all exceptional potentials are integrable with a polynomial additional first integral.
Thus, we exclude them from our consideration. Moreover, according to Ref. 11, those potentials
from which we cannot remove monomialq1q2

3 using a rotation are also integrable. Hence, we can
assume that the potential has the form

V = 1
4ãq1

4 + 1
3bq1

3q2 + 1
2cq1

2q2
2 + 1

4d̃q2
4 = 1

4aq1
4 + 1

3bq1
3q2 + 1

4dq2
4 + 1

4csq1
2 + q2

2d2, s3.1d

where

ã = a + c, d̃ = d + c.

We putz=q2/q1. Then polynomialvszd=Vs1,zd has the form

vszd = 1
4a + 1

3bz+ 1
4dz4 + 1

4cs1 + z2d2.

For thisv, polynomialsg andh, sees2.19d, are the following:
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gszd = 1
3b − az− bz2 + dz3, hszd = a + c + bz+ cz2. s3.2d

Notice that ifc+dÞ0, thenq1=0, q2=1/Îc+d is the only Darboux point with the first coordinate
equal to zero. For this point itsz coordinate is infinity. We denotez0=`. Direct calculations show
that for this point we haveL0=−d/ sc+dd. Thus z0 is a multiple Darboux point ifd=0 andc
Þ0.

Our further analysis is divided into three steps. First, we distinguish those parameters’ values
for which V given by s3.1d does not have any Darboux points or has a multiple Darboux point.
When a potential has no Darboux points Theorem 1.1 cannot be applied. When a potential has a
multiple Darboux point, then neither Theorem 2.1 nor Theorem 2.3 can be used. It appears that the
case when the potential has only one simple Darboux point is very peculiar. In the next step, we
distinguish potentials with more than one simple Darboux point such that for themhL1, . . . ,Llj
PI4,l for l =2,3,4. In this way we obtain a list of the distinguished potentials for which the
necessary conditions of Theorem 1.1 for the integrability are satisfied. In the last step of our
analysis, we apply the higher order variational equations for a study of the integrability of the
distinguished potentials. Sections III A–III C correspond to the described steps.

A. Special cases

First, we distinguish potentialss3.1d which do not have Darboux points, as for them Theorem
1.1 is not applicable.

Proposition 3.1: Potentials3.1d has no Darboux point if and only if it is equivalent to

V0 = asq2 − iq1d2q2
2, a P C!. s3.3d

Proof: Assume that potentials3.1d has no Darboux point. Then, in particular there is no
Darboux point at infinity, soc=−d. Then we have

vszd = 1
4sa − dd + 1

3bz− 1
2dz2.

By Lemma 2.2,vszd must have only multiple factors, so necessarilydÞ0, and

2b2 + 9sa − ddd = 0.

Then we can rewritevszd in the following form:

vszd = −
1

2
dsz− z!d2, z! =

b

2d
,

and this gives

gszd = dsz− z!dsz2 − 2z!z− 1d.

But the only root ofg can bez!, and thusz!= ± i. Both choices ofz! give a potential equivalent to
s3.3d. h

Our next attempt is to decide whethers3.1d has exactly one simple Darboux point.
Proposition 3.2: Potential (3.20) has exactly one simple Darboux point iff it is equivalent to

V1 = aq2
4, a P C!, s3.4d

or

V2 = 1
2aq1

2sq1 + iq2d2 + 1
4sq1

2 + q2
2d2, a P C!. s3.5d

Proof: If z=` is the only simple Darboux point of potentials3.1d, thenc+dÞ0. Moreover, we
havedÞ0, for otherwise the infinity is a double Darboux point. Thus degg=3, and deghø2.
None of the roots ofg is a Darboux point, soh has at least one root. The only roots ofg are those
of polynomialh, hence we can write
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gszd = dsz− z1dsz− z2d2. s3.6d

A comparison withs3.2d gives the following identities:

b + 3dz1z2
2 = 0, a + dz2s2z1 + z2d = 0, b − dsz1 + 2z2d = 0. s3.7d

As z1 andz2 are roots ofh, thus we have two more equations

a + c + bz1 + cz1
2 = 0, a + c + bz2 + cz2

2 = 0. s3.8d

Subtracting them we obtain

sz1 − z2dfb + csz1 + z2dg = 0. s3.9d

If z1=z2, then froms3.7d we obtainz1
3=z1. Thus eitherz1=z2=0, or z1=z2= ± i. In the first case

a=b=c=0, so the potential has the forms3.4d. In the second case, whenz1=z2= i, we havea
=3d andb=3id. As c+dÞ0 we can putc+d=1, and then we obtain potentials3.5d. The choice
z1=z2=−i gives a potential equivalent tos3.5d.

We show that casez1Þz2 is impossible. Let us assume thatz1Þz2. Then, necessarily,cÞ0,
and from the fact thatzi are rootsh we have

b = − csz1 + z2d, a + c = cz1z2. s3.10d

The above equations together withs3.7d form a system of linear homogeneous equations for
unknownsa,b,c,dd with the following matrix of coefficients:

M =3
0 1 0 3z1z2

2

1 0 0 z2sz2 + 2z1d
0 − 1 0 z1 + 2z2

0 1 z1 + z2 0

1 0 1 − z1z2 0
4 . s3.11d

Let Ml denotelth 434 minor of the above matrixsobtained by scratching itsl-rowd. We have

− M1 = z1 + z2s2 + z1
2 + z1z2 + z2

2d, s3.12d

and

− M3 = 2z1
2z2 + z2

3 + 3z1
2z2

3. s3.13d

But from Eq.s3.7d it follows that 3z1z2
2=−z1−2z2, hence we can rewriteM3 in the following form:

− M3 = z2sz1 − z2d2. s3.14d

As all minors must vanish, we have immediately thatM3=M1=0 implies thatz1=z2, and this is a
contradiction with our assumption thatz1Þz2.

Now, we have to investigate the second possibility when infinity is not a Darboux point. Then
we havec=−d, and polynomialsv, g, andh have the forms

vszd = 1
4sa − dd + 1

3bz− 1
2dz2,

gszd = 1
3b − az− bz2 + dz3, s3.15d

hszd = sa − dd + bz− dz2.

First let us assume thatdÞ0. Then we can write
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g = dsz− z1dsz− z2dsz− z3d.

We assume thatz3 is a Darboux point, soz2Þz3 andz1Þz3. Moreover, becausez1 andz2 are not
Darboux points they must be multiple roots ofv. Hence,z1=z2, and

2b2 + 9sa − ddd = 0, z1 =
b

3d
.

But then

gszd = dsz− z1dsz2 − 2zz1 − 1d, hszd = − dsz− z1dsz− 2z1d.

However,z1 must be a double root ofg, but this is only possible whenz1= ± i. This implies thatz1

is the triple root ofg and that there is no Darboux point. We have a contradiction, sod=0.
Now, if bÞ0, then degg=2 butg cannot have two distinct roots. In fact, only one of them can

be a Darboux point and the second must be a multiple root ofv. As now degv=1, it is impossible.
Hence,g has one double root which is a Darboux point, so it is not a simple Darboux point. This
implies thatb=0, and hence potential has the forms3.4d. h

Let us notice here that potentialV2 does not belong toV4,1 as it has factorsq2− iq1d2.
Theorems 2.1 and 2.3 are not applicable when potentials3.1d has factorsq2± iq1d2. However,

when sz± id2 is a factor ofv, then, by Proposition 2.9, it is a factor of polynomialg with multi-
plicity at least 3, so the potential has at most one Darboux point. By similar arguments—when
sq2± iq1d3 is a factor of potentials3.1d, then it has at most one Darboux point. Hence, for a case
when there exist two or three simple Darboux points we can apply Theorem 2.1.

What remains to be considered is a case when there exists a multiple Darboux point.
Proposition 3.3: Assume that potential (3.1) has a multiple Darboux point. Then it is equiva-

lent to the following one:

V3 = 1
4aq1

4 + 1
3bq1

3q2 + 1
4sq1

2 + q2
2d2. s3.16d

Proof: If the infinity is a multiple Darboux point, then, as we already mentioned,d=0 and
cÞ0. Hence, in this case the potential is equivalent tos3.16d. If a multiple Darboux point is not
the infinity, then, by Proposition 2.11, it is different from ±i. Thus, making a proper rotation, we
can move it to infinity and then the obtained potential is equivalent tos3.16d. h

B. Potentials with more than one simple Darboux point

Let us considerg and f =hszdL−g8szd as polynomials inCfz,L ,a,b,c,dg. The resultant ofg
and f with respect toz is proportional to polynomialGPCfL ,a,b,c,dg which has the following
form:

G = 3dG0 − 3cG0L + G2L2 + G3L3, s3.17d

where

G0 = 4b4 + 3b2sa2 − 3d2d + 6ads2a2 + 3b2d,

G2 = − 3fb2 − ac+ 3sa + cddgf3acd+ 3a2sc + dd + b2s4c + 3ddg, s3.18d

G3 = − 3b4sc + dd + 9sa + cdfcd+ asc + ddg2 + 2b2cf9asc + dd + cs8c + 9ddg.

It can be checked thatG3 up to a constant factor is the resultant of polynomialsg and h with
respect toz. Moreover,dG0 is proportional to the discriminant of polynomialg. Polynomialg has
at most three roots which we denote byz1, z2, andz3. If zi is a Darboux point, then we putLi

=Lszid. Of courseLi are roots of polynomials3.17d.
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In the generic case, we have four Darboux points, thus necessarilyc+dÞ0 and G3Þ0.
Without any loss of the generality we can assumec+d=1. All Darboux points are simple if to the
above assumption we adddG0Þ0. As L0=−d, c=1−d, and

L1L2L3 = − 3d
G0

G3
,

L1L2 + L2L3 + L3L1 = − 3c
G0

G3
, s3.19d

L1 + L2 + L3 = −
G2

G3
,

for given hL0,L1,L2,L3j we have three equations for two unknownsa, b. Of course these
equations are not independent. Solving them we find explicit values of coefficientsa, b, c, andd.
Note that having an element ofI4,4, we have generally four different choices forL0.

Elements ofI4,4 are listed in Table I. Using them we solve the respective equationss3.19d.
Then, we select those solutions which give nonequivalent potentials listed in the following:

V4 = 1
4aq1

4 + q2
4, s3.20d

V5 = 4q1
4 + 3q1

2q2
2 + 1

4q2
4, s3.21d

V6 = 2q1
4 + 3

2q1
2q2

2 + 1
4q2

4, s3.22d

V7 =
151 − 880Î7

124
q1

4 +
− 20i

31
s14 + 11Î7dq1

3q2 +
21

2
q1

2q2
2 +

1

4
q2

4, s3.23d

V8 = 272
3 q1

4 + 68q1
2q2

2 + 1
4q2

4, s3.24d

V9 = −
19 472

205
q1

4 + i
4608

41
Î446

215
q1

3q2 + 68q1
2q2

2 +
1

4
q2

4, s3.25d

V10 =
782 329

390 720
q1

4 +
− 247i

3256
Î3

5
q1

3q2 +
3

2
q1

2q2
2 +

1

4
q2

4, s3.26d

V11 =
663 − 608Î86

428
q1

4 −
2i

107
s305 + 76Î86dq1

3q2 +
15

2
q1

2q2
2 +

1

4
q2

4, s3.27d

V12 =
663 + 608Î86

428
q1

4 +
2i

107
s305 − 76Î86dq1

3q2 +
15

2
q1

2q2
2 +

1

4
q2

4. s3.28d

The first and second elements of Table I give potentialV4 andV5, respectively. PotentialsV6 and
V7 correspond to the third element. The last two elements of Table I give the remaining five
potentials. The first two of them correspond to the fourth element in Table I.

As I4,2=I4,3=x, the above gives the full list of the distinguished potentials.
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C. Integrability of distinguished potentials

Among potentialsVi, i =0, . . . ,12 there are integrable ones. Namely,V1, V4, V5, andV6 are the
known integrable potentials, see Refs. 15 and 16. Moreover, potentialV2 is integrable whena
=−2, see Ref. 11.

Now, our aim is to investigate the integrability of the remaining distinguished potentials. Our
main tools are Theorem A.2 and Lemma A.1.

Let us consider potentials3.1d when c+dÞ0. Without loss of the generality we can putc
+d=1. Then Hamilton’s equations of motion have a family of particular solutions associated with
the Darboux point whose first coordinate vanishes. These solutionswst ,ed=s0,q2std ,0 ,p2stdd for
given energye are determined by

q̇2std2 + 1
2q2std4 = 2e, p2std = q̇2std. s3.29d

If we put q2
2=−2v, then the above equation transforms into

v̇2 = 4v2 − g2v − g3, g2 = 4e, g3 = 0. s3.30d

Hence,v=`std is the nondegenerated Weierstrass function with invariantsg2, g3, providedeÞ0.
The variational equations along particular solutions have the following form:

d

dt3
j1

j2

j3

j4

4 = 3
0 0 1 0

0 0 0 1

2c`std 0 0 0

0 6`std 0 0
43

j1

j2

j3

j4

4 . s3.31d

Notice that the above variational equations are equivalent to the direct product of two Lamé
equations

d2

dt2
ji = nisni + 1d`stdji, i = 1,2, s3.32d

wheren2=2 andn1sn1+1d=2c. Now let us assume thatn1PZ \ h−1,0j. Under this assumption, for
both equations we have the Lamé-Hermite casessee Appendix A 3d. Hence, the differential Galois
group of variational equationss3.31d is Abelian, and the necessary integrability conditions of
Theorem 1 are fulfilled for arbitrarya,bPC. To prove the nonintegrability of the system for such
cases we apply the higher order variational equations, see Appendix A 2. Because of the form of
first-order variational equations investigation of the differential Galois group of higher order
variational equations reduces to a local analysis, see Lemma A.1 in Appendix A 3.

Thus, for further calculations, we need the explicit form of nonhomogeneous terms in higher
order variational equationssA4d. The first of them is

f2 = − q2stdf0,0,j1
s1dsbj1

s1d + 2cj2
s1dd,csj1

s1dd2 + 3sj2
s1dd2gT, s3.33d

whereji
s1d;ji for i =1, . . . ,4. The fundamental matrixXstd of the homogeneous systems3.31d has

the following form:

Xstd = 3
x1std x2std 0 0

0 0 y1std y2std
ẋ1std ẋ2std 0 0

0 0 ẏ1std ẏ2std
4 . s3.34d

Herex1std andx2std are linearly independent solutions of Eq.s3.32d with i =1 chosen in such a way
that x1stdẋ2std−x2stdẋ1std=1; similarly, y1std and y2std are linearly independent solutions of Eq.
s3.32d with i =2 chosen in such a way thaty1stdẏ2std−y2stdẏ1std=1. Thus, the inverse ofXstd is the
following:
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X−1std =3
ẋ2std 0 − x2std 0

− ẋ1std 0 x1std 0

0 − ẏ2std 0 y2std
0 ẏ1std 0 − y1std

4 . s3.35d

In a neighborhood oft=0 solutionsx1std andx2std have the following expansions:

x1std = tn1+1S1 +
n1sn1 + 1dg2

80s2n1 + 5d
t4 + ¯ D ,

s3.36d

x2std = t−n1S−
1

2n1 + 1
+

n1sn1 + 1dg2

80s2n1 + 1ds2n1 − 3d
t4 + ¯ D ,

where dots denote the higher order terms with respect tot. Expansions fory1std and y2std have
form s3.36d with n1=2. Furthermore, expansion ofq2std is the following:

q2std =
i

Î2
S2

t
+

g2

20
t3 + ¯ D . s3.37d

According to Lemma A.1, to prove that the investigated potential is not integrable, we have to
show that a logarithmic term in a local solution of the second variational equation appears. To this
end, it is enough to show that at least one component ofms2d=X−1stdf2 has a first-order pole at
t=0, see formulassA5d and sA6d. In all further calculations we take

js1d = fx2std,0,ẋ2std,0gT.

Then, the first two components ofms2d are

m1
s2d = bq2stdx2std3, m2

s2d = − bq2stdx1stdx2std2. s3.38d

Now, we are ready to prove the following.
Lemma 3.1: Potential (3.16) is integrable if and only if a=b=0.
Proof: For potentials3.16d n1=1, so

x1std = t2 + ¯ , x2std = − 1
3t−1 + ¯ ,

where dots denote the higher order terms with respect tot. Hence, froms3.38d, we obtain

m2
s2d = − ib

Î2

9t
+ ¯ .

Thus, by Lemma A.1 ifbÞ0, then potentials3.16d is not integrable.
Assume thatb=0, and continue our calculations up to the third order. Solutions of the second-

order variational equations have the form

js2d = f0,zstd,0,żstdgT, zstd =
iÎ2

36t
+ ¯ .

Now, the second component ofms3d=X−1stdf3 is

m1
s3d = − x1stdx2stdssa + 1dx2std2 + 2q2stdzstdd =

a

27t
+ ¯ .

Thus,m2
s3d has a simple pole att=0 with a nonzero residue foraÞ0. Hence, again by Lemma A.1,

if b=0 but aÞ0, then potentials3.16d is not integrable. h
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Lemma 3.2: Hamiltonian system (1.2) with potential V=Vi for i =7, . . . ,12does not admit an
additional meromorphic first integral.

Proof: We proceed similarly as in the proof of the previous lemma. The only complication
which appears is connected with the fact that, for the investigated potentialsn1.1, and an
analysis of the leading terms of the Laurent series expansions is not sufficient. Moreover, to find
a logarithmic term for some potentials we have to continue calculations up to the fifth-order
variational equations. To perform this task we use the computer algebra, and conclusions are the
following. For potentialsV7 andV8 we haven1=6 andn1=16, respectively, and for them we find
a logarithmic term in solutions of the fifth-order variational equations. ForV9 we haven1=16 but
a logarithmic term appears in solutions of the second-order variational equations. For potentials
V10, we haven1=2, and a logarithmic term appears in solutions of the fifth-order variational
equations. For the last two potentials,V11 andV12, we haven1=5, and a logarithmic term appears
in solutions of the second-order variational equations. h

For potentialV0 Theorem 1.1 is not applicable. Nevertheless, we show the following.
Lemma 3.3: Hamiltonian system (1.2) with potential V=V0 does not admit an additional

rational first integral.
Proof: A proof follows from Theorem 2.4. h

The most difficult case is potentials3.5d. Let us define three sets

J1 = hp + 2psp − 1dup P Zj, J2 = H3

8
+ 2psp + 1dup P ZJ , s3.39d

J3 = H−
1

8
+

2

9
s1 + 3pd2up P ZJ . s3.40d

Then a direct application of Theorem 1.1 gives the following.
Proposition 3.4: If Hamiltonian system (1.2) with potential V=V2 given by (3.5) admits an

additional meromorphic first integral, then

cª 1 − a P J1 ø J2 ø J3. s3.41d

Hence, we have three infinite families for investigation. WhencPJ1, then the variational
equations along the particular solution corresponding to the only Darboux point have the form
s3.31d with arbitraryn1PZ. In this case, we can can apply Lemma A.1 for proving nonintegra-
bility for small values ofun1u. In this way we showed the following.

Proposition 3.5: If Hamiltonian system (1.2) with potential V=V2 admits an additional mero-
morphic first integral, and cPJ1, then either c=3, or c=p+2psp−1d for upu.12, pPZ.

WhencPJ2øJ3, then we cannot apply Lemma A.1 because the Lamé equation corresponding
to the normal variational equation is not in the Lamé–Hermite case. For these cases we applied the
direct search for a polynomial first integral. Namely, for a givenpPZ we fixed c=3/8+2psp
+1d, and we looked for a polynomial first integral of degree not greater than 50. We checked that
there is no such integral forupuø6. We checked similar cases whencPJ3. Let us note that from
Ref. 24 it follows that if the considered system possesses a rational additional first integral, then it
possesses a polynomial one.

The above considerations justify our conjecture that potentialV2 given by s3.5d is integrable
only whena=−2.

IV. FINAL REMARKS

A natural question appears if it is possible to generalize the obtained results to higher dimen-
sions. The answer to this question is positive and our paper on this subject is in preparation.
However a generalization to higher dimensions is not so simple and new problems appear. We just
remark that dimension two is distinguished for many reasons. The most important one is that in
higher dimensions a homogeneous polynomial does not factor into linear forms.
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Here it is worth mentioning that our approach is closely related with investigations of the
integrability and uniformization properties of general homogeneous polynomial differential equa-
tions. For such a system a Darboux point is a point where the vector field is parallel to the radial
direction. As is well known, see, e.g., Ref. 19, with each Darboux point we can associate the
Kovalevskaya matrix. A necessary condition for the existence of polynomial first integrals can be
expressed in a form of resonance relations among the eigenvalues of the Kovalevskaya matrix.
Moreover, if all solutions of the investigated system are single-valued, then necessarily all the
eigenvalues of the Kovalevskaya matrix are integers and the matrix is semi-simplesthis is the
statement of the Lapunov theoremd. For quadratic three-dimensional systems Jean Moulin
Ollagnier36 showed that the eigenvalues of the Kovalevskaya matrix taken over all simple Dar-
boux points cannot take arbitrary values. In other words there exist certain universal relations
among them. A new geometrical interpretation of the Kovalevskaya–Lapunov analysis was done
by Gulliot in his Ph.D. thesis.13 From the point of view of extension of the results given in this
paper into higher dimensions, the most important part of Refs. 13 and 14 concern an application
of a Baum–Bott–like theorem for proving the above-mentioned relations among the eigenvalues of
the Kovalevskaya matrix taken over all simple Darboux points.

We would like to mention that the results of this paper can be applied for an investigation of
integrability of nonhomogeneous potentials. In fact, a polynomial potentialVsqd can be written in
the form of the sum of homogeneous components

Vsqd = Vminsqd + . . . +Vmaxsqd,

whereVminsqd andVmaxsqd are the homogeneous components of the lowest and the highest orders,
respectively. It can be shownssee, e.g., Ref. 16d that if Hamiltonian systems1.2d with polynomial
potentialVsqd is integrable, then potentialsVminsqd andVmaxsqd are integrable.

Another question concerns an extension of the results of Sec. III to homogeneous potentials of
degree higher than four. Here the main problem is connected with the fact that if degV.k, then
the variational equations for a Darboux point are no longer a product of Lamé equations, and we
have no tool as effective as Lemma A.1 for application of the higher order variational equations.

Our last observation is the following. In all integrable cases the differential Galois group of
the normal variational equations is either contained in the triangular subgroup of SLs2,Cd, or it is
an imprimitive of SLs2,Cd. We do not know an example of a natural Hamiltonian system when
this group is a primitive finite group. The question is if it is a general property of natural Hamil-
tonian systems.
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APPENDIX A: DIFFERENTIAL GALOIS EXTENSION OF ZIGLIN THEORY

1. Basic theorem

Let Mn be a complex analytic manifold andv a holomorphic vector field onMn. We consider
the following differential equation:

d

dt
x = vsxd, x P Mn, t P C. sA1d

Let wstd be a nonequilibrium solution ofsA1d. Its maximal analytic continuation defines a Rie-
mann surfaceG with local coordinatet. Together with systemsA1d, we consider the variational
equationssVEsd alongG, i.e.,
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j̇ = Tsvdj, Tsvd =
]v
]x

, j P TGMn. sA2d

The order of this system can be reduced by one. To do this we consider the induced system on the
normal bundleNªTGM /TG of G,19 i.e.,

ḣ = p!sTsvdp−1hd, h P N, sA3d

wherep :TGM→N is the projection. The system ofs=n−1 equations obtained in this way yields
the so-called normal variational equationssNVEsd.

Now, assume thatMn is symplectic, i.e., there exists a symplectic formv on Mn andn=2m.
Moreover, let us assume also that vector fieldv is a Hamiltonian vector field, i.e., there exists a
holomorphic functionH :Mn→C such thatvsv ,ud=dH ·u for arbitrary vector fieldu. For a given
particular solutionwstd we fix the energy levele=Hswstdd. RestrictingsA1d to this level, we obtain
a well-defined system onsn−1d dimensional manifold with a known particular solutionwstd. For
this restricted system we perform the reduction of order of variational equations. Thus, the normal
variational equations for a Hamiltonian system withm=n/2 degrees of freedom have dimension
s=2sm−1d.

In Ref. 43 Ziglin formulated a theorem which gives necessary conditions for the Hamiltonian
system governed by a Hamilton’s functionH. These conditions are expressed in terms of the
monodromy group of NVEs for a nonequilibrium particular solution. Later Ziglin investigations
were developed by Baider, Churchill, Morales-Ruiz, Rod, Simó, and Singer by a differential
Galois approach, see Refs. 7, 5, 35, 30, 32, 33, 1, and 2. The main theorem of this theory
formulates necessary conditions for integrability of the investigated Hamiltonian system in terms
of the differential Galois group on NVEssor VEsd, and can be formulated in the following way.

Theorem A.1: Assume that a Hamiltonian system is meromorphically integrable in the Liou-
ville sense in a neighborhood of the analytic phase curveG, and that NVEs (VEs) alongG are
Fuchsian. Then the identity component of the differential Galois group of NVEs (and of VEs)
associated withG is Abelian.

In a case when NVEs are not Fuchsian, then a necessary condition for the integrability is the
same: the identity component of the differential Galois group of NVEssand of VEsd must be
Abelian. However, generally, we have to restrict the class of first integrals to the rational functions.
For a discussion of this point, see Ref. 30, Chap. 4.

Applications of the above theorem can be found in the already cited papers and in Refs. 4, 3,
29, 22, 21, and 25–27.

2. Higher order variational equations

To explain in a simple way the idea of higher variational equations it is convenient to assume
that Mn=Cn, and to identify vector fieldv with a mapv :Cn{x°vsxdPTxCn.Cn. Now, if wstd
is a particular solution of Eq.sA1d, we put

x = wstd + «js1d + «2js2d + ¯ + «kjskd + ¯ ,

where « is a formal small parameter. Inserting the above-noted expansion into Eq.sA1d and
comparing terms of the same order with respect to«, we obtain the following chain of linear
nonhomogeneous equations:

d

dt
jskd = Astdjskd + fksjs1d, . . . ,jsk−1dd, k = 1,2, . . . , sA4d

where
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Astd =
]v
]x

swstdd,

and f1;0. For a givenk Eq. sA4d is called thekth order variational equation. We denote byXstd
the fundamental matrix of the homogeneous system, i.e.,n3n matrix satisfying

d

dt
X = AstdX, Xs0d = E,

whereE is the identity matrix. Then the solutions ofkth order variational equations fork.1 are
given by

jskdstd = Xstdcstd, sA5d

wherecstd is a solution of

d

dt
c = X−1stdfk. sA6d

There is an appropriate framework allowing to define the differential Galois group of thekth
order variational equation, for details see Refs. 30 and 31. The following theorem was formulated
in Ref. 31.

Theorem A.2: Assume that a Hamiltonian system is meromorphically integrable in the Liou-
ville sense in a neighborhood of the analytic curveG. Then the identity component of the differ-
ential Galois group of the kth order variational equations is Abelian for any kPN.

Here we note that in Theorem A.1 the necessary conditions were obtained from an analysis of
the first-order variational equations.

3. Lamé equation and higher order variational equations

The Lamé equation in the Weierstrass form reads

d2y

dt2
= sA`std + Bdy, sA7d

whereA and B are, in general, complex parameters and`std is the elliptic Weierstrass function
with invariantsg2,g3. In other words,̀ std is a solution of the differential equation

v̇2 = fsvd, fsvd = 4v3 − g2v − g3.

ParametersA, B, g2, andg3 are such that the discriminantD=g2
3−27g3

2Þ0.
Classically, the Lamé equationsA7d is written with the parametern instead ofA related by the

formulaA=nsn+1d. It is possible to prove that the Lamé equation is solvable only in the following
cases:

1. the Lamé and Hermite casessee, e.g., Ref. 38d. ThennPZ and the three other parameters are
arbitrary,

2. the Brioschi–Halphen–Crowford casessee, e.g., Refs. 6 and 38d. In this casemªn+ 1
2 PN,

and additionallyB, g2, g3 should satisfy an appropriate algebraic condition,
3. the Baldassarri case.6 Thenn+ 1

2 P 1
3Zø 1

4Zø 1
5Z \Z, and there are additional algebraic con-

ditions onB, g2, g3.

In the Lamé-Hermite case one solution is an elliptic function expressed in terms of` and`8.
Let us assume that for a Hamiltonian system with two degrees of freedom the higher order

variational equations have the formsA4d with
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Astd = 3
0 0 1 0

0 0 0 1

A1`std + B1 0 0 0

0 A2`std + B2 0 0
4 . sA8d

Thus, the first-order variational equations are equivalent to a product of two Lamé equations.
Additionally, we assume that both copies of the Lamé equations belong to the Lamé–Hermite case,
i.e., Ai =nisni +1d, ni PZ for i =1,2.

In the described situation we can check whether the differential Galois group of the higher
order variational equations is Abelian investigating only the local monodromy around singularity
t=0 of `std, for details see Refs. 30 and 31.

Lemma A.1: Under the assumption formulated above, the Galois group of higher order varia-
tional equations is Abelian if and only if their local monodromy around the singular point is the
identity.

To apply the above lemma we just have to check if in the local solutions aroundt=0 of the
second variational equations a logarithmic term appears. If it is so, then we have an obstacle for
the integrability, if it is not so, we have to check if such term appears in a local solution of the
third-order variational equations. This process can be continued up to an arbitrary high order.

For examples of application of the above lemma, see Refs. 27 and 33.

APPENDIX B: TECHNICAL LEMMA

We consider the following equation:

X1 + ¯ + Xm = c, c . 0. sB1d

We look for its solutionsX=sX1, . . . ,XmdPXm whereX is defined in the following way:

X = hxn P s0,`dun P Nj, sB2d

where limn→` xn=0. We prove the following lemma.
Lemma B.1: For arbitrary c.0 Eq. sB1d has at most a finite number of solutions inXm.
Proof: We prove this lemma by induction with respect tom. For m=1 the statement of the

lemma is evidently true. So, assume that it is true form−1. We have to show that it is true form.
Let us assume the opposite: letXpPXm, pPN be an infinite sequence of different solutions of Eq.
sB1d. PointsXp belong to the compact set

Tc = hsx1, . . . ,xmd P Rmuxi ù 0, x1 + ¯ + xm = cj.

Thus, there exists a subsequence ofXp which tends to a certainX̃PTc. Hence, we can assume that

Xp=sX1,p, . . . ,Xm,pd is chosen in such a way that limp→` Xp=X̃. Note that it cannot happen that all
sequenceshXi,pj for i =1, . . . ,m contain infinitely many different numbers. In fact, if it is the case,
then, for eachi =1, . . . ,m there exist a monotonically increasing series of integershnpj such that
Xi,p=xnp

. But then each sequencehXi,pj converges to 0 which is impossible as their sum converges
to a positive value. Hence, for at least onei P h1, . . . ,mj, let us sayi =m, sequencehXm,pj is
constant forpùp0. Note thatXm,p0

,c. As a result, we arrived to conclusion that there exist
infinitely many solutions of equation

X1 + ¯ + Xm−1 = c8

in Xm−1 for certainc8.0. A contradiction with the inductive assumption finishes the proof.h
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For the Chaplygin’s nonholonomic constrained systems, the constraint manifold
can be endowed with Riemann–Cartan geometric structure by nonholonomic map-
ping into a Riemann manifold. The two kinds of existing dynamics, nonholonomic
dynamics and vakonomic dynamics, are compared in the framework of Riemann–
Cartan geometry. It is proved that the equations of motion for nonholonomic and
vakonomic dynamics are described by the equations of autoparallel and geodesic
trajectories on the Riemann–Cartan constraint manifold, respectively. If the metric-
ity condition of Riemann–Cartan connection is satisfied, the torsionscontorsiond of
the Riemann–Cartan manifold characterizes the difference between the autoparallel
and geodesic trajectories as well as the distinction between the nonholonomic and
vakonomic equations. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1928708g

I. INTRODUCTION

Constrained systems are common dynamical systems in modern physics, mechanics and
engineering,1–13 which can be classified into holonomic and nonholonomic ones according to the
Frobenius integrability condition of constraints the systems are subject to. Unlike a holonomic
system, a nonholonomic system cannot be reduced to a free system with lower degrees of freedom
in general. Furthermore, there exist two inequivalent dynamical theories on nonholonomic con-
strained systems. One is based on Hamilton’s principle of lease action. Similar to treating holo-
nomic constrained systems, the constraints are directly incorporated into LagrangianL→L
+lafa with la being Lagrange multipliers treated as independent dynamical variables. The dy-
namical equations derived from the theory can be canonicalized since such a way to incorporate
constraints into a dynamical description does not influence on the symplectic structure of phase
space of the systems. This dynamics is usually referred to as vakonomic dynamicssvariational
axiomatic kindd.14,15The other is based on d’Alembert–Lagrange principlesor Hölder’s principle,
Gauss’s principled satisfying the condition of ideal constraints. Chetaev’s condition on variation of
coordinates induced from the nonholonomic constraints is utilized to realize the ideal constraints.
Such a theory is not canonically Lagrangian or Hamiltonian, and is called nonholonomic
dynamics.1,11 The above two dynamics are equivalent for holonomic systems.

The paradox that different dynamics can be derived from the same nonholonomic constrained
system just because of beginning with different acknowledged principles makes nonholonomic
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constrained systems and their relating theories become a focus of research and disputation.16–19

Therefore, it has been an important work to compare the two dynamics of nonholonomic systems.
In this paper, nonholonomic dynamics of Chaplygin’s linear constrained systems20 is com-

pared with the corresponding vakonomic dynamics in the framework of Riemann–Cartan
geometry.21,22In Sec. II, we briefly review the method to construct a Riemann–Cartan manifold by
using a nonholonomic mapping23–28 from a Riemann manifold. In Sec. III, the calculus of non-
holonomic variations is discussed on the manifold. The nonholonomic variations are classified into
three kinds. In Sec. IV, the two kinds of equations of motion, nonholonomic and vakonomic, for
linear nonholonomic constrained systems are proved to describe the autoparallel and geodesic
trajectories on the manifold, respectively. Some simple examples are illustrated in Sec. V ended
with a concluding remark. The Einstein’s summation convention is used throughout this paper and
i, j =1,2,… ,n; m, n, s, r, l, t=1,2,… ,m; a, b=m+1, m+2,… ,n.

II. RIEMANN–CARTAN CONSTRAINT MANIFOLD

A general system is usually subject to two kinds of constraints, the holonomic and the non-
holonomic. Suppose that the configuration space of the system isn-dimensional Riemann mani-
fold Q with local coordinateshqij after the holonomic constraints are reduced. The metric tensor
field on manifoldQ is defined by the Hessian of nondegenerate LagrangianL. The configuration
space can be further deformed into Riemann–Cartan manifold with both curvature and torsion by
the nonholonomic constraints imposed.

Suppose the system is subject tosn−md linear nonholonomic constraints:

q̇a = «m
asqndq̇m, s1d

wherehq̇m ,q̇aj are generalized velocities of the system. These constraints are suitable to charac-
terize most linear constrained systems. The systems subjected to such constraints are called Chap-
lygin’s nonholonomic constrained systems.

A m-dimensional constraint manifoldM with local coordinateshqmj can be constructed by the
constraint equationss1d. As a subspace of Riemann manifoldQ, however, the constraint manifold
M is not its invariant embedded submanifold since the vector fields on the constraint manifoldM
are not involutive due to anholonomy of the constraintss1d. Nevertheless, the tangent space of the
constraint manifoldM can be embedded into the tangent space of Riemann manifoldQ by a
nonholonomic mappingiT:TM→TQ:

vi = «m
i sqndvm, vm [ TqM , s2d

induced by the constraintss1d, where«m
i =«m

a if i takesa=m+1,m+2,… ,n; «m
i =dm

n if i takesn
=1,2,… ,m. This mapping can induce a nonholonomic mappingiq:

qiscqd =E
cq

«m
i sqddqm s3d

from the equivalence classkqmstdl of all paths on manifoldM to that on manifoldQ, wherecq

denotes any pathqmstd on manifoldM. The integrals can be classified according to the end points
of pathscqstd if the same initial point of the integrals is fixed, i.e., each point ofcqstd corresponds
to an equivalence class of integralsqiscqstdd. hqiscqstddj can be recognized as pseudo-coordinates on
manifold M. If the constraints are integrable, the above-noted integrals are independent of paths
on M and qiscqstdd reduce toqistd, the function of end pointt of path cqstd. Then pathqmstd[M
corresponds to pathqistd[Q pointwise, i.e.,qi =qisqmd.

It can be verified that the metric and connection on manifoldM can be induced from the
nonholonomic mappingss2d and s3d in the same way as in Ref. 23 by generalizing the Euclid
space taken as auxiliary space to the Riemann manifoldQ. First, the metricgij on Riemann
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manifold Q induces the metricgmn on manifoldM. According to the mappings2d, ui =«m
i um, v j

=«n
j vn, for ui,v j [TiqsqdQ andum,vn[TqM. Thensu,vd=giju

iv j =gij«m
i «n

j umvn=s«m ,«ndumvn. There-
fore, the induced metric on manifoldM is

gmn = s«m,«nd = gij«m
i «n

j . s4d

Second, the mappingss2d and s3d induce a connection on manifoldM,

Gmn
s = gsrs«r,]m«nd = gsrgij«r

i ]m«n
j . s5d

It is easy to verify the metricity condition of the connection, i.e., compatible condition of the
connection with metric,Dmgns=0, which makes the length of a vector invariant while parallel-
transporting it along a path on manifoldM. But the connection is asymmetric, i.e.,Gnm

s ÞGmn
s ,

whose antisymmetric part is named torsion of the connection:

Smn
s = Gfmng

s = 1
2sGmn

s − Gnm
s d = 1

2gsrgij«r
i s]m«n

j − ]n«m
j d. s6d

Obviously,Snm
s =0 if the integrability condition of constraints,]m«n

j −]n«m
j =0, is satisfied.

Such an asymmetric connection compatible with metric is referred to as Riemann–Cartan
connection. The constraint manifoldM is then a Riemann–Cartan manifold with torsionSmn

s and
curvature

Rmn
rt = 1

2grlgtsgijsfml
i fns

j − fnl
i fms

j d, s7d

where

fmn
i = Dm«n

i = ]m«n
i − Gmn

s «s
i . s8d

On the Riemann–Cartan constraint manifoldM there exist two kinds of special curves, geo-
desic and autoparallel trajectories, as follows:

q̈m + Ḡns
m q̇nq̇s = 0, s9ad

q̈m + Gns
m q̇nq̇s = 0, s9bd

whereḠns
m = 1

2gmls]sgnl+]ngsl−]lgnsd is Riemann–Christoffel connection. It can be proved in the
following that the difference of shortness from straightness on Riemann–Cartan manifold can
geometrically characterize the “inexplicable” deviation of vakonomic dynamics from nonholo-
nomic dynamics.

III. NONHOLONOMIC VARIATIONS ON RIEMANN–CARTAN CONSTRAINT MANIFOLD

Let cq and c̄q be smooth curves connecting any two fixed pointsq1
i andq2

i on n-dimensional
Riemann manifoldQ. Consider a functionqist ,ad[C2 of two parameters, satisfyingqist ,0d
=qistd, qist ,1d= q̄istd; qist1,ad=q1

i , qist2,ad=q2
i . Denote the differential along any path by dqm

=]tq
ist ,addt8vidt while the variation of the path is denoted bydqi =]aqist ,adda8wida with

fixed ends condition

udqiut1,2
= 0, uwiut1,2

= 0. s10d

The vector fieldwisqjd[TqQ is called variation vector field on manifoldQ. As in Ref. 23, denote
dv and dw the derivative along vector fieldsv andw, respectively. The above-noted definition leads
to the following commutation relation of differential and variational operations:

dwvi − dvw
i = 0, s11d

which simply determine the variation of velocity. To define a variation it is necessary to specify
the variation of velocity as well as the variation vector field.
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A variation vector fieldwmsqnd[TqM can also be defined on manifoldM with torsion. The
commutation relations11d on Riemann manifoldQ, however, cannot be simply transplanted to the
constraint manifoldM. Relations11d leads to

dwsvi − «m
i vmd + s]m«r

i − ]r«m
i dvrwm + «m

i sdwvm − dvw
md − dvswi − «m

i wmd = 0. s12d

Let «i
m8gmngij«n

j with «i
m«n

i =dn
m; «i

m«m
j =di

j. Using this condition and the connection coefficientss5d
obtained in last section, we are led to

]r«m
i = «s

i Grm
s , ]r«i

m = − «i
nGrn

m . s13d

By the definitions6d, it follows that

s]m«r
i − ]r«m

i d = 2«s
i Smr

s . s14d

Therefore relations12d can be transformed into

dwsvi − «m
i vmd + «m

i sdwvm − dvw
md − dvswi − «m

i wmd = 2«s
i Srm

s vrwm. s15d

Because of the existence of torsion tensorSrm
s the variation vector field on the constraint manifold

M cannot satisfy the following conditions simultaneously:

dvswi − «m
i wmd = 0, s16ad

dwvm − dvw
m = 0, s16bd

dwsvi − «m
i vmd = 0, s16cd

which means that unlike the case of holonomic systems, there does not exist a free variation on the
manifold M. The unfree variation vector fieldw and the corresponding differential dw are named
nonholonomic variations. The first condition imposed on the variation of coordinates is induced
from the constraints and is called Chetaev’s condition. The second is the commutation relation of
differential and variational operations which leads to the existence of smooth local coordinate net
formed by the integral curves of vector fieldsvm andwm. The third condition is an invariance of
constraint conditions with respect to the variation operation, making the variation of velocities be
unfree.

According to relations15d, the nonholonomic variation can be classified into the following
three kinds.

s1d Hölder’s variation. Choose the first two relations from the last equations, i.e.,

dvswh
i − «m

i wh
md = 0, dwh

vm − dvwh
m = 0. s17d

It follows from s15d that

dwh
svi − «m

i vmd = 2«s
i Srm

s vrwh
m, s18d

which indicates how the constraint conditions vary with respect to Hölder’s variation due to the
torsion of manifoldM.

s2d Suslov’s variation. Suppose that

dvsws
i − «m

i ws
md = 0, dws

svi − «m
i vmd = 0. s19d

It leads from the relations15d to
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dws
vs − dvws

s = 2Srm
s vrws

m, s20d

which means that Suslov’s variation does not commute with differentiation of coordinates. Making
use of covariant differentiation,

Dvws
s = dvws

s + Grm
s vrws

m, Dws
vs = dws

vs + Grm
s ws

rvm. s21d

The variation of velocityvs can be specified by

Dvws
s − Dws

vs = 0. s22d

s3d Vakonomic variation. Let

dwv
vm − dvwv

m = 0, dwv
svi − «m

i vmd = 0. s23d

Then it is referred froms15d that the Chetaev’s conditions cannot be satisfied and are replaced with
corresponding conditions

dvswv
i − «m

i wv
md = 2«s

i Smr
s vrwv

m. s24d

It should be pointed that all the three kinds of variations satisfy the fixed ends conditions

uwmut1 = uwmut2 = 0. s25d

IV. NONHOLONOMIC VERSUS VAKONOMIC EQUATIONS ON CONSTRAINT
MANIFOLD

We apply Suslov’s variation and vakonomic variation to variational principle to get two kinds
of dynamical equations for the Chaplygin’s nonholonomic constrained systems.

First, we make use of Suslov’s variation to check the recently discovered stationary action
principle25

dws
S= dwsE

t1

t2

Lsqm,vmddt = 0. s26d

Computing the variation directly and making use of the above variation conditions20d and fixed
ends conditionss25d, one can derive the equations of motion

]L
]qm − dvS ]L

]vmD = 2Smn
r

]L
]vrvn, s27d

which describes nonholonomic dynamics on the constraint manifoldM.
We concern the geometric property of nonholonomic equationss27d. Substitute L

= 1
2gmnsqdvmvn into Eq. s27d, then

gmnv̇
n + sḠmnr − 2Srnmdvrvn = 0, s28d

where Srnm=grlSnm
l , Ḡmnr=gmlḠnr

l and Ḡnr
l is Christoffel symbols. Considering the geometric

relation

Ḡmnr − 2Srnm = gmlGnr
l s29d

and lift the indexm, then
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Dvv
l = v̇l + Gnr

l vrvn = 0. s30d

Thus it can be seen that the equations of motion for nonholonomic dynamics describe the auto-
parallels of Riemann–Cartan constraint manifoldM.

Second, apply the vakonomic variation to the action on the manifoldM, the stationary action
principle

dwv
S= dwvE

t1

t2

Lsqm,vmddt = 0 s31d

simply leads to vakonomic equations

dvS ]L
]vmD −

]L
]qm = 0. s32d

In fact, it is Euler–Lagrange equations. SubstituteL= 1
2gmnsqdvmvn into Eq. s32d, then

D̄vv
l = v̇l + Ḡnr

l vrvn = 0, s33d

which are the geodesic equations on Riemann–Cartan constraint manifoldM. In the following we
verify that the geodesic equationss33d are just a geometrical representation of vakonomic equa-
tions for Chaplygin’s nonholonomic constrained systems in Riemann–Cartan constraint manifold.

Let L be a Lagrangian of a dynamical system on the Riemann manifoldQ. Rewrite sn−md
nonholonomic constraintss1d the system is subject to as follows:

fa = va − «m
avm = 0. s34d

Based on Hamilton’s principle of least action, the vakonomic equations

fLgi = − laffagi − dvslad
] fa

]vi s35d

can be derived by the method of Lagrange multipliers. Using the notationsli =di
ala, f i =vi

−«m
i vm=0 in order to map the equations onto the constraint manifoldM conveniently, the vako-

nomic equations are then equivalent to

fLgi = − l jff jgi − dvl j
] f j

]vi . s36d

It can be derived by simple computation:

] f j

]vi = di
j − di

m«m
j ,

] f j

]qi = − di
n«s

j Gnm
s vm, ff jgi = 2di

n«s
j Smn

s vn. s37d

Substitute it into the vakonomic equations, then

fLgi = − 2di
nl j«s

j Smn
s vn + dvli + dvl j«m

j di
m. s38d

Supposing the LagrangianL on Riemann manifoldQ is independent of coordinatesqa and ne-
glecting any integral constants, the Lagrange multipliers can be found out from the above equa-
tions

li = − «i
m ]L

]vm , dvli = − «i
mDvS ]L

]vmD s39d

along with the reduction of vakonomic equations onto the constraint manifoldM:
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fLgm = 2Smn
s vn ]L

]vs − DvS ]L

]vmD . s40d

For a mechanical system,L= 1
2gmnvmvn, the above equations can be transformed into

gmnD̄vv
n + gmnDvv

n = 2gnsSmr
n vrvs. s41d

Expand further, then

2gmnD̄vv
n + sKmrs − Ssmrdvrvs = 0, s42d

whereKmrs=gmnKrs
n =gmnsGrs

n −Ḡrs
n d, Ssmr=gnsSmr

n . Substitute the geometric relation

Kmrs − Ssmr = Krms = − Ksmr s43d

into the above equation, we finally obtain Eq.s33d, a geodesic representation of vakonomic
equations on the constraint manifoldM.

Remark 1:We have not applied Hölder’s variation to the action because the result is the same
as that of the vakonomic variation if we did for the particular action, which does not imply that
Hölder’s variation cannot give any new result for general nonholonomic systems.

Remark 2:On the Riemann–Cartan manifoldM satisfying the metricity of connection the
autoparallel trajectories will coincide with the geodesic ones if the torsion vanishes. In this case
the nonholonomic equations also coincide with the vakonomic ones. However, it does not mean
that the constraints are integrable in the sense of Frobenius theorem although inverse proposition
is certainly true. This fact will be illustrated by example 3 of Sec. V.

V. ILLUSTRATIVE EXAMPLES

Now we are going to show by the following simple examples how the interrelation between
the nonholonomic and vakonomic equations can be geometrically characterized on a Riemann–
Cartan manifold.

Example 1:We illustrate the above result by the following example of a nonholonomically
constrained particle with the LagrangianL= 1

2sẋ2+ ẏ2+ ż2d and the nonholonomic constraintż=yẋ.
By means of the usual method, the nonholonomic and vakonomic equations are given by

ẍ +
yẋẏ

1 + y2 = 0, ÿ = 0, s44ad

ẍ +
2yẋẏ

1 + y2 = 0, ÿ − yẋ2 = 0, s44bd

respectively. We will illustrate that they describe autoparallel and geodesic trajectories on a two-
dimensional Riemann–Cartan constraint manifoldM with local coordinatessx,yd.

Let x,y; ẋ,ẏ play the role of theqm, q̇m andz,ż the role of theqa, q̇a in our discussion of the
general theory. Obviously,i,j =1,2,3;m,n=1,2; a=3 and

«1
1 = 1,«2

1 = 0,«1
2 = 0,«2

2 = 1; «1
3 = y,«2

3 = 0.

The metricgmn andgmn take the form

sgmnd = S1 + y2 0

0 1
D, sgmnd = S 1

1+y2 0

0 1
D .

The nonvanishing coefficients of the corresponding Christoffel symbols are given by
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Ḡ11
2 = − y, Ḡ12

1 = Ḡ21
1 =

y

1 + y2 .

Then the geodesic equations on the manifoldM,

q̈1 + 2Ḡ12
1 q̇1q̇2 = 0, q̈2 + Ḡ11

2 q̇1q̇1 = 0,

take the form of vakonomic equationss44bd after a replacement ofq1,q2 with x,y.
It can be verified that the only one nonvanishing coefficient of Riemann–Cartan connection on

the manifoldM is

G21
1 =

y

1 + y2 .

Then the autoparallel equations

q̈1 + G21
1 q̇2q̇1 = 0, q̈2 = 0

are simply the nonholonomic equationss44ad if the coordinatesq1,q2 are replaced withx,y.
Example 2: A special Chaplygin sleigh. Let us consider the free motion of a sleigh on a

horizontal plane in the case when the projection of the center of mass coincides with the point of
contact of a sharp wheel and the plane. We suppose the simplified sleigh has unit mass and unit
moment of inertia inR23T1 with coordinatessx,y,wd, subjected to the nonholonomic constraint
ẏ= ẋ tanw. Then the regular Lagrangian is given byL= 1

2sẋ2+ ẏ2+ẇ2d.
We discuss the two kinds of differential equations on the Riemann–Cartan submanifoldM of

R23T1 in the following. As is well known, the reduced nonholonomic and vakonomic equations
for the system onM are given by

ẍ + ẋẇ tanw = 0, ẅ = 0, s45ad

ẍ + 2ẋẇ tanw = 0, ẅ − ẋ2 tanw sec2 w = 0, s45bd

respectively.
Take i, j =1,2,3;m,n=1,2; a=3. Denoteqm,q̇m by x,w; ẋ,ẇ andqa,q̇a by y,ẏ. Obviously,

«1
1 = 1,«2

1 = 0,«1
2 = 0,«2

2 = 1; «1
3 = tanw,«2

3 = 0.

The metricgmn andgmn take the form

sgmnd = Ssec2w 0

0 1
D, sgmnd = Scos2w 0

0 1
D .

Then the nonvanishing coefficients of the corresponding Christoffel symbols are given by

Ḡ11
2 = − tanw sec2 w, Ḡ12

1 = Ḡ21
1 = tanw.

The Riemann–Cartan connection is simple to compute with only one nonvanishing coefficient

G21
1 = tanw.

It is very easy to verify that the following autoparallel and geodesic equations,

ẍ + G21
1 ẇẋ = 0, ẅ = 0,
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ẍ + 2G12
1 ẋẇ = 0, ẅ + G11

2 ẋẋ = 0,

are just the nonholonomic and vakonomic equationss45ad ands45bd, respectively, by substituting
the above nonvanishing connection coefficients into them.

Example 3: Consider the problem of a vertically rolling disk which is another paradigm of
nonholonomic systems. Choose the following appropriate generalized coordinates: the coordinates
sx,yd of the center of mass of the disk, the azimuthal anglec which determines the position of the
disk, and anglef describing its internal rotation.

Setting the mass of the disk equal to 1 for simplicity, the Lagrangian is given byL= 1
2sẋ2

+ ẏ2d+ 1
2sI1ḟ2+ I2ċ2d where I1 and I2 are moments of inertia. This regular Lagrangian leads to

Hessian metricgij with nonvanishing diagonal elements:g11= I1, g22= I2, g33=1, g44=1. The non-
holonomic constraints are given by the condition of rolling without slipping

ẋ = sRcoscdḟ, ẏ = sRsincdḟ,

whereR is the radius of the disk. Following the usual procedure for setting up the nonholonomic
and vakonomic equations, we can consider the two kinds of equations of motion as the same and
simply read

sR2 + I1df̈ = 0, I2c̈ = 0. s46d

Making use of the following notational identifications:sq1,q2,q3,q4d=sf ,c ;x,yd, the above
constraints leads to

«1
1 = 1,«2

1 = «1
2 = 0,«2

2 = 1; «1
3 = Rcosc,«2

3 = 0,«1
4 = Rsinc,«2

4 = 0

from which the metrics are given by

sgmnd = SR2 + I1 0

0 I2
D, sgmnd = S 1

R2+I1
0

0
1
I2

D .

It is straightforward to compute in the same way as the above examples that all of the coefficients
of Riemann–Christoffel and Riemann–Cartan connections vanish,

Ḡns
m = 0, Gns

m = 0 sm,n,s = 1,2d,

which means that the autoparallel coincides with the geodesic and satisfies the same equations

f̈ = 0, c̈ = 0.

They are equivalent to Eq.s46d.
This example indicates that similar to the autoparallel and geodesic, the difference between

nonholonomic and vakonomic dynamics for Chaplygin’s nonholonomic constrained systems is
determined by the torsion of the corresponding Riemann–Cartan constraint manifold. The integra-
bility of the constraints is an efficient but not a necessary condition for the coincidence of the two
dynamics.

Concluding remark.If a system is subject to Chaplygin’s nonholonomic constraints, its con-
figuration space is no longer a Riemann manifold but a Riemann–Cartan manifold with torsion, on
which the free variation operation does not exist. The stationary action principles on the constraint
manifold with respect to Suslov’s variation and vakonomic variation lead to autoparallel equations
and geodesic equations on the manifold, respectively. This result accords with principle of inertia
and principle of control theory.

Similar to the geometrization of gravitational fields in general relativity and gravitational
gauge theories, a system subject to Chaplygin’s nonholonomic constraints in an Euclidean or a
Riemann space is equivalent to a free system in a Riemann–Cartan space. By means of this
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geometrization the seeming inconsistency between nonholonomic and vakonomic dynamics can
be replaced by harmonious geometric relations: straightness and shortness on the same Riemann–
Cartan manifold. The result are applicable to most autonomous nonholonomic constrained sys-
tems, which can be generalized to nonautonomous ones by means of the theory of connection on
a contact manifold or a one-jet bundle in the forthcoming contribution.
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Using the theory of large deviations, we analyze the phase transition structure of
the Curie–Weiss–Potts spin model, which is a mean-field approximation to the
nearest-neighbor Potts model. It is equivalent to the Potts model on the complete
graph onn vertices. The analysis is carried out both for the canonical ensemble and
the microcanonical ensemble. Besides giving explicit formulas for the microcanoni-
cal entropy and for the equilibrium macrostates with respect to the two ensembles,
we analyze ensemble equivalence and nonequivalence at the level of equilibrium
macrostates, relating these to concavity and support properties of the microcanoni-
cal entropy. The Curie–Weiss–Potts model is the first statistical mechanical model
for which such a detailed and rigorous analysis has been carried out. ©2005
American Institute of Physics.fDOI: 10.1063/1.1904507g

I. INTRODUCTION

The nearest-neighbor Potts model, introduced in Ref. 40, takes its place next to the Ising
model as one of the most versatile models in equilibrium statistical mechanics.49 Section I C of
Ref. 49 presents a mean-field approximation to the Potts model, defined in terms of a mean
interaction averaged over all the sites in the model. We refer to this approximation as the Curie–
Weiss–Potts model. Both the nearest-neighbor Potts model and the Curie–Weiss–Potts model are
defined by sequences of probability distributions ofn spin random variables that may occupy one
of q different statesu1, . . . ,uq, whereqù3. Forq=2 the Potts model reduces to the Ising model
while the Curie–Weiss–Potts model reduces to the much simpler mean-field approximation to the
Ising model known as the Curie–Weiss model.14

Two ways in which the Curie–Weiss–Potts model approximates the Potts model, and in fact
gives rigorous bounds on quantities in the Potts model, are discussed in Refs. 31 and 39. Proba-
bilistic limit theorems for the Curie–Weiss–Potts model are proved in Ref. 19, including the law of
large numbers and its breakdown as well as various types of central limit theorems. The model is
also studied in Ref. 20, which focuses on a statistical estimation problem for two parameters
defining the model.

In order to carry out the analysis of the model in Refs. 19 and 20, detailed information about
the structure of the set of canonical equilibrium macrostates is required, including the fact that it
exhibits a discontinuous phase transition as the inverse temperatureb increases through a critical
valuebc. This information plays a central role in the present paper, in which we use the theory of
large deviations to study the equivalence and nonequivalence of the sets of equilibrium mac-
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bdElectronic mail: rsellis@math.umass.edu
cdElectronic mail: htouchet@alum.mit.edu
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rostates for the microcanonical and canonical ensembles. An important consequence of the dis-
continuous phase transition exhibited by the canonical ensemble in the Curie–Weiss–Potts model
is the implication that the nearest-neighbor Potts model onZd also undergoes a discontinuous
phase transition wheneverd is sufficiently largesRef. 4, Theorem 2.1d.

In Ref. 15 the problem of the equivalence of the microcanonical and canonical ensembles was
completely solved for a general class of statistical mechanical models including short-range and
long-range spin models and models of turbulence. This problem is fundamental in statistical
mechanics because it focuses on the appropriate probabilistic description of statistical mechanical
systems. While the theory developed in Ref. 15 is complete, our understanding is greatly enhanced
by the insights obtained from studying specific models. In this regard the Curie–Weiss–Potts
model is an excellent choice, lying at the boundary of the set of models for which a complete
analysis involving explicit formulas is available.

For the Curie–Weiss–Potts model ensemble equivalence at the thermodynamic level is studied
numerically in Ref. 29, Secs. 3–5. This level of ensemble equivalence focuses on whether the
microcanonical entropy is concave on its domain; equivalently, whether the microcanonical en-
tropy and the canonical free energy, the basic thermodynamic functions in the two ensembles, can
each be expressed as the Legendre–Fenchel transform of the othersRef. 15, pp. 1036–1037d.
Nonconcave anomalies in the microcanonical entropy partially correspond to regions of negative
specific heat and thus thermodynamic instability.

The present paper significantly extends Ref. 29, Secs. 3–5 by analyzing rigorously ensemble
equivalence at the thermodynamic level and by relating it to ensemble equivalence at the level of
equilibrium macrostates via the results in Ref. 15. As prescribed by the theory of large deviations,
the setEu of microcanonical equilibrium macrostates and the setEb of canonical equilibrium
macrostates are defined ins2.4d and s2.3d. These macrostates are, respectively, the solutions of a
constrained minimization problem involving probability vectors onRq and a related, uncon-
strained minimization problem. The equilibrium macrostates for the two ensembles are probability
vectors describing equilibrium configurations of the model in each ensemble in the thermody-
namic limit n→`. For eachi =1,2, . . . ,q, the ith component of an equilibrium macrostate gives
the asymptotic relative frequency of spins taking the spin-valueu i.

Defined via conditioning on the energy per particle, the microcanonical ensemble expresses
the conservation of physical quantities such as the energy. Among other reasons, the mathemati-
cally more tractable canonical ensemble was introduced by Gibbs22 in the hope that in then
→` limit the two ensembles are equivalent; i.e., all asymptotic properties of the model obtained
via the microcanonical ensemble could be realized as asymptotic properties obtained via the
canonical ensemble. Although most textbooks in statistical mechanics, including Refs. 1, 22, 28,
35, 41, and 44, claim that the two ensembles always give the same predictions, in general this is
not the case.48 There are many examples of statistical mechanical models for which nonequiva-
lence of ensembles holds over a wide range of model parameters and for which physically inter-
esting microcanonical equilibria are often omitted by the canonical ensemble. Besides the Curie–
Weiss–Potts model, these models include the mean-field Blume–Emery–Griffiths model,2,3,18 the
Hamiltonian mean-field model,12,36 the mean-fieldX–Y model,11 models of turbulence,6,16,21,33,42

models of plasmas,34,45 gravitational systems,23–25,37,47and a model of the Lennard-Jones gas.5 It
is hoped that our detailed analysis of ensemble nonequivalence in the Curie–Weiss–Potts model
will contribute to an understanding of this fascinating and fundamental phenomenon in a wide
range of other settings.

In the present paper, after summarizing the large deviation analysis of the Curie–Weiss–Potts
model in Sec. II, we give explicit formulas for the elements ofEb and the elements ofEu in Secs.
III and IV. This analysis shows thatEb exhibits a discontinuous phase transition at a critical
inverse temperaturebc and thatEu exhibits a continuous phase transition at a critical energyuc.
The implications of these different phase transitions concerning ensemble nonequivalence are
studied graphically in Sec. V and rigorously in Sec. VI, where we exhibit a range of values of the
energyu for which the microcanonical equilibrium macrostates are not realized canonically; i.e.,
Eu is disjoint fromEb for all b. As described in the main theorem in Ref. 15 and summarized here
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in Theorem 5.1, this range of values of the energy is precisely the set on which the microcanonical
entropy is not concave. The analysis of this bridge between ensemble nonequivalence at the
thermodynamic level and ensemble nonequivalence at the level of equilibrium macrostates is one
of the main contributions of Ref. 15 for general models and of the present paper for the Curie–
Weiss–Potts model. In a sequel to the present paper,9 we will extend our analysis of the Curie–
Weiss–Potts model to the so-called Gaussian ensemble7,8,26,27,30,46to show, among other results,
that for each value of the energy for which the microcanonical and canonical ensembles are
nonequivalent, we can find a Gaussian ensemble that is fully equivalent with the microcanonical
ensemble.10

II. SETS OF EQUILIBRIUM MACROSTATES FOR THE TWO ENSEMBLES

Let qù3 be a fixed integer and defineL=hu1,u2, . . . ,uqj, where theu i are anyq distinct
vectors inRq. In the definition of the Curie–Weiss–Potts model, the precise values of these vectors
is immaterial. For eachnPN the model is defined by spin random variablesv1,v2, . . . ,vn that
take values inL. The canonical and microcanonical ensembles for the model are defined in terms
of probability measures on the configuration spacesLn, which consist of the microstatesv
=sv1, . . . ,vnd. We also introduce then-fold product measurePn on Ln with identical one-
dimensional marginals

r̄ =
1

q
o
i=1

q

du i .

Thus for all vPLn, Pnsvd=1/qn. For nPN and vPLn the Hamiltonian for theq-state Curie–
Weiss–Potts model is defined by

Hnsvd = −
1

2n
o
j ,k=1

n

dsv j,vkd,

wheredsv j ,vkd equals 1 ifv j =vk and equals 0 otherwise. The energy per particle is defined by

hnsvd =
1

n
Hnsvd.

For inverse temperaturebPR and subsetsB of Ln the canonical ensemble is the probability
measurePn,b defined by

Pn,bhBj =
1

ovPLn expf− nbhnsvdg
· o

vPB

expf− nbhnsvdg.

For energyuPR and r .0 the microcanonical ensemble is the conditioned probability measure
Pn

u,r defined by

Pn
u,rhBj = PnhBuhn P fu − r,u + rgj.

The key to our analysis of the Curie–Weiss–Potts model is to express both the canonical and the
microcanonical ensembles in terms of the empirical vector

Ln = Lnsvd = sLn,1svd,Ln,2svd, . . . ,Ln,qsvdd,

the ith component of which is defined by
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Ln,isvd =
1

n
o
j=1

n

dsv j,u
id.

This quantity equals the relative frequency with whichv j , j P h1, . . . ,nj, equalsu i. Ln takes values
in the set of probability vectors

P =Hn P Rq:n = sn1,n2, . . . ,nqd, eachni ù 0,o
i=1

q

ni = 1J .

As we will see, each probability vector inP represents a possible equilibrium macrostate for the
model.

There is a one-to-one correspondence betweenP and the setPsLd of probability measures on
L, nPP corresponding to the probability measureoi=1

q nidu i. The elementrPP corresponding to
the one-dimensional marginalr̄ of the prior measuresPn is the uniform vector having equal
components 1/q.

We denote byk·,·l the inner product onRq. Since

o
i=1

q

o
j=1

n

dsv j,j
id ·o

k=1

n

dsvk,j
id = o

j ,k=1

n

dsv j,vkd,

it follows that the energy per particle can be rewritten as

hnsvd = −
1

2n2 o
j ,k=1

n

dsv j,vkd = −
1

2
kLnsvd,Lnsvdl;

i.e.,

hnsvd = H̃sLnsvdd, whereH̃snd = − 1
2kn,nl for n P P. s2.1d

We call H̃ the energy representation function.
We appeal to the theory of large deviations to define the sets of microcanonical equilibrium

macrostates and canonical equilibrium macrostates. Sanov’s theorem states that with respect to the
product measuresPn, the empirical vectorsLn satisfy the large deviation principlesLDPd on P
with rate function given by the relative entropyRs·urd sRef. 14, Theorem VIII.2.1d. For nPP this
is defined by

Rsnurd = o
i=1

q

ni logsqnid.

We express this LDP by the formal notationPnhLnPdnj<expf−nRsn urdg. The LDPs forLn with
respect to the two ensemblesPn,b andPn

u,r in the thermodynamic limitn→`, r →0 can be proved
from the LDP for thePn-distributions ofLn as in Theorems 2.4 and 3.2 in Ref. 15, in which minor
notational changes have to be made. We express these LDPs by the formal notation

Pn,bhLn P dnj < expf− nIbsndg andPn
u,rhLn P dnj < expf− nIusndg, s2.2d

where fornPP

Ibsnd = Rsnurd −
b

2
kn,nl − const

and
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Iusnd = HRsnurd − const if − 1
2kn,nl = u,

` otherwise.
J

The constants appearing in the definitions ofIb andIu have the properties that infnPP Ibsnd=0 and
infnPP Iusnd=0. ThusIb and Iu mapP into f0,`d.

As the formulas ins2.2d suggest, ifIbsnd.0 or Iusnd.0, thenn has an exponentially small
probability of being observed in the corresponding ensemble in the thermodynamic limit. Hence it
makes sense to define the corresponding sets of equilibrium macrostates to be

Eb = hn P P:Ibsnd = 0j andEu = hn P P:Iusnd = 0j.

A rigorous justification for this is given in Ref. 15, Theorem 2.4sdd. Using the formulas forIb and
Iu, we see that

Eb = Hn P P:n minimizesRsnurd −
b

2
kn,nlJ s2.3d

and

Eu = hn P P:n minimizesRsnurd subject to −1
2kn,nl = uj . s2.4d

Each elementn in Eb and Eu describes an equilibrium configuration of the model in the corre-
sponding ensemble in the thermodynamic limit. Theith componentni gives the asymptotic rela-
tive frequency of spins taking the valueu i.

The setEu is defined for allu for which the constraint in the definition ofIu is satisfied for
somenPP. Otherwise,Eu is not defined. IfEu is defined, thenEu is nonempty; ifEu is not defined,
then we shall setEu=x.

The question of equivalence of ensembles at the level of equilibrium macrostates focuses on
the relationships betweenEu, defined in terms of the constrained minimization problem ins2.4d,
and Eb, defined in terms of the related, unconstrained minimization problem ins2.3d. We will
focus on this question in Secs. V and VI after we determine the structures ofEb andEu in the next
two sections.

III. FORM OF Eb AND ITS DISCONTINUOUS PHASE TRANSITION

In this section we derive the form of the setEb of canonical equilibrium macrostates for all
bPR. This form is given in Theorem 3.1, which shows that with respect to the canonical en-
semble the Curie–Weiss–Potts model undergoes a discontinuous phase transition at the critical
inverse temperature

bc =
2sq − 1d

q − 2
logsq − 1d. s3.1d

In order to describe the form ofEb, we introduce the functionc that mapsf0, 1g into P and is
defined by

cswd = S1 + sq − 1dw
q

,
1 − w

q
, . . . ,

1 − w

q
D; s3.2d

the lastq−1 components all equals1−wd /q. Recalling thatr is the uniform vector inP having
equal components 1/q, we see thatr=cs0d.

Theorem 3.1:For b.0 let wsbd be the largest solution of the equation

w =
1 − e−bw

1 + sq − 1de−bw . s3.3d

The following conclusions hold.
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sad The quantity wsbd is well defined and lies inf0, 1g. It is positive, strictly increasing, and
differentiable forbP sbc,`d and satisfies wsbcd=sq−2d / sq−1d and limb→` wsbd=1.

sbd For bùbc, define n1sbd=cswsbdd and let n isbd, i =2, . . . ,q, denote the points inRq

obtained by interchanging the first and ith components ofn1sbd. Then the setEb defined ins2.3d
has the form

Eb = 5hrj for b , bc,

hr,n1sbcd,n2sbcd, . . . ,nqsbcdj for b = bc,

hn1sbd,n2sbd, . . . ,nqsbdj for b . bc.
6 s3.4d

For bùbc, the vectors inEb are all distinct and eachn isbd is continuous. The vectorn1sbcd is
given by

n1sbcd = cswsbcdd = cSq − 2

q − 1
D = S1 −

1

q
,

1

qsq − 1d
, . . . ,

1

qsq − 1dD; s3.5d

the last q−1 components all equal1/qsq−1d.
The form ofEb for b.0 is proved in Appendix B from a new convex-duality theorem proved

in Appendix A and from the complicated calculation of the global minimum points of a related
function given in Theorem 2.1 in Ref. 19. The form ofEb for bø0 is also determined in Appendix
B. The other assertions in Theorem 3.1 are proved in Theorem 2.1 in Ref. 19.

For b.0 the form ofEb reflects a competition between disorder, as represented by the relative
entropyRsn urd, and order, as represented by the energy representation function −1

2kn ,nl. For small
b.0, Rsn urd predominates. SinceRsn urd attains its minimum of 0 at the unique vectorr, we
expect that for smallb, Eb should contain a single vector. On the other hand, for largeb.0,
−1

2kn ,nl predominates. This function attains its minimum atn1=s1,0, . . . ,0d and at the vectorsn i,
i =1, . . . ,q, obtained by interchanging the first andith components ofn1. Hence we expect that for
largeb, Eb should containq distinct vectorsn isbd having the property thatn isbd→n i asb→`.
The major surprise of the theorem is that forb=bc, Eb consists of theq+1 distinct vectorsr and
n isbcd for i =1,2, . . . ,q.

The discontinuous bifurcation in the composition ofEb from 1 vector forb,bc to q+1
vectors forb=bc to q vectors forb.bc corresponds to a discontinuous phase transition exhibited
by the canonical ensemble. In Fig. 2 in Sec. V this phase transition is shown together with the
continuous phase transition exhibited by the microcanonical ensemble. The latter phase transition
and the form of the set of microcanonical equilibrium macrostates are the focus of the next
section.

IV. FORM OF Eu AND ITS CONTINUOUS PHASE TRANSITION

We now turn to the form of the setEu for all uPf−1
2 ,−1/2qg, which is the set ofu for which

Eu is nonempty. In the specific caseq=3 part scd of Theorem 4.2 gives the form ofEu, the
calculation of which is much simpler than the calculation of the form ofEb. The proof is based on
the method of Lagrange multipliers, which also works for generalqù4 provided the next con-
jecture on the form of the elements inEu is valid. The validity of this conjecture has been
confirmed numerically for allqP h4,5, . . . ,104j and all uP s−1

2 ,−1/2qd of the form u=−1
2

+0.02k, wherek is a positive integer.
Conjecture 4.1: For any qù4 and all uP s−1

2 ,−1/2qd, there exist aÞbP s0,1d such that
modulo permutations, anynPEu has the formsa,b, . . . ,bd, the last q−1 components of which all
equal b.

Partssad and sbd of Theorem 4.2 are proved for generalqù3. Partscd shows that modulo
permutations, forq=3, nPEu has the formsasud ,bsud ,bsudd and determines the precise formulas
for asud andbsud. As specified in partsdd, for qù4 we can also determine the precise formula for
nPEu provided Conjecture 4.1 is valid.
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Theorem 4.2 shows that with respect to the microcanonical ensemble the Curie–Weiss–Potts
model undergoes a continuous phase transition asu decreases from the critical energy valueuc

=−1/2q. This contrast with the discontinuous phase transition exhibited by the canonical en-
semble is closely related to the nonequivalence of the microcanonical and canonical ensembles for
a range ofu. Ensemble equivalence and nonequivalence will be explored in the next section,
where we will see that it is reflected by support and concavity properties of the microcanonical
entropy. An explicit formula for the microcanonical entropy is given in Theorem 4.3.

Theorem 4.2:For uPR we defineEu by s2.4d. The following conclusions hold.
sad For any qù3, Eu is nonempty if and only if uPf−1

2 ,−1/2qg. This interval coincides with

the range of the energy representation function H˜ snd=−1
2kn ,nl on P.

sbd For any qù3, E−1/2q=hrj=hs1/q,1 /q, . . . ,1 /qdj and

E−1/2 = hs1,0, . . . ,0d,s0,1, . . . ,0d, . . . ,s0,0, . . . ,1dj.

scd Let q=3. For uP s−1
2 ,−1/2qd, Eu consists of the three distinct vectors

hm1sud ,m2sud ,m3sudj, wherem1sud=sasud ,bsud ,bsudd,

asud =
1 +Î2s− 6u − 1d

3
andbsud =

2 −Î2s− 6u − 1d
6

. s4.1d

The vectorsmisud, i =2,3, denote the points inR3 obtained by interchanging the first and the ith
components ofm1sud.

sdd Let qù4 and assume that Conjecture4.1 is valid. Then for uP s−1
2 ,−1/2qd, Eu consists of

the q distinct vectorshm1sud , . . . ,mqsudj, wherem1sud=sasud ,bsud , . . . ,bsudd,

asud =
1 +Îsq − 1ds− 2qu− 1d

q
andbsud =

q − 1 −Îsq − 1ds− 2qu− 1d
sq − 1dq

.

The last q−1 components ofm1sud all equal bsud, and the vectorsmisud, i =2, . . . ,q, denote the
points inRq obtained by interchanging the first and the ith components ofm1sud.

We return to partsbd of Theorem 4.2 in order to discuss the nature of the phase transition
exhibited by the microcanonical ensemble. The functionsasud and bsud given in s4.1d are both
continuous foruPf−1

2 ,−1/2qg and satisfy

lim
u→s− 1/2qd−

asud = lim
u→s− 1/2qd−

bsud =
1

q
= aS−

1

2q
D = bS−

1

2q
D .

Therefore, fori =1, . . . ,q, limu→s−1 /2qd−m
isud=r. It follows that the microcanonical ensemble ex-

hibits a continuous phase transition asu decreases fromuc=−1/2q, the unique equilibrium mac-
rostater for u=uc bifurcating continuously into theq distinct macrostatesmisud as u decreases
from its maximum value. This is rigorously true forq=3. Provided Conjecture 4.1 is true, it is also
true for qù4, as one easily checks using partsdd of Theorem 4.2.

Before proving Theorem 4.2, we introduce the microcanonical entropy

ssud = − infhRsnurd:n P P,− 1
2kn,nl = uj . s4.2d

As we will see in the next section, this function plays a crucial role in the analysis of ensemble
equivalence and nonequivalence for the Curie–Weiss–Potts model. The domain ofs is the set
doms=huPR :ssud.−`j; for u¹doms, we setssud=−`. SinceRsn urd,` for all nPP, doms

equals the range ofH̃snd=−1
2kn ,nl on P, which is the intervalf−1

2 ,−1/2qg fTheorem 4.2sadg.
Since 0øRsn urd for all nPP, ssudP f−` ,0g for all u. The continuity ofRsn urd on P and the

compactness of the constraint set ins4.2d guarantee that foruPdoms the infimum in the defini-
tion of ssud is attained for somenPP. SinceRsn urd.Rsr urd=0 for all nÞr, it follows that s
attains its maximum of 0 at the unique value −1/2q=−1

2kr ,rl.
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As we have just seen,ss−1/2qd=0. For uP s−1
2 ,−1/2qd, according to partsscd and sdd of

Theorem 4.2,Eu consists of the unique vectorm1sud modulo permutations. Since fori
=2,3, . . . ,q, Rsmisud urd=Rsm1sud urd, we conclude that

ssud = − Rsm1sudurd = − asudlogsqasudd − sq − 1dbsudlogsqbsudd.

Finally, for u=−1
2, modulo permutationsEu consists of the unique vectors1, 0,…,0d fsees4.7dg,

and soss−1
2

d=−Rss1,0, . . . ,0d urd=−logq. The resulting formulas forssud are recorded in the next
theorem, where we distinguish betweenq=3 andqù4.

Theorem 4.3:We define the microcanonical entropy ssud in s4.2d. The following conclusions
hold.

sad doms=f−1
2 ,−1/2qg; for any uPdoms, uÞ−1/2q, ssud,ss−1/2qd=0; and ss−1

2
d=

−log q.
sbd Let q=3. Then for uP s−1

2 ,−1/2qd= s−1
2 ,−1

6
d,

ssud = −
1 +Î2s− 6u − 1d

3
logs1 +Î2s− 6u − 1dd −

2 −Î2s− 6u − 1d
3

logS2 −Î2s− 6u − 1d
2

D .

s4.3d

scd Let qù4 and assume that Conjecture4.1 is valid. Then for uP s−1
2 ,−1/2qd,

ssud = −
1 +Îsq − 1ds− 2qu− 1d

q
logs1 +Îsq − 1ds− 2qu− 1dd

−
q − 1 −Îsq − 1ds− 2qu− 1d

q
logSq − 1 −Îsq − 1ds− 2qu− 1d

q − 1
D . s4.4d

We now turn to the proof of Theorem 4.2, which gives the form ofEu. We start by proving part
sad. The setEu of microcanonical equilibrium macrostates consists of allnPP that minimize the
relative entropyRsn urd subject to the constraint that

H̃snd = − 1
2kn,nl = u.

Let u=−1
2r 2. SinceP consists of all non-negative vectors inRq satisfying n1+¯ +nq=1, the

constraint set in the minimization problem definingEu is given by

Csud = Cs− 1
2r 2d =Hn P Rq:n1 ù 0, . . . ,nq ù 0,o

j=1

q

n j = 1,o
j=1

q

n j
2 = r 2J . s4.5d

Geometrically,Cs−1
2r 2d is the intersection of the non-negative orthant ofRq, the hyperplane

consisting ofnPRs that satisfyn1+¯ +nq=1, and the hypersphere inRq with center 0 and radius
r. Clearly, CsudÞx if and only if u lies in the range of the energy representation function

H̃snd=−1
2kn ,nl onP. Because 0øRsn urd,` for all nPCsud, the range ofH̃ onP also equals the

set ofu for which EuÞx.
The geometric description ofCsud makes it straightforward to determine those values ofu for

which this constraint set is nonempty. The smallest value ofr for which Cs−1
2r 2dÞx is obtained

when the hypersphere of radiusr is tangent to the hyperplane, the point of tangency beingr
=s1/q,1 /q, . . . ,1 /qd, the closest probability vector to the origin. The hypersphere and the hyper-
plane are tangent whenr =1/Îq, which coincides with the distance from the center of the hyper-
sphere to the hyperplane. It follows that the largest value ofu for which CsudÞx, and thusEu

Þx, is u=−1
2r 2=−1/2q. In this case

CS−
1

2q
D = hrj = HS1

q
,
1

q
, . . . ,

1

q
DJ = E−1/2q. s4.6d
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For all sufficiently larger, Cs−1
2r2d is empty because the hypersphere of radiusr has empty

intersection with the intersection of the hyperplane and the non-negative orthant ofRq. The largest
value for r for which this does not occur is found by subtracting the two equations defining the
hyperplane and the hypersphere. Since eachni P f0,1g, it follows that

0 ø o
i=1

q

nis1 − nid = 1 − r 2,

and this in turn implies thatr 2ø1. Thusr =1 is the largest value forr for which Cs−1
2r2dÞx. We

conclude that the smallest value ofu for whichCsudÞx, and thusEuÞx, is u=−1
2r2=−1

2. The set

E−1
2 consists of the points at which the hyperplane intersects each of the positive coordinate axes;

i.e.,

E−1/2 = hs1,0, . . . ,0d,s0,1, . . . ,0d, . . . ,s0,0, . . . ,1dj. s4.7d

This completes the proof of partsad of Theorem 4.2.
For uPf−1

2 ,−1/2qg, we now determine the formEu as specified in partssbd–sdd of Theorem
4.2. Partsbd considers anyqù3 and the valuesu=−1/2q andu=−1

2, part scd q=3 anduP s−1
2 ,

−1/2qd, and partsdd qù4 anduP s−1
2 ,−1/2qd. Part sbd has already been proved; foru=−1/2q

andu=−1
2, the setsEu are given ins4.6d and s4.7d.

We now considerqù3 anduP s−1
2 ,−1/2qd. For nPP define

Ksnd = o
j=1

q

n j andH̃snd = − 1
2kn,nl.

By definitionn=sn1, . . . ,nqdPEu if and only if n minimizesRsn urd=o j=1
q n j logsqn jd subject to the

constraintsKsnd=1, H̃snd=u, andn1ù0, . . . ,nqù0. ForuP s−1
2 ,−1/2qd we divide into two parts

the calculation of the form ofnPEu. First we use Lagrange multipliers to solve the constrained
minimization problem whenn1.0, . . . ,n1.0. Then we argue that the vectorsn found via
Lagrange multipliers solve the original constrained minimization problem whenn1ù0, . . . ,nq

ù0.
We introduce Lagrange multipliersg and l. Any critical point of Rsn urd subject to the

constraintsKsnd=1, H̃snd=u, andn1.0, n2.0, . . . ,nq.0 satisfies

¹Rsnurd = g ¹ Ksnd + l ¹ H̃snd,

Ksnd = 1,

H̃snd = u,

n j . 0 for j = 1,2, . . . ,q.

This system of equations is equivalent to

1 + logsqn jd = g − ln j for j = 1,2, . . . ,q, s4.8d

o
j=1

q

n j = 1,

−
1

2o
j=1

q

n j
2 = u,

063301-9 Curie–Weiss–Potts model J. Math. Phys. 46, 063301 ~2005!

                                                                                                                                    



n j . 0 for j = 1,2, . . . ,q.

By the strict concavity of the logarithm, the first equation can have at most two solutions. Hence
modulo permutations, there existsnP h0,1, . . . ,qj and distinct numbersa,bP s0,1d such that the
first n components of any critical pointn all equala and the lastq−n components ofn all equal
b. The second and third equations ins4.8d take the form

na+ sq − ndb = 1 andna2 + sq − ndb2 = − 2u. s4.9d

If n=0, then b=1/q, while if n=q, then a=1/q. Both cases correspond ton
=s1/q, . . . ,1 /qd=r andu=−1/2q, which does not lie in the open intervals−1

2 ,−1/2qd currently
under consideration.

We now focus onnP h1, . . . ,q−1j. In this case the two solutions ofs4.9d are

a1snd =
n − Însq − nds− 2qu− 1d

nq
, b1snd =

q − n + Însq − nds− 2qu− 1d
sq − ndq

s4.10d

and

a2snd =
n + Însq − nds− 2qu− 1d

nq
, b2snd =

q − n − Însq − nds− 2qu− 1d
sq − ndq

. s4.11d

SinceuP s−1
2 ,−1/2qd, these quantities are all well defined andajsndÞbjsnd for j =1,2. In addi-

tion,

a1sq − nd = b2snd andb1sq − nd = a2snd.

This means that the point having the firstn componentsa2snd and the lastq−n componentsb2snd
equals, modulo permutations, the point having the firstq−n componentsa1sq−nd and the lastn
componentsb1sq−nd.

Thus, without loss of generality, we can seek solutions of the systems4.8d having the firstn
componentsa2snd and the lastq−n componentsb2snd. While a2s1d andb2s1d are always positive
for all uP s−1

2 ,−1/2qd, b2snd might be negative for somenP h2, . . . ,q−1j and someuP s−1
2 ,

−1/2qd. In this case the positivity constraint in the last line ofs4.8d excludes such values ofn and
u.

We give full details whenq=3, the case considered in partscd of Theorem 4.2. Whenq=3, the
interval s−1

2 ,−1/2qd equalss−1
2 ,−1/6d and we havenP h1,2j. For n=1 andn=2 s4.11d takes the

form

a2s1d =
1 +Î2s− 6u − 1d

3
, b2s1d =

2 −Î2s− 6u − 1d
6

and

a2s2d =
2 +Î2s− 6u − 1d

6
, b2s2d =

1 −Î2s− 6u − 1d
3

.

For uP s−1
2 ,−1

4
d, b2s2d is negative and hence a solution ofs4.8d cannot have the form

sa2s2d ,a2s2d ,b2s2dd. We conclude that whenuP s−1
2 ,−1

4
d, n=sa2s1d ,b2s1d ,b2s1dd is, modulo per-

mutations, the unique solution ofs4.8d and thus the unique minimizer ofRsn urd subject to the
constraints in the last three lines ofs4.8d. For uPf−1

4 ,−1
6

d, a straightforward calculation shows
that

Rssa2s1d,b2s1d,b2s1ddurd , Rssa2s2d,a2s2d,b2s2ddurd.

It follows again thatn=sa2s1d ,b2s1d ,b2s1dd is, modulo permutations, the unique minimizer of
Rsn urd subject to the constraints in the last three lines ofs4.8d. This completes the proof that for
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q=3 and anyuP s−1
2 ,−1

6
d, n=sa2s1d ,b2s1d ,b2s1dd is, modulo permutations, the unique minimizer

of Rsm urd subject to the constraintsKsnd=1, H̃snd=u, andn1.0, n2.0, n3.0.
We now prove forq=3 that the minimizers found via Lagrange multipliers whenKsnd=1,

H̃snd=u, and n1.0, n2.0, n3.0 also minimizeRsn urd subject to the constraintsKsnd=1,

H̃snd=u, and n1ù0, n2ù0, n3ù0. If n=sn1,n2,n3d satisfies the latter constraints and has two

components equal to zero, then modulo permutationsn=s1,0,0d andH̃snd=u=−1
2, which does not

lie in the open intervals−1
2 ,−1

6
d currently under consideration. Thus we only have to consider the

case wheren has one component equal to zero; i.e,n=s0,a0,b0d with a0ùb0. In this case the
second and third equations ins4.8d have the solution

a0 =
1 +Î− 4u − 1

2
, b0 =

1 −Î− 4u − 1

2
.

We now claim that modulo permutations the unique minimizer ofRsn urd subject to the constraints

Ksnd=1, H̃snd=u, andn1ù0, n2ù0, n3ù0 has the formsa2s1d ,b2s1d ,b2s1dd found in the preced-
ing paragraph. The claim follows from the calculation

Rssa2s1d,b2s1d,b2s1ddurd , Rss0,a0,b0durd,

which is valid for all uP s−1
2 ,−1

6
d. This completes the proof of partscd of Theorem 4.2, which

gives the form ofnPEu for q=3 anduP s−1
2 ,−1

6
d.

We now turn to partsdd of Theorem 4.2, which gives the form ofEu for qù4 anduP s−1
2 ,

−1/2qd. If, as in the caseq=3, we knew that modulo permutations, the minimizers have the form
sa,b, . . . ,bd as specified in Conjecture 4.1, then as in the caseq=3 we would be able to derive
explicit formulas for these minimizers. If Conjecture 4.1 is true, then it is easily verified that
modulo permutations,Eu consists of the unique pointn=sa2s1d ,b2s1d , . . . ,b2s1dd, wherea2s1d and
b2s1d are defined ins4.11d for uP s−1

2 ,−1/2qd. This gives partsdd of Theorem 4.2. The proof of
the theorem is complete.

At the end of Sec. VI we will see that there exists an explicit value ofu0P s−1
2 ,−1/2qd such

that Conjecture 4.1 is valid for anyqù4 and alluP s−1
2 ,u0g. Hence for these values ofu the form

of nPEu given in partsdd of Theorem 4.2 and the formula forssud given in partscd of Theorem
4.3 are both rigorously true.

V. EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

As we saw in Sec. III, the setEb of canonical equilibrium macrostates undergoes a discon-
tinuous phase transition asb increases throughbc=f2sq−1d / sq−2dglogsq−1d, the unique mac-
rostater bifurcating discontinuously into theq distinct macrostatesnsidsbd. By contrast, as we saw
in Sec. IV, the setEu of microcanonical equilibrium macrostates undergoes a continuous phase
transition asu decreases fromuc=−1/2q, the unique macrostater bifurcating continuously into
the q distinct macrostatesmisud. The different continuity properties of these phase transitions
shows already that the canonical and microcanonical ensembles are nonequivalent. In this section
we study this nonequivalence in detail and relate the equivalence and nonequivalence of these two
sets of equilibrium macrostates to concavity and support properties of the microcanonical entropy
s defined ins4.2d. This is done with the help of Fig. 2, which is based on the form ofs in Fig. 1
and on the results on ensemble equivalence and nonequivalence in Theorem 5.1. In Figs. 3 and 4
at the end of the section we give, forq=3, a beautiful geometric representation ofEb andEu that
also shows the ensemble nonequivalence for a range ofu.

We start by stating in Theorem 5.1 results on ensemble equivalence and nonequivalence for
the Curie–Weiss–Potts model. Theorem 5.1 summarizes Theorems 4.4, 4.6, and 4.8 in Ref. 15,
which apply to a wide range of statistical mechanical models. The Curie–Weiss–Potts model is a
special case. In this special case, we will show that the values ofu andb in part sadsid of the next
theorem are related by the thermodynamic formulas8sud=b fTheorem 6.2sbdg. For uPdoms the
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possible relationships betweenEu and Eb, given in partsad of Theorem 5.1, are that either the
ensembles are fully equivalent, partially equivalent, or nonequivalent. According to partsbd of the
theorem, canonical equilibrium macrostates are always realized microcanonically—i.e., lie inEu

for someu—while according to partsadsiii d, microcanonical equilibrium macrostates are in gen-
eral not realized canonically—i.e., do not lie inEb for any b. It follows that the microcanonical
ensemble is the richer of the two ensembles.

Theorem 5.1: We define s bys4.2d and Eb and Eu by s2.3d and s2.4d. The following conclu-
sions hold.

sad For fixed uPdoms one of the following three possibilities occurs.

sid Full equivalence: There existsbPR such thatEu=Eb. This is the case if and only if s has
a strictly supporting line at u with slopeb; i.e.,

ssvd , ssud + bsv − ud for all v Þ u.

sii d Partial equivalence: There existsbPR such thatEu,Eb butEuÞEb. This is the case if and
only if s has a nonstrictly supporting line at u with slopeb; i.e.,

ssvd ø ssud + bsv − ud for all v P R with equality for somev Þ u.

siii d Nonequivalence: For allbPR, EuùEb=x. This is the case if and only if s has no sup-
porting line at u; i.e., for anybPR there existsv such that ssvd.ssud+bsv−ud.

sbd Canonical is always realized microcanonically: FornPP we define H˜ snd=−1
2kn ,nl. Then

for any bPR,

Eb = ø
uPH̃sEbd

Eu.

We next relate ensemble equivalence and nonequivalence with concavity and support proper-
ties ofs in the Curie–Weiss–Potts model. Forq=3 an explicit formula fors is given in partsbd of
Theorem 4.3. If Conjecture 4.1 is true, then the formula fors given in partscd of Theorem 4.3 is
also valid forqù4. Figure 1 exhibits all the concavity and support features ofs. However, Fig. 1
is not the actual graph ofs but a schematic graph that accentuates the shape ofs together with the
intervals of strict concavity and nonconcavity ofs. For arbitraryqù3, as discussed in the second
paragraph after Theorem 6.2, the concavity and support features ofs exhibited in Fig. 1 follow
from Theorems 5.1 and 6.2.

Concavity properties ofs are defined in reference to the double-Legendre–Fenchel transform
s** , which can be characterized as the smallest concave, upper semicontinuous function that
satisfiess** sudùssud for all uPR sRef. 10, Proposition A.2d. For uPdoms we say thats is
concave atu if ssud=s** sud and thats is not concave atu if ssud,s** sud. Also, we say thats is

FIG. 1. Schematic graph ofssud, showing the setF= s−1
2 ,u0dø h−1/2qj of full ensemble equivalence, the singleton set

P=hu0j of partial equivalence, and the setN=su0,−1/2qd of nonequivalence. ForuPFø P= s−1
2 ,u0gø h−1/2qj, ssud

=s** sud; for uPN, ssud,s** sud and the graph ofs** consists of the dotted line segment with slopebc. The slope ofs at −1
2

is `.
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strictly concave atuPdoms if s has a strictly supporting line atu and thats is strictly concave on
a convex subsetA of doms if s is strictly concave at eachuPA. If s is strictly concave atu, then
a straightforward argument shows thats is concave atu, as one expectsfRef. 10, Lemma 4.1sadg.

According to Fig. 1 and Theorem 5.1, there existsu0P s−1
2 ,−1/2qd with the following prop-

erties:

sid s is strictly concave on the intervals−1
2 ,u0d and at the point −1/2q. Hence foruPF

= s−1
2 ,u0dø h−1/2qj the ensembles are fully equivalentfTheorem. 5.1sadsidg. In fact, for

uP int F= s−1
2 ,u0d, Eu=Eb with b given by the thermodynamic formulab=s8sud fTheorem

6.2sbdg.
sii d s is concave but not strictly concave atu0 and has a nonstrictly supporting line atu0 that

also touches the graph ofs over the right-hand endpoint −1/2q. Hence foru=u0 the
ensembles are partially equivalent in the sense that there existsbPR such thatEu,Eb but
EuÞEb fTheorem 5.1sadsii dg. In fact,b equals the critical inverse temperaturebc defined in
s3.1d.

siii d s is not concave on the intervalN=su0,−1/2qd and has no supporting line at anyuPN
fRef. 10, Theorem A.4scdg. Hence foruPN the ensembles are nonequivalent in the sense
that for all bPR, EuùEb=x fTheorem 5.1sadsiii dg.

As we have just seen,u0 can be characterized in terms of concavity and support properties of

s. The quantityu0 can also be characterized in terms of mapping properties ofH̃snd=−1
2kn ,nl.

Using this characterization, we give an explicit formula foru0 in s6.2d.
We point out two additional features of Fig. 1. First, althoughEuÞx for u equal to the

left-hand endpoint −12 of doms, we do not include this point in the setF of full ensemble
equivalence. Indeed,s is not strictly concave at −12 because there is no strictly supporting line at
−1

2; as one can see ins5.1d, the slope ofs at −1
2 is `. Nevertheless, by introducing the limiting set

E` = hs1,0, . . . ,0d,s0,1, . . . ,0d, . . . ,s0,0, . . . ,1dj = lim
b→`

Eb,

we can extend full ensemble equivalence tou=−1
2 sinceE−1/2=E`.

Second, foru in the intervalN of ensemble nonequivalence, the graph ofs** is affine; this is
depicted by the dotted line segment in Fig. 1. The slope of the affine portion of the graph ofs**

equals the critical inverse temperaturebc defined ins3.1d. This can be proved using concave-
duality relationships involvings** and the canonical free energy. The quantitybc also satisfies an
equal-area property, first observed by MaxwellsRef. 28, p. 45d and explained in the context of
another spin model in Ref. 18, p. 535.

The relationships stated in itemssid, sii d, andsiii d above give valuable insight into equivalence
and nonequivalence of ensembles in the Curie–Weiss–Potts model. These relationships are illus-
trated in Fig. 2. In this figure we exhibit the graph ofs8 and the setsEb andEu in order to compare
the phase transitions in the two ensembles and to understand the implications for ensemble equiva-
lence and nonequivalence. In order to accentuate properties ofs8, Eb, andEu that are related to
ensemble equivalence and nonequivalence, we focus onq=8. In presenting the graph ofs8 and the
form of Eu, we assume that forq=8 Conjecture 4.1 is valid. We then appeal to partscd of Theorem
4.3, which gives an explicit formula fors, and to partsdd of Theorem 4.2, which gives an explicit
formula for the elements ofEu. The derivatives8, graphed in the top left plot in Fig. 2, is given by

s8sud =Î q − 1

− 2qu− 1
Flogs1 +Îsq − 1ds− 2qu− 1dd − logS1 −Î− 2qu− 1

q − 1
DG . s5.1d

The canonical phase diagram, given in the top right plot in Fig. 2, summarizes the description
of Eb given in Theorem 3.1 and shows the discontinuous phase transition exhibited by this en-
semble atbc=f2sq−1d / sq−2dglogsq−1d= 7

3 log 7. The solid line in this plot forb,bc represents
the common value18 of each of the components ofr, which is the unique phase forb,bc. For
b.bc there are eight phases given byn1sbd together with the vectorsn isbd obtained by inter-

063301-13 Curie–Weiss–Potts model J. Math. Phys. 46, 063301 ~2005!

                                                                                                                                    



changing the first andith components ofn 1sbd. Finally, for b=bc there are nine phases consisting
of r and the vectorsn isbcd for i =1,2, . . . ,8. Thesolid and dashed curves in the top right plot in
Fig. 2 show the first component and the last seven, equal components ofn1sbd for bP fbc,`d. The
first component is a strictly increasing function equal to7

8 for b=bc and increasing to 1 asb
→` while the last seven, equal components are strictly decreasing functions equal to1

56 for b
=bc and decreasing to 0 asb→`.

The microcanonical phase diagram, given in the bottom left plot in Fig. 2, summarizes the
description ofEu given in Theorem 4.2 and shows the continuous phase transition exhibited by this
ensemble asu decreases from the maximum valueuc=−1/2q=− 1

16. The single phaser for
u=− 1

16 is represented by the point lying over this value ofu. For uPf−1
2 ,− 1

16
d there are eight

phases given bym1sud together with the vectorsmisud obtained by interchanging the first andith
components ofm1sud. The solid and dashed curves in the bottom left plot in Fig. 2 show the first
componentasud and the last seven, equal componentsbsud of m1sud for uPf−1

2 ,− 1
16

d. The first
component is a strictly increasing function of −u equal to1

8 for u=− 1
16 and increasing to 1 asu

→ s−1
2

d+, while the last seven, equal components are strictly decreasing functions of −u equal to1
8

for u=− 1
16 and decreasing to 0 asu→ s−1

2
d+.

The different nature of the two phase transitions—discontinuous in the canonical ensemble
versus continuous in the microcanonical ensemble—implies that the two ensembles are not fully
equivalent for all values ofu. By necessity, the setEb of canonical equilibrium macrostates must
omit a set of microcanonical equilibrium macrostates. Further details concerning ensemble equiva-
lence and nonequivalence can be seen by examining the graph ofs8, given in the top left plot of
Fig. 2. This graph, which is the bridge between the canonical and microcanonical phase diagrams,
shows thats8 is strictly decreasing on the interval intF= s−1

2 ,u0d, which is the interior of the setF
of full ensemble equivalence. The critical valuebc equals the slope of the affine portion of the
graph ofs** over the intervalN=su0,−1/2qd of ensemble nonequivalence. This affine portion is
represented in the top left plot of Fig. 2 by the horizontal dashed line atbc.

Figure 2 exhibits the full equivalence of ensembles that holds foruP int F= s−1
2 ,u0d fTheorem

6.2sadg. For u in this interval the solid and dashed curves representing the components ofm1sud
PEu can be put in one-to-one correspondence with the solid and dashed curves representing the

FIG. 2. Forq=8 the top right plot showsEb, the top left plot the graph ofs8sud for uPdoms=fu, ,ucg=f−1
2 ,−1/2qg, and

the bottom left plotEu. The discontinuous phase transition atbc in the top right plot and the continuous phase transition at
uc in the bottom left plot imply that the ensembles are nonequivalent for alluPN=su0,ucd. On this intervals is not
concave ands** is affine with slopebc. The shaded area in the bottom left plot corresponds to the region of nonequivalence
of ensembles delineated byuPN.
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same two components ofn1sbdPEb for bP sbc,`d. As we remarked earlier, the values ofu and
b are related by the thermodynamic formulas8sud=b fTheorem 6.2sbdg. Full equivalence of
ensembles also holds foru=−1/2qPF, the right-hand endpoint of the interval on whichs is finite.
The solid vertical line in the top right plot forb,bc, which represents the unique canonical phase
r, is collapsed in the bottom left plot to the single energy valueu=−1/2q, which corresponds to
the unique microcanonical phaser. This collapse shows that the canonical notion of temperature
is somewhat ill-defined atu=−1/2q since there are infinitely many values ofb associated with
this energy value. This feature of the Curie–Weiss–Potts model is not present, for example, in the
mean-field Blume–Emery–Griffiths spin model, which also exhibits nonequivalence of
ensembles.18

By comparing the top right and bottom left plots, we see that the elements ofEu cease to be
related to those ofEb for uPN=su0,−1/2qd, which is the interval on whichs is not concave. For
any energy valueu in this interval nonPEb exists that can be put in correspondence with an
equivalent equilibrium empirical vector contained inEu. Thus, although the equilibrium mac-
rostates corresponding touPN are characterized by a well-defined value of the energy, it is
impossible to assign an inverse temperatureb to those macrostates from the viewpoint of the
canonical ensemble. In other words, the canonical ensemble is blind to all energy valuesu con-
tained in the intervalN of nonconcavity ofs. This is closely related to the presence of the
discontinuous phase transition seen in the canonical ensemble.

The quantityu0 defined ins6.2d plays a central role in the analysis of phase transitions and
ensemble equivalence in the Curie–Weiss–Potts model. First, as we saw in our discussion of Fig.
1, u0 separates the intervals−1

2 ,u0d of strict concavity ofs and of full ensemble equivalence from
the intervalsu0,−1/2qd of nonconcavity ofs and of ensemble nonequivalence. Second, partsad of

Lemma 6.1 shows thatu0 equals the limiting mean energyH̃sn1sbcdd in the canonical equilibrium
macrostaten1sbd asb→ sbcd+. In Figs. 3 and 4 we present forq=3 a third, geometric interpreta-
tion of u0 that is also related to ensemble nonequivalence.

Before explaining this third, geometric interpretation ofu0, we recall that according to partsad
of Theorem 4.2 specialized toq=3, Eu is nonempty, or equivalently the constraint set ins4.5d is

nonempty, if and only ifuPf−1
2 ,−1/2qg=f−1

2 ,−1
6
g. Geometrically, the energy constraintH̃snd

=−1
2kn ,nl=u corresponds to the sphere inR3 with center 0 and radiusÎ−2u. This sphere intersects

the setP of probability vectors if and only ifuPf−1
2 ,−1

6
g. For u=−1

6, the sphere is tangent toP
at the unique pointr while for u=−1

2, the hypersphere intersectsP at theq unit-coordinate vectors.
The intersection of the sphere andP undergoes a phase transition atu0 in the following sense. For
uPfu0,−1

6
d the sphere intersectsP in a circle while foruPf−1

2 ,u0d, the sphere intersectsP in a
proper subset of a circle; the complement of this subset lies outside the nonnegative octant ofR3.
For u=u0=−1

4, the circle of intersection is maximal and is tangent to the boundary ofP.
The setEb of canonical equilibrium macrostates forq=3 is represented in Fig. 3. In this figure

FIG. 3. Graphical representation of the setEb of canonical equilibrium macrostates forq=3 showing the maximal circle of
intersection corresponding tou=u0; the vectorr; the unit-coordinate vectorsA, B, and C; and the macrostatesAc

=n1sbcd, Bc=n2sbcd, andCc=n3sbcd. The line segmentsAcA, BcB, andCcC represent the elements ofEb for b.bc.
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the maximal circle of intersection corresponding tou=u0=−1
4 is shown together with the vectorr

at its center; the pointsA, B, and C representing the respective unit-coordinate vectorss1,0,0d,
s0,1,0d, and s0,0,1d; and the pointsAc, Bc, andCc representing the respective equilibrium mac-
rostatesn1sbcd, n2sbcd, andn3sbcd. These three macrostates lie on the maximal circle of intersec-

tion sinceH̃sn1sbcdd=u0 fLemma 6.1sbdg. Forb.bc all nPEb have two equal components, and as
b→` these vectors converge to the unit-coordinate vectorsA, B, andC. Hence forb.bc the

equilibrium macrostatesn1sbd, n2sbd, andn3sbd are represented by the open line segmentsAcA,

BcB, andCcC.
The setEu of microcanonical equilibrium macrostates forq=3 is represented in Fig. 4. In this

figure the maximal circle of intersection corresponding tou=u0=−1
4 is shown together with the

vector r at its center; the pointsA, B, and C representing the unit-coordinate vectors; and the
points A0, B0, and C0 representing the respective equilibrium macrostatesm1su0d, m2su0d, and
m3su0d. For uP s−1

2 ,−1
6

d all nPEu have two equal components, and asu→ s−1
2

d+ they converge to
the unit coordinate vectorsA, B, andC. Hence foruP s−1

2 ,−1
6

d the equilibrium macrostatesm1sud,
m2sud, andm3sud are represented by the open line segmentsrA, rB, andrC. As we saw in the
preceding section, for eachuP s−1

2 ,−1
6

d the macrostatesm1sud, m2sud, andm3sud lie on the inter-

section of the sphere of radiusÎ−2u with P. In particular, A0=m1su0d, B0=m2su0d, and C0

=m3su0d lie on the maximal circle of intersection.
The distinguishing feature of Fig. 4 is the three open dashed-line segmentsrA0, rB0, andrC0

representing the elements ofEu that are not realized canonically; namely,m1sud, m2sud, andm3sud
for uP su0,−1

6
d. The three half open solid-line segmentsA0A, B0B, andC0C represent the elements

of Eu that are realized canonically; namely,m1sud, m2sud, andm3sud for uP s−1
2 ,u0g. For each such

u the value ofb for which Eu=Eb is determined by the equationH̃sn1sbdd=u fTheorem 6.2sadg.
Thus in Fig. 3 the corresponding elements ofEb lie on the intersection of the sphere of radius
Î−2u andP.

This completes our discussion of equivalence and nonequivalence of ensembles. In the next
section we will prove a number of statements concerning ensemble equivalence and nonequiva-
lence that have been determined graphically.

VI. PROOFS OF EQUIVALENCE AND NONEQUIVALENCE OF ENSEMBLES

Using the general results of Ref. 15, we stated in the preceding section the equivalence and
nonequivalence relationships that exist betweenEu andEb and verified these relationships using
the plots of these sets forq=8 given in Fig. 2. Our purpose in the present section is to prove these
relationships using mapping properties of the mean energy functionusbd defined forbÞbc by

FIG. 4. Graphical representation of the setEu of microcanonical equilibrium macrostates forq=3 showing the maximal
circle of intersection corresponding tou=u0; the vectorr; the unit-coordinate vectorsA, B, andC; and the macrostates
A0=m1su0d, B0=m2su0d, andC0=m3su0d. The solid-line segmentsA0A, B0B, andC0C represent the elements ofEu that are
realized canonically. The dashed-line segmentsrA0, rB0, and rC0 represent the elements ofEu that are not realized
canonically.
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usbd = 5H̃srd = −
1

2q
for b , bc,

H̃sn1sbdd = − 1
2kn1sbd,n1sbdl for b . bc.

6 s6.1d

Heren1sbd is the unique canonical equilibrium macrostate modulo permutations forb.bc fTheo-
rem 3.1g. According to the next lemma, forb.bc, usbd is continuous and strictly decreasing and
usbd,−1/2q, which equals the mean energy forb,bc. It follows that asb increases throughbc,

usbd is discontinuous, jumping down from −1/2q to H̃sn1sbdd. This discontinuity inusbd mirrors
in a natural way the discontinuity inEb asb increases throughbc.

We use the same notationu0 for the quantity defined ins6.2d as for the quantityu0 appearing
in Fig. 1 in Sec. V because these two quantities coincide. Indeed, withu0 defined ins6.2d, we
prove in Theorem 6.2 that the largest open interval on which full equivalence of ensembles holds
is int F= s−1

2 ,u0d. This coincides with the interior of the intervalF shown in Fig. 1. As that figure
exhibits, intF is the largest open interval on whichs is strictly concave; by Theorem 5.1, that open
interval coincides with the largest open interval on which full equivalence of ensembles holds.

Lemma 6.1: ForbP fbc,`d we definen1sbd as in part sbd of Theorem 3.1 and we define

u0 =
− q2 + 3q − 3

2qsq − 1d
. s6.2d

The following conclusions hold.

sad −1
2 ,u0,−1/2q and limb→sbcd+ usbd=H̃sn1sbcdd=u0.

sbd The function mapping

b P sbc,`d ° usbd = H̃sn1sbdd = − 1
2kn1sbd,n1sbdl

is a strictly decreasing, differentiable bijection onto the intervals−1
2 ,u0d.

Proof: sad The inequalities involvingu0 follow immediately from the inequalityqù3. The

relationshipH̃sn1sbcdd=u0 is easily determined using the explicit form ofn1sbcd given in s3.5d.
That limb→sbcd+ usbd=H̃sn1sbcdd follows from the definition ofusbd and the continuity ofn1sbd
for bùbc.

sbd For wPR define

fswd = −
1

2
S f1 + sq − 1dwg2

q2 + sq − 1d f1 − wg2

q2 D .

For bP sbc,`d we use the formula forn1sbd given in partsbd of Theorem 3.1 to writeusbd
=−fswsbdd. The quantitywsbd is positive and strictly increasing, and for allw.0,

f8swd =
sq − 1dw

q
. 0.

As the composition of two strictly increasing functions, forbP sbc,`d, −usbd is strictly increasing
and thususbd is strictly decreasing. In addition, since limb→` wsbd=1 fTheorem 3.1sadg, we have
limb→` usbd=−1

2, and by partsad of this lemma

lim
b→sbcd+

usbd = H̃snsbcdd = u0.

It follows that the function mappingbP sbc,`d°usbd is a strictly decreasing, differentiable
bijection onto the intervals−1

2 ,u0d. This completes the proof of partsbd. j

Mapping properties ofusbd play an important role in the next theorem, in which we prove that
the setsF, P, and N defined in s6.3d correspond to full equivalence, partial equivalence, and
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nonequivalence of ensembles. ForuPF we consider three subcases in order to indicate the value
of b for whichEu=Eb; for uP int F= s−1

2 ,u0d, b andu are related byb=s8sud andu=usbd. Partscd
shows an interesting degeneracy in the equivalence-of-ensemble picture, the setEu for u
=−1/2q corresponding to allEb for b,bc. This is related to the fact that for all such values ofb,
Eb=hrj and thus the mean energyusbd equals −1/2q.

Theorem 6.2:We define ssud in s4.2d, usbd in s6.1d, Eb in s2.3d, andEu in s2.4d. We also define
bc in s3.1d and u0 in s6.2d. The sets

F = s− 1
2,u0d ø H−

1

2q
J, P = hu0j, andN = Su0,−

1

2q
D s6.3d

have the following properties.
sad Full equivalence onint F: For uP int F= s−1

2 ,u0d, there exists a uniquebP sbc,`d such

that Eu=Eb; b satisfies usbd=H̃sn1sbdd=u.
sbd For uP int F= s−1

2 ,u0d, s is differentiable. The values u andb for whichEu=Eb in part sad
are also related by the thermodynamic formula s8sud=b.

scd Full equivalence at−1/2q: For u=−s1/2qdPF, E−1/2q=Eb for any b,bc.
sdd Partial equivalence on P: For uP P=hu0j, Eu0,Ebc

but Eu0ÞEbc
. In fact, Ebc

=Eu0øE−1/2q.
sed Nonequivalence on N: For any uPN=su0,−1/2qd, EuùEb=x for all bPR.
In reference to the properties ofs given in partsbd, one can show that the function mapping

uP s−1
2 ,u0d°s8sud is a strictly decreasing, differentiable bijection onto the intervalsbc,`d and

that this bijection is the inverse of the bijection mappingbP sbc,`d°usbd.
Before we prove the theorem, it is instructive to compare its assertions with those in Theorem

5.1, which formulates ensemble equivalence and nonequivalence in terms of support properties of
s. These support properties can be seen in the schematic plot of the the graph ofs in Fig. 1. We
start with partsad of Theorem 6.2, which states that for anyuP int F= s−1

2 ,u0d there exists a unique
bP sbc,`d such thatEu=Eb. As promised in partsadsid of Theorem 5.1, thisb is the slope of a
strictly supporting line to the graph ofs at u, and sos is strictly concave on intF. The situation
that holds whenu=−1/2q fTheorem 6.2scdg is also consistent with partsadsid of Theorem 5.1. For
this value ofu, which is the isolated point of the setF of full equivalence, there exist infinitely
many strictly supporting lines to the graph ofs, the possible slopes of which are allb
P s−` ,bcd. On the other hand, whenu=u0, which is the only value lying in the setP of partial
equivalence, we haveEu0,Ebc

but Eu0ÞEbc
fTheorem 6.2sddg. In combination with partsadsii d of

Theorem 5.1, it follows that there exists a nonstrictly supporting line atu0 with slopebc and that
s is concave atu0 but not strictly concave. Finally, foruPN=su0,−1/2qd, we haveEuùEb=x for
all bPR fTheorem 6.2sedg. In accordance with partsadsiii d of Theorem 5.1,s has no supporting
line at anyuPN, and by Theorem A.4 in Ref. 10s is not concave at anyuPN.

Proof of Theorem 6.2:sad For b.bc part sbd of Theorem 3.1 and partsbd of Theorem 5.1
imply that

Eb = hn1sbd, . . . ,n qsbdj = ø
uPH̃sEbd

Eu.

The symmetry ofH̃ with respect to permutations implies thatH̃sEbd=hH̃sn1sbddj. Thus for any
b.bc

Eb = EH̃sn1sbdd. s6.4d

Since for anyuP int F= s−1
2 ,u0d there exists a uniquebP sbc,`d satisfyingusbd=H̃sn1sbdd=u

fLemma 6.1sbdg, it follows thatEu=Eb.
sbd The differentiability ofs on intF is proved in partsbd of Theorem 6.3, which depends only

on partsad of the present theorem. By partsad of the present theorem and partsad of Theorem 5.1,
s has a strictly supporting line at eachuP int F. It follows thats is strictly concave on intF and
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thus concave on intF fRef. 10, Lemma 4.1sadg; i.e., ssud=s** sud for all uP int F. The differentia-
bility of s on intF fTheorem 6.3sbdg combined with partsad of Theorem A.3 in Ref. 10 implies that
s8sud=b.

scd By s4.6d and partsbd of Theorem 3.1,

E−1/2q = hrj = Eb for any b , bc. s6.5d

sdd By part sbd of Theorem 3.1, symmetry, and partsad of Lemma 6.1,

H̃sEbc
d = hH̃srd,H̃sn1sbcddj = H−

1

2q
,u0J .

Hence bys6.4d and s6.5d,

Ebc
= ø

uPH̃sEbc
d
Eu = E−1/2q ø Eu0 = hrj ø Eu0.

However,r¹Eu0 sincer does not satisfy the constraintH̃srd=u0. It follows thatEu0,Ebc
but that

Eu0ÞEbc
.

sed If uPN, then u¹ s−1
2 ,u0d, and so by partsbd of Lemma 6.1uÞ H̃sn1sbdd for any b

P sbc,`d. Since bys6.4d Eb=EH̃sn1sbdd for all b.bc, it follows that for all b.bc,

Eu ù EH̃sn1sbdd = x

and thus thatEuùEb=x. For anyb,bc s6.5d states thatEb=E−1/2q=hrj. SinceuPN, we have
uÞ−1/2q and thusE−1/2qùEu=x. It follows that EuùEb=x for any b,bc. Finally, for b=bc

part sbd of Theorem 3.1 states thatEbc
=hr ,n1sbcd , . . . ,n qsbcdj. However, since H̃srd

=−s1/2qd¹N and H̃sn isbcdd=u0¹N, none of the vectors inEbc
satisfies the constraintH̃snd=u.

ThusEuùEbc
=x. We have provedEuùEb=x for all bPR. The proof of the theorem is com-

plete. j

We end this section by showing that for arbitraryqù4 andu in the equivalence setsFø P
= s−1

2 ,u0gø h−1/2qj the formulas forEu andssud given in partsdd of Theorem 4.2 and partscd of
Theorem 4.3 are rigorously true. Our strategy is to use the equivalence of the microcanonical and
canonical ensembles foruPFø P and the fact that the form ofEb is known exactly for allb.
Thus, we translate the form ofnPEb, as given in partsbd of Theorem 3.1, into the form ofn
PEu for uPFø P. For bP fbc,`d, the lastq−1 components ofn1sbdPEb are given by

n j
1sbd =

1 − wsbd
q

, s6.6d

and these components are not equal to the first component. Since for eachuPFø P there exists
bP fbc,`g such that eitherEu=Eb or Eu,Eb, it follows that modulo permutations allnPEu have
their lastq−1 components equal to each other. That is, modulo permutations there exist numbers
a andb in f0, 1g such thatn=sa,b, . . . ,bd. The possible values ofa andb are easily determined by
considering the constraints satisfied bynPEu. These constraints are

a + sq − 1db = 1 anda2 + sq − 1db2 = − 2u.

The two solutions of these equations are

a1 =
1 −Îsq − 1ds− 2qu− 1d

q
, b1 =

q − 1 +Îsq − 1ds− 2qu− 1d
sq − 1dq

and
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a2 =
1 +Îsq − 1ds− 2qu− 1d

q
, b2 =

q − 1 −Îsq − 1ds− 2qu− 1d
sq − 1dq

.

Of the two valuesb1 andb2, only b2 has the form given ins6.6d with

wsbd =
Îsq − 1ds− 2qu− 1d

q − 1
P f0,1g.

We conclude that modulo permutations eachnPEu has the formsa2,b2, . . . ,b2d, in which the last
q−1 components all equalb2. This coincides with the formula form1sud given in partsdd of
Theorem 4.2, which in turn gives the explicit formula forssud in part scd of Theorem 4.3. This
information is summarized in partsad of the next theorem. The differentiability ofs on intF,
which is stated in partsbd, is an immediate consequence of the explicit formula forssud.

Theorem 6.3:We define u0 in s6.2d. The following conclusions hold.
sad For arbitrary qù4 and u in the equivalence sets Fø P= s−1

2 ,u0gø h−1/2qj the formulas
for Eu and ssud given in partsdd of Theorem4.2 and partscd of Theorem4.3 are rigorously true.

sbd For arbitrary qù4, s is differentiable on the intervalint F= s−1
2 ,u0d and s8sud is given by

s5.1d.
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APPENDIX A: TWO RELATED MAXIMIZATION PROBLEMS

Theorem A.1 is a new result on the maximum points of certain functions related by convex
duality. It is formulated for a finite, differentiable, convex functionF on Rs and its Legendre–
Fenchel transform,

F*szd = sup
xPRs

hkx,zl − Fsxdj.

The domain ofF* is the set domF* =hzPRs :F*szd,`j. With only minor changes in notation the
theorem is also valid for a finite, Gateaux-differentiable, convex function on a Hilbert space.

Theorem A.1 will be applied in Appendix B to prove that forb.0, Eb has the form given in
part sbd of Theorem 3.1. Another application of Theorem A.1 is given in Proposition 3.4 in Ref.
17. It is used there to determine the form of the set of canonical equilibrium macrostates for
another important spin system known as the mean-field Blume–Emery–Griffiths model.

Theorem A.1: Let s be a positive integer and F a finite, differentiable, convex function
mappingRs into R. Assume thatsupzPRshFszd− 1

2izi2j,` and that Fszd− 1
2izi2 attains its supre-

mum. The following conclusions hold:

sad supzPRshFszd− 1
2izi2j=supzPdom F*h 1

2izi2−F*szdj.
sbd 1

2izi2−F*szd attains its supremum ondomF* ,
scd the global maximum points of Fszd− 1

2izi2 coincide with the global maximum points of
1
2izi2−F*szd.

Proof: We define the subdifferential ofF* at z0PRs by

]F*sz0d = hy P Rs:F*szd ù F*sz0d + ky,z− z0l for all zP Rsj.

We also define the domain of]F* to be the set ofz0PRs for which ]F*sz0dÞx. The proof of the
theorem uses three properties of Legendre–Fenchel transformsssee Ref. 43 for backgroundd.
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s1d F* is a convex, lower semicontinuous function mappingRs into Rø h`j, and for all z
PRs, F** szd=sF*d*szd equalsFszd fRef. 14, Theorem VI.5.3sad,sedg.

s2d If for some z0PRs and zPRs we havez= ¹Fsz0d, then Fsz0d+F*szd=kz0,zl fRef. 14,
Theorems VI.3.5sdd and VI.5.3scdg, and so zPdomF* . In particular, if z=z0, then z0
PdomF* andFsz0d+F*sz0d=iz0i2.

s3d For z0PdomF* and yP]F*sz0d we have Fsyd+F*sz0d=ky,z0l fRef. 14, Theorem
VI.5.3scd,sddg. In particular, ify=z0, thenFsz0d+F*sz0d=iz0i2.

We first prove partsad, which is a special case of Theorem C.1 in Ref. 13. LetM
=supzPRshFszd−izi2/2j. Since for anyzPdomF* andx in Rs,

F*szd + M ù kx,zl − Fsxd + M ù kx,zl − ixi2/2,

we have

F*szd + M ù sup
xPRs

hkx,zl − ixi2/2j = izi2/2.

It follows that M ù izi2/2−F*szd and thus thatM ùsupzPdom F*hizi2/2−F*szdj. To prove the re-
verse inequality, letN=supzPdom F*hizi2/2−F*szdj. Then for anyzPRs andxPdomF*

izi2/2 + N ù kx,zl − ixi2/2 + N ù kx,zl − F*sxd.

SinceF*sxd=` for x¹domF* , it follows from property 1 that

izi2/2 + N ù sup
xPdom F*

hkx,zl − F*sxdj = Fszd

and thus thatNùsupzPRshFszd−izi2/2j.
In order to prove partssbd and scd of Theorem A.1, letz0 be any point inRs at whichFszd

− 1
2izi2 attains its supremum. Thenz0= ¹Fsz0d, and so by the last line of propertys2d, z0

PdomF* andFsz0d+F*sz0d=iz0i2. Partsad now implies that

sup
zPRs

hFszd − 1
2izi2j = Fsz0d − 1

2iz0i2 = 1
2iz0i2 − F*sz0d = sup

zPdom F*
h 1

2izi2 − F*szdj .

We conclude that12izi2−F*szd attains its supremum on domF* at z0. Not only have we proved part
sbd, but also we have proved half of partscd; namely, any global maximizer ofFszd− 1

2izi2 is a
global maximizer of12izi2−F*szd.

Now let z0 be any point at which1
2izi2−F*szd attains its supremum. Then for anyzPRs

1
2kz0,z0l − F*sz0d ù

1
2kz,zl − F*szd.

It follows that for anyzPRs,

F*szd ù F*sz0d + 1
2skz,zl − kz0,z0ld ù F*sz0d + kz0,z− z0l

and thus thatz0P]F*sz0d. By the last line of propertys3d this implies thatFsz0d+F*sz0d=iz0i2. In
conjunction with partsad this in turn implies that

sup
zPdom F*

h 1
2izi2 − F*szdj = 1

2iz0i2 − F*sz0d = Fsz0d − 1
2iz0i2 = sup

zPRs
hFszd − 1

2izi2j .

We conclude thatFszd− 1
2izi2 attains its supremum atz0. This completes the proof of the theo-

rem. j

APPENDIX B: FORM OF Eb

We first derive the form ofEb for b.0 as given in partsbd of Theorem 3.1. We then prove
that Eb=hrj for all bø0.
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Eb is defined as the set ofnPP that minimize Rsn urd−sb /2dkn ,nl. Since b.0, this is
equivalent to

Eb = Hn P P:n maximizes
1

2
kn,nl −

1

b
RsnurdJ . sB1d

This maximization problem has the form of the right-hand side of partsad of Theorem A.1; viz.,

sup
nPP

H1

2
kn,nl −

1

b
RsnurdJ = sup

nPdom F*
H1

2
ini2 − F*sndJ

with F*snd=s1/bdRsn urd.
In order to determine the functionF having this Legendre–Fenchel transform, forzPRq we

define the finite, differentiable, convex function

Gszd = logSo
i=1

q

ezi
1

q
D sB2d

and setGbszd=s1/bdGsbzd. Since fornPRq sRef. 14, Theorem VIII.2.2d,

G*snd = HRsnurd for n P P,

` otherwise,
J

it follows that for nPRq,

sGbd*snd = sup
zPRq

Hkz,nl −
1

b
GsbzdJ =

1

b
G*snd = 5 1

b
Rsnurd for n P P,

` otherwise.
6

ThusFszd=s1/bdGsbzd. By part sad of Theorem A.1,

sup
zPRq

H 1

b
Gsbzd −

1

2
izi2J = sup

nPP
H1

2
kn,nl −

1

b
RsnurdJ ,

and by part sbd of the theorem the global maximum points ofGsbzd− 1
2izi2 and 1

2kn ,nl
−s1/bdRsn urd coincide.

EquationsB1d now implies that

Eb = HzP Rq:z maximizes
1

b
Gsbzd −

1

2
izi2J = HzP Rq:z minimizes

b

2
izi2 − GsbzdJ .

We summarize this discussion in the following corollary. Partsbd of the corollary is proved in part
sbd of Theorem 2.1 in Ref. 19.

Corollary B.1: We define the finite, convex, continuous functionG in sB2d. The following
conclusions hold.

sad Eb coincides with the set of global minimum points of

Gbszd =
b

2
izi2 − log o

i=1

q

ebzi =
b

2
izi2 − Gsbzd − log q.

sbd For 0,b,bc, b=bc, andb.bc the set of global minimum points of Gb has the form given
by the right-hand side ofs3.4d fTheorem3.1sbdg.
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Corollary B.1 completes the proof of Theorem 3.1. Kiessling’s proof of this corollary based on
Lagrange multipliers is given in Appendix B of Ref. 20. Continuous analogues of the corollary are
mentioned in Refs. 32, 33, and 38, but are not proved there.

We now show that for allbø0, Eb=hrj. This is obvious forb=0 sincen=r is the unique
vector inP that minimizesRsn urd. Our goal is to prove that forb,0, n=r is also the unique
vector in P that minimizesRsn urd−sb /2dkn ,nl. Let n̄ be a point inP at which Rsn urd−sb /2d
3kn ,nl attains its infimum. For anyi =1,2, . . . ,q,

]SRsnurd −
b

2
kn,nlD

]ni
= log ni + 1 −bni ,

which is negative for all sufficiently smallni .0. It follows that n̄ does not lie on the relative
boundary ofP; i.e., n̄ j .0 for all i =1,2, . . . ,q. We complete the proof by showing that for any
1ø j ,køq, n̄ j = n̄k. Sincer is the only point inP satisfying these equalities, we will be done.

Given aP s0,1d, we consider the reduced two-variable problem of minimizingRsn urd
−sb /2dkn ,nl overn j .0 andnk.0 under the constraintn j +nk=a; all the other componentsni are
fixed and equaln̄i. Settingnk=a−n j, we define

Fsn jd = Rsnurd −
b

2
kn,nl.

Differentiating with respect ton j shows that any global minimizern j must satisfy

F8sn jd = log n j − logsa − n jd − bs2n j − ad = 0.

Since

F9sn jd =
1

n j
+

1

a − n j
− 2b . 0,

F8sn jd is strictly increasing from negative values for alln j near 0 to positive values for alln j near
a. It follows that the only root ofF8sn jd=0 is n j =a/2 and thus thatnk=a/2=n j. Being a global
minimizer ofRsn urd−sb /2dkn ,nl overP, n̄ is also a global minimizer of the reduced two-variable
problem. SinceaP s0,1d is arbitrary, it follows that for any distinct pair of indicesn̄ j = n̄k. This
completes the proof.
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The general non-degeneratep-adic operators of ultrametric diffusion are intro-
duced. Bases of eigenvectors for the introduced operators are constructed and the
corresponding eigenvalues are computed. The long-time relaxation behavior of the
ultrametric diffusion generated by the introduced operators are investigated. ©
2005 American Institute of Physics.fDOI: 10.1063/1.1858447g

I. INTRODUCTION

Ultrametric diffusionsswhich are generated by ultrametric pseudodifferential operatorsd have
important applications to models of complex systems. For example, in the papers of Refs. 1 and 2
it was shown that the Parisi matrix in the theory of spin glasses is related to ap-adic pseudodif-
ferential operator. Ultrametric diffusion models were investigated in relation with models of re-
laxation in complex systems, see for instance.3,4 In the recent works,1,5,6 p-adic models of ultra-
metric diffusion has been discussed in connection with description of protein dynamics and
characteristic types of relaxation in complex systems. In these papers the equivalence of the
basin-to-basin kinetics approach, which describes relaxation in complex systems, and ultrametric
diffusion models was mentioned. The mathematical theory of ultrametric diffusion was investi-
gated in Refs. 7–9. Applications to biological models was discussed in Ref. 10. All of the above
motivates the investigation of more general ultrametric pseudodifferential operators and more
general models of ultrametric diffusion. In the paper of Ref. 11 a wide class ofp-adic pseudo-
differential operators was constructed and investigated with the help of basis ofp-adic wavelets,
constructed in Ref. 12. In the present paper we construct an even more general class ofp-adic
pseudodifferential operators.

The structure of the present paper is as follows.
In Sec. II we discuss the basin-to-basin kinetics models from the point of view of ultrametric

diffusion theory.
In Sec. III we discuss different classes ofp-adic models of ultrametric diffusion.
In Sec. IV we discuss the operators, investigated in Ref. 11 and give a new parametrization for

kernels of such operators.
In Sec. V we introduce a new family ofp-adic models of ultrametric diffusion, build the

eigenbases for their generators, and compute the corresponding eigenvalues.
In Sec. VI we investigate the properties of ultrametric diffusion, generated by the constructed

operators.

II. RELATION TO BASIN-TO-BASIN KINETICS

Ultrametric diffusion models are naturally related to the basin-to-basin kinetics approach
proposed a rather long time ago. This relation was mentioned in the paper of Ref. 5 Here we
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reproduce this discussion in more details in order to use it to introduce new classes of integration
kernels for operators of ultrametric diffusion. The basin-to-basin kinetics approach was widely
used in a computer study of the dynamics constrained by rough multidimensional energy
landscapes.13–16 In this approach, the kinetics of a complex system is approximated using separa-
tion of the space of states of the system into basins and separation of the corresponding time scales
of transitions between the basins. The basin-to-basin kinetics approach can be outlined as follows.
Let us consider a system that is described by a particle performing random walk in a rough energy
landscape. The system is supposed to be arriving to the nearest quasiequilibrium statesthe nearest
local minimum on the energy landscaped from any initial state in the time, which is much smaller
compared to the lifetime of this quasiequilibrium state. Therefore, we will reduce our consider-
ation to the set of local minima of the energy landscape. Further, we assume that the set of local
minima can be represented as a union of hierarchically nested subsets. These subsets we will call
the basins of minima. Each of the basins is a union of the nonoverlapping basins of the smaller
sizessubbasinsd, each of these smaller basins is a union of the still smaller ones, etc. Moreover, we
assume that the larger basins are separated by the higher activation barriers, and the smaller
sub-basins are separated by the lower barriers, i.e., if the basinA is a sub-basin of the basinB, then
the activation barriers between the maximal sub-basins ofA is smaller than the activation barriers
between the maximal sub-basins ofB. The basin hierarchy corresponds to the hierarchy of the
configuration rearrangements, and the hierarchy of the activation barriers corresponds to the hier-
archy of characteristic times of these rearrangements.

More definitely, a basin-to-basin approximation of kinetics of a system with a rough energy
landscape reduces to the following.

sId In the basin-to-basin approximation, the space of states is divided into basins, each basin is
divided into sub-basins in hierarchical way, and so on.

sII d The rate of transition probability between two states in the different basins depends only on
the basins and does not depend on the states themselves.

Thus, the basin-to-basin kinetics can be understood as a diffusionsmore definitely, as a jump
processd in the ultrametric space.1,5,6 In this language the propertysId corresponds to ultrametricity
of the space of states, and the propertysII d takes the form of local constancy of the rate of
transition probability.

The multidimensional energy surface can be represented by a tree—a “skeleton” of a hierar-
chical landscape14–17 sFig. 1d. This tree reflects the hierarchy of nestings and it is directedsi.e., it
is a tree with a partial orderd. The vertices of the tree correspond to the basins, the partial order
describes the ordering of the basinssi.e., the vertexA is larger thanB if the corresponding basin
A contains the basinBd. The local minima of the landscapes correspond to minimal vertices with

FIG. 1. A hierarchy of basins and activation barriers in the basin-to-basin kinetic approach. For an explanation of the
notations see the text.
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respect to the introduced ordering. In the general case for a finite or an infinite tree, the set of local
minima will be described by the absolute of the tree. The absolute of any tree has a natural
structure of ultrametric space. Therefore a description of a rough energy landscape in terms of
hierarchically nested basins is equivalent to the introduction of the ultrametric space of states.

The transition probabilityTxy between the statesy andx is determined by the position of the
vertexUsy uxd in which the tree branches into the paths going to the pointsx and y, and by the
energiesEsxd andEsyd of the statesx andy sFig. 1d. In particular, if all the local minima have the
same energy, thenTxy is determined only by the vertexUsy uxd, i.e., the transition probabilities has
the property of permutation symmetryTxy=Tyx.

III. p-ADIC MODELS OF ULTRAMETRIC DIFFUSION

The well-known example of an ultrametric space is the field ofp-adic numbersQp. In the
works of Refs. 1, 5, and 6,p-adic description of ultrametric diffusion is introduced in the follow-
ing way. The system states are parametrized by thep-adic coordinatex, a basin of states corre-
sponds to thep-adic diskBgsad sFig. 1d. The p-adic diskBgsad, is a set of allp-adic numbers
hx: ux−aupøpgj, for which thep-adic distance from the disk centerasa[Qpd is less than or equal
to the radiuspg, whereg is an integersg[Zd. The parametersg anda distinguish thep-adic disks
Bgsad.

To describe the system evolution we introduce the probability distribution functionfsx,td that
depends on thep-adic coordinatex and the real timet: the integral,

E
B

fsx,tddmsxd

fdmsxd is the Haar measure onQp sRef. 7d, is the probability of finding the system in the setB at
time t.

The evolution of the functionfsx,td is described by the equation

] fsx,td
]t

= −E
Qp

(Tyxfsx,td − Txyfsy,td)dmsyd. s1d

This is the master equation for ultrametric diffusion, and the linear integral operator on the rhs of
s1d;

Tfsxd =E
Qp

(Tyxfsxd − Txyfsyd)dmsyd s2d

is called the operator of ultrametric diffusion.
The non-negative kernelTxy is equal to the rate of transition from the statey to the state

xsTxy:Qp3Qp°R+d. We consider the kernelsTxy, which are locally constant outside any vicinity
of x=y. The complex-valued functiongsxd, defined onQp, is called locally constant, if

∀x [ Qp, ∃ g [ Z, ∀ z[ Qp:uzup ø pg ⇒ gsx + zd = gsxd.

In the simplest case the operators of ultrametric diffusion can be introduced by the kernelsTxy
0

satisfying the following conditions:
sid

for fixed y, ∀ x,z[ Qp:uzup ø ux − yup ⇒ Tsx+zdy
0 = Txy

0 ,

for fixed x, ∀ y,z[ Qp:uzup ø ux − yup ⇒ Txsy+zd
0 = Txy

0 ; s3d

sii d
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Txy
0 = Tyx

0 ,

i.e., the kernelTxy
0 is symmetricsand the corresponding operator is Hermitian, sinceTxy

0 is a
real-valued functiond;

siii d

∀a [ Qp, Txy
0 = Tx−ay−a

0 ,

i.e., the kernelTxy
0 has the property of translation invariance.

In the following we will denote byT0 the operator of ultrametric diffusion, and byTxy
0 the

corresponding kernel. The general form of the kernelsTxy
0 is given by the series

Txy
0 = o

g=−`

`

Tsgddpg,ux − yup
, s4d

whered is the Kronecker delta. The kernelsT0 can be equivalently described by the functions
dependent only onp-adic norm of the difference ofx andy: Tx,y

0 =rsux−yupd. The coefficientsTsgd

of the seriess4d and the functionrsux−yupd are connected by the relationTsgd=rspgd.
The propertiessid–siii d allow us to use thep-adic Fourier transformation to compute the

eigenvalues of the operator. If the seriesog=0
` pgTsgd converges, the eigenvalues of the operatorT0

are determined by the expression7

lg
0 = pgTsgd + s1 − p−1d o

g8=g+1

pg8Tsg8d.

Every eigenvaluelg
0 is infinitely degenerate.

The operators of the formT0 were discussed in the context ofp-adic mathematical physics.
When the kernel has the form with

Txy =
pa − 1

1 − p−1−a ux − yup
−s1+ad, a . 0,

the operatorT0 is the Vladimirov operator ofp-adic fractional derivation.7 Its eigenvalues are
given bylg=ps1−gda, g[Z. Different examples of the operatorsT0 have been recently investigated
in Ref. 6.

In the context of basin-to-basin kinetics, the operator symmetryshermiticityd property means
that all the local minima of the energy landscape have equal energy. The translation invariance of
the kernel means that the transition betweenx and y depends only on the ultrametric distance
betweenx andy.

The translationally invariant operatorsT0 are related to the Parisi matricesssee Refs. 1 and 2d
that were used in the replica approach to spin glasses.18 However, it is not very natural to assume
that the energy landscapes of many other disordered systemssfor instance, the energy landscapes
of clusters, macromolecular structures, and biopolymers, discussed, for example, in Ref. 15d are
described by the operators with translationally invariant kernels. Therefore, the ultrametric diffu-
sion operators, more general thanT0, are of great importance.

Generally, the ultrametric diffusion operatorT can be defined bys2d, where the kernel satisfies
some weaker conditions than conditionssid–siii d. In the present paper we consider translationally
noninvariantoperators of ultrametric diffusion satisfying the hermiticity property. We will exam-
ine two types of such operators,TI andTII .

A family of operators ofp-adic diffusionTI has been recently investigated in the paper.11 The
local constancy conditions for these operators are given bys3d, as well as forT0, but TI differs
from T0 by violating the conditionsiii d.

The kernelTxy
I is described by the expression
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Txy
I = o

g=−`

`

o
n[Qp/Zp

Tsg ndd1,upgx − pgyup
Vspgx − nd, s5d

where the factor groupQp/Zp is identified with a set of the fractionsog=1
k ngp−g, ng=0,… ,p−1, k

is any natural number, and the coefficientsTsgndù0. The functionVsuxupd is an indicator of the
p-adic disk,

Vsuxupd = H1, uxup ø 1,

0, uxup . 1.

It was shown that if the seriesog8=g
` pg8Tsg8nd converges, the eigenvalues of the corresponding

operator are given by

lgn
I = pgTsgnd + s1 − p−1d o

g8=g+1

`

pg8 o
n8[Qp/Zp

Tsg8n8ddn8,npg8, s6d

and, in general, arep−1 times degenerate. The eigenvaluelgn
I corresponds to the eigenvectors

wgnjsxd = p−g/2xpspg−1jxdVsupgx − nupd, s7d

where j =1,¯ ,p−1. Here the functionxpsxd=exps2pihxjpd is an additive character on the field
Qp, the symbolhxjp denotes a fractional part of thep-adic number. Recall that if the canonical
decomposition of thep-adic numberx is given by

x = pgo
m=0

`

xmpm, xm = 0,¯,p − 1, x0 Þ 0, s8d

then the fractional part of the numberx is determined by the following expression:

hxjp =H0, g ù 0,

pgsx0 + x1 + … + xugu−1p
ugu−1d, g , 0.

As shown in Ref. 12, the set of vectorss7d forms an orthonormal basis inL2sQpd, which was called
there the basis ofp-adic wavelets.

In the present paper, in Sec. IV, we propose a new general expression for the kernelTI and
show the equivalence of this expression withs5d.

In Sec. V we introduce the new type of transitionally noninvariant kernel,TII , satisfying the
weakerfcompared withs3dg condition of local constancy:

for fixed y, ∀ x, z[ Qp:uzup ø p−1ux − yup ⇒ Tsx+zdy
II = Txy

II

for fixed x, ∀ y, z[ Qp:uzup ø p−1ux − yup ⇒ Txsy+zd
II = Txy

II s9d

Note that operatorTII is more general compared toTI, but in some casesssee Sec. Vd the operators
TI andTII are identically equal, for instants whenp=2.

We introduce the kernelTII both in the functional form and in the form of a series, and we
show the equivalence of these definitions. In this section, we find the eigenfunctions of the
introduced operator, which form the basis inL2sQpd, compute the corresponding eigenvalues, and
show that the eigenvalues, in general, are nondegenerate.

In Sec. VI, we investigate the properties of ultrametric diffusion, generated by the operatorsTI

andTII . We consider the relaxation of the initially localized state. We show that the inhomogene-
ities of the landscape described by the translationally noninvariant kernelsTI and TII are not
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essential for long-time relaxation, i.e., the asymptotics for the relaxation, correspondent to kernels
Txy

0 , Txy
I , Txy

II will be the same for the cases when the corresponding kernels are naturally related in
the way described in Sec. IV.

IV. TRANSLATIONALLY NONINVARIANT OPERATORS OF ULTRAMETRIC DIFFUSION TI

In the present section we propose a new expression for the kernelTI and show that this new
expression is equivalent to the already known one. Expressions5d implies, that ifx[Bgsp−gnd and
y satisfies the conditionux−yup=pg, then the kernelTxy

I is equal toTsgnd. In this case, we can
illustrate the basin-to-basin transitions with the help of the scheme in Fig. 2. The given transition
scheme allows us to construct the expression of the operatorTI. To construct a new expression for
the kernelTxy

I , we use the following approach. The integration kernelTxy
I of the operator should

depend on the two arguments:sid on the size of the minimal disk containingx and y, which is
equal to the distanceux−yup; sii d on the argument distinguishing the disk among the other disks of
the same size. For the last purpose we fix the disk center. Since any point belonging to an
ultrametric disk is its center, we will take as the center of the minimal disk, containingx andy the
following:

hxux − yupjp

ux − yup
= 5 o

m=logpux − yup+1

logpuxup

p−mxm, uxup . ux − yup,

0, uxup ø ux − yup,

s10d

wherexm are the coefficients of the canonical decompositions8d of the p-adic numberx. There-
fore, the kernel of the operatorTI can be represented by the function

rsux − yup,hxux − yupjpd. s11d

The functions11d obviously do not have the translational invariance property. For this function the
following proposition is satisfied.

Proposition 1: The function (11) is symmetric with respect to the x°y, y°x permutation.
The function (11) satisfies the conditions (3) and (5). Moreover, any function satisfying the con-
dition (5) can be represented in the form (11). Therefore the representations of the kernel TI in the
forms (11) and (5) are equivalent, and the equivalence is given by the relation

FIG. 2. The scheme of the transitions corresponding to the operatorTI with p=3. The lines of different thickness
correspond to the different transition probabilitiesTsgnd between thep-adic disks, which are marked by the circles.
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Tsgnd = rspg,nd, g [ Z, n [ Qp/Zp. s12d

Proof: Let us prove the permutation symmetry:hyux−yupjp=hxuy−xupjp. It follows that

hxux − yupjp − hyux − yupjp = hsx − ydux − yupjp = 0.

For proving the rest of the proposition, we will show at first that any function of the forms11d
can be represented in the forms5d. Actually, for any x[Bgsp−gndsn[Qp/Zpd and anyy[Qp

satisfying the conditionux−yup=pg, we havehxux−yupjp=hnjp=n. Hence,

rsux − yup,hxux − yupjpd

= o
g=−`

`

o
n[Qp/Zp

rspg,ndd1,upgx − pgyup
Vspgx − nd.

This means that the functions11d can be represented in the form of the seriess5d with the
coefficientsTsgnd=rspg ,nd.

On the other hand, since no special restrictions are imposed on the functions11d, then for all
g[Z andn[Qp/Zp we can putrspg ,nd=Tsgnd. Therefore the representations of the kernelTI in
the formss11d and s5d are equivalent, and the equivalence is given bys12d.

From the equivalence, it follows that the functionss11d and s5d have the same properties. In
particular, the functions11d satisfies the conditions3d. h

V. TRANSLATIONALLY NONINVARIANT OPERATORS OF ULTRAMETRIC DIFFUSION TII

AND THE BASIS OF GENERALIZED p-ADIC WAVELETS

Define the family of the operators of ultrametric diffusionTII , with locally constant kernels of
the most general form

Txy
II = o

g=−`

`

o
n[Qp/Zp

o
j ,k=0
kÞ j

p−1

TsgnjkdVspupgx − n − j updVspupgy − n − kupd, s13d

whereTsgnjkd=Tsgnkjdù0.
Theorem 2:The function of the form (13) is symmetric with respect to permutation of the

arguments, positive, and satisfies the condition (9).
Moreover, an arbitrary positive symmetric function satisfying (9) can be represented in the

form (13).
Proof: The positivity ofTxy

II is obvious. Permutation symmetry is obvious.
Prove thatTxy

II given bys13d satisfiess9d. This property is easy to check for any product of two
indicator functions ins13d. By linearity, this proves thatTxy

II satisfy s9d.
Vice versa, it is easy to see that the kernels13d for x, y lying in the disks with the center in

p−gsn+ jd andp−gsn+kd correspondingly and the radiuspg−1, takes the valueTsgnjkd.
Since all the spacex,y[Qp3Qp is the disjoint union of such subsets, therefore, taking an

arbitrary positive and symmetric with respect toj , k coefficientsTsgnjkd, we are able to construct an
arbitrary symmetric positive kernel satisfyings9d. h

The kernelTII can be equivalently described in the functional form.
Proposition 3:The function,

rsux − yup,hxux − yupjp, hxp−1ux − yupjp, hyp−1ux − yupjpd, s14d

satisfies the condition (9). Moreover, any function satisfying the condition (9) can be represented
in the form (14).

Under condition of symmetry of the function (14) with respect to permutation of x and y, the
kernel TII can be equivalently represented in the forms (14) and (13), and the equivalence is given
by the relation
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Tsgnjkd = r„pg,n,p−1sn + jd,p−1sn + kd…. s15d

Proof: Let us show first that any function of the forms14d can be represented in the forms13d.
Actually, any x and y lying in the disks of the radiuspg−1 with the centers inp−gn+p−g j and
p−gn+p−gk sn[Qp/Zp, j , k=0,… ,p−1 and j Þkd can be represented in the form

x = p−gsn + j + pzxd, uzxup ø 1,

y = p−gsn + k + pzyd, uzyup ø 1.

When it follows that atj Þk, ux−yup=pg, hxux−yupjp=n and

hxp−1ux − yupjp = hp−1sn + jd + zxjp = p−1sn + jd,

hyp−1ux − yupjp = hp−1sn + kd + zyjp = p−1sn + kd.

Hence,

rsux − yup,hxux − yupjp,hxp−1ux − yupjp,hyp−1ux − yupjpd

= o
g=−`

`

o
n[Qp/Zp

r(pg,n,p−1sn + jd,p−1sn + kd)Vspupgx − n − j updVspupgy − n − kupd.

Thus, the functions14d can be represented in the form of the seriess13d, whose coefficients are
determined bys15d.

On the other hand, since no restrictionssexcept for permutation symmetryd are imposed on the
function of the types14d, then for all g[Z and n[Qp/Zp, j , k=0,… ,p−1s j Þkd we can put
r(pg ,n,p−1sn+ jd ,p−1sn+kd) to be equal toTsgnjkd. Therefore the representations of the kernel in
the formss14d and s13d are equivalent.

Moreover, for the functions14d and the seriess13d, respectively, the condition of symmetry
with respect to permutation ofx andy in s14d and of the symmetry of the coefficientsTsgnjkd with
respect of permutation ofj andk, are equivalent.

From this equivalence, it follows that the functions14d satisfies the conditions9d, and any
function satisfying the conditions9d can be represented in the forms14d. h

Proposition 4: If Tsgnjkd in (13) does not depend on j and k, then the operator TII reduces to
TI.

Proof: Consider the kernelTxy
II under the condition thatTsgnjkd is independent onj andk:

Txy
II = o

g,n
Tsgndo

j=0

p−1

Vspupgx − n − j upd o
k=0
kÞ j

p−1

Vspupgy − n − kupd. s16d

Using the formula

Vsupgx − nupd = Vsp−gux − p−gnupd = o
j=0

p−1

Vsp−g+1ux − p−gn − p−g j upd = o
j=0

p−1

Vspup−gx − n − j upd,

s17d

as well as the property of indicators of the disks

Vsux − aupdVsuy − aupd = Vsux − aupdVsux − yupd,

for the sum onj andk in s16d we have

063302-8 Kozyrev et al. J. Math. Phys. 46, 063302 ~2005!

                                                                                                                                    



o
j=0

p−1

Vspupgx − n − j upd o
k=0
kÞ j

p−1

Vspupgy − n − kupd

=o
j=0

p−1

Vspupgx − n − j upd„Vsupgy − nupd − Vspupgy − n − j upd…

= Vsupgx − nupdsVsupgy − nupd − Vspupgy − pgxupd…

= Vsupgx − nupd„Vsupgy − pgxupd − Vspupgy − pgxupd…

= Vsupgx − nupdd1,upgx − pgyup
.

h

Note that the operatorsTI and TII are identically equal forp=2. Actually, in this case the
expressions13d contains onlyTsgn01d and Tsgn10d. Since Tsgn01d=Tsgn10d, from Proposition 4 it
follows thatTxy

I =Txy
II .

Unlike for the operatorTI, the kernel of the operatorTII formally depends on a couple of
additional functions:hxp−1ux−yupjp andhyp−1ux−yupjp. We will explain the meaning of these func-
tions. Consider the transition between the statesx and y ssee Fig. 3d. The probability forx°y
transition depends on a relative position of the basins between which the transition is carried out.
Let x andy belong to the basin described by thep-adic diskBgsad of the radiuspg= ux−yup with
the center ina=hxpgjpp

−g. Then the radii of the disksBg−1sbd and Bg−1scd, between which the
transition is carried out, are equal top−1ux−yup, and the disk centers are determined by the
functionsb=hxpg−1jpp

−g+1, c=hypg−1jpp
−g+1.

Now we will construct the basis of eigenfunctions of the operatorTII .
Consider thep3p matrix sW sgnddls with matrix elements equal to −Tsgnjkd for j Þk and equal

to o k=0
kÞl

p−1
Tsgnkld for the diagonal elements:

W ls
sgnd = dslo

k=0
kÞl

p−1

Tsgnlkd − s1 − dsldTsgnlsd. s18d

It is easy to see thatW sgnd is a real symmetricp3p matrix. Moreover, the matrix is positive.
Lemma 5:The matrixW sgnd defined by (18) is positive.

FIG. 3. The scheme of the transitions corresponding to the operatorTII with p=3.
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Proof: Compute the Hermitian formfwe omit thesgnd indexg

kz,Wzl = o
s=0

p−1

uzsu2o
l=0
lÞs

p−1

Wsl − o
s=0

p−1

o
l=0
lÞs

p−1

zs
*zlWsl = o

s=0

p−1

o
l=0
lÞs

p−1

Wslsuzsu2 − zs
*zld.

Combining the terms containingWsl andWls and using the fact thatTslsd is a real symmetric matrix
with non-negative entries, we obtain, for the combination of the terms

Tslsuzsu2 + uzlu2 − zs
*zl − zl

*zsd ù 0,

which proves the positivity and finishes the proof of the lemma. h

The matrix W sgnd has p non-negative eigenvalues. Let us assume that thej th s j =1,… ,p
−1d eigenvector has the coordinateshgnj

k , k=0,… ,p−1 and corresponds to the eigenvaluel j
sgnd:

o
k=0

p−1

Wlk
sgndhgnj

k = l j
sgndhgnj

l .

It is easy to see that the matrixW sgnd has the zero eigenvalue, which corresponds to the eigen-
vector with equal matrix elements:hgn0

k =p−1/2 for all k=0,… ,p−1. Since eigenvectors are ortho-
normal we have

o
k=0

p−1

hgnj
*k hgnj8

k = d j j 8, j , j8 = 0,…,p − 1. s19d

Consider the functioncgnjsxd of the form

cgnjsxd = ps1−gd/2o
k=0

p−1

hgnj
k Vspupgx − n − kupd,

g [ Z, n [ Qp/Zp, j = 1,…,p − 1. s20d

Note that cgnjsxd is a locally constant function, constant on disks of the radiuspg−1 and
cgnjsxd[L2sQpd. The functionscgnjsxd we will call the generalizedp-adic wavelets.

For further computations we use the following identity:

Vspupgx − n − kupdVspupg8x − n8 − l upd = dpg8−gsn+kd,n8+lusg8 − gdVspupgx − n − kupd + dn+k,pg−g8sn8+ld

3„1 − usg8 − gd…Vspupg8x − n8 − l upd, s21d

where

usgd = H1, g . 0,

0, g ø 0,

anddpg8−gsn+kd,n8+l is the Kronecker symbol on the groupQp/pZp:

V„upg8−gsn + kd − sn8 + ldup… = dpg8−gsn+kd,n8+l, for g8 ù g.

Theorem 6:The set of functionshcgnjsxdj, g[Z, n[Qp/Zp, j =1,… ,p−1 is an orthonormal
basis in L2sQpd.

Proof: Consider the scalar product
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psg−1d/2psg8−1d/2kcgnj,cg8n8 j8l =E
Qp

o
s=0

p−1

hgnj
*s Vspupgx − n − supdo

l=0

p−1

hg8n8 j8
l

Vspupg8x − n8 − l upddmsxd.

Using s21d we compute the following:

psg−1d/2psg8−1d/2kcgnj,cg8n8 j8l = o
s=0

p−1

hgnj
*s o

l=0

p−1

hg8n8 j8
l E

Qp

sdpg8−gsn+sd,n8+lusg8 − gdVspupgx − n − supd

+ dn+s,pg−g8sn8+ld„1 − usg8 − gd…Vspupg8x − n8 − l updddmsxd

= o
s=0

p−1

hgnj
*s o

l=0

p−1

hg8n8 j8
l sdpg8−gsn+sd,n8+lusg8 − gdpg−1

+ dn+s,pg−g8sn8+ld„1 − usg8 − gd…pg8−1d .

In this expression, if the first term is nonzero andg8.g, thendpg8−gsn+sd,n8+1 does not depend on
s, and we obtain the summation ons of the formos=0

p−1hgnj
*s that is equal to zero forj .0.

In the same way, we prove that the second term does not vanish only forg8=g. This proves
that

psg−1d/2psg8−1d/2kcgnj,cg8n8 j8l = dgg8dnn8p
g−1o

s=0

p−1

hgnj
*s hgnj8

s = dgg8dnn8dgg8p
g−1ihsgnd ji2,

which implies thathcgnjj is an orthonormal system of functions.
To prove that the set of vectorshcgnjj is an orthonormal basisfis total in L2sQpdg we use the

Parseval identity. Since the set of indicatorsscharacteristic functionsd of p-adic disks is total in
L2sQpd, it is enough to check the Parseval identity for the indicatorVspupgx−n−supd. We have for
the scalar product of the indicator and the wavelet,

kVspupgx − n − supd,cg8n8 j8l = ps1−g8d/2o
l=0

p−1

hg8n8 j8
l pg−1

„dpg8−gn,n8+lusg8 − gd + dgg8dnn8dsl… .

Summing up the wavelets, we get

o
g8n8 j8

ukVspupgx − n − supd,cg8n8 j8sxdlu2

= pg−1Fo
j8

uhgnj8
s u2 + pg−1 o

g8.g;n8 j8

p1−g8o
l=0

p−1

uhg8n8 j8
l u2dpg8−gn,n8+lG . s22d

Using the normalization condition we get

o
j=1

p−1

hgnj
*s hgnj

s = 1 − p−1, s23d

which implies fors22d,

s1 − p−1dpg−1F1 + pg−1 o
g8.g

p1−g8G = s1 − p−1dpg−1s1 − p−1d−1 = pg−1,

which proves the Parseval identity.
In the next theorem we prove that the constructed in the theorem above basis is an eigenbasis

of the ultrametric diffusion operatorTII and compute the corresponding eigenvalues.
Theorem 7:Let the kernel (13) satisfy the condition of convergence of the series
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o
g.0

o
k=1

p−1

pgTsg0k0d. s24d

Then the operator (2) is a well defined operator in L2sQpd with the dense domain and the
generalized p-adic waveletscgnj are eigenvectors for the operator TII :

TIIcgnj = lgnj
II cgnj,

with the eigenvalues

lgnj
II = pg−1l j

sgnd + o
g8n8lk

lÞk

pg8−1Tsg8n8lkddpg8−gn,n8+lusg8 − gd. s25d

Proof: Consider the action of the operator on the waveletcg jn:

psg−1d/2TIIcgnjsxd = psg−1d/2E Txy
II (cgnjsxd − cgnjsyd)dmsyd

= pg8−1 o
g8n8lk

lÞk

Tsg8n8lkdVspupg8x − n8 − l updo
s=0

p−1

hgnj
s Vspupgx − n − supd

− o
g8n8lk

lÞk

Tsg8n8lkdVspupg8x − n8 − l updo
s=0

p−1

hgnj
s

3E Vspupg8y − n8 − kupdVspupgy − n − supddmsyd.

Using s21d for psg−1d/2TIIcgnjsxd, we compute the following:

o
g8n8lk

lÞk

Tsg8n8lkdo
s=0

p−1

hgnj
s fdpg8−gsn+sd,n8+lusg8 − gdpg8−1Vspupgx − n − supd

+ fdn+s,pg−g8sn8+ld − dn+s,pg−g8sn8+kdg„1 − usg8 − gd…pg8−1Vspupg8x − n8 − l upd

− dpg8−gsn+sd,n8+kusg8 − gdpg−1Vspupg8x − n8 − l updg .

We prove that the term proportional to 1−usg8−gd is equal to the following:

fdn+s,pg−g8sn8+ld − dn+s,pg−g8sn8+kdg„1 − usg8 − gd… = dgg8dnn8sdsl − dskd

and

o
s=0

p−1

hgnj
s dpg8−gsn+sd,n8+kusg8 − gd = dpg8−gn,n8+kusg8 − gdo

s=0

p−1

hgnj
s = 0,

since for j =1,… ,p−1, we haveos=0
p−1hgnj

s =0.
This implies forpsg−1d/2TIIcgnjsxd the following:
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psg−1d/2TIIcgnjsxd = F o
g8n8lk

lÞk

Tsg8n8lkddpg8−gn,n8+lusg8 − gdpg8−1Go
s=0

p−1

hgnj
s Vspupgx − n − supd

+ pg−1o
s=0

p−1

hgnj
s o

lk
lÞk

Tsgnlkdsdsl − dskdVspupgx − n − l upd.

Consider

o
s=0

p−1

hgnj
s o

lk
lÞk

Tsgnlkdsdsl − dskdVspupgx − n − l upd

=o
l=0

p−1

Vspupgx − n − l updo
s=0

p−1

Sdslo
lk

lÞk

Tsgnlkd − s1 − dsldTsgnlsdDhgnj
s

= o
l=0

p−1

Vspupgx − n − l updl j
sgndhgnj

l = psg−1d/2l j
sgndcgnjsxd.

Finally, we obtain

TIIcgnjsxd = Fpg−1l j
sgnd + o

g8n8lk
lÞk

pg8−1Tsg8n8lkddpg8−gn,n8+lusg8 − gdGcgnjsxd.

Using the condition of convergence of the seriess24d we obtain the proof of the theorem.h

VI. RELAXATION PROBLEM

Let us consider the relaxation problem formulated analogously to that in Refs. 1, 5, and 6ssee
also the references thereind. In these works, the evolution of probability distribution was described
by the equation of the forms1d with the ultrametric diffusion operator of the typeT0. The initial
distribution was taken homogeneous onZp fi.e., fsx,0d=Vsuxupdg.

Consider the relaxation function of the system,Rstd, which describes the evolution of popu-
lation of the system in the set where the initial distribution was concentrated. In the case when the
initial distribution is the characteristic function of the unit ball with the center in zero, this reduces
to

Rstd = kVsuxupd,e−TtVsuxupdl =E
Zp

fsx,tddmsxd.

It is known ssee, in particular, Refs. 1, 3, 5, 6, and 19d, for the case when the ultrametric
diffusion is generated byT0, the relaxation functionRstd takes the form

R0std = kVsuxupd,e−T0tVsuxupdl = sp − 1do
g=1

`

p−g exps− lg
0td. s26d

Let us investigate the relaxation behavior for the cases, when the ultrametric diffusion is
generated by the operatorsTI and TII . The initial distribution we will take to be equal to the
characteristic function of the disk:

fsx,0d = Vsux − aupd, uaup = pN, N ù 1 s27d

and consider the relaxation function
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RIstd = kVsux − aupd,e−TItVsux − aupdl,

andRII , defined analogously.

A. The operator TI

Find the coefficients of the decomposition of the initial conditions27d in the basis ofp-adic
waveletss7d:

Cgnj = kVsux − aupd,wgnjsxdl = wgnjsadusgd.

The solution of the Cauchy problem for the ultrametric diffusion equations1d with the operatorTI

and the initial conditions27d takes the form

f Isx,td = o
g=1

`

o
n[Qp/Zp

o
j=1

p−1

e−lgn
I twgnjsadwgnj

* sxd.

Then the relaxation functionRIstd is given by the expression

RIstd = o
g=1

`

o
n[Qp/Zp

o
j=1

p−1

e−lgn
I tuwgnjsadu2 = sp − 1do

g=1

`

o
n[Qp/Zp

p−ge−lgn
I tVsupga − nupd.

Taking into account thatuaup=pN andNù1, let us divide the series into the two parts: forgøN
and forg.N. For the second part the values of all the indicators are equal to one only ifn=0;
otherwise they are equal to zero. Hence, for the relaxation functionRIstd we get

RIstd = sp − 1do
g=1

N

p−ge−tl
g,pga
I

+ sp − 1d o
g=N+1

`

p−ge−tlg0
I t. s28d

B. The operator TII

The solution of the Cauchy problem for the ultrametric diffusion equations1d with the opera-
tor TII and the initial conditions27d takes the form

f IIsx,td = o
g=1

`

o
n[Qp/Zp

o
j=1

p−1

e−lgnj
II tcgnj

* sxdcgnjsad.

Then the relaxation functionRIIstd is given by the expression

RIIstd = o
g=1

`

o
n[Qp/Zp

o
j=1

p−1

e−lgnj
II

ucgnjsadu2 = o
g=1

`

o
n[Qp/Zp

o
j=1

p−1

e−lgnj
II

p1−go
k=0

p−1

uhgnj
k u2Vspupga − n − kupd.

Taking into account thatuaup=pN andNù1, for the relaxation functionRIIstd, we get

RIIstd = o
g=1

N

o
j=1

p−1

o
k=0

p−1

e−lgnj
II tp1−guhgnj

k u2dpga−k,n + o
g=N+1

`

p−go
j=1

p−1

puhg0j
0 u2e−lg0j

II t.

Comparing the formulass26d and s28d, we see that the long-time relaxation behavior for ultra-
metric diffusions generated by the operatorsT0 andTI coincidefi.e., the functionsR0std andRIstd
have the same asymptoticg. This shows that the particular properties of the energy landscape, such
as local inhomogeneities, are not important for long-time behavior of the corresponding diffusion.
Note that the given result generalizes the special case considered in the work20 by Yoshino.

For the cases of the operators of the typeTII , the relaxation function behavior becomes more
complicated. Note that if the landscape deviations from the regularity are small:
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ulg0j
II − klg0j

II l ju ! klg0j
II l j ,

whereklg0j
II l j =sp−1d−1o j=1

p−1lg0j
II , then bys23d the long-time relaxationRIstd is a good approxima-

tion of the relaxationRIIstd.
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Planar „x,z… mixtures discrete Boltzmann equations
with species either in odd or even zx z+ zzz values
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We present large size “physical” discrete Boltzmann equations or discrete velocity
models results for binary mixtures of gasslight mass 1 and heavy massMd in a
half-plane scoordinatesx,z, interface atz=0 without velocities except the rest-
particled where the sumsuxu+ uzu are either odd or even for heavy or light species.
The models fill all integer coordinateszÞ0 of the plane with only az spatial
dependencefdensities withs±x, zd are equalg. Here, to previous results, we gener-
alize with new mathematical tools, to any binary mixture withM ratio of any even
to odd values,M =2p / s2q+1d and ratio of odd to odd valuesM =s2p+1d / s2q
+1d, p ,q arbitrary integers. With only binary collisions, we construct large size
“physical” discrete modelssonly mass, energy, and momentum along thez-axis
invariants, without other invariants which are called spuriousd. We prove the exis-
tence of a “physical” squaresdiagonals along thex andz axesd grid where for the
first component alluxu+ uzuø a sufficient valuesfunction of p andqd while for the
other “physical” components we add 2, 4, etc., to the sufficient value. The numeri-
cal “physical” applications, with only binary collisions, could be done with this
grid. The heavy species Hausdorff’ dimension has the limit 2 when the number of
velocities→`. © 2005 American Institute of Physics.fDOI: 10.1063/1.1868892g

I. INTRODUCTION

Contrary to many previous DBEsdiscrete BEd or DVMs sreview papers in Ref. 1d, in the
continuous BE we only have binary collisionssno multipled, only physical invariants: mass,
energy, momentumsno additional called spurious invariantsd and not a finite number of velocities
vi. Now, there is an evolution in DBE: no multiple collisions, no spurious invariants and finite
number ofvi which can be extended to an infinite number. Concerning finite DBEsversus con-
tinuous BEd velocitiesvi, Cercignani,2 in 1994, studying, at a homogeneous equilibrium state, the
energy to the mass ratio for a single-gassnot mixturesd, concluded that the associated rateslinked
to the temperatured would be a drawback for DBE with a finite number ofvi. A partial answer to
this criticism is to compare with the planardH. =2 Hausdorff dimension of the DBE when the
number ofvi →` and the intermediate models with a finite number ofvi. We can start with a finite
“physical” vi model and, with “physical tools,” we enlarge the model in the whole plane and we
must prove that each intermediate square-grid is “physical.”

The first paper, trying to satisfy these criteriasexcept the planar extensiond was for two 25vi

mixture models, discussed by Cercignani–Bobylev,3 but with powerful computers spurious invari-
ants were found.4 With simple geometrical restrictions of these 25vi sCornille–Cercignani3d ex-
plained why only one was physicalsnew collisions eliminate the spurious invariantd. “Physical”
binary mixture modelsslight species, mass 1; heavy,M .1d tiling all the integers of thex,z plane
were presented5 with only binary collisionssparticularM valuesd, starting with “physical” models
and extending, with physical tools, to new “physical.” For the distribution of the heavy species
different geometrical structures were found: squares, octagons, same number for the light and
heavy species. In Refs. 3–5, the lack was missing constraints for the flows.

Half-space6 swithout velocities parallel to the interfaced mixtures models were presentedsFig.
1d. In particular models withuxu+ uzu either evenslight speciesd or oddsheavy speciesd were found
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for someM values andM even. The problem is whether this geometrical structure can exist for
any rational fractionalM values. Here we prove this same geometrical structure for 2 classes of
ratios M =2p / s2q+1d seven–oddd and M =s2p+1d / s2q+1d sodd-oddd. with p and q positive
integers. The difficulty for the proofs, contrary to Refs. 2, 5, and 6, is the existence of two different
arbitrary parameters. As in the continuum treatment of the problem and in DBE or DVMs7,6,5 the
spatial dependence of the gas is assumed to be one-dimensional depending upon thez variable.
Associated physical properties for the boundaries of both the half-space and the two parallel
interfaces problems were studied.7 For single-gas Maxwellians at the interface, it was shown6,7

how the impinging densitiesz,0 can be deduced from the emerging onesz.0. We recall recent
interests in DBE, DVMs.8 Here we only construct large size physical half-space models, filling all
zÞ0 coordinates. Like in Refs. 3–6, we require a restriction: the occupation of a sitesx,zd without
more than one particle.

Very often, in the literature, only numerical or geometrical regular grids are presented, but
without the proof that the intermediate models are “physical”sno spuriousd. For the present
models, it is clear that the components of the grid are squaressdiagonals along thex,z axesd with
uxu+ uzu either oddsheavy speciesd or evenslight speciesd. The important and nontrivial problem is
to find the smallestuxu+ uzu valuesor at least a sufficient valued such that the model is “physical” for
all light and heavy densities withuxu+ uzuø that value. The tail of the first physical component grid
ssee Fig. 3 forM =4/3 anduxu+ uzuø6d depends onp,q while stool 1.2d for the second, third, etc.
sno spurious invariantd we add 2,4, etc., to that value. Whenp,q increase, the sufficient “physical”
value increases too and it is the reason why we must reject the previous grid works without this
research of the sufficient value for “physical” models.

The difficulties are binary collisions only physical invariants and half-space. For the two
classes presented ofM ratios mixtures, Secs. II and III the preliminary physical models have eight
independent densitiesssix heavy, two lightd and seven collisionssone with light and heavyd. The
previous tools, insufficient for the present study,s1, 2, etc., new densitiesd, for the extensions of
physical models are presented below 1.1–2 for one species in squares, rectangles or mixing
collisions sthree knownd.

Physical tools (Refs. 3–5) in order to enlarge “physical” models: Starting with a preliminary
simple “physical”sno spurious invariantsd model, we can for new “physical” add new momenta:

1.1: Four momenta of the same species of a physical mixture model being along rectangles or
squares, to threesxi ,zid belonging to a previous physical DBE, DVMs we can include the last one
sx4,z4d.

For a mixing collisionslight and heavyd, if three belong to a physical model, we can add the
last one,

FIG. 1. uxu+ uzu odd sheavyd, evenslightd. Here,uxu+ uzuø7.
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fsa1,b1dFsx1,z1d − fsa2,b2dFsx2,z2d → a1 + x1 = a2 + x2,

b1 + z1 = b2 + z2,x1
2 + z1

2 − x2
2 − z2

2 = Msa2
2 + b2

2 − a1
2 − b1

2d.

s1d

We call the velocities, momenta, densitiesvW i =pW i, f i slight speciesd, VW j, PW j =MVW j, Fj sheavyd.
1.2: In mixture models with a light density for the rest-particlef0s0,0d, if we prove that for

zù0 the light densities withuxu+ uzu=0,2,4 are physical, then we can addsRefs. 5 and 6d all light
densities withuxu+ uzu even. For the extension, if we start with half-spaceuxu+ uzu evenø2c, ¹
s±2c,0d, we can extendswith squares, rectangles three knownd to ø2c+2, 2c+4, etc. If the heavy
densities withuxu+ uzu=1,3 belong to a physical model, we can also add all heavy densities with
uxu+ uzu odd. Similarly, the extension of the heavy is from 2c+1=3 to 2c+1=5,7,… .

In Secs. II and III, we only have two light independent densities for the physical preliminary
model, so that we cannot apply directly the twof1.2g results. However we show first that we can
extend the heavy species in all odd values and second, with new collisions mixing heavy and light
species we obtain other light values. The extensions for the light touxu+ uzu=0,2,4 and all even
values are only found with the introductions of other tools which are explained below.

1.3: In some cases we can include 2,3, etc., new densities.5,6 Starting with the old conservation
laws of a previous “physical” model, with new densities we associate arbitrary constants to the
evolution equations and we must have new collisionsXk including some previous densities with
values fixed for each conservation law. For each new collisionXk the sum of these constants must
be zero, and we must verify that the arbitrary constants are fixed, giving the right values of each
conservation law:fMLg ,fMlg for the macroscopic heavy and light masses andfJg ,f2Eg for the
momentum alongz and the energy. These starting mixture models are physical 2.1a, 3.1.

In 2.1b, 3.1, for the extension of the heavy species in the whole plane, we add new heavy
squares, rectanglessthree knownd and with uxu+ uzu=1,3 we extend to all odd values.

For the light species, in 2.2, 3.2–3.4, we have not this toolsthree previousd but, from the
extension of the heavy species, we have new collisions mixing heavy and light species and for
instance in 2.1b, we can add four independent light physical but not for the Sec. III model. In both
cases we do not have the light withuxu+ uzu=0,2,4 and contrary to Ref. 6, we cannot use the 1.2
tool. The main problem remains to add the light in all the plane. We consider mainly collisions
with light densities, including necessarily some old light. For the light mass conservation we have
Ml

old,Ml
new and we must only have 0=Ml

old+Ml
new. For the old physicalfsx,zd the evolution

equationslsx,zd is multiplied by 1 for x=0 and 2 forxÞ0. For the newfsx,zd, we associate
arbitrary parameterasx ,zd. In any collision, the sum of the old and new parameters must give
zero. So we have a linear system of the number of collisions with these newasx,zd including the
old values for the old densities. We try to find allasx,zd as linear combinations of arbitrary:a0

sassociated to the rest-particlef0d and few otherasx,zd called a1,a2, etc. Finally we try to find
crucial relations, leading toa0=1 and all theasx,zd having the physical value of a light mass
conservation law. We must solve this linear system and the new modelMl

old+Ml
new must only have

asx,zd=1,2 for x=0,Þ0. We explicit the new necessary method used in Secs. II and III.
First, in Sec. II we have with very few collisions:asq−1,3q+1d only function of a0 and

asq,3q+2d=2 Second Figs. 4sad–4scd, we follow a path parallel to thez=x axis,sas0,2qd
=2−a0d with x=1,2, etc., and get forx=q−1, q the previousasx,zd functions of botha0, a1 and
q. The compatibility with allq values leads to onlya0=1 and allasx,zd physical.

First, in Sec. III starting physical model, we haveasx,xd=2 for x=2q−1 and with few
collisions as1,4q−3d function of only a0. Second, Fig. 5sbd, we follow a path parallel to the
z=−x axis with asx,−x+4q−2d and x decreasing 2p−3, 2p−5,…,1 giving anotheras1,4q−3d
relation function of botha0,q and the compatibility still leads toa0=1 and allasx,zd physical.

In 2.2, for the 2p / s2q+1d, qù1 model,sq=0 in Ref. 6d, we add newfsx,zd, asx,zd and for
a set of these arbitrary parameters calledak, k=1,… ,q−1,q which arek or q dependent, we prove
that they are linear combination of two,a1,a2. On the other handaq=2 and aq−1=10−8a0.
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Comparing the two different explicit expressionssq-dependent or notd, we deduce thata0=1 and
the arbitrary parametersak only have the physical values giving a “physical” model.

For q=1,2,3 and later for 2p/ s2q+1d, we give the sufficient values such that the model with
all uxu+ uzuø that value be physical, giving the firstP=1 component of the physical squares
sdiagonals along thex,z axesd grid, the second, third, etc.,P=2, 3, … component being found
adding 2,4, etc., to the sufficient value. The light and heavy densities having almost the same
number of densities in large squaressextensions of Fig. 1d, we studysin some examplesd, the
Hausdorff’s dimension of only the heavy species. We show that the large limit value isdH→2 and
notice that theP-square grid must be very large to approach this limit.

In 3.2–3.4, for thes2p+1d / s2q+1d model, in order to extend the light speciesf, we still
associateasx,zd and, for a pedagogical study, first we limit toq=1,2 with only the previous 1.1–2
tools and finally giving a general proof forq arbitrary with our generalized tool. We show two
expressions foras1,4q−3d, one with onlya0 and another withq. The compatibility givesa0=1
and all correct “physical”asx,zd values.

1.4: The presented models, filling all integer coordinates, have a regular gridsmesh-step 1d.
We can generalize2–5 with a mesh-steph finite: svW →hvW,PW →hPW d andvW2→ shvWd2,PW 2→ shPW d2 scol-
lisions still validd. For the construction of physical models we present sets ofP selected physical
domains and we knowsadvantage to the standard numerical discretizationsd that in all intermedi-
ate steps we have no spurious invariants. For brevity we writeAj ,Bk for AppendixAj ,Bk. In the
sequel, for a setys, we defineyi,j ,…,q=os=i

s=qys andyi,j
− =yi −yj.

For the heavyPth squares grid with diagonals along thex,z axes,uxu+ uzuøn, the Hausdorff
dimensiondH=log Nn / log Lnd, we haveNn=nsn+1d for the number of heavy densities and for the
sizesLn=Î2n. We getdH→2 whenn→`.

II. HEAVY MASS RATIO OF EVEN TO ODD: M=2p / „2q +1…>1 „Figs. 2–4 …

2.1: Heavy species filling alluxu+ uzu odd, Fig. 2sad, only six light. First in 2.1a, we prove that
a simple mixture modelssix individual heavy and two lightd is physical. We write the evolution
equations as sums of collisions and eliminating successively these collisions we find three invari-
ants IV, I, II for both the heavy and light masses conservations. For the momentum alongz and the
energy, we find the last invariant III. Second in 2.1b, with the simple tool of collisions in squares,
rectanglessthree knownd, we show that in the previous mixture physical model, the heavy species
can be extended in the whole plane withuxu+ uzu odd and, with the new heavy, we can extendsfour
individual, four new lightd a little bit the light species. However, with the Sec. I tools, we do not
have sufficient light densitiessonly sixd, to extend in the plane.

2.1a: Starting physical model, Fig. 2sad with six heavyFis±x,zd, two light f js±x,zd densities
fequal fors±x, zdg. We write both the mixingG and six heavyVi collisions. We write the evolution
equationsl i =s]t+zi]zdf i for zi]zfsxi ,zidg and Lj associated tof i ,Fj which are sums of collisions
G ,Vi where f isFjd are in the lost terms. We deduce the physical invariants.

Lemma 1, Fig. 2(a):With collisions, sixVi and oneG mixing light and heavy densities, we
show that the mixtures2.1d model with six heavyF, two light f is physicalsno spurious invari-
antsd. We find four invariants I–II–III–IV equivalent to the four conservation laws, two for the
heavy massML, one for the lightMl, and only one new for both the momentumJ and energy 2E,

F1s0,2p − 3d, F2s±1,2p − 2d, F3s±2,2p − 1d, F4s0,2p + 1d, F5s0,2p − 1d, F6s±1,2pd,

s2.1d

fqs±q,qd, fq+1s±sq + 1d,q + 1d densities equal fors±x,zd,

G = F5s0,2p − 1dfsq + 1,q + 1d − F6s1,2pdfsq,qd, V1 = F5F4 − F6
2,

i = 0,1→ V2+i = F1F5−i − F2+i
2 , V4+i = F5−iF3−i − F6F2+i, V6 = F1F6 − F3F2, s2.2d
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G = lqsq,qd = − lq+1sq + 1,q + 1d → Ml/2 = lsq,qd + lsq + 1,q + 1d = 0 IV, L1+3i = − V2−i,3

− 2V6−i,

L2+i = V2+i,4+i,6 − V5−i, L5 = − 2G − V1,2− 2V4, L6 = G + V1,4,5− V6. s2.3d

FIG. 2. M =2p/ s2q+1d, uxu+ uzu odd.

FIG. 3. M =2p/3fsx,zd.
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For the reader not familiarized with DBE, DVMs, we explain the coefficients 1 or 2 in the
collisions. InG, we have oneF5 but two equalF6s±1,2pd and consequently two collisions withG
for L6 and −2G for L5. For the heavy mass we eliminate successivelyG ,V1 and get two invariants
I, II. For the heavy mass conservation, we have a coefficient 1 for theLi with xi =0 sdensities along
the z axisd, but two for ±xi Þ0. For the momentum conservationJ, we multiply theLi , l j by thez
values of the associated densities and get forJ and the energy 2E, another invariant III. For the 2E
conservation, we multiply withsx2+z2d for the heavy, still withM for the light,

L5 + 2L6 = V1,2
− + 2V5,6

− → L4,5+ 2L6 = − V2,3− 2V6 = L1 = − L2,3→ I:L2,3,4,5+ 2L6 = 0,

II:L1,2,3= 0→ ML = I + II = L1,4,5+ 2L236= 0, s2.4d

J = 2qlq + 2sq + 1dlq+1 + s2p − 3dL1 + s2p − 1dL5 + s2p + 1dL4 + 2s2p − 2dL2 + 2s2p − 1dL3 + 4pL6

= 2pML + f− 2II + III g = 0→ III ª L4 − L1,5− 2L2 + 2lq = 0, s2.5d

2E = s2p − 3d2L1 + s2p − 1d2L5 + s2p + 1d2L4 + 2s1 + 4p2dL6 + 2s4 + s2p − 1d2dL3 + 2s1 + s2p − 2d2d

3L2 + fq2lq + sq + 1d2lq+1sq + 1d2g8p/s2q + 1d = s4p2 + 1dML + 2II + 4psIII − 2II d. s2.6d

2.1b, Fig. 2(a) Lemma 2:HeavyFsx ,zd filling all uxu+ uzu odd and only two lightfsx ,zd. With
heavy collisions in squares and rectangles and 3FP s2.1d, we add six new individualFsx,zd,

Fs±x,zd → s±x,zspd Þ 0d:a = 0,2:s2,2p − 3 −ads1,2p − 4 −ad,s0,2p − 5 −ad s2.7d

andp→p−1→p−2, etc. Physical F satisfyuxu+ uzu=1,3→ all odd but only two lightf.
Proof of (2.7):With squares, rectanglessthree knownd Fig. 2sad, we add tos2.1d, the last heavy

F̄,

FIG. 4. M =2p/ s2q+1d. sad qù2. sbd sx,zd→ fsx,zd. scd fsx,zd→ uxu+ uzu.
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F3s2,2p − 1dF1s0,2p − 3d − F5s0,2p − 1dFs2,2p − 3d,

F1s0,2p − 3dFs2,2p − 3d − F2s1,2p − 2dFs1,2p − 4d, p Þ 2,

Fs1,2p − 4dFs− 1,2p − 4d − F1s0,2p − 3dFs0,2p − 5d. s2.8d

Similarly we get new heavyF : s2,2p−5d, s1,2p−6d, s0,2p−7d with p→p−1,… ,p−2, … .
Lemma 3:Physical DVMs with more light densities, sixf, Fig. 2sbd. With mixing collisions

sthree knownd, we now have six individual lightfs±x,zd fwritten sx,zdg

s±q,qd,s±sq + 1d,q + 1dnews±q,3q + 2d,s±q,5q + 2d,s±sq + 1d,3q + 1d,s±sq + 1d,5q + 3d.

s2.9d

Proof of (2.9), Fig. 2(b):To thes2.1d with two light fsq,qd, fsq+1,q+1d, we add successively
four new fsx,zd with mixing collisionssF with uxu+ uzu oddd giving six physicalfsx,zd,

fsq,qdFsx,2p + 1 +qd − fsq,3q + 2dFsx,2p − 1 −qd eitherx,q odd or even,

fsq,3q + 2dFsx,4p + qd − fsq,5q + 2dFsx,4p − qd, uxu + q odd,

fsq + 1,q + 1dFsx,2p + qd − fsq + 1,3q + 1dFsx,2p − qd, uxu + q odd,

fsq + 1,3q + 1dFs0,z+ 2sq + 1dd − fsq + 1,5q + 3dFs0,zd, z odd. s2.10d

2.2: M=2p / s2q+1d.1, qù1. Light species filling alluxu+ uzu even, Figs. 3 and 4.
Our aim is to prove for the light species that for the sum of theasx,zdlsx,zd fl associated to

fsx,zd and asx,zd arbitraryg, exists only one invariant, the light massMl and the onlyasx,zd
possible values areslike for old physical densitiesa=1,2d 1, x=0 and 2,xÞ0. For the old physical
Ml

old, in s2.9d these sixas±xÞ0,zd=2 values are satisfied but not for the newMl
new. The Ml

=Ml
old+Ml

new=0 is linear combination of the vanishing collisions and we must find constraints for
the newasx,zd giving only the physical values. We obtain general physical results in 2.2a, b, c for
arbitrary q and, in Lemma 4, Appendix A1, for a pedagogical reason, we give an independent
M =2p/3, q=1 proof of a physical model.

Lemma 4, A1, Fig. 3:The M =2p /3, q=1 model is physical with aM1 conservation law.
For M =2p /3, A1, the physicaluxu+ uzu are ø2p+3 for heavy andø6 for the light species,

With the 1.2 tool we can extend the physical light to 8,10,…,2p+2 or the heavy to 2p+5, 2p
+7, 2p+9, etc., givingP=1,2,etc., squares grid with diagonals along thex,z axes where all
coordinates are filled foruxu+ uzuøn=2p+1+2P by heavysoddd or light sevend physical species. In
Fig. 3, we give the Hausdorff’ dimensiondH for the heavy species withM =4/3, 40/3,giving the
same values forPù100 and→dH,2 for more and moreP-squares-grid.

In 2.2a, for q arbitrary, we add new lightfsx,zd densities so that the associated arbitrary
parametersasx,zd depend only on the arbitrarya0 linked to the rest-particlef0.

Adding light collisions, valid only forq=1,2, we finda0=1, leading to a new physical mixture
M =2p /5, Appendix A2 model which can be extended to all light densities withuxu+ uzu even.

In 2.2b,q arbitrary, we addslight collisionsd three associatedasx,zd parameters. As applica-
tion, theM =2p /7, Appendix A model is physical in the whole plane.

In 2.2c, Appendix A,q arbitrary, the newasx,zd depend on more and more arbitrary param-
eters, but we prove that they only have the physical light species values.

2.2a, Fig. 4(a), general arbitraryq results for the light species:We add, to the physical light
fsx,zd with asx,zd=2, s2.1d–s2.9d, new light densities with collisions, but their associateds2.12d
ands2.13d arbitraryasx,zd values, coming from vanishing collisions, depend ona0=as0,0d. So the
light mass conservation law has two invariants, one spurious exceptq=1 with a0=1, Appendix A.

For arbitraryq, with collisionssthree knownd, we get newasx,zd values which depend only
on a0,
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old, l = 0,2q + 2, 2 =asq,q + ld = asq + 1,3q + 1 +ld = asq,5q + 2d = asq + 1,q + 1d,

new, as0,4q + 2d = as2q + 1,2q + 1d/2 = a0, as0,2qd = as0,2q + 2d = 2 −a0 = as2q,4q + 2d/2

= as1,2q + 1d/2, as2q,2q + 2d = 8 − 6a0, asq,q + 2d = asq,3qd = 10 − 8a0

= asq − 1 Þ 0,q + 1d = asq − 1 Þ 0,3q + 1d, as2q − 1,2q + 1d = 16 − 14a0.

s2.11d

fSee Eqs.s2.12d and s2.13d.g
Proof for (2.12) and (2.13)with one mixingG and 11 light different collisions,

new, G = fs2q + 1,2q + 1dFs0,2p − 2q − 1d − f0Fs2q + 1,2pd → as2q + 1,2q + 1d = 2a0,

f0fs0,4q + 2d − f2s2q + 1,2q + 1d → as0,4q + 2d = 2a0 − a0 = a0, f0fs0,2qd − f2sq,qd,

f0fs0,2q + 2d − f2sq + 1,q + 1d → as0,2qd = as0,2q + 2d = 2 −a0,

fsq,3q + 2dfsq,5q + 2d − fs0,4q + 2dfs2q,4q + 2d,

fs0,2q + 2dfs0,2qd − f2s1,2q + 1d,

fs2q,4q + 2dfs0,2q + 2d −

fs0,4q + 2dfs2q,2q + 2d, → as2q,4q + 2d = as1,2q + 1d

= as2q,2q + 2d/2 + a0 = 4 − 2a0, s2.12d

asq,q + 2d = asq − 1,q + 1d = asq − 1,3q + 1d = asq,3qd = 10 − 8a0, as2q − 1,2q + 1d = 16 − 14a0,

fs2q,2q + 2dfsq + 1,q + 1d − fs2q + 1,2q + 1dfsq,q + 2d,

fs2q,2q + 2dfsq,qd − fs2q + 1,2q + 1d

fsq − 1,q + 1d, fsq − 1,q + 1dfsq + 1,3q + 1d − fsq + 1,q + 1dfsq − 1,3q + 1d,

fsq − 1,3q + 1dfsq + 1,3q + 1d − fsq,3q + 2dfsq,3qd, fsq,3qdfsq,q + 2d − fs1,2q

+ 1dfs2q − 1,2q + 1d s2.13d

Adding collisions valid forq=1,2 we geta0=1 andM =2p /5 in A2 is a physical model.
Lemma 5, Appendix A:With s2.12d and s2.13d, the modelM =2p /5, pù3, q=2 is physical.
In s2.12d ands2.13d for q=2, pù4, the highest physicaluxu+ uzu areøn=2p+5 for heavys12

for lightd species withP=1. With the 1.2 tool we enlarge the light speciesø2p+6, 2p+8, 2p
+10, etc., and the heavy ton=2p+7, 2p+9, etc., giving theP=2,3, etc., squares grid.

2.2b: In Fig. 4sbd we add with squaressthree knownd to s2.12d and s2.13d new generalq,
asx ,zd results,

old, s2.12d ands2.13d,2 −a0 = as0,2qd = as0,2q + 2d = as1,2q + 1d/2,

asq + 1,3q + 1d = 2,etc . , new;ak,bk, s2.14d

a1 ª as1,2q + 3d = as2,2q + 2d = as2,2qd, a2 = as2,2q + 4d = as3,2q + 3d = 3a1 + 4sa0 − 2d,

b1 ª as3,2q + 1d = 2a1 + 2sa0 − 2d = a2 − a1 + 2s2 − a0d, b2 = as4,2q + 2d = 4a1 + 6sa0 − 2d,

s2.15d
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a3 ª as4,2q + 4d = as3,2q + 5d = 6a1 + 10sa0 − 2d.

Fig. 4(b), Proof for (2.14) and (2.15): We define newak,bk with collisions fthree physical
fsx,zdg,

fs0,2q + 2dfs2,2q + 2d − fs1,2q + 1dfs1,2q + 3d,

fs0,2q + 2dfs2,2qd − fs0,2qdfs2,2q + 2d → a1 ª as1,2q + 3d = as2,2q + 2d = as2,2qd,

fs0,2q + 2dfs3,2q + 3d − fs1,2q + 1dfs2,2q + 4d → a2 = as2,2q + 4d = as3,2q + 3d,

fs1,2q + 3dfs2,2qd − fs0,2q + 2dfs3,2q + 1d, s2.16d

fs1,2q + 1dfs3,2q + 3d − fs1,2q + 3dfs3,2q + 1d → b1 ª as3,2q + 1d = 2a1 + 2sa0 − 2d = a2 − a1

+ 2s2 − a0d, a2 ª 3a1 + 4sa0 − 2d,

fs2,2q + 4dfs3,2q + 1d − fs1,2q + 3dfs4,2q + 2d → b2 ª as4,2q + 2d = a2 − a1 + b1

= 4a1 + 6sa0 − 2d,

fs4,2q + 4dfs2,2q + 2d − fs2,2q + 4dfs4,2q + 2d

→ a3 ª as4,2q + 4d = a2 − a1 + b2 = 6a1 + 10sa0

− 2d, fs4,2q + 4dfs2,2q + 4d

− fs3,2q + 5dfs3,2q + 3d → as3,2q + 5d = a3.

s2.17d

Lemma 6, Appendix A3:The M =2p /7, pù4, q=3 model is physical withs2.12d–s2.15d.
The highestuxu+ uzu value for the preliminary physical square grid being 2p+7 sheavypùq

+1=4d and 6q+2=20slightd, we enlarge heavy or light with the highestn=2p+12, giving the first
P=1 component physical grid and 2p+10+2P for P=2, etc. In Fig. 4sbd, we presentdH for the
heavy species,M =10/7, 105/7 with the same comment as previously forM =2p/3.

2.2c, M=2p / s2q+1d: General proof for light filling alluxu+ uzu even, Fig 4scd.
We could go on and study 2p/9, 2p/11, but with proofs more and more tedious, so in

Appendix A, we give a proof for arbitraryq integer. Ins2.14d ands2.15d we have givena2,a3 in
terms ofa0,a1 and we define ins2.16d ands2.17d, ak sfunction ofk,a0,a1d, that we apply tos2.11d
and s2.13d,

ak = ask + 1,2q + k + 1d = ask,2q + k + 2d, k = 1,2,…,q and explicitak in s3a5d ands3a6d,

s2 . 11d → aq = asq,3q + 2d = 2 sphysical valued, s3a2d → aq−1 = asq − 1,3q + 1d = 10 − 8a0.

We shall deduces2.19d, with Lemma 7, the physical valuesa0=1, ak=2, k=1,… ,q.
Lemma 7, Appendix A4:

ak = ask + 1,2q + k + 1d = ksk + 1da1/2 + sksk + 1d − 2dsa0 − 2d. s2.18d

With a collisionLk, we gets2.17d and with light collisions deduces2.18d a relation betweenak−l,
l=0,1,2,k−1, k giving the newa4,a5, . . ,ak of s2.16d. For the crucial relations leading toa0=1,
giving two linear independenta0,a1 relations, we use thes2.16d, ak resultsfunction of a1,a0d for
k=q, aq=2 andk=q−1, aq−1=10−8a0 and get the physical valuea0=1,

qsq + 1da1/2 + sqsq + 1d − 2da0 − 2sqsq + 1d − 1d = 0,
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qsq − 1da1/2 + sqsq − 1d + 6da0 − 2sqsq − 1d + 3d = 0→ a0 = 1, a1 = 2→ ak = bk = 2.

s2.19d

With light collisions in squares and rectanglessthree previous knownd densities, we can include
uxu+ uzu=0,2,4 and all even values. In Fig. 4scd, from the physical model including integer coordi-
nates ofz=2q+2+x, z=2q+x, 2q−2+x, we can addz=2q−4+x, 2q−6+x, … .

Due to aqsx,zd in s2.17d, we have for the lightuxu+ uzuø4q+2 with pùq+1, but in s2.12d,
ø6q+2 for the light and 2p+2q+1 for the heavy. For the first componentsno spurious invariantd
physical grid we enlarge either the light or the heavy with the highestuxu+ uzuø2p+2q+2 and
2p+2q+4 for the secondP=2 physical grid with all integer coordinates filled.

For the physicalP-grid we consider, like in Fig. 1, squares with diagonals along thex andz
axes withuxu+ uzuøn with −nøzøn. We havensn+1d heavy densities and for the Hausdorff’s
dimensiondH of the heavy species we havedH=logsnsn+1dd / logsnÎ2d→2 whenn→`. For the
examples given in Figs. 3, 4, and 4sbd, we haven=3M +2P+1 andn=7M +2P+5.

III. M= „2p+1… / „2q+1…, FILLING EITHER zx z+ zzz ODD „HEAVY… OR EVEN „LIGHT…

In 3.1, we start with an eight individualFi , f j physical model and extend the heavy in the
plane.

In 3.2, we add eight lightfsx,zd with associatedasx,zd parameters which only depend ona0.
In 3.3, Appendix B1, witha0=1, theM =s2p+1d /3, q=1 planar model is physical.
In 3.4, B2–B3 the lightf i have associated arbitrary parametersa0,a1,a2,a3, etc. Forq=2, the

model is physical and forq arbitrary, botha0=1 and the other only have the physical values.
3.1 Lemma 8:With only two fsx,zd, the heavy speciesFsx,zd fills all uxu+ uzu odd.
We start with the same six heavys2.1d, Fig. 2sad modelswith p→p+1d but the two light are

different. The heavyVi collisions s2.2d are with the sameFi but not the mixture collision,

heavy,Fisx,zd:s2a1d but p → p + 1; light, fsx,2q + 1 ± 2d x odd s3.1d

G = fsx,2q − 1dF4s0,2p + 3d − fsx,2q + 3dF1s0,2p − 1d → G = lsx,2q + 3d = − lsx,2q − 1d → Ml/2

= lsx,2q − 1d + lsx,2q + 3d = IV = 0, L4 = − 2G − V1,3− 2V5, L1 = 2G − V2,3− 2V6,

L5 = − V1,2− 2V4, L6 = V1,4,5− V6, i = 0,1 → L2+i = V2+i,4+i,6 − V5−i . s3.2d

For the heavy massML we eliminate successivelyG ,V3, get two invariants andML=I+II: For
the momentum and the energy, we must only find another invariant III,

− V1,2− 2V4 = L1,4+ 2L3 = L5 = − L2,6→ I: L1,2,4,6+ 2L3 = 0, II: L2,5,6= 0, s3.3d

J = o cispdLifs2a5d with p → p + 1g + 2o
±

s2q + 1 ± 2dlsx,2q + 1 ± 2d = 2pML + 2qMl + III,

III = L5,1
− + 3L4 + 2L3 + 4L6 + 8lsx,2q + 3d,

2E = o dispdLifs2a6d with p → p + 1g + 2o
±

fsx2 + s2p + 1 ± 2d2dlsx,2q + 1 ± 2d = constMl

+ 4p2ML + s4p + 2dIII + 3I − II g. s3.4d

The mixtures3.1d model with two f is physical. Like in Lemma 2, with squaresfp→p−1,
etc., in s2.7dg, we extend the physical heavy species inuxu+ uzu=1,3 and to all odd values of the
plane.

3.2: General results for the light of M=s2p+1d / s2q+1d, q arbitrary Figs. 5(a)–5(c).
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Choosingx=2q−1 in s3.1d, we start with the two lightfsx=2q−1,2q+1±2d fcollision G in
s3.1dg, belonging to the previous physical mixture model. We add eight newfsx,zd with associated
arbitrary parametersasx,zd and show that they only depend onas0,0dªa0 sfor f0d. At this stage
the models do not satisfyas0,zd=1, asxÞ0,zd=2 and so are not “physical.” In other sections, we
prove thata0=1, leading to “physical” models.

Lemma 9:With collisions, we add eight new lightfsx,zd, asx,zd functions ofa0=as0,0d,

old, 2 =as2q − 1,2q + 1 ± 2d; new, 2 =as2,2d = as2,4qd = 2s physicald, s3.5d

as0,4q + 2d = a0 = as2q + 1,2q + 1d/2, as0,4q − 2d = as0,4d = 2 −a0 = as2q − 3,2q + 1d/2.

s3.6d

Proof of s3.5d and s3.6d with squares, rectanglessthreeknownd, old, fs2q−1,2q−1d,
Fsx,2sp−qdd,Fsx,2sp+q+1dd; new, f0,fs2q+1,2q+1d,fs0,4q±2d,fs0,4d,fs2,2d,fs2,4qd,fs2q
−3,2q+1d,

G1 = fs0,4q + 2dFsx,2sp − qdd − f0Fsx,2sp + q + 1dd → as0,4q + 2d = a0, x odd,

FIG. 5. sad M =s2p+1d /3. sbd M =s2p+1d / s2q+1d. scd M =s2p+1d /5.
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f0fs0,4q + 2d − f2s2q + 1,2q + 1d → as2q + 1,2q + 1d = 2a0, f0fs0,4q − 2d − f2s2q − 1,2q − 1d,

fs0,4q + 2dfs0,4d − f2s2q − 1,2q + 3d → as0,4d = as0,4q − 2d = 2 −a0,

fs0,4dfs0,4q − 2d − f2s2q − 3,2q + 1d → as2q − 3,2q + 1d = 4 − 2a0,

f0fs0,4d − f2s2,2d, fs0,4q + 2dfs0,4q − 2d − f2s2,4qd → as2,2d = as2,4qd = 2.

3.3: Lemma 10, Appendix B1: Fig. 5sad. The M =s2p+1d /3, q=1, pù2 model is physical.
For the first physical square grid, the highestuxu+ uzu are 2p+3, 8 for heavy and light species.

For p.2 we enlarge the light up to 2p+4 for the first grid and 2p+6, etc., for the second.
3.4: New general light results for M=s2p+1d / s2q+1d, filling uxu+ uzu even, Figs. 5(b) and

5(c).
Lemma 11: With the proof thata0=1, the modelsM =s2p+1d / s2q+1d are physical.
To the general olds3.5d ands3.6d results, we add new ones with new collisions. In addition to

a0, we add new arbitrary parametersa1,a2, etc., and we must prove that they only have the
physical values. The method is simple, but tedious. In Appendix B2 witha1=as1,4q−1d=s5
−a0d /2, we get a physicalM =s2p+1d /5 model. In B 2–B 3,s3.11d–s3.13d, we get a first
as1,4q−3d function of a0 and starting withasx,zd z andx of the order of 2q, we obtain succes-
sively higherz and smallerx values and a secondas1,4q−3d function of botha0 and q. The
compatibility requiresa0=1 and allasx,zd have the correct physical values 1 or 2 for the light
mass conservation law. We start withasx,zd given in s3.5d and s3.6d.

First Fig. 5sbd, in B 2, with s3.5d ands3.6d and new collisions we definea1= ā1, a2,a3 and with
s3.7d–s3.11d, find a1= ā1=s5−a0d /2 and a firstas1,4q−3d function of a0,

a1 ª as1,4q − 1d = ā1 ª as2q − 2,2qd = as1,3d, s3.7d

a2 ª as2q − 1,2q + 1d = 2a1 − 4 + 2a0, s3.8d

2 = as2q + c,2q + dd, c = − 1,3, d = − 1,3, a3 ª as2q + c,2q + dd, c = − 2,4, d = − 2,4,

s3.9d

a2 = 1 +a0, 2a1 = 5 −a0, 2as2q,2qd = 1 + 3a0, s3.10d

a3 = s9 − 5a0d/2, as1,4q − 3d = s13 − 9a0d/2 = 2 + 9s1 − a0d/2. s3.11d

Fig. 5(c), B2: a0=1 with s3.5d–s3.11d, the M =s2p+1d /5, q=2 model is physical.
q=2: For the first physical square grid, the highestuxu+ uzu are 2p+7, 14 for heavy and light

species. Forp.3 we enlarge the light up to 2p+8 for the first grid and 2p+10,… for the second.

Second Fig. 5sbd, in B 3, with collisionsL̄isbd we deduce ins3.12d and s3.13d some general
asx,zd which only depend ona0, sx decreasing,z increasing,b oddd. giving a secondas1,4q
−3d relation,

b = 3,5,…, as2q − b,2q + b − 2d = 2 + s1 − a0dsb − 1d2/2 → as1,4q − 3d, s3.12d

b = 2q − 1, s3.13d

s3.11d–s3.13d →s1−a0df2sq−1d2−9/2g=0→a0=1 ∀qù1 integer →a1=a2=a3=2→as0,zd=1,
asxÞ0,zd=2→ correct light mass values for physical mixture. With squares and rectanglessthree
f knownd, we can extend to alluxu+ uzu even values.

qù2: For the first square grid, the highestuxu+ uzu are 2p+2q+3 for the heavy species
fFs1,2sp+q+1dd in s3.5dg and 4p+2q for the light ffs2q+3.2q+3d in s4a9bisd, B 3g. With the
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heavy higher or smaller than the light ifp_q+3/2, weenlarge the light or the heavy for the first
square grid. For the second, third, etc., we add 2,4, etc., to both the heavy and light first square
grid.

IV. CONCLUSION

If we recall the previous discussions, about “physical” or not 13 and 25 velocities models
sM =2,5d, the present physical modelssfilling all the half-plane without spurious invariantsd, with
two arbitrary parameters,p andq represent some progress. In the previous works with only one
arbitrary parameter or here for the explicit examples withp arbitrary but onlyq=1,2,3 we see that
the proofs are more simple. However for planar models with 2 continuous coordinates, it seems
clear for DVMs, DBE that we must extend the models with two arbitrary parameters and here we
have presented a successful method for one species.

First in the starting physical model or adding few collisions, we retain two differentasx,zd
swith x,z coordinates differing of constqd with values depending ona0, etc., but not onq. Second
we seek a path linking the twoasx,zd, such that we can explicitly find the intermediate newasx,zd
while the last depend not only ona0, etc., but also onq. Then we have compatibilities depending
on q and we must check whether or not the only possibility isa0=1, etc., and physicalasx,zd
values.

Here we use mainly one general tool foruxu+ uzu odd sheavyd or evenslightd and we have a
similar number of heavy or lightsalso f0d densities. Consequently, contrary to other distributions
of the two species in the planesoctagons, dodecagons etc., for the heavyd, only the heavy mass
value M will be important for the physical studies. For any fractional rationalM value with the
same geometrical repartition of the light and heavy species, another task is for physical applica-
tionsspreviously for single gas7,6d. Another problem is to see whether or not, a similar geometrical
planar structure for heavy and light, could exist or not, for some irrationalM values?

On the other hand we have proved the existence of “physical”sno spuriousd squaresdiagonals
along thex and z axesd grid with the first square componentuxu+ uzuø a sufficient value which
depends on thep andq parameters but which becomes very large whenp ,q increases while for
the other larger squares of the grid, we add 2,4, etc., to that value. This means that for physical
applications we cannot start with the same square grid first component for differentp,q models
and that the first square grid is very large whenp,q increase. This constraint is not particular to the
present models. For numerical regular grids filling the planeswithout proof of no spurious invari-
antsd, similar problems can occur. Our main result is that the numerical calculations can be done
in a “physical” square grid without spurious invariants but we must be careful for the tail of the
starting first square which has been determined while for the additional squares of the grid, it is
sufficient to add 2,4, etc.

Starting with a physical mixture model where the constants associated to the evolution equa-
tions for the light mass conservation law are either 1 or 2, we cannot apply directly the simple
tools sexcept forq very smalld of adding new light densities giving new physical models. So we
are in the obligation to introduce arbitrary parametersasx,zd associated to the newfsx,zd,
lsx,zd :a0 srest-particled andak, k=1,2, etc. Starting with a preliminary physical model with known
old evolution equations, we add these newasx,zd and the vanishing new collisions are linear
combinations of the newsunknownd and oldsknownd parameters. As explained above, the solution
is to find for the same particularasx,zd two different values, but only one depending onq and the
compatibilities∀q, leading to allasx,zd having only the correct physical values.

We recall that for single-gassonly one speciesd, the hexagons models give problems: one
spurious relation or necessity of a multiple collision. However for the present mixture models
filling either uxu+ uzu odd sheavyd or evenslightd, we present in Fig. 1, physical hexagons for the
light speciesssides 2,Î2d including the centersexcept along thex axisd. However, for the missing
centers, if we give up half-space, we can include successively physical centersfs±s2q+2d ,0d, q
=0,1, etc., integer, with the collisions:fs±s2q+1d ,1dfs±s2q+1d ,−1d− fs±2q,0dfs±s2q+2d ,0d.

Our proofs of physical models are done with all integers filling the plane, we recall 1.4 that,
with scaling, they were generalized with a mesh-step finite, but as small as we want.
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APPENDIX A: MODELS M=2p/ „2q+1…>1 „APPENDIX A 1–A 4 …

A 1 Lemma 4, Fig. 3: TheM =2p /3, q=1 model is physical with aM1 conservation law, old
fsx,zd, asx,zd=2: s1,1d,s2,2d, 2,4d,s1,5dP Physical mixtures2.9d model, newfsx,zd, asx,zd arbi-
trary: s0,0d,s3,3d,s0,2d,s1,3d,s3,1d,s3,±1d, s2,−2d, sA1d.

Proof of A1: The newf satisfy eight collisionsfthree known, adding the lastfsx,zdg with sums
of asx,zd equal in lost and gain terms,

fs3,3dFs0,2p − 3d − f0Fs3,2pd → as3,3d = 2a0, f0fs0,2d − f2s1,1d, fs0,2dfs2,2d − fs1,3dfs1,1d

sA1d

→as0,2d = as1,3d/2 = 2 −a0, fs1,3dfs3,1d − fs1,1dfs3,3d, f0fs3,1d − fs1,− 1dfs2,2d, fs1,1d,

fs3,− 1d − fs3,1dfs1,− 1d, f0fs3,− 1d − fs1,1dfs2,− 2d → 4a0 − 2 =as3,1d = as1,− 1d − 2sa0 − 1d

= as3,− 1d − 6sa0 − 1d = as2,− 2d − 8sa0 − 1d, fs2,− 2dFs0,2p + 1d − fs1,− 1dFs1,2pd → as2,

− 2d

= as1,− 1d → a0 = 1,f0fs0,4d − fs2,2d2as0,4d = as0,zd = 1,asx Þ 0,zd = 2→ A1.

In sA1d we have threesx,zd→ uxu+ uzu=6 and otheruxu+ uzu=0,2,4→ all even values.
A 2, Lemma 5: With s2.12d and s2.13d, the modelM =2p /5, pù3, q=2 is physical.
Proof: s2.9d, s2.12d, ands2.13d, q=2→as2,2d=as3,3d=as3,7d=2, as0,4d=2−a0=as1,5d /2,

as1,7d=as1,3d=10−8a0, as3,5d=16−14a0. We add fs3,7dfs1,5d− fs1,7dfs3,5d→as3,5d=6a0

−4=16−14a0→a0=1→as0,4d=1,as1,3d=as1,7d=as3,5d=2,
→fs0,2dfs0,4d− fs1,3d2→as0,2d=1, fs0,2dfs2,2d− fs1,1dfs1,3d→as1,1d=2→ uxu+ uzu=0,2,4
→ all even values for light densities.

A 3, Lemma 6:The M =2p /7, pù4, q=3, Figs. 4sad and 4sbd model is physical with
s2.12d–s2.15d.

Proof: s2.12d–s2.15d →a3=as4,10d=as4,2q+4d=asq+1,3q+1d=2=6a1+10sa0−2d, s2.13d
and s2.14d →a2=as3,9d=asq,3qd=10−8a0=as3,2q+3d=3a1+4sa0−2d→3a1=11−5a0=18
−12a0→a0=1→a1=a2=a3=2, etc.

The physicalas0,zd=1, asxÞ0,zd=2 for the light, havezùq=3 fFig. 4sadg, but with squares,
rectanglessthree knownd giving lower z values we get for the light,uxu+ uzu=0,2,4→ all even.

A 4, Proof for Lemma 7, light collisions ak=ksk+1da1/2+sksk+1d−2dsa0−2ds2.16d,

Lk = fsk,2q + k + 2dfs1,2q + 1d − fsk + 1,2q + k + 1dfs0,2q + 2d with s3a1d → ak ª ask + 1,2q + k

+ 1d = ask,2q + k + 2d, ∀ k = 1,2,q, bk ª ask + 2,2q + kd, k = 1,q − 1,

s2 . 14d → b0 = as2,2qd = as2,2q + 2d = a1 andb1 = as3,2q + 1d = 2a1 + 2sa0 − 2dsA2d.

We have definedak,bk and previousak, k=1,2,3 ins2.14d and s2.15d are generalized∀k.3.
Collisions: fsk+1,2q+k+1dfsk+1,2q+k−1d− fsk,2q+kdfsk+2,2q+kd, fsk+2,2q+k

+2dfsk,2q+kd− fsk,2q+k+2dfsk+2,2q+kd, →bk=bk−1+ak−ak−1=ak−1+ak+1−ak, kù2.
Collisions: fsk+2−k8 ,2q+k−k8dfsk,2q+k+2d− fsk−k8 ,2q+k+2−k8dfsk+2,2q+kd→bk

=bk−2+ak−ak−2··=bk−k8+ak−ak−k8··=b1+ak−a1=a1+ak+2sa0−2d→ak+1=2ak−ak−1+a1+2sa0−2d
→ak=2ak−1+a1−ak−2+2sa0−2d, kù3 s2.18d. s2.16d for ak was satisfied fora2,a3 in s2.14d and
s2.15d, now with the lasts2.18d, we verify also fora4,a5,

a4 = 2a3 + a1 − a2 + 2sa0 − 2d = 10a1 + 18sa0 − 2d,a5 = 2a4 + a1 − a3 + 2sa0 − 2d = 15a1 + 28sa0

− 2d.

For thes2.16d proof, we substituteak−1, ak−2 fwritten with s2.16dg into the lasts2.18d and verify the
s2.16d ak. For bk, with s2.18d we getbk=sksk+1d+2da1/2+ksk+1dsa0−2d.
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APPENDIX B: MODELS WITH M= „2p+1… / „2q+1…>1 „APPENDIX B 1–B 3 …

B 1, Lemma 10, Fig. 5(a).With a0=1sf0d, the modelM =s2p+1d /3, q=1 is physical. For a
collision with the fourasx,zd functions ofa0, the compatibility leads toa0=1.

old, f: → 2 = as1,1d = as1,5d = as2,2d = as2,4d,

as0,6d = a0, as0,2d = as0,4d = 2 −a0 = as1,3d/2,as3,3d = 2a0,

new, f:fs4,2d, fs4,4d, fs3,5d, fs3,1d → asx,zÞ 0d = 1,2sx = 0, Þ 0d.

Proof: G2= fs4,2dFs2p,zd− fs2,2dFs2p+2,zd→as4,2d=2 sphysicald, oddz=1,3, etc.,

fs2,4dfs4,2d − fs2,2dfs4,4d → as4,4d = 2sphysicald, fs1,5dfs3,3d − fs1,3dfs3,5d → as3,5d

= 4a0 − 2, fs2,4dfs4,4d − fs3,5dfs3,3d → 6s1 − a0d = 0, → 1 = a0

= as0,id,i = 0,2,4,as4,2d = as2,2d = as1,3d = 2, fs2,2dfs4,2d

− fs3,3dfs3,1d → as3,1d = 2, → uxu + uzu = 0,2,4,even . sB1d

B 2, Proof for (B2) and (B3):We introduce arbitrarya1sā1=a1d anda2 function of a0,a1,

fs1,4q − 1dfs2q − 1,2q + 3d − fs2q − 2,2q + 2dfs2,4qd → a1 ª as1,4q − 1d = as2q − 2,2q + 2d,

fs2q − 2,2qdfs2,2d − fs1,3dfs2q − 1,2q − 1d → ā1 ª as2q − 2,2qd = as1,3d, sB2d

fs2q − 2,2qdfs2q + 1,2q + 1d − fs2q − 1,2q − 1dfs2q,2q + 2d → ā1 + 2a0 − 2 =as2q,2q + 2d,

fs2q − 2,2q + 2dfs2q + 1,2q + 1d − fs2q − 1,2q + 3dfs2q,2qd → a1 + 2a0 − 2 =as2q,2qd,

fs2q − 2,2q + 2dfs2q,2qd − fs2q − 2,2qdfs2q,2q + 2d → a1 = ā1, fs2q − 2,2q + 2dfs2q − 2,2qd

− fs2q − 3,2q + 1dfs2q − 1,2q + 1d → a2 ª as2q − 1,2q + 1d = 2a1 − 4 + 2a0. sB3d

Fig. 5(b): Proof for sB4d–sB6d with s3.5d, s3.6d, sB2d, and sB3d. We geta1,a2,a3, as1,4q
−3d in terms ofa0,

G2 = fs2q + 3,2q − 1dFs2p − 1,zd − fs2q − 1,2q − 1dFs2p + 3,zd, fs2q − 1,2q + 3dfs2q + 3,2q − 1d

− fs2q − 1,2q − 1dfs2q + 3,2q + 3d, → 2 = as2q + l,2q + md,l = − 1,3, m = − 1,3 , sB4d

fs2q − 2,2qdfs2q + 3,2q + 3d − fs2q − 1,2q − 1dfs2q + 2,2q + 4d → a1 = as2q + 2,2q + 4d,

G3 = fs2q + 4,2q − 2dFs2p − 2,zd − fs2q − 2,2q − 2dFs2p + 4,zd, G4 = fs2q − 2,2q + 4dFsx,2p

− 2d − fs2q − 2,2q − 2dFsx,2p + 4d, fs2q + 4,2q + 4dfs2q − 2,2q − 2d − fs2q − 2,2q

+ 4dfs2q + 4,2q − 2d → a3 ª as2q + l,2q + md, l = − 2,4, m = − 2,4, fs2q − 2,2q

+ 2dfs2q + 4,2q − 2d − fs2q − 2,2q − 2dfs2q + 4,2q + 2d → a1 = as2q + 4,2q

+ 2d, fs2q − 1,2q + 1dfs2q + 4,2q + 2d − fs2q + 2,2q + 4dfs2q + 1,2q − 1d, fs2q − 1,2q

+ 1dfs2q + 1,2q − 1d − fs2q − 1,2q − 1dfs2q + 1,2q + 1d → a2 = as2q 7 1,2q ± 1d = 1 +a0

= 2a1 − 4 + 2a0 → 2a1 = 5 −a0, 2as2q,2qd = 1 + 3a , sB5d
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fs2q + 4,2q + 2dfs2q − 2,2qd − fs2q + 2,2q + 4dfs2q,2q − 2d → a1 = as2q,2q − 2d, fs2q

− 2,2qdfs2q,2q − 2d − fs2q,2qdfs2q − 2,2q − 2d → a3 = as2q − 2,2q − 2d = s9

− 5a0d/2, fs2q − 2,2q − 2dfs1,4q − 1d − fs2q,2qdfs− 1,4q − 3d → as±1,4q − 3d = s13

− 9a0d/2 . sB6d

Figure 5scd with s3.5d–s3.11d →a0=1 theM =s2p+1d /5, q=2 model is physical,

as0,4d = 2 −a0, 2 =as2,2d = as3,3d, as1,5d = 4 − 2a0 = s13 − 9a0d/2 → a0 = 1, as1,5d

= 2, a1 = s5 − a0d/2 = 2 =as1,3d.

For uxu+ uzu=0,2,4 only as0,2d=1, as1,1d=as3,1d=2 are missing but given with:fs0, j
+1dfs0, j −1d− f2s1, jd, j =3, 1, fs1,1dfs3,3d− fs1,3dfs3,1d→ uxu+ uzu all even values.

B 3, Fig.5(b): With sB4d as2q+l ,2q+ld=2, l=−1, 3 and a collisionfs2q−b ,2q+b
−2dfs2q+3,2q+3d− fs2q−b+4,2q+b+2dfs2q−1,2q−1d, we get

Asbd = as2q − b,2q + b − 2d = as2q − b + 4,2q + b + 2d . sB7d

With squaressthree knownd and collisionsL̄isbd, we successively getsB8d and sB9d,

L̄1sbd = fs2q − b,2q + b + 2dfs2q − b,2q + b − 2d − fs2q − b + 2,2q + bdfs2q − b − 2,2q + bd,

L̄2sbd = fs2q − b,2q + b − 2dfs2q − b + 4,2q + b + 2d − fs2q − b + 4,2q + b + 2dfs2q − b,2q + b

+ 2d.

We start withL̄1s1d, successfully withsB7d and L̄2sbd, L̄1sbd, b=3,5,7,… we get

as2q − 3,2q + 1d = 4 − 2a0, as2q − 3,2q + 5d = 8 − 6a0, as2q − 5,2q + 3d = 10 − 8a0, as2q

− 5,2q + 7d = 18 − 16a0, as2q − 7,2q + 5d = 20 − 18a0, as2q − 7,2q + 9d

= 32 − 30a0,… . sB8d

Going on, we deduce generalasx,zd with x decreasing,z increasing,b odd,

b = 1,3,5,…,Asbd = as2q − b,2q + b − 2d = 2 + s1 − a0dsb − 1d2/2,

Bsbd = as2q − b,2q + b + 2d = 2 + s1 − a0dsb − 1dsb + 3d/2 sB9d

that we verify in L̄isbd, i =1, 2 with Asbd+Bsbd=Asb+2d+Bsb−2d=4+s1−a0dsb2−1d , 2Asbd
=Bsb−4d+Bsbd=4+s1−a0dsb−1d2.
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The coupled diffusion process, which describes Brownian motors, is an important
model in the physics related to biophenomena. We address the exponential conver-
gence of the Markov semigroup of a coupled diffusion process, and show the
spectral gap inequality and Log-Sobolev inequality by comparing them with those
of related diffusion processes. At the end of the paper, we provide sufficient con-
ditions for a coupled diffusion process to converge exponentially. ©2005 Ameri-
can Institute of Physics.fDOI: 10.1063/1.1931040g

I. INTRODUCTION

Coupled diffusion processessor CDP for shortd model the systems of molecular motors, which
attract much interest from physicists and biologists in recent years.2,9,12,4,8,16In the biological
phenomena such as proteins in muscle fibers and eucariotic intracellular transport, macromol-
ecules move along filaments called the track. It is crucial that there are several inner states of the
macromolecules, and the chemical reaction causes transitions of the macromolecules among dif-
ferent inner states, while free energy of the chemical reaction can be converted to mechanical
energy through ratchet effects.7,3,17 The macromolecule thus becomes a motor, and is called a
Brownian particle coupled with a chemical reaction. The motion of the motor along the filament
is steplike, and the process is modelled as a Brownian motion at small scales in the level of
nanometer and nanosecond. The impact of underlying chemical reaction can be considered as a
particle source,10,11hence the Fokker–Planck equation ofrk, the probability density of the particles
in the kth inner state, should be

]rksx,td
]t

+
]Jksx,td

]x
= − qkksxdrksx,td + o

l;lÞk

qlksxdrlsx,td,

whereqkl describes the rate of the underlying chemical reaction,

Jk = mk
−1s− kBT ] rk/]x − rk ] Wk/]x + rkfextd

is the particle current,mk andkB are constants,T is the temperature,Wk is the potential along the
filament, andfext is an external force field. In experimental situations, motors are observed moving
long filaments towards their extremities. In other words, there is a net directional movement of the
particle.2,12,11,17The potential of force along the filaments is generally periodic, and asymmetry
within a period is indispensable for this phenomena.8 Ratchet effect is related to the phenomena of
stochastic resonance.1,16,13 We refer to Ref. 16 as a comprehensive paper about the systems of
molecular motors.

According to the ideas in Refs. 8 and 16, there are two components in describing the state of
a particle at timet. One is the inner state of the motor, which is denoted byKt, and the other is the
space position of the motor, which is denoted byXt. In this paper, we consider systems without
external force fields, hencehsKt ,Xtd : tù0j is a homogeneous Markov process with state space
X=h1,… ,Nj3Rd, and obeys the following mechanism:
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dXt = ÎAsKt,XtddBt + sb + 1
2¹TAdsKt,Xtddt,

PsKt+Dt = l uKt = k,Xtd = qklsXtdDt + osDtd, l Þ k,

whereAsk,xd is a d3d positive definite matrix,bsk,xd is a d-dimensional vector,qklsxdù0, and
hBt : tù0j is a Brownian motion onRd. Denote

Lk = 1
2 ¹ · sAsk, · d ¹ d + bsk, · d · ¹ .

Then the generator ofhsKt ,Xtd : tù0j has the following form:

Lfsk,xd = Lkfsk,xd + o
l:lÞk

qklsxdsfsl,xd − fsk,xdd.

Suppose the coefficients are smooth. In order that there is no explosion and that the process is
not reducible, we supposeqklsxd is bounded for allk, l, and for anyk, l, there arer ù0, k1,… ,kr

andx1,… ,xr+1[Rd such that

qkk1
sx1dqk1k2

sx2d¯qkr−1kr
sxrdqkrl

sxr+1d . 0.

In Ref. 14, we construct a CDP with generatorL under the above assumptions.
In this paper, we address the exponential convergence of the CDP. LethTstd : tù0j be the

semigroup of a Markov process,m be its invariant distribution. We say thatTstd converges
exponentially if there existsd.0 such that for anyf [L2sX ,md,

iTstdf − Emfi ø Csfde−dt, s1d

whereEmf =ef dm, i·i is theL2 norm with respect tom, andCsfd is a constant relying onf. Let

hT̄std : tù0j be the symmetrization ofhTstd : tù0j with respect tom. It is already known that

iTstdf − Emfi ø iT̄stdf − Emfi.

Hence we are only concerned with the case thatTstd is symmetric. In this case, its generatorA is
self-adjoint inL2smd, and Eq.s1d is equivalent to that

kAf, fl ø − dif − Emfi2, ∀ f [ DsAd, s2d

wherek·,·l is the inner product inL2smd, DsAd is the domain ofA. We say thatA satisfies the
spectral gap inequality, orA has a spectral gap if it satisfiess2d. Another inequality, which ensures
s1d is the log–Sobolev inequality. We call thatA satisfies the log–Sobolev inequality with constant
cs.0d if

Emf2 log f2 − Emf2 log Emf2 ø − ckAf, fl, ∀ f [ DsAd.

In this paper, when we mention the spectral gapslog–Sobolevd inequality about a generator, the
probability measure is taken as its symmetric distribution.

The problem whether the generator satisfies the spectral gap inequality or the log–Sobolev
inequality attracts much attention. For diffusion processes, there exist already considerable refer-
ences, e.g., Refs. 5 and 6. The spectral gap inequality as well as the log–Sobolev inequality has a
multiplying property, if two reversible Markov processes satisfy the spectral gapslog–Sobolevd
inequality, then the independent coupling of them also does, whose generator is the sum of those
of the two independent processes. Although the CDP is not an independent coupling of aQ
process and a diffusion process, its generator is naturally separated into two parts explicitly. One
is a diffusion generator caused byhXt : tù0j and the other is aQ matrix caused byhKt : tù0j. We
use the fact that theQ matrix is finite and negative in some sense to show that in the specific
model of CDP, the spectral gap inequality can be simplified into those of diffusion processes. It is
much better than the multiplying property. Letqkksxd=−ol:lÞkqklsxd and Qsxd=sqklsxdd. Suppose
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hsKt ,Xtd : tù0j is a reversible CDP with initial distributionu. HenceL is symmetric inL2sX ,ud. In
the beginning of Sec. II, we show that this implies the existence of symmetric densities ofLk and
Qsxd.

Theorem 1: If Lk satisfies the spectral gap inequality for all k, thenL also does.
Theorem 2: Supposeu is a product measure. IfLk andQsxd satisfy the log–Sobolev inequal-

ity with constant c for all k and x, thenL also does.

II. THE RELATIONSHIP BETWEEN D„L… AND D„Lk…

We begin this section with discussing the relationship of the symmetric measure ofL with
those ofLk and Qsxd. SincehsKt ,Xtd : tù0j is reversible,V=log u is a potential of 2A−1b, and
husk,xd :k=1,… ,Nj is a reversible measure of theQ-matrix Qsxd for any x[Rd. Since the CDP
is unexploded andQ is bounded, the diffusion process generated byLk is unexploded. Therefore,
the normalization ofusk, ·d on hsk,xd :Rdj,

rksxd = usk,xd/pk, wherepk =E usk,xddx,

is a reversible distribution density ofLk.
For the sake of the reader, we recall the construction of the process in Ref. 14. Let

CsRdd = the set of all bounded continuous functions onRd;

CsXd = the set of all bounded continuous functions onX;

C0sXd = hf [ CsXd:lim uxu→+` fsk,xd = 0, ∀ kj;

C0
`sXd = hf [ CsXd: f is smooth and has a compact supportj;

Bn = hsk,xd:uxu , nj;

C0sBnd = hf [ CsXd:f uBn
c = 0j;

C0
`sBnd = hf [ C0

`sXd:suppsfd , Bnj.

For anyl.0 andg[C0sBnd, there is a unique solution ofsl−Ldf =g in C0sBnd, which is
denoted byRnsldg. Choosehn such that

hn [ C0
`sBnd, 0 ø hn ø 1, uhnuBn−1

= 1. s3d

Then for any l.0 and nonnegativeg[CsXd, Rnsldshngd increases pointwise. Hence
Rnsldshngd converges pointwise for anyg[CsXd. Denote the limit byRsldg. Then it belongs to
CsXd and is a global solution ofsl−Ldf =g. Rsld is a positive continuous linear operator onCsXd,
and iRsldgi`ø igi` /l, where i ·i` is the supremum norm. Moreover, we show in Ref. 14 the
following.

Lemma 2.1:If gn[C0sBnd is non-negative and increases to g[CsXd as n→`, then Rnsldgn

increases to Rsldg.

Let ĈsXd be the minimal Banach space containingC0sXd and invariant underhRsld :l.0j.
Then hRsld u ĈsXd :l.0j is a resolvent according toL with domainDsLd=RsldĈsXd. Hence it

corresponds to a contraction semigrouphSstd : tù0j on ĈsXd. Moreover,C0
`sXd,DsLd.

Recall thatu is an invariant distribution. In order not to cause ambiguity, we denote by

DsL ,L2d the domain ofL in the spaceL2sX ,ud, by hS̃std : t.0j andhR̃sld :l.0j the correspond-
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ing Markov semigroup and resolvent. Then they are extensions ofhSstd : t.0j and hRsld u ĈsXd :l

.0j, respectively. The following proposition tells ushR̃sld :l.0j is in fact an extension of

hRsld :l.0j. As to Lk, recall thatrk is its invariant distribution. LetDsLk,L2d, R̃skdsld, Rn
skdsld,

andRskdsld be the corresponding notation.
Proposition 2.2:For any l.0 and any k[ h1,… ,Nj,

uR̃slduCsXd = Rsld, uR̃skdslduCsRdd = Rskdsld.

Proof: For any non-negative functionf [CsXd, choosefn[C0
`sXd such that 0ø fnø f and fn

increases tof asn→`. On the one hand, by Lemma 2.1,Rnsldfn increases toRsldf. This together
with that RnsldfnøRsldfnøRsldf implies thatRsldfn converges toRsldf. On the other hand,

Rsldfn=R̃sldfn sincefn[C0
`sXd,DsLd. Notice thatfn converges tof in L2. R̃sldfn converges to

R̃sldf in L2 sinceR̃sld is continuous with respect to theL2 norm. Therefore,

Rsldf = lim
n→+`

Rsldfn = lim
n→+`

R̃sldfn = R̃sldf ,

i.e., uR̃slduCsXd=Rsld. As to Lk, the result holds by the same deduction. h

Proposition 2.2 implies that

RsldCsXd = R̃sldCsXd , R̃sldL2sX,ud = DsL,L2d.

Proposition 2.3:RsldCsXd is a kernel ofsL ,DsL ,L2dd, i.e., it is a dense subset under the
graph norm:ifiL=ifi+iLfi for any f[DsL ,L2d.

Proof: For any f [DsL ,L2d, there existsg[L2sX ,eVd such thatf =R̃sldg. Since CsXd is

dense inL2sX ,eVd, there existsgn[CsXd such that limn→+` ign−gi=0. Hencefn=R̃sldgn con-
verges tof in L2, which implies thatLfn=lfn−gn converges tolf −g=Lf in L2. In other words,
fn converges tof in i ·iL. This together with Proposition 2.2 yields the result. h

Proposition 2.4:For any l.0,

RsldCsXd , hf:fsk, · d [ RskdsldCsRdd, ∀ kj.

Proof: Supposef [CsXd. We assume thatf ù0 first. Let fn= fhn, g=Rsldf, gn=Rnsldfn,
wherehn satisfiess3d. Sincesl−Ldgn= fn, gnsk, ·d is a solution of

sl − Lkdw = fnsk, · d + o
l=1

N

qklgnsl, · d,

in C0sBnd. Therefore,

gnsk, · d = Rn
skdsldS fnsk, · d + o

l=1

N

qklgnsl, · dD
= Rn

skdsldfnsk, · d + Rn
skdsldS o

l:lÞk

qklgnsl, · dD − Rn
skdslds− qkkgnsk, · dd. s4d

By Lemma 2.1, sincefn increases tof, gn increases tog. Hence asn→ +`, the non-negative
functions fnsk, ·d, ol:lÞkqklgnsl , ·d, and −qkkgnsk, ·d in C0sBnd, respectively, increase tofsk, ·d,
ol:lÞkqklgsl , ·d, and −qkkgsk, ·d. Notice thatQ is bounded, andf, g[CsXd. The limit functions
belong toCsXd. By Lemma 2.1, the right most functions ins4d converge asn→ +`, and
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Rsldfsk, · d = lim
n→+`

gnsk, · d

= Rskdsldfsk, · d + RskdsldS o
l:lÞk

qklgsl, · dD − Rskdslds− qkkgsk, · dd [ RskdsldCsRdd.

Then, for anyf [CsXd and anyk,

Rsldfsk, · d = Rsldf+sk, · d − Rsldf−sk, · d [ RskdsldCsRdd,

which implies the result. h

Proposition 2.4 together with Proposition 2.3 yields that there exists a dense subset of
DsL ,L2d contained inDsL1,L2d %¯% DsLN,L2d.

III. PROOFS OF THE MAIN RESULTS

Lemma 3.1(Ref. 15, Theorem XIII.1): SupposeA is self-adjoint on the Hilbert spaceH, and
is bounded above. Let

msA,g1,…,gnd = suphkAg,gl:g [ DsAd,igi = 1,kg,gil = 0,i = 1,…,nj,

mnsAd = infhmsA,g1,…,gnd:g1…,gn [ Hj.

Then eithermnsAd=supsesssAd, or ssAdù smnsAd ,`d is a finite set.
Proof of Theorem 1:Recall thatpk=eusk,xddx, andrksxd=usk,xd /pk is the symmetric dis-

tribution of Lk. Given k, since Lk has a spectral gap, there existsdk.0 such that for any
F[DsLk,L2d,

kLkF,Flrk
ø − dkSE F2sxdrksxddx − SE FsxdrksxddxD2D ,

where k· , ·lrk
is the inner product inL2sRd,rkd. By Proposition 2.4, for anyf [RsldCsXd,

fsk, ·d[DsLk,L2d for any k, hence

kLf, fl = o
k=1

N

pkkLkfsk, · d, fsk, · dlrk
+ o

k,l=1

N E usk,xdqklsxdfsk,xdfsl,xddx ø o
k=1

N

pkkLkfsk, · d, fsk, · dlrk

ø − o
k=1

N

pkdkSE f2sk,xdrksxddx − SE fsk,xdrksxddxD2D
ø − difi2 + Mo

k=1

N

pkSE fsk,xdrksxddxD2

, s5d

whered=d1∧¯∧dN, M =d1∨¯∨dN, and the first inequality holds sinceQsxd is a generator and
hence negative. By Proposition 2.3, for anyf [DsL ,L2d, there arefn[RsldCsXd, nù1, such that

lim
n→+`

ifn − fiL = 0. s6d

On the one hand,s5d holds for fn since fn[RsldCsXd. On the other hand,fnsk, ·d converges to
fsk, ·d in L2sRd,rkd, hence also inL1. It follows that

lim
n→+`

E fnsk,xdrksxddx =E fsk,xdrksxddx.

This together withs6d yields thats5d holds for f, since it holds forfn. Let 1k be the function which
is 1 in thekth Rd and vanishes outside, i.e.,
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1ksl,xd = H1, if l = k,

0, otherwise.

Then kf ,1kl=0 if and only if eRdfsk,xdrksxddx=0. Therefore, bys5d, msL ,11,… ,1Ndø−d.
HencemNsLdø−d,0. It follows that L has a spectral gap sinceL has only finite spectra in
smNsLd ,0g. h

Proof of Theorem 2:To simplify the notation, for any functionf on X, we denotefksxd
= fsk,xd and fWsxd=sf1sxd ,… , fNsxdd. Let w : sR+dN→R,

wsgWd = EpgW log gW − EpgW log EpgW = o
k=1

N

pkgk log gk − So
k=1

N

pkgkDlogSo
k=1

N

pkgkD .

Now we check that the Hessian matrix ofw is positive semidefinite, and hencew is convex ingW.
Notice that

]w

]gk
sgWd = pkSlog gk − log o

l=1

N

plglD ,

]2w

]gk ] gl
sgWd =5pk/gk − pk

2So
r=1

N

prgrD−1

, if k = l ,

− pkplSo
r=1

N

prgrD−1

, if k Þ l .

For any vectorvW with dimensionN,

vWT HessswdsgdvW = o
k=1

N

pkvk
2/gk − S o

k,l=1

N

pkplvkvlDSo
r=1

N

prgrD−1

= o
k=1

N

pkvk
2/gk − So

k=1

N

pkvkD2So
r=1

N

prgrD−1

is non-negative since

So
k=1

N

pkvkD2

= So
k=1

N

spkgkd1/2sspk/gkd1/2vkdD2

ø So
k=1

N

pkgkDSo
k=1

N

pkvk
2/gkD .

Hencew is convex. Thus for any non-negative functiong on X,

wsErgWd ø ErwsgWd =E wsgWsxddrsxddx.

For any f [RsldCsXd, let g= f2, and it follows that

Euf2 log f2 − Euf2 log Euf2 = EpsErf2 log f2 − Erf2 log Erf2d + sEpsErf2 log Erf2d

− EpErf2 log EpErf2d = o
k=1

N

pksErf2sk, · dlog f2sk, · d

− Erf2sk, · dlog Erf2sk, · dd + wsErgWd ø − co
k=1

N

pkErkLkfsk, · d, fsk, · dlr
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+ ErwsgWd ø − co
k=1

N E sLkfsk,xddfsk,xdpkrsxddx − cE o
k=1

N

pkfsk,xd

3So
k=1

N

qklsxdfsl,xdDrsxddx = − ckLf, fl,

where the first inequality holds sincefsk, ·d[DsLk,L2d. For anyf [DsL ,L2d, takefn[RsldCsXd
such that limn→+`ifn− fiL=0. Choose a subsequence, which is still denoted byfn, such that it
converges almost surely. By the Fatou lemma,

Euf2 log f21huf uù1j ø lim
n→+`

inf Eufn
2 log fn

21hufnuù1j.

By the bounded convergence theorem,

Euf2 log f21huf u,1j ø lim
n→+`

Eufn
2 log fn

21hufnuù1j.

Hence

Euf2 log f2 − Euf2 log Euf2 ø lim
n→+`

infsEufn
2 log fn

2 − Eufn
2 log Eufn

2d

ø lim
n→+`

inf − ckLfn, fnl = − ckLf, fl,

which implies the result. h

At the end of this paper, we give a sufficient condition for the CDP to have a spectral gap. In
fact, we show the following.

Lemma 3.2:Let L= 1
2D+ 1

2 ¹V.¹ be a generator of a diffusion process, and eV be a reversible

density. Suppose there is a multiplication operator U˜ , relative compact with respect to the Laplace
operatorD and having a lower bound, andd.0 such that

U, 1
4u ¹ Vu2 + 1

2DV ù Ũ + d. s7d

ThenL has a spectral gap.
This together with Theorem 1 yields the following.
Proposition 3.3:Let

Lfsk,xd = 1
2Dfsk,xd + 1

2 ¹ Vsk,xd · ¹ fsk,xd + o
l:lÞk

qklsxdsfsl,xd − fsk,xdd,

where qkl is bounded. Let eV be the reversible density. If for all k, Vsk,xd satisfies the condition in
Lemma 3.2, thenL has a spectral gap.

Remark 3.4:If lim inf uxu→+` Usxd.0, thens7d holds. In this case, there exist M,d ,R.0 such

that Uù−M and Usxd.d wheneveruxu.R. Hence Uù Ũ+d, where Ũª−sM +dd1uxu,R is relative
compact with respect toD in L2sRd,md.

Proof of Lemma 3.2:Let

F:L2sRd,eVd → L2sRd,md, f ° eV/2f .

ThenF is an isomorphism. HenceL̃=FLF−1= 1
2sD−Ud is self-adjoint onL2sRd,md and has the

same family of spectra asL in L2sRd,eVd. Now we check thatL̃ has a spectral gap inL2sRd,md.
Since Ũ is relative compact with respect toD, D−Ũ has the same essential spectra asD.

Therefore,
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sesssD − Ũd = sesssDd = s− `,0g.

It follows that supsesssD−Ũd=0. Notice thatŨ is bounded below, which implies thatD−Ũ is

bounded above. By Lemma 3.1,mnsD−Ũd,d /2 for largen. Hence

mnsD − Ud ø mnsD − Ũ − dd = mnsD − Ũd − d , − d/2. s8d

It is concluded that the spectra ofD−U in f−d /2 ,0g are discrete. HenceD−U has a spectral gap,

which implies thatL̃=sD−Ud /2 does. Therefore,L has a spectral gap. h
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We derive the stochastic dynamics for scattering of a wavelike field from a large
population of scatterers whose dynamics is arbitrary. This leads to a result concern-
ing the observability of the scattering cross section in terms of the resultant phase
fluctuations that is independent of the population dynamics. An emergent concept is
a certain notion of an ideal filter. The diffusion based model ofK-scattering arises
as a special case. The experimental implications of the results in a variety of
contexts are discussed. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1926147g

I. INTRODUCTION

Motivated by the possible application of the recent results on electromagnetic scattering from
random media to more general situationsse.g., medical imaging, wireless communicationsd than
those encompassed by theK-distribution modelsField and Tough, 2003a, 2003bd, the paper
describes an interesting result in connection with inference of the scattering cross section or
population, in local time. A special case of the result was reported previously in Field and Tough
s2003bd fsee paragraph above Eq.s2.35d thereing, stating that the instantaneous values of the cross
section are deducible through the phase fluctuations in the scattered field. This was demonstrated
in the context ofK-scattering. Intriguingly, the same result holds for an arbitrary population. More
precisely, given the structure of a random walk model, component phase and step number fluc-
tuations, the result holds for an arbitrary specification of population dynamics. In this sense, the
result is a geometrical feature ofsthe dynamical extension ofd Jakeman’s random walk model with
step number fluctuationssJakeman, 1980d, and as such should apply to a large number of experi-
mental situations involving interference effects of wavelike fields arising from random popula-
tions. From a filtering point of view, the result represents an improvement on Kalman–particle
filtering methods, since anexactexpression for the hidden statesthe population leveld in terms of
the additional phase degrees of freedom can be derived.

We adopt the consistent notation throughout for a continuous time stochastic processesqt,
with Ito differential dqt, and and squared volatility dqt

2.1

II. RANDOM WALK MODEL

It is well known that Rayleigh scattering can be described by a random
walk model for the scattered field amplitudescf. Jakeman, 1980; Tough, 1987;
Jakeman and Tough, 1988d with a fixed number of steps. The pertinent
expression for the resultant field amplitude according to this model is

1Thus the notation dqt
2, as occurs, e.g., for the phase process in Theorem 3.5, means that the differential is takenbeforethe

square.
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s2.1d

with sconstantd population sizeN, random phasor stepss jd, and form factorsaj.
In the aforementioned references all components of this expression are in effect considered at

a given instant of time, thus not addressing the question of continuous time evolution properties or
dynamics. This extra structure is supplied by asphased diffusion modelsField and Tough, 2003bd
which takes the component phaseshwt

s jdj to be a collection ofsdisplacedd Wiener processes evolv-
ing on a suitable time scale. Thuswt

s jd=Ds jd+B 1

2Wt
s jd, with component random initializationDs jd

uniformly distributed on the intervalf0, 2pd. In situations where the component phasorsss jd are
aligned initiallyse.g., for the receivedT2 signal arising in magnetic resonance imaging, described,
e.g., by Brown and Semelka, 2003 and discussed in Sec. IVd Ds jd are identical for allj , whereas in
some casesfe.g., the statistical description of radar scattering from the sea surface, cf. Sec. 4sbd in
Field and Tough, 2003ag it is more appropriate to drawDs jd independently. In any case, these
primitive assumptions enable us to derive the dynamics of Rayleigh scattering, essentially from
first principles. The stochastic differential ofs2.1d, according to Ito’s formulase.g., Oksendal,
1998; Karatzas and Shreve, 1988d, is given by

dEt
sNd = o

j=1

N

ajSi dwt
s jd −

1

2
dwt

s jd2Dexpfiwt
s jdg . s2.2d

If we write dzt for the first term on the right-hand side above, then fortùT, whereT is the phase
decoherence time such thathwt

s jd u tùTj have negligible correlation, we haveudztu2=so jaj
2d B dt,

and therefore dzt=so jaj
2d1/2B1/2 djt where jt is a complex-valued Wiener processssatisfying

udjtu2=dt, djt
2=0d. Defining thesnormalizedd Rayleigh amplitude bygt=limN→`fEt

sNd /N
1

2g leads to
the resultant dynamicsscf. Field and Tough, 2003bd.

Proposition 2.1: For sufficiently large times tùT the dynamics of Rayleigh scattering is given
by the complex Ornstein–Uhlenbeck equation

dgt = − 1
2Bgt dt + B 1

2 ka2l
1
2 djt. s2.3d

If hDs jdj are assumed independent then the result holds for arbitrarily small times.
If we rescale thesRayleighd amplitude according togt° ka2l−1/2gt, then the rescaled field

satisfiess2.3d with the form factors equal to unity. In what follows we shall therefore assume the
field to be scaled in this way, i.e.,ka2l=1. In the case of a fluctuating number of stepsN°Nt in

s2.1d, we define thescontinuous-valuedd cross section asxt=limNt→`
fNt / N̄g. The resultantsnor-

malizedd amplitudect=limN→`fEsNtd / N̄g therefore has the compound representation

ct = x
t

1
2gt, s2.4d

wheregt=limN→`fEt
sNtd /N

t

1
2g, and in whichxt andgt are independent processes. The intensityzt has

the compound representationzt=xtut, whereut= ugtu2 is the instantaneous intensity of the compo-
nent sunit powerd Rayleigh processscf. the analysis of asymptotic behavior and propagators in
Secs. III and IV of Field and Tough, 2003bd.

It is perhaps worth clarifying at this point the precise meaning and definitions of the various
amplitudes that have occurred in the exposition of the random walk model. We begin withE, as
the superposition ofN random phasors, whereN is fixed. For a large population,N→`, and the
root mean squaresrmsd of E tends to infinity. Thus, to obtain a finite resultant in the limit of an
asymptotically large number of scatterers, we define a normalized Rayleigh amplitudeg, by
dividing through by the rms valueN

1

2. sEquivalently, we could absorb this normalization into the
form factorsaj.d The term Rayleigh refers to the fact the the number of scatterers is fixed. In the
general case that the scattering population fluctuates in time, we define the normalized amplitude
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c as in the case of Rayleigh scattering, dividingE by the rms valueN̄
1

2, where now the number of
termsNt in the random walk fluctuates. Rearranging the resulting expression produces the com-
pound representation of the resultant amplitudes2.4d, for a general scattering process. The Ray-
leigh amplitude is then recovered if the cross section is unity.

The corresponding dynamical situation for weak scattering processes, i.e., where the fieldct

lies in sweakd superposition with a coherent offset signal%t, is described in Field and Tough
s2005d.

III. GENERALIZED POPULATION DYNAMICS

In this section we propose a general scheme for describing scattering/interference of wavelike
fields from random media, for which the statistical characteristics of thesscatteringd population are
taken to be arbitrary. With regard to the cross section and intensity variables, in Bayesian terms
one may writePsxuzd~PszuxdPsxd and interpretPszuxd as the likelihood functionL, Psxd as the
prior P andPsxuzd as the posterior distribution. InK-scattering the constantswith respect toxd of
proportionality is the reciprocalK-distribution for the intensityz. Our development shall entail the
following, that wes1d preserve the likelihoodL as the Rayleigh distribution, cf. the universality of
arguments of central limit theorem type,s2d modify the prior P, i.e., consider generalsendog-
enousd population dynamics appropriate to more complex population processes, under the assump-
tion thatxt remains an Ito processscf. Field and Tough, 2003ad, ands3d preserve the mathematical
structure of the random walk models2.1d describing the resultant amplitude process.

Accordingly we specify that the underlying signalxt is an Ito process that satisfies the gen-
eralizedsin the sense of its relationship with theK-scattering modeld stochastic differential equa-
tion sSDEd

dxt = Abt dt + s2AStd
1
2 dWt

sxd s3.1d

in which the drift and diffusion parametersbt, St are, respectively,sreal-valuedd stochastic pro-
cesses, not necessarily Ito processes, adapted to the filtrationFt

sxd corresponding to the Wiener
processWt

sxd. In other words, the continuous population dynamics is taken to lie within the general
category of Ito processes. The special case of a diffusive population behavior arises when the SDE
parameters are functions of state, i.e.,bt=bst ,xtd and St=Sst ,xtd for given functionsbs· , ·d and
Ss· , ·d, in which case a corresponding Fokker–Planck description for the time evolution of the
probability density is possiblese.g. Risken, 1989d. The case ofK-scatteringsa special type of
diffusion modeld is obtained by settingbst ,xd=sa−xd, Sst ,xd=x, and arises as the continuous-
valuedslargeNd limit of the birth–death–immigrationsBDId modelssee Bartlett, 1966; Field and
Tough, 2003bd. We shall not require thatxt be a diffusion in what follows, however. The gener-
alized dynamics of the resultant amplitude process can now be derived according to the scheme
outlined at the end of Sec. II. For arbitrarygt, xt an application of Ito’s formula tos2.4d yields

dct

ct
=

dgt

gt
+

dxt

2xt
−

dxt
2

8xt
2 . s3.2d

This enables the resultant amplitude dynamics to be calculated under the assumption thatgt is a
unit power Rayleigh process according tos2.3d, with unit form factors.

Proposition 3.1: The generalized resultant amplitude dynamics is given by

dct

ct
= FAS bt

2xt
−

St

4xt
2D −

1

2
BGdt + SASt

2xt
2 D

1
2
dWt

sxd + SB 1
2

gt
Ddjt. s3.3d

Observe that] /]B acting on the drift/volatility parameters ins3.3d yields expressions that are
independent ofbt, St, as expected from the endogenous specification of population dynamicss3.1d.
Using the vanishing of the Ito products djt

2, djt dWt
sxd and the propertyudjtu2 =dt the above result

yields the squared amplitude fluctuations as follows.
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Corollary 3.2:

Sdct

ct
D2

=
ASt

2xt
2 dt, s3.4d

udctu2 = SAStzt

2xt
2 + BxtDdt. s3.5d

The generalized intensity dynamics can be computed from Proposition 3.1 and the identity
dzt;ct dct

* +ct
* dct+dct dct

* .
Proposition 3.3: The generalized intensity SDE is given by

dzt = FASbtzt

xt
D + Bsxt − ztdGdt + s2AStd

1
2S zt

xt
DdWt

sxd + s2Bxtztd
1
2 dWt

srd, s3.6d

where

sgt
* djt + gt djt

*d ; S2zt

xt
D 1

2
dWt

srd. s3.7d

The intensity squared volatility is

dzt
2 = 2ztSAStzt

xt
2 + BxtDdt. s3.8d

The propositions above reduce to the appropriate expressions inK-scatteringscf. Field and
Tough, 2003a, 2003bd for appropriate choice ofb, S. In respect of the generalized resultant phase
dynamics, recallsField and Tough, 2003bd the identity for the phase differential in terms of the
amplitude

dut ; JFdct

ct
−

1

2
Sdct

ct
D2G , s3.9d

whereJ denotes the imaginary part. Since the right-hand side ofs3.4d is real valued, only the first
term on the right-hand side ofs3.9d contributes to dut, in respect of which

JFdct

ct
G =

B 1
2

2i
Sdjt

gt
−

djt
*

gt
* D . s3.10d

Thus we can deduce the phase behavior for a general population.
Proposition 3.4: The generalized resultant phase dynamics is given by the SDE,

dut = SBxt

2zt
D 1

2
dWt

sud, s3.11d

where Wt
sud satisfies

1

i
sgt

* djt − gt djt
*d ; S2zt

xt
D 1

2
dWt

sud. s3.12d

Observe that, in contrast to the situation for the resultant amplitude and intensity SDEss3.3d
ands3.6d, this isfunctionallyidentical to the corresponding result inK-scatteringsi.e., independent
of the population parametersbt, Std, the essential difference lying in theevolutionarystructure of
the processesxt, zt. Observe froms3.7d and s3.12d that the radial and angular fluctuations in the
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resultant amplitude are statistically independent in the general case. The squared phase volatility
obtained froms3.11d leads to the central result of the paper.

Theorem 3.5: The instantaneous values of the scattering cross section are observable through
the intensity-weighted squared phase fluctuations according to

xt =
2

Bzt dut
2/dt s3.13d

if xt is an Ito process, not necessarily a diffusion, and throughout space and time.
The sexperimentald significance of this result is that the relations3.13d is exact and moreover

independent of the dynamics ofxt. The result resemblessbut is distinct fromd the minimal variance
of the intensity-weighted phase derivative discussed in Jakemanet al., s2001d, for differentiable
processes. In the present situation however, the processes considered are not differentiable, and
instead thesquaredphase differential arises. Since the elements of the random walk models2.1d,
preserved by the generalized framework given in the exposition of this section for dealing with
general populations, are the only essential ingredients involved here, the result is geometrical in
naturescf. Fig. 1d. With regard to this geometry, the derivations above show that the dynamics of
the resultant field are not affected if the radii for each component phasor are drawn independently
from an arbitrary probability distribution.sThe result of the theorem was anticipated from a
physical point of view previously in Field and Tough, 2003a; see discussion following Proposition
4.1. therein.d

A slight complication is posed in the computation of dut
2 from experimental data, owing to the

discontinuous-valued behavior ofut at coordinate intervals of 2p. This is resolved by instead using
the scontinuous-valuedd phase-wrapped processwt=expsiutd, whose stochastic differential is dwt

=expsiutdfi dut−
1
2dut

2g, which enables the squared phase fluctuations to be computed from the
single-valued processwt via udwtu2=dut

2. In respect of discrete-time implementation, we remark
that if Wt is a Wiener process, thendWt=Wt+h−Wt is normally distributed asNs0,hd, so that its
square is a chi-squaredx2s1d variable. The sum ofn such variables is therefore distributed as
x2snd, from which an estimate of dqt

2 from dqt can be obtainedsvia the weak law of large
numbersd by considering the interval fromt to t+dt divided inton pulse intervals each of length

FIG. 1. Geometry of random walk for generalized scattering process—genericallysalmost everywhered each component
phasor point lies on two circles.

063305-5 Cross-section J. Math. Phys. 46, 063305 ~2005!

                                                                                                                                    



h and lettingn→` before taking the limitdt→dt sHowison, private communication; see also
Higham, 2004 and the exposition to Sec. 4 in Field and Tough, 2003ad. In this respect we observe
the following significant result.

Proposition 3.6: In order to achieve an improved signal to noise ratio (SNR), it is sufficient
merely to increase the pulse-rate n, without necessarily requiring a high amplitude signal xt.

The implications of this idea are discussed in Sec. IV in an experimental context, and illus-
trated with some synthetically generated data. The structure ofs3.1d ands3.6d could be interpreted
as an instance of the generalized Kalman filterssee Chap. 6 in Oksendal, 1998d in which the
unknown statext is to be estimated from observations ofzt. It is significant that in this situation the
dynamics of the filter stem from first principles and that the resulting statistics are non-Gaussian
snotwithstanding the Gaussian nature of the Wiener processd. The noise originates through two
components, namely the intrinsic system noiseWt

sxd which derives from fluctuations in thesen-
dogenously specifiedd population model, and the measurement noisejt arising from the particulars
of the wavelike interference effects. The latter should be viewed as an exogenous device whose
purpose is to probe the true underlying state of the system that is of primary interest, in this case
the signalxt.

Our development has demonstratedsan instance ofd how, instead of attempting to filter the
received signal to eliminate the noisese.g., via a Kalman or particle filterd, one can exploit the
statistical fluctuation properties of the noise in order to infer theexactvalues of the underlying
signal. This notion might appropriately be termed anideal filter and constitutes a shift of view-
point from the various conventional approaches to enhancement of signal to noise.

IV. EXPERIMENTAL IMPLICATIONS

A study of some synthetically generated data provides a clear illustration of the consequences
of Theorem 3.5 in a variety of experimental contexts. The theoretical results are conveniently
substantiated using synthetic data, as such enables direct verification of the accuracy of the state
estimation from the observations, the precise value of the hidden state being known from the
simulation. One can then compare the values of the state inferred from the observations alone,
with the exact values of the underlying hidden state recorded in the simulation. The cross section
was chosen to satisfy the SDEs3.1d with bst ,xd=a−x, Sst ,xd=x so thatxt is a gamma variate and
the process thus generated is appropriate to the types of scattering data found in radar applications
scf. Field and Tough, 2003ad. Resultant amplitude data was simulated via integration ofs3.3d,
which is achieved most effectively by a separate numerical integration of thesindependentd com-
ponent SDEss2.3d ands3.1d. We emphasize however, that the same types of numerical results as
demonstrated below should hold for an arbitrary population, as shown theoretically in Theorem
3.5. For the purposes of the simulation,a was chosen to be large, to avoid numerical difficulties
that can arise due to the singular behavior in the phase fluctuations at zeros of the intensity,
implied bys3.11d. The results of the simulation are provided in Fig. 2, which shows time series for
the observed intensity, the exact cross section generated in the simulationsi.e., the unknown state
one is trying to estimated, and the values of this state inferred from the observations of the
scattered amplitude alone. The estimate of the state follows from Theorem 3.5 which, for dis-
cretely sampled data, implies

zidui
2 ~ xini

2, s4.1d

where i is a discrete time index andhnij are an independent collection ofNs0,1d distributed
random variables. Applying a smoothing averagek·lD to the left-hand sidesthe observationsd of
s4.1d with window D=ft0−D ,t0+Dg yields an approximation toxt0

, with an error that tends to zero
as the number of pulses insideD tends to infinity andD→0 ssee discussion ofx2 statistic
following Theorem 3.5d.2 On the other hand, smoothing thezt time series, for any choice of
parameterD, does not yield the desired close correlation withxt; indeed any such attempt to

2We assume here that the sample paths ofxt are continuous, which is a consequence ofs3.1d.
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decorrelate the speckle pattern merely produces an intensity profile with the same general shape as
the originalzt, with oscillations on a time scale approximately equal toD.

The application of related earlier ideas in SDE theory to optical propagation and radar scat-
tering has been reported in Sec. 4 of Field and Tough,s2003ad. The current results should be of
additional value in these types of experiments, through the ability to estimate the underlying
scattering cross section for general scattering populations, in real time. When applied to experi-
mental data, the results herein provide means for studying the behavior of random media based on
statistical analysis of the inferred cross section alone, which has hitherto been regarded as the
hidden state of the system. The electromagnetic scattering process should then appropriately be
viewed as a secondary exogenous device, whose purpose is merely to extract the real time behav-
ior of the underlying scattering cross section, where the latter is the object of primary interest.

Our results also suggest the application to the physics of magnetic resonancesMRd imaging
and spectroscopy. The random mediumse.g., brain tissued lies inside a background magnetic field
B0, with which the constituentsprotond spin vectors are aligned, in their minimum energy con-
figuration. An applied RF pulse causes resonant absorption to occur, so that the spins realign,
typically at a pulse flip angle of 90° toB0. Radiation of this absorbed energy gives rise to the
received MR signalsthe free induction decay or FIDd, which is detected through the generation of
electromotive force in a coil apparatus, due to the time varying local magnetic field.3 The MR
signal has the usual in-phasesId and quadrature-phasesQd components familiar from radio theory,
and thus corresponds to the amplitude processC= I + iQ for each point in space. For a perfectly
homogeneousstotald magnetic field throughout the medium, each spin vector precesses at the
Larmor frequencyv0 about the longitudinal axis, wherev0 is given by the Larmor equationv0

3This effect is the result of Faraday’s law, i.e., Maxwell’s vector equation¹3E=−]B /]t integrated around a loop.

FIG. 2. sColor onlined Estimation of the scattering cross section/population after relaxation timeT through the effect of
phase decoherence.sFor parameter valuesa=10, D=1200 pulses,A=10−5, B=10−4 the figure shows a statistical correla-
tion between the exact and inferred cross-section time series of 0.9954.d
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=gB0 and g is the slocald gyromagnetic ratiose.g., Brown and Semelka, 2003d. sIn the radar
scattering situation described above,v0 corresponds to the Doppler frequency, arising from bulk
wave motion in the scattering surface.d However, the local inhomogeneities in the net magnetic
field, due to the local magnetic properties of the medium, give rise to a process known as spin–
spin or T2 relaxation constituting thesrandomd exchange of energy between neighboring spins.
These local perturbations in the total magnetic field can reasonably be considered as independent
for each component spin, so that the dynamics of each spin vector can be modeled as a phase
diffusion process withstransversed resultant as ins2.1d and phase initializationshDs jdj equal. After
sufficient relaxation timetùT has elapsed, phase decoherence occurs. In principle this enables the
spin population to be tracked according to Theorem 3.5, and thus real time MR images to be
generated. This application is explored in greater depth, and from a less detailed mathematical
perspective, in Field,s2005d.
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We investigate Lorentzian space–times where all zeroth and first order curvature
invariants vanish and discuss how this class differs from the one where all curva-
ture invariants vanishsVSId. We show that for VSI space–times all components of
the Riemann tensor and its derivatives up to some fixed order can be made arbi-
trarily small. We discuss this in more detail by way of examples. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1904707g

I. INTRODUCTION

Recently it was proven that in four-dimensional Lorentzian space–times all of the scalar
invariants constructed from the Riemann tensor and its covariant derivatives are zero if and only
if the space–time is of PetrovsPd-type III, N or O, all eigenvalues of the Ricci tensor are zero and
hence of Plebański–PetrovsPPd-type N or OsRef. 1d and the common multiple null eigenvector of
the Weyl and Ricci tensors is geodesic, shear-free, expansion-free, and twist-free; let us refer to
these space–times as vanishing scalar invariantsVSId space–times. VSI space–times include the
well-known pp-wave space–times.2

Since all of the scalar curvature invariants vanish, all VSI space–times are exact solutions of
higher-order Lagrangian based theoriessin which the action is given by higher order scalar cor-
rections to the usual general relativistic action based on the Ricci scalard. It has subsequently been
argued that, as in the case ofpp-waves, VSI space–times are exact solutions in string theory,3–5

when supported by appropriate bosonic massless fields of the stringssuch as, for example, a
dilaton and an antisymmetric massless fieldd. Solutions of classical field equations for which the
counter terms required to regularize quantum fluctuations vanishsi.e., they suffer no quantum
corrections to all loop ordersd are also of importance because they offer insights into the behavior
of the full quantum theory.6

In particular fundamental field theories only certain specific types of higher order corrections
occur scf. Refs. 7–9d, and so for a space–time to be a solution of a particular field theory to all
orders, with a specific effective action containing only certain higher order correction terms, it
may not be necessary forall curvature invariants to vanish. Consequently it is also of interest to
determine the set of spacetimes for whichsonlyd the zeroth order curvature invariants vanishsi.e.,
algebraic scalar invariants constructed from the Riemann tensord, denoted VSI0, those space–times
for which sonlyd the zerothand first order curvature invariants vanishsi.e., scalar invariants
constructed from the Riemann tensor and its first covariant derivatived, denoted VSI1, and so on.
In fact, it was proven in Ref. 1 that if all of the zeroth, first, and second order curvature invariants
vanish, then necessarily all scalar curvature invariants vanish; so that VSI2 is equivalent to the set
of VSI space–times.

Let us first recall some properties of VSI space–times. Utilizing a complex null tetrad in the
Newman–PenrosesNPd formalism it was shown that for P-types III and N the repeated null vector
of the Weyl tensor,a is geodesic, shear-free, expansion-free, and twist-freesand the NP coeffi-
cientsk ,s, andr are consequently zerod, and the Ricci tensor has the form
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Rab = − 2F22,a,b + 4F21,sambd + 4F12,sam̄bd, s1d

in terms of the nonzero Ricci componentsFi j . For P-type O, the Weyl tensor vanishes and so it
suffices that the Ricci tensor has the forms1d. All of these space–times belong to Kundt’s class,10

and the metrics for all VSI space–times are displayed in Ref. 1. The generalizedpp-wave solutions
are of P-type N, PP-type Osso that the Ricci tensor has the form of null radiationd with t=0, and
admit a covariantly constant null vector field.2 The Ricci tensors1d has four vanishing eigenvalues,
and the PP-type is N forF12Þ0 or O for F12=0. It is known that the energy conditions are
violated in the PP-type N models11 and hence attention is usually concentrated on the more
physically interesting PP-type O case, which in the nonvacuum case corresponds to pure radiation.

It is well known that the necessary and sufficient conditions for space–times for which the
zeroth order algebraic scalar curvature invariants vanishsVSI0d are of P-type III, N or O and
PP-type N or O. Moreover, the repeated principal null direction of Weyl must be aligned with an
eigenvector of the Ricci tensor. The last condition follows from the vanishing of the mixed
invariantsssee Sec. 3.1 of Ref. 1d. Next we determine the VSI1 space–times.

II. VSI1

We begin by assuming VSI0 and determine the conditions which imply VSI1. From the
Bianchi identities it follows for VSI0 that k=0. The invariants used here are all constructed from
spinors that are symmetrized before and after contractions. Since contractions are always per-
formed with symmetrized spinors we need only give the number of indices contracted between

any two spinors. In particular, we shall make use of the following invariant,I1;s¹Cd2s¹C̄d2.
Heres¹Cd2 is used to indicate the contraction over four indices of two copies of¹sAȦ

CsBCDEd. The

result is then symmetrized and contracted with its conjugate to giveI1.

A. Petrov-type III

Using C3Þ0 with PP-type N or O, we have from the Bianchi identities thatsC3=rF12 and
k=0. Applying k=0 throughout, we find that two of the Bianchi identities yield the following
relation:

DC3 = rF21 + s̄F12 + 2sr − «dC3. s2d

ComputingI1 and usings2d, we obtain

I1 = 576
625f81sss̄C3C̄3d2 + ss̄C3C̄3XX̄+ sXX̄d2g, s3d

whereX=rF21+s̄F12+5rC3.
The vanishing ofI1 necessarily implies thats=0, thus from the Bianchi identitiesrF12=0. If

r=0 we get VSI. IfF12=0 thens3d becomesI1=576srr̄C3C̄3d2 which vanishes whenr=0, giving
VSI with PP-type Osnull radiationd.

B. Petrov-type N

Using k=0 in the Bianchi identities we find thatrF21=−s̄F12 and rF12=0. Therefore if
F12Þ0 thenr=0 implies thats=0, hence we recover VSI. IfF12=0 then two of the Bianchi
identities combine to yieldsC4=rF22. The conditionsk=F12=0 andsC4=rF22 are necessary to
characterize the VSI1 PP-O null radiation models. Suppose thats=0; then eitherr=0 and we have
VSI, or rÞ0 andF22=0 which necessarily characterizes the vacuum VSI1 models.sSee Ref. 12.d

To show sufficiency, we assumek=F12=0 and then note that the remaining curvature com-
ponents,C4 and F22, both have boost weight −2. In the compactedsGHPd formalism13 the
relevant operators have boost weight 0 or 1 and the only spin coefficients with positive boost
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weight ares and r with weights 1; it follows that the covariant derivative of eitherCABCD or
FABȦḂ will have components with only negative boost weight. Therefore, all zeroth and first order
curvature invariants vanish, implying VSI1.

C. Petrov-type O

The freedom in the frame can be used here to consider PP-type N and PP-type O null radiation
separately, and it follows trivially from the Bianchi identities thatk=s=r=0, so that we obtain
VSI. Therefore all Petrov type O VSI0 are VSI from the Bianchi identities.

In summary, the only space–times in the class VSI1 that are not VSI are of P-type N and all
havek=F12=0. The first of these VSI1 models havesC4=rF22; exact solutions were found by
Plebański.11 The second of the VSI1 models haves=F22=0, and these are the vacuum Petrov-
type N solutions withr=U+ ivÞ0. If v=0 these solutions belong to the Robinson–Trautman
class and all are known.11 If vÞ0 then the only twisting, vacuum, P-type N solution known is that
of Hauser.11

There are other cases that may also be of interest. Notice the example in Ref. 14 in which
there are scalar curvature invariants that are nonzerosconstant, depending on a cosmological
constantd while all higher order scalar curvature invariants are zero.

III. «-PROPERTY

A scalar invariant for a matrix is a polynomial of the matrix entries that is invariant with
respect to all changes of basis. It is easy to characterize all such invariants. LetM be annÃn
matrix. The characteristic polynomial ofM is given by

pMsxd = detsxI − Md = xn + o
j=1

n

s− 1d js jsMdxn−j .

The expressionss jsMd are called the elementary symmetric polynomials ofM and are the scalar
invariants ofM fs1sMd is just the trace ofM and snsMd is the determinantg. All other scalar
invariants can be given as polynomials ofs1sMd ,s2sMd ,… ,snsMd. A matrix M for which the
characteristic polynomial is justxn is nilpotent. Now a matrix with the«-property, i.e., the property
that all entries can be made smaller than every given« by a change of basis, must be nilpotent.15

The converse is also true, that is, every nilpotent matrix necessarily possesses the«-property.
Therefore, a matrix is VSI0 if and only if it is nilpotent. Hence we anticipate that VSI space–times
will have the«-property, and this is what we prove next.

Theorem: For and only for VSI space–timessin arbitrary dimensionD and C` metricd one
can find, for arbitrarily largeN and for arbitrarily small«, a tetrad in which all components of the
Riemann tensor and its derivatives up to orderN are smaller than«.

Proof: For non-VSI space–times there always exist a nonvanishing curvature invariant. Its
value of course does not depend on the choice of the tetrad and thus there does not exist a tetrad
with the desired property. It was proven in Ref. 1 that in four-dimensional VSI space–times the
boost weight of all components of the Riemann tensor and its derivatives is negative. Thus with an
appropriate boost we can make all components of the Riemann tensor and its derivatives up to a
desired orderN arbitrarily small.16,17

h

It was pointed out by Penrose in Ref. 18 that P-types III and N have “the property that
gravitational density can be made as small as we please by a suitable choice of time axissfollow-
ing the waved.” It turns out that for VSI0 space–times, not only the gravity density but the
energy-momentum tensor can be made arbitrarily small by an appropriate boosting of the frame.
In the case of VSI1 space–times we can also make the first derivatives of the Riemann tensor
essentially undetectable, and for VSI space–times it is possible to do this for arbitrarily large
derivatives as well. Since experiments measure tetrad components of the Riemann tensor and as
every experiment has some sensitivity limit, we can effectively, by an appropriate boost, “locally
transform away” the Riemann tensor and its derivatives.
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It is of interest to consider if any of the VSI space–times satisfy the following stronger
«-property. We shall say that the Riemann tensor has the uniform«-property if, given an arbitrarily
small «, there exists a tetrad in which the components of the Riemann tensor and all of its
derivatives are smaller than«. Not all VSI space–times satisfy the uniform«-property; this is
shown by considering P-type N vacuum VSI space–times withtÞ0. Let us denote

Xk = Cabcd;e1¯ek
nam̄bncm̄dme1

¯ mek, Yk = Cabcd;e1¯ek
dsnam̄bncm̄dme1

¯ mekd. s4d

By induction onk we shall show that the componentC2424;3̄ 3=Xk=−k! tkC4 for all ordersk.
From Ref. 1 we have the following relations:

k = s = r = e = 0, t = p = 2b = 2a, l = m = s2/3dg, s5d

where all of these spin coefficients are real, andn is nonzero and complex as well. The Bianchi
identities and NP equations then give

dC4 = − tC4, DC4 = 0, dt = t2, Dt = 0. s6d

It can be shown directly thatX1=C2424;3=−tC4, and using strong induction we assume thatXk has
the required form. In general, the following recursive relation holdsXk=dXk−1−Yk−1, consequently
this implies thatYk−1=2sk−1d ! tkC4. Similarly, Xk+1=dXk−Yk, and on expandingYk we observe
that it is composed of terms with boost weight −2 and −1, but the boost weight −1 terms vanish
as a result of a similar proof found in Ref. 1. To show this we note that in this case we have

þC4 = 0, þt = 0, þr8 = − 2t2 = þs8, þk8 = 6tr8 s7d

with commutators19

þ]̆ − ]̆þ = tþ, þþ8 − þ8þ = 2ts]̆ + ]̆8d − sp + qdt2.

Assuming thath is a tetrad component of the Weyl tensor of arbitrary orderk with boost weight
−2 such thatþh=0, it is straightforward to show that the following boost weight −1 scalars,

þ3sk8hd, þ2ss8hd, þ2sr8hd, þsthd, þst8hd, þ]̆h, þ]̆8h, þ2þ8h

all vanish. ThereforeYk consists of only the boost weight −2 term, hence we have thatYk=
−2tXk and thusXk+1=−sk+1d ! tk+1C4. Since the componentC2424;3̄ 3 can be made arbitrarily
large by increasing the order, in this case the Riemann tensor cannot therefore satisfy the uniform
«-property.

A subclass of the VSI space–times for which the uniform«-property is satisfied are those in
which ¹sNdRabcd=0, wheresNd denotesN covariant derivatives. Since only a finite set of compo-
nents of the Riemann tensor and its derivatives are nonzero, then by an appropriate boost all
components of the Riemann tensor and its derivatives can be made smaller than«. In the case of
N=1 we have the VSI symmetric spaces in which¹eRabcd=0 scases in whichN.1 will be
referred to as higher order symmetric spacesd; we shall show that this class is nonempty. We
consider the following line-element:

ds2 = 2h du2 + 2 du dv − dx2 − dy2 s8d

and solve¹eRabcd=0, assuming thath=hsu,x,yd. After an appropriate coordinate transformation,
which preserves the form of the metric, we find thath=ksx2+y2d+c2sx2−y2d wherek and c are
arbitrary constants. Using the NP tetrad,a=dv

a,na=du
a−hdv

a andma=sidx
a−dy

ad /Î2 it follows that
the only nonvanishing spin coefficient isn with F22 andC4 being constants. Ifk=0 andcÞ0 we
recover the P-type N vacuum symmetric space,11 if kÞ0 andc=0 we obtain the P-type O, PP-type
O null radiation symmetric space.11 These VSI symmetric spaces clearly satisfy the uniform
«-property. In P-type III it is known that no symmetric spaces exist;11 however, the possibility
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remains that P-type III VSI space–times satisfying the uniform«-property may existsfor example,
if ¹sNdRabcd=0 for N.1d.

To illustrate a higher order symmetric space, considers8d with h=gsudsx2−y2d, a subclass of
the P-type N vacuum VSI space–times witht=0. Next, apply a boost so thatl8=Al and n8
=A−1n where the boost parameterA=Cg8sud with C constant. Dropping the primes and working in
the boosted frame we have the following nonvanishing scalars,n=−Î2gsy+ ixd /A2,g=A8 / s2A2d,
andC4=−2g/A2. It follows that the Weyl tensor has the form20

Cabcd= 1
2C2i2jh,amb

sid,cmd
s jdj, s9d

where i , j =3,4,ms3d=m̄, and ms4d=m, the only nonvanishing Weyl tetrad components areC2i2i

=2g/A2. Let X0=C2i2i, thens9d is Cabcd=
1
2X0h,amb

sid,cmd
sidj and

¹eCabcd= 1
2X1,eh,amb

sid,cmd
sidj, s10d

whereX1=DX0+4gX0. It can be shown that thenth order covariant derivative of the Weyl tensor
has the following simple form:

¹en
¯ ¹e1

Cabcd= 1
2Xn,en

¯ ,e1
h,amb

sid,cmd
sidj. s11d

Proceeding inductively, we obtain the following recurrence relationXn=DXn−1+2sn+1dgXn−1.
Froms11d we have that the only nonvanishingnth order tetrad components of the Weyl tensor will
be C2i2i;2¯2. Again, by induction, one can show thatXn=2Asn−1d / sCAn+2d for all nù1 sdenoting
the n−1 derivative of A asAsn−1d andAs0d=Ad.

We now have an expression for thenth order derivatives of the tetrad components of the Weyl
tensor

C2i2i;2¯2 =
2gsnd

sCg8dn+2 , s12d

where it is assumed thatg8Þ0, otherwise the boost is degenerate. Therefore, for anynù2 we can
obtain annth order symmetric space simply by settinggsud to be any polynomial inu of degree
n−1. All of these VSI space–times will satisfy the uniform«-property; more generally this is also
satisfied if there exists a constantM such thatugsnduøM for all n andg8Þ0. On the other hand, we
can uses12d to find examples of VSI space–times that do not satisfy the uniform«-property. It is
known 21 that every geodesic ofs8d is either of type 1 or type 2, where type 1 refers to geodesics
in the 2-surfaceu andn constant and type 2 refers to geodesics in the 2-surfacex andy constant.
Let us consider type 2 geodesics, and setx=x0, y=y0. We find that the tangent vectors are given
by wa=sa,b/ s2ad−agsudsx0

2−y0
2d ,0 ,0d and parametrized byu. Here,u̇=a is a constant andb=1 or

0 for timelike or null geodesics, respectively. The NP tetrad defined above is parallel propagated
along such geodesics, hence froms12d if the uniform «-property is not satisfied at some orderk
then we obtain a parallel propagated curvature singularity of orderk. That is, the curvature
components of orderk in a parallel propagated frame become unbounded along the geodesic;
whenk=0 we recover the definition22 of a parallel propagated curvature singularity. In Ref. 23,
geodesic motion in vacuum Kundt-type N solutions withtÞ0 have revealed the existence of
parallel propagated curvature singularities of order 0.

IV. CONCLUSION

We have determined the necessary and sufficient conditions that characterize VSI1 space–
times. Assuming VSI0, we have shown that in P-type III, VSI1 implies VSI and in P-type O, VSI0

implies VSI. The only proper VSI1 space–times occur in P-type N and PP-type O withk=F12

=0. In addition, the nonvacuum VSI1 space–times are further characterized bysC4=rF22, and
the vacuum space–times haves=F22=0. It has been shown that the«-property offers an alterna-
tive characterization of the VSI space–times, in the sense that only for VSI space–times can a
tetrad be found in which the Riemann tensor and its derivatives up to any fixed order can be made
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arbitrarily small. A strengthening of the«-property leads us to define the uniform«-property; this
condition determines a subclass of the VSI space–times where there exists a tetrad in which the
components of the Riemann tensor and all of its derivatives can be made arbitrarily small. Some
examples of VSI space–times satisfying the uniform«-property have been presented.
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In this paper, we construct a sequence of generators of the BRST complex and
reformulate the BRST differential so that it acts on elements of the complex much
like the Maurer–Cartan differential acts on left-invariant forms. Thus our
BRST differential is formally analogous to the differential defined on the BRST
formulation of the Chevalley–Eilenberg cochain complex of a Lie algebra.
Moreover, for an important class of physical theories, we show that in fact
the differential is a Chevalley–Eilenberg differential. As one of the applications
of our formalism, we show that the BRST differential provides a mechanism
which permits us to extend a nonintegrable system of vector fields on a manifold
to an integrable system on an extended manifold. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1904708g

I. INTRODUCTION

Homological algebra has become an indispensable tool for the rigorous formulation of a wide
variety of developments in theoretical physics. Applications of these techniques to physics has
become so pervasive that they have gradually become identified as a new category of mathemati-
cal physics which has been called “cohomological physics”sRefs. 1, 3, and 9d. One of the fruitful
branches of this theory is the “cohomology” formulation of the BRST theory of constraints.
Indeed the point of BRST theory is to replace the cohomology of the reduced space of a physical
theory by the cohomology of a homological resolution of the spaceP being constrained.

In more detail, assume thatP is a symplectic manifold and that one has a system of first class
constraints onP. Let S denote the constraint surface defined as the set of zeros of the constraints.
These constraints may or may not be independent. If they are independent they are called irre-
ducible constraints and otherwise they are reducible. The Hamiltonian vector fields of the sym-
plectic manifoldP define a possibly singular foliation ofS and the smooth functions onS which
are constant on the leaves of this “foliation” are said to be gauge invariant and are called the
observables of the theory. There is a differentiald, called the longitudinal differential, defined on
a certainsduald Chevalley–Eilenberg complex with coefficients in the algebraC`sSd whose co-
homology in degree zero in the irreducible case is the space of observables. It is clear in the
literature that the zero degree cohomology of a certain complex is the space of observables but it
is not clear that the complex is a Chevalley–Eilenberg complex and that the longitudinal differ-
ential is a Maurer–Cartan differential. These facts are established here in a rigorous manner.

BRST symmetry was developed in order to replace the original gauge symmetry on the
constraint surface by a symmetry on the entire phase spaceP in such a manner that the longitu-
dinal differentiald could be extended to a differentialScalled the BRST differential to be defined
on an enlarged complex in such a way that the BRST cohomology in degree zero is precisely the
set of observables onS. The procedure is nontrivial even in the irreducible case but even more
convoluted in the reducible case. An interesting question has to do with whether the BRST
differential is a Maurer–Cartan differentialsin the sense defined in Sec. IId and whether or not it
is actually a Chevalley–Eilenberg differential defined on asduald Chevalley–Eilenberg complex as
was the case for the longitudinal differential in the irreducible case.
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Throughout the paper we almost always use the term BRST to refer to the version developed
by Batalin, Fradkin, and VilkoviskysRefs. 5 and 7d since our differentials are usually defined via
an antibracket. This convention is in harmony with the usage of Henneaux and Teitelboim.6

The second section is devoted mainly to showing that in the case of irreducible constraints the
BRST differentialS is in fact a Maurer–Cartan differential and that it is asduald Chevalley–
Eilenberg differential defined on a Chevalley–Eilenberg complex. Throughout the paper we re-
strict our attention to bosonic constraints for simplicity of exposition. It is shown that in the case
one has a Hamiltonian system subject to bosonic irreducible constraints that the fact thatS2=0
implies the existence of a possibly singular “foliation” of the phase spaceP which agrees with the
“foliation” of the constrained space defined by gauge symmetries. Generally, the BRST differen-
tial has an expansion

S= d + d + s1 + ¯ + sn + ¯ .

The Koszul–Tate differentiald and the longitudinal differentiald are well understood but the other
terms of the expansion are less well understood. We completely characterizes1 in the irreducible
case. Finally, in this chapter we also consider systems whose constraints are reducible. In particu-
lar we introduce a concept which we call ann-reducible complex. This is precisely the idea needed
to formulate reducible physical theories rigorously. We show that every differential on such a
complex is a mildly generalized Maurer–Cartan differential. In particular we show that the BRST
differential is such a generalized Maurer–Cartan differential in the reducible case.

II. THE MAURER–CARTAN STRUCTURE OF BRST DIFFERENTIAL FOR THE
IRREDUCIBLE CONSTRAINTS

Let sP,vd be an-dimensional symplectic manifold and leth,j be the Poisson bracket defined
by v on the algebra of smooth functionsC`sPd. Assume thatGa, a=1,… ,M are constraint
functions which satisfy the condition:

hGa,Gbj = Cab
c Gc, s2.1d

whereCab
c are structure functions onP and letS be the constraint surface which is determined by

the set of zeros ofGa. When s2.1d is satisfied we say that the constraintsGa are first class
constraints. The Hamiltonian vector fieldsXa corresponding to the functionsGa are defined by
Xasfd=hf ,Gaj for f PC`sPd. The fieldsXa satisfy the conditionfXa,Xbg<Cab

c Xc, i.e., the equation
holds only onS, or as we say, they hold only “on shell.” Under certain conditions the fieldsXa

define a foliation ofS. Functionsf PC`sSd which are constant on the leaves of the foliation are
said to be “gauge invariant” and are called classical observables.

In quantum field theory, it is difficult to utilize path integrals of functionals defined on the
space of observables because they are only defined on the constraint surface. To overcome this
difficulty the phase spaceP is extended and the gauge symmetry is replaced by BRST symmetries
in a such way that the path integral can be utilized on functionals defined on arbitrary functions on
the extended phase space. More precisely, to achieve this, one introduces an antighost variablePa

for every constraint functionGa and a differentiald called the Koszul–Tate differential which is
defined on the complexCfPag ^ C`sPd as follows:

dPa = − Ga, s2.2d

df = 0, s2.3d

where f PC`sPd. Additionally, new variablesha are introduced which are in one-to-one corre-
spondence with the space of independent gauge symmetries and another differentiald called the
longitudinal differential is defined on the complexC`sPd ^ Cfhbg in a manner similar to the
difinition of the Chevalley–Eilenberg differential. This differential is designed to implement the
gauge symmetries. One extendsd and d to all of CfPag ^ Cfhbg by requiring thatdshad=0 and
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dPa=0. In some casesd+d is a differential on the complexCfPag ^ C`sPd ^ Cfhbg whose square
is zero and whose cohomology is precisely the space of classical observables. Often this fails to be
true andd+d must be extended by homological perturbation theory to obtain thesBFV version of
thed BRST differentialS=d+d+s1+¯ in order to obtain the observables as zero degree cohomol-
ogy classes. The differentialS is clearly quite different from the longitudinal differentiald, but we
will show thatS satisfies conditions totally analogous to those characterizingd in Henneaux and
Teitelboim sRef. 6, p. 117–119d in the case when the constraint functions are irreducible and
bosonic.

Let V=CfPag ^ C`sPd ^ Cfhbg and considerV* = %p=0
` Vp, whereVp is the subset ofV having

ghost number p sdefined belowd. For simplicity, we introduce the notationvI

=hb1
¯hbp+1Pap

¯Pa1
, and V1=haPV ua=uIv

I ,uI PC`sPdj where I is the multi-index
sb1,… ,bp+1, a1,… ,apd. Obviously the elementsvI generate allVp for pù1. For completeness
and clarity, we first describe our parity conventions as follows:

esPad = esGad + 1 =eshad, esABd = esAd + esBd. s2.4d

Moreover the ghost number grading referred to above is defined as follows.

s1d The pure ghost number of each element ofV is simply its degree as a polynomial inha.
s2d The antighost number of each element ofV is its degree as a polynomial inPa.
s3d The ghost number of each elementx is the number pureghsxd−antighsxd. Notice that forA,

BPV, ghsABd=ghsAd+ghsBd and thatesvId=1 wheneveresGad=0. With these conventions,
we will show that the BRST differential is essentially the Chevalley–Eilenberg differential
when the constraints are bosonic and irreducible.

First, we recall how the Chevalley–Eilenberg differential is formulated in BRST notation. Let
G be a Lie algebra spanned by a basisheij and A a commutative associative algebra. Let the
mappingr :G→EndsAd be a representation ofG with representation spaceA. Introduce a ghost
variable hi for every elementei of the basisheij. Let A denote theZ-graded algebraA
^ Cfh1,h2,…g with the grading defined by the ghost number. The Chevalley–Eilenberg differen-
tial d=dCE is defined on generators of the complexA as follows:

df = rseadsfdha, s2.5d

dha = − 1
2Ccb

a hbhc, s2.6d

where f, Cab
c PA. The mappingd=dCE is extended to the entire graded algebraA by the Leibniz

law

dsabd = sdadb + s− 1ddegaasdbd. s2.7d

Any differential which satisfies the conditionss2.5d and s2.6d will be called a Maurer–Cartan
differential. Moreover we will say thatd is a Chevalley–Eilenberg differential whenever there
exists a Lie algebraG and a representationr into the endomorphisms of some commutative
associative algebraA satisfying not onlys2.6d but alsos2.5d ands2.7d. We do not require that our
Lie algebraG be finite dimensional but our Lie algebras are finitely generated as modules over our
algebraA.

If we chooseA=C`sSd whereS is the constraint surface defined above and ifea=Xa, then the
longitudinal differential is a Chevalley–Eilenberg differential of this type. In this case the vector
fields Xa must be restricted toS and the Lie algebra is the subalgebra of vector fields onS
spanned by theXa over the algebraC`sSd. The fact that this is a sub-Lie algebra follows from the
identity fXa,Xbg=Cab

d Xd+XCab
d Gd. The other properties follow immediately. We want to obtain an

“off shell” version of this result.
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SinceesvId=1 and ghsvId=1 we call the set of monomialsvI multighosts. Moreover, for the
BRST differentialS, it follows from SvI PV2, that

SvK = − 1
2CIJ

KvIvJ, s2.8d

whereCIJ
K =CJI

K PC`sPd. Similarly, for f PV0, one has thatSf=srI fdvI, sinceSfPV1. To sum-
marize, we have following theorem.

Theorem 1: If the constraint functionshGaj are irreducible and bosonic, the relevant BRST
differential S defined on the complex CfPag ^ C`sPd ^ Cfhbg above is a Maurer–Cartan differen-
tial,

Sf= srI fdvI , s2.9d

SvK = − 1
2CIJ

KvIvJ. s2.10d

Notice that even though the longitudinal differentiald is not nilpotent on the spaceCfPag
^ C`sPd ^ Cfhbg, its BRST extensionS is nilpotent and so is a differential. To determine how the
BRST differentialS and the longitudinal differentiald are related, we compare the following
formulas with the formulass2.5d and s2.6d:

Sf= srI fdvI = sXa fdha + s1 f + ¯ + sn f + ¯ , s2.11d

Sha = − 1
2Ccb

a hbhc + s1ha + ¯ .

Note that the terms on the right-hand sides ofs2.5d ands2.6d are summands of the right-hand side
of these equations.

We claim that the BRST differentialS is essentially a Chevalley–Eilenberg differential in the
case that the constraints are bosonic and irreducible. The required Lie algebra is a sub-Lie algebra
of the Lie algebraXsPd of all vector fields onP. Because of the wayS has been extended to
products, each of the mappingsrI defined by Eq.s2.9d above is a derivation ofC`sPd and so is a
vector field onP. We consider the submoduleGsrd of XsPd spanned by the vector fieldsrI over
C`sPd. We eventually show that it is a sub-Lie algebra ofXsPd. Each element ofGsrd clearly acts
as a derivation of the algebraA=C`sPd and therefore is in EndsAd. Once we establish the fact that
Gsrd is a Lie algebra we will have the required data in order to show thatS is a Chevalley–
Eilenberg differential. First we need a lemma which is of interest in its own right.

Lemma 2: Assume that the constraints are bosonic and irreducible and consider the BRST
differential S on the complex CfPag ^ C`sPd ^ Cfhbg. Let r=rI denote the “representation” de-
fined by the identities in Theorem 1. Then

S2f = 1
2sfrJ,rIgf − CJI

K srKdfdvJvI .

Moreover if S2f =0 for all f PC`sPd, then

S2vK = − 1
6hfrI,frJ,rEggK + frJ,frE,rIggK + frE,frI,rJggKj.

Proof: We prove the first identity by noticing that sinceS is an odd derivation, we have

S2f = SssrI fdvId = SsrI fdvI + srI fdSvI . s2.12d

It follows from the identities of Theorem 1 that
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S2f = srJrIdsfdvJvI + srI fds− 1
2CJK

I vJvKd s2.13d

= 1
2fsrJrIdf − srIrJdfgvJvI − 1

2CJK
I vJvKrI f s2.14d

= 1
2frJ,rIgfvJvI − 1

2CJI
KvJvIsrKdf s2.15d

= 1
2sfrJ,rIgf − CJI

K srKdfdvJvI . s2.16d

Thus the first of the two identities is true. We now prove the second identity. SinceSvK

=−1
2CIJ

KvIvJ, whereI =sb1,… ,bp+1,a1,… ,apd andJ=sb̃1,… ,b̃p+1,ã1,… ,ãpd, we have

S2vK = − 1
2sSCIJ

K dvIvJ − 1
2CIJ

KdvIvJ + 1
2CIJ

KvIdvJ

= − 1
2srECIJ

K dvEvIvJ − 1
2CIJ

Ks− 1
2C

K̃L

I
vK̃vLdvJ + 1

2CIJ
KvIs− 1

2CMN
J vMvNd

= − 1
2rECIJ

KvEvIvJ + 1
4CIJ

KC
K̃L

I
vK̃vLvJ − 1

4CIJ
KCMN

J vIvMvN

= − 1
2rECIJ

KvEvIvJ + 1
2CIJ

KC
K̃L

I
vK̃vLvJ

= − 1
6srECIJ

K + rICJE
K + rJCEI

K dvIvJvE + 1
6sCMI

K CJE
M + CMJ

K CEI
M + CME

K CIJ
MdvIvJvE

+ 1
6srECIJ

K + rICJE
K + rJCEI

K dvIvJvE − 1
6sCIM

K CJE
M + CJM

K CEI
M + CEM

K CIJ
MdvIvJvE.

s2.17d

Next notice that if we assume thatS2f =0 for all f PC`sPd, then frJ,rEg=CJE
M rM, frE,rIg

=CEI
MrM, frI ,rJg=CIJ

MrM, and we have

frI,frJ,rEgg = frI,CJE
M rMg = srICJE

M drM + CJE
M frI,rMg s2.18d

=srICJE
M drM + CJE

M CIM
K rK s2.19d

=srICJE
K + CJE

M CIM
K drK. s2.20d

It follows that

frJ,frE,rIgg = srJCEI
MdrM + CEI

MCJM
K rK s2.21d

=srJCEI
K + CEI

MCJM
K drK s2.22d

and

frE,frI,rJgg = srECIJ
MdrM + CIJ

MCEM
K rK s2.23d

=srECIJ
K + CIJ

MCEM
K drK. s2.24d

It follows from this last calculation that the negative of the sum of theKth components of the
right-hand sides of the last three equations is precisely six times the right-hand side of the identity
for S2vK fsees2.17dg. The lemma follows.

Corollary 3: Assume that the constraints are bosonic and irreducible and consider the BRST
differential S on the complex CfPag ^ C`sPd ^ Cfhbg. Since in fact S2=0 we have thatGsrd is a Lie
subalgebra ofXsPd with generators the set of vector fieldshrIj on C`sPd.

Corollary 4: If the constraints of a Hamiltonian system are bosonic and irreducible, then the
BRST differential is a Chevalley–Eilenberg differential on the complexA ^ CfvIg where the alge-
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bra A is the algebra of smooth functions on P and where thevI are called multighosts instead of
ghosts. Recall that thevI freely generateA ^ CfvIg as a module overA.

Proof: The proof was outlined in the observations just prior to the lemma. The only gap in the
argument was that we had not yet proved thatGsrd is a Lie algebra which we now see is a
corollary of the lemma.

Remark:The longitudinal differentiald was initially defined “on shell,” that is to say the
underlying manifold was the constraint surfaceS. Formulated on this surface the square ofd is
zero and its cohomology in degree zero is the set of classical observables. The fact thatd squares
to zero “on shell” is related to the fact that the Hamiltonian vector fieldsXa close under Lie
brackets “on shell.” They need not close “off shell.”

In order to use the path integral formalism it is useful to extend the formalism “off shell.”
When the longitudinal differentiald is extended “off shell” it no longer squares to zero and in fact
the BRST differential was constructed to repair this defect.6

The fact that the BRST differential squares to zero “off shell” suggests that one should be able
to supplement the vector fieldsXa with other fields to obtain an integrable system which “foliates”
P in such a manner that the possibly singular leaves provides the “foliation” ofS provided by the
Hamiltonian vector fields. We now show that this is true.

Recall that the generatorsrI of the Lie algebraGsrd correspond to the multighostsvI

=hb1
¯hbp+1Pap

¯Pa1
where I is the multi-indexsb1,… ,bp+1, a1,… ,apd. In the casep=0 it is

understood thatvI is simply hb for some indexb. Thus the equationSsfd=srI fdvI of Theorem 1
has the termssra fdha as certain of its summands, whered is the exterior differential andsk is a
derivation which increases the antighost degree byk. Recall that these latter terms correspond to
the longitudinal differentiald in the expansion

S= d + d + s1 + ¯ + sn + ¯ . s2.25d

of the BRST differential. Indeed for everyf PC`sPd,

Sf= sra fdha + srI fdvI + ¯ , s2.26d

where antidegreesvIdù1, and we see thatra f is exactly the action ofXa on f. Consequently the
ra are simply the Hamiltonian vector fieldsXa. The supplementary vector fields we require to
obtain an integrable system are defined byXI =rI.

As an immediate consequence of these observations we have the following theorem.
Theorem 5: The longitudinal differential d is defined in terms of the Hamiltonian vector fields

Xi which form an open gauge algebra sincefXi ,Xjg<Cij
kXk. Since S2=0, there exists additional

vector fields XI on P such thatfXi ,Xjg=Cij
kXk+Cij

I XI, and the fields Xi, XI define an integrable
system in the sense that they generate a subalgebraGsrd of the Lie algebra of all vector fields of
P.

We now determine further conditions imposed on therK by the fact thatS is nilpotent.
Using s2.25d and the fact thatS2=0, the first three terms of the expansion ofS2 in terms of the

antighost degree yields

d 2 = 0, s2.27d

fd,dg = 0, s2.28d

d2 = − fd,s1g. s2.29d

By a calculation similar to the one in the proof of the lemma, and for arbitraryf PC`sPd we have
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d2f = 1
2sfri,r jgf − Cij

k rk fdhih j , s2.30d

fd,s1gf = sds1 f + s1dfd s2.31d

=ds1 f = dsrab
c fhahbPcd, s2.32d

where therab
c are defined by the equations1 f =vI f =rab

c fhahbPc and the multi-indexI is sabcd. It
follows that

fd,s1gf = srab
c fdhahbPc s2.33d

=− sGcdsrab
c fdhahb. s2.34d

Using the three identities above and comparings2.30d with s2.34d, we have

fXj,Xig = Cji
kXk + Gcri j

c . s2.35d

SincevI is a derivation for each multi-indexI we see that eachri j
c is also a derivation onC`sPd;

we distinguish it from the derivationrk by referring to it as a second order derivation.
We now show how these results may be applied to Hamiltonian systems having first-class

constraints restricting our remarks to the case whereP is Rn for some positive integern. We adopt
the same conventions as in Ref. 6spp. 52–53d, in particular, letGasa=1,… ,Md denote the
constraint functions of the system. Define vectorsXa=Xa

l]l via Xa
l=vlm]mGa, where the matrix of

components of the antisymmetric tensorsvlmd is the inverse of the matrixvmn of components of
the symplectic structurev on P. We observe that, for eachFPC`sPd,

XaF = Xa
l]lF = hF,Gaj. s2.36d

We know that ifXa
l corresponds toGa andXb

l corresponds toGb thenfXa,Xbgl corresponds to
fGa,Gbg. Moreover,

fXa,Xbgl = vlm]msCab
c Gcd s2.37d

=Cab
c Xc

l + Gcv
lm]mCab

c < Cab
c Xc

l. s2.38d

Off the constraint surface, the second term on the right-hand side ofs2.38d does not vanish
unless]mCab

c =0. ThusXa
lsa=1,… ,Md form a closed distribution only on shellGa=0.

For the remainder of this section we provide a detailed calculation which determine consis-
tency conditions for the summands1 s2.25d.

First we determine the action ofs1 on the ghostsha. Since the vector fieldshXaj satisfy the
Jacobi identity it follows from a computation similar to the one of Lemma 2.2 thatd2ha=0.
Combined with the facts thatd2=−fd ,s1g and thats1ha has antighost number one we haves1ha

=Cabc
da hahbhcPd. Then,

0 = − sds1 + s1ddha = − ds1ha = Cabc
da hahbhcGd. s2.39d

ThereforeCabc
da hahbhcGd=0 and consequently we obtain the following consistency condition:

Cabc
da Gd = 0. s2.40d

At this point we derive other consistency conditions which are required in order to compute
s1Pa. Sinced increases the ghost number by one we can writedPa=hcCca

b Pb and
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d2Pa = dsdPad = dshcCca
b Pbd = sdhcdCca

b Pb − hcdsCca
b Pbd

= s− 1
2Cde

c hdhedPbCca
b − hcsrdsCca

b dhdPb + Cca
b dPbd

= − 1
2Cde

c Cca
b hdhePb − rdsCca

b dhchdPb − Cca
b hcsheCeb

d Pdd

= s− 1
2Cce

b Cba
d − Cca

b Ceb
d − resCca

d ddhchePd. s2.41d

Sinces1 increases the antighost number by one we can writes1Pa=Ccda
ef hchdPePf. It follows

that

ds1Pa = dsCcda
ef hchdPePfd s2.42d

=Ccda
ef hchdssdPedPf − PedPfd s2.43d

=Ccda
ef hchds− GePf + GfPed s2.44d

=− Ccda
ef Geh

chdPf + Ccda
ef Gfh

chdPe s2.45d

=2Ccda
ef hchdPeGf s2.46d

and

s1dPa = s1s− Gad = − s1Ga s2.47d

=− srcd
e GadhchdPe. s2.48d

Thus

sds1 + s1ddPa = s2Ccda
ef Gf − rcd

e sGaddhchdPe s2.49d

=s2Ccea
df Gf − rce

d sGaddhchePd. s2.50d

Sinced2=−fd ,s1g, by comparings2.41d ands2.50d we have the following consistency conditions:

Ccea
df Gf = 1

2srce
d sGad + resCca

d d + 1
2Cce

b Cba
d + Cca

b Ceb
d d . s2.51d

Notice that in case the constraint functions are irreducible this condition is equivalent to requiring
that the left-hand side ofs2.51d vanish “on shell.”

In the last few paragraphs we have obtained consistency conditionss2.40d and s2.51d which
are necessary in order to determine the action ofs1 on the generators. We have not attempted to
determine the coefficientsCabc

da andCcea
df in the consistency equations since they can only guarantee

the existence of perturbation terms ofs1.

III. THE MAURER–CARTAN STRUCTURE OF BRST DIFFERENTIAL UNDER THE
REDUCIBLE CONSTRAINTS

In the preceding section we dealt only with irreducible constraints. In this section, we will
generalize some of our results to include systems of reducible constraints. To achieve that, we
introduce the concept of ann-reducible complex as follows.

Definition: Let V* = %n=0
` Vn be a graded algebra and assume thatV0 is an algebra such thatV*

is a V0-module. LetAp= %n=0
p Vn. If Ap is a finitely generatedV0-module and each component

Vksk.pd is generated byAp, we call the complexV* a p-reducible complex.
We are interested in investigating differentials onp-reducible complexes. First consider some

examples ofp-reducible complexes.
Example 1:Let Rn be n-dimensional Euclidean space andVksRnd be the space ofk-forms.
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SinceRn has a global coordinate chartsx1,… ,xnd, everyk-form can be written as

v = vi1¯ik
dxi1 ∧ ¯ ∧ dxik, s3.1d

wherevi1¯ik
are smooth functions which belong to the space of 0-formsV0sRnd, and where the

1-forms dx1,¯ ,dxn generate all differential forms inVksRnd overV0sRnd for kù1. The complex
V*sRnd= %k=0

n VksRnd is then a 1-reducible complex. The exterior differentiald is defined as fol-
lows:

df = s]i fddxi , s3.2d

dsdxid = 0, s3.3d

where f PV0sRnd, dxi PV1sRnd. One then extends the definition above to the entire spaceV*sRnd
via the Leibniz formula.

Example 2 (Chevalley–Eilenberg cohomology):Let a pair sd,Ad be a Chevalley–Eilenberg
differential with its related complexA=A ^ Cfh1,h2,…g discussed earlier. Obviously, the graded
algebraA is generated by ghostsh1,h2,… over the underlying algebraA and consequently the
complexA is a 1-reducible complex.

Example 3 (auxillary differentialD): Typical kth reducible complexes arise from BRST op-
erators in case the system is subject tosk−1d-reducible constraint conditions.

In BRST theory, a specific differential called the auxillary differentialD is introduced to deal
with longitudinal differentials defined on constraint surfaces subject to higher order reducibility
conditions. LetS be a constraint surface andhha0j be the original ghostsssee Ref. 6 pp. 217–218d.

Assume thatS is defined by constraints which satisfykth order reducibility conditions. In this
case the reducibility of the constraints can be written as

Zak

ak−1Zak−1

ak−2 = s− 1deak−2Cak

ak−2,a0Ga0
, s3.4d

k = 1,…,L, ak = 1,…,mk s3.5d

for somemk and appropriate functionsZak

ak−1 ssee Ref. 6, p. 210d.
Introduce higher order ghost variableshak along with a differentialD as follows:

pureghshakd = k + 1, eshakd = eak
+ k + 1, s3.6d

DF = 0, Dhak = hak+1Zak+1

ak s− 1deak
+k+1, s3.7d

where F is an arbitary function on the constraint surface. To complete the definition of the
auxillary differentialD, one needs to introduce an auxillary grading as follows:

auxszAd = 0 = auxsha0d, auxshakd = k. s3.8d

One then has that auxsDd=1 and that pureghsAd=auxsAd+degsAd. The complexV=C`sSd
^ Cfha0,ha1,… ,hakg is then ask+1d-reducible complex.

At this point, we characterize the differential on an arbitraryn-reducible complex and thereby
generalize Theorem 1. We adopt the convention of the left action ford. Obviously, a differential
d on a reducible complexV* is uniquely and totally determined by its values on the spaceAp

=V0 % Āp and the Leibniz rule, whereĀp= %n=1
p Vn. In order to see this in more detail we first

assume that the finitely generatedV0 moduleĀp has a finite basis denoted bysvn
i d1ønøp where the

subindex means thatvn
i PVn. Notice that the basissvn

i d generates all the elements of every
componentVk for k.p. With this notation, we define a differentiald on the spaceAp as follows:

df = sr j
1fdv 1

j , s3.9d
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dvm
i = − 1

2S1ønømCjkn
i v m−n+1

j vn
k, s3.10d

where f PV0 and ther j
1 are derivations ofV0. If the complexV* is a 1-reducible complex, the

basis has only elements of the formv1
i and the formulass3.9d and s3.10d reduce to

df = sr j fdv 1
j s3.11d

dv1
i = − 1

2Cjk
i v 1

j v1
k s3.12d

analogous to the formulas given by the Chevalley–Eilenberg differential.
The definition of the Koszul–Tate differentiald is then modified to reflect the reducibility

conditions above. In the reducible case the longitudinal differential is not nilpotent on the space of
C`sSd ^ Cfhag, but is nilpotent on the subalgebra of longitudinal forms. In order to overcome this
defect, an equivalent differentialD sRef. 6d is introduced such thatH*sDd=H*sdd. At this point
one has “differentials” d and D on the extended spaceV* =CfPa0

,Pa1
,…g ^ C`sSd

^ Cfha1,ha2,…g and it is possible to show that a BRST differentialS=d+D+s1+¯ defined on
the complexV* exists. It can be seen that the longitudinal complexC`sSd ^ Cfhag and the BRST
complexV* are bothn-reducible complexes for appropriaten. Therefore we obtain the following
generalization of Theorem 1.sSee Refs. 2, 4, 8, and 10.d

Theorem 6: If the constraints are bosonic and reducible the BRST differential has a structure
similar to that of the longitudinal differential.
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In this paper, an explicit expression for the Casimir operatorsor the Casimir invari-
antd of the inhomogeneous group ISLsn,Rd in its enveloping algebra is proposed,
which using contractions of the tensorial indices of the generating operatorsPr and
Em

n may be presented in the followingfslightly more comprehensible as Eq.s1dg
form. The Casimir is obtained by symmetrizing this expression. This tensor form is
useful in the classification of particles in affine gravitational gauge theories; such as
that based on ISLs4,Rd. It is also proven that the Casimir of ISLsn,Rd can be
decomposed in terms of the Casimirs of its little groups, a key point in the posterior
construction of its irreducible representations. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1915291g

I. INTRODUCTION

The special affine group ISLsn,Rd is the semidirect product of the Abelian group of transla-
tions inn dimensions and the special linear, SLsn,Rd. The ISLs4,Rd group has been chosen as the
gauge group in gauge theories of gravity;1 therefore, the knowledge of its Casimirs will be
necessary not only to investigate the irreducible representations of this group, but also to provide
these theories with a wave equation.2 It has been conjectured that a gauge theory for quantum
gravity can be developed by enlarging the Poincare group to the group IGLs4,Rd5. However, the
lack of invariants of this group,3 prevents to classify the elementary particles of a theory based on
that gauge group. Therefore, ISLs4,Rd is the best selection.1,4 The group ISLsn,Rd has a subgroup,
the Poincare group, from which stems its importance in physics. The eigenvalues of the Casimir of
the group ISLsn,Rd provide quantum numbers to classify the particles of these theories in the
same way that the eigenvalues of the Casimirs of the Poincare groups allow us to classify the
particles according to their mass and spin. The eigenvalues of the Casimir of ISLsn,Rd label the
irreducible representations of the group. The invariants are also useful ingredients in the decom-
position of reducible representations into irreducible ones. In the case of gauge theories of gravity
based on ISLsn,Rd, it is important to decompose the unitary irreducible representations of the
group ISLsn,Rd into the unitary irreducible representations of the Poincare subgroup. This would
bring a physical insight into the behavior of the elementary particles of these theories. In Sec. II,
we construct the formula for the Casimir of ISLsn,Rd. In Sec. III, we discuss the induction proof
used to guarantee the general validation of the formula for the Casimir of ISLsn,Rd. Finally in
Sec. IV, the algebraic decomposition of ISLsn,Rd is achieved.

II. CONSTRUCTION OF THE FORMULA FOR THE CASIMIR OF ISL „n ,R…

In Ref. 3 it is proved that the group ISLsn,Rd has one invariant. And in Ref. 6 it is proved that
the order of this invariant is12nsn+1d. Based on this proof, the standard procedure for constructing
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invariants by contracting tensorial indices with the Levi–Civita antisymmetric pseudotensor and
the generators of the Lie group,7 we found a formula for the invariant of ISLsn,Rd. This expres-
sion is given by

Casimir ISLsn,Rd = hzj0a1,. . .,an−1b1fb2sg11dg,. . .,fbn−1sgn−2,1,. . .,gn−2,n−2dg
r1fsu11dr2g. . .,fsun−2,1,. . .,un−2,n−2drn−1g

3Pj0Pa1
¯ Pan−1Er1

b1Efsu11dr2g
fb2sg11dg

¯ Efsun−2,1,. . .,un−2,n−2drn−1g
fbn−1sgn−2,1,. . .,gn−2,n−2dgjsymmetrized, s1d

j0,ui j ,gi j ,al,rk,bm = 0,1, . . . ,n − 1, i, j = 1,2, . . . ,n − 2, l,k,m= 1,2, . . . ,n − 1,

where

Efsu11dr2g
fb2sg11dg = Eu11

b2 Er2

g11

and

Efsun−2,1,. . .,un−2,n−2drn−1g
fbn−1sgn−2,1,. . .,gn−2,n−2dg = Eun−2,1

bn−1 Eun−2,2

gn−2,1
¯ Eun−2,n−2

gn−2,n−3Ern−1

gn−2,n−2,

wherez. . .. . .
. . . is given by the expression

z. . .. . .
. . . = ej0b1¯bn−1

sdr1a1
¯ drn−1an−1

dssdu11g11
dsdu21g21

du22g22
d ¯ sdun−2,1gn−2,1

¯ dun−2,n−2gn−2,n−2
dd.

s2d

The Ea
b are the generators of the general linear group GLsn,Rd in the Weyl basis2 and thePa are

the generators of the Abelian subgroup of ISLsn,Rd. In formula s1d, the following substitution
must be carried out:

Ea
a = Ea

a − Ea+1
a+1. s3d

The commutation relations of ISLsn,Rd, are given then by

fPr,Png = 0, fPr,Em
n g = dmrP

n, fEm
n ,El

tg = dnlEm
t − dmtEl

n . s4d

The Ea
a, the generators of the general linear group GLsn,Rd, are substituted by the traceless

generatorsEa
a of the special linear group SLsn,Rd. In Eq. s2d, we defineej0

=1.

III. THE INDUCTION PROOF

In Ref. 8, it is proved that the invariant of ISLsn,Rd can be obtained by solving a system of
linear first order partial differential equationssLFPDEd. The system of LFPDE can trivially be
solved forn=1. Thus, the first part of the induction is proven. In order to prove the second part of
the induction method, we assume the formula is valid forn=k and then prove that it is valid for
n=k+1.

We can construct a scalar of the order required by Lemma 1, in Ref. 6, to be the invariant of
ISLsk+1,Rd. According to this lemma, the order of the invariant in the generators of this group
should be1

2sk+1dsk+2d. In this same reference, it is proven that the invariant for this group would
be ofk+1 order in the generators of the translations. Therefore the invariant for ISLsk+1,Rd must
be of k+1 order in the translations and of1

2ksk+1d order in the nontranslations generators of the
group ISLsk+1,Rd. That is, the invariant of ISLsk+1,Rd must be different from the invariant for
ISLsk,Rd by a factor given by

PakEfsuk−1,1,. . .,uk−1,k−1drkg
fbksgk−1,1,. . .,gk−1,k−1dg. s5d

If we take into account the form of the invariants of ISLsn,Rd for n=1,2,3,4sRef. 6d the formula
we are assuming valid forn=k and the factor given above, we can construct a scalar given by
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Casimir ISLsk + 1,Rd = hz
j0a1,. . .,ak−1akb1fb2sg11dg,. . .,fbk−1sgk−2,1,. . .,gk−2,k−2dgfbksgk−1,1,. . .,gk−1,k−1dg
r1fsu11dr2g,. . .,fsuk−2,1,. . .,uk−2,k−2drk−1gfsuk−1,1,. . .,uk−1,k−1

drkg

3Pj0Pa1
¯ Pak−1PakEr1

b1Efsu11dr2g
fb2sg11dg

¯ Efsuk−2,1,. . .,uk−2,k−2drk−1g
fbk−1sgk−2,1,. . .,gk−2,k−2dg

3Efsuk−1,1,. . .,uk−1,k−1drkg
fbksgk−1,1,. . .,gk−1,k−1dgjsymmetrized. s6d

This formula coincides with the Eq.s1d for n=k+1. However, the proof is not yet complete, since
the scalar that we have constructed to be the invariant of ISLsk+1,Rd could be zero. Therefore, we
must prove that the scalar given by Eq.s5d is not zero.

IV. THE ALGEBRAIC DECOMPOSITION OF ISL „N,R…

The proof that the scalar given by Eq.s5d does not vanish is based on an algebraic decom-
position of the Casimir of ISLsn,Rd in terms of the Casimirs of its little groups. This decompo-
sition allows an immediate classification of the existent particles in a theory based on ISLsn1,Rd,
with n1 any number.5 Then making all the translations equal zero exceptP0 in Eq. s5d. That is,

j0 = a1 = ¯ = ak = 0,

therefore

r1 = r2 = ¯ = rk = 0.

Hence, the Casimir with all the translations zero exceptP0 is given by

Casimir ISLsk + 1,Rd = hsP0dk+1z00,. . .,0b1fb2sg11dg,. . .,fbksgk−1,1,. . .,gk−1,k−1dg
0fsu11d0g,. . .,fsuk−1,1,. . .,uk−1,k−1d0g E0

b1E0
g11

¯ E0
gk−1,k−1

3 Eu11

b2 Efsu21du22g
fb3sg21dg

¯ Efsuk−1,1,. . .,uk−1,k−2duk−1,k−1g
fbksgk−1,1,. . .,gk−1,k−2dg jsymmetrized, s7d

where

z00,. . .,0b1fb2sg11dg,. . .,fbksgk−1,1,. . .,gk−1,k−1dg
0fsu11d0g,. . .,fsuk−1,1,. . .,uk−1,k−1d0g = e0b1¯bk

sdu11g11
du22g22

¯ duk−1,k−1gk−1,k−1
dssdu21g21

d

3sdu31g31
du32g32

d ¯ sduk−1,1gk−1,1
¯ duk−1,k−2gk−1,k−2

dd. s8d

The terms of Eq.s6d with the u=0 generated by the contraction of the Levi–Civita pseudotensor
cancel out by antisymmetry.

Therefore, the indicesb ,u ,g can be shifted; instead of running from0,1, . . . ,k they will run
from 0,1, . . . ,k−1. This defines an isomorphismbetween the subset of the generators, belonging
to the factor which multiplyPk+1 in Eq. s6d, of the Lie algebra of ISLsk+1,Rd and the Lie algebra
of ISLsk,Rd. Hence Eq.s7d can be given by

zb1g11g22,. . .,gk−1,k−1b2fb3sg21dg,. . .,fbksgk−1,1,. . .,gk−1,k−2dg
u11fsu21du22g,. . .,fsuk−1,1,. . .,uk−1,k−2duk−1,k−1g = eb1¯bk

sdu11g11
du22g22

¯ duk−1,k−1gk−1,k−1
dssdu21g21

d

3sdu31g31
du32g32

d ¯ sduk−1,1gk−1,1
¯ duk−1,k−2gk−1,k−2

dd.

s9d

The basis elements of the Lie algebra of the group ISLsn,Rd can be represented by then+1 by
n+1 matrices given by

1SLsn,Rd P

0 0 2 ,

whereP are the generators of the group of translations, and SLsn,Rd are the generators of the
special linear group inn dimensions. Therefore, theE0

a generators of the Eq.s6d can be considered
as the translationsPa generators of the little group ISLsk,Rd of sp0,0 ,0, . . . ,0kd.

9
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Using Eq.s8d, Eq. s6d can be written in the following form:

Casimir ISLsk + 1,Rd = hsP0dk+1zb1g11g22,. . .,gk−1,k−1b2fb3sg21dg,. . .,fbksgk−1,1,. . .,gk−1,k−2dg
u11fsu21du22g,. . .,fsuk−1,1,. . .,uk−1,k−2duk−1,k−1g E0

b1E0
g11

¯ E0
gk−1,k−1

3 Eu11

b2 Efsu21du22g
fb3sg21dg

¯ Efsuk−1,1,. . .,uk−1,k−2duk−1,k−1g
fbksgk−1,1,. . .,gk−1,k−2dg jsymmetrized. s10d

To take advantage of the isomorphism given above, we make the following substitution:

b1 → j0,b2 → b1,b3 → b2, . . . ,bk → bk−1,

u11→ r1,u22→ r2, . . . ,uk−1,k−1 → rk−1,

g11→ a1,g22→ a2, . . . ,gk−1,k−1 → ak−1,

u21→ u11,su31→ u21,u32→ u22d, . . . ,suk−1,1→ uk−2,1,uk−1,2→ uk−2,2, . . . ,uk−1,k−2 → uk−2,k−2d,

g21→ g11,sg31→ g21,g32→ g22d, . . . ,sgk−1,1→ gk−2,1,gk−1,2→ gk−2,2, . . . ,gk−1,k−2 → gk−2,k−2d,

and by substituting into Eq.s9d, we obtain

Casimir ISLsk + 1,Rd = hsP0dk+1sCasimir ISLsk,Rddjsymmetrized. s11d

We have obtained the Casimir of the little group ISLsk,Rd from the Casimir of the group ISLsk
+1,Rd. We arrive at the same result if we take any of the other translations.

From the above discussion, it is clear that the Casimir of ISLsk+1,Rd given by Eq.s5d does
not vanish, as claimed. This completes the induction proof. We conclude that the formula given by
Eq. s1d is valid for any integern.

V. CONCLUSION

Although the formula for the Casimir of ISLsn,Rd has been written in the Weyl basis, this
does not limit its application range. The advantage of our formula for ISLsn,Rd, over other
possible formulation, is its immediate physical and mathematical application as shown above in
the little group Casimir decomposition of ISLsn,Rd.

In gauge theories of gravity based on the group ISLs4,Rd, it should be verified for the correct
usage of the Casimir operator. The reason is that in these theories, the group ISOs1,3d must be a
subgroup of the gauge group. This group has a different Lie algebra than that of the group ISOs4d
which is a subgroup of ISLs4,Rd. The applications of a deunitarizing inner automorphism,4 which
changes some of the generators of the group ISLsn,Rd by a factorÎ−1, is necessary to extend the
range of application of our formula. To avoid confusion we suggest using the notation ISLs1,n
−1,Rd for the group that has as a subgroup ISOs1,n−1d.
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It is shown that thea2-dynamo of magnetohydrodynamics, the hydrodynamic
Squire equation as well as an interpolation model ofPT-symmetric quantum me-
chanics are closely related as spectral problems in Krein spaces. For thea2-dynamo
and thePT-symmetric model the strong similarities are demonstrated with the help
of a 232 operator matrix representation, whereas the Squire equation is reinter-
preted as a rescaled and Wick-rotatedPT-symmetric problem. Based on recent
results on the Squire equation the spectrum of thePT-symmetric interpolation
model is analyzed in detail and the Herbst limit is described as spectral
singularity. ©2005 American Institute of Physics.fDOI: 10.1063/1.1915293g

I. INTRODUCTION

Non-HermitianPT-symmetric quantum mechanical systems1–8 are known to possess spectral
sectors with purely real eigenvalues as well as sectors with pairs of complex conjugate eigenval-
ues. Changes of certain system parameters can lead to spectral phase transitions from one sector to
the other. The physics in the two sectors has been identified with phases of unbroken
PT-symmetrysreal eigenvaluesd and spontaneously brokenPT-symmetryspairwise complex con-
jugate eigenvaluesd.1,2 From a mathematical point of view, non-HermitianPT-symmetric Hamil-
tonians are self-adjoint operators in Krein spaces9–11—Hilbert spaces with an additional indefinite
metric structure—and the two spectral sectors correspond to Krein space states of positive or
negative typesreal eigenvaluesd and neutralsisotropicd statesspairwise complex conjugate eigen-
valuesd.

Apart from PT-symmetric quantum mechanicssPTSQMd, it is known that a certain class of
spherically symmetric mean-field dynamo models12 of magnetohydrodynamicssMHDd can be
described by self-adjoint operators in Krein spaces as well.13 These models show similar spectral
phase transitions from real to pairwise complex conjugate eigenvalues14—and only the physical
interpretation differs from that in PTSQM. For dynamos it simply consists in a transition from
nonoscillatory states to oscillatory states.

In the present paper, we are going to briefly describe the underlying structural operator
theoretic parallels between PTSQM models and the spherically symmetric MHDa2-dynamosSec.
II d. The discussion will be illustrated with the help of aPT-symmetric interpolation between a
harmonic oscillator placed in a square well and an empty square wellsSec. IIId. This interpolation
shows a rich structure of spectral phase transitions with a couple of unexpected features. Further-
more, we will show in Sec. IV that the eigenvalue problem of thePT-symmetricsintermediated
interpolation model with linear complex potentialspurely complex electrical fieldd within the
square well is mathematically identical to the eigenvalue problem of the rescaled and Wick-rotated

adElectronic mail: u.guenther@fz-rossendorf.de
bdElectronic mail: f.stefani@fz-rossendorf.de
cdElectronic mail: znojil@ujf.cas.cz
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Squire equation of hydrodynamics which describes the normal vorticity of a plane channel flow
sCouette flowd with linear transversal velocity profile. Recent Airy function based results on the
Squire equation allow us to analytically describe the spectral behavior of the PTSQM model in the
limiting case when the width of the square well tends to infinity. In this limit we reproduce the
Herbst model15 with its empty spectrum. The limiting behavior occurs as a blowing-up of the
spectrum to infinity along three directions on the complex plane—leaving behind a spectrally
empty region at any fixed finite distance from the origin of the spectral plane. In Sec. V we briefly
sketch some links of the obtained results to other physical setups and analytical techniques.

II. KREIN SPACE PROPERTIES OF PT-SYMMETRIC QUANTUM MODELS AND OF THE
SPHERICALLY SYMMETRIC MHD a2-DYNAMO

A. PT-symmetric quantum models

In their seminal letter1 Bender and Boettcher identifiedPT-symmetry as the essential property
of the non-Hermitian quantum system,

Hcsxd = Ecsxd, H = −
d2

dx2 + gx2sixdn, s1d

which ensures the reality of its spectrum for exponentsnP f0,2d andcsxdPH̃=L2s−` ,`d.16 This
allowed them not only to extend an earlier conjecture of Bessis and Zinn-Justinfwhose numerical
results indicated that quantum systems with complex potentialVsxd= ix3 might have a purely real
spectrumg, but also initiated the still lasting intensive study of generalizedPT-symmetric non-
Hermitian systems.17 Such systems are characterized by aPT-symmetric HamiltonianH,

fPT,Hg = 0, s2d

whereP denotes a reflection

PxP = − x, Pcsxd = cs− xd,

while the time-reversal operatorT performs complex conjugation,

T iT = − i, Tcsxd = csxd* . s3d

Because both operatorsP andT are involution operators,

P2 = I, T 2 = I ,

they induce naturalZ2-gradings of the Hilbert spaceH̃. For our subsequent analysis it suffices to
consider the subclass of models which can be defined solely over the real linexPR. For such

models theT-inducedZ2-grading corresponds to a splitting of the wave functionscPH̃ into real
and imaginary componentsswhat is of no direct physical interest in a quantum mechanical con-
text; additionally one would have to work in a real Hilbert space with doubled dimension com-
pared to the original complex oned, whereasP induces aZ2-grading into parity even and parity
odd components,

csxd = c+sxd + c−sxd, Pc±sxd = c±s− xd = ± c±sxd. s4d

The correspondingZ2-graded Hilbert space splits as

H̃ = H+ % H−, c± P H±.

In the case of a simplePT-symmetric one-particle system with Hamiltonian
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H = − ]x
2 + V+sxd + iV−sxd, V±s− xd = ± V±sxd, IV± = 0 s5d

it holds

H = PH†P s6d

and P is a so called fundamentalscanonicald operator symmetry9,10 of H—i.e., H is
P-pseudo-Hermitian in the sense of Refs. 4 and 5. Operators with an involutive fundamental
symmetry are known to be symmetric—and for appropriately chosen domainfboundary condi-
tions for the functionscsxdg even self-adjoint—in a Krein spaceK. For P-pseudo-Hermitian
operators over the real line this Krein spaceKP is given as11,18,19

sKP,f., . gPd, fc,fgP = sc,Pfd =E
C#R

c*sxdPfsxddx =E
C#R

c*sxdfs− xddx. s7d

Depending on the concrete problem, the integration ins7d is performed over a finite interval,C
=f−a,ag, or over the complete real line,C=s−` ,`d,R. From s5d ands6d one immediately finds

fHc,fgP = fc,HfgP.

The Krein space innersscalard productfc ,fgP has the following properties:

sid It coincides with the more generalPT inner product of Benderet al.,6,7

sc,fdPT =E
C,C

fPTcsxdgfsxddx

when the integration pathC,C of the latter integral is restricted tosan interval ofd the real
line, C#R,

sc,fdPT =E
C#R

fPTcsxdgfsxddx =E
C#R

fPcsxd*gfsxddx =E
C#R

csxd*Pfsxd = fc,fgP.

sii d In contrast to the “usual” positive definite metric structure of the Hilbert spaceH̃=H+
% H−,

sH̃,s., . dd, sc,fd =E
C#R

c*sxdfsxddx =E
C#R

sc+
* f+ + c−

* f−ddx,

with non-negative norm

ici2 = sc,cd = ic+i2 + ic−i2 ù 0,

the scalar productfc ,fgP defines an indefinite metric structure in the Krein spaceKP
=H+ % H−, what is easily seen from the decompositions4d

fc,fgP =E
C#R

sc+
* f+ − c−

* f−ddx.

siii d In rough analogy with timelike, spacelike, and lightlikesisotropicd vectors in Minkowski
space, one distinguishes Krein space vectors of positive type,fc+,c+gP=ic+i2.0, of nega-
tive type,fc−,c−gP=−ic−i2,0, and neutralsisotropicd vectors,

fc,cgP = 0, c = c+ + c−, ic+i2 = ic−i2.
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In order to make the structural Krein space analogies of PTSQM models and MHD dynamo
setups maximally transparent, we rewrite the eigenvalue problem,Hc=Ec, for thePT-symmetric
Hamiltonians5d in an equivalent 232 matrix operator representation. Introducing the projection
operators

P± ª
1
2sI ± Pd

we decompose wave functionc and HamiltonianH ssee, e.g., Ref. 9d as

c = P+c + P−c = c+ + c−,

H = P+HP+ + P−HP+ + P+HP− + P−HP−.

In terms of the notation

H±± ª P±HP± = − ]x
2 + V+sxd, H±7 ª P±HP7 = iV−sxd s8d

this gives

SH++ H+−

H−+ H−−
DSc+

c−
D = ESc+

c−
D, P = S I 0

0 − I
D , s9d

where

H±± = H±±
† , H+− = − H−+

† . s10d

If one replaces the matrix entries ins9d and s10d by appropriate constants one arrives at the
schematic two-level model

HHSu

v
D = ESu

v
D, HH = Sc + a b

− b* c − a
D, a,c P R, s11d

which may be read as an elementary exemplification of Heisenberg’s linear-algebraic approach20

to sPT-symmetricd quantum mechanics and which was intensively studied in Refs. 6, 7, 18, and
21–23.

B. The spherically symmetric MHD a2-dynamo

The magnetic fields of planets, stars, and galaxies are maintained by homogeneous dynamo
effects, which can be successfully described within magnetohydrodynamicssMHDd. One of the
simplest dynamos is the spherically symmetric mean-fielda2-dynamo in its kinematic regime.
This dynamo model is capable to play a similar paradigmatic role in MHD dynamo theory like the
harmonic oscillator in quantum mechanicssQMd. Its operator matrix has the formssee the
Appendix for a few comments on the origin of this operator matrix and on the physics of
a2-dynamosd13

Ĥlfag = S− Qf1g a

Qfag − Qf1g
D s12d

and consists of formally self-adjoint blocks

Qfag ª pap + a
lsl + 1d

r2 ,

wherep=−is]r +1/rd denotes the radial momentum operator. The operatorĤlfag is defined over
an interval V=f0,1g{ r and acts on two-component vectorsf which describe the coupled
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l-modes of the poloidal and toroidal magnetic field components of a mean-field dynamo model
with helical turbulence functionsa-profiled asrd.

Although the dynamo model is notPT-symmetric, its operatorĤlfag shares a basic underlying
symmetry with PTSQM Hamiltonians—a Z2-graded pseudo-Hermiticity sJ-pseudo-
Hermiticityd5,14 which is induced by the fundamentalscanonicald symmetry,

Ĥlfag = JĤl
†fagJ, J = S0 I

I 0
D .

Similar to the reflection operatorP in s6d, the operatorJ is unitary and involutive

J† = J−1, J2 = I .

The boundary conditions on the vector functionf are set atr =1 sthe rescaled surface radius of the
star or planet whose fluid/plasma motion maintains the dynamo effectd and it is assumed that
asr .1d;0. In the case of physically idealized boundary conditions atr =1 ssee, e.g., Ref. 24d, the

domainDsĤlfagd of the operatorĤlfag consists of functionsf such that

DsĤlfagd ª Hf = Sf1

f2
D:f P H̃ ; H % H,H = L2sV,r2 drd,V = f0,1g,fs1d = u0,rfsrdur→0 → 0J ,

and Ĥlfag is self-adjoint in a Krein space

sKJ,f., . gJd, fc,fgJ =E
0

1

c†Jfr2 dr, fĤlx,fgJ = fx,ĤlfgJ.

It should be noted that for physically realistic boundary conditions

B̂lfur=1 = 0, B̂l = diagf]r + sl + 1d/r,1g s13d

there exists no appropriate Krein space which could make the operatorĤlfag J-self-adjoint.
The structures of PTSQM models and thea2-dynamo can be compared most explicitly after

passing fromKJ to an equivalent Krein spaceKm with diagonal metric operatorm and redefined
Hilbert spaces components,L2sV ,r2 drd°L2sV ,drd. The diagonalization yields

J ° m ª S I 0

0 − I
D = S−1JS, S=

1
Î2

S I − I

I I
D , s14d

Ĥlfag ° Ȟlfag = S−1ĤlfagS=
1

2
SQfa − 2g + a − Qfag + a

Qfag − a Qf− a − 2g − a
D , s15d

f ° f̌ = Sf+

f−
D =

1
Î2

Sf2 + f1

f2 − f1
D , s16d

whereas the unitary mappingU :L2sV ,r2 drd°L2sV ,drd simplifies the structure ofQfag and
leads ins15d and s16d to the additional replacements

f1,2 ° f1,2ª rf1,2, Qfag ° qfag ª rQfagr−1 = − ]rasrd]r + asrd
lsl + 1d

r2 . s17d

By inspection ofs8d–s10d ands14d–s17d we find that, in the chosen Krein space representations of
the PTSQM model and thea2-dynamo, the block structures of the metricssinvolution operatorsd
P and m coincide,P=m, but that the blocks of thePT-symmetric Hamiltonian and the dynamo
operator show significant structural differencesfin a very rough analogy, the alpha profileasrd has
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some similarities to a position depending mass, as it was studied for QM models, e.g., in Ref. 25g,

H±± = − ]x
2 + V+sxd ↔ − qf1g ±

qfag + a

2
,

H±7 = iV−sxd ↔ 7
qfag − a

2
.

It is clear that these differences in the differential expressionssas well as the different boundary
conditions on the two-component eigenfunctionsd will lead to different global behaviors of the
corresponding operator spectra. Nevertheless, both types of systems share the same Krein-space
induced features of level crossings, what will be briefly sketched in the next section.

C. Spectral phase transitions

Since the first PTSQM paper1 of Bender and Boettcher it is known thatPT-symmetric Hamil-
tonians have a real spectrum whenPT-symmetry is an exact symmetry and not spontaneously
brokensthe corresponding eigenfunctions are invariant under aPT-transformationd, whereas spon-
taneously brokenPT-symmetry is connected with complex energies.fWe recall that this follows
from s2d and s3d, the eigenvalue equationHc=Ec and itsPT-transformed,HPTc=E*PTc. For
real eigenvalues,E=E* , it is natural to setc=PTc, whereasEÞE* necessarily impliesc
ÞPTc.g A consistent PTSQM applicability and interpretation of the complex-energy states re-
mains an open question up to nowscf., e.g., Ref. 26d. For convenience, we shall call these states
“unphysical” here.

The mathematically most interesting questions of PTSQM concern the transition between the
physical and unphysical domains of their parameters. In the simple two-state models11d it is easy
to deduce that the quantized energiesE are reals“physical”d for uau. ubu while they form complex-
conjugate pairs in the “unphysical” regime whereuau, ubu.7,18 The boundary of its PTSQM appli-
cability coincides with the double-cone hypersurface in parameter space whereuau= ubu. One easily
verifies that wheneverubu approachesuau, the separate eigenenergiesE± as well as the correspond-
ing two independent bound-state eigenvectors coalesce and coincide. On the critical hypersurface
the remainingsgeometricald eigenvector becomes supplemented by a so called associated vector
salgebraic eigenvectord14 and the Hamiltonian matrixH acquires a Jordan-block canonical
structure.14,27 The latter cannot be diagonalized and it only gives the doubly degenerate and real
single “exceptional-point” eigenvalueE=EsEPd=c scf., e.g., Ref. 28 for more detailsd.

An exhaustive and consistent bound-state interpretation of the Schrödinger-type equations1d
is more difficult. For example, it requires the restriction of the range of exponents to a finite
interval of nP s−1,2d for csxdPL2s−` ,`d as usual defined on the real line.1 A rigorous proof of
the reality of the energies turned out unexpectedly difficult.16,29 For larger exponentsn, the real
line must be replaced by an appropriately deformed contour in the complex plane.1,2

A systematic analytical study of phase transition points is still lacking for PTSQM models; the
same concerns efficient mathematical tools for deriving their location in parameter space. Similar
to the double-cone hypersurfaces for the simple matrix models11d, one expects more complicated
sand more interestingd global phase-transition hypersurfaces in case of the Schrödinger-type sys-
tems. Knowing the location of these phase transition hypersurfaces, one would know the bound-
aries of the “physical” regions of exactPT-symmetry.

For thea2-dynamo both types of eigenvalues—real ones as well as pairwise complex conju-
gate ones—have a clear physical meaning. They simply correspond to nonoscillatory and oscilla-
tory dynamo states, respectively. But again it is of utmost interest to know the parameter configu-
rations for which transitions between the two types of statessphasesd occur. In the recent paper,30

strong numerical indications were presented that magnetic field reversalssinterchanges of North
and South poles as they are evident from paleomagnetic data on the Earth magnetic field31d are
induced by a special type of nonlinear dynamics in the vicinity of spectral phase transition points.
fIn the concrete case, the nonlinear transition mechanism between kinematic and saturated dy-
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namo regimesa brief outline of the corresponding physics can be found in the Appendixd was
simulated with the help of a so calleda-quenchingssee, e.g., Ref. 32d which simulates the
nonlinear back-reaction of the induced magnetic fields on thea-profile asrd.g

The qualitative features of the real-to-complex phase transitions are essentially the same for
PTSQM models and for the MHDa2-dynamo. They correspond to transitions from Krein space
states of positive and negative type to pairwise neutralsisotropicd states11,14—and a square-root
branching of the spectral Riemann surface.33,34 Such transitions are a generic feature of Krein-
space setups and they are new compared with setups in Hilbert spaces with purely positive metric
structures as in “usual” QM. The square-root branching behavior is easily seen by passing from

the linear eigenvalue problems for the 232-operator matricesH andĤlfag of Eqs.s9d and s12d,

sH − Edc = 0, sĤlfag − ldf = 0,

via substitutions

c = 1 c+

−
1

H+−
fH++ − Egc+2, f = 1 f1

1

a
fQs1d + lgf12

to the equivalent quadratic operator pencils

HsH−− − Ed
1

H+−
sH++ − Ed − H−+Jc+ = 0,

HsQf1g + ld
1

a
sQf1g + ld − QfagJf1 = 0.

Both pencils are of the same generic operator type

Lflgc = fA2l2 + A1l + A0gc = 0

with a scalar product

sc,Lflgcd = a2l2 + a1l + a0 = 0, aj ª sc,Ajcd

which can be used to deduce the local square-root branching behavior of the spectrum

l1,2=
1

2a2
s− a1 ± Îa1

2 − 4a0a2d.

A typical a2-dynamo spectrum with a large number of real-to-complex transitions is presented
in Fig. 1 ssee also Refs. 14 and 35d. These crossings with real-to-complex transition occur at
exceptional pointssin the sense of Kato36d of ssquare rootd branching type37,38and the correspond-
ing eigenvalues have geometric multiplicity one and algebraic multiplicity two.14 In contrast,
crossings without real-to-complex transitions are of the same type as level crossings in Hermitian
systems11–with geometric and algebraic multiplicity two.39 Finally, we note that although locally
crossings with real-to-complex transitions occur, in general, only between two spectral branches,
globally much more branches are involved in mutual crossingsssee Fig. 1d. This reflects the fact
that in general the spectrum forms a multisheet Riemann surface over the parameter space of the
theory ssee, e.g., Refs. 33, 34, and 40d.

In the next section, we will analyze the spectral behavior of aPT-symmetric interpolation
model where we will find a similar rich structure of real-to-complex transitions as for the
a2-dynamo.
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III. PT-SYMMETRIC INTERPOLATION BETWEEN SQUARE WELL AND HARMONIC
OSCILLATOR

In Schrödinger-type modelss1d over the open real linexP s−` ,`d a PTSQM-related separa-
tion of the “physical” and “unphysical” domains is, in general, a mathematically highly nontrivial
problem. Its resolution requires a fairly subtle and rigorous mathematical argumentation.16,29 A
typical result of the WKB analysis of Ref. 1 was that in a half-open interval ofnP f0,2d the
energies remain real and that thePT-symmetry of the wave functions remains unbroken. In
parallel, a characteristic unphysical behavior of the systems1d has been found in the half-open
interval of nP f−1,0d, where at anyn,0 all the sufficiently high-lying energiesEn with n
.n0snd “decay” in complex-conjugate pairs,IEnÞ0. Moreover, the spectrum becomes empty in
the Herbst–Hamiltonian limit of the leftmostn=−1.1

A. Toy model PT-symmetric differential equation

In the present section, we are going to extend the consideration of the Schrödinger-type
systems1d to exponents from the intervalnP f−2,0g. The endpoints of this interval correspond to
the purely real-valued Hermitian-system spectra of a freely moving particle with shifted off-set
energysfor n=−2d and a harmonic oscillatorsfor n=0d. For the exponentsnP s−2,0d we expect
a phase of spontaneously brokenPT-symmetry with an involved picture of real-to-complex spec-
tral phase transitions.

FIG. 1. Real and imaginary components of thea2-dynamo spectrum as functions of the scale factorC of an a-profile
asrd=C3 s1−26.093 r2+53.643 r3−28.223 r4d in the case of angular mode numberl =1 and physically realistic bound-
ary conditionss13d. The concrete coefficients in the quartic polynomialasrd have their origin in numerical simulations of
the field reversal dynamicsssee Ref. 30d. Only the imaginary components withIlù0 are shown. The complex conjugate
sIlø0d-components are omitted for sake of brevity.
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In order to keep the numerical analysis sufficiently simple and robust, we assume the system
located in a square wellsboxd of finite width 2b,` and Dirichlet boundary conditions imposed at
the walls,csx= ±bd=0, i.e., we introduce an IR cutoff at the low-energy end of the spectrum
svarious aspects of square-well-related PTSQM setups have been earlier considered, e.g., in Refs.
11, 41, and 42d. This enables us to rescale Eq.s1d to the equivalent equation

f− ]y
2 + G y2siydngcfxsydg = msEdcfxsydg s18d

with parameter-independent boundary conditions

cfxs±1dg = 0, s19d

but rescaled coupling constant and energy

G = g b4+n, msEd = b2E.

In this notation, the original bound-state problems1d with asymptotic Dirichlet boundary condi-
tions atx→ ±` is replaced by the equivalent new problem defined within a fixed finite interval
f−1,1g. In the limit of very smallb<0 the potential term becomes negligible,G<0, and the
interaction degenerates to an infinitely deep square wellsboxd at all n. A completely similar
situation occurs for systems with any nonvanishing finiteb, but very small exponents,n<−2. In
both extremal cases the problem remains exactly solvable. The original Bender–Boettcher problem
corresponds to the strong-coupling limit,G→` , b→`, with g hold fixed,g=G b−4−n=const.

For finite coupling constants 0,G,` one expects the energy spectrum to be divided into the
following three sectors: into a low-energy sector with states which are involved in real-to-complex
phase transitions, into an intermediate sector, where then-dependent energies still remain real, and
into a high-energy sector with almostn-independent purely real eigenvalues whose states experi-
ence only a small perturbations from the complex interaction term. The division into low energy
and intermediate-and-high energy sectors has been qualitatively described in a recent paper11 by
Langer and Tretter who considered a square well model with an arbitraryPT-symmetric potential
V as perturbation. Starting from the energy spectrum of the empty square well,mk=k2p2/4 , k
=1, 2,…, they showed that there are no real-to-complex phase transitions for levelsk.ks with ks

as the lowest level satisfying the supremum boundiVi`, s2ks+1dp2/8. In case of our model with
potentialVsyd=gb4+dy2siydn the supremum normssee, e.g., Ref. 43d readssfor nù−2d

iVi` = sup
yPf−1,1g

uVsydu = uVs±1du = ugub4+n

so that it is ensured that there are no phase transitions for levels

k . kssbd .
1

2
F 8

p2ugub4+n − 1G . s20d

According to Ref. 11 it holds for the corresponding real eigenvaluesmk, umk−k2p2/4u, ugub4+n.
The supremum bound is safe, but at the same time rather rough.44 The subsequent exact numerical
analysis shows that, depending on the concrete exponentsn, the real-to-complex phase transitions
in the models18d stop at much lower energy levels.

B. The emergence of IEÅ0 on certain finite subintervals of n« „−2,0…

In the generic case withnP s−2,0d andb.0, we have solved Eqs.s18d ands19d numerically
by means of a shooting technique with a fifth-order Runge–Kutta method, utilizing and adapting
standard routines from numerical recipes.45 The corresponding code had been validated exten-
sively in earlier work by comparison with known analytical results and other numerical results in
dynamo theory and quantum mechanics.
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A sample of the results of such a study is depicted in Figs. 2–6, where we have choseng
=1 and displayed the first few energy levelsEsnd over the entire intervalnP s−2,0d for the
sequence of valuesb=2, 4, 6, 7. The important results of this numerical experiment are the
following:

FIG. 2. Spectrum of thePT-symmetric interpolation HamiltonianH=−]x
2+x2sixdn as function of the exponentn for the

cutoff lengthb=2. All eigenvalues are real and almost independent ofn. The spectrum is only slightly deviating from that
of an empty square well.

FIG. 3. Real and imaginary components of the spectrum in the case of a cutoff lengthb=4 fcomplex conjugatesIl
ø0d components omitted, as well as further higher lying levels without real-to-complex transitionsg. The low-energy sector
with its multiple real-to-complex transitions starts to form.
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sid At all sufficiently smallb, as sampled in Fig. 2, the energy spectrum exhibits a more or less
n-independent square-well form.

sii d At not too largeb the spectrum, as sampled in Fig. 3, proves clearly separated into the
high-lying part swhere the energies still preserve their approximaten independenced, an
intermediate perturbative partswhere the perceivablyn-dependent energies still remain all
reald and the low-lying partswhere one encounters the first real-to-complex phase transi-
tionsd.

siii d The actual lowest level numberskcsbd scritical level numbersd of the modes which are not
involved in real-to-complex transitions lie much below the safe supremum boundskssbd of
inequality s20d. Choosing, for example, the exponentsn=−1/2 andn=−3/2 we read off
that

n = − 1/2, b =5
2

4

6

7
6 , kssbd . 5

4.08

51.4

213

367
6 , kcsbd =5

1

6

14

22
6 ,

n = − 3/2, b =5
2

4

6

7
6 , kssbd . 5

1.79

12.5

35.2

52.1
6 , kcsbd =5

1

5

9

11
6 .

sivd Starting from the “intermediate width” region, sampled atb=6 in Fig. 4, we find that the
left-hand halfof the picture exhibits a clear transition from the slightly non-Hermitian

FIG. 4. Spectrum for a cutoff lengthb=6.
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square well regimeswith the higher energies all reald to its more strongly non-Hermitian
extension where for all exponentsn not too distant fromn=−2 the purely imaginary and
finite component of the potential resembles the spatially antisymmetric part of the exactly
solvablePT-symmetric Heavyside step potential within a square well considered in Ref.
41. This explains why in Figs. 3–5 the continuing decrease ofn makes the respective two
or three lowest pairs of the energies merge and complexify.

svd At “sufficiently large” cutoffsb, all the real low-lying energies depicted in theright-hand
halvesof Figs. 4 and 5 obviously stabilize and approach theb→` limiting pattern as
published in Refs. 1 and 16. In particular, we see that the ground-state energy remains real
and that it starts growing more quickly only when the values ofn move down and closer to
the Herbst limit ofn→−1+. We observe that in a more appropriate way this growing real
branch should be interpreted as a special type of ladder-shaped merger of intermediate real
segments which actually correspond to level pairs with higher mode numbers. A zoomed
view on this peculiarity is presented in Fig. 6, where it is clearly visible that a chain of
exceptional points is located on this branch with alternating complex-valued segments
branching off to the left and to the right. These segments fit, after further complex-to-real
transitions, to the real eigenvalues of then→0 andn→−2 limit models.

svid When the cutoffb is increased the following simultaneous changes in the spectrum can be
observed. In the upper low-energy region withn.−1 step by step more and more level
pairs become twisted into the complex sector. With a “slight delay inb” and atn,−1 the
lower of the twisted levels undergo a second pairwise real-to-complex transition with the

FIG. 5. At a cutoff lengthb=7 the generic structure of the spectrum is clearly visible. The weblike pattern of the real
componentssad contains purely real branches in the vicinity of the leftsn=−2d and rightsn=0d endpoints of the considered
interval as well as a chain of purely real intermediate segments in the vicinity ofn=−1. sSee Fig. 6 for a detailed view.d
The increasing number of imaginary componentssbd with high gradientsu]nEsn<−1du@1 which accumulate in the vicinity
of n=−1 are first indications of the formation of a local spectral singularity atn=−1.
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levels below them. A sort of web structure is forming with a purely real branch remaining
between the leftsn,−1d and rightsn.−1d purely complexstwistedd spectral regions. The
complex-valued level pairs are branching off from the real branch forming a ladder-shaped
structure. At the low-energy end of this ladder a second process occurs. The leftsn,−1d
complex level pairs are passing the linen=−1 and move to the right of it. There, at some
n.−1 the corresponding exceptional point merges with an exceptional point of a right
branch. As a result, one of the real segments between left and right off-branching levels
disappears and a smooth complex-valued branch forms which extends over a largen inter-
val and whose imaginary components are increasing very fast whenb is increased. It
remains the real branch which becomes more and more vertical whereas the complex
branch is not intersecting with itsthe real component of the complex branch is coinciding
at one point with the real branch but the imaginary components are not coincidingd.

Analyzing the sequence of Figs. 2–6 we observe that, when the cutoffb is increased, a rather
specialsand seemingly inextricabled branch pattern of real and complex eigenvalues is forming in
the vicinity of the exponentn=−1. fThe phenomenon may be generic since in Ref. 46, the “wiggly
upwards” spectral pattern has also been detected for a very different one-parametric family of
asymptotically exponentialPT-symmetric potentialsVsxd=−si sinhxdb near the Herbst-type expo-
nent b=1.g The extreme steepness of an increasing number of imaginary branches and their
accumulation atn=−1 ssee Figs. 4 and 5d as well as the occurrence of the almost vertical real
branchsFig. 6d are indicating the formation of a local spectral singularity with]nEun→−1→ ±` at
thesalmostd vertical segments of the real-valued branch as well as on the imaginary branches close
to the exceptional points of the “ladder” structure. From the figures it is not at all obvious how this
pattern is compatible with the Herbst limit of an empty spectrum forb→` at n=−1. We will
resolve this interesting puzzle in the next section.

IV. THE HERBST LIMIT AND ITS RELATION TO THE SQUIRE EQUATION OF
HYDRODYNAMICS

In Ref. 15 it was shown by Herbst that the spectrum of a Hamiltonian with imaginary linear
potentialsimaginary homogeneous electric fieldd over the real linexPR is empty. The differential
expression of the corresponding operator coincides with that of thePT-symmetric Schrödinger-
type equations18d with exponentn=−1,

FIG. 6. The purely real curveshigh-lighted fatd in the vicinity of n=−1 scutoff lengthb=7d is formed by intermediate real
segments between complex valued segments which branch off to the left and to the right. This leads to a ladderlike
structure with exceptional points as nodes. The zoomed picture insbd shows that the “oscillations” of the real curve about
the linen=−1 persist also at its lower end, but with strongly reduced “amplitude.” When the cutoff is slightly increased to
b*7 the lowest exceptionalsreal-to-complex transitiond point sbd will cross the linen=−1 and will in the regionn.−1
coalesce with the othersnearestd exceptional point. As a result, one intermediate segment will be removed from the real
curve and a purely complex-valued branch pair will smoothly tend from “far left”sn,−1d to “far right” sn.−1d—similar
to the lower lying purely complex branches visible in the graphics.
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f− ]y
2 − igb3ygcsyd = b2Ecsyd, csy = ± 1d = 0. s21d

The only difference ofs21d compared to the Herbst model is in the Dirichlet boundary conditions
at y= ±1 which restrict the system to a boxssquare welld. Due to this analogy and for sake of
brevity, we will call the models21d a “Herbst box.”

We start our consideration by noticing that Eq.s21d and the spectral functionmsb,Ed=b2E are
invariant under the rescalingb°g−1/3b, E°g2/3E so that henceforth we can setg=1, without
loss of generality. The corresponding Herbst box Hamiltonian we denote as

HHbsbd ª − ]y
2 − ib3y. s22d

Equations21d itself is of Airy type and its solutions can be expressed as

csyd = C1A1fjsydg + C2A2fjsydg,

jsyd ª eisp/3df− iby − Eg,

whereC1,2=const, andA1sjd , A2sjd are any two of the Airy functions Aisjd , Aisqjd , Aisq2jd with
qªei2p/3. As usual, the boundary conditions lead to a characteristic determinant which defines the
spectrum of the eigenvalue problem. In case of Eq.s21d, it reads

DsEd = A1sj+dA2sj−d − A1sj−dA2sj+d = 0, j± ª jsy = ± 1d. s23d

Characteristic determinants of this typesbuilt over Airy functionsd have been intensively studied
since 1995 in a paper series of Stepin47,48and Shkalikovet al.49 sfor related work see also Ref. 50d
on the spectral properties of the Squire equation of hydrodynamicssthe corresponding physical
background can be found, e.g., in Refs. 51 and 52d

HSqs«d ª i«]y
2 + y, sHSq− ldx = 0, xsy = ± 1d = 0, « ª sãRd−1. s24d

Before we make thesobviously existingd relation of this model to the Herbst box model explicit,
we briefly review a few of its properties.

The Squire equations24d describes the normal vorticity of a plane Couette flow with linear
velocity profile. The parameterã.0 denotes a real-valued wave number which originates from
the decomposition of a two-dimensional flow perturbation,

Csx,y,td = xsydeiãsx−ltd,

R.0 is the Reynolds number and«—the viscosity. The spectrum ofHSq was found to have a
Y-shaped form.48,49,51All the eigenvalues are located in a close vicinity of the three segments
s1,−i /Î3g , s−1,−i /Î3g , f−i /Î3,−i`d. In the limit of large R→` , ãù1 and correspondingly
small «→0+ the eigenvalue problems24d turns into a singular perturbation problem and its
eigenvalues show a remarkable limiting behavior. For«→0+, more and more eigenvalues “move
in” from −i` along the linef−i /Î3,−i`d, merge pairwise in the vicinity of the point −i /Î3, and
depart thensagain pairwised to move symmetrically along the segmentsf1,−i /Î3g , f−1,−i /Î3g
and to “fill” them step by step—leaving the Y-shape invariant. The process was described in Ref.
48 as a special type of transition from a discrete spectrum to a continuous one. Explicitly, the
following asymptotic estimates were found in Refs. 48 and 49:

ln , − i«
p2n2

4
P f− i/Î3,− i`d, n → `, s25d

ln
± , ± 1 ± «1/3sne

±ip/6 P s±1,− i/Î3g, « → 0+, s26d

wheresn are the zeros of the Airy function
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Ai ssnd = 0, sn P R−.

One clearly sees that the smaller« is chosen the smaller the distances between the eigenvalues
become—leading in the limit«→0 to a quasicontinuous spectrum.

Noticing that the pairwise merging and splittingslevel crossingd of the eigenvalues occurs at
l+,l−,−i /Î3, it is easy to estimate that the value«n, for which this crossing is connected with
the nth Airy function rootsn, is given by

«n
1/3 ,

2

usnuÎ3
. s27d

Let us utilize the above results now for the Herbst-box model. A simple comparison of the
eigenvalue problemss21d sfor g=1d ands24d shows that these problems may be made coinciding
if one sets

i«−1fHSqs«d − lgxsyd=! PfHHbsbd − b2EgPfPcsydg = 0

and identifies

b3 = «−1, E = ibl, PHHbsbdP = i«−1HSqs«d, Pcsyd = xsyd. s28d

This means that the two models are related by the combined action of a rescaling, a Wick rotation
and a coordinate reflectionP.

With the help of the estimatess25d ands26d it is now an easy task to explain the behavior of
the Herbst-box spectrumEsbd.

sid The rescaled spectrumEsbd /b= ils«=b−3d sshown in Fig. 7d is simply the Wick-rotated
version of the original shape-invariant “Y” of the Squire operatorHSqs«d. With increasing
b=«−1/3 more and more eigenvalues “move in” from +` and “fill” the two complex con-
jugate branchessi ,1 /Î3g , s−i ,1 /Î3g of the “Y” as well as the half-linef1/Î3, +`d—in a
similar way as in the originalls«→0d limit. For b→` the spectrum becomes quasicon-
tinuous on the rotated “Y.”

sii d Due to the shape invariance ofEsbd /b, the spectrumEsbd= iblsb−3d itself inflates
when b increases. It is located in the close vicinity of the segments
sib ,b/Î3g , s−ib ,b/Î3g , fb/Î3, +`d and moves withb→` to infinity—leavingsfor suffi-
ciently highbd an empty region at any fixed finite distance from the origin of the spectral
E plane. Hence, we findsas requiredd that forb→` the Herbst-box spectrum turns into the
empty spectrum of the original Herbst model over the real lineR.

FIG. 7. The rescaled Herbst-box spectrumE/b= ilse=b−3d coincides with the Wick-rotated Y-shaped spectrum of the
Squire operatorHSqs«d.
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siii d For finite b, the asymptotic estimatess25d and s26d map into

Ek ,
p2k2

4b2 P b 3 f1/Î3, +`d, k → `, s29d

En
± , ± ib ± isne

±ip/6 P b 3 s± i,1/Î3g, b → `, s30d

and we identifys29d as the pure square well spectrum

msb,Ekd = b2Ek , p2k2/4 P b3 3 f1/Î3, +`d s31d

of the high-energy sector which is almost not affected by thePT-symmetric interaction. In
contrast, the low-energy sector described bys30d shows a purely linear scaling behav-
ior of the imaginary energy componentsIEn

±, whereas the real components remain
asymptotically fixed whenb increases. This situation is also clearly visible from the
numerical results presented in Fig. 8. The graphics of the equivalent spectrummsb,Ed,
depicted in Fig. 9, provides a complementary description and shows howsfor increas-
ing bd the b-independent eigenvaluesmsb,Ekd of Eq. s31d leave the high-energy sector,
obtain an explicitb dependence in the intermediate-energy sector and finally coalesce
and split into complex conjugate pairs.

sivd From the form of the spectral branches on theE planesrotated “Y”d it is clear that the level
crossings in the vicinity ofE,b/Î3 correspond to the typical real-to-complex phase tran-

FIG. 8. Real and imaginary components of the Herbst-box spectrum as functions of the cutoff lengthb fcomplex conjugate
sIlø0d-components omittedg. The asymptotical behavior of the complex-valued branches is clearly visiblesconstant real
components and linearb dependence of the imaginary componentsd.
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sitions ofPT-symmetric models in Krein spaces. With the help of relations27d the cutoff-
scalesbn and positionsEn of the level crossings can be roughly estimated as

bn , usnuÎ3/2, En , usnu/2. s32d

One can use the explicit values of thesebn sb1<2.02,b2<3.54,b3<4.78,b4<5.88,b5
<6.87,b6<7.81,…d, to roughly derive the number of the lowest uncrossed modes in
the casesb=2,4,6,7. Forb=2,4,6 the result exactly coincides with the level crossing
pattern shownsat n=−1d in Figs. 2–4, whereas the valueb5 is clearly smaller than the
actual transition valueb5scd for which according to Figs. 6sbd and 8 holdsb5scd*7. For
completeness, we note that the asymptotic approximation48 of the Airy function roots

usnu = F3p

2
Sn −

1

4
DG2/3

+ Osn−4/3d, n → `

together withs32d yields the following rough estimate for the lowest purely real-valued
mode:

ka .
4

3p
S 2

Î3
bD3/2

+
1

2
.

The scaling dimensionka=3/2 of this bound is only one-half of the scaling dimension
ks=4+n=3 of the corresponding supremum bounds20d. The exact positions of the level
crossing points are given by the multiple roots of the characteristic determinant,DsEd

FIG. 9. The rescaled Herbst-box spectrummsb,Ed=b2E allows a complementary view on the transition from the high-
energy sector to the intermediate and low-energy sector.
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=0, ]EDsEd=0. This equation system can be simplified via WronskianWfA1s.d ,A2s.dg to
yield the conditions

A1,2sj+d = ± A1,2sj−d

ssee Ref. 48 for the detailsd. Plugging the numerical results from the eigenvalue solver into
this equation withA1,2sjd chosen as in Ref. 48,A1sjdªAi sjd , A2sjdªAi sq2jd, selects the
conditionA1,2sj+d=A1,2sj−d and satisfies it within numerical working precision. For the
same data holdsA1,2sj+dÞ−A1,2sj−d.

svd The spectral behaviorEsbd for increasing cutoffb can be summarized as follows. At the
beginning, the real eigenvalues from the high-energy sector decrease as
Ek,p2k2/ s4b2d—moving into the intermediate energy region. Whenb approachesbn

,usnuÎ3/2 from below, the real eigenvalueshE2n−1,E2nj scorresponding to a pair of positive
and negative Krein space states11d coalesce atE2n−1,E2n,usnu /2 and a real-to-complex
transition occurshE2n−1,E2nj→ hEn

+,En
−j. Whenb is further increased the real energy com-

ponents remain fixedREn
± <usnu /2 fsee Fig. 8sadg, whereas the imaginary components

blow up linearly along the asymptotesIEn
± , ±b±sn

Î3/2 fFig. 8sbdg.

Let us, for finite b, relate the obtained Herbst-box results to the spectral behavior of the
PT-symmetric interpolation model of the preceding section. Apart from the obvious one-to-one
correspondence of the high-energy sectorsfsees31dg, a clear identification is immediately possible
for those Herbst-box eigenvalues which are close to the imaginary axis and which have the largest
imaginary components. These eigenvalues are located on the branches with the largest imaginary
components in Figs. 3–5swhich stay complex whenn passes through the Herbst-box value
n=−1d. It is clearly visible from these figures that, for increasingb, the imaginary components are
blowing up, whereas the real components remain asymptotically constant.

So far, we have found a clear correspondence for those regions on the Herbst-box “Y” which
are located away from the center of the “Y” with its real-to-complex phase transitions. A more
subtle situation occurs in the vicinity of this center. The corresponding Herbst box eigenvalues
will map into points located close tosor ond the formingsalmostd vertical segment of the purely
real branch depicted in Fig. 6. From the zoomed graphics in Fig. 6sbd we observe that the purely
real and almost vertical branch of the interpolation model “oscillates” around the Herbst-box line
at n=−1 with strongly decreasing “amplitude” to its low-energy part. With increasingb this
“decreasing amplitude” effect becomes stronger and the “oscillations” are only traceable with the
help of an appropriately increased zooming scale. Nevertheless, it can be read off that the real-
to-complex transition of the Herbst-box spectrum follows qualitatively the same scheme for any
finite b. The real eigenvalues of the Herbst box are all located on the purely real branch of the
interpolation model and the real-to-complex transition occurs when the lowest exceptional point
on this branch moves from the left sectorn,−1 through the Herbst-box valuen=−1 into the right
sectorn.−1—to coalesce afterwards with the next higher exceptional point from the right sector.
With this passing of the left-sector exceptional point through the linen=−1 the Herbst-box
eigenvalues become pairwise complex conjugate with strongly increasing imaginary components
fdue to the asymptotically diverging gradient]nEsb→`dun<−1→ ±`g. The real-to-complex tran-
sition with subsequently increasing imaginary components are illustrated in Fig. 10.

Finally, we note that in the limitb→`, the lowest-lying intersection of the purely real branch
with the Herbst-box linen=−1 moves away to infinity likeb/Î3 sthe lower bound of the real
segmentfb/Î3,`d of the Herbst-box “Y”d so that the real branch itself remains for any finite
energy in the right sectorn.−1—approaching the Herbst-box line asymptotically. This repro-
duces the earlier observations of Refs. 1 and 16 for the spectrum of the Bender–Boettcher problem
over the real line. Additionally, our Herbst-box results predict for this problem diverging
imaginary components atn=−1:uIEsb→` ,n→−1du→`. Taking these observations together
we once more see that in the limitb→` a spectral singularity is forming atn=−1 with
uEsb→` ,n→−1du→` , u]nEsb→` ,n→−1du→`.
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V. CONLUSIONS

In the present paper we considered three models emerging in different physical setups, but
which are closely related with each other by their underlying mathematical structure as spectral
problems in Krein spaces. The models are a one-dimensionalPT-symmetric quantum mechanical
interpolation setup defined over a square well of finite width 2b, the spherically symmetric MHD
a2-dynamo as well as the Squire equation of hydrodynamics. For the PTSQM model and the
a2-dynamo we made their close relation transparent by transforming them into a 232 matrix
operator representation with coinciding block structure of the Krein space metricsinvolution
operatord. In the case of the Squire equation we showed that the corresponding spectral problem is
connected with aPT-symmetric eigenvalue problem by a rescaling and Wick rotation.sIt is clear
that, apart from the Squire equation, there will exist other hydrodynamic equations which can be
structurally identified as Wick-rotatedPT-symmetric systems in Krein spaces.d

Based on recent results on the spectrum of the Squire equation, we performed a qualitative
analysis of thePT-symmetric quantum mechanical interpolation model for arbitrary square well
widths scutoffsd 2b. This allowed us to trace the emergence of the Herbst limit with its empty
spectrum as a spectral singularity and to fit our results to those of the Bender–Boettcher equation
over the real line. We obtained a rich structure of multiple spectral phase transitions from purely
real eigenvalues to pairs of complex conjugate ones—as it was to expect for spectral problems in
Krein spaces.

A deeper insight into the Herbst-box spectrum and a possible extension of the present results
to PT-symmetric Hamiltonians of the typeHM,N=−]x

2+x2MsixdN, M ,N=1,2,3,… over square
wells can probably be achieved by representing the characteristic determinantDsEd in s23d via
Hadamar product representation of the Airy functions53 as a spectral determinant of Bethe-ansatz
type16,29,54and studying it by similar cocycle functional equations as in Ref. 55.

A question which was not touched in the present paper concerns the orthogonality of the
Herbst-box eigenfunctions. For the Squire equation it is known that its eigenfunctions show a
strong nonorthogonality47,51 sdue to the non-normality of the Squire operatord for eigenvalues in
the vicinity of the branch point center of the “Y”spseudospectral techniques50,51,56play an impor-
tant role in this cased. Our above considerations indicate on a link of this issue with the forming
spectral singularityu]nEsn<−1,b@1du@1 in the vicinity of the almost vertical segments of the
purely real branch in the spectrum of thePT-symmetric interpolation model.

FIG. 10. Concrete example for the generic merging process of two complex-valued spectral branchesspresent here
for b,bcoal<6.36d into a single complex-valued branch forb.bcoal. The two exceptionalsreal-to-complex transitiond
points existing forb,bcoal are located on the planesn ,b,IE=0d and coalesce atb=bcoal. The corresponding point
sncoal<−0.9983.−1,bcoal<6.36,IE=0d is the startingscuspd point of a sharp “valley” of the nonvanishing imaginary
component which steeply grows and smooths whenb.bcoal is further increased. The white curve marks the Herbst-box
values. Before the two exceptional points coalesce, the left one of these points crosses the Herbst-box configuration at
sn=−1,b=bc<6.02,IE=0d and a real-to-complex transition occurs for the Herbst-box model.
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Finally, we would like to note two issues which seem of relevance for future considerations.
The first one is in developing efficient mathematical tools to find the hypersurfaces in parameter
space where spectral phase transitions of the real-to-complex type occur.fA two-step method
similar in spirit was successfully used, e.g., in higher-dimensional gravitational models to obtain
the stability regions in the modulisparameterd space of these modelssstep one, find the critical
hypersurfaces; step two, identify the stability/instability properties of the model aside from these
hypersurfacesd.57g Knowing these hypersurfaces, one would know the boundaries which separate
the parameter space regions with unbrokenPT-symmetry from regions with spontaneously broken
PT-symmetry. In case ofa2-dynamos the corresponding knowledge would allow for a more
precise prediction of configurations with tendency to magnetic field reversals. The second issue
concerns methods for solving inverse spectral problems in Krein spaces. Such methods would be
extremely helpful for the data analysis of the dynamo experiments which are planned for the near
future at seven sites around the world.58
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APPENDIX: A FEW COMMENTS ON THE PHYSICS OF MHD a2-DYNAMOS

The dynamo operatorĤlfag originates from the MHD mean-field induction equationscf. Ref.
12d

]tB = = 3 saBd + nmDB sA1d

for the magnetic fieldB. This equation results from averaging over small scale turbulences in the
velocity field of the electrically conducting fluidsor plasmad which drives the dynamo. The helical
turbulence functionasxd falso calleda-profile sin general setups,a is not a scalar function but a
tensor12dg encodes the net effect of the small scale physics on the large scalesmeand magnetic field
B. For certain topologically nontrivial helical velocity andB-field configurations an inverse cas-
cade effect occurs which induces an energy transfer from small-scale structures to large-scale
structuressinverse to the energy transfer in usual turbulence cascades where the energy is pumped
from large-scale structures into smaller structures until it finally dissipates and transforms into
thermal energyd. For sufficiently strong inverse cascade effects the advection term=3 saBd starts
to dominate over the diffusion termnmDB snm is the magnetic diffusivityd and the magnetic field
strength starts to grow exponentially. This kinematic dynamo effectsgrowing B field for a given
velocity field of the fluidd is followed by a saturated dynamo regime where a balance between the
dynamo effect and the back-reaction of the induced magnetic field on the velocity fieldsvia
Navier–Stokes equationd prevents a further growth of the field strengthB. For completeness, we
note that an MHD dynamo is an open system in which part of the kinetic energy of the conducting
fluid sor plasmad transforms into magnetic field energy.

The dynamo eigenvalue problem

Ĥlfagfl,n = ll,nfl,n, fl,nstd , expll,nt sA2d

follows from the induction equationsA1d via a double decomposition: decomposing theB field
into poloidal and toroidal componentsswhat leads to the two-component vector structure offl,nd
and expanding them further into spherical harmonics. In the simpleststoy modeld case of a
spherically symmetric dynamo configuration the corresponding modes decouple completely and
one arrives at the sphericall-mode projections12d and sA2d sthe subscriptn denotes the radial
mode numberd.

Up to now only a single exactly solvablea2-dynamo model is known—the model with
constanta-profile.12 Its spectrum is discrete, real,59 bounded above and, depending on the value of
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a, it is either completely negativesfor a below a criticalac:a,acd or it contains a finite number
of positive eigenvaluesll,n.0. The dynamo effect is dominated by these latter eigenmodes. In
practice, it usually suffices to concentrate the analysis on the dominating upper most growing
modesor a few of the upper most modesd for dipole sl =1d and quadrupolesl =2d configurations.
sThere exist no “s-wave” a2-dynamos withl =0.12,13d

The spectral properties of the dynamo operatorĤlfag are becoming much richer for inhomo-
geneousa-profilesasrdÞconst, when real-to-complex transitions occur—as discussed in Sec. II C
and shown in Fig. 1.
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The Feynman integral for the Schrödinger propagator is constructed as a general-
ized function of white noise, for a linear space of potentials spanned by finite
ssignedd measures of bounded support and Laplace transforms of such measures,
i.e., locally singular as well as rapidly growing at infinity. Remarkably, all these
propagators admit a perturbation expansion. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1904162g

I. INTRODUCTION

On a mathematical level of rigor, the construction of Feynman integrals for quantum mechani-
cal propagators will have to be done for specific classes of potentials. In particular, the Feynman
integrand has been identified as a well-defined generalized function in white noise space, e.g., for
the following classes of potentials:

sid ssignedd finite measures which are “small” at infinity,7,15

sii d Fourier transforms of measures,18

siii d Laplace transforms of finite measures.13

Potentials in the third space are locally smooth but may grow rapidly at infinity, a prominent
example is the Morse potential. On the other hand, the first of these classes includes locally
singular potentials such as the Dirac delta function. It is also important for the construction of
Feynman integrals with boundary conditions.2 Hence it would be desirable to admit potentials
which are linear combinations of elements from the first and third space. The present paper
addresses this problem: we show the existence of Feynman integrals solving the propagator equa-
tion for such potentials.

II. WHITE NOISE ANALYSIS

In this section we briefly recall the concepts and results of white noise analysis used through-
out this workssee, e.g., Refs. 1, 4, 5, 8, 11, 12, 14, and 16 for a detailed explanationd.

The starting point ofsone-dimensionald white noise analysis is the real Gelfand triple

adElectronic mail: mfaria@uma.pt
bdElectronic mail: oliveira@cii.fc.ul.pt
cdElectronic mail: streit@physik.uni-bielefeld.de
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SsRd , L2sRd , S8sRd,

whereL2
ªL2sRd is the real Hilbert space of all square integrable functions with respect to the

Lebesgue measure,SªSsRd and S8ªS8sRd are the real Schwartz spaces of test functions and
tempered distributions, respectively. In the sequel we denote the norm onL2 by u·u, the correspond-
ing inner product bys·,·d, and the dual pairing betweenS8 andS by k·,·l. The dual pairingk·,·l and
the inner products·,·d are connected by

kf,jl = sf,jd, f P L2, j P S.

By hu ·upjpPN we denote a family of Hilbert norms topologizing the spaceS.
Let B be thes-algebra generated by the cylinder sets onS8. Through the Minlos theorem one

may define the white noise measure spacesS8 ,B ,md by giving the characteristic function

Csjd ª E
S8

eikv,jl dmsvd = e−1”2uju2, j P S.

Within this formalism a version of thesone-dimensionald Wiener Brownian motion is given by

Bstd ª kv,1f0,tdl, v P S8,

where1A denotes the indicator function of a setA.
Now let us consider the complex Hilbert spaceL2smdªL2sS8 ,B ,md. As this space quite often

shows to be too small for applications, to proceed further we shall construct a Gelfand triple
around the spaceL2smd. More precisely, first we shall choose a space of white noise test functions
contained inL2smd and then we work on its larger dual space of distributions. In our case we will
use the spacesSd−1 of generalized white noise functionals or Kondratiev distributions and its
well-known subspacesSd8 of Hida distributionssor generalized Brownian functionalsd with cor-
responding Gelfand triples

sSd1 , L2smd , sSd−1

and

sSd , L2smd , sSd8.

Instead of reproducing the explicit construction ofsSd−1 and sSd8 ssee, e.g., Refs. 1 and 5d, in
Theorems 1 and 2 below we will define both spaces by theirT-transforms. Given aFP sSd−1,
there existp,qPN0 such that we can define for every

j P Up,q ª hj P S:2qujup
2 , 1j

the T-transform ofF by

TFsjd ª kkF,expsik·,jldll. s1d

Here kk·,·ll denotes the dual pairing betweensSd−1 and sSd1 which is defined as the bilinear
extension of the inner product onL2smd. In particular, for Hida distributionsF, definition s1d
extends tojPS. By analytic continuation, the definition ofT-transform may be extended to the
underlying complexified spaceSC of S.

In order to define the spacessSd−1 andsSd8 through theirT-transforms we need the following
two definitions.

Definition 1: A function F:U→C is holomorphic on an open set U,SC if

s1d for all u0PU and any uPSC the mappingC{l°Fslu+u0d is holomorphic on some
neighborhood of0PC,

s2d F is locally bounded.
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Definition 2: A function F:S→C is called a U-functional whenever

s1d for everyj1,j2PS the mappingR{l°Fslj1+j2d has an entire extension tolPC,
s2d there exist constants K1,K2.0 such that

uFszjdu ø K1 expsK2uzu2iji2d, ∀ zP C, j P S
for some continuous normi·i on S.

We are now ready to state the aforementioned characterization results.
Theorem 1: sRef. 10d Let 0PU,SC be an open set and F:U→C be a holomorphic function

on U. Then there is a uniqueFP sSd−1 such that TF=F. Conversely, given aFP sSd−1 the
function TF is holomorphic on some open set inSC containing 0. The correspondence between F
and F is a bijection if one identifies holomorphic functions which coincide on some open neigh-
borhood of 0 inSC.

Theorem 2: sRefs. 9 and 17d The T-transform defines a bijection between the spacesSd8 and
the space of U-functionals.

As a consequence of Theorem 1 one may derive the next two statements. The first one
concerns the convergence of sequences of generalized white noise functionals and the second one
the Bochner integration of families of the same type of generalized functionals. Similar results
exist for Hida distributionsssee, e.g., Ref. 5d.

Theorem 3: Let sFndnPN be a sequence insSd−1 such that there are p,qPN0 so that

s1d all TFn are holomorphic on Up,qª huPSC :2quuup
2,1j,

s2d there exists a C.0 such thatuTFnsuduøC for all uPUp,q and all nPN,
s3d sTFnsuddnPN is a Cauchy sequence inC for all uPUp,q.

ThensFndnPN converges strongly insSd−1.
Theorem 4: Let sL ,F ,nd be a measure space andl°Fl be a mapping fromL to sSd−1. We

assume that there exists a Up,q,SC ,p,qPN0, such that

s1d TFl is holomorphic on Up,q for everylPL,
s2d the mappingl°TFlsud is measurable for everyuPUp,q,
s3d there is a CPL1sL ,F ,nd such that

uTFlsudu ø Csld, ∀ u P Up,q, n − a.a.l P L.

Then there exist p8 ,q8PN0, which only depend on p,q, such thatFl is Bochner integrable. In
particular,

E
L

Fl dnsld P sSd−1

and TseLFl dnsldd is holomorphic on Up8,q8. One has

kkE
L

Fl dnsld,wll =E
L

kkFl,wlldnsld, ∀ w P sSd1.

III. THE FREE FEYNMAN INTEGRAL

We follow Refs. 3 and 6 in viewing the Feynman integral as a weighted average over Brown-
ian paths. We use a slight change in the definition of the paths, which are here modeled by
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xstd = x −Î "

m
E

t

t

vssddsª x −Î "

m
kv,1st,tgl, v P S8.

That is, instead of fixing the starting point of the paths, we fix the endpointx at time t. In the
sequel we set"=m=1. Correspondingly, the Feynman integrand for the free motion is defined by

I0 ª I0sx,tuy,t0d ª N expS i + 1

2
E

R
v2stddtDdsxst0d − yd,

where, informally,N is a normalizing factor, more precisely,N exps·d is a Gauss kernelssee, e.g.,
Refs. 5 and 15d. We recall that the Donsker delta functiondsxst0d−yd is used to fix the starting
point of the paths at timet0, t. TheT-transform of the free Feynman integrand

TI0sjd =
1

Î2pist − t0d
expS−

i

2
E

R
j2stddtDexpS i

2st − t0dSEt0

t

jstddt + x − yD2D s2d

is a U-functional and we use it to defineI0 as a Hida distributionssee Ref. 3d.
From the physical point of view, equalitys2d clearly shows that the Feynman integralTI0s0d

is the free particle propagator

1
Î2pist − t0d

expS i

2st − t0d
sx − yd2D .

Besides this particular case, even for nonzeroj theT-transform ofI0 has a physical interpretation.
Integrating formally by parts we find

TI0sjd =E
S8

I0svdexpS− iE
t0

t

xstdj̇stddtDdmsvdexpS−
i

2
E

ft0,tgc
j2stddt + ixjstd − iyjst0dD .

The term exps−iet0
t xstdj̇stddtd would thus correspond to a time-dependent potentialWsx,td

= j̇stdx. In fact, it is straightforward to verify that

Qst − t0d ·TI0sjd = K0
sjd expS−

i

2
E

ft0,tgc
j2stddt + ixjstd − iyjst0dD ,

whereQ is the Heaviside function and

K0
sjd

ª K0
sjdsx,tuy,t0d ª

Qst − t0d
Î2pi ut − t0u

expS−
i

2
E

t0

t

j2stddtDexpS i

2ut − t0uSEt0

t

jstddt + x − yD2D
3 expsiyjst0d − ixjstdd

is the Green function corresponding to the potentialW, i.e., K0
sjd obeys the Schrödinger equation

Si]t +
1

2
]x

2 − j̇stdxDK0
sjdsx,tuy,t0d = idst − t0ddsx − yd. s3d

IV. INTERACTIONS

In the sequelK1 denotes the linear space of all potentialsV on R of the form

Vsxd =E
R

eax dmsad, x P R,

wherem is a complex measure on the Borel sets onR fulfilling the condition
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E
R

eCuaudumusad , `, ∀ C . 0 s4d

scf. Ref. 13d, andK2 denotes the space of all potentialsV on R which are generalized functions of
the type

Vsxd =E
R

dsx − yddmsyd, x P R,

where dmsydªVsyddy is a finite signed Borel measure of bounded supportscf. Ref. 7d.
Remark 5: A Lebesgue dominated convergence argument shows that potentials inK1 are

restrictions to the real line of entire functions.13 In particular, they are locally bounded and
smooth.

Our aim is to define the Feynman integrand

I ª I0 · expS− iE
t0

t

VsxstdddtD s5d

for a potentialV of the formV=V1+V2, Vi PKi,

V1sxd =E
R

eax dm1sad, V2sxd =E
R

dsx − yddm2syd, s6d

where

xstd = x −E
t

t

vssdds, v P S8,

as before. In order to do this, first we must give a meaning to the heuristic expressions5d. In
Theorem 7 it will be shown thatI is indeed a well-defined generalized white noise functional.
Second, it has to be proven that the expectation ofI solves the Schrödinger equation for the
potentialV.

As a first step we expand the exponential ins5d into a perturbation series. This leads to

I = o
n=0

`
s− idn

n! o
k=0

n Sn

k
Dk ! E

Dk

dktE
t0

t

dn−ks

3E
Rk
E

Rn−k
I0 expSo

l=1

n−k

alxssldDp
j=1

k

dsxst jd − xjdp
l=1

n−k

dm1saldp
j=1

k

dm2sxjd, s7d

whereDkª hst1, . . . ,tkd : t0,t1, ¯ ,tk, tj. In the above expression the integrals overDk,Rk

andft0,tgn−k,Rn−k disappear, respectively, fork=0 andk=n. Our aim is to apply Theorems 3 and
4 to show the existence of the above series and integrals. However, first we must establish the
pointwise multiplication of generalized functionals

I0 expSo
l=1

n−k

alxssldDp
j=1

k

dsxst jd − xjd

as a well-defined generalized functional. Due to the characterization result Theorem 2 it is enough
to define this product through itsT-transform. Arguing informally, forjPS we are led to
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TSI0 expSo
l=1

n−k

alxssldDp
j=1

k

dsxst jd − xjdDsjd

=E
S8

I0 expSo
l=1

n−k

alxssldDp
j=1

k

dsxst jd − xjdexpsikv,jlddmsvd

= expSxo
l=1

n−k

alD ·TSI0p
j=1

k

dsxst jd − xjdDSj + io
l=1

n−k

al1ssl,tgD .

The productI0p j=1
k dsxst jd−xjd is a slight generalization of the free Feynman integrandI0, with

more than just one delta function, and may be defined by itsT-transform,

TSI0p
j=1

k

dsxst jd − xjdDsjd = expS−
i

2
E

ft0,tgc
j2ssdds+ ixjstd − iyjst0dDp

j=1

k+1

K0
sjdsxj,t juxj−1,t j−1d

= expS−
i

2
E

R
j2ssddsDp

j=1

k+1H 1
Î2pist j − t j−1d

3expS i

2st j − t j−1d
SE

t j−1

t j

jssdds+ xj − xj−1D2DJ . s8d

Heret0ª t0, x0ªy, tk+1ª t, andxk+1ªx. Clearly the explicit formulas8d is continuously extend-
able to all jPL2 which allows an extension ofTsI0p j=1

k dsxst jd−xjdd to the argumentj
+ iol=1

n−kal1ssl,tg
.

Proposition 6: The product

Fn,k ª I0 expSo
l=1

n−k

alxssldDp
j=1

k

dsxst jd − xjd

defined by

TFn,ksjd = TSI0p
j=1

k

dsxst jd − xjdDSj + io
l=1

n−k

al1ssl,tgDexpSxo
l=1

n−k

alD
= expS−

i

2
E

R
Sjssd + io

l=1

n−k

al1ssl,tg
ssdD2

dsDp
j=1

k+1
1

Î2pist j − t j−1d

3expSo
j=1

k+1
i

2st j − t j−1d
SE

t j−1

t j Sjssd + io
l=1

n−k

al1ssl,tg
ssdDds+ xj − xj−1D2DexpSxo

l=1

n−k

alD
is a Hida distribution.

Proof: It is obvious that the latter explicit formula fulfills the first part of Definition 2,
analyticity. In order to prove thatFn,k is a Hida distribution by application of Theorem 2, we must
only show thatTFn,k also obeys a bound as in the second part of Definition 2. For everyuPSC we
have
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uTFn,ksudu ø expSuxuo
l=1

n−k

ualuDp
j=1

k+1
1

Î2pst j − t j−1d
UexpS−

i

2
E

R
u2ssdds

+ o
l=1

n−k

alE
R

ussd1ssl,tg
ssddsDUUexpSo

j=1

k+1
i

2st j − t j−1d
SE

t j−1

t j

ussddsD2DU
3 UexpSo

j=1

k+1
1

t j−1 − t j
SE

t j−1

t j

ussddsDo
l=1

n−k

alSE
t j−1

t j

1ssl,tg
ssddsDDU

3 UexpSo
j=1

k+1
isxj − xj−1d

t j − t j−1
E

t j−1

t j Sussd + io
l=1

n−k

al1ssl,tg
ssdDdsDU

which is majorized by

uTFn,ksudu ø p
j=1

k+1
1

Î2pst j − t j−1d
exps2iui2dexpSsuxu + t − t0 + iui2do

l=1

n−k

ualuD
3 expS4 max

0ø jøk+1
uxjuo

l=1

n−k

ualuDexps max
0ø jøk+1

suxju2dd
¬ Cst1, . . . ,tk;a1, . . . ,an−k;x1, . . . ,xk;ud

¬ C s9d

independent ofs1, . . . ,sn−k, where

iui ª sup
sPft0,tg

uussdu +E
t0

t

uu̇ssduds+ uuu

is a continuous norm onSC, cf. Appendix below. This estimate forTFn,k is of the form required
in Definition 2, which completes the proof. j

According to Proposition 6, allFn,k are Hida distributions and thus also generalized white
noise functionals withTFn,k entire onSC. Moreover, eachTFn,ksud is a measurable function of
t1, . . . ,tk; s1, . . . ,sn−k; a1, . . . ,an−k; x1, . . . ,xk for everyuPSC. Hence, in order to apply Theorem
4 to prove the existence of the integrals inI, we must only find a suitable integrable bound for
uTFn,ksudu. Since the measurem1 fulfills the integrability conditions4d and the signed measurem2

is finite and has support contained in some bounded intervalf−a,ag, a.0, one may infer the
integrability of C for everyuPSC,

UE
Dk

dktE
t0

t

dn−ksE
Rk

p
j=1

k

dm2sxjdE
Rn−k

p
l=1

n−k

dum1usaldCU
ø exps2iui2 + b2dst − t0dn−kE

Dk

p
j=1

k+1
1

Î2pst j − t j−1d
dktUE

R
dm2sxdUk

3SE
R

expssuxu + 4b + t − t0 + iui2duauddum1usadDn−k

,

wherebªmaxha, uyu , uxuj. Thus, according to Theorem 4, there exists an open setU,SC indepen-
dent ofn such that
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In,k ª E
Dk

dktE
t0

t

dn−ksE
Rk
E

Rn−k
Fn,kp

l=1

n−k

dm1saldp
j=1

k

dm2sxjd P sSd−1

for eachkøn and everynPN, and allTIn,k are holomorphic onU. To conclude the existence of
I we must only prove that the series inn converges insSd−1 in the strong sense. This follows from
Theorem 3. In fact, due tos7d, for everyuPU one has

uTIsudu ø o
n=0

`
1

n! ok=0

n Sn

k
Dk! uTIn,ksudu,

where the right-hand side is upper bounded by the factor exps2iui2+b2d times the Cauchy product
of the convergent series

So
n=0

`
1

n!Sst − t0dE
R

esuxu+4b+t−t0+iui2duaudum1usadDnDSo
n=0

` UE
R

dm2sxdUnE
Dn

p
j=1

n+1
1

Î2pst j − t j−1d
dntD

= expSst − t0dE
R

esuxu+4b+t−t0+iui2duaudum1usadDo
n=0

` UE
R

dm2sxdUnE
Dn

p
j=1

n+1
1

Î2pst j − t j−1d
dnt.

We note that the latter series converges because

E
Dn

p
j=1

n+1
1

Î2pst j − t j−1d
dnt = SGs1/2d

Î2p
Dn+1st − t0dsn−1d/2

GSn + 1

2
D

is rapidly decreasing inn.
In this way we have proved the following result.
Theorem 7: For every V1PK1 and V2PK2 of the form (6), the

I ª o
n=0

`
s− idn

n! o
k=0

n Sn

k
Dk!E

Dk

dktE
t0

t

dn−ksE
Rk
E

Rn−k
I0 expSo

l=1

n−k

alxssldD
3p

j=1

k

dsxst jd − xjdp
l=1

n−k

dm1saldp
j=1

k

dm2sxjd

exists as a generalized white noise functional. The series converges strongly insSd−1 and the
integrals exist in the sense of Bochner integrals. Therefore we may express the T-transform of I by

TIsud = o
n=0

`
s− idn

n! o
k=0

n Sn

k
Dk!E

Dk

dktE
t0

t

dn−ksE
Rk
E

Rn−k
TSI0 expSo

l=1

n−k

alxssldDp
j=1

k

dsxst jd − xjdDsud

3 p
l=1

n−k

dm1saldp
j=1

k

dm2sxjd

for everyu in a neighborhoodhuPSC :2quuup
2,1j of zero, for some p, qPN0.

According to Theorem 7,I is a well-defined generalized white noise functional. In order to
conclude thatI defines a Feynman integrand it remains to show that the expectationTIs0d of I
solves the Schrödinger equation for a potentialV=V1+V2, Vi PKi. As in the free motion case we
consider, more generally,
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Ksudsx,tuy,t0d ª Ust − t0dTIsudexpS i

2
E

ft0,tgc
u2stddt + iyust0d − ixustdD .

Insertion ofTIsud as given in Theorem 7, with

TSI0 expSo
l=1

n−k

alxssldDp
j=1

k

dsxst jd − xjdD
as in Proposition 6, yields

Ksudsx,tuy,t0d = o
n=0

`

Kn
sudsx,tuy,t0d,

with

Kn
sudsx,tuy,t0d ª

s− idn

n!
E

t0

t

dnsE
Rn

p
l=1

n

dm1saldK0
sundsx,tuy,t0d

+ o
k=1

n−1
s− idn−k

sn − kd!Et0

t

dn−ksE
Rn−k

p
l=1

n−k

dm1saldGk
sun−kdsx,tuy,t0d + Gn

sudsx,tuy,t0d,

s10d

where we have setun−kªun−kss1, . . . ,sn−k,a1, . . . ,an−kdªu+ iol=1
n−kal1ssl,tg

for k=0, . . . ,n−1, u0

ªu, and

Gk
sun−kdsx,tuy,t0d ª s− idkE

Dk

dktE
Rk

p
j=1

k

dm2sxjdp
j=1

k+1

K0
sun−kdsxj,t juxj−1,t j−1d

for k=1, . . . ,n, n.0.

We expectKsud to be the propagator corresponding to the potentialWsx,td=Vsxd+ u̇stdx.
Theorem 8: Ksudsx,t uy,t0d is a Green function for the Schrödinger equation

si]t + 1
2]x

2 − u̇stdx − VsxddKsudsx,tuy,t0d = idst − t0ddsx − yd. s11d

In particular, Ksx,t uy,t0dªTIs0d is a Feynman integral solving

i]tKsx,tuy,t0d = s− 1
2]x

2 + VsxddKsx,tuy,t0d for t . t0. s12d

Remark 3: K corresponds to a unitary evolution whenever H=−1
2]x

2+V has a unique self-
adjoint extension.

Proof: Let us consider an intervalfT0,Tg such thatft0,tg, fT0,Tg. Estimates similar to those
done in the proof of Proposition 6 show thatKn

suds· , ·uy,t0d is locally integrable onR3 fT0,Tg with
respect to dm23dt and the Lebesgue measure. Therefore, we may regardKn

sud as a distribution on
DsVdªDsR3 fT0,Tgd,

kKn
suds·, ·uy,t0d,wl =E

R
dxE

T0

T

dt Kn
sudsx,tuy,t0dwsx,td, w P DsVd.

And we may also define a distributionV2Kn
sud by setting
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kV2Kn
suds·, ·uy,t0d,wl =E

R
dm2sxdE

T0

T

dt Kn
sudsx,tuy,t0dwsx,td, w P DsVd.

To abbreviate we introduce the notationL̂ª i]t+
1
2]x

2− u̇stdx and L̂* for the dual operator. Accord-
ing to s10d, observe that for any test functionwPDsVd one finds

kL̂Kn
sud,wl =

s− idn

n! KEt0

·

dnsE
Rn

p
l=1

n

dm1saldK0
sunds·, ·uy,t0d,L̂*wL

+ o
k=1

n−1
s− idn−k

sn − kd!KEt0

·

dn−ksE
Rn−k

p
l=1

n−k

dm1saldGk
sun−kds·, ·uy,t0d,L̂*wL + kGn

suds·, ·uy,t0d,L̂*wl,

s13d

where

s− idn

n! KEt0

·

dnsE
Rn

p
l=1

n

dm1saldK0
sunds·, ·uy,t0d,L̂*wL

=
s− idn−1

sn − 1d!KV1E
t0

·

dn−1sE
Rn−1

p
l=1

n−1

dm1saldK0
sun−1ds·, ·uy,t0d,wL , s14d

cf. Ref. 13, and

kGn
suds·, ·uy,t0d,L̂*wl = kV2Gn−1

sud s·, ·uy,t0d,wl, s15d

cf. Refs. 15 and 7. The generic cases13d is intermediate betweens14d ands15d and is dealt with
by a combination of the corresponding techniques. This yields

KE
t0

·

dn−ksE
Rn−k

p
l=1

n−k

dm1saldGk
sun−kds·, ·uy,t0d,L̂*wL

= isn − kdKV1E
t0

·

dn−k−1sE
Rn−k−1

p
l=1

n−k−1

dm1saldGk
sun−k−1ds·, ·uy,t0d,wL

+KV2E
t0

·

dn−ksE
Rn−k

p
l=1

n−k

dm1saldGk−1
sun−kds·, ·uy,t0d,wL ,

for any k=2, . . . ,n−2,

KE
t0

·

dn−1sE
Rn−1

p
l=1

n−1

dm1saldG1
sun−1ds·, ·uy,t0d,L̂*wL

= isn − 1dKV1E
t0

·

dn−2sE
Rn−2

p
l=1

n−2

dm1saldG1
sun−2ds·, ·uy,t0d,wL

+KV2E
t0

·

dn−1sE
Rn−1

p
l=1

n−1

dm1saldK0
sun−1ds·, ·uy,t0d,wL

and
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KE
t0

·

dsE
R

dm1sa1dGn−1
su1ds·, ·uy,t0d,L̂*wL

= ikV1Gn−1
sud s·, ·uy,t0d,wl +KV2E

t0

·

dsE
R

dm1sa1dGn−2
su1ds·, ·uy,t0d,wL .

As a result

kL̂Kn
sud,wl =

s− idn−1

sn − 1d!KsV1 + V2dE
t0

·

dn−1sE
Rn−1

p
l=1

n−1

dm1saldK0
sun−1ds·, ·uy,t0d,wL

+ o
k=1

n−2
s− idn−k−1

sn − k − 1d!KV1E
t0

·

dn−k−1sE
Rn−k−1

p
l=1

n−k−1

dm1saldGk
sun−k−1ds·, ·uy,t0d,wL

+ o
k=2

n−1
s− idn−k

sn − kd!KV2E
t0

·

dn−ksE
Rn−k

p
l=1

n−k

dm1saldGk−1
sun−kds·, ·uy,t0d,wL

+ ksV1 + V2dGn−1
sud s·, ·uy,t0d,wl,

which is equivalent to

kL̂Kn
sud,wl = ksV1 + V2dKn−1

sud ,wl, w P DsVd,

for any nù1. Usings3d and summing overn, we obtains11d. j

We conclude by an observation which is obvious from the above construction but somewhat
unexpected given that the Hamiltonians with potentials in the classK2 will in general not admit a
perturbative expansionssee, e.g., Ref. 13 for more on thisd.

Proposition 9: For any potential V=gsV1+V2d with Vi PKi, the solution K of the propagator
equation (12) is analytic in the coupling constant g.
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APPENDIX: AN ESTIMATE

For the proof of Proposition 6, we need to estimate

uTFn,ksudu ø expSuxuo
l=1

n−k

ualuDp
j=1

k+1
1

Î2pst j − t j−1d
UexpS−

i

2
E

R
u2ssdds

+ o
l=1

n−k

alE
R

ussd1ssl,tg
ssddsDUUexpSo

j=1

k+1
i

2st j − t j−1d
SE

t j−1

t j

ussddsD2DU
3 UexpSo

j=1

k+1
1

t j−1 − t j
SE

t j−1

t j

ussddsDo
l=1

n−k

alSE
t j−1

t j

1ssl,tg
ssddsDDU

3 UexpSo
j=1

k+1
isxj − xj−1d

t j − t j−1
E

t j−1

t j Sussd + io
l=1

n−k

al1ssl,tg
ssdDdsDU .

We shall now estimate, consecutively, the exponents occuring in the above expression.
Using the Cauchy–Schwarz inequality we may approximate
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UexpSo
l=1

n−k

alE
R

ussd1ssl,tg
ssddsDU ø expSo

l=1

n−k

ualuSE
R

uussdu2 dsD1/2
Ît − slD ø expSÎt − t0uuuo

l=1

n−k

ualuD
and, similarly,

Uo
j=1

k+1
i

2st j − t j−1d
SE

t j−1

t j

ussddsD2U ø
1

2
uuu2,

as well as

Uo
j=1

k+1
1

t j−1 − t j
SE

t j−1

t j

ussddsDo
l=1

n−k

alSE
t j−1

t j

1ssl,tg
ssddsDU

ø o
j=1

k+1
1

t j − t j−1
SE

t j−1

t j

uussdudsDst j − t j−1do
l=1

n−k

ualu

= o
l=1

n−k

ualuE
t0

t

uussduds

ø Ît − t0uuuo
l=1

n−k

ualu.

In order to estimate the exponential of the function

o
j=1

k+1
isxj − xj−1d

t j − t j−1
E

t j−1

t j Sussd + io
l=1

n−k

al1ssl,tg
ssdDds= o

j=1

k+1
isxj − xj−1d
t j − t j−1

E
t j−1

t j

ussdds

+ o
l=1

n−k

alo
j=1

k+1
xj−1 − xj

t j − t j−1
E

t j−1

t j

1ssl,tg
ssdds,

first we proceed as in Ref. 18, i.e.,

o
j=1

k+1
xj − xj−1

t j − t j−1
E

t j−1

t j

ussdds=
x

t − tk
E

tk

t

ussdds−
y

t1 − t0
E

t0

t1

ussdds

+ o
j=1

k

xj1Et j−1

t j

ussdds

t j − t j−1
−

E
t j

t j+1

ussdds

t j+1 − t j
2 .

By the mean value theorem

o
j=1

k

xj1Et j−1

t j

ussdds

t j − t j−1
−

E
t j

t j+1

ussdds

t j+1 − t j
2 = o

j=1

k

xjsusr jd − usr j+1dd,

wherer j P st j−1,t jd. Therefore

Uo
j=1

k+1
isxj − xj−1d

t j − t j−1
E

t j−1

t j

ussddsU ø suxu + uyudsup
ft0,tg

uuu + max
1ø jøk

uxjuo
j=1

k UE
r j

r j+1

u̇ssddsU
ø 2 max

0ø jøk+1
uxjuSsup

ft0,tg
uuu +E

t0

t

uu̇ssdudsD .
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Now let us consider the sum

o
l=1

n−k

alo
j=1

k+1
xj−1 − xj

t j − t j−1
E

t j−1

t j

1ssl,tg
ssdds.

Sincesl P ft0,tg, there is aj0P h0,1, . . . ,kj such thatsl P ft j0
,t j0+1g. This fact allows to rewrite the

second sum in the latter expression as

xj0+1 − x + sxj0+1 − xj0
d

sl − t j0+1

t j0+1 − t j0

leading to

Uo
l=1

n−k

alo
j=1

k+1
xj−1 − xj

t j − t j−1
E

t j−1

t j

1ssl,tg
ssddsU ø 4 max

0ø jøk+1
uxjuo

l=1

n−k

ualu.

Inserting these estimates we obtain

uTFn,ksudu ø expSuxuo
l=1

n−k

ualuDp
j=1

k+1
1

Î2pst j − t j−1d
expsuuu2dexpS2Ît − t0uuuo

l=1

n−k

ualuD
3 expS2 max

0ø jøk+1
uxjuSsup

ft0,tg
uuu +E

t0

t

uu̇ssdudsDDexpS4 max
0ø jøk+1

uxjuo
l=1

n−k

ualuD .

Now we introduce the norm

iui ª sup
sPft0,tg

uussdu +E
t0

t

uu̇ssduds+ uuu.

With respect to this norm one may bound the previous expression by

expSuxuo
l=1

n−k

ualuDp
j=1

k+1
1

Î2pst j − t j−1d
expsiui2dexpS2Ît − t0iuio

l=1

n−k

ualuD
3exps2 max

0ø jøk+1
uxjuiuidexpS4 max

0ø jøk+1
uxjuo

l=1

n−k

ualuD .

Then we use

Ît − t0iui ø
1
2st − t0 + iui2d

and

2 max
0ø jøk+1

uxjuiui ø max
0ø jøk+1

suxju2d + iui2

to obtain the desired estimates9d.
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We consider the self-dual Yang–Mills equations in seven dimensions. Modifying
the t’Hooft construction of instantons ind=4, we find N-instanton 7d solutions
which depend on 8N effective parameters and areE6 invariant. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1920307g

I. INTRODUCTION

The pure Yang–MillssYM d theory defined in the four-dimensional Euclidean space has a rich
and interesting structure even at the classical level. The discovery of regular solutions to the YM
field equations, which correspond to absolute minimum of the actionsBelavin et al.d,1 has led to
an intensive study of such a classical theory. One hopes that a deep understanding of the classical
theory will be invaluable when one tries to quantize such a theory.

In the past few years, increased attention has been paid to gauge field equations in space-time
of dimension greater than four, with a view to obtaining physically interesting theories via dimen-
sional reduction.2 Such equations appear in the many-dimensional theory of supergravity, in the
low-energy effective theory ofd-branes, and in M theory.3 Using solutions of the YM equations in
d.4 makes it possible to obtain soliton solutions in these theories.4 It is known also that the YM
theory in d dimensions may be reduced to the Yang-Mills-HiggssYMH d theory in k,d
dimensions.5 Hence, solutions of the YMH equations ind=4 may be obtained from solutions of
the YM equations ind.4 dimensions.

In Ref. 6, the 4D self-dual Yang–Mills equations was generalized to the higher-dimensional
linear relationssCDFN equationsd

cmnpsF
ps= lFmn, s1d

where the numerical tensorcmnps is completely antisymmetric andl=const is a nonzero eigen-
value. It is obvious that these equations lead to the full YM equation, via the Bianchi identity.
Several self-dual solutions ofs1d were found in Ref. 7.

The paper is organized as follows. Sections II and III contain well-known facts about the
Cayley–Dickson algebras and their derivations. In Sec. IV multi-instanton solutions of the
G2-invariant CDFN equations are found. In Sec. V theE6 invariance of these solutions are proved.

II. CAYLEY–DICKSON ALGEBRAS

Let A be an algebra with an involutionx→ x̄ over a fieldF of characteristicÞ2. Given a
nonzeroaPF, we define a multiplication on the vector spacesA,ad=A% A by

sx1,y1dsx2,y2d = sx1x2 − aȳ2y1,y2x1 + y1x̄2d.

This makessA,ad an algebra overF. It is clear thatA is isomorphically embedded intosA,ad and
dimsA,ad=2 dimA. Let e=s0,1d. Then,e2=−a andsA,ad=A% Ae. Given anyz=x+ye in sA,ad
we supposez̄= x̄−ye. Then, the mappingz→ z̄ is an involution insA,ad.

adElectronic mail: loginov@ivanovo.ac.ru
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Starting with the base fieldF, the Cayley–Dickson construction leads to the following se-
quence of alternative algebras:

s1d F, the base field.
s2d Csad=sF ,ad, a field if x2+a is the irreducible polynomial overF; otherwise,Csad.F % F.
s3d Hsa ,bd=sCsad ,bd, a generalized quaternion algebra. This algebra is associative but not

commutative.
s4d Osa ,b ,gd=sHsa ,bd ,gd, a Cayley–Dickson algebra. It is easy to prove that this algebra is

nonassociative.

The algebras ins1d–s4d are called composition. Any of them has the nondegenerate quadratic form
snormd nsxd=xx̄, such thatnsxyd=nsxdnsyd. The normnsxd defines the scalar product

sx,yd = 1
2sx̄y + ȳxd, s2d

which is invariant with respect to all automorphisms of the composition algebra. It is known also
that over the fieldR of real numbers, the above construction gives three split algebrasse.g., if
a=b=g=−1d and four division algebrassif a=b=g=1d: the fields of realR and complexC
numbers, the algebras of quaternionsH and octonionsO, taken with the Euclidean normnsxd.
Finally, note that any composition algebra is alternative, i.e., in any of them the associator

sx,y,zd = sxydz− xsyzd, s3d

is skew symmetric overx,y,z. Note also that any simple nonassociative alternative algebra is
isomorphic to the Cayley–Dickson algebraOsa ,b ,gd.

As with any finite-dimensional algebra, the Cayley–Dickson algebra may be defined by ”a
multiplication table” in some fixed basis. For that we consider a real linear spaceA equipped with
a nondenerate symmetric metricg of signatures8,0d or s4,4d. Choose the basis 1,e1, . . . ,e7 in A
such that

g = diags1,a,b,ab,g,ag,bg,abgd, s4d

wherea ,b ,g= ±1. Define the multiplication

eiej = − gij + cij
kek, s5d

where the structural constantscijk =gkscij
s are completely antisymmetric and different from 0 only

if

c123= c145= c167= c246= c275= c374= c365= 1.

The multiplications5d transformsA into a real linear algebra. It can easily be checked thatA is
isomorphic toOsa ,b ,gd.

III. DERIVATIONS

Recall that a derivation of an algebraA is a linear transformationD of A, satisfying

sxydD = sxDdy + xsyDd,

for all x,yPA. The derivations of Cayley–Dickson algebra may be described in intrinsic terms.
Namely, letA be a Cayley–Dickson algebra. Then, for anyx,yPA the mapping

Dx,y:z→ 2fz,fx,ygg + 6sz,x,yd, s6d

is a derivation ofA. Therefore, we have the linear mappingL2→derA. Since any Cayley–
Dickson algebra is simple, it follows that this mapping is surjective. In addition, the following
relations:
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Dx,yz= Dy,xz+ Dz,yx, s7d

fDx,y,Dz,tg = DsxDz,td,y
+ Dx,syDz,td

, s8d

are true. Note also that the derivations algebra derA is a simple exceptional Lie algebra of typeg2.
Since the associators3d of Cayley–Dickson algebra is skew symmetric over its arguments, it

follows that we can define the completely antisymmetric tensorcijkl by

sei,ej,ekd = 2cijk
lel . s9d

It is easy to prove that this tensor satisfies the following identities:

cijsckl
s = gikgjl − gilgjk + cijkl , s10d

cijpsckl
ps= 4sgikgjl − gilgjkd + 2cijkl , s11d

and has the nonzero components

c4567= c2367= c2345= c1357= c1364= c1265= c1274= 1.

Further, it follows froms2d and s9d that the tensorcijkl is invariant with respect to all automor-
phisms of algebraA. Noting that the group aut A is isomorphic to the Lie group of typeG2, we see
that the tensorcijkl is G2 invariant. Finally, rewriting the identitys7d in the form

ci
jkDjk = 0,

where the derivation18Dei,ej
is denoted by the symbolDij , we get the following relations:

cij
klDkl = − 2Dij . s12d

Since the algebra derA is a Lie algebra of typeg2 sor g28 in the noncompact cased, it follows
that it may be considered as a subalgebra of the Lie algebra sosm,nd of type sos7d or sos3, 4d.
Hence, there exists the projectorcijkl

+ of one onto the subspace derA. Usually this projector is
chosen in the formssee Ref. 7d

cijkl
+ = 1

6s2gikglj − 2gilgjk − cijkld. s13d

In addition, it is easily shown that the derivations

Dij = 3
2cij

+klEkl, s14d

where generatorsEkl of the Lie algebra sosm,nd satisfy the switching relations

fEij ,Eklg = gkfigEf jgl − glfigEf jgk.

Besides, it follows froms11d that

cij
pscklps

+ = − 2cijkl
+ . s15d

Comparings14d and s15d, we again obtain the identitys12d.

IV. SOLUTIONS

Recall that the self-dual equations have been successfully tackled by the twister techniques,
and in the case of finite action solutions by the algebraic ADHM construction.8 A generalization of
the ADHM construction for Eqs.s1d which break SOs4nd up into Sps1d3Spsnd /Z2 was found
in Ref. 9. However, in dimensions 7 and 8 there exists an exceptionalG2-covariantfrespectively,
Spins7d-covariantg duality which is connected with the octonionic algebra. Therefore, the search of
generalized ADHM construction ind=7 and 8 appears very attractive.
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Such attempt was done in the recent paper.10 In it the generalized ADHM construction ind
=8 was built with the help of the algebraLsOd of left multiplications of octonionic algebraO.
Unfortunately, calculating the field strength in that paper’s Sec. V and proving its self-duality, the
authors incorrectly use the equalityLfLsxydzg=Lsxyzd, whereLsxyzd=xsyzd and x,y,zPO. By
nonassociativity of the octonionic algebra, it would not be donescp. Ref. 11d.

Nevertheless, it is easy to get multi-instanton solutionssbut not a generalized ADHM con-
structiond of CDFN equations in seven dimensions. We choose the ansatzAm in the form

Am =
l†yi

1 + y†y
Dmi, s16d

wherey is a column vector with the elementsy1, . . . ,yN of Cayley–Dickson algebra such that

y† = sy1
k, . . . ,yN

k dēk, yI
k P R,

l† = sl1, . . . ,lNd, lI P R+,

yI
k = sbIJ

k + dIJx
kdlJ, bIJ

k = bJI
k .

Using the identitiess8d–s10d, we get the field strength

Fmn= −
l†hs2 + 2y†y − yiyi

†dDmn+ 3cmn
+ isDsjy

jyi
†jl

s1 + y†yd2 ,

where the tensorcijkl
+ is defined by the equalitys13d. Now, it follows from s12d and s15d that the

field strengthFmn satisfies the CDFN equationss1d for the Euclidean as for the pseudo-Euclidean
metric of the forms4d.

This construction of multi-instanton solutions of the CDFN equations may be easy to extend
in eight dimensions. It is sufficient to take the projectorf ijkl

+ of the algebra Lie of type sos8d or
sos4,4d onto the subalgebra sos7d or sos3,4d, respectively, in place ofcijkl

+ , to define the elements
Dij8 of the forms14d, and to prove an analog of the identitys15d ssee Ref. 7d. Then, choosing the
ansatzAm8 in the form

Am8 =
l†yi

1 + y†y
Dmi8 , s17d

where the indexesm, i P h0, . . . ,7j, we can obtain the following expression for the field strength:

Fmn8 = −
1

3

l†hs6 + 6y†y − 3yiyi
†dDmn8 + 8fmn

+ isDsj8 yjyi
†jl

s1 + y†yd2 .

Obviously, theN-instanton solutionss16d and s17d depend on 8N and 9N effective parameters,
respectively, and are a generalization of the t’Hooft solution ind=4 ssee e.g., Ref. 12d.

V. E6 INVARIANCE

Let A be a real Cayley–Dickson algebra with the involutionx→ x̄, and letA3 be the algebra of
all 333 matrix with elements ofA. Consider the set

J = hsxijd P A3usx̄i jd = sxjidj.

The setJ is a commutative nonassociative algebra with respect to the product

x + y = 1
2sxy+ yxd.

The algebraJ satisfies the identity
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sx2ydx = x2syxd,

and is said to be an exceptional Jordan algebra.
Denote 333 matrixsxijd with the unique nonzero elementxij =1 by the symbol«i j and choose

in J the basis

E1 = «11, X1seid = ei«23 + ēi«32,

E2 = «22, X2sejd = ej«31 + ēj«13,

E3 = «33, X3sekd = ek«12 + ēk«21, s18d

wheree0=1,e1, . . . ,e7 is the standard basis ofA. It can easily be checked that

Ea + Xbseid = H 0, if a = b,
1
2Xbseid, if a Þ b,

J s19d

Xaseid + Xbsejd = Hdi jsE − Ead, if a = b,
1
2Xgsējēid, if a Þ b,

J s20d

whereE is the identity 333 matrix, andsabgd=s123d ,s231d ,s312d.
It is well known ssee, e.g., Ref. 13d that the derivations algebra derJ is a simple exceptional

Lie algebra of the typef4. Since there is an isomorphic enclosure of the algebrag2 into f4, we can
considers16d as a field that takes its values in derJ. To prove theF4 invariance of these solutions,
we find the trace of the matrix

Xb = hfXaseid,Xbsejd,Xasekdg − 1
2fXaseid,Xasejd,Xasekdgj + Xbseld, s21d

wherei , j ,kÞ0, and we do not sum on the recurring indexes. Usings9d, s19d, ands20d, we prove
that

Xb = 1
2cijklsE − Ebd,

and hence

tr Xb = cijkl .

Since a trace of matrix inJ is invariant with respect to all automorphisms ofJ, we prove theF4

invariance of solutions of the corresponding CDFN equations.
Moreover, it can be proved that the tensorcijkl is E6 invariant. Indeed, the groupE6 is a group

of linear transformations of the spaceJ that preserves the norm

nsXd = x11x22x33 + sx12x23dx31 + x13sx32x21d − x11x23x32 − x22x31x13 − x33x12x21,

whereX=sxijdPJ. Choose an elementX in the form

X = X1 + X2 − X3 + E1 + E2,

where matricesEa andXb are defined by the relationss18d ands21d, respectively. Then, it follows
easily that the norm

nsXd = cijkp.

Since the groupF4 can be isomorphically enclosed into the groupE6, we prove theE6 invariance
of the found solutions.
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Inversible Max-Plus algebras and integrable systems
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We present an extended version of max-plus algebra which includes the inverse
operator of “max.” This algebra enables us to ultradiscretize the system including
subtractions and obtain new ultradiscrete equations. The known ultradiscrete equa-
tions can also be recovered by this construction. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1925247g

I. INTRODUCTION

An integrable system is one of the main subjects in mathematics and physics. Especially,
soliton equations and integrable lattice models that have been studied as integrable systems in a
variety of view points. Recently, because of the development of computer sciences, discrete and
ultradiscrete versions of integral system have been attracting a great deal of attention. The ultra-
discretization of soliton equations and other various important equations are intensively studied.1–8

Moreover, it is known that the various ultradiscrete soliton equations are obtained from a solvable
vertex model in statistical mechanics in a certain limiting procedure.9,10 The key formula for the
ultradiscretization is given by

lim
e→+0

e logseX/e + eY/ed = maxsX,Yd s1.1d

for arbitrary real numbersX andY. Using this formula, it is known that the field of real numbers
can be transformed into the so-called “max-plus” algebra, which is well known in integrable
systems. But the main difficulty for the usual ultradiscretization procedure is that there is no
operator corresponding to the subtraction “2” ssee Fig. 1d. Therefore, so far, we cannot deal with
the ultradiscretization of integral systems that include the subtraction.

In this paper, in order to solve this difficulty, we define an extended version of max-plus
algebra called “inversible Max-Plus algebra,” which includes the usual max-plus algebra and the
operator corresponding to the subtraction:1

1In this paper, we consider “Max” and “max” as different operators. We use “max” for the usual maximum operator, while
we use “Max” for the inversible maximum operator, which is the new operator of our novel inversible algebra. The same
holds for “Plus” s“plus”d and “Minus” s“minus”d operators.

FIG. 1. Ultra-discretization
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Our construction is as follows. We shall define a Max-Plus algebra asZ-moduleA with the
operation Max:A3A→A satisfying

sa + bd + g = a + sb + gd, s1.2d

MaxsMaxsa,bd,gd = Maxsa,Maxsb,gdd, s1.3d

Maxsa + b,a + gd = a + Maxsb,gd, s1.4d

for a ,b ,gPA. Max-Plus subalgebra and homomorphism are defined in the usual manner. The
basic example isZ which is the ring of integer with Maxsn,md=maxsn,md, where maxsn,md
stands for the maximum of the pairn andm.

In this paper, we explicitly construct Max-Plus algebraV andV0 with P:V0→Z such that

s1d V.V0 as Max-Plus algebra,
s2d P:V0→Z as Max-Plus homomorphism,
s3d There exists an elementhPV such that

MaxsMaxsa,bd,b + hd = a s1.5d

for arbitrarya ,bPV

We call V the inversible Max-Plus algebra, due to the inversible property of the Max operator
s1.5d.

It is known that we can construct ultradiscretesUDd equation onZ from standard discrete
partial differential equationssPDEsd satisfying certain conditions through the usual ultradiscreti-
zation procedure. But, using our constructions, we can construct UD equation onV from any
discrete PDEs, even if they include the subtraction. If this UD equation and its solution onV
belong toV0, the projectionP gives the UD equation and solutions onZ explained previously. As
an application, we apply this inversible Max-Plus algebraV to a periodic recursive equation and
obtain an UD periodic equation onV andZ. Further, we apply this algebra to the ultradiscreti-
zation of the equation of motion for a free particle in physics.

Computational Biology:On the other hand, it is also worth noting the possible application of
our new algebra in the emergent field of bioinformatics. Recently, the postsequence era has
provided a huge wealth of biological data at the gene and molecular levels. Many mathematical
and computational toolsse.g., boolean networks, hidden Markov model, and stochastic approachd
are currently being used to study the relationships among thousands of basic building blocks of
life as proteins, chemical compounds, and genes. However, the relationship and connection among
these tools is unclear, and consequently, the research community usually considers them as sepa-
rate and independent approaches. In contrast, we believe that the mentioned techniques are related
to each other and even more, UD is the missing link between computational or discrete math-
ematics and the usual mathematics. More precisely, the computational mathematics and the usual
matemathics are connected by the UD procedure given in this paper. Therefore, UD may shed
light on the relation between two of the most used methods in molecular systems biology as
boolean networks and stochastic processes. Consequently, we believe that further studies on this
issue may contribute to improve the current techniques used in bioinformatics and enlighten the
advances in the postgenomic era.

II. INVERSIBLE MAX-PLUS ALGEBRAS

A. Definition of Z ˜

Let Z2=h0,hj be the finite group of order twosi.e., 0+0=0, 0+h=h, h+h=0,d and set
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Z̃ = Z % Z2 ø h− `j = hx + jux P Z,j P Z2j ø h− `j.

First, we shall define the “max” operator onZ̃ si.e., max:Z̃ 3 Z̃ → Z̃d as follows. Fora=x+j
PZ % Z2, a8=x8+j8PZ % Z2, set

maxsa,− `d = a,

maxs− `,− `d = − `,

and

maxsa,a8d =5
a sx . x8d
a sx = x8 andj = j8d
a8 sx , x8d
− ` sx = x8 andj Þ j8d.

6
Second, we shall define the “plus” operator onZ̃ si.e., plus:Z̃ 3 Z̃ → Z̃d as follows. Fora

=x+jPZ % Z2 anda8=x8+j8PZ % Z2, set

plussa,a8d = sx + x8d + sj + j8d,

plussa,− `d = − `,

pluss− `,− `d = − `.

In the sequel, we writea+b for plussa,bd for the matter of convenience.
If aÞa8+h, the order relationsa.a8, a,a8 anda=a8 are defined by

a . a8 ⇔ x . x8,

a , a8 ⇔ x , x8,

a = a8 ⇔ x = x8 andj = j8.

If aÞh, define the absolute valueuau by

uau = maxsa,0d + maxs− a,0d.

B. Definition of J

Set

Z̃n = hsa1, . . . ,andua1, . . . ,an P Z̃j.

For a matter of convenience, an elementsa1, . . . ,and is denoted bya or saidi=1
n .

SetJ=øn=1
` Z̃n/,, where the union is disjoint and the equivalence relation “;” is generated

by

s. . .,ai, . . . ,aj, . . . d , s. . .,aj, . . . ,ai, . . . d, s2.1d

sa1, . . . ,an,b,b + hd , sa1, . . . ,an,− `d, s2.2d

sa1, . . . ,an,− `d , sa1, . . . ,and. s2.3d
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An elementsa1, . . . ,and is called irreducible, ifn is minimum in its equivalence class. We
remark that we can introduce the order relations intoa1, . . . ,an, if sa1, . . . ,and is irreducible.

If there is no danger of confusion, the equivalence class defined bysa1, . . . ,and is also denoted
by sa1, . . . ,and.

Let us define “Max” and “Plus” operators onJ=øn=1
` Z̃n/, si.e., Max:J3J→J and

Plus:J3J→Jd as follows. Fora=saidi=1
n =sa1, . . . ,andPJ andb=sbidi=1

m =sb1, . . . ,bmdPJ, set

Maxsa,bd = sa1, . . . ,an,b1, . . . ,bmd, s2.4d

Plussa,bd = sai + bjdi=1
n

j=1
m

= sa1 + bj, . . . ,an + bjd j=1
m

= sa1 + b1,a2 + b1, . . . ,an + b1,a1 + b2, . . . ,an + bmd.

s2.5d

In the sequel, we writea+b for Plussa,bd for the matter of convenience.
Lemma 2.1: The previous definition is well defined.
Proof: It is enough to show that the definition is invariant under relationss2.1d–s2.3d.
First, we will show the Max operator is invariant under relationss2.1d–s2.3d. For a

=sa1, . . . ,ai , . . . ,aj , . . . ,and, a8=sa1, . . . ,aj , . . . ,ai , . . . ,and, andb=sb1, . . . ,bmd, we have

Maxsa,bd = sa1 . . . ,ai, . . . ,aj, . . . ,an,b1, . . . ,bmd

= sa1, . . . ,aj, . . . ,ai, . . . ,an,b1, . . . ,bmd = Maxsa8,bd,

which shows the invariance under relations2.1d. For a=sa1, . . . ,an,c,c+hd, a8=sa1, . . . ,an,−`d,
andb=sb1, . . . ,bmd, we have

Maxsa,bd = sa1 . . . ,an,c,c + h,b1, . . . ,bmd = sa1, . . . ,an,− `,b1, . . . ,bmd = Maxsa8,bd,

which shows the invariance under relations2.2d. For a=sa1. . . ,an,−`d, a8=sa1, . . . ,and, and b
=sb1, . . . ,bmd, we have

Maxsa,bd = sa1 . . . ,an,− `,b1, . . . ,bmd = sa1, . . . ,an,b1, . . . ,bmd = Maxsa8,bd,

which shows the invariance under relations2.3d.
Second, we will show the Plus operator is invariant under relations2.1d–s2.3d. For a

=sa1, . . . ,ai , . . . ,aj , . . . ,and, a8=sa1, . . . ,aj , . . . ,ai , . . . ,and, andb=sb1, . . . ,bmd, we have

a + b = sa1 + bk, . . . ,ai + bk, . . . ,aj + bk, . . . ,an + bkdk=1
m

= sa1 + bk, . . . ,aj + bk, . . . ,ai + bk, . . . ,an + bkdk=1
m = a8 + b,

which shows the invariance under relations2.1d. For a=sa1. . . ,an,c,c+hd, a8=sa1, . . . ,an,−`d,
andb=sb1, . . . ,bmd, we have

a + b = sa1 + bk, . . . ,an + bk,c + bk,c + h + bkdk=1
m = sa1 + bk, . . . ,an + bk,− ` + bkdk=1

m = a8 + b,

which shows the invariance under relations2.2d. For a=sa1, . . . ,an,−`d, a8=sa1, . . . ,and, andb
=sb1, . . . ,bmd, we have

a + b = sa1 + bk, . . . ,an + bk,− ` + bkdk=1
m = sa1 + bk, . . . ,an + bkdk=1

m = a8 + b,

which shows the invariance under relations2.3d. h

Lemma 2.2: Fora,b ,cPJ, we have the following identities:

063507-4 T. Ochiai and J. C. Nacher J. Math. Phys. 46, 063507 ~2005!

                                                                                                                                    



sa + bd + c = a + sb + cd, s2.6d

MaxsMaxsa,bd,cd = Maxsa,Maxsb,cdd, s2.7d

Maxsa + b,a + cd = a + Maxsb,cd, s2.8d

MaxsMaxsa,bd,b + hd = a. s2.9d

Proof: Supposea=sa1, . . . ,and, b=sb1, . . . ,bmd, and c=sc1, . . . ,cld. The proof is straightfor-
ward from s2.4d and s2.5d. First formulas2.6d is obtained by the following computation:

sa + bd + c = sai + bj + ckdi=1
n

j=1
m

k=1
l = a + sb + cd.

Second formulas2.7d is obtained by the following computation:

MaxsMaxsa,bd,cd = sa1 . . . ,an,b1, . . . ,bm,c1, . . . ,cld = Maxsa,Maxsb,cdd.

Third formula s2.8d is obtained by the following computation:

a + Maxsb,cd = a + sb1, . . . ,bm,c1, . . . ,cld

= sb1 + ai, . . . ,bm + ai,c1 + ai, . . . ,cl + aidi=1
n

= Maxssb1 + ai, . . . ,bm + aidi=1
n ,sc1 + ai, . . . ,cl + aidi=1

n d = Maxsa + b,a + cd.

Last formulas2.9d is obtained by the following computation:

MaxsMaxsa,bd,b + hd = sa1 . . . ,an,b1, . . . ,bm,b1 + h, . . . ,bm + hd = sa1 . . . ,and = a.

h

C. Definition of F

SetF=J3J8 /,, whereJ8=J \ hs−`dj and the equivalence relation is given by

sa,bd , sa8,b8d ⇔ a + b8 = a8 + b, s2.10d

for sa,bd ,sa8 ,b8dPJ3J8. The equivalence class ofsa,bd is denoted bya−b. Then, we have

F = ha − bua P J,b P J8j.

Next, we will define Max, Plus, and “Minus” operators onF si.e., Max: F3F→F, Plus: F
3F→F and Minus:F3F→Fd as follows. Fora=a−bPF anda8=a8−b8PF, set

Maxsa,a8d = Maxsa + b8,a8 + bd − sb + b8d, s2.11d

Plussa,a8d = sa + a8d − sb + b8d, s2.12d

Minussa,a8d = sa + b8d − sb + a8d. s2.13d

In the sequel, for the matter of convenience, we writea+a8 and a−a8 for Plussa ,a8d and
Minussa ,a8d respectively.

Lemma 2.3: The previous definition is well defined.
Proof: First, we will show the Max operator is invariant under relations2.10d. For a−b=a8

−b8PF andc−dPF, we have
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Maxsa − b,c − dd = Maxsa + d,c + bd − sb + dd

= Maxsa + b8 + d,c + b + b8d − sb + b8 + dd

= Maxsa8 + b + d,c + b + b8d − sb + b8 + dd

= Maxsa8 + d,c + b8d − sb8 + dd = Maxsa8 − b8,c − dd,

which shows the invariance under relations2.10d.
Second, we will show the Plus operator is invariant under relations2.10d. For a−b=a8−b8

PF andc−dPF, we have

sa − bd + sc − dd = sa + cd − sb + dd = sa + b8 + cd − sb + b8 + dd = sa8 + b + cd − sb + b8 + dd

= sa8 + cd − sb8 + dd = sa8 − b8d + sc − dd,

which shows the invariance under relations2.10d.
Third, we will show the minus operator is invariant under relations2.10d. For a−b=a8−b8

PF andc−dPF, we have

sa − bd − sc − dd = sa + dd − sb + cd = sa + b8 + dd − sb + b8 + cd = sa8 + b + dd − sb + b8 + cd

= sa8 + dd − sb8 + cd = sa8 − b8d − sc − dd,

which shows the invariance under relations2.10d. h

Next, we shall show thatF has the Max-Plus algebra structuress1.2d–s1.4d and the inversible
propertys1.5d. More precisely, we have the following lemma.

Lemma 2.4: Fora ,b ,gPF, we have the following identities:

sa + bd + g = a + sb + gd, s2.14d

MaxsMaxsa,bd,gd = Maxsa,Maxsb,gdd, s2.15d

Maxsa + b,a + gd = a + Maxsb,gd, s2.16d

MaxsMaxsa,bd,b + hd = a. s2.17d

Proof: Supposea=a−b, b=c−d, andg=e− f. First identitys2.14d is obtained by the follow-
ing computation:

sa + bd + g = sa + c + ed − sb + d + fd = a + sb + gd.

Second identitys2.15d is obtained by the following computation:

MaxsMaxsa,bd,g = MaxsMaxsa − b,c − dd,e− fd

= MaxsMaxsa + d,c + bd − sb + dd,e− fd

= MaxsMaxsa + d,c + bd + f,e+ b + dd − sb + d + fd

= MaxsMaxsa + d + f,c + b + fd,e+ b + dd − sb + d + fd

= Maxsa + d + f,Maxsc + b + f,e+ b + ddd − sb + d + fd

= Maxsa + d + f,Maxsc + f,e+ dd + bd − sb + d + fd

= Maxsa − b,Maxsc + f,e+ dd − sd + fdd

= Maxsa − b,Maxsc − d,e− fdd = Maxsa,Maxsb,gdd.

Third identity s2.16d is obtained by the following computation:
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Maxsa + b,a + gd = Maxssa − bd + sc − dd,sa − bd + se− fdd

= Maxssa + cd − sb + dd,sa + ed − sb + fdd

= Maxssa + cd + sb + fd,sa + ed + sb + ddd − sb + d + b + fd

= a − b + Maxssc + f,e+ ddd − sd + fd

= a − b + Maxsc − d,e− fd = a + Maxsb,gd.

Final identity s2.17d is obtained by the following computation:

MaxsMaxsa,bd,b + hd = MaxsMaxsa − b,c − dd,c − d + hd

= MaxsMaxsa + d,c + bd − sb + dd,c + h − dd

= MaxsMaxsa + d,c + bd + d,c + h + b + dd − sb + d + dd

= MaxsMaxsa + d + d,c + b + dd,c + b + d + hd − sb + d + dd

= a + d + d − sb + d + dd = a − b = a.

h

D. Definition of inversible Max-Plus algebra V

For the matter of convenience, a one-component elementa=sadPF is denoted bya, andb
=s0,−b1, . . . ,−bndPF is denoted byfb1, . . . ,bng, if there is no danger of confusion.

Lemma 2.5: We have

fa1, . . . ,ang + fb1, . . . ,bng = fhaiji=1
n ,hbiji=1

m ,hai + bjji=1
n

j=1
m g.

Proof: The computation is straightforward as follows:

fa1, . . . ,ang + fb1, . . . ,bng = s0,−a1, . . . ,−and + s0,−b1, . . . ,−bnd

= s0,h− aiji=1
n ,h− biji=1

m ,h− ai − bjji=1
n

j=1
m d

= fhaiji=1
n ,hbiji=1

m ,hai + bjji=1
n

j=1
m g.

h

Define a subsetV of F by

V = ha + fb1, . . . ,bng − fc1, . . . ,cmgun,mP N,a P Z̃,bi P Z̃+,ci P Z̃+j, s2.18d

where

Z̃+ = hx P Z ux ù 0j ø hx + h P Z % Z2ux . 0j.

For a+fb1, . . . ,bng−fc1, . . . ,cmgPV, we call “a” a leading termand “fb1, . . . ,bng−fc1, . . . ,cmg” a
correction term.

Lemma 2.6: We have

V = F.

Remark:V also has the Max-Plus algebra structuress1.2d–s1.4d and the inversible property
s1.5d, because ofLemma 2.4.

Proof: By definition, it is clear thatV,F. Therefore, it is enough to show thatF,V. For
a=sa1, . . . ,and−sb1, . . . ,bmdPF, we may assume thatsa1, . . . ,and andsb1, . . . ,bmd are irreducible
anda1ù . . .ùan andb1ù . . .ùbn, without loss of generality. Then, we have
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sa1, . . . ,and − sb1, . . . ,bmd = a1 − b1 + s0,− sa1 − a2d, . . . ,−sa1 − andd − s0,− sb1 − b2d, . . . ,

− sb1 − bmdd = a1 − b1 + fsa1 − a2d, . . . ,sa1 − andg

− fsb1 − b2d, . . . ,sb1 − bmdg P V.

Here, we have usedsa1−aidP Z̃+si =2, . . . ,nd and sb1−bidP Z̃+si =2, . . . ,md. h

Next, in the following two theorems, we shall express Plus, Minus and Max operators inV.
Theorem 2.7: For a=a+fb1, . . . ,bng−fc1, . . . ,cmgPV and a8=a8+fb18 , . . . ,bp8g−fc18 , . . . ,cq8g

PV, the result of the computation of Plus and Minus operators is given by

a + a8 = a + a8 + C+sa,a8d, s2.19d

a − a8 = a − a8 + C−sa,a8d, s2.20d

where the correction terms C+,C− are given by

C+sa,a8d = fhbiji=1
n ,hbi8ji=1

p ,hbi + bj8ji=1
n

j=1
p g − fhciji=1

m ,hci8ji=1
q ,hci + cj8ji=1

m
j=1
q g,

C−sa,a8d = fhbiji=1
n ,hci8ji=1

q ,hbi + cj8ji=1
n

j=1
p g − fhciji=1

m ,hbi8ji=1
p ,hci + bj8ji=1

m
j=1
p g.

Proof: The computation is straightforward from Lemma 2.5 h.
Next, we express Max operator inV. For arbitrary a=a+fb1, . . . ,bngPV and a8=a8

+fb18 , . . . ,bm8 gPV with irreducible expressionssi.e., fb1, . . . ,bng and fb18 , . . . ,bm8 g are irreducibled,
we may assume thatb1ø ¯ øbn andb18ø ¯ øbm8 , without loss of generality. Then, we have the
following theorem.

Theorem 2.8: (1) For a=a+fb1, . . . ,bngPV and a8=a8+fb18 , . . . ,bm8 gPV with b1ø . . .
øbn and b18ø ¯ øbm8 , the expression ofMaxsa ,a8d is given as follows.

If aÞa8+h, we have

Maxsa,a8d = maxsa,a8d + Cmsa,a8d, s2.21d

where the correction termCm is given by

Cmsa,a8d = fua − a8u,hbi + maxsa8 − a,0dji=1
n ,hbi8 + maxsa − a8,0dji=1

m g.

If a=a8+h, we have

s2.22d

Remark 1:We will extend the above formula for general cases as follows. For

a = a + fb1, . . . ,bng − fc1, . . . ,cmg P V,

a8 = a8 + fb18, . . . ,bp8g − fc18, . . . ,cq8g P V,

the expression of Maxsa ,a8d can be computed by usings2.21d and s2.22d and the identity
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Maxsa,a8d = Maxsa + fbg + fc8g,a8 + fb8g + fcgd − sfcg + fc8gd. s2.23d

Here, notice that the first term on the right-hand side ofs2.23d can be computed bys2.21d and
s2.22d.

Remark 2:In s2.22d, for fb1, . . . ,bng and fb18 , . . . ,bm8 g, we can assume that there are only the
following three cases:

1. There existskPN and k,n,m such thatbi =bi8 si =1,¯ ,kd and ssbk+1,bk+18 d or sbk+1

=bk+18 +hdd,
2. m,n andbi =bi8 si =1,¯ ,md, and
3. m=n andbi =bi8 si =1,¯ ,md,

without loss of generality. These three casess1, 2 and 3d correspond to the first, second, and third
cases ins2.22d respectively.

Proof of Theorem 2.8:Let us consider the caseaÞa8+h. Without loss of generality, we can
assume thataùa8. Then, we have

Maxsa,a8d = Maxssa,a − b1, . . . ,a − bnd,sa8,a8 − b18, . . . ,a8 − bm8 dd

= sa,a − b1, . . . ,a − bn,a8,a8 − b18, . . . ,a8 − bm8 d

= a + s0,−b1, . . . ,−bn,− sa − a8d,− sb18 + a − a8d, . . . ,−sbm8 + a − a8dd

= a + fa − a8,b1, . . . ,bn,b18 + a − a8, . . . ,bm8 + a − a8g,

which shows thats2.21d holds foraùa8. We can proves2.21d for the other casea,a8 in the same
way.

Next, let us consider the casea=a8+h. First, we consider the first case ins2.22d. si.e., there
existskPN andk,n,m such thatbi =bi8 si =1, . . . ,kd andbk+1,bk+18 .d In this case, we have

Maxsa,a8d = sa,a − b1, . . . ,a − bn,a8,a8 − b18, . . . ,a8 − bm8 d

= sa − bk+1, . . . ,a − bn,a8 − bk+18 , . . . ,a8 − bm8 d = a − bk+1 + s0,− sbk+2 − bk+1d, . . . ,

− sbn − bk+1d,− sbk+18 − bk+1 + hd, . . . ,−sbm8 − bk+1 + hdd

= a − bk+1 + fhbi − bk+1ji=k+2
n ,hbi8 − bk+1 + hji=k+1

m g,

which shows the first case ins2.22d. Second, we consider the second case ins2.22d si.e.,m,n and
bi =bi8 si =1, . . . ,md. In this case, we have

Maxsa,a8d = sa,a − b1, . . . ,a − bn,a8,a8 − b18, . . . ,a8 − bm8 d

= sa − bm+1, . . . ,a − bnd = a − bm+1 + s0,− sbm+2 − bm+1d, . . . ,−sbn − bm+1dd

= a − bm+1 + fhbi − bm+1ji=m+2
n g,

which shows the second case ins2.22d. Third, we consider the third case ins2.22d si.e., m=n and
bi =bi8 si =1, . . . ,md.d In this case, we have

Maxsa,a8d = sa,a − b1, . . . ,a − bn,a8,a8 − b18, . . . ,a8 − bn8d = − `,

which shows the third case ins2.22d. h

III. APPLICATIONS

A. Projection to the usual max-plus algebra Z

Let V0 be a subset ofV defined byV0=ha+fb1, . . . ,bng−fc1, . . . .cmgPV uaPZj,V. For
a=a+fb1, . . . ,bng−fc1, . . . .cmgPV0, define a projection map P:V0→Z by

063507-9 Inversible max-plus algebras J. Math. Phys. 46, 063507 ~2005!

                                                                                                                                    



Psad = a. s3.1d

Lemma 3.1:V0 is Max-Plus subalgebra.
Proof: It is clear froms2.21d, s2.19d, ands2.20d. Notice thata,a8PZ.
Theorem 3.2:The map P:V0→Z is a homomorphism map with respect to Max, Plus, Minus

operators. More precisely, fora=a+fb1, . . . ,bng−fc1, . . . .cmgPV0 and a8=a8+fb18 , . . . ,bp8g
−fc18 , . . . ,cq8gPV0, we have

PsMaxsa,a8dd = maxsa,a8d,

Psa + a8d = a + a8,

Psa − a8d = a − a8.

Proof: It is clear froms2.21d, s2.19d, ands2.20d. Notice thata,a8PZ.

B. Faithful representation on V

For any positive real numbere anda=x+jP Z̃, setā=x+ j̄PC, where

j̄ = Hipe sj = hd
0 sj = 0d.

J
For a=saidi=1

n −sbidi=1
m =sa1, . . . ,and−sb1, . . . ,bmdPF, define a map Re :F→C by

Resad = e logSo
i

eai/eD − e logSo
i

ebi/eD = e logsea1/e + . . . +ean/ed − e logseb1/e + . . . +ebm/ed.

Here we seteai/e to be zero, ifai =−`.
Lemma 3.3:The previous definition Re :F→C is well defined.
Proof: First, we shall show that the definition is invariant under relationss2.1d–s2.3d. For a

=sa1, . . . ,ai , . . . ,aj , . . . ,and, a8=sa1, . . . ,aj , . . . ,ai , . . . ,and, andb=sb1, . . . ,bmd, we have

Resa − bd = Ressa1, . . . ,ai, . . . ,aj, . . . ,and − sb1, . . . ,bmdd

= e logsea1/e + ¯ + eai/e + ¯ + eaj/e + ¯ + ean/ed − e logseb1/e + ¯ + ebm/ed

= e logsea1/e + ¯ + eaj/e + ¯ + eai/e + ¯ + ean/ed − e logseb1/e + ¯ + ebm/ed

= Ressa1, . . . ,aj, . . . ,ai, . . . ,and − sb1, . . . ,bmdd = Resa8 − bd,

which shows the invariance under relations2.1d. For a=sa1. . . ,an,c,c+hd, a8=sa1, . . . ,an,−`d,
andb=sb1, . . . ,bmd, we have

Resa − bd = Ressa1, . . . ,an,c,c + hd − sb1, . . . ,bmdd

= e logsea1/e + ¯ + ean/e + ec̄/e + ec + h/ed − e logseb1/e + ¯ + ebm/ed

= e logsea1/e + ¯ + ean/e + ec̄/e + ec̄/e+ipd − e logseb1/e + ¯ + ebm/ed

= e logsea1/e + ¯ + ean/e + ec̄/e − ec̄/ed − e logseb1/e + ¯ + ebm/ed

= e logsea1/e + ¯ + ean/ed − e logseb1/e + ¯ + ebm/ed = Resa8 − bd,

which shows the invariance under relations2.2d. For a=sa1, . . . ,an,−`d, a8=sa1, . . . ,and, andb
=sb1, . . . ,bmd, we have
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Resa − bd = Ressa1, . . . ,an,− `d − sb1, . . . ,bmdd

= e logsea1/e + ¯ + ean/ed − e logseb1/e + ¯ + ebm/ed = Resa8 − bd,

which shows the invariance under relations2.3d.
Second, we shall show that the definition is invariant under relations2.10d. Suppose

sa1, . . . ,and−sb1, . . . ,bmd=sa18 , . . . ,ap8d−sb18 , . . . ,bq8d. Then we have

sai + bj8di=1
n

j=1
q = sai8 + bjdi=1

p
j=1
m .

Then, it follows that

e logSo
i=1

n

o
j=1

q

eai + bj8/eD = e logSo
i=1

p

o
j=1

m

eai8 + bj/eD . s3.2d

Then, we have

Ressa1, . . . ,and − sb1, . . . ,bmdd = e logSo
i=1

n

eai/eD − e logSo
j=1

m

ebj/eD
= e logSo

i=1

p

eai8/eD − e logSo
j=1

q

ebj8/eD + e logSo
i=1

n

o
j=1

q

eai + bj8/eD
− e logSo

i=1

p

o
j=1

m

eai8 + bj/eD = e logSo
i=1

p

eai8/eD − e logSo
j=1

q

ebj8/eD
= Ressa18, . . . ,ap8d − sb18, . . . ,bq8dd,

which shows the invariance under relations2.10d. Here, we have useds3.2d in the third line. h

For any positive real numbere, define a map Maxe :C3C→C by

Maxesa,bd = e logsea/e + eb/ed,

where a,bPC. Here, we remark thatC with Maxe has the Max-Plus algebra structures
s1.2d–s1.4d.

Theorem 3.4: (1) The mapRe :F→C is a representation ofF. More precisely, fora ,a8
PF, we have

ResMaxsa,a8dd = MaxesResad,Resa8dd, s3.3d

Resa + a8d = Resad + Resa8d, s3.4d

Resa − a8d = Resad − Resa8d. s3.5d

(2) If Resad=0 for any e, thena=0.
Proof: s1d First, we will proves3.3d as follows. Fora=a−b=sa1, . . . ,and−sb1, . . . ,bmdPF

anda=a8−b8=sa18 , . . . ,ap8d−sb18 , . . . ,bq8dPF, we have
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ResMaxsa,a8dd = ResMaxsa + b8,a8 + bd − sb + b8dd

= Resssai + bj8di=1
n

j=1
q ,sak8 + bldk=1

p
l=1
m d − sbi + bj8di=1

m
j=1
q d

= e logSo
i,j

eai + bj8/e + o
i,j

eai8 + bj/eD − e logSo
i,j

ebi + bj8/eD
= e log1oi

eai/e

oi
ebi/e

+
oi

eai8/e

oi
ebi8/e2 = Maxe1e logSoi

eai/e

oi
ebi/e
D,e log1oi

eai8/e

oi
ebi8/e22

= MaxeSe logSo
i

eai/eD − e logSo
i

ebi/eD,e logSo
i

eai8/eD − e logSo
i

ebi8/eDD
= MaxesResad,Resa8dd,

which showss3.3d. Second, we will proves3.4d as follows:

ResMaxsa + a8dd = Ressa + a8d − sb + b8dd

= Resssai + aj8di=1
n

j=1
p d − sbi + bj8di=1

m
j=1
q d

= e logSo
i,j

eai + aj8/eD − e logSo
i,j

ebi + bj8/eD
= e logSo

i

eai/eD − e logSo
i

ebi/eD + e logSo
i

eai8/eD − e logSo
i

ebi8/eD
= Resssaidi=1

n − sbidi=1
m dd + Resssai8di=1

n − sbj8di=1
q dd = Resad + Resa8d.

This showss3.4d. We can obtains3.5d in the same way.
s2d For a=sa1, . . . ,and−sb1, . . . ,bmdPF, it is assumed thata is irreducible anda1ù ¯

ùan andb1ù ¯ ùbn. Then, we have

Resad = e logsea1/e + ¯ + ean/ed − e logseb1/e + ¯ + ebm/ed = 0.

Hence, we have

ea1/e + ¯ + ean/e = eb1/e + ¯ + ebm/e.

This equation is equal to

ea1/es1 + e−sa1 − a2d/e + ¯ + e−sa1 − and/ed = eb1/es1 + e−sb1 − b2d/e + ¯ + e−sb1 − bmd/ed.

Consideringe→ +0, we havea1=b1. By using inductive argument, we obtain

sa1, . . . ,and = sb1, . . . ,bmd,

which showsa=0. h

C. Ultradiscrete recursive equation

Define UD:Z →V by

Let P:Rn→R be a polynomial function of finite degree given by
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Psx1, . . . ,xnd = o
i1,. . .,in=1

N

ai1. . .in
x1

i1 . . .xn
in,

whereai1¯in
PZ, xi PR. For Psx1, . . . ,xnd, define its UD polynomialPUD :Vn→V by

PUDsX1, . . . ,Xnd = Max
i1,. . .,in=1

N

sUDsai1. . .in
d + i1X1 + ¯ + inXnd,

whereXi PV.
More generally, letF :Rn→R a rational function given by

Fsx1, . . . ,xnd =
Psxn, . . . ,x1d
Qsxn, . . . ,x1d

,

where P and Q are polynomial functions of finite degree. Then, we define its UD equation
FUD :Vn→V by

FUDsX1, . . . ,Xnd = PUDsX1, . . . ,Xnd − QUDsX1, . . . ,Xnd. s3.6d

Remark:s3.6d is just obtained by the following transformations:

xi 3 yj → Xi + Yj ,

xi/yj → Xi − Yj ,

xi + yj → MaxsXi,Yjd,

xi − yj → MaxsXi,Yj + hd,

ai1¯in
→ UDsai1¯in

d. s3.7d

This is the final mapping we wantsi.e., the mapping from the usual algebra to the inversible
Max-Plus algebraVd. Here, we remark that the missing correspondence in Fig. 1si.e., x−y
→ ??d is now clear, since this correspondence is given byxi −yj →MaxsXi ,Yj +hd in the previous
transformation.

Theorem 3.5:Suppose a periodic recursive equation

xn+1 = Fsx1, . . . ,xnd =
Psxn, . . . ,x1d
Qsxn, . . . ,x1d

s3.8d

on R has period k (i.e., xn+k=xn), then its UD periodic recursive equation

Xn+1 = FUDsX1, . . . ,Xnd = PUDsX1, . . . ,Xnd − QUDsX1, . . . ,Xnd

on V also has period k (i.e., Xn+k=Xn).
Proof: Substitutingxn=eResXnd/e into s3.8d, we have
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eResXn+1d/e =
PseResXnd/e, . . . ,eResX1d/ed
QseResXnd/e, . . . ,eResX1d/ed

=
oi1,. . .,in=1

N
ai1¯in

esi1ResX1d+¯+inResXndd/e

oi1,. . .,in=1

N
bi1¯in

esi1ResX1d+¯+inResXndd/e

=
oi1,. . .,in=1

N
ese log ai1¯in

+Resi1X1+¯+inXndd/e

oi1,. . .,in=1

N
ese log bi1¯in

+Resi1X1+¯+inXndd/e

=
oi1,. . .,in=1

N
eResUsai1¯in

d+i1X1+¯+inXnd/e

oi1,. . .,in=1

N
eResUsbi1¯in

d+i1X1+¯+inXnd/e
.

Here, in the last line, we have used

Then, we have

ResXn+1d = Maxe
i1,. . .,in=1

N

sResUsai1¯in
d + i1X1 + ¯ + inXndd − Maxe

i1,. . .,in=1

N

sResUsbi1¯in
d + i1X1 + ¯ + inXndd

= Res Max
i1,. . .,in=1

N

sUsai1¯in
d + i1X1 + ¯ + inXnd − Max

i1,. . .,in=1

N

sUsbi1¯in
d + i1X1 + ¯ + inXndd.

Hence, we finally obtain

ResXn+1d = ResPUDsX1, . . . ,Xnd − QUDsX1, . . . ,Xndd.

On the other hand, we have ResXn+kd=ResXnd from xn+k=xn. This impliesXn+k=Xn. h

IV. EXAMPLES

A. Simplest example with subtraction

Let us consider the most simple identity

x + y − y = x. s4.1d

Although this identity is simple, we cannot ultradiscretize this identity by the usual UD procedure
s1.1d due to the subtractions−yd in the left-hand side of this identitiys4.1d. However, by using our
ultradiscretization mappings3.6d for s3.7dg to the inversible Max-Plus algebraV, we can ultradis-
cretize this identitys4.1d as follows:

MaxsMaxsX,Yd,Y + hd = X.

For example, if we takeX=1 andY=3 in this equation, we have
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MaxsMaxs1,3d,3 +hd = Maxs3 + f2g,3 +hd = 1.

This example clearly exhibits the inversible propertys1.5d of the Max operator onV, which does
not exist in usual max operator onZ.

B. Periodic recursive equations

Next, we will give some examples of periodic recursive equations.

1. Example without subtraction

It is known that the periodic recursive equation

xn+1 =
xn + 1

xn−1

has period 5. Then, from Theorem 3.5, we find that its UD equation

Xn+1 = MaxsXn,0d − Xn−1 s4.2d

also has period 5. For example, we have

X1 = 1, X2 = 5, X3 = 4 + f5g, X4 = − 1 + f4,5g, X5 = − 4 + f1,5,6g − f5g, X6 = 1, X7 = 5.

s4.3d

Remark:If Xi PV0 for all i, then we can act the projection map P:V0→Z for both sides of
Eq. s4.2d. Then, we have

Yn+1 = maxsYn,0d − Yn−1, s4.4d

whereYi =PsXid. For example, we have

Y1 = 1, Y2 = 5, Y3 = 4, Y4 = − 1, Y5 = − 4, Y6 = 1, Y7 = 5,

which correspond tos4.3d. This equation also has period 5.
Here we remark that this usual UD equations4.4d on Z can also be obtained by the usual

ultradiscretization procedure lime→+0 e logseX/e+eY/ed=maxsX,Yd given by s1.1d.
In the following paragraph, we will give an example which cannot be ultradiscretized by the

usual ultradiscretization procedures1.1d. Therefore, in the next example, our mapping to the
inversible Max-Plus algebras3.6d for s3.7dg will be essentially necessary, instead of the usual
ultradiscretization procedures1.1d.

2. Example with subtraction

The periodic recursive equation

xn+1 =
xn − 1

xn + 1

has period 4. Then, from Theorem 3.5, we find that its UD equation

Xn+1 = MaxsXn,hd − MaxsXn,0d s4.5d

also has period 4. For example,

063507-15 Inversible max-plus algebras J. Math. Phys. 46, 063507 ~2005!

                                                                                                                                    



X1 = 2, X2 = f2 + hg − f2g, X3 = − 2 +h, X4 = h + f2g − f2 + hg, X5 = 2. s4.6d

Remark:We cannot act the projection map P:V0→Z for both sides of Eqs.s4.5d and s4.6d,
since all the variablesXi do not belong toV0. Therefore, this is a new type of UD equations, which
cannot be obtained by the usual ultradiscretization procedures1.1d.

C. Equation of motion for a free particle

1. Continuous equation

The equation of motion for a free particle is given by

ẍ = 0. s4.7d

The energy conservation law is given by

e= 1
2sẋd2 = constant. s4.8d

2. Discrete equation

It is known that the discrete version of the equation of motions4.7d is given by

xn+2 = 2xn+1 − xn, s4.9d

and the discrete version of the energy conservation laws4.8d is given by

hn = Î2en = xn+1 − xn = constant. s4.10d

Here we remark that the discrete equationss4.9d ands4.10d cannot be ultradiscretized by the
usual procedures1.1d, since there exists subtraction ins4.9d and s4.10d. However, by using our
ultradiscretization mappings3.6d for s3.7dg to the inversible Max-Plus algebraV, we can ultradis-
cretize both Eqs.s4.9d and s4.10d, which will be explained in the following paragraph.

3. Ultradiscrete equation

Finally, by using our ultradiscretization mappings3.6d for s3.7dg, the discrete equations4.9d
can be transformed into

Xn+1 = MaxsXn + f0g,Xn−1 + hd, s4.11d

which is the UD version of the equation of motion for a free particle.
In the same way, froms4.10d, we obtain the UD version of the energy conservation for a free

particle as follows:

Hn = MaxsXn+1,Xn + hd. s4.12d

4. Trajectory of the UD equation of motion for a free particle

Repeatedly usings4.11d with the initial conditionX1=0 andX2=1, we can obtain the trajec-
tory of the free particle as follows:
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X1 = 0,

X2 = 1,

X3 = 1 + f0,1 +hg,

X4 = 1 + f0,0,1 +h,1 +hg,

]

Xn = 1 + f0n−2,s1 + hdn−2g,

where 0n−2 frespectively,s1+hdn−2g denotes the array ofn−2 zerosfrespectively,s1+hdg. For
example,f03,s1+hd3g denotesf0,0,0,1+h ,1+h ,1+hg. Here we remark that the trajectory of the
leading term ofXn sn=1,2,¯ d is suddenly stopped afternù2, while the correction terms are still
changing.

It is worth noticing that although the trajectory of the leading term ofXn is suddenly stopped
in the UD world, the energyHn is still conserved as follows:

H1 = MaxsX2,X1 + hd = 1 + f1 + hg,

H2 = MaxsX3,X2 + hd = 1 + f1 + hg,

]

Hn = MaxsXn+1,Xn + hd = 1 + f1 + hg.

For the future work, it would be interesting to study the ultradiscretization of the well known
theoryse.g., soliton theory, chaos theory, classical mechanics, etc.d, using the inversible Max-Plus
algebraV and its mappings3.6d for s3.7dg.
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A basis ofN2 projectors, each anN23N2 matrix with constant elements, is imple-

mented to construct a class of braid matricesR̂sud, u being the spectral parameter.
Only odd values ofN are considered here. Our ansatz for the projectorsPa appear-

ing in the spectral decomposition ofR̂sud leads to exponentials expsmaud as the
coefficient ofPa. The sums and differences of such exponentials on the diagonal

and the antidiagonal, respectively, provide thes2N2−1d nonzero elements ofR̂sud.
One element at the center is normalized to unity. A class of supplementary
constraints imposed by the braid equation leaves1

2sN+3dsN−1d free param-

eters ma. The diagonalizer ofR̂sud is presented for allN. Transfer matrices

tsud and Lsud operators corresponding to ourR̂sud are studied. Our diagonalizer
signals specific combinations of the components of the operators that lead to
a quadratic algebra ofN2 constantN3N matrices. Theu dependence factors out

for such combinations.R̂sud is developed in a power series inu. The basic
difference arising for even dimensions is made explicit. Some special features

of our R̂sud are discussed in a concluding section. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1900291g

I. INTRODUCTION

In Sec. 8 of Ref. 1 a sequence of projectors with constant elements and particularly simple and
convenient properties were introduced for arbitrary dimensionN si.e., N23N2 matricesd. For the
caseN=2 they provide the spectral resolutions of the six-vertex and the eight-vertex modelssSecs.
6 and 7 of Ref. 1, citing other sourcesd. Along with N the set of projectors is enlarged in number
and in dimension systematically at each step to give what we called a “nested sequence.” The
projectors were presented Ref. 1 for allN and their basic features were studied, including diago-
nalization, for arbitraryN. But no higher dimensional braid matrices were constructed on such
bases. That was “beyond the scope” of that paper. Here we enlarge the scope and present explicit
constructions for allodd N. Even dimensions will be studied separately elsewhere. Such a sepa-
ration corresponds to strikingly different features arising in the respective cases.

After obtaining explicitlyR̂sud the corresponding transfer matricestsud andLsud operators are
studied. They are found to lead to a remarkable class of quadratic algebrasSec. IVd. Development

of R̂sud in powers of the spectral parameteru is also studiedsSec. Vd. Basic differences arising for
even dimensions are pointed out.sSec. VId. The special features of our class of solutions are
discussed in conclusionsSec. VIId. Construction of our solutions is presented in Appendix A and
some basic results concerningtsud andLsud are collected together in Appendix B.
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bdLaboratoire Propre du CNRS UPR A.0014.
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II. BRAID MATRICES FOR ODD DIMENSIONS „ANSATZ AND SOLUTIONS …

We start by specifying our notations and conventions in detail since they turn out to be crucial
in successful construction of the solutions. Thus, rather than using the simple and elegant notation
of Sec. 8 of Ref. 1 for our projectors we introduce in the following a structure better suited to our
present purpose.

Let

N = 2p − 1 sp = 2,3, . . .d

and

ī = N − i + 1 si + ī = 2p, i% = id

so that for

i = 1,2, . . . ,sp − 1d,

respectively,

ī = s2p − 1d,s2p − 2d, . . . ,sp + 1d

and

p̄ = p.

TheN23N2 braid matrixR̂sud, with the spectral parameteru, is given in terms of its compo-
nents as

R̂sud = sR̂suddab,cdsabd ^ scdd, s2.1d

wheresa,b,c,dd take values in the domainsi , ī ,pd and sabd is the N3N matrix with only one
nonzero element, unity, at rowa and columnb.

The basis of projectors is given byswith e=±d the set

Ppp = sppd ^ sppd,

2Ppised = sppd ^ sssii d + sii dd + essiī d + sī iddd,

2Pipsed = sssii d + sii dd + essiī d + sī iddd ^ sppd, s2.2d

2Pij sed = sssii d ^ s j j d + sii d ^ s j̄ j̄dd + essiī d ^ s j j̄ d + sī id ^ s j̄ jddd,

2Pij̄ sed = sssii d ^ s j̄ j̄d + sii d ^ s j j dd + essiī d ^ s j̄ jd + sī id ^ s j j̄ ddd.

Condensing the tripletssi , j ,ed ,si ,p,ed , . . . andalso sppd into sa ,b , . . .d the basiss2.2d satis-
fies

PaPb = dabPa, o
a

Pa = IN23N2. s2.3d

The total number ofPa is

1 + 4sp − 1d + 4sp − 1d2 = s2p − 1d2 = N2.

They have, apart from the overall factor1
2 for all projectors exceptPpp, only the constant elements
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s±1,0d. There is, for example, noq in our formalism. The braid matrix ispostulatedin the
spectrally resolved form

R̂sud = Ppp + o
i,e

sfpi
sedsudPpised + f ip

sedsudPipsedd + o
i,j ,e

sf ij
sedsudPij sed + f ij

sedsudPij̄ sedd. s2.4d

The coefficient ofPpp is normalized to unity. ThesN2−1d functions fab
sed are to be extracted

from the constraints imposed by the braid equation

R̂12sudR̂23su + u8dR̂12su8d = R̂23su8dR̂12su + u8dR̂23sud. s2.5d

Here ssuppressingud

R̂12 = R̂ ^ IN3N, R̂23 = IN3N ^ R̂.

In terms of the coefficientssR̂suddab,cd defined ins2.1d one obtainsfsumming over the repeated
indicessl ,m,ndg

sR̂suddal,cmsR̂su + u8ddmn,efsR̂su8ddlb,nd = sR̂su8ddcl,emsR̂su + u8ddab,lnsR̂suddnd,mf. s2.6d

This corresponds to the pointsabd ^ scdd ^ sefd of the base spaceV^ V^ V. Our ansatzs2.4d
along with s2.2d implies very strong constraintsstypical of odd dimensionsd. The solutions are
obtained in Appendix A. One has

fab
sedsud = expsmab

sedud, sabd = spid,sipd,si j d,si j̄ d, s2.7d

where the parametersmab
sed are all independentexceptthat for eachi,

mij
sed = mij̄

sed
, s j̄ = 2p − jd. s2.8d

The constraintss2.7d and s2.8d arenecessary and sufficient. Thus forN=3 one has

R̂sud =1
a+ 0 0 0 0 0 0 0 a−

0 b+ 0 0 0 0 0 b− 0

0 0 a+ 0 0 0 a− 0 0

0 0 0 c+ 0 c− 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 c− 0 c+ 0 0 0

0 0 a− 0 0 0 a+ 0 0

0 b− 0 0 0 0 0 b+ 0

a− 0 0 0 0 0 0 0 a+

2 s2.9d

where

a± = 1
2sem11

s+du ± em11
s−dud,

b± = 1
2sem12

s+du ± em12
s−dud, s2.10d

c± = 1
2sem21

s+du ± em21
s−dud.

The six parameters remaining after application ofs2.8d swhich imposes the repetation ofa±d
are all independent. For mab

s−d=mab
s+d one obtains hyperbolic functions as particular cases. For allN,

the nonzero elements are confined tothe diagonal and the antidiagonalas above with a common
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element, unity, at the center. Apart from the normalized element, the coefficients of the projectors
are simply exponentials. The total number of independent parametersmab

± is

s2p − 1d2 − 1 − 2sp − 1d2 = 2sp2 − 1d = 1
2sN + 3dsN − 1d. s2.11d

Note that the coefficient ofPpp in s2.4d has to be nonzero forR̂sud to be invertible and hence

can safely be normalized to unity. Indeed, each coefficient ins2.4d has to be nonzero forR̂sud to
be invertible. This is more evident after diagonalizationsSec. IIId. For evenN there isno index
p= p̄. In Appendix A the crucial role of the indexp will be made more evident. The projectors
Ppised andPipsed will be seen to impose the highly constrained solutionss2.7d with s2.8d.

Implementings2.8d one obtains froms2.4d

R̂sud = Ppp + o
i,e

sfpi
sedsudPpised + f ip

sedsudPipsedd + o
i,j ,e

f ij
sedsudsPij sed + Pij̄ sedd. s2.12d

Defining

P̃ij sed = Pij sed + Pij̄ sed s2.13d

and conserving all other projectors as before one obtains a basis ofs2p2−1d projectors still
satisfyings2.3d where now the indices summed over aresi , j ,ed , si ,p,ed , sp, i ,ed , sppd.

Now

R̂sud = Ppp + o
i,e

sfpi
sedsudPpised + f ip

sedsudPipsedd + o
i,j ,e

f ij
sedsudP̃ij sed. s2.14d

In this basisall the 1
2sN+3dsN−1d parameters are independent. When they are all chosen to be

distinct sand different from 1d the polynomial equationfof 1
2sN+3dsN−1d degree and with distinct

rootsg satisfied byR̂sud and the projectors in terms ofR̂sud are obtained, respectively, as ins1.5d
ands1.6d of Ref. 1. The initial basis, due to the symmetry and simplicity of the projectors, is most
convenient for certain purposes. The second one has the virtue of eliminating constraints. Each
should be implemented according to the context.

If two or more of the1
2sN+3dsN−1d free parameters are allowed to coincide, then introducing

the sum of the corresponding projectorsfas in s2.13dg the basis can again be redefinedfas in

s2.14dg. The degree of the minimal polynomial equation satisfied byR̂sud diminishes correspond-
ingly.

Our matrices all satisfy

R̂s− udR̂sud = I, R̂s0d = I . s2.15d

III. DIAGONALIZATION

Our general approach to diagonalization is presented step by step in Sec. 9 of Ref. 1.
The matrix M that diagonalizes each projectorPa of s2.3d fnamely,

Ppp, Ppised , Pipsed , Pij sed , Pij̄ sed of s2.2dg and henceR̂sud of s2.4d is given below. As compared to
the results of Sec. 8 of Ref. 1,M is presented here in our current notations. Set

Î2M = Î2M−1

= Î2sppd ^ sppd + sppd ^ So
i

ssii d − sii d + siī d + sī iddD + So
i

ssii d − sii d + siī d + sī iddD ^ sppd

+ o
i,j

sssii d − sii dd ^ ss j j d + s j̄ j̄dd + ssiī d + sī idd ^ ss j j̄ d + s j̄ jddd . s3.1d

One verifies in a straightforward fashionswith e= ±1 on the rightd that
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MPppM
−1 = sppd ^ sppd,

2MPpksedM
−1 = sppd ^ ss1 + edskkd + s1 − edsk̄k̄dd,

2MPkpsedM
−1 = ss1 + edskkd + s1 − edsk̄k̄dd ^ sppd, s3.2d

2MPklsedM
−1 = s1 + edskkd ^ sll d + s1 − edsk̄k̄d ^ sl̄ l̄d,

2MPkl̄sedM
−1 = s1 + edskkd ^ sll d + s1 − edsk̄k̄d ^ sll d.

Hence taking account ofs2.8d fi.e., f ij
sedsud= f

i j̄

sedsudg one obtains

2MR̂sudM−1 = 2sppd ^ sppd + o
i,e

s fpi
sedsudss1 + edsppd ^ sii d + s1 − edsppd ^ sii dd + f ip

sedsudss1 + ed

3sii d ^ sppd + s1 − edsii d ^ sppdddo
i,j ,e

s f ij
sedsudss1 + edssii d ^ s j j d + sii d ^ s j̄ j̄dd + s1

− edssii d ^ s j j d + sii d ^ s j̄ j̄dddd . s3.3d

For N=3 this gives

MR̂sudM−1 ; R̂dsud = sem11
s+du,em12

s+du,em11
s+du,em21

s+du,1,em21
s−du,em11

s−du,em12
s−du,em11

s−dudsdiagd. s3.4d

The diagonalizer is

Î2M = Î2M−1 =1
1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 Î2 0 0 0 0

0 0 0 1 0 − 1 0 0 0

0 0 1 0 0 0 − 1 0 0

0 1 0 0 0 0 0 − 1 0

1 0 0 0 0 0 0 0 − 1

2 . s3.5d

The generalizations ofs3.4d and s3.5d for all N are quite evident.

If an R̂sud satisfying the braid equations2.5d is diagonalized the correspondingR̂dsud, in
general, doesnot directly satisfys2.5d. This is evident from all the examples of Ref. 1. The general
explanation is simple. Interpolated factors of the typeM12M23

−1 will be lacking in the latter case as

compared to the former. IfR̂sud is diagonal tostart with s2.6d reduces to

sR̂suddaa,bbsR̂su + u8ddbb,ccsR̂su8ddaa,bb = sR̂su8ddbb,ccsR̂su + u8ddaa,bbsR̂suddbb,cc. s3.6d

The braid equation is satisfied if, for eachsa,bd,

sR̂suddaa,bbsR̂su8ddaa,bb = sR̂su + u8ddaa,bb s3.7d

i.e., if

sR̂suddaa,bb = emabu, s3.8d
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where the parametersmab are mutuallyindependent. Now, conversely, ifR̂sud is conjugated as

R̂8sud = AR̂sudA−1 s3.9d

in general,R̂8sud will no longer satisfy the braid equation since such products asA12
−1A23 will

depend on the structure ofA. The structure of ourM is such that for arbitrary oddN,

M−1R̂dsudM

continues to satisfy the braid equationprovided

mij
sed = mij̄

sed
.

Thus it is seen how the 2sp−1d2 crucial constraintss2.8d, the structure of our nested sequence
of projectors and that of ourM are all linked.

The relevance of ourM to the algebra of theL-operators is pointed out at the end of Sec. IV
after displaying the crucial algebraic structure arising there.

IV. L„u…-OPERATORS AND TRANSFER MATRICES

A general discussion, citing relevant sources, is presented in Appendix B. Here the basic
results concerning theN3N realizations of theN2 blocks of the transfer matrixtsud and the
operatorL+sud are used in the context of braid matrices constructed in Sec. II and Appendix A

In sB22d andsB23d we show in a transparent fashion why, unlesssB16d is generalized, say, by

implementing central operators in the argument ofR̂su−u8d, one cannot obtain anL−sudÞL+sud.
We do not study such general structures here and hence consider only the above-mentioned
fundamental realizations ofL+sud with the standard prescription for coproduct. This will, in any
case, provide a subalgebra in an appropriately generalized quasi-Hopf structure. ThisL+sud and
tsud, as shown insB28d, are relatedsfor the fundamentalN3N representations of blocksd as

tsud = PL+sudP, stabsuddcd = sLcd
+ suddab. s4.1d

In studying multistate statistical models corresponding to ourR̂sud ssee the comments and
references in Sec. VIId the algebra of the blocks oftsud is particularly relevant. In our case this
algebra is foundssee the followingd to be very simply related to the corresponding one forL+sud.
So one can start either withL+sud or tsud and then obtain the other easily. We choose to display the
remarkable structure that emerges first in terms ofL+sud. We start withsB14d, i.e.,

L+sud = R̂sudP. s4.2d

In terms of the matricessabd defined belows2.1d, one obtains

Lsppd
+ = sppd ; Xpp,

e−mip
sedusLip

+ sud + eL
īp

+ sudd = spid + espīd ; Xpi
sed,

e−mpi
sedusLpi

+ sud + eL
pī

+ sudd = sipd + esīpd ; Xip
sed, s4.3d

e−mij
sedusLij

+sud + eL
ī j̄

+sudd = si j d + esī j̄d ; Xij
sed,

e−mij
sedusLij̄

+sud + eL
ī j

+sudd = s j̄ id + es jī d ; Xj̄i
sed

.

063508-6 A. Chakrabarti J. Math. Phys. 46, 063508 ~2005!

                                                                                                                                    



In the last equations2.8d has been implemented, i.e.,

mij̄
sed

= mij
sed.

From these one obtains

2Lij
+sud = semij

s+duXij
s+d + emij

s−duXij
s−dd,

s4.4d
2L

ī j̄

+sud = semij
s+duXij

s+d − emij
s−duXij

s−dd,

and so on.
For N=3 one obtainsswith e= ±1 in the matrices on the rightd

L22
+ sud = 10 0 0

0 1 0

0 0 0
2 ,

L12
+ sud + eL

1̄2

+ sud = em12
sedu10 0 0

1 0 e

0 0 0
2 ,

L21
+ sud + eL

21̄

+ sud = em21
sedu10 1 0

0 0 0

0 e 0
2 , s4.5d

L11
+ sud + eL

1̄1̄

+ sud = em11
sedu11 0 0

0 0 0

0 0 e
2 ,

L
11̄

+ sud + eL
1̄1

+ sud = em11
sedu10 0 e

0 0 0

1 0 0
2 .

The constantN3N matricesXab
sed, whereXpp has only one nonzero element, unity, and all the

others only twofs1, 1d or s1,−1dg specify a quadratic algebra. We give in the following only the
nonzerobilinear products, all others vanishing. Further results, such as commutators, can be
systematically obtained from those to follow:

XppXpp = Xpp, XppXpi
sed = Xpi

sed, Xip
e Xpp = Xip

e ,

Xpi
sedXip

se8d = s1 + ee8dXpp, Xip
sedXpj

se8d = Xij
see8d + eX

ī j

see8d
,

Xpi
sedXij

se8d = Xpj
see8d, Xij

sedXjp
se8d = Xip

see8d,

s4.6d
Xpi

sedX
ī j

se8d
= eXpi

see8d, Xj̄i
sed

Xip
se8d = ee8Xjp

see8d,

Xij
sedXjk

se8d = Xik
see8d, Xij

sedXj̄k
se8d

= eX
īk

see8d
,
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Xj̄i
sed

Xik
se8d = Xj̄k

see8d
, Xj̄i

sed
X

īk

se8d
= eXjk

see8d.

sNo sum over repeated indices.d
Note that

C1 ;
1

NSXpp + o
i

Xii
s+dD =

1

N
IN3N. s4.7d

HencesXpp−C1d and sXii
s+d−2C1d, along with the others give an algebra ofN2 traceless ma-

trices.
Higher dimensional realizations are given by the coproducts

DL = L^̇ L. s4.8d

Here ^̇ implies tensor product combined with matrix multiplication. The prescription can be
implemented repeatedly in a straightforward fashion. But it leads, in general, to reducible struc-
tures. A systematic study of extraction of irreducible components is beyond the scope of this paper.
Let us, however, take a closer look at the structure of the algebras4.6d and the special role of the
index p.

The generators withoutp si.e., Xij
sed, X

īk

sed
d form a closed subalgebra. The generators with a

singlep si.e., Xpi
sed, Xip

sedd provide a semidirect product structure with the preceding set. But now to
close it one has to extend the first set to a direct product structure by includingXpp.

From s4.1d and s4.3d it can be shown thattsud andL+sud are essentially related through the
interchange of the roles ofXpi

sed andXip
sed. Thus forN=3 there is an interchange ofb± andc±. One

obtains for this case

tsud =1
a+ 0 0 0 0 0 0 0 a−

0 0 0 c+ 0 c− 0 0 0

0 0 a− 0 0 0 a+ 0 0

0 b+ 0 0 0 0 0 b− 0

0 0 0 0 1 0 0 0 0

0 b− 0 0 0 0 0 b+ 0

0 0 a+ 0 0 0 a− 0 0

0 0 0 c− 0 c+ 0 0 0

a− 0 0 0 0 0 0 0 a+

2 , s4.9d

L+sud =1
a+ 0 0 0 0 0 0 0 a−

0 0 0 b+ 0 b− 0 0 0

0 0 a− 0 0 0 a+ 0 0

0 c+ 0 0 0 0 0 c− 0

0 0 0 0 1 0 0 0 0

0 c− 0 0 0 0 0 c+ 0

0 0 a+ 0 0 0 a− 0 0

0 0 0 b− 0 b+ 0 0 0

a− 0 0 0 0 0 0 0 a+

2 . s4.10d

From these the 333 blocks can be read off.
We close this section by pointing out the relevance of our diagonalizerM of Sec. III to the

structure ofL+sud fand hence oftsudg. If one constructs
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ML+sudM−1 s4.11d

precisely the combinations on the left of the sets4.3d are seen to emerge. Thus ourM leads
directly to the remarkable structures4.6d.

V. u EXPANSION

Let us start with the following notations and conventions
s1d The condensed notationsa ,b , . . .d of s2.3d implies for each indexa eithersppd or a triplet

sp, i ,ed, si , j ,ed , . . ., and so on. Weintroduce sum overa8 where inSa8 the indexsppd is excluded.
As for the other projectors one may consider alternatively either the basis given bys2.12d or that
by s2.14d.

s2d We also define

H ; o
a8

ma8Pa8 s5.1d

when, usings2.3d,

Hn = So
a8

ma8Pa8Dn
= o

a8

ma8
n Pa8. s5.2d

Now one can expand as followsswith nù1d:

R̂sud = Ppp + o
a8

ema8uPa8 = Ppp + o
a8
S1 + o

n

sma8udn

n! DPa8

= I + o
n

un

n! So
a8

ma8
n Pa8D = I + o

n

un

n!
Hn = euH s5.3d

Addition of Ppp=sI −oa8Pa8d to H corresponds to a change of normalization ofR̂sud along
with an evident redefinitionma8→ sma8−1d. None of the considerations below are affected by
such a redefinitionsoa8→oad of H. More generally, say forq-deformedsA,B,C,Dd-type alge-

bras, if R̂sud is spectrally resolved on a complete basis of projectorssSec. II, Ref. 1d, setting
l isud= lnkisud and normalizing suitably one obtains, following the steps leading tos5.3d,

R̂sud = o
i

kisudPi = o
i

elisudPi = esoi l isudPid s5.4d

Here, in general, upon expansion in powers ofu the exponentsl isud lead to fairly involved
structures. In our present caseu is simply a factor in the exponent. Hence the situation is much
simpler. Usings5.3d the braid equation becomesswith H12=H ^ I, H23= I ^ Hd

euH12esu+u8dH23eu8H12 = eu8H23esu+u8dH12euH23. s5.5d

Setting, withsn,n8 ,n9dù1,

S= o
n

un

n!
H12

n , S8 = o
n8

u8n8

n8!
H12

n8, S9 = o
n9

su + u8dn9

n9!
H23

n9 . s5.6d

The left-hand side ofs5.5d is

sL.H.S.d = sI + SdsI + S9dsI + S8d = I + sS+ S8 + S9d + sSS8 + SS9 + S9S8d + SS9S8 s5.7d

The sR.H.S.d is obtained from thesL.H.S.d via the following interchanges:
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s12d ↔ s23d, u ↔ u8. s5.8d

Now let us compare the coefficients ofuru8s for different pairssr ,sd on both sides ofs5.5d.
The linear and the quadratic terms on both sides are found to be symmetric unders5.8d and

hence cancel. Among the cubic terms only the coefficients of

uu8su + u8d

are found to lead to a nontrivial relation. One obtains, on regrouping terms,

ffH12,H23g,H12g = ffH23,H12g,H23g. s5.9d

Compare this withs2.5d. See also the remarks in Sec. VII.
But from s5.2d one obtains

H12
2 = o

a8

ma8
2 sPa8d12, H23

2 = o
a8

ma8
2 sPa8d23. s5.10d

Hence in terms of the projectors one obtains

o
a8,b8,g8

ma8mb8mg8ssPa8d12sPb8d23sPg8d12 − sPa8d23sPb8d12sPg8d23d

=
1

2 o
a8,b8

ma8mb8sma8 − mb8dssPa8d12sPb8d23 − sPa8d23sPb8d12d. s5.11d

Since there are1
2sN+3dsN−1d independent parametersma, comparing coefficients of distinct

triplets on each side one obtains a series of results. We will not display them explicitly. In Sec. 3
of Ref. 2 we have studied analogous reductionssfrom trilinear to bilinear formsd for q-deformed
unitary, orthogonal, and symplectic cases. There they were studied in the context of “modified
braid equations”sRefs. 3 and 4d presented as a complementary facet of Baxterizationsi.e., the
introduction of a spectral parameterd. Here westarted from the u-dependent forms2.5d and
implemented ouru expansion leading to the hierarchy starting withs5.9d and s5.11d. Without
attempting to analyze how the higher order members of the hierarchy can be reduced in order, in
successive steps, we just mention the following point concernings5.11d.

In s1.18d of Ref. 2, even for the orthogonal and the symplectic cases the modified braid

equation could be expressed in terms of tensoredsR̂sudd±1 by expressing the projectors in their

terms using the minimalscubicd polynomial equation satisfied byR̂sud. For the unitary caseswith
a quadratic polynomiald the task was much more simple. In our present case, despite various
particularly simple aspects, the order of the minimal polynomial increases asN2 instead of re-
maining fixed as for the cases mentioned before. Hence relations of the types5.11d are best
considered in terms of projectors themselves.

Expansions in terms of the spectral parameter have been considered in the context of Yangian
Double and central extensions.5,6 We intend to study elsewhere analogous aspects generalizing our
class of braid matrices.

VI. COMPARISON WITH EVEN DIMENSIONAL CASES

The sequence of projectors presented in Sec. 8 of Ref. 1 is a direct generalization of the basis
arising in the spectral resolution of the six-vertex and the eight-vertex braid matrices. From the
abundant literature on such models the most directly relevant sources are cited in Secs. 6 and 7 of
Ref. 1. These 434 projectors areswith e= ±1 in the matricesd
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2P1sed =1
1 0 0 e

0 0 0 0

0 0 0 0

e 0 0 1
2, 2P2sed =1

0 0 0 0

0 1 e 0

0 e 1 0

0 0 0 0
2 . s6.1d

But even for this simplest membersN=2d of the hierarchy the coefficients in

R̂sud = o
e

sf1sedsudP1sed + f2sedsudP2sedd s6.2d

are not constrained to simple exponentials as forN=s2p−1d. For the eight-vertex modelssee
sources cited in Sec. 7 of Ref. 1d one obtains

f1s±dsud =
gs±dsud

gs±ds− ud
, f2s±dsud =

hs±dsud

hs±ds− ud
, s6.3d

where withz=eu, two parametersp andq and

sx;ad` = p
nù0

s1 − xand, s6.4d

g±szd = s7p1/2q−1z;pd`s7p1/2qz−1;pd`, s6.5d

h±szd = sq1/2z−1/2 ± q−1/2z1/2ds7pq−1z;pd`s7pqz−1;pd`. s6.6d

The question of normalization is discussed in Sec. 7 of Ref. 1. In the trigonometric six-vertex limit
one obtainssas in Sec. 6 of Ref. 1d

f1s±dsud = 1, f2s+dsud =
cosh1

2sg − ud

cosh1
2sg + ud

, f2s−dsud =
sinh 1

2sg − ud

sinh 1
2sg + ud

. s6.7d

The reason for such a scope is thatfunlike p= p̄ for N=s2p−1dg for evenN there isno index

i = ī. The successive stages of the construction of solutions in Appendix A make it amply explicit
how the presence of aps=p̄d, along with the structure of the projectors in our nested sequence,
constrains the coefficients to be simply exponentials. The generalization forN=2n sn.1d of the
hyperbolic and elliptic solutions displayed above will be explored elsewhere implementing our
basis of projectors.

VII. DISCUSSION

In Ref. 1 braid matrices were studied systematically via their spectral resolutions on appro-
priate bases of projectors. Such a study was already initiated in previous workssRefs. 2 and 7d and
led to canonical factorization and diagonalization in Ref. 1. In Sec. 8 of Ref. 1 this approach was
taken to its limit. In the other sections almost allknownbraid matrices of interest were studied via
spectral resolutions. In Sec. 8 a basis of projectorsscalled a “nested sequence”d with particularly
simple, attractive properties was hopefully presented for constructing new classes of braid matri-
ces in all dimensions. In such a basis, satisfyings2.3d, one hasN2 matrices, eachN23N2 and with
only constant elementsfsee s2.2d and s6.1dg. They can be considered as the most simple and
symmetric generalizations of projectors appearing in the six-vertex and the eight-vertex models.
But the central question was not addressed in Ref. 1. Can such a basis of projectors be dressed up
with suitable coefficients to provide a braid matrix satisfyings2.5d? While the number of coeffi-
cients increases asN2 the number of trilinear constraints on them corresponding to the products of
N33N3 matrices increases much faster. Hence the question. In this paper we present an affirma-
tive answer and explicit solutions for allodd N. The even-N case will be studied elsewhere.
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Let us note some basic features of our solutions in the context of the formulation in Ref. 1.
The canonically factorizable form of the coefficients1 give

R̂sud = o
i

f isud
f is− ud

Pi . s7.1d

This is evidently compatible withs2.7d since

emu = ses1/2dmudse−s1/2dmud−1.

But in Ref. 1 we systematically extractedssee the relevant discussion in Ref. 1d the standard
snon-Baxterizedd braid matrices satisfying

R̂12R̂23R̂12 = R̂23R̂12R̂23 s7.2d

as the limits

lim
u→±`

R̂sud = sR̂d±1. s7.3d

For our present class of solutions however each coefficientemau either diverges or vanishes in
the above-mentioned limits. So rather than the Baxterization of a preexistings7.2d to s2.5d this
class can be consideredssee Sec. Vd to be an exponentiation of

ffH12,H23g,H12g = ffH23,H12g,H23g s7.4d

to

R̂12sudR̂23su + u8dR̂12su8d = R̂23su8dR̂12su + u8dR̂23sud s7.5d

since, as shown in Sec. V, the passage

H ; o
a8

ma8Pa8 → R̂sud = euH

corresponds to one froms7.4d to s7.5d.
One may compare this with the well-known so-called “classical”r-matrix equation obtained

by expanding theq-dependent YB matrixRsuds=PR̂sudd satisfying

R12sudR13su + u8dR23su8d = R23su8dR13su + u8dR12sud s7.6d

in powers ofhs=ln qd. One obtains for

Rqsud = I + 2hrsud + Osh2d,

fr12sud,sr13su + u8d + r23su8ddg + fr13su + u8d,r23su8dg = 0. s7.7d

This has only single commutators. In our case there is noq. Expanding in powers ofu we
obtain as the first nontrivial relation Eq.s7.4d with double commutators and with the two sides still
directly related through the interchanges12d↔ s23d. In the extensive literature concerning
r-matrices one may note in particular a classification of solutionssRef. 8d. Our projectors lead to
a solution ofs7.4d with 1

2sN+3dsN−1d parameters forN=s2p−1d. A more general study, starting
from s7.4d should be worthwhile.

We repeat a feature noted in Sec. V. Our class of solutions has many particularly simple
aspects. But the number of projectorssPad and that of the parameterssmad increase asN2 with the

dimension. The degree of the minimal polynomial equation satisfied byR̂sud increases with them.
This is in sharp contrast with well-known cases corresponding toq-deformed unitary, orthogonal,
and symplectic cases. There the structures of the projectors are much less simple. But their number
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does not increase with the dimension. As noted belows2.14d, the degree of the minimal polyno-
mial can be lowered by allowing some of the free parameters to coincide, giving simpler subcases.
But our solution is more general.

For mab
+ .mab

− all the nonzero elements of ourR̂sud are positive and hence can be consistently
interpreted as Boltzmann weights of a multistate statistical model. In Sec. 11 of Ref. 1 the
possibility of a class of multistate model was briefly indicated and compared with one proposed in

Ref. 9. sSee also Sec. 4 of Ref. 10.d In both casess2N2−Nd elements out ofN4 ones ofR̂sud are
nonzero. Here we haves2N2−1d nonzero weights. Moreover the explicit solution of Ref. 9sand
Ref. 10d restricts the number of parameters as in the six-vertex modelsSec. VId. For our present
class there is scope for more parameters, their possible number increasing with the dimension.
More generally, since the distribution and the magnitudes of the weights are quite different, as
compared to the references above, all the essential properties and features will be differentse.g.,
the partition function, the eigenvalues of the transfer matrix, the detailed content of the structure
arising, say, from the Bethe ansatz, the algebra of theL-operators, the associated quantum Hamil-
tonian, possible knot invariants and also the associated noncommutative spacesd. But an adequate
exploration of such aspects will be a major enterprise which can only be attempted in future
works. Here, we have presented the explicit braid matrix from which all will follow and briefly
indicated the possibilities in certain directionsssuch as theL-operatorsd.
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APPENDIX A: SOLVING THE BRAID EQUATION

In s2.6d, namely,

sR̂suddal,cmsR̂su + u8ddmn,efsR̂su8ddlb,nd = sR̂su8ddcl,emsR̂su + u8ddab,lnsR̂suddnd,mf sA1d

corresponding to the sitesabd ^ scdd ^ sefd one has to implement the content of the ansatzs2.4d.
From s2.2d and s2.4d one obtains the following nonzero elements ofR̂sud. The argumentsu are
suppressed insA2d to simplify the notation and the subscripts correspond to the sitessabd
^ scdd,

R̂pp,pp = 1,

R̂pp,ii = 1
2sfpi

s+d + fpi
s−dd = R̂pp,ii ,

R̂pp,,iī = 1
2sfpi

s+d − fpi
s−dd = R̂pp,ī i ,

R̂ii ,pp = 1
2sf ip

s+d + f ip
s−dd = R̂ii ,pp, sA2d

R̂iī ,pp = 1
2sf ip

s+d − f ip
s−dd = R̂īi,pp,

R̂ii ,j j = 1
2sf ij

s+d + f ij
s−dd = R̂ii , j̄ j̄ ,

R̂iī ,j j̄ = 1
2sf ij

s+d − f ij
s−dd = R̂īi, j̄ j ,
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R̂ii , j̄ j̄ = 1
2sf i j̄

s+d
+ f i j̄

s−dd = R̂ii ,j j ,

R̂iī , j̄ j = 1
2sf i j̄

s+d
− f i j̄

s−dd = R̂īi,j j̄ .

These are theonly nonzero elements, the total number being

1 + 8sp − 1d + 8sp − 1d2 = 2s2p − 1d2 − 1 = 2N2 − 1

Note the following points:

• The elements above all being situated on the diagonal and the antidiagonal there are none of

the typeR̂iī ,j j , R̂ii ,j j̄ and so on.
• In the productsabd ^ scdd ^ sefd for a givena, b can only bea or ā for the coefficient to be

nonzero. This holds also for the other pairs.
• Among sa,b,c,d,e, fd the number of withsor withoutd bar must be even for the coefficient

to be nonzero. This is one consequence ofsA2d. However, in such countings one must keep
in mind thatp= p̄.

The preceding considerations simplify considerably the computations as we analyze system-
atically the different classes ofsabd ^ scdd ^ sefd with novanishing coefficients, lowering the mul-
tiplicity of sppd in the triple product above by steps.

Cases1d The casesppd ^ sppd ^ sppd is trivial sincesA1d reduces to

1 = 1.

Cases2d Next consider the classesswith sabdÞ sppdd

s1d: sppd ^ sppd ^ sabd,

s2d: sabd ^ sppd ^ sppd,

s3d: sppd ^ sabd ^ sppd.

From our previous remarks it follows that it is sufficient to consider the possibilities

sabd = sii d,siī d.

Note also that insA2d R̂pp,ii =R̂pp, ii and so on.
For s1d, sA1d is easily seen to reduce to

sR̂su + u8ddpp,ab = sR̂su8ddpp,acsR̂suddpp,cb. sA3d

Analogous treatments of the subcasess1d, s2d, s3d lead, respectivelysimplementingsA2d with
e=± and also both possibilities forsabd mentioned aboved to the constraints

fpi
sedsu + u8d = fpi

sedsudfpi
sedsu8d, sA4d

f ip
sedsu + u8d = f ip

sedsudf ip
sedsu8d, sA5d

fpi
s+dsudfpi

s+dsu8df ip
s+dsu + u8d + fpi

s−dsudfpi
s−dsu8df ip

s−dsu + u8d

= fpi
s+dsu + u8df ip

s+dsudf ip
s+dsu8d + fpi

s−dsu + u8df ip
s−dsudf ip

s−dsu8d. sA6d

On implementingsA4d andsA5d one reducessA6d to an identity. Then from the first two one
obtains the solutions
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fpi
sedsud = empi

sedu, sA7d

f ip
sedsud = emip

sedu sA8d

the indeterminatesmpi
sed, mip

sed being independent parameters.
Continuing to reduce the multiplicity ofsppd and remembering the restrictions implied by

sA2d we start by considering successively the cases

s4d: sppd ^ sii d ^ s j j d,

s5d: sppd ^ siī d ^ s j j̄ d,

s6d: sppd ^ siī d ^ s j j d.

The last one survives with nonzero coefficient sincep= p̄. We present directly the results, the
derivations being straightforward.

Defining

Aabsud ; fab
s+dsud + fab

s−dsud, Babsud ; fab
s+dsud − fab

s−dsud

one obtains, respectively, from the above-mentioned cases

Aijsu + u8d = f ij
s+dsudf ij

s+dsu8d + f ij
s−dsudf ij

s−dsu8d, sA9d

ApisudApisu8dBijsu + u8d + BpisudBpisu8dBij̄su + u8d = Apisu + u8dsBijsudAijsu8d + AijsudBijsu8dd,

sA10d

ApisudBpisu8dAijsu + u8d + BpisudApisu8dAij̄su + u8d = Bpisu + u8dsAijsu8dAij̄sud + Bijsu8dBij̄sudd.

sA11d

Taking account ofsA4d and sA5d fand hence ofsA7d and sA8dg and noting that keepingsu
+u8d fixed one can varyc in

u = f + c, u8 = f − c,

one finds that the last three equations are satisfied if

f i j̄
sedsud = f ij

sedsud sA12d

and

f ij
sedsudf ij

sedsu8d = f ij
sedsu + u8d. sA13d

These are found to benecessaryandsufficient. Hence

f i j̄
sedsud = f ij

sedsud = emij
sedu. sA14d

Permutation of the factors of the casess4, 5, 6d abovefsuch assii d ^ sppd ^ s j j d and so ong can be
shown to lead to no supplementary constraints.

Finally one considers the cases

sabd ^ scdd ^ sefd,

where no factor issppd. For each subcase the constraints implied bysA1d along with sA2d are
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easily extracted. It is found that they areall satisfied by implementingsA12d andsA13d. Since the
subcases are treated quite similarly, it is sufficient to display two of them. We present again only
the final steps. For

sii d ^ s j j d ^ skkd

with no barred index,sA13d reducessA1d, in terms ofAab defined above, to

L.H.S. = 1
4Aijsu + u8dAjksu + u8d = R.H.S. sA15d

Similarly, for

siī d ^ s j j d ^ skk̄d

one obtains finally

L.H.S. = 1
4Bijsu + u8dBjksu + u8d = R.H.S. sA16d

In both cases, apart from the exponential form for eachf, sA14d is essential. Thus we have
verified the solution announced ins2.7d and s2.8d. It is instructive to compute explicitly the case

s2.9d where one has onlysi , ī ,pd with

i = 1, p = 2.

One finds thats2.10d is sufficient. Moreover, if one sets

m
11̄

sed
Þ m11

sed sA17d

so thata± is not repeated as ins2.9d, the braid equation isnot satisfied. This is an example of the
necessity ofsA14d.

As a check, the solution forN=3 was also obtainedfinstead of directly usingsA1d andsA2dg
by computing the triple tensor products of the projectors ins2.5d.

APPENDIX B: L-OPERATORS AND TRANSFER MATRICES „FUNDAMENTAL
REPRESENTATIONS…

Here we collect together some known resultssciting sources to followd coherently with our
notations and conventions and emphasize certain aspects arising in the presence of the spectral
parameteru.

For non-Baxterized braid matricesswithout ud satisfying

R̂12R̂23R̂12 = R̂23R̂12R̂23 sB1d

the FRT equations for theL-operatorsfEq. s2.3d of Ref. 11g can be expressed in our notations as

R̂L2
±L1

± = L2
±L1

±R̂, sB2d

R̂L2
+L1

− = L2
−L1

+R̂. sB3d

Here R̂ is a N23N2 matrix for anyN and

L1 = L ^ IN3N, L2 = IN3N ^ L.

Writing these in terms of componentssas will be done in the following for theu-dependent
cased it can be shown that the lowest dimensional realizations of theN2 blocksLab

± seachN3Nd
can be obtained in our notations, i.e., with
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R̂= R̂ab,cdsabd ^ scdd sB4d

as

sLab
+ dcd = R̂ad,cb, sB5d

sLab
− dcd = R̂ad,cb

−1 , sB6d

or

L+ = R̂P = sPRdP = R21, sB7d

L− = R̂−1P = sR−1PdP = R−1. sB8d

Apart from differences of notations and conventions these correspondsto cite only one sourced
to Eq. s4.9d of Ref. 12. In the familiarL± of Slqs2d, implementing 232 realizations ofsq±H ,X±d
one obtainssB7d and sB8d, which however hold forany R̂satisfyingsB1d.

Now let us introduceu. Corresponding tosB1d and sB2d one now has, respectively,

R̂12su − u8dR̂23sudR̂12su8d = R̂23su8dR̂12sudR̂23su − u8d, sB9d

R̂su − u8dL2
±sudL1

±su8d = L2
±su8dL1

±sudR̂su − u8d. sB10d

fThe corresponding situation forsB3d will be discussed in the following.g
In terms of components one writes

sR̂su − u8ddal,cmsR̂suddmn,efsR̂su8ddlb,nd = sR̂su8ddcl,emsR̂suddab,lnsR̂su − u8ddnd,mf, sB11d

sR̂su − u8ddal,cmsL±sudmfdensL±su8dlddnb = sL±su8dcmdelsL±sudandlbsR̂su − u8ddnd,mf. sB12d

One finds thatfconsideringL+sud to start withg

sL+sudabdcd = sR̂suddad,cb sB13d

or

L+sud = R̂sudP = PRsudP = R21sud sB14d

is a solution. This is strictly analogous tosB7d. The same solution evidently holds forL−sud. But
if one wants to avoid the degeneracy

L−sud = L+sud sB15d

can one obtain a different solution forL−sud analogous tosB8d? We show below in a particularly
transparent fashion that there is an obstruction if one directly generalizessB3d as

R̂su − u8dL2
+sudL1

−su8d = L2
−su8dL1

+sudR̂su − u8d. sB16d

When this is further generalized by introducing a central operator in the argument ofR̂su−u8d on
one sidesor in a different fashion on each sided and thus distinguish the two arguments, there can
be a way out.sReference 13 is a review article citing numerous sources. Particularly relevant is
Sec. 2.1.4.d But let us consider the consequences ofsB16d combined withsB13d andsB14d and the
basic propertiess2.15d, i.e.,
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R̂s− ud = R̂−1sud, R̂s0d = I . sB17d

From sB14d and sB17d,

L+s0d = P, L+s0dab = sbad. sB18d

fThis has no counterpart forsB7d.g
Hence settingu=0 in sB16d, usingsB16d and sB17d and then writingu for u8 one obtains

R̂−1sudP2L1
−sud = L2

−sudP1R̂
−1sud. sB19d

Writing sB19d in terms of components analogously tosB12d one obtains

sR̂s− uddal,cmsdmnd fedsL−sudlddnb = sL−sudcmdelsdabdnldsR̂s− uddnd,mf sB20d

or

sR̂−1suddal,cmsL−sudlddmbdef = dabsL−sudcmdelsR̂−1suddld,mf. sB21d

Hence, finally,

sR̂−1sudL−sudPd ^ I = I ^ sL−sudPR̂−1sudd. sB22d

For

L−sud = L+sud = R̂sudP, L−sudP = R̂sud sB23d

sB22d is trivially satisfied sfurnishing a convincing checkd. But a distinct solution forL−sud
reducingssay, asu→`d to sB8d is no longer available in the general case ifsB16d is strictly
maintained. One obtainssB8d easily from the symmetry ofsB1d under inversion since, unlike for
sB16d, the orders ofsu ,u8d on each side do not enter in that context. But even apart from that
sB18d now imposes the constraintsB22d, linear inL−sud. We do not consider in this paper gener-
alizations ofsB16d leading to quasi-Hopf structures for consistent coproducts.

We now consider transfer matrices and note how the lowest dimensional representations can
be extracted from those of theL-operators. The transfer matrixtsud has to satisfy

R̂su − u8dstsud^̇ tsu8dd = stsu8d^̇ tsuddR̂su − u8d, sB24d

where ^̇ , combining tensor and matrix products, leads to

stsud^̇ tsu8dd = stsud ^ IdsI ^ tsu8dd = t1sud . t2su8d. sB25d

Write sB24d as

sPR̂su − u8dPdsPst1sudPdsPt2su8dPdd = sPt1su8dPdsPt2sudPdsPR̂su − u8dPd sB26d

or

R̂21su − u8dt2sudt1su8d = t2su8dt1sudR̂21su − u8d. sB27d

Now comparingsB27d with sB10d and sB14d one finds the solution

tsud = sPR̂sudPdP = PR̂sud = Rsud. sB28d

In the absence ofu, i.e., for sB1d, this correspondsswith some notational differencesd to the
realizationr+ of Eq. s4.5d of Ref. 12. But corresponding tosB8d, unavailable in our context, there
is another realizationr− in Ref. 12. We are concerned only withsB28d. Products analogous tos4.8d
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of our Sec. IV lead to higher dimensional transfer matrices corresponding to longer chains as
successive sites are added.
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Aspects of a new class of braid matrices: Roots of unity
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Various properties of a class of braid matrices, presented before, are studied con-
sideringN23N2sN=3,4,…d vector representations for two subclasses. Forq=1

the matrices are nontrivial. TriangularitysR̂2= Id corresponds to polynomial equa-
tions forq, the solutions ranging from roots of unity to hyperelliptic functions. The
algebras ofL operators are studied. As a crucial feature one obtains 2N central,
grouplike, homogenous quadratic functions ofLij constrained to equality among
themselves by theRLL equations. They are studied in detail forN=3 and are
proportional toI for the fundamental 333 representation and hence for all iterated
coproducts. The implications are analyzed through a detailed study of the 939
representation forN=3. The Turaev construction for link invariants is adapted to
our class. A skein relation is obtained. Noncommutative spaces associated to our

class ofR̂ are constructed. The transfer matrix map is implemented, with theN
=3 case as example, for an iterated construction of noncommutative coordinates
starting from ansN−1d dimensional commutative base space. Further possibilities,
such as multistate statistical models, are indicated. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1924701g

I. INTRODUCTION

A new class of braid matrices was presented in previous papers. The most convenient formu-
lation can be found in Sec. 3 of Ref. 1. This is based on two previous works.2,3 For ready reference
we summarize below the essential features. In succeeding sections, the different properties of such
braid matrices will be studied. Remarkable aspects will be encountered. We willalwaysbe con-
cerned withN23N2 vector representations of braid matricessN=3, 4, …d.

For proper appreciation one should start by noting explicitly the linksand the crucial differ-
ences with the standard SOqsNd and SpqsNd braid matrices. Our approach is consistently via
spectral resolutions, i.e., in terms of projectors.

The Baxterized braid matricessdepending on a spectral parameterud satisfy

R̂12sudR̂23su + u8dR̂12su8d = R̂23su8dR̂12su + u8dR̂23sud, s1.1d

where

R̂12 = R̂ ^ IN, R̂23 = IN ^ R̂,

and IN is theN3N identity matrix.
For the standard SOqsNd and SpqsNd casesssee sources cited in Sec. 2 of Ref. 1d one has

adLaboratoire Propre du CNRS UPR A.0014. Electronic mail: chakra@cpht.polytechnique.fr
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R̂sud = P+ + vsudP− + wsudP0, s1.2d

where the projectors satisfy

PiPj = di j Pi, P+ + P− + P0 = IN2. s1.3d

All u dependence is invsud andwsud. The projectors depend only onq.
The elegant canonical formulationsSec. 2, Ref. 1d gives the followingvsud andwsud, where

q = exph.

One has for each casesindependently ofNd

vsud =
sinhsh − ud
sinhsh + ud

s1.4d

and two solutions forwsud,

SOqs2n + 1d, wsud =
coshssn + 1

2dh − ud
coshssn + 1

2dh + ud ,
sinhssn − 1

2dh − ud
sinhssn − 1

2dh + udvsud; s1.5d

SOqs2nd, wsud =
coshsnh− ud
coshsnh+ ud

,
sinhssn − 1dh − ud
sinhssn − 1dh + ud

vsud; s1.6d

Spqs2nd, wsud =
sinhssn + 1dh − ud
sinhssn + 1dh + ud

,
coshsnh− ud
coshsnh+ ud

vsud. s1.7d

In contrast, for our classsSec. 3, Ref. 1d, conservingthe projectors but changing the coeffi-
cients, we have

vsud = 1, wsud =
sinhsh − ud
sinhsh + ud

, s1.8d

where

eh + e−h = sfN − eg + ed =
qN−e − q−N+e

q − q−1 + e s1.9d

ande= ±1 when thePi are those for SOqsNd and SpqsNd, respectively.fAn overall ambiguity of
sign for the right-hand side ofs1.9d has been fixed to assure realh for real q. This will be
maintained throughout, though complexq will be considered later.g

We adopt the following notations for ourR̂sud when s1.8d is implemented:

sad whenPi are those for SOq our R̂sud is of type ôsNd,
sbd whenPi are those for Spq our R̂sud is of type p̂sNd.

This is to signal the provenance of the projectors and also at the same time the fact that the
coefficientss1.8d often lead to startlingly different properties as compared to the standard cases
ffrom s1.4d to s1.7dg.

For s1.8d we obtain

R̂sud = P+ + P− +
sinhsh − ud
sinhsh + ud

P0 = I + Ssinhsh − ud
sinhsh + ud

− 1DP0. s1.10d

For completeness we giveP0 explicitly.4,5 Let then-tuple sr1,r2,… ,rNd be defined as follows for
the respective cases indicated:
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SOqs2n + 1d, sn − 1
2,n − 3

2,…, 1
2,0,− 1

2,…,− n + 1
2d , s1.11d

SOqs2nd, sn − 1,n − 2,…,1,0,0,− 1,…,− n + 1d, s1.12d

Spqs2nd, sn,n − 1,…,1,− 1,…,− nd. s1.13d

Define correspondingly for

SOqsNd, e = 1 si = 1,…,N; N = 2n,2n + 1d, s1.14d

Spqs2nd, e = 1 si ø nd, e = − 1 si . nd si = 1,…,2nd. s1.15d

Set

i8 = N + 1 − i . s1.16d

Then corresponding tos1.11d and s1.12d, in notations most suitable for us,

sfN − 1g + 1dP0 = o
i,j=1

N

qsri8−r jdsi j d ^ si8 j8d ; P08 s1.17d

and corresponding tos1.13d and s1.15d,

sfN + 1g − 1dP0 = o
i,j=1

N

qsri8−r jdeie jsi j d ^ si8 j8d ; P08. s1.18d

Here si j d denotes theN3N matrix with 1 atsrow i, column jd and zero elsewhere.
These standardP0 will be carried overto our ôs2n+1d , ôs2nd , p̂s2nd. We do not indicate the

q dependence explicitlyfby denotingôqs2n+1d, for exampleg since forq=1 our constructions

remain nontrivial. OurR̂ matrices arenot q deformations of a “classical” limit for a particular
value ofq such as 1. This is just one of the remarkable features to be studied below.

For N=3, the 939 projectorP0 is given by

sq + 1 +q−1dP0 ; P08 = *
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 q−1 0 q−1
2 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 q−1
2 0 1 0 q

1
2 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 q
1
2 0 q 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

* . s1.19d

This is the case that will be studied here extensively as the simplest example. For allN a basic
feature is the proportionality of the rows with nonzero elements. This has important consequences.
It remains here to display briefly the “pre-Baxterized” situation. Our canonical forms ensure,
among various aspects studied in Ref. 1,

R̂s− ud = sR̂sudd−1, R̂s0d = IN2. s1.20d

The limits
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u → ± `, R̂sud → R̂±1

satisfy thesnon-Baxterized,u-independentd braid equation

R̂12R̂23R̂12 = R̂23R̂12R̂23, s1.21d

where one can substituteR̂−1 for R̂.
For the standard cases,

sSOqsNdd, R̂±1 = P+ − q72P− + q7NP0, s1.22d

sSpqsNdd, R̂±1 = P+ − q72P− − q7sN+2dP0 s1.23d

satisfy cubic equations. For our cases, withh given by s1.9d, one has for allN the quadratic
equation

sehR̂d − sehR̂d−1 = seh − e−hdI s1.24d

or

sR̂− IdsR̂+ e−2hId = 0. s1.25d

From s1.10d, asu→ ±`,

R̂±1 = I − s1 + e72hdP0 = I − e7hseh + e−hdP0 = I − e7hP08. s1.26d

The last equation follows froms1.9d, s1.17d, ands1.18d. Note that thoughP08 is not a projector

in s1.26d, R̂ is inverted by inverting the coefficient ofP08 due to the relation

P08
2 = seh + e−hdP08.

Other properties ofR̂ will be introduced later as they become directly relevant.

II. WHAT q FOR TRIANGULARITY?

A braid matrix for vector representation is called “triangular” if

R̂2 = I . s2.1d

For the standard casessA,B,C,Ddq this is obtained trivially forq=1. This is well known. But for
comparison with our case let us briefly indicate how this happens for SOqsNd and SpqsNd.

For the projectors ins1.2d and s1.3d denote

sPidq=1 = Pi si = + ,− ,0d s2.2d

and let

P = o
i,j

si j d ^ s ji d, P2 = I . s2.3d

fActing on the leftP permutes specific rows and acting on the right the corresponding columns.
This evident feature is mentioned since it plays a crucial role belows2.40d.g

From s1.22d ands1.23d substituing the known explicit forms4,5 of the projectors forq=1, with
upper and lower signs for the two cases, respectively,

R̂= P+ − P− ± P0 = ± sI − 2P7d = P. s2.4d

Hence
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R̂2 = P2 = I, R= PR̂= I s2.5d

for both cases.
For GLqsNd one obtains the same result even more simply.
For our classq=1 gives a quite nontrivial situation, as emphasized already in Ref. 3. Denoting

for all N=s3,4,…d,

shdq=1 = ĥ

from s1.9d,

eĥ + e−ĥ = N, s1 + e72ĥd =
2N

N ± sN2 − 4d1/ 2
Þ 2, s2.6d

and froms1.26d,

sR̂±1dq=1 = I − s1 + e72ĥdP0, R̂2 Þ 1. s2.7d

The generalized Hecke condition is now

seĥR̂d − seĥR̂d−1 = seĥ − e−ĥdI . s2.8d

This cannot be conjugated to

sR̂− IdsR̂+ Id = 0. s2.9d

For s2.1d we need for our case

h = 0, s2.10d

when

R̂= I − 2P0, R̂2 = I + 4sP0
2 − P0d = I .

Hence froms1.9d for ôsNd and p̂sNd, respectively,

fN 7 1g ± 1 = eh + e−h = 2 s2.11d

or, respectively,

sAd qN−2 + qN−4 + ¯ + q−N+4 + q−N+2 = 1 sN = 3,4,…d, s2.12d

sBd qN + qN−2 + ¯ + q−N+2 + q−N = 3 sN = 4,6,…d. s2.13d

The degrees of the polynomials can be lowered by changing variables as follows for the different
cases. To start withsAd is divided into two subclasses,

sAd1, N = 2n + 2 sn = 1,2,…d.

Set

p = q2, Y = p + p−1 s2.14d

when

q = ± p
1
2 = ±

1
Î2

sY + ÎY2 − 4d1/ 2. s2.15d

From s2.12d,
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Sn ; spn + p−nd + spn−1 + p−n+1d + ¯ + sp2 + p−2d + sp + p−1d = 0. s2.16d

Note that for sAd1 the right-hand side cancels withp0=1. Now to expressSn in terms of Y
implementing

Sn+1 = YSn − Sn−1 + Y − 2 s2.17d

one obtains finally

Sn = Yn + Yn−1 − Sn − 1

1
DYn−2 − Sn − 2

1
DYn−3 + Sn − 2

2
DYn−4

+ Sn − 3

2
DYn−5 + ¯ + s− 1drSSn − r

r
DYn−2r + Sn − r − 1

r
DYn−2r−1D + ¯ + c1Y + c0,

s2.18d

where

c1 = s− 1ds−1s sn = 2s,r = s− 1d, c1 = s− 1dsss+ 1d sn = 2s+ 1,r = sd,

s2.19d
c0 = − 2 sn = 2 + 4m,3 + 4m; m= 0,1,2,…d, c0 = 0 sn Þ 2 + 4m,3 + 4md.

Explicitly,

S1 = Y,

S2 = Y2 + Y − 2 = sY − 1dsY + 2d,

S3 = Y3 + Y2 − 2Y − 2 = sY + 1dsY2 − 2d,

S4 = Y4 + Y3 − 3Y2 − 2Y,

S5 = Y5 + Y4 − 4Y3 − 3Y2 + 3Y, s2.20d

S6 = Y6 + Y5 − 5Y4 − 4Y3 + 6Y2 + 3Y − 2,

S7 = Y7 + Y6 − 6Y5 − 5Y4 + 10Y3 + 6Y2 − 4Y − 2,

S8 = Y8 + Y7 − 7Y6 − 6Y5 + 15Y4 + 10Y3 − 10Y2 − 4Y,

S9 = Y9 + Y8 − 8Y7 − 7Y6 + 21Y5 + 15Y4 − 20Y3 − 10Y2 + 5Y,

and so on.

sAd2: N = 2m+ 1 sm= 1,2,…d.

Set

z= q + q−1, q±1 = 1
2sz± Îz2 − 4d. s2.21d

Retaining only the odd powers ins2.18d and s2.20d and adapting notations one obtains
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Ss2m−1d = sq2m−1 + q−2m+1d + sq2m−3 + q−2m+3d + ¯ + sq + q−1d

= z2m−1 − S2m− 2

1
Dz2m−3 + S2m− 3

2
Dz2m−5 + ¯

+ s− 1drS2m− r − 1

r
Dz2m−2r−1 + ¯ + s− 1dm−1mz. s2.22d

Explicitly fnoting that in contrast withs2.16d there is now 1 on the right-hand side belowg

SN−2 = 1 sN = 3,5,…d, s2.23d

where

S1 = z,

S3 = z3 − 2z,

S5 = z5 − 4z3 + 3z, s2.24d

S7 = z7 − 6z5 + 10z3 − 4z,

S9 = z9 − 8z7 + 21z5 − 20z3 + 5z,

and so on.
Comparings2.12d and s2.13d one sees thatsBd is obtained fromsAd1, with now a nonzero

right-hand side, as

sBd Sn = 2 Sn =
N

2
= 2,3,…D . s2.25d

Without trying to be exhaustive let us first point out some simple possibilities, particularly when
s2.1d is obtained forq a root of unity. sSee the relevant remarks in the concluding section.d

For ôs3d one has froms2.23d,

S1 = q + q−1 = 1, q =
1

2
+ i

Î3

2
= eisp/3d, q6 = 1. s2.26d

For ôs4d one has froms2.16d and s2.20d,

Y = q2 + q−2 = 0, q = eisp/4d, q8 = 1. s2.27d

Moreover, wheneverc0=0 from s2.19d, i.e., for

ôs4d,ôs10d,ôs12d,… , s2.28d

Y can be factorized ands2.27d is a solution.
For ôs6d the two roots of

S2 = sY − 1dsY + 2d = 0

correspond to

q12 = 1, q4 = 1. s2.29d

For ôs8d the roots ofS3 give

q6 = 1, q16 = 1. s2.30d
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For ôs10d and ôs12d fapart froms2.27dg one must solvecubic andquartic equations, respec-
tively. We do not present this standard algebra here. For oddN one has again a cubic inz for ôs5d.

For ôs14d onwards forôs2nd one has polynomials of sixth and higher degreesfalready forY
before obtainingq from s2.15dg. Hence one needshyperelliptic functions forY.

For ôs7d and p̂s10d one has quintics andelliptic solutions, respectively, forz=sq+q−1d and
Y=sq2+q−2d. For higher dimensions one again encounters hyperelliptic functions here.

It is known6,7 that the general case on a complex field

fsxd = a0x
n + a1x

n−1 + ¯ + an = 0 s2.31d

can be solved in terms of theta functions of zero arguments and the period matrix of the hyper-
elliptic curves

F2 = xsx − 1dfsxd, F2 = xsx − 1dsx − 2dfsxd s2.32d

for odd n and evenn, respectively.
For quintics7 one can, alternatively, implement further successive changes of variables

sTschirnhausen transformationsd to obtain standard formssthe Bring–Jerrard quintic or the Brios-
chi quintic leading to the Jacobi sexticd which can be solved directly using elliptic functions. All
this is however very complicated.

The coeffficientsai of s2.31d are very special onessbinomial integersd for our case. What
specialshopefully simplifyingd features might they induce in the corresponding elliptic and hy-
perelliptic functions? An answer to this question is beyond the scope of this paper.

Let us contemplate the simplest case, that ofôs3d with s2.26d giving

R̂= I − *
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 q−1 0 q−1
2 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 q−1
2 0 1 0 q

1
2 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 q
1
2 0 q 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

* , s2.33d

whereq=eisp/3d.
Remarkably this satisfies

R̂12R̂23R̂12 = R̂23R̂12R̂23

along with

R̂2 = I .

A nonexistence theorem:For the standard casesfsees2.3d, s2.4d, ands2.5dg,

sR̂dq=1 = P, R̂2 = P2 = I .

For the nonstandard Jordanian casessee Refs. 8 and 9 citing basic sourcesd considering again
vector representations

R̂= F−1PF, R̂2 = I , s2.34d

whereF is obtained through a “contraction”.8,9 Thus the Yang–Baxter matrix
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R= PR̂= sPF−1PdF = F21
−1F s2.35d

is a “Drinfeld twist” of unity. This leads to various interesting features8,9 making triangularity

inherent without renderingR̂ trivial. Can our constructions abovesfor h=0d be expressed as a
conjugation ofP as in s2.34d? A priori such a possibility cannot be discarded.

However, using our diagonalizersssee Appendix B of Ref. 1 for explicit constructionsd one
can prove quite simply and generally thatno invertible F exists that can realizes2.34d.

It is sufficient to considerôs3d. Higher dimensions can be treated in a strictly parallel fashion.
The essential result for us is that the diagonalizerM gives for s1.26d,

MR̂±1M−1 = s− e72h,1,1,1,1,1,1,1,1dsdiagd. s2.36d

For h=0, whenR̂2= I, one thus obtains

MR̂±1M−1 = s− 1,1,1,1,1,1,1,1,1dsdiagd ; D. s2.37d

Now assume that anF exists for ourR̂ satisfyings2.34d. Then

MF−1PFM−1 = D. s2.38d

Defining

G = FM−1 s2.39d

sinceD2= I,

G = PGD. s2.40d

The action ofP here for the 939 casefsees2.3dg leaves the rows 1, 5, and 9 untouched and
interchanges the pairs of rows

s2,4d,s3,7d,s6,8d.

Now consider the action ofD after parametrizingG in terms of parameters arbitrary to start
with. In rows 1, 5, and 9 the first element is constrained to be zero the others being unrestricted.
If row 2 is parametrized as

sa1,a2,a3,a4,a5,a6,a7,a8,a9d s2.41d

then row 4 must be

s− a1,a2,a3,a4,a5,a6,a7,a8,a9d. s2.42d

Hence with arbitrarya1, r i denoting the rowi,

sr2 − r4d = s2a1,0,0,0,0,0,0,0,0d. s2.43d

Similarly, in evident notations,

sr3 − r5d = s2b1,0,0,0,0,0,0,0,0d, s2.44d

sr6 − r8d = s2c1,0,0,0,0,0,0,0,0d. s2.45d

This evidently implies that the determinant

DG = 0. s2.46d

HenceG is not invertible. Hence neither isF=GM.

This contradicts the assumption that an invertibleF exists givings2.34d for our R̂.
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III. L- ALGEBRA „GROUPLIKE CENTRAL ELEMENTS …

Before writing down theRLL equations and the implied constraints we signal the most re-
markable features to emerge in Secs. III and IV. We will study them mostly in the context of the
simplest caseôs3d, i.e., N=3.

s1d In the L+ subalgebra one obtains 2N central, grouplike elements constrained to equality by
the RLL equations. There are 2N corresponding ones for theL− subalgebra.

s2d In standard cases grouplike elements are usually associated to “quantum determinants.” But
our above-mentioned sets have no determinantlike structure at all. Each one is the sum ofN
quadratic termssno negetive signsd.

s3d In the 333 fundamental representation of theL operators forôs3d these elements are pro-
portional toI3. Consistently with their grouplike property and centrality they are proportional
to I9 for the 939 coproduct representations. The explicit verification of this involves re-
markable cancellations. Iterated coproducts of course lead toI32p at thepth stage.

s4d In the standard cases, we are used to the coproducts being reducible. Thus the 939 coprod-
uctsDLij

± for SOqs3d can be conjugated to block-diagonal forms corresponding to the familiar
irreducible componentss939→535% 333% 131d or in terms of angular momentas1
31→2% 1% 0d. But here one encounters obstructions in a systematic search for block
diagonalizations. This is of course consistent with the central elements announced above
being proportional toI. But since such a search reveals special features of the generators this
aspect of the 939 coproduct mentioned above will be treated explicitly in the next section.

Let us now formulate theRLL constraints. TheFRTequations4 for theL± operators are, in our
notations,

R̂L2
±L1

± = L2
±L1

±R̂, s3.1d

R̂L2
+L1

− = L2
−L1

+R̂ sR̂−1L2
−L1

+ = L2
+L1

−R̂−1d. s3.2d

Here R̂ is a N23N2 matrix satisfying s1.21d and L± have eachN2 componentsLij
±si , j

=1,2,… ,Nd arranged in aN3N matrix form with

L2
± = IN ^ L±, L1

± = L±
^ IN. s3.3d

From s1.26d, with P08 given by s1.17d and s1.18d,

R̂±1 = I + l±P08, l± = − e7h. s3.4d

Here froms1.9d, l± are the roots of

l + l−1 + sfN 7 1g ± 1d = 0 s3.5d

and, in particular, forôs3d of

l + l−1 + sq + 1 +q−1d = 0. s3.6d

This simple change of notationsh→ld will permit below a compact, unified treatment ofL+

andL− due to the symmetry,

sl+,L+,L−d
 sl−,L−,L+d. s3.7d

This is a special feature of our class. We will often suppress below the superscripts and
subscripts ofL andl, respectively, when dealing withs3.1d and writeLij andl.

From s3.1d and s3.4d one has

P08L2
eL1

e = L2
eL1

eP08, se = ± d. s3.8d
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In these equationsl± do not appear explicitly. They do however appear fors3.2d.

A. L+ and L− subalgebras

The grouplike elements belong to these subalgebras since the coproducts are defined sepa-
rately for each. TheRLL constraints lead tos2N2−1d equations for each subalgebra which separate
into three subsets ofNsN−1d , NsN−1d , s2N−1d, respectively. The total number is easily under-
stood as follows.

The diagonalizerM ssee Appendix B, Ref. 1d gives

MP08M
−1 < s1,0,0,…,0dsdiagd. s3.9d

Conjugating the factors on both sides ofs3.8d by M only the row 1 survives on the left and
only the column 1 on the right. These have eachN2 elements and one element in common. Hence
the result.

It is convenient to start by deriving some results in a form valid, more generally, for the whole
algebra as follows. We considerôsNd for definiteness, the modifications forp̂sNd are evident.

Along with s1.17d and s3.3d, for Nù3, we write

L2L18 = o
i,j ,k,l

LklLij8 si j d ^ skld, s3.10d

where

L2L18 = L2
eL1

e8, se,e1d = s+ , + d,s− ,− d,s+ ,− d,s− , + d.

One can show thatswith i8=N− i +1d.

P08L2L18 = o
i,k,l

q−riSlk
s1dsikd ^ si8ld, s3.11d

L28L1P08 = o
i,k,l

q−riSlk
s2dskid ^ sli 8d, s3.12d

where

Slk
s1d = o

j

q−r jLj8lLjk8 , s3.13d

Slk
s2d = o

j

q−r jLlj 8
8 Lkj. s3.14d

We now go back to our subalgebras by settinge=e8, i.e., L8=L.
For l Þk8sl +kÞN+1d one obtains froms3.8d, due to the structure ofP0,

Slk
s1d = o

j

q−r jLj8lLjk = 0. s3.15d

and

Slk
s2d = o

i

q−riLli8Lki = 0. s3.16d

Each setsSs1d ,Ss2dd corresponds toNsN−1d equations and

Ss1d → Ss2d
 Lij → Lji . s3.17d

For
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l + k = N + 1

one obtainssi and j assuming each valueindependentlywith i + i8= j + j8=N+1d

q−riSii8
s1d = q−r jSjj 8

s2d si = 1,…,N; j = 1,…,Nd. s3.18d

The equality of these 2N quadratic expressions gives2N−1d equations. We will denote this set

as Ŝ3. This provides the grouplike central elements. We will study this set in detail forôs3d. For
N=3 one obtains froms3.18d,

q−1
2S13

s1d = S22
s1d = q

1
2S31

s1d = q−1
2S13

s2d = S22
s2d = q

1
2S31

s2d. s3.19d

Or explicitly swith L all L+ or all L− belowd,

sŜ3d, L11L33 + q−1
2L21L23 + q−1L31L13

= q
1
2L12L32 + L22L22 + q−1

2L32L12

= qL13L31 + q
1
2L23L21 + L33L11 = L11L33 + q−1

2L12L32

+ q−1L13L31 = q
1
2L21L23 + L22L22 + q−1

2L23L21

= qL31L13 + q
1
2L32L12 + L33L11. s3.20d

We denote the setss3.15d and s3.16d by Ŝ1 and Ŝ2, respectively. ForN=3 the first set is

Ŝ1,

q−1
2L31L11 + L21L21 + q

1
2L11L31 = 0,

q−1
2L32L11 + L22L21 + q

1
2L12L31 = 0,

q−1
2L31L12 + L21L22 + q

1
2L11L32 = 0, s3.21d

q−1
2L33L12 + L23L22 + q

1
2L13L32 = 0,

q−1
2L32L13 + L22L23 + q

1
2L12L33 = 0,

q−1
2L33L13 + L22L23 + q

1
2L13L33 = 0.

The setŜ2 is obtained immediately fromŜ1 via s3.17d.
We now show how the setssŜ1,Ŝ2,Ŝ3d imply the two basic properties of the members ofŜ3,

that they ares1d central ands2d grouplike.

s1d Exploiting systematically the setsŜi one can pass through different chains of intermediate
steps. One possible sequence is as follows:

q
1
2L11L23L21 = q−1

2L12L32L11 − q−1
2L13L21L21 + q

1
2L12L12L31, s3.22d

qL11L13L31 = q−1L13L31L11 − q−1
2L13L21L21 − q

1
2L12L12L31. s3.23d
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Summing these withL11L33L11 one obtainsfusing agains3.20d in the last stepg

L11sqL13L31 + q
1
2L23L21 + L33L11d = sL11L33 + q−1

2L12L32 + q−1L13L31dL11

= sqL13L31 + q
1
2L23L21 + L33L11dL11. s3.24d

ThusL11, and similarly eachLij can be shown to commute with the members ofŜ3. Hence
the latter are central.

s2d The rule for coproducts4 swith L eitherL+ or L− throughoutd is

DLij = o
k

Lik ^ Lkj. s3.25d

Hence

DLabDLcd = o
i,j

LaiLcj ^ LibLjd. s3.26d

Now let us start with the first member ofŜ3 and compute the sum

S = DL11DL33 + q−1
2DL21DL23 + q−1DL31DL13. s3.27d

Collecting terms and systematically implementingŜ1, Ŝ2 many terms cancel leaving

S = sL11L33 + q−1
2L21L23 + q−1L31L13d ^ sL11L33 + q−1

2L21L23 + q−1L31L13d. s3.28d

Thus this and similarly the other members ofŜ3 are grouplike.

For ôs4d the eight members ofŜ3 satisfy

q−1S14
s1d = S23

s1d = S32
s1d = qS41

s1d = q−1S14
s2d = S23

s2d = S32
s2d = qS41

s2d. s3.29d

Their centrality and grouplike property can be established in strict analogy to theôs3d case.
Moreover they indicate how the generalization for higherN can be carried out. Our presentation
here will be limited toôs3d.

B. Beyond the L± subalgebras

We now consider the “mixed” cases3.2d. The major feature now is the explicit involvement of
l± fsees3.4d and s3.5dg in the constraints,

sI + l+P08dL2
+L1

− = L2
−L1

+sI + l+P08d, s3.30d

sI + l−P08dL2
−L1

+ = L2
+L1

−sI + l−P08d. s3.31d

But even whenP08 does not contribute, namely at

si j d ^ skld, skld Þ si8 j8d,

one obtains simple but probing constraints. Retaining only such rows and columns one obtains a
“reduced” matrix ofNsN−1d3NsN−1d dimensions. ForN=3 this corresponds to the suppression
of rows and columnss3,5,7d leaving a 636 matrix. Using for this reduced case, for allN, the
subscriptr one extracts froms3.30d and s3.31d,

sL2
eL1

e8dsrd = sL2
e8L1

edsrd. s3.32d
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For e=e8 this is trivial, but not now, and one can go further as follows.
Sincel satisfies a quadratic equation one can linearize all polynomials inl using l+ and

l−=sl+d−1. The symmetry ofs3.30d and s3.31d,

sl+ → l−d
 sL+ → L−d s3.33d

indicates the parametrization where thel dependence is explicitlysand onlyd in the coefficient as

Lij
e = Aij + leBij . s3.34d

Now injecting s3.34d in s3.32d one obtains for each element of thereduced matrixsLab
± , Lcd

± ,
and so ond

sl+ − l−dsAabBcd − BabAcdd = 0, sl+ Þ l−d. s3.35d

Thus thel dependence is simply factored out for this reduced martix. Even whenL+ andL−

are considered in the context of the respective subalgebras they must satisfys3.35d. This will
indeed be found to be the case in the explicit realizations of the following section.

We now come to parts where bothI and P08 contribute and hencel is directly involved.

Instead ofŜ3 of s3.20d one now has forôs3d nine relations of the type

l+sqL318 L13 + q
1
2L328 L12 + L338 L11d − sqL13L318 + q

1
2L23L218 + L33L118 d = qsL33L118 − L338 L11d.

s3.36d

Instead ofŜ1, Ŝ2 one now has equations of the type

l+sq−1
2L31L118 + L218 L21 + q

1
2L11L318 d = q

1
2sL318 L11 − L31L118 d = sL218 L21 − L21L218 d

= q−1
2sL118 L31 − L11L318 d. s3.37d

For e=e8 one recovers the results for the subalgebras. We have obtained a systematic formu-
lation of the full set of 81 constraints forôs3d exploiting certain symmetries. This will not be
reproduced here. The generalizations of the results of this section forN.3 can be obtained fairly
systematically.

C. From L± to L„u…

Since ourR̂ satisfies a quadratic equations1.24d all the three FRT equationss3.1d ands3.2d can
be condensed into asingleone by defining in analogy to

R̂sud =
eh+uR̂− e−h−uR̂−1

eh+u − e−h−u , s3.38d

Lsud =
eh+uL+ − e−h−uL−

eh+u − e−h−u . s3.39d

It can be shown that10,11

R̂su − u8dL2sudL1su8d = L2su8dL1sudR̂su − u8d s3.40d

contains effectively all the three FRT equations. One can writes3.38d, i.e., s1.10d as

R̂sud = 1 −
sinhu

sinhsh + ud
P08. s3.41d
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IV. FUNDAMENTAL AND COPRODUCT REPRESENTATIONS

Here we will study theôs3d fundamentals333d and the coproducts939d representations.
They illustrate the significance of the remarkss3d ands4d at the beginning of Sec. III. This will be
commented upon at the end. Specific symmetries of the matrices obtained will be displayed. They
might be helpful in a more systematic study of representations.

The general prescription for the fundamental representationssN3N blocks for all Nd is as
follows ssee Appendix B of Ref. 11 for a systematic presentation citing basic sourcesd:

Lsud = R̂sudP, sLsuddq→±` = L± = R̂±1P. s4.1d

A Hopf algebra can be defined4,10 for L using

sL±d−1 = PL7P = sL7d21. s4.2d

From s3.4d, s3.6d, ands4.1d one obtainssfor the fundamental representationsd

L = *L11 L12 L13

L21 L22 L23

L31 L32 L33
* ,

L11 = *1 0 0

0 0 0

0 0 l
*, L12 = *0 0 0

1 0 0

0 q−1
2l 0*, L13 = * 0 0 0

0 0 0

s1 + q−1ld 0 0
* ,

s4.3d

L21 = *0 1 0

0 0 q
1
2l

0 0 0
*, L22 = *0 0 0

0 s1 + ld 0

0 0 0
*, L23 = * 0 0 0

q−1
2l 0 0

0 1 0
* ,

L31 = *0 0 s1 + qld
0 0 0

0 0 0
*, L32 = *0 q

1
2l 0

0 0 1

0 0 0
*, L33 = *l 0 0

0 0 0

0 0 1
* .

One setsl=sl+,l−,lsudd for L=sL+,L−,Lsudd, respectively. One obtainslsud directly from
s3.39d.

Note thats3.34d is evidently satisfied with

L11
± = *1 0 0

0 0 0

0 0 0
* + l±*0 0 0

0 0 0

0 0 1
* ; A11 + l±B11,

and so on.
Now we consider the 939 coproducts ofs4.3d given by

DLij
± = o

k

Lik
±

^ Lkj
± .

We will not present the easily obtained 939 matrices but the symmetries they exhibit for the
reason mentioned before. Define the followingsr1,r2d: reflections about the diagonal and the
antidiagonal, respectively,

f:sq → q−1dsr2r1d, fsAd ; fA.
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Then in terms of 333 blocksAij ,… ,E3 snot exhibited hered one obtains withsi j =11, 12, 13d
and si8 j8=33, 32, 31d, respectivelysand noting thatl is invariant forq→q−1d

DLij = *Aij 0 0

Bij 0 0

Cij q−1
2lBij

lAij
*, fDLij = DLi8 j8 = *lfAij q

1
2lfBij

fCij

0 0 fBij

0 0 fAij
* , s4.4d

DL21 = * 0 D1 0

q−1
2lD2

D3 q
1
2lD1

0 D2 0
*, fDL21 = DL23 = * 0 fD2 0

q−1
2lfD1

fD3 q
1
2lfD2

0 fD1 0
* , s4.5d

DL22 = fDL22 = * 0 E1 0

q−1
2lfE1

E3 q
1
2lE1

0 fE1 0
* . s4.6d

Having displayed the symmetries we now study in more detail the three generatorsDLii . For
the standard cases theLii can be obtained directly in diagonal forms for irreducible
representations4 and through appropriate conjugations for reducible ones. For our 333 represen-
tation also they are diagonal with their sum proportional toI. But for the 939 coproducts above
they are not diagonal. They do not commute mutually and hence cannot be diagonalized simulta-
neously. To better understand the structure encountered let us try to diagonalize the sumsoiDLiid.
Define

m = sq
1
2 − q−1

2d, z= sq
1
2 + q−1

2d, k = sq + 4 +q−1d−1
2 . s4.7d

Set

Î2N =*
0 1 0 1 0 0 0 0 0

0 1 0 − 1 0 0 0 0 0

0 0 0 0 0 1 0 − 1 0

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 − 1 0 0

0 0 zk 0 2k 0 zk 0 0

0 0 Î2k 0 − Î2zk 0 Î2k 0 0

Î2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Î2

* . s4.8d

This is orthogonal, i.e.,

N−1 = NT.

One obtains

NsDL11 + DL22 + DL33dN−1 = ls− y,y,y,− y,3,3,−y,− y,− ydsdiagd, y = sq + 1 +q−1d.

s4.9d

The eigenvalues can be permuted through evident supplementary conjugations.
We have thus diagonalized the sum. Now let us look at the component terms. One has

fdenoting bysbdd a block diagonal structureg
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NsDLiidN−1 = sai,bi,gi,didsbdd si = 1,2,3d, s4.10d

where

a1 =
1

2
U 1 1

− 1 − 1
U, a3 =

l2

2
U1 − 1

1 − 1
U, a2 =

1

2
U l2 + 1 l2 − 1

− l2 + 1 −l2 − 1
U , s4.11d

b1 =
l2

2
U− 1 − 1

1 1
U, b3 =

1

2
U− 1 1

− 1 1
U, b2 =

1

2
U− l2 − 1 l2 − 1

− l2 + 1 l2 + 1
U , s4.12d

d1 = U1 0

0 l2U, d3 = Ul2 0

0 1
U, d2 = U0 0

0 0
U , s4.13d

g1 =
l

2* 3 mk Î2s2 + q−1dk
mk 3z2k2 Î2s2 + q−1dmk2

− Î2s2 + qdk − Î2s2 + qdmk2 − 2sz2 − 1dk2 * , s4.14d

g3 =
l

2* 3 mk − Î2s2 + qdk
mk 3s1 − 2k2d − Î2s2 + qdmk2

Î2s2 + q−1dk Î2s2 + q−1dmk2 − 2s1 − 3k2d
* , s4.15d

g2 =
l

2* 0 − 2mk Î2mzk

− 2mk 12k2 Î2m2zk2

Î2mzk Î2m2zk2 − 2sz2 − 1dz2k2* . s4.16d

Note that

a1
2 = a3

2 = b1
2 = b3

2 = U0 0

0 0
U . s4.17d

Such nilpotent matrices arenondiagonalizable.
It has been explicitly verified that not onlyNsDLijdN−1si Þ jd are not correspondingly block

diagonalized butall their nonzero elements lie systematically outside the blocks arising for
NsDLiidN−1. One can examine larger blocks, say,s6^ 6% 3^ 3d after permuting thegi and di

blocks. But one finds that the whole 939 space is needed forNsDLijdN−1. These results will not
be displayed here though particularly forq=1 they aquire relatively simple forms. One can
implement further conjugations and permutations but the essential features persist.

For the 333 representations all the members ofŜ3 in s3.20d say, for example,

L11L33 + q−1
2L21L23 + q−1L31L13 = lI3. s4.18d

Also

L11 + L22 + L33 = s1 + ldI3. s4.19d

The members ofŜ3 being grouplikes4.18d gives for the 939 coproductsl2I9. This has been
verified explicitly. ButsoiDLiid behaves quite differently as shown above.

The obstructions encountered in reduction of the 939 coproducts to smaller dimensional
irreducible componentsfvia block diagonalization in a fashion analogous, say, to the case of

SOqs3dg is consistent with the centralŜ3 operators being proportional toI. But our study ofDLii
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reveals specific properties of these generators for higher dimensional representationsssuch as
symmetries and nondiagonalizable blocksd. This can be helpful in a more systematic study of
representations. The symmetries displayed ins4.4d, s4.5d, and s4.6d stem from those ofP0 and
hence should be significant more generally.

V. LINK INVARIANTS „TURAEV CONSTRUCTION…

A. Construction of “enhanced” operators

Given a matrix satisfying the braid equation the Turaev construction12 of an enhanced Yang–
Baxter operatorsEY Bd leads to explicit construction of invariantssinvariant under Markov moves
of first and second typesd for oriented links. Such an enhanced system12,13 consists of aN23N2

braid matrixR̂, anN3N matrix f and elementssa,bd, all invertible, satisfying the relations

R̂±1f ^ f = f ^ fR̂±1, s5.1d

tr2sR̂±1f ^ fd = a±1bf, s5.2d

where one defines

tr2So
i jkl

cij ,klsi j d ^ skldD = o
i j
So

k

cij ,kkDsi j d. s5.3d

Let us first obtainsf ,a,bd for our class ofR̂. Our spectral resolution and the properties of the
projectorP0 fand hence ofP08 defined ins1.17d and s1.18dg render the constructions particularly
transparent.

Define thediagonal N3N matricesf for the cases

s1d ôsNd, N = 2n + 1, n = 1,2,… ,

s2d ôsNd, N = 2n, n = 2,3,… ,

s3d p̂sNd, N = 2n, n = 2,3,… ,

respectively, as follows:

s1d f = sq−s2n−1d,q−s2n−3d,…,q−1,1,q,…,qs2n−3d,qs2n−1ddsdiagd, s5.4d

s2d f = sq−s2n−2d,q−s2n−4d,…,q−2,1,1,q2,…,qs2n−4d,qs2n−2ddsdiagd, s5.5d

s3d f = sq−2n,q−s2n−2d,…,q−2,q2,…,qs2n−2d,q2ndsdiagd. s5.6d

Note the following facts:

s1d The N diagonal elements off, in each case, are the nonzero diagonal elements of the
correspondingP08 frelated to the projector asP0=strP08d

−1P08g, the remainingNsN−1d diag-
onal elements ofP08 being zero. Hencefwith upper and lower signs forôsNd and p̂sNd,
respectivelyg,

T ; trf = trP08 = fN 7 1g ± 1 = − sl+ + l−d = e−h + eh, s5.7d

wheree±h are the roots of

e2h − Teh + 1 = 0. s5.8d

s2d The N23N2 matrix f ^ f, in each case, has 1 on rowsand columns,
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sN,2N − 1,3N − 2,…,sN2 − N + 1dd.

These are precisely ones on whichP08 has nonzero elements. Hence directlyswithout further
computationsd we obtain

P08f ^ f = f ^ fP08. s5.9d

s3d Using s1.17d, s1.18d, ands5.3d one obtains

tr2sP08f ^ fd = f . s5.10d

Now from s5.9d and s5.10d it follows immediately,

R̂±1f ^ f = sI − e7hP08df ^ f = f ^ fsI − e7hP08d = f ^ fR̂±1 s5.11d

and

tr2sR̂±1f ^ fd = tr2ssI − e7hP08df ^ fd = sT − e7hdf = e±hf . s5.12d

Hence

tr2sR̂±1f ^ fd = a±1bf sa = eh, b = 1d. s5.13d

Thus we have obtained for ourR̂, in terms of f introduced above, the enhanced operator

sR̂, f,eh,1d.

Our f is strictly analogous to those of Turaev for SOqs2n+1d , SOqs2nd , Spqs2nd, respectively.
But whereas for the standard casesa sa in the notation of Ref. 12d is also a simple power ofq, for
us it involves the square root of a Laurent polynomial inq. One obtains withd=s1,2,0d for
ôs2n+1d , ôs2nd , p̂s2nd, respectively,

T = sq−2n+d + q−2n−2+d + ¯ + q2n+2−d + q2n−d + dd s5.14d

and

a±1 = e±h = 1
2sT ± ÎT2 − 4d. s5.15d

This is the crucial aspect for our class ofR̂. For the simplest caseôs3d one obtains

a±1 = 1
2sq + 1 +q−1d ± 1

2ssq + 3 +q−1dsq − 1 +q−1dd
1
2 s5.16d

giving for q=1,

a±1 = 3
2 ± 1

2
Î5. s5.17d

In general, forq=1, as for the standard casef reduces to theN3N unit matrix but as

emphasized before ourR̂ remains nontrivial and

a±1 = 1
2N ± 1

2
ÎN2 − 4 sN = 3,4,…d. s5.18d

The discussion of Sec. II shows that for solutions ofs2.10d,
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h = 0, a = 1, s5.19d

implying a complex root of unityq for N=3 but finally elliptic and hyperelliptic ones asN

increases.sOvercrossings and undercrossings degenerate forR̂=R̂−1.d
fComparison of notations:The present author is often confused by different significances of

the same symbolsand vice versad encountered elsewhere. The following points might be helpful in
our context.

Turaev’sR sRef. 12d satisfying the braid equationshis Eq. 1d,

R1R2R1 = R2R1R2,

is our R̂. Our R is PR̂, where

Psi j d ^ skld = skjd ^ sil d, si j d ^ skldP = sil d ^ skjd, Psi j d ^ skldP = skld ^ si j d,

andR satisfies the Yang–Baxter equation,

R12R13R23 = R23R13R12.

It must also be clearly noted that ifs sor td is defined as

ssi j d ^ skld = skld ^ si j d = Psi j d ^ skldP,

then

sR= PRP= R21 = R̂P

does not satisfy the braid equation abovessatisfied byR̂d. Moreover, since

Psf ^ fdP = f ^ f, P2 = I ,

the conditions5.1d implies alsosfor the YB matrixRd

R±1f ^ f = f ^ fR±1.

This form is presented in Sec. 15.2.2 of Ref. 13. ButR̂ cannot be replaced byR in s5.2d. The
symbol I denotessR in Sec. 15.2.2 of Ref. 13 and −sR at the end of Sec. 15.2.5.g

B. Link invariants and skein relation

We follow the presentation of Ref. 12 and Sec. 15 of Ref. 13 with some changes of notations.

Let rsbd be the representation of the braidb associated toR̂ and letasbd be the “augmentation
homomorphism” changing by ±1 corresponding to the actions ofT±1, the generators of the braid
group.

Define for our caseswith b=1d.

Psbd = a−asbdtrsrmsbd · f ^md, s5.20d

rm being the endomorphism ofV^m associated toR̂.
Using appropriately the propertiess5.1d ands5.2d of f such aPsbd can be shown to be Markov

invariant and provide an invariant of oriented links. Markov moves are defined, for example, in
Sec. 15.1 of Ref. 13 and the proof of invariance ofPsbd is given in Sec. 15.2 following Ref. 12.

For an “unknot”sno crossingd one has

Ps+d = tr f = T. s5.21d

Using standard notationssL̄+,L̄−,L̄0d corresponding to one point of the projection of a braid
differing by an overcrossing, undercrossing, and no crossing, respectively, one obtains in our case
ffollowing the steps below Eq.s6d, Sec. 15.2 of Ref. 13g
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xPsL̄+d + yPsL̄−d + zPsL̄0d = a−asbdtrssxR̂−1 + yR̂+ zId ^ id^2
^ id^sm−2d · rmsbd · f ^md.

s5.22d

Now for our case,

ehR̂− e−hR̂−1 = seh − e−hdI . s5.23d

Hence setting

x = − e−h, y = eh, z= − seh − e−hd s5.24d

one obtains the skein relation

e−hPsL̄+d − ehPsL̄−d = se−h − ehdPsL̄0d. s5.25d

One can now exploit this relation along withs5.21d in well-known fashions to construct
invariant polynomials.sSee also Ref. 14 where a large number of sources are cited.d We will not
present a full study of this aspect. Our aim has been to indicate the roles played by our coefficients

e±h san ingredient of ourR̂d in this context. This has been achieved in our brief treatment.

VI. FROM R̂ TO NONCOMMUTATIVE SPACES

A. Coordinates, differentials, and mobile frames

We implement well-known prescriptions15–17 in the context of our class ofR̂. For theN2

3N2 matrix R̂ satisfying

sR̂− IdsR̂+ e−2hId = 0, s6.1d

where forôsNd , p̂sNd, respectively,

eh + e−h = fN 7 1g ± 1,

let the coordinatessx1,x2,… ,xNd and the differentialssj1,j2,… ,jNd be ordered inN columnsx
andj, respectively.

The prescriptions for the associated covariant differential geometries satisfying the Leibnitz
rule15–17 are

s1d sR̂− Idx ^ x = 0, x ^ j = e2hR̂j ^ x, sR̂+ e−2hIdj ^ j = 0, s6.2d

s2d sR̂+ e−2hIdx ^ x = 0, x ^ j = − R̂j ^ x, sR̂− Idj ^ j = 0. s6.3d

We concentrate below ons6.2d. The sets6.3d can be treated analogously, essentially inter-
changing the roles ofx andj fexcept for thesx,jd commutatorsg.

From our previous definitions,

R̂= I − e7hP08.

Hence froms6.2d,

P08x ^ x = 0. s6.4d

The set of constraintss6.4d reduces to asingleone due to the proportionality of the nonzero
rows of P08. This one is easy to write down for allN from s1.17d and s1.18d. One obtains for

ôs3d, q−1
2x1x3 + x2x2 + q

1
2x3x1 = 0, s6.5d
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ôs4d, q−1x1x4 + x2x3 + x3x2 + qx4x1 = 0, s6.6d

p̂s4d, q−2x1x4 + q−1x2x3 − qx3x2 − q2x4x1 = 0, s6.7d

and so on. Consider now the constraints involvingj with the ôs3d case as example.
Define

P = sq−1
2j1x3 + j2x2 + q

1
2j3x1d, s6.8d

P8 = sq−1
2j1j3 + j2j2 + q

1
2j3j1d. s6.9d

Now from s6.2d for N=3 with

eh + e−h = sq + 1 +q−1d,

one has

xij j = e2hjixj si + j Þ 4d, s6.10d

x1j3 = e2hj1x3 − ehq−1
2P, x2j2 = e2hj2x2 − ehP, x3j1 = e2hj3x1 − ehq

1
2P, s6.11d

jij j = 0 si + j Þ 4d, s6.12d

q−1
2j1j3 = y−1q−1P8, j2j2 = y−1P8, q

1
2j3j1 = y−1qP8, y = sq + 1 +q−1d. s6.13d

Note the consistency of the sum of the equationss6.13d. For N.3,

jij j = 0 fi + j Þ sN + 1dg. s6.14d

The coefficients ofsP ,P8d are now obtained froms1.17d ands1.18d, they are proportional to
the nonzero elements in a row ofP08. Also h will now be as belows6.1d.

We now briefly consider the construction of mobile frames17,18 sor “stehbeins” in the termi-
nology of the authors citedd. Let

u = o
i

uiji , s6.15d

such that

fu,xig = 0. s6.16d

From s6.2d and s6.16d, remembering that in our conventions

R̂= R̂ij ,klsi j d ^ skld

and indicating all summations explicitlysand using theL± of Secs. III and IVd,

So
k

ukjkDxi = e−2h o
k,a,b

ukR̂ka,ib
−1 xajb = e−2h o

k,a,b
uksR̂−1Pdkb,iaxajb

= e−2h o
k,a,b

sukLkb,ia
− xadjb = xiSo

b

ubjbD . s6.17d

Hence
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xiu j = e−2ho
k,l

ukLkj,il
− xl . s6.18d

Thus one obtains the commutators ofsxi ,u jd. For N=3, setting

u1x1 + u2x2 + u3x1 = t, s6.19d

xiui = e−2ht − e−hui8xi8 si = 1,2,3d,

x1u2 = − e−hq
1
2u3x2, x1u3 = − e−hu3x1,

x2u1 = − e−hq
1
2u2x3, x2u3 = − e−hq−1

2u2x1,

x3u1 = − e−hu1x3, x3u2 = − e−hq−1
2u1x2. s6.20d

Generalizations forN.3 are obtained analogously.
In Ref. 17 different solutions ofu fthree solutions for Soqs3dg are presented. They involve a

dilatation operator and inverses of coordinates, a radiusr being defined. We consider no exten-
sions of our algebras or such solutions foru in the present work.

B. Towers of noncommutative „x1,… ,xN… on a commutative „N−1…-base space

In Eq. s1.3d of Ref. 4 it is pointed out that the mapping, implementing the transfer matrixt,

dsxid = o
k

tik ^ xk ; stxdi s6.21d

provides an iterative sequence of solutions. Since

R̂st ^ IdsI ^ td = st ^ IdsI ^ tdR̂ s6.22d

for any polynomial offsR̂d, if

fsR̂dsx ^ xd = 0,

st ^ IdsI ^ tdfsR̂dsx ^ xd = fsR̂dst ^ IdsI ^ tdsx ^ xd, = fsR̂dstxd ^ stxd = 0. s6.23d

This is the mappings6.21d. It can evidently be iterated as

dsstnxd ^ stnxdd = stn+1xd ^ stn+1xd. s6.24d

We denote this as

xsnd → xsn+1d.

We note here a remarkable possibility, starting again withôs3d as an example.
Choose as the starting point acommutativesolution of s6.5d as follows. With parameters

sa,bdù0 the following surface satisfiess6.5d:

x1
s0d = a, x3

s0d = − b, x2
s0d = ± ssq

1
2 + q−1

2dabd
1
2 ,

s6.25d

x1
s0d = − a, x3

s0d = b, x2
s0d = ± ssq

1
2 + q−1

2dabd
1
2 .
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As sa,bd varies through real, non-negative values one obtains a double cone whose projec-
tions on thes1,3d plane covers the second and the fourth quadrants. The vertices meet at the origin.
The projections of the contoursx2=const on thes1,3d plane are parabolas. The origin is invariant
underd.

Now we implementd as in s6.21d to obtain

xi
s1d = stxs0ddi . s6.26d

Consider for simplicity the 333 fundamentalt-matrices. These are given byfcompares4.1d
and see the reference cited above itg

t = t+ = PR̂= R= PsR̂PdP = L21
+ s6.27d

and

t = t− = PR̂−1 = PsR−1Pd = sR̂−1d21 = L21
− . s6.28d

We treat belowt± together by setting correspondinglysfor N=3d

l = l± = l±1, sl + l−1 + y = 0d. s6.29d

For the fundamental representations oft our map gives

x1
s1d = * x1

s0d 0 0

x2
s0d 0 0

s1 + qldx3
s0d

q
1
2lx2

s0d lx1
s0d * , s6.30d

x2
s1d = * 0 x1

s0d 0

q
1
2lx3

s0d s1 + ldx2
s0d

q−1
2lx1

s0d

0 x3
s0d 0

* , s6.31d

x3
s1d = *lx3

s0d
q−1

2lx2
s0d s1 + q−1ldx1

s0d

0 0 x2
s0d

0 0 x3
s0d * . s6.32d

The symmetries signalled aboves4.4d reappear. Iteration now may proceed as

sxi
s0d,xi

s1dd → sxi
snd,xi

sn+1dd.

At each stage, givenonly s6.5d for xi
snd fands6.29d for lg, xi

sn+1d also satisfiess6.5d and hence

sR̂− Idxsn+1d
^ xsn+1d = 0. s6.33d

This has been verified explicitly. Moreover at each stage one can implement any chosen
representation oft ssay, the 939 rather than the 333d. Thus one may obtain varied sequences in
the iterations. The illustration above is sufficient for our purpose. Let us compare this construction
with a parallel possibility for SOqs3d. We refer to the results of Example 4.1.22 of Ref. 17. But for
easier comparison with our results above we change the basis from the circular components to our
type as

sx−,y,x+d → sx1,x2,x3d.

Now s4.1.61d of Ref. 17 is
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x1x2 = qx2x1, x3x2 = q−1x2x3, sx3x1 − x1x3d = sq
1
2 − q−1

2dx2
2. s6.34d

There are now three constraints as compared to a single one fors6.5d. But one can choose the
commutatives1, 3d planesas compared to the double cone befored as the starting point by setting

x2
s0d = 0, x1

s0dx3
s0d = x3

s0dx1
s0d. s6.35d

This satisfies all three constraintss6.34d. Using the 333 t-matrix blocks for SOqs3d fand
settingk=sq−q−1dg one obtains

x1
sn+1d = *qx1

snd 0 0

0 x1
snd 0

0 0 q−1x1
snd * , s6.36d

x2
sn+1d = *x2

snd kx1
n 0

0 x2
snd

q−1
2kx1

n

0 0 x2
snd * , s6.37d

x3
sn+1d = *q−1x3

snd
q−1

2kx2
n ks1 − q−1dx1

n

0 x3
snd kx2

n

0 0 qx3
snd * . s6.38d

Starting the iteration froms6.35d at each stepxi
n satisfiess6.34d. As before one can use more

general realizations of thet-matrix at any step. One may note that for this case

sq = 1d → xi
sn+1d = I3 ^ xi

snd.

This is consistent withR̂= I for q=1 in the standard cases. But, as emphasized before, there is
no such triviality for our class for any value ofq sincluding 1d. Note also that for our class the
matricesxi

s1d and the iterated ones are noninvertible. This is a general feature for our class.
In the examples above onestartswith a classical surface and iterating as above makes it more

and more “fuzzy” in this specific sense. This should be compared with the “fuzzy sphere” of Ref.
17 sSec. 7.2d where one starts fuzzy and a smooth surface is approached as a limit. One moves in
opposite senses in the two formalisms.

So far we have studied the coordinate spacesxid only. It must be noted carefully that one
cannot obtain a consistent nontrivial setji

s0d corresponding toxi
s0d. This is evident froms6.10d to

s6.13d where q is not restricted. So the whole covariant prescription can be introduced at a
noncommutative stage only. This however does not alter the fact that one can build sequences of
noncommutativesxid starting from a smooth surface.

For N.3, with s6.6d and s6.7d as simplest examples, one has evidently more flexibility in
choosingji

s0d. Without going into details we indicate below forôs4d the stucturessvalid more
generallyd induced by our type of iterations,

ôs4d, l + l−1 + sq2 + 2 +q−2d = 0,

x1
sn+1d = *

x1
snd 0 0 0

x2
snd 0 0 0

x3
snd 0 0 0

s1 + ldx4
snd q−1lx3

snd q−1lx2
snd q−2lx1

snd
* , s6.39d
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x2
sn+1d = *

0 x1
snd 0 0

0 x2
snd 0 0

qlx4
snd s1 + ldx3

snd lx2
snd q−1lx1

snd

0 x4
snd 0 0

* , s6.40d

x3
sn+1d = *

0 0 x1
snd 0

qlx4
snd lx3

snd s1 + ldx2
snd q−1lx1

snd

0 0 x3
snd 0

0 0 x4
snd 0

* , s6.41d

x4
sn+1d = *

q2lx4
snd qlx3

snd qlx2
snd s1 + ldx1

snd

0 0 0 x2
snd

0 0 0 x3
snd

0 0 0 x4
snd

* . s6.42d

The analogous structures forp̂s4d have also been obtained. The structures of the matrices are
quite similar to those forôs4d. Theq dependence of the coefficients show typical differences along
with sign changes. They will not be reproduced here. In each case, for allN, there is in each matrix
one row and one column with nonzero elements. How they shift withi of xi

snd should already be
fairly apparent from the two preceding examples.

VII. REMARKS

We have started to explore the contents of a class of braid matrices presented previously.
Unsurprisingly our study remains incomplete in all directions. We briefly indicate below perspec-
tives of further developments.

For the standard casessq-deformed unitary and orthogonal algebrasd we have studied exten-
sively elsewhere representations forq a root of unity.19,20 sThese two references cite many other
sources.d We introduced “the method of fractional parts” for this purpose. Here we have noted

sSec. IId how certain roots of unity give triangularitysR̂2= Id for different dimensions. A study of
our L-algebras for such cases along similar lines can be of interest.

Our other solutions for triangularity involve elliptic aand hyperellipticq with integersbino-
miald coefficients in the defining equations. The roles of such functions deserve further explora-
tions. Higher genus curves have appeared before21,22 in the construction of statistical models as
solutions of star–trianglesor Yang–Baxterd relations. There such curves are necessary ingredients
of the solutions. In our case the situation is quite different. Our class of braid matrices have been
obtained forany q. One can even setq=1 and still have interesting solutions. Our special values
of q appear only when the additional constraint of triangularity is imposed and depend on the
dimensionN.

We have obtained some important general features of ourL-algebrasfsee, for example, the
equations froms3.11d to s3.18dg. But the explicit study of realizations is limited to 333 and 9
39 ones forôs3d. This has already shown the crucial role of the central, grouplike elements we
have constructed, thus achieving a principal goal. But a more general study of theL-algebras is
desirable. Quadratic23 and higher degree24 homogenous algebras have been studied from a func-
tional point of view yielding, for example, the Poincare series.sMore sources are cited in Ref. 24.d
The Poincare series for our algebra would show whether, and if so what, irreducible representa-
tions interpolate theN2p

3N2p
dimensional coproduct representationsscorresponding, as pointed

out in Sec. IV, to the centralŜ3 elements proportional toIN2pd obtained by iterating the coproduct
prescription. We are unable to answer this question definitively at present, although attempts to

063509-26 A. Chakrabarti J. Math. Phys. 46, 063509 ~2005!

                                                                                                                                    



realize intermediate dimensional onessbetween 333 and 939d exploiting the symmetries
pointed out in Sec. IV seem to encounter obstructions. Our detailed study of the 939 case gives
an idea of the features to be expected more generally.

The Turaev construction for link invariants turns out to be elegantly adaptable to our case.
Systematic construction of invariant polynomials and possibility of generalizations to invariants of
three-manifolds will be studied elsewhere.

Noncommutative geometries associated with ourR̂ have been presented indicating possible
constructions of “noncommutative towers” on classical base spaces of dimensions,N. Here again
a deeper study of the differential geometries remains to be done. Possible roles of our special
values ofq corresponding to triangularity should be interesting to explore in this context.

It follows from s1.10d or s3.41d along with s1.17d that for ôsNd, real positiveq and

− h , u , 0,

the elements ofR̂sud are all non-negetiveseither zero or real positived. Hence such anR̂sud along

with the corresponding transfer matrixtsud fobtainable fromR̂sudg can furnish the basis of a

multistate statistical model. The elements ofR̂sud provide the Boltzmann weights. This class of
model will be studied in a following paper.

The prescriptions2.11d corresponds to realh. But the valueip of h with −2 in s2.11d is also
a solution with evident corresponding shifts for the right hand sides of two following equations.
We will not discuss these cases separately here.

Our P0 can easily be shown to lead to a Temperley-Lieb algebra. Constructions from this point
of view citing numerous sources can be found in Ref. 25. Since in our caseP0 is already given
sand well-knownd we solve for the coefficienth in terms of theq appearing inP0. Solving for the
elements ofP0 in terms of the parameter of the coefficientsas is done in the approach of Ref. 25
and in the sources cited hered would have been impossibly complicated. Our excercise in Sec. II,
for particularly simple casesh=0d gives an idea.
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We derive an expression for the commutator of functions of operators with constant
commutations relations in terms of the partial derivatives of these functions. This
result extends the well-known commutation relation between one operator and a
function of another operator. We discuss the range of applicability of the formula
with examples in quantum mechanics. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1924703g

I. INTRODUCTION

A characteristic feature of quantum theory is the appearance of noncommuting operators. It is
perhaps most conspicuous in one-dimensional quantum mechanics where the position and mo-
mentum operators obey the canonical commutation relation

fx,pg ; xp− px= i". s1d

In the coordinate representation of wave mechanics where the position operatorx is realized
by x multiplication and the momentum operatorp by " / i times the derivation with respect tox,
one can easily check that the canonical commutation relation Eq.s1d is identically satisfied by
applying the commutation operator on a test wave functioncsxd,

fx,pgcsxd = x
"

i

dcsxd
dx

−
"

i

d

dx
sxcsxdd =

"

i
xc8sxd −

"

i
csxd −

"

i
xc8sxd = i"csxd. s2d

For quantum mechanics in three-dimensional space the commutation relations are generalized
to

fxi,pjg = i"di,j s3d

and augmented with new commutation relations

fxi,xjg = fpi,pjg = 0, s4d

expressing the independence of the coordinates and of the momenta in the different dimensions.
When independent quantum mechanical systems are combined to form larger systems such as

multiparticle systems, the commutation rules for the operators within the individual systems are
preserved and augmented with vanishing commutation relations for operators acting on the dif-
ferent systems. Tensor products of the quantum mechanical spaces and of the operators that
operate on them accommodate this extension naturally.

In the Heisenberg picture of quantum mechanics where the operators carry the time depen-
dence of the system under consideration, the evolution of an individual operatorA is determined
by its commutator with the Hamiltonian operatorH, the generator of the time evolution:
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bdElectronic mail: vanhuele@byu.edu
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dA

dt
=

1

i"
fA,Hg = 0. s5d

Depending on the specific expression of the operatorsA andH in terms of the position and
momentum operators, the evaluation of the commutators in a set of equations like Eq.s5d can
become quite involved with implications on the integrability of the resulting differential equations.

The importance of evaluating commutators in quantum mechanics and the corresponding
problem in quantum field theory is illustrated by the vast literature on the subject. Many sources
and textbooks in quantum mechanics, starting with Dirac’s seminal textfDirac s1958dg, state the
canonical commutation relations either by postulating them, or by deriving them from their clas-
sical analogs, the canonical Poisson brackets, and then go on to show that they imply the following
commutation between the position operatorx and any reasonable function of the momentum
operatorfspd:

fx, fspdg = i"f8spd s6d

and its symplectic twin

fp, fsxdg = − i"f8sxd, s7d

where thes 8d symbol denotes differentiation with respect to the variable. The derivation of Eqs.
s6d and s7d is a typical and almost obligatory exercise in a modern text on quantum mechanics.
The standard way of proceeding is to consider the commutator ofx with increasing powers ofp,
to use induction, and to develop a Taylor expansion of the functionf.

It may come as a surprise therefore that a further generalization of Eqs.s6d and s7d is never
given. In fact we were not able to find an expression for the commutator of a function ofx with
a function ofp in the literature. The present paper provides such an expressionfEq. s18d below
when applied tox1=x andx2=pg and goes a few steps further by giving the general commutator
for functions of an arbitrary number of operators, with the restriction that all these operators have
known commutation relations amongst themselves and that their commutators do not involve
further operatorssq-numbersd but only constantssc-numbersd. To be specific, our formula does
apply to functions of standard position and momentum operators in multiple dimensions and for
multiple particles, as well as for functions of multiple raising and loweringscreation and annihi-
lationd ladder operators, but it does not generally apply, for example, to functions of angular
momentum operators. When dealing with angular momentum operators, one would need to reex-
press them as functions of position and momentum, and then apply the formula to those operators
directly. It does apply to functions of noncommuting position and momentum operators as con-
sidered in noncommutative space–time extensions of quantum theoryfSnyder s1947d, Jackiw
s2001dg but only to the extent that the noncommutative operators obey constant, i.e., c-number,
commutation relations.

In this paper, our approach to the problem is constructive. We state our general result first,
consider simple cases, make use of the induction process, and proceed by generalization. Unless
otherwise noted, we assume that the functions of the operators are well behaved in the sense that
they can be expanded in Taylor series. In Sec. V we comment on the applicability of the formulas
and give specific examples. In the Appendix we discuss correlations in the values of some sum-
mation indices that appear in our formulas and on the notation we developed to accommodate
them.

II. ASSUMPTIONS

We begin by stating the definition of the commutator and list two properties that follow
directly from this definition. The definition of the commutator, Eq.s8d, linearity, Eq. s9d, and
Leibnitz’s rule, Eq.s10d, will all be used explicitly in our derivations

fA,Bg = AB− BA, s8d
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fA,aB + Cg = afA,Bg + fA,Cg, s9d

fAB,Cg = AfB,Cg + fA,CgB. s10d

In addition to the above-noted relations, we will use a third, well-known commutator relation
between an operator and a function of another operator. Given two operatorsx1 and x2 with a
constant commutation relationc, such thatfx1,x2g=c, it can be shown that

fx1, fsx2dg = cf8sx2d, s11d

where fsx2d is an analytic function with a Taylor expansion. We will accept this relation here and
refer to our introductory section or to a text on quantum mechanics, e.g., Merzbachers1998d, for
an outline of its derivation. For the canonical position and momentum in quantum mechanics, the
constantc takes the valuei".

III. GENERAL RESULT

The most general result that we present in this paper involves the commutator of two func-
tions of an arbitrary number of operators. Givenn operatorsx1, . . . ,xn such thatfxi ,xjg=cij , where
cij are c-numbers, we will show that

s12d

where

ki = o
j=i+1

n

kij s13d

and

ki8 = o
j=1

i−1

kji . s14d

If the restriction that the indices cannot be simultaneously zero did not apply, there would be
a term with no partial derivatives on the right-hand side of Eq.s12d. That term would begf− fg
=fg, fg=−ff ,gg. Therefore, an equivalent statement of Eq.s12d reads

o
k1,2=0

`

o
k1,3=0

`

o
k2,3=0

`

¯ o
kn−1,n=0

` Sp
j=2

n

p
i=1

j−1
s− cijdkij

kij !
Ds]x1

k1 . . . ]xn

kng]x1

k18 . . . ]xn

kn8f − ]x1

k1 . . . ]xn

knf]x1

k18 . . . ]xn

kn8gd = 0.

s15d

We will derive the generalized commutation relation Eq.s12d, and we note that Eq.s15d is an
equivalent, more compact statement that does not contain commutators of functions explicitly.
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All the results presented in this paper are special cases of this general result. We derive the
result by constructing increasingly complex intermediate results in Sec. IV.

IV. DERIVATIONS

We start by looking at the effect of increasing the power ofx1 in Eq. s11d,

fx1
2, fsx2dg = fx1, fsx2dgx1 + x1fx1, fsx2dg

= cf8sx2dx1 + x1cf8sx2d = 2cx1f8sx2d − cfx1, f8sx2dg = 2cx1f8sx2d − c2f9sx2d. s16d

We next show by induction that this result can be extended to an arbitrary powern,

fx1
n, fsx2dg = o

k=1

n

s− 1dk+1Sn

k
Dckx1

n−kf skdsx2d. s17d

Proof of Eq. (17):Equationss11d ands16d correspond to the casesn=1 andn=2 of the result
to be derived. We consider a generaln and expand the commutator using Leibnitz’s rule applied
to x1

n=x1x1
n−1:

fx1
n, fsx2dg = x1fx1

n−1, fsx2dg + fx1, fsx2dgx1
n−1

= o
k=1

n−1

s− 1dk+1Sn − 1

k
Dckx1

n−kf skdsx2d + cf8sx2dx1
n−1 = o

k=1

n−1

s− 1dk+1Sn − 1

k
Dckx1

n−kf skdsx2d

+ cx1
n−1f8sx2d − o

k=1

n−1

s− 1dk+1Sn − 1

k
Dck+1x1

n−1−kf sk+1dsx2d = ncx1
n−1f8sx2d

+ o
k=2

n−1

s− 1dk+1Sn − 1

k
Dckx1

n−kf skdsx2d + o
k=2

n−1

s− 1dk+1Sn − 1

k − 1
Dckx1

n−kf skdsx2d

+ s− 1dn+1cnf sndsx2d = o
k=1

n

s− 1dk+1Sn

k
Dckx1

n−kf skdsx2d.

In the third line we used the identityf8sx2dx1
n−1=x1

n−1f8sx2d−fx1
n−1, f8sx2dg, and in the fourth line we

have redefined the index of the second summation to range from two ton−1 and have written the
nth term outside the summation. In the final line we have combined all terms under a single
summation. This completes the proof of Eq.s17d.

We now extend the left argument of the commutator to include an analytic function ofx1 and
proceed by considering its Taylor expansion

ffsx1d,gsx2dg = Fo
n=0

`
1

n!
f snds0dx1

n,gsx2dG
= o

n=0

`
1

n!
f snds0dfx1

n,gsx2dg = o
n=0

`
1

n!
f snds0do

k=1

n Sn

k
Ds− 1dsk+1dckx1

n−kgskdsx2d.

Interchanging the order of the summations, we find that we can write the result in terms of
derivatives of the original function,fsx1d. The result is

ffsx1d,gsx2dg = − o
k=1

`
s− cdk

k!
f skdsx1dgskdsx2d. s18d

We pause to comment on this new result. The double summation introduced by the Taylor
expansions has been reduced to a single sum. Somehow in the expression for the commutator of
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the two functions only the contributions from products of identical orders of derivatives survive.
In a quantum mechanical context we see that the powers of position and momentum decrease
simultaneously and make room for factors ofi" factors as required by dimensional analysis.

We will now consider two analytic functions of two operators,fsx1,x2d andgsx1,x2d. We want
to write these as some expansion. We could use the one-dimensional Taylor expansion inx1 and
write

fsx1,x2d = o
n=0

`

fnsx2dx1
n,

where the coefficients are now functions of the operatorx2. Instead, we simply observe that
expansions existseither as Taylor series or otherwised and write them generally as

fsx1,x2d = o
n=0

`

fnsx2dfnsx1d s19d

and

gsx1,x2d = o
m=0

`

gmsx2dgmsx1d. s20d

Sincex1 andx2 do not commute we have made a choice in Eqs.s19d ands20d in writing all the
x2-dependence to the left of thex1-dependence in every term in the sum. The ordering does affect
the explicit expression forfn andgm but the final result can be obtained no matter what ordering
is chosen. What matters is that one choice has been made and will be used consistently throughout
the derivation. The final result will be formally independent of the specific choice offn, fn, gn,
andgn and will be expressed in terms offsx1,x2d andgsx1,x2d only.

Now we can consider the commutator:

ffsx1,x2d,gsx1,x2dg = o
n=0

`

o
m=0

`

ffnsx2dfnsx1d,gmsx2dgmsx1dg

= o
n=0

`

o
m=0

`

sfnsx2dgmsx2dffnsx1d,gmsx1dg + fnsx2dffnsx1d,gmsx2dggmsx1d

+ ffnsx2d,gmsx2dggmsx1dfnsx1d + gmsx2dffnsx2d,gmsx1dgfnsx1dd

and notice that simplification occurs because the commutators of two functions of the same
operator vanish, resulting in

ffsx1,x2d,gsx1,x2dg = o
n=0

`

o
m=0

`

sfnsx2dffnsx1d,gmsx2dggmsx1d + gmsx2dffnsx2d,gmsx1dgfnsx1dd.

Now we are in a position to apply Eq.s18d for two functions of a single operator each

ffsx1,x2d,gsx1,x2dg = o
n=0

`

o
m=0

` Sfnsx2dS− o
k=1

`
s− cdk

k!
fn

skdsx1dgm
skdsx2dDgmsx1d

+ gmsx2dSo
k=1

`
s− cdk

k!
gm

skdsx1dfn
skdsx2dD fnsx1dD .

Interchanging the order of the summations and factoring without commuting, we obtain
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ffsx1,x2d,gsx1,x2dg = − o
k=1

` S s− cdk

k! o
n=0

`

fnsx2dfn
skdsx1do

m=0

`

gm
skdsx2dgmsx1dD

+ o
k=1

` S s− cdk

k! o
m=0

`

gmsx2dgm
skdsx1do

n=0

`

fn
skdsx2dfnsx1dD .

We now observe that the original function can be reassembled

o
n=0

`

fnsx2dfn
skdsx1d =

]k

]x1
kSo

n=0

`

fnsx2dfnsx1dD =
]k

]x1
k fsx1,x2d s21d

with similar formulas for partial derivatives off with respect tox2, and forg with respect tox1 and
x2 and conclude that

ffsx1,x2d,gsx1,x2dg = o
k=1

`
s− cdk

k!
S ]kg

]x1
k

]kf

]x2
k −

]kf

]x1
k

]kg

]x2
kD . s22d

In Eq. s22d we have omitted the arguments of the functions from the expression for brevity.
We will continue to do so wherever there is no ambiguity in the arguments of the functions.

Before we can derive our formula for two functions of an arbitrary number of operators, we
must prove one more formula giving the commutator of a function of an arbitrary number of
operators and a function of one operator.

Given n−1 operatorsxi, i =1. . .sn−1d that each have a constant commutation relation with
another given operatorxn, such thatfxi ,xng=cin then

s23d

where

k = o
i=1

n−1

ki .

We prove Eq.s23d by induction.
For n=2 Eq. s23d becomes

which we recognize as equivalent to Eq.s18d, derived earlier.
Now we consider an arbitraryn and, in analogy with Eq.s19d, write

fsx1, . . . ,xn−1d = o
m=0

`

fmsxn−1dfmsx1, . . . ,xn−2d.

We expand the commutator using Leibnitz’s rule to obtain

ff,gg = o
m=0

`

sfmffm,gg + ffm,ggfmd.
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We evaluate the first commutator using Eq.s23d since the left argument is now a function of
n−2 operators. We evaluate the second commutator using Eq.s18d. The result is

s24d

where

k = o
i=1

n−1

ki . s25d

In the second term we apply the definition of the commutator Eq.s8d and Eq.s23d since again
it involves a function ofn−2 operators,

s26d

In the last term, we have usedk defined in Eq.s25d. Substituting this into Eq.s24d we have

s27d

Since all terms contain derivatives offm next to derivatives offm, we can eliminate the
summation overm by using the observation made in Eq.s21d and write Eq.s27d in terms of the
original function f. We also combine factors

Sp
i=1

n−2
s− cindki

ki!
DS s− cn−1,ndkn−1

kn−1!
D = p

i=1

n−1
s− cindki

ki!

to get

s28d
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We observe that in the first term, the indices of the summations are not simultaneously zero.
In the last term, the firstn−2 indices are not simultaneously zero. Thus, the first term corresponds
to the casekn−1=0. The second term is the case in whichk1. . .kn−2 are simultaneously zero, and the
third term is the case in which the indices of neither group are simultaneously zero. Therefore,
these three terms can be collected into one term as we elaborate in the Appendix. This concludes
the proof of Eq.s23d.

We are now ready to prove our main result, Eq.s12d. This proof will again proceed by
induction.

First, we consider the casen=2:

where we have used Eqs.s13d and s14d to find thatk1=k28=k1,2 andk2=k18=0. We recognize that
this is just the result derived in Eq.s22d.

We now consider an arbitrary value ofn. We write the functions in analogy with Eqs.s19d and
s20d

fsx1, . . . ,xnd = o
m=0

`

fmsxndfmsx1, . . . ,xn−1d

gsx1, . . . ,xnd = o
p=0

`

gpsxndgpsx1, . . . ,xn−1d.

Applying Leibnitz’s rule toff ,gg we have

ff,gg = o
m=0

`

o
p=0

`

sffm,gpggpfm + gpffm,gpgfm + fmffm,gpggp + fmgpffm,gpgd.

We observe that the first commutator vanishes since it involves the single operatorxn. We use
Eq. s23d to evaluate the second and third terms. We use Eq.s12d to evaluate the last term, since
both arguments are functions ofn−1 operators. The result is

s29d

where we have used the abbreviation
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ki = o
j=i+1

n−1

kij s30d

andki8 is defined in Eq.s14d.

First, we notice that the first two terms of Eq.s29d can be combined:

Next, we notice thatfm andgp commute. Also, using the definition of the commutator we can
change the order offms]x1

k1. . .]xn−1

kn−1gpd and gps]x1

k1. . .]xn−1

kn−1fmd. We use Eq.s23d to evaluate these

commutators. After substitution into Eq.s29d, the result is:

Combining factors

Sp
j=2

n−1

p
i=1

j−1
s− cijdki j

kij !
DSp

i=1

n−1
s− cindkin

kin!
D = p

j=2

n

p
i=1

j−1
s− cijdkij

kij !
,

and rearranging the summations, we get
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Now we observe that

ki + kin = o
j=i+1

n−1

kij + kin = ki

and that

k1,n + . . . +kn−1,n = kn8

in accordance with Eqs.s13d and s14d, which allows us to write

Finally, we observe the ranges of the groups of indices. The first term does not contain the
indicesk1,2, . . . ,kn−2,n−1 and, therefore, corresponds to the term in which they are simultaneously
zero. Also, the indicesk1,n, . . . ,kn−1,n do not appear in the second term, which then corresponds to
the term in which they are simultaneously zero. The third term has both sets of indices. Thus the
three terms can be combinedssee the Appendixd noting that all the indices range from zero to
infinity, but are not simultaneously zero. Upon doing so, the equation becomess12d, completing
the proof.

V. DISCUSSION AND IMPLEMENTATION

The main result of this paper is Eq.s12d. It gives a formula for the commutator of two
functions of noncommuting operators. It can actually be written more compactly in the form of
Eq. s15d in which both the left-hand side and the constraints on the summation indices have been
removed. Equations15d actually looks so simple that one wonders if it cannot be derived trivially
from some general statement, instead of through the long and convoluted induction processes
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presented in Sec. IV. We have not been able to do so. Equations12d applies to reasonable functions
f andg which have converging Taylor series. In the derivation, we interchanged the order of the
summations, thereby replacing a series by another, a step that is valid when both series converge.
We used the linearity of the derivative to derive term by term, a process that is again valid for
converging series with converging derivatives. Of course all formulas apply also to all finite or
truncated series such as those that appear when evaluating expressions to any finite order of
perturbation theory for example. That is the spirit in which the formulas were derived and the area
where they are most likely to find their domain of applicability. Sincex1 andx2 in Eq. s22d and
x1,x2. . . ,xn in Eq. s12d are operators, the derivatives and partial derivatives need to be explained
further. Already in Eq.s11d the derivative symbol refers to a derivative with respect to an operator.
In the one-dimensional case Eq.s11d can easily be interpreted as the operator replacement of the
derivative of a function with respect to a scalar variable. The prescription becomes: take the
ordinary derivative of the function and replace in the resulting expression every occurrence of the
variablex by an operatorX. So for instance, denoting operators with capitals for now, the proce-
dure to find the operator derivative in a particular case gives

se3Xd8 → se3xd8 = 3e3x → 3se3Xd.

When the function depends on two or more noncommuting operators however, an operational
definition of the derivative needs to be supplied. We follow Louisells1964d to define the derivative
with respect to an operator in terms of the derivative with respect to a scalar parameterl:

]xfsx,pd = lim
l→0

]

]l
fsx + l,pd. s31d

and

]xi
fsx1, . . . ,xi, . . . ,xnd = lim

l→0

]

]l
fsx1, . . . ,xi + l, . . . ,xnd. s32d

This definition reduces to the ordinary derivative shown above in the one-dimensional case:

]xe
3x = lim

l→0

]

]l
e3sx+ld = lim

l→0
3e3sx+ld = 3e3x. s33d

Let us now apply this definition for operator derivatives to a function of two operatorsx and
p as an example of a situation that might arise in the evaluation of Eq.s12d. It is clear that, as a
result of the noncommutativity ofx andp the ordinary composition or chain rule,

sfsgsxddd8 = f8sgsxddg8sxd = g8sxdf8sgsxdd s34d

cannot be applied without ambiguity since, for example,

]xscossxpdd Þ − sinsxpdp Þ ps− sinsxpdd Þ 1/2s− sinsxpddp + ps− sinsxpdd. s35d

For the exponential function however, we can follow Wilcoxs1967d and adapt a result from
Sniders1964d to obtain

]xsefsx,pdd =E
0

1

dues1−udfsx,pds]xfsx,pddeufsx,pd s36d

which can itself be used to get an explicit expression for the derivative operator in Eq.s35d above

]xscossxpdd = −E
0

1

du cosfs1 − udxpgp sinsuxpd −E
0

1

du sinfs1 − udxpgp cossuxpd. s37d
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This result is indeed quite different from that obtained from a naive application of the chain
rule for derivatives with respect to commuting variables. Furthermore the result in Eq.s37d can be
checked to any order of an expansion in powers ofx or p. The derivative of a polynomial
truncation of the cosine function yields the result obtained by truncation of the trigonometric
functions in Eq.s37d. We have developed algorithms for manipulating any polynomial expression
of noncommuting operatorsfTranstrum and Van Huelesto be publisheddg. That linearity and
Leibnitz’s rule apply to the operational derivative follows from the fact that these properties are
preserved in Eq.s31d.

Finally we use Eq.s12d to derive the torque equation in the Heisenberg picture of quantum
mechanics as an illustration of a commutator of two functions, one of whichsonlyd can be
expanded in a finite power series of its operators.

Consider the commutator of the nonrelativistic Hamiltonian,

H =
px

2 + py
2 + pz

2

2m
+ Vsx,y,zd,

with the z component of the angular momentum,Lz=xpy−ypx. Since the only nonvanishing
commutators arefx,pxg=fy,pyg=fz,pzg= i", the formula simplifies to

s38d

By inspection, it is obvious that all mixed partial derivatives ofLz that occur in the above
formula vanish. So, the above formula further simplifies to

fLz,Hg = o
k=1

`
s− i"dk

k!
ss]x

kHds]px

k Lzd − s]x
kLzds]px

k Hdd + o
k=1

`
s− i"dk

k!
ss]y

kHds]py

k Lzd − s]y
kLzds]py

k Hdd

+ o
k=1

`
s− i"dk

k!
ss]z

kHds]pz

k Lzd − s]z
kLzds]pz

k Hdd

= s− i"dSs]xVds− yd − py
px

m
+ s]yVdsxd − s− pxd

py

m
D = s− i"dss]yVdx − s]xVdyd. s39d

Therefore

dLz

dt
=

1

i"
fLz,Hg = xFy − yFx. s40d

We recognize the torque about thez axis as expected.
In conclusion, we have presented an expression for the commutator of two functions of an

arbitrary number of noncommuting operators whose commutators are constants. The formula is
derived constructively using the induction process. The resulting expression involves partial de-
rivatives of the functions with respect to the noncommuting operators. These partial derivatives
can be evaluated directly in some simple cases or in general through series expansions and
ordering algorithms to any order.
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APPENDIX: NOTATION FOR SUMMATION INDICES

In this appendix we comment on the use of our notation for the summation indices as they
appear in Eqs.s12d–s14d. First of all k1=kn8=0 for any n. We include these terms to see the
symmetry in the formula.

Second, we note that when the summation indices have two subscripts, we separate the
subscripts by commas when at least one of them involves a number. Thus we writek1,2, k1,i, and
ki−1,j, but kij instead ofki,j. Similarly, we write c1,2, c1,i, and ci−1,j, but cij instead ofci,j. The
simplificationc1,2=c was made in the part of Sec. IV leading to Eq.s22d.

Finally we discuss the correlation between the summation indices and the related underbrace
notation in more depth. Throughout the paper, we frequently use notation of the form

where the underbrace indicates that the summations range from zero to infinity but are not simul-
taneously zero. We will explain some of the properties associated with these expressions.

In the case that the underbrace includes only one index, that index cannot be zero, and the
expression can be rewritten in more standard notation:

Now, we consider the case that the underbrace contains two indices. Both cannot be zero
simultaneously, but one can be zero as long as the other is nonzero. Thus, there are two summa-
tions which account for the cases in which one of the indices is zero. There is also the case that
neither index is zero and a third term accounts for this:

We observe here that this result implies that

which we will generalize shortly.
It follows from the above argument, that, if there aren indices,k1, . . . ,kn, in an expression of

the form

there will bes n
1

d terms in which one index is nonzero,s n
2

d terms in which two indices are nonzero,
and so forth. Thus, there will be
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o
k=1

n Sn

k
D = 2n − 1

terms altogether. For large numbers of indices, the underbrace notation is clearly more compact;
however, for computational purposes, it will be necessary to expand the underbrace notation as we
have done here for the casesn=1 andn=2.

Now we consider a situation that arises frequently in the derivations presented in this paper.
This involves the case in which there are two groups of indices,k1, . . . ,kn and l1, . . . ,lm in an
expression of the form

wheref depends on each of the indices. We show that the underbrace has the following property:

which is an identity used often throughout the paper. Given a little thought, this expression seems
reasonable, but we will present a slightly more rigorous proof.

The proof is not complicated; we simply count the number of terms on either side of the
equation. The left-hand side of the equation has 2n+m−1 terms. The right-hand side has 2n−1
+2m−1+s2n−1ds2m−1d=2n+m−1 terms. Since all of the terms on the the right involve summa-
tions in which some of the indices range from zero to infinity but are not simultaneously zero, we
conclude that each term on the right-hand side of the equation also appears on the left with no
repeated terms. Since both sides of the equation have equal numbers of terms, we conclude that
the two expressions are equivalent.
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Stationary van Hove limit
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The weak couplingsvan Hoved limit of one parameter groups of contractions is
studied by the stationary approach. We show that the resolvent of the properly
renormalized and rescaled generator of a contractive semigroup has a limit as the
coupling constant goes to zero. This limit is the resolvent of the generator of a
certain contractive semigroup. Our results can be viewed as a stationary counterpart
to the well known results about the weak coupling limit obtained by the time-
dependent approach, due to Davies. We compare both approaches. ©2005 Ameri-
can Institute of Physics.fDOI: 10.1063/1.1904509g

I. INTRODUCTION

Let X be a Banach space with a distinguished bounded projectionP. Suppose thatUt
l is a one

parameter strongly continuous group of isometries onX generated byLlªL0+lQ. Assume thatP
commutes with the free dynamicsUt

0=etL0 or equivalentlyP commutes withL0. Our main object
of interest is the reduced dynamics

R { t ° PUt
lP

as an operator on RanP.
The reduced dynamics was studied in a series of papers4,5 and in the book6 by Davies. First he

showed that the reduced dynamics after appropriately rescaling, i.e.,

t ° PUt/l2
l P,

can be approximated, as the coupling constantl goes to zero, by a certain one parameter semi-
group on RanP depending onl. The generator of this semigroup is a quadratic polynomial inl−1.
By the convergence we mean that for each fixed timet the norm of the difference between the
resulting semigroup and the reduced rescaled dynamics tends to zero asulu becomes smaller. We
will call this result, for the reasons that soon become clear, the pointwisesin timed van Hove limit
with the first order term.

The second result obtained by Davies describes the case withPQP=0. He proved that the
reduced dynamics with a rescaled time renormalized by the free evolution, i.e.,

t ° U−t/l2
0 PUt/l2

l P, s1.1d

has a limit, for each fixed timet, as the coupling constantl goes to zero. The limit is a one
parameter semigroup, independent ofl. The generator of the resulting semigroup is often called
the Davies generator. We will call this limit the pointwisesin timed van Hove limit without the first
order term.

One can distinguish two approaches to semigroups, the time-dependent approach and the
stationary approach. The former concentrates on the study of semigroups themselves. The latter
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focuses at the resolvent of their generators. Davies used the time-dependent approach, both in the
choice of the assumptions for his results and in their statements. In our paper we use mostly the
stationary approach.

Our main results are contained in three theorems. First in Theorem 3.1 we study, the stationary
van Hove limit for the reduced dynamics as the coupling constantl goes to zero. More precisely,
we describe the asymptotics of the rescaled resolvent ofLl reduced byP by the resolvent of a
certain operatorAl,0. This is the stationary counterpart to the first result of Davies.

Theorem 3.2 describes the case without the first order termsPQP=0d. We additionally assume
that the spectrum ofPL0P consist of isolated points. We obtain a simple asymptotics of the
Laplace transform ofs1.1d given by the resolvent of a certain operatorG independent ofl
commuting withPL0P. We prove that the operatorG is the generator of a contractive semigroup.
This is the stationary counterpart to the second result of Davies.

The main results about the stationary van Hove limit involve resolvents. They have, however,
easy time-dependent corollaries, which we call the smeared out weak coupling limit. By this we
mean that the difference of the rescaled restricted dynamics and the approximating dynamics
averaged over time with some continuous function of compact support tends to zero as the
coupling constant goes to zero. This version of the result is also contained in Theorems 3.1 and
3.2.

In Theorem 3.3 we show how one can obtain pointwisesin timed van Hove limit without the
first order term starting from the stationary van Hove limit.

Theorem 3.5 gives conditions when one can apply both the time-dependent method of Davies
and our stationary results. We also find out that the semigroup obtained in the van Hove limit is
generated by the so-called level shift operator, see Refs. 9–11 and 7.

In the physical literature one can trace back the weak coupling limit to works of Wigner–
Weisskopf, Pauli and also van Hove.18–20 First rigorous mathematical treatment of this issue
comes from Davies,4–6 who gave both its abstract theory and presented applications to open
quantum systemsssee also Ref. 14d.

In his papers, Davies uses the time-dependent approach, i.e., he works with the restricted
dynamics. The key step in this approach is the construction of the resulting semigroup by the
integral formulase.g., Theorem 3.1.33 in Ref. 3d. The use of this formula induces technical
assumptions which may be not easy to verify. For the convenience of the reader we describe the
result of Davies in Theorem 3.4.

In our approach to the weak coupling limit, instead of working with the perturbed dynamics,
we investigate the resolvent of the perturbed generator. We use some regularity assumptions for
resolvents which seem easier to verify in some circumstances. In particular our regularity assump-
tions are closely related to the so-called limiting absorption principle which can be investigated
with help of the so-called Mourre theory.8

We end this introduction with a description of the main physical motivation of our work—an
application of the van Hove limit to open quantum systems. We essentially follow Ref. 14, see also
Refs. 4 and 5. For more information, especially concerning the relationship of the van Hove limit
to applications of the method of the level shift operator to the return to equilibrium, we refer the
reader to Ref. 11. For related analysis of open quantum systems see also Refs. 15–17.

Let us consider a quantum mechanical system which consists of two parts—the small system
S and the reservoir partR. To describeS one chooses appropriate Hilbert spaceHS. Then the
states are given by density matricessi.e., trace class normalized positive operators onHSd. The
time evolution of the isolated small systemS is implemented by the HamiltonianHS. In a similar
way we describe the reservoir partR. We have Hilbert spaceHR, the Liouvillean LR sthe
generator of the time evolutiond and density matrices onHR. Let us additionally assume that there
exists a stationary state, denotedvR, of R for the evolution implemented byLR.

The time evolution of whole systemS+R is given by self-adjoint operator

063511-2 J. Dereziński and R. Früboes J. Math. Phys. 46, 063511 ~2005!

                                                                                                                                    



Ll ª HS ^ 1R + 1S ^ LR + lV

acting onHªHS ^ HR whereV is some interaction operator andlPR. Hence for any density
matrix x on HS ^ HR its evolution is given by

Ut
lx ª e−tiLlxetiLl.

Assume that the initial state ofS+R is r ^ vR for some density matrixr on HS. Then after
time t the state ofS+R is given byUt

lsr ^ vRd. If we treatR just as a device which induces
changes ofS and we want only to know what happens toS, then to obtain the state ofS at time
t we take the partial trace over the degrees of freedom ofR,

rstd ª trRsUt
lsr ^ vRdd. s1.2d

Note that the action ofUt
l can be extended to the whole space of the trace class operators

B1sHS ^ HRd. Recall thatB1sHS ^ HRd is a Banach space under the normi ·i1=tru ·u andUt
l is a

one parameter strongly continuous group of isometries onB1sHS ^ HRd. If we introduce the
operator

P:B1sHS ^ HRd → B1sHSd ^ vR , B1sHS ^ HRd,

PWª trRsWd ^ vR,

thenP is a projection of norm one and the equations1.2d can be rewritten

rstd ^ vR ª PUt
lPsr ^ vRd.

Note also thatfUt
0,Pg=0. Therefore, we have a setup, where we can apply our results. In the weak

coupling limit we obtain completely positive semigroup of contractions which is sometimes called
a quantum dynamical Markov semigroup. Hence starting with a fully reversible dynamics for the
whole system, we end up with an irreversible evolution of the small subsystem. Now, in the weak
coupling approximation, when we study the small system we may exchange complicated object
PUt

lP for a semigroup and use it in order to determine physical quantities. However there is a
price to be paid—the results that we get in this approximation are typically the lowest order
nonvanishing corrections in the coupling constant to the real quantities.

II. PRELIMINARIES

Notation: Let X be a Banach space. For a linear operatorL on X, spL denotes its spectrum
and DomL its domain. IfJ is an isolated bounded subset of spL then the spectral projection of
L onto J, defined by the usual integral formula,13 is denoted1JsLd. If e is an isolated point of
spL, then we will write1esLd for 1hejsLd.

Let 1vv be a distinguished bounded projection onX. It will be convenient to denote1vv
ª1

−1vv. We also introduce closed subspaces

X v
ª 1vvX, X v̄

ª 1vvX = Ker 1vv,

so thatX is decomposed into a direct sum

X = X v
% X v̄. s2.1d

Any operatorH on X satisfying

DomsHd = sDomsHd ù X vd % sDomsHd ù X v̄d

can be written with respect to the decompositions2.1d as

063511-3 Stationary van Hove limit J. Math. Phys. 46, 063511 ~2005!

                                                                                                                                    



H = FHvv Hvv̄

Hv̄v HvvG = Hvv + Hvv̄ + Hv̄v + Hvv. s2.2d

ObviouslyHvv=1vvH1vv, etc. In particular

1ª F1vv 0

0 1vvG .

For eP iR and foraù0 we denote

Wedgese,ad ª hzP C:Rez. 0,uImsz− edu ø a Rezj.

III. MAIN RESULTS

Let L0 be the generator of a one parameter strongly continuous group of isometriest°etL0 on
the Banach spaceX. Recall thatL0 is norm closed, norm densely defined, conservative operator
si.e., bothL0 and −L0 are dissipatived and spL0, iR.3,6

Let 1vv be a distinguished projection onX such thati1vvi=1. Assume that1vv commutes with
L0 or equivalentlyf1vv ,etL0g=0 for all t. Then the operatorL0 written with respect to the decom-
position s2.1d has the form

L0 = FL0
vv 0

0 L0
vvG . s3.1d

We write for shortnessEªL0
vv. Note thatE generates a one parameter strongly continuous group

of isometries onX v.
Let Q with DomL0,DomQ be another operator that we will treat as a perturbation ofL0. Fix

l0.0. We assume that for 0øl,l0 the operator

Ll ª L0 + lQ,

defined on DomLl=DomL0 is the generator of a one parameter strongly continuous semigroup of
contractions onX.

We will assume that the off-diagonal elements ofQ, i.e., Qv̄v andQvv̄ are bounded. We also
assume that for all 0øl,l0 operatorE+lQvv generates a group of isometries onX v.

Note that if Ll with boundedQv̄v and Qvv̄ generates a group of isometries thenE+lQvv

generates a group of isometries onX v.

A. Van Hove limit—stationary approach

In this section we discuss the van Hove limit under the assumptions involving the resolvent of
Ll. The statement of our result is similar to the statement of the results of Davies, which we recall
later.

1. Van Hove limit with the first order term

Theorem 3.1:Assume that for all0øl,l0 :

sid For all j.0 we havej¹spsLl
vvd,

sii d there exists an operatorG0PBsX vd such that, for anyj.0,

G0 ª lim
l↘0

Qvv̄sl2j1vv − Ll
vvd−1Qv̄v. s3.2d

fNote that the right-hand side (RHS) of (3.2) may depend onj. We assume that it does notg.

Let
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Al,0ª E + lQvv + l2G0. s3.3d

Then the following holds:

s1d G0 generates a semigroup of contractions onX v.
s2d Al,0 generates a semigroup of contractions onX v.
s3d For eachj.0,

lim
l↘0

s1vvsj1 − l−2Lld−11vv − sj1vv − l−2Al,0d−1d = 0. s3.4d

s4d For any fPC0sf0,`fd

lim
l↘0

E
0

`

fssds1vvesl−2Ll1vv − esl−2Al,0dds = 0. s3.5d

Note that above we use the notationsz1vv−Ll
vvd−1 for the inverse of the operatorz1vv−Ll

vv re-
stricted toX v̄. We will often use a similar notation without a comment.

2. Van Hove limit without the first order term

In this section we describe two versions of the van Hove limit without the first order term. In
the first we either work at the resolvents or smear out the dynamics in time. In the second, we
work at the dynamics pointwise in time. The statement of the second result is essentially the same
as that of Davies, however assumptions are different.

We will need the following additional assumptions.
Assumption 3.A:spE is a finite set.
Note that Assumption 3.A implies that we can write

1vv = o
ePsp E

1esEd.

Assumption 3.B: Qvv=0.
Theorem 3.2:Let Assumptions 3.A and 3.B hold. Assume additionally that

sid for 0øl,l0, for each ePspE and for all j.0 we have e+j¹spsLl
vvd,

sii d there exists an operatorGPBsX vd such that, for anyj.0,

G ª o
ePsp E

lim
l↘0

1esEdQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄v1esEd. s3.6d

fNote that the RHS of (3.6) may depend onj. We assume that it does notg.
siii d For any e,e8PspE, eÞe8 and j.0,

lim
l↘0

l1esEdQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄v1e8sEd = 0,

lim
l↘0

l1e8sEdQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄v1esEd = 0.

Then the following holds:

s1d G generates semigroup of contractions onX v,
s2d fE,Gg=0,
s3d for eachj.0 we have

lim
l↘0

o
ePsp E

1esEd1vvsj1 − l−2sLl − e1dd−11vv = sj1vv − Gd−1, s3.7d

s4d for any fPC0sf0,`fd,

063511-5 Stationary van Hove limit J. Math. Phys. 46, 063511 ~2005!

                                                                                                                                    



lim
l↘0

E
0

`

fssdse−sl−2E1vvesl−2Ll1vv − esGdds = 0. s3.8d

Theorem 3.3:Let assumptions 3.A and 3.B hold. Assume additionally that

sid for 0øl,l0 and all jPC, Rej.0, we havej¹spsLl
vvd,

sii d for all a0ù0 and for anyjPWedges0,a0d, there exists an operatorGPBsX vd such that,

G ª o
ePsp E

lim
l↘0

1esEdQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄v1esEd, s3.9d

fNote that the RHS of (3.9) may depend onj. We assume that it does notg.
siii d For each ePspE we have

sup
Re j.0;0øl,l0

iQvv̄sse+ l2jd1vv − Ll
vvd−1Qv̄vi , `.

Then,

s1d all statemants of the Theorem 3.2 hold. Besides (3) holds in a stronger form, fora0ù0 the
formula (3.7) is valid for eachjPWedges0,a0d.

s2d Let cPX v. For sù0 we have

lim
l↘0

se−sl−2E1vvesl−2Ll1vv − esGdc = 0 s3.10d

uniformly for sP ft0,t1g for any fixed0,t0øt1,`.

B. Van Hove limit—time-dependent approach

In this section we discuss the van Hove limit under the assumptions involving the dynamics.
In Theorem 3.4 we recall the original approach to the van Hove limit due to Davies.4–6 sStrictly
speaking, Davies assumed that the perturbationQ is bounded. In Theorem 3.4 we impose slightly
less restrictive assumptions, which can be handled by an essentially the same proof.d

Let L0, Q, and1vv be the same as before. Clearly,Ll
vv generates a semigroup onX v̄. Therefore,

we can define the operator

Ksl,td ª E
x=0

l−2t

e−xLl
vv

Qvv̄exLl
vv

Qv̄v dx. s3.11d

The following theorem describes the van Hove limit for the dynamics in both cases—with and
without the first order term.

Theorem 3.4:Assume additionally that

sid for all t1.0 there is a constant C.0 such thatiKsl ,tdi,C for uluø1 and 0øtøt1.
sii d There exists bounded operator K onX v such that if0,t0øt1,` then

lim
l↘0

s sup
t0øtøt1

iKsl,td − Kid = 0.

Then the following holds:

s1d

lim
l↘0

S sup
0øtøt1

i1vvetl−2Ll1vv − etl−2sE+lQvv+l2KdiD = 0. s3.12d

s2d If additionally Assumptions 3.A and 3.B hold then
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lim
l↘0

S sup
0øtøt1

ie−tl−2E1vvetl−2Ll1vv − etK\
iD = 0, s3.13d

where

K\
ª o

ePsp E

1esEdK1esEd = lim
a→`

1

2a
E

−a

a

etEKe−tE dt.

Let us recall how the operatorsKsl ,td are motivated. If we treat the off-diagonal elements of
Ll as asboundedd perturbation of the diagonal part ofLl then, by a well-known formula, we have

etLl = etsLl
vv+Ll

vvd + lE
s=0

t

est−sdsLl
vv+Ll

vvdsQvv̄ + Qv̄vdesLl ds.

Using this formula one gets

1vvel−2tLl1vv = 1vvel−2tLl
vv

+E
s=0

t

1vvel−2st−sdLl
vv

Ksl,t − sd1vvel−2sLl1vv ds.

Now we discuss how one can obtain the van Hove limit for the resolvents under time-
dependent assumptions. In fact we show when one can use both stationary and time-dependent
approaches. We will concentrate on the case without the first order term.

Theorem 3.5:Let Assumptions 3.A and 3.B hold. Assume additionally that

sid for 0øl,l0 and all zPC, Rez.0 we have z¹spsLl
vvd,

sii d e0
`sup0øl,l0

iQvv̄esLl
vv

Qv̄vids,`,

siii d for any s.0, liml↘0Q
vv̄esLl

vv
Qv̄v=Qvv̄esL0

vv
Qv̄v.

Then

s1d The assumptions of both Theorem 3.2 and Theorem 3.4 hold. Moreover, we have

K\ = G.

s2d The following limits exist, coincide and equal toG:

lim
e↘0

o
ePsp E

1esEdQvv̄sse+ ed1vv − L0
vvd−1Qv̄v1esEd

= lim
e↘0

o
ePsp E

E
0

`

e−es1esEdQesL0Qe−sL01esEdds. s3.14d

Note that the assumptions of Theorem 3.5 are stronger than that of Theorem 3.3 and Theorem 3.4
s2d.

The operators3.14d is often called the level shift operator. It is used to describe the second
order shift of eigenvalues ofLl.7,9–11

IV. PROOFS

Lemma 4.1: For0øl,l0 the operator

L̃l = F 0 lQvv̄

lQv̄v L0
vv + lQvvG

defined onDomsL̃ld=X v % DomsL0
vvd generates a semigroup of contractions onX.

Proof: Let 0øl,l0. The operatorL̃l is densely defined. By the Lumer-Phillips theorem
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sTheorem 3.1.16 in Ref. 3d it is sufficient to show thatsId L̃l is dissipative,sII d for somee.0 we

havee¹spsL̃ld.
Step (I):For 0øl the operator,

Zª Ll − Ll
vv

with the domain DomsZd=DomsEd % DomsL0
vvd is densely defined and dissipative. Hence, by

Proposition 3.1.15 in Ref. 3,Z is closable and its closure is dissipative. But the closure ofZ

coincides withL̃l.
Step (II): For 0øl,l0 the operatorLl−lsQvv̄+Qv̄vd generates a semigroup such that for

Rez. ilsQvv̄+Qv̄vdi we havez¹spsLl−lsQvv̄+Qv̄vdd and

isz1 − sLl − lsQvv̄ + Qv̄vddd−1i ø sRez− ilsQvv̄ + Qv̄vdid−1.

Hence, for alle.e0 for somee0 large enough,

ise1 − sL̃l − lsQvv̄ + Qv̄vddd−1slsQvv̄ + Qv̄vddi , 1.

Hence, by the Neumann theorem,e1− L̃l is invertible for alle.e0, and soe¹spsL̃ld. h

By the Feshbach projection method,1,2,7,8if z¹spsLldøspsLl
vvd then the restricted resolvent is

given by

1vvsz1 − Lld−11vv = Gv
−1szd,

where

Gvszd = z1vv − E − lQvv − l2Qvv̄sz1vv − Ll
vvd−1Qv̄v.

Hence

1vvsj − l−2Lld−11vv = l2Gv
−1sl2jd.

In what follows we will use these facts without a comment.sSee Refs. 4 and 15–17.d
Proof of Theorem 3.1:

s1d By Lemma 4.1, the operatorL̃l generates a semigroup of contractions, which forj.0
implies

isj1vv − l2Qvv̄sj1vv − Ll
vvd−1Qv̄vd−1i = i1vvsj1 − L̃ld−11vvi ø j −1.

Hence, for allj.j0.0, the operatorsj1vv−Qvv̄sl2j1vv−Ll
vvd−1Qv̄vd−1 is uniformly bounded. We

know that for anyj.0,

lim
l↘0

sj1vv − Qvv̄sjl21vv − Ll
vvd−1Qv̄vd = j1vv − G0. s4.1d

Therefore, for allj.j0, the operatorj1vv−G0 is invertible onX v and

isj1vv − G0d−1i ø j −1.

HenceG0 generates a semigroup of contractions onX v sTheorem 2.21 and Corollary 2.22 in Ref.
6d.

s2d Let 0øl,l0. SinceE+lQvv generates a group of isometries andG0 is bounded and
dissipative then the result follows from Theorem 3.1.32 in Ref. 3.

s3d Let 0,l,l0. Recall that forj.0,

il2Gv
−1sl2jdi ø j −1, s4.2d

063511-8 J. Dereziński and R. Früboes J. Math. Phys. 46, 063511 ~2005!

                                                                                                                                    



isj1vv − l−2Al,0d−1i ø j −1, s4.3d

lim
l↘0

Qvv̄sl2j1vv − Ll
vvd−1Qv̄v = G0. s4.4d

For anyj.0 we have

i1vvsj1 − l−2Lld−11vv − sj1vv − l−2Al,0d−1i

= il2Gv
−1sl2jdsQvv̄sl2j1vv − Ll

vvd−1Qv̄v − G0dsj1vv − l−2Al,0d−1i.

Hence bys4.2d–s4.4d the RHS of the above expression tends to zero asl tends to zero.
s4d For j.0, by the Laplace transform, we have

1vvsj1 − l−2Lld−11vv − sj1vv − l−2Al,0d−1 =E
0

`

e−jss1vvel−2sLl1vv − el−2sAl,0dds.

Hence bys3.4d we get

lim
l↘0

E
0

`

e−jss1vvel−2sLl1vv − el−2sAl,0dds = 0. s4.5d

By the Stone–Weierstrass theorem, the family of functions

f0,`f { s ° e−jsPR, j . 0

forms an algebra which is dense in continuous functions of compact support onf0,`f. This fact
together withs4.5d implies s3.5d. h

Lemma 4.2: Let E be the generator of a group of isometries. Let e be an isolated point in
spsEd. Then e is a semisimple eigenvalue which means E1esEd=e1esEd and i1esEdi=1.

Proof: Let e be an isolated point in spsEd. Then for anye.0,

isse+ ed1vv − Ed−1i ø e−1. s4.6d

So for zP hzPC :distse,zd,dj \ hej for somed.0 we have

sz1vv − Ed−1 = 1esEdsz− ed−1 + hszd, s4.7d

whereh is an analytic function onhzPC :distse,zd,dj. Hencee is semisimple. Buts4.7d also
implies that

lim
e↘0

esse+ ed1vv − Ed−1 = 1esEd

and hence, bys4.6d, we geti1esEdi=1. h

For an isolated pointePspE let us write for shortness

1ee
ª 1esEd, 1ee

ª 1vv − 1esEd,

X e
ª Ran1esEd, X eI

ª Ran1ee

then

X v = X e
% X eI . s4.8d

If e8 ,ePspE andAPBsX vd then we denoteAe8e
ª1e8e8A1ee.

Proof of Theorem 3.2:s2d follows immediately if we note that Lemma 4.2 impliesE
=oePsp Ee1esEd and that we haveGªoePsp E1esEdG1esEd.

s3d Let ePspE. Set
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Glsj,ed ª j1vv + l−2se1vv − Ed − Qvv̄ssl2j + ed1vv − Ll
vvd−1Qv̄v.

For j.0 we have

Glsj,ed−1 = 1vvsj + l−2se− Lldd−11vv.

This and the dissipativity ofLl implies the bound

iGlsj,ed−1i ø j −1. s4.9d

Write for shortnessG instead ofGlsj ,ed.
DecomposeG=Gdiag+Goff into its diagonal and off-diagonal part,

Gdiagª o
e8Psp E

1e8e8G1e8e8,

Goff ª o
e8Psp E

1e8e8G1eI8eI8 = o
e8Psp E

1eI8eI8G1e8e8.

First we would like to show that forj.0 and small enoughl, Gdiag is invertible. By the
Neumann theorem, it is easy to see that1eeGdiag is invertible on Ran1ee for small enoughl.
Moreover, we have

i1eeGdiag
−1 i ø cl2. s4.10d

It is more complicated to prove that1eeGdiag is invertible on Ran1ee.
We fix j.0. We know thatG is invertible andiG−1iøj −1. Hence we can write

GdiagG
−1 = 1 −GoffG

−1.

Therefore

1eeGdiagG
−1 = 1ee− 1eeGoff1

eeG−1,

1eeGdiagG
−1 = 1ee− 1eeGoffG

−1. s4.11d

The latter identity can be for small enoughl transformed into

1eeG−1 = Gdiag
−1 1ee− Gdiag

−1 1eeGoffG
−1. s4.12d

We inserts4.12d into the first identity ofs4.11d to obtain

1eeGdiagG
−1 = 1ee− 1eeGoff1

eeGdiag
−1 + 1eeGoff1

eeGdiag
−1 GoffG

−1. s4.13d

We multiply s4.13d from the right by1ee to get

1eeGdiag1
eeG−11ee= 1ee+ 1eeGoff1

eeGdiag
−1 GoffG

−11ee. s4.14d

Now, using

lim
l↘0

ilGoffi = 0, s4.15d

s4.9d and s4.10d we obtain

lim
l↘0

1eeGoff1
eeGdiag

−1 GoffG
−11ee= 0.

Thus, for small enoughl,
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1eeGdiagB1 = 1ee,

where

B1 ª 1eeG−11ees1ee+ 1eeGoff1
eeGdiag

−1 GoffG
−11eed−1.

Similarly, for small enoughl, we findB2 such that

B21
eeGdiag= 1ee.

This implies that1eeGdiag is invertible on Ran1ee.
Next, we can write

G−1 = Gdiag
−1 − Gdiag

−1 GoffGdiag
−1 + Gdiag

−1 GoffGdiag
−1 GoffG

−1.

Hence

1eeG−1 = 1eeGdiag
−1 s1 − Goff1

eeGdiag
−1 + Goff1

eeGdiag
−1 GoffG

−1d. s4.16d

Therefore, for a fixedj, by s4.9d, s4.10d, ands4.15d, we see that asl↘0 we have

− Goff1
eeGdiag

−1 + Goff1
eeGdiag

−1 GoffG
−1 → 0.

Therefore, for small enoughl, we can invert the expression in the prentheses ofs4.16d. Conse-
quently,

1eesGdiag
−1 − G−1d = 1eeG−1s1 − Goff1

eeGdiag
−1 + Goff1

eeGdiag
−1 GoffG

−1d−1

3 sGoff1
eeGdiag

−1 − Goff1
eeGdiag

−1 GoffG
−1d. s4.17d

Therefore, for a fixedj, by s4.9d, s4.10d, ands4.15d, we see that asl↘0 we have

1eesGdiag
−1 − G−1d → 0. s4.18d

Equationss4.9d and s4.18d imply that 1eeGdiag
−1 is uniformly bounded asl↘0. We know that

1eeGdiag→ 1eej − 1eeG. s4.19d

Therefore,j1ee−1eeG is invertible on Ran1ee and

1eeGdiag
−1 → s1eej − 1eeGd−1.

Using agains4.18d we see that

1eeG−1 → s1eej − 1eeGd−1. s4.20d

Summing ups4.20d over e we obtain

o
ePsp E

1eeGlsj,ed−1 → sj1vv − Gd−1, s4.21d

which ends the proof ofs3d.
s1d We have

o
ePsp E

1eeGlsj,ed−1 = o
ePsp E

E
0

`

e−tsj+l−2ed1eeetLl/l2
1vv dt =E

0

`

e−tje−tE/l2
1vvetLl/l2

1vv dt.

s4.22d

Clearly, ie−tE/l2
1vvetLl/l2

1vviø1. Therefore,
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I o
ePsp E

1eeGlsj,ed−1I ø j −1.

Hence, bys4.21d,

isj1vv − Gd−1i ø j −1,

which means thatG is the generator of a semigroup of contractions.
s4d To prove this we repeat the argument used in the proof of Theorem 3.1.
Proof of Theorem 3.3:
s1d Follows by a simple modification of the argument used in Theorem 3.2.
s2d For ePspE and for Rej.0 we denote

Glsj,ed ª j1vv + l−2se1vv − Ed − Qvv̄ssl2j + ed1vv − Ll
vvd−1Qv̄v.

Obviously

Glsj,ed−1 = 1vvsj + l−2se− Lldd−11vv

and

iGlsj,ed−1i ø Rej −1. s4.23d

Let cPX v. Let v0.0 andsù0. By the inverse Laplace transformsRef. 12 Chap. XId and by
the proof of Theorem 3.2, uniformly for 0,t0øsøt1, we get

se−sl−2E1vvesl−2Ll1vv − esGdc

=
1

2pi
lim
R→`

E
v0+if−R,Rg

esj o
ePsp E

s1eessj + l−2ed1 − l−2Lld−11vv − sj1ee− Geed−1dc dj

=
1

2pi
o

ePsp E

lim
R→`

E
−R

R

flsy,edi dy,

where

flsy,ed ª essv0+iyds1eeGlsv0 + iy,ed−1 − ssv0 + iyd1ee− Geed−1dc.

For eachePspE,

I d

dy
flsy,edI ø esv02ssv0

−1 + v0
−2dici.

This shows that the familyflsy,ed is equicontinuous asl→0.
For any fixedR.0 if only a0=sR+1d /v0 then j=v0+ iyPWedges0,a0d hence, bys1d, we

get the pointwise convergenceflsy,ed→0 asl↘0 for yP f−R,Rg. Finally pointwise convergence
together with equicontinuity implies uniform convergence on compacts, so for any fixedR.0,

lim
l↘0

E
−R

R

flsy,edci dy =E
−R

R

lim
l↘0

flsy,edci dy = 0.

To end the proof it is sufficient to show that for eachePspE,

lim
R→`

sup
0øl,l0

IE
uyu.R

flsy,edi dyI = 0.

SinceGee is independent ofl we need only to show that
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lim
R→`

sup
0øl,l0

IE
uyu.R

essv0+iyd1eeGlsv0 + iy,ed−1c dyI = 0. s4.24d

DecomposeGlsj ,ed into its diagonal and off-diagonal part,

Gdiagª o
e8Psp E

1e8e8Glsj,ed1e8e8 = j1ee− Tlsj,edee+ o
e8Psp E;e8Þe

ssj − l−2se8 − edd1e8e8

− Tlsj,ede8e8d,

Goff ª o
e8Psp E

1e8e8Glsj,ed1eI8eI8 = o
e8Psp E

1eI8eI8Glsj,ed1e8e8 = o
e8Psp E

Tlsj,ede8eI8,

where

Tlsj,ed ª Qvv̄ssl2j + ed1vv − L0
vv − lQvvd−1Qv̄v.

By the assumption for eachePspE

sup
Re j.0;0øl,l0

iTlsj,edi , C , `. s4.25d

In the rest of the proof we write for shortnessG=Glsj ,ed andT=Tlsj ,ed.
Fix ePspE and letjªv0+ iy. Fix v0.C+1. Then, by the Neumann theorem, the operator

1eeGdiag=j1ee−Tee is invertible onX e and we have

isj1ee− Teed−1i ø suyu − Cd−1 for uyu . C. s4.26d

Note that for eache8PspE, e8Þe the operatorl−2se8−ed1e8e8 generates a group of isometries on
Xe8. Hence the operator1e8e8Gdiag=sj−l−2se8−edd1e8e8−Te8e8 is invertible onXe8 and we have

issj − l−2se8 − edd1e8e8 − Te8e8d−1i ø sv0 − Cd−1 , 1. s4.27d

This shows thatGdiag is invertible onX v. We have

1eeG−1 = 1eeGdiag
−1 s1ee− Goff1

eeG−1d = j −1s1ee+ Teesj1ee− Teed−1ds1ee− Goff1
eeG−1d

= j −1s1ee+ Teesj1ee− Teed−1ds1ee− Goff1
eeGdiag

−1 + Goff1
eeGdiag

−1 Goff1
eeG−1d.

Now, usings4.23d and s4.25d–s4.27d, we get foruyu.C,

ij −1Teesj1ee− Teed−1s1ee− Goff1
eeG−1di ø D1sv0

2 + y2d−1/2suyu − Cd−1

ij −1Goff1
eeGdiag

−1 Goff1
eeG−1i ø D1sv0

2 + y2d−1/2suyu − Cd−1

for someD1.0 independent ofl. Hence to proves4.24d if suffices to show that

lim
R→`

sup
ulu,l0

IE
uyu.R

essv0+iydsv0 + iyd−1s1ee− Goff1
eeGdiag

−1 dc dyI = 0.

The first term in the above expression is independent ofl hence we need only to consider the
second term. We have

1eeGdiag
−1 = o

e8Psp E;e8Þe

sj − l−2se8 − edd−1s1e8e8 + Te8e8ssj − l−2se8 − edd1e8e8 − Te8e8d−1d.

Hence, bys4.25d and s4.27d, we get
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iessv0+iydsv0 + iyd−1Goff1
eeGdiag

−1 i ø D2gsydgsy − l−1 Imse8 − edd s4.28d

for someD2.0 independent ofl, where

R { y ° gsyd ª sv0
2 + y2d−1/2 P R.

By the Hölder inequality

E
uyu.R

gsydgsy − l−1 Imse8 − edddy ø igiL2sg−`,−RgøfR,`f,dxdigiL2sR,dxd → 0. s4.29d

Now, by s4.28d and s4.29d, we get

IE
uyu.R

essv0+iydsv0 + iyd−1Goff1
eeGdiag

−1 c dyI→ 0

independently ofl. This ends the proof ofs3.10d. h

Proof of Theorem 3.5:Set

fssd ª sup
ulu,l0

iQvv̄esLl
vv

Qv̄vi.

We know thatfstd is integrable.
For anyeP iR andjù0 we can dominate the integrand in the integral,

Flse,jd ª E
0

`

Qvv̄esLl
vv

Qv̄ve−se+l2jds ds= Qvv̄s1vvse+ l2jd − Ll
vvd−1Qv̄v s4.30d

by fssd. Hence, using the dominated convergence theorem we see thatFlse,jd is continuous at
l=0 andjù0. But

o
ePsp E

1esEdF0se,0d1esEd = o
ePsp E

lim
l→0

1esEdQvv̄s1vvse+ l2jd − Ll
vvd−1Qv̄v1esEd = G.

Recall s3.11d, the definition ofKsl ,td,

Ksl,td ªE
0

l−2t

e−sEQvv̄esLl
vv

Qv̄v ds.

Its integrand can also be dominated byfssd. Hence, using again the dominated convergence
theorem, we see that, forl→0, Ksl ,td is convergent to

K =E
0

`

e−sEQvv̄esL0
vv

Qv̄v ds.

Therefore,

K\ = o
ePsp E

1esEdE
0

`

e−esQvv̄esL0
vv

Qvv̄ ds1esEd = o
ePsp E

1esEdF0se,0d1esEd.
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Wigner measures dynamics in a Coulomb potential
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In this paper, we are concerned with the propagation of the Wigner measure of a
family of solutions to the semiclassical Schrödinger evolution equation with poten-
tial having Coulomb-type singularities inthree space dimensions. We prove that
after collision the Wigner measure is reflected by the potential singularities under
the regularized flowas in classical mechanics. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1924705g

I. INTRODUCTION AND RESULTS

We consider the semiclassical Schrödinger evolution equation

i«]tv
« = H«v«, st,xd P R 3 Rd,

s1.1d
v«s0,xd = vI

«sxd P L2sRdd.

Here,« is a small parameter andvI
« is a bounded family ofL2sRdd. The semiclassical Schrödinger

operatorH«=−s«2/2dD+Usxd is assumed to be self-adjoint onL2sRdd. The self-adjointness ofH«

implies the following conservation law:

E
Rd

uv«st,xdu2dx =E
Rd

uvI
«sxdu2dx, ∀ t P R.

A main question in the semiclassical theory is to calculate the homogenized densityhst ,xd
sthe limit as positive Radon measure when« goes to 0d of the quadratic quantity

h« = uv«st,xdu2,

calledquantum position density.
A basic tool in this context is some positive measure in the phase space calledWigner

measure. It was developed independently by Gérard3 and Lions and Paul.10 Roughly speaking, and
under appropriate assumptions on the family of the initial datavI

«, the homogenized densityhst ,xd
is obtained as the moment inj-space of the Wigner measure associated tosvt

«d. fNote that,
throughout this paper,vt

« denotes the functionx°v«st ,xd.g

hst,xd =E
Rj

d
ntsx,djd.

The main advantage of this approach is that this measure can be calculated by solving a transport
equation with initial data related tovI

«.
In Ref. 3 ssee also Refs. 6 and 10d it has been shown that if the potential is smooth then
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nt = ftsnId, s1.2d

whereft is the classical classical Hamiltonian flow expstHpd of

p =
uju2

2
+ Usxd

andnI is the Wigner measure ofvI
«.

In the context of frequency setsssee, e.g., Ref. 12d, a classical result of propagation similar to
s1.2d is well known. Inthreespace dimensions, an interesting extension of this result to a potential
with Coulomb-type singularities has been performed by Gérard and Knauf.2 In fact, these authors
have proved that the frequency set of the solution tos1.1d with d=3 andU=−1/uxu, is reflected by
the Coulomb centerx=0 under the regularized trajectories of the classical mechanicsssee Sec. III
for precise definitionsd. Gérard and Knauf’s technique is based on the idea of applying to the
quantum problem a method of regularization used in the corresponding classical problem in
celestial mechanics and known asKustaanheimo-Stiefeltransformationssee Sec. IIId.

The main purpose of this paper is to perform the same extension in the context of Wigner
measures. More precisely, by making use of similar arguments to those carried out in Ref. 2 in the
context of frequency sets, and some refined lemmas on propagation of Wigner measures, we
attempt to describe the dynamics of the Wigner measure associated to the solution to the semi-
classical Schrödinger evolution equation

i«]tv
« = −

«2

2
Dv« −

v«

uxu
+ Vsxdv«, st,xd P R 3 R3,

s1.3d
v«s0,xd = vI

«sxd,

whereV is a smooth real potential with sufficient decay at infinity andvI
« is a bounded family in

L2sR3d. fIn this paper we do not discuss the optimal assumptions onV. We assume always thatV
has all the needed propertiessfor example, we need some control ofV at infinity in order to
guarantee that Hamiltonian is self-adjointd.g

Before going further into details, we fix some notations.

Notation: (i) Ṙd
ªRd\ h0j.

(ii) If V is an open subset ofRd thenT*sVdªV3Rd.
We now recall the definition and the basic properties of Wigner measures that we use in the

coming analysis. For more details, the reader is referred to Refs. 3, 6, and 10.
For aPSsRd3Rdd we define the«-dependent family of pseudo-differential operatorsA«

=asx,«Dd by

asx,«Ddusxd =
1

s2pddE
Rj

d
E

Ry
d
asx,«jdeisx−ydjusyddy dj,

for everyuPS8. Notice that for every familysu«d bounded inL2sRdd we have

lim sup
«→0

iasx,«Ddu«iL2sRx
dd ø iaiL` lim sup

«→0
iu«iL2sRx

dd.

The following basic result is due to Gérard3 and Lions and Paul.10

Theorem 1.1 (Refs. 3 and 10):Let sc«d be a bounded family in L2sRdd. Then there are a
subsequence, still denoted byc«, and a positive Radon measuren on T*sRdd, such that

kasx,«Ddc«,c«l ——→
«→0

E
Rx

d3Rj
d
asx,jdnsdx djd s1.4d

for every aPSsRd3Rdd. Moreover,
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iniM ø lim sup
«→0

ic«iL2sRx
dd,

wherei ·iM denotes the norm in the space of bounded Radon measures.
In this context,m is calledWignermeasure ofsc«d. The bounded familysc«d is said to bepure

if the extraction of a subsequence ins1.4d is not needed.
The proof of the existence is based essentially on an argument of separability of the space

SsRd3Rdd. The positivity can be proved in several ways; in Ref. 3 the proof uses a Gärding
inequality and in Ref. 4 a more elementary proof is given, where a Bochner–Schwartz theorem is
used. In Ref. 10 the proof relies on some Gaussian regularization trick.

Remark 1.2: Theorem 1 holds for every familysc«d bounded in Lloc
2 sVd, whereV,Rd is an

open set. In this casem is locally bounded onVx and globally bounded onRj
d.

To describe the relationship between Wigner measure and the weak limit ofuc«u2, we need the
two following definitions.

Definition 1.3:s1d A bounded familysc«d in L2sRdd is said to be«-oscillatory as« goes to 0
if the following property holds for every continuous, compactly supported functionw on Rd:

lim sup
«→0

E
ujuùR/«

uwc«̂sjdu2dj ——→
R→+`

0.

s2d A bounded familysc«d in L2sRdd is said to be compact at infinity as« goes to 0 if

lim sup
«→0

E
uxuùR

uc«sxdu2dx ——→
R→+`

0.

Under the above definitions we have the following.
Proposition 1.4 (Refs. 3 and 10):Let sc«d be a bounded family in L2sRdd with Wigner

measurem. Then
s1d The measurem is bounded onRd3Rd and, if uc«u2⇀m as measure onRd, we have, in the

sense of positive measure,

E
Rd

ms·,djd ø m,

with equality if and only ifsc«d is «-oscillatory.
s2d We have

msRd 3 Rdd ø lim sup
«→0

E
Rd

uc«sxdu2dx,

with equality if and only ifsc«d is «-oscillatory and compact at infinity.
The Wigner measure is defined independently of the coordinates.
Proposition 1.5 (Ref. 5):Let u be aC`-diffeomorphism fromV1 onto V2. Suppose thatsc2

«d
is a pure bounded family in Lloc

2 sV2d. Thenc1
«
ªc2

«ou is a pure bounded family in Lloc
2 sV1d and the

Wigner measuren1 of the familysc1
«d is given by

n1 = udetu8u−1Q−1sn2d,

where n2 is the Wigner measure of the familysc2
«d and Q is the canonical transformation on

T*sV1d given by

sx,jd ° susxd,Tu8−1sxdjd3.

fNote thatTA are used to denote the transposed of a matrixA.g
Consider a particle with mass 1 moving in three-dimensional space according to the laws of

classical mechanics, subject to a perturbed Coulomb potential
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Usxd = −
1

uxu
+ V.

The classical motion of the particle is described by the Hamiltonian system

ẋ = j

j̇ = −
x

uxu3
− ¹ Vsxd, s1.5d

sx,jdut=0
= sx0,j0d P Ṙ3 3 R3.

The standard ODE theory yields a unique maximal solution tos1.5d on some intervalf0,t*f. If
t* , +`, then there isa collision: the particle hits the singularity of the potential in finite timet* .
A natural question in such a situation is how one can extend the trajectory after the collision time.

Let us consider the one-dimension motion in the special case of purely Coulomb potential
si.e., V;0d and zero Kepler energy

hK ª

1

ux0u
−

uj0u2

2
= 0.

By assumingxstdù0, the equation of motion is reduced to

ẋstd =Î 2

xstd
,

which yieldsxstd=Ct2/3. The particle comes in from the infinity, is reflected at the central mass,
and rejected to infinity. The outgoing leg of its path is symmetrical with respect to the incoming
leg.

With this example in mind, we define anextensionof the trajectory after collision as follows:

takesx0,j0dPT*sṘ3d and assume that the classical trajectory reaches the originx=0 at finite time
t* . Then, the extension of this trajectory aftert* is obtained by adding the branch of the trajectory
of the same particle ejected fromx=0, with infinite velocity in the opposite of the incoming
direction.

To make this definition more precise, let us first notice that the direction of collision, when it
happens, is well defined. Indeed, we have the following:

Lemma 1.6: Assume that the solution ofs1.5d collides with the origin x=0 in a finite time t* .
Then, there exists a uniquev=vsx0,j0,t*dPR3, such that

jstd
ujstdu

——→
t→st* d−

v.

See Appendix B for the proof of this fact.
With these notations the definition of the extended trajectories can be given by

Definition 1.7: The extended flow is the mappingf̃ :Rt3T*sṘ3d→T*sṘ3d defined by

f̃tsx0,j0d =Hftsx0,j0d if t , t*

f̂tsx0,j0d if t . t* ,J
whereftsx0,j0d is the usual Hamiltonian trajectory andf̂tsx0,j0d is the trajectory of the same
particle ejected from x=0 at t= t* with infinite velocity in the direction−vsx0,j0,t*d.

The extended trajectory is formed by two legs: the incoming one, which ends up inx=0 with
infinite velocity in the directionvsx0,j0,t*d and the outgoing one, which starts fromx=0 with
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infinite velocity in the opposite direction −vsx0,j0,t*d. For the case of many collisions on the same
trajectory we iterate the process of extension described above. For purely Coulomb potential, the
extended trajectory is obtained by following backward the incoming collision trajectory. This
extension corresponds physically to an elastic bounce. Note that, outside the collision, the ex-
tended flow is the same as the usual one.

In the sequel wedenoteby Collt=hsx,jdPT*sṘ3d :pxsf̃ssx,jdd→
s→t

0j the collisions set at time

t.
The main result of this paper can be stated as follows.
Theorem 1.8: TakevI

« to be a bounded pure family in L2sR3d, «-oscillatory and compact at

infinity, such thatnI is supported inT*sṘ3d. Let v« be the solution ofs1.3d with initial data vI
«.

Then one has:

sid the familyvt
« is pure onṘ3 and its Wigner measurent satisfies

nutuxÞ0
= f̃tsnuI uR3\Collt

d.

sii d If nIsColltd=0, then the familyvt
« is pure, «-oscillatory and compact at infinity. In addition,

nt = f̃tsnId.

Some remarks are in order.
Remark 1.9: The proof of the main theorem is based on two essential arguments. The first one

is the fundamental fact that the extended trajectory coincides with the regularized trajectory
defined by Kustaanheimo–Stiefel transformation in the context of the regularization theory in
celestial mechanics (see Lemma 3.4 below). The second main argument is a new result of propa-
gation of Wigner measure through singular regions (see Lemma 2.2 below for precise statement).

Remark 1.10: Main theorem holds for a potential displaying several Coulomb-type singulari-
ties

o
i=1

N
ci

ux − xiu
+ V,

where xi PR3, ci PR for i =1, . . . ,N and V is a smooth real bounded potential. The definition 1.7
can be generalized in a natural way to a potential of this type.

Remark 1.11: It is an open problem to describent over x=0. Even the question of uniqueness
of nt sif svt

«d is pure onR3 or notd is not solved.
The plan of the rest of the paper is as follows. In Sec. II some lemmas related to the

propagation of Wigner measures are formulated. In Sec. III we recall the definitions and some
properties of the regularized flows and the KS-transformation and we prove some preliminary
results needed to the proof of the main theorem of this work, which is given in Sec. III. In the
Appendixes some technical lemmas are proved.

II. PROPAGATION OF WIGNER MEASURES

We consider the initial values problem

«Dtu
« + P«u« = 0, st,xd P R1+d,

s2.1d
u«s0,xd = uI

«sxd,

whereP«=psx,«Dxd is a semiclassical differential operator andsuI
«d is a bounded family inL2sRdd.

The self-adjointness ofP« implies the conservation of theL2 norm of the family of solutionsu«d.
Thus, the familysut

«d is bounded inL2sRdd for everytPR frecall that, throughout this paper,sut
«d

denotes the functionx°u«st ,xdg and the familysu«d is bounded inLloc
2 sRt3Rx

dd. This allows us to
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define two types of Wigner measures associated to the familysu«d of solutions tos2.1d. The first
one,m=msdx dt dj dtd, is obtained by microlocalization in the space–time variable. The second
one,mt=mtsdx djd, is obtained by microlocalization in the space variable at fixed time.

Proposition 2.1: TakesuI
«d to be a bounded pure family in L2sRdd, «-oscillatory and compact

at infinity. Letsu«d be the solution ofs2.1d with initial data u«s0,xd=uI
«sxd. Then:

sid For every tPR the familysut
«d is pure, «-oscillatory and compact at infinity. In addition, mt

is given by

mt = ftsmId,

whereft is the classical classical Hamiltonian flowexpstHpd of p.
sii d m=dt^ dst+psx,jdd ^ ftsmId.

We consider a familysu«dPL2sRdd of solutions to

P«u« = 0, s2.2d

whereP«=psx,«Dxd is an«-pseudodifferential operator with smooth real symbol. It is well known
ssee Refs. 3 and 10d that if the family su«d is bounded inLloc

2 sRdd then any Wigner measure
associated to this family is transported by the bicharacteristic ofp. More precisely,

suppsmd , hsx,jd P T*sRdd:psx,jd = 0j andHpm = 0,

whereHp=¹jp.¹x−¹xp.¹j, is the Hamiltonian field associated top. This result remains true if
the su«d is bounded inLloc

2 sVd, whereV is an open set ofRd provided that all the bicharacteristics
of p starting fromV are contained inV. In this paragraph we consider the case where some
bicharacteristic ofp starting fromV cross some “black box”F in which the measurem is not
defined. More precisely, we prove the following refined lemma on the propagation of Wigner
measure.

Lemma 2.2: Letsu«dPL2sRdd be a family of solutions to P«u«=0, where P«=psx,«Dxd is an
«-pseudodifferential operator with smooth real symbol. Assume that

sH1d su«d is bounded in Lloc
2 sVd, for some open setV,Rd.

sH2d There exists an integer,, such thats«,u«d is bounded in Lloc
2 sRdd.

Let m denote the Wigner measure ofsuuV
« d. Then, for everyvbT*sVd and every s0PR, such that

vs0
=fs0

svdbT*sVd, we have

m
uvs0

= fs0
smuv

d,

whereft is the classical Hamiltonian flowexpstHpd of p.
Proof: TakecPC0

`sT*svs0
dd be an arbitrary fixed function. Our aim is to show that

kcsx,«Ddu«,u«l ——→
«→0

E
T* svd

csfs0
sx,jddmsdx djd. s2.3d

We use a classical argument of propagation of singularities in microlocal analysis. We introduce a
new variablesPR and we consideru« as depending also on this new variable. The familysu«d is
solution of the following evolution equation with respect tos:

«Dsu
« + P«u« = 0.

One constructs an operatorC«ss,x,«Dxd, so that
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f«Ds + P«,C«ss,x,«Dxdg = Os«`d in LsL2sf− s0,0g 3 Rddd,

C«s0,x,«Dxd = csx,«Dxd.

To meet these conditions, the operatorC«ss, · , ·d is chosen as a formal series in the following
form:

C« = o
jù0

« jc jss,x,«Dd.

The construction of such operator is similar to that carried out in Ref. 7sChap. XXIIId in the
context of propagation of wave front. We will use essentially the following three facts:

sid For everysPR, one has

c0ss,x,jd = csf−ssx,jdd. s2.4d

sii d For everyj ù0 and everysPR,

suppsc jss, · dd , fsssuppscdd.

siii d The partial sumCk
«=o j=0

k « jc j verifies

if«Ds + P«,Ck
«ss,x,«DdgiLsL2sf−s0,0g3Rddd = Os«k+1d.

Under the above notations, we have

s«Ds + P«dCk
«u« = fk

«, s2.5d

where fk
«=f«Ds+P« ,Ck

«gu«. By construction andsH2d, it follows that

ifk
«iL2sf−s0,0g3Rdd ø if«Ds + P«,Ck

«giLsL2sf−s0,0g3Rdddiu«iL2sf−s0,0g3Rdd & «k+1−,. s2.6d

However, froms2.5d, it ensues

d

ds
kCk

«ss,x,«Dxdu«,u«l =
i

«
kfk

«,u«l.

Since the family ofs-dependent operatorsCk
«ss,x,«Dxd is bounded inLsL2sRddd uniformly in

ss,«dP f−s0,0g3 g0,1g, and by usings2.6d and sH2d, we get

U d

ds
kCk

«ss,x,«Dxdu«,u«lU = Os«d

uniformly in sP f−s0,0g for k.2,. This yields, in particular,

ukCk
«s− s0,x,«Dxdu«,u«l − kCk

«s0,x,«Dxdu«,u«lu = Os«d,

that is

lim
«→0

kCk
«s− s0,x,«Dxdu«,u«l = lim

«→0
kCk

«s0,x,«Dxdu«,u«l.

SinceCk
«s0, ·d=c, this gives

lim
«→0

kCk
«s− s0,x,«Dxdu«,u«l = lim

«→0
kcsx,«Dxdu«,u«l. s2.7d

On the other hand, since, for everyj P h1, . . . ,kj, suppsc js−s0, · , ·dd,T*svd andsu«d is bounded
in Lloc

2 sVd, the family sc js−s0,x,«Dxdu«d is bounded in L2sRdd. fRecall that
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suppsc js−s0, · , ·dd,f−s0
ssuppscdd and suppscd,fs0

sT*svdd.g Thus, we infer

lim
«→0

kCk
«s− s0,x,«Dxdu«,u«l = lim

«→0
kc0s− s0,x,«Dxdu«,u«l. s2.8d

This fact ands2.7d imply

lim
«→0

kcsx,«Dxdu«,u«l = lim
«→0

kcs− s0,x,«Dxdu«,u«l. s2.9d

Sincec0s−s0,x,jd=csfs0
sx,jdd is supported inT*svd, then by definition of the Wigner measure it

follows that

lim
«→0

kcs− s0,x,«Dxdu«,u«l =E
T* svd

sc0s− s0,x,jddnsdx djd. s2.10d

Putting togethers2.4d, s2.9d, ands2.10d, one obtains

lim
«→0

kc«sx,«Dxdu«,u«l =E
T* svd

csfs0
sx,jddnsdx djd,

which is s2.3d. h

III. REGULARIZED FLOWS AND KS-TRANSFORMATION

The classical motion of a particle subject to a Coulomb potential

−
1

uxu
+ Vsxd

is described by the following Hamiltonian system:

ẋstd = jstd,

s3.1d

j̇std = −
xstd

uxstdu3
− ¹ Vsxstdd.

This system is singular at the origin since the attraction force of the central mass is infinite at this
point. It is a very unpleasant fact, namely from the numerical point of view. It is thus interesting
to transform the singular systems3.1d into a regular one. This procedure is calledregularization.
It is an old theory in celestial mechanics starting with the paper of Euler1 in 1767. The principle
of this theory is to eliminate, by an appropriate change of space–time coordinates, the singularities
of the vectors fields solutions ofs3.1d and to obtain an equation of motion which is regular for the
considered collision.fNote that the purpose of the regularization theory is to obtain a regular
differential equation of motion and not regular solutions.g The planar perturbed problem was
regularized by Levi-Civita9 and the spatial case by Kustaanheimo.8 The Kustaanheimo–Stiefel
transformationsabbreviated to KS-transformationd is the basic idea in the spatial case. In Secs.
III A and III B we recall the regularized flows and the KS transformationssee Ref. 13 for more
detailsd.

A. Regularized flows

Without details we single out the explicit construction of the regularized flows provided by
Kustaanheimo–Stiefel transformation. For more details the reader is referred to Ref. 13sChaps. II,

Xd. For zP Ṙ4 one sets
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Lszd =1
z1 − z2 − z3 z4

z2 z1 − z4 − z3

z3 z4 z1 z2

z4 − z3 z2 − z1

2, Lszd = 1z1 − z2 − z3 z4

z2 z1 − z4 − z3

z3 z4 z1 z2
2 . s3.2d

The matrixL, called KS-matrix, satisfies

LTszdLszd = uzu2I .

The KS-transformation is the mapping ofR4 onto the physical spaceR3 of Cartesian coordinates
x1,x2,x3, given byx=Lszdz. This may be written explicitly

x1 = z1
2 − z2

2 − z3
2 + z4

2, x2 = 2sz1z2 − z3z4d, x3 = 2sz1z3 + z2z4d.

From this it follows that

uxu = uLszdzu = uzu2. s3.3d

To construct the regularized trajectory starting from the pointsx0,j0dPT*sṘ3d, one proceeds as

follows. First, one choosessz0,z0dPT*sṘ4d satisfying

x0 = Lsz0dz0, j0 =
1

2uz0u2
Lsz0dz0. s3.4d

One denotes

L*sz0,z0d ª SLsz0dz0,
1

2uz0u2
Lsz0dz0D . s3.5d

The pair sz0,z0dPT*sṘ4d satisfying s3.4d is not unique, but the regularized flow defined below
does not depend on the choice ofsz0,z0d ssee Ref. 13 Lemma 2, p. 236d. fIn order to apply this
lemma we have to check thatsz0,z0d belongs to the zero level of the bilinear form:,sz,zd
=kz̄,zl, where z̄ª sz4,−z3,z2,−z1d. SinceLsz0dz̄0=s0,0,0,uz0u2d, then the expression ofz0 s3.6d
yields,sz0,z0d=k2LTsz0dsj0,0d , z̄0l=2ksj0,0d ,Lsz0dz̄0l=0.g Note that, after having chosenz0, z0 is
uniquely determined by

z0 = 2LTsz0dsj0,0d, s3.6d

wheresj0,0d is the four-vector obtained fromj0 by adding the fourth component of value zero and
L is as ins3.2d. Second, one constructs the integral curvesstssd ,zssd ,tssd ,zssdd of the Hamiltonian

p̃st,z,t,zd = tuzu2 + 1
8uzu2 − 1 +Wszd s3.7d

starting froms0,z0,−psx0,j0d ,z0d, where

p =
1

2
uju2 −

1

uxu
+ Vsxd

is the classical Hamiltonian andWszdª uzu2VsLszdzd. One easily verifies thatp̃st0,z0,t0,z0d=0.
The proof of the following lemma is given in Appendix A.

Lemma 3.1: The t-component of every bicharacteristic of p˜ is a bijection fromR onto R.
The regularized flow is defined by

Definition 3.2: The regularized flow is the mappingf̃ :Rt3T*sṘ3d→T*sṘ3d defined by

f̃tsx0,j0d ª L*szssd,zssdd s3.8d

where s satisfiestssd= t. fThe existence and uniqueness ofs is assured by Lemma 3.1.g
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Remark 3.3: Note thatL* is not defined for z=0; and thenf̃tsx0,j0d exists only ifzssdÞ0
fwith s= t−1stdg. Thus, everysx0,j0,td wheresx0,j0d is on a collision orbit and t the collision time
are implicitly excluded from the definitionffor them no suchf̃tsx0,j0d existg.

For a seek of notations we decomposeft sand f̃td as

ftsx,jd = sft
1sx,jd,ft

2sx,jdd, ft
1 = p

x

sftd, ft
2 = p

j

sftd. s3.9d

In the proof of the main theorem we use the following
Lemma 3.4: The extended trajectories coincide with the regularized ones.
The proof of this lemma is given in Appendix B.

B. KS-transformation

We begin this section by recallingssee also Ref. 13, p. 32d the explicit construction of the
local “inverse” of the KS-transformation. One adds a dummy variableuPS1

ª f0,2pf. One de-
notes

V = R3 \ hx P R3:x2 = x3 = 0,x1 , 0j. s3.10d

Over V we considerx :S13V→R4 defined by

z1 =
1
Î2

sx1 + uxud1/2 cosu,

z2 =
1
Î2

sx1 + uxud−1/2sx2 cosu + x3 sinud,

z3 =
1
Î2

sx1 + uxud−1/2sx3 cosu − x2 sinud,

z4 =
1
Î2

sx1 + uxud1/2 sinu.

Remark that, for a fixedxP Ṙ3, the sethxsx,ud ,uPS1j is a curve inṘ4. Such a curve, which is
called thefiber in R4 over x, is mapped by the KS-transform onto the single pointx.

Remark 3.5: One denotes

Ṽ = R3 \ hx P R3:x2 = x3 = 0,x1 . 0j.

There exists a“ local inverse” x̃ of the KS-transformation defined overṼ. In our proof we use

these two“ local inverses” and a partition of unity to coverṘ3. Since the discussion is the same for
x and x̃ we will work only withx.

One can check easily that

detsx8su,xdd =
1

8uxu
, s3.11d

for every su ,xdPS13 Ṙ3.
One defines the mappingG :S13T*sVd°T*sR4d by
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Gsx,j,ud = sxsx,ud,2LTsxsx,uddsj,0dd, s3.12d

whereL is defined bys3.2d and sj ,0d is the four-vector obtained fromj by adding the fourth
component of value zero. Under the notationss3.5d and s3.12d, we have

L*sGsx,j,udd = sx,jd

for everyuPS1. Also it is not hard to see that

Tsx8sx,udd−1sj,0d = 2LTsxsx,uddsj,0d s3.13d

for every su ,x,jdPS13T*sṘ3d.
The following lemmas will be useful in the proof of the main theorem.
Lemma 3.6: Takesx,jdPT*sVd and uP f0,2pf to be fixed. LetFs

usx,jd denote the classical
flow associated to p˜ defined bys3.7d starting from the points0,−psx,jd ,Gsx,j ,udd. fNote that for
greater convenience, we will sometimes denote the point in phase space byst ,t ,z,zd instead of
st ,z,t ,zd.g Then there existsk.0, such that

Fs
usx,jd = stssd,− psx,jd,Gsftssdsx,jd,u + asx,j,tssdddd, s3.14d

for every sP g−k ,kf. Here, tssd is the inverse of the functiont−1 given by

t−1std =E
0

t 1

ufs
1sx,jdu

ds s3.15d

and

asx,j,td ª E
0

t

Gsft8sx,jdddt8,

where

Gsx,jd =
x2j3 − x3j2

2sx1 + uxuduxu
.

Proof: The numberk is chosen sufficiently small, such thats3.14d makes sense. More pre-
cisely, we takek, such thatftssdsx,jd belongs toT*sVd for every sP g−k ,kf. Sincefts0dsx,jd
=f0sx,jd=sx,jdPT*sVd thenk0 is well defined. By a straightforward computation we can check
that s3.14d defines a solution to the Hamiltonian system ofp̃ with initial data F0

usx,jd=s0,
−psx,jd ,Gsx,j ,udd. Let us remark finally that the applicationsx,jd°ksx,jd is continuous from
T*sVd onto g0, +`f. h

Remark 3.7: For large times the expression ofFs
usx,jd is not explicit. Nevertheless, since

dp̃/dt=0, the t-component is always equal to−psx,jd.
Lemma 3.8: LetQ be the canonical transformation

Qst,t,x,u,j,bd = st,t,xsx,ud,Tsx8sx,udd−1sj,bdd s3.16d

and Fs
usx,jd the classical flow associated to p˜ defined bys3.7d starting from the points0,

−psx,jd ,Gsx,j ,udd. Then, for everyuPS1 and every sPR, we have

p
sx,jd

fQ−1sFs
usx,jddg = L*Sp

sz,zd
sFs

usx,jddD ,

whereL* is defined bys3.5d.
See Appendix C for the proof of this lemma.
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IV. PROOF OF THE MAIN THEOREM

On Rt3Rz
4 we define the transformed functionu by

u«st,zd = v«st,Lszdzd. s4.1d

It is easy to check that the mappingf ° f̃ defined byf̃szd= fsLszdzd is isometric fromL2sR3d onto
L2sR4,8uzu2dzd. An explicit computation yields

Lemma 4.1: (cf. Ref. 2): Ifv« is a solution tos1.3d, then the function u« defined bys4.1d
satisfies the following equation inD8sRt3Rz

4d:

i«uzu2]tu
« = −

«2

8
Dzu

« − u« + Wszdu«, s4.2d

where Wszdª uzu2VsLszdzd.
The change of variablex=Lszdz and conservation laws of Eq.s1.3d give

E
R4

uzu«st, · du2dz=
1

8
E

R3
uv«st, · du2dx =

1

8
E

R3
uvI

«sxdu2dx.

Thus, the familysu«d is bounded inLloc
2 sRt3 Ṙ4d, and we may define a locally bounded Wigner

measure onT*sRt3 Ṙ4d associated to the familysuuzÞ0u
« d. This measure will be denoted bym. The

strategy of the proof is to give a complete description ofm and use the transformation rule of the
Wigner measure by the diffeomorphismx to determinent abovexÞ0. Over x=0, we use the
principle of conservation of the total mass.

Step 0:In order to use the KS-transform and its local inverse we have to make some extra
hypotheses onnI. These hypotheses do not break the generality. More precisely, without any loss
of generalitywe may takevI

« to be a bounded pure family in L2sRdd, «-oscillatory and compact at
infinity, such that

ivI
«iH2sR3d = Os«−2d, s4.3d

and nI is compactly supported inT*sVd, where V is defined bys3.10d. Indeed, sincenIsh0j
3Rj

3d=0 there existsfsince Ṙ33R3=øvPS2hsv ,s.0j3Rj
3 is a noncountable disjoint union,g a

half line D+=hsv0,sù0j, such thatnIsD+3Rj
3d=0. By rotation we may takeD+=hx,x2=x3

=0,x1,0j=R3\V. We introduce the following family of bump functionsck,

ucku ø 1,

cksjd = 1, uju ø k,

cksjd = 0, uju ù 2k.

Also, we introduce the familyfk,

ufku ø 1,

fksxd = 1, huxu ø kj ù H−
1

k
ø x1,Îux2u2 + ux3u2 ù

1

k
J ,

fksxd = 0, huxu ù 2kj ø H−
1

2k
ø x1,Îux2u2 + ux3u2 ø

1

2k
J .

We take
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vIskd
« = cks«DdfksxdvI

«.

Under these notations, we have

lim
«→0

ivIskd
« − vI

«iL2sR3d
2 =E s1 − cksjdfsxdd2nIsdx djd →

k→`
0. s4.4d

In the last line we have used the dominated convergence theorem and the fact thatnIsD+3Rj
3d

=0.
Let vk

« be the solution of the Cauchy problems1.3d with initial datavIskd
« . FromL2-conservation

law ands4.4d it follows that

lim
«→0

ivk
«st, · d − v«st, · diL2sR3d = lim

«→0
ivIskd

« − vI
«iL2sR3d →

k→`
0.

So, it holds that, for everytPR,

inkstd − ntiM →
k→`

0, s4.5d

wherenkstd denotes the Wigner measure associated tosvkd«st , ·dd andi ·iM the norm in the space
of bounded Radon measures. Once the main theorem is proved for the familiesvk

«, k=1,2, . . ., it
follows for the familyvI

« by s4.5d.
Observe finally that sinceckPC0

`sR3d then the familysvk
«d of initial data belongs toH2sR3d,

for everyk=1,2, . . . .Furthermore, it satisfies

ivIskd
« iH2sR3d = Os«−2d.

The rest of our proof will proceed in three steps.
Step 1:In this short paragraph we give a description ofnt for small timessbefore the colli-

siond. We choosek0 as the minimum over suppsnId of the ksx,jd defined by Lemma 3.6. Notice
thatk0 is strictly positive because the mappingsx,jd°ksx,jd is continuous and the support ofnI

is assumed to be compact. It is evident that

nt = ftsnId, t P g − k0,k0f,

and, thanks to Proposition 2.1,

n = dt ^ dt+psx,jd ^ ftsnId, t P g − k0,k0f,

with ft denoting the classical Hamiltonian flow of

p =
1

2
uju2 −

1

uxu
+ V.

In order to use the transformx we considerv« as a function depending also on the variableu. The
associated Wigner measure becomes

ntsdu db dx djd = du ^ db=0 ^ ntsdx djd, t P g − k0,k0f,

where du denotes the Lebesgue measure onf0,2pf and db=0 is the Dirac mass inb the dual
variable ofu. In particular,

ntsdu db dx djd = du ^ db=0 ^ ftsnId, t P g − k0,k0f,

and

nsdt dx du dt dj dbd = du ^ db=0 ^ dt ^ dt+psx,jd ^ ftsnId, t P g − k0,k0f. s4.6d
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Step 2:This step is devoted to the description of the Wigner measurem associated tosu«d. The
main result is the following

Proposition 4.2: Under the notations3.12d, we have

msdzdt dz dtd =
1

8
E

0

2p

sFt
usnId ^ dtddu, s4.7d

whereFs
usx,jd denotes the classical trajectory of the Hamiltonian p˜ starting from the points0,

−psx,jd ,Gsx,j ,udd
Proof: The idea is simple: we use the explicit expressions4.6d and the transformation rule of

the Wigner measure by the diffeomorphismx to determinem for a small time, and then use
Lemma 2.2 to propagate the local explicit information to all the time. We start with the following

Lemma 4.3: The identitys4.7d holds for tPg−k0,k0f.
Proof: We have to prove that

E ast,t,z,zdmsdt dt dzdzd =
1

8
E

0

2p E
Rt

E asFt
usx,jddnIsdx djddt du s4.8d

for everyaPC0
`sT*sg−k0,k0f3Ṙ4dd.

Sincenug−k0,k0f
is supported inT*sg−k0,k0f3S13Vd we may use transformation rule of the

Wigner measure by the diffeomorphismst ,x,ud° st ,xsx,udd. This transformation yields

m = Qsudetsx8sx,uddund, t P g − k0,k0f s4.9d

whereQ is the canonical transformation given bys3.16d. From s3.11d it follows that

m = QS 1

8uxu
nD, t P g − k0,k0f. s4.10d

Sincen is supported inb=0 then we have to deal only with the values ofQ on b=0. Usings3.13d,
one obtains

Qst,t,x,u,j,0d = st,t,xsx,ud,2LTsxsx,uddsj,0dd = st,t,Gsx,j,udd. s4.11d

Putting togethers4.6d and s4.9d–s4.11d, it follows that

E ast,t,z,zdmsdt dt dzdzd =E 1

8uft
1sx,jdu

ast,− psx,jd,Gsftsx,jd,uddnIsdx djddt du,

s4.12d

where ft
1sx,jd=pxftsx,jd. SinceG is periodic in the variableu, the right-hand sidesRHSd of

s4.12d does not change if we replaceu by u+asx,j ,td, whereasx,j ,td is defined in Lemma 3.6
sa is well defined becausetP g−k0,k0f d. This implies

s4.12d =E 1

8uft
1sx,jdu

ast,− psx,jd,Gsftsx,jd,u + asx,j,tdddnIsdx djddt du.

For every fixedsx,jdPsuppsnId we make the change of variabless= t−1std fdefined bys3.15dg in
the last integral. This gives

s4.12d =E 1

8
astssd,− psx,jd,Gsftssdsx,jd,u + asx,jd,tssdddnIsdx djddsdu.

Recall that the numberk0 is chosen so that the conditions of Lemma 3.6 are satisfied for all
sx,jdPsuppsnId. In particular, one has
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stssd,− psx,jd,Gsftssdsx,jd,u + asx,j,tssdddd = Fs
usx,jd,

which yields

E ast,t,z,zdmsdt dt dzdzd =
1

8
E

0

2p E E asFs
usx,jddnIsdx djddsdu

as claimed. This concludes the proof of Lemma 4.3 h

Our next task is to use Lemma 2.2 to extend the local result provided bys4.7d to all T*sRt

3 Ṙ4d. The family su«d is solution of

p̃st,x,«Dt,«Dxdu« = 0,

where p̃ is the smooth symbol given bys3.7d. Also, su«d is bounded inLloc
2 sRt3Rd\Fd whereF

=Rt3 h0j. Thus, the hypothesissH1d of Lemma 2.2 is satisfied. In the next lemma we prove that
su«d satisfies the hypothesissH2d with l =6.

Lemma 4.4: The familysu«d defined bys4.1d satisfies

iu«iL`sRt,L
2sRz

4dd = Os«−6d. s4.13d

Proof: Recall that, as explained in the beginning of this section, the initial familyvI
« is

bounded inL2sRdd and belongs toH2sR3d, with

ivI
«iH2sR3d = Os«−2d.

By change of variable and conservation laws of the equations1.3d, we have

E
R4

uzu«st, · du2dz=
1

8
E

R3
uv«st, · du2dx =

1

8
E

R3
uvI

«sxdu2dx,

for every tPR. Thereby, we estimate

E
R4

uu«st, · du2dzø E
uzuø1

uu«st, · du2dz+E
uzuù1

uzu2uu«st, · du2dz& iu«st, · diL`sR3d
2 + ivI

«iL2sR3d
2

for every tPR. From the explicit formulas4.1d, it follows that

iu«st, · diL`sR4d = iv«st, · diL`sR3d s4.14d

for every tPR. However, via Sobolev embedding, we obtain

iv«st, · diL`sR3d & iv«st, · diH2sR3d

for every tPR. Hence, in order to proves4.13d, it suffices to prove

iv«st, · diL`sRt,H
2sR3dd & «−4ivI

«iH2. s4.15d

Observe thatv« is solution to

i]tv
« = A«v

«, vut=0u
« = vI

«, s4.16d

where

A« = S«

2
D −

1

«uxu
+ VsxdD .

Since the domain ofA« is H2sR3d ssee for example Ref. 11d, it ensues
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iv«st, · diL`sRt,L
2sR3dd + iA«v

«st, · diL`sRt,L
2sR3dd ø ivI

«iH2. s4.17d

However, since

D =
2

«
A« +

2

«2

1

uxu
−

2

«2Vsxd,

we have

iv«st, · diLt
`sH2sR3dd & iv«st, · diLt

`sL2sR3dd +
1

«
iA«v

«st, · diLt
`sL2sR3dd +

1

«2Iv«st, · d
uxu I

L`sRt,L
2sR3dd

+
1

«2iVv«st, · diL`sRt,L
2sR3dd. s4.18d

SinceV is bounded, we get

iVv«st, · diL`sRt,L
2sR3dd ø iv«st, · diL`sRt,L

2sR3dd. s4.19d

Also, Hardy inequality gives

Iv«st, · d
uxu I

L`sRt,L
2sR3dd

& i ¹ v«st, · diL`sRt,L
2sR3dd & d«2iv«iL`sRt,H

2sR3dd +
Cd

«2 iv«iL`sRt,L
2sR3dd.

s4.20d

Choosingd small and combinings4.18d and s4.20d, we infer

iv«st, · diL`sRt,H
2sR3dd & «−4siv«st, · diL`sR,L2d + iA«v

«st, · diL`sR,L2dd. s4.21d

The statements4.15d is then the combination ofs4.17d and s4.21d. h

To close the proof of Proposition 4.2, it remains to be proven that the small intervalg
−k0,k0f contains all the information onm. In other words, we have to check that the union of the

Hamiltonian curves ofp̃ starting fromT*sg−k0,k0f3 Ṙ4d contains suppsmd. This follows from the
fact that suppsmd is contained in the characteristic set ofp̃ and that thet-component of every
bicharacteristic ofp̃ is a bijection fromR onto R sremember Lemma 3.1d. h

Step 3:In this final step we give the description of the measurent over xÞ0. In order to use

the “local inverse” of KS-transformation we write any test functionaPC0
`sT*sS13Rt3 Ṙ3dd as

a=a1+a2, such thata1PC0
`sT*sS13Rt3Vdd anda2PC0

`sT*sS13Rt3Ṽdd. Since the functionsa1

anda2 are treated in the same manner, we assume thata2=0 and we will treata1 only. By using
the explicit formulas4.7d and the inverse of the transformationQ given by s3.16d, we get

E ast,t,x,j,u,bdnsdt dx dj du dbd = =E Up
z

sFt
usx,jddU2

asQ−1sFt
usx,jdddnIsdx djddt du.

s4.22d

Let tssd denote thet-component ofFt
usx,jdd. The Hamiltonian system yields

ṫssd = Up
z

sFt
usx,jddU2

.

By making the change of variablestssd= t on the RHS ofs4.22d, one obtains
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E ast,t,x,j,u,bdnsdt dx dj du dbd =E asQ−1sFt−1std
u sx,jdddnIsdx djddt du. s4.23d

We do not need to calculate all the expressionQ−1sFt−1std
u sx,jddd. In fact, sincev« does not depend

on u, thesu ,bd-component ofn is du ^ db=0. We take then a test functiona which does not depend
on su ,bd. Remark 3.7 says that

p
t,t

Q−1sFt−1std
u sx,jdd = st,− psx,jdd.

Finally, Lemma 3.8 yields

p
x,j

Q−1sFt−1std
u sx,jdd = L*Sp

sz,zd
sFt−1std

u sx,jddD .

Thus, the identitys4.23d becomes

2pE ast,t,x,jdnsdt dt dx djd =E
0

2p E E ast,− psx,jd,sL*Sp
sz,zd

sFt−1std
u sx,jddDdnIsdx djddt du.

s4.24d

However, by definition 3.2, we have

L*Sp
sz,zd

sFt−1std
u sx,jddD = f̃tsx,jd, s4.25d

for everyuPS1. Thus,s4.24d becomes

E ast,t,x,jdnsdt dx dt djd =E E ast,− psx,jd,f̃tsx,jddnIsdx djddt,

for everyaPC0
`sT*sR3 Ṙ3dd. From this, one concludes that, as a function ofst ,xd-variable,sv«d

is pure onR3 Ṙ3. Furthermore, the Wigner measure is given by

nsdt dx dt djd = dt ^ dt+psx,jd ^ f̃tsnIduxÞ0
. s4.26d

Let ñt be a Wigner measurefwe do not know if there exists only one—the uniquenesssand then

the fact thatsv«d is pure overṘ3d will follow from the explicit formulas4.27dg associated tosv«d
over Ṙ3. According tos4.26d, one obtains easily

ñt = f̃tsnIduxÞ0
.

But

f̃tsnIduxÞ0
= f̃tsnIuR3\Collt

d,

which yields

ñt = f̃tsnIuR3\Collt
d. s4.27d

If nt is a Wigner measure associated tosv«d on R3 then

ntuxÞ0
= ñt = f̃tsnIuR3\Collt

d.

Nevertheless we do not know ifnt is uniquefif sv«d is pure onR3 or notg. This achieves the proof
of the statementsid of the main theorem.
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The statementsii d of the main theorem is a direct application of the conservation of the total
mass. Indeed, ifnIsColltsnIdd=0 then the statementsid of the main theorem yields

ntuxÞ0
= f̃tsnId. s4.28d

Then it remains to prove thatntux=0
=0. First, one has

intuxÞ0
iM ø intiM.

second froms4.28d, it ensues

intuxÞ0
iM = if̃tsnIdiM = inIiM = lim sup

«→0
ivI

«iL2sR3d.

The latter equality follows from Proposition 1.4 and the assumptions on the family of initial data
vI

«. Using again Proposition 1.4 and the conservation of theL2-norm, one gets

intiM ø lim sup
«→0

iv«st, · diL2sR3d = lim sup
«→0

ivI
«iL2sR3d.

This yields

intuxÞ0
iM = intiM,

which means thatntux=0
;0 and so

nt = ntuxÞ0
= f̃tsnId.

The purity,«-oscillation, and compactness at infinity of the familyvt
« follows directly from the

explicit expression ofnt, and the conservation of the total masssremember Proposition 1.4d. This
concludes the proof of Theorem 1.8. j

APPENDIX A: PROOF OF LEMMA 3.1

Let st0,z0,t0,z0dPT*sR3 Ṙ4d satisfying p̃st0,z0,t0,z0d=0 and stssd ,zssd ,tssd ,zssdd be the
classical trajectory of the Hamiltonianp̃ starting fromst0,z0,t0,z0d:

ż =
1

4
zssd,

żssd = − 2tssdzssd − ¹ Wszssdd,

ṫssd = uzssdu2,

ṫssd = 0,

st,z,t,zdus=0
= st0,z0,t0,z0d. sA1d

We have to prove that

tssd →
s→±`

± ` sA2d

and thats° tssd is an injection. Sinceṫssd= uzssdu2 then the failure ofsA2d means thatzPL 2sg
−` ,0gd or zPL 2sf0, +`fd. Assume, for example, thatzPL 2sf0, +`fd, and letw a smooth real
valued function, so that
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wssd = 0, sø − 1, wssd = 1, sù 0.

We set

yssd = wssdzssd

First, sincezPL 2sf0, +`fd thenyPL 2sRd. Second, the equation of motion yields

z̈ssd = −
t0

2
zssd −

1

4
¹ Wszssdd, sA3d

which implies thatz̈PL 2sf0, +`fd. Thus,ÿPL 2sRd and soyPH2. This implies, in particular, that

uẏssdu + uyssdu →
s→+`

0,

and then

użssdu + uzssdu →
s→+`

0, sA4d

However,sA1d and the conservation of the classical Hamiltonian give

t0uzssdu2 + 2użssdu2 + Wszssdd = 1,

which contradictssA4d sremember thatWs0d=0d and provessA2d. On the other hand, sinceṫssd
= uzssdu2, if s° tssd is not injective then there exists a nontrivial intervalfs1,s2g, such thatzssd
=0, for everysP fs1,s2g. This implies, also, thatzssd=4żssd=0 and yields a contradiction with the
conservation of the classical Hamiltonian as above. Hence,s° tssd is an injection, as claimed.
This concludes the proof of Lemma 3.1. h

APPENDIX B: PROOF OF LEMMA 3.4

It is easy to checkssee Ref. 13, Chap. Xd that outside the sethsPR :zssd=0j the transforma-
tion s3.8d defines a solution to the system

ẋstd = jstd,

sB1d

j̇std = −
xstd

uxstdu3
− ¹ Vsxstdd.

More precisely, if one writes

then the transformations3.8d is well defined on everyI*
i andf̃tsx0,j0d is a solution to the system

sB1d. fLet us note here that collision times cannot accumulate. In fact, the collision orbits are
either periodic or go to spacial infinity in both time directions.g Furthermore, inI*

1 the transformed
f̃tsx0,j0d coincides with the regular solution ofsB1d with initial data sx0,j0d. Also, we have

s1
* =E

0

t1
* 1

uft
1sx0,j0du

dt,

wheret1
* is the first collision time of the classical trajectoryftsx0,j0d starting fromsx0,j0d with the

potential centerx=0. Let sx̃std , j̃stddª f̃tsx0,j0d denotes the regularized trajectory starting from

sx0,j0d. The proof of Lemma 3.4 and Lemma 1.6fSincej̃std=jstd for t, t1
* then the existence of

the limit
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limt→st1
* d−

j̃std

uj̃stdu

proves Lemma 1.6g is equivalent to the existence of both limits

limt→st1
* d−

j̃std

uj̃stdu
and limt→st1

* d+
j̃std

uj̃stdu
,

and the equality

lim
t→st1

* d+

j̃std

uj̃stdu
= − lim

t→st1
* d−

j̃std

uj̃stdu
.

Sincetssd is a continuous and increasing function, then

tssd → st1
*d± ⇔ s→ ss1

*d±.

Thus, by definition, we have

lim
t→st1

* d±

j̃std

uj̃stdu
= lim

s→ss1
* d±

Lszssddzssd
uLszssddzssdu

.

Then, to conclude the proof of the lemma, it suffices to prove that the functions°Lszssddzssd has
a nonzero derivative ins=s1

* . A direct computation yields

d

ds
sLszssddzssddus=s1

* = Lsżss1
*ddzss1

*d + Lszss1
*ddżss1

*d =
1

4
Lszss1

*ddzss1
*d.

In the last line we have usedzss1
*d=0. Thus, we have only to check thatLszss1

*ddzss1
*dÞ0. On the

one hand, in view ofs3.3d, we have

uLszss1
*ddzss1

*du = uzss1
*du2.

On the other hand, the conservation of Hamiltonian implies

p̃szss1
*d,tss1

*d,zss1
*d,tss1

*dd = p̃szs0d,ts0d,zs0d,ts0dd = 0.

Sincezss1
*d=0 we get1

8uzss1
*du2=1 as desired. Finally, we obtain

lim
t→st1

* d±

j̃std

uj̃stdu
= ±

Lszss1
*ddzss1

*d
8

.

wheretss1
*d= t1

* . Further collisionsst2
* ,t3

* , . . .d are treated in the same way. This closes the proof of
Lemma 3.4.

APPENDIX C: PROOF OF LEMMA 3.8

One denotespsz,zdFs
usx,jd=szssd ,zssdd. Recall thatQ−1 is given by

Q−1st,t,z,zd = st,t,x−1szd,Tfsx−1d8szdg−1szdd.

It is clear thatpxsx−1szssddd=Lszssddzssd. Hence, we have to prove that
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Tfsx−1d8szssddg−1szssdd =
1

2uzssdu2
sLszssddzssd,0d. sC1d

By a straightforward computation we get

Tfsx−1d8szdg−1 =
1

2uzu21
z1 − z2 − z3 z4

z2 z1 − z4 − z3

z3 z4 z1 z2

0 0 0 0
2 + Aszd, sC2d

whereAszd is a matrix with lines of the form

Li = aiszdsz4 − z3 − z2 z1d. sC3d

Hereai :R4→R, i =1,2,3,4 aregiven functions. Thus, in order to provesC1d, it suffices to show
that the bilinear quantity

lsz,zd = z4z1 − z3z2 + z2z3 − z1z4 sC4d

is a first integral of the Hamiltonianp̃, andlsGsx,j ,udd=0 for everysu ,x,jdPS13T*sṘ3d. This is
a well-known factssee Ref. 13 Lemma 2, p. 236d. This achieves the proof of lemma 3.8.

1Euler, L., “De moto rectilineo trium corporum se mutuo attrahentium,” Novi Comm. Acad. Sci. Imp. Petrop.11,
144–151s1767d.

2Gérard, C. and Knauf, A., “Collisions for the quantum Coulomb Hamiltonian,” Commun. Math. Phys.143, 17–26
s1991d.

3Gérard, P.,Mesures Semi-classiques et Ondes de Bloch, Séminaire Equations aux Dérivées Partielles, exp 6s1990–1991d
sÉcole polytechnique, Palaiseaud.

4Gérard, P., “Oscillations and concentration effects in semilinear dispersive wave equations,” J. Funct. Anal.141, 60–98
s1996d.

5Gérard, P., and Leichtnam, E., “Ergodic properties of eigenfunctions for the Dirichlet problem,” Duke Math. J.71,
559–607s1993d.

6Gérard, P., Markowich, A., Mauser, N. J., and Poupaud, F., “Homogenization limits and Wigner transforms,” Commun.
Pure Appl. Math.L , 323–379s1997d.

7Hörmander, L.,The Analysis of Linear Partial Operators. III. Pseudodifferential operators, Grundlehren der Mathema-
tischenfFundamental Principles of Mathematical Sciencesg Vol. 274 sSpringer, Berlin, 1985d.

8Kustaanheimo, P., “Spinor regularization of the Kepler motion,” Ann. Univ. Turku, Ser. A. I. 73,s1964d.
9Levi-Civita, T., “Sur la régularisation du problème à trois corps,” Acta Math.42, 99–144s1920d.

10Lions, P.-L. and Paul, T., “Sur les mesures de Wigner,” Rev. Mat. Iberoam.9, 553–618s1993d.
11Reed, M. and Simon, B.,Methods of Modern Mathematical PhysicssAcademic, New York, 1987d.
12Robert, D.,Autour de l’approximation Semi-classiquesBirkhäuser, Basel, 1983d.
13Stiefel, E. L. and Scheifele, G.,Linear and Regular Celestial Mechanics, Grundlehren der Mathematischen Wissen-

schaften Band Vol. 174sSpringer, Berlin, 1975d.

063512-21 Wigner measures dynamics in a Coulomb potential J. Math. Phys. 46, 063512 ~2005!

                                                                                                                                    



Equilibrium positions, shape invariance and Askey–Wilson
polynomials

Satoru Odake
Department of Physics, Shinshu University, Matsumoto 390-8621, Japan

Ryu Sasaki
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

sReceived 30 March 2005; accepted 15 April 2005; published online 9 June 2005d

We show that the equilibrium positions of the Ruijsenaars–Schneider–van Diejen
systems with the trigonometric potential are given by the zeros of the Askey–
Wilson polynomials with five parameters. The corresponding single particle quan-
tum version, which is a typical example of “discrete” quantum mechanical systems
with a q-shift type kinetic term, is shape invariant and the eigenfunctions are the
Askey–Wilson polynomials. This is an extension of our previous study, which
established the “discrete analogue” of the well-known fact; the equilibrium posi-
tions of the Calogero systems are described by the Hermite and Laguerre polyno-
mials, whereas the corresponding single particle quantum versions are shape invari-
ant and the eigenfunctions are the Hermite and Laguerre polynomials. ©2005
American Institute of Physics.fDOI: 10.1063/1.1927080g

I. INTRODUCTION

The Calogero–Sutherland systems1 and their integrable deformation called the Ruijsenaars–
Schneider–van Diejen systems2,3 have many attractive features at both classical and quantum
mechanical levels. In our recent papers,4,5 the equilibrium positions of the classical Ruijsenaars–
Schneider–van Diejen systems were studied. The equilibrium positions of the Calogero–
Sutherland systems are described by the zeros of the classical orthogonal polynomials, the Her-
mite, Laguerre, Chebyshev, Legendre, Gegenbauer, and Jacobi polynomials.6–8 Since the
Ruijsenaars–Schneider–van Diejen systems are deformation of the Calogero–Sutherland systems,
it is expected that the equilibrium positions of the Ruijsenaars–Schneider–van Diejen systems are
described by some deformation of these classical orthogonal polynomials. This is indeed the case
and we obtained the deformed Hermite, Laguerre, and Jacobi polynomials.5 These deformed
orthogonal polynomials fit in the Askey-scheme of the hypergeometric orthogonal polynomials;9,10

sid rational potential cases, one and two parameter deformation of the Hermite polynomials are a
special case of the Meixner–Pollaczek polynomial and a special case of the continuous Hahn
polynomial, and two and three parameter deformation of the Laguerre polynomials are the con-
tinuous dual Hahn polynomial and the Wilson polynomial,sii d trigonometric potential cases,
several one parameter deformation of the Jacobi polynomials are special cases of the Askey–
Wilson polynomial. The Askey–Wilson polynomial has five parameters,11 but the deformed Jacobi
polynomials obtained in Ref. 5 have only three parameters. A natural question arises; findsinte-
grabled multiparticle systems whose equilibrium positions are described by the Askey–Wilson
polynomials with five parameters.

Shape invariance is an important ingredient of many exactly solvable quantum
mechanics.12–14 In another recent paper of ours,15 the shape invariance of “discrete” quantum
mechanical single particle systems, whose kinetic term causes a shift of the coordinate in the
imaginary direction, are discussed. The eigenfunctions of these shape invariant systems are a
special case of the Meixner–Pollaczek polynomial, a special case of the continuous Hahn poly-
nomial, the continuous dual Hahn polynomial and the Wilson polynomial. These polynomials have
all appeared in the above discussion about the equilibrium positions, in which we have one more
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polynomial, the Askey–Wilson polynomial. This gives the second question; are the quantum
mechanical single particle systems, whose eigenstates are the Askey–Wilson polynomial, shape
invariant or not?

We will answer the above two questions in this paper. The answer to the first question is found
by the same method given in Ref. 5, i.e., numerical analysis, functional equation, and three-term
recurrence. The second question is answered affirmatively by using the properties of the Askey–
Wilson polynomials and similar discussion in Ref. 15 with replacement of a shift operator by a
q-shift operator.

This paper is organized as follows. In Sec. II, the classical equilibria of the Ruijsenaars–
Schneider–van Diejen system are studied. For a suitable choice of the elementary potential func-
tions, the equilibrium positions are given by the zeros of the Askey–Wilson polynomials with five
parameters. In Sec. III we discuss the shape invariance of “discrete” quantum mechanical single
particle systems with aq-shift type kinetic term. After discussing general theory, we present an
explicit example of such shape invariant systems, in which eigenstates are described by the
Askey–Wilson polynomials. The final section is for a summary and comments.

II. MULTIPARTICLE SYSTEMS: EQUILIBRIUM POSITIONS

Let us consider the equilibrium positions of the classical Ruijsenaars–Schneider–van Diejen
systems with the trigonometric potential,2,3 which are integrable deformation of the celebrated
Calogero–Sutherland systems of exactly solvable multiparticle quantum mechanics. Its classical
Hamiltonian corresponding to the BC root system is the following:3

Hsp,qd = o
j=1

n Scoshpj
ÎVjsqdVj

*sqd −
1

2
sVjsqd + Vj

*sqddD , s1d

Vjsqd = wsqjd p
k=1

kÞ j

n

vsqj − qkdvsqj + qkd s j = 1, . . . ,nd, s2d

vsxd =
sinsx − ig0d

sinx
, s3d

wsxd =
sinsx − ig1d

sinx

sinsx − ig2d
sinx

cossx − ig3d
cosx

cossx − ig4d
cosx

, s4d

whereq= tsq1, . . . ,qnd and p= tsp1, . . . ,pnd are the coordinates and conjugate momenta, andgj s j
=0, . . . ,4d are the real positive coupling constants. The potentialsVj andVj

* are complex conjugate
of each other. Our convention of a complex conjugate function is the following: for an arbitrary
function fsxd=onanx

n sanPCd, we definef*sxd=onan
*xn. Herec* is the complex conjugation of a

numbercPC. Note that f*sxd is not the complex conjugation offsxd, sfsxdd* = f*sx*d. This is
relevant for considering complex variables in Sec. III. The equilibrium positionsp=0, q= q̄ are
determined by the condition4

Vjsq̄d = Vj
*sq̄d . 0 s j = 1,2, . . . ,nd. s5d

This equationwithout inequalityis rewritten in the Bethe ansatz type equation

p
k=1

kÞ j

n
vsq̄j − q̄kdvsq̄j + q̄kd

v*sq̄j − q̄kdv*sq̄j + q̄kd
=

w*sq̄jd
wsq̄jd

. s6d

Note thatq̄j =0,p /2 is excluded ins5d but allowed ins6d.
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By the same method given in Ref. 5snumerical analysis, functional equation, and three-term
recurrenced, we can show that the equilibrium positionshq̄jj are given by the zeros of the Askey–
Wilson polynomial11 swe follow the notation of Koekoek and Swarttouw10d pnsx;a,b,c,duqd
~P j=1

n sx−cos 2q̄jd with the following parametersswhile preparing the paper, the authors became
aware of a paper by van Diejen,16 in which the same result was presentedd:

q = e−2g0, sa,b,c,dd = se−2g1,e−2g2,− e−2g3,− e−2g4d. s7d

The outline of derivation is as follows. The functional equation forfsxd=P j=1
n sx−cos 2q̄jd is the

same as Eq.sA.4d se=−1d in Ref. 5 with fthis form of gsxd is obtained by using some empirical
knowledge based on numerical analysisg

hsxd = Sq−1 − q

2
x − iS1 +

q−1 + q

2
DÎ1 − x2DSa−1 − a

2
s1 + xd + iS1 +

a−1 + a

2
DÎ1 − x2D

3 Sb−1 − b

2
s1 + xd + iS1 +

b−1 + b

2
DÎ1 − x2DSc − c−1

2
s1 − xd − iS1 −

c + c−1

2
DÎ1 − x2D

3 Sd − d−1

2
s1 − xd − iS1 −

d + d−1

2
DÎ1 − x2D , s8d

gnsxd =
s1 + ads1 + bds1 − cds1 − dds1 + qds1 − x2d

8abcdqn+1 s4qs1 + abcdq2n−1dx2

− 2qnsabc+ abd+ acd+ bcd+ sa + b + c + ddqdx − s1 + qd

3 s1 + q − qn+1 − sab+ ac+ ad+ bc+ bd+ cddqn − qn−1s1 − qn − qn+1dabcddd, s9d

and Îd=s1−qd / s1+qd. The three-term recurrencefn+1sxd=sx−andfnsxd−bnfn−1sxd for the monic
Askey–Wilson polynomial can be found in the literature, for example, Eq.s3.1.5d in Ref. 10. Then
Eq. sA.7d in Ref. 5 holds because the functionsXnsxd ,Ynsxd of sA.13d, sA.14d in Ref. 5 vanish for
thesean, bn, andgnsxd. Therefore we obtain Proposition A.3, A.4 in Ref. 5.

Remark 1:The models studied in Ref. 5 are special cases of this model. For example,

B, Eq. s2.75d in Ref. 5, sg0,g1,g2,g3,g4d = sgL, 1
2gS,

1
2gS,0,0d ,

C8, Eq. s2.78d in Ref. 5, sg0,g1,g2,g3,g4d = sgS,
1
2gL, 1

2gL, 1
2gL, 1

2gLd ,

B8C, Eq. s2.79d in Ref. 5, sg0,g1,g2,g3,g4d = sgM,gS,gL,gL,0d,

due to the following trigonometic formulas:

sinsx − igd
sinx

= coshgs1 − i tanhg cotxd,
cossx − igd

cosx
= coshgs1 + i tanhg tanxd,

cosh 2gs1 − i tanh 2g cot 2xd =
sins2x − i2gd

sin 2x
=

sinsx − igd
sinx

cossx − igd
cosx

.

Remark 2:Ismail et al. studied theq-Strum Liouville problems and the Bethe ansatz equation
of the XXZ model.17 A special case of their results states that the zeros of Askey–Wilson polyno-
mial pnsx;a,b,c,duqd~P j=1

n sx−cos 2q̄jd with the parameters

q = e−2g0, sa,b,c,dd = se−2g1,e−2g2,e−2g3,e−2g4d, s10d

satisfies the Bethe ansatz type equations6d with sgj .0d
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vsxd =
sinsx − ig0d

sinx
, wsxd =

sinsx − ig1d
sinx

sinsx − ig2d
sinx

sinsx − ig3d
sinx

sinsx − ig4d
sinx

. s11d

However this does not mean thathq̄jj are equilibrium positions of the systems1d with s11d,
becauseVjsq̄d is not positive in this case. Moreover the cot4 x term in wsxd s11d appears too
singular to give a satisfactory quantum Hamiltonian.

III. SINGLE PARTICLE SYSTEMS: SHAPE INVARIANCE

Next let us consider the shape invariance of the “discrete” quantum mechanical single particle
systems with aq-shift type kinetic term. The argument is parallel to that given in Ref. 15, in which
discrete quantum systems with a shift-type kinetic term are discussed.

In this section we use variablesu, x, andz, which are related as

0 ø u ø p, x = cosu, z= eiu. s12d

The dynamical variable is 2u and the inner product issfsud ,gsudd=e0
pdu fsud*gsud. We denote

D=Dz
def= z(d/dz). ThenqD is a q-shift operator,qDfszd= fsqzd. Note that

E
0

p

du =E
−1

1 dx
Î1 − x2

, − i
d

du
= z

d

dz
= D, fszd* = f*sz−1d. s13d

For a real constantq s0,q,1d and a functionVszd=Vsz;l ,qd with a set of real parameters
l, let us consider the following HamiltonianH=Hsz;l ,qd:

Hdef= 1
2ÎVszdqDÎV*sz−1d + 1

2
ÎV*sz−1dq−DÎVszd − 1

2sVszd + V*sz−1dd. s14d

The eigenvalue equation reads

Hfn = Enfn, s15d

with eigenfunctionsfnszd=fnsz;l ,qd and eigenvaluesEn=Ensl ,qd sn=0,1, . . .d swe assume non-
degeneracyE0,E1,¯d. The kinetic term causes aq-shift in the variablez. This Hamiltonian is
factorized and consequently positive semidefinite,

H = A†A, s16d

A = Asz;l,qddef=
1
Î2

sqD/2ÎV*sz−1d − q−D/2ÎVszdd, s17d

A† = Asz;l,qd†def=
1
Î2

sÎVszdqD/2 − ÎV*sz−1dq−D/2d, s18d

where † denotes the Hermitian conjugation with respect to the above inner product. The ground
statef0 is the function annihilated byA,

Af0 = 0 s⇒Hf0 = 0, E0 = 0d. s19d

Explicitly this equation reads

ÎV*sq−1/2z−1df0sq1/2zd = ÎVsq−1/2zdf0sq−1/2zd. s20d

The other eigenfunctions can be obtained in the form

fnszd ~ Pnszdf0szd, s21d

where Pnszd=Pn
sl,qdszd is a Laurent polynomial inz sfor the explicit example below, it is the

Askey–Wilson polynomial inxd. This Pnszd satisfies
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H̃Pn = EnPn. s22d

Here H̃=H̃sz;l ,qd is a similarity transformed Hamiltonian in terms of the ground state wave
function f0,

H̃def= f0
−1 + H + f0 = 1

2VszdqD + 1
2V*sz−1dq−D − 1

2sVszd + V*sz−1dd. s23d

Corresponding to the factorization ofH s16d, H̃ is also factorized,

H̃ = BC, s24d

C = Csz,qd = 1
2sqD/2 − q−D/2d, s25d

B = Bsz;l,qd = VszdqD/2 − V*sz−1dq−D/2. s26d

Let us define a new set of wave functionsf1,nszd=f1,nsz;l ,qd,

f1,n
def= Afn sn = 1,2, . . .d. s27d

As a consequence of the factorization, they form eigenfunctions of a new HamiltonianH1

=H1sz;l ,qd,

H1 = AA† s28d

with the same eigenvalueshEnj,

H1f1,n = AA†Afn = AEnfn = Enf1,n sn = 1,2, . . .d. s29d

To consider the shape invariance ofH, we try to find the operatorsA1, A1
† and a real constantE1

satisfying

H1 = AA† = A1
†A1 + E1, s30d

A1 = A1sz;l,qd def=
1
Î2

sqD/2ÎV1
*sz−1d − q−D/2ÎV1szdd, s31d

A1
† = A1sx;l,qd†def=

1
Î2

sÎV1szdqD/2 − ÎV1
*sz−1dq−D/2d. s32d

In other words, givenVszd=Vsz;l ,qd, find a new potentialV1szd=V1sz;l ,qd satisfying

V1szdV1
*sq−1z−1d = Vsq1/2zdV*sq−1/2z−1d, s33d

V1szd + V1
*sz−1d = Vsq−1/2zd + V*sq−1/2z−1d + 2E1. s34d

If V1 has the same functional form asV with another set of parametersl8 se.g,q-shiftedld,

V1sz;l,qd ~ Vsz;l8,qd, s35d

then it is shape invariant. SupposeV1 has the form

V1szd = Vsq1/2zdgszd, s36d

with an as yet unspecified functiongszd, the above conditionss33d ands34d get slightly simplified,

gszdg*sq−1z−1d = 1, s37d
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Vsq1/2zdgszd + V*sq1/2z−1dg*sz−1d = Vsq−1/2zd + V*sq−1/2z−1d + 2E1. s38d

If the desiredV1 is found, we can constructH2,H3, . . . by repeating the same step. We illustrate
this procedure by taking the Askey–Wilson polynomial as an example.

Let us takeV as

Vszd = Vsz;l,qd =
s1 − azds1 − bzds1 − czds1 − dzd

s1 − z2ds1 − qz2d
, s39d

where l=sa,b,c,dd. For simplicity we assume −1,a,b,c,d,1. Note thatV*szd=Vszd. The
ground states19d is given by10

f0szd = f0sz;l,qd ~ Îwsz;l,qd def= U sz2;qd`

saz,bz,cz,dz;qd`
U s40d

=Î sz2,z−2;qd`

saz,az−1,bz,bz−1,cz,cz−1,dz,dz−1;qd`

, s41d

wheresa1, . . . ,am;qd`=P j=1
m Pn=0

` s1−ajq
nd. Excited states have the forms21d fnszd~ Pnszdf0szd,

and s22d implies thatPnszd is proportional to the Askey–Wilson polynomial,10

Pnszd = Pn
sl,qdszd ~ pnsx;a,b,c,d;qd, s42d

En = Ensl,qd = 1
2q−ns1 − qnds1 − abcdqn−1d, s43d

which is an orthogonal polynomial,

E
−1

1 dx
Î1 − x2

wsz;l,qdpnsx;a,b,c,duqdpmsx;a,b,c,duqd ~ dnm, s44d

namelysfn,fmd~dnm. By denotingpnsx;a,b,c,duqd=Pnsz;l ,qd, the factorizations24d gives the
forward and backward shift relationsfs3.1.8d and s3.1.10d in Ref. 10g,

Csz;qdPnsz;l,qd = − Ensl,qdqn/2sz− z−1dPn−1sz;q1/2l,qd, s45d

− Bsz;l,qdqn/2sz− z−1dPn−1sz;q1/2l,qd = Pnsz;l,qd. s46d

It is easy to check thatV1 in the form s36d with

gszd = q−11 − q2z2

1 − z2 s47d

satisfiess37d and s38d, and it becomes

V1sz;l,qd = Vsq1/2zdgszd = q−1Vsz;q1/2l,qd, s48d

andE1 is

E1sl,qd = 1
2q−1s1 − qds1 − abcdd. s49d

Therefore we have shape invariance,s48d and

A1sz;l,qd = q−1/2Asz;q1/2l,qd, s50d

H1sz;l,qd = q−1Hsz;q1/2l,qd + E1sl,qd. s51d

We write down important formulas once again,
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Asz;l,qdf0sz;l,qd = 0, s52d

Asz;l,qdAsz;l,qd† = q−1Asz;q1/2l,qd†Asz;q1/2l,qd + E1sl,qd. s53d

Starting fromV0=V, H0=H, f0,n=fn, let us defineVs, Hs, fs,n snùsù0d step by step,

Vs+1sz;l,qd def= q−1Vssz;q1/2l,qd, s54d

Hs+1sz;l,qd def= Assz;l,qdAssz;l,qd† + Essl,qd, s55d

fs+1,nsz;l,qd def= Assz;l,qdfs,nsz;l,qd. s56d

HereAs andAs
† are defined by

Assz;l,qd def=
1
Î2

sqD/2ÎVs
*sz−1;l,qd − q−D/2ÎVssz;l,qdd, s57d

Assz;l,qd†def=
1
Î2

sÎVssz;l,qdqD/2 − ÎVs
*sz−1;l,qdq−D/2d. s58d

As a consequence of the shape invariances53d, we obtain fornùsù0,

Vssz;l,qd = q−sVsz;qs/2l,qd, s59d

Assz;l,qd = q−s/2Asz;qs/2l,qd, Assz;l,qd† = q−s/2Asz;qs/2l,qd†, s60d

Hssz;l,qd = Assz;l,qd†Assz;l,qd + Essl,qd = q−sHsz;qs/2l,qd + Essl,qd, s61d

Es+1sl,qd = Essl,qd + q−sE1sqs/2l,qd, s62d

Hssz;l,qdfs,nsz;l,qd = Ensl,qdfs,nsz;l,qd, s63d

Assz;l,qdfs,ssz;l,qd = 0, s64d

Assz;l,qd†fs+1,nsz;l,qd = sEnsl,qd − Essl,qddfs,nsz;l,qd. s65d

The relations62d means thathEnj is calculable fromE1 s49d. In other words, the spectrum is
determined by the shape invariance.

From s56d and s65d we obtain the formulas,

fs,nsz;l,qd = As−1sz;l,qd ¯ A1sz;l,qdA0sz;l,qdfnsz;l,qd, s66d

fnsz;l,qd =
A0sz;l,qd†

Ensl,qd − E0sl,qd
A1sz;l,qd†

Ensl,qd − E1sl,qd
¯

An−1sz;l,qd†

Ensl,qd − En−1sl,qd
fn,nsz;l,qd.

s67d

The formers66d gives the eigenfunctionfs,n of the sth HamiltonianHs along the isospectral line
with energyEn, starting fromfn of the original HamiltonianH by repeated application of theA
operators. The latters67d, on the other hand, expresses thenth eigenfunctionfn of the original
Hamiltonian, starting from the explicitly known ground statefn,n of the nth HamiltonianHn by
repeated application of theA† operators. Sinces61d implies fn,nsz;l ,qd~f0sz;qn/2l ,qd, fn is
expressed in terms off0 andV. The latter formulas67d could also be understood as the generic
form of the Rodrigue’s formula for the orthogonal polynomials. The situation is depicted in Fig. 1.
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The operatorA acts to the right andA† to the left along the horizontalsisospectrald line. They
should not be confused with theannihilation andcreationoperators, which act along the vertical
line of a given HamiltonianHs going from one energy levelEn to anotherEn±1.

In order to define the annihilation and creation operators, let us introduce normalized basis
hf̂s,njnùs for each HamiltonianHs. Ordinarily, the phase of each element of an orthonormal basis
could be completely arbitrary. In the present case, however, the eigenfunctions are orthogonal
polynomials. That is, they are real and the relations among different degree members are governed
by the three-term recurrence relations. So the phases ofhf̂s,njnùs are fixed. Let us introduce a
unitary sin fact an orthogonald operatorUs mapping thesth orthonormal basishf̂s,njnùs to the ss
+1dth hf̂s+1,njnùs+1 ssee Fig. 1 and, for example, Refs. 14 and 18d,

Usf̂s,n = f̂s+1,n+1, Us
†f̂s+1,n+1 = f̂s,n. s68d

We denote thatU0=U. Roughly speakingU changes the parameters froml to q1/2l. Let us
introduce an annihilationã and a creation operatorã† for the HamiltonianH as follows:

ã = ãsz;l,qd def= U†Asz;l,qd, ã† = ãsz;l,qd†def= Asz;l,qd†U. s69d

It is straightforward to derive

H = ã†ã, s70d

fã,ã†gf̂nsz;l,qd = sEn+1sl,qd − Ensl,qddf̂nsz;l,qd. s71d

IV. SUMMARY AND COMMENTS

In this paper we have studied the equilibrium positions of the Ruijsenaars–Schneider–van
Diejen systems with the trigonometric potential and shown that for a suitable choice of the

FIG. 1. A schematic diagram of the energy levels and the associated Hamiltonian systems together with the definition of
the A and A† operators and the creationsã†d and annihilationsãd operators. The parameter set is indicated below each
Hamiltonian.
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elementary potential functions they are given by the zeros of the Askey–Wilson polynomials with
five parametersssee Sec. IId. The equation for the equilibrium positionss5d swithout the positivity
conditiond can be written in the Bethe ansatz type equations6d. The Bethe ansatz is a powerful
method for solvable models, and solving the Bethe ansatz equation or clarifying the properties of
its solutions are very important. Ismailet al.studied Bethe ansatz equations for spins XXZmodels
from theq-Sturm–Liouville problem point of view.17 This kind of approach would shed light on
the Bethe ansatzs-typed equations.

We have also studied the shape invariance of “discrete” quantum mechanical single particle
systems with aq-shift type kinetic term. As an example of this shape invariance, we present such
a system whose eigenfunctions are the Askey–Wilson polynomials. In this exampleVszd is a
rational function ofz strigonometric function ofud, but the method works for a wider class of
functions. In ordinary quantum mechanics there is the Crum’s theorem,13 which states a construc-
tion of the associated isospectral HamiltoniansHs and their eigenfunctionsfs,n sFig. 1d even if the
system has no shape invariance. The construction ofHs andfs,n given in this paper and Ref. 15
needs shape invariance. A “discrete” analogue of the Crum’s theorem, namely similar construction
without shape invariance, would be very helpful, if it exists.

We comment on the shape invariance of the Askey–Wilson polynomials with a small number
of parameters,pnsx;a,b,1 ,−1d. In this caseVszd in s14d is

Vsz;l,qd =
s1 − azds1 − bzd

1 − qz2 , l = sa,bd. s72d

By taking a forms36d with the samegszd s47d, the conditionss37d ands38d are satisfied, and we
have

V1sz;l,qd = q−1Vsq−1/2z;ql,qd, E1sl,qd = 1
2sq−1 − 1ds1 + abd. s73d

SinceDz=zsd/dzd is invariant under the rescaling ofz, Dz=Daz, the Hamiltonian is shape invari-
ant,

H1sz,l,qd = q−1Hsq−1/2z;ql,qd + E1sl,qd. s74d

The sth Hamiltonian and the spectrum are given by

Hssz;l,qd = q−sHsq−s/2z;qsl,qd + Essl,qd, s75d

Essl,qd = Es−1sl,qd + q−ss−1dE1sqs−1l,qd = 1
2q−ss1 − qsds1 + abqs−1d. s76d
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The following corrections should be made on p. 1444 of Appendix A.
s1d After the displayed equation forifi1,A in the second paragraph, insert the definition:H0

1sAd
denotes the completion of the complex spaceC0

`sAd in the normi ·i1,A.
s2d The first line of the third paragraph should begin with the definition: LetAsrd

=hxPA: ixiA, rj.
s3d In the second line of the third paragraph, “]f /]xi uAsRdPL2sAsrdd” should read

“Df uAsrdPL2sAsrdd.”
s4d In the fourth line of the third paragraph, “i ·i1,Asrd” should read “i ·iD,Asrd.”
s5d In the sixth line of the third paragraph, “]f /]xi uAsrdPL2sAsrdd” should read

“]f /]xi uAsrdPL2sAsrddsi =1, . . . ,nd.”
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We calculate atom-photon resonances in the Wigner-Weisskopf model, admitting
two photons and choosing a particular coupling function. We also present a rough
description of the set of resonances in a model for a three-level atom coupled to a
scalar-photon field. We give a general picture of matter-field resonances that these
results fit into. ©2005 American Institute of Physics.fDOI: 10.1063/1.1935428g

I. INTRODUCTION

In recent years there has been a renewed interest for atom-radiation states in nonrelativistic
quantum electrodynamics. After the rigorous proof1 of the existence, for small coupling constants,
of resonancesssingularities of an analytic continuation of the Hamiltonian resolventd, resonances
coming from the naked-atom-Hamiltonian eigenvalues, many studies have been concentrated on
the study of the Hamiltonian spectrum and more particularly on the existence of the fundamental
state in various models,2–7 for arbitrary coupling constants. This latter question is a nontrivial
problem since it has long been known that negative Hamiltonian eigenvalues may appear when the
coupling constant increases.8,9 In preceding worksssee Ref. 10, and references thereind, for our
part, we were interested in a method for calculating resonances for arbitrary values of the coupling
constant. It is a way of catching the above-mentioned particular eigenvalues. The result we ob-
tained can be generally stated as follows. The coupling of a discrete-level systemS to a zero-mass
field does not only shift the level energies into the complex plane. Certainly these energies become
resonances. But the coupling also creates other poles of the resolventsor of its continuationsd,
which have to be placed on the same footing as the preceding ones. For certain values of physical
parameters ofS, or certain values of thesS+ fieldd coupling constant, these latter poles may be
eigenvalues of the coupled-system Hamiltonian.sIn this article, the word resonance will refer to
such a pole or, by extension, to an eigenvalue, when there is an obvious possible continuous
transition from the one to the other.d

The presence of these poles is well-known for an atom or a molecule in an environment in
which the only emitted or absorbed photons are monochromaticslasers or cavitiesd. Indeed, for a
two-level atom with energiese0 ande1, and photons with energye1−e0, the upper level is split
into two levels by the coupling, when at most one photon is considered9 svacuum-field Rabi
splittingd. The coupling increases the number of Hamiltonian eigenvalues because it splits the
degeneracy of each of the eigenvaluese1,2e1−e0,¯ ,e1+nse1−e0d ,¯ of the uncoupled atom-
photon system. This phenomenon occurs in different but analogous situations: for instance the
coupling of an exciton to the mode of a cavity,11,12and it can be detected by spectroscopic means.
It is also present in electron-phonon interactions.13,14 Let us note that the final number of atom-
photon states is simply a consequence of the combination of discrete atom states with discrete
photon states.

Many papers have studied the coupling of a two-level system to another system which has
either discrete levels or a continuum of levels, often focusing on the continuous transition from the
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vacuum Rabi splitting to the Fermi’s golden rule.15,16 In the present work, a splitting is exhibited
also in the continuum case. The eigenstates of the naked atom we are used to are thus but a small
part of all the possible states.

In fact, the appearance of new resonances when the systemS is coupled to a field is a general
phenomenon whose explanation is given in Sec. II. It is, of course, not due to the smallness of the
photon-state width. A numerical method, explained and illustrated in previous publications, en-
abled us to study and calculate these resonances in various simple models:Swas either a harmonic
oscillator17 or a two-level atom. But in this latter case, we almost always limited ourselves to
considering physical states with at most one photon.

A reason to carry on with the study is that the new resonances appearing with the coupling
might play a role for systems having a large spatial extension: for instance Rydberg atoms or, a
case maybe more important, molecular orbitals of big molecules. Indeed, in a very simplified
model for an interaction ofS with the field, a model in which the spatial extensiond of S may be
varied sS is a charged harmonic oscillator whose mass and spring constant may be variedd, we
noted that some among the poles we speak about come to the negative real axis whend gets large
enough,18 in comparison with the length scale of the problem, namely the wavelength of the
transition from the first excited state to the fundamental one. These poles then correspond to stable
states and are therefore important states. Their wave function can be written: it is a mixing of
electron and photon states. Analogous phenomena may be expected for more complex extended
systems. Besides, the treatment of strong coupling is also interesting for applications in nuclear
physics.

From the theoretical point of view, it is thus important to be able to start the study of the
resonances in the two following situations: a system with more than two levels and, in the case of
two levels, a system with severalsnon monochromaticd photons. Section III deals with this second
question. To the best of our knowledge, it is tackled in the literature only when the fundamental
state question is discussed.4 Here we calculate some mixedsor hybridd states with several photons,
or the resonances which correspond to them. Section IV tackles the same problem for three-level
atoms, but since the situation is more complicated, we limit ourselves to a qualitative description
of the numerous resonances. Both studies lead to the reasonable conjecture that the number of
resonances should be roughly the product of the number of atom states by the number of inde-
pendent radiation states actually coupled to the atom.

II. NOTATION OF THE RESONANCES

We need a precise notation for the different poles.
It will follow from a very general argument, which also explains why every atomic level

should give rise to a double infinity of resonances. Let us consider a material quantum systemS
whose Hamiltonian,HS, has eigenstatesu0l, u1l, u2l,…, with energiese0,e1,e2, . . . . Let ussuppose
that this system is coupled to the field of a massless boson, here the photon. We denote the
state-space of thesS+ fieldd-system byE.

Let us consider a very general form for the Hamiltonian of the coupled system:

Hsld = HS ^ 1 + 1 ^ Hrad+ lV, s2.1d

whereHrad is the energy operator for the photon field andl V represents the coupling ofS to the
field. Let us introduce the auxiliary Hamiltonian.

Hsl,md = HS ^ 1 + m1 ^ Hrad+ lV, s2.2d

wherem is a parameter which may be zero or positive.
If m=0 andl=0, the energy levelse0,e1, . . . areinfinitely degeneratedsin Ed, as the number

of photons accompanying stateuml may be any integer and, moreover, the dimension of the space
of possible photon states is infinite. Thus the dimension of the eigenspaceHi associated with the
eigenvalueei of Hs0,0d is infinite. Let us underline the fact that the degeneracy we speak about
here is different from the one we mentioned in the second paragraph of the introduction.
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The idea underlying our present study, as well as the preceding ones, is to perturbHs0,0d with
respect tol andm successively.A priori, the perturbation with respect tol removes the degen-
eracy, although it may be only partially, in some particular cases. This leads to the following
notation.

Notation 1:zi,1sld ,zi,2sld , . . . denote theN2s=Nd eigenvalues of Hsl ,0d which tend to ei when
l tends to0.

The choice of the second index, or an equivalent choice, will be described in the different
contexts.

The perturbation with respect tom then leads us to the following notation for the resonances
we are interested in.

Notation 2: When we have selected, in a way which remains to be defined, one pole among
those of the resolvent of Hsl ,md which tend tozi,jsld whenm tends to0, we denote it by zi,jsl ,md.

There are two reasons for having to make a selection. The first one is that if thezi,j’s remain
degenerated, and this will be the case in the model of Sec. IIIssee Proposition 3.2d, then the
degeneracy may be removed formÞ0; in other words, formÞ0, there may be several resonances
sor eigenvaluesd going to the samezi,j whenm goes to 0.sSee a more precise description at the
beginning of Sec. III D 2.d The one we callzi,jsl ,md will be a particular one, selected in a way
which will be made precise in the context. The second reason is that the matrix elements offz
−Hsl ,mdg−1 are multivalued functions ofz for mÞ0. Therefore, two poles of two different
determinations may have the same limit whenm goes to 0. However, we assume that there is only
one pole tending tozi,j for a given determination, once the first choice has been made. This will
enable us to get thezi,jsl ,md’s by numerical calculus, starting from their germszi,jsld’s. The
notations of the poles of the different branches of the resolvent matrix elements will be made
precise later on, by adding an upper index which refers to the determinationssee Sec. III D 2 cd.

III. HYBRID STATES FOR A TWO-LEVEL ATOM IN THE WIGNER-WEISSKOPF
MODEL

Two resonancessdistinct or not, see belowd are well-known in the Wigner–Weisskopf model
srecalled in Sec. III Ad, or in the Friedrichs model, which describe a two-level atom coupled to the
field of a massless scalar boson.4,8,9These resonances can be seen without considering two-photon
states. One can be associated, for small coupling constants, to the excited state of the atom; the
other one is an eigenvalue corresponding to a stable state which differs from the unperturbed
fundamental state. This eigenvalue appears when the coupling constant gets large enough.sUp to
recently, it was not clear whether these two resonances were two occurrences of the same reso-
nance or not. In fact this depends on the parameters of the physical system, but in any case it can
be shown that there are actually two different resonances,10 for a given value of the coupling
constant.d In this section we want to study other resonances by taking into account several pho-
tons. The existence of such states is already alluded to in Ref. 4, where Theorem 2.2 shows that
the ground state of the coupled system must take several-photon states into account. In a particular
coupling, we will construct two of these states or resonances. It is the subject of Sec. III D 2. In
accordance with the general notations introduced in Sec. II, they will be denoted byz0,2sl ,1d and
z1,2sl ,1d, tending, respectively, to the energies 0 and 1 of the naked atom. The index 2 will be
explained later on.

A. The model and some notations

The atom state space isC2. The fundamental state isu0lª s1,0d, with energye0=0 and the
excited state isu1lª s0,1d, with energye1=1. In thehu0l, u1lj basis, the annihilation operator is
a= s 0 1

0 0
d. The field state space isFª%n=0

` Fn, as usual, withF0ªC andFnªL2sRd∨n
. Let g be in

L2sRd with igi2=1 andcsḡd, c*sgd be the operators annihilating and creating asscalard photon in
stateg. If v̂ denotes the multiplication operator by the functionuku, acting inL2sRd, the energy
operator inF ,dGsv̂d, is denoted byHrad.

The Hamiltonian of the model is
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Hsld ª a*a ^ 1 + 1 ^ Hrad+ lsa*
^ csḡd + a ^ c*sgdd. s3.1d

In order to have the mixed states appear readily, we introduce

Hsl,md ª a*a ^ 1 + m1 ^ Hrad+ lsa*
^ csḡd + a ^ c*sgdd. s3.2d

Note thatHsl ,md is unitarily equivalent to the Hamiltonian obtained through replacingg in s3.1d
by its unitarily scale transformedgmspdªm−1/2gsm−1pd. Introducing the parameterm is thus not so
arbitrary as it may seem sincem is in some way related to the width of the coupling function. But
note that the position of the peak ofg is also moved. This is a departure from a study which would
start with monochromatic photons and enlarge the width of their spectrum little by little, without
changing the position of the peak.

This Hamiltonian has invariant subspaces. To describe them and, in the same way, prepare the
notations for Sec. IV, let us setHrad

s1d, the space spanned byg; Fn
s1d
ª sHrad

s1dd∨n
, the space ofn photon

states, but each photon being in stateg; E0ª u0l ^ F0, and fornù1, Enª u0l ^ Fn % u1l ^ Fn−1, a
space we call the “n-excitation space”;En

s1d
ª u0l ^ Fn

s1d
% u1l ^ Fn−1

s1d , nù1, E0
s1d=E0; Es1d

ª%0
`En

s1d,
Eª%0

`En.
We will often use the notationun,wl for unl ^ w, if unl is an atom state andwPF.
Lemma:En is invariant by Hsl ,md, for all nù0 and all mù0; En

s1d,En is invariant by
Hsl ,0d, for all nù0.

As we said when we introduced Notations 1 and 2 in Sec. II, the method for studying the
resonances ofHsl ,md is a numerical method in whichm takes greater and greater values, starting
from 0. So we begin with giving some properties ofHsl ,0d.

B. Construction of resonances of H„l ,m… from eigenvalues of H„l ,0…: Setting up

Proposition 3.1: Hsl ,0d↓Es1d, the restriction of Hsl ,0d to Es1d, has a double infinity of eigen-
values

z0,nsld = 2−1s1 −Î1 + 4nl2d, z1,nsld = 2−1s1 +Î1 + 4nl2d. s3.3d

For each n, an eigenvector of Hsl ,0d↓Es1d associated withzi,nsld is

fi,n
s0d

ª s1 + nl2zi,n
−2sldd−1su1,g^sn−1dl + Înlzi,n

−1sldu0,g^nld P En
s1d. s3.4d

Proof: En
s1d, two dimensional, is invariant byHsl ,0d. s3.3d is thus obtained through diagonalizing

a two-by-two matrix. j

The choice of the first index in the notation of the eigenvalues is in accordance with the
principle stated at the end of Sec. II. By the choice of the second index, we indicate that the
eigenvector belongs toEn

s1d.
We note that only some part of the double degeneracy mentioned in Sec. II is removed here.

Indeed, eachzi,nsld is still degenerated, since adding an arbitrary number of photons whose states
are orthogonal tog to some state does not change the energy of this state. This follows from
fHsl ,0d ,1^ c*shdg=0, when the scalar productsg,hd vanishes. Let us develop this in order to
introduce some notations.

Let g1,g2, . . . be abasis of functions orthogonal tog. For pù1, let G0,p be the subspace ofE
spanned by

f0,n
sn1,n2,. . .d

ª p
i=1

`

s1 ^ c*sgiddnif0,p
s0d P En s3.5d

whenn varies fromp to infinity; ni arek non-negative integers,k being arbitrary and
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o
i=1

k

ni = n − p.

In the same way, letG1,p be the subspace spanned by

f1,n
sn1,n2,. . .d

ª p
i=1

`

s1 ^ c*sgiddnif1,p
s0d P En. s3.6d

Proposition 3.2: For genericl values, Gi,p is the eigenspace of Hsl ,0d associated with the
eigenvaluezi,p, for i =0,1 and pù1.

See hints for the proof in Appendix B 1, which is devoted to the proof of an analogous
property.

Let us thus note that eigenstates ofHsl ,0d associated withzi,n not only are notn-photon states
but are neither necessarilyn-excitation states. This complicates the picture of these eigenvalues
and of the resonanceszi,nsl ,md they give rise to.

To be complete, let us still mention that 0 is an eigenvalue ofHsl ,0d, with, if oni =n, n
arbitrary, the associated eigenvectors

f0,0
sn1,n2,. . .d

ª p
i=1

`

s1 ^ c*sgiddniu0l ^ V P En. s3.7d

whereV denotes the vacuum state inF.
Let us now turn to them variation, in order to define and construct resonancesz0,1sl ,md,

z0,2sl ,md , . . . andz1,1sl ,md, z1,2sl ,md , . . ., from their germszi,jsld sfor the notation, see Notation
2 in Sec. IId.

This construction, as we said, is purely numerical for the moment. It goes step-by-step,
starting fromm=0. We do not look for any existence theorem nor for a complete description,
difficult to get because of the complicated structure of the set of resonances. We just want to
obtain numerical values for resonances which have not been considered up to now, and might be
important.

This requires a particular choice forg. Before that, let us nevertheless give some general
indications.

C. General remarks about the poles of the resolvent of H„l ,m…

In front of so many resonances, it is natural to ask oneself the question: when we consider
Hsl ,1d, which resonance is the one we are used to, that is to say is there any which could be
“associated” with the excited stateu1l? Without going into detail here, let us explain shortly why
the issue is not simple. In particular, given a valuel0 of the coupling constant, even a small one,
why z1,1sl0,md is not necessarily the resonance we are used to. The resonance we are used to is
obtained through restrictingHsl ,md to E1 and following the resonance which sits at 1 form=1 and
l=0. We follow it asl increases from 0 tol0. Since its position atl=0 does not depend onm,
it amounts to following the resonance along the path of Fig. 1sad, from its value 1 at the origin of
the path.

FIG. 1. Two paths enabling to construct two unnecessarily identical resonances.
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It is the usual perturbative approach, in which there is no need to introducem. On the contrary,
z1,1sl0,1d, also defined withE1 ssee Sec. III D 1 bd, is the limit of z1,1sl0,md, whenm increases
from 0 sthenz1,1sl0,0d=z1,1sl0dd to 1. Sincez1,1sl0d, by definition, tends to 1 whenl0 tends to 0,
z1,1sl0,1d is the resonance obtained through following the resonance along the path of Fig. 1sbd,
from the value 1 at the origin of this path. Now, in some examples, functionsz0,1sl ,md and
z1,1sl ,md are two branches of a unique analytic 2-variable function, which, even when restricted
to R2, has branch points. These real branch points may lie inside the rectanglef0,l0g3 f0,1g of
the sl ,md plane, so that the two previous values of the resonances at the common endsl0,1d of
the two previous paths may be different. Thel and m variations do not necessarily commute.10

sLet us note here that it is thus dangerous to movel andm simultaneously without caution, as we
did it for instance in the second paragraph of Sec. III of Ref. 17.d This phenomenon is at the origin
of the remark in parentheses in the first paragraph of the present Sec. III.

This seems to be a drawback of the introduction of parameterm. But this introduction enables
us to see resonances for the physical Hamiltoniansm=1d which the perturbative approach does not
give so easily. Indeed, whenl is the only parameter and when it is varied froml0 to 0, the
continuous variation of the resonance siting atzi,1sl0,md for l=l0 may lead to 1, but also to
infinity, or to a pole ofg ssee Fig. 2, where the pole is −id. The result depends onm andg. But
these two latter limits are too singular points to start a calculation in their neighborhood.

Since the difficulties of a general study are due to branch points whose positions depend ong,
we choose a particularg. We now come back to the study of the announced particular case.

D. Construction of resonances of H„l ,m… from eigenvalues of H„l ,0…. Calculations for
a particular g

We fix the coupling constant at 0.1 and take the particular function we already used:10

gspd =Î 2

p

p

1 + p2 . s3.8d

This is a simple rational function which exhibits the type of singularity that actual coupling
functions may have.sSee, for instance, matrix elements of the interaction Hamiltonian for hydro-
genic atoms in the electromagnetic field.19d

In Sec. III D 1, we recall the definition ofz0,1sl ,md and z1,1sl ,md and the known formulas
through which they are obtained. We give their values for variousm andl. We use them later on.
Then, in Sec. III D 2, we define resonancesz0,2sl ,md andz1,2sl ,md and give some approximate
values. An evaluation of the errors is given in Appendix A.

1. Brief review about two resonances obtained with only one photon: z 0,1„0.1,m… and
z1,1„0.1,m…

They are poles ofk1^ Vufz−H↓E1
g−1u1^ Vl or of its analytic continuation.

FIG. 2. The resonancez0,1s0.1,md, for mP f0,2g, first in R−, then in the second sheet of the complex plane.
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Resonance z0,1s0.1,md.
For Iz.0, the above mentioned matrix element is20 ffsl ,m ,zdg−1, where

fsl,m,zd ª z− 1 − 2l2E
0

` gspd2

z− mp
dp. s3.9d

Therefore,zi,1s0.1,md are zeros offsl ,m , .d, a function defined in the cut planeC /R+, or of its
analytic continuation through the cut, clockwise.9,20,21For mømcsldª2l2e0

`gspd2/pdp, fsl ,m , .d
has only one zero; it is on the negative real axis and is 0 if and only ifm=mcsld. Whenm tends
to 0, it tends toz0,1s0.1d and therefore we denote it byz0,1s0.1,md. We recall that the correspond-
ing normalized eigenvector, which we denote byf0,1

s0dsl ,md, is proportional to

c0,1
s0dsl,md ª u1,Vl + lU0,

g

z0,1sl,md − mupuL . s3.10d

For m.mcsld, z0,1sl , .d is defined as a zero of the analytic continuation

f+sl,m,zd ª z− 1 − 2l2E
0

` gspd2

z− mp
dp + 4ip

l2

m
gS z

m
D2

s3.11d

of fsl ,m , .d, clockwise through the cut. Whenm→mcsld, it connects to the values form
,mcsld. For m varying from 0 to 2, some values ofz0,1s0.1,md are given in Table I and Fig. 2.

The physical value form=1 is 0.11–0.95i. For m=0, z0,1s0.1,0d=z0,1s0.1d.−0.0099; the
graph goes through 0 form.6.36 10−3 andz0,1s0.1,2d=0.13–1.97i.

In order to connect these results to the usual perturbative treatment, we drew a dashed line in
Fig. 2. It describes the continuous move of the resonance which sits at the pointz0,1s0.1,1d for
l=0.1, whenl decreases from this value to 0. One can see that the limit is not 1, the energy of the
naked excited state, but −i, a pole ofg. This makes a difference with what occurs forz1,1sl ,1d, as
we will see it just below. To distinguish the two behaviors, we called a resonance which, as a
function of the onlyl variable, does not tend to the excited state energy whenl tends to 0 a
“nonstandard” resonance.10 Be careful that a resonance may be standard for somem’s and non-
standard for others.

Resonance z1,1s0.1,md
It is another zero off+sl ,m , .d, which tends toz1,1s0.1d, whenm→0. Its displacement when

m varies is given by the full line of Fig. 3.
We havez1,1s0.1,0d=1.0099,z1,1s0.1,1d=0.997–0.010i, z1,1s0.1,2d=0.995–0.0032i. It can

TABLE I. Values ofz0,1s0.1,md, for some values ofm below mcs0.1d.

103 m 0 0.1 1 3 6 6.2 6.36 6.366

104 z0,1s0.1,md −99 −94 −68 −34 −2.5 −1.1 0.04 0.001

FIG. 3. z1,1s0.1,md, in the second sheet, formP f0,2g sfull lined.
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be shown that the resonance which sits at pointz1,1sl ,1d for l=0.1 moves continuously to 1 along
the dashed line of Fig. 3 whenl goes to 0. Therefore, referring to the discussion of Sec. III C, we
can say thatz1,1s0.1,1d is the resonance usually associated with the excited state of the naked
atom.

We now come to the original part of this Sec. III.

2. Two other resonances, obtained with two photons

Among the various resonances tending tozi,2sld whenm goes to 0, we select poles of matrix
elements offz−Hsl ,md↓E2

g−1, or of one of their analytic continuation. Note that another choice
among those mentioned after Notation 2 would have been to look for poles of matrix elements of
fz−Hsl ,md↓E3

g−1, since we have eigenvectors ofHsl ,0d in E3 associated with the same eigen-
valuezi,2sld: for instances1^ c*sg1ddfi,2. But we make no claim to being complete. We just want
to give an example of two resonances which are not considered usually.

Two new difficulties now appear. The first one is that, contrary to theE1-sector case, reso-
nances in theE2 sector are given by zeros of a functionDsl ,m , .d which is no longer explicit,
since we will see that it is the sum of a series. Up to now, we can only calculate these zeros
approximately, through cutting the series after the first non trivial term. The zeros of this truncated
function are the approximate values we consider, for the resonances in this sector.

The second difficulty is that this truncated function has several branch points; as a conse-
quence, it has several analytic continuations. There is no reason why it should not be the same for
Dsl ,m , .d itself, although it is possible. Therefore, when considering a zero, one must tell which
branch is in question; we give a notation for the zeros of the various branches later on.

a. These resonances as zeros of a function Dsl ,m , .d.
In E2, looking for the eigenvalues leads to the following proposition.
Proposition 3.3:sEigenvalues ofHsl ,md↓E2

as zeros of a multivalued functiond l being fixed
and m and z being two parameters satisfyingm.0 and zPR−, let Dm,z be the Fredholm function
(see Ref. 22, p. 68) associated with the integral equation

wl,mspd − l2E Km,zsp,qdwl,msqddq = 0, s3.12d

with

Km,zsp,qd =
gspdḡsqd

sz− 1 −mupu − l2sTm,zgdspddsz− msupu + uqudd
, s3.13d

where

sTm,zfdspd =E ḡsq8dfsq8d
z− msupu + uq8ud

dq8. s3.14d

Let z→Dsl ,m ,zd be the multivalued function which, for zPR−, equalsDm,zsl2d.
In the case where one of the zeros of Dsl ,m , .d is real negative, this zero is an eigenvalue of

Hsl ,md. Let us denote it byj0,2sl ,md. The associated eigenvector is inE2, proportional to

c0,2
s0dsl,md ª u1,wl,ml + Î2lU0,

g ∨ wl,m

j0,2sl,md − msup1u + up2udL , s3.15d

wherewl,m is a solution of

wl,mspd − l2E Km,j0,2sl,mdsp,qdwl,msqddq = 0. s3.16d

Proof: u1,wl,ml+ u0,xl,ml is an eigenvector ofHsl ,md↓E2
associated with the eigenvaluez if

and only ifs3.12d holds andxl,m=Î2lsz−msup1u+ up2udd−1g∨wl,m. According to Fredholm’s theory,

072101-8 Claude Billionnet J. Math. Phys. 46, 072101 ~2005!

                                                                                                                                    



s3.12d has a nontrivial solution only ifDm,zsl2d=0. The proposition follows from the fact that
s3.14d and s3.13d are defined ifz is a negative number. j

Remark: If m is set to 0 ins3.12d–s3.14d, one finds thats3.12d implies z=zi,2sld. If the
continuity with respect tom could be proved, we would get that the limit ofj0,2sl ,md when m
goes to 0 isz0,2sld. We do not know how to prove this at the moment, since we do not know all
the zeros ofDsl ,m , .d. Nevertheless, the result of the approximate calculation of Sec. III D 2 d is
along this line. That is why we eventually change notationj0,2sl ,md for z0,2

1 sl ,md, according to
Notation 2.sThe upper index is explained later on.d

To switch from eigenvalues to resonances, let us takehPL2sR2d, z s.t. Iz.0 andcªu1,hl.
Let us introduceHm,zsp,q,l2d, the resolvent kernel of Eq.s3.12d ssee Ref. 22, p. 63d. It can be
shown that

sc,fz− Hsl,mdg−1cd = 1 −l2E Hm,zsp,q,l2dh̄spdhsqddpdq. s3.17d

We knowsRef. 22, pp. 58 and 63d that the only singular points ofHm,zsp,q, .d are the solutions of
Dm,zsld=0. The zeros of analytic continuations of functionDsl ,m , .d of Proposition 3.3 will thus
give us poles of the left-hand side ofs3.17d, that is to say resonances.

The calculation will be an approximate one. The result form=1 is given by lines two and four
of Table II.

b. Zeros of Dsl ,m , .d approached by zeros of a function Ds1dsl ,m , .d
Proposition 3.4: For

z, 0, Dsl,m,zd = o
n=0

`
s− 1dn

n!
Cnsl,m,zd

with C0=1

Cnsl,m,zd = l2nE Dnsm,z,p1, . . . ,pnddp1 ¯ dpn s3.18d

and, for1ønø3,

Dnsm,z,p1, . . . ,pnd = m−np
i=1

i=n ugspidu2

fsl,m,z− mupiudS z

m
− 2upiuDp

i, j

supiu − upjud2

S z

m
− supiu + upjudD2 . s3.19d

Proof: The Dn’s are determinants given by Fredholm’s theory. We calculated them fornø3;
the result is given ins3.19d. j

The analytic structurespoles, branch pointsd of Dsl ,m , .d is difficult to determine. Indeed,
Dsl ,m , .d is a series of terms each of which has a different analytic structure. Moreover, this
structure is not simple. Therefore we will limit ourselves with replacing the search for zeros of
Dsl ,m ,zd by the search for the zeros of the sum of the first two terms of the series:

TABLE II. Four resonancessapproximate values for two of themd, for l

=0.1 andm=1.

z0,1 0.13−1.97i

z0,2
1 0.216−1.9i

z1,1 0.997−0.010i
z1,2

1 1.043−1.127i
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Ds1dsl,m,zd ª 1 − C1sl,m,zd. s3.20d

The first corrections to this approximation are discussed in Appendix A. From Proposition 3.3, we
get, if mÞ0,

Ds1dsl,m,zd = 1 −
2l2

m
E

0

`

csl,m,z,qddq, s3.21d

where

csl,m,z,qd ª
gsm−1qd2

sz− 2uqudfsl,m,z− uqud
s3.218d

andDs1dsl ,0 ,zd=szsz−1d−l2d−1szsz−1d−2l2d.
c. Analytic properties of Ds1d.
Proposition 3.5: FormÞ0, Ds1dsl ,m , .d has at least three branch points:0, z0,1sl ,md and

z1,1sl ,md.
Proof: Let us recall thatfsl ,m , .d is analytic in the complex plane cut alongR+, with a branch

point at 0. The analytic continuation from the upper half-plane has a pole at −im. An explicit
expression off in the upper half-plane is, forzÞ im,

fsl,m,zd = z− 1 +l22m3 + m2pz+ 2mz2 − pz3 + 4mz2slog m − logs− zdd
psm2 + z2d2 . s3.22d

The continuation clockwise across the cut, which we denote byf+sl ,m ,zd, is obtained through
adding 4ipsl2/mdgsm−1zd2 to the above expression. It is convenient to rather introduce the func-

tion f̂sl ,m ,zd which coincides withfsl ,m ,zd in the upper half-plane and has a cut alongiR−.
For Iz.0, the poles ofcsl ,m ,z, .d fsees3.218dg in the complex plane cut alongz+ iR+ are

±im, z/2 andqisz,m ,ldªz−zi,1sl ,md. Depending on whetherm is smaller or greater thanmcsld,
the z-dependent poles sit at places schematically shown in Fig. 4.

This follows from the position ofzi,1sl ,md, given by the curves in Figs. 2 and 3. Ifm
=mcsld, the poleq0sz,md coincides withz. sIn Fig. 4, z has a positive real part, but it could be
negative, as well.d

Whenz enters the lower half-plane along a pathg sfor instance the dotted lines in Figs. 7 and
8d, the integration path ins3.21d may have to be deformed in order to be kept away from some of
the three poles or from the branch pointz of csl ,m ,z, .d. Two different pathsg andg8 will not
necessarily yield the same result. For instance, ifg crosseszi,1sl ,md+R+, qisz,md crossesR+; the
integration path has thus to be deformed, whereas it is not the case ifg crosseszi,1sl ,md−R+. As
a consequence,z0,1sl ,md andz1,1sl ,md are branch points.

If z comes toz0,1sl ,md frespectively,z1,1sl ,mdg, then the poleq0sz,md srespectively,q1sz,mdd
comes to 0 and the integral ins3.21d is singular.

To describe the various branches ofDs1d readily, we need a notation for the homotopy classes
of paths inXl,mªC \ h0,z0,1sl ,md ,z1,1sl ,mdj. sTwo paths are homotopic if they can be continu-

FIG. 4. Branch point and poles ofcsl ,m ,z, .d, defined bys3.218d.
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ously deformed into one another, inXl,m.d Depending on whetherm is smaller or greater than
mcsld, the relative position of the three branch points is different. We refer to Fig. 5 for the
definition of the fundamental class of pathsa,a0,a1. The base pointB is chosen real and smaller
thanz0,2sld.

The pathg0szd is defined as the polyline going through pointsB, B+ ie, Rszd+ ie and ending
at z, for an arbitrarye.0. Every pathg from B to z can be expressed by means ofa,a0,a1, and
g0szd. It defines a homotopy classfg0szd−1ggPp1sXl,md. Conversely, with each classflg of
p1sXl,md, we can associate the homotopy class of pathsg0szdl going fromB to z. With each pair
consisting offlg in p1sXl,md and z, we can associate the analytic continuation inz of Ds1dsm , .d
along the pathg0szdl. We denote the value at the end of the path byDflg

s1dsm ,zd. From now on, we

will omit to mention thel variableswhich has been fixed to 0.1.d We denote byzflgsmd a point
such thatDflg

s1dsm ,zflgsmdd=0. Whenm varies, we assume that this point varies continuously. It is

denoted byzi,2
flgsmd if its limit when m goes to 0 iszi.

Thesezi,2
flgsmd are approximate values for the resonances we are considering. Regarding their

physical meaning, we refer to the short comment in Sec. III E.
We now give some values of these functions for variousm values.
d. Values of resonance z0,2

flg smd.

sid m,6.3662310−3

sad flg=1. For m close to 0, we look for a zero ofDs1dsm , .d in the neighborhood of
z0,2=−1.96310−2. Ds1dsm , .d is well defined bys3.21d in the neighborhood of every
negative real number. A calculation on a computer yields negative real zeros of this
expression, form small ssee Table III, first columnd. Whenm increases up to a certain
valuemc,2

a , close tomcªmcs10−1d, the same formula still gives a negative real zero. The
first column of Table III gives its values for 0ømø6.3662310−3.mc.

Through comparing Table III with Table I, one sees that this zero is smaller thanz0,1smd. In
accordance with the notations of the end of Sec. III D 2 c, and with the upper index 1

FIG. 5. Fundamental paths in thez plane.

TABLE III. Values of z0,2
1 smd, for some values ofm below mc.

103 m 104 z0,2
1 smd

C2

2
sm ,z0,2

1 smdd
M3

6
sm ,z0,2

1 smdd
M4

24
sm ,z0,2

1 smdd ]zC1sm ,z0,2
1 smdd

0 −196 0 0 0 103.9

0.1 −185.5 1.65310−3 3.95310−6 1.04310−8 105.3

1 −135.7 13.14310−3 10−4 6.26310−7 116

3 −69.8 0.038 7.93310−4 10−5 143.8

6 −9.3 0.099 7.7310−3 3.68310−4 247.1

6.2 −6.6 0.106 9.3310−3 5.2310−4 265.3

6.36 −4.4 0.111 1.09310−2 7.1310−4 284.2

6.3662 −4.328 0.112 1.10310−2 7.17310−4 285
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denoting the unity element inp1sXmd, this zero may then be denoted byz0,2
1 smd, since the

branch pointz0,1smd does not belong to the intervalBz0,2
1 smd. Figure 6sad shows the three cuts

of Ds1dsm , .d for m,6.3662310−3 and this zeroz0,2
1 smd.

It has not been possible to determine the place ofmc,2
a with respect tomcs10−1d. We will come

back to this point in Appendix A when we estimate the errors made in the approximation.
sbd flg=a0: a zero associated with another branch. Figure 6sad also schematically shows

another zero:z0,2
fa0gsmd. The notation indicates that this value is now the zero of the con-

tinuation of Ds1dsm , .d along the pathg8ªg0sz0,2
fa0gsmdda0, a path which goes around the

branch pointz0,1smd. Figure 6sbd shows the two paths followed byq0sz,md whenz goes
alongg0sz0,2

s1dsmdd or g8.
This z0,2

a0 smd, also close toz0,2 for m.0, is a zero ofDa0

s1dsm , .d which, forRszd,0 sand also
for Rszd.0,Iszd.0d, reads

Da0

s1dsm,zd = 1 −
2l2

m
E

0

` gsm−1qd2

sz− 2uqudfsm,z− uqud
dq + 4ip

l2

m

gsq0sz,md/md2

sz− 2q0sz,mdd]zfsz0,1sm,ld,m,ld

s3.23d

with l=0.1. This zero is no longer real.
sii d For m.mc, things are not clear.
siii d For m.7310−3, the branch pointz0,1 of Ds1d is in hz;Rszd.0,Iszd,0j ssee Fig. 2d; it

is shown in Fig. 7. Among the various analytic continuations ofDs1d acrossR+, we
considerD1

s1d. Expressions are given in the followingfformula s3.24d and the two last
lines of the sectiong. The zero ofD1

s1d, denoted byz0,2
1 smd, follows the curve of Fig. 7

whenm varies from 7310−3 to 1. Form=1, the wayDs1d is analytically continued to the
zero ofD1

s1d is shown by the dotted line.

FIG. 6. Paths defining resonances z0,2
fIg smd for m,6310−3.

FIG. 7. z0,2
1 smd in the complex plane, formP f0.007,1g.
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For m=7310−3, z0,2
1 smd=2.8310−4–2.4310−5i, close to 0. Values ofz0,2

1 smd for m between
6.37310−3 and 7310−3 are difficult to get. Actually, their determination is not useful sincez0,2

1 smd
is only an approximate value of the exact resonance. We havez0,2

1 s0.1,1d=0.216–1.9i. For Iz
,0, Rszd.0 andm.7.35310−3, still with l=0.1,

D1
s1dsm,zd = 1 −

2l2

m SE
f0,RszdgøfRszd,zg

g2sm−1qd
sz− 2qdf+sm,z− qd

+E
f0,RszdgøfRszd,zg

g2sm−1qd
sz− 2qdfsm,z− qd

+ ipg2S z

2m
D f+sm,z/2d−1 + 2ipg2Sz− z0,1smd

m
Ds2z0,1smd − zd−1]zf+sm,z0,1smdd−1D .

s3.24d

This formula is derived froms3.21d in the following way: whenz enters the quadranthz;Rszd
.0,Iszd,0j, the cut in Fig. 4sbd drags the integration contour along, which yields the first two
terms. The last two terms come from the residues of the polesz/2 and q0sz,md which cross
R+ fq1sz,md does not crossR+g. For 103 mP f7,7.3g, the expression ofD1

s1dsm ,zd does not contain
the residue term atq0 sinceg0sz0,2

1 smdd does not crossz0,1smd+R+.
e. Values of resonance z1,2

1 smd.
It can be shown numerically that the zero ofD1

s1dsm , .d which tends toz1,2 whenm tends to 0,
denoted byz1,2

1 smd, is a zero inhz;Rszd.0,Iszd,0j of Dsm , .d, where

Dsm,zd ª 1 −
2l2

m SE
f0,RszdgøfRszd,zg

g2sm−1qd
sz− 2qdf+sm,z− qd

+E
f0,RszdgøfRszd,zg

g2sm−1qd
sz− 2qdfsm,z− qd

+ ipg2S z

2m
D f+sm,z/2d−1 + 2ipg2Sz− z0,1smd

m
Ds2z0,1smd − zd−1]zf+sm,z0,1smdd−1

+ 2ipg2Sz− z1,1smd
m

Ds2z1,1smd − zd−1]zf+sm,z1,1smdd−1D . s3.25d

Dsm ,zd is the expression ofD1
s1dsm ,zd in the neighborhood of the considered zero, but not every-

where in the lower half-plane; for example, these two functions differ at a pointz such that
Iszd,Isz0,1smdd. The variation ofz1,2

1 smd with m is given by Fig. 8.
This resonance starts from 2−1s1+Î1+8l2d=1.019 62 form=0 and goes through 1.043–1.127

i for m=1. We note that this value is much farther from the real axis than the resonancez1,1s0.1,1d
of sectorE1. As in Fig. 7, the dotted line in Fig. 8 indicates the path of the analytic continuation
of Ds1d to the zerosof D1

s1dd, for m=1. The origin is a branch point. The other two branch points,
z0,1s0.1,1d andz1,1s0.1,1d, whose values are recalled in Table II, cannot be drawn at the scale on
the figure.

FIG. 8. z0,2
1 smd, in the complex plane, formP f310−4,2g.
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E. Conclusion of Sec. III

Table II gathers the four results we obtained forl=0.1 andm=1. It gives four resonances
among all those of the physicalsi.e., m=1d Hamiltonian, when the functiong is given bys3.8d.

We see that the usual resonancez1,1 is the only one near the real axis. This resonance
represents what the excited state of the naked atom has become, due to the coupling of the atom
with the field. The state is now unstable and its lifetime is in inverse proportion toIz1,1. Other
resonances are more than a hundred times farther from the real axis. However, for small values of
m, they approach the real axis, as it can be seen from Figs. 2, 7, and 8, or Table III. Therefore,
resonances for smallm may play an important role. Now, in the harmonic-oscillator example
mentioned in the introduction, what plays the role of parameterm is d−1, the inverse of the spatial
extension of the states, measured relatively to the wavelength of the transition from the excited
state to the fundamental state of the naked atom. Thus, for extended states,m is small, and we
recover our motivation for the study of all the resonances of atom-field Hamiltonians.

One should of course discuss which of these resonances have a physical meaning and make
this meaning precise, through finding actual situations in which these resonances or eigenvalues
can be seen readily. We mean situations in which the photons are not monochromatic. The physi-
cal meaning should appear quite easily in the case of eigenvectors of the Hamiltonian. InE1 fsee
s3.10d, Table I, and Fig. 2g, we have an example of such a state. Regarding the restriction of
Hsl ,md to E2, we found approximate real values for the resonances. But we have not shown that
sreald eigenvalues do exist. The study has to be carried on. Now, as pure resonances are concerned,
we think that their study cannot simply be an academic question, since eigenvectors change
continuously into resonances when parameters of the physical system are varied.

In any case, the two-level model is perhaps too simple to find a concrete application. The next
section is a step toward more realistic models.

IV. HYBRID STATES FOR A THREE-LEVEL ATOM COUPLED TO PHOTONS

To be in a position to describe mixed states in more realistic models, we not only must be able
to consider several photonssor bosons, in a more general settingd, as in Sec. III, but we must also
be able to consider several atomic or molecular levels. The present section is a preliminary study
devoted to mixed states whenS is a three-level atom coupled to the radiation by a Hamiltonian of
type s2.2d.

The reason why the study is only a preliminary one is that there comes some additional
difficulty, together with those already mentioned in Sec. III: formù0, none of the spaces with a
bounded excitation number is stable by the evolution operator, contrary to the two-level case. This
is due to the possibility of the transition from the state consisting of the atom in stateu0l and one
photon to the stateu2l, the photon being absorbedsu2l is the second excited stated. In this transition
the excitation numbersdefined in Sec. III Ad increases. For this reason, the determination of the
Hamiltonian eigenvalues is already not simple form=0. Since we assume that the structure of the
resonance set will roughly be conserved whenm takes nonzero values, we must study thesm
=0d-problem first. This is the subject of this Sec. IV. The displacement of these resonances when
m becomes nonzero will not be examined in the paper.sA typical result is illustrated by Fig. 12.d

A. Notations and Hamiltonian

The atom has three levels with energiese0=0, e1, ande2, corresponding to statesu0l, u1l, and
u2l. f01, f12, and f02 being three normalized functions inL2sRd, the Hamiltonian is

Hsl,md ª H0sl,md + l02V s4.1d

with

H0sl,md ª se1u1lk1u + e2u2lk2ud ^ 1 + m1 ^ Hrad+ l01su1lk0u ^ cs f̄01d + u0lk1u ^ c*sf01dd

+ l12su2lk1u ^ cs f̄12d + u1lk2u ^ c*sf12dd s4.2d
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Vª u2lk0u ^ cs f̄02d + u0lk2u ^ c*sf02d, s4.3d

whereHrad is as in Sec. III A. Transitionu0l→ u2l is distinguished fromu0l→ u1l and u1l→ u2l for
a physical reason and also to prepare a perturbative calculus.

We use the following notations, modeled on those of Sec. III A. Regarding the photons, we
denote the Fock space byF, then-photon space byFn, the vacuum state byV, and we set

Hrad
s2d: the space spanned byf01, f12, Fn

s2d
ª sHrad

s2dd∨n
: then photon-state space, but each photon

being restricted to be inHrad
s2d andFs2d

ª%nFn
s2d.

Hrad
s3d: the space spanned byf01, f12, f02, Fn

s3d
ª sHrad

s3dd∨n
seach photon is restricted to be inHrad

s3dd
andFs3d

ª%nFn
s3d.

Regarding the atom-photon system,En andE have been defined in Sec. III A. We set

E1
skd

ª u0l ^ F1
skd

% u1l ^ F0
skd, k = 2,3

En
skd

ª u0l ^ Fn
skd

% u1l ^ Fn−1
skd

% u2l ^ Fn−2
skd , k = 2,3, n ù 2

Eskd
ª %

n=0

`

En
skd

l ª sl01,l12,l02d.

We also introduces0ª sf01, f02d, s1ª sf01, f12d, s2ª sf02, f12d.
We will use the letterf to indicate eigenvectors ofH0sl ,0d; a priori, they depend onl01 and

l12. We will usex to indicate eigenvectors ofHsl ,0d; they also depend onl02.
We aim at getting the eigenvalues ofHsl ,0d, an operator which we simply writeHsld, from

now on. When the variablem is not mentioned, it will be assumed to be 0.
To this end, we take up the idea mentioned in Sec. II consisting in perturbingHs0d through

introducing the interaction step by step. The doubly infinite degeneracy of the eigenvaluese0, e1,
ande2 of Hs0d, due to the arbitrariness of the number of photons and the arbitrariness of the state
of each photon in the corresponding eigenvectors, is partially removed at each step. The first
perturbation will be the addition of thel01 andl12 terms ofs4.2d to Hs0d. It is described in Sec.
IV B. The second perturbation will be the supplementary addition ofl02 V. It is described in Sec.
IV C.

B. Perturbation with respect to l01 and l12: First splitting of e0, e1, and e2

Here we are interested inH0sldªH0sl ,0d; the interactionl02V is switched off. First, inE0,
u0,Vl, is an eigenvector associated with the eigenvalue 0.

1. Three eigenvectors of H 0„l… in the 1-excitation space E1
„2… and the three associated

eigenvalues

The spaceE1
s2d, three-dimensional, is invariant byH0sld. It is the direct sum of the eigensub-

spacesu1l ^ F0
s2d and u0l ^ F1

s2d of H0s0d, associated with the eigenvaluese1 ande0, respectively,
and dim.F0

s2d=1 and dim.F1
s2d=2. The first perturbation will shifte1 and splite0 into two eigen-

values, as it is represented in the first two columns of Fig. 9.
The eigenvalues obtained through the first perturbation and the associated eigenvectors are

given by the following proposition.
Proposition 4.1: InE1

s2d, if f 01Þ f12, H0sld has three eigenvalues:

sz0,1d1sl01,l12d = 2−1se1 − Îe1
2 + 4l01

2 d, s4.4d

sz0,1d2sl01,l12d = 0, s4.5d
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z1,1sl01,l12d = 2−1se1 + Îe1
2 + 4l01

2 d. s4.6d

The associated normalized eigenvectors are

sf0,1
s0dd1sl01,l12d = s1 + sz0,1d1

−2l01
2 d−1/2su1,Vl + sz0,1d1

−1l01u0,f01ld, s4.7d

sf0,1
s0dd2sl01,l12d = s1 − us1u2d−1/2u0,f12 − s1f01l, s4.8d

f1,1
s0dsl01,l12d = s1 + sz1,1d−2l01

2 d−1/2su1,Vl + sz1,1d−1l01u0,f01ld. s4.9d

The calculus is straightforward since the dimension ofE1
s2d is three. j

To the second order with respect tol, we getsz0,1d1=−s1/e1dl01
2 andz1,1=e1+s1/e1dl01

2 . Note
that the perturbed eigenvaluess4.4d–s4.6d do not depend onl12. They tend to 0, 0, ande1,
respectively, ifl01 tends to 0. The notationzi,p is thus in accordance with the rules stated in Sec.
II, as far as the first index is concerned; indexi refers to the unperturbed level in the following
way: liml01→0sz0,1d j =0, liml01→0z1,1=e1. To distinguish perturbed eigenvalues which tend to the
sameei if sl01,l12d→ s0,0d, we chose to put the indexp, indicating that the eigenvectors are inEp

sas in Sec. III Bd. Since several eigenvalues with the same indicesi andp may still have the same
limit when sl01,l12d tends tos0,0d, an additional indexj is used to number them.

We havesf0,1
s0dd1sl01,l12d→−u0, f01l andf1,1

s0dsl01,l12d→ u1,Vl, if l01 tends to 0.
If f01= f12, the dimension ofE1

s2d is two and the eigenvectorsf0,1
s0dd2 disappears.

As we said before, these eigenvalues are actually infinitely degenerated; indeed, adding pho-
tons whose states are orthogonal tohf01, f12j gives an eigenstate with the same energy, since the
energy of the photons is not taken into account inH0sld. Let us state this fact precisely, with some
notations which will be useful later on.

2. Other eigenvectors of H 0„l… in the „n +1…-excitation space En+1, n >0, associated
with the same eigenvalues

Proposition 4.2: Let g1,g2, . . . be an orthonormal basis of functions orthogonal to f01 and f12.
(i) Let G0,1,1 be the subspace ofE spanned by the normalized vectors

sf0,n+1
sn1,n2,. . .dd1 ª p

i=1

`

sni!d−1/2s1 ^ c*sgiddnisf0,1
s0dd1, s4.10d

where the ni’s are k nonnegative integers and k is arbitrary. These vectors are inEn+1 if n
=oi=1

k ni. For generic values ofl01 and l12, G0,1,1 is the eigenspace of H0sld associated with
eigenvaluesz0,1d1

(ii) If f 01Þ f12, let us set g0ª s1−us1u2d−1/2 sf12−s1f01d and let f01
' be the subspace ofHrad

orthogonal to f01, spanned by the gi’s, i =0,1 ,̄ . The eigenspace of H0sld associated with eigen-
value sz0,1d2 is u0l ^ Fsf01

' d, whereFsf01
' d is the Fock space built with f01

' . We set

FIG. 9. Levels associated with eigenvectors ofH0sld in E1
s2d, therefore without any spectator photon.
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sf0,n+1
sn0,n1,. . .dd2 ª p

i=0

`

sni!d−1/2s1 ^ c*sgiddnisf0,1
s0dd2. s4.11d

(iii) Last, let G1,1 be the subspace ofE spanned by the normalized vectors

f1,n+1
sn1,n2,. . .d

ª p
i=1

`

sni!d−1/2s1 ^ c*sgiddnif1,1
s0d . s4.12d

For generic values ofl01 andl12, G1,1 is the eigenspace of H0sld associated with eigenvaluez1,1.
That pi=1

` s1^ c*sgiddni sf0,1
s0dd1, pi=0

` s1^ c*sgiddni sf0,1
s0dd2 and pi=1

` s1^ c*sgiddni f1,1
s0d are eigen-

vectors follows from the fact thatf1^ c*sgd ,H0sldg=0 if g is orthogonal toHrad
s2d. In Appendix B

1, we explain how the whole eigenspace can be determined, for each of the three eigenvalues.j

Let g fwhich is no longer functions3.8dg be a linear combination of thegi’s. A photon in such
a state will be called a spectator photon. Proposition 4.2 may be stated in the following terms: the
three eigenvalues are twice infinitely degenerated; first through the number of spectator photons
sthe n variabled, and second through the infinity of possible states for each spectator photons the
g variabled. In the level diagrams, if we symbolize the degeneracy of an eigenvaluesdue to the
possibility of one spectator photon in the eigenvectord by a dotted line, then in the case where at
most one spectator photon is present, the degeneracy of the levels may be represented in Fig. 10
sdotted lines are slightly shifted from the level for reading purposed.

The degeneracy of the eigenvalue is greater if we admit eigenvectors with a greater number of
spectator-photons, with all their possible states.

But considering a total number of photons greater than one yields other eigenvalues. For
instance, we claim that eigenvectors inE2 different from u2,0l are not necessarily built with
eigenvectors inE1 and a spectator photon. We are going to see that the set of perturbed eigenvalues
coming from one given unperturbed energyei changes when the number of photons coupled to the
atom changes. This was already the case for the two-level atom of Sec. IIIssee for instance
Proposition 3.1 of Sec. III B, form=0, where the eigenvalue depended on the space in which the
eigenvector was looked ford.

3. Other eigenvectors of H 0„l… in En+1 and other eigenvalues

In this section, we assumef01Þ f12.
Proposition 4.3: H0sld has an infinity of eigenvalues different fromsz0,1d1, sz0,1d2, and z1,1.
PROOF:En is invariant byH0sld. The subspaceEn

s2d of En is also invariant. Let us first consider
E2

s2d, six dimensional. If the coupling constants are small, there are six eigenvalues: whenl01 and
l12 tend to 0, one of them tends toe2 sit is denoted byz2,2d, two tend toe1 fdenoted bysz1,2d1 and
sz1,2d2g and three, one of which is zero, tend to 0fdenoted bysz0,2d1=0, sz0,2d2 andsz0,2d3g. They
are obtained through diagonalizing a six by six matrixssee Appendix B 2d. The calculation is
straightforward although the result has not a simple expression. In this two-excitation space, that
two eigenvalues tend toe1 is due to the fact that there are two possible photon states, and that three
eigenvalues tend to 0 is due to the fact that there are three possible independent states for the two

FIG. 10. Levels of Fig. 9, with eigenvectors ofH0sld in E2; at most one spectator photon.

072101-17 Hybrid states of two and three level atoms J. Math. Phys. 46, 072101 ~2005!

                                                                                                                                    



photons. The eigenvector associated withsz0,2d1=0 is u0,g0∨g0l; we met it under the form
sf0,1

s1,0,. . .dd2 fsees4.11dg.
We already found other eigenvectors in the same spaceE2. They were built from eigenvectors

in E1
s2d. They are for instancesf0,1

s1,0,. . .dd1 andf1,1
s1,0,. . .d, with notations of Proposition 4.2; they are in

E2
s3d if g1PHrad

s3d. The corresponding eigenvalues,sz0,1d1 andz1,1, are different from the six we just
saw ssee Appendix B 2d, except possibly for particular values ofl.

Since the notations are a bit heavy, we again represent the levels in Fig. 11.
The changes in the levelse0, e1, ande2 of Figs. 10 and 11 cannot be superimposed on one

another, in general. Both are to be considered in describing the levels ofH0sld.
To complete the study, we have to take an arbitrary number of photons into account. The study

of the spectrum ofH0sld is completed when one has also considered eigenvectors inE3
s2d, E4

s2d, etc.;
They give new levels. Eventually, there is a very great number of levels. LetSsn,pd be the number
of independent symmetric states that can be formed withn photons, each photon being inp
possible states. Let us consider1,2, . . . ,n photons successively. The fundamental state is split into
a doublet, a triplet,…, a Ssn,2d multiplet. If we look for all possible states, all these levels must
be considered. As regards level 1, a shift, then a doublet, a triplet,…, a Ssn−1,2d multiplet.
Lastly, for level 2, we get no change, then a shift, a doublet,…, a Ssn−2,2d multiplet. To be
complete, let us recall levele0=0, with eigenvectoru0,Vl. j

The doubly infinite degeneracy due to spectator-photons still remains. With the six eigenval-
uesz2,2, sz1,2d1, and sz1,2d2, and lastsz0,2d1, sz0,2d2, and sz0,2d3, are associated eigenvectorsf2,2

s0d,
sf1,2

s0dd1, and sf1,2
s0dd2d, and lastsf0,2

s0dd1, sf0,2
s0dd2, and sf0,2

s0dd3. As previously, through application of
s1^ c*sgddn with g orthogonal tohf01, f12j, or more generally application ofps1^ c*sgiddni, one
gets other eigenvectors associated with the same eigenvalues. In the same way that we built Fig.
10 from Fig. 9, we could illustrate this degeneracy graphically through adding dotted lines in Fig.
11.

Let us come back to our initial problem, which is to determine the spectrum ofHsld, at least
roughly. It may be expected that the perturbationl02V partially removes the degeneracy of each of
the six above-mentioned eigenvalues, as well as degeneracies of the same type, for instance those
of the three eigenvaluessz0,1d1, sz0,1d2, and z1,1 that we obtained previously. It is this simpler
question that we now examine. We are going to show that the couplingl02 V splits the first three
levels of Fig. 10, eigenvaluessz0,1d1, sz0,1d2, andz1,1 of Proposition 4.2, into an infinity of levels
and calculate the splittings ofsz0,1d1 andz1,1, at the lowest order inl02.

C. Perturbation with respect to l02: Second removal of degeneracy

We are now interested inHsld. The functionf02 comes into play. Hence we assume that the
first vector of the basisg1,g2, . . . of Proposition 4.2 is inHrad

s3d. Thegi’s, i .1 are thus orthogonal
to Hrad

s3d. We saw that thesfi,p
sq,0,. . .ddk, q=0,1, . . .,which are inEs3d, are associated with a unique

eigenvalueszi,pdk. In the simple casessi ,pd=s1,1d and si ,p,kd=s0,1,1d, we are going to show
that the degeneracy is removed. We calculate the approximations of order two inl02 of those
eigenvalues ofHsld which tend toszi,pdk whenl02 tends to 0. These eigenvalues depend onq. The
approximations are denoted byszi,p

sqddk
sø2d. The corresponding eigenvectors are denoted bysxi,p

sqddk

and their second-order approximations bysxi,p
sqddk

sø2d. We will have

FIG. 11. Levels associated with eigenvectors ofH0sld in E2
s2d, without any spectator photon.
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lim
l02→0

sxi,p
sqddk

sø2d = sfi,p
sq,0,. . .ddk = s1 ^ c*sg1ddqsfi,p

s0ddk. s4.13d

sHere,z does not have the same meaning as in Sec. III;m remains zero.d
Note that, if xPHs3d is an eigenvector ofHsld, then for everyg orthogonal toHrad

s3d, s1
^ sc*sgddndx is still an eigenvector, associated with the same eigenvalue. This second degeneracy
removal is thus only very partial.

We assume thatp=1 and we limit ourselves to perturbingsz0,1d1, sz0,1d2 if f01Þ f12, andz1,1.
If f01Þ f12, the diagram in Fig. 10 transforms into the one of Fig. 12. The case ofsz0,1d2 is
particular as we will see later on. Note that the exact eigenvectorsxi,p

sqddk is no longer inEq+1
s3d but in

% r=0
` Er+1

s3d . More precisely, we have
Proposition 4.4: Through the perturbationl02 V, each of the eigenvaluessz0,1d1sl01,l12d and

z1,1sl01,l12d is at least split into an infinity of eigenvaluessz0,1
sndd1sld and z1,1

sndsld, given at second
order in l02 by the following formulas:

sid sz0,1
sndd1

ø2sld = sz0,1d1sl01,l12d + l02
2 S1 + n!

l01
2

sz0,1d1
2D−1

A0,1,1
snd sl01,l12d s4.14d

with, if f01Þ f12,

A0,1,1
snd sl01,l12d ª n

l01
4 usf02,g1du2

ssz0,1d1d2sl12
2 sz0,1d1 + l01

2 ssz0,1d1 − e2dd
, s4.15d

where usf02,g1du can be expressed with the si’s, and, if f01= f12, and thus g1=s1+us0u2d−1
2sf02

−s0f01d,

A0,1,1
snd sl01,l12d ª

l01
4

ssz0,1d1d2sl12
2 sz0,1d1 + l01

2 ssz0,1d1 − e2dd
snusf02,g1du2 + us0u2d. s4.16d

(ii) sz1,1
snddø2 is obtained through replacingsz0,1d1 by z1,1 in expressions givingsz0,1

sndd1
ø2.

(iii) sz0,1d2, which is more degenerated than the two previous eigenvalues, is also split. The
second-order approximations of the perturbed eigenvalues, sz0,1

sn,mdd2
ø2, now depending on two

indices, are obtained through the vanishing of an infinite order determinant.
The broad lines of the proof are given in Appendix B 3, together with the method for

calculating the corresponding eigenvectorssx0,1
sndd1

ø2sld, sx0,1
sn,mdd2

ø2sld, andsx1,1
snddø2sld.

D. Conclusion of Sec. IV

Section IV C described the splitting of the eigenvaluessz0,1d1, sz0,1d2, andz1,1 of Proposition
4.2. It gave a small part of the spectrum ofHsl ,0d, described in the second column of Fig. 12. In
view of these results one may reasonably surmise the following points.

This splitting of the levels of the second column of Fig. 9sor 10d will reproduce for those of
the second column of Fig. 11, which are different. In other terms, the degeneracy of the latter
levels, due to spectator photons, will also be removed by the couplingl02V. More generally, each
level multiplet which was mentioned at the end of the proof of Proposition 4.3 is also split when

FIG. 12. Qualitative description of the perturbation of Fig. 10 first levels, due to thel02 V term: sgi1
=g1d. sIn the last

columns, the additional degeneracy is not mentioned.d
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the interaction is totally switched on. This rough description of the two level splittings we get by
successively taking the two parts of the interaction Hamiltonian into account eventually yields
quite a complicated spectrum forHsl ,0d. But the reason of the great number of levels is simple;
it is recalled in Sec. V.

Whenm increases from 0, we expect that the eigenvalues we found move into eigenvalues or
resonances ofHsl ,md. The set of these eigenvalues or resonances thus likely has the same rich
structure.

V. GENERAL CONCLUSION

Results of Secs. III and IV fit into the same frame. They lead us to expect that the number of
eigenstates or resonances of the atom-photon system is formally, apart from accidental degeneracy
or boundary-condition effects, the product of the dimensions of the atom state space and the field
state space. The description is complicated because of the multivaluedness of the resolvent matrix
elements, as functions of thel and m parameters. This picture may be illustrated through the
following argument: if the energy of each level of the isolated atom is considered as an eigenvalue
of Hatom^ 1field, this level is twice infinitely degeneratedsnumber of photons and state of each
photond. This degeneracy is removed with the actual Hamiltonian which describes the coupling of
the atom to the field. The shift of the naked-atom levels by the coupling of the atom to the photon
field is thus not the main feature in the change in the Hamiltonian “spectrum.” The main feature
is more the emergence of numerous resonances, as in the monochromatic-photon case.

For a two-level atom and Hamiltonians3.1d sSec. IIId, only one photon state comes into play.
The subspace ofHrad to be considered isHrad

s1d and the two degeneracies which are removed, same
energy for statesu0,0l, u0,gl , . . ., u0,g∨nl , . . . on the onehand andu1,0l, u1,gl , . . ., u1,g∨nl , . . . on the
other hand, only concern the number of photons. A great degeneracy remains since adding photons
in states orthogonal to the distinguishedg state do not change the energies.

For a three-level atom, the number of coupling functions in the Hamiltonian is greater and this
forced us to start to pay attention to different photon states. As a consequence, the just mentioned
degeneracy now starts being removed.

For a real atom, with its infinity of levels, the splitting will still be greater. Our perturbative
treatment illustrates how the different photon states may be taken into account successively.
Calculations will of course be impossible if some physically justified simplifications are not made.

The present limits of the study are the following.
Section III described resonances for a realistic HamiltoniansmÞ0d, but for a system with

only two levels. However, even in that simplified case, we are far from having found all the
resonances since we considered only one or two excitation spaces,E1 or E2. It would be necessary
to take more than two photons into account. But the resonances are then given by more and more
complicated equations.

In Sec. IV, to be able to present a qualitative description of resonances in a three-level system,
we had to work in the limitm=0. This first stage seems unavoidable to us if one wants to solve the
question completely. Doing this, we were able to take an infinity of photons into account. But the
calculations are only carried to the second order inl02 and also the displacement of the resonances
whenm becomes non-zero is just qualitatively mentioned.

However, we have seen that these partial results give new information about hybrid states
which are present in matter-field interactions such as the interaction to which we borrowed our
terminology: the interaction of atomssor moleculesd with the electromagnetic field. We hope that
concrete problems will justify approximations making calculations possible.

APPENDIX A. ESTIMATION OF CORRECTIVE TERMS IN THE FREDHOLM EXPANSION
OF PROPOSITION 3.4

Proposition: Setw2sm ,z,p,qdªm2D2sm ,z,p,qd and

w3sm,z,p,qd ª
ugspduugsqdus1 + upud1/4s1 + uqud1/4supu − uqud2

ufsz− mupudu1/2ufsz− muqudu1/2U z

m
− 2upuU1/2U z

m
− 2uquU1/2U z

m
− upu − uquU2
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w4sm,z,p,qd ª
ugspdu2/3ugsqdu2/3s1 + upud1/4s1 + uqud1/4supu − uqud2

ufsz− mupudu1/3ufsz− muqudu1/3U z

m
− 2upuU1/3U z

m
− 2uquU1/3U z

m
− upu − uquU2

defined for z,0. we have

C2sl,m,zd = sl2/md2iw2sm,z, . , . di1, sA1d

uC3sl,m,zdu , M3sl,m,zd ª 4sl2/md3iw3sm,z, . , . di3
3. sA2d

Assuming that (3.19) also holds for n=4, we also have

uC4sl,m,zdu , M4sl,m,zd ª 42sl2/md4iw4sm,z, . , . di6
6. sA3d

Proof: Use s3.19d and Hölder’s inequalities. j

We omit l, which is fixed to 0.1. Table III gives values forC2sm ,z0,2
1 smdd, M3sm ,z0,2

1 smdd,
M4sm ,z0,2

1 smdd, and]zC1sm ,za
s2dsmdd, from

]zC1sm,zd = − l2E ugspdu2

fsm,z− mupudsz− 2mupudS 1

fsm,z− mupud
−

1

z− 2mupuDdp

− l2E E ugspdu2ugsqdu2dpdq

f2sm,z− mupudsz− 2mupudsz− msp + qdd2 .

By definition C1sm ,z0,1
1 smdd=1. We see how the terms of the Fredholm expansion decrease with

the order.
For m=mc, Dsmc,0d is close to 0. Let us recall that we havefsl ,mcsld ,0d=0. It would be

interesting to see whetherDsmc,0d vanishes or not. To try and answer this question, let us estimate
the error we made in calculating the zero ofDsm , .d by the truncated series. Let us consider the
following expansion ofDsm , .d nearz0,2

1 smd:

1 − C1sm,z0,2
1 smdd − sz− z0,2

1 smdd]zC1sm,z0,2
1 smdd +

1

2
C2sm,z0,2

1 smdd +
1

2
sz− z0,2

1 smdd]zC2sm,z0,2
1 smdd

−
1

6
sC3sm,z0,2

1 smdd + sz− z0,2
1 smdd]zC3sm,z0,2

1 smddd.

Let us assume that termssz−z0,2
1 smdd]zC2sm ,z0,2

1 smdd and sz−z0,2
1 smdd]zC3sm ,z0,2

1 smdd can be ne-
glected. Then the correction to the zero is

1

]zC1sm,z0,2
1 smdd

S−
1

2
C2sm,z0,2

1 smdd +
1

6
C3sm,z0,2

1 smddD
whose principal term is of the order of 4310−4. Since it is precisely the order ofz0,2

1 smcd, it is not
possible to answer the question.

APPENDIX B: SKETCHES OF PROOFS OF RESULTS IN THE THIRD-LEVEL CASE

1. Sketch of the proof of Proposition 4.2

Let Fª u2,Fnl+ u1,Fn+1l+ u0,Fn+2l be an eigenvector ofH0sld in En+2 associated withz, one
of the two eigenvaluessz0,1d1 or z1,1. It can be shown that

sz− e2d−1l12
2 sf12,Fn+1d ∨ f12 = z−1l01

2 sf01,Fn+1d ∨ f01, sB1.1d

where
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sf12,Fn+1dsp1,p2, . . . ,pnd =E f̄12spdFn+1sp,p1,p2, . . . ,pnddp,

sf∨n ∨ hdsp1,p2, . . . ,pn+1d =
1

n + 1o
i=1

n+1Sp
jÞi

n+1

fspjdDhspid.

From sB1.1d, through decomposingFn+1 on a basis of thesn+1d-photon space built withf01, f12,
and thegi’s, we get thatFn+1 is a sum of statespi=1

` sc*sgiddniV with oini =n+1. From relations
expressing thatF is an eigenvector, we deriveFn=0 and, ifzÞ0, Fn+2=z−1În+2l01Fn+1∨ f01; this
implies thatF is in G0,1,1 if z=sz0,1d1 or in G1,1 if z=z1,1. Hencesid and siii d.

If z=sz0,1d2=0, thenF is an eigenvector if and only ifFn=0, Fn+1=0 and sf01,Fn+2d=0.
Hencesii d.

2. The six eigenvalues z2,2, „z1,2…1, „z1,2…2, „z0,2…1, „z0,2…2 and „z0,2…3, with eigenvectors in
E2

„2…

The space spanned by vectors

u2,Vl, u1,f12l, u1,f01l, u0,f12 ∨ f01l, u0,f01 ∨ f01l

is invariant. Through addingu0, f12∨ f12l, we get a basis ofE2
s2d, in which the matrix ofH0 is

1
e2 l12 s1l12 0 0 0

l12 e1 0
l01

Î2
0 Î2s1l01

0 0 e1 s1
l01

Î2
Î2l01 0

0 Î2l01 0 0 0 0

0 0 Î2l01 0 0 0

0 0 0 0 0 0

2 .

One of the eigenvalues is 0 and the eigenvector is the one mentioned in the text. The other
eigenvalues are thez’s for which

zsz − e1dszsz − e1dsz − e2d − 3l01
2 sz − e2d − l12

2 zd + zl01
2 s2l01

2 + s2 − us1u2dl12
2 d − 2e2l01

4

vanishes. Neglecting fourth-order terms, we get the following solutions at second order inl:

sz0,2
0 d2 = 0, sz0,2

0 d3 = −
3

e1
l01

2 , sz1,2
0 d1 = e1, sz1,2

0 d2 = e1 +
3

e1
l01

2 +
1

e1 − e2
l12

2 ,

z2,2
0 = e2 +

1

e2 − e1
l12

2 .

This proves that these eigenvalues are different from those found inE1
s2d.

3. Sketch of the proof of Proposition 4.4.

Let us use Kato’s method23 to determine the threesinfinited sets of perturbed eigenvalues
which tend to each of the unperturbed eigenvalues.sSee a short account in Ref. 24.d

sid Let us first considersz0,1d1. The unperturbed eigenspace isG0,1,1 sProposition 4.2d. Let

P0
0,1,1 be the projector on this space andQ0

0,1,1=1−P0
0,1,1. We need operatorQ̃0

0,1,1 which is some-

times written asQ0
0,1,1fsz0,1d1−H0g−1Q0

0,1,1; for xPE, it is defined byQ̃0
0,1,1x=Q0

0,1,1z, wherez is
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any vector inE satisfyingfsz0,1d1−H0gz=Q0
0,1,1x. Let H0,1,1 be the direct sum of the eigenspaces

associated with eigenvalues ofHsld which tend tosz0,1d1 whenl02 tends to 0. LetP0,1,1sl02d be
the projector onH0,1,1. Therefore liml02→0 P0,1,1sl02d=P0

0,1,1. We assume thatP0
0,1,1 andP0,1,1sl02d

establish one-to-one correspondencesH0,1,1→G0,1,1 andG0,1,1→H0,1,1. Set

L0,1,1= P0
0,1,1HP0,1,1P0

0,1,1 andK0,1,1= P0
0,1,1P0,1,1P0

0,1,1. sB3.1d

We recall24 the expansion ofP0,1,1: with Ss0d
ª−P0

0,1,1 andSskd
ª sQ̃0

0,1,1dk,

P0,1,1= P0
0,1,1− o

n

l02
n o

kiù0, k0+¯+kn=n

Ssk0dVSsk1d
¯ VSsknd. sB3.2d

A necessary and sufficient condition forxPH0,1,1 to be an eigenvector ofHsld associated with
the eigenvaluez is that there existsfPG0,1,1 satisfyingx=P0,1,1f and

L0,1,1f = zK0,1,1f. sB3.3d

L0,1,1 andK0,1,1 are operators inG0,1,1 and the problem of the perturbation ofsz0,1d1 is turned into
finding suchz. We still have a degeneracy due to photon-states insHrad

s3dd'; indeed, if f is a
solution for sB3.3d, thenPiù2s1^ c*sgiddnif is still a solution. Thus we are not going to look for
all f’s, but only for those in an invariant subspace ofG0,1,1. Lemmas B3.1 to B3.6 prepare the
calculation of eigenvalues into whichsz0,1d1 splits. The result forz1,1 will be obtained through a
simple change in the notations. The splitting ofsz0,1d2 is just outlined.

Let g1 be the function ofHrad
s3d orthogonal toHrad

s2d and let G0,1,1
s1d be the subspace ofG0,1,1

spanned bys1^ c*sg1ddn sf0,1
s0dd1, nù0. Let us denote the approximations ofK0,1,1 and L0,1,1 to

orderq in l02 by K0,1,1
øq andL0,1,1

øq .
Lemma B3.1: For all q, G0,1,1

s1d is invariant by K0,1,1
øq and L0,1,1

øq .
PROOF:Operators 1̂ c*sg1d andV sentEs3d into Es3d, since functions orthogonal toHrad

s3d do not
play any part. Now,P0

0,1,1 sendsEs3d into G0,1,1
s1d ,Es3d. Thus, if X is any endomorphism ofEs3d,

P0
0,1,1XP0

0,1,1 is an endomorphism ofG0,1,1
s1d . Q0

0,1,1 also leavesEs3d invariant. The same is true for

Q̃0
0,1,1 and therefore forP0,1,1. Hence the lemma. j

Expressions to the second order inl02 of L0,1,1 andK0,1,1 are

K0,1,1
ø2 = P0

0,1,1− l02
2 P0

0,1,1VsQ̃0
0,1,1d2VP0

0,1,1, sB3.4d

L0,1,1
ø2 = sz0,1d1K1

ø2 + l0,2
2 P0

0,1,1VQ̃0
0,1,1VP0

0,1,1. sB3.5d

To calculateK0,1,1
ø2 sf0,n+1

snd d1 andL0,1,1
ø2 sf0,n+1

snd d1, we need the following lemma.
Lemma B3.2:

Vsf0,n+1
snd d1 = u2,sw0,1

sndd1l sB3.6d

with sw0,1
s0dd1=N1l01/ sz0,1d1s̄0 and, for nù1,

sw0,1
sndd1 = N1

l01

sz0,1d1
ss̄0g1

∨n
+ nsf02,g1df01 ∨ g1

∨n−1
d, sB3.7d

where N1=s1+sz0,1d1
−2l01

2 d−1/2.
Lemma B3.3: K0,1,1

ø2 and L0,1,1
ø2 are diagonal in the basissf0,n+1

snd d1 of G0,1,1
s1d .

Proof: Vsf0,n+1
snd d1PEn+2, since sf0,n+1

s0d d1 has no component onu2l ^ F. Through using

Q̃0
0,1,1En+2

s3d ,En+2
s3d , we then get

sQ̃0
0,1,1VP0

0,1,1sf0,n+1
snd d1,Q̃0

0,1,1VP0
0,1,1sf0,m+1

smd d1d = 0, if mÞ n

andK0,1,1
ø2 is diagonal. The same is true forL0,1,1

ø2 . j
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Lemma B3.4: Let us set u1,nªQ̃0
0,1,1Vsf0,n+1

snd d1 and definek1,n, u1,n+1 and h1,n+2 by u1,n

= u2,k1,nl+ u1,u1,n+1l+ u0,h1,n+2l. We denote the expression of z to the second order inl02 by
sz0,1

sndd1
ø2. We have

sz0,1
sndd1

ø2 = sz0,1d1 + l02
2 ssw0,1

sndd1,k1,nd. sB3.8d

Proof: From Lemma B3.3, it follows thatsf0,n+1
snd d1 are eigenvectors ofL0,1,1

ø2 andK0,1,1
ø2 , associated

with eigenvalues which we denote bysl0
sndd1

ø2 and sk0
sndd1

ø2 respectively. Vectorsf in G0,1,1
s1d satis-

fying sL0,1,1
ø2 −zK0,1,1

ø2 df=0 are necessarily thesesf0,n+1
snd d1; the correspondingz-value, for eachn, is

ssk0,1
sndd1

ø2d−1sl0,1
sndd1

ø2. Through usingsB3.4d and sB3.6d, we get

sk0,1
sndd1

ø2 = ssf0,n+1
snd d1,K0,1,1

ø2 sf0,n+1
snd d1d = 1 −l02

2 iu1,ni2,

sl0,1
sndd1

ø2 = sz0,1d1s1 − l02
2 iu1,ni2d + l02

2 sVsf0,n+1
snd d1,u1,nd. sB3.9d

As a consequence,

sl0,1
sndd1

ø2 = sz0,1d1s1 − l02
2 iu1,ni2d + l02

2 ssw0,1
sndd1,k1,nd. sB3.10d

HencesB3.8d holds since 1−iu1,ni2 is to be replaced by 1, to the considered approximation.j

Lemma B3.5:
(a) Let us set

M1 ª S l12
2

sz0,1d1 − e2
+

l01
2

sz0,1d1
D−1

.

For nù0, a vectorv satisfyingfsz0,1d1−H0gv= u2,ss0,1
sndd1l is v1,n= u2,k1,n8 l+ u1,u1,n+18 l+ u0,h1,n+28 l

with

k1,n8 =
sw0,1

sndd1

sz0,1d1 − e2
+ În + 1l12

sf12,u1,n+18 d
sz0,1d1 − e2

. sB3.11d

h1,n+28 = În + 2l01
u1,n+18 ∨ f01

sz0,1d1
, sB3.12d

u1,n+18 = N1
În + 1

l01l12

ssz0,1d1 − e2dsz0,1d1
ss0su1,n+18 ds1d + nsf02,g1dsu1,n+18 ds2dd, sB3.13d

where, if f01Þ f12,

su1,n+18 ds1d =
sz0,1d1 − e2

l12
2

1

1 − us1u2
ss1f01 − f12d ∨ g1

∨n
, sB3.14d

su1,18 ds2d = 0, su1,n+18 ds2d =
M1

2s1 − us1u2d
ss1f01 ∨ f01 − 2f01 ∨ sf12d + s̄1f12 ∨ f12d ∨ g1

∨n−1
.

sB3.15d

If f 01= f12,

su1,n+18 ds1d = − M1f01 ∨ g1
∨n, sB3.16d

su1,18 ds2d = 0, su1,n+18 ds2d = − 1
2M1f01 ∨ f01 ∨ g1

∨sn−1d. sB3.17d

(b) u1,n of LemmaB3.4 is equal tov1,n
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Proof: RelationssB3.11d and sB3.12d are obtained through projecting the equality definingv
on u2l ^ Hrad and u0l ^ Hrad, respectively. The projection onu1l ^ Hrad implies thatu1,n+18 satisfies

L1,n+1u1,n+18 =
În + 1l12

sz0,1d1 − e2
sw0,1

sndd1 ∨ f12, sB3.18d

where

L1,n+1u1,n+18 ª −
sn + 1dl12

2

sz0,1d1 − e2
f12 ∨ sf12,u1,n+18 d −

sn + 1dl0,1
2

sz0,1d1
f01 ∨ sf01,u1,n+18 d. sB3.19d

For nù1, sw0,1
sndd1, given bysB3.7d is decomposed into two parts. Hence we introduce two func-

tions su1,n+18 ds1d and su1,n+18 ds2d satisfying

L1,n+1su1,n+18 ds1d = g1
∨n ∨ f12, sB3.20d

L1,n+1su1,n+18 ds2d = g1
∨sn−1d ∨ f01 ∨ f12, sB3.21d

so that a solution ofsB3.18d will be given by sB3.13d. To provesad if f01Þ f12, we check that
sB3.14d satisfiessB3.20d and thatsB3.15d satisfiessB3.21d. We proceed in the same way with
sB3.16d andsB3.17d, if f01= f12, sB3.18d andsB3.19d being still true. Onlysu1,n+1ds1d plays a part
if n=0.

To prove sbd, we note that vectors inG0,1,1 are linear combinations ofu1,gi1
∨ ¯ ∨gin

l and
u0, f01∨gi1

∨ ¯ ∨gin
l. Sincesad implies thatu1,n+18 is a sum of symmetric products of terms one of

which at least is inHrad
s2d, we havesu1,n+18 ,gi1

∨ ¯ ∨gin+1
d=0 andsh1,n+28 , f01∨gi1

∨ ¯ ∨gin+1
d=0. As

a consequence,u2,k1,n8 l, u1,u1,n+18 l, and u0,h1,n+28 l are orthogonal toG0,1,1 and u1,n=Q0
0,1,1v1,n

=v1,n. j

Lemma B3.6: Take nù0. For f01Þ f12,

ssw0,1
sndd1,k1,nd = nN1

2 l01
4 usf02,g1du2

ssz0,1d1d2sl12
2 sz0,1d1 + l01

2 ssz0,1d1 − e2dd
. sB3.22d

For f01= f12,

ssw0,1
sndd1,k1,nd = N1

2 l01
4

ssz0,1d1d2sl12
2 sz0,1d1 + l01

2 ssz0,1d1 − e2dd
snusf02,g1du2 + us0u2d.

sB3.228d

Proof: Use sB3.7d and LemmasB3.5d. j

Formulass4.14d and s4.15d then follow from sB3.10d and sB3.22d. In the same way,s4.16d
follows from sB3.228d.

sii d All that has been written up to now can be transposed fromsz0,1d1 to z1,1, with the
following changes

P0
0,1,1→ P0

1,1, P0,1,1→ P1,1, Q0
0,1,1→ Q0

1,1, Q̃0
0,1,1→ Q̃0

1,1, H0,1,1→ H1,1,

sf0,n+1
snd d1 → f1,n+1

snd , G0,1,1→ G1,1, G0,1,1
s1d → G1,1

s1d, sw0,1
sndd1 → w1,1

snd ,

sk0,1
sndd1 → k1,1

snd, sl0,1
sndd1 → l1,1

snd, sz0,1
sndd1

ø2 → sz1,1
snddø2.

N1, M1, sw0,1
sndd1 are thus also changed, as well asL1,n+1 and the solutionsu1,n+1 h1,n+2 andk1,n.

One then getsii d of Proposition 4.4.
siii d Let us come on now to the splitting ofsz0,1d2, an eigenvalue which is zero and exists only

if f01Þ f12. The issue is more complicated due to the fact that the unperturbed eigenspace of
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interest is no longer just spanned by thePs1^ c*sg1ddnsf0,1
s0dd2. It is spanned by the

u0,Psc*sgiddniVl, with i =0 or 1. Let us denote this space byG. Let P0
0,1,2 be the projector onG.

With K0,1,2
ø2 and L0,1,2

ø2 defined as insB3.4d and sB3.5d, we can see thatL0,1,2
ø2 has nonvanishing

matrix elements between sayg0
∨p∨g1

∨sp+2d and g0
∨sp+1d∨g1

∨sp+1d, or betweeng0
∨sp+1d∨g1

∨sp+1d and
g0

∨sp+2d∨g1
∨spd or also betweeng0

∨sp+2d∨g1
∨spd andg0

∨sp+3d∨g1
∨sp−1d. This makes the computation of the

z’s satisfying detsL0,1,2
ø2 −zK0,1,2

ø2 d=0 more intricate and we don’t calculate them here.
This completes the proof of Proposition 4.4. j

Eigenvectorssx0,1
sndd1

s2d, sx1,1
sndds2d are obtained from the correspondencesG0,1,1→H0,1,1, and

G1,1→H1,1, through the second order expansion of operatorsP0,1,1sl02d and P1,1sl02d which
perform these correspondences. For example, we getssee Ref. 24, p. 614d

sx0,1
sndd1

s2d = sf0,n+1
snd d1 + l02

2 s− P0
0,1,1VsQ̃0

0,1,1d2V + Q̃0
0,1,1VQ̃0

0,1,1Vdsf0,n+1
snd d1.
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Principal bundle structure of quantum adiabatic dynamics
with a Berry phase which does not commute with the
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A geometric model is proposed to describe the Berry phase phenomenon when the
geometric phase does not commute with the dynamical phase. The structure used is
a principal composite bundle in which the adiabatic transport appears as a horizon-
tal lift. The formulation is applied to a simple quantum dynamical system con-
trolled by two lasers. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1940547g

I. INTRODUCTION

Principal bundle theory is a classic tool of modern theoretical physics. The notation
sP,M ,G,pd will be used throughout this paper to designate a principal bundle on the right-hand
side with base spaceM, total spaceP, structure groupG, and projectionp. First we quote an
important result of principal bundle theory. Suppose thatP is endowed with a connection de-
scribed by the gauge potentialAs associated to the local sectionsPGsM ,Pd. Let C be a curve in
M, parametrized by the functionf0,1g{ t°gstdPM. Then the horizontal lift ofC at the point
ssgs0dd is given by

P { pstd = ssgstddPe−e0
t Assgstdd, s1d

whereP is the path-ordering operator andPe−e0
t AssgstddPG acts onP by the group canonical right

action.
In 1984, Berry1 proved, in the context of the standard adiabatic approximation, that the wave

function of a quantum dynamical system takes the form

cstd = e−i"−1e0
t EasRW st8dddt8−e0

t ka,RW st8du]t8ua,RW st8dldt8ua,RW stdl, s2d

whereEa is a nondegenerate instantaneous eigenvalue isolated from the rest of the Hamiltonian

spectrum with instantaneous eigenvectorua,RW stdl and RW is a set of classical control parameters

used to model the time-dependent environment of the system. The set of all configurations ofRW is
supposed to form aC`-manifoldM. The important result is the presence of the extra phase term,

called the Berry phasee−e0
t ka,RW st8du]t8ua,RW st8dldt8. Simon2 later found the mathematical structure which

models the Berry phase phenomenon, namely a principal bundle with base spaceM and with
structure group Us1d. If we eliminate the dynamical phase by a gauge transformation which
involves redefining the eigenvector at each time, then the expressions2d is the horizontal lift of the

curveC described byt°RW std with the gauge potentialA=ka,RW udMua,RW l. If C is closed then the
Berry phasee−rCAPUs1d is the holonomy of the horizontal lift.

In 1987, Aharonov and Anandan3 proved that geometric phases such as the Berry phase are
not solely attached to the adiabatic approximation but appear in a more general context. Let

adElectronic mail: viennot@obs-besancon.fr

JOURNAL OF MATHEMATICAL PHYSICS46, 072102s2005d

46, 072102-10022-2488/2005/46~7!/072102/21/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1940547
http://dx.doi.org/10.1063/1.1940547


t°cstd be a wave function such thatcsTd=eıfcs0d andHstd be the Hamiltonian of the system.
Suppose that the Hilbert space isn-dimensionalsthe casen= +` is not excludedd; then the wave
function defines a closed curveC in the complex projective spaceCPn−1. If one redefines the wave

function such thatc̃sTd=c̃s0d then

cstd = e−i"−1e0
t kc̃st8duHst8duc̃st8dldt8−e0

t kc̃st8du]t8uc̃st8dldt8c̃std. s3d

The extra phase in addition to the dynamical phase is called the Aharonov-Anandan phasesor
nonadiabatic Berry phased. We can eliminate the dynamical phase by a gauge transformation; then
the Aharonov-Anandan phase appears as the horizontal lift ofC in the principal bundle with base
spaceCPn−1, the structure group Us1d and with thes2n−1d-dimensional sphereS2n−1 as total
space. The Berry-Simon model and the Aharonov-Anandan model are related by the universal
classifying theorem of principal bundles;4,5 more precisely, the Aharonov-Anandan principal
bundle is a universal bundle for the Berry-Simon principal bundle.

The two geometric phases described above are called Abelian because they are related to the
Abelian group Us1d. In 1984, Wilczek and Zee6 produced a non-Abelian Berry phase phenom-

enom in the context of the adiabatic approximation. LetEasRW stdd be anM-fold degenerate instan-

taneous eigenvalue isolated from the rest of the spectrum andhua, i ,RW stdlji=1,. . .,M be an orthonor-

mal basis for the associated eigensubspace. Suppose that the initial state iscs0d= ua, i ,RW s0dl; then
the wave function is

cstd = o
j=1

M

e−i"−1e0
t EasRW st8dddt8fTe−e0

t AsRW st8ddg ji ua, j ,RW stdl, s4d

where the matricial 1-formA has the elementsAij =ka, i ,RW udMua, j ,RW l andT is the time-ordering
operator. By elimination of the dynamical phase, this expression becomes a horizontal lift of the

curve C described byt°RW std into a principal bundle with base spaceM and structure group

UsMd. If C is closed thenPe−rCAsRW dPUsMd is the holonomy of the horizontal lift.
In 1994, Bohm and Mostafazadeh7 constructed a non-Abelian Aharonov-Anandan phase as

the universal bundle of the preceding one. LetPstd be anM-fold degenerate projector such that
PsTd=Ps0d. t° Pstd defines a closed curveC in the Grassmanian manifoldGMsCnd. If one chooses
a local section of the bundlefVMsCnd ,GMsCnd ,UsMd ,pVMsCndg fwhereVMsCnd is the Stiefel mani-
foldg ssPd=hf1sPd , . . . ,fMsPdj, then the evolution of the wave function for whichcs0d=fis0d is
given by

cstd = o
j ,k=1

M

fTe−i"−1e0
t Est8ddt8g jkfTe−e0

t Ast8dgkif jstd, s5d

where Aij =kfiudGMsCnduf jl, Eijstd=kfistduHstduf jstdl, and where we suppose that∀t
fe0

t Est8ddt8 ,e0
t Ast8dg=0. By eliminating the dynamical phase, we obtain a horizontal lift in the

universal bundle.
The gauge potentials defined in the four previous cases have the particular formA=U†dU

where U is a M 3n matrix s† denotes the transconjugationd. A connection with such a gauge
potential is called a Stiefel connection. It is in fact the form of the universal connection in the
universal bundle, a form which is unique, since Narasimhan and Ramaman8 proved that all
universal connections can be written in this form. Then the above four examples of geometric
phase each have an explicit Stiefel structure.

In the previous example, the dynamical phase commutes with the geometric phase, but this is

not the case in general. More usually we haveTe−ı"−1e0
t Est8ddt8−e0

t Ast8dÞTe−ı"−1e0
t Est8ddt8Te−e0

t Ast8d and
it is then impossible to eliminate the dynamical phase and to obtain a simple geometric structure
which reduces the phenomenom to a horizontal lift in a principal bundle.
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Sardanashvily introduced9,10 a model based on a vector composite bundle, so as to obtain a
geometric structure which can describe both the dynamical and the geometric phases when they do
not commute. His formulation defines the covariant derivative

¹hc = s]t + Amshstd,tds]th
mstdd + i"−1Hshstd,tddc, s6d

whereh is a map fromR to M sthe manifold of classical parametersd, andA andH are bounded
operators. This leads to the result that if a sectionc is an integral section of the connectionsi.e.,
¹hc=0d then

cstd = Te−e0
t sAm]t8h

m+i"−1Hddt8cs0d. s7d

Sardanashvily finally claims that if one can think of the equation¹hc=0 as being the Schrödinger
equation of a quantum system depending on the parameterhstd, thenA generates the Berry phase
and H generates the dynamical phase. We now explain why we are not in agreement with this
claim. First his whole analysis is made in the framework of a vector bundle. This is basically not
incorrect; however the Berry phase is usually described in the framework of a principal bundle and
its associated vector bundle, giving a principal structure which is more rich. Also, the definition of
the covariant derivative used by Saradanashvily is only indirectly justified by noting that it gives
a correct final result. More precisely, Sardanashvily does not explicitly defineA andH, whereas
the adiabatic potential and the dynamical phase have well-defined matricial expressions. Finally,
Eq. s7d is not the expression of a dynamical phase added to a geometric phase, because the
expression of Sardanashvily is of the formcstd=USarstdcs0d, whereas the expression of a parallel

transport with geometric phase is of the formcstd=Uphasestdc̃std wherec̃std is a known function
or a known basis set dependent on the timesin the case of the Berry phase it is the instantaneous
eigenvector basis setd. This known functionsor basis setd defines the local section used to describe
the horizontal lift. ThenUSar is not a non-Abelian phase but is the evolution operator. Conse-
quently we haveı"Am]th

m+H=H, whereH is the Hamiltonian of the system, which is split into
two partsA and H. Since Sardanashvily does not defineA, this spliting is totally arbitrary.
Moreover, ifA is the generator of the Berry phase andE is the generator of the dynamical phase,
we haveı"A+EÞH. Thus the affirmation of Sardanashvily in Ref. 9, namely “A is responsible
for the Berry phase phenomenon” appears to be unjustified.

In this paper we construct a geometric structure to give a correct description of the transport
when the Berry phase does not commute with the dynamical phase. We apply Sardanashvily’s idea
of using a composite bundle, but we take a principal structure in place of the vector structure. We
thus construct a connection consistent with the geometric model of the adiabatic transport and with
the bundle formulation of nonrelativistic quantum dynamics. Our approach reveals that the non-
commutativity of A and E introduces a modified gauge structure. Similar modifications of the
gauge have been used by Attal in Ref. 11 in a treatment of the non-Abelian gerbes connection.sWe
note that in the literature of fiber bundle theory the words “gerbe” and “sheaf” are used by various
authors to name the same mathematical entity.d He introduced a gauge theory with generalized
Cartan structure equationsF=dA+ 1

2fA,Ag+B and G=dB+fA,Bg, and a Bianchi identity dG
+fA,Gg=fF ,Bg whereA is a 1-form,B andF are 2-forms, andG is a 3-form. In the same way,
Larsson,12 in his treatment of the Yang-Baxter equation with non-Abelian gerbes, found a gauge
theory with the usual Cartan equation and the usual Bianchi identity, but limited by restrictions
concerning the possible gauge transformations. It should be stressed that the modified gauge
theory induced by the noncommutativity ofA and E in our approach is similar to the modified
gauge theories of Attal and Larsson which are induced by noncommutativity in the gerbes.

This paper is organized as follows. Section II introduces the generalized adiabatic theorem
with a Berry phase which does not commute with the dynamical phase. Section III is devoted to
some remarks about the principal composite bundles constituting the fundamental structure of our
model. Section IV presents the geometric model used for the description of quantum adiabatic
dynamics. Finally, Sec. V presents an application to a simple quantum dynamical system. Differ-
ent quantum dynamical aspects of this system are presented in our geometric representation.
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A note about some of the notation used here: the symbol“.” between two manifolds denotes
that the two manifolds are diffeomorphic, the symbol“�” denotes an inclusion between two sets
and “VnM” denotes the set of the n-differential forms of the manifold M.

II. GENERALIZED ADIABATIC TRANSPORT

Theorem 1: Let Ust ,0d be an evolution operator of a quantum dynamical system governed by
the self-adjoint Hamiltonian Hstd. Let hEastdja and hua,tlja be the instantaneous eigenvalues and
eigenvectors of Hstd. We suppose that there exists a set of indices I such that the projector
Pmstd=oaPIua,tlka,tu satisfies the adiabatic condition

Ust,0dPms0d = PmstdUst,0d s8d

(to satisfy this assumption, see for example, Nenciu’s adiabatic theorem13). If at t=0 the wave
function iscs0d= ua,0l (with aP I) then at time t we have

cstd = o
bPI

Ubastdub,tl s9d

with the matrix

Ustd = Te−i"−1e0
t Est8ddt8−e0

t Ast8d. s10d

Here Aabstd=ka,tu]tub,tldt and we also have∀a,bP I Eabstd=Eastdda,b.
Proof: The conditions8d states that the evolution is inside RanPm so that for allt the wave

function can be expanded on the basis setsua,tldaPI. This justifies the use of Eq.s9d, in which U
is a unitary matrixsthe unitarity ofU results from the normalization of the wave functiond. The use
of Eq. s9d in the Schrödinger equation leads to the result

o
b

i"U̇bastdub,tl + o
b

i"Ubastd]tub,tl = o
b

UbastdEbstdub,tl. s11d

By projecting this expression onkc,tu we obtain

i"U̇ca + o
b

i"Ubakc,tu]tub,tl = UcaEc s12d

which leads to the result

sU̇U−1dcd = o
a

U̇caUad
−1 s13d

=− o
a

i"−1EcUcaUad
−1 − o

a,b
kc,tu]tub,tlUbaUad

−1 s14d

=− i"−1EcsUU−1dcd − o
b

kc,tu]tub,tlsUU−1dbd s15d

=− i"−1Ecdcd − kc,tu]tud,tl. s16d

j

This expression manifestly displays a matrix dynamical phase and a matrix geometric phase,
in other words a non-Abelian dynamical phase and a non-Abelian geometric phase. In general
fE,AgÞ0. If the Hamiltonian is time-dependent with respect to some classical control parameters

RW which describe aC`-differentiable manifoldM, then we can rewrite the non-Abelian phase

s10d. For a dynamicsHsRW stdd described by a pathC in M we can set
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UsCd = Te−i"−1e0
t EsRW st8dddt8−rCAsRW d s17d

with AsRW dab=ka,RW udMub,RW l, wheredM is the exterior differential ofM.

III. PRINCIPAL COMPOSITE BUNDLES

A. Definition of a composite bundle

A composite bundle is defined by five kinds of data, three manifoldssP+, S, andRd and two
surjective mapsp+:P+→S and pS:S→R. We denote the composite bundle byP+→S→R. We
assert that a composite bundle is a principal composite bundle ifS→R is a locally trivial fiber
bundle with as typical fiber a manifoldM : sS,R,M ,pSd, and if P+→S is a principal bundle with
as structure group a Lie groupG: sP+,S,G,p+d. ∀yPR, we havepS

−1syd.M and we denote byxy
S

the associated fiber diffeomorphism. We suppose thatS has a structure of a cell complex; then
pS

−1syd andM are cell complexes. The theorem of universal classification of principal bundlesssee
Refs. 4 and 5d is used to define the universal bundlesU ,B,G,pUd whereB is the classifying space
of M, %U the universal map fromM to B, and%U +xy

S the universal map frompS
−1syd to B. We

finally define the principal bundlesP,M ,G,pPd such that the following diagram commutes:

whereP=%U
* U andxy

S*
P=s%U +xy

Sd*U. We know thatU is independent ofxy
S*

P and thus indepen-

dent ofy. Moreover, sincexy
S is a diffeomorphism thenxy

S*
is a principal bundle isomorphism, so

that xy
S*

P=p+
−1spS

−1sydd and pPy
=p+1xy

S*
P. Let Ui be an open local chart onM. We consider the

local trivialization ofsP,M ,G,pPd over Ui, fP
i :Ui 3G→pP

−1sUid; then the local trivialization of

sxy
S*

P,pS
−1syd ,G,pPy

d is fP
i fyg=xy

S*
fP

i :xy
S−1

sUid3G→p+
−1sxy

S−1
sUidd. Let Vj be an open local chart

of R, fS
j be the local trivialization ofsS,R,M ,pSd over Vj, andf+

j be the local trivialization of
sP+,S,G,p+d over pS

−1sVjd. It is clear that the local trivializations are related by

f+
j :

pS
−1sVjd 3 G → p+

−1spS
−1sVjdd

ss,gd ° fP
i fPr1 fS

j −1ssdgsPr2 fS
j −1ssd,gd,

where we have supposed that Pr2 fS
j−1

ssdPUi. Pr1 and Pr2 are the canonical projections ofR
3M over R andM. We call sP,M ,G,pPd the structure bundle of the composite bundle.

Finally one can define a principal bundle related to the principal composite bundle. Consider
the map

f++
i j :

Ui 3 Vj 3 G → P+

sx,y,gd ° f+
j sfS

j sy,xd,gd = fP
i fygsx,gd.

This map is a local trivialization of a principal bundlesP+,M 3R,G,p++d with p++=fS
−1+p+. It is

called the total bundle of the principal composite bundle.
Let xPUi be a fixed point ofM. Define the map

fQ
j fxg:

Vj 3 G → P+

sy,gd ° f++
i j sx,y,gd.

If we consider this map as a local trivialization, it defines a principal bundlesQx,R,G,pGx
d with

pQx
=Pr1+fQ

j fxg−1. We call it the transversal bundle of the principal composite bundle. The situa-
tion is schematically summarized in Fig. 1.
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B. Connection on a principal composite bundle

Consider a principal composite bundleP+→S→R. sP+,S,G,p+d and sP+,M 3R,G,p++d
have the structures of principal bundles. We can then define a common connection for these
bundles. LetvPV1sP+,gd be the connection 1-formsg denotes the Lie algebra of the groupGd.
Let sM3R

ij PGsUi 3Vi ,P+d be a local section of the principal bundlesP+,M 3R,G,p++d. The
gauge potential of this bundle is by definitionAM3R

ij =v +sM3R*

i j PV1sM 3R,gd. Let sS
j

PGsp−1sVjd ,P+d be a local section of the bundlesP+,S,G,p+d. In order to simplify the passage
from one bundle to another one, the two sections are chosen to be compatible, i.e.,∀s

PpS
−1sVjd, sS

j ssd=sM3R
ij sfS

j−1
ssdd fwe suppose that Pr1 fS

j−1
ssdPUig, and ∀sx,ydPUi 3Vj,

sM3R
ij sx,yd=sS

j sfS
j sx,ydd. Using these relations the gauge potential of the bundlesP+,S,G,p+d is

AS
j =sS

j*v=fS
j−1*

sM3R
ij *v=fS

j−1*

AM3R
ij PV1sS,gd.

xy
S*

:P→p+
−1spS

−1sydd is a diffeomorphism, thenfremark about the notation: the first starxy
S*

denotes the map induced byxy
S in the principal bundles overpS

−1syd andM, the second starxy
S* *

denotes the map induced byxy
S*

in the cotangent bundles ofP and xy
S*

Pg xy
S* *

:V*sp+
−1spS

−1syddd
→V*P. Let iy:p+

−1spS
−1sydd�P+ be the canonical injection. We define a family of connections of

sP,M ,G,pPd by vy=xy
S* *

iy
*vPV1sP,gd, for yPR. Let sM

i PGsUi ,Pd be a local section which is

supposed to be compatible with the section ofP+: ∀xPM, sM
i sxd=xy

S*−1
sM3R

ij sx,yd sthis section

depends on yd. The gauge potential isAy
i sxd=sM

i *vy=sM3R
ij *xy

S* −1*

xy
S* *

iy
*v= j y

*AM3R
ij sx,yd

PV1sM ,gd, where j y: M→M3R
x°sx,yd .

Finally, let ix:p++
−1sx,Rd�P+ be the canonical injection.vx= ix

*v is a connection of the trans-
versal bundlesQx,R,G,pQx

d. Let jx: R→M3R
y°sx,yd , so thatAx= jx

*AM3RPV1sR,gd is the gauge potential
of this bundle.

C. Horizontal lift in a principal composite bundle

In the theory of principal bundles, the notion of a horizontal lift of a curve of the base space
is fundamental. In a principal composite bundleP+→S→R, there exists a natural generalization
of this notion, but the horizontal lift concerns a section of the base bundlesS,R,M ,pSd. Let h
PGs,R,Sd be a section, where,R is a curve inR. h defines a curveC in M 3R parametrized by

yPR with the function fS
j−1

shsydd sto simplify the discussion we suppose that,R,Vjd. Let
ih:hs,Rd�S be the canonical injection. We consider the local sectionshPGsC ,P+d of the bundle

sP+,M 3R,G,p++d defined bysh=sS
j +fS

j , ∀yPR, shsfS
j−1

shsyddd=sS
j shsydd. Then the horizontal

lift of h is defined as the usual horizontal lift ofC in the total bundle of the composite bundle,

gh = Pe−eCAM3R
sh

= Pe−ehs,Rdih
*AS

j
= Pe−e,R

h*AS
j

s18d

FIG. 1. Scheme of a composite bundle.P+ is the three-dimensional space delimited by the three planes.
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IV. GEOMETRIC STRUCTURES OF GENERALIZED ADIABATIC TRANSPORT

Consider again the generalized adiabatic transport characterized by the non-Abelian phase
s17d in the framework of our quantum mechanical study. The quantum dynamical system is

described by a self-adjoint Hamiltoniant°HsRW std ,td in a separable Hilbert spaceH whereRW is a
set of classical parameters which evolve adiabatically with respect to the quantum proper time.

These parameters form aC`-differential manifoldM. t°RW std represents a particular dynamics
described by a curveC in M. To have a more general description, we assume that the dynamics
possesses a part which changes rapidly and which cannot be modeled by a classical parameter. The

Hamiltonian then has an explicit dependence ont besides having the adiabatic parametersRW std.
To control the physical processes it is necessary to model numerous different dynamics,

without fixing any particular path in the classical parameter manifold and without fixing the
duration of the evolution. Hence we must consider the generic Hamiltonian

H:
M 3 R → LsHd

sRW ,td ° HsRW ,td
s19d

To study this dynamical system, we should separate the dynamical and the geometric contri-
butions to the dynamics. To do this we fixtPR in a first step and obtain a purely adiabatic

sgeometricd evolution RW °HsRW ,td. Next we fix RW PM and obtain a purely quantum dynamical

evolution t°HsRW ,td. These two steps are analyzed successively in the next sections A and B.

A. The fiber bundle of the geometry

Let t0PR be fixed.RW °HsRW ,t0d is the Hamiltonian of an adiabatic system. We suppose that

hEasRW ,t0djaPI areM point eigenvalues ofHsRW ,t0d which form a group which is isolated from the

rest of theH spectrum, and we denote byhua,RW ,t0ljaPI the corresponding eigenvectorsfthe case of
a globally degenerate eigenvalue is not excluded, but in this case∃a,bP I such that

∀RWEasRW ,t0d=EbsRW ,t0d wheresua,RW ,t0l , ub,RW ,t0ld is an orthonormal basis of the eigensubspaceg.
The case of an isolated degeneracysan eigenvalue crossingd for which ∃RW such thatEasRW ,t0d
=EbsRW ,t0d can also be included. The works of Berry,1 Simon,2 Wilczek and Zee6 assert that the
adiabatic evolution is described mathematically by using a principal bundlesP,M ,UsMd ,pPd
where the connection is represented by the gauge potentialAPV1sM ,usMdd,

AabsRW ,t0d = ka,RW ,t0udMub,RW ,t0l. s20d

Here dM is the exterior differential ofM. This expression is associated with the section of the

associated vector bundleRW ° sua,RW ,t0ldaPI.

By introducing the eigenvector-matrixTsRW ,t0dPMdim H3MsCd, we can writeA=T†dT, giving
a Stiefel connection in agreement with the Narasimhan-Ramaman theoremssee Refs. 14 and 8d. It

is evident that after a change of sections∀a ua,RW ,t0l gsRW dua,RW ,t0l with gsRW dPUsMdd the gauge
potential satisfies the usual relation

ÃsRW ,t0d = gsRW d−1AsRW ,t0dgsRW d + gsRW d−1dMgsRW d. s21d

Note that a family of connectionshAsRW ,tdPV1sM ,usMddjtPR is generated ift is continuously
modified. If C is a closed curve inM, then its horizontal lift is characterized by a Wilson loop,

WsC,t0d = Pe−rCAmsRW ,t0ddRm
. s22d

If the adiabatic bundle is not trivial thenWsC ,t0dÞ1 is the holonomy of the horizontal lift which
is called the Berry phase.
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B. The fiber bundle of the dynamics

Consider now a fixed pointRW 0PM. t°HsRW 0,td is the Hamiltonian describing the quantum

dynamics in a static environment which is characterized by the fixed parametersRW 0. Let t0,t1
PR; the evolution of the system betweent0 and t1 which is described by the evolution operator

UsRW 0,t0,t1dPmst0dPUsRanPmd.UsMd which is assumed to satisfy the adiabatic conditions8d,
while also being the solution of the Schrödinger equation

i"
]

]t
UsRW 0,t0,td = HsRW 0,tdUsRW 0,t0,td s23d

with UsRW 0,t0,t0d=1. It is well known that the solution of this equation is

UsRW 0,t0,t1d = Te−i"−1et0

t1HsRW 0,tddt. s24d

Expressionss22d ands24d are very similar, and an interpretation of the quantum dynamics as
a parallel transport has been developed by Asoreyet al.15 in the general framework of infinite-
dimensional Hilbert space and by Iliev16 in the context of a general fiber bundle model of non-
relativistic quantum mechanics. In the context of the adiabatic conditions8d the evolution is
condensed into anM-dimensional space, leading to a description which involves a principal
bundlesQRW 0

,R ,UsMd ,pQRW 0
d and its associated vector bundlesERW 0

,R ,CM ,pERW 0
d, with a state ap-

pearing as a section of the vector bundlecPGsR ,ERW 0
d.

Suppose thatcPGsR ,ERW 0
d is a solution of the Schrödinger equation. Letc̃std=Ustdcstd be a

change of section such that

i"
]

]t
c̃std = H̃sRW 0,tdc̃std. s25d

Insertingc̃std=Ustdc into Eq. s25d leads to the result

i"
]

]t
cstd = sUstd−1H̃sRW 0,tdUstd − i"Ustd−1U̇stddc s26d

so that

i"−1H̃sRW 0,td = Ustdi"−1HsRW 0,tdUstd−1 + U̇stdUstd−1 s27d

and, finally,

i"−1H̃sRW 0,tddt = Ustdi"−1HsRW 0,tddtUstd−1 + sdtUstddUstd−1, s28d

where dt is the exterior differential ofR: dt fstd=s]f /]tddt. Equations28d is the familiar formula of

gauge transformation theory, andi"−1HsRW 0,tddtPV1sR ,usMdd is the gauge potential of
sQRW 0

,R ,UsMd ,pQRW 0
d. cPGsR ,ERW 0

d is horizontal if the covariant differentialDc=dtc

+i"−1HsRW 0,tdc dt is zero, i.e., ifc obeys the Schrödinger equation. A horizontal lift of the curve
ft0,t1g,R is well characterized by the expressions24d.

Let UdynsMd be the set of maps fromR to UsMd which satisfies the Schrödinger-von Neumann
equationfwe note that this equation is the analogue for unitary operators of the equation associ-
ated to the Hermitian dynamical invariantsssee Ref. 17d, which are used by Mostafazadeh in Ref.
18 to define the non-Abelian nonadiabatic geometric phasesg

i"U̇std = fUstd,HsRW 0,tdg. s29d

In the framework of the adiabatic conditions8d, the previous gauge potential is not used, because

s24d is not the expression for the dynamical phase factor appearing in Ref. 19. LethEasRW 0,tdjaPI
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be theM isolated eigenvalues ofHsRW 0,td andhua,RW 0,tljaPI be the corresponding eigenvectors. Let

EsRW 0,td be the matrix such thatEsRW 0,tdab=EasRW 0,tddab. It is clear that EsRW 0,tdab

=ka,RW 0,tuHsRW 0,tdub,RW 0,tl. A gauge transformation:∀aP I, ua ,RW 0,tl=Ustdua,RW 0,tl, leads to

ẼabsRW 0,td = ka,RW 0,tuHsRW 0,tdub,RW 0,tl s30d

=ka,RW 0,tuUstd−1HsRW 0,tdUstdub,RW 0,tl s31d

=ka,RW 0,tuUstd−1UstdHsRW 0,tdub,RW 0,tl + ka,RW 0,tuUstd−1fHsRW 0,td,Ustdgub,RW 0,tl s32d

=ka,RW 0,tuHsRW 0,tdub,RW 0,tl + ka,RW 0,tuUstd−1fHsRW 0,td,Ustdgub,RW 0,tl s33d

=ka,RW 0,tuUstdHsRW 0,tdUstd−1ub,RW 0,tl + ka,RW 0,tufHsRW 0,td,UstdgUstd−1ub,RW 0,tl s34d

=sUstdHsRW 0,tdUstd−1dab + sfHsRW 0,td,UstdgUstd−1dab. s35d

Thus we have

Ẽ = UEU−1 + fH,UgU−1. s36d

E does not satisfy the usual gauge transformation formula. But if we takeUPUdynsMd we obtain

i"−1ẼsRW 0,tddt = Ustdi"−1EsRW 0,tddtUstd−1 + sdtUstddUstd−1 s37d

we see that i"−1EsRW 0,tddtPV1sR ,usMdd is a gauge potential of the principal bundle
sQRW 0

,R ,UsMd ,pQW RW 0
d but with a restriction of the gauge transformations to the setUdynsMd of the

sections ofsQRW 0
,R ,UsMd ,pQW RW 0

d which are horizontal for the connectioni"−1HsRW 0,tddt. The hori-

zontal lift of ft0,t1g,R is then

DsRW 0,t0,t1d = Te−i"−1et0

t1EsRW 0,tddt s38d

which is effectively the dynamical term ofs17d.
The expression for the gauge potential is associated with the section of the associated vector

bundlet° sua,RW 0,tldaPI.

C. The composite bundle of the geodynamics and its connection

The discussion in the two preceding sections A and B suggests that the appropriate entities to
give a correct description of the geometric structure of the geodynamical evolution characterized
by the expressions17d would be the principal composite bundleP+→S→R with structure bundle
sP,M ,UsMd ,pPd, base bundlesS,R ,M ,pSd, transversal bundlessQRW ,R ,UsMd ,pQRW

d and total

bundle sP+,M3R ,UsMd ,p++d. Note that, following the treatment of Sec. II, the structures of
sP,M ,UsMd ,pPd, sQRW ,R ,UsMd ,pQRW

d and of sS,R ,M ,pSd completely determinesP+,M
3R ,UsMd ,p++d. P and QRW have been introduced in the preceding paragraph. By fixingt0PR
arbitrarily, the transition functionssto define a principal bundle, there are three equivalent ways,
by invoking the local trivializations, by invoking the transition functions or by invoking the fiber

diffeomorphismsd gijsRW ,t0dPUsMd of P are obtained by settinggab
ij sRW d=ka,RW ,t0, i ub,RW ,t0, jl

wherei and j represent two possible conventions in the matrix representation of the eigenvectors
ssee the example of Berry phase in Ref. 19d. The topology of the bundleS is determined by the
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map xt
S, for which Pt as defined by the transition functionsTsRW ,t , id†TsRW ,t , jd is such thatxt

S*
P

=xt
S*

Pt0
=Pt. Clearly, if we considerua,RW ,tl as a section ofM with values in the associated vector

bundle ofPt, then we have

xt
S
* ua,RW ,t0l = ua,RW ,tl ⇔ xt

S
* = UsRW ,t0,td, s39d

UsRW ,t0,td is defined by Eq.s24d, andxt*
S is the map induced byxt

S in the sections.
This naturally leads us to take as the gauge potential ofsP+,M3R ,UsMd ,p++d the quantity

AM3RsRW ,td = AsRW ,td + i"−1EsRW ,tddt P V1sM 3 R,usMdd s40d

with A being defined by Eq.s20d. Note that we can use this expression because the two local
sections used to express the gauge potentials are compatible. Introducingj t :

M→M3R
RW °sRW ,td

and

jRW : R→M3R
t°sRW ,td

we haveAsRW ,t0d= j t0
* AM3RsRW ,t0d and i"−1EsRW 0,tddt= j

RW 0

*
AM3RsRW 0,td.

As a gauge potential is locally defined, and asS is locally diffeomorphic toM3R, we can

write ASsRW ,td=AmsRW ,tddRm+i"−1EsRW ,tddtPV1sS,usMdd. Let hPGsf0,t1g ,Sd be a section.h de-
fines a curveC in M3R, whereL=hsf0,t1gd is a closed path described inM by Rmstd=hmstd.
Consider the pullback ofh,

V*S→ V*R

h* :dRm °
]hm

]t
dt.

dt ° dt

Then we have

sh*ASdstd = Amshstd,td
]hm

]t
dt + i"−1Eshstd,tddt. s41d

Using expressions18d, the horizontal lift ofh is characterized byfwith the notationhstd=RW stdg

gh = Pe−eCAM3RsRW ,td = Te−e0
t1AmsRW std,tdf]Rmstd/]tgdt−i"−1e0

t1EsRW std,tddt. s42d

Suppose now that we do not have a fast evolution in addition to the adiabatic evolution, in such a

way thatHsRW ,td has no explicit time dependence; then we have

gh = Te−rLAmsRW ddRm−i"−1e0
t1EsRW stdddt s43d

which is the expression for the non-Abelian phase ins17d.
Note that the connectionAS of sP+,S,UsMd ,p+d is restricted to the gauge transformations of

the form UsMd{gsRW ,td=gsRW dUstd, wheregsRW d is a map fromM to UsMd without restrictive
conditions and whereUstdPUdynsMd. We thus have a principal structure but with a restricted
choice of gauges.

It should be stressed that inQRW we introduce the local fiberd coordinatesst ,gid wheresgid is
a system of coordinates ofUsMd. In the same way we introduce the fiberd coordinates ofP
sRm ,gid and the fiberd coordinates ofP+ sRm ,t ,gid. By calling on the theorem of Ehresmannssee
Ref. 19d, it is possible to construct a connection 1-form with gauge potentialAM3R. Let s

PGsM3R ,P+d be the section used to express the gauge potentialAM3R. ∀sRW ,t ,gdP P+, let

gsRW ,t ,gd such thatsRW ,t ,gd=ssRW ,tdgsRW ,t ,gd. The connection 1-form ofP+ is
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v+sRW ,t,gd = gsRW ,t,gd−1AmsRW ,tdgsRW ,t,gddRm + i"−1gsRW ,t,gd−1EsRW ,tdgsRW ,t,gddt

+ gsRW ,t,gd−1 ]

]RmgsRW ,t,gddRm + gsRW ,t,gd−1 ]

]t
gsRW ,t,gddt + gsRW ,t,gd−1 ]

]gi gsRW ,t,gddgi

the connection 1-form ofP for a fixed t0 is

vPsRW ,gd = gsRW ,t0,gd−1AmsRW ,t0dgsRW ,t0,gddRm + gsRW ,t0,gd−1 ]

]RmgsRW ,t0,gddRm

+ gsRW ,t0,gd−1 ]

]gi gsRW ,t0,gddgi

and the connection 1-form ofQRW 0
for a fixedRW 0 is

vQRW 0
st,gd = i"−1gsRW 0,t,gd−1EsRW 0,tdgsRW 0,t,gddt + gsRW 0,t,gd−1 ]

]t
gsRW 0,t,gddt

+ gsRW 0,t,gd−1 ]

]gi gsRW 0,t,gddgi

we can see then thatvP+ÞvP+vQRW
.

D. A pseudo-Stiefel structure

In the preceding section C we considered a fiber bundle with a restriction concerning the
allowed gauge transformations. If we give up this restriction we must deal with the nonstandard

equations36d of gauge tranformation theory,Ẽ=UEU−1+fH ,UgU−1. In order to find a structure
associated with this formula we first consider the bundlesQRW 0

,R ,UsMd ,pQRW 0
d endowed with the

gauge potentiali"−1HsRW 0,tddt. This gauge potential satisfies the correct gauge transformation
formula and it is then possible to define a covariant differentialDQRW 0

. Let cPGsR ,ERW 0
d be a

section of the associated vector bundle. We have

DQRW 0
c = ]tc dt + i"−1Hc dt. s44d

Let UPGsR ,QRW 0
d be a section fromR to QRW 0

considered as the space of the operators ofERW 0
;

then we have

DQRW 0
U = ]tU dt + i"−1fH,Ugdt. s45d

With DQRW 0
we define a differential inM3R,

D̃hsRW ,td = dMhsRW ,td + DQRW
hsRW ,td. s46d

We can then define a gauge potential in the style of Stiefel but with the differentialD̃ in place
of dM3R. We set

A+ = T†D̃T, s47d

whereT is the matrix of the eigenvectors ofH. Note thatD̃2Þ0 so that the connection is not

rigourously a Stiefel one.ub,RW ,tlPGsM3R ,E+d is a section of the associated vector bundle of
P+, so that
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D̃ub,RW ,tl = dMub,RW ,tl + dtub,RW ,tl + i"−1HsRW ,tdub,RW ,tldt s48d

and

A+ab = ka,RW ,tudMub,RW ,tl + ka,RW ,tu]tub,RW ,tldt + i"−1ka,RW ,tuHsRW ,tdub,RW ,tldt s49d

so that we have

A+ = A + A0 + i"−1Edt, s50d

whereA is the adiabatic gauge potential defined by Eq.s20d andA0 is the matrix with elements

ka,RW ,tu]tub,RW ,tldt, namely the expression of a Berry gauge potential for the variablet whenRW is
fixed. ConsideringA+ as a gauge potential ofsP+,M3R ,UsMd ,p++d, the horizontal lift ofh
PGsR ,Md is characterized by

gh = Te−e0
t1AmsRW std,tdf]hmstd/]tg−e0

t1A0sRW std,tddt−i"−1e0
t1EsRW std,tddt. s51d

Note that this equation is identical tos10d if one considers the change of variablet→ sRW std ,td.
Consider a gauge transformation, it is clear that

Â+ = Â + Â0 + i"−1Ê dt s52d

=UAU−1 + sdMUdU−1 + UA0U
−1 + sdtUdU−1 + Ui"−1E dt U−1 + i"−1fH,UgU−1 s53d

=UA+U−1 + sdMU + dtU + i"−1fH,UgdU−1 s54d

=UA+U−1 + sD̃UdU−1. s55d

A+ satisfies a gauge transformation formula analogous to the usual one but with the replacement of

dM3R by D̃. The use of the pseudodifferentialD̃ modifies the gauge field theory. Let the curvature
F+ be

F+ = D̃A+ + A+ ∧ A+ s56d

=dM3RA+ + A+ ∧ A+ + i"−1fE dt,A+g s57d

=dM3RA+ + A+ ∧ A+ + i"−1fE dt,Ag. s58d

Let B=i"−1fE dt,AgPV2sM3R ,gd be the curving.B is the field which characterizes the non-
commutativity between the dynamical and the geometric phases. Note thatF+−B is a standard
curvature which satisfies the usual Bianchi identity and the usual Cartan structure equation. Using
the standard covariant differential associated withA+ we obtain the generalized Cartan equations

F+ = dM3RA+ + A+ ∧ A+ + B, s59d

G = dM3RB + fA+,Bg. s60d

GPV3sM3R ,gd is called the fake curvature.
The fake-curvature satisfies a pseudo-Bianchi identity.
Property 1: Let G be a fake-curvature defined by generalized Cartan structure equations; then

dM3RG + fG,A+g = fF+,Bg. s61d

Proof:
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dG = dA+ ∧ B − A+ ∧ dB − dB ∧ A+ − B ∧ dA+, s62d

fF,Bg − fG,A+g = F+ ∧ B − B ∧ F+ − G ∧ A+ − A+ ∧ G s63d

=dA+ ∧ B + A+ ∧ A+ ∧ B + B ∧ B − B ∧ dA+ − B ∧ A+ ∧ A+ − B ∧ B − dB ∧ A+ − A+ ∧ B ∧ A+

+ B ∧ A+ ∧ A+ − A+ ∧ dB − A+ ∧ A+ ∧ B + A+ ∧ B ∧ A+ s64d

=dA+ ∧ B − B ∧ dA+ − dB ∧ A+ − A+ ∧ dB. s65d

j

V. ILLUSTRATION: THE EXAMPLE OF A SIMPLE QUANTUM DYNAMICAL SYSTEM

This final section illustrates the formal concepts introduced in the preceding sections by using
a concrete physical example taken from atomic physics. We consider a particular three-level atom
interacting with two lasers. Before explaining how the model illustrates the formal theory of the
preceding sections we give a brief description of three-level systems.

A. Preliminary discussion

We consider a three-level quantum system, described by the Hilbert spaceH=C3. The generic
form of a three-level Hamiltonians is

H = xili, i = 0, . . . ,8, s66d

wherel0 is the identity matrix ofH=C3 and hliji=1,. . .,8 are the Gell-Mann matrices,

l1 = 10 1 0

1 0 0

0 0 0
2, l2 = 10 − i 0

i 0 0

0 0 0
2, l3 = 11 0 0

0 − 1 0

0 0 0
2, l4 = 10 0 1

0 0 0

1 0 0
2 ,

l5 = 10 0 − i

0 0 0

i 0 0
2, l6 = 10 0 0

0 0 1

0 1 0
2, l7 = 10 0 0

0 0 − i

0 i 0
2, l8 =

1
Î311 0 0

0 1 0

0 0 − 2
2 .

The Gell-Mann matrices can be considered as the generators of the Lie algebrasus3d. Moreover
we introduce the following matrices:

m1 = l3 +
1
Î3

l8 +
2

3
l0, s67d

m2 = − l3 +
1
Î3

l8 +
2

3
l0, s68d

m3 = −
1
Î3

l8 +
2

3
l0. s69d

It is clear thathli ,m jji=1,2,4,5,6,7;j=1,2,3 generate the Lie algebraus3d. We are interested in
particular Hamiltonians of the form

H = x1l1 + x2l2 + x6l6 + x7l7 + x̃m2. s70d

072102-13 Bundle structure of quantum adiabatic dynamics J. Math. Phys. 46, 072102 ~2005!

                                                                                                                                    



Sincehl4,l5,m1,m2j are the generators of the Lie algebraus2d as a subalgebra ofus3d, then
the Hamiltonians70d is an element ofus3d /us2d fthis is a vector space quotient;us2d is not an
ideal ofus3d and sous3d /us2d is a vector space without the Lie algebra structureg. In other words
the Hamiltonians70d characterized bysx1,x2,x6,x7, x̃d is determined by a point of the manifold
Us3d /Us2d, and we knowssee Ref. 4d that

Us3d/Us2d = SUs3d/SUs2d = S5. s71d

Thus, the control parameter space associated with a Hamiltonian of the forms70d can always be
chosen as a submanifold of the 5-sphereS5.

B. A concrete example: a three-level atom interacting with lasers

We consider a three-level atom in theL configuration interacting with two lasers, denoted by
P sfor pumpd andS sfor Stokesd. The three bare states of the atom are labelled byual, ubl, anducl.
The control parameters of the system are the amplitudes and the phases of the lasersS andP. We
denote byvP the frequency of the laserP which is quasiresonant with the transitionual→ ubl, with
the detuningD. The laserS of frequencyvS is supposed to be in perfect resonance with the
transitionubl→ ucl, see Fig. 2.

The dressed Hamiltonian of the system in the rotating wave approximationsRWAd is ssee, for
example Ref. 20d

H =
"

21 0 Weib 0

We−ib 2D Veia

0 Ve−ia 0
2 , s72d

whereW= ukaumW ·EW Publu andV= ukbumW ·EW Suclu, EW P andEW S being the laser amplitudes andmW being the
electric dipole moment of the atom. To simplify the notation, we setD=1. The HamiltonianH is
of the form s70d and we can compute the three eigenvalues ofH,

E1 = 0, s73d

E2 =
"

2
s1 −Î1 + V2 + W2d, s74d

E3 =
"

2
s1 +Î1 + V2 + W2d. s75d

We see thatE1=E2 if V=0 andW=0, and moreover

inf
V,W

distshE1,E2sV,Wdj;E3sV,Wdd = ". s76d

Let P1sW,V,a ,bd, P2sW,V,a ,bd, andP3sW,V,a ,bd be the eigenprojectors associated with
E1, E2, andE3. It is evident that for all particular dynamicst° sWstd ,Vstd ,astd ,bstdd the Hamil-
tonian Hstd and the decomposition SpesHstdd=s0stdøs'std satisfy the assumptions of Nenciu’s
adiabatic theoremssee Ref. 13d, where s0std=hE1,E2stdj and s'std=hE3stdj and with

FIG. 2. Scheme of the three-level atom.
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inft distss0std ,s'stddù". In accordance with Nenciu’s theorem, we have at the adiabatic limit
fthis limit is approximately obtained if the variations ofsWstd ,Vstdd are slow with respect to the
proper quantum time inftf" /E3std−E1g; for classical parameters such asW or V this hypothesis is
consistentg

Ust,0dPms0d = PmstdUst,0d, s77d

whereUst ,0d is the evolution operator associated withHstd andPmstd=P1std+P2std. We can apply
the formalism of the previous part with RanPm sdim RanPm=2d, for all particular dynamics.

The eigenvectors ofH can be chosen as follows forVÞ0 andWÞ0:

u1,sa,b,W,Vdl =
1

Î1 +
V2

W2
1− eisa+bd V

W

0

1
2 , s78d

u2,sa,b,W,Vdl =
1

Î1 +
W2

V2 +
s1 −Î1 + V2 + W2d2

V2 1 eisa+bdW

V

eia s1 −Î1 + V2 + W2d
V

1
2 , s79d

u3,sa,b,W,Vdl =
1

Î1 +
W2

V2 +
s1 +Î1 + V2 + W2d2

V2 1 eisa+bdW

V

eia s1 +Î1 + V2 + W2d
V

1
2 . s80d

Let r =Î1+V2+W2 and su ,wd be such thatW=r sinw cosu, V=r sinw sinu and r cosw=1
suP g0,p /2f andwP g0,p /2fd. With these variables we can write

u1,sa,b,u,wdl = 1− eisa+bd sinu

0

cosu
2 , s81d

u2,sa,b,u,wdl =1eisa+bdsinw cosu

Î1 − cosw

eiaÎ1 − cosw

sinw sinu

Î1 − cosw

2 . s82d

Let sa ,b ,g ,u ,wd be the angles which generateS5. The submanifold ofS5 defined by

0 , w ,
p

2
,

0 , u ,
p

2
,
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g = 0,

is the control manifold; in the following we denote it byS+
4.

C. The composite bundle modelling the quantum dynamical system

We will now apply the theoretical construction introduced in the preceding sections. First we
note that the choice of the eigenvectorss81d and s82d is not unique. They can be

uilNE = 1eisa+bdp

eiap

p
2 , s83d

wherep replace the functions ofsu ,wd in the expressions ofu1l s81d or u2l s82d. By another choice
of phase convention we can choose the following eigenvectors:

uilNW= 1 eiap

eisa−bdp

e−ibp
2, uilSE= 1

eibp

p

e−iap
2, uilSW= 1 p

e−ibp

e−isa+bdp
2 . s84d

These different conventions are associated with four open local charts ofS+
4, UNE

=hsa ,b ,u ,wdPS+
4 uaP g−p /2−e ,p /2+ef ,bP g−p /2−e ,p /2+ef, UNW=hsa ,b ,u ,wdPS+

4 ua
P g−p /2−e ,p /2+ef ,bP gp /2−e ,3p /2+ef, USE=hsa ,b ,u ,wdPS+

4 uaP gp /2−e ,3p /2+ef ,b
P g−p /2−e ,p /2+ef, andUSW=hsa ,b ,u ,wdPS+

4 uaP gp /2−e ,3p /2+ef ,bP gp /2−e ,3p /2+ef,
wheree is a small parameter. The sethUiji=NE,NW,SE,SW is an atlas ofS+

4. We want to construct the
principal bundle of the geometric phase. LetTi =su1li , u2lidPM332sCd be the matrix of eigenvec-

tors selected by the adiabatic theoremsi =NE,NW,SE,SWd. We setRW =sa ,b ,u ,wdPS+
4,

∀ i, j , ∀ RW P Ui ù Uj, gijsRW d = TisRW d†TjsRW d P Us2d. s85d

The functions gij are the transition functions of the principal bundle of the geometry
sP,S+

4 ,Us2d ,pPd. More precisely we have

gNE,NW= gSE,SW= eib, gNE,SE= gNW,SW= eia, gNE,SW= eisa+bd. s86d

Note that∀i , j gij PUs1d,Us2d, because the two eigenvectors are never globally degenerate in
Ui ùUj. These functions define completely the total spaceP of the principal bundle of the geom-
etry. Indeed let; be the equivalence relation onS+

43Us2d defined by

sx,kd , sy,hd if x = y and if ∃ i, j such thatx P Ui ù Uj andk = hgij .

The total space is the quotient manifoldP=S+
43Us2d /,. Let p, :S+

43Us2d→P be the projection
associated to;, thenpP is defined by the commutative diagram

The principal bundle of the geometrysP,S+
4 ,Us2d ,pPd is then completely defined. Moreover it is

the structure bundle of the principal composite bundle of the geodynamics. The connection onP
is obtained by the gauge potential
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∀RW P Ui, Ai = TisRW d†dS4TisRW d P V1sS+
4,us2dd s87d

with Aj =sgijd−1Aigij +sgijd−1dS4gij in Ui ùUj. Let hsiji=1,2,3 be the Pauli matricesfgenerators of
sus2dg ands0 be the identity ofC2, with

s1 = S0 1

1 0
D, s2 = S0 − i

i 0
D, s3 = S1 0

0 − 1
D .

The calculus of the gauge potential shows that

ANE = i
sinw

Î1 − cosw
s2 du −

i

2Î2

sins2udsinw

Î1 − cosw
s1sda + dbd + i sinu

s3 + s0

2
sda + dbd

+
i

2

cos2 u sin2 w

1 − cosw

s0 − s3

2
sda + dbd +

i

2
s1 − coswd

s0 − s3

2
da. s88d

The transversal bundle forRW =sa ,b ,u ,wdPS+
4 fixed is the trivial bundle of the dynamics

sR3Us2d ,R ,Us2d ,Pr1d endowed with the connection

∀t P R,EsRW ,td =
i

210 0

0 1 −
1

cosw
2dt. s89d

Let xt
S be the fiber diffeomorphism of the base bundlesS,R ,S+

4 ,pSd. By definition we have

Pt=xt
S*

P, but the HamiltonianH does not have an explicit dependence ont. Then it is clear that
∀tPR, Pt=P and thenxt

S is the identity map. We conclude thatpS
−1std=S+

4 and thenS=S+
43R.

The base bundle is the trivial bundlesS+
43R ,R ,S+

4 ,Pr2d. The local trivializations of the total
bundle are

f++
i j sRW ,t,gd = fP

i ftgsRW ,gd = fP
i sRW ,gd s90d

becausePt is independent oft. Let hUi 3Rji=NE,NW,SE,SW be the atlas ofS+
43R, ∀sRW ,td

P sUi ùUjd3R we have the transition functions of the total spaceP+ of the total bundle by

g++
i j sRW ,td=gijsRW d. Then it is clear thatP+=P3R, the total bundle of the geodynamics is thensP

3R ,S+
43R ,Us2d ,spP+Pr1d3Pr2d. Note that the triviality of the fibration on the time is due to the

nonexplicit dependence ofH on t. When this is not the case, then the base bundle is not trivial.

D. Different aspects of the quantum dynamical system in our formalism

All the ingredients of the composite bundle formalism have now been explicitly identified for
our example. We now want to consider a particular dynamics in order to complete the description
of the quantum dynamical system in our composite bundle representation. In order to simplify and
to clarify the discussion, we consider a dynamics such that∀t a=b=0 schartUNEd and we use the
orginal variablessW,Vd in place of su ,wd; this restricted manifold is denoted byM in this
paragraph. In the sequelm=1,2,R1=W, R2=V andR0= t. In these conditions, the gauge potential
of the total bundleP+ over M is

A+ = i"−1EsW,Vddt + AsW,Vd =
i

2
s1 −Î1 + V2 + W2dss0 − s3ddt

+
is2

Î2Î1 +
V2

W2
Î1 + V2 + W2 − Î1 + V2 + W2

V2

SdW

W
−

dV

V
D . s91d
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We consider the dynamics described bygPGsft0=−25,T=90g ,M3Rd defined by gstd
=s3 coss2pst−25d /90d+3.1,3 sins2pst−25d /90d+3.1d sthe units are arbitraryd. g induces a pathC
in M3R. sSee Fig. 3.d

The horizontal lift ofC defines the holonomy operator

∀t P ft0,Tg, Jg,t0,t = Pe−i"−1et0
t Esgst8dddt8−e0

t Amsgst8dddgmst8d/dt8dt8 P GsM 3 R,P+d. s92d

Let sE+,M3R ,C2,pE+d be the associated vector bundle ofP+ by the action of Us2d on C2

defined by the matrix product. The states of the system are described by theC`sM3R ,Cd-module
GsM3R ,E+d, which is the space of the sections ofE+. At t=0 we suppose thatcs0d=s1/Î2d
3su1,gs0dl+ u2,gs0dld; then for all tù t0

cstd = o
b=1,2

1
Î2

sfJg,t0,tgb,1 + fJg,t0,tgb,2dub,gstdl P GsC,E+d. s93d

The state spaceGsM3R ,E+d is endowed with theC`sM3R ,Cd-valued inner product

∀x,f P GsM 3 R,E+d, kxuflE+sRW ,td = kxsRW ,tdufsRW ,tdlC2 s94d

∀i =1,2 ui ,RW lPGsM3R ,E+d fin the composite bundle representation it is the canonical basis
u1l= s 1

0
d andu2l= s 0

1
dg. With the scalar product we obtain the instantaneous occupation probabilities

of the eigenlevelE1 andE2sV,Wd,

Pistd = uki uclE+sgstd,tdu2. s95d

These probabilities are drawn in Fig. 4.
In Sec. IV, we have introduced some fieldsF+, B and G in M3R associated with the

structure of the composite bundle. An illustration of these fields are shown in Fig. 5.
Let sV+,M3R ,us2d ,pV+d be the associated vector bundle ofP+ by the adjoint action Ad of

Us2d on us2d sAdsUdX=U−1XU, ∀UPUs2d, ∀XPus2dd. The algebraGsM3R ,V+d endowed
with the Lie bracket

∀A,B P GsM 3 R,V+d, fA,BgV+sRW ,td = fAsRW ,td,BsRW ,tdgus2d s96d

is the observables space. In our example of a three level system, a set of observables has a
particular importance. LetSi =

1
2li for i =1, . . . ,8, and letSistd=Ust ,t0dSiUst ,t0d†, whereUst ,t0d is

the evolution operator associated with the Schrödinger equation. The role of the set of operators
Sistd for a three level system has been extensively studied by Ho, Chuet al.21–23 Let r0 be the

density matrix of the initial condition of the system. We introduce the vectorSW stdPR8 such that

FIG. 3. The path induced byg in M.
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Sistd=trsr0Sistdd fthe average value of the observableSistdg. SW std is called a coherent vector. From
the trajectory of this vector we can obtain information about the dynamical systemsfor a complete
exposition of this subject see Refs. 21–23d. Within an approach using our bundle formalism the
analogues of the observablesSistd are

SisRW d = TsRW d†SiTsRW d P GsM 3 R,us2dd, s97d

and the coherent vectorSW std is obtained bysin our quantum systemr0= ucs0dlkcs0du

Sistd = kcuSiclE+sgstd,td. s98d

Figure 6 illustrates the computation ofS in the composite bundle formalism.

FIG. 4. Left, occupation probabilities of the stateu1l splain lined, u2l sdash lined, and u3l sstrong lined computed by direct
integration of the Schrödinger equation inC3. Right; occupation probabilities of the stateu1l sfull lined, and u2l sdashed
lined computed with the formulas93d based on the holonomy operator of the composite bundle. We see that the results
obtained by the use of the holonomy operator are in perfect agreement with the direct integration. Moreover the left figure
reveals that the level 3 is never occupied, in agreement with its adiabatic elimination in the bundle representation.

FIG. 5. Left, thes1, 2d-matrix element ofsF+d12 with respect toM. Right, thes1, 1d-matrix element ofG012 with respect
to M. The white area is characterized by a strong field intensity whereas the black area corresponds to vanishing fields
sarbitrary unitsd. We have moreover indicated some points of the pathC, s, t=−25;L, t=−12;h, t=40; andn, t=80. By
comparison with Fig. 4 we see that the wave function changes significantly only when the control parameters are localized
in the strong field area. This shows that these fields are related to the dynamical properties of the quantum system.
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The example of the three-level system shows that we can use the composite principal bundle
representation to obtain all the physical ingredients of the quantum dynamics. This formalism,
coupled with a numerical procedure to compute the holonomy operator, could be used as a
powerful method to study a more complex quantum dynamical system.

VI. CONCLUSION

The principal composite bundle appears as a highly appropriate structure to describe the
adiabatic transport with a Berry phase which does not commute with the dynamical phase. Nev-
ertheless the use of the standard gauge theory requires us to restrict the gauge transformations to
the sections which satisfy the Schrödinger-Von Neumann equation. This feature reveals that it is
impossible to describe quantum dynamics with a purely geometric model without a dynamical
postulate. If one does not accept any restriction on the gauge transformations, the price to pay is
the implementation of an unusual gauge theory which introduces, in addition to the curvature, a
field, the curvingB, which is precisely the commutator ofA with H. It is remarkable that such a
situation is very similar to the gauge fields of non-Abelian gerbes, but with the important differ-
ence that in the non-Abelian gerbe theory,B does not have values in the Lie algebrag ssee Ref.
11d. sSee Refs. 24–26.d

One can easily generalize this description to the problem of the non-Abelian Aharonov-
Anandan phase which does not commute with the dynamical phase; this is done by replacing the
principal bundle sP,M ,UsMd ,pPd by the universal principal bundle
sVMsCnd ,GMsCnd ,UsMd ,pUd. The analysis of Bohm and Mostatazadeh7 has effectively showed
that sVMsCnd ,GMsCnd ,UsMd ,pUd is the universal bundle ofsP,M ,UsMd ,pPd, and our work
demonstrates that the same relationship exists between the adiabatic composite bundle and the
universal composite bundle.
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A complete canonical quantization of the SUs3d Skyrme model performed in the
collective coordinate formalism in general irreducible representations. In the case
of SUs3d the model differs qualitatively in different representations. The Wess-
Zumino-Witten term vanishes in all self-adjoint representations in the collective
coordinate method for separation of space and time variables. The canonical quan-
tization generates representation dependent quantum mass corrections, which can
stabilize the soliton solution. The standard symmetry breaking mass, which in
general leads to representation mixing, degenerates to the SUs2d form in all self-
adjoint representations. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1940548g

I. INTRODUCTION

The Skyrme model is a nonlinear field theory, with localized finite energy soliton solutions,
which may be quantized as fermions.1,2 The semiclassically quantized Skyrme model has proven
useful for baryon phenomenology as a realization of the large color limit of QCD.3 The original
model was defined for a unitary field Usx ,td that belongs to fundamental representation of SUs2d.
The boundary condition U→1 as uxu→` implies that the unitary field represents a mapping from
S3→S3, the integer valued winding number of which classifies the solitonic sectors of the model
and may be interpreted as the baryon number. The model has subsequently been directly gener-
alized the SUs3d and SUsNd,4 in which case the field Usx ,td is described by group valued func-
tions with semiclassical quantization.

Both the SUs2d and SUs3d Skyrme versions of the model have been quantized canonically in
Refs. 5 and 6 in the collective coordinate formalism. The canonical quantization procedure leads
to quantum corrections to the skyrmion mass, which restore the stability of the soliton solutions
that is lost in the semiclassical quantization. This method has subsequently been generalized to
unitary fields Usx ,td that belong to general representations of the SUs2d,7–9 along with a demon-
stration that the quantum corrections, which stabilize the soliton solutions, are representation
dependent.

The aim of the present paper is to extend the canonically quantized Skyrme model to general
irreducible representationssirrepd of SUs3d. The motivation is the absence of anya priori reason
to restrict collective chiral models to the fundamental representation of the group. The focus here
is on the mathematical aspects of the model, and on the derivation of both the Hamiltonian density
and the Hamiltonian, in order to elucidate their representation dependence. The possible phenom-

adElectronic mail: darius@itpa.lt
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enological applications both in hyperon and hypernuclear phenomenology as well as in the
Skyrme model description of the quantum Hall effect10 and Bose-Einstein condensates,11 are not
elaborated.

In contrast to the case of SUs2d, the solutions to the SUs3d Skyrme model depend in an
essential way on the dimension. Remarkably the Wess–Zumino–WittensWZWd term vanishes in
all self-adjoint irreps of SUs3d, as it is proportional to the cubic Casimir operatorC3

SUs3d in the
collective coordinate method for separation of the dependence on space and time variables. In the
self-adjoint irreps the symmetry breaking mass term in the model reduces to the SUs2d form.

After some preliminary definitions in Sec. II below, the main part of this paper is organized as
follows. In Sec. III, the classical treatment of the Skyrme model in a general irrep of SUs3d is
reviewed. In Sec. IV, the quantum Skyrme model is constructedab initio in the collective coor-
dinates framework. In Sec. V, the WZW term is taken into account and the left and right trans-
formation generators are derived from the Lagrangian. The Lagrangian and Hamiltonian density
operators are given explicitly in terms of generators. In Sec. VI, the symmetry breaking terms are
considered in the collective coordinates framework. Section VII contains a summarizing discus-
sion. A number of relevant mathematical details are given in the Appendix.

II. DEFINITIONS FOR THE UNITARY SU„3… SOLITON FIELD

The unitary field Usx ,td is defined for general irrepssl ,md of SUs3d in addition to the
fundamental representations1, 0d. The related Young tableaux are denotedfl1,l2,l3g, wherel
=l1−l2 , m=l2−l3. A group element is specified by the eight real parametersaisx ,td. The unitary
field is expressed in the form of WignerD matrices for SUs3d in sl ,md irrep as

Usx,td = Dsl,mdsaisx,tdd. s2.1d

The one-form of the unitary field belongs to the Lie algebra of SUs3d. The one-forms may be
determined by the functionsCi

sZ,I,Mdsad andCi
8sZ,I,Mdsad, the explicit expressions for which depend

on the specific group parametrization,

]iUU† = S ]

]ai UDU† = Ci
sZ,I,MdsadkuJsZ,I,Md

s1,1d ul,

s2.2d

U†]iU = U† ]

]ai U = Ci8
sZ,I,MdsadkuJsZ,I,Md

s1,1d ul.

The parameters spinI, and its projectionsM andZ, which is related to hypercharge asY=−2Z,
specify the basis states of irreps1,1d.

The parameterization for the SUs3d model, and the expressions of the differential Casimir
operator in terms of the Euler angles, has been proposed by Yabu and Ando.12 The SUs3d genera-
tors are defined as components of irreducible tensorss1, 1d and may be expanded in terms of the
Gell-Man generatorsLk,

Js0,0,0d
s1,1d = − 1

2L8, Js0,1,0d
s1,1d = 1

2L3,

Js0,1,1d
s1,1d = −

1

2Î2
sL1 + iL2d, Js0,1,−1d

s1,1d =
1

2Î2
sL1 − iL2d,

Js−1
2

,1
2

,1
2d

s1,1d
=

1

2Î2
sL4 + iL5d, Js−1

2
,1
2

,−1
2d

s1,1d
=

1

2Î2
sL6 + iL7d,
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Js1
2

,1
2

,1
2d

s1,1d
= −

1

2Î2
sL6 − iL7d, Js1

2
,1
2

,−1
2d

s1,1d
=

1

2Î2
sL4 − iL5d. s2.3d

In the case of the fundamental representation theLk matrices generators reduce to the standard
Gell-Mann matrices li. Although the generatorss2.3d are non-Hermitian, sJsZ,I,Md

s1,1d d†

=s−1dZ+MJs−Z,I,−Md
s1,1d , the commutation relations nevertheless have the simple form,

fJsZ8,I8,M8d
s1,1d ,JsZ9,I9,M9d

s1,1d g = o
sZ,I,Md

− Î3F s1,1d s1,1d s1,1da

sZ8,I8,M8d sZ9,I9,M9d sZ,I,Md GJsZ,I,Md
s1,1d . s2.4d

Here the coefficient on the right-hand sidesrhsd of Eq. s2.4d is a Clebsch-Gordan coefficient of
SUs3d, the explicit expressions for which are given in Ref. 13. The indexa in the Clebsch-Gordan
coefficient denotes that only antisymmetric irrep couplings are included.

For the specification of the basis states in a general irrepsl ,md the parameterssz, j ,md, where
the hypercharge isy= 2

3sm−ld−2z, are employed. The basis state parameters satisfy the inequali-
ties,

j − mù 0, j − zù 0,

j + mù 0, j + zù 0, s2.5d

l + z− j ù 0, m − z− j ù 0,

where the left-hand sides are integers. The generatorss2.3d act on the basis states as follows:

Js0,0,0d
s1,1d Usl,md

z, j ,m
L = −

Î3

2
yUsl,md

z, j ,m
L, Js0,1,−1d

s1,1d Usl,md
z, j ,m

L = Î1
2s j + mds j − m+ 1dU sl,md

z, j ,m− 1
L ,

Js0,1,0d
s1,1d Usl,md

z, j ,m
L = mUsl,md

z, j ,m
L, Js0,1,1d

s1,1d Usl,md
z, j ,m

L = − Î1
2s j − mds j + m+ 1dU sl,md

z, j ,m+ 1
L ,

Js−1
2

,1
2

,1
2d

s1,1d Usl,md
z, j ,m

L =Îsl + z− jdsm − z+ j + 2ds j − z+ 1ds j + m+ 1d
2s2j + 1ds2j + 2d

U sl,md
z− 1

2, j + 1
2,m+ 1

2
L

−Îsl + z+ j + 1dsm − z− j + 1ds j + zds j − md
4js2j + 1d

U sl,md
z− 1

2, j − 1
2,m+ 1

2
L ,

Js1
2

,1
2

,−1
2d

s1,1d Usl,md
z, j ,m

L = −Îsl + z+ j + 2dsm − z− jdsz+ j + 1ds j − m+ 1d
2s2j + 1ds2j + 2d

U sl,md
z+ 1

2, j + 1
2,m− 1

2
L

+Îsl + z− j + 1dsm − z+ j + 1ds j − zds j + md
4js2j + 1d

U sl,md
z+ 1

2, j − 1
2,m− 1

2
L ,

Js−1
2

,1
2

,−1
2d

s1,1d Usl,md
z, j ,m

L =Îsl + z− jdsm − z+ j + 2ds j − z+ 1ds j − m+ 1d
2s2j + 1ds2j + 2d

U sl,md
z− 1

2, j + 1
2,m− 1

2
L

+Îsl + z+ j + 1dsm − z− j + 1ds j + zds j + md
4js2j + 1d

U sl,md
z− 1

2, j − 1
2,m− 1

2
L ,

072103-3 Canonical quantization of SU~3! Skyrme model J. Math. Phys. 46, 072103 ~2005!

                                                                                                                                    



Js1
2

,1
2

,1
2d

s1,1d Usl,md
z, j ,m

L = −Îsl + z+ j + 2dsm − z− jds j + z+ 1ds j + m+ 1d
2s2j + 1ds2j + 2d

U sl,md
z+ 1

2, j + 1
2,m+ 1

2
L

−Îsl + z− j + 1dsm − z+ j + 1ds j − zds j − md
4js2j + 1d

U sl,md
z+ 1

2, j − 1
2,m+ 1

2
L .

s2.6d

The basis states are chosen such that the generatorsJs0,1,0d
s1,1d and Js0,0,0d

s1,1d , as well as the Casimir

operator of the SUs2d subgroupĈSUs2d=os−1dMJs0,1,Md
s1,1d Js0,1,−Md

s1,1d , are diagonal and thus provide a

labelling of the basis states,

ĈSUs2dUsl,md
z, j ,m

L = js j + 1dUsl,md
z, j ,m

L . s2.7d

III. THE CLASSICAL SU „3… SKYRME MODEL

The action of the Skyrme model in SUs3d is taken to have the form

S=E d4xsLSk + LSBd + SWZ, s3.1d

where the chirally symmetric Lagrangian density is1

LSk = −
fp
2

4
TrhRmRmj +

1

32e2TrhfRm,RngfRm,Rngj. s3.2d

Here the right chiral current is defined as

Rm = s]mUdU† = ]maiCi
sAdsadkuJsAd

s1,1dul. s3.3d

The greek characters indicate differentiation with respect to space-time variables]m=] /]xm in the
metric diagshabd=s1,−1,−1,−1d. The only parameters of the model arefp ande. The symmetry
breaking termLSB and Wess-Zumino-Witten actionSWZ are specified below.

Upon substitution ofs3.3d into s3.2d the classical Lagrangian density may be expressed in
terms of the group parametersai as

LSk =
3

32N
dimsl,mdC2

SUs3dsl,mdH− fp
2s− 1dA]maiCi

sAdsad]mai8Ci8
s−Adsad

+
3

8e2 · s− 1dA]maiCi
sA1dsad]nai8Ci8

sA2dsad]mai9Ci9
sA3dsad]nai-Ci-

sA4dsadFs1,1d s1,1d s1,1da

sA1d sA2d sAd G
3Fs1,1d s1,1d s1,1da

sA3d sA4d s− Ad GJ . s3.4d

In the last SUs3d Clebsch-Gordan coefficients only the antisymmetric irrep coupling is included
and there is no summation over irrep multiplicity. The capital italic character indicessAd denote
the state labelsZ,I ,Md, s−Ad denotess−Z,I ,−Md ands−1dA=s−1dZ+M. The dependence on group
irrep appear as an overall factor because

Trksl,mduJsAd
s1,1dJsBd

s1,1dusl,mdl = s− 1dA1
8dimsl,mdC2

SUs3dsl,mddsAd,s−Bd, s3.5d

where dimsl ,md= 1
2sl+1dsm+1dsl+m+2d is a dimension of irrep. AboveC2

SUs3dsl ,md= 1
3sl2

+m2+lm+3l+3md is an eigenvalue of the quadratic Casimir operator of SUs3d,
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Ĉ2
SUs3dsl,md = s− 1dZ+MJsZ,I,Md

s1,1d Js−Z,I,−Md
s1,1d . s3.6d

The time component of the conserved topological current in the Skyrme model represents the
baryon number density which in terms of the variablesaisx,td takes the form

B0sxd =
1

24p2N
e0ikl Tr s]iUdU†s]kUdU†s]lUdU†

=
s− 1dA

27Î3p2N
dimsl,mdC2

SUs3dsl,md«abc]aaiCi
sAdsad

3 ]bai8Ci8
sA8dsad]ca

i9Ci9
sA9dsadFs1,1d s1,1d s1,1da

sA8d sA9d s− Ad G . s3.7d

For the classical chiral symmetric Skyrme model the dependence on the irrep is contained in
the overall factorN. The normalization factor,

N = 1
4dimsl,mdC2

SUs3dsl,md, s3.8d

is chosen so that the smallest nontrivial baryon number equals unity,B=ed3x B0sxd=1. The dy-
namics of the system are independent of the overall factor in the Lagrangian. Therefore in the
classical case the Skyrme model defined in arbitrary irrep is equivalent to the Skyrme model in the
fundamental representations1, 0d, for which N=1.

The classical soliton solution of the hedgehog type forsl ,md irrep of the SUs3d group may be
expressed as direct sum of hedgehog ansätze in SUs2d irreps.8 The SUs2d representations embed-
ded in thesl ,md irrep are defined by the canonical SUs3d.SUs2d chain. The hedgehog generali-
zation takes the form

expiss · x̂dFsrd → U0sx̂,Fsrdd = expi2sJs0,1,·d
s1,1d · x̂dFsrd = o

z,j

sl,md

% Djsûd, s3.9d

wheres are Pauli matrices andx̂ is the unit vector. The Euler angles of the SUs2d subgroup in
terms of polar anglesw ,u and the chiral angle functionFsrd are

û1 = w − arctanscosu tanFsrdd − p/2,

û2 = − 2 arcsinssinu sinFsrdd,

û3 = − w − arctanscosu tanFsrdd + p/2. s3.10d

The normalization factors3.8d ensures that the baryon number density for the hedgehog skyrmion
in a general irrep has the usual form,

B0sxd =
1

24p2N
e0ikl Trs]iU0dU0

†s]kU0dU0
†s]lU0dU0

† = −
1

2p2

sin2 Fsrd
r2 F8srd. s3.11d

With the hedgehog ansatzs3.9d, and after renormalization with the factors3.8d, the Lagrangian
densitys3.2d reduces to the following simple form:

LclfFsrdg = − MclsFsrdd = −H fp
2

2
SF82 +

2

r2sin2 FD +
1

8e2

sin2 F

r2 S2F82 +
sin2 F

r2 DJ .

s3.12d

Variation of the classical hedgehog soliton mass leads to standard differential equation for the
chiral angleFsrd.
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The SUs3d chiral symmetry breaking term of Lagrangian density is defined here as

LSB = − MSB = −
1

N

fp
2

4
fm0

2 TrhU + U† − 21j − 2m8
2 TrhsU + U†dJs0,0,0d

s1,1d jg. s3.13d

This form is chosen so that it reduces to the mass term of thep, K, h mesons when the unitary
field Usx ,td=expfsi / fpdwkLkg is expanded around the classical vacuumU=1,

LSB = − 1
2mp

2sw1
2 + w2

2 + w3
2d − 1

2mK
2sw4

2 + w5
2 + w6

2 + w7
2d − 1

2mh
2w8

2 + ¯ . s3.14d

For arbitrary irrep the coefficients in the symmetry breaking term can be readily obtained as

m0
2 = 1

3smp
2 + 2mK

2d, m8
2 =

10

3Î3

C2
SUs3dsl,md

C3
SUs3dsl,md

smp
2 − mK

2d, s3.15d

where

C3
SUs3dsl,md = 1

9sl − mds2l + m + 3ds2m + l + 3d, s3.16d

is the eigenvalue of the cubic Casimir operator of SUs3d.
For the self-adjoint irrepsl=m the symmetry breaking part of Lagrangians3.13d is propor-

tional to m0
2= 1

4mp
2 only. The Gell-Mann-Okubo mass formula,

mp
2 + 3mh

2 − 4mK
2 = 0, s3.17d

is satisfied in all but the self-adjoint irreps.

IV. QUANTIZATION OF THE SKYRMION

The direct quantization of the Skyrme model even in the case of SUs2d leads to rather
complicated equations.7 Here the collective coordinates3 for the unitary field U insl ,md irrep are
employed for the separation of the variables, which depend on the temporal and spatial coordi-
nates:

Usx̂,Fsrd,qstdd = AsqstddU0sx̂,FsrddA†sqstdd. s4.1d

Because of form of the ansatzU0 s3.9d, the unitary field U is invariant under right Us1d
transformation of theAsqstdd=Dsl,mdsqstdd matrix, defined as

Asqstdd → AsqstddexpbJs0,0,0d
s1,1d . s4.2d

Thus the seven-dimensional homogeneous space SUs3d/Us1d, which is specified by the seven real,
independent parametersqkstd, must be considered. The mathematical structure of the Skyrme
model and its quantization problems on the coset space SUs3d/Us1d have been examined by
several authors.14,16 The canonical quantization procedure for the SUs3d Skyrme model in the
fundamental representation has been considered by Fujiiet al.6 Here the attention is on the
representation dependence of the model. The Lagrangians3.2d is considered quantum mechani-
cally ab initio. The generalized coordinatesqkstd and velocitiessd/dtdqkstd= q̇kstd satisfy the com-
mutation relations

fq̇k,qlg = − i f klsqd, s4.3d

where fklsqd are functions only ofqk, and the form of which will be determined below. The
commutation relation between a velocity componentq̇k and arbitrary functionGsqd is given by

fq̇k,Gsqdg = − io
r

fkrsqd]rGsqd. s4.4d

For the time derivative the usual Weyl ordering is adopted,
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]0Gsqd =
1

2
Hq̇k,

]

]qkGsqdJ . s4.5d

The operator ordering is fixed by the form of the Lagrangians3.2d, without further ordering
ambiguity. The curly brackets denote an anticommutator.

The ansatzs4.1d is then substituted in the Skyrme Lagrangians3.2d followed by an integration
over the spatial coordinates. The Lagrangian is then obtained in terms of collective coordinates
and velocities. For the derivation of the canonical momenta it is sufficient to restrict the consid-
eration to terms of second order in the velocities heresthe terms of first order vanishd. This leads
to

LSk < −E dr r 2Fo
M

s− 1dMhq̇i,Ci8
s0,1,Mdsqdjhq̇i8,Ci8

8s0,1,−Mdsqdj

3
p

3
sin2 FS fp

2 +
1

e2SF82 +
1

r2sin2 FDD + o
Z,M

s− 1dZ+Mhq̇i,C
i
8sZ,1

2
,MdsqdjHq̇i8,C

i8
8s−Z,1

2
,−MdsqdJ

3
p

4
s1 − cosFdS fp

2 +
1

4e2SF82 +
2

r2sin2 FDDG
<

1

2
q̇agabsq,Fdq̇b + fsq̇d0-order termg

<
1

8
hq̇a,Ca8

sAdsqdjEsAdsBdsFdhq̇b,Cb8
sBdsqdj + fsq̇d0-order termg. s4.6d

The Lagrangians4.6d is normalized by the factors3.8d. The metric tensor takes the form

gabsq,Fd = Ca8
sAdsqdEsAdsBdsFdCb8

sBdsqd, s4.7d

where

EsZ,I,MdsZ8,I8,M8dsFd = − s− 1dZ+MaIsFddZ,−Z8dI,I8dM,−M8. s4.8d

Here the soliton moments of inertia are given as integrals over the dimensionless variabler̃
=efpr,

a0sFd = 0, s4.9ad

a1
2
sFd =

1

e3fp

ã1
2
sFd =

1

e3fp

2pE dr̃ r̃2s1 − cosFdF1 +
1

4
F82 +

1

2r̃2sin2 FG , s4.9bd

a1sFd =
1

e3fp

ã1sFd =
1

e3fp

8p

3
E dr̃ r̃2 sin2 FF1 + F82 +

1

r2sin2 FG . s4.9cd

The canonical momentum, which is conjugate toqb, is defined as

pb
s0d =

]LSk

]q̇b
=

1

2
hq̇a,gabj. s4.10d

The canonical commutation relations

fqa,qbg = fpa
s0d,pb

s0dg = 0,

s4.11d
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fpb
s0d,qag = − idab,

then yield the following explicit form for the functionsfabsqd:

fabsqd = sgabd−1 = CsĀd
8a sqdEsĀdsB̄dsFdCsB̄d

8b sqd, s4.12d

where

EsZ,I,MdsZ8,I8,M8dsFd = − s− 1dZ+M 1

aIsFd
dZ,−Z8dI,I8dM,−M8. s4.13d

Note that hereEs0ds0dsFd is left undefined. The summation over the indicessĀd denotes summation
over the basis statessZ,I ,Md of irrep s1, 1d, excluding the states0, 0, 0d. It proves convenient to
introduce the reciprocal function matrixCsĀd

8a sqd, the properties of which are described in the

Appendix. The commutation relations of the momentas4.11d ensure the choice of parametersqa

on the manifold SUs3d/Us1d ssee Ref. 5d. Here there is no need for explicit parametrization ofqa.

After determination of functionfabsqd the following explicit expressionA†Ȧ obtains

A†Ȧ =
1

2
Dsl,mds− qdhq̇a,]aDsl,mdsqdj

=
1

2
hq̇a,Ca8

sAdsqdjkuJsAd
s1,1dul −

1

2
iEsĀdsB̄dsFdCsB̄d

8b sqdCb8
s0dsqdskuJs0d

s1,1dJsĀd
s1,1dul + kuJsĀd

s1,1d
Js0d

s1,1duld

−
3

8
iEsĀdsB̄dsFdCsĀd

8a sqdCa8
s0dsqdCsB̄d

8b sqdCb8
s0dsqd o

z,j

sl,md

% y21z,j

+
i

2a1
2
sFd

C2
SUs3dsl,md1 + i o

z,j

sl,md

% SCSUs2ds jd
2a1sFd

−
CSUs2ds jd + 3

4y2

2a1
2
sFd D1z,j . s4.14d

Here1 is the unit matrix in thesl ,md irrep of SUs3d and1z,j are unit matrices in the SUs2d irreps.
Note that the inverse of the rotation represented byDsl,mdsqd is denotedDsl,mds−qd.

The field expressions4.1d is substituted in the Lagrangian densitys3.2d in order to obtain the
explicit expression in terms of collective coordinates and space coordinates. Some expressions
with SUs3d group generators, that are useful for this purpose, are presented in the Appendix. After
some lengthy manipulation the complete expression of the Skyrme model Lagrangian density is
obtained as

LSk =
1

4
dimsl,mdC2

SUs3dsl,mdH−
s1 − cosFd

16
F fp

2 +
1

4e2SF82 +
2

r2sin2 FDG
3 o

Z,M
s− 1dZ+Mhq̇a,C

a
8sZ,1

2
,Mdsqdjhq̇b,C

b
8sZ,1

2
,Mdsqdj −

sin2 F

8
F fp

2 +
1

e2SF82 +
1

r2sin2 FDG
3 o

Z,M
fs− 1dMhq̇a,Ca8

s0,1,Mdsqdjhq̇a8,Ca8
8s0,1,Mdsqdj − shq̇a,Ca8

s0,1,·dsqdj · x̂dshq̇a8,Ca8
8s0,1,·dsqdj · x̂dg

− Mcl − DM1 − DM2 − DM3 − DM8sqdJ . s4.15d

Here the following notation has been introduced:
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DM1sFd = −
sin2 F

30a1
2sFd

F fp
2s12 sin2 F ·C2

SUs3dsl,md − 16 sin2 F + 15d +
1

2e2S2F82s12 cos2 F ·

3C2
SUs3dsl,md + 16 sin2 F − 1d +

sin2 F

r2 s6C2
SUs3dsl,md + 7dDG , s4.16ad

DM2sFd = −
s1 − cosFd

20a1
2

2
sFd

F fp
2s6s1 − cosFd ·C2

SUs3dsl,md + 3 cosF + 2d

+
1

4e2SF82s6s1 + cosFd ·C2
SUs3dsl,md − 3 cosF + 2d + 10

sin2 F

r2 DG , s4.16bd

DM3sFd = −
sin2 F

30a1sFda1
2
sFdF fp

2s12s1 − cosFd ·C2
SUs3dsl,md + 16 cosF − 1d

+
1

2e2SF82s4 cosF · s3C2
SUs3dsl,md − 4d + 15d + 15

sin2 F

r2 DG , s4.16cd

DM8sF,qd = −
3s1 − cosFd

16a1
2

2
sFd

F fp
2 +

1

4e2SF82 +
2

r2sin2 FDG
3 ss− 1dA%CsA% d

8a sqdCa8
s0dsqdCs−A% d

8b sqdCb8
s0dsqd + 4d. s4.16dd

fThe “4” in the last bracket on the last row is missing in the corresponding expression in Ref. 6,
the consequence of which is the appearance of a spurious term −3/8a1/2sFd in Eq. s69bd of that

papersthere are some minor misprints in that equation as welld.g The notationsA% d indicates that
only the states for whichI = 1

2 andZ= ± 1
2 are included. TheDMksFd terms may be interpreted as

quantum mass corrections to the Lagrangian density. TheDM8sF ,qd term depends on the quan-
tum variablesqi and is an operator on the configuration space.

The integrations4.17d over the space variables and normalization by factors3.8d gives the
Lagrangian,

LSk =E LSkd
3x =

1

8
hq̇i,Ci8

sĀdsqdjEsĀdsB̄dhq̇i8,Ci8
8sB̄dsqdj − Mcl − DM1 − DM2 − DM3 − DM8sqd

= −
1

8a1
2
sFd

s− 1dĀhq̇i,Ci8
sĀdsqdjhq̇i8,Ci8

8s−Ādsqdj −
1

8S 1

a1sFd
−

1

a1
2
sFdDs− 1dM

3hq̇i,Ci8
s0,1,Mdsqdjhq̇i8,Ci8

8s0,1,−Mdsqdj − Mcl − DM1 − DM2 − DM3 − DM8sqd. s4.17d

HereMcl=sfp /edM̃cl=ed3x MclsFd, DMk=e3fpDM̃k=ed3x DMksFd, andDM8sqd=ed3x DM8sqd,
whereM̃cl andM̃k are integrals over the dimensionless variable.

V. STRUCTURE OF THE LAGRANGIAN AND THE HAMILTONIAN

The Wess-Zumino-WittensWZWd action is given as an integral over the five dimensional
manifoldM5, the boundary of which is the compactified space-time,]M5=M4=S33S1. This term
is necessary to account for the anomalies in QCD.14 The standard form for this term is
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SWZsUd = −
iNc

240p2N8
E

M5
d5x emnlrs Tr RmRnRlRrRs, s5.1d

whereNc is the number of colors andN8 is a normalization factor. The derivation of the contri-
bution of the Wess-Zumino-Witten term to the effective Lagrangian in the framework of the
collective coordinate formalism is given in Ref. 15. By application of Stoke’s theorem it takes the
following form in a general dimension:

LWZsq,q̇d = −
iNc

24p2N8
E

M3
d3x emjk Trfs]mU0dU0

†s] jU0dU0
†s]kU0dU0

†Js0,0,0d
s1,1d g

1

2
hq̇a,Ca8

s0dsqdj

= −
iNc

2Î3p2N8
E

M3
d3x

sin2 Fsrd
r2 F8srd o

z,j

sl,md

yjs j + 1ds2j + 1d
1

2
hq̇a,Ca8

s0dsqdj

= − l8
i

2
hq̇a,Ca8

s0dsqdj. s5.2d

Here

l8 =
Î3NcB

40N8
dimsl,mdC3

SUs3dsl,md. s5.3d

The coefficientl8 depends on the representationsl ,md . For all self-adjoint irrepsl=m the WZW
term vanishes. Following Witten14 the normalization factor is chosen to beN8=dimsl ,md
3C3

SUs3dsl ,md /20 so thatl8=NcB/2Î3 . In the fundamental representationN8=1. Here the coef-
ficient l8 only serves to constrain the states of the system. Because the cubic Casimir operator
C3

SUs3d s3.16d vanishes in the self-adjoint representations, it follows that the WZW terms5.2d also
vanishes in those representations.

The Lagrangian of the system, with inclusion of the WZW term is

L8 = LSk + LWZ. s5.4d

There are seven collective coordinates. The momentapa that are canonically conjugate toqa are
defined as

pa =
]L8

]q̇a
=

1

2
hq̇b,gbad − il8Ca8

s0dsqd. s5.5d

These satisfy the canonical commutation relationss4.11d. The WZW term may be considered as an
external potential in the system.16 The seven right transformation generators may be defined as

R̂sĀd =
i

2
hpa + l8iCa8

s0dsqd,CsĀd
8a sqdj =

i

2
hq̇b,Cb8

sB̄dsqdjEsB̄dsĀd. s5.6d

The commutation rules for the generatorss5.6d and their action on theDsl,md matrices are given in
the Appendix. It is convenient to define an eighth transformation generator formally as6

R̂s0d = − l8. s5.7d

The SUs2d subalgebra of the operatorsR̂s0,1,Md satisfies the standard SUs2d commutation condi-
tions and may be interpreted as spin generatorssAppendixd. The eight left transformation genera-
tors may be defined as

072103-10 Jurčiukonis, Norvaišas, and Riska J. Math. Phys. 46, 072103 ~2005!

                                                                                                                                    



L̂sBd = 1
2hR̂sAd,DsAdsBd

s1,1d s− qdj. s5.8d

The transformation properties and commutation relations for the left and right transformation
generators are given in the Appendix.

The effective Lagrangian, which includes the WZW term takes the form,

Leff =
1

2a1
2
sFd

s− 1dĀR̂sĀdR̂s−Ād + S 1

2a1sFd
−

1

2a1
2
sFdDsR̂s0,1,·d · R̂s0,1,·dd − l8

i

2
hq̇a,Ca8

s0dsqdj

− Mcl − DM1 − DM2 − DM3 − DM8sqd

=
1

2a1
2
sFd

ss− 1dAL̂sAdL̂s−Ad − l82d + S 1

2a1sFd
−

1

2a1
2
sFdD

3sR̂s0,1,·d · R̂s0,1,·dd − l8
i

2
hq̇a,Ca8

s0dsqdj − DM1 − DM2 − DM3 − Mcl. s5.9d

Note that theDM8sqd term which depends on quantum variables due to introducing left translation
generatorsfseesA13dg in the Lagrangian expressions5.9d vanishes.

For the purpose of obtaining Euler-Lagrange equations that are consistent with the canonical
equation of motion of the Hamiltonian, the general method of quantization on a curved space
developed by Suganoet al.17 is employed, in which the following auxiliary function is introduced:

Zsqd = −
1

16
fabfcdfeks]agcdds]bgekd −

1

4
]asfabfcd]bgcdd −

1

4
]a]bfab

= −
1

4
]bCsĀd

8a sqdEsĀdsB̄d]aCsB̄d
8b sqd +

3

16a1
2
sFd

ss− 1dA%Ca8
s0dsqdCsA% d

8a sqdCs−A% d
8b sqdCb8

s0dsqd + 4d.

s5.10d

With this the covariant kinetic term may be defined as

2K =
1

2
hpa + ilCa8

s0dsqd,q̇aj − Zsqd

=
1

a1
2
sFd

ss− 1dAL̂sAdL̂s−Ad − l82d + S 1

a1sFd
−

1

a1
2
sFdDsR̂s0,1,·d · R̂s0,1,·dd. s5.11d

According to the prescription17 the effective Hamiltonianfwith the constraints5.7dg is con-
structed in the standard form as

H = 1
2hpa,q̇aj − Leff − Zsqd = K + DM1 + DM2 + DM3 + Mcl. s5.12d

Upon renormalization the Lagrangian densitys4.15d may be reexpressed in terms of left and
right transformation generators. The effective Hamiltonian density without the symmetry breaking
term in turn takes the form

HSk =
s1 − cosFd

4a1
2

2
sFd

F fp
2 +

1

4e2SF82 +
2

r2sin2 FDGfs− 1dAL̂sAdL̂s−Ad − sR̂s0,1,·d · R̂s0,1,·dd − l82g

+
sin2 F

2a1
2sFd

F fp
2 +

1

e2SF82 +
1

r2sin2 FDGfsR̂s0,1,·d · R̂s0,1,·dd − sR̂s0,1,·d · x̂dsR̂s0,1,·d · x̂dg

+ DM1 + DM2 + DM3 + Mcl. s5.13d
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The products of spin operatorsR̂s0,1,Md may be separated into scalar and tensorial terms as

sR̂s0,1,·d · R̂s0,1,·dd − sR̂s0,1,·d · x̂dsR̂s0,1,·d · x̂d =
2

3
sR̂s0,1,·d · R̂s0,1,·dd −

4p

3
Y2,M+M8

* sq,wd

3F 1 1 2

M M8 M + M8
GR̂s0,1,MdR̂s0,1,M8d, s5.14d

whereYl,Msq ,wd is a spherical harmonic and the factor in the square brackets on the right-hand
side is an SUs2d Clebsch-Gordan coefficient.

The covariant kinetic terms5.11d is a differential operator constructed from SUs3d left and
SUs2d right transformation generators. The eigenstates of the Hamiltonians5.12d are

U sL,Md
Y,T,MT;Y8,S,MS

L = ÎdimsL,MdDsY,T,MTdsY8,S,MSd
* sL,Md sqdu0l. s5.15d

Here the quantityD on the right-hand side is the complex conjugate Wigner matrix elements of
sL ,Md irrep of SUs3d in terms of quantum variablesqk. The topology of the eigenstates can be
nontrivial and the quantum states contain an eighth “unphysical” quantum variableq0.

The matrix elements of the Hamiltonian densitys5.13d for states with spinS.
1
2 are not

spherical and those states consequently have quadrupole moments. In the caseS= 1
2 the matrix

element of the second rank operator on the right-hand side ofs5.14d vanishes.

VI. THE SYMMETRY BREAKING MASS TERM

The chiral symmetry breaking mass term for the SUs3d soliton was defineds3.13d. With the
ansatzs4.1d in s3.13d the symmetry breaking density operator for the general irrepsl ,md obtains

LSB = − MSB = −
1

N

fp
2

4
fm0

2 TrhU0 + U0
† − 21j − 2m8

2 TrhsU0 + U0
†dJs0,0,0d

s1,1d jDs0ds0d
s1,1d s− qdg.

s6.1d

The operators6.1d contains the matrix elementsDs1,1d, which depend on the quantum variablesqa.
In this form this operator mixes the representationssL ,Md of the eigenstates of the Hamiltonian.18

The physical states of the system with symmetry breaking term therefore in principle must be
calculated by diagonalization of the Hamiltonian. Since the mass term is a minor part of the
Lagrangian it may be considered as a perturbation in the SUs3d representationsL ,Md.

For a given irrepsl ,md, in which the Lagrangian is defined, the symmetry breaking term
depends on the chiral angleFsrd as

TrhU0 + U0
† − 21j = 2 o

z,j

sl,md S o
m=−j

j

cos 2mFsrdD − 2 dimsl,md

= 2
sins1 + ldFsrd + sins1 + mdFsrd − sinsl + m + 2dFsrd

2 sinFsrd − sin 2Fsrd
− 2 dimsl,md.

s6.2d

Further development of the expressions6.1d leads to
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TrhsU0 + U0
†dJs0,0,0d

s1,1d j = 2 o
z,j

sl,md

2Î3F1

3
sl − md + zGS o

m=−j

j

cos 2mFsrdD
=

2Î3

2 sinFsrd − sin 2Fsrd
3 H1

2
s1 + mdssins1 + mdFsrd − sinsl + m + 2dFsrdd

+
1

3
sl − mdssins1 + ldFsrd + sins1 + mdFsrd − sinsl + m + 2dFsrdd

+
1

2
s1 + ldfssinFsrd − sins2 + mdFsrddcoslFsrd

− scosFsrd − coss2 + mdFsrddsinlFsrdgJ . s6.3d

For high irrepsl ,md the dependence of the symmetry breaking term on the chiral angleFsrd
differs significantly from that in the fundamental representations1, 0d. In that representation the
symmetry breaking term takes the standard form

MSB = fp
2s1 − cosFdFm0

2 +
1
Î3

m8
2Ds0ds0d

s1,1d s− qdG . s6.4d

In the case ofs2, 0d representation the expression is

MSB =
1

5
fp
2Fs1 − cosF + 2 sin2 Fdm0

2 − s1 − cosF − 4 sin2 Fd
m8

2

Î3
Ds0ds0d

s1,1d s− qdG . s6.5d

Note that in both cases the asymptotical behavior at large distance of the symmetry breaking terms
are different.

VII. DISCUSSION

Above the SUs3d Skyrme model was quantized canonically in the framework of the collective
coordinate formalism for representations of arbitrary dimension. This leads to the complete quan-
tum mechanical structure of the model on the homogeneous space SUs3d/Us1d. The results extend
those obtained earlier in the fundamental representation for SUs2d and SUs3d sRefs. 5 and 6d and
those obtained in general representations of SUs2d.7–9 The explicit representation dependence of
the quantum corrections to the Skyrme model Lagrangian was derived. This dependence is non-
trivial, especially for the Wess-Zumino-Witten and the symmetry breaking terms. The operators
that form the Hamiltonian were shown to have well-defined group-theoretical properties.

The choice of the irrep that is used for the unitary field depends on the phenomenological
aspects of the physical system to which the model is applied. Formally the variation of the irrep
can be interpreted as modification of the Skyrme model. The representation dependence of the
Wess-Zumino-Witten term was shown to be absorbable into a normalization factor, with exception
of the self-adjoint irreps in which this term vanishes. The symmetry breaking term has different
functional dependence on chiral angleFsrd in different irreps. In case of self-adjoint representa-
tions the symmetry breaking term, which is proportional to them8

2 coefficient also vanishes.

The effective Hamiltonians5.12d commutes with the left transformation generatorsL̂sAd and

the right transformationsspind generatorsR̂s0,1,Md,

fL̂sAd,Hg = fR̂s0,1,Md,Hg = 0, s7.1d

which ensures that the statess5.15d are the eigenstates of the effective Hamiltonian.
The symmetry breaking term does, however, not commute with the left generators,
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fL̂sZ,1
2

,Md,MSBg Þ 0, s7.2d

and therefore this term mix the states in different representationssL ,Md.
A result of this investigation is the tensor terms5.15d in the Hamiltonian density operator

s5.14d. Because of the tensor operator the states with spinS.
1
2 have quadrupole moments.

Consider finally the energy functional of the quantum skyrmion in the states ofsL ,Md irrep.
The problem is simplified if the symmetry breaking term that leads to representation mixing is
dropped,

EsFd =
C2

SUs3dsL,Md − l82

a1
2
sFd

+ S 1

a1sFd
−

1

a1
2
sFdDSsS+ 1d + DM1 + DM2 + DM3 + Mcl.

s7.3d

The variational condition for the energy is

dEsFd
dF

= 0, s7.4d

with the usual boundary conditionsFs0d=p, Fs`d=0. At large distances this equation reduces to
the asymptotic form

r̃2F9 + 2r̃F8 − s2 + m̃2r̃2dF = 0, s7.5d

where the quantitym̃2 is defined as

m̃2 = − e4S 1

4ã1
2

2
sFd

sC2
SUs3dsL,Md − SsS+ 1d − l82 + 1d +

2 SsS+ 1d + 3

3ã1
2sFd

+
8DM̃1 + 4DM̃3

3ã1sFd

+
DM̃3 + 2DM̃2

2ã1
2
sFd

+
1

ã1sFdã1
2
sFdD . s7.6d

The corresponding asymptotic solution takes the form

Fsr̃d = kS m̃2

r̃
+

1

r̃2Dexps− m̃r̃d. s7.7d

The quantum corrections depends on the irrepsl ,md to which the unitary field Usx ,td belongs as
well as on the state irrepsL ,Md and spinS. This bears on the stability of quantum skyrmion, the
requirement of stability of which the integralss4.9bd ands4.9cd andDMk converge. This require-
ment is satisfied only ifm̃2.0. That condition is only satisfied in the presence of the negative
quantum mass correctionsDMk. It is the absence of this term, which leads to the instability of the
skyrmion in the semiclassical approach9 in the SUs2d case. Note that in the quantum treatment the
chiral angleFsr̃d has the asymptotic exponential behaviors7.7d even in the chiral limit.
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APPENDIX A

The functionsCa
8sĀdsqd defined ins2.2d are siebenbeins which constitute nonsingular 737

matrices. We can introduce the reciprocal functionsCsB̄d
8a sqd by
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o
Ā

Ca8
sĀdsqd ·CsĀd

8b sqd = dab, sA1ad

o
a

Ca8
sĀdsqd ·CsB̄d

8a sqd = dsĀdsB̄d. sA1bd

Here sĀd and sB̄d denote the basis of the irreps1, 1d, with exception for the states0, 0, 0d. The
Cs0d8asqd are not defined.

The properties of the functionsCa
8sKdsqd follow from ]a]bDsl,md=]b]aDsl,md:

]bCa8
sKdsqd − ]aCb8

sKdsqd − Î3Fs1,1d s1,1d s1,1da

sK8d sK9d sKd GCb8
sK8dsqdCa8

sK9dsqd = 0, sA2d

and are correct for all statessKd including s0, 0, 0d. The following properties of the functions
CsK̄d

8a sqd are useful:

CsK̄8d
8a sqd]aCsK̄9d

8b sqd − CsK̄9d
8a sqd]aCsK̄8d

8b sqd + Î3Fs1,1d s1,1d s1,1da

sK̄8d sK̄9d sK̄d
GCsK̄d

8b sqd

= Î3z9Ca8
s0dsqdCsK̄8d

8a sqdCsK̄9d
8b sqd − Î3z8Ca8

s0dsqdCsK̄9d
8a sqdCsK̄8d

8b sqd. sA3d

In Sec. V the right transformation generatorss5.6d are defined with the following commutation
relations:

fR̂sĀ8d,R̂sĀ9dg = − Î3Fs1,1d s1,1d s1,1da

sĀ8d sĀ9d sĀd
GR̂sĀd + Î3z9hCsĀ8d

8a sqdCa8
s0dsqd,R̂sĀ9dj

− Î3z8hCsĀ9d
8a sqdCa8

s0dsqd,R̂sĀ8dj. sA4d

The SUs2d subalgebra of the generatorsR̂s0,1,Md satisfies the standard SUs2d commutation
relations. These may be interpreted as spin operators because its acting on unitary fields4.1d can
be realized as a spatial rotation of skyrmion only,

fR̂s0,1,Md,AsqdU0sxdAsqd†g = AsqdfJs0,1,Md
s1,1d ,U0sxdgA†sqd. sA5d

The transformation rule for irrep matrices is

fR̂sK̄d,DsAdsA8d
sl,md sqdg = DsAdsA9d

sl,md sqdKsl,md
A9

UJsK̄d
s1,1dUsl,md

A8
L −

Î3

2
y8CsK̄d

8a sqdCa8
s0dsqdDsAdsA8d

sl,md sqd.

sA6d

The eight left transformation generators are defined as

L̂sBd =
1

2
hR̂sAd,DsAdsBd

s1,1d s− qdj =
i

2
hpb + liCb8

s0dsqd,KsBd
b sqdj + lDs0dsBd

s1,1d s− qd, sA7d

where

KsBd
b sqd = CsĀd

8b sqdDsĀdsBd
s1,1d s− qd, sA8d

the properties of which follows fromsA3d:

KsB9d
b9 sqd]b9KsB8d

b8 sqd − KsB8d
b9 sqd]b9KsB9d

b8 sqd = Î3Fs1,1d s1,1d s1,1da

sB9d sB8d sBd GKsBd
b8 sqd. sA9d
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By making use ofsA4d it may be proven that

fL̂sB8d,L̂sB9dg = Î3Fs1,1d s1,1d s1,1da

sB8d sB9d sBd GL̂sBd. sA10d

The three right transformation generators or spin operatorsR̂s0,1,Md commute with the left trans-
formation generators,

fR̂s0,1,Md,L̂sBdg = 0. sA11d

The left transformation rules for the irrep matrices are

fL̂sBd,DsA8dsAd
sl,md sqdg = kA8uJsBd

s1,1duA9lDsA9dsAd
sl,md sqd

−
Î3

2
yA ·Ds0dsBd

s1,1d s− qdDsA8dsAd
sl,md sqd −

Î3

2
yA ·Ca8

s0dsqdCsB̄8d
8a sqdDsB̄8dsBd

s1,1d s− qdDsA8dsAd
sl,md sqd.

sA12d

It is straightforward to derive the following result:

s− 1dBL̂sBdL̂s−Bd = s− 1dĀR̂sĀdR̂s−Ād + l82 − 3
4 − 3

16s− 1dA%Ca8
s0dsqdCsA% d

8a sqdCb8
s0dsqdCs−A% d

8b sqd.

sA13d

For the derivation of the Lagrangian density the following expressions are needed:

EsĀdsB̄dsFdJsĀd
s1,1d

JsB̄d
s1,1d

= −
1

a1
2
sFd

Ĉ2
SUs3d + S 1

a1
2
sFd

−
1

a1sFdDĈSUs2d +
1

a1
2
sFd

sJs0,0,0d
s1,1d d2, sA14d

EsĀdsB̄dsFdDsB̄8dsB̄d
I sx̂,FsrddJsĀd

s1,1d
JsB̄8d

s1,1d
= −

cosF

a1
2
sFd

Ĉ2
SUs3d + S cosF

a1
2
sFd

−
cos 2F

a1sFd DĈSUs2d +
cosF

a1
2
sFd

sJs0,0,0d
s1,1d d2

+ iSsin 2F

a1sFd
+

sinF

a1
2
sFdDsJs0,1,·d

s1,1d · x̂d − 2
sin2F

a1sFd
sJs0,1,·d

s1,1d · x̂d

3sJs0,1,·d
s1,1d · x̂d. sA15d

HereDsB̄8dsB̄d
I sx̂,Fsrdd is a Wigner matrix of the SUs2d. The summation is over SUs2d representa-

tions I = 1
2, 1 and the corresponding bases,

EsĀdsB̄dsFdFs1,1d s1,1d s1,1da

sĀd s0,1,ud sC̄d
GJsB̄d

s1,1d
JsC̄d

s1,1d
=

1
Î3S 1

2a1
2
sFd

+
1

a1sFdDJs0,1,ud
s1,1d , sA16d

EsĀdsB̄dsFdFs1,1d s1,1d s1,1da

sĀd s0,1,ud sC̄d
GDsC̄8dsC̄d

I sx̂,FsrddJsB̄d
s1,1d

JsC̄8d
s1,1d

=
1
Î3H− fJs0,1,·d

s1,1d 3 x̂guS sinF

2a1
2
sFd

+ i
2 sin2F

a1sFd
sJs0,1,·d

s1,1d · x̂dD
− iS sinF

2a1
2
sFd

Ĉ2
SUs3d − S sinF

2a1
2
sFd

−
sin 2F

a1sFd DĈSUs2d −
sinF

2a1
2
sFd

sJs0,0,0d
s1,1d d2Dx̂u

072103-16 Jurčiukonis, Norvaišas, and Riska J. Math. Phys. 46, 072103 ~2005!

                                                                                                                                    



+ Scos 2F

a1sFd
+

cosF

2a1
2
sFd

+ i
sin 2F

a1sFd
sJs0,1,·d

s1,1d · x̂dDJs0,1,ud
s1,1d J . sA17d
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Recent work has shown the essential equivalence of stopping power, force-force
correlation function, and phase-shift analysis for nonlinear potential scattering in a
three-dimensional electron gas. In the present study, we first demonstrate that the
above situation is markedly different when the scattering occurs from a localized
potential in a two-dimensional �2D� electron gas. Only to second order in the
potential do the three methods referred to above precisely agree. However, all these
methods can still be applied in 2D, some fully nonlinear evaluation proving pos-
sible. The one-dimensional case is also discussed, albeit more briefly. Scattering
from a two-center modeling of the localized potential is also calculated, but now
only in the Born approximation, due to the added complication of a noncentral
potential. © 2005 American Institute of Physics. �DOI: 10.1063/1.1947118�

I. INTRODUCTION

Following a vast body of experimental and theoretical studies on three-dimensional metals
and alloys,1,2 attention more recently has focused on two-dimensional systems of itinerant elec-
trons. As an immediate example, on the �111� surfaces of noble metals, e.g., Au, Ag, and Cu,
quasiparticles form a two-dimensional electron gas. This has been investigated experimentally by
cold scanning tunneling microscopy.3,4 Turning to physical properties associated with such two-
dimensional electron gases �2DEG�, the present paper will have as its focus the scattering in such
assemblies of the itinerant electrons from localized impurity centers. Then, it is natural enough to
proceed with the discussion for spin-compensated impurity systems. However, it is highly relevant
to note that both theoretical5 and experimental6 studies have appeared recently. In the former, the
2DEG was considered in the presence of a single magnetic impurity �e.g., Co� and the additional
scattering phase shift induced by the charge of the Co ion and its specially extended displaced
electronic density distribution.5 Subsequently, scanning tunneling microscopy was employed6 to
measure the phase shift that surface-state electrons suffer when scattering from a single magnetic
impurity, which forms a Kondo state.

This is the context then which has motivated the present theoretical study. This follows the
earlier discussions,7,8 of a few aspects of the stopping power of a 2DEG for heavy particles. Two
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results utilized there form a valuable starting point for the present study of such a two-dimensional
system. First, the transport �tr� cross section is given in the partial wave representation as

�tr�kF� =
4

kF
�
m=0

�

sin2��m�kF� − �m+1�kF�� , �1.1�

where kF denotes the Fermi wave number of the electron gas, related to the Fermi energy EF by

EF = kF
2/2. �1.2�

In Eq. �1.1�, the scattering phase shifts at the Fermi level are denoted by ��kF� for the different
partial waves �m=0,1 , . . ., etc.�. We are interested further in the stopping power dE /dx say, at
T=0, to which the present treatment is restricted, for a heavy ion moving with velocity v. This is
related in a direct fashion, as set out in Ref. 7 for slow ions, to the transport cross section �tr in Eq.
�1.1� above

dE

dx
= n0vvF�tr�kF� , �1.3�

in which n0 and vF are, respectively, the areal density and Fermi velocity of the 2DEG.
The outline of the present investigation is then as follows. In Sec. II below, a force-force

correlation function formula, due to Rousseau, Stoddart, and March �RSM�,2,9 in three dimensions,
is first adapted to two dimensions. We comment here on the three-dimensional �3D� result. There,
the total potential which scatters the electrons is denoted by V�r�, and this generates a Dirac
density matrix ��r1 ,r2 ,E�, which is such that its diagonal element, say ��r ,r ,E�, denotes the
integrated local density of electronic states. Correlating the force −�V�r� /�r at points r1 and r2 via
���r1 ,r2 ,E� /�E, which is then a generalized density of states, it can readily be shown, when V�r�
is assumed to be a central potential V�r��V��r��, to be related to the phase shifts �l�E� for
scattering off V�r�, via the radial wave functions Rl�r ,E� from which the density matrix is con-
structed. The 3D force-force correlation function formula of RSM is then exactly equivalent to the
phase-shift scattering cross section for impurity resistivity of Huang,10 as shown by one of us.11 In
Sec. II, this 3D situation will be contrasted with that in 2D. Adapting the RSM formula in 3D then
leads to the 2D analog set out in Eq. �2.1� below, where account is taken of the Fermi statistics of
electrons by considering, as in 3D, that scattering is on the Fermi surface, corresponding to Fermi
energy EF. The 2D phase shift result derived in Eq. �2.15� below for the force-force correlation
function is demonstrated here to be distinct from the stopping power in 2D already set out in Eqs.
�1.1� and �1.3�. This is in contrast to the equivalence of the force-force correlation function and the
scattering cross section in 3D which we have discussed above.

Section III is then devoted to studying at some length the Born approximation to this force-
force correlation function. In this section, contact is then made with Eqs. �1.1� and �1.3� above. In
Sec. IV further illustrations are given by using linear-response formalism for the induced density
in 2D. The one-dimensional case of scattering is outlined in Sec. V. Finally, additional and more
technical details are summarized in four Appendixes at the end of the paper.

II. FORCE-FORCE CORRELATION FUNCTION IN A TWO-DIMENSIONAL ELECTRON
GAS

As indicated above, let us take as starting point a definition of the force-force correlation
function in two dimensions as
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�F · F	 =
 dr1dr2
�V�r1�

�r1
·
�V�r2�

�r2
� ���r1,r2,E�

�E
�

E=EF

2

. �2.1�

Evidently the two forces −�V�r� /�r at two-dimensional position vectors r1 and r2 are correlated
via the off-diagonal local density of states N�E ,r1 ,r2���� /�E evaluated at the Fermi level EF, �
as defined above being the off-diagonal integrated density of states.

As emphasized in three dimensions by Rousseau et al.,9 the merit of the corresponding
two-dimensional form in Eq. �2.1� is that it is defined for potentials V�r� of lower than circular
symmetry. However, it is a valuable starting point in calculating the force-force correlation func-
tion �F ·F	 in Eq. �2.1� to treat the case of circular symmetry, i.e., V�r�=V��r��=V�r�. This is the
objective of the present section. For this limiting case of V�r� with circular symmetry, we shall
draw also on the treatments by Adhikari12 and by Tang and Thouless.13

Beginning then with the wave function ��r ,�� in polar coordinates defined by x=r cos � and
y=r sin �, one can write in the asymptotic region, far from the origin of the scattering potential
energy V�r�, that ��r ,�� consists of a plane wave, propagating say along the x axis, plus a
scattered outgoing wave. Both Refs. 12 and 13 adopt the form

��r,��r→� → exp�ikx� + i/kfk���
exp�ikr�

r
, �2.2�

where fk��� denotes the scattering amplitude. This result �2.2� follows asymptotically from the
Schrödinger equation

1

r

�

�r
�r

��

�r
� +

1

r2

�2�

��2 + k2� = U� , �2.3�

where k2=2mE /�2 and U�r�=2mV�r� /�2. In this case of circular symmetry V�r�, one can separate
the variables r and � by writing

��r,�� = R�r����� , �2.4�

to find

d2�

d�2 + m2� = 0. �2.5�

Hence, we have now wave functions of the form following from Eq. �2.4� plus the physically
significant solution of Eq. �2.5� as

�m�r1� = exp�im�1�R�kFr1� . �2.6�

Returning to the definition �2.1�, we can write the energy derivative of the Dirac matrix � in terms
of �m�r1� and the energies Ei generated by the one-body Hamiltonian H given by

H = −
1

2
�2 + V�r� , �2.7�

as

��

�E
= �

i

�i
*�r1��i�r2���E − Ei� , �2.8�

with the complex conjugate satisfying
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��*

�E
= �

j

� j�r1�� j
*�r2���E − Ej� . �2.9�

Thus, from Eqs. �2.8� and �2.9� it follows that

� ��

�E
�

E=EF

2

= �
i,j

�i
*�kFr1�� j�kFr1��i�kFr2�� j

*�kFr2� . �2.10�

Replacing i, j by m, m�, it follows from Eq. �2.1� for isotropic scattering potentials that

�F · F	 =
 r1r2
�V�r1�

�r1

�V�r2�
�r2

cos��2 − �1�� ��

�E
�

E=EF

2

dr1 dr2 d�1 d�2. �2.11�

Using the wave functions �2.6�, the angular integration in Eq. �2.11� becomes, after some manipu-
lation

1

2 �
m,m�



0

2	 

0

2	

�exp�i��2 − �1�� + exp�− i��2 − �1����exp�i�m − m���2�exp�− i�m − m���1��d�1 d�2

= 2	2 �
m,m�

���m� = m + 1� + ��m� = m − 1�� . �2.12�

Using Eqs. �2.12� and �2.6� in Eq. �2.11�, and performing the summation over m� then yields

�F · F	 = 2	2�
m



r1

r1
�V�r1�

�r1
Rm

* �kFr1��Rm+1�kFr1� + Rm−1�kFr1��dr1

r2

r2
�V�r2�

�r2
Rm�kFr2�


�Rm+1
* �kFr2� + Rm−1

* �kFr2��dr2. �2.13�

Using the result of Tang and Thouless13 that


 rRm+1
* �kr�

�V�r�
�r

Rm�kr�dr = −
k

	
exp��m − �m+1�sin��m+1 − �m� �2.14�

then gives

�F · F	 =
�2	�2

2
� k

	
�2

�
m

�exp�− i��m − �m+1��sin��m+1 − �m� + exp�i��m−1 − �m��sin��m − �m−1��


 �exp�i��m − �m+1��sin��m+1 − �m� + exp�− i��m−1 − �m��sin��m − �m−1��

= k2�
m

�1 − cos�2��m+1 − �m−1��� . �2.15�

The above analysis is analogous to that of Huang10 in terms of partial waves of orbital angular
momentum quantum number l in 3D; there, only the phase shifts �l with k=kF are required, where
kF is the Fermi wave number �independent of l�. This two-dimensional result for the force-force
correlation function with V�r�=V��r�� appears to be new. It must be stressed that this phase-shift
result �2.15� for �F ·F	 is distinct from the stopping power in Eqs. �1.1� and �1.3�.

Though we do not have an analog of Eq. �2.15� for �F ·F	 when the isotropy of V�r� is relaxed,
it is of immediate interest to treat this more general case in the Born approximation, and this is the
essential content of the following section.
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III. FORCE-FORCE CORRELATION FUNCTION IN TWO DIMENSIONS IN THE BORN
APPROXIMATION

To calculate �F ·F	 in Eq. �2.1� to O�V2� for a potential V�r� without circular symmetry, we
can make the crucial simplifying approximation that the Dirac density matrix � in Eq. �2.1� is
replaced by its two-dimensional free-electron counterpart �0�r1 ,r2 ,E�. This we obtain following
the approach of March and Murray14,15 in their three-dimensional density matrix perturbation
theory, based on the scattering potential V�r� above embedded in an initially uniform free-electron
gas. Their main achievement was to start from the canonical, or Bloch density matrix C�r1 ,r2 ,��,
defined for the one-body Hamiltonian �2.7� having eigenfunctions �i�r� and corresponding eigen-
values �i as

C�r1,r2,�� = �
alli

�i
*�r1��i�r2�exp�− ��i�: � = �kBT�−1. �3.1�

The �zero-temperature� Dirac density matrix appearing in Eq. �2.1� is then related to the C matrix
in Eq. �3.1� by

C�r1,r2,�� = �

0

�

��r1,r2,E�exp�− �E�dE . �3.2�

A. Free-electron results in two dimensions

It is well known that in D dimensions the free-electron canonical density matrix is given by

C0�r1,r2,�,D� =
1

�2	��D/2 exp�−
�r1 − r2�2

2�
� . �3.3�

March and Murray were concerned with the three-dimensional case, for which they obtained the
Dirac matrix as

�0�r1,r2,E�D=3 =
kF

3

2	2

j1�k�r1 − r2��
k�r1 − r2�

, �3.4�

where j1�x� is the first-order spherical Bessel function �sin x−x cos x� /x2, and we have written Eq.
�3.4� for single occupied levels.

To obtain the two-dimensional analog, we need the inverse Laplace transform of C0 /�, ac-
cording to Eq. �3.2�, where C0 is given by Eq. �4.4� with D=2. This can be found from Ref. 16 as

�0�r1,r2,E� =
1

2	

2E

�r1 − r2�
J1�2E�r1 − r2�� . �3.5�

Fortunately, the energy derivative �� /�E appearing in the force-force formula �2.1� is more com-
pact, and follows after a short calculation using properties of Bessel functions as

��0�r1,r2,E�
�E

=
1

2	
J0�2E�r1 − r2�� . �3.6�

An immediate check on the result �3.6� is the density of states N�E� obtained by setting r2=r1 in
Eq. �3.6�, the result being simply the constant 1 /2	 since J0�0�=1. This result �3.6�, in conjunc-
tion with Eq. �4.7� below, is used in Appendix A to derive the linear response function in two
dimensions.

Returning to Eq. �2.1�, the force-force correlation function, B denoting the Born approxima-
tion, is given, apart from a multiplicative factor, explicitly in terms of the scattering potential V�r�
by making use of Eq. �3.6� as
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�F · F	B 
 dr1 dr2
�V�r1�

�r1
·
�V�r2�

�r2
J0

2�2E�r1 − r2�� . �3.7�

Some examples relating to Eq. �3.7� are set out in Appendixes C and D below. By way of
illustration, we show in Fig. 1 a plot of J0

2�2Er� versus r for two values of E. For comparison, we
show the local density of states N0�r ,E ,Z� for the bare Coulomb potential energy −Ze2 /r given in
Eq. �C3�, which reduces to J0

2�2Er� when Z=0, apart from an unimportant normalization factor.

B. Scattering from a model two-center potential in two dimensions and in Born
approximation

Dimers of impurities on nonmagnetic substrates provide a very active research field in scan-
ning tunneling spectroscopy at the atomic scale.17 This activity motivates the present subsection
on the role of reduced dimensionality in associated scattering processes.

Consider the case of two equivalent scattering centers in a 2D electron gas. Let R be the
vector joining the centers, n0 a unit vector in the direction of incidence, n1 a unit vector in the
direction of scattering, and k the scattering wave vector of electrons. Due to the Fermi statistics
k=kF is, in fact, the practically important value. As a first approximation we regard the two
centers as scattering independently but coherently. Therefore, the result obtained will be generally

FIG. 1. �a� Plot of J0
2�2Er� appearing in force-force correlation function set out in Eq. �3.7�, versus r, for two values of

E �compare also Eq. �D4��. Other curves shown are �b� and �c� the s-state �m=0� component of the local density of states
N0�r ,E ,Z� generated by a bare Coulomb potential �−Z /r� embedded in a two-dimensional electron gas, for Z=1 and 92
and the same two values of energy E as in the plot of J0

2. Apart from an unimportant normalization factor, J0
2 is the limit

of N0�r ,E ,Z� as Z tends to zero.
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valid �even for strong scattering by the single center� if kR�1. Following closely the standard18,19

derivation in the 3D case, one obtains for the 2D differential cross section the following expres-
sion, in this so-called independent-atom approximation:

d��k,��d� = 2�fk����2�1 + cos�k�n0 − n1� · R��d� , �3.8�

where cos �=n0 ·n1. The function fk��� is given in Eq. �2.2�.
Practically, due to the random orientations of dimers �diclusters�, the averaged cross section

d�av�k ,�� is required. Therefore, we average over all orientations of the vector R in 2D by using
Eqs. �3.715.18� of Ref. 20 and obtain

d�av�k,��d� = 2�fk����2�1 + J0�qR��d� , �3.9�

in which q=2k sin�� /2�, the momentum transfer. In the first-order Born approximation the scat-
tering amplitude fk

B��� is related simply to the Fourier transform of the single-atom screened
potential V�q�. Thus, in this case we have

�fk
B����2 =

1

2	k
�V�q��2. �3.10�

For the kR�1 condition, Eq. �3.9� is applicable also for stronger scattering using partial-wave
expansion.12,13 In the so-called leading �m=0� phase-shift approximation, one gets the usual ex-
pression

�fk����2 =
2

	k
sin2��0�k�� . �3.11�

If the unitary limit, as prescribed by the 2D Friedel sum rule,8 is a valid approximation, one may
use �0=	 /2 in Eqs. �3.11� and �3.9�.

Various angular integrals of d�av�k ,�� need, in the leading phase-shift method, only a simple
averaging of the J0�2k sin�� /2�R� factor. Applying the standard expansion

J0�qR� = �
m=−�

�

Jm
2 �kR�exp�im�� , �3.12�

in Eq. �3.9�, the total �t� cross section becomes

�av
t �k� =

8

k
sin2��0�k���1 + �J0�kR��2� , �3.13�

for this case. This quantity may prove useful in estimating the dephasing time due to elastic
scattering of surface-state electrons by dimer impurities.

Other angle-weighted cross sections �transport, diffusion� require more detailed, but feasible,
calculations for the important 2D case.

IV. LINEAR RESPONSE FUNCTION GIVING THE DISPLACED FERMION DENSITY
AROUND A “PERTURBING POTENTIAL” V„r… IN A TWO-DIMENSIONAL UNIFORM
ELECTRON GAS

Though our main purpose has been to evaluate the force-force correlation function defined in
Eq. �2.1� to all orders in the scattering potential V��r�� in Eq. �2.13�, and to illustrate this by
presenting numerical results at the Born level, it seemed of interest, in view of the usefulness of
the March-Murray result14,15 for the density ��r� in three dimensions, namely
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�3d�r� − �0 = const. 

 dr�V�r��
j1�2kF�r − r���

�r − r��2
, �4.1�

where �0=kF
3 /6	2, and the constant is given in Eq. �A2�, to obtain the corresponding two-

dimensional result. This then is the purpose of the present section. We shall take as starting point
the work of Stoddart, March, and Stott,21 who write Eq. �4.1� more generally as

���r� =
 dr�V�r��F��r − r��,E� , �4.2�

where

�F

�E
= 2 Re�G�r,r�,E�

���r,r�,E�
�E

� . �4.3�

Thus, to obtain the two-dimensional counterpart of Eq. �4.1�, we shall write, for the uniform
gas, that

�F0�r,r�,E�
�E

= 2
��0�r,r�,E�

�E
Re�G0�r,r�,E�� . �4.4�

Here, G0 is the free-particle Green function in two dimensions. This is related to the canonical
density matrix C0�r ,r� ,�� discussed above by

LC0�r,r�,�� = G0�r,r�,− E� . �4.5�

With C0 again given by Eq. �3.3� with D=2, the Laplace transform L above can be obtained as

LC0�r,r�,�� =
K0�2E�r − r���

	
�4.6�

where K0�x� is the modified Bessel function.16 Using Eqs. �4.5� and �4.6�, we thus find

G0�r,r�,E� =
K0�i2E�r − r���

	
. �4.7�

Since ��0 /�E is known in terms of J0 from Eq. �3.6�, we have �F0 /�E by appealing to Eq. �4.4�.
We note that Zhang22 has obtained a more compact form in k-space, although he then invokes the
Meijer function in the r-space representation we focus on in the present study. The above theory
is extended somewhat in Appendix A.

V. ONE-DIMENSIONAL SCATTERING

Having contrasted nonlinear scattering in 2D and 3D electron gases from a localized potential,
we turn, albeit briefly, to consider what further changes are introduced by dimensionality reduction
to the case of 1D. We follow March and Murray,14,15 who dealt completely with 3D plane wave
perturbation theory, by starting from the integral equation derived from the well-known Bloch
equation23 for the canonical density matrix C�x ,x0 ,��, where

C�x,x0,�� = �
alli

�i�x��i
*�x0�exp�− ��i� . �5.1�

In Eq. �5.1�, �i�x� and the corresponding eigenvalues �i satisfy

H�i = �i�i, �5.2�

where the one-dimensional Hamiltonian is simply
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H = −
�2

2m

�2

�x2 + V�x� . �5.3�

Evidently, completeness yields from Eq. �5.1� at �=0

C�x,x0,0� = ��x − x0� , �5.4�

and this is built in the integral form of the Bloch equation, namely

C�x,x0,�� = C0�x,x0,�� − 

0

�

d�1
 dx1C0�x,x1,� − �1�V�x1�C�x1,x0,�1� . �5.5�

In Eq. �5.5�, C0 is the free-particle density matrix23

C0�x,x0,�� =
1

2	�
exp�−

�x − x0�2

2�
� . �5.6�

The �1 integration can be removed by a Laplace transform on � �→E� to yield �C→ C̃�

C̃�x,x0,E� = C̃0�x,x0,E� −
 dx1 C̃0�x,x1,E�V�x1�C̃�x1,x0,E� . �5.7�

The Laplace transform of Eq. �5.6� is readily obtained as24

C̃0�x,x0,E� � LC0�x,x0,�� =
1

2E
exp�− 2E�x − x0�� . �5.8�

If in Eq. �5.7� we then work to first order in the “perturbing” potential V�x�, we find

C̃�x,x0,E� =
1

2E
exp�− 2E�x − x0�� −

1

2E

 dx1 V�x1�exp�− 2E��x − x1� + �x1 − x0��� .

�5.9�

Inverting the Laplace transform �E→�� in Eq. �5.9� readily yields

C�x,x0,�� =
1

2	�
exp�−

�x − x0�2

2�
� −

1

2

 dx1 V�x1�erfc�2

�

��x − x1� + �x1 − x0��
2

� .

�5.10�

The Dirac density matrix ��x ,x0 ,E� then follows as the inverse Laplace transform of
C�x ,x0 ,�� /�, and is given by

��x,x0,E� =
sin�2E�x − x0��

	�x − x0�
−
 dx1 V�x1��1

2
−

Si�2E��x − x1� + �x1 − x0���
	

� , �5.11�

which is the 1D analog of the first-order 3D result of March and Murray.14,15

Of course, one obvious difference between 2D and 3D scattering and the 1D case to be
discussed further below is that in the 1D system there are only two discrete directions for scat-
tering: forward and backward along a line. Below, we restrict our discussion to symmetric local-
ized potentials V�x� satisfying

V�x� = V�− x� . �5.12�

The 1D analog of the customary Lippmann-Schwinger equation takes the form
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�k�x� = �k�x� + 

−�

�

G0�x,x��V�x���k�x��dx�, �5.13�

where �k�x� is the free-particle wave function exp�ikx�. The one-dimensional Green function
G0�x ,x�� is given by

G0�x,x�� = −
i

2k
exp�ik�x − x��� , �5.14�

which is readily verified to be the Laplace transform �L� of the canonical density matrix �3.3� with
respect to � for the case D=1, since

LC = G0�x,x��:E = k2. �5.15�

Using Eq. �5.14� in �5.13�, the following asymptotic form of �k�x� results:

�k�x� → exp�ikx� +
i

k
fk���exp�ikx� , �5.16�

where fk��� is the analog of the scattering amplitude in higher dimensions. However, as discussed
above, there are but two scattering directions in 1D, corresponding to �= ±1. This is to be
contrasted with the continuum of scattering angles in both 2D and 3D. The differential cross
sections in these two directions in the 1D case are given by

�� =
1

k2 �fk����2, �5.17�

while the total cross section � takes the form

� =
1

k2 ��fk�+ 1��2 + �fk�− 1��2� . �5.18�

To press the analogy with higher dimensions, we have now just two partial waves. For potentials
satisfying Eq. �5.12�, these two partial waves are distinct, with even and odd parity. It is to be
noted that the cross section �, in principle an observable, has units of length L squared in 3D, L
in 2D, and is dimensionless according to Eq. �5.18� in 1D.

Analogs of the optical theorem and the unitarity relation again exist, paralleling here the 2D
and 3D scattering, but we shall not go into further detail. It is worth adding, in concluding this
brief discussion of 1D scattering, that the above can be usefully illustrated for a potential V�x�
which is the Dirac delta function �see the discussion in 3D in Ref. 25�, but we shall not go into
further detail since the 3D example was treated fully for a similar, completely localized, scattering
center.

VI. DISCUSSION AND FUTURE DIRECTIONS

Our principal aim has been to demonstrate the effect of dimensionality reduction on the 3D
results given earlier25 for nonlinear scattering by a localized potential. For the 2D case, which is
the main focus of the present study, it is striking that the stopping power problem summarized in
Eqs. �1.1� and �1.3� turns out, beyond the Born approximation, to be distinct from the force-force
correlation function �F ·F	 defined in Eq. �2.1� in 2D. These are essentially identical to all orders
in the localized scattering potential V in 3D. It is possible in 2D that there are “frictional effects”
in surfaces, the theory of which has been discussed by d’Agliano and co-workers,26 which may
mirror �F ·F	, but it remains to be proved that this latter correlation function is indeed an observ-
able in 2D, whereas it is established that this is the case, though not distinct from stopping power
or transport cross section, in 3D. Here, we believe for the first time, �F ·F	 in Eq. �2.1� has been
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calculated analytically in terms of phase shifts at the Fermi level, and is given for 2D in Eq. �2.13�.
This is evidently closely related to, but nevertheless distinct from, Eq. �1.1� in terms of the same
input information, for the transport cross section.

Further directions of interest for the future, which were already touched on in the Introduction,
are scattering in essentially two dimensions from a single magnetic impurity. Here, the spin-
dependent theoretical approach of Stoddart and March27 may well find application, and the two-
dimensional version should prove of considerable interest for the future.

APPENDIX A: r-SPACE LINEAR RESPONSE FUNCTION F„�r−r�� ,E… IN TWO
DIMENSIONS

The object of this appendix is to give the two-dimensional form of the result of March and
Murray14

���r,E� =
 F3d��r − r��,E�V�r��dr�, �A1�

for the displaced charge below energy E created by a perturbing potential V�r� inserted into an
initially uniform electron gas. The result of Ref. 14 was explicitly �compare Eq. �4.1��

F3d�R,E� = −
mE

	3�2

j1�22ER�
R2 . �A2�

Below, we derive an analogous form to Eq. �A2� in two dimensions. As shown by Stoddart,
March, and Stott,21 for the uniform Fermi gas as the unperturbed system, �F�R ,E� /�E is given by
Eq. �4.3� of the main text, where the free-electron 2D Green function has been given in Eq. �4.7�
in terms of the Bessel function K0. Likewise, �� /�E is known in 2D in terms of J0 from Eq. �3.6�,
and inserting these results into Eq. �4.3� and forming the energy derivative yields, after using the
identity

Re�K0�ikR�� = − Y0�kR�/2	 , �A3�

the result

F�R,E� = −
1

2	

E

J0�2ER�Y0�2ER�dE . �A4�

Performing the integration, one finds

F�R,E� = −
E

2	
�J0�2ER�Y0�2ER� + J1�2ER�Y1�2ER�� + f�R� . �A5�

But, the energy-independent function f�R� must be zero since ���R ,E=0�=0, and thus, for the
displaced charge at the origin ���0,E�, one obtains

���0,E� = − ZE

0

�

�J0�2Er�Y0�2Er� + J1�2Er�Y1�2Er��dr , �A6�

for the case of the bare Coulomb potential, by way of illustration. From Ref. 20, we have



0

�

J��ax�Y��ax�dx = −
1

2a
, �� � − 1/2,a � 0� , �A7�

and hence
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���0,E� =
ZE
2E

= ZE

2
, E � 0. �A8�

In fact, for V=−Z /r, this result �A8� has the fully nonlinear generalization

���0,E� =
E

	
tanh� Z	

2E
� , �A9�

which is equivalent to Eq. �A8� to first order in Z. Equation �A9� is plotted as a function of energy
E for Z=1 and Z=92 in Fig. 2. The following appendix adds some further nonlinear results
associated still with the unscreened Coulomb potential.

APPENDIX B: SOME FURTHER PROPERTIES GENERATED BY THE BARE COULOMB
POTENTIAL IN TWO DIMENSIONS

The real-space Schrödinger equation in plane polar coordinates �r ,�� reads

�−
1

r

�

�r
�r

�

�r
� −

1

r2

�2

��2 + V�r����r� = E��r� , �B1�

where, writing

��r� = R�r����� , �B2�

we have

���� =
1

2	
exp�im�� . �B3�

The corresponding radial equation, with E=−k0
2, say, is

d2R

dr2 +
1

r

dR

dr
+ �2

r
− k0

2 −
m2

r2 �R = 0. �B4�

The normalized wave functions are then

FIG. 2. Displaced charge ���0,E� at nucleus, resulting from a bare Coulomb potential �−Z /r� embedded in a two-
dimensional electron gas, for Z=1 and 92, versus energy E, as given in Eq. �A9�.
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�nm�r� =k0
3�n − �m��!

	�n + �m��!
�2k0r��m� exp�− k0r�Ln−�m�

2�m� �2k0r�exp�im�� , �B5�

where L as usual denotes the associated Laguerre polynomial.
In three dimensions, Heilmann and Lieb28 �HL� calculated the total density of the entire

spectrum of bound states of the hydrogen atom. Below, we note one property for the two-
dimensional case that is much simpler than for the three-dimensional case, namely the density
���r� at r=0. Using the definition in two dimensions that

���r� = �
n=0

�

�
m�n

�*�r���r� , �B6�

one has from Eq. �B5� the result

���r� = �
n=0

�

�
m�n

k0
3�n − �m��!

	�n + �m��!
�2k0r�2�m� exp�− 2k0r��Ln−�m�

2�m� �2k0r��2. �B7�

At r=0, the above summation simplifies �because only m=0 terms contribute� to

���0� = �
n=0

�
k0

3

	
, �B8�

where the bound-state energy levels are given by

E = − k0
2 = −

1

�n + 1/2�2 . �B9�

Using the summation in Ref. 16, namely

�1 − 2−n���n� = �
k=0

�

�2k + 1�−n, �B10�

with n=3 yields the closed result

���0� =
7

	
��3� , �B11�

where � denotes the Riemann zeta function. This result can be further generalized to N closed
shells as

�N�0� =
7

	
��3� +

��2,N + 3/2�
2	

, �B12�

and Fig. 3 shows a plot of this equation as a function of N. The value ���0� is solely due to the
spherically symmetric wave functions corresponding to m=0 �s states� and hence ���0�=��s�0�.

Kato’s theorem, discussed by one of us in Ref. 29, has then the generalization to D dimensions
for nuclear charge Ze given by

� ���r�
�r

�
r=0

=� −
4Z

�D − 1�
�s�r��

r=0
, �B13�

and means that, for Z=1 and D=2
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� ���r�
�r

�
r=0

= −
28

	
��3� . �B14�

This implies, in particular, that after differentiating ���r� in Eq. �B7� with respect to r, the
summation over m can be performed and the result then relates to the s-like �m=0� density
according to Eq. �B13�.

APPENDIX C: DIFFERENTIAL EQUATION SATISFIED BY THE DIAGONAL LOCAL
DENSITY OF STATES N„r ,E… FOR THE m=0 COMPONENT

Denoting the m=0 component of the local density of states by N0�r ,E ,Z�, we have the
differential equation, with primes denoting derivatives with respect to r, as

r2

2E
N0� +

3r

2E
N0� + �4r�r +

1

E
� +

1

2E
�N0� + �4�r +

1

2E
� +

1

2E
�4 +

1

r
��N0 = 0. �C1�

Dropping the “potential energy” term 1/r, one can readily verify that Eq. �C1� is satisfied by the
free-electron result

N0�r,E,Z = 0� = const. 
 �J0�2Er��2. �C2�

The physical solution �with V�r�=−Z /r now the 2D Coulomb potential� of Eq. �C1� is

N0�r,E,Z� = const. 

M�− iZ/k,0,i2kr�2

r
, �C3�

where M denotes the Whittaker function �see also Fig. 1 of the main text�.

APPENDIX D: COULOMB LOCAL DENSITY OF STATES AND FREE-ELECTRON LIMIT

In the main text we proved that

��0

�E
=

1

2	
J0�2E�r − r��� , �D1�

which we now expand in terms of angular functions exp�im��, where cos���=r ·r� /rr�, to write

FIG. 3. Plot of electron density �N�0� at the nucleus given by Eq. �B12� for a two-dimensional hydrogen-like atom, versus
the number of closed shells N.
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��0

�E
= �

m=−�

�
��0m�r,r��

�E
exp�im�� . �D2�

Then, it follows directly from Eqs. �D1� and �D2� above that

��00�r,r��
�E

=
1

2	



0

2	

J0�2E�r − r���d� . �D3�

From Ref. 20, Eq. 6.684.1, we have that the integral on the right-hand side of Eq. �D3� is a product
of Bessel functions of order zero, and hence we obtain explicitly

��00�r,r��
�E

= J0�2Er�J0�2Er�� . �D4�

Performing the energy integration, and using the physical boundary condition that ��00/�E→0 as
E→0, we find the m=0 component of the Dirac density matrix for the free-electron gas in 2D as

�00�r,r�,E� =
2E

�r�2 − r2�
�r�J0�2Er�J1�2Er�� − rJ0�2Er��J1�2Er�� . �D5�

Taking the limit of Eq. �D5� as r�→r yields

�00�r,r,E� = E�J0
2�2Er� + J1

2�2Er�� . �D6�

This result �D6� is plotted in Fig. 4 as a function of r for two different values of the energy E.

1. Coulomb analogue

For the continuous spectrum of the hydrogen-like atom with V�r�=−Z /r in two dimensions,
the radial wave function corresponding to m=0 is

FIG. 4. s-state �m=0� electron density �00�r ,r ,E� for a two-dimensional free electron gas, as given by Eq. �D6�. Actual
plot is �00�r ,r ,E� /E versus 2Er.
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R0�kr� = Ck0 exp�− ikr�1F1�iZ/k + 1/2,1,i2kr� , �D7�

where 1F1 denotes the confluent hypergeometric function, and hence, apart from a multiplying
factor which can depend on energy and Z, we can write the analog of Eq. �D4� in the limit r
→r� as

� ��m=0�r,r�,Z�
�E

�
r�=r

= �1F1�iZ/k + 1/2,1,i2kr��2: k = 2E . �D8�

Allowing Z→0 in Eq. �D8�, we can make use of the identity �Ref. 20, Eq. 9.215.3�

1F1�b + 1/2,2p + 1,i2z� = ��p + 1��Z

2
�−p

exp�iz�Jp�z� , �D9�

for the case p=0 to verify that, apart from a factor already referred to, Eq. �D8� correctly leads
back to the free-electron result �D4� in the limit Z→0 and r�=r.

The force-force correlation function formula can then be written explicitly as a quadrature
involving ��V�r1� /�r1� · ��V�r2� /�r2� multiplied by ���m=0 /�E�2=R0�kr1�R0�kr2�, the analog if the
higher terms for m�0 in Eq. �D2� are assumed small for the Coulomb case. However, the detail
proliferates and we shall therefore not give it.

ACKNOWLEDGMENTS

N.H.M. and I.A.H. would like to acknowlege the hospitality of the DIPC during a period of
2003 when some of this work was started. N.H.M. wishes to acknowledge financial support for
work on density functional theory from the ONR. Dr. P. Schmidt of that Office is especially
thanked for much motivation and continuing support. I.A.H. acknowledges support from the
IWT-Flemish region under Grant. No. IWT-161. I.N. was supported by the Hungarian OTKA
�Grant Nos. T046868 and T049571�. P.M.E. thanks the University of the Basque Country, the
Basque Hezkuntza, Unibersitate eta Ikerteta Saila, and the Spanish MCyT for support.

1 N. F. Mott and H. Jones, Theory of Metals and Alloys �University Press, Cambridge, UK�, 1940.
2 J. A. Alonso and N. H. March, Electrons in Metals and Alloys �Academic Press, New York�, 1989.
3 L. Bürgi, O. Jeandupeux, H. Brune, and K. Kern, Phys. Rev. Lett. 82, 4516 �1999�.
4 L. Bürgi, H. Brune, and K. Kern, Phys. Rev. Lett. 89, 176801 �2002�.
5 O. Újsághy, J. Kroha, L. Szunyogh, and A. Zawadowski, Phys. Rev. Lett. 85, 2557 �2000�.
6 M. A. Schneider, L. Vitali, N. Knorr, and K. Kern, Phys. Rev. B 65, 121406 �2002�.
7 I. Nagy, Phys. Rev. B 51, 77 �1995�.
8 E. Zaremba, I. Nagy, and P. M. Echenique, Phys. Rev. Lett. 90, 046801 �2003�.
9 J. S. Rousseau, J. C. Stoddart, and N. H. March, J. Phys. C 5, L173 �1972�.

10 K. Huang, Proc. Phys. Soc. 60, 161 �1948�.
11 N. H. March, Philos. Mag. 32, 497 �1975�.
12 S. K. Adhikari, Am. J. Phys. 54, 362 �1986�.
13 J.-M. Tang and D. J. Thouless, Phys. Rev. B 58, 14179 �1998�.
14 N. H. March and A. M. Murray, Phys. Rev. 120, 830 �1960�.
15 N. H. March and A. M. Murray, Proc. R. Soc. London, Ser. A 261, 119 �1961�.
16 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions �Dover, New York, 1970�.
17 H. J. Lee, W. Ho, and M. Persson, Phys. Rev. Lett. 92, 186802 �2004�.
18 N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions �Clarendon Press, Oxford, 1965�, Sec. VIII/3.1.
19 I. Nagy, A. Arnau, and P. M. Echenique, Nucl. Instrum. Methods Phys. Res. B 48, 54 �1990�.
20 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products �Academic Press, New York, 1965�.
21 J. C. Stoddart, N. H. March, and M. J. Stott, Phys. Rev. 186, 683 �1969�.
22 M. Q. Zhang, J. Math. Phys. 32, 1344 �1991�.
23 N. H. March, W. H. Young, and S. Sampanthar, The Many-body Problem in Quantum Mechanics �Dover, New York,

1995�.
24 H. Bateman, Tables of Integral Transforms �McGraw-Hill, New York, 1954�, Vol. 1.
25 I. A. Howard, N. H. March, and P. M. Echenique, J. Phys. A 36, 11451 �2003�.
26 E. G. d’Agliano, P. Kumar, W. Schaich, and H. Suhl, Phys. Rev. B 11, 2122 �1975�.
27 J. C. Stoddart and N. H. March, Ann. Phys. �N.Y.� 64, 174 �1972�.
28 O. J. Heilmann and E. H. Lieb, Phys. Rev. A 52, 3628 �1995�.
29 N. H. March, Phys. Rev. A 33, 88 �1986�.

072104-16 March et al. J. Math. Phys. 46, 072104 �2005�

                                                                                                                                    



Spectral and localization properties for the one-
dimensional Bernoulli discrete Dirac operator
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An one-dimensional �1D� Dirac tight-binding model is considered and it is shown
that its nonrelativistic limit is the 1D discrete Schrödinger model. For random
Bernoulli potentials taking two values �without correlations�, for typical realiza-
tions and for all values of the mass, it is shown that its spectrum is pure point,
whereas the zero mass case presents dynamical delocalization for specific values of
the energy. The massive case presents dynamical localization �excluding some par-
ticular values of the energy�. Finally, for general potentials the dynamical moments
for distinct masses are compared, especially the massless and massive Bernoulli
cases. © 2005 American Institute of Physics. �DOI: 10.1063/1.1948328�

I. INTRODUCTION

Besides the huge amount of mathematical works on spectral problems related to the one-
dimensional �1D� Dirac model,4,26 in physics it has also been used in comparative studies of
relativistic and nonrelativistic electron-localization phenomena,2 in relativistic investigations of
electrical conduction in disordered systems,21 in the construction of supertransparent models with
supersymmetric structures25 and in relativistic tunnelling problems.20

In this paper a discrete version of the 1D Dirac model is discussed, which can be interpreted
as a relativistic version of the well-known tight-binding Schrödinger Hamiltonian �with �=1�,

�H��n = −
1

2m
����n + Vn�n =

1

2m
�− �n+1 − �n−1 + 2�n� + Vn�n. �1�

The model was first reported in Ref. 11 and this work is its very expanded and mathematical
detailed version. Consider a particle of mass m�0 in the one-dimensional lattice Z under the real

site potential Ṽ= �Vn�. The proposed 1D Dirac tight-binding operator is

D�m,c� = D0�m,c� + Ṽ Id2 = cB + mc2�3 + Ṽ Id2, �2�

with c�0 representing the speed of light,

B = �0 d*

d 0
� ,

�3 the usual Pauli matrix, Id2 the 2�2 identity matrix and d the finite difference operator �a
discrete counterpart of the first derivative� defined by

�d��n = �n+1 − �n.

�d*��n=�n−1−�n is the adjoint of d so that D0�m ,c�=cB+mc2�3 is a bounded self-adjoint opera-
tor acting on �2�Z ;C2� and its square is
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D0�m,c�2 = �c2dd* + m2c4 0

0 c2dd* + m2c4 � .

This equality is reminiscent of the relation between momentum p� and energy E in relativistic
quantum mechanics,4 given by E2=c2p�2+m2c4. Denoting by ��A� the spectrum of a self-adjoint
operator A, it is well known that ��−��= �0,4�, and since d*d=dd*=−�,

��D0�m,c�� = �− c�4 + m2c2,− mc2� � �mc2,c�4 + m2c2� .

In case the potential Ṽ is a bounded sequence, D�m ,c� is also a bounded self-adjoint operator
acting on �2�Z ;C2�.

It will be shown that the nonrelativistic limit of the resolvent of the discrete Dirac operator �2�
is the resolvent of discrete Schrödinger operator �1� �when projected on a proper subspace; see
Sec. II�. This is an important support for such Dirac model.

The study of quantum transport depends, of course, on the admitted definitions. In the physics
literature terms like “extended states” and “zero Lyapunov exponents” have been used to crudely
designate quantum transport. For instance, in Ref. 27 it was claimed that “extended states” were
found in one-dimensional Schrödinger systems with off-diagonal randomness, but in Ref. 24 it
was argued that although the localization length diverges the “transmission coefficient” vanishes
as the system size goes to infinity. Up to recently, in the mathematical literature pure point
spectrum �sometimes with exponentially decaying eigenfunctions� was considered synonymous of
absence of transport. Currently the transport has been probed via the time behavior of the moments
of the position operator, and in this work this idea will be followed. See ahead for precise
definitions and related comments.

One of the goals of this paper is to study the phenomenon called dynamical localization �in the
sense of time-boundedness of all moments of the position operator� for the Bernoulli-Dirac model,
that is, the model �2� with the site potentials Vn, n�Z, being independent identically distributed
Bernoulli random variables taking the values ±V, V�0. In this case it will be shown that almost
surely the spectrum of D�m ,c� is pure point for all values of the mass, the massive case has
dynamical localization �excluding some particular values of the energy for which a more careful
analysis is needed� and the zero mass case presents dynamical delocalization �that is, absence of
localization� for specific values of the energy.

The problem of dynamical localization has been intensively studied during the last years,
especially in the case of random discrete and continuous Schrödinger operators �in particular for
the Bernoulli-Anderson model, that is, the Schrödinger model with Bernoulli potentials�; see Refs.
10, 14, and 16 and references therein. What one usually proves is the so-called exponential
localization,1,6,28 i.e., pure point spectrum and exponentially decaying eigenfunctions. On the other
hand, it is also known that exponential localization does not imply dynamical localization;12 it is
usually needed a precise control of the decay of the eigenfunctions, called SULE,12,16 that can be
obtained through the method of multiscale analysis, a technique set out by Fröhlich and
Spencer.14,15

One motivation for studying dynamical localization for the Bernoulli-Dirac operator comes
from the random dimer model,10,13 i.e., the Bernoulli-Anderson model with the site energies Vn

assigned for pairs of lattices, V2n=V2n+1= ±V for all n. This model almost surely presents pure
point spectrum for all values of V�0.10 It was also numerically found in Ref. 13 and rigorously
shown in Refs. 10 and 18 the existence of critical energies �in the sense of Ref. 18; see ahead� at
which the Lyapunov exponent vanishes; dynamical localization was obtained in Ref. 10 only after
projecting onto closed energy intervals not containing such critical energies. Despite the similarity
between the transfer matrices of the two models, it is not immediate the adaptation of the local-
ization �delocalization� results to the Bernoulli-Dirac model and each step needs to be verified;
here, many points will not be detailed when they follow exactly the same lines of their
Schrödinger counterpart.

With respect to nontrivial quantum transport, probed via dynamical delocalization �unbounded
moments of the position operator�, it was found in random polymer models18 and in random
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palindrome models7 �both including the important random dimer model�, due to existence of
critical energies.18 Recently, for 1D discrete Schrödinger operators, Damanik, Sütő, and
Tcheremchantsev9 have developed a general method which allows one to derive quantum dynami-
cal lower bounds from upper bounds on the growth of norms of transfer matrices, and they applied
this method to some substitution, Sturmian and prime models, among others. Damanik, Lenz, and
Stolz8 presented an extension of this method to 1D continuous Schrödinger operators, with appli-
cation to the continuous Bernoulli-Anderson model. Another method to obtain quantum transport
from upper bounds on transfer matrix was lately developed by Germinet, Kiselev, and
Tcheremchantsev,17 with application to Schrödinger operators with random decaying potentials,
providing examples of Schrödinger operator with point spectrum and nontrivial quantum transport.

In the zero mass case, the one-dimensional Bernoulli-Dirac model presented here has pure
point spectrum and nontrivial quantum transport for potentials with no correlations nor decaying
properties �see Sec. III�. This phenomenon does not take place in the corresponding Schrödinger
tight-binding model,16 and this also motivates the interest to better understanding the Dirac case.
Presumably, this tight-binding model is the simplest one presenting such phenomenon.

Now the localization results for the Bernoulli-Dirac model will be briefly summarized. By
using as the main tool a particular form of Furstenberg theorem �Lemma 2 ahead�, it is shown �see
Theorems 2, 3, and 4� that the Lyapunov exponent �m�E� is strictly positive for the energies E
���D�m ,c��, except for E= ±V, V� �0,c�, V�c /�2, in the case m=0; and if m�0 for �EV

=0,V=c�2+m2c2� and the four energy-potential pairs �EV= ±c�2+m2c2±c /�2,V=c /�2�.
For all energies E for which �m�E��0, an initial estimate for localization �Lemma 4� and the

Wegner’s estimate �Lemma 3� will be checked; by adapting the method multiscale analysis14,16,28

to this model, it will be shown �see Theorems 2 and 3� that for typical realizations the spectrum of
D�m ,c� is pure point and the corresponding eigenfunctions are semiuniformly exponentially lo-
calized �SULE�.12,16 This and the results of Ref. 16 �properly adapted to D�m ,c�� imply dynamical
localization.

In the massless �m=0� case, the values E= ±V with V� �0,c�, V�c /�2, are critical energies
for the operator D�0,c� and this implies �almost surely� upper boundedness for the transfer ma-
trices in the vicinity of these energies �see Lemmas 5 and 6�. By adapting the ideas of Ref. 18 �see
also Ref. 9� to D�0,c� it will follow �see Theorem 5� that for an initial spinor 	 well localized in
space, there is 0
Cq
� such that

�
0

� 1

T
e−2t/TM	

�q��0,t�dt � CqT q−1/2,

for almost all realization of the potential �or exponent q−1 instead of q−1/2 for every realiza-
tion�, where �X is the usual position operator�

M	
�q��m,t� ª 	e−iD�m,c�t	, 
X
qe−iD�m,c�t	� ,

i.e., there is nontrivial quantum transport despite the absence of a continuous component in the
spectrum of D�0,c�.

In the case of the set of pairs �EV= ±c�2+m2c2±c /�2,V=c /�2� and �EV=0,V
=c�2+m2c2� it is shown �see Theorem 4� that the Lyapunov exponent �m vanishes, but it was not
possible to give an answer about dynamical localization for them. Nevertheless, for these cases

there is a general dynamical upper bound �in fact valid for all potentials Ṽ� established in Theorem
6.

For distinct masses m ,m��0, but m close to m�, it is expected that the moments M	
�q��m , t�

follow closely the moments M	
�q��m� , t� �both with the same potential�, at least for a small period

of time. The final result to be reported is an inequality confirming such expectative; by making use
of DuHamel’s formula, it will be shown �see Theorem 7� that, for the initial state 	 with only one
nonzero component, there exists Kq�0 so that, for all t�0,
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M	
�q��m,t� − M	

�q��m�,t�
 � Kq
m − m�
c2tq+2.

In particular, for the Bernoulli-Dirac model this relation with m�=0 gives quantitatively an esti-
mate of how, for small times, the dynamics of the localized regime follows the delocalized one
�see also Corollary 1 in Sec. VI�.

This paper is organized as follows: In Sec. II the nonrelativistic limit for the discrete Dirac
model �2� is discussed. In Sec. III the results about spectral properties of such model, dynamical
localization �delocalization� and a dynamical upper bound for moments are presented, whose
proofs appear in Sec. V. In Sec. IV some tools used in those proofs are collected. Finally, in the
Sec. VI the dynamical moments with different masses are compared; in particular the dynamics of
the massless and massive Dirac-Bernoulli cases.

II. NONRELATIVISTIC LIMIT

In this section consider D�m ,c� with m�0 fixed and c as a parameter. For simplicity, D�c�
will denote D�m ,c�, which is supposed to be self-adjoint with �real� potential Ṽ.

The nonrelativistic limit means c going to infinity, and since the rest energy mc2 is a purely
relativistic quantity, �as usual� it must be subtracted before taking this limit. The norm conver-
gence of the resolvent operators �D�c�−mc2−z�−1, for z�C \R will be considered.  below is the
projector onto the subspace of “positive energies,” and so H� corresponds to the Schrödinger
operator �1�. It is interesting to compare the approach presented here with the one in Ref. 11.

Theorem 1: If z�C \R, then

lim
c→�

�D�c� − mc2 − z�−1 = �H� − z�−1,

where = 1
2 �Id2+�3� and H�= �B2 /2m�+ Ṽ, and the limit is in the norm of bounded operators.

Lemma 1: If z�C \R, then

�D�c� − mc2 − z�−1 = � +
cB + z

2mc2 �S�c��Id + Ṽ
cB + z

2mc2 S�c��−1

, �3�

where Id is the identity operator and

S�c� = �H� − z −
z2

2mc2�−1

= �Id −
z2

2mc2 �H� − z�−1�−1

�H� − z�−1. �4�

Proof: Note that

�D0�c� + mc2 + z��D0�c� − mc2 − z� = c2B2 − 2mc2z − z2.

Hence

�D0�c� − mc2 − z�−1 =
D0�c� + mc2 + z

2mc2 � B2

2m
− z −

z2

2mc2�−1

= � +
cB + z

2mc2 �S0 �5�

with S0= ��B2 /2m�−z− �z2 /2mc2��−1. On the other hand, by using the operator relation

�A + B�−1 = �Id − A−1B�−1A−1

with A= �B2 /2m�−z− �z2 /2m� and B= Ṽ, one obtains

S�c� = S0�Id + ṼS0�−1. �6�

Therefore, by �5� and �6� it is found that
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�D�c� − mc2 − z�−1 = �D0�c� − mc2 − z�−1�Id + Ṽ�D0�c� − mc2 − z�−1�−1

= � +
cB + z

2mc2 �S0�Id + ṼS0 + Ṽ
cB + z

2mc2 S0�−1

= � +
cB + z

2mc2 �S�c��Id + Ṽ
cB + z

2mc2 S�c��−1

.

�

Proof (Theorem 1): Since �H�−z�−1 is bounded for z�C \R and

� z2

2mc2 �H� − z�−1� 
 1

for c sufficiently large, one can expand

S�c� = 
n=0

� � z2

2mc2 �H� − z�−1�n

�H� − z�−1, �7�

where the sum is convergent in the operator norm.
For any fixed z�C \R and c sufficiently large,

�T�c� ª Ṽ
cB + z

2mc2 S�c�� 
 1

and so

�Id + T�c��−1 = 
n=0

�

�− T�c��n. �8�

Replacing �7� and �8� into �3� one obtains the expansion

�D�c� − mc2 − z�−1 = 
n=0

�
Rn�z�

cn

with

R0�z� = �H� − z�−1,

R1�z� = �H� − z�−1
B

2m
+

B
2m

�H� − z�−1 ,

and so on, and the sum is convergent in the operator norm. The result then follows. �

III. LOCALIZATION RESULTS

Consider the family of Dirac operators,

D��m,c� = �mc2 cd*

cd − mc2 � + V� Id2, � � � = �− V,V�Z, �9�

on �2�Z ;C2�, where V��n�, n�Z, are i.i.d. Bernoulli random variables taking the values ±V, V
�0, with common �nontrivial� probability measure � and product measure P=�n�Z��V��n��. Let
PI,m
� be the spectral projector of D��m ,c� onto the interval I�R.
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Denote by � n
± the elements of the canonical position basis of �2�Z ;C2�, for which all entries

are � 0
0

� except at the nth entry, which is given by � 1
0

� and � 0
1

� for the superscript indices � and �,
respectively. If 	= ��+

�− � is a solution of the eigenvalue equation

�D��m,c� − E�	 = 0,

then it is simple to check that

��+�n + 1�
�−�n�

� = Tm
V��n��E�� �+�n�

�−�n − 1�
� ,

with

Tm
V�E� =�1 +

m2c4 − �E − V�2

c2

mc2 + E − V

c

mc2 − E + V

c
1 � .

The transfer matrix from site k to site n is introduced by

T m
��E;n,k� = Tm

V��n−1��E�Tm
V��n−2��E� ¯ Tm

V��k��E�, n � k

and Tm
��E ;n ,n�=Id2. For q�0, let 
X
q be the moment of order q of the position operator on

�2�Z ;C2�, i.e.,


X
q	 = 
n


n
q�	�n
+,	��n

+ + 	� n
−,	�� n

−� .

Definition 1: The operator D��m ,c� is dynamically localized on a spectral interval I if for all
q�0 and for all exponentially decaying initial state 	��2�Z ;C2�,

sup
t

M	,I,�
�q� �m,t� ª sup

t
	PI,m

� e−iD��m,c�t	, 
X
qPI,m
� e−iD��m,c�t	� 
� ,

P almost surely �P-a.s.�. Otherwise D��m ,c� is dynamically delocalized on I. If I=��D��m ,c��,
then M	,I,�

�q� �m , t� will be denoted by M	,�
�q� �m , t�.

It is important to notice that although the Dirac operator acts on spinors, its eigenvalue
equation, in the transfer matrix form, looks exactly like the equation for a one-dimensional
Schrödinger operator acting on scalar valued functions, with the transfer matrix being in SL �2,R�.
Hence the methods used in studies of the usual one-dimensional Anderson model, as Furstenberg’s
theorem, can be applied for this Dirac model; see Secs. IV and V.

The localization results are gathered in the following set of theorems.
Theorem 2: Let �D��m ,c����� be as in (9) and V� �0,c� ,V�c /�2. Then, P almost surely,

the Lyapunov exponent,

�m�E� = lim
n→�

1


n

ln�T m

��E;n,1��

exists, is independent of �, and

�i� �i.1� �m�E� ±V��0 for m�0,
�i.2� �m�E= ±V��0 for m�0,
�i.3� �0�E= ±V�=0.

�ii� Let m�0; then P-a.s. ��D��m ,c�� is pure point.
�iii� �iii.1� Let m�0. Then P-a.s. the operator D��m ,c� is dynamically localized on its

spectrum.
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�iii.2� For any closed interval I���D��0,c��, with ±V� I, the operator D��0,c� is dynami-
cally localized on I.

Theorem 3: Let �D��m ,c����� be as in (9), m�0 and V�c ,V�c�2+m2c2. Then, Pa.s. the
spectrum of D��m ,c� is pure point and this operator is dynamically localized on its spectrum.

Theorem 4: Let �D��m ,c����� be as in (9), m�0 and V=c /�2 �respectively, V
=c�2+m2c2�. Then the same conclusions of Theorem 2 (respectively, Theorem 3) hold except at
the four possibilities of energies EV= ±c�2+m2c2±c /�2 �respectively, EV=0�. �The point is that
EV= ±c�2+m2c2±c /�2 �respectively, EV=0� are energies so that �m�EV�=0.�

For the next result it is convenient to use the average dynamical moments

A	,�
�q� �m,T� ª �

0

� 1

T
e−2t/TM	,�

�q� �m,t�dt , �10�

defined for m�0 and T�0. The main reason for working with this kind of Laplace transform
average is relation �14� ahead.

Theorem 5 (massless case): Let �D��0,c����� be as in (9) and V� �0,c�, V�c /�2. Then, for
q�0 and 	 with only one nonzero component, there exists 0
Cq���
� such that, for T�0,

�i� A	,�
�q� �0,T��Cq���T q−1/2 P-a.s.,

�ii� A	,�
�q� �0,T��Cq���T q−1 for every �,

i.e., D��0,c� is not dynamically localized on its spectrum.
The following theorem establishes very general upper bounds for the dynamical moments of

the position operator; notice that it holds for any potential sequence Ṽ and is not restricted to the
Bernoulli case.

Theorem 6: Let D�m ,c� be as in (2), m�0 and 	 with only one nonzero component (so in the

domain of 
X
q for all q�0�. Then for any q�N there exists 0
Kq�Ṽ ,m ,c�
� such that

M	
�q��m,t� � Kq�Ṽ,m,c�tq, t � 1.

Remark: It is possible to adjust the constant Kq so that the above upper bound holds for t

�� for any given ��0, instead of just t�1. Since M	
�q��m , t��M	

�q���m , t� for q�q�, it is evident

that M	
�q��m , t��K�q��Ṽ ,m ,c�t�q� for real q.

IV. TOOLS

In this section some tools and notations that will be used in the proofs of the results presented
in Sec. III are collected. For studying the positivity of the Lyapunov exponent �m, m�0, the
following particular form of Furstenberg theorem5 will be used.

Lemma 2: Let Gm�E� be the smallest closed subgroup of SL�2,R� generated by the matrices
Tm

V�E� and T m
−V�E�. Then �m�E��0 if

�i� Gm�E� is not compact, and
�ii� there is no probability measure on P�R2� (the set of all the directions of R2) that is

invariant under the action of Gm�E�, which is equivalent to the statement, the orbit
Gm�E� · x̃ª �T · x̃ ,T�Gm�E�� of each direction x̃� P�R2� contains at least three elements.

If L�0, n�Z, consider the finite subset of Z,

L�n� = �k � Z:
k − n
 �
L

2
�

with boundary
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�L�n� = ��k,k��:k � L�n�,k� � L�n�, 
k − k�
 = 1� .

Denote by D�
L�n��m ,c� the operator D��m ,c� restricted to �2�L�n� ;C2� with zero boundary con-

ditions outside L�n�.
The matrix elements of an operator O on �2�Z ;C2� are given by

Onk = � 	�n
+,O�k

+� 	�n
+,O� k

−�

	� n
−,O�k

+� 	� n
−,O� k

−�
�

with “norm”

�Onk�2 = 
	�n
+,O�k

+�
2 + 
	�n
+,O� k

−�
2 + 
	� n
−,O�k

+�
2 + 
	� n
−,O� k

−�
2.

Now two important results required for the multiscale analysis are described. The first one is
the Wegner’s estimate, adapted from Ref. 6 to the discrete Dirac operator �details will be omitted,
since they are long and very similar to the Schrödinger case�.

Lemma 3: Let D��m ,c� be as in (9) and I a compact energy interval. For any �� �0,1� and
��0 there exist L0=L0�I ,� ,� ,m��0 and a=a�I ,� ,� ,m��0 such that

P��:dist�E,��D�
L�0��m,c��� � e−�L�� � e−aL�

for all E� I and L�L0.
The second result is the initial estimate for localization, adapted from Ref. 28 �details omit-

ted�.
Lemma 4: Let D��m ,c� be as in (9), ��0 and �� �0,1�. For each E0�R, E0��

�D�
L�0��m ,c�� with �m�E0���, there exist L0=L0�E0 ,� ,� ,m��0 and r=r�E0 ,� ,� ,m��0 such

that

P��:��D�
L�0��m,c� − E0�0k

−1� � e−��m�E0�−��L/2 ∀ k � �L�0�� � 1 − e−rL�

for all L�L0.
In order to obtain dynamical localization from the multiscale analysis, the following proper-

ties of D��m ,c� are useful.
�P1� With respect to the spectral measure of D��m ,c�, almost every energy is a generalized

eigenvalue, i.e., with polynomially bounded eigenvector �see Ref. 3 and 22�.
�P2� If E���D�

L�n��m ,c�� and 	��2�Z ;C2� so that D��m ,c�	=E	, then

	�n� = − �D�
L�n��m,c� − E�nl1

−1�0 c

0 0
�	�l1 − 1� − �D�

L�n��m,c� − E�nl2
−1�0 0

c 0
�	�l2 + 1� ,

with ��l1 , l1−1� , �l2 , l2+1��=�L�n�.
Property �P2� follows after defining the boundary operator FL�n� by its matrix elements

�FL�n�� jk =�
− �0 c

0 0
� if j − 1 = k , j � L�n� , k � L�n� ,

− �0 0

c 0
� if j + 1 = k , j � L�n� , k � L�n� ,

�0 0

0 0
� otherwise,

�
noting that l2�Z ;C2�= l2�L�n� ;C2� � l2�Z \L�n� ;C2� and

D��m,c� = D�
L�n��m,c� + D�

Z\L�n��m,c� − FL�n�.
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In the zero mass case �m=0� the operators D��0,c�, ���, presents critical energies EV

= ±V for V� �0,c�, V�c /�2, as defined in Ref. 18, since either T0
V�V�=Id2 and T 0

−V�V� is elliptic
�that is, 
trace T 0

−V�V�

2� or T 0
−V�−V�=Id2 and T0

V�−V� is elliptic. Thus there exists a real invert-
ible matrix Q such that

QT0
±V�EV�Q−1 = �cos��±� − sin��±�

sin��±� cos��±�
� .

Since the eigenvalues of this matrix are ei�± and e−i�±, for both of the above cases one has �+

−�−�k�, k�Z �a condition required in Ref. 18�. By using the modified Prüfer variables, phase
shifts, oscillatory sums, large deviation estimates as in Ref. 18, one obtains the following result.

Lemma 5 (massless case): Let ��0 be arbitrary. Then there are b�0 and C
� such that for
every N�N, there exists a set �N����� with P��N�����Ce−bN�

and

�T 0
��E;n,k�� � C

for all ��� \�N���, 0�k�n�N, and E� �EV−N−�−1/2 ,EV+N−�−1/2�.
On the other hand, since �QT 0

±V�EV�Q−1�=1, expanding T 0
±V�EV+�� into powers of � one

obtains

�QT 0
±V�EV + ��Q−1� � 1 + a
�


for 
�
��, 0
a
�, and one deduces the following.
Lemma 6 (massless case): For ��0 there exists C
� such that for all n ,k�Z and E

� �EV−� ,EV+��,

�T 0
��E;n,k�� � CeC�
n−k
.

An inductive argument shows that, for ��C and m�0,

T m
��E + �;n,k� = T m

��E;n,k� − �
l=k

n−1

T m
��E + �;n,l + 1�S�

��E;l�T m
��E;l,k� , �11�

where

S�
��E;l� =

�

c2�1 0

0 0
� +

1

c�2

c
�E − V��l�� − 1

1 0
� .

Now, for z�C \R and m�0, introduce the two-components Green’s function

�Gm,�
+ �z;n�

Gm,�
− �z;n�

� = � 	�n
+,�D��m,c� − z�−1�0

+�

	� n
−,�D��m,c� − z�−1�0

+�
� ,

so that

�D��m,c� − z��Gm,�
+ �z;n�

Gm,�
− �z;n�

� = �0
+�n� .

By using transfer matrices, one obtains for n�0,

� Gm,�
+ �z;n�

Gm,�
− �z;n − 1�

� = T m
��z;n,0�� Gm,�

+ �z;0�
Gm,�

− �z;− 1�
� �12�

and for n�1,
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� Gm,�
+ �z;n�

Gm,�
− �z;n − 1�

� = T m
��z;n,1��Gm,�

+ �z;1�
Gm,�

− �z;0�
� . �13�

For z=E+ i /T�T�0� and m�0, it is also valid the following identity �adapted from Lemma
3.2 in Ref. 19�:

A�0
+,�

�q� �m,T� =
1

2�T

n�Z


n
q�
R

�
Gm,�
+ �z;n�
2 + 
Gm,�

− �z;n�
2�dE . �14�

V. LOCALIZATION PROOFS

In this section the proofs of Theorems 2–6 are presented.
Proof (Theorems 2 and 3): The strategy of the proof is based on Ref. 10, where the random

dimer Schrödinger operator was studied. Since for the discrete Dirac operator there are the par-
ticular role played by the mass and some different possibilities for the transfer matrices, a rather
detailed proof will be presented. The idea is to show that given ��0, I���D��m ,c�� a compact
energy interval not containing the excluded V values, then for each 0
�
�m�I�ª inf��m�E� :E

� I� there exist a constant C�� ,� ,�� and, for each eigenfunction � j,�=�� j,�
+

� j,�
− � with energy Ej,�

� I, a “center” zj,��Z, such that

�� j,��n�� � C��,�,��e�
zj,�
�e−�
n−zj,�
, ∀ n � Z . �15�

If 	 decays exponentially with rate �0�0 and if q�0, it is known that �15� �that is, SULE
condition� implies the existence of a constant C	�m , I ,�� so that

sup
t

M	,I,�
�q� �m,t� � C	�m,I,��, P-a.s.,

i.e., D��m ,c� is dynamically localized on I �see Sec. II in Ref. 16�.
To prove �ii� and �15�, it is sufficient to show strict positivity of the Lyapunov exponent,

because in this case Lemmas 3 and 4 hold. By using the multiscale analysis28 together with �P1�
and �P2�, one can then follow the proof of Theorem 3.1 in Ref. 16 �properly adapted to D��m ,c��
to obtain �ii� and �15� �details will be omitted�.

Now the proof of �i�. It follows from Furstenberg and Kesten theorem5 that, P-a.s. the
Lyapunov exponent �m exists and is independent of �.

Consider first the energies E� ±V and it will be proven that �m�E� ±V��0 for all m�0 and
for all E���D��m ,c��. Let Gm�E� be as in the Lemma 2. Set �=E−V, �=E+V and rename
Tm

V�E�=Tm
���, T m

−V�E�=Tm
���. In the present case ��0 and ��0.

Since the problem is symmetric in � and �, the proof is reduced to the study of three cases,

�a� Tm
��� and Tm

��� are elliptic �
trace Tm
���

2, 
trace Tm

���

2�,
�b� Tm

��� is parabolic �
trace Tm
���
=2�,

�c� Tm
��� is hyperbolic �
trace Tm

���
�2�.

Note that in cases �b� and �c� the group Gm�E� is not compact.
Case (a): Since Tm

��� and Tm
��� are both elliptic, then 
�
 , 
�
� �mc2 ,c�4+m2c2�. In this case

such matrices do not commute. Since the operator

Tm
���Tm

����Tm
����−1�Tm

����−1

built from two noncommuting elliptic elements is hyperbolic, it follows that Gm�E� is not compact.
Moreover, note that
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trace�Tm
����2 =

�4

c4 − �2m2 +
4

c2��2 + m2c2�4 + m2c2� + 2

�analogous for Tm
����. Hence, if �2�2c2+m2c4 or �2�2c2+m2c4, then Tm

��� and �Tm
����2 or Tm

��� and
�Tm

����2 are elliptic. Since elliptic elements have no fixed points in P�R2�, it follows that for any
x̃� P�R2�, Gm�E� · x̃ contains at least the three elements x̃, Tm

��� · x̃, �Tm
����2 · x̃ or x̃, Tm

��� · x̃, �Tm
����2 · x̃.

Therefore, by Lemma 2, �m�E��0. If, on the other hand, �2=2c2+m2c4 and �2=2c2+m2c4, then
E=0 and V=c�2+m2c2, which is one of the excluded pairs described in Theorem 4.

Case (b): Suppose Tm
��� is parabolic, that is, 
�
=mc2 or 
�
=c�4+m2c2. First the possibility

�=mc2 will be discussed �the case �=−mc2 is similar�. In this case

Tm
��� = �1 2mc

0 1
�, and so �Tm

����n = �1 2nmc

0 1
� .

Denote by �e1 ,e2� the canonical basis of R2. By taking a vector x=x1e1+x2e2, and setting x̃ for its
direction, one concludes that limn→��Tm

����n · x̃= ẽ1. If � is a probability measure that is invariant
under the action of Gm�E�, and if f �C0

��P�R2��, by Lebesgue’s dominated convergence theorem
one has

f�ẽ1� = lim
n→�

� f��Tm
����n · x̃�d��x̃� .

This means that �=�ẽ1
. But the matrix Tm

��� does not leave invariant the direction ẽ1 since

Tm
���e1 = �1 +

m2c4 − �2

c2 �e1 +
− � + mc2

c
e2 and � � mc2.

Thus it is proven that there is no invariant measure under the action of Gm�E�. Therefore, by
Lemma 2 one gets �m�E��0.

Consider now the possibility �=c�4+m2c2 �the case �=−c�4+m2c2 is similar�. In this case
an eigenvector of

Tm
��� = � − 3 mc + �4 + m2c2

mc − �4 + m2c2 1
�

is given by v1= �mc+�4+m2c2 /2 ,1�. Picking v2= �−mc+�4+m2c2 /2 ,−1� a vector orthogonal to
v1, the matrix Tm

��� in the basis �v1 ,v2� is

�− 1 − 4 − m2c2 + mc�4 + m2c2

0 − 1
� .

Repeating the previous calculation for this case, one obtains �=�ṽ1
. But Tm

��� does not leave
invariant the direction ṽ1 except for �=0 or �=c�4+m2c2=�, which are excluded since the first
condition yields E=−V and the second one V=0. Thus it is proven that there is no invariant
measure and, by Lemma 2, �m�E��0.

Case (c): Suppose now that Tm
��� is hyperbolic �so 
�

mc2 or 
�
�c�4+m2c2�. It is sufficient

to study the orbit of the eigendirections of Tm
���, namely

em
� = ��2 − m2c4 + ����2 − m2c4���2 − m2c4 − 4c2�

2c�� − mc2�
�, � = ± 1.

If Tm
��� is hyperbolic then the orbit of em

� is infinite. Hence �m�E��0 by Lemma 2. If Tm
��� is

parabolic, it is again case �b�. Finally, suppose that Tm
��� is elliptic. If Tm

���ẽ m
� � ẽ m

−�, then Tm
���ẽm

�

cannot belong to the eigendirections of Tm
��� and its orbit is infinite. Hence �m�E��0 by Lemma 2.

If Tm
���ẽ m

� = ẽ m
−�, then simple calculations lead to the equations
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�1 + m2c2 −
�2

c2 ���2 − m2c4 + �u� = 4�m2c4 − ��� + ��2 − m2c4 − �u�

with �= ±1 and u=���2−m2c4���2−m2c4−4c2��0. It implies �2=2c2+m2c4 and �=�±c�2,
which means V=c /�2 and E= ±c�2+m2c2−c /�2. The symmetric case where one assumes that
Tm

��� is hyperbolic leads naturally to �2=2c2+m2c4 and �=�±c�2, which means V=c /�2 and
E= ±c�2+m2c2+c /�2. Those are excluded pairs that will be discussed in the proof of Theorem 4.

Consider now the energy E=V �the case E=−V is analogous�. Note that �=0 and �=2V. First
the case m�0 will be discussed. The two possible transfer matrices are

Tm
��� = �1 + m2c2 mc

mc 1
� and Tm

��� =�1 +
m2c4 − 4V2

c2

mc2 + 2V

c

mc2 − 2V

c
1 � .

Observe that Tm
��� and Tm

��� do not commute, and that Tm
��� is hyperbolic. It is enough to study this

case for �=c�4+m2c2 �Tm
��� is parabolic�. The eigendirections of Tm

��� are

em
� = �mc + ��4 + m2c2

2

1
�, � = ± 1.

The matrices Tm
��� and Tm

��� in the basis �em
1 ,em

−1� are given, respectively, by

��1 0

0 �−1
� and �− 1 4 + m2c2 − mc�4 + m2c2

0 − 1
� ,

with

�1�−1 = �1 +
m2c2

2
+

mc�4 + m2c2

2
��1 +

m2c2

2
−

mc�4 + m2c2

2
� = 1.

Suppose that Tm
��� occurs with probability 0
p
1 and Tm

��� occurs with probability 1− p.
Denote by n� �respectively, n�� the number of times that Tm

��� �respectively, Tm
���� occurs in the

product T m
��E ;n ,1�. Supposing, without loss of generality, that Tm

V��1��E�=Tm
���, one has

T m
��E;n,1� = ��1

n� CnP��1,�−1�

0 �−1
n�

� ,

P-a.s., where Cn is a constant and P��1 ,�−1� is a polynomial in �1 and �−1. Thus,

�T m
��E;n,1�� � ���1

n�

0
�� = �1

n�, �1 � 1,

and therefore P-a.s.

�m�E = V� = lim
n→�

1


n

ln�T m

��E;n,1�� � �ln �1� lim
n→�

n�

n


= �ln �1�p � 0.

Now the case m=0 will be treated. In this case

T0
��� = Id2 and T0

��� = �1 − 4V2/c2 2V/c

− 2V/c 1
� .

One then finds
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lim
n→�

��T0
����n�1/n = 1

if V� �0,c� and

lim
n→�

��T0
����n�1/n � 1

if V�c. Hence, if V� �0,c�, V�c /�2,

�0�E = V� = lim
n→�

n�

n


ln��T0
����n��1/n� = �1 − p�ln 1 = 0,

and �0�E=V��0 if V�c. �

Proof (Theorem 4): By analyzing the proof of Theorems 2 and 3 observe that for V=c /�2
�respectively, V=c�2+m2c2� one has �m�EV� ±c�2+m2c2±c /�2��0 �respectively, �m�EV�0�
�0� and then the same conclusions of Theorem 2 �respectively, Theorem 3� hold. It remains to
show that �m vanishes at the pairs �V=c�2+m2c2 ,EV=0� and �V=c /�2,EV

= ±c�2+m2c2±c /�2�. Note that in all cases EV���D��m ,c�� P-a.s..
First it will be treated the case �V=c /�2,EV=−c�2+m2c2−c /�2� �the others three excluded

cases with V=c /�2 are similar�. In this case one has �=−c�2+m2c2 and �=�−c�2. The eigen-
vectors of Tm

��� are given by

�2c − �2� + ��4c2 + 2m2c4 − 2�2c�

� − c�2 − mc2

1
�, � = ± 1,

and by looking at the matrices in the basis given by these two vectors, the study is reduced to
products of matrices of the following two types:

��+ 0

0 �−
� and � 0  −

 + 0
�

with �+�−=1 and  + −=−1, where

�± = − 1 +
�2�

c
±

�4c2 + 2m2c4 − 2�2c�

c

and

 ± = �−
�

c
+ mc��2c − �2� ± �4c2 + 2m2c4 − 2�2c�

� − c�2 − mc2 � + 1.

Moreover,

�Tm
����2 = � − 1 mc + �/c

mc − �/c 1
�2

= − Id2.

Therefore the proof that �m�EV=−c�2+m2c2−c /�2,V=c /�2�=0 is analogous to the Schrödinger
case �see the proof of Theorem 2.4 in Ref. 10�.

Now consider the excluded case �V=c�2+m2c2 ,EV=0�. In this case �2=�2=2c2+m2c4. Since
��� �otherwise V=0�, then �=−�= ±c�2+m2c2. Noting that �Tm

����2= �Tm
����2=−Id2 and Tm

���Tm
���

is hyperbolic, the proof that �m�EV=0,V=c�2+m2c2�=0 is again similar to the corresponding
Schrödinger case �see the proof of Theorem 2.4 in Ref. 10�. �

Proof (Theorem 5): �i� It is sufficient to prove the theorem for 	=�0
+. Given ��0, there exists

b��0 and by Lemma 5 there are b�0 and C
� such that, by applying Lemma 5 for N
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= �b�T�, together with the relation �11� for m=0 and �= i /T, one concludes that there exists a set
�N����� with P��N�����Ce−bN�

and

�T 0
��E + i/T;n,1�� � C �16�

for all ��� \�N���, 1�n�N, and E� IV= �EV−N−�−1/2 ,EV+N−�−1/2�.
Supposing that


G0,�
+ �E + i/T;1�
2 + 
G0,�

− �E + i/T;0�
2 � B1��� � 0,

it follows from �13� and

�T 0
��E + i/T;n,1�−1� = �T 0

��E + i/T;n,1��

that

max�
G0,�
+ �E + i/T;n�
2, 
G0,�

− �E + i/T;n − 1�
2� �
B1���

2�T 0
��E + i/T;n,1��2 . �17�

Thus, replacing �16� and �17� into �14�, P-a.s. one has

A�0
+,�

�q� �0,T� �
1

2�T


0�n��b�T�

nq�
IV

B1���
2C2 dE � Bq���T qN−�−1/2 � Cq���T q−1/2−�

for some constant Cq����0.
If, on the other hand,


G0,�
+ �E + i/T;0�
2 + 
G0,�

− �E + i/T;− 1�
2 � B2��� � 0,

then one gets this estimate in the same way, but based on �12� instead of �13�. Since ��0 is
arbitrary, this finishes the proof.

�ii� It follows from the above arguments by using Lemma 6. �

Proof (Theorem 6): The arguments will be a variation of Ref. 23. Define the operator

p ª i�D�m,c�,X� = ci� 0 − d* − 1

d + 1 0
�

with �·,·� denoting the commutator. Note that p is self-adjoint and bounded. Set

X�t� = eiD�m,c�tXe−iD�m,c�t and p�t� = eiD�m,c�tpe−iD�m,c�t,

so that

d

dt
X�t� = i�D�m,c�,X�t�� = eiD�m,c�ti�D�m,c�,X�e−iD�m,c�t = p�t� .

Hence

X�t� = X + �
0

t

p�s�ds .

Using this relation, the boundedness �p�t��= �p�
� for all t, Cauchy-Schwarz inequality, and
keeping only the dominant terms for large t, it follows that for t�1 and q�N, there exists

Cq�Ṽ ,m ,c��0 so that
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M	
�q��m,t� = 		, 
X�t�
q	� � Cq�Ṽ,m,c��

0

t

¯ �
0

t

		,p�s1� ¯ p�sq�	�ds1 ¯ dsq � Cq�Ṽ,m,c�

��p�qtq = Kq�Ṽ,m,c�tq.

�

VI. DYNAMICAL COMPARISON

The aim of this section is to compare the dynamical moments M	
�q��m , t�, as in Definition 1, for

different masses and general potentials, in particular for the massless and massive Bernoulli cases.
Theorem 7: Let D�m ,c� and D�m� ,c� be Dirac operators on l2�Z ,C2� defined as in (2) with

the same potential Ṽ, and let 	 be with only one nonzero component. Given T�0, there exists a
constant Bq�0 so that

sup
0�t�T


M	
�q��m,t� − M	

�q��m�,t�
 � Bq
m − m�
c2T q+2. �18�

Proof: Observe that for m=m� the result is immediate. Suppose m�m�. For the proof it will
be assumed that m�0, m�=0 and 	=�0

+ �the case m�0, m��0 and 	 as in the hypotheses is
similar�.

For fixed ��0 consider the Banach space

B�ª �! � l2�Z,C2�:�!�� = sup
k�Z

e�
k
�
	�k
+,!�
 + 
	� k

−,!�
� 
�� .

Since D�m ,c� is a bounded operator on B�, it follows that


	�n
+,e−iD�m,c�t�0

+�
 + 
	� n
−,e−iD�m,c�t�0

+�
 � �e−iD�m,c�t�0
+��e−n� � e−n�+t�D�m,c���. �19�

For k�N denote by Xk the restriction of the position operator X to the set �n�Z : 
n
�k� and
by M

�0
+

�q�,k�m , t� the corresponding dynamical moments. Then, for all times t��k /2�D�m ,c���,

using �19� one has


M�0
+

�q��m,t� − M�0
+

�q�,k�m,t�
 = 

n
�k


n
q�
	�n
+,e−iD�m,c�t�0

+�
2 + 
	� n
−,e−iD�m,c�t�0

+�
2�

� C1�q�kqe−k�+2t�D�m,c��� � C1�q�kq. �20�

Furthermore, it follows by DuHamel’s formula that

M�0
+

�q�,k�m,t� − M�0
+

�q�,k�0,t� = − i�
0

t

	�0
+,eiD�m,c�t
Xk
qe−iD�m,c��t−s��D�m,c� − D�0,c��e−iD�0,c�s�0

+�ds

+ i�
0

t

	�0
+,eiD�m,c��t−s��D�m,c� − D�0,c��eiD�0,c�s
Xk
qe−iD�0,c�t�0

+�ds .

Hence, for t��k /2�D�m ,c���, using �19�, the fact of the operator eiD�m,c�t on �2�Z ;C2� be unitary
and Cauchy-Schwarz, it is found that


M�0
+

�q�,k�m,t� − M�0
+

�q�,k�0,t�
 � C2�q�mc2kq+1te−k�+t�D�m,c��� � C2�q�mc2 �

2�D�m,c���
kq+2. �21�

Thus, by �20� and �21�,
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M�0
+

�q��m,t� − M�0
+

�q��0,t�
 � Bqmc2 �

2�D�m,c���
kq+2,

for all times t��k /2�D�m ,c���.
Now, for each T�0 choose k to be the smallest integer such that

k �
2�D�m,c���

�
T .

Therefore, for all t�T,


M�0
+

�q��m,t� − M�0
+

�q��0,t�
 � Bqmc2T q+2.

�

With respect to the Bernoulli-Dirac model �9�, the relation �18� with m�0 and m�=0 gives an
estimate of how, for small times and/or sufficiently small mass, the dynamics of the localized
regime follows the delocalized one. In terms of the average dynamical moments A	,�

�q� �m ,T�
defined in �10� one has the following.

Corollary 1: Let �D��m ,c����� be as in (9), m�0 and V� �0,c�, V�c /�2, and let 	 be with

only one nonzero component. Then, for each q�0, P-a.s. there is C̃q,��0 so that

�1 −
A	,�

�q� �m,t�
A	,�

�q� �0,t�
� � C̃q,�mc2t5/2, t � 0.

Notice that the power exponent on the right-hand side of this expression does not depend on q.
Proof: By Theorem 7 with m�0 and m�=0, it follows that for all t�0,


A	,�
�q� �m,t� − A	,�

�q� �0,t�
 � "�q + 3�Cq,�mc2tq+2,

with " the usual gamma function. By Theorem 5�i� there is 0
Bq���
� such that

A	,�
�q� �0,t� � Bq���tq−1/2, P-a . s. ,

and the result follows with C̃q,�="�q+3�Cq,� /Bq���. �

Remark: By using Theorem 6 one gets �for q�N�,


M	
�q��m,t� − M	

�q��m�,t�
 � K̃q��,m,m�,c�tq,

but with no expression for the constant K̃q�� ,m ,m� ,c�. The price paid for the explicit dependence
on the masses and light speed c in Theorem 7 is the larger exponent q+2 instead of just q. In the
same way, the exponent 5 /2 in Corollary 1 could be replaced by 3/2, but with no precise
dependence of the resulting multiplicative constant on m and c.
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k-component q-deformed charge coherent states are constructed, their �over�com-
pleteness proved and their generation explored. The q-deformed charge coherent
states and the even �odd� q-deformed charge coherent states are the two special
cases of them as k becomes 1 and 2, respectively. A D-algebra realization of the
SUq�1,1� generators is given in terms of them. Their nonclassical properties are
studied and it is shown that for k�3, they exhibit two-mode q-antibunching, but
neither SUq�1,1� squeezing, nor one- or two-mode q-squeezing. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1951607�

I. INTRODUCTION

The coherent states introduced by Schrödinger1 and Glauber2 are the eigenstates of the boson
annihilation operator, and have widespread applications in the fields of physics.3–7 However, in all
the cases the quanta involved are uncharged. In 1976, Bhaumik et al.4,8,9 constructed the boson
coherent states which, carrying definite charge, are the eigenstates of both the pair boson annihi-
lation operator and the charge operator. These kind of states are the so-called charge coherent
states. Based on this work, the charge coherent states for SU�2�,10 SU�3�,11 and arbitrary compact
Lie groups12 were also put forward.

The concept of charge coherent states has proved to be very useful in many areas, such as
elementary particle physics,9,13–17 quantum field theory,12,18,19 nuclear physics,20

thermodynamics,21–23 quantum mechanics,24 and quantum optics.25–27 Moreover, some schemes
for generating charge coherent states in quantum optics were proposed.25,26,28,29

As is well known, the even and odd coherent states,30 which are the two orthonormalized
eigenstates of the square of the boson annihilation operator, play an important role in quantum
optics.31–33 An extension of the even and odd coherent states is to define the k-component coherent
states,34,35 which are the k �k�1� orthonormalized eigenstates of the kth power of the boson
annihilation operator. The coherent states and the even �odd� ones are the two special cases of the
k-component coherent states as k becomes 1 and 2, respectively. Inspired by the above idea, in
Ref. 36 one of the authors �X.-M.L.� has generalized the charge coherent states to the even and
odd charge coherent states, defined as the two orthonormalized eigenstates of both the square of
the pair boson annihilation operator and the charge operator; in Ref. 37 he has further extended the
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even and odd charge coherent states to the k-component charge coherent states, defined as the k
orthonormalized eigenstates of both the kth power of the pair boson annihilation operator and the
charge operator. The charge coherent states and the even �odd� ones are the two special cases of
the k-component charge coherent states as k becomes 1 and 2, respectively.

On the other hand, quantum groups,38,39 introduced as a mathematical description of deformed
Lie algebras, have given the possibility of generalizing the notion of coherent states to the case of
q-deformations.40–44 A q-deformed harmonic oscillator40,45 was defined in terms of q-boson anni-
hilation and creation operators, the latter satisfying the quantum Heisenberg-Weyl algebra,40,45,46

which plays an important role in quantum groups. The q-deformed coherent states introduced by
Biedenharn40 are the eigenstates of the q-boson annihilation operator. Such states have been well
studied,41,42,47,48 and widely applied to quantum optics and mathematical physics.44,49–53 Further-
more, the q-deformed charge coherent states54,55 were constructed as the eigenstates of both the
pair q-boson annihilation operator and the charge operator.

A natural extension of the q-deformed coherent states is provided by the even and odd
q-deformed coherent states,56 which are the two orthonormalized eigenstates of the square of the
q-boson annihilation operator. In a previous paper,57 motivated by the above idea, the authors
�X.-M.L. and C.Q.� have generalized the q-deformed charge coherent states to the even and odd
q-deformed charge coherent states, defined as the two orthonormalized eigenstates of both the
square of the pair q-boson annihilation operator and the charge operator. A further extension of the
even and odd q-deformed coherent states is given by the k-component q-deformed coherent
states,58,59 which are the k orthonormalized eigenstates of the kth power of the q-boson annihila-
tion operator. The q-deformed coherent states and the even �odd� ones are the two special cases of
the k-component q-deformed coherent states as k becomes 1 and 2, respectively. In a parallel way,
it is very desirable to generalize the even and odd q-deformed charge coherent states to the
k-component q-deformed charge coherent states, defined as the k orthonormalized eigenstates of
both the kth power of the pair q-boson annihilation operator and the charge operator. The
q-deformed charge coherent states and the even �odd� ones are the two special cases of the
k-component q-deformed charge coherent states as k becomes 1 and 2, respectively.

This paper is arranged as follows. In Sec. II, the k-component q-deformed charge coherent
states are constructed. Their completeness is proved in Sec. III. Section IV is devoted to generat-
ing them. In Sec. V, they are used to provide a D-algebra realization of the SUq�1,1� generators.
Their nonclassical properties, such as SUq�1,1� squeezing, single- or two-mode q-squeezing, and
two-mode q-antibunching, are studied in Sec. VI. Section VII contains a summary of the results.

II. k-COMPONENT q-DEFORMED CHARGE COHERENT STATES

Two mutually commuting q-deformed harmonic oscillators are defined in terms of two pairs
of independent q-boson annihilation and creation operators ai , ai

+ �i=1,2�, together with corre-
sponding number operators Ni, satisfying the quantum Heisenberg-Weyl algebra

aiai
+ − qai

+ai = q−Ni, �1�

�Ni,ai
+� = ai

+, �Ni,ai� = − ai, �2�

where q is a positive real deformation parameter. The operators ai, ai
+, and Ni act in the Fock space

with basis �n�i, �n=0, 1, 2, …�, such that

ai�0�i = 0, �n�i =
�ai

+�n

��n�!
�0�i, �3�

where

�n� ! � �n�q ! = �n�q�n − 1�q ¯ �1�q, �0� ! = 1, �4�
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�n�q =
qn − q−n

q − q−1 � �n� . �5�

Their action on the basis states is given by

ai�n�i = ��n��n − 1�i, ai
+�n�i = ��n + 1��n + 1�i, Ni�n�i = n�n�i. �6�

Note that �n� is invariant under q↔ 1/q. In the following, �n� will refer to the q-deformed n
defined by �5� corresponding to the base q. If the base is different, then it will be indicated
explicitly.

The q-boson operators ai and ai
+ can be constructed from the conventional boson annihilation

and creation operators bi , bi
+ in the following way:60

ai =��Ni + 1�
Ni + 1

bi, ai
+ = bi

+��Ni + 1�
Ni + 1

, �7�

where Ni=bi
+bi. It is worth noticing that �Ni�=ai

+ai.
The operators a1�a1

+� and a2�a2
+� are assigned the “charge” quanta 1 and −1, respectively. Thus

the charge operator is given by

Q = N1 − N2. �8�

In view of the fact that

�Q,�a1a2�k� = 0, �9�

where k is a positive integer �k=1, 2, 3, …�, we may seek the k-component q-deformed charge
coherent states, which are the k orthonormalized eigenstates of both the kth power �a1a2�k of the
pair q-boson annihilation operator a1a2 and the charge operator Q.

Let �m ,n�= �m�1�n�2 denote the basis states of two-mode Fock space, where �m�1 and �n�2 are
the eigenstates of N1 and N2 corresponding to the eigenvalues m and n, respectively. They satisfy
the completeness relation

	
m=0

�

	
n=0

�

�m,n�
m,n� = I . �10�

We now consider the following states:

��,q,k� j = Nkq
j 	

p=max�0,−q/k�

�
�kp+j+min�0,q�

��kp + j� ! �kp + j + q� ! �1/2 �kp + j + q,kp + j�

= Nkq
j 	

n=0

�
�kn+j

��kn + j� ! �kn + j + q� ! �1/2 �kn + j + q,kn + j� , q � 0,

Nkq
j 	

n=0

�
�kn+j

��kn + j� ! �kn + j − q� ! �1/2 �kn + j,kn + j − q� , q � 0,� �11�

where j=0,1 ,… ,k−1, � is a complex number, q is a fixed integer, and Nkq
j are normalization

factors given by

Nkq
j � Nkq

j ����2� = �	
n=0

� ����2�kn+j

�kn + j� ! �kn + j + �q��!�−1/2

. �12�

As can be verified by explicit calculations, these states satisfy the relations
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�a1a2�k��,q,k� j = �k��,q,k� j, Q��,q,k� j = q��,q,k� j, j
�,q,k��,q,k� j� = � j j�
. �13�

It indicates that �� ,q ,k� j �j=0,1 ,… ,k−1� in �11� are exactly the k orthonormalized eigenstates of
both the operator �a1a2�k and Q corresponding to the eigenvalues �k and q, respectively. Obvi-
ously, q is the charge number which the states �� ,q ,k� j carry.

Therefore, the k states of �11� are just what we want, that is to say, they are the k-component
q-deformed charge coherent states. In the limit q→1, they reduce to the usual k-component charge
coherent states constructed by the author �X.-M.L.�.37

According to �11�, for k=1, we obtain

��,q,1�0 = Nq 	
p=max�0,−q�

�
�p+min�0,q�

��p� ! �p + q� ! �1/2 �p + q,p�

= Nq	
n=0

�
�n

��n� ! �n + q� ! �1/2 �n + q,n� , q � 0,

Nq	
n=0

�
�n

��n� ! �n − q� ! �1/2 �n,n − q� , q � 0,�,

���,q� �14�

where

Nq � N1q
0 ����2� = �	

n=0

� ����2�n

�n� ! �n + �q��!�−1/2

. �15�

It is evident that �� ,q ,1�0���� ,q�� are exactly the so-called q-deformed charge coherent states
given in Ref. 54.

According to �11�, for k=2, we obtain

��,q,2� j = N2q
j 	

p=max�0,−q/2�

�
�2p+j+min�0,q�

��2p + j� ! �2p + j + q� ! �1/2 �2p + j + q,2p + j�

= N2q
j 	

n=0

�
�2n+j

��2n + j� ! �2n + j + q� ! �1/2 �2n + j + q,2n + j� , q � 0,

N2q
j 	

n=0

�
�2n+j

��2n + j� ! �2n + j − q� ! �1/2 �2n + j,2n + j − q� , q � 0,� �16�

where j=0, 1. It is evident that �� ,q ,2�0 ��� ,q ,2�1� are exactly the so-called even �odd�
q-deformed charge coherent states obtained by the authors �X.-M.L. and C.Q.�.57

From �11�, it follows that

j
�,q,k���,q�,k� j�
= Nkq

j ����2�Nkq
j �����2��Nkq

j ��*����−2�qq�� j j�. �17�

This further shows that, for the same value of k, the states �� ,q ,k� j are orthogonal to one another
with respect to both the subscript j and the charge number q. However, they are nonorthogonal
with respect to the parameter �.

For the mean values of the operators N1 and N2, there exists the relation

j
�,q,k�N1��,q,k� j = q + j
�,q,k�N2��,q,k� j . �18�

In terms of the k-component q-deformed charge coherent states, the q-deformed charge co-
herent states can be expanded as
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��,q� = Nq�	
j=0

k−1

�Nkq
j �−1��,q,k� j� , �19�

where the normalization factors are such that

Nq
−2 = 	

j=0

k−1

�Nkq
j �−2. �20�

III. COMPLETENESS OF k-COMPONENT q-DEFORMED CHARGE COHERENT
STATES

Let us begin with some q-deformed formulas which are useful in the proof of completeness of
the k-component q-deformed charge coherent states. The q-deformed Bessel function of �integer�
order � may be defined by61

J��q,x� = 	
k=0

�
�− 1�k

�k� ! �� + k�!� x
�q�2��q

��+2k

, �21�

where �n��q is defined as in Eq. �5� except for replacing q by �q. An integral representation of the
q-deformed modified Bessel function of order � is given by62

K��q,x� =
1

�2��q
� x

�2��q
���

0

�

dqt
1

t�+1eq�− t�eq�−
x2

��2��q�2t� , �22�

where dqt is a standard q-integration,47,63,64 and eq�x� is a q-exponential function47

eq�x� = 	
n=0

�
xn

�n�!
for x � − � ,

0 otherwise,
� �23�

with −� being the largest zero of eq�x�. Then, it follows that62

�
0

�

d�qu u2p+�+1K��q,�2��qu� =
�� + p� ! �p�!

��2��q�2 . �24�

We now prove that the k-component q-deformed charge coherent states form an �over�com-
plete set, that is to say

	
q=−�

� � dq
2�

	

q���Nq

2�	
j=0

k−1

�Nkq
j �−2��,q,k� j j
�,q,k�� � 	

q=−�

�

Iq = I , �25�

where

dq
2� = ���d�q���d�, � = ���ei�, �26�

and


q��� =
��2��q�2

2
�− i�qJq�q, i�q�2��q����Kq�q,�2��q���� . �27�

Note that the integral over � is a standard integration while that over ��� is a q-integration.
In fact, for q�0, we have
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Iq =� dq
2�

	

q���Nq

2	
j=0

k−1

	
n,m

�kn+j�*km+j�kn + j + q,kn + j�
km + j + q,km + j�
��kn + j� ! �kn + j + q� ! �km + j� ! �km + j + q� ! �1/2

= �
0

� d�q���

	

��2��q�2

2
���q+1Kq�q,�2��q����	

j=0

k−1

	
n,m

���k�n+m�+2j�
−	

	

d� eik�n−m��

�
�kn + j + q,kn + j�
km + j + q,km + j�

��kn + j� ! �kn + j + q� ! �km + j� ! �km + j + q� ! �1/2

= �
0

�

d�q�����2��q�2���q+1Kq�q,�2��q���� � 	
j=0

k−1

	
n=0

� ����2�kn+j�kn + j + q,kn + j�
kn + j + q,kn + j�
�kn + j� ! �kn + j + q�!

= 	
n=0

� ��2��q�2

�n� ! �n + q�!
�n + q,n�
n + q,n��

0

�

d�q������2n+q+1Kq�q,�2��q����

= 	
n=0

�

�n + q,n�
n + q,n� . �28�

Similarly, for q�0, we get

Iq = 	
n=0

�

�n,n − q�
n,n − q� . �29�

Consequently, we derive

	
q=−�

�

Iq = 	
n=0

� � 	
q=−�

−1

�n,n − q�
n,n − q� + 	
q=0

�

�n + q,n�
n + q,n��
= 	

m=0

�

	
n=0

�

�m,n�
m,n� = I . �30�

Hence, the k-component q-deformed charge coherent states are qualified to make up an �over�
complete representation. It should be mentioned that Iq represents the resolution of unity in the
subspace where Q=q.

In the two special cases of k=1 and k=2, the above demonstration gives the proof of com-
pleteness of the q-deformed charge coherent states65 and the even �odd� q-deformed charge co-
herent states,57 respectively.

IV. GENERATION OF k-COMPONENT q-DEFORMED CHARGE COHERENT STATES

The k-component q-deformed coherent states, defined as the k orthonormalized eigenstates of
the kth power of the q-boson annihilation operator, can be expanded in the single-mode Fock
space as58,59

��,k� j = Nk
j	
n=0

�
�kn+j

��kn + j�!
�kn + j� , �31�

where j=0,1 ,… ,k−1 and

Nk
j � Nk

j����2� = �	
n=0

� ����2�kn+j

�kn + j�!�−1/2

. �32�

As a special case, for k=1, �� ,1�0 are exactly the q-deformed coherent states, i.e.,
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��,1�0 = eq
−1/2����2�	

n=0

�
�n

��n�!
�n� � ��� . �33�

The k-component q-deformed charge coherent states can also be obtained from the states �31�
and �33� according to the following expression:

��,q,k� j = Nkq
j eq

1/2���1�2��Nk
j���2�2��−1�1

−q�
−	

	 d

2	
e+iq�e−i�1� � �ei�2,k� j , q � 0,

Nkq
j eq

1/2���1�2��Nk
j���2�2��−1�1

+q�
−	

	 d

2	
e−iq�ei�2,k� j � �e−i�1� , q � 0,� �34�

where �=�1�2. Such a representation is very useful since the properties of q-deformed coherent
states and k-component q-deformed coherent states can now be employed in a study of the
properties of k-component q-deformed charge coherent states. The expression for the latter given
in �34� has a very simple group-theoretical interpretation, in �34� one suitably averages over the
U�1�-group �caused by the charge operator Q� action on the product of q-deformed coherent states
and k-component q-deformed coherent states, which then projects out the Q=q charge subspace
contribution.

It is easy to see that in the limit q→1, the above discussion gives back the corresponding
results for the usual k-component charge coherent states obtained in Ref. 37, and that in the two
special cases of k=1 and k=2, it gives the corresponding results for the q-deformed charge
coherent states54 and the even �odd� q-deformed charge coherent states,57 respectively.

V. D-ALGEBRA REALIZATION OF SUq„1,1… GENERATORS

As is well known, the coherent state D-algebra6,66 is a mapping of quantum observables onto
a differential form that acts on the parameter space of coherent states, and has a beautiful appli-
cation in the reformulation of the entire laser theory in terms of C-number differential equations.67

We shall construct the D-algebra realization of the q-deformed SUq�1,1� generators corresponding
to the unnormalized k-component q-deformed charge coherent states, defined by

�q� j � ��,q,k� j = �Nkq
j �−1��,q,k� j . �35�

Let �q� denote a column vector composed of �q� j �j=0,1 ,… ,k−1�, i.e.,

�q� � �
�q�0

�q�1

�
�q�k−1

� . �36�

The action of the operators ai, ai
+ and Ni on this column vector can be written in the matrix form,
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Positive Q Negative Q

a1�q� = �q − 1� a1�q� = �M�q − 1�

a2�q� = �M�q + 1� a2�q� = �q + 1�

a1
+�q� = �−q d

dq�
�q+1�q + 1� a1

+�q� =
d

dq�
N�q + 1�

a2
+�q� =

d

dq�
N�q − 1� a2

+�q� = �q d

dq�
�−q+1�q − 1�

N1�q� = ��
d

d�
+ q��q� N1�q� = �

d

d�
�q�

N2�q� = �
d

d�
�q� N2�q� = ��

d

d�
− q��q� ,

�37�

where d /d� is a standard differential operator, whereas d /dq� is a q-differential one,42,47,64 defined
by

d

dq�
f��� =

f�q�� − f�q−1��
q� − q−1�

, �38�

and

M = �
0 0 ¯ 0 1

1 0 ¯ 0 0

0 1 ¯ 0 0

� � � � �
0 0 ¯ 1 0

�, N = �
0 1 0 ¯ 0

0 0 1 ¯ 0

� � � � �
0 0 0 ¯ 1

1 0 0 ¯ 0
� . �39�

Obviously, N is both the inverse and the transpose of M. It is worth noticing that Mk=Nk= I, and
MN�=N�M for integers  ,�.

The q-deformed SUq�1,1� algebra consists of three generators K0, K+, and K−, satisfying the
commutation relations

�K+,K−� = − �2K0�, �K0,K±� = ± K±, �40�

and is realized in terms of the two-mode q-boson operators as

K− = a1a2, K+ = a1
+a2

+, K0 = 1
2 �N1 + N2 + 1� . �41�

Actually, the k-component q-deformed charge coherent states are also the k orthonormalized
eigenstates of the kth power of K−.

The D-algebra of the SUq�1,1� generators A may be defined for the action on the ket coherent
states �36� or for that on the corresponding bras as

A�q� = Dk�A��q� , �42�


q�A = Db�A�
q� , �43�

respectively. Using �37� and �41�, we get for the former

Dk�K−� = �M , �44�

Dk�K+� = �−�q� d

dq�
��q�+1 d

dq�
N , �45�
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Dk�K0� =
1

2
�2�

d

d�
+ �q� + 1�I , �46�

while the latter can be obtained from the adjoint relation

Db�A� = �Dk�A+��*. �47�

Thus, the D-algebra of the SUq�1,1� generators corresponding to the unnormalized k-component
q-deformed charge coherent states has been realized in a q-differential-operator matrix form.

From �36�, �39�, �42�, and �44�, we clearly see that by the successive actions of the operator
a1a2, each component of the k-component q-deformed charge coherent states, apart from normal-
ization, can be transformed into another in this way, �� ,q ,k�0→ �� ,q ,k�k−1→ �� ,q ,k�k−2→¯

→ �� ,q ,k�1→ �� ,q ,k�0. Actually, a1a2 plays the role of a rotating operator among these
k-component states.

It is easy to check that in the limit q→1, the above discussion gives back the corresponding
results for the usual k-component charge coherent states obtained in Ref. 37, and that in the two
special cases of k=1 and k=2, it gives the corresponding results for the q-deformed charge
coherent states65 and the even �odd� q-deformed charge coherent states,57 respectively.

VI. NONCLASSICAL PROPERTIES OF k-COMPONENT q-DEFORMED CHARGE
COHERENT STATES

In Ref. 57, the authors �X.-M.L. and C.Q.� have examined the even and odd q-deformed
charge coherent states for some nonclassical properties, such as SUq�1,1� squeezing, single- or
two-mode q-squeezing, and two-mode q-antibunching. In this section, we will study the nonclas-
sical properties of the k-component q-deformed charge coherent states with k�3.

A. SUq„1,1… squeezing

In analogy with the definition of SU�1,1� squeezing,68 we have introduced SUq�1,1�
squeezing57 in terms of the Hermitian q-deformed quadrature operators

X1 =
K+ + K−

2
, X2 =

i�K+ − K−�
2

, �48�

which satisfy the commutation relation

�X1,X2� =
i

2
�2K0� �49�

and the uncertainty relation


��X1�2�
��X2�2� �
1
16 �
�2K0���2. �50�

A state is said to be SUq�1,1� squeezed if


��Xi�2� �
1
4 �
�2K0��� �i = 1 or 2� . �51�

Let us now calculate the fluctuations �variances� of X1 and X2 with respect to the k-component
q-deformed charge coherent states. Using �41�–�44� and �47�, we get

0
�,q,k�K+K−��,q,k�0 = ���2�Nkq
0 �2/�Nkq

k−1�2, �52�

m
�,q,k�K+K−��,q,k�m = ���2�Nkq
m �2/�Nkq

m−1�2, m = 1,2,…,k − 1. �53�

In the meantime, for the states �� ,q ,k� j �k�3�, it always follows that
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j
�,q,k�K−��,q,k� j = j
�,q,k�K−
2��,q,k� j = 0, j = 0,1,…,k − 1. �54�

Therefore, for �� ,q ,k�0 and �� ,q ,k�m �m=1,2 ,… ,k−1�, the fluctuations are given by

0
�,q,k���X1�2��,q,k�0 = 0
�,q,k���X2�2��,q,k�0

= 1
4 0
�,q,k��2K0���,q,k�0 + 1

2 ���2�Nkq
0 �2/�Nkq

k−1�2, �55�

m
�,q,k���X1�2��,q,k�m = m
�,q,k���X2�2��,q,k�m

= 1
4 m
�,q,k��2K0���,q,k�m + 1

2 ���2�Nkq
m �2/�Nkq

m−1�2. �56�

Consequently, for k�3, we find

j
�,q,k���X1�2��,q,k� j = j
�,q,k���X2�2��,q,k� j

�
1
4 j
�,q,k��2K0���,q,k� j, j = 0,1,…,k − 1. �57�

The inequalities in �57� say that there is no SUq�1,1� squeezing in the k-component
q-deformed charge coherent states with k�3. However, there is such squeezing in the even and
odd q-deformed charge coherent states.57

It is easy to verify that the q-deformed charge coherent states satisfy the equality in �50� and
that 
��X1�2�= 
��X2�2�. This point has been observed in Ref. 57. Therefore, the q-deformed
charge coherent states are not SUq�1,1� squeezed.

B. Single-mode q-squeezing

In analogy with the definition of single-mode squeezing,27 we have introduced single-mode
q-squeezing57 in terms of the Hermitian q-deformed quadrature operators for the individual modes

Y1 =
a1

+ + a1

2
, Y2 =

i�a1
+ − a1�
2

,

Z1 =
a2

+ + a2

2
, Z2 =

i�a2
+ − a2�
2

, �58�

which satisfy the commutation relations

�Y1,Y2� =
i

2
�a1,a1

+�, �Z1,Z2� =
i

2
�a2,a2

+� , �59�

and the uncertainty relations


��Y1�2�
��Y2�2� �
1
16 �
�a1,a1

+���2, 
��Z1�2�
��Z2�2� �
1
16 �
�a2,a2

+���2. �60�

A state is said to be single-mode q-squeezed if


��Yi�2� �
1
4 �
�a1,a1

+���, 
��Zi�2� �
1
4 �
�a2,a2

+��� �i = 1 or 2� . �61�

For the states �� ,q ,k� j �k�1�, it always follows that

j
a1� j = j
a2� j = j
a1
2� j = j
a2

2� j = j
a1
+a2� j = 0, j = 0,1,…,k − 1. �62�

Thus, the fluctuations are given by
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j
�,q,k���Y1�2��,q,k� j = j
�,q,k���Y2�2��,q,k� j

= 1
4 � j
�,q,k��a1,a1

+���,q,k� j + 2 j
�,q,k�a1
+a1��,q,k� j�

�
1
4 j
�,q,k��a1,a1

+���,q,k� j , �63�

j
�,q,k���Z1�2��,q,k� j = j
�,q,k���Z2�2��,q,k� j

= 1
4 � j
�,q,k��a2,a2

+���,q,k� j + 2 j
�,q,k�a2
+a2��,q,k� j�

�
1
4 j
�,q,k��a2,a2

+���,q,k� j . �64�

This shows that there is no single-mode q-squeezing in the k-component q-deformed charge
coherent states with k�1. As two special cases, there is no such q-squeezing in the q-deformed
charge coherent states65 and the even �odd� q-deformed charge coherent states57 as k becomes 1
and 2, respectively.

C. Two-mode q-squeezing

In analogy with the definition of two-mode squeezing,69 we have introduced two-mode
q-squeezing57 in terms of the Hermitian q-deformed quadrature operators for the two modes

W1 =
Y1 + Z1

�2
=

1
�8

�a1
+ + a2

+ + a1 + a2�, W2 =
Y2 + Z2

�2
=

i
�8

�a1
+ + a2

+ − a1 − a2� , �65�

which satisfy the commutation relation

�W1,W2� = 1
4 i��a1,a1

+� + �a2,a2
+�� �66�

and the uncertainty relation


��W1�2�
��W2�2� �
1
64 �
�a1,a1

+�� + 
�a2,a2
+���2. �67�

A state is said to be two-mode q-squeezed if


��Wi�2� �
1
8 �
�a1,a1

+�� + 
�a2,a2
+��� �i = 1 or 2� . �68�

For the states �� ,q ,k� j �k�2�, the fluctuations are given by

j
�,q,k���W1�2��,q,k� j = j
�,q,k���W2�2��,q,k� j

= 1
2 � j
�,q,k���Y1�2��,q,k� j + j
�,q,k���Z1�2��,q,k� j� = 1

2 � j
�,q,k�

���Y2�2��,q,k� j + j
�,q,k���Z2�2��,q,k� j�

= 1
8 � j
�,q,k��a1,a1

+���,q,k� j + j
�,q,k��a2,a2
+���,q,k� j

+ 2 j
�,q,k�a1
+a1��,q,k� j + 2 j
�,q,k�a2

+a2��,q,k� j�

�
1
8 � j
�,q,k��a1,a1

+���,q,k� j + j
�,q,k��a2,a2
+���,q,k� j� . �69�

This shows that there is no two-mode q-squeezing in the k-component q-deformed charge coher-
ent states with k�2. As a special case, there is no such q-squeezing in the even and odd
q-deformed charge coherent states57 as k becomes 2. However, there is such q-squeezing in the
q-deformed charge coherent states.65

D. Two-mode q-antibunching

In analogy with the definition of two-mode antibunching,36 we have introduced a two-mode
q-correlation function as57
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g�2��0� �

�a1

+a2
+�2�a1a2�2�


a1
+a2

+a1a2�2 =

:��N1��N2��2:�


�N1��N2��2 =

K+

2K−
2�


K+K−�2 , �70�

where ai and ai
+ represent the annihilation and creation operators of q-deformed photons of a

deformed light field and � denotes normal ordering. We call g�2��0� the two-mode q-correlation
degree. Physically, g�2��0� is a measure of q-deformed two-photon correlations in the q-deformed
two-mode field and is related to the q-deformed two-photon number distributions. A state is said
to be two-mode q-antibunched if

g�2��0� � 1. �71�

Let us now study the two-mode q-antibunching effect for the k-component q-deformed charge
coherent states with k�3. First, for k�3, one can easily obtain the following relations:

0
�,q,k�K+
2K−

2��,q,k�0 = ���4�Nkq
0 �2/�Nkq

k−2�2, �72�

1
�,q,k�K+
2K−

2��,q,k�1 = ���4�Nkq
1 �2/�Nkq

k−1�2, �73�

l
�,q,k�K+
2K−

2��,q,k�l = ���4�Nkq
l �2/�Nk q

l−2�2, l = 2,3,…,k − 1. �74�

According to �52�, �53�, and �72�–�74�, the two-mode q-correlation degrees of the k-component
q-deformed charge coherent states can be obtained as follows:

g0
�2��0� =

0
�,q,k�K+
2K−

2��,q,k�0

�0
�,q,k�K+K−��,q,k�0�2 =
�Nkq

k−1�4

�Nkq
0 �2�Nkq

k−2�2 , �75�

g1
�2��0� =

1
�,q,k�K+
2K−

2��,q,k�1

�1
�,q,k�K+K−��,q,k�1�2 =
�Nkq

0 �4

�Nkq
1 �2�Nkq

k−1�2 , �76�

gl
�2��0� =

l
�,q,k�K+
2K−

2��,q,k�l

�l
�,q,k�K+K−��,q,k�l�
2 =

�Nkq
l−1�4

�Nkq
l−2�2�Nkq

l �2 , l = 2,3,…,k − 1. �77�

Evidently, the following relation exists:

�
j=0

k−1

gj
�2��0� = 1. �78�

We shall prove that for k�3, the k-component q-deformed charge coherent states show two-mode
q-antibunching.

From �12� and �75�, it follows that

g0
�2��0� =

f�x�
xk��x�

,

where

f�x� = 	
m=0

� �	
n=0

m
1

�kn� ! �kn + �q�� ! �km − kn + k − 2� ! �km − kn + k − 2 + �q��!�xkm,
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��x� = 	
m=0

� �	
n=0

m
1

�kn + k − 1� ! �kn + k − 1 + �q�� ! �km − kn + k − 1� ! �km − kn + k − 1 + �q��!�xkm

and x= ���2. For k�3, we have

	
n=0

m
1

�kn� ! �kn + �q�� ! �km − kn + k − 2� ! �km − kn + k − 2 + �q��!

� 	
n=0

m
1

�kn + k − 1� ! �kn + k − 1 + �q�� ! �km − kn + k − 1� ! �km − kn + k − 1 + �q��!
,

and thus f�x����x� when x�0. Hence, g0
�2��0��1 when 0�x�1. However, when x�1, the

following inequality,

f�x�
xk��x�

� 1, i.e . , xk �
f�x�
��x�

,

may have real roots. Consequently, in the region of x�1, for arbitrary fixed values of q and q,
there surely exists some range of x values such that

g0
�2��0� =

f�x�
xk��x�

� 1.

To make the above statement clear, we plot g0
�2��0� against x for various k, q, and q in Fig. 1.

From �12� and �76�, it follows that

g1
�2��0� =

xkf1�x�
�1�x�

,

where

f1�x� = 	
m=0

� �	
n=0

m
1

�kn + 1� ! �kn + 1 + �q�� ! �km − kn + k − 1� ! �km − kn + k − 1 + �q��!�xkm,

�1�x� = 	
m=0

� �	
n=0

m
1

�kn� ! �kn + �q�� ! �km − kn� ! �km − kn + �q��!�xkm.

Apparently,

	
n=0

m
1

�kn + 1� ! �kn + 1 + �q�� ! �km − kn + k − 1� ! �km − kn + k − 1 + �q��!

� 	
n=0

m
1

�kn� ! �kn + �q�� ! �km − kn� ! �km − kn + �q��!
,

so that f1�x���1�x�. Therefore, g1
�2��0��xk, namely, g1

�2��0��1 as x�1.
From �12� and �77�, it follows that

gl
�2��0� =

f2�x�
�2�x�

,

where
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f2�x� = 	
m=0

� �	
n=0

m
1

�kn + l − 2� ! �kn + l − 2 + �q�� ! �km − kn + l� ! �km − kn + l + �q��!�xkm,

�2�x� = 	
m=0

� �	
n=0

m
1

�kn + l − 1� ! �kn + l − 1 + �q�� ! �km − kn + l − 1� ! �km − kn + l − 1 + �q��!�xkm.

Obviously,

f2�x� �
1

�l − 2� ! �l − 2 + �q�� ! �l� ! �l + �q��! 	
m=0

�

�m + 1�xkm,

FIG. 1. g ��g0
�2��0�� against x for k=3, 4, 5, with �a� q= ±2, q=0.9 and �b� q= ±3, q=0.8.
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�2�x� � 	
m=0

�
�m + 1�xkm

��km + l − 1� ! �km + l − 1 + �q�� ! �2 �
1

��l − 1� ! �l − 1 + �q�� ! �2 .

Thus, we obtain

gl
�2��0� �

��l − 1� ! �l − 1 + �q�� ! �2

�l − 2� ! �l − 2 + �q�� ! �l� ! �l + �q��! 	
m=0

�

�m + 1�xkm.

For x�1, it reads

	
m=0

�

�m + 1�xkm =
1

�1 − xk�2 .

Therefore, as x�1, we get

gl
�2��0� �

�l − 1��l − 1 + �q��
�l��l + �q��

1

�1 − xk�2 .

As a result, if xk�1− ��l−1��l−1+ �q�� / �l��l+ �q���1/2, then

gl
�2��0� � 1, l = 2,3,…,k − 1.

From the above discussion, we see that for k�3, the two-mode q-correlation degrees
gj

�2��0� �j=0,1 ,… ,k−1� can be less than 1 over some particular range of x values. This indicates
that two-mode q-antibunching exists for the k-component q-deformed charge coherent states with
k�3. The same situation occurs for the even and odd q-deformed charge coherent states.57 How-
ever, for the q-deformed charge coherent states we have g�2��0�=1 so that no two-mode
q-antibunching exists.

It can be shown that in the limit q→1, the nonclassical properties of the usual k-component
charge coherent states, studied in Ref. 37, are retrieved as expected.

VII. SUMMARY

Let us sum up the results obtained in the present paper.

�1� The k-component q-deformed charge coherent states, defined as the k �k�1� orthonormal-
ized eigenstates of both the kth power of the pair q-boson annihilation operator and the
charge operator, have been constructed and their �over�completeness proved. Such
q-deformed states become the usual k-component charge coherent states in the limit q→1.
They become the q-deformed charge coherent states and the even �odd� q-deformed charge
coherent states in the two special cases of k=1 and k=2, respectively.

�2� The k-component q-deformed charge coherent states have been shown to be generated by a
suitable average over the U �1�-group �caused by the charge operator� action on the product
of q-deformed coherent states and k-component q-deformed coherent states.

�3� The D-algebra of the SUq�1,1� generators corresponding to the k-component q-deformed
charge coherent states has been realized in a q-differential-operator matrix form.

�4� For k�3, the k-component q-deformed charge coherent states have been shown to exhibit
two-mode q-antibunching, but neither SUq�1,1� squeezing, nor single- or two-mode
q-squeezing.
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We address the deformation quantization of generally parametrized systems dis-
playing a natural time variable. The purpose of this exercise is twofold: first, to
illustrate through a pedagogical example the potential of quantum phase space
methods in the context of constrained systems and particularly of generally cova-
riant systems. Second, to show that a causal representation for quantum phase space
quasidistributions can be easily achieved through general parametrization. This
result is succinctly discussed. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1948327�

I. INTRODUCTION

Generally covariant systems are a particular kind of dynamical systems in which time is
included among the canonical variables.1 The state of the system evolves along orbits param-
etrized by an unphysical scalar parameter. The formalism is invariant under reparametrizations of
this parameter �for this reason these systems are also called general parametrized systems� leading
to a gauge symmetry, which in the Hamiltonian formulation is implemented by a first class
�Hamiltonian� constraint. One of the most striking properties of generally covariant theories is that
the Hamiltonian is identically zero on the constraint hypersurface. Consequently there is no stan-
dard Hamiltonian time evolution �which coincides exactly with the gauge transformation�. Instead,
dynamics is to be found among the relations between the canonical variables that are determined
by the Hamiltonian constraint.2–4 In other words, dynamics is the unfolding of the gauge trans-
formation. The most famous example of a generally covariant theory is, of course, general
relativity.5–7

Upon quantization these systems display a number of technical and conceptual problems
which, motivated by the quest to quantize general relativity, have been intensively studied in the
literature. Since the publication of Dirac’s seminal work on the quantization of constrained
systems,8 several quantization programs have been developed with the aim of refining Dirac’s
approach and making it suitable to address the generally covariant case.1,6,9–11 In spite of this,
several important problems concerning the quantization of these systems �the problem of time, the
observables’ problem and the measurement problem, just to mention a few� are still lacking a
definitive answer.3,4,10

One quantization program that has only been scarcely explored in this context is the defor-
mation approach.12–22 And this regardless of the fact that the deformation quantization method
displays some remarkable features that make it especially suitable to address the generally cova-
riant case.23–25 On the one hand, the deformation approach leads to a formulation of quantum
mechanics in terms of classical-like objects. The theory lives in phase space and mimics the
structure of classical statistical mechanics. The state of the system is described by a phase space
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quasidistribution and observables are also functionals on the phase space. From the deformation
point of view quantization amounts to the substitution of the standard product of functions by a
noncommutative star product.21,22 The theory has been proved useful when addressing a wide
range of fields of research ranging from topics in nonrelativistic quantum mechanics16,26–29 to
some current developments in M-theory.30–32 In the context of generally covariant systems it has
been advocated that the relation between classical statistical and standard operator quantum me-
chanics should be emphasized when approaching the quantization of these systems.33 The point of
view is that the problems besetting their quantization, being to a large extent conceptual ones, may
receive key physical insights from the more intuitive classical statistical analysis. From this per-
spective the deformation methods seem to be especially suited.

On the technical side the deformation approach acquired the status of a powerful mathemati-
cal theory not displaying any of the subtleties of the path integral or canonical quantization
prescriptions. Most remarkable is the fact that the theory is able to generate the quantum version
of a classical system living on a generic �possibly curved� Poisson or sympletic manifold.34–37 Of
special relevance for generally covariant systems is that the deformation approach displays some
powerful tools to address the quantum eigenvalue problem, the most meaningful of which being a
covariant formalism unifying all distinct phase space representations of the eigenvalue
problem,21,38,39 a formal solution of a generic stargenvalue equation19,40 and a set of efficient
methods to determine the semiclassical expansion of the stargenfunctions.41,42

In this paper we aim at providing a pedagogical incursion into some of these methods by
studying the deformation quantization of a special simple kind of generally covariant systems,
those obtained by parametrizing an originally noncovariant version of the system. The parametri-
zation procedure leads to a formulation of the dynamics living on an enlarged phase space where
the physical time is incorporated as a canonical variable.1 The existence of such a natural time
variable considerably simplifies the �technical and conceptual� analysis of the dynamical structure
of the system. For this reason these models have been used1,3,4 to test a set of quantization
techniques and interpretative prescriptions aiming at addressing the far more difficult problem of
quantizing “already parametrized systems” of which the most significant example is general rela-
tivity.

The Hamiltonians of these models �as in the general case� are identically zero on the con-
straint hypersurface. At the quantum level the imposition of this constraint determines the physical
states of the system. In the deformation context the imposition of first class constraints yields a
stargenvalue equation19,43 and so the physical states are the zero stargenfunctions of the Hamil-
tonian symbol. We are then able to apply the powerful tools of the deformation approach to study
the quantum eigenvalue problem. A complete characterization of the physical states will be pro-
vided in three different phase space representations. In particular, we obtain a representation where
the dynamics of the quasidistribution �with respect to the physical time variable� is dictated by the
classical Liouville equation. This is an interesting side result that shows that through general
parametrization a causal formulation for the distributional sector of quantum mechanics is made
possible. More generally we find that the remarkable parallelism between classical statistical
mechanics and phase space quantum mechanics carries on intact to the generally covariant setting,
a property that establishes a promising starting point for the future research on the deformation
quantization of generally covariant systems.

II. COVARIANT WIGNER QUANTUM MECHANICS

The aim of this section is to review the main structures of the covariant formulation of the
deformation quantization procedure. Our analysis will be restricted to the case of flat phase space
as we will be dealing only with systems of this sort. The reader should refer to Refs. 36 and 38 for
a more detailed presentation of these results and to Refs. 35 and 37 for the generalization of the
formalism to the nonflat case. An important part of this section �Eqs. �9�–�15�� focuses on the
covariant generalization of the �-genvalue equation, once again, just for the flat case. This is a
topic that will play an important role latter on.

Before proceeding and to avoid future misunderstandings let us make the following remark:
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Throughout the paper the word covariant will be used in two different contexts, to designate the
invariance under time reparametrizations of the original classical system and to designate the
invariance under general coordinate transformations of the Moyal plane. The aim of this paper is
to present the deformation quantization of a generally covariant �parametrized� classical system.
We use the covariant version of the deformation quantization procedure �a subject where this
paper makes no original contribution� because this leads to a larger set of possible quantum phase
space representations, among which we will find the causal representation presented in Sec. IV.

Let us then settle down the preliminaries. We consider a N-dimensional dynamical system, its
classical formulation living on the flat phase space T*M. A set of global canonical coordinates
��qi , pi , i=1,… ,N�� can then be defined on T*M in terms of which the sympletic structure reads
w=dqi∧dpi. Upon quantization the set �q̂i� constitutes a complete set of commuting observables.

Let us introduce the vector notation q�̂ = �q̂1 ,… , q̂N� and designate by �q�� the general eigenstate of

q�̂ associated to the array of eigenvalues q� and spanning the Hilbert space H of the system. Let also
A�H� be the algebra of quantum observables over H and A�T*M� the algebra of classical func-

tions over the classical phase space T*M. Let �Q� , P� � be a second set of phase space coordinates,
related to �q� , p�� by a generic phase space diffeomorphism �not necessarily canonical�, q�

=q��Q� , P� � and p� = p��Q� , P� �. The covariant Weyl transform,38

W�Q� ,P� �
�q� ,p��

:A�H� → A�T*M� ,

�1�

Â → W�Q� ,P� �
�q� ,p�� �Â� = �N	 dNx�	 dNy�e−ip��Q� ,P� �·y���x� − q��Q� ,P� ��
x� +

�

2
y��Â�x� −

�

2
y�� ,

where �x� ± �� /2�y�� are eigenstates of q�̂ , yields the entire structure of covariant phase space quan-

tum mechanics. The map W
�Q� ,P� �

�q� ,p��
can be applied both to an observable Â as well as to the density

matrix ���t�����t��. In the first case it yields theW
�Q� ,P� �

�q� ,p��
-Weyl symbol A��Q� , P� �=W

�Q� ,P� �

�q� ,p��
�Â� of the

original quantum operator and, in the second case, the celebrated Wigner function fW� �Q� , P� , t�
= �1/ �2���N�W

�Q� ,P� �

�q� ,p��
����t�����t���. Notice that if �Q� , P� �= �q� , p�� then the covariant map W

�Q� ,P� �

�q� ,p��
re-

duces to the standard Weyl transform in the variables �q� , p��. In this case we will use the notation

W�q� ,p�� to designate W�q� ,p��
�q� ,p��. Notice also that A��Q� , P� �=A�q��Q� , P� � , p��Q� , P� �� where A�q� , p��=

W�q� ,p���Â� and the same relation is valid for the Wigner function. The covariant Weyl map imple-

ments the transformation �q� , p��→ �Q� , P� � as a coordinate transformation in quantum phase space

and defines a covariant star-product ���Q� ,P� � and Moyal bracket �,�M
�Q� ,P� �
� �Refs. 21 and 38� �Â , B̂

�A�H��,

W�Q� ,P� �
�q� ,p�� �ÂB̂� = W�Q� ,P� �

�q� ,p�� �Â���Q� ,P� �
� W�Q� ,P� �

�q� ,p�� �B̂� ,

�2�

W�Q� ,P� �
�q� ,p��  1

i�
�Â,B̂�� = �W�Q� ,P� �

�q� ,p�� �Â�,W�Q� ,P� �
�q� ,p�� �B̂��M

�Q� ,P� �
� ,

which display the functional form

A��Q� ,P� ���Q� ,P� �
� B��Q� ,P� � = A��Q� ,P� �e�i�/2��� i�J

�Q� ,P� �
�ij

�� j�B��Q� ,P� � ,
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�A��Q� ,P� �,B��Q� ,P� ��M
�Q� ,P� �
� =

2

�
A��Q� ,P� �sin�

2
�� i�J�Q� ,P� �

�ij
�� j��B��Q� ,P� � , �3�

where the covariant derivative is given by �let O�i= Pi , Oi= pi , i=1, … , N; O�i=Qi−N , Oi

=qi−N , i=N+1, … , 2N�

�i�A� = �i�A�, �i�� j�A� = �i�� j�A� − �ij�
k�k�A�, �i� = �/�O�i, i, j,k = 1,…,2N , �4�

and

J�Q� ,P� �
�ij �Q� ,P� � =

�O�i

�Ok

�O�j

�Ol J�q� ,p��
kl , � jk�

i�Q� ,P� � =
�O�i

�Ob

�2Ob

�O�j � O�k , �5�

are the symplectic structure and Poisson connection associated with the coordinates �Q� , P� �, re-
spectively. Finally, notice that in Eq. �5� we explicitly took into account the phase space flat
structure.

When formulated in terms of these structures Wigner mechanics becomes fully invariant
under the action of general phase space diffeomorphisms,

A��Q� ,P� ���Q� ,P� �
� B��Q� ,P� � = A�q��Q� ,P� �,p��Q� ,P� ����q� ,p��B�q��Q� ,P� �,p��Q� ,P� �� ∀A,B�A�T*M�, �6�

the covariant generalization of the Moyal and stargenvalue equations reading

� fW�

�t
= �H�, fW� �M

�Q� ,P� �
� ,

A��Q� ,P� ���Q� ,P� �
� �a;b� �Q� ,P� � = a�a;b� �Q� ,P� � , �7�

�a;b� �Q� ,P� ���Q� ,P� �
� A��Q� ,P� � = b�a;b� �Q� ,P� � ,

where �a;b� �Q� , P� � is the a-left and b-right ��Q� ,P� �
� -genfunction of A��Q� , P� �. These equations trans-

form covariantly under arbitrary phase space diffeomorphisms yielding, in any coordinates, iden-
tical mathematical solutions and thus identical physical predictions,

P�A��Q� ,P� ;t� = a� =	 dNQ� 	 dNP� �det J�Q� ,P� �
�ij �−1/2�a;a� �Q� ,P� �fW� �Q� ,P� ;t� . �8�

Let us consider the stargenvalue equation �7� in more detail. Let �Â1 ,… , ÂN� and �B̂1 ,… , B̂N�
be two sets of commuting observables satisfying �Âi , B̂j�= i��ij. Let Ai��Q� , P� �=W

�Q� ,P� �

�q� ,p��
�Âi� and

Bi��Q� , P� �=W
�Q� ,P� �

�q� ,p��
�B̂i�. Then the simultaneous solution of

Ai��Q� ,P� ���Q� ,P� �
� �a1,…,aN;b1,…,bN

� �Q� ,P� � = ai�a1,¯,aN;b1,…,bN
�Q� ,P� � ,

�9�
�a1,…,aN;b1,…,bN
� �Q� ,P� ���Q� ,P� �

� Ai��Q� ,P� � = bi�a1,…,aN;b1,…,bN
�Q� ,P� �, i = 1,…,N

is given by19

�a1,…,aN;b1,…,bN
� �Q� ,P� � � ��

�Q� ,P� �
� �A1�,…,AN� ;a1,…,aN;b1,…,bN� = �

i=1

N

��Q� ,P� �
� �ai;bi

� �Q� ,P� � , �10�
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�ai;bi
� �Q� ,P� � � ��

�Q� ,P� �
� �Ai�;ai;bi� =

1

2�
e

�
�Q� ,P� �
�

�i/���bi−ai�Bi��Q� ,P� �
��Q� ,P� �
� 	 dk e

�
�Q� ,P� �
�

ik�Ai��Q� ,P� �−bi�, �11�

where �
i=i�

�Q� ,P� �
�

N
is the N-fold star-product and the star-exponential e

�
�Q� ,P� �
�

ikAi��Q� ,P� �
�E�

�Q� ,P� �
� �k ,Q� , P� � is

defined as the solution of the differential problem, �� /�k�E�
�Q� ,P� �
� �k ,Q� , P� �

= iAi��Q� , P� ���Q� ,P� �
� E�

�Q� ,P� �
� �k ,Q� , P� � and E�

�Q� ,P� �
� �0,Q� , P� �=1, which is unique for the Weyl symbol

Ai��Q� , P� � of a generic self-adjoint operator Âi �a result that is just the Weyl-Wigner translation of

an equivalent result in operator quantum mechanics44�. Furthermore E�
�Q� ,P� �
� �k ,Q� , P� �

=�n=1
+� ��ik�n /n ! ��

j=1�
�Q� ,P� �
�

n
Ai��Q� , P� � whenever k is in the radius of convergence of the series, which

justifies the notation used in Eq. �11�. We also introduced the �-delta notation
��

�Q� ,P� �
� �A1� ,… ,AN� ;a1 ,… ,aN ;b1 ,… ,bN� that will be extensively used later on. Notice that the star-

genfunctions �a1,…,aN;b1,…,bN
� �Q� , P� � are theW

�Q� ,P� �

�q� ,p��
-Weyl transform of the projectors

�a1 ,… ,aN��b1 ,… ,bN� where �a1 ,… ,aN� and �b1 ,… ,bN� are simultaneous eigenvectors of Âi , i

=1,… ,N. Moreover the stargenfunctions �ai;bi
� �Q� , P� � are theW

�Q� ,P� �

�q� ,p��
-Weyl transform of the projector

�ai��bi� =	 dz��ai,z���bi,z�� =
1

2�
	 dk e�i/���bi−ai�B̂ieik�Âi−bi�, �12�

where z�= �a1 ,… ,ai−1 ,ai+1 ,… ,aN� is the N−1 array of degeneracy indices. The Weyl transform of
the first identity in Eq. �12� yields the inverse relation of Eq. �10�,

�ai;bi
� �Q� ,P� � =	 da1 ¯ dai−1 dai+1 ¯ daN �a1,…,ai,…,aN;a1,…,bi,…,aN

� �Q� ,P� � . �13�

Finally, the diagonal elements �ai;ai
� �Q� , P� � are given by

�ai;ai
� �Q� ,P� � =

1

2�
	 dk e

�
�Q� ,P� �
�

ik�Ai��Q� ,P� �−ai� = ��
�Q� ,P� �
� �Ai�;ai;ai� � ��

�Q� ,P� �
� �Ai� − ai� , �14�

this being the object that enters the probability functional �8�. The stargenfunctions �10� and �11�
transform as scalars under arbitrary phase space coordinate transformations. For instance

�ai;ai
� �Q� , P� � satisfies

�ai;ai
� �Q� ,P� � = ��

�Q� ,P� �
� �Ai��Q� ,P� � − ai� = ���q� ,p��

�Ai�q��Q� ,P� �,p��Q� ,P� �� − ai� = �ai;ai
�q��Q� ,P� �,p��Q� ,P� �� ,

�15�

where �ai;ai
�q� , p�� is the diagonal solution of the stargenvalue equation in the �q� , p��-representation.

Last, we should point out that the former results �in the presented form� are valid whenever we

are able to provide the complete sets of commuting observables �Âi� and �B̂i�. In fact this restric-

tion can be considerably weakened. It is crucial to the overall approach that the complete set �Âi�
exists, but the requirement on the existence of the set �B̂i� can be discarded, while preserving the
validity of Eqs. �8�, �10�, �13�, and �14� exactly and that of Eqs. �11� and �12� under slight

modifications. This is the case, for instance, when Âi displays a discrete spectrum. The reader
should refer to Ref. 19 for a detailed presentation of these results.
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III. DEFORMATION QUANTIZATION OF A PARAMETRIZED NONRELATIVISTIC SYSTEM

Let us consider an arbitrary N-dimensional dynamical system with configuration variables q�
= �q1 ,… ,qN�, described by the Lagrangian L0�q� ,dq� /dt�. Starting from the standard action S
=�dt L0�q� ,dq� /dt� we impose the time reparametrization invariance by introducing an unphysical
time 	 and promoting t to a configuration variable. The action is now rewritten as1

S =	 d	 ṫL0q� ,
q�̇

ṫ
� , �16�

where the overdot represents the derivative with respect to 	. The Legendre transform yields the
Hamiltonian formulation living in a �2N+2�-dimensional phase space spanned by the canonical

variables t , Pt ,q� , p� where Pt=�L /�ṫ, pi=�L /�q̇i, i=1,… ,N and L�t , ṫ ,q� ,q�̇�= ṫL0�q� ,q�̇ / ṫ�. This, as
expected, is a “zero-Hamiltonian” system,

H = 
�, � = Pt + H0�q� ,p�� , �17�

where � is a first class constraint, 
 is a Lagrange multiplier, and H0 is the Hamiltonian associated
to the original Lagrangian L0.

Dirac’s quantization procedure imposes the constraint as a restriction on the space of physical
states, �̂���=0. In the density matrix formulation this equation reads

�̂������ = �������̂ = 0. �18�

To find the complete specification of its solutions, and according to the general method of Sec. II,

the first step is to introduce the complete set of observables ��̂ ,A�̂ = �Â1 ,… , ÂN�� and the set of

operators B�̂ = �B̂1 ,… , B̂N�, generators of translations in the spectrum of A�̂ , satisfying �Âj , B̂k�
= i�� jk and ��̂ , B̂k�=0, j ,k=1,… ,N. We easily find that

Âj = F̂j�q�̂ ,p�̂ ,− t̂�, B̂k = Ĝk�q�̂ ,p�̂ ,− t̂� , �19�

where F̂j�q�̂ , p�̂ , t� and Ĝk�q�̂ , p�̂ , t� are the solutions of the original Heisenberg equations,

�F̂j

�t
= �F̂j,Ĥ0�,

�Ĝk

�t
= �Ĝk,Ĥ0�, j,k = 1,…,N �20�

together with the initial conditions F̂j�q�̂ , p�̂ ,0�= q̂j and Ĝk�q�̂ , p�̂ ,0�= p̂k, satisfy the aforementioned

requirements. A�̂ and B�̂ are the quantum histories of the system.
The phase space representation of Eq. �18� is determined by the Weyl transform. We may

write

���t,�,A� ,B� �fW�t,�,A� ,B� � = fW�t,�,A� ,B� ���t,�,A� ,B� �� = 0 �21�

by using the map W�t,�,A� ,B� � or equivalently

��t,Pt,q� ,p����t,Pt,q� ,p��fW�t,Pt,q� ,p�� = fW�t,Pt,q� ,p����t,Pt,q� ,p����t,Pt,q� ,p�� = 0 �22�

by using the map W�t,Pt,q� ,p��. We start by considering the simplest representation, which is provided

by Eq. �21�. In this case the Wigner function is a left and right zero �t ,� ,A� ,B� �-stargenfunction of
the constraint symbol �. To determine fW explicitly we will follow the procedure described in Sec.
II. From Eqs. �10�, �11�, and �14�, the fundamental zero stargenfunctions of the Hamiltonian
constraint �which will be designated by �a� ,b�� are given by
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�a� ,b��t,�,A� ,B� � = ���t,�,A� ,B� �
��,A� ;h = 0,a� ;h = 0,b��

= ���t,�,A� ,B� �
�����t,�,A� ,B� ����t,�,A� ,B� �

�A� ;a� ;b�� = ���t,�,A� ,B� �
����

j=1

N

��t,�,A� ,B� �

�e��t,�,A� ,B� �

�i/���bj−aj�Bj��t,�,A� ,B� ����t,�,A� ,B� �
�Aj − bj��

= ������t,�,A� ,B� ��
j=1

N

�e�i/���bj−aj�Bj��t,�,A� ,B� ���Aj − bj��

= �����
j=1

N � 1

2�
�
n=0

+�
1

n!
− i�

2
�n

e�i/���bj−aj�Bj� i

�
�bj − aj�

�

�Aj
�n	 dk eik�Aj−bj��

=
����
�2��N�

j=1

N �e�i/���bj−aj�Bj	 dk�
n=0

+�
1

n!
� i

2
k�bj − aj��n

eik�Aj−bj��
= �����

j=1

N �e�i/���bj−aj�Bj
1

2�
	 dk eik�Aj−bj+�bj/2�−�aj/2���

= �����
j=1

N �e�i/���bj−aj�Bj�Aj −
aj

2
−

bj

2
�� = ����e�i/���b�−a��·B��A� −

a� + b�

2
� , �23�

where � j=1
N

��t,�,A� ,B� �
stands for the N-fold star-product and � j=1

N for the standard N-fold product of

functions. The stargenfunctions �a� ,b��t ,� ,A� ,B� � are simultaneously solutions of Eq. �21� and

Aj��t,�,A� ,B� ��a� ,b��t,�,A� ,B� � = aj�a� ,b��t,�,A� ,B� � ,

�24�
�a� ,b��t,�,A� ,B� ���t,�,A� ,B� �Aj = bj�a� ,b��t,�,A� ,B� �, j = 1,…,N .

Notice that the diagonal elements a� =b� fully identify a history of the system, �a� ,a��t ,� ,A� ,B� �
=����� j=1

N ��Aj −aj�. It is also straightforward to realize that the fundamental stargenfunctions �23�
are the �t ,� ,A� ,B� �-Weyl transform of the projectors,

�h = 0,a���h = 0,b� � = �̂��̂��
j=1

N

�e�i/���bj−aj�B̂j�̂�Âj − bj�� , �25�

where the general ket satisfies

�̂�h,x�� = h�h,x�� and Âj�h,x�� = xj�h,x�� �26�

and

�̂��̂� =	 dx��h = 0,x���h = 0,x�� =
1

2�
	 dk eik�̂, �27�

is the operator analogue of �14�. The most general solution of Eq. �21� is a linear combination of
the fundamental solutions �23�:

fW�t,�,A� ,B� � =
1

�2���N 	 da� 	 db� C�a��C*�b���a� ,b��t,�,A� ,B� � , �28�

where C�a�� obeys the normalization condition that is induced by the normalization of the Wigner
function. Let us then calculate its norm,
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			 dt d� dA� dB� fW�t,�,A� ,B� � =
1

�2���N 			 dt dA� dB� 	 da� 	 db� C�a��C*�b���
j=1

N

e�i/���bj−aj�Bj�

Aj −
aj + bj

2
� =	 dt	 da� 	 db� C�a��C*�b����b� − a��

=	 dt	 da� C�a��C*�a�� . �29�

The divergence of the previous integral indicates that we are integrating over the gauge orbits thus
spoiling the normalization of the Wigner function. In this case this is quite simple to correct. In

fact we just have to introduce the phase space measure d�=d� dA� dB� and use it from now on
whenever we must integrate the Wigner function. The procedure corresponds to cutting the gauge
orbits through a single time hypersurface. With this measure the Wigner function satisfies

	 d� fW = 1, ∀ t �30�

provided the parameters C�a�� satisfy �da� �C�a���2=1. The proper normalization of the Wigner
function determines a phase space measure and a restriction on the factors C�a��. These parameters
display a natural physical interpretation. To see this explicitly let us calculate the probabilities for

the output of a measurement of A� . The general x� = �x1 ,… ,xN� left and right stargenfunction of A�

�and simultaneously y left and right stargenfunction of the constraint� is

�y,x�;y,x� = ���t,�,A� ,B� �
��,A� ;y,x� ;y,x�� = ���t,�,A� ,B� �

�� − y��
j=1

N

��t,�,A� ,B� �
���t,�,A� ,B� �

�Aj − xj�

= ��� − y��
j=1

N

��Aj − xj� = ��� − y���A� − x�� . �31�

Therefore, the probability density for A� =x� and �=y is given by

P�� = y,A� = x�� =	 d� fW�t,�,A� ,B� ���� − y���A� − x�� =	 dB� fW�t,y,x�,B� �

=
1

�2���N 	 dB� 		 da� db� C�a��C*�b����y��
j=1

N �e�i/���bj−aj�Bj�xj −
aj + bj

2
��

=		 da� db� C�a��C*�b����b� − a���x� −
a� + b�

2
���y� = �C�x���2��y� �32�

from where it follows:

P�� = y,A� = x�� = lim
→0+

	
y−

y+

dy� P�� = y�,A� = x�� = �C�x���2�y,0. �33�

It is clear from the previous equation that the term �C�x���2 represents the probability for the system

to be found in the history A� =x�. Under the measurement of A� with output x� the Wigner function
will indeed collapse to the state,
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�0,x�;0,x� = ������A� − x�� . �34�

Let us also point out that in the �t ,� ,A� ,B� � representation the Wigner function is static both with
respect to the external time 	 and to the physical time t. In fact from Eqs. �23� and �28� we see that
�� /�t�fW=0.

The former results can now be easily translated to the �t , Pt ,q� , p�� representation where the
intention is to solve Eq. �22�. The two representations are related by the unitary transformation:

t�t,Pt,q� ,p�� = U−1��t,Pt,q� ,p��t��t,Pt,q� ,p��U = t ,

��t,Pt,q� ,p�� = W�t,Pt,q� ,p����̂� = U−1��t,Pt,q� ,p��Pt��t,Pt,q� ,p��U = Pt + H0�q� ,p�� ,

�35�
Aj�t,q� ,p�� = W�t,Pt,q� ,p���Âj� = U−1��t,Pt,q� ,p��qj��t,Pt,q� ,p��U, j = 1,…,N ,

Bj�t,q� ,p�� = W�t,Pt,q� ,p���B̂j� = U−1��t,Pt,q� ,p��pj��t,Pt,q� ,p��U, j = 1,…,N ,

where U=e
��t,Pt,q� ,p��

�i/��H0�q� ,p��t. The fundamental stargenfunctions are

�a� ,b��t,Pt,q� ,p�� = ���t,Pt,q� ,p��
��,A� ;h = 0,a� ;h = 0,b�� = ���t,Pt,q� ,p��

�Pt + H0�q� ,p����
j=1

N

��t,Pt,q� ,p��

�e��t,Pt,q� ,p��

�i/���bj−aj�Bj�t,q� ,p����t,Pt,q� ,p�����t,Pt,q� ,p��
�Aj�t,q� ,p�� − bj�� , �36�

which in general do not simplify any further as in Eq. �23�. These stargenfunctions are the
�t , Pt ,q� , p��-Weyl transform of the projector �25�. The most general solution of �22� is then

fW�t,Pt,q� ,p�� =
1

�2���N 	 da� db� C�a��C*�b���a� ,b��t,Pt,q� ,p�� �37�

and can be obtained directly from the Wigner function �28� by applying the unitary transformation
�35�. Hence, fW�t , Pt ,q� , p�� is properly normalized for the phase space measure d�=dPt dq� dp�
provided the coefficients C�a�� satisfy the normalization �da� C�a��C*�a��=1. Notice that in general
the Wigner function does not have support exclusively on the classical constraint hypersurface.
This is due to the nonlocal character of the �-delta functions in Eq. �36�. Notice also that fW does
not evolve with respect to the external time 	 but it displays the standard time evolution with
respect to the canonical time t,

� fW�t,Pt,q� ,p��
�	

= �H�t,Pt,q� ,p��, fW�t,Pt,q� ,p���M�t,Pt,q� ,p��
= 0 ⇔

� fW�t,Pt,q� ,p��
�t

= �H0�q� ,p��, fW�t,Pt,q� ,p���M�q� ,p��
. �38�

We conclude that the �t , Pt ,q� , p�� representation yields the extended phase space Schrödinger

picture for the quantum generally covariant system. Likewise the �t ,� ,A� ,B� � representation pro-
vides the phase space Heisenberg picture.

IV. CAUSAL REPRESENTATION

We now study another possible phase space representation of the system. The first step is to

specify a set of classical phase space coordinates �t , Pt ,Q� , P� �. Let us define the phase space
diffeomorphism by
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t = t, Pt = � − H0�A� ,B� �, Q� = Q� �t,A� ,B� �, P� = P� �t,A� ,B� � , �39�

where H0�A� ,B� �=W�A� ,B� ��Ĥ0�=W�q� ,p���Ĥ0��q�=A� ∧p�=B� and Q� �t ,A� ,B� � , P� �t ,A� ,B� � satisfy

�Q� �t,A� ,B� �
�t

= �Q� �t,A� ,B� �,H0�A� ,B� ���A� ,B� �,
�P� �t,A� ,B� �

�t
= �P� �t,A� ,B� �,H0�A� ,B� ���A� ,B� � �40�

together with the initial conditions Q� �0,A� ,B� �=A� and P� �0,A� ,B� �=B� . That is Q� �t ,A� ,B� � and

P� �t ,A� ,B� � constitute the classical time evolution of the deparametrized system. The transformation
�39� is canonical and can be easily inverted. It yields

t = t, � = ���t,Pt,Q� ,P� � = Pt + H0�Q� ,P� �, A� = A� ��t,Q� ,P� �, B� = B� ��t,Q� ,P� � , �41�

where this time H0�Q� , P� �=W�q� ,p���Ĥ0��q�=Q� ∧p�=P� and A� ��t ,Q� , P� � ,B� ��t ,Q� , P� � satisfy

�A� ��t,Q� ,P� �
�t

= �H0�Q� ,P� �,A� ��t,Q� ,P� ���Q� ,P� �,
�B� ��t,Q� ,P� �

�t
= �H0�Q� ,P� �,B��t,Q� ,P� ���Q� ,P� � �42�

together with the initial conditions A� ��0,Q� , P� �=Q� and B� ��0,Q� , P� �= P� . This means that the func-

tions A� ��t ,Q� , P� � and B� ��t ,Q� , P� � are the classical histories of the system. We should point out that

in general the two functions A� ��t ,Q� , P� � and A� �t ,q� , p�� given by Eqs. �41� and �35�, respectively, as

well as B� ��t ,Q� , P� � and B� �t ,q� , p��, display different functional forms �they are, respectively, the
classical and the quantum Weyl-Wigner histories of the system�. To make this point explicit, we

introduced the prime notation which is in agreement with the fact that A� ��t ,Q� , P� �=W
�t,Pt,Q

� ,P� �

�t,�,A� ,B� �
�A�̂ �,

B� ��t ,Q� , P� �=W
�t,Pt,Q

� ,P� �

�t,�,A� ,B� �
�B�̂ �, and ���t , Pt ,Q� , P� �=W

�t,Pt,Q
� ,P� �

�t,�,A� ,B� �
��̂�. Finally, let us concisely designate the

transformation �41� by T� :R�2N+2�→R�2N+2�; �t , Pt ,Q� , P� �→ �t ,� ,A� ,B� �=T� �t , Pt ,Q� , P� �.
The transformation T� is canonical but in general it does not preserve either the star-product or

the Moyal bracket. Using the generalized Weyl transform W
�t,PtQ

� ,P� �

�t,�,A� ,B� �
we find a phase space repre-

sentation of the eigenvalue equation �18�,

���t,Pt,Q� ,P� ���t,Pt,Q
� ,P� �

� fW� �t,Pt,Q� ,P� � = fW� �t,Pt,Q� ,P� ���t,Pt,Q
� ,P� �

� ���t,Pt,Q� ,P� � = 0, �43�

where the ��t,Pt,Q
� ,P� �

� is the covariant star-product given by �3� with

J�t,Pt,Q
� ,P� �

�ij
= J�t,�,A� ,B� �

ij
and � jk�

i =
�O�i

�Ob

�2Ob

�O�j � O�k , �44�

where Ob� �t ,� ,A� ,B� � and O�i� �t , Pt ,Q� , P� �. The solutions of Eq. �43� can be read from Eqs. �23�
and �28�,

fW� �t,Pt,Q� ,P� � =
1

�2���NW�t,Pt,Q
� ,P� �

�t,�,A� ,B� � �������� =
1

�2���N 	 da� 	 db� C�a��C*�b���
a� ,b�
� �t,Pt,Q� ,P� � ,

�45�

where

072107-10 N. C. Dias and J. N. Prata J. Math. Phys. 46, 072107 �2005�

                                                                                                                                    



�
a� ,b�
� �t,Pt,Q� ,P� � = ��

�t,Pt,Q
� ,P� �

� ����t,Pt,Q� ,P� �,A� ��t,Q� ,P� �;h = 0,a� ;h = 0,b��

= ��
�t,Pt,Q

� ,P� �
� ����t,Pt,Q� ,P� ���

j=1

N

�
�t,Pt,Q

� ,P� �
� ��

�t,Pt,Q
� ,P� �

� �Aj��t,Q� ,P� �,aj,bj� = ���t,�,A� ,B� �

����t,Pt,Q� ,P� ���
j=1

N

��t,�,A� ,B� �
�e��t,�,A� ,B� �

�i/���bj−aj�Bj��t,Q� ,P� �
��t,�,A� ,B� ����t,�,A� ,B� �

�Aj��t,Q� ,P� � − bj��

= �����t,Pt,Q� ,P� ���
j=1

N �e�i/���bj−aj�Bj��t,Q� ,P� ��Aj��t,Q� ,P� � −
aj + bj

2
��

= �����t,Pt,Q� ,P� ��ei � ��b�−a��·B���t,Q� P� ��A� ��t,Q� ,P� � −
a� + b�

2
� . �46�

The Wigner function satisfies

fW� �t,Pt,Q� ,P� � = fW�t,���t,Pt,Q� ,P� �,A� ��t,Q� ,P� �,B� ��t,Q� ,P� �� , �47�

where fW is given by Eq. �28�. Furthermore and since the coordinate transformation is canonical
we have

d� = d� dA� dB� = ��t�dt d� dA� dB� = ��t�dt dPt dQ� dP� = dPt dQ� dP� , �48�

and the Wigner function obeys the proper normalization, �d� fW� =1. Also notice that both the
diagonal and the nondiagonal stargenfunctions �and thus also the Wigner function� have support
only on the classical constraint hypersurface, a property that it is not shared by the previous
representation �36� and �37�.

Finally, let us briefly elaborate on the dynamical structure of the system in this representation.
It is clear from Eq. �43� that the Wigner function is static,

�

�	
fW� �t,Pt,Q� ,P� ;	� = �H��t,Pt,Q� ,P� �, fW� �t,Pt,Q� ,P� ;	��M

�t,Pt,Q
� ,P� �

�

= 
����t,Pt,Q� ,P� �, fW� �t,Pt,Q� ,P� ;	��M
�t,Pt,Q

� ,P� �
� = 0, �49�

confirming the typical picture of frozen dynamics. However, the Wigner function does evolve with
respect to the physical time t. From Eqs. �42� and �47� we have

�

�t
fW� �t,Pt,Q� ,P� � =

� fW

��
�T� �t,Pt,Q� ,P� ��

���

�t
+ �

j=1

N
� fW

�Aj
�T� �t,Pt,Q� ,P� ��

�Aj�

�t
+ �

j=1

N
� fW

�Bj
�T� �t,Pt,Q� ,P� ��

�Bj�

�t

= �
j=1

N
� fW

�Aj
�T� �t,Pt,Q� ,P� ���H0,Aj���t,Pt,Q

� ,P� � + �
j=1

N
� fW

�Bj
�T� �t,Pt,Q� ,P� ���H0,Bj���t,Pt,Q

� ,P� �

= �H0, fW� ��t,Pt,Q
� ,P� �, �50�

reproducing the classical Liouville equation �H� , fW� ��t,Pt,Q
� ,P� �=0.

We see that the �
�t,Pt,Q

� ,P� �

�t,�,A� ,B� �
-representation of the system leads to an interesting mathematical

picture; the Hamiltonian vector field lives on the extended phase space and is given by
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�H = 
� �

�t
+ �

j=1

N
�H0

�Pj

�

�Qj
− �

j=1

N
�H0

�Qj

�

�Pj
� . �51�

The flows of this vector field define lines in phase space. These lines cross each time hypersurface
once and only once; they are the histories of the system. These histories are one-dimensional

hypersurfaces that can be identified by the values of the 1+2N constants of motion, � ,A� ,B� . Along
these lines the Wigner distribution function is constant. However, the correlations between the

canonical variables, namely between Q� and t, do change and time evolution is imprinted on these
correlations. The interesting point is that this picture is not of the classical description but of the
quantum mechanical instead.

A natural question is what happened to the quantum content of the theory? What happened to
the interfering trajectories and to the nonlocal behavior? The answer is that the quantum features
have been completely removed from the distributional sector and are now exclusively placed in
the observables’ sector of the theory. This can be checked explicitly by applying the proper
generalized Weyl transform to one of the fundamental operators of the system. We have for
instance,

W�t,Pt,Q
� ,P� �

�t,�,A� ,B� � �q̂1� = q1�t,�,A� ,B� ���t,�,A� ,B� �=T� �t,Pt,Q
� ,P� � = q1�t,���t,Pt,Q� ,P� �,A��t,Q� ,P� �,B��t,Q� ,P� �� ,

�52�

leading to the time evolution

dq1

dt
=

�q1

�t
+

�q1

��

���

�t
+ �

j=1

N
�q1

�Aj

�Aj�

�t
+ �

j=1

N
�q1

�Bj

�Bj�

�t
= �q1,H0�M�A� ,B� �

− �
j=1

N
�q1

�Aj
�Aj�,H0��Q� ,P� �

− �
j=1

N
�q1

�Bj
�Bj�,H0��Q� ,P� � = �q1,H0�M�A� ,B� �

− �q1,H0��A� ,B� �, �53�

where the identity �q1 /�t= �q1 ,H0�M�A� ,B� �
follows from Eq. �20� �or alternatively from Eq. �35��, we

used the fact that �� is time independent and that the transformation �Q� , P� �→ �A� ,B� � is canonical.
Equation �53� does in fact constitute a quantum correction to the classical statistical description
where we have

��

�t
= �H0,�� and

dq1

dt
= 0. �54�

Notice that in the classical description Q� =q� , P� , = p� and q��t ,���t , Pt ,q� , p�� ,A� ��t ,q� , p�� ,B� ��t ,q� , p���
=q� .

We finally conclude by pointing out that a causal representation can also be obtained for
deparametrized systems by using an explicit “time dependent phase space representation” where
the star-product and Moyal bracket are themselves �scalar� time dependent.39 In this approach we
apply a time dependent generalization of the Weyl map to the density matrix formulation of the
deparametrized system and obtain a phase space causal representation of the Wigner function,
which is formally identical to the one described by Eqs. �45�, �46�, and �52�, although t is a
canonical variable in the former equations and an external scalar parameter in the approach of Ref.
39. Accordingly, the two resulting quasidistributions live on different phase spaces. In spite of this
the two formulations are consistent with each other leading to the single conclusion that a phase
space formulation of quantum mechanics where the distributional sector displays a fully classical
causal structure is made possible through a suitable choice of representation. This may either be a
�scalar� time dependent representation in the deparametrized phase space or a history representa-
tion in the generally covariant setting.
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V. EXAMPLE

To illustrate our previous results let us consider the simple system composed by two coupled
particles and described by the Hamiltonian

H0 =
p1

2

2M
+

p2
2

2m
+ kq1p2

2, �55�

where �q1 , p1� are the canonical variables of the particle of mass M , �q2 , p2� those of the particle
of mass m and k is a coupling constant.

The generally covariant version of this system is obtained by promoting t to a canonical
variable and imposing the time reparametrization invariance. The extended Hamiltonian formula-
tion of the system lives on a six-dimensional phase space spanned by the canonical variables
t , Pt ,q� = �q1 ,q2� , p� = �p1 , p2� which satisfy the commutation relations �t , Pt�=1, �qi , pj�=�ij , i , j=1,
2, all others being zero. Upon quantization the system is described by the “zero Hamiltonian,”

Ĥ = 
�̂, �̂ = P̂t + Ĥ0 = P̂t +
p̂1

2

2M
+

p̂2
2

2m
+ kq̂1p̂2

2, �56�

where �̂ is the first class Hamiltonian constraint and 
 is a Lagrange multiplier. In standard the
Dirac formulation the physical states of this system are the wave functions � solutions of the
constraint equation

�̂��� = 0. �57�

We now address the deformation quantization of the system. As in the main text, three distinct
quantum phase space representations will be presented.

�1� The map W�t,Pt,q� ,p�� and the generally covariant Schrödinger picture. The Weyl map
W�t,Pt,q� ,p�� yields the �t , Pt ,q� , p��-constraint symbol

� = W�t,Pt,q� ,p����̂� = Pt +
p1

2

2M
+

p2
2

2m
+ kq1p2

2 �58�

and the quantum phase space version of the Hamiltonian constraint �57� is given by

��t,Pt,q� ,p����t,Pt,q� ,p��fW�t,Pt,q� ,p�� = fW�t,Pt,q� ,p����t,Pt,q� ,p����t,Pt,q� ,p�� = 0. �59�

The solutions of this right and left stargenvalue equation are given by Eqs. �36� and �37� and they
do not easily simplify any further. It is worth noticing that due to the nonlocal character of the
�-product the phase space quasidistribution fW will have support on phase-space regions which are
not classically allowed. One can easily calculate the evolution of fW with respect to the physical
time t. From Eq. �59� we have

� fW

�	
= 
��, fW�M�t,Pt,q� ,p��

= 0 ⇔
� fW

�t
= �H0, fW�M�q� ,p��

⇔
� fW

�t

= �H0, fW��q� ,p�� +
�2

24�2�2kp2,
�2fW

�q2 � p1
�

�q� ,p��
− �2kq1,

�2fW

�q2
2 �

�q� ,p��
� �60�

which is obviously not of the form of the Liouville equation. Consequently, the Wigner function
does not display a classical causal structure.

�2� The map W�t,�,A� ,B� � and the generally covariant Heisenberg picture. Following the approach

of Sec. III our first step is to determine the quantum histories associated to Ĥ. We easily find that
�check Eqs. �19� and �20��
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Â1 = q̂1 −
p̂1

M
t̂ −

k

2M
p̂2

2t̂2,

B̂1 = p̂1 + kp̂2
2t̂ ,

Â2 = q̂2 − � p̂2

m
+ 2kq̂1p̂2� t̂ +

k

M
p̂1p̂2t̂2 +

k2

3M
p̂2

3t̂3,

B̂2 = p̂2 �61�

satisfy the requisites following Eq. �18�, i.e., Âj , B̂j , j=1, 2 commute with the constraint �̂ and

with t̂ and furthermore they satisfy the Heisenberg algebra �Â1 , B̂1�= �Â2 , B̂2�= i�, all other com-

mutators being zero. Since �t̂ , �̂�= i� the set �t̂ , �̂ ,A�̂ = �Â1 , Â2� ,B�̂ = �B̂1 , B̂2�� is a complete set of
fundamental operators for this system.

Using the Weyl map W�t,�,A� ,B� � we find the Heisenberg phase space representation of the
constraint equation �57�,

���t,�,A� ,B� �fW�t,�,A� ,B� � = fW�t,�,A� ,B� ���t,�,A� ,B� �� = 0. �62�

The fundamental solutions of this equation �a� ,b� �where a� = �a1 ,a2� and b� = �b1 ,b2��, and also sat-
isfying

Aj��t,�,A� ,B� ��a� ,b� = aj�a� ,b�, �a� ,b���t,�,A� ,B� �Aj = bj�a� ,b�, j = 1,2 �63�

are given by

�a� ,b��t,�,A� ,B� � = ����e�i/����b1−a1�B1+�b2−a2�B2��A1 −
a1 + b1

2
��A2 −

a2 + b2

2
� . �64�

And the Wigner function, solution of �62�, is just a Hermitian combination of the fundamental
solutions. We have

fW�t,�,A� ,B� � =
1

2��
	 da� 	 db� C�a��C*�b���a� ,b��t,�,A� ,B� � , �65�

where C�a�� obeys to the normalization condition that is induced by the normalization of the
Wigner function, �da� �C�a���2=1. The Wigner function satisfies Eq. �62� which implies that
�fW /�	=0. We also have from Eq. �64� that �fW /�t=0. That is, the Wigner function is static both
with respect to the unphysical scalar parameter as well as to the physical time. This is an expected
result since, in this representation, the Wigner quasidistribution is an exclusive function of observ-
ables of the system �the histories�, i.e., of quantities that commute with the Hamiltonian constraint.

On the other hand, in this representation, the stargenfunctions of the fundamental variables t̂,

q�̂ , and p�̂ do evolve with respect to the physical time. For instance �let �x� be the general eigenket
of q̂1 with associated eigenvalue x�,
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gx�t,�,A� ,B� � = W�t,�,A� ,B� ���x��x�� = ���t,�,A� ,B� �
�q1�t,A� ,B� � − x� =

1

2�
	 dk e��t,�,A� ,B� �

ik�q1�t,A� ,B� �−x�

=
1

2�
	 dk eik�q1�t,A� ,B� �−x� = ��q1�t,A� ,B� � − x� , �66�

where q1�t ,A� ,B� � can be easily derived from Eq. �61�, q1�t ,A� ,B� �=W�t,�,A� ,B� ��q̂1�t̂ ,A�̂ ,B�̂ ��=A1

+ �B1 /M�t− �k /2M�B2
2t2. Hence, gx�t ,� ,A� ,B� � satisfies

�

�t
gx�t,�,A� ,B� � = �gx�t,�,A� ,B� �,H0�A� ,B� ��M�A� ,B� �

= �gx�t,�,A� ,B� �,H0�A� ,B� ���A� ,B� �, �67�

where H0�A� ,B� �=W�A� ,B� ��Ĥ0�= �B1
2 /2M�+ �B2

2 /2m�+kA1B2
2. We conclude that the Weyl transform

W�t,�,A� ,B� � casts the phase space dynamics in the Heisenberg picture. Accordingly, the time depen-
dence is exclusively displayed by the observable �stargenfunction� sector of the theory.

�3� The map W�t,Pt,q� ,p��
�t,�,A� ,B� � and the generally covariant causal picture. Following the prescription

of Sec. IV let us introduce a set of phase space coordinates �t , Pt ,Q� = �Q1 ,Q2� , P� = �P1 , P2�� de-

fined by Eqs. �39� and �40�. We get t= t , Pt=�−H0�A� ,B� �, and

�
Q1 = A1 +

B1

M
t −

k

2M
B2

2t2

P1 = B1 − kB2
2t

Q2 = A2 + �B2

m
+ 2kA1B2�t

+
k

M
B1B2t2 −

k2

3M
B2

3t3

P2 = B2

⇔�
A1 = Q1 −

P1

M
t −

k

2M
P2

2t2,

B1 = P1 + kP2
2t ,

A2 = Q2 − �P2

m
+ 2kQ1P2�t

+
k

M
P1P2t2 +

k2

3M
P2

3t3,

B2 = P2.

� �68�

We notice that Q� �t ,A� ,B� � and P� �t ,A� ,B� � coincide with W�t,�,A� ,B� ��q�̂� ,W�t,�,A� ,B� ��p�̂�, respectively �this
is an easy result that follows from Eq. �61��, i.e., the classical and the quantum histories of this
system are exactly the same. Indeed, Eq. �68� solves both the Moyal and the Hamiltonian equa-

tions of motion. In the notation of Sec. IV we have A� �=A� and B� �=B� �one should notice that this
result is not valid in general�. Hence, for this system, we are not required to introduce a second set
of “classical coordinates” and can simplify the notation by making Qj =qj and Pj = pj , j=1, 2.

We now consider the action of the generalized Weyl map W�t,Pt,q� ,p��
�t,�,A� ,B� �. The associated covariant

star-product ��t,Pt,q� ,p��� and Moyal bracket �,�M�t,Pt,q� ,p��
are characterized by �let O�1= Pt, O�2= p1,

O�3= p2, O�4= t, O�5=q1, O�6=q2, O1=�, O2=B1, O3=B2, O4= t, O5=A1, O6=A2 and i , j
=1,… ,6� �check Eq. �5��

J�q� ,p���ij = J�q� ,p��
ij ,

�22�
1 = − �24�

5 = − �42�
5 =

1

M
, �24�

1 = �42�
1 = − �44�

5 =
k

M
p2

2, �33�
1 = 2kA1�t,q� ,p�� ,

�34�
1 = �43�

1 = − �44�
6 = −

2k

M
p1p2, �35�

1 = �53�
1 = �34�

2 = �43�
2 = − �45�

6 = − �54�
6 = 2kp2, �69�
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�44�
1 =

k2

M
p2

4, �33�
2 = − �35�

6 = − �53�
6 = 2kt, �33�

5 = �23�
6 = �32�

6 =
k

M
t2,

�34�
5 = �43�

5 =
k

M
p2t, �33�

6 =
2k2

M
p2t3, �34�

6 = �43�
6 = −

1

m
− 2kA1�t,q� ,p��

all other Christoffel symbols being zero.
In this representation the constraint equation reads

�Pt + H0�q� ,p�����t,Pt,q� ,p��� fW� �t,Pt,q� ,p�� = fW� �t,Pt,q� ,p����t,Pt,q� ,p��� �Pt + H0�q� ,p��� = 0, �70�

where H0�q� , p��=W�t,Pt,q� ,p��
�t,�,A� ,B� ��Ĥ0� is given by Eq. �54�. The fundamental solutions of Eq. �70� are

given by

�
a� ,b�
� �t,Pt,q� ,p�� = ���t,Pt,q� ,p��� ���t,Pt,q� ,p��,A� �t,q� ,p��;h = 0,a� ;h = 0,b��

= ����t,Pt,q� ,p���e�i/���b�−a��·B� �t,q� ,p���A� �t,q� ,p�� −
a� + b�

2
� .

= ��Pt + H0�q� ,p���e�i/����b1−a1��p1+kp2
2t�+�b2−a2�p2��q1 −

p1

M
t −

k

2M
p2

2t2 −
a1 + b1

2
�

� �q2 − � p2

m
+ 2kq1p2�t +

k

M
p1p2t2 +

k2

3M
p2

3t3 −
a2 + b2

2
� �71�

and the Wigner function is once again a Hermitian combination of the fundamental solutions �
a� ,b�
� ,

fW� �t,Pt,q� ,p�� =
1

�2���NW�t,Pt,q� ,p��
�t,�,A� ,B� ��������� =

1

�2���N 	 da� 	 db� C�a��C*�b���
a� ,b�
� �t,Pt,q� ,p�� .

�72�

It is related with the �t ,� ,A� ,B� � representation by

fW� �t,Pt,q� ,p�� = fW�0,��t,Pt,q� ,p��,A� �t,q� ,p��,B� �t,q� ,p��� , �73�

where fW is given by Eqs. �64� and �65�. We conclude that �1� The support of fW� is confined to the
classically allowed regions �check Eq. �71�� and �2� its evolution with respect to the physical time
satisfies the Liouville equation

� fW�

�t
= �

j=1

2
� fW

�Aj

�Aj

�t
+ �

j=1

2
� fW

�Bj

�Bj

�t
= �

j=1

2
� fW

�Aj
�H0,Aj��q� ,p�� + �

j=1

2
� fW

�Bj
�H0,Bj��q� ,p�� = �H0, fW� ��q� ,p��.

�74�

Hence, in this representation the quantum behavior is displayed by the stargenfunction sector
alone. However, for this system, we also have �let z=q1 , p1∨ p2 and �z0� be a generic eigenket of
ẑ with associated eigenvalue z0�

W�t,Pt,q� ,p��
�t,�,A� ,B� ���z0��z0�� = ����t,Pt,q� ,p���z − z0� = ���t,�,A� ,B� ��z�t,A� ,B� � − z0��A� =A� �t,q� ,p��∧B� =B� �t,q� ,p��

= ��z�t,A� ,B� � − z0��A� =A� �t,q� ,p��∧B� =B� �t,q� ,p�� = ��z − z0� , �75�

where in the third step we used the fact that e
��t,�,A,B�

ik�z�t,A� ,B� �−z0�=eik�z�t,A� ,B� �−z0� for z=q1 , p1∨ p2 �a simple

result that follows from Eq. �61��. Hence, the former three fundamental stargenfunctions display a
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classical structure and satisfy �� /�t�����t,Pt,q,p��z−z0�=0. We conclude that for this system, in this
representation, the nontrivial �quantum� behavior is displayed by the stargenfunction z=q2 alone.

VI. CONCLUSIONS

We addressed the deformation quantization of the nonrelativistic particle in the generally
parametrized form and provided the complete specification of its physical quantum states in three
different phase space representations. We proved that in one of these representations the distribu-
tional sector of the system displays a classical causal structure. This result confirms a similar
conclusion that has been recently obtained for a generic nonrelativistic deparametrized system and
reinforces the point of view that the De Broglie-Bohm formulation is not the unique possible
causal formulation of quantum mechanics. In the De Broglie-Bohm theory45–47 the source of
quantum behavior is the quantum potential determining a causal �although not fully classical�
dynamics for the quasidistribution. Furthermore, the theory also displays a nontrivial quantum
correction to the momentum stargenfunction. On the other hand, in the “causal covariant formu-
lation” presented here the quantum effects have been completely removed from the distributional
sector �which now displays a fully classical causal structure� and the price to pay was the appear-
ance of some further �quantum� corrections on the observable’s sector of the theory.

We finish by recalling the point of view according to which the relation between the classical
statistical and the quantum mechanical formulations of generally covariant systems should be
further explored as it may provide key physical insights into some of the conceptual problems
displayed by the quantum version of these systems. From this perspective the deformation meth-
ods seem to be especially suited. We proved that �at least for the simplest case of the parametrized
nonrelativistic particle� the formal similarities between classical statistical and phase space quan-
tum mechanics carry on intact to the generally covariant context. This close analogy is obviously
superior to the one displayed by the standard operator formulation, and supports the point of view
that the deformation methods should be further explored as an alternative, conceptually simpler
approach to the quantization of generally covariant systems.
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We obtain the solution of the one-dimensional hydrogen atom on the hyperbola by
transforming its Schrödinger equation into the modified Pöschl-Teller equation. We
write explicitly the wave functions both in configuration and momentum space, and
check the contraction limit of the system to the flat space model. Finally, we find
the closed form of the Wigner function for the states of this system. © 2005
American Institute of Physics. �DOI: 10.1063/1.1945767�

I. INTRODUCTION

One-dimensional hydrogen atom is customarily called the quantum system described by the
Hamiltonian

H = −
1

2

d2

dx2 −
1

�x�
�1�

�using units so that e=m=�=1�, and the point x=0 is excluded from the range of the operator.
This is the so-called regularization, at the limit �→0, of the Coulomb-type potentials

V�x,�� = −
1

�x� + �
, � � 0. �2�

At first sight it may seem that a system with the Hamiltonian �1� is physically unremarkable
and technically easy to solve. But this is not true. The one-dimensional hydrogen atom models a
real hydrogen atom present in an extremely strong magnetic field, for instance in astrophysics,
where the field of a pulsar is B�1012. In such situations, the atomic sizes perpendicular to the field
are much smaller than the longitudial sizes.1,2 In contrast to the real three-dimensional hydrogen
atom, the one-dimensional system �1� demands more delicacy in the mathematical methods
needed to understand the spectrum and complete eigenfunction set of the corresponding
Schrödinger equation.3

The one-dimensional hydrogen atom was first investigated in 1959 by Loudon.4 He proved
that the spectrum of the one-dimensional hydrogen atom contains a ground state E0=−� and an
infinite number of doubly degenerate excited states, even and odd solutions, defined over the
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whole x axis. This degeneracy is very strange since it contradicts one of the basic principles of
�one-dimensional� quantum mechanics.1 In Ref. 5, Andrews explained the double degeneracy
observing that the strong singularity at x=0 absolutely isolates the two regions of the system, x
�0 and x�0. The “Andrews mechanism” states that the probability for the particle in the left side
to penetrate the right side or vice versa is zero. �See Refs. 6 and 7 where this space-spliting effect
is studied further.� For all finite values of the energy Loudon found two independent solutions; the
degeneracy of the eigenvalues has been explained in terms of hidden symmetry group O �2�,6,8,9

and even in terms supersymmetry.10–12 These papers contain three noncontradicting models to
explain the same phenomenon. Indeed, during the last three decades this model has been the
subject of intensive discussion and study, but there is still controversy in the interpretation of some
of its features �see the literature contained in Ref. 13�.

Analogs of the hydrogen atom on the spaces with constant positive or negative curvature were
introduced by Schrödinger14 and Infeld15 in three and more dimensions. In this article we analyze
the one-dimensional hydrogen atom analog on the upper branch of a hyperbola of pseudoradius R,
defined by

H1
ª �s1,s2 � R�s2

2 − s1
2 = R2 � 0,s2 � R� , �3�

where s= �s2 ,s1� are Cartesian coordinates in the ambient pseudo-Euclidean space. We have seen
in a recent work16 that spaces of constant curvature 1/R provide parametrized families of models
which properly contract to the previously known ones as R→�. The one-dimensional hydrogen
atom on the sphere was recently analyzed for the circle S1 in the work of Mardoyan et al.17 The
hyperbolic case is studied here; it is connected by a transformation of coordinates to the Pöschl-
Teller potential;18 it participates thus in the representation theory of the three-dimensional Lorentz
group �Ref. 19, Sec. 6.5�; and has served as a model for scattering phenomena in systems with
mixed �discrete and continuous� spectra.20 Finally, it is an exactly solvable problem, so its eigen-
functions are expected �and confirmed� to be expressible in terms of special functions, particularly
Gauss hypergeometrics 2F1.

Physical interest leads us to extend the analysis of this one-dimensional system to phase space
by means of the Wigner distribution function.21 The phase space model that contains a hyperbolic
position subspace was introduced in Ref. 16 for N�1 dimensions. �See also Ref. 22 where phase
space and the Wigner distribution are defined for N-sphere position spaces.� It is constructed from
a complete set of solutions of the Schrödinger equations in configuration and momentum spaces.
And it turns out that also the Wigner function can be expressed in terms of hypergeometric and
other elementary special functions.

The Coulomb potential of the one-dimensional hydrogen atom on the hyperbola H1 in �3� is

V�s� = −
�

R

s2

�s1�
�

�

R
, �4�

where � is the coupling constant. This system belongs to the well-known class with superinte-
grable potentials on constant curvature spaces,23,24 which is here restricted to one spatial dimen-
sion.

The organization of this paper is as follow: In sec. II we detail the method used to find the
wave functions of this system in configuration space, and the corresponding wave functions in
momentum space are obtained in Sec. III; in Sec. IV we verify the flat-space contraction limit.
Section V is devoted to the calculation of the Wigner functions of the eigenstates of this system.

II. SOLUTIONS ON THE HYPERBOLA

Following Ref. 25, we shall use the map from the space s= ��s1 ,s2��R2� to the space u
= ��u1 ,u2��R2� given by
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s1 = �sign u1�	u2
2 − u1

2 u1
2

2u2
, s2 = 	u2

2 − u1
2
u2 −

u1
2

2u2
� , �5�

which satisfies

s2
2 − s1

2 = �u2
2 − u1

2�2. �6�

The relation between the distance elements in s- and u-spaces through the map �5� is

ds . ds = �u2
2 − u1

2�� �u · du�2

u2
2 −

u1
2

u2
2du · u + 3�u · du�2. �7�

From �6� we see that when the point s= �s1 ,s2� lies on the upper branch of the hyperbola of
pseudoradius R, then u= �u1 ,u2� belongs to the upper branch of another hyperbola in u-space:
u2

2−u1
2=D2, with the pseudoradius D=	R. Thus in particular �5� corresponds to a transformation

between the one-dimensional s- and u-hyperbolic spaces H1. From �7�, for the points on the
hyperbolas, the line elements are then related through

ds · ds

R
= −

u1
2

u2
2du · du . �8�

This mapping is conformal, i.e., it conserves angles between lines.
Choosing the ordinary hyperbolic coordinates on s-space, their transformation �5� to u-space

is

s1 = R sinh 	, s2 = R cosh 	 , �9�

u1 = ± D	e2	 − 1, u2 = De	, 0 � 	 � � . �10�

This transformation is one-to-one between the points of the two H1 spaces, and a trivial case of the
series of Hurwitz-type quadratic transformations between oscillator systems in two, four, and eight
dimensions, and Coulomb systems in two, three, and five dimensions, respectively.25,26 The line
elements in the s- and u-hyperbolas are then

ds = R d	, du =
De	

	e2	 − 1
d	 , �11�

and so they are related by

ds

R
= d	 =

u1

u2

du

D
. �12�

Taking into account that R=D2, the relation between the inner products defining the Hilbert space
on the s- and u-hyperbolas is

�
1,
2�H1 ª �
H1

ds
1
*�s�
2

*�s� = D�
H1

u1

u2
du
1

*�s�u��
2
*�s�u�� ¬ ��1,�2�H1, �13�

for the renormalized functions

��u� ª 	D�u2/u1�
�s�u�� . �14�

In order to compare the dynamics in the two hyperbolic spaces, we write the one-dimensional
Laplace-Beltrami operators on the s-hyperbola in the coordinates �9�,
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�LB
�s� =

1

R2
s1
�

�s2
+ s2

�

�s1
�2

=
1

R2

d2

d	2 , �15�

while on the u-hyperbola this operator is

�LB
�u� =

1

D2
u1
�

�u2
+ u2

�

�u1
�2

=
2

D2
	sinh 	e−	/2 d

d	
	sinh 	e−	/2 d

d	
. �16�

With the identification �14� we find that the operators �LB
�s� and �LB

�u� are related by

�LB
�s� = 
�u1

u2
��1/2�u2

2

u1
2

1

D2��LB
�u� −

3/4

u1
2 +

1/4

u2
2 �
�u1

u2
��−1/2

. �17�

The Schrödinger equation describing the nonrelativistic motion on the one-dimensional hy-
perbolic space H1 under the potential �4�, written in terms of the Laplace-Beltrami operator �LB

�s� ,
has the form

−
1

2
�LB

�s� 
�s� −
�

R

 s2

�s1�
− 1�
�s� = E
�s� , �18�

where E is the total energy of the system, and we have added the constant � /R to the Coulomb
potential in order to have bound states with negative energy. The transformation �5� and the
substitutions �14� and �17� convert the Schrödinger equation �18� of the one-dimensional hydrogen
atom into that of the singular oscillator whose parameters depend on the pseudoradius R=D2 and
the energy E,

−
1

2
�LB

�u���u� + 
�1
2 − 1

4

u2
2 −

�2
2 − 1

4

u1
2 ���u� = 2��u� , �19�

2 = − R�RE + ��, k1
2 = − 2R�RE − ��, k2

2 = 1. �20�

As in the case of the flat space where the corresponding transformation establishes the con-
nection between the one-dimensional Coulomb system and an oscillator system with a centrifugal
barrier,6 in the case of the hyperbola �5� with the coordinates �9� and �10�, the change of variables

e	 = cosh � , �21�

transforms Eq. �19� into the modified Pöschl-Teller equation,

−
1

2

d2�

d�2 + 
−
�1

2 − 1
4

cosh2 �
+

�2
2 − 1

4

sinh2 �
�� = 2� , �22�

where u1�0 and u1�0 correspond to ��0 and ��0 respectively. In Fig. 1 we show the
one-dimensional hydrogen atom potential with five bound states shown as energy levels �see En

R,�

in Eq. �30� ahead�, and the Pöschl-Teller potentials that correspond to them through the parameters
in Eq. �20�. We remark this duality where for each energy level of the hydrogen atom one has a
different Pöschl-Teller potential, whose coupling constant k1 is thus quantized. These Schrödinger
equations exhibit singularities in the potentials �u1

−2=1/R sinh2 	 which disconnect the u1�0 and
u1�0 halves of the plane �u1 ,u2�.5–7 In the two half-planes there are two potential wells which are
mirror images of each other and separated by an impenetrable barrier, as shown in the figure.
Correspondingly, the singularity of the potential �4� at s1=0 splits the physical s-space in such a
way that the particle on the upper branch of the hyperbola can be located either on the left-hand
side s1�0, or on the right-hand side s1�0. Correspondingly, the motion in u-space takes place in
only one of the two wells, so we must consider separately the Schrödinger equation �19� in each
of these two regions, that we indicate by right �R� and left �L�, as
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�R�u1,u2� = ��u1�f�u1,u2�, �L�u1,u2� = ��− u1�g�u1,u2� , �23�

where g�u1 ,u2�= f�−u1 ,u2� and ��x�=0, 1
2 and 1, for x�0,x=0 and x�0, respectively, is the

Heaviside �-function.
The solutions of the Pöschl-Teller equation �22� are a well-known set of functions, one of

whose outstanding properties is to serve as coupling �Clebsch-Gordan or Wigner� coefficients for
the three-dimensional Lorentz group in the parabolic subgroup reduction,19 between its discrete
and continuous representation series. The coefficients k1 ,k2 in �22� are the Bargmann indices of
the Lorentz group, which are determined by the two representations being coupled, and the energy
eigenvalues determine the coupled representation, which can belong to the discrete or to the
continuous series. In the present case k1�k2+1, the full spectrum of the one-dimensional hydro-
gen atom corresponds to the coupling of a discrete lower-bound and a discrete upper-bound
representations: Dk1

+
� Dk2

− =�k=0
K Dk

+
� �0

�d�Cq. The Clebsch-Gordan series yields here a finite num-
ber K= � 1

2 �k1−k2−1�� of discrete representations ��x� denotes the integer part of x�, and a general-
ized integral over the continuous series representations q=k�1−k� ,k=− 1

2 + ir and r�R.
For ��0, the wave functions that solve �22� are19,23,24

�n��� = An�sinh ��1/2+k2�cosh ��2n−k1+1/2 � 2F1�− n,− n + k1;1 + k2;tanh2 �� , �24�

An =	 2k1�k1 − 2n − k2 − 1���k1 − n���n + 1 + k2�
D2�2n + 1 + k2�n ! ���1 + k2��2��k1 − n − k2�

. �25�

For these bound states, the eigenvalues  are quantized as

FIG. 1. Top: Panel The one-dimensional hydrogen atom potential �4� for R=10 and �=5, showing all the energy levels,
n=1, 2, 3, 4, and 5. The physical coordinate s1 is related to the ensuing variable 	 through s1=R sinh 	. Bottom panel: The
Pöschl-Teller potentials corresponding to the energy levels of the top figure �for n=1, 2, 3, 4, 5, R=10 and �=5�. The
deeper potentials correspond to lower n’s. The energy levels of the corresponding eigenstates are shown by horizontal lines
to the left of the vertical axis. The coordinate u1 is related to the variable 	 by u1�	�=	R�e2	−1�.
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 = k2 − k1 + 2n + 1 � 0, n = 0,1,…, � 1
2 �k1 − k2 − 1�� , �26�

and so bound state solutions exist only for k1−k2�1. The normalization constant An in �25� is
computed from the requirement of square integrability of the wave functions for ��0 under the
inner product �13�. We are reminded by �23� that there are right and left solutions for ��R,
namely

�R��� = �����n�����, �L��� = ��− ���n����� . �27�

So, after replacement of d	=tanh � d� and u1 /u2=tanh �, the normalization condition can be
expressed as

R�
0

�

d	�
n
R�	��2 = D�

0

�

d��
n
R����2tanh2 � = 1. �28�

Finally, we note that the wave functions �24� can be written in terms of Jacobi polynomials of
degree n, indices �k2 ,k1�, and argument cosh 2�, including other factors of powers 1

2 −k1 and 1
2

+k2 of cosh � and sinh �, respectively.19

Now we are ready to construct the eigenfunctions and energy eigenvalues of the one-
dimensional hydrogen atom. Comparing �20� and �26�, and replacing n�n−1, we find that for

k1 = n + �n, �n ª �R/n = �/n , �29�

with �ª�R, the energy spectrum is

En
R,� = −

n2

2R2 −
�2

2n2 +
�

R
, n = 1,2,…, �	�� . �30�

Returning to the variable 	=ln cosh � of �21�, we express the bound state wave functions

n�n

R �	� which describe the particle in the right �	�0� and left �	�0� regions, in the form


n�n

R,L�	� = ��±	�	�n��n
2 − n2�
R

2 sinh�	�e�n−1−�n��	�
2F1�− n + 1,1 + �n;2;1 − e−2�	�� , �31�

=��±	�
2n

n
	�n��n

2 − n2�
R

�sinh�	��ne−�n�	�Pn−1
�−n−�n,−n+�n��− coth�	�� , �32�

where Pn−1
��,���x� is a Jacobi polynomial and we have added �n as an explicit parameter in the

functions. Thus we find that all excited bound states �n�1� of the one-dimensional hydrogen atom
are doubly degenerate—as in the model on flat space. To find the ground state of this H1-system
one must solve the Schrödinger equation for an “inoculating” potential,4 but this boundary case
lies outside our present scope. In Fig. 2 we show on configuration space the five bound wave
functions of the system in the previous figure.

III. SOLUTIONS IN MOMENTUM SPACE

From the wave functions on the 	-space for the R- and L-regions, we introduce the two wave

functions on momentum space p�R ,
̃n,�n

R �p� and 
̃n,�n

L �p� �see �23�� by means of the Fourier
integral transform


̃n,�n

R,L �p� =	 R

2�
�

−�

+�

d	 e−ipR	
n,�n

R,L �	� . �33�

For the positive-	 region, replacing the explicit form �31� of the wave function 
̃n,�n
R �	� into Eq.

�33�, we obtain
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̃n,�n
R �p� =	2�n��n

2 − n2�
�

�
0

�

d	 sinh 	e�n−1−�n−ipR�	 � 2F1�− n + 1,1 + �n;2;1 − e−2	� ,

�34�

=	�n��n
2 − n2�
8�

�� 1
2 ��n − n + ipR��

�� 1
2 ��n − n + ipR� + 2�

� 2F1�− n + 1,1 + �n; 1
2 ��n − n + ipR� + 2;1� , �35�

where we have used the formula �Ref. 27, Eq. �10� on p. 110�

�
0

�

dt e−�t�sinh t�� =
�� 1

2 �� − ������ + 1�

2�+1�� 1
2 �� + �� + 1� . �36�

Finally, with the help of the Gauss identity for the 2F1�a ,b ;c ;1� and using

��z�
��z − n�

= �− 1�n��1 + n − z�
��1 − z�

, �37�

the result �35� can be written in the form

FIG. 2. Wave functions of the one-dimensional hydrogen atom on the right half of hyperbolic configuration space, for the
levels n=1, 2, 3, 4, and 5 �from top to bottom�. The horizontal axis is the variable 	�0 �related to the physical coordinate
through s1=R sinh 	�; for visibility, it has been rescaled by a factor of 3 /2 between successive levels. The plots were
generated from Eq. �31�.
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̃n,�n

R,L �p� = �
̃n,�n

L,R �p��* =
�− 1�n+1

4
	�n��n

2 − n2�
2�

�� 1
2 ��n − n ± ipR��

�� 1
2 ��n − n � ipR� + 1�

�� 1
2 ��n + n � ipR��

�� 1
2 ��n + n ± ipR� + 1� .

�38�

For the particular case n=1, the preceding expression simplifies to


̃1,�
R,L�p� =	���2 − 1�

2�

1

�� − 1 ± ipR��� + 1 ± ipR�
. �39�

In Fig. 3 we show the wave functions of the hyperbolic hydrogen atom in momentum space, for
the levels n=1, 2, 3, 4, and 5, of the previous figure.

IV. CONTRACTION TO FLAT SPACE

The contraction of the hyperbola H1 to flat space R is obtained considering the limit R→�.
In this case, the energy spectrum �30� for finite n becomes the energy spectrum of the one-
dimensional standard hydrogen atom:4

FIG. 3. Wave functions in momentum space of the one-dimensional hydrogen atom on the hyperbola, for n=1, 2, 3, 4, and
5 �from top to bottom, corresponding to those on configuration space in the previous figure�. Real and imaginary parts of
the function are indicated by thin continuous and dashed lines; the modulus by thick continuous lines. For visibility, the
axes have been rescaled by 2/3 between successive levels—the proportion inverse to that of the previous figure. The plots
were generated from Eq. �38�.
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En
� = lim

R→�
En

R,� = −
�2

2n2 , n = 1,2,… . �40�

The bound-state wave functions of the one-dimensional hydrogen atom on the hyperbola
given by �31� in the limit R→� converge to the well-known Coulomb wave functions different
from zero on of the region x�0 or x�0. Their contraction is

lim
R→�


n,�n

R,L
 x

R
� = ��±x�

2�3/2

n3/2 �x�e−��x�/n
1F1
− n + 1;2;

2��x�
n

� �41�

=��±x�
2�3/2

n5/2 �x�e−��x�/nLn−1
1 
2��x�

n
� , �42�

where Ln
��x� is a generalized Laguerre polynomials.27

The bound-state wave functions in momentum representation, in �38� will contract to func-
tions on the circle �which is the Hopf sphere for the one-dimensional case�. In order to compute
the contraction limit R→� for these functions we use the Stirling asymptotic formula for the
gamma functions to prove that

lim
R→�

	R�̃n,�n

R,L �p� =
�− 1�n+1

	2�

pn
3/2

pn
2 + p2
 pn � ip

pn ± ip
�n

=
�− 1�n+1

	2�

pn
3/2

pn
2 + p2exp
�2in arctan

p

pn
� =

�− 1�n+1

	2�pn

�1 + cos �n�e�in�n, �43�

where n=1, 2,…, and

pn ª
	− 2En

� =
�

n
, tan

1

2
�n =

p

pn
=

n

�
p . �44�

The limit in Eq. �43� coincides with the momentum wave functions found in Ref. 8.

V. WIGNER DISTRIBUTION FUNCTION

We now construct the Wigner distribution function for the states of the one-dimensional
hydrogen atom in hyperbolic space. According to the definition of the Wigner function on mo-
mentum space,16 we have

W�
n,pn

R,L �	,p� =
R

2�
�

−�

�

dp�
̃n,pn

L,R �p − 1
2 p��*eiRp�	
̃n,pn

R,L �p + 1
2 p�� �45�

=W�
n,pn

L,R �− 	,p� , �46�

where the last equality follows from �38�.
Let us first consider the particular case n=1. Using the explicit form of the wave function 
̃1,�

R

given in �39�, we can write

W�
1,�
R �	,p� =

���2 − 1�
16i�2 �

−i�

i�

dz
e−4y	

�� 1
2 �� − 1 + ipR� − y�� 1

2 �� + 1 + ipR� − y��2 . �47�

The integrand on �47� has four poles in the upper complex half-plane, at the points y1,2= 1
2 ��

−1± ipR� and y3,4= 1
2 ��+1± ipR�. After complex integration, using the residue theorem, we obtain
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W�
1,�
R �	,p� =

���2 − 1�
2��pR�

e−2�	Im
sinh 2	�1 + ipR�

1 + ipR
. �48�

The Wigner function for the left-side solutions 
1,�
L is obtained, according to �46�, reversing the

sign of 	 in the exponential factor in �48�, to e+2�	. Using the last expression, it is easy to check the
marginal properties for this particular case, that is

�
−�

�

dp W�
1,�
R �	,p� = �
1,�

R �	��2, �
0

�

d	 W�
1,�
R �	,p� = �
̃1,�

R �p��2. �49�

We can now tackle the computation of the Wigner function for the general-n bound wave

functions 
n,�n

R,L �	�, whose momentum representation 
̃n,�n

R,L �p� is given by �38�. Replacing the
explicit forms in �45� with yª−i 1

2 p�R, we obtain

W�
n,�n

R �	,p� =
�n��n

2 − n2�
16i�2 �

−i�

i�

dy��� 1
2 ��n − 1 + ipR� − y��� 1

2 ��n − 1 + ipR� + n + y�
�� 1

2 ��n + 1 + ipR� + y��� 1
2 ��n + 1 + ipR� + n − y��

2

e−4y	

= �− 1�n+1 �n��n
2 − n2����n�

4�n ! ���n − n + 1�
e−2��n−n�	 � Re���− n + ipR����n + ipR�e−2i	pR

��1 + ipR����n − n + 1 + ipR�

� 4F3
� − n,− n + ipR,�n,�n + ipR

1 + ipR,�n − n + 1,�n − n + 1 + ipR
�e−4	� . �50�

The Wigner functions for the left-side wave functions 
n,�n

L are obtained from �46� through
changing the sign of 	 in the three exponentials of the general result �50�. In Fig. 4 we show the
Wigner functions of the states in the previous two figures, for n=1, 2, 3, 4, and 5. We note in the
figure that the number of zeros of the configuration-space function on 	�0 axis can be seen from
the Wigner plot in Fig. 4 by counting the changes of sign of the phase space function along the
	�0 axis. The absolute square of the momentum wave functions are symmetric and bell-shaped,
with their width increasing with n.

VI. CONCLUSIONS

We obtained the bound-state wave functions of the one-dimensional hydrogen atom on the
hyperbola H1 by solving the Schrödinger equation in configuration space. As in the flat case, we
have shown that their double degeneracy is explained by the Andrews mechanism of space-
splitting. We have found that the two independent position wave functions in the regions u1�0
and u1�0 are expressible in terms of Gauss hypergeometric functions 2F1 �or Jacobi polynomials�
as expected. This is in contrast with the flat one-dimensional case where the wave functions are
written in terms of the associated Laguerre polynomials Ln−1

1 ���x����0, i.e., 1F1�−n+1;��x��
confluent hypergeometric functions �see Eq. �31� and Ref. 4�. The wave functions in momentum
representation were obtained through the usual Fourier transform method, and it was surprising
that these could be written in the closed form also, in terms of ordinary Gamma functions. And we
verified that in the R→� contraction limit, the hyperbolic system becomes the well-known one on
flat space.

The simple form of the momentum wave functions allowed us to construct the Wigner distri-
bution function of this model in closed analytic form, and to check its correctness through the
marginal projections. We note that the above-noted expressions for the Wigner functions in the
hydrogen atom model are considerably simpler than those for the one-dimensional oscillator on
H1, found in Ref. 16, which have the form of two sums over Gauss hypergeometrics. As expected,
Fig. 4 shows that with increasing energy the states show larger spread of probability at greater
distances. The pointed-triangle shapes of the main peak of the Wigner function and its regions of
negativity follow the pattern of Wigner functions for bound states of other potentials having a
mixed spectra.28
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We leave for future consideration important issues such as the hidden symmetry group and the
supersymmetrization of the one-dimensional hydrogen atom on the hyperbola and on the circle.
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We propose a general method for the deformation quantization of any second-class
constrained system on a symplectic manifold. The constraints determining an arbi-
trary constraint surface are in general defined only locally and can be components
of a section of a nontrivial vector bundle over the phase-space manifold. The
covariance of the construction with respect to the change of the constraint basis is
provided by introducing a connection in the “constraint bundle,” which becomes a
key ingredient of the conversion procedure for the nonscalar constraints. Unlike in
the case of scalar second-class constraints, no Abelian conversion is possible in
general. Within the BRST framework, a systematic procedure is worked out for
converting nonscalar second-class constraints into non-Abelian first-class ones. The
BRST-extended system is quantized, yielding an explicitly covariant quantization
of the original system. An important feature of second-class systems with nonscalar
constraints is that the appropriately generalized Dirac bracket satisfies the Jacobi
identity only on the constraint surface. At the quantum level, this results in a
weakly associative star-product on the phase space. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1935430g

I. INTRODUCTION

The quantization problem is usually understood as that of constructing a quantum theory for
a given classical system, at the same time preserving important properties of the system such as
locality and global symmetries. This additional requirement is crucial. Indeed, formally one can
always find a representation such that all the constraints are solved, gauge symmetries are just shift
symmetries, and the Poisson bracket has the canonical form. But in doing so one usually destroys
locality and global symmetries. It is the problem of the quantization of relativistic local field
theories that initiated the development of sophisticated quantization methods applicable to systems
with non-Abelian and open gauge algebras.1–4

From this point of view, the problem of quantizing curved phase space appears as a problem
of constructing quantization in a way that is explicitly covariant with respect to the arbitrary
change of phase-space coordinates. Given such a methodsat the level of deformation quantization
at leastd one can always find quantization in each coordinate patch and then glue everything
together. Similar to the curved phase-space quantization problem is the one of quantizing an
arbitrary constraint surface. Any surface can be represented by independent equationssconstraintsd
but in general only locally. In fact, one can always assume that the surface is the zero locus of a
section of a vector bundle over the phase space. The quantization problem for arbitrary con-
strained systems can then be reformulated as the problem of constructing quantization that is
explicitly covariant with respect to the basis of constraints. In this paper, we restrict ourselves to
the case of second-class constraints and address the problem of constructing a quantization scheme
that is explicitly covariant with respect to the change of phase-space coordinates and the constraint
basis.
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A general framework that allows us to quantize second-class constraints at the same footing as
first-class ones is the well-knownconversion—the procedure that converts the original second-
class constraints into first-class ones by introducing extra variables known as conversion variables.
At least locally in the phase space, any second-class constraints can be converted into Abelian
ones, and therefore the Abelian conversion is sufficient for most applications. The situation
changes drastically if one wants the quantization to be explicitly covariant with respect to the
change of the constraint basis. Indeed, by changing the constraint basis one can always make the
converted constraints non-Abelian. The additional price one has to pay for covariance is the
appearance of a connection in the vector bundle associated with the constraints. This is reminis-
cent of the quantization of systems with curved phase space, where phase-space covariance re-
quires introducing a symplectic connection on the phase space. In fact, this is more than a coin-
cidence.

The coordinate and constraint basis covariance appear to be intimately related within the
quantization methods developed in Refs. 5 and 6ssee also Refs. 7 and 8d. Indeed, the key
ingredient of these methods is the embedding of the system into the cotangent bundle over its
phase space. In the natural coordinate systemxi ,pi, the embedding constraintspi =0 are nonscalar.7

In this example, the reparametrization covariance in the original phase space translates into the
covariance with respect to the basis of constraintspi. In Ref. 8, this approach was extended to
general second-class constrained systems with constraints being scalar functions.

In this paper, we extend the method in Ref. 8 to the case where the second-class constraint
surface is an arbitrary symplectic submanifold of the phase space, not necessarily defined by zero
locus of the set of any independent scalar functions. Considering the quantization problem for the
constrained systems whose classical dynamics evolves on the constraint surface, one has to take
care of the geometry of the tubular neighborhood of the constrained submanifold. The geometry of
the entire phase space is irrelevant for this problem. In its turn, any tubular neighborhood of the
submanifold can be identified with the normal bundle over the submanifold. For coisotropic
submanifoldssfirst-class constrained systemsd, the corresponding approach to quantization was
considered in Ref. 9. It then follows that an arbitrary constrained submanifold can be considered
a zero locus of a section of the appropriate vector bundle over the phase space. Moreover, in
practical physical problems, the second-class constraints can appear from the outset as compo-
nents of a section of some bundle over the original phase space rather than scalar functions. This
leads naturally to the concept of constrained systems with nonscalar constraints.

By considering the original nonscalar constraintsua at the same footing with the constraintspi

determining the embedding intoT*M, we achieve a globally defined description for general
second-class systems. Using the appropriate non-Abelian conversion procedure and subsequent
BRST quantization, we then arrive at the formulation of the quantum theorysat the level of
deformation quantizationd that is explicitly covariant under the reparametrizations of the original
phase space and under the changing of the constraint basis. We note that the nonscalar first-class
constraints were also considered in Ref. 10 in a different framework.

The conventional approach to second-class systems is based on the Dirac bracket—a Poisson
bracket on the entire phase space, which is determined by constraints and for which the constraint
surface is a symplectic leaf. This allows considering the Poisson algebra of observables as a Dirac
bracket algebra of phase-space functions modulo those vanishing on the constrained submanifold.
From this point of view, the quantization problem can be understood as that of quantizing a
degenerate Poisson bracket. However, outside the constraint surface, the Dirac bracket is not
invariant under the change of the constraint basis and therefore is not well defined in the case of
nonscalar constraints. The Dirac bracket bivector can be invariantly continued from the constraint
surface under certain natural conditions, although the price is that the Jacobi identity is in general
satisfied only in the weak sense, i.e., on the constrained submanifold. In the non-Abelian conver-
sion framework such a covariant generalization of the Dirac bracket is naturally determined by the
Poisson bracket of observables of the converted system. We note that weak brackets were previ-
ously studied in various contexts in Refs. 11–14.

At the quantum level, the lack of Jacobi identity for the covariant Dirac bracket results in a

072301-2 Batalin, Grigoriev, and Lyakhovich J. Math. Phys. 46, 072301 ~2005!

                                                                                                                                    



phase-space star product that is not associative in general. Within the non-Abelian conversion
approach developed in the paper, this star product naturally originates from the quantum multi-
plication of BRST-invariant extensions of phase-space functions. In the BRST cohomology, we
obtain an associative star product that is identified with the quantum deformation of the classical
algebra of observablessfunctions on the constraint surfaced. In particular, the associativity of the
phase-space star-product is violated only by the terms vanishing on the constraint surface.

The quantization method developed in this paper can be viewed as an extension of the
Fedosov quantization scheme15,6 to systems whose constrained submanifolds are defined by non-
scalar constraints and whose phase spaces, as a result, carry a weak Poisson structure. We note that
gauge systems with a weak Poisson structure can be alternatively quantized14 using the Kont-
sevich formality theorem.

II. GEOMETRY OF CONSTRAINED SYSTEMS WITH LOCALLY DEFINED CONSTRAINTS

We consider a constrained system on a general symplectic manifoldsv ,Md. The constrained
system is defined onM by specifying a submanifoldS,M such that the restrictionuvuS of the
symplectic form to the constraint surface has a constant rank. IfS is coisotropic, the constrained
system is called first class. A constrained system is called second class if the restrictionuvuS of the
symplectic form is invertible onS.

Let us assume for a moment thatS is determined by constraintsua=0 that are globally
defined functions onM; then uhua ,ubjuS=0 s hua ,ub j uS is invertibled iff the system is first
srespectively, secondd class. The converse is also true, butonly locally: if a constrained system is
first srespectively, secondd class, then locally there exist independent functionsua determining the
constraint surfaceS by ua=0 and any such functions satisfyuhua ,ubjuS=0 srespectively,
hua ,ub j uS is invertibled.

The dynamics of a constrained system onM is assumed evolving on the constraint surface
S,M. At the quantum level, a tubular neighborhood ofS gets involved in describing dynamics.
In its turn, it is a standard geometrical fact that any such neighborhood is diffeomorphic to a vector
bundle overS. Indeed, in each neighborhoodUsid of a point ofS one can pick a coordinate system
xsid

a , ua
sid such thatSùUsid is singled out byua

sid=0 and on the intersection of two such neighbor-
hoodsUsid andUs jd

xsid
a = Xsi j d

a sxs jdd, ua
sid = sfsi j dda

bub
s jd s2.1d

with some functionsXsi j d
a sxd and fsi j dsxd. Functionssfi jdb

a can be identified with transition func-
tions of a vector bundleV*sSd over S swe use the notation for a dual bundle to make notations
convenient in what followsd. Under the identification of an open neighborhood ofS with the
vector bundleV*sSd, coordinatesua are identified with constraint functions onM. In particular,S
goes to the zero section ofV*sSd. Note that the constraintsua, being understood as functions on
M, are defined only locally. If there exist globally defined constraints thenV*sSd is trivial.

It can be useful to pull back the vector bundleV*sSd to the vector bundleV*sMd over M.
Functionsua are then naturally identified with the components of a globally defined sectionu of
V*sMd. At the same timeS is nothing else than a submanifold of points whereu vanishes. These
arguments motivate the following concept of a constrained system.

Definition 2.1: A constrained system with nonscalar constraints is a triple(M ,V*sMd ,u)
where theM-symplectic manifold with a symplectic formv, V*sMd-vector bundle overM, and
u is a fixed section of V*sMd. It is assumed that vanishing points ofu are regular and form a
submanifoldS,M (constraint surface) such thatuvuS has a constant rank.

The definitions of first- and second-class constrained systems still stand because they are
formulated entirely in the intrinsic terms of the constraint surfaceS, making use only of the rank
of uvuS irrespectively of the way of definingS.

Several comments are in order:
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sid Another possibility to consider an arbitrary constraint surface keeping at the same time
constraints as globally defined functions is to use overcomplete sets of constraintssi.e.,
reducible constraints with different terminologyd. However, depending on a particular sys-
tem this can be a complicated task. Moreover, even if the constraints are reducible it can
also be useful to allow them to be nonscalar.

sii d As we have seen, any submanifoldS,M can be represented as a surface of regular
vanishing points of a section of a vector bundle overM. Note, however, that by taking
arbitrary constraintsua

sid in each neighborhoodUsid, one does not necessarily arrive at a
vector bundle. Indeed, in the intersectionUsidùUs jd one still has

ua
sid = sfsi j dda

bub
s jd. s2.2d

But functionssfsi j dda
b are defined only up to terms of the formsxsi j dda

bgug with sxsi j dda
bg

=−sxsi j dda
gb. As a consequence, functionssfsi j dda

b satisfy the cocycle condition also up to
terms proportional tou,

sfsikdda
gsfskjddg

b = sfsi j dda
b + ¯ . s2.3d

This means that only appropriately chosen constraints can be identified with components of
a section of a vector bundle overM. What differential geometry tells us is that such a
choice always exists.

III. CONNECTIONS AND SYMPLECTIC STRUCTURES ON VECTOR BUNDLES

In what follows we need some geometrical facts on the connections and symplectic structures
on the appropriately extended cotangent bundle over a symplectic manifold. Now letM be a
symplectic manifold andWsMd→M be a symplectic vector bundle overM. Also let eA be a
local frameflocally defined basic sections ofWsMdg andD be the symplectic form on the fibers
of WsMd. The components ofD with respect toeA are determined byDAB=DseA,eBd.

It is well known ssee, e.g., Ref. 6d that any symplectic vector bundle admits a symplectic
connection. LetG and= denote a symplectic connection and the corresponding covariant differ-
ential in WsMd. The compatibility condition reads as

=D = 0, ]iDAB − GiA
C DCB − GiB

C DAC = 0, s3.1d

where the coefficientsGiA
C of G are determined as

=eA = dxi GiA
C eC. s3.2d

It is useful to introduce the following connection 1-form:

GAB = dxi GAiB, GAiB = DACGiB
C . s3.3d

Then compatibility conditions3.1d is rewritten as

dDAB = GAB − GBA, ]iDAB − GAiB + GBiA = 0. s3.4d

As a consequence of the condition, one arrives at the following property of the connection 1-form
GAB:

dGAB = dGBA. s3.5d

Consider the following direct sum of vector bundles:

E0 = WsMd % T*M, s3.6d

whereT*M denotes a cotangent bundle overM. Let xi, pj andYA be standard local coordinates
onE0 sxi are local coordinates onM, pj are standard coordinates on the fibers ofT*M, andYA are
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coordinates on the fibers ofWsMd corresponding to the local frameeAd. Assume in addition that
M is equipped with a closed 2-formv snot necessarily nondegenerated.

Considered as a manifold thatE0 can be equipped with the following symplectic structure:

vE0 = p*v + 2 dpi ∧ dxi + DABdYA ∧ dYB + dGAB YAYB − 2GAB ∧ dYA YB, s3.7d

where p*v is the 2-formv on M pulled back by the bundle projectionp :E0→M. One can
directly check that 2-forms3.7d is well defined. Indeed, it can be brought to the standard explicitly
covariant form, similar to that of the supersymplectic manifolds16

vE0 = p*v + 2 dpi ∧ dxi + DAB = YA ∧ = YB + RABYAYB. s3.8d

Here,=YA=dYA+GC
AYC, andRAB=Ri j ;ABdxi ∧dxj denotes the curvature ofG:

Ri j ;AB = DACRi jB
C = DACs]iG jB

C − ] jGiB
C + GiD

C G jB
D − G jD

C GiB
D d

= ]iGAjB − ] jGAiB + GCiADCDGDjB − GCjADCDGDiB. s3.9d

The last equality follows from the nondegeneracy ofDAB and compatibility conditions3.4d. Also,
it is straightforward to show that the 2-forms3.7d is exact, besides the first term:

vE = p*v + df2pi dxi + YADAB = YBg. s3.10d

Analyzing the structure on the rhs ofs3.10d, one can see that an arbitrarysnot necessarily

symplecticd connectionG
0

can be taken to construct the close 2-form onE in s3.10d. It turns out that
the resulting 2-form still has the structures3.7d, with G given by

GAB =
1

2
sdDAB + G

0

AB + G
0

BAd. s3.11d

It is easy to see that connectionG is by construction compatible with the sympletric structureD

for any connectionG
0

. In addition, if G
0

was taken symplectic it would bringG=G
0

.
The Poisson bracket onE0 corresponding to the symplectic forms3.7d is determined by the

following basic relations:

hpi,x
jjE0

= − di
j, hpi,pjjE0

= vi jsxd +
1

2
Ri j ;ABsxdYAYB,

s3.12d
hYA,YBjE0

= DABsxd, hpi,Y
AjE0

= GiB
A sxdYB,

with all the others vanishing:hxi ,YAjE0
=hxi ,xjjE0

=0.

IV. EMBEDDING AND CONVERSION AT THE CLASSICAL LEVEL

A. Embedding

Consider a second-class constrained system(M ,V*sMd ,u) with locally defined constraints
ua fi.e., ua are components of a sectionu of V*sMd with respect to a local frameeag. Let Tv

* M
be a cotangent bundle equipped with the modified symplectic structure 2dpi ∧dxi +p0

*v, wherev
is a symplectic form onM andp0:Tv

* M→M is the canonical projection.
The embedding ofM into Tv

* M as a zero section is a symplectic map, i.e., a restriction of
symplectic form 2dpi ∧dxi +p0

*v to the submanifoldM is v. Moreover, constrained system
sM ,V*sMd ,ud is equivalent to the constrained system(Tv

* M ,W*sMd ,Q), whereW*sMd is a
direct sumW*sMd=T*M % V*sMd considered as a vector bundle overTv

* sMd and components
of Q with respect to the local framedxi ,ea are −pi ,ua sin other words, locally, the constraints are
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given by −pi =0 andua=0d. Indeed, by solving constraints −pi =0 one arrives at the starting point
constrained system. At this stage the construction here repeats the one from Ref. 8, with the only
difference being that constraintsua are now defined only locally.

B. Non-Abelian conversion

Given second-class constraintsQA, one can always find an appropriate extension of the phase
space by introducing conversion variablesYA whose Poisson bracket relations have the form
hYA,YBj=DAB, with DAB invertible. Then one can find converted constraintsTA in the extended
phase space, satisfying

hTA,TBj = UAB
C TC, uTAuY=0 = QA. s4.1d

The resulting first-class system with constraintsTA is equivalent to the original second-class one
and is called converted system. For second-class constraints that are scalar functions on the phase
space one can always assume the conversion to be Abelian, i.e. with vanishing functionsUAB

C ssee
Ref. 17 for a detailed discussion of the conversion and the existence theorem for the Abelian
conversiond.

For the nonscalar constraints one naturally wants to build converted constraints in the invari-
ant way, i.e., independently of a particular choice of the constraint basis. As we will see momen-
tarily this forces one to consider, in general, a non-Abelian conversion.

To see this, one first needs to introduce conversion variables in a geometrically covariant way.
It is useful to take as conversion variables the coordinates on the fibers of the bundleWsMd dual
to the bundleW*sMd=T*M % V*sMd associated to constraintsua ,−pi. The phase space is then

E0 = Tv
* M % WsMd, WsMd = VsMd % TM. s4.2d

We introduce unified notationeA and YA for the local frame and coordinates on the fibers of
WsMd, respectively. In the adapted basisYA is split into Yi andYa.

Given a connectionḠ in VsMd, one can equipWsMd with the following fiberwise symplectic
structure:

Di j = vi j , Dia = − Dai = =̄ iua = ]iua − Ḡia
b ub, Dab = 0. s4.3d

In what follows we also need the explicit form of its inverseDAC,DACDCB=dB
A

Dab = Dab, Dib = − vilDlgDgb,

s4.4d
Di j = vi j − vikDkaDabDlbvl j ,

where we introducedDab as follows:

DagDgb = db
a, Dab = Diavi jD jb. s4.5d

D is invertible onS by assumptionsrecall that its invertibility is a part of the defining property of
second-class constraintsd. It is then invertible in some neighborhood ofS and we assume that it is
invertible on the entireM.

Note thatDi j determines a bivector field onM that coincides onS with the conventional
Dirac bracket. The latter bracket is not well defined beyondS if the constraints are not scalars.
The bracket determined byDi j in s4.4d can therefore be understood as a covariant generalization
of the Dirac bracket to the case of nonscalar constraints. It is straightforward to check that the
covariant Dirac bracket satisfies Jacobi identity modulo terms vanishing onS.
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Furthermore, one can equipWsMd with the symplectic connection compatible with the fiber-
wise symplectic form. This is achieved as follows. First, one picks a linear symplectic connection

ḠM on the symplectic manifoldM and equipsWsMd with the direct sum connectionG
0

deter-
mined by

=
0

ei = sḠMdi
jej, =

0

ea = sḠda
beb, s4.6d

where=
0

denotes the covariant differential determined byG
0

. Given “bare” connection=
0

in WsMd
one then arrives at the symplectic connectionG usings3.11d. In its turn the symplectic connection
in WsMd determines a symplectic structurevE0 on E0 in accordance to the general formulas3.7d.
The associated Poisson bracket reads as

hpi,x
jj = − di

j, hpi,pjj = vi jsxd +
1

2
Rij ;ABsxdYAYB,

s4.7d
hYA,YBj = DABsxd, hpi,Y

Aj = GiB
A sxdYB.

Here and in what follows we drop the superscript of the Poisson bracket on the extended phase
space whenever it cannot lead to confusions. Note that the embedding ofTv

* M into E0 is sym-
plectic. This implies that coordinatesYA can be treated as second-class constraintssthey can also
be understood as gauge conditions for the converted systemd. Considered together with constraints
QA they determine a constrained system onE0 that is equivalent to the original constrained system
on M.

Since we are interested in the non-Abelian conversion, it is preferable to work in terms of the
BFV-BRST formalism from the very beginning. To this end we introduce ghost variablesCA and
PA with the transformation law determined by that of components of a section ofWsMd and
W*sMd, respectively. One can consistently assume canonical Poisson bracket relations,

hPA,CBj = − dA
B, s4.8d

and brackets betweenCA andPA and all other variables vanishing. Note that in order for Poisson
brackets between ghosts and other variables to remain vanishing when passing from one neigh-
borhood to another momentapi should transform inhomogeneously. This means that the extended
phase space isE=Tv

* (PWsMd) % WsMd with WsMd in the second summand considered as a
vector bundle overPWsMd. Here and belowP indicates that the Grassmann parity of the fibers
of a vector bundle is reversed. Note also that the extended phase spaceE is not anymore a vector
bundle overM becausepi transform in an inhomogeneous way.

In the BRST language the conversion problem can be formulated as follows. Given “bare”

generating functionV̄ whose expansion with respect to the ghosts variables starts with given
second-class constraintsQA,

V̄ = CAQA + ¯ , ghsV̄d = 1. s4.9d

The conversion implies finding BRST charge satisfying

hV,Vj = 0, ghsVd = 1, uVuY=0 = V̄. s4.10d

Note thatV and V̄ are assumed to be globally defined functions on the entire extended phase
space and its submanifold determined byYA=0, respectively.

Now we describe conversion of the second-class constraintsQA=h−pi ,uaj. Taking into ac-

count their transformation properties a natural anzatz for a generating functionV̄ is as follows:
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V̄ = − Cipi + Caua + CisḠdib
a CbPa. s4.11d

Indeed, the nonlinear in ghosts term coming from the transformation law forpi is compensated by
the term coming from inhomogeneous contribution in the transformation law for the connection

coefficients. This is exactly the point. In order for the generating functionV̄ as well as BRST
chargeV to be globally defined functions, one needs to introduce the terms nonlinear in ghosts. In
terms of constraints, this implies that the conversion is non-Abelian.

C. Existence and construction of the classical BRST charge

In the standard BFV-BRST formalism the BRST charge and BRST-invariant observables are
constructed by expanding in homogeneity degree in ghost momenta. The existence of a nilpotent
BRST charge is ensured by Homological Perturbation Theory18 with the relevant operator being
Koszul–Tate differential associated with the constraints. At the same time, within the Abelian
conversion procedure the effective first-class constraints, BRST charge, and BRST-invariant ob-
servables are constructed by expanding in homogeneity degree in conversion variables, and all
these quantities are to be found order by order in these variables.

In the case of non-Abelian conversion it is then natural to take as an expansion degree the total
homogeneity in ghost momentaPA and conversion variablesYA:

degYA = degPA = 1, degxi = degpi = degCA = 0. s4.12d

Accordingly, V decomposes as

V = o
s=0

Vs, V0 = Caua − Cipi, V1 = CisḠdib
a CbPa + ¯ , s4.13d

where we have explicitly kept the term from the first-order contribution that is needed for cova-
riance. The required BRST charge satisfyings4.10d is to be constructed order by order in the
degree. To this end one first needs to satisfy the master equation to zeroth order in the degree,
which implies findingV1. A “minimal” form of V1 that satisfies a master equation to the zeroth
order can be taken as

V1 = CisḠdib
a CbPa − CADABYB. s4.14d

In constructing BRST charge it is also useful to restrict ourselves to the following class of
phase-space functions: letU0 be the space of formal power series inYA, ghostsCA, and ghost
momentaPa with coefficients being smooth functions inxi. In other words we forbid dependence
on pi and Pi. The spaceU0 is closed under the multiplication and the Poisson bracketsboth
operations can be naturally defined for formal power seriesd. AlgebraU0 decomposes with respect
to the degrees4.12d asU0= %sù0Us

0 so that an element ofUs
0 has the form

a = o
pù0,qù0

p+q=s

sapqdA1. . .Ap

a1. . .aqYA1 . . .YApPa1
. . .Paq

, apq = apqsx,Cd. s4.15d

Since the BRST charge and BRST-invariant observables are to be constructed by expanding in
the degrees4.12d the lowest degree term −d in the expansion ofhV , ·j plays a role of the nilpotent
operator determining homological perturbation theory. Considered acting on elements fromU0,

operatord is completely determined byV̄ and is given by degree −1 operator
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d = CA ]

]YA + ua

]

]Pa

. s4.16d

It is therefore a sum of the standard Koszul–Tate operatordK=uas] /]Pad associated with original
constraintsua and the operatorCAs] /]YAd that determines a homological perturbation theory in the
Abelian conversion framework and in the Fedosov quantization.

To proceed with the conversion we need to introduce a version of the contracting homotopy
operator determined by

d* fpq =
1

p + q
YA ]

]CA fpq, p + q Þ 0, d* f00 = 0, d*2 ; 0, s4.17d

for an elementfpqPU0 that is homogeneous inCA andYA of ordersp andq, respectively. Opera-
tors d andd* satisfy

d*da + dd*a = ua − auC=Y=0. s4.18d

Proposition 4.1: There exists a classical BRST chargeV, ghsVd=1 satisfying master equation
hV ,Vj=0, boundary conditions (4.13) and (4.14), and such thatVsPUs

0 for sù2. In addition,
givenV0 and V1 such a BRST charge is unique providedd*Vs=0 for all sù2.

Proof: The Poisson bracket onE can also be expanded with respect to the degree as

h·, ·j = h·, ·j−2 + h·, ·j−1 + h·, ·j0 + h·, ·j2 s4.19d

sterms with other degrees vanishd, where each term is a bilinear first-order differential operator of
definite degree. In particular,

hf,gj−2 = f
]Q

]YADAB ]

]YBg. s4.20d

The master equation at ordern in degrees implies

hV0,Vn+2j−2 + hV0,Vn+1j−1 + hV1,Vn+1j−2 + Bn = 0, s4.21d

whereBn depends onVs with søn only and is given explicitly by

Bn = o
0ùp,qùn

p+q+s=n

hVp,Vqjs. s4.22d

In fact, the first term ins4.21d vanishes becauseV0 does not depend onY and the equation takes
the form

dVn+1 = Bn. s4.23d

This equation can always be solved byVn+1=d*Bn usings4.18d, uBnuC=Y=0=0, and the consistency
conditiondBn=0. The later is fulfilled provided the master equation holds to lowest orders, i.e.,
that Vs for søn are such that

hV
snd

,V
snd

j P %
sùn

Us
0, V

snd

= o
s=0

n

Vs. s4.24d

Indeed, consider the following identity:
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hV
snd

,hV
snd

,V
snd

jj = 0. s4.25d

Next, observe thathV
snd

,V
snd

j=Bn+¯ with dots denoting terms fromUùn+1
0 and, finally, check that to

ordern−1 in the degree this identity givesdBn=0.
This solution forVn+1 obviously belongs toU0 and satisfiesd*Vn+1=0. Conversely, Eq.s4.23d

has a unique solutionVn+1 satisfyingVn+1PUn+1
0 , d*Vn+1=0, and ghsVn+1d=1. h

D. Classical observables and weak Dirac bracket

We show that observables of the original system onM are isomorphic to observables of the
BFV-BRST system onE. The latter are understood as cohomology of the adjoint action,

Q = hV, · j s4.26d

of the BRST charge.
Proposition 4.2: Let f0= f0sx,Cd be any Y andP-independent function. Then there exists f

PU0 such that

hV, fj = 0, uf uY=P=0 = f0, ghsfd = ghsf0d. s4.27d

If, in addition, d*sf − f0d=0 and ghsfdù0, then f is a unique BRST-invariant extension of f0.

Moreover, if f, f̃ PU0 both satisfy (4.27) with the same function f0, then f− f̃ =Qh for some function
hPU0.

Proof: The proof is standard and follows by expandingQf=0 with respect to degrees4.12d
and using the fact thatd cohomology is trivial in nonzero degree. The later statement obviously
holds provided cohomology of the standard Koszul–Tate operatordK=uas] /]Pad vanishes in
nonzero degree inPa. Locally, operatordK is known to have vanishing cohomology in nonzero
degree, provided constraintsua satisfy standard regularity assumptions. This also holds globally,
as can be shown by using a suitable partition of unity. h

Let f0 andg0 be two inequivalent observables of the original system, i.e.uf0uS− ug0uSÞ0. It
then follows from the explicit form ofV that their BRST-invariant extensionsf andg determined
by Proposition4.2 are not equivalent, i.e.,f −gÞ hV ,hj for anyh. This means that observables of
the original system are observables of the BFV-BRST system. In fact, one can show that these
systems are equivalent in the sense that the Poisson algebra of inequivalent observables of the
original systemsi.e., the algebra of functions onS equipped with the Poisson bracketd is isomor-
phic to the Poisson algebra of ghost number zero BRST cohomology of the BFV-BRST system.
Now we restrict ourselves to a little bit weaker equivalence statement. Namely, we show that this
holds for BRST cohomology evaluated inU0 sQ obviously mapsU0 to itselfd.

Proposition 4.3: Let f be an arbitrary function fromU0 satisfying Qf=0. Then f=Qh for some
h iff uf uS= uf uua=CA=YA=Pa=0=0.

Proof: Let f0= uf uY=P=0. Condition uf uS= uf0uS=0 implies that there existf0
asxd and f0Asx,Cd,

such that

f0 = uaf0
a + CAf0A, s4.28d

and their transformation properties can be assumed to be those of sections ofVsMd andW*sMd,
respectively. One can then check that

usQhduY=P=0 = f0, h = − Paf0
a − YAf0A, s4.29d

becausef0=−dh and usQhduU0
0=−dh for hPU1

0. Proposition4.2 then implies that there existsh8
PU0 such thatf =Qsh+h8d. h

To summarize, we have the following.
Theorem 4.1:The BRST cohomology of Q=hV , ·j evaluated inU0 are given by
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HnsQ,U0d = C`sSd, n = 0,

s4.30d
HnsQ,U0d = 0, n Þ 0.

The fact that all the physical observables can be taken elements ofU0 suggests that we
considerU0 as a fundamental object replacing the algebra of functions on the entire extended
phase space. This can be consistently done in spite of the fact that the BRST chargeV and the
ghost chargeG=CAPA do not belong toU0. Indeed, from a more general point of view, a classical
BFV-BRST system is determined bysid Poisson algebra with a not necessarily nondegenerate
Poisson structure, which is also graded with the ghost degree,sii d Odd nilpotent BRST differential
Q of ghost number 1 that differentiates both the product of functions and the Poisson bracket, and
siii d differential V sdetermining evolutiond of zero ghost number that differentiates both the prod-
uct and the Poisson bracket and satisfiesfQ,Vg=0. The standard Hamiltonian BFV-BRST system
fits this definition withQ=hV , ·j andV=hH , ·j, with H denoting a Hamiltonian. Such a generali-
zation of the Hamiltonian BFV-BRST theory was recently studied in Ref. 14. Note also that in the
Lagrangian context this corresponds to theories described by the BRST differential not necessarily
generated by a master action and an antibracket. Theories of this type were recently considered in
Ref. 19.

From this slightly more general point of view, the Poisson algebraU0 is a BFV-BRST system
becauseQ and the ghost number operator preserveU0. The notion of a generalized BFV-BRST
system can be extended to the quantum case by replacing the Poisson algebra with the star-product
algebra. It can also be generalized further in the sense that the bracket can be allowed to satisfy the
Jacobi identity only up toQ-exact terms as well asV can preserve the bracket only weakly.14

Let us give some further comments concerning the Poisson bracket of BRST observables. In
the case whereV is Abelian ssee Ref. 8 for a detailed discussion of this cased Proposition4.2
establishes an isomorphism between the algebra of functions ofxi and functions ofxi, YA satisfy-
ing hV , ·j=0 andd* · =0. The later algebrasunderstood as a subalgebra inU0d is closed under the
Poisson bracket inU0. The Poisson bracket in this algebra determines a Poisson bracket onM that
can be easily seen to coincide with the Dirac bracket associated to second-class constraintsua.

In the present caseV explicitly depends onPa and one is forced to considerd* and
hV , ·j-closed functions fromU0 that are now allowed to depend also onCA andPa. However, this
algebra is not anymore closed under the Poisson bracket and therefore a direct counterpart of the
Dirac bracket fails to satisfy the Jacobi identity outsideS in this case. Indeed, finding unique lifts
f ,gPU0 of two phase-space functionsf0 and g0, evaluating their Poisson bracket, and putting
Y=P=0 one finds a bracket onM that coincides with the standard Dirac bracket whenua=0.
Explicitly, the bracket reads as

hf0,g0jD = ]i f0Di j ] jg0 = ]i f0 vi j ] jg0 − ]i f0 vil=̄ luaDab=̄kubvkj ] jg0, s4.31d

where

=̄ iua = ]iua − Ḡia
b ub, DagDgb = db

a, Dab = =̄ iuavi j=̄ jub. s4.32d

This bracket can be considered as a direct generalization of the standard Dirac bracket. Unlike the
later this generalized bracket does not depend on the choice of constraint basis and therefore is
well defined outsideS in the case of nonscalar constraints. The Jacobi identity for the bracket

s4.31d is violated by the terms proportional to the curvatureR̄ij b
a of the connection=̄ and to the

constraintsua. So it is inevitably a weak bracket if the bundleVsMd does not admit a flat
connection.

E. Dirac connection

As we have seen, the construction imposes no constraints on the connectionGiB
A entering the

Poisson bracket onE but the compatibility with the symplectic fromDAB. A symplectic connection
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always exists and can be obtained, starting from an arbitrary connection inWsMd, e.g., using
s3.11d. Let us, nevertheless, give an explicit form of the particular symplectic connection, which,
as we are going to see, also has some additional properties.

To this end let us consider an explicit form of the compatibility condition=D=0,

]iv jk − G jik + Gkij = 0,

]i=̄ jua − G jia + Gai j = 0, s4.33d

Gaib − Gbia = 0.

A minimal solution having correct transformaion properties reads as

Gaib = 0, G jia = D jbsḠdia
b ,

s4.34d
Gi jk = sḠMdi jk, Gai j = − =̄ i=̄ jua,

where=̄i=̄ jua==̄iD ja=]iD ja−Gia
b D jb.

It is easy to see that ifVsMd is trivial and one takesḠ=0 thens4.34d coincides with the Dirac
connection introduced in Ref. 8. In fact, connections4.34d possesses similar properties with
respect to the weak Dirac bracket. To see this let us write down this connection in terms of the
coefficients with upper indices,

Gik
j = v jlssḠMdlik + DlgDga=̂ i=̂kuad, Gia

j = 0,

s4.35d
Gi j

a = − Dab=̂ i=̂ jub, Gia
b = Ḡia

b ,

where=̂iua==̄iua and=̂i=̂ jua=]iD ja−Ḡia
b D jb−sḠMd ji

kDka. ConnectionG in WsMd determines a
connectionGD in TM whose coefficients areGik

j . It follows from =DAB=0 andGia
j =0 that

s=DdiD jk = ]iD jk + Gil
j Dlk + Gil

kD jl = 0, s4.36d

which means that the Dirac bivector is covariantly constant with respect to the connectionGD. One
then concludes thatGD can be considered a generalization of the Dirac connection introduced in
Ref. 8.

Note thatGD is, in general, not symmetric and its torsion is proportional to the curvature ofḠ.
On the constraint surface this connection coincides with the Dirac connection in Ref. 8. Similar
arguments then show thatGM can be restricted toS and its restriction is a symplectic connection
on S considered as a symplectic manifold.

There is an ambiguity inG that is described by an arbitrary 1-form with values in the sym-
metric tensor square of the bundleW*sMd sin components, a general symplectic connection has
the formGAiB=GAiB

fixed+gAiB, with gAiB−gBiA=0d. One can try to find additional conditions restrict-
ing the ambiguity in the connection. In particular, it seems natural to formulate an invariant
criterion allowing to single out a symplectic connection inWsMd that after restricting to
TM,WsMd would respect the Dirac brackets4.31d on M.

Such a condition can be seen from analyzing the conversion procedure. To demostrate this, we
note that the term inV2 of the formCigAiBYAYB can be absorbed into the redefinition ofpi, which,
in turn, leads to the adjustment of the symplectic connectionGAiB→GAiB+gAiB. It is then natural
to choose the connection such that the respective contribution toV2 vanishes, i.e., the connection
that is not modified by the conversion. ForV satisfying conditions of the second part of Propo-
sition 4.1, this implies that
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usd*h− Cipi + CiḠia
b CaPb,CADABYBjduCa=0 = 0. s4.37d

This gives the following conditions onG:

]iv jk − G jik + ]kv ji − G jki + Gi jk + Gkji = 0,

]iD ja − DibḠ ja
b − G jia + Gi j a + Ga ji = 0, s4.38d

Gaib + Gbia = 0.

If one takesGi jk =sḠMdi jk, wheresḠMdi jk are coefficients of a fixed symmetric symplectic connec-
tion on M, then Eqs.s4.33d and s4.38d have a unique solution given by

Gaib = 0, G jia = D jbsḠdia
b +

1

3
R̄jia

b ub,

s4.39d

Gi jk = sḠMdi jk, Gai j = − =̄ i=̄ jua −
1

3
R̄ij a

b ub,

where R̄ij a
b ub=−f=̄i ,=̄ jgua. Note that the consistency ofs4.33d and s4.38d together withdv=0

requiresGi jk −Gikj =0.

This connection differs from the one ins4.34d by the terms proportional toR̄ij a
b ub. It also

determines a connectionGD8 on M, which coincides withGD on S. In particular,GD8 is compatible
with the Dirac bracket only weakly in general.

V. CONVERSION AT THE QUANTUM LEVEL

A. Quantization of the extended phase space

At the quantum level we concentrate on the algebraÛ0=U0 ^ ff"gg and its extensionÛ ob-
tained by allowing the dependence onpi andPi through the following combinationsssee Ref. 8 for
detailsd:

P = Cis− pi + Ḡib
a CbPad, G = CiPi . s5.1d

A general element ofÛ has the form

a = PrGsa0, r = 0,1, s= 0,1, . . . ,dimsMd, a0 P Û0. s5.2d

The algebraÛ is closed under ordinary multiplication and the Poisson bracket. Moreover, it can be

directly quantized. To this end one first quantizesÛ0 by introducing the Weyl star product accord-
ing to

sa ! bdsx,Y,C,P,"d = UHsasx,Y1,C1,P2,"ddexpS−
i"

2
SDAB ]Q

]Y1
A

]

]Y2
B −

]Q

]C1
a

]

]Pa
2

−
]Q

]Pa
1

]

]C2
aDDbsx,Y2,C2,P2,"dJU

Y1=Y2=Y,C1=C2=C,P1=P2=P
, s5.3d

whereP stands forPa only. This star product can then be extended fromÛ0 to Û. Here we give
only those formulas that we really need in what followsswe refer to Refs. 8 and 7 for further
details of such an extensiond:
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i

"
fP,ag = CiS ]

]xi − Ḡia
b Ca ]

]Cb + Ḡib
a Pb

]

]Pb − GiA
B YB ]

]YADa, a P Û0,

i

"
fP,Pg = − i"CiC jSvi j + R̄ij a

b CaPb +
1

2
Ri jABYAYBD , s5.4d

i

"
fG,ag = − Ci ]

]Ci + Pi
]

]Pi
, a P Û0.

Note that these relations are sufficient to consistently considerÛ0 as a star-product algebra under-
lying the BFV-BRST system at the quantum level in the sense described in4.4 after the Theorem
4.1.

On Û we introduce the following degree:

degYA = degPA = degpi = 1, degCA = degxi = 0, deg" = 2. s5.5d

One then decomposesÛ0 and Û with respect to the degree as

Û0 = %
s=0

Ûs
0, s5.6d

and similarly for Û. The star product is also decomposed into homogeneous components with
respect to degree

! = !0 + !1 + !2 + ¯ . s5.7d

In particular,!0 contains an ordinary product, a Weyl product in the sector ofY variables, and the
component of the product that takesP with itself into −ı"CiC jvi j .

Let us note that the choice of the degree is not unique. The one we are using is convenient for
general proofs but perhaps is not the most suitable for computations because it is not preserved by

the star product inÛ0. From this point of view one can consider another degree for which
degCA=1 and gradings of other variables left unchanged.

B. Quantum BRST charge

Now we are going to show the existence of the quantum BRST charge satisfying

fV̂,V̂g = 0, ghsV̂d = 1, s5.8d

together with the conditionuV̂u"=0=V. Here and belowf·,·g stands for the graded commutator with

respect to the star multiplication inÛ, which is also decomposed into homogeneous component
with respect to the degree. A degrees component of the commutator is denoted byf· , ·gs.

It follows from the standard deformation theory and the vanishing ofQ cohomology in
nonzero ghost number that quantum BRST charge exists. However, instead of deforming the
classical BRST charge we construct the quantum one from scratch. To this end we show that the
quantum master equations5.8d has a solution satisfying the following boundary conditions:

V̂0 = Caua, V̂1 = P − CADABYB = − Cipi + CiḠib
a CbPa − CADABYB. s5.9d

Proposition 5.1: Equation (5.8) has a solution satisfying boundary condition (5.9) and

V̂s, Ûs
0 for sù2. Under the additional conditiond*V̂s=0, sù2 the solution is unique.

Proof: Proof is completely standard once degree is prescribed. The only thing to check is that
with boundary conditionss5.9d, the master equation holds at orders 0, 1, and 2, which is straight-
forward. The rest follows by induction, using that
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fV̂0,ag0 = 0,
1

i"
sfV̂0,ag1 + fV̂1,ag0d = da, s5.10d

for any aP Û0. Here,f· , ·gs denotes the degrees component of the star commutator. h

C. Quantum BRST observables and weakly associative star product

Given a nilpotent quantum BRST charge one can consider the cohomology group of its adjoint

actionQ̂=si /"dfV̂ , ·g. It follows from the standard deformation theory and Theorem4.1 that any
classical BRST cohomology class determines a quantum one. In fact it also follows that

HnsQ̂,Û0d > HnsQ,U0d ^ †f"g‡. s5.11d

It is nevertheless useful to explicitly construct representatives of the quantum BRST coho-
mology classes. Similarly to the classical case this is achieved by finding a lift of functions ofxi,

CA to BRST-invariant elements ofÛ0. We have the following.

Proposition 5.2: For any f0= f0sx,C ,"d there exists fP Û0, such that

fV, fg = 0, ghsfd = ghsf0d, uf uY=P=0 = f0. s5.12d

If in addition f is such thatd*sf − f0d=0 andghsfdù0, then f is a unique quantum BRST-invariant

extension of f0. Moreover, if f and f˜ both satisfys5.12d with the same f0, then f− f̃ =fV̂ ,hg for some

hP Û0.
Proof: The proof is standard once the degree is prescribed. That equation holds to lowest order

and follows fromdf0=0. h

If f ,gP Û0 are unique BRST-invariant extensions of functionsf0sxd andg0sxd determined by
Proposition5.2, then one can define a bilinear operation,

f0!Dg0 = usf ! gduY=P=0. s5.13d

This operation is not an associative product in general. However, it determines the associative star
product onS. Indeed, BRST cohomology can be identified with functions onS while quantum

multiplication in Û0 determines a quantum multiplication in the cohomology. By choosing differ-

ent lifts from functions onM to Û0 one can describe different extensions of the associative star
products onS to, in general, a nonassociative product onM.

As a final remark, we comment on the emergence of weak Poisson brackets and weak star
products in the context of constrained systems. In dynamics, and especially in what concerns the
deformations and quantization of classical dynamical systems, the Poisson geometry is stereotypi-
cally considered the most fundamental structure of the theory. But whenever a constrained or a
gauge system is considered, the dynamics, as such, does not require a Poisson algebra to exist for
all functions on the entire phase-space manifold. Only the space of physical quantities has to carry
a Poisson structure, and hence the geometry of the entire manifold turns out to have a weaker
structure than the Poisson one. As we have seen, this is the case with nonscalar second-class
constraints. The BRST theory was originally worked out as a tool for quantizing systems with
gauge symmetries defined by weakly integrable distributions. Now, as is seen, the idea of BRST
cohomology allows one to quantize systems whose Poisson algebra is also weak.
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A u-local formulation of superfield Lagrangian quantization in non-Abelian hyper-
gauges is proposed on the basis of an extension of general reducible gauge theories
to special superfield models with a Grassmann parameteru. We solve the problem
of describing the quantum action and the gauge algebra of anL-stage-reducible
superfield model in terms of a BRST charge for a formal dynamical system with
first-class constraints ofsL+1d-stage reducibility. Starting fromu-local functions of
the quantum and gauge-fixing actions, with an essential use of Darboux coordinates
on the antisymplectic manifold, we construct a superfield generating functionals of
Green’s functions, including the effective action. We present two superfield forms
of BRST transformations, considered asu-shifts along vector fields defined by
Hamiltonian-like systems constructed in terms of the quantum and gauge-fixing
actions and an arbitraryu-local boson function, as well as in terms of correspond-
ing fermion functionals, through Poisson brackets with opposite Grassmann pari-
ties. The gauge independence of the S-matrix is proved. The Ward identities are
derived. Connection is established with the BV method, the multilevel Batalin-
Tyutin formalism, as well as with the superfield quantization scheme of Lavrov,
Moshin, and Reshetnyak, extended to the case of general coordinates. ©2005
American Institute of Physics.fDOI: 10.1063/1.1938707g

I. INTRODUCTION

The construction of superfield counterparts of the Lagrangian1 and Hamiltonian2,3 quantiza-
tion schemes for gauge theories on the basis of BRST symmetry4 has been covered in a number of
papers.5–7 These works are based on nontrivialsrepresented by the operatorD=]u+u]t, fD ,Dg+

=2]td and trivial relations between the event and oddu components of supertime.8 In Refs. 5–7,
the geometric interpretation9 of BRST transformations is realized by special translations in super-
space, which originally provided a basis for the superspace description10 of quantum theories of
Yang–Mills type.

It should be noted that superfield quantization is closely related to generalized Poisson
sigma-models,11 described from a superfield geometric viewpoint in Ref. 12, and then developed
algorithmically by Batalin and Marnelius in Ref. 13. The geometry ofD=2 supersymmetric
sigma-models14 with an arbitrary,Nù1, number of Grassmann coordinates has been adapted to
the classical and quantum description ofD=1 sigma-models by Hull, and, independently, to the

adElectronic mail: gitman@dfn.if.usp.br
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construction of the partition function forN=2, by Gozzi et al.15 Quantization with a single
fermion supercharge,Qst ,ud, containing the BRST charge and the unitarizing Hamiltonian,5 was
recently extended toN=2 snon-space–timed supersymmetries,16 and then, in Ref. 17, to the case of
an arbitrary number of supercharges,Qkst ,u1, . . . ,uNd, k=1, . . . ,N, depending on Grassmann vari-
ablesuk. The superfield modification18 of the procedure5 reveals a close interplay between the
quantum action of the Batalin–VilkoviskysBVd method1 and the BRST charge of the Batalin–
Fradkin–Vilkovisky sBFVd method.2 Finally, note that the superfield approach is used in the
description of second-class constrained systems as gauge models19 as well as in the second quan-
tization of gauge theories.20

The Lagrangian superfield partition function of Ref. 5 is derived from the Hamiltonian parti-
tion function through functional integration over so-called Pfaffian ghosts and momenta. On the
other hand, the quantization rulessRefs. 6 and 7d present a superfield modification of the BV
formalism by including non-Abelian hypergauges.21 The corresponding hypergauge functions en-
ter a gauge-fixing action which obeyssfollowing the ideas of Ref. 22d the same generating
equation that holds for the quantum action,6,7 except that the first-order operatorV in this equation
is replaced by the first-order operatorU sthese operators are crucial ingredients of Refs. 6 and 7
from the viewpoint of a superspace interpretation of BRST transformationsd.

The formalismsRefs. 6 and 7d provides a comparatively detailed analysis of superfield quan-
tization sBRST invariance, S-matrix gauge-independenced. This analysis is based on solutions to
the generating equations; however, a detailed correspondence between these solutions and a gauge
model is not established. To achieve a better understanding of the quantum properties based on
solutions of the superfield generating equations, it is natural to equip the formalismsRefs. 6 and 7d
with anexplicit superfield descriptionof gauge algebra structure functions that determine a given
model. So far, this problem has remained unsolved. For instance, the definition of a classical
action of superfields,Aisud=Ai +liu, on a superspace with coordinatessxm ,ud, m=0, . . . ,D−1, as
an integral of a nontrivial odd density,LsAsx,ud ,]mAsx,ud , . . . ;x,ud;Lsx,ud, is a problem for
every given model. Here, by trivial densitiesLsx,ud we understand those of the form

E dDxduLsx,ud =E duuS0sAsudd = S0sAd,

whereS0sAd is a usual classical action.
A peculiar feature of the vacuum functionalZ and generating functional of Green’s functions

ZfF*g in the formalismsRefs. 6 and 7d is the dependence of the gauge fermionCfFg and quantum
action SfF ,F*g on the componentslA of superfieldsFAsud in the multiplet sFA,FA

* dsud=sfA

+lAu ,fA
* −uJAd, wheresfA,fA

* ,lA,JAd are the complete set of variables of the BV method. An-
other peculiarity of Refs. 6 and 7 is that, due to the manifest structure ofFA

* sud and ZfF*g, an
effective actionG with the standard Ward identitysG ,Gd=0 in terms of a superantibracket6 can be
introduced by a Legendre transformation of lnZfF*g with respect toP1sudFA

* sud,

GfP0sF,F*dg =
"

i
ln ZfF*g + ]uhfP1sudFA

* sudgFAsudj, FAsud = −
"

i

d ln ZfF*g
dsP1sudFA

* sudd
. s1d

fThe objectsP1sud andd /dsP1sudFA
* sudd are, respectively, an element of the system of projectors

hPasud=da0s1−u]ud+da1u]u ,a=0,1j, acting on the supermanifold with coordinatessFA,FA
* dsud,

and a superfield variational derivative with respect toP1sudFA
* sud.g Although noncontradictory,

such an introduction ofG violates the superfield content of the variables. By violating the super-
field content, we understand the fact that the derivative ofZfF*g, which defines the effective
action through a Legendre transformation, is taken with respect to only one superfield component,
namely, theu-component ofFA

* sud, so that the resulting effective action depends only onfA and
fA

* , which can be formally expressed asP0sudsFA,FA
* dsud=sfA,fA

* d.
In this paper, we propose a local formalism of superfield Lagrangian quantization in which the

quantities of an initial classical theory are realized in the framework of au-local superfield model
sLSMd. The idea of LSM is to represent the objects of a gauge theorysclassical action, generators
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of gauge transformations, etc.d in terms ofu-local functions, trivially related to the space–time
coordinates, in the sense thatsas compared to the formalism—Ref. 5d the derivatives with respect
to the event and oddu component of supertime are taken independently. Using an analogy with
classical mechanicssor classical field theoryd, we reproduce the dynamics and gauge invariance
sin particular, BRST transformationsd of the initial theorysthe one withu=0d in terms ofu-local
equations, calledLagrangianand Hamiltonian systemssLS, HSd with a dynamical odd timeu,
which implies that this coordinate enters a LS or HS not as a parameter but as part of a differential
operator]u that describes theu-evolution of a system.

On the basis of the suggested formalism, we circumvent the peculiarities of the functionalsZ
andZfF*g in Refs. 6 and 7 as well as solve the following problems:

1. We develop adual descriptionof an arbitrary reducible LSM of Ref. 18 in the case of
irreducible gauge theoriesswith bosonic classical fields and parameters of gauge transformationsd,
in terms of a BRST charge related to asformald dynamical system with first-class constraints of a
higher stage of reducibility. By dual description, we understand such a treatment of a gauge model
that interrelates the Lagrangian and Hamiltonian formulationssthe latter understood in the sense of
formal dynamical systemsd.

2. An HS constructed fromu-local quantities, i.e., a quantum action, a gauge-fixing action,
and an arbitrary bosonic function, encodessthrough au-local antibracketd both BRST and so-
called anticanonical-like transformations, in terms of a universal set of equations underlying the
gauge-independence of the S-matrix. This set of equations is generated, in terms of an even
superfield Poisson bracket, by a linear combination of fermionic functionals corresponding to the
mentionedu-local quantities, e.g., the quantum and gauge-fixing actions as well as the bosonic
function.

3. For the first time in the framework of superfield approach, we introduce asuperfield
effective actionsalso in the case of non-Abelian hypergaugesd.

4. We extend the superfield quantization of Refs. 6 and 7 to the case of general coordinates on
the manifold of supersantidfields and establish a relation with the proposed local quantization.

The paper is organized as follows. In Sec. II, a Lagrangian formulation of a LSM is proposed
as an extension of a usual model of classical fieldsAi, i =1, . . . ,n=n++n−, to a u-local theory,
defined on the odd tangent bundleToddMCL;PTMCL=hAI ,]uAIj, I =1, . . . ,N=N++N−,
sn+,n−dø sN+,N−d. fP denotes the exchange operation of the coordinates of a tangent fiber bundle
TMCL over a configurationAI into the coordinates of the opposite Grassmann parity,23 and
N+,N−, are the numbers of bosonic and fermionic fields, among which there may exist superfields
corresponding to the ghosts of the minimal sector in the BV quantization schemesin terms of the
condensed notation24 used in this paperd.g The superfieldssAI ,]uAId are defined in a superspace

M=M̃3 P̃ parametrized byszM ,ud, where the space–time coordinateszM , i , I include Lorentz

vectors and spinors of the superspaceM̃. We investigate the superfield equations of motion,
introduce the notions of reduciblegeneralandspecialsuperfield gauge theories, and apply Noet-
her’s first theorem tou-translations. Section III is devoted to the Hamiltonian formulation of a
LSM on the odd cotangent bundleTodd

* MCL;PT*MCL=hAI ,AI
*j. Here, we establish a connec-

tion to the Lagrangian formalism and investigate the existence of a Noether integral, related to
u-translations, which leads to the validity of au-local master equation. The quantization rules are
given in Sec. IV. In particular, we construct the dual description of a LSM and define a generating
functional of Green’s functions, Zsud, and an effective action,Gsud, using an invariant description
of supersantidfields on a general antisymplectic manifold. An essential feature in introducing Zsud
and Gsud is a choice of Darboux coordinatessw ,w*dsud compatible with the properties of the
quantum action. In Sec. V, on the basis of a component form of the local superfield quantization,
we establish its connection with the first-level formalism,21 with the BV method, and with an
extension of the superfield schemesRefs. 6 and 7d. In Sec. VI, we discuss the results of the present
work.

In addition to DeWitt’s condensed notation,24 we partially use the conventions of Refs. 6 and
7. We distinguish between two types of superfield derivatives: the rightsleftd variational derivative
dsldF /dFAsud of a functionalF, and the rightsleftd derivative]sldFsud /]FAsud of a functionFsud
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for a fixedu. Derivatives with respect to supersantidfields and their components are understood as
right sleftd, for instance,d /dFA

* sud or d /dlA, while the corresponding leftsrightd derivatives are
labeled by the subscriptlsrd. For right-hand derivatives with respect toAIsud, with a fixedu, we
use the notationF,Isud;]Fsud /]AIsud. The dsud-function and integration overu are given, re-
spectively, bydsud=u and left-hand differentiation overu. We refer to a functionFsud, regarded
as an element of the superalgebraC`sToddMCLd, as aC`sToddMCLd-function. The rank of an even
u-local supermatrixKsud with Z2-grading« is characterized by a pair of numbersm̄=sm+,m−d,
wherem+ sm−d is the rank of the Bose–BosesFermi–Fermid block of theu-independent part of the
supermatrixKsud: rankiKsudi=rankiKs0di. With respect to the same Grassmann parity«, we
understand the dimension of a smooth supersurface, also characterized by a pair of numbers, in the
sense of the definitionsRef. 25d of a supermanifold, so that the above pair coincides with the
corresponding numbers of the Bose and Fermi components ofzis0d, being theu-independent parts
of local coordinateszisud parametrizing this supersurface. On these pairs, we consider the opera-
tions of component addition,m̄+ n̄=sm++n+,m−+n−d, and comparison,

m̄= n̄ ⇔ m± = n±, m̄. n̄ ⇔ sm+ . n+,m− ù n−d or sm+ ù n−,m+ . n−d.

II. ODD-TIME LAGRANGIAN FORMULATION

The basic objects of the Lagrangian formulation of a LSM are aLagrangian action SL:
ToddMCL3 huj →L1su ;Rd, being aC`sToddMCLd-function taking values in a real Grassmann
algebraL1su ;Rd, andsindependentlyd a functionalZfAg, whoseu-density is defined with accuracy

up to an arbitrary functionfssA ,]uAdsud ,udPkerh]uj, «Wsfd=0W,

ZfAg = ]uSLsud, «WsZd = «Wsud = s1,0,1d, «WsSLd = 0W . s2d

The values«W =s«P,«J̄,«d, «=«P+«J̄, of Z2-grading, with the auxiliary components«J̄, «P related to
the respective coordinatesszM ,ud of a superspaceM, are defined on superfieldsAIsud by the
relation «WsAId=ss«PdI ,s«J̄dI ,«Id. Note thatM may be realized as the quotient of a symmetry

supergroupJ= J̄3 P, P=expsimpud, for the functionalZfAg, wherem and pu are, respectively, a

nilpotent parameter and a generator ofu-shifts, whereasJ̄ is chosen as the space–time SUSY
group. The quantities«J̄, «P are the respective Grassmann parities of the coordinates of represen-

tation spaces of the supergroupsJ̄, P. The introduced objects allow one to achieve a correct
incorporation of the spin-statistic relation into operator quantization.

Among the objectsSLsud andZfAg, invariant under the action of aJ-superfield representation

T restricted toJ̄, uTuJ̄, it is only SLsud that transforms nontriviallysin view of theJ-scalar nature
of ZfAgd with respect to the total representationT underAIsud→A8Isud=suTuJ̄AdIsu−md,

dSLsud = SLsA8sud,]uA8sud,ud − SLsud = − mF ]

]u
+ P0suds]uUdsudGSLsud. s3d

Here, we have introduced the nilpotent operators]uUdsud=]uAIsud]l /]AIsud=f]u ,Usudg−, Usud
=P1AIsud]l /]AIsud.

Assuming the existence of a critical superfield configuration forZfAg, one presents the dy-
namics of an LSM in terms of superfield Euler–Lagrange equations:

dlZfAg
dAIsud

= F ]l

]AIsud
− s− 1d«I]u

]l

]s]uAIsuddGSLsud ; LI
lsudSLsud = 0, s4d

equivalent, in view of]u
2AIsud;0, to a LS characterized by 2N formally second-order differential

equations inu,
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]u
2AJsud

]l
2SLsud

]s]uAIsudd]s]uAJsudd
; ]u

2AJsudsSL9dIJsud = 0,

s5d

QIsud ;
]lSLsud
]AIsud

− s− 1d«IF ]

]u

]lSLsud
]s]uAIsudd

+ s]uUdsud
]lSLsud

]s]uAIsuddG = 0.

TheLagrangian constraintsQIsud=QIsAsud ,]uAsud ,ud restrict the setting of the Cauchy problem
for the LS and may be functionally dependent, as first-order equations inu.

Provided that there existssat least locallyd a supersurfaceS,MCL such that

uQIsuduS = 0, dimS = M̄, rankiLJ
l sudfLI

lsudSLsuds− 1d«IgiS = N̄ − M̄ , s6d

there existM =M++M− independent identities:

E du
dZfAg
dAIsud

R̂A0

I su;u0d = 0, R̂A0

I su;u0d = o
kù0

ss]udkdsu − u0ddR̂kA0

I sAsud,]uAsud,ud. s7d

The generatorsR̂A0

I su ;u0d of general gauge transformations,

dgAIsud =E du0R̂A0

I su;u0djA0su0d, «WsjA0d = «WA0
, A0 = 1, . . . , M0 = M0+ + M0−,

that leaveZfAg invariant, are functionally dependent under the assumption of locality and

J̄-covariance, provided that

rankIo
kù0

R̂kA0

I suds]udkI
S

= M̄ , M̄0.

The dependence ofR̂A0

I su ;u0d implies the existenceson solutions of the LSd of proper zero-

eigenvalue eigenvectors,ẐA1

A0sAsu0d ,]u0
Asu0d ,u0;u1d, with a structure analogous toR̂A0

I su ;u0d in
s7d, which exhaust the zero-modes of the generators, and are dependent in case

rankIo
k

ẐkA1

A0su0ds]u0
dkI

S

= M̄0 − M̄ , M̄1.

As a result, the relations of dependence for eigenvectors that define a generalLg-stage reducible
LSM are given by

E du8ẐAs−1

As−2sus−2;u8dẐAs

As−1su8;usd =E du8QJsu8dLAs

As−2JssA,]uAdsus−2d,us−2,u8;usd,

M̄s−1 . o
k=0

s−1

s− 1dkM̄s−k−2 = rankIo
kù0

ẐAs−1

As−2sus−2ds]us−2
dkI

S

,

M̄Lg
= o

k=0

Lg

s− 1dkM̄Lg−k−1 = rankIo
kù0

ẐALg

ALg−1suLg−1ds]uLg−1
dkI

S

,

«WsẐAs+1

As d = «WAs
+ «WAs+1

+ s1,0,1d, ẐA0

A−1su−1;u0d ; R̂A0

I su−1;u0d,

LA1

A−1Jsu−1,u8;u1d ; KA1

IJ su−1,u8;u1d = − s− 1ds«I+1ds«J+1dKA1

JI su8,u−1;u1d, s8d
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for s=1, . . . ,Lg, As=1, . . .,Ms=Ms++Ms−, M̄ ;M̄−1. ForLg=0, the LSM is an irreduciblegeneral
gauge theory.

In case a LSM admits the formSLsud=Ts]uAsudd−SsAsud ,ud, the functionsQIsud are given
in the extended configuration spaceMCL3 huj by

QIsud = − S,IsAsud,uds− 1d«I = 0, s9d

being the extremals of the functionalS0sAd=SsAs0d ,0d, corresponding tou=0. Conditions6d and
identitiess7d take the usual formsin caseu=0d

rankiS,IJsAsud,udiS = N̄ − M̄, S,IsAsud,udR0A0

I sAsud,ud = 0, s10d

with linearly-dependentsfor M̄0.M̄d generators ofspecial gauge transformations,

dAIsud = R0A0

I sAsud,udj0
A0sud,

that leave invariant onlySsud, in contrast toTsud. The dependence of generatorsR0A0

Isud, as well
as of their zero-eigenvalue eigenvectorsZA1

A0sAsud ,ud, and so on, can also be expressed by special
relations of reducibility fors=1, . . . ,Lg, namely,

ZAs−1

As−2sAsud,udZAs

As−1sAsud,ud = S,JsudLAs

As−2JsAsud,ud, «WsZAs

As−1d = «WAs−1
+ «WAs

,

ZA0

A−1sud ; R0A0

I sud, LA1

A−1Jsud ; KA1

IJ sud = − s− 1d«I«JKA1

JI sud. s11d

For M̄Lg
=ok=0

Lg s−1dkM̄Lg−k−1=rankiZALg

ALg−1iS, relations s9d–s11d determine aspecial gauge

theoryof Lg-stage reducibility. The gauge algebra of such a theory isu-locally embedded into the
gauge algebra of a general gauge theory with the functionalZfAg=]usTsud−Ssudd, which implies
the relation between the eigenvectors

ẐAs

As−1sAsus−1d,us−1;usd = − dsus−1 − usdZAs

As−1sAsus−1d,us−1d s12d

and the fact that the structure functions of the gauge algebra of a special gauge theory may depend
on ]uAIsud only parametrically. Note that an extendedsas compared tohPasudj, a=0,1d system of
projectors ontoC`sToddMCLd3 huj, hP0sud ,u] /]u ,Usudj, selects froms11d two kinds of gauge
algebras: one with structure equations and functionsSsAsudd, ZAs

As−1sAsudd not depending onu in
an explicit form; another with the standard relations for the gauge algebra of a reducible model
with quantitiesS0sAd, Zas

as−1sAd, in caseu=0, s«PdI =s«PdAs
=0, s=1, . . . ,Lg, and under the assump-

tion of completeness of the reduced generatorsRa0

i sAsudd and eigenvectorsZas

as−1sAsudd; see Sec.
IV A.

An extension of a usual field theory to au-local LSM permits one to apply Noether’s first
theorem26 to the invariance of the densityduSLsud with respect to globalu-translations as sym-
metry transformations of the superfieldsAIsud and coordinatesszM ,ud, sAI ,zM ,ud→ sAI ,zM ,u
+md. By direct verification, one establishes that the function

SEssA,]uAdsud,ud ;
]SLsud

]s]u
rAIsudd

]u
rAIsud − SLsud s13d

is a LS integral of motion, i.e., a conserved quantity under theu-evolution, in case there holds the
equation
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U ]

]u
SLsud + 2s]uUdsudSLsudU

LI
lSL=0

= 0. s14d

In contrast to its analogue in at-local field theory, the energyEstd, the functionSEsud is a LS
integral also in the case of an explicit dependence onu. This fact takes place in caseSLsud admits
the structure

SLssA,]uAdsud,ud = SL
0sA,]uAdsud − 2us]uUdsudSL

0sud,«WsSL
0d = 0W . s15d

III. ODD-TIME HAMILTONIAN FORMULATION

Independently, a LSM can be formulated in terms of aHamiltonian action, being a
C`sTodd

* MCLd-function, SH: Todd
* MCL3 huj→L1su ;Rd, depending on superantifieldsAI

*sud=sAI
*

−uJId, included in the local coordinates ofTodd
* MCL: GCL

P sud=sAI ,AI
*dsud, «WsAI

*d=«WsAId
+s1,0,1d. The equivalence of the Lagrangian and Hamiltonian formulations is implied by the
nondegeneracy of the supermatrixisSL9dIJsudi given by s5d, in the framework of a Legendre
transformation ofSLsud with respect to]u

rAIsud,

SHsGCLsud,ud = AI
*sud]u

rAIsud − SLsud, AI
*sud =

]SLsud
]s]u

rAIsudd
, s16d

whereSHsGCLsud ,ud coincides withSEsud in terms of theTodd
* MCL-coordinates.

The dynamics of a LSM is given by ageneralized Hamiltonian systemof 3N first-order
equations inu, equivalent to the LS equations ins5d, and expressed through au-local antibracket
s· , ·du, namely,

]u
r GCL

P sud = sGCL
P sud,SHsuddu, QI

HsGCLsud,ud = QIsAsud,]uAsGCLsud,ud,ud = 0,

s17d

sF1sud,F2suddu ;
]F1sud
]AIsud

]F2sud

]AI
*sud

−
]rF1sud

]AI
*sud

]lF2sud
]AIsud

, Ftsud P C`sPT*MCLd, t = 1,2

with Hamiltonian constraintsQI
HsGCLsud ,ud. The latter coincide with half of the equations of the

HS proper, due to transformationss16d and their consequences:

QI
HsGCLsud,ud = − ]u

rAI
*sud − SH,Isuds− 1d«I . s18d

Formulas18d establishes the equivalence of an HS with a generalized HS, and hence with a LS in
the correspondingfformal, in view of the degeneracy conditionss6dg settingsu=0, k=CLd of the

Cauchy problem for integral curvesÂIsud, Ĝk
Psud,

sÂI,]u
r ÂIds0d = sĀI,]u

rAId, Ĝk
Ps0d = sĀI,ĀI

*d:ĀI
* = P0F ]SLsud

]s]u
rAIsuddGsĀI,]u

rAId, s19d

where we have ignored the continuous part ofI. The equivalence between an HS and a generalized
HS is valid due to the coincidencesmutual inclusiond of the corresponding sets of solutions.
Indeed, the solutions of a generalized HS are included into those of an HS by construction, while
the reverse is valid due tos18d.

The HS is defined through a variational problem for a functional identical toZfAg,

ZHfGkg =E duF1

2
Gk

PsudvPQ
k sud]u

r Gk
Qsud − SHsGksud,udG ,

072302-7 Local superfield Lagrangian BRST quantization J. Math. Phys. 46, 072302 ~2005!

                                                                                                                                    



vk
PQsud ; sGk

Psud,Gk
Qsuddu, vk

PDsudvDQ
k sud = dP

Q. s20d

Definitions s9d–s11d remain the same for special gauge theories, while definitionss7d and s8d, in
the case of general gauge theories ofLg-stage reducibility, are transformed by the rule

ẐHAs

As−1sGksus−1d,us−1;usd = ẐAs

As−1sAsus−1d,]us−1
AsGksus−1d,us−1d,us−1;usd, s= 0, . . . ,Lg.

s21d

Equations14d, transformationss16d and their consequences] /]udsSL +SHdsud=0 imply the invari-

ance ofSHsud underu-shifts along arbitrary solutionsĜk
Psud, or, equivalently, along ans«P,«d-odd

vector fieldQsud=adSHsud;sSHsud , ·du. Hence,

udmSHsuduĜksud = mF ]

]u
SHsud − sSHsud,SHsudduG = 0, dmSHsud = m]uSHsud s22d

holds true, provided thatSHsud can be presented, according tos14d, in the form

SHsGksud,ud = SH
0 sGksudd + usSH

0 sGksudd,SH
0 sGksudddu, s23d

wheres]uUdsudSLsud=1/2sSHsud ,SHsuddu, andSH
0 sGksudd is the Legendre transform ofSL

0sud, de-
fined by s15d.

If SHsud or SLsud does not depend onu explicitly, then Eq.s22d or s14d implies the fulfillment
of the equationsSHsud ,SHsuddu=0, or s]uUdsudSLusuduÂsud=0, which has no counterpart in at-local
field theory, and imposes the known condition1 thatSHsud or SLsud be proper, although for a LSM
at the classical level. In this case, au-superfield integrabilitysintroduced by analogy with the
treatment of Ref. 16d of the HS ins17d is guaranteed by the standard properties of the antibracket,
including the Jacobi identity:

s]u
r d2Gk

Psud = 1
2sGk

Psud,sSHsGksudd,SHsGksudddudu = 0. s24d

This fact ensures the validity onC`sTodd
* MCL3 hujd of the u-translation formula

udmFsuduĜksud = mF ]

]u
− adSHsudGFsud ; mšlsudFsud, s25d

as well as the nilpotency of a BRST-like generator ofu-shifts alongQsud, šlsud.
Depending on the realization of additional properties of a gauge theoryssee Sec. IVd, we shall

henceforth assume the validity of

DksudSHsud = 0, Dksud ; 1
2s− 1d«sGQdvQP

k sudsGk
Psud,sGk

Qsud, · dudu. s26d

Equations26d is equivalent to a vanishing divergence of the vector fieldQsud, namely,

divs]u
r GkusuduĜksudd = u

]r

]Gk
Psud

s]u
r Gk

PusuduĜksudd = 2DksudSHsud = 0. s27d

This condition is trivial for the symplectic counterpart of formulas27d. The validity of theHamil-
tonian master equationsSHsud ,SHsuddu=0 in cases] /]udSHsud=0 justifies the interpretation of the
equivalent equation ins14d, for s] /]udSLsud=0, s]uUdsudSLusuduLI

lSL=0=0, as aLagrangian master
equation.

IV. LOCAL SUPERFIELD QUANTIZATION

In order to set up the rules of local superfield quantization for a gauge model, we should first
extract such a model from a general LSM. Then we should consider a procedure of constructing
a quantum action for the restricted LSM, and, finally, investigate the possibilitysinherent in the
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u-local approachd of a dual descriptionof the LSM in terms of the quantities of the BFV formal-
ism.

A. Superfield quantum action in initial coordinates

In this section, we transform the reducibility relations of arestricted special LSM into a
sequence of new gauge transformations for the ghost superfields of the minimal sector. Together
with the gauge transformations of the classical superfieldsAisud, extracted fromAIsud, the new
gauge transformations are translated into a Hamiltonian system related to the initial restricted HS.
A requirement of superfield integrability for the resulting HS produces a deformation of the
u-local Hamiltonian in powers of the ghosts and superantifields of the minimal sector, and leads to
a quantum action, and, independently, to a gauge-fixing actionsSec. IV Cd, subject to different
u-local master equations.

Given the standard distribution of ghost number1 for GCL
P sud, ghsAI

*d=−1−ghsAId=−1, the
choice ghsu ,]ud=s−1,1d implying the absence of ghosts amongAI, and, in particular, the relations
s«PdI =0, the quantization rules consist, first, in restricting a LSMsin both Lagrangian and Hamil-
tonian formulationsd by

Sgh,
]

]u
DSHsLdsud = s0,0d. s28d

Given the existence of a potential term inSHsLdsud, SsAsud ,0d=SsAsudd, and the absence in
SHsLdsud of a dimensional constants with a nonzero ghost number, solutions of Eq.s28d select from
a LSM a usual gauge model with a classical actionS0sAd in which the fieldsAi are extended to
Aisud. Then the generalized HS ins17d is transformed into au-integrable system defined in
PT*Mcl=hGcl

p sudj=hsAi ,Ai
*dsudj, with Qi

HsAsudd=QisAsudd,

]u
r Gcl

p sud = sGcl
p sud,S0sAsudddu, Qi

HsAsudd = − s− 1d«iS0,isAsudd. s29d

The restricted special gauge transformationsdAisud=R0a0

i sAsuddj0
a0sud, «Wsj0

a0sudd=«Wa0
, with the

condition s«Pda0
=0, are embedded by the substitutionj0

a0sud=dj̃0
a0sud=Ca0suddu, a0=1, . . ., m0

=m0−+m0+, into a Hamiltonian system with 2n equations for unknownGcl
p sud, with the Hamil-

tonianS1
0sGcl ,C0dsud=sAi

*R0
a0
i sAdCa0dsud. A union of this system with the HS ins29d, extended to

2sn+m0d equations, has the form

]u
r Gf0g

pf0gsud = sGf0g
pf0gsud,Sf1g

0 suddu, Sf1g
0 sud = sS0 + S1

0dsud, Gf0g
pf0g ; sGcl

p ,G0
p0d,G0

p0 ; sCa0,Ca0

* d.

s30d

By virtue of s11d, the functionS1
0sud is invariant, moduloS0,isud, under special gauge transforma-

tions of ghost superfieldsCa0sud, with arbitrary functionsj1
a1sud, s«Pda1

=0, on the superspaceM:

dCa0sud = Za1

a0sAsuddj1
a1sud, s«W,ghdj1

a1sud = s«Wa1
+ s1,0,1d,1d. s31d

Making the substitutionj1
a1sud=dj̃1

a1sud=Ca1suddu, a1=1, . . . ,m1, and an enlargement ofm0 first-
order equations inu, with respect to the unknownsCa0sud in transformationss31d, to an HS of 2m0

equations with the HamiltonianS1
1sA ,C0

* ,C1dsud=sCa0

* Za1

a0sAdCa1dsud, we obtain a system of the
form s30d, written for ]u

r G0
p0sud. The enlargement of the union of the latter HS with Eq.s30d is

formally identical to the systems30d under the replacement

sGf0g
pf0g,Sf1g

0 d → sGf1g
pf1g,Sf1g

1 d:hGf1g
pf1g = sGf0g

pf0g,G1
p1d,G1

p1 = sCa1,Ca1

* d,Sf1g
1 = Sf1g

0 + S1
1j.
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The iteration sequence related to a reformulation of the special gauge transformations of
ghosts Ca0. . ., Cas−2, obtained from spossiblyd enhanced relationss11d, leads, for an
L-stage-reducible restricted LSM at thesth step with 0,søL andGcl

p ;G−1
p−1, to invariance trans-

formations forS1
s−1sud, moduloS0,isud, namely,

dCas−1sud = Zas

as−1sAsuddjs
assud, s«W,ghdjs

assud = s«Was
+ ss1,0,1d,sd, s«Pdas

= 0,

S1
s−1sud = sCas−2

* Zas−1

as−2sAdCas−1dsud, Sgh,
]

]u
DS1

s−1sud = s0,0d. s32d

fFrom ghsAId=0 in Eq.s28d, with s«PdAs
=s«PdI =0, s=0, . . . ,Lg, it follows that the values ofm̄, m̄s

may be both larger and smaller than the corresponding valuesM̄, M̄s, in contrast to the values of

n̄, N̄. Indeed, for a restricted LSM, the presence of additional gauge symmetries is possible;
therefore, we suppose thatspossiblyd enhanced sets of restricted functionsR0a0

i sud, Zas

as−1sud ex-

haust, correspondingly, on the surfaceS0,isud=0, the zero-modes of both the HessianS0,i jsud and
Zas−1

as−2sud. As a consequence, this implies that the final stage of reducibility for a restricted model

L is different fromLg.g The substitutionjs
assud=dj̃s

assud=Cassuddu, as=1, . . .,ms=ms−+ms+, trans-
forms special gauge transformationss32d into ms−1 equations for unknownCas−1sud, extended by
the introduction of superantifieldsCas−1

* sud to an HS:

]u
r Gs−1

ps−1sud = sGs−1
ps−1sud,S1

ssuddu, S1
ssud = sCas−1

* Zas

as−1sAdCasdsud, Gs−1
ps−1 = sCas−1,Cas−1

* d.

s33d

Having combined the systems33d with an HS of the same form, although with]u
r Gfs−1g

pfs−1gsud and the

Hamiltonian Sf1g
s−1sud=sS0+or=0

s−1 S1
r dsud, and having expressed the result for 2sn+or=0

s mrd equa-
tions with Sf1g

s sud=sSf1g
s−1+S1

sdsud, we obtain, by induction, the following HS:

]u
r GfLg

pfLgsud = sGfLg
pfLgsud,Sf1g

L suddu, Sf1g
L sud = S0sAsudd + o

s=0

L

sCas−1

* Zas

as−1sAdCasdsud. s34d

The functionSf1g
L sud, subject to the condition of a properu-local solution of the classical master

equation,1 with the antibracket extended inPT*Mk=hGfLg
pfLgsud;Gk

pksud=sFAk,FAk

* dsud ,Ak

=1, ... ,n+or=0
L mr ,k=minj, is a solution of the master equation with accuracy up toOsCasd,

modulo S0,isud. The integrability of the HS ins34d is guaranteed by a double deformation of
Sf1g

L sud: first in powers ofFAk

* sud and then in powers ofCassud, in the framework of the existence
theorem27 for the classical master equation in the minimal sector:

sSH;ksGksudd,SH;ksGksudddu = 0, S«W,gh,
]

]u
DSH;ksGksudd = s0W,0,0d, k = min. s35d

The proposed superfield algorithm for constructing the functionSH;minsud may be considered as a
superfield version of the Koszul–Tate complex resolution.28

Let us consider an extension ofSH;minsud to SH;ksud=SH;minsud+os=0
L os8=0

s sCs8as

* Bs8
asdsud, being a

proper solution1 in PT*Mk=hGk
pksudj,

Gk
pksud = sGmin

pmin,Cs8
as,Bs8

as,Cs8as

* ,Bs8as

* dsud, s8 = 0, . . . ,s, s= 0, . . . ,L,

s«W,ghdCs8
assud = s«Was

+ ss+ 1ds1,0,1d,2s8 − s− 1d = s«W,ghdBs8
assud + ss1,0,1d,− 1d

fhenceforth we assumek=ext and take into account thats«W ,ghdFAk

* sud=−ss1,0,1d ,1d
−s«W ,ghdFAksudg, with the pyramids of ghosts and Nakanishi–Lautrup superfields, and with a
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deformation in the Planck constant". ThenSH;ksud determines the quantum actionSH
CsGsud ,"d,

e.g., in case of an Abelian hypergauge defined as an anticanonical phase transformation:

Gk
pksud → G8k

pksud = SFAksud,FAk

* sud −
]CsFsudd
]FAksud

D:SH
CsGsud,"d = eadCSH;ksGksud,"d. s36d

The functionssSH
C ,SH;kdsu ,"d obey Eqs.s26d ands35d in case the"-deformation ofSH;minsud is a

solution of these equations. It is known that this choice of equations ensures the integrability of a
nonequivalent HS constructed fromSH

C, SH;k, as well as the anticanonicalfpreserving the volume
elementdVksud=ppk

dGk
pksudg nature of this change of variables, corresponding to au-shift by a

constant parameterm along the corresponding HS solutions. In its turn, the quantum master
equation

DksudexpF i

"
Esu,"dG = 0, E P hSH

C,SH;kj s37d

determines a nonintegrable HS, with the respective anticanonical change of variables preserving

dV̂ksud=expfsi /"dEsu ,"dgdVksud. It is the latter nonintegrable HS with the HamiltonianSH
Csu ,"d

that is crucial, foru=0, in the BV formalism. This HS defines inPT*Mk a u-local, but not
nilpotent, generator of BRST transformations,s̃lsCdsud, which is associated with its
u-nonintegrable consequence:

]u
r sFAk,FAk

* dsud = ssFAksud,SH
Csu,"ddu,0d, s̃lsCdsud =

]

]u
+

]rSH
Csu,"d

]FAk

* sud
]l

]FAksud
. s38d

B. Duality between the BV and BFV superfield quantities

An embedding of a restricted LSM gauge algebra, described bySH;minsud and Eq.s35d, into
the gauge algebra of a general gauge theory in the Lagrangian formalism, see Eqs.s7d–s12d, can
be effectively realized by means of dual functional counterparts, with the opposites«P,«d-parity,
of the action and antibracket, by analogy with the approach of Refs. 12 and 18. To this end, let us
consider the functional

ZkfGkg = − ]uSH;ksud, s«W,ghdZk = ss1,0,1d,1d

on the supermanifoldPTsPT*Mkd=hsGk
pk,]uGk

pkdsud ,k=minj with naturals«P,«d-even, symplec-
tic, ands«P,«d-odd Poisson structures. These structures define ans«P,«d-even functionalh·,·j with
canonical pairshsFk

Ak,]uFAk

* d ,s]uFk
Ak,FAk

* djsud, and s«P,«d-odd u-local, s· , ·du
sGk,]uGkd, Poisson

brackets. The latter act on the superalgebraC`sPTsPT*Mkd3ud and provide a lifting of the
antibrackets· , ·du defined onPT*Mk. For arbitrary functionalsFtfGkg=]uFtssGk,]uGkdsud ,ud, t
=1,2, one has thefollowing correspondence between the Poisson brackets of opposite Grassmann
grading:

hF1,F2j =E duF dF1

dFAksud
dF2

dFAk

* sud
−

drF1

dFAk

* sud
dlF2

dFAksudG =E dusF1sud,F2suddu
sGk,]uGkd,

s39d
sF1sud,F2suddu

sGk,]uGkd ; fsLAk
F1dL*AkF2 − sLr

*AkF1dLAk

l F2gsud,

where the Euler–Lagrange superfield derivative, e.g., with respect toFAk

* sud, for a fixedu, has the
form L*Aksud=] /]FAk

* sud−s−1d«Ak
+1]u ·] /]s]uFAk

* sudd.
By construction, the functionalZk is nilpotent:
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hZk,Zkj =E dusSH;ksud,SH;ksuddu = 0, k = min, s40d

and, due to the absence of the additional time coordinate, is formally related to the BRST charge
of a dynamical system with first-class constraints.2 Indeed, after identifying
sGk,]uGkds0d with the phase-space coordinates of the minimal sector, canonical with respect to the
s«P,«d-even brackets in the framework of the BFV method2 for first-class constrained systems of
sL+1d-stage reducibility,

sqi,pid = sAi,]uAi
*ds0d, sCAs,PAs

d = ss]u
rCas−1,Casd,sCas−1

* ,]uCas

* dds0d,

s41d
As = sas−1,asd, s= 0, . . . ,L, sCAL+1,PAL+1

d = s]u
rCaL,CaL

* ds0d,

the functionalZk takes the form

ZkfGkg = TA0
sq,pdCA0 + o

s=1

L+1

PAs−1
ZAs

As−1sqdCAs + OsC2d. s42d

With allowance for the gauge algebra structure functions of the originalL-stage-reducible re-
stricted LSM described by the enhanced Eq.s11d, the constraintsTA0

sq,pd and the set of
sL+1d-stage-reducible eigenvectorsZAs

As−1sqd are defined bysthe symbolT below stands for trans-
positiond

TA0
sq,pd = sS0,isqd,− piR0a0

isqdd, ZAs

As−1sqd = diagsZas−1

as−2,Zas

as−1dsqd,

s= 1, . . . ,L, sZAL+1

AL dTsqd = sZaL

aL−1,0dTsqd, s43d

ZAs−1

As−2ZAs

As−1 = TB0
LAs

As−2B0sq,pd, s= 1, . . . , L + 1, ZA0

A−1 ; TA0
, LAs

As−2b0 = 0,

LAs

As−2j = diagsLas−1

as−3j,Las

as−2jd, La0

a−2j = LaL+1

aL−1j = 0, La1

a−1jsq,pd = s− 1d« j+1piKa1

ji sqd. s44d

Relationss39d–s44d generalize, to the case of arbitrary reducible theories, the results of Ref. 18
concerning a dual descriptionsfor «i =«a0

=L=0d of the quantum action and classical master
equation in terms of a nilpotent BRST charge.

By the rules41d, the variablessCs8as

* ,Bs8as

* ,Bs8
asdsud are identical to the respective ghost mo-

mentaPs8As
, Lagrangian multipliersls8As

, and their conjugate momentaps8
As in Ref. 2. Then a

comparison of the superfieldsCs8
assud, s8=0, . . . ,s, selected from the nonminimal configuration

space of anL-stage-reducible LSM, with the coordinatesCs8
As selected from the nonminimal phase

space of the correspondingsL+1d-stage-reducible dynamical system2 demonstrates the only pos-
sible embedding ofPTsPT*Mextd into the phase space of the BFV method. Indeed, for the
coordinatesC0

AL+1, ghsC0
AL+1d=−L−2, there exists no preimage amongsCs8

as,]uCs8
asds0d, because the

ghost number spectrum for the latter variables is bounded from below:

min ghsCs8
as,]uCs8

asd = ghsC0
aLd = − L − 1.

As a consequence, the nilpotent functionalZkfGkg=−]uSH;ksud, k=ext, is embedded into the total
BRST charge constructed by the prescription of Ref. 2.

It should be noted that the systems constructed with respect to the HamiltoniansSH
CsGsud ,"d

and SH;ksud, k=min, ext, are equivalently described by dual fermion functionalsZkfGkg and
ZCfGg=−]uSH

CsGsud ,"d, in terms of even Poisson brackets, for instance,
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]u
r Gpsud = sGpsud,SH

CsGsud,"ddu = − hGpsud,ZCfGgj. s45d

Thereby, BRST transformations in the Lagrangian formalism with Abelian hypergauges can be
encoded by a formal BRST charge,ZCfGg, related toZkfGkg, k=ext, by a phase canonical trans-
formation with thes«P,«d-even phaseFCfFg=]uCsFsudd,

ZCfGg = eadFC
ZkfGkg, adFC ; hFC, · j. s46d

On the assumption that an additional gauge invariance does not appear in deriving the restricted

LSM from the initial general gauge theory, i.e.,m̄søM̄s, and, therefore,LøLg, the problem of
including the restricted LSM gauge algebra into the initial gauge algebra, defined bys2d, s7d, and
s8d, is solved with the help of a nilpotent functional onPTsPT*Mkd=hsGk

Pk,]uGk
Pkdsud ,Gk

Pksud
=sGCL

PCL,CAs,CAs

* dsud ,s=0,1, . . . ,Lg,k=MINj, namely,

ẐkfGkg = ZfAg + o
s=0

Lg FE dus−1dusCAs−1

* sus−1dẐAs

As−1sus−1;usdCAssusds− 1d«As−1
+s + OsCAsdG

=E duSL;kssGk,]uGkdsud,ud. s47d

Given the superfieldsCAs introduced as simple ghostsCas, although used for a description of

a general gauge algebra, a representation of solutions to the generating equationhẐk,Ẑkj=0 as
expansions in powers ofCAs can be controlled by an additionalgeneralized ghost number, ghg,

ghgsẐkd=0, coinciding with the standard ghost number only in the sector ofsFAMIN ,FAMIN

* ds0d, for
ghsAI ,CAsd=s0,1+sd, and having the spectrum

ghgsAI,CAsd = s0,1 +sd, ghgsFAMIN

* d = − 1 − ghgsFAMINd, ghgsu,]ud = s0,0d.

Conditions s28d, applied toSL;ksud in cases«PdAs
=s«PdI =0, s=0, . . . ,Lg, extract from Ẑk the

functional Zk in s42d, so that thes«P,«d-even u-density SL;ksud lifts the function SH;ksud
PC`sPT*Mmind to the superalgebraC`sPTsPT*MMINd3ud. In general,SL;ksud does not obey
the generalized master equations35d with the antibrackets39d acting on C`sPTsPT*MMINd
3ud,

sSL;ksud,SL;ksuddu
sGk,]uGkd = f̃ssGk,]uGkdsud,ud, f̃sud P kerh]uj, k = MIN. s48d

C. Local quantization

Leaving aside the realization of a reducible LSM onPT*Mext, we now suppose that the
model is described by a quantum action,Wsu ,"d=Wsud, defined on an arbitrary antisymplectic
manifold N without connection, dimN=dim PT*Mext= n̄+sn−,n+dd+or=0

L s2r +3dsm̄r

+smr−,mr+dd, with local coordinatesGpsud and a density functionrsGsudd. A local antibracket, an
invariant volume element, dmsGsudd, and a nilpotent second-order operator,DNsud, are defined in
terms of ans«P,«d-odd Poisson bivector,vpqsGsudd=sGpsud ,Gqsuddu

N, namely,

dmsGsudd = rsGsudddGsud, DNsud = 1
2s− 1d«sGqdr−1vqpsudsGpsud,rsGqsud, · du

Ndu

N
. s49d

The definition of a generating functional of Green’s functionsZss]uw* ,w* ,]uw ,Idsudd;Zsud
as a path integral, for a fixedu, is possible, within perturbation theory, by introducing onN the
Darboux coordinates,Gpsud=swa,wa

*dsud, in a vicinity of solutions of the equations
]Wsud /]Gpsud=0, so thatr=1 andvpqsud=antidiags−db

a,db
ad. The function

072302-13 Local superfield Lagrangian BRST quantization J. Math. Phys. 46, 072302 ~2005!

                                                                                                                                    



Zsud =E dmsG̃sudddLsudexphsi/"dfWsG̃sud,"d + uXssw̃,w̃* − w* ,L,L*dsud,"duL*=0 − ss]uwa
*dw̃a

+ w̃a
*]u

r wa − IaLadsudgj s50d

depends on an extended set of sources,

s]uwa
* ,]u

r wa,Iadsud = s− Ja,l
a,I0a + I1aud,

s«W,ghd]uwa
* = s«W,ghdIa + ss1,0,1d,1d = s«W,− ghdwa,

to the superfieldsswa,wa
* ,Ladsud, whereLasud=sl0

a+l1
aud are Lagrangian multipliers to indepen-

dent non-Abelian hypergauges, see Ref. 21,

GasGsudd,a = 1, . . . , k = n + o
r=0

L

s2r + 3dmr, k = k+ + k−,

ranki]Gasud/]Gpsudi]W/]G=G=0 = l̄, l = l+ + l− = k.

The functionsGasGsudd, s«W ,ghdGa=s«W ,ghdIa, determine a boundary condition for the gauge-fixing
action,Xsud=XssG ,L ,L*dsud ,"d,

u]rXsud/]LasuduL*="=0 = Gasud,

defined on the direct sumNtot=N % PT*K of the manifoldsN andPT*K=hsLa,La
*dsudj. Hyper-

gauges in involution,sGasud ,Gbsuddu
N=GcsudUab

c sGsudd, obey different types of unimodularity
relations,21 depending on a set of equations for whichXsud may be a solution, independent from
Wsud, in terms of the antibrackets· , ·du=s· , ·du

N+s· , ·du
K and the operatorDsud=sDN+DKdsud, trivi-

ally lifted from N to Ntot,

s1d sEsud,Esuddu = 0, DsudEsud = 0;s2d DsudexpF i

"
EsudG = 0, E P hW,Xj. s51d

The functionsGasud, assumed to be solvable with respect towa
*sud, determine a Lagrangian

surface,Q=hsw* ,Ldsudj,Ntot, on which the restrictionuXsuduQ is nondegenerate. Given this,
integration oversw̃* ,Ldsud in Eq. s50d determines a function, for]uwa=Ia=0, whose restriction to
the Lagrangian surfacehwsudj,N is also nondegenerate.

In view of the properties ofsW,Xdsud, one can introduce an effective actionGsud
;Gsw ,w* ,]u

r w ,Idsud defined, in the usual manner, by means of a Legendre transformation of
ln Zsud with respect to]uwa

*sud,

Gsud =
"

i
ln Zsud + ss]uwa

*dwadsud, wasud = −
"

i

]l ln Zsud
]s]uwa

*sudd
. s52d

The analysis of the properties ofsZ,Gdsud is based on the followingu-nonintegrable Hamiltonian-

like system, which contains an arbitrarys«P,«d-even C`sNtotd-function, Rsud=RssG̃ ,L ,L*d
3sud ,"d, with a vanishing ghost number:

]u
r G̃psud = − i"uT−1sudsG̃psud,TsudRsudduuL*=0,

]u
r Lasud = − 2i"uT−1sudsLasud,TsudRsudduuL*=0,
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]u
r swa

* ,La
*dsud = 0, s53d

where the functionTssG̃ ,L ,L*dsud ,"d;Tsud has the formTsud=expfsi /"dsW−Xdsudg. Let us
enumerate the properties ofsZ,Gdsud.

1. The integrand ins50d is invariant, for]uw* =]uw=I=0, with respect to thesuperfield BRST
transformations

G̃totsud = sG̃,L,L*dsud → sG̃tot + dmG̃totdsud, dmG̃totsud = us]u
r G̃totduǦtot

m, s54d

having the form of au-shift by a constant parameterm along an arbitrary solutionǦtotsud of the
systems53d, or, equivalently, along a vector field determined by the right-hand side ofs53d, for
Rsud=1. Here, the arguments ofsW,Xdsud are the same as in definitions50d. The above statement
can be verified with the help of the identities

u]rXsud/]FsuduL*=0 = ]rsuXsuduL*=0d/]Fsud, F P hGp,Laj.

Notice that the systems53d, for Rsud=const, admits the integralsW+Xdsud in caseW andX obey
the first system ins51d.

2. The vacuum function ZXsud;Zs0,w* ,0 ,0dsud is gauge-independent, namely, it does not
change whenXsud is replaced by ansX+DXdsud subject to the same system ins51d that holds for
Xsud and conforming to nondegeneracy on the surfaceQ. Indeed, this hypothesis implies that the
variationDXsud obeys a system of linearized equations with a nilpotent operatorQjsXd, j =1,2,

QjsXdDXsud = 0, d j1DsudDXsud = 0; QjsXd = adXsud − d j2si"Dsudd, s55d

where j is identical to the number that labels that system in Eq.s51d for which Xsud is a solution.
Using the fact that solutionsXsud of every system ins51d are proper, one can prove, by analogy
with the theorems of Ref. 29, that the cohomologies of the operatorQjsXd on the functions
fsGtotsuddPC`sNtotd vanishing forGtotsud=0 are trivial. Hence, the general solution of Eq.s55d
has the form

DXsud = QjsXdDYsud, S«W,gh,
]

]u
DDYsud = ss1,0,1d,− 1,0d, uDYsuduGtot=0 = 0, s56d

with a certainDYsud. Now, making in ZX+DXsud a change of variables induced by au-shift by a
constantm, related to the systems53d, and choosing

2Rsudm = DYsud,

we find that ZX+DXsud=ZXsud, and conclude that the S-matrix is gauge-independent in view of the
equivalence theorem.30 fProperties 1, 2 ofuZXsuduw*=0 are valid for arbitraryrsud, Gpsud on the
manifold N.g

The above proof shows, due tos54d, that the systems53d encodes the BRST transformations
for Rsud=const, as well as continuous anticanonical-like transformations in an infinitesimal form,
with the scalar fermionic generating functionRsudm, whereRsud is arbitrary andm is constant.

Equivalently, following the ideas of Sec. IV B, the above characteristics of the generating
functional of Green’s functions can be derived from a Hamiltonian-like system presented in terms
of an even superfield Poisson bracket in general coordinates,

u]u
r G̃psud = − hG̃psud,ZWfG̃g − sZX + i"ZRdfG̃totgjuL*=0,

u]u
r Lasud = − 2hLasud,ZWfG̃g − sZX + i"ZRdfG̃totgjuL*=0,
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]u
r swa

* ,La
*dsud = 0 s57d

with a linear combination of fermionic functionals related to the above actions and a bosonic
function by the rule

ZEfGtotg = − ]uEsGtotsud,"d, E P hW,X,Rj. s58d

If the actionssW,Xdsud obey the first system ins51d, then the functionalsZW, ZX, formally playing
the role of the usual andgauge-fixingBRST charges, are nilpotent with respect to the even Poisson
bracketh· , ·j=h· , ·jPTN+h· , ·jPTK. Here, for instance, the first bracket in the sum is defined on
arbitrary functionals onPTN3 huj, via au-local extension of the odd brackets· , ·du

PTN in s39d, as
follows:

hF1,F2jPTN ;E du
drF1

dGpsud
vpqsGsudd

dlF2

dGqsud
= ]usF1sud,F2suddu

PTN,

s59d
sF1sud,F2suddu

PTN ; ssLp
r F1dvpqsGsuddLq

l F2dsud, FtfGg = ]uFtssG,]uGdsud,ud,

where Lq
l sud is the left-hand Euler–Lagrange superfield derivative with respect toGqsud. fThe

antibrackets· , ·du
PTN, identical, forN=PTMk, with s· , ·du

sGk,]aGkd, k=ext, in s39d lifts the operator
DN in s49d to the nilpotent operatorDPTN acting in C`sPTN3 hujd, defined exactly asDNsud,
although in terms of the antibrackets59d.g

Therefore, as in the case of the HS ins45d, we arrive at an interpretation of BRST transfor-
mations, for a gauge theory with non-Abelian hypergauges in Lagrangian formalism, in terms of
the formal “BRST charges”ZW, ZX, as well as in terms of the functionalZR and the even Poisson
bracket.fThe construction of the latter bracket is different from that of Ref. 5, where an odd
superfield Poisson bracket was derived from ast ,ud-local even bracket; however, it is similar to
the construction of Ref. 18; see Eq.s27d.g The systems57d encodes the BRST transformations, for
ZR=0, as well as the BRST and continuous canonical-like transformations with the bosonic gen-
erating functionalZRm, for an arbitraryZR and a constantm.

3. The functionssZ,Gdsud obey the Ward identities

FH]uwa
*sud − S ]W

]w̃asud
DSi"

]l

]s]uw*d
,i"

]r

]s]u
r wdDJ ]l

]wa
*sud

+
i

"
Iasud

]l

]La
*sud

UXSi"
]l

]s]uw*d
,i"

]r

]s]u
r wd

− w* ,
"

i

]l

]I ,L*DU
La

*=0
GZsud = 0, s60d

Iasud
]l

]La
*sud

UXSwb + i"sG9−1dbc ]l

]wc,i"
]r

]s]u
r wd

−
]rG

]s]u
r wd

− w* ,
]lG

]I +
"

i

]l

]I ,L*DU
La

*=0

− FS ]W

]w̃asud
D

3Swb + i"sG9−1dbc ]l

]wc,i"
]r

]s]u
r wd

−
]rG

]s]u
r wd

DG ]lGsud
]wa

*sud
+

1

2
sGsud,Gsuddu

sGd = 0, s61d

with the notation

Gab9 sud ;
]l

]wasud
]r

]wbsud
Gsud, Gac9 sudsG9−1dcbsud = da

b.

In the symmetric form of these identities, we have extended the standard set of sources]uwa
*sud

used in the definition of the generating functional of Green’s functions in Abelian hypergauges.
The technique used in deriving the above identities is analogous to the corresponding proce-

dure of Refs. 31 and 32 applied, in the framework of the BV1 and Batalin–Lavrov–Tyutin29
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methods, to the problem of gauge dependence in theories with composite fields. Thus, identities
s60d and s61d follow from the corresponding system ins51d for sW,Xdsud. For instance, making
the functional averaging of the second system ins51d for Xsud,

E dLsuddmsG̃suddexpF i

"
sW− s]uwa

*dw̃a − w̃a
*]u

r wa + IaLadsudG
3 HDsudexpF i

"
Xssw̃,w̃* − w* ,L,L*dsud,"dGJ

L*=0
= 0, s62d

and integrating by parts ins62d, with allowance fors] /]w̃* +] /]w*dXsud=0, we obtain identity
s60d. Identitiess60d and s61d take the standard form in case]uwa=Iasud=u=0, which becomes
more involved due to the quantitiess]uWsud /]w̃asudd, in the case of non-Abelian hypergauges.

In the special case of Abelian hypergauges,GAssF ,F*dsudd=FA
* sud−]CsFsudd /]FAsud=0,

corresponding to the change of variabless36d, for sw ,w* ,Wd=sF ,F* ,SH;extd, ]uFA=IA=0 slo-
cally, N=PT*Mextd, the object Zs]uF* ,F*dsud takes the form

Zs]uF* ,F*dsud =E dFsudexpH i

"
fSH

CsGsud,"d − ss]uFA
* dFAdsudgJ . s63d

A u-local BRST transformation for Zs]uF* ,F*dsud is given, for an HS defined onPT*Mext, with

the HamiltonianSH
Csu ,"d and a solutionǦsud, by the change of variables

Gpsud → Gs1dpsud = expfmslsCdsudgGpsud, slsCdsud ;
]

]u
− adSH

Csu,"d. s64d

Transformations64d with a constantm is anticanonical, with

BerI ]Gs1dsud
]Gsud I = BerI ]Fs1dsud

]Fsud I = 1,

provided thatSH
Csu ,"d is subject to the first system ins51d.

The obvious permutation rule of the functional integral,«sdFsudd=0,

]uE dFsudFssF,F*dsud,ud =E dFsudF ]

]u
+ s]uVdsudGFsud, s]uVdsud = ]uFA

* sud
]

]FA
* sud

,

yields, for i"]u
r ln Zsud=s]uFA

* ]u
r FAdsud−]u

r Gsud, the following relations:

u]uZsuduǦsud = s]uVdsudZsud = 0, u]u
r GsuduǦsud = sGsGsudd,GsGsudddu = 0. s65d

When deriving Eq.s65d, we have taken into account the fact that the functional averaging of the
HS with respect to Zsud andGsud has the form

uk]u
r GpluZ = S"

i
Z−1 ]Zsud

]FA
* sud

,− ]uFA
* sudD, k]u

r Gpl = skGpsudl,GskGsudlddu = ]u
r kGpl, s66d

without the sign of average ins65d for Ǧpsud andGpsud. Expressionss65d relate the explicit form
of the Ward identities in a theory with Abelian hypergauges to the invariance of the generating
functional of Green’s functions with respect to the superfield BRST transformations.

V. CONNECTION BETWEEN LAGRANGIAN QUANTIZATIONS

The problem of establishing a correspondence between a LSM and a usual gauge theory can
be solved on the basis of a component form of the local quantization in the following two ways:
one is applicable to an arbitrary LSM, another applies to theories of Yang–Mills type. This makes

072302-17 Local superfield Lagrangian BRST quantization J. Math. Phys. 46, 072302 ~2005!

                                                                                                                                    



it possible to establish a relation of the local superfield scheme with the known formulations of
Lagrangian quantization,1,21 as well as with an extensionsproposed in the followingd of the
superfield method6,7 to the case of general coordinates.

A. Component formulation and its relation to Batalin–Vilkovisky, Batalin–Tyutin, and
superfield methods

The objects ofu-local quantization in the Lagrangian and Hamiltonian formulations are re-
lated to the conventional description of a gauge theory by means of a component representation of
the variablesGMIN

PMIN, Gk
pk, La, Ia, Gk

pksud=G0k
pk+G1k

pku, k=tot, under the restrictionu=0, for instance,

sM ,Nk,La,Iad→ sM̃ , uNkuu=0=hG0k
pkj ,l0

a,I0ad. Extracting a standard field model from a classical
description of a general gauge theory can be effected, in addition tou=0, by various kinds of
eliminating the functions]uAIsud, AI

*sud, as well as the superfieldsAIsud that contain objects with
an incorrect spin-statistics relation,«PsAIdÞ0. A possible way of such elimination is provided by
the conditions ghsAId=−1−ghsAI

*d=0, s«PdI =0, andsgh,] /]udSLsHdsud=s0,0d, mentioned in Sec.
IV A. Another possibility is related to superfield BRST transformations for theories of Yang–Mills

type,10,33,34in which a Lagrangian classical actionSLYM sud=SLsA ,DuA ,Ã ,DuÃdsud is defined in
terms of generalized Yang–Mills superfields,ABuszd, ABu=sAmu,Cud, u=1, . . . ,r, and matter su-

perfields,Ãszd=sC% ,C̄s ,w f ,w+gdszd, whereC%, C̄s, %, s=1, . . . ,k1, are spinor superfields, and

wg, w+h, g, h=1, . . . ,k2, are spinless ones. The superfieldsABuszd and Ãszd are defined on the

superspaceM=R1,33 P̃=hzB=sxm ,udj and take values, respectively, in the adjoint and vector
representation spaces of anr-parametric Lie group. The actionSLYM sud can be written as

SLYM sud =E d4xF1

4
GBC

uGCBus− 1d«B − iC̄sgB¹B%
sC% − ¹̄Bg

hw+g¹B
f
hw f + MsÃdGszd, s67d

with an Ãszd-local gauge-invariant polynomialMsÃd, containing no derivatives overzB. In ex-
pression s67d, we have introduced the superfield strengthGBC

u= ifDB,DCgu=]BAC
u

−s−1d«B«C]CAB
u + fuvwAB

vAC
w, ]B=s]m ,]ud and the following covariant derivatives, expressed

through the matrix elements of the Hermitian generatorsGu=diagsTu,T̄u,tu, t̄ud of the correspond-
ing Lie algebra:

sDB
uv,¹B%

s,¹Bf
e,¹̄Bh

gd = ]Bsduv,d%
s,d f

e,dh
gd + sfuwv,− isTwd%

s,− istwd f
e,− ist̄wdh

gdAB
w, s68d

where the coupling constant is absorbed into the completely antisymmetric structure coefficients
fuvw. We have also used a generalization of Dirac’s matrices,gB=sgm ,gud, gu=sgud+=jI4, with a
Grassmann scalarj, s«W ,ghdj=ss1,0,1d ,−1d. The «W-grading and ghost number are nonvanishing

for the superfieldssC ,C̄ ,Cud, namely,«WsC ,C̄d=s0,1,1d, «WsCud=s1,0,1d, ghsCud=1. The func-

tional ZfA ,Ãg=]uSLYM sud is invariant under the infinitesimal general gauge transformations

dgAIsud = dgsABu;Ãdszd = −E d5z0sDBuvszds− 1d«B; iGvÃszds− 1d«sÃdddsz− z0djvsz0d, s69d

with arbitrary bosonics«WA0
=0Wd functionsjvsz0d on M, and with functionally independent genera-

tors R̂A0

I su ,u0d;R̂A0

I sAsud ,u ,u0d. The condensed indicesI, A0 of the theory in question,

sI ;A0d=ssB,u,d ,e , f ,h,xd ; sv ,x0dd, conform to the relations,N̄. n̄, M̄ =m̄, sm̄,M̄d=sm̄0,M̄0d, pro-
vided that

N̄ = s4r + 2k2,r + 8k1d, M̄ = sr,0d, n̄ = N̄ − s0,rd,

which holds for a reduced theory with the actionffor u=0, the functionalSYMs0d=S0YM coincides

with the corresponding classical action of Ref. 36g SYMsud=−SLYM sA ,0 ,Ã ,0dsud on Mcl
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=hAmu,Ãjszd, in view of specialhorizontality conditionsfor the strengthGBC
u and certain subsid-

iary conditions for the matter superfieldsÃszd in Refs. 10 and 33,

GBC
uszd = Gmn

uszd, s¹uh
dCh,¹̄u%

sC̄%,¹ue
fwe,¹̄ug

hw̄gdszd = s0,0,0,0d. s70d

To extract a standard component model defined onuMcluu=0 from a Hamiltonian LSM, it is
sufficient to eliminate, foru=0, the antifieldsAI

*sud of a theory of Yang–Mills type, by analogy
with the prescriptions70d, i.e., by taking into account the relation betweenAI

*sud and]uAIsud: see
Sec. III and the final remarkssitem 1d of the Conclusion.

For the restricted LSM used in the Feynman rules of Sec. IV, the reduction to the model of the
multilevel formalism of Ref. 21 is realized by the conditions

u = 0, ]uwa
* = ]uwa = wa

* = Ia = 0. s71d

In this case, the identificationsr ,vpqdsG0d=sM ,EpqdsG0d implies the coincidence ofus· , ·duuu=0 and
Ds0d with their counterparts of Ref. 21. Then the first-level functional integralZs1d and its sym-
metry transformations21

Zs1d =E dl0dG0MsG0dexpH i

"
sWsG0d + GasG0dl0

adJ ,

dG0
p = sG0

p,− W+ Gal0
adm,

dl0
a = s− Ucb

a l0
bl0

cs− 1d«c + 2i"Vb
al0

b + 2si"d2G̃adm,

coincidesl0
a being replaced by the notationpa of Ref. 21d, respectively, with uZXs0duw0

*=0 and the
BRST transformationsdmG0 tot shaving the opposite signsd generated by the systems53d for
Rsud=1. This coincidence is guaranteed by the choice ofXsud in the form

Xsud = hGasGdLa − La
*f 1

2Ucb
a sGdLbLcs− 1d«c − i"Vb

asGdLb − si"d2G̃asGdgjsud + osL*d, s72d

wheresVb
a,G̃adsud, together withsUcb

a ,Gadsud, define the unimodularity relations.21 The relation of
the u-local quantization to the generating functional of Green’s functionZfJ,f*g of the BV
method1 is obvious from the identification Zs]uF* ,F*ds0d=ZfJ,f*g in s63d, where the action
SH

CsG0,"d of s36d obeys Eq.s37d.
Another aspect of the restrictionu=0 is that an arbitrary functionFsud=FssG ,]uGdsud ,ud

PC`sPTN3 hujd is represented by a functionalFfGg of the superfield methods6,7 sin caseGp

=sFA,FA
* d, see Sec. Id

FfGg =E duuFsud = FsGs0d,]uG,0d ; FsG0,G1d. s73d

In the first place, formulas73d implies the independence ofFfGg from ]u
r Gpsud=G1

p, in case
Fsud=FsGsud ,ud. Second, formulas73d is fundamental in establishing a relation between the
u-local antibrackets· , ·du

N and operatorDNsud, acting onC`sN3 hujd, with a generalization to
arbitrarysG ,vpq,rdsud of the flat functional operationss·,·d, D of Refs. 6 and 7, identical to their
counterparts of the BV method in caseGp=sFA,FA

* d, vpqsGsudd=antidiags−dB
A,dB

Ad, rsud=1, and
in case of a different odd Poisson bivector,ṽpqsGsud ,u8d=s1+u8]udvpqsud. The correspondence
follows from

usFsud,Gsuddu
Nuu=0 =

drFsG0d

dG0
p vpqsG0d

dlGsG0d

dG0
q = sFfGg,GfGgdN,
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sFfGg,GfGgdN = ]uFdrFfGg
dGpsud

]u8SṽpqsGsud,u8d
dlGfGg
dGqsu8d

DGs− 1d«sGpd+1, s74d

uDNsudFsuduu=0 = DNs0dFsG0d = DNFfGg,

s75d
DN = 1

2s− 1d«sGqd]u]u8fr
−1fGgṽqpsu8,udsGpsud,rfGgsGqsu8d, · dNdNg,

wheresrfGg ,ṽpqsu8 ,udd=srsG0d ,u8uvpqsudd and

E du9ṽpdsu8,u9dṽdqsu9,ud = udp
q.

When establishing the correspondence with the operationss·,·d andD of Refs. 6 and 7 ins74d and
s75d, we have used a relation between the superfield and component derivatives:

dl/dGpsud = s− 1d«sGpdsudl/dG0
p − dl/dG1

pd, G1
p = slA,− s− 1d«AJAd.

In general coordinates, the action of the sum and difference]usV±UdNs0d for N= uPT*Mextuu=0

reduced to

]usV ± Uds0d = ]uFA
* sud]/]FA

* s0d ± ]uFAsud]l/]FAs0d,

is identical to the action of the generalized sum and difference of their counterpartsV, U in Ref.
6:

u]usV − s− 1dtUdNsudFsuduu=0 = usStsud,Fsuddu
Nuu=0 = sV − s− 1dtUdNFfGg = sStfGg,FfGgdN,

t = 1,2,

s76d
Stsud = s]uGpdvpq

t sGsuddGqsud, StfGg = ]uhGpsud]u8]ufṽpq
t su,u8dGqsu8dgj = Sts0d,

where the functionsvpq
t sud ,ṽpq

t su ,u8d, identical withvpqsud andṽpqsu ,u8d for t=1, are defined by

ṽpq
t su,u8d = uu8vpq

t su8d = − s− 1dt+«sGpd«sGqdṽqp
t su8,ud, vpq

t sud = s− 1d«sGpd«sGqd+tvqp
t sud.

The «W-bosonic quantitiesStsud and StfGg with a vanishing ghost number play the role of the
symmetric Sps2d-tensorSab sa,b=1,2d and anti-HamiltonianS0 of Ref. 35, which definesin terms
of extended antibracketsd the first-order operators of the modified triplectic algebra. In this case,
the additional functionsvpq

2 sud ,ṽpq
2 su ,u8d may be considered as quantities that define another

nonantisymplecticsnon-Riemanniand nondegenerate structure onN. Theu-local functional opera-
tors hDN ,VN ,UNjsud anticommute for a fixedu,

fEi
Nsud,Ej

Nsudg+ = 0, i, j = 1,2,3, sE1,E2,E3d = sD,V,Ud, s77d

provided thatStsud or StfGg is subject to

DNsudStsud = 0, sSusud,Svsuddu
N = 0, t,u,v = 1,2. s78d

Relationss78d, which hold, due to Eqs.s74d–s77d, also for functional objectssthose without a
u-dependenced, follow from the well-known properties of the antibracketsbilinearity, graded
antisymmetry, Leibniz rule, Jacobi identityd, and from the rule of antibracket differentiation by the
operatorDNsud. The systems78d determines the geometry ofN by restricting the choice of both
quantities vpq

t sud ,ṽpq
t su ,u8d. Notice that a solution of Eq.s78d always exists, for instance,

vpq
t sud=antidiagsdB

A,s−1dtdB
Ad.
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B. Superfield functional quantization in general coordinates

Let us consider a generalization of the vacuum functional of the superfield method,6,7 namely,

ZX8
N =E dmfGgqNfGgexpH i

"
sW8 + X8 + û2S

2dfGgJ , s79d

whereû2 is an arbitrary real number;W8, X8 are the quantum and gauge-fixing actions, defined on
N and subject to the equations

1
2sW8,W8dN + VW8 = i"DNW8, 1

2sX8,X8dN + UX8 = i"DNX8, s80d

while the integration measure and the weight functionalqNfGg have the form

dmfGg = rfGgd̃G, d̃G = dG0dG1, qNfGg = dsGa1

V sGsuddd, a1 = 1, . . . , dim+N. s81d

In s80d, we have introduced a two-parameter setUsû1,û2d, Vsû1,û2d of anticommuting operators,

U = 1
2s− 1dtûtsStfGg, · dN, V = 1

2ûtsStfGg, · dN, s82d

satisfying, together withDN, the algebras77d, for arbitrary real numbersût, whose choice admis-
sible for the existence of the functional integral fixes the form ofZX8

N . This choice also fixes Eq.
s80d, the admissible boundary conditions forW8, X8, and the form of theadditional hypergauge
conditions, Ga1

V sGsudd=0, which are required to retain the explicit superfield form of the vacuum
functional. The independent functionsGa1

V sGsudd are equivalent to the set of functionsVGpsud:
Ga1

V su1d=]ufYa1psGsu1d ,udVGpsudg with certainYa1psu1,ud such that

rankIP0sud
dlEtsu1d
dGqsud IdW8/dG=dX8/dG=GV=0

= sLt
V,dim+N − Lt

Vd, sE1,E2d = sGa1

V ,VGpd, s83d

for some integersL1
V, L2

V: 0øL1
V, L2

Vødim+ N.
The basic properties of the functionalZX8

N are analogous to properties 1, 2 ofZsud in s50d,
which are encoded by a Hamiltonian-like system with an arbitrary functionalRfGg, s«W ,ghdR
=s0W ,0d,

]u
r Gpsud =

"

i
T−1fGgsGpsud,TfGgRdN, TfGg = expF i

"
sW8 − X8 + û1S

1dG . s84d

For instance, thesuperfield BRST transformationsdmGpsud=]u
r Gpsudm for ZX8

N are derived from
s84d, with R=1, and from the additional equations

sGa1

V sGsudd,W8 − X8 + û1S
1dN = 0 ⇔ dmGa1

V sGsudd = 0, s85d

which ensure the BRST invariance ofqN. In order to be valid for any gauge theory with an
admissible action, Eq.s85d imposes strong restrictions on all the quantitiesYa1psu1,ud, ṽpq

t su ,u8d,
and consequently on the geometry ofN. For example, the constant functionsYa1psu1,ud,
ṽpq

t su ,u8d belong to solutions of Eq.s85d. We, however, do not restrict the consideration to this
special case, assuming that Eq.s85d is fulfilled for any W8, X8. Some remarks are in order
concerning the status of the functionalqNfGg. Here, we do not consider the possibility of present-
ing the functionsGa1

V sud by an integral over new additional superfieldsLa1sud, following in part
the prescription of Ref. 21 that introduces so-called “unimodularity involution relations” for
Ga1

V sud and modifies the BRST transformations for the extended set of variablessGp,La1dsud.
Choosing
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sût,G
p,r,ṽpq

t su,u8d,Ya1psu1,udd = s1,sFA,FA
* d,1,uu8antidiagsdB

A,s− 1dtdB
Ad,dsu1 − uddApd,

s86d

we obtain

sV,U,S2,qNd = sV,U,]usFA
* FAdsud,dsJAdd, s87d

where sV,Ud=s−1d«A]us−FA
* sud]ud /dFA

* sud ,FAsud]udl /dFAsudd, according to Ref. 6, and hence
ZX8

N , as well as Eq.s80d, and BRST transformations, implied bys84d for R=1, coincide, respec-
tively, with the vacuum functionalZ,

Z =E dFdF*ds]uF*suddexpH i

"
sWfF,F*g + XfF,F*g + ]usFA

* FAddJ ,

with the equations 1/2sW,Wd+VW= i"DW, 1 /2sX,Xd−UX= i"DX, for W=W8, X=X8, and with
the BRST symmetry transformations7 for Z shaving the opposite signs in the r.h.s.d

dFAsud = mUFAsud + sFAsud,X − Wdm, dFA
* sud = mVFA

* sud + sFA
* sud,X − Wdm.

In particular, choosingX in terms of the gauge fermionCfFg=Csf ,ld, XfF ,F*g=UCfFg, first
realized in Ref. 6, we obtain the generating functional of Green’s functionsZfF*g used in Sec. I
in order to determine the superfield effective action in Abelian hypergauges.

A complete correspondence betweenZX8
N and the functionaluZXs0duw0

*=0 in s50d can be estab-
lished as follows: First, the functionalû2S

2 is represented ass1/2ds1+s−1dtdûtS
t, so that the

redefined actions

W9 = W8 + 1
2ûtS

t, X9 = X8 + 1
2s− 1dtûtS

t s88d

obey Eq.s80d without the operatorsV andU. Second, the actionsWsud in s50d andW9fGg, as well
as the quantitiesuXsuduL*=0 in s50d andX9fGg, are related by formulas73d. Third, the solvability of
the hypergaugesGafGg with respect to the fieldswa

*sud, on condition thatLasud=]u
r wasud, implies,

together with the previous restriction, a linear dependence ofX9fGg on Lasud and its independence
from ]uwa

*sud. Next, one should take into account the structure of the generating equation for
X9fGg, as well as the second system ins51d with s72d for Xsud, and the fact that the corresponding
systemss84d and s53d, encoding the BRST transformations, coincide with each other. The latter
requires the commutativity ofGafGg and the triviality of the unimodularity relations, i.e.,DNGa

=Vb
a=G̃a=0. Finally, the measure dmfGgqN in s79d is made identical toudmsGsudddLsuduu=0 in

s50d by the choiceqN=ds]uw*sudd. This choice can be realized bysût ,ṽpq
t su ,u8d ,a1,Ya1psu1,udd

=s1,uu8antidiagsdb
a,s−1dtdb

ad ,a,dsu1−udda1pd.

VI. CONCLUSION

Let us summarize the main results of the present work:
We have proposed au-local description of an arbitrary reducible superfield theory as a natural

extension of a usual gauge theory, defined on a configuration spaceuMcluu=0 of classical fieldsAi,
to a superfield model defined on extended cotangent,Todd

* MCL3 huj, and tangent,ToddMCL

3 huj, odd bundles, in respective Hamiltonian and Lagrangian formulations. It is shown that the
conservation under au-evolution sdefined by a Hamiltonian or Lagrangian system providing a
superfield extension of the usual extremalsd of a Hamiltonian actionSHssA ,A*dsud ,ud, or, equiva-
lently, of an odd counterpart of energy,SEssA ,]uAdsud ,ud, is equivalent, in view of Noether’s first
theorem, to the validity of a Hamiltonian or Lagrangian master equation, respectively.

Using non-Abelian hypergauges, we have constructed au-local superfield formulation of
Lagrangian quantization for a reducible gauge model, extracted from a general superfield model
by the conditions of a manifestu-independence of the classical action and the vanishing of ghost
number and auxiliary Grassmann paritysrelated toud for the action andAIsud. In particular, we
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have proposed a new superfield algorithm for constructing a first approximation to the quantum
action in powers of ghosts of the minimal sector, on the basis of interpreting the reducibility
relations as special gauge transformations of ghosts for an HS with the Hamiltonian chosen as the
quantum action. To investigate the properties of BRST invariance and gauge-independence in a
superfield form, for the introduced generating functionals of Green’s functionssincluding the
effective actiond, we have usedtwo equivalentHamiltonian-like systems. The first system is
defined by au-local antibracket, in terms of a quantum action, a gauge-fixing action, and an
arbitrary u-local boson function, while the secondsduald system is defined by an even Poisson
bracket, in terms of fermion functionals corresponding to the above functions. The two systems
allow one to describe the BRST transformations and the continuoussantidcanonical-like transfor-
mations in a manner analogous to the relation between these transformations in the superfield
Hamiltonian formalism.5 We emphasize that, as a basis for the local quantization, we have in-
tensely used the first-level formalism of Ref. 21, whose main ingredient is the vacuum functional
showever, without recourse to the gauge-fixing action in a manifest formd.

We have considered the problem of adual descriptionfor an L-stage reducible gauge theory
in terms of a BRST charge for a formal dynamical system with first-class constraints of
sL+1d-stage reducibility. It is shown that this problem is a particular case of embedding a reduc-
ible special gauge theory into a general gauge theory of the same stage of reducibility.

We have proposed an extension of functional superfield quantization6,7 to the case of general
antisymplectic manifold without connection. It is shown that the condition of anticommutativity
for all operators as well as the requirement of a correct transformation of the path integral measure
impose strong restrictions on the geometry of the manifold as well as onadditional hypergauge
conditionsthat determine the measure.

We have established the coincidence of the first-level functional integralZs1d in Ref. 21 with
the local vacuum function of the proposed quantization scheme, in caseu=0 and w*sud=0,
ZXs0d uw0

*=0. A correspondence is found betweenuZXs0duw0
*=0 and the vacuum functionalZX8

N of the
proposed extension of the superfield quantization.6,7 It is shown that the above functionals coin-
cide only in Abelian hypergauges, with a trivial choice of the additional hypergauge conditions.

From the obtained results there follow the generating functional of Green’s functions and the
effective action of the first-level formalism.21 It is observed that in case the quantum actionW8fGg
depends on the superfields]uGpsud, or the gauge-fixing actionX8fGg depends on the same super-
fields more than linearly, the functionalZX8

N differs from uZXs0duw0
*=0 exactly as the functionalZ in

Ref. 7 differs fromZs1d in Ref. 21.
In connection with the discussed points, the following open problems seem to be of interest:
1. One could obtain a Hamiltonian formulation of a LSM from a Lagrangian formulation in

the case of a degenerate Hessian supermatrixsSL9dIJsud in s5d, and consider its relation to the
standard component description of a model. In this case, Dirac’s algorithm in terms of au-local
antibracket, under the conservation of primary constraints in the course ofu-evolution along a
vector field defined by an HS with a primary Hamiltonian in terms of antifields, would determine
all antisymplectic constraints for the classical superfieldsGCL

P sud. Among these constraints, there
may exist a subsystem of second-class ones, in the case of the degeneracy of the supermatrix
iLJ

l su1dfLI
lsu1dSLsu1ds−1d«IgiS in s6d. It is interesting to apply the BFV method to construct, in

terms of au-local Dirac’s antibracketsthe prescription for the first-level functional integral in
terms of Dirac’s antibracket was considered in Ref. 21d, s· , ·duD, a triplet of u-local quantities

S̃Hsud, Ṽsud ,C̃sud: s«P,«d-even functionsS̃Hsud, Ṽsud, commuting with respect tos· , ·duD fby
analogy with the Hamilton function and the BFV-BRST charge in at-local field theoryg and an

s«P,«d-odd functionC̃sud, which encodes the dynamics of a LSM and its first-class constraint
algebra, as well as fixes the “gauge” arbitrariness in a space larger thanTodd

* MCL3 huj. In this

connection, it seems interesting to consider the question of how the construction ofS̃Hsud, Ṽsud
and of the “unitarizing Hamiltonian”S̃Hsud=S̃Hsud+sṼsud ,C̃sudduD is related to the quantum
action of the BV method.

2. From the solution of the dual problem of Sec. IV B, found within the classical description,
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there arise two natural questions: “How does the operator formulation of a formal dynamical
system with a nilpotent BRST charge and a quantum counterpart of the even Poisson bracket
correspond to the Lagrangian quantization of a gauge model?” and “What is related, in a Lagrang-
ian formulation, to the formal supercommutator and the Hilbert space of states?” The mentioned
problems appear to be related to the correspondence found in Ref. 37 between Poisson brackets
and their operator counterparts of the opposite parity.
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I. INTRODUCTION

A Yang-Mills-Higgs model is specified by choosing a real compact Lie group describing the
gauge bosons and three unitary representations describing the left- and right-handed fermions and
the Higgs scalars. Connes1 remarks that the set of all Yang-Mills-Higgs models comes in two
classes, Fig.1. The first is tiny and contains all those models that derive from gravity by general-
izing Riemannian to almost commutative geometry. The intersections of this tiny class with the
classes of left-right symmetric, grand unified, or supersymmetric Yang-Mills-Higgs models are all
empty. However, the tiny class does contain the standard model of electromagnetic, weak, and
strong forces with an arbitrary number of colors.

The first class is tiny, but still infinite and difficult to assess. We have started putting some
order into this class. The criteria we apply are heteroclitic.2

Two criteria are simply motivated by simplicity: we take the internal algebra to be simple, or
with two, three,… simple summands, we take the internal triple to be irreducible.

Two criteria are motivated from perturbative quantum field theory of the nongravitational part
in flat time space: vanishing Yang-Mills anomalies and dynamical nondegeneracy. The latter
imposes that the number of possible fermion mass equalities be restricted to the minimum, and
that they be stable under renormalization flow. The origin of these mass equalities is the following.
In almost commutative geometry, the fermionic mass matrix is the “Riemannian metric” of inter-
nal space, and as such becomes a dynamical variable. Its “Einstein equation” is the requirement
that the fermionic mass matrix minimize the Higgs potential. Indeed, in almost commutative
geometry, the Higgs potential is the “Einstein-Hilbert action” of internal space.

Two criteria are motivated from particle phenomenology: We want the fermion representation
to be complex under the little group in each of its irreducible components, because we want to
distinguish particles from antiparticles by means of unbroken charges. We want possible massless
fermions to remain neutral under the little group, i.e., not to couple to massless gauge bosons.

Two criteria are motivated from the hope that, one day, we will have a unified quantum theory
of all forces: vanishing mixed gravitational Yang-Mills anomalies and again dynamical nondegen-
eracy.

a�Electronic mail: jureit@cpt.univ-mrs.fr�
b�Electronic mail: Stephan@cpt.univ-mrs.fr
c�Electronic mail: schucker@cpt.univ-mrs.fr
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Our analysis is based on a classification of all finite spectral triples by means of Krajewski
diagrams3 and centrally extended spin lifts of the automorphism group of their algebras.4 The
central extension serves two purposes: �i� It makes the spin lift of complex algebras Mn�C� well
defined. �ii� It allows the corresponding U�n� anomalies to cancel.

Of course, we started with the case of a simple internal algebra. Here, there is only one
contracted, irreducible Krajewski diagram and all induced Yang-Mills-Higgs models are dynami-
cally degenerate.

The second case concerns algebras with two simple summands. It admits three contracted,
irreducible Krajewski diagrams, one of them being a direct sum of two diagrams from the first
case. The corresponding triples induce two Yang-Mills-Higgs models which are dynamically non-
degenerate and anomaly free: SU�2� with a doublet of left-handed fermions and a singlet of
right-handed fermions. The Higgs scalar is a doublet. Therefore, the little group is trivial,
SU�2�→ �12�, and the fermion representation is real under the little group. The second model is the
SO�2� submodel of the first.

The case of three summands has 41 contracted, irreducible diagrams plus direct sums. Its
combinatorics is on the limit of what we can handle without a computer. There are only four
induced models satisfying all criteria: The first is the standard model with C colors, C�2,
SU�2��U�1��SU�C�, with one generations of leptons and quarks and one colorless SU�2� dou-
blet of scalars. The three others are submodels, SO�2��U�1��SU�C�, SU�2��U�1��SO�C�,
and SU�2��U�1��USp�C /2� and must have C�2; the last submodel of course requires C even,
C�4.

In the following we push our classification to four summands. For simplicity we will only
consider diagrams made of letter-changing arrows, i.e., we exclude arrows of type aā because, in
the first three cases, these arrows always produced degeneracy. When the algebra is simple, of
course all arrows are of this type and all models were degenerate. All direct sum diagrams in cases
2 and 3 necessarily contain such arrows. For two summands, there is only one contracted, irre-
ducible diagram, which is not a direct sum and which is made of letter changing arrows; for three
summands there are 30 such diagrams.

For four summands, a well-educated computer5 tells us that there are 22 contracted, irreduc-
ible diagrams made of letter-changing arrows and which are not direct sums. They are shown in
Fig. 2. We have two pleasant surprises: �i� the number of these diagrams is small; �ii� there are
only two ladder diagrams, diagrams 18 and 19, i.e., diagrams with vertically aligned arrows, and
all other diagrams have no subdiagrams of ladder form. We will see that these other diagrams are
easily dealt with.

II. STATEMENT OF THE RESULT

Consider a finite, real, S0-real, irreducible spectral triple whose algebra has four simple sum-
mands and the extended lift as described in Ref. 4. Consider the list of all Yang-Mills-Higgs
models induced by these triples and lifts. Discard all models that have either

FIG. 1. Pseudoforces from noncommutative geometry.
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�i� a dynamically degenerate fermionic mass spectrum;
�ii� Yang-Mills or gravitational anomalies;
�iii� a fermion multiplet whose representation under the little group is real or pseudoreal,

FIG. 2. Four simple summands produce 22 contracted, irreducible diagrams made of letter changing arrows and which
are not direct sums.
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�iv� or a massless fermion transforming nontrivially under the little group.

The remaining models are the following: C is the number of colors, the gauge group is on the
left-hand side of the arrow, the little group on the right-hand side

FIG. 2. �Continued�.
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C=3, 5…

SU�2� � U�1� � SU�C�
Z2 � ZC

→
U�1� � SU�C�

ZC
.

The left-handed fermions transform according to a multiplet 2 � C with hypercharge q / �2C� and a
multiplet C with hypercharge −q /2. The right-handed fermions sit in two multiplets C with
hypercharges q�1+C� / �2C� and q�1−C� / �2C� and one singlet with hypercharge −q, q�Q. The
elements in Z2�ZC are embedded in the center of SU�2��U�1��SU�C� as

�exp
2�ik

2
12,exp�2�i�Ck − 2��/q�,exp

2�i�

C
1p�, k = 0,1, � = 0,1,…,C − 1.

The Higgs scalar transforms as an SU�2� doublet, SU�C� singlet and has hypercharge −q /2.
With the number of colors C=3, this is the standard model with one generation of quarks and

leptons.
We also have in our list two submodels of the above model defined by the subgroups

SO�2� � U�1� � SU�C�
Z2 � ZC

→
U�1� � SU�C�

ZC
,

SU�2� � U�1� � SO�C�
Z2

→ U�1� � SO�C� .

They have the same particle content as the standard model; in the first case only the W± bosons are
missing, in the second case roughly half the gluons are lost.

C=2, 4…

SU�2� � U�1� � SU�C�
ZC

→
U�1� � SU�C�

ZC
,

with the same particle content as for odd C. But, now we have three possible submodels

SO�2� � U�1� � SU�C�
ZC

→
U�1� � SU�C�

ZC
,

SU�2� � U�1� � SO�C� → U�1� � SO�C� ,

SU�2� � U�1� � USp�C/2�
Z2

→
U�1� � USp�C/2�

Z2
.

electro-strong

U�1� � SU�C� → U�1� � SU�C� .

The fermionic content is C � 1, one quark and one charged lepton. The two fermion masses are
arbitrary but different and nonvanishing. The number of colors is greater than or equal to 2, the
two charges are arbitrary but vectorlike; of course the lepton charge must not vanish. There is no
scalar and no symmetry breaking.

III. DIAGRAM BY DIAGRAM

We will use the following letters to denote algebra elements and unitaries: Let A=MA�C�
� MB�C� � MC�C� � MD�C�� �a ,b ,c ,d�. The extended lift is defined by
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L�u,v,w,z� ª ��û, v̂,ŵ, ẑ�J��û, v̂,ŵ, ẑ�J−1, �1�

with

û ª u�det u�q11�det v�q12�det w�q13�det z�q14 � U�A� , �2�

v̂ ª v�det u�q21�det v�q22�det w�q23�det z�q24 � U�B� , �3�

ŵ ª w�det u�q31�det v�q32�det w�q33�det z�q34 � U�C� , �4�

ẑ ª z�det u�q41�det v�q42�det w�q43�det z�q44 � U�D� , �5�

and unitaries �u ,v ,w ,z��U�MA�C� � MB�C� � MC�C� � MD�C��. It is understood that, for in-
stance, if A=1 we set u=1 and qj1=0, j=1, 2,3,4. If MA�C� is replaced by MA�R� or MA/2�H�, we
set qj1=0 and q1j =0.

Diagram 1 yields

�L = �b � 1A 0

0 d � 1C
�, �R = �a � 1A 0

0 �a � 1C
� ,

�L
c = �1B �

��a 0

0 1D � c
�, �R

c = �1A �
��a 0

0 1A � c
� , �6�

and

M = �M1 � 1A 0

0 M2 � 1C
�, M1 � MB�A�C�, M2 � MD�A�C� . �7�

The parameters � and �� take values ±1 and distinguish between fundamental representation and
its complex conjugate: 1aªa, −1aª ā. The color algebras consist of a’s and c’s. The a’s are
broken and therefore we must have A=1. We want at most one massless Weyl fermion, which
leaves us with three possibilities. The first is B=2, D=1. The fluctuations read

�1 = 	
j

rjv̂ jM1ûj
−1, �2 = 	

j

rjẑjM2
�ûj

−1. �8�

We can decouple the two scalars �1 and �2 by means of the fluctuation: r1= 1
2 , û1=1, v̂1=12,

ŵ1=1C, ẑ1=1, r2= 1
2 , û2=1, v̂2=−12, ŵ2=1C, ẑ2=1. Since the arrows M1 and M2 are disconnected,

the Higgs potential is a sum of a potential in �1 and of a potential in �2. The minimum is �̊1

=��4	�−1/2�1

0 � and �̊2=��4	�−1/2, and the model is dynamically degenerate.

The same accidents happen for the second possibility, B=1, D=2. We are left with the third
possibility, B=D=1. Anomaly cancellations imply that the fermion couplings are vectorial: q13

=q23, q43=�q13, and there is no spontaneous symmetry breaking, SU�C��U�1�→ SU�C�
�U�1�. The model describes electro-strong forces with one charged lepton, one quark, and no
scalar. The masses of both fermions are arbitrary but nonvanishing, the electric charges are arbi-
trary, nonvanishing for the lepton, and the number of colors C is arbitrary, C�2.

Diagrams 3, 4, and 7 are treated in the same way and produce only the electro-strong model.
Diagram 2 yields

�L = �b � 1A 0

0 �a � 1C
�, �R = �a � 1A 0

0 d � 1C
� , �9�
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�L
c = �1B�

��a 0

0 1A � c
�, �R

c = �1A�
��a 0

0 1D � c
� ,

and

M = �M1 � 1A 0

1A � M3 M2 � 1C
�, M1 � MB�A�C�, M2 � MA�D�C�, M3 � MC�A�C� .

�10�

If M3=0 diagram 2 is treated as diagram 1. We consider the case M3�0. Then, the first-order
axiom implies �=1. The color algebras consist of a’s and c’s. Both are broken and we take A
=C=1. Then, M is of rank two or less. If we want at most one massless Weyl fermion, we must
take B=2 and D=1 or B=1 and D=2. Anomaly cancellations then imply that the doublet of
fermions does not couple to the determinant of the 2�2 unitary, “the hypercharge of the doublet
is zero.” On the other hand, the little group turns out either trivial or U�1�. In the latter case the
neutrino sitting in the doublet is charged under this U�1�.

Diagram 5 has no unbroken color and fails as the first possibility of diagram 1, B=2, D=1.
Diagram 6 has color a and b; both are broken, implying A=B=1. Then, we must have C

=D=1 to avoid two or more neutrinos.
Diagram 8 yields

�L = �a � 1C 0

0 c � 1B
�, �R = �a � 1A 0

0 d � 1C
� , �11�

�L
c = �1A�


c 0

0 1C � b
�, �R

c = �1A � b 0

0 1D � b
� ,

and

M = �1A � M1 0

M3 � 1B M2 � 1B
�, M1 � MC�B�C�, M2 � MC�D�C�, M3 � MC�A�C� .

�12�

We suppose that M3 does not vanish; otherwise, diagram 8 is treated as diagram 1. Broken color
implies A=B=1. Neutrino counting leaves two possibilities, C=1 and D=2 or C=D=2. The first
possibility is disposed of as in diagram 2. For the second possibility, anomaly cancellations imply
that the determinants of the 2�2 unitaries w and z do not couple to the right-handed fermions.

Diagrams 14, 15, 16, and 17 share the fate of diagram 6.
Diagram 9 yields

�L = 
b � 1A 0 0

0 c � 1B 0

0 0 d � 1D
�, �R = 
a � 1A 0 0

0 �1b � 1B 0

0 0 �2b � 1D
� , �13�

�L
c = 
1B �

��a 0 0

0 1C �
��b 0

0 0 1D �
��d
�, �R

c = 
1A �
��a 0 0

0 1B �
��b 0

0 0 1B �
��d
� ,

and
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M = 
M1 � 1A 1B � M4 1B � M5

0 M2 � 1B 0

0 0 M3 � 1D
� ,

with M1�MB�A�C�, M2�MC�D�C�, M3�MD�B�C�, M4�MA�B�C�, M5�MA�D�C�. If M4 is
nonzero �1 must be 1, and if M5 is nonzero �2 must be 1. From broken color and neutrino
counting, we have A=B=D=1 and C=2. Vanishing anomalies imply that the first and the third
fermion have vectorlike hypercharges, while the hypercharges of the second fermion are zero. It is
therefore neutral under the little group U�1�.

Diagrams 10, 11, 12, and 13 fail in the same way.
Diagram 18 produces the following triple:

�L = �a � 1C 0

0 �a � 1D
�, �R = 


b � 1C 0 0

0 �1b̄ � 1C 0

0 0 �2b̄ � 1D

� ,

�L
c = �1A � c 0

0 1A � d
�, �R

c = 
1B � c 0 0

0 1B � c 0

0 0 1B � d
� ,

and

M = �M1 � 1C M2 � 1C 0

0 0 M3 � 1D
�, M1,M2,M3 � MA�B�C� . �14�

Counting neutrinos leaves two possibilities, A=2 and B=1, or A=1 and B=1. If the neutrino is to
be neutral under the little group, we must have D=1 for the first possibility and C=1 for the
second.

The first possibility has two U�1�’s if C�2 and all four algebras consist of matrices with
complex entries. They are parametrized by det u and by det w. For �� ,�1 ,�2�= + + + ,−+ + ,
+ +−, and −+−, anomaly cancellations imply that the fermionic hypercharges of both U�1�’s are
proportional

q11 = −
1

2
, q21 = Cp, q31 = p, q41 = − Cp , �15�

q13 = 0, q23 = Cq, q33 = q −
1

C
, q43 = − Cq , �16�

with p, q�Q. Consequently, one linear combination of the two generators decouples from the
fermions and is absent from the spectral action. This is similar to what happens to the scalar in the
electro-strong model of diagram 1. The hypercharges of the remaining generator are those of the
standard model with C colors. In the remaining four cases �� ,�1 ,�2�= +−+ ,−−+ , +−−, and
−−−, all ten fermionic hypercharges vanish and the three leptons are neutral under the little group.
Finally, the cases where some of the four summands consist of matrices with real or quaternionic
entries are treated as in the situation with three summands, and they produce the same submodels
of the standard model.

The first possibility with C=1 has only one U�1�. For the four sign assignments: �� ,�1 ,�2�
= + + + ,−+ + , + +−, and −+−, we find anomaly free lifts with nontrivial little group. For example,

072303-8 Jureit et al. J. Math. Phys. 46, 072303 �2005�

                                                                                                                                    



for the first assignment, we get q11=−1/2, q21= p, q31=−p, and q41=−p, with p�Q. All four
assignments produce the electro-weak model �SU�2��U�1�� /Z2→U�1� of protons, neutrons, neu-
trinos, and electrons.

The second possibility, A=B=C=1, contains at least one chiral lepton with vanishing hyper-
charge and therefore neutral under the little group.

Diagram 19 gives the same results as diagram 18.
In diagrams 20, 21, and 22, the elements a and b must be matrices with complex entries to

allow for conjugate representations. Without both the fundamental representation and its complex
conjugate, these diagrams would violate the condition that every nonvanishing entry of the mul-
tiplicity matrix of a �blown-up� Krajewski diagram must have the same sign as its transposed
element if the latter is not zero. Diagram 20 is treated and fails as diagram 2; diagrams 21 and 22
are treated and fail as diagram 13.

At this point we have exhausted all diagrams of Fig. 2.

IV. CONCLUSION AND OUTLOOK

For three summands there was essentially one irreducible spectral triple satisfying all items on
our shopping list: the standard model with one generation of quarks and leptons and an arbitrary
number of colors �greater than or equal to 2�. We say “essentially” because a few submodels of the
standard model can be obtained. Going to four summands adds precisely one model, the electro-
strong model for one massive quark with an arbitrary number of colors and one massive, charged
lepton. Note that this is the first appearance of a spectral triple without any Higgs scalar and
without symmetry breaking.

We still have to prove that spectral triples in four summands involving letter-preserving
arrows like a ā do not produce any model compatible with our shopping list.

We are curious to know what happens in five �and more� summands. Here, ladder diagrams do
not exist and we may speculate that our present list of models exhausts our shopping list also in
any number of summands.

Anyhow, two questions remain: Who ordered three colors? Who ordered three generations?
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Seiberg-Witten equations in R4: Lie symmetries, particular
solutions, integrability
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It is shown that the 11-parameter automorphism group of Lie algebra of four-
dimensional Euclidean group is a maximal Lie symmetries group of the Seiberg-
Witten equations in R4. Particular explicit solutions which are invariant under
SO�3� subgroups of the maximal Lie symmetries group are constructed. It is estab-
lished that Seiberg-Witten equations do not possess the Painlevé property. Never-
theless, SO�3� invariant solutions obtained are turned to admit a characteristic
singularity structure. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1947121�

I. INTRODUCTION

The Seiberg-Witten, or Abelian monopole, equations introduced in Ref. 1, following up with
Ref. 2, play a significant role in the quantum gauge field theory and can be used as a powerful tool
in the analysis of four manifolds.3 These equations have arisen in the context of the S-duality
between N=2 SUSY pure gauge Yang-Mills theory and N=2 supersymmetric Abelian theory, the
latter including not only gauge fields but matter ones.2,4 The Witten twist leads the SUSY pure
gauge Yang-Mills theory to the Witten-Donaldson topological theory.5 The weakly coupled region
of field space in this theory is described by �anti�self-dual Yang-Mills instanton equations. The
Seiberg-Witten equations describe the dynamics of “twisted” N=2 supersymmetric Abelian gauge
fields with weakly coupling constant.1,6 The more precise relationship between Donaldson theory,
counting instantons, and dual Seiberg-Witten theory, counting monopoles, is explored in Ref. 7.
So, the Seiberg-Witten equations, to some extent, are ”dual” to Yang-Mills instanton equations.
The problems of duality and topological aspects of low dimensional reduction of these theories
have been studied in Refs. 8,9.

In light of these results, we note some properties of self-dual Yang-Mills equations. It was
shown in Ref. 10 that the SU�2� self-dual Yang-Mills equations pass the Painlevé test for
integrability.11 Moreover, experience has shown that many well-known integrable equations are
the reductions of the Yang-Mills equations.12–15 These facts led to the famous Ward
hypothesis.13,14 The Seiberg-Witten equations have been linked to integrable systems by means of
prepotentials �Refs. 16 and 17 and references therein�. Some equations of the Painlevé type were
obtained from the non-Abelian generalization of monopole equations.18,19 However, the integra-
bility of the Seiberg-Witten equations was not investigated.

Besides, the Abelian monopole equations are referred to in the context of zero-eigenvalue
solutions to the Euclidean Dirac equation in external gauge field. The general ansatz of zero modes
of the Abelian Dirac operator in three dimensional Euclidean space was proposed in Ref. 20. By
exploiting this result, some particular solutions to the Seiberg-Witten equations in R3 were
found.21,22 Furthermore, the Freund’s equations were proposed which differ from Seiberg-Witten
ones in the sign of the quadratic term.22 It was shown in Ref. 23 that conformal group of three-
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dimensional Euclidean space is a maximal group of Lie symmetries of the Seiberg-Witten equa-
tions in R3. Particular explicit solutions which are invariant under some subgroups of conformal
group were constructed.

This paper deals with the Seiberg-Witten equations in four dimensional Euclidean space. The
maximal group of Lie symmetries and particular solutions of this equations will be constructed.
Besides, it will be shown that Seiberg-Witten equations do not possess the Painlevé property.
Strictly speaking, we should define equations on compact manifolds. However, an arbitrary mani-
fold M is defined by introducing a set of Euclidean-type neighborhoods covering M. In other
words, a manifold is constructed by pasting together many pieces of Euclidean space. In turn, this
paper is devoted to a study of the local properties of the Seiberg-Witten equations. Our point of
view does not concern with the global topological aspects of Seiberg-Witten theory. Connections
between Painlevé analysis and global aspects have been studied in Ref. 24.

II. SEIBERG-WITTEN AND FREUND’S EQUATIONS IN R4

The Seiberg-Witten equations as well as Freund’s ones are a set of coupled PDEs in four

dimensions for the Abelian vector potential A� and the two-component spinor field �̃. Following
Ref. 22, we write the Seiberg-Witten �Freund’s� equations as

���i�� − eA��� = 0,

��ie/2��̄�����+� = �F���+, �1�

��A� − ��A� = F��.

Here the bispinor � is

� = ��̃

0
�;

�= ±1; �, �=0,1,2,3; �� are the Dirac matrices satisfying ��� ,���=−2g��I4; ���=1/2��� ,���. �̄
means the Hermitian conjugate bispinor. We use the usual summation convention throughout,
repeated indices are summed if one index is “up” and one is “down.” For �=1, these equations
will be the Seiberg-Witten ones. In the case �=−1, we will think of the equations �1� as the
Freund’s equations. With the Euclidean metric g�� of signature �−,−,− ,−� the Dirac matrices can
be represented in the form

�0 = � 0 �0

�0 0
�, �k = � 0 − i�k

i�k 0
� ,

where �0= I2 and �k are the Pauli matrices; k=1,2,3. Then

�����+ = 1/2���� + �1/2�����	��	� =
1

2
�
��
�	 − 
��
�	 + ����	�����	 0

0 0
�

and the self-dual tensor �F���+ is given by

�F���+ = 1/2�F�� + �1/2������F��� ,

where ����� is a totally antisymmetric tensor with �0123=1 and 
 is a Kronecker symbol. As has
been shown in Ref. 25, the gauge vector field A� can be related to the spinor field � by
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A� =
ie

2�̄�
�����̄������ + 2�̄���� . �2�

This relation follows from the equations

���i�� − eA��� = 0,

�̄���i��
� + eA�� = 0,

which are equivalent to

i�̄������� = e�̄�����A�,

i����̄������ = − e�̄�����A�.

Using the property ��� ,���=−2g��I4 leads us to the equation �2�. The curvature F�� is

F�� =
ie

2��̄��
�������̄������ − ������̄������ + 2����̄������ − 2����̄�������

+
ie

2��̄��2
�����̄���2�̄��� + ����̄������� − ����̄���2�̄��� + ����̄�������� . �3�

The second equation of �1� defines the projection of Kustaanheimo-Stiefel bundle R4 / �0�
→R3 / �0�, � being a total space and F��

+ being a base manifold.20,26 �The Kustaanheimo-Stiefel
bundle is isomorphic to Hopf one.� Within this framework the solutions to the Seiberg-Witten
equations can be represented as the local sections

�̃ =	�̃N, f � − f3,

�̃S, f � f3,

 �4�

where

�̃N =
1

�2�f + f3�
� f + f3

f1 + if2 �, �̃S =
1

�2�f − f3�
� f1 − if2

f − f3 � ,

and the local connections

A� = 	AN
� , f � − f3,

AS
�, f � f3.


 �5�

Here F01+F23= f1, F02+F31= f2, F03+F12= f3, and f =�−fkfk=��f1�2+ �f2�2+ �f3�2.
It can be verified using the equations �2�, �4�, and �5� that

�N = ei��S, AN
� = AS

� − ���, where � = arctan�f2/f1� .

Using the equations �3� and �4� one can rewrite the second equation of �1� in the form

1
2 ��	j�k��	f j����fk� + ��kf

j��� j f
k� − �� j f

j���kf
k��f i + �ik�j����fm���mf j� − ��mfm����f j�

− ��	n���	fn����f j��fk + �fkfk����
�f i − f j���f j����f i� + 2��− fkfk�3/2f i = 0. �6�

We note that greek indices can take the four values �0, 1, 2, 3�. Italic indices take the three values
�1, 2, 3�. As speaking above the �-tensor has its usual meaning.
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So, we obtain the second order nonlinear differential equations in four independent and three
dependent variables. The gauge ambiguity is removed.

III. LIE SYMMETRIES AND PARTICULAR SOLUTIONS

One of the most useful methods for determining particular explicit solutions to partial differ-
ential equations is to reduce them to ordinary differential equations which are invariant under
some subgroups of maximal Lie symmetry group. For this purpose we need to construct the
infinitesimal Lie algebra generators. Using the method described in Ref. 27 gives �see the Appen-
dix�

M�� = x��� − x��� + �
�i
�j − 
�j
�i + ���ij�f i �

� f j
, �7�

P� = ��, �8�

D = x��� − 2f i �

� f i . �9�

The commutation relations of generators �7�–�9� are

�M��,M��� = g��M�� + g��M�� − g��M�� − g��M��,

�M��,P�� = g��P� − g��P�,

�M��,D� = 0,

�P�,D� = P�,

�P�,P�� = 0.

We note that g��=−
��. So, the generators �7�–�9� reproduce the infinitesimal transformations of
T4

› �SO�4� � D� automorphism group of Lie algebra of four-dimensional Euclidean group. The
group obtained has the structure of a semidirect product, namely, the semidirect product of the
translation group T4 and SO�4� � D group, the latter being the direct product of the rotation group
SO�4� and the dilatation group D. Generators M��, P�, and D determine infinitesimal rotations,
shifts and dilatation, respectively. Note in particular that �7�–�9� generate fiber-preserving trans-
formations, meaning that the transformations in x� do not depend on the coordinates f i.

The symmetry group T4
› �SO�4� � D� of four dimensional Seiberg-Witten equations does not

include the inversions in spite of the fact that the initial fields � and A� are massless. The theorem
proven in Ref. 28 states that an arbitrary Poincaré �Euclidean� invariant equation for massless
fields are conformally invariant “by default.” In general, the latter fact holds for linear equations
such as massless Dirac and Maxwell ones.29 Since the Seiberg-Witten equations contain the
nonlinear quadratic term, the Euclidean invariance does not give rise to the conformal one. It is
interesting to note that the inversions are nonlinear transformations. So, the invariance under
nonlinear transformations is removed. We must note that Yang-Mills equations are conformal
invariant.30,31 Moreover, the conformal invariance is not removed by coupling of Yang-Mills fields
with massless scalar fields32 or massless Dirac fields.33

Consider the solutions of �6� which are invariant under SO�3� subgroups of T4
› �SO�4�

� D� or, more precisely, SO�4�. It should be noted that subgroups are determined up to inner
automorphisms of maximal symmetry group. So, a class of adjoint subgroups can be associated
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with a subgroup SO�3� :SÕ�3�=gSO�3�g−1, where g is an arbitrary element of T4
› �SO�4� � D�

group. There are three nonequivalent SO�3� subgroups of SO�4� group. One of them can be
generated by vector fields

Mij = xi� j − xj�i + f i
�

� f j − f j
�

� f i .

The solutions to the Witten-Seiberg equations which are invariant under the SO�3� subgroup
generated by vector fields Mij and the solutions which are invariant under some adjoint subgroup
to this SO�3� group were constructed in Ref. 23. The SO�3� invariant solutions are turned out to be
a monopolelike ones.

The second SO�3� subgroup is generated by vector fields M��
− =M��− 1

2���	�M
	�,

M��
− = x��� − x��� − 1

2���	��x	�� − x��	� .

It is evidently that f i, i=1,2,3 and r=�−x�x� are group invariants. By Lie’s reduction method the
equations �6� are reduced to the ordinary differential equations in the three dependent variables f i

and the independent variable r,

�− f j f j��d2f i

dr2 +
3

r

df i

dr
� +

1

2

d�f j f j�
dr

df i

dr
+ 2��− f j f j�3/2f i = 0.

These equations with �=1 admit the solution

f i = ±
2ûi

r2 = 
2ûi

x�x�

, �10�

where ûi is an arbitrary constant unit vector, ûiûi=−1.
The finite transformations exp��M��

− � of this subgroup are

x� � x� cos � + �x�g�� − x�g�� + ����	x	�sin � ,

f i � f i.

It is evidently that

f̃ i�x�� � G�exp��M��
− ��f i�x�� � exp��M��

− �f i�exp�− �M��
− �x�� = f i�exp�− �M��

− �x�� = f i�x��

for the solutions �10�.
The third SO�3� subgroup is generated by vector fields M��

+ =M��+ 1
2���	�M

	�,

M��
+ = x��� − x��� + 1

2���	��x	�� − x��	� + 2�
�i
�j − 
�j
�i + ���ij�f i �

� f j
.

As in the previous case the variable r=�−x�x� is a group invariant. The next three invariants have
the form Fi=�ij f

j, where �ij is the orthogonal matrix

�ij =
1

x�x�

�− 
ijx
�x� + 2
ijx

kxk + 2xixj − �ijk�xkx�� .

We recall that greek indices can take the four values �0, 1, 2, 3�. Italic indices take the three values
�1, 2, 3�. It can be verified by direct calculation that M��

+ Fi=0. The equations �6� are reduced to
the ordinary differential equations
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�− FjFj��d2Fi

dr2 +
1

r

dFi

dr
−

12

r2 Fi� +
1

2

d�FjFj�
dr

�dFi

dr
+

2Fi

r
� + 2��− FjFj�3/2Fi = 0.

The solutions to the latter equations with �=1 are

Fi = ±
4v̂i

r2 = 
4v̂i

x�x�

,

where v̂i is an arbitrary constant unit vector, v̂iv̂i=−1. Then

f i = ±
4ŵi

r2 = 
4ŵi

x�x�

, �11�

where

ŵi = �ij
−1v̂ j =

1

x�x�

�− 
ijx
�x� + 2
ijx

kxk + 2xixj + �ijk�xkx��v̂ j .

To avoid difficulties we write out the finite transformations exp��M��
+ � in component form.

Thus, exp��M21
+ �=exp��M30

+ � is given by

x0 � x0 cos � − x3 sin �, x3 � x3 cos � + x0 sin � ,

x1 � x1 cos � − x2 sin �, x2 � x2 cos � + x1 sin � ,

f1 � f1 cos 2� − f2 sin 2�, f2 � f2 cos 2� + f1 sin 2� ,

f3 � f3.

For exp��M13
+ �=exp��M20

+ � we have

x0 � x0 cos � − x2 sin �, x2 � x2 cos � + x0 sin � ,

x1 � x1 cos � + x3 sin �, x3 � x3 cos � − x1 sin � ,

f1 � f1 cos 2� + f3 sin 2�, f3 � f3 cos 2� − f1 sin 2� ,

f2 � f2.

The transformation exp��M32
+ �=exp��M10

+ � is defined by

x0 � x0 cos � − x1 sin �, x1 � x1 cos � + x0 sin � ,

x2 � x2 cos � − x3 sin �, x3 � x3 cos � + x2 sin � ,

f2 � f2 cos 2� − f3 sin 2�, f3 � f3 cos 2� + f2 sin 2� ,

f1 � f1.

It can be verified that
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f̃ i�x�� � G�exp��M��
+ ��f i�x�� � exp��M��

+ �f i�exp�− �M��
+ �x�� = f i�x��

for the functions �11�. This implies that the solutions �11� are invariant under finite transformations
exp��M��

+ �.
The point that we wish to emphasize is that a class of solutions containing 11 parameters can

be obtained from some initial particular solution by transformations of the T4
› �SO�4� � D�

group. In turn, both the equations �6� and group transformations are gauge independent. For this
reason, none of the parameters are removable by gauge transformation. These parameters are
interpreted as degrees of freedom of field configurations. In contrast, the gauge transformations of
instanton solutions of self-dual Yang-Mills equations remove the degrees of freedom generated by
inversion subgroup of the conformal symmetry group.34,35

An interesting property of Seiberg-Witten equations can be pointed out. The four dimensional
Seiberg-Witten equations are reduced to the three dimensional ones through some differential
constraints, namely �i f

i=0 and �0f j=0.22,23 We have already mentioned that the reduced three
dimensional Seiberg-Witten equations are invariant under 10-parameter conformal group of three
dimensional Euclidean space as well as under shifts along x0. So, the T4

› �SO�4� � D� group goes
over into the SO�4,1� � T0 one.

Indeed, let us copy out the generators of SO�4,1� group obtained in Ref. 23,

Mij = xi� j − xj�i + f i
�

� f j − f j
�

� f i ,

Pi = �i,

D̃ = xj� j − 2f i �

� f i ,

Ki = − 2xix
j� j + xjxj�i + 4xif

j �

� f j − 2f ix
j �

� f j + 2xjf j
�

� f i .

It is evident that the violation of symmetry caused by dimensional reduction does not change the
number of group parameters. The generators Ki of three dimensional inversions occur instead of
the generators M0i. We must note that although the SO�4,1� � T0 group is the symmetry group of
the reduced equations, but there is no straightforward reduction procedure which transforms the
generators of the T4

› �SO�4� � D� group to the generators Ki.

IV. PAINLEVÉ ANALYSIS

The Painlevé property for partial differential equations11 is believed to be a sufficient condi-
tion for integrability.36 A partial differential equation has the Painlevé property when the solutions
of the equation are single valued about the movable singularity manifolds. These manifolds are
determined by conditions of the form Z�x1 ,… ,xn�=0, where Z is an analytic function of n com-
plex variables. So, if Seiberg-Witten �Freund’s� equations �6� had the Painlevé property, the
solutions to the equations �6� would be represented by the power expansion

f i =
1

Zp 
q=0

�

aq
i Zq, �12�

where p is an integer. The expansion �12� contains an arbitrary analytic function Z=Z�x�� deter-
mining a singularity manifold M = �x� :Z�x��=0� and five arbitrary analytic functions aq

i =aq
i �x��

for some values of q. These values are resonances.
To determine the leading power p, one can take
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f i =
ai

Zp ,

��f i =
��a

i

Zp −
pai��Z

Zp+1 ,

����f i =
����a

i

Zp −
2p���a

i����Z� + pai����Z

Zp+1 +
p�p + 1�ai���Z����Z�

Zp+2 .

By setting the leading term of �6� equal to zero we get

p�akak����Z����Z�ai

Z3p+2 = − �
2�− akak�3/2ai

Z4p .

As a consequence, we have

p = 2, �− akak�1/2 = ����Z����Z� . �13�

The vector function âi=ai / �−aia
i�1/2, âiâ

i=−1 is arbitrary.
We note that the Witten-Seiberg equations are equivalent to the Freund’s ones up to change of

variables x�→ ix�. Without loss of a generality we choose �=−1.
Resonances can be found by setting

f i =
ai + �iZn

Z2 ,

��f i = ¯ +
�n − 2��iZn − 2ai

Z3 ��Z ,

����f i = ¯ +
6ai + �n − 2��n − 3��iZn

Z4 ���Z����Z� .

Collecting terms which involve �i leads us to the linear equations

− ��akak��n − 1��n − 2��i + 2�n + 2�ai�ak�k�����Z����Z� = �− akak�1/2�6ai�ak�k� + 2�akak��i� ,

or

2�n − 1�ai�ak�k� + n�n − 3��i�akak� � �k
i �k = 0.

It then follows from det �k
i =0 that

det �k
i = �− akak�3�n + 1�n2�n − 2��n − 3�2 = 0.

So, resonances occur at n=0,2,3. This indicates that the solutions f i do not have an algebraic
movable singularity. However, a logarithmic movable singularitity can occur.

For further purpose it is sufficient to consider the four leading terms of �12�,

f i =
ai

Z2 +
bi

Z
+ ci + diZ . �14�

Substitution of �14� into �6� gives

072304-8 Dmitriy V. Aleynikov J. Math. Phys. 46, 072304 �2005�

                                                                                                                                    



6ai�akbk����Z����Z� − 2�akak��ai���
�Z + ���ai����Z�� + 2�akak����iZ��� ja

j� − �� jZ���iaj� + �i��j���Z�

����aj�� + ai���Z����akak� + aj�� jZ��i�akak� − aj��iZ�� j�akak� − �ij��aj���Z����akak�

+ 6ai�− akak�1/2ajbj − 2bi�− akak�3/2 = 0. �15�

The vector function bi is uniquely determined,

bi =
1

�− akak�1/2�ai����Z + ���ai���Z − �i��j���Z����aj� − ��iZ��� ja
j� + �� jZ���iaj�

+
1

2�akak�
�2ai���Z����akak� + �ij��aj���Z����akak� + aj��iZ�� j�akak� − aj�� jZ��i�akak��� .

�16�

The compatibility condition at n=2 is

− 2�− akak�1/2��ajaj�ci − ai�ajcj�� = �i, �17�

where

�i = �akak������a
i − bi����Z� − �akbk��5bi���Z����Z� + 4ai����Z� + ai���Z����Z��bkbk� − 3âi�akbk�2

− 5�akbk����Z����a
i� − ���akak����a

i�/2 + bi���Z����akak�/2 + 2ai���Z����akbk� + �� j�akak���iaj�

− �i�akak��� ja
j� − �i��j���akak����aj��/2 − 3�akbk���� jZ���iaj� − ��iZ���ka

k� − �i��j���Z����aj��

+ 2�aj�� jZ��i�akbk� − aj��iZ�� j�akbk� − �ij��aj���Z����akbk�� − �bj�� jZ��i�akak� − bj��iZ�� j�akak�

− �ij��bj���Z����akak��/2 − 2�akak���� jZ���ibj� − ��iZ���kb
k� − �i��j���Z����bj��

+ � jl�majbl���iZ����am� − ���Z���iam� + �i������Z����am�� + �kl�mak���ial����am� − ���al���iam�

+ �i������a
l����am��/2.

The condition �17� is not compatible because ai�
i�0 for arbitrary functions âi and Z. For the

compatible condition �17� to occur, a logarithmic term must be included into the expansion �12�.
So, a logarithmic movable singularity holds. For this reason, the Seiberg-Witten �Freund’s� equa-
tions do not possess the Painlevé property.

It is interesting to note that the expansion �14� can be rewritten as

f i = ������ln Z�âi� − �ij������ln Z����âj� + ��������ln Z����âj�� + ci + diZ .

The latter fact follows from �13� and �16�. Consider the expansion �12� with aq
i �0 for q�2

�so-called truncated expansion�. We can think of

f i = ������ln Z�âi� − �ij������ln Z����âj� + ��������ln Z����âj�� �18�

as a change of variables f i in the equations �6�. According to Ref. 37, the truncation �18� gives an
available ansatz for particular solutions to the equations �6�. Substitution of the truncation �18�
into the equations �6� leads to a set of differential constraints for âi and Z. The resulting overde-
termined system requires separate analysis.

We note in conclusion that the solutions �10� correspond to �18� with âi= ûi and
Z= �−x�x��1/2. In turn, for the solutions �11� we have Z= �−x�x��1 and âi= ŵi.

The monopolelike solutions obtained in Ref. 21 correspond to �18� with Z= �−xixi�±1/4 and
âi=xi / �−xjxj�1/2.
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APPENDIX

The infinitesimal Lie group transformations have the form27

L = ���� + �i �

� f i , �A1�

where � and � depend on x�, f j.
The second prolongation pr2 L of vector field �A1� is

pr2 L = L + �i� �

�hi� + �i�� �

�hi�� ,

where

�i� = D���i − ��hi�� + ��h
i��

and

�i�� = D����i − ��hi�� + ��h
i���.

Here hi�=��f i, hi��=����f i, D� is the total derivative operator

D�P�x�, f i� = ��P + ���f i�
�P

� f i

for arbitrary function P�x� , f i�.
It is convenient to denote the equations �6� by W�f i ,hi� ,hi���=0. These equations are invari-

ant under infinitesimal transformations �A1� if

pr2 L�W�f i,hi�,hi���� = 0 �A2�

for all solutions of �6�. The infinitesimal condition �A2� leads to the differential constraints

���

� f i =
��i

�x� =
�2��

�x� � x� =
��i

� fk � fm = 0,
��k

� fm
+

��m

� fk
= − 2
km� j f j

f if i
,

���� + ���� = − 
��

��i

� f i
,

��i

� f j
=

1

2
�ijk����k − �i� j −

1

4

ij����.

The functions which satisfy these constraints are

�� = s��x� + sx� + s�, �A3�

�i = sij f j − �ij��s��f j , �A4�

where s��=−s��, s� and s are arbitrary constants. Substituting �A3� and �A4� into �A1� gives

L = s��M�� + s�P� + sD .
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“Bonsai” Hopf algebras, introduced here, are generalizations of Connes-Kreimer
Hopf algebras, which are motivated by Feynman diagrams and renormalization. We
show that we can find operad structure on the set of bonsais. We introduce a
differential on these bonsai Hopf algebras, which is inspired by the tree differential.
The cohomologies of these are computed here, and the relationship of this differ-
ential with the appending operation � of Connes-Kreimer Hopf algebras is
investigated. © 2005 American Institute of Physics. �DOI: 10.1063/1.1951591�

I. MOTIVATION

Kreimer �1998� discovered a Hopf algebra structure on Feynman diagrams and the forest
formula of perturbative quantum field theory. Connes and Kreimer �1999� suggested the represen-
tation of Feynman graphs using rooted tree diagrams and represented the Hopf algebra structure
with the notion of cuts of tree diagrams. That expression is as follows: let us consider a Feynman
diagram in �3 theory as in Fig. 1.

Figure 1 is a 1-loop graph. Now let us look at another loop having subloops in Fig. 2.
In Kreimer’s expression of a Feynman diagram using decorated rooted trees �Connes and

Kreimer, 1999�, if the loop of Fig. 1 is labeled 1 �in Kreimer’s context, this label indicates a
specific shape of loop. So, later in this paper, if every loop in the Feynman diagram has the same
shape, we do not need this label�, the loop of Fig. 2 is expressed as in Fig. 3. In Fig. 2, the loops
labeled 2 are immediate subloops of loop 1, and the loop 3 is an immediate subloop of the lower
loop 2 and not of loop 1.

In the Connes and Kreimer context, we call a connected rooted tree, which corresponds to a
connected Feynman graph, a tree and we call a diagram of trees having more than one connected
component a forest.

The Connes-Kreimer Hopf algebra HK is a Hopf algebra with forests of rooted trees as basis
elements �see Sec. III for details�.

In Fig. 2, the author observed that the biggest loop cannot include more than three immediate
subloops of the shape of Fig. 1. Hence, in the tree diagram, the vertex labeled 1 cannot have more
than three subsidiary vertices labeled 1, and so the rooted tree of Fig. 3 cannot have a ramification
number �or arity, branch number� greater than 3 at the root.

So, in the �3 theory in which the only allowed loop is that of Fig. 1, the corresponding tree
diagrams are forbidden to have ramification number greater than 3. The theory of such ramifi-
cation number bounded trees is our main interest in this paper. We will call them bonsais.

For a more precise description of Feynman diagrams, let us consider the positions of subloops
in a loop. For the loops having subloops like Fig. 2, in the context of Connes and Kreimer
�unpublished�, sometimes we need to indicate which subloop is shrinking and what position is
available for a subloop. For that, we label each corner of the loop in Fig. 4 and change that loop
into a tree as shown in Fig. 4, by expressing a subloop as a subsidiary vertex in the tree diagram
and attaching the labels representing the subloop positions to the edges.

The tree diagram of Fig. 4 asssigns the numbers of the occupied corners in the big loop to
edges of the tree. Note that there is no edge numbered 2. This means there is no subloop on the
corner 2. We easily see that, in this expression, the left tree of Fig. 5 is allowed but the right tree
of Fig. 5 is not.
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II. MAIN RESULTS

Definition 2.1: We define a Hopf algebra which has the same operations as in the Connes-
Kreimer Hopf algebra, and whose basis elements are forests of trees having ramification numbers
at each vertex smaller than or equal to m and under each vertex v, each subsidiary edge of v has
labels from 1,2 ,… ,m without duplication. We call this Hopf algebra the m-bonsai Hopf algebra
Hb,m. In Hb,m, each tree is called a m-bonsai.

As in Connes and Kreimer �1999�, we can show the following.
Theorem 2.1: Hb,m is a Hopf algebra.
As in Connes and Kreimer �1999�, when we define an appending operation,

T � T� = � �a bonsai obtained by connecting the root of T to a vertex v of T�

with one edge, where the added edge has every possible label� .

�An example of the � operation is in Fig. 11.�
Theorem 2.2: The operation � is pre-Lie, and we have Hb,m=U�L�∨, where V∨ is the dual of

V.
In the m-bonsai Hopf algebra, the set of m-bonsais has a structure of an operad, thus there is

a natural analog of the tree differential �as in Markl, Shnider, and Stasheff �2002��. We call it the
vertex-appending differential � �Definition 9.1�.

Then, mainly using the Künneth theorem, we can calculate the cohomology groups of � as
follows.

Theorem 2.3: In m-bonsai,

Hi�Hb,m,�� =�k
�mn�!

��m−1�n+1�!n! if i = �2m − 1�n + 1, n � 0,

0 otherwise.
�

FIG. 1.

FIG. 2.
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Here, �mn� ! / ��m−1�n+1� !n! is the number of rooted trees consisting of n of m-corollas,
which is called the m-Catalan number. When m=2, this number is just the Catalan number.
Representatives of Hi are � �a bonsai obtained by appending edges to all tips of a rooted tree every
vertex of which except tips has ramification number m, one edge to each tip, with every possible
label�.

When we define T1�1T2, which is the deviation from � being a derivation of � as

T1�1T2 = ��T1� � T2 + T1 � ��T2� − ��T1 � T2� ,

we have the following.
Theorem 2.4: With coefficients mod 2,

T1�1T2 = � �a bonsai obtained by connecting a tip v of T2 and the root of T1

with one--edge, and attaching an edge to v, added edge have every admissible label�

+ � �a bonsai obtained by connecting a nontip of T2 and the root of T1

with two--edge ladder, having every possible label�

and

��T1�1T2� = ��T1��1T2 + T1�1��T2� .

We provide an example in Fig. 6.
Now, let us consider another Hopf algebra, having the same operations but the trees having

ramification numbers at each vertex smaller than or equal to m but no edge labels, and call it

FIG. 3.

FIG. 4.
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clear-edged m-bonsai Hopf algebra Hc,m. �In other words, a clear-edged m-bonsai is an m-bonsai
without edge labels.�

Clear-edged m-bonsai Hopf algebras still represent Feynman graphs, actually more physically
relevant, and also appear in the tree diagrams of “open-closed homotopy algebra �OCHA�” �Ka-
jiura and Stasheff �unpublished��.

Then we can define the vertex-appending differential similarly to the case of m-bonsai. For
example, in planar clear-edged 3-bonsai, we can get an example like Fig. 7.

The cohomology groups of the vertex-appending differential in clear-edged bonsai are not as
easy to calculate as in m-bonsai and we have just partial results as follows:

We first define a specific form of bonsai S called “seedling” �Definition 11.3�, and then we
define the complexes �CS,* ,��. Then we can show that the cohomology of the whole bonsai
complex Hi= � Hi�S�, where the sum is over all seedlings.

By the definition of seedling, when S1 ,S2 ,… ,Sn are seedlings, the new bonsai S obtained by
appending the roots of each Si’s to a single new root is a seedling again. There is an example in
Fig. 8.

On the way to find the relationship of H�S� and H�S1� ,… ,H�Sn�, we have a definition of a
bonsai called grafting seedlings �n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn� �Definition 11.6�, a complex
�Ki�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn��� �Definition 11.8� and the following.

Theorem 2.5: When Hi�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn�� is the ith cohomology group of the
complex Ki�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn��, the ith cohomology group Hi of clear-edged m-bonsai is

Hi = �
S is a grafting seedling

Hi�S� ,

and

Hi�gs�n;T1,…,Tn+1;S1,…,Sn�� = �
j1+…+jn=i−m

�Hi1�S1� � ¯ � Hin�Sn���N,

where N is combinatorially all determined and

P = deg T1 + ¯ + deg Tn.

Finally, as in the case of m-bonsai, we have again the following.
Theorem 2.6: For any clear-edged m-bonsai T1 and T2 , � �T1�1T2�= ��T1��1T2+T1�1�T2 with

coefficients mod 2.

FIG. 5.

FIG. 6.
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III. BONSAI HOPF ALGEBRA

As seen in the last section, loops in Feynman diagrams of a specific theory have a maximum
number of immediate subloops. In the example of the preceeding section, the maximum number is
3 and each edge of the tree diagram corresponding to a Feynman diagram has label 1, 2 or 3.

From this motivation, we define the following.
Definition 3.1: A simple cut of rooted tree is a cut of edges such that at any vertex of T, the

path between it and the root has at most one cut, Pc�T� is the part of T cut off by c and Rc�T� is
the part of T remaining after cut c.

Definition 3.2: Let Hb,m be the vector space having as its basis the forests consisting of trees
whose vertices have ramification numbers �m and whose edges are labeled by numbers in
1,2 ,… ,m.

We equip this Hb,m with operations, as in Connes and Kreimer (1999),

�multiplication� m�T1T2 ¯ Tm,S1S2 ¯ Sn� = T1 ¯ TmS1 ¯ Sn

�Ti,Sj are trees, m is commutative� , �1�

�diagonal� ��T� = T � 1 + 	
c

Pc�T� � Rc�T� �T is a tree� ,

��T1 ¯ Tn� = ��T1� ¯ ��Tn� , �2�

�antipode� S�T� = − 	
c

S�Pc�T��Rc�T� �T is a tree� ,

S�1� = 1, S�v� = − v �where v is the one-vertex bonsai� ,

S�T1 ¯ Tn� = S�Tn� ¯ S�T1� , �3�

where c runs over simple cuts of T including c=�, and a counit function

�:Hb,m → Hb,m such that ��1� = 1 and ��f� = 0 if a forest f � 1. �4�

FIG. 7.

FIG. 8.
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We call the rooted tree T an m-bonsai and Hb,m the m-bonsai Hopf algebra.
It will be proved in the next section that this vector space Hb,m is actually a Hopf algebra.
Definition 3.3: Sometimes we will ignore the positions of subloops in Feynman graphs and use

trees without labels on edges. Then the trees in the forests corresponding to the Feynman graphs
have no label on their edges. In this case, we denote the vector space having a basis consisting of
forests of planar trees as Hc,m, where m is the maximum of ramification number of each vertex in
the trees of the forests in Hc,m. We equip Hc,m with operations �1�–�4� in Definition 3.2. Then we
call that Hopf algebra planar clear-edged m-bonsai Hopf algebra.

IV. BASIC RESULTS RELATED TO HOPF ALGEBRAS

In order to develop a basic theorem related to Lie algebras, let us adapt Connes and Kreimer
�1999� to our bonsai language and get some basic results.

In order to prove that our Hopf algebras are actually Hopf algebras and derive some algebraic
results, let us give another expression of bonsai Hopf algebras and their elements.

First we give the following.
Definition 4.1: For a bonsai T , deg�T� is the number of vertices of T.
For each p, we let �p be the set of bonsai T such that deg�T�� p with the restriction of

ramification numbers by m, and let Hp be the polynomial commutative algebra generated by the
symbols,

�T, T � �p. �5�

We define a coproduct on Hp by

FIG. 9.

FIG. 10.
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��T = �T � 1 + 	
c

 �

Pc�T�
�Ti� � �Rc�T�, �6�

where the last sum is over all simple cuts including c=�, while the product �Pc�T� is over the cut
branches. Sometimes �Pc�T��Ti

is written �Pc�T�. The antipodal map S is given as

S�1� = 1, �7�

S��T� = − �T − 	
simple cuts c�� of T

S��Pc�T���Rc�T�. �8�

We let Hb,m= �Hp and extend the maps on Hp to Hb,m. Coassociativity of � and m��S
� id���=� can be shown just by introducing the notion of double cuts of T. But in order to
emphasize the algebraic aspect of the definition, let us give another proof of the following theo-
rem.

Theorem 4.1: � is coassociative.
Proof: It is enough to check

�id � ����T = �� � id���T ∀ T � �p, �9�

where T is a tree in Hb,m. Define LT :Hb,m→Hb,m as follows: Let T1� ,… ,Tn� be the subsidiary
branches of the root of T in T. Let Tni

be a subtree of Tni
� whose root is the root of Tni

� . Define T�
to be the tree obtained by appending Tni

’s to a new root � and the edge connecting � and the root
of Tni

is labeled the same as the edge connecting the root of T and the root of Tni
� . Then

LT��Tn1
¯�Tnp

�=�T�. If some Tj is not a subsidiary branch of the root in T , LT��T1
¯�Tn

� is 0. �An

example of this notation is in Fig. 9.�
First let us show that

� � LT�a� = LT�a� � 1 + �id � LT� � ��a� , �10�

where a=�T1
�T2

¯�Tn
and T1 ,… ,Tn are all subsidiary branches of the root of T in T so that

LT�a�=�T. From �6�, we get

��LT�a�� − LT�a� � 1 = 	
c

�

Pc

�Ti�� � �Rc
, �11�

where all simple cuts of T �including c=�� are allowed. Moreover,

FIG. 11.

FIG. 12.
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��a� = �
i=1

n


�Ti
� 1 + 	

ci

�

Pci

�Tij
�� � �Rci� , �12�

where again all simple cuts ci of Ti are allowed.
Let tn be the corolla with root � and n other vertices vi labeled by i1 ,… , in, where ij is the label

of the edge in T connecting the root of T and the vertex of Tj�, all directly connected to the root �,
as in Fig. 10.

We view tn in an obvious way as a subgraph of the tree T, where � is the root of T and the
vertex vi is the root of Ti, i.e., we can get T by attaching the root of Ti to the vertex vi of tn. Given
a simple cut c of T we get by restriction to the corolla subgraph tn�T a cut of tn. It is character-
ized by the subset I= �i  �� ,vi��c�� �1,… ,m�. The simple cut c is uniquely determined by the
restriction ci of c to each subtree Ti�. Thus the simple cuts ci of T are in one to one correspondence
with the various terms of the expression �12�, namely the �k�I��Tk

� 1��i��1,…,m�−I�Pci
�Tij

� � �Rci
.

So, applying id � L to �12� and comparing with �11�, we get �10�.
Now let us show �10� by induction. We have,

��• = �• � 1 + 1 � �•, �13�

where • is the one-vertex bonsai, so that H1 is coassociative. Let us assume that Hn is coassocia-
tive and prove it for Hn+1. It is enough to check �9� for the generators �T, with deg�T��n+1. We
have �T=LT��T1

�T2
¯�Tm

�=LT�a� where the degrees of all Tj are �n, i.e., a�Hn. Using �10� we
can replace ��T by

LT�a� � 1 + �id � LT���a� , �14�

where � is the coassociative coproduct in Hn.
The first term of �9� is then

FIG. 13.

FIG. 14.
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�id � ���LT�a� � 1 + �id � LT���a�� = LT�a� � 1 � 1 + �a�1� � � � LTa�2�, �15�

where ��a�=�a�1� � a�2�, which by �10� gives

LT�a� � 1 � 1 + �a�1� � LTa�2� � 1 + �a�1�� � a�2�� � LTa�3�� , �16�

where

�� � id���a� = �id � ����a� = �a�1�� � a�2�� � a�3�� �17�

by induction hypothesis on n, since a�Hn.
The second term of �9� is � �L�a� � 1+��a�1� � La�2�, which by �10� gives,

L�a� � 1 � 1 + �a�1� � La�2� � 1 + �a�1�� � a�2�� � La�3�� . �18�

Thus we conclude that � is coassociative.
Theorem 4.2: m��S � id���=�.
Proof: We have m��S � id����1�=m�S � id��1 � 1�=S�1�1=1=��1�. And when �T�1,

m��S � id�����T� = m
�S � id�
�T � 1 + 	
simple cuts c

�Pc�T� � �Rc�T��� = S��T�

+ m
 	
simple cuts c

S��Pc�T�� � �Rc�T�� = S��T� + 	
simple cuts c

S��Pc�T���Rc�T� = 0,

�19�

where the last equality is by the definition of the antipodal map S.

V. LIE ALGEBRA L1

Let L1�Hb,m
∨ be the linear space having basis �ZT T�Hb,m is a tree�, where �T is defined as

FIG. 15.

FIG. 16.
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�ZT,�T� = 1 �20�

and

�ZT,P��Ti
�� = ��/��TP��0� �21�

for each rooted tree T.
We introduce an operation on L1 by

ZT1
� ZT2

= 	
T

n�T1,T2;T�ZT, �22�

where the integer n�T1 ,T2 ;T� is determined as the number of simple cuts c with cardinality c
=1 of bonsai T such that the cut branch is T1 while the remaining trunk is T2.

With a notational abuse such as T=ZT, we have an example of � in Fig. 11.
In this section, we will show that L1 is a Lie algebra and the Hopf algebra Hb,m is the dual of

the enveloping algebra of L1.
Theorem 5.1: deg�T� defines a grading of the Lie algebra L1.
Proof: If we write ZT1

�ZT2
=� ZT, then the number of vertices in T is the sum of numbers of

vertices in T1 and T2.
Definition 5.1: We define the bracket �ZT1

,ZT2
�=ZT1

�ZT2
−ZT2

�ZT1
.

Theorem 5.2: (a) The bracket of the previous definition makes L1 a Lie algebra. (b) The Hopf
algebra Hb,m is the dual of the enveloping algebra of the Lie algebra L1.

First we define the associator

A�T1,T2,T3� ª ZT1
� �ZT2

� ZT3
� − �ZT1

� ZT2
� � ZT3

. �23�

and see the following.
Lemma 1: A�T1 ,T2 ,T3�=�n�T1 ,T2 ,T3 ;T�ZT, where the integer n�T1 ,T2 ,T3 ;T� is the number

of simple cuts c of T such that the number of elements c of c is 2 and the two branches cut out
from T3 by c are T1 , T2 while the remaining trunk Rc�T�=T3.

Proof: When we evaluate �23� against ZT we get the coefficient

FIG. 17.

FIG. 18.
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T�

n�T1,T�;T�n�T2,T3;T�� − 	
T �

n�T1,T2;T ��n�T �,T3;T� . �24�

The first term corresponds to pairs of cuts, c , c� of T with c= c�=1 and where c� is a cut of
Rc�T�. These pairs of cuts fall into two classes either c�c� is an admissible cut or it is not. The
second sum corresponds to pairs of cuts c1 , c1� of T such that c1= c1�=1, Rc1

�T�=T3 and c1� is a
cut of Pc1

�T�. In such a case c1�c1� is never an admissible cut so the difference �24� amounts to
subtracting from the first sum the pairs c , c� such that c�c� is not an admissible cut. This gives

A�T1,T2,T3� = 	
T

n�T1,T2,T3;T�ZT, �25�

where n�T1 ,T2 ,T3 ;T� is the number of admissible cuts c of T of cardinality 2 such that the two cut
branches are T1 and T2, and T3 is the remaining trunk.

Now for the theorem, we have the following.
Proof: �a� By the lemma, it is clear that

A�T1,T2,T3� = A�T2,T1,T3� . �26�

Now compute ��ZT1
,ZT2

� ,ZT3
�+ ��ZT2

,ZT3
� ,ZT1

�+ ��ZT3
,ZT1

� ,ZT2
�. We can write it as a sum of 12

terms,

�T1 � T2� � T3 − �T2 � T1� � T3 − T3 � �T1 � T2� + T3 � �T2 � T1� + �T2 � T3� � T1 − �T3 � T2� � T1

− T1 � �T2 � T3� + T1 � �T3 � T2� + �T3 � T1� � T2 − �T1 � T3� � T2 − T2 � �T3 � T1�

+ T2 � �T1 � T3� = − A�T1,T2,T3� + A�T2,T1,T3� − A�T3,T1,T2� + A�T3,T2,T1� − A�T2,T3,T1�

+ A�T1,T3,T2� = 0. �27�

�b� Let P and Q be polynomials of �T’s. By the definition of ZT , ZT vanishes when paired with
any monomial � T1

n1
¯� Tk

nk except when this monomial is �T. Since P→P�0� is the counit � of Hb,m

and since ZT satisfies

�ZT,PQ� = ��/��TPQ��0� = ��/��TP��0�Q�0� + P�0���/��TQ��0� = �ZT,P���Q� + ��P��ZT,Q� ,

�28�

it follows that the coproduct of ZT is

�ZT = ZT � 1 + 1 � ZT. �29�

The product of two elements of Hb,m
∨ is defined by

�Z1Z2,P� = �Z1 � Z2,�P� . �30�

Since the commutator of two derivations is still a derivation, the subspace of Hb,m
∨ satisfying �36�

is stable under bracket. What remains is to show that

ZT1
ZT2

− ZT2
ZT1

= �ZT1
,ZT2

� , �31�

where �ZT1
,ZT2

�=ZT1
�ZT2

−ZT2
�ZT1

by definition.
Let H0=Ker � be the augmentation ideal of Hb,m. By definition of �,

��T = �T � 1 + 1 � �T + RT, �32�

where RT�H0 � H0. In fact, we have
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RT = 	
c

�Tc�
� �Tc

�33�

modulo �H0�2 � H0, where c varies among single cuts of the bonsai tree T, where Tc is the trunk
of T that contains the root, and Tc� is the tree which remains. When we compute

�ZT1
ZT2

,�T� = �ZT1
� ZT2

,��T� , �34�

the only part which contributes comes from RT and it counts the number of ways of obtaining T
from T1 and T2, which gives �31�.

If a map f satisfies

�f ,PQ� = �f ,P���Q� + ��P��f ,Q� , �35�

f is determined by f��T�= �f ,�T�’s and each of them is a scalar. Since f��T�=�T�f��T��ZT���T� , f
has the form �f��T�ZT. Hence �ZT� is a basis of the subspace of Hb,m

∨ consisting of the vectors f
satisfying �35�.

Since every ZT satisfies �35� by �28� and f �Hb,m
∨ satisfies �35� if and only if f satisfies

�f = f � 1 + 1 � f , �36�

we have L1= Prim�Hb,m
∨ � and they are isomorphic as Lie algebras. Since Hb,m

∨ is connected and
cocommutative, by the Milnor-Moore theorem, Hb,m

∨ =U�Prim�Hb,m
∨ ��=U�L1� and so Hb,m

=U�L1�∨.

FIG. 19.

FIG. 20.
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VI. OPERAD OF m-BONSAI

Now let us consider operad theory with respect to the m-bonsai Hopf algebra structure. As
seen in the preceding section, for trees T ,T��Hb,m we can define T�T� and this is a �left� pre-Lie
operation. The map T�ZT is a pre-Lie isomorphism from the space spanned by trees to L1. In
Hb,m, we denote this L1 as Lb,m. We will sometimes allow a notational abuse such as T=ZT from
now on.

Let us start from a rudimentary idea. Every bonsai in Hb,m has a unique form in which for
each vertex, its subsidiary edges are arranged so that the lower edge label is on the left of the
higher edge label as in Fig. 12.

We can number the possible positions in the bonsai of Fig. 12 to append other bonsais as in
Fig. 13, the example in Lb,3 �the orders of possible appending positions are underlined�. When the
labeling of Fig. 13 is changed into that of Fig. 14, then the numbering of possible appending
positions is also changed.

Then, by taking the standard form of bonsai and ordering the possible positions of appending,
we can get the transform of a bonsai into the broomstick diagram used in Markl, Shnider, and
Stasheff �2002� like Fig. 15, again in Lb,3.

So, we can define T1�iT2 as appending T1 to T2 at the ith appending position of T2, and for T2

and T1 in Fig. 15, T1�4T2 is given as in Fig. 16.
Then obviously, this �i satisfies the definition of pre-Lie system of Gerstenhaber �1963� �it is

called nonsymmetric pseudo-operad in Markl, Shnider, and Stasheff �2002�, but it has a difference
in the convention of grading�. When we use the pseudo-operad later, we will give an extra
definition, which we give here.

Definition 6.1: When �Vi� is a graded module over a field k and �i= �i�m ,n� :Vm � Vn→Vm+n is
an operation satisfying; when f m, gn, and hp are in Vm, Vn, and Vp, respectively,

hp� j�gn�i f
m� = �gn�i+p�hp� j f

m� if 0 � j � i − 1,

�hp� j−ig
n��i f

m if i � j � n + i ,
� �37�

then ��Vi� , �i� is called a �left� pre-Lie system.
�In Gerstenhaber �1963� the right pre-Lie system is defined, but we define and use the left

pre-Lie system. This is mainly intended for the theory related to Hopf algebra we will argue later.�
By the broomstick diagrams shown in Figs. 15 and 16, we have the following.

Definition 6.2: When Wm,n is the vector subspace of Lb,m generated by the trees having the
number n of possible appending positions, and T1�iT2 is appending T1 to T2 at the appending
position i of T2, then ��Wm,n� , �i� is a left pre-Lie system. It is called m-bonsai pre-Lie system. For

FIG. 21.

FIG. 22.
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trees T which are basis elements of Wm,n , n is called the appending degree of T, and denoted
degap�T�.

�Graphically, a basis element of Wm,n has the broomstick representation like Fig. 17.�

VII. BRANCH-FIXED DIFFERENTIAL

In the next several sections, following the oracle of Markl, Shnider, and Stasheff �2002�, we
will define some complexes related to bonsais. To get the analogy of the cobar complex and the
tree differential in Sec. 3.1 of Markl, Shnider, and Stasheff �2002�, first let us give an order of
edges of a bonsai as in Fig. 18, i.e., starting from the root, sweeping around the bonsai counter-
clockwise and numbering the edges. We call this order the traversing order. In the traversing
order, ek,lk

is a vector representing the kth edge of a tree T, such that 1� lk�m is the edge label
of the kth edge.

Second, let us define a vector space Cn having basis T � e1,l1
∧ ¯ ∧ek,lk

, where T is a m-bonsai
�not forest� having n edges and the pairs k , lk run over the labels of edges of T. �If T is a vertex,
i.e., a connected bonsai without any edge, then e1,l1

∧ ¯ ∧ek,lk
is the constant unit 1.� For later use,

we denote this e1,l1
∧ ¯ ∧ek,lk

as det�T� and call it the determinant term of T, and call T
� det�T� a determinanted bonsai. So the basis element corresponding to the bonsai T of Fig. 18 is
T � e1,1∧e2,1∧e3,1∧e4,2∧e5,3∧e6,2∧e7,3=T � det�T�. Let us denote C= � Cm. Once we define d,
we call this complex �C ,d� the bonsai cobar complex after the cobar complex of Markl, Shnider,
and Stasheff �2002�.

Third, let us define a map di :Ci→Ci+1 and show that di+1 �di=0 as follows.
Definition 7.1: Let T be an m-bonsai. Let T� be a bonsai such that we can obtain T by

contracting an edge e� from T� and the following conditions are satisfied.

�i� T� does not have more branching vertices (i.e., vertices which have the ramification num-
bers �1) than T,

�ii� e� is not attatched to a branching vertex of T so that e� becomes a subsidiary edge of that
branching vertex.

We call this T� a branch-fixed extension of T.

For example, for the 3-bonsai T in Fig. 19, T1, T3, T5, and T6 are all branch-fixed extension of
T, but T2 �violating �i�� and T4 �violating �ii�� are not.

Then we define di :Ci→Ci+1 as follows: when T�Ci,

di�T� = 	 T� � ej,lj
� ∧ e1,l1

� ∧ ¯ ∧ ej,lj
�̂ ∧ ¯ ∧ ei+1,li+1

� , �38�

where the sum runs over T�, which is a branch-fixed extension of T having an edge e added to T
and that e is denoted ej,lj

� in the edge-ordering of T�.

FIG. 23.

FIG. 24.
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Theorem 7.1: di+1 �di=0.
Proof: Suppose T � is a branch-fixed extension of a bonsai T� with added edge e�, which is a

branch-fixed extension of T with added edge e�. Then, when e� is ej,lj
� and e� is ek,lk

� in the edge
ordering of T � and di+1 �di�T� is written as 	S � f1,p1

∧ ¯ ∧ f i+2,pi+2
, where S runs over the bonsais

obtained by attaching two edges as given in �i� and �ii� in Definition 7.1 and f i,pi
’s are the edges

of S ,T � � e1,l1
� ∧ ¯ ∧ei+2,li+2

� can be obtained only in two ways.

�i� Adding e� first to T, then the component of T � � e1,l1
� ∧ ¯ ∧ei+2,l1+2

� is T �

� ej,lj
� ∧ek,lk

� ∧e1,l1
� ∧ ¯ ∧ej,lj

�̂ ∧ ¯ ∧ek,lk
�̂ ∧ ¯ ∧ei+2,li+2

� .

�ii� Adding e� first to T, then the component of T � � e1,l1
� ∧ ¯ ∧ei+2,l1+2

� is T �

� ek,lk
� ∧ej,lj

� ∧e1,l1
� ∧ ¯ ∧ej,lj

�̂ ∧ ¯ ∧ek,lk
�̂ ∧ ¯ ∧ei+2,li+2

� .

Since the orders of ek,lk
� and ej,lj

� are different in the wedge products, the sum of two terms in
�i� and �ii� is 0, and this is true for all components of di+1 �di�T�. Hence di+1 �di=0.

We call this boundary map di the branch-fixed differential. A simple example is given in Fig.
20. We will study the cohomology of this �di�, but before that, following Markl, Shnider, and
Stasheff �2002�, let us see an important property of this bonsai complex in the next section.

FIG. 25.

FIG. 26.
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VIII. COHOMOLOGY OF BRANCH-FIXED DIFFERENTIAL

In this section, we study the cohomology theory of the cochain complex �Ci ,di�, where Ci is
the bonsai cobar complex and di is the branch-fixed differential. We will define a kind of bonsai
called seedling and a complex �CS,j ,di+j� j�0 called thread and show that the cohomology groups
of �Ci ,di� are the direct sum of cohomology groups of threads �CS,j ,di+j� j�0.

First, let us give some definitions.
Definition 8.1: A bonsai every vertex, of which has the ramification number 0 or 1, is called

a ladder. In other words, a ladder is a bonsai which has no branching vertex.
Definition 8.2: If a bonsai T has an edge, a vertex v which is an end of only one edge and is

not the root, is called a tip. If a bonsai T is a one-vertex bonsai, the root v is a tip.
By the definition of di, all terms in di�T� are of the form ±T� � e∧det�T�, where T� runs over

bonsais obtained by adding an edge e to T so that �i� and �ii� of Definition 7.1 hold. So T� has the
form of extending a subladder of T which does not contain the subsidiary edges of branching
vertices, as in the example of Fig. 21, boxed subladders of which are denoted L1 ,L2 ,… ,L5.

So, the action of di on T � det�T� is by extending a ladder of T, getting an edge e and changing
det�T� into e∧det�T�. Acting by di’s on T � det�T�, the possible bonsais appearing in the di�T� are
obtained by extending a subladder of T as in the example of Fig. 21.

Keeping this intuitive fact in mind, we have some definitions.
Definition 8.3: A seedling is an m-bonsai all of whose vertices other than tips are branching

vertices. For example, in 2-bonsai, S1 of Fig. 22 is a seedling, but S2 is not, because the root
vertex is not a branching vertex. In other words, a seedling is a bonsai which cannot be obtained
from another bonsai by adding an edge so that (i) and (ii) of Definition 7.1 are satisfied.

FIG. 27.

FIG. 28.
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Definition 8.4: Let CS,0 be the submodule of Ci, where S is a seedling and i is the number of
edges of S, generated by S � det�S�. Let CS,j(j�0) be the submodule of Ci+j generated by T
� det�T�, where T is an m-bonsai obtained by adding j edges to S so that (i) and (ii) of Definition
7.1 are satisfied.

Then, every Ci is the direct sum of some CS,j’s and d�CS,j��CS,j+1. For example, in 2-bonsai,
when S0, S1, S2, and S3 are as given in Fig. 23, we have

C0 = CS0,0,

C1 = CS0,1,

C2 = CS0,2
� CS1,0,

C3 = CS0,3
� CS1,1,

C4 = CS0,4
� CS1,2

� CS0,3
� CS1,1,

C5 = CS0,5
� CS1,3

� CS0,3
� CS1,1,

¯ . �39�

Definition 8.5: For a given seedling S, when i is the number of edges of S, �CS,j ,di+j� j�0 is
called a thread of S.

So the cohomology groups of �Ci ,di� are the direct sum of cohomology groups of threads
�CS,j ,di+j� j�0.

Let us look into each of these threads. For CS0,0, where S0 is a vertex, CS0,i is the module with
the basis �T � det�T��, where T is a ladder with i edges and the boundary maps extend the ladders
by adding an edge e and replacing det�T� with e∧det�T�. Let us consider a chain complex which
is isomorphic to the thread CS0,0 of the ladder S0. For any m-bonsai, consider a vector space V
which has a basis �v1 ,… ,vm�, and let Vn=V�n�n�1�. Then we define a map � n :Vn→Vn+1 as

vi1
� vi2

� ¯ � vin
� 	

k=1

m

vk � vi1
� vi2

� ¯ � vin
+ 	

k=1

m

�− 1�1vi1
� vk � vi2

� ¯ � vin
+ ¯

+ 	
k=1

m

�− 1�nvi1
� ¯ � vin−1

� vin
� vk, �40�

and it is easily seen that this � n is a boundary map, so we have made �Vn ,� n� a cochain complex.

FIG. 29.

FIG. 30.
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By the cochain map f as in Fig. 24, the cochain complexes �CS0,n ,dn� and �Vn ,� n� are isomorphic,
since dn acts as in Fig. 25, that is, we have f �� n=dn � f .

In �Vn ,� n�n�1, by the definition of � n, inductively we have

���v1 � ¯ � vi� � v� = ��v1 � ¯ � vi� � v + �− 1�i+1�v1 � ¯ � vi� � v � 	
k=1

m

vk,

�41�

where v1 � ¯ � vi�Vi and v�V. Suppose ��	k=1
m vk� � vk�=0 where vk��Vi, then we have

	
k=1

m

��vk�� � vk + �− 1�i+1
	
k=1

m

vk� � vk� � 	
l=1

m

vl = 	
l=1

m ���vl�� − �− 1�k
	
k=1

m

vk� � vk�� � vl = 0.

�42�

Therefore, we have �	k=1
m vk� � vk�= �−1�k��vl�� and it is a coboundary. So, �Vn ,� n� is acyclic, and

so is �CS0,n ,dn�.
Here, we can directly calculate H0�CS0,*�=0, since the boundary map image of a one-vertex

bonsai is the sum of one-edge bonsais over all labels 1 ,2 ,… ,n. So �CS0,n ,dn� is acyclic with
H0=0.

Now for an arbitrary seedling S, when S has n edges, there are n+1 vertices and each vertex
other than the root has one and only one edge whose branch end is that vertex. When we order the
edges of a bonsai T with the shape S as in Fig. 13 and denote them as el’s �l=1,2 ,… ,n�, we can
denote the branch-end vertex of el as vl and denote the root v0. Then the bonsais which appear in
the basis of CS,j are obtained by extending the vertices of T into upward-growing ladders, and each
ladder grown from vl is denoted as Ll, as in the example of Fig. 26.

To get the cohomology of CS,j, let us consider the complexes Ck
S0,p, where k=0,… ,n and each

of Ck
S0,p is a copy of CS0,p, i.e., each of Ck

S0,p has the basis �Lk
p

� det�Lk
p��, where Lk

p is a ladder with
p edges. Then we have an isomorphism F between

Dl = �
p0+¯+pn=l

C0
S0,p0 � ¯ � Cn

S0,pn �43�

and CS,l given by

FIG. 31.

FIG. 32.
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L0
p0 � det�L0

p0� � ¯ � Ln
pn � det�Ln

pn� � � �the bonsai obtained by setting Li
p0

into the place of vertex vi�

� det�L0
p0� ∧ e1 ∧ det�L1

p1� ∧ ¯ ∧ en ∧ det�Ln
pn�

�44�

as in the example of Fig. 27, for the seedling of Fig. 26.
From now on, we write Li

pi just as Li for convenience of writing.
In T � det�T��CS,l , det�T� is

det�L0� ∧ e1,k1
∧ det�L1� ∧ ¯ ∧ en,kn

∧ det�Ln� , �45�

where kl is the label of the edge el, and dn�T � det�T�� is

� �a bonsai T� obtained by adding an edge f to one of the Li� � f ∧ det�T�

and this is

� �a bonsai T� obtained by adding an edge f to one of Li�

� f ∧ det�L0� ∧ e1,k1
∧ det�L1� ∧ ¯ ∧ en,kn

∧ det�Ln�

= � �a bonsai T� obtained by adding an edge f to one of Li�

� �− 1�	 det�L0� ∧ e1,k1
∧ det�L1� ∧ ¯ ∧ ei,ki

∧ f ∧ det�Li� ∧ ¯ ∧ en,kn
∧ det�Ln� ,

where 	= �deg�L0�+1�+ �deg�L1�+1�+ ¯ + �deg�Li−1�+1�.
Here, det�T�� is obtained by replacing det�Li� with f ∧det�Li� in �45�, and we get the sign

�−1�	 since when f is added to Li, in the ordering of edges of T�, the edges of Lj�j=0,1 ,… , i
−1� and edges e1 ,e2 ,… ,ei are prior to the edges of Li. So we can conclude that d�T � det�T�� is
the sum of �−1�deg�L0�+1+¯+deg�Li−1�+1T� � det�T��, where T� is the bonsai obtained by adding an
edge in the subladder Li.

Thus, when we construct a coboundary map �l for �Dl�, acting on C1
S0,p1 � ¯ � Cn

S0,pn by

�l�L0 � det�L0� � ¯ � Ln � det�Ln�� = d�L0 � det�L0�� � L1 � det�L1� � ¯ � Ln � det�Ln�

+ �− 1�deg�L0�+1L0 � det�L0� � d�L1 � det�L1�� � ¯ � Ln � det�Ln� + ¯

+ �− 1��deg�L0�+1�+¯+�deg�Ln−1�+1�L0 � det�L0� � L1 � det�L1� � ¯ � d�Ln � det�Ln�� ,

the isomorphism F becomes a cochain isomorphism between �Dl� and �CS,l�, and since each
�Ck

S0,pk� is acyclic and H0=0, by the Künneth theorem, �Dl� is acyclic and H0=0, and so is �CS,l�.
Then, by a Künneth argument, every thread of �CS,j ,di+j� �i is the number of edges of S� is

acyclic with H0=0, and so we have the following.
Theorem 8.1: �Cn ,dn� is acyclic.

FIG. 33.

FIG. 34.
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IX. VERTEX-APPENDING DIFFERENTIAL

In this section, we consider a differential, different from the ladder-extension. Again, all
bonsais of this section are m-bonsais.

Definition 9.1: We define the vertex-appending differential � as follows; consider a determi-
nanted bonsai T � det�T�. Then ��T � det�T�� is the sum of T� � e∧det�T�, where T� is a bonsai
obtained by

�i� appending a vertex to T,
�ii� except to tips of T,

and so, getting an edge e.
If there is no available appending position an a bonsai, the map � assigns 0 to that bonsai.
For example, in 3-bonsai, we have an example like Fig. 28 �in bonsais, determinant terms are

omitted�. �Note that one vertex in the first example is also a tip and the fourth bonsai is a cocycle�.
First, we have the following.
Theorem 9.1: �i+1 ��i=0. That is, � is actually a differential.
Proof: This proof is almost the same as that of Theorem 7.1. Suppose T � is obtained by

appending a vertex to T� with added edge e� so that �i� and �ii� of Definition 9.1 are satisfied,
where T� is obtained by appending a vertex to T with added edge e� so that �i� and �ii� of
Definition 9.1 are satisfied. Here, if T� has no available position to append a vertex, then ��T��
=0, so T �=0. Otherwise, when e� is ej,lj

� and e� is ek,lk
� in the edge ordering of T �, in �i+1 ��i�T� hits

the component T � � e1,l1
� ∧ ¯ ∧ei+2,li+2

� just by adding the edge e� and e� to T, and it can be done
only in two ways.

�i� Adding e� first to T, then the component of T � � e1,l1
� ∧ ¯ ∧ei+2,l1+2

� is T �

� ej,lj
� ∧ek,lk

� ∧e1,l1
� ∧ ¯ ∧ej,lj

�̂ ∧ ¯ ∧ek,lk
�̂ ∧ ¯ ∧ei+2,li+2

� .
�ii� Adding e� first to T, then the component of T � � e1,l1

� ∧ ¯ ∧ei+2,l1+2
� is T �

� ek,lk
� ∧ej,lj

� ∧e1,l1
� ∧ ¯ ∧ej,lj

�̂ ∧ ¯ ∧ek,lk
�̂ ∧ ¯ ∧ei+2,li+2

� .

Since the order of ek,lk
� and ej,lj

� are different in the wedge products, the sum of the two terms
in �i� and �ii� is 0. This is true for all components of �i+1 ��i�T�, and so �i+1 ��i=0. �

9.1. Definition of seedling: By the definition of �i, all terms in �i�T� are of the form ±T�

FIG. 35.

FIG. 36.
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� e∧det�T�, where T� runs over bonsais obtained by adding an edge e to T so that �i� and �ii� of
Definition 9.1 hold. So T� has the form of appending a vertex to a vertex of T which is not a tip.
Having this intuitive fact in mind, let us present some definitions and reorganize the cochain
complex of bonsais.

Definition 9.2: For a bonsai T, an edge e of T is called twiggy if it is at the end of a branch
and the opposite end of the tip is a branching vertex. In Fig. 29, e is twiggy in T and e� is not, and
f is not a twiggy edge of T�.

Definition 9.3: A bonsai which has no twiggy edge is called a vertex-appending seedling. In
this section, we will call this just a seedling. The left bonsai in Fig. 35 is not a seedling, and the
ones in Fig. 30 are all seedlings in 2-bonsai. Note that the one-vertex bonsai is a seedling.
Intuitively, a seedling is a bonsai which cannot be obtained by adding edges like (i) and (ii) of
Definition 9.1.

Definition 9.4: For two seedlings S and S�, we define an equivalence relation S�S� if S is
obtained by changing labels of branch-end edges of S�. For example, all four seedlings in Fig. 31
are equivalent, and so are the first and second seedlings of Fig. 32, but the first and third seedlings
of Fig. 32 are not equivalent.

Let us try the same trick as in the proof of acyclicity of the branch-fixed differential. When S
is a seedling, let C�S�,0 be the subspace of the determinanted m-bonsai space having �T � det�T�� as
the basis, where T is in the equivalence class �S� of S by �. And let C�S�,i+1 be the space with the
basis �T� � det�T���, where T� is obtained by adding an edge to T, where �T � det�T�� is the basis
of CS,i, as �i� and �ii� of Definition 9.1. Every bonsai is obtained by adding some edges to a
seedling as given in Definition 9.1 and if S and S� are not equivalent seedlings, then the bonsais
obtained by adding edges to S and S� as given in Definition 9.1 are not equivalent; the space of
determinant bonsais is the direct sum of C�S�,i. Then, since ��C�S�,i��C�S�,i+1, the cohomology
groups of determinant bonsais by the differential � is the direct sum of cohomology groups of the
threads �C�S�,i�.

9.2. The cohomology groups of the vertex-appending differential: First let us consider a
coboundary complex �Dm,i� consisting of corollas, such that each corolla is an m-bonsai, and the
boundary map is the vertex-appending differential, but in this complex, appending to the one-
vertex bonsai is allowed, so we must be careful not to be confused with the definition of the above

FIG. 37.

FIG. 38.
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vertex-appending differential. By the definition of �i :Dm,i→Dm,i+1, all terms in �i�T� are of the
form ±T� � e∧det�T�, where T� runs over bonsais obtained by adding one vertex as defined in
Definition 9.1. Since appending to a tip is forbidden, every �i is appending a vertex to the root of
a corolla. Now let us show some boundary map sequences of the thread starting from one vertex.
For one vertex, �0 acts as in Fig. 33.

For the one-edge corolla, �1 acts as in Fig. 34, where 1�n�m, and for the two-edge corolla,
�2 acts as in Fig. 35, where 1�n1
n2�m, and so on.

This sequence of coboundary maps is the same as that of the reduced cohomology of the
�m−1�-simplex with vertices v1 ,v2 ,… ,vm, once we identify the corolla with labels i1 , i2 ,… , ik

with the simplex generated by vertices vi1
,vi2

,… ,vik
. So the cohomology groups of this thread of

boundary maps is acyclic, and the lowest degree group is trivial. Let us denote the module having
the basis consisting of one vertex having m available positions of vertex appending as Dm,0, and
the module having the basis consisting of corollae with n edges as shown above Dm,n. Also, let
�Bm,n� be a cochain complex defined by Bm,n=Dm,n+1 for later convenience. Then �Bm,n� is acyclic
and H0=k, where k is the base field, since the cohomology of �Bm,n� is isomorphic to the coho-
mology �not the reduced cohomology� of the �m−1�-simplex.

9.3. The case of general seedlings: Now let us show an example.
Lemma 2: Any complex �C�S�,i� is isomorphic to it, which is represented as a direct sum of

tensor products of �Dm,i�’s and �Bm,i�’s (as in the proof of acyclicity of the branch-fixed differen-
tial).

In 5-bonsai, the seedling S in Fig. 36 can get twiggy edges at the positions of the twigs shown
in the picture which are grouped as surrounded by squares.

Note that, in Fig. 36 adding an edge to each square is the same as attaching an edge to the
corolla at the vertex at which the square is appended, each corolla corresponds to the module that
is written on each square �in Fig. 36, Di

m,* is isomorphic to Dm,* and Bi
m,* is isomorphic to Bm,*�.

Keeping this in mind, we can define modules �Dl� and an isomorphism F of them with �C�S�,i�
like the following:

FIG. 39.

FIG. 40.

072305-22 Jungyoon Byun J. Math. Phys. 46, 072305 �2005�

                                                                                                                                    



Dl = �
p1+¯+p6=l

D1
1,p1 � D2

1,p2 � B3
5,p3 � D4

2,p4 � B5
5,p5 � D6

3,p6 �46�

and when M1=D1
1,p1, M2=D2

1,p2, M3=B3
5,p3, M4=D4

2,p4, M5=B5
5,p5 and M6=D6

3,p6, the map F :Dl

→C�S�,l is defined as, when ci�Mi is a corolla,

c1 � det�c1� � ¯ � c6 � det�c6� �

� �the bonsai obtained by attaching ci to the square corresponding to Mi�

� det�c1� ∧ e1 ∧ det�c2� ∧ e2 ∧ det�c3� ∧ det�c4� ∧ e3 ∧ det�c5� ∧ det�c6� �47�

as in the example of Fig. 37.
Then in T � det�T��CS,l , det�T� is

det�c1� ∧ e1,k1
∧ det�c2� ∧ e2,k2

∧ det�c3� ∧ det�c4� ∧ e3,k3
∧ det�c5� ∧ det�c6� , �48�

where kl is the label of the edge el, and � n�T � det�T�� is

� �a bonsai T� obtained by adding an edge f to one of ci� � f ∧ det�T�

= � �a bonsai T� obtained by adding an edge f to one of ci�

� f ∧ det�c1� ∧ e1,k1
∧ det�c2� ∧ e2,k2

∧ det�c3� ∧ det�c4� ∧ e3,k3
∧ det�c5� ∧ det�c6�

= � �a bonsai T� obtained by adding an edge f to c1�

� f ∧ det�c1� ∧ e1,k1
∧ det�c2� ∧ e2,k2

∧ det�c3� ∧ det�c4� ∧ e3,k3
∧ det�c5� ∧ det�c6�

+ � �a bonsai T� obtained by adding an edge f to c2� � �− 1�deg�c1�+1det�c1� ∧ e1,k1

∧ f ∧ det�c2� ∧ e2,k2
∧ det�c3� ∧ det�c4� ∧ e3,k3

∧ det�c5� ∧ det�c6�

+ � �a bonsai T� obtained by adding an edge f to c3� � �− 1��deg�c1�+1�+�deg�c2�+1�

FIG. 41.

FIG. 42.
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det�c1� ∧ e1,k1
∧ det�c2� ∧ e2,k2

∧ f ∧ det�c3� ∧ det�c4� ∧ e3,k3
∧ det�c5� ∧ det�c6�

+ � �a bonsai T� obtained by adding an edge f to c4�

� �− 1��deg�c1�+1�+�deg�c2�+1�+�deg�c3�+0�

� det�c1� ∧ e1,k1
∧ det�c2� ∧ e2,k2

∧ det�c3� ∧ f ∧ det�c4� ∧ e3,k3
∧ det�c5� ∧ det�c6�

+ � �a bonsai T� obtained by adding an edge f to c5�

� �− 1��deg�c1�+1�+�deg�c2�+1�+�deg�c3�+0�+�deg�c4�+1�

det�c1� ∧ e1,k1
∧ det�c2� ∧ e2,k2

∧ det�c3� ∧ det�c4� ∧ e3,k3
∧ f ∧ det�c5�

∧ det�c6� + � �a bonsai T� obtained by adding an edge f to c6�

� �− 1��deg�c1�+1�+�deg�c2�+1�+�deg�c3�+0�+�deg�c4�+1�+�deg�c5�+0�det�c1� ∧ e1,k1

∧ det�c2� ∧ e2,k2
∧ det�c3� ∧ det�c4� ∧ e3,k3

∧ det�c5� ∧ f ∧ det�c6� . �49�

So, when m1=deg�c1�+1, m2=deg�c2�+1, m3=deg�c3�+0, m4=deg�c4�+1, and m5=deg�c5�
+0, we can write ��T � det�T�� as

+ � �a bonsai T� obtained by adding an edge f to ci�

� �− 1�m1+¯+mi−1 det�c1� ∧ e1,k1
∧ ¯ ∧ �f ∧ det�ci�� ∧ ¯ ∧ det�c6� .

Hence, when we define the coboundary map on �Dl� as

c1 � ¯ � c6 � ��− 1�	ic1 � ¯ � ��ci� � ¯ � c6, �50�

where 	i=m1+ ¯ +mi−1 and 	1=0, the map F defined in �47� becomes a cochain isomorphism of
�Dl� and �C�S�,l�. Then by the Künneth theorem, the cohomology of the cochain complex �Dl� is

FIG. 43.

FIG. 44.
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expressed as the sum of Hq1�M1� � ¯ � Hq6�M6� for some qi’s, and since Hi�M1�=Hi�D1,*�=0 for
any i, the cohomology of C�S�,l for S of Fig. 36 is acyclic.

Definition 9.5: As shown for the example of Fig. 36, for any seedling S, we have a cochain
complex as in �46� and an isomorphism F of it with C�S�,l as in �47�. We call this cochain complex
as in �46� the tensor product representation of C�S�,l.

Then, whether �C�S�,l� is acyclic or not depends on whether its tensor product representation
contains Dm,*. As shown in Fig. 36, Bm,* appears only at the branch-end edges of a seedling, and
Dm,* appears only at the available positions of vertex-appending other than at branch-end edges.
So, the only case where �C�S�,l� is not acyclic is that the bonsai obtained by deleting all branch-end
edges of S is a cocycle, i.e., that bonsai has no available position of vertex appending and so there
is no room for Dm,* on S, like the bonsais of Fig. 38, in 2-bonsai. The only nontrivial cohomology
group of �C�S�,l� is H0=k by Künneth theorem, where k is the base field, since all H0�Bm,i�=k.

In m-bonsai, every cocycle C is a planar tree, all of whose vertices which are not branch-ends
have ramification number m, so if C contains n corollas with m edges, it has mn+1 vertices, n of
those vertices have m successors and �mn+1�−n of those vertices have 0 successors, i.e., are the
endpoints of edges, in the language of Stanley �1999�. Then, by Theorem 5.3.10 of Stanley �1999�,
the number of such C is

1

mn + 1

 mn + 1

�mn + 1� − n,…,n
� �51�

which is �mn� ! / ��m−1�n+1� !n!. A seedling S is obtained by adding one edge to every branch-
end vertex of C and C has �mn+1�−n branch-end vertices. So S has mn+ ��mn+1�−n�= �2m
−1�n+1 vertices. Thus we have the following.

Theorem 9.2: The cohomology groups Hi of m-bonsai Hopf algebra by the vertex-appending
differential is

Hi =�k
�mn�!

��m−1�n+1�!n! if i = �2m − 1�n + 1,n � 0,

0 otherwise.
�

FIG. 45.

FIG. 46.
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In 2-bonsai, the representatives of Hi are as in Fig. 39.

X. APPENDING OPERATION � AND ITS DEVIATION

Over a general base field k for a bonsai Hopf algebra, it is not so easy to find a good algebraic
relationship between ��T1�T2� and ��T1��T2±T1� ��T2� where � is the vertex-appending differ-
ential, mainly because of the signs of determinant bonsais. But if k has characteristic 2, we do not
need to consider signs. Moreover, the vertex-appending differential becomes just appending of a
vertex, taking no consideration of determinant terms, but it is still a boundary map by the same
argument as in the preceding section. Then the relation of ��T1�T2� and ��T1��T2+T1� ��T2�
becomes much simpler. In this section, we consider only the case where the characteristic of k is
2.

Let us define the binary operation �1 by

��T1 � T2� = ��T1� � T2 + T1 � ��T2� + T1�1T2 �52�

and call this operation �1 the first deviation of the operation �. We let �2 be defined by

��T1�1T2� = ��T1��1T2 + T1�1��T2� + T1�2T2 �53�

and call this operation the second deviation of the operation �. We define third, fourth, etc.,
deviations iteratively. Note that �2 is the first deviation of �1.

First, for the appending operation �, we have the following.

FIG. 47.

FIG. 48.
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Theorem 10.1: In bonsai Hopf algebra, with its base field of characteristic 2, T1�1T2 is the
sum of all T� ’s, where T� is any bonsai obtained by connecting a tip v of T2 and the root of T1

with one edge and attatch another edge to that vertex of T2, or by connecting a nontip of T2 and
the root of T1 with a length-2 ladder. In both cases, the edges added to T1 and T2 are allowed to
have all possible labels, as in the example in 3-bonsai of Fig. 40.

Proof: Let us use a graphical illustration. Bonsais which are summands of ��T1�T2� are as in
Fig. 41, where T1 and T2 and the appended vertex are drawn as broomsticks, and i, j, and k are
indices of twigs and T1�T2 is the sum of these two kinds of bonsai over i, j, and k. In this proof,
the black circles in the pictures represent the twigs at nontips of bonsais, and the white circles
represent the twigs at tips of bonsais. Here, i is on the vertices of T2 which are not tips, and k is
on the vertices of T1 which are not tips and i� is on the vertices of T2 which are tips, but not tips
in ��T1�T2� since the connecting edge is attached.

The bonsais which are summands of T1��T2 are as in Fig. 42. On the right-hand bonsai of
Fig. 42, the label of the edge connecting T and T1 can be anything out of 1 ,2 ,… ,m.

The bonsais which are summands of �T1�T2 are as in Fig. 43. Then the discrepancy between
��T1�T2� and �T1�T2+T1��T2 is the sum of the third bonsai of Fig. 41 and the second bonsai of
Fig. 42, which gives the wanted formula.

Theorem 10.2: Mod 2, for any m-bonsais T1 and T2, we have T1�2T2=0. In other words,
��T1�1T2�=�T1�1T2+T1�1�T2.

Proof: Bonsais which are summands of T1�1T2 are those in Fig. 44, which represent the
bonsais obtained by connecting T1 and T2 with one edge and attaching another edge and obtained
by connecting T1 and T2 with a length-2 ladder. As in the proof of the previous theorem, a black
circle represents a nontip of a bonsai and a white circle represents a tip of a bonsai.

The bonsais in ��T1�1T2� obtained by � acting on the left-hand bonsai in Fig. 44 are those in
Fig. 45, and the bonsais obtained by � acting on the right-hand bonsai in Fig. 44 are those in Fig.
46. In both pictures, the broomstick lettered T is a one-vertex bonsai which is appended by the
vertex-appending differential �.

FIG. 49.

FIG. 50.
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The bonsais in ��T1�1T2� corresponding to the left-hand bonsai in Fig. 44 are like Fig. 45, and
the ones corresponding to the right-hand one are like Fig. 46. For later use, we denote those
bonsais A, B,…,G as assigned in the figures. In both pictures, the broomstick lettered T is a
one-vertex bonsai which is appended by the vertex-appending differential �.

For the bonsai F, actually we have a term like Fig. 47 also in ��T1�1T2�, and since we are
working mod 2, the bonsais looking like F are all canceled. So we have F=0.

Now, the bonsais in ��T1��1T2 are as in Fig. 48. Let us denote them as a and b.
The bonsais in T1�1� �T2� are like those in Fig. 49, where we denote the bonsais as c, d, e,

and f.
In Figs. 45–49, we have a=G, b=D, c=E, d=C, e=B, and f=A. We already showed that

F=0, so we have ��T1�1T2�=��T1��1T2+T1�1� �T2�. �

XI. PLANAR CLEAR-EDGED m-BONSAI AND ITS DERIVATIVE

In planar clear-edged m-bonsai, we can define a differential and calculate some cohomologies
as for m-bonsai.

Definition 11.1: For the planar clear-edged m-bonsai, we define the vertex-appending differ-
ential � as follows. Consider a determinant planar clear-edged m-bonsai T � det�T�. Then ��T
� det�T�� is the sum of T� � ∧det�T�, where T� is a planar clear-edged m-bonsai obtained by

�i� appending a vertex to T,
�ii� except to tips of T,

and so, getting an edge e.
If there is no available appending position on a bonsai, the map assigns 0 to that bonsai.
For example, in planar clear-edged 3-bonsai, we can get an example like Fig. 50 �in bonsais

of Fig. 50, determinant terms are omitted�. �Note that one vertex in the first example is also a tip
and the third bonsai is a cocycle. In the picture, appended vertices are drawn as open vertices, not
indicating colors.�

And by the totally same argument as for edge-numbered bonsai, we get the following.
Theorem 11.1: �i+1 ��i=0. That is, � is a differential.
Now let us consider the cohomology groups of this differential. First let us consider a cochain

complex �Di� consisting of corollas, with the boundary map �̄ being the vertex-appending differ-
ential, but in this complex, appending to the one-vertex bonsai is allowed. Here, let us denote as
D0 the module having the basis consisting of one vertex, and as Dn the one-dimensional module
having the basis consisting of the corolla with n edges as shown above. By the definition of �i, all
terms in �i�T� are of the from ±T� � e∧det�T�, where T� runs over bonsais obtained by adding one
vertex as defined in Definition 11.1. Since appending to an edge-end is forbidden, every �i is
appending a vertex to the root of a corolla. Now let us show some boundary map sequences of the
thread starting from one vertex. For one vertex, �0 acts as in Fig. 51.

FIG. 51.

FIG. 52.
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For the one-edge corolla, �1 acts as in the second map of Fig. 50, for the two-edge corolla, �2

acts as in the third map of Fig. 50, and so on.
This sequence of coboundary maps is

k→
id

k→
0

k→
id

k→
0

… �54�

where k is the base field.
So the cohomology groups of this thread of boundary maps is acyclic, and the lowest degree

group is trivial.
Also, let �Bn� be a cochain complex defined by Bn=Dn+1 for later convenience. Then �Bn� is

acyclic and H0=k, where k is the base field.
Now let us consider the general case. By the definition of �i, all terms in �i�T� are of the form

±T� � e∧det�T�, where T� runs over bonsais obtained by adding an edge e to T so that �i� and �ii�
of Definition 11.1 hold. So T� has the form of appending a vertex to a vertex of T other than a tip.
Having this intuitive fact in mind, let us present some definitions and reorganize the cochain
complex of bonsais.

Definition 11.2: For a bonsai T, an edge e of T is called twiggy if it is at the end of a branch
and the opposite end of the tip is a branching vertex. In Fig. 52, e is twiggy in T and e� is not, and
f is not a twiggy edge of T�.

Definition 11.3: A bonsai which has no twiggy edge is called a vertex-appending seedling. In
this section, we will just call this seedling. The bonsais in Fig. 53 are all seedlings. Note that the
one-vertex bonsai is a seedling. Intuitively, a seedling is a bonsai which cannot be obtained by
adding edges like (i) and (ii) of Definition 9.1.

11.1. Cohomology groups of � when m=�: Let us try the same trick as in the proof of
acyclicity of the branch-fixed differential.

Definition 11.4: When S is a seedling, let CS,0 be the subspace of the determinant planar
clear-edged �-bonsai space having �S � det�S�� as the basis. And let CS,i+1 be the space with the
basis �T� � det�T���, where T� is obtained by adding an edge to T, where �T � det�T�� is the basis
of CS,i, as (i) and (ii) of Definition 11.1. Then since every bonsai is obtained by adding some edges
to a seedling as given in Definition 11.1 and if S and S� are different seedlings, then the bonsais
obtained by adding edges to S and S� as given in Definition 11.1 are different, the space of
determinant bonsais is the direct sum of the CS,i. We call this complex �CS,i� a thread starting from
S.

FIG. 53.

FIG. 54.
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Then, since ��CS,i��CS,i+1, the cohomology groups of determinant bonsais by the differential
� are the direct sum of cohomology groups of the threads �CS,i�.

Now let us show through an example that, for any thread �CS,i�, we can get a cochain complex
which is isomorphic to it, obtained from the direct sums of tensor products of �Di�’s and �Bi�’s as
in the proof of acyclicity of branch-fixed differential. In 5-bonsai, the seedling S in Fig. 54 can
have twiggy edges at the positions of the twigs shown in the picture, and those twigs are grouped
as surrounded by squares.

Note that, in Fig. 54, adding edges to the corolla in each square is the same as attaching edges
to the vertex at which the square is appended, each corolla corresponds to the module that is
written on each square �in Fig. 54, Di

m,* is isomorphic to Dm,* and Bi
m,* is isomorphic to Bm,*�.

Then, as in Sec. XI, we can get the cochain isomorphism of �CS,i� and D1
*

� D2
*

� B3
*

� D4
*

� B5
*

� D6
*

� D7
*, and use Künneth’s theorem. Since the cohomology of �D*� is acyclic with trivial

base degree cohomology, it is clear that any �CS,*� whose tensor product representation has �D*�
is acyclic with trivial base degree cohomology. The only seedlings having no �D*� are the first two
bonsais of Fig. 50, i.e., the one-vertex bonsai v and the one-edge bonsai e. Since v is a cocycle, we
have H0=k and since Ce,*=B*, we have H1=H0�B*�=k. This illustrates a general argument. Thus
we have the following.

Theorem 11.2: The cohomology groups Hi of the planar clear-edged m-bonsai Hopf algebra
by vertex-appending differential are

Hi = �k if i = 0 or 1,

0 otherwise.
�

11.2. Cohomology groups of � when m
�: terminology. In this section, let us consider the
cohomology groups in case m
�. It is not as easy as in the preceding section to get a simple
tensor product representation of a thread �CS,i� when each vertex has the upper bound m of
ramification number. So we need to change our strategy for the case of m
�. Since every �CS,i�
is finite dimensional, we can calculate the cohomology groups by considering a finite number of
bonsais. So from now on, we develop an “inductive strategy” for calculating the cohomology
groups of the thread �CS,i� for any given S.

Let us illustrate the basic idea of the “ inductive strategy” using an example. In 2-bonsai, let
Si be the ladder of length i. Then the cohomology Hj�S1� of �CS1,j� is, by a sequence as in Fig. 55,
H1�S1�=H2�S2�=k, the base field.

Let us find an inductive step to get Hi�Sj+1�’s from Hi�Sj�’s, so that we can get the cohomology
group of every �CSi,j�.

As in Fig. 56, when T is a linear combination of m-bonsais, the other two expressions of Fig.
56 represent linear combinations of bonsais obtained by attaching a bonsai to the roots of bonsais
which are the components of T.

FIG. 55.

FIG. 56.
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Then, when T is a linear combination of bonsais in �CSi,j� in 2-bonsai, the map � on �CSi+1,j�
is expressed in Fig. 57.

From Fig. 57, we can find that the kernel of � on �CSi+1,j� is generated by the linear combi-
nations of bonsais shown in Fig. 58 in which T�ker � and �T�=�T �=T, and that the image of �

on �CSi+1,j� is generated by the linear combinations of bonsais shown in Fig. 59.
So we can write

ker �

im �
=

�A,B,C�
�a,b,c�

. �55�

In A, we have �T=0, �T�=T and �T �=T, so we have A−a= �−1�deg T �+1C. Hence we have C
is generated by A and a. Also, in c, when T�=�T, we have a−b= �−1�deg Tc. So c is generated by
a and b. So we have

ker �

im �
=

�A,B�
�a,b�

. �56�

In Fig. 58, �T �=T. So A in Fig. 58 can be redrawn as Fig. 60.
Since �T�=�T �=T, we have ��T�−T ��=0 and so A can be rewritten as B+a. Hence we have

ker �

im �
=

�B + a,B�
�a,b�

=
�a,B�
�a,b�

=
�a� � �B�
�a� � �b�

=
�B�
�b�

. �57�

Obviously, �B� / �b� is isomorphic to the cohomology group of CSi,j. Since B and b have two
more edges than bonsais in CSi,j, we can see the following.

Theorem 11.3: When Hj�Si� is the jth cohomology group of the thread CSi,j , Hj+2�Si+1�
=Hj�Si�.

As in the previous theorem, we can generalize the process of getting the cohomology of the
thread starting from S� which is obtained by attaching the root of a seedling S to a tip of a corolla,
when the cohomology of the thread starting from S is already known. Let us define some termi-
nology. We first define a kind of “seedling.”

Definition 11.5: We define a grafting seedling as a bonsai defined as one of the following:

�1� a seedling,
�2� a bonsai obtained by attaching even-arity corollas to vertices of a seedling S which are more

than two edges from any tip, and by replacing branch-end edges of S to even-arity corollas.

FIG. 57.

FIG. 58.
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In Fig. 61, the first three bonsais are grafting seedlings and the last is not.
Definition 11.6: A grafting seedling gs�n ;T1 ,T2 ,… ,Tn+1 ;S1 ,S2 ,… ,Sn�, which we call a graft-

ing seedling is constructed like the following: In the corollas C with arity n, the corollas
T1 ,T2 ,… ,Tn+1 of even arities are attached so that the root of T1 is attached to the root of C on the
left of the leftmost edge of C, the root of T2 is attached to the root of C between the first leftmost
edge and the second leftmost edge of C,…, and so on, and the grafting seedlings S1 ,S2 ,… ,Sn are
attached so that the root of S1 is attached to the tip of the first leftmost edge of C, the root of S2

is attached to the tip of the second leftmost edge of C, …, and so on, as in Fig. 62 in 6-bonsai.
Note that the grafting seedling defined here is different from the seedling we used until now.
Definition 11.7: We define the relation T1→T2 of clear-edged m-bonsais T1 and T2 as follows:

�i� T2 is a nonzero component of �T1 and T2 is obtained by attaching one edge to the root of
T1 or

�ii� T2 is obtained by attaching an edge to a nonroot vertex of T1.

In 3-bonsai, we have examples as in Fig. 63.
Definition 11.8: We define the relation T1⇒T1� if there is a sequence of m-bonsais such that

T1→T2→¯→Tn=T1� or T1=T1�.
Let K�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn�� be the vector space generated by the bonsais T� such that

gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn�⇒T�. Also, when S is a grafting seedling and C is the cochain com-
plex of m-bonsai, we define Ki�S�ªCi�K�S�.

Theorem 11.4: When S is a grafting seedling and Hi�S� is the ith cohomology group of the
thread �Ki�S��, the ith cohomology group Hi of m-bonsai is

Hi = �
S is a grafting seedling

Hi�S� .

Proof: We have

C = �
S is a grafting seedling

K�S�

since �i� there is no T such that T⇒T�, T�T�, and T� is a grafting seedling and �ii� if two grafting
seedlings S and S� are not equal, then K�S��K�S��=�. Also we have �Ki�S���Ki+1�S�. So we
get the wanted result. �

11.3. The cohomology groups for each �Ki�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn���: Now we must cal-

FIG. 59.

FIG. 60.
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culate the cohomology groups for �Ki�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn���. First let us define some
notation.

Definition 11.9: For any integer n�0, the cochain complex �D2n
j � is defined as follows: when

j=2n or 2n+1, D2n
j is a one-dimensional vector space with the basis �Cj�, where Cj is the corolla

of arity j (when j=0, Cj is the one-vertex bonsai), and otherwise, D2n
j =0. And when j=2n, the

boundary map � :D2n
j →D2n

j+1 is given by Cj �Cj+1 and otherwise, �=0.
To calculate the cohomology groups of �Ki�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn���, we use a similar

type of tensor product representation as in Sec. XI.
Definition 11.10: Let B�n ;U1 ,… ,Un+1 ;V1 ,… ,Vn� be the bonsai obtained by replacing Ti by

Ui and Si by Vi in gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn�, where Ui is the corolla Ck of arity k=deg Ti or
deg Ti+1 (i.e., Ui is a basis element of �Ddeg Ti

�) and Vi is a bonsai in the thread �CSi,i� starting
from Si (see section 11.2�.

Let us define the cochain complexes �Di� and �Ei� as �Ddeg Ti
� and �C�Si��. Then we can define

an isomophism P from Ki�S� to Li=D1
i1 � E1

j1 � ¯ � Dn
in � En

jn � Dn+1
in+1 where i1+ ¯ + in+1+ j1

+ ¯ + jn+n= i and i1+ ¯ + in+1+n�m, by sending B�n ;U1 ,… ,Un+1 ;V1 ,… ,Vn� to U1 � V1 � ¯

� Un � Vn � Un+1. The differential d in L is defined as, when deg U1+ ¯ +deg Un+1
m−n,

���d�U1 � V1 � U2 � V2 � ¯ � Un � Vn � Un+1� = �U1 � V1 � U2 � V2 � ¯ � Un � Vn

� Un+1 + U1 � �− 1�p1 � V1 � U2 � V2 � ¯ � Un � Vn � Un+1� + U1 � V1 � �− 1�q1 � U2

� V2 � ¯ � Un � Vn � Un+1� + U1 � V1 � U2 � �− 1�p2 � V2 � ¯ � Un � Vn � Un+1�

+ ¯ + U1 � V1 � U2 � V2 � ¯ � Un � Vn � �− 1�qn � Un+1,

where pi=deg U1+deg V1+ ¯ +deg Ui−1+deg Vi−1+deg Ui+ i and qi=deg U1+deg V1+ ¯

+deg Ui+deg Vi+ i, and if deg U1+ ¯ +deg Un+1=m−n,

��d�U1 � V1 � U2 � V2 � ¯ � Un � Vn � Un+1� = �U1 � V1 � U2 � V2 � ¯ � Un � Vn

� Un+1 + U1 � V1 � �− 1�q1 � U2 � V2 � ¯ � Un � Vn � Un+1� + ¯ + U1 � V1 � U2 � V2

� ¯ � Un � Vn � �− 1�qn � Un+1� .

Then by the definition of � in C, the isomorphism P is a cochain complex isomorphism from
�Ki�S� ,�� to �Li ,d�.

FIG. 61.
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Now let us define a double complex �Mi � N j�i,j where Mi=	D1
i1 � ¯ � Dn+1

in+1 where
i1 ,… , in+1 satisfy i1+ ¯ + in+1+n= i and i�m, and N j =	 j1+¯+jn=jE1

j1 � ¯ � En
jn where j1 ,… , jn

satisfy j1+ ¯ + jn= j, and differentials �̄1 and �̄2 are

�̄1�U1 � U2 � ¯ � Un+1 � V1 � ¯ � Vn� = �U1 � U2 � ¯ � Un+1 � V1 � ¯ � Vn + U1

� �− 1�q1 � U2 � ¯ � Un+1 � V1 � ¯ � Vn + ¯ + U1 � U2 � … � �− 1�qn � Un+1 � V1

� … � Vn

where U1 � ¯ � Un+1�M j�j
m� �if j�m, since M j =0, �̄1=0�, and

��̄2�U1 � ¯ � Un+1 � V1 � V2 � ¯ � Vn� = U1 � ¯ � Un+1 � �− 1�p1 � V1 � V2 � ¯ � Vn

+ U1 � ¯ � Un+1 � V1 � �− 1�p2 � V2 � ¯ � Vn� + ¯ + U1 � ¯ � Un+1 � V1 � V2

� ¯ � �− 1�pn � Vn.

Then each of �̄1 and �̄2 is a differential of Künneth products of �D2n
i �’s and �CS,j�’s, respec-

tively. Let �̄= �̄1+ �̄2. When the bijection Q : �Li�→ �Mi � N j� is given by U1 � V1 � ¯ � Un � Vn

� Un+1�U1 � ¯ � Un+1 � V1 � ¯ � Vn, immediately by the definitions of d and �̄, we have

�̄ � Q = Q � d . �58�

Hence �̄ satisfies �̄ � �̄=0. So we have 0= �̄ � �̄= �̄1 � �̄1+ �̄1 � �̄2+ �̄2 � �̄1+ �̄2 � �̄2= �̄1 � �̄2+ �̄2 � �̄1, therefore
�Mi � N j� is a double complex. Also, by �58�, Q induces the cochain complex isomorphism
��Li� ,d�→ ��Mi � N j� , �̄�. So by the isomorphism Q � P , ��K�gs�n ;T1 ,…Tn+1 ;S1 ,… ,Sn��� ,�� and
��M � N� , �̄� are isomorphic. In order to calculate the cohomology of
��Ki�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn����, we can use the cohomology groups ��M � N� , �̄�. Let us use
the spectral sequence starting with �̄1.

Since �̄1 acts only on �Mi�, we can write E1
i,j =H�̄1

��Mi � N j��=H�̄1

i ��M�� � N j, and similarly,

since �̄2 acts only on �N j�, we can write E2
i,j =H�̄2

�E1�=H�̄1

i ��M�� � H�̄2

j ��N��. Since �̄2 is a Künneth

product of Ei’s, H�̄2
��N�� is the Künneth product H�E1� � ¯ � H�En�=H�S1� � ¯ � H�Sn�. But as

we can see in the definition of �̄1, it is not exactly the canonical differential of Künneth product,
so the calculation of H��M�� takes some more consideration.

When i
m, Mi= � i1+¯+in+1=i−nD1
i1 � ¯ � Dn+1

in+1 and �̄1 is a Künneth differential. So when i

m ,H�̄1

i ��M�� is a Künneth product of H��D j��’s, and so it is 0, since each �D j� is acyclic.

When i�m ,M j =0. So when i�m , �̄1=0 on Mi and H�̄1

i ��M��=0�i�m�.
Let us calculate H�̄1

m ��M��=ker �̄1Mm / im�̄1Mm−1.

First, if �i1+1�+ ¯ + �in+1+1�+n
m ,Mm=0. So, H�̄1

m ��M��=0.

FIG. 63.
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Suppose that �i1+1�+ ¯ + �in+1+1�+n�m. Since the clear-edged m-bonsai is a vector space
over the field k, we just need to calculate the dimension of Hm. We have

dim�H�̄1

m ��M��� = dim�ker �̄1Mm� − dim�im �̄1Mm−1� , �59�

dim�ker �̄1Mm� = dim�Mm� , �60�

and

dim�im �̄1Mm−1� = dim�Mm−1� − dim�ker �̄1Mm−1� . �61�

Since

H�̄1

j ��M�� = 0 when j 
 m , �62�

we have

dim�ker �̄1Mm−1� = dim�im �̄1Mm−2� = dim�Mm−2� − dim�ker �̄1Mm−2� , �63�

and so, by �59�–�63�,

dim�H�̄1

m ��M��� = dim�Mm� − �dim�Mm−1� − dim�ker �̄1Mm−1�� = dim�Mm� − dim�Mm−1�

+ dim�Mm−2� − dim�ker �̄1Mm−2� . �64�

Continuing like this, we have

dim�H�̄1

m ��M��� = dim�Mm� − dim�Mm−1� + dim�Mm−2� − dim�Mm−3� + ¯ �65�

and since Mi=0 if i
n+ P where

FIG. 65.
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P = deg T1 + ¯ + deg Tn+1, �66�

we have

dim�H�̄1

m ��M��� = dim�Mm� − dim�Mm−1� + … + �− 1�m−�n+P� dim�Mn+P� . �67�

Let N be the number and let us calculate it. By the definition of Mi, its dimension is that of

�
i1+¯+in+1+n=i

D1
i1 � ¯ � Dn

in. �68�

Every Dk
ik is one-dimensional when pk= ik−deg Tk is 0 or 1, and 0 otherwise. So the above direct

sum is

�
p1+…+pn+1+P+n=i

D1
p1+deg T1 � ¯ � Dn

pn+deg Tn. �69�

Hence, dim�Mi� is the number of �p1 ,… , pn+1�’s satisfying p1+ ¯ + pn+1+ P+n= i and each pk is
0 or 1. Hence

dim�Mi� = 
 n + 1

i − P − n
� �70�

and

N = 
 n + 1

m − P − n
� − 
 n + 1

�m − 1� − P − n
� + ¯ + �− 1�m−P−n
n + 1

0
� .

Now we have

E2
i,j = �� j1+¯+jn=jk

N
� Hj1�S1� � ¯ � Hjn�Sn� if i = m

0 otherwise.
�

Since E2
i,j =0 except when j=m, every “knight’s move map” on Ei,j’s is trivial. So the spectral

sequence collapses and we have H�̄
n= � i+j=nEi,j = � j1+¯+jn=n−mkN � Hj1�S1� � ¯ � Hjn�Sn�, and

since

FIG. 67.
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kN
� Hj1�S1� � … � Hjn�Sn� = �Hj1�S1� � … � Hjn�Sn���N, �71�

we finally have the following.
Theorem 11.5: When Hi�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn�� is the ith cohomology group of the

thread Ki�gs�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn��, the ith cohomology group Hi of clear-edged m-bonsai is

Hi = �
S is a grafting seedling

Hi�S� .

And, if P=deg T1+ ¯ +deg Tn
m−2n+1, then Hi�gr�n ;T1 ,… ,Tn+1 ;S1 ,… ,Sn��=0. Other-
wise,

Hi�gr�n;T1,…,Tn+1;S1,…,Sn�� = �
j1+…+jn=n−m

�Hj1�S1� � ¯ � Hjn�Sn���N,

where

N = 
 n + 1

m − P − n
� − 
 n + 1

�m − 1� − P − n
� + ¯ + �− 1�m−�n+P�
n + 1

0
� .

XII. DIFFERENTIAL AND APPENDING OF CLEAR-EDGED BONSAI

Let us consider the relationship between the appending operation � on the clear-edged
m-bonsai Hopf algebra Hc,m and the vertex appending differential �. We work mod 2 again. First,
the operation T1�T2 is the sum of all m-bonsais obtained by connecting the root of T1 and a vertex
of T2 with an edge, as illustrated for 3-bonsai in Fig. 64.

In this section, we will show that T1�2T2=0 for every T1 and T2 as in Sec. X.
Temporarily in this section, we use a differential �̄ of corollas which is the same as � except

�̄�v�=e, where v is the one-vertex bonsai and e is the one-edge bonsai.
12.1 Brief table of contents: In this section, first we will describe T1�1T2 for each of the

following cases when T2 is a corolla, by dividing the cases as follows;

�i� when �T2�0 and deg�T2��m−2,
�ii� when �T2�0 and deg�T2�=m−1,
�iii� when �T2=0 and deg�T2��m−2,
�iv� when �T2=0 and deg�T2�=m−1,

FIG. 69.
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�v� when deg�T2�=m.

Second, we will show that T1�2T2 for each of the following cases when T2 is a corolla:

�i� when �T2�0 and deg�T2��m−3,
�ii� when �T2�0 and deg�T2�=m−2,
�iii� when �T2�0 and deg�T2�=m−1,
�iv� when �T2=0 and deg�T2��m−2,
�v� when �T2=0 and deg�T2�=m−1,
�vi� when deg�T2�=m.

Finally, we show that T1�2T2 for a general T2.
12.2. T1�1T2 when T2 is a corolla: For clear-edged bonsai, since it is not an operad, we cannot

use broomstick diagrams for graphical proof. Let us look into T1�1T2 by dividing the cases of �T2

and deg�T2�.
12.2.1. When �T2�0 and deg�T2��m−2: If T1 is not the one-vertex bonsai, then ��T1��T2 is

the sum of terms in ��T1�T2� obtained by attaching edges to T1. So T1�1T2= ��T1��T2

+T1� ��T2�−��T1�T2� is �“−” in this equation is in fact “+”, since we are working mod 2�,

T1 � ��T2�

+	 �a term in ��T1�T2� which is obtained by attaching an edge to a vertex of T1�T2 not in T1

so that �i� and �ii� of Definition 11.1 is satisfied�.
Then the first summand is the sum of �i� bonsais A1 obtained by connecting a nonroot vertex

of �T2 and the root of T1 with an edge, which is depicted as in the first equation of Fig. 65 in
3-bonsai and �ii� bonsais A2 obtained by connecting the root of �T2 and the root of T1 with an
edge, which is depicted as in the second equation in Fig. 65 in 3-bonsai.

The second summand is the sum of A3, A4, and A5, where A3, A4, and A5 are as follows.
A3 is the sum of bonsais obtained by connecting a vertex v of T2 and the root of T1 with one

edge and attaching an edge to v, as in Fig. 66 in 3-bonsai.
A4: Bonsais B obtained as follows: suppose that T2 is constructed by attaching the roots of

corollas X1 and X2 so that X1 is on the left and X2 is on the right. Then B is obtained by attaching
the roots of �̄X1, V, and X2 from the left or X1, V, and �̄X2 from the left, where V is obtained by
attaching the root of T1 to the lower vertex of the one-edge clear-edged bonsai, illustrated in Fig.
67. In Fig. 67, the first term of A4 is constructed by �̄X1, V, and X2, and the second term is
constructed by X1, V, and �̄X2.

A5: Bonsais B obtained as follows: Suppose T2 is constructed by attaching the roots of bonsais
Y1, E, and Y2 from the left, where Y1 and Y2 are corollas and E is the one-edge bonsai. Then B is

FIG. 71.

FIG. 72.
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constructed by attaching the roots of �̄Y1, V, and Y2 from the left or Y1, V, and �̄Y2 from the left,
where V is obtained by connecting the root of T1 to the lower vertex of E with one edge. This is
illustrated in Fig. 68.

If T1 is the one-vertex bonsai, A2 becomes 0, since it is equal to ��T2. And A3=0, since it is
twice a multiple of the bonsais obtained by attaching the root of the two-edge corolla to a tip of T2

�note that we are working mod 2�. Also, A4=��T2=0. So T1�1T2=A1+A5.
12.2.2. When �T2�0 and deg�T2�=m−1: When T1 is not the one-vertex bonsai. This is

almost the same as the previous case, but we cannot add more than one edge to the root of T2. So
T1�1T2 is the sum of the terms A1, A3, and A5.

When T1 is the one-vertex bonsai, A3=0, since it is twice a multiple of the bonsais obtained
by attaching the root of the two-edge corolla to a tip of T2 �note that we are working mod 2�. So
T1�1T2=A1+A5.

12.2.3. When �T2=0 and deg�T2��m−2: When T1 is not the one-vertex bonsai. As in the first
case, T1�1T2= ��T1��T2+T1� ��T2�−��T1�T2� is

T1 � ��T2�

+	 �a term in ��T1�T2� that is obtained by attaching an edge to a vertex of T1�T2 not in T1

so that �i� and �ii� of Definition 11.1 is satisfied�
Here �T2=0. So we just have the latter summand in T1�1T2. As in the first case again, we have

T1�1T2=A3+A4+A5.
When T1 is the one-vertex bonsai: A3=0, since it is a twice multiple of the bonsais obtained

by attaching the root of the two-edge corolla to a tip of T2 �note that we are working mod 2�. Also,
A4=��T2=0. Hence, T1�1T2=A5.

12.2.4. When �T2=0 and deg�T2�=m−1: When T1 is not the one-vertex bonsai. This is almost
the same as the previous case, but we cannot add more than one edge to the root of T2. So T1�1T2

is the sum of the terms A3 and A5.
When T1 is the one-vertex bonsai, A3=0, since it is a twice multiple of the bonsais obtained

by attaching the root of the two-edge corolla to a tip of T2 �note that we are working mod 2�.
Hence, T1�1T2=A5.

12.2.5. When deg�T2�=m: When T1 is not the one-vertex bonsai. This is almost the same as
the previous case, but we cannot add any more edges to the root of T2. So T1�1T2 is A3.

When T1 is the one-vertex bonsai, A3=0, since it is twice a multiple of the bonsais obtained
by attaching the root of the two-edge corolla to a tip of T2 �note that we are working in mod 2�.
Hence, T1�1T2=0.

12.3. T1�2T2 when T2 is a corolla: For each case in the preceding section, let us show that
T1�2T2=0.

12.3.1. When �T2�0 and deg�T2��m−3: In this case, we have deg��T2�m−2� and
���T2�=0. And as in the first case of the preceding section, T1�2T2 is

T1�1��T2�

FIG. 73.
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+	 �a term in ��T1�1T2� obtained by attaching an edge to a vertex of T1�T2 not in T1, so that
�i� and �ii� of Definition 11.1 are satisfied�.

When T1 is not the one-vertex bonsai, by the third case of the preceding section, T1�1��T2� is
A3+A4+A5, and by the first case of the preceding section, the sum of the terms in ��T1�1T2�
obtained by attaching an edge to a vertex not in T1 is �̂�T1�1T2�= �̂A1+ �̂A2+ �̂A3+ �̂A4+ �̂A5, where
�̂X, when X is a sum of terms in T1�1T2, is the sum of the bonsais in �X obtained by attaching an
edge to a vertex which is not originally in T1.

In order to show that T1�2T2=T1�1�T2+ �̂�T1�1T2�=0 pictorially, let us introduce a picture
convention. In Fig. 69, where T2 is a corolla with 4 edges, each triangle represents a corolla
�including the one-vertex bonsai�.

With this pictorial convention, we can draw T1�1�T2=A3+A4+A5 as in Fig. 70, like A+B
+C+D+E+F.

In �̂�T1�1T2� , �̂A1 can be drawn as in Fig. 71.
�̂A2 is as in Fig. 72.
�̂A3 is as in Fig. 73, where W1 and W2 are as in Fig. 74.
�̂A4 can be drawn as in Fig. 75.
And �̂A5 can be drawn as in Fig. 76.
Then we can get the pairs which are canceled as follows; A and 1c, B and 1d, C and 2a, D and

2b, E and 1a, F and 1b, 3a and 3b, 3c and 5e, 3d and 5f, 3e and 5g, 3f and 5h, 4b and 4c, 5b and
5c. 4a, 4d, 5a, and 5d are 0, because they have �̄2 in it. �Since 4b and 4c cancel each other, �̂A4

=0.�
And every bonsai in Figs. 70–76 is in one of those pairs. So T1�2T2=0.
When T1 is the one-vertex bonsai: Since T1�1T2=A3+A5, it is the sum of A, B, E, and F. And

since T1�1T2=A1+A5, we have �̂�T1�1T2�= �̂A1+ �̂A5, and it is the sum of the bonsais in Fig. 71
and Fig. 76. So as above, we have T1�1T2=0.

12.3.2. When �T2�0 and deg�T2�=m−2: When T1 is not the one-vertex bonsai. We have
���T2�=0 and deg��T2�=m−1. So we have T1�1�T2=A3+A5 and �̂�T1�1T2�= �̂�A1+A2+A3+A4

+A5�. So the T1�2T2 is the sum of the bonsais A, B, E, and F of Fig. 70 and the bonsais in Figs.
71–73 and Figs. 75 and 76 �2a and 2b are 0, since the valences at the roots are m+1�. So as in the
above case, T1�2T2=0.

When T1 is not the one-vertex bonsai, T1�1�T2=A5 and �̂�T1�1T2�= �̂�A1+A5�. So T1�2T2 is
the sum of the bonsais E and F of Fig. 70 and the bonsais in Figs. 71 and 76.

12.3.3. When �T2�0 and deg�T2�=m−1: In this case and others, we will just write down
what T1�1�T2 and �̂�T1�1T2� are. In each case, as above, the bonsais in T1�2T2 all cancel out.

In this case, ���T2�=0 and deg��T2�=m.
When T1 is not the one-vertex bonsai: T1�1�T2=A3+A5 and �̂�T1�1T2�= �̂�A1+A3+A5�.
When T1 is the one-vertex bonsai, T1�1�T2=A5 and �̂�T1�1T2�= �̂�A1+A5�.
12.3.4. When �T2=0 and deg�T2��m−2: In this case, �T2=0 and deg�T2��m−2.

FIG. 74.

FIG. 75.
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When T1 is not the one-vertex bonsai, T1�1�T2=0 and �̂�T1�1T2�= �̂�A3+A4+A5�.
When T1 is the one-vertex bonsai, T1�1�T2=0 and �̂�T1�1T2�= �̂�A5�.
12.3.5. When �T2=0 and deg�T2�=m−1: In this case, �T2=0 and deg�T2�=m−1.
When T1 is not the one-vertex bonsai, T1�1�T2=A3+A5 and �̂�T1�1T2�= �̂�A3+A5�.
When T1 is the one-vertex bonsai, T1�1�T2=0 and �̂�T1�1T2�= �̂�A5�.
12.3.6. When deg�T2�=m: In this case, �T2=0 and deg�T2�=m.
When T1 is not the one-vertex bonsai, T1�1�T2=0 and �̂�T1�1T2�= �̂�A3+A5�.
When T1 is the one-vertex bonsai, T1�1�T2=0 and �̂�T1�1T2�=0.
12.4. T1�2T2 for general T2: Now let us consider the case where T2 is a general m-bonsai, not

only a corolla. First, let us give an expression of a general m-bonsai as a concatenation of corollas.
When we have a general clear-edged m-bonsai T as in Fig. 77, we first enumerate the nontip
vertices of T in traversing order �cf. Sec. VII�, as in Fig. 78, and for each nontip vertex numbered
i, denote the corollas attached to that vertex as Ti1 ,Ti2 ,… ,Timi

from the left, and denote the given
bonsai as T�T11,… ,T1m1

;… ;Tk1 ,… ,Tkmk
�, where k is the number of nontip vertices of T.

In Fig. 78, the given bonsai T is

T�T11,T12,T13,T14;T21;T31;T41,T42,T43;T51;T61� . �72�

Now let T=T�T11,… ,T1m1
;… ;Tk1 ,… ,Tkmk

� and just for convenience of algebra, let us denote T
as T�T1 ,T2 ,… ,Tm�, where T1=T11,T2=T12,… ,Tk=Tkmk

. Then we have �T
=	iT�T1 ,… , �̄Ti ,… ,Tm� and S�T=	iT�T1 ,… ,S�Ti ,… ,Tm�. So we have, by the definitions of
�̂ , �̄, and �,

S�1T = S � �T + �̂�S � T� = 	
i

T�T1,…,S � �̄Ti,…,Tm� + 	
i�j

T�T1,…, �̄Ti,…,S � Tj,…,Tm�

+ 	
i

T�T1,…, �̂�S � Ti�,…,T − m� + 	
i�j

T�T1,…, �̄Ti,…,S � Tj,…,Tm�

= 	
i

T�T1,…,S � �̄Ti,…,Tm� + 	
i

T�T1,…, �̂�S � Ti�,…,T − m� = 	
i

T�T1,…,S�1Ti,…,Tm� .

�73�

FIG. 76.

FIG. 77.
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Similarly, we have

S�2T = S�1 � T + �̂�S�1T� = 	
i

T�T1,…,S�1�̄Ti,…,Tm� + 	
i�j

T�T1,…, �̄Ti,…,S�1Tj,…,Tm�

+ 	
i

T�T1,…, �̂�S�1Ti�,…,T − m� + 	
i�j

T�T1,…, �̄Ti,…,S�1Tj,…,Tm� �74�

=	
i

T�T1,…,S�1�̄Ti,…,Tm� + 	
i

T�T1,…, �̂�S�1Ti�,…,T − m� = 	
i

T�T1,…,S�2Ti,…,Tm� = 0.

�75�

So we have
Theorem 12.1:: Mod2, for any clear-edged m-bonsai T1 and T2, we have T1�2T2=0.

XIII. FURTHER DIRECTION

In the next paper of the author, we will investigate a generalization of the m-bonsai Hopf
algebra, its differentials and cohomology groups. Also we will investigate some possibility of
generalization of the appending operation �.

Also see Bergbauer and Kreimer �unpublished�, Harrivel �unpublished�, and Pachter and
Sturmfels �unpublished�.
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We extend Zirnbauer’s color-flavor transformation in the bosonic sector to the color
group SU�Nc�. Because the flavor group U�Nb ,Nb� is noncompact, the algebraic
method by which the original color-flavor transformation was derived leads to a
useful result only for 2Nb�Nc. Using the character expansion method, we obtain a
different form of the transformation in the extended range Nb�Nc. This result can
also be used for the color group U�Nc�. The integrals to which the transformation
can be applied are of relevance for the recently proposed boson-induced lattice
gauge theory. © 2005 American Institute of Physics. �DOI: 10.1063/1.1951627�

I. INTRODUCTION

In 1996, Zirnbauer1 invented a generalized Hubbard-Stratonovitch transformation which
trades an integration over a “color” gauge group for an integration over a certain supersymmetric
coset space, or “flavor” space. Although the transformation was originally derived to study disor-
dered systems in condensed matter physics, the terminology comes from lattice gauge theory
because the integral over the gauge group to which the color-flavor transformation is applied is
precisely of the form of a one-link integral in lattice gauge theory at infinite coupling.

The fields that appear in the transformation carry two types of indices that will be referred to
as color and flavor indices. The number of colors is denoted by Nc, and the numbers of bosonic
and fermionic flavors are denoted by Nb and Nf, respectively. Zirnbauer derived versions of the
color-flavor transformation for the three color groups U�Nc�, O�Nc�, and Sp�2Nc�.

1 In his original
work, the flavor space contained an equal number of bosonic and fermionic degrees of freedom,
but it is possible to relax this constraint.2 Convergence requirements then place an upper bound on
the difference between the number of bosons and fermions. For the case of U�Nc�, this bound is
given by 2�Nb−Nf��Nc.

The color-flavor transformation has been used in a number of physical applications, e.g., in
the derivation of a field theory for the random flux model by Altland and Simons3 and in the
construction of chiral Lagrangians for lattice gauge theories by Nagao and Nishigaki.4 In the latter
paper, the calculations were done for the above-mentioned color groups. However, in quantum
chromodynamics �QCD� the color group is SU�3�. To be able to apply the color-flavor transfor-
mation to this very important physical case, a variant of the transformation for the special unitary
group needed to be derived. Following earlier work by Budczies and Shnir,5,6 this was done in
Refs. 7 and 8 in the fermionic sector, i.e., for Nb=0. The result was then applied to lattice QCD in
Refs. 8 and 9.

As mentioned above, the color-flavor transformation can only be applied to the one-link
integral of lattice gauge theory if the gauge coupling is infinite. Fortunately, it is possible to go
beyond the infinite-coupling limit. A gauge action �Yang-Mills action in the continuum or Wilson
action on the lattice� can be induced by coupling auxiliary fields to the gauge field �still at infinite
coupling� and integrating out these extra fields. This idea, which is known as “induced QCD,” has
been considered in various forms in the literature.10–15 For example, the job can be done by a
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number Nh of heavy auxiliary fermions with common mass mh in the combined limit Nh→�,
mh→� such that the ratio Nh /mh

4 is constant, and this constant can then be related to the strength
of the induced gauge coupling.

So far, the color-flavor transformation for SU�Nc� has only been derived in the fermionic
sector, for three reasons, �a� physical quarks are fermions, �b� a gauge action can be induced by
auxiliary fermions alone, and �c� the calculation is somewhat easier for fermions than for bosons.
There seemed to be no special need for a bosonic variant of the transformation until Budczies and
Zirnbauer suggested a new method to induce the gauge action using auxiliary bosons.16 Their
approach has the advantage of requiring only a small number �essentially equal to Nc� of auxiliary
fields. However, to be able to use their method in lattice QCD, one requires an SU�Nc� variant of
the color-flavor transformation that accommodates both fermions �the physical quarks� and bosons
�to induce the gauge action�.

As a first step towards this goal, we found it useful to consider the purely bosonic case with
Nf =0 for which we will present results in this paper. Our results can be applied to study a
boson-induced gauge theory without physical quarks. Focusing on the bosonic sector allows us to
separate the complications due to the fact that the fields are bosonic from those due to the
supersymmetric framework. This is the main motivation for the present paper. The supersymmet-
ric case will be addressed in a separate paper.

The convergence requirement mentioned above is irrelevant for the purely fermionic case in
which Nb=0 since the inequality is always satisfied. However, it becomes relevant for the purely
bosonic case. We obtain a “standard” form of the color-flavor transformation if the condition
2Nb�Nc is satisfied. In the extended range Nb�Nc we derive a different form of the transforma-
tion. Interestingly, for Nb�Nc our results for SU�Nc� are identical to those for gauge group U�Nc�,
and we therefore obtain new results for U�Nc� in the range Nb�Nc�2Nb. �The physical reason
behind this is the observation that one cannot make baryons out of bosonic quarks if Nb�Nc. Such
“bosonic baryons” must contain at least as many flavors as colors, see, e.g., Eq. �22� below.� For
Nb�Nc we have not been able to simplify our formal result to be useful in applications.

This paper is organized as follows. We first state our results in Sec. II. In Sec. III, we use the
algebraic method of Refs. 1 and 7 to derive our general result for the bosonic color-flavor trans-
formation. In Sec. IV, we use a different approach, the character expansion method, to derive an
alternative form of the bosonic color-flavor transformation. We close with a brief discussion of
possible applications and open problems. The appendix contains derivations of several intermedi-
ate results as well as a number of examples for the results from both approaches.

II. STATEMENT OF RESULTS

Let � a
i , �̄ a

i , �a
i , and �̄a

i be complex bosonic variables that carry a color index �superscript i
running from 1 to Nc� and a flavor index �subscript a running from 1 to Nb�. The bar denotes
complex conjugation. Summation over repeated indices is implied here and throughout the paper
unless indicated otherwise. Using the algebraic method of Refs. 1 and 7, we obtain

�
SU�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = �
�ZZ†��1

dZ dZ†

det2Nb−Nc�1 − ZZ†�

�exp��̄ a
i Zab�b

i + �̄a
i Zab

† � b
i ��

Q=0

�

�Q, �1�

where

�0 = C0, �Q�0 = CQ�detQ M + detQ N� , �2�

the Nc�Nc matrices M and N are defined by Mij = �̄ a
i �1−ZZ†�ab� b

j and N ij = �̄a
i �1−Z†Z�ab� b

j ,
and the coefficients CQ are computed in Appendix B.
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The integration on the left-hand side �LHS� of Eq. �1� is over SU�Nc� matrices U distributed
according to the Haar measure dU, normalized such that the group volume is unity. The integra-
tion on the right-hand side �RHS� of that equation is over complex Nb�Nb matrices Z, with the
restriction that all eigenvalues of ZZ† are less than or equal to 1. These matrices parametrize the
noncompact coset space U�Nb ,Nb� / �U�Nb��U�Nb�� �the reason to choose this particular param-
etrization is given at the end of Sec. III E�. The corresponding invariant integration measure is
given by17

d	�Z,Z†� =
dZ dZ†

det�1 − ZZ†�2Nb
with dZ dZ† = �

a,b=1

Nb

d Re Zabd Im Zab. �3�

Note that the Nc�Nc matrices M and N can be thought of as products of three matrices of
dimension Nc�Nb, Nb�Nb, and Nb�Nc, respectively. The resulting matrix is of full rank only if
Nb
Nc. For Nb�Nc, we therefore have det M=det N=0,18 and the transformation simplifies to

�
SU�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = C0�
�ZZ†��1

dZ dZ†

det2Nb−Nc�1 − ZZ†�
exp��̄ a

i Zab�b
i + �̄a

i Zab
† � b

i �

�4�

with a constant C0 given in Eq. �B5�. This agrees with the result for the color group U�Nc� in Ref.
2.

Equation �1� looks similar to the result for the fermionic sector presented in Ref. 7. There are
two major differences, however. First, due to the nilpotency of Grassmann variables the sum over
Q in Eq. �1� only went up to Nf in the fermionic case, whereas it extends to infinity now. Second,
the invariant measure of the coset space U�Nb ,Nb� / �U�Nb��U�Nb�� in Eq. �3� diverges at the
boundary, giving rise to convergence issues which we discuss now.

For 2Nb�Nc, the divergence of the measure is canceled by the factor of detNc�1−ZZ†� in the
integrand of Eq. �1�. In this case the result �4� applies and is free from divergences. For Nb

�Nc�2Nb, the integral over Z in Eq. �4� diverges. For Nb=Nc, the integral over Z in Eq. �1�
diverges for Q�Nb, whereas for Nb�Nc, it diverges for all Q. Of course, the final result for the
RHS of Eqs. �1� and �4� must be finite, so whatever divergence arises from the integration over Z
will be canceled by a similar divergence in the integral for the corresponding �inverse� constant
CQ

−1, see Eq. �56�. A finite ratio could in principle be obtained by a suitable regularization and
limiting procedure, but it is not clear to us whether this would lead to a simple final result �an
explicit example for such a limiting procedure is given in Appendix D 3�.

Instead, we have used the character expansion method19–21 to derive a different form of the
color-flavor transformation and obtain for Nb�Nc

�
SU�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = �
n=0

Nc−Nb−1
�Nb + n�!

n!
�

U�Nb�
dV detNb−Nc�VB�

�exp��̄ a
i Vab�b

i + �̄a
i Vab

† � b
i � , �5�

where the Nb�Nb matrix B is defined by Bab=�a
i �̄ b

i . Note that the integration on the RHS is over
the unitary group with the normalized Haar measure dV. Equation �5� is also valid if the integra-
tion on the LHS is over the color group U�Nc� and, to the best of our knowledge, represents a new
result for this case.

The corresponding result for Nb=Nc reads
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�
SU�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = �
Q=0

�

�̃Q�
U�Nb�

dV det−Q�VB�exp��̄ a
i Vab�b

i + �̄a
i Vab

† � b
i �

�6�

with

�̃0 = 1, �̃Q�0 = detQ M + detQ N , �7�

the matrix B as defined above, and Nc�Nc matrices M and N defined by Mij =�a
i �̄ a

j and Nij

=�a
i �̄ a

j . Note that we are not allowed to change the order of summation and integration in Eq. �6�,
see Sec. IV C. If the integration on the LHS of Eq. �6� is over U�Nc�, only the Q=0 term
contributes on the RHS, see Eq. �77�. The integral over U�Nb� in Eqs. �5� and �6� can be done
analytically,22–24 resulting in a determinant involving modified Bessel functions, but we do not
display this result here because Eqs. �5� and �6� are to be viewed as transformations.

As mentioned in the introduction, for Nb�Nc we have not been able to obtain a simple form
of the color-flavor transformation in which the divergences have been eliminated.

III. BOSONIC COLOR-FLAVOR TRANSFORMATION: ALGEBRAIC METHOD

The basic idea of the algebraic approach to the color-flavor transformation is to construct two
projection operators onto the subspace of Fock space �to be defined below� which is invariant
under the action of the color group SU�Nc�. One such projector is implemented by integrating over
the color group. The other one is obtained by integrating over a certain coset of the flavor group
U�Nb ,Nb�. Identification of the two projection operations then leads to Eq. �1�. In this section, we
shall use this algebraic approach to derive the bosonic color-flavor transformation. We closely
follow Refs. 1, 7, and 8 whenever possible.

A. Fock space, Lie algebras, and Lie groups

We introduce two sets of bosonic creation and annihilation operators 	c̄ a
i ,ca

i 
 and 	d̄a
i ,da

i 
,
where i=1, . . . ,Nc and a=1, . . . ,Nb. As mentioned above, we shall refer to the upper index as
“color” and to the lower index as “flavor.” The Fock vacuum �0� is defined by the requirement that
ca

i �0�=da
i �0�=0 for all combinations of i and a, and the Fock space is generated by acting on �0�

with the c̄ a
i and d̄a

i . In the following, the two sets of particles created by the c̄ a
i and d̄a

i will be
referred to as particles and antiparticles, respectively.

For simplicity of notation, we also introduce the unified operators 	c̄ A
i ,cA

i 
 defined by

cA
i =�cA

i for 1 � A � Nb,

d̄A−Nb

i for Nb � A � 2Nb,
c̄ A

i = �c̄ A
i for 1 � A � Nb,

− dA−Nb

i for Nb � A � 2Nb. �8�

They satisfy the usual commutation relations for bosonic operators,

�cA
i , c̄ B

j � = � ij�AB. �9�

Next we define operators EAB
ij = c̄ A

i c B
j . Simple algebra reveals that they satisfy the commutation

relations

�EAB
ij ,ECD

k� � = �BC� kjEAD
i� − �AD� i�ECB

kj , �10�

and hence they are generators of the Lie algebra gl�2NcNb�.
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The Lie algebra gl�2NcNb� has two commuting subalgebras that are important for our proof,
namely gl�2Nb�, which is generated by the color-singlet operators

�GAB � �
i=1

Nc

EAB
ii  , �11�

and sl�Nc�, which is generated by the flavor-singlet operators

�Eij � �
A=1

2Nb

EAA
ij ;i � j ,

�Hi � �
A=1

2Nb

EAA
ii −

1

Nc
�
j=1

Nc

�
A=1

2Nb

EAA
jj ;i = 1, . . . ,Nc . �12�

Note that only Nc−1 of the generators Hi are linearly independent.
The action of the group GL�2NcNb� and its subgroups on the Fock space is defined by

exponential mapping, i.e., for all g�GL�2NcNb� we define a map g�Tg from group elements to
operators by1,8

Tg = exp�c̄ A
i �ln g�AB

ij c B
j � . �13�

Following Zirnbauer,1 one can show that the map g�Tg is well-defined and a homomorphism of
GL�2NcNb�,

TgTh = Tgh. �14�

Therefore it furnishes a �reducible� representation of GL�2NcNb�.
In the following, we will consider the action of the subgroups SU�Nc� �the color group� and

U�Nb ,Nb� �the flavor group� of GL�2NcNb� on the Fock space. The corresponding subalgebras
sl�Nc� and gl�2Nb� have been given above. What are the reasons to single out these two sub-
groups? For the color group the reason is simple. The integration on the LHS of Eq. �1� is over
SU�Nc�. For the flavor group, the choice of the noncompact subgroup U�Nb ,Nb� is not immedi-
ately obvious at this point but will become clear as we proceed. We shall see below that the
color-neutral sector of Fock space is noncompact in the bosonic case, as opposed to the fermionic
case in which it was compact. Attempts to work with the compact subgroup U�2Nb� do not lead to
useful results. Also, when Eq. �1� is used in applications, one wants the resulting integrals over the
bosonic variables to converge, and this requirement necessitates a noncompact integration domain
on the RHS of that equation.1,25–27

Under the action of the subgroups SU�Nc� and U�Nb ,Nb�, the operators cA
i and c̄ A

i transform as
follows:

g � SU�Nc�: TgcA
i T g

−1 = �g−1�ijc A
j , Tgc̄ A

i T g
−1 = c̄ A

j gji, �15�

g � U�Nb,Nb�: TgcA
i T g

−1 = gAB
−1 cB

i , Tgc̄ A
i T g

−1 = c̄ B
i gBA, �16�

which can be shown using the Baker-Campbell-Hausdorff formula.

B. Bose coherent states and projection onto the color-neutral sector

We call a vector �N� in the Fock space color neutral if it is invariant under SU�Nc� transfor-
mations, i.e., TU�N�= �N� for all U�SU�Nc�. The subspace of Fock space spanned by these
invariant vectors is called the color-neutral subspace or sector.

The following argument closely parallels Ref. 8. With the complex bosonic variables � a
i , �̄ a

i ,
�a

i , and �̄a
i introduced in Sec. II Bose coherent states are defined as
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��� = exp�c̄ a
i � a

i + d̄a
i �̄a

i ��0�, ��� = �0�exp��̄ a
i ca

i + �a
i da

i � . �17�

They span the entire Fock space �or its dual�. Using Eq. �15� we find

���TU��� = exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � . �18�

The LHS of Eq. �1� can therefore be written as

Z = �
SU�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = ���P��� , �19�

where we have introduced the operator P defined by

P =�
SU�Nc�

dU TU. �20�

This operator annihilates all states that are not color neutral, while leaving color-neutral states
invariant �recall that the volume of SU�Nc� is unity�. Therefore, it is a projector onto the color-
neutral sector. As advertised above, it is one possible representation of such a projector, and we
will now derive an alternative form.

C. Action of the flavor group in the color-neutral sector

By definition, color-neutral vectors �N� are annihilated by all generators of sl�Nc�, i.e.,
Eij�N�=0 and Hi�N�=0. Using Eq. �12� and the commutation relations �9�, this requirement leads
to

��
a=1

Nb

c̄ a
i c a

j − �
a=1

Nb

d̄a
j da

i��N� = � ijQ�N� , �21�

where Q is an integer. Clearly, the color-neutral sector contains the vacuum. For i= j, the operator
on the LHS of Eq. �21� counts the difference in the number of particles and antiparticles for each
color, the difference being equal to Q.

The color-neutral sector can be generated by acting on the vacuum state with three types of
operators,

type-1a, c̄ a
i d̄b

i ,

type-2a, i1¯iNc
c̄ a1

i1 c̄ a2

i2
¯ c̄ aNc

iNc ,

type-2b, i1¯iNc
d̄b1

i1 d̄b2

i2
¯ d̄bNc

iNc , �22�

where  denotes the totally antisymmetric Levi-Civita symbol which ensures that the resulting
state is invariant under SU�Nc� transformations. In addition, the following types of operators make
transformations in the color-neutral sector:

type-1b, ca
i db

i ,

type-1c, c̄ a
i cb

i ,
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type-1d, da
i d̄b

i . �23�

When acting on a color-neutral state, type-1 operators do not change the Q value of that state,
whereas type-2a �type-2b� operators increase �decrease� the Q value by one. Note, however, that
for Nb�Nc the type-2 operators do not exist, which makes it impossible to generate a vector in a
nonzero Q sector. The range of Q is therefore given by

Q = �− �, . . . ,� for Nb 
 Nc,

0 for Nb � Nc.
 �24�

�In the case of Nb�Nc, we are back to the bosonic color-flavor transformation for the group
U�Nc�.

2 The Lie algebra of U�Nc� has an extra U�1� generator, and by requiring invariance under
U�Nc�, this U�1� generator eliminates all nonzero Q sectors.�

The action of the flavor group on the Fock space is defined by Eq. �13� with g�U�Nb ,Nb�.
We now choose the color-neutral sector to be the carrier space of this representation. The type-1
operators are the generators of the flavor group and do not change the Q value of a given state.
Therefore, under the action of the flavor group, the color-neutral sector decomposes into invariant
subspaces labeled by Q, which we shall call “Q sectors.” As mentioned above, a Q sector contains
Q more particles than antiparticles for each color.

We now prove that the flavor group acts irreducibly in a given Q sector.1 For this we need to
show that from any given state in the Q sector we can reach any other state by the action of the
flavor group. Equivalently, we can single out a particular state ��Q�, defined by

��Q�0� = �i1¯iNc
c̄ 1

i1c̄ 2
i2
¯ c̄ Nc

iNc�Q�0� ,

��Q=0� = �0� ,

��Q�0� = �i1¯iNc
d̄1

i1d̄2
i2
¯ d̄Nc

iNc�Q�0� , �25�

and show that �i� starting from this state, we can reach any other state, and �ii� from that state we
can return to ��Q�, using type-1 operators only.

An arbitrary vector in a given Q sector, which we should be able to reach from ��Q�, is
obtained by acting on the vacuum with the appropriate number of type-1a operators and Q more
type-2a than type-2b operators. There are already Q �−Q� unpaired type-2a �type-2b� operators
associated with ��Q�, so what remains are pairs consisting of a type-2a and a type-2b operator.
Such a pair can be expanded in terms of type-1a operators as

i1¯iNc
c̄ a1

i1 c̄ a2

i2
¯ c̄ aNc

iNc  j1¯jNc
d̄b1

j1 d̄b2

j2
¯ d̄ bNc

jNc = �
��SNc

sgn���c̄ a1

i1 d̄��b1�
i1

¯ c̄ aNc

iNc d̄
��bNc

�
iNc �26�

and is therefore in the algebra of the flavor group. The type-1c and type-1d operators obey the
commutation relations

�c̄ a
i cb1

i ,i1¯iNc
c̄ b1

i1 c̄ b2

i2
¯ c̄ bNc

iNc � = i1¯iNc
c̄ a

i1c̄ b2

i2
¯ c̄ bNc

iNc ,

�db1

i d̄a
i ,i1¯iNc

d̄b1

i1 d̄b2

i2
¯ d̄ bNc

iNc � = i1¯iNc
d̄a

i1d̄b2

i2
¯ d̄ bNc

iNc . �27�

Thus, they enable us to change the flavor indices of the type-2 operators. We can thus reach any
state in a given Q-sector by acting with the corresponding number and subtypes of type-1 opera-
tors on ��Q�. Furthermore, type-1a operators can be undone by type-1b operators, while type-1c
and type-1d operators can undo themselves. We can therefore go from an arbitrary state in the Q
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sector back to ��Q�. In other words, ��Q� is a cyclic vector in the Q sector under the action of the
flavor group, which implies irreducibility.

D. Generalized coherent states and projection onto the color-neutral sector

Generalized coherent states are described in detail in Ref. 28. They are useful for our purposes
because they allow a resolution of the identity operator. For a Lie group G and an irreducible
representation Tg, a set of generalized coherent states is obtained by acting on a state ��T� in the
carrier space of Tg with all elements of Tg. This results in the set 	Tg��T�
 which, in general, is
overcomplete. If H is the maximal subgroup of G such that Th��T�� ��T� for all h�H, the
subgroup H is called the isotropy subgroup of ��T�, and the set of generalized coherent states can
be parametrized without overcounting by the elements of the coset space G /H. �If the subgroup H
is not maximal, some overcounting remains.�

We now set G=U�Nb ,Nb� and consider the representation Tg of Eq. �13� �with g�G� which
acts irreducibly in a given Q sector. For the starting vector we choose the vector ��Q� defined in
Eq. �25�, resulting in the �overcomplete� set of generalized coherent states 	Tg��Q�
. The identity
operator in this Q sector is then given by28

1Q = CQ�
G

dg Tg��Q���Q�T g
−1, �28�

where dg is the invariant measure of U�Nb ,Nb� and CQ is a normalization factor defined by

C Q
−1 =

1

NQ
�

G

dg��Q�Tg��Q���Q�T g
−1��Q� . �29�

Here, NQ is the norm of ��Q�,

NQ = ��Q��Q� = �
n=0

Nc−1 ��Q� + n�!
n!

. �30�

A detailed calculation of NQ is given in Appendix A.
Note that the integrals in Eqs. �28� and �29� are divergent for 2Nb�Nc as discussed in Sec. II.

A regularization procedure is necessary to show that their ratio is finite, see, e.g., Appendix D 3.
We return to this issue at the end of Sec. III F.

The operator in Eq. �28� annihilates all states that are not color neutral, as well as color-neutral
states corresponding to a different value of Q. Thus, it is a projector onto the Q sector. We can
therefore write the projector onto the color-neutral sector as

P = �
Q

1Q, �31�

where the sum runs over the values of Q given in Eq. �24�. Identifying this projection operator
with the one in Eq. �20� yields

Z = �
Q

ZQ

with

ZQ = ���1Q��� = �0�exp��̄ a
i ca

i + �a
i da

i �1Q exp�c̄ a
i � a

i + d̄a
i �̄a

i ��0� . �32�

E. Parametrization of the coherent states

The maximal compact subgroup of the flavor group G=U�Nb ,Nb� is H=H+�H−=U�Nb�
�U�Nb� with elements h=diag�h+ ,h−�, where h±�U�Nb�. The corresponding Fock operators are
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Th = exp�c̄ a
i �ln h+�abcb

i − da
i �ln h−�abd̄b

i � . �33�

For Q=0, these operators stabilize the vacuum,

Th�0� = exp�− Nc tr ln h−��0� = �det−Nc h−��0� , �34�

and therefore the set of coherent states for Q=0 can be parametrized without overcounting by the
elements of the noncompact coset space S=G /H=U�Nb ,Nb� / �U�Nb��U�Nb��. �We will use the
same coset space also for Q�0, see Sec. III G.�

To arrive at this parametrization, we first use the canonical projection � :G�G /H which
assigns to each g�G the corresponding equivalence class gH. We then choose a representative
group element s���g�� from each equivalence class and write an arbitrary group element g as the
product g=s���g��h�g�. The coset element s���g�� can be parametrized using projective coordi-
nates Z, see Eqs. �5.8n� and �5.28� in Chap. 9 of Ref. 29,

s���g�� � s�Z,Z†� = � �1 − ZZ†�−1/2 Z�1 − Z†Z�−1/2

Z†�1 − ZZ†�−1/2 �1 − Z†Z�−1/2 � = �1 Z

0 1
���1 − ZZ†�1/2 0

0 �1 − Z†Z�−1/2 �
�� 1 0

Z† 1
� . �35�

Here, Z is an Nb�Nb complex matrix with the constraint �ZZ†��1. We have s=s† and s−1

=s�−Z ,−Z†�. Also, s�Z ,Z†� satisfies the pseudounitarity condition s diag�1Nb
,−1Nb

�s†=diag�1Nb
,

−1Nb
�. Using the decomposition �35�, the Fock space operator corresponding to s�Z ,Z†� becomes

Ts�Z,Z†� = exp�c̄ a
i Zabd̄b

i �exp� 1
2 c̄ a

i ln�1 − ZZ†�abcb
i + 1

2da
i ln�1 − Z†Z�abd̄b

i �exp�− da
i Zab

† cb
i � . �36�

The coset space G /H has a G-invariant measure17 that has already been given in Eq. �3�. We can
therefore use Eq. �14� to rewrite the integral �28� over G as an integral over H and S=G /H,

1Q = CQ�
G

dg Tg��Q���Q�T g
−1 = CQ�

G/H
d	�Z,Z†��

H

dh TsTh��Q���Q�T h
−1T s

−1. �37�

The Haar measure dh of H is normalized to unity.
We pause briefly to explain the reason behind the choice of the coset-space parametrization

�35�.1 In the language of lattice gauge theory, the left-hand side of Eq. �1� is a one-link integral

with fields �̄, � at one end of the link and fields �̄, � at the other end �the notation is a bit
misleading but in line with Refs. 1 and 7�. Note that the gauge fields U and U† couple bosonic
fields that live on opposite ends of the link. On the right-hand side of Eq. �1�, the matrices Z and
Z† couple bosonic fields that live on the same end of the link. This is a highly desirable feature
since, when Eq. �1� is applied to a lattice with many links, the ensuing integral over the bosonic
fields has a simpler structure. Other parametrizations of the coset space do not lead to this feature.

F. Calculation of Z0

For Q=0, Eq. �34� tells us that the integration over H in Eq. �37� is trivial, and we are left with

Z0 = C0�
G/H

d	�Z,Z†��0�exp��̄ a
i ca

i + �a
i da

i �Ts�0��0�T s
−1 exp�c̄ a

i � a
i + d̄a

i �̄a
i ��0� . �38�

Defining the notation �Z�=exp�c̄ a
i Zabd̄b

i ��0� and �Z�= �0�exp�da
i Zab

† cb
i �, we find

Ts�0� = detNc/2�1 − ZZ†��Z� �39�

and
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�0�exp��̄ a
i ca

i + �a
i da

i �Ts�0��0�T s
−1 exp�c̄ a

i � a
i + d̄a

i �̄a
i ��0� = detNc�1 − ZZ†��0�exp��̄ a

i ca
i + �a

i da
i ��Z�

��Z�exp�c̄ a
i � a

i + d̄a
i �̄a

i ��0� = detNc�1 − ZZ†�exp��̄ a
i Zab�b

i + �̄a
i Zab

† � b
i � . �40�

Thus

Z0 = C0�
�ZZ†��1

D�Z,Z†�exp��̄ a
i Zab�b

i + �̄a
i Zab

† � b
i � �41�

with

D�Z,Z†� =
dZ dZ†

det2Nb−Nc�1 − ZZ†�
. �42�

Not surprisingly, this is the same result as in Ref. 2 for the color group U�Nc�. From Eq. �29� we
have

C 0
−1 =

1

N0
�

G

dg�0�Tg�0��0�T g
−1�0� = �

�Z†Z��1
D�Z,Z†� . �43�

An explicit calculation of C0 is given in Appendix B.
Note that for 2Nb�Nc, D�Z ,Z†� becomes divergent at the boundary of the integration domain.

This divergence is due to the noncompactness of the symmetric space U�Nb ,Nb� / �U�Nb�
�U�Nb�� and is a feature of the bosonic color-flavor transformation. In Ref. 1, this divergence is
canceled by the measure of the fermionic degrees of freedom, and the noncompact supersymmet-
ric coset space has a flat measure if there is an equal number of bosons and fermions. In the
fermionic case,7 the integral on the RHS is over the compact symmetric space U�2Nf� / �U�Nf�
�U�Nf��, and there is no divergence problem.

Note also that for 2Nb�Nc, there are divergences in both numerator and denominator of the
above formula. Apart from D�Z ,Z†�, the integrands are analytic on the entire coset space, therefore
the divergences in numerator and denominator are of the same degree and the ratio must be finite.
We will show this for a simple example in Appendix D 3. However, in the general case it is not
obvious how to cancel the divergences, and even if it were possible, the resulting expressions
might not be simple enough to be useful in applications. That is why in Sec. IV we will use
another method to extend the range of Nb in which all terms in the transformation are finite.

G. Calculation of ZQ for QÅ0

Let us start with the case of Q�0; the case of Q�0 follows analogously. Similar to Ref. 7,
the idea is to relate the state ��Q� to �0� by the action of the creation operators. Starting from the
integrand of Eq. �32�, we perform the following manipulations:

�0�exp��̄ a
i ca

i + �a
i da

i �Tg��Q���Q�T g
−1 exp�c̄ a

i � a
i + d̄a

i �̄a
i ��0� = �0�exp��̄ a

i ca
i + �a

i da
i �

��i1¯iNc
Tgc̄ 1

i1T g
−1Tgc̄ 2

i2T g
−1
¯ Tgc̄ Nc

iNcT g
−1�QTg�0�

� �0�T g
−1�i1¯iNc

Tgc1
i1T g

−1Tgc2
i2T g

−1
¯ TgcNc

iNcT g
−1�Qexp�c̄ a

i � a
i + d̄a

i �̄a
i ��0�

= detNc�1 − ZZ†�exp��̄ a
i Zab�b

i + �̄a
i Zab

† � b
i �

� ��i1¯iNc
�̄
ˆ

a1
1

i1
¯ �̄

ˆ
aNc

1

iNc � ¯ � j1¯jNc
�̄
ˆ

a1
Q

j1
¯ �̄

ˆ
aNc

Q

jNc ����1¯Nc�¯�1¯Nc�
�a1

1
¯aNc

1 �¯�a1
Q
¯aNc

Q �

� ��i1�¯iNc
� �̂

b1
1

i1�
¯ �̂

bNc

1

iNc
�

� ¯ � j1�¯jNc
� �̂

b1
Q

j1�
¯ �̂

bNc

Q

jNc
�

���̄�1¯Nc�¯�1¯Nc�
�b1

1
¯bNc

1 �¯�b1
Q
¯bNc

Q �
. �44�
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In the first step, we have used Eq. �25� and inserted T g
−1Tg between each pair of creation and

annihilation operators. In the second step, which involves a tedious but straightforward calcula-
tion, we have used the transformation properties of the Fock space operators given in Eq. �16�, the
Baker-Campbell-Hausdorff formula, and the coset decomposition of the group elements, g
=s�Z ,Z†�h�g�. We have also defined

�̄
ˆ

a
i = �̄ b

i �1 − ZZ†�ba
1/2, �̂ a

i = �1 − ZZ†�ab
1/2� b

i �45�

and

�
�b1

1
¯bNc

1 �¯�b1
Q
¯bNc

Q �

�a1
1
¯aNc

1 �¯�a1
Q
¯aNc

Q �
= �h+a1

1b1
1 ¯ h+aNc

1 bNc
1 � ¯ �h+a1

Qb1
Q ¯ h+aNc

Q bNc
Q � . �46�

The hypermatrix � represents the direct product of Nc ·Q fundamental representations of H+

=U�Nb�, see Fig. 1. Note that H− does not appear here. Inserting Eq. �44� into Eq. �32�, we obtain

ZQ = CQ�
G/H

d	�Z,Z†��
H

dh�0�exp��̄ a
i ca

i + �a
i da

i �Ts�Z,Z†�Th��Q���Q�T h
−1Ts�Z,Z†�

−1

�exp�c̄ a
i � a

i + d̄a
i �̄a

i ��0� = �
�ZZ†��1

D�Z,Z†�exp��̄ a
i Zab�b

i + �̄a
i Zab

† � b
i ��Q, �47�

where we have defined

�Q = CQ	�i1¯iNc
�̄
ˆ

a1
1

i1
¯ �̄

ˆ
aNc

1

iNc � ¯ � j1¯jNc
�̄
ˆ

a1
Q

j1
¯ �̄

ˆ
aNc

Q

jNc �


� 	�i1�¯iNc
� �̂

b1
1

i1�
¯ �̂

bNc

1

iNc
�

� ¯ � j1�¯jNc
� �̂

b1
Q

j1�
¯ �̂

bNc

Q

jNc
�

�


� �
U�Nb�

dh+���1¯Nc�¯�1¯Nc�
�a1

1
¯aNc

1 �¯�a1
Q
¯aNc

Q �
�̄�1¯Nc�¯�1¯Nc�

�b1
1
¯bNc

1 �¯�b1
Q
¯bNc

Q �� . �48�

It follows from the definition of � that the term in square brackets is totally symmetric under the

exchange of aa
i with aa

i� and of ba
i with ba

i�. Because of the contraction with the totally antisym-
metric tensor , the terms in curly brackets are totally antisymmetric under the exchange of aa

i with
aa�

i and of ba
i with ba�

i . Therefore, after the contractions of the aa
i ’s and ba

i ’s, only terms with the
correct symmetry properties survive, i.e., symmetric in color and antisymmetric in flavor. In other
words, when the �reducible� direct-product representation � is decomposed into irreducible rep-

resentations, only the irreducible representation �̂ shown in Fig. 1 contributes to �Q.
This observation enables us to perform the integration over H+ in the same way as in Ref. 7.

We use the group theoretic result that for irreducible unitary representations �r and �r� of a
compact Lie group G,

FIG. 1. The �reducible� product of fundamental representations of U�Nb� contains an irreducible representation of U�Nb�
with symmetric color indices and antisymmetric flavor indices. Here Q�0.
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�
G

dg �̄ab
r �a�b�

r� =
1

dr
�aa��bb��

rr��
G

dg , �49�

where dr is the dimension of �r. The group volume of U�Nb� is normalized to unity as mentioned
above.

Comparing Eq. �48� with Eq. �41� of Ref. 7, we realize that we can use �a slightly modified
version of� the result in Eq. �46� of that reference and thus obtain

�Q =
�Nc!�Q

dNc,Q
Nb �Q!�Nc

CQ detQ M , �50�

where we have defined the Nc�Nc matrix M by Mij = �̄ a
i �1−ZZ†�ab� b

j . The symbol dNc,Q
Nb denotes

the dimension of the irreducible representation of U�Nb� specified by a Young diagram with Nc

rows and Q columns, i.e., of the representation �̂ in Fig. 1. �For Nb�Nc, this dimension is equal
to 1.� We will see in a moment that the prefactor of CQ detQ M in Eq. �50� is in fact irrelevant.

We now use Eq. �29� to calculate the normalization factor CQ. Using similar methods as in the
calculation of �Q, we obtain

��Q�Tg��Q� = detNc/2�1 − ZZ†���Q�	�i1¯iNc
c̄ c1

1
i1
¯ c̄

cNc

1

iNc � ¯ � j1¯jNc
c̄ c1

Q
j1
¯ c̄

cNc

Q

jNc�
�0�

� ��1 − ZZ†�c1
1a1

1
1/2

¯ �1 − ZZ†�cNc

1 aNc

1
1/2 � ¯ ��1 − ZZ†�c1

Qa1
Q

1/2
¯ �1 − ZZ†�cNc

Q aNc

Q
1/2 �

� �h+a1
11
¯ h+aNc

1 Nc
� ¯ �h+a1

Q1
¯ h+aNc

Q Nc
� = NQ detNc/2�1 − ZZ†���1¯Nc�¯�1¯Nc�

�a1
1
¯aNc

1 �¯�a1
Q
¯aNc

Q �

� �
�1¯�Q

�sgn��1��1 − ZZ†�
�1�1�a1

1
1/2

¯ �1 − ZZ†�
�1�Nc�aNc

1
1/2 �

� ¯ �sgn��Q��1 − ZZ†�
�Q�1�a1

Q
1/2

¯ �1 − ZZ†�
�Q�Nc�aNc

Q
1/2 � , �51�

where we have used NQ= ��Q ��Q�. The symbol � and the symbol � in the equation below denote
elements of the permutation group SNc

. Analogously, we find

��Q�T g
−1��Q� = NQ detNc/2�1 − ZZ†��̄�1¯Nc�¯�1¯Nc�

�b1
1
¯bNc

1 �¯�b1
Q
¯bNc

Q � �
�1¯�Q

�sgn��1��1 − ZZ†�b1
1�1�1�

1/2

�¯ �1 − ZZ†�bNc

1 �1�Nc�
1/2 � ¯ �sgn��Q��1 − ZZ†�b1

Q�Q�1�
1/2

¯ �1 − ZZ†�bNc

Q �Q�Nc�
1/2 � .

�52�

Combining these two results, we have from Eq. �29�,

C Q
−1 =

1

NQ
�

U�Nb,Nb�
dg��Q�Tg��Q���Q�T g

−1��Q� = NQ�
�ZZ†��1

d	�Z,Z†�detNc�1 − ZZ†�

� �
�1¯�Q

�sgn��1��1 − ZZ†�
�1�1�a1

1
1/2

¯ �1 − ZZ†�
�1�Nc�aNc

1
1/2 � ¯ �sgn��Q��1 − ZZ†�

�Q�1�a1
Q

1/2

�¯ �1 − ZZ†�
�Q�Nc�aNc

Q
1/2 � �

�1¯�Q

�sgn��1��1 − ZZ†�b1
1�1�1�

1/2
¯ �1 − ZZ†�bNc

1 �1�Nc�
1/2 �

� ¯ �sgn��Q��1 − ZZ†�b1
Q�Q�1�

1/2
¯ �1 − ZZ†�bNc

Q �Q�Nc�
1/2 �

� �
U�Nb�

dh+��1¯Nc�¯�1¯Nc�
�a1

1
¯aNc

1 �¯�a1
Q
¯aNc

Q �
�̄�1¯Nc�¯�1¯Nc�

�b1
1
¯bNc

1 �¯�b1
Q
¯bNc

Q �
. �53�
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The integration over U�Nb� is of the same type as in the calculation of �Q, and using the same
method we obtain

CQ
−1 =

NQ�Nc!�Q

dNc,Q
Nb �Q!�Nc

�
�ZZ†��1

D�Z,Z†�detQ�1 − ZZ†��Nc�, �54�

where �1−ZZ†��Nc� denotes the upper left Nc�Nc block of the Nb�Nb matrix �1−ZZ†�. Recall that
nonzero Q sectors only exist for Nb
Nc, so this notation always makes sense.

We now combine Eqs. �47�, �50�, and �54� to obtain for Q�0,

ZQ = CQ�
�ZZ†��1

D�Z,Z†�exp��̄ a
i Zab�b

i + �̄a
i Zab

† � b
i �detQ M , �55�

where we have defined

CQ
−1 = NQ�

�ZZ†��1
D�Z,Z†�detQ�1 − ZZ†��Nc�. �56�

The explicit calculation of this integral is performed in Appendix B. As anticipated, the nontrivial
prefactors in Eqs. �50� and �54� have dropped out.

For Q�0, the calculation proceeds in exact analogy, and we obtain

ZQ = C�Q��
�ZZ†��1

D�Z,Z†�exp��̄ a
i Zab�b

i + �̄a
i Zab

† � b
i �det�Q� N , �57�

where the Nc�Nc matrix N is defined by N ij = �̄a
i �1−Z†Z�ab� b

j . This completes the derivation of
Eq. �1�.

A number of concrete examples illustrating the transformation are given in Appendix D 1. In
particular, in Appendix D 3 we consider an example where the integration measure diverges, and
show how this problem can be solved in a simple case.

H. Generalization to unequal flavor numbers

So far we only considered the case in which particles and antiparticles have equal flavor
numbers, i.e., Nb+=Nb−=Nb, where Nb+ �Nb−� denotes the number of flavors of the particles
�antiparticles�. In practice this constraint may not be present. It is not difficult to see how our
method can be extended to the general case in which Nb+�Nb−. The flavor group is then
U�Nb+ ,Nb−�, and the integral on the RHS of Eq. �1� is over the noncompact symmetric space
U�Nb+ ,Nb−� / �U�Nb+��U�Nb−��. All results derived in earlier parts of this section are still valid
with some minor changes, �1� the complex matrix Z has dimension Nb+�Nb−, �2� replace 2Nb by
Nb++Nb− in the integration measure, and �3� choose the range of Q accordingly. For example, if
Nb−�Nc and Nb+
Nc, there are no Q− sectors, and we sum over Q
0 and set N=0 in our results.
We give a concrete example with Nb+�Nb− in Appendix D 2.

IV. BOSONIC COLOR-FLAVOR TRANSFORMATION: CHARACTER EXPANSION
METHOD

In this section, we use the character expansion method19 to derive an alternative form of the
bosonic color-flavor transformation which is free from divergences in the range Nb�Nc. We will
also make use of the results of Refs. 20 and 21.

A. Setup of the calculation

In the last section, we have traded the integral over the compact color group for an integral
over a noncompact manifold parametrized by an Nb�Nb complex matrix Z. Employing a singular
value decomposition, this matrix can be written as
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Z = U�V , �58�

where U�U�Nb�, V�U�Nb� /UNb�1�, and � is a diagonal matrix with real entries, the so-called
radial coordinates, satisfying 0��a�1. The divergence problem we met in the last section is
caused by the integration over the submanifold spanned by the radial coordinates. Specifically, the
divergence of highest degree occurs at the boundary, �a=1 for all a, and the entire information
that is needed to complete the color-flavor transformation resides in the boundary. A natural
question to ask at this point is whether the integration over the radial coordinates can be avoided.
To answer this question, we integrate over the two compact unitary groups first. At the same time,
we relax the constraints on the radial coordinates by replacing � with an arbitrary complex matrix.

Our strategy is as follows. We first perform the integration over the color group on the LHS
of the transformation explicitly using the character expansion method. Next we compute an inte-
gral over a compact subgroup of the flavor group with a manifestly color-invariant integrand. We
then complete the transformation by observing that the two integrals are equal.

We define two rectangular Nc�Nb matrices � and � by

� = �� a
i �, � = ��a

i � . �59�

The integrand on the LHS of Eq. �1� can then be rewritten as

exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = exp�tr UM + tr U†N� , �60�

where we have defined two Nc�Nc matrices M and N by

M = �Mij� = �� a
i �̄ a

j � = ��†, N = �Nij� = ��a
i �̄ a

j � = ��†. �61�

In the following, we consider irreducible representations of GL�m� �for various values of m�
labeled by

r = �r1,r2, . . . ,rm� with integers r1 
 r2 
 ¯ 
 rm 
 0, �62�

where rj is the number of boxes in row j of the corresponding Young diagram. Using Eq. �3.5� of
Ref. 20, we have

exp�tr UM� = �
r

�r
�0��r�UM�, exp�tr U†N� = �

r�

�r�
�0�

�r��U
†N� , �63�

where the sums are over all irreducible representations of GL�Nc� of the form �62�. For a given
representation r, we have20

�r
��� = det� 1

�rj − � + i − j�!� = ��
i=1

Nc �Nc − i�!
�ki − ��!�dr with ki = Nc + ri − i , �64�

where i and j run from 1 to Nc, � is an additional integer which we shall need later on, dr is the
dimension of the representation r, given by Weyl’s formula

dr = � �
n=1

Nc−1

n!�−1

��k1, . . . ,kNc
� , �65�

and ��k1 , . . . ,kNc
�=�i�j�ki−kj� is the Vandermonde determinant. We then obtain
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�
SU�Nc�

dU exp�tr UM + tr U†N� = �
rr�

�r
�0��r�

�0��
SU�Nc�

dU �r�UM��r��U
†N�

= �
rr�

�r
�0��r�

�0��
SU�Nc�

dU Ur
ijMr

jiŪr�
klNr�

kl , �66�

where we use the notation Ur for the matrix corresponding to the representation r specified by a
given Young diagram, an example of which is shown on the left-hand part of Fig. 2. On the
right-hand part of Fig. 2, we show a Young diagram that has Q more columns, each containing Nc

boxes, than the Young diagram for r. �Here we assume Q
0.� We denote the corresponding
representation by r+NcQ. Note that for SU�Nc�, these two representations are identical. We have
the orthogonality relation

�
SU�Nc�

dU Ur
ijŪr�

kl =
1

dr
� ik� jl�r�,r+NcQ. �67�

From Eq. �64� it is clear that

�r+NcQ
�0� = �r

�−Q�. �68�

Furthermore, for all g�GL�Nc� we have30

gr+NcQ
ij = gr

ij detQ g . �69�

Rewriting the sum over r and r� in Eq. �66� as a sum over r and Q, we obtain

�
SU�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = �
r

�r
�0��r

�0�

dr
�r�MN� + �

Q=1

�

�detQ M

+ detQ N��
r

�r
�0��r

�−Q�

dr
�r�MN� . �70�

The sums over r can be done analytically, resulting in an expression involving determinants of
modified Bessel functions,21 but we shall not need this explicit result and therefore do not quote it
here.

Note that in the case of color group U�Nc� only the Q=0 term is nonzero in Eq. �67�, and
therefore only the first term contributes on the RHS of Eq. �70�. This observation will allow us to
read off results for U�Nc� from those for SU�Nc� in Secs. IV B and IV C.

We now turn to the RHS of Eq. �1� and first define two Nb�Nb matrices

B = �Bab� = ��a
i �̄ b

i � = ��†��T, C = �Cab� = �� a
i �̄b

i � = ��†��T. �71�

We then consider the integral

FIG. 2. Irreducible representations r and r+NcQ.
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�
U�Nb�

dU �
U�Nb�

dV det−Q�UAVB�exp��̄ a
i �UAV�ab�b

i + �̄a
i �V†DU†�ab� b

i �

= �
U�Nb�

dU �
U�Nb�

dV det−Q�UAVB�exp�tr�UAVB� + tr�CV†DU†�� , �72�

where A and D are two arbitrary Nb�Nb matrices. Using Ref. 21, we have for AD= I, i.e., A is the
inverse of D,

�72� = �
s

�s
�0��s

�−Q�

ds
2 �s�AD��s�BC� = �

s

�s
�0��s

�−Q�

ds
�s�BC� , �73�

where the sum is over all irreducible representations s of GL�Nb� of the form �62�, and we have
used ds=�s�I�.

In Appendix C we prove the following identity for �=Nc−Nb
0,

�
r

�r
�0��r

�−Q�

dr
�r�MN� = �

n=0

�−1
�Nb + n�!
�Q + n�! �

s

�s
�0��s

�−Q−��

ds
�s�BC� , �74�

where the sums on the LHS and the RHS are over all irreducible representations of GL�Nc� and
GL�Nb�, respectively, that are of the form �62�. Using this identity, we can now relate Eqs. �70�
and �73�. We consider separately the cases Nb�Nc, Nb=Nc, and Nb�Nc.

B. Nb<Nc

For Nb�Nc, the matrices M and N are not of full rank, i.e., we have det M =det N=0. The
terms multiplied by det M and det N in Eq. �70� are finite.21 Thus, only the Q=0 term in Eq. �70�
survives, and we obtain

�70� = �
r

�r
�0��r

�0�

dr
�r�MN� = �

n=0

�−1
�Nb + n�!

n! �
s

�s
�0��s

�−��

ds
�s�BC� , �75�

where we have used Eq. �74�. This is already in the form of Eq. �73� with Q=�=Nc−Nb. We can
further simplify the integral in Eq. �72� by choosing A=D= I and using the invariance of the Haar
measure to eliminate U from the integrand. This yields

�
SU�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = �
n=0

Nc−Nb−1
�Nb + n�!

n!
�

U�Nb�
dV detNb−Nc�VB�

�exp��̄ a
i Vab�b

i + �̄a
i Vab

† � b
i � �5�

as stated in Sec. II. If in the above expression one wants to take the limit of det B→0, the integral
over V needs to be done first. This procedure yields a finite result, see the example in Appendix E
3.

The result �5� is also valid if the integration on the LHS is over the color group U�Nc�. This
follows immediately from the remarks made after Eq. �70� and from the fact that the terms with
Q�0 do not contribute on the RHS of Eq. �70�.

C. Nb=Nc

For Nb=Nc the matrices M and N are of full rank, and all terms in Eq. �70� contribute.
Equation �74� now becomes trivial,
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�
r

�r
�0��r

�−Q�

dr
�r�MN� = �

s

�s
�0��s

�−Q�

ds
�s�BC� . �76�

We again simplify the integral in Eq. �72� by choosing A=D= I and using the invariance of the
Haar measure to arrive at

�
SU�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = �
Q=0

�

�̃Q�
U�Nb�

dV det−Q�VB�exp��̄ a
i Vab�b

i + �̄a
i Vab

† � b
i �

�6�

with �̃0=1 and �̃Q�0=detQ M +detQ N as stated in Sec. II. If the det B→0 limit is desired, the
integral over V needs to be done first as mentioned at the end of the preceding section. If

det−Q�VB� is combined with the terms in �̃Q�0, we obtain �Q+1/ �̄Q with �=det � /det��V�. This
shows that we are not allowed to change the order of summation and integration in Eq. �6�, since
the resulting geometric series would diverge for one of the two terms.

If the integration on the LHS of Eq. �6� is over the color group U�Nc�, only the Q=0 term
contributes on the RHS as explained after Eq. �70�, and we obtain for Nb=Nc,

�
U�Nc�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij�a

j � = �
U�Nb�

dV exp��̄ a
i Vab�b

i + �̄a
i Vab

† � b
i � , �77�

see also Sec. 6 of Ref. 16.

D. Nb>Nc

In this case the Nc�Nc matrices M and N are of full rank, whereas the Nb�Nb matrices B and
C are of rank Nc with Nb−Nc eigenvalues equal to zero so that det B=det C=0. We now have �
=Nc−Nb�0. Using similar arguments as in Appendix C but in the reverse direction, we obtain
instead of Eq. �74�,

�
r

�r
�0��r

�−Q�

dr
�r�MN� = C����

s

�s
�0��s

����−Q�

ds
�s�BC�

= C����
U�Nb�

dU�
U�Nb�

dV det���−Q�UAVB�exp�tr�UAVB� + tr�CV†DU†��

= C����
U�Nb�

dV det���−Q�VB�exp�tr�VB� + tr�CV†�� �78�

with

C��� = �
n=1

���
�Q − n�!
�Nb − n�!

, �79�

where in the last step in Eq. �78� we have again set A=D= I and used the invariance of the Haar
measure to eliminate U from the integrand. Note that this expression is only valid for Q
 ���
=Nb−Nc. Although det B=0 appears with a nonpositive power, the RHS of Eq. �78� must be finite
because the LHS is. This fact can be established explicitly by a suitable limiting procedure.

For 0�Q� ���, the integral over U�Nb� in Eq. �78� is zero because det B=0 appears with a
positive power. For this range of Q, we cannot replace the corresponding terms in Eq. �70� by
integrals over U�Nb� and therefore cannot complete the transformation. Thus, it seems that the
character expansion method does not yield a useful result for Nb�Nc.

072306-17 Bosonic color-flavor transformation J. Math. Phys. 46, 072306 �2005�

                                                                                                                                    



V. CONCLUSIONS AND OUTLOOK

We have generalized Zirnbauer’s color-flavor transformation in the bosonic sector to the
special unitary group SU�Nc�. Because the flavor group U�Nb ,Nb� is noncompact, divergences
arise if the number of bosonic flavors is too large. This has already been noted in Refs. 2 and 16
where the gauge group was U�Nc� and results were given for 2Nb�Nc. We have found a “stan-
dard” result for the color-flavor transformation in the same range, and an alternative form of the
transformation in the extended range Nb�Nc. �A special case of this result for Nb=Nc and color
group U�Nc� has already been given in Ref. 16.� For Nb�Nc, the results for SU�Nc� are identical
to those for U�Nc� because only the sector with Q=0 contributes.

The results of the present paper can be applied to study a boson-induced SU�Nc� lattice gauge
theory analogous to the U�Nc� gauge theory discussed in Ref. 16. We hope that other applications
will arise, e.g., in the field of disordered and/or chaotic systems.

One obvious open problem is to obtain a manifestly convergent result for Nb�Nc. While the
divergences that appear in numerator and denominator of our formal result �1� can always be
canceled in special cases, see Appendix D 3, the general case is difficult to deal with. The
character expansion method, which led to a convergent result in the extended range Nb�Nc, fails
for Nb�Nc since it cannot generate the terms with 0�Q�Nb−Nc on the RHS of Eq. �70� in terms
of integrals over �a subgroup of� the flavor group. However, as stated earlier and in Ref. 16, all
necessary information resides in the boundary of the coset space U�Nb ,Nb� / �U�Nb��U�Nb��, so it
is conceivable that an explicit result in terms of an integration over this boundary might yet be
obtained.

The other open problem is the extension of the present results to the supersymmetric case in
which both fermionic and bosonic flavors are present. In this case the divergence of the integration
measure due to the bosonic degrees of freedom can be canceled by the contribution of the fermi-
ons to the measure, as long as sufficiently many fermions are included. The physically interesting
case is Nc=3 �the gauge group of QCD�, Nf 
2 �the number of physical quark flavors�, and Nb

=Nc �the lower bound for Nb so that the bosons induce the correct gauge action16�. In this case, the
convergence requirement 2�Nb−Nf��Nc is satisfied. However, the supersymmetric case raises
other issues which will be addressed in a separate paper.
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APPENDIX A: NORMALIZATION OF GENERALIZED SLATER STATES

In this section, we calculate the norm, NQ= ��Q ��Q�, of the state ��Q� defined in Eq. �25�. We
first assume Q
0 and discuss the case of Q�0 at the end of this section. The vacuum is
normalized by definition so that N0=1. For Q=1, ��Q� is the Slater state with the well-known
norm N1=Nc!.

Let us mention in passing that NQ corresponds to the complete contraction of all permutations
of totally antisymmetric tensors of the form

NQ = �
	�s


 i1
1i2

1
¯iNc

1
¯  i1

Qi2
Q
¯iNc

Q
i

1
�1�1�i

2
�2�1�

¯i
Nc

�Nc
�1�
¯ i

1
�1�Q�i

2
�2�Q�

¯i
Nc

�Nc
�Q�, �A1�

where the sum is over Nc copies of the permutation group SQ, i.e., �s�SQ, s=1, . . . ,Nc. To the
best of our knowledge, NQ was not known previously for Q�1.

To prove Eq. �30�, we study a different version of the color-flavor transformation in which the
flavor group is U�Nb� with Nb=Nc. Note that the flavor group is compact now. We follow the same
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method as in Sec. III but keep only the particles created by the c̄ a
i and discard the antiparticles

created by the d̄a
i . The flavor group U�Nb� is then generated by 	G̃ab= c̄ a

i cb
i 
. The state ��Q� is still

defined as in Eq. �25�. The projector onto the Q-sector is now

1Q = C̃Q�
U�Nb�

dg T̃g��Q���Q�T̃ g
−1 �A2�

with the normalized Haar measure dg of U�Nb� and T̃g=exp�c̄ a
i �ln g�abcb

i �. For Nb=Nc, we have by
explicit calculation

T̃g��Q� = �detQ g���Q� . �A3�

Using this equation, the normalization constant C̃Q, see also Eq. �29�, simplifies to

C̃Q = NQ��
U�Nb�

dg��Q�T̃g��Q���Q�T̃ g
−1��Q��−1

= NQ�NQ
2 �−1 =

1

NQ
. �A4�

Next we consider the following integral and perform manipulations similar to those in Sec. III:

�
SU�Nc�

dU exp��̄ a
i Uij� a

j � = �
SU�Nc�

dU�0�exp��̄ a
i ca

i �exp�c̄ a
i Uij� a

j ��0�

= �
Q=0

�

�0�exp��̄ a
i ca

i �1Q exp�c̄ a
i � a

i ��0�

= �
Q=0

�

C̃Q�
U�Nb�

dg�0�exp��̄ a
i ca

i �T̃g��Q���Q�T̃ g
−1 exp�c̄ a

i � a
i ��0�

= �
Q=0

�
1

NQ
�0�exp��̄ a

i ca
i ���Q���Q�exp�c̄ a

i � a
i ��0� = �

Q=0

�
1

NQ
detQ M ,

�A5�

where M is an Nc�Nc matrix, Mij =� a
i �̄ a

j , and we have again used Eq. �A3�. However, we can

also use the character expansion method19,20 to do this integral. Using the same notation as in Sec.
IV, we obtain

�
SU�Nc�

dU exp��̄ a
i Uij� a

j � = �
SU�Nc�

dU exp�tr UM� = �
SU�Nc�

dU�
r

�r
�0��r�UM�

= �
r

�r
�0�Mr

ji�
SU�Nc�

dU Ur
ij = �

Q=0

�

�r=NcQ
�0� detQ M . �A6�

In the last step, we have used the facts that

�
SU�Nc�

dU Ur
ij = �1, r = NcQ ,

0, else,
 �A7�

where r=NcQ denotes the �one-dimensional� irreducible representation of GL�Nc� specified by a
Young diagram with Nc rows and Q columns, and that for all M �GL�Nc� we have Mr=NcQ

ij

=detQ M, see Eq. �69�. �Note that in the one-dimensional representation r=NcQ the indices i and
j only take the value 1.� From Eq. �64� we obtain with dr=NcQ=1,
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�r=NcQ
�0� = �

n=0

Nc−1
n!

�Q + n�!
. �A8�

Comparing Eqs. �A5� and �A6� we arrive at Eq. �30�, valid for Q
0. The calculation for Q�0
proceeds in complete analogy by working with the antiparticles instead of the particles, and the
result for this case can be obtained by the replacement Q→−Q in the expression for NQ.

APPENDIX B: CALCULATION OF THE CQ

In this section, we do the integral in Eq. �56�. This is an example of so-called Hua-type
integrals that were studied by Hua a long time ago17 and recently extended by Neretin.31 Here, we
follow the method introduced in Ref. 17. We first consider the case of Nb
Nc and Q
0, and then
give a result for Nb�Nc and Q=0.

Using Eq. �42�, Eq. �56� becomes

CQ
−1 = NQ�

�ZZ†��1

dZ dZ†

det2Nb−Nc�1 − ZZ†�
detQ�1 − ZZ†��Nc�. �B1�

We now write the matrix Z as Z= �ZNb,Nb−1 ,q�, where ZNb,Nb−1 is an Nb� �Nb−1� matrix and q is a
single column. We then have

1 − ZZ† = 1 − ZNb,Nb−1ZNb,Nb−1
† − qq†. �B2�

Since �1−ZNb,Nb−1ZNb,Nb−1
† �
0, i.e., the matrix has real and non-negative eigenvalues, we write

1−ZNb,Nb−1ZNb,Nb−1
† =��† and define q=�w. Then

dq dq† = �det ��2 dw dw† = det�1 − ZNb,Nb−1ZNb,Nb−1
† �dw dw†. �B3�

On the other hand,

det�1 − ZZ†� = det���1 − ww†��†� = �1 − w†w�det�1 − ZNb,Nb−1ZNb,Nb−1
† � ,

where we have used det�1−ww†�= �1−w†w�. Applying the same procedure to ZNb,Nb−1 and so on,
we obtain

�CQNQ�−1 = �
�ZZ†��1

dZ dZ†

det2Nb−Nc�1 − ZZ†�
detQ�1 − ZZ†��Nc� = �

i=1

Nc �
wi

†wi�1
dwi dwi

†�1

− wi
†wi�Nc−Nb+Q−i �

j=Nc+1

Nb �
wj

†wj�1
dwj dwj

†�1 − wj
†wj�Nc−Nb−j

= �
i=1

Nc

�Nb
�Nc − Nb + Q − i�!

�Nc + Q − i�! �
j=Nc+1

Nb

�Nb
�Nc − Nb − j�!

�Nc − j�!
. �B4�

From this equation, which was derived for Nb
Nc, we see that for Nb�Nc, the above integral
diverges for all Q
0, whereas for Nb=Nc, it diverges for Q�Nb.

For Nb�Nc, only the Q=0 sector exists, and we obtain from a very similar and even simpler
calculation

C0
−1 = C0

−1 = �Nb
2�
n=1

Nb �Nc − Nb − n�!
�Nc − n�!

, �B5�

which is finite for 2Nb�Nc but diverges for Nb�Nc�2Nb.
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APPENDIX C: PROOF OF IDENTITY „74…

We have tr�MN�=tr���†��†�=tr��†��†��=tr��†��†��T=tr�BC�, which proves the
identity immediately for Nb=Nc. In the following, we assume �=Nc−Nb�0 and prove the identity
by an iterative procedure.

The semipositive definite Nb�Nb matrix BC= ��†��†��T has Nb eigenvalues that we denote
by �a

2 with a=1, . . . ,Nb. From linear algebra18 we know that the Nc�Nc matrix MN=��†��†

has Nb eigenvalues equal to those of BC and �=Nc−Nb eigenvalues equal to zero. We denote the
eigenvalues of MN by 	i

2, with 	i=�i for 1� i�Nb. For the purpose of this proof, we start with
nonzero values 	i for Nb� i�Nc and let them go to zero one by one, starting with 	Nc

. Weyl’s
character formula is17

��r1,r2,. . .,rNc
��MN� =

det�	i
2�Nc+rj−j��

��	2�
=

det�	i
2kj�

��	2�
, �C1�

where the kj have been defined in Eq. �64� and � again denotes the Vandermonde determinant. We
have

lim
	Nc

→0
�Nc

�	2� = lim
	Nc

→0
�
i�j

Nc

�	i
2 − 	 j

2� = �Nc−1�	2� �
i=1

Nc−1

	i
2, �C2�

where the index on � denotes the number of eigenvalues involved. Similarly, we introduce the
notation detm�	i

2kj� to denote the determinant of the m�m upper-left submatrix of the matrix
�	i

2kj�, i.e., i and j run from 1 to m instead of from 1 to Nc. Note that for 	Nc
→0, detNc

�	i
2kj� is

nonvanishing only if kNc
=0 or, equivalently, rNc

=0, in which case we have

lim
	Nc

→0
detNc

�	i
2kj� = detNc−1�	i

2kj�� �
i=1

Nc−1

	i
2, �C3�

where

kj� = rj + �Nc − 1� − j with j = 1, . . . ,Nc − 1. �C4�

We conclude that for 	Nc
=0, �r�MN� is nonzero only for representations of GL�Nc� with Young

diagram r= �r1
 ¯ 
rNc
=0�. We thus obtain

lim
	Nc

→0
�

r

�r
�0��r

�−Q�

dr
�r�MN� = �

r1
¯
rNc=0

�r
�0��r

�−Q�

dr

detNc−1�	i
2kj��

�Nc−1�	2�

= �
n=1

Nc−1

n! �
k1�¯�kNc

=0
detNc

� 1

kj!�kj − Nc + Q + i�!�detNc−1�	i
2kj��

�Nc−1�	2�
,

�C5�

where we have used Eqs. �64� and �65�. From Eq. �64� with kNc
=0 we have

detNc
� 1

kj!�kj − Nc + Q + i�!� =
d�r1,. . .,rNc−1,0�

GL�Nc�

� j=1

Nc−1
kj!

�
i=1

Nc �Nc − i�!
�ki + Q�!

. �C6�

From Eq. �65� we find that
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d�r1,. . .,rNc−1,0�
GL�Nc� =

� j=1

Nc−1
kj

�Nc − 1�!
d�r1+1,. . .,rNc−1+1�

GL�Nc−1� . �C7�

Hence, for 	Nc
=0, and thus kNc

=0, we obtain from �C6�, �C7�, and �64�,

detNc
� 1

kj!�kj − Nc + Q + i�!� =
1

Q!
detNc−1� 1

kj�!�kj� − �Nc − 1� + �Q + 1� + i�!� . �C8�

Putting everything together, we arrive at

lim
	Nc

→0
�

r

�r
�0��r

�−Q�

dr
�r�MN� =

�Nc − 1�!
Q! �

r�

�r�
�0��r�

�−Q−1�

dr�
�r��MN� , �C9�

where the sum on the RHS is over all irreducible representations r�= �r1
 ¯ 
rNc−1
0� of
GL�Nc−1�. Repeating this procedure �=Nc−Nb times, we obtain our identity

�
r

�r
�0��r

�−Q�

dr
�r�MN� = �

n=0

�−1
�Nb + n�!
�Q + n�! �

s

�s
�0��s

�−Q−��

ds
�s�BC� , �74�

where the sum on the RHS is over all irreducible representations s of GL�Nb� of the form �62�, and
where we have again used tr�MN�=tr�BC�.

APPENDIX D: EXAMPLES FOR THE ALGEBRAIC RESULT

1. Nc=2, Nb=1

We parametrize elements of SU�2� as

U = � ei� cos � − ei� sin �

e−i� sin � e−i� cos �
� with 0 � � �

�

2
, 0 � �,� � 2� . �D1�

The corresponding normalized Haar measure is dU= �1/2�2�sin � cos � d� d� d�. Performing the
integral on the LHS of Eq. �4�, we obtain

�
SU�2�

dU exp��̄ iUij� j + �̄iU†ij� j� = �
n=0

�
1

n!�n + 1�!
��̄1�1�̄1�1 + �̄2�2�̄2�2 + �̄1�2�̄2�1

+ �̄2�1�̄1�2�n. �D2�

For the RHS of Eq. �4�, we have with C0=1/�,

1

�
�

�z��1
dz dz̄ exp���̄1�1 + �̄2�2�z + ��̄1�1 + �̄2�2�z̄� =

1

�
�

0

1

r dr�
0

2�

d� exp���̄1�1 + �̄2�2�rei�

+ ��̄1�1 + �̄2�2�re−i�� = �
n=0

�
1

n!�n + 1�!
��̄1�1�̄1�1 + �̄2�2�̄2�2 + �̄1�2�̄2�1 + �̄2�1�̄1�2�n

�D3�

in agreement with Eq. �D2�.

2. Nc=Nb+=2, Nb−=0

In this example we check the argument we made in Sec. III H for Nb+�Nb−. To have Nb−

=0 we simply set �̄a
i =�a

i =0. Using the same parametrization for SU�2� as in Appendix D 1, we
calculate the integral on the LHS of Eq. �1�,
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�
SU�2�

dU exp��̄ a
i Uij� a

j � = �
n=0

�
1

n!�n + 1�!
��̄1

1�1
1�̄2

2�2
2 + �̄1

2�1
2�̄2

1�2
1 − �̄1

1�1
2�̄2

2�2
1 − �1

1�̄1
2�̄2

1�2
2�n.

�D4�

In this case we must sum over Q from zero to infinity on the RHS. The integral over the coset
space U�2�/U�2� amounts to evaluating the integrand at the single point Z=0. From Eqs. �56� and
�30�, we have CQ=1/NQ=1/ �Q!�Q+1�!� and thus obtain

RHS = �
Q=0

�
1

Q!�Q + 1�!
detQ M = �

Q=0

�
1

Q!�Q + 1�!
��̄1

1�1
1�̄2

2�2
2 + �̄1

2�1
2�̄2

1�2
1 − �̄1

1�1
2�̄2

2�2
1

− �1
1�̄1

2�̄2
1�2

2�Q �D5�

in agreement with Eq. �D4�, where we have used Mij = �̄ a
i � a

j .

3. Nc=Nb=1

In this example, we run into the divergence problem discussed in Secs. II and III. The LHS of
Eq. �1� is simple because the integral over SU�1� reduces to evaluating the integrand at unity,

�
SU�1�

dU exp��̄ iUij� j + �̄iU†ij� j� = exp��̄� + �̄�� . �D6�

The RHS of Eq. �1� is a sum over Q. For Q=0 we have

C0
−1 = �

�z��1

dz dz̄

1 − zz̄
= 2��

0

1 r dr

1 − r2 �D7�

and

�
�z��1

dz dz̄

1 − zz̄
exp��̄z� + �̄z̄�� = 2��

n=0

�
��̄��̄��n

�n!�2 �
0

1 r2n+1 dr

1 − r2 . �D8�

We now change the upper limit in the integral to 1− and let →0 to obtain

C0�
�z��1

dz dz̄

1 − zz̄
exp��̄z� + �̄z̄�� = �

n=0

�
��̄��̄��n

�n!�2 . �D9�

For Q
1, there are no divergences, and we have

�
�z��1

dz dz̄

�1 − zz̄�2Nb−Nc−Q exp��̄z� + �̄z̄�� = ��
n=0

�
�Q − 1�!

n!�n + Q�!
��̄��̄��n. �D10�

Collecting all terms and using CQ=1/ ���Q−1�!�, we find for the RHS of Eq. �1�,

�
�ZZ†��1

D�Z,Z†�exp��̄ a
i Zab�b

i + �̄a
i Zab

† � b
i ��

Q=0

�

�Q = �
n=0

�

�
Q=0

�
1

n!�n + Q�!
���̄��Q + ��̄��Q − �Q0�

���̄��̄��n = exp��̄� + �̄�� , �D11�

where the last step requires some rearrangements of the terms in the sums. We see that the
transformation works although for Q=0 the normalization factor and the integral on the RHS of
the transformation are divergent. After those infinities have been canceled, the finite ratio gives the
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correct result. However, as mentioned at the end of Sec. III F, it is not trivial to obtain a simple
result for the general case.

APPENDIX E: EXAMPLES FOR THE CHARACTER EXPANSION RESULT

1. Nc=Nb=1

Although this example was already considered in Appendix D 3, we revisit it here to check

our result obtained using the character expansion method. Again, the LHS equals exp��̄�+ �̄��.
From Eq. �6� we have

�
Q=0

�

�̃Q�
0

2� d�

2�
�Bei��−Q exp��̄ei�� + �̄e−i��� = �

Q=0

�

���̄��Q + ��̄��Q − �Q0��
n=0

�
1

n!�n + Q�!
��̄��̄��n

= exp��̄� + �̄�� �E1�

as in Eq. �D11�, where we have used M =��̄, N=��̄, and B=��̄. We see that the transformation
�6� works and that, unlike in Appendix D 3, we do not have any divergence problem.

2. Nc=Nb=2

In this case we also have 2Nb�Nc, and therefore divergences would arise in Eq. �1�. We now
check our result �6� in which no divergence appears. Using the parametrization of SU�2� in
Appendix D 1, we perform the integral on the LHS,

�
SU�2�

dU exp��̄ a
i Uij� a

j + �̄a
i U†ij� a

j � = �
n=0

�
1

n!�n + 1�!
�det M + det N + tr MN�n �E2�

with M and N given by Eq. �61� and B and C given by Eq. �71�. To do the integral on the RHS,
we parametrize U�2� by multiplying the matrix in Eq. �D1�, which we now call V, by a phase ei�,
with 0���2�. The corresponding normalized Haar measure is dV
= �1/4�3�sin � cos � d� d� d� d�. We then obtain

�
Q=0

�

�̃Q�
U�2�

dV det−Q�VB�exp��̄ a
i Vab�b

i + �̄a
i Vab

† � b
i � = �

n=0

�
1

n!�n + 1�!
�det M + det N + tr BC�n

�E3�

with �̃Q defined in Eq. �7�. The two results agree. In the derivation of Eqs. �E2� and �E3� we have
used det�BC�=det�MN� and tr�BC�=tr�MN�.

3. Nc=2, Nb=1

Let us check our result �5�. The LHS is given by Eq. �D2�. On the RHS we have

�
n=0

Nc−Nb−1
�Nb + n�!

n!
�

U�Nb�
dV detNb−Nc�VB�exp��̄ a

i Vab�b
i + �̄a

i Vab
† � b

i � = �
0

2� d�

2�
�Bei��−1exp�Bei�

+ Ce−i�� = �
n=0

�
1

n!�n + 1�!
��̄1�1�̄1�1 + �̄2�2�̄2�2 + �̄1�2�̄2�1 + �̄2�1�̄1�2�n, �E4�

where we have used B=�1�̄1+�2�̄2 and C=�1�̄1+�2�̄2. Thus, the RHS agrees with the result in
Eq. �D2�.
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We consider the contraction of some nonlinear � models which appear in effective
supergravity theories. In particular we consider the contractions of maximally sym-
metric spaces corresponding to N=1 and N=2 theories, as they appear in certain
low energy effective supergravity actions with mass deformations. The contraction
procedure is shown to describe the integrating out of massive modes in the pres-
ence of interactions, as it happens in many supergravity models after spontaneous
supersymmetry breaking. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1960719�

I. INTRODUCTION

Supergravity theories with mass deformations have recently received some attention because
of their relation to flux compactifications �for a review see, e.g., Ref. 1� or Scherk–Schwarz
generalized dimensional reduction.2

For N�2 local supersymmetry, the supergravity theories admit mass deformations that always
correspond to gauged supergravities.3,4 The mass parameters may be chosen in such a way that a
low energy effective Lagrangian for the massless sector can be singled out by deleting the massive
modes.

This procedure is usually discussed in the framework of consistent truncations of field
theories,5 but here we want to show that the same phenomenon may arise as well as a contraction.
The basic argument is that the limiting situation of a mass scale asymptotically large is equivalent
to the contraction of some group structure.

Suppose the group structure is a nonlinear � model related to a maximally symmetric space
G /H where G is noncompact and H its maximally compact subgroup.6,7 One can make an Inönü-
Wigner contraction8 of the group G with respect to a subgroup G�. Let H�=H�G�. We can induce
a contraction G /H to a manifold which will have G� /H� embedded in it. The contracted manifold
has the same dimension as the original one �as it happens for contractions of algebras and groups�,
but with a metric that will be essentially different. An example of this are the contractions of the
hyperboloid SU�1, 1�/U�1�. If the contraction is made with respect to the subgroup U�1� one

a�Electronic mail: Laura.Andrianopoli@cern.ch
b�Electronic mail: Sergio.Ferrara@cern.ch
c�Electronic mail: Maria.Lledo@ific.uv.es
d�Electronic mail: Oscar.Macia@ific.uv.es

JOURNAL OF MATHEMATICAL PHYSICS 46, 072307 �2005�
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obtains the flat metric, whereas if the contraction is made with respect to SO�1, 1� one obtains an
hyperbolic sheet, with one translational isometry. We will see in detail how to compute the metrics
in these and other cases.

There are other types of contractions that do not fit in the scheme described previously, but
that may have physical interest. If G /H is a symmetric space of the noncompact type, it inherits
a group structure through the Iwasawa decomposition of G

G = GS � H .

Then G /H�GS is the solvable Lie group associated to G.6,7,9 Note that GS depends on the real
�noncompact� form of G. We can then consider contractions in which G /H goes to G� /H�›Rn

�where › stands for the semidirect product of groups� with dim�G /H�=dim�G� /H��+n, indepen-
dently of the fact that G� is a subgroup of G or not. The physical interpretation of these contrac-
tions is as a �super�-Higgs mechanism,10 where the massive modes are described by Rn degrees of
freedom while the fields which remain massless are in G� /H�.11 Indeed, because of the semidirect
product structure, it is always consistent to set to zero �which, in this case, would correspond to
integrate out� the elements of Rn, since Rn is an invariant subalgebra of G� /H�›Rn.12 We will
consider several examples and discuss their physical applications.

The paper is organized as follows.
In Sec. II we describe the solvable algebras related to symmetric spaces

SO�1,1 + n�
SO�1 + n�

,
SU�1,1 + n�

U�1� � SU�1 + n�
,

SO�2,2 + n�
SO�2� � SO�2 + n�

,
U�2,2 + n�

U�2� � U�2 + n�
, �1�

and how these algebras are embedded one into the other. We also compute the metric of these
spaces in the solvable parametrization. We show a couple of examples where these spaces are
related to one another by gauging some isometries in the corresponding supergravity models
followed by an integration of the massive modes.

In Sec. III we study some contractions of the solvable algebras introduced and we show how
they are related among themselves. We compute the contracted metric by first giving a deforma-
tion of it in terms of a parameter �. The limits �→1 and �→0 correspond to the original and the
contracted spaces, respectively. For an arbitrary ��0, the groups are isomorphic but we will see
that it is not possible, in general, to reabsorb the parameter into a redefinition of the coordinates of
the coset space. This means that the spaces at ��0 are not isometric. We will show this phenom-
enon in detail. We will see how it is possible to interpret the gauging and integrating procedure of
the examples treated in Sec. II as a contraction followed by a quotienting by a submanifold.

In Sec. IV we describe the super Higgs phenomenon associated to an effective N=2 super-
gravity theory with scalar manifold

SU�1,1 + n�
�U�1� � SU�1 + n��

�
U�2,2 + n�

�U�2� � U�2 + n��
,

relating it to the contraction procedure described in previous sections.
In the Appendix we explain in more detail the parametrization chosen to study these sigma

models.

II. SYMMETRIC SPACES, SOLVABLE PARAMETRIZATIONS AND EMBEDDINGS

We first illustrate the calculation of the solvable Lie algebra associated to a symmetric space
of the noncompact type with the simplest example in �1�. Essentially one has to diagonalize
simultaneously the elements of the maximal abelian subalgebra in the space p of the Cartan
decomposition

g = h + p, g = Lie�G�, h = Lie�H� .
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A. Solvable parametrization of SO„1,1+n… /SO„1+n…

We consider the Lie algebra of SO�1,1+n�, so�1,1+n�. In the fundamental representation, an
element of it is given by

X =�
b1

A ]

bn+1

b1 ¯ bn+1 0
�, A = − AT,

where A is an antisymmetric �n+1�� �n+1� matrix. The Cartan decomposition of g=so�1,1+n� is

g = k + p, k = so�1 + n� = �	A 0

0 0

�, p = �	 0 b

bT 0

� .

It is easy to see that the coset has rank one. We choose the element

H =�
0 0

0 ] ]

0 0

0 ¯ 0 0 1

0 ¯ 0 1 0
�

as the generator of the maximal abelian subalgebra in p. We must diagonalize h to obtain the
reduced root pattern. This is easier by noting the following decomposition

so�1,n + 1� → so�1,1� + so�n� + n+ + n−,

where

so�1,1� = span�H, n± =��
b1 �b1

0 ] ]

bn �bn

− b1 ¯ − bn 0 0

�b1 ¯ �bn 0 0
�� ,

and a vector in n± has charge ±1 with respect to H. In this decomposition the algebra shows a
so�1,1� grading �so�n� has degree 0�, and n± are nilpotent �in particular, abelian� subalgebras. The
solvable Lie algebra associated to the coset SO�1,1+n� /SO�1+n� is then

solv	SO�1,1 + n�
SO�1 + n� 
 = span�H › n+, �2�

with commutation rules

�H,Xi� = Xi, i = 1, . . . ,n �the rest zero� .

Finally, the Iwasawa decomposition of the Lie algebra is

so�1,1 + n� = so�1 + n� + solv	SO�1,1 + n�
SO�1 + n� 
 .

We choose a coset representative of the following form:
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L = euiXie�H, L−1 = e−�He−uiXi.

We will see that this kind of splitting of the generators is specially useful. The pull back of the
Maurer-Cartan form on the group to the coset space, L−1dL, decomposes as

L−1dL = �L−1dL�k + �L−1dL�p.

The first term is the connection on the K bundle G→G /K, with K=SO�1+n� �spin bundle and
spin connection� and the second term is the vielbein of G /K.

The metric is then computed as

ds2 = ��L−1dL�p,�L−1dL�p�

where �,� is the Cartan-Killing form on g. Using the relation

e�XYe−�X = Ye��, provided �X,Y� = �Y ,

it is easy to see that the metric becomes

ds2 = d�2 + e−2��
i

dui
2. �3�

This metric has the translational isometries ui→ui+ci which are a maximal abelian ideal of the
solvable Lie algebra �see the Appendix�. In this case the ideal is I=span�Xi.

It is now easy to go to the largest space in �1�. It has only rank two and the rest of the solvable
algebras can be seen as subalgebras of this. In fact we have a chain of embeddings of the solvable
Lie algebras which implies a chain of embeddings of the corresponding symmetric spaces.

B. Solvable parametrization of U„2,2+n… /U„2…ÃU„2+n…

An element of the Lie algebra su�2,2+n� can be written as

X = 	 A2�2 B2��2+n�

B�2+n��2
† D�2+n���2+n�


, A† = − A, D† = − D ,

and the Cartan decomposition of su�2,2+n�=h+p is

h = �	A2�2 0

0 D�2+n���2+n�

�, p = �	 0 B2��2+n�

B�2+n��2
† 0


� .

A maximal abelian subalgebra of p has dimension 2, and so the coset has rank two. We can choose
for example, as maximal abelian subalgebra, the one generated by the matrices

H+ =�
0 0 0 1 0 ¯ 0

0 0 0 0 0 ¯ 0

0 0 0 0 0 ¯ 0

1 0 0 0 0 ¯ 0

] ¯ ]

0 0 0 0 0 ¯ 0

� , H− =�
0 0 0 0 0 ¯ 0

0 0 i 0 0 ¯ 0

0 − i 0 0 0 ¯ 0

0 0 0 0 0 ¯ 0

] ¯ ]

0 0 0 0 0 ¯ 0

�
The solvable algebra can be shown to be generated by

s4 = solv	 U�2,2 + n�
U�2� � U�2 + n�
 = span�H+,H− + span�Zia,Yia,T2,0,T0,2,S�

�1,1�,S�
�1,−1� , �4�

where i=1,2, a=1, . . .n, �=1,2, with commutation rules
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�Zia,Zjb� = �ij	abT�2,0�,

�Yia,Yjb� = �ij	abT�0,2�,

�Zia,Yjb� = 	ab�	ijS2
�1,1� + �ijS1

�1,1�� ,

�Yia,S1
�1,−1�� = Zia,

�Yia,S2
�1,−1�� = �ijZja,

�T�0,2�,S�
�1,−1�� = 2S�

�1,1�,

�S�
�1,1�,S�

�1,−1�� = 	��T�2,0�,

�H+,Zia� = Zia,

�H−,Yia� = Yia. �5�

The rest of the commutators with the Cartan generators H+ and H− are indicated by the upper
indices �h+ ,h−�. All the other commutators are zero.

Based on this solvable algebra, we choose the following parametrization for the coset repre-
sentative of U�2,2+n� / �U�2��U�2+n�� �In the appendix we show that the generators T�2,0�,
T�0,2�, S�

�1,1�, and Z1a correspond to true global translational isometries.�:

L�t, t̃, s̃�,s�,zia,yia,
,�� = A�t, t̃, s̃�,z1a�B�s�,z2a,yia�C�
,�� , �6�

where

A = exp�tT�2,0� + t̃ T�0,2� + s̃�S�
�1,1� + z1aZ

1a� ,

B = exp�s1S1
�1,−1��exp�s2S2

�1,−1��exp�z2aZ
2a�exp�y2aY

2a�exp�y1aY
1a� ,

C = exp�
H+ + �H−� .

The Maurer Cartan form is

L−1dL = e−2
�s�ds̃� + �s1
2 + s2

2�dt̃ + dt + z2adz1a�T�2,0� + e−2��dt̃ − y1ady2a�T�0,2�

+ e−��+
��y1ay2ads1 + 1
2 �y1

2 + y2
2�ds2 + ds̃1 + 2s1dt̃ − �ijyiadzja�S1

�1,1�

+ e−��+
��y1ay2ads2 − 1
2 �y1

2 + y2
2�ds1 + ds̃2 + 2s2dt̃ + 	ijyiadzja�S2

�1,1�

+ e−
�− y1ads1 + y2ads2 + dz1a�Z1a + e−
�− y2ads1 − y1ads2 + dz2a�Z2a + e�−
ds�S�
�1,−1�

+ e−�dyiaY
ia + d
H+ + d�H−. �7�

The metric of the coset is computed now as ��L−1dL�p , �L−1dL�p�. On the tangent space to the
identity, this gives the following inner product:

�X,X� = �1 for X = H±,T�2,0�,T�0,2�

1

2
for X = S1

�1,1�,S2
�1,1�,S1

�1,−1�,S2
�1,−1�,Y1a,Y2a,Z1a,Z2a, �

and the rest zero.
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For n=0 we obtain the reduced expression

ds2 = d�2 + d
2 + e−4
dtdt + 2e−4
s1dtds̃1 + 2e−4
s2dtds̃2 + 2e−4
�s2
2 + s1

2�dtdt̃

+
1

2
�e−2�
+�� + 2e−4
s1

2�ds̃1ds̃1 + 2e−4
s2s1ds̃1ds̃2 + 2e−4
s1�e2�
−�� + s2
2 + s1

2�ds̃1dt̃

+
1

2
�e−2�
+�� + 2e−4
s2

2�ds̃2ds̃2 + 2e−4
s2�e2�
−�� + s2
2 + s1

2�ds̃2dt̃ +
1

2
e2��−
�ds2ds2

+
1

2
e2��−
�ds1ds1 + e−4�
+���e2
 + e2��s1

2 + s2
2��2dt̃dt̃ . �8�

For arbitrary n we obtain �for this and the rest of the calculations of different metrics we have
used the program MATHEMATICA, Version 5.1, Wolfram Research, Inc., Champaign, IL, 2004.�
�sum over repeated indices is understood, and we have used the short-hand notation y1

2=y1ay1a�:

ds2 = d�2 + d
2 + e−4
dtdt + 2e−4
s1dtds̃1 + 2e−4
s2dtds̃2 + 2e−4
z2adtdz1a + 2e−4
�s2
2

+ s1
2�dtd t̃

+
1

2
�e−2�
+�� + 2e−4
s1

2�ds̃1ds̃1 + 2e−4
s2s1ds̃1ds̃2 +
1

2
e−2�
+���y1

2 + y2
2�ds̃1ds2

+ e−2�
+��y1ay2ads̃1ds1 − e−2�
+��y1ads̃1dz2a + �2e−4
s1z2a + e−2�
+��y2a�ds̃1dz1a

+ 2e−4
s1�e2�
−�� + s2
2 + s1

2�ds̃1d t̃ +
1

2
�e−2�
+�� + 2e−4
s2

2�ds̃2ds̃2 + e−2�
+��y1ay2ads̃2ds2

−
1

2
e−2�
+���y1

2 + y2
2�ds̃2ds1 + e−2�
+��y2ads̃2dz2a + �2e−4
s2z2a + e−2�
+��y1a�ds̃2dz1a

+ 2e−4
s2�e2�
−�� + s2
2 + s1

2�ds̃2dt̃ +
1

8
e−2�
+���4e4� + 4e2��y1

2 + y2
2� + 4�y1ay2a�2 + �y1

2 + y2
2�

��y1
2 + y2

2��ds�ds� −
1

2
e−2�
+���2e2�y1b + �− 2�y1ay2a�y2b + �y1

2 + y2
2�y1b��ds2dz2b

+
1

2
e−2�
+���2e2�y2b + �2�y1ay2a�y1b + �y1

2 + y2
2�y2b��ds2dz1b

+ e−2�
+���y2
2s1 + 2y2as2y1a + s1y1

2�ds2dt̃ −
1

2
e−2�
+���2e2�y2b + �2�y1ay2a�y1b

+ �y1
2 + y2

2�y2b��ds1dz2b −
1

2
e−2�
+���2e2�y1b + �− 2�y1ay2a�y2b + �y1

2 + y2
2�y1b��ds1dz1b

− e−2�
+���y1
2s2 − 2y1as1y2a + s2y2

2�ds1dt̃ −
1

2
e−2��+
��ij�mn�yiayjb�dzmadznb

+
1

2
e−2�
+���e2�	ab + �y1ay1b + y2ay2b��dz2adz2b − e−2�
+���2y1s1 − 2s2y2�dz2dt̃

+
1

2
e−4
�e2
	ab + 2z2az2b + e2�
−���y1ay1b + y2ay2b��dz1adz1b + �2e−4
�s2

2 + s1
2�z2a

+ 2e−2�
+���y1as2 + s1y2a��dz1adt̃ + e−4�
+���e2
 + e2��s1
2 + s2

2��2dt̃dt̃ − 2e−4�y1adt̃dy2a

+
1

2
e−4��e2�	ab + 2y1ay1b�dy2ady2b +

1

2
e−2�dy1ady1a. �9�
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C. Chain of embeddings

We have the following chain of solvable Lie algebras

s4 = solv	 U�2,2 + n�
U�2� � U�2 + n�
 �see�3�� ,

s3 = solv	 SO�2,2 + n�
SO�2� � SO�2 + n�
 = span�H+,H−

+ span�Z1a,Y1a,S2
�1,1�,S2

�1,−1� ,

s2 = solv	SU�1,1 + n�
U�1 + n� 
 = span�H+ + H− + span�Z1a,Y1a,S2

�1,1� ,

s1 = solv	SO�1,1 + n�
SO�1 + n� 
 = span�H+ + H− + span�Y1a , �10�

with si�subsi+1. Following the same procedure than in the previous examples, one can show that
these solvable Lie algebras correspond to the following chain of symmetric spaces:

SO�1,1 + n�
SO�1 + n�

�
SU�1,1 + n�

U�1 + n�
�

SO�2,2 + n�
SO�2� � SO�2 + n�

�
U�2,2 + n�

U�2� � U�2 + n�
. �11�

Notice that in this chain we have

Gi

Hi
�

Gi+1

Hi+1

with

G1 � G2, H1 � H2,

G3 � G4, H3 � H4,

G1 � G3, H1 � H3,

G2 � G4, H2 � H4,

but G2 is not in G3 nor H2 in H3 for generic n.
The solvable parametrization �6� allows us to compute the metric of the spaces in �11� by

imposing different restrictions on �9�.
For the coset SO�2,2+n� / �SO�2��SO�2+n��, we have

z2a = y2a = t = t̃ = s̃1 = s2 = 0,

so the metric is

ds2 = d�2 + d
2 + 1
2e−2�
+��ds̃2ds̃2 − 1

2e−2�
+��y1
2ds̃2ds1 + e−2�
+��y1ads̃2dz1a + 1

8e−2�
+���4e4� + �y1
2�2

+ 4e2�y1
2�ds1ds1 − 1

2e−2�
+��y1a�2e2� + y1
2�ds1dz1a + 1

2e−4
�e2
	ab + e2�
−��y1ay1b�dz1adz1b

+ 1
2e−2�dy1ady1a. �12�

Imposing the constraints s1=�−
=0, we obtain the metric on SU�1,1+n� /U�1+n�,
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ds2 = 2d�2 + 1
2e−4�ds̃2ds̃2 + e−4�y1ads̃2dz1a + 1

2e−4��e2�	ab + y1ay1b�dz1adz1b + 1
2e−2�dy1ady1a,

�13�

and imposing z1a= s̃2=0, we obtain the metric for SO�1,1+n� /SO�1+n�:

ds2 = 2d�2 + 1
2e−2�dy1ady1a �14�

which, up to a rescaling of the coordinates, corresponds to �3�.
We can further impose y1n=0 to obtain the same form than �14� but with a=1, . . . ,n−1. It is

the metric of SO�1,n� /SO�n�.

D. Truncations and integration of massive modes

Let us consider a sigma model described by the metric �14�. As we have seen, this model has
n translational isometries corresponding to the coordinates y1a. We may consider gauging one of
these isometries, say y1n. We introduce a gauge field A=A�dx� and substitute dy1n by the covariant
differential

Dy1n = dy1n + gA .

We redefine the connection by a gauge transformation

Â = A +
1

g
dy1n,

which will not change the kinetic term for A. Substituting this definition in the metric we obtain

ds2 = 2d�2 +
1

2
e−2��

a=1

n−1

dy1ady1a +
1

2
e−2�g2Â2.

We see that the effect of the gauging is absorbing the field y1n to give mass to the gauge vector.

Moreover, in this model Â is decoupled from the rest of fields �except for the warping factor e−2��,
so setting Â=0 is consistent with the equations of motion. After the truncation the sigma model
becomes SO�1,n� /SO�n�. This is explained by the mathematical identity

solv	SO�1,1 + n�
SO�1 + n� 
 = solv	SO�1,1 + n − k�

SO�1 + n − k� 
› Rk

which is a consequence of �2�.
We want to consider now the model SU�1, 2�/U�2�, with metric �13� for n=1. Note that s̃2 and

z1 are translational isometries. As before, we can gauge them by introducing abelian connections
A1, A2 with covariant differentials

ds̃2 → Ds̃2 = ds̃2 + k1A
1,

dz1 → Dz1 = dz1 + k2A
2.

We define the gauge-transformed connections

Â1 = A1 +
1

k1
ds̃2,

Â2 = A2 +
1

k2
dz1.

By substituting this definition, we can see that in the metric there will appear the terms
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ds2 = ¯ + 1
2e−4��k1�2�Â1�2 + ¯ + 1

2e−2��k2�2�Â2�2 + ¯ .

So, as before, the effect of the gauging has been to give mass to the vectors by absorbing the
modes associated to the translational isometries.

Nevertheless, in this case other interactions are present. By assuming that the mass of the
vectors is big enough we can take their kinetic terms to zero, and then we obtain algebraic

equations for Â1, Â2. A straightforward calculation shows that, after the elimination of these fields
the metric that remains is SO�1, 2�/SO�2�, that is Eq. �14� with n=1.

The difference between the two models here described is that in the first case the integration
of the massive modes is exact �that is, it is a consistent truncation of the theory�, while in the
second case a limiting process is involved �masses →�.

In the next section we will see that these integrations can be modeled by a contraction of the
metric of the initial manifold, followed by a quotienting of the manifold by a submanifold.

III. CONTRACTIONS OF GROUPS AND COSET SPACES

A. Contraction of a Lie algebra with respect to a subalgebra

We describe the Inönü-Wigner contraction of an algebra with respect to a subalgebra. Let g be
an arbitrary, finite dimensional Lie algebra with commutator �,� and let g=g1+g2, with g1 a
subalgebra. We define the following family of linear maps

��:g → g ,

x = x1 � x2 → x = x1 � �x2,

labeled by a real parameter �, In matrix form, the map and its inverse ���0� are block diagonal

�� = 	1 0

0 �1

, ��

−1 = �1 0

0
1

�
1 � .

We can define a new commutator

�X,Y�� = ��
−1�����X�,���Y���, X,Y � g .

�,�� is a deformed bracket, but of a simple form, since for ��0 is, by construction, isomorphic to
the bracket with �=1. We define the contraction of g with respect to the subalgebra g1 as a Lie
algebra with the same supporting vector space gc�g and with commutator

�X,Y�c = lim
�→0

��
−1�����X�,���Y���, X,Y � g . �15�

This bracket is well defined but, since �0 is not invertible, �,�c will not be, in general, isomorphic
to the original bracket.

B. Representations of the contracted algebra

We consider now a representation of g on a finite dimensional vector space W

R�X�:W → W, X � g

and assume that W=W1 � W2 with W1 an invariant subspace under the action of the subalgebra g1.
As before, we define a one parameter family of linear maps


�:W → W ,
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w = w1 � w2 → w = w1 � �w2,

so


� = 	1 0

0 �1

, 
�

−1 = �1 0

0
1

�
1 � .

Let us denote

R��X� = 
�
−1 � R����X�� � 
�, X � g .

R� is a representation of the deformed algebra. It is easy to check that the map Rc

Rc�X� = lim
�→0

R��X�

is a representation of gc on W.
Notice that 
�=�� for the adjoint representation.

C. Generalized contractions

The map �� can in fact be more general than the one considered before, the only constraint
being that the bracket in �15� is well defined. The conditions for this to happen were studied in
Ref. 13 and are called generalized Inönü-Wigner contractions. They are also a particular example
of algebra expansions.14

We will use particular examples of generalized contractions where the brackets can be seen
explicitly to have a well defined limit. We will not describe the general theory of these contrac-
tions, for which we refer to the original paper, Ref. 13.

D. Deformations and contractions of the metric: Some examples

As we have seen, we can always contract an algebra g with respect to a subalgebra g�. The
contracted algebra, gc will have always the structure of a semidirect product

gc = g� › Rn.

In chain �10� we have described subalgebras of s4, so we can contract each algebra si with respect
to s j with j� i

Since the solvable Lie algebras are related to the corresponding symmetric spaces, we are
going to define a procedure to contract the symmetric spaces. We will start with a representation
R� of the deformed Lie algebra, and compute the coset representative as in �6� with this new
representation. From this, one can compute a deformed vielbein and a deformed metric. This
procedure will introduce the parameter � in the metric, so we will have a uniparametric family of
metrics. Then, we can take the limit �→0.

We are interested in the simple examples presented in Sec. II D. The first one is trivial, since
the contraction of s1 for arbitrary n by the subalgebra s1 for n−1 has no effect, giving again s1 for
n.

Let us see how this works with the next example. We start with the algebra
solv�SU�1,2� /U�2�� �which is s2 for n=1� and we will work out the contraction with respect to
solv�SO�1,2� /SO�2�� which is �s1 for n=1�.

s2�n = 1� = span�H1 = H+ + H− + span�Z1,Y1,S1
�1,1� , �16�

s1�n = 1� = span�H1 + span�Y1 . �17�

It is convenient to write explicitly the commutation rules
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�H1,Z1� = Z1, �H1,Y1� = Y1, �H1,S1
�1,1�� = 2S1

�1,1�, �Z1,Y1� = S1
�1,1�.

The deformed algebra is

�H1,Z1�� = Z1, �H,Y1�� = Y1, �H1,S1
�1,1��� = 2S1

�1,1�, �Z1,Y1�� = �S1
�1,1� → 0.

The contracted algebra has the property that the only elements in g� that act on the abelian factor
Rn are the elements of the commuting subalgebra of p. In our case this subalgebra is H1=H+

+H−. This property will translate in a particularly simple form of the metric.
We consider the three-dimensional representation �induced from the fundamental of su�1,2��.

We decompose the representation space as

C3 = V1 � V2, V1 = ��v1

0

v3
��, V2 = �� 0

v2

0
�� ,

being V1 an invariant subspace under the subalgebra �17� and consider the linear map 
��e1

� e2�=e1 � �e2. Then we have a three dimensional representation of the deformed algebra,

R��H1� = �0 0 1

0 0 0

1 0 0
� ,

R��Z1� = � 0 i 0

i�2 0 − i�2

0 i 0
� → �0 i 0

0 0 0

0 i 0
� ,

R��Y1� = � 0 1 0

− �2 0 �2

0 1 0
� → �0 1 0

0 0 0

0 1 0
� ,

R��S1
�1,1�� = − �� i 0 0

0 i 0

0 0 − 2i
� → 0.

We compute now the vielbein and the metric in the way that we indicated in Sec. II. Notice
that the Euclidean metric that we put on the solvable Lie algebra with the deformed bracket is the
same as the one for �=1. In this way the normal metric Lie algebras �in the terminology of Ref.
9� are not isomorphic, nor are isometric the corresponding Riemannian spaces. We obtain then a
true deformation of the metric.

The result is

ds2 = 2d�2 + 1
2e−4�ds̃2ds̃2 + �2e−4�y1ds̃2dz1 + 1

2e−4��e2� + �4y1
2�dz1dz1 + 1

2e−2�dy1dy1, �18�

which can be compared with �13� for �=1.
For �→0 we get

ds2 = �2d�2 + 1
2e−2�dy1dy1� + 1

2e−2�dz1dz1 + 1
2e−4�ds̃2ds̃2. �19�

The first two factors correspond to �14�. The remaining modes appear decoupled except for
warping factors of type ea� /2. Then, imposing the constraints z1=0= s̃2 is always a consistent
truncation of the contracted sigma model �19�. We see with this simple example that integrating
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out massive modes can be geometrically modeled by a contraction of the sigma model, followed
by a quotienting by the decoupled modes.

It is instructive to compute Ricci tensor of the deformed metric �18�. We obtain �in the ordered
basis � ,y1 ,z1 , s̃2�

Rb
a��� =�

− 6 0 0 0

0 − 2�2 + �4� 0 0

0 0 − 2�2 + �4� 0

0 0 8y1�2��4 − 1� 2�− 4 + �4�
� . �20�

We see that for arbitrary � it is not an Einstein space. In the relevant limits

Rb
a�1� =�

− 6 0 0 0

0 − 6 0 0

0 0 − 6 0

0 0 0 − 6
�, Rb

a�0� =�
− 6 0 0 0

0 − 4 0 0

0 0 − 4 0

0 0 0 − 8
� .

For �=1 we have an Einstein space, but not for arbitrary �. It becomes clear from this simple
example that the deformation cannot be reabsorbed by a change of coordinates.

We consider now the Inönu-Wigner contraction of s4 with respect to s3. For simplicity, we
take n=1, so we have s4=s3+g where

s3 = span�H+,H−,S2
�1,1�,S1

�1,−1�,Y1,Z1 ,

g = span�T�2,0�,T�0,2�,S1
�1,1�,S2

�1,−1�,Y2,Z2 .

Differently from the first example, we use the adjoint representation to introduce the param-
eter �. The result for the metric is

ds2 = d�2 + d
2 + e−4
dtdt + 2e−4
s1dtds̃1 + 2e−4
s2dtds̃2 + 2e−4
z2dtdz1 + 2e−4
�s2
2�2

+ s1
2�dtdt̃

+ 1
2 �e−2�
+�� + 2e−4
s1

2�ds̃1ds̃1 + 2e−4
s2s1ds̃1ds̃2 + 1
2e−2�
+���y1

2 + y2
2�2�ds̃1ds2

+ e−2�
+��y1y2ds̃1ds1 − e−2�
+��y1ds̃1dz2 + �2e−4
s1z2 + e−2�
+��y2�ds̃1dz1

+ 2e−4
s1�e2�
−�� + s2
2�2 + s1

2�ds̃1dt̃ + 1
2 �e−2�
+�� + 2e−4
s2

2�ds̃2ds̃2 + e−2�
+��y1y2�2ds̃2ds2

− 1
2e−2�
+���y1

2 + y2
2�2�ds̃2ds1 + e−2�
+��y2�2ds̃2dz2 + �2e−4
s2z2 + e−2�
+��y1�ds̃2dz1

+ 2e−4
s2�e2�
−���2 + s2
2�2 + s1

2�ds̃2dt̃ + 1
8e−2�
+���4e4� + y1

4 + �2�2 + 4�4�y1
2y2

2 + y2
4�4

+ 4e2��y1
2 + y2

2�4��ds2ds2 − 1
2e−2�
+��y1�2e2� + y1

2 − �2�4 − �2�y2
2�ds2dz2 + 1

2e−2�
+��y2

��2e2��2 + �2�2 + 1�y1
2 + y2

2�2�ds2dz1 + e−2�
+���y2
2s1�2 + 2y2s2y1�4 + s1y1

2�ds2dt̃

+ 1
8e−2�
+��

��4e4� + y1
4 + �2�2 + 4�y1

2y2
2 + y2

4�4 + 4e2��y1
2 + y2

2��ds1ds1 − 1
2e−2�
+��

�y2�2e2� + �2 + �2�y1
2 + y2

2�4�ds1dz2 − 1
2e−2�
+��y1�2e2� + y1

2 − �2 − �2�y2
2�ds1dz1

− e−2�
+���y1
2s2�2 − 2y1s1y2 + s2y2

2�4�ds1dt̃ + 1
2e−2�
+���e2� + y1

2 + y2
2�4�dz2dz2

− e−2�
+���2y1s1 − 2s2y2�4�dz2dt̃ + 1
2e−4
�e2
 + 2z2

2 + e2�
−���y1
2 + y2

2��dz1dz1

+ �2e−4
�s2
2�2 + s1

2�z2 + 2e−2�
+���y1s2�2 + s1y2��dz1dt̃�e−4� + 2e−2��+
��s1
2 + s2

2�4�
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+ e−4
�s1
4 + 2s1

2s2
2�2 + s2

4�4��dt̃dt̃ − 2e−4�y1dt̃dy2 + 1
2e−4��e2� + 2y1

2�dy2dy2 + 1
2e−2�dy1dy1

+ e−2��+
�y1y2���2 − 1�dz1dz2� + 1
2e−2
y1y2�1 − �2��2 + e−2��y1

2 + y2
2�2��ds1ds2, �21�

which can be compared with �9� for �=1. For �=0 it becomes

ds2 = �d�2 + d
2 + 1
2e−4
�e−2��−
� + 2s2

2�ds̃2
2 − 1

2e−2��+
�y1
2ds̃2ds1 + �e−2��+
�y1

+ 2e−4
s2z2�ds̃2dz1

+ 1
8e−2��+
��4e4� + y1

4 + 4y1
2y2

2 + 4e2��y1
2 + y2

2��ds1
2 − 1

2e−2��+
�y1�2e2� + y1
2 − 2y2

2�ds1dz1

+ 1
2e−4
�e2
 + e−2��−
��y1

2 + y2
2� + 2z2

2�dz1
2 + 1

2e−2�dy1
2� + e−4
dt2 + e−4��+
��e2


+ e2�s1
2�2dt̃ 2 + 1

2e−4
�e−2��−
� + 2s1
2�ds̃ 1

2 + 1
8e−2��+
��2e2� + y1

2�2ds2
2 + 1

2e−4��e2� + 2y1
2�dy2

2

+ 1
2e−2��+
��e2� + y1

2�dz2
2 + 2e−4
s1

2dtdt̃ + 2e−4
s1dtds̃1 + 2e−4
s2dtds̃2 + 2e−4
z2dtdz1

+ 2e−2��+2
�s1�e2
 + e2�s1
2�dt̃ds̃1 + 2e−4
s1

2s2dt̃ds̃2 + 2e−2��+
�s1y1y2dt̃ds1

+ e−2��+
�s1y1
2dt̃ds2 − 2e−4�y1dt̃dy2 + 2e−2��+2
�s1�e2
y2 + e2�s1z2�

�dt̃dz1 − 2e−2��+
�s1y1dt̃dz2 + 2e−4
s1s2ds̃1ds̃2 + e−2��+
�y1y2ds̃1ds1 + 1
2e−2��+
�y1

2ds̃1ds2

+ e−4
�e−2��−
�y2 + 2s1z2�ds̃1dz1 − e−2��+
�y1ds̃1dz2 + 1
2e−2��+
�y1�2e2� + y1

2�y2ds1ds2

− e−2��+
�y2�e2� + y1
2�ds1dz2 − 1

2e−2��+
�y1�2e2� + y1
2�ds2dz2 + 1

2e−2��+
�y1
2y2ds2dz1

− e−2��+
�y1y2dz1dz2 �22�

We can compare the first five lines of �22� with �12�. They are different, but the extra terms are
zero when imposing the constraints

z2 = y2 = t = t̃ = s̃1 = s2 = 0.

This means that there is an isometric embedding of SO�2,3� / �SO�2��SO�3�� in the manifold
with the metric �22�. We can improve this result by making use of a generalized contraction, that
gives a simpler contracted metric. We will do that in the next section.

E. Generalized contractions: Some examples

1. Generalized contraction of U„2,3… / „U„2…ÃU„3……

We consider the following decomposition of s4,

s4 = g0 + g1 + g2 + g3,

where

g0 = span�H+,H−,S2
�1,1�,S1

�1,−1�,Y1,Z1,T�2,0� ,

g1 = span�S1
�1,1�, g2 = span�T�0,2�,Z2, g3 = span�S2

�1,−1�,Y2

and the linear map

s4 ——→
��

s4

e0 + e1 + e2 + e3 ——→ e0 + �e1 + �2e2 + �3e3

with ei � gi.

Equation �15� gives a deformed bracket that has a well defined limit when �→0. We write here the
contracted bracket. The only surviving commutators from �5� when �→0 are

�Z1,Y1� = S2
�1,1�,
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�Y1,S1
�1,−1�� = Z1,

�H+,Zi� = Zi,

�H−,Yi� = Yi,

so the contracted algebra has as a subalgebra

solv	 SO�2,3�
SO�2� � SO�3�
 = span�H+,H− + span�Z1,Y1,S2

�1,1�,S1
�1,−1�

in semidirect product with R6=span�Z2 ,Y2 ,T�0,2� ,T2,0 ,S1
�1,1� ,S2

�1,−1�, where the only generators
that act on R6 are H+ and H−.

We use the adjoint representation of the deformed algebra to compute the deformed metric.
The result is

ds2 = d�2 + d
2 + e−4
dtdt + 2e−4
s1�dtds̃1 + 2e−4
s2�3dtds̃2 + 2e−4
z2�2dtdz1

+ 2e−4
�s2
2�2 + s1

2�8�dtdt̃ + 1
2 �e−2�
+�� + 2e−4
s1

2�2�ds̃1ds̃1 + 2e−4
s2s1�4ds̃1ds̃2

+ 1
2e−2�
+���y1

2�2 + y2
2�8�ds̃1ds2 + e−2�
+��y1y2�2ds̃1ds1 − e−2�
+��y1�ds̃1dz2

+ �2e−4
s1z2�3 + e−2�
+��y2�2�ds̃1dz1 + 2e−4
s1�e2�
−��� + s2
2�9 + s1

2�3�ds̃1dt̃

+ 1
2 �e−2�
+�� + 2e−4
s2

2�6�ds̃2ds̃2 + e−2�
+��y1y2�6ds̃2ds2 − 1
2e−2�
+���y1

2 + y2
2�6�ds̃2ds1

+ e−2�
+��y2�5ds̃2dz2 + �2e−4
s2z2�5 + e−2�
+��y1�ds̃2dz1

+ 2e−4
s2�e2�
−���5 + s2
2�11 + s1

2�5�ds̃2dt̃ + 1
8e−2�
+���4e4� + y1

4�4 + �4�12 + 2�10�y1
2y2

2

+ y2
4�16

+ 4e2��y1
2�2 + y2

2�12��ds2ds2 − 1
2e−2�
+��y1�2e2�� + y1

2�3 − �2�11 − �9�y2
2�ds2dz2

+ 1
2e−2�
+��y2�2e2��6 + ��2 + 2�6�y1

2 + y2
2�10�ds2dz1 + e−2�
+���y2

2s1�9 + 2y2s2y1�11 + s1y1
2�3�

�ds2dt̃ + 1
8e−2�
+���4e4� + y1

4 + �4�4 + 2�6�y1
2y2

2 + y2
4�12 + 4e2��y1

2 + y2
2�2��ds1ds1

�− 1
2e−2�
+��y2�2e2�� + �2�3 + �5�y1

2 + y2
2�11�ds1dz2 − 1

2e−2�
+��y1�2e2� + y1
2 − �2�4 − �6�y2

2�

�ds1dz1 − e−2�
+���y1
2s2�5 − 2y1s1y2�3 + s2y2

2�11�ds1dt̃ + 1
2e−2�
+���e2� + y1

2�2 + y2
2�10�

�dz2dz2 − e−2�
+���2y1s1�2 − 2s2y2�10�dz2dt̃ + 1
2e−4
�e2
 + 2z2

2�4 + e2�
−���y1
2 + y2

2�2��

�dz1dz1 + �2e−4
�s2
2�10 + s1

2�4�z2 + 2e−2�
+���y1s2�3 + s1y2�5��dz1dt̃

+ �e4
 + e4��s1
4�4 + 2s1

2s2
2�10 + s2

4�16� + 2e2��+
��s1
2�2 + s2

2�10��dt̃dt̃ − 2e−4�y1�dt̃dy2

+ 1
2e−4��e2� + 2y1

2�2�dy2dy2 + 1
2e−2�dy1dy1 + e−2��+
�y1y2��5 − �3�dz1dz2

+ 1
2e−2
y1y2�2��2 − �6� + ��4 − �6��y1

2 + y2
2�6��ds1ds2. �23�

And for �=0 it becomes

ds2 = d�2 + d
2 + 1
2e−2�
+��ds̃2

2 − 1
2e−2�
+��y1

2ds̃2ds1 + e−2�
+��y1ds̃2dz1

+ 1
8e−2�
+���4e4� + y1

4 + 4e2�y1
2�ds1

2 − 1
2e−2�
+��y1�2e2� + y1

2�ds1dz1

+ 1
2e−4
�e2
 + e2�
−��y1

2�dz1
2 + 1

2e−2�dy1
2 + e−4
dt2 + e−4�dt̃ 2 + 1

2e−2��+
�ds̃ 1
2 + 1

2e2��−
�ds2
2

+ 1
2e−2�dy2

2 + 1
2e−2
dz2

2.
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The first three lines reproduce �12� for n=1, and the rest of the terms are flat up to factors e�a�+b
�.
The physical meaning of this limit remains unclear at this moment, but it relates two different
sigma models in what can be a generalized procedure of integrating out some modes.

2. Generalized contraction of U„2,1+n… / „U„2…ÃU„1+n……

We show here another example of generalized contraction that has an application in a physi-
cally interesting theory.

Let us denote H1=H++H−. Then the commutation rules of s2 are

�H1,Z1a� = Z1a, �H1,Y1a� = Y1a, �H1,S2
�1,1�� = 2S2

�1,1�, �Z1a,Y1b� = S2
�1,1�.

Consider the subalgebras of s4

s2� = span�H+,Zia,T�2,0�, s2� = span�H−,Yia,T�0,2� ,

with commutation rules

�H+,Zia� = Zia, �H+,T�2,0�� = 2T�2,0�, �Zia,Zjb� = 	ab�ijT�2,0� for s2�,

�H−,Yia� = Yia, �H−,T�0,2�� = 2T�0,2�, �Yia,Yjb� = 	ab�ijT�0,2� for s2�.

We have that s2�s2��s2� but �s2� ,s2���0, so s2� � s2� is not a subalgebra of s4. Nevertheless, one
can find a generalized contraction of s4 which has s2� � s2� as a subalgebra. We consider the
decomposition,

s4 = g0 + g1 + g2,

where

g0 = span�H+,H−, g1 = span�Yia,Zia,S�
�1,1�, g2 = �T�0,2�,T�2,0�,S�

�1,−1� ,

and the linear map

s4 ——→
��

s4

e0 + e1 + e2 ——→ e0 + �e1 + �2e2

ei � gi. �24�

The contracted Lie algebra, with commutator given by �15� is well defined. It is worthy to see the
commutators of the contracted algebra:

�Zia,Zjb�� = �ij	abT�2,0�,

�Yia,Yjb�� = �ij	abT�0,2�,

�Zia,Yjb�� = �	ab�	ijS2
�1,1� + �ijS1

�1,1�� ,

�Yia,S1
�1,−1��� = �2Zia,

�Yia,S2
�1,−1��� = �2�ijZja,

�T�0,2�,S�
�1,−1��� = �32S�

�1,1�,

�S�
�1,1�,S�

�1,−1��� = �	��T�2,0�,
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�H+,Zia�� = Zia,

�H−,Yia�� = Yia. �25�

showing explicitly s2� � s2� as a subalgebra when �→0. We use the adjoint representation to com-
pute the metric, as in the previous examples. The result is

ds2 = d�2 + d
2 + e−4
dtdt + 2e−4
�s1dtds̃1 + 2e−4
�s2dtds̃2 + 2e−4
z2adtdz1a

+ 2e−4
�4�s2
2 + s1

2�dtdt̃ + 1
2 �e−2�
+�� + 2e−4
�2s1

2�ds̃1ds̃1 + 2e−4
�2s2s1ds̃1ds̃2 + 1
2e−2�
+��

��3�y1
2 + y2

2�ds̃1ds2 + e−2�
+���3y1ay2ads̃1ds1 − e−2�
+���y1ads̃1dz2a

+ ��2e−4
s1z2a + e−2�
+��y2a�ds̃1dz1a + 2e−4
�3s1�e2�
−�� + �2�s2
2 + s1

2��ds̃1dt̃

+ 1
2 �e−2�
+�� + 2e−4
�2s2

2�ds̃2ds̃2 + e−2�
+���3y1ay2ads̃2ds2 − 1
2e−2�
+���3�y1

2 + y2
2�ds̃2ds1

+ e−2�
+���y2ads̃2dz2a + ��2e−4
s2z2a + e−2�
+��y1a�ds̃2dz1a + 2e−4
�3s2�e2�
−�� + �2�s2
2 + s1

2��

�ds̃2dt̃ + 1
8e−2�
+���4e4� + 4e2��4�y1

2 + y2
2� + 4�6�y1ay2a�2 + �6�y1

2 + y2
2��y1b

2 + y2b
2 ��ds�ds�

− 1
2e−2�
+���2�2e2�y1b + �2�− 2�y1ay2a�y2b + �y1

2 + y2
2�y1b��ds2dz2b + 1

2e−2�
+���2

��2e2�y2b + �2�2�y1ay2a�y1b + �y1
2 + y2

2�y2b��ds2dz1b + e−2�
+���6�y2
2s1 + 2y2as2y1a

+ s1y1
2�ds2dt̃

− 1
2e−2�
+���2�2e2�y2b + �2�2�y1ay2a�y1b + �y1

2 + y2
2�y2b��ds1dz2b − 1

2e−2�
+��

��2�2e2�y1b + �2�− 2�y1ay2a�y2b + �y1a
2 + y2a

2 �y1b��ds1dz1b

− e−2�
+���6�y1a
2 s2 − 2y1as1y2a + s2y2a

2 �ds1dt̃ − 1
2e−2��+
��ij�mn�2�yiayjb�dzmadznb + 1

2e−2�
+��

��e2�	ab + �2�y1ay1b + y2ay2b��dz2adz2b − e−2�
+���4�2y1s1 − 2s2y2�dz2dt̃

+ 1
2e−4
�e2
	ab + 2z2az2b + e2�
−���2�y1ay1b + y2ay2b��dz1adz1b + �4�2e−4
�s2

2 + s1
2�z2a

+ 2e−2�
+���y1as2 + s1y2a��dz1adt̃ + e−4�
+���e4
 + e2��+
��6�s1
2 + s2

2� + e4��8�s1
2 + s2

2�2�dt̃dt̃

− 2e−4�y1adt̃dy2a + 1
2e−4��e2�	ab + 2y1ay1b�dy2ady2b + 1

2e−2�dy1ady1a. �26�

In the contraction limit �→0 the metric reduces to

ds2 = �d�2 + e−4�dt̃dt̃ − 2e−4�y1adt̃dy2a + 1
2e−4��e2�	ab + 2y1ay1b�dy2ady2b + 1

2e−2�dy1ady1a�
+ �d
2 + e−4
dtdt + 2e−4
z2adtdz1a + 1

2e−4
�e2
	ab + 2z2az2b�dz1adz1b + 1
2e−2
dz2adz2a�

+ 1
2e−2�
+��ds̃�ds̃� + 1

2e−2�
+��ds�ds�.

By comparison with �13� we can see, after a suitable renaming of the coordinates and a rescaling
by a global constant factor, that this is the metric on

	SU�1,1 + N�
U�1 + N�

�
SU�1,1 + N�

U�1 + N� 
› R4.

IV. SUPER HIGGS MECHANISM IN SUPERGRAVITY: GEOMETRIC INTERPRETATION

We consider an N=2 supergravity model coupled to n+2 hypermultiplets and n+1 vector
multiplets. This model can be obtained as an N=2 phase of the compactification of type IIB
supergravity on the N=4 orientifold T6 /Z2.15,16 Indeed, when certain fluxes are turned on, has an
N=3 phase obtained after the integration of the massive gravitino multiplet. The theory describing
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the N=3 massless modes can be further Higgsed to an N=2 phase by turning on other suitable
fluxes and further integration.17 The scalar manifold for the N=2 theory is11

MQ � MSK =
U�2,2 + n�

U�2� � U�2 + n�
�

SU�1,1 + n�
U�1 + n�

.

Here n refers to the brane degrees of freedom. The special geometry and symplectic basis that
describe this model have been discussed in Ref. 18.

The N=2 model can also be Higgsed to N=1,0 phases by still turning on fluxes. This
corresponds in the supergravity language to gauge two translational isometries of the quaternionic
manifold. In the parametrization that we have used before �26� it is manifest that the coordinates
s̃� correspond to two translational isometries, generated by S�

�1,1�, and we used the two bulk vector
fields to gauge them.

When the gauge interactions are switched on, the �-model Lagrangian gets modified by the
minimal coupling prescription, with

ds̃� → Ds̃� = ds̃� + k�,�A�, � = 0,1, . . . ,n + 1

and we may choose the constants k1,0�0, k2,1�0 and the rest zero. Then the Higgs mechanism
takes place, as we described in Sec. II D, with the s̃� contributing to the longitudinal components
of the massive vectors

Â�
0 = A�

0 +
1

k1,0
��s̃1, Â�

1 = A�
1 +

1

k2,1
��s̃2.

From Eq. �7� we can see that the kinetic term of these modes is

ds2 = ¯ + e−4
�s�Ds̃� + �s1
2 + s2

2�dt̃ + dt + z2adz1a�2 + 1
2e−2�
+���Ds̃1 + y1ay2ads1 + 1

2 �y1
2 + y2

2�ds2

+ 2s1dt̃ − �ijyiadzja�2 + 1
2e−2�
+���Ds̃2 + y1ay2ads2 − 1

2 �y1
2 + y2

2�ds1 + 2s2dt̃ + 	ijyiadzja�2 + ¯ .

After the substitution

Ds̃� → k�,�Â� = B�

the kinetic term for the vectors remains unchanged, whereas mass terms appear for the vectors Â�,
with masses k0,1 and k1,2. The modes s̃� disappear from the Lagrangian.

In the large mass limit, the massive fields B�
�=mÂ�

� appear in the Lagrangian through expres-
sions of the type

�B� + f��2,

where f� is some interaction of the massless modes.11 The B’s are Lagrange multipliers and their
equations of motions make these terms to vanish.

The N=2 gauged theory has a scalar potential stabilizing two additional scalars which in our
parametrization correspond to the coordinates s�.19 These fields acquire also a mass through the
potential. In the large mass limit, these fields become Lagrange multipliers and the potential is
such that their field equations set them to zero.

After performing these integrations, the metric becomes the one of the symmetric space

SU�1,1 + n�
U�1 + n�

�
SU�1,1 + n�

U�1 + n�
.

Now we see that this example fits with the contraction performed in Sec. III E. We can see that
the terms set to zero in the metric by taking the limit �→0 are precisely the terms eliminated by
the integration procedure. The modes that have become massive are the modes in R4 in the
decomposition
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solv	 U�2,2 + n�
U�2� � U�2 + n�
 → solv	SU�1,1 + n�

U�1 + n�
�

SU�1,1 + n�
U�1 + n� 
› R4.

Since R4 is an invariant subgroup of the contracted group, the quotient

solv	SU�1,1 + n�
U�1 + n�

�
SU�1,1 + n�

U�1 + n� 
› R4/R4 � solv	SU�1,1 + n�
U�1 + n�

�
SU�1,1 + n�

U�1 + n� 
 ,

is a �solvable� group, associated to the symmetric space. So in the geometrical picture the inte-
gration of the massive modes is again modeled by a contraction and a quotient by an invariant
subgroup.
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APPENDIX: ABOUT SOLVABLE LIE ALGEBRAS AND TRANSLATIONAL ISOMETRIES

A Lie algebra s is solvable if the chain of ideals

s�0� = s, s�1� = �s,s�, . . . ,s�p� = �s�p−1�,s�p−1��, . . .

has s�p+1�=0 for some integer p. It is possible to prove7 that a Lie algebra s is solvable if and only
if there is a chain of ideals ii+1� ii with ii / ii+1 an abelian algebra, i0=s and ip+1=0 for some p. It
is clear that ip=0 is an abelian ideal.

Example A.1

As an example, let us consider s=s4 so

i0 = s4,

i1 = �i0,i0� = span�Zia,Yia,T2,0,T0,2,S�
�1,1�,S�

�1,−1� ,

i2 = �i1,i1� = span�Zia,T2,0,T0,2,S�
�1,1� ,

i3 = �i2,i2� = span�T2,0 .

Notice that it is possible to substitute i3 in the chain by the maximal abelian ideal

i3� = span�T2,0,T0,2,S�
�1,1�,Z1a ,

or by this other one �with the same dimension�
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i�3 = span�T2,0,T0,2,S�
�1,1�,Z2a ,

so the chain is not unique. �

One can also show that s�1� is a nilpotent Lie algebra. The unique simply connected group
associated to a nilpotent Lie algebra is exponential �the exp map is a diffeomorphism of the Lie
algebra into the Lie group�.7

Let g be a Lie algebra and t an abelian subalgebra. Let �Xi be a basis of t and �Y� a basis of
a complementary space to t. In a neighborhood of the identity, we have the exponential map

L�ui,v�� = euiXiev�Y�. �A1�

The Maurer-Cartan form is

L−1dL = e−v�Y�Xie
v�Y�dui + e−v�Y�d�ev�Y�� .

From this expression, one can see that the local expression of the Maurer-Cartan form does not
depend on the coordinates ui. Whenever the group G with Lie algebra g is diffeomorphic to Rn

�M, with Rn parametrized by ui �in other words, the coordinates ui are global�, we will say that
the generators Xi are translational isometries.

We consider now the solvable algebras associated to the non compact symmetric spaces by the
Iwasawa decomposition and explore the translational isometries in the corresponding symmetric
spaces. The solvable Lie algebras are always a semidirect product

s = a › n ,

where a is abelian �it contains the non compact Cartan elements� and s�1�=n is the nilpotent part.
The non compact symmetric spaces are simply connected, so they are, in each case, the unique
simply connected group associated to the corresponding solvable algebra. We denote it by

S = A › N, with Lie�A� = a and Lie�N� = n ,

and A and N being simply connected as well6 �and hence, exponential�. As a manifold,

S = A � N = exp�a� � exp�n� . �A2�

Let us now consider the factor N in �A2�. We want to prove that the generators in the abelian
ideal are translational isometries. Let n=n1+n2, with n1 an abelian ideal and n2 any complemen-
tary subspace. We have that the map

n → N ,

�X1,X2� → exp�X1 + X2�

is a diffeomorphism. We want to show that, equally, the map

n → N ,

�X1,X2� → exp X1 exp X2

is a diffeomorphism. It is enough to prove that any element exp�Y1+Y2� can be written as
exp X1 exp X2 for some Xi�ni. We notice that

exp X1 exp X2 = exp�X1 + X2 + 1
2 �X1,X2� + ¯ � = exp�X2 + X1��, with X1� � n1.

We take Y2=X2, and the equation Y1=X1� can be solved for some X1�n1.
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Near threshold expansion of Feynman diagrams
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The near threshold expansion of Feynman diagrams is derived from their configu-
ration space representation, by performing all x integrations. The general scalar
Feynman diagram is considered, with an arbitrary number of external momenta, an
arbitrary number of internal lines and an arbitrary number of loops, in n dimensions
and all masses may be different. The expansions are considered both below and
above threshold. Rules, giving real and imaginary part, are derived. Unitarity of a
sunset diagram with I internal lines is checked in a direct way by showing that its
imaginary part is equal to the phase space integral of I particles. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1947119�

I. INTRODUCTION

In the usual approach of quantum field theory,1–4 the successive terms in perturbation theory
are represented by diagrams that are given by Feynman rules in momentum space. The most
simple Feynman diagram is the zero loop diagram of Fig. 1. Several particles may come in and
out, only the sum p of their momenta is of interest. The momentum space expression of Fig. 1 is

1

p2 − m2 + i�
. �1.1�

The one loop diagram �Fig. 2� is given by the momentum space expression

� dk
i

�k2 − m1
2 + i����p − k�2 − m2

2 + i��
, �1.2�

which is logarithmic divergent in four dimensions. The i�’s may be transformed away by a Wick
rotation, dimensional regularization may be introduced and the internal momentum may be inte-
grated away. Integration over one Feynman parameter is left. In this way, �1.2� becomes5

�1.2� = ����� − 2��
0

1

dy�− y�1 − y�p2 + ym1
2 + �1 − y�m2

2��−2. �1.3�

The minus sign in the integrand comes from the inverse Wick rotation at the end of the calcula-
tions, which transforms p into ip.

The � is a continuous variable and �1.3� must be considered in the limit

� = � − 1
2n → 0, �1.4�

where n is the number of dimensions. The logarithmic divergence of �1.2� in four dimensions is
visible through the �-function in front,

a�Electronic mail: emendels@zonnet.nl
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�1.3� =
�2

�
+ �2�

0

1

dy ln�− y�1 − y�p2 + ym1
2 + �1 − y�m2

2� . �1.5�

Finally, the integration over y may be done,

�1.5� =
�2

�
+ �2� p2 + m1

2 − m2
2

2p2 	ln m1
2 + �2� p2 + m2

2 − m1
2

p2 	ln m2
2 − 2�2

+ 2�2 a

p2arctg� p2 + m1
2 − m2

2

a
	 + 2�2 a

p2arctg� p2 + m2
2 − m1

2

a
	 , �1.6�

with

a = 
− �p + m1 + m2��p − m1 + m2��p + m1 − m2��p − m1 − m2� . �1.7�

If the absolute value of the argument of the arctangents in �1.6� is smaller than 1, their series
expansion is given by

arctg� p2 + m1
2 − m2

2

a
	 = � p2 + m1

2 − m2
2

a
	 −

1

3
� p2 + m1

2 − m2
2

a
	3

+ ¯ . �1.8a�

If it is larger than 1, the series expansion is given by

arctg� p2 + m1
2 − m2

2

a
	 =

�

4
− � a

p2 + m1
2 − m2

2	 +
1

3
� a

p2 + m1
2 − m2

2	3

− ¯ . �1.8b�

The two-loop diagram �Fig. 3� is represented in momentum space by

� dk1 dk2
i2

�k1
2 − m1

2 + i���k2
2 − m2

2 + i����p − k1 − k2�2 − m3
2 + i��

. �1.9�

In four dimensions, it is quadratic divergent and contains subintegrals that are logarithmic diver-
gent. The expression becomes after regularization and integration over the internal momenta,

�1.9� = �2���3 − 2�� � dy1 dy2�y1y2 + y1y3 + y2y3�−�

��−
y1y2y3p

2

y1y2 + y1y3 + y2y3
+ y1m1

2 + y2m2
2 + y3m3

2	2�−3

�1.10�

with

FIG. 1. Zero loop diagram.

FIG. 2. One loop diagram.
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y3 = 1 − y1 − y2. �1.11�

One of the infinities is visible through the �-function in front. Other infinities become visible only
after cumbersome partial integrations over the Feynman parameters y1 and y2 and introduction of
master integrals to which they are reduced.6,7

The cut in the complex ��m−p� plane, causing an imaginary part above threshold, is not
clearly visible in �1.2�, nor in �1.5�. It becomes manifest in �1.6�, after having done the y integra-
tion. In the two loop case, it is not visible at all, neither in �1.9�, nor in �1.10�.

Unitarity implies that the imaginary part of diagrams with two vertices and I internal lines
should be equal to the phase space integral of I particles. This relation is valid in the zero loop case
of Fig. 1,

1

p2 − m2 + i�
= PP

1

p2 − m2 − i���p2 − m2� . �1.12�

On the right-hand side �rhs�, both a real and an imaginary part is seen. The latter is given by

2I� 1

p2 − m2 + i�
	 = − 2�� dk ��p − k���k0���k2 − m2� . �1.13�

Indeed, the rhs is the one-particle phase space integral, up to a factor 2�.
In the one loop case of Fig. 2, unitarity is not clear from �1.2� or �1.3�. It is seen from �1.8a�,

which is real if p	m1+m2, but if p
m1+m2, an imaginary part appears, coming from the � /4
term in �1.8b�,

I�1.6� = −
�3��p − m1 − m2�
�p + m1 + m2��p − m1 + m2��p + m1 − m2��p − m1 − m2�

p2 .

�1.14�

On the other hand, the two-particle phase space integral in four dimensions is given by8

� dk1 dk2 ��p − k1 − k2���k1
2 − m1���k2

2 − m2
2���k1

0���k2
0�

=
���p − m1 − m2�
�p + m1 + m2��p − m1 + m2��p + m1 − m2��p − m1 − m2�

2p2 . �1.15�

Indeed,

2�1.14� = − �2��2�1.15� �1.16�

which means unitarity of the one loop diagram in four dimensions.

FIG. 3. Two loop diagram.
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In the two loop case, the imaginary part of �1.10� is not easily found and if there are near
threshold expansions from which it possibly may be derived,9 it is not clear that it is equal to the
three particle phase space integral. On the other hand, if the three particle phase space integral is
computed,10 it is not clear that it equals the imaginary part of �1.10�.

To our opinion, it is an unsatisfactory situation that zero loop Feynman rules are given in
momentum space, that must be replaced by one loop rules in terms of Feynman parameters that
must be replaced once again by rules that work in the case of more loops. Moreover, it is an
unsatisfactory situation that real and imaginary parts are not clearly visible in the usual expres-
sions of Feynman diagrams. Finally, it is an unsatisfactory situation that unitarity is not obviously
seen in the usual expressions of Feynman diagrams.

It would be more satisfactory if final rules could be derived, that do not have to be redefined
twice. For this reason, it has been proposed11 to describe Feynman diagrams in terms of configu-
ration space parameters, which are structure conserving and, therefore, do not mix different kinds
of infinities.

In the configuration space formalism, internal and external lines of a diagram correspond to
Bessel functions with a pure imaginary argument. In the case of sunset diagrams, only one
integration variable x is needed. On the other hand, these same Bessel functions appear in the
configuration space expression of phase space integrals.12,13 The integrands of sunset diagrams
and phase space integrals are equal, only the ranges of the x integration are different. By this fact,
unitarity is built into the formalism in a natural way.

The x space formalism has been extended from sunset diagrams to general Feynman dia-
grams, which implies integration over several configuration space parameters x j and over the
angles between them.14

The purpose of the present paper is to complete the work and to perform all integrations.
Rules are derived that immediately give the final result, including cuts, disentangled poles, real
and imaginary parts.

The formulas are complicated in the case of a general diagram, summation variables with
three and sometimes four indices must be used. To our opinion, this situation is preferable above
a formalism, where infinities, cuts and unitarity are hidden in the integration variables and which
too is complicated.

The formalism is general, i.e., it is applicable on diagrams with any number of internal lines,
any number of vertices, any number of loops in any dimension and all internal and external masses
may be different. Scalar fields are considered, but introduction of spin does not give complications
since spin leads to matrices and derivatives that do not affect the essential structure of the formu-
las.

II. SERIES EXPANSION OF SUNSET DIAGRAMS

In order to understand the way of working of the formalism, we consider first dimensionally
regularized diagrams with two vertices and I internal lines �so-called sunset, sunrise or water
melon diagrams�. They are represented in x space by the expression

F2
I � �mj�2bj

��� j� �0

�

dx x2�−1ib�px�kbj�mjx� , �2.1�

with notation

� = �
1jI

�2.2�

and front factor
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F2
I =

�2�
1
2

n�I+1

�2��n . �2.3�

Equation �2.1� is obtained from the corresponding momentum space expression after a Wick
transformation and n dimensional Fourier transformations of the propagators according to

� dk j e−ikj·x

�k j2 + mj2��j =
2�

1
2

nm2bj

��� j�
kbj�mjx� , �2.4�

with

bj = 1
2n − � j . �2.5�

Thereupon, one inverse n dimensional Fourier transformation has been performed. After integra-
tion of an exponential over its angles and an inverse Wick transformation according to

� dx̂ eip·x = 2�
1
2

njb�px� →
p→ip

2�
1
2

nib�px� , �2.6�

with

b = 1
2n − 1, �2.7�

the result �2.1� is obtained.11 The various factors 2 and � in �2.3� are remnants of all these actions.
The functions ib�px� and kbj�mjx� are, up to a factor, modified Bessel functions of the first and

third kind,15 respectively. Details are summarized in Appendix A. In the case of integer b and bj,
the near zero expansions are given by

ib�z� = jb�iz� = �
k=0

�
1

k ! �b + k�!� z

2
	2k

, �2.8a�

kbj�z� = �
0kj�

Kj� z

2
	2kj

+ �
0kj�

Lj� z

2
	2kj

ln� z

2
	 + �

0kjbj−1

Mj� z

2
	−2bj+2kj

. �2.8b�

Kj, Lj, and Mj are building stones of the functions kbj�z�; they depend on the summation variable
kj and, according to Appendix A, they are given by

Kj  Kbj�kj� =
�− �bj+1

kj ! �bj + kj�!��� −
1

1
−

1

2
− ¯ −

1

kj	 + �� −
1

1
−

1

2
− ¯ −

1

kj + bj	�,

�� = 0.577 215 664 9� , �2.9a�

Lj  Lbj�kj� =
�− �bj+1

kj ! �bj + kj�!
, �2.9b�

Mj  Mbj�kj� =
�− �kj

�bj − kj − 1�!
2kj!

. �2.9c�

As indicated in �2.8b�, the summation over kj is from 0 to � if it concerns Kj or Lj and from 0 to
bj−1 if it concerns Mj.

To compute the integral �2.1�, it must be split according to
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�
0

�

dx = �
0

X

dx + �
X

�

dx , �2.10�

where X is arbitrary. In the �X
�dx integral, the asymptotic expansions �A6a� for kbj�mjx� and �A6f�

for ib�px� are inserted,

��
X

�

dx x2�−1ib�px�kbj�mjx� = �
0kj	Hj

0k	H

� ��I−1�/222b+2�bc
�b,k��bj,kj�e−i��b+ 1

2�
�2p�b+k+ 1

2 �2mj�bj+kj+ 1
2

��
X

�

dx e−��mc+p�xx2�−�b+k+ 1
2�−��bc+kc+ 1

2�−1

+ �
0kj	Hj

0k	H

� ��I−1�/222b+2�bc
�b,k��bj,kj�

�2p�b+k+ 1
2 �2mj�bj+kj+ 1

2

��
X

�

dx e−��mc−p�xx2�−�b+k+ 1
2�−��bc+kc+ 1

2�−1 + rest term,

�2.11�

with notation

� = �
1cI

, �2.12a�

�b,k� =
��b + k + 1

2�
k ! ��b − k + 1

2� . �2.12b�

Though asymptotic expansions of Bessel functions are used,16–18 it should be remembered that
they do not converge in even dimensional spaces15 �the asymptotic series do converge and even
are finite in odd dimensional spaces�. Nonetheless, these expansions make sense if their meaning
is realized,19 for a given H and Hj in �2.11�, X may be chosen sufficiently large to make the rest
term arbitrary small and to make the X→� integrals arbitrary accurate. For this reason, near �
integrals over the asymptotic series must be combined with near 0 integrals over expansions that
are convergent in the neighborhood of 0.

The integrals of �2.11� make sense only if the exponentials in the integrand are decreasing,
i.e., if

� mc − p 
 0. �2.13�

By introducing the parameter

� = �� mc − p�X �2.14�

and choosing � large with respect to the asymptotic coefficients �b ,H� and �bj ,Hj� of �2.12b�,
both integrals of �2.11� are small and �2.1� can be computed by doing the integration from 0 to �
only,
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F2
I � �mj�2bj�

0

�

dx x2�−1ib�px�kbj�mjx� � F2
I � �� j�2bj

�� mc − p�2��−�bc��
0

�

d� �2�−1ib����kbj�� j�� ,

�2.15�

with

� =
p

� mc − p
, �2.16a�

� j =
mj

� mc − p
. �2.16b�

III. BELOW THRESHOLD

The Bessel function expansions �2.8� must be inserted into the rhs of �2.15� and integration is
performed with use of Appendix D.

In the case of the one loop diagram of Fig. 2, the result is

F2
2��1�2b1

��2�2b2

�m1 + m2 − p�2��−b1−b2��
0

�

d� �2�−1ib����kb1��1��kb2��2��

= �
k,k1,k2

22�F2
2�2k��1�2�b1+k1���2�2�b2+k2�

�m1 + m2 − p�2��−b1−b2�k ! �b + k�!

� �F11 ln��1�

2
	ln��2�

2
	 + F10 ln��1�

2
	 + F01 ln��2�

2
	 + F00� . �3.1�

The coefficients F11, F10, F01, and F00 depend on the summation variables kj and are expressed in
terms of the functions Kj, Lj, and Mj of �2.9�,

F11 =
L1L2��/2�N

N
, �3.2a�

F10 = −
L1L2��/2�N

�N�2 +
L1K2��/2�N

N
+

L1M2��/2��N−2b2�

�N − 2b2�
, �3.2b�

F01 = −
L1L2��/2�N

�N�2 +
K1L2��/2�N

N
+

M1L2��/2��N−2b1�

�N − 2b1�
, �3.2c�

F00 =
L1L2��/2�N

�N�3 −
K1L2��/2�N

�N�2 −
M1L2��/2�N−2b1

�N − 2b1�2 −
L1K2��/2�N

�N�2 −
L1M2��/2��N−2b2�

�N − 2b2�

−
K1L2��/2�N

�N�2 −
M1L2��/2��N−2b1�

�N − 2b1�2 +
K1K2��/2�N

N
+

K1M2��/2��N−2b2�

�N − 2b2�
+

M1K2��/2�N−2b1

�N − 2b1�

+
M1M2��/2�N−2b1−2b2

�N − 2b1 − 2b2�
, �3.2d�

with
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N = 2�� + k + k1 + k2� . �3.3�

In the case of four dimensions ��=2� and propagator exponent 1 ��−bj=1�, an infinity appears in
�3.2d� through the denominator factor �N−2b1−2b2�. It corresponds to the infinity in �1.5�.

The formula’s �3.1�, �3.2�, and �3.3� may be generalized to sunset diagrams with I internal
lines,

� F2
I �� j�2bj

�� mc − p�2��−�bc��
0

�

d� �2�−1ib����kbj�� j��

= �
k,kj

� 22�F2
I �2k�� j�2�bj+kj�

�� mc − p�2��−�bc�
k ! �b + k�!

�
0f j1

Ff1
¯f j�ln�� j�

2
	� f j

, �3.4�

with

Ff1
¯f j

= �
f jgjhj1

� �− �GG ! �Kj��1−hj��1−gj��Lj�gj
�Mj��1−gj�hj

�N − 2 � �1 − gc�hcbc�1+G ��

2
	N−2��1−gc�hcbc

, �3.5�

where

G = � �gc − fc� , �3.6a�

N = 2�� + k + �
1cI

kc	 . �3.6b�

To �3.4� must be added the �→� integrals �2.11� which may help convergence and may be
computed by means of the formulas of Appendix C. The latter integrals are arbitrary small for
sufficiently large �.

IV. ABOVE THRESHOLD

The threshold at p=�mc appears through the logarithmic factors in �3.1� and �3.4�. It is a
direct consequence of the requirement �2.13� that the asymptotic integrands �2.11� should decrease
exponentially.

Analytical continuation to above threshold, i.e., to

p 
 � m , �4.1�

is obtained after replacement of ��m−p� by �p−�m� in �3.1� and �3.4�. Terms that are even in
��m−p� remain unchanged by this replacement, odd terms transform into their opposite and a
term i� is added to a logarithmic factor,

�� m − p�2k → �p − � m�2k
, �4.2a�

�� m − p�2k+1 → − �p − � m�2k+1
, �4.2b�

ln�� m − p� → ln�p − � m� + i� . �4.2c�

Imaginary terms appear by these transformations through the factor
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�
0f i1

Ff1,f2�ln��1�

2
	� f1�ln��2�

2
	� f2

.

In the one loop case,

F11 ln��1�

2
	ln��2�

2
	 + F10 ln��1�

2
	 + F01 ln��2�

2
	 + F00

= F1,1 ln��1�

2
	ln��2�

2
	 − �2F1,1 + F1,0 ln��1�

2
	 + F0,1 ln��2�

2
	

+ i��F1,1 ln��1�

2
	 + F1,1 ln��2�

2
	 + F1,0 + F0,1� . �4.3�

V. THE GENERAL FEYNMAN DIAGRAM

A general Feynman diagram, with V vertices and I internal lines, is written in terms of
configuration space parameters as14

�2�
1
2

n�I

�2��n�V−1� �
�mi

j�2bi
j
�mi�,i

j �2b
i�,i
j

���i
j����i�,i

j �
� dxi eipi·xikbi

j�mi
jxi�kb

i�,i
j �mi�,i

j �xi − xi��� �5.1�

with notation

� = �
1iV−1

1i�	i

j

. �5.2�

Internal lines and their corresponding masses wear three indices, the two subscripts i� , i indicate
the vertices that they are connecting, the superscript j counts the lines between these vertices.

The number of integration vectors xi is V−1, one less than the number of vertices. The
external momenta are given by V−1 vectors pi, the momentum pV is given by momentum con-
servation,

�
1iV

pi = 0. �5.3�

The elaboration of �5.1� goes along the same lines as in the case of Sec. II. It will turn out that the
final result is a generalization of the result �3.4� for sunset diagrams.

The integrand of �5.1� contains both functions like kbi
�mixi�, with a simple argument, and

functions like kbi�,i
�mi�,i�xi−xi���, with a composed argument. Because of the latter functions, the

integration range of �5.1� must be divided into V! subregions. �V−1�! of them are of the kind

0 	 x1 	 x2 	 ¯ 	 xV−1 	 X + permutations, �5.4a�

with arbitrary X, and V !−�V−1�! subregions are of the kind

0 	 x1 	 x2 	 ¯ 	 X 	 ¯ 	 xV−1 	 � . �5.4b�

In the subregions of �5.4b�, the functions kbi�,i
with a composed argument are split according to

�A8� and the integral �5.1� contains a sum of products of three factors,
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�5.1� = FV
I � �

�mi
j�2bi

j
�mi�,i

j �2b
i�,i
j

���i
j����i�,i

j �
A�ri�,i

j �R1�ri�,i
j �R2�ri�,i

j � , �5.5�

with front factor

FV
I =

�2�
1
2

n�I+V−1

�2��n�V−1� . �5.6�

A�ri�,i
j � is an angular factor given in �B8b�, R1�ri�,i

j � and R2�ri�,i
j � are radial factors given by �C1a�

and �C1b�.
The radial integrals are meaningful only if the integrands are decreasing exponentials. From

the formulas of Appendix C, it is seen that the latter condition is satisfied below all thresholds, i.e.,
if

� m − � p  minV� �
a�V,b�V

��
c

ma,b
c − pb	� 
 0, �5.7�

where V is a set of vertices and minV is the minimum over all possible sets. Under the condition
�5.7�, integrals in the subregions �5.4b� can be made arbitrary small if

�  �� m − � p�X �5.8�

is chosen sufficiently large.
The nondisappearing integrals in the subregions �5.4a� are computed by splitting the com-

posed functions kbi�,i
�mi�,i�xi−xi��� according to �A11�, which leads to a simpler formula than �A8�.

Integral �5.1� is written in these subregions as the sum over products of an angular and a radial
factor according to

�5.1� � FV
I � �

ri�,i!

���i
j����i�,i

j �ri�,i
j !

A�qi;ri�,i�R�qi;ri�,i� , �5.9�

with

ri�,i = �
c

ri�,i
c , �5.10a�

�2�
1
2

n�V−1A�qi,ri�,i� = �� dx̂i
�2p̂i · x̂i�qi

qi!

�2x̂i� · x̂i�ri�,i

ri�,i!
�5.10b�

and

R�qi;ri�,i
j �  �

l
i�,i
j

=0

�

� 22��V−1��− �l
i�,i
j

li�,i
j !

pi
qi�mi

j�2bi
j
�mi�,i

j �2�b
i�,i
j

+l
i�,i
j

+r
i�,i
j �

� �
0	x1	¯	xV−1	X

d
xi

2
� xi

2
	2�−1+qi+2�li,a

c +�ra,i+�ri,a

kbi
j�mi

jxi�kb
i�,i
j +l

i�,i
j +r

i�,i
j �mi�,i

j xi�

+ permutations. �5.10c�

Summation � in the exponent is defined in �B5�.
Integral �5.10b� is computed in �B4b� and �5.10c� is computed by insertion of �A3c�. The final

result is a generalization of the result �3.4� for sunset diagrams,
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�5.1� �
22��V−1�FV

I

�� m − � p�2���V−1�−�ba
c−�ba,b

c � �
k,l,q,r

�
ri�,i!

���i
j����i�,i

j �ri�,i
j A�qi;ri�,i��i

qi
�− �l

i�,i
j

li�,i
j ��i

j�2�bi
j+ki

j�

���i�,i
j �2�b

i�,i
j

+l
i�,i
j

+r
i�,i
j

+k
i�,i
j ��

f=0

1

Ffi
j,f

i�,i
j �ln��i

j�

2
	� f i

j�ln��i�,i
j

�

2
	� f

i�,i
j

, �5.11�

with

�i =
pi

�� m − � p�
, �i

j =
mi

j

�� m − � p�
, �i�,i

j =
mi�,i

j

�� m − � p�
, �5.12a�

and

Ffi
j,f

i�,i
j

= �
fg;V−2¯g;1gh1

� �− �GiGi!

� �
1ai

Na	1+Gi
�Ki

j��1−gi
j��1−hi

j��Li
j�gi

j
�Mi

j��1−gi
j�hi

j
�Ki�,i

j ��1−g
i�,i
j ��1−h

i�,i
j �

��Li�,i
j �g

i�,i
j

�Mi�,i
j ��1−g

i�,i
j �h

i�,i
j ��

2
	 �

1aV−1
Na

+ permutations. �5.12b�

Ffi
j,f i�,i

j

depends on the summation variables k , l ,q ,r through the factors Ki
j , Li

j , Mi
j, through the

factors

Ki�,i
j  Kb

i�,i
j +l

i�,i
j +r

i�,i
j �ki�,i

j �, Li�,i
j  Lb

i�,i
j +l

i�,i
j +r

i�,i
j �ki�,i

j �, Mi�,i
j  Mb

i�,i
j +l

i�,i
j +r

i�,i
j �ki�,i

j � , �5.13�

all defined according to �2.9�, and through the factors �1aiNa with

Ni = 2� + qi + 2 � ki
c + 2 � ka,i

c + 2 � li,a
c + � ra,i

c + � ri,a
c

− 2 � hi
c�1 − gi

c�bi
c − � ha,i

c �1 − ga,i
c ��ba,i

c + la,i
c + ra,i

c � , �5.14�

where summation � is according to the convention of �B5�. Gi is computed in Appendix D,

Gi = �
1ai

c

�ga;i−1
c − ga;i

c � + �
1a�	ai

c

�ga�,a;i−1
c − ga�,a;i

c � , �5.15�

where gi
j, gi�,i

j , gi;i�
j , gi�,i;i�

j , f i
j, and f i�,i

j �i�	 i i�	V−1� are summation variables running from 0 to
1 and

gi;i−1
j  gi

j , �5.16a�

gi�,i;i−1
j  gi�,i

j , �5.16b�

gi;V−1
j  f i

j , �5.16c�

gi�,i;V−1
j  f i�,i

j . �5.16d�

� fg;V−2¯g;1gh1 in �5.12b� means summation under the conditions

f i
j  gi;V−2

j  ¯  gi;i
j  gi

j  hi
j  1, �5.17a�
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f i�,i
j

 gi�,i;V−2
j

 ¯  gi�,i;i
j

 gi�,i
j

 hi�,i
j

 1, �5.17b�

�k means summation over all ki
j and ki�,i

j from 0 to �, if they are appearing through factors K and
L, the summation is from 0 to bi

j−1 and bi
j+ li

j+ri
j−1, respectively, if they are appearing through a

factor M.
Equation �5.11� is a generalization of formula �3.4� for sunset diagrams. It is a sum of terms

that have factors K, L, and M, defined in �2.8� and �2.9�, in the numerator. Instead of a power of
one denominator factor N in �3.4�, �5.10c� leads to V−1 denominator factors �a=1

i Na�i
=1,2 ,… ,V−1�, which all, in turn, may have higher powers, caused by integration over loga-
rithms. The various terms of �5.12b� may be described by the following features:

�i� The first term consists of I factors L in the numerator. The exponent of xi in �5.10c�
becomes, after integration, a factor �a=1

i Na, in the denominator. The factor in front is 0! .
�ii� Integration of terms with factors L gives, because of the logarithm of �2.8b�, both a term

with a logarithm and a term without logarithm.
�iii� In the latter case, the power of the corresponding factors �a=1

i Na increases by 1, as well as
the argument of the faculty in front, and the sign of the term changes.

�iv� Further terms are obtained after replacement of factors L by K , M or combinations in terms
with an increased power of �a=1

i Na. Each replacement lowers the power of �a=1
i Na by 1 as

well as the argument of the faculty in front, and changes the sign of the term.
�v� A factor M in the numerator implies addition of a term −2b or −2�b+ l+r� to the corre-

sponding Na in the denominator. If two or more of these terms are added, poles in the
complex � plane may appear.

The integrals in the regions �5.4b�, which may be computed by means of the formulas of
Appendix C, must be added to �5.11� to help convergence. The latter integrals are arbitrary small
for sufficiently large �.

Analytical continuation from the region �5.7� to other regions of the complex ��m−�p� plane
is obtained according to the rules of �4.2�.

As an example, we demonstrate a diagram with three vertices and five internal lines according
to Fig. 4.

The expression is

�2�1/2n�5

�2��2n

�m1
1�2b1

1
�m1

2�2b1
2
�m2

1�2b2
1
�m2

2�2b2
2
�m1,2�2b1,2

���1
1����1

2����2
1����2

2����1,2�

�� dx1 dx2 eip1·x1eip2·x2kb1
1�m1

1x1�kb1
2�m1

2x1�kb2
1�m2

1x2�kb2
2�m2

2x2�kb1,2
�m1,2�x1 − x2�� �5.18�

and the region of the radial integrations is divided into subregions 0	x1	x2	X , 0	x1	X

FIG. 4. A diagram with three vertices and five internal lines.
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	x2 , 0	X	x1	x2, and permutations of x1 and x2. ��m−�p� is given by

�� m − � p�  min��m1
1 + m1

2 + m1,2 − p1� ,

�m2
1 + m2

2 + m12 − p2�,�m1
1 + m1

2 + m2
1 + m2

2 − p1 − p2� .
� �5.19�

The contribution of the subregions 0	x1	X	x2 , 0	X	x1	x2, and permutations can be made
arbitrary small by choosing

� = �� m − � p�X �5.20�

sufficiently large. In this case, only the two regions 0	x1	x2	X and 0	x2	x1	X contribute.
In the latter subregions, �5.18� is factorized into an angular and a radial part,

�5.18� �
�2�1/2n�7

�2��2n���1
1����1

2����2
1����2

2����12�
A�q1,q2,r12�R�q1,q2,r12� �5.21�

with

A�q1,q2,r12� =
1

�2�
1
2

n�2
� dx̂1 dx̂2

�2p̂1 · x̂1�q1

q1!

�2p̂2 · x̂2�q2

q2!

�2x̂1 · x̂2�r1,2

r1,2!

= �
q1,2,p1,2

�

�2p̂1 · p̂2�p1,2

1
2 �n + q1 + r1,2� ! 1

2 �n + q2 + q1,2� ! 1
2 �q1 − q1,2� ! 1

2 �q2 − p1,2� ! 1
2 �r1,2 − q1,2� ! 1

2 �q1,2 − p1,2� ! p1,2!

�5.22a�

��� means summation over q1,2 and p1,2 under the condition that the arguments of the faculties in
the denominator are integers� and

R�q1,q2,r12� = �
l1,2

24�p1
q1p2

q2�m1
1�2b1

1
�m1

2�2b1
2
�m2

1�2b2
1
�m2

2�2b2
2
�− �l1,2�m1,2�2�b1,2+l1,2+r1,2�

l1,2!

��
0	x1	x2	X

d
x1

2
d

x2

2
� x1

2
	2�+q1+2l1,2+r1,2−1� x2

2
	2�+q2+r1,2−1

� kb1
1�m1

1x1�kb1
2�m1

2x1�kb2
1�m2

1x2�kb1
2�m2

2x2�kb1,2+l1,2+r1,2
�m1,2x2� + permutation.

�5.22b�

The rhs of �5.22b� is computed with use of Appendix D. The final result is
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�5.23�

with

N1 = 2� + q1 + 2k1
1 + 2k1

2 + 2l1,2 + r1,2, �5.24a�

N2 = 2� + q2 + 2k2
1 + 2k2

2 + 2k1,2 + r1,2. �5.24b�

VI. UNITARITY

The S matrix must satisfy the unitarity relation

S†S = I . �6.1�

In terms of the T-matrix, which is defined by

S = I − i��� p�T , �6.2�

�6.1� is written as

2I�T�  i�T† − T� = − ��� p�T†T . �6.3�

In the case of sunset diagrams, their imaginary part must be equal to the integral over positive
energy states with momenta that are on the mass shell, which is the phase space integral.

The n dimensional Laplace transform of ��k0���k2−m2� is found by using the integral repre-
sentation �A14�,13
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�
0

�

dk e−x·k��k0���k2 − m2� =
��n−1�/2

��n − 1

2
	�m

�

dk0 e−xk0
�k02

− m2��n−3�/2

=
��n−1�/2�m2��n/2�−1

��n − 1

2
	 �

1

�

dt e−mxt�t2 − 1��n−3�/2

= ��n/2�−1�m2��n/2�−1k�n/2�−1�mx� . �6.4�

Applying �6.4� on a product of factors ��k0���k2−m2� and taking afterwards the inverse n dimen-
sional Laplace transformation, which is an inverse K transform according to �A15�, it follows
that12,13

�2��I �� dk j ��p − � kc���k0
j ���k j2 − mj2� =

F2
I

i � �mj�2bj�
c−i�

c+i�

dx xn−1ib�px�kbj�mjx� ,

�6.5�

with

b = bj = 1
2n − 1, �6.6a�

c 
 0, �6.6b�

and F2
I is given in �2.3�. The left-hand side �lhs� of �6.5� is, up to a factor �2��I, the I particle phase

space integral.
We remark that �6.5� is obtained by Laplace transformations followed by an n dimensional

inverse Laplace transformation in the same way as �2.1� is obtained from the momentum space
representation by Fourier transformations followed by an n dimensional inverse Fourier transfor-
mation. The integrands of �6.5� and �2.1� are equal, the integrals differ by the path of integration.

In the case p	�m, it is seen that �6.5� is 0, by closing the contour to the right of the complex
��m−p� plane and by remarking that the integrand vanishes towards � �Fig. 5�.

In the case p
�m, the integral does not vanish near infinity towards the left-hand side of the
complex plane, since the decreasing asymptotic behavior of the integrand is restricted by the

FIG. 5. Integration path to the right.
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values of the argument of the integration variable, as indicated in �A6�. The integrand vanishes
near � only if crossing the negative axis is avoided. Hence, the path of integration must be closed
according to Fig. 6. The contribution from the near zero part and that of the near infinity circle are
both 0. The contribution along the negative real axis from −�→−0 is equal to the complex
conjugate of the −0→−� integration.

Hence, we conclude that

�6.5� = − F2
I � �mj�2bj�

0

�

dx xn−12I�� i�n/2�−1�px�k�n/2�−1�mjx�� . �6.7�

After interchanging integral and I operation, the unitarity relation

2I�2.1� = − �2��I �� dk j ��p − � k j���k0
j ���k j2 − mj2� �6.8�

of a sunset diagram is obtained. It is in agreement with �1.13� and �1.16�.

VII. CONVERGENCE

Expansions with many summation variables occurred in the preceding sections and conver-
gence of these series must be discussed.

In the used formulas, faculties of summation variables appear in the denominator, which helps
convergence. Also factors like �−�k and �−�l may promote convergence.

A point of concern is a � function of summation variables in the numerator, like in the factor

�− �l
i�,i
j

Mi�,i
j

li�,i
j !

=
�− �k

i�,i
j

+l
i�,i
j

��bi�,i
j + li�,i

j + ri�,i
j − ki�,i

j �

2ki�,i
j ! li�,i

j !
. �7.1�

Its origin is �A11� where the function kb�m�xi−xi��� with a composed argument is split. Since this
Bessel function is analytical, it is not dangerous in itself. Only integration in a region where the
argument is zero may cause divergences. These correspond to the ultraviolet divergences in mo-
mentum space.

In the case of functions kb�mx� with simple argument, divergences were appearing through
factors of the kind

FIG. 6. Integration path to the left.
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1

N
=

1

2� − 2 � b + 2 � k + ¯

. �7.2�

In the case of functions with a composed argument, the divergences come from integration in the
region where �xi−xi��=0. These manifest by divergence of the summation over the variable li�,i.
For this reason, the method of Sec. V is applicable only on diagrams like Fig. 4, where composed
k-functions correspond to single connected vertices, which add only one term −2b to the denomi-
nator of �7.2�.

There is a freedom of choice of the configuration space parameters. Transformations like

xi → xi + xi� �7.3�

are possible. By such transformations, it may be tried to manage that all multiple connected
vertices correspond to simple k functions. This has been done in the case of Fig. 4. However, there
are cases where such transformations cannot be found, like the diagram of Fig. 7.

A division of the integral range, finer than in �5.4a�, is needed, �V+1�! subregions of the kind

x1 	 x2 	 �x1 − x2� 	 X and permutations �7.4�

must be considered and more complicated angle integrations must be performed. This procedure
has been discussed in Ref. 14. Fortunately, diagrams like Fig. 7 are not used in today’s physics.

A second source of divergences are integrations in the neighborhood of �. They correspond to
infrared divergences in momentum space. By caring that the asymptotic behavior of the integrand
is exponential decreasing, this kind of infinity is avoided.

In the preceding sections, the above-mentioned restrictions have been treated by separating
out the corresponding divergences. Hence, the general expression �5.1� is convergent up to the
divergences that have been separated out, and so is its expansion �5.11�.

The working of the splitting procedure of �2.10� may be elucidated in the case of
�0

�dx x2�−1k��x� with �=2 and �=1. The integral is known exactly,15

�
0

�

dx x2�−1k��x� = 22�−2������� − �� . �7.5�

On the other hand, we may work out

FIG. 7. A diagram with three vertices and six internal lines.
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�
0

�

dx x3k1�x� = �
0

�

dx x3k1�x� + �
�

�

dx x3k1�x� . �7.6�

Insertion of the expansion �A3� into the first term of the rhs and application of �D1� yields

�
0

�

dx x2�−1k1�x� = �
k=0

� 22���� −
1

1
−

1

2
−

1

3
¯ −

1

k
	 + �� −

1

1
−

1

2
−

1

3
¯ −

1

k
−

1

k + 1
	���

2
	2�+2k

k ! �k + 1� ! �2� + 2k�

+ �
k=0

� 22���

2
	2�+2k

ln��

2
	

k ! �k + 1� ! �2� + 2k�
− �

k=0

� 22���

2
	2�+2k

ln��

2
	

k ! �k + 1� ! �2� + 2k�2 +
1

2�2� − 2���

2
	2�−2

.

�7.7�

Insertion of the asymptotic expansion �A6a� into the second term of the rhs of �7.6� yields

�
�

�

dx x2�−1k1�x� � �
��
k=0

H−1

2
1
2

−k�1,k���
�

�

dx x2�−k− 5
2 e−x, �7.8�

on which �C7� may be applied.
We take the number of terms of the asymptotic series 15 �H=15� ,�=0.577 215 664 9, and

find

� �0
�dx x3k1�x� ��

�dx x3k1�x� �0
�dx x3k1�x�+��

�dx x3k1�x�

2 1.969921963 1.204499139 3.174421102
5 3.734552813 0.26544653 3.999999343
10 3.995697337 0.004301964 3.99999301
15 3.999745608 0.0000503234 3.999795931
20 3.951797003 −0.0000460393 3.951750964
23 2.799347994 −0.008824087 2.781523907

It is seen that for 10	�	15 the first integral alone approaches the exact answer 4 of �7.5�. For
smaller �’s, the asymptotic integral may help convergence. Apparently, the calculations are not
sufficiently accurate for �	3 and �
20.
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APPENDIX A: BESSEL FUNCTIONS

Most of the formulas of this appendix are found in the textbook by Watson15 for the functions
J��z�, I��z�, K��z�, H�

�1��z�, and H�
�2��z�. In this paper, use has been made of functions j��z�, i��z�,

k��z�, h�
+�z�, and h�

−�z� that differ from them by a factor �z /2�� according to

j��z� = � z

2
	−�

J��z� = �
k=0

�
�− �k

k ! ��1 + � + k�� z

2
	2k

, �A1a�

i��z� = � z

2
	−�

I��z� = �
k=0

�
1

k ! ��1 + � + k�� z

2
	2k

, �A1b�
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k��z� = � z

2
	−�

K��z� =
�

2 sin ��
�
k=0

� � 1

k ! ��1 − � + k�� z

2
	−2�+2k

−
1

k ! ��1 + � + k�� z

2
	2k� ,

�A1c�

h�
+�z� = � z

2
	−�

H�
�1��z� =

− i

sin ��
�
k=0

�

�− �k� 1

k ! ��1 − � + k�� z

2
	−2�+2k

−
e−i��

k ! ��1 + � + k�� z

2
	2k� ,

�A1d�

h�
−�z� = � z

2
	−�

H�
�2��z� =

i

sin��
�
k=0

�

�− �k� 1

k ! ��1 − � + k�� z

2
	−2�+2k

−
ei��

k ! ��1 + � + k�� z

2
	2k�.

�A1e�

If it is supposed that

� = b + � , �A2�

where b is integer, �A1� becomes in the limit �→0,

jb�z� = �
k=0

�
�− �k

k ! �b + k�!� z

2
	2k

, �A3a�

ib�z� = jb�iz� = �
k=0

�
1

k ! �b + k�!� z

2
	2k

, �A3b�

kb�z� = Kb�k�� z

2
	2k

+ Lb� z

2
	2k

ln� z

2
	 + Mb�k�� z

2
	−2b+2k

, �A3c�

hb
+�z� = jb�z� + iyb�z� , �A3d�

hb
−�z� = jb�z� − iyb�z� , �A3e�

with the notation

yb�z� =
− �− �k2

�
��− �bKb�k�� z

2
	2k

+ �− �bLb� z

2
	2k

ln� z

2
	 + Mb�k�� z

2
	−2b+2k� , �A4a�

Kb�k� =
�− �b+1

k ! �b + k�!��� −
1

1
−

1

2
− ¯ −

1

k
	 + �� −

1

1
−

1

2
− ¯ −

1

k + b
	�,

�� = 0.577 215 664 9� , �A4b�

Lb�k� =
�− �b+1

k ! �b + k�!
, �A4c�

Mb�k� =
�− �k�b − k − 1�!

2 . k!
. �A4d�

From here, we see that
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hb
+�iz� =

2i�− �b+1

�
kb�z� , �A5a�

hb
−�iz� = 2ib�z� −

2i�− �b+1

�
kb�z� . �A5b�

The asymptotic behavior of the functions k��z�, h�
+�z�, h�

−�z�, h�
+�iz�, and h�

−�iz� is given by

k��z� = e−z��
k=0

H−1 
�22���,k�

�2z��+k+ 1
2

+ O�z−H�� �−
3

2
� 	 arg z 	

3

2
�	 , �A6a�

h�
+�z� =

22�+1e− 1
2

i���+ 1
2�eiz


� ��
k=0

H−1
ik��,k�

�2z��+k+ 1
2

+ O�z−H�� �− � 	 arg z 	 2�� , �A6b�

h�
−�z� =

22�+1e
1
2

i���+ 1
2�e−iz


�
��

k=0

H−1
�− i�k��,k�

�2z��+k+ 1
2

+ O�z−H�� �− 2� 	 arg z 	 �� , �A6c�

h�
+�iz� =

22�+1e−i���+ 1
2�e−z


� ��
k=0

H−1
��,k�

�2z��+k+ 1
2

+ O�z−H�� �−
3

2
� 	 arg z 	

3

2
�	 , �A6d�

h�
−�iz� =

22�+1ez


� ��
k=0

H−1
�− �k��,k�

�2z��+k+ 1
2

+ O�z−H�� �−
5

2
� 	 arg z 	

1

2
�	 , �A6e�

i��z� =
22�


���
k=0

H−1
�− �k��,k�ez

�2z��+k+ 1
2

+ �
k=0

H−1
��,k�e−i���+ 1

2�e−z

�2z��+k+ 1
2

+ O�z−H�� �−
3

2
� 	 arg z 	

1

2
�	 ,

�A6f�

where �� ,0�=1 and

��,k� =
��� + k + 1

2�
k ! ��� − k + 1

2� =
��2 − �1

2
	2���2 − �3

2
	2�¯��2 − �2k − 1

2
	2�

k!
, �A7�

if k
0.
The function kb�m�x−y�� may be split according to

k��m�x − y�� = �����
l=0

�

�� + l�Cl
��x̂ · ŷ��m2xy

4
	l

i�+l�mx�k�+l�my� �A8�

if

x 	 y , �A9�

where x̂ · ŷ is the cosine of the angle between x and y and Ck
��x̂ · ŷ� are Gegenbauer polynomials,

defined by
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Cl
��x̂ · ŷ�  �

r

�
�− ��l−r�/2��� +

l + r

2
	�2x̂ · ŷ�r

����
l − r

2
! r!

. �A10�

�� means summation under the condition that �l−r� /2 is integer. A direct splitting into Bessel
functions and cosines is11

k��m�x − y�� = �
l,r=0

�
�− �l

l!
�mx

2
	r+2l�my

2
	r �2x̂ · ŷ�r

r!
k�+l+r�my� �A11�

if

x 	 y . �A12�

An integral representation is

k��z� =
1

2
�

0

�

d� �−�e−�e−z2/4�, �A13�

which establishes the connection between configuration space and Feynman parameters.14

Another integral representation is

k��z� =

�

��� + 1
2��1

�

dt e−zt�t2 − 1��− 1
2 . �A14�

If the k� transform of a function R�p� is defined by

S�x� = 2�
1
2

n−1�
0

�

dp pn−1k1
2

n−1�px�R�p� , �A15a�

then R�p� is found by the inverse transformation20

R�p� =
1

i�
1
2

n2n−2
�

c−i�

c+i�

dx xn−1i1
2

n−1�px�S�x� . �A15b�

APPENDIX B: ANGULAR INTEGRATIONS

Integration over n dimensional Euclidean space of a product of cosines is done by using the
formula21,22

� dx̂�x̂ · q1�q1�x̂ · q2�q2
¯ �x̂ · qV−1�qV−1 = �

qi

q1 ! q2 ! ¯ qV−1!

�q1 + q2 + ¯ qV−1�! � dx̂ x̂ · �q1 + q2 + ¯

+ qV−1�q1+q2+¯qV−1. �B1�

Integration of the rhs yields
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�
1	iV−1

� dx̂1
�2p̂1 · x̂1�q1

q1!

�2x̂1 · x̂i�r1,i

r1,i!
= �� 2�

1
2

n

��n + q1 + r1,2 + ¯ + r1,V−1

2
	q1 − �

1	aV−1
q1,a

2
!

�
1	iV−1

�2p̂1 · x̂i�q1,i

r1,i − q1,i − �
1	a	i

qa,i
1 − �

i	aV−1
qi,a

1

2
! q1,i!

�
1i�	iV−1

�2x̂i� · x̂i�q
i�,i
1

qi�,i
1 !

, �B2�

where �� means summation over the variables q1,i and qi,i�
1 �1	 i	 i�V−1� from 0 to � in

such a way that the arguments of the faculties in the denominator are integers.
Multiple application of �B2� yields

�� dx̂i
�2p̂i · x̂i�qi

qi!

�2x̂i� · x̂i�r
i�,i
j

ri�,i
j !

=
�2�

1
2

n�V−1ri�,i!

�
j

ri�,i
j !

A�qi,ri�,i� , �B3�

with notation of � according to �5.2� and

ri�,i = �
c

ri�,i
c . �B4a�

The angular factor in �B3� is given by

A�qi,ri�,i� = �� �

�ri�,i + � qc
i�,i� ! �qi�,i + � qi�

c
i� ! �2p̂i� · p̂i�pi�,i+�qi�,i

c

��n + qi + � ri,a + � qc
i,b + � qa,i + � qa

c
i

2
	q̄i ! r̄i�,i ! q̄i�,i ! ri�,i ! qi�,i ! pi�,i ! qi�

i,i�� ! qi�
i
i� ! qi�,i

i�!

�B4b�

where we used summation variables qi�
i,i�, qi�

i
i�

, and qi�,i
i� �1 i�	 i	 i�V−1� with three indi-

ces and summation notation

� ri,a = �
a=i+1

V−1

ri,a, � qa,i = �
a=1

i−1

qa,i, � qc
i,b = �

c=1

i−1

�
b=i+1

V−1

qc
i,b,

� qa
c
i = �

a=1

c−1

�
c=2

i−1

qa
c
i, � qi�,i

c = �
c=i+1

V−1

qi�,i
c, etc. �B5�

Furthermore,

q̄i =
qi − � qi,a − � pa,i

2
, �B6a�
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r̄i�,i =
ri�,i + � qa

i�,i − qi�,i − � qi�
a,i − � qi�

i,a

2
, �B6b�

q̄i�,i =
qi�,i + � qi�

a
i − pi�,i − � qa,i�

i − � qi�,a
i

2
. �B6c�

�� means summation over the variables pi�,i, qi�,i, qi�
i,i�, qi�

i
i�

, and qi�,i
i� from 0 to � in such a way

that q̄i, q̄i�,i, and r̄i�,i are integers. Summation over q̄i yields Bessel functions,

�� dx̂i eipi·xi
�2x̂i� · x̂i�r

i�,i
j

ri�,i
j !

=
�2�

1
2

n�V−1ri�,i!

�
j

ri�,i
j !

�� A�ri�,i�� ipixi

2
	si−�r̄i,a−�q̄a,i−�qi

a,b−�qa,b
i

j�n/2�−1+si
�pixi�

�B7�

with

si =
� qi,a + � pa,i + � ri,a + � qc

i,a + � qa,i + � qa
c
i

2

= r̄i,a + 2q̄i,a + q̄a,i + pi,a + pa,i + qi
a,b − qi

a
b + qa,i

c + qi,a
c + qa,b

i �B8a�

and

A�ri�,i
j � = �

�ri�,i + � qc
i�,i� ! �qi�,i + � qi�

c
i� ! �2p̂i� · p̂i�pi�,i+�qi�,i

c

r̄i�,i ! q̄i�,i ! ri�,i ! qi�,i ! pi�,i ! qi�
i,i� ! qi�

i
i�

! qi�,i
i�!

. �B8b�

APPENDIX C: RADIAL �\� INTEGRATIONS

The radial factors R1�ri�,i
j � and R2�ri�,i

j �, appearing in �5.5� as result of integrations in the
subregions �5.4b�, may be expressed, using �A8� and �B7�, in terms of Bessel functions. They
become

�C1a�

which may be computed after insertion of the near zero expansions �A3b� and �A3c�, and
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�C1b�

Insertion of the asymptotic expansions �A6� into �C1b� yields incomplete � functions. The power
of xi is restricted since terms si and li�,i

j in the exponent are cancelled by terms si and li�,i
j in the

order of the Bessel functions.
The rhs of �C1b� is computed by use of the following formulas:

�
X

�

dx1 e−M1xx1
�1−1 = M−�1 �

0k1H1−1

���1�
���1 − k1�

e−M1X�M1X�−k1−1

+ M−H1−1 ���1�
���1 − H1��X

�

dx1 e−M1xx1
�1−H1−1. �C2�

If �1 is positive integer, the series on the rhs is finite. If �1 is positive noninteger, H1 is chosen ��1

so that the exponent of x1 in the integrand is negative.
In both cases and also in the case �10 the rhs is restricted according to

�
X

�

dx1 e−M1xx1
�1−1  M1

−�1 �
0k1H1

���1�
���1 − k1�

��1−k1−1e−�, �C3�

where

� = M1X . �C4�

Multiple application of this formula yields

�
1ig

�
X	x1¯	xg	�

dxi e−Mixxi
�i−1

� �
1ag

Ma	−�1ag�a �
0kiHi

���iag
�a − �i	ag

ka − g + i�
���iag

��a − ka� − g + i�

���1ag
Ma

�iag
Ma
	−1−ki

��1ag�a−ka−ge−�. �C5�

It is seen that �C3� and �C5� can be made arbitrary small by choosing � sufficiently large.
By application of
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�
X

�

dx1 e−M1x1x1
�1−1 = M1

�1���1� − �
0

X

dx1 e−M1x1x1
�1−1, �C6�

the incomplete � functions with integer or half-integer arguments may be computed by the fol-
lowing expansions:

�
X

�

dx1 e−M1xx1
�1−1 = P�1

+ Q�1 �
l=0

l�−�1

�
�− �l��1+l

l ! ��1 + l�
, �C7�

where

P�1
= ��1 − 1� ! and Q�1

= − 1 if �1 positive integer, �C8a�

P�1
= 0 and Q�1

= 1 if �1 nonpositive integer, �C8b�

P�1
=


��2�1 − 1�!

��1 − 1
2� ! 22�1−1

and Q�1
= − 1 if �1 positive half-integer, �C8c�

P�1
=


��− �
1
2

−r� 1
2 − �1� ! 21−2�1

�1 − 2�1�!
and Q�1

= − 1 if �1 negative half-integer. �C8d�

Multiple application of �C7� and �C8� yields

�
1ig

�
X	x1	¯	xg

�

dxi e−Mixxi
�i−1 = P�1

¯P�g
M1

−�1
¯Mg

−�g

+ P�1
¯P�g−1+�g+lg

Q�g
M1

−�1
¯Mg−1

−�g−1−�g

�−
Mg

Mg−1
	lg

lg ! ��g + lg�

+ 2g − 1 terms where factors P�i
have been replaced by factors Q�i

. �C9�

Equation �C9� may be inserted into �C1b�.
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We prove that some operators related to the rough Laplacian in the hyperbolic
space give isomorphisms between Sobolev spaces of 1-forms. By using these re-
sults we prove that the Einstein equation of the hyperbolic Robertson-Walker cos-
mological model is linearization stable. We also study the linearization stability for
Robertson-Walker models,V=S3 I, with S compact, complete, having either con-
stant negative or zero curvature. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1941087g

I. INTRODUCTION

Let g̃ be a Lorentz metric. Denote by Ricsg̃d the Ricci tensor ofg̃, by Rsg̃d the scalar curvature
of g̃, and byGsg̃d=Ricsg̃d−s1/2dRsg̃dg̃ the Einstein tensor. The Einstein equation with this nota-
tion takes the following form:

Gsg̃d = xT̃, s1d

whereT̃ is the stress-energy tensor andx is a constant. We set tildes over Lorentz metrics and over
stress-energy tensors in order to indicate that we deal with a four-dimensional manifold. The
letters without tildes will be used for three-dimensional manifolds. One often begins with an initial

stress-energy tensor,T̃0, and an initial Lorentz metric,g̃0, satisfyingG̃sg̃0d=xT̃0 and is interested

in finding metricsg̃ close tog̃0 which are solutions ofs1d for a givenT̃ close toT̃0. In order to
solve this problem, it can sometimes be useful to linearize the equations1d at the initial metricg̃0.
When the solutions of the linearized equation do really approximate exact solutions of the true
equation, we will say that the Einstein equation is linearization stable at the initial metricg̃0. An
exact version of this concept will be given in what follows.

This paper deals with the problem of linearization stability of the Einstein equation in the case

where the initial pairsg̃0,T̃0d consists of the metric and the stress-energy tensor of a Robertson-
Walker cosmological model. The Lorentz manifold corresponding to this model is the product
V=S3 I, whereI is an interval inR, sS,ĝ0d is a Riemannian manifold of constant curvature, and

g̃0 is a Lorentz metric of the formg̃0=−dt2+z2stdĝ0 st is the coordinate ofId. The tensorT̃0 takes

the formT̃0=sr+pddt ^ dt+pg̃0. Generally, it is assumed thatS is complete and simply connected.
ThenSshould necessarily be either the Euclidean spaceR3, the hyperbolic spaceH3, or the sphere
S3.

In our papers, Refs. 7 and 8, we have shown that the Euclidean Robertson-Walker model is
linearization stable for the Einstein equation and that the spherical model of positive curvature is
not. The remaining case to be studied is that of a hyperbolic Robertson-Walker model. In this
paper, we will showsTheorem 1d that such a model is linearization stable. For this purpose, we
will use a resultsTheorem 2d on the Laplace operator in a hyperbolic space proved in the Appen-
dix. Theorem 1 combined with the results in our earlier papers, Refs. 7 and 8, may suggest that the
fact whether or not a Robertson-Walker model is linearization stable can be related to the fact
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whether or not the Riemannian manifoldS is compact. In fact, when the curvature is negative or
zero thenS is not compact and the model is linearly stable, while when the curvature is positive
thenS is compact and the model is not linearly stable. This is the case whenS is simply connected,
but if we drop this condition, Theorem 3 makes it clear that the fact that the Einstein equation of
the model is linearization stable has nothing to do withS being compact.

It is quite well known that any completen-dimensional Riemannian manifoldS of constant
curvature is always a quotientX/G, whereX is either the Euclidean spaceRn, or the hyperbolic
spaceHn, or the sphrereSn, andG is a discrete subgroup of the group of isometries ofX acting in
a free and properly discontinuous manner. In our case,S has dimension 3. In Theorem 3, we will
study Robertson-Walker cosmological models,V=S3 I, whereS is compact, complete, having
either constant negative curvaturesS=H3/Gd or curvature zerosS=R3/Gd. We will show that there
is stability when the curvature is negative, and there is not when the curvature is zero. This will
make it clear that stability has nothing to do with compactness since the manifolds are compact in
either of these cases. In fact, whenS is compact the existence of Killing vectors is the first reason
of instability.

II. WHAT TYPES OF DEFORMATIONS OF THE INITIAL MODEL WE WILL CONSIDER

Let sV,g̃0,T̃0d be an initial Robertson-Walker model. The aim of the paper is to consider small

deformationsT̃=T̃0+dT̃ of the initial tensorT̃0 and metricsg̃ close tog̃0 such thatGsg̃d=xT̃, and

establish what conditions should be satisfied by the initial model for the equationGsg̃d=T̃0+dT̃ to
be linearly stable at the pointg̃0. For this purpose, we must first specify to what class of tensors the

deformationsT̃=T̃0+dT̃ of T̃0 should belong.
First we introduce some notation and recall a few topics on this subject. From now onV will

always stand for the manifoldV=S3 I, where both the initial metricg̃0 and the initial tensorT̃0 are
defined.t will denote the coordinate ofI. For a fix t0P I consider the hypersurfaceM of V given
by M =S3 ht0j. Let now g̃ be a Lorentz metric onV close tog̃0. Denote byg the Riemannian
metric onM obtained by restrictingg̃ to M and writek for twice the second fundamental quadratic
form of M with respect to the metricg̃. Indicate byn the vector field ofV with support onM,
orthogonal toM at each point, satisfyingg̃sn,nd=−1 andg̃sn,]td,0. Define the functionF and
the 1-formX on M as follows:

F = −
1

x
Gsg̃dsn,nd

s2d

X =
1

x
uisndGsg̃duM ,

wherei usndGsg̃duM means the inner contraction ofGsg̃d by n, acting over tangent vectors toM. If

T̃ is a stress-energy tensor related tog̃ through the Einstein equations1d, then F=−T̃sn,nd, X

= uisndT̃uM. Finally, letHsg,kd andgsg,kd be the function and the 1-form onM defined as follows:

Hsg,kd = 1
8sk ·k − trg

2 k − 4Rd,

gsg,kdi = 1
2¹rskir − strgkdgird.

Then it is well known that the following formulas hold:

Hsg,kd = xF,

s3d
gsg,kd = xX.
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The type of stress-energy tensors is normally fixed in advance depending on the type of matter

considered. For example, the class of stress-energy tensors for perfect fluids is of the formT̃
=sr+pdu* ^ u* +pg̃, wherep andr are functions andu* is the 1-form associated with a vector field
u by means of the metricg̃, satisfyingg̃su,ud=−1. Here,p is a known function ofr, p=psrd sstate
equationd. We do not fix any concrete value for the variablesu, r, andg̃ swe do fix the form of the

tensord. In general, we can assume thatT̃ is a known function of the metricg̃ and ofm scalar or
vector fields V1, . . . ,Vm, called matter fields. In the case of perfect fluids, these variables
V1, . . . ,Vm would ber and the vector fieldu fthe latter with the constraintg̃su,ud=−1g. Since by

s1d T̃ is proportional toG, the stress-energy tensor must satisfy divg̃ T̃=0.
Let us focus briefly on the Cauchy problem for the Einstein equation. Consider the manifold

V=S3 I without any metric. Let us give a functionT̃=T̃sg̃,V1, . . . ,Vmd, whereV1, . . . ,Vm are
scalar or vector fields onV calledmatter fields, whose concrete values are unknown for ussthey
are variablesd. Moreover, let us give a vector fieldn of V with support inM, transversal toM. Let
us give onM a pairsg,kd of symmetric tensor fields of order 2 such thatg is positive definite. Let
us also give onM valuesv1, . . . ,vm of the variablesV1, . . . ,Vm. Suppose thatF andX are the

function and the 1-form onM given by F=−T̃sn,nd, X= uisndT̃uM. Assume that the data
g,k,v1, . . . ,vm on M are such that the two pairssg,kd and sF ,Xd satisfy the constraintss3d. We
asksCauchy problemd whether we can find with these data a neighborhoodU of M on V, unique
valuesV1, . . . ,Vm of the matter fields onU and a unique Lorentz metricg̃ on U in such a way that
the following conditions be satisfied:

sid g̃ and T̃ satisfyGsg̃d=xT̃ and divg̃ T̃=0,
sii d n is normal toM with respect to the metricg̃ and g̃sn,nd=−1,
siii d g̃ restricted toM is g,
sivd k is twice the second quadratic form ofM with respect to the metricg̃,
svd we haveVi =vi for i =1, . . . ,m over M.

If this happens, that is, if the initial data overM enable us to uniquely retrieve the metricg̃ and
the matter fieldsV1, . . . ,Vm in a neighborhood ofM in V and the solutionsg̃,Vid depends
continuously on the initial datasg,k,vid, we will say that the Cauchy problemis well-posed.

The Cauchy problem for the Einstein equation is a very wide and difficult field of research. It
is clear that the above Cauchy problem will not be well posed if no additional assumptions are

made. For example, in the case of perfect fluids whereT̃ has the formT̃=sr+pdu* ^ u* +pg̃ the
Cauchy problem would be well posed if the following additional assumptions were madessee,
e.g., Refs. 5,20 or 14d:

s1d there exists a positive constantC satisfyingrùC.0,
s2d p is a known function ofr sstate equationd which can never be negative on the interval

fC, +`d,
s3d psrd belongs to the classC1 and the derivativep8srd satisfies 0,p8srd,1.

Since we are going to work with Cauchy data throughout this paper, we will need the Cauchy

problem to be well posed. Therefore the tensorsT̃=T̃0+dT̃ close toT̃0 we will consider in what
follows will be the tensors for perfect fluids satisfying the above-mentioned conditionss1d–s3d.
These tensors are parametrized byr andu, with the conditiong̃su,ud=−1. The initial tensorT̃0

swhich will correspond to the parametersr0, u0, and g̃0d should be that of a Robertson-Walker
model.

Sincesfor the Cauchy problemd the transversal fieldn over M should be defined in advance,
we will always taken=]t on M for any set of Cauchy datasg,k,r ,ud. This means that for the
Lorentz metricsg̃ we are going to considerssolutions of the Cauchy problemd the vectorn will
always coincide with]t overM. This is by no means restrictive since ifg̃ is an arbitrary metric and
n is its unitary normal field overM, we can always find a diffeomorphismw :U→U, whereU is
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a neighborhood ofM in V, such thatw is the identity overM and transformsn into ]t at each point
of M. Thenw* g̃ is a metric isometric tog̃ and satisfying the required conditionsits n is ]td.

If u is a velocity field of a stress-energy tensorT̃ of the type we consider thenu restricted to
M will be of the formu=q]t+v, whereq is a scalarù0 andv is a vector field tangent toM. The
conditiong̃su,ud=−1 overM is written asq=Î1+gsv ,vd. Thereforesg,r ,vd determine the tensor

T̃ over M. The pairsF ,Xd is given as a function ofsg,r ,vd by the following formulas:

F = − T̃s]t,]td = − sr + psrdds1 + gsv,vdd + psrd,

Xi = Xs]/]xid = T̃s]t,]/]xid = − sr + psrddÎ1 + gsv,vdvi . s4d

We will take the Cauchy data belonging to appropriate Sobolev spaces we now describe. Denote
by FssMd, VssMd, andSssMd, respectively, the Sobolev spaces of functions, of 1-forms and of
covariant symmetric tensors of order 2 whose degree of regularity iss. For example,FssMd will
be the space of all functions belongingL2sMd whose weak derivatives up to orders belong to
L2sMd. Given an initial functionf0 on M belonging toC`, we will denote byFssf0d the set of
functions of the formf = f0+h with hPFssMd. The setFssf0d is topologized by imposing the
condition that the mapf →h= f − f0 from Fssf0d to FssMd should be a homeomorphism. In a
similar way, given a 1-formv0 on M belonging toC`, the setVssv0d is defined as the set of
1-formsv satisfyingv−v0PVssMd. Given a covariant symmetric 2-tensora0 belonging toC`,
we defineSssa0d in an analogous way. The Cauchy datasg,k,r ,vd will be taken in the Sobolev
spaceSssg0d3Sssk0d3Fs−2sr0d3Vs−1sv0d, wheres is a positive integer to be chosen below and
sg0,k0,r0,v0d are the Cauchy data corresponding to the Robertson-Walker’s initial metricg̃0 and

the initial tensorT̃0. To be precise,g0=z2st0dĝ0, k0=2hżst0d /zst0djg0, r0 is the initial density, and
v0=0.

Let F andX be functions ofg, r, andv defined bys4d. Let

H:Sssg0d 3 Fs−2sr0d 3 Vs−1sv0d ——→ Sssg0d 3 Fs−2sF0d 3 Vs−1sX0d,

s5d
sg,r,vd ——→ sg,F,Xd.

It follows from formula s4d that the linear tangent map toH at the pointsg0,r0,v0d is

sDHdsg0,r0,v0d:SssMd 3 Fs−2sMd 3 Vs−1sMd ——→ SssMd 3 Fs−2sMd 3 Vs−1sMd,

sh, f,vd ——→ sh,− f,− sr0 + p0dvd.

Sincer0+p0 is positive, the above map is an isomorphism. By the inverse function theorem in
Banach spaces, the mapH can be inverted in a neighborhood of the initial data. Consider the map
C obtained by composition of the following maps:

sg,kd ——→ sg,s1/xdHsg,kd,s1/xdgsg,kdd ——→
H−1

sg,r,vd ——→
p

sr,vd s6d

swherep is the canonical projectiond. The mapC mapsSssg0d3Sssk0d to Fs−2sr0d3Vs−1sv0d and
is defined in a neighborhood ofsg0,k0d only. It assigns to any pairsg,kd fclose tosg0,k0dg the
unique pairsr ,vd satisfying the constrains conditions

Hsg,kd = xFsg,r,vd,

s7d
gsg,kd = xXsg,r,vd.

We have mentioned in the introduction that we are interested in those metricsg̃ close tog̃0

which are solutions ofs1d for a givenT̃ close toT̃0. However, this cannot be formulated in such
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a way. We cannot take an arbitraryT̃ close toT̃0 and look for the metricsg̃ satisfyingGsg̃d=xT̃

since, on one hand, the expression forT̃ contains the metric and, on the other hand,T̃ should

anyway satisfy the extra condition divg̃ T̃=0. A correct way of expressing the initial ideasfor
perfect fluidsd is to give a pairsr ,vd on M scorresponding to the distribution of the matter att
= t0d and acquire about the pairssg,kd satisfyingCsg,kd=sr ,vd. Then the datasg,k,r ,vd over M

completely defineg̃ and T̃ satisfyingGsg̃d=xT̃. The Einstein equation is then replaced bys7d.
Remark 1:In our setting, we have demanded that all deformationsT̃0+dT of the initial tensor

correspond to perfect fluids. We do this for the sake of clarity in our exposition; however, this is
not crucial. What is crucial indeed is that we work with a class of tensors containing the perfect
fluids and for which the Cauchy problem would be well posed. For example, Lichnerowicz
introduced,15 a class of fluids he calledholonomous mediawhose stress-energy tensor has the form

T̃=ru* ^ u* +u, whereu* is the 1-form associated to a unitary fieldu fg̃su,ud=−1g, r is a positive
scalar calledpseudodensityand whereu is a covariant symmetric 2-tensor whose divergence is the
gradient of a functionK. Perfect fluids are a particular case of holonomous media withr =r+p and
u=pg̃. If we consider holonomous media whose pseudodensityr and whose functionK are both
functions of some variablet sparametrizing both functionsd, then one can prove that if the function
rstd is positive over the whole domain, ifrstd and Kstd belong toC1, if the derivativeK8 is
positive andr8 /K8.2, then the Cauchy problem is well posed for the Cauchy datasg,k,t ,vd. In
these holonomous media one can work with Cauchy data. Therefore one could consider deforma-

tions T̃0+dT of the initial tensor corresponding to holonomous media, for example.

III. THE NOTION OF LINEAR STABILITY OF THE EINSTEIN EQUATION WITH MATTER

Linear stability of the Einstein equation in the vacuum has been considered in detail in the
literaturesRefs. 10–13, 1, and 17–19d. An interesting bibliography on the subject can be found in
Ref. 16. In this case, one begins with an initial Lorentz metricg̃0 satisfying Gsg̃0d=0 and is
interested in metricsg̃ close tog̃0 which are also solutions of the equationGsg̃d=0. Formulated in
terms of Cauchy data in appropriate Sobolev spaces, this leads to the following situation: One has
a differentiable mapf :X→Y between two Banach spaces, a particular solutionx=x0 of the
equation fsxd=0 is known, and the problem is to find solutionsx close to x0. The classical
definition of linearization stability in this case looks as follows: The equationfsxd=0 is lineariza-
tion stable at the pointx0 if for any solutionh of the linearized equationDx0

fshd=0 there exists a
curvel→xsld of solutions offsxd=0 which is tangent toh at x0. However, the situation in the
case of the Einstein equation with matter is not the same. Here, for somey0PY, we know x0

PX such thatfsx0d=y0 and fory close toy0 we are interested in finding solutionsx sclose tox0d
of the equationfsxd=y. If we takeq=y−y0, we would like that for any solutionh of the linearized
equationDx0

fshd=q, x0+h would be always close to an exact solution of the equationfsxd=y. If
this is the case, we will say that the equationfsxd=y is linearization stable at the pointx0. We will
make this definition more precise in what follows. Let us observe by now that the difference with
the case of vacuum is that we are interested in obtaining not only solutions offsxd=y0 through
linearization for a fixedy0 swhich will be y0=0 in the case of vacuumd, but also the solutions of
fsxd=y for any y close toy0. Although we have already given in Ref. 7 a correct definition of
linearization stability for this case we shall give here a more simple and clear version.

Definition 1: Let f:U→Y be a continuously differentiable map of an open set U in a Banach
space X to a Banach space Y. Let x0PU and y0= fsx0d. For any qPY consider

Hq = hx P U solution of fsxd = y0 + qj,

Lq = hx P U:x = x0 + h, h solution ofDx0
fshd = qj.

Let K be a closed vector subspace of Y. We will say that the equation fsxd=y0+q is linearization
stable at x0 in the direction of the subspaceK if there exist a neighborhood V of the origin inK,
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a neighborhood W of the origin in L=kerDx0
f, a neighborhood U8 of x0, U8,U, and continu-

ously differentiable mapsw and c,

K 3 L U K 3 L U

ø ø ø ø

w:V 3 W ——→ U8 w:V 3 W ——→ U8

such that for any qPV the maps

wq:W ——→ Hq ù U8, cq:W ——→ Lq ù U8,

z ——→ wsq,zd, z ——→ csq,zd

are differentiable bijections having differentiable inverses (that is, they are respective parametri-
zations of HqùU8 and LqùU8 ) satisfyingw0s0d=x0 and c0s0d=x0. Moreover, for any qPV and
any zPW the error Eqszd=wqszd−cqszd committed in consideringcqszd instead ofwqszd satisfies

lim
sz,qd→s0,0d

Eqszd
Îizi2 + iqi2

= 0. s8d

Intuitively, this definition consists in demanding that for anyqPK close to zero the setHq of
solutions of the equationfsxd=y0+q and the setLq of solutions of the linearized equation be
parametrizable by the same vector space of parametersL in such a way that the errorEqszd
committed in considering the solution of the linearized equation corresponding to the parameterz
instead of the true solution corresponding to the same parameter satisfies conditions8d. Observe
that if the subspaceK of Y is K=h0j, Definition 1 coincides with the classical definition for the
vacuum.

Definition 2: With the same notations as those in Definition 1, if fsxd=y is linearization stable
at the initial point x0 in the direction ofK=Y, we will simply say that it is linearization stable at
this point.

In Ref. 7, the following sufficient condition for linearization stability was proved.If L
=kerDx0

has a topologic supplement and if the map Dx0
f :X→Y is surjective, then f is lineariza-

tion stable at the point x0.
We will have to apply these tools to the particular case where the spaceX is X=Sssg0d

3Sssk0d, the spaceY is Y=Fs−2sr0d3Vs−1sv0d, andf is the mapC defined ins6d. We will take as
the degree of regularitys of Sobolev spaces any integers.4. Then all the elements of the Sobolev
spaces appearing in our study will be differentiable elements of the classC1.

IV. STABILITY IN THE CASE OF A HYPERBOLIC RW MODEL

Theorem 1: Suppose that the initial pairsg̃0,T̃0d consists of the metric and the stress-energy
tensor of a Robertson-Walker (RW) cosmological model, V=S3 I, where S is the hyperbolic space
H3. In this case, the Einstein equation is linearization stable.

Proof: We need only show that the mapDsg0,k0dC is surjective and has a splitting kernel. Let
F be the map

F:Sssg0d 3 Sssk0d ——→ Fs−2sr0d 3 vs−1sv0d,

sg,kd ——→ sHsg,kd,gsg,kdd.

Let J be the map of the spaceFs−2sMd3Vs−1sMd into the same space defined byJ=sid,1 /sr0

+p0didd. By definition s6d of C, we deduce thatDsg0,k0dC=−s1/xdJ+Dsg0,k0dF. Therefore we need
only see that
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Dsg0,k0dF:SssMd 3 SssMd → Fs−2sMd 3 Vs−1sMd

is surjective and has a splitting kernel. For simplicity of our notation, we denote the initial pair
sg0,k0d by sg,kd. The mapDsg,kdF is calculated in Ref. 7. It is clear thatDsg,kdF=Dsg,kdH
3Dsg,kdg. If we set g8=g+h, k8=k+K and take the linear part insh,Kd of the expressions
Hsg8 ,k8d andgsg8 ,k8d, we obtain the formulas forDsg,kdH andDsg,kdg as functions of the variables
sh,Kd appearing at the end of p. 5128 in Ref. 7. Since thek corresponding to the initial model is

k=2Cg, whereC= żst0d /zst0d, and the Ricci tensor ofg is 2cg/zst0d2, wherec is the constant
curvature of the models−1 for the hyperbolic space, but we make no assumptions overc by the
momentd, these expressions are

Dsg,kdHsh,Kd =
1

8
FS16C2 +

8c

zst0d2Dtrshd − 8C trsKd − 4¹i¹ jhij + 4¹i¹i trshdG ,

Dsg,kdgsh,Kdi = 1
2f¹ jKij − ]i trsKd + 2C]i trshd − 2C¹ jhjig. s9d

We are now interested in those pairssh,Kd having the formh=gt, K=−2LYg+2sdiv Ydg+2Ctg,
wheret andY are a function and a vector field onM. By substituting ins9d these expressions for
h and K, we will have the following expressions forDsg,kdH and for Dsg,kdg as functions of the
variablest, Y:

Dsg,kdHsY,td = S 3c

z2s0d
t − 2C div Y − DtD ,

Dsg,kdgsY,td = sdLYgd, s10d

where as usualDt denotes −¹i¹it sthe Laplace operator oftd anddLYg denotes the 1-form whose
components aresdLYgdi =−¹ jsLYgdi j sthe operatord is the Hodge operator, applied here to a
symmetric 2-tensord. In order to prove surjectivity ofDsg,kdF, we use the following result whose
proof can be found in the Appendix.

Theorem 2: For any real number qù0, the following two maps,

FssH3d → Fs−2sH3d, XssH3d → Vs−2sH3d,

t → Dt + qt, Y → dLYg,

are isomorphismsfXssH3d denotes here the Sobolev space of degree of regularity s of vector fields
over the hyperbolic spaceH3g.

We will use this theorem for proving surjectivity ofDsg,kdF. Given sf ,vdPFs−2sMd
3Vs−2sMd, there exists, by Theorem 2,YPXssMd such thatdLYg=v. By the same theorem, there
existstPFssMd such that

Dt +
3

zst0d2t = − 2C div Y − f .

By s10d, we will then havestaking into account that nowc=−1d

sDsg,kdFdst,Yd = ssDsg,kdHdst,Yd,sDsg,kdgdst,Ydd = sf,vd.

We need only see that the kernel ofDsg,kdF has a topological supplement. For any pairsh,Kd,
consider the only pairsh8 ,K8d satisfying h8=2gt, K8=−2LYg+2 divsYdg+2Ctg such that
sDsg,kdFdsh,Kd=sDsg,kdFdsh8 ,K8d fit is unique sinceDsg,kdF is an isomorphism over the pairs
sh8 ,K8dg. Then
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sh,Kd = sh − h8,K − K8d + sh8,K8d

gives the required splitting. h

V. NOT SIMPLY CONNECTED RW MODELS

In this section, we will assume that the initial pairsg̃0,T̃0d consists of the metric and the
stress-energy tensor of a Robertson-Walker model,V=S3 I, wheresS,ĝd is a complete Riemann-
ian manifold of constant sectional curvature. We will restrict here to the case whereS is compact
of curvatureø0 ssince the compact case of curvature.0 is the sphere already studiedd. If the
curvature is zero,S will be a plate torus,S=R3/G, whereG is a group of translations. If the
curvature is negative, we haveS=H3/G, whereG is a certain discrete subgroup of isometries of
H3. For these models, we have the following.

Theorem 3: If the initial pair sg̃0,T̃0d corresponds to a RW model, V=S3 I, where S is a plate
torus, then there exists no closed vector subspaceK of Fs−2sr0d3Vs−1s0d such that the map

C:Sssg0d 3 Sssk0d → Fs−2sr0d 3 Vs−1s0d

defined in (6) is linearization stable at the initial pairsg0,k0d in the direction ofK (observe that
in RW models we havev0=0). However, if the initial pair corresponds to a RW model, V=S3 I,
where S is a compact, complete, orientable Riemannian manifold of negative constant curvature,
thenC is linearization stable at the initial pair.

Proof: By Definition 1, if f :U→Y is linearization stable at a pointx0PU in the direction of
a certain closed vector subspace ofY, the sethxPU: solving fsxd=y0+qj is a differentiable
manifold whose parametrization is given by Definition 1. In particular, takingq=0, the sethx
PU: solving fsxd=y0j is a differentiable manifold. We will apply this to the mapC wheny0 is the
initial pair sr0,0d. In order to prove instability, it will be sufficient to prove that the sethsg,kd
fulfilling Csg,kd=sr0,0dj is not a differentiable manifold. Since, bys5d and s4d, we have
Hsg0,r0,0d=sg0,−r0,0d, it follows from the definition ofC given in s6d that the above set is the
set of pairssg,kd such thatFsg,kd=−r0, Xsg,kd=0. Therefore the instability will be proved if we
check that the sethsg,kd such thatFsg,kd=s−xr0,0dj is not a differentiable manifold.

Let us change variables according tosg,kd→ sg,pd, wherep=k−strg kdg and let us expressF
using variablessg,pd,

F:sg,pd → sHsg,pd,gsg,pdd.

Let Dsg0,p0dF be the linear map tangent toF at the initial pairsg0,p0d. As we have already done
in the preceding section, we denote for brevity the initial pairsg0,p0d by sg,pd and bysg8 ,p8d the
pairs close tosg,pd. Setg8=g+h, p8=p+P. This is the same notation as that on pp. 5134 and
5135 of Ref. 8. The linear mapDsg,pdF induces a map

Dsg,pdF:S`sMd 3 S`sMd → F`sMd 3 V`sMd. s11d

If M is compactswhich is the case we consider nowd, following Ref. 8 we introduce a scalar
productk , l on S`sMd3S`sMd defined by

ksh,Pd,sh8,P8dl =E
M

sh,Pdx · sh8,P8dx dv,

where dv is the volume element inM and sh,Pdx.sh8 ,P8dx is the inner product defined for each
xPM by the formula

sh,Pdx · sh8,P8dx = girsxdgjssxdfhirsxdh8 jssxd + Pirsxd + P8 jssxdg.

In a similar way,F`sMd3V`sMd is endowed with the scalar product
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ksf,Yd,sf8,Y8dl = 4E
M

fsxdf8sxddv + 4E
M

g*sY,Y8dx dv,

whereg* is the scalar product induced byg over 1-forms. The maps11d has an adjoint with respect
to these scalar products

sDsg,pdFd* :F`sMd 3 V`sMd ——→ S`sMd 3 S`sMd,

sf,Yd ——→ sAsf,Yd,Bsf,Ydd

which induces a map between the corresponding Sobolev spaces. The expressions forDsg,pdF,
Dsg,pd

2 F, andsDsg,pdFd* are given by formulass3d, s4d, ands6d in Ref. 8, p. 5133. In order to apply

these formulas, one should recall that in a RW model one hask=2Cg with C= żst0d /zst0d, p=k
−trgskdg=−4Cg, Rsgd=2cg/zst0d2, wherec=0,1,−1 is theconstant curvature of the model. One
should also take into account thatgsg,pd=xXsr0,0d=0. Then formulas6d in Ref. 8 giving
sA,Bd=sDsg,pdFd*sf ,Yd yields

Asf,Yd = S8C2 +
4c

z2s0dD fg − 4CLYg − 2 Hesssfd − 2sDfdg,

Bsf,Yd = 2Cfg− LYg. s12d

It is proved in Ref. 8, p. 5133, that ifC=hsg8 ,k8d satisfyingFsg8 ,k8d=−sxr0,0dj is a differen-
tiable manifold, then

ksDsg,pd
2 Fdsh,Pd,sf,Ydl = 0, s13d

for all sf ,YdPF`sMd3V`sMd belonging to KersDsg,pdFd* and all sh,Pd belonging to
Ker Dsg,pdF. Therefore in order to see thatC is not a differentiable manifold, it will suffice to find
sh,PdPKer Dsg,pdF andsf ,YdPKersDsg,pdFd* which fail to satisfys13d. For this purpose, we take
a pair sf ,Yd having f =0 and Y to be a Killing vector field. Thens12d implies that s0,Yd
PKersDsg,pdFd* . By the same argument as that in Ref. 8, p. 5135, one can readily obtain

ksDsg,pd
2 Fdsh,Pd,s0,Ydl = −E

M

s¹Yh · Pddv − 2E
M

Yi¹rshrsPisddv. s14d

Take an atlas on the torusT3=R3/G where the coordinates of any local chart are induced by
the canonical coordinates ofR3 scoordinate changes will be given by translationsd. In these
coordinates,ĝij =di j and]i =] /]xi are Killing fields. Denote byx, y, z the three coordinatesx1, x2,
x3 and takeY=]x, h=]x ^ ]y+]y ^ ]x, P=xs]x ^ ]y+]y ^ ]xd−zs]y ^ ]z+]z^ ]yd. Thenh andP have
zero trace and divergence. This makessh,Pd belong to KerDsg,pdF, as one can see by applying
formula s13d in Ref. 8, p. 5136, to this concrete pairsh,Pd and taking into account that¹i¹ jh

ij

=0. In fact,

¹i¹ jh
ij = ]is¹ jh

ijd − Gi j
m¹mhij + Gim

i ¹ jh
mj + Gim

j ¹ jh
mi.

The second and fourth terms are opposed. Thus¹i¹ jh
ij =0 because divshd=0.

On the other hand, one has¹Yh=0. Therefore the first integral ins14d equals zero. Calculating
the second term ins14d we have

Yi¹rshrsPisd = Yi¹1sh12Pi2d + Yi¹2sh21Pi1d = Y1¹1sh12P12d = ¹1P12 = ]xsxd = 1.

Then
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E
T3

Yi¹rshrsPisddv = volsT3d Þ 0.

This proves the first part of the theorem.
Let us now consider the case of a RW model,V=S3 I, where S is a compact complete

orientable Riemannian manifold of constant negative curvature. By the Berger-Ebin theorem,3 if
one of the two operatorsDsg,pdF or sDsg,pdFd* has injective symbol, then the following splitting
holds:

Vs−1 3 Fs−2 = ImagesDsg,pdFd % kersDsg,pdFd* .

Then the fact thatDsg,pdF is surjective is equivalent to the fact thatsDsg,pdFd* is injective. For each
xPM andjPTxsMd* , we calculate the symbol ofsDsg,pdFd* ,

sLsx,jd:TxsMd 3 R ——→ sS2 3 S2d,

sX, fd ——→ sa,bd.

In order to find expressions fora and b we apply formulass12d recalling thatsLXgdi j =¹iXj

+¹ jXi, sHessfdi j =¹i¹ j f iDf =−¹i¹i f. Then we have

ars = − 2jrjsf − 2j · jfgrs,

brs = − jrXs − jsXr .

This implies that trsad=grsars=−8sj .jdf. If we assume thata=0, then trsad=0. Sincej .jÞ0, this
implies f =0. SincejÞ0, we can take a basishv1,v2,v3j in TxsMd* such thatv1=j. The com-
ponents ofj in this basis arej=s1,0,0d. If we assume thatb=0, thenjrXs=−jsXr. By applying
this tor =1 ands=2,3 weobtainX2=X3=0. Finally, 0=b11=−2j1X1=−2X1. Therefore the symbol
sLsx,jd is injective. Let us now prove thatsDsg,pdFd* is also injective. If we takeB=0 in s12d, we
obtainLXg=2Cfg. Substitute this into the expression ofAsf ,Xd to obtain

Asf,Xd = −
4

zst0d2 fg − 2 Hesssfd − 2sDfdg.

If A=0, then trsAd=0 and the above expression implies thatDf +s3/zst0d2df =0. Then perform
scalar multiplication of this equality byf to obtain

kdf,dfl +
3

zst0d2kf, fl = 0.

This implies thatf =0. Coming back tos12d we obtainLXg=0. This means that the kernel of
sDsg,pdFd* is formed by those pairs which are written ass0,Xd, whereX is a Killing field. On the
other hand, any compact Riemannian manifold whose Ricci tensor is negative definite does not
have Killing vectors.4 This means that our operatorsDsg,pdFd* is injective. h

APPENDIX: OPERATORS RELATED TO THE LAPLACIAN OF THE HYPERBOLIC
SPACE

In this Appendix, we prove two theoremssTheorem 4 and Theorem 5d which enable us to
obtain the two isomorphisms in Theorem 2. The proofs rely heavily on the results and the tech-
niques in Ref. 9ssee also Ref. 6d.
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1. Notations

The manifoldM we will work with will be the n-dimensional hyperbolic spaceHn. We will
always denote byg the Riemannian metric onM of constant curvature −1. We will denote the
components of the covariant differential¹a of a p-tensora by ¹iai1¯ip

. The notation¹skd is used
for the kth iterate of¹.

If a and b are two covariant tensors of orderp indicate by sa ,bd the function defined
coordinatewise byai1¯ipbi1¯ip

. This definition does not depend on the coordinates chosen. Write
ka ,bl=eMsa ,bddv, where dv is the volume element. Naturally,ka ,bl is only defined when the
above integral is finite. Denoteua u =Îsa ,ad and iai=Îka ,al.

The metric adjoint¹* of ¹ is defined byk¹a ,bl=ka ,¹*bl for any p-tensora and anysp
+1d-tensorb belonging to the classC` and having compact support. The operatorDR=¹*¹ is
called the rough Laplacian and is defined over all covariantp-tensors. It follows from the defini-
tion that DR is self-adjoint and positive. The coordinatewise expressions of¹* and DR are the
following:

s¹*adi1¯ip−1
= − ¹ ja ji 1¯ip−1

, sDRadi1¯ip
= − ¹ j¹ jai1¯ip

.

Observe that the expression of¹* coincides with that of the Hodge operatord sthe metric adjoint
of the exterior differentialdd. The latter, however, is defined only overp-forms santisymmetricsd,
while ¹* is defined over all covariantp-tensors. Observe also that the operator denoted byd in
Theorem 2 is in fact the operator¹* since it operates over a 2-tensorsnot antisymmetricd.

We will say that ap-covariant tensora over M is of L2 type if its coefficients in any local
chart are measurable functions with respect to the measure dv and, moreover, the functionuau
belongs toL2sdvd, that is,iai, +`. Denote byLp

2sMd the space ofp-forms belonging toL2.
GivenvPLp

2sMd, we will say thatv has a generalized or weakkth order covariant derivative
¹skdv in L2 if for any covariant tensorb of order p+k belonging to the classC` and having
compact support we have

ukv,s¹*dskdblu ø Cibi

for some positive constantC. Then the mapb→ kv ,s¹*dskdbl is continuous and therefore there
exists a unique elementf PLp+k

2 sMd such thatkv ,s¹*dskdbl=kf ,bl. This f is taken to be¹skdv.
Let Lp,s

2 sMd be the space ofL2 p-forms v such that¹skdv belongs toL2 for køs. We will
assume that this space is endowed with the norm

ivis = So
k=0

s

i¹skdvi2D1/2

.

Denote byDpsMd the space ofC` p-forms on M having compact support. It is clear that
DpsMd,Lp,s

2 sMd. Denote byHp
ssMd the closure ofDpsMd in Lp,s

2 sMd. Aubin proved,2 under certain
assumptions, including the case we are interested inscurvature −1 and complete manifoldd that
one hasHp

ssMd=Lp,s
2 sMd, that is, the density ofDpsMd in Lp,s

2 sMd. An explicit proof of this fact can
be found for our case in Ref. 9.

2. Proof of the first isomorphism in Theorem 2

Given qPR, qù0 and pPZ, 0øpøn, consider the operatorT=DR+qI swhere I is the
identity operatord acting on p-forms in M =Hn. For any integersù0, T yields a continuous
operatorT:Hp

s+2sMd→Hp
ssMd. If aPHp

s+2, Ta should be interpreted in the sense of weak deriva-
tives. That is,Ta is the unique element inL2 such that

kTa,bl = ka,T*bl = ka,Tbl

for anybPDp sT is self-adjoint andT* =Td. The fact thataPHp
s+2 implies thatTaPHp

s. We shall
prove the following.
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Theorem 4: The linear map

T:Hp
s+2 → Hp

s , sA1d

where T=DR+qI, is a topological isomorphism.
If we take into account that the rough LaplacianDR coincides with the De Rham Laplacian

D=dd on functions, the first isomorphism in Theorem 2 appears to be a particular case of Theorem
4 with p=0 andn=3. The proof of Theorem 4 we will carry out in the sequelsfor anyp, not only
for p=0d will give us a hint on the proof of the second isomorphism in Theorem 2.

Proof: As we have already said,sA1d is continuous. The fact thatsA1d is injective follows
from the fact thatTa belongs toHp

0=Lp
2 for aPHp

s+2,Hp
2 and we have

kTa,al = kDRa,al + qka,al. sA2d

SincekDRa ,al.0 if aÞ0 and sinceqù0, Ta=0 impliesa=0. Therefore we should check that
sA1d is surjective and has a continuous inverse. The latter is written asiais+2øconstiTais∀a
PHp

s+2. We will prove both statements by induction ons. Let us begin withs=0.
Consider the scalar productB in Hp

1 defined by the formula

Bfa,bg = k¹a, ¹ bl + qka,bl.

Denote byi iB the norm induced by this scalar product. Ifq.0, this norm coincides with the
Sobolev normi i1, if q=0, this, however, is not the case. Let us see thatT:Hp

2→Hp
0 is surjective.

Given f PHp
0, we would like to findvPHp

2 such thatTv= f. Consider the liner mapL :Hp
1→R

defined byLsbd=kf ,bl. It is well known that we haveibiøconsti¹bi in the hyperbolic space
ssee Ref. 9, p. 155d. Therefore

uLsbdu = ukf,blu ø ifi ibi ø constifi i ¹ bi ø constifi ibiB.

This means thatL is continuous with respect to the topology inHp
1 induced byi iB. Therefore there

exists a uniquevPHp
1 such thatLsbd=Bfv ,bg∀b. That is,

k¹v, ¹ bl + qkv,bl = kf,bl.

If bPDp, this is equivalent to

kv,sDR + qIdbl = kf,bl

which is the same as saying thatTv= f sT operates overL2 elements in the sense of weak
derivativesd. It remains to see thatvPHp

2. Sincev andDRv belong toLp
2=Hp

0, Lemma 3.3 in Ref.
9 implies thatvPHp

2. We should still check thatiai2øconstiTai∀aPHp
2. Proposition 2.3 in

Ref. 9 givesiai2øconstiDRai. Then

iai2 ø constiDRai = constiTa − qai ø constiTai + constiai. sA3d

Now sA2d implies thatiai2øconstkTa ,aløconstiTai iai. ThereforeiaiøconstiTai. Substitute
this into sA2d to obtainiai2øconstiTai as is required.

Take anys.0 and let us prove thatsA1d is surjective. Givenf PHp
s ,Hp

s−1, the induction
assumption implies that there exists a uniquevPHp

s+1,Hp
s satisfyingTv= f. We would like to see

that vPHp
s+2. Since f =Tv=DRv+qv, we haveDRvPHp

s, becausev and f belong toHp
s, and

Lemma 3.3 in Ref. 9 givesvPHp
s+2. It remains to prove the inequalityiais+2øconstiTais∀a

PHp
s+2. By Proposition 2.3 in Ref. 9, we haveiais+2øconstiDRais. Therefore it will suffice to

check thatiDRaisøconstiTais. We will also prove this fact by induction ons. We have

iDRais = iTa − qais ø iTais + qiais ø iTais + qiais+1 ø iTais + constiDRais−1

ø sby induction hyp.d ø iTais + constiTais−1 ø constiTais.

h
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3. A sketch of the proof of the second isomorphism in Theorem 2

Denote byF the operator defined on vector fieldsX by FsXd=¹*LXg, whereLXg denotes the
Lie derivative ofg with respect to the vector fieldX. If we identify vector fields with 1-forms
through the metric,F is an operator transforming 1-forms into 1-forms. In a local chart,LXg is
expressed as follows:

sLXgdi j = ¹iXj + ¹ jXi .

Then

FsXd j = s¹*LXgd j = − ¹i¹iXj − ¹i¹ jXi = sDRXd j − s¹i¹ j − ¹ j¹
idXi − ¹ j¹

iXi .

Since the curvature of the hyperbolic space is constant and equals −1, the Ricci identity reads
s¹i¹ j −¹ j¹

idXi =−sn−1dXj. On the other hand, the term −¹ j¹
iXi is sdd Xd j. Therefore

F = DR + sn − 1dI + dd.

This formula shows thatF is a self-adjoint and positive operator. For any integersù0, F yields a
continuous operatorF :H1

s+2sMd→H1
ssMd.

Theorem 5: For any sPZ, sù0, the map

F:H1
s+2sMd → H1

ssMd. sA4d

is a topological isomorphism.
The second isomorphism in Theorem 2 is a particular case of this theorem when the dimen-

sionn of the hyperbolic space is 3. If the expression ofF did not contain the term dd, Theorem 5
would be a particular case of Theorem 4swith p=1d. The term dd appearing in the expression of
F is an order 2 operator and therefore makes the situation a bit more complex. We will prove
Theorem 5 following the same method as that used in the proof of Theorem 4. In order to adapt
that method to the present situation, we need a result similar to Lemma 3.3 in Ref. 9 for the
operatorG=DR+dd. To be exact, we need the following proposition.

Proposition 1: IfaPH1
ssMd and Gsad=DRa+ddaPH1

ssMd, thenaPH1
s+2sMd and there exist

positive constants such that for alla under the above assumptions the following inequalities hold:

sad iDRaisøconstiGsadis,
sbd iais+2øconstiGsadis.

With this proposition, the proof of Theorem 5 simply follows the lines of that of Theorem 4.
Indeed we have the following.

Proof of Theorem 5:Since

kFsad,al = k¹a, ¹ al + kda,dal + sn − 1dka,al, sA5d

for all aPH1
s+2, it is clear thatFsad=0 impliesa=0. In order to see thatsA4d is surjective and has

a continuous inverse, the induction ons is used. Let us check the case ofs=0. Consider the scalar
productB in H1

1 defined by

Bfa,bg = k¹a, ¹ bl + kda,dbl + sn − 1dka,bl.

Given f PH1
0, in order to findvPH1

2 satisfyingFsvd= f, we consider the mapL :H1
1→R defined

by Lsbd=kf ,bl. Here, we haveuLsbduøconstifi ibiB as has already happened in Theorem 4
proving thatL is continuous with respect to the normi iB. Therefore there exists a uniquev
PH1

1 such thatLsbd=Bfv ,bg. Then

k¹v, ¹ bl + kdv,dbl + sn − 1dka,bl = kf,bl.

If bPD1, this is written askv ,Fsbdl=kf ,bl meaning thatFsvd= f ssinceF is self-adjoint and
operates onL2 elements in the sense of weak derivativesd. Sincev andGsvd belong toL1

2=H1
0,
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Proposition 1 implies thatvPH1
2 as is required. The inequalityiai2øconstiFsadi for all a

PH1
2 is then proved in the following way:

iai2 ø sby sbd in Proposition 1d ø constiGsadi = constiFsad − sn − 1dai ø constsiFsadi + iaid.

sA6d

By sA5d, we haveiai2øconstkFsad ,aløconstiFsadi iai. Then one hasiaiøconstiFsadi.
Substitute this intosA6d to obtain the required inequality. The proof by induction corresponding to
any s.0 is also carried out following the lines of the proof of Theorem 4. j

Observe that we have used only inequalitysbd among inequalitiessad andsbd in Proposition 1.
In fact, sad is only required to provesbd.

The only thing we need to complete the proof of Theorem 5 is to prove Proposition 1.

4. Preliminary material for the proof of Proposition 1

Before proceeding to the proof of Proposition 1 we will need the following lemma.
Lemma 1: For any integer sù0 there exists a constant such that

iDRvis ø constiGsvdis

for any vPH1
s+2sMd.

In order to prove this lemma, we will need the following two lemmas.
Lemma 2: LetsM ,gd be an n-dimensional Riemannian manifold of constant curvature K. If a

is a covariant p-tensor ands is a permutation of the indicesh1, . . . ,sj, let ss¹ssdad be the
covariant sp+sd-tensor defined as follows:

ss¹ssdadsX1, . . . ,Xs,Y1, . . . ,Ypd = s¹ssdadsXss1d, . . . ,Xsssd,Y1, . . . ,Ypd.

Then, given an integer sù2 and a permutations of the indicesh1, . . . ,sj, there exists a constant
such that the formula

iss¹ssdad − ¹ssdai ø constiais−2,

holds for any covariant p-tensora having compact support and belonging to the class C`.
Proof: Let t be the transposition of the two successive indicesk andk+1,

t:h1, . . . ,k,k + 1, . . . ,sj → h1, . . . ,k + 1,k, . . . ,sj

sany permutation can be expressed as a product of transpositionsd. In a local chart, the components
of ts¹ssdad will be

ts¹ssdadi1¯isj1¯ jp
= ¹i1

¯ ¹ik+1
¹ik

¯ ¹is
a j1¯ jp

.

Since the curvatureK is constant, the Ricci identity implies that for anyr-tensorb

s¹i¹ j − ¹ j¹idbi1¯ir
= Ksgii 1

b ji 2¯ir
− gji 1

bii 2¯ir
d + ¯ + Ksgii r

bi1¯ir−1j − gji r
bi1¯ir−1id.

Set

bik+2¯is,j1¯ jp
= ¹ik+2

¯ ¹is
a j1¯ jp

.

Taking into account that the covariant differential of the metric tensorg equals zero one obtains
that sts¹ssdad−¹ssdadi1¯is,j1¯ jp

will be the sum of 2sss−k−1d+pd terms having the form

±Kgssi1dssi2d¹ssi3d ¯ ¹ssisd
a j1¯ jp

,

wheres is a certain permutation of the indicesh1, . . . ,sj. Since all of these terms contains−2
derivatives, the normiss¹ssdad−¹ssdai will be controlled byiais−2. h

Lemma 3: LetsM ,gd be a Riemannian manifold of constant curvature K. Given an integer
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sù0, there exists a constant such that the formula

is¹ssdDR − DR¹ssddai ø constiais

holds for any covariant p-tensora having compact support and belonging to the class C`.
This lemma is readily obtained from the previous lemma.
Proof of Lemma 1:SinceD1sMd is dense inH1

s+2sMd and the operatorsDR and G are con-
tinuous in the Sobolev norm, it is enough to prove the inequality forvPD1sMd. We proceed by
induction on s. In order to obtain the required result fors=0, we must prove thatiDRvi
øconstisDR+dddvi. We have

ksDR + dddv,sDR + dddvl ù kDRv,DRvl + 2kddv,DRvl. sA7d

In hyperbolic spaces of constant curvature =−1 the rough Laplacian is related to the De Rham
LaplacianD=dd+dd by DR=D+sn−1dI. Then

kdd v,DRvl = kdd v,dd v + d dv + sn − 1dvl = kdd v,dd vl + kdd v,d dvl + sn − 1dkdd v,vl.

Among the three terms on the right-hand side, the first term and the third term areù0 while the
second equals zero since

kdd v,d dvl = kd ddv,dvl = 0.

So ,ddv ,DRv. is ù0. ThensA7d implies

isDR + dddvi2 = ksDR + dddv,sDR + dddvl ù kDRv,DRvl = iDRvi2,

which is the required result.
Assume that the result is proved fors−1 and let us prove it fors. We have

k¹ssdsDR + dddv,¹ssdsDR + dddvl ù k¹ssdDRv,¹ssdDRvl + 2k¹ssd ddv,¹ssdDRvl. sA8d

In order to complete the proof, we need the following lemma describing the last term in the
above inequality.

Lemma 4:,¹ssddd v ,¹ssdDRv. can be expressed as the sum of two terms T1+T2, where
T1ù0 and T2 satisfy the inequality

uT2u ø constivis+1
2 .

Assume that Lemma 4 is proved and let us see how the proof of Lemma 1 is completed.
Inequality sA8d implies

k¹ssdsDR + dddv,¹ssdsDR + dddvl ù k¹ssdDRv,¹ssdDRvl + 2T2.

Then we obtain

k¹ssdDRv,¹ssdDRvl ø k¹ssdsDR + dddv,¹ssdsDR + dddvl + 2uT2u

ø i¹ssdsDR + dddvi2 + constivis+1
2 .

By Proposition 2.3 in Ref. 9, we haveivis+1øconstiDRvis−1 and, by the induction assumption,
iDRvis−1ø isDR+dddvis−1. Hence

i¹ssdDRvi2 ø i¹ssdsDR + dddvi2 + constisDR + dddvis−1
2 ø constisDR + dddvis

2

which proves Lemma 1. h

It remains to prove Lemma 4.
Proof of Lemma 4:The local scalar product of¹ssd dd v by ¹ssdDRv is
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s¹ssd dd v,¹ssdDRvd = s¹i1
¯ ¹is

¹i¹
kvkds¹i1

¯ ¹is¹r¹rv
id. sA9d

Permute the derivatives¹i1
¯¹is

¹i in the first factor in order to place¹i first. We obtain

¹i1
¯ ¹is

¹i¹
kvk = ¹i¹i1

¯ ¹is
¹kvk + Asvdii 1¯is

,

whereAsvd is a globally definedss+1d-tensor. By substituting intosA9d, we have

s¹ssd dd v,¹ssdDRvd = s¹i¹i1
¯ ¹is

¹kvkds¹i1
¯ ¹is¹r¹rv

id + sAsvd,¹ssdDRvd.

Adding a divergence we pass the derivation¹i from the first factor to the second factor,

s¹ssd dd v,¹ssdDRvd = − s¹i1
¯ ¹is

¹kvkds¹i¹
i1
¯ ¹is¹r¹rv

id + div + sAsvd,¹ssdDRvd.

sA10d

As before

¹i¹i1
¯ ¹is

¹r¹rv
i = ¹i1

¯ ¹is
¹i¹

r¹rv
i + Bsvdi1¯is

,

whereBsvd is a globally defineds-tensor. Substitute this result intosA10d to obtain

s¹ssd dd v,¹ssdDRvd = − s¹i1
¯ ¹is

¹kvkds¹i1
¯ ¹is¹i¹

r¹rv
id + s¹ssddv,Bsvdd

+ div + sAsvd,¹ssdDRvd. sA11d

Finally, passing the LaplacianDR=−¹r¹r in front of all,

¹i1
¯ ¹is¹i¹

r¹rv
i = ¹r¹r¹

i1
¯ ¹is¹iv

i + Csvdi1¯is
,

whereCsvd is a globally defineds-tensor. Bys25d, we obtain

s¹ssd dd v,¹ssdDRvd = − s¹i1
¯ ¹is

¹kvkds¹r¹r¹
i1
¯ ¹is¹iv

id + s¹ssddv,Csvdd + s¹ssddv,Bsvdd

+ div + sAsvd,¹ssdDRvd.

Integrating over the whole manifold,

k¹ssd dd v,¹ssdDRvl = k¹ssddv,DR¹ssddvl + k¹ssddv,Csvd + Bsvdl + kAsvd,¹ssdDRvl.

Define now

T1 = k¹ssddv,DR¹ssddvl, T2 = k¹ssddv,Csvd + Bsvdl + kAsvd,¹ssdDRvl.

It is clear thatT1ù0. It remains to see thatT2 satisfies the inequality in the lemma. It is not
difficult to check, using Lemmas 2 and 3, that every term appearing in the definition ofT2 satisfies
this inequality. h

5. Proof of Proposition 1

We first give a naive and simple proof of Proposition 1.
A naive proof:Lemma 1 assures that for any integersù0 there exists a constant such that

iDRvis ø constiGsvdis sA12d

for any vPD1. Since the spaceD1 is dense inH1
s, one should expect that inequalitysA12d also

holds for aPH1
s. Therefore, sinceGsadPH1

s means thatiGsadis is finite, sA12d implies that
iDRais is finite and thenDRaPH1

s. Now Lemma 3.3 in Ref. 9 states thataPH1
s+2 and iais+2

øconstiDRais. Then inequalitysA12d enables us to writeiais+2øconstiGsadis. h

Nevertheless, the fact thatsA12d holds forvPD1 does not imply in a simple way that it will
also hold foraPH1

s. In fact, Lemma 1 assures only thatsA12d holds for aPH1
s+2. The more
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difficult task is to show that¹s+1a and ¹s+2a belong toL2. For this purpose a delicate regular-
ization argument in hyperbolic space is needed. In order to obtain a rigorous proof of Proposition
1, we first deal with a particular case of it.

A particular case of Proposition 1. Proposition 1 holds for 1-formsa belonging to the class
C`.

Proof of the particular case:We start with a sequencehxmj of C`-functions onM with
compact support,xmPDsMd, san exhausting sequenced such thatxm↗1 andu¹skdxmsxduøck for
all m and allxPM. In Ref. 9 is verified that such a sequence really exists whenM =Hn. Also it is
proved that given aC` form aPH1

ssMd thenxma→a in H1
ssMd.

As usual we use induction ons. Let us begin with the cases=0. Let am=xma. We haveam

PD1sMd. SinceG=DR+dd=¹* ¹ +dd,

kGsamd,aml = k¹am, ¹ aml + kdam,daml.

This implies

k¹am, ¹ aml ø kGsamd,aml.

Develop each member of the previous inequality. Since¹am= ¹ sxmad=s¹xmd ^ a+xm¹a, the
pointwise inner products¹am, ¹amd is

s¹am, ¹ amd = s¹xm ^ a, ¹ xm ^ ad + sxm ¹ a,xm ¹ ad + 2s¹xm ^ a,xm ¹ ad

= udxmu2uau2 + xm
2 u ¹ au2 + 2sdxm ^ a,xm ¹ ad,

On the other hand, we have

Gsxmad = xmGsad + sDRxmda − C23s¹s2dxm ^ ad − 2C12sdxm ^ ¹ ad

− C13sdxm ^ ¹ ad + sdaddxm, sA13d

where, for example,C12 means the operator obtained at each pointxPM by contraction through
the metric between the first and second factor of^3TxsMd* . The above formula can be proved by
making a trivial coordinatewise calculation. Then

sGsamd,amd = sGsxmad,xmad = xm
2 sGsad,ad + xmDRxmsa,ad − xms¹s2dxm,a ^ ad

− 2xms¹a,dxm ^ ad − xms¹a,a ^ dxmd − xmdasdxm,ad.

The inequalityk¹am, ¹amlø kGsamd ,aml writes

E hudxmu2uau2 + uxmu2u ¹ au2 + 4xmsdxm ^ a, ¹ adjdv

øE huxmu2sGsad,ad + xmDRxmuau2 − xms¹s2dxm,a ^ ad

− xms¹a,a ^ dxmd − xmdasdxm,adjdv.

We know thatxm, udxmu, u¹s2dxmu, and uDRxmu are boundedsfor all xPMd by a constant indepen-
dent ofm, hence

usdxm ^ a, ¹ adu ø constuauu ¹ au, us¹s2dxm,a ^ adu ø constuau2,

udauusdxm,adu ø constuauu ¹ au.

Let Im be the integraleMuxmu2u¹au2 dv, sfinite becausexmPDd. Sincea ,GsadPHp
0sMd the global

productskGa ,al and ka ,al are finite, and hence one deduces from the previous inequality that
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Im ø constSkGsad,al + ka,al +E uxmuuauu ¹ audvD . sA14d

The Schwarz inequality asserts that

E uxmuuau u ¹ audv ø HE uxmu2u ¹ au2dvJ1/2HE uau2dvJ1/2

= Im
1/2iai.

If x, y, and« are real numbers, we have

sy − 2«xd2 = y2 + 4«2x2 − 4«xyù 0,

whence

xyø «x2 +
y2

4«
.

For a fixed«, this inequality holds for allx, y. This means that

Im
1/2iai ø «Im +

iai2

4«
.

For a fixed«, this holds for allIm and iai. Then we obtain

E
M

xmuauu ¹ audv ø «Im +
iai2

4«
.

Take« such that 0,«,1. Then expressionsA14d yields sby collecting in the first member all the
terms containingImd

Im =E uxmu2u ¹ au2 dv ø constskGsad,al + iai2d.

But kGsad ,alø iGsadi iaiø s1/2dsiGsadi2+iai2d. Therefore

Im =E uxmu2u ¹ au2 dv ø constsiai2 + iGsadi2d.

By the dominated convergence theoremfwhich can be applied since bothiai andiGsadi are finite
becausea and Gsad belong toH1

0sMd=L1
2sMdg, we have thateu¹au2 dv is finite. That is,¹a

PL1
2sMd. ThenaPH1

1sMd. Therefore we know that the sequencehamj converges toa in the norm
of H1

1sMd. In particular, h¹amj converges to¹a in L1
2sMd. Since, on the other hand,Gsad

PL1
2sMd, hGsamdj converges toGsad in L1

2sMd. We can then pass to the limit in inequality
k¹am, ¹amlø kGsamd ,aml to obtain

k¹a, ¹ al ø kGsad,al.

This implies that

i ¹ ai2 ø iGsadi iai ø s1/2dsiGsadi2 + iai2d.

From expressionsA13d one obtains

iGsamdi2 ø constsiGsadi2 + iai2d.

This inequality will enable us to establish thatDRaPL1
2sMd. The inequality in Lemma 1 gives
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iDRami2 ø constiGami2 ø constsiGai2 + iai2d.

As one can easily check

DRam = DRsxmad = sDRxmda + xmDRa − 2C12sdxm ^ ¹ ad, sA15d

and therefore

ixmDRai ø iDRami + iaDRxmi + 2idxm ^ ¹ ai.

Since hxmj is an exhausting sequence andsiGsadi2+iai2d controls the normi¹ai as well as
iDRami, we have

E xm
2 uDRau2 dv ø constsiGsadi2 + iai2d.

Then, by the dominated convergence theorem, the integraleuDRau2 dv is finite. That is,DRa
PL1

2sMd. Therefore we can apply Lemma 3.3 in Ref. 9 givingaPH1
2sMd and iai2

øconstiDRai. Once we know thatDRaPL1
2sMd, we can take limits in the inequalityiDRami

øconstiGsamdi and obtainiDRaiøconstiGsadi. Combining this results with earlier ones, we
have

iai2 ø constiDRai ø constiGsadi,

completing the proof of the lemma fors=0.
Let us suppose that the particular case of Proposition 1 holds fors−1. Sincea and Gsad

belong to H1
ssMd,H1

s−1sMd then by the induction assumption,aPH1
s+1sMd, iais+1

øconstiGsadis−1, and iDRais−1øconstiGsadis−1. Next we try to controliDRamis by the finite
quantitiesiGsadis andiais+1. Write sA13d ordering the terms by the order of derivatives ofa they
contain,

Gsxmadi = xmGsadi − 2s¹kxmds¹kaid − s¹kxmds¹ia
kd − s¹kakds¹ixmd + sDRxmdai − s¹i¹kxmdak.

Then

¹ssdGsamd = ¹ssdGsxmad = xm¹ssdGsad + T,

where T denotes the sum of terms containing less thans derivatives ofGsad and of terms
containing less thans+2 derivatives ofa. The local inner product of¹ssdGsamd by itself will be

s¹ssdGsamd,¹ssdGsamdd = xm
2 s¹ssdGsad,¹ssdGsadd + sT,Td + 2xms¹ssdGsad,Td.

Integrate this expression overM to obtain

i¹ssdGsamdi2 =E
M

uxmu2u¹ssdGsadu2 dv + iTi2 + 2E
M

uxmus¹ssdGsad,Tddv

ø consti¹ssdGsadi2 + iTi2 + constuk¹ssdGsad,Tlu.

Since

uk¹ssdGsad,Tlu ø i¹ssdGsadi iTi ø
1
2si¹ssdGsadi2 + iTi2d

and iTi2øconstsiais+1
2 +iGsadis−1

2 d we get

iGsamdis
2 = i¹ssdGsamdi2 + iGsamdis−1

2 ø constsiGsadis
2 + iais+1

2 d.

Lemma 1 givesiDRamisøconstiGsamdis. Then
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iDRamis
2 ø constsiGsadis

2 + iais+1
2 d. sA16d

Using formula sA13d and applying to¹ssdDRam the same argument as that applied toIm, we
conclude that

E uxmu2u¹ssdDRau2 dv ø constsiDRais−1
2 + iGsadis

2 + iais+1
2 d.

By the induction assumption, iDRais−1
2 øconstiGsadis−1

2 øconstiGsadis
2 and iais+1

2

øconstiGsadis−1
2 øconstiGsadis

2. Then

E xm
2 u¹ssdDRau2 dv ø constiGsadis.

This proves thateu¹ssdDRau2 dv is finite and

E u¹ssdDRau2 dv ø constiGsadis.

Hence

iDRais
2 =E u¹ssdDRau2 dv + iDRais−1

2 ø constiGsadis
2.

Lemma 3.3 in Ref. 9 then givesaPH1
s+2sMd and

iais+2 ø constiDRais ø constiGsadis

completing the proof. h

Final part of the proof of Proposition 1:We have to approximate formsa in H1
ssHnd with

GsadPH1
ssHnd by C` forms with the same properties. This is achieved via the hyperbolic regu-

larizationssee Ref. 9d. There one defines for any«.0 the hyperbolic convolutionC«a of a form
a by

sC«adsxd =E
Hn

asyd ∧ !d«sx,yd.

Here! stands for Hodge operator. EachC«a is aC` 1-form onHn invariant for all isometries, that
is, C«swad=wsC«ad∀wP IsosHnd. It is proved thatC«aPH1

ssHnd, that

iC«ais ø constiais sA17d

and thatC«a tends toa in H1
ssHnd as«→0.

The operatorG=DR+dd in Hn commutes with all isometries, that is, ifw is an isometry then
Gsw*sadd=w*sGsadd, because all the operators involved are defined in terms of the metric. Then
one can show thatC« commutes withG. Since aPH1

ssHnd, the inequalitysA17d gives C«a
PH1

ssHnd for all «. Since, on the other hand,GsadPH1
ssHnd, we have in a similar manner that

C«sGsaddPH1
ssHnd. The particular case of Proposition 1 applied toC«a and to GsC«ad

=C«sGsadd givesC«aPH1
s+2sHnd. Let us prove thatsby varying«d hC«aj is a Cauchy sequence in

the spaceH1
s+2sHnd. For this purpose, we apply the particular case of Proposition 1 to the differ-

enceC«a−C«8a. We have

iC«a − C«8ais+2 ø constiGsC«a − C«8adis ø constiC«Gsad − C«8Gsadis. sA18d

Since Gsad and C«Gsad belong toH1
ssHnd and C«Gsad converges in this space toGsad as «

→0, we have thathC«Gsadj is a Cauchy sequence inH1
ssHnd and thensA18d implies thathC«aj is

also a Cauchy sequence inH1
s+2sHnd. Since this space is complete, this Cauchy sequence has a
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limit bPH1
s+2sHnd,H1

ssHnd. Let us see that this limit coincides witha. Since the convergence in
the normi is+2 is stronger than that in the normi is, b will also be the limit ofhC«aj in the norm
i is. This limit, however, wasa. Thereforea=b andaPH1

s+2sHnd. Finally, by taking limits in the
inequalities

iC«ais+2 ø constiGsC«adis = constiC«Gsadis,

iDRC«ais ø constiGsC«adis = constiC«Gsadis,

we obtain

iais+2 ø constiGsadis,

iDRais ø constiGsadis.

h
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Birkhoff’s theorem in Lovelock gravity
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We show that the solutions of the Lovelock equations with spherical, planar, or
hyperbolic symmetry are locally isometric to the corresponding static Lovelock
black hole. As a consequence, these solutions are locally static: they admit an
additional Killing vector that can either be space-like or time-like, depending on the
position. This result also holds in the presence of an abelian gauge field, in which
case the solutions are locally isometric to a charged static black hole. © 2005
American Institute of Physics. �DOI: 10.1063/1.1960798�

In four-dimensional general relativity, it is well known that the spherically symmetric solu-
tions of Einstein’s field equations in the vacuum are locally isometric to the Schwarzschild
solution—this is Birkhoff’s theorem, see e.g., Ref. 1. As a consequence, these solutions are locally
static outside the horizon and a spherically symmetric source does not radiate gravitational waves.
In this letter, we extend Birkhoff’s theorem to Lovelock gravity.

Lovelock theory is the most general classical theory of gravity leading to second order field
equations and conserved energy momentum, in D dimensions. The corresponding field equations
without matter sources read2

�
k=0

��D−1�/2�

�kE�k�a = 0, �1�

where the brackets stand for the integer part, the �k are real constants and the E�k�a �with a
=1, . . . ,D� are given by

E�k�a = � ∧
l=1

k

�a2l−1a2l� ∧ �aa1¯a2k

* , �2�

which is of order k in the curvature 2 form �a
b= 1

2Ra
bcd�c∧�d. Finally, �a1¯ak

* is the Hodge dual of
�a1 ∧ ¯ ∧�ak, the basis of the space of k forms ��k��TM�, and we thus have

�a1¯ak

* =
1

�D − k�!
�a1¯akak+1¯aD

�ak+1 ∧ ¯ ∧ �aD. �3�

When D=4, Eq. �1� reduces to Einstein equations �k=1� with a cosmological constant �0, whilst
for D=5, the Gauss–Bonnet term �k=2� must be added. For arbitrary D, the static spherically
symmetric solutions of �1� were found in Ref. 3 and their extension to planar and hyperbolic
symmetry is given in Ref. 4. All these solutions belong to a one parameter family and read

a�Electronic mail: robin.zegers@th.u-psud.fr
b�UMR 7164 �CNRS, Université Paris 7, CEA, Observatoire de Paris�.
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g = − h�r�dt2 +
dr2

h�r�
+ r2ḡ�D−2,K�, �4�

where h is given as a root of a polynomial that depends on the Lovelock coupling constants �k and
on the mass parameter �, and ḡ�D−2,K� is the �D−2�-dimensional metric with spherical �K=1�,
planar �K=0� or hyperbolic �K=−1� symmetry and hence with isometry groups SO�D−1�, ED−2 or
SO�1,D−2� respectively. Notice that, in addition to these isometries, the solutions �4� also admit
�t as a Killing vector and this can either be space-like when h�0 or time-like when h�0, so that
g is locally static. This family contains static black holes, with one or more horizons.5 These
horizons can be spherical as in the Schwarzschild case, but also planar or hyperbolic, yielding a
much richer topology as for topological black holes.6 Though solutions of the form �4� do not only
describe static black holes, we shall refer to them as static Lovelock black hole solutions. Now, we
shall prove the following.

Theorem: The C2 solutions of the Lovelock field equations without matter (1), with spherical,
planar or hyperbolic symmetry are locally isometric to the corresponding static Lovelock black
hole solutions (4).

Before proceeding with the proof, note that this theorem implies that the solutions of �1�, with
spherical, planar or hyperbolic symmetry are also locally static; by which we mean that they have
an additional Killing vector that is locally time-like. In the specific case of Einstein–Gauss–Bonnet
gravity, this theorem was already proven in Refs. 7–9.

Proof: We begin with a D-dimensional space-time with spherical, planar or hyperbolic sym-
metry. We thus consider a Lorentzian manifold �M ,g� admitting, respectively, SO�D−1�, ED−2, or
SO�1,D−2� as an isometry group with �D−2�-dimensional space-like orbits �. For all point P
�M, if �P is the orbit of P, the tangent space TPM can be decomposed into TPM =TP�P

� �TP�P��. Then, let �P
� be the set of all the geodesics passing through P that are tangent to

�TP�P��. Locally, �P
� is a two-dimensional submanifold of M that is perpendicular to the orbit �P.

Thus, on taking ��t ,�z� as a coordinate basis of T�� and making use of the conformal flatness of
the two-dimensional submanifold ��, one can write

g = A2�t,z��− dt2 + dz2� + R2�t,z�ḡ�D−2,K�, �5�

where ḡ�D−2,K� is the metric over the orbits of the corresponding isometry group. Since these orbits
are invariant under their isometry group, they are homogeneous and have constant induced cur-
vature

�̄i
j = K�̄i ∧ �̄ j , �6�

where i , j=1, . . . ,D−2, �̄ i is the orthonormal frame adapted to ḡ�D−2,K�,

ḡ�D−2,K� = 	ij�̄
i

� �̄ j , �7�

and �̄i∧ �̄ j is the resulting basis of the space of 2 forms on the orbits, ��2��T��. It will be useful to
introduce the conformal coordinates

u =
z + t

2
and v =

z − t

2
, �8�

together with the following parametrization of the metric:

g = e2
�u,v��du � dv + dv � du� + B2�u,v�ḡ�D−2,K�. �9�

We define the associated orthonormal frame

�u = e
�u,v�du , �10�
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�v = e
�u,v�dv , �11�

�i = B�u,v��̄ i, �12�

so that

g = 2��u�
� ��v� + 	ij�

i
� � j . �13�

In this basis, indices are raised and lowered using

�ab = �0 1 0

1 0 0

0 0 	ij
	 . �14�

Given a torsion-free metric connection �, one can define a connection 1 form �a
b, such that

�ab=−�ba and d�a=−�a
b∧�b. From the latter, it is straightforward to derive the components of

the connection 1 form. The curvature 2 form then follows from

�a
b = d�a

b + �a
c ∧ �c

b, �15�

yielding

�u
u = − �v

v =
2
uv

e2
 � v ∧ � u, �16�

�i
u =

1

Be2
 ��Buu − 2Bu
u�� u ∧ � i + Buv� v ∧ � i� , �17�

�i
v =

1

Be2
 �Buv� u ∧ � i + �Bvv − 2Bv
v�� v ∧ � i� , �18�

�i
j = �̄i

j −
2BuBv

B2e2
 � i ∧ � j =
K − 2BuBve−2


B2 � i ∧ � j , �19�

where fu�v�=�u�v�f . Now, the projection of the u �respectively, v� components of �1� onto �v
*

�respectively, �u
*� yields the integrability conditions

P�
K − 2BuBve−2


B2 ��Buu − 2Bu
u� = 0 �20�

P�
K − 2BuBve−2


B2 ��Bvv − 2Bv
v� = 0, �21�

where

P�X� � �
k=0

��D−1�/2�
�k

�D − 2k − 1�!
Xk �22�

and a prime stands for a derivative with respect to the unique argument of a function. Notice how
�20� and �21� factorize as a product of a polynomial, times the integrability conditions one gets
from pure Einstein gravity.10 Up to the possible vanishing of P�, Einstein and Lovelock gravities
thus obey the same integrability conditions and the theorem will hold. The projection of the u
�respectively v� component of �1� onto �u

* �respectively �v
*� then yields a further equation
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P
K − 2BuBve−2


B2 � −
2

�D − 1�
P�
K − 2BuBve−2


B2 �� 1

Be2
�Buv − 2
BuBv

B
� +

K

B2� = 0. �23�

Finally, the i component of �1� only projects onto �i
* giving

�D − 1��D − 2�P
K − 2BuBve−2


B2 � −
2

Be2
 P�
K − 2BuBve−2


B2 �� �2D − 5�
B

�Ke2
 − 2BuBv�

+ �2D − 6�Buv + 2B
uv� +
4

B2e4
 P�
K − 2BuBve−2


B2 ���Buv − 2
BuBv

B
+

Ke2


B
�2

− �Buu − 2Bu
u��Bvv − 2Bv
v�� = 0. �24�

Equations �20�, �21�, �23�, and �24� form the full set of Lovelock equations. From the integrability
conditions �20� and �21�, we distinguish two classes of solutions

• class I for which P���K−2BuBve−2
� /B2�=0 and
• class II for which P���K−2BuBve−2
� /B2��0.

For class I,

K − 2BuBve−2
 = B2, �25�

where  is one of the real roots of P� and is thus a function of the �k. On using Eq. �23�, it follows
that P��=0, whilst Eq. �24� is trivially satisfied since �25� implies that

�Buv − 2
BuBv

B
+

Ke2


B
�2

= �Buu − 2Bu
u��Bvv − 2Bv
v� . �26�

The solutions thus read

g =
2BuBv

K − B2 �du � dv + dv � du� + B2ḡ�D−2,K�, �27�

where B is an arbitrary function of its two arguments u and v. For all harmonic B, a couple
of new coordinates �t ,r� can be defined on ��, so that r=B and
dt= �Bu du−Bv dv� / �K−B2�. In these coordinates, the solutions actually reduce to

g = − �K − r2�dt2 +
dr2

K − r2 + r2 g�D−2,K�, �28�

which is just a spherical, planar or hyperbolic slicing of dSD or adSD.11 The fine-tuning condition
P��=0 must hold, so that a space-time of constant curvature  is an acceptable solution of the
Lovelock equations �1�. Birkhoff’s theorem thus holds for class I solutions.

For class II, the integrability conditions �20� and �21� yield

B�u,v� = H�F�u� + G�v�� and e2
�u,v� = H�F�G�, �29�

where H, F, and G are three functions that depend only on one argument and a prime denotes the
derivative of a function with respect to its single argument. To all functions F and G, one can
associate a new set of coordinates ũ=F�u� and ṽ=G�v� on ��. Further, trading the �ũ , ṽ� confor-
mal coordinates for time-like t̃= ũ+ ṽ and space-like z̃= ũ− ṽ, the metric can be rewritten as

g = 2H��z̃��− dt̃ 2 + dz̃ 2� + H2�z̃�ḡ�D−2,K�, �30�

which has a time-like Killing vector �t̃ in all neighborhood where H��z̃��0 and is thus locally
static. In particular, setting r=H�z̃�, we can put it into the following form:
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g = − h�r�dt2 +
dr2

h�r�
+ r2ḡ�D−2,K�, �31�

where h�r�=2H��z̃� solves Eq. �23�,

P
K − h

r2 � −
1

D − 1
P�
K − h

r2 ��h�

r
+

2�K − h�
r2 � = 0. �32�

The latter can be integrated, yielding

P
K − h

r2 � =
�

rD−1 , �33�

where � is a real constant. Let ���0 , . . . ,���D−1�/2�� denote a real root of P�X�, as a function of the
Lovelock couplings, so that we can write

h�r� = K − r2���0 −
�

rD−1 ,�1, . . . ,���D−1�/2�� . �34�

The metric �31�, with h given by �34�, is the static Lovelock black hole found in Refs. 3 and 4.
Birkhoff’s theorem thus holds for class II solutions. �

As we shall now see, this result still holds in the presence of an abelian gauge field that is
invariant under the chosen isometry group. Such a gauge field has a 1 form potential A�u ,v�
=L�u ,v�du+M�u ,v�dv and therefore

F = dA =
Mu − Lv

e2
 � u ∧ � v. �35�

This of course implies that dF=0. From d�F=0, on the other hand, it follows that

F =
Q

B�D−2��
u ∧ � v, �36�

where Q is a real constant. The integrability conditions �20� and �21� are unchanged, but there is
no class I solution if Q�0. We are thus left with class II, which is still free of any fine-tuning, and
for which Eq. �32� becomes

P
K − h

r2 � =
�

rD−1 −
Q2

r2D−4 �37�

as it is now sourced by the stress-energy of the gauge field. In the end, the metric is still of the
form �31�, but now, h is given by

h�r� = K − r2���0 −
�

rD−1 +
Q2

r2D−4 ,�1, . . . ,���D−1�/2�� . �38�

This is the Lovelock analog of the Reissner–Nordstrøm black hole of general relativity.3,5 Class II
solutions are the only solutions of the Lovelock equations, coupled to a non-vanishing abelian
gauge field, with spherical, planar, or hyperbolic symmetry and they are locally static.

Though the set of Killing vectors of space times with spherical, planar, or hyperbolic sym-
metry, a priori reduces to the generators of their respective isometry groups SO�D−1�, ED−2, or
SO�1,D−2�, we have shown that the solutions of the Lovelock equations with these symmetries
admit an additional Killing vector that enlarges their isometry group, so that they reduce to locally
static space times. The static Lovelock black holes therefore span the whole set of solutions of the
Lovelock equations without matter or in the presence of an abelian gauge field, with spherical,
planar or hyperbolic symmetry.
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We study a two-body problem given by the sum of the Newtonian potential and an
anisotropic perturbation that is a homogeneous function of degree −�, ��2. For
��2, the sets of initial conditions leading to collisions/ejections and the one lead-
ing to escapes/captures have positive measure. For ��2 and ��3, the flow on the
zero-energy manifold is chaotic. For �=2, a case we prove integrable, the infinity
manifold of the zero-energy level has heteroclinic connections with the collision
manifold. © 2005 American Institute of Physics. �DOI: 10.1063/1.1952580�

I. INTRODUCTION

In the past three centuries, celestial mechanics has stimulated the development of many
branches of mathematics.11,13 This trend continues, and even its most basic question, known as the
two-body problem or the Kepler problem, still attracts the vivid interest of mathematicians and
physicists, both in its classical form1 and in more recent versions.

Among the latter are the problems raised by quasihomogeneous potentials, given by the sum
of homogeneous functions, and problems set in anisotropic spaces, for which the interaction law
is different in each direction of the space. For quasihomogeneous problems the terminology and
the first qualitative results were introduced in the mid-1990s;9,12,21 this potential unifies several
dynamical laws, including those of Newton, Coulomb, Manev, Schwarzschild, Lennard-Jones,
Birkhoff and others. The anisotropic case is more related to physics, and was initiated by
Gutzwiller in the 1970s17,18 for the quantization of classical ergodic systems. Among Gutzwiller’s
goals was also that of finding connections between classical and quantum mechanics. A combina-
tion of the quasihomogeneous and anisotropic aspects shows up in the anisotropic Manev problem,
whose dynamics contains classical, quantum and relativistic features.6,10,14,15

In the present paper we consider a version of the Kepler problem, which combines two of the
above characteristics, isotropy and anisotropy. The potential �see formula �3�� is the sum of the
classical Keplerian potential and an anisotropic perturbation, the latter being a homogeneous
function of degree −�, ��2 that depends on a parameter ��1 measuring the strength of the
anisotropy. This is the first analysis of a quasihomogeneous potential that mixes isotropic and
anisotropic components. For previously studied problems, all terms have been either isotropic or
anisotropic. As we will see, this case has some surprising dynamical properties, often very differ-
ent from the ones that characterize potentials whose terms are not mixed.

a�Electronic mail: diacu@math.uvic.ca
b�Electronic mail: epc@xanum.uam.mx
c�Electronic mail: msantopr@math.uci.edu
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Such mixed potentials can be used to understand the dynamics of satellites around oblate
planets or the motion of stars around black holes. Here, however, we are not interested in appli-
cations. Our endeavours are restricted to mathematical results.

In Sec. II we introduce the basic notations, the equations of motion, and set into evidence the
symmetries of the problem. In Sec. III we begin the study of the case ��2, define the collision
manifold, which is an essential qualitative tool, and perform a geometric study of the flow in the
neighborhood of collisions. We classify all collision-ejection orbits and prove that the set of initial
conditions leading to them has positive measure. We achieve this while studying the flow on and
near the collision manifold in terms of McGehee-type coordinates.

In Sec. IV we investigate the existence of heteroclinic orbits on the collision manifold for
potentials with ��1 and �=2+ �2/ �1+2k�� or �=2+ �1/ �1+k��. The main result of this section is
that for an open and dense set of � values, saddle-saddle connections do not exist on the collision
manifold. Section V deals with capture and escape orbits in the zero-energy case. We show that the
infinity manifold has two circles of normally hyperbolic equilibria, one attractive and one repel-
ling. This proves the existence of infinitely many capture and escape orbits.

In Sec. VI we consider the case �=2, which we show to be integrable. Apparently this is quite
surprising since the anisotropic Manev problem, which resembles this case except for the aniso-
tropy of the Newtonian term, is nonintegrable.3,15 But as we will show, the surprise element
vanishes once we look at the problem in the larger context of the Hamilton-Jacobi theory. In Sec.
VII we study the flow on and near the collision manifold and see that its qualitative behavior is
similar to that of the anisotropic Manev problem.

In Sec. VIII we prove the existence of heteroclinic orbits connecting the collision and infinity
manifolds in the zero-energy case for �=2.

In Sec. IX we consider a perturbative approach of the problem. The perturbation function of
the Hamiltonian is a homogeneous function of degree −� with ��3/2. We end the paper with
Sec. X, in which we apply the Melnikov method to show that for every ��2,3, the flow on the
zero-energy manifold is chaotic.

II. EQUATIONS OF MOTION AND SYMMETRIES

Consider the Hamiltonian

H��q,p� = 1
2p2 + U��q� , �1�

where q= �x ,y� and p= �px , py�. The equations of motion are

q̇ = p ,

ṗ = − � U��q� , �2�

where U� is a potential of the form

U��x,y� = −
1

�x2 + y2
−

b

��x2 + y2��/2 , �3�

with the constants ��2, ��1, and b�0. The symmetries of �2� are given by the following
analytic diffeomorphisms in the extended phase space:

Id: �x,y,px,py,t� → �x,y,px,py,t� ,

S0: �x,y,px,py,t� → �x,y,− px,− py,− t� ,

S1: �x,y,px,py,t� → �x,− y,− px,py,− t� ,
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S2: �x,y,px,py,t� → �− x,y,px,− py,− t� ,

�4�
S3: �x,y,px,py,t� → �− x,− y,− px,− py,t� ,

S4: �x,y,px,py,t� → �− x,y,− px,py,t� ,

S5: �x,y,px,py,t� → �x,− y,px,− py,t� ,

S6: �x,y,px,py,t� → �− x,− y,px,py,− t� ,

where Id is the identity. These diffeomorphisms form a group that is isomorphic to
Z2�Z2�Z2.14,22 Invariance under these symmetries implies that if ��t� is a solution of �2�, then
also Si���t�� is a solution for i� �0,1 ,2 ,3 ,4 ,5 ,6�.

III. THE COLLISION MANIFOLD FOR �>2

We will further express the equations of motion in McGehee-type coordinates,8,20 which are
suitable for understanding the motion near collision. The transformations are given step by step as
follows. Take

r = �x2 + y2,

� = arctan
y

x
,

�5�
ṽ = rṙ = �xpx + ypy� ,

ũ = r2�̇ = �xpy − ypx� ,

rescale ṽ and ũ by

v = r��−2�/2ṽ, u = r��−2�/2ũ ,

and then rescale the time variable using the transformation

dt

d�
= r�/2+1.

The equations of motion take the form

r� = rv ,

v� =
� − 2

2
v2 + r�−1 + 2hr� −

b�� − 2�
	�/2 ,

�� = u ,

u� =
� − 2

2
uv +

b��� − 1�sin 2�

2	��+2�/2 , �6�

where 	=� cos2 �+sin2 � and the prime denotes differentiation with respect to the independent
time variable �. For simplicity, we keep the same notation for the dependent variables.

In these coordinates, the energy integral H�=h �see Eq. �1��, takes the form
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u2 + v2 − 2r�−1 −
2b

	�/2 = 2hr�. �7�

We define the collision manifold �see Fig. 1� as

C = �	�r,v,�,u�	 r = 0, u2 + v2 =
2b

	�/2
 . �8�

Notice that C is homeomorphic to a torus. The flow on this manifold is given by the system

v� =
� − 2

2
�− u2� ,

�� = u ,

u� =
� − 2

2
uv +

b��� − 1�sin 2�

2	��+2�/2 . �9�

We can now prove the following results.
Proposition 3.1: All the equilibrium points of system (6) lie on the collision manifold C and

are given by

r = 0, v = ±� 2b

	�/2 , � = 0, 
/2, 3
/2, u = 0.

Proof: It is obvious that the above points are equilibria for the flow defined by �6�. To check
that there are no equilibria outside the collision manifold, from the first equation in �6� with r
�0 we see that v=0 and from the third equation in �6� that u=0. So, if there are equilibrium
points with r�0, they must be on the zero velocity curve �ZVC�; substituting these values in �7�,
we obtain that the ZVC exists just for h�0, it is given by

r�−1 +
b

	�/2 = − hr�. �10�

Solving the equation v�=0 in �6�, we are led to

FIG. 1. The collision manifold C for ��2.
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r�−1 −
b�� − 2�

	�/2 = − 2hr�. �11�

But �10� and �11� have no common solutions for h�0, therefore there are no equilibria outside the
collision manifold. �

Proposition 3.2: The flow on the collision manifold C is gradientlike (i.e., increasing) with
respect to the �−v�-coordinate.

Proof: Since ��2, we see from the first equation in �9� that v��0 except at equilibria,
therefore the flow on C increases with respect to −v, so is gradientlike relative to it. �

To match the sign of v and the value of �, we denote the equilibria on C by A0
±, A
/2

± , A

±, and

A3
/2
± , respectively. Observe that 	�0�=	�
�=� and 	�
 /2�=	�3
 /2�=1. With this notation, we

can describe the following properties of the flow.
Theorem 3.1: On the collision manifold C, the equilibria A0

± and A

± are saddles, A
/2

+ and
A3
/2

+ are sources and A
/2
− and A3
/2

− are sinks. Outside C, the equilibria A0
+, A


+, A
/2
+ , and A3
/2

+

have a local one-dimensional unstable analytic manifold, whereas A0
−, A


−, A
/2
− , and A3
/2

− have a
local one-dimensional stable analytic manifold. All these equilibrium points are hyperbolic.

Proof: Consider the function

F�r,v,�,u� = u2 + v2 − 2r�−1 −
2b

	�/2 − 2hr� = 0.

According to Eq. �7�, the surface of constant energy Mh defined by the equation

F�r,�,v,u� = 0

is a three-dimensional manifold. At every point B of Mh, the tangent space is given by

TBF = �	�r,v,�,u�	 � F�B� · �r,v,�,u� = 0� .

At any equilibrium point A, the tangent space is defined by

TAF = �	�r,�,v,u�	v = 0� .

A straightforward computation shows that at the equilibria A0
± and A


± the linearized system
corresponding to �6� has the matrix

�
±� 2b

��/2
0 0 0

0 �� − 2� ± �� 2b

��/2 0 0

0 0 0 1

0 0
b��� − 1�

��+2/2 ±
�� − 2�

2
�� 2b

��/2 � ,

therefore the linear part of the vector field �6� restricted to T A0,


+,− is given by

L =� ±� 2b

��/2r

0

u

b��� − 1�
��+2/2 � + ±

�� − 2�
2

�� 2b

��/2u
� .

As a basis for the tangent space T A0,


+,− , we take the vectors
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�1 =�
1

0

0

0
�, �2 =�

0

0

1

0
�, �3 =�

0

0

0

1
� . �12�

The representation of the linear part L relative to this basis is given by the matrix

J* =�±� 2b

��/2
0 0

0 0 1

0
b��� − 1�

��+2/2 ±
�� − 2�

2
�� 2b

��/2� .

The characteristic polynomial shows that all eigenvalues are real and that the equilibrium is a
saddle in each case.

At the equilibria A
/2
± and A3
/2

± , the same linearized system has the matrix

�
±�2b 0 0 0

0 �� − 2� ± ��2b� 0 0

0 0 0 1

0 0 − b��� − 1� ±
�� − 2�

2
��2b� � .

Using the vectors given in �12� as a basis for the tangent space TA
/2,3
/2

+,− , the linear part is given by
the matrix

J* =�
±�2b 0 0

0 0 1

0 b��� − 1� ±
�� − 2�

2
��2b� � .

The eigenvalues at A
/2
+ and at A3
/2

+ are

�2b,
�� − 2�

2
��2b� +�b

2
��� − 2�2 − 8��� − 1�� ,

and

�� − 2�
2

��2b� −�b

2
��� − 2�2 − 8��� − 1�� .

This means that all of them are positive or have positive real part. At A
/2
− and A3
/2

− the eigen-
values are all negative or have negative real part. �

Corollary 3.1: The set of initial conditions leading to collisions or ejections has positive
measure.

Proof: The equilibrium points A
/2
− �A
/2

+ � and A3
/2
− �A3
/2

+ � are sinks �sources� for the global
flow, therefore their basin of attraction �repulsion� is a three-dimensional set of collision �ejection�
orbits. �

Remark 3.1. If 0��� ��+2�2 /8�, all the eigenvalues are real and positive. If �� ��
+2�2 /8�, there are two complex eigenvalues with positive real part, so some orbits have the
spiraling property, i.e., engage into an infinite spin. For example, to have spiraling orbits in the
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case �=3, it is necessary that ��
25
24 . Therefore when � is sufficiently close to 1, no spiraling

orbits exist.
Remark 3.2: The inequalities in Remark 3.1 do not depend on the parameter b.
Remark 3.3: For � close enough to 1, though the set of collision orbits has positive measure,

there are no spiralling orbits.

IV. SADDLE-SADDLE CONNECTIONS ON C

Using ideas similar to those found in Ref. 7, we will further study the existence of saddle-
saddle connections on C for ��1 and � of the form

� = 2 +
2

1 + 2k
and � = 2 +

1

1 + k
,

k integer, k�−1. The reason for choosing these values of � will be clarified below. In the proof we
restrict ourselves to the cases �=3,4. This is because the method requires the computation of an
integral for each value of k, and each integral must be computed separately. But the principle is the
same for every such k.

To show that there are no heteroclinic connections is sufficient to prove that the stable and
unstable manifolds of corresponding fixed points miss each other. We will show that this holds
true for most values of ��1.

It is now convenient to introduce different coordinates on C. Since C is homeomorphic to a
torus, we can describe the flow using angle variables. With the transformations

u =
�2b

	�/4 sin  ,

v =
�2b

	�/4 cos  , �13�

we can rewrite the flow on the equations of motion �9� on C as

�� =
�2b

	�/4 sin  ,

�14�

� =
� − 2

2

�2b

	�/4 sin  +
d

d�
� �2b

	�/4	�/4

�2b
cot  ,

where

d

d�
� �2b

	�/4 =
��� − 1��2b

4	��+4�/4 sin 2� . �15�

The equilibrium points in the variables �� ,� are A±
/2
− = �±
 /2 ,0�, A±
/2

+ = �±
 /2 ,
�, A0
−= �0,0�,

A0
+= �0,
�, A


− = �
 ,0�, and A

+ = �
 ,
�.

Notice that if �=1 �the isotropic case�, the collision manifold is a torus for which the upper
and lower circles C+ and C− consist of fixed points. The equations �14� take the form

�� = �2b sin  ,
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� =
� − 2

2
�2b sin  . �16�

It is easy to see that in this case there are heteroclinic orbits that connect the critical points A0
+ to

A

− and A


+ to A0
− when

� = 2 +
2

1 + 2k
,

k integer, k�−1, and connect the critical points A−

+ to A


− and A

+ to A−


− when

� = 2 +
1

1 + k
,

k integer, k�−1.
Figure 2�a� depicts the collision manifold for �=1 and �=3 and the heteroclinic connections

on it, while Fig. 2�b� does the same for �=1 and �=4.
In the following we will show that if �−1=��0 and small, such saddle-saddle connections

are broken and the same result holds for an open dense set of �−1=��0.
Theorem 4.2: For �=3 and for an open and dense set of real numbers ��1, the unstable

manifolds at A−

− and A


− miss the stable manifolds at A

+ and A−


+ . For �=4 and for an open and
dense set of real numbers ��1, the unstable manifolds at A0

+ and A−

+ miss the stable manifolds

at A

− and A0

−.
Proof: Dividing the first of equations �14� by the second one we have

d

d�
=

d

d�
� �2b

	�/4	�/2

2b

cos 

sin2 
+ �� − 2

2
 = F���,,�� , �17�

where �=�−1 and 	=1+� cos2 �.
First consider �=3, and the unstable manifolds W3

u�−
 ,0�=W3
u�
 ,0�. When �=0, W3

s�
 ,
�
matches W3

u�−
 ,0�. Consider the branch of W3
u�−
 ,0� which contains �0,
 /2�. This curve lies

along the line

− 2 + � = − 
 . �18�

When � varies, this branch of the unstable manifold W3
u�−
 ,0� varies smoothly on C. Let �3�� ,��

denote the -coordinate of this curve, satisfying �3�−
 ,��=0.
Now let �=4 and W4

u�−
 ,0�=W4
u�
 ,0�. When �=0, W4

s�−
 ,0� matches W4
u�0,
�. Consider

the branch of W4
u�−
 ,0� that contains �−
 /2 ,
 /2�. This curve lies along the line

FIG. 2. The collision manifold and the heteroclinic connections for �a� �=1, �=3 and for �b� �=1, �=4.
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− 2 + 2� = − 2
 . �19�

As � varies, this branch of W4
u�−
 ,0� varies smoothly on C. Let �4�� ,�� denote the -coordinate

of this curve, satisfying �4�−
 ,��=0. Now we need the following result, which we will prove at
the end of this demonstration.

Lemma 4.1: With the above notations, �� /����3�0,0�=3/4
�0 and �� /����4�−
 /2 ,0�
=
 /2�0.

From this lemma it follows that �3�0,���0 and �4�0,���0 for ��0 small. Thus, it is easy to
show that v1+��0,�l�0,����0, where l=3,4. Equations �17� are reversed by the transformation

��,� → �− �,
 − � . �20�

If �=3, the unstable manifold through �−
 ,0� is mapped onto the stable manifold through �
 ,
�.
Hence the stable manifold intersects the line �=0 at some point �0,0� such that v1+��0,0��0.
Consequently the stable manifold misses the unstable one for ��0 small.

Moreover the stable and unstable manifolds intersect only for a discrete set of �, since they
vary analytically with �.

Furthermore equations �17� are reversed by the transformation

��,� → �− � − 
,
 − � . �21�

If �=4, the unstable manifold through �−
 ,0� is mapped onto the stable manifold through �0,
�.
Hence the stable manifold intersects the line �=0 at some point �0,0� such that v1+��0,0��0
and the stable manifold misses the unstable one for ��0 small.

Moreover the stable and unstable manifolds intersect only for a discrete set of �, since they
vary analytically with �.

Similar arguments can be applied to the remaining stable and unstable manifolds. This con-
cludes the proof of Proposition 4.1. �

Proof of Lemma 4.1: Observe that �� satisfies the equation

����,�� = �
−


�

F���,�����,��d� , �22�

where F� is given by �17�. For � small we can write

�� = �0
���� + ��1

���� + O��2� . �23�

We also have

�0
3��� = �1/2�� + 
/2,

�24�
� 0

4��� = � + 
 .

To compute �1���, we can use the Taylor expansion of �22� with respect to � and find

�1
���� = �

−


� � �

��
F���,�0

����,0� +
�

�
F���,�0

����,0��1
����d� . �25�

Standard computations show that

�

��
F���,�0

����,�� =
�

2

cos���sin���cos��0
�����

sin��0
�����

+ O��� �26�

and that
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�

�
F���,�0

����,�� = O��� . �27�

We can now compute �1
���� as follows:

�1
���� = �

−


� � �

��
F� +

�

�
F��1d� =

�

2
�

−


� cos���sin���cos��0
�����

sin��0
�����

d� . �28�

When �=3,

�1
3��� =

3

2
�

−


� cos���sin���cos��/2 + 
/2�
sin��/2 + 
/2�

d� = −
9

2
cos�1

2
�sin�1

2
� +

3

4
�

+ 3�cos�1

2
�3

sin�1

2
� +

3

4

 �29�

and, in particular, for �=0, we have

�1
3�0� =

3

4

 =

�

��
�3�0,0� . �30�

When �=4,

� 1
4��� =

3

2
�

−


� cos���sin���cos�� + 
�
sin�� + 
�

d� = cos���sin��� + � + 
 �31�

and, in particular, for �=−
 /2, we have

� 1
4�−




2
 =




2
=

�

��
� 4�−




2
,0 . �32�

This concludes the proof of Lemma 4.1. �

V. ESCAPE AND CAPTURE SOLUTIONS FOR h=0

We will further study escape �capture� solutions, i.e., the ones for which r→� when t→�
�t→−��. From the energy relation �7�, we can see that for h�0, the radial coordinate r is bounded
by the zero velocity curve �u=0,v=0�, so escapes exist only for h�0. We restrict our analysis to
the case h=0, in which the energy relation �7� takes the form

u2 + v2 = 2r�−1 +
2b

	�/2 . �33�

With the transformations

� = r−1, v̄ = ���−1�/2v, ū=��−1�/2u ,

the energy relation becomes

ū2 + v̄2 = 2 +
2b

	�/2��−1. �34�

We define the infinity manifold I0 as

I0 = �	��, v̄,�, ū�	 � = 0, ū2 + v̄2 = 2� . �35�

Since the variable ��S1, the infinity manifold I0 is a torus.
Remark 5.4: The infinity manifold I0 is independent of the parameter �.
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After rescaling the time � with the transformation d�=���−1�/2 ds, the equations �6� take the
form

d�

ds
= − �v̄ ,

dv̄
ds

= −
1

2
v̄2 =

b�� − 2�
	�/2 ��−1 + 1,

d�

ds
= ū ,

dū

ds
= −

1

2
ūv̄ +

b��� − 1�sin 2�

2	�+2/2 ��−1. �36�

Equations �34� and �36� are well defined on the boundary �=0. Consequently, the phase space
of the coordinates �� , v̄ ,� , ū� can be analytically extended to contain the manifold I0. Since
d� /ds=0 for �=0, this manifold is invariant under the flow.

Proposition 5.3: All the equilibrium solutions of the flow given by (36) lie on the infinity
manifold I0 and they form two circles of equilibria given by

� = 0, v̄ = ± �2, � � S1, ū = 0.

Proof: It is obvious that any point of the above circles is an equilibrium orbit. If v̄=0 in �36�,
by the third equation we have that ū=0, but this is a contradiction with the energy relation given
by �34�. This proves the result. �

On the infinity manifold I0, the equations of motion take the form

dv̄
ds

= − 1
2 v̄2 + 1 = ū2/2,

d�

ds
= ū ,

dū

ds
= − 1

2 ūv̄ . �37�

We can now prove the following properties.
Proposition 5.4: The flow on I0 is gradientlike with respect to the v̄-coordinate.
Proof: From the first equation in �37�, we obtain that v̄��0 except at equilibria, which proves

the gradientlike property. �

In agreement with the sign of v̄, and by similarity with the collision manifold for �=1 studied
in Sec. IV, we also denote the equilibria on I0 as C±, respectively.

Theorem 5.3: On the infinity manifold I0, the two circles of equilibria C+ and C− are normally
hyperbolic. C+ corresponds to a sink, whereas C− corresponds to a source. The escape orbits are
the ones having C+ as an �-limit, whereas capture orbits are the ones having C− as an �-limit.

Proof: The proof is similar to the one of Theorem 3.1, so we will only sketch the main steps.
From Eq. �34�, we define
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G��, v̄,�, ū� = ū2 + v̄2 − 2 −
2b

	�/2��−1 = 0.

Then I� is the three-dimensional manifold given by G−1�0�. To study the tangent spaces to this
manifold at the equilibria, we use as a basis the same vectors �12�. Then the linear representation
of the vector field �36� at any equilibrium C+ and C− is given by the matrix

�
− v0 0 0

0 0 1

0 0
− v0

2
� .

Notice that for C+, v0=�2 and for C−, v0=−�2. In the former case two eigenvalues are
negative and one is zero, whereas in the latter case two eigenvalues are positive and one is zero.
This completes the proof of the normal hyperbolicty and shows the existence of infinitely many
escape orbits and capture orbits. �

The next result, which is a direct consequence of Theorem 5.3, characterizes the flow on the
infinity manifold.

Corollary 5.2: For h=0, the infinity manifold I0 is foliated by heteroclinic orbits between C−

to C+.
The flow on I0 given by Eqs. �37� is easy to draw. Because on I0, ū2+ v̄2=2, we can introduce

the angular variable  with the transformation

ū = �2 cos , v̄ = �2 sin  .

On I0, the equations of motion take the form

̇ = − 2�2 cos , �̇ = �2 cos  .

From here we obtain that

d

d�
= − 2.

On I0 we can also study the projection of the flow on the v–� plane, which is given by

dv
d�

=
�2 − v2

2
,

whose solution is v���=�2 sin���+k� /2�, where k is a constant determined by the initial condition.

VI. INTEGRABILITY FOR �=2

We will further study the problem for �=2 and deal with a Hamiltonian �1� of the form

H2 =
1

2
p2 −

1
�x2 + y2

−
b

�x2 + y2 . �38�

With the notation �=�−1, the Hamiltonian expressed in polar coordinates becomes

H2 =
pr

2

2
+

p�
2

2r2 −
1

r
−

b

r2�1 + � cos2����
. �39�

The corresponding system is integrable since it admits another first integral independent of the
Hamiltonian, namely
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G =
p�

2

2
−

b

1 + � cos2���
. �40�

Indeed,

�H2,G� =
�H2

��

�G

�p�

−
�H2

�p�

�G

��
, �41�

and since

�H2

��
= −

�b sin�2��
r2�1 + � cos2����2 ,

�H2

�p�

=
p�

r2 �42�

and

�G

��
= −

�b sin�2��
�1 + � cos2����2 ,

�G

�p�

= p� �43�

the Poisson’s bracket is �H2 ,G�=0, also G and H2 are linearly independent.
The existence of the integral G is not surprising. Indeed it is well known19 that given the

Hamiltonian

H̄ =
pr

2

2
+

p�
2

2r2 + U�r,�� , �44�

the corresponding Hamilton-Jacobi equation

�S

�t
+ H̄�r,�;

�S

�r
,
�S

��
 = 0 �45�

�where S=S�r ,� , t� is the action expressed as function of the coordinates and time, �S /�r= pr and
�S /��= p�� can be solved by separation of variables if the potential energy is of the form

U = a�r� +
b���
r2 . �46�

Since the Hamiltonian is time independent we take S�r ,� , t�=S0�r ,��−Et �where E is a constant�,
and the Hamilton-Jacobi equation for S0 becomes

1

2
� �S

�r
2

+ a�r� +
1

2r2�� �S

��
2

+ 2b���� = E . �47�

Looking for a solution of the form

S0 = S1�r� + S2��� , �48�

we find for S1 and S2 the equations

�dS2

d�
2

+ 2b��� = 2G ,

1

2
�dS1

dr
2

+ a�r� +
2G

2r2 = E , �49�

which define two independent integrals. Solving these equations leads to a solution of the
Hamilton-Jacobi equations and thus to a general solution of the equations of motion. The above
technique applies to the Hamiltonian H2 and to the additional integral G.
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This approach also shows that the Hamiltonian system given by H2 is integrable by quadra-
tures. The same conclusion can be reached by directly applying the Liouville-Arnold theorem.2

VII. THE COLLISION MANIFOLD FOR �=2

For �=2 the equation of motion �6� in McGehee coordinates can be written as

r� = rv ,

v� = 2r2h + r ,

�� = u ,

u� = �b sin�2��	−2, �50�

where the prime denotes differentiation with respect to � and 	=1+� cos2���. In McGehee coor-
dinates, the energy relation takes the form

u2 + v2 − 2r − 2b	−1 = 2r2h , �51�

where h is the energy constant. The first integral G can be written as

g = 1
2 �u2 − 2b	−1� , �52�

where g is also constant along orbits.
The vector field �50� is analytic on the boundary r=0, since r no longer occurs in the denomi-

nators of the vector field. The collision manifold reduces to

C = ��r,�,v,u�:r = 0, u2 + v2 = 2b	−1� . �53�

This shows that C is homeomorphic to a torus. The restriction of equations �50� to C yields the
system

v� = 0,

�� = u ,

u� = �b	−2 sin 2� . �54�

All nonequilibrium orbits on C are periodic. Comparing the collision manifold and vector field
above with the corresponding ones in Ref. 6, we see that the collision manifold and the flow for
�=2 are identical to the ones of the anisotropic Manev problem.

VIII. HETEROCLINIC ORBITS FOR �=2 AND h=0

The main goal of this section is to study the infinity manifold for h=0 and the heteroclinic
orbits that connect the collision and infinity manifold. First notice that for h�0 the motion is
bounded and therefore there is no infinity manifold. More precisely, we have the following result.

Proposition 8.5: If h�0 the motion is bounded by the zero velocity curve

r0 =
− 1 + �1 − 4hb	−1

2h
, v = 0, �, u = 0. �55�

Proof: Obviously u=0 and v=0 if and only if u2+v2=0. Also v=0 implies r�=0. Using the
energy relation we can draw the conclusion that u2+v2=0 if and only if 2r2h+2r+2b	−1=0. This
quadratic equation has the solutions
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r =
− 1 ± �1 − 4hb	−1

2h
. �56�

Since r�0 and h�0 the only valid solution r0 is the one with the minus sign. This shows that �55�
is the zero velocity curve. The fact that the motion is bounded by this curve follows from the fact
that if r�r0 then u2+v2�0. �

To describe the behavior of the solution at infinity we need to study the equations �36� with
�=2 and h=0, that is

�̇ = − �v̄ ,

v̇̄ = − 1
2 v̄2 + 1,

�̇ = ū ,

u̇̄ = − 1
2 v̄ū + �b� sin 2�	−2, �57�

where the dot denotes differentiation with respect to the time variable s. The energy relation is

ū2 + v̄2 − 2 − 2b�	−1 = 0 �58�

and the other first integral can be written as

ū2 − 2b�	−1 = 2�g . �59�

The infinity manifold is a two-manifold embedded in R3�S1 given by the equations

I0 = �	��, v̄,�, ū�	� = 0, ū2 + v̄2 = 2� , �60�

i.e., the points in phase space that satisfy the condition �=0 and the energy relation. This shows
that I0 is a torus S1�S1.

The first two equations of the system �57� are independent from the others, and we would like
to determine � and v̄. If we set v̄= ±�2, then �=exp���2�s−s0�� is a solution of the two equations
mentioned above. If v̄= ±�2 the energy integral �58� gives the condition

ū = ± �2b�	−1. �61�

Moreover the previous condition and Eq. �59� impose g=0. Differentiating �61� with respect to s
we obtain

u̇̄ = ± �2b�	−1/2

2�1/2 �̇ +
�

2
ū��	

sin 2�

	2 �̇ �62�

and using the first equation in �57� and Eq. �61� it follows that

u̇̄ = − 1
2 v̄ū + �b� sin 2�	−2. �63�

This shows that system �57� admits solutions with v̄= ±�2.
The other solutions of the first two equations of the system �57� can be found by dividing the

second equation by the first. This leads to the equation

v̇̄

�̇
=

1

2

v̄
�

−
1

�v̄
, �64�

which can be solved by separating the variables. This leads to
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�
�0

� d�

�
= �

v̄0

z z dz
1
2z2 − 1

�65�

and consequently yields

� = � �0

v̄0
2 − 2

�v̄2 − 2� , �66�

where �0 and v0 are initial conditions and ��0, since ��0 has no physical meaning. Now we can
prove the following result relative to the heteroclinic solutions connecting the infinity and the
collision manifolds.

Theorem 8.4: The solutions whose �-limit set belongs to the infinity manifold have the �-limit
set contained in the collision manifold. In particular, the following properties take place:

�1� If v̄=�2 �v̄=−�2�, the above solutions belong to the unstable (stable) manifold of one of the
periodic orbits on the equator of the collision manifold.

�2� If 0��1/k��2b and �1/k��2b /� with k=�0 / �v̄0
2−2�, the above solutions belong to the

unstable (stable) manifold of the periodic orbits on the collision manifold with v=�1/k �v
=−�1/k�.

�3� If �1/k=�2b /� �−�1/k=�2b /��, then the above solutions belong to the unstable (stable)
manifold of one of the fixed points A0

+, A

+ �A0

− ,A

−�.

�4� If �1/k=�2b �−�1/k=�2b�, then the above solutions belong to the unstable (stable) mani-
fold of one of the fixed points A−
/2

+ , A
/2
+ �A−
/2

− ,A
/2
+ �.

Proof: To prove �1� observe that v= v̄ /�1/2= ±�2/�1/2. Thus lims→� v=lims→�±�2/�1/2

= lim�→�±�2/�1/2= lim�→�v=0, since lims→� �=�. To prove �2�, �3�, and �4� we consider the
limit lim�→� v, which with the help of Eq. �66� becomes

lim
�→�

v = lim
�→�

v̄
�1/2 = ± lim

�→�
�� + 2k

k
�−1/2 = ±�1

k
.

Moreover from the energy relation ū2+ v̄2−2−2b� /	=0 and the fact that v̄2= ��+2k� /k it is easy
to see that

ū2 = − ��1

k
−

2b

	
 ,

and since ��0 and ū2�0, we have

1

k
�

2b

	
� 2b .

Consequently we have shown that

0 ��1

k
� �2b . �67�

In particular it is clear that when �1/k=�2b /� �−�1/k=�2b /�� the solutions lie on the unstable
�stable� manifold of one of the fixed points A0

+, A

+ �A0

− ,A

−�. Similarly when �1/k=�2b �−�1/k

=�2b�, the solutions lie on the unstable �stable� manifold of one of the fixed points A−
/2
+ , A
/2

+

�A−
/2
− ,A
/2

− �. In the remaining cases the solutions lie on the unstable �stable� manifold of the
periodic orbits on the collision manifold with v=�1/k �v=−�1/k�. �
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IX. A PERTURBATIVE APPROACH

In this and the next section we study the appearance of chaos on the zero-energy manifold for
the system of Hamiltonian H� given by Eq. �1�. In order to do that we study the problem for small
values of � and b and we use an extension of the Melnikov method that is briefly illustrated in the
following section. Consider the Hamiltonian

H� =
1

2
p2 −

1

r
−

b

r� + �b
� cos2 �

2r� � H0 + bW�
1�r,�� + �bW �

2�r,�� , �68�

where ��3/2, b�1, ��1. This is the original Hamiltonian H� �defined in �1�� truncated to the
second order in � and b. Consider, as in Ref. 5, the parabolic solutions of the unperturbed ��
=0,b=0� problem �68�, defined by the Hamiltonian H0 of the classical Kepler problem that are on
the zero-energy manifold and play the role of homoclinic solutions corresponding to the critical
point at infinity, i.e., r=�, ṙ=0. These solutions satisfy the equations

ṙ = ±
�2r − k2

r
, �̇ =

k

r2 , �69�

where k�0 is the �constant� angular momentum and the sign � �respectively, �� holds for t
�0 �respectively, t�0�. From �69� we get

±t =
k2 + r

3
�2r − k2 + const,

� = ± 2 arctan
�2r − k2

�k2
+ const. �70�

We denote by

R = R�t� and � = ��t� �71�

the expressions giving the dependence of r and of � on the time t. These are obtained by “invert-
ing” the equations �70� with the conditions R�0�=rmin=k2 /2 and ��0�=0. Let us emphasize that,
as in Ref. 5, it is not necessary to have the explicit form of these functions. But it is important to
remark that R�t� is even and ��t� is odd, both in the time variable. The choice ��0�=0 correspond
to selecting the solution describing the parabola with axis coinciding with the x axis and going to
infinity when x→−�.

The parabolic orbits can also be described in parametric form.19 If p=k2�0, we can write

r =
p

2
�1 + �2�, t =

p3/2

2
��1 +

�2

3
, � = tan

�

2
. �72�

We also have

cos 2� = 2
�1 − �2�2

�1 + �2�2 − 1. �73�

We will further use these remarks to apply the Melnikov method.

X. THE MELNIKOV METHOD

Consider the problem defined in �68�. The homoclinic manifold, i.e., the set of solution of the
unperturbed equation which are doubly asymptotic to r=�, ṙ=0, is given for each value k�0 of
the angular momentum by the two-dimensional manifold described by the family of solutions r
=R�t− t0�, �=��t− t0�+�0, where R�t� and ��t� have been defined in �71�, with arbitrary t0, �0.
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It is clear from Eq. �68� that the first order in b of the perturbation �i.e., the term bW�
1� does

not contribute to the Melnikov integrals. This is because the perturbed Hamiltonian truncated at
the first order, i.e., H0+bW�

1 , is integrable and, at this order, the positively and negatively
asymptotic sets coincide. Furthermore, for the same reason, the terms in bn for n�2 do not
contribute to the Melnikov integral. Consequently the first nonvanishing terms of the Melnikov
integrals are of order �b.

The perturbation resulting from a small anisotropy vanishes as r→� since W �
2�r ,���1/r�

with ��3/2. This guarantees, among other things, the integrability of the Melnikov integrals and
the applicability of the aforementioned method.5 This allows us to write the first nonvanishing
effect on the Melnikov integral in the same form as in Ref. 5, with the difference that here we can
drop the dependence on time,

M1��0� = �
−�

+� �Ṙ�t�
�W �

2�R�t�,��t� + �0�
�r

+ �̇�t�
�W �

2�R�t�,��t� + �0�
��

�dt = 0, �74�

M2��0� = �
−�

+� �W �
2�R�t�,��t� + �0�

��
dt = 0. �75�

Since the perturbation W �
2 vanishes as t→ ±�, the first Melnikov condition can be written as

M1��0� = �
−�

+� �W �
2�R�t�,��t� + �0�

�t
dt � 0. �76�

The above integral is identically zero because the perturbation W �
2 is not time dependent. This

simplifies our discussion since we must only find the solutions of �75�. Such solutions correspond,
at the order �b, to intersections of the positively and negatively asymptotic sets of the critical point
at infinity. If one such solution exists then there are infinitely many. Moreover, if the solutions
correspond to simple zeroes of M2��0�, the intersection is transversal and, for � and b sufficiently
small, higher order terms are not going to destroy the intersection.

It is significant to remark, and easy to verify, that these conditions can be written also in terms
of the first integrals of the unperturbed problem as

M1��0� = �
−�

+�

�H0,W �
2��¯�dt = 0 �77�

and

M2��0� = �
−�

+�

�K,W �
2��¯�dt = 0, �78�

where �¯� represents the homoclinic orbit.
This resembles some properties obtained for the Gyldén problem5,16 and is related to the

symmetries of the problem. In the Gyldén problem there is a perturbation that does not depend on
the angle �, but depends on time. This means that the perturbation destroys the time homogeneity,
so the Hamiltonian is not an integral of motion anymore, but does not destroy the rotational
invariance, so the angular momentum is still conserved. Therefore the only one condition is given
by �74�. However, the anisotropy destroys the rotational symmetry but not the homogeneity of
time, so we are left with the condition �75�.

Here the Melnikov condition for M2 becomes
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M2��0� =
�

2
�

−�

+� sin�2���t� + �0��
R�t�� dt = 0. �79�

Using some trigonometry the integral can be written as

M2��0� = I1 cos 2�0 + I2 sin 2�0, �80�

where I1 and I2 are defined by

I1 =
�

2
�

−�

+� sin 2��t�
R�t�� dt ,

I2 =
�

2
�

−�

+� cos 2��t�
R�t�� dt . �81�

Recall that R�t� is an even function of time and ��t� is an odd function. This implies that the
integrand of I1 is an odd function. Therefore I1�0, and M2 can be rewritten as

M2��0� = I2 sin 2�0. �82�

Thus M2��0� has infinitely many simple zeroes, provided that I2�0. To complete the proof we
must verify that I2�0. We compute I2 using the parametric form of the parabolic orbits defined in
Eqs. �72�. Since dt= �p3/2 /2��1+�2�d�, we can write

I2 = 2�−1p3/2−��

2
�

−�

+� 1

�1 + �2��−1�2�1 − �2�2

�1 + ��2 − 1d� . �83�

Computing the integral, we find that

I2 =
2�−1p3/2−�

2��� − 1�
�
���� −

3

2
� 3

2�� − 1��
− 1 + 2

��� + 1
2� − ��� − 1

2�
�� − 1��

� , �84�

where ��z� is Euler’s gamma function. Thus I2��� is an analytic function in � for ��3/2, since
��z� is analytic for z�0. Recall that the gamma function can be expressed as

��z� = lim
n→�

n ! nz

z�z + 1� ¯ �z + n�
�85�

if z�0,−1,−2,−3, . . .. Using this form of the gamma function, and letting A=2�−2p3/2−�, we find
that

I2 = A lim
n→�

n3/2�

��� + 1��� + 2� ¯ �� − 1 + n�

�� − 3
2��� − 1

2� ¯ �� − 1
2 + n� ��2 − 5� + 6�

=
A�
��� + 1

2�
�� − 1��� − 3

2��� − 1
2���� − 1�

��2 − 5� + 6� , �86�

which is zero if and only if �2−5�+6=0, since the gamma function ��z� is always positive for
z�0 and therefore the first factor never vanishes. Consequently I2 vanishes if and only if �2

−5�+6=0, namely for �=2 or �=3, see Fig. 3.
This proves that for every ��3/2, ��2,3, and � small, the system given by the Hamiltonian

H� of Eq. �68� exhibits chaotic dynamics on the zero energy manifold induced by an infinite
sequence of intersections on the Poincaré section of the positively and negatively asymptotic sets
of the critical point at infinity. Moreover, if � and b are sufficiently small, one can consider the
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Hamiltonian H� of Eq. �1� and the simple zeroes of the Melnikov function cannot be destroyed by
the higher-order terms of the perturbation. Therefore chaos persists for the Hamiltonian system of
Hamiltonian �1�. This proves the following.

Theorem 10.5: For every ��3/2, ��2,3, and � small, the system given by the Hamiltonian
H� defined by Eq. (1) exhibits chaotic dynamics on the zero energy manifold.

This type of chaotic behavior is induced by a chain of infinitely many intersections of the
positively and negatively asymptotic sets to the critical point at infinity. The Smale-Birkhoff
theorem does not directly apply to this situation, which is degenerate. But it is well known that the
existence of Smale horseshoes and positive topological entropy can arise in the case of nonhyper-
bolic equilibria.4
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We consider a three-dimensional quadratic system S in R3 with six parameters
which appears in geophysical fluid dynamics �atmospheric blocking�. In this paper
we start its systematic study from the point of view of dynamical systems. First, we
reduce the number of its parameters from six to three. Thus, we must study a
three-dimensional quadratic system with three parameters, which recalls us the
famous Lorenz-63 system. Traditionally, system S has been studied by considering
two subcases, called the conservative and the dissipative case, as the parameter
responsible for dissipation is zero or not. In the conservative case, we reduce
system S to systems without parameters. Among these there are two interesting
systems: one is homeomorphic to the simple pendulum, and the other is a pertur-
bation of it. In the latter system the saddle point corresponding to topographic
instability is connected to two homoclinic orbits to it. In the dissipative case we
prove that all trajectories of system S enter in an ellipsoid for any values of the
parameters. We characterize their invariant algebraic surfaces of degree 2, and for
those systems having such invariant algebraic surfaces we describe their global
phase portraits. © 2005 American Institute of Physics. �DOI: 10.1063/1.1955448�

I. INTRODUCTION

In this paper we consider the following quadratic system in R3

ẋ = az − b�x − c� ,

ẏ = − �dx − e�z − by ,

ż = �dx − e�y − fx − bz , �1�

where a, b, c, d, e, and f are arbitrary real parameters and the overdot denotes differentiation with
respect to time t. We start the systematic study of its flow from the point of view of dynamical
systems. System �1� with positive parameters is a subsystem of Charney DeVore �CdV� model,
well known in geophysical fluid dynamics, and describes topographically driven disturbances of
an atmospheric zonal flow. The CdV model is a quadratic system in R6 introduced by Charney and
DeVore in 1979 as a truncation of the equations describing barotropic atmospheric flow over
topography. They found that more than one stable equilibrium state may occur for a given external
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force, and that these equilibrium states are analogues of the observed large-scale preferent states of
the atmospheric circulation. For more details, see Ref. 2. This work has been considered by many
researchers in geophysical fluid dynamics �see Refs. 24, 15–17, 32, 6, 7, 13, 14, and 4�. The CdV
model in R6 or its extensions up to R25 have been studied by numerical methods.

Another quadratic system which models the general atmospheric circulation is the famous
Lorenz-84 model:22

ẋ = − y2 − z2 − ax + aF, ẏ = xy − bxz − y + G, ż = bxy + xz − z , �2�

where F and G are forcing terms due to the average north-south temperature contrast and the
earth-sea temperature contrast, respectively. For more details on physical interpretation of the
variables x ,y ,z and of suitable choices of parameters a and b, see e.g., Ref. 22. Both systems �1�
and �2� are spectrally truncated versions of Navier-Stokes equations. However, system �1� is a
barotropic quasigeostrophic model, whereas system �2� is a geostrophic baroclinic model, i.e., a
more general one. Values of parameters F and G for which system �2� is chaotic are known. For
instance, if a=1/4, b=4, F=8 and G=1, i.e., winter conditions for the forcing terms, then the
behavior of system �2� is chaotic.29 Thus, the study of bifurcations and strange attractors for
system �2� is more advanced than for system �1�. For example, a comprehensive bifurcation
analysis of system �2� is presented in Ref. 26. It is shown that the system admits a codimension-
two saddle-node Hopf bifurcation. Nontrivial limit sets in the form of a chaotic attractor or repeller
are found in some parameter ranges. Their presence implies an increased unpredictability of the
system of parameter values corresponding to the winter season. In Ref. 1 system �2� is studied by
using a three-dimensional Poincaré mapping, depending on the forcing parameters F and G of the
system and on the relative amplitude of the oscillating part of the forcing. In order to simulate
seasonal effects, F and G are subject to periodic forcing where the period is one year. It is showed
that system �2� displays periodicity, quasiperiodicity, and strange attractors. The transitions of the
attractors are explained in terms of codimension one bifurcations �saddle-node and Hopf�. In Ref.
29 van Veen investigated the atmosphere-ocean interaction at midlatitudes in a low-order climate
model �van Veen model, hereafter�. This model combines the Lorenz-84 model for the atmosphere
on a fast time scale and a box model for the ocean on a slow time scale; the ocean is forced
strongly by the atmosphere and the feedback to the atmosphere is weak, but capable of producing
decadal variability in atmospheric observables. The physical focus of Ref. 29 is on the interplay of
the short time scale variability of the atmospheric component and the long time scale of the
oceanic component. The mathematical focus is on periodic and chaotic solutions of the Lorenz-84
model and on intermittency in van Veen model. The most recent paper on six-component CdV
model is Ref. 4. Its authors provide support for the hypothesis that regime transitions are related
to heteroclinic connections. By parameter tuning, the Hopf bifurcation corresponding to barotropic
instability can be made to coincide with one of the saddle-node bifurcations that are due to the
topography in the model. Heteroclinic connections and homoclinic orbits connected to equilibria
are related to such a bifurcation. In this paper we have not performed a bifurcation analysis of
system �1� as our approach logically precedes such a study.

In this paper we begin the systematic analytic study of the subsystem �1� in R3 of the CdV
model. Our first step is to reduce system �1� to a system whose dynamics is either easy to analyze,
or has at most three parameters instead of six. This is done in Sec. II. In Sec. III we describe the
phase portraits of the systems to which system �1� is reduced excepting system �18�, whose
dynamics is difficult to describe exhaustively. However, in Sec. IV we prove that all solutions of
system �18� enter in an ellipsoid for any values of its three parameters. In Sec. V we characterize
the invariant algebraic surfaces of degree 2 for system �18�. In Sec. VI, we describe the phase
portraits of system �18� having these invariant algebraic surfaces. To this end, we use that the
existence of invariant algebraic surfaces implies the existence of semipermeable surfaces; i.e., the
trajectories cross these surfaces always in the same direction. Finally in Sec. VII we compare our
results with the previous ones.
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II. REDUCED FORMS OF SYSTEM „1…

In this section we transform system �1� by rescalings and changes of variables to one of the
following 12 systems: �3�–�7�, �9�–�12�, and �16�–�18�. The advantage is that the transformed
system, either has an easy dynamics to analyze, or has at most three parameters instead of the
initial six parameters. We prove this in Lemmas 1–4.

When specifying the change of variables, we always denote new variables in uppercase
X ,Y ,Z and old variables in lowercase x ,y ,z. For brevity, and when no confusion is possible, we
rewrite the new system using lowercase letters as well.

Lemma 1: We consider system (1). If b=0 and d=0, then system (1) is equivalent to the linear
system ẋ=Lx where

�a� if e2+af �0, then

L = �0 0 0

0 1 0

0 0 − 1
� , �3�

�b� if e2+af �0, then

L = �0 0 0

0 0 − 1

0 1 0
� , �4�

�c� if e2+af =0 and e�0, then

L = �0 1 0

0 0 1

0 0 0
� , �5�

�d� if e=0, af =0 and a2+ f2�0, then

L = �0 0 1

0 0 0

0 0 0
� , �6�

�e� if e=a= f =0, then

L = �0 0 0

0 0 0

0 0 0
� = O3. �7�

Proof: If b=d=0 then system �1� becomes ẋ=Ax with

A = � 0 0 a

0 0 e

− f − e 0
� .

Its real Jordan normal form JA depends on the sign of e2+af . If e2+af �0, then

JA = �0 0 0

0 �r 0

0 0 − �r
� ,

where r=−�e2+af��0. After a time rescaling, we obtain �3�. If e2+af �0, then

072702-3 Global dynamics for an atmospheric model J. Math. Phys. 46, 072702 �2005�

                                                                                                                                    



JA = �0 0 0

0 0 − �r

0 �r 0
� ,

where now r=e2+af . Using again a time rescaling, we get �4�. If e2+af =0 then we have three
cases: �i� e�0, �ii� e=0 and a2+ f2�0, and �iii� e=a= f =0.

Case (i): Since e�0 and e2+af =0, the parameters a and f are also nonzero. In particular,
f =−e2 /a, and the matrix A becomes

B = � 0 0 a

0 0 e

e2/a − e 0
� .

The matrix B has the zero as an eigenvalue of algebraic multiplicity three, and geometric multi-
plicity one. By standard procedure,

B = P−1AP = �0 0 0

1 0 0

0 1 0
� , �8�

where P is the matrix whose columns are generalized eigenvectors of A. Now we put the last
matrix of �8� in the form �5� doing the change of variables X=z ,Y =y ,Z=x.

Case (ii): If e= f =0 and a�0, then by a rescaling we get �6�. If e=a=0 and f �0, then after
the change of variables X=−z ,Y =y ,Z=x, we obtain �6�.

Case (iii): If e=a= f =0, then obviously L=A=O3, and we have �7�. �

Lemma 2: We consider system (1). Assume b=0 and d�0. Then system (1) reduces to system
S where

�a� if ef =0 and a�0, then S is

ẋ = z, ẏ = − xz, ż = xy; �9�

�b� if ef =0 and a=0, then S is

ẋ = 0, ẏ = − xz, ż = xy; �10�

�c� if ef �0 and a�0, then S is

ẋ = z, ẏ = − xz, ż = xy − 1; �11�

�d� if ef �0 and a=0, then S is

ẋ = 0, ẏ = − xz, ż = xy − 1. �12�

Proof: Since b=0 and d�0, after rescaling the time parameter T=dt, system �1� becomes

ẋ = a1z, ẏ = − �x − e1�z, ż = �x − e1�y − f1x , �13�

where a1=a /d, e1=e /d, f1= f /d. The change of variables X=x−e1, Y =y− f1 transforms system
�13� into

ẋ = a1z, ẏ = − xz, ż = xy − e1f1. �14�

Assume ef =0. Then e1f1=0. If a=0 then a1=0, and system �14� is system �10�. If a�0 then
a1�0, and system �14� becomes system �9� after the rescaling Y =a1y, Z=a1z. If ef �0 and a
=0, then also e1f1�0 and a1=0. By the rescaling Y =hy, Z=hz, where h=1/ �e1f1�, we get system
�12� from system �14�. If ef �0 and a�0 then also e1f1�0 and a1�0. System �14� becomes
system �11� after the rescaling X=�x, Y =�y, Z=�z, T=�t where �=1/�, �=�=� / �e1f1�, and � is
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a fixed nonzero real number such that �3=a1e1f1. �

For the remaining of this section we assume b�0, and we denote

a1 = a/b, d1 = d/b, e1 = e/b, f1 = f/b . �15�

Lemma 3: We consider system �1�. If b�0 and d=0, then system �1� is becomes

ẋ = − x + a1z + c, ẏ = − y + e1z, ż = − z − f1x − e1y , �16�

where a1, e1, f1 are given in �15�.
Proof: Since b�0 and d=0, system �1� becomes system �16� after rescaling the time �T

=bt�. �

Lemma 4: We consider system �1�. Assume bd�0. We recall the notation introduced in �15�
for a1, d1, e1 and f1. We denote c1=cd1−e1, f2= f1 /d1, r=−a1f1, c2=re1.

�a� If a=0, then system �1� reduces to

ẋ = − x, ẏ = − y − �x + c1�z, ż = − z + �x + c1�y − f2x − cf1, �17�

�b� If a�0, then system �1� becomes

ẋ = − x + y + c1, ẏ = − y + rx − xz + c2, ż = − z + xy . �18�

Proof: After rescaling the time �T=bt� system �1� becomes

ẋ = a1z − x + c, ẏ = − �d1x − e1�z − y, ż = �d1x − e1�y − f1x − z . �19�

�a� If a=0 then a1=0. After the changes of variables X=d1x−e1 and X=x−c1, system �19� be-
comes system �17�. �b� If a�0 then a1�0. System �19� is transformed into system �18� after the
following four changes of variables: X=d1x−e1; Y =a1d1y, Z=a1d1z; Y =z, Z=y; and Z=−z. �

III. PHASE PORTRAITS OF SYSTEM „1…

In this section we describe all the phase portraits of the systems to which system �1� is reduced
with the exception of system �18�; i.e., systems �3�–�7�, �9�–�12�, �16�, and �17�. First of all, we
introduce a definition and some notations. Consider the differential system ẋ= f�x� with x
= �x ,y ,z� in R3, f :R3→R3, and suppose that it has two first integrals, H1 and H2. If the set �x
�R3: rank M �2	, where

M =�
�H1

�x

�H1

�y

�H1

�z

�H2

�x

�H2

�y

�H2

�z
� ,

has zero Lebesgue measure in R3, then we say that H1 and H2 are linearly independent.
We denote by Ihi

the hi-level sets of the first integrals Hi �i=1 ,2�; i.e.

Ihi
ª ��x,y,z� � R3:Hi�x,y,z� = hi	 �i = 1,2�

where hi �i=1 ,2� are arbitrary real numbers. We also denote Ih1,h2
= Ih1

� Ih2
.

System (3): The set of singular points is the x axis. In the yz plane, the orbits are the axes and
hyperbolas, because system �3� restricted to this plane is a linear saddle. All the planes x
=constant are copies of the flow in the plane x=0.

System (4): As before, the set of singular points is the x axis. In the yz plane, the phase portrait
is given by concentric circles, because system �4� restricted to this plane is a linear center. All the
planes x=constant are copies of the flow in the plane x=0.

System (5): The set of singular points is the x axis. Clearly, the function z is a first integral. So,
the planes z=C, with C�R, are invariant by the flow. System ẋ=y, ẏ=C with C�0 is equivalent
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to ẋ=y, ẏ=1. This system has the first integral y2 /2−x=constant. Consequently, each plane z
=C, with C�0, is filled with these parabolas. The plane z=0 is filled with straight lines parallel
to the x axis.

System (6): The set of singular points is the xy plane. Clearly, y is a first integral. Thus, all the
planes y=constant are copies of the flow in the plane y=0. In this plane the flow is given by the
system ẋ=z, ż=0. Therefore, the plane y=0 is filled with straight lines parallel to the x-axis, which
is formed by singular points.

System (7): The whole space R3 is filled with singular points.
System (9): It is easy to see that H1�x ,y ,z�=y2+z2 and H2�x ,y ,z�=x2+2y are linearly inde-

pendent first integrals.
The set Ih1

is empty if h1�0, Ih1
is the x axis filled with singular points if h1=0, and Ih1

is a
cylinder of radius �h1 around the x axis if h1�0.

The set of finite singular points of system �9� is the union of the x and y axes.
The set Ih1,h2

is empty if h1=0 and h2�0, it is a singular point �the origin �0, 0, 0�� if h1

=h2=0, and it is formed by two singular points ��−�h2 ,0 ,0� and ��h2 ,0 ,0�� if h1=0 and h2�0.
We note that the sets Ih2

and Ph2
�R, where Ph2

= ��x ,y ,0��R3 :x2+2y=h2	, are homeomor-
phic.

Proposition 5: For h1�0 the flow on the cylinder Ih1
is as follows: Ih1,h2

is empty if h2�

−2�h1; it is the center ��0,−�h1 ,0�	 if h2=−2�h1; it is a periodic orbit if −2�h1�h2�2�h1; it is
formed by the saddle ��0,�h1 ,0�	 and two homoclinic orbits to this saddle if h2=2�h1; and finally,
it is formed by two periodic orbits if h2�2�h1.

Proof: In the xy plane, the parabola Ph2
intersects the y-axis at the point �0,h2 /2�. For h1

�0 the cylinder Ih1
intersects the xy plane into the pair of parallel lines y2=h1. For h2=−2�h1, the

intersection Ih1
�Ph2

�R is the point �0,−�h1 ,0�. For −2�h1�h2�2�h1, the intersection of the
cylinder Ih1

with the topological plane Ph2
�R is a topological circle. For h2=2�h1, Ih1

�Ph2

�R is a union of two topological circles, both of them containing the singular point ��0,�h1 ,0�	.
For h2�2�h1Ih1

�Ph2
�R is a union of two disjoint topological circles. �

We note that, when we fix h1�0, the phase portraits of system �9� and of the simple pendulum
are exactly the same. Since both systems have the same separatrix configuration, by a theorem of
Neumann,23 it follows that both phase portraits are topologically equivalent.

Note that system �9� also appears in Refs. 18 and 25 in the context of a dynamo problem
under the form

ẋ = y, ẏ = x − xz, ż = xy .

However, this is system �9�, after two changes of variables �Z=z−1, and Y =−z, Z=y�.
System (10): We can check that H1�x ,y ,z�=y2+z2 and H2�x ,y ,z�=x are linearly independent

first integrals. The set Ih1
is empty if h1�0, Ih1

is the x axis filled with singular points if h1=0, and
Ih1

is a cylinder of radius �h1 around the x axis if h1�0. The set Ih2
is the plane �x=h2	.

The set of finite singular points of system �10� is the union of the yz plane with the x axis. The
set I0,h2

is the singular point �h2 ,0 ,0� for all h2.
Proposition 6: For h1�0 the flow on the cylinder Ih1

is as follows: Ih1,h2
is a periodic orbit if

h2�0 and it is a circle filled with singular points if h2=0.
Proof: For any h2, Ih1,h2

is the circle y2+z2=h1 ,x=h2. When h2=0 the circle is contained in
the plane x=0, which is entirely formed by singular points. �

System (11): Two linearly independent first integrals of system �11� are H1�x ,y ,z�= �x+1�2

+ �y+1�2+z2 and H2�x ,y ,z�=x2+2y. The description of the topology of Ih1
is the following: Ih1

is
empty if h1�0, Ih1

is the singular point �−1,−1,0� if h1=0, and Ih1
is the sphere of center �−1,

−1,0� and radius �h1 if h1�0.
The set of finite singular points of system �11� is the hyperbola Hª ��x ,y ,z��R3 :xy=1,z
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=0	. We denote by Ch1
ª ��x ,y ,z��R3 : �x+1�2+ �y+1�2=h1 ,z=0	 the circle of center �−1,−1,0�

and radius �h1 contained in the plane z=0, and by Ph2
ª ��x ,y ,z��R3 :x2+2y=h2 ,z=0	 a pa-

rabola in the plane z=0.
We note that Ih1

� �z=0	=Ch1
and Ih2

� �z=0	=Ph2
. Moreover, since Ih2

= ��x ,y ,z�
�R3 : �x ,y��Ph2

	, we can denote Ih2
by Ph2

�R.
We provide the phase portrait of system �11� in R3, describing it on every sphere of center

�−1,−1,0�. We distinguish three cases according to the values of h1�0.
For 0�h1�8, the circle Ch1

intersects the hyperbola H in two points, which are singular
points of system �11�. They are situated in the quadrant �x�0,y�0	, and we denote them by
P1= �x1 ,y1 ,0�, and P4= �x4 ,y4 ,0� where x4�x1�0. We also denote h21ªH2�x1 ,y1 ,0�, and
h24ªH2�x4 ,y4 ,0�. We claim that h21�h24. Indeed, a direct computation yields h24−h21= �x4

−x1��x1+x4−2/x1x4�. Since both factors are strictly negative, we get that h24−h21�0.
Proposition 7: For 0�h1�8 the phase portrait on the sphere Ih1

consists of two singular
points, Ih1,h21

= �P1	, and Ih1,h24
= �P4	, which are centers, and of periodic orbits Ih1h2

for h21�h2

�h24.
Proof: For h2=h21 the set Ih1

�Ph2
�R is the point P1 �in other words, the parabola Ph2

is
tangent to the circle Ch1

at P1�. For h21�h2�h24 the intersection of the sphere Ih1
with the

topological plane Ph2
�R is a topological circle. For h2=h24, the set Ih1

�Ph2
�R is the point P2

�in other words, Ph2
is tangent to Ch1

at P4�. �

For h1=8, the circle C8 intersects the hyperbola H in three points, which are singular points of
system �11�. Two of them are situated in the quadrant �x�0,y�0	, denoted by P1= �x1 ,y1 ,0�, and
P4= �x4 ,y4 ,0� with x4�x1�0, and one is situated in the quadrant �x�0,y�0	, denoted by P2

= �x2 ,y2 ,0� where x2�0. We also denote h2iªH2�xi ,yi ,0�, for i=1,2 ,4.
We claim that h21�h22�h24. We prove these inequalities by using the equation h2i−h2j

= �xi−xj��xi+xj −2/xixj�, for i� j equal to 1,2,4, and by computing the abscissas x1, and x2.
Both abscissas are solutions of the same equation, �x+1/x+1�2=9, but x1�0 while x2�0.

Thus, x1 is the greatest negative solution of the equation x+1/x+1=−3, while x2 is the unique
positive solution of the equation x+1/x+1=3. Direct computation yields x1=−2+�3, and x2=1.

Therefore, the first inequality is true, because

h22 − h21 =
�x1 − 1�2

− x1
�x1 + 2�

is strictly positive, as all its factors.
The second inequality also holds, because

h24 − h22 = �x4 − 1�2x4 + 2

x4

and the ratio is strictly positive �by direct computation it is equal to 2�3−3, because x4=−2
−�3�.

Proposition 8: For h1=8 the phase portrait over the sphere Ih1
consists of three singular

equilibrium points P1 , P2 , P4 and of periodic orbits. The singular points P1�x1 ,y1,0�= Ih1,h21
and

P4�x4 ,y4,0�= Ih1,h24
are centers and the singular point P2�x2 ,y2,0�= Ih1,h22

with x4�x1�0�x2�

=1 has a homoclinic orbit to it. The local phase portrait of P2 is formed by the union of two
hyperbolic sectors. The periodic orbits are obtained for h21�h2�h22 and h22�h2�h24.

Proof: It follows from the statements below: �i� for h2=h21 or h24, the set I8�Ph2
�R is

formed by the point P1 or P4, respectively, �in other words, for h2=h21 or h24 the parabola Ph2
is

tangent to the circle C8 at P1, respectively at P4�; �ii� for h21�h2�h22, and h22�h2�h24, the
intersection of the sphere I8 with the topological plane Ph2

�R is a topological circle; �iii� for
h2=h22, I8�Ph2

�R is a topological circle containing the singular point P2.
With respect to the statement on the local phase portrait of P2, in addition to �ii� and �iii�, we

note that for h2=h22, Ph2
and C8 share the same tangent at the common point P2, namely x+y
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−2=0. We also note that Ph22
intersects the y-axis at the point of coordinates �0,3 /2� and the

x-axis at the point of coordinates ��3,0�, while C8 intersects the y-axis at the point of coordinates
�0,�7−1� and the x-axis at the point of coordinates ��8−1,0�. Note that �7−1�3/2 and �7
−1��3. We now prove that Ph22

is below the circle C8 in the first quadrant for 0�x�1, and
above it for x�1. This fact reduces to show that �8− �1+x�2− �5−x2� /2�0 for 0�x�1, and that
the opposite inequality holds for 1�x��7−1. Therefore, it suffices to prove �x−1�3�x+3�	0 for
0�x�1, and the opposite inequality for 1�x��7−1, which is evident. �

For h1�8, the circle Ch1
intersects the hyperbola H in four points, which are singular points

of system �11�. Two of them are situated in the quadrant �x�0,y�0	, denoted by P1

= �x1 ,y1 ,0�, and P4= �x4 ,y4 ,0� where x4�x1�0, and the other two are in the quadrant �x�0,y
�0	, denoted by P2= �x2 ,y2 ,0�, and P3= �x3 ,y3 ,0� where 0�x2�x3. We also denote
h2iªH2�xi ,yi ,0�, for i=1,2,3,4. We claim that h21�h22�h23�h24.

We prove these inequalities by using the equation h2i−h2j = �xi−xj��xi+xj −2/xixj�, for i� j
equal to 1,2,3,4 and by computing the abscissas xi , i=1,2 ,3 ,4.

The abscissas are obtained by elementary computations: 2x4=−1−r−��r+3��r−1�, 2x1=−1
−r+��r+3��r−1�, 2x2=−1+r−��r−3��r+1�, 2x3=−1+r+��r−3��r+1�, where rª�1+h1�3
because h1�8.

The inequality h21�h22 holds because x2−x1�0 and x1+x2−2/x1x2�0. Indeed, x2�0�x1

implies the first inequality, and the fact that −2/x1x2�0. Thus, it is sufficient to prove that x1

+x2�0. By using the above expressions of x1 and x2 as a function of r, we have x1+x2�0 if and
only if 12�1+h1�+13�0, which holds because h1�8.

The inequality h22�h23 holds because x2 and x3 are the roots of the quadratic equation x2

+ �1−r�x+1=0, and by Viète equations we have x2+x3=r−1 and x2x3=1, hence h23−h22= �x3

−x2��x2+x3−2/x2x3�= �x3−x2��r−3��0, because x3�x2 and r�3.
The inequality h23�h24 holds because both factors of h24−h23, �i.e. x4−x3 and x3+x4

−2/x3x4�, are strictly negative. The first one is strictly negative because x3�0�x4. In order to
prove that the second one is also strictly negative we use the following three statements:

�a� r�3 implies that x3�1;
�b� r�3 implies that −x4�x3+1;
�c� If a and b are real numbers such that b�a+1 and a�1, then a−b+2/ab�0.

Since r�3 implies ��r−3��r+1��0�−r+3, i.e. 2x3�2, and �a� follows.
From r�3�0 we get that r2+2r−3�r2−2r−3�0, which implies that �r2+2r−3

��r2−2r−3, hence −2x4�2x3+2. So �b� is proved.
On one hand, b�a+1 and a�1 implies ab�a�a+1��2. On the other hand, b�a+1 implies

2�2/ �b−a�. Thus, ab�2/ �b−a�. The last inequality is equivalent to the desired one, because
b−a�1�0. Hence, �c� follows.

Now x3+x4−2/x3x4�0 follows from �c� for a=x3 and b=−x4. The proof of h23�h24 is
complete.

Proposition 9: For h1�8 the phase portrait over the sphere Ih1
is as follows: Ih1,h21

= �P1	 is a
center; for h21�h2�h22, Ih1,h2

is a periodic orbit; Ih1,h22
is formed by the saddle P2 and two

homoclinic orbits to this saddle; for h22�h2�h23, Ih1,h2
is formed by two periodic orbits; Ih1h23

is
formed by the center P3 and a periodic orbit; for h23�h2�h24, Ih1,h2

is a periodic orbit; and
finally, Ih1,h24

= �P4	 is a center.
Proof: For h2=h21 �respectively, h24� the set Ih1

�Ph2
�R is the point P1 �respectively, P4�. In

other words, for h2=h21 �respectively h24� the parabola Ph2
is tangent to the circle Ch1

at P1

�respectively, at P4�. For h21�h2�h22 the intersection of the sphere Ih1
with the topological plane

Ph2
�R is a topological circle. For h2=h22, the set Ih1

�Ph2
�R is a union of two topological

circles, both of them containing the singular point P2. For h22�h2�h23 the set Ih1
�Ph2

�R is
union of two disjoint topological circles. For h2=h23 the set Ih1

�Ph2
�R is the union of the point

P3 with a topological circle which does not contain P3. For h23�h2�h24 the set Ih1
�Ph2

�R is
a topological circle. �
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System (12): Clearly, x is a first integral. The flow of system �12� has the same pattern in every
plane x=x0 with x0�0. It suffices to analyze the two-dimensional system: ẏ=−x0z, ż=x0y−1.
There are two cases: x0=0 and x0�0. If x0=0 then the system becomes ẏ=0, ż=−1. Its flow on
the yz plane consists of the straight lines y=y0, on which the orientation of the flow is opposite to
the z axis. If x0�0 then, since the linear part at its singular point is given by the matrix


 0 − x0

x0 0
� ,

we have a global center.
System (16): Denote 
=a1f1+e1

2 and f4= f1 / �1+e1
2�. The following statements hold:

�a� If 
�−1, then its singular point has a two-dimensional stable manifold and a one-
dimensional unstable one.

�b� If 
�−1, then its singular point is a global attractor.
�c� If 
=−1 and c�0, then there are no singular points.
�d� If 
=−1 and c=0, then the set of singular points is the straight line �a1z ,e1z ,z� with

arbitrary z. Every one of these singular points is contained in an invariant plane f1x+e1y
+z=h, for a convenient constant h. In each of these planes the corresponding singular point
is a global attractor.

Now we prove the above statements. The singular points of system �16� are given by the equations

�1 + 
�/�1 + e1
2�x = c, y = − e1f4x, z = − f1f4x . �20�

If 
�−1, then clearly system �16� has a unique singular point S. Now we prove statements �a� and
�b�. To this purpose, we consider the linear part A of the vector field of system �16� at the singular
point S

A = � − 1 0 a1

0 − 1 e1

− f1 − e1 − 1
� ,

and we study its eigenvalues. The characteristic equation is �1+����1+��2+
�=0. It is therefore
sufficient to prove that if 
�−1, then the roots of the equation in � �1+��2=−
 have the real
parts strictly negative. If 
�−1, then the eigenvalues of matrix A are −1, −1−�−
 and −1
+�−
. Thus, all of them are real, two of them being strictly negative and one strictly positive.
Statement �a� is proved by the Hartman–Grobman Theorem. If −1�
	0, then the eigenvalues of
the matrix A are given by the same formulas as before but now they are all strictly negative. If

�0 then the eigenvalues of A are −1, and −1± i�
. All of them have strictly negative real part.
Statement �b� is proved. If 
=−1 and c�0, then equations �20� have no solution. Statement �c�
follows. If 
=−1 and c=0, then equations �20� have the solution �x ,−e1f4x ,−f4x� with arbitrary x.
At each singular point, the associated eigenvalues are 0 ,−1 ,−2. The linear center eigenspace �i.e.,
corresponding to the zero eigenvalue� is the straight line �a1z ,e1z ,z� with z arbitrary in R. The
linear stable eigenspace corresponding to eigenvalues −1 and −2 is f1x+e1y−z=0. Clearly, in our
case, H= f1x+e1y−z is a first integral of system �16�. The planes f1x+e1y+z=h, where h is an
arbitrary constant, are parallel and on each of these planes the corresponding singular point is a
global attractor.

System (17): This system has only one finite singular point, namely �0,−c1f3 , f3� where
f3=−cf1 / �1+c1

2�. Now we prove that �0,−c1f3 , f3� is a global attractor of system �17� in R3. Since
ẋ=−x, it follows that if �x�t� ,y�t� ,z�t�� is an orbit passing through the point �x0 ,y0 ,z0� at t=0, then
x�t�=e−tx0. Thus, all trajectories of system �17� tends towards the plane x=0 when t→�; and if
x0=0, then x�t�=0 for all t. On the other hand, in the plane x=0 the singular point �0,−c1f3 , f3� is
a global attractor, because on the plane x=0 the system is ẏ=−y−c1z, ż=−z+c1y−cf1, and the

072702-9 Global dynamics for an atmospheric model J. Math. Phys. 46, 072702 �2005�

                                                                                                                                    



eigenvalues of the singular point �c1f3 ,−f3� are −1± i�c1�. Consequently, the singular point �0,
−c1f3 , f3� is a global attractor of R3.

IV. BOUNDEDNESS OF SOLUTIONS FOR SYSTEM „18…

The goal of this section is to prove that all trajectories of system �18� enter in an ellipsoid, i.e.,
all -limit sets of the orbits of �18� are contained in that ellipsoid.

We first introduce some notation. If E is the ellipsoid E :x2 /a2+y2 /b2+z2 /c2=1 then its exte-
rior is the set Ext E :x2 /a2+y2 /b2+z2 /c2�1, its interior is the set Int E :x2 /a2+y2 /b2+z2 /c2�1.
We also denote E−=Int E�E. Consider now the differential equation

ẋ = dx/dt = f�x�, x in Rn. �21�

The orbital derivative of a differentiable function V :Rn�R along the vector field f parameterized
by t is the scalar product LtV�x�=grad V�x� · f�x�. The orbit of �21� starting from the point x is
denoted by �t�x� where �t is the flow of �21�. A point y is an -limit point of the orbit �t�x�
through the point x if there exists a sequence of numbers t1� t2� t3�¯ such that limn→�tn=�
and limn→��tn

�x�=y. The -limit set of the orbit �t�x�, denoted ��t�x��, is the set of its all
-limit points.

Theorem 10: We consider the differential equation ẋ= f�x�, where f :R3�R3 is a C1 function,
a differentiable function V :R3�R, and an ellipsoid E in R3 such that LtV�x��0 for x in Ext E.
Then ��t�x���E− for any x in R3.

Remark: This result is similar and more general than the well-known Lyapunov’s Stability
Theorem, the role of the singular point being played by the ellipsoid. Our proof follows the
Chicone’s one3 for the mentioned theorem.

Proof of Theorem 10: Let x�R3 and ����t�x��. We want to prove that ��E−. Assume the
contrary. Then ��Ext E. Since ����t�x��, there is a monotone increasing sequence of numbers
�tn	→� such that �tn

�x�→��Ext E. Therefore, there is some natural number N such that
�tn

�x��Ext E for any n�N. By the continuity of function V, V��tn
�x��→V���. By hypothesis, the

function t�V��t�x�� is strictly decreasing for �t�x��Ext E. Thus, V��tn
�x���V��� for any n

�N. On the other hand, lim V��tN+tn
�x��=lim V��tN

��tn
�x���=V��tN

�����V���. Consequently,
there is some natural number q�N such that V��tN+tq

�x���V���. There is also a natural number
m�N such that tm� tN+ tq. For this number we get V��tm

�x���V��tN+tq
��x����V���

	V��tm
��x���, i.e., a contradiction. The assumption that ��E− is false. The proof is completed.�

Lemma 11: Consider system (18). Then for any ��0 and ��0 there is a differentiable
function V�,� :R3�R and an ellipsoid E�,� in R3 such that

LtV�,��x,y,z� � 0 for �x,y,z� in Ext E�,�. �22�

Proof: Let ��0 and ��0 be fixed, and take

V�,��x,y,z� = �x2 + �y2 + ��z − �r + �/���2 − RV, �23�

where

RV = �� + �r�2/� . �24�

Clearly, the function V�,��x ,y ,z� is differentiable. It follows that

1

2
LtV�,��x,y,z� = − ��x − c1/2�2 − ��y − c2/2�2 − �
z −

� + �r

2�
�2

+ RL, �25�

where

RL = �c1
2/4 + �c2

2/4 + RV/4. �26�

Now it is easy to see that LtV�,��x ,y ,z��0 for any �x ,y ,z��Ext E�,� where E�,� is the ellipsoid
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E�,�:��x − c1/2�2 + ��y − c2/2�2 + �
z −
� + �r

2�
�2

= RL. �27�

In short, we found the function V�,��x ,y ,z� and the ellipsoid E�,� satisfying �22�. �

The main result of this section follows directly from Lemma 11 and Theorem 10.
Theorem 12. Let �t be the flow of system �18�. Then, there exists an ellipsoid E in R3 such that

��t�x���E− for any x in R3.
Remark: In fact, for any ��0 and ��0 fixed there exists such an ellipsoid.

V. QUADRATIC INVARIANT ALGEBRAIC SURFACES FOR SYSTEM „18…

This section has two parts. In the first part we prove the proposition below. In the second part
of this section we discuss the nature of the surface f obtained in Proposition 13�d�. We also prove
some general results in Lemma 17 about limit sets of quadratic systems with constant cofactor and
apply them to our case.

Proposition 13: Let � be the vector field associated to system �18�; i.e.,

X = �− x + y + c1�
�

�x
+ �− y + rx − xz + c2�

�

�y
+ �− z + xy�

�

�z
.

If

f = 
d=0

2


i+j+k=d,

0	i,j,k	2

aijkx
iyjzk �28�

in R�x ,y ,z� is such that

Xf = Kf , �29�

for some polynomial K in R�x ,y ,z�, then

�a� K=k0�R;
�b� if k0�−2, then f =0;
�c� if k0=−2 and c2�−rc1, then f =0;
�d� if k0=−2 and c2=−rc1, then f =a�−r�x−c1�2+y2+z2�, where a is an arbitrary real constant.

Let f �R�x ,y ,z� \R. The algebraic surface f�x ,y ,z�=0 is called an invariant algebraic surface
of system �18� if equation �29� holds for some real polynomial K�x ,y ,z�, which is called the
cofactor of the surface f =0. For simplicity, we will refer to the surface f =0 only by f .

We separate the main parts of the proof of Proposition 13 into two steps.
Step 1: We prove that each cofactor for system �18� is constant. First, we recall the definition

of the weight of a polynomial as introduced in Ref. 28. Next, we prove the properties we need in
Lemma 14. Finally, in Lemma 15 we prove that each cofactor for system �18� is constant.

The weight of a monomial Cxaybzc is a+2b+2c, and the weight of a nonzero polynomial is the
largest of the weights of its constituent monomials. For any polynomial f of degree d, and any
integer n�0 we denote by Wnf , and by Gdf , the sum of those monomials of f which have weight
exactly n, and degree exactly d, respectively. We say that a polynomial is weight homogeneous of
weight w if it is the sum of monomials of weight w. By w�f�, and by deg�f�, we denote the weight,
and the degree of polynomial f , respectively.

Lemma 14: The following statements hold

�a� w��f�	w�f�+1 for any polynomial f
�b� w�fg�=w�f�+w�g� for any two polynomials f and g.

If f is a polynomial of degree d0 and w0=w�Gd0
f� then

�c� Ww0+1Gd0+1�f =Ww0+1Gd0+1��Ww0
Gd0

f�;
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�d� Ww0
Gd0

f =xn��y ,z� where n=2d0−w0 and � is a homogeneous polynomial of degree m
=w0−d0.

Proof: Statements �a� and �b� follow from the fact that they hold for mononomials, and from
the definition of the weight of a polynomial.

�c� Denote by Sw�w0
f , and by Sd�d0

f , the sum of the monomials in f which have weight
strictly less than w0, and degree strictly less than d0, respectively. Then, Gd0

f =Ww0
Gd0

f +Sw�w0
f ,

since w0=w�Gd0
f�, and f =Gd0

f +Sd�d0
f . Consequently, �f =��Ww0

Gd0
f +Sw�w0

f +Sd�d0
f�. Any

term of ��Sw�w0
f� is of weight at most w0, and any term of ��Sd�d0

f� is of degree at most d0,
because the vector field � increases weight and degree by at most one �as proved in �a��. There-
fore, the third statement is proved.

�d� Clearly, Ww0
Gd0

f is a finite sum of terms of the form Cix
aiybizci with ai+bi+ci=d0 and

ai+2bi+2ci=w0 for any i. Therefore, we have ai=2d0−w0=n and bi+ci=w0−d0=m for any i. The
proof is completed. �

Lemma 15: If f and K are polynomials such that �29� holds, then K is constant.
Proof: The idea is to use the fact that if Xf =Kf , then

w�Xf� = w�Kf� �30�

and

Ww0+1Gd0+1Xf = Ww0+1Gd0+1�Kf� , �31�

where we denote deg�f�=d0 and w�Gd0
f�=w0. Clearly, from �30� and Lemma 14 �a� and �b� we

get w�K�	1, i.e., K=k100x+k0. It suffices now to show that �31� implies k100=0. To this purpose,
we look more carefully at the terms of Eq. �31�. By Lemma 14 �c� and �d�, the left term is
Ww0+1Gd0+1Xf =Ww0+1Gd0+1X�Ww0

Gd0
�f =Ww0+1Gd0+1X�xn��=xn+1�y��� /�z�−z��� /�y��. The

right term of �31� is Ww0+1Gd0+1�Kf�=Ww0+1Gd0+1�k100xf�=Ww0+1�k100xGd0
f�=k100xWw0

�Gd0
f�

=k100x
n+1�. Therefore, Eq. �31� reduces to

y
��

�z
− z

��

�y
= k100� , �32�

where ��y ,z� is a homogeneous polynomial of degree m. The change of variables �=y+ iz, �
=y− iz transforms �32� into

i
�
��

��
− �

��

��
� = k100� , �33�

with ��� ,�� a homogeneous polynomial of degree m. Then, the solutions of Eq. �33� are of the
from �=C�m−��� for some integer � with 0	�	m and k100= i�m−2��. Since k100 must be real,
m=2�. So, k100=0. �

Remark: The method of proof is taken from Ref. 28, where the same result was proved for
Lorenz system. Note that the result holds not merely for quadratic but for arbitrary polynomials f .

Remark: We remark that from Eq. �33� we can get additional information interesting in itself
about the degree of its solutions. More precisely, m is even. Hence the polynomial � in Lemma
14�d� is of even degree.

Step 2: If f is a quadratic polynomial �28�, K is constant and both satisfy �29�, now we shall
prove that statements �b�–�d� of Proposition 13 hold.

Let f be a quadratic polynomial �28�, K=k0 constant and both satisfying �29�. Clearly, �29� is
a polynomial equation in R�x ,y ,z�. The coefficients aijk of the polynomial f will be determined by
comparing the coefficients of equal degree of the polynomials Xf and Kf . In order to write the
corresponding equations, it is more convenient to write each polynomial of Eq. �29� as a sum of
its homogeneous parts. Given a polynomial A�R�x ,y ,z� of degree m, we denote by HlA its
homogeneous part of degree l, for any 0	 l	m. Before computing the homogeneous parts of
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polynomials Xf and Kf we need to compute the partial derivatives of f . Here and after, we denote
by fx, fy and fz the derivatives of f with respect to x, y and z, respectively,

fx = 2a200x + a110y + a101z + a100,

fy = a110x + 2a020y + a011z + a010,

fz = a101x + a011y + 2a002z + a001.

Therefore, Xf =l=0
3 HlXf where

H3Xf = − xz�a110x + 2a020y + a011z� + xy�a101x + a011y + 2a002z� ,

H2Xf = �− x + y��2a200x + a110y + a101z� + �rx − y��a110x + 2a020y + a011z�

− z�a101x + a011y + 2a002z� ,

H1Xf = a100�− x + y� + c1�2a200x + a110y + a101z� + a010�rx − y� + c2�a110x + 2a020y + a011z� − a001z ,

H0Xf = c1a100 + c2a010,

and Kf =l=0
3 HlKf where

H3Kf = 0,

H2Kf = k0H2f ,

H1Kf = k0H1f ,

H0Kf = a0k0.

Writing that HlXf =HlKf for each l=0, . . . ,3, we get, respectively, for l=3

a110 = a101 = a011 = 0, �34�

a002 = a020; �35�

for l=2

�k0 + 2�a200 = 0, �36�

�k0 + 2�a020 = 0, �37�

2a200 + 2ra020 = − a001, �38�

a010 = 0; �39�

for l=1

2c1a200 = �k0 + 1�a100, �40�

2c2a020 = − a100, �41�
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�k0 + 1�a001 = 0; �42�

for l=0

c1a100 = k0a0. �43�

Proof of Proposition 13: Statement �a� follows from Lemma 15. Statement �b� is obtained
directly from Eqs. �34�–�43�. Statements �c� and �d� can be proved simultaneously. Indeed, k0

=−2 by hypothesis. From Eqs. �34�–�43� we get

a001 = 0, �44�

a200 = − ra020, �45�

2c1a200 = − a100, �46�

2c2a020 = − a100, �47�

c1a100 = − 2a0. �48�

Now we combine �45� and �46� and get

− 2rc1a020 = − a100. �49�

By using �49� and �48� we deduce a0=−rc1
2a020. From �49� and �47� we obtain �rc1+c2�a020=0.

Now statements �c� and �d� easily follow. This concludes the proof of Proposition 13. �

From Proposition 13 follows immediately.
Corollary 16: Consider system �18�.

�a� If c2=−rc1, then f =−r�x−c1�2+y2+z2 is the only quadratic invariant algebraic surface for
system �18�. Moreover, its cofactor is K=−2.

�b� If c2�−rc1 then there are no quadratic invariant algebraic surfaces for system �18�.

Remark: The nature of the invariant algebraic surface is as follows. If r�0 then S reduces to
the point �c1 ,0 ,0�. If r=0 then S becomes the x-axis. If r�0 then S is a cone.

Remark: We consider a general quadratic system on R3

ẋ = F�x� , �50�

and U�R3 an open set. We say that an analytic function I�x ,y ,z , t� :U�R�R is an invariant of
system �50� if I�x ,y ,z , t�=constant for all values of t for which the solution �x�t� ,y�t� ,z�t�� is
defined and contained in U.

Lemma 17: We consider the quadratic system �50� on R3 and assume that the system has an
invariant algebraic surface f of constant cofactor K. If � is an orbit, we denote by ��� its -limit
set. We also denote by F the surface f =0 in R3. Then

�a� I= fe−Kt is an invariant of system �50�,
�b� If K�0 then ����F for any orbit �, and
�c� If K�0 then �����F for any orbit �.

Proof: �a� We denote the vector field associated to �50� by X=X�� /�x�+Y�� /�y�+Z�� /�z�. For
I= I�x�t� , t� we denote dI /dt=X��I /�x�+Y��I /�y�+Z��I /�z�+�I /�t. Clearly, dI /dt=e−Kt�df /dt
−Kf�=0.

�b� Let � be an orbit of system �50�. By �a� we have fe−Kt=constant. In particular,
limt→+�fe−Kt is finite. But limt→+�e−Kt= +�. Therefore, we must have limt→+�f�x�t��=0. Let P
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����. Then there exists a sequence �tn	→ +� such that �x�tn�	→P. It follows that �f�x�tn��	
→ f�P�, because the function f is continuous. Consequently, f�P�=0. Thus, P�F.

�c� The proof is similar to that of �b�. �

In our case, if c2=−rc1 then I= fe2t is an invariant of system �18� and the -limit set of any
orbit is the surface −r�x−c1�2+y2+z2=0.

VI. SYSTEM „18… WITH c1=c2=0

We note that if c1=c2=0, then system �18� is the particular case s=b=1 of the famous Lorenz
system �63�:

ẋ = − x + y, ẏ = − y + rx − xz, ż = − z + xy . �51�

Although the Lorenz system has been intensively studied, most of the papers are concerned with
the parameter values s=10, b=8/3, and r fixed to 28 or varying from 0 to �. We will study the
Lorenz system for s=b=1 and r�R arbitrary. More precisely, in this section we determine the
phase portrait of system �51� in Theorems 18, 19, and 20.

Since c2=−rc1=0, from Corollary 16 system �51� possesses the algebraic invariant surface
f =−rx2+y2+z2 with cofactor −2. Let X be the vector field associated to system �51�, and let �t be
its flow. Then

Xf = − 2rxẋ + 2yẏ + 2zż = �− 2rx,2y,2z� · �ẋ, ẏ, ż� �52�

is precisely the scalar product ��x ,y ,z� between the normal vector to the surface Sk :−rx2+y2

+z2=k �k is an arbitrary constant� at a given point x= �x ,y ,z� and the tangent to the trajectory
�t�x�. Therefore, for a given surface Sk, this scalar product is constant and equal to −2k, having the
same sign for every point of Sk. In other words, each surface Sk is crossed by the flow �t in the
same direction. This direction depends on the sign of the constant k. Such surfaces are called
semipermeable, and for instance in the Lorenz system has been used in Refs. 10 and 11.

Theorem 18: If r�1 then the origin is a global attractor of system �51�.
Proof: If r�0 then take k�0. The surface Sk :−rx2+y2+z2=k is an ellipsoid such that the

scalar product �52� is strictly negative at any point of Sk. Therefore, for any k�0, all trajectories
of system �51� enter into the ellipsoid Sk. When k→0 the ellipsoid Sk shrinks to the origin,
therefore it is a global attractor. If 0	r�1 then, following Ref. 25, we consider the function
W�x ,y ,z�=x2+y2+z2. Clearly, LtW=−2�x2− �r+1�xy+y2+z2�=−2��x− �r+1�y /2�2+ �r+3��1
−r�y2 /4+z2��0 for −3�r�1. Also W�0,0 ,0�=0. Therefore W is a global Lyapunov function for
the singular point �0,0,0�, consequently it is a global attractor. �

Theorem 19: If r=1 then the origin is a global attractor of system �51�.
Proof: If r=1 then system �51� becomes:

ẋ = y − x, ẏ = − y + x − xz, ż = − z + xy . �53�

The origin is its only finite singular point. Consider the family of surfaces Sk :−x2+y2+z2=k.
When k=0, S0 is a cone surrounding the x axis. When k�0, Sk is a hyperboloid of one sheet also
surrounding the x axis, and S0 is in the interior of Sk for all k�0. When k�0, Sk is a hyperboloid
of two sheets whose line joining the foci is the x axis, and Sk is inside the cone S0. We prove the
theorem in two steps.

Step 1: Now we prove that any trajectory starting at a point which is not on the cone S0 tends
to this cone as time t→�. We take k�0 arbitrary and fixed, and consider a point P on Sk. Then
the scalar product

�− 2x,2y,2z� · �− x + y,− y + x − xz,− z + xy� = − 2k

is strictly negative. The normal to Sk is directed outward Sk, so the tangent to the trajectory which
passes through the point P must be directed inward the hyperboloid Sk with k�0. Similarly, when
k�0, the tangent to the trajectory is directed outward the hyperboloid of two sheets Sk. So, Step
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1 is proved. Another way to show it is using the invariant H�x ,y ,z , t�= �x2−y2−z2�exp 2t of
system �53�, see the definition for Eq. �50�. From Lemma 17�b� we conclude Step 1.

Step 2: Here, we prove that any trajectory starting on the cone S0 tends to the origin of R3.
Now we study the flow on the cone x2=y2+z2. Clearly, this cone is invariant. On it, the system
becomes

ẏ = − y + �1 − z��y2 + z2, ż = − z + y�y2 + z2.

Passing to polar coordinates y=r cos � , z=r sin �, we get ṙ=r�cos �−1� , �̇=r−sin �, if we are on

the half-cone x�0; and ṙ=r�−cos �−1� , �̇=−�r−sin ��, if we are on the half-cone x�0. Note that

always ṙ�0 �it is 0 when �=0, but then �̇ is not zero�, so over the cone r always decreases with
the time. In other words, the flow over the cone tends to the origin when time t→�. In short, for
this system we have proved that the origin is a global attractor. �

Theorem 20: If r�1 then we consider the cone S0 :rx2=y2+z2, and denote S0
+ �S0

−� the
positive (negative) half-cone S0 with x�0 �x�0�. On S0

+ the system has two singular points, the
origin O and C+= ��r−1,�r−1,r−1�. The global flow of system �51� on the half-cone S0

+ is as
follows. Let �s and �u be the two separatrices of O, the stable and the unstable, respectively. Then,
if we denote by ���� and ��� the �- and -limit sets of the orbit �, we have

��O� = �O� = O, ��C+� = �C+� = C+,

���s� = �, ��s� = O, ���u� = O, ��u� = C+,

���� = �, ��� = C+,

for any orbit � on the half-cone S0
+ different from O, C+, �s, and �u. The flow on the negative

half-cone S0
− is obtained by using the symmetry �x ,y ,z�→ �−x ,−y ,z�.

Proof: The origin is locally unstable because one of its eigenvalues is positive whereas the
other two are negative. Indeed, its eigenvalues are the roots of the equation �a+1���a+1�2−r�
=0, i.e. −1�0,−1−�r�0, and �−1+�r��0. However, C± are locally stable for any r�1.
Clearly, their eigenvalues are the roots of the equation �a+2��a2+a+r−1=0�, and their real part
is always negative.

As in the case r=1, there is a family of semipermeable surfaces, Sk :−rx2+y2+z2=k. For every
k�0 �k�0� the tangent to the trajectory through a point on the surface Sk is directed inwardly
�outwardly�. Consequently, trajectories which start at a point which is not on the cone S0 tend to
it.

The cone S0 :rx2=y2+z2 is invariant. Now we study the flow on this cone. Passing to polar
coordinates, y=� cos �, z=� sin �, for x�0 we obtain the system

�̇ = ���r cos � − 1�, �̇ =
1
�r

�� − r sin �� , �54�

with ��0 and ��S1. We denote by S0
+ the positive half-cone S0 with x�0.

Step 1: We study the finite singular points of system �54�. They are given by the equations �i�
�=0, sin �=0; and �ii� cos �=1/�r, �=r sin �. Equation �i� gives the following pairs �� ,��: �0, 0�
and �0,��; both of them correspond to the origin. Equation �ii� gives only the point ��r�r−1� ,��
with cos �=1/�r, sin �=��r−1� /r�0. The value of � corresponding to sin ��0 is not acceptable
since it would give �=r sin ��0.

The eigenvalues of the third point are given by the equation a2+a+r−1=0, i.e. they are
�−1±�5−4r� /2 for 1�r	5/4 and �−1± i�−�5−4r�� /2 for r�5/4. Therefore this point is a local
attractor: a stable node if 1�r	5/4, and a stable focus if r�5/4.

Step 2: Now we determine the local phase portrait at the origin of system �54�. When passing
to polar coordinates �� ,��, the origin blows up to the circle �=0 ��� �0,2���. On this circle there
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are two singular points: �0, 0� and �0,��. The topological type of each of them can be determined
using the Hartman-Grobman Theorem.

For the point �0, 0� the linearized flow has the associated matrix

�
�r − 1 0

1
�r

− �r� ,

with eigenvalues −�r and �r−1 and corresponding eigenvectors u1= �0,1� and u2= �2r−�r ,1�.
Thus, the point �0, 0� is a saddle with stable manifold tangent to the direction u1, and unstable
manifold tangent to the direction u2.

Similarly, the point �0,�� is a saddle with stable manifold tangent to the direction v1= �−2r
−�r ,1�, and unstable manifold tangent to the direction v2= �0,1�.

Finally, we can contract the circle �=0 to the origin to obtain the local phase portrait. The
origin has two separatrices �one stable and one unstable� and two hyperbolic sectors.

Step 3: Now we study system �54� at infinity. Doing the change of variables u=1/�, system
�54� becomes

du/dt = − u��r cos � − 1�, d�/dt = �1/u − r sin ��/�r . �55�

where u�0, ��S1. After the time reparameterization dt=uds, system �55� becomes

du/ds = − u2��r cos � − 1�, d�/ds = �1 − ru sin ��/�r . �56�

where u�R, ��S1. The study of system �54� at infinity is now reduced to the study of system
�56� at u=0. �We need system �56� instead of system �55� because the circle u=0 is invariant for
system �56�, whereas system �55� is not defined at u=0�.

Note that the circle u=0 is an invariant curve of system �56�. Moreover, it is a closed curve
and it does not contain any singular points. Therefore, u=0 is a periodic orbit of system �56�. We
shall prove that u=0 is an unstable periodic orbit for system �56�. System �56� can be written as

du/d� = − u2�r��r cos � − 1�/�1 − ru sin �� , �57�

where u�R, ��S1. Instead of studying the stability of the periodic orbit u=0 for system �57�,
which is hard to integrate, we note that if u�t� is a solution of system �57� such that sup�u�t�� is
sufficiently small, then �u�t�r sin ���1 for all t. Consequently, by using that 1 / �1−x�=1+x
+O�x2� for �x��1, we have that if u�t� is a solution of system �57� such that sup�u�t�� is sufficiently
small, then u�t� satisfies

du/d� = − �ru2��r cos � − 1� + O�u3� . �58�

Solving Eq. �58� after omitting the terms of O�u3�, we get the solution u���=1/ �r sin �−�r�
+1/u�0��. Here u�0��0 has to be small enough in order to insure that u�t��0 for all �
� �0,2��. Since u�2��=1/−2��r+1/u�0��u�0�, u=0 is an unstable periodic orbit for system
�58�, and consequently also unstable for systems �57� and �56�. In short, the infinity of system �54�
is unstable.

Step 4: Now we prove that system �54� has no periodic orbits. This follows from Bendixson’s
criterion �see Ref. 31�, because the vector field of system �54� has constant divergence, equal to −1
in the whole plane �� ,���R+�S1.

Step 5: Now if we summarize the results obtained for the global flow on the half-cone S0
+, we

get the conclusions of the statement of the theorem. �
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VII. DISCUSSION OF RESULTS

�1� System �1� belongs to a special class of quadratic systems which we describe now. It is
known9,6 that by spectral expansion and truncation, the governing equations of most fluid dynami-
cal problems can be reduced to a quadratic system of N ordinary differential equations

ẋi = 
j,k=1

N

aijkxjxk − 
j=1

N

bijxj + ci �i = 1, . . . ,N� . �59�

Hereafter, N is the truncation number. The indices i , j ,k are ranging between 1 and N. The
quadratic coefficients aijk, the linear coefficients bij, and the forcing coefficients ci are real num-
bers. The overdot denotes differentiation with respect to time t. We denote X= �x1 ,x2 , . . . ,xN�. As
usual, when N=3 we write x ,y ,z instead of x1 ,x2 ,x3, respectively. Following the terminology of
Ref. 9, we call the quadratic coefficients aijk conservative if


i,j,k=1

N

aijkxixjxk = 0 �60�

and not all of them are zero. System �59� is called a forced system if not all of its forcing
coefficients ci are zero. System �59� is called dissipative if its linear coefficients are such that


i,j=1

N

bijxixj � 0 �61�

for any X�0. Finally, system �59� is a forced dissipative system if it is forced and dissipative at
the same time. It is known9 that all trajectories of such a system eventually enter a ball and never
leave it again.

An example of a forced dissipative system is the following one:

ẋ = s�y − x�, ẏ = − y − sx − xz, ż = − bz + xy − b�r + s� , �62�

which is obtained from the famous Lorenz system21

ẋ = s�y − x�, ẏ = − y + rx − xz, ż = − bz + xy . �63�

by the change of variables X=x ,Y =y ,Z=z−r−s �here, the parameters s ,b ,r are strictly positive�.
According to the above definition, system �1� is also forced dissipative after imposing some

restrictions on the parameters. For instance, condition �61� holds for system �1� if b�0 and b2

+e2+af �0. If r�1 then system �18� is forced dissipative and therefore all its trajectories even-
tually enter an ellipsoid. However, in Theorem 12 we prove that system �18� has this property for
any r.

Regarding the relation between system �1� and Lorenz system, we note that both of them are
spectrally truncated versions of some partial differential equations. More precisely, system �63�
originates in the coupled Navier-Stokes and heat equations, modeling the Rayleigh-Bénard con-
vection problem, i.e., Eq. �5.31a,b� of Ref. 9, whereas system �1� arises from the nonlinear
barotropic quasigeostrophic potential vorticity equation, i.e., Eq. �6.14� of Ref. 9. However, unlike
system �63�, system �1� includes the effects of topography and of Earth’s rotation.

�2� If b=0 and parameters a ,d ,e , f are all strictly positive, then we reduced system �1� to
system �11�. This case is also considered in Refs. 2, 6, 7, and 9. However our approach leads to a
complete description of the phase portrait. We also considered the cases when a ,d ,e , f are non-
positive. We proved that if b=ef =0 and d�0, then system �1� is reduced to �9�; i.e., to the simple
pendulum.

�3� If b�0 then we reduce system �1� to systems �16�–�18�. If the other parameters are
nonnegative, then systems �16� and �17� have only one singular point. It is a global attractor, in
accordance with known results.2,6,7,9 Also, system �18� has at most three singular points. It remains
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to characterize first, if system �18� has only one singular point when it is a global attractor; and
second if system �18� has three singular points, when two of them are stable and one is unstable.
It was stated in Ref. 6 that this second question holds for system �1� when all its parameters are
strictly positive. We have obtained this result in Theorem 20 in the case c1=c2=0 for any r�1.

�4� We proved that system �18� possesses the quadratic invariant algebraic surface f =−r�x
−c1�2+y2+z2=0 if and only if c2=−rc1. A similar result holds for Lorenz system.20

�5� Knowing the invariant algebraic surface helps to determine the phase portrait of the
system. As an application, we describe the phase portrait of system �18� when c1=c2=0 in Sec. VI.

�6� 1—In Ref. 6 DeSwart found that the singular points of system �1� for b=c=0 are of the
form �x̄ , f x̄ / �dx̄−e� ,0� where x̄ is an arbitrary real number. Moreover, if

e/d � x̄ � �aef�1/3/d + e/d , �64�

then the equilibrium point �x̄ , f x̄ / �dx̄−e� ,0� is unstable, because one of the eigenvalues of the
Jacobian matrix of the system at this equilibrium point becomes positive. The number aef in �64�
is nonzero only if a parameter related to amplitude topography is nonzero. Thus, the occurence of
unstable equilibrium points of this type is physically interpreted as topographic instability.

In our approach we obtain that the singular points of system �11�, which is the physically
interesting reduced form of the above-mentioned system in the conservative case b=c=0, are of
the form �x̄ ,1 / x̄ ,0� where x̄ is an arbitrary real �nonzero� number. The eigenvalues of the Jacobian
matrix of the system at �x̄ ,1 / x̄ ,0� are given by the equation ���2−a�=0 where a= �1− x̄3� / x̄.
Thus, if 0� x̄�1 then one of these eigenvalues is positive, and the equilibrium point �x̄ ,1 / x̄ ,0� is
unstable. Condition 0� x̄�1 corresponds to Eq. �64� found in Ref. 6.

From Propositions 7, 8, and 9 we see that system �11� has singular points �x̄ ,1 / x̄ ,0� with 0
� x̄�1 only when h1�8; in this case, the equilibrium point P2, which is a saddle point with two
homoclinic orbits to it, is unstable and corresponds to topographic instability. This is a nice and
new connection between topographic instability and homoclinic orbits. Such homoclinic orbits
could be remnants of heteroclinic orbits of the six-component CdV model, in accordance with Ref.
4.

2—In Ref. 2 Charney and DeVore suggested that flow regimes should be identified with
equilibrium solutions of the equations describing the evolution of large-scale atmospheric flow. In
Ref. 4 it is suggested that regime transitions in deterministic atmosphere models are related to the
existence of heteroclinic connections between these regimes. A characteristic property of the
atmosphere is its vacillation behavior, i.e., the irregular fluctuation of atmospheric circulation
between different preferent flow regimes which are also called weather regimes.7

Recall the dynamics of system �11� on the sphere Ih1
: for 0�h1�8 there are only two

equilibria �flow regimes� which are centers, i.e., stable but not asymptotically stable, and all other
orbits are periodic. As h1 increases, new equilibria appear. When h1=8, a third equilibrium occurs,
and it is unstable, with a homoclinic orbit to it and with two hyperbolic sectors in a neighborhood
of it. The point which are now on the homoclinic orbit where previously situated on a periodic
orbit. When h1�8, a fourth equilibrium point appears; it is a center, whereas the third equilibrium
point is still unstable �a saddle with two homoclinic orbits to it�.

Since system �11� has only periodic and homoclinic orbits, there are no transitions between
equilibria. Thus, system �11� cannot model vacillation behavior. However, not any equilibrium
point of an atmospheric model can be identified with a weather regime.5 For instance, some
conditions such as the presence of forcing and dissipation, are necessary.8 Future work is neces-
sary to clarify the role of homoclinic and heteroclinic orbits in transitions between weather re-
gimes �when an equilibrium of a given model of atmospheric circulation �59� represents a weather
regime? when a heteroclinic orbit between such equilibria represents a transition between weather
regimes?�.

3—We note that when b=c=0, system �1� can be interpreted as a Volterra gyrostat with two
pairs of gyrostatic terms corresponding to rotation and topography effects �see Ref. 12�.

�7� The problem of finding the values of parameters of a given quadratic system for which the
system is chaotic, if such values do exist, is still open. Such values, but not all of them are known
for Lorenz-63 model,21 and for Lorenz-84 model,29 but not for system �1�.
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In this paper we apply the Darboux theory of integrability to the classical Bianchi
IX system. Thus, we provide a complete description of the Darboux polynomials,
exponential factors, rational first integrals, and Darboux first integrals, for the clas-
sical Bianchi IX system. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1955453�

I. INTRODUCTION TO THE PROBLEM

The Bianchi IX model can be written as the Hamiltonian system �see Ref. 8�:

q̇1 = 12q1�p1q1 − p2q2 − p3q3� ,

q̇2 = 12q2�− p1q1 + p2q2 − p3q3� ,

q̇3 = 12q3�− p1q1 − p2q2 + p3q3� ,

ṗ1 = − 12p1�p1q1 − p2q2 − p3q3� − 1
3 �q1 − q2 − q3� ,

ṗ2 = − 12p2�− p1q1 + p2q2 − p3q3� − 1
3 �− q1 + q2 − q3� ,

ṗ3 = − 12p3�− p1q1 − p2q2 + p3q3� − 1
3 �− q1 − q2 + q3� , �1�

in R6 with the Hamiltonian

G = 6�p1
2q1

2 + p2
2q2

2 + p3
2q3

2 − 2p1q1p2q2 − 2p1q1p3q3 − 2p2q2p3q3�

+
1

6
�q1

2 + q2
2 + q3

2 − 2q1q2 − 2q1q3 − 2q2q3� .

This system has been throughly investigated from the point of view of integrability by using
different methods for studying the existence of first integrals. One of these methods is the Painlevé
test �see, for instance, Refs. 10, 5, and 6� where the authors prove that the solutions of the equation
of motion do not have movable critical points and conjecture that system �1� is integrable. Later
on, in Ref. 7 the same authors of Ref. 6 find new arguments, this time against the integrability.
Another method is the numerical computation of the Lyapunov exponents �see Ref. 1�, where the
authors also conjecture the integrability of system �1�. In Ref. 8 the authors, by means of sym-
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plectic geometrical techniques, prove that system �1� is locally integrable. In Ref. 12 it is shown
that system �1� is not completely integrable in the Birkhoff sense. We also want to mention the
work of Ref. 13, where the author proves that the Hamiltonian system �1� is not completely
integrable with rational first integrals �see Theorem 2 in the following� using techniques from the
differential Galois theory.

We say that the functions F1 , . . . ,Fn are in involution if �Fi ,Fj�=0 for all i� j, where �· , · �
denotes the Poisson bracket. Moreover, they are independent if the one forms dF1 , . . . ,dFn are
linearly independent over a full Lebesgue measure subset of the common definition domain of Fj

for j=1, . . . ,n. By definition, a Hamiltonian system with n degrees of freedom having n indepen-
dent first integrals in involution is (completely) integrable.

A rational first integral of system �1� is a rational function f which is constant over the
trajectories of system �1�, where it is defined.

The aim of this paper is to study the integrability of system �1� by using the Darboux theory
of integrability �see Refs. 9 and 11�. The main results of this paper are the following Theorems 1
and 3.

Theorem 1: All rational first integrals of system �1� are rational functions in the variable G.
As a corollary of Theorem 1 we obtain the following result given in Ref. 13.
Theorem 2: The Hamiltonian system �1� is not completely integrable with rational first

integrals.
Note that Theorem 1 is stronger than Theorem 2.
Writing system �1� as

ẋj = Xj�x1, . . . ,x6�, j = 1, . . . ,6, �2�

we have the following three definitions.
A Darboux polynomial of system �1� is a polynomial f �C�x1 , . . . ,x6� \C such that

df

dt
= �

j=1

6

Xj
�f

�xj
= Kf ,

for some polynomial K�C�x1 , . . . ,x6� called the cofactor. Taking into account the degrees of the
polynomials which appear in the previous equation, it follows easily that the degree of the cofactor
is at most 2. Note that f =0 is an invariant algebraic hypersurface for the flow of system �2�.

Note that a polynomial first integral of system �1� is a Darboux polynomial with cofactor zero.
An exponential factor F of the polynomial differential system �1� is a function F

=exp�f /g��C with f ,g�C�x1 , . . . ,x6� satisfying that

dF

dt
= �

j=1

6

Xj
�F

�xj
= LF ,

for some polynomial L�C�x1 , . . . ,x6� of degree at most 2. See Proposition 7 for more details
about the exponential factors.

A first integral G of system �1� is called Darboux if G is of the form

G = f1
�1 . . . fp

�pF1
�1 . . . Fq

�q,

where f1 , . . . , fp are Darboux polynomials, F1 , . . . ,Fq are exponential factors and � j ,�k�C, for
j=1, . . . , p, k=1, . . . ,q.

We note that for real polynomial differential systems, as system �1�, when we look for their
Darboux first integrals we use in general complex Darboux polynomials and complex exponential
factors. This is due to the fact that these objects appear in pairs �one and its conjugate�, and this
forces that the Darboux first integral becomes real. For more details see Ref. 3.

The second main result of this paper is the following.
Theorem 3: All Darboux first integrals of system (1) are of the form
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P1
�1
¯ Pr

�r exp�Q/R� ,

where Pi, Q, and R are polynomials in C�G� and �i�C for i=1, . . . ,r.
This paper is organized as follows. In Sec. II we state some preliminary and basic results on

the Darboux theory of integrability that will be used through the paper. In Sec. III we reduce the
study of the Bianchi IX system to a homogeneous differential system. In Sec. IV we see that it is
sufficient to study the homogeneous Darboux polynomials. In Secs. V and VI we analyze the
homogeneous polynomial first integrals and the homogeneous Darboux polynomials with nonzero
cofactor, respectively. Finally, in Sec. VII, we prove the main results of this paper.

II. PRELIMINARIES

We consider a differential system with polynomial right–hand sides

ẋj = Xj�x1, . . . ,xn�, j = 1, . . . ,n . �3�

of degree m, i.e., m=max�deg Xj : j=1, . . . ,n�, defined in an open subset of Rn. The proof of the
next results can be found in Refs. 2–4, with the exception of Proposition 6 which can be proved
easily.

Proposition 4: Let f be a polynomial and f =� j=1
s f j

�j its decomposition into irreducible factors
in C�x1 , . . . ,xn�. Then, f is a Darboux polynomial if and only if all the f j are Darboux polynomials.
Moreover, if K and Kj are the cofactors of f and f j, then K=� j=1

s � jKj.
Theorem 5: Suppose that the differential polynomial system (3) defined in Rn of degree m

admits p invariant algebraic hypersurfaces fi=0 with cofactors Ki for i=1, . . . , p and q exponen-
tial factors Fj =exp�gj /hj� with cofactors Lj for j=1, . . . ,q. Then, there exist � j, � j �C not all zero
such that �i=1

p �iKi+� j=1
q � jLj =0 if and only if the following real (multivalued) function of Darboux

type

f1
�1 . . . fp

�pF1
�1 . . . Fq

�q,

substituting fi
�i by 	f i	�i if �i�R, is a first integral of system (3).

Proposition 6: The existence of a rational first integral for a polynomial differential system (3)
implies either the existence of a polynomial first integral, or the existence of two Darboux poly-
nomials having the same nonzero cofactor.

Proposition 7: If F=exp�h /g� is an exponential factor for the polynomial differential system
(3) and g is not a constant polynomial, then g=0 is an invariant algebraic hypersurface of system
(3) with multiplicity higher than 1.

III. REDUCTION TO A HOMOGENEOUS DIFFERENTIAL SYSTEM

We do two changes of variables, the change �q1 ,q2 ,q3 , p1 , p2 , p3�→ �y1 ,y2 ,y3 ,z1 ,z2 ,z3� given
by

yi = qi, zi = piqi, i = 1,2,3; �4�

and the change �y1 ,y2 ,y3 ,z1 ,z2 ,z3 , t�→ �6y1 ,6y2 ,6y3 ,z1 ,z2 ,z3 , t /12�. In these last variables sys-
tem �1� becomes

ẏ1 = y1�z1 − z2 − z3� ,

ẏ2 = y2�− z1 + z2 − z3� ,

ẏ3 = y3�− z1 − z2 + z3� ,

�5�
ż1 = − y1�y1 − y2 − y3� ,
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ż2 = − y2�− y1 + y2 − y3� ,

ż3 = − y3�− y1 − y2 + y3� .

System �5� has the first integral:

H = 1
2 �z1

2 + z2
2 + z3

2 − 2z1z2 − 2z1z3 − 2z2z3� + 1
2 �y1

2 + y2
2 + y3

2 − 2y1y2 − 2y1y3 − 2y2y3� .

Of course, H is the first integral G in the new variables.
Lemma 8: The following statements hold.

�a� If f�y1 ,y2 ,y3 ,z1 ,z2 ,z3� is a rational first integral of system (5), then
f�q1 ,q2 ,q3 , p1q1 , p2q2 , p3q3� is a rational first integral of system (1).

�b� If f�q1 ,q2 ,q3 , p1 , p2 , p3� is a rational first integral of system (1), then
f�y1 ,y2 ,y3 ,z1 /y1 ,z2 /y2 ,z3 /y3� is a rational first integral of system (5).

Proof: �a� is immediate. Now we prove �b�. If f�q1 ,q2 ,q3 , p1 , p2 , p3� is a rational first
integral of system �1�, this means that f�q1 ,q2 ,q3 , p1 , p2 , p3�
= f1�q1 ,q2 ,q3 , p1 , p2 , p3� / f2�q1 ,q2 ,q3 , p1 , p2 , p3�, with f1 and f2 polynomials. From �4�, we define

f̄�y1,y2,y3,z1,z2,z3� = f1 
y1,y2,y3,
z1

y1
,
z2

y2
,
z3

y3
� /f2 
y1,y2,y3,

z1

y1
,
z2

y2
,
z3

y3
� .

Therefore, multiplying f1 and f2 by y1
N1y2

N2y3
N3 where, for i=1,2 ,3, Ni=max�Ni

1 ,Ni
2� with Ni

1 the
maximum degree of f1 in the variable pi, and Ni

2 the maximum degree of f2 in the variable pi, we

have that f̄�y1 ,y2 ,y3 ,z1 ,z2 ,z3� is also a rational first integral of system �5�. �

By Lemma 8, if we prove that the unique rational first integrals of system �5� are functions of
H, Theorem 1 will be proved. Therefore, to prove Theorem 1, it is enough to prove the following
result.

Theorem 9: For system (5) the unique rational first integrals are rational functions in the
variable H.

For proving Theorem 9, we need previously to study the Darboux polynomials of system �5�
with zero cofactor �i.e., the polynomial first integrals� and with nonzero cofactor. We will do that
in the next three sections. In the first one we will see that it is sufficient to study the homogeneous
Darboux polynomials. Finally, in Sec. VII we prove Theorem 9.

IV. REDUCTION TO HOMOGENEOUS DARBOUX POLYNOMIALS

The equation defining a Darboux polynomial f for system �5� is

ẏ1
�f

�y1
+ ẏ2

�f

�y2
+ ẏ3

�f

�y3
+ ż1

�f

�z1
+ ż2

�f

�z2
+ ż3

�f

�z3
= Kf ,

where the cofactor K=a0+a1y1+a2y2+a3y3+a4z1+a5z2+a6z3.
Lemma 10: Any Darboux polynomial f of system �5� has a cofactor of the form

K = a1y1 + a2y2 + a3y3 + a4z1 + a5z2 + a6z3. �6�

Proof: See Ref. 14 where the authors prove Lemma 10 in a more general context of arbitrary
homogeneous polynomial systems. �

Proposition 11: We write f in sum of its homogeneous parts as f = f1+ ¯ + fn. Then, f is a
Darboux polynomial of system �5� with cofactor K if and only if for all j=1, . . . ,n, f j is a Darboux
polynomial of system �5� with cofactor K.

Proof: See Ref. 14 where the authors prove Proposition 11 in a more general context of
arbitrary homogeneous polynomial systems. �

Proposition 12: System �5� has exactly three irreducible Darboux polynomials of degree 1,
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namely y1, y2, and y3.
Proof: It follows easily from the definition of Darboux polynomial. �

Let � :C�y1 ,y2 ,y3 ,z1 ,z2 ,z3�→C�y1 ,y2 ,y3 ,z1 ,z2 ,z3� be the automorphism

��yi� = − yi, ��zi� = zi, i = 1,2,3;

and let � :C�y1 ,y2 ,y3 ,z1 ,z2 ,z3�→C�y1 ,y2 ,y3 ,z1 ,z2 ,z3� be the automorphism

��y1� = y2, ��y2� = y3, ��y3� = y1, ��z1� = z2, ��z2� = z3, ��z3� = z1.

Proposition 13: If g is an irreducible (homogeneous) Darboux polynomial of degree �1 for
system �5� with cofactor K given by �6�, then f = �g ·�g ·�2g� ·��g ·�g ·�2g� is a (homogeneous)
Darboux polynomial invariant by � and � with a cofactor of the form 2�a4+a5+a6��z1+z2+z3�. If
the cofactor of g is zero, then the cofactor of f is also zero. Moreover, yi is not a factor f for i
=1,2 ,3.

Proof: Since system �5� is invariant under �, �, and �2, �g is a Darboux polynomial of system
�5� with cofactor ��K�. Moreover, by Proposition 4, g ·�g ·�2g is also a Darboux polynomial of �5�
with cofactor K+��K�+�2�K�. Therefore, again by Proposition 4, the cofactor of f is 2�a4+a5

+a6��z1+z2+z3�.
Finally, yi is not a factor f for i=1,2 ,3, otherwise some yi would be a factor of g, and g is

irreducible of degree �1. �

In Proposition 13 the parenthesis in the word homogeneous means that the statement of the
proposition holds if g is homogeneous, as if it is not.

V. HOMOGENEOUS POLYNOMIAL FIRST INTEGRALS

In this section we study the homogeneous polynomial first integrals of system �5�, or equiva-
lently its homogeneous Darboux polynomials with zero cofactor.

Proposition 14: If f is a homogeneous polynomial first integral of degree n even for system (5)
restricted to y1=0, z1=0, then f =�k=0

n/2 akH1
kH2

n/2−k with

H1 = 1
2 �z2 − z3�2 + 1

2 �y2 − y3�2, H2 = y2y3. �7�

Proof: Let f be a homogeneous polynomial first integral of degree n even of system �5�
restricted to y1=0, z1=0. Then f satisfies

�z2 − z3�
y2
�f

�y2
− y3

�f

�y3
� − �z2 − z3�
y2

�f

�z2
− y3

�f

�z3
� = 0. �8�

By direct computation, it is straightforward to prove that H1, H2, and linear combinations of them
are the unique polynomial first integrals of system �5� restricted to y1=0, z1=0 of degree n=2. So,
the proposition is proved if n=2. Assume, by induction, that it is proved until degree n−2 and we

shall prove it for degree n. We denote by f̄2= f�0,y3 ,z2 ,z3�. Then, restricting �8� to y2=0, we get

that f̄2 is a first integral of the system

ż2 = 0, ẏ3 = y3�z3 − z2�, ż3 = − y3
2. �9�

Now, we do the linear change of variables x1=z2, x2=z2−z3+ iy3 and x3=z2−z3− iy3. In these new
variables system �9� becomes

ẋ1 = 0, ẋ2 = − 1
2 �x2 − x3�x2, ẋ3 = 1

2 �x2 − x3�x3. �10�

Since the change of variables is linear, if we have a polynomial first integral of system �10� we
have a polynomial first integral of system �9� and vice versa.

Let g=g�x1 ,x2 ,x3� be a polynomial first integral of system �10�. Then, after dividing by �x2

−x3� /2, g satisfies
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− x2
�g

�x2
+ x3

�g

�x3
= 0. �11�

The general solution of this linear partial differential equation is an arbitrary function of x2x3.
Since we are only interested in the homogeneous polynomial solutions of degree n of �11� in the
variables x1, x2, x3, g must be a polynomial in x2x3 with coefficients polynomials in the variable x1.
Thus, we have

f̄2 = �
l+2k=n

al,kz2
l ��z2 − z3�2 + y3

2�k.

Now, taking the notation f̄3= f�y2 ,0 ,z2 ,z3�, restricting �8� to y3=0 and proceeding as for f̄2, we get

that f̄3 has the form

f̄3 = �
l+2k=n

bl,kz3
l ��z2 − z3�2 + y2

2�k.

We note that for y2=y3=0, f̄2 restricted to y3=0 and f̄3 restricted to y2=0 must coincide. Thus, we
get the relation

�
l+2k=n

al,kz2
l �z2 − z3�2k = �

l+2k=n

bl,kz3
l �z2 − z3�2k. �12�

We claim that

al,k = bl,k = 0, for all l � 0 and a0,n/2 = b0,n/2. �13�

First, we prove the claim for l=n �n�2�. To do it, we restrict �12� to z2=z3. Then, we get
an,0z2

n=bn,0z3
n, which obviously implies an,0=bn,0=0. Suppose that the claim is true for l

=n , . . . ,n−2m with 0	m
 �n−2� /2. Then, we want to prove it for l=n−2�m+1�. Clearly, by
induction hypothesis, �12� is equal to

�
l+2k=n,l	n−2m

al,kz2
l �z2 − z3�2k = �

l+2k=n,l	n−2m

bl,kz3
l �z2 − z3�2k. �14�

In the equality �12�, we substitute the equality �14�, so it remains as the terms with k�m.
Therefore, we can remove the common factor �z2−z3�2m+2, and �12� becomes

�
l+2k=n,k�m

al,kz2
l �z2 − z3�2�k−m−1� = �

l+2k=n,k�m

bl,kz3
l �z2 − z3�2�k−m−1�.

So, al,k=bl,k=0 for l=n−2�m+1�. Thus, by induction hypothesis, �12� reduces to a0,n/2�z2−z3�n

=b0,n/2�z2−z3�n, which obviously implies a0,n/2=b0,n/2 and finishes the proof of the claim. There-

fore, from �13� we get f̄2=a0,n/2��z2−z3�2+y3
2�n/2 and f̄3=b0,n/2��z2−z3�2+y2

2�n/2.
Now, by the Newton’s binomial formula, we get

��z2 − z3�2 + y2
2 + y3

2�n/2 = ��z2 − z3�2 + y3
2�n/2 + y2

2g1,

��z2 − z3�2 + y2
2 + y3

2�n/2 = ��z2 − z3�2 + y2
2�n/2 + y3

2g2,

where g1 and g2 are of homogeneous polynomial of degree n−2. Then, using this and the fact that

f̄2 is the restriction of f to y2=0, we can write

f = f̄2 + y2g3 = a0,n/2��z2 − z3�2 + y2
2 + y3

2�n/2 + y2g4 + y2y3g5,

where g4,g5 are polynomials, and g4 does not depend on y3. In an analogous way, since f̄3 is the
restriction of f to y3=0, we can write
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f = a0,n/2��z2 − z3�2 + y2
2 + y3

2�n/2 + y3g6 + y2y3g7,

where g6 and g7 are polynomials, and g6 does not depend on y2. Then, equating these two
expressions for f we obtain y2g4−y3g6=y2y3�g5−g7�, which obviously yields g4=g6=0 and g7

=g5. Thus, since �z2−z3�2+y2
2+y3

2=2�H1+H2�, also by the Newton’s binomial formula, we obtain

f = a0,n/2��z2 − z3�2 + y2
2 + y3

2�n/2 + y2y3g5 = 2n/2a0,n/2H1
n/2 + y2y3g8,

for some homogeneous polynomial g8. Then, since f , y2y3 and H1 are first integrals of system �5�
restricted to y1=0, z1=0, we have that g8 is also a first integral of system �5� restricted to y1=0,
z1=0 of degree n−2. Hence, by induction assumption, g8 can be written as in the statement of the
proposition, with n replaced by n−2. Therefore, the proposition follows for f . �

Proposition 15: If f is a homogeneous polynomial first integral of degree n even for system �5�
restricted to y1=0, then f =�l+2k=nal,kz1

l H3
k with

H3 =
1

2
�z1

2 + z2
2 + z3

2 − 2z1z2 − 2z1z3 − 2z2z3� +
1

2
�y2 − y3�2.

Proof: Let f be a homogeneous polynomial first integral of degree n even of system �5�
restricted to y1=0, then f satisfies

y2�− z1 + z2 − z3�
�f

�y2
+ y3�− z1 + z3 − z2�

�f

�y3
− �y2 − y3�
y2

�f

�z2
− y3

�f

�z3
� = 0.

By direct computation, it is straightforward to prove that the unique first integrals of degree 2 of
system �5� restricted to y1=0, are z1

2, H3 and linear combinations of them. So, the proposition is
proved if n=2 and we can assume that n�4. Moreover, we assume, by induction, that it is proved
until degree n−2 and we shall prove it for degree n.

We first consider the restriction of system �5� to y1=0, z1=0. Any homogeneous polynomial
first integral f of system �5� of degree n even restricted to y1=0, z1=0 satisfies �8� with f replaced

by f̄ , where f̄ = f̄�y2 ,y3 ,z2 ,z3�= f�y2 ,y3 ,0 ,z2 ,z3�.
By Proposition 14, we have that f̄ =�2k+2m=nak,mH1

kH2
m, where H1 was introduced in �7�, and

ak,m�C. Since f̄ is the restriction of f to z1=0, is also a homogeneous polynomial of degree n, and
H3=H1+ 1

2z1�z1−2z2−2z3�, we get that

f = �
2k+2m=n

ak,mH3
kH2

m + z1g3, �15�

with g3=g1+g2 a homogeneous polynomial of degree n−1.
Now, since f , z1, and H3 are first integrals of system �5� restricted to y1=0, we obtain, after

simplifying by z1, that

dg3

dt
= 2 �

2k+2m=n

ak,mmH3
kH2

m, �16�

where this expression is evaluated along a solution of system �5� restricted to y1=0. We write
g3= ḡ3+z1g4, where ḡ3 is a homogeneous polynomial of degree n−1 and g4 is a homogeneous
polynomial of degree n−2. Further, ḡ3 satisfies �16� restricted to z1=0, that is

dḡ3

dt
= 2 �

2k+2m=n

ak,mmH1
kH2

m, �17�

where this expression is evaluated along a solution of system �5� restricted to y1=0, z1=0. Now,
we claim that
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ḡ3 = y2y3h1 for some polynomial h1 = h1�z2,z3,y2,y3� . �18�

To prove �18�, we restrict �17� to y2=0 and denote by g̃3 the restriction of ḡ3 to y2=0. Then, if we
introduce the variables x1=z2, x2=z2−z3+ iy3, x3=z2−z3− iy3, and denote g̃3�z2 ,z3 ,y3�
=G�x1 ,x2 ,x3�, we get, after dividing by �x2−x3� /2, that G satisfies �11� with g replaced by G.
Thus, the same arguments used in the proof of Proposition 14 imply that g̃3=�l+2k=n−1cl,kz2

l ��z2

−z3�2+y3
2�k. Further, if we denote by ĝ3 the restriction of ḡ3 to y3=0, then proceeding as for g̃3 we

get that ĝ3=�l+2k=n−1dl,kz3
l ��z2−z3�2+y2

2�k. We note that for y2=y3=0, g̃3 restricted to y3=0 and ĝ3

restricted to y2=0 must coincide. Thus we get the relation

�
l+2k=n−1

cl,kz2
l �z2 − z3�2k = �

l+2k=n−1
dl,kz3

l �z2 − z3�2k. �19�

We claim that

cl,k = dl,k = 0 for all l � 1. �20�

Proceeding exactly in the same way as in the proof of claim �13� we can prove by induction that
cl,k=dl,k=0 for l�3. Then, �19� reduces to c1,�n−2�/2z2�z2−z3�n−2=d1,�n−2�/2z3�z2−z3�n−2 which
clearly implies c1,�n−2�/2=d1,�n−2�/2=0 and finishes the proof of the claim. Therefore from �20�, we
get that g̃3= ĝ3=0. Now, using that g̃3 is the restriction of ḡ3 to y2=0 and ĝ3 is the restriction of ḡ3

to y3=0, we can write ḡ3 in the two following forms ḡ3=y2G0 and ḡ3=y3G1, where G0, G1 are
polynomials. Then, equating the two expressions for ḡ3 we readly obtain ḡ3=y2y3h1 for some
polynomial h1. Thus, the claim �18� is proved.

Now, from �18� and �16�, and after dividing by H2=y2y3 we get

dh1

dt
= 2 �

2k+2m=n,m�1
ak,mmH1

kH2
m−1. �21�

We claim that

ak,m = 0, h1 = �y2y3�mhm+1 for m = 1, . . . ,n/2 �22�

where hm+1 are polynomials.
First, we prove the claim �22� for m=1. To do it, we restrict �21� to y2=0. Then, taking the

notation h̃1 for the restriction of h1 to y2=0, using the variables x1 ,x2 ,x3 introduced previously,

and denoting F�x1 ,x2 ,x3�= h̃1�z2 ,z3 ,y3� we get

x2 − x3

2

− x2

�F

�x2
+ x3

�F

�x3
� = a�n−2�/2,1
1

2
x2x3��n−2�/2

�23�

Evaluating �23� on x2=x3, we get a�n−2�/2,1=0. Since �21� is of the same type as �17� replacing ḡ3

by h1, the same arguments used for ḡ3 imply that h1=y2y3h2 for some polynomial h2. This proves
the claim for m=1.

Now, assume the claim is true for 1	m	 j with 0
 j
n /2. Then, we want to prove it for
m= j+1. Clearly, by induction hypotheses h1= �y2y3� jhj+1 and since y2y3 is a first integral of
system �5� restricted to y1=0, z1=0, after simplifying by �y2y3� j, �21� is equal to

dhj+1

dt
= 2 �

2k+2m=n,m�j+1
ak,mmH1

kH2
m−j−1 = 2 �

2k+2m=n,k	n/2−�j+1�
ak,mmH1

kH2
m−j−1.

Now, repeating for hj+1 the arguments we did for h1 in the case m=1, we get that an/2−j−1,j+1=0
and hj+1=y2y3hj+2 for some polynomial hj+2. Hence, the claim is proved.

In short, using the claim �22� we have, ḡ3= �y2y3�n/2+1hn/2+1, which due to the fact that the
degree of ḡ3 is n−1 we get that hn/2+1=0 and thus ḡ3=0. Further, applying the claim �22� to �15�,
we obtain f =an/2,0H3

n/2+z1
2g4. Then, since f , H3, and z1 are first integrals of system �5� restricted to
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y1=0, we have that g4 is also a first integral of system �5� restricted to y1=0 of degree n−2.
Hence, by induction assumption g4 can be written as in the statement of the proposition with n
replaced by n−2. Therefore, the proposition follows for f . �

VI. HOMOGENEOUS DARBOUX POLYNOMIALS WITH NONZERO COFACTOR

The objective of this section is to study the homogeneous Darboux polynomials of system �5�
with nonzero cofactor.

Proposition 16. System (5) has no homogeneous Darboux polynomials invariant by � and �
with cofactor K=a�z1+z2+z3�, a�C \ �0� that are coprime with y1, y2, and y3.

Proof: Let f be a homogeneous Darboux polynomial invariant by � and � with cofactor K
=a�z1+z2+z3�, a�C \ �0� that is coprime with y1, y2, and y3. By Proposition 12, the degree n of f
satisfies that n�1, and by assumptions, yi is not a factor f for i=1,2 ,3. Now, the proof of the
proposition will be completed if we reach a contradiction. We write f0= f0�y2 ,y3 ,z1 ,z2 ,z3�
= f�0,y2 ,y3 ,z1 ,z2 ,z3�. Since y1 is not a factor f , then f0�0. We separate the proof in two different
cases.

Case 1: f0 is not divisible by y2. In this case, we can write f0,0= f0�0,y3 ,z1 ,z2 ,z3�. Then, the
polynomial f0,0 is a Darboux polynomial of system �5� restricted to y1=y2=0 and thus, it satisfies
the equation

y3�− z1 − z2 + z3�
�f0,0

�y3
− y3

2�f0,0

�z3
= a�z1 + z2 + z3�f0,0. �24�

Hence, from �24� and since a�0, f0,0 is divisible by y3. We write f0,0=y3
mg where 1	m	n,

deg�g�=n−m, g�0 and g is not divisible by y3. We have that m
n; otherwise, f0,0=by3
n with

b�C \ �0�, and from �24� we get a contradiction. From �24� and Proposition 4, we obtain that g is
a Darboux polynomial of system �5� restricted to y1=y2=0 satisfying

y3�− z1 − z2 + z3�
�g

�y3
− y3

2 �g

�z3
= �a�z1 + z2 + z3� + m�z1 + z2 − z3��g .

Hence, if m
n then g is divisible by y3, a contradiction. Thus, Case 1 is not possible.
Case 2: f0 is divisible by y2. In this case, we write f0=y2

mg where 1	m	n, deg�g�=n−m,
g�0 and g is not divisible by y2. We have that m
n; otherwise, f0=by2

m with b�C \ �0� and
y2�−z1+z2−z3��f0 /�y2=a�z1+z2+z3�f0, a contradiction. Since f0 and y2 are Darboux polynomials
of system �5� restricted to y1=0, from Proposition 4, g is also a Darboux polynomial of system �5�
restricted to y1=0 satisfying

y2�− z1 + z2 − z3�
�g

�y2
+ y3�− z1 − z2 + z3�

�g

�y3
− y2�y2 − y3�

�g

�z2
− y3�− y2 + y3�

�g

�z3

= �a�z1 + z2 + z3� − m�− z1 + z2 − z3��g .

We write g0=g�0,y3 ,z1 ,z2 ,z3�. Since g is not divisible by y2 we have that g0�0. Moreover, g0 is
a Darboux polynomial of system �5� restricted to y1=y2=0, and g0 satisfies

y3�− z1 − z2 + z3�
�g0

�y3
− y3

2�g0

�z3
= �a�z1 + z2 + z3� − m�− z1 + z2 − z3��g0. �25�

Hence, g0 is divisible by y3 and we can write g0=y3
l h, where 1	 l	n−m, h�0 and h is not

divisible by y3. We have that l
n−m; otherwise, g0=by3
n−m with b�C \ �0�, and we get a contra-

diction using �25�. Again from �25� and Proposition 4, we have that
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y3�− z1 − z2 + z3�
�h

�y3
− y3

2 �h

�z3
= ��a + m + l�z1 + �a − m + l�z2 + �a + m − l�z3�h . �26�

Note that since m�0 and l�0, then �a+m+ l�z1+ �a−m+ l�z2+ �a+m− l�z3�0. Hence, from �26�,
we get that h must be divisible by y3, a contradiction. Thus, Case 2 is not possible. �

VII. PROOF OF THE MAIN RESULTS

The next two results will play a main role in the proofs of Theorems 1 and 3, our main results.
Theorem 17. All homogeneous Darboux polynomials of degree n with zero cofactor (i.e.,

homogeneous polynomial first integrals of degree n ) for system (5) are of the form aHn/2 with n
even and a�C \ �0�.

Proof: Let g be a homogeneous polynomial first integral of system �5� of degree n. By
Proposition 13, f = �g ·�g ·�2g� ·��g ·�g ·�2g� is a homogeneous polynomial first integral invariant
by � and � of degree equal to 6n. We claim that there exists a polynomial h such that

f = a3nH3n + y1y2y3h . �27�

From Proposition 15 �with n replaced by 6n� and since f is invariant by �, we have that there exist
a homogeneous polynomial g3 such that

f = �
l+k=3n

al,kz1
2lH3

k + y1g3 = �
l+k=3n

al,kz2
2lH4

k + y2 · �g3 = �
l+k=3n

al,kz3
2lH5

k + y3 · �2g3, �28�

where H4=�H3 and H5=�2H3.
Restricting �28� to y1=y2=y3=0, we get the

�
l+k=3n

al,kz1
2lH̄k = �

l+k=3n

al,kz2
2lH̄k = �

l+k=3n

al,kz3
2lH̄k,

where H̄= 1
2 �z1

2+z2
2+z3

2−2z1z2−2z1z3−2z2z3�. These equalities between polynomials in the vari-

ables H̄, z1, z2 and z3 imply that al,k=0 for l�0. Therefore, from the first equation of �28� we have

f = a0,3nH3
3n + y1g3. �29�

Since H=H3+ 1
2 y1�y1−2y2−2y3�=H3+y1h, we obtain that H3

3n=H3n+y1T1, where T1 is a homo-
geneous polynomial of degree n−1. Therefore, taking into account that H is invariant by �, �29�
can be written in the three equivalent forms,

f = a0,3nH3n + y1f3 = a0,3nH3n + y2 · �f3 = a0,3nH3n + y3 · �2f3, �30�

where f3 is a homogeneous polynomial of degree 6n−1. Now, equating the three identities of �30�,
it follows that the claim �27� is proved.

From �27� and since f and H are invariant by � and �, it follows that h=�h=−�h. Moreover,
since f and H are first integrals of system �5�, we have

0 =
d

dt
�y1y2y3h� = y1y2y3
− �z1 + z2 + z3�h +

dh

dt
� ,

on the solutions of system �5�. Therefore, h is either 0, or a Darboux polynomial of system �5�
with cofactor K=z1+z2+z3. Therefore, the polynomial h2=−h ·�h is a Darboux polynomial of
system �5� with cofactor 2K �see Proposition 4� invariant by � and by �.

From Proposition 16, if h�0, then h2= Py1
n1y2

n2y3
n3 with P a Darboux polynomial of system �5�

with zero cofactor and n1,n2,n3 nonnegative integers satisfying n1+n2+n3�1, because 2K is
nonzero. Since h2 is a Darboux polynomial of cofactor 2K, using Proposition 4 we get
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dh2

dt
= �z1�n1 − n2 − n3� + z2�− n1 + n2 − n3� + z3�− n1 − n2 + n3��h2 = 2�z1 + z2 + z3�h2.

Therefore, n1=n2=n3=−2, a contradiction with the fact that n1+n2+n3�1. Thus, h2=0, that is,
h=0 and consequently from �27�, f =a3nH3n. Hence, since H is irreducible, by the definition of f ,
it follows that 3n must be even, i.e., n must be even and g is of the form aHn/2. So, the theorem
is proved. �

Theorem 18. For system (5) the unique irreducible homogeneous Darboux polynomials with
nonzero cofactor are y1, y2, and y3.

Proof: By Proposition 12, if g is an irreducible homogeneous Darboux polynomial of degree
1, it must be y1, y2, or y3. Now, assume that g is an irreducible homogeneous Darboux polynomial
of degree n�1 for system �5� with nonzero cofactor K of the form �6�. Then, from Proposition 13,
we can assume that f = �g ·�g ·�2g� ·��g ·�g ·�2g� is a homogeneous Darboux polynomial invariant
by � and �, with degree 6n and nonzero cofactor of the form 2�a4+a5+a6��z1+z2+z3� and such
that yi is not a factor f for i=1,2 ,3. From Proposition 16, we get that a4+a5+a6=0, otherwise we
have a contradiction. Hence, f is a homogeneous polynomial first integral of system �5�. By
Theorem 17, f is of the form aH3n with n even and a�C \ �0�. Therefore, from the definition of f
and since H and g are irreducible and invariant for � and �, it follows that g=bHn/2, in contra-
diction with the fact that the cofactor of g is not zero. �

Now we prove Theorem 9, that as it was shown in Sec. III is equivalent to prove Theorem 5.
Proof of Theorem 9: By Theorems 17 and 18, it follows that every Darboux polynomial of

system �5� is of the form y1
my2

ny3
l PH with cofactor

K = �m − n − l�z1 + �n − m − l�z2 + �l − m − n�z3, �31�

where m, n, and l are nonnegative integers, and PH is some polynomial of the variable H.
From Proposition 6 and Theorem 17, the existence of a rational first integral which is not a

function of H, implies the existence of two coprime Darboux polynomials with the same nonzero
cofactor. So, the first integral must be of the form R /S=y1

m1y2
n1y3

l1PH / �y1
m2y2

n2y3
l2QH� with at most

one mi, ni, and li nonzero, and the cofactors of R and S must be equal.
Suppose that m1, n1, and l2 are the possible nonzero exponents. Then, according to Eq. �31�,

the equality of the cofactors of R and S imply that

�m1 − n1 + l2�z1 + �n1 − m1 + l2�z2 − �l2 + m1 + n1�z3 = 0.

Hence, m1=n1= l2=0. All the other combinations with the possible non-zero exponents, also end
showing that the six exponents are zero. In short, the only rational first integrals are rational
functions in the variable H. �

The equation defining the exponential factor F=exp�h /g� with cofactor L is

ẏ1
d

dy1

h

g
+ ẏ2

d

dy2

h

g
+ ẏ3

d

dy3

h

g
+ ż1

d

dz1

h

g
+ ż2

d

dz2

h

g
+ ż3

d

dz3

h

g
= L , �32�

where we have simplified the common factor F, and

L = b0 + b1y1 + b2y2 + b3y3 + b4z1 + b5z2 + b6z3. �33�

According to Proposition 7 and Theorems 17 and 18, if system �5� has exponential factors,
they must be of the form exp�h / �y1

n1y2
n2y3

n3��, exp�h / �y1
n1y2

n2y3
n3PH��, where h and PH are polyno-

mials in C�y1 ,y2 ,y3 ,z1 ,z2 ,z3� and C�H�, respectively; and n1, n2, and n3 are nonnegative integers.
We shall need the following auxiliary result.
Proposition 19: The unique irreducible homogeneous Darboux polynomials with non-zero

cofactor of system (5) restricted to y1=z1=0 are y2 and y3.
Proof: It follows by direct computations that if g is an irreducible homogeneous Darboux

polynomial of degree 1 for system �5� restricted to y1=z1=0, it must be y2 or y3. Now, assume that
g is an irreducible homogeneous Darboux polynomial of degree n�1 for system �5� restricted to
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y1=z1=0 with nonzero cofactor K of the form �6� restricted to y1=z1=0. Then, we can assume that
f = �g ·�g� ·��g ·�g� is a homogeneous Darboux polynomial invariant by � and �, with degree 4n,
nonzero cofactor of the form 2�a5+a6��z2+z3� and such that y2 and y3 are not factors f . Repeating
the arguments used in the proof of Proposition 16 with y1=z1=0, we get that a5+a6=0, otherwise
we have a contradiction. Hence, f is a homogeneous polynomial first integral of system �5�
restricted to y1=z1=0. By Proposition 14 �with n replaced by 4n�, f is of the form f
=�k=0

2n akH1
kH2

n/2−k, with n even and ak�C \ �0�. Therefore, from the definition of f it follows that
g=g�H1 ,H2�, in contradiction with the fact that the cofactor of g is not zero. �

Proposition 20: The unique exponential factors of system (5) are of the form exp�P� and
exp�P /Q�, where P and Q are polynomials in C�H�. Moreover, such exponential factors have
cofactor zero.

Proof: We start showing that if system �5� has an exponential factor of the form exp�h /Q��,
with �� �0,1�, then h is a polynomial in H. Since Q is a Darboux polynomial with cofactor zero
�by Proposition 7�, applying �32� with h /g=h /Q we get

ẏ1
dh

dy1
+ ẏ2

dh

dy2
+ ẏ3

dh

dy3
+ ż1

dh

dz1
+ ż2

dh

dz2
+ ż3

dh

dz3
= LQ�, �34�

with L given by �33�. Taking y1=y2=y3=0 in �34�, since H	y1=y2=y3=0	�0, it holds that b0=b4

=b5=b6=0. Restricting �34� to y1=y2=0 and z3=z1+z2, we get

− y3
2 �h

�z3 	y1=y2=0,z3=z1+z2

= y3b3Q�H̄��, �35�

where H̄=−2z1z2+ 1
2 y3

2. From �35� we obtain that either b3=0 or Q�H̄� must be divisible by y3.
This last case is impossible and then b3=0. In a similar way, restricting �34� to y1=y3=0, z2=z1

+z3 we get b2=0, and restricting �34� to y2=y3=0 and z1=z2+z3 we get b1=0. Thus we have L
=0. Therefore, from �34�, h is a polynomial first integral. From Proposition 11, we can assume h
is a homogeneous polynomial first integral and then, from Theorem 17, h is a polynomial function
of H.

Suppose that exp�h / �y1
n1y2

n2y3
n3P��� is an exponential factor of system �5�, where n1 ,n2 ,n3 are

nonnegative integers with at least one of them positive, �� �0,1� and h is coprime with y1, y2, y3

and P. Of course, P is a polynomial in the variable H. Then, h satisfies

ẏ1
�h

dy1
+ ẏ2

�h

dy2
+ ẏ3

�h

dy3
− 
 ẏ1

y1
n1 +

ẏ2

y2
n2 +

ẏ3

y3
n3�h + ż1

�h

dz1
+ ż2

�h

dz2
+ ż3

�h

dz3
= Ly1

n1y2
n2y3

n3P�,

�36�

where we have simplified the common factor exp�h / �y1
n1y2

n2y3
n3P��� and multiplied by y1

n1y2
n2y3

n3P�.

Without loss of generality, we can assume that n1�0. Taking y1=0 in �36� and denoting by h̄

the restriction of h to y1=0, we conclude that h̄ satisfies

ẏ2
�h̄

dy2
+ ẏ3

�h̄

dy3
+ ż2

�h̄

dz2
+ ż3

�h̄

dz3
= �z1�n1 − n2 − n3� + z2�− n1 + n2 − n3� + z3�− n1 − n2 + n3��h̄ .

�37�

Since by hypothesis h is coprime with y1, we have that h̄�0. We consider two different cases:

Case 1: h̄ is not divisible by z1. In this case, we write h̄0= h̄�y2 ,y3 ,0 ,z2 ,z3�. Then, h̄0�0 and

h̄0 satisfies �37� restricted to z1=0, that is
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ẏ2
�h̄0

dy2
+ ẏ3

�h̄0

dy3
+ ż2

�h̄0

dz2
+ ż3

�h̄0

dz3
= �z2�− n1 + n2 − n3� + z3�− n1 − n2 + n3��h̄0. �38�

Since n1�0, z2�−n1+n2−n3�+z3�−n1−n2+n3��0. Thus, since h̄0�0, Eq. �38� implies that h̄0 is
a Darboux polynomial of system �5� restricted to y1=z1=0. From Proposition 19, we obtain that

h̄0=Ry2
m2y3

m3, with R a Darboux polynomial with zero cofactor of system �5� restricted to y1=z1

=0, and m2 and m3 are nonnegative integers such that m2+m3�0. Substituting h̄0= Py2
m2y3

m3 in
�38�, we get that �m2−m3��z2−z3�=z2�−n1+n2−n3�+z3�−n1−n2+n3� which implies n1=0, in con-
tradiction with the fact that n1�0.

Case 2: h̄ is divisible by z1. In this case, we write h̄=z1
ng where deg�g�=deg�h̄�−n and 0

	n	deg�h̄�. Further, g�0 and g is not divisible by z1. Then, since z1 is a first integral of system
�5� restricted to y1=0, then g satisfies �37�. Thus, if we set g0=g�y2 ,y3 ,0 ,z2 ,z3�, then g0�0 and

g0 satisfies �38�. Hence, applying to g0 the arguments we used for h̄ in Case 1, we get a contra-
diction. This completes the proof of the proposition. �

Proof of Theorem 3: From Theorems 5, 17, and 18 and Proposition 20, if system �5� has a
Darboux first integral G, then

G = y1
�1y2

�2y3
�3P1

�1
¯ Pr

�r exp�Q/R� with �1,�2,�3,�i � C ,

where P, Q, and R are polynomials in the variable H, and i=1, . . . ,r. Since G and H are first
integrals and the cofactors of Pi and exp�P /R� are zero, using Theorem 5, it must hold ��1−�2

−�3�z1+ ��2−�1−�3�z2+ ��3− ��1−�2�z3=0. This implies �1=�2=�3=0, and completes the proof
of the theorem. �
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For type I superconductors with penetration parameter � below a certain critical
value, the existence of multiple local minimizers of the energy functional is shown.
The behavior of these minimizers is examined when the Ginzburg–Landau param-
eter is small, and a hysteresis phenomenon is demonstrated. In contrast to the case
investigated by X. B. Pan �J. Math. Phys. 44, 2639 �2003�� where � is above the
critical value, the results presented in this paper show that type I superconductors
with � below the critical value have higher critical magnetic field Hc, and exhibit
more complicated superconducting behavior. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1938747�

I. INTRODUCTION

The following functional:

G��,A� ª �
�
�� � � − iA��2 +

�2

2�2 �1 − ���2�2�dx + �2�
R3

�curl A − H�2dx

is a rescaled version of the Gibbs free energy in the Ginzberg–Landau theory �see for instance
Refs. 1 and 2�, which can be derived from the original Ginzburg–Landau energy functional by
performing a series of changes of variables. It can also be obtained from the functional given in
Ref. 3 �Eq. �1.3�� by letting �=�	�. According to the Ginzburg–Landau theory4 �also see Refs.
5–11�, the critical points �� ,A� of this functional �in a space to be specified in Sec. III�, namely
the solutions of the Euler equations associated with this functional, describe the superconducting
behavior of a superconductor occupying a bounded domain ��R3 with penetration parameter �
and Ginzburg–Landau parameter �, subjected to an applied magnetic field H. Here � is a
complex-valued function known as the order parameter, and A is a real-valued vector field called
the magnetic potential. Superconductors with ��1/	2 are called type I superconductors and
those with ��1/	2 are termed type II. It is well known that for type I superconductors there is a
critical magnetic field Hc, below which the material will be in the so-called superconducting
Meissner state, but above which it will be in the normal state where no superconductivity is
observed. In the Ginzburg–Landau theory, a critical point �� ,A� with ��x�
0 indicates that the
sample is in the normal state, and a critical point �� ,A� where ���x�� is close to a positive constant
everywhere on the whole domain corresponds with the Meissner state.

We consider in this paper a type I superconductor with small �, and subjected to an applied
magnetic field of the form H=�h, where h is a fixed unit vector in R3, and � is a real parameter
representing the strength of the applied field. One tends to believe that minimizers with a small
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value of � have simpler behavior, and may expect a simple transition from the Meissner state to
the normal state as the applied field varies. The results in Ref. 3 show that the phase transition is
simple if � is greater than a critical value ��h�. In this paper we shall show that the phase
transition is not simple if ����h�; we will provide estimates for the critical value Hc, examine the
change of state of the superconductor as the applied field crosses Hc, and discuss a hysteresis
phenomenon.

We assume throughout this paper that � is a simply connected and bounded domain in R3 and
has smooth boundary ��. For the given applied field H=�h, letting A=�A, we have

G��,A� = G���,A� ,

where

G���,A� ª �
�
����A��2 +

�2

2�2 �1 − ���2�2�dx + �2�2�
R3

�curl A − h�2dx . �1.1�

Here and in the following, we will let 	 denote the outward unit normal of ��, and we shall use
the usual notations

�A� = � � − i�A ,

�A
2 � = ��− iA�2� = 
� − i�2A · � � + � div A� − �A�2� .

Let Fh be a smooth vector field associated with the above-mentioned given unit vector h such that

curl Fh = h, div Fh = 0 in R3. �1.2�

It is easily seen that such Fh is uniquely determined up to a harmonic gradient �namely, the
gradient field of a real-valued harmonic function�. For convenience of later discussions, we fix
such an Fh so that

�
�

Fhdx = 0 .

It is known that for large �, the only minimizers of G� are

��,A� = �0,Fh + � �� ,

where � is an arbitrary real-valued smooth function �see Refs. 3, 12, and 13�. We will henceforth
call �0,Fh� the trivial solution or trivial critical point of G�; it corresponds to the normal state of
the superconductor. Let us define the critical field Hc by

Hc = Hc�h;�,�� = inf�� � 0 : �0,Fh� is a global minimizer of G�� . �1.3�

�In Ref. 3 a definition of the critical field Hc�h ,� ,�� regarding the functional considered there was
given. In the present paper we fix � and examine the value of Hc for �=��, �→0. Therefore it is
more convenient to treat Hc as a function of h, �, and �. The critical field Hc�h ,� ,�� defined in
Ref. 3 and the critical field Hc�h ;� ,�� defined in the present paper are related by the equality
Hc�h ;� ,��=Hc�h ,� , �� /��2�.�

Clearly for any 0���Hc, G� has a nontrivial global minimizer, indicating that the sample is
in the superconducting state.

The value of Hc�h ;� ,�� was estimated in Ref. 3 �Theorem 1�. Two positive numbers a�h� and
��h�, both depending only on h and �, were introduced there in order to describe the estimates
�see also Eqs. �2.3� and �2.8� in Sec. II for the definition�. In particular, it has been shown that, for
small ��0,
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Hc�h;�,�� = a�h�
�

�
+ o��� for fixed �  ��h� . �1.4�

In fact, for the case ����h�, the following better estimate has been established in Ref. 3 �Theo-
rem 4.1�:

Hc�h;�,�� = a�h�
�

�
+ O��3� as � → 0.

Moreover, the asymptotic behavior of the global minimizers of G� with �=a� /� with 0�a
�a�h� and �→0 has also been established in Ref. 3 �see Theorem 2 there for details�, which,
together with Theorem 5.3 in this paper, have the following physical explanation. �We should
mention that the actual mathematical results in Theorem 5.3 are more complicated, but their
physical meaning is well described by the statement given in Conclusion A.�

Conclusion A: For type I superconductors with small Ginzburg–Landau parameter � and
penetration parameter ���h�, and subjected to the applied magnetic field H=�h, there exists a
critical field Hc such that,

�i� as the applied field increases, the Meissner state is a global minimizer of the Ginzburg–
Landau energy for 0���Hc, and disappears for ��Hc;

�ii� as the applied field decreases, the normal state is a global minimizer for ��Hc, and
becomes unstable when 0���Hc.

The case where 0�����h� and � being small is not covered by the above results in Ref. 3,
and it will be examined in this paper. To state our results we need two positive constants C��� and
a*��� with the property

a�h� � a*��� � C��� , �1.5�

which depend only on �, h, and �; see Lemmas 2.2 and 2.3 for the definitions. We shall see that,
in contrast to �1.4�, the value of Hc�h ;� ,�� is significantly larger when 0�����h�.

Theorem 1: Let h be a unit vector and 0�����h�. For small ��0 we have

Hc�h;�,�� = a*���
�

�
+ o��� . �1.6�

Here for fixed h and �, lim�→0 o��� /�=0.
We shall also show that the sample exhibits rather different and interesting superconducting

behavior when 0�����h�, see Theorems 5.2 and 6.1. The physical explanation of these results
can be stated as follows.

Conclusion B: For type I superconductors with small Ginzburg–Landau parameter � and
penetration parameter ����h�, and subjected to the applied magnetic field H=�h, there exist
three critical fields Hsc, Hc, and Hsh satisfying

Hsc � Hc � Hsh �1.7�

such that

�i� as the applied field increases, the Meissner state is a global minimizer of the Ginzburg–
Landau energy for 0���Hc, remains stable (a local minimizer) for Hc���Hsh, and
disappears for ��Hsh;

�ii� as the applied field decreases, the normal state is a global minimizer for ��Hc, remains
stable (a local minimizer) for Hsc���Hc, and becomes unstable when 0���Hsc.

Moreover,
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Hsc  a�h�
�

�
, Hc  a*���

�

�
, Hsh  C���

�

�
for small � . �1.8�

Remark 1.2. We believe that Conclusion B suggests a hysteresis phenomenon for type I
superconductors with small penetration length ����h�: As the applied field increases from below
Hc, the superconductor remains in the Meissner state until the field reaches Hsh, then it jumps to
the normal state once the applied field increases past Hsh. On the other hand, as the applied field
is lowered from above Hc, the superconductor is in normal state until the field reaches Hsc, then it
jumps to the Meissner state once the magnetic field decreases past Hsc. These are sometimes called
superheating and subcooling, respectively. We illustrate this in Fig. 1 �see Remark 5.4 for further
details�.

We should point out that the hysteresis phenomena described in Remark 1.2 are only natural
physical explanations of our mathematical results. The actual mathematical results in Theorems
5.2 and 6.1 are more complicated. We would like to mention that an interesting hysteresis phe-
nomenon for type II superconductors under an applied field near HC1

has been analyzed by Lin
and Du;14 see also Ref. 15 for discussions related to the super-heating phenomenon for a similar
situation to Ref. 14.

Remark 1.3: Comparing our results in the present paper for the case 0�����h� with the
results obtained in Ref. 3 for ���h�, we see that ��h� is a critical value for the penetration
parameter �. The superconducting behavior makes an important change between the cases �
���h� and ����h�, with more complicated behavior occurring when 0�����h�.

Remark 1.4: It is customary to perform the rescaling of the Ginzburg–Landau energy func-
tional in a way that the parameter � is reduced to 1. In that setting, the change in the value of �
in the present paper is translated into the change of the domain size of the sample, and our results
can be roughly described as follows: Conclusion A applies when the sample is below a certain
critical size, and Conclusion B applies if the sample is above that critical size. For a more accurate
statement see the Appendix �Conclusion C�. We would like to mention that A. Geim et al.16

discovered numerous phase transitions of superconductors whose character changes rapidly with
size and temperature. In particular, a sample can be either type I or type II depending on its size.
Superconductivity for samples with small size has been studied by Aftalion and Dancer17 and
Aftalion and Du.18 We should mention that Ginzburg–Landau equations in one-dimensional do-
mains have been studied by many authors, and many interesting phenomena have been discovered;
see for instance Bolley and Helffer,19 Hastings and Troy,20 and Aftalion and Troy.21 We should also
mention that the vortices of the minimizers of Ginzburg–Landau functional for large � have been
extensively studied; see for instance Bethuel et al.,22 Lin,23 and Sandier and Serfaty.24

Now we sketch the general scheme of the proof of our main results. The main part of the proof
is to classify all critical points of the functional G� with �=a� and �=��, and study their
minimality, where a�0 is fixed, and ��0 is small. We prove that when � is small, all nontrivial
critical points ��� ,A�� have expansions

FIG. 1. Bifurcation and hysteresis for 0�����h�.
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��  eic��1/2�1 + ia�w��, A�  A� + O��� ,

�1.9�
Ga����,A�� = �2F�a,�� + O��3� ,

where �w� ,A�� satisfies Eq. �2.11�, and � is a root of the equation

f�a,�� = 1, �1.10�

where f�a ,�� and F�a ,�� are functions defined by the integrals involving w� and �A�, see �2.13�.
Note that �w� ,A�� depends also on �, and hence f�a ,�� depends on � through w� and A�. The
detailed information about the roots of �1.10� has been given in Ref. 3, which is useful to classify
all the critical points of Ga�. If ���h�, then �1.10� has exactly one root ��a� for all 0�a
�C���. If 0�����h�, then �1.10� has exactly one root when 0�a�a�h� and has exactly two
roots �*�a� and ��a� when a�h��a�C���. Moreover, we shall show that ��a� is a minimizer of
the function F�a , · � and �*�a� is a maximizer of F�a , · �. Using this fact and the expansions in �1.9�
we are able to prove the local minimality of the critical points with �=��a�. These local minimiz-
ers describe the Meissner state of type I superconductors, and their existence is proved by mini-
mizing a new functional

ga,���,w,A� =
1

�2Ga���1/2�1 + ia�w�,A� .

The existence of unstable critical points corresponding to �*�a� can be proved by using the
well-known Mountain Pass Lemma,25 but the details will be omitted. To examine the minimality
of the normal state �0,Fh�, we need uniform estimates of the lowest eigenvalue of the operator
−��nAn

2 , where An→Fh in W1,2�� ,R3�.
The rest of the paper is organized as follows. In Sec. II, we collect some notations and results

from Ref. 3, which clarify the results previously mentioned, and more importantly, play an essen-
tial role in our discussions to follow. In Sec. III, we collect some elliptic estimates for weak
solutions of the Ginzburg–Landau equations. These estimates are already known for global mini-
mizers. In Sec. IV we obtain a family of nontrivial local minimizers and also determine the local
minimality and uniqueness in a chosen gauge of the normal state �0,Fh�. In Sec. V, we obtain a
classification of all possible critical points of the energy functional, and this helps us to determine,
in Sec. VI, the region of the parameters where the local minimizers are global minimizers, which
in turn leads to a description for the critical value Hc and an explanation of the hysteresis phe-
nomenon around Hc. Theorem 1.1 will be obtained in Sec. VI as a corollary of Theorem 6.1. In the
Appendix we give a brief discussion about the effect of the size of a sample on its superconducting
behavior.

II. PRELIMINARIES

In this section we introduce the various constants that have been used in stating our results in
the introduction, namely, ��h�, a�h�, ��h�, a*���, and C���. We shall also introduce the constants
��a� and �*�a� that depend on a parameter a. The numbers ��a� and �*�a� will play an important
role in our study.

Recall that h is a unit vector in R3 and Fh is a fixed vector field satisfying �1.2� and
��Fhdx=0. Let

��h� = inf
��W1,2���

W
�

� � � − Fh�2dx , �2.1�

where W�= ���−1�� and ��� denotes the volume of �. It is well known that ��h� is achieved by a
real-valued function wh which satisfies
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wh = 0 in �,
�wh

�	
= Fh · 	 on �� . �2.2�

Such wh is unique if we further require ��whdx=0. We define

a�h� = ��h�−1/2. �2.3�

Lemma 2.1: (Ref. 3, Lemma 2.1) Let ���Fh� denote the lowest eigenvalue of the problem

− ��Fh

2 � = �� in �, ���Fh
�� · 	 = 0 on �� .

Then

���Fh� = ��h��2 + O��3� as � → 0. �2.4�

A simple application of Lemma 2.1 yields the following result �see Ref. 3, Theorem 3.2�:

lim inf
�→0+

Hc�h,��,��
�

 a�h� uniformly for � � �0,�� . �2.5�

Let

D1,2�R3� = �� � Lloc
1 �R3� : � � �� � L2�R3�� ,

and for ��D1,2�R3� define ���1,2= ����L2�R3�. It is well known that, after identifying functions
that differ by a constant, D1,2�R3� is a Hilbert space under the norm � · �1,2. We denote by D1,2�R3�
the corresponding space of vector fields in R3. Let us recall the following well-known formula

�B�1,2
2 = �

R3
� � B�2dx = �

R3
��curl B�2 + �div B�2�dx, B � D1,2�R3� . �2.6�

The definition of ��h� involves the following problem:

curl2 U = ��wh − Fh���, div U = 0 in R3, U � D1,2�R3� . �2.7�

It has been proved in Ref. 3 �Lemma 3.4� that �2.7� has a solution and it belongs to Cloc
1+��R3 ,R3�

for any �� �0,1�. Moreover, it is unique up to an additive constant vector. Let Uh be the solution
of �2.7� such that ��Uhdx=0. For convenience we introduce the notation

D1,2�R3,div,�� = �A � D1,2�R3� : div A = 0 in R3, �
�

Adx = 0� .

Therefore Fh ,Uh�D1,2�R3 ,div,��. We define

��h� =
	2a�h�
	���

�curl Uh�L2�R3�. �2.8�

To define a*��� and C���, we need to introduce the following functional for given constants
��0 and �0:

J��w,A� = �2�
R3

�curl A − h�2dx + ��
�

� � w − A�2dx, �w,A� � Y , �2.9�

where
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Y = ��w,A� : w � W1,2��,C�,�
�

wdx = 0; A − Fh � D1,2�R3,div,��� . �2.10�

Let

Ỹ ª ��w,Ã� : Ã = A − Fh,�w,A� � Y� .

We observe that Ỹ is a Hilbert space with norm

��w,Ã��Ỹ ª ��w�W1,2��,C�
2 + �Ã�1,2

2 �1/2.

In what follows, we write

�wn,An� → �w*,A*� in Y

if and only if �wn−w* ,An−A*� converges to �0,0� in the Hilbert space Ỹ.
It was shown in Ref. 3 �Sec. III� that, for any ��0, the following problem has a unique

solution �w� ,A���Y:


w = 0 in �;

�2 curl2 A = ���w − A��� in R3;

�2.11�
�w

�	
= A · 	 on �� ,

A − Fh � D1,2�R3,div� ,

and it is the unique global minimizer of J��w ,A� over the set Y defined previously �note that any
solution of �2.11� in Y necessarily has w real valued; therefore the result in Ref. 3, which is stated
for real-valued w only, applies to our more general setting here.� When �=0, clearly the global
minimum of J0 is achieved by �w ,Fh� with w�W1,2�� ,C� arbitrary. However, �wh ,Fh� is the
unique solution of �2.11� in Y when �=0. We define, for �=0, �w0 ,A0�= �wh ,Fh�. It is easily seen
that

�w�,A�� → �w0,A0� as � → 0.

For given a�0, the solutions �� �0,1� of

a2
W

�

� � w� − A��2dx + � = 1 �2.12�

will be useful in proving our main results of this paper. Write

f�a,�� = a2
W

�

� � w� − A��2dx + � . �2.13�

It is proved in Ref. 3 �Sec. III� that f is C2 for a�0 and ��0, and

�f

��
�a,0+� = 1 − � a

a�h�
�2���h�

�
�2

,
�2f

��2 �a,�� � 0. �2.14�

Clearly for a�0,
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f�a,0� = � a

a�h�
�2

, f�a,1� � 1. �2.15�

Using �2.14� and �2.15�, the following result was proved in Ref. 3, Lemma 3.5.
Lemma 2.2: Suppose 0�����h�. Then the following conclusions hold.

�i� There exists a constant C����a�h� such that (2.12) has no solution if a�C���; it has a
unique solution �0� �0,1� if a=C���.

�ii� If 0�a�C���, (2.12) has a maximal solution ��a�� �0,1�, and

lim
a→0+

��a� = 1, lim
a→C���−

��a� = �0.

�iii� If a�h��a�C���, (2.12) has exactly one more solution �*�a�,

0 � �*�a� � ��a� for all a � �a�h�,C���� ,

�*�a�h�� = 0, lim
a→C���−

�*�a� = �0.

�iv� If 0�a�a�h�, ��a� is the only solution of (2.12).

The results of Lemma 3.5 in Ref. 3 also discuss the case ����h�. Since this part is not used
in this paper, we will not recall its full details, but only illustrate it in Fig. 2 above, which provides
an interesting comparison to the conclusions in Lemma 2.2 �illustrated by Fig. 3�.

Let

I�a� = �
0

��a�

�f�a,�� − 1�d� . �2.16�

Lemma 2.3: Suppose 0�����h�. Then I�a� is continuous and strictly increasing for a
� �0,C����, and there exists a unique a*=a*���� �a�h� ,C���� such that I�a*�=0.

FIG. 2. Graph of f�a ,�� with ����h�.

FIG. 3. Graph of f�a ,�� with 0�����h�.
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Proof: Note that �*�a� and ��a� also depend on � but we regard �� �0,��h�� as fixed in the
following analysis. Since

�f

�a
�a,�� � 0,

�f

��
�a,�*�a�� � 0,

�f

��
�a,��a�� � 0,

we apply the implicit function theorem to the solutions �=�*�a� and �=��a� of the equation

f�a,�� = 1 �2.17�

to find that �*�a� and ��a� are C2 functions for a� �a�h� ,C���� and �0,C����, respectively, and

�*��a� � 0 for a�h� � a � C���, ���a� � 0 for 0 � a � C��� .

Note that I�a� is a continuously differentiable function of a� �0,C����, and

I��a� = �
0

��a� �f

�a
�a,��d� � 0.

When 0�����h�, it follows from �2.13� �see also Ref. 3, proof of Lemma 3.5� that

f�a�h�,0� = f�a�h��,��a�h�� = 1, and f�a�h�,�� � 1 for all 0 � � � ��a�h�� .

Hence I�a�h���0. On the other hand, we have �see Ref. 3, proof of Lemma 3.5�

f�C���,�� � 1 for all 0 � � � �0,

where �0 is the positive number given in Lemma 2.2. So I�C�����0. Since I�a� is continuous and
strictly increasing, there exists a unique a*=a*���� �a�h� ,C���� such that I�a*�=0. �

Let us define

F�a,�� =
���
2

�1 − ��2 + a2J��w�,A�� , �2.18�

where �w� ,A�� is the unique solution of �2.11� in Y. By Remark 3.8 of Ref. 3,

�F

��
�a,�� = ����f�a,�� − 1� ,

where f�a ,�� is the function given in �2.13�. Therefore, for fixed a� �a�h� ,C����, F�a ,�� is
strictly increasing for �� �0,�*�a��, strictly decreasing for �� ��*�a� ,��a��, and strictly increasing
for ����a�. Hence �*�a� is a local maximizer of F�a , · � and ��a� is a local minimizer of F�a , · �.
By a similar consideration, for fixed a� �0,a�h��, ��a� is a local minimizer of F�a , · �. This fact is
a key element in our study.

From the previous equality �2.16� and the fact F�a ,0�= ��� /2, we have

F�a,��a�� − F�a,0� = ���I�a� . �2.19�

It follows that F�a ,��a��−F�a ,0� is a strictly increasing function of a in �0,C���� and has a
unique zero at a=a*���.

III. ELLIPTIC ESTIMATES OF CRITICAL POINTS

We first introduce the spaces in which minimizers of G� are sought. Let W1,2�� ,C� be the
Sobolev space of all complex-valued functions defined on �, and let

W��� = ���,A� : � � W1,2��,C�,A − Fh � D1,2�R3�� .

Our minimization problem for G��� ,A� is

073301-9 Multiple states and hysteresis J. Math. Phys. 46, 073301 �2005�

                                                                                                                                    



inf
��,A��W���

G���,A� . �3.1�

It is standard to show that �3.1� is always achieved by a minimizer �� ,A� which satisfies �in
the weak sense�

− ��A
2 � =

�2

�2 �1 − ���2�� in � ,

curl2 A =
1

�2�
Im��̄��A���� in R3,

�3.2�
���A�� · 	 = 0 on �� ,

��,A� � W��� ,

where 	 denotes the unit outward normal of �� and �� is the characteristic function of �. To be
more precise, by a weak solution to �3.2� we mean a pair �w ,A��W��� satisfying

�
�

��A� · ��A�dx =
�2

�2�
�

�1 − ���2���̄dx, for all � � W1,2��,C� ,

�
R3

curl�A − Fh� · curl B dx =
1

�2�
�

�

Im��̄��A�� · Bdx, for all B � C0
��R3,R3� .

It is well known that G� is invariant under the gauge transformation

��,A� → ��̃,Ã� ,

where �̃=�ei��, Ã=A−���, and where � is an arbitrary smooth and real-valued function. By
replacing A by A+ ��, where �=�0−x · ���Adx�, and �0 is the unique solution of

− 
�0 = div A � L2�R3�, �0 � W1,2�R3� ,

we may require that

div A = 0 and �
�

Adx = 0

in �3.1�. Let

W0��,div� = ���,A� � W��� : div A = 0 in R3,�
�

Adx = 0� .

Then �3.1� is equivalent to

inf
��,A��W0��,div�

G���,A� . �3.3�

Lemma 3.1: If �� ,A��W0�� ,div� is a weak solution to �3.2�, then there exists a constant
vector v�R3 such that A−Fh−v�W1,2�R3 ,R3�.

Proof: Let f denote the right-hand side of the second equation in �3.2�. Then f�L3/2�R3� and,
due to the facts
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div A = div Fh = 0, curl2 Fh = 0 ,

the second equation in �3.2� can be written as

− 
�A − Fh� = f in R3.

It is well-known that the problem

− 
V = f in R3, V � W2,3/2�R3,R3�

has a unique solution Vf. Let v= �A−Fh�−Vf. Then v is a harmonic vector-valued function on R3

with ��v��L2�R3�. It follows that v is a constant vector. By the Sobolev imbedding theorem we
find A−Fh−v=Vf�W1,2�R3 ,R3�. �

Now we give some estimates for the critical points of G�, which will be used in later sections
for �=��, where � is fixed and ��0 is small. Similar estimates have already been established for
global minimizers, see Ref. 3 �Lemma 3.3� and Ref. 26 �Proposition 4.2 in two-dimensional case�.

Lemma 3.2: Let �� ,A� be a critical point of G� in W0�� ,div�. Then there exist positive
constants C0 and C�� ,� /��, with C0 depending only on � and h, and C�� ,� /�� depending only
on �, h, � and upper bound of � /�, such that

�i� ���A��L2����� /����L2���;
�ii� ���A��L�����C�� ,� /���1+	�����L����;
�iii� �� �A−Fh��L2�R3��C0� /�3�;
�iv� �A−Fh�L2����C0� /�3�.

�v� For any 0���1, ��C2+���̄�, A�C1+���̄�, and for any R�0 such that �̄�BR, there
exists a positive constant C�,R depending only on �, h, � and R, such that, for q=3/ �1
−��,

� � �A − Fh��C��BR� � C�,R� �

�3�
+

1

�2�
��̄��A��Lq���� . �3.4�

Proof: It is well known �see Ref. 9� that ���x���1 in �. Multiplying the first equation in �3.2�
by �̄ and integrating over � yields

�
�

���A��2dx =
�2

�2�
�

�1 − ����2�����2dx �
�2

�2�
�

���2dx ,

which gives �i�.
To prove �iii�, we use Lemma 3.1 to find a constant vector v such that

V ª A − Fh − v � W1,2�R3,R3� .

In particular, A−Fh�W1,2�� ,R3�. Let

f =
1

�2�
Im��̄��A����.

The weak formulation of the second equation in �3.2� gives

�
R3

curl�A − Fh� · curl Bdx = �
�

f · Bdx ,

for all B�C0
��R3 ,R3�. Since V�W1,2�R3 ,R3�, we can choose B j �C0

��R3 ,R3� such that
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�B j − V�W1,2�R3,R3� → 0 as j → � .

It follows that

�
R3

�curl�A − Fh��2dx = �
�

f · Vdx .

Therefore, for an arbitrary positive constant �0 we have

�
R3

�curl�A − Fh��2dx �
1

�0
�

�

�f�2dx + �0�
�

�V�2dx .

Since V�W1,2�R3 ,R3�, using Hölder’s inequality and the Sobolev inequality we deduce

�
�

�V�2dx � ���2/3�V�L6���
2

� ���2/3�V�L6�R3�
2

� C1� � V�L2�R3�
2 = C1�

R3
�curl�A − Fh��2dx .

Hence

�
R3

�curl�A − Fh��2dx �
1

�0
�

�

�f�2dx + C1�0�
R3

�curl�A − Fh��2dx .

Choose �0=1/ �2C1�, we find

�
R3

� � �A − Fh��2dx = �
R3

�curl�A − Fh��2dx � 4C1�
�

�f�2dx .

In view of �i�, we find �iii� is true.
Since ���A−Fh�dx=0, we can apply Poincarè inequality to obtain �iv� from �iii� �replacing C0

by a larger constant if necessary�.
�v� was essentially proved in Ref. 3 �Lemma 3.3�. In fact, it was proved in Ref. 3 that, for

��Br�BR,

� � �A − Fh��C��Br�
� C�r,R,�����curl�A − Fh��L2�R3� + �f�Lq�BR�� .

Using this, �i� and �iii� we get �v� immediately.
To prove �ii�, we first use �iv� and apply the L� estimate of elliptic equations to prove the

conclusion for bounded �, then apply the blow-up argument used in Ref. 26 �Proposition 4.2� to
prove the conclusion for large �. �

IV. LOCAL MINIMIZERS

Throughout this section we assume �=�� and �=a�, where ��0 and a�0 are fixed, and �
is small. If 0�a�a�h�, then by the theory in Ref. 3 �see �2.5� previously displayed�, besides the
trivial critical point �0,Fh�, Ga� has a nontrivial global minimizer in W0�� ,div� for all small �
�0. In this section, we shall show that if 0�����h�, then for each a� �a�h� ,C����, the func-
tional Ga� also has a nontrivial local minimizer when ��0 is small. If a� �a*��� ,C����, then Ga�

has a third �unstable� critical point �see Remark 4.4 and Lemma 5.1�. We will further give a
description of the way of the change of the local minimality and uniqueness, up to an additive
constant vector in the vector potential, of the trivial solution �0,Fh�, when a changes. The results
presented in this Section will be crucial in Sec. VI.

Let us recall from Sec. II that if we fix �� �0,��h��, then �2.12� has exactly one positive
solution ��a� if 0�a�a�h�, and has exactly two nonnegative solutions �*�a����a� if a�h��a
�C���. For convenience of presentation, we extend the definition of �*�a� and ��a� by letting
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�*�a� = 0 if 0 � a � a�h�, ��0� = 1;

�4.1�
�*�C���� = ��C���� = �0,

where �0� �0,1� is the number given in Lemma 2.2. Then �*�a� is continuous on �0,C���� and is
C2 and strictly increasing in �a�h� ,C����, and ��a� is continuous on �0,C���� and is C2 and strictly
decreasing in �0,C����.

In the following we assume

0 � � � ��h�, � = ��, � = a� , �4.2�

where � is fixed, ��0 is small and a�0. We look for a local minimizer of Ga� with � of the form

� = �1/2�1 + ia�w� , �4.3�

where 0���1, w�W1,2�� ,C�. Let us define

ga,���,w,A� =
1

�2Ga���1/2�1 + ia�w�,A� , �4.4�

and let

YR = ��w,A� � Y : ��w,A − Fh��Ỹ � R� ,

�YR = ��w,A� � Y : ��w,A − Fh��Ỹ = R� .

Lemma 4.1: We have

ga,���,w,A� =
���
2

�1 − ��2 + a2J��w,A� + O��� , �4.5�

where the error term O��� has the following property: For any given R�0, there exists a constant
M�R��0 such that

�O���� � M�R�� for all a � �0,R�, � � �0,1�, �w,A� � YR. �4.6�

Proof: The conclusion is proved by a direct calculation. In fact for � given in �4.3�, �=�� and
�=a� we have

��a�A��2 = a2��2�� � w − A�2 − 2a�I�w̄A��w − A�� + a2�2�wA�2� ,

1

2
�1 − ���2�2 =

�1 − ��2

2
+ a��1 − ����2I�w� − a��w�2� +

a2�2�2

2
�2I�w� − a��w�2�2.

So we have

1

�2Ga���,A� =
���
2

�1 − ��2 + a2J��w,A� − 2a���
�

�a2I�w̄A��w − A�� − �1 − ��I�w��dx

+ a2��2�
�
�a2�wA�2 − �1 − ���w�2 +

�

2
�2I�w� − a��w�2�2�dx

=
���
2

�1 − ��2 + a2J��w,A� + �qa��,w,A� ,

where
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qa��,w,A� = − 2a��
�

�a2I�w̄A��w − A�� − �1 − ��I�w��dx

+ a2���
�
�a2�wA�2 − �1 − ���w�2 +

�

2
�2I�w� − a��w�2�2�dx .

Using the Sobolev imbedding theorems and Hölder’s inequality we can easily show that

M�R� = sup
a��0,R�,���0,1�,�w,A��YR

�qa��,w,A�� � � . �4.7�

Hence the conclusion is true. �

Let us introduce the notation

Ia,�0
= ���a� − �0,��a� + �0� . �4.8�

Lemma 4.2: Assume �4.2� holds and let ga,��� ,w ,A� be defined by �4.4�. Given a small
constant ��0 and a large constant R0�0, there exist positive constants R�R0, �0, and �*, all
depending on � and R0, such that for each �� �0,�*� and each a� �� ,C���−��, the infimum

inf
Ia,�0

�YR

ga,���,w,A�

is achieved by some ���
a ,w�

a ,A�
a�� Ia,�0

�YR. Moreover we have

lim
�→0+

��
a = ��a� and lim

�→0+
��w�

a − w��a�,A�
a − A��a���Ỹ = 0, �4.9�

and they hold uniformly for a� �� ,C���−��.
Proof: It follows from Lemma 2.2 that given a small number ��0, we can find �0�0

depending on � such that

��a� − �0 � �*�a� and ��a� + �0 � 1 for all a � ��,C��� − �� .

By the properties of F�a ,��, we can find �0�0 such that

F�a,��a�� + �0 � min�F�a,��a� − �0�,F�a,��a� + �0��, for all a � ��,C��� − �� .

�4.10�

We now divide our proof into several steps.
Step 1: There exist �1�0 and R�R0 such that if a� �� ,C���−�� and �� �0,�1� are fixed,

then for each �� ���a�−�0 ,��a�+�0�, the functional ga,��� , · , · � has a minimizer �w�
� ,A�

�� in YR,
namely

ga,���,w�
�,A�

�� = min
�w,A��YR

ga,���,w,A� .

We easily see from the definition �2.9� for J��w ,A� that for a fixed �� Īa,�0
= ���a�−�0 ,��a�

+�0�,

J��w,A�  J��a�−�0
�w,A� → � as ��w,A − Fh��Ỹ → � .

On the other hand, for the given ��0, we have

sup
a���,C���−��,��Īa,�0

F�a,�� � � .

Therefore, we can find R�R0 large enough so that whenever �w ,A��Y satisfies ��w ,A−Fh��Ỹ

R, we have
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a2J��w,A� � sup
��Ia,�0

F�a,�� + 1 for all a � ��,C��� − �� .

We may assume that

R � 1 + max
���0,1�

��w�,A� − Fh��Ỹ .

For this R, we choose �1�0 small enough so that O��� in �4.5� satisfies

�O���� � 1/2 for all a � �0,R�, � � �0,1�, � � �0,�1�, �w,A� � YR.

Then for any fixed a� �� ,C���−��, �� �0,�1�, and �� ���a�−�0 ,��a�+�0�, we have

ga,���,w,A� � sup
��Ia,�0

F�a,�� + 1 � ga,���,w�,A�� for all �w,A� � �YR, �4.11�

and

ga,���,w,A� � F�a,�� −
1

2
for all �w,A� � YR. �4.12�

From �4.12� we know that for a, �, and � as chosen previously,

inf
�w,A��YR

ga,���,w,A�  F�a,�� −
1

2

and hence it is finite. Let �wn ,An� be a minimizing sequence of ga,��� , · , · � on YR, namely:

ga,���,wn,An� → inf
�w,A��YR

ga,���,w,A� ,

and let

�n = �1/2�1 + ia�wn� .

Since �An−Fh�D1,2�R3��R, we may assume that

curl An − h → B0.

weakly in L2�R3� as n→�. On the other hand, using the condition ��Andx=0 and the Sobolev
imbedding theorems on bounded sets, and a standard diagonal argument, and passing to a subse-
quence if necessary, we may assume that An converges strongly in L4�Br� and weakly in
W1,2�Br ,R3� to some A0 for all balls Br�R3. It follows that B0=curl A0−h and ��A0dx=0. Thus

curl An − h → curl A0 − h

weakly in L2�R3� as n→�.
Since ��n� is bounded in W1,2�� ,C�, we can apply the Sobolev imbedding theorems to con-

clude that after passing to a subsequence, �n→�0 weakly in W1,2�� ,C� and strongly in L4��� as
n→�, and �0=�1/2�1+ ia�w0�. It now follows easily that

Ga���0,A0� � lim
n→�

Ga���n,An� ,

and hence

ga,���,w0,A0� � ga,���,wn,An� = inf
�w,A��YR0

ga,���,w,A� .

Clearly we have �w0 ,A0�� ȲR0
. From �4.11�, �w0 ,A0��YR0

. Therefore we have
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ga,���,w0,A0� = inf
�w,A��YR0

ga,���,w,A� .

Letting �w�
� ,A�

��= �w0 ,A0�, the conclusion in step 1 is proved.
Step 2: We have

lim
�→0+

��w�
�,A�

�� − �w�,A���Ỹ = 0,

and it holds uniformly for a� �� ,C���−�� and �� Īa,�0
.

We first prove the convergence for fixed a and �. Let �n be a sequence converging to 0, and
we may assume that each �n is small enough so that there is a minimizer �w�n

� ,A�n

� � as given in step
1. To simplify the notations we let �wn ,An� denote this minimizer. Clearly it suffices to show that
there exists a subsequence, still denoted by �wn ,An�, such that ��wn ,An�− �w� ,A���Ỹ →0 as n
→�.

By �4.5�, we see that �wn ,An� is also a minimizing sequence of J��w ,A� over YR. Then a
similar argument as used in step 1 shows that after passing to a subsequence,

curl An − h → curl A0 − h weakly in L2�R3� ,

An → A0 strongly in L4��� ,

wn → w0 weakly in W1,2��,C� and strongly in L4��� .

It is then standard to obtain

J��w0,A0� � lim
n→�

J��wn,An� = inf
YR

J��w,A� .

Since �w0 ,A0�� ȲR, we necessarily have

J��w0,A0� = inf
YR

J��w,A� = lim
n→�

J��wn,An� . �4.13�

As we know from Sec. II that �w� ,A�� is the unique global minimizer of J�, and by our choice of
R, �w� ,A���YR, so we must have �w0 ,A0�= �w� ,A��. From �4.13�, we find

lim
n→�

J��wn,An� = J��w�,A�� .

It follows that

lim
n→�

�
R3

�curl An − h�2dx = �
R3

�curl A� − h�2dx , �4.14�

and

lim
n→�

�
�

� � wn − An�2dx = �
�

� � w� − A��2dx . �4.15�

The limit in �4.14� implies that curl An−curl A0 converges to 0 strongly in L2�R3�. Since
div�An−A��=0, we find �An−A��D1,2�R3� converges to 0. From �4.15� and the fact that �wn con-
verges to �w� weakly in L2��� and An−A� converges to 0 strongly in L2���, we easily deduce
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lim
n→�

�
�

� � wn�2dx = �
�

� � w��2dx .

Recalling ��wndx=0, we deduce wn→w� strongly in W1,2���. This proves the claimed conver-
gence for fixed a and �.

To show that the convergence is uniform in a and �, we observe that if in the previous
argument we replace �a ,�� by �an ,�n� with an→a and �n→�, then using �4.5� and �4.6� we find
that

gan,�n
��n,wn,An� =

���
2

�1 − �n�2 + an
2J�n

�wn,An� + o�1� =
���
2

�1 − ��2 + a2J��wn,An� + o�1� .

Hence �wn ,An� is a minimizing sequence of J��w ,A� in YR, and the proof follows the same line as
the previous one. This finishes the proof for step 2.

Step 3: There exists �*�0 such that for each �� �0,�*� and each a� �� ,C���−��,

ga,���,w,A� � ga,����a�,w��a�,A��a�� for all ��,w,A� � ��Ia,�0
� YR� . �4.16�

By �4.5� and �4.6� we can find �2� �0,�1� so that for a� �� ,C���−��, �� �0,�2�, and �
� Ia,�0

, one has

F�a,�� −
�0

3
� ga,���,w�,A�� � F�a,�� +

�0

3
, �4.17�

where �0 is given in �4.10�. By �4.11�, we see that �4.16� holds if �� ,w ,A�� Ia,�0
� ��YR� when-

ever �� �0,�1�. Consider now the remaining case �� ,w ,A�� ��Ia,�0
��YR. Let �* stand for either

��a�−�0 or ��a�+�0. Then for �w ,A��YR,

ga,���*,w,A�  ga,���*,w�
�*

,A�
�*

� .

By the conclusion in step 2 and �4.5� and �4.6�, we have

lim
�→0+

ga,���*,w�
�*

,A�
�*

� = F�a,�*� .

Therefore we can find �3� �0,�2� such that

ga,���*,w�
�*

,A�
�*

� � F�a,�*� −
�0

3
for all � � �0,�3� .

Therefore,

ga,���*,w,A� � F�a,�*� −
�0

3
for all � � �0,�3�, �w,A� � YR.

In view of �4.10� and �4.17�, we obtain from the above inequality that for �� �0,�3�,

ga,���*,w,A� � F�a,��a�� +
2�0

3
� ga,����a�,w��a�,A��a�� +

�0

3
.

Therefore we can choose �*=�3 and the proof for step 3 is complete.
We would like to remark that the conclusion of step 3 also follows from the independent

argument in the proof for �4.9� in step 4 below. However, the argument gives a better idea on how
�* is chosen, and indeed we feel it makes the idea of the entire proof of this lemma more
transparent.

Step 4: Completion of the proof.
By �4.12�, we know that the infimum
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inf
��,w,A��Ia,�0

�YR

ga,���,w,A�

is finite. Let ��n ,wn ,An� be a minimizing sequence. We may assume that �n→�� as n→�. Then

ga,���n,wn,An� = ga,����,wn,An� + o�1� .

Therefore �wn ,An� must be a minimizing sequence of ga,���� , · , · � over YR. From the argument in
step 1 we know that after passing to a subsequence,

��wn,An� − �w�,A���Ỹ → 0 as n → � ,

where �w� ,A���YR and is a minimizer of ga,���� , · , · � in YR. It follows that

lim
n→�

ga,���n,wn,An� = ga,����,w�,A�� .

Therefore, ��� ,w� ,A�� is a minimizer of ga,� on Īa,�0
� ȲR. It follows from step 3 that this mini-

mizer does not locate on the boundary of Ia,�0
�YR, and hence is a local minimizer of ga,� on

Ia,�0
�YR.
It remains to prove �4.9�. We first prove �4.9� for a fixed a. Let �n be a sequence converging

to 0 and let ��n ,wn ,An� denote ���n
,w�n

,A�n
�. We may assume that �n→� as n→�. Using �4.5�

and �4.6�, we obtain

ga,�n
��n,wn,An� =

���
2

�1 − ��2 + a2J��wn,An� + o�1� . �4.18�

Therefore, �wn ,An� is a minimizing sequence of J��w ,A� over YR. Now the argument in the proof
of step 2 shows that

��wn,An� − �w�,A���Ỹ → 0 as n → � .

It follows from �4.18� that

lim
n→�

ga,�n
��n,wn,An� = F�a,�� .

Note that �� Īa,�0
. If ����a�, we have F�a ,���F�a ,��a��; and by �4.5� and �4.6�,

lim
n→�

ga,�n
���a�,w��a�,A��a�� = F�a,��a�� � F�a,�� .

Hence for all large n,

ga,�n
��n,wn,An� � ga,�n

���a�,w��a�,A��a�� .

But this inequality contradicts the assumption that ��n ,wn ,An� is a minimizer of ga,�n
over Ia,�0

�YR. Therefore we must have �=��a�. It follows that the entire original sequence ��n ,wn ,An�
converges to ���a� ,w��a� ,A��a�� in the obvious sense.

Finally we can apply the argument used in step 2 to show that �4.9� holds uniformly in a. The
details are omitted. �

Let us define

Za,� = ���,A� : � = z�1 + ia�w�, z � C, �z�2 � Ia,�0
, �w,A� � YR� .

Now we can state the main result in this section.
Proposition 4.3: Under assumption �4.2�, for any small ��0 and large R0�0, there exist

R�R0, �0�0, and �*�0 such that, for each a� �� ,C���−�� and �� �0,�*�, the functional Ga�

has a nontrivial local minimizer ���
a ,A�

a�, and

073301-18 Y. Du and X. B. Pan J. Math. Phys. 46, 073301 �2005�

                                                                                                                                    



Ga����
a,A�

a� = inf
��,A��Za,�

Ga���,A� .

Moreover, we have

�i� ��
a=	��

a�1+ ia�w�
a�, where ���

a ,w�
a ,A�

a�� Ia,�0
�YR;

�ii� lim�→0 ��
a=��a�, lim�→0��w�

a ,A�
a�− �w��a� ,A��a���Ỹ =0 uniformly in a� �� ,C���−��.

Proof: Note that the set

���,Ã� : Ã = A − Fh, ��,A� � Za,��

is an open set in the space W1,2�� ,C��D1,2�R3 ,div,�� with ���
a ,A�

a−Fh� lying in its interior, or
speaking loosely, Za,� is an open set in W0�� ,div� containing ���

a ,A�
a�. Also note that

G���,A� = G��z�,A� for all z � C with �z� = 1.

Thus �� ,A��Za,� is a local minimizer of Ga� with �=	��1+ ia�w� if and only if �� ,w ,A� is a
local minimizer of ga,�. Therefore Proposition 4.3 follows directly from Lemma 4.2. �

Remark 4.4: From Lemma 4.2 and Proposition 4.3 we find that, under assumption (4.2) we
have:

�i� for any fixed a� �0,C����, there exists a constant �a�0 such that Ga� has a nontrivial
local minimizer ���

a ,A�
a� for all 0����a.

�ii� if a� �a*��� ,C���� is fixed, then for all small ��0, the energy functional Ga��� ,A� has two
local minima: �0,Fh� and ��� ,A��. It is possible to use the well-known mountain pass
theorem to show that, in this case, Ga� has a third critical point ���

* ,A�
*�; and if we write

��
* = ��

*�1 + ia�w�
*� ,

where

�* =
W

�

��
*dx ,

then as �→0,

���
*�2 → �*�a�, ��w�

*,A�
*� − �w�*�a�,A�*�a���Ỹ → 0.

We will discuss this point further in the next section (see Lemma 5.1).

We next examine the change of local minimality and uniqueness, up to an additive constant
vector in the vector potential, of �0,Fh� as a varies. To this end, we need an estimate of the lowest
eigenvalue ���A� for small � which holds uniformly in A, where ��A� denotes the lowest
eigenvalue of the problem

− �A
2 � = �� in �, ��A�� · 	 = 0 on �� . �4.19�

The following estimate is an extension of Lemma 2.1.
Lemma 4.5. Suppose that �An� is a sequence of vector fields in W1,2�� ,R3� such that

div An = 0, �
�

Andx = 0, lim
n→�

�An − Fh�W1,2��,R3� = 0.

Then for any positive sequence �n→0, we have

lim
n→�

���nAn�
�n

2 = ��h� , �4.20�
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where ���nAn� is the lowest eigenvalue of �4.19� for A=�nAn.
Proof: In the proof C denotes a generic constant which varies from line to line but is inde-

pendent of n. Let �n=���nAn� and let �n be a corresponding eigenfunction satisfying
��n�W1,2��,C�=1. Let

�n = 1 + i�nwh,

where wh is the function given in Sec. II that achieves ��h�. Using the variational characterization
of ���nAn�, we obtain

�n

�n
2 �

�
�

���nAn
�n�2dx

�n
2�

�

��n�2dx

=

�
�

�� � wh − An�2 + �n
2�whAn�2�dx

�
�

�1 + �n
2�wh�2�dx

→ ��h�

as n→�. Therefore, after passing to a subsequence, we have �n=�n�n
2 with �n→�0� �0,��h��.

Since div An=0, the equation for �n can be written in the form

− 
�n = �n�n − 2i�nAn · � �n − �n
2�An�2�n in � ,

�4.21�
��n

�	
= i�n�nAn · 	 on �� .

Applying the Agmon–Douglis–Nirenberg Lp theory for elliptic equations �see Ref. 27, Theorem
15.2� to �4.21� we have, for 1� p��,

��n�W2,p��,C� � C1��fn�Lp��� + ��n�W1/2,p���� + ��n�Lp���� , �4.22�

where C1 depends only on �,

fn = �n�n − 2i�nAn · � �n − �n
2�An�2�n,

�n = i�n�nAn · 	 ,

and � · �W1/2,p���� is the trace norm defined by

���W1/2,p���� = inf
��W1,2���,����=�

���W1,p���,

where � is the trace operator. Since �An�W1,2��,R3� is bounded and ��Andx=0, we deduce from the
standard Sobolev imbedding theorems that �An� is bounded in L6���. Similarly, since ��n� is
bounded in W1,2�� ,C�, it is bounded in L6���. Using Hölder’s inequality we find

�fn�L3/2��� � C, ��n�W1/2,3/2���� � C . �4.23�

To obtain the second inequality in �4.23� note that

��n�W1/2,3/2���� � C�n��nAn�W1,3/2��,R3�,

and

� � ��nAn��L3/2��� � ��n � An�L3/2��� + �An � �n�L3/2���

� ��n�L6���� � An�L2��� + �An�L6���� � �n�L2���.

Recall that ��n�W1,2��,C�=1. From �4.22� and �4.23� we have
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��n�W2,3/2��,C� � C .

This implies, by the Sobolev imbedding theorems again, that ��n� is precompact in W1,2�� ,C�.
Hence, after passing to a subsequence, we may assume that

�n → �0 in W1,2��,C� as n → � ,

and ��0�W1,2��,C�=1. Using this and �4.21�, we find that �0 satisfies the following equation:

− 
�0 = 0 in �,
��0

�	
= 0 on �� .

It follows that �0 is a constant c0, and �c0� is uniquely determined by ��0�W1,2��,C�=1. Without loss
of generality we may assume that c0 is a positive number.

Now we define

�n =
W

�

�ndx, �̃n =
�n − �n

�n
.

From �4.21� we obtain the equation for �̃n:

− 
�̃n = �n�n�n − 2iAn · � �n − �n�An�2�n in � ,

�4.24�
��̃n

�	
= i�nAn · 	 on �� .

Let

f̃ n = �n�n�n − 2iAn · � �n − �n�An�2�n,

�̃n = i�nAn · 	 .

Since ���̃ndx=0, the Lp theory for elliptic equations27,28 applied to �4.24� implies

��̃n�W2,3/2��,C� � C2�� f̃ n�L2��� + ��̃n�W1/2,3/2����� , �4.25�

where C2 depends only on �. Similar to �4.23� we have

� f̃ n�L3/2��� � C, ��̃n�W1/2,3/2���� � C .

Thus we have

��̃n�W2,3/2��,C� � C .

In particular, ��̃n� is precompact in W1,2�� ,C�. After passing to a subsequence again, we may
assume �̃n→ �̃0 in W1,2�� ,C� as n→�, and then find from �4.24�,

− 
�̃0 = 0 in �,
��̃0

�	
= ic0Fh · 	 on �� .

Comparing this with �2.2� we see that �̃0 / �ic0� satisfies the same equation as wh. Moreover, since
���̃ndx=0, we have ���̃0dx=0. It follows from the uniqueness of wh that �̃0= ic0wh, i.e.,

�̃n → ic0wh in W1,2��,C� as n → � .
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Let us now write

�̃n = i�nwh + ��̂n, �n = −

i�
�

wh�̃ndx

�
�

�wh�2dx

.

We easily see that �n→c0 as n→�. Moreover, from �4.24� we find that �̂n satisfies

− 
�̂n = �n�n − 2iAn · � �̃n − �An�2�n in � ,

�4.26�
��̂n

�	
= i�̃nAn · 	 + i�n

−1��nAn − �nFh� · 	 on �� .

Integrating the first equation of �4.26� over �, we obtain

�n�
�

�ndx = �
�

��An�2�n + 2iAn · � �̃n − 
�̂n�dx .

Since

�
��

An · 	dS = �
�

div Andx = 0

and

�
��

Fh · 	ds = �
�

div Fhdx = 0,

from the second equality in �4.26� we have

�
�


�̂ndx = �
��

��̂n

�	
dS = �

��

i�̃nAn · 	dS + i�n
−1�

��

��nAn · 	 − �nFh · 	�dS = �
��

i�̃nAn · 	dS .

Since An→Fh in W1,2�� ,R3� and �̃n→ ic0wh as n→�, we deduce

�
�

An · � �̃ndx → ic0�
�

Fh · � whdx = ic0�
��

whFh · 	dS = ic0�
��

wh
�wh

�	
dS = ic0�

�

�wh�2dx ,

�
��

i�̃nAn · 	dS → − �
��

c0whFh · 	dS = − c0�
�

�wh�2dx ,

�
�

�An�2�ndx → �
�

�Fh�2c0dx .

We thus obtain

�0c0��� = lim
n→�

�n�
�

�ndx = c0�
�

��Fh�2 − � � wh�2�dx = c0�
�

� � wh − Fh�2dx = c0��h���� .

Therefore,
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�0 = ��h� .

This completes the proof. �

Now we fix a small ��0, and examine the minimality of �0,Fh� when a changes. Note that,
for any constant vector c, �0,Fh+c� is a critical point of Ga�. In the following we consider the
uniqueness of local minimizers in the space W0�� ,div�, in which the vector component is nor-
malized so that the integral average over � is zero. Let

Wr ª ���,A� � W0��,div� : ���W1,2�R3,C� � r, �A − Fh�D1,2�R3� � r� . �4.27�

Proposition 4.6: Under assumption (4.2), for any small ��0, there exist �*�0, r�0, and
L�0 such that, for every �� �0,�*� being fixed,

�i� if a� �0,a�h�−��, then �0,Fh� is not a local minimizer of Ga� in W0�� ,div�;
�ii� if a�h�+��a�L, then �0,Fh� is a local minimizer of Ga� in W0�� ,div�, and it is the only

critical point in Wr;
�iii� if aL, then �0,Fh� is the only critical point of Ga� in W0�� ,div�, and hence it is the

global minimizer.

Proof: Conclusion �i� has been proved in Ref. 3. In fact, for 0�a�a�h�−�, let �a� be an
eigenfunction associated with the lowest eigenvalue ��a�Fh�. For small ��0, we can use �2.4� to
show that for all small t�0,

Ga��t�a�,Fh� �
�2

2
��� = Ga��0,Fh� .

Conclusion �iii� is a consequence of Theorem 4.1 in Ref. 12. In fact it follows from Ref. 12 that
there exists L�0 such that, if aL, then the only critical points are the normal solutions �0,Fh
+c�, where c is a constant vector. Since �0,Fh+c��W0�� ,div� we must have c=0. �Note that the
scaling we use in the present paper is different to that used in Ref. 12.�

To prove conclusion �ii� we use Lemma 4.5 to find �1�0 and r1�0 small so that the lowest
eigenvalue ��a�A� of �4.19� for a�A satisfies

��a�A� � � a�h�
a�h� + �/2

�2

��h�a2�2 = � a�

a�h� + �/2
�2

�4.28�

whenever a�� �0,�1� and �A−Fh�W1,2��,R3��r1. Since ��Adx=��Fhdx=0, there exists a constant
C such that

�A − Fh�W1,2��,R3� � C�A − Fh�D1,2�R3�.

Therefore, if we choose r=r1 /C and �*=�1 /L, then for �� �0,�*� and a� �a�h�+� ,L�, we have,
for any �� ,A��Wr with ��0,

Ga���,A� − Ga��0,Fh�  ��a�A��
�

���2dx − �2�
�

���2dx  �2�� a�h� + �

a�h� + �/2
�2

− 1��
�

���2dx � 0

It follows that �0,Fh� is a local minimizer in Wr.
With � , r, and a chosen as above, we now suppose that ��0 ,A0� is an arbitrary critical point

of Ga� in Wr. We show that �0
0. Otherwise, from Lemma 3.2 �i� we have ��a�A0���2.
However, from �4.28� and the choice of a we have

��a�A0� � � a�h� + �

a�h� + �/2
�2

�2 � �2.

Therefore we necessarily have �0=0. From �3.2� we find
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curl2 A0 = 0 in R3, A0 − Fh � D1,2�R3,div,�� .

Thus B
A0−Fh satisfies


B = 0 in R3, �
R3

� � B�2dx = 0.

Hence B is a constant vector. Since ��Bdx=���A0−Fh�dx=0, we have B=0, namely A0=Fh.
This completes the proof. �

V. CLASSIFICATION OF NONTRIVIAL SOLUTIONS

We show in this section that, under assumption �4.2�, for all small ��0, the nontrivial critical
points of Ga� can be easily classified according to the value of a. To this end, we let ��n ,An�
�W0�� ,div� be an arbitrary nontrivial critical point of Gan�n

, namely, it is a weak solution of the
following system

− �an�A
2 � = �2�1 − ���2�� in � ,

curl2 A =
1

�2an�n
Im��̄�an�nA���� in R3,

�5.1�
��an�nA�� · 	 = 0 on �� ,

��,A� � W0��,div� ,

and �
0. Due to the gauge invariance, for any complex number zn with �zn�=1, �zn�n ,An� is also
a critical point. We assume that �n is uniquely chosen from this gauge invariant class so that

�n =
W

�

�ndx  0. �5.2�

Lemma 1.5: Assume �n→0, an→a, where 0�a��. Let ��n ,An��W0�� ,div� be a nontrivial
critical point of Gan�n

where �n satisfies �5.2�. Then we necessarily have a�C���. Moreover, �n

�0 for all large n; and if we write

�n = �n�1 + ian�nwn� ,

then the following conclusions hold.

�i� If 0�a�a�h�, then, as n→�,

�n → ��a�1/2, ��wn,An� − �w��a�,A��a���Ỹ → 0.

�ii� If a�h��a�C���, then, as n→�, subject to a subsequence, either

�n → ��a�1/2, ��wn,An� − �w��a�,A��a���Ỹ → 0,

or

�n → �*�a�1/2, ��wn,An� − �w�*�a�,A�*�a���Ỹ → 0.

�iii� If a=C���, then, as n→�,

�n → �0
1/2, ��wn,An� − �w�0,A�0��Ỹ → 0.

Proof: In the proof C, C1, C2, etc., denote generic positive constants which may be dependent
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of �, h, and � but are independent of n. Let ��n ,An��W0�� ,div� be a critical point of Gan�n
.

From Lemma 3.1, there exists a constant vector vn�R3 such that

Bn ª An − Fh − vn � W1,2�R3,R3� .

In particular, An−Fh�W1,2�� ,R3�.
Step 1. ���n ,An−Fh�� is bounded in W1,2�� ,C��D1,2�R3 ,div,��.
It is well known �see Ref. 9� that ��n�x���1 in �. From Lemma 3.2 �with �=�� and �

=a�� we see that

�
�

��an�nAn
�n�2dx � �n

2���, � � �An − Fh��L2�R3� � C1. �5.3�

In particular

�An�W1,2��,R3� � C2. �5.4�

From the first and third equations in �5.1� we see that �n is a weak solution of the following
equation

− 
� = 2ian�nAn · � �n + gn in �,
��

�	
= hn on �� , �5.5�

where

gn = an
2�n

2�An�2�n + �n
2�1 − ��n�2��n,

hn = ian�n�An · 	��n.

Multiplying �5.5� by �̄n, integrating over � and using the Sobolev imbedding theorems we find

�
�

� � �n�2dx = �
�

�2ian�nAn · � �n + gn��̄ndx + �
��

hn�̄ndS .

From �5.4� and using the fact ��n�L�����1, we have

�gn�L2��� � C3�n
2, �hn�L2���� � C4�n,

��
�

2ian�nAn · � �n�̄ndx� � C5�n�
�

�An�� � �n�dx � C5�n�An�L2���� � �n�L2���

� C6�n� � �n�L2���.

From these inequalities we have

��n�W1,2��,C�
2 = �

�

� � �n�2dx + �
�

��n�2dx � C7�n��n�W1,2��,C� + ��� .

Hence there exists a constant C8�0 such that, for all n,

��n�W1,2��,C� � C8.

The proof for step 1 is complete.
Step 2: The asymptotic limit of ��n ,An�.
We now use the equations for �n and An to find their limits as n→�. Let
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�n = ��n�W1,2��,C�, �̂n =
�n

�n
.

From Step 1, we may assume

�n → �0  0, �n → �  0.

We obtain from �5.5� the equation for �̂n:

− 
�̂n = 2ian�nAn · � �̂n + an
2�n

2�An�2�̂n + �n
2�1 − �n

2��̂n�2��̂n in � ,

�5.6�
��̂n

�	
= ian�n�̂nAn · 	 on �� .

From the conclusion obtained in step 1 and the fact ��Andx=0 we see that �An� is bounded in

W1,2�� ,R3�. Also note that ��̂n�W1,2��,C�=1. Thus the right-hand side of the first equation in �5.6�
is bounded in L3/2���, and the right side of the second equation in �5.6� is bounded in W1/2,3/2����.
Therefore the Lp estimate used for �4.21� �see �4.22�� can be applied to �5.6� to conclude that ��̂n�
is bounded in W2,3/2�� ,C�. After passing to a subsequence, �̂n converges to some �̂0 in W1,2�� ,C�
and

− 
�̂0 = 0 in �,
��̂0

�	
= 0 on �� .

Therefore �̂0
c0, a nonzero constant satisfying �c0�W1,2��,C�=1. From �5.2� we deduce

c0 = lim
n→�

�n

�n
 0.

Therefore c0=1/	���. It follows that for all large n, �n�0. We assume from now on that �n

�0 for all n1. Thus we have

�̂n → c0 in W1,3/2��,C� as n → �, lim
n→�

�n

�n
= c0 =

1
	���

. �5.7�

Define

�̃n =
1

�n�n
��n − �n� . �5.8�

We find from �5.6� that

− 
�̃n =
�n

�n
�2ianAn · � �̂n + an

2�n�An�2�̂n + �n�1 − �n
2��̂n�2��̂n� in � ,

�5.9�
��̃n

�	
=

�n

�n
�ian�̂nAn · 	� on �� .

From limn→��n /�n=1/c0�0, ��̂n�W1,2��,C�=1, and using �5.4�, we see that the right-hand side of
the first equation in �5.9� is uniformly bounded in L3/2���, and the right-hand side of the second

equation in �5.9� is uniformly bounded in W1/2,3/2����. Note that ���̃ndx=0. So the Lp estimate

used for �4.24� �see �4.25�� can now be applied to �5.9� to conclude that ��̃n� is uniformly bounded
in W2,3/2�� ,C�. Therefore, after passing to a subsequence again, we have,
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�̃n → �̃0 in W1,2��,C� as n → � .

Now we look at the equation for An:

− 
An = curl2 An =
�n

2

�2an
Im��̂

¯
n��n

�n
� �̃n − ianAn�̂n����. �5.10�

From the conclusion obtained in step 1 and the fact ��Andx=0, we know that �An� is bounded in
Wloc

1,2�R3 ,R3�. Using the Hölder inequality we see that the right-hand side of �5.10� is bounded in
Lloc

3/2�R3�. Then the standard interior Lp estimates of elliptic equations imply that �An� is bounded
in Wloc

2,3/2�R3 ,R3�. Using the Sobolev imbedding theorem and a standard diagonal argument we find
that, after passing to a subsequence, we have

An → A0 in Wloc
1,2�R3,R3� as n → � .

On the other hand, from Lemma 3.1 we know that Bn=An−Fh−vn is a bounded sequence in
W1,2�R3 ,R3�. Therefore, after passing to a subsequence, it converges to some B0 weakly in
W1,2�R3 ,R3�. In particular, curl Bn=curl�An−Fh� converges weakly in L2�R3� to curl B0. There-
fore, we necessarily have

curl�A0 − Fh� = curl B0 � L2�R3� .

Recall that we have assumed that �n→�0. Then we use �5.7�, �5.9�, and �5.10� to obtain

− 
�̃0 = 0 in � ,

curl2 A0 =
�2

�2a
Im���̃0 − iaA0���� in R3,

�5.11�
��̃0

�	
= iaA0 · 	 on �� ,

A0 − Fh � D1,2�R3,div,�� .

Let

�0 ª
�̃0

ia
.

From �5.11� we see that �0 satisfies

− 
�0 = 0 in �,
��0

�	
= A0 · 	 on �� . �5.12�

Since ���0dx=0, from �5.12� we see immediately that �0 is real valued. From �5.11� we see that
A0 satisfies

�2curl2 A0 = �2���0 − A0��� in R3, A0 − Fh � D1,2�R3,div,�� . �5.13�

Comparing �5.12� and �5.13� with �2.11�, we realize that

��0,A0� = �w�2
,A�2

� .

Summarizing, we have proved that, subject to a subsequence,
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�n = �n�1 + �n�̃n�, �n → �  0, ���̃n,An� − �iaw�2
,A�2

��Ỹ → 0. �5.14�

Step 3: The value of � and completion of the proof.

Let �̃n be defined in �5.8�, and for ��0 let

�n
� = ��1 + �n�̃n� .

We know that ��n
� ,An� is a critical point of Gan�n

when �=�n. It follows that

�

��
Gan�n

���n
�,An���=�n

= 0 for all n  1.

A direct calculation gives

�

��
Gan�n

��n
�,An� = 2�n

2���
�

� � �̃n − ianAn�1 + �n�̃n��2dx − �
�

�1 − �2�1 + �n�̃n�2��1 + �n�̃n�2dx� .

It follows by taking �=�n that

�
�

� � �̃n − ianAn�1 + �n�̃n��2dx = �
�

�1 − �n
2�1 + �n�̃n�2��1 + �n�̃n�2dx .

Letting n→� and using �5.14�, we obtain

a2�
�

� � w�2
− A�2

�2dx = �1 − �2���� .

Therefore �=�20 is a solution to �2.12�. By Lemma 2.2, we must have

a � C��� , �5.15�

and

� = ���a�1/2 if a � �0,a�h��
��a�1/2 or �*�a�1/2 if a � �a�h�,C����
�0

1/2 if a = C��� .
� �5.16�

In view of �5.14�, we find all the conclusions in our theorem follow from the previous formulas for
�. �

Let us define

Nr
� = ���,A� : � = z�1 + ia�w�, z � C, ��z�2 − �� + ��w − w�,A − A���Ỹ � r� . �5.17�

From Lemma 5.1 and Proposition 4.6 �iii�, we immediately obtain the following result.
Theorem 5.2: Under assumption (4.2), for any given small ��0 and r�0, there exists �*

�0 so that for every �� �0,�*� being fixed, the following conclusions hold.

�i� If ��a�a�h�−� and if �� ,A��W0�� ,div� is a nontrivial critical point of Ga�, then
�� ,A��Nr

��a�.
�ii� If a�h�−��a�C���−� and if �� ,A��W0�� ,div� is a nontrivial critical point of Ga�,

then either �� ,A��Nr
��a� or �� ,A��Nr

�*�a�.
�iii� If C���−��a�C���+� and if there exists any nontrivial critical point �� ,A�

�W0�� ,div� of Ga�, then either �� ,A��Nr
��a� or �� ,A��Nr

�*�a�. Here if C����a
�C���+�, we define ��a�=�*�a�=�0, where �0 is the positive number given in Lemma 2.2.

�iv� If aC���+�, then �0,Fh� is the only critical point of Ga� in W0�� ,div�.

073301-28 Y. Du and X. B. Pan J. Math. Phys. 46, 073301 �2005�

                                                                                                                                    



Recall that the existence of multiple critical points of Ga� for 0�����h� is essentially due to
the existence of multiple positive solutions of Eq. �2.17�. When ���h�, it has been shown in
Ref. 3 �Lemma 3.5� that �2.17� has a unique positive solution ��a� if 0�a�a�h�, a unique
non-negative solution �=0 if a=a�h�, and has no non-negative solutions if a�a�h�. Also note that
it follows from Ref. 12 �Theorem 4.1� that �0,Fh� is the only critical point of Ga� in W0�� ,div�
if a is large. Using these facts and applying the arguments used in Lemma 5.1, we have the
following.

Theorem 5.3: Assume that

�  ��h� is fixed, � = ��, � = a�, where � � 0 is small. �5.18�

For any given small ��0 and r�0, there exists �*�0 so that for every �� �0,�*� being fixed, the
following conclusions hold.

�i� If ��a�a�h�−�, then the global minimizer of Ga� over W0�� ,div� is nontrivial, and lies
in Nr

��a�.
�ii� If a�h�−��a�a�h�+� and if there exists any nontrivial critical point �� ,A�

�W0�� ,div� of Ga�, then �� ,A��Nr
��a�. Here if a�h��a�a�h�+�, we define ��a�=0.

�iii� If aa�h�+�, then �0,Fh� is the only critical point of Ga� in W0�� ,div�.

Remark 5.4: The results in this section and Remark 4.6 suggest that, under assumption (4.2),
for fixed small ��0, the set of nontrivial critical points of Ga��� ,A� in the space of �a ,� ,A� can
be described by a bifurcation diagram (see Fig. 1):

�i� A branch of nontrivial critical points bifurcates from the trivial solution branch

��a,0,Fh� : 0 � a � + ��

at a=�−2��a�Fh�, the value of which is approximately equal to a�h� for small �.
�ii� Along this branch of nontrivial solutions the value of a initially increases until it reaches

some critical value C����, which is approximately equal to C��� for small �, then the
branch bends back, i.e., the value of a decreases when the branch is further continued, until
a reaches 0.

This bifurcation diagram is very much similar in nature to the curve

��a,�� : �a,�� satisfies �2.12�� ,

i.e., the solution curve of f�a ,��=1, in the �a ,�� plane.

VI. GLOBAL MINIMIZERS AND HYSTERESIS

In this section, under assumption �4.2�, we fix a small ��0 and determine the global mini-
mizers of Ga� according to the value of a. We will also explain how our results suggest a hysteresis
phenomenon. We use the notations from previous sections. In particular, a*��� denotes the unique
zero point of the function I�a�, see Lemma 2.3; Za,� denotes the set defined in Sec. IV, and Nr

�

denotes the set defined in �5.17�.
Theorem 6.1: Under assumption (4.2), for any given small constants ��0 and r�0, there

exists �*�0 such that for every �� �0,�*� being fixed, we have:

�i� if ��a�a*���−�, then the local minimizer ���
a ,A�

a� obtained in Proposition 4.3 is a global
minimizer of Ga� over W0�� ,div�, and any other global minimizer, if it exists, must belong
to Nr

��a�;
�ii� if aa*���+�, then �0,Fh� is the only global minimizer of Ga� in W0�� ,div�.

Proof. From �4.5� and �4.6� we have
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ga,���,w�,A�� = F�a,�� + O��� , �6.1�

where F�a ,�� was defined in �2.18�. From Lemma 2.3 and �2.19� we have

F�a,��a�� − F�a,0� = I�a������I�a*��� − ����� � 0 if 0 � a � a*��� − �

I�a*��� + ����� � 0 if a*��� + � � a � C��� .
�

Let us define, for small ��0,

�1��� = − I�a*��� − ����� ,

�2� = I�a*��� + ����� , �6.2�

�0��� =
1

2
min��1,�2� .

Then � j����0 for small ��0, and we have

F�a,��a�� − F�a,0���− �1 if 0 � a � a*��� − �

�2 if a*��� + � � a � C��� .
� �6.3�

Moreover, we have

F�a,�*�a��  max�F�a,0�,F�a,��a��� if 0 � a � C��� , �6.4�

see the discussion after the proof of Lemma 4.1. Due to �6.1�, we can choose �1�0, �1� �0,��
and r1� �0,r� small enough so that for every �� �0,�1� and a� �� ,C���+�1�, the conclusions in
Theorem 5.2 holds with �� ,r� replaced by ��1 ,r1�, and

Nr1

��a� � Za,�, �6.5�

��−2Ga���,A� − F�a,��a��� � �0 for all ��,A� � Nr1

��a�, �6.6�

��−2Ga���,A� − F�a,�*�a��� � �0 for all ��,A� � Nr1

�*�a�. �6.7�

Here, as in Theorem 5.2, we understand that ��a�=�*�a�=�0 for aC���.
Suppose ��a�a*���−�. We shall show that the critical point ���

a ,A�
a� obtained in Proposi-

tion 4.3 is a global minimizer of Ga� over W0�� ,div�. To prove, let ��* ,A*� be any global
minimizer of Ga�. By Theorem 5.2, we find either ��* ,A*�= �0,Fh� or ��* ,A*��Nr1

��a� or

��* ,A*��Nr1

�*�a�. To determine which case must occur, we estimate the energy in each case.
Clearly

�−2Ga��0,Fh� = F�a,0� .

By �6.2�–�6.7�, we obtain

�−2Ga���*,A*���F�a,0� + �0 if ��*,A*� � Nr1

�*�a�

�F�a,0� − �0 if ��*,A*� � Nr1

��a�.�
Therefore we must have ��* ,A*��Nr1

��a�. Recall from Proposition 4.3 that ���
a ,A�

a� is a global
minimizer of Ga� over the set Za,�. In view of �6.5�, we have the inequality Ga����

a ,A�
a�

�Ga���* ,A*�. Since ��* ,A*�. is a global minimizer, the equality must hold, and hence ���
a ,A�

a� is
a global minimizer.
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Next, assume aa*���+�. We shall show that �0,Fh� is the only global minimizer of Ga� over
W0�� ,div�. Let ��* ,A*� be a global minimizer. By Theorem 5.2, we find that ��* ,A*�= �0,Fh� if
�� �0,�1� and aC���+�1. In the remaining case a� �a*���+� ,C���+�1�, if ��* ,A*�� �0,Fh�,
then Theorem 5.2 tells us that either ��* ,A*��Nr1

��a� or ��* ,A*��Nr1

�*�a�. In either case, we can use
�6.2�–�6.7� to deduce

�−2Ga���*,A*�  F�a,0� + �0 = �−2Ga��0,Fh� + �0.

This contradiction shows that we must have ��* ,A*�= �0,Fh�. Therefore, if we take �*=�1, then
both �i� and �ii� hold. �

Proof of Theorem 1.1: It follows from Theorem 6.1 immediately. �

Hysteresis: We are now in a position to explain how our results suggest a hysteresis phenom-
enon under assumption �4.2�, see Fig. 1.

We first consider the change of superconducting behavior of the sample when the applied
magnetic field is increased from below Hc.

�i� When �=a� with a�a*���, ���
a ,A�

a� is a �nontrivial� global minimizer, which indicates
that the sample is in a superconducting state.

�ii� As a increases across a*���, �0,Fh� becomes a global minimizer but is uniformly away
from ���

a ,A�
a� by a positive distance; moreover ���

a ,A�
a� remains to be a local minimizer

until a is increased further to C���, and after which this local minimizer disappears.

Therefore it seems reasonable to believe that the superconducting state of the sample does not
jump to the normal state �0,Fh� when a first crosses a*���, rather it remains to be represented by
the local minimizer until a approaches C���, then the state of the sample jumps to the normal
state. This suggests that there is super-heating at �=HshC����.

Next we consider the situation that the superconductor changes from the normal state to a
superconducting state when the magnetic field is decreased from above Hc.

�i� Suppose we initially have �=a� with a�a*���. Then �0,Fh� is the global minimizer,
which indicates that the sample is in the normal state.

�ii� As a decreases across a*���, �0,Fh� loses its status as a global minimizer but it remains to
be a local minimizer until a approaches a�h�; and the global minimizer ���

a ,A�
a� is uni-

formly away from �0,Fh� by a positive distance.

Therefore it is reasonable to believe that the sample remains in the normal state when a decreases
across a*��� until a approaches a�h�, then the state of the sample jumps to a superconducting state
represented by the global minimizer ���

a ,A�
a�. This suggests that sub-cooling occurs at �=Hsc

a�h��.
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APPENDIX

Let us write the functional �1.1� by G��� ,A ,� ,�� to indicate the dependence on the domain
� and the parameter �. Let us introduce

�� = �−1�, ���y� = ���y�, A��y� = �−1A��y�, � = �2� . �A1�

A simple computation shows
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G���,A,�,�� = �G����,A�,1,��� , �A2�

where

G���,B,1,��� = �
��

����B��2 +
�2

2
�1 − ���2�2�dy + �2�

R3
�curl B − h�2dy .

Given a unit vector h, let Hc�h ;� ,� ,�� denote the critical field for � defined in �1.3�. From �A2�
we see that G� has a nontrivial minimizer if and only if G�2� has a nontrivial minimizer. Hence

Hc�h;�,1,��� = �2Hc�h;�,�,�� . �A3�

Let Fh be the vector field defined in �1.2�, and let wh and Uh be defined in �2.2� and �2.7� with
respect to �. Set

Fh,��y� =
1

�
Fh��y�, wh,��y� =

1

�2wh��y�, Uh,��y� =
1

�2Uh��y� .

Then Fh,�, wh,�, and Uh,� satisfy �1.2�, �2.2�, and �2.7� for ��, respectively. Let ��h ,��, a�h ,��,
and ��h ,�� be the numbers defined for � in �2.1�, �2.3�, and �2.8�, respectively. We have

��h,��� =
1

�2��h,��, a�h,��� = �a�h,�� . �A4�

Thus

��h,��� = ��h,�� . �A5�

Let �w� ,A�� be the unique solution of �2.11� for � and define

w�
��y� =

1

�2w���y�, A�
��y� =

1

�
A���y� .

Then �w�
� ,A�

�� satisfies

�

w�

� = 0 in ��,

curl2 A�
� = ���w�

� − A�
�����

in R3,

�w�
�

�	
= A�

� · 	 on ���,

A�
� − Fh,� � D1,2�R3,div� .

� �A6�

Let f�a ,� ,�� denote the function defined in �2.13� for � and ��a ,�� denote the maximal solution
of �2.12� for �. Using �A5� we find

f�a�,�,��� = f�a,�,��, ��a�,��� = ��a,�� .

Hence

I�a�,��� = I�a,�� ,

where I�a ,�� denotes the function defined in �2.16� for �. Therefore, if a*�� ,�� denotes the zero
of I�a ,�� given in Lemma 2.3, we have

a*��,��� = �a*��,�� . �A7�

Finally, let C�� ,�� be the number given in Lemma 2.2 for � such that f�a , · ,�� has no zero for
a�C�� ,��. We have
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C��,��� = �C��,�� . �A8�

Moreover,

a�h,��� � a*��,��� � C��,��� . �A9�

From �1.4�, �1.6�, and the previous discussions we have
Theorem A1: For small �,

Hc�h;�,1,���  �a�h,���� if �  ��h,���
a*��,���� if 0 � � � ��h,��� .

� �A10�

Now we can state Conclusions A and B as follows.
Conclusion C: Let � be a bounded, smooth and simply-connected domain in R3. For type I

superconductors with small Ginzburg–Landau parameter �, occupying ��=�−1�, and subjected
to the applied magnetic field H=�h, we have the following conclusions.

�a� If ���h ,���, there exists a critical field Hc such that,

�i� the Meissner state is a global minimizer of the Ginzburg–Landau energy for 0��
�Hc, and disappears for ��Hc;

�ii� the normal state is a global minimizer for ��Hc, and becomes unstable when 0��
�Hc.

Moreover, for small �,

Hc  a�h,���� .

�b� If 0�����h ,���, there exist three critical fields Hsc�Hc�Hsh, such that,

�i� the Meissner state is a global minimizer of the Ginzburg–Landau energy for 0��
�Hc, remains stable (a local minimizer) for Hc���Hsh, and disappears for ��Hsh;

�ii� the normal state is a global minimizer for ��Hc, remains stable (a local minimizer) for
Hsc���Hc, and becomes unstable when 0���Hsc.

Moreover, for small �,

Hsc  a�h,����, Hc  a*��,����, Hsh  C��,���� .
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For any system �i� of particles with the trajectories xi�t� in Rd on a finite time
interval �0,�� we define the interaction graph G. Vertices of G are the particles,
there is an edge between two particles i and j iff for some t� �0,�� the distance
between particles i and j is not greater than some constant. We undertake a detailed
study of this graph for infinite particle dynamics and prove exponential estimates
for its finite connected components. This also solves continuous percolation prob-
lem for complicated geometrical objects—the tubes around particle trajectories. ©
2005 American Institute of Physics. �DOI: 10.1063/1.1955513�

I. INTRODUCTION

We undertake a detailed study of the interaction graph for infinite particle dynamics and prove
exponential estimates for its finite clusters. Cluster properties of classical infinite-particle dynam-
ics is a folklor notion now, cluster dynamics was discussed in Ref. 1. In more general sense, weak
dependence of far away particle trajectories plays substantial role in many papers, see e.g., Refs.
2–5. For classical �deterministic or stochastic� dynamics, the cluster property reveals a clear
geometric picture, where the system of infinite particles is subdivided into random finite subsets
�clusters� which do not interact with each other on a fixed time interval. Thus the dynamics is
reduced to finite particle dynamics. The new feature of this article is that we describe clusters in
detail combinatorially and give combinatorial estimates of their probabilities. This solves continu-
ous percolation problem for complicated geometrical objects—the tubes around particle trajecto-
ries.

Note that cluster property can have also different �but related� meaning: decay of correlations,
existence of quasiparticles, especially for the quantum case, see Ref. 6, we do not pursue this issue
here.

We assume that at time 0, for any cube �, Poisson point field with density � is given. Thus the
number N��� of particles in � has Poisson distribution with �N���� / 	�	=�. The initial velocities
vi�0� of the particles are assumed to be independently and identically distributed. Random initial
configuration of coordinates xi�0� and velocities vi�0� is denoted by �=��.

We assume that for any cube � and any fixed number of particles N��� some finite particle
dynamics in � is given. Here we mean by this that for �almost� any initial coordinates xi�0� and
velocities vi�0� the trajectories xi�t�=xi

����t� are uniquely defined on the time interval �0,��, they
are assumed to be piecewise smooth �then the velocities vi�t�=dxi�t� /dt are defined a.e.�.

We further fix on some r�0. We call the tube �or r tube� Ti��� of the particle i the
r-neighborhood of its trajectory xi�t ,��, 0� t��. We say that two particles i, j interact at time t
if

dist�xi�t�,xj�t�� � 2r

that is if the closed r neighborhoods of xi�t� and xj�t� �the time t slices of the corresponding tubes�
intersect. Then
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sij = min�t:dist�xi�t�,xj�t�� � 2r�

is called the first interaction time of particles i and j.
To define dynamical clusters we consider �for any �� the following finite random graphs G�

=G����=G��� ,��. Vertices of G� are the particles. We can assume that they are labelled by the
initial coordinates of the particles. Two vertices are connected by an edge if on the time interval
�0,�� these two particles interact at least at one time moment. The sets of vertices of connected
components of G�=G���� are called dynamical clusters in � �or simply clusters� if � and � are
fixed. Equivalently, the connected components are the same as the topological connected compo-
nents of the union of all tubes T= �Ti��� in �� �0,��.

Within this general setting, sufficient for our purpose, we have to do three additional assump-
tions:

�1� For simplicity of presentation we assume translation invariance of the dynamics and periodic
boundary conditions and that the particle i moves freely on the time interval �t , t+s�

xi�t + s� = xi�t� + vi�t + 0�s

if for any t�� �t , t+s� this particle does not interact with other particles.
�2� We assume that for any two particles i,j their first interaction times sij =sij��� are all different

a.s. This holds trivially in many known dynamical models.
�3� Our main assumption is that the velocities are uniformly bounded, that is for some constant

v0�0 and any i and t� �0,��

	vi�t�	 � v0.

This is a very simplifying assumption. However, even under such condition the combinator-
ics of clusters is not easy. I hope that the obtained estimates allow to weaken essentially this
condition.

Remark 1.1: Note that our dynamics is very general—we do not even assume that the particle
trajectories are related for different �. We could even take, with some precautions. any metric
space instead of Rd with trajectories satisfying Lipschitz condition

dist�x�t�,x�t��� � v0	t − t�	 .

At the same time we could consider the infinite particle system directly in Rd with the same
existence assumptions �1�–�3�.

Physical intuition and percolation theory: If the velocities are uniformly bounded then on the
time interval �0,�� the tube of a particle belongs to the ball of radius v0�+r with the center in its
initial coordinate. The results from continuous percolation theory, see Refs. 7–9, tell us that the
infinite system of balls of radius v0�+r around Poisson points in Rd a.s. has no infinite clusters for
� small. More exactly, simple space scaling shows that if � does not exceed �0�v0�+r�−d for some
fixed factor �0�0 sufficiently small, then all clusters are finite a.s. Moreover, exponential cluster
estimates hold. However this result is too rough for our purpose.

Physics tells us that the correct answer is given by the Boltzman–Grad �BG� scaling. Note that
the volume 	 swept up by the particle, that is the volume of its tube, is of the order v0�rd−1, where
v0� is the length of the trajectory and rd−1 is of the order of the circular section of the tube.
Heuristically, for the densities smaller than �0	−1, the limiting dynamical clusters should be finite
a.s. The reason is that N��� particles sweep up the volume v0�rd−1N��� which should be small
compared to �.

We give the proof here. As far as I know, this does not follow from the existing results in
continuous percolation theory. One of the reasons is that the particle tubes are not independent
volumes around the Poisson points.

For obvious reasons we assume that v0�
r, that is v0��C1r for some C1 sufficiently large.
Otherwise, the percolation properties of the initial configuration of balls of radius r would prevail.
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Moreover, exactly under this condition the BG volume v0�rd−1+rd is much smaller than the
volume �v0�+r�d, and our result is stronger than the one obtained from continuous percolation
theory.

Result: Denote Pk
��� 	x� the conditional probability that, under the condition that there is a

particle at the point x, the cluster, containing this particle, has exactly k particles. Then the
following exponential estimate holds.

Theorem 1.2: There are constants C, �0�0 such that for any �, v0, r and

� =
N���

�
= ���v0rd−1�−1 �1.1�

with 0����0 and any k we have, uniformly in � and in x,

Pk
���	x� � �C��k−1. �1.2�

Corollary: If for any t� �0,�� the thermodynamic limit of the dynamics �that is lim�→�x���

��t� exists, then all clusters in Rd are finite and the exponential estimates �1.2� hold for Pk���
=lim�→� Pk

��� 	x�.
Under our general dynamics one cannot prove the existence of thermodynamic limit �it may

not even exist�. However, there are many results, obtained in a different way, concerning the
existence of the thermodynamic limit.2,4,10,11 In the last section we give an example of the �ran-
dom� dynamics which satisfies our conditions.

To prove the theorem one has to decribe somehow the set of possible clusters. There are
combinatorial and geometric aspects in the description of the set of clusters. The idea of the proof
is to separate these two aspects. Combinatorial part consists of describing possible “collision
schemes,” that is the order in which particles interact at the first time. The central difficulty lies in
the estimation of the number of such schemes.

II. TREES DESCRIBING THE DYNAMICS OF CLUSTERS

Dynamical clusters grow in time. Here we describe this growth in combinatorial terms.

A. Labeled trees

Assume that N��� particles together with their initial coordinates and velocities �that is a point
� in our probability space� are given in the volume �. Then by assumption 1 the trajectories of
particles are uniquely defined. For given �, any t� �0,�� and any set A of N=N�A��N���
particles consider the subgraph GA�t�=GA�t ,�� of G�t�=G���. Then there is a finite number of
moments t when the structure of this subgraph changes �the number of edges increases�. We will
be interested only in the moments when some connected components join together.

Denote A−j , j=1,2 , . . . ,N1�N, the connected components of GA�0�. Assume first, for conve-
nience, that N1=N, that is all these connected components are the one-point subsets of A.

Denote

0 � t1 � ¯ � tl � ¯ � tN−1 � �

all moments when the number of connected components decreases �by assumption 2 it decreases
by 1�. Denote Ak, k�0, the connected component which appeared at time tk. It is a union of two
nonintersecting connected components Ai�k� and Aj�k� for some i�k�, j�k��k. One can say that tk is
the first collision time of the clusters Ai�k� and Aj�k�. For example, t1= t1��� is the first moment
when a pair of particles from A begin to interact. Thus the cluster A1 consists of two vertices.

Now define the tree T�A�=T�A ,�� with 2N−1 vertices. N vertices of this tree are labeled by
the initial coordinates x1�0� , . . . ,xN�0�, that is by clusters of GA�0�. Denote this set of vertices V0.
Let us agree that to all vertices of V0 time moment 0 is assigned. Other N−1 vertices are labeled
by time moments ti �or by the clusters Ai�. Denote this set of vertices V1= �1, . . . ,N−1�. If Ak is the
union of connected components Ai�k� and Aj�k� then we draw a directed edge from i�k� to k and
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directed edge from j�k� to k. Now V0 can be defined as the set of vertices having no ingoing edges.
The level of the vertex w is defined to be the maximal length of the �directed� paths from V0 to w.
Thus the vertices of level 0 are exactly the vertices of V0.

Define the complete order R on V1: w�w� iff t�w�� t�w��. Note that this complete order is
compatible with the natural partial order on the tree defined as: w�w� iff Aw�Aw�.

At time tk the connected component Ak appears because some particle from Ai�k� and some
particle from Aj�k� interact at time tk. Denote the pair of vertices from V0, corresponding to these
two particles, as f�i�k��, f�j�k���V0, where f :V1→V0 is the function, which to any w�V1 assigns
an element of Aw.

Thus, each cluster with N points defines a tree T, some complete order relation R, defined by
the time moments tk, on the set V1, and a function f�w�, which assigns to each vertex w a vertex
f�w� of level 0, lying under w.

Formally we did not assume that the particles from A do not interact with particles outside A
on time interval �0,��. However further we will consider the trees only for this case.

B. Unlabeled structured trees

There is a continuum of the labeled trees, introduced previously. Note that all trees T�A ,��
have the following property: each vertex �except those of level 0� has exactly two adjacent vertices
of lower level. Denote the corresponding class of unlabeled trees T�N�, N is thus the number of
zero level vertices. Note that the number of trees in T�N� does not exceed CN for some absolute
constant C�0 and that for any �directed� unlabeled tree T�T�N� the sets V0=V0�T�, V1=V1�T�
are uniquely defined.

The triple

B = �T,R, f�

will be our underlying combinatorial structure. Here T�T�N�, R is a complete order on V1�T� and
function f on V1�T�, where f�w� is a directed path p from V0 to w.

Now consider the set B�N� of equivalence classes of such triples under isomorphisms  of
trees respecting the complete order R and such that f = f. Note that the number of elements in
B�N� is finite for any N. The elements of B�N� can be called collision schemes �of cluster
formation�.

The following diagram shows unique collision schemes for N=2,3 and all 3 collision schemes
for N=4:
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On the first two isomorphic trees for N=4 the small circles show the particle of the left-most
cluster which interacts at time t3 with the right-most particle.

C. Main combinatorial estimate

Note first, that in the following sections one of the vertices of V0 will be specified. This vertex
will correspond to the particle situated in some fixed point x. One could agree that the isomor-
phisms, introduced previously, respect the specified vertices. Choice of the specified vertex gives
factor N in combinatorial estimates. It is neglectable in the foregoing estimates, and we do not
consider it in this section.

For any T we shall get an upper bound for 	B�T ,N�	, the number of triples from B�N� with
given T.

Let K�T�� �N−1�! be the number of ordering R. For any vertex w let Dw be the number of
elements in the subcluster Aw In total this gives the factor

D�T� = 

w=1

N−1

Dw.

The main combinatorial estimate is the following result, which is interesting in its own.
Lemma 2.1: For any tree T

	B�T,N�	 � Q�T,N� = K�T�D�T� � CNN! �2.1�

for some absolute constant C�0.
Proof: The first inequality is evident. To prove the second we need the following notation. Let

Sk, Sl be two completely ordered sets with k and l elements correspondingly. Denote R�k , l� the
number of complete orderings of the set Sk�Sl which do not change the order inside Sk and inside
Sl. Take, for example, k� l, then

R�k,l� = 2�
i=1

k

Ck−1
i−1 Cl−1

i−1.

In fact, we can split each of Sk and Sl on i=1, . . . ,k consecutive nonempty groups and arrange
these groups in a sequence in alternative order. For example, Sk can be split on i consecutive parts
by putting i−1 walls on k−1 empty places between consecutive elements of Sk, that gives the
factor Ck−1

i−1 .
For any tree T, 	T	=N, we have the recurrent relation

Q�T,N� = NQ�k,T1�Q�N − k,T2�R�k,N − k� �2.2�

if under the root vertex of T there are trees T1 and T2 with 	T1	=k, 	T2	=N−k correspondingly. For
q=log2 Q we have

q�T,N� = log N + q�k,T1� + q�N − k,T2� + log R�k,N − k� . �2.3�

One can easily get uniform estimates separately for K�T��N! and D�T��N!, but it is too
rough, because there are cases where K�T�=N!, D�T�=CN and vice versa. This is seen from the
following two examples. In the first one for the sequence of subclusters

�1,2�,�1,2,3�, . . . ,�1,2, . . . ,N − 1�

we have K�T�=1, D�T�= �N−1�!.
From the second example one sees, moreover, that the estimate �2.1� cannot be improved. Put

N=2n and consider the tree T with 2n−k vertices on levels k=0, . . . ,n. Denote Q�n�=K�T�D�T�. We
have the recurrent relation
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Q�n� = 22nQ2�n − 1�R�2n−1,2n−1� .

It follows

Q�n� � 22nQ2�n − 1�a
2N

�N

for some constant a�0. For q�n�=log2 Q�n� this gives for n�2

q�n� � 2q�n − 1� + 2n + bn,q�1� = 1

for some constant b�0. The solution of this inequality is

q�n� � �
k=1

n

2k�2n−k + b�n − k�� = n2n + b2n�
k=1

n

�n − k�2−n+k = �n + c�2n

for some c�0. This gives

Q�N� � 2N log N+cN.

Now we come to the general case. Put Q�N�= P�N�N!, then from �2.2� we get

P�N� � NP�k�P�N − k�r�k,N − k� ,

where

r�k,N − k� =
2�i=1

k
Ck−1

i−1 CN−k−1
i−1

CN
k

for some k� �N /2�. For p�N�=log P�N� we have

p�N� = p�k� + p�N − k� + a�v� ,

a�v� = a�k,N − k� = log�Nr�k,N − k�� .

This equation can be solved explicitely as

p�N� = �
v

a�v� .

To make estimation of this sum we need some notation and results. In the inductive procedure
for a given tree T we will distinguish vertices of type A or B, where correspondingly k
� ���N /2� , �N /2�� and k� �0,��N /2�� where �=1−� for some small ��0. Denote their numbers
NA and NB correspondingly. We have NA+NB=N−1.

Introduce the depth m�v� of the vertex v of the tree—the distance from the root vertex. It is
clear that log N�m�v��N. The A-depth mA�v� of the A-vertex v is the number of A vertices on
the path from it to the root. We have

mA�v� � logb N, b = 1
2 �1 + �� . �2.4�

The number

��v:mA�v� = m� � cm, c = 2�1 + �� . �2.5�

Denote N�v� the number of level 0 vertices under v. We have

c−
m�v� � N�v� � Nc+

m�v�, �2.6�

where
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c− = 1
2 �1 − ��, c+ = 1

2 �1 + �� .

We will need some inequalities.

�1� For any k,N

2�i=1

k
Ck−1

i−1 CN−k−1
i−1

CN
k � 1. �2.7�

This can be proved by simple combinatorial argument. Take four intervals 1 ,2 , �3,k
+1� , �k+2;N�. Then we choose k elements from these two intervals. The number
2Ck−1

i−1 CN−k−1
i−1 gives only restricted choice: we choose one of the first two elements �factor of

2�, i−1 elements from the last interval �factor CN−k−1
i−1 � and k− i elements from the third

interval �factor Ck−1
i−1 �.

�2� �Large deviation estimate� We will use the asymptotics

log CN
�N  H���N,H��� = − � log � − �1 − ��log�1 − �� .

Then for ����
1
2 the maximum of

log C�N
�N + log C�1−��N

�N

is attained for � satisfying

1

�
log

� − �

�
+

1

1 − �
log

1 − � − �

�
= 0.

In fact,

log C�N
�N + log C�1−��N

�N  N�H��

�
�� + H� �

1 − �
��1 − ��� ,

d

d�
�H��

�
�� + H� �

1 − �
��1 − ��� =

1

�
log

� − �

�
+

1

1 − �
log

1 − � − �

�
.

Then by large deviation principle for any k�N, ��
1
2

log r�k,N − k� � �1 − ��N. �2.8�

We estimate av�N for B vertices and av�N�v�c+
m�v� for A vertices. Using the bounds

�2.4�–�2.7� we get the proof. �

III. GEOMETRY AND PROBABILITY OF CLUSTERS

In the previous section we assigned to any � and any cluster A the triple B=B�� ,A�. Here we
follow inverse way: for any triple B�B�N� we describe the set of � and the set of clusters A,
containing given point x, such that B=B�� ,A�.

Note that in finite volume � any cluster is finite, thus for any x

�
k=1

�

Pk
���	x� = 1.

To prove the theorem we will describe the set of initial configurations containing k particles X
= �x1�0� ,v1�0� , . . . ,xk�0� ,vk�0�� which would give a cluster with exactly k particles, if other par-
ticles in � were not taken into account. We estimate by 1 the conditional probability �given X� that
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there are no other particles, which could interact with the particles of the cluster on the time
interval �0,��. We get these estimates uniformly in � and x.

For any B= �T ,R , f� and any sequence 0� t1� ¯ � tN−1�� define the set I�B , t1 , . . . , tN−1� of
initial configurations � of particles such that there exists a set A , 	A	=N, among them �containing
some particle at x� such that A defines a cluster, N�A�=N and B�A ,��=B. The order of tk, of
course, should be compatible with the order R. Denote

I�B� = �t1,. . .,tN−1
I�B,t1, . . . ,tN−1� .

We use the estimate

PN
���	x� � �

B
P�I�B�	x� .

In the previous section we have proved the factorial estimate of the number of terms in the sum
�B. Thus from Lemma 1 and the following Lemma 2 the theorem follows.

Lemma 3.1: The following bound holds uniformly in B

P�I�B�	x� �
�C��N−1

N!

for some absolute constant C�0.
The proof of this lemma is an easy �but unwieldy� matter and will be given in the next section.

It is based on simple geometric considerations with piecewise smooth trajectories and simple facts
about Poisson point fields.

IV. PROOF OF LEMMA 2

It is very instructive to understand first the proof for N=2,3. Anyway, this is the first step of
the inductive procedure below.

A. Two particle cluster

For N=2 we have the only tree and the only B. We have to describe geometrically all two
particle clusters

Let two particles 1 and 2 have initial velocities v1 and v2 correspondingly. Assume that the
initial coordinate of particle 1 is x1�0�=x. For any r denote Sr�x� the �d−1�-dimensional sphere of
radius r and centre x�Rd, let Br�x� be the corresponding d-dimensional ball. Put Sr=Sr�0� and
Br=Br�0�.

At the first collision time t1 the particles 1 and 2 should be at the points x1�t1�=x1�0�+ t1v1 and
x2�t1�=x1�0�+ t1v1+y1 correspondingly, where y1 is any point on the sphere S2r, such that for any
0� t� t1 the spheres Sr�x1�0�+ tv1� and Sr�x2�0�+ tv2� do not intersect. This event G1�t1 ,y1� can
also be defined as the event that initially at the point x2�0�=x+y1+ t1�v1−v2� there is a particle. In
other words the relative initial coordinate x2�0�−x1�0� of the particle 2 is

z12�0� = x2�0� − x1�0� = y1 + t1�v1 − v2� .

Thus x2�0�, for given v1,v2,t1,x1�0�, should be in a subset of the sphere

u1�t1� = S2r�x + t1�v1 − v2�� = S2r + x + t1�v1 − v2�

in Rd.
Consider the majorizing event

G1�t1� = �y1�S2r
G1�t1,y1�

that there is at least one particle in u1�t1�. The union
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G = �t1��0,��G�t1�

is the event that initially there is at least one particle in the union

U = �t1��0,��u1�t1�

which is a closed subset of �, parametrized �not one-to-one� by �0,���S2r. The volume of U does
not exceed C�v0rd−1, uniformly in v1,v2 �here the boundedness of velocities is used�, where Cd is
some absolute constant. That is obtained by integration in t1. Thus the probability that initially
there is a particle in this volume does not exceed

1 − exp�− Cd�� .

This gives the bound Cd� if � is small.
Note that we estimated the conditional probability for given v1 and v2, we should now

integrate over the velocity distributions

� � d��v1���v2� ,

where � is the initial velocity distribution.
Given the initial coordinates of the two particles, we estimate from above the conditional

probability that there are no more particles in their vicinity so that they could interact with them
on the time interval �0,��, by 1.

B. Three particle cluster

For general N, and in particular for N=3, we should only describe the set of relative coordi-
nates of all particles. Then we choose one particle and put its coordinate equal x �this will give a
nonessential factor N�, thus shifting correspondingly all configuration.

For N=3 we also have the unique B= �T ,R , f�. Denote velocities of the particles �say 1 and 2�
colliding at time t1 correspondingly v1,v2. We can assume that at time t2 the particle 3, having
velocity v3 collides with particle 1.

Introduce the events G1�y1 , t1� ,G1�t1� exactly as in the case of two particles. Let x1�s�
=x1�s ;y1� be the trajectory of particle 1 for s� �t1 , t2�, it depends on y1 �or on x2�0��. Introduce the
conditional �given t1,y1� event G2�t2 ,y2 ; t1 ,y1� that at the moment of collision of the particle 3
with particle 1

x3�t2� = x1�t2� + y2,y2 � S2r.

In other words

x3�0� = x1�t2� + y2 − v3t2.

Consider the events

G2�t2;y1,t1� = �y2�S2r
G2�t2,y2;t1,y1� ,

G2��s,s��;t1,y1� = �t2��s,s��G2�t2;t1,y1� .

Using the independence property of Poisson point field, we can estimate, uniformly in y1, the
probability of the event G2��t2 , t2+dt2� ; t1 ,y1� as

�Cv0rd−1dt2.

Thus the probability of the event
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�s1��t1,t1+dt1��s2��t2,t2+dt2��G1�y1,s1� � G2�s2;t1,y1��

can be estimated as

�Cv0rd−1dt1�Cv0rd−1dt2.

Put also

G = �t1��0,���G1�y1,t1� � G2�t1,y1�� = �t1��0,���t2��t1,���G1�y1,t1� � G2�t2;t1,y1�� .

Then the probability of the latter event G is estimated by

�
0

�

C�v0rd−1dt1�
t1

�

C�v0rd−1dt2 = �C�v0rd−1�2 �2

2!
.

C. General case

Assume now for any N that B and the velocities v1 , . . . ,vN of the particles are fixed. We
should describe the possible initial coordinates x1�0� , . . . ,xN�0� which give rise to a cluster with N
particles. The emergence of the cluster occurs as a sequence of N−1 conditional events

G1�t1,y1�, . . . ,Gk�tk,yk;tk−1,yk−1; . . . ;t1,y1�, . . . ,GN−1�tN−1,yN−1;tN−2,yN−2; . . . ;t1,y1�

at the moments t1 , . . . , tN−1. We define these events inductively.
Our inductive assumption is that after step k the vectors y1 , . . . ,yk�S2r and the events

G1 , . . . ,Gk are defined. Moreover, there are m�k�=N−k maximal �that is not contained in other
clusters� clusters Ak,1 , . . . ,Ak,m�k� at time tk, as on each step the number of clusters decreases by 1.
For each i=1, . . . ,m�k�, denote a vertex of the tree, corresponding to the cluster Ak,i, by i. Assume
that at time moment tk+1 the clusters Ak,i�k+1� and Ak,j�k+1� �the choice of these clusters is unique as
dictated by B� collide and the colliding particles be f�i�k+1�� and f�j�k+1��. Moreover, after k
steps the initial relative coordinates inside all maximal clusters are fixed, they enter the definition
of the events G1 , . . . ,Gk.

Thus at time tk+1 the particle f�i�k+1�� will be at the point xf�i�k+1���tk+1�, the trajectory
xf�i�k+1���s� on the time interval �tk , tk+1� depends in a rather complicated way on the relative
coordinates inside the cluster Ai�k+1� and in a simple way �translation invariance� on the initial
coordinate xf�i�k+1���0�. Then the particle f�j�k+1�� will be at the point xf�i�k+1���tk+1�+yk+1. Thus
the initial coordinate of the particle f�j�k+1�� is

xf�i�k+1���tk+1� + yk+1 − xf�j�k+1��
�0� �tk+1� ,

where the upper index 0 means that the initial coordinate of the particle f�j�k+1�� is 0, and the
relative coordinates inside this cluster were fixed in the inductive process. Here we use the
translation invariance of the dynamics. It follows that we know now the initial relative coordinate
of the particles f�i�k+1�� and f�j�k+1��, thus all relative initial coordinates inside the new cluster
Ak+1=Ak,i�k+1��Ak,j�k+1�.

We have, as in case N=3, the inductive estimates

�Cv0rd−1dtk

for the probabilites of the events

Gk��tk,tk + dtk�� = �yk�S2r
�sk��tk,tk+dtk�Gk�sk,yk;tk−1,yk−1; . . . ;t1,y1�

uniformly in tk−1 ,yk−1 , . . . , t1 ,y1. Then for the product of events
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�k=1
N−1Gk��tk,tk + dtk��

we get the estimate



k=1

N−1

�Cv0rd−1dtk.

Then, using the known formula

�
0

�

¯ �
tN−3

� �
tN−2

�

dtN−1 ¯ dt1 = �
0

�

¯ �
0

t3 �
0

t2

dt1 ¯ dtN−1 =
�N−2

�N − 2�!

we get the estimate of Lemma 2.
We assumed throughout the proof that the graph GA�0� has no clusters other than one-point

clusters. If however there are some clusters at time zero, then the proof proceeds along the same
lines. Moreover, it is easy to see, using our assumption r�v0�, that the cluster probability will be
even smaller.

V. EXAMPLE OF DYNAMICS

Here we give an example of dynamics “with chemical reactions,” satisfying the above general
conditions. This dynamics however will be a random dynamics. In this dynamics randomness
occurs because of random initial conditions and random interaction rules of dynamics.

Define first the finite volume dynamics. There are N����� particles in the cube �, each
particle is characterized at time t�R+ by its coordinate x�t����Rd, velocity v�t��Rd and type
q�t�� �1, . . . ,Q�. Initial coordinates xi�0� are distributed uniformly in �. The vectors �qi�0� ,vi�0��
are independently distributed with densities pq�v�

�
q
� pq�v�dv = 1.

We will define a continuous time Markov process �xi�t� ,vi�t� ,qi�t� : i=1,2 , . . . ,N� together with
initial data �xi�0� ,vi�0� ,qi�0� : i=1,2 , . . . ,N�. It is a mixture of piecewise linear movement for the
coordinates and random jumps for the velocities and types. We will not write down the generator
of this process, but rather describe it more intuitively. The coordinates are defined as

xi�t,�� = xi�0,�� + �
0

t

vi�t,��dt .

At the same time, any pair of particles i and j �independently of other pairs� at any time interval
�t , t+dt� can change their types and velocities with rates

	�qi�t� . vi�t�,qj�t� . v j�t�,xi�t� − xj�t���2r�xi�t� − xj�t�� ,

where �2r�x�=1 if 	x	�2r, and 0 otherwise. Functions 	 are assumed to be bounded. As a result
of this jump coordinates do not change, but types and velocities change

�qi,vi,qj,v j� = �qi,vi,qj,v j��t� → �qi�,vi�,qj�,v j�� = �qi�,vi�,qj�,v j���t + 0�

via conditional probability densities P�qi� ,vi� ,qj� ,v j� 	qi ,vi ,qj ,v j� so that for any qi,vi,qj,v j we have

�
qi�,qj�

� P�qi�,vi�,qj�,v j�	qi,vi,qj,v j�dvi�dv j� = 1.

Our main assumption that velocities are uniformly bounded that is
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P�qi�,vi�,qj�,v j�	qi,vi,qj,v j� = 0

if vi� or v j� exceed some constant v0�0.
Thus, the velocities and types are piecewise constant on �0,��, jumps occur at discrete time

moments

0 � t1��� � ¯ � tk��� � ¯ .

The process is well defined—xi�t ,�� exist for any initial data and are piecewise linear a.s. This
means that between the jumps the particles move freely with constant velocities vi�t�=dxi�t� /dt
defined a.e.

All previous results for the deterministic dynamics hold for this random dynamics with piece-
wise random trajectories as well. In this example, from this one can easily prove, in particular, the
existence of the thermodynamic limit for small times. This limit coincides with the directly and
similarly defined infinite particle dynamics.

1 Ya. Sinai, Theor. Math. Phys. 11, 248 �1972�.
2 C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases �Springer, New York, 1994�.
3 S. Caprino and M. Pulvirenti, Commun. Math. Phys. 166, 603 �1995�.
4 O. Lanford, Time Evolution of Large Classical Systems, Lecture Notes in Physics Vol. 38 �Springer, New York, 1975�,
pp. 1–111.

5 H. Spohn, Large Scale Dynamics of Interacting Particles �Springer, New York, 1991�.
6 V. Malyshev and R. Minlos, Linear Infinite-Particle Operators �AMS, Providence, RH, 1994�.
7 P. Hall, Introduction to the Theory of Covarege Processes �Wiley, New York, 1988�.
8 P. Hall, Ann. Prob. 13, 1250 �1985�.
9 R. Meester and R. Roy, Continuum Percolation �Cambridge University Press, Cambridge, UK, 1966�.

10 R. Dobrushin and J. Fritz, Commun. Math. Phys. 55, 275 �1977�.
11 E. Caglioti, C. Marchioro, and M. Pulvirenti, Commun. Math. Phys. 215, 25 �2000�.

073302-12 V. A. Malyshev J. Math. Phys. 46, 073302 �2005�
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Two dielectric waveguides coupled through small windows are considered. In the
case of single coupling window we prove the existence of an eigenvalue below the
threshold. It’s estimation is obtained. If there is the periodic set of coupling win-
dows a band below the threshold exists. Using variational estimations of the band
edges we prove that there exists a gap between the band and the threshold. This
result shows that the system has a property of photonic band gap materialsphotonic
crystald. It can be used for construction of optical fiber systems. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1933046g

I. INTRODUCTION

Photonic band gap materialssalso called photonic crystalsd have attracted a lot of attention
lately. The reason of this is a wealth of expectedsand partly achievedd applications. Probably the
main feature of these materials is the existence of a gapsstopbandd in the frequency spectrum of
propagating electromagnetic waves.1 In spite of the fact that there is a great number of experi-
mental and numerical investigations of photonic crystals, theoretical studies are far from being
completedssee, e.g., Refs. 2 and 3d. That is why it is interesting to analyze the corresponding
systems from the point of theoretical investigations. In this paper we will discuss the system of
three dielectric layers. The central layer has large permittivity. Electromagnetic waves, which
passed along the layers, are considered. Analysis reduces to investigation of two possible polar-
izations when the electric field or correspondingly, magnetic field is orthogonal to the boundary. In
each case the problem reduces to the scalar equation for the electric fieldscorrespondingly, mag-
netic fieldd. If electric field E is orthogonal to the system plane, one obtains a two-dimensional
Helmholtz equation in the orthogonal cross section of the system, −DE=l«sydE, where l
=sv /cd2, v, wave frequency;c, speed of light;«syd, permittivity. Let us take layers of dielectric
material with permittivity of«=«1, separated by a narrowswith width 2dd central layer with large
«=«2@«1. And there is a number of small slotsswith width 2ad in the central layer. In the case of
a single narrow windowswith width 2ad in the central strip it was shown in Refs. 2 and 4 that
under the assumption that«d→0 or «d→consts«=«2−«1d si.e., for high contrastd, the spectrum
of the Helmholtz operator splits into two parts. One part is related with the transport properties of
a narrow dielectric waveguide. The second one is close to the spectrum of the Helmholtz operator
for the domain with the narrow strip replaced by a line with the Dirichlet boundary condition.
Variational estimation of the bound state close to the threshold for the Dirichlet case was obtained
in Refs. 5 and 6. In the case of the periodic system of narrow windowsswith width 2ad in the
central strip of zero width, the asymptotics of the band edges was obtained in Ref. 7. Variational
estimates of the band were obtained in Ref. 8.

The present paper has the following structure. At first, we describe the idea of the proof of the
existence of eigenvalue below the threshold. We use the variational approach and the proof
reduces to the obtaining of the corresponding estimations. The second section is devoted to the
method of the trial function construction and to the description of the way of the main ratio
estimation. The next section contains the proof of the eigenvalue existence for the case of single
coupling windowsthe geometry of the system is shown in Fig. 1d. Then we consider the case of
the periodic set of coupling windowsssee Fig. 2d. Here we prove that there exists a band below the
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threshold and obtain variational estimation of the gap. Note that this band belongs to the part of
the spectrum which is close to the spectrum of the corresponding Dirichlet problemssee aboved.
Thus, the described system has the spectral property which is analogous to that of a photonic
crystal. The appendix contains some calculations, which are omitted in the main text.

II. THE METHOD OF THE PROOF

It is assumed that in the corresponding three-dimensional problem we deal with polarized
monochromatic lightsthe case of TE modes is considered, i.e.,Ex=0d passes alongx axis. The
layers are unbounded in the directions ofx andz. Under these assumptions, mode solutions for a
one-layer planar waveguideswith the refraction indexnd are obtained from the Helmholtz equa-
tion for Ez fharmonic dependence on timet seivtd is taken into accountg,

]2Ez

]y2 +
]2Ez

]x2 + n2k0
2Ez = 0, s1d

wherek0=vÎ«0m0 andn2=« /«0. For the harmonic dependence ofEz on x and timet, eisvt−lxd, one
gets

]2Ez

]y2 + sn2k0
2 − l2dEz = 0, s2d

where l2 is an eigenvalue of the corresponding boundary problem. Mode solutions for a
multilayer waveguide are obtained by matching together the solutions for each layer. We take

Ez = Csx,yd.

Then for each layer we can write

]2Ci

]y2 + sni
2k0

2 − l2dC = 0,

wherei =1,2,3—thenumber of the layer. EigenfunctionC can be constructed usingC1, C2, and
C3. It satisfies the equation

FIG. 1. Three-layer dielectric waveguide with a single coupling window.

FIG. 2. Three-layer dielectric waveguide with the periodic set of coupling windows.
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]2C

]y2 + sn2k0
2 − l2dC = 0, s3d

where

n = 5n1, y P f− d,− dg ø fd,dg,

n2, y P f− `,− dg ø fd,`g,

n3, y P f− d,dg.
6 s4d

Our system is symmetric. Hence, it is sufficient to analyze the system only foryù0. The boundary
conditions aty=d andy=d are

uC2usy=dd = uC1usy=dd, U ]C2

]y
U

sy=dd
= U ]C1

]y
U

sy=dd
,

s5d

uC3usy=dd = uC1usy=dd, U ]C3

]y
U

sy=dd
= U ]C1

]y
U

sy=dd
,

whereC1= uCusdøyødd, C2= uCusdøyø`d, C3= uCus0øyødd. We will construct an approximation of the

eigenfunctionĈ for the case when there exists coupling windows as a perturbation ofC. That is

in the corresponding two-dimensional problem the functionĈ satisfies the equationHĈ

−n2k0
2Ĉ=0, whereH=−D is the Laplacian with the matching conditions at the interfaces. In

accordance with the variational principles if there exists a trial functionĈ ssatisfying the matching
conditions at the interfacesd such that the following ratio is negative:

sHĈ,Ĉd − iĈÎn2k0
2 − l2i2

iĈi2
ø 0, s6d

then there exists an eigenvalueL2 less than the threshold,L2,l2. Note that we work in the
orthogonal subspace to the subspace corresponding to the first branch of the continuous spectrum

swith zero lower boundd, i.e., Ĉ satisfies the orthogonality condition. Thus, the idea is to find a

trial function Ĉ which makes the ratio

MsĈd

iĈi2
s7d

negative, where

MsĈd = sHĈ,Ĉd − iĈÎn2k0
2 − l2i2. s8d

We take the trial functionĈ as

Ĉ = F + G, s9d

where

F = avsydfsxd, s10d

vsyd = 5N3 sinsmyd, y P f0,dg,

N1 cossnyd + M1 sinsnyd, y P fd,dg,

N2e
−gsy−dd, y P fd,`g,

6 s11d
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g = Îl2 − n2
2k0

2, n = Îl2 − n1
2k0

2, m = În3
2k0

2 − l2, s12d

G = hrsydgsxd, s13d

rsyd =5
e−py/2a + t1, y P f0,d/2g,

2t2
d

sd − yd, y P fd/2,dg,

0, y P fd,`g,
6 s14d

wherea, h are free parameters of the trial function, 2d is the width of the central layer, 2d is the
width of the three-layered waveguide,

t1 =
2

pd
Fe−pd/4aS4a +

pd

2
D − 4aG ,

t2 =
2

pd
fe−pd/4as4a + pdd − 4ag.

The functionsvsyd and rsyd are y symmetrical.t1 and t2 are chosen in such a way that the
corresponding functions satisfy the orthogonality condition

E
−d

d

vsyddy= 0, E
−d

d

rsyddy= 0.

The functionsfsxd andgsxd will be defined later. Now it is important that in general the values of
fsxd andgsxd are complex. In the case of a single narrow window these functions will meet the
requirements

fs`d = fs− `d = 0,

gs`d = gs− `d = 0. s15d

In the case of the periodic system of narrow windowsswith periodLd, these functions will meet
Bloch’s condition

fsx + Ld = eiuLfsxd,

gsx + Ld = eiuLgsxd. s16d

Lemma 1:The trial functionĈ defined ins9d–s16d satisfies the following condition:

sHĈ,Ĉd = iĈxi2 + iĈyi2. s17d

Proof: Here we markĈ asC for simplification. We can write

sHC,Cd =E E ]2C

]2x
C̄ dx dy +E E ]2C

]2y
C̄ dx dy. s18d

Using integration by parts we can write the first term ins18d as
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E E ]2C

]2x
C̄ dx dy =E E ]2sF + Gd

]2x
sF̄ + Ḡddx dy

= UE
−`

` ]sF + Gd
]x

sF̄ + ḠdU
Xmin

Xmax

dy +E
−`

` E
Xmin

Xmax ]sF + Gd
]x

]sF̄ + Ḡd
]x

dx dy

= UE
−`

` ]sF + Gd
]x

sF̄ + ḠdU
Xmin

Xmax

dy + iCxi2, s19d

and the second term ins18d as

E E ]2C

]2y
C̄ dx dy =E E ]2sF + Gd

]2y
sF̄ + Ḡddx dy

= UE
Xmin

Xmax ]sF + Gd
]y

sF̄ + ḠdU
−`

`

dx +E
Xmin

XmaxE
−`

` ]sF + Gd
]y

]sF̄ + Ḡd
]y

dx dy

= UE
Xmin

Xmax ]sF + Gd
]y

sF̄ + ḠdU
−`

`

dx + iCyi2. s20d

It follows from the definitionss10d–s14d that

vs`d = vs− `d = 0, rs`d = rs− `d = 0.

Then the first term on the right-hand side ofs20d is equal to zero

U ]sF + Gd
]y

sF̄ + ḠdU
y=−`

y=`

= 0.

At last, we need to calculate the first term on the right-hand side ofs19d. In the case of a single
narrow window we have

Xmin = − `, Xmax= `,

then from conditionss15d

U ]sF + Gd
]x

sF̄ + ḠdU
Xmin

Xmax

= U ]sF + Gd
]x

sF̄ + ḠdU
x=−`

x=`

= 0.

In the case of the periodic system of narrow windows we have

Xmin = − L/2, Xmax= L/2,

then from the conditionss16d

U ]sF + Gd
]x

sF̄ + ḠdU
Xmin

Xmax

= U ]sF + Gd
]x

sF̄ + ḠdU
x=−L/2

x=L/2

= 0.

Q.E.D.

It’s easy to see, thatĈ is symmetrical iny direction, so we will take interval 0øyø`.

Lemma 2:The formMsCd for the trial functionĈ defined ins9d–s14d can be represented as
follows:
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MsĈd = iFxi2 + iGxi2 + iGyi2 +E
0

dE
Xmin

Xmax

sF̄xḠx + FxGxddx dy − iGÎn2k0
2 − l2i2

−E
Xmin

Xmax

fF̄ysx,0dḠsx,0d + Fysx,0dGsx,0dgdx. s21d

Proof: We get froms8d, by Lemma 1, after some calculations

MsĈd = iĈxi2 + iĈyi2 − iĈÎn2k0
2 − l2i2 = iFxi2 + iGxi2 + iGyi2 +E

0

dE
Xmin

Xmax

sF̄yḠy + FyGyddx dy

+E
0

dE
Xmin

Xmax

sF̄xḠx + FxGxddx dy − FiGÎn2k0
2 − l2i2 +E

0

dE
Xmin

Xmax

sF̄Ḡ + FGdsn2k0
2

− l2ddx dyG . s22d

Using integration by parts, we reduce the first integral in the previous formula to the following
expression:

E
0

dE
Xmin

Xmax

sF̄yḠy + FyGyddx dy =E
0

dE
Xmin

Xmax

F̄yḠy dx dy +E
0

dE
Xmin

Xmax

FyGy dx dy

= −E
Xmin

Xmax

fF̄ysx,0dḠsx,0d + Fysx,0dGsx,0dgdx

−E
Xmin

XmaxE
0

d

sF̄yyḠ + FyyGddy dx, s23d

where

E
Xmin

Xmax

fF̄ysx,ddḠsx,dd + Fysx,ddGsx,ddg = 0,

becauseGsx,dd=Ḡsx,dd=0. The absolute value of the last term ins23d is equal to the absolute
value of the last term ins22d

E
0

dE
Xmin

Xmax

fF̄yyḠ + FyyGgdy dx = − ahE
0

d

rsydvsydsn2k0
2 − l2ddyE

Xmin

Xmax

f f̄sxdḡsxd + fsxdgsxdgdx,

s24d

E
0

dE
Xmin

Xmax

fF̄Ḡ + FGgsn2k0
2 − l2ddx dy = ahE

0

d

rsydvsydsn2k0
2 − l2ddyE

Xmin

Xmax

f f̄sxdḡsxd + fsxdgsxdgdx.

s25d

To obtains21d it is necessary to substitutes23d–s25d into s22d. Q.E.D.
This lemma will help us to estimate the ratios7d for two different cases of the system

geometrysa single narrow window and the periodic system of narrow windowsd.

073501-6 O. P. Melnichuk and I. Y. Popov J. Math. Phys. 46, 073501 ~2005!

                                                                                                                                    



III. THE CASE OF SINGLE NARROW WINDOW

We will analyze here a two-dimensional three-layered dielectric waveguide with one narrow

window swidth 2ad in the central layersFig. 1d. In this case for the full definition ofĈ in s9d we
choose

fsxd = minh1,e−qsuxu−adj, s26d

gsxd = Hcosspx/2ad, x P f− a,ag,

0, x P f− `,− ag ø fa,`g.
J s27d

Theorem 1: The ratios7d is negative for the trial functionĈ described ins9d–s14d, s26d, and
s27d, and

MsĈd

iĈi2
ø −

a429N3
4

p6m4s1 + ed2Nvv
2 , s28d

whereN3, Nvv are positive constants,e,e−pd/2a.
Proof: For the proof we need to estimate all terms ins21d, Lemma 2. At first, we estimate

iGyi2, iGxi2, iGi2, andiGÎn2k0
2−l2i2,

iGxi2 =E
−a

a E
0

`

Gx
2 dy dx ,

1
2ph2s1 + ed,

iGi2 = h2E
0

`

rsyd2 dyE
−a

a

gsxd2 dx, s29d

iGÎn2k0
2 − l2i2 = h2E

0

`

rsyd2snsyd2k0
2 − l2ddyE

−a

a

gsxd2 dx , h2n2a2

p
S1 +

32a

3dp
D ,

wheree.0 ande,e−pd/2a. Then we estimateiFxi2,

iFxi2 =E
−`

` E
0

`

F̄xFx dy dx = a2E
0

`

vsyd2 dyE
−`

`

f̄ xsxdfxsxddx = a2Nvvq,

whereNvv is some non-negative constant. The calculations of the integrals ins21d sLemma 2d
gives us

E
−a

a

Gsx,0dfF̄ysx,0d + Fysx,0dgdx = ahE
−a

a

rs0dvs0dgsxds f̄sxd + fsxdddx

= ahN3E
−a

a

gsxds f̄sxd + fsxdddx = ahN3
8a

p
, s30d

E
0

dE
−a

a

GxsF̄x + Fxddx dy = ahE
0

`

rsydvsyddyE
−a

a

gxsxds f̄ xsxd + fxsxdddx = 0, s31d

due to the equalityfxsxd=0 on the intervalf−a,ag. Now we can write the estimation ofMsĈd.
After the substitution ofs29d–s31d into s21d we get
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MsĈd ø
ph2

2
s1 + ed + a2Nvvq − ah

N3

m

8a

p
. s32d

a, h, andq are free parameters and one can choose their values by an appropriate way. To get the
upper boundary of the ratios7d we minimizes32d by h sh* is corresponding minimizing valued,

h* =
aa23N3

mp2s1 + ed
,

MsĈd ø −
a2a225N3

2

p3m2s1 + ed
+ a2Nvvq. s33d

The estimation ofiĈi2 is

iĈi2 ø 2iFia,x,`
2 + 2iFi−a,x,a

2 + 2iGi−a,x,a
2 = 2siFia,x,`

2 + iFi−a,x,a
2 d + 2ah2iri2,

s34d

where

iFi−a,x,a
2 = a2NvvE

−a

a

f̄sxdfsxddx = a2Nvv2a,

iFia,x,`
2 = a2NvvE

a

`

f̄sxdfsxddx = a2Nvv
1

2q
.

The estimation of the ratios7d follows from s32d and s34d

MsCd
iCi2 ø −

a226N3
2

p3m2s1 + edNvv
q + 2q2. s35d

Now we need to choose the parameterq. Therefore we minimize the last ratio estimation byq sq*

is the corresponding minimizing valued,

q* =
a224N3

2

p3m2s1 + edNvv
,

s36d
MsCd
iCi2 ø −

a429N3
4

p6m4s1 + ed2Nvv
2 .

Q.E.D.
Thus, we have proved that there exists a bound state below the threshold and simultaneously

obtained it’s estimation.

IV. THE CASE OF THE PERIODIC SET OF NARROW WINDOWS

In this section we estimate the ratios7d for three-layer dielectric waveguide with the periodic

set of narrow windowssof widths 2ad in the central layersFig. 2d. The trial functionĈ in this case
satisfies the Bloch’s condition,
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Ĉsx + nL,yd = eiunLĈsx,yd, s37d

whereu is the quasimomentum,L is a period, −p /Løuøp /L. It is sufficient to describe the trial

function Ĉ on the segmentf−L /2 ,L /2g sone periodd. According tos9d–s14d and s16d, functions
fsxd andgsxd satisfies the Bloch’s condition. Let

fsxd = o
n=−`

`

f isx,nde−iunL, s38d

where

f isx,nd = 5eqsx+ad−qLn, x P fnL − L/2,nL − ag,

1, x P fnL − a,nL + ag,

e−qsx−ad+qLn, x P fnL + a,nL + L/2g.
6

The functionfsxd on the segmentf−L /2 ,L /2g is described in the following manner:

fsxdf−L/2,−ag = eqsx+ad + eqsx+adA + e−qsx−adB,

fsxdf−L/2,−ag = 1 +eqsx+adA + e−qsx−adB, s39d

fsxdf−L/2,−ag = e−qsx−ad + eqsx+adA + e−qsx−adB,

where

A = o
n=1

`

e−qnL−iun =
e−qL−iuL

1 − e−qL−iuL , s40d

B = o
n=−1

−`

eqnL−iun =
e−qL+iuL

1 − e−qL+iuL , s41d

and

Ā = B, B̄ = A, A2 = B2 = AB. s42d

Let

gsxd = o
−`

`

xfnL−a,nL+age
−iunL cosSpsx − nLd

2a
D , s43d

wherexfnL−a,nL+ag is the characteristic function of the intervalfnL−a,nL+ag.
Lemma 3:The functionsfsxd andgsxd, defined ins38d ands43d, satisfy the Bloch’s condition.
Proof: For the functionsfsxd andgsxd we have

fsx + Ld = o
n=−`

`

f isx + sn + 1dLde−iunL = eiuLfsxd,

gsx + Ld = o
n=−`

`

xfnL−a,nL+age
−iunL cosSpsx − sn − 1dLd

2a
D = e−iuLgsxd.

Q.E.D.

073501-9 Coupled dielectric waveguides J. Math. Phys. 46, 073501 ~2005!

                                                                                                                                    



Theorem 2: For the trial functionĈ, defined ins9d–s14d, s38d, and s43d, the ratio s7d is
negative, and

MsĈd

iĈi2
ø − ac, s44d

wherec is some non-negative constant.
Proof: For the proof we need to estimate all terms ins21d, Lemma 2. Estimations ofiGyi2,

iGxi2, iGi2, and iGÎn2k0
2−l2i2 will not change in the case of the periodic system of narrow

windows, so we can get them froms29d, Theorem 1. We need to calculate other terms ins21d. At
first, we estimateiFxi2,

iFxi2 =E
−L/2

L/2 E
0

`

F̄xFx dy dx = a2E
0

`

vsyd2 dyE
−L/2

L/2

f̄ xsxdfxsxddx = a2Nvvqe2qaF1sA,Bd,

s45d

where

F1sA,Bd = 2ABfsinhsqLd − sinhs2qad − qL + 2qag − sA + BdfqL − 2qa+ e−qL − e−2qag

− fe−qL − e−2qag ù 0,

and the constantNvv is non-negative. Then we write the estimations of integral terms ins21d,

E
−a

a

Gsx,0dfF̄ysx,0d + Fysx,0dgdx = ahE
a

a

rs0dvs0dgsxds f̄sxd + fsxdddx

= ahN3E
−a

a

gsxds f̄sxd + fsxdddx = ahN3

F8a

p
+

8eqasA + Bdap coshsqad
4q2a2 + p2 G , s46d

E
0

dE
−a

a

GxsF̄x + Fxddx dy = ahE
0

`

rsydvsyddyE
−a

a

gxsxds f̄ xsxd + fxsxdddx

= ahaNvrE
−a

a

gxsxds f̄ xsxd + fxsxdddx

= ahaNvrF−
8q2eqasA + Bdpa coshsqad

4q2a2 + p2 G , s47d

where constantsN3, Nvr are non-negative. Now we can write the estimation ofMsĈd. After
substitution ofs29d and s45d–s47d into s21d we get

MsCd ø
ph2

4
s1 + 2ed + a2Nvvqe2qaF1sA,Bd − ahFN3

8a

p
+ F2sA,BdsN3 + aNvrq

2dG , s48d

where

F2sA,Bd =
8eqasA + Bdap coshsqad

4q2a2 + p2 .

Now we need to choose the parameterh. Therefore, we minimize the right-hand part ofMsĈd by
h sh* is the minimizing valued,
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h* = 2
as8N3a + F2sA,BdpfN3 + aNvrq

2gd
p2s1 + 2ed

,

MsĈd ø a2S−
s8N3a + F2sA,BdpfN3 + aNvrq

2gd2

p3s1 + 2ed
+ Nvvqe2qaF1sA,BdD . s49d

The estimation ofiĈi2 has the form

iĈi2 ø 2iFia,x,sL/2d
2 + 2iFi−a,x,a

2 + 2iGi−a,x,a
2 = 2siFia,x,sL/2d

2 + iFi−a,x,a
2 d + 2ah2iri2,

s50d

where

iFi−a,x,a
2 = a2NvvE

−a

a

f̄sxdfsxddx = a2NvvF3sA,Bd,

F3sA,Bd = 2a + 4eqasA + Bd
sinhsqad

q
+ 2e2qaABS2a +

sinhs2qad
q

D , s51d

and

iFia,x,L/2
2 = a2NvvE

a

L/2

f̄sxdfsxddx = a2Nvv
1
2e2qaF4sA,Bd,

F4sA,Bd =
s− e−qL + e−2qad

q
+ sA + BdFL − 2a +

s− e−qL + e−2qad
q

G
+ 2ABFL − 2a +

ssinhsqLd − sinhs2qadd
q

G . s52d

The theorem must be proved for all values of the quasimomentumu. It is easy to see that the
parameteru is in the functionsFisA,Bd only. So we need to calculate the expressionssA+Bd and
sABd,

sA + Bd = −
coshsLqd − sinhsLqd − cossLud

coshsLqd − cossLud
, s53d

sABd =
coshsLqd − sinhsLqd

2 coshsLqd − 2 cossLud
. s54d

Note, that whenq→0, u→0 the denominator tends to zero. Hence, this case should be treated
especially. Letq be sufficiently smallse.g.,q,a2d, but not equal to zero. Then we can expand the
right-hand sides of formulass53d and s54d in seriessby qd

sA + Bd = −F1 −
Lq + 1

6L3q3 + 1
120L

5q5 + Osq7d

1 + 1
2L2q2 + 1

24L
4q4 + Osq6d − cossLudG ,

sABd =
1

2

1 − Lq + 1
2L2q2 − 1

6L3q3 + 1
24L

4q4 − 1
120L

5q5 + Osq6d

1 + 1
2L2q2 + 1

24L
4q4 + Osq6d − cossLud

,

where −pøLuøp. Here we split the proof into two parts, whenLuÞ2pn and whenLu→2pn.
In the first case cossLudÞ1, then

073501-11 Coupled dielectric waveguides J. Math. Phys. 46, 073501 ~2005!

                                                                                                                                    



sA + Bd = − S1 −
Lq + Osq3d

1 − cossLud + 1
2L2q2 + Osq4dD , − C1sud,

sABd =
1

2

1 − Lq + Osq2d
1 − cossLud + 1

2L2q2 + Osq4d
, C2sud,

where 0,C1sud,1, 0,C2sud. Then

F1 = 2sABdfsinhsqLd − sinhs2qad − qL + 2qag − sA + BdfqL − 2qa+ e−qL − e−2qag − fe−qL − e−2qag

, qsL − 2ad + Osq2d, s55d

F2 =
8eqasA + Bdap coshsqad

4q2a2 + p2 , − 8
aC1sud

p
s1 + ad, s56d

F3 = 2a + 4eqasA + Bd
sinhsqad

q
+ 2e2qaABS2a +

sinhs2qad
q

D
, as2 − 4C1sud + 8C2sudd + 4a2qs− C1sud + 4C2sudd + Osq2a3d . 0, s57d

F4 =
s− e−qL + e−2qad

q
+ sA + BdFL − 2a +

s− e−qL + e−2qad
q

G
+ 2ABFL − 2a +

ssinhsqLd − sinhs2qadd
q

G
, s2L − 4adf− C1sud + 2C2sudg + qf− C1suds− 1/2L2 + 2a2d + L − 2ag + Osq2d . 0.

s58d

At last, we have froms49d, s55d, ands56d,

MsĈd ø a2S−
a226fN3 − C1suds1 + adsN3 + aNvrq

2dg2

p3s1 + 2ed
+ Nvvq

2e2qasL − 2adD . s59d

And the denominatoriĈi2 is

iĈi2 ø a22NvvfF3 + 1/2e2qaF4g = a22NvvCcsud . 0, s60d

where

Ccsud = af2 − 4C1sud + 8C2sudg + 1/2e2qas2L − 4adf− C1sud + 2C2sudg + Osqd . 0.

From s59d and s60d we get the ratio

MsĈd
iCi2 ø −

a226fN3 − C1suds1 + adsN3 + aNvrq
2dg2

p3s1 + 2edNvv2Ccsud
+

q2e2qasL − 2ad
2Ccsud

. s61d

Thus for

q2 ,
a226fN3 − C1suds1 + adsN3 + aNvrq

2dg2

p3s1 + 2edNvve
2qasL − 2ad

s62d

andLuÞ0 the theorem is proved. In the caseLu→0 we expand cossLud in series in expressions
sA+Bd and sABd,

073501-12 O. P. Melnichuk and I. Y. Popov J. Math. Phys. 46, 073501 ~2005!

                                                                                                                                    



sA + Bd , − F1 −
Lq + Osq3d

1/2sL2q2 + L2u2d + Osq6 + u6dG , s63d

sABd ,
1

2

1

1/2sL2q2 + L2u2d + Osq6 + u6d
, s64d

If u is sufficiently small likeq or q2 sor even ifu=0d we can write

sA + Bd ,
1

Lq
C1, s65d

sABd ,
1

L2q2C2, s66d

whereC1, C2 are non-negative. In this case it is difficult to see the dependencies ofu. Here we
calculate an estimation of the ratios7d as a constant for allLu,q. Let us see theFisA,Bd
calculations

F1 ø 2sL − 2adq + Osq2d,

F2 =
8aC1

pLq
+ Os1d,

F3 =
8aC2

L2q2 +
4a

Lq
S4aC2

L
+ C1D + Os1d,

F4 = 4C2
L − 2a

L2q2 + 2C1
L − 2a

Lq
+ Os1d,

and then the ratio estimation is

MsĈd

iĈi2
ø −

24aC1
2s1 + e1d

p2s1 + 2ed2Nvvs8C2 + Osqdd
+

q4e2qasL − 2ad
as8C2 + Osqdd

, s67d

wheree1,aq2. Then for

q4 ,
23a2C1

2s1 + e1d
p2s1 + 2edNvve

2qasL − 2ad

the theorem is proved. The dependence of the ratio

MsĈd

iĈi2

for the trial functionĈ of the quasimomentumu and the parameterq is shown in Figs. 3 and 4.
One can see that there is a specific behavior near the points 2pn. That is why we consider the ratio
in neighborhoods of these points separately. The figures show that the ratio is strongly negative for
all values ofu. Theorem 2 gives us a more precise result—an estimation for the gap. Summarizing
the results for differentu, we obtain the following estimation of the ratio for the trial function:
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MsCd
iCi2 ø − ac, c =

2C1
2s1 + e1d

p2s1 + 2edNvvs8C2 + Osqdd
. s68d

The assumptions which we made are sufficient and not necessary. We assume that the separating
layer is strongly narrow, but there is no assumption concerning the very high dielectric contrasts
as in the work of Kuchment and co-workers.2,4
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APPENDIX

Here we place the formulas, that are not in the main text, but which are useful for the reader’s
understanding of the proofs.

Calculations ofMsĈd in Lemma 2 are as follows:

FIG. 3. The dependence of the ratioMsĈd / iĈi2 on the quasimomentumu for q=10−8.

FIG. 4. The dependence of the ratioMsĈd / iĈi2 on the quasimomentumu and parameterq.
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MsĈd = iĈxi2 + iĈyi2 − iĈÎn2k0
2 − l2i2 = iFxi2 + iGxi2 +E

0

dE
−`

`

F̄xḠx + FxGx dx dy + iFyi2

+ iGyi2 +E
0

dE
−`

`

F̄yḠy + FyGy dx dy − iFÎn2k0
2 − l2i2 − iGÎn2k0

2 − l2i2

−E
0

dE
−`

`

sF̄Ḡ + FGdÎn2k0
2 − l2dx dy = iFxi2 + iGxi2 + iGyi2 +E

0

dE
−`

`

F̄yḠy + FyGy dx dy

+E
0

dE
−`

`

F̄xḠx + FxGx dx dy − FiGÎn2k0
2 − l2i2 +E

0

dE
−`

`

sF̄Ḡ + FGdsn2k0
2 − l2ddx dyG ,

sA1d

where

E
0

dE
−`

`

F̄yḠy + FyGy dx dy =E
0

dE
−`

`

F̄yḠy dx dy +E
0

dE
−`

`

FyGy dx dy

=E
−`

` FuFyGu0
d −E

0

d

F̄yyḠ dyGdx +E FuFyGu0
d −E FyyG dyGdx

= uE
−`

`

sF̄yḠ + FyGdu0
d dx −E

−`

` E
0

d

sF̄yyḠ + FyyGddy dx

= −E
−`

`

fF̄ysx,0dḠsx,0d + Fysx,0dGsx,0dgdx

−E
−`

` E
0

d

sF̄yyḠ + FyyGddy dx. sA2d

Calculations ofiGÎn2k0
2−l2i2 are as follows:

iGÎn2k0
2 − l2i2 = h2E

0

`

rsyd2snsyd2k0
2 − l2ddyE

−a

a

gsxd2 dx , h2n2a2

p
S1 +

32a

3dp
D , sA3d

where

E
0

`

rsyd2snsyd2k0
2 − l2ddy = n2E

0

`

rsyd2 dy , n2 a

p
S1 +

32a

3dp
D , sA4d

and

E
−a

a

gsxd2 dx =E
−a

a

cosSpx

2a
D2

dx = a. sA5d

The integral ofvsyd2 is used to calculate the normsiFi2 andiFyi2, which are used in Theorem 1
and Theorem 2. In the proofs we mark the value of this integral asNvv. Calculations of the integral
are
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Nvv =E
0

`

vsyd2 dy = N3
2E

0

d

sinsmyd2 dy + sN1 + M1d2E
d

d

cossny − argd2 dy + N2
2E

d

`

e−2gsy−dd dy

= N3
21

2
S 1

2m
sins2mdd + 2dD + N2

2 1

2g
+ sN1 + M1d21

2
S 1

2m
ssins2smd − argdd − sins2smd − argddd

+ sd − ddD , sA6d

whereNvvù0. In the case of a single coupling window for the normifsxdi2 we have

E
−`

`

f̄ xsxdfxsxddx =E
−a

a

f̄xsxdfxsxddx + 2E
−`

−a

fxsxdfxsxddx = q. sA7d

And in the case of the periodic set of coupling windows we have

E
−L/2

L/2

f̄ xsxdfxsxddx =E
−a

a

f̄xsxdfxsxddx + 2E
−L/2

−a

f̄xsxdfxsxddx

=E
−a

a

q2e2qas2ABcoshs2qxd − A2 − B2d + 2E
−L/2

−a

q2e2qas2ABcoshs2qxd − A2 − B2

− A − B + sA + B + 1de2qxd

= − 2qe2qaf− ABsinhs2qad + qasA2 + B2dg + qe2qaf− 2ABssinhs2qad − sinhsqLdd

+ s2qa− qLdsB2 + A2 + A + Bdg + qe2qafse−2qa − e−qLdsA + B + 1dg

= qe2qaf2ABssinhsqLd − sinhs2qad − qL + 2qad − sqL − 2qa+ e−qL − e−2qad

3sA + Bdg − qe2qafe−qL − e−2qag = qe2qaF1sA,Bd, sA8d

whereF1sA,Bdù0. The integral ofvsydrsyd is used in both theorems and known as constantNvr,

E
0

d

vsydrsyddy =E
0

d

N3 sinsmyde−py/2a dy +E
d

d/2

sN1 cossnyd + M1 sinsnydde−py/2a dy

+E
d/2

d

sN1 cossnyd + M1 sinsnydd2S1 −
y

d
De−pd/4a dy

=E
0

d

N3 sinsmyde−py/2a dy + sN1 + M1dE
d

d/2

cossny − argde−py/2a dy + sN1 + M1d

Ed/2
d cossny − argd2S1 −

y

d
De−pd/4a dy, sA9d

where

N3E
0

d

sinsmyde−py/2a dy = N3
2a

p2 + 4m2a2s2am − e−pd/2afp sinsmdd + 2ma cossmddgd,

sA10d
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sN1 + M1dE
d

d/2

cossny − argde−py/2a dy

= sN1 + M1d
2a

p2 + 4n2a2se−pd/4as− p coss1/2nd − argd

+ 2an sins1/2nd − argdd

− e−pd/2as− p cossnd − argd + 2an sinsnd − argddd

= sN1 + M1d
2a

p2 + 4n2a2se−pd/2asp cossnd − argd

− 2an sinsnd − argdd + e1d , sA11d

sN1 + M1dE
d/2

d

cossny − argd2S1 −
y

d
De−pd/4a dy = sN1 + M1d

e−pd/4a

n2d
s− 2 cossnd − argd − sins1/2nd

− argdnd + 2 coss1/2nd − argdd = sN1 + M1de1,

sA12d

wheree1,e−pd/4a. So,

E
0

d

vsydrsyddy = aNvr . sA13d
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We replace the group of grouplike elements of the quantized enveloping algebra
Uqsgd of a finite dimensional semisimple Lie algebrag by some regular monoid and
get the weak Hopf algebrawq

dsgd. It is a subclass of weak Hopf algebras but not
Hopf algebras. Then we devote to constructing a basis ofwq

dsgd and determine the
group of weak Hopf algebra automorphisms ofwq

dsgd when q is not a root of
unity. © 2005 American Institute of Physics.fDOI: 10.1063/1.1933063g

I. INTRODUCTION

Recently, many mathematicians are interested in generalizations of Hopf algebras, of which
importance has been recognized in both mathematics and physics. One way is to introduce the
notion of a weak coproduct, such thatDs1dÞ1^ 1, which was motivated by the study of symme-
tries in low dimensional quantum field theory. This resulted in the definition of weak Hopf
algebras, introduced by Böhm, Nill, and Szlachányissee, for example, Ref. 3d. Since they are not
bialgebras, but almost bialgebras, there were also axioms required to define a weak antipode,
differing slightly from the usual notion of a Hopf algebra. The face algebras7 and generalized Kac
algebras19 are examples of this class of weak Hopf algebras.

It is possible to define a weak antipode on a given bialgebra. This was introduced by Li in Ref.
11. By definition, a bialgebraH=sH ,m ,h ,D ,«d over a fieldk together with the identity map id in
homksH ,Hd is called aweak Hopf algebraif there existsTPhomksH ,Hd such that idpTp id= id
andTp idpT=T wherep is the convolution product. The mapT is called a weak antipode. It is
noted that the notion of Hopf algebras, and left or right Hopf algebras are included in this class of
weak Hopf algebrasssee Refs. 17, 16, and 6d. Another typical example is the weak quantum
algebraswslqs2d andvslqs2d constructed in Ref. 12. It is the generalization by replacing the set of
grouplike elements ofUqssl2d by the set of some regular monoid, whereUqssl2d is the quantized
enveloping algebra corresponding to three-dimensional semisimple Lie algebra. The basis and
some properties ofwslqs2d frespectively,vslqs2dg were studied in Ref. 12. Recently, Aizawa and
Isaac1 gave a description of weak Hopf algebrawslq

dsnd in general, which is corresponding to the
known Hopf algebraUqsslnd.

Our aim is to give more nontrivial examples for weak Hopf algebras in the sense of Li.
Following the idea,1,12 we would like to extend this construction to the more general onewq

dsgd
corresponding to arbitrary finite dimensional semisimple Lie algebrag.

Thanks to the definition of quantum groupUqsgd defined by Refs. 13 and 9, we can also
replace the groupGsUqsgdd of grouplike elements by some regular monoid and get the weak Hopf
algebrawq

dsgd, which is resulted from quantum groupUqsgd.12,9,13 This successful construction
provides us with a subclass of weak Hopf algebras but not Hopf algebras. As does the classic
quantum groupUqsgd, we will determine the basis and the group of weak Hopf algebra automor-
phisms ofwq

dsgd.
To determine the basis ofwq

dsgd, we first show thatwq
dsgd can be written as a direct sum of its

two ideals and one of them is just isomorphic to the classic quantum groupUqsgd. Then we apply

adElectronic mail: slyang@bjut.edu.cn
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the PBW theorem forUqsgd to describe a basis ofwq
dsgd. If q is not a root of unity, the group of

Hopf algebra automorphisms ofUqsgd was determined in Ref. 4. The case whenq is a root of
unity, was considered in recent work.15 In the present paper, we will determine the group of weak
Hopf algebra automorphisms ofwq

dsgd under the condition thatq is not a root of unity. The method
is to apply the result of Ref. 4, Corollary 4.3, and some technical lemmas.

The paper is organized as follows.
In Sec. II, we give some notations and the definition of weak Hopf algebrawq

dsgd. The ideal
to construct the algebrawq

dsgd and some basic properties are described. In Sec. III, we give the
comultiplication ofwq

dsgd in order that it is a weak Hopf algebra but not a Hopf alegbra. The proof
is somewhat basic and direct. In Sec. IV, we describe the basis ofwq

dsgd by the technique of
Lusztig’s constructing PBW basis ofUqsgd. In the final section, we study and determine the group
of Hopf automorphisms ofUqsgd.

II. WEAK QUANTUM ALGEBRAS wq
d
„g…

In this paper, we always assume thatk is a field of characteristic 0. Letg be a finite dimen-
sional semisimple Lie algebra. For the simplicity, we can assume thatg is also simple. Then there
is a finite positive symmetrizable Cartan matrixC=saijdn3n corresponding to itssee Ref. 8d.

Now we letR be the root system ofg and we fix a basisI =ha1,… ,anj of R. Let W be the
Weyl group ofR. It is well known that there is a uniqueW-invariant scalar products,d on the
vector space generated byR over the reals such thatsa ,ad=2 for all short rootsa in R. Set for
eachai P I, 1ø i øn

di =
sai,aid

2
.

It is noted thatsai ,a jd=diaij =djaji .
Let qPk andqi =qdi, 1ø i øn. It is assumed thatqi Þ ±1, 0 for all i. For an indeterminatex

and an integerm, let

fmgx =
xm − x−m

x − x−1 , fmg!x = fmgx ¯ f1gx, f0gx ! = 1,

and

Fm

s
G

x
=

fmg!x

fsg!xfm− sg!x
.

One can review the definition of the quantized enveloping algebraUq=Uqsgd by referring to
Refs. 10, 9, and 13. For the completeness, we describe it here as follows. The algebraUqsgd
generated by 4n generatorsei , f i ,ki, ki

−1s1ø i ønd with the relations

kikj = kjki, kiki
−1 = ki

−1ki = 1, s2.1d

kiejki
−1 = qi

aijej, ki f jki
−1 = qi

−aij f j , s2.2d

ei f j − f jei = di j

ki − ki
−1

qi − qi
−1 , s2.3d

o
s=0

1−aij

s− 1dsF1 − aij

s
G

qi

ei
1−aij−sejei

s = 0, if i Þ j , s2.4d
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o
s=0

1−aij

s− 1dsF1 − aij

s
G

qi

f i
1−aij−sf j f i

s = 0, if i Þ j . s2.5d

To generalize the invertibility conditions2.1d, one way is to weaken the invertibility to regularity,

in which instead ofhki ,ki
−1j by a pairhKi ,K̄ij for all 1ø i øn subjecting to some relations. For

example, we can introduce a projectorJ such that

J = KiK̄i = K̄iKi ,

JKi = Ki, K̄iJ = K̄i ,

JK̄i = K̄i, KiJ = Ki

for 1ø i øn. To generalize other relations of the definition, we need some terminologies for
simplicity. For example, ifEi satisfies

KjEi = qi
aijEiKj, EiK̄j = qi

aij K̄jEi, ∀ j , s2.6d

we sayEi is type 1. Moreover, ifEi satisfies

KjEiK̄j = qi
aijEi, ∀ j , s2.7d

we sayEi is type 2. The same convention holds forFi by replacingEi with Fi andaij with −aij in
the above relations.

We borrow some notations from Ref. 1, 2n simple generatorsEi andFi are listed by starting
with theEi followed by theFi, where a 1 is toindicate the use of a type 1 generator and a 0 is to
indicate the use of a type 2 generator. Then we write down a list of 0’s and 1’s in the order
corresponding to the generators determined by their type. This gives a sequenced containing 0
and 1 in a binary representation of length 2n. It is noted thatd contains all the information on the

relations with the generatorsEi and Fj, all Kj / K̄j, and J. We write d in terms of its binary
expansion,

d = sk1,…,knuk̄1,…,k̄nd

where the bar separates the values representing theEi andFi, and where theki andki have values
of either 0 or 1. Accordingly, we can sayEi andFi, ai P I are typed in an obvious sense.

Now we can write down this generalization explicitly as follows.

Definition 2.1: The algebrawq
dsgd is generated by the4n+1 variables Ei ,Fi ,Ki, K̄is1ø i

ønd and J with the following relations: for all1ø i,j øn,

J = KiK̄i , s2.8d

KiK̄j = K̄jKi, KiKj = KjKi, K̄iK̄j = K̄jK̄i , s2.9d

JKi = Ki, JK̄i = K̄i , s2.10d

Ei, Fi are typed, s2.11d

EiFj − FjEi = di j
Ki − K̄i

qi − qi
−1 , s2.12d
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o
s=0

1−aij

s− 1dsF1 − aij

s
G

qi

Ei
1−aij−sEjEi

s = 0, if i Þ j , s2.13d

o
s=0

1−aij

s− 1dsF1 − aij

s
G

qi

Fi
1−aij−sFjFi

s = 0, if i Þ j . s2.14d

The algebrawq
dsgd is said to be ad-typeweak quantum algebraassociated to Lie algebrag.

It is easy to see that there are 22n possible weak quantum algebraswq
dsgd corresponding to the

sequenced in total.
It is easy to see thats2.9d ands2.10d generalize the relations2.1d, and the relationss2.11d and

s2.12d generalize the corresponding relationss2.2d and s2.3d. The notationsPi s1ø i ønd are
defined by

Pi
k = 5Ki

k, k . 0,

J, k = 0,

K̄i
−k, k , 0.

6
It is easy to see thatPi

k satisfy the regularity conditions

Pi
kPi

−kPi
k = Pt

k s2.15d

for all kPZ.
There are some properties forwq

dsgd which are used later.
Lemma 2.2: The idempotent J is in the center ofwq

dsgd.
Proof: Indeed, forKj and K̄j, it follows from s2.9d and s2.10d. For instance,

KjJ = KjKjK̄j = KjK̄jKj = JKj .

For Ej, if it is type 1, then we have

JEj = KiK̄iEj = qi
−aijKiEjK̄i = EjJ

by s2.6d if Ei is type 2,

JEi = KiK̄iEi = qi
−2KiK̄iKiEiK̄i = qi

−2KiEiK̄i = qi
−2KiEiK̄iKiK̄i = EiJ

by s2.7d. Hence,JEi =EiJ for all i =1,2,… ,n. The same argument forFi by s2.11d. h

If Ei is type 2, henceKjEiK̄j =qi
aijEi for all 1ø j øn, then

KjEi = KjJEi = KjEiJ = KjEiK̄jKj = qi
aijEiKj

andEiK̄j =qi
aij K̄jEi. Similarly, if Fi is type 2, we have

KjFi = qi
−aijFiKj, FiK̄j = qi

−aij K̄jFi .

Now, it is straightforward to check by induction thatEi srespectively,Fid, 1ø i øn, is type 1 or
type 2, the following relations hold inwq

dsgd:

Ei
mKj

n = qi
−mnaijKi

nEi
m, Fi

mKj
n = qi

mnaijKj
nFi

m,

Ei
mK̄j

n = qi
mnaij K̄j

nEi
m, Fi

mK̄j
n = qi

−mnaij K̄j
nFi

m. s2.16d

In particular, we have
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Ei
mKi

n = qi
−2mnKi

nEi
m, Fi

mKi
n = qi

2mnKi
nFi

m,

s2.17d
Ei

mK̄i
n = qi

2mnK̄i
nEi

m, Fi
mK̄i

n = qi
−2mnK̄i

nFi
m.

III. THE WEAK HOPF ALGEBRA STRUCTURE OF wq
d
„g…

To make thed-type weak quantum algebrawq
dsgd be a weak Hopf algebra, we define three

maps,

D:wq
dsgd → wq

dsgd ^ wq
dsgd,

«:wq
dsgd → k,

T:wq
dsgd → wq

dsgd,

as follows:

DsKid = Ki ^ Ki , s3.1d

DsK̄id = K̄i ^ K̄i , s3.2d

DsJd = J ^ J, s3.3d

DsEid = H1 ^ Ei + Ei ^ Ki , Ei is type 1,

J ^ Ei + Ei ^ Ki , Ei is type 2,
J s3.4d

DsFid =HFi ^ 1 + K̄i ^ Fi , Fi is type 1,

Fi ^ J + K̄i ^ Fi , Fi is type 2,
J s3.5d

«sEid = «sFid = 0, «sKid = «sK̄id = 1, «sJd = 1,

while the mapT has the form

Ts1d = 1, s3.6d

TsEid = − EiK̄i , s3.7d

TisFid = − KiFi , s3.8d

TsKid = K̄i , s3.9d

TsK̄id = Ki,TsJd = J. s3.10d

Then we extend them to the wholewq
dsgd.

In Ref. 1, Sec IV, the authors investigated the algebrawslq
dsnd and claimed thatwslq

dsnd is a
weak Hopf algebra, of which no proof was given. In general, we yield the following.

Theorem 3.1: sRef. 1, Sec. IVd wq
dsgd is a noncommutative and noncocommutative weak Hopf

algebra with the weak antipode T, but not a Hopf algebra.
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In Ref. 1, the authors gave a classification in some sense of weak Hopf algebras corresponding
to Uqsslnd. Similarly, we can follow the idea1 to describe the isomorphism classes of weak Hopf
algebraswq

dsgd. As a consequence, we have a lot of nontrivial examples of weak Hopf algebras for
various sequencesd.

The theorem follows from Lemma 3.2 and Lemma 3.3 below.
Lemma 3.2: wq

dsgd is a bialgebra with comultiplicationD and counit«.
Proof: It can be shown by direct calculation that the following relations hold:

DsKidDsK̄jd = DsK̄jdDsKid,

DsJd = DsKidDsK̄id,

DsJdDsKid = DsKid,

DsJdDsK̄id = DsK̄id,

«sKid«sK̄jd = «sK̄id«sKjd,

«sJd«sKid = «sKid,

«sJd«sK̄id = «sK̄id,

«sK̄id«sEid = q−2«sEid«sK̄id,

«sK̄id«sFid = q2«sFid«sK̄id,

«sEid«sFjd − «sFjd«sEid = di j
«sKid − «sK̄id

qi − qi
−1 .

If Ei is type 1, then

DsKjdDsEid = sKj ^ Kjds1 ^ Ei + Ei ^ Kid = Kj ^ KjEi + KjEi ^ KjKi = qi
aijKj ^ EiKj + qi

aijEiKj

^ KiKj = qi
aijDsEidDsKjd;

if Ei is type 2, then

DsKjdDsEidDsK̄jd = sKj ^ KjdsJ ^ Ei + Ei ^ KidsK̄j ^ K̄jd = KjK̄j ^ KjEiK̄j + KjEiK̄j ^ KjKiK̄j

= qi
aijJ ^ Ei + qi

aijEi ^ Ki = qi
aijDsEid.

Therefore,D keeps the relations2.11d for Ei’s. The similar argument can show thatD also keeps
the relations2.11d for Fi’s.

Now we examine the identity

DsEidDsFjd − DsFjdDsEid = di j
DsKid − DsK̄id

qi − qi
−1 .

The following cases should be considered:

s1d Ei is type 1 andFi is type 1,
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s2d Ei is type 1 andFi is type 2,
s3d Ei is type 2 andFi is type 1,
s4d Ei is type 2 andFi is type 2.

For the cases2d, it is noted that

EiK̄j = qi
aij K̄jEi = qdiaij K̄jEi = qsai,a jdK̄jEi

and

KiFj = KiFjJ = KiFjK̄jKi = qj
−ajiFjKi = q−djajiFjKi = q−sai,a jdFjKi .

The later identity holds sinceKiJ=Ki andJ is central inwq
dsgd. Then, it is easy to see that

DsEidDsFjd − DsFjdDsEid = K̄j ^ sEiFj − FjEid + sEiFj − FjEid ^ Ki

= di j K̄ j ^
Ki − K̄i

qi − qi
−1 + di j

Ki − K̄i

qi − qi
−1 ^ Ki

= di j
Ki ^ Ki − K̄i ^ K̄i

qi − qi
−1 = di j

DsKid − DsK̄id
qi − qi

−1 .

We have shown thatD keeps the relations2.12d for the cases2d. For the other cases the proof is
similar. To see the mapD keeps the quantum Serre relationss2.13d ands2.14d, we should consider
several cases according to the type ofhEi ,Ejj or hFi ,Fjj si Þ jd. In fact, for each case, the argument
is more or less the same as the case ofUqsgd ssee Ref. 9, pp. 67 and 68d.

Therefore,D and« can be extended to algebra morphisms fromwq
dsgd to wq

dsgd ^ wq
dsgd and

from wq
dsgd to k, respectively.

By the above relations it can be shown that

sD ^ iddDsXd = sid ^ DdDsXd,

s« ^ iddDsXd = sid ^ «dDsXd = X

for any X=Ei ,Fi ,Ki or K̄i. Let m andh be the product and the unit ofwq
dsgd, respectively, then

swq
dsgd ,m ,h ,D ,«d becomes a bialgebra. h

It is easy to see that

TsK̄idTsKjd = TsKjdTsK̄id,

TsJdTsKid = TsKid,

TsJdTsK̄id = TsK̄id,

TsFjdTsEid − TsEidTsFjd = di j
TsKid − TsK̄id

qi − qi
−1 ,

andEi is either type 1 or type 2, the mapT keeps the antirelation ofs2.11d. The argument forFi

is similar. Moreover,T also keeps the antirelation for quantum Serre relations. For example, for
1ø i,j øn with i Þ j , let r =1−aij , we have
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o
s=0

r

s− 1dsFr

s
G

qi

TsEidsTsEjdTsEidr−s = o
s=0

r

s− 1dsFr

s
G

qi

s− 1dr+1sEiK̄idssEjK̄jdsEiK̄idr−s

= − qj
2qi

r2+r+raij K̄i
rK̄jo

s=0

r

s− 1dr−sFr

s
G

qi

Ei
sEjEi

r−s = 0.

Here we use the formulass2.16d and s2.17d. The argument forFi is similar. Therefore,T can be
extended to an antialgebra morphism fromwq

dsgd to wq
dsgd, respectively.

Recall that the convolution product in the bialgebraswq
dsgd ,m ,h ,D ,«d is defined in the simi-

lar way to the standard onessee, e.g., Ref. 10d as

s f p gdsXd = ms f ^ gdDsXd s3.11d

for all f ,gPHomswq
dsgd ,wq

dsgdd andXPwq
dsgd. It is noted that ifEi is type 2, then

JEi = KiK̄iEi = qi
−2KiK̄iKiEiK̄i = qi

−2KiEiK̄i = Ei .

The same argument shows thatFiJ=FiJ=Fi if Fi is type 2. Let id denote identity map in
homkswq

dsgd ,wq
dsgdd.

Lemma 3.3: Let X be Ei ,Fi ,Ki, or K̄i, then

sid p T p iddsXd = idsXd,

sT p id p TdsXd = TsXd.

Proof: It is easy forX=Ki ,K̄i. We considerX=Ei, as an example. We set

D2 = sid ^ Dd + D.

If Ei is type 1, then

D2sEid = 1 ^ 1 ^ Ei + 1 ^ Ei ^ Ki + Ei ^ Ki ^ Ki .

It follows that

sid p T p iddsEid = Ts1dEi + TsEidKi + EiTsKidKi = Ei − EiK̄iKi + EiK̄iKi = idsEid,

and

sT p id p TdsEid = Ts1dTsEid + Ts1dEiTsKid + TsEidKiTsKid

= − EiK̄i + EiK̄i − EiK̄iKiK̄i = − EiK̄i = TsEid.

If Ei is type 2, then

D2sEid = J ^ J ^ Ei + J ^ Ei ^ Ki + Ei ^ Ki ^ Ki .

It is also deduced that

sid p T p iddsEid = J TsJdEi + JTsEidKi + EiTsKidKi = JEi − EiK̄iKi + EiK̄iKi = JEi = idsEid

sinceJEi =Ei, and

sT p id p TdsEid = TsJdJTsEid + TsJdEiTsKid + TsEidKiTsKid

= − EiK̄i + EiK̄i − EiK̄iKiK̄i = − EiK̄i = TsEid.

As for Fi, the argument is similar. The proof of the lemma is finished. h
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In order to conclude that the antipode axioms hold on arbitrary elements, the following two
facts are to be used:

sad the coproducts of the generators are bilinear expressions of generators;
sbd one of sidpTdsXd and Tp idsXd is a central element ofwq

dsgd for X being the generators

Ki ,K̄i ,Ei ,Fi.

The factsad is obvious. To seesbd, we note the fact thatsidpTdsXd=«sXdJ for X=Ki ,K̄i ,Ei

s1ø i ønd andFi of type 2. HencesidpTdsXd is in the center ofwq
dsgd. However, ifX=Fi is type

1, thesidpTdsXd=s1−JdFi may not be a central element, butsTp iddsFid=«sFidJ is in the center.

Similarly, sTp iddsXd for X=Ki ,K̄i ,Fi s1ø i ønd and Ei is of type 2, in the center ofwq
dsgd.

However, if X=Ei is type 1, thesTp iddsXd=s1−JdEi may not be a central element, butsidpTd
3sEid is in the center ofwq

dsgd. This means thatsbd holds.
It is noted thatEis1−JdFj =Fjs1−JdEi for all i , j P h1,2,… ,nj by the relations2.12d. There-

fore, if Ei srespectively,Fid is type 1,sTp iddsEid frespectively,sidpTdsFidg commutates with allFj

srespectively, allEjd, andKj ,K̄j s1ø j ønd.
We should show the claim that if

sid p T p iddsxd = x, sT p id p Tdsxd = Tsxd,

sid p T p iddsyd = y, sT p id p Tdsyd = Tsyd,

for all x andy being generatorsEi ,Fi ,Ki ,K̄i, then

sid p T p iddsxyd = xy, sT p id p Tdsxyd = Tsxyd.

However, it is considerably direct by the above facts. Now, that the antipode axioms hold on
arbitrary elements is obvious by induction.

If we assume that with the operationsm ,h ,D ,« the algebrawq
dsgd would possess an antipode

Sso as to become a Hopf algebra, thenSshould satisfysSp iddsJd=h«sJd, and it would follow that
SsJdJ=1 andJ is invertible. It is impossible sinceJs1−Jd=0. This implies thatwq

dsgd is not a Hopf
algebra with the above operators. The proof of Theorem 3.1 is finished. h

It should be noted that ifg=sln, the algebrawq
dsgd is just the mixtureswslq

dsnd in Ref. 1. In
particular, ifg=sl2, wq

dsgd whered=s1u1d frespectively,d=s0u0dg coincides withwslqs2d frespec-
tively, vslqs2dg given in Ref. 12.

IV. THE BASIS OF wq
d
„g…

One can find the relationship betweenUqsgd and the quantum algebrawq
dsgd as follows.

Proposition 4.1: wq
dsgd / kJ−1l>Uqsgd.

Proof: It is obvious by cancellingKi. h

In fact, we can give a more explicit relationship betweenwq
dsgd andUqsgd. For this purpose,

we let wq=wq
dsgdJ and w̄q=wq

dsgds1−Jd. We have the following decomposition.
Proposition 4.2: As algebraswq

dsgd=wq % w̄q. Moreover, wq>Uqsgd as Hopf algebras.
Proof: Noting thatJ is a central idempotent, we see thatwq and w̄q are ideals ofwq

dsgd. It
follows that

wq
dsgd = wq % w̄q

as algebras. Moreover, it is easy to see thatwq is generated byEiJ,FiJ,Ki ,K̄i, andJ subject to the
relationss2.8d–s2.10d and

KisEjJd = qi
aijsEjJdKi, K̄isEjJd = qi

−aijsEjJdK̄i , s4.1d
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KisFjJd = qi
−aijsFjJdKi, K̄isFjJd = qi

aijsFjJdK̄i , s4.2d

sEiJdsFjJd − sFjJdsEiJd = di j
Ki − K̄i

qi − qi
−1 , s4.3d

o
s=0

1−aij

s− 1dsF1 − aij

s
G

qi

sEiJd1−aij−ssEjJdsEiJds = 0, if i Þ j , s4.4d

o
s=0

1−aij

s− 1dsF1 − aij

s
G

qi

sFiJd1−aij−ssFjJdsFiJds = 0, if i Þ j . s4.5d

HereJ can be viewed as the identity ofwq. At this point of viewwq becomes a Hopf algebra, in
which the comultiplicationD is

DsEiJd = J ^ EiJ + EiJ ^ Ki ,

DsFiJd = FiJ ^ J + K̄i ^ FiJ,

DsKid = Ki ^ Ki, DsK̄id = K̄i ^ K̄i .

The counit« is

«sEiJd = «sFiJd = 0, «sKid = «sK̄id = 1.

The antipodeS is

SsEiJd = − sEiJdK̄i, SsFiJd = − KisFiJd, SsKid = K̄i, SsK̄id = Ki .

Let r be the algebra morphism fromUqsgd to wq defined by

rseid = EiJ, rsf id = FiJ, rskid = Ki, rski
−1d = K̄i .

It is straightforward to see thatr is a Hopf algebra isomorphism. h

For the idealw̄q of wq
dsgd, some conventions should be noted. Let

d = sk1,…,knuk̄1,…,k̄nud

be a binary sequence. Ifki srespectively,k̄id, 1ø i øn is zero, and hence thatEi srespectively,Fid
is type 2, thenEis1−Jd=0 frespectively,Fis1−Jd=0g; if ki srespectively,k̄id, 1ø i øn is nonzero,
and hence thatEi srespectively,Fid is type 1, thenEis1−JdÞ0 frespectively,Fis1−JdÞ0g. Let

d = hi uki Þ 0uj and d̄ = hi uk̄i Þ 0uj

and

Xi = Eis1 − Jd, Yj = Fjs1 − Jd,

where i Pd, j P d̄. It is easy to see thathXi ,Yjui Pd , j P d̄jø h1−Jj generate the idealw̄q with
enjoying the first relation

XiYj = YjXi for all i P d, j P d̄ s4.6d

from the relations2.12d.
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To see what other relationsXi andYi enjoy, we consider the following two extreme cases:

s1d The case

In this case,d=h1,… ,nj and d̄=h1,… ,nj. From the quantum Serre relationss2.13d and
s2.14d, we get that

o
s=0

1−aij

s− 1dsF1 − aij

s
G

qi

sXid1−aij−sXjsXids = 0, if i Þ j , s4.7d

o
s=0

1−aij

s− 1dsF1 − aij

s
G

qi

sYid1−aij−sYjsYids = 0, if i Þ j , s4.8d

and other relations corresponding tos2.8d–s2.11d would be vanished automatically. This
means that the idealw̄q can be understood as an algebra generated byXi ,Yi, 1ø i øn, with
an identity 1−J subject to the relationss4.6d–s4.8d.

s2d The case

In this case,d andd are empty andw̄q=ks1−Jd.

In general, three cases should be considered,

s1d dÞx and d̄=x,

s2d d=x and d̄Þx,

s3d dÞx and d̄Þx.

In the first case, as an algebraw̄q is generated byXi, i Pd with an identity 1−J subject to the

relationss4.7d with i , j Pd. In the second case, as an algebraw̄q is generated byYi, i P d̄ with an

identity 1−J subject to the relationss4.8d with i , j P d̄. In the third case,w̄q can be viewed as an

algebra generated byXi ,Yj, i Pd, j P d̄ with an identity 1−J subject to the relationss4.6d–s4.8d.
To consider the PBW basis ofwq

dsgd, we need some knowledge of braid groups. We define a
simple reflectionsi by

sisa jd = a j − aijai

for all i and j . Let W be the Weyl group ofR; it is the subgroup of GLsZnd generated by the
refelctionssis1ø i ønd. Let ,swd be the usual length function onW with respect to the generators
hs1,… ,snj. Let R+ be the set of positive roots ofR with respect to the set of simple rootsP and
,0= uR+u. For each pair 1ø i, j øn with i Þ j , we let r =−aij .

As is known in Ref. 9, for each 1ø i øn, there is a unique automorphismTi :Uqsgd→Uqsgd
such that

Tiseid = − f iki,Tisf id = − ki
−1ei ,

Tiskmd = ksismd,

Tisejd = o
k=0

r

s− 1diqi
−kei

sr−idejei
sid,
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Tisf jd = o
k=0

r

s− 1diqi
kf i

sidf j f i
sr−id.

They are called Lusztig’s symmetries. It is well known thathTi u1ø i ønj satisfies the braid
relations, that is

TiTjTi = TjTiTj, if sisj of order 2,

TiTjTiTj = TjTiTjTi, if sisj of order 4,

TiTjTiTjTiTj = TjTiTjTiTjTi, if sisj of order 6.

Therefore, the above facts allow us to define for eachwPW an automorphismTw of Uqsgd as
follows. Forw=1 setT1=1 sthe identityd. For wÞ1 choose a reduced expressionw=si1

¯sim
and

set

Tw = Ti1
¯ Tim

.

It is independent of the reduced expression. LetUq
+ srespectively,Uq

− andUq
0d be the subalgebra of

Uqsgd generated byei srespectively,f i andki ,ki
−1d, 1ø i øn. Let w0 be the longest element inW

and letw0=si1
¯sit

be a reduced expression. LetN be the set of non-negative numbers. According
to this order we denotea=sat ,… ,a1dPN,0 and

ea = Ti1
¯ Tit−1

seit

atd ¯ Ti1
Ti2

sei3

a3dTi1
sei2

a2dei1

a1. s4.9d

The following theorem is well known.
Theorem 4.3: scf. Ref. 9, Theorem 8.24d The elements ea srespectively,fad for aPN,0, are

linearly independent and a basis of Uq
+ srespectively,Uq

−d.
We note that the multiplication map

Uq
−

^ Uq
0

^ Uq
+ → Uqsgd, u1 ^ u2 ^ u3 → u1u2u3 s4.10d

is an isomorphism of vector spaces.
For s=ss1,s2,… ,sndPZn, we define

Ps = P1
s1P2

s2
¯ Pn

sn.

First, let us examine two examples.
Example 4.4: The set

hFbPsEaJua,b P N,0,sP Znuj ø hFbEas1 − Jdua,b P N,0uj

forms a basis ofwq
d̄sgd.

Proof: Let wq
0 be the subalgebra generated byhKi ,K̄iu1ø i ønj. It is easy to see thatPs ss

PZd forms a basis ofwq
0.

Let wq
+ srespectively,wq

−d denote the subalgebra generated byEiJ srespectively,FiJd, 1ø i
øn.

We replaceeik
wherek=1,… ,t on the right-hand side ofs4.9d by Eik

J frespectively,Eik
s1

−Jdg, and the corresponding left-hand side bysEJda fresppectively,sEs1−Jddag. By Theorem 4.3
the sethsEJdauaPN,0j frespectively,hsFJdbubPN,0jg forms a basis ofwq

+ srespectively,wq
−d. It is

easy to see that

sFJdbPssEJda = FbPsEaJ.

It follows from s4.10d that
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hFaPsEbJua,b P N,0,sP Znuj

forms a basis ofwq.
Similarly, hFaEbs1−Jdua,bPN,0j forms a basis ofw̄q. The proof is completed by Proposition

4.2. h

In a similar way we can get the following.
Example 4.5: The set

hFbPsEaJua,b P N,0,sP Znuj ø h1 − Jj

forms a basis ofwq
dsgd.

In general, let bothi and j be in d or in d̄, we say thati , j if there exist some sequencei

=g1,… ,gp= j in d, wheregp is in d or d̄, p is some positive integer, such thatsagi
,agi+1

dÞ0 for
all i =1,… ,p−1. This is an equivalent relation. Lets and s̄ be the set of equivalent classes ond

and d̄, respectively. Ife is an element ins or s̄, it is obvious thatCe=saijdi,jPe is also a symme-
trizable Cartan matrix. Ife1Þe2 in s or s̄, andi Pe1 and j Pe2, thenEiEj =EjEi andFiFj =FjFi, and
henceXiXj =XjXi and YiYj =YjYi, respectively. LetWe be the Weyl group corresponding to the

equivalent classe on d or d̄. Let w0
e =si1

¯site
be the longest element inWe. Let ,e= uw0

e u= te. We

denoteae=sate
,… ,a1d according to this order and

Xe
ae = Ti1

¯ Tite−1
sEite

ated ¯ Ti1
Ti2

sEi3

a3dTi1
sEi2

a2dEi1

a1s1 − Jd, s4.11d

Ye
ae = Ti1

¯ Tite−1
sFite

ated ¯ Ti1
Ti2

sFi3

a3dTi1
sFi2

a2dFi1

a1s1 − Jd. s4.12d

It is noted that

XiYj = YjXi

for all i Pd, j P d̄, and

d = øePse, d̄ = øePs̄e,

one sees that

UHp
ePs

Xe
aep

ēPs̄

Y
ē

bēUae P N,e,bē P N,ēJ
forms a basis ofw̄q. By Proposition 4.2 and the discussion above, we have the following.

Theorem 4.6: The notations are kept as above. Then the set

UhFbPsEaJua,b P N,0,sP Znuj ø Hp
ePs

Xe
aep

ēPs̄

Y
ē

bēUae P N,e,bē P N,ēJ
forms a basis ofwq

dsgd.
It is mentioned that the set

UhEaPsFaJua,b P N,0,sP Znuj ø Hp
ePs

Xe
aep

ēPs̄

Y
ē

bēUae P N,e,bē P N,ēJ
also forms a basis ofwq

dsgd.
Let us recall some basic facts used below. LetC be a coalgebra. If the sethCnjnù0 of

subspaces ofC satisfies

s1d Cn#Cn+1 andC=ønù0Cn
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s2d DsCnd#oi=0
n Ci ^ Cn−i,

then the sethCnjnù0 is said to be a coalgebra filtration ofC.
The following lemma is well known.
Lemma 4.7: sRef. 14, Lemma 5.5.1d Let H be a bialgebra which contains subspaces A0,A1

such that

s1d A0 is a (unital) subalgebra of H and A1 is a left, and a right A0-module;
s2d A1 generates H as an algebra, and1PA0;
s3d DA0#A0 ^ A0 and DsA1d#A1 ^ A0+A0 ^ A1.

Then, if we set An=sA1dn for all nù1, hAnj is a coalgebra filtration of H and A0$H0, where
H0 is the coradical of H.

The elementxPwq
dsgd is said to be a grouplike element ifDsxd=x^ x. The set G

=Gswq
dsgdd of all grouplike elements ofwq

dsgd can be determined.
A semigroupS is called regular, if for everyxPS, there exists ayPS such thatxyx=x and

yxy=y and a monoid is a semigroup with identity.
Proposition 4.8: The set of all grouplike elements is G=hPsusPZnjø h1j, which forms a

regular monoid under the multiplication ofwq
dsgd.

Proof: Let G be the setup as above. LetA0=kG and

A1 = A0So
i

kEi + kFi + A0DA0.

It is easy to see thatA0,A1 satisfies the hypotheses of Lemma 4.7 andA0#H0. HenceH0=A0. h

It is mentioned thatwq
dsgd is a pointed bialgebra with the coradicalkG by Proposition 4.8.

V. THE AUTOMORPHISM GROUP OF wq
d
„g…

If sA,m,m ,D ,« ,Td is a sweakd Hopf algebra, then asweakd Hopf algebra automorphism
w :A→A is an invertible algebra homomorphism satisfying

sw ^ wd + D = D + w,

« = « + w,

w + T = T + w.

The group of Hopf algebra automorphisms ofUqsgd was determined by several authors. See, for
example, Refs. 4 and 15. Inspired by these considerations, we would like to determine the group
of weak Hopf algebra automorphisms ofwq

dsgd whereq is not a root of unity.
Let N=sk*dn, and fora=sa1,… ,andPN, we define a mapfa:Uqsgd→Uqsgd by

faskid = ki, faseid = aiei, fasf id = ai
−1f i .

It is straightfoward to check thatfa is a Hopf algebra automorphism ofUqsgd. It is calledN the
group of diagonal automorphisms ofUqsgd.

Recall that the Dynkin diagram ofg is the weight graphG with verticesn=h1,2,… ,nj such
that verticesi and j are connected byaijaji edges, and vertexi carries weightdi. Let s be a
automorphsim of Dynkin diagramG, that iss is a bijection ofn and

diaij = dssidassidss jd

for all 1ø i,j øn. If this is the case, there is an automorphism of Hopf algebraUqsgd, also denoted
by s, given by

sskid = kssid, sseid = essid, ssf id = fssid.
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We denote byH the group of automorphisms of the Dynkin diagram. Also,H acts onN by the
rules s ·a=sass1d ,… ,assndd and we havefas=sfs·a. We will base on the following theorem to
investigate the group of automorphisms ofwq

dsgd.
Theorem 5.1: sRef. 4, Corollary 4.3; Ref. 18, Theorem 2.1d The group of Hopf algebra

automorphism of Uqsgd is the semidirect product N’H of the group of diagonal automorphism N
by the group of diagram automorphisms H.

Moreover, we also need some basic lemmas.
Lemma 5.2: If x ,yP w̄q, ax,byÞ0 and

Dsxd = 1 ^ x + x ^ Ki + axs1 − Jd ^ EiJ,

Dsyd = K̄i ^ y + y ^ 1 + byFiJ ^ s1 − Jd,

then x=axEis1−Jd and y=byFis1−Jd.
Proof: The notationsd and d̄ are as in Sec. IV. LetWd be the Weyl group corresponding tod

andwd=si1
¯sitd

be the longest element inWd and,d= td. Similarly, we have the Weyl groupWd̄,

wd̄=sj1
¯sjtd¯−1

, ,d̄ for the support setd̄ in an obvious sense.

Let wq
dsgd+ be the sub-bialgebra ofwq

dsgd generated byEi, 1ø i øn and the setG of group-
likes of wq

dsgd. Let wq
dsgd− be the sub-bialgebra ofwq

dsgd generated byFi, 1ø i øn and G. We
define aNfIg-algebra gradation onwq

dsgd+ frespectively,wq
dsgd−g such thatEj

s srespectively,Fj
sd are

homogeneous of degreesa j PNfIg for sPN, 1ø j øn. We also set degKj =degK̄j =degJ=0 for
all j . According to this gradation,wq

dsgd+ frespectively,wq
dsgd−g is also a graded coalgebra. It is

obvious thatwq
dsgd+s1−Jd, w̄q has a basishEas1−JduaPN,dj. Similarly, wq

dsgd−s1−Jd, w̄q has a
basishFbs1−JdubPN,d̄j.

It is easy to see the elementsEas1−Jd, Fbs1−Jd have a gradationuau and ubu, where

uau = a1a1 + a2si1
sai2

d + ¯ + atd
si1

si2
¯ sitd−1

sai td
d,

ubu = b1a1 + b2sj1
sa j2

d + ¯ + btd
sj1

sj2
¯ sjtd−̄1

sai jd
d̄.

Let

x = o
aPN,d,bPN,d

¯

xsa,bdEaFbs1 − Jd P w̄q,

wherehEaFbs1−Jdj are linear independent. We have

Dsxd = o
aPN,d,bPN,d

¯

usu+utu=uau

uxu+uyu=ubu

xsa,bdass,tdbsx,ydEsFxK̄uyu ^ EtKusuF
y − o

aPN,d,bPN,d
¯

usu+utu=uau

uxu+uyu=ubu

xsa,bdass,tdbsx,ydEsFxK̄uyuJ

^ EtKusuF
yJ.

Hence,
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Dsxd = o
aPN,d,bPN,d

¯

uxu+uyu=ubu

ua8u=uau,uyuÞ0

xsa,bdas0,a8dbsx,ydFxK̄uyu ^ Ea8Fys1 − Jd

+ o
aPN,d,bPN,d

¯

usu+utu=uau

ub8u=ubu,usuÞ0

xsa,bdass,tdbsb8,0dEsFb8s1 − Jd ^ EtKusu

+ o
aPN,d,bPN,d

¯

ua8u=uau

ub8u=ubu

xsa,bdas0,b8dbsb8,0dFb8 ^ Ea8 − o
aPN,d,bPN,d

¯

ua8u=uau

ub8u=ubu

xsa,bdas0,b8dbsb8,0dFb8J

^ Ea8J.

On the other hand, by the assumption we have

Dsxd = 1 ^ o
aPN,d,bPN,d

¯

xsa,bdEaFbs1 − Jd + o
aPN,d,bPN,d

¯

xsa,bdEaFbs1 − Jd ^ Ki + axs1 − Jd ^ EiJ.

Comparing the above identities, we conclude that allb=0. Now we can rewritex as

x = o
aPN,d

xsadEas1 − Jd P w̄q

and

o
aPN,d

usu+utu=uau

usuÞ0

xsadass,tdEss1 − Jd ^ EtKusu + o
aPN,d

ua8u=uau

xsad1 ^ Ea8 − o
aPN,d

ua8u=uau

xsadJ ^ Ea8J

= o
aPN,d

usu+utu=uau

usuÞ0

xsadass,tdEss1 − Jd ^ EtKusu + 1 ^ o
aPN,d

ua8u=uau

xsadEa8s1 − Jd + o
aPN,d

xsads1 − Jd ^ Ea8J

= 1 ^ o
aPN,d

xsadEas1 − Jd + o
aPN,d

xsadEas1 − Jd ^ Ki + axs1 − Jd ^ EiJ.

Also, comparing the above identity, we conclude thatuau= ua8u= i, and hencex=xsadEis1−Jd. It
follows thatxsad=ax. The argument forFi is similar. h

Lemma 5.3: Letw be a Hopf algebra automorphism of wq sthe identity is Jd. Then there exists
a unique way to extendw to wq

dsgd such thatw is an automorphism of weak Hopf algebrawq
dsgd.

Proof: Let w be the automorphism of Hopf algebrawq. By Lemma 5.1, the mapw is

Ki → Kssid, K̄i → K̄ssid, EiJ → assidEssidJ, FiJ → assid
−1 FssidJ

for some automorphisms of Dynkin diagram. Assume thatw can be extended towq
dsgd such that

w is an automorphism ofwq
dsgd as weak Hopf algebras. We must find suitable images ofwsEis1

−Jdd andwsFis1−Jdd. For example, ifEi is type 2, we do nothing sinceEis1−Jd=0. Assume that
Ei is type 1 andwsEis1−Jdd=x, thenxÞ0, xP w̄q, and
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wsEid = wsEiJ + Eis1 − Jdd = assidEssidJ + x.

Sincew is a coalgebra homomorphism, we have

assidEssidJ ^ Kssid + assidJ ^ EssidJ + Dsxd = sassidEssidJ + xd ^ Kssid + 1 ^ sassidEssidJ + xd.

It follows that

Dsxd = x ^ Kssid + 1 ^ x + assids1 − Jd ^ EssidJ.

By Lemma 5.2,x=assidEssids1−Jd. Similarly, we can get thatwsFis1−Jdd=assid
−1 Fssids1−Jd if Fi is

type 1, and nothing is done ifFi is of type 2. Of course,ws1d=1. The lemma is proved. h

For a=sa1,… ,andPN, we define a mapfa:wq
dsgd→wq

dsgd by

fasKid = Ki, fasK̄id = K̄i, fasEid = aiEi, fasFid = ai
−1Fi .

It is straightfoward to check thatfa is a weak Hopf algebra automorphism ofwq
dsgd. If sPH, then

there is an automorphism of weak algebrawq
dsgd, also denoted bys, given by

ssKid = Kssid, ssK̄id = K̄ssid, ssEid = Essid, ssFid = Fssid.

Recall that there is an action ofH on N by the ruless ·a=sass1d ,… ,assndd andfas=sfs·a.
Let Autswq

dsgdd be the group of automorphisms of weak Hopf algebrawq
dsgd. The group

Autswq
dsgdd can be determined by the following theorem.

Theorem 5.4: Autswq
dsgdd=N’H.

Proof: Theorem A in Ref. 4 is the key to determine the group of automorphisms of Hopf
algebra. But we do not know whether it is true or not for bialgebrasssee Ref. 5d; we cannot
directly apply Theorem A to get the result.

Let wPAutswq
dsgdd, sincew sends group-likes to group-likes, we havewsJd=Ps for somes

PZn by Proposition 4.8. IfsÞ0, sinceJ2=J we haveP2s=Ps, hencePs=J it follows that PsJ
=J. It is a contradiction for Theorem 4.6. Therefore,s=0 andwsJd=J.

According to Proposition 4.2,wq
dsgd=wq % w̄q and wq>Uqsgd as Hopf algebras, where the

notationswq and w̄q as before.
Let injq:wq→wq

dsgd be the inclusion defined by

J → J, EiJ → EiJ, FiJ → FiJ, Ki → Ki, K̄i → K̄i ,

and then extend it by linearity. It is easy to see that injq is a weak Hopf algebra injection by
Proposition 4.2. LetwPAutswq

dsgdd, we see thatwq=imsw + injqd sincewsJd=J. This implies that
w + injq is an automorphism of Hopf algebrawq andw + injqPN’H by Theorem 5.1. That is, the
mapwuwq

is

Ki → Kssid, K̄i → K̄ssid, EiJ → assidEssidJ, FiJ → assid
−1 FssidJ.

This implies thatw is

Ki → Kssid, K̄i → K̄ssid, Ei → assidEssid, Fi → assid
−1 Fssid

by Lemma 5.2. HencewPN’H and Autswq
dsgdd#N’H. On the other hand, it is obvious that

N’H#Autswq
dsgdd. The proof is completed. h

The more interesting problem is to determine the algebraic group ofwq
dsgd. It is mentioned

that Ref. 2 contributed to determine AutAlgsUq
+sgdd. A basic idea to approach the group

AutAlgsUq
+sgdd is to study its actions on natural sets.
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It is shown, under rather general smoothness conditions on the gauge potential,
which takes values in an arbitrary semisimple compact Lie algebrag, that if a
sg-valuedd solution to the gauge-covariant Laplace equation exists, which vanishes
at spatial infinity, in the cases of 1,2,3,…, space dimensions, then the solution is
identically zero. This result is also valid if the Lie algebra is merely compact.
Consequently, a solution to the gauge-covariant Poisson equation is uniquely de-
termined by its asymptotic radial limit at spatial infinity. In the cases of one or two
space dimensions a related result is proved, namely that if a solution to the gauge-
covariant Laplace equation exists, which is unbounded at spatial infinity, but with a
certain dimension-dependent condition on the asymptotic growth of its norm, then
the solution in question is a covariant constant. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1935427g

I. INTRODUCTION

Let g denote a semisimple compact Lie algebra and letF andF denote twog-valued func-
tions on ann-dimensional Euclidean spaceRn. Points inRn are denoted byxª sx1,x2, . . . ,xnd. The
covariant Poisson equation is then the following:

o
k=1

n

=ksAd=ksAdFsxd = Fsxd, s1d

where=ksAd denotes the following gauge-covariant gradient,

=ksAd ª ]k + ifAk,g ;
]

]xk + ifAksxd,g. s2d

In definition s2d, the symbolAª (A1sxd ,A2sxd , . . . ,Ansxd) is a g-valued gauge potential,1 and the
symbolf , g stands for the commutator ofg-valued quantities. The covariant gradient with an upper
index k, =ksAd, is defined as follows:

=ksAd ª − =ksAd. s3d

Other quantities with upper space indices are defined similarly; viz., ifVk is any quantity with a
lower ssubscriptd space index, then its counterpart with an upperssuperscriptd space indexVk is
given as follows:

Vk
ª − Vk, k = 1,2, . . . ,n. s4d

The covariant Poisson equations1d is a second-order elliptic system of partial differential
equations, which, together with appropriate boundary conditions, is supposed to determine the
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quantity Fsxd, when the inhomogeneous termFsxd and gauge potentialAsxd, respectively, are
given. These quantities are supposed to satisfy appropriate regularity conditions. We will return to
the question of regularity conditions subsequently.

The Lie algebrag is specified by thesreal-valuedd structure constantsfab
c in the commutation

relations of the Lie algebra generatorsTa, a=1,2, . . . ,dimg,

fTa,Tbg = i f ab
cTc, a,b = 1,2, . . . ,dimg. s5d

Here and in what follows, a summation of repeated Lie algebra indices, i.e., letters from the
beginning of the Latin alphabet, over the range1,2, . . . ,dimg is implied, unless otherwise stated.

From now on we will identify the Lie algebra generators with some specific Hermitian matrix
representatives. For the purposes of this paper it does not matter which representation is chosen;
in physical applications the choice of representations is related to the question of what types of
other fields are coupled to the gauge fields, a question that is not our concern here.

Any g-valued quantity is in the linear span of the generatorsTa, thus

Fsxd = FasxdTa, Fsxd = FasxdTa, Aksxd = Ak
asxdTa, s6d

where all the componentsFa, Fa, andAk
a are real.

The covariant Poisson equations1d can naturally be written as a system of partial differential
equations for the real-valued componentsFa. Using the commutator algebras5d one readily
obtains the following system of equations:

]k]
kFa − 2fbc

aAkb]kF
c − fbc

as]kA
kbdFc + fbd

afec
dAk

bAkeFc = Fa. s7d

In the previous equation, summation over repeated space indices, one lower and one upper, is also
implied.

For our purposes the compact matrix notation in Eq.s1d is preferable, and this will be used in
what follows.

The gauge-covariant Poisson equations1d on R3 is one of the field equationssfor fixed timed
in either pure Yang–Mills theory, or Yang–Mills theory coupled to matter fields,1 in four-
dimensional Minkowski space. The gauge fieldGmn in Yang–Mills theory is as follows:

Gmn = ]nAm − ]mAn − ifAm,Ang, s8d

where Greek indices are Minkowski-space indices in the ranges0, 1, 2, 3d. The field equations are

=nsAdGmnsAd = j smd
m , m = 0,1,2,3, s9d

where j smd
m is a matter current constructed out of matter fields, e.g., fermionic and scalar fields.

The m=0 case of the equationss9d is Gauss’ law,

=ksAdG0k = j smd
0 , s10d

which written in terms of the gauge potential components, is as follows:

=ksAd=ksAdA0 = j smd
0 + =ksAdȦk, s11d

where

Ȧksxd ; ]0Aksxd. s12d

One physical application of the covariant Poisson equations1d on R3 is thus the implementa-

tion of Gauss’ law by solving the equations11d for the quantityA0, with j smd
0 andȦk considered as

known quantities. For this purpose one needs both existence and uniqueness theorems for equa-
tions of the forms1d.
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We will state and prove our main uniqueness theorems in detail for the equations1d in Secs.
III and IV. However, before that we collect in the next section a number of facts related to gauge
transformations and inner products for semisimple compact Lie algebras that we need in the
proofs.

II. ON GAUGE TRANSFORMATIONS AND LIE ALGEBRA INNER PRODUCTS

Let G denote the Lie group corresponding to the compact or semisimple compact Lie algebra
defined by the equationss5d and letv denote a mapping fromRn to G. In the vicinity of the unit
element inG any suchG-valued elementv can be obtained by exponentiating the Lie algebra, i.e.,

vsxd = eiaaTa, s13d

where the parametersaasxd ,a=1,2, . . . ,dimg are sufficiently smooth real-valued functions that
vary over a finite range.

A gauge transformation of a gauge potentialA→
v

Av is then defined as follows for any suffi-
ciently smoothG-valued functionvsxd:

Aksxd→
v

Ak
vsxd = v−1sxdAksxdvsxd + i„]kv

−1sxd…vsxd. s14d

Let Usxd be any differentiableg-valued function andvsxd likewise any differentiableG-valued
function. Using Eq.s14d, one readily shows that

v−1sxd„=ksAdUsxd…vsxd = =ksAvd„v−1sxdUsxdvsxd…. s15d

Applying the transformations15d to the gauge-covariant Poisson equations1d, one obtains

o
k=1

n

=ksAvd=ksAvd„v−1sxdFsxdvsxd… = v−1sxdFsxdvsxd, s16d

a result that will be used later.
If our Lie algebra is semisimple and compact, we use the following quantitieshab as our Lie

algebra metric. The quantitieshab are defined in terms of the structure constantsfab
c as follows:

hab = − fab8
c8fbc8

b8. s17d

This is the so-called Killing form multiplied with −1 for convenience. It is known2 that the form
s17d is nondegenerate, and, furthermore, positive definite, if and only if the Lie algebra is semi-
simple and compact. The forms17d thus has an inverse, which we denote byhab,

habhbc = dc
a. s18d

The formhab shabd is used to lowersraised Lie algebra indices.
For any twog-valued quantitiesU=UaTa and V=VaTa we thus define their inner product

sU ,Vd as follows:

sU,Vd = habU
aVb. s19d

The inner products19d is invariant under the adjoint action of the group, i.e.,

sU,Vd = sv−1Uv,v−1Vvd, ∀ v P G. s20d

The normi ig of any Lie algebra-valued quantityU is defined in terms of the inner product,

iUig ª
ÎsU,Ud. s21d
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We also need the fact that for any threeg-valued quantitiesU, V, and W the quantity
sU ,fV,Wgd is cyclically symmetric,

sU,fV,Wgd = sV,fW,Ugd = sW,fU,Vgd s22d

The equationss22d follow directly from the fact that the quantitiesfabc are antisymmetric under
the interchange of any indices.

An immediate consequence of Eqs.s22d is the following useful identity:

]ksU,Vd = „=ksAdU,V… + „U,=ksAdV…. s23d

This identity is valid for any two differentiableg-valued quantitiesU andV and a smooth gauge
potentialA.

We finally note that one may drop the condition of semisimplicity above and require only the
condition of compactness of the Lie algebra. One is still then guaranteed the existence of an inner
products , d in the Lie algebra that is positive definite and satisfies the conditions22d of cyclic
symmetry.3 In the considerations below one only needs these properties of the Lie algebra inner
product. The results derived below are therefore also valid for the case of only compact Lie
algebras, and not only for the case ofboth semisimple and compact Lie algebras.

III. UNIQUENESS THEOREMS IN THE CASES n =1 AND n =2

A. The one-dimensional case

In the case of one space dimension, the gauge-covariant Poisson equations1d is fairly trivial.
We nevertheless give a brief analysis also of this case for completeness. In one space dimension
Eq. s1d becomes the following:

=1sAd=1sAdFsxd = Fsxd, s24d

where we now use the notationx instead ofx1 for simplicity.
We then choose aG-valued quantityv such that

A1
vsxd ; v−1sxdA1sxdvsxd + iS d

dx
v−1sxdDvsxd = 0. s25d

The conditions25d is equivalent to the differential equation

d

dx
vsxd = − iA1sxdvsxd. s26d

For any smooth gauge potentialA1sxd, the smatrixd differential equations26d has aG-valued
solution, determined apart from a constant initial value at some appropriate point inR1. Then,
applying a transform of the type given in Eq.s16d to Eq. s24d, with the quantityv determined by
Eq. s26d, one obtains

d2

dx2sv−1Fvd = sv−1Fvd. s27d

The question of uniqueness of the solutionssd to Eq.s27d is related to the number of solutions
of the homogeneous equation corresponding to Eq.s27d under appropriate boundary conditions.
The homogeneous equation in question,

d2

dx2sv−1Fhvd = 0, s28d

has the general solution
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Fhsxd = vsxdav−1sxdx + vsxdbv−1sxd, s29d

wherea andb are arbitrary constantg-valued quantities.
If it is required to find solutionsFsxd to Eq.s24d, which is equivalent to Eq.s27d, which grow

less rapidly than linearly withx for largex, then the following boundary condition at infinity must
hold,

lim
uxu→`

1

x
iFsxdig = 0. s30d

Hence the difference of any two such solutions, which satisfies the homogeneous equations28d,
and which is of the formFh given in Eq.s29d above, must satisfy the condition

lim
uxu→`

1

x
iFhsxdig = lim

uxu→`

1

x
Îsa,adx2 + 2sa,bdx + sb,bd = 0. s31d

Thus one must seta=0 in Eq. s29d. Hence, if a solution to Eq.s24d exists, which satisfies the
condition s30d, then the solution is unique apart from an additivecovariant constant, i.e., a
solution to the homogeneous equation of the form

Fhsxd = vsxdbv−1sxd. s32d

The solutions32d satisfies the condition of covariant constancy,

=1sAdFhsxd = 0, s33d

as a consequence of the conditions26d which determines the quantityv.
Likewise, if one requires solutions which vanish at infinity, i.e., which satisfy the conditions

lim
uxu→`

iFsxdig = 0, s34d

then one must havea=b=0 in Eq.s29d. Thus, if a solution to Eq.s24d exists, which satisfies the
condition s34d, then the solution is unique.

We can summarize the discussion above as follows.
Theorem 3.1:Assume that the gauge-covariant Poisson equation in one space dimension, Eq.

s24d, has a solution in the classic sense, i.e., a solution that is twice continuously differentiable in
any finite interval inR1, for a given smooth gauge potentialA1sxd and for a given inhomogeneous
term Fsxd, satisfying appropriate smoothness and asymptotic conditions inR1. If such a solution
grows less rapidly than linearly with increasingx, i.e., satisfies the conditions30d, then the
solution is unique apart from an additive covariant constant. Furthermore, if such a solution
vanishes asymptotically in the sense of conditions34d, then the solution is unique.

B. The two-dimensional case

We will now consider the gauge-covariant Poisson equations1d in two-dimensional spaceR2.
We assume that this equation has solutions that are twice continuously differentiable in any finite
domain inR2, for a given smooth gauge potential(A1sx1,x2d ,A2sx1,x2d) and a given inhomoge-
neous termFsx1,x2d, which is supposed to satisfy appropriate smoothness and asymptotic condi-
tions. Let there be two such solutionsFA andFB, say. Then their difference,

FC ª FA − FB, s35d

satisfies the gauge-covariant Laplace equation, i.e., the homogeneous equation,

=ksAd=ksAdFCsxd = 0, s36d

where summation over the space-indexk in the ranges1, 2d is implied here and in what follows.
We then consider the quantity
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− ¹2sFC,FCd ; ]k]
ksFC,FCd. s37d

Using the previously established formulas23d and Eq.s36d, one obtains

− ¹2sFC,FCd = 2„=ksAdFC,=ksAdFC…. s38d

We then express the¹2 operator in terms of polar coordinatessr ,ud in the planeR2,

¹2 =
]2

]r2 +
1

r

]

]r
+

1

r2

]2

]u2 . s39d

Integrating equations38d over the variableu in the ranges0,2pd one obtains

S ]2

]r2 +
1

r

]

]r
DE

0

2p

dusFC,FCd = − 2E
0

2p

du„=ksAdFC,=ksAdFC…. s40d

We now consider Eq.s40d as an ordinary differential equation for the quantityedusFC,FCd as if
the right-hand side of the equation were a known quantity. The general solution to this equation is
then the following:

E
0

2p

dusFC,FCd = a log r + b − 2slog rdE
0

r

dr8 r8E
0

2p

du„=ksAdFC,=ksAdFC…

+ 2E
0

r

dr8 r8slog r8dE
0

2p

du„=ksAdFC,=ksAdFC…, s41d

wherea andb are real constants.
In view of the assumed smoothness of the gauge potentialA and assumed regularity of the

solutionFC to the original equations36d, in particular in the vicinity of the originr =0 in R2, one
readily concludes that the terms involving integrals in the expressions41d cannot generate loga-
rithmic singularities atr =0, which could cancel the terma log r in that expression. The logarith-
mic singularity in s41d must be expelled, and this can then only be achieved by settinga=0.
Hence, the general solution to the equations40d when the regularity conditions atr =0 are taken
into account, is

E
0

2p

dusFC,FCd = b − 2slog rdE
0

r

dr8 r8S1 −
log r8

log r
DE

0

2p

du„=ksAdFC,=ksAdFC…, s42d

where we now can identify the constantb as follows:

b = FE
0

2p

dusFC,FCdG
r=0

= 2piFCs0dig
2. s43d

We then consider the asymptotic properties of the solutionsFC. Let us impose the condition

lim
r→`

1

log r
E

0

2p

dusFC,FCd = 0. s44d

Then Eq.s42d implies that

lim
r→`

E
0

r

dr8 r8S1 −
log r8

log r
DE

0

2p

du„=ksAdFC,=ksAdFC… = 0. s45d

The vanishing of the integrals45d in the limit r →` implies that the integrand must vanish, since
the integrand is nonpositivesfor r .1d in view of conventions3d and the positive definiteness of
the Lie algebra inner product. But then, necessarily,
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=ksAdFC = 0, k = 1,2, s46d

i.e., FC is a covariant constant.
We can thus infer from the result above that if the gauge-covariant Poisson equation inR2 has

a twice continuously differentiable solutionF, such thatsF ,Fd is dominated by logr for large
values ofr, or more precisely, if the solution satisfies an asymptotic condition of the forms44d,
then the solution is unique apart from an additive covariant constant. Let us note, however, that the
existence of a nonzero covariant constant in twosor mored dimensions places certain restrictions
on the gauge potentialA, which are related to the internal holonomy group.4

If one requires a more stringent asymptotic condition on the solutions to the gauge covariant
Laplace equation than conditions44d, namely the condition

lim
r→`

E
0

2p

dusFC,FCd ; lim
r→`

E
0

2p

duiFCig
2 = 0, s47d

then Eqs.s42d and s43d imply as before that Eq.s46d is in force, but also that

FE
0

2p

dusFC,FCdG
r=0

= 0. s48d

Taken together, Eqs.s46d and s48d imply that

FCsx1,x2d ; 0. s49d

We have now demonstrated that the only solution to the gauge-covariant Laplace equation in
two dimensions that vanishes at spatial infinity in the sense given by Eq.s47d, is the identically
vanishing solution. This gives rise to a uniqueness theorem for such solutionsF to the inhomo-
geneous gauge-covariant Poisson equation, which have a given asymptotic behaviorFas at spatial
infinity, or, more precisely, which satisfy a boundary condition of the form

lim
r→`

E
0

2p

duiF − Fasig = 0. s50d

Namely, suppose that there exist two solutions,FA and FB, say, to the gauge-covariant Poisson
equation in two dimensions, which satisfy a boundary condition of the forms50d with some
appropriate given asymptotic functionFas. Then their differenceFC satisfies the gauge-covariant
Laplace equations36d and the following boundary condition:

0 ø lim
r→`

E
0

2p

duiFCig
2 = lim

r→`
E

0

2p

duiFA − FBig
2 = lim

r→`
E

0

2p

duisFA − Fasd − sFB − Fasdig
2

ø lim
r→`

E
0

2p

dusiFA − Fasig + iFB − Fasigd2 = 0. s51d

But then, in accordance with the reasoning above, Eq.s49d must be in force, i.e.,FA;FB. Thus,
if a solution to the gauge-covariant Poisson equation inR2 exists that has a given asymptotic limit
in the sense given in Eq.s50d, then the solution is unique.

We summarize the results obtained above on the gauge-covariant Poisson equation onR2 as
Theorem 3.2.

Theorem 3.2:Assume that the gauge-covariant Poisson equation in two space dimensions has
a solution in the classic sense, i.e., a solution that is twice continuously differentiable in any finite
domain inR2, for a given smooth gauge potential(A1sx1,x2d ,A2sx1,x2d) and for a given inhomo-
geneous termFsx1,x2d, satisfying appropriate smoothness and asymptotic conditions inR2.
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If the squared normiFig
2 of such a solution grows less rapidly than logarithmically with

increasing distance from the origin inR2, i.e., satisfies the conditions44d, then the solution is
unique apart from an additive covariant constant.

Furthermore, if such a solution has a given asymptotic radial limitFas in the sense of condi-
tion s50d, then the solution is unique.

IV. UNIQUENESS THEOREM IN THE CASES nÐ3

The analysis of the uniqueness of solutions to the gauge-covariant Poisson equations1d in the
casesnù3 proceeds much in the same way as in the two-dimensional case considered in the
previous section. Thus, we assume that the equations1d has at least two solutions:FAsxd and
FBsxd, say, which are twice continuously differentiable in any finite domain inRn, for any given
sufficiently smooth gauge potential(A1sxd ,A2sxd , . . . ,Ansxd) and given inhomogeneous termFsxd,
which satisfies appropriate smoothness and asymptotic conditions inRn. We consider the differ-
enceFCsxd of these solutions,

FCsxd = FAsxd − FBsxd. s52d

The functionFCsxd satisfies the gauge-covariant Laplace equation,

o
k=1

n

=ksAd=ksAdFC = 0, s53d

as well as such regularity and asymptotic conditions that follow from those conditions of a similar
nature that are supposed to be valid for the solutionsFAsxd and FBsxd. In the equations53d we
have for clarity reinstated the explicit summation over the space indexk and continue to use this
notation below.

Again, using the previously established formulas23d and the equations53d, one obtains

¹2sFC,FCd = − 2o
k=1

n

„=ksAdFC,=ksAdFC…. s54d

We then use spherical coordinates5 on Rn,

x1 = r sinun−1 . . . sinu2 sinu1

x2 = r sinun−1 . . . sinu2 cosu1

]

xn−1 = r sinun−1 cosun−2

xn = r cosun−1, s55d

where

r ù 0, 0ø u1 , 2p, 0 ø uk ø p, k Þ 1. s56d

The Laplace operator¹2 expressed in terms of the spherical coordinates above is as follows:
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¹2 =
1

rn−1

]

]r
rn−1 ]

]r
+

1

r2 sinn−2 un−1

]

]un−1
sinn−2 un−1

]

]un−1

+
1

r2 sin2 un−1 sinn−3 un−2

]

]un−2
sinn−3 un−2

]

]un−2
+ ¯ +

1

r2 sin2 un−1¯ sin2 u2

]2

]u1
2 .

s57d

We still need the invariantsnormalizedd measuredVn on the sphereSn−1 in terms of the spherical
coordinates above,

dVn =

GSn

2
D

2pn/2 sinn−2 un−1 . . . sinu2 du1 . . .dun−1. s58d

Using the formulass57d and s58d, one obtains the following result from Eq.s54d:

1

rn−1

]

]r
Srn−1 ]

]r
E dVnsFC,FCdD = − 2o

k=1

n E dVn„=ksAdFC,=ksAdFC…, s59d

where the integration over the angular variablesuk,k=1,2, . . . ,n−1 is over the complete range
specified ins56d. The equations59d is now considered an ordinary differential equation for the
quantity edVnsFC,FCd, under the assumption that the right-hand side of Eq.s59d is a known
quantity. The general solution to Eq.s59d is then the following:

E dVnsFC,FCd = ar2−n + b +
2r2−n

n − 2
E

0

r

dr8 r8n−1E dVno
k=1

n

„=ksAdFC,=ksAdFC…

−
2

n − 2
E

0

r

dr8 r8E dVno
k=1

n

„=ksAdFC,=ksAdFC…, s60d

wherea andb are so far undetermined real constants.
We now recall that the solutionsFC are supposed to be twice differentiable in any finite

domain inRn, in particular, in the vicinity of the originr =0 in Rn. Moreover, the gauge potential
A is supposed to be smooth, in particular nearr =0 in Rn. From these conditions follow the
estimates below, valid nearr =0,

UE
0

r

dr8 r8n−1E dVno
k=1

n

„=ksAdFC,=ksAdFC…U = Osrnd s61d

and

UE
0

r

dr8 r8E dVno
k=1

n

„=ksAdFC,=ksAdFC…U = Osr2d. s62d

From the esimatess61d and s62d and the equations60d, it then follows that

E dVnsFC,FCd = ar2−n + b + Osr2d, s63d

in the vicinity of r =0. But the solutionFC is supposed to be regular, in particular nearr =0. The
singularity atr =0 that appears to be present in the general solutions60d must be made to disap-
pear, and this can only happen if
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a = 0 s64d

in Eq. s60d, in accordance with the estimates63d. Then it also follows that

b = FE dVnsFC,FCdG
r=0

= iFCs0dig
2. s65d

Using the conditionss64d and s65d, one then finally obtains the following result:

E dVnsFC,FCd = iFCs0dig
2 −

2

n − 2
E

0

r

dr8 r8S1 −S r8

r
Dn−2D E dVno

k=1

n

„=ksAdFC,=ksAdFC….

s66d

Let us emphasize that the equations66d is a relation that is valid for any twice differentiable
solutionFC to the gauge-covariant Laplace equations53d with a smooth gauge potentialA.

Assume now the following boundary condition at spatial infinity for the solutionFC to the
gauge-covariant Laplace equations53d,

lim
r→`

E dVnsFC,FCd = 0. s67d

In view of the conventions3d and the positive definiteness of the inner products , d, the condition
s67d and the relations66d together imply that

=ksAdFC = 0, k = 1,2, . . . ,n, s68d

and that

iFCs0dig
2 = 0. s69d

But the conditionss68d and s69d then finally imply that

FC ; 0. s70d

We have thus shown that the only twice differentiable solutionFC to the gauge-covariant
Laplace equations53d with a smooth gauge potentialA, which vanishes at spatial infinity in the
sense of the conditions67d, is the identically vanishing solutions70d.

The result above gives rise to a uniqueness theorem for the solutions to the gauge-covariant
Poisson equations1d in a spaceRn of nù3 dimensions, just as in the two-dimensional case.
Namely, consider the following boundary conditions:

lim
r→`

E dVniF − Fasig = 0. s71d

As has essentially already been demonstrated in the two-dimensional case, then the differenceFC,
Eq. s52d, of any two solutionsFA and FB satisfying the asymptotic conditions71d, vanishes at
spatial infinity in the sense of Eq.s67d. The difference in question also satisfies the gauge-
covariant Laplace equations53d, and vanishes therefore identically, as has just been demonstrated
above. Hence the solution to the gauge-covariant Poisson equations1d is unique if one imposes the
boundary conditionss71d.

We summarize the result above as the following theorem of uniqueness:
Theorem 4:Assume that the gauge-covariant Poisson equations1d in nù3 space dimensions

has a solution in the classic sense, i.e., a solution that is twice continuously differentiable in any
finite domain inRn, for a given smooth gauge potential(A1sxd ,A2sxd , . . . ,Ansxd) and for a given
inhomogeneous termFsxd, satisfying appropriate smoothness and asymptotic conditions inRn. If,
furthermore, such a solution has a given asymptotic limitFas in the sense of conditions71d, then
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the solution isunique.

V. SUMMARY AND DISCUSSION

In this paper a uniqueness theorem has been proved for the gauge-covariant Poisson equation
in n-dimensional spaceRn. The theorem has been obtained by considering the homogeneous
counterpart of the Poisson equation in question, i.e., the gauge-covariant Laplace equation. It has
been shown that the only solution to the gauge-covariant Laplace equation, which is twice con-
tinuously differentiable in any finite domain inRn, and that vanishes at infinity, is the zero
solution. This then proves the uniqueness of that solution of the corresponding Poisson equation,
which satisfies appropriate conditions of regularity and has a given asymptotic radial limit.

In one or two dimensions the asymptotic conditions can be relaxed; it has been shown that in
these cases the solutions, which may be unbounded at infinity, are unique apart from an additive
covariant constant, even if one does not specify the asymptotic behavior of the solutions, but
merely imposes certain specific limitations on the asymptotic growth of the solutions.

We have not touched upon the question of the existence of solutions in this paper. Such
questions have been analyzed in depth in the three-dimensional case in a recent paper by Salmela,6

who uses modern functional analytic methods in his study. The principal existence theorem proved
by Salmela inR3 is briefly as follows. There exists a weak solution to Eq.s1d, which vanishes at
infinity, provided that the Lie algebra norms of the potential componentsAk are locally square
integrable, and provided that the inhomogeneous termFsxd in that equation satisfies the following
condition:

E
R3

d3xs1 + uxu2ds1+sd/2iFig
2 , `, s72d

wheres is a number that can be chosen in the range 0,sø1. It has further been shown by
Salmela that solutions with nontrivial asymptotic behavior also exist under less stringent condi-
tions than conditions72d. Namely, if one can construct a functionFas such that

E
R3

d3xs1 + uxu2ds1+sd/2iF − =ksAd=ksAdFasig
2 , `, s73d

then Eq.s1d has a weak solution,

Fsxd = Ysxd + Fassxd, s74d

where the quantityY, which vanishes in the limituxu→`, satisfies the equation

=ksAd=ksAdYsxd = Fsxd − =ksAd=ksAdFassxd. s75d

For more details we refer to the aforementioned paper by Salmela,6 which also contains extensive
references to physical applications of the gauge-covariant Poisson equations inR3.
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A new Wannier function made from distributed Gaussians is reported. Convolution
integrals of the Wannier functions are studied and analytical expressions for the
convolution integral are given. A new expression for a set of coefficients introduced
in an earlier publicationfJ. Math. Phys.38, 4815 s1997dg is derived. Using this
new expression, the peculiar behavior of another set of coefficients introduced in
the same publication in a particular limit is explained. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1946529g

I. INTRODUCTION

Distributed Gaussians are a set of identical Gaussians positioned with equal intervals. They
are widely used as a basis set in variational calculations in molecular vibrations. The widespread
use of this basis started in chemical physics computations by an important paper of Hamilton and
Light.1

The Wannier functions are used in solid-state physics as orthogonal and localized basis sets.2

One can make Wannier functions from any basis set formed by shifting a localized function at
equal intervals. In particular, Wannier3 reported a set of Wannier functions made from distributed
Gaussians. Itakuttiet al.4 also reported Wannier functions made from distributed Gaussians, but
they constructed them numerically and did not provide analytical expressions for the Gaussian
coefficients.

In a paper5 shereafter called Paper 1d on distributed Gaussians, we introduced a set of or-
thogonal functions that are linear combinations of distributed Gaussians and called them distrib-
uted Gaussian polynomials. We also introduced a set of Wannier functions made from distributed
Gaussians and suggested a general procedure to construct Wannier functions made from distrib-
uted Gaussians. At that time it escaped our attention that normalized distributed Gaussian poly-
nomials become a Wannier function set in a particular limit. This is one of the results reported in
this paper.

Other than introducing a Wannier function, we also introduced some sets of coefficients in
Paper 1.5 In this paper I study convolution integrals of Wannier functions and as a product of this,
I introduce an expression for a set of coefficients calledsn in Paper 1. Using this result, I explain
peculiar behavior of another set of coefficients calledensyd in Paper 1 asy→1/4.

In the next section I list some results from Paper 1 that are needed in the following sections.
I felt it necessary to list them to make the new results in the following sections understandable.
There are a couple of results that were stated in Paper 1 for a specific case, but here the more
general statements are made. One important point that was unnoticed in Paper 1 is also stated in
this section. The rest of the section are the results of Paper 1.

In this paper the Gaussians are written asgnsxd=e−c2sx−nd2=qsx−nd2, whereq=e−c2
andc−1 is

related to the width of the Gaussians. In the text we will use mostly expressions withq. But there
are some formulas that do not look pretty whenc is replaced withÎlns1/qd in them. So some
formulas contain bothc andq and when you see them just remember thatq=e−c2

.
In the Introduction above “we” refers to myself, Dr. Karabulut, and Professor Sibert, who are

the authors of Paper 1. In the rest of the paper, as in a lecturing mode, “we” refers to me, Dr.
Karabulut, and the audience.
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II. SOME RESULTS GIVEN IN PAPER 1

Consider a chain of Gaussians

gnsxd = gsx − nd = e−c2sx − nd2 = qsx − nd2 sn = 0,1,2, . . . ,̀ d, s1d

whereq=e−c2
. A set of orthogonal functions constructed from them was given in Paper 15 as

Fnsxd = o
k=0

n
sq;qdn

sq;qdksq;qdn−k
s− 1dkq−k/2gksxd; sn = 0,1,2, . . . ,̀ d, s2d

where

sq;qdk = s1 − qds1 − q2ds1 − q3d ¯ s1 − qkd, s3d

for k.0 andsq;qd0;1. We call these functions distributed Gaussian polynomials. They satisfy
the recurrence relation5

q−2xFnsxd = dn−1
n Fn−1sxd + dn

nFnsxd + dn+1
n Fn+1sxd, s4d

wheredn−1
n , dn

n, anddn+1
n are

dn+1
n = − q−2sn+1/4d, s5d

dn
n = s1 + q − qn+1dq−2sn+1/4d, s6d

dn−1
n = − sq − qn+1dq−2sn+1/4d. s7d

We can make Wannier functions from the distributed Gaussians. Wannier3 reported one such
Wannier function set and another one was reported in Paper 1. Appendix A of Karabulut6 gives a
short account of Bloch and Wannier functions and their properties. A set of Wannier functions
made from distributed Gaussians can be written as

Wnsxd = o
m=−`

`

cmgsx − n − md, s8d

where thecm are

cm =E
0

1 eiQstd

ÎZstd
ei2pmtdt. s9d

Here, Qstd is an arbitrary periodicsQst+1d=Qstdd phase factor andZstd is the norm of the
unnormalized Bloch function

Zstd =E
0

1 U o
n=−`

`

ei2pntgsx − ndU2

dx. s10d

Using the Poisson summation formulafcf. Eq. sA1d in Ref. 6g we get the expressions

Zstd =Î p

2c2 o
n=−`

`

ei2pntqn2/2, s11d
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=
p

c2 o
n=−`

`

e−2sp/cd2st − nd2. s12d

The equality of the middle expression to the last is known as the Jacobi identity, which is simply
the Fourier series of the periodic function in the last equation. Note also thatZstd is periodic with
a period unity. An infinite number of different Wannier functions can be constructed from Gaus-
sians. Different choices of the phase factor eiQstd yield different Wannier functions.

From Eq.s9d, the cn are the Fourier coefficients of the periodic function eiQstd /ÎZstd. There-
fore, if we know the Gaussian coefficientscn of the Wannier functions, we can obtain the phase
factor eiQstd as follows:

eiQstd = ÎZstd o
m=−`

`

cme−i2pmt. s13d

This function must have a unit modulus

ueiQstdu2 = Zstd o
n=−`

`

ei2pntjn = 1, s14d

where thejn are defined as

jn = o
m=−`

`

cmcm+n. s15d

The coefficientsjn are symmetrical:jn=j−n. From Eq.s14d it is seen that thejn are the Fourier
coefficients of the periodic function 1/Zstd. Here, we obtain an interesting result.Since the Zstd
does not depend on the phase factoreiQstd chosen, the coefficientsjn should be independent of the
phase factor too, in spite of the fact that the cn coefficients in the defining relation, Eq. (15),
depend on the phase factor. Hence, thejn are the same for all Wannier functions made from
Gaussians. This important point was not stated in Paper 1.

The expression forZstd given in Eqs.s11d and s12d and the fact thatjn are the Fourier
coefficients of 1/Zstd give us an integral representation for thejn

jn =E
0

1 e−i2pnt

Zstd
dt =Î2c2

p
E

−1/2

1/2 coss2pntd

om=−`

`
qm2/2ei2pmt

dt. s16d

In Paper 1 the Wannier functionsWnsxd=L0
+sx−nd /Îw` were introduced. TheL0

+sxd is given as

L0
+sxd = o

m=−`

`

bngsx − nd, s17d

wherebn are defined as

bn = q−1/16Nsqds− 1dnqsunu+n/2dansqd, s18d

and the factoran are

ansqd = o
j=0

`

s− 1d jqjs j+2unu+1d. s19d

The factorq−1/16Nsqd is the normalization factor to ensureL0
+s1/4d=1, which requires
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q−1/16NsqdS o
n=−`

`

s− 1dnqsunu+n/2dansqdqs1/4 − nd2D = 1. s20d

From this, the factorNsqd is found as

Nsqd = S o
n=−`

`

s− 1dnqunuansqdqn2D−1

. s21d

We prefer to define the normalization factor this way because theNsqd will reappear in the
formulas in the following sections. Theunu is the absolute value ofn. TheL0

+sx−nd were called the
“infinite chain Lagrange functions” in Paper 1. They satisfy the Lagrange function property
L0

+sn+1/4d=dn0. In Paper 1 thew` was defined as “the weights for the infinite chain quadrature,”
and it was given as

w` =
1

on=−`

`
s− 1dne−2sp/cd2n2 . s22d

Sincecn=bn/Îw` are the Gaussian coefficients in the Wannier function, thejn coefficients can be
expressed assSm=−`

` bmbm+n·d /w`. The coefficientsSm=−`
` bmbm+n were calledsn in Paper 1 and

hencesn=w`jn.
Given a Wannier functionW0sxd=Sn=−`

` angsx−nd, from Eq. s13d, the 1/ÎZstd can be ex-
pressed as

1
ÎZstd

= e−iFstd o
m=−`

`

ame−i2pmt, s23d

whereFstd is the phase associated with this Wannier function. Setting this for 1/ÎZstd and taking
the general phaseQstd=Fstd+Gstd in Eq. s9d, we get

cn = o
m=−`

`

an−mSE
0

1

eiGstdei2pmtdtD . s24d

The cn are Gaussian coefficients of another Wannier function. ChoosingGstd arbitrarily, we can
generate many other Wannier functions. The integral in this expression is calculable for many
phase factorsGstd; therefore, if we know one Wannier function Gaussian coefficients we can
produce many other Wannier functions using it. Examples were given in Paper 1.

The results in Eqs.s13d and s24d were actually given in Paper 1 for the specific case of
Wnsxd=L0

+sx−nd /Îw`. But, the statements that they hold for arbitrary Wannier functions were not
made in Paper 1.

III. A NEW WANNIER FUNCTION SET MADE FROM DISTRIBUTED GAUSSIANS

In this section we introduce a new Wannier function set made from distributed Gaussians. For
this we need to normalize the distributed Gaussian polynomials, which was an important omission
in Paper 1.

A. Normalization of the distributed Gaussian polynomials

Consider the integral

E
−`

`

Fnsxdq−2xFn−1sxddx = dn
n−1iFni2 = dn−1

n iFn−1i2, s25d

whereiFni2=e−`
` Fn

2sxddx and Eq.s4d and the orthogonality are invoked. Writing this as
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iFni = iFn−1iÎdn−1
n

dn
n−1 , s26d

using the relations in Eqs.s5d–s7d, and iterating this relation, we get

iFni = S p

2c2D1/4

q−n/2Îsq,qdn. s27d

This relation is useful for obtaining the normalized functionsFnsxd / iFni.

B. The new Wannier functions

The orthonormal functionsFnsxd / iFni are written as

Fnsxd/iFni = S2c2

p
D1/4

o
k=0

n Îsq;qdn

sq;qdksq;qdn−k
s− 1dkqsn−kd/2gksxd. s28d

Because of the orthogonality relation theFnsxd is orthogonal toF0sxd , . . . ,Fn−1sxd. This means
that Fnsxd is orthogonal to all Gaussiansgsx−md for 0ømøn−1. By shifting the normalized
Fnsxd to the left byn si.e., Fnsx+nd / iFnid, we get a function orthogonal to Gaussiansgsx−md
with −nømø−1. When we take the limitn→`, the resulting function becomes orthogonal to all
Gaussians centered on the negative integers and it is normalized by construction. In the above
equations28d the sign of the Gaussian centered atx=n is s−1dn. To make it positive, we multiply
by s−1dn before taking the limit. The limit is

V−sxd = lim
n→`

s− 1dnFnsx + nd/iFni, s29d

=
s2c2/pd1/4

Îsq;qd`

o
m=0

`
s− 1dm

sq;qdm
qm/2gsx + md. s30d

This function is orthogonal to all of the Gaussiansgsx−nd for n,0 and it is normalized.
Now, let us consider the integral

E
−`

`

V−sx − ndV−sx − mddx. s31d

SinceV−sxd is normalized this integral is unity forn=m. For nÞm let us assumen.m without
loss of generality. Then,V−sx−nd is orthogonal to all the Gaussiansgsx−kd for k,n. The V−sx
−md contains Gaussians up togsx−md and sincem,n the V−sx−nd is orthogonal to all of them.
Therefore, the integral vanishes fornÞm. This argument proves that theV−sx−nd functions are
Wannier functions satisfying

E
−`

`

V−sx − ndV−sx − mddx = dnm. s32d

We have a minus sign on theV−sx−nd for a purpose. The functionsV−sxd are a linear
combination of the Gaussians centered on the negative integers and zero. The mirror symmetry of
it, V+sxd=V−s−xd, is a linear combination of Gaussians centered on the positive integers and zero.
The V+sx−nd also satisfy the orthonormality conditions and they are equally valid Wannier func-
tions. We use6 superscripts to distinguish them.

V±sxd are related to theq-special functions that mathematicians study. The functions
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Eq
sadszd = o

n=0

`
qan2/2

sq,qdn
zn, s33d

are introduced in Floreaniniet al.7 and some of their properties are studied in Atakishiyev.8 They
are some form of one parameterq-exponential functions and theEq

sadss1−qdzd reduces toez in the
limit q→1. The Wannier functions constructed above can be expressed in terms ofEq

sadszd for a=2
andz=−qs1/2+2xd as

V−sxd =
s2c2/pd1/4

Îsq;qd`

qx2
Eq

s2ds− qs1/2+2xdd. s34d

We showed that theV±sxd are Wannier functions. Now, we can write the corresponding phase
factor. The Gaussian coefficients in theV+sxd are

cn = Hs2c2/pd1/4s− 1dnqn/2/sq;qdn
Îsq;qd` n ù 0

0 n , 0
J . s35d

Then, from Eq.s13d the phase factor can be expressed as

eiQstd = S2c2

p
D1/4Î Zstd

sq;qd`
o
m=0

`

s− 1dm qm/2

sq;qdm
e−i2pmt. s36d

From Eqs.s15d and s35d, the jn coefficients are expressed as

jn =Î2c2

p

s− 1dn

sq;qd`

qunu/2o
m=0

`
qm

sq;qdmsq;qdm+unu
. s37d

The phase factor for theV−sxd is the complex conjugate of the phase ofV+sxd.

IV. THE CONVOLUTION INTEGRAL AND A NEW EXPRESSION FOR THE jn
COEFFICIENTS

Consider the convolution integral of the Wannier functions

Iqszd =E
−`

`

W0sxdW0sx + zddx, s38d

=Î p

2c2 o
n=−`

`

jnq
sz − nd2/2. s39d

Since thejn is independent of the phase factor eiQstd, the Iqszd is the same for all of the Wannier
functions made from Gaussians. The Fourier transforms ofIqszd andW0sxd are

Iq
Fskd =E

−`

`

eikz2pIqszddz s40d

W0
Fskd =E

−`

`

eikx2pW0sxddx. s41d

From the convolution theorem of Fourier transforms, we have

Iq
Fskd = uW0

Fskdu2. s42d
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For a given localized functionusxd, the function setusx/d−nd for sn=−` , . . . ,`d is called a
distributed basis set made fromusxd. Here,d is the distance between the basis functions. In a
recent paper Karabulut6 has introduced a quantityrsk,dd called the representation power, which is
an effective measure of the ability of a distribution basis set to span a given function. Thersk,dd
turns out to be equal touW0

Fskddu2, where theW0
Fskd is the Fourier transform of the Wannier

function made from theusx−nd, sn=−` , . . . ,`d set. Since thersk,dd is a property of the basis
function usxd itself, it is absolutely necessary thatuW0

Fskdu2 be independent of the phase factor
eiQstd. The Iq

Fskdd is actually the representation powerrsk,dd and it is a very important quantity in
the formalism presented in Karabulut.6

After these remarks about the significance of the convolution integral, we will derive three
different representations for theIqszd. This function must have zeros at all the nonzero integers due
to the orthogonality of Wannier functions, and it is a linear combination of Gaussians with a
different width. It must be unity atz=0 due to the normalization of the Wannier functions. Since
such Gaussians are a polynomial ofq−z=ec2z, we can immediately write an infinite product rep-
resentation

Iqszd = qz2/2p
n=1

` Sq−z − q−n

1 − q−n DSqz − q−n

1 − q−n D . s43d

This product is a linear combination of Gaussians and it vanishes at all nonzero integers. It takes
unity value for z=0. It is also symmetrical just likeIqszd is due to the symmetry of thejn

coefficients. So, it is the right function.
Another function that has the right zeros can be expressed as

Iqszd = k
on=−`

`
s− 1dnqsz − n − 1/2d2/2

q−z/2 − qz/2 . s44d

The coefficientk is chosen to satisfyIqs0d=1. This function also satisfies all of the properties of
the Iqszd and, although it may not be obvious at first glance, it is also a linear combination of
Gaussians centered at integers. To find the coefficients, we equate

o
n=−`

`

hnq
sz − nd2/2 =

on=−`

`
s− 1dnqsz − n − 1/2d2/2

q−z/2 − qz/2 , s45d

to obtain the following difference equation for thehn:

hn−1q
−sn−1/2d − hn = s− 1dn+1q1/8q−n/2. s46d

Solving this and putting it back into Eq.s44d we can write theIqszd as

Iqszd = NsÎqd o
n=−`

`

s− 1dnansÎqdqunu/2qsz − nd2/2, s47d

where theNsqd is the function introduced in Eq.s21d. The factorNsÎqd ensures the normalization
condition Iqs0d=1. Comparing this to Eq.s39d, we find

jn =Î2c2

p
NsÎqds− 1dnansÎqdqunu/2. s48d

This is the explicit expression for thejn coefficients we are looking for. Theansqd coefficients
rapidly approach unity asunu gets larger. Hence,jn decays as qunu/2 for large unu values. This result
is not transparent from the other definition ofjn in Eq. s15d.

It is interesting that the infinite chain Lagrange functions given in Eqs.s17d, s18d, s19d, and
s21d can be written as
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L0
+sxd = qsx−1/4d/2Iq2sx − 1/4d. s49d

This is due to the fact that they both are square integrable functions having equally spaced zeros.
For a function made from a linear combination of distributed Gaussians, once we fix the positions
of zeros asxn=n+d, where −1/2,d,1/2 andnÞ0, and require that the function is square
integrable, it is fixed up to a normalization factor. In the above formula thed=1/4 for L0

+sxd and
zero for Iq2sxd. All such normalizable functions with equally spaced zeros can be expressed as
sconstdq2dsx−ddIq2sx−dd.

There are some identities we can derive from thejn expression given in Eq.s48d. Comparing
Eq. s48d with Eq. s16d, we get an interesting identity

E
−1/2

1/2 coss2pntd

om=−`

`
qm2/2ei2pmt

dt = NsÎqds− 1dnansÎqdqunu/2. s50d

Comparing Eqs.s48d and s37d, we obtain

o
m=0

`
qm

sq;qdmsq;qdm+unu
= NsÎqdsq;qd`ansÎqd. s51d

Finally, takingn→` limit of the above equation we obtain

o
m=0

`
qm

sq;qdm
= NsÎqdssq;qd`d2. s52d

There is also another representation for theIqszd function which shows how theIqszd behaves.
The nominator of Eq.s45d is periodic with period two, and it can be expressed as a Fourier series.
The Fourier coefficients can be evaluated with the help of the Poisson summation formula. Then,
we get another representation for theIqszd as

Iqszd = Gszd/Gs0d, s53d

where theGszd is

Gszd = o
n=0

`

s− 1dnsins2n + 1dpz

sinhsc2z/2d
e−s2n + 1d2p2/2c2

, s54d

and theGs0d is

Gs0d =
2p

c2 o
n=0

`

s− 1dns2n + 1de−s2n + 1d2p2/2c2
. s55d

For low values ofc sc,1 for exampled, only then=0 term is significant. Forc=1 the ratio of the
n=1 term to then=0 term is of order e−4p2

and the second and higher terms are totally negligible.
Therefore, theIqszd is

Iqszd <
c2

2p

sinpz

sinhsc2z/2d
, s56d

to a high accuracy. TheIqszd decays as e−c2uzu/2 asymptotically and in the limitc→0 sq→1d it
approaches sinspzd /pz.
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V. THE BEHAVIOR OF THE en„y… COEFFICIENTS

Consider the sum

Rsx,yd = o
n=−`

`
L0

+sx − nd
Îw`

L0
+sy − nd
Îw`

, s57d

=
1

w`
o

m=−`

`

emsydqsx − md2, s58d

whereensyd is given as

ensyd = w` o
m=−`

`

jmqsy + m − nd2. s59d

Let us recall at this point thatL0
+sxd /Îw` is a Wannier function. Because of the Lagrange function

propertyL0
+sn+1/4d=dn0 of the infinite chain Lagrange functionsL0

+sx−nd, if we sety=1/4 in the
Rsx,yd only then=0 term is nonzero and we getL0

+sxd /w` result for the sum. Since the Gaussian
coefficients ofL0

+sxd are thebn coefficients given in Eqs.s18d, s19d, ands21d, theensyd coefficients
approach thebn coefficients asy→1/4. Thebn coefficients decay three times faster exponentially
for positive indices than negative indices, and theL0

+sxd is an asymmetric function. The slower
exponentsfor n,0d is −c2unu /2 and the faster exponentsfor n.0d is −3c2n/2, as can be seen
from Eq. s18d. The lnuensydu coefficients versusn for y=0.24, y=0.2499, andy=0.249 999 was
plotted in Paper 1sFig. 1d, and from the graph it was clear that forn.0 theuensydu decays with the
faster exponent for some time and after a visibly sharp turning point it starts decaying with the
slower exponent. The turning point goes to infinity asy→1/4, and exactly aty=1/4 it decays
with the faster exponent for alln.0. We sthe authorsd were not able to explain this behavior in
Paper 1 because our new expression for thejn coefficients was not available. Now that it is
available, let us explain.

Consider theensyd coefficients

ensyd = w`NsÎqd o
m=−`

`

s− 1dnamsÎqdqumu/2qsy + m − nd2, s60d

for n@1 andy<1/4. Here, the constantw`NsÎqd is unimportant to the discussion. For largen,
only m values nearn contribute significantly. For largem values only the first two terms of the
amsÎqd expansion

amsÎqd = 1 − qumu+1 + higher order, s61d

are important. Then, theensyd can be written as

ensyd = w`NsÎqd o
m=−`

`

s− 1dnqumu/2qsy + m − nd2 s62d

− w`NsÎqdq o
m=−`

`

s− 1dnq3umu/2qsy + m − nd2 + H.O., s63d

where H.O. stands for higher order terms. Now, since we assume thatn@1, the terms with
negative values ofm are order of qn

2/2 smaller than the terms making the main contribution around
m<n. Therefore, replacing qumu/2 and q3umu/2 with qm/2 and q3m/2 we make an error of order qn2/2,
which is insignificant for largen but makes the sums manageable. We also expand the Gaussians
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as qsy+m−nd2=qy2
q2ysm−ndqsm−nd2 and change the summation index fromm to m→m+n. Then,ensyd

becomes

ensyd < Sw`NsÎqdqy2 o
m=−`

`

s− 1dmqs1+4ydm/2qm2Ds− 1dnqn/2

− Sw`NsÎqdqy2+1 o
m=−`

`

s− 1dmqs3/2+4ydm/2qm2Ds− 1dnq3n/2 + H.O. s64d

The sum in the first parenthesis vanishes asy→1/4. To see this, consider the Jacobi triple
product formula9

o
n=−`

`

xnqn2
= p

n=0

`

s1 − q2n+2ds1 + xq2n+1ds1 + x−1q2n+1d, s65d

where uqu,1. If we takex=−qs1+4yd/2, then the sum in the first parenthesis of Eq.s64d can be
written as an infinite product. The terms1+x−1p2n+1d for n=0 becomess1−qs1−4yd/2d, and this
vanishes asy→1/4. Therefore, all other terms in the product can be seen as a constant factor
wheny<1/4. The sum in the second parenthesis in Eq.s64d does not vanish fory=1/4; therefore,
the entire sum can be taken as another constant fory<1/4. Theensyd can be written as

ensyd < fK1s1 − qs1−4yd/2dqn/2 + K2q
3n/2gs− 1dn + H.O. s66d

<fK1sc2/2ds1 − 4ydqn/2 + K2q
3n/2gs− 1dn + H.O. s67d

Here, K1 and K2 are two constants. In the second expression above, we took the Taylor series
expansion of qs1−4yd/2 and ignored the terms beyond the first two.

Wheny is very close to 1/4, the second term dominates for the lower values ofn but, asn
gets larger, the first term begins to dominate. The higher order terms decay faster than q3n/2

exponentially and they quickly die out, leaving the race between the two terms given above.
Therefore, the lnsuensydud versusn graph is a straight line for lower values ofn with a slope
−3c2/2. After a visibly sharp turning point the graph becomes another straight line with a slope
−c2/2. This graph was given in Paper 1sFig. 1d without an explanation to why it behaves that way.
Here, we have a clear explanation.

The turning point occurs for then value where the two terms are approximately equal. This
happens atn<−lnsuK1c

2s1−4yd /2K2ud /c2, which says that the turning point increases linearly
with −lnsu1–4yud /c2. Therefore, asy→1/4, the turning point goes to infinity, and exactly aty
=1/4 theensyd decays with the faster exponent for all positive indices. The logarithmic depen-
dence of the turning point tou1−4yu explains why the turning point moves so slowly asy
→1/4, which was clear from Fig. 1 given in Paper 1.

VI. SUMMARY

In this paper we obtained a new expression for the integrals of the squared distributed Gauss-
ian polynomials and showed how to normalize them, a result that was missing in Paper 1. Using
the normalized distributed Gaussian polynomials, we took a particular limit of them and con-
structed a new Wannier function set made from distributed Gaussians. There are only three Wan-
nier functions made from distributed Gaussians in the literature to our knowledge; the one con-
structed by Wannier,3 the one reported in Paper 15 as the normalized infinite chain Lagrange
functionssL0

±sx−nd /Îw`d, and the one presented in this papersV±sxdd.
In addition to reporting a new Wannier function, we studied convolution integral of the

Wannier functions and found three different representations for it. We have also presented a new
expression for thejn coefficients. The new expression is simpler in appearance than the first
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prescriptionSm=−`
` cn+mcm, and it also gives the asymptotic behavior of thejn coefficients which is

not easy to see from theSm=−`
` cn+mcm summation. The new expression also made it possible to

explain the peculiar behavior of theensyd coefficients asy→1/4.
We also found some identities given in Eqs.s50d, s51d, ands52d as a result of discovery of a

new Wannier function. They seem to result from the fact that the distributed Gaussians can be
written as polynomials, and there is a quadrature to integrate Gaussians on an infinite chain. We
leave it to mathematicians to assess the significance of these strange identities.

Using the Gaussian coefficients of the three reported Wannier functions and using the result
stated in Eq.s24d, one can construct many Wannier function sets depending on arbitrary number
of parameters. Of course the target in this game is to construct the Wannier functions with the
desired properties. I have been searching for the Wannier functions made from distributed Gaus-
sians that satisfy

E
−`

`

Wnsxde2c2hxWmsxddx = e2c2hsn+eshdddnm, s68d

in addition to the usual orthogonality condition

E
−`

`

WnsxdWmsxddx = dnm. s69d

The normalized infinite chain Lagrange functionsWnsxd=L0
+sx−nd /Îw` reported in Paper 1 is an

example of this forh=1 andeshd=1/4. I have not been able to find them for a generalh value.
In addition to the beauty of the mathematics involved, they are related to the discrete variable
representation methods used in chemical physics calculations and hence they might have some
practical value.
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It is shown that a four-dimensional Kähler metric is pointwise Osserman if and
only if it is either of constant holomorphic sectional curvature or a Ricci flat
complex surface. Examples of Kähler Osserman metrics with nilpotent Jacobi op-
erators of all possible degrees are given. ©2005 American Institute of
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I. INTRODUCTION

Pseudo-Riemannian metrics of signature other than Lorentzian and more specially, Ricci-flat
indefinite Kähler metrics have received considerable attention in mathematical physics, mainly
since the work of Ooguri and Vafa.19 Indefinite Kähler Einstein metrics on complex surfaces have
been classified by Petean21 and more recently scalar flat indefinite Kähler surfaces have been
considered by Kamada.14 A classification of four-dimensional Lie groups admitting Ricci flat
indefinite Kähler metrics have been obtained by Ovando.20

To a large extent, the geometry of a pseudo-Riemannian manifoldsM ,gd is the study of the
curvatureRP ^4T*M which is defined by the Levi-Civita connection¹. A pseudo-Riemannian
manifold sM ,gd is said to beOssermanif the eigenvalues of the Jacobi operators are constant on
the unit pseudo-sphere bundlesS±sMd. Any two-point homogeneous space is Osserman and the
converse is true in the Riemanniansdim M Þ16d and Lorentzian settings.7,17,18,2,9However there
exist many nonsymmetric Osserman pseudo-Riemannian metrics in other signaturesscf. Refs. 10
and 12d and even symmetric Osserman spaces which are not of rank-one.11,22 Moreover, besides
the results in Refs. 3 and 11 a description of all four-dimensional Osserman metrics is not yet
complete in dimension four.5,15

An algebraic curvature tensor in a four-dimensional vector space is Osserman if and only if it
is Einstein self-dual for some orientation. Since self-duality and anti-self-duality are well under-
stood in the Kähler setting, we obtain in Sec. II a complete description of the Osserman algebraic
curvature tensors which may be Kähler for some complex structure. Based on those results, we
show in Sec. III that a pointwise Osserman four-dimensional Kähler metric is either of constant
holomorphic sectional curvature or Ricci flat. This should be contrasted with the general situation,
where Osserman metrics exist whose Jacobi operators are nondiagonalizable with eigenvaluesa
=4bÞ0.8 Finally, part of Sec. III is dedicated to the construction of Osserman Kähler metrics,
showing that all possible degrees of nilpotency of the Jacobi operators are realized at the differ-
entiable level.
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II. KÄHLER OSSERMAN ALGEBRAIC CURVATURE TENSORS

Here we will work in the pure algebraic level. LetV be a four-dimensional real vector space.
Let RsVd, ^4V* be the space of allalgebraic curvature tensors, i.e., those tensorsR having the
symmetries of the curvature tensorR:

Rsx,y,z,wd = Rsz,w,x,yd = − Rsy,x,z,wd,

s1d
Rsx,y,z,wd + Rsy,z,x,wd + Rsz,x,y,wd = 0.

If V is equipped with an indefinite inner productk,l, then the Ricci and scalar curvatures ofR are
defined by

Ricsx,yd = trsz° Rsx,zdyd, Sc = tr Ric,

where the traces are considered with respect tok,l. Moreover, the Weyl conformal curvatureW is
given by

Wsx,y,z,wd = Rsx,y,z,wd +
Sc

12
hgsx,zdgsy,wd − gsy,zdgsx,wdj

−
1

2
hRic0sx,zdgsy,wd − Ric0sy,xdgsx,wd + gsx,zdRic0sy,wd − gsy,xdRic0sx,wdj,

where Ric0 denotes the traceless Ricci tensor,

Ric0sx,yd = Ricsx,yd −
Sc

4
gsx,yd.

Considering the algebraic curvature tensorR as an endomorphism ofL2sVd, we have the
following well-known Os2,2d-decomposition

R;
Sc

12
IdL2sVd +

1

2
Ric0 + W:L2sVd → L2sVd. s2d

Further if V is equipped with an orthogonalcomplex structure J, i.e., a linear endomorphism
satisfyingJ2=−id andkJx,Jyl=kx,yl, a preferred orientation is given tosV,J,k,ld and the Hodge
star operatorp :L2sVd→L2sVd is defined bya∧ pb=ka ,bl vol for arbitrary two-formsa andb,
where vol is the volume form ofV andk,l denote the inner product onL2sVd induced from that in
V. Since the inner product is of signatures2211d, L2sVd splits asL2sVd=L+

2
% L−

2, whereL±
2

denotes the ±1-eigenspaces of the Hodge star operator, that isL±
2=haPL2sVd / pa= ±aj. Then we

have a further splitting for the Weyl curvature tensor ands2d becomes

R;
Sc

12
IdL2sVd +

1

2
Ric0 + W+ + W−, s3d

whereW±= 1
2sW± pWd.

An algebraic curvature tensor on an oriented vector space is said to beself-dualsrespectively,
anti-self-duald if pW=W, that isW−=0 srespectively,pW=−W, that isW+=0d.15 Self-dual alge-
braic curvature tensors are of interest when considering Osserman-type properties in view of the
following

Theorem 1 sRefs. 1 and 13d: Let R be an algebraic curvature tensor on a four-dimensional
vector spacesV,k,ld. The following are equivalent

(i) R is Osserman.
(ii) There is a choice of orientation on V such that R is Einstein self-dual.

As a matter of notation, an algebraic curvature tensor on a Hermitian vector spacesV,J,k,ld is
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said to be aKähler algebraic curvature tensorif and only if it satisfies

Rsx,y,Jz,Jwd = RsJx,Jy,z,wd = Rsx,y,z,wd. s4d

Let he1,e2,e3,e4j be an orthonormal basis ofsV,J,k,ld such thatJe1=e2, Je3=e4 and, as a
convention, we will assumee1 ande2 to be timelike whilee3 ande4 are spacelike vectors. Now,
local basis of the spaces of self-dual and anti-self-dual two-forms can be constructed as

L±
2 = khE1

7,E2
7,E3

7jl,

where

E1
7 =

e1 ∧ e2 7 e3 ∧ e4

Î2
, E2

7 =
e1 ∧ e3 7 e2 ∧ e4

Î2
, E3

7 =
e1 ∧ e4 ± e2 ∧ e3

Î2
.

Observe that the induced metric onL±
2 is of signatures122d, in opposition to the positive

definite case. IndeedkE1
7 ,E1

7l=1, kE2
7 ,E2

7l=−1, kE3
7 ,E3

7l=−1.
Denote byV the Kähler two-form associated to the indefinite Hermitian structuresV,J,k,ld,

defined byVsx,yd=kJx,yl. Observe that with respect to the orthonormal basis above the Kähler
form is given byV=−e1∧e2+e3∧e4, which shows thatV is a spacelike anti-self-dual two-form.
It is worth remarking here thatV andJ induce opposite orientations onV in thes2211d-setting,
while the orientations agree andV is a self-dual form in the positive definite case. Now, a
characterization of Osserman Kähler algebraic curvature tensors can be obtained from Theorem 1
as follows.

Theorem 2: Let R be an algebraic curvature tensor on a four-dimensional neutral vector
spacesV,k,ld. Then R is Kähler Osserman with respect to some orthogonal complex structure J on
V if and only if one of the following hold

(i) R is an Einstein anti-self-dual algebraic curvature tensor, i.e.,

R=
Sc

12
IdL2sVd + W−, where W− =

Sc

1212 0 0

0 − 1 0

0 0 − 1
2 ,

(ii) R is a Ricci flat self-dual algebraic curvature tensor, i.e.,

R= SW+ 0

0 0
D .

Moreover, an algebraic curvature tensor as in (i) determines a unique Kähler two-form, defined by
the eigenspace corresponding to the distinguished eigenvalue of W−, but algebraic curvature
tensors given by (ii) are Kähler with respect to any positively oriented complex structure.

Proof: Recall from Theorem 1 thatR is Osserman if and only if it is Einstein and self-dual or
anti-self-dual. In the special framework of four-dimensional Kähler geometry the self-duality and
anti-self-duality conditions are quite well understood. First of all recall that since the metric is
indefinite of signatures2211d, the anti-self-dual part of a Kähler algebraic curvature tensor
satisfies

W− =
Sc

1212 0 0

0 − 1 0

0 0 − 1
2 ,

which shows that a Kähler algebraic curvature tensor is self-dual if and only if the scalar curvature
vanishes. Hence, a self-dual Kähler algebraic curvature tensor is Osserman if and only if it is Ricci
flat.
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Recall that the spaceL2sVd on a neutral Hermitian vector spacesV,J,k,ld decomposes into the
J-invariant andJ-anti-invariant subspacesL2sVd=Linv % Lanti, where

Linv = ha P L2sVd/asJx,Jyd = asx,ydj,

Lanti = ha P L2sVd/asJx,Jyd = − asx,ydj.

ThenL2sVd=L+
2

% L−
2 also decomposes as

L+
2 = L0

inv, L−
2 = RV % Lanti,

where L0
inv denotes theJ-invariant two-forms orthogonal toV. Considering the induced map

J:L2sVd→L2sVd defined byJsx∧yd=Jx∧Jy, an algebraic curvature tensorR:L2sVd→L2sVd is
Kähler, i.e., it satisfiess4d, if and only if R+J=R.

Hence, if a Kähler algebraic curvature tensor is self-dual, then it follows froms3d that the
whole algebraic curvature tensor becomes

R= SW+ 0

0 0
D s5d

and any such algebraic curvature tensor is invariant byJ:L2sVd→L2sVd, and thus Kähler for any
positively oriented orthogonal complex structure.

For a non-Ricci-flat Kähler algebraic curvature tensor, the Osserman condition is equivalent to
anti-self-duality, i.e.,W+=0. Now, note that the self-dual part of the Weyl curvature tensor in
neutral signatures2211d represents the Bochner tensor,5 and thusR is a Bochner-flat Einstein
algebraic curvature tensor, from where it immediately follows thatR is of constant holomorphic
sectional curvature. Moreover, any algebraic curvature tensor given as insid is Kähler with respect
to an orthogonal complex structure if and only ifJ is defined by the distinguished eigenvalue of
W−. h

Remark 3:A Ricci-flat Kähler Osserman algebraic curvature tensor is determined by the
Jordan normal form ofW+. Moreover, since the induced inner product onL±

2 is of Lorentzian

signature, four different possibilities may occur for the self-dual curvature operatorkŴ+a ,bl
=W+sa ,bd as followsscf. Ref. 3d

sIad The self-dual curvature operatorŴ+ is diagonalizable, i.e.,

Ŵ+ = 1b + c 0 0

0 − b 0

0 0 − c
2 .

sIbd The self-dual curvature operatorŴ+ has a complex eigenvalue, i.e.,

Ŵ+ = 1a b 0

− b a 0

0 0 − 2a
2 .

sII d The self-dual curvature operatorŴ+ has a double root of its minimal polynomial, i.e,

Ŵ+ = 1a ± 1 ±1 0

71 a 7 1 0

0 0 − 2a
2 .

sIII d The self-dual curvature operatorŴ+ has a triple root of its minimal polynomial, i.e,
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Ŵ+ =1
0 0 0

0 0 −
Î2

2

0 −
Î2

2
0 2 .

III. KÄHLER OSSERMAN METRICS

Although the structure of the Kähler Osserman algebraic curvature tensors is completely
determined in Theorem 2, the situation is more complex as concerns the differentiable level. An
algebraic curvature tensor is said to beJordan–Ossermanif the normal Jordan form of the Jacobi
operators is constant onS±sVd. It follows from the results in Ref. 3 that any Osserman algebraic
curvature tensor is Jordan–Osserman in dimension four, but such equivalence is no longer true in
higher dimensionsssee, for example Ref. 4d. Passing from the algebraic to the differentiable level
the corresponding notions arise. A pseudo-Riemannian manifold is said to beOssermansrespec-
tively, Jordan–Ossermand if the eigenvalues of the Jacobi operatorssrespectively, their normal
Jordan formsd are constant on the pseudo-unit sphere bundlesS±sMd. ThepointwiseOsserman and
Jordan–Osserman conditions correspond to the possibility of the eigenvalues and the Jordan nor-
mal form to vary from point to point on the manifold. Hence we have the following

Theorem 4: A four-dimensional Kähler metric is pointwise Osserman if and only if it is an
indefinite complex space form or a Ricci flat Kähler surface. Moreover, the Jacobi operators of a
Jordan–Osserman four-dimensional Kähler metric which is not of constant holomorphic sectional
curvature are nilpotent of degree two or three.

Proof: It follows from Ref. 3, Sec. 5 that a four-dimensional Kähler Osserman manifold
whose Jacobi operators are diagonalizable must be locally an indefinite complex space form.
Moreover, no Jordan–Osserman four-manifold whose Jacobi operators have complex roots may
exist scf. Ref. 3, Theorem 6.4d. Therefore only cases II and III in Remark 3 remain for consider-
ation. Since the manifold is Ricci flat the Jacobi operators are three-step nilpotent for type III
Jordan–Osserman metrics. Moreover, if the Jacobi operators are of type II it follows from Ref. 3
Corollary 7.3 that the Jacobi operators have a unique eigenvalue or two distinct eigenvaluesa and
b=4a. Hence, the Ricci flatness implies that the Jacobi operators are two-step nilpotent.

Remark 5:It has been shown in Ref. 3 that a type II Jordan–Osserman four-manifold admits
a parallel two-dimensional null plane field, and hence the metric corresponds to those discussed by
Walker.23 Further note the existence of Walker metrics which are Osserman but not Ricci flat.
Indeed, any para-Kähler metric is necessarily Walker and therefore the class of Walker metrics
contains that of paracomplex space forms.

Remark 6:Compact complex surfaces admitting a Ricci flat Kähler metric have been classi-
fied by Petean,21 who showed that any such surface must be a complex torus, a hyperelliptic
surface or a primary Kodaira surface. Moreover, he constructed explicit examples of Ricci flat
Kähler metrics on any of such surfaces. It should be remarked that all examples in Ref. 21 are
either flat or otherwise they have two-step nilpotent Jacobi operators.

Remark 7:Recently, left invariant Kähler structures on simply connected Lie groups have
been classified in Ref. 20. It has been shown by Ovando that any such Ricci flat indefinite Kähler
structure corresponds to one of the following:

• affsCd

The Lie algebra structure is given byfe1,e3g=e3, fe1,e4g=e4, fe2,e3g=e4 and fe2,e4g=−e3,
the left-invariant metric is given bya14se1 ^ e3−e2 ^ e4d−a13se1 ^ e4+e2 ^ e3d−sse1 ^ e1+e2

^ e2d and the complex structure satisfiesJe2=e1, Je3=e4.
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• r4,−1,−1

The Lie algebra structure is given byfe1,e4g=−e1, fe2,e4g=e2 and fe3,e4g=e3, the left-
invariant metric is given bya13se1 ^ e2−e3 ^ e4d−a12se1 ^ e3+e2 ^ e4d−sse1 ^ e1+e4 ^ e4d
and the complex structure satisfiesJe2=e3, Je4=e1.

• d4,2

The Lie algebra structure is given byfe1,e2g=e3, fe1,e4g=−2e1, fe2,e4g=e2 and fe3,e4g
=−e3, the left-invariant metric is given bya14se1 ^ e2+e3 ^ e4d+sse2 ^ e2+e4 ^ e4d and the
complex structure satisfiesJe1=e3, Je2=e4.

Now, it follows after some calculations that in all the three cases above the Jacobi operators are
two-step nilpotent or they vanishsif and only if s=0d.

Kähler metrics with three-step nilpotent Jacobi operators

Four-dimensional indefinite Kähler Osserman manifolds with two-step nilpotent Jacobi opera-
tors are already known in the literature,4 but there are only a few examples of Osserman four-
manifolds with three-step nilpotent Jacobi operatorsscf. Refs. 6 and 10d. Moreover, the fact that
locally symmetric four-dimensional Osserman manifolds may not have three-step nilpotent Jacobi
operators11 could suggest the nonexistence of Kähler Osserman metrics whose Jacobi operators are
nilpotent of degree three.

A Walker manifoldis a triplesM ,g,Dd of an n-dimensional manifold, an indefinite metricg,
and anr-dimensional parallel null distributionD. Of special interest are manifolds admitting a
field of null planes of maximum dimensionalitysr =n/2d. Since the dimension of a null plane is
r ø

1
2n, the lowest possible case of a Walker metric is that ofs−−+ +d-manifolds admitting a field

of parallel null two-planes. A canonical form for such metrics has been obtained by Walker in Ref.
23, showing the existence of suitable coordinatessx1,x2,x3,x4d, where the metric expresses as

gsx,y,z,td =1
0 0 1 0

0 0 0 1

1 0 asx1,x2,x3,x4d csx1,x2,x3,x4d
0 1 csx1,x2,x3,x4d bsx1,x2,x3,x4d

2 , s6d

for some functionsasx1,x2,x3,x4d, bsx1,x2,x3,x4d, andcsx1,x2,x3,x4d. Further note that the plane
field D is strictly parallelsi.e., there exists two orthogonal null parallel vector fieldsd if and only
if the defining functions satisfyasx3,x4d, bsx3,x4d, csx3,x4d and in such case coordinates can be
specialized to obtaina;c;0, bsx3,x4d scf. Ref. 23d.

It follows after some straightforward calculations that the Levi-Civita connection of a Walker
metric is given by

¹]1
]3 = 1

2a1]1 + 1
2c1]2,

¹]1
]4 = 1

2c1]1 + 1
2b1]2,

¹]2
]3 = 1

2a2]1 + 1
2c2]2,

¹]2
]4 = 1

2c2]1 + 1
2b2]2,

¹]3
]3 = 1

2ha3 + ca2 + aa1j]1 + 1
2h2c3 − a4 + ba2 + ca1j]2 − 1

2a1]3 − 1
2a2]4,
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¹]3
]4 = 1

2ha4 + cc2 + ac1j]1 + 1
2hb3 + bc2 + cc1j]2 − 1

2c1]3 − 1
2c2]4,

¹]4
]4 = 1

2h2c4 − b3 + cb2 + ab1j]1 + 1
2hb4 + bb2 + cb1j]2 − 1

2b1]3 − 1
2b2]4, s7d

whereak means partial derivative

]

]xk
asx1,x2,x3,x4d

and]k denotes the coordinate vector field] /]k, k=1, . . . ,4.
A g-orthogonal almost complex structureJ on a Walker four-manifold is said to be proper if

it defines a standard generator of a positivep /2 rotation onD,16 i.e., J]1=]2 andJ]2=−]1. The
whole almost complex structure can be recovered from this property to obtain in the canonical
coordinates

J]1 = ]2, J]2 = − ]1,

J]3 = − c]1 + 1
2sa − bd]2 + ]4, s8d

J]4 = 1
2sa − bd]1 + c]2 − ]3.

Further note that the indefinite almost Hermitian structuresg,Jd is Kähler if and only if16

a1 = − b1 = c2 a2 = − b2 = − c1. s9d

Next, let R denote the curvature tensor, taken with the sign conventionRsX,Yd=¹fX,Yg
−f¹x,¹Yg. A straightforward calculation froms7d using s9d shows that the curvature tensor of a
Kähler Walker metric is given by the followingssee also Ref. 16, Appendix 1d:

R1331= R1342= R1414= R1432= R2323= R2442= 1
2c12,

R1341= R1323= R1442= R2324= 1
2c11,

R1334= R2434= 1
2sc24 − c13d,

R1434= R2343= 1
2sc23 + c14d,

R3434= 1
4h4c34 − 2a44 − 2b33 − sa3 + 3b3 − 2c4dc2 − sb4 + 3a4 − 2c3dc1 − sa + bdc2

2 − sa + bdc1
2j.

s10d

Theorem 8: A Kähler Walker metrics6d–s8d is Osserman if and only if the coefficient func-
tions satisfy

asx1,x2,x3,x4d = x1Psx3,x4d + x2Qsx3,x4d + jsx3,x4d,

bsx1,x2,x3,x4d = − x1Psx3,x4d − x2Qsx3,x4d + hsx3,x4d, s11d

csx1,x2,x3,x4d = − x1Qsx3,x4d + x2Psx3,x4d + gsx3,x4d

for any functions Psx3,x4d, Qsx3,x4d satisfying

P3 − Q4 = 0 s12d
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and arbitrary functionsjsx3,x4d, hsx3,x4d, andgsx3,x4d. Moreover the Jacobi operators have zero
eigenvalues and they satisfy one of the following

(i) The Jacobi operators vanish at those points where P4+Q3=0 and

sP2 + Q2dsj + hd + Psj3 + 3h3 − 2g4d − Qsh4 + 3j4 − 2g3d + 2sj44 − 2g34 + h33d = 0,

(ii) the Jacobi operators are two-step nilpotent if and only if P4+Q3=0 and

sP2 + Q2dsj + hd + Psj3 + 3h3 − 2g4d − Qsh4 + 3j4 − 2g3d + 2sj44 − 2g34 + h33d Þ 0,

(iii) The Jacobi operators are three-step nilpotent otherwise.

Proof: As a matter of notation, let Ric and Sc denote the Ricci tensor and the scalar curvature
of sM ,gd, defined by RicsX,Yd=tracehZ→RsX,ZdYj and Sc=trace Ric. Now it follows froms10d
that the Ricci tensor and the scalar curvature of a Kähler Walker metric satisfies

Ric13 = Ric24 = c12,

Ric14 = − Ric23 = c11,

Ric33 = c23 + c14 + 1
2hsa − bdc12 − 2cc11j, s13d

Ric44 = c23 + c14 − 1
2hsa − bdc12 − 2cc11j,

Ric34 = 1
2h2cc12 + sa − bdc11j,

Sc = 4c12. s14d

Now, since any Osserman manifold is necessarily Einstein, a straightforward calculation from
s13d shows that the Einstein tensor

G = Ric −
Sc

4
g

vanishessequivalently the metric is Einsteind if and only if the following hold

G14 = − G23 = c11 ; 0,

G33 = c14 + c23 − 1
2hsa + bdc12 + 2cc11j ; 0,

s15d
G34 = 1

2sa − bdc11 ; 0,

G44 = c14 + c23 − 1
2hsa + bdc12 − 2cc11j ; 0.

Next note froms9d that a11+a22=0 for any Kähler Walker metric, and thus it follows from
s15d ands9d that a11=a22=a12;0, c11=c22=c12;0, andb11=b22=b12;0. Now, those conditions
together with the Kähler ones ats9d show that the metrics6d must be necessarily given bys11d.
Now, a straightforward calculation shows thats15d reduces to

G33 = G44 = − Q4 + P3 ; 0, s16d

which showss12d.
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Now, in order to analyze the Osserman property, it is convenient to consider the normalized
Jacobi operatorsJRsXd=gsX,Xd−1RX, where for any non-null vectorX=oXi]i, the Jacobi operators
RX=RsX, · ,dX of a metrics11d satisfyings12d are given by

RX = SA B

0 tA
D , s17d

whereA andB are 232-matrices and moreover

A = 1
2sP4 + Q3dSX3X4 X4

2

− X3
2 − X3X4

D . s18d

This shows that the characteristic polynomial of the Jacobi operators satisfy detsRX−lidd=l4 and
thus metricss11d and s12d are Osserman with zero eigenvalues for the Jacobi operators.

Moreover, in order to analyze the minimal polynomial of the Jacobi operators, observe that
JRsXds3d=0 and that

JRsXds2d = −
1

4
gsX,Xd−1sP4 + Q3d21

0 0 X4
2 − X3X4

0 0 − X3X4 X3
2

0 0 0 0

0 0 0 0
2 .

Moreover, assumingP4+Q3=0, the Jacobi operators reduce to

RX = −
1

4
J1

0 0 X4
2 − X3X4

0 0 − X3X4 X3
2

0 0 0 0

0 0 0 0
2 ,

where

J = sP2 + Q2dsj + hd + Psj3 + 3h3 − 2g4d − Qsh4 + 3j4 − 2g3d + 2sj44 − 2g34 + h33d

from where the result follows. h

Remark 9:As a consequence of Theorem 8 we have plenty of examples of Kähler Osserman
metrics whose Jacobi operators are three-step nilpotent. Indeed, any metric

asx1,x2,x3,x4d = x1Psx3,x4d + x2Qsx3,x4d,

bsx1,x2,x3,x4d = − x1Psx3,x4d − x2Qsx3,x4d,

csx1,x2,x3,x4d = − x1Qsx3,x4d + x2Psx3,x4d

is Kähler Osserman if and only if the functionsP andQ satisfyP3−Q4=0. Moreover, the corre-
sponding Jacobi operators vanishsequivalently the metric is flatd if and only if P4+Q3=0. Oth-
erwise the Jacobi operators are three-step nilpotent.

Remark 10:The Ricci operatorkRicˆ sXd ,Yl=RicsX,Yd of a metric s6d satisfying the Kähler
conditionss9d is given by
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Ricˆ =1
c12 − c11 c14 + c23 −

1

2
sa + bdc12 −

1

2
sa + bdc11

c11 c12
1

2
sa + bdc11 c14 + c23 −

1

2
sa + bdc12

0 0 c12 c11

0 0 − c11 c12

2
and hence the Ricci curvatures satisfy

l = c12 ± Î− c11
2 . s19d

Moreover, since the scalar curvature satisfies Sc=4c12, proceeding as in Theorem 8 it follows that
a Kähler metrics6d–s9d is self-dual if and only if it is given by

asx1,x2,x3,x4d = − 2x1x2Tsx3,x4d + x1Psx3,x4d + x2Qsx3,x4d + jsx3,x4d,

bsx1,x2,x3,x4d = 2x1x2Tsx3,x4d − x1Psx3,x4d − x2Qsx3,x4d + hsx3,x4d,

csx1,x2,x3,x4d = sx1
2 − x2

2dTsx3,x4d − x1Qsx3,x4d + x2Psx3,x4d + gsx3,x4d.

Hence any self-dual metric as above has Ricci curvatures ±2Tsx3,x4dÎ−1. Further note that even
in case the Ricci curvatures are vanishingsi.e., T;0d, the Ricci operator becomes

Ricˆ =1
0 0 P3 − Q4 0

0 0 0 P3 − Q4

0 0 0 0

0 0 0 0
2 ,

which is nondiagonalizable unlesss12d holds.
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On Explicit point multimonopoles in SU „2… gauge theory
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It is well known that the Dirac monopole solution with the Us1d gauge group
embedded into the group SUs2d is equivalent to the SUs2d Wu–Yang point mono-
pole solution having no Dirac string singularity. We consider a multicenter configu-
ration of m Dirac monopoles andn antimonopoles and its embedding into SUs2d
gauge theory. Using geometric methods, we construct an explicit solution of the
SUs2d Yang–Mills equations which generalizes the Wu–Yang solution to the case of
m monopoles andn antimonopoles located at arbitrary points inR3. © 2005 Ameri-
can Institute of Physics.fDOI: 10.1063/1.1939987g

I. INTRODUCTION

Abelian magnetic monopoles play a key role in the dual superconductor mechanism of
confinement1 which has been confirmed by many numerical simulations of the lattice gluodynam-
ics ssee, e.g., Refs. 2 and 3 and references thereind. Due to a dominant role of Abelian monopoles
in the confinement phenomena, it is important to better understand how they arise in nonabelian
pure gauge theories.

A spherically symmetric monopole solution of the SUs2d pure gauge field equations was
obtained by Wu and Yang in 1969.4 This solution is singular at the origin and smooth onR3

−h0j. Initially it was thought that it is genuinely nonabelian, yet later it was shown5 that this
solution is nothing but the Abelian Dirac monopole6 in disguise. Note that the gauge potential of
the finite-energy spherically symmetric ’t Hooft–Polyakov monopole7 approaches just the Wu–
Yang gauge potential for larger2=xaxa.

In this article, we generalize the Wu-Yang solution to a configuration describingm monopoles
and n antimonopoles with arbitrary locations inR3. This explicit solution to the Yang—Mills
equations can also be used as a guide to the asymptoticr →` behavior of unknown finite-energy
solutions in the Yang–Mills–Higgs theory, whose form for smallr is determined by multiplying
the solution by arbitrary functions and minimizing the energy functional, as was proposed in Ref.
8.

II. GENERIC U„1… CONFIGURATIONS

We consider the configuration ofm Dirac monopoles andn antimonopoles located at points
aW i =hai

1,ai
2,ai

3j with i =1, . . . ,m and i =m+1, . . . ,m+n, respectively. There are delta-function
sources for the magnetic field at these points.

Let us introduce the following two regions inR3:

RN,m+n
3

ª R3 − h ø
i=1

m+n

sx1 = ai
1, x2 = ai

2, x3 ø ai
3dj,

adOn leave from Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia; Electronic mail: popov@itp.uni-
hannover.de
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RS,m+n
3

ª R3 − h ø
i=1

m+n

sx1 = ai
1, x2 = ai

2, x3 ù ai
3dj. s1d

For simplicity we restrict ourselves to thegenericcase

ai
1,2Þ aj

1,2 for i Þ j , s2d

when

RN,m+n
3 ø RS,m+n

3 = R3 − haW1, . . . ,aWm+nj, s3d

and the two open sets are enough for describing the previoussm,nd configuration. Namely, the
generic configuration ofm Dirac monopoles andn antimonopoles is described by the gauge
potentials

AN,m+n = o
j=1

m

AN,j + o
j=m+1

m+n

ĀN,j, AS,m+n = o
j=1

m

AS,j + o
j=m+1

m+n

ĀS,j , s4d

whereAN,m+n andAS,m+n are well defined onRN,m+n
3 andRS,m+n

3 , respectively. Here

AN,j = Aa
N,jdxa with A1

N,j =
ixj

2

2r jsr j + xj
3d

, A2
N,j = −

ixj
1

2r jsr j + xj
3d

, A3
N,j = 0, s5d

AS,j = Aa
S,jdxa with A1

S,j = −
ixj

2

2r jsr j − xj
3d

, A2
S,j =

ixj
1

2r jsr j − xj
3d

, A3
S,j = 0, s6d

where

xj
c = xc − aj

c, r j
2 = dabxj

axj
b, a,b,c = 1,2,3, s7d

and ĀN,j =−AN,j, ĀS,j =−AS,j. On the intersectionRN,m+n
3 ùRS,m+n

3 we have

AN,m+n = AS,m+n + d lnSp
i=1

m S ȳi

yi
D1/2

p
j=m+1

m+n Syj

ȳj
D1/2D , s8d

whereyj =xj
1+ ixj

2 and overbar denotes a complex conjugation.
Remark:Note that in the case whenai

1,2=aj
1,2 for somei Þ j , one has to introduce more than

two open sets covering the spaceR3−haW1, . . . ,aWm+nj and define gauge potentials on each of these
sets as well as transition functions on their intersections. However, for the caseaW1=¯ =aWm+n=aW
the two setss1d are again enough to coverR3−haWj and the gauge potentials4d–s6d will describe
m−n monopolessif m.nd or n−m antimonopolessif m,nd sitting on top of each other.

One can simplify expressionss4d–s8d by introducing functions of coordinates

wj ª
yj

r j − xj
3 = eiw j cot

q j

2
, v j ª

1

wj
=

ȳj

r j + xj
3 = e−iw j tan

q j

2
, s9d

where

xj
1 = r j sinq j cosw j, xj

2 = r j sinq j sinw j, xj
3 = r j cosq j . s10d

Note thatwi →` for x1,2→ai
1,2, x3ùai

3, andvi →` for x1,2→ai
1,2, x3øai

3. In terms ofwj andv j

the gauge potentialss4d–s6d have the form

AN,m+n = o
i=1

m
1

2s1 + viv̄id
sv̄i dvi − vi dv̄id + o

i=m+1

m+n
1

2s1 + viv̄id
svi dv̄i − v̄i dvid, s11d
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AS,m+n = o
i=1

m
1

2s1 + wiw̄id
sw̄i dwi − wi dw̄id + o

i=m+1

m+n
1

2s1 + wiw̄id
swi dw̄i − w̄i dwid. s12d

On the intersectionRN,m+n
3 ùRS,m+n

3 of two domainss1d these configurations are related by the
transformation

AN,m+n = AS,m+n + d lnSp
i=1

m S w̄i

wi
D1/2

p
j=m+1

m+n Swj

w̄j
D1/2D , s13d

sinceȳi /yi =w̄i /wi. Note that the transition function ins13d can also be written in terms ofvi by
using the relationvi / v̄i =w̄i /wi.

For the Abelian curvatureFD,m+n we have

FD,m+n = dAN,m+n = − o
i=1

m
dvi ∧ dv̄i

s1 + viv̄id2 + o
i=m+1

m+n
dvi ∧ dv̄i

s1 + viv̄id2

= − o
i=1

m
dwi ∧ dw̄i

s1 + wiw̄id2 + o
i=m+1

m+n
dwi ∧ dw̄i

s1 + wiw̄id2 = dAS,m+n. s14d

It is not difficult to see thatFD,m+n is singular only at pointshaW1, . . . ,aWm+nj, where monopoles and
antimonopoles are located.

III. POINT SU„2… CONFIGURATIONS

The generalization of the Wu–Yang SUs2d monopole4 to a configuration describingm mono-
poles andn antimonopoles can be obtained as follows. Let us multiply Eq.s13d by the Pauli matrix
s3 and rewrite it as

AN,m+ns3 = fNS
sm,ndAS,m+ns3sfNS

sm,ndd−1 + fNS
sm,nddsfNS

sm,ndd−1, s15d

where

fNS
sm,nd =1p

i=1

m Swi

w̄i
D1/2

p
j=m+1

m+n S w̄j

wj
D1/2

0

0 p
i=1

m S w̄i

wi
D1/2

p
j=m+1

m+n Swj

w̄j
D1/22 . s16d

It can be checked by direct calculation that the transition matrixs16d can be split as

fNS
sm,nd = sgN

sm,ndd−1gS
sm,nd, s17d

where the 232 unitary matrices

gN
sm,nd =

1

s1 + pi=1

m+n
viv̄id1/21p

j=1

m

v j p
k=m+1

m+n

v̄k 1

− 1 p
j=1

m

v̄ j p
k=m+1

m+n

vk
2 s18d

and
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gS
sm,nd =

1

s1 + pi=1

m+n
wiw̄id1/21 1 p

j=1

m

w̄j p
k=m+1

m+n

wk

− p
j=1

m

wj p
k=m+1

m+n

w̄k 1 2 s19d

are well defined onRN,m+n
3 andRS,m+n

3 , respectively. Using formulass9d ands10d, one can rewrite
these matrices in the coordinatesxi

a with explicit dependence on moduliaW i for i =1, . . . ,m+n.
Substitutings17d into s15d, we obtain

AN,m+ngN
sm,nds3sgN

sm,ndd† + gN
sm,nddsgN

sm,ndd† = AS,m+ngS
sm,nds3sgS

sm,ndd† + gS
sm,nddsgS

sm,ndd†
¬ Asus2d

sm,nd,

s20d

where by constructionAsus2d
sm,nd is well defined onRN,m+n

3 øRS,m+n
3 =R3−haW1, . . . ,aWm+nj. Geometrically,

the existence of splittings17d means that Dirac’s nontrivial Us1d bundle overR3−haW1, . . . ,aWm+nj
trivializes when being embedded into an SUs2d bundle. The matricess18d and s19d define this

trivialization sincefNS
sm,nd° f̃NS

sm,nd=gN
sm,ndfNS

sm,ndsgS
sm,ndd−1=12.

Remark:Recall that we consider generic configurations with conditionss2d. In the case ofai
1,2

coinciding for somei Þ j , one hasRN,m+n
3 øRS,m+n

3 ÞR3−haW1, . . . ,aWm+nj and the gauge potential
s20d can have singularities outsideRN,m+n

3 øRS,m+n
3 . For example, in the casem=2, n=0, a1

1,2

=a2
1,2=0, anda1

3=−a2
3=a, the gauge potential describing two separated monopoles will be singular

on the interval −aøx3øa. To have nonsingularAsus2d
s2,0d one should considera1

1,2Þa2
1,2 or to use

three open sets coveringR3−haW1,aW2j instead of two ones.
The field strength for the configurations20d is given by

Fsus2d
sm,nd = dAsus2d

sm,nd + Asus2d
sm,nd ∧ Asus2d

sm,nd = iFD,m+nQsm,nd, s21d

where the sus2d-valued matrix

Qsm,nd ª − igN
sm,nds3sgN

sm,ndd† = − igS
sm,nds3sgS

sm,ndd† s22d

is well defined onRN,m+n
3 øRS,m+n

3 . It is easy to see thatQsm,nd
2 =−1 andQsm,nd may be considered as

the generator of the group Us1d embedded into SUs2d. Then the Abelian nature of the configura-
tion s20d and s21d becomes obvious. Further, for

Asus2d
sm,nd = Aa

sm,nddxa, Fsus2d
sm,nd = 1

2Fab
sm,nddxa ∧ dxb s23d

one can easily show that

]aFab
sm,nd + fAa

sm,nd,Fab
sm,ndg = is]aFab

D,m+ndQsm,nd s24d

and therefore on the spaceR3−haW1, . . . ,aWm+nj we have

]aFab
sm,nd + fAa

sm,nd,Fab
sm,ndg = 0, s25d

which follows from the field equations describingm Dirac monopoles andn antimonopoles. Note
that the solutions20d–s23d of the SUs2d gauge theory can be embedded in any larger gauge theory
following, e.g., Ref. 9.

IV. POINT MONOPOLES VIA RIEMANN–HILBERT PROBLEMS

Here we want to rederive the described configurations by solving a matrix Riemann-Hilbert
problem. For simplicity, we restrict ourselves to the case ofm monopoles.

Let us consider the Bogomolny equations10
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Fab = eabcDcx, s26d

whereDc=]c+fAc, ·g and the fieldsAa,Fab=]aAb−]bAa+fAa,Abg and x take values in the Lie
algebrausqd. Obviously, in the Abelian caseDcx=]cx. Note that for the gauge fieldsFD,m given
by s14d we have

Fab
D,m = eabc]cf

smd with fsmd = o
k=1

m
i

2rk
. s27d

Analogously, for the fieldFab
smd from s23d we have

Fab
smd = eabcDcF

smd with Fsmd = ifsmdQsmd, s28d

wherefsmd is given ins27d andQsmd in s22d. Thus, both Us1d and SUs2d multimonopoles as well
assm,nd configurationss11d–s14d ands20d–s22d can be considered as solutions of the Bogomolny
equationss26d. In fact, the second order pure Yang–Mills equations forFab

D,m and Fab
smd can be

obtained by differentiatings27d ands28d, respectively. Moreover, in pure SUs2d Yang–Mills theory
in s3+1d-dimensional Minkowski space, one can choose the componentA0 of the gauge potential
A=A0dt+Aa dxa to be nonzero and proportional toFsmd sthe Abelian case is similard. Then the
configurationhA0

smd ,Aa
smdj will be a static multidyon solution of the Yang–Mills equations.

Recall that the Bogomolny equationss26d can be obtained as the compatibility conditions of
the linear system

FDȳ −
l

2
sD3 + ixdGc = 0, F1

2
sD3 − ixd + lDyGc = 0, s29d

whereDȳ= 1
2sD1+ iD2d, Dy= 1

2sD1− iD2d, and the auxiliaryq3q matrix csxa,ld depends holomor-
phically on a new variablelPU,CP1. Such matricesc can be found via solving a parametric
Riemann–Hilbert problem which is formulated in the monopole case as follows.11 Suppose we are
given aq3q matrix f+− depending holomorphically on

h = y − 2lx3 − l2ȳ s30d

andl for lPU+ùU−, whereU+=CP1−h`j andU−=CP1−h0j. Then for each fixedsxadPR3 and
lPS1,U+ùU− one should factorize this matrix-valued function,

f+−sx,ld = c+
−1sx,ldc−sx,ld, s31d

in such a way thatc+ andc− extend holomorphically inl onto subsets ofU+ andU−, respectively.
In order to insure thatAa

†=−Aa andx†=−x in s29d with c=c± one should also impose thesrealityd
conditions

f+−
† sx,− l̄−1d = f+−sx,ld, c+

†sx,− l̄−1d = c−
−1sx,ld. s32d

After finding suchc± for an educated guess off+−, one can getAa andx from the linear system
s29d with the matrix functionc+ or c− instead ofc. Namely, froms29d we get

Aȳ ª
1

2
sA1 + iA2d = uc+]ȳc+

−1ul=0, A3 − ix = uc+]3c+
−1ul=0, s33d

Ay ª
1

2
sA1 − iA2d = uc−]yc−

−1ul=`, A3 + ix = uc−]3c−
−1ul=`. s34d

For more details see Refs. 11 and 12 and references therein.
The construction of Us1d multimonopole solutions via solving the Riemann–Hilbert problem

for the function
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f+−
D,m =

lm

pk=1

m
hk

¬ rm with hk = h − hsak
1,ak

2,ak
3,ld = s1 − l2dxk

1 + is1 + l2dxk
2 − 2lxk

3

s35d

was discussed in Ref. 12 and here we describe only the SUs2d case. The ansatz forf+−
smd which

satifiess32d only for oddm was written down in Appendix C of Ref. 12. Here we introduce the
ansatz

f+−
smd = S rm l−m

s− 1dmlm rm
−1 + s− 1dmrm

−1D s36d

satisfying the reality conditions32d for any m. It is not difficult to see that

f+−
smd = S 1 0

s− 1dmlmrm
−1 1

DS f+−
D,m 0

0 sf+−
D,md−1DS1 l−mrm

−1

0 1
D , S f+−

D,m 0

0 sf+−
D,md−1D , s37d

where the diagonal matrix ins37d describes the Dirac line bundleL fthe Us1d gauge groupg
embedded into the rank 2 complex vector bundlefthe SUs2d gauge groupg asL % L−1. This gives
another proof of the equivalence of Us1d and SUs2d point monopole configurationsssee Ref. 12 for
more detailsd. Furthermore, the matrixs36d can be split as follows:

f+−
smd = sc+

smdd−1c−
smd, s38d

where

c+
smd = ĉ+

smdS 1 0

s− 1dm+1lmrm
−1 1

D, c−
smd = ĉ−

smdS1 − l−mrm
−1

0 1
D , s39d

ĉ+
smd = gS

smdSc+
S,m 0

0 sc+
S,md−1D, ĉ−

smd = gN
smdSc−

N,m 0

0 sc−
N,md−1D , s40d

c+
S,m = p

i=1

m

c+
Ssxi

a,ld, c+
Ssxi

a,ld = j+sxi
ad − lj+

−1sxi
adȳi, j+sxi

ad = sr i − xi
3d1/2, s41d

c−
N,m = p

i=1

m

c−
Nsxi

a,ld, sc−
Nsxi

a,ldd−1 = j−sxi
adȳi + l−1j−

−1sxi
ad, j−sxi

ad = sr i + xi
3d−1/2. s42d

The explicit form ofgN
smd andgS

smd is given ins18d ands19d. Note that bothc±
smd andĉ±

smd satisfy the
reality conditionss32d.

Formulass38d–s42d solve the parametric Riemann–Hilbert problem for ourf+−
smd restricted to a

contour onCP1 which avoids all zeros of the functionpk=1
m hk. Substitutings39d–s42d into formulas

s33d and s34d, we get

Aȳ
smd = ĝS

smd]ȳsĝS
smdd−1, Ay

smd = ĝN
smd]ysĝN

smdd−1, A3
smd = gS

smd]3sgS
smdd† = gN

smd]3sgN
smdd†, s43d

xsmd =
i

2
sĝS

smd]3sĝS
smdd−1 − ĝN

smd]3sĝN
smdd−1d, s44d

where
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ĝS
smd = gS

smdSj+ 0

0 j+
−1D with gS

smd =
1

spi=1

m
sr i − xi

3d2 + pi=1

m
yiȳid1/21p

j=1

m

sr j − xj
3d p

j=1

m

ȳj

− p
j=1

m

yj p
j=1

m

sr j − xj
3d 2 ,

s45d

ĝN
smd = gN

smdSj−
−1 0

0 j−
D with gN

smd =
1

spi=1

m
sr i + xi

3d2 + p
i=1

m

yiȳid1/21 p
j=1

m

ȳj p
j=1

m

sr j + xj
3d

− p
j=1

m

sr j + xj
3d p

j=1

m

yj
2
s46d

and

j+ = p
k=1

m

j+sxk
ad = p

k=1

m

srk − xk
3d1/2, j− = p

k=1

m

j−sxk
ad = p

k=1

m

srk + xk
3d−1/2. s47d

It is not difficult to see that the configurations43d coincides withs20d andxsmd from s44d with Fsmd

from s28d. Thus, we have derived SUs2d multimonopole point-like solutions via a parametric
Riemann–Hilbert problem.
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Computational and geometric aspects of nonlocalsinfinitesimald symmetries of
nonlinear partial differential equations are considered. In particular, the relation of
nonlocal symmetries with classical, generalized and internal symmetries is briefly
discussed. A nonlocal symmetry for the Kaup–Kupershmidt equation is introduced
and studied in some detail. Some explicit particular solutions are found with its
help, and a Darboux-like transformation is also obtained. ©2005 American Insti-
tute of Physics.fDOI: 10.1063/1.1939988g

I. INTRODUCTION

Let Jsx,t ,u, . . .d=0 be a scalar partial differential equation. An infinitesimalsgeneralizedd
symmetry ofJ=0 is a smooth functionG depending onx, t, u and a finite number of derivatives
of u such that for any solutionusx,td to J=0, the deformed functionusx,td+tGsx,td is also a
solution to first order int. At least at a formal level5,10,34an infinitesimal generalized symmetryG
allows one to generate new solutions from old ones, and indeed, ifG depends at most onx, t, u
andux, one can find a one-parameter group of transformations on the space of first order jets of the
trivial bundle sx,t ,ud° sx,td which “sends solutions to solutions.”26,32,34

The adjective “infinitesimal” will be omitted hereafter. It is of great interest to extend the
symmetry concept, since symmetries are of fundamental importance in the theory of differential
equations.34 A natural generalization is provided bynonlocal symmetries, first studied rigorously
by Vinogradov and Krasil’shchik45: In analogy with the generalized symmetry case, by a nonlocal
symmetry ofJsx,t ,u, . . .d=0 one means, intuitivelysa formal definition will be given in Sec. IIId
a functionG which depends onx, t, u, a finite number ofx derivatives ofu and for example
integrals of u, such that for any solutionusx,td of J=0, the functionusx,td+tGsusx,tdd is also a
solution to first order int.

That these symmetries are important has been gradually acknowledged in the literature on
geometric aspects of differential equations. For example, they were used in the important paper45

to generate the hierarchy of Korteweg-de-Vries equations and to derive the Hopf–Cole transfor-
mation from symmetry considerations; in the late 1980s they were employed by Blumanet al.9

and Bluman and Kumei8 to find linearizing transformations for nonlinear partial differential equa-
tions, and by Akhatovet al.3 to obtain group classification results and special solutions for equa-
tions of thermal conductivity and gas dynamics; in 1992, Fushchych and Tychnin12 used them to
classify linearizable equations. Nonlocal symmetries also appear naturally in integrable
systems,2,11 symmetry reduction of ordinary differential equations,1 and in the theory of recursion
operators.3,15,16,20,26

A satisfactory geometric formulation of nonlocal symmetries taking into account the require-
ment that a symmetry—be it local or not—shouldsat least formallyd transform solutions into
solutions, has been developed by Krasil’shchik and Vinogradov, see Refs. 45 and 24–26, and
references therein. Their theory is based on an extension, also due to them, of the formal geometry
of partial differential equations,5,26,34 the theory of “coverings” and “diffieties.” Explicit compu-
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tations of nonlocal symmetriessin the Krasil’shchik-Vinogradov sensed appear in Refs. 45 and 26,
and have been also carried out by Galas13 sfor KdV, Harry Dym, and AKNSd, Leo et al.27,28 sfor
KdV and Harry Dymd, and Reyes41,42sfor Camassa-Holm, Hunter-Saxton, and KdVd. Galas’ work
has been further considered in Ref. 43. In the paperssRefs. 13, 27, 28, and 41–43d it is also shown
how to use these new symmetries to obtain Darboux transformations and/or special solutions for
the equations at hand.

It is interesting and natural to study the existence of nonlocal symmetries for equations other
than the ones considered insRefs. 13, 27, 28, 41, and 42d since, in contradistinction with gener-
alized symmetries,5,26,34finding them is not an algorithmic task. For instance, the nonlocal sym-
metries appearing in the articles just cited depend not simply on integrals of the dependent
variables, but on solutions to nontrivial first order systems of differential equations.

The goals of this article are to review some aspects of nonlocal symmetries in a form as
concrete as possible, to make some preliminary remarks on their relation with other types of
symmetries, and to present a new nontrivial example of the theory. A short review of classical,
generalized and internal symmetries is in Sec. IIsthree main classes oflocal symmetries, see Refs.
5 and 14d and nonlocal symmetries are discussed in Sec. III. Although the author’s debt to the
work of I. Krasil’shchik and A. Vinogradov24–26 is evident, the presentation of nonlocal symme-
tries appearing in this work is slightly different to the one in these references, as it does not rely
explicitly on the formal differential geometry of infinite dimensional manifolds and their cover-
ings. The article then focuses on the Kaup-Kupershmidt equation

qt = qxxxxx+ 5qqxxx+
25

2
qxqxx + 5q2qx. s1d

Eq. s1d has been chosen because to the author’s knowledge no fifth order equation has been
considered before from the point of view of nonlocal symmetries, and also because this particular
equation has proven to be difficult to analyze by standard means: Kaup21 introduced Eq.s1d in
1980 and found a solitary wave solution for it using inverse scattering techniques, but itsN-soliton
solutions have been found only in the last four years,19,30,37,38,31,46and other classes of exact
solutions fors1d do not appear to have been much considered at all, except perhaps for Refs. 17
and 47.

The Kaup–Kupershmidt equation and its nonlocal symmetry are studied in Sec. IV. As is the
case in Refs. 13, 27, 28, 41, and 42, this nonlocal symmetry depends on solutions to first order
systems of differential equations determined bys1d. Finally, in Sec. V a Darboux-like transforma-
tion for Eq. s1d is deduced from the computations carried out in Sec. IV, and some particular
solutions are explicitly constructed, using again the results of Sec. IV.

Below and henceforth, independent variables will be denoted byx1, . . . ,xn and dependent
variables byu1, . . . ,um. The space of dependent and independent variables will be denoted byE.
Partial derivatives

]kua

]xj1
¯ ]xjk

s2d

with respect tosnot necessarily differentd independent variablesxj1, . . . ,xjk will be denoted by
uxj1¯xjk

a or simply byuj1,. . .,jk
a , and of courseu0

a will be identified withua. Multi-indices will be also
used, following the conventions of Ref. 34: A multi-indexJ will be either anunordered k-tuple of
integersJ=s j1, . . . ,jkd, 1ø j1, . . . ,jkøn, with length #J=k indicating how many derivatives are
being taken,or J=0. In the second case, the length ofJ is #J=0. In this notation, the derivative
s2d will be represented simply byuJ

a.
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II. ON LOCAL SYMMETRIES OF DIFFERENTIAL EQUATIONS

A. Classical symmetries

Let Jasxi ,ua , . . . ,uJ
ad=0 be annth order system of partial differential equations, and letV be

a vector field on the spaceE,

V = o
i=1

n

jisxj,ubd
]

]xi + o
a=1

m

wasxj,ubd
]

]ua .

The nth prolongationof V is given by the formula

prsndV = o
i=1

n

ji ]

]xi + o
a=1

m

o
0ø#Jøn

wJ
a ]

]uJ
a , s3d

where the functionswJ
a are obtained inductively by means of

wJi
a = DiwJ

a − o
k=1

n

DisjkduJk
a , w0

a = wa, s4d

and thetotal derivatives Di are the formal derivations

Di =
]

]xi + ui
a ]

]ua + ui1i
]

]ui1
a + ui1i2i

]

]ui1i2
a + ¯ . s5d

The vectorV is aclassical symmetryof Ja=0 if the equationsprsndVsJad=0 hold wheneveruasxid
is a solution toJa=0.5,10,26,34It can be rigorously proven34 that if V is a classical symmetry, and
the systemJa=0 satisfies some mild technical conditions, for each value oft the transformation
xi °xistd, ua°uastd determined by the flow equations:

dxi

dt
= jisxj,ubd,

dua

dt
= wasxj,ubd, s6d

sends solutions ofJa=0 to solutions of the same system.

B. Generalized symmetries

A differential functionis a smooth function depending on the variablesxi, ua, and a finite
number of partial derivatives ofua.34 Generalized vector fieldson the spaceE are first order
operators of the form

V = o
i=1

n

ji ]

]xi + o
a=1

m

wa ]

]ua ,

in which the functionsji andwa are arbitrary differential functions.5,34 In analogy with II.A.,V is
a generalized symmetryof the systemJa=0 if and only if prVsJad=0 wheneveruasxid is a
solution ofJa=0, in whichprV is now theinfinite prolongationof the generalized vector fieldV,

prV = o
i=1

n

ji ]

]xi + o
a=1

m

o
#Jù0

wJ
a ]

]uJ
a , s7d

and the functionswJ
a are given as before by Eq.s4d. It can be proven that it is enough5,26,34 to

consider generalized symmetries of the form
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V = o
a=1

m

Ga ]

]ua . s8d

In this case the conditionprVsJad=0 says that the “infinitesimal deformation”uasxid
+tGasuasxidd solvesJa=0 to first order int wheneveruasxid is a solution ofJa=0, and one
recovers the preliminary definition of generalized symmetries given in the Introduction. Ifu0

asxid is
a solution toJa=0 andV is a generalized symmetry as ins8d, then for anyt the solutionuasxi ,td
to the Cauchy problem

]ua

]t
= Ga, uasxi,0d = u0

asxid s9d

is also a solution toJa=0.34 In spite of the formal character of this result,5,10,34 generalized
symmetries are of great interest: they are an essential ingredient of Noether’s theorem34 and, they
are one of the most important indicators of integrability available for partial differential
equations.32,34

C. Internal symmetries

In order to introduce internal symmetries one has to dwell a little deeper on the geometry of
differential equations.5,26,34

Assume thatE has a trivial bundle structure,E=X3U→X, in which X is the space of
variablesxi andU is the space of variablesua. Let JNE be theNth order jet bundle ofE equipped
with local coordinates

sx1, . . . ,xn,u1, . . . ,um,uj1
1 , . . .uj1

m, . . . ,uj1j2. . .jk
1 , . . . ,uj1j2. . .jk

m d,

in which J=s j1, j2, . . . ,jkd runs over all multi-indices of length at mostN, and letJ`E be the
infinity jet bundleof E equipped with coordinates

sx1, . . . ,xn,u1, . . . ,um,u1
1, . . .un

m, . . . ,uj1j2. . .jk
1 , . . . ,uj1j2. . .jk

m , . . . d s10d

in which J=s j1, j2, . . . ,jkd runs now overall multi-indices of length #Jù0.
An Nth order systemJa=0 defines a locus inJNE, and one assumes that this locus can be

restricted to a submanifoldSN of JNE which fibers overX. Thekth prolongationof Ja=0, kù1,
is the system of differential equations

DKJa = 0, 0ø # K ø k s11d

in which DK=Dk1
Dk2

¯Dkp
if K=sk1, . . . ,kpd. For eachkù1 one restricts the locus inJN+kE

determined bys11d to a submanifoldSN+k of JN+kE, and one further assumes thatSN+k fibers over
SN+k−1. The “tower” SN←SN+1←¯ determines a sub-bundleS` of J`E locally described by the
set of pointss10d that satisfyJa=0 and all its differential consequencess11d. This subbundle is
called theequation manifoldof the systemJa=0.

A few facts on the geometry ofJ`E need to be recalled: Smooth functions onJ`E are the
differential functions defined before, and vector fields onJ`E are formal series

X = Ai
]

]xi + o
#Jù0

BJ
a ]

]uJ
a , s12d

in which Ai, BJ
a are differential functions. Differentialk-forms are finite linear combinations of

termsAdxi1∧ ¯ ∧dxip∧duJ1

a1∧ ¯ ∧duJq

aq in which p+q=k andA is smooth. A differential formv

is acontact formif j`ssd*v=0 for all local sectionss: sxid° sxi ,uasxidd of E, in which j`ssd is the
infinite prolongationof s given by j`ssdsxid=sxi ,uasxid , . . . ,uJ

asxid , . . .d. The space of contact forms
on J`E will be denoted byCsJ`Ed.
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All the foregoing constructions remain valid, via pull-back, on the equation manifoldS` of a
system of partial differential equationsJa=0.

An sinfinitesimald contact transformation is a vector field X on J`E such that
XsCsJ`Edd#CsJ`Ed sthat is, the Lie derivative of any contact form with respect toX is again a
contact formd. A contact transformationX is an external symmetry of a system of differential
equationsJa=0 if XsJad=0 on solutions toJa=0. An internal symmetry ofJa=0 is a vector
field X on S` such thatXsCsS`dd#CsS`d sRefs. 5, 14, and 26, and references thereind, in which
CsS`d denotes the space of contact forms onS`.

If Ja=0 is of orderN, one definesmutatis mutandiscontact transformations onJNE and
internal symmetries onSN. The following basic result holds.5

Theorem 1. Let Ja=0 be a system of equations of order N and let W be a vector field on SN.
If W is an internal symmetry and V=psWd is the projection of W to the bundle E, then V is a
generalized symmetry of the systemJa=0. Moreover,W= usprVduSN.

An “S`” version of this result is in Ref. 26 and references therein. The precise relations among
classical, generalized and internal symmetries, however, are quite subtle.5,14 For instance,5 if a
systemJa=0 satisfies a technical condition, then every internal symmetry onSN is obtained by
restriction toSN of a first order generalized symmetry ofJa=0.

One would argue that nonlocal symmetries should be properly considered as generalizing the
class ofinternal symmetries. Some comments to support this point of view are at the end of Sec.
III.

III. NONLOCAL SYMMETRIES

The discussion of nonlocal symmetries given in this section is an operational version of the
deep geometric theory of Krasil’shchik and Vinogradov.45,24–26There are at least two reasons why
one would consider their viewpoint as the most satisfactory theory of nonlocalities for differential
equations: First, their approach is completely general; there are no a priori restrictions on theform
nonlocal objects may take, as it happens for instance in Refs. 10 and 20. Second, Krasil’shchik and
Vinogradov take naturally into account the fact that there are examples of nonlocal
symmetries13,22,27,28,41,42which make senseonly if defined on solutionsof a given differential
equation.

The following notation will be used: For some extra variablesdb sto be identified below with
new dependent variablesd and smooth functionsYib depending onxi, ua, db, andxi derivatives of
ua, one sets

D̃i = Di + o
b=1

N

Yib
]

]db
, s13d

and for a given systemJa=0 of partial differential equations one defines

J̃* = So
L

]Ja

]uL
a D̃LD =1

]J1

]u1 + ¯ +
]J1

]uI
1 D̃I

]J1

]u2 + ¯ +
]J1

]uJ
2 D̃J ¯

]J2

]u1 + ¯ +
]J2

]uK
1 D̃K ¯ ¯

]

2 . s14d

Definition 1:Let Jasxi ,ua , . . . ,uJa

a d=0 si =1, . . . ,n; a=1, . . . ,md be a system of partial differ-
ential equations and lethgb:b=1,2, . . . ,Nj be a new collection of dependent variables. An or-
deredsm+Nd-tuple of functionssGa ,Hbd, depending on the variables xi, ua, gb and finite numbers
of xi derivatives of ua, is a nonlocal symmetry ofJa=0 if there exist functions Xib depending on
xi ,ua ,gb andxi-derivatives of ua, such that the equations

D̃isXjbd = D̃jsXibd, i, j = 1,2, . . . ,n, b = 1,2, . . . ,N, s15d
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J̃*sGd = 0, s16d

D̃isHbd = D̃tsXibd, s17d

hold whenever uasxid is a solution toJa=0.

The operators D˜ i are defined as ins13d with Yib replaced by the functions Xib anddb replaced

by the functionsgb; the matrix J̃* in Eq. s16d is the matrixs14d determined by the system of

equationsJa=0 and the operators D˜
i; the vector G issG1,G2, . . . ,Gmdt; and finally, the operator

D̃t appearing ins17d is given by

D̃t = o
a=1

m

o
#Kù0

D̃KsGad
]

]uK
a + o

c=1

N

Hc
]

]gc
. s18d

The new dependent variablesgb are the “nonlocal variables,” the operatorsD̃i satisfying Eq.

s15d are the new total derivatives of the theory, and the corresponding matrixJ̃* is the nonlocal

version of theformal linearizationof the systemJa=0. The spaceÑ described locally as the set

of coordinatessxi ,ua , . . . ,uJ
a , . . . ,gbd and equipped with total derivative operatorsD̃i satisfying Eq.

s15d, is said to be acoveringof the equation manifoldS` of the systemJa=0.
Note that Eq.s16d depends only on the functionsGa and the symmetry of equations at hand.

Following Krasil’shchik and Vinogradov24,26,45one says that the functionsGa are theshadowof
the nonlocal symmetrysGa ,Hbd. It is important to stress that, basically due to the amazing
freedom one has to define nonlocal objectsssee, e.g.. Refs. 18, 22, and 44d, there is no general
algorithmic method to find shadows, in contradistinction with the local theory as explained in
Refs. 10, 26, and 34.

Example 1:The Kaup–Kupershmidt equation,

qt = qxxxxx+ 5qqxxx+ s25/2dqxqxx + 5q2qx, s19d

is the integrability condition of the linear problemCx=XC and Ct=TC, in which X and T are
given by33

X = F 0 1/s4l2d
− l2q 0

G s20d

and

T = F − sqxxx/4 + qqxd sqxx/2 + q2d/s4l2d
− l2sqxxxx+ 9qqxx/2 + 4qx

2 + q3d qxxx/4 + qqx
G . s21d

SetC=sa ,ddt. Then, one checkssusing Anderson’sVESSIOTpackage, for instance, see Ref. 4d that

G = a3d s22d

is a shadow of a nonlocal symmetry fors19d.
An important issue is to motivate Definition 1: First, one should certainly modify the total

derivative operatorsDi defined ins5d, since one wishes to introduce new dependent variablessthe
“nonlocal variables” of the theoryd and total derivatives should take them into account. The

operatorsD̃i appearing in Definition 1 are these new total derivatives, and since one expects

D̃jD̃i =D̃iD̃j, the equationsD̃isXjbd=D̃jsXibd should holdon solutions toJa=0.

Now, the total derivativesD̃i satisfyD̃isgbd=Xib, and these equations are compatible because

s15d holds. Sinceon solutions to the system of equationsJa=0 the total derivativesD̃i should
become ordinary partial derivatives, one concludes that the equations

073507-6 Enrique G. Reyes J. Math. Phys. 46, 073507 ~2005!

                                                                                                                                    



]gb

]xi = Xib s23d

should hold for each indexb wheneveruasxid is a solution toJa=0. These compatible equations
specify the relation between the variablesua andgb wheneveruasxid is a solution toJa=0.

Next, if sGa ,Hbd is a nonlocal symmetry, the deformed variablesua+tGa should satisfyJa

=0 to first order int, as in the generalized symmetry case. This means that the equation

]Ja

]ua ut
a +

]Ja

]ui1
a ui1t

a + ¯ +
]Ja

]uJ
a uJt

a = 0 s24d

should hold wheneveruasxid is a solution toJa=0 andut
a=Ga. Computinguit

a =uti
a on solutions

uasxid, one finds

uit
a =

]Ga

]xi =
]Ga

]xi +
]Ga

]ub ui
b + ¯ +

]Ga

]uK
b uKi

b +
]Ga

]gb
gb,i s25d

=DiG
a + o

b=1

N

Xib
]Ga

]gb
= D̃iG

a. s26d

Hence, Eq.s24d becomes

]Ja

]ua Ga +
]Ja

]ui1
a D̃i1

Ga + ¯ +
]Ja

]uJ
a D̃JG

a = 0

for each indexa, and so Eq.s16d should hold.
Finally, not only the dependent variablesua are deformed, but also the nonlocal variables

gb—related toua by Eq. s23d—change asua changessee e.g., Refs. 13, 27, 28, 41, and 42d. This
change is measured by the deformationgb°gb+tHb. One expects that for each indexb the
function gb+tHb satisfiess23d to first order int wheneveruasxid is a solution toJa=0. Equiva-
lently,

]Hb

]xi =
]Xib

]t
s27d

wheneveruasxid is a solution toJa=0 andgb,t=Hb. Expanding one finds,

]Hb

]xi =
]Hb

]xi +
]Hb

]ua ui
a +

]Hb

]ui1
a ui1i

a + ¯ +
]Hb

]uJ
a uJi

a + ¯ +
]Hb

]gc
gc,i = DiHb +

]Hb

]gc
Xic = D̃iHb

and

]Xib

]t
=

]Xib

]ua ut
a +

]Xib

]ui1
a ui1t

a + ¯ +
]Xib

]uJ
a uJt

a + ¯ +
]Xib

]gc
gct

=
]Xib

]ua Ga +
]Xib

]ui1
a D̃i1

Ga + ¯ +
]Xib

]uJ
a D̃JG

a +
]Xib

]gc
Hc = D̃tXib

that is,s27d is precisely Eq.s17d.
The foregoing discussion tells one how to construct nonlocal symmetriesstarting from a

shadow Ga: In the process of findingGa one also finds a collection of new dependent variablesjd,
and a corresponding collection of compatible equations
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]jd

]xi = Zidsxi,ua,uxj
a , . . . ,uxj1¯xji

a ,jdd, s28d

stating how these new variables are related to the original variablesua. One has to see howjd

change asua change under the deformationua°ua+tGa. Formally differentiates28d with respect
to t, and simplify usingut

a=Ga. One obtains a compatible system of first order equations forjd,t

of the form

]jd,t

]xi = Z̃idsxi,ua,uxk
a , . . . ,uxk1¯xki

a ,jd,jd,td, s29d

which has to be solved forjd,t assumings28d. If s29d has a solution in terms ofxi, ua,…, uJ
a, and

jd, one is done. If not, add new dependent variables,he say, related toua and jd by further
compatible differential equations

]he

]xi = Yiesxi,ua,uxj
a , . . . ,uxj1¯xji

a ,jd,hed, s30d

and writejd,t=Fdsxi ,ua , . . . ,uxk1¯xkd

a ,jd,hed. Now find he,t, and so on. Eventually one will obtain
a set of new dependent variables collectively calledgb, a corresponding set of functionsXib and
compatible equations

]gb

]xi = Xibsxi,ua,uxj
a , . . . ,uxj1¯xji

a ,gcd, s31d

and a corresponding set of infinitesimal variations of the form

]gb

]t
= Hbsxi,ua, . . . ,uxk1¯xkb

a ,gcd. s32d

Define total derivativesD̃i by s13d with functionsYib replaced byXib. Then,sGa ,Hbd is a bona fide
nonlocal symmetry. It is a theorem due to Khorkova, see Refs. 25 and 26 and references therein,
that one can always construct a nonlocal symmetry starting from a shadow. Examples appear in
Refs. 10, 13, 25, 27, 28, 41, and 42.

Example 2:It was proven in Ref. 45 that

G = s2Sx − uSde−s1/2deudx, s33d

in which S satisfiesSt=Sxx, is a shadow of a nonlocal symmetry of Burgers equationut=uxx

+uux. Consider an extra dependent variableg1 defined by the compatible equationsg1,x=u=X11

and g1,t=ux+ 1
2u2=X21, and set G1=s2Sx−uSd exps−s1/2dg1d. Compute g1,tx=g1,xt=ut=s2Sx

−uSde−s1/2dg1=s2Se−s1/2dg1dx. Thus,g1,t=2Sexps−1
2g1d, and one can defineH1=2Sexps−1

2g1d. The
deformationsu°u+tG1 andg1°g1+tH1 satisfy the equations

ut = uxx + uux, g1,x = u, g1,t = ux + 1
2u2

to first order int, and sG1,H1d is therefore a nonlocal symmetry for Burgers equation. This
example is further examined in Refs. 10, 25, and 39.

Now consider flows of nonlocal symmetries. First of all, one has the following.
Proposition 1:Let Jasxi ,ua , . . .d=0 be a system of partial differential equations. Assume that

hgbj is a finite set of nonlocal variables and that D˜
i =Di +oXib] /]gb satisfy Eq.s15d. If Ga and Hb

are functions depending on the variables xi, ua, gb and finite numbers of xi derivatives of ua such
that sGa ,Hbd is a nonlocal symmetry ofJa=0, the vector field

Ga ]

]ua + Hb
]

]gb
s34d
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is a generalized symmetry of the augmented system

Ja = 0,
]gb

]xi = Xib. s35d

Conversely, if (34) is a generalized symmetry of the system (35), sGa ,Hbd is a nonlocal symmetry
of Ja=0.

Proof: The vector fields34d is a generalized symmetry of the systems35d if and only if the
linearized equations

Ja,t = 0,
]

]t
S ]gb

]xi D = Xib,t s36d

with ut
a=Ga andgb,t=Hb are satisfied wheneveruasxid andgbsxid are solutions tos35d. But, as it

can be seen from Eq.s25d, the equationJa,t=0 is preciselyJ̃*sGadT=0, and this equation holds
becausesGa ,Hbd is a nonlocal symmetry. Also, the second equation appearing ins36d is equivalent
to Hb,xi =Xib,t on solutions tos35d, and the discussion following Eq.s27d shows that this condition
holds if sGa ,Hbd is a nonlocal symmetry. The converse is also clear. h

Example 3:The nonlinear thermal conductivity equation

ut = S ux

1 + u2D
x

s37d

is discussed by Akhatovet al.3 It follows from the analysis of Ref. 3 that the differential function
G=1+u2+vux, in which v is a potential defined by the equations

vx = u, vt =
vxx

1 + vx
2 , s38d

is the shadow of a nonlocal symmetry fors37d. Proceeding as in Example 2 one easily obtains the
genuine nonlocal symmetrys1+u2+vux,x+vvxd, and therefore one can conclude that the system
of equationss37d and s38d, possess the first order generalized symmetry

s1 + u2 + vuxd
]

]u
+ sx + vvxd

]

]v
.

One says that a nonlocal symmetry isof typeG if it depends on a finite number of nonlocal
variablesG=hgbj. The following corollary is immediate from Proposition 1 and the well known
fact that generalized symmetries of a given system of equations form a Lie algebra:26,34,36

Corollary 1: Let Jasxi ,ua , . . .d=0 be a system of partial differential equations. Assume that

G=hgbj is a finite set of nonlocal variables and that D˜
i =Di +oXib] /]gb satisfy Eq. (15). Then, the

set of all nonlocal symmetries of typeG of Ja=0 forms a Lie algebra.
Remark 1:It seems it was generally believed that a much stronger form of Corollary 1 should

hold, namely, that the collection of evolutionary vector fieldss8d with coefficients depending on
arbitrary nonlocal variables should form a Lie algebra. Sanders and Wang,ssee Ref. 36, and
references thereind showed that this is in fact not true, as these vector fieldsdo not satisfy the
Jacobi identity. Olveret al.36 and Olver35 have recently developed a formal calculus of nonlocal
evolutionary vector fields of a very general kind which does not suffer of this handicap. Some
comments on the problem of equipping the collection of “all” nonlocal symmetries of a given
equation with a Lie algebra structure appear in Ref. 25.

Corollary 2: If u0
asxid and gb

0sxid are solutions to the augmented system (35), the Cauchy
problem

]ua

]t
= Ga,

]gb

]t
= Hb,
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uasxi,0d = u0
asxid, gbsxi,0d = gb

0sxid,

determines one-parameter family of solutions to the augmented system (35). Therefore nonlocal
symmetries send solutions to the original systemJa=0 to solutions of the same system.

A subtler issue concerns the relation between nonlocal and internal symmetries. Consider the
shadows of nonlocal symmetries for the Burger and Kaup–Kupershmidt equations introduced in
Examples 2 and 1, respectively, and let the equation manifolds of these equations,SBurger

` andSKK
`

respectively, be submanifolds of the infinite jet bundlesJ`EBurger and J`EKK. The vector fields
determined bys33d and s22d,

Fs2Sx − uSdexpS−
1

2
E udxDG ]

]u
s39d

sfor Burger’sd and

a3d
]

]u
s40d

sfor Kaup–Kupershmidtd are quite different:
sad In the case ofs39d it should be possible, intuitively, to add an extra dependent variableu−1

satisfying Dxu−1=u to the infinite jet bundleJ`EBurger, in which Dx=] /]x+ux] /]u+uxx] /]ux

+¯, see Eq.s5d. In the Krasil’shchik–Vinogradov scheme26 this would correspond to building a
manifold N equipped with coordinatessxi ,u, . . . ,u−1d which “covers” J`EBurger. sAs stated in
Remark 1, the construction ofN as a manifold with a well-defined tangent bundle is not trivial: it
is necessary to set up a special formal machinery in order to construct Lie algebras of vector fields
with nonlocal coefficients.36,35d. The vector fields39d would then be a vector field onN which
would restrictto sa covering ofd the equation manifoldSBurger

` , thereby determining a shadow of a
nonlocal symmetry of Burger’s equation.

sbd On the other hand, it is hard to see how one could make the procedure above work in the
Kaup–Kupershmidt case: it does not seem appropriate to consider the variablesa andd appearing
in s40d as functions on some universal manifold coveringJ`EKK. A more natural point of view is
to think of the vector fields40d as defined only on a covering of the equation manifoldSKK

` ,
independentlyof whether or not one can extend it to a vector field on a covering of the infinite jet
bundleJ`EKK.

Thus, it would seem reasonable to call the nonlocal symmetry induced bys40d an internal
nonlocal symmetry, and to claim that nonlocal symmetries provide an interesting and natural
generalization of the class ofslocald internal symmetries. One wonders if an analysis like the one
performed in Ref. 5 for these symmetries can be made in this nonlocal setting.

IV. THE KAUP-KUPERSHMIDT EQUATION

The theory reviewed in the previous sections will be now applied to the interesting Kaup–
Kupershmidt equation21,30,31,37,38,46

qt = qxxxxx+ 5qqxxx+
25

2
qxqxx + 5q2qx. s41d

As a first remark, recall from Example 1 that Eq.s41d is the integrability condition of the
linear problem33

Sc1,x

c2,x
D = F 0 1/s4h2d

− h2q 0
GSc1

c2
D , s42d
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Sc1,t

c2,t
D = F − s 1

4qxxx+ qqxd s 1
2qxx + q2d/s4h2d

− h2sqxxxx+ 9
2qqxx + 4qx

2 + q3d 1
4qxxx+ qqx

GSc1

c2
D . s43d

As is well known, equations which are the integrability condition of linear problemswith param-
eter, Cx=XC, Ct=TC, in which X, T belong to a givensmatrixd Lie algebrag̃, are of great
interest because, in principle, they can be investigated by means of scattering/inverse scattering
techniques.6,7,21A key point in this theory, however, is that the parameter must beintrinsic29 and
it is generally agreed that this meanssat leastd that one cannot eliminate it by means of a simple
gauge transformation

X ° AXA−1 + F ]

]x
AGA−1, T ° ATA−1 + F ]

]t
AGA−1, s44d

in which A is an invertible matrix belonging to the Lie group with Lie algebrag̃. In the case at
hand, the parameterh appearing ins42d and s43d can be removed by applying a gauge transfor-
mation s44d with APSLs2,Rd given simply by

A = Fh 0

0 1/h
G .

fAnd indeed, the linear problem with intrinsic parameter used to analyze Eq.s41d via scattering/
inverse scattering is ansls3,Rd-valued problem, see Refs. 6, 7, and 21g.

However, one would claim that linear problems without parameter may also be of interest. For
example, a linear problem with a removable parameter29 for the Burgers equation yields, none-
theless, the linearizing Hopf–Cole transformation39,40 and, as it will be seen momentarily, the
linear problems42d and s43d allows one to find anontrivial nonlocal symmetry for the Kaup–
Kupershmidt equation which in turn yields nontrivial particular solutions tos41d.

The nonlocal symmetry of Kaup–Kupershmidt to be considered here depends on solutions to
first order systems of equations determined by Eq.s41d via its sls2,Rd-valued associated linear
problems42d, s43d. These systems can be understood geometrically,39,40but they can also be built
from scratch:

First, seta=c2/c1. The linear problems42d and s43d yields the Pfaffian system33

ax = − h2q −
a2

4h2 , s45d

at = − h2qxxxx−
9

2
h2qqxx − 4h2qx

2 − h2q3 + S1

2
qxxx+ 2qqxDa − S qxx

8h2 +
q2

4h2Da2, s46d

and one checks thats45d ands46d is completely integrable forasx,td wheneverqsx,td is a solution
to Eq. s41d. The function asx,td is said to be aquadratic pseudopotentialfor the Kaup–
Kupershmidt equation.

Second, write Eq.s46d in the form Ut=Vx for some functionsU and V using Eq.s45d, and
define a potentiald satisfying dx=U, dt=V on solutions of Eq.s41d. After a straightforward
computation, one obtains thatd is determined by the following equations:

dx = −
a

2h2 , s47d

dt =
1

2
qxxx+ 2qqx − aS qxx

4h2 +
q2

2h2D . s48d

The proposition below then holds. Its proof is asrather longd computation which is best
performed by using a symbolic computation package such as theMAPLE packageVESSIOT:4
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Proposition 2: With the foregoing notations, the vector field

VG = a exps− 2dd
]

]q
s49d

is the shadow of a nonlocal symmetry for the Kaup-Kupershmidt equation (41).
One now extends this shadow to a nonlocal symmetry fors41d. Set

qt = a exps− 2dd, s50d

and find the variations ofa andd with respect to the parametert. Takingt derivatives in Eq.s45d
one obtains

axt = − h2qt −
1

2h2aat = − h2a exps− 2dd −
1

2h2aat.

Multiplying by the integrating factor expsea /2h2dxd and usings47d, one finds

at = −
2

3
h4 exps− 2dd + C expsdd, s51d

in which C is independent ofx. Now take derivative with respect tot in s47d:

dxt = −
1

2h2at =
h2

3
exps− 2dd −

C

2h2 expsdd.

Since the right-hand side of this equation is not a totalx derivative, simply define a further
potentialb by means of

bx =
h2

3
exps− 2dd −

C

2h2 expsdd s52d

and set

dt = b. s53d

In order to determineb one needs to computebt=dtt=dtt taking into account Eqs.s50d, s51d, and
s53d. Before doing this, it is instructive to try to findbt by differentiating Eq.s52d with respect to
t:

bxt = − 2dt

h2

3
exps− 2dd −

C

2h2dt expsdd

= − 2bFh2

3
exps− 2dd +

C

4h2 expsddG = − 2bFbx +
3C

4h2 expsddG , s54d

in which s52d has been used. The right-hand side of Eq.s54d is not a totalx derivativeunless C
=0, and ifC=0, Eq.s54d implies that

bt = − b2. s55d

It follows that C=0 is necessary and sufficient for obtaining a nonlocal symmetry with shadow
s49d depending only on the nonlocal variablesa, d, andb, in analogy with the examples worked
out in Refs. 13, 22, 27, 28, 41, and 42, and this condition will be used henceforth. It seems
plausible to conjecture that ifCÞ0 one would obtain instead an infinite dimensional extension of
the shadows49d. An example of such an extensionsfor Burger’sd is in Ref. 26.

The foregoing discussion implies that the following result holds.
Theorem 2: Consider the pseudopotentiala determined by Eqs.s45d and s46d, and the
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potentiald given bys47d and s48d. Defineb by means of

bx =
h2

3
exps− 2dd, s56d

bt = exps− 2ddHS−
1

3
qxx −

5

12
q2Dh2 +

1

2
aqx −

3

8

a2q

h2 −
3

64

a4

h6J . s57d

These equations are compatible whenever qsx,td, asx,td, anddsx,td solve Eqs.s41d ands45d–s48d.
Moreover, the vector field

W= a exps− 2dd
]

]q
−

2

3
h4 exps− 2dd

]

]a
+ b

]

]d
− b2 ]

]b
s58d

is a (generalized) symmetry for the compatible system of equationss41d, s45d–s48d, s56d, ands57d,
and therefore it determines a bona fide nonlocal symmetry for the Kaup-Kupershmidt equation
s41d.

One can check this result independently of the previous discussion, using theMAPLE package
VESSIOT.4 Note that this nonlocal symmetry is of the type calledinternal in the discussion appear-
ing at the end of Sec. III. The interesting problem of studying the Lie algebra structure of all
internal nonlocal symmetries of typeG=ha ,d ,bj for Kaup–Kupershmidt remains open.

The flow of the vector fields58d can be explicitly found: as explained in Sec. II one only
needs to solve the system of equations:

]q

]t
= a exps− 2dd;

]a

]t
= −

2

3
h4 exps− 2dd; s59d

]d

]t
= b;

]b

]t
= − b2; s60d

with initial conditions

qsx,t,0d = q0; asx,t,0d = a0; dsx,t,0d = d0; bsx,t,0d = b0, s61d

in which q0, a0, d0, and b0 are arbitrary particular solutions to the compatible systems41d,
s45d–s48d, s56d, ands57d. One finds the formulas

qstd =
a0t exps− 2d0d

b0t + 1
−

h4 exps− 4d0d
3sb0t + 1d2 t2 + q0; s62d

astd =
− 2h4t exps− 2d0d

3sb0t + 1d
+ a0; s63d

dstd = lnub0t + 1u + d0; s64d

bstd =
1

t + 1/b0
. s65d

The theory of Secs. II and III implies the following result:
Corollary 3: Assume that the functions q0, a0, d0, andb0 are arbitrary particular solutions to

the compatible system of equationss41d, s45d–s48d, s56d, and s57d. Then, the function qsx,t ,td
given by Eq.s62d solves the Kaup–Kupershmidt equation for any value of the parametert.
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V. A DARBOUX TRANSFORM AND PARTICULAR SOLUTIONS TO KAUP–KUPERSHMIDT

A. A Darboux-like transform

Following an observation made by Schiff,43 the analysis of Sec. IV allows one to find a
Darboux-like transformation for Kaup–Kupershmidt. Starting froms62d, one simply eliminatesa0

andd0 using Eqs.s45d, s47d, ands56d:

qstd = q0 +
a0t exps− 2d0d

b0t + 1
−

h4 exps− 4d0d
3sb0t + 1d2 t2

= q0 +
t

b0t + 1
s− 2h2dd0,x exps− 2d0d −

1

3
t2sh2 exps− 2d0dd2

sb0t + 1d2

= q0 +
th2

b0t + 1
sexps− 2d0ddx −

1

3
t2sh2 exps− 2d0dd2

sb0t + 1d2

= q0 +
3tb0,xx

b0t + 1
−

3t2b0,x
2

sb0t + 1d2 ,

and thereforeqstd andq0 are related by

qstd = q0 + 3
]2

]x2 lnsb0t + 1d, s66d

in which b0 is any solution to the compatible system of equationss56d ands57d. This is analogous
to the Darboux transform for Kaup–Kupershmidt recently discussed in Refs. 31 and 46. Making a
slight change of notation, eliminating subscripts and writingq̄=qstd and B=bt+1, these com-
ments can be stated as follows.

Proposition 3: The Kaup–Kupershmidt equations41d is invariant under the transformation
q° q̄, in which

q̄ = q + 3sln Bdxx. s67d

In this equation the functions q and B are related by

q = −
Bxxx

Bx
+

3

4
SBxx

Bx
D2

, s68d

and Bsx,td is a solution to

Bt = − 5
BxxxxBxx

Bx
+

65

4

BxxxBxx
2

Bx
2 −

135

16

Bxx
4

Bx
3 + Bxxxxx−

15

4

Bxxx
2

Bx
. s69d

Equationss68d and s69d are found easily froms45d, s56d, ands57d.

B. Examples of particular solutions

For q0=0, one obtains the following formulas from Eqs.s45d–s48d, s56d, ands57d:

a0sx,td =
1

x

4h2 + ca

s70d

d0sx,td = − 2 lnU x

4h2 + caU + cd s71d
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b0sx,td =
4

15
h4 exps− 2cddS x

4h2 + caD5

−
3

64

1

h6 exps− 2cddt + cb, s72d

in which ca, cd, andcb are constant. Replacing these equations intos62d for, equivalently, replac-
ing s72d into the transforms66dg, one finds the following family of rational solutions to the
Kaup–Kupershmidt equation:

qsx,t,td =

S x

4h2
+ caD3

exps− 2cddt

tFexps− 2cddS4h4

15
S x

4h2
+ caD5

−
3

64

t

h6D + cbG + 1

−
1

3

S x

4h2
+ caD8

exps− 4cddt2h4

StFexps− 2cddS4h4

15
S x

4h2
+ caD5

−
3

64

t

h6D + cbG + 1D2
. s73d

Since the Kaup–Kupershmidt equation is invariant underx and t translations, one can set
ca=cb=0 and, by scaling the parametert, one can choosecd=0. The family of solutionss73d is
thus equivalent to

qsx,t,td = − 15
tx3s720tt − 15360h6 + x5td
s− x5t + 180tt − 3840h6d2 , s74d

a rational solution depending on the parameterst andh. It would be of interest to study it in more
detail, perhaps along the lines of Kovalyov’s23 analysis of a class of singular solutions for KdV.
Settingm=3840h6/t, one can writes74d as

qsx,t,md = − 15
x3s720t − 4m + x5d
s− x5 + 180t − md2 . s75d

The limit m→` reproduces the seed solutionq0=0. On the other hand, note thath=0 is a pole of
the linear problems42d and s43d, but—reflecting the fact that the parameterh can be “gauged
away”—the valueh=0 sor equivalently,m=0d yields a well defined rational solution to Eq.s41d.

A second family of solutions which can be obtained fromq0=0 is the following: Instead of
s70d–s72d, takea0=0, d0=0, andb0=sh2/3dx+cb. Then, Eq.s62d yields the stationary solution

qsx,t,td =
− h4t2

3StSh2

3
x + cbD + 1D2 .

Settingth2=3m and using again the invariance of Kaup–Kupershmidt underx translations, one
can write this solution as

qsx,md =
− 3m2

smx + 1d2 . s76d

This stationary solution was used in Ref. 46 to obtain examples of “extended9 N-soliton solutions
to Kaup–Kupershmidt, that is, solutions which approach asymptotically to solitons or to static bell
shaped waves ast→`.

Assume now thatq0=1/4 andtakeh=1 for simplicity. The functionsa0, d0, andb0 become
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a0 = − tanS x

4
+

t

64
D , s77d

d0 = − 2 lnUcosS x

4
+

t

64
DU , s78d

b0 =
1

24
sinSx +

t

16
D +

1

3
sinS x

2
+

t

32
D +

x

8
−

5t

128
. s79d

Replacing these functions intos62d, one obtains a one-parameter family of trigonometric solutions
to Kaup–Kupershmidt,

qsx,t,td =

− cos4S x

4
+

t

64
DtanS x

4
+

t

64
Dt

tF 1

24
sinSx +

t

16
D +

1

3
sinS x

2
+

t

32
D +

x

8
−

5t

128
G + 1

−
1

3

t2 cos8S x

4
+

t

64
D

StF 1

24
sinSx +

t

16
D +

1

3
sinS x

2
+

t

32
D +

x

8
−

5t

128
G + 1D2

+
1

4
. s80d

This solution is almost, but not quite, a function of the sums=x/4+t /64: the potentialb0 sand
hence the solutionqsx,t ,tdd fails to depend only ons. As is the case withs74d, this solution is
singular along a curve in thesx,td plane.

Now consider the solutions appearing from the choicesq0=−1/4 andh=1. In this case the
functionsa0, d0, andb0 read

a0 = tanhS x

4
+

t

64
D , s81d

d0 = − 2 lnUcoshS x

4
+

t

64
DU , s82d

b0 =
1

24
sinhSx +

t

16
D +

1

3
sinhS x

2
+

t

32
D +

x

8
−

5t

128
, s83d

and the corresponding one–parameter family of solutions to Kaup–Kupershmidt is
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qsx,t,td =

cosh4S x

4
+

t

64
DtanhS x

4
+

t

64
Dt

tF 1

24
sinhSx +

t

16
D +

1

3
sinhS x

2
+

t

32
D +

x

8
−

5t

128
G + 1

−
1

3

t2 cosh8S x

4
+

t

64
D

StF 1

24
sinhSx +

t

16
D +

1

3
sinhS x

2
+

t

32
D +

x

8
−

5t

128
G + 1D2

−
1

4
. s84d

Finally, take the stationary solutions76d as seed solutionq0. The functionsa0, d0 andb0 read:

a0 = 6
h2mssmx + 1d2 + 1d

ssmx + 1d2 − 3dsmx + 1d
, s85d

d0 = − 2 lnssmx + 1d2 − 3d + lnsmx + 1d, s86d

b0 =
1

3
h2S1

7
m6x7 + m5x6 +

3

5
m4x5 − 7m3x4 − m2x3 + 33x2m − 65x − 81

1

smx + 1dmD − 576m4h2t.

s87d

Settingj=th2 and usings62d for the transforms66dg, one can write the corresponding family of
solutionsqsx,t ,j ,md as

qsx,t,j,md =
6jmfsmx + 1d2 − 3g3fsmx + 1d2 + 1g

smx + 1d3s1/3jfPsx,md − 81Qsx,mdg − 576m4jt + 1d

−
1/3j2fsmx + 1d2 − 3g8

s1/3jfPsx,md − 81Qsx,mdg − 576m4jt + 1d2smx + 1d4 − 3
m2

smx + 1d2 , s88d

in which

Psx,md =
1

7
m6x7 + m5x6 +

3

5
m4x5 − 7m3x4 − m2x3 + 33x2m − 65x, s89d

Qsx,md =
1

msmx + 1d
. s90d

This solution approaches asymptotically the stationary solutionqsxd=−24/x2 as m→`, whereas
the seed solutionq0 is recovered in the limitt→`.
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The quantum trigonometric Calogero–Sutherland models related to Lie algebras
admit a parametrization in which the dynamical variables are the characters of the
fundamental representations of the algebra. We develop here this approach for the
case of the exceptional Lie algebraE6. © 2005 American Institute of
Physics.fDOI: 10.1063/1.1933088g

I. INTRODUCTION

The so-called Calogero–Sutherland or Calogero–Moser models were introduced by Calogero,1

who studied, from the quantum standpoint, the dynamics on the infinite line of a set of pairwise
interacting particles through rational plus quadratic potentials, and found that the problem was
exactly solvable. Soon afterwards, Sutherland2 arrived to similar results for the quantum problem
on the circle, this time with trigonometric interaction, and Moser3 showed that the classical
version of both models enjoyed integrability in the Liouville sense. The identification of the
general scope of these discoveries came with the works of Olshanetsky and Perelomov,4–6 who
realized that it was possible to associate models of this kind to all the root systems of the simple
Lie algebras, and that all these models were integrable, both in the classical and in the quantum
framework;7,8 see also Ref. 9 for a complete treatment of these topics. Nowadays, there is a
widespread interest in this type of integrable system, and many mathematical and physical appli-
cations for them have been found, see for instance Ref. 10.

The Calogero-Sutherland Hamiltonian associated to the root system of a simple Lie algebraL
can be written as a second-order differential operator whose variables are the characters of the
fundamental representations of the algebra. As it was shown in the papers,11–13 and later in Refs.
14–19 this approach gives the possibility of developing some systematic procedures to solve the
Schrödinger equation and determine important properties of the eigenfunctions, such as recurrence
relations or generating functions for some subsets of them. For the moment, the approach has been
used only for classical algebras ofAn andDn type, and recently19 for the exceptional algebraE6 for
a special value of the coupling constant for which the eigenfunctions are proportional to the
characters of the ireducible representations of the algebra. The aim of this paper is to show how to
generalize the treatment of Ref. 19 to arbitrary values of the coupling constant and to extend some
of the particular results found there to the general case.

adOn leave of absence from the Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia. Electronic
address: Perelomo@dftuz.unizar.es
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II. THE CALOGERO–SUTHERLAND MODEL FOR E6 IN z-VARIABLES

The Hamiltonian operator for the trigonometric Calogero–Sutherland model related to the root
system of a simple Lie algebra has the generic form

H =
1

2
sp,pd + o

aPR+

kaska − 1dsin−2sa,qd,

whereR+ is the set of positive roots,q andp are vectors of dimensionr =rank of the algebra,s,d
is the usual Euclidean scalar product inRr, and the coupling constantska are such thatka=kb if
iai=ibi. In particular, becauseE6 is simply lacedsfor all details about the structure ofE6 needed
to follow the main text, see Appendix Ad, the Calogero–Sutherland model associated toE6 de-
pends only on one coupling constantk. To write H in a more explicit way, it is convenient to use
the orthonormal basishei , i =1, . . . ,6j which is related to the generating system of the Appendix A
through «i =ei −

1
6o j=1

6 ej. The expression ofq and p in this basis is simplyq=oi=1
6 qiei, p

=oi=1
6 piei, while the simple roots are given by

a1 = e1 − e2,

a2 =
1

2
S− 1 +

Î3

3
Do

j=1

3

ej +
1

2
S1 +

Î3

3
Do

j=4

6

ej ,

ak = ek−1 − ek, k = 3,4,5,6.

Theq coordinates are assumed to take values in the intervalf0,pg, and therefore the Hamiltonian
can be interpreted as describing the dynamics of a system of six particles moving on the circle, but
notice that there is not translational invariance. We recapitulate some important facts about this
model which follow from the general structure of the quantum Calogero–Sutherland models re-
lated to Lie algebras.8,9 The ground state energy andsnon-normalizedd wave function are

E0skd = 2sr,rdk2 = 156k2,

C0
ksqd = p

aPR+

sinksa,qd,

with r being the Weyl vector, while the excited states depend on a six-tuple of quantum numbers
m=sm1,m2,m3,m4,m5,m6d, and satisfy the Schrödinger equation

HCm
k = EmskdCm

k ,

Emskd = 2sl + kr,l + krd, s1d

where l is the highest weight of the irreducible representation ofE6 labelled by m, i.e., l
=oi=1

6 mili. By substitution ins1d of

Cm
k sqd = C0

ksqdFm
k sqd, s2d

we are led to the eigenvalue problem

DkFm
k = «mskdFm

k s3d

with
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Dk = −
1

2
D − k o

aPR+

ctgsa,qdsa,¹qd, s4d

and

«mskd = Emskd − E0skd = 2sl,l + 2krd. s5d

Taking into account thatAjk
−1=sl j ,lkd, it is possible to give a more explicit expression for«mskd,

«mskd = 2 o
j ,k=1

6

Ajk
−1mjmk + 4k o

j ,k=1

6

Ajk
−1mj . s6d

Now the main problem is to solves3d. As it has been shown for other algebras,11–13,17the best
way to do this is to use a set of independent variables which are invariant under the Weyl
symmetry of the Hamiltonian, namely the characterszk,k=1, . . . ,6, of the six fundamental repre-
sentations of the Lie algebraE6. We can infer froms4d the structure ofDk when written in thez
variables,

Dk = o
j ,k=1

6

ajkszd]zj
]zk

+ o
j=1

6

fbj
s0dszd + kbj

s1dszdg]zj
. s7d

As a matter of fact, the eigenfunctions ofDs0d and Ds1d are sproportional tod the monomial
symmetric functionsMl=osPW expf2issl ,qdg sW is the Weyl groupd and the charactersxl of the
irreducible representations of the algebraE6, respectively.8 Thus, knowing the characterszi =xli

of
the fundamental representations and the productszizj through the Clebsch–Gordan series for the
algebra, we are able to find the HamiltonianDs1d, that is, we obtain the coefficientsajkszd entering

in the expression of all the HamiltoniansDk and also the coefficientsbj
s0dszd+bj

s1dszd. In the
previous paper19 we computed the needed Clebsch–Gordan series and showed these coefficients.

On the other hand, knowing enough monomial symmetric functions in terms of the funda-
mental characters,Mlszd, we can complete the form ofDk, for we know that

Ds0dMl = «ms0dMl = 2sl,ldMl, s8d

a system of linear equations which can be solved for the coefficientsbj
s0dszd, j =1, . . . ,6. To this

end, remind that the characters can be expanded as sums of monomial functions,20

xl = Ml + a1Mm1
+ a2Mm2

+ ¯ ,

where the set ofmk entering in the expansion is easy to determine: they are the dominant weights
such thatmi =l−o j=1

6 nja j with nj ù0 andsmi ,akdù0 for the six simple rootsak. The coefficients
ak, on the other hand, represent the multiplicities of the weightsmi in the representation with
highest weightl. Here it will suffice to deal with the following expansions:

x100000
s27d = z1 = M100000

s27d ,

x010000
s78d = z2 = M010000

s72d + aM000000
s1d ,

x001000
s351d = z3 = M001000

s216d + bM000001
s27d ,

x000100
s2925d = z4 = M000100

s720d + cM100001
s270d + dM010000

s72d + eM000000
s1d ,

x000010
s351d = z5 = M000010

s216d + bM100000
s27d ,
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x000001
s27d = z6 = M000001

s27d ,

x100001
s650d = z1z6 − z2 − 1 =M100001

s270d + fM010000
s72d + gM000000

s1d , s9d

where the form ofx100001comes from the list in Ref. 19 and the numbers appearing in parentheses
as superscripts are either the dimensions of the representations or the dimensions of the linear
spaces generated by the orbits of the Weyl group corresponding to the monomial functions. The
former can be computed from the Weyl dimension formula, while the latter follow easily from the
fact that the Weyl group of the subalgebra ofE6 obtained by removing from the Dynkin diagram
the dots corresponding to the weight defining the monomial function acts trivially on such a
weight, for instance, removing the dot associated tol1 we obtain the Dynkin diagram ofD5, and
hence

dim M100000=
uWE6

u

uWD5
u
=

27 · 34 · 5

1

2
10!!

= 27,

and so on.
While the dimensions shown ins9d suffice for fixing a=6, b=5, for the computation of

remaining multiplicities we need to use the Freudenthal formula21

nm =
oa.0 ok=1

`
2nm+kasm + ka,ad

sl + m + 2r,l − md
. s10d

Herenm stands for the multiplicity of the weightm in the representation of highest weightl, the
first sum extends over positive roots, andr is the Weyl vector. The application of the Freudenthal
formula is quite easy for the representations at stake. Let us see, for instance, how to computec in
s9d. In this casel=l4 and c=nm=nl1+l6

. The scalar product of the vectorb=l−m=a2+a3

+2a4+a5 with m is sb ,md=0 and, due to the fact that the length ofm+a, with a a positive root,

is um+au=sumu2+2+2sm ,add
1
2, the only roots entering ins10d are the positive rootsa such that

sm ,ad=0, because otherwiseum+au. um+bu= ulu and m+a would lie outside of the weight dia-
gram for the representationRl. Looking at the table of positive roots in Appendix A, we check that
there are 12 of them withsm ,ad=0. For all of these,m+a lies on the orbit ofl, and thusnm+a

=1. This gives

c = nl1+l6
= 12

2sm,ad + 2sa,ad

sl4 + l1 + l6 + 2oi=1

6
li,a1 + a3 + 2a4 + a5d

= 12
2 · 0 + 2 · 2

2 + 2 · 5
= 4.

To computed we proceed much in the same way. Nowm=l2 and b=l−m=a1+a2+2a3+3a4

+2a5+a6. It follows thatsm ,bd=1, and thus only positive roots withsm ,ad=0 or sm ,ad=1 enter
in the Freudenthal formula. There are 20 positive roots withsm ,ad=1, and for themnm+a=1
because they are in the orbit ofl. The number of positive roots withsm ,ad=0 is 15, and for them
m+a lies in the orbit ofl1+l6, so that their multiplicities arenm+a=4. This givesd=nl2

=15.
Once we knowc andd, we computee by balancing dimensions ins9d, and obtaine=45. A similar
use of the Freudenthal formula givesf =5, and thereforeg=20.22

With all the coefficients ins9d being fixed, we can now solve for the monomial functions
corresponding to the fundamental weights. We find

M100000= z1,

M010000= z2 − 6,
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M001000= z3 − 5z6,

M000100= z4 − 4z1z6 + 9z2 + 9,

M000010= z5 − 5z1,

M000001= z6.

The remaining step is to substitute these monomials ins8d and to solve the linear system for the
coefficientsbj

s0dszd; the outcome is

b1
s0dszd = 8

3z1, b2
s0dszd = 4sz2 − 6d, b3

s0dszd = 20
3 z3 − 20z6,

b4
s0dszd = 12z4 − 16z1z6 − 24z2 + 36, b5

s0dszd = 20
3 z5 − 20z1, b6

s0dszd = 8
3z6.

With this and the form ofDs1d given in Ref. 19, we can now write the full set of coefficients
in s7d,

a11szd = 8
3z1

2 − 4z3 − 20z6,

a12szd = 2z1z2 − 26z1 − 10z5,

a13szd = 10
3 z1z3 + 18 − 12z2 − 6z4 − 18z1z6,

a14szd = 4z1z4 + 18z1 − 10z1z2 − 18z5 − 8z2z5 − 8z3z6 + 8z6
2,

a15szd = 8
3z1z5 − 10z3 − 26z6 − 10z2z6,

a16szd = 4
3z1z6 − 36 − 12z2,

a22szd = 4z2
2 − 36 − 12z2 − 4z4 − 16z1z6,

a23szd = 4z2z3 − 24z1
2 + 14z3 − 8z1z5 − 2z6 − 10z2z6,

a24szd = 6z2z4 − 18z2 − 12z2
2 − 10z1z3 + 24z4 − 6z3z5 + 26z1z6 − 8z1z2z6 − 10z5z6,

a25szd = 4z2z5 − 2z1 − 10z1z2 + 14z5 − 8z3z6 − 24z6
2,

a26szd = 2z2z6 − 10z3 − 26z6,

a33szd = 20
3 z3

2 + 28z1 − 24z1z2 − 4z1z4 + 32z5 − 8z2z5 − 16z1
2z6 + 8z3z6 − 12z6

2,

a34szd = 8z3z4 + 10z1
2 − 10z1

2z2 + 18z3 − 2z2z3 − 6z1z2z5 − 10z5
2 − 18z6 + 8z2z6 − 10z2

2z6 − 8z1z3z6

+ 20z4z6 + 8z1z6
2,

a35szd = 16
3 z3z5 − 36 + 24z2 − 12z2

2 − 10z1z3 + 24z4 − 16z1z6 − 8z1z2z6 − 10z5z6,
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a36szd = 8
3z3z6 − 26z1 − 10z1z2 − 10z5,

a44szd = 12z4
2 − 8z1

3 − 12z2
3 + 36z1z3 − 12z1z2z3 − 36z4 + 36z2z4 + 16z1

2z5 − 36z3z5 − 4z2z3z5 − 8z1z5
2

− 36z1z6 + 28z1z2z6 − 8z1z2
2z6 − 8z3

2z6 + 16z1z4z6 + 36z5z6 − 12z2z5z6 + 16z3z6
2 − 8z6

3,

a45szd = 8z4z5 − 18z1 + 8z1z2 − 10z1z2
2 − 10z3

2 + 20z1z4 + 18z5 − 2z2z5 + 8z1
2z6 − 6z2z3z6 − 8z1z5z6

+ 10z6
2 − 10z2z6

2,

a46szd = 4z4z6 + 8z1
2 − 18z3 − 8z2z3 − 8z1z5 + 18z6 − 10z2z6,

a55szd = 20
3 z5

2 − 12z1
2 + 32z3 − 8z2z3 + 8z1z5 + 28z6 − 24z2z6 − 4z4z6 − 16z1z6

2,

a56szd = 10
3 z5z6 + 18 − 12z2 − 6z4 − 18z1z6,

a66szd = 8
3z6

2 − 20z1 − 4z5,

b1szd = b1
s0dszd + kb1

s1dszd = s32k + 8
3dz1,

b2szd = b2
s0dszd + kb2

s1dszd = s44k + 4dz2 + 24sk − 1d,

b3szd = b3
s0dszd + kb3

s1dszd = s60k + 20
3 dz3 + 20sk − 1dz6,

b4szd = b4
s0dszd + kb4

s1dszd = s84k + 12dz4 + sk − 1ds16z1z6 + 24z2 − 36d,

b5szd = b5
s0dszd + kb5

s1dszd = s60k + 20
3 dz5 + 20sk − 1dz1,

b6szd = b6
s0dszd + kb6

s1dszd = s32k + 8
3dz6.

III. COMPUTATION OF POLYNOMIALS AND DEFORMED CLEBSCH–GORDAN
SERIES

The eigenfunctionsFm
k sqd are polynomials when expressed inz variables,Fm

k sqd=Pm
k szd. The

Schrödinger equation can then be solved by applying a systematic procedure, which is suitable to
be implemented in a computer program able to carry out symbolic calculations. We propose two
alternative methods to find the Schrödinger eigenfunctions.

s1d Given a weightn1l1+n2l2+n3l3+n4l4+n5l5+n6l6, let us denotezn=z1
n1z2

n2z3
n3z4

n4z5
n5z6

n6.
Thus,Dk acting onzn gives

Dkzn = o
bPL

kb,nskdzn−b, s11d

whereL includes only integral linear combinations of the simple roots with non-negative
coefficients and, of course, in the exponent ofs11d we expressb in the basis of fundamental
weights. In particular,k0,nskd=«nskd. The polynomialsPmszd can be written as
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Pm
k szd = o

mPQ+smd

cmskdzm−m, c0 = 1,

where again them in Q+smd are integral linear combinations of the simple roots with
non-negative coefficients such that they do not give rise to negative powers of thez’s. By
substituting in the Schrödinger equation we find the iterative formula

cmskd =
1

«mskd − «m−smdskd o
bPL,bÞ0

kb,m−sm−bdskdcm−bskd.

To use this formula in practice, one should take into account the heights of them’s, because
each coefficientcm can depend only on some of thecn such that htsnd,htsmd.

s2d The productz1
m1z2

m2z3
m3z4

m4z5
m5z6

m6 can be expanded on the basis of the orthogonal polynomials
Pm

k szd as

z1
m1z2

m2z3
m3z4

m4z5
m5z6

m6 = Pm
k szd + o

bPSm

nbskdPm−b
k szd,

whereSm is the set of all integral dominant weightsb such thatm−b is a linear integral
combination of the simple roots with non-negative coefficents, i.e.,m−b belongs to the cone
of positive roots. Furthermore, the operatorDk−«nskd annihilates the characterPn

k. Taking
this into account, we can obtain the eigenfunctions using the formula

Pm
k = H p

bPSm

sDk − «m−bskddJzm.

Through any of these methods, it is possible to compute the characters rather quickly. As an
illustration, we offer a list of polynomials and monomial functions in Appendix B. For a similar
list of characters, see Ref. 19.

Once we have a method for the computation of the polynomials, we can extend it to produce
an algorithm for calculating deformed Clebsch–Gordan series for the product of them. Suppose
that we want to obtain the series forPm

k 3 Pn
k. We list the possible dominant weights entering in the

series arranged by heights

Pm
k 3 Pn

k = Pm+n
k + nm1

skdPm1

k + nm2
skdPm2

k + ¯ .

The coefficientnm1
skd is simply the difference between the coefficients ofzm1 in Pm

k 3 Pn
k and in

Pm+n
k . Then,nm2

skd is the difference between the coefficient ofzm2 in Pm
k 3 Pn

k and the sum of the
corresponding coefficients inPm+n

k andPm1

k , and so on. As an example, we present a list with all
the quadratic deformed Clebsch–Gordan series in Appendix C.

IV. SOME RECURRENCE RELATIONS

The approach we are describing is also useful to find the form of the recurrence relations for
productszjPm

k szd. Considered in full generality, these recurrence relations are extremely compli-
cated, but for some special cases they can be written in explicit form. Let us consider, for instance,
the recurrence relation forz1Pnl1

k with arbitraryn. If we express the weights of the representation
Rl1

swhich are all the combinations«i ±«, −«i −« jd in the basis of fundamental weights, we see that
there are only three whose coefficients forli, i Þ1, are all non-negative, namelyl1,−l1+l3 and
−l1+l6. Hence, the form of the series should be

z1Pn00000
k = Psn+1d00000

k + anskdPsn−1d01000
k + bnskdPsn−1d00001

k , s12d

where we must fixanskd andbnskd. Now, solving the Schrödinger equation by means of the first
of the two methods described in Sec. III, one finds
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Pn00000
k = z1

n +
s1 − ndn
n + k − 1

z1
n−2z3 +

s1 − ndnksn + 5k − 2d
sn + k − 1dsn + k − 2dsn + 4k − 1d

z1
n−2z6 + ¯ ,

Psn−1d01000
k = z1

n−1z3 +
10k3 − 5s1 + 3ndk2 − 2s− 1 − 9n + 5n2dk − ns2 − 3n + n2d

sn + k − 2dsn + k − 1dsn + 7kd
z1

n−1z6 + ¯ ,

Psn−1d00001
k = z1

n−1z6 + ¯ .

Substituting ins12d, we can solve foranskd andbnskd with the results

anskd =
nsn + 2k − 1d

sn + kdsn + k − 1d
,

bnskd =
nsn + 3kdsn + 5k − 1dsn + 8k − 1d

sn + k − 1dsn + 4k − 1dsn + 4kdsn + 7kd
.

We list below the series of the formz1Pnlk

k obtained through the same procedure,

z1P0n0000
k = P1n0000

k + cnskdP0sn−1d0010
k + dnskdP1sn−1d0000

k ,

z1P00n000
k = P10n000

k + enskdP00sn−1d100
k + fnskdP10sn−1d001

k + gnskdP01sn−1d000
k ,

z1P000n00
k = P100n00

k + hnskdP010sn−1d10
k + inskdP001sn−1d01

k + jnskdP110sn−1d00
k + knskdP000sn−1d10

k ,

z1P0000n0
k = P1000n0

k + lnskdP0100sn−1d1
k + pnskdP0010sn−1d0

k + qnskdP0000sn−1d1
k ,

z1P00000n
k = P10000n

k + rnskdP01000sn−1d
k + snskdP00000sn−1d

k ,

where

cnskd =
ns− 1 +n + 5kd

s− 1 +n + kdsn + 4kd
,

dnskd =
2nsn + 2kds− 1 +n + 6kds− 1 +n + 8kds− 1 + 2n + 12kd

s− 1 +n + kds− 1 +n + 3kdsn + 7kds− 1 + 2n + 11kds2n + 11kd
,

enskd =
ns− 1 +n + 3kd

s− 1 +n + kdsn + 2kd
,

fnskd =
2nsn + 2kds− 1 +n + 4kds− 1 +n + 6kds− 1 + 2n + 8kd

s− 1 +n + kds− 1 +n + 3kdsn + 5kds− 1 + 2n + 7kds2n + 7kd
,

gnskd =
nsn + kdsn + 3kds− 1 +n + 5kds− 1 +n + 6kds− 1 + 2n + 11kd
s− 1 +n + kds− 1 +n + 2kdsn + 4kdsn + 5kd2s− 1 + 2n + 7kd

,

hnskd =
ns− 1 +n + 4kd

s− 1 +n + kdsn + 3kd
,
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inskd =
nsn + kds− 1 +n + 3kds− 1 +n + 4kds− 1 + 2n + 7kd
s− 1 +n + kds− 1 +n + 2kdsn + 3kd2s− 1 + 2n + 5kd

,

jnskd =
6nsn + kdsn + 2kds− 1 +n + 4kds− 1 +n + 5kds− 1 + 2n + 8kds− 1 + 3n + 11kd

s− 1 +n + kds− 1 +n + 2kdsn + 4kds− 1 + 2n + 5kds2n + 7kds− 1 + 3n + 10kds3n + 10kd
,

knskd =
3nsn + kdsn + 2kds− 1 +n + 4kds− 1 +n + 5kds2n + 5kds− 1 + 2n + 8kd

s− 1 +n + kds− 1 +n + 2kdsn + 4kd2s− 1 + 2n + 5kds− 1 + 2n + 6kds2n + 7kd

3
s− 1 + 2n + 9kds− 1 + 3n + 12kd

s− 1 + 3n + 10kds3n + 11dk
,

lnskd =
ns− 1 +n + 5kd

s− 1 +n + kdsn + 4kd
,

pnskd =
nsn + kds− 1 +n + 4kds− 1 +n + 5kds− 1 + 2n + 9kd
s− 1 +n + kds− 1 +n + 2kdsn + 4kd2s− 1 + 2n + 7kd

,

qnskd =
2nsn + 2kdsn + 3kds− 1 +n + 6kds− 1 +n + 8kds− 1 + 2n + 12kd

s− 1 +n + kds− 1 +n + 3kdsn + 5kdsn + 7kds− 1 + 2n + 7kds2n + 11kd

rnskd =
ns− 1 +n + 6kd

s− 1 +n + kdsn + 5kd
,

snskd =
nsn + 3kds− 1 +n + 9kds− 1 +n + 12kd

s− 1 +n + kds− 1 +n + 4kdsn + 8kdsn + 11kd
.

Note that the seriesz6Pnl j

k immediately follow by duality.

V. CONCLUSIONS

In this paper, we have shown how to solve the Schrödinger equation for the trigonometric
Calogero–Sutherland model related to the Lie algebraE6 and we have explored some properties of
the energy eigenfunctions. The main point is that the use of a Weyl-invariant set of variables, the
characters of the fundamental representations, leads to a formulation of the Schrödinger equation
by means of a second order differential operator which is simple enough to make feasible a
recursive method for the treatment of the spectral problem. The eigenfunctions provide a complete
system of orthogonal polynomials in six variables, and these polynomials obey recurrence rela-
tions which are deformations of the Clebsch–Gordan series of the algebra. The structure of some
of these recurrence relations has been fixed.
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APPENDIX A: SUMMARY OF RESULTS ON THE LIE ALGEBRA E6

In this section, we review some standard facts about the root and weight systems of the Lie
algebraE6, with the aim of fixing the notation and help the reader to follow the rest of the paper.
More extensive and sound treatments of these topics can be found in many excellent textbooks,
see for instance Refs. 21 and 23.

The complex Lie algebraE6, the lowest-dimensional one in theE-family of exceptional Lie
algebras in the Cartan–Killing classification, has dimension 78 and rank 6, as the name suggests.
From the geometrical point of view, it admitsswith some subtleties, see Ref. 24d an interpretation
which extends the standard-one for the classical algebras, in the same way that these correspond
to the isometries of projective spaces over the first three normed division algebras—SOsn+1d
. IsomsRPnd, SUsn+1d. IsomsCPnd, Spsn+1d. IsomsHPnd—F4, E6, E7, and E8 are the Lie
algebras of the projective planes over extensions of the octonions, giving rise to the so-called
“magic square:”F4. IsomsOP2d, E6. IsomfsC ^ OdP2g, E7. IsomfsH ^ OdP2g, E8. IsomfsO
^ OdP2g. In physics, the most remarkable role played byE6 is in the heterotic 10-dimensional
E83E8 superstring theory when the extra six dimensions are compactified to a manifold of SUs3d
holonomy. In such a case, one of theE8 breaks to anE6 which gives the grand unification group
of four-dimensional physics.25 The Dynkin diagram ofE6, see Fig. 1, encodes the Euclidean
relations among the simple roots, which are

sai,aid = 2, i = 1,2,3,4,5,6,

sa4,aid = − 1, i = 2,3,5,

sa1,a3d = sa5,a6d = − 1,

sai,a jd = 0, in all other cases.

Therefore, the Cartan matrix reads

A =1
2 0 − 1 0 0 0

0 2 0 − 1 0 0

− 1 0 2 − 1 0 0

0 − 1 − 1 2 − 1 0

0 0 0 − 1 2 − 1

0 0 0 0 − 1 2

2 .

We will use a realization of the simple roots in terms of a generating system
h«1,«2,«3,«4,«5,«6,«j of R7 sendowed with the standard Euclidean metricd satisfying «1+«2

+«3+«4+«5+«6=0, s«i ,« jd=−1
6 +di j , s« ,«d= 1

2, ands« ,« jd=0.21 With reference to this system, we
have

a1 = «1 − «2, a2 = «4 + «5 + «6 + «,

FIG. 1. The Dynkin diagram for the Lie algebraE6.

073508-10 Fernández Núñez, García Fuertes, and Perelomov J. Math. Phys. 46, 073508 ~2005!

                                                                                                                                    



a3 = «2 − «3, a4 = «3 − «4,

a5 = «4 − «5, a6 = «5 − «6. sA1d

The positive roots, which are given by all linear combinations of the forms

«i − « j, «i + « j + «k + «, 2«, i Þ j Þ k, sA2d

can be classified by heights as indicated in Table I. The fundamental weightslk follow from the
equationai =o j=1

4 Ajil j. They are

l1 = «1 + «,

l2 = 2«,

l3 = «1 + «2 + 2«,

l4 = «1 + «2 + «3 + 3«,

l5 = «1 + «2 + «3 + «4 + 2«,

l6 = «1 + «2 + «3 + «4 + «5 + «.

The geometry of the weight system is summarized by the relations

sli,l jd = Aij
−1,

with sAij
−1d being the inverse Cartan matrix. The Weyl vector is

TABLE I. Heights of positive roots.

Height Positive roots

1 a1, a2, a3, a4, a5, a6

2 a1+a3, a3+a4, a4+a5, a5+a6, a2+a4

3 a1+a3+a4, a3+a4+a5, a4+a5+a6, a2+a3+a4,
a2+a4+a5

4 a1+a3+a4+a5, a3+a4+a5+a6, a1+a2+a3+a4,
a2+a3+a4+a5, a2+a4+a5+a6

5 a1+a3+a4+a5+a6, a1+a2+a3+a4+a5,
a2+a3+2a4+a5,a2+a3+a4+a5+a6

6 a1+a2+a3+2a4+a5, a1+a2+a3+a4+a5+a6,
a2+a3+2a4+a5+a6

7 a1+a2+2a3+2a4+a5, a2+a3+2a4+2a5+a6,
a1+a2+a3+2a4+a5+a6

8 a1+a2+2a3+2a4+a5+a6, a1+a2+a3+2a4+2a5+a6

9 a1+a2+2a3+2a4+2a5+a6

10 a1+a2+2a3+3a4+2a5+a6

11 a1+2a2+2a3+3a4+2a5+a6
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r =
1

2 o
aPR+

a = o
i=1

6

li = 8a1 + 11a2 + 15a3 + 21a4 + 15a5 + 8a6,

with R+ being the set of positive roots of the algebra. The Weyl formula for dimensions applied
to the irreducible representation associated to the integral dominant weightl=m1l1+m2l2

+m3l3+m4l4+m5l5+m6l6 gives

dim Rl = p
aPR+

sa,l + rd
sa,rd

=
P

25 · 35 · 45 · 54 · 63 · 73 · 82 · 9 · 10 · 11
,

whereP is a product extended to the set of positive roots in which the roota=oi=1
6 ciai contributes

with a factor htsad+oi=1
6 cimi where htsad is the height ofa. In particular, for the fundamental

representations, one finds

dim Rl1
= 27, dimRl2

= 78,

dim Rl3
= 351, dimRl4

= 2925,

dim Rl5
= 351, dimRl6

= 27.

Note that, these dimensions reflect the fact, coming from theZ2 symmetrysdualityd of the Dynkin
diagram, that the representationsRl1

andRl6
are complex conjugates. The same is true forRl3

and
Rl5

, while Rl2
sthe adjoint representationd andRl4

are real.

APPENDIX B: SOME POLYNOMIALS AND MONOMIAL FUNCTIONS

We list here the polynomials up to degree two, and the monomial functions up to degree three.
Some of them are omitted for they can be obtained by duality.

Polynomials:

P200000
k = z1

2 −
2z3

1 + k
−

10kz6

s1 + kds1 + 4kd
,

P110000
k = z1z2 −

5z5

1 + 4k
+

s6 − 95k + 24k2dz1

s1 + 4kds2 + 11kd
,

P020000
k = z2

2 −
2z4

1 + k
−

8kz1z6

s1 + kds1 + 3kd
+

6s− 1 +kds1 − k + 6k2dz2

s1 + kds1 + 3kds3 + 11kd

+
18s− 1 +kds2 + 13k − 7k2 + 6k3d
s1 + kds1 + 3kds2 + 11kds3 + 11kd

,

P101000
k = z1z3 −

3z4

1 + 2k
+

s− 2 − 35k + 10k2dz1z6

s1 + 2kds2 + 7kd
−

6s− 1 +kds2 + 15kdz2

s1 + 2kds1 + 4kds2 + 7kd

+
9s− 2 + 17kd

s1 + 2kds1 + 4kds2 + 7kd
,
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P011000
k = z2z3 −

4z1z5

1 + 3k
+

5s− 1 +kds− 2 + 3kdz2z6

s1 + 3kds2 + 7kd
−

4s− 1 + 7kdz1
2

s1 + 3kds1 + 5kd

+
6s− 4 + 51k + 311k2 + 41k3 + 105k4dz3

s1 + 3kds1 + 5kds2 + 7kds3 + 11kd
+

6s− 16 + 17k + 673k2 − 245k3 + 75k4dz6

s1 + 3kds1 + 5kds2 + 7kds3 + 11kd
,

P002000
k = z3

2 −
2z1z4

1 + k
−

2s− 1 +kdz2z5

s1 + kds1 + 2kd
−

8kz1
2z6

s1 + kds1 + 3kd
+

2s− 3 + 7k + 49k2 + 37k3 + 30k4dz3z6

s1 + kds1 + 2kds1 + 3kds3 + 7kd

−
2s− 1 +kdks17 + 69kdz1z2

s1 + kds1 + 2kds1 + 3kds3 + 7kd
+

s− 1 +kds42 + 291k + 478k2 + 59k3 + 150k4dz6
2

s1 + kds1 + 2kds1 + 3kds2 + 7kds3 + 7kd

+
12s6 + 27k + 41k2 + 103k3 + 3k4dz5

s1 + kds1 + 2kds1 + 3kds2 + 7kds3 + 7kd
−

6s− 2 − 7k + 58k2 − 433k3 + 24k4dz1

s1 + kds1 + 2kds1 + 3kds2 + 7kds3 + 7kd
,

P100100
k = z1z4 −

4z2z5

1 + 3k
+

4s− 1 +kdz1
2z6

1 + 5k
−

2s− 1 +kds5 + 21kdz3z6

s1 + 3kd2s1 + 5kd

+
s1 − kds27 + 292k + 723k2 − 270k3dz1z2

s1 + 3kd2s1 + 5kds3 + 10kd
+

2s7 + 56k − 15k2dz6
2

s1 + 3kd2s1 + 5kd

−
6s34 + 321k + 712k2 + 55k3 + 750k4dz5

s1 + 3kd2s1 + 5kds2 + 7kds3 + 10kd

+
3s− 1 +kds42 + 703k + 1634k2 − 2937k3 − 270k4dz1

s1 + 3kd2s1 + 5kds2 + 7kds3 + 10kd
,

P010100
k = z2z4 −

3z3z5

1 + 2k
+

4s− 1 +kds− 1 + 2kdz1z2z6

s1 + 2kds2 + 5kd
+

6s− 1 +kds− 1 + 2kds− 2 + 5kdz2
2

s1 + 2kds2 + 5kds3 + 10kd

−
5sk − 1ds2 + 11kdz1z3

s1 + 2kds1 + 3kds2 + 5kd
−

5sk − 1ds2 + 11kdz5z6

s1 + 2kds1 + 3kds2 + 5kd

+
6sk − 1ds56 + 548k + 1465k2 + 1000k3 + 300k4dz4

s1 + 2kds1 + 3kds2 + 5kds3 + 10kds4 + 11kd

+
s− 456 − 2930k + 2063k2 + 23981k3 − 7718k4 + 1440k5dz1z6

s1 + 2kds1 + 3kds2 + 5kds3 + 10kds4 + 11kd

+
3s272 + 244k − 11336k2 − 28933k3 + 8109k4 − 18036k5 + 540k6dz2

s1 + 2kds1 + 3kds2 + 5kds2 + 7kds3 + 10kds4 + 11kd

+
18s1 − kds112 + 1200k + 2570k2 − 1215k3 + 1788k4 + 180k5d

s1 + 2kds1 + 3kds2 + 5kds2 + 7kds3 + 10kds4 + 11kd
,

P001100
k = z3z4 −

3z1z2z5

1 + 2k
−

5s− 1 +kdz2
2z6

s1 + 2kds1 + 3kd
+

4s− 1 +kds− 1 + 2kdz1z3z6

s1 + 2kds2 + 5kd
−

5s− 1 +kdz5
2

s1 + 2kds1 + 3kd

+
s− 42 + 25k + 444k2 + 263k3 + 150k4dz4z6

s1 + 2kds1 + 3kds2 + 5kds3 + 7kd
−

5s− 1 +kds2 + 11kdz1
2z2

s1 + 2kds1 + 3kds2 + 5kd

+
4s− 15 − 32k + 276k2 + 626k3 − 105k4 + 90k5dz1z6

2

s1 + 2kds1 + 3kd2s2 + 5kds3 + 7kd
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+
2s− 1 +kds84 + 574k + 904k2 + 69k3 + 315k4dz2z3

s1 + 2kds1 + 3kds2 + 5kd2s3 + 7kd

+
4s1 − kds30 + 109k − 87k2 + 158k3 + 1680k4dz1z5

s1 + 2kds1 + 3kd2s2 + 5kd2s3 + 7kd

+
sk − 1ds− 36 − 1080k − 8095k2 − 12988k3 + 5847k4dz1

2

s1 + 2kds1 + 3kd2s2 + 5kd2s3 + 7kd

+
2s− 1 +kds12 + 734k + 5474k2 + 9705k3 − 1620k4 + 675k5dz2z6

s1 + 2kds1 + 3kd2s2 + 5kd2s3 + 7kd

+
3s1 − kds1 + 6kds44 + 492k − 41k2 + 252k3 + 45k4dz3

s1 + 2kds1 + 3kd2s2 + 5kd2s3 + 7kd

−
3s− 120 − 3020k − 14654k2 + 9383k3 + 99779k4 − 34713k5 + 12555k6 + 1350k7dz6

s1 + 2kds1 + 3kd2s2 + 5kd2s2 + 7kds3 + 7kd
,

P000200
k = z4

2 −
2z2z3z5

1 + k
−

2s− 1 + kdz3
2z6

s1 + kds1 + 2kd
−

2s− 1 + kdz1z5
2

s1 + kds1 + 2kd
−

2s− 1 + kdz1z2
2z6

s1 + kds1 + 2kd

−
2s− 1 + kds− 1 + 2kdz2

3

s1 + kds1 + 2kds1 + 3kd
+

4s− 3 + 5k + 6k2 + 4k3dz1z4z6

s1 + kds1 + 2kds3 + 5kd

−
2s− 1 + kds− 3 + 2k + 28k2dz2z5z6

s1 + kds1 + 2kd2s3 + 5kd
−

2s− 1 + kds− 3 + 2k + 28k2dz1z2z3

s1 + kds1 + 2kd2s3 + 5kd

+
6s− 1 + kds− 15 + 2k + 335k2 + 754k3 + 436k4 + 120k5dz2z4

5s1 + kds1 + 2kd3s1 + 3kds3 + 5kd

+
16s− 1 + kds3 + 10k + 3k2 + 2k3dz1

2z6
2

s1 + kds1 + 2kds2 + 5kds3 + 5kd
−

4s− 18 − 65k − 82k2 − 109k3 + 22k4dz3z6
2

s1 + kds1 + 2kd2s2 + 5kds3 + 5kd

−
4s− 18 − 65k − 82k2 − 109k3 + 22k4dz1

2z5

s1 + kds1 + 2kd2s2 + 5kds3 + 5kd

−
4s150 + 1507k + 6668k2 + 17329k3 + 27482k4 + 23584k5 + 9800k6 + 4200k7dz3z5

5s1 + kds1 + 2kd4s1 + 3kds2 + 5kds3 + 5kd

−
2s− 1 + kds6 + 39k − 118k2 − 453k3 + 70k4dz6

3

s1 + kds1 + 2kd2s1 + 3kds2 + 5kds3 + 5kd

+
2s− 1 + kds− 30 − 21k + 3383k2 + 22456k3 + 52408k4 + 39680k5 − 3216k6 + 2880k7dz1z2z6

5s1 + kds1 + 2kd4s1 + 3kds2 + 5kds3 + 5kd

−
4s− 1 + kds− 6 − 37k + 225k2 + 1328k3 + 1224k4 − 616k5 + 600k6dz5z6

s1 + kds1 + 2kd4s1 + 3kds2 + 5kds3 + 5kd

−
2s− 1 + kds6 + 39k − 118k2 − 453k3 + 70k4dz1

3

s1 + kds1 + 2kd2s1 + 3kds2 + 5kds3 + 5kd

+
9s− 1 + kds− 60 − 784k − 4813k2 − 15896k3 − 24883k4 − 9500k5 + 9296k6 + 80k7 + 1200k8dz2

2

5s1 + kds1 + 2kd4s1 + 3kds2 + 5kd2s3 + 5kd

−
4s− 1 +kds− 6 − 37k + 225k2 + 1328k3 + 1224k4 − 616k5 + 600k6dz1z3

s1 + kds1 + 2kd4s1 + 3kds2 + 5kds3 + 5kd
−

Az1z6

a
−

Bz2

a
−

Cz4

a
+

D

a
,
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P001010
k = z3z5 −

4z1z2z6

1 + 3k
−

9s− 1 +kdz2
2

s1 + 3kds1 + 4kd
+

5s− 1 +kds− 2 + 3kdz1z3

s1 + 3kds2 + 7kd
+

5s− 1 +kds− 2 + 3kdz5z6

s1 + 3kds2 + 7kd

+
24s− 1 +k + 21k2 + 9k3dz4

s1 + 3kd2s1 + 4kds2 + 7kd
+

s− 44 + 140k + 3413k2 + 7150k3 − 5079k4 + 900k5dz1z6

s1 + 3kd2s1 + 4kds2 + 7kd2

−
36ks16 + 26k − 231k2 + 9k3dz2

s1 + 3kd2s1 + 4kds2 + 7kd2 −
108ks6 + 103k + 311k2 − 123k3 + 63k4d

s1 + 3kd2s1 + 4kds1 + 5kds2 + 7kd2 ,

P100001
k = z1z6 −

6z2

1 + 5k
−

9s− 1 + 7kd
s1 + 5kds1 + 8kd

,

where the coefficientsA, B, C, D, anda are

A = 8ks− 12 − 6872k − 74937k2 − 237510k3 − 15495k4 + 979026k5 + 989844k6 − 199504k7

+ 142260k8 + 10800k9d,

B = 18s1 − kds180 + 2196k + 12403k2 + 34729k3 + 9833k4 − 153277k5 − 225096k6 − 37608k7

− 36240k8 − 3600k9d,

C = 6s420 + 6424k + 50807k2 + 228922k3 + 594476k4 + 938974k5 + 1027217k6 + 835680k7

+ 400680k8 + 132000k9 + 18000k10d,

D = 27s120 + 1772k + 7970k2 + 5421k3 + 21440k4 + 503710k5 + 1712910k6 + 1652129k7

+ 44920k8 + 259768k9 + 19840k10 + 3600k11d,

a = 5s1 + kds1 + 2kd4s1 + 3kds2 + 5kd2s3 + 5kds3 + 7kd.

Monomial functions:

M200000= z1
2 − 2z3,

M110000= z1z2 − 5z5 + 3z1,

M020000= z2
2 − 2z4 − 2z2 − 6,

M101000= z1z3 − 3z4 − z1z6 + 6z2 − 9,

M011000= z2z3 − 4z1z5 + 5z2z6 + 4z1
2 − 4z3 − 16z6,

M002000= z3
2 − 2z1z4 + 2z2z5 − 2z3z6 − 7z6

2 + 12z5 + 2z1,

M100100= z1z4 − 4z2z5 − 4z1
2z6 + 10z3z6 + 9z1z2 + 14z6

2 − 34z5 − 21z1,

M010100= z2z4 − 3z3z5 + 2z1z2z6 − 2z2
2 + 5z1z3 + 5z5z6 − 14z4 − 19z1z6 + 17z2 + 42,

M001100= z3z4 − 3z1z2z5 + 5z2
2z6 + 2z1z3z6 + 5z5

2 − 7z4z6 + 5z1
2z2 − 10z1z6

2 − 14z2z3 + 10z1z5 − 3z1
2

− 2z2z6 + 11z3 + 15z6,
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M000200= z4
2 − 2z2z3z5 + 2z3

2z6 + 2z1z5
2 + 2z1z2

2z6 − 2z2
3 − 4z1z4z6 − 2z2z5z6 − 2z1z2z3 + 6z2z4 − 8z1

2z6
2

+ 12z3z6
2 + 12z1

2z5 − 20z3z5 + 2z6
3 + 2z1z2z6 − 4z5z6 + 2z1

3 + 9z2
2 − 4z1z3 − 14z4 − 18z2 + 9,

M001010= z3z5 − 4z1z2z6 + 9z2
2 + 5z1z3 + 5z5z6 − 12z4 − 11z1z6,

M100001= z1z6 − 6z2 + 9,

M300000= z1
3 − 3z1z3 + 3z4,

M210000= z1
2z2 − 2z2z3 − z1z5 − z1

2 + 5z2z6 − 5z3 − 9z6,

M120000= z1z2
2 − 2z1z4 − z2z5 + 4z3z6 − 4z6

2 − 8z1z2 + 9z5 + 7z1,

M030000= z2
3 − 3z2z4 + 3z3z5 − 3z1z2z6 + 3z4 + 3z1z6 − 9,

M201000= z1
2z3 − 2z3

2 − z1z4 − z1
2z6 + 4z2z5 − 2z3z6 − 4z6

2 + z1z2 − z5 + 8z1,

M111000= z1z2z3 − 3z2z4 − 4z1
2z5 + 6z3z5 + 7z1z2z6 − 10z5z6 − 12z2

2 + 4z1
3 − 19z1z3 + 33z4 + 7z1z6

+ 15z2 − 9,

M021000= z2
2z3 − 2z3z4 − z1z2z5 + 5z5

2 + 4z1z3z6 − 8z4z6 − 6z1
2z2 − 12z1z6

2 + 3z2z3 + 11z1z5 + 14z1
2

+ 18z2z6 − 18z3 − 14z6,

M102000= z1z3
2 − 2z1

2z4 − z3z4 + 5z1z2z5 − 5z5
2 − 5z2

2z6 − 5z1z3z6 + 10z4z6 + 5z2z3 + 4z1z6
2 − 3z1z5

+ 6z2z6 − 10z3 − z6,

M012000= z2z3
2 − 2z1z2z4 − z1z3z5 + 2z2

2z5 + 3z4z5 + 4z1
2z2z6 − 9z2z3z6 − 6z1

2z3 − 3z1z5z6 − 4z1z2
2 + 11z3

2

+ 8z1z4 + 2z1
2z6 − 2z2z6

2 + 6z2z5 + 11z3z6 − 12z1z2 − 6z6
2 + 19z5 + 18z1,

M003000= z3
3 − 3z1z3z4 + 3z4

2 + 3z1
2z2z5 − 3z2z3z5 − 3z1z2

2z6 − 3z1
2z3z6 + 3z3

2z6 − 3z1z5
2 + 6z1z4z6 + 3z1

2z6
2

+ 3z2z5z6 + 3z2
3 + 3z1z2z3 − 9z2z4 − 3z1

2z5 − 8z6
3 − 3z1z2z6 + 21z5z6 − 21z4,

M200100= z1
2z4 − 2z3z4 − z1z2z5 − 4z1

3z6 + 5z5
2 + 5z2

2z6 + 12z1z3z6 − 19z4z6 + 4z1
2z2 − 11z2z3 − 8z1z6

2

+ 8z1
2 + 4z2z6 − 6z3 − 7z6,

M110100= z1z2z4 − 3z1z3z5 − 4z2
2z5 + 6z4z5 + 2z1

2z2z6 + 7z2z3z6 + 5z1
2z3 − 7z1z2

2 − 3z1z5z6 − 15z3
2

+ 2z1z4 − 3z1
2z6 − z2z6

2 + 15z2z5 − 6z3z6 + 24z1z2 + 9z6
2 − 16z5 − 28z1,

M020100= z2
2z4 − 2z4

2 − z2z3z5 + 4z3
2z6 + 4z1z5

2 − 6z1z4z6 − 3z2z5z6 − 3z1z2z3 − 8z1
2z6

2 + 4z3z6
2 + 6z2z4

+ 4z1
2z5 − 8z3z5 + 8z6

3 + 27z1z2z6 + 8z1
3 − 22z5z6 − 19z2

2 − 22z1z3 + 20z4 − 14z1z6 − 4z2 + 42,
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M101100= z1z3z4 − 3z4
2 − 3z1

2z2z5 + 4z2z3z5 + 2z1
2z3z6 + 7z1z2

2z6 − 4z3
2z6 + 7z1z5

2 − 9z1z4z6 − 10z1
2z6

2

− 20z2z5z6 − 12z2
3 + 5z1

3z2 − 20z1z2z3 + 12z3z6
2 + 45z2z4 + 2z1

2z5 + 40z6
3 + 12z3z5 + 24z1z2z6

+ 3z1
3 − 92z5z6 − 21z1z3 − 18z2

2 + 96z4 − 7z1z6 + 33z2 − 9,

M011100= z2z3z4 − 3z3
2z5 − 3z1z2

2z5 + 5z2
3z6 + 4z1z4z5 + 8z1z2z3z6 + 7z2z5

2 − 22z2z4z6 − 5z1z3
2 − 4z1

2z5z6

− 5z1
2z2

2 + z3z5z6 − 10z1z2z6
2 + 8z5z6

2 + 8z1
2z4 − 3z2

2z3 + 8z3z4 + 19z1z2z5 − 2z2
2z6 + 4z1

3z6

− 23z5
2 + z1z3z6 − 4z1

2z2 + 8z4z6 + 2z1z6
2 + 10z2z3 − 18z1z5 + 17z1

2 + 3z2z6 − 14z3 − 6z6,

M002100= z3
2z4 − 2z1z4

2 − z1z2z3z5 + 5z2z4z5 + 4z1
2z5

2 + 4z1
2z2

2z6 − 7z3z5
2 − 6z1

2z4z6 − 7z2
2z3z6 − 3z1

2z2z3

+ 10z3z4z6 − 4z1z2
3 − 9z1z2z5z6 + 6z2z3

2 − 8z1
3z6

2 + 5z5
2z6 + 5z2

2z6
2 + 9z1z2z4 + 24z1z3z6

2

+ 13z2
2z5 + 4z1

3z5 − 8z1z3z5 − 8z4z6
2 − 4z1z6

3 − 18z4z5 + 7z1
2z2z6 − 23z2z3z6 + 4z1z5z6 + 8z1

4

− 29z1
2z3 − 20z2z6

2 + 4z1z2
2 + 16z3

2 + z1z4 + z1
2z6 + 10z2z5 + 24z3z6 − z1z2 + 19z6

2 − 16z5

− 27z1,

M100200= z1z4
2 − 2z1z2z3z5 − z2z4z5 + 2z1

2z5
2 + 2z1z3

2z6 + 2z1
2z2

2z6 + 3z3z5
2 − 4z1

2z4z6 + 3z2
2z3z6 − 2z1

2z2z3

− 5z3z4z6 − 7z1z2
3 − 7z1z2z5z6 − 3z2z3

2 − 8z1
3z6

2 + 21z1z2z4 + 14z1z3z6
2 + 7z2

2z5 + 12z1
3z5

− 25z1z3z5 − z4z6
2 + 8z1z6

3 + 3z4z5 + 13z1
2z2z6 − 19z2z3z6 − 17z1z5z6 + 2z1

4 − 16z1
2z3 − 8z2z6

2

+ 10z1z2
2 + 27z3

2 − 11z1z4 − z1
2z6 + 7z2z5 + 11z3z6 − 31z1z2 − 8z6

2 + 37z5 + 22z1,

M010200= z2z4
2 − 2z2

2z3z5 − z3z4z5 + 5z2z3
2z6 + 5z1z2z5

2 − 5z3
3 − 5z5

3 + 2z1z2
3z6 − 9z1z2z4z6 − 5z2

2z5z6

− 5z1z3z5z6 + 15z4z5z6 − 5z1z2
2z3 − 2z2

4 + 15z1z3z4 − 6z1
2z2z6

2 + 7z2z3z6
2 + 14z2

2z4 − 16z4
2

+ 11z1z5z6
2 + 7z1

2z2z5 − 10z2z3z5 + 11z1
2z3z6 + 4z1z2

2z6 − 12z1z5
2 − 12z3

2z6 − 17z1z4z6 − 5z1
2z6

2

− 10z1
3z2 − 10z2z6

3 + 29z2z5z6 + 29z1z2z3 + 3z3z6
2 + 10z6

3 − 21z2z4 + 3z1
2z5 − 34z3z5 + 7z1z2z6

− 14z5z6 + 10z1
3 − 14z1z3 − 6z2

2 − 6z4 − 34z1z6 + 38z2 + 42,

M001200= z3z4
2 − 2z2z3

2z5 + 2z3
3z6 − z1z2z4z5 + 5z1z3z5

2 + 4z2
2z5

2 − 7z4z5
2 + 5z1z2

2z3z6 − 7z2
2z4z6 − 9z1z3z4z6

+ 14z4
2z6 − 5z1

2z2z5z6 − 6z1
2z3z6

2 − 5z1
2z2

3 − 6z2z3z5z6 − 5z1z2z3
2 + 15z1

2z2z4 + 6z3
2z6

2 + 7z1
2z3z5

+ 2z2
3z3 + z2z3z4 − 4z3

2z5 + 24z1z4z6
2 + 8z1z2

2z5 − 12z2z5z6
2 − 33z1z4z5 + 2z1

2z6
3 + 11z1

3z2z6

+ 8z3z6
3 + 8z6

4 − 28z1z2z3z6 + 16z2z5
2 + 7z1

2z2
2 + 2z2z4z6 − z1

2z5z6 − 6z3z5z6 + 11z2
2z3 − 10z1

3z3

+ 38z1z3
2 − 29z1

2z4 − 22z3z4 − z1
3z6 − z1z2z5 − 20z5z6

2 − 9z1z3z6 − 20z1
2z2 − 5z2

2z6 + 22z5
2

− 3z4z6 + 14z2z3 − 24z1z6
2 + 29z1z5 + 10z2z6 + 27z3 + 17z6,

M000300= z4
3 − 3z2z3z4z5 + 3z3

2z5
2 + 3z1z2

2z5
2 + 3z2

2z3
2z6 − 3z3

2z4z6 − 3z1z2
2z4z6 − 3z1z4z5

2 − 3z2z3
3 − 3z2

3z5z6

+ 6z1z4
2z6 − 9z1z2z3z5z6 − 3z2z5

3 + 12z2z4z5z6 − 3z1z2
3z3 + 3z3z5

2z6 + 9z1
2z4z6

2 + 12z1z2z3z4

+ 3z2
2z3z6

2 + 6z2
3z4 − 18z2z4

2 + 3z1
2z2

2z5 − 12z3z4z6
2 + 3z1z3

2z5 − 12z1
2z4z5 + 3z2

2z6
3 − 4z1

3z6
3

+ 9z3z4z5 + 3z1
2z3

2 + 3z5
2z6

2 − 12z1z2z4z6 + 12z1z3z6
3 − 24z4z6

3 − 3z5
3 + 12z1

3z5z6 − 33z1z3z5z6

− 3z3
3 + 3z1

3z2
2 − 24z1

3z4 + 54z4z5z6 + 54z1z3z4 − 45z4
2 − 9z2z3z5 − 9z1z2

2z6 − 6z1z5z6
2 − 6z2z6

3
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− 6z1
2z3z6 − 6z1

3z2 + 27z1z4z6 + 9z2z5z6 + 12z2
3 + 3z1

2z6
2 + 9z1z2z3 + 9z1

2z5 − 36z2z4 + 9z3z6
2

+ 9z3z5 − 18z1z2z6 + 3z6
3 + 3z1

3 + 9z4 + 9z1z6 − 9,

M101010= z1z3z5 − 3z4z5 − 4z1
2z2z6 + 5z1

2z3 + 6z2z3z6 + 9z1z2
2 + 7z1z5z6 − 10z3

2 − 13z1z4 − 13z1
2z6

− 10z2z6
2 − 7z2z5 + 16z3z6 + 50z6

2 + 11z1z2 − 57z5 − 59z1,

M011010= z2z3z5 − 4z3
2z6 − 4z1z5

2 − 4z1z2
2z6 + 9z2

3 + 12z1z4z6 + 11z2z5z6 + 11z1z2z3 − 45z2z4 + 16z1
2z6

2

− 28z3z6
2 − 28z1

2z5 + 45z3z5 − 16z6
3 − 17z1z2z6 + 45z5z6 − 16z1

3 + 45z1z3 − 27z4 − 3z1z6

+ 18z2 − 27,

M002010= z3
2z5 − 2z1z4z5 + 2z2z5

2 − z1z2z3z6 + 3z2z4z6 + 4z1
2z5z6 + 5z1

2z2
2 − 9z3z5z6 − 3z1z2z6

2 − 8z1
2z4

− 9z2
2z3 − 2z5z6

2 + 16z3z4 − 6z1z2z5 + 7z5
2 − 12z1

3z6 + 8z2
2z6 + 37z1z3z6 − 9z4z6 + 2z1

2z2 + z1z6
2

− 27z2z3 + 6z1z5 + 13z1
2 − 11z2z6 − 14z3 + 13z6,

M001110= z3z4z5 − 3z1z2z5
2 − 3z2z3

2z6 + 5z3
3 + 4z1z2z4z6 + 8z1z3z5z6 + 5z5

3 + 7z2
2z5z6 + 7z1z2

2z3

− 22z4z5z6 − 4z1
2z2z6

2 − 18z2
2z4 + z2z3z6

2 − 22z1z3z4 + 36z4
2 + z1

2z2z5 − 10z1z5z6
2 + 8z2z6

3

− 8z2z3z5 − 10z1
2z3z6 + 8z3

2z6 + 8z1z5
2 + 9z2

3 + 52z1z4z6 + 16z1
2z6

2 − 40z2z5z6 + 8z1
3z2

− 40z1z2z3 − z3z6
2 − z1

2z5 + 9z2z4 + 24z3z5 − 23z1z2z+ 18z2
2 + 27z1z3 + 27z5z6 − 63z4 − 9z1z6

− 36z2 − 27,

M200001= z1
2z6 − 2z3z6 − z1z2 + 5z5 − 4z1,

M110001= z1z2z6 − 6z2
2 − 5z1z3 − 5z5z6 + 21z4 + 24z1z6 − 30z2 − 9,

M101001= z1z3z6 − 3z4z6 − z1z6
2 − 5z1

2z2 + 8z2z3 + 9z1z5 + z1
2 − 9z2z6 + 3z3 + 2z6,

M100101= z1z4z6 − 4z2z5z6 − 4z1z2z3 − 4z1
2z6

2 + 9z2z4 + 10z3z6
2 + 10z1

2z5 − 9z3z5 − z1z2z6 + 14z6
3

− 39z5z6 + 14z1
3 − 39z1z3 + 27z4 + 24z1z6 − 81.

APPENDIX C: DEFORMED QUADRATIC CLEBSCH–GORDAN SERIES

P100000
k 3 P100000

k = P200000
k +

2

1 + k
P001000

k +
10s1 + 3kd

s1 + 4kds1 + 7kd
P000001

k ,

P100000
k 3 P010000

k = P110000
k +

5

1 + 4k
P000010

k +
32s1 + 2kds1 + 12kd

s1 + 7kds1 + 11kds2 + 11kd
P100000

k ,
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P010000
k 3 P010000

k = P020000
k +

2

1 + k
P000100

k +
8s1 + 2kd

s1 + 3kds1 + 5kd
P100001

k

+
12s5 + 84k + 255k2 + 160k3d
s1 + 5kd2s1 + 11kds3 + 11kd

P010000
k

+
144s1 + 2kds1 + 3kds1 + 5kds1 + 12kd
s1 + 7kds1 + 8kds1 + 11kd2s2 + 11kd

P000000
k ,

P100000
k 3 P001000

k = P101000
k +

3

1 + 2k
P000100

k +
16s1 + 2kds1 + 8kd

s1 + 5kds1 + 7kds2 + 7kd
P100001

k

+
15s1 + kds1 + 3kds1 + 11kd
s1 + 4kds1 + 5kd2s1 + 7kd

P010000
k ,

P010000
k 3 P001000

k = P011000
k +

4

1 + 3k
P100010

k +
20s1 + kds1 + 8kd

s1 + 4kds1 + 7kds2 + 7kd
P010001

k

+
16s1 + 2kd

s1 + 5kds1 + 7kd
P200000

k +
20s1 + 2kds1 + 9kds3 + 46k + 71k2 − 8k3d

s1 + kds1 + 4kd2s1 + 7kds1 + 11kds3 + 11kd
P001000

k

+
80s1 + kds1 + 2kds1 + 3kds1 + 12kd
s1 + 4kds1 + 5kds1 + 7kd2s2 + 11kd

P000001
k ,

P001000
k 3 P001000

k = P002000
k +

2

1 + k
P100100

k +
6s1 + kd

s1 + 2kds1 + 3kd
P010010

k +
8s1 + 2kd

s1 + 3kds1 + 5kd
P200001

k

+
4s9 + 113k + 305k2 + 231k3 − 18k4d

s1 + kds1 + 3kd2s1 + 7kds3 + 7kd
P001001

k

+
120s1 + kds1 + 2kds2 + 33k + 56k2d

s1 + 4kds2 + 5kds1 + 7kds2 + 7kds3 + 10kd
P110000

k

+
80s1 + kds1 + 2kds1 + 3kds1 + 8kd
s1 + 4kds1 + 5kds1 + 7kd2s2 + 7kd

P000002
k

+
80s1 + 8kds3 + 56k + 176k2 + 108k3 − 63k4d

s1 + 4kd2s1 + 7kd2s2 + 7kds3 + 11kd
P000010

k

+
160s1 + kd2s1 + 2kds1 + 3kds1 + 9kds1 + 12kd

s1 + 4kd2s1 + 5kds1 + 7kd3s2 + 11kd
P100000

k ,

P100000
k 3 P000100

k = P100100
k +

4

1 + 3k
P010010

k +
6s1 + kds1 + 7kd
s1 + 3kd2s1 + 5kd

P001001
k

+
30s1 + kds1 + 2kds1 + 8kds2 + 11kd
s1 + 4kds1 + 5kd2s2 + 7kds3 + 10kd

P110000
k

+
30s1 + kds1 + 2kds2 + 5kds1 + 8kds1 + 9kd

s1 + 4kd2s1 + 5kd2s2 + 7kds3 + 11kd
P000010

k ,
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P010000
k 3 P000100

k = P010100
k +

3

1 + 2k
P001010

k +
12s1 + kds1 + 6kd

s1 + 3kds1 + 5kds2 + 5kd
P110001

k

+
30s1 + kds1 + 2kds2 + 11kd
s1 + 4kds1 + 5kd2s3 + 10kd

P020000
k

+
20s1 + kds1 + 2kds1 + 8kd

s1 + 3kds1 + 4kds1 + 5kds2 + 7kd
P101000

k

+
20s1 + kds1 + 2kds1 + 8kd

s1 + 3kds1 + 4kds1 + 5kds2 + 7kd
P000011

k

+
72s1 + 7kds1 + 22k + 115k2 + 87k3 − 45k4d

s1 + 3kd2s1 + 5kd2s1 + 11kds4 + 11kd
P000100

k

+
144s1 + kd2s1 + 2kds2 + 5kds1 + 8kd2

s1 + 3kds1 + 5kd3s2 + 7kd2s3 + 11kd
P100001

k

+
60s1 + kds1 + 2kd2s1 + 3kds2 + 5kds1 + 8kds1 + 9kds1 + 11kd

s1 + 4kd2s1 + 5kd4s1 + 7kds2 + 7kds3 + 11kd
P010000

k ,

P001000
k 3 P000100

k = P001100
k +

3

1 + 2k
P110010

k +
10s1 + kd

s1 + 3kds1 + 4kd
P020001

k +
12s1 + kds1 + 6kd

s1 + 3kds1 + 5kds2 + 5kd
P101001

k

+
10s1 + kd

s1 + 3kds1 + 4kd
P000020

k +
72s1 + 6kds1 + 11k + 13k2 − 5k3d

s1 + 2kds1 + 5kds2 + 5kds1 + 7kds3 + 7kd
P000101

k

+
20s1 + kds1 + 2kds1 + 8kd

s1 + 3kds1 + 4kds1 + 5kds2 + 7kd
P210000

k +
48s1 + kd2s1 + 2kds1 + 8kd
s1 + 3kd2s1 + 5kd2s2 + 7kd

P100002
k

+
6s36 + 1134k + 12624k2 + 65771k3 + 172189k4 + 224179k5 + 127295k6 + 17700k7d

s1 + 2kds1 + 3kds1 + 5kd2s2 + 5kd2s1 + 7kds3 + 8kd

P011000
k +

24s1 + kds42 + 1024k + 7069k2 + 17092k3 + 13653k4 + 720k5d
s1 + 3kd2s1 + 5kd2s3 + 7kds3 + 8kds4 + 11kd

P100010
k

+
480s1 + kd2s1 + 2kd2s1 + 6kds1 + 8kd

s1 + 4kds1 + 5kd3s1 + 7kds2 + 7kds3 + 11kd
P200000

k

+
60s1 + kds1 + 2kds1 + 8kds32 + 842k + 6313k2 + 16912k3 + 16251k4 + 3330k5d

s1 + 3kds1 + 4kds1 + 5kd2s2 + 5kds1 + 7kds2 + 7kds3 + 10kds4 + 11kd
P010001

k

+
60s1 + kds1 + 2kds2 + 5kds1 + 8kds1 + 9kds3 + 40k + 39k2 − 18k3d

s1 + 3kd2s1 + 4kd2s1 + 5kd2s1 + 7kds2 + 7kds3 + 11kd
P001000

k

+
480s1 + kd2s1 + 2kd2s1 + 3kds2 + 5kds1 + 8kds1 + 9kds1 + 12kd

s1 + 4kd2s1 + 5kd3s1 + 7kd2s2 + 7kds2 + 11kds3 + 11kd
P000001

k ,
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P000100
k 3 P000100

k = P000200
k +

2

1 + k
P011010

k +
6s1 + kd

s1 + 2kds1 + 3kd
P002001

k +
6s1 + kd

s1 + 2kds1 + 3kd
P100020

k

+
6s1 + kd

s1 + 2kds1 + 3kd
P120001

k +
20s1 + kds1 + 2kd

s1 + 3kds1 + 4kds1 + 5kd
P030000

k

+
24s1 + 7k − 2k2d

s1 + 2kds1 + 5kds3 + 5kd
P100101

k +
36s1 + kd2s1 + 13k + 16k2d

s1 + 2kd2s1 + 3kds1 + 5kds3 + 7kd
P010011

k

+
36s1 + kd2s1 + 13k + 16k2d

s1 + 2kd2s1 + 3kds1 + 5kds3 + 7kd
P111000

k

+
36s1 + kds40 + 1064k + 7172k2 + 16301k3 + 13138k4 + 940k5 − 1800k6d

5s2 + kds1 + 2kd3s1 + 5kd2s2 + 5kds4 + 9kd
Pk

001002

+
48s1 + kd2s1 + 2kds1 + 6kd
s1 + 3kd2s1 + 5kd2s2 + 5kd

Pk
200002+

144s1 + kds1 + 6kds1 + 11k + 13k2 − 5k3d
s1 + 3kd2s1 + 5kd2s2 + 5kds3 + 7kd

P001002
k

+
144s1 + kds1 + 6kds1 + 11k + 13k2 − 5k3d

s1 + 3kd2s1 + 5kd2s2 + 5kds3 + 7kd
P200010

k

+
2s195+5540k+49198k2+163456k3+239715k4+157964k5+57452k6+26320k7d

s1 + 2kd4s1 + 5kd2s3 + 7kds5 + 11kd
P001010

k

+ EP000003
k + FP110001

k + GP000011
k + EP300000

k

+
180s1+kd2s1+2kds90+2499k+31155k2+193684k3+611355k4+972155k5+708750k6+171000k7d

s1 + 3kds1 + 4kds1 + 5kd4s2 + 5kd2s3 + 8kds3 + 10kds5 + 11kd
P020000

k

+ GP101000
k + HP000100

k + IP100001
k

+
2160s1 + kd2s1 + 2kd2s2 + 5kds1 + 8kds1 + 9kds1 + 22k + 115k2 + 87k3 − 45k4d

s1 + 3kds1 + 4kd2s1 + 5kd6s2 + 7kds3 + 11kds4 + 11kd
P010000

k

+
4320s1 + kd2s1 + 2kd3s1 + 3kd2s2 + 5kds1 + 9kds1 + 12kd

s1 + 4kd2s1 + 5kd3s1 + 7kd2s2 + 7kds1 + 11kds2 + 11kds3 + 11kd
P000000

k ,

P100000
k 3 P000010

k = P100010
k +

5

1 + 4k
P010001

k +
10s1 + kds1 + 9kd
s1 + 4kd2s1 + 7kd

P001000
k

+
32s1 + 2kds1 + 3kds1 + 12kd
s1 + 5kds1 + 7kd2s2 + 11kd

P000001
k ,

P001000
k 3 P000010

k = P001010
k +

4

1 + 3k
P110001

k +
15s1 + kd

s1 + 4kds1 + 5kd
P020000

k

+
20s1 + kds1 + 8kd

s1 + 4kds1 + 7kds2 + 7kd
P101000

k +
20s1 + kds1 + 8kd

s1 + 4kds1 + 7kds2 + 7kd
P000011

k

+
6s3 + 40k + 39k2 − 18k3d
s1 + 2kds1 + 3kd2s1 + 7kd

P000100
k

+
8s1 + 2kds48 + 1342k + 11893k2 + 41323k3 + 59235k4 + 31311k5d

s1 + 3kds1 + 5kds1 + 7kd2s2 + 7kd2s3 + 11kd
P100001

k

+
60s1 + 2kds1 + 3kds1 + 9kds3 + 46k + 71k2 − 8k3d

s1 + 4kd2s1 + 5kd2s1 + 7kd2s3 + 11kd
P010000

k
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+
432s1 + kds1 + 2kds1 + 3kd2s1 + 12kd

s1 + 5kds1 + 7kd2s1 + 8kds1 + 11kds2 + 11kd
P000000

k ,

P100000
k 3 P000001

k = P100001
k +

6

1 + 5k
P010000

k +
27s1 + 3kd

s1 + 8kds1 + 11kd
P000000

k ,

where the coefficientsE, F, G, H, andI are such that

Es1 + 3kds1 + 4kds1 + 5kd2s1 + 7kds2 + 7kd = 160s1 + kd2s1 + 2kd2s1 + 8kd,

Fs1 + 2kds1 + 3kds2 + 3kds1 + 5kd3s2 + 5kd2s3 + 5kds3 + 7kd2s5 + 11kd = 144s1 + kd2s270

+ 10965k + 166113k2 + 1237287k3 + 5078136k4 + 12177475k5 + 17282049k6 + 13976605k7

+ 5700600k8 + 818500k9d,

G =
720s1 + kd2s1 + 2kds1 + 8kds8 + 208k + 1312k2 + 1877k3 + 360k4 − 300k5d

s2 + kds1 + 3kds1 + 4kds1 + 5kd3s2 + 5kds2 + 7kds3 + 8kds4 + 11kd
,

H
s1 + 3kd2s1 + 5kd4s2 + 5kd2s1 + 7kds3 + 7kds3 + 8kds4 + 11kd

24s1 + kd
= 444 + 21566k + 436658k2

+ 4716853k3 + 29111132k4 + 102644506k5 + 195972356k6 + 176806835k7 + 45083850k8

− 6894000k9 + 10935000k10,

Is1 + 3kd2s1 + 5kd5s2 + 7kd2s3 + 8kds3 + 11kds4 + 11kd = 864s1 + kd2s1 + 2kds1 + 8kds16 + 626k

+ 8775k2 + 55745k3 + 172984k4 + 268299k5 + 193845k6 + 48150k7d.
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Extensions of representations of the CAR algebra to the
Cuntz algebra O2—the Fock and the infinite wedge
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Fermions are expressed by polynomials of canonical generators of the Cuntz alge-
bra O2 and they generate the Us1d-fixed point subalgebraA;O2

Us1d of O2 by the
canonical gauge action. We extend the Fock and the infinite wedge representations
of A to permutative representations ofO2. By these extensions, the boson-fermion
correspondence is rewritten by canonical generators ofO2. © 2005 American In-
stitute of Physics.fDOI: 10.1063/1.1939989g

I. INTRODUCTION

Let A0 be the Clifford algebra generated by fermionsan,an
* ,nPN;h1,2,3, . . .j which satisfy

the canonical anticommutation relationss=CARd:

anam
* + am

* an = dn,mI, an
*am

* + am
* an

* = anam + aman = 0 s1.1d

for n,mPN. A0 always has unique C*-norm i·i and the completionA;A0 with respect toi·i is
called theCAR algebrain theory of operator algebras.6 In Refs. 1–4, we construct several poly-
nomial embeddings ofA into the Cuntz algebrasON. For example, ifs1, s2 are canonical genera-
tors of O2, that is, they satisfy

si
*sj = di j I si, j = 1,2d, s1s1

* + s2s2
* = I , s1.2d

then

a1 ; s1s2
* , an ; o

JPh1,2jn−1

s− 1dn2sJdsJs1s2
*sJ

* sn ù 2d s1.3d

satisfy s1.1d where n2sJd;ol=1
k s j l −1d and sJ=sj1

¯sjk
, sJ

* =sjk
*
¯sj1

* for J=s j1, . . . ,jkd, and
C*khanPO2:nPNjl coincides with a fixed-point subalgebraO2

Us1d of O2 by the canonical gauge
action. Put a linear mapz on O2 by

zsxd ; s1xs1
* − s2xs2

* sx P O2d. s1.4d

Then an=zsan−1d for eachnù2. In this sense,hanjnPN in s1.3d is called the recursive fermion
systems=RFSd in O2.

In this article, we extend the Fock and the infinite wedge representations12,13 of A to permu-
tative representations ofO2 under identification ofA asO2

Us1d,O2 by s1.3d. At first, we give our
main theorem for abstract formulations of representations ofA.

Theorem 1.1(i) Let sHF ,pFd be the Fock representation ofA, that is, sHF ,pFd is a cyclic
representation with a cyclic vectorVPHF such that

pFsandV = 0 s∀n P Nd.

ThensHF ,pFd is extended to an irreducible representationsHF ,p̃Fd of O2 defined by

adElectronic-mail: kawamura@kurims.kyoto-u.ac.jp
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p̃Fss1d ; L, p̃Fss2d ; psa1
*d ·L

where L is the one-sided shift operator onHF defined by

LV ; V, LpFsan1

*
¯ ank

* dV ; pFsan1+1
*

¯ ank+1
* dV

for each n1, . . . ,nkPN and kPN. (ii) Let sL`/2V,p`,+d be the infinite wedge representation ofA,
that is, sL`/2V,p`,+d is a cyclic representation with a cyclic vectoruvacl+PL`/2V such that

c−kuvacl+ = ck
* uvacl+ = 0 s∀k P Z + 1

2,k . 0d
where

ck ; p`,+sa2k+1d, c−k ; p`,+sa2kd sk P Z + 1
2,k . 0d s1.5d

and Z + 1
2 ;hn+1/2:nPZj. Then sL`/2V,p`,+d is extended to an irreducible representation

sL`/2V% L`/2V* ,Pd of O2 which satisfies

Pss1s2duvacl+ = uvacl+.

Both representations,sH ,p̃Fd and sL`/2V% L`/2V* ,Pd, of O2 in Theorem 1.1 are permutative
representations5,8,9 and they are not equivalent to each other. Well-known Fock and infinite wedge
representations are just realizations of those in Theorem 1.1. The extension for a concrete infinite
wedge is given Sec. IV.

On the other hand, the boson-fermion correspondence on the infinite wedge representation is
given by

an = o
kPZ+1

2

ck−nck
* sn P Z \ h0jd. s1.6d

hanjnPZ satisfiesa−n=an
* , anam−aman=n·dn,−mI. By identifying si andPssid in Theorem 1.1sii d

and combinings1.3d and s1.5d, we have

ck = o
JPh1,2j2k

s− 1dn2sJdsJs1s2
*sJ

*

c−k = o
JPh1,2j2k−1

s− 1dn2sJdsJs1s2
*sJ

*
Sk P Z +

1

2
,k . 0D .

From these ands1.6d, we have a direct expression of bosons by canonical generators ofO2 as
follows:

an = o
lPN

r2l−2sXnd + Bn sn ù 1d s1.7d

where

Xn ; rss1s2
*z2nss2s1

*dd + z2nss1s2
*ds2s1

* sn ù 1d, s1.8d

B1 ; − s1s2s1
*s2

* , Bn ; rsBn−1
* d − s1z2n−2ss2s1

*ds2
* sn ù 2d, s1.9d

z is in s1.4d and r is the canonical endomorphism ofO2, that is,rsxd;s1xs1
* +s2xs2

* for xPO2.
Furtheran

* uvacl+=Bn
* uvacl+ for eachnù1.

In Sec. II, we review representations ofA andO2 and the RFS. In Sec. III, we introduce a
branching function system on the space of Maya diagrams and review the infinite wedge space and
its dual space. In Sec. IV, we show extensions of the Fock and the infinite wedge representations
to O2. A relation between a branching law of a permutative representation ofO2 and the extension
of the infinite wedge is concretely illustrated.
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II. RECURSIVE FERMION SYSTEM AND PERMUTATIVE REPRESENTATIONS OF O2

Both O2 and theCARalgebra

CAR; C*khan:n P Njl

s=A in Sec. Id are simple, infinite dimensional, noncommutative C*-algebras.6,7 Remark thatan
*

PCAR for eachnPN by definition of C*-algebra. Unitalp-homomorphismssspecially, unital
p-representationsd from these algebras to other algebras are always faithful. Algebras which are
generated by generatorss1, s2 in s1.2d and an, nPN in s1.1d are unique up top-isomorphisms,
respectively. Therefore their representations are determined by only operators on a Hilbert space,
which satisfy relations of their generators without ambiguity. In this article, a representation and
an embedding always mean a unitalp-representation and a unitalp-embedding, respectively.

A. Representations of CAR and the RFS

We review representations ofCAR in theory of operator algebras in Ref. 6.
Definition 2.1: LetsH ,pd be a representation of CAR. sid sH ,pd is the (abstract)Fock repre-

sentation of CAR if there is a cyclic unit vectorVPH such thatpsandV=0 for each nPN. V is
called the vacuum ofsH ,pd. We denotesH ,pd by HFock simply. sii d sH ,pd is Pf12g if there is a
cyclic unit vectorVPH such thatpsa2n−1dV=psa2n

* dV=0 s∀nPNd. siii d sH ,pd is Pf21g if there
is a cyclic unit vectorVPH such thatpsa2n−1

* dV=psa2ndV=0 s∀nPNd.
For consistency with after statements, anyV in the above is normalized.HFock, Pf12g, Pf21g

appear in Ref. 5 as components of irreducible decomposition of permutative representation ofO2,
which are called “atom.” This fact is explained inProposition 2.6.

Proposition 2.2: All ofHFock, Pf12g, Pf21g are unique up to unitary equivalences and irre-
ducible. Any two ofHFock, Pf12g, Pf21g are not unitarily equivalent.

Proof: Sees5.18d in Refs. 4 and 5. In the Appendix, their inequivalences are shown.j
By Proposition 2.2, symbolsHFock, Pf12g and Pf21g make sense as equivalence classes of

representations. Since fermions are often treated as operators on a concrete Hilbert space, any
representation which is different with the Fock representation in only permutation of creations and
annihilations and their phase factors, are called the Fock representation, too in such situation. In
this article, we do not call such representation by the Fock representation.

We review a concrete example: PutH; l2sNd and the completely antisymmetric Fock space
F−sHd;CV %Šk=1

` H∧k, H∧k; P−
skdH^k where P−

skd is the antisymmetrizer onH^k defined
by P−

skdsv1 ^ ¯ ^ vkd;sÎk!d−1/2 osPSk
sgnssd ·vss1d ^ ¯ ^ vsskd for kù1. We denote

v1∧ ¯ ∧vk=P−
skdsv1 ^ ¯ ^ vkd. We seevss1d∧ ¯ ∧vsskd=signssdsv1 ^ ¯ ^ vkd for eachsPSk.

For f PH, defineA*sfdV; f, A*sfdv; f ∧v for f PH, vPH∧n, nù1. Asfd is defined by the adjoint
operator ofA*sfd on F−sHd. We see thatAsfdV=0 for eachf PH. Then AsfdA*sgd+A*sgdAsfd
=kf uglI for eachf, gPH. For the canonical basishenjnPN of H= l2sNd, put pFsand;Asend for n
PN. ThensF−sHd ,pFd is a representation ofCAR. sF−sHd ,pFd is the sconcretedFock representa-
tion.

Let s1, s2 be canonical generators ofO2. Define an embedding

wS:CAR� O2; wSsand ; zn−1ss1s2
*d sn ù 1d s2.1d

where z is in s1.4d. For example,wSsa1d=s1s2
* , wSsa2d=s1s1s2

*s1
* −s2s1s2

*s2
* . We call wS by the

standard embedding ofCAR into O2. C*khwSsandjnPNl=O2
Us1d=hxPO2: ∀zPUs1d ,gzsxd=xj

>UHF2 whereg is the canonical Us1d-action ofO2, gzssid;zsi for zPUs1d;hzPC : uzu=1j and
i =1,2. By identifying an andwSsand, an’s coincide with those ins1.3d and we have the following
intertwining relations.

Lemma 2.3: For nù1,

s1an = an+1s1, s1an
* = an+1

* s1, s2an = − an+1s2, s2an
* = − an+1

* s2,
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s1
*an+1 = ans1

* , s1
*an+1

* = an
*s1

* , s2
*an+1 = − ans2

* , s2
*an+1

* = − an
*s2

* .

B. Permutative representations of O2 and their branching laws

Permutative representations of the Cuntz algebras are well-studied.5,8,9. We introduce two
permutative representations ofO2 according to Ref. 10.

Definition 2.4: A representationsH ,pd of O2 is Ps1d srespectively, Ps12dd if there is a cyclic
unit vectorVPH such thatpss1dV=V srespectivelypss1s2dV=Vd. We callV by the GP vector
of sH ,pd.

Both Ps1d andPs12d exist uniquely up to unitary equivalences, and they are irreducible and
not unitarily equivalent each other.

Assume thatsH ,pd is Ps12d of O2 with the GP vectorV and a is an automorphism ofO2

defined byass1d;s2, ass2d;s1. Define an operatorU on H by

UV ; pss2dV, UpssJdV ; psassJds2dV sJ P h1,2jk,k ù 1d. s2.2d

Then U is a unitary which satisfiesU2= I and Ad U +p=p +a. In consequence,sH ,p ,Ud is a
covariant representation of a C*-dynamical systemsO2,a ,Z2d.

Example 2.5:sid Define a representationsl2sNd ,pSd of O2 by

pSss1den ; e2n−1, pSss2den ; e2n sn P Nd.

Then sl2sNd ,pSd is Ps1d. We call sl2sNd ,pSd by thestandard representationof O2. sii d Define a
representationsl2sNd ,p12d of O2 by

p12ss1de2n−1 ; e4n−1, p12ss1de2n ; e4n−3, p12ss2den ; e2n sn P Nd.

The action ofs1, s2 on the canonical basis ofl2sNd is illustrated as follows:

This system looks like the Fock representation with two vacuumse1 ande2. This diagram appears
in Secs. III and IV again.sl2sNd ,p12d is Ps12d. Remark thatp12ss1s2de1=e1 is expressed as a cycle
in the previous diagram. For this type of example, see Ref. 11.

By wS in s2.1d, we identifyCARand a subalgebrawSsCARd=O2
Us1d,O2. For a representation

sH ,pd of O2, we have the restrictionsuH ,puCARd of sH ,pd on CAR.
Proposition 2.6: ([2]) The following branching laws hold:

uPs1duCAR= HFock, uPs12duCAR= Pf12g % Pf21g.

Specially, all of these are irreducible decompositions.
We consider the branching ofPs12d on CARmore.
Lemma 2.7: LetsH ,pd be Ps12d of O2 with the GP vectorV1;V and putV2;pss2dV1.
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Then we have the following:

psa2k−1dV1 = 0, psa2kdV1 = s− 1dk−1psss12dk−1s1s1dV1,

psa2k−1
* dV1 = s− 1dk−1psss12dk−1s2s2dV1, psa2k

* dV1 = 0,

psa2k−1dV2 = s− 1dk−1psss21dk−1s1dV1, psa2kdV2 = 0,

psa2k−1
* dV2 = 0, psa2k

* dV2 = s− 1dkpss2ss12dk−1s2s2dV1

for each kPN.
Proof: By pszsxds2dV1=−pss2xdV1 for any xPO2, statements hold. j

Let V12;psCARdV1, V21;psCARdV2. ThenH=V12% V21 and we see that

V12 V21

vacuum V1 V2

creation a2k−1
* , a2k a2k−1, a2k

*

annihilation a2k−1, a2k
* a2k−1

* , a2k

wherekPN. Specially,

psa1dV2 = pss1dV1, psa2dV1 = pss1s1dV1,

s2.3d
psa1

*dV1 = pss2dV2, psa2
*dV2 = − pss2s2dV2.

If a is the Z2 action onO2 and an is the RFS in O2, then asand=s−1dn−1an
* . HenceU in s2.2d

satisfies

UV1 = V2, UV2 = V1, UpsaKaL
* dV1 = s− 1duKu1+uLu1psaK

* aLdV2

whereaK;ak1
¯akn

, uKu1;oi=1
n ski −1d for K=hk1, . . . ,knj,N. HenceUV12=V21.

Example 2.8:sid In Example 2.5sid, pS+wS is HFock with the vacuume1. SeefRef. 3g for more
detail. sii d In Example 2.5sii d, we considerp12+wS. Then sl2s2N−1d ,p12+wSd is Pf12g and
sl2s2Nd ,p12+wSd is Pf21g. If we identify an and sp12+wSdsand, then

a2n−1e1 = a2n
* e1 = a2ne2 = a2n−1

* e2 = 0,

a2ne1 = s− 1dn−1e4n−1·6+1, a2n−1
* e1 = s− 1dn−1e4n−1·3+1,

a2n−1e2 = s− 1dn−1e4n−1·3+2, a2n
* e2 = s− 1dne4n−1·6+2

for eachnPN. These statements are shown by usingsp12ss1s2ddmen=e4msn−1d+1 for eachm,n
PN. Specially, whenn2.n1,

a2n1
a2n2

e1 = s− 1dn2−1e3·s22n2−1+22n1−1d+1.

III. A BRANCHING FUNCTION SYSTEM ON THE INFINITE WEDGE

We review a representation of the fermion algebra which is called theinfinite wedge space12,13

according to notation in Ref. 13. In order to extend this representation toO2, we introduce the dual
infinite wedge space at once and a branching function system on them.
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A. Maya diagram

DenoteZ + 1
2 ;hn+ 1

2 :nPZj. Put

Z+/2 ; hn + 1/2:n P Z,n ù 0j, Z−/2 ; hn − 1/2:n P Z,n ø 0j.

For a subsetS,Z + 1
2, defineD±sSd,Z + 1

2 by

D±sSd ; sS\ Z7/2d ø sZ7/2 \ Sd. s3.1d

Remark the sign of both sides.
Definition 3.1: An element inM± ;hS,Z + 1

2 : #D±sSd,`j is called a Maya diagram. Spe-
cially, Z7/2PM± is called the vacuum inM±.

We see thatM+ùM−=x andM±=h−S:SPM7j where −S;h−k:kPSj. There are maxS
for anySPM+ and minS for anySPM−, and #S=` for anySPM±. Therefore we can always
parameterize as follows:S=hti : i PNj such thatti . ti+1 for i ù1 whenSPM+, andS=hti : i PNj
such thatti , ti+1 for i ù1 whenSPM−.

We illustrateSPM± by a two-sided infinite sequence consisting of symbolss andP along
the latticeZ + 1

2 as follows: ForSPM±, put s at kPZ + 1
2 when kPS, and putP at kPZ + 1

2
whenk¹S. For example, ifh−5/2,−1/2,3/2,7/2j,S and h−7/2,−3/2,1/2,5/2jùS=x, then

¯ − 7/2 − 5/2 − 3/2 − 1/2 1/2 3/2 5/2 7/2̄

¯ • + • + • + • + ¯

By this illustration,M± are the following sets:

M+ = h¯ + + p p p p p p • • ¯ j, M− = h¯ • • p p p p p p + + ¯ j

wherepppppp is taken any finite sequence consisting ofs andP. Specially,

B. A branching function system on the space of Maya diagrams

Put the space of all Maya diagrams

M ; M+ ø M−.

We give a branching function system onM. Put S± ;SùZ±/2, S+1;hk+1:kPSj and S±,+1

;sS±d+1. For SPM, define

g1sSd ; − sS+,+1 ø S− ø h1/2jd, g2sSd ; − sS+,+1 ø S−d. s3.2d

Theng=hg1,g2j is a branching function system onM, that is,g1 andg2 are injective maps onM,
g1sMdùg2sMd=x andg1sMdøg2sMd=M. Further,

g1sMd = hSP M:− 1/2P Sj, g2sMd = hSP M:− 1/2¹ Sj,

g1
−1sSd = − hsS− \ h− 1/2jd+1 ø S+j, g2

−1sSd = − sS−,+1 ø S+d.

If usSd;Z + 1
2 \S, thenu2= id, usM±d=M7, usZ±/2d=Z7/2, andg2=u +g1+u.

Lemma 3.2: Denote S±n;hk±n:kPSj, S±,+n;sS±d+n. Then the followings hold:sid sg1

+g2dnsSd=S−,−nøS+,+nø h−1/2, . . . ,−sn−1d−1/2j for nPN. sii d sg1+g2d−nsSd=sS−,+nd−øS+,−n for
nPN. siii d Put hnsSd;sg12

n−1+g1+g2
−1+ sg12

n−1d−1dsSd and knsSd;sg12
n−1+g1+g1+ sg12

−1dndsSd for nPN.
Then
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hnsSd = Sø h− sn − 1d − 1/2j, knsSd = Sø hn − 1 + 1/2j sn P Nd.

We illustrateg by Maya diagrams:

S g1sSd g2sSd

Z−/2 Z+/2ø h−1/2j Z+/2

Z+/2 Z−/2 Z−/2\ h−1/2j
Z+/2ø h−1/2j Z−/2ø h1/2j sZ−/2\ h−1/2jdø h1/2j
Z−/2\ h−1/2j sZ+/2\ h1/2jdø h−1/2j Z+/2\ h1/2j

A A A

C. The infinite wedge representation of CAR and its dual

We introduce the infinite wedge space by a Hilbert space of Maya diagrams. For a setL, l2sLd
is a complex Hilbert space with a complete orthonormal basisheljlPL and diml2sLd= #L.

Definition 3.3: ForM±,

L`/2V# ; l2sMd, L`/2V ; l2sM+d, L`/2V* ; l2sM−d

are called the bi-infinite wedge space, the infinite wedge space and the dual infinite wedge space,
respectively.

We see thatL`/2V#=L`/2V% L`/2V* . By definition,L`/2V#, L`/2V andL`/2V* have canonical
basisheS:SPMj, heS:SPM+j, andheS:SPM−j, respectively. Usually, the symbolL`/2V means
a subspace ofl2sM+d consisting of finite linear combinations ofheS:SPM+j.12,13 We denote

uvacl± ; eZ7/2
.

Since there are maxS for anySPM+ and minS for anySPM−, and #S=` for anySPM±, we
can denote

t1 ∧ t2 ∧ ¯ = eS whenS= hti: ∀ i P N,ti . ti+1j P M+,

t1 ∧ t2 ∧ ¯ = eS whenS= hti: ∀ i P N,ti , ti+1j P M−.

Then we see that
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uvacl+ = s− 1
2d ∧ s− 3

2d ∧ s− 5
2d ∧ ¯ , uvacl− = 1

2 ∧ 3
2 ∧ 5

2 ∧ ¯ .

For a permutationsPSk kù2, define

tss1d ∧ ¯ ∧ tsskd ∧ tk+1 ∧ ¯ ; sgnssd · t1 ∧ ¯ ∧ tk ∧ tk+1 ∧ ¯ .

By these definitions, “∧” seems the exterior product of infinite vectors.
Define a familyhckjkPZ+1

2
of operators onL`/2V# by

ckeS;Hs− 1ddSskd ·eSøhkj sk ¹ Sd,

0 sotherwised JsSP Md

wheredSskd;minh#hxPS:x.kj , #hxPS:x,kjj. We simply denote

ckeS= s− 1ddSskd · xScskd ·eSøhkj

wherexSc is the characteristic function onSc;sZ + 1
2

d \S. We can easily check that the definition of
ck coincides with the following ordinary definition:

ckv = k ∧ v sv P L`/2V#,k P Z + 1
2d .

Lemma 3.4: (i) The adjointck
* of ck is given by

ck
*eS= s− 1ddS\hkjskd · xSskd ·eS\hkj sk P Z + 1

2,SP Md .

sii d ckck
*eS=xSskd ·eS for kPZ + 1

2 and SPM. siii d ckcl
* +cl

*ck=dklI for k, l PZ + 1
2 and other

anticommutators vanish. We see that

c−kuvacl+ = ck
* uvacl+ = 0,

ckuvacl+ = k ∧ uvacl+, c−k
* uvacl+ = s− 1dk−1/2 ·eZ−/2\h−kj

for kPZ + 1
2, k.0. In the same way, we see that

L`/2V L`/2V*

vacuum uvacl+ uvacl−

creation c−k
* , ck c−k, ck

*

annihilation c−k, ck
* c−k

* , ck

wherekPZ + 1
2, k.0.

Definition 3.5: A representationsL`/2V#,p`d of CAR defined by

p`sa2n−1d ; c−n+1/2, p`sa2nd ; cn−1/2 sn P Nd s3.3d

is called the bi-infinite wedge representation of CAR.
On the other hand,

ck = p`sa2k+1d, c−k = p`sa2kd sk P Z + 1
2,k . 0d . s3.4d

Proposition 3.6: (i) The following irreducible decomposition of representations of CAR holds:

L`/2V# = L`/2V % L`/2V* .

(ii) If we denote

p`,+ ; up`uL`/2V, p`,− ; up`uL`/2V* ,

then sL`/2V,p`,+d is Pf12g and sL`/2V* ,p`,−d is Pf21g.
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sL`/2V,p`,+d and sL`/2V* ,p`,−d are called theinfinite wedge representationand thedual-
infinite wedge representationof CAR, respectively.

IV. STANDARD EXTENSIONS OF REPRESENTATIONS OF CAR

In order to show extension theorems, we prepare a notion, “standard extension” of a repre-
sentation ofCAR to O2 as follows.

Definition 4.1: LetwS be the standard embedding of CAR intoO2 in (2.1). For a representa-

tion sH ,pd of CAR, sH̃ ,p̃d is the standard extension ofsH ,pd to O2 if H is a closed subspace of

H̃ such that

usp̃ + wSduH = p. s4.1d

A. Standard extension of the Fock representation

Theorem 4.2:Let sH ,pd be the Fock representation of CAR with the vacuumV in Definition
2.1. Put two operatorsp̃ss1d, p̃ss2d on H by

p̃ss1dV ; V, p̃ss1dpsan1

*
¯ ank

* dV ; psan1+1
*

¯ ank+1
* dV,

p̃ss2dV ; psa1
*dV, p̃ss2dpsan1

*
¯ ank

* dV ; psa1
*an1+1

*
¯ ank+1

* dV

for n1,n2, ¯ ,nk, nj PN, j =1, . . . ,k, kù1. Then the followings hold:

sid sH ,p̃d is a representation ofO2.
sii d p̃ +wS=p.
siii d sH ,p̃d is Ps1d with the GP vectorV.

This proof is given by direct computation and Lemma 2.3. For more detail, see Sec. III C in Ref.

3. Clearly, sH̃;H ,p̃d in Theorem 4.2 is the standard extension of the Fock representation.
Theorem 1sid about an operatorL follows from Theorem 4.2 as another expression of this
extension.

B. Standard extension of the infinite wedge

For g=hg1,g2j in s3.2d, define a representationsL`/2V#,Pd of O2 by

Pss1deS; s− 1dd+sSdeg1sSd, Pss2deS; s− 1dd+sSdeg2sSd sSP M+d,

Pss1deS; s− 1dd−8sSdeg1sSd, Pss2deS; s− 1dd−sSdeg2sSd sSP M−d

whered+sSd; #sSùZ+/2d+ #sZ−/2\Sd andd−8sSd; #sZ+/2\Sd, d−sSd; #sZ+/2\Sd+ #sSùZ−/2d.
Lemma 4.3: When K=hk1, . . . ,knj and L=hl1, . . . ,lmj,Z+/2 satisfy k1. ¯ .kn and l1, ¯

, lm,

Pss1duvacl+ = c−1/2uvacl− = eZ+/2øh−1/2j, Pss2duvacl+ = uvacl−,

Pss1duvacl− = uvacl+, Pss2duvacl− = c−1/2
* uvacl+ = eZ−/2\h−1/2j.

Pss1deZ−/2øK\s−Ld = s− 1dn+meZ+/2øs−K+1
* d\L,

Pss2deZ−/2øK\s−Ld = s− 1dn+meZ+/2øs−K+1d\L,
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Pss1deZ+/2øs−Kd\L = s− 1dmeZ−/2øK\s−L+1d,

Pss2deZ+/2øs−Kd\L = s− 1dm+neZ−/2øK\s−L+1
* d

where K+1;hk+1:kPKj and K+1
* ;K+1ø h1/2j.

Proposition 4.4: (i)sL`/2V#,Pd is Ps12d. (ii) If p`, p`,± are in Proposition 3.6, thenP +wS

=p`. Specially,

sL`/2V,p`,+d = sL`/2V,usP + wSduL`/2Vd , Pf12g,

sL`/2V* ,p`,−d = sL`/2V* ,usP + wSduL`/2V*d , Pf21g.

Proof: sid By Lemma 4.3,Pss1s2duvacl+= uvacl+. By definition ofg1,g2, sL`/2V#,Pd is Ps12d.
sii d Identify wSsand and an for eachnPN. By Lemma 3.2 and Lemma 4.3, we can check the
following:

Psa2n−1duvacl+ = Psa2nduvacl− = Psa2n
* duvacl+ = Psa2n−1d* uvacl− = 0,

Psa2nduvacl+ = cn−1/2uvacl+, Psa2n−1duvacl− = c−n+1/2uvacl−,

Psa2n−1
* duvacl+ = c−n+1/2

* uvacl+, Psa2n
* duvacl− = cn−1/2

* uvacl−

for eachnPN. By Lemma 4.3,Psand=p`sand for eachnPN. j

The branching lawuPuCAR=p`,+ % p`,− is illustrated by Maya diagrams as follows:

We try to interpret this branching law from a physical standpoint.Beforethe symmetry breaking

of O2 to CAR, the vacuum and the dual vacuum are coupled as a cycle:uvacl+→
s2

uvacl−→
s1

uvacl+.
After the symmetry breaking, they are decomposed into two independent vacua of fermions. AZ2

symmetry betweenL`/2V and L`/2V* are just a unitaryU in s2.2d on L`/2V# which satisfies
Us1U

* =s2.
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C. Boson-fermion correspondence described by O2

By using the standard extension of the infinite wedge, we consider correspondence among
boson, fermion, and generators of the Cuntz algebraO2. Under identification ofPssid andsi for
i =1,2 in Proposition 4.4, we have the following:

ck = z2kss1s2
*d, c−k = z2k−1ss1s2

*d sk P Z + 1
2,k . 0d

wherez is in s1.4d. From this, we have the following recurrence formulas:
Proposition 4.5:

c1/2 = zss1s2
*d, c−1/2 = s1s2

* ,

ck+1 = z2sckd, c−k−1 = z2sc−kd sk P Z + 1
2,k . 0d .

Intertwining relations are given as follows:

sick = s− 1di−1c−sk+1dsi, sic−k = s− 1di−1cksi ,

sick
* = s− 1di−1c−sk+1d

* si, sic−k
* = s− 1di−1ck

*si

for i =1,2 andkPZ + 1
2, k.0.

Proof of (1.7):If nù0, then we can decompose

an = An + Bn + Cn

where An;okPZ+1/2,k.nck−nck
* , Bn;okPZ+1/2,n.k.0ck−nck

* and Cn;okPZ+1/2,k,0ck−nck
* . By

Proposition 4.5,

An + Cn = o
lPN

r2n−2sXnd, Xn ; c1/2cn+1/2
* + c−n−1/2c−1/2

*

where we usezsxdzsyd=rsxyd for each x,yPO2. This implies s1.8d. Further, we haveB1

=−s1s2s1
*s2

* ,

B2k = − o
1øløk

r2sl−1dhrss2z4sk−ldss1s2
*ds1

*d + s1z4sk−ld+2ss2s1
*ds2

*j,

B2k+1 = − r2kss1s2s1
*s2

*d − o
1øløk

r2sl−1dhrss2z4sk−ld+2ss1s2
*ds1

*d + s1z4sk−ld+4ss2s1
*ds2

*j

for eachkPN. Hence the recurrence formulas1.9d of Bn is obtained. j

Remark thatan is an unbounded operator on a Hilbert spaceL`/2V and the previous equations
make sense on a dense domain inL`/2V.

In the same way, theenergydefined by

H ; o
kPZ+1/2

k:ckck
*
ª o

kPZ+1/2:k.0
ksckck

* + c−k
* c−kd

is rewritten as follows:

H = o
lPN

sl − 1/2dr2l−2ss1s1s1
*s1

* + s2s1s1
*s2

* + s2s2
*d.
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APPENDIX: INEQUIVALENCES AMONG HFock , P†12‡, P†21‡

Assume thatHFock andPf12g are equivalent. Then there is a cyclic representationsH ,pd of
CAR with two cyclic vectorsV and V8 such thatpsandV=0 andpsa2n−1dV8=psa2n

* dV8=0 for
eachnPN. We identifypsand andan for eachnPN. We see thatH has a complete orthonormal
basishaF

* V :FPFsNdj whereFsNd is the set of all finite subsets ofN andax
* ; I, aF

* ;an1

*
¯ank

*

when F=hn1, . . . ,nkj and n1, ¯ ,nk. Hence we can denoteV8=oFcFaF
* V for suitablecFPC.

Then there aren0PN andF0PFsNd such that 2n0¹F0 andcF0
Þ0. This implies

a2n0
aF0

* V = 0. sA1d

We see that

kanaF
* VuanaF8

*
Vl = dF,F8 · xFsnd · xF8snd sA2d

for eachsn,FdPN3FsNd. By assumption ofV8 and anticommutation relations ofan’s,

ia2nV8i = iV8i s∀n P Nd. sA3d

By sA1d–sA3d,

iV8i2 = ia2n0
V8i2 = Io

F

cFa2n0
aF

* VI2
ø o

FÞF0

ucFu2 , iV8i2.

This is contradiction. HenceHFock andPf12g are not equivalent. In the same way, inequivalences
amongHFock, Pf21g, andPf12g are shown. j
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Consider the blow up results for W2,2�RN� solutions of a quasilinear Schrödinger
equation iut+�u+��u�p−2u+����u�2�u=0, u�t=0

=u0�x� ,x�RN. When �x�u0

�L2�RN�, we show that the W2,2�RN� solutions must blow up for any ��0, �
�R and some restriction on p. We also show that the radial symmetric solutions in
W2,2�RN� must blow up at finite time without assuming �x�u0�L2�RN�. © 2005
American Institute of Physics. �DOI: 10.1063/1.1941089�

I. INTRODUCTION

Porkolab and Goddman13 have proposed the following nonlinear Schrödinger equation:

iut + uxx + q��u�2�u − ��u�2�xx = 0, �1.1�

and Refs. 15,14 have derived �1.1� for various physical situation. Equations similar to �1.1� in the
case of higher spatial dimensions has been derived in the study of theory of superfluids, dissipative
quantum mechanics, see Refs. 3,5,6 and the references therein. Considering the model problem

iut + �u + ��u�p−2u + ����u�2�u = 0, x � RN,

�QSE�
u�t=0

= u0�x�, x � RN,

uªu�x , t� :RN�R+→C is a complex-valued function, i2=−1. �, � are real constants and p�2.
�=� j=1

N ��2 /�xj
2� is the standard Laplacian operator.

Mathematical difficulties in the study of problem �QSE� are due to the presence of the qua-
silinear term ���u�2�u. There are some results about the existence of stationary solutions of prob-
lem �QSE�. In a series of works, Liu-Wang-Wang9,10 have shown the existence of standing waves
solutions, i.e., a solution of form eiwtv�x� of �QSE�. Local well posedness or global well posedness
for small initial data of �QSE� is known, see, e.g., Refs. 6 and 12. However, the general global
existence result for the Cauchy problem �QSE� is still open.

In this paper, we study the “blowing up” phenomena for the Cauchy problem �QSE�. More
precisely, we have the following.

Theorem 1.1: Suppose that u�t��W2,2�RN��N�1� is a solution of (QSE) and

a�Author to whom correspondence should be addressed: Institute of Applied Physics and Computational Mathematics, P.O.
Box 8009�28 Branch�, Beijing 100088, People’s Republic of China.
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�1� u0�W2,2�RN�, ��0 and 4+ �4/N�� p�2·2*
ª2Ã2*, here and after, 2*=2N / �N−2� if N

�3 and 2*= +	 otherwise;
�2� ��u0�2�L2�RN�;
�3� E�0�=����u0�2− �2� / p��u0�p+ �� /2��� �u0�2�2��0;
�4� Im� ū0x�u0�0 and �x�u0�L2�RN�;

here and after, ū is the complex conjugate of u. Then there exists a T0�0 such that

lim
t→T0

−
� � u�L2�RN�

2 = + 	 .

So that �u�W2,2�RN� blows up in finite time.
Remark 1.2: (a) When �=0, a similar result has been obtained by Glassey.2 (b) If choosing

u0�x�=
e−i�x�2��x� with 
�0 and real-valued function ��x��S, the Schwartz space of rapidly
decreasing functions in RN, then a direct computation gives Im� ū0�x�x�u0�x�=−2
2� �x�2���2, so
that �4� always holds in this case. Since p�4, �3� also holds for some 
 large.

Note that the existence of T0 obtained in Theorem 1.1 depends �see the proof of Theorem 1.1�
on the existence of L2�RN� norm of �x�u0. If ��x�2�u0�2=	 �this is possible, say, u0�L2�RN , �x�2 dx��,
then we cannot get the existence of such T0. Furthermore, some numerical computations suggest
that the weight restriction of L2�RN , �x�2 dx� is not necessarily needed for the blow up of solutions,
see e.g., Ref. 7, Sec. 5 for the case of �=0. Our next purpose is to improve this result. That is, we
will remove the restriction of u0�L2�RN , �x�2 dx� and prove that the radially symmetric solutions
in W2,2�RN� �possibly not in L2�RN , �x�2 dx�� blow up at finite time.

Theorem 1.3: Suppose that u�t��Wr
2,2�RN�= 	u�W2,2�RN� ;u�x�=u��x��
�N�2� is a radially

symmetric solution of (QSE) and

�i� u0�x��Wr
2,2�RN�, ��0 and 4+ �4/N�� p�6 if 6�2·2* and 4+ �4/N�� p�2·2* if 6

�2·2*;
�ii� ��u0�2�L2�RN�;
�iii� E�0�=����u0�2− �2� / p��u0�p+ �� /2��� �u0�2�2��0;

then there is T such that

lim
t→T−

� � u�L2�RN�
2 = + 	 .

Remark 1.4: When �=0, Ogawa et al.11 have proved the blow up of the radial solution of
(QSE) for 2+ �4/N�� p�min	2* ,6
 and N�2.

Remark 1.5: When �=0, p=2+ �4/N� is the critical exponent for the blowing up of Cauchy
problem (QSE). When ��0, we need to increase the value of p. However, it seems that the
presence of quasilinear term can relax the restriction of p in some sense since we allow p=6 in
Theorem 1.3.

This paper is organized as follows. The forthcoming section is due to the proof of Theorem
1.1. In Sec. III, we give some lemmas which are useful in the proof of Theorem 1.3. The final
section contains the proof of Theorem 1.3.

We end this introduction by some notations. Throughout this paper, all integrals are taken over
RN unless stated otherwise, Wk,q�RN� and Lq�RN� are standard Sobolev spaces with standard
norms. L2�RN , �x�2 dx� is a weighted Sobolev space. By C we denote a generic positive constant
whose value can vary from line to line. Re �Im� denotes the real �imaginary� part for the complex
value.

II. PROOF OF THEOREM 1.1

In this section, we will prove Theorem 1.1. The proof suggests that we not only give the
existence of blowing up time, but also give an upper bound estimate for the blowing up time. The
methods are adapted from those in Glassey,2 see also Ref. 1, but we need to overcome the
additional difficulty created by the quasilinear term.
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Proof of Theorem 1.1: Multiplying �QSE� by ū, integrating by parts and taking the imaginary
part, we can get that

� �u�2 =� �u0�2. �2.1�

Multiplying �QSE� by ūt and taking the real part, we have that

Re� ��uūt + ��u�p−2uūt + ����u�2�uūt� =
d

dt
� �−

1

2
� � u�2 +

�

p
�u�p −

�

4
� � �u�2�2 = 0.

It follows that

E�t� =� �� � u�2 −
2�

p
�u�p +

�

2
� � �u�2�2 = E�0� . �2.2�

Denote D�t�=�r2�u�2 dx. We have that

dD�t�
dt

= 2 Re� r2ūut = − 2 Im� r2ū�u = 2 Im� �r2 � u � ū + 2xū � u�

= 4 Im� ūx � u ª − 4D1�t� , �2.3�

in here D1�t�=−Im� ūx�u.

dD1�t�
dt

= − Im� �ūtx � u + ūx � ut� = Im� �2x � ū + Nū�ut

= Re� �2x � ū + Nū���u + ��u�p−2u + ����u�2�u� . �2.4�

Note that

Re� �2x � ū + Nū��u = − Re� ��u � �2x � ū� + N � u � ū�

= − N� � � u�2 − 2� � � u�2 −� x � � � u�2 = − 2� � � u�2, �2.5�

Re� �2x � ū + Nū��u�p−2u = N� �u�p +� �u�p−2x � �u�2 = N� �u�p +
2

p
� x � �u�p

= N� �u�p +
2

p
� xd�u�p =

N�p − 2�
p

� �u�p, �2.6�

Re� �2x � ū + Nū����u�2�u = Re� N���u�2��u�2 +� �x � �u�2����u�2�

= − N� � � �u�2�2 −� � �u�2 � �x � �u�2� = − �N + 1� � � � �u�2�2

−
1

2
� x � � � �u�2�2

073510-3 Quasilinear Schrödinger equation J. Math. Phys. 46, 073510 �2005�

                                                                                                                                    



= − �N + 1� � � � �u�2�2 +
N

2
� � � �u�2�2 = −

N + 2

2
� � � �u�2�2.

�2.7�

Thus

dD1�t�
dt

= − 2� � � u�2 +
N��p − 2�

p
� �u�p −

��N + 2�
2

� � � �u�2�2. �2.8�

Combining this with the expression of E�t�=E�0��0 and p�4+ �4/N�, we know that

dD1�t�
dt

= − ��N + 2�E�t� − N� � � u�2 +
�4N + 4 − Np��

p
� �u�p � N� � � u�2 � 0.

�2.9�

Therefore

D1�t� � D1�0� = − Im� ū0x � u0 � 0. �2.10�

It now follows from �2.3� that dD�t� /dt�0 and

D�t� � D�0� =� r2�u0�2. �2.11�

Because of

�D1�t�� = D1�t� = − Im� ūx � u � �� r2�u�21/2�� � � u�21/2

� D�0�1/2� � u�L2�RN�,

�2.12�

there holds

D1�t�2 � D�0�� � u�L2
2

�
D�0�

N

dD1�t�
dt

.

So dD1�t� /dt�ND1�t�2 /D�0� and D1�0�=−Im� ū0x�u0�0. It follows that

D1�t� � 1�� 1

D1�0�
−

Nt

D�0� .

Let T*=D�0� /ND1�0�, then there is T0�T* such that

lim
t→T0

−
� � u�L2

2
� lim

t→T0
−

D1�t�
D�0�1/2 = + 	 . �2.13�

So that �u�W2,2�RN� blows up in finite time. The proof is complete. �

III. SOME LEMMAS

In this section, we state some lemmas which are useful in what follows. The first is about
decay property for radially symmetric functions in W1,2�RN� which is due to Lin et al.8

Lemma 3.1: Let u be radially symmetric in W1,2�RN� and N�2. Then for any R�0, u satisfies

�u�L	�R�r� � CR−�N−1�/2�u�L2�R�r�
1/2 � � u�L2�R�r�

1/2 , �3.1�
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where r= �x� and C is a constant independent of u and R.
Next, we prove a general identity which is a generalization for those obtained in Lin et al.8 in

the case of �=0, see also Refs. 4 and 11.
Lemma 3.2: Suppose that �= ��1 ,�2 ,… ,�N� is a vector valued function in �W3,	�RN��N and

2� p�22*. Then the W2,2�RN� solution u�t� of (QSE) satisfies

Im� �u0 � ū0 − Im� �u�t� � ū�t� = �
0

t �2 Re� �
k,j

uk�kjūj +
��2 − p�

p
� �u�p�� · ��

−
1 + �

2
� �u�2��� · �� + �� �

k,j
��u�2�k�kj��u�2� j

+
�

2
� � � �u�2�2�� · ���d , �3.2�

in here uk= �� /�xk�u, ��u�2�k= �� /�xk��u�2, and �kj = �� �xk� j, all summations are taken from 1 to N.
Proof: Keep the following in mind,

iut = − �u − ��u�p−2u − ����u�2�u , �3.3�

− iūt = − �ū − ��u�p−2ū − ����u�2�ū . �3.4�

Now multiplying �3.3� by �ū and integrating by parts, we have first that

i� ut��ū� = i
d

dt
� �u � ū − i� �u � ūt.

It follows that

i
d

dt
� �u � ū + i� �� · ��uūt = i� ut��ū� + i� �u � ūt + i� �� · ��uūt. �3.5�

Combining this with �3.3� and �3.4�, we get that

i
d

dt
� �u � ū + i� �� · ��uūt = i� ut�� � ū� − i� ūt� � u =� �− �u − ��u�p−2u − ����u�2�u�

��� � ū� +� �− �ū − ��u�p−2ū − ����u�2�ū��� � u� . �3.6�

Direct computations can arrive at

−� �u�� � ū� =� � u � �� � ū� =� �
k

uk�
j

��kjūj + � jūjk�

=� �
k,j

uk�kjūj +� �
j

� j�
k

ukūkj ,

−� �ū�� · � u� =� �
k,j

ūk�kjuj +� �
j

� j�
k

ūkukj ,

and hence
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� �− �u�� � ū� − �ū�� · � u�� = 2 Re� �
k,j

uk�kjūj +� � · � � � u�2

= 2 Re� �
k,j

uk�kjūj −� �� · ��� � u�2. �3.7�

Similarly

� �− ��u�p−2u�� � ū� − �ū − ��u�p−2ū�� � u�� =
2�

p
� �� · ���u�p, �3.8�

� �− ����u�2�u�� � ū� − ����u�2�ū�� � u�� = − �� ���u�2�� � �u�2 = �� � �u�2 � �� � �u�2�

= �� �
k,j

��u�2�k�kj��u�2� j −
�

2
� �� · ��� � �u�2�2.

�3.9�

Therefore

i
d

dt
� �u � ū + i� �� · ��uūt = 2 Re� �

k,j
uk�kjūj −� �� · ��� � u�2 +

2�

p
� �� · ���u�p

+ �� �
k,j

��u�2�k�kj��u�2� j −
�

2
� �� · ��� � �u�2�2. �3.10�

Using �3.4�, we know that

i� �� · ��uūt =� �� · ���u�ū + ��u�p + ����u�2��u�2� . �3.11�

Similar calculations show that

� �� · ��u�ū = −� �� · ��� � u�2 −� � ūu � �� · �� , �3.12�

�� �� · �����u�2��u�2 = − �� �� · ��� � �u�2�2 +
�

2
� ��� · ���u�4. �3.13�

It follows that

i
d

dt
� �u � ū = 2 Re� �

k,j
uk�kjūj +

��2 − p�
p

� �� · ���u�p +� � ūu � �� · ��

+ �� �
k,j

��u�2�k�kj��u�2� j +
�

2
� �� · ��� � �u�2�2 −

�

2
� ��� · ���u�2.

�3.14�

Taking real part in �3.14�, we get that
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� �u0 � ū0 −� �u � ū = �
0

t �2 Re� �
k,j

uk�kjūj +
��2 − p�

p
� �� · ���u�p

+ �� �
k,j

��u�2�k�kj��u�2� j +
�

2
� �� · ��� � �u�2�2

−
1 + �

2
� ��� · ���u�2�d . �3.15�

This completes the proof. �

IV. PROOF OF THEOREM 1.3

In this section, we will prove Theorem 1.3. The idea is to take a suitable weight function �
and use Lemma 3.2, which has been used by Ogawa et al.11 in the case of �=0. But when �
�0, the method used in Ref. 11 does not work. Hence, here we choose an appropriate weight
function � and some estimates. To proceed, we need some preparations.

Let � : �0,	�→R+ be a function with bounded third order derivatives and be such that

��s� = �
s , 0 � s �

1
2 ,

s − �s − 1
2�3, 1

2 � s �
1
2 +

�3
3 ,

smooth,�� � 0, 1
2 +

�3
3 � s � 2,

0, 2 � s ,
�

and ���s��1. Let m be a large positive constant to be determined later, we set

�m�r� = m�� r

m
 .

Clearly

� ��

�r��m�r�� �
C�

m�−1 , for � = 0,1,2,3. �4.1�

Denote r= �x� and choose � as follows:

��x� =
x

r
�m�r� and � j�x� =

xj

r
�m�r� .

Direct computations show that

�kj =�
�kj , 0 � r �

1
2m ,

��kj

r
−

xkxj

r3 �m�r� +
xkxj

r3 �m� �r� , 1
2m � r � � 1

2 +
�3
3 m ,

��kj

r
−

xkxj

r3 �m�r� +
xkxj

r3 �m� �r�, �� � 0, � 1
2 +

�3
3 m � r � 2m ,

0, 2m � r ,

� �4.2�

where k, j=1, 2, … ,N and
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��� · �� = ��r�

=�
0, 0 � r �

1
2m ,

�m
�3� + �N − 1��2

r
�m� +

N − 3

r2 �m� −
N − 3

r3 �m� , 1
2m � r � � 1

2 +
�3
3 m ,

�m
�3� + �N − 1��2

r
�m� +

N − 3

r2 �m� −
N − 3

r3 �m�, �� � 0, � 1
2 +

�3
3 m � r � 2m ,

0, 2m � r .

�
�4.3�

Proof of Theorem 1.3: Arguing by a contradiction, we assume u�t��Wr
2,2�RN� and ��u�L2�RN�

exists globally. Using the fact that

�

2
�

r��m/2�
� � �u�2�2 = E�t� −� � � u�2 +

2�

p
� �u�p −

�

2
�

r��m/2�
� � �u�2�2,

we substitute the relations �4.2� and �4.3� into �3.2� to get that

Im� �u0 � ū0 − Im� �u�t� � ū�t� = �
0

t �2�
r��m/2�

� � u�2 + 2�
r��m/2�

�m� �r�� � u�2 + �N + 2�E�t�

− �N + 2� � � � u�2 −
1 + �

2
�

r��m/2�
��r��u�2

+
2��N + 2�

p
� �u�p +

N��2 − p�
p

�
r��m/2�

�u�p

+
��2 − p�

p
�

r��m/2�
�N − 1

r
�m�r� + �m� �r��u�p

+ ��
r��m/2�

�3

2
�m� �r� +

N − 1

2r
�m�r� −

N + 2

2
� � �u�2�2�d .

�4.4�

Now from the construction of �, we know that

3

2
�m� �r� +

N − 1

2r
�m�r� −

N + 2

2
� 0 for r �

m

2
.

Equations �4.1� and �4.3� imply that for some positive constant C,

���r�� � Cm−2.

Combining these with p�4+ �4/N�, we obtain that

Im� �u0 � ū0 − Im� �u�t� � ū�t� � �
0

t ��N + 2�E�t� − N� � � u�2 + Cm−2�u�L2
2

+ C�
r��m/2�

�u�p�d . �4.5�

Noticing from Lemma 3.1 that
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�
r��m/2�

�u�p � �u�L	�r��m/2��
p−2 �

r��m/2�
�u�2 � Cm�−�N−1��p−2�/2��u�L2�r��m/2��

�p+2�/2 � � u�L2
�p−2�/2. �4.6�

If p=6, then

�
r��m/2�

�u�p � Cm−2�N−1��u�L2�r��m/2��
4 � � u�L2

2
� Cm−2�N−1��u�L2

4 � � u�L2
2 . �4.7�

Combining with �2.1�, we know that the right-hand side of �4.7� can be dominated by −N� ��u�2
for m large. It follows that there is a positive constant �1 such that

Im� �u0 � ū0 − Im� �u�t� � ū�t� � − �1t .

If p�6, then we can apply Young inequality directly to �4.6� that

�
r��m/2�

�u�p � �� � u�L2
2 + C�m−��u�L2

��p+2��6−p�/8�,

with �= �N−1��p−2��6− p� /8. Choosing � small and using �2.1�, we can get that for m large there
is a positive constant �2 such that

Im� �u0 � ū0 − Im� �u�t� � ū�t� � − �2t .

Thus in any cases, we have for some positive constant � such that

Im� �u0 � ū0 − Im� �u�t� � ū�t� � − �t . �4.8�

Set ��r�=�0
r�m�s�ds. Since ��L	�RN� and

���r� =
x

r
�m�r� = ��x� ,

we can use �3.4� to get that

i� �uūt =� ��u�ū + ���u�p + �����u�2��u�2�

= −� �u � ū −� ��� � u�2 − ��u�p − ����u�2��u�2� . �4.9�

Taking the imaginary part in �4.9�, we know that

Re� �uūt = − Im� �u � ū .

Since

d

dt
� ��u�2 = 2 Re� �uūt for t � �0,	� ,

we can get that
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� ��u�2 � − �t2 − 2t Im� �u0 � ū0 +� ��u0�2. �4.10�

Therefore the left-hand side of �4.10� becomes negative at finite time, which implies a contradic-
tion since ��r��0 except when r=0. Hence ��u�L2�RN� must blow up at finite time. The proof is
complete.
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I. INTRODUCTION

Recent years have seen the appearance of new areas of mathematics bridging the gap between
classical invariant theory �CIT� and differential geometry. They have brought about novel tech-
niques proving their worth in various areas of mathematical physics, in particular, the theory of
integrable and superintegrable Hamiltonian systems �see Horwood et al.,12 and the relevant ref-
erence therein�. At the same time the classical invariant theory of homogeneous polynomials itself
resurrected once again through new aspects of the Lie group theory �notably, the generalizations of
the moving frames method due to Fels and Olver8,9 and Kogan,14 see also the relevant references
therein�, the rise of the modern computer algebra and new applications in other areas of math-
ematics �see Hilbert11 and Olver24 for a complete review and related references�. Thus, McLena-
ghan et al. in their pioneering paper16 successfully planted the underlying ideas of CIT into the
fertile field of the �geometric� study of Killing tensors defined in pseudo-Riemannian manifolds of
constant curvature, which ultimately bore the fruit of a new theory �see also Refs. 12, 17, 28, 29,
4, and 18–21�. The resulting invariant theory of Killing tensors �ITKT� shares many of the same
essential features with the original CIT. In light of the fact that “Mathematics is the study of
analogies between analogies,”25 we wish to continue developing ITKT by establishing more analo-
gies with CIT. One of the most famous problems solved by Cayley around the time CIT was
conceived was the problem of the determination of the infinitesimal action of SL�2,R� in the
vector spaces of the binary forms Qn�R2� of an arbitrary degree n. Interestingly, this was done
before the emergence of the formal theory of Lie groups in order to develop a tractable procedure
for computing the invariants and covariants of such vector spaces under the action of SL�2,R�.
The people working in ITKT routinely encounter similar problems that boil down to finding
effective and efficient ways for computing the invariants and covariants of the isometry group
action in the vector spaces of Killing tensors defined in pseudo-Riemannian spaces of constant
curvature. Of particular importance is the case when the vector spaces in question are the vector
spaces of Killing tensors defined in two-dimensional pseudo-Riemannian manifolds. Let R1

2 be the
Minkowski plane. In this paper we formulate and solve the problem of finding the infinitesimal
action of the isometry group I�R1

2� in the vector space K0
n�R1

2� of Killing tensors of arbitrary
valence n.

This problem represents a natural analog of the classical problem solved by Arthur Cayley in
1856 �i.e., the so-called Cayley’s Lemma�, while establishing the foundations of CIT.

a�Electronic mail: jyue@dal.ca
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The paper is organized as follows. In Sec. II we briefly review Cayley’s lemma in CIT. In Sec.
III we review basic facts about ITKT. An analog of Cayley’s lemma in ITKT is formulated and
proven in Sec. IV. Finally, in Sec. V we make concluding remarks.

II. CAYLEY’S LEMMA

As is well known, the main object of study in CIT is a vector space of homogeneous poly-
nomials under the action of the general linear group �or its subgroups�, while the main problem is
that of the determination of the functions of the parameters of the vector space in question that
remain fixed under the action of the group. These functions, called invariants, are very useful in
solving various classification problems. In this study the vector spaces of particular importance are
the spaces of binary forms, or homogeneous polynomials of degree n in two variables, originally
referred to by Arthur Cayley3 as quantics.

Let Qn�R2� denote the vector space of binary forms of degree n over the reals. Then the
dimension d of the space is n+1, and an element Q�x ,y� of Qn�R2� is given by

Q�x,y� = �
i=0

n �n

i
�aix

n−iyi, �x,y� � R2. �1�

The special linear group SL�2,R� acts on the space Qn�R2� by linear substitutions, which yield the
corresponding transformation rules

ãi = ãi�a0,…,an,�,�,�,��, i = 0,…,n , �2�

where � ,� ,� ,��R , ���−��=1� are local coordinates that parametrize the group. Note dim
SL�2,R�=3. The formulas �2� can be derived explicitly.24 The problem reduces to finding all of the
SL�2,R�-invariants of Qn�R�2, or those functions defined over �, the parameter space spanned by
�a0 ,… ,an�, that remain unchanged under the transformations �2�:

I = F�ã0,…, ãn� = F�a0,…,an� . �3�

Note that in the case of SL�2,R� action the invariants appear to be of weight zero due to the
condition ��−��=1.

One way to determine the fundamental invariants is to use the infinitesimal generators of the
Lie algebra of the group, by which we mean their counterparts in the parameter space � satisfying
the same commutator relations as the generators defined in the original space. Thus, a function
F�a0 ,… ,an� is an invariant if and only if it is annihilated by the generators of the Lie algebra
defined in the parameter space �. This is a short description of Sophus Lie’s method of the
infinitesimal generators.

Another powerful method, about which we shall not dwell in this article, is Élie Cartan’s
method of moving frames, which has been recently brought back to light.8,9,23,24,1,2,14,4,28–30

Arthur Cayley’s main contributions to the development of CIT appeared during the period
1854–1878 in his famous “ten memoirs on quantics.” Having introduced the notion of an abstract
group, he was the first to recognize that the action of a Lie group on a vector space can be
investigated by studying its “infinitesimal action,” that is the corresponding Lie algebra. In spite of
the fact that Cayley thought of this as of something pertinent only to the general linear group and
its subgroups, his results in this area may be considered as a precursor to Sophus Lie’s theory of
abstract Lie groups that was developed later in the 19th century. More specifically, in his “second
memoirs on quantics”3 Arthur Cayley considers �in modern mathematical language� the problem
of the determination of the action of the Lie group SL�2,R� on the vector space Qn�R2� in
conjunction with the problem of computing the invariants. The main result is the subject of the
following lemma �Cayley,3 see also Olver24�.

Lemma 2.1 (Cayley, 1856): The action of SL�2,R� on the vector space Qn�R2� of binary
homogeneous polynomials of degree n defined by (1) has the following infinitesimal generators in
the corresponding parameter space �:
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V− = na1�a0
+ �n − 1�a2�a1

+ ¯ + 2an−1�an−2
+ an�an−1

,

V0 = − na0�a0
+ �2 − n�a1�a1

+ ¯ + �n − 2�an−1�an−1
+ nan�an

,

V+ = a0�a1
+ 2a1�a2

+ ¯ + �n − 1�an−2�an−1
+ nan−1�an

, �4�

where �ai
=� /�ai

, i=0,… ,n.
Observe that the vector fields �4� enjoy the following commutator relations:

�V−,V0� = − 2V−, �V+,V0� = 2V+, �V−,V+� = V0, �5�

which confirm that the generators �4� represent the action of SL�2,R� in the parameter space �. In
view of the above, solving the problem of the determination of the SL�2,R�-invariants of Qn�R2�
now amounts to solving the corresponding system of PDEs determined by the generators �4�:

V−�F� = 0, V0�F� = 0, V+�F� = 0 �6�

for a �analytic� function F defined in �. The following fundamental theorem on invariants of a
regular Lie group aciton �see Olver24 tells us that the number of fundamental SL�2,R�-invariants
is n+1−s, where s�3 is the dimension of the orbits �wherever the dimension of the orbits is
constant�.

Theorem 2.1: Let G be a Lie group acting regularly on an m-dimensional manifold M with
s-dimensional orbits. Then, in a neighborhood N of each point x0�M, there exist m−s function-
ally independent G-invariants �1 ,… ,�m−s. Any other G-invariant I defined near x0 can be locally
uniquely expressed as an analytic function of the fundamental invariants through I
=F��1 ,… ,�m−s�.

Therefore for each particular n the general solution to the system �6� will take the form

I = F��1,…,�n+1−s� ,

where �i , i=1,… ,n+1−s are the fundamental SL�2,R�-invariants. To determine s and the sub-
spaces of � where the isometry group acts with orbits of the same dimension, one employs the
result of the following proposition.24

Proposition 2.1: Let a Lie group G act on X ,g is the corresponding Lie algebra and let x
�X. The vector space S�x=Span	Vi�x� �Vi�g
 spanned by all vector fields determined by the
infinitesimal generators at x coincides with the tangent space to the orbit Ox of G that passes
through x, so S�x=TOx�x. In particular, the dimension of Ox equals the dimension of S�x. Moreover,
the isotropy subgroup Gx�G has dimension dim G−dim Ox=r−s.

To illustrate the procedure, let us recall a well-known example.24

Example 2.1: Consider Q2�R2�-the vector space of quadratic homogeneous polynomials de-
fined over reals. The elements of Q2�R2� assume

Q�x,y� = a0x2 + 2a1xy + a2y2 �x,y� � R2. �7�

The �local� action of SL�2,R� on the parameter space ��R3 generated by a0 ,a1, and a2 is
represented by the vector fields

V− = 2a1�a0
+ a2�a1

,

V0 = 2a0�a0
− 2a2�a2

,
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V+ = a0�a1
+ 2a1�a2

, �8�

obtained via the standard technique of exponentiation, which can also be derived from the above
lemma. Observe that only two of the vector fields �8� are linearly independent, therefore there is
�almost everywhere� 3−2=1 fundamental invariant. Indeed, solving the system of PDEs �6� yields
the solution: I=F��1�, where �1=a0a2−a1

2. The group acts with orbits of two types: a0=a1=a2

=0, an orbit of dimension 0 and the level sets of �1 �i.e., �1=0 and �1�0�, both of which are
orbits of dimension 2.

Now let us briefly turn our attention to ITKT �for more details see the next section�. There the
underlying space is a pseudo-Riemannian manifold �M ,g� of constant curvature. The vector
spaces in question are the vector spaces of �generalized� Killing tensors. Our notations are con-
sistent with those introduced in Ref. 16. Thus, K0

n�M� denotes the vector space of generalized
contravariant Killing tensors of valence n and order zero �or, the standard Killing tensors� defined
on �M ,g�. The group acting on K0

n�M� is the isometry group I�M� of �M ,g�. Since Cayley’s
problem concerns binary forms it will be natural to investigate in this respect the Killing tensors
of arbitrary valence n defined in pseudo-Riemannian manifolds of dimension two, for example, the
Minkowski plane R1

2. Accordingly, the vector space that we shall study is K0
n�R1

2� ,n�1. A com-
parison of the two problems is given in Table I. Having made these observations, we are now in
the position to formulate an ITKT version of the problem considered by Cayley.3

Problem 2.1: Consider the action of I�R1
2� on K0

n�R1
2�. Determine a representation of the

corresponding Lie algebra i�R1
2� on the parameter space � of K0

n�R1
2� , n�2.

In Sec. III we establish the requisite language to be used for solving Problem 2.1 in Sec. IV.

III. INVARIANT THEORY OF KILLING TENSORS

Developed recently as an analog of CIT, the invariant theory of Killing tensors �ITKT� has
been first and foremost effectively employed in the study of those integrable and superintegrable
Hamiltonian systems12,16,17,19–21,28 for which the Killing tensors of valence two having normal
eigenvectors play a pivotal role. Other applications include classifications of Hamiltonian systems
admitting first integrals that are polynomials in the momenta determined by Killing tensors of
higher valences.13,18,29 In what follows, we briefly discuss the main features of the theory.

Let �M ,g� be an m-dimensional pseudo-Riemannian manifold of constant curvture.
Definition 3.1: A symmetric contravariant tensor K of valence n defined on �M ,g� is said to be

a generalized Killing tensor (GKT) of order p if and only if

��…�K,g�,g�,…g� = 0 �p + 1 brackets� , �9�

where �,� denotes the Schouten bracket.
It is easy to see, taking into the account the R-bilinear properties of the Schouten bracket, that

GKTs of the same valence and order constitute a vector space. We observe next that such a vector
space specified by the system of overdetermined PDEs �9� includes the subspace of the standard
Killing tensors of valence n defined on �M ,g� by the system of overdetermined PDEs

�K,g� = 0. �10�

Hence, we conclude that the GKTs of order zero are the standard Killing tensors �KTs�. Recall that
the concept of a generalized Killing tensor defined on the Minkowski space R1

m was introduced by

TABLE I. The settings for the corresponding problems in CIT and ITKT.

Theory
Vector
space Group

Dimension of
the space

Dimension
of the orbits

CIT Qn�R2� SL�2,R� n+1 �3
ITKT Kn�R1

2� I�R1
2� 1

2 �n+1��n+2� �3
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Nikitin and Prilipko22 �see also Appendix A of the monograph �Ref. 10�� as generalized symme-
tries of the Klein-Gordon-Fock equation. In addition, the authors determined the formulas for the
dimensions of the vector spaces of GKTs. Alternatively, these tensors have been independently
reintroduced in a more general setting by Eastwood6,7 within the framework of the study of
overdetermined systems of PDEs by the methods of representation theory. Thus, it has been
demonstrated that the vector space of the solutions of the overdetermined system of PDEs �9� is
preserved by the action induced by SL�m+1,R�. In this view the author defines such a vector
space as an irreducible representation of sl�m+1,R� �see also Ref. 15�, and then derives the
formula for the dimension of the vector space Kp

n�M� of the generalized Killing tensors of valence
n and order p defined on �M ,g�. Thus, the dimension d of the vector space Kp

n�M� , p�0 is
determined by the Nikitin-Prilipko-Eastwood (NPE) formula given by

d = dim Kp
n�M� =

p + 1

m
�n + m − 1

m − 1
��p + n + m

m − 1
� , �11�

where m=dim�M ,g�. We immediately recognize that for p=0 the formula �11� reduces to the
Delong-Takeuchi-Thompson (DTT) formula.5,31,32 In this view the elements of Kp

n�M� are specified
by d arbitrary parameters a0 ,… ,ad−1, where d is given by �11�.

Example 3.1: Consider the vector space K0
2�R1

2� of Killing tensors of valence two and order
zero defined in Minkowski plane. Solving the Killing tensor equation �10� in the pseudo-Cartesian
coordinates �t ,x� yields the general formula17,21

K = � a0 + 2a3x + a5x2 a1 + a3t + a4x + a5tx

a1 + a3t + a4x + a5tx a2 + 2a4t + a5t2 � . �12�

The arbitrary constants of integration a0 ,… ,a5 represent the dimension of the space K0
2�R1

2�.
Formula �12� is an ITKT analog of the general formula �7� in CIT. The three generators of the Lie
group I�R1

2� acting on R1
2 are given by �Killing vector fields�

T = �t, X = �x, H = x�t + t�x �13�

corresponding to translations and hyperbolic rotations, having the commutator relations

�T,X� = 0, �T,H� = X, �X,H� = T . �14�

We note that in the case of vector spaces of Killing tensors defined in R1
2, the generators �13�

are not connected via any nontrivial relations. This is also true for any other two-dimensional
pseudo-Riemannian manifold of constant curvature. In this view, for a fixed n�1 the dimension
of the corresponding vector space K0

n�R1
2� can be computed, for example, by employing the

well-known formula for the dimension of the space Symr�M� of symmetric �r ,0�-tensors defined
over an m-dimensional manifold:

dim Symr�M��m + r − 1

r
� . �15�

Now m=dim i�R1
2�=3 and r=n. Therefore we have from �15�

dim K0
n�R1

2� = 1
2 �n + 1��n + 2� . �16�

For spaces of higher dimensions the formula �16� is no longer valid due to the existence of
additional nontrivial relations among the generators of the Lie algebra of Killing vectors �i.e., the
“syzygy modules problem”5�. Note the formula �16� agrees with �11�. Indeed, �16� is a particular
case of �11� corresponding to p=0,m=2. Note that for a given vector space K0

n�M� ,n�1 defined
on �M ,g� the corresponding isometry group I�M� acts as an automorphism: I�M� :K0

n�M�
→K0

n�M�.
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This key observation led to the emergence of ITKT.16 More specifically, the isometry group
I�M� acting on M induces the corresponding transformation laws on the parameters a0 ,… ,ad−1 of
the vector space K0

n�M�:

ãi = ãi�a0,…,ad−1,g1,…,gr�, i = 0,…,d − 1, �17�

where g1 ,… ,gr are local coordinates on I�M� that parametrize the group, r=dim I�M�= 1
2m�m

+1� and d is given by �11�. The formulas �17�, which we obtain from the standard tensor trans-
formation laws for the elements of the vector space K0

n�M� represent the isometry group I�M�
action in the vector space.

Clearly, the transformation formulas �17� are analogu of the corresponding transformation
formulas in CIT �see, for example, �2��. It must be mentioned, however, that in the case of ITKT
they are computationally more difficult to obtain.

Definition 3.2: A smooth function I :�→R defined over the parameter space � of K0
n�M� is

said to be an I�M�-invariant of K0
n�M� if it satisfies the condition

I = F�a0,…,ad−1� = F�ã0,…, ãd−1� ,

under the transformation laws (17).
We remark that in a similar way the ITKT-analogues of the CIT-concepts of a covariant and

joint invariant have been introduced in Ref. 28. In complete analogy with CIT, we can in principle
determine the space of I�M�-invariants by employing the �Sophus Lie’s� method of infinitesimal
generators. To do so, one has to determine the �infinitesimal� action of I�M� in the corresponding
parameter space �.

We note that the procedure originally devised in McLenaghan et al.16 can be effectively
employed to derive the generators of the Lie algebra in � that is isomorphic to the Lie algebra
i�M� of I�M�. We briefly review the MST-procedure here.

Let 	X1 ,… ,Xr
 be the generators of the Lie algebra i�M� �Killing vector fields� of the Lie
group I�M�. Consider Diff �, that is the group of all diffeomorphisms on �, defining the corre-
sponding space Diff K0

n�M�, whose elements are determined by the elements of Diff � in an
obvious way.

Let K0�Diff K0
n�M�. Note K0 is determined by d parameters

ai
0 = ai

0�a0,…,ad−1�, i = 0,…,d − 1

which are functions of a0 ,… ,ad−1. Define now a map 	: Diff K0
n�M�→X��� given by

K0 → �
i=0

d−1

ai
0�a0,…,ad−1��ai

. �18�

To specify the action of I�M� in �, we have to find the counterparts of the generators X1 ,… ,Xr in
X���. Consider the composition 	 �L, where L is the Lie derivative operator. Let K be the general
Killing tensor of K0

n�M� �see, for example, �12��. Next define

Vi = 	 � LXi
K, i = 1,…r . �19�

The composition map

	 � L:i�M� → X���

maps the generators X1 ,… ,Xr to X���. Finally, we check that the vector fields Vi , i=1,… ,r
satisfy the same commutator relations as the original Xi , i=1,… ,r. This can be checked on a case
by case basis. We remark that this step is actually redundant, since it has been proven15 in general
that Killing tensors can be expressed as irreducible representations of GL�n ,R� so that the vector
fields �19� satisfy the same commutator relations as the original generators of i�M�. Thus, the Lie
algebra generated by �19� is isomorphic to the Lie algebra i�M� of the isometry group I�M� and we
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can use �19� to solve the problem of the determination of the I�M�-invariants of K0
n�M� by solving

the corresponding system of PDEs:

Vi�F� = 0, i = 1,…,r . �20�

The MST-procedure stated above is based on Lie derivative deformations of tensors �see, for
example, Ref. 27, which is an analog of the standard technique of exponentiation used in CIT to
determine corresponding infinitesimal gernerators. We also note that the generators �19� can be
alternatively determined from the parameter transformation laws �17�, representing the group
action in �, when the latter are available. It is, however, increasingly difficult, and often impos-
sible to determine �19� using �17� for vector spaces of Killing tensors of higher valence or defined
in pseudo-Riemannian manifolds of higher dimensions.

To illustrate the effectiveness of the MST procedure, let us consider the following
example.17,21,28

Example 3.2: Consider again K0
2�R1

2�, using �12�, �13�, �18�, and �19� we arrive at the corre-
sponding generators:

V1 = a3�a1
+ 2a4�a2

+ a5�a4
,

V2 = a4�a1
+ 2a3�a0

+ a5�a3
, �21�

V3 = − 2a1�a0
− a4�a3

− �a0 + a2��a1
− 2a1�a2

− a3�a4
.

It is easy to check that the Lie algebra generated by �21� is isomorphic to the Lie algebra i�R1
2�

=K0
1�R1

2� generated by �13�. We conclude therefore that the vector fields �21� represent the infini-
tesimal action of I�R1

2� in �. Our next observation is that the orbits of the I�R1
2�-action have

dimension three wherever the vector fields �21� are linearly independent. Therefore in that sub-
space of � we expect to derive 6−3=3 fundamental I�R1

2�-invariants.
Using the method of characteristics to solve the system �20� defined by the vector fields �21�,

we arrive at the following result:
Theorem 3.1: Any algebraic I�R1

2�-invariant I of the subspace of the parameter space � of
K0

2�R1
2� defined by the condition that the vector fields (21) are linearly independent can be (lo-

cally) uniquely expressed as an analytic function

I = F��1,�2,�3� , �22�

where the fundamental invariants �i , i=1, 2, 3 are given by

�1 = a5,

�2 = �a0 − a2�a5 − a3
2 + a4

2,

�3 = �a3
2 + a4

2 − a5�a0 + a2��2 − 4�a5a1 − a3a4�2. �23�

The fundamental I�R1
2�-invariant �3 presented above was first derived in Ref. 17 and 21 and

used to generate discrete-I�R1
2�-invariants, which were in turn employed to classify orthogonal

coordinate webs in the Minkowski plane R1
2. The same problem was solved in Ref. 28 by em-

ploying the I�R1
2�-invariants and covariants of K0

2�R1
2�.

IV. AN ITKT ANALOG OF CAYLEY’S LEMMA

In this section we solve Problem 2.1 presented in Sec. II. The vector space K0
n�R1

2� appears to
be a natural counterpart of the vector space Qn�R2� in CIT. To proceed, we need to first derive a
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general formula for the elements of K0
n�R1

2� �i.e., an analog of �1��. Note each K�K0
n�R1

2� is
determined by the �n+1��n+2� /2 parameters that appear in the n+1 components of the form

Ki1¯ipj1¯jn−p, �24�

where i1= ¯ = ip=1, j1= ¯ = jn−p=2, p=0,… ,n.
To derive the formulas for the components �24�, we solve the Killing tensor equation �10� in

pseudo-Cartesian coordinates �t ,x�, which reduces to the following system of PDEs:

�tK
i1¯in = 0, �xK

j1¯jn = 0,

�n − p + 1��xK
i1¯ipj1¯jn−p = p�tK

i1¯ip−1j1¯jn−p+1, �25�

where p=0,… ,n. As a consequence of �25�, we readily obtain the necessary differential condi-
tions:

�x
p+1Ki1¯ipj1¯jn−p = 0,

�26�
�t

n−p+1Ki1¯ipj1¯jn−p = 0.

Solving the PDEs �25� and �26� we arrive at the following general formulas for the compo-
nents �the parameters in the formulas are constants of integration�:

Ki1¯ipj1¯jn−p = ��
i=0

n−p �n − p

i
�ti�

j=0

p �p

j
�apijx

j� if n � p � n + 1

2
�

�
i=0

p �p

i
�xi�

j=0

n−p �n − p

j
�bpijt

j� if 0 � p � n + 1

2
� � , �27�

where the parameters apij ,bpij are to be determined �at this stage they are inserted for mere
convenience�. We immediately recognize that the formula �27� is the ITKT analog of the general
formula �1� exhibited in Sec. II. The parameters apij ,bpij can be determined by following the
general procedure of solving the system of PDEs �25�. We consider separately two cases: n is even
and n is odd.

The parameters of each of the n+1 components can be organized into groups in such a way
that the parameters of one group are completely determined by the parameters of the other �see the
illustrative examples to follow�. After relabeling the parameters, we obtain the following two
schemes �corresponding to n=2k and n=2k+1, respectively�, which specify the arrangements of
the parameters of the first groups of the components. Once they are specified, the parameters of the
other groups can be determined accordingly.

Case 1: n=2k

Step 1: a0
1 a1

1
¯ an−2

1 an−1
1 an

1,

b0
1 b1

1
¯ bn−2

1 bn−1
1 an

1;

Step 2: a0
2 a1

2
¯ an−3

2 an−2
2 bn−1

1 ,

b0
2 b1

2
¯ bn−3

2 an−2
2 an−1

1 ;

]

Step
n

2
: a0

n/2 a1
n/2 a2

n/2 b1
�n−2�/2

¯ b�n+2�/2
1 ,

b0
n/2 b1

n/2 a2
n/2 a1

�n−2�/2
¯ a�n+2�/2

1 ;

Step �n + 2�/2: a0
�n+2�/2 b1

n/2 b2
�n−2�/2 b3

�n−4�/2
¯ bn/2

1 .

�28�

Case 2: n=2k+1
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Step 1: a0
1 a1

1
¯ an−2

1 an−1
1 an

1,

b0
1 b1

1
¯ bn−2

1 bn−1
1 an

1;

Step 2: a0
2 a1

2
¯ an−3

2 an−2
2 bn−1

1 ,

b0
2 b1

2
¯ bn−3

2 an−2
2 an−1

1 .

]

Step �n − 1�/2: a0
�n−1�/2 a1

�n−1�/2 a2
�n−1�/2 a3

�n−1�/2
¯ b�n+3�/2

1 ,

b0
�n−1�/2 b1

�n−1�/2 b2
�n−1�/2 a3

�n−1�/2
¯ a�n+3�/2

1 ;

Step �n + 1�/2: a0
�n+1�/2 a1

�n+1�/2 b2
�n−1�/2 b3

�n−3�/2
¯ b�n+1�/2

1 ,

b0
�n+1�/2 a1

�n+1�/2 a2
�n−1�/2 a3

�n−3�/2
¯ a�n+1�/2

1 .

�29�

The parameters that appear in the general solution to �27� are now organized in two schemes
according the cases of n being even �28� and odd �29� respectively.

More specifically, given 2�n+1�−1 parameters

a0
1,…,an−1

1 ,an
1, b0

1,…,bn−1
1 ,an

1

we write down the first and the last components of K�Kn�R1
2�:

K11¯11 = a0
1 + �n

1
�a1

1x + �n

2
�a2

1x2 + ¯ + � n

n − 1
�an−1

1 xn−1 + an
1xn� ,

K22¯22 = b0
1 + �n

1
�b1

1t + �n

2
�b2

1t2 + ¯ + � n

n − 1
�bn−1

1 tn−1 + an
1tn� .

Next, for 2�n−1�−1 new parameters

a0
2,…,an−3

2 ,an−2
2 ;b0

2,…,bn−3
2 ,an−2

2

we then have the second and penultimate components of K �see �27��, each of which is the sum of
two polynomials, the first having been determined by the newly specified parameters and the other
by the parameters determined previously,

K11¯12 = a0
2 + �n − 1

1
�a1

2x + ¯ + �n − 1

n − 2
�an−2

2 xn−2 + bn−1
1 xn−1�

+ ta1
1 + �n − 1

1
�a2

1x + ¯ + �n − 1

n − 2
�an−1

1 xn−2 + an
1xn−1� ,

K22¯21 = b0
2 + �n − 1

1
�b1

2t + ¯ + �n − 1

n − 2
�an−2

2 tn−2 + an−1
1 tn−1�

+ xb1
1 + �n − 1

1
�b2

1t + ¯ + �n − 1

n − 2
�bn−1

1 tn−2 + an
1tn−1� .

To clarify the process more, let us consider the next step �if any�. Thus, given 2�n−3�−1 new
parameters

a0
3,…,an−5

3 ,an−4
3 ;b0

3,…,bn−5
3 ,an−4

3

we write down the next two components:
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K11¯122 = a0
3 + �n − 2

1
�a1

3x + ¯ + �n − 2

n − 4
�an−4

3 xn−4 + �n − 2

n − 3
�bn−3

2 xn−3 + bn−2
1 xn−2�

+ 2ta1
2 + �n − 2

1
�a2

2x + ¯ + �n − 2

n − 4
�an−3

2 xn−4 + �n − 2

n − 3
�an−2

2 xn−3 + bn−1
1 xn−2�

+ t2a2
1 + �n − 2

1
�a3

1x + ¯ + �n − 2

n − 4
�an−2

1 xn−4 + �n − 2

n − 3
�an−1

1 xn−3 + an
1xn−2� ,

K22¯211 = b0
3 + �n − 2

1
�b1

3t + ¯ + �n − 2

n − 4
�an−4

3 tn−4 + �n − 2

n − 3
�an−3

2 tn−3 + an−2
1 tn−2�

+ 2xb1
2 + �n − 2

1
�b2

2t + ¯ + �n − 2

n − 4
�bn−3

2 tn−4 + �n − 2

n − 3
�an−2

2 tn−3 + an−1
1 tn−2�

+ x2b2
1 + �n − 2

1
�b3

1t + ¯ + �n − 2

n − 4
�bn−2

1 tn−4 + �n − 2

n − 3
�bn−1

1 tn−3 + an
1tn−2� .

We continue this process in both directions �i.e., going “downwards” and “upwards”� until it is
terminated in the middle of �27�. In this view, counting the steps in both cases, it is easy to see that
the dimension of the space d=dim K0

n�R1
2�= 1

2 �n+1��n+2� ,n�1 gets decomposed as follows.

d = ��2�n + 1� − 1� + �2�n − 1� − 1� + ¯ + �2 
 1 − 1� if n is even

�2�n + 1� − 1� + �2�n − 1� − 1� + ¯ + �2 
 2 − 1� if n is odd
� . �30�

The auxiliary problem of finding the general form for the elements K�K0
n�R1

2� is therefore
completely solved.

We immediately notice that the general solution �12� can be relabeled following the scheme
�28� as follows:

K = � a0
1 + 2a1

1x + a2
1x2 �a0

2 + b1
1x� + t�a1

1 + a2
1x�

�a0
2 + b1

1x� + t�a1
1 + a2

1x� b0
1 + 2b1

1t + a2
1t2 � . �31�

To illustrate our results, consider more examples.
Example 4.1: K0

4�R1
2�. Note d=dim K0

4�R1
2�=15. Following the formula �27� and the coeffi-

cient scheme �29�,

K1111 = a0
1 + 4a1

1x + 6a2
1x2 + 4a3

1x3 + a4
1x4,

K1112 = �a0
2 + 3a1

2x + 3a2
2x2 + b3

1x3� + t�a1
1 + 3a2

1x + 3a3
1x2 + a4

1x3� ,

K1122 = �a0
3 + 2b1

2x + b2
1x2� + 2t�a1

2 + 2a2
2x + b3

1x2� + t2�a2
1 + 2a3

1x + a4
1x2� , �32�

K1222 = �b0
2 + 3b1

2t + 3a2
2t2 + a3

1t3� + x�b1
1 + 3b2

1t + 3b3
1t2 + a4

1t3� ,

K2222 = b0
1 + 4b1

1t + 6b2
1t2 + 4b3

1t3 + a4
1t4.

Example 4.2: K5�R1
2�. d=dim K0

5�R1
2�=21.

K11111 = a0
1 + 5a1

1x + 10a2
1x2 + 10a3

1x3 + 5a4
1x4 + a5

1x5,

K11112 = �a0
2 + 4a1

2x + 6a2
2x2 + 4a3

2x3 + b4
1x4� + t�a1

1 + 4a2
1x + 6a3

1x2 + 4a4
1x3 + a5

1x4� ,
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K11122 = �a0
3 + 3a1

3x + 3b2
2x2 + b3

1x3� + 2t�a1
2 + 3a2

2x + 3a3
2x2 + b4

1x3� + t2�a2
1 + 3a3

1x + 3a4
1x2 + a5

1x3� ,

K11222 = �b0
3 + 3a1

3t + 3a2
2t2 + a3

1t3� + 2x�b1
2 + 3b2

2t + 3a3
2t2 + a4

1x3� + x2�b2
1 + 3b3

1t + 3b4
1t2 + a5

1t3� ,

K12222 = �b0
2 + 4b1

2t + 6b2
2t2 + 4a3

2t3 + a4
1t4� + x�b1

1 + 4b2
1t + 6b3

1t2 + 4b4
1t3 + a5

1t4� ,

�33�
K22222 = b0

1 + 5b1
1t + 10b2

1t2 + 10b3
1t3 + 5b4

1t4 + a5
1t5.

In principle, following the parameter scheme given above, i.e., using formulas �27�–�29�, one
can now write down explicitly the general form of the elements of K0

n�R1
2� for an arbitrary n easily.

To solve Problem 2.1, we employ the MST-procedure16 outlined in the previous section.
Using the formulas �19� and �27�–�29�, we obtain the general formulas for the vector fields

representing the infinitesimal action of the isometry group I�R1
2� on the parameter space. As above,

we have two cases corresponding to �28� and �29�, respectively.
Case 1: n=2k

V1=

a1
1�a0

2 + a2
1�a1

2 + ¯ + an−1
1 �an−2

2

+ 2a1
2�a0

3 + 2a2
2�a1

3 + ¯ + 2an−3
2 �an−4

3

]

+
n

2
a1

n
2 �a0

�n+2�/2

+
n + 2

2
b1

n/2�b0
n/2 +

n

2
a2

n/2�b1
n/2

]

+ �n − 1�b1
2�b0

2 + �n − 2�b2
2�b1

2 + ¯ 2bn−2
2 �bn−3

2

+ nb1
1�b0

1 + �n − 1�b2
1�b1

1 + ¯ + an
1�bn−1

1 ;

�34�

V2=

b1
1�b0

2 + b2
1�b1

2 + ¯ + bn−1
1 �an−2

2

+ 2b1
2�b0

3 + 2b2
2�b1

3 + ¯ + 2bn−3
2 �an−4

3

]

+
n

2
b1

n
2 �a0

�n+2�/2

+
n + 2

2
a1

n/2�a0
n/2 +

n

2
a2

n/2�a1
n/2

]

+ �n − 1�a1
2�a0

2 + �n − 2�A2
2�a1

2 + ¯ + 2an−2
2 �an−3

2

+ na1
1�a0

1 + �n − 1�a2
1�a1

1 + ¯ + an
1�an−1

1 ;

�35�
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V3=

− na0
2�a0

1 − �n − 1�a1
2�a1

1 − ¯ − 2an−2
2 �an−2

1 − bn−1
1 �an−1

1

− ��n − 1�a0
3 + a0

1��a0
2 − ¯ − �2bn−3

2 + an−3
1 ��an−3

2

]

−
n

2
�a0

n
2 + b0

n
2 ��ao

�n+2�/2 − ¯ − �an−2
1 + bn−2

1 ��an−2
2

]

− ��n − 1�b0
3 + b0

1��b0
2 − ¯ − �2an−3

2 + bn−3
1 ��bn−3

2

− nb0
2�b0

1 − �n − 1�b1
2�b1

1 − ¯ − 2an−2
2 �bn−2

1 − an−1
1 �bn−1

1 .

�36�

Case 2: n=2k+1

V1=

a1
1�a0

2 + a2
1�a1

2 + ¯ + an−1
1 �an−2

2

+ 2a1
2�a0

3 + 2a2
2�a1

3 + ¯ + 2an−3
2 �an−4

3

]

+
n + 1

2
a1

�n+1�/2�b0
�n+1�/2

+
n + 3

2
b1

�n−1�/2�b0
�n−1�/2 +

n + 1

2
b1

�n−1�/2�b1
�n−1�/2 +

n − 1

2
a3

�n−1�/2�b2
�n−1�/2

]

+ �n − 1�b1
2�b0

2 + �n − 2�b2
2�b1

2 + ¯ 2an−2
2 �bn−3

2

+ nb1
1�b0

1 + �n − 1�b2
1�b1

1 + ¯ + 2bn−1
1 �bn−2

1 + an
1�bn−1

1 ;

�37�

V2=

b1
1�b0

2 + b2
1�b1

2 + ¯ + bn−1
1 �an−2

2

+ 2b1
2�b0

3 + 2b2�b1
3 + ¯ + 2bn−3

2 �an−4
3

]

+
n + 1

2
a1

�n+1�/2�a0
�n+1�/2

+
n + 3

2
a1

�n−1�/2�a0
�n−1�/2 +

n + 1

2
a2

�n+1�/2�b1
�n−1�/2 +

n − 1

2
a3

�n−1�/2�a2
�n−1�/2

]

+ �n − 1�a1
2�a0

2 + �n − 2�a2
2�a1

2 + ¯ + 2an−2
2 �an−3

2

+ na1
1�a0

1 + �n − 1�a2
1�a1

1 + ¯ + 2an−1
1 �an−2

1 + an
1�an−1

1 ;

�38�
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V3=

− na0
2�a0

1 − �n − 1�a1
2�a1

1 − ¯ 2an−2
2 �an−2

1 − bn−1
1 �an−1

1

− ��n − 1�a0
3 + a0

1��a0
2 − ¯ − �2bn−3

2 + an−3
1 ��an−3

2

]

− n + 1

2
b0

n+1
2 +

n − 1

2
a0

n−1
2 ��a0

�n+1�/2

−
n − 1

2
�a1

n−1
2 + b1

n−1
2 ��a

1

n+1
2 − ¯ − �an−2

1 + bn−2
1 ��an−2

2

− n + 1

2
a0

n+1
2 +

n − 1

2
b0

n−1
2 ��b

0

�n+1�
2

]

− ��n − 1�b0
3 + b0

1��b0
2 − ¯ − �2an−3

2 + bn−3
1 ��bn−3

2

− nb0
2�b0

1 − �n − 1�b1
2�b1

1 − ¯ − 2an−2
2 �bn−2

1 − an−1
1 �bn−1

1 .

�39�

We remark that in both cases the vector fields V1 ,V2, and V3 correspond to the generators
T ,X, and H given by �13�, respectively. Moreover, it is easy to verify directly that the vector fields
−V1 ,−V2, and −V3 satisfy the same commutator relations �14� as T ,X, and H. We conclude
therefore that Vi , i=1, 2, 3 represent the infinitesimal action of the isometry group I�R1

2� on the
parameter space � defined by K0

n�R1
2� for each n�1 and we have proven an ITKT analog of

Lemma 2.1 of Cayley:3

Theorem 4.1: The action of the isometry group I�R1
2� on the vector space K0

n�R1
2� has the

infinitesimal generators (34)–(36) when n is even and (37)–(39) when n is odd.
Example 4.3: K0

4�R1
2�. Using Theorem 4.1,

V1 = a1
1�a0

2 + a2
1�a1

2 + a3
1�a2

2 + 2a1
2�a0

3 + 3b1
2�b0

2 + 2a2
2�b1

2 + 4b1
1�b0

1 + 3b2
1�b1

1 + 2b3
1�b2

1 + a4
1�b3

1,

�40�

V2 = b1
1�b0

2 + b2
1�b1

2 + b3
1�a2

2 + 2b1
2�a0

3 + 3a1
2�a0

2 + 2a2
2�a1

2 + 4a1
1�b0

1 + 3a2
1�b1

1 + 2a3
1�b2

1 + a4
1�a3

1,

�41�

V3 = − 4a0
2�a0

1 − 3a1
2�a1

1 − 2a2
2�a2

1 − b3
1�a3

1 − �3a0
3 + a0

1��a0
2 − �2b1

2 + a1
1��a1

2 − 2�a0
2 + b0

2��a0
3 − �a2

1 + b2
1��a2

2

− �3a0
3 + b0

1��b0
2 − �2a1

2 + b1
1��b1

2 − 4b0
2�b0

1 − 3b1
2�b1

1 − 2a2
2�b2

1 − a3
1�b3

1. �42�

Example 4.4: K0
5�R1

2�. Using again Theorem 4.1,

V1 = a1
1�a0

2 + a2
1�a1

2 + a3
1�a2

2 + a4
1�a3

2 + 2a1
2�a0

3 + 2a2
2�a1

3 + 3a1
3�b0

3 + 4b1
2�b0

2 + 3b2
2�b1

2 + 2a3
2�b2

2 + 5b1
1�b0

1

+ 4b2
1�b1

1 + 3b3
1�b2

1 + 2b4
1�b3

1 + a5
1�b4

1, �43�

V2 = b1
1�b0

2 + b2
1�b1

2 + b3
1�b2

2 + b4
1�a3

2 + 2b1
2�b0

3 + 2a2
2�a1

3 + 3a1
3�a0

3 + 4a1
2�a0

2 + 3a2
2�a1

2 + 2a3
2�a2

2 + 5a1
1�a0

1

+ 4a2
1�a1

1 + 3a3
1�a2

1 + 2a4
1�a3

1 + a5
1�a4

1, �44�
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V3 = − 5a0
2�a0

1 − 4a1
2�a1

1 − 3a2
2�a2

1 − 2a3
2�a3

1 − b4
1�a4

1 − �4a0
3 + a0

1��a0
2 − �3a1

3 + a1
1��a1

2 − �2b2
2 + a2

1��a2
2

− �3b0
3 + 2a0

2��a0
3 − 2�b1

2 + a1
2��a1

3 − �a3
1 + b3

1��a3
2 − �3a0

3 + 2b0
2��b0

3 − �4b0
3 + b0

1��b0
2 − �3a1

3 + b1
1��b1

2

− �2a2
2 + b2

1��b2
2 − 5b0

2�b0
1 − 4b1

2�b1
1 − 3b2

2�b2
1 − 2a3

2�b3
1 − a4

1�b4
1. �45�

Using the result of Theorem 4.1 one can compute the I�R1
2�-invariants:

Theorem 4.2: Any function I :�→R is an I�R1
2�-invariant of K0

n�R1
2� if and only if it satisfies

the infinitesimal invariance criteria

Vi�I� = 0, i = 1,2,3, �46�

where � is the parameter space and Vi , i=1, 2, 3 are given in Theorem 4.1.
Corollary 4.1: The parameter an

1 [refer to the formulas �28� and �29� when n is even and odd,
respectively] is a fundamental I�R1

2�-invariant of K0
n�R1

2�.
In view of Theorem 4.2 the problem of the determination of the space of I�R1

2�-invariants
reduces to solving the system of linear PDEs resulting from the vector fields in Theorem 4.1. For
larger values of n the problem becomes very challenging computationally. The method of char-
acteristics may fail, in which case one can employ the method of undetermined coefficients in
conjuncture with the result of the fundameatal theorem on invariants of a regular Lie group action
�Theorem 2.1�, as well as computer algebra. This technique was used with a remarkable success in
Horwood et al.12 to solve the problem of the determination of the space of I�R3�-invariants of
K0

2�R3�, where R3 denotes the Euclidean space.
Theorem 4.1 also entails the corresponding criteria for I�R1

2�-covariants �see Ref. 28 for more
details� of K0

n�R1
2�.

Theorem 4.3: Let K0
n�R1

2� be the vector space of Killing tensors of valence n defined in the
Minkowski plane R1

2. A function C :�
R1
2→R is an I�R1

2�-covariant of Kn�R1
2� if and only if it

satisfies the infinitesimal invariance conditions

�V1 + T��C� = 0,

�V2 + X��C� = 0, �47�

�V3 + H��C� = 0,

where � is the parameter space, T ,X, and H are given in �13� and Vi , i=1, 2, 3 are specified in
Theorem 4.1.

V. CONCLUSIONS

In this article we have formulated and proven an ITKT analog of Cayley’s Lemma in CIT. A
similar result for the vector space K0

n�R2� ,n�1 �where R2 denotes the Euclidean plane� can be
obtained mutatis mutandis. A more challenging problem is to extend the result to two-dimensional
spaces of nonzero curvature, namely when the underlying manifold is S2 �two-sphere� or H2

�hyperbolic plane�. The work in this direction is under way.1,2,26

In a forthcoming article30 we will present a natural continuation of the project initiated here,
namely the determination of all fundamental invariants of vector spaces of Killing tensors of
arbitrary valence defined in the Minkowski plane, employing the inductive version of the moving
frames method.14
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Summation formulas are obtained for products of associated Lagurre polynomials
by means of the Green’s function K for the Hamiltonian H0=−d2 /dx2+x2+Ax−2

�A�0�. K is constructed by an application of a Mercer-type theorem that arises in
connection with integral equations. The approach introduced in this paper may be
useful for the construction of wider classes of generating function. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.1952581�

I. INTRODUCTION AND MAIN RESULTS

Since the early development of quantum mechanics, highly singular potentials have attracted
much attention. Two main reasons for this are �1� regular perturbation theory can fail badly for
such potentials, and �2� in physics one often encounters phenomenological potentials that are
strongly singular at the origin such as certain types of nucleon-nucleon interaction, and singular
models of fields in arbitrary dimensions. A specific family of singular quantum Hamiltonians
known as generalized harmonic oscillators given by

H��� = H0 +
�

x� = −
d2

dx2 + x2 +
A

x2 +
�

x� �A � 0,� � 0,� � 0� �1.1�

and acting in the Hilbert space L2�0,�� have been subject to intensive investigation recently. For
a background and brief history of these problems we refer the reader to the summary in Ref. 1. We
have shown1,2 that the set of eigenfunctions of H0=H�0�, namely

�n�x� � �− 1�n� 2���n

n!����
x�−1/2e−x2/2

1F1�− n;�;x2� with � � 1 +
1

2
�1 + 4A �n = 0,1,2,…� ,

�1.2�

constitutes an orthonormal basis for the Hilbert space L2�0,��. Here 1F1 stands for the confluent
hypergeometric function defined in terms of the associated Laguerre polynomials Ln

�−1�z� by

1F1�− n;�;z� =
n!

���n
Ln

�−1�z� . �1.3�

This basis has proven to be useful in providing a complete variational study1–5 of the spectrum of
H��� for arbitrary fixed A�0, and �, ��0. The advantage over earlier studies in the Hermite
basis A=0 was that for A�0 the H0 basis itself derives from a singular problem with the term
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A /x2. In the present paper. we explore another aspect of this basis. We shall prove that the
eigenfunctions �n�x� satisfy the following identity:

�
n=0

�
�n�x��n�y�

4n + 2�
= �w�x�v�y� for 0 	 y 	 x ,

v�x�w�y� for 0 	 x 	 y .
�1.4�

where

w�x�v�y� = 2−1�xyK
	 x2

2

I
	 y2

2

, where 
 = 1

2 �� − 1� .

In particular, we have, for x=y, that

�
n=0

� ��n�x��2

4n + 2�
= 2−1xK
	 x2

2

I
	 x2

2

 . �1.5�

Here I
�x� and K
�x� are modified Bessel functions of the first and second kind, respectively. There
are direct applications for these identities. An obvious application is that it can been seen as
complimentary identity for Watson’s famous result6 �see also, Ref. 7, p. 140, formula 14�,

�
n=0

�
���n

n!�1 + n� 1F1�− n;�;x�1F1�− n;�;y� = 1F1�1;�;y�	��� − 1�x1−�ex −
1

� − 1 1F1�1;�;x�
 ,

�1.6�

valid for x�y�0. Second, it can be used in theory of coherent states to provide, for example,
normalization factors of class of coherent states labeled by confluent hypergeometric functions.
Third, there are standard techniques known for generating closed form sums for products of
hypergeometric functions and related polynomials, such as Laguerre polynomials. Srivastava et
al.8–10 have discussed many different techniques that can be used for such purposes. It is note-
worthy that the use of a kernel of a differential equation and a Mercer-type theorem is not an idea
that has been well explored in this context. It is our goal in the present paper to show the
usefulness of this approach to the construction of generating functions.

In order to prove our main results, we organize the paper as follows. In Sec. II, we introduce
two linearly independent solutions of the second-order homogeneous differential equation H0u
= �−�d2 /dx2�+ �x2+Ax−2��u=0. In Sec. III, we construct the Green’s function of H0 and study some
of its properties. The majorization of the Kernel operator K�x ,y� is investigated in Sec. IV. In Sec.
V, we introduce and prove a Mercer-type theorem that allows us to conclude the absolute and
uniform convergence of the kernel K�x ,y� on the Hilbert space L2�0,��, and consequently prove
our main results, Theorem 1 and Theorem 2, from which formulas �1.4� and �1.5� follow imme-
diately.

II. SECOND-ORDER DIFFERENTIAL EQUATION AND ITS SOLUTIONS

If we set u�ż�=z���z� with z= 1
2x2, we can easily show H0u=0 reduces to

d2�

dz2 +
�2� + 1

2�
z

d�

dz
− �1 +

4��� − 1
2� − A

4z2 ��z� = 0. �2.1�

If we adjust � so that ��z� satifies the modified Bessel function

d2�

dz2 + z−1d�

dz
− �
2z−2 + 1���z� = 0,

we obtain, for �= 1
4 and 
= 1

4
�1+4A, and from the basis ��xI
�x2 /2� ,�xK
�x2 /2��, the two linearly

independent solutions
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v�x� = B�xI
	 x2

2

, w�x� = C�xK
	 x2

2

 , �2.2�

where B and C are constants to be determined. We note that, the Wronskian of I
�z� and K
�z�
satisfies �Ref. 6, p. 80, formula �90��

I
�z�K
��z� − I
��z�K
�z� = − z−1,

which equation we divide by I

2�z� and thereby obtain the derivative of the quotient �K
 / I
��z�,

namely

	K


I


�

�z� = z−1I 

−2�z� .

We integrate this expression from z to � �using the properties K
���=0 and I
���=�� and thus we
arrive at

	K


I


�z� = �

z

� 1

�I

2���

d�. �2.3�

On the other hand, we make the replacements z=x2 /2, K
�x2 /2�=C−1x−1/2w�x�, and I
�x2 /2�
=B−1x−1/2v�x� in the immediately preceding formula, and find

K
�x2/2�
I
�x2/2�

=
B

C
�

�x�
v�x�

= �
x2/2

� 1

�I

2���

d� ,

where in the last integral we make the substitution I
���=B−1�2��−1/4v��2�� thereby giving us

B

C
�

w�x�
v�x�

= �
�=x2/2

�

�−1� v��2��

B��2��
−2

d� = 2B2�
�=x2/2

� 1

2�v2��2���2��−1/2
d� = 2B2�

r=x

� 1

v2�r�
dr .

The last integral expression was obtained via the substitution r=�2�. Equating the first expression
with the last in the above equations leads to

w�x�
v�x�

= 2BC�
r=x

� 1

v2�r�
dr or equivalently w�x� = 2BCv�x��

r=x

� 1

v2�r�
dr . �2.4�

However, reduction of the order of the original differential equation implies that

v�x��
r=x

� 1

v2�r�
dr

is the other solution of H0u=0, independent of v�x�, which result lets us conclude that 2BC=1 or
BC=1/2.

III. MAPPING PROPERTIES OF THE GREEN’S FUNCTION IN L2„0,�…

For the operator

H0 = −
d2

dx2 + �x2 + Ax−2� , �3.1�

the linear space D�H0�, consisting of all functions u�C2�0,���C�0,�� with u�0�=0, becomes a
normed linear space by setting �u���sup�u��0,����. For the Green’s function of the linear trans-
formation H0 :D�H0��C�0,��, we now formulate a well-known result from the theory of ordi-
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nary differential equations, which may be easily arrived at from the properties of Green’s function
as stated in Refs. 11–13.

Lemma 1: The differential operator H0 maps D�H0� bijectively onto C�0,�� by means of
H0

−1 : f �u, where

�H0
−1�f�x� = u�x� � w�x��

�=0

x

v���f���d� + v�x��
�=x

�

w���f���d� , �3.2�

with �H0
−1f��	4A−1/2�f��.

Proof: The boundedness of H0
−1 is simply a consequence of the inequality

v�x��
�=x

�

�v����−2 d� 	
�2

a
�v�x��−1, �3.3�

where a��4 A, the value of x where the potential qA�x�=x2+Ax−2 assumes its minimum. Indeed,
since the function qA�x� assumes its minimum value qA��4 A�=2�A=2a2 at the point x=a��4 A, we
note that

v�x� = v�x�� + �x − x��v��x�� + �
�=x�

x

�x − ��qA���v���d� for 0 	 x� 	 x ,

and from this directly deduce

v�x� � v�x�� + 2a2�
�=x�

x

�x − ��v���d� for 0 	 x� 	 x .

By substituting v����v�x��+2a2��=x�
� ��−��v���d� into the previous integral inequality, we fur-

ther arrive at

v�x� � �1 +
1

2!
2a2�x − x��2�v�x�� +

1

3!
�2a2�2�

�=x�

x

�x − ��3v���d� for 0 	 x� 	 x .

Iterating this procedure leads to v�x��v�x��cosh �2a�x−x�� for x�x��0. In particular

v�x� � 2−1 exp��2a�x − x���v�x�� for x � x� and v�x� � 2−1 exp��2a�x − a��v�a� for x � a ,

which can also be written in the form v�x��	2 exp�−�2a�x−x���v�x� for x�x��0 and this in
turn leads to

�
�=a

x

v���d� 	
�2

a
v�x� .

This result is also evident from the integration of the inequality v���	2 exp�−�2a�x−���v�x� with
respect to � on the interval �a ,x�. As a result of v����2−1 exp��2a��−x��v�x� for all ��x, or by
means of �v����−2	4 exp�2�2a�x−����v�x��−2, leads to the inequality

�
�=x

�

�v����−2 d� 	 4�
�=x

�

exp�2�2a�x − ���d� � �v�x��−2 	
�2

a
�v�x��−2,

which proves �3.3�. The injective nature of H0
−1 :C�0,��→D�H0� is demonstrated as follows. Let

u�x� be a solution of H0u=0 with u�0�=0, whence u�x�=B�x�+Cv�x�. On account of the
asymptotic behavior of w�x� and v�x� as x→0+, namely w�x� and v�x�→� and 0, respectively, as
x→0+, combined with �u���� leads to B=0, that is to say u�x�=Cv�x�; however, the asymptotic
behavior of v�x�, namely
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v�x� =
1

��x
ex2/2�1 + O�x2��

as x→�, implies that C=0. Thus H0 :D�H0�→C�0,�� is bijective. This completes the proof.�
We have therefore that the Green’s function K�x ,y� of the differential operator H0 :D�H0�

→C�0,��, which permits us to write the action of H0
−1 in terms of integration on �0,��, has the

integral representation

H0
−1f�x� = �

0

�

K�x,y�f�y�dy , �3.4�

where

K�x,y� = �w�x�v�y� for 0 	 y 	 x ,

v�x�w�y� for 0 	 x 	 y .
�3.5�

It thus becomes evident that the kernel K�x ,y� is a continuous non-negative function on �0,��
� �0,�� because, for 
= 1

2 ��−1�= 1
4
�1+4A, �xI
�x2 /2� and �xK
�x2 /2� are continuous on �0, ��

and �0, ��, respectively, and, furthermore, both are positive on �0, ��. Thus K�x ,y� is continuous
on �0,��� �0,�� \ ��0,0��.

For the continuity at �0,0� we again turn to the asymptotic behavior of w�x� and v�x� as x
→0+. In the lower sector ��x ,y� :0	arctg�y /x�	� /4� of the first quadrant of the �x ,y� plane, we
have that

K�x,y� = w�x�v�y� =
1

4�

x1/2−2
�1 + O�x���y1/2+2
�1 + O�y4��

=
1

4�

�xy�1/2�y/x�2
�1 + O�y4���1 + O�x��� → 0 as�x,y� → �0,0� ,

because in this sector �y /x�	1. Consequently, K�x ,y� is continuous in the lower sector ��x ,y� :0
	arctg�y /x�	� /4�, whereas the symmetry of K�x ,y�, i.e. K�x ,y�=K�y ,x�, guarantees the conti-
nuity in upper sector ��x ,y� :� /4	arctg�y /x�	� /2� of the first quadrant of the �x ,y� plane.

We know further that H0u�−d2u /dx2+ �x2+Ax−2�u=0 �A�0� is a symmetric lower semi-
bounded operator in the Hilbert space L2�0,�� with domain of definition consisting of all L2�0,��
functions u vanishing at 0, having absolutely continuous derivative u��L2�0,��, on �0, �� such
that �x2+Ax−2�u�x� is also an L2�0,�� function in x. Since the linear manifold C0

��0,��, of all
complex valued infinitely differentiable function on �0, �� with compact support, lies dense in this
domain of definition of H0 as well as in L2�0,��, we readily conclude that the domain of definition
of H0 is also a dense subset of L2�0,��. Thus H0 possesses a Friedrichs’ extension, which exten-
sion we again denote by H0, and this extension �Ref. 14, Secs. 7.2–7.3 and Ref. 15, p. 335� is a
self-adjoint operator in L2�0,��. For H0�n=En�n and because the orthonormalized set of eigen-
functions �1.2� with corresponding eigenvalues En=4n+2�=4n+2+�1+4A of H0 forms1 a com-
plete orthonormal set of functions of the Hilbert space L2�0,��, we shall have that the spectrum of
this Friedrichs’ extension H0 is a purely point-spectrum, consisting only of the simple eigenvalues
En=4n+2�=4n+2+�1+4A. Thus the spectral family �P� :��R� of H0, which is an “increasing”
projection-operator valued Saltus function on the set R of real numbers �Ref. 17, p. 92 and Ref.
15, Chap. I, Sec. 7�, is
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P� ��
0 for − � � � � 2� ,

�0��0 for 4�0� + 2� 	 � � 4�1� + 2� ,

�0��0 + �1��1 for 4�1� + 2� 	 � � 4�2� + 2� ,

�0��0 + �1��1 + �2��2 for 4�2� + 2� 	 � � 4�3� + 2� ,

¯ ,

�
k=0

n−1

�k��k for 4�n − 1� + 2� 	 � � 4�n� + 2� ,

¯ .

�3.6�

For any two L2�0,�� functions � and �, the expression ��� denotes the operator of rank 1
defined by

�����f�x� � �f �����x� = ��
�=0

�

f�������d� � ��x� = �
�=0

�

������x,��f���d� , �3.7�

with L2 kernel ������x ,y����x���y� on L2�0,��, which in our case turns out to be an integral
operator. It is further clear that the spectral family �P� :��R� is increasing in �, i.e., P�	 P� for
�	�, as well as continuous from the right, i.e., P�= P�+0, in the sense of strong convergence
�denoted by →� in the Hilbert space L2�0,��. Moreover, P�→0 or I �the identity operator�
according as �→−� or �. In consequence, the spectral decomposition �Ref. 15, Sec. 120, p. 320�
of our self-adjoint operator H0 allows H0 to be represented �as well as functions of H0� as a
Stieltjes integral of � �functions of �� with respect to the spectral family �P�� on the set R

= �−� ,�� of real numbers. This turns out to be

H0 = �
−�

�

�d�P� �3.8�

with

D�H0� = � f � L2�0,��:�
−�

�

�2d��P�f�2 = �
n=0

�

�4n + 2��2��f ��n��2 � ��
and

H0
−1 = �

−�

�

�−1d�P� = �
n=0

�

�4n + 2��−1�P4n+2� − P4n+2�−0� = �
n=0

�

�4n + 2��−1��n��n� , �3.9�

where P4n+2�− P4n+2�−0=�n��n is the projection onto the eigenspace �LH� ��n� spanned by the
single eigenfunction �n for each of the integers n�0. The abbreviation �LH� stands for “the linear
hull of whatever is between the two brackets to its immediate right,” and “linear hull” means the
set of all linear combinations. Consequently, the Green’s function K�x ,y� of the differential op-
erator H0, namely the kernel of our self-adjoint operator H0 restricted to the previous domain
D�H0�, takes on the form

K�x,y� = �
n=0

�

�4n + 2��−1��n��n��x,y� = �
n=0

�
�n�x��n�y�

4n + 2�
a.e. on�0,�� � �0,�� �3.10�

with respect to Lebesgue measure on �0,��2= �0,��� �0,��, which shall turn out to be a positive
L2 kernel on �0,�� with “finite double norm” �Ref. 19, p. 13�. Herein we must emphasize the
almost everywhere �a.e.� nature of the immediately preceding equality. The finite double norm of
kernel K�x ,y� is defined as
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��K�� ���
0

� �
0

�

�K�x,y��2 dy dx =��
n=0

�

�4n + 2��−2 � � , �3.11�

and consequently many of the ideas, but not all, that led to of Mercer’s theorem �Ref. 19, p. 127�
are applicable. However, because �n=0

� �4n+2��−1=�, it cannot be expected that all of the results
of Mercer’s theorem carry over; specifically, K as an operator “on” the Hilbert space L2�0,�� fails
to be an operator of trace class.

IV. MAJORIZATION PROPERTY OF THE KERNEL OF OPERATOR K ON L2„0,�…

Let us now call the extension of H0 to all of L2�0,�� the operator K, which is an operator “on”
L2�0,�� �instead of “in” L2�0,���. We may do this, on account �Ref. 19, Theorem 4.5.1, p. 63� of
the fact that kernel K�x ,y� is an L2 kernel and therefore the norm relation

�K� 	 ��K�� ���
0

� �
0

�

�K�x,y��2 dy dx =��
n=0

�

�4n + 2��−2 � � , �4.1�

guarantees that operator K has domain of definition D�K�=L2�0,��. Herein, �K� and ��K�� denote
the operator norm of K and double norm of its kernel K�x ,y�, respectively. The action of K on
L2�0,�� is

�Kf��x� = �
0

�

K�x,y�f�y�dy = �
n=0

� �f ��n�
4n + 2�

�n�x� a.e. in x on �0,�� , �4.2�

and moreover, this operator K on L2�0,�� is also the Friedrichs’ extension of H0. We first consider
the kernel K�x ,y� as the Green’s function of H0, and note that the completeness of the orthonormal
basis ��n :n�0�, where the normalized eigenfunction �n corresponds to the simple eigenvalue
�n=4n+2�, entails that

�Kf �g� = �
n=0

� �f ��n���n�g�
4n + 2�

for all f and g � L2�0,�� . �4.3�

In particular, we replace f and g herein by the sequence of L2�0,�� functions �n�x�, tending
weakly towards the Dirac-� function ��x�, defined by

�n�x� � n�1 − n�x�� for �x� 	 1/n and 0 otherwise on the set R ,

where R is the set of real numbers. It becomes immediately clear, that out of �Kf � f� always
exceeding each of the finite sums �k=0

N �4n+2��−1��f ��k��2, the inequality

�K�n�·− x���n�·− x�� � �
k=0

N ��n�·− x���n���n��n�·− x��
4n + 2�

for all N � 0

implies, by way of letting n→� and holding x�0 fixed, that

K�x,x� � �
k=0

N

�4n + 2��−1��k�x��2 for all N � 0.

Therefore, it follows that

�
n=0

� ��n�x��2

4n + 2�
	 K�x,x� for all x � �0,�� ,

where the function K�x ,x� has the precise form given by �
= 1
4
�1+4A�
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K�x,x� = w�x�v�x� = 2−1xI
	 x2

2

K
	 x2

2

 �4.4�

as well as asymptotic behavior as x→0+ and �, respectively, given by

K�x,x� = � 1
�1 + 4A

x�1 + O�x��� for x → 0+,

2−1x−1�1 + O�x−2�� for x → � .

�4.5�

V. MERCER THEOREM TYPE PROPERTIES OF THE KERNEL K„x ,y…

From the asymptotic behavior �4.5� of the majorizing function K�x ,x� of �n=0
� �4n

+2��−1��n�x��2 as well as the continuity of K�x ,x� on �0,��, we readily see that if we let M�

�sup�K�x ,x� :x� �0,���, the above asymptotic behavior guarantees that M���, then

�
n=0

� ��n�x��2

4n + 2�
	 M� for all x � �0,�� . �5.1�

It therefore follows that �n=0
� �4n+2��−1��n�x��2 converges for all x� �0,��. Moreover, the

Cauchy-Schwarz inequality allows us to write for all non-negative integers N that

�
n=N

� ��n�x��n�y��
4n + 2�

	 ��
n=N

� ��n�x��2

4n + 2��1/2

� ��
n=N

� ��n�y��2

4n + 2��1/2

for all x,y � �0,�� . �5.2�

It further follows that the series �n=0
� �4n+2��−1�n�x��n�y� converges absolutely, because out of

the immediately preceding inequality shall follow

�
n=N

� ��n�x��n�y��
4n + 2�

	 ��
n=N

� ��n�x��2

4n + 2��1/2

� �M� for all x � �0,�� ,

�
n=N

� ��n�x��n�y��
4n + 2�

	 ��
n=N

� ��n�y��2

4n + 2��1/2

� �M� for all y � �0,�� . �5.3�

Let ��0. It then follows that, for every y� �0,��, there exists an integer N=N�y� such that

�
n=N

� ��n�x��n�y��
4n + 2�

	 ��M� �5.4�

for all x� �0,��, provided N=N�y� is chosen sufficiently large; and there exists correspondingly
for every x� �0,�� an integer N=N�x� such that

�
n=N

� ��n�x��n�y��
4n + 2�

	 ��M� �5.5�

for all x� �0,��, provided N=N�x� is chosen sufficiently large. These two statements �5.4� and
�5.5� are valid because the series �n=0

� �4n+2��−1��n�x��2 is majorized by the constant M� on �0,
��. Hence we are led to the following Mercer-type theorem.

Theorem 1: The kernel K�x ,y� of the operator K on the Hilbert space L2�0,�� with spectral
decomposition K=�n=0

� �4n+2��−1��n � �n� possesses the following property: the convergence of
the series

073512-8 von Keviczky, Saad, and Hall J. Math. Phys. 46, 073512 �2005�

                                                                                                                                    



�
n=0

�
�n�x��n�y�

4n + 2�
= K�x,y� �5.6�

is absolute and uniform on every compact subset of �0,��� �0,��.
Proof: The series �n=0

� �4n+2��−1��n�x��n�y�� is uniformly convergent in x on �0, �� for every
y�0, as well as uniformly convergent in y on �0, �� for every x�0, as evident from �5.4� and
�5.5�. Therefore �n=0

� �4n+2��−1�n�x��n�y� represents a continuous function in variable x on �0, ��
for every y�0, as, well as a continuous function in variable y on �0, �� for every x�0. For every
L2�0,�� function f the Fourier expansion of Kf has the form

�Kf��x� =�
0

�

K�x,y�f�y�dy = �
n=0

� �f ��n�
4n + 2�

�n�x� a.e. in x on �0,��

and possesses the following property:

�
n=N

� � �f ��n�
4n + 2�

�n�x�� 	 ��
n=N

�

��f ��n��2�1/2��
n=N

� ��n�x��2

�4n + 2��2�1/2

	 ��
n=N

�

��f ��n��2�1/2��
n=N

� ��n�x��2

�4n + 2���1/2

	 ��
n=N

�

��f ��n��2�1/2

� �M�,

and therefore the sum �n=0
� �4n+2��−1�f ��n��n�x� is an absolutely and uniformly convergent series

of continuous functions on �0, �� whose limit is continuous on �0, ��, and hence

�Kf��x� = �
0

�

K�x,y�f�y�dy = �
n=0

� �f ��n�
4n + 2�

�n�x� for all x�0,�� .

Since in the series �n=0
� �4n+2��−1��n � �n� the set of kernels ���n � �n� :n�0� constitutes an

orthonormal set of L2�0,�� kernels, the Riesz-Fischer theorem, combined with K�x ,y�=�n=0
� �4n

+2��−1��n � �n��x ,y� a.e. on �0,��� �0,�� and the fact that �n=0
� �4n+2��−2��, leads to

��K − �
n=0

�
�n � �n

4n + 2��� = ��
0

� �
0

� �K�x,y� − �
n=0

�
�n�x��n�y�

4n + 2�
�dy dx�1/2

= 0

and furthermore to

�
0

� �K�x,y� − �
n=0

�
�n�x��n�y�

4n + 2�
 f�y�dy = 0 for all f � L2�0,�� .

Now let C denote any compact interval �a ,b� contained in �0, ��, and consider the immediately
preceding equality for all functions continuous on C and vanishing on �0,�� \C. Note that these
functions belong to L2�0,��. This in turn implies that

�
C
�K�x,y� − �

n=0

�
�n�x��n�y�

4n + 2�
 f�y�dy = 0

for all x�C and f continuous on C with f��0,�� \C�=0. By choosing f for any arbitrary, however
momentarily, fixed x�C as follows:
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f�y� = K�x,y� − �
n=0

�
�n�x��n�y�

4n + 2�
and f��0,�� \ C��0,

where for this fixed x�C the series represents a continuous function in variable y on set C
vanishing on �0,�� \C, and substituting it into the immediately above equality, we obtain that

�
C
�K�x,y� − �

n=0

�
�n�x��n�y�

4n + 2�
�2

dy = 0 for all x � C .

Because the integrand above is a continuous function of y on the compact subset C, which is an
arbitrary finite closed interval contained in �0, ��, we obtain

K�x,y� − �
n=0

�
�n�x��n�y�

4n + 2�
= 0 for all x,y � �0,�� ,

which, for x=y� �0,��, specifically yields

K�x,x� = �
n=0

� ��n�x��2

4n + 2�
for all x � �0,�� .

We now invoke Dini’s theorem, which states “Every monotone sequence of real valued continuous
functions on a compact metric space with continuous limit, converges uniformly to its limit.”
Hence by Dini’s theorem �Ref. 17, p.66� the convergence of K�x ,x�=�n=0

� �4n+2��−1��n�x��2 is
therefore uniform on every compact subset of �0, ��, and therefore the series �n=0

� �4n
+2��−1�n�x��n�y� converges absolutely and uniformly on every compact subset of �0,��
� �0,�� with limit K�x ,y�, i.e., K�x ,y�=�n=0

� �4n+2��−1�n�x��n�y� for all �x ,y�� �0,��� �0,��.
This completes the proof. �

Again we note that this is only a Mercer-type theorem, because it makes no conclusion about
the operator K or its L2�0,�� kernel K�x ,y� being of trace class; whereas Mercer’s theorem makes
an affirmative statement �Ref. 15, pp. 245–246�, see also Refs. 16–19, concerning the trace class
nature of operator K. As consequence of this Mercer-type theorem for our Green’s function
K�x ,y�, we return to the property of the spectral decomposition of the operator K discussed before,
because any complex valued function W��� of the real variable � on ���,�� determines �Ref. 15,
Secs. 127 and 128� an operator W�K� in L2�0,�� defined by

W�K� = �
−�

�

W���d�P� = �
n=0

�

W�4n + 2���P4n+2� − P4n+2�−0� = �
n=0

�

W�4n + 2����n � �n� ,

whose domain of definition D�W�K�� consists of all L2�0,�� functions satisfying

�
−�

�

�W����2d� � P�f �f� = �
−�

�

�W����2d��P�f�2 = �
n=0

�

�W�4n + 2���2��f ��n��2 � � .

It is clearly evident that the operators W�K� are always densely defined, regardless of the function
W considered on R= �−� ,��, because every domain of definition D�W�K�� always contains �LH�
��n�n�0��. Thus we have that the inverse ��I−K�−1 of the operator �I−K, in the normed algebra
of bounded linear operators on L2�0,��, comes about from the complex valued function W���
= ��−��−1 of the real variable � and takes the form
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��I − K�−1 = �
−�

�

�� − ��−1d�P� = �
n=0

�

�� − �4n + 2���−1�P4n+2� − P4n+2�−0�

= �
n=0

�

�� − 4n − 2��−1��n��n� ,

provided ����K�= �4n+2� :n a non-negative integer�, namely the spectrum of operator K in the
algebra of bounded linear operators on L2�0,��, with continuous kernel

�� − · �−1�x,y� = �
n=0

�
�n�x��n�y�
� − 4n − 2�

for all �x,y� � �0,�� � �0,�� ,

where the convergence is absolute on �0,��� �0,�� and uniform on every compact subset of
�0,��� �0,��. We may consequently summarize our results in the following two theorems.

Theorem 2: The C�0,��-function K�x ,x� arising out of the Green’s function of the differential
operator H0=−�d2 /dx2�+x2+Ax−2 �A�0� satisfies

�
n=0

� ��n�x��2

4n + 2�
= K�x,x� = w�x�v�x� = 2−1x I 1

2 ��−1�
	 x2

2

K 1

2 ��−1�
	 x2

2

 ,

where �=1+ 1
2
�1+4A, with uniform convergence on every compact subset of �0,��. K�x ,x� has

the asymptotic behavior

K�x,x� = � 1
�1 + 4A

x�1 + O�x��� for x → 0+,

2−1x−1�1 + O�x−2�� for x → � .

Theorem 3: The continuous kernel K�x ,y� on �0,��� �0,��, arising from the Green’s func-
tion of the differential operator H0=−�d2 /dx2�+x2+Ax−2 �A�0� satisfies

K�x,y� = �
n=0

�
�n�x��n�y�

4n + 2�
= �w�x�v�y� for 0 	 y 	 x ,

w�x�w�y� for 0 	 x 	 y .

on �0,��� �0,�� with convergence being absolute and uniform on every compact subset of
�0,��� �0,��, where

w�x�v�y� = 2−1�xyK 1
2 ��−1�

	 x2

2

I 1

2 ��−1�
	 y2

2

 .

.
We further conclude that, for the orthonormal basis ��n�x� :n�0�, �1.2�, of the Hilbert space

L2�0,��, the two summation formulas �1.4� and �1.5� follows immediately.
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A comparison is made between the symmetries and conservation laws admitted by
nonlinear telegraph �NLT� systems. Such systems are not variational. Unlike the
situation for variational systems where all conservation laws arise from symme-
tries, there are many NLT systems that admit more conservation laws than symme-
tries. The results are summarized in a table which includes the numbers of sym-
metries and conservation laws for each NLT system. It is also indicated when
symmetries map conservation laws to other conservation laws. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1915292�

I. INTRODUCTION

In this paper, we consider the problem of comparing the multipliers of conservation laws and
the point symmetries of a given nonlinear system of partial differential equations �PDEs� that is
not variational, i.e., whose associated Fréchet derivative is not self-adjoint. As a protypical ex-
ample, we consider nonlinear telegraph �NLT� systems of the form

H1�u,v� = vt − F�u�ux − G�u� = 0,

H2�u,v� = ut − vx = 0. �1�

One physical example related to system �1� is represented by the equations of telegraphy of a
two-conductor transmission line with v as the current in the conductors, u as the voltage between
the conductors, G�u� as the leakage current per unit length, F�u� as the differential capacitance, t
as a spatial variable and x as time.1 Another physical example related to system �1� is the equation
of motion of a hyperelastic homogeneous rod whose cross-sectional area varies exponentially
along the rod. Here u is the displacement gradient related to the difference between a spatial
Eulerian coordinate and a Lagrangian coordinate x, v is the velocity of a particle displaced by this
difference, G�u� is essentially the stress-tensor, F�u�=�G��u� for some constant �, and t is time
�see Refs. 2 and 3�.

A point symmetry

x* = x + �̂�x,t,u,v�� + O��2� ,

t* = t + �̂�x,t,u,v�� + O��2� ,

u* = u + �̂�x,t,u,v�� + O��2� ,

a�Electronic mail: bluman@math.ubc.ca
b�Permanent address: Inner Mongolia University of Technology, Hohhot, People’s Republic of China. Electronic mail:

tmchaolu@impu.edu.cn
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v* = v + �̂�x,t,u,v�� + O��2� , �2�

with corresponding infinitesimal generator �in evolutionary form�

X = ��u + ��v

is admitted by system �1�4–6 if and only if

X�1�H1�u,v��H1�u,v�=0,

H2�u,v�=0
� = 0,

�3�
X�1�H2�u,v��H1�u,v�=0,

H2�u,v�=0
� = 0,

where X�1� is the first extension of X and

� = �̂�x,t,u,v� − �̂�x,t,u,v�ux − �̂�x,t,u,v�ut,

� = �̂�x,t,u,v� − �̂�x,t,u,v�vx − �̂�x,t,u,v�vt.

The Fréchet derivative associated with system �1� is the linear operator

L�u� = � Dt − Dx

− F��u�ux − F�u�Dx − G��u� Dt
� , �4�

and it yields the linearized system of �1� given by

L�u����

�
��H1�u,v�=0,

H2�u,v�=0

= 0 �5�

in terms of total derivative operators Dx and Dt. It is easy to show that a point symmetry of system
�3� is any solution �� ,��= �� ,�� of the linearized system �5�.

On the other hand, a set of multipliers

� = ��x,t,U,V�, 	 = 	�x,t,U,V� , �6�

yields a conservation law of system �1� if and only if

EU���x,t,U,V�H1�U,V� + 	�x,t,U,V�H2�U,V�� � 0,

EV���x,t,U,V�H1�U,V� + 	�x,t,U,V�H2�U,V�� � 0, �7�

for all differentiable functions U�x , t� and V�x , t�, where

EU =
�

�U
− Dx

�

�Ux
− Dt

�

�Ut
, EV =

�

�V
− Dx

�

�Vx
− Dt

�

�Vt

are Euler operators. One can show that a necessary condition for 	��x , t ,U ,V� ,	�x , t ,U ,V�
 to be
a set of multipliers for a conservation law of system �1� is that

L*�u�����x,t,u,v�
	�x,t,u,v� ��H1�u,v�=0,

H2�u,v�=0

= 0, �8�

where in terms of the Fréchet derivative operator L�u�, the adjoint operator L*�u� is the unique
operator having the property that
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�
,��L�u���

�
� − ��,��L*�u��


�
�

is a divergence expression for any differentiable functions 
, �, �, and �.4,7–9 It is easy to show
that for the Fréchet derivative operator L�u� defined by �4�, one has

L*�u� = �− Dt F�u�Dx − G��u�
Dx − Dt

� .

In the study of physical systems, the importance of conservation laws is well known, includ-
ing connections with integrability, linearization and modern numerical methods. Conservation
laws are intrinsic properties of field equations since they must hold for any posed data. Familiarly,
conservation laws are derived from variational principles through Noether’s theorem.4,5 A given
system of PDEs �linear or nonlinear� can be directly obtained from a variational principle if and
only if its Fréchet derivative is self-adjoint,4,10 i.e., L*�u�=L�u�. Noether’s theorem yields a con-
servation law for any point symmetry �2� that leaves invariant the action functional of the varia-
tional principle. This is equivalent to the Euler operator annihilating the scalar product of the
multipliers and the given system of PDEs’ functions in which solutions �u ,v� are replaced by
arbitrary differentiable functions �U ,V�, i.e., system �7�. Consequently, any set of multipliers for a
conservation law of a system of PDEs having a variational principle must also be admitted
symmetries of the given system. Hence, when a system of PDEs has an associated self-adjoint
Fréchet derivative, its multipliers for conservation laws are a subset of its admitted symmetries.

It is well known that for a linear system of PDEs, any solution of its adjoint system yields a
set of multipliers for a conservation law since for any linear operator L, a divergence expression
is yielded by vLu−uL*v. Moreover, from this it follows that if a given nonlinear system of PDEs
can be mapped into a linear system by a point or contact transformation, then its infinite number
of admitted symmetries exhibit this linear system and its infinite number of multipliers for con-
servation laws exhibit the adjoint of this linear system.5,11,12

It is easy to show that for any F�u� and G�u�, the NLT system �1� is not self-adjoint. The extra
conditions beyond the necessary condition �8� for ��x , t ,U ,V�, 	�x , t ,U ,V� to be multipliers for a
conservation law of system �1� are given in Refs. 7–9. At first sight, one might think that a given

system �1� admits more point symmetries �2� which involve four unknowns 	�̂ , �̂ , �̂ , �̂
 than sets of
multipliers of the form �6� which involve only two unknowns 	� ,	
. However, we will show that
for many NLT systems �1�, there are more admitted sets of multipliers of the form �6� than
admitted point symmetries �2�.

The point symmetry and conservation law classifications of the NLT system �1� have been
separately investigated in Refs. 13 and 14, respectively. In Ref. 15, it is shown how to obtain new
conservation laws from the action of an admitted symmetry on a known conservation law.

In Sec. II, we give the determining equations for point symmetries and multipliers admitted by
NLT systems �1�. We present the Symmetry and Conservation Law Classification Table for NLT
systems �1� and show that when �1� is not linearizable, there are many cases where it can admit,
nontrivially, one symmetry and four, three, two or zero conservation laws as well as cases where
it can admit, nontrivially, zero symmetries and four or two conservation laws. We also comment
on situations when a symmetry maps a conservation law into another conservation law�s�. Further
comments are presented in Sec. III.

II. COMPARISON OF SYMMETRIES AND CONSERVATION LAWS FOR NLT SYSTEMS

By inspection, any NLT system �1� obviously admits, as point symmetries, translations t→ t
+�1, v→v+�2, and x→x+�3, corresponding to admitted infinitesimal generators X1=ut�u+vt�v,
X2=�v, and X3=ux�u+vx�v, respectively, as well as a set of multipliers �� ,	�= �0,1� since the
second PDE of any NLT system �1� is written as a conservation law. Any additional admitted point
symmetries or sets of multipliers for conservation laws are considered to be nontrivial.
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A point symmetry �2� admitted by an NLT system �1� is represented by any solution

	�̂�x , t ,u ,v� , �̂�x , t ,u ,v� , �̂�x , t ,u ,v� , �̂�x , t ,u ,v�
 of the linear determining system of PDEs4–6

�̂v − �̂u = 0,

�̂u − �̂v + �x − �t = 0,

G�u��̂v + �̂t − �̂x + G�u��̂x = 0,

�̂u − F�u��̂v = 0,

�̂u − G�u��̂u − F�u��̂v = 0,

G�u��̂v + �̂t − F�u��̂x = 0,

��̂v − �̂t − 2G�u��̂v − �̂u + �̂x�F�u� − F��u��̂ = 0,

��̂v − �̂t − G�u��̂v�G�u� − F�u��̂x − G��u��̂ + �̂t = 0. �9�

The complete solution of the determining system �9� is presented in Ref. 13.
A set of multipliers for a conservation law of an NLT system �1� is represented by any solution

	��x , t ,U ,V� ,	�x , t ,U ,V�
 of the linear determining system of PDEs7,9

	V − �U = 0,

	U − F�U��V = 0,

	x − �t − G�U��V = 0,

F�U��x − 	t − G�U��U − G��U�� = 0. �10�

The complete solution of the determining system �10� and the corresponding conservation laws are
presented in Ref. 14.

Equivalence transformations10,11 simplify the symmetry and conservation law classifications
of NLT systems �1�. In particular, in Refs. 13 and 14, it is shown how to obtain the corresponding

conservation law for any �F̄�u� , Ḡ�u�� pair related to the conservation law for a given �F�u� ,G�u��
pair through any similarity transformation

F̄�u� = F�
u + ��, Ḡ�u� = �G�
u + �� + � . �11�

In the following Symmetry and Conservation Law Classification Table �Table I�, we list and
compare the additional admitted nontrivial symmetries and nontrivial conservation laws for all
possible pairs �F�u� ,G�u��, modulo any similarity transformation �11�. For each such pair, we
indicate the number of additional admitted point symmetries, the number of additional admitted
conservation laws, list all such admitted point symmetries in evolutionary form, show where to
find such admitted conservation laws in Ref. 14, and state pertinent comments. Most important, in
the comments column we indicate where an admitted symmetry can map a conservation law to
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TABLE I. Symmetry and conservation law classification table.

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

0 Arbitrary � X= �−A�u ,v�ux+B�u ,v�ut��u

+�−A�u ,v�vx+B�u ,v�vt��v

with
Au=−F�u�Bv ,Av=−Bu

� Multipliers
�=a�U ,V�,
	=b�U ,V�

with
aU=bV,

F�U�aV=bU

Linearizable
by a hodograph
transformation;
�a ,b� system
is adjoint of

�A ,B� system

u 1 � X�=B�x , t��u−A�x , t��v

with
Ax+Bt=0,

At+Bx+B=0

� Multipliers
�=b�x , t�,
	=a�x , t�

with
ax=bt,

at=bx−b

Linear system;
�a ,b� system
is adjoint of

�A ,B� system

u 1 X= �2u−2xux− tut��u

+�3v−2xvx− tvt��v

4 Table 4: Case 1
with �2=1,
�1=�3=0

t→ t+�

maps ��3 ,	3�
to additional
three ��i ,	i�,

i=1,2 ,4

u
�
�0,1� 1 X= �2u−2
xux−
tut��u

+��2+
�v−2
xvx−
tvt��v

2 Table 1 t→ t+�

maps ��1 ,	1�
to ��2 ,	2�

e
u�
�0� 1 X= �2−2
xux−
tut��u

+�
v+2t−2
xvt��v

2 � �

u2+
1u+
2

�
1
2�4
2�

0 4 Table 4: Case 1
with �1=1,

�2=
1 ,�3=
2

In Ref. 14: in Table 1,
t→ t+� maps

��1 ,	1� to ��2 ,	2�;
in Table 3,

�t ,V�→ �−t ,−V�
maps a different

��1 ,	1�
to a different ��2 ,	2�

than for Table 1

All other F�u� 0 2 Table 1 t→ t+�

maps ��1 ,	1�
to ��2 ,	2�

u−1 u−2 � X= �u−1A�û ,v�ux�
�−B�û ,v�ut+A�û ,v���u

+�u−1A�û ,v�vx�
�−B�û ,v�vt��u

with
Av+Bû=0,

Aû+Bv−A=0
�û=x+ln u�

� Multipliers

�=e−xb�Û ,V�,
	=a�Û ,V�

with

aV−e−ÛbÛ=0,

aÛ−e−ÛbV=0

�Û=x+ln U�

Linearizable;
�a ,b� system
is adjoint of

�A ,B� system

u−1 1 X= �2xux+3tut−2u��u

+�2xux+3tut−v��v

4 Table 5: Case 1
with �2=1,
�1=�3=0

V→V+�

maps ��3 ,	3�
to additional
three ��i ,	i�,

i=1,2 ,4
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TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

u−1 �u+1�� u2 1 X= �2�x+ln u−1/u�ux�
�+ �3t+2v�ut−2�u+1���u

+�2�x+ln u−1/u�vx�
�+ �3t+2v�vt−v��v

4 Table 5: Case 1
with �3=0,
�1=�2=1

X maps ��3 ,	3�
to ��2 ,	2�;
V→V+�

maps ��3 ,	3�
to additional
three ��i ,	i�,

i=1,2 ,4

�u±1��� u2

���0,1�
1 X= �2��x±�F�u�du�ux�

+���+2�t±2v�ut

�−2�u±1���u

+�2��x±�F�u�du�vx�
+���+2�t±2v�vt

�−�v��v

2 Table 1 V→V+�

maps ��2 ,	2�
to ��1 ,	1�

u


�
�−1,−2�
1 X= �2�2+
�xux�

+��4+
�tut−2u��u

+�2�2+
�xux�
�+ �4+
�tut− �2+
�v��u

2 � �

u−2e
u

�
�0�
1 X= ��2
x+2�F�u�du�ux�

�+ �
t+2v�ut−2��u

��2
x+2�F�u�du�vx�
�+ �
t+2v�vt−
v��v

2 � �

u−2+
1u
−1+
2

�
1
2�4
2�,
�
2�0�

0 4 Table 5: Case 1
with

�1=1, �2=
1,
�3=
2

In Ref. 14: in Table 1,
V→V+� maps

��2 ,	2� to �	1 ,	1�;
in Table 3,

�t ,V�→ �−t ,−V�
maps a different

��1 ,	1�
to a different ��2 ,	2�

than for Table 1

All other F�u� 0 2 Table 1 v→v+�

maps ��2 ,	2�
to ��1 ,	1�

u�

���0, ±1�
u�−1 1 X= ���−1�tut+2u��u

+���−1�tvt�
�+ �1+��v��v

3 Table 3: Case 2
with

�=�, �=0

t→ t+�

maps ��1 ,	1�
to ��3 ,	3�;
V→V+�

maps ��3 ,	2�
to ��3 ,	3�

u�����−1� 1 X= �2��−�−1�xux�
�+ �2�−�−2�tut+2u��u

+�2��−�−1�xux�
+�2�−�−2�tvt

�+ �2+����u

0

u�−1+�
���0�

0 2 Table 3: Case 2
with

�=�, �=�2�

�t ,V�→ �−t ,−V�
maps ��1 ,	1�
to ��2 ,	2�k
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TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

u�

���0, ±1�
u�−1

+��u�+��2

���0�

0 2 Table 3: Case 1
with

=�, 
=�2�,
�=�

�

ln u u−1 1 X= �tut−2u��u

+�tvt−v−2t��v

3 Table 3: Case 2
with

�=1, �=0

X maps ��2 ,	2�
to ��1 ,	1�;

t→ t+�

maps ��1 ,	1�
to ��3 ,	3�

u


�
�−1�
1 X= �2�
+1�xux+ �
+2�tut�

�−2u��u

+�2�
+1�xvx+ �
+2�tvt�
�− �2t+ �2+
�v���v

0

u−1+

�
�0�

0 2 Table 3: Case 2
with

�=1, �=


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

u−1

+��ln u+��2

���0�

0 2 Table 3: Case 1
with

=1, 
=�,
�=�

�

ln−1 u 1/ �u ln2 u� 1 X= �−2 ln−1 uux�
�+ �t+2v�ut−2u��u

+�−2 ln−1 uvx�
�+ �t+2v�vt−v��v

3 Table 3: Case 2
with

�=−1, �=0

X maps ��1 ,	1�
to ��2 ,	2�;

t→ t+�

maps ��1 ,	1�
to ��3 ,	3�

u� / ln2 u
���−1�

1 X=2����+1�x+�F�u�du�ux�
�+ ���+2�t+2v�ut−2u��u

+2����+1�x+�F�u�du�vx�
+���+2�t+2v�vt

�− ��+2�v��v

0

1/ �u ln2 u�+

�
�0�

0 2 Table 3: Case 2
with

�=−1, �=


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

1/ �u ln2 u�
+��ln−1 u+��2

���0�

0 2 Table 3: Case 1
with

=−1, 
=�,
�=�

�

eu eu 1 X= �2+ tut��u

+�v+ tvt��v

Table 6: Case 4
with

�1=�3=0,
�2=1

V→V+�

maps ��4 ,	4�
to ��1 ,	1�;

t→ t+�

maps ��4 ,	4�
to ��2 ,	2�;

X maps ��4 ,	4�
to ��3 ,	3�
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other conservation laws through the methods presented in Ref. 15. In particular, we show that in
many cases the obvious admitted point symmetries t→ t+�1 and v→v+�2 are very useful to
obtain new conservation laws from a known conservation law.

TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

eu e
u

�
�0,1�
1 X= �2�
−1�xux�

�+ �
−2�tut−2��u

+�2�
−1�xvx�
�+ �
−2�tvt−
v��v

0

eu+

�
�0�

0 4 Table 6: Case 4
with

�1=0, �2=1,
�3=


t→ t+�

maps ��3 ,	3�
to ��1 ,	1�;

�t ,V�→ �−t ,−V�
maps ��3 ,	3�

to ��4 ,	4�
and maps ��1 ,	1�

to ��2 ,	2�
e2u+
1e

u+
2

�
1
2�4
2�

0 4 Table 6: Case 1
with

�1=1, �2=
1,
�3=
2�0

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

�1=eA sin B,
	1=eA�r cos B�

�−eU sin B�
with

A=a�x+eU�
+ 1 � 2�a
1

−1�U
+
t−�V,

B=�t+V−b�x�
�+eU

+ 1 � 2
1U�;
a ,b ,r ,
 , ,� ,�

are given in
Table 6: Case 2

with �1=1,
�2=
1,

�3=
2�0

�t ,V�→
�t+c1 , V+c2�
maps ��1 ,	1�

to ��2 ,	2�;
�t ,V�→ �−t ,−V�

maps ��1 ,	1�
to ��3 ,	3�;

�t ,V�→
�−t+c1 ,−V+c2�
maps ��1 ,	1�

to ��4 ,	4�
�c1=
1� /2�
2 ,

c2=�
2��

Table 6: Case 5
with

�1=1, �2=
1,
�3=
2=0

t→ t+�

maps ��3 ,	3�
to ��1 ,	1�;

�t ,V�→ �−t ,−V�
maps ��3 ,	3�
to ��4 ,	4� and

maps
��1 ,	1� to ��2 ,	2�

�eu+
�2

�
�0�
0 2 Table 6: Case 3

with
�1=1, �2=2
,

�3=
2

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
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III. FURTHER DISCUSSION

�1� As can be seen in the Symmetry and Conservation Law Classification Table �Table I�, for
each �F�u� ,G�u�� pair where the NLT system �1� admits nontrivial conservation laws, there exists

TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

u�±1

u��1
���0, ±1�

u�−1

�u��1�2

1
X= �� 1

2

u�±1

u��1
ux

+ �t+�v�ut−2u��u

+�� 1
2

u�±1

u��1
vx

+ �t+�v�vt−��t+v���v

3 Table 3: Case 2
with

�= �2�, �=0

X maps ��1 ,	1�
to ��2 ,	2�;
t→ t+�,

maps ��1 ,	1�
to ��3 ,	3�;
V→V+�,

maps ��2 ,	2�
to ��3 ,	3�

u�+�−1

�u��1�2

���0�

1 X= ��2�x+��F�u�du�ux�
�+ ���+1�t+�v�ut−2u��u

+��2�x+��F�u�du�vx�
+���+1�t+�v�vt

�− ��t+ ��+1�v���v

0

u�−1

�u��1�2 +


�
�0�

0 2 Table 3: Case 2
with

�= �2�,
�= �2��2


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

u�−1

�u��1�2

+�� u�±1

u��1
+��2

���0�

0 2 Table 3: Case 1
with

= �2�,

= �2��2�,

�=�

�

tan�� ln u�
���0�

u−1 sec2�� ln u� 1 X= �−2 tan�� ln u�ux�
�+ �t−2�v�ut−2u��u

+�−2 tan�� ln u�vx�
+�t−2�v�vt

�− �2�t+v���v

3 Table 3: Case 2
with

�=�, �=0

X maps ��1 ,	1�
to ��2 ,	2�;
t→ t+�,

maps ��1 ,	1�
to ��3 ,	3�;
V→V+�,

maps ��2 ,	2�
to ��3 ,	3�

u� sec2�� ln u�
���−1�

1 X= �2���+1�x
−��F�u�du�ux�
�+ ���+2�t−2�u�ut

−2u��u

+�2���+1�x−��F�u�du�vx�
+���+2�t−2�v�vt

�+ �2�t+ ��+2�v���v

0

� sec2�� ln u�� u � +

�
�0�

0 2 Table 3: Case 2
with

�=�, �=�2


�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

� sec2�� ln u�� u � +����
�+tan�� ln u��2

���0�

0 2 Table 3: Case 1
with

=�, 
=�2�,
�=�

�
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TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

tanh u sech2 u 1 X= �tanh uux+vut−1��u

+�tanh uvx+vvt− t��v

4 Table 7: Case 3
with

�1=1,
�2=�3=0

t→ t+�

maps ��4 ,	4�
to ��i ,	i�, i=1,3;

V→V+�,
maps ��4 ,	4�

to ��i ,	i�, i=2,3;
X maps ��1 ,	1�

to ��2 ,	2�

e�u sech2 u
���0�

1 X= �2��x+�F�u�du�ux�
�+ ��t+2v�ut−2��u

+�2��x+�F�u�du�vx�
�+ ��t+2v�vt− �2t

+�v���v

0

tanh u+� 0 4 Table 7: Case 1
with �1=0,

�2=1, �3=�,
��1

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

�1

=eA cosh U cos B,

	1=��1
−��1/2� 1

+e2U�eA cosh U
��sin B

−re2U cos B�
with

A=a�x+ 1
2U�

−��t+V�,
B=−b�x+ 1

2U�
−�
t+�V�,

a ,b ,r ,
 , ,� ,�
are given in

Table 7: Case 2
with �1=0,

�2=1, �3=�,
��1

�t ,V�→
�t+c1 ,V+c2�

maps ��1 ,	1�
to ��2 ,	2�;

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��3 ,	3�;
�t ,V�→

�−t+c1 ,−V+c2�
maps ��1 ,	1�

to ��4 ,	4�
�c1=−� /4�1−� , ��

�c2= �2�
−1�� /4�1−��

Table 7: Case 3
with �1=0,

�2=1, �3=�,
�=1

t→ t+�

maps ��3 ,	3�
to ��1 ,	1�;

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
and maps ��3 ,	3�

to ��4 ,	4�

tanh2 u+�
���−1,0�

0 4 Table 7: Case 1
with

�1=−1, �2=0,
�3=1+�

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
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an admitted group of point transformations �discrete and/or continuous� that maps a conservation
law to one or more �up to three� new conservation laws for the same �F�u� ,G�u�� pair through use
of the work presented in Ref. 15.

TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

tanhu

tanh2 u
+
1 tanh u+
2

�
1
2�4
2 ,
1�0�

0 4 Table 7: Case 1
with �1=−1,
�2=
1, �3=1

+
2,
1+
2� 
1

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

Table 7: Case 2
with

�1=−1, �2=
1

�0,
�3=1+
2,

1+
2�−
1

�t ,V�→
�t+c1 ,V+c2�
maps ��1 ,	1�

to ��2 ,	2�;
�t ,V�→ �−t ,−V�

maps ��1 ,	1�
to ��3 ,	3�;

�t ,V�→
�−t+c1 ,−V+c2�
maps ��1 ,	1�

to ��4 ,	4�

�c1=
�2+
1��

4�−�1+
1+
2� �,
�c2=

−
�
1+2
2��

4�−�1+
1+
2� �
�1

=eA cosh1+a u cos B,
	1

= � �
1− �1+
2�

1+e2U �eA

�cosh1+a U�sin B�
�−re2U cos B�

with
A=a�x− 1

2U�
−��t+V�,
B=−b�x

+ln cosh U�
+ 1

2
1U�− �
t
+�V�;

a ,b ,r ,
 , ,� ,�
are given in

Table 7: Case 2
with �1=−1,
�2=
1�0,
�3=1+
2,

1+
2�
1

�t ,V�→
�t+c1 ,V+c2�
maps ��1 ,	1�

to ��2 ,	2�;
�t ,V�→ �−t ,−V�

maps ��1 ,	1�
to ��3 ,	3�;

�t ,V�→
�−t , +c1 ,−V+c2�

maps ��1 ,	1�
to ��4 ,	4�

�c1=
�2−
1��

4�
1− �1+
2� �,
�c2=

�2
2−
1��

4�
1− �1+
2� �
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�2� It can happen that a nonvariational system of PDEs can become variational through a
differential substitution. For example, the Korteweg–de Vries equation

ut + uux + uxxx = 0

is not variational but becomes variational after the differential substitution u=�x. One can show
that the differential substitution �u ,v�= ��x ,�x�, leads to an NLT system �1� that is variational if

TABLE I. �Continued.�

G�u� F�u�

Number of additional
point symmetries;

listing of symmetries

Number of additional
conservation laws;

see Ref. 14 for
conservation laws

Comments;
symmetry

mappings of
conservation

laws �Ref. 15�

tanh u tanh2 u
+
1 tanh u+
2

�
1
2�4
2 ,
1�0�

0 4 Table 7: Case 3
with �1=−1,
�2=
1, �3=1

+
2,
�3= 
1

t→ t+�

maps ��3 ,	3�
to ��1 ,	1�;

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
and maps ��3 ,	3�

to ��4 ,	4�

�tanh u+��2

��� ±1�
0 2 Table 7: Case 5

with �1=−1,
�2=2�,

�3=1+�2

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�

1 0 2 Table 7: Case 5
with �3=1
�1=�2=0

�

coth u e�u cosh2 u 1 See comments 0
or
4

See comments Symmetries and
conservation laws
obtained from the
the cases where

G�u�=tanh u
through

equivalence
transformation

�x , t ,u ,v�→

�x , t ,u+
�

2
i ,v�

1 coth2 u
+2 coth u+3

0 2
or
4

See comments

tan u sec2 u 1 X= �1+tan uux+vut��u

+�t+tan uvx+vvt��v

4 Table 8: Case 2
with �1=1,
�2=�3=0

V→V+�

maps ��1 ,	1�
to ��i ,	i�, i=2,3;

t→ t+�

maps ��1 ,	1�
to �i ,	i, i=1,3;
X maps ��1 ,	1�

to ��2 ,	2�

e�u sec2 u
���0�

1 X= �2��x−�F�u�du��ux

�+ ��t−2v�ut−2��u

+�2��x−�F�u�du��vx

+��t−2v�vt

�− �2t+�v���v

0

tan u+� 0 4 Table 8: Case 1
with �1=0,
�2=1, �3=�

�t ,V�→ �−t ,−V�
maps ��1 ,	1�

to ��2 ,	2�
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and only if G�u�=const �in this variational case, the NLT system �1� is linearizable by a hodograph
transformation�.

�3� In general, suppose a system of PDEs with two dependent variables �u ,v� and two inde-
pendent variables �x , t� is not variational but becomes variational through the differential substi-
tution �u ,v�= ��x ,�x�, then an admitted point symmetry

� = �̂�x,t,�,�� − �̂�x,t,�,���x − �̂�x,t,�,���t,

� = �̂�x,t,�,�� − �̂�x,t,�,���x − �̂�x,t,�,���t,

of the variational system would yield multipliers of the form 	��x , t ,U ,V� ,	�x , t ,U ,V�
 of the

given system, if and only if �̂�x , t ,� ,��=0 and �̂, �̂ and �̂ do not depend explicitly on � and �
�otherwise, such a set of multipliers yields a set of nonlocal multipliers and nonlocal symmetries
of the given system�. Conversely, suppose the given system admits a conservation law resulting
from a set of multipliers of the form 	��x , t ,U ,V� ,	�x , t ,U ,V�
, then such a set of multipliers
yields a point symmetry admitted by the variational system if and only if �V=�UU=	U=	VV=0
�otherwise, such a set of multipliers would yield a local �but not point� symmetry admitted by the
variational system�.

�4� In general, for a nonvariational system of PDEs, there is a direct connection between
conservation laws and symmetries if the system is linear or directly linearizable by a point or
contact transformation. For the other exhibited cases, in view of the previous two remarks it would
be interesting to investigate if there exist nonlocal symmetries directly connected to the conser-
vation laws.
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listing of symmetries
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Comments;
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mappings of
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tan2 u
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1 tan u+
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1
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In this paper, we consider a simplified two fluid system of equations in plasma
under some conditions. The existence, uniqueness, and the behavior of solitary
waves at infinity for the system are proved by ordinary differential equations
methods. © 2005 American Institute of Physics. �DOI: 10.1063/1.1941088�

I. INTRODUCTION

Since the end of 1960s, nonlinear propagation of solitary waves in plasma have been studied
extensively. For example, in laser target shooting, people have observed many phenomena such as
the density hollow near the critical surface, the vortex solitary wave propagating due to collapse,
the solitons emerging when laser beam self-focusing in nonlinear medium, Langmuir soliton
emerging from high frequency longitudinal electric field, and optic solitons emerging from high
frequency transverse electric fields. With the development of experimental technology, more and
more interesting soliton phenomena are observed in the interaction between plasma and laser. At
the same time, some results obtained in theoretical study and electronic computer numerical
simulations are confirmed by experiments. Here, we refer the readers to Refs. 2, 6, 8, 10, and 11
and references therein.

The system of two-fluid dynamics are composed of equations for electrons and for ions. Here

we assume that B� =0, Ti=0, Te=const, then dynamics equations for ions are

�ni

�t
+ � · nivi

� = 0, �1.1�

niM� �vi
�

�t
+ vi

� · � vi
� � = nieE� , �1.2�

dynamics equations for electrons are

�ne

�t
+ � · neve

� = 0, �1.3�

nem� �ve
�

�t
+ ve

� · � ve
� � = − Te � ne − neeE� , �1.4�

and Maxwell equations are

� � E� = 0, �1.5�
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�E�

�t
= − 4�e�nivi

� − neve
� � , �1.6�

where ni is the number density of ion, ne the number density of electron, v� i the velocity of ion, v�e

the velocity of electron, M the mass of ion, m the mass of electron, Ti the temperature of ion, Te

the temperature of electron, e is electronic charge, E� the intensity of the electric field, B� the
intensity of the magnetic field,

� = i�
�

�x
+ j�

�

�y
+ k�

�

�z
.

.
Under some technical treatment, �1.1�–�1.7� reduces to the following simplified two-fluid

system:

�ni

�t
+ � · nivi

� = 0, �1.7�

niM� �vi
�

�t
+ vi

� · � vi
� � = nieE� l, �1.8�

� · E� l = 4�e�ni − nl� , �1.9�

E� l = −
Te � nl

nl
−

e2

2m�p
2 � E� h

2, �1.10�

�2Eh
�

�t2 − c*2�2Eh
� + c*2 � � · Eh

� − ve
2 � � · Eh

� = −
4�nle

2

m
Eh
� , �1.11�

where the suffix l and h are the lower and higher frequency parts respectively, ve
2=Te /m, �p

=4�nle
2 /m, ne=nl+nh, c* the velocity of light, E� h

2= �1/2T��t−T
t+TE� h

2dt. For more details, the read-
ers can refer to Ref. 14. The system of equations �1.7�–�1.11� are self-contained. And it has at least
three kinds of waves, the ion acoustic wave, the plasma wave, and the light wave. Each wave
contains a nonlinear term producing space coacervation, for the ion acoustic wave it is the trans-
port term v� i · �v� i, while for the plasma wave and the light wave it is the one in Eq. �1.11�. Three
kinds of waves all contain a dispersion term. For the ion acoustic wave it is the charge separate

term � ·E� l, for the plasma wave it is ve
2�2E� h, and for the light wave it is c*2�2E� h. When the

interactions between the nonlinear terms and the dispersion terms reach to a certain equilibrium,
the acoustic solitons, the plasma solitons, and the light solitons are produced.

For the simplified system of two-fluid dynamics �1.7�–�1.11�, if we take units of the physical
quantities as �t�= �M /4�n0e

2�1/2=�pi

−1, �x�= �Te /4�n0e
2�1/2=�D, �v�= �x� / �t�= �Te /M�1/2, �nl�

=n0, ���= �Te /e��Ei− ���, ����2�=4�n0Te, we can obtain the dimensionless form of the system

�ni

�t
+ � · nivi

� = 0, �1.12�

�vi
�

�t
+ vi

� · � vi
� = − � � , �1.13�
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�2� = nl − ni = exp�� − ���2� − ni, �1.14�

nl = exp�� − ���2� , �1.15�

2i

�p

��

�t
−

1

�p
2

�2�

�t2 = − ��2� + �exp�� − ���2� − 1�� , �1.16�

El = − � � , �1.17�

where � is the higher frequency electric field, �p= �M /m�1/2, �=1 if Eh is the intensity of the
longitudinal field, while �=c*2 /ve

2 if Eh is the intensity of the transverse field.
In the following, we only discuss the one-dimensional case, therefore v� i=v. Suppose

��x,t� = ��x − ct�exp�− ipt + iqx� , �1.18�

and ni, v, and � are the functions of 	=x−ct. Substituting �1.18� into �1.16� and setting its real
part and imaginary part to zero, respectively, we get from �1.12�–�1.14� and �1.16� the plane
solitary wave equations

�� −
c2

�p
2�d2�

d	2 = �exp�� − �2� − 1 + a2�� , �1.19�

d2�

d	2 = exp�� − �2� −
1

	1 −
2�

c2

, �1.20�

ni =
1

	1 −
2�

c2

, �1.21�

nl = exp�� − �2� , �1.22�

where c is the propagation velocity of the solitary wave, a2=�q2− �p /�p�2− �2p /�p�
0, �q
= �c /�p��1+ �p /�p��.

There are many papers which concern the existence of approximate solutions for the equations
�1.19�–�1.22�, cf. Refs. 5, 6, 10, and 11. For the longitudinal wave �=1, by expanding ni, nl untill
� and �2 terms, one has nl=1+�−�2, ni=1+ �� /c2�. Supposing ni=nl, one can replace the
equation �1.19� �c2 /�p

2 is ignored� by the following equation:

d2�

d	2 = � 1

c2 − 1
�2 + a2�� . �1.23�

Hence the solution of �1.19� and �1.20� are

� = a	2�1 − c2� sech a	 �1.24�

� = − 2a2c2 sech2 a	 , �1.25�

where 0�c�1. The single-peaked symmetry solution �1.24� and �1.25� are soliton solutions of
Zakharov equations, which is consistent with the numerical calculation for development of the
initial wave packet of Zakharov equations and the interactions of solitons made by Makhankov,
etc.
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By taking higher order terms appropriately from expansions of ni and nl, one obtains the
Makhanhov-Nishikawa solitary wave solution �� ,�� where � is symmetric and � is antisymmet-
ric. Near the region c2
1, 0�c�1, by taking � and � of the same order of magnitude and
expanding ni and nl to quadric terms of � and �, one can have the equations

d2�

d	2 = �� + a2�� , �1.26�

d2�

d	2 = −
1 − c2

c2 � − −
3 − c4

2c4 �2 − �2, �1.27�

the solution of which is given by

� = A sech a	 tanh a	 , �1.28�

� = B sech2 a	 , �1.29�

where A2=6a2�4a2−1+ �1/c2��, B=−6a2, and a, c satisfy a2=c2�1−c2� / �9−c4�.
In the simplified two-fluid system of equations �1.12�–�1.17�, by taking the higher frequency

oscillatory part as zero, one can obtain soliton in ion acoustic waves, cf. Ref. 6, p. 19. Considering
the one-dimensional case, and supposing Ti=0, v� i=vi, one gets the dimensionless form

�ni

�t
+

�nivi

�x
= 0, �1.30�

�vi

�t
+ vi

�vi

�x
= −

��

�x
, �1.31�

�2�

�x2 = exp��� − ni. �1.32�

By letting 	=x−ct and supposing that ni→1, vi→0, �→0 as �x�→�, one may obtain

d2�

d	2 = exp��� −
1

	1 −
2�

c2

, �1.33�

ni =
1

	1 −
2�

c2

, �1.34�

ni�c − vi� = c , �1.35�

Assuming that c
1, c=c−1�1, one gets the equation

1

2
�d�

d	
�2

=
1

3
�2�3c − �� .

The solution of the above equation is
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� = 3�c − 1�sech2�	c − 1

2
�x − ct�� , �1.36�

where the peak value of the solitary wave is 3�c−1�. If letting 	=0
1/2�x− t�, �=0

3/2t, the ion
acoustic wave equations �1.30�–�1.32� reduce to the so-called KdV equation.

In the present paper, we are interested in finding the existence of solitary waves for the
simplified two-fluid system of equations under some conditions by rigorous mathematical theories.
In the equations �1.19� and �1.20�, by letting �=	2�, we can obtain

− �0
d2�

d	2 = �− exp�� −
�2

2
� + 1 − a2�� , �1.37�

d2�

d	2 = exp�� −
�2

2
� −

1

	1 −
2�

c2

, �1.38�

where �0=�− �c2 /�p
2�
0. Supposing that ni→1, vi→0, �, �→0 as �x�→�, in order to solve the

equations �1.37� and �1.38� we may consider

− �0
d2�

d	2 = �− exp�� −
�2

2
� + 1 − a2��, in R ,

d2�

d	2 = exp�� −
�2

2
� −

1

	1 −
2�

c2

, in R, �P1�

�, � � W1,2�R� ,

where

W1,2�R� ª u;u � L2�R�, � u � L2�R��

with the norm

�u� ª �u�2 + � � u�2,

where � . �2 denotes the norm in L2�R�= u ;�R�u�	��2 d	� +��. We note that if ��0 ,�0� is a solution
for �P1� when a�1, then �0=0 �the details will be given in Sec. II�. So we can discuss the
existence of solutions for the following problem:

d2�

d	2 = exp��� −
1

	1 −
2�

c2

,

� → 0 as �	� → 0, ∃ 	0 such that ��	0� 
 0, 1 −
2��	0�

c2 
 o ,

�P2�

By ordinary differential equations methods, cf. Refs. 4 and 3, we obtain existence of a nontrivial
solution � for �P2� and the solution is unique up to translations of the origin. Moreover we can
prove the exponential decay of the solution at infinity by a standard argument of ordinary differ-
ential equations in Ref. 12. Therefore we can obtain a nontrivial solitary wave �0,�� for the
system of equations �1.12�–�1.17�.

In Sec. II, we shall give the main results, Theorems 2.1 and 2.2, and the proof of Theorems 2.1
and 2.2.
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II. THE MAIN RESULTS

Now we can state our main results.
Theorem 2.1: If �� ,�� is a solution of �P1� for a�1, then �=0.
Proof: From the first equation of the system �P1�,

− �0
d2�

d	2 = �− exp�� −
�2

2
� + 1 − a2��, in R ,

we note that d2� /d	2 and � have the same sign since �
0 and −exp��− ��2 /2��+1−a2�0 when
a�1. On the other hand, since ��W1,2�R�, by Sobolev embedding theorem �Ref. 1, Theorem 5.4�
� tends to zero as 	→0, and � is continuous, bounded. Thus � takes either positive maximum or
negative minimum, which is impossible because d2� /d	2 and � have the same sign. Therefore the
only possibility left is that �=0.

Theorem 2.2: The problem �P2� has a nontrivial solution � if and only if 1�c�c0, where
c0ª infc ;c
1,−exp�c2 /2�+c2+1
0�. Furthermore, if 1�c�c0, then the solution � is unique
up to translations of the origin, and it satisfies �after a suitable translation of the origin� the
following:

�i� ��	�=��−	�, 	�R �� is radial�,
�ii� ��	�
0, 	�R,
�iii� ��0�=	1, 	1ª inf	 ;	
0,−exp�	�−c2	1− �2	 /c2�+c2+1
0�,
�iv� ���	��0, 	
0, where the prime indicates the derivative,
�v� �, ��, �� have exponential decay at infinity, i.e., there exists C, 
0 such that

0 � ��	�, ����	��, ����	�� � C exp�− �	��, 	 � R .

Proof: Under the assumptions of Theorem 2.2, one solution of �P2� can be obtained as the
solution of the initial value problem

d2�

d	2 = exp��� −
1

	1 −
2�

c2

= h��� ,

��0� = 	1, ���0� = 0.

�P3�

The other solutions are obtained by translations, ��	�=��	+	*�,	*�R being a constant.
By the definition of c0 and 1�c�c0, there exists 	1
0 such that

	1 ª inf	;	 
 0,− exp�	� − c2	1 − �2	/c2� + c2 + 1 
 0�, h�	1� 
 0. �2.1�

On the other hand, if �2.1� holds, then H�	1�=−exp�	1�−c2	1− �2	1 /c2�+c2+1=0, thus 1�c
�c0.

Let � denote the solution of �P3�. This solution exists and is unique on a certain maximal

interval �−	̄ , 	̄�. Multiplying the equation in �P3� by �� and integrating from 0 to 	 yields

−
1

2
�d�

d	
�2

= − exp��� − c2	1 −
2�

c2 + c2 + 1, �	� � 	̄ . �2.2�

A bounded solution of Eq. �2.2� exists if and only if H�	� has a root in the interval �0,c2 /2�. It is
easy to see that H�0�=H��0�=0. In addition, when c
1, there is �0 such that �0�c2 /2, H����
�0 for 0����0 and H����
0 for �0���c2 /2. We can see that H�	� have a root in the
interval �0,c2 /2� if and only if H�c2 /2�
0. And the function H�c2 /2�=−exp�c2 /2�+c2+1 has
exactly one positive root c0
1. In conclusion, we obtain that �P2� admits the solitary wave
solution if and only if 1�c�c0.
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By ordinary differential equations methods, we can prove 	̄= +�, �i�, �ii�, �iii�, �iv�, and �v�.
For more details of the proof of the above statements, one can refer to Refs. 3 and 12.

Remark 2.3: By variational methods, in order to find the solutions for the problem �P1�, we
can find the critical points of the following functional:

I��,�� =
1

2
� ��0�d�

d	
�2

+ a2�2� −
1

2
� ��d�

d	
�2

+ b�2� −� F��,�� , �2.3�

where b
0, F�� ,��=e�−��2/2�−1+c2	1− �2� /c2�−c2+ 1
2�2− �b�2 /2�, �, ��W1,2�R�,

� ·denoting �R ·d	. There are three difficulties in considering the existence of critical points of the
functional �2.3�. The first is the functional �2.3� is not always continuous and differential at all
�� ,���W1,2�R��W1,2�R�. The second is the functional �2.3� is strongly indefinite in the sense
that it is neither bounded from above nor from below even under some compact perturbations. The
last is the loss of compactness, that is, the imbedding W1,2�R��Lq�R��2�q�2*=�� is not
compact because R is an unbounded domain. In Theorem 2.1 and Theorem 2.2, we have proved
the existence, the behavior at infinity and uniqueness of solitary waves for �P1� when a�1, 1
�c�c0. For example, if p=−�p, then a=1. However, we cannot deal with the problem �P1� when
0�a�1, 0�c�1, because the Euler functional �2.3� associated with �P1� is strongly indefinite.
Since the embedding WO�N�

1,2 �R��Lq�R��2�q�2*=�� is not compact �WO�N�
1,2 �R� is the set of all

spherically symmetric functions in W1,2�R��, we cannot use the method in Ref. 7, where its authors
used principle of symmetric criticality and limit index theory to obtain critical points for a strongly
indefinite functional. As F�� ,�� in �2.3� is not always positive or bounded from below, we also
cannot use the general linking theorem in Refs. 9 and 13 to obtain the existence of critical points
for the functional �2.3�. Meanwhile, �0, 0� is a trivial solution for the problem �P1�, the Leray-
Schauder fixed point theorem cannot be used to solve the existence of solutions for �P1�. In the
future work, we shall consider the problem �P1� when 0�a�1, 0�c�1 by other methods.
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A new energy-based stochastic extension of the Schrödinger equation for which the
wave function collapses after the passage of a finite amount of time is proposed. An
exact closed-form solution to the dynamical equation, valid for all finite-
dimensional quantum systems, is presented and used to verify explicitly that reduc-
tion of the state vector to an energy eigenstate occurs. A time-change technique is
introduced to construct a “clock” variable that relates the asymptotic and the finite-
time collapse models by means of a nonlinear transformation. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1990108�

The idea that Brownian motion might play a role in models for the collapse of the wave
function was first envisaged by Wiener and Siegel.1 Although that specific proposal did not in the
end fully account for the correct probability law, a number of authors have subsequently proposed
and developed dynamical collapse models driven by Brownian motion that have the key property
of being compatible with the probabilistic hypotheses of standard quantum mechanics. Progress in
this area over the last two decades can be broadly classified into two categories: �a� models based
on the idea of “spontaneous localization” of the wave function,2 and �b� models based on the
notion of collapse of the state vector to an energy eigenstate.3 See, e.g., the articles cited in Ref.
4 for accounts of these approaches.

The energy-based collapse models, with which we are concerned here, have the physical
property that the expectation of the future energy of the system is given by the initial energy. It has
been argued on phenomenological grounds5 that the characteristic time scale for collapse to an
energy eigenstate in such models is of the order

�R � �2.8 MeV

�H
�2

s, �1�

where �H is the initial energy uncertainty, and it has been demonstrated that the choice �1� is
consistent with empirical observations for a number of different examples of quantum systems.6

The time scale �R is indicative of the time it takes for the wave function to reach the immediate
vicinity of an energy eigenstate. That is to say, after the passage of several multiples of �R, the
state of the system is, with a high degree of probability, nearly indistinguishable from one of the
energy eigenstates. It should be emphasised, however, that strict collapse, in these models, is
achieved only asymptotically in time, and it has hitherto been unknown how to formulate a
consistent dynamical collapse model that exhibits a complete reduction of the state vector in a
finite period of time.

The purpose of this article is to introduce a new class of energy-based models for which the
collapse is completed after the passage of a specified time interval T. Further, we obtain an exact
closed-form expression for the state vector process that solves the dynamical equation. We show
that, remarkably, the finite-time collapse model and the standard infinite-time collapse models are
related by a time transformation of the form
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��t� =
tT

T − t
, �2�

where t is the clock time of the finite-time collapse model, and � is the clock time in the
asymptotic collapse model. Thus the finite-time collapse model can be viewed as a “fast-
forwarded” version of the asymptotic collapse model.

We begin by stating the main results of the paper. Let the dynamics of the state-vector process
�	�t
� be given by the following stochastic Schrödinger equation:

d	�t
 = − iĤ	�t
dt − 1
8�t

2�Ĥ − Ht�2	�t
dt + 1
2�t�Ĥ − Ht�	�t
dWt. �3�

Here

Ht =
��t	Ĥ	�t

��t	�t


�4�

is the expectation value of the Hamiltonian Ĥ in the state 	�t
, �Wt� is the Wiener process, and
�t=�T / �T− t�, where � is a parameter. Then starting from an arbitrary initial state 	�0
 the wave
function collapses to an energy eigenstate at time T. Energy is conserved in expectation, and the
probability of collapse to a state of energy Ei �i=1,2 ,3 ,… ,n� is in accordance with the Born law

�i =
��0	�̂i	�0


��0	�0

, �5�

where �̂i is the projection operator onto the Hilbert subspace of states with energy Ei.
Our model �3� contains two parameters, namely, the reduction time T and the energy volatility

parameter �, which has the units �energy�−1�time�−1/2. An application of the Ito product rule

d�XtYt� = Xt�dYt� + �dXt�Yt + �dXt��dYt� �6�

shows that the normalization of 	�t
 is preserved under �3�, so d��t 	�t
=0, and that �Ht� satisfies

dHt = �tVtdWt, �7�

where

Vt =
��t	�Ĥ − Ht�2	�t


��t	�t

�8�

is the energy variance. It follows from �7� that the energy process �Ht� has no drift and thus
satisfies the conservation law

E�Hu	�Ws�0�s�t� = Ht �9�

for 0� t�u, where E�−	�Ws�0�s�t� denotes conditional expectation given the trajectory of the
Wiener process from time 0 up to time t.

To verify the collapse property we shall examine the dynamics of the energy variance process
�Vt�. In particular, by use of the Ito rule �6� together with Jensen’s inequality we deduce that

V̄t � V0 − 
0

t

�s
2V̄s

2ds , �10�

where V̄t=E�Vt� is the unconditional expectation of the energy variance, which is nonnegative.

Since V̄t� V̄s for s� t, the inequality �10� remains valid if we replace V̄s with V̄T in the integrand.
It follows for any t�T that
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V̄t � V0 − �2 tT

T − t
V̄T

2 . �11�

Now suppose it were the case that V̄T�0. Then there would exist a time

t0 =
V0T

V0 + �2TV̄T
2

	 T �12�

such that the right-hand side of �11� vanishes and hence such that V̄t0
=0. This contradicts our

supposition, and hence we conclude that V̄T=0, and thus VT=0 with probability one.
To verify the Born law we must show that the conditional transition probability

�it =
��t	�̂i	�t


��t	�t

�13�

is conserved in expectation, i.e., that �i=E��it� for t�T. This follows from an application of Ito’s
rule, which implies that d�it=�t�Ei−Ht��itdWt and thus that ��it� has no drift. Because E��iT� is
the probability of collapse to a state with energy Ei, the conservation law shows that this is given
by the Born probability �i.

We now proceed to investigate the dynamical equation �3� further, with a view to obtaining a
closed-form solution. First we observe that �3� can be cast into an integral form that incorporates
the initial condition. In particular, it follows from �3� that

	�t
 = ÛtM̂t
1/2	�0
 , �14�

where Ût=e−iĤt is the standard unitary evolutionary operator associated with Ĥ, and

M̂t =
exp�Ĥ�0

t �s�dWs + �sHsds� − 1
2Ĥ2�0

t �s
2ds�

exp��0
t �sHs�dWs + �sHsds� − 1

2�0
t �s

2Hs
2ds�

�15�

is a positive operator-valued process. Next we introduce a process �Wt
*� defined by

Wt
* = Wt + 

0

t

�sHsds . �16�

With respect to the Wiener measure P, under which �Wt� is a standard Brownian motion, �Wt
*� is

a Brownian motion with drift. Therefore, by the well-known theorem of Girsanov there exists a
measure Q with the property that �Wt

*� is a Q-Brownian motion for t� �0,T�. Since the dynamical

law �3� preserves the normalization of 	�t
, it follows from �14� that ��0	M̂t	�0
= ��0 	�0
 for t
� �0,T�, and hence that

M̂t =
1


t
exp�Ĥ

0

t

�sdWs
* −

1

2
Ĥ2

0

t

�s
2ds� , �17�

where


t = exp�
0

t

�sHsdWs
* −

1

2


0

t

�s
2Hs

2ds� =
��0	exp�Ĥ�0

t �sdWt
* − 1

2Ĥ2�0
t �s

2dt�	�0

��0	�0


. �18�

We recall that at time t the probability of reduction to a state with energy Ei is given by �13�.
By use of �14�, the commutation relation �M̂t ,�̂i�=0, and the normalization condition

��0	M̂t	�0
= ��0 	�0
, it follows then that
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�it =
��0	�̂iM̂t	�0


��0	�0

. �19�

Substituting �17� into this relation we thus obtain

�it =
��0	�̂i exp�Ĥ�0

t �sdWs
* − 1

2Ĥ2�0
t �s

2ds�	�0


��0	exp�Ĥ�0
t �sdWs

* − 1
2Ĥ2�0

t �s
2ds�	�0


=
�i exp�Ei�0

t �sdWs
* − 1

2Ei
2�0

t �s
2ds�

�i�i exp�Ei�0
t �sdWs

* − 1
2Ei

2�0
t �s

2ds�
. �20�

Recalling that �s=�T / �T−s�, we find it convenient now to introduce a process ��t� defined by

�t = �T − t�
0

t 1

T − s
dWs

*. �21�

We observe that the right-hand side of �21� is an integral representation for a Brownian bridge7 in
the Q measure. Substituting �21� into �20� we infer that the reduction probability �it can be
expressed in terms of the variable �t as follows:

�it =
�i exp� ��tEiT−1

2
�2Ei

2tT

T−t
�

�i�i exp� ��tEiT−1
2

�2Ei
2tT

T−t
� . �22�

Further, on account of the relation Ht=�iEi�it for the energy process, we deduce that:

Ht =
�i�iEi exp� ��tEiT−1

2
�2Ei

2tT

T−t
�

�i�i exp� ��tEiT−1
2

�2Ei
2tT

T−t
� . �23�

In view of the exact solution to the asymptotic collapse model obtained in Ref. 8, the fact that
Ht and �it can be expressed as functions of �t and t suggests there might be a simple representation
for �t in terms of elementary random data that can be specified without reference to the state-
vector process. If so, we can substitute such a representation for �t into �23� to obtain a closed-
form solution to the stochastic equation, in place of the integral representation �14� which implic-
itly depends on �	�t
�.

We thus proceed as follows: we define a process ��t� by the relation

�t = �t − �tHT, �24�

where HT is the terminal value of the energy. We claim that the random variables �t and HT are
independent. To establish their independence it suffices to verify that

E�ex�t+yHT� = E�ex�t�E�eyHT� �25�

for arbitrary x, y. Using the tower property of conditional expectation we have

E�ex�t+yHT� = E�ex�tE�e�y−�tx�HT	�t� � . �26�

Let us consider the inner expectation E�e�y−�tx�HT 	�t�. Using expression �22� for the conditional
probability distribution of the terminal energy HT we obtain

E�e�y−�tx�HT	�t � = 
t
−1�

i

�ie
�y−�tx�Ei exp���tEiT − 1

2�2Ei
2tT

T − t
� .

Now �
t� is the density process for changing the measure from Q to P. That is to say, the
expectation E under P, in which �Wt� is a standard Brownian motion, is related to the expectation
EQ under Q, in which �Wt

*� is a standard Brownian motion, according to
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E�Xu	�Ws�0�s�t� =
1


t
EQ�
uXu	�Ws�0�s�t� , �27�

for any random variable Xu that can be expressed as a functional of the trajectory �Ws�0�s�u. Thus
making use of the fact that ��t� is a Brownian bridge under Q, we deduce, after some rearrange-
ment of terms, that

E�ex�t+yHT� = �
i

�i eyEi e�t�T−t�/2T�x2
. �28�

Here we have used the facts that if g is a zero-mean Gaussian random variable with variance 2,
then E�exg�=e�1/2�2x2

, and that the variance of the Brownian bridge ��t� is t�T− t� /T. This proves
the independence of ��t� and HT.

The result �28� also establishes that under P the process ��t� is Gaussian, and has mean zero
and variance t�T− t� /T for t� �0,T�. A similar line of argument shows for s� t that the covariance
of �s and �t is

Cov��s,�t� = s�T − t�/T . �29�

Therefore we conclude that ��t� is a P-Brownian bridge. As a consequence, there exists a Brown-
ian motion �Bt� such that ��t� admits an integral representation:

�t = �T − t�
0

t 1

T − s
dBs. �30�

Thus we have verified that the process ��t� can be expressed in the form

�t = �tHT + �t, �31�

where HT is the terminal energy, and ��t� is an independent Brownian bridge.
Conversely, given a discrete random variable HT taking the values �Ei� with probability ��i�,

and given an independent Brownian bridge process ��t� on the interval �0,T�, we can use the
ansatz �31� as a basis for constructing a closed-form solution to the dynamical equation �3�.

The argument can be sketched as follows. First, given ��t� as defined above in terms of HT and
��t�, let �it=P�HT=Ei 	�t� be the conditional probability that HT takes the value Ei when the value
of �t is specified. It follows by use of the Bayes formula that

P�HT = Ei	�t� =
�i���t	HT = Ei�

�i�i���t	HT = Ei�
, �32�

where

���t	HT = Ei� =� T

2�t�T − t�
exp�−

��t − �tEi�2T

2t�T − t� � . �33�

Expression �33� can be deduced from the fact that conditional on HT=Ei the variable �t in �31� is
normally distributed with mean �tEi and variance t�T− t� /T. Thus, we recover the expression �22�
for ��it�. Then by an application of Ito calculus we obtain

d�it = �t�Ei − Ht��itdWt, �34�

where now the process �Wt� is defined in terms of ��t� by the relation
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Wt = 
0

t 1

T − s
��s − �THs�ds + �t, �35�

and �Ht� is defined by Ht=�i�itEi. The process �Wt� thus determined turns out to be a standard
Brownian motion. This can be demonstrated by showing that �Wt� satisfies E�Wt 	 �Wu�0�u�s�
=Ws for s� t and �dWt�2=dt. Finally, if we write

	�i
 =
�̂i	�0


��0	�̂i	�0
1/2
�36�

for the standard Lüders states, then the state vector �	�t
� that solves �3� can be written in the form

	�t
 = e−iĤt�
i

��it	�i
 , �37�

or, more explicitly,

	�t
 = �
i

��i exp�− iEit + 1
2Ei�t�t − 1

4Ei
2�0

t �s
2ds�

��i�iexp� 1
2Ei�t�t − 1

4Ei
2�0

t �s
2ds�

	�i
 , �38�

where �s=�T / �T−s�, and �t=�tHT+�t. A straightforward calculation shows that 	�t
→ 	�k
 as
t→T, if we set HT=Ek in �38�. By taking the stochastic differential of �38�, and using �35�, we are
led back to the starting point �3�, which directly verifies that �38� is the solution to the dynamical
equation �3�.

We thus conclude that the substitution of �31� in �23� yields a closed-form expression for the
energy process in terms of the exogenously specifiable independent data �HT� and ��t�. As a
consequence, we are able to directly simulate the solution to the stochastic equation, as well as the
associated energy evolution �Ht�, for an arbitrary finite-dimensional quantum system.

Next, we remark on the interpretation of the finite-time collapse model �3�. First we observe

�cf. Ref. 7� that if �Bt� is a standard Brownian motion on the interval �0,T�, then the process �B̃��
defined by

B̃� = 
0

�T/��+T� T

T − s
dBs �39�

is a standard Brownian motion on the time interval �0,��. In particular, let us introduce a new
time variable by the relation ��t�= tT / �T− t�, and define

�� =
T

T − t
�t = �1 +

�

T
���T/��+T�. �40�

Then Eq. �31� can be put into the form

�� =
�tTHT

T − t
+

T�t

T − t
= ��HT + 

0

t T

T − s
dBs, �41�

on account of the integral representation �30�. Making use of relations �39� and

t =
�T

� + T
, �42�

we thus deduce that

�� = ��HT + B̃�. �43�
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However, this is the ansatz �cf. Ref. 8� that determines asymptotic collapse to an energy eigenstate.
That is to say, the expectation H�=E�HT 	��� determines the energy process �H�� associated with
the standard energy-based infinite-time collapse models. Therefore, if we take the infinite-time
collapse model and replace the time variable t with a clock ��t�, then as t→T, the clock ��t�
“ticks” faster and faster. Eventually, in a system for which time is measured by “internal” time t,
the collapse takes place in a finite time interval T, whereas in a system for which time is measured
by the clock variable ��t�, the collapse takes place asymptotically as �→�.

In summary, we have introduced a consistent energy-based collapse model that achieves state
reduction in finite time, thus meeting the “challenge” posed in Ref. 9. We have verified the
collapse property directly by solving the dynamical equation �3� explicitly for the state-vector
process �	�t
� in terms of independently specifiable random data. We have also obtained closed
form expressions for the energy process �Ht� and the reduction probability process ��it�. An
argument based on a time-change shows that the finite-time collapse model is related to the
infinite-time collapse model by a nonlinear transformation of the time variable.
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The no-cloning theorem says there is no quantum copy machine which can copy
any one-qubit state. Inner product preserving was always used to prove the
no-cloning of nonorthogonal states. In this paper we show that the no-cloning of
nonorthogonal states does not require inner product preserving and discuss the
minimal properties which a linear operator possesses to copy two different states at
the same device. In this paper, we obtain the following necessary and sufficient
condition. For any two different states ���=a�0�+b�1� and ���=c�0�+d�1�, assume
that a linear operator L can copy them, that is, L��� ,0��= �� ,�� and L��� ,0��
= �� ,��. Then the two states are orthogonal if and only if L��0,0�� and L��1,0�� are
unit length states. Thus we only need linearity and that L��0,0�� and L��1,0�� are
unit length states to prove the no-cloning of nonorthogonal states. It implies that
inner product preserving is not necessary for the no-cloning of nonorthogonal
states. © 2005 American Institute of Physics. �DOI: 10.1063/1.1996327�

I. INTRODUCTION

The no-cloning theorem from the work of Wootters and Zurek said there is no quantum copy
machine which can copy any quantum state.1–3 The authors in Refs. 1 and 4 demonstrated if a
quantum copy machine can copy two basis states, then it cannot copy their suppositions. Another
version of the no-cloning theorem was stated in Ref. 5. The authors in Refs. 6–8 used inner
product preserving to show that nonorthogonal states cannot be cloned by a unitary operator. The
no-cloning theorem was extended to mixed states by Barnum et al.3 Some authors presented
approximate copies of qubits.4,8 Mor suggested a type of the no-cloning principle and discussed
various cases in which orthogonal states cannot be cloned in principle.9

Let �0� and �1� be the basis states of a one-qubit system and �0,0� , �0,1� , �1,0� and �1,1� be
the basis states of a two-qubit system.

Let ���=a�0�+b�1�, where a and b are complex and

�a�2 + �b�2 = 1. �1�

Let ���=c�0�+d�1�, where c and d are complex and

a�Electronic mail: dli@math.tsinghua.edu.cn
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�c�2 + �d�2 = 1. �2�

Assume that a linear operator L can copy states ��� and ���, that is, L��� ,0��= �� ,�� and
L��� ,0��= �� ,��. By tensor product �� ,��= �a�0�+b�1�� � �a�0�+b�1��=a2�0,0�+ab�0,1�
+ab�1,0�+b2�1,1�. By the linearity of L, L��� ,0��=aL��0,0��+bL��1,0��. So we get

aL��0,0�� + bL��1,0�� = a2�0,0� + ab�0,1� + ab�1,0� + b2�1,1� . �3�

From that L��� ,0��= �� ,��, similarly we get

cL��0,0�� + dL��1,0�� = c2�0,0� + cd�0,1� + cd�1,0� + d2�1,1� . �4�

Since ��� and ��� are different, the determinant of the coefficient matrix

ad − bc � 0. �5�

Thus from Eqs. �3� and �4� we get by Gramer’s rule the following L��0,0�� and L��1,0��:
L��0,0��= �1/ �ad−bc����a2d−bc2��0,0�+bd�a−c��0,1�+bd�a−c��1,0�+bd�b−d��1,1��, L��1,0��
= �1/ �ad−bc���ac�c−a��0,0�+ac�d−b��0,1�+ac�d−b��1,0�+ �ad2−b2c��1,1��.

In this paper �x� denotes the norm of �x� or a complex number x. Let ���=L��0,0�� and ���
=L��1,0��, P= �a2d−bc2�2+2�bd�a−c��2+ �bd�b−d��2 and Q= �ac�c−a���2+2�ac�d−b��2+ �ad2

−b2c�2. Then

���2 = P/��ad − bc��2 �6�

and

���2 = Q/��ad − bc��2. �7�

II. LEMMA 1

Assume that a linear operator L can copy different states ��� and ���. If ��� and ��� are
orthonormal, then L��0,0�� and L��1,0�� are orthonormal.

Proof: First let us prove that L��0,0�� and L��1,0�� are unit length states. Since ��� and ��� are
orthonormal, �� ���=0, i.e.,

ac̄ + bd̄ = 0 �8�

where c̄ and d̄ are complex conjugates of c and d, respectively. From Eq. �8� we obtain that
�a�2�c�2= �b�2�d�2. By using Eqs. �1� and �2� �a�2�c�2= �1− �a�2��1− �c�2�. It follows that �a�2

+ �c�2=1. We can as well get �b�2+ �d�2=1.
We assume that a , b , c, and d are all real. It is not hard to extend the results in this paper to

complex a , b , c, and d. Thus we obtain that

a2 + c2 = 1, �9�

P= �a2d−bc2�2+2�bd�a−c��2+ �bd�b−d��2 and Q= �ac�c−a��2+2�ac�d−b��2+ �ad2−b2c�2. In P
and Q, simultaneously replacing b2 by �1−a2� �see Eq. �1�� and d2 by �1−c2� �see Eq. �2��,
respectively, P and Q are reduced into the following forms:

P = 2 + 2bda2 + 2bdc2 − a2 − c2 − 4a2c2db + 4ac3 + 4a3c − 4a3c3 − 4ac − 2bd , �10�

Q = − 4a3c3 − 4a2c2db + a2 − 2ac + 2ac3 + 2a3c + c2. �11�

Let us compute P and Q when ��� and ��� are orthogonal. Replacing bd by −ac �see Eq. �8��
and using Eq. �9� in Eqs. �10� and �11�, respectively, we obtain that P= �a2+c2�2=1 and Q= �1
+2ac��a2+c2�−2ac=1.
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Next let us compute the determinant of the coefficient matrix in Eq. �5� when ��� and ��� are
orthogonal. Simultaneously replacing b2 by �1−a2� �see Eq. �1�� and d2 by �1−c2� �see Eq. �2��
and bd by −ac �see Eq. �8�� and using Eq. �9�, we derive that �ad−bc�2= �a2+c2�=1.

From Eqs. �6� and �7� and the above it is easy to get ���=1 and ���=1. That is, L��0,0�� and
L��1,0�� are unit length states.

Second, we show that L��0,0�� and L��1,0�� are orthogonal. After omitting the factor the inner
product of L��0,0�� and L��1,0�� is �a2d−bc2�ac�c−a�+2bd�a−c�ac�d−b�+bd�b−d��ad2−b2c�
�replacing b2 by �1−a2� �see Eq. �1�� and d2 by �1−c2� �see Eq. �2���

=− �a − c��a3cd − bd2ac + b2dac − ac3b − b2d + bd2�

�using a2+b2=1 and c2+d2=1�

=− �a − c��d − b��ac + bd� .

Equation �8� implies that L��0,0�� and L��1,0�� are orthogonal.
Examples: The following combinations of a , b , c, and d satisfy ac+bd=0, that is, ��� and ���

are orthogonal. It is easy to verify that ���2=1= ���2.

1. a=	2/2, b=	2/2, c=	2/2, d=−	2/2.
2. a=	3/2, b=1/2, c=1/2, d=−	3/2.
3. a=3/5, b=4/5, c=4/5, d=−3/5.

Remark: However, that L��0,0�� and L��1,0�� are orthogonal cannot guarantee that ��� and ���
are orthogonal. For example, ���=a�0�+b�1� and ���=a�0�−b�1�, where a2+b2=1 and a� ±b.
Though L��0,0�� and L��1,0�� are orthogonal, �� ����0, namely, ��� and ��� are not orthogonal.

Corollary: For any two orthogonal states, there is a unitary operator which can copy them.
Proof: Let ���=a�0�+b�1� and ���=c�0�+d�1� be orthogonal states. Let the truth table be the

following matrix L.

�0,0� �0,1� �1,0� �1,1�

�0,0� a2d−bc2

ad−bc

bd�a−c�

ad−bc

bd�a−c�

ad−bc

bd�b−d�

ad−bc
�0,1� 0 −	2/2 	2/2 0

�1,0� ac�c−a�

ad−bc

ac�d−b�

ad−bc

ac�d−b�

ad−bc

ad2−b2c

ad−bc

�1,1� 0 −	2/2 	2/2 0

It is easy to verify that L is unitary by Lemma 1 and not hard to show that L��� ,0��= �� ,��
and L��� ,0��= �� ,��.

III. LEMMA 2

Assume that a linear operator L can copy two different states ��� and ���. If L��0,0�� and
L��1,0�� are unit length states, then ��� and ��� are orthogonal.

Proof: Since ���=1, from Eq. �6� we obtain that P= �ad−bc�2, and since ���=1, from Eq. �7�
we get that Q= �ad−bc�2. Thus P−Q=0. Using Eqs. �10� and �11�, equation P−Q=0 is reduced
into the following one:

2 + 2bda2 + 2bdc2 − 2a2 − 2c2 + 2ac3 + 2a3c − 2ac − 2bd = 2�a2 + c2 − 1��ac + bd − 1� = 0.

There are two cases. Case 1: a2+c2=1 and case 2: ac+bd=1. We shall show that in case 1 ��� and
��� are orthogonal and case 2 does not occur.

Case 1 in which a2+c2=1: By simultaneously replacing b2 by �1−a2� �see Eq. �1�� and d2 by

082102-3 Minimal requirements for no-cloning theorem J. Math. Phys. 46, 082102 �2005�

                                                                                                                                    



�1−c2� �see Eq. �2��, it is reduced that �ac�2− �bd�2= �ac�2− �1−a2��1−c2�=−1+c2+a2=0. Hence
�ac�2− �bd�2= �ac−bd��ac+bd�=0. There are two subcases.

1.1 Subcase 1.1: ac+bd=0, that is, ��� and ��� are orthogonal.
1.2 Subcase 1.2: ac−bd=0, that is,

ac = bd . �12�

We shall show that in subcase 1.2 ��� and ��� are also orthogonal. Let us first compute the
determinant of the coefficient matrix �5�. Simultaneously replacing b2 by �1−a2� �see Eq. �1��, d2

by �1−c2� �see Eq. �2�� and bd by ac �see Eq. �12��, we derive that �ad−bc�2=a2d2−2acbd
+b2c2=a2�1−c2�−2ac�ac�+ �1−a2�c2=a2−4a2c2+c2. Using a2+c2=1, it follows that �ad−bc�2

=1−4a2c2= �1−2ac��1+2ac�. By requirement for the determinant of the coefficient matrix in Eq.
�5�, �ad−bc�2= �1−2ac��1+2ac��0.

Next let us compute P in Eq. �10� and Q in Eq. �11� by replacing bd by ac �see Eq. �12�� and
using a2+c2=1. We get that P=1−8a3c3= �1−2ac��4a2c2+2ac+1� and ���2= �4a2c2+2ac
+1� / �1+2ac�; Q=1−8a3c3= �1−2ac��4a2c2+2ac+1� and ���2= �4a2c2+2ac+1� / �1+2ac�. Let
���2= ���2=1. Then ac=0. From ac=bd, we obtain ac+bd=0. In other words, ��� and ��� are also
orthogonal for subcase 1.2.

Consequently when a2+c2=1, we derive that ac+bd=0, namely, ��� and ��� are orthogonal.
Case 2 in which ac+bd=1: We shall show that case 2 does not occur. If ac+bd=1, then

�ac+bd�2−1=a2c2+2acbd+b2d2−1=0. Simultaneously replacing b2 by �1−a2� �see Eq. �1��, d2

by �1−c2� �see Eq. �2�� and bd by �1−ac�, we infer that a2c2+2ac�1−ac�+ �1−a2��1−c2�−1
=−�a−c�2=0. It follows that a=c.

Next let us compute the determinant of the coefficient matrix �5� in the case ac+bd=1.
Simultaneously replacing b2 by �1−a2� �see Eq. �1��, d2 by �1−c2� �see Eq. �2��, and bd by �1
−ac�, we derive that �ad−bc�2=a2d2−2adbc+b2c2=a2�1−c2�−2ac�1−ac�+ �1−a2�c2= �a−c�2.
By the requirement for the determinant of the coefficient matrix in Eq. �5� ad−bc�0, it follows
that a�c.

Therefore this case contradicts our hypothesis for the determinant of the coefficient matrix
ad−bc�0 in Eq. �5�. In other words, case 2 does not happen.

IV. THE NO-CLONING OF NONORTHOGONAL STATES DOES NOT REQUIRE INNER
PRODUCT PRESERVING

The authors always used inner product preserving to prove the no-cloning of nonorthogonal
states.6–8 From Lemma 2, it is easy to see that we only need linearity and that L��0,0�� and
L��1,0�� are unit length states to prove the no-cloning of nonorthogonal states. It shows that inner
product preserving is not necessary for the no-cloning of nonorthogonal states.

The following examples show when ��� and ��� are not orthogonal, L��0,0�� and L��1,0�� are
not unit length states. When a=3/5, b=4/5, c=3/5. and d=−4/5, ���2=18/25 and ���2

=337/225; when a=	3/2, b=1/2 ,c=	3/2, and d=−1/2, ���2=5/6, ���2=3/2.

V. CLONING LEADS TO INFINITY OF PROBABILITY AMPLITUDE

Let ���=c�0�+d�1�, where �c�2+ �d�2=1 and c�0. Assume that a linear operator L can copy
states �1� and ���, that is, L��1,0��= �1,1� and L��� ,0��= �� ,��. By the linearity of L and tensor
product, it is easy to derive that L��0,0��=c�0,0�+d�0,1�+d�1,0�+ ���d2−d� /c��1,1�. Let d�0.
Then d tends to −1 as c approaches 0 since �c�2+ �d�2=1. Therefore the norm of probability
amplitude ��d2−d� /c� of state �1,1� tends to plus infinity as c approaches 0. For example, when
c=3/5 and d=−4/5, ��d2−d� /c�=12/5. It contradicts that the norm of probability amplitude
should be 1 or less than 1.

Let ���=L��0,0��. Then the norm of ��� is ���2= �c�2+ �d�2+ �d�2+ ��d2−d� /c�2 and clearly
���� 1. Notice that the norm of �0,0� is 1. It says again that cloning contradicts the norm
preserving. For example, when c=3/5 and d=−4/5, ���=	77/45�1.
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VI. CONCLUSION

As is well known, the no-cloning theorem has far-reaching consequences for quantum infor-
mation and quantum computing. Nielsen thought “what if we allow cloning devices that are not
unitary?” is a good question which has been the subject of much investigation. See page 532 in
Ref. 10.

In this paper we demonstrate that it only needs linearity and that L��0,0�� and L��1,0�� are unit
length states to prove the no-cloning of nonorthogonal states. Clearly we do not require norm
preservation for any state. It means that we do not make any use of unitarity. In theory, it is
possible to derive a deeper result than the no-cloning principle by using the unitarity. Intuitively it
seems that it is easier to implement the operator required in this paper than a unitary operator.
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In the study of d-dimensional quantum channels �d�2�, an assumption which
includes many interesting examples, and which has a natural physical interpreta-
tion, is that the corresponding Kraus operators form a representation of a Lie
algebra. Physically, this is a symmetry algebra for the interaction Hamiltonian. This
paper begins a systematic study of channels defined by representations; the famous
Werner-Holevo channel is one element of this infinite class. We show that the
channel derived from the defining representation of su�n� is a depolarizing channel
for all n, but for most other representations this is not the case. Since the standard
Bloch sphere only exists for the qubit representation of su�2�, we develop a con-
sistent generalization of Bloch’s technique. By representing the density matrix as a
polynomial in Lie algebra generators, we determine a class of positive semidefinite
matrices which represent quantum states for various channels defined by finite-
dimensional representations of semisimple Lie algebras. We also give a general
method for finding positive semidefinite matrices using Lie algebraic trace identi-
ties. This includes an analysis of channels based on the exceptional Lie algebra g2

and the Clifford algebra. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1945768�

I. INTRODUCTION

A quantum channel is a model for a particular snapshot of the time evolution of a density
matrix, and especially for the evolution of pure into mixed states. Let H be a Hilbert space of
dimension n, and let gl�H� denote the vector space of all linear transformations H→H. A map
E :gl�H�→gl�H� is said to be completely positive �CP� if it is linear and E � 1 is positive on
H � H� for all H�. The map is said to be trace-preserving if Tr E�A�=Tr A for all A�gl�H�.

Definition 1: A CPT map (or stochastic map or channel) is a completely positive, trace-
preserving linear transformation E :gl�H�→gl�H�.

Of central importance to the current work is a famous theorem of Kraus1 which gives a simple
representation of any quantum channel.

Theorem 1 (Kraus decomposition): For any quantum channel E, there exists a finite set of
operators

M0,M1,M2,…,Mk, where k � �dim H�2,

such that

E��� = �
�

M��M�
† with �

�

M�
† M� = 1 . �1�

In this situation, �1� is called the Kraus representation, the operator sum representation or the
Stinespring form, while ��M�

† M�=1 is sometimes called the normalization condition and is just
the statement that the map is trace preserving.

A proof of this theorem may be found in the original article of Kraus,1 or in the book by
Nielsen and Chuang.2 We simply note that the converse, namely that any operator of the form �1�
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satisfies the conditions of Definition 1, is clearly true. A stochastic map may also be obtained as
the partial trace of a unitary conjugation on a larger space; see Ruskai,3 Sec. III D for a discussion.
The representation �1� is sometimes called the Stinespring form since its existence follows from
the Stinespring dilation theorem.4

This is a general framework, and in order to obtain explicit results, further assumptions are
necessary. A mathematically elegant assumption with important physical consequences is that the
possible errors introduced in the decoherence process are not arbitrary, but that they correspond to
the action of the infinitesimal generators of a Lie group G of continuous symmetries. For example,
the qubit depolarizing channel is a model of a decohering qubit with an su2 symmetry. With
probability p an error occurs, which is implemented by one of the generators of the Lie algebra su2

in its two-dimensional irreducible representation. These generators admit direct physical interpre-
tations as bit-flip errors, phase-flip errors, or combinations of those. The qubit depolarizing chan-
nel admits a beautiful generalization to a channel with k possible errors based on a d-dimensional
representation H of a k-dimensional Lie algebra g.

The situation just described, in which the error generators live in a matrix representation of a
semisimple Lie algebra, arises naturally in the model of Markovian dynamics considered by Lidar,
Chuang, and Whaley.5 This was shown to have important consequences for the possibility of
decoherence-free dynamics; see Lidar and Whaley,6 and references therein for an up-to-date re-
view. The present work may be considered as a further exploration of the consequences of that
model.

Suppose the M� span the space of Hermitian operators, so that �=0,… , n2−1. Define �0

=1 and let �a for a�1 denote the n-dimensional Gell-Mann matrices, which are standard genera-
tors for the Lie algebra sun. Then ���� is a basis for the space of Hermitian matrices. Taking M0

proportional to the identity, there exist constants Uab such that Ma=�bUab�b. If U is a unitary
matrix, then we may take each M� proportional to �� without changing the quantum channel
defined by these Kraus operators.

In the latter case, one may readily calculate ��M��M�
† , since � itself may be expanded in the

�� basis, and the Gell-Mann matrices in any dimension satisfy elegant product identities. This
leads to a simple, elegant and explicit formula for the action of the sun channel; if �= �1/d�1
+��v��� then the channel multiplies v by a scalar given in Sec. III. This is a wonderful calcu-
lational tool, and also has physical significance. A quantum channel models the interaction of a
decohering system with its environment, and the identification of the M� as generators of a Lie
algebra is related to symmetry of the interaction Hamiltonian.5

The generalizations of the sun calculations to other Lie algebras and to higher-dimensional
representations are illuminating, and have not appeared in the literature before. These cases nec-
essarily have the property that not all of the Hermitian matrices in that dimension are linear
combinations of representation matrices, so direct generalization of the calculational method for
sun will not work, and a new idea is required. This is the subject of Sec. IV. We give a detailed
analysis of the spin-1 representation; however, many of the formulas we use there generalize
readily to higher spin. In an interesting twist, the spin-one case turns out to be a generalization of
the Werner-Holevo channel. Section V analyzes two channels, based, respectively, on the excep-
tional algebra g2 and the Clifford algebra.

In Sec. VI we generalize some aspects of the Bloch sphere to density matrices constructed
from Lie algebra representations. It is shown that for each representation, there is a class of
positive semidefinite, Hermitian trace-one density operators parametrized by a closed, bounded
�hence compact� submanifold of Euclidean space, which we term the Bloch manifold. Explicit
bounds are given on the size of these manifolds. A general method is given for finding the Bloch
manifold exactly, using trace identities.

II. QUANTUM CHANNELS FROM LIE ALGEBRA REPRESENTATIONS

This section contains our notations and conventions for the generalized depolarizing channels
which will be studied in detail in later sections. The possibility of defining a quantum channel
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based on a representation of a compact Lie algebra was mentioned briefly, but never elaborated
upon, in a paper of Gregoratti and Werner.7 In any case, it is not necessary that the Lie algebra be
compact.

A. Pure Lie algebra channels

It is a standard convention8,9 to normalize the canonical generators for the defining represen-
tation of sun so that

Tr��a�b� = 2�ab. �2�

This has the desirable feature that the canonical generators for n=2 are the Pauli matrices, and
those for n=3 are the familiar Gell-Mann matrices, while inserting factors of 2 in certain formulas.
With convention �2�, these generators will be orthogonal but not orthonormal with respect to the
Killing form. We return to this point below.

On a general semisimple Lie algebra, the Killing form K is defined as

K�X,Y� = Tr�ad�X� � ad�Y�:g → g� ,

where the trace is taken in the adjoint representation. At the moment we focus on semisimple
algebras g, for which the Killing form is nondegenerate. Let � be an irreducible representation of
g, let Xi be any basis of g, and let Xi� denote the dual basis with respect to the Killing form. The
Casimir operator

C2��� = �
i

��Xi���Xi��

does not depend on the choice of basis, and by Schur’s lemma is proportional to the identity, so we
write C2���=c2���1. If Xi is orthonormal with respect to K, then C2���=�i��Xi�2. For reducible
representations, C2��� may not be proportional to the identity.

Definition 2 (Lie algebra channel: Let g denote a Lie algebra of dimension k, with basis
�Xi : i=1,… ,k�. Let � be an irreducible g-representation on the Hilbert space H. The generalized
depolarizing channel or Lie algebra channel is defined to be the channel in which an error occurs
conditionally with probability p, causing an initial state ��	�H to evolve into an ensemble of the
k states ��Xi���	, all with equal likelihood.

The Kraus operators for the channel of Definition 2 are given by

M0 = 
1 − p1, Mi = 
	p��Xi� , �3�

where 	 is a normalization constant which will be fixed momentarily. The operators M� are
Hermitian if the representation is unitary and if p� �0,1�, and are constrained to satisfy
��M�M�=1, which fixes the value of the constant 	 appearing in �3�. By definition,

�
�

M�
2 = �1 − p�1 + 	p�

i

��Xi�2.

If �i��Xi�2=Z ·1, where Z is a constant �which in most cases we can take to be real�, then

	 =
1

Z
.

If Xi is orthonormal with respect to the Killing form, then Z=c2���. More generally, if the basis
satisfies

K�Xi,Xj� = n �ij, n 
 0,

then it can be rescaled to an orthonormal basis by a single constant. In this situation,
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Z = n c2���, 	 =
1

Z
. �4�

Defining the Killing norm by �x�K
2 =K�x ,x�, we note that if

�Xi�K � �Xj�K,

for some pair of indices i, j, then the normalization condition cannot be satisfied.
What if the representation is reducible? Suppose H=V � W as a direct sum of irreducible

g-modules, and Xi is orthonormal with respect to K. Then there exist independent constants ZV and
ZW such that the operator

C2��� = �
i

��Xi�2 = �ZV 0

0 ZW


as a block decomposition on V � W. If ZV�ZW, then it is not possible for the Kraus operators �3�
to give a trace-preserving map. On the other hand, if ZV=ZW then they do define a CPT map even
though the representation is reducible.

What if p
1? Then M0= i
p−11, and we have

�
�

M�M�
† = �2p − 1�1 .

Thus the map cannot be trace-preserving unless p=1, which is a contradiction. A similar argument
shows that p�0 does not give a trace-preserving map. Thus, if we wish to study the framework
of Definition 2, then we must limit ourselves to p� �0,1�.

We summarize the results of the last few paragraphs in a theorem.
Theorem 2 (normalization): Consider the Kraus operators,

M0 = �1 − p�1/21 and Mi = �	p�1/2��Xi� ,

for i=1,… ,k. If

�i� p� �0,1�,
�ii� The representation � of g is a direct sum of irreducible representations all with the same

quadratic Casimir, and
�iii� ∃ n
0 such that K�Xi ,Xj�=n �ij for all i, j,

then ��M�M�=1 with 	 given by Eq. �4�. Conversely, if any of (i)–(iii) is not satisfied, then
(except in trivial cases) there does not exist 	 s.t. ��M�M�=1, and the M’s do not give rise to a
quantum channel.

The coefficients of the M� in �3� admit a natural “probability of error” interpretation, but in
Sec. II B we investigate the possibility of modifying them to complex coefficients in order to
obtain a channel. We find that no new channels arise unless one is willing to promote the coeffi-
cients to operators.

Using �1�, the Lie algebra channel has the explicit Kraus decomposition

� → E��� = �1 − p�� +
p

Z
�
i=1

k

��Xi�� ��Xi� . �5�

As is proven in standard textbooks9 �see Theorem 8.9�, the trace of any generator of any repre-
sentation of a compact simple Lie algebra is zero, so in particular, the ��Xi� are traceless. More-
over, it is clear that this transformation satisfies the defining properties for a quantum channel,
given here as Definition 1.

Two operator-sum representations
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�
�

M��M�
† and �

�

N��N�
†

describe the same channel if and only if there exists a unitary matrix U�� such that N�=U��M�.
Therefore, it is immaterial which basis of the Lie algebra that we use, as long as the two bases are
related by a U�N� similarity transformation. As noted in Theorem 2, in order to build a channel
satisfying the normalization condition, we are forced to use a basis satisfying “orthonormality,”
K�Xi ,Xj�=n �ij. But any two “orthonormal” bases in this sense are related by a unitary transfor-
mation, so the CPT map constructed above is independent of the basis chosen for g.

Given a Lie algebra g and a representation � on a vector space of dimension d, the CPT map
�5� is a model for decoherence through a d-level noisy quantum channel, with errors that are not
completely arbitrary; rather, they transform the state in a way determined by the representation of
g.

The channels �5� have an extremely interesting structure. For a certain subclass of possible Lie
algebra representations, the channel �5� has an action which, like the qubit case, is most simply
described by a Bloch parametrization with polarization vector v�Rk, where k=dim g. In these
cases, we show that �5� decreases the length of v, and so deserves the title generalized depolar-
izing channel. In other cases of interest, a single Bloch vector is not sufficient, but the action of the
channel can be described by similar rescalings of symmetric 2-tensors or higher-rank objects.

A natural step, which we begin in the next section, is to calculate the expression �5� explicitly
in certain representations of classical Lie algebras.

Remark 1: When we use the terminology “the g-channel,” where g is a semisimple Lie
algebra, the fundamental representation of g is implied. Examples of fundamental representations
include the n-dimensional defining representation of sun, and the seven-dimensional irrep of G2.

It is easy to see that the Lie algebra channel �5� always has the property of being doubly
stochastic, i.e., E�1�=1. See, for example, Ref. 7 for further discussion.

B. A note on coefficients and extensions

As discussed prior to Theorem 2, for p� �0,1� the transformation defined by �5� is CP but not
T, and it is possible to recover a CPT map �channel� only if we consider different coefficients for
the Kraus operators �3�. To this end, let us first consider

M0 = m01 and Mi =
m̃

Z

��Xi� , �6�

where m0, m̃�C are some complex constants. Then to obtain a trace-preserving map, we require

�
�

M�
† M� = �m0�2 + �m̃�2 = 1.

This condition is equivalent to the statement that the point �m0 , m̃��C2�R4 lies in the unit
3-sphere S3�R4.

We can now view the coefficients of the Kraus operators �3� as the projection S3→S1. Intro-
duce a parameter q� �−1,1� such that p=q2, and write �3� as M0= ±
1−q21, and Mi

= �q /
Z���Xi�. Then ignoring 
Z, the coefficients of Mi and M0 give a point on the unit circle.
Further, m0 and m̃ only enter through the square of their magnitude, so the two additional param-
eters associated to projecting from the 3-sphere are fictitious, and �5� is in fact the most general
channel of this kind.

A nontrivial generalization is obtained by promoting m0 and m̃ to operators. However this
“generalization” is a special case of a well-known operation which extends an existing channel EB

using any set of operators which satisfy the normalization condition �1�. Given two sets of Kraus
operators A1 ,… ,Ar and B1 ,… ,Bs acting on the same vector space and satisfying
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�
i=1

r

Ai
†Ai = �

j=1

s

Bj
†Bj = 1 ,

we note that the set of operators

�A1,…,Ar−1,B1Ar,…,BsAr� �7�

also satisfies the normalization condition, because

�
j=1

s

�BjAr�†BjAr = Ar
†Ar.

This construction is natural with respect to the channel EB defined by Bi, in the sense that if �Bi��
is another set of Kraus operators defining the same channel, then the channel defined by �7� is also
the same. Naturality does not hold for the A operators, but this will not concern us here. We call
this procedure the extension of EB by the A operators, on the element Ar.

For example, one may notice that the operators Z−1/2��Xi� of the preceding section satisfy the
normalization condition since the sum of their squares is a Casimir element, and the normalization
constant Z cancels the numerical factor. Consider this the B-channel, and extend it on every
element by the same set of Kraus operators. This yields a “double g-channel” with Kraus operators

� 1

Z
XiXj:i, j = 1,…,k� . �8�

These operators generate the image of g � g under the universal homomorphism expressed in the
commutative diagram �18�.

This underscores the fact that, aside from the basic examples of quantum channels provided
by Sec. II A, many further examples may be obtained by extension, as in �7�. As in the basic Lie
algebra channels, computations with extended channels are facilitated by the existence of non-
trivial identities which exist among the representation matrices. Channel �8� is interesting because
for many representations, the matrices ��Xi� do not span the entire space of traceless dd
matrices, but the set of products ��Xi���Xj� spans a subspace of larger dimension. Therefore the
extension leading to �8� is a way of generating a channel whose Kraus operators come closer to
spanning the space of all matrices in the appropriate dimension. If a density matrix were written
as �=�ijwijXiXj, and if the representation satisfies an identity for reduction of products of six
generators, then one can calculate the action of �8� on � explicitly.

We are now in a position to interpret the channel defined by �6� with complex coefficients m0,
m̃ as the extension �7� of the identity channel with the unusual Kraus representation B1=m01,
B2= m̃1 by the nontrivial Lie algebra channel Ai=Z−1/2��Xi� on the element B2. We may use
naturality in B to rotate to the case m̃=q� �−1,1� and m0= ±
1−q2 whence we recover �5�, so
there is no advantage to complexifying the coefficients. Given any channel whose set of Kraus
operators do not contain 1, we can always extend it so that they do contain the identity by this
method.

For the rest of this paper, we will assume that the Kraus operators take the form �3� in order
to retain the beautiful probabilistic interpretation given by Definition 2. As we continue, we will
keep in mind that extensions are possible, and develop methods which easily generalize.

III. THE sun CHANNEL

A. Bloch methods for sun

The sun channel, our first example, is the channel built from the n-dimensional defining
representation �also called standard representation� of sun. It is simpler than most other channels
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studied in this paper, because it admits a complete solution. Its action on any arbitrary input
density matrix can be calculated in closed form using the Bloch parametrization, and in all cases
it is a depolarizing channel.

One reason for the beauty and simplicity of the sun channel is that any n-dimensional density
matrix admits a Bloch vector parametrization in terms of sun generators. This is because k
�dim�sun�=n2−1 is only one less than n2, the dimension over R of the space of nn Hermitian
matrices.

Any nn Hermitian matrix � may be represented as

� =
1

n
�tr���1 + T�, T � sun,

and having chosen a basis Xa for sun, it follows that

T = �
a=1

k

vaXa � v · X ,

for some coefficient vector v. In analogy with the well-known parametrization of the 22 density
matrices as the interior of a sphere, we will refer to v as the Bloch vector.

For n�3 it may be hard to visualize the geometry of the space of density matrices in terms of
the geometry of v. This question was first considered in the n=3 case by MacFarlane et al.8

Section VI undertakes a systematic study of the geometry of the space of v which lead to a valid
density matrix in various representations. We call this space the Bloch manifold and give details of
the geometry for a number of important examples, including all representations of su2, and the
n-dimensional irrep of sun.

B. The standard representation

In this section, we take � to be the standard representation of sun on a vector space H of
dimension n. For simplicity, we let Xi denote both the generator of sun and its image under this
representation. One could now compute the quadratic Casimir in the standard way using roots and
weights, but it will turn out that the value of this Casimir as well as all other properties we will
need to obtain a complete solution to the sun channel follow from the single relation

XiXj = ��ij1 + �
k

QijkXk �9�

for some constant � and tensor Qijk. Of course, this relation is just the decomposition of a
Hermitian matrix into a trace part with trace n��ij, and a linear combination of the Xk, which
generate the space of traceless matrices.

Elements of the standard basis of sun are called Gell-Mann matrices, and they satisfy

Tr�XiXj� = 2�ij ,

so �=2/n. Many properties of the Q tensor already follow from the single assumption that Xi

generate a Lie algebra. It is immediate that Q�ij�k= if ijk where �ij� denotes antisymmetrization, and
f ijk is 1 /2 times the structural tensor of the Lie algebra. It follows that

Qijk = dijk + if ijk

for some dijk symmetric in the first two indices. Also, �9� implies

�Xi,Xj� =
4

n
�ij1 + 2�

l

dijlXl.

Multiplying by Xk and taking the trace yields
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dijk = 1
4Tr��Xi,Xj�Xk� ,

therefore the d-tensor is completely symmetric, and interchange of any two indices has the effect
of complex conjugating Q. Since �iXiXi is a multiple of the identity,

�
i

diik =
1

2
Tr���

i

XiXiXk = 0. �10�

It follows from the associativity of matrix multiplication that

f ijmfklm =
2

n
��ik� jl − �il� jk� + dikmdjlm − djkmdilm

with a sum over m implied. Contracting j and k and using �10� yields

dijmdljm = f ijmf jlm + �2n −
4

n
�il.

By a general property of compact semisimple Lie algebras, the structure constants satisfy

f ijkf ljk = n�il. �11�

Therefore, dijmdljm= �n− �4/n���il. Using this and �11�, we obtain

QijmQljm = dijmdljm − f ijmf ljm = −
4

n
�il. �12�

C. Solution of the sun channel

For this basis of sun, Z=2k /n, where k=n2−1. The action of the channel

� → E��� = �1 − p�� +
pn

2k
�
i=1

k

Xi�Xi

on the density matrix

� =
1

n
�tr���1 + v · X�

is given by

E��� =
tr���

n
1 +

1 − p

n
v · X +

p

2k
�
i,j

v jXiXjXi. �13�

Using �9� to expand the triple product, we have

�
j,i

v jXiXjXi = �v · X + ��
i,j

vaQiji1 + �
i,j,k,a

v jQijkQkiaXa.

Since E��� has unit trace, it must be the case that �iQiji=0. The same conclusion also follows from
�10�, but it is amusing to see that �iQiji must vanish because this is a CPT map. Therefore,

E��� =
tr���

n
1 +

1 − p + p/k

n
v · X +

p

2k
�

i,j,k,a
v jQijkQkiaXa. �14�

Using �12�, we have finally
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E��v� =
1

n
�tr���1 + f�p,n�v · X� ,

where

f�p,n� = 1 − p −
p

k
=

�1 − p�n2 − 1

n2 − 1
. �15�

In the qubit case, f�p ,2�=1−4p /3, which is consistent with standard results.

D. Properties of the solution

The sun channel maps an initial density matrix to a linear combination of itself and the
identity, i.e., it has the form

����� = �� + �1 − �

n
1 . �16�

This is the standard definition of the n-dimensional depolarizing channel. The information-
carrying capacity of this channel was studied in great detail by King,10 where notably the
Amosov-Holevo-Werner11 conjecture was established for channels which are products of a depo-
larizing channel with an arbitrary channel. Channels based on representations of semisimple
algebras generically do not take the form �16�, except possibly on special subsets of the space of
density matrices; see Theorem 3.

The depolarizing channel on an n-dimensional Hilbert space satisfies complete positivity if
and only if

1

1 − n2 � � � 1.

The sun channel has the form �16� for �= f�p ,n�. Note that the relation

− 1

n2 − 1
� f�p,n� � 1

holds for all n�2. In fact, f�p ,n� saturates both of these inequalities at the endpoints of the
allowed range, 0� p�1.

Knowing that the sun channel is depolarizing allows an easy calculation of the minimal von
Neumann output entropy,

Smin =
− np

1 + n
ln� np

n2 − 1
 − �1 −

n p

1 + n
ln�1 −

n p

1 + n
 ,

with large n behavior limn→� Smin/ ln�n�= p.
At the special value p=1−n−2, the sun channel is a constant map from Rn2−1 into the space of

density matrices,

E��v� =
1

n
1 for all v, at p = pc � 1 − n−2. �17�

Physically, if the probability of error happens to be p= pc, then sun-decoherence evolves an
arbitrary initial density matrix into a completely uniform ensemble consisting of pure states with
equal probabilities. This is the “worst” value of p, in the sense that all information about the initial
density matrix has been lost. This result is stable in the sense that if p is only approximately equal
to the critical value, the initial density matrix decoheres into an approximately uniform ensemble.
We will see in Sec. IV that for other Lie algebra channels, there are critical values of p which
generalize �17�.
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IV. OTHER REPRESENTATIONS

A. General remarks

In the n-dimensional standard representation of sun, the representation matrices ��Xi� span the
space of all traceless Hermitian matrices, and thus an arbitrary initial density matrix can be
expressed in terms of the ��Xi� and the identity. As we consider higher-dimensional representa-
tions, the representation matrices become increasingly sparse in the space of all traceless matrices,
and thus only some fraction of the set of all possible density matrices can be expressed in the form
d�

−11+�ivi��Xi�. Also for higher-dimensional irreducible representations, �9� does not hold. There-
fore, ideas are needed to further extend our analysis to irreps which have higher dimension than
the fundamental representation. This is the subject of Sec. IV. Let d=d� denote the dimension of
the representation �, and gld as usual denotes the associative algebra of all dd matrices.

A representation � of g lifts to a unique associative algebra homomorphism �̃ of the universal
enveloping algebra U�g�, by the universal property most elegantly expressed in the commutative
diagram

�18�

The action of �̃ is simply to convert the tensor product to matrix multiplication, i.e.,
�̃�x � y�=��x� ·��y�, etc. The interesting property about this commutative diagram, and one which
gives a computational method for Lie algebra channels, is that if � is an irreducible faithful
representation and if g is a semisimple Lie algebra, then �̃ is surjective.

This surjectivity has the consequence that for any representation of said Lie algebra, every
density matrix can be represented as a linear combination of products of the representation ma-
trices. In other words, the calculational method outlined in this section will always work. Before
continuing our discussion of this, let us consider a simple but nontrivial example, the spin-1
channel, in complete detail.

B. The spin-1 channel

Consider the spin-1 representation of su2. We use standard angular momentum notation, in
which

J1 =
1

2�0 1 0

1 0 1

0 1 0
�, J2 =

1

2�0 − i 0

i 0 − i

0 i 0
�, J3 = �1 0 0

0 0 0

0 0 − 1
� .

Before generalizing to arbitrary density matrices, we restrict attention to the simpler example of
density matrices � which are of the form

�v = 1
3 �1 + v · J�, v � R3. �19�

Then

E��v� =
1

3
1 +

1 − p

3
v · J +

p

6�
a,b

vbJaJbJa. �20�

The relation analogous to �9� does not hold, i.e., JaJb is not a linear combination of 1 and �Ji : i
=1,… ,3�. In this special case, the triple product appearing in �20� simplifies considerably,
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JaJbJa = �abJa �no sum� , �21�

which implies that

E��v� =
1

3
�1 + �1 −

p

2
v · J . �22�

This takes the form �19� with v→ �1− �p /2��v. Thus, for 33 density matrices admitting a Bloch
parametrization, the spin-1 channel scales the Bloch vector by a number between 1/2 and 1.

Interestingly, we can go further and find a Bloch-type picture of the spin-1 channel on a
general density matrix. The six elements of the form

J�aJb� � 1
2 �JaJb + JbJa� ,

together with J1, J2, and J3, span the space of 33 matrices. Therefore an arbitrary 33 density
matrix � can be written as

�v,w = v · J + �
a,b

wabJ�aJb� �23�

for some vector v and symmetric tensor w.
We use standard physics normalizations which entail that for the spin-s representation in d

=2s+1 dimensional space,

�
a

Ja
2 = � 1 ⇒ tr�JaJb� =

d�

3
�ab,

where �=s�s+1�. Then we have

tr��v,w� =
d�

3
tr�w� .

It follows that in order to have a density matrix, we require tr�w�=3�d��−1. For s=1, tr�w�=1/2.
Theorem 3 (action of the spin-1 channel): The action of the spin-1 channel on the vector

and symmetric tensor are v→v� and w→w�, where

va → va� = �1 −
p

2
va,

�24�

wab → wab� = �1 −
3p

2
wab +

p

4
�ab.

Proof: The asymmetric quadruple product identity

�
i

JiJjJkJi = � jkJ
2 − JkJj �25�

implies the symmetrized identity

�
i

JiJ�aJb�Ji = �abJ
2 − J�aJb�. �26�

We refer to identities of the form �25� and �26� as “4→2 identities,” because they relate degree 4
polynomials in the generators to degree 2 polynomials. Using 4→2 identities and �21�, a straight-
forward calculation shows that E��v,w� is equal to
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�1 −
p

2
v · J + �1 −

3p

2
�

a,b
wabJ�aJb� + p tr�w�1 ,

which implies the stated result, since for spin-1, we have tr�w�=1/2 and 1=�a,b
1
2�abJ�aJb�. �

Theorem 3 shows that p=2/3 is a sort of critical value; the channel at p=2/3 maps an
arbitrary initial � into a density matrix with a Bloch representation; E���=d−1�1+v ·J�. These are
a three-dimensional set within the eight-dimensional space of all 33 density operators. This is
reminiscent of the critical value p=1−n−2 for the sun channel, but now there is no value of p for
which the channel outputs pure noise.

It is possible to iterate formula �24�, with interesting results. Clearly, after n applications of the
channel, v→ �1− �p /2��nv. Consider a W-state, i.e., a state of the form

�w = �
a,b

wabJ�aJb�,

and let En denote n applications of the spin-1 channel.
Theorem 4 (iteration formula): The action of En on w is the following:

w→
En

F�n��p��1 − 6w� + w ,

where F�n��p� is a degree n polynomial in p, determined as follows. F�1��p�=1−3p /2, and the F�n�

for n
1 are determined by the recursion relation

F�n+1��p� = �1 −
3p

2
F�n��p� +

p

4
.

Interestingly, this recursion relation has the same coefficients as the transformation �24� of w
itself.

C. Higher spin representations

Note that the triple product �21� and quadruple product �25� identities are simply certain
elements of the ideal I=ker��̃�, where �̃ is the representation of the universal enveloping algebra,
as in �18�. The larger this ideal, the more product identities there will be in the representation of
interest. For higher spin, we have the following 3→1 identity in the spin-s representation of su2:

�
i=1

3

JiJaJi = �� − 1�Ja, where � = s�s + 1� . �27�

There is also a generalization of the 4→2 identity valid for general spin-s,

�
i=1

3

JiJaJbJi = �� − 2�JaJb + ��ab1 − JbJa.

The latter has the more convenient symmetrized form,

�
i=1

3

JiJ�aJb�Ji = �� − 3�J�aJb� + ��ab1 . �28�

Theorem 5 (higher spin channel): Let J1, J2, J3 be canonical generators for the spin-s
representation of su2 in dimension d=2s+1, and let Es denote the spin-s channel. Defining �v,w

=v ·J+�a,bwabJ�aJb�, we have

tr��v,w� = 1 ⇔ tr�w� =
3

d�
,
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where �=s�s+1�. The action of the spin-s channel is

Es��v,w� = �1 −
p

�
v · J + �1 −

3p

�
wabJ�aJb� + p tr�w�1 .

Proof: A straightforward application of �27� and �28�. �

Thus, the action of the spin channel is more complicated than the scaling of a single vector. It
is the scaling of a series of symmetric tensors, by different scale factors. This shows that the spin-
s channels are never depolarizing channels.

At the critical value p=� /3, the channel maps an arbitrary �v,w into a matrix with a Bloch
representation,

�Es��v,w��p=�/3 =
1

d
1 +

2

3
v · J .

It follows that if p=� /3, then the channel maps an initial density matrix of the form �23� with v=0
into pure noise.

For spin-1, an arbitrary density matrix may be represented as �23�, and for higher spin, these
are a proper submanifold of the convex cone of all density matrices. For spin-3 /2, an arbitrary
density matrix may be written in the form

�
a,b

wabJ�aJb� + �
a,b,c

uabcJ�aJbJc�,

where w and u are completely symmetric tensors. The U-term is traceless, and so we require the
W-term to have trace one. As discussed prior to Theorem 3, this means that tr�w�=3/ �d��=1/5.

D. Finding v and w from � in higher spin and pure states

In this brief section we show how to invert the relation �23� for the density operator, and find
the coefficient vector v and symmetric tensor w. We do the analysis at arbitrary spin, although for
spin higher than 1, not all density matrices have the form �23�. The methods will generalize
assuming the relevant trace identities can be found.

As in Theorem 5, let J1, J2, J3 be canonical generators for the spin-s representation of su2.
Note that

Tr�JaJb� =
1

3
d� �ab and Tr�JaJbJc� = i

d�

6
�abc,

where �=s�s+1� and d=2s+1, and �abc is the Levi-Civita alternating symbol. It follows imme-
diately from �23� that

va =
3

d�
Tr��Ja� .

To find w, note the trace identity

Tr�J�aJb�J�jJk�� = f1�s� 1
2 ��ak�bj + �bk�aj� + f2�s��ab� jk,

where f i are functions of s, given by

f1 = tr�J�1J2��2 =
�d�d2 − 4�

30
,

f2 = tr�J1
2J2

2� =
�d�1 + 2��

30
.

By calculating tr��J�jJk�, we find
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wjk =
1

f1
�tr��J�jJk�� − f2 tr�w�� jk� =

30

�d�d2 − 4�
tr��J�jJk�� −

2� + 1

d2 − 4
tr�w�� jk.

For spin-1, f1=1/2, f2=1, and d�=6 so

va = 1
2 tr��Ja� and wjk = tr��J�jJk� − 1

2� jk.

This gives another way to find pure states, if �= ��	��� then

va = 1
2 �Ja	� and wjk = �J�jJk�	� − 1

2� jk. �29�

In conclusion, if the pure state �= ��	��� has a representation of the form �23�, then we can find its
Bloch vector and w-matrix easily.

E. Relation to the Werner-Holevo channel and a new conjecture

Datta12 has shown that the spin-1 channel at p=1 is equivalent to the Werner-Holevo
channel13

EWH��� =
1

d − 1
�tr���1 − �T� . �30�

Recall that in our notation, M0=
1− p1, so taking p=1 eliminates the identity from the set of
Kraus operators. For p�1 and for the spin-s representation with s
1, we may view the spin
channel as a generalization of the WH channel.

Amosov et al.11 conjectured that �q is multiplicative for tensor product channels,

�q�E�m� � sup
��D�H�m�

�E�m����q = �q�E�m, �31�

where �q�E�=sup��D�H��E����q is the maximal �q-norm. Equation �31� is often called the �q

multiplicativity relation or the AHW conjecture. Giovannetti et al.14 have conjectured that �31�
holds for the Werner-Holevo channel when d�2q−1.

The Werner-Holevo channel became famous as a counterexample to the AHW conjecture.11

We infer by Datta’s equivalence that the spin-1 channel at p=1 gives precisely the same counter-
example to the AHW conjecture, stated below. Therefore, multiplicativity does not hold generi-
cally in Lie algebra channels. Once it was established that the AHW conjecture does not hold for
all q�1, it was natural to conjecture15 that it holds for 1�q�2, and this was recently proved for
the WH channel by Alicki and Fannes.16 If this is true, one would expect additional counterex-
amples with values of q approaching 2. However, none have yet been reported, except for the WH
channel which gives a sequence of counterexamples with q increasing from 4.79 as the dimension
d increases. Ruskai, in a private communication to the author, suggested the possibility that Lie
algebra channels might provide additional counterexamples with special properties.

Conjecture 1: Lie algebra channels generate counterexamples to the AHW conjecture for a
sequence of values of q approaching the boundary of the region in q-space where multiplicativity
begins to hold for all channels, assuming there is such a region.

A preliminary investigation in this direction seems promising, and we hope to address this
more fully in a future paper.

V. EXCEPTIONAL LIE ALGEBRAS AND CLIFFORD ALGEBRAS

A. Channels based on the exceptional algebra G2

Let ej �j=0,… ,7� denote the standard basis for the octonions O, where e0 is the unit. Our
notation is compatible with that of Baez,17 and the proofs of our statements about the octonion
algebra can be found there. The Lie group G2 is the automorphism group of O, so the Lie algebra
g2 is the derivation algebra of the octonions,
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g2 = der�O� .

Derivations act trivially on the identity, and the imaginary octonions Im�O� form the fundamental
seven-dimensional irreducible representation of g2.

It is known that if A is an alternative, nonassociative algebra �such as the octonions�, any pair
of elements x ,y�A define a derivation D�x ,y� :A→A by

D�x,y�a = ��x,y�,a� − 3�x,y,a� , �32�

where �a ,b ,x� denotes the associator �ab�x−a�bx�. When A is a normed division algebra, every
derivation is a linear combination of derivations of this form. For the octonion algebra, the
elements

D�e1,ei�, D�e2,ej�, and D�e4,ek�

for all i
1, j
2, and k
4, are linearly independent and there are 14 such elements, so they are
a basis for g2. Define the notation

di,j = 1
2D�ei,ej� .

This is one possible basis for the Lie algebra g2, but we will use another more suited for our
purposes. The fact18 that the six-dimensional sphere S6 may be viewed as a G2 /SU�3� coset space,
implies a corresponding decomposition of the algebra:

g2 = m + h, h � su3,

where m is a six-dimensional subspace. We find a basis adapted to this decomposition. The basis
vectors for m are simply expressed as mi=d1,i+1, while

h1 = d12 + 2d47, h2 = d13 − 2d46, h3 = d14 − 2d27,

h4 = d15 + 2d26, h5 = d16 − 2d25, h6 = d17 + 2d24,

h7 = 
3d23, h8 = d23 + 2d45

are a basis for su3. Let

� =
i


24
��m1,…,m6� �

1

3

�h1,…,h8�
denote a corresponding basis for g2. Interestingly, � is an orthonormal basis of g2 with respect to
the trace form on the seven-dimensional representation space,

TrIm�O���i� j� = 1
2�ij, therefore �

i=1

14

�i
2 = I7.

The g2 channel acts as

E��� = �1 − p�� + p�
i=1

14

�i� �i.

Assume � has a Bloch representation with v�R,14

� = 1
7 �I7 + v · �� , �33�

then as an intermediate step,
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E��� =
1 − p

7
�I + v · �� +

p

7�
i=1

14

��i
2 + va�i�a�i� .

The sum of �i
2 gives the identity, with a factor of p /7 to cancel the −p /7, and �miraculously� the

term which is cubic in �’s vanishes identically. This is due to the following remarkable 3→0
identity

�
i

�i�a�i = 0 for all a ,

as may be checked explicitly. Therefore, the g2 channel �restricted to its Bloch manifold� is the
simplest of all. It is a true depolarizing channel, shrinking its Bloch vector by a factor of 1− p,

E��� = 1
7 �I + �1 − p�v · �� .

We emphasize, however, that the g2 channel is almost certainly not a depolarizing channel outside
the Bloch manifold, though we have not proven this.

B. Channels based on the Clifford algebra

Let �,	 be a nondegenerate bilinear form on V, a d-dimensional vector space. A representation
of the Clifford algebra associated to �V , �,	� is a map � :V→gl�V� satisfying

���x�,��y�� = �x,y	1 ,

where the left-hand side is an anticommutator. The representation is Hermitian if the image of �
is contained in H�V�, the �Hilbert� space of Hermitian operators on V.

Theorem 6 (Clifford algebra channel): Given a Hermitian representation of the Clifford
algebra, and a finite collection of nonzero vectors x1 ,x2 ,… ,xn�Rd, then

EC���� � ��
i=1

n

�xi,xi	−1

�
i=1

n

��xi�� ��xi� �34�

is a CPT map.
Proof: The operator is completely positive because it is already in the form of an operator sum

representation. We check that it is trace preserving. By cyclicity of the trace,

Tr�EC����� = ��
i=1

n

�xi,xi	−1

�
i=1

n

Tr�� ��xi�2� .

However, ��xi�2= 1
2 ���xi� ,��xi��= �xi ,xi	1 using the Clifford algebra. The sum of such terms de-

couples from Tr��� and exactly cancels the prefactor.
Although the proof of Theorem 6 is trivial, the result may not be easily obtained by inspecting

any of the standard matrix representations. Taking the Weyl representation of the � matrices in
d=4, writing out the CPT map ��x����x�+��y����y� for general x, y, � as an explicit matrix takes
a full page.

As we have seen in other examples, the computational methods used in this paper are most
effective when an arbitrary density matrix can be written in terms of the generators of the sym-
metry algebra. For the Weyl representation of the Clifford algebra, there is a convenient basis
consisting of antisymmetric combinations of � matrices, which we summarize in the following:

1 one of these
�� four of these

���= 1
2 ��� ,���=������ six of these

����=��������= i��������5 four of these
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�����=����������=−i������5 one of these

These 16 matrices form a basis for the space gl�R4�. One can therefore write any 44 density
matrix as a linear combination of these matrices with coefficients that are tensors of rank 4, and
use � matrix identities to calculate the action of the CPT map �34�.

VI. THE BLOCH MANIFOLD

A. General results

The Bloch manifold is a geometrical space which is naturally associated to a certain repre-
sentation of a semisimple Lie algebra g, by asking the question, which linear combinations of the
generators of g in that representation are positive-definite, trace-one Hermitian matrices, i.e.,
physical states? For any preferred class of matrices �such as those with non-negative eigenvalues�
one can define a manifold from a representation in a similarly basis-dependent way, but for the
application to quantum physics, we restrict interest to density matrices.

Since the action of the sun channel is most simply expressed as a rescaling of the Bloch vector
and any n-level density matrix admits a Bloch representation, all that remains for a complete
mathematical description of the sun channel is to know the set of vectors v�Rn2−1 which corre-
spond to positive-definite matrices.

The simplest example of why this is an important question for other representations is formula
�22�, which gives the action of the spin-1 channel on density matrices admitting a Bloch repre-
sentation as

E��v� =
1

3
�1 + �1 −

p

2
v · J .

Thus, the spin-1 channel also rescales the Bloch vector and it is of interest to know which Bloch
vectors give rise to physical states.

In any representation which has a 3→1 identity, i.e., an expression for �i��Xi���Xj���Xi� in
terms of the generators ��Xk�, it follows that any density matrix admitting a Bloch representation
transforms very simply under the action of the Lie algebra channel.

Definition 3 (Bloch manifold): Choose a set of generators �Xi� of a semisimple Lie algebra g,
and an irreducible representation � :g→gl�H� on a d�-dimensional Hilbert space H. The Bloch
manifold V (in the Xi basis) is defined to be the set of vectors v�Rk �k=dim g�, such that

��v� =
1

d�
�1 + �

i
vi��Xi� , �35�

is a positive semidefinite, Hermitian matrix. A density matrix which can be written in the form �35�
is said to possess a Bloch representation, and the point v�V is said to be a valid Bloch vector.

Theorem 7 (closure property): The Bloch manifold is a closed set in Rk.
Proof: The matrix ��v� is positive iff the lowest eigenvalue �min of 1+�ivi��Xi� lies in the set

�0, +��. The lowest eigenvalue of a matrix is a continuous function of the matrix, so �min is a
continuous function of v. The inverse image of the closed set �0, +�� must be closed.

Theorem 8 (general Bloch manifold bound): Let � be a d-dimensional representation of g,
let k=dim�g�, and let Xa be an orthogonal basis of g with respect to the Killing form. Then for
some constant N,

Tr���Xa���Xb�� = Nd �ab.

Moreover, if v is a valid Bloch vector, then

v2 �
d − 1

N
. �36�
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In the notation of Sec. II, N=Z /dim�g�.
Proof: The density matrix �=d−1�1+va��Xa�� must satisfy tr��2��1. But

tr��2� = d−1�1 + Nv2� �37�

which implies the desired result. �

If �Xj�� is a second basis of g, related to the original basis by a matrix A, then the Bloch
manifold in the X� basis consists of AT applied to the Bloch manifold in the X basis. If det�A�
=1, this yields an isometric copy of the original manifold, but otherwise the manifold has been
stretched in some way. We will see examples of Lie algebra representations which are analogous
to the qubit representation, in the sense that the Bloch manifold is a closed ball in some preferred
basis.

B. The Bloch manifold for all su2 representations

As an example, we give the Bloch manifold relevant to the spin-j representation of su2. Let
I2j+1 be the �2j+1�-dimensional identity matrix, and the Ji are the standard generators in the spin-
j representation. Let Emin denote the lowest eigenvalue of a matrix. Then

Emin�I2j+1 + �
i=1

3

viJi = 1 − j�v� .

The next result follows immediately.
Theorem 9: The valid Bloch vectors for the spin-j representation of su2 (with the standard

basis) are elements of a closed ball in R3 with radius 1/ j.
Thus, the picture of the Bloch manifold as a closed ball is not necessarily particular to the

qubit system, however, it is certainly not always a closed ball. As we shall see below, the Bloch
manifold for the defining representation of sun with n
2 is a proper subset of the analogous
closed ball. To complete the su2 case, we remark that the radius receives a multiplicative constant
if we rescale the generators; however, the radius always scales as one inverse power of the
dimension of the representation.

C. A Bloch submanifold from the Cartan subalgebra

We discuss a method which works for any Lie algebra representation and which always gives
a nonempty set of positive semidefinite Hermitian trace-one operators which take the form �
=d−1�1+�ivi��Xi��. In Bloch space this set is the interior of a convex polyhedron.

Let H1 ,… ,Hr denote a basis for the Cartan subalgebra of g, with r=rank�g�. As they com-
mute, we may simultaneously diagonalize all ��Hi�, and let hi

j denote the jth diagonal element of
��Hi�. Each vector hj with components �h1

j ,h2
j ,… ,hr

j� is a weight vector for the given represen-
tation.

Assume that the basis �Xi� has the Cartan generators H1 ,… ,Hr as its first r elements. Consider
v�Rk which are zero except for the first r components. Let P be the set of v�Rr such that 1
+�i=1

r vi��Hi� is positive semidefinite. The positivity condition is 1+�i=1
r vihi

j �0�∀ j=1,… ,d�.
The solutions of each linear inequality v ·hj �−1 define a half-space H j �Rr, and the valid Bloch
vectors lie in their intersection. A bounded intersection of a finite set of half-spaces is called a
polytope. If one of the weights hj is the zero vector, it satisfies v ·hj �−1 for all v.

Definition 4: Define the Bloch-Cartan polytope as

P = �v�v · hj � − 1 ∀ j� = �
j=1

d�

H j . �38�

For representations of non-Abelian Lie algebras, P�V. A priori, an intersection of half-spaces
is either a finite or semi-infinite polyhedron; however �36� implies v2� �d−1� /N, so P is always
bounded. This provides a geometric proof that a semisimple rank r algebra will not have any irreps
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of dimension smaller than r+1, since we need r+1 half-spaces to define a finite polyhedron in Rr.
Figure 1 shows two examples for su3. This algebra has r=rank�su3�=2 Cartan generators so

the Bloch-Cartan polytope can be drawn in R2. With the conventions of Georgi,9 the weight
vectors h1, h2, h3 for the three-dimensional representation of su3 are �± 1

2 ,
3/6� and �0,−
3/3�,
and the convention Tr�TaTb�= 1

2�ab for the Gell-Mann matrices implies N=1/6. The bound �36�
then gives �v��
12. Note that v2=12 is precisely the circumscribing circle of the polygon. There-
fore, in this case our simple method using the Cartan subalgebra produces points up to and
including the boundary of the Bloch manifold. These may or may not include pure states. For the
adjoint representation N=3/8 and the bound �36� gives a boundary circle larger than the polygon
by a factor of 
14.

D. The Bloch manifold for the standard representation of sun

We now discuss the structure of the Bloch manifold for the defining representation of sun.
First, Theorem 8 with N=2/n gives a simple bound,

v2 �
n�n − 1�

2
. �39�

By Descartes’ rule of signs, an algebraic equation of degree D with real roots

�
j=0

D

�− 1� jajx
n−j = �

i=1

D

�x − xi� = 0, xi � R

has all roots non-negative if and only if ai�0 for all i=0,… ,D. Such an equation arises as the
characteristic polynomial for a Hermitian matrix. Therefore the Bloch manifold for the
n-dimensional irrep of sun is given by the set of v�Rn2−1 such that the characteristic polynomial
ch��v��x� has only non-negative coefficients. Some related results for sun were recently reported by
Kimura.19

The coefficients ai can be calculated for any specific example using a0=1 and Newton’s
formula,

aj =
1

j
�
q=1

j

�− 1�q−1cqaj−q, �40�

where cq=�ixi
q=tr���v�q�. The largest value of j that we need to consider is j=d, the dimension of

the Hilbert space.
Naturally, calculating cq=tr��q� reduces to calculating the traces of products of at most q

generators of sun. Since

FIG. 1. The shaded region is the intersection of the linear inequalities v ·hj �−1, where hj are the weight vectors for the
indicated representation of su3, shown as small circles. Points in the shaded region represent positive semidefinite density
matrices. The outer circle shows Bloch vectors which saturate the bound �36�.
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a1 = c1 = 1 and a2 = 1
2 �1 − c2� ,

the condition a2�0 is equivalent to tr �2�1, which leads to �39�.
Using �40�, the condition a3�0 reduces to c3�1/2�3c2−1�, but c2 is given by �37�, and a

similar calculation shows that

c3 � tr �3 =
1

n3 �n + 6v2 + 2vavbvcdabc� .

The calculations up to this point have been valid for sun for all n. To completely solve the
problem for n
3, we need to know c4 ,c5 ,… ,cn. However, we can completely calculate the Bloch
manifold for the su3 channel in closed form. For n=3, we note that

det�v · �� = 2
3dijkviv jvk

so the condition c3�1/2�3c2−1� �for n=3� can be expressed as det�v��
−1 and
v2�1+det�v��. Therefore, the Bloch manifold for the 3 of su3 admits the following expression,
beautiful in its simplicity:

Vsu3
= �v � R8:v2 � min�3,1 + det�v���� . �41�

E. Bloch manifold for the seven of G2.

In our calculation of the g2 channel, we explicitly constructed a basis � of g2 using its
definition as der�O�. This basis was normalized so that

�
a

�a
2 = 1, tr��a�b� =

1

2
�ab.

Theorem 8 gives

�v� � 2
21.

This proves that the g2 Bloch manifold is contained in a closed ball of radius about 9.2. However,
the true radius is much smaller, as we will now show. By g2 symmetry, the �’s satisfy the identity

tr�v��q = 0, �∀ v � R14�, q odd,

where v�=�ivi�i. Further, for certain even values of q, tr�v��q may have a simple expression. For
example,

tr�v��2 =
v2

2
, tr�v��4 = �tr�v��2�2 =

v4

4
. �42�

The g2 trace identity tr�v��4= �tr�v��2�2 is not easy to prove. It is true because for g2 and some
other algebras, every fourth-order Casimir invariant is expressible in terms of the second-order
invariant, as shown by Okubo.20 Recently a simpler proof, together with other interesting trace
identities, was given by Macfarlane and Pfeiffer,21 see their Eq. �4.36�.

Enforcing c3�1/2�3c2−1� gives a refinement,

�v� � 2
7 � 5.3.

Requiring a4�0 gives v2�8�10−
65�, so �v��3.93. The coefficients are such that a5�0 for all
v, and tr�v��n for n�6 has no simple expression analogous to �42�, so we have taken the simple
analysis of the g2 Bloch manifold as far as it will go.
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F. Pure states in the Bloch manifold

Let the representation matrices be denoted by Xa ,a=1,… ,k. If v is in the Bloch manifold, so
that

�v = d−1�1 + �
a

vaXa
is a density matrix, it is particularly easy to determine whether � is pure. If the products XaXb are
linearly independent from Xa �i.e., there is no 2→1 identity� then �2�� and the state is never
pure.

On the other hand, if the representation has a 2→1 identity of the type satisfied by the
fundamental representation of sun,

XaXb = ��ab1 + �
c

QabcXc, �43�

then there can be pure states, and we have a complete characterization of them.
Theorem 10 (pure Bloch states): If the 2→1 identity �43� holds, then a Bloch state �v is

pure if and only if

1 + �v2 = d and �
a,b

vavbQabc = �1 −
2

d
vc,

for all c=1,… ,k.
Proof: This follows from �v

2= �1/d2��1+�v2�1+ �1/d2��abc�2vc+vavbQabc�Xc. �

It is interesting to see how Theorem 10 specializes to d=2. In that case, Qabc=0 and also 1
−2/d=0, so the second equation is always satisfied. The first equation amounts to v2=1/�, and
�=1, so this just says that v is on the boundary of the Bloch sphere, which is the well-known
characterization of pure states.

Unfortunately, 2→1 identities almost never hold, excepting of course the fundamental repre-
sentation of sun, because products XaXb tend to be linearly independent from the representation
matrices Xa if the dimension of the vector space is large enough to allow this.

G. Summary of Bloch manifold technology

The Bloch manifold is defined to contain the positive-semidefinite density matrices and is
given �in a certain basis� by the solution of a system of polynomial inequalities in the components
of the Bloch vector v. These inequalities come from enforcing positivity of the density matrix,
�v�0. It is easy to see that the Bloch manifold is bounded within a ball, by enforcing the
inequality tr��2��1. The Bloch manifold for the 3 of su3 can be calculated exactly, and also in
principle for g2. In the latter case, it is bounded within a ball of radius�3.93. In any representation
of any Lie algebra, if a 2→1 identity �43� holds, then pure states lie on the surface of a sphere of
squared radius �d−1� /�.

What we have defined and studied here should rightly be called the linear Bloch manifold,
because already for the spin-1 channel, one needs to represent the density matrix as v ·J
+�a,bwabJ�aJb. So the full geometry of the space of 33 density matrices is described by placing
nontrivial conditions on both v and w, and similar remarks apply in higher dimensions.

The positivity constraint ��0 can always be solved by the method of Sec. VI D, but its
complete solution requires knowledge of tr��q� for all q�d for a d-dimensional quantum system.
Also, � itself may not be representable as a linear combination of generators, but will require
products of m generators where m grows with the dimension. Thus to apply the method of Sec.
VI D, one needs a trace identity for a product of md generators. The study of such identities is an
active branch of research.21
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VII. CONCLUSIONS

The main results are as follows:

�1� Definition 2 and Theorem 2 which define the Lie algebra channel and provide conditions for
this channel to be trace-preserving �and hence physically realizable�,

�2� identification of the su�n� channel �in its standard representation� as a depolarizing channel,
�3� computation of the action of the su�2� channel in its Three-dimensional representation �the

spin-1 case� on a general Hermitian 33 matrix, and on some special pure states,
�4� definition and analysis of channels based on the exceptional Lie algebra g2 and the Clifford

algebra,
�5� a description of the positive semidefinite matrices which represent quantum states for various

Lie algebra channels, and a general method for proving positivity from Lie algebraic trace
identities.

In conclusion, the mathematical problems posed by quantum information theory and, more
generally, by finite-dimensional quantum systems often involve computations which are most
easily handled using techniques from representation theory of Lie algebras. In many cases, the
feasibility of these calculations rests on the availability of trace identities,20,21 of which many are
known but surely many more remain to be discovered.

It is remarkable and unexpected by this author how much the theory of quantum channels and
the classical theory of Lie algebras seem to dovetail. In some cases, classical results about Lie
algebras receive independent proofs based on physical intuition. This is surely a math/physics
bridge.
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We address the problem of constructing positive operator-valued measures
�POVMs� in finite dimension n consisting of n2 operators of rank one which have
an inner product close to uniform. This is motivated by the related question of
constructing symmetric informationally complete POVMs �SIC-POVMs� for which
the inner products are perfectly uniform. However, SIC-POVMs are notoriously
hard to construct and, despite some success of constructing them numerically, there
is no analytic construction known. We present two constructions of approximate
versions of SIC-POVMs, where a small deviation from uniformity of the inner
products is allowed. The first construction is based on selecting vectors from a
maximal collection of mutually unbiased bases and works whenever the dimension
of the system is a prime power. The second construction is based on perturbing the
matrix elements of a subset of mutually unbiased bases. Moreover, we construct
vector systems in Cn which are almost orthogonal and which might turn out to be
useful for quantum computation. Our constructions are based on results of analytic
number theory. © 2005 American Institute of Physics. �DOI: 10.1063/1.1998831�

I. INTRODUCTION

A. Background

A basic question in quantum mechanics is how to obtain information about the state of a given
physical system by using suitable measurements. Even in the case when many identically prepared
copies of the system are available, it is a nontrivial task to devise a measurement procedure that
uniquely identifies the given quantum state from the statistical data produced by the measure-
ments. Note that this holds true even in the case where the complete statistics, that is, the prob-
abilities for the different measurement outcomes, is known.
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We next describe the possible measurements of the quantum system in more detail and first
remark that all systems considered in this paper are of finite dimension n. If the state of the
quantum system is given by an n�n density matrix, then the complete measurement statistics of
one fixed von Neumann measurement is not sufficient to reconstruct the state. Indeed, this follows
from the fact that the statistics of a fixed von Neumann measurement determines at most n−1 real
parameters �specified by the probabilities of the measurement outcomes�, whereas a general den-
sity matrix is determined by n2−1 free real parameters.

In fact, it is possible to perform a more general measurement procedure on a quantum system,
namely a positive operator-valued measure, or POVM for short �see Refs. 33 and 34�. A POVM
is described by a collection of positive operators Ei�0, called POVM elements, that partition the
identity, that is, �iEi= In. If the state of the quantum system is given by the density matrix �, then
the probability pi to observe outcome i in the POVM is given by the Born rule

pi = tr��Ei� , �1�

where tr�A� denotes the trace of a complex matrix A. The task is to devise a POVM with operators
Ei such that the state � is uniquely specified by the probabilities pi in �1�. The POVM is then called
informationally complete, or simply an IC-POVM, and they appear to have been first studied in
Ref. 38. A particularly interesting question is whether a POVM exists on Cn that consists of n2

POVM elements Ei of rank one. Counting the number of parameters determined by the measure-
ment, we see that n2 is indeed the minimal possible number of such POVM elements. In this case
Ei is a subnormalized projector, that is, Ei=�i /n for projectors �i= ��i���i� corresponding to some
vectors ��i� in Cn. In Ref. 12 it has been shown that IC-POVMs exist in all dimensions and in Ref.
15 a method has been given how to construct IC-POVMs by taking a fixed fiducial start vector ���
and taking the orbit of this vector under a �projective� group operation.

As an example of this type, consider the normalized states ��1� , . . . , ��4� defined as follows:

��1� =
1

3
	 1

2 + 2i

, ��2� =

1

3
	2 + 2i

1

 ,

��3� =
1

3
	 1

− 2 − 2i

, ��4� =

1

3
	2 + 2i

− 1

 .

Then the rank one operators defined by Ei=1/2��i���i� are given by

E1 =
1

18
	 1 2 − 2i

2 + 2i 8

, E2 =

1

18
	 8 2 + 2i

2 − 2i 1

 ,

E3 =
1

18
	 1 − 2 + 2i

− 2 − 2i 8

, E4 =

1

18
	 8 − 2 − 2i

− 2 + 2i 1

 ,

and it can be verified easily that E1+E2+E3+E4= I4 is the identity matrix and that the matrices
E1 ,E2 ,E3 ,E4 are linearly independent. For the possible inner products between two POVM ele-
ments Ei and Ej where i� j we obtain that tr�EiEj�� �4/81,49/324�.

Our goal is to find IC-POVMs on Cn such that n2tr�EiEj� is “small” for distinct POVM
elements Ei= ��i���i� /n and Ej = �� j��� j� /n. In Sec. I C we make precise what we mean by the inner
products being small and briefly summarize previous work on the problem.

B. Notation

We use the Landau notation to compare the asymptotics of two functions f ,g :N→C. We
recall that f�n�=o�g�n�� means limn→� f�n� /g�n�=0. Furthermore, f�n�=O�g�n�� means that there
exists a constant c�0, such that �f�n���cg�n� for all n�1. Throughout the paper, the implied
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constants in the symbols “o” and “O” may occasionally, where obvious, depend on an integer
parameter d and a small real parameter 	�0, and are absolute otherwise.

For an integer n�1 we denote by Cn the n-dimensional vector space over the complex
numbers C. For two vectors ���= �a1 , . . . ,an��Cn and �
�= �b1 , . . . ,bn��Cn, we use

���
� = �
i=1

n

āibi

to denote their inner product. We also define �i,j =1 if i= j and 0 otherwise. We denote the identity
matrix of size n�n by In, the all-ones matrix of size n by Jn= �1�i,j=1

n . We use diag�a1 , . . . ,an� to
denote the n�n diagonal matrix which has a1 , . . . ,an on the main diagonal. For matrices A and B,
we use A � B to denote their block-diagonal direct sum.

For a real z and an integer m we use the notation em�z�=exp�2�z /m�, where =−1.
We use Fq to denote the finite field of q elements, and we also assume that for a prime p, the

field Fp is represented by the set �0, . . . , p−1�.
As we have mentioned, we use tr�A� to denote the trace of a complex matrix A. On the other

hand, for an element a�Fq we use TrFq/Fp
�a� to denote its trace in the prime subfield Fp of Fq �see

Ref. 31�. That is, if q= pm for a prime p and a positive integer m, then

TrFq/Fp
�a� = �

j=0

m−1

ap j
.

C. Previously known results

A particularly appealing case of IC-POVMs arises when, furthermore, all of the inner products
of the vectors ��i� are small. An extremal case in this sense arises when we are given a system of
n2 normalized vectors ���i� : i=1, . . . ,n2� in Cn for which

���i�� j��2 =
1

n + 1
, 1 � i � j � n2. �2�

Indeed, for any system of k vectors ��1� , . . . , ��k� in Cn for which the absolute values of pairwise
inner products are constant ���i �� j��2=�, where ��R �for 1� i� j�k�, the so-called special
bound holds23 which says that k�n�1−�� / �1−n��. Specializing �=1/ �n+1� we obtain that n2 is
the largest possible number of vectors satisfying �2�.

A system of vectors as in �2�, respectively the corresponding POVMs, are called symmetric
informationally complete POVMs, or SIC-POVMs for short. They have several very desirable
properties; see Ref. 12 for a discussion in the context of the quantum de Finetti theorem and more
generally in their Bayesian approach to quantum mechanics and its interpretation.11 Furthermore,
see Refs. 18 and 19 for their role in establishing the quantumness of a Hilbert space and the related
question about optimal intercept-resend eavesdropping attacks on quantum cryptographic
schemes. Explicit analytical constructions of sets satisfying �2� have been given for dimensions
n=2,3 ,4 ,5 in Ref. 50, Sec. 3.4, and Ref. 41, for dimension n=6 in Ref. 20, for dimensions n
=7,19 in Ref. 1, and for dimension n=8, see Ref. 24. While it has been conjectured that SIC-
POVMs exist in all dimensions �Ref. 50, Sec. 3.4, or Ref. 41� and numerical evidence exists for
dimensions up to 45 �see Ref. 41�, it is a difficult task to explicitly construct systems of vectors
which satisfy �2�. There are no known infinite families of SIC-POVMs and, in fact, it is not even
clear if there are SIC-POVMs for infinitely many n.

D. Our results

In the first part �Sec. II� of this paper we relax condition �2� on the inner products slightly and
allow that
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���i�� j��2 �
1 + o�1�

n
, 1 � i � j � n2. �3�

The purpose of the first part of this paper is to show that infinite families of systems of n2

normalized vectors which satisfy �3� and give rise to IC-POVMs exist. We call the rank one
projectors obtained from such systems of vectors approximately symmetric informationally com-
plete POVMs, or ASIC-POVMs for short. Here we show that when n= pr is a power of a prime p,
ASIC-POVMs can be constructed.

In the second part �Sec. III� of the paper we explore properties of other approximately sym-
metric vector systems where we do not require the properties of completeness and informational
completeness but require the property of approximate symmetry. We also relax �3� further by
allowing that the inner products be bounded from above by ���i �� j��� �2+o�1�� /n and by drop-
ping the requirement that the vectors give rise to a POVM. This additional freedom then allows us
to construct bases in all dimensions n. Besides their general mathematical interest in constructing
such vector systems they might be useful in quantum cryptographic scenarios which generalize the
BB84 setting,7 such as the protocols described in Refs. 8, 39, and 40. See also Ref. 14 for an
analysis of general schemes for quantum key distribution where the sender uses arbitrary quantum
states and the receiver’s measurement is replaced by a POVM.

Besides approximations to SIC-POVMs we also consider approximations to mutually unbi-
ased bases �MUBs�. Since we also need MUBs for our construction of ASIC-POVMs we briefly
recall their definition. A maximal set of MUBs is given by a set of n2+n vectors in Cn which are
the elements of n+1 orthonormal bases Bk= ���k,1� , . . . , ��k,n�� of Cn where k=0, . . . ,n. Hence,

��k,i��k,j� = �i,j , �4�

and the defining property is the mutual unbiasedness, given by

���k,i���,j�� =
1
n

�5�

for 0�k ,��n, k��, and 1� i , j�n. Starting from Refs. 26, 42, and 49, an extensive growing
body of research explores MUBs and their constructions �see Refs. 2, 4, 6, 13, 17, 21, 27, 36, 37,
and 48 and references therein�. However, so far maximally sets of n+1 MUBs in dimension n are
only known to exist in any dimension n= pr which is a power of a prime p�3 �see Ref. 27 for an
overview and some of such constructions�. The main construction is based on Gaussian sums and
in the case of prime n= p can be described as

��k,j� =
1
p

�ep�ku2 + ju��u=1
p , 1 � k, j � p ,

and also B0 being a standard orthonormal basis, that is, ��0,j�= �� j,u�u=1
p .

One can use additive characters over an arbitrary finite field to extend this construction to an
arbitrary prime power n= pr. However, the condition that n= pr is a prime power is still somewhat
too restrictive and unnatural for quantum computation. So a natural question arises whether MUBs
exist for every positive integer n. In the second part we consider vector systems where we relax
the conditions �3� and �5�. We use exponential sums to construct vector systems for any dimension
n which

• satisfy �4� but instead of �5� all other inner products are O�n−1/4�;
• are normalized but instead of �2� all other inner products are at most �2+o�1��n−1/2.

We call vector systems of n2+n vectors in Cn which satisfy �4�, and instead of �5� the
condition
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���i�� j��2 �
1 + o�1�

n
, 1 � i � j � n2 + n ,

approximately mutually unbiased bases, or AMUBs for short.
We also construct some vector systems using multiplicative and mixed character sums, which

• satisfy �4� and, assuming some natural and widely believed conjecture on the distribution of
primes in arithmetic progressions, all other inner products are O�n−1/2 log n�;

• in the special case of n= p−1, where p is a prime, form AMUBs.

Interestingly, our arguments use both the classical bound of Weyl47 �see also Refs. 25 and 43�
as well as the more recent, but no less celebrated, bounds of Weil45 �see also Refs. 30, 31, and 46�.
Besides exponential sum techniques we also use some recent results about the gaps between prime
numbers from Ref. 3. We conclude with some conjectures and open questions concerning our
constructions in Sec. IV.

II. CONSTRUCTING ASIC-POVMS

A. Preliminaries

We begin by giving a definition of the vectors and associated rank one operators we are
interested in.

Definition 1 (ASIC-POVMs): Suppose that n is a positive integer. Let A= ���i� : i=1, . . . ,n2� be
a set of vectors in Cn. Let E= �Ei= ��i���i� /n : i=1, . . . ,n2� be the corresponding set of subnormal-
ized projection operators. If E satisfies the conditions

�i� �i=1
n2

Ei= In �completeness/POVM condition�,
�ii� the matrices Ei are linearly independent as elements of Cn�n �informational completeness�,

and
�iii� ���i �� j��2=n2 tr�EiEj�� �1+o�1��n−1 for 1� i� j�n2 �approximate symmetry�,

then we call E an approximately symmetric informationally complete POVM, or ASIC-POVM for
short.

We remark that, in fact, sometimes we also refer to the corresponding set A as an ASIC-
POVM.

In the subsequent sections, we present two different constructions that give rise to infinite
families of ASIC-POVMs. The first construction is based on the observation that a set of n+1
mutually unbiased bases in Cn gives rise to an IC-POVM, cf. Refs. 26 and 49. However, this
IC-POVM consists of n2+n rank-one operators; thus, it is an overcomplete generating set of the
vector space of all n�n matrices. In our first construction in Sec. II C we show how to select n2

projectors that allow us to derive an ASIC-POVM. The second construction in Sec. II D starts
from all vectors contained in n of the n+1 MUBs. We show that by slightly perturbing the
components of these vectors it is possible to obtain an ASIC-POVM.

B. POVMs and frames

Suppose that A= ���i��Cn1� i�n2� is a system of n2 vectors of unit norm, such that A spans
Cn and the associated subnormalized projectors Ei= ��i���i� /n satisfy n2 tr�EiEj�= �1+o�1��n−1

whenever i� j.
We would like to have that the subnormalized projectors Ei form a POVM, but, unfortunately,

the completeness relation �i=1
n2

Ei= In is in general not satisfied. However, there is a way to fix this
using a technique described in Ref. 12: Define a positive semidefinite Hermitian operator G by
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G = �
i=1

n2

Ei.

Since A spans Cn, the inequality �
�G�
�=�i���i �
��2�0 holds for any nonzero vector �
� in Cn,
so G is even positive definite. It follows that G−1 exists and is positive definite, and we can form
the uniquely determined positive definite square root G−1/2. The n2 rank-one operators

E = �Fi = G−1/2EiG
−1/2:1 � i � n2�

form a POVM, since �iFi=G−1/2GG−1/2= In.
Clearly, if the operators Ei are linearly independent, then so are the operators Fi. Therefore,

the procedure preserves information completeness.
In general, if we switch from the rank-one operators Ei to the rank-one operators Fi, then

tr�FiFj�� �1+o�1�� /n3 might not hold for some i� j. However, if G−1 is close to the identity
matrix, then approximate symmetry is preserved as well.

We now mention some connections between POVMs and the theory of frames.5,9,16

Definition 2 (Frames): A set F= ���i� :1� i�N� of vectors in Cn is called a frame if there exist
real numbers a and b, with 0�a�b, such that

a�
�
� � �
i=1

N

��
��i��2 � b�
�
�

holds for all �
��Cn.
If a=b, then the frame is called a tight frame, and if a=b=1, then the frame is called a

Parseval frame.
We can associate with the frame F its frame operator G=�k=1

N ��k���k�. If we are given a frame
F with frame operator G, then

G = �G−1/2�v�:�v� � F�

is a Parseval frame �see Ref. 10, Theorem 4.2�. The projectors associated with G form a POVM,
since �v�FG−1/2�v��v�G−1/2=G−1/2GG−1/2= I holds.

If we have a Parseval frame G in Cn with n2 elements such that the associated projection
operators are linearly independent and the frame elements satisfy the approximate symmetry �3�,
then by definition the projectors corresponding to the frame G form an ASIC-POVM.

C. Construction I: Pruning MUBs

The first construction of ASIC-POVMs is based on the idea to select a suitable collection of
n2 vectors from a set of n2+n vectors that form a maximal set of n+1 mutually unbiased bases of
Cn. Our goal is to choose n2 vectors such that the corresponding projection operators are linearly
independent. We recall a known fact that belongs to the folklore of mutually unbiased bases; it is
implicitly contained in Refs. 26 and 49, and more explicitly in Ref. 22, and our proof is based on
the latter.

Lemma 3: Suppose that Ba= �va,b :0�b�n�, with 0�a�n, are n+1 mutually unbiased bases
of Cn, and let

P = ��va,b��va,b�:0 � a � n,0 � b � n�

denote the associated set of n2+n projectors. The n2 projection operators in P*= ��va,b�
��va,b� : �a ,b�= �0,0� or b�0��P are linearly independent.

Proof: First, suppose that a linear relation
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�
a=0

n

�
b=0

n−1

�a,b�va,b��va,b� = 0 �6�

holds for some �a,b�C. We are going to show that this has some rather strong consequences for
the coefficients �a,b. If we apply the projection operators from P and take the trace, then we obtain
a linear system of equations Ag=0, where

A = �tr��va,b��va,b��vc,d��vc,d����a,b�,�c,d�

and g= ��a,b� is a column vector. The matrix A is block circulant,

A =�
In

1

n
Jn ¯

1

n
Jn

1

n
Jn

1

n
Jn In ¯

1

n
Jn

1

n
Jn

� � � �

1

n
Jn

1

n
Jn ¯

1

n
Jn In

� ,

with n�n identity matrices in the diagonal blocks, and multiples of the n�n all-one matrix in the
off-diagonal blocks.

If we subtract two equations in Ag=0 that belong to the same block row, then we find that
�a,b=�a,d holds for all 0�b ,d�n and all indices a. Therefore, the coefficients �a,b do not depend
on the value of b.

Finally, suppose that the left-hand side of �6� consists of a linear combination of projectors
belonging to the set P*, meaning that the coefficients �a,b=0 when a�0 and b=0. It follows that
�a,b=0 holds whenever a�0, since �a,b=�a,0 by our previous observation. Therefore, the left-
hand side of �6� reduces to

�
b=0

n−1

�0,b�v0,b��v0,b� = �
b=0

n−1

�0,0�v0,b��v0,b� = 0.

Thus, we must have �0,0=0. Therefore, we can conclude that the projectors in P* are linearly
independent, as claimed. �

We also recall the basic construction of MUBs in prime power dimension; see, for instance,
Refs. 27 and 49.

Lemma 4: Let q be a power of a prime p�3. Define

��a,b� = q−1/2�ep�TrFq/Fp
�ax2 + bx���x�Fq

� Cq.

Then the standard basis B0 together with the bases Ba= ���a,b� :b�Fq�, a�Fq, form a set of
q+1 mutually unbiased bases of Cq.

Our first construction of ASIC-POVMs is given in the next theorem.
Theorem 5: Let q be a power of a prime p�3. Let

��a,b� = q−1/2�ep�TrFq/Fp
�ax2 + bx���x�Fq

� Cq

for all �a ,b��Fq�Fq
� and ��a,0�= ��a,x�x�Fq

for all a�Fq. We define Ea,b= ��a,b���a,b� /q and

G = �
a�Fq

�
b�Fq

Ea,b.

Then the set �Fa,b :a ,b�Fq�, with Fa,b=G−1/2Ea,bG−1/2, is an ASIC-POVM.
Proof: The linear independence of the operators Ea,b follows from Lemma 3. It remains to
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show that the matrix G−1 is close to the identity and that Fa,b=G−1/2��a,b���a,b�G−1/2 indeed forms
an ASIC-POVM. First, we explicitly compute the frame operator G. We have

G =
1

q
�

�a,b��Fq�Fq
�

��a,b���a,b� +
1

q
Iq =

1

q2	 �
x,y,a,b�Fq

ep�TrFq/Fp
�a�x2 − y2� + b�x − y����x��y�

− �
x,y,a�Fq

ep�TrFq/Fp
�a�x2 − y2����x��y�
 +

1

q
Iq.

We notice that �x�G�x�=1 for x�Fq, �x�G�−x�=−1/q for x�Fq
�, and �x�G�y�=0 for x ,y�Fq with

x� ±y. Therefore, we can express the operator G in the form

G = Iq −
1

q
Q +

1

q
�0��0�, where Q = �

x�Fq

�x��− x� .

Using the structure of G, it follows that the inverse is given by

G−1 = 	1 +
1

q2 − 1

Iq +

q

q2 − 1
Q −

1

q − 1
�0��0� .

Observe that the set of vectors ���a,b� : �a ,b��Fq�Fq
�� is invariant under Q, since Q��a,b�

= ��a,−b�. Recall that by Lemma 4 the bounds

���a,b��c,d�� � q−1/2

hold, whenever �a ,b�� �c ,d�. Defining ��̃a,b�=G−1/2��a,b� we get

Fa,b = G−1/2Ea,bG−1/2 = ��̃a,b���̃a,b�/q

and obtain that

q2tr�Fa,bFc,d� = ���̃a,b��̃c,d��2 = ���a,b�G−1��c,d��2 � �	1 +
1

q2 − 1

��a,b��c,d��2

+ �	 q

q2 − 1



���a,b��c,−d��2

+ 	 1

q�q − 1�

2

�
1

q
	1 +

1

q2 − 1

2

+
1

q
	 q

q2 − 1

2

+ 	 1

q�q − 1�

2

=
1 + o�1�

q
.

This shows that the rank-one operators Fa,b form an ASIC-POVM. �

D. Construction II: Perturbing MUBs

We now describe a second, different, method to obtain a set of n2 vectors such that the
corresponding projectors span the space of all n�n matrices. This construction of ASIC-POVMs
works for all dimensions n such that n is an odd prime number.

We note that all arithmetic operations in any expression involving elements of Fp and real
numbers are performed over the real numbers �where each element of Fp is represented by an
integer in the range �0, p−1��. For example, for a real r�R and a ,x�Fp, the power rax means ru,
where the integer u=ax can be of size �p−1�2.

Theorem 6: Let p be an odd prime number, and let 0�r�1 be a real number. For a ,b
�Fp define

�
a,b� = 1 − r2a

1 − r2pa �raxep�ax2 + bx��x�Fp
� Cp,
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and let Ea,b= �
a,b��
a,b� / p. Then the Ea,b are linearly independent. Furthermore, let

G = �
a,b�Fp

Ea,b.

Then for r=1− p−3 the set �Fa,b :a ,b�Fp�, with Fa,b=G−1/2Ea,bG−1/2, is an ASIC-POVM.
Proof: First, we show that the matrices Ea,b are linearly independent. Note that instead of

considering the normalized vectors �
a,b� it is possible to consider the vectors �
̃a,b�= �raxep�ax2

+bx��x�Fp
and to show that the corresponding projectors Ẽa,b= �
̃a,b��
̃a,b� are linearly independent.

We use the technique introduced in Ref. 15 to check whether the matrices Ẽa,b are linearly

independent. To each n�n matrix Ẽa,b we associate a state �Ẽa,b� which is simply the rowwise

concatenation of the entries of Ẽa,b as a vector of length n2. Then the matrices Ẽa,b are linearly

independent if and only if the matrix S= �1/ p��a,b�Fp
�Ẽa,b��Ẽa,b� has full rank. We obtain

pS = �
a,b�Fp

�Ẽa,b��Ẽa,b� = �
a�Fp

x,y,u,v�Fp

ra�x+y+u+v�ep�a�x2 − y2 − u2 + v2�� � �
b�Fp

ep�b�x − y − u + v���x,y�

��u,v� = p �
a�Fp

x,y,u,v�Fp

ra�x+y+u+v�ep�a�x2 − y2 − u2 + v2���x−y,u−v�x,y��u,v� .

The rows of S are labeled by pairs �x ,y�, with x ,y�Fp, and the columns by pairs �u ,v�, with
u ,v�Fp. We first note that S can be written as a block-diagonal matrix of p submatrices, each of
size p� p, if the rows and columns of S are suitably rearranged. For 0� i� �p−1�, we define the
sets Li= ��x ,x+ i� :x�Fp� �we treat i as an element of Fp so x+ i is computed in Fp, too�. We now
order the rows and columns according to the list L=�i=0

p−1Li. With respect to this basis we obtain
that

S = A0 � A1 � ¯ � Ap−1,

with p� p matrices

Ai = � �
a�Fp

ra�x+y+u+v�ep�a�x2 − y2 − u2 + v2���
x,u�Fp

,

where y=x+ i and v=u+ i. Hence, we obtain that

Ai = � �
a�Fp

r2a�x+u+i�ep�2ai�u − x���
x,u�Fp

and have to show that this matrix is invertible for 0� i� �p−1�. In order to do so, we first observe
that x�x− i /2 defines a permutation of the rows of any p� p matrix and that similarly u�u
− i /2 defines a permutation of the columns �hereafter i /2 is computed in Fp�. Applying both the
row and the column permutation to Ai we obtain the matrix

Bi = � �
a�Fp

r2a�x+y�ep�2ai�u − x���
x,u�Fp

.

Note further that x�x /2 and y�y /2 induce permutations of the rows and columns of any p
� p matrix. Applying this to Bi we obtain the matrix

Ci = � �
a�Fp

ra�u+x�ep�ai�u − x���
x,u�Fp

= � �
a�Fp

�rxep�− ix��a�ruep�iu��a�
x,u�Fp

= ��rep�− i��xk�x,k=0
p−1 � ��rep�i���u��,u=0

p−1 .
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Since �rep�i��= �rep�−i��=r and 0�r�1, by the property of Vandermonde matrices32 we con-
clude that Ci is invertible for all i=0, . . . , p−1, which implies that the matrices Bi, Ai, and finally
S are invertible. Arguing as in the proof of Theorem 5 we have established the informational
completeness of the projectors corresponding to the normalized vectors �
a,b�.

Next, for r=1− p−3 we derive the bound

��
a,b�
c,d�� �
1 + o�1�

p
, �a,b� � �c,d� . �7�

We have

��
a,b�
c,d�� = 1 − r2a

1 − r2pa 1 − r2c

1 − r2pc� �
x�Fp

r�a+c�xep��x2 + �x�� , �8�

where �=a−c and �=c−d.
We frequently use that rt=1+O�t / p3� for any t=O�p3�. In particular,

 1 − r2a

1 − r2pa 1 − r2c

1 − r2pc = 	 �
x�Fp

r2ax
−1/2	 �
x�Fp

r2cx
−1/2
� 	 �

x�Fp

r2px
−1

= �p�1 + O�1/p���−1 = �1 + o�1��p−1.

Furthermore,

� �
x�Fp

r�a+c�xep��x2 + �x�� � � �
x�Fp

�1 + O�1/p��ep��x2 + �x�� � � �
x�Fp

ep��x2 + �x�� + O�1�

� p + O�1� .

Substituting the above bounds in �8�, we derive �7�.
Next, we note that Ea,b= �
a,b��
a,b� / p and G=�a,b�Fp

Ea,b. We now compute the frame opera-
tor G and show that G−1 is close to the identity. Similarly to the proof of Theorem 5, this implies
that Fa,b=G−1/2Ea,bG−1/2 indeed forms an ASIC-POVM. We have

G = 	 �
a,b�Fp
x,y,�Fp

1 − r2a

p�1 − r2pa�
ra�x+y�ep�a�x2 − y2� + b�x − y���x��y�


= 	 �
a�Fp

x,y,�Fp

1 − r2a

1 − r2para�x+y�ep�a�x2 − y2���x,y�x��y�
 = diag	 �
a�Fp

1 − r2a

1 − r2par2ax:x � Fp
 .

Recalling that r=1− p−3, from the Taylor expansion we obtain that

1 − r2a

1 − r2pa =
1 + o�1�

p
.

Hence

�
a�Fp

1 − r2a

1 − r2par2ax =
1 + o�1�

p
�

a�Fp

r2ax =
1 + o�1�

p
�p + O�1�� = 1 + o�1� .

Finally, we deduce that

p2tr�Fa,bFc,d� = ��
̃a,b�
̃c,d��2 = ��
a,b�G−1�
c,d��2 = �1 + o�1����
a,b�
c,d��2 =
1 + o�1�

p
,

which implies that the rank-one operators Fa,b form an ASIC-POVM. �

082104-10 Klappenecker et al. J. Math. Phys. 46, 082104 �2005�

                                                                                                                                    



III. RELAXED MUBs AND SIC-POVMs

A. Motivation

The constructions in the previous sections required the existence of n+1 mutually unbiased
bases in Cn. Currently, it is not known whether such extremal sets of mutually unbiased bases exist
when n is divisible by two distinct primes. We show that approximately mutually unbiased bases
exists in all dimensions. Furthermore, we show that if we slightly relax the ASIC-POVM condi-
tion, then we can obtain in any dimension systems of vectors that approximate SIC-POVMs. For
these constructions, we need some results about the distribution of primes and bounds on expo-
nential sums, which we summarize below.

These constructions work in any dimension n but attain its maximal strength for n of a certain
arithmetic structure. In particular, if n= p−1 for a prime p, then we show the existence of AMUBs
in Cn. It is not known whether maximal sets of MUBs in these dimensions exist.

Besides the general mathematical interest in the vector systems derived in this section, we
expect that our approach and the new technique introduced in the following will lend themselves
to some further applications in quantum information processing.

B. Analytic number theory background

First of all we recall a remarkable result of Ref. 3 on gaps between consecutive primes.
Lemma 7: For any sufficiently large x, any interval of the form �x−x0.525 ,x� contains a prime

number.
We now need some bounds of exponential sums with polynomials.
Let p be a prime number and let Fp be a field of p elements. We always assume that Fp is

represented by the elements �0, . . . , p−1�.
The following statement is a variant of the celebrated Weil bound �see Example 12 of Appen-

dix 5 of Ref. 46 as well as Theorem 3 of Chap. 6 in Ref. 30 and Theorem 5.41 and comments to
Chap. 5 of Ref. 31�.

Lemma 8: Let � be a nontrivial multiplicative character of Fp of order s. Suppose that
G�X��Fp�X� is not, up to a nonzero multiplicative constant, an sth power in Fp�X�. Then for any
polynomial F�X��Fp�X� of degree d we have

��
u=1

p

ep�F�u����G�u��� � �d + � − 1�p1/2,

where � is the number of distinct roots of G in the algebraic closure of Fp.
We now use Lemma 8 to estimate some mixed exponential sums with two exponential func-

tions.
Lemma 9: Let F�X��Fp�X� be of degree d�2. Then, for any integer k,

��
u=1

p

ep�F�u��en�ku�� = �O�p2/3� , if d = 2,

O�p3/4� , if d � 3.
�

Proof: Because each term in our sum is of absolute value �ep�F�u��en�ku��=1, for every
integer v�0 we have

�
u=1

p

ep�F�u��en�ku� = �
u=1

p

ep�F�u + v��en�k�u + v�� + O�v� .

Thus for every positive integer m we have
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m�
u=1

p

ep�F�u��en�ku� = �
v=0

m−1

�
u=1

p

ep�F�u + v��en�k�u + v�� + O�m2� .

Therefore

��
u=1

p

ep�F�u��en�ku�� �
1

m
W + O�m� , �9�

where

W = ��
u=1

p

�
v=0

m−1

ep�F�u + v��en�k�u + v��� = ��
u=1

p

en�ku��
v=0

m−1

ep�F�u + v��en�kv��
� �

u=1

p ��
v=0

m−1

ep�F�u + v��en�kv�� .

By the Cauchy inequality we obtain

W2 � p�
u=1

p ��
v=0

m−1

ep�F�u + v��en�kv��2

= p �
v,w=0

m−1

en�k�v − w���
u=1

p

ep�F�u + v� − F�u + w�� .

We now examine the polynomial Fv,w�U�=F�U+v�−F�U+w�. By the Taylor formula we have

Fv,w�U� = F�U + v� − F�U + w� = �
�=0

d−1
F����v� − F����w�

�!
U�.

Clearly F�d−1��v�=F�d−1��w� is possible only for v=w. For such m pairs of v and w we estimate the
sum over u trivially as p. Otherwise we estimate these sums as �d−2�p1/2 by Lemma 8, getting

W2 = �O�mp2� , if d = 2,

O�mp2 + m2p3/2� , if d � 3.
�

Thus by �9�

��
u=1

p

ep�F�u��en�ku�� = �O�m−1/2p + m� , if d = 2,

O�m−1/2p + p3/4 + m� , if d � 3.
�

Taking m= �p2/3� we conclude the proof.
We also need a special case of the classical Weyl bound which we present in the following

form �see Lemma 3.6 of Ref. 25 or Lemma 2.4 of Ref. 43 for a similar statement in full gener-
ality�.

Lemma 10: Let F�X��Fp�X� be of degree d�2. Then for any fixed 	�0 and any integer h
� p,

��
u=1

h

ep�F�u��� = O	h1+		1

h
+

1

p
+

p

hd
1/2d−1
 .

C. Arbitrary dimensions

We now describe a construction of a vector system, which satisfies �4� exactly and also gives
a certain approximation to �5�. In fact we are able to get nd+1 �rather than n+1� orthogonal bases
with this property, where d�1 is any integer.

Let Fd be the set of polynomials of the form
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f�X� = �
�=2

d+1

a�X�

with integer coefficients in the range 0�a��n−1, �=2, . . . ,d+1. Thus #Fd=nd. Let p be the
smallest prime with p�n. For each f �Fd we consider the basis

B f = ��� f ,1�, . . . , �� f ,n��, where �� f ,i� =
1
n

�ep�f�u��en�iu��u=1
n . �10�

Theorem 11: For any integer d�1, the standard basis and the nd bases B f, f �Fd, given by
�10� are orthonormal and satisfy also

��g,j�� f ,i� = �O�n−1/3� , if d = 1,

O�n−1/4� , if d � 2,
�

where f ,g�Fd� �0�, f �g, 1� i , j�n.
Proof: The orthonormality of each basis follows from the identity

�� f ,j�� f ,i� =
1

n
�
u=1

n

en��i − j�u� = �i,j .

Clearly, if f �Fd and g=0 �or f =0 and g�Fd� then ���g,j �� f ,i��=n−1/2. Thus it remains to estimate

��g,j�� f ,i� =
1

n
�
u=1

n

ep�f�u� − g�u��en��i − j�u�

for f ,g�Fd, f �g and 1� i , j�n.
Because

�en�f�u� − g�u� + �i − j�u�� = 1

and by Lemma 7 we have

1

n
�
u=1

n

ep�f�u� − g�u��en��i − j�u� =
1

n
�
u=1

p

ep�f�u� − g�u��en��i − j�u� + O	 �p − n�
n



=

1

n
�
u=1

p

ep�f�u� − g�u��en��i − j�u� + O�n−0.475� .

Hence,

��g,j�� f ,i� =
1

n
�
u=1

p

ep�f�u� − g�u��en��i − j�u� + O�n−0.475� .

Because f�X�−g�X� is a polynomial of degree at least 2, Lemma 9 yields

�
u=1

p

ep�f�u� − g�u��en��i − j�u� = �O�p2/3� = O�n2/3� , d = 1,

O�p3/4� = O�n3/4� , d � 2,
�

which concludes the proof. �

As before, let p be the smallest prime with p�n. We consider n2 vectors

B = ��� f�:f � F2�, where �� f� =
1
n

�ep�f�u���u=1
n . �11�
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Theorem 12: Let p be the smallest prime with p�n. Then, the vector system B of n2 vectors
given by �11� is normalized and also satisfies

���g�� f�� � �2 + O�n−1/10��n−1/2,

where f ,g�F2, f �g.
Proof: Obviously, we have

��� f�� f�� = 1, f � F2.

Put h= p−n. Then for f ,g�F2, f �g, we have

���g�� f�� =
1

n
��

u=1

n

ep�f�u� − g�u��� �
1

n
��

u=1

p

ep�f�u� − g�u��� +
1

n
��

u=1

h

ep�f�n + u� − g�n + u��� .

By Lemmas 8 and 10 we have

���g�� f�� � 2p1/2n−1 + O	h1+	n−1	1

h
+

1

p
+

p

h3
1/4

= 2p1/2n−1 + O�n−1�h3/4+	 + h1+	p−1/4 + h1/4+	p1/4�� .

By Lemma 7 we see that h=O�p0.525�, therefore

h3/4+	 + h1+	p−1/4 + h1/4+	p1/4 = O�p2/5� = O�n2/5�

for sufficiently small 	 and sufficiently large p. Noting that

p1/2 = �n + O�n0.525��1/2 = n1/2�1 + O�n−0.475��1/2 = n1/2 + O�n0.2625�

we finish the proof. �

D. Special dimensions

Here we give some improvements of the constructions of Sec. III C for the values of n for
which the smallest prime p with p�1 �mod n� is sufficiently small.

Let p be the smallest prime such that p�1 �mod n�. Let Xn be the set of n characters of order
n modulo p and Un be the subgroup of residues of order n in Fp

�. In particular #Un=n. It is known
that Xn is a cyclic group, so for some character ��Xn all other characters of Xn are given be the
powers �i, i=1, . . . ,n.

For f �Fp�X� of degree at most d and the above character ��Xn we define

B f = ��� f ,1�, . . . , �� f ,n�� where �� f ,i� =
1
n

�ep�f�u����u�i�u�Un
. �12�

Let Gd be the set of polynomials of the form

f�X� = �
�=1

d

a� X�,

with integer coefficients in the range 0�a��n−1, �=2, . . . ,d+1.
Theorem 13: For any integer d�1, the standard basis and the nd bases B f, f �Gd, given by

�12� are orthonormal and satisfy also

���g,j�� f ,i�� � dp1/2n−1,

where f ,g�Fd� �0�, f �g, 1� i , j�n.
Proof: We have
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�� f ,j�� f ,i� =
1

n
�

u�Un

��u�i−j = �1, i = j ,

0, i � j ,
� 1 � i, j � n .

We also have

��g,j�� f ,i� =
1

n
�

u�Un

ep�f�u� − g�u����u�i−j =
1

p − 1 �
x=0

p−1

ep�f�x�p−1�/n� − g�x�p−1�/n����x�p−1�/n�i−j .

Now, using Lemma 8, we conclude the proof. �

Corollary 14: Let p be a prime and let n= p−1. Then an AMUB exists in dimension n.
Proof: We apply Theorem 13 for p=n+1 and for d=1. Hence, we have n2+1 orthonormal

bases such that inner products between their components are all bounded by �n+1�1/2n−1=n−1/2

+O�n−1�. �

IV. REMARKS AND OPEN QUESTIONS

The questions about finding SIC-POVMs and MUBs can be reformulated as a spherical
design question in the vector space Cn �see Zauner’s thesis50 and also Refs. 28 and 41�. Thus it is
possible that the techniques of Ref. 29, as well as of more recent works �see a very inspiring
survey35�, may apply to the problem of constructing systems of n2 equiangular lines in Cn, that is,
SIC-POVMs. In fact, it is quite possible that with some adjustments they may also apply to
MUBs.

It is widely believed, see Ref. 44, but remains unproved, that the smallest prime p�1 �mod n�
satisfies the bound

p = O�n log2 n� .

In this case, the bound of Theorem 13 becomes O�n−1/2 log n�. Thus, it is quite possible that the
construction of Sec. III D is always superior to those of Sec. III C.

Finally, we remark that many of the results of this paper remain unchanged if one uses prime
powers q= pr �and thus general finite fields Fq� instead of just primes p. In particular, Corollary 14
holds true in this more general setting. Hence, in summary, we have shown that ASIC-POVMs and
AMUBs exist for any prime power dimension q. Moreover, we have shown that approximate
versions of mutually unbiased bases and SIC-POVMs exist in any dimension if we are slightly
more liberal about our constraints on the angles.
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The Schrödinger equation is deduced from a geometric principle. Lagrange,
Hamilton-Jacobi, and Hamilton formalisms are defined almost analogously to the
deterministic case, which can be identified as geometric optic. The form of these
formalisms is identical to the deterministic formalisms. Furthermore, it will be
shown how the deterministic case is “superficial” to the stochastic one if Planck’s
constant is very small. An elementary proof of Heisenberg’s uncertainty relation
finishes the paper. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1998835�

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The Austrian physician Erwin Schrödinger, who discovered, in 1926, the equation governing
quantum mechanics,1 considered in 1931 the following problem:

“A cloud of independent identical particles may be known to initial and final times. What is
the most probable state of the cloud to intermediate times?”
Schrödinger chose as a starting point for his research the a posteriori equivalence2,3 of the

Schrödinger equation

i�t� = −
1

2
�� + V�, �:�0,T� � Rn → C

to the pair of parabolic diffusion equations

�t� +
1

2
�� + c� = 0, − �t�̂ +

1

2
��̂ + c�̂ = 0,

where the real-valued functions �, �̂ and c are defined by

� = eR+S, �̂ = eR−S, R,S:�0,T� � Rn → R, c = − V − 2�tS − ��S�2,

if �=eR+iS. Schrödinger wanted to transform the complex-valued problem into a “real” space. See
also Ref. 4 �or Ref. 5 for a more detailed explanation�, where the connection of the heat flow
equation to Feynman’s path integral is treated.

Irrespective of the detailed words in Schrödinger’s problem and irrespective of the equiva-
lence to dual parabolic pairs, we want to give a solution in the framework of a geodesic variational
problem. We do research on the problem of “geometry of the Schrödinger equation,” i.e.,

We look for solutions of the Schrödinger equation, under an eventually prescribed Riemannian
structure, where initial and final time absolute squares of the �-function are given at the
outset.
We will show that this problem is deeply related to a geodesic problem. The real-valued,

Euclidean version will be identified as stochastic mass transportation.
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The research on the observer variant, a topologically global defined geodesic variational
problem and its symmetries, is of a very historical origin. It stands at the beginning of a theory of
formal deduction, and was considered by Euclid in 300 B.C.6 The idea of the shortest connection
between two points of a space is the central point of Euclid’s geometry.

In the physical applications the variational formalism appears as a principle of least action. It
will be shown that also the Schrödinger equation is determined by a Hamiltonian version of a
variational problem, where the Lagrangian version is given by stochastic mass transportation. A
remarkable point is that the form of the Hamiltonian problem is identical to the form of the
deterministic case given in classical �point� mechanics, what also holds true for the Lagrangian
version. Variation of the stochastic mass transportation problem leads to the following nonlinear
partial differential equation �PDE�:

�tv + �vv − �uu −
�

2
�u = − � V ,

called the stochastic Newton equation, with current velocity v and entropic velocity u �see Sec.
II A�. The stochastic Newton equation generalizes Newton’s law and follows from the Schrödinger
equation

�i�t� = H� = −
1

2
�2�� + V� .

The energy conservation law for stochastic mass transportation is ruled by the entropy action
law. The quantum mechanical energy �� ,H�� of a solution � of the Schrödinger equation is a
constant of the motion. The entropy action law for �0,T�,

WQM��� ª T��,H�� = Wkin��� + Wpot��� −
�

2
�Entrop���T�2, ��0�2� ,

shows that the classical action at time T has an additional dissipative term, the negative Gibbs-
Boltzmann entropy difference of �T and �0.

The fact that � is complex valued can be explained in the framework of a phase space
structure. The real-valued Lagrangian version is imbedded as a tangential space analogously to the
deterministic formalism. The Itô diffusion equation

dYt = b�t,Yt�dt + ��dBt

acts as tangential criteria of b=DY referring to the diffusion Yt.
Such a Lagrangian phase space structure was introduced by Otto7 �or Ref. 8 where the idea is

presented� for deterministic mass transportation. A density way t→�t has the tangent � if the
continuity equation

�t�t + div��t � �� = 0

holds true. The relevant metric for this differential geometry is given by

��̇t,�̇t� ª	 ���t�2�t dx .

In Ref. 8 the equivalence of the geodesic distance for this metric to the time-independent
formulation of the deterministic mass transportation problem, also known as the Wasserstein
distance, is �heuristically� shown.

A further new work in this connection is that by Hall and Reginatto,9 where the authors add
a fluctuation term to the classical variational problem of geometric optics by using certain heuristic
conditions, to derive the form of the fluctuation term by a transformation property of the spatial
uncertainty, called the “exact uncertainty principle,” which finally leads to the Schrödinger equa-
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tion. The “exact uncertainty principle” is a special case of the Cramér-Rao inequality, well known
in information theory. The explanations in Ref. 9 suggest a proof of Heisenberg’s uncertainty
relation, which is the characteristic of quantum dynamics, and so an exact proof is given in Sec.
VII. Note especially that the entropy action law shows that a main assertion in Ref. 9 is, in general,
not true.

In opposite direction to Ref. 9, this paper derives the Schrödinger equation directly from a
geodesic problem, given by Lagrangian stochastic mass transportation. The advantage of this
derivation is the equivalence to classical variational principles

�	 L�t,x, ẋ�dt=
!

0, time marginal values!

In the limit, where “zoomout problems” are considered, such that Planck’s constant � is very
small and the motion is microscopic, the geometry of the Euclidean space is recovered.

This paper wants to introduce a new connection between differential geometry and stochas-
tics. The main result is to generalize the Euclidean space and to show how the classical geometry
is “superficial” to the stochastic case. The primary target is to treat the geometry of the
Schrödinger equation problem mathematically. Further physical data, like the magnetic vector

potential A� in the Schrödinger equation

i��t� = 
�
k

�

i
�k − Ak�
�

i
�k − Ak� + V��

is ignored. �But see Ref. 10, where A� is implemented.�
Main result: The geometry of the Schrödinger equation problem, where we look for solutions

in a Euclidean setting, is governed in its Lagrangian version by a “pure” geodesic variational
problem. The classical geometry can be obtained by a zoomout formalism.

II. PRELIMINARIES

A. Stochastic preliminaries

The following preliminaries are taken under technical modifications from Refs. 10–12 and can
be compared there. Detailed proofs can be found in Ref. 13.

Let T�R+ and �	 ,Tt�, t� �0,T� be a filtrated sample space. For the whole work we can set
	=C0��0,T� ,Rn� and Ttª
�Xs ,0�s� t�, where Xs�c�=c�s�, and c�	 is the coordinate map-
ping, i.e., the common Wiener space setting. Following Ref. 10, expectations referring to a mea-
sure on �	 ,TT� are denoted by E if they are not expressed as integrals.

Definition 1: �a� A diffusion is a measure P on TT and a 
�Xt�-measurable stochastic process
Y : �0,T��	→Rn, i.e., 
�Yt��
�Xt�, with continuous path and second moments ∀t such that the
differential quotients

lim
�t→0+

Et

�Yt
i

�t
= bi�t,Yt�, i = 1, . . . ,n ,

lim
�t→0+

Et

�Yt
i�Yt

j

�t
= 
ij�t,Yt�, i, j = 1, . . . ,n , �1�

exist ∀t� �0,T�. Et is the conditioned expectation referring to P under Tt, i.e., Et�.�=E�.�Tt�. �
 ij�ij

is a measurable function on �0,T��Rn with values in the symmetric, positive definite matrices.
�
ij�ij is called diffusion matrix. b is a measurable function on �0,T��Rn with values in Rn, called
the drift. The limit is supposed to exist in the L2�P�-sense for the drift and in the L1�P�-sense for
the diffusion matrix. Especially bi�t ,Yt��L2�P�∀ t� �0,T� and 
 ij�t ,Yt��L1�P�∀ t� �0,T�. This
definition shall include the case that the limit for the drift exists only in the L1-sense, but is in
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L2�P�. Only diffusions with diffusion matrix h · id, h�R+, will play a role within this paper.
A diffusion, referring to the Lebesgue measure absolutely continuous distribution Yt

P, is called
smooth if the densities �tdx= P�Xt�dx� are smooth and bounded, i.e., �t�C��L�, and further-
more bi and 
 ij, i , j=1, . . . ,n, are given on ��t ,x�0�, are C� differentiable, and �b2� dx
�const is independent of t. The C� property can be weakened to enough differentiability in the
respective situation.

Finally

D�Yt� ª lim
�t→0+

1

�t
E�Yt+�t − Yt�Tt� = b�t,Yt� �2�

is the forward derivative of a diffusion Yt.
�b� C0

��O ;R�, O�Rm, open are the C�-differentiable functions Rm→R with compact support
in O, i.e., ��C0

�⇔supp����O compact.
Proposition 2: �Differential Itô formula analog.12 See Ref. 10.� Let Yt be a diffusion referring

to P. For every real-valued function ��t ,x��C0
���0,T��Rn ;R� we have in the L1�P�-sense

D��t,Yt� = 
1

2

 ij�i,j

2 + bi�i + �t���t,Yt� �Sum convention !� . �3�

Proof: By Taylor’s formula! See Ref. 13.
Proposition 3: �See Ref. 10.� Let Yt be a diffusion referring to P. Let 
 ij�t ,x�,

bi�t ,x� : �0,T��Rn→R�L��C0, i , j=1, . . . ,n, and

	
0

T 	 b2�t,Yt� dP dt � � . �4�

For the distributions Yt
P we have �in the weak sense of �6�� the Fokker-Planck equation

�tYt
P =

1

2
�i,j

2 �
 ijYt
P� − div�bYt

P�, Y0
P given. �5�

Proof: It can be shown that t����t ,Yt� dP is continuously differentiable and that the Fokker-
Planck equation holds true in the following weak sense:

The function t����t ,Yt� dP is absolutely continuous and

	 ��t,Yt�dP −	 ��0,Y0�dP = 	
0

t 	 

 ij

2
�i,j

2 + bi�i + �t���t,Yt�dP dt ,

∀� � C0
���0,T� � Rn;R�, ∀ t � �0,T� , �6�

where the continuous differentiability is weakened to absolute continuity. The integrability condi-
tion �4� is necessary, such that this definition makes sense. See Ref. 13.

Remark 4: �a� Let Yt
P be absolutely continuous referring to the Lebesgue measure ∀t, with

�tdx= P�Xt�dx�. Let � be continuous and b, 
 be continuous on �0�. Then the weak Fokker-
Planck equation referring to the test function space C0

���0� ;R� holds true without boundedness
of 
 and b. Proof of Proposition 3 still remains correct if the test function class is restricted to
�0�.

�b� If Yt is a smooth diffusion referring to P, then the Fokker-Planck equation holds true in the
classical sense on �0�.

The backward derivative of a diffusion Yt is defined by
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D*�Yt� ª lim
�t→0+

1

�t
E�Yt − Yt−�t�Tt

*� = lim
�t→0+

Et
*�*Yt

�t
, �7�

where Tt
*
ª
�Xs , t�s�T� and the topology of the convergence will be explained in the next

proposition. The backward drift b* is defined by

D*Yt ¬ b*�t,Yt� . �8�

Proposition 5: �Partial integration for stochastic derivatives. See Ref. 10.� Let Yt be a smooth
diffusion referring to P, with diffusion matrix h · id, h�R+. The integrability conditions

	
0

T 	 b2�t,Yt� dP dt � �, respectively 	
0

T 	 �� ln ��t,Yt��2 dP dt � � , �9�

may hold true, where � ln ��t ,x� is defined on ��t ,x�0� and is equal to zero elsewhere. The
backward derivative exists in the following weak sense,

lim
�t→0+

	
0

T 	 
Et
*�*Yt

�t
�i

f�t,Yt� dP dt = 	
0

T 	 b*
i �t,Yt�f�t,Yt�dP dt ,

∀i = 1, . . . ,n, ∀ f � C0
����t,x�  0� � �0,T� � Rn;R� , �10�

where on ��t ,x�0�

b* = b − h � ln � . �11�

The partial integration formula

	
0

T

E�Df�t,Yt�g�t,Yt�� dt = − 	
0

T

E�f�t,Yt�D*g�t,Yt�� dt + Ef�T,YT�g�T,YT� − Ef�0,Y0�g�0,Y0�

�12�

holds true for arbitrary C�-differentiable functions g : �0,T��Rn→R and f : �0,T��Rn→R where
g and/or f may have compact support in ��t ,x�0�.

Proof: See Ref. 13.
Remark 6: �a� See also Ref. 14, where the time inversion on the Wiener space is treated.
�b� It is not hard to see that with the smoothness of the diffusion and the fact that the test

functions have compact support in ��t ,x�0�, the backward derivative exists in the following
stochastic Sobolev-sense

	 	 Yt
iDf�t,Yt� dP dt = 	

0

T 	 b*
i �t,Yt�f�t,Yt� dP dt ,

∀i = 1, . . . ,n, ∀ f � C0
����t,x�  0� � �0,T� � Rn;R� . �13�

�c� Let Yt be a smooth diffusion referring to P with diffusion matrix h · id, h�R+. The forward
and backward derivatives of a C0

���0,T��Rn ;R�-function f�t ,Yt� are calculated according to

Df�t,Yt� = 
h

2
� + b j� j + �t� f�t,Yt� ,
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D*f�t,Yt� = 
−
h

2
� + b *

j � j + �t� f�t,Yt� , �14�

where the Laplace operator is defined by the Rn in which the diffusion takes on its values.
�d� See Ref. 10 for the transformation of drift vectors and diffusion matrices in coordinates.
�e� The following backward Fokker-Planck equation on ��t ,x�0� holds true:

�t� = −
h

2
�� − div�b*�� . �15�

Definition 7: The entropic velocity on ��t ,x�0� is defined by

u ª

1

2
�b − b*� �16�

and the current velocity on ��t ,x�0� by

v ª

1

2
�b + b*� . �17�

We have u= �h /2�� ln �=h� ln �� on ��t ,x�0�. Averaging �in R� over forward and back-
ward Fokker-Planck equations leads to the continuity equation on ��t ,x�0�:

�t� = − div�v�� . �18�

Proposition 8: �Interpretation of the current velocity.� Let ��t ,x� : �0,T��Rn→Rn and
p�t ,x� : �0,T��Rn→R be a classically differentiable solution of the continuity equation �tp
+div��p�=0, p�0,x�= p0�x� �� and p0 are given�. Then we have for the flow Tt of the vector field
� �i.e., �d /dt�Tt=��t ,Tt�� Tt#p0= pt, where the “push-forward” Tt#p0 of a density function p0 is
defined by

	 Tt#p0�y�f�y�dy =	 p0�x�f�Tt�x��dx ∀ f � C0
0�Rn� . �19�

If, conversely, Tt classically differentiable is given and Tt#p0= pt, then for the vector field
��t ,x�=d /dtTt�x� the continuity equation holds true.

Proof: See Ref. 13.
Definition 9: The meaning of the stochastic acceleration 1

2 �DD*+D*D�Yt of a smooth diffu-
sion Yt referring to P with diffusion matrix h · id will become clear in Sec. III B. It can be
calculated in detail by

	
0

T 	 1

2
�DD* + D*D�Yt��t,Yt� dP dt = 	

0

T 	 1

2
�Db* + D*b��t,Yt���t,Yt� dP dt

= 	
0

T 	 1

2


h

2
� + b j� j + �t�b* + 
−

h

2
� + b *

j � j + �t�b�
�t,Yt���t,Yt� dP dt = 	

0

T 	 
�tv + �vv − �uu −
h

2
�u�

��t,Yt���t,Yt� dP dt,

∀ � � C0
���  0�;R� ,

where � denotes the Levy-Civita connection of the Euclidean space, i.e., ��vv�i=v · �vi, i
=1, . . . ,n.
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The whole treatment of validity on ��t ,x�0� tries to avoid problems with the, by definition,
eventual singularities of b and b* on �=0�.

A further possibility to define diffusions is given by Itô diffusion equations dYt=b�t ,Yt�dt
+��t ,Xt�dBt, for a Brownian motion Bt. The equation with drift b and diffusion coefficient � � Ref.
12� is valid by definition, if the integral version holds true:12

Yt = Y0 + 	
0

t

b�s,Ys� ds + 	
0

t

��s,Xs�dBs. �20�

Itô diffusions are Markovian.
Lemma 10: Let h0 and b : �0,T��Rn→Rn be measurable. Let �b�t ,x���K�1+ �x � �∀ t

� �0,T� with a constant K�R+. The Itô diffusion equation dXt=b�t ,Xt�dt+�hdBt, 0� t�T, has a
weak solution,12 with arbitrary initial distribution �, such that Xt is a Brownian motion referring

to a measure P̄ and such that the Brownian motion �Bt , P� starts in 0, i.e., for every probability

measure � on Rn there exist Brownian motions �	 ,Tt ,Xt , P̄� and �	 ,Tt ,Bt , P� such that the Itô
diffusion equation holds true and PX0 =�.

Proof: See Ref. 13.
Remark 11: �a� Notice that in Lemma 10 a stronger version of a weak solution is constructed.

�	 ,Tt ,Xt , P̄� is given at the outset as canonical Brownian motion �with Xt as coordinate mapping�!
�b� Let the drift vector b�t ,x� and the Itô diffusion equation dYt=b�t ,Yt� dt+�hdBt, �Bt , P�

Brownian motion be given. If

	
0

T 	 b2�t,Yt�dP dt � � , �21�

then the forward derivative exists in the L2�P�-sense for a.e. t and we have DYt=b�t ,Yt�. Further-
more,

lim
�t→0+

Et

�Yt
i�Yt

j

�t
= �0 if i � j

h if i = j
� in L1�P� for a.e. t . �22�

If �b2�t ,Yt� dP��∀ t, then the assertions hold true ∀t.
Proof: See Ref. 13.

B. Analysis of the Fokker-Planck equation

We state theorems concerning the existence, regularity, and uniqueness of the Fokker-Planck
equation, needed for the stochastic mass transportation problem. Detailed proofs are given inspired
by Ref. 15 in Ref. 13. Compared to Ref. 15 we adapt premises and do technical modifications.
Note especially that Ref. 15 works spatially on the torus. The transfer of the proofs to Rn is surely
not trivial.

A weak solution of the Fokker-Planck equation in �0,T��Rn with diffusion h · id, given by
� : �0,T��Rn→R�L1 �� may ∀t be represented, to the data b : �0�→Rn� �±� , . . . , ±���,
measurable drift and �0 :Rn→R�L1�, is defined by the following:

The function t����t ,x�� dx is absolutely continuous and we have

	 ��t,x�� dx −	 ��0,x�� dx = 	
0

t 	 
h

2
� + bi�s,x��i + �s���s,x���s,x� dx ds ,

∀� � C0
���0,T� � Rn;R�, ∀ t � �0,T� . �23�

In addition the integrability condition
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0

T 	 b2� dx dt � � �24�

may hold true, such that this definition is in R.
Theorem 12: �Existence.� Let b : �0,T��Rn→Rn�L��C0 and �0 :Rn→R+�L1, ��0 dx=1.

Then there is a positive weak solution of the Fokker-Planck equation in L1 with diffusion h · id.
Especially ��t ,x��0 is given naturally ∀t and we have ��0,x�=�0�x�, respectively ���t ,x� dx
=1∀ t. If �0�L��Rn ;R+�, then we have ��L���0,T��Rn ;R+�.

Proof: See Ref. 13.
Theorem 13: �Regularity.� Let � : �0,T��Rn→R+�L� and b : �0�→Rn� ±�� �measur-

able� �explicitly given on �0�� constitute a positive weak solution of the Fokker-Planck equa-
tion with diffusion h · id. Let �b2�dx�const be independent of t. Then it follows that �
�Wloc

�0,1�,2��0,T��Rn ;R�, i.e., ��Lloc
2 ���L�� and there is ∀i=1, . . . ,n a �i� : �0,T��Rn→R

�Lloc
2 , such that

	
0

T 	 �i�� dx dt = �− 1�	
0

T 	 ��i� dx dt, ∀ � � C0
���0,T� � Rn;R� . �25�

If, in addition, ��t ,x��L1�Rn ;R�∀ t and ���L1�Rn;R��const independent of t, then �i�

�W�0,1�,2��0,T��Rn ;R�, i=1, . . . ,n.
Proof: See Ref. 13.
See also the regularity result in Ref. 14.
The relative entropy

	 �1�x�ln
�1�x�
�2�x�

dx �26�

of two densities �1 and �2 will be important in the following proof.
Theorem 14: �Uniqueness.� Let �1/2 : �0,T��Rn→R+�L� be positive weak solutions of the

Fokker-Planck equation with diffusion h · id, and b1/2 : �1/20�→Rn� �±� , . . . , ±��� be mea-
surable and �b1/2

2 �1/2 dx�const be independent of t. Let �1/2�t ,x��L1�Rn ;R�∀ t and
��1/2�L1�Rn;R��const independent of t. If the entropies ��1/2 ln �1/2 dx exist in R at the times 0 and
T, then uniqueness at time T holds �in the class with the given premises�, i.e., if b1=b2 and
�1�0,x�=�2�0,x�, then �1�T ,x�=�2�T ,x�.

Proof: See Ref. 13.
Corollary 15: For the conditions for a weak solution of the Fokker-Planck equation stated in

Theorem 14, we have that the entropic velocity u=1�0��h /2�� ln � is in L2���, i.e.,

	
0

T 	 u2� dx dt � � . �27�

Furthermore, the existence of the entropy in R at the times T and 0 implies the existence of the
entropy at all times t� �0,T�. It follows that uniqueness at all times holds true �in the class with
the given premises�.

Proof: See Ref. 13.

C. Existence of diffusions

Smooth diffusions, by definition, can have singularities in the points where the distribution
density disappears. Lemma 10 is not applicable to construct a diffusion with diffusion matrix h · id,
h�R+, where a drift with singularities is given. Especially in Sec. IV we will look for diffusions
with drift vector ��A+B�, where �=eA+iB is a differentiable solution of the Schrödinger equation.
A zero point of such a solution implies necessarily that A=−�, respectively there is a singularity
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for the drift ��A+B�. A+B is bounded from above on compact sets. Nevertheless, it is possible to
construct Itô diffusion equations dYt= � �A+B��t ,Yt� dt+hdBt whereas the condition �� �A+B�
��t ,x���K�1+ �x�� in Lemma 10 is not satisfied.

Remark 16: The literature on the existence of diffusions with singular drift is very extensive.
See, e.g., Refs. 2, 3, 10, and 16–19 as reference.

The stationary �time independent� case was first treated by Albeverio and Høegh-Krohn.17

The case of a compact manifold as configuration space is considered in Ref. 10.
Carlen16 shows weak existence of a diffusion measure, in the sense that the Martingale

characterization for diffusions holds true, from an analytical viewpoint. Singular drift vectors b, b*

and densities �, fulfilling the Fokker-Planck equation in a weak sense, are given at the outset. The
central point is to solve a parabolic equation and to obtain a fundamental solution p*�y , t ;x ,s�. The
integrability condition ���u2+v2�� dx dt�� is required, which is naturally given in the frame-
work of the Yasue variational problem introduced in Sec. III. Using p* a measure on �Rn�R+ �Rn

one-point compactification� is constructed. If only this measure is constructed, it is left to show
that an honest diffusion with the prescribed data is given.

The existence theory of Carlen’s diffusions was extended by Guerra20 using continuity argu-
ments.

With an analogous integrability condition like Ref. 4, Zheng18 shows, with technically differ-
ent methods, by using tightness results, the existence of weak solutions of diffusion measures, in
the sense that the Martingale property is fulfilled. Regularity conditions are required and regular �
functions, fulfilling the Fokker-Planck equation on compact manifolds, are considered. An intrin-
sic feature of these proofs is that under certain conditions, with probability one, the process never
visits the sets �=0�.

In Ref. 19 strong solutions, where the Fokker-Planck equation with singular drift �at �=0��
is given, are constructed. Stopping time methods are used and unattainability criteria of the nodal
sets are given. Further conditions on the integrability of certain derivatives of � and the entropic
velocity v are needed.

III. STOCHASTIC MASS TRANSPORTATION

A. Definition of stochastic mass transportation

Let �1 and �2 be two density functions on Rn, which take values in 	1 and 	2. The normal-
ization

	
	1

�1�x� dx = 	
	2

�2�y� dy = 1 �28�

may hold true. The deterministic �L2-� mass transportation problem �see Refs. 21–23�, referring to
a quadratic cost function, seeks to transform �1 into �2 by an L2-optimal transport mapping D, i.e.,
if the “push forward” D#� :	2→R+ of a density function � by the mapping D :	1→	2 is as
before defined by

	
	2

D#��y�f�y� dy =	
	1

��x�f�D�x�� dx ∀ f � C0�	2� , �29�

then the deterministic mass transportation minimizes the functional

	
	1

�x − D�x��2�1�x� dx=
!

inf
D

, where D#�1 = �2. �30�

The square root of this minimal expression is called the Wasserstein distance of �1 and �2.
Necessary for a minimum is the nonlinear Monge-Ampère equation

�2�D�x��det��� jD
i�ij�x�� = �1�x� . �31�
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The main result in this connection is that D exists and is the gradient of a convex function24,25

�see also Refs. 21 and 23 as reference�. Hereby the second derivatives in the Monge-Ampère
equation are justified.

The connection to geodesics can be seen if the interpolation of �1 and �2 by D is considered
in a time continuous setting. The following result is due to Brenier and Benamou26 �see Ref. 23 for
a precise definition of the space of pairs �v ,���.

Let �0, �1�Rn→R be given with ��0�x� dx=��1�x� dx=1 and T�R+. The minimization
problem

	
0

T 	 v2� dx dt=
!

inf
v,�

;

v:�0,T� � Rn → Rn � C1,

�:�0,T� � Rn → R+ � C1, 	 �t dx = 1,

��0, . � = �0, ��T, . � = �T, �t� + div��v� = 0 �32�

takes on its minimum in the unique pair �v ,�� defined by the convex function � belonging to the
non-time-continuous transport problem by

	 f�t,x���t,x� dt dx =	 f
t,x +
�� − x

T
��0�x� dt dx ,

	 f�t,x���t,x�v�t,x� dt dx =	 �� − x

T
f
t,x +

�� − x

T
��0�x� dt dx ∀ f � C0. �33�

The variational formalism is equal to geometric optics. The time continuous, straight convex
connection x+ t���−x� /T, t� �0,T�, constitutes the way of light.

Definition 17: �Euclidean h-stochastic �L2-� mass transportation, see also Ref. 27 for a vari-
ant.� In analogy, let the stochastic mass transportation to the data �0/T probability measures on Rn,
T, h�R+, be defined as follows:

	
0

T 	 b2�t,Yt� dP dt=
!

inf
b,P,B

,

b:�0,T� � Rn → Rn,

dYt = b�t,Yt� dt + �hdBt, Y0/T
P = �0/T. �34�

�	 ,Tt ,Bt , P� is a Brownian motion with start in 0 and �	 ,Tt ,Yt , P̄� is a Brownian motion with

initial distribution P̄Y0. The infimum is taken over all Itô diffusion equations, which satisfy the

marginal conditions. �	 ,Tt ,Yt , P̄� can be given at the outset as canonical Brownian motion on Rn

with initial distribution �, i.e., as before, 	=C0���0,T�� ,Rn�, Yt=Xt is the coordinate mapping

Xt�c�=c�t�, Tt is the 
-Algebra constituted by Xs, s� t, and P̄ is the usual construction of the
Wiener measure with initial distribution. The definition above is a Markovian variant of stochastic
mass transportation. The minimization can alternatively take place over all triples �b , P ,Y�, where
Y is a diffusion referring to P with diffusion matrix h · id and drift b. What counts is what the triple
produces after an application of the picture measure theorem, namely a picture density and drift
which fulfill a Fokker-Planck equation.
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Proposition 18: Let �0/T�L��L1 be positive, ��0/T�L1 =1, and the entropies ��0/T ln �0/T dx

may exist in R. Let �	 ,Tt ,Xt , P̄� be the canonical Brownian motion with initial distribution P̄X0.
The following variational problems can be reformulated in each other:

�I�

	
0

T 	 b2�t,x�� dx dt=
!

inf
b,�

,

b:�0,T� � Rn → Rn � L� � C0,

�:�0,T� � Rn → R+ � L�, 	 �t dx = 1,

��0,x� = �0, ��T,x� = �T,

�t� + div��b� −
1

2
h�� ,

weak Fokker-Planck equation!

�II�

	
0

T 	 b2�t,Xt� dP dt=
!

inf
b,P,B

,

b:�0,T� � Rn → R � L� � C0,

dXt = b�t,Xt� dt + �hdBt,

�	 ,Tt ,Bt , P� Brownian motion with start in 0, such that

P�X0 � dx� = �0dx, P�XT � dx� = �Tdx .

Proof: “�II�⇒ �I�” The assertion follows by the picture measure theorem and the fact that
because of Proposition 3 and Remark 11�b� �or Theorem 12� the stochastic diffusion equations
dXt=b�t ,Xt� dt+�hdBt lead to a weak Fokker-Planck equation �t�+div��b�− 1

2h��=0, where
��t ,x� dx= P�Xt�dx�, such that the conditions in �I� are fulfilled.

”�I�⇒ �II�“ Let b be given. Because b is bounded, according to Lemma 10 there is a weak
solution �	 ,Tt ,Bt , P� of the diffusion equation with initial distribution density �0. This weak
solution again leads to a weak Fokker-Planck equation according to Proposition 3 and Remark
11�b� �respectively, Theorem 12�. Especially because of Theorem 13 the conditions of Theorem 13
are fulfilled. By Corollary 15 we can apply the uniqueness at all times. � is therefore uniquely
characterized by �0. Especially the time marginal condition for T is true. The equality of both
functionals again is a conclusion of the picture measure theorem. Q.E.D.

Remark 19: The Brownian motion �	 ,Tt ,Xt , P̄� with initial distribution P̄X0 is given at the

outset. �	 ,Tt ,Xt , P̄� is called the reality of the transport problem. Let �	 ,Tt ,Bt , P� be a minimiz-
ing solution. Bt is called the observer to the time marginal densities �0, �T at time T. P is called
the observed deviation of the reality.
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B. Lagrange formalism

The Lagrangian formalism for a point dynamical system on Rn possesses a stochastic gener-
alization. For an elementary Lagrangian L�x�t� , ẋ�t��= 1

2 �ẋ�t� , ẋ�t��−V�x�t��, with a Riemannian
metric �.,.�, this generalization is defined by stochastic mass transportation including a potential
term concerning V. The Euler-Lagrange equation of the variational problem is given by the
stochastic Newton equation. Hereby Newton’s law is generalized.

Definition 20: �Variational problem.� Let a variational functional F :V→R be defined on a
linear concurrence space K, such that constraints for F may hold. Let the problem be homoge-
neous, i.e., there is a subspace U�K, called variational space, such that for f �K it follows that
f +u�K ∀u�U. An element f out of the concurrence space is called stationary referring to
variation with U exactly if ��d /d����=0F�f +�u�=0 ∀u�U, where existence of the derivatives

may be given without restriction. We denote �F�f�=
!

0, to underline the search for a stationary
solution.

The Lagrangian formalism for a point dynamical system on Rn with a Lagrangian L is given
by

�
	
0

1

L�t,x�t�, ẋ�t�� dt�=
!

0, time marginal values x�0�,x�1� . �35�

The variation takes place referring to all differentiable ways with a compact support in �0,1�
and over the concurrence space of all differentiable ways which fulfill the time marginal condi-
tions. The Euler-Lagrange equations for this problem are28

d

dt

�L

�ẋ
−

�L

�x
= 0. �36�

The well-known stochastic generalization is given by the Yasue h-problem:10,29,30

J�Y� ª 	
0

T 	 
1

2
L�t,Y,DY� +

1

2
L�t,Y,D*Y��dP dt , �37�

�J�Y�=
!

0. Variation takes place over the concurrence space of diffusions �Y , P�, such that Y is a
diffusion referring to P with drift b, the functional is in R, and, furthermore, P�Y0�dx�=�0dx,
P�YT�dx�=�Tdx. We seek a smooth solution �Y , P� with diffusion matrix h · id.

Reformulating �and simplifying� the variational formalism compared to Refs. 29, 10, and 30
we do variation in the space of diffusions. A smooth diffusion Yt with ��t ,x�dx= P�Yt�dx�, such
that the time marginal conditions are fulfilled, is stationary if for all probability vectors �
=��t ,Yt�, � : �0,T��Rn→Rn, differentiable with compact support in �0�� �0,T��Rn we
have: ��d /d����=0J�Y +���=0. As can be seen according to the proof of Proposition 2, Y +�� is
again a diffusion referring to P. Furthermore, the time marginal conditions are true for Y +��,
because of the compactness of the support of �. Y +�� is therefore an element of the concurrence
space of diffusions. We find by variational calculus

� d

d�
�

�=0
J�Y + ��� = 	

0

T 	 
1

2
�xi

L�t,Y,DY��i +
1

2
�xi

L�t,Y,D*Y��i +
1

2
�qi

L�t,Y,DY�D�i

+
1

2
�qi

L�t,Y,D*Y�D*�i�dP dt �Sum convention !�

where we have to justify the commutation of integration and differentiation. A justification can be
given by the usual argumentations. See, e.g. Ref. 31, Sec. 11.Satz 2. The proof transfers obviously,
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without which it is important that the integration takes place over a probability space 	 instead of
Rn. The following criteria must be true if we define

g�t,c,�� ]
1

2
L�t,�Y + ����t,c�,D�Y + ����t,c�� +

1

2
L�t,�Y + ����t,c�,D*�Y + ����t,c��, c � 	:

There is a �0 such that
�I� ��g�t ,c ,�� is continuously differentiable in �, ∀ �� �−� ,�� for every �t ,c�� �0,T�

�	.
�II� �t ,c��g�t ,c ,�� is integrable for time and probability space for every �� �−� ,��.
�III� There is a �positive� integrable function F�t ,c� dominating ��d /d���g�t ,c ,���� ∀�

� �−� ,��.
To fulfill �I� the Lagrangian must be differentiable. For �II� the diffusions must allow integra-

tion, i.e., the drift has to be in L2�P� if L is quadratic in the velocity component. For �III� we can
use the compactness of the support of �.

With the partial integration of Proposition 5 we have, using the compactness of the support of
�,

� d

d�
�

�=0
J�Y + ���=

!

0 ∀ � ⇔ 	
0

T 	 
1

2
�xi

L�t,Y,DY� +
1

2
�xi

L�t,Y,D*Y� −
1

2
D*�qi

L�t,Y,DY�

−
1

2
D�qi

L�t,Y,D*Y���i dP dt=
!

0, ∀ � = ��t,Yt� . �38�

Because � can be chosen arbitrarily the integrand is necessarily zero, i.e., the stochastic
Euler-Lagrange equations are fulfilled. If the elementary Lagrangian

L�x,q� =
1

2
�q,q�Eucl − V�x� �39�

is considered, with the Euclidean metric �. , . �Eucl and a real-valued potential V :Rn→R, V�C1, for
which we have

	
0

T 	 �V�Yt��dP dt � � ⇒ 	
0

T 	 �V�Yt + ���t,Yt���dP dt � �

∀� � �− �,�� for a �  0, ∀ � � C0
�,

because �V� is locally bounded, a short calculation with Proposition 5 shows immediately

	
0

T 	 
−
1

2
�DD* + D*D�Y − � V�Y��� dP dt = 0 ∀ �t = ��t,Yt� . �40�

If Y is a smooth stationary solution with diffusion matrix h · id, we thereby have, if we
calculate the stochastic acceleration 1

2 �DD*+D*D� as in Sec. II A, the stochastic Newton
equation10

�tv + �vv − �uu −
h

2
�u = − � V . �41�

The equation is obviously valid in �0,T��Rn, at least in the points where the picture density
is not zero, i.e., in the points where a validity is of interest.

The quasi-Euclidean h-stochastic Yasue problem, with elementary Lagrangian, is defined as
follows
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Jq�Y� ª 	
0

T 	 
1

2
b2�t,Yt� − V�Yt��dP dt −

1

2
h�Entrop�pT,p0� , �42�

�Jq�Y�=
!

0. Variation takes place over the concurrence space of diffusions �Y , P�, such that Y is a
diffusion referring to P with drift b, the functional is in R, and, furthermore, P�Y0�dx�=�0dx,
P�YT�dx�=�Tdx. We seek a smooth solution �Y , P� with diffusion matrix h · id.

The marginal densities �0 and �T are given differentiable probability densities such that their
entropy is in R. The Gibbs-Boltzman entropy difference

�Entrop��T,�0� = 
	 �T ln �T dx −	 �0 ln �0 dx� �the integral is defined on �0/T  0��

�43�

of the time marginal densities �0 and �T is only introduced because of energy conservation. It is
obviously stationarily irrelevant, but note that the gradient flow referring to the entropy functional
is the heat flow equation. �Entrop��T ,�0� can be alternatively implemented into the functional, as
will be shown in the following.

Proposition 21: �Entropy interpolation.� Let � be a classical differentiable �strong� solution of
the Fokker-Planck equation in �0,T��Rn with diffusion h · id and drift b. Let �0 be in
L���0, t��Rn ;R� and L1�Rn ;R� with �� dx=1 ∀ t. Let b�L2���, i.e., on �0� we have

	
0

T 	 b2� dx dt � � . �44�

Furthermore, ��0,x� and ��T ,x� may have an entropy in R and the entropic velocity u
= �h /2�� ln � may also be in L2���, i.e., on �0�

	
0

T 	 u2� dx dt � � . �45�

Then also the current velocity v=b−u is in L2��� and we have the entropy interpolation

h�Entrop��T,�0� = 2	
0

T 	 �v · u�� dx dt . �46�

Proof: The strong validity of the Fokker-Planck equation implements the weak validity �re-
ferring to C0

� as test functions�. Let B1/��0� be the open ball with radius 1/� at 0�Rn, for �0.
Let f� : �0,T��Rn→ �0,1��C0

� be a plateau function, such that �f���0,T��B1/��0��1 and �i f�, �t f�

are uniformly bounded in � for i=1, . . . ,n. Let �0, then ln��f��+�� / �f�+����C0
� and we have

by the weak Fokker-Planck equation and shifting

	 ��T,x� ln
f�� + �

f� + �
�T,x� dx −	 ��0,x� ln

f�� + �

f� + �
�0,x�dx = 	

0

T 	 
�b � ln
f�� + �

f� + �

− � � � ln
f�� + �

f� + �
+ ��t ln

f�� + �

f� + �
� dx dt ¬ 	

0

T 	 �I − II + III� dx dt .

We see

	
0

T 	 I dx dt = 	
0

T 	 
�b ·
��f���
f�� + �

− �b ·
� f�

f� + �
� dx dt ,
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0

T 	 II dx dt = 	
0

T 	 
�� ·
��f���
f�� + �

− � � ·
� f�

f� + �
� dx dt ,

	
0

T 	 III dx dt = 	
0

T 	 
�
�t�f���
f�� + �

− �
�t f�

f� + �
� dx dt .

The limit lim�→0 lim�→0 can be executed and it follows with �=eln �⇒ ��=�� ln � �on
�0��

�Entrop��T,�0� =
2

h
	

0

T 	 �v · u�� dx dt .

The limits are obvious, if we use the integrability

	
0

T 	 �� · � �

�
dx dt � � .

Because of �� · ���max1, ���L���� · �� /� we have ��W�0,1�,2��0,T��Rn ;R�, e.g., the
limit lim�→0 in

lim
�→0

lim
�→0

	 ��T,x�ln
f�� + �

f� + �
�T,x� dx =	 ��T,x� ln ��T,x� dx

is obtained by considering positive and negative parts and applying the theorem of monotone
convergence. The limit lim�→0 is clear, because pointwise convergence and domination holds
true. Q.E.D.

Corollary 22: For a smooth diffusion �Yt , P�, ��t ,x� dx= P�Yt�dx�, with diffusion matrix
h · id and with entropies ���0/T ,x� ln ��0/T ,x� dx in R at the times 0 and T the entropy interpo-
lation of Proposition 21 is valid.

Proof: Smooth diffusions with the given properties fulfill the conditions of Proposition 21,
especially the integrability condition referring to the entropic velocity given according to Corol-
lary 15. Q.E.D.

It follows that for a smooth diffusion Yt, with diffusion matrix h · id, we have

	
0

T 	 v2�t,Yt� dP dt � �, 	
0

T 	 u2�t,Yt� dP dt � �

and

	
0

T 	 b2�t,Yt� dP dt − h�Entrop��T,�0� = 	
0

T 	 �v�t,Yt� + u�t,Yt��2 dP dt

− 2	
0

T 	 �v�x,t� · u�x,t��� dx dt

=	
0

T 	 �v2�t,Yt� + u2�t,Yt�� dP dt .

Theorem 23: For an elementary Lagrangian L�x ,q�= 1
2 �q ,q�eukl−V�x� and for a smooth dif-

fusion Yt, with diffusion matrix h · id, we have
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J�Y� = 	
0

T 	 
1

2
L�Y,DY� dP dt +

1

2
L�Y,D*Y�� dP dt = 	

0

T 	 
1

2
v2�t,Yt� +

1

2
u2�t,Yt�

− V�Yt�� dP dt = 	
0

T 	 
1

2
�v�t,Yt� + u�t,Yt��2 −

1

2
2v�t,Yt� · u�t,Yt� − V�Yt�� dP dt

= 	
0

T 	 L�Y,DY� dP dt −
1

2
h�Entrop��T,�0� = Jq�Y� . �47�

Proof: DY =b=u+v and D*Y =b*=v−u. Q.E.D.
Analogously the quasi-Euclidean functional �0

T�L�Y ,DY� dP dt− 1
2h�Entrop��T ,�0� can be

variated. The same variational calculus shows that for stationary solutions Y we have

	
0

T 	 �− D*DY − � V�Y��� dP dt = 0 ∀ �t = ��t,Yt� . �48�

Corollary 24: The condition for a smooth diffusion Y, with diffusion matrix h · id, to be a
stationary solution of the problems �37� and �42� �with elemantary Lagrangian� is equivalent to

−
h

2
�v + �vu − �uv + �tu = 0, DD*Y = D*DY = − � V�Y� . �49�

Proof: We have

DD*Yi = Db*
i = 
h

2
� + b j� j + �t�b*

i =
h

2
��vi − ui� + v j� j�vi − ui� + uj� j�vi − ui� + �t�vi − ui�

and

D*DYi = D*bi = 
−
1

2
� + b *

j � j + �t�bi = −
h

2
��vi + ui� + v j� j�vi + ui� − uj� j�vi + ui� + �t�vi + ui� .

The direct comparison of 1
2 �DD*+D*D�Y and D*DY leads to

�tv + �vv − �uu −
h

2
�u = − � V

according to the Yasue problem and

−
h

2
��v + u� + �v�v + u� − �u�v + u� + �t�v + u� = − � V

according to the quasi-Euclidean Yasue problem. It follows

−
h

2
�v + �vu − �uv + �tu = 0

for a stationary solution Y of both problems. Furthermore we have DD*Y −D*DY
=−2�−�h /2��v+�vu−�uv+�tu�=0. Q.E.D.

Remark 25: �a� Therefore a stochastic generalization of Newton’s law �see Ref. 10�

force = mass � acceleration = mass � ẍ

holds for stationary solutions, where here mass was set identical to one and the two derivatives
have to be interpreted as execution of forward and backward derivative, one behind the other
respectively.

�b� If the Lagrangian is elementary and V�0, then the h-stochastic mass transportation is
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defined by minimizing the h-Yasue functional �in the space of general diffusions where we seek
for solutions in the space of diffusions with diffusion matrix h · id�. Analogously let the quasi-
Euclidean h-stochastic mass transportation be defined by minimizing the quasi-Euclidean h-Yasue
functional. A minimizing solution is necessarily stationary.

If in addition we consider a potential V�0 for the minimization problems, this will be
denoted by the expression Lagrangian stochastic mass transportation.

The stochastic mass transportation problem can as well be considered under the constraint that
the solution has to be in a certain Riemannian structure, e.g., in the space of diffusions with
diffusion matrix h · id. Hereby a reachability problem is defined �that of course may not be well
posed�. Especially the unconstrained transport problem may lead to a general diffusion with
contravariant diffusion matrix �
 ij�ij as an eventual solution. The covariant metric tensor of the
problem is given by �
ij�ij.

10

The following paragraph will show that solutions of the Schrödinger equation lead to station-
ary solutions of the Yasue problem. If one has a solution of the Schrödinger equation

i��t� = −
�2

2m
�� + V� ,

with a point mass m, and states the Yasue problem with initial and end density ��0/T�2, the m will
be a part of the solution of the problem and does not have to be given at the outset!

If one minimizes the stochastic mass transportation problem in the space of diffusions with
diffusion matrix h · id, then the problem can obviously be restricted to this space. By that a solution
of the Euclidean h-stochastic mass transportation problem in Definition 1 is obtained. For a fixed
initial density �0, the reachable end densities �T, so-constructed solutions of the minimization
problem, are called Euclidean h-stochastic shortest geodesics.

The hereby demonstrated geodesic theory requires the clarification of the following problems:
�I� existence,
�II� uniqueness,
�III� regularity,
�IV� characterization of reachability, and
�V� an injectivity radius theorem.

IV. GEOMETRY OF THE SCHRÖDINGER EQUATION

A. Hamilton-Jacobi formalism

The Hamilton-Jacobi formalism is characterized by the Hamiltonian action function, which
describes the evolution of the action wave of a point dynamical system out of a singular point. Or,
equivalently, for a geodesic system where the potential is equal to zero it describes the evolution
of the distance spheres. The Hamiltonian action function is determined by the Hamilton-Jacobi
equation. Almost analogously to the deterministic case such an action function can be defined for
the stochastic scenario, such that this function fulfills almost analogous properties.

The results in this subparagraph are taken from Ref. 10, and so we restrict to a brief sketch of
proofs.

Consider the flow �w�s ;x ,T� of a time-independent differentiable vector field w : �0,R�
�Rn→Rn, where �w�s ;x ,T� is the flow at time s, if the flow is localized to time T in x. Let
L�x ,q�= 1

2 �q ,q�−V�x� be an elementary Lagrangian, with a Riemannian metric �.,.�. The Hamil-
tonian action function Sw�T ,x� of the system is defined by

Sw�T,x� ª −	
T

0

L��w�s;x,T�,w�t,�w�s;x,T��� ds . �50�

It describes the evolution of the surfaces of constant action out of a singular point. Application
of the total derivative �d /dT� leads to �d /dT�Sw�T ,x�=L�x ,w�T ,x��ªLw. We seek for stationary
solutions of the functional Sw�x ,T� where we variate w without time marginal constraints. The
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execution of the total derivative shows that we have to consider intrinsic dependencies such that
d /dT¬Dw=�t+wi�i. Let w be a stationary solution and �w+w= w̃. Then

Dw�Sw − Sw̃� = DwSw − Dw̃Sw̃ + �Dw − Dw̃�Sw̃ = Lw̃ − Lw − �wi�iS
w̃ = Lw̃ − Lw − �wi�iS

w + o��w� .

Now Lw̃−Lw=�iw
i�wi+o��w� and Sw̃−Sw=−�T

0�d /ds��Sw̃−Sw� ds, because Sw̃ and Sw are
equal to zero at time 0. Therefore

Sw̃ − Sw = − 	
T

0

�
i

�wi − �iS
w��wi ds + o��w� ∀ �w .

We can conclude the Hamilton-Jacobi condition

w = � S , �51�

which shows together with DwSw=Lw, i.e., �tS
w+vi�iS

w= 1
2 �w ,w�−V, the Hamilton-Jacobi equa-

tion

�tS
w +

1

2
��Sw�2 + V = 0. �52�

The analogous stochastic formalism was considered by Guerra and Morato10,32 and will be
sketched here, because the following theorem taken from Ref. 10 and especially the stochastic
Hamilton-Jacobi condition �62� will have effects on the next subparagraph. Let LGM be the La-
grangian �Guerra-Morato Lagrangian�

LGM�x,q� =
1

2
�q,q�Eucl +

�

2
�iq

i − V�x� �53�

and let the variational functional be given by

I�b� =	
0

T 	 LGM�Xt,b�t,Xt�� dP dt . �54�

� is Planck‘s constant from quantum mechanics, which later will enter into the validity of the
Schrödinger equation. The variation will take place over the drift of the diffusion equation dXt

=b�t ,Xt� dt+��dBt; �Bt , P� is a Brownian motion, where the end density at time T is kept fixed.
These diffusion equations can be constructed by time inversion on the Wiener space.14 Especially
weak solution methods can be applied and Xt can be chosen as coordinate mapping as usual. I is,
following Nelson,10 critical in the sense of Guerra-Morato in a differentiable b, if for all differ-
entiable �b, with compact support, such that the diffusion, with diffusion matrix � · id, belonging

to b̃ªb+�b has the same end density at time T as the diffusion belonging to b, if

I�b� − I�b̃� = I − Ĩ = o��b� . �55�

Define P�Xs�dx�=�dx and R= �� /2� ln �, such that �R=u. Then we have for b=u+v
= �R+ �S the Fokker-Planck equation �t�+div�b��− 1

2���=0, respectively the continuity equa-
tion �t�+div�v��=0. Define, furthermore, the Hamiltonian action function referring to the drift b
as follows:

Sb�T,x� ª − ET
b
	

T

0

LGM�Xs,b�s,Xs�� ds�XT = x� �56�

with the factorized conditioned expectation associated to the diffusion measure referring to b
conditioned under XT=x.33 We may have10
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DbSb�T,XT� = lim
�t→0

1

�t
ET
b	

T

T+�t

LGM�Xs,b�s,Xs�� ds� = LGM�XT,b�T,XT�� ,

and with DbSb�t ,Xt�= ��t+bi�i+ �� /2���Sb�t ,Xt�

Db�Sb − Sb̃� = DbSb − Db̃Sb̃ + �Db − Db̃�Sb̃ = LGM
b̃ − LGM

b − �bi�iS
b̃ = LGM

b̃ − LGM
b − �bi��iS

b + O��b��

= LGM
b̃ − LGM

b − �bi�iS
b + o��b� . �57�

Now we have LGM
b̃ −LGM

b =�ib
i�bi+ �� /2��i�bi+o��b� and

− Eb	
T

0

Db�Sb̃ − Sb� ds = EbSb̃�T,XT� − EbSb�T,XT� = Eb̃Sb̃�T,XT� − EbSb�T,XT� = − Ib̃ + Ib

�58�

because Sṽ and Sv disappear identically at time 0 and because XT has an identical picture distri-

bution density �T referring to the measures belonging to b̃ and b. Therefore we have by �56�–�58�

Ib̃ − Ib = Eb	
T

0

�
i

bi − �iS

b +
�

2
�i��bi ds + o��b� ∀ �b . �59�

But with P�Xs�dx�=�dx and R= �� /2�ln �, respectively �R=u, we obtain by shifting in �59�
��b has compact support�

Eb�

2
�i�bi�s,Xs� =	 �

2
�i�bi� dx =	 �

i

ui�bi� dx . �60�

Because of bi−ui=vi we finally have by �59� and �60�

Ib̃ − Ib = Eb	
T

0

�
i

�vi − �iS
b��bi ds + o��b� ∀ �b . �61�

Theorem 26:10 In the sense of Guerra-Morato stationary solutions b fulfills necessarily the
Hamilton-Jacobi condition, i.e., with Sb=S we have

v = � S . �62�

The current velocity is necessarily a gradient of a scalar function. We have the stochastic
Hamilton-Jacobi equation

�tS +
1

2
��S�2 −

1

2
��R�2 −

�

2
�R + V = 0, �63�

from which we can conclude by differentiation the stochastic Newton equation and which is
inclusively the validity of the continuity equation �te

�2/��R+div�ve�2/��R�=0 equivalent to the
Schrödinger equation.

Proof: �See Ref. 10.� The Hamilton-Jacobi condition follows from the preceding explanations.
The stochastic Hamilton-Jacobi condition together with DbS=Lb, i.e., ��t+bi�i+ �� /2���Sb

= 1
2 �b ,b�+ �� /2��ib

i−V�x�, leads to the stochastic Hamilton-Jacobi equation. An application of �i

shows

�tv
i +

1

2
�i
�

j
v jv j� −

1

2
�i
�

j

ujuj� −
1

2
�i���R� + �iV = 0,

i.e., the stochastic Newton equation from Sec. III B:
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�tv
i + �

j
v j�iv

j − �
j

uj�iu
j −

1

2
���ui� + �iV = 0.

An easy calculation shows that the stochastic Hamilton-Jacobi equation together with the
equation

�tR + � R · � S +
�

2
�S = 0

and the substitution �ªe�1/���R+iS� is just the Schrödinger equation

�i�t� = −
�2

2
�� + V�

in real and imaginary parts, respectively. The equation

�tR + � R · � S +
�

2
�S = 0

is concluded from �=e�2/��R and �t�+div�v��=0 by differentiation of �. Q.E.D.
Remark 27: �a� The formula �56� gives a geometric meaning to the Guerra-Morato functional

by the phase function S.
�b� By shifting on the other side in �54�, what has to be justified appropriately, it can easily be

shown that

	
0

T 	 
1

2
v2�t,x� −

1

2
u2�t,x� − V�x��� dx dt = 	

0

T 	 LGM�x,b�t,x��� dx dt . �64�

Therefore the following problem,

�
	
0

T 	 
1

2
v2 −

1

2
u2 − V�� dx dt�=

!

0,

u =
�

2
� ln �, �t� + div�v�� = 0,

probability density time marginal constraints for �, is considered. The given Hamilton-Jacobi
problem is sufficient for the stationarity of the Yasue formalism, whereas both problems differ like
day and night by the sign in the functional. This fact will be explained by the formalism of
stochastic Legendre transformations in Sec. V.

B. Hamilton formalism

In analogy to the Hamiltonian and Lagrangian formalisms of a �point� geodesic variational
problem the Schrödinger equation can be thought of as a necessary and sufficient stationary
condition for the Hamiltonian formalism of a stochastic geodesic variational problem. The
Schrödinger equation can be deduced directly from a Hamiltonian problem that has, compared to
the point problem, an almost similar exterior form.

By a Legendre transformation of the Lagrangian formalism

H�x,g� = g · ẋ − L�x, ẋ� , �65�

where the derivative component is substituted by a new variable g, the Hamilton formalism with
Hamiltonian H �Ref. 28� is obtained:

082105-20 Stephan Völlinger J. Math. Phys. 46, 082105 �2005�

                                                                                                                                    



�
	
0

1

�ẋ�t� · g�t� − H�x�t�,g�t��� dt�=
!

0, �66�

time marginal values for x�0� ,x�1�, free time marginal values for g.
Variation leads to the canonical equations28

ẋ =
�H

�g
, ġ = −

�H

�x
�67�

as stationarity criteria.
Consider now for �0,T� the time-dependent, complex-valued, and differentiable functions on

Rn, which may furthermore be spatially quadratically integrable. These functions constitute in the
spatial closure with the canonical Hermitian metric

��,�� ª	 ��̄ dx , �68�

a Hilbert space. Well known in quantum mechanics is Planck’s constant �, the Hamilton operator

H = −
1

2
�2�C + V , �69�

with a real-valued potential V�C1, and the momentum operator

− i��C. �70�

�C acts as gradient and �C as Laplace operator on the complex-valued functions of the Euclidean
space.

Compared to general dynamical systems of �point� mechanics on symplectic manifolds �M ,��
the quantum mechanical formalism implements the restriction of the motion on a Lagrangian
submanifold intrinsically �compare Ref. 34 for that issue�. Nevertheless, the quantum mechanical
formalism is a model of a phase space.

Remark 28: Well known in quantum mechanics is that for bounded and time-independent
observable operators A �Hermitian� and solutions of the Schrödinger equation � we have

d

dt
��,A�� =

i

�
��,�A,H��� . �71�

Especially the quantum mechanical energy �� ,H�� is a constant of the motion, because the
commutator �H ,H�=HH−HH is trivially equal to zero.

Lemma 29: Let �=e�1/���R+iS� be a differentiable solution of the Schrödinger equation �i�t�

=H�. Then we have on ���20�, with jª−�i� /2���̄��− � �̄��,

�I� j = ���2 � S ,

�II� div �j� + �t���2 = 0,

�III� �t���2 + div������2� −
1

2
�����2 = 0,

where �= �S+R�. Note especially that the continuity equation �20� holds true according to �II� and
the Fokker-Planck equation �6� according to �III�.

Proof: Elementary calculation! The third identity follows, e.g., from the first and the second
with
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�t���2 = − div j = − div����2 � S�

= − div����2 � � − ���2 � R� =
���2�R=1/2�����2

− div
�����2 −
1

2
� � ���2� .

Q.E.D.
Theorem 30: �Entropy action law.� Let �=e�1/���R+iS� : �0,T��Rn→C�L� be a differentiable

solution of the Schrödinger equation, with R : �0,T��Rn→R� −��. The condition in Proposition
21 for b= � �R+S�, �= ���2 and u= �R may hold true. Then we have the entropy action law

T��,H�� =
1

2
	

0

T 	 b2���2dx dt + 	
0

T 	 V���2dx dt −
�

2
�Entrop���T�2, ��0�2� , �72�

where v= �S.
Remark 31: If we interpret b=u+v as kinematical active drift, then the common energy

conservation has an additional dissipative term, given by the negative Gibbs-Boltzman entropy
difference of final and initial absolute square of �. Notice that the pair �b ,�� is Lagrangian,
whereas �=e�1/���R+iS� is Hamiltonian. The entropy action law is the Lagrangian energy conserva-
tion expression.

Proof: �� ,H�� is constant ∀t according to the preceding Remark 28. We have

	
0

T

��,H�� dt = −
1

2
�2	

0

T

��,�C�� dt + 	
0

T 	 V���2 dx dt =
1

2
�2	

0

T 	 ��C� · �C�� dx dt

+ 	
0

T 	 V���2 dx dt =
1

2
�2	

0

T 	 
 1

�
�C�R + iS� ·

1

�
�C�R + iS�����2 dx dt

+ 	
0

T 	 V���2 dx dt =
1

2
�2
	

0

T 	 
 1

�
� �R + S� ·

1

�
� �R + S�����2 dx dt

− 2
1

2
	

0

T 	 ��R · � S����2 dx dt� + 	
0

T 	 V���2 dx dt .

With Lemma 29 and the calculations in Proposition 21 the assertion follows. Q.E.D.
Definition 32: Let two variational functionals F1, F2 on linear concurrence spaces K1, K2 be

given. Constraints for F1, F2 may hold. Let the problems be homogenous, with variational spaces
U1/2�K1/2, such that for elements f �K1/2 fulfilling the constraints f +u�K1/2∀u�U1/2. The
functionals are called stationary equivalent referring to the respective variational spaces exactly if
the stationary solutions are in K1�K2 and the stationarity conditions

F1/2�f� � �,
d

d�
F1/2�f + �u�=

!

0, �73�

for f �K1/2 stationary and ∀u�U1/2 are equivalent.
Theorem 33: Let �0/T, �0/T0, ��0/T dx=1, �0/T differentiable and with compact support be

given. Consider the concurrence space K1ª � : �0,T��Rn→C \� is differentiable, spatially qua-
dratically integrable, and has compact support� of the variational problem

�F1=
!

0, with U1 = ����� � C0
���0,T� � Rn → C�� ,

where F1��� ª 	
0

T

��,i���C · ẋ − �C · ẋT�� − H�� dt, � � K1,
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with the constraints ���0, . ��2 = �0, ���T, . ��2 = �T, �74�

where the operator �C · ẋ−�C · ẋT is defined by

	
0

T 	 f��C · ẋ − �C · ẋT�� dx dt ª 	
0

T 	 
1

n
�
j=1

n

�� j f�− xj�t��� +
1

n
�
j=1

n

��t f�xj� j���� dx dt ∀ f

� C0
�.

Then the Schrödinger equation gives the Eulerian variational expression of the problem.
Remark 34: Notice the formal equivalence of the form of the variational functional �74� and

of the functional given in point mechanics �66�.
Proof: The problem is homogeneous referring to the variational space U1. Let ��K1 be a

differentiable stationary solution, i.e., the functional may be finite in � and the stationarity criteria

0=
! � d

d�
�

�=0
	

0

T

���,i���C · ẋ − �C · ẋT��� − H��� dt, �� = � + ��� ∀ �� � U1

may hold true. Executing the differentiation ��d /d����=0 and shifting �� �compact support!� free
leads together with

��,
1

n
�
j=1

n

� j�xj�t���� = �− �t�,��� +� 1

n
�
j=1

n

� j�xj�t��,���
to

0 = 	
0

T

��,i���C · ẋ − �C · ẋT��� − H��� dt + 	
0

T

���,i���C · ẋ − �C · ẋT�� − H�� dt

= 	
0

T 
− i���− �t�,��� + ��C · ẋ�,��� − ��C · ẋ�,��� + ���,�C · ẋ�� − ���,− �t��

− ���,�C · ẋ��� + 
− �−
1

2
�2�C� + V�,��� − ���,−

1

2
�2�C� + V���� dt ∀ �� ,

where time marginal expressions disappear because of ����0, . ��= ����T , . ��=0. Therefore

0 = 	
0

T �i��t� − 
−
1

2
�2�C� + V��,���dt + 	

0

T ���,i��t� − 
−
1

2
�2�C� + V���dt ∀ �� ,

i.e., the Schrödinger equation i��t�− �− 1
2�2�C�+V��=0 as necessary and sufficient stationarity

criteria. Q.E.D.
Proposition 35: Let K1 be given as in Theorem 33. Consider the concurrence space K2

= �R ,S� \R ,S : �0,T��Rn→R ,e�1/���R+iS��K1�. Then the following variational problems are, un-
der the “up-to-constants-injection” K2�K1 �see remark�, stationary equivalent:

�I� The problem �74� �with classical exterior form�.
�II� The problem

�F2�R,S�=
!

0,

F2�R,S� ª 	
0

T 	 
�tS +
1

2
��S�2 +

1

2
��R�2 + V�� dx dt ,

R,S � V2, � ª e�2/��R,
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with the constraints ��0, . � = �0, ��T, . � = �T.

�III� And finally the problem �see Remark 27�b��

�F3�R,S�=
!

0,

F3�R,S� ª 	
0

T 	 
1

2
��S�2 −

1

2
��R�2 − V�� dx dt ,

R,S � V2, � ª e�2/��R,

with the constraints �t� + div��S�� = 0

and ��0, . � = �0, ��T, . � = �T.

Remark 36: The transition of an element of K1 to an element of K2, i.e., the construction of a
representation �=eA+iB, is done by covering theory. B is a lift for the covering exp�i . � :R→S1,
which can be aligned arbitrarily by a constant ��S1.

A constant ��S1 is not relevant for the motion. The fundamental group of Rn is trivial. The
lift of the mapping � / ��� :Rn→S1 exists if only ��0. We can continue the lift up to the boundary
of Rn \�−1�0� in connected components, what can be done because of the differentiability in such
a way that B is bounded on compact sets. �See Ref. 35 for covering theory.�

Proof: It follows by shifting �compact support�

− i�	
0

T

���C · ẋ��,�� dt = − i�	
0

T

��,��C · ẋ��� dt − 	
0

T

�i��t�,�� dt + marginal term.

So we obtain the problem

�
	
0

T

��i��t�,�� − ��,H��� dt�=
!

0,

���0, . ��2 = �0, ���T, . ��2 = �T

because marginal terms are irrelevant for the stationary character of the variational problem. �The
inspection of the so-obtained problem leads immediately to the Schrödinger equation as station-
arity criteria.� Furthermore, we have with �=e�1/���R+iS�

	
0

T

�i��t�,�� dt = + i�	
0

T 	 1

�
��tR + i�tS����2 dx dt =

���2�tR=1/2��t���2

− 	
0

T 	 �tS���2 dx dt

+ i�21

2
	

0

T

�t	 ���2 dx dt = − 	
0

T 	 �tS���2 dx dt ,

whereby we have shown the stationary equivalence of �I� and �II� by ordinary reformulation, if in
addition we use that we have, analogously to the proof in Theorem 30,
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−
1

2
�2	

0

T

��,��� dt =
1

2
�2	

0

T 	 ��C� · �C�� dx dt

=
1

2
�2	

0

T 	 
 1

�
�C�R + iS� ·

1

�
�C�R + iS��p dx dt

=
1

2
	

0

T 	 ���R�2 + ��S�2����2 dx dt .

If for �=e�1/���R+iS� the Fokker-Planck equation on ���20�,

�t���2 + div����2 � �R + S�� −
1

2
�����2 = 0,

holds true, then we have the continuity equation on ���20�:

�t���2 + div����2 � S� = 0.

If we add the continuity equation as additional constraint to problem �II�, the stationary
character will not change. �We can immediately calculate the validity of the continuity equation by
variation of S in F2. See also Proposition 44.� We will obtain a stationary equivalent problem. We
have

− 	
0

T 	 �tS���2 dx dt =
Shifting

marginal term + 	
0

T 	 S�t���2 dx dt =
equation

Continuity−

marginal term

− 	
0

T 	 S div����2 � S� dx dt = marginal term +	
0

T 	 ��S�2���2 dx dt

such that we can conclude the stationary equivalence of the problems �II� and �III�. Q.E.D.
Remark 37: Solutions of the Schrödinger equation � are naturally normalized. The unitary

operator e−tiH, defined by spectral integration theory, determines for �0 the solution by �t

=e−tiH�0. The time marginal densities �0/T have necessarily the same norm. In other cases the
problem would be ill-posed.

V. TRANSFORMATIONS

A. Stochastic Legendre transformations

The point dynamical Legendre transformation is a pointwise transformation between the
Hamiltonian and Lagrangian functions. The dependency of the Lagrangian of the derivative vari-
able is transformed to a dependency of a new variable in the Hamiltonian. In the stochastic case
this transformation is obtained by augmenting the tangential structure given by the Fokker-Planck
equation into the functional.

The Legendre transformation between Hamiltonian and Lagrangian is given in point dynamics
by

L�x, ẋ� = g · ẋ − H�x,g� , �75�

where g is a new variable.
The stochastic formalism is given, where the case of an elementary Lagrangian L�x ,q�

= 1
2 �q ,q�−V�x� is considered, by variation of the Yasue h-problem �37�

�F�R,S� = �
	
0

T 	 
1

2
��R�t,x��2 +

1

2
��S�t,x��2 − V�x��� dx dt�=

!

0,
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v = � S, � = e�2/h�R, �t� + div�v�� = 0,

and time marginal constraints.

Notice that the variation is done referring to general diffusions, but we seek a solution with
diffusion matrix h · id. Now the goal is to augment the constraints into the functional.

Definition 38: Let F�R ,S�=�0
T�F�R ,S� dx dt be a scalar functional of the real-valued func-

tions S and R, defined on a space-time. We seek stationary solutions, with variation referring to
C0

�, under the constraint given by a scalar differential equation G�R ,S , �S , �R , ��ijS�ij , ��ijR�ij�
=0. Then a scalar functional given by K�R ,S�=�0

T�K�R ,S� dx dt is called functional augmenta-
tion of F and G exactly if for instance �K /�S=0 is equivalent to the constraint and �K /�R=0 is
sufficient for the stationarity of F under the constraint, where, for instance, �K /�R is the func-
tional notation for the Eulerian variational expression referring to a variation of R, i.e.,

� d

d�
�

�=0
	

0

T 	 K�R + ��R,S� dx dt = 	
0

T 	 �K

�R
�R,S��R dx dt ∀ �R � C0

�. �76�

Theorem 39: �Stochastic Legendre transformation and existence of a functional augmentation
for stochastic mass transportation.� A functional augmentation for the Yasue h-problem is given by
the variational problem Proposition 35 �II�:

�
	
0

T 	 
�tS�t,x� +
1

2
��R�t,x��2 +

1

2
��S�t,x��2 + V�x��� dx dt�=

!

0,

� = e�2/h�R, time marginal constraints!

Proof: One finds immediately that variation � /�S leads to the continuity equation. The rest
follows by the argumentations in Secs. IV A and IV B, because the variation � /�R leads to the
stochastic Hamilton-Jacob equation �63� as stationarity criteria, as can be calculated easily by

� d

d�
�

�=0
	

0

T 	 ��tS +
1

2
���R + ��R��2 +

1

2
��S�2 + V�e�2/h��R+��R� dx dt

= 	
0

T 	 ��2�tS + ��S�2 + ��R�2 + 2V�
1

h
� − div��R����R dx dt

= 	
0

T 	 �
2

h
�tS +

1

h
��S�2 −

1

h
��R�2 − �R +

2

h
V����R dx dt, ∀ �R ,

i.e., the stochastic Hamilton-Jacobi equation

�tS +
1

2
��S�2 −

1

2
��R�2 −

h

2
�R = − V

holds. Q.E.D.
Remark 40: �a� The problem of finding a functional augmentation has, at least directly,

nothing to do with the method of Lagrangian multipliers, which is used to solve variational
problems under constraints. In this method the variational expression F+�G is considered to be
equal to zero. The additional parameter � and the integration constants are obtained by the
constraints and the marginal conditions.

�b� Note that the potential in the Hamiltonian has a positive sign. The transition to the
Lagrange problem produces a negative sign. Hereby we can detect, as in the classical case, the
transition from the Hamiltonian �kinetic energy+potential energy� to the Lagrangian
�kinetic energy−potential energy� formalism.
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B. Stochastic symplectic transformations

Symplectic geometry is, for the main example, the research on a cotangential space T*M of a
manifold M with a given nondegenerated two-form � on T*M. The topological basis of the
here-introduced stochastic symplectic geometry is now the research on the stochastic analysis of
pairs of scalar functions on a space-time that are suitably put together to a complex-valued
function and such that in addition a Hermitian scalar product is given. This structure is determined
by the momentum operator and its Fourier transformation, the operator of multiplication with the
identity, i.e., we do research on the stochastic analysis of a Hermitian line bundle on a space-time.

In the case of symplectic topology with the Hamiltonian H�x ,g� we have the canonical
equations �67�

ẋ =
�H

�g
, ġ = −

�H

�x

as in Sec. IV B which can be deduced from ��XH , . �=dH�.�, with the Hamiltonian vector field XH.
A symplectomorphism � :T*M→T*M preserves the two-form �*�=� and the canonical equa-
tions �with the transformed Hamiltonian�.

In the framework of stochastic symplectic geometry analogous canonical equations are given
by �variation of � instead of R exactly as in Theorem 39�

�t� =
�H

�S
, �tS = −

�H

��
,

where the here elementary Hamiltonian functional is defined by

H��,S� = 	
0

T 	 
1

2
��R�t,x��2 +

1

2
��S�t,x��2 + V�x��� dx dt, � = e�2/h�R.

The stochastic canonical equations are constituted by the stochastic Hamilton-Jacobi equation
�63� and the continuity equation �20�.

Definition 41: A stochastic symplectomorphism

�:���t,x�,S�t,x�� → ����t�,x��,S��,t�,x��� �77�

is in analogy a transformation that preserves the form of the stochastic canonical equations �see
also Ref. 28, definition of canonical transformations�.

Example 42: It is well known that the Fourier transformation F���t ,x��=� F�t , p� preserves
the validity of the Schrödinger equation i��t�= 1

2 p2�−V� also for the momentum representation
of the � function �F�t , p�.

VI. ZOOMOUT GEOMETRIES

A. An elementary zoomout formalism

Consider an observer who measures the Planck constant � to a special value �and therefore
has a normalized space-time scale�. The geodesic problem defined by stochastic mass transporta-
tion, for the marginal densities �0/T and to the data T and �, is a viewpoint of an �-associated
dynamical process. By decreasing � and “compactifying” the time marginal densities a “zoomout”
is defined. With this zoomout technique the “absolute” geodesic problem on the Euclidean space
can be recovered by the limit �→0. The Euclidean problem is, so to speak, “superficial” to the
stochastic one. Therefore a possibility to establish the continuity of the quantum world is given.

Proposition 43: �Case of constant time marginal densities.� If we solve for

u = � R and v = � S , �78�

the Yasue �-problem with a trivial potential, then for
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�R̃ = R and �S̃ = S with � = eR̃+iS̃ = e�1/���R+iS� �79�

the Schrödinger equation is valid, where we obviously can add a potential. So if we are interested
in the Schrödinger equation, we have to consider the problem �for a trivial potential�

	
0

T 	 ��2�� S̃�2 + �2��R̃�2�� dx dt=
!

Min,

� = e2R̃, �t� + div�� � S̃�� = 0,

probability time marginal densities for � . �80�

The problem �80� obviously tends formally with �→0, where the time marginal densities are
fixed, to the time-continuous deterministic mass transportation problem �32�

	
0

T 	 ��S�t,x��2� dx dt=
!

Min,

�t� + div��S�� = 0,

probability time marginal densities for � ,

because we can substitute �v�v in the space of possible solutions. Especially the minima will not
change under such a substitution and will tend to each other for �→0+ as can be seen as follows.
Let �S ,�� and �S� ,��� without restriction be differentiable minimizers of the deterministic, re-

spectively the stochastic mass transportation problem. Then we have with �=e2R̃, respectively

��=e2R̃�
,

	
0

T 	 ��S�2� dx dt � 	
0

T 	 ��S��2�� dx dt + 	
0

T 	 �2��R̃��2�� dx dt � 	
0

T 	 ��S�2� dx dt

+ 	
0

T 	 �2��R̃�2� dx dt .

The square root of the quantum mechanical action tends to the Wasserstein distance given in
Sec. III A.

Proposition 44: �Case of compactified time marginal densities.� Let 0���1 be given. An
observer associated to this � solves the problem

	
0

T 	 ��2�v�t,Xt�2� + �2��R�t,Xt��2� dP dt=
!

Min,

dXt = b�t,Xt�dt + ��dBt,

�Bt,P� Brownian motion,

probability time marginal densities �0/T for �

�i.e., � dx = P�Xt � dx� = e�2/��Rdx, �t� + div��v�� = 0� . �81�
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If � is very small now, then also the time marginal densities for � are compactified. For �
→0 this will lead to a compactification of the time marginal densities �0/T

� of the problem for � at
their expectation values, which may exist, i.e., there will be a compactification to the Dirac
measures of the expectations. This is modeled by

�0/T
� �x� ª �0/T
 1

h���
�x − EXt� + EXt�
 1

h���
�n

,

with h���→0 for �→0, which can be chosen appropriately. The by �1/h����n normalized trans-
formed time marginal densities are again probability densities in Rn. For a “zoomed out” � we so
obtain the problem

	
0

T 	 ��2�v�t,x�2� + �2��R�t,x��2�� dx dt=
!

Min,

� = e�2/��R, �t� + div��v�� = 0,

��0,x� = �0
��x�, ��T,x� = �T

��x� . �82�

The new time marginal densities define a zoomout. The problem �82� tends formally for �
→0 to the deterministic mass transportation with delta distribution time marginal densities, be-
cause we can substitute �v�v, i.e.,

	
0

T 	 �v�t,x�2�� dx dt=
!

Min,

�t� + div�v�� = 0, ��0,x� = �E0
�x�, ��T,x� = �E1

�x� ,

E0 =	 x�0�x� dx, E1 =	 x�1�x� dx .

But this problem is solved by the Euclidean geodesic between the expectation values of �0

and �T. A macroscopical observer with a very small �, who observes a microscopical motion, will
therefore visualize a Euclidean geodesic.

Remark 45: The connection of both cases can be seen by considering a large number of
bosonic particles and executing a zoomout according to Proposition 44, whereby a cloud of
bosonic particles appears.

B. Interpretation

The following “explanations” cannot be understood as well. But it should be emphasized
clearly that to find a model for the quantum mechanical measurement problem is serious, besides
the fact that a contradiction to human reason may be the case.

Interpretation 46: The Yasue problem �with elementary Lagrangian�

�
	 E
1

4
b2�t,Xt� +

1

4
b*

2�t,Xt� − V�Xt�� dt�=
!

0

under certain variational formalisms is known in stochastic mechanics. See e.g., Ref. 30 where in
V.5 the variant

�
	 E
1

2
b�t,Xt�b*�t,Xt� − V�Xt�� dt�=

!

0
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is discussed. Because b=u+v and b*=v−u this problem is just the Guerra-Marato problem
because of Remark 27b�. In Ref. 30 it is explained that the Guerra-Morato variation leads to the
stochastic Hamilton-Jacobi equation, as demonstrated in sec. IV A. The equation is called the
Madelung fluid equation there. New in this paper is that it was discovered that the Guerra-Morato
problem, analogously to the deterministic case, is obtained by applying a stochastic Legendre
transformation to the Yasue problem. The variation of the so-obtained Hamiltonian problem leads
to the Schrödinger equation, which can be understood as suitable complex-valued unition of
continuity and stochastic Hamilton-Jacobi equation. The transformation

� = e�1/���R+iS� � ��,b� ,

Fokker - Plank equation:

�t� + div�b�� −
�

2
�� = 0

shall be called the Madelung transformation.
Compared to the Yasue problem, where the backward derivative term has to be interpreted, the

Lagrangian quasi-Euclidean Yasue problem

�
	 E
1

2
b2�t,Xt� − V�Xt��dt − �Entrop�=

!

0

is clearly recognizable as a geometric problem. It has the advantage that it has the “pure” form of
a geodesic functional

�
	 �ẋt, ẋt� dt�=
!

0.

The time derivative in ẋ has to be interpreted as validity of an Itô diffusion equation.
By the geodesic problem Schrödinger’s basic law of nature can be found by a reasonable

formalism.
The transition to the Yasue problem can be understood as time-symmetric variant.
The entropy time marginal term is stationary irrelevant, but it belongs to the “�Bt , P�” in the

Itô equation

dXt = b�t,Xt� dt + dBt,

because the heat flow equation is the gradient flow for the entropy functional. Furthermore, it

enters in the entropy action law, such that energy is preserved. Note that �Xt , P̄� induces a natural
time orientation by the direction of the entropic expansion.

The here demonstrated zoomout formalism shows how the classical geodesic formalism is
“superficial” to the stochastic formalism. Compared to semiclassical analysis,36–38 where the limit
�→0 is considered, in the transition of stochastic to deterministic mass transportation, the geo-
desic variational problems transfer. In comparison to semiclassical analysis, where, e.g., the be-
havior of the spectrum of the Schrödinger operator is analyzed for �→0, the stochastic geodesic
problem shows the direct geometric connection to the classical case, therefore hits the problem
much more directly, and casts a new bright light on the quantum mechanical correspondence
principle. Especially the theory does not try to model the particle phenomena by single trajectories
of the underlying path space; the particle phenomena is obtained by a zoomout projection.

The background field hypothesis in Ref. 10 is replaced allusively by a, compared to set
theoretic topology, more difficult treatment of a theory of a topological view. As suggested in
Remark 19 an absolute entropic expansion is given at the outset and every observed drift, respec-
tively diffusion movement, is a subjective interpretation of a single one-particle phase. The solu-
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tion of the stochastic geodesic problem leads to an observer as defined in Remark 19. Especially
we do not have an observer-independent motion within this concept, as, e.g., in set theoretic
topology. There is no information of reality without observation. There is an equivalence principle,
which states that information and reality are one and the same. We have to note that this concept
is just mathematically obvious, especially concerning the fact that the quantum mechanical mea-
surement problematic consists of experimentally proven contradictions to human reason. This
general topological concept may not be seen as mathematically ensured and has to be found in
detail.

For a more physical treatment of the analytical side of the Hamiltonian problem, see Ref. 39.
For an interesting nonquantum mechanical physical application of stochastic mechanics to the

constitution of the system of planets, the morphology of galaxies and the formation of wind zones
and the rings of planets study Ref. 40.

VII. EXAMPLES

Example 1: Wave packets. Let the potential V in the Hamilton operator be equal to zero. Then
the planar waves Aei�k�·r�−�t� are solutions of the Schrödinger equation, where the wave vector k�,
�= 1

2�2k2, and A a constant normalization factor are given. By superposition we obtain the wave
packets

��t,r�� =
1

�2��n/2 	 �̂0�k��ei�k�·r�−��k��t� dk�; ��k�� =
1

2
�2k2 �83�

as solutions, as can be easily shown. �0�r�� is the Fourier transformation of �̂0�k��:

�0�r�� =
1

�2��n/2 	 �̂0�k��ei�k�·r�� dk� .

The Schrödinger equation with trivial potential is the necessary and sufficient stationarity
condition for the Hamiltonian version of the stochastic mass transportation problem. Therefore, in
analogy, the wave packets are stochastic Euclidean geodesics.

Example 2: Hydrogen atom. �See Ref. 41.� The Hamilton operator of the hydrogen atom �in
R3� is defined by H=−��2 /2m��+Ze2 / �x�, with system constants e, Z and the reduced mass m. We
consider the ground state given by

��t,x� = Ne�−�x�/a−iEt/�� = e��/m��R+iS�, �84�

a=�2 /me2Z is the Bohr radius and E=−�2 /2ma2 is the ground state energy. The normalization
constant N can be shown to be equal to 2a, but is unimportant to calculate the entropic, respec-
tively the current velocity, because

Ne�−�x�/a−iEt/�� = eln N+�−�x�/a−iEt/�� = e�m/���R+iS�

Therefore

m

�
R = ln N −

�x�
a

, respectively
m

�
S =

Et

�
,

and the gradient of a constant term is equal to zero such that we have the drift

b = � �R + S� =
− �

am
� �x� = −

�x

am�x�
.

The ground state diffusion equation fulfills ��t ,x��x / �x��L� ⇒
1.1.10

∃ of a weak solution�
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dXt = −
�

am

Xt

�Xt�
dt +� �

m
dBt.

Then in this connection the analog of Newton’s law holds for the reduced mass of the
electron.

Proposition 47: We have on Xt�0�

mD*DXt = mDD*Xt =
m

2
�DD* + D*D�Xt = − Ze2 Xt

�Xt�3
. �85�

Proof: Because of the diffusion equation we see immediately that DXt=−�� /am��Xt / �Xt�� and
D*Xt= + �� /am��Xt / �Xt��.

As in Sec. II A we have

D�f�Xt�� = � f�Xt� · DXt +
�

2m
�f�Xt� ,

D*�f�Xt�� = � f�Xt� · D*Xt −
�

2m
�f�Xt� .

Especially for f�x�=x / �x� we have �f ·DXt= � f ·D*Xt=0 and �f�x�=−2x / �x�3, such that as in
Corollary 24

DD*Xt = D*DXt = −
�2

m2a

Xt

�Xt�3
.

Q.E.D.
Remark 48: The notation of mass and the treatment of mass for the transition from Lagrangian

to Hamiltonian formalism in general is an open problem. For simplicity we can set m=1.
Example 3: Harmonic oscillator. The one-dimensional, normalized harmonic oscillator is

given by the Hamilton operator H=− 1
2 ��2 /�x2�+ 1

2x2. The function

��t,x� = exp
−
1

2
�x − ae−it�2 −

a2

4
�1 − e−2it� −

it

2
� = eR+iS, a � R ,

solves the one-dimensional Schrödinger equation i��� /�t�=− 1
2 ��2� /�x2�+ 1

2x2�. We see

R = −
1

2
�x2 − 2ax cos t� + Konst�t�, S = −

1

2
�2ax sin t� + Konst�t� ,

respectively

b =
�

�x
�R + S� = �− x + a cos �t� − a sin�t�� ,

b* =
�

�x
�S − R� = �+ x − a cos�t� − a sin�t�� .

The diffusion equation belonging to b ��b��Konst�1+ �x�� ⇒
1.1.10

∃ of a weak solution� is given
by

dXt = �− Xt + a cos�t� − a sin�t��dt + dBt.

We calculate
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DD*Xt = Db* = 
b�x + �t +
1

2

�2

�x2�b* = + b + a sin t − a cos t = − x

and

D*DXt = D*b = 
b*�x + �t −
1

2

�2

�x2�b = − b* − a sin t − a cos t = − x

as in Corollary 24.
Example 4: Heisenberg’s uncertainty relation. Heisenberg’s uncertainty relation is the historic

characteristic feature of time continuous quantum mechanical behavior. Expectation of momentum
and spatial localization never can be measured sharply at the same time. The focus of one variable
immediately implies that the other smears. It can be shown that this inequality follows more or
less elementarily from the formalism developed in this paper, as was suggested in Ref. 9 for the
case of dimension n=1, but was not executed concretely. Especially the entropy action law can be
seen as a Lagrangian version of Heisenberg’s uncertainty relation. This can be expressed by the
fact that to focus we have to work against the entropy functional.

Lemma 49: �Special case of the Cramér-Rao inequality42 for a probability variable that is the
estimator of the parameter constituted by itself.� Let � be a, in �, rapidly enough decreasing,
differentiable probability density �of a probability variable X with first and second moments� in
Rn. Then we have �if E�� ln ��X��2���

variance��� � Fisherlength2��� ª �E�� ln ��X��2�−1.

Therefore the quadratic Fisher length is a measure for the minimal variance of a probability
variable.

Proof: �1� We have

E � ln ��X� =	 � ln ��x���x� dx =
in the i−th

component

	 �i ln ��x���x� dx =	 ¯	 �i��x� dx1 ¯ dxn

=	 ¯	 
	 �i��x� dxi� dx1 dxi
ˆ dxn = 0.

It follows that E��� ln ��X�−E� ln ��X�� · �X−EX��=E�� ln ��X� ·X�.
�2� According to the Cauchy-Schwarz inequality we have

�E��� ln ��X� − E � ln ��X�� · �X − EX���2 � E��� ln ��X� − E � ln ��X��2�E��X − EX�2� ,

i.e., with �1�,

�E�� ln ��X� · X��2 � variance ����Fisherlength2 ����−1.

It is left to show �where without restriction � decreases rapidly enough, such that we can shift
�i without spatial marginal terms�

�E�� ln ��X� · X��2 = 
	 
�
i=1

n

�i��x�xi�dx�2

= 
−	 n��x� dx�2

= n2 � 1.

Q.E.D.
For concluding the uncertainty relation we define for the momentum operator �70� p=−i�� in

�=e�1/���R+iS� �referring to a normalized solution of the Schrödinger equation�
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�p2 =
Formal

��p − �p��2� =
Formal

�p2� − �p�2 =
Definition

��,− �2�C�� − ��,�− i��C���2 = ��,− �2�C��

− 
	 ���2��S − i � R� dx�2

�The term 	 ���2 � R dx = 0 according to the lemma . �

= ��,− �2�C�� − 
	 ���2 � S dx�2

=
3.2

As in	 ���S�2 + ��R�2����2 dx − 
	 ��� � S dx�2

=	 
��S�2 + 
�

2
� ln���2�2����2 dx − 
	 ���2 � S dx�2

�
�2

4
	 �� ln ���2�2���2 dx

=
�2

4
�Fisherlength2����2��−1

where the estimation is done by the Schwarz inequality in L2����2�,


	 � S���2 dx�2

� 1	 ��S�2���2 dx .

With Lemma 49 we can conclude Heisenberg’s uncertainty relation

�p�x �
�

2
,

where �x2=variance����2�, i.e., �x is the standard deviation.
Remark 50: �a� As can be seen in the proof of the lemma the more sharp estimations

variance��� � n2 Fisherlength2���, respectively �p�x �
n�

2
,

hold true.
�b� The fact that the expectation of the entropic velocity disappears identically is a corollary

of its own interest.
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We obtain the band edge eigenstates and the midband states for the complex,
generalized associated Lamé potentials VPT �x�=−a�a+1�m sn2 �y ,m�−b �b
+1�m sn2 �y+K�m� ,m�− f �f +1�m sn2 �y+K�m�+ iK� �m� ,m�−g�g+1�m sn2 �y+ iK�
��m� ,m�, where y� ix+�, and there are four parameters a, b, f , g. By construc-
tion, this potential is PT-invariant since it is unchanged by the combined parity �P�
and time reversal �T� transformations. This work is a substantial generalization of
previous work with the associated Lamé potentials V�x�=a�a+1�m sn2�x ,m�+b�b
+1�m sn2�x+K�m� ,m� and their corresponding PT-invariant counterparts VPT�x�=
−V�ix+��, both of which involving just two parameters a,b. We show that for
many integer values of a,b,f ,g, the PT-invariant potentials VPT�x� are periodic prob-
lems with a finite number of band gaps. Further, using supersymmetry, we construct
several additional, complex, PT-invariant, periodic potentials with a finite number
of band gaps. We also point out the intimate connection between the above gener-
alized associated Lamé potential problem and Heun’s differential equation. © 2005
American Institute of Physics. �DOI: 10.1063/1.2000207�

I. INTRODUCTION

In the past few years, Bender and others1,2 have looked at several complex potentials with
PT-symmetry, that is, potentials which remain invariant under the combined parity �P� and time
reversal �T� operations. They have shown that the energy eigenvalues are real when PT-symmetry
is unbroken, whereas they occur in complex conjugate pairs when PT-symmetry is spontaneously
broken. However, there have been relatively few papers discussing periodic potentials with
PT-symmetry.3,4 Recently, we4 have constructed several classes of analytically solvable, complex,
PT-invariant, periodic potentials with the special feature that they possess just a finite number of
band gaps. The purpose of this paper is to substantially increase this list of solvable periodic
potentials.

A few years ago, we obtained the band edges of the associated Lamé �AL� potentials5

V�x� = a�a + 1�m sn2�x,m� + b�b + 1�m sn2�x + K�m�,m�

= a�a + 1�m sn2�x,m� + b�b + 1�m
cn2�x,m�
dn2�x,m�

. �1�

Here, sn�x ,m�, cn�x ,m�, dn�x ,m� are Jacobi elliptic functions with elliptic modulus parameter
m�0�m�1�. They are doubly periodic functions with periods �4K�m�,i2K��m��, �4K�m�,
2K�m�+ i2K��m��, �2K�m�,i4K��m��, respectively �Ref. 13�, where K�m���0

�/2d��1
−m sin2 ��−1/2 denotes the complete elliptic integral of the first kind, and K��m��K�1−m�. For
simplicity, from now on, we will not explicitly display the modulus parameter m as an argument
of Jacobi elliptic functions. It was shown that the AL potentials with integral values of a, b are
periodic potentials with a finite number of band gaps.6 We also constructed and studied the
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PT-invariant potentials VPT�x��−V�ix+�� obtained from the AL potentials via the anti-isospectral
transformation of variables x→ ix+�.4

In this paper, we make a substantial generalization of our previous work. We consider the four
parameter family of generalized associated Lamé �GAL� potentials

V�x� = a�a + 1�m sn2�x,m� + b�b + 1�m sn2�x + K�m�,m� + f�f + 1�m sn2�x + K�m� + iK��m�,m�

+ g�g + 1�m sn2�x + iK��m�,m�

= a�a + 1�m sn2�x,m� + b�b + 1�m
cn2�x,m�
dn2�x,m�

+ f�f + 1�
dn2�x,m�
cn2�x,m�

+ g�g + 1�
1

sn2�x,m�
. �2�

In contrast to the AL potentials of Eq. �1� where there are two parameters a,b and the two terms
correspond to real translations of the independent variable x by 0 and K�m�, the GAL potentials of
Eq. �2� have four parameters a,b,f ,g and the four terms correspond to complex translations of the
independent variable x by 0, K�m�, K�m�+ iK��m�, iK��m�. Although the GAL potentials are real,
they do have singularities on the real axis coming from the zeros of the Jacobi elliptic functions
sn�x� and cn�x� in the last two terms. Consequently, we will focus our attention on the PT-invariant
versions of the GAL potentials, which are given by

VPT�x� = − a�a + 1�m sn2�y,m� − b�b + 1�m sn2�y + K�m�,m� − f�f + 1�m sn2�y + K�m� + iK��m�,m�

− g�g + 1�m sn2�y + iK��m�,m�

= − a�a + 1�m sn2�y,m� − b�b + 1�m
cn2�y,m�
dn2�y,m�

− f�f + 1�
dn2�y,m�
cn2�y,m�

− g�g + 1�
1

sn2�y,m�

� �a�a + 1�,b�b + 1�, f�f + 1�,g�g + 1�� , �3�

where

y = ix + � , �4�

with � being an arbitrary constant. We shall frequently use the notation �a�a+1�, b�b+1�, f�f
+1�, g�g+1�� to denote VPT�x�. In this notation, PT-invariant ordinary Lamé potentials are denoted
by �a�a+1�, 0, 0, 0�, and PT-invariant AL potentials are denoted by �a�a+1�, b�b+1�, 0, 0�. Here,
the arbitrary constant � is chosen so as to avoid the singularities of the Jacobi elliptic functions on
the real axis. We show that several of these periodic potentials for specific integer values of a,b,
f ,g have a finite number of band gaps. Looking at the symmetry of these potentials, we are in fact
tempted to conjecture that many �and perhaps all� of these potentials with integral values of the
parameters a,b,f ,g also have a finite number of band gaps. It would be nice if this conjecture could
be proved.

In addition, we also discover a huge class of midband states when at least one of the param-
eters a,b,f ,g is half-integral. As a special case, we find some new midband eigenstates of the
associated Lamé potentials. Further, we show that the Schrödinger equation for the generalized AL
potential is intimately connected with the celebrated Heun’s differential equation.7 In fact, using
the exact solutions obtained in this paper, one can immediately obtain the corresponding solutions
of Heun’s equation. In another related paper,8 we use this connection and discover a wide class of
new quasiperiodic solutions of Heun’s equation.

Finally, using the exact eigenstates of the GAL potentials �3� and the machinery of supersym-
metric quantum mechanics,9 we construct several more potentials with finite band-gaps. There is
one important point involved here using which we are in fact able to construct many more
supersymmetric partner potentials corresponding to a given potential. The key point to note is that
normally, in supersymmetric quantum mechanics,9 given a potential V−�x�, the ground state wave
function �0�x� is used to construct the superpotential W�x�=−�0��x� /�0�x�, which then yields the
supersymmetric �SUSY� partner potential V+�x�=W2+W�. If one uses any excited state wave
function ��x� of V−�x� to construct a superpotential W�x�, then the original potential V−�x� is
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recovered correctly �by construction�, but the corresponding partner potential V+�x� turns out to be
singular on the real x-axis due to the zeros of the excited state wave function ��x�. However, as
has been noticed recently,10 if we consider PT-symmetric complex potentials, then the singularity
is not on the real axis. Besides, as we have stressed previously,4,11 in the case of doubly periodic
potentials composed of Jacobi elliptic functions, both V�x� and VPT�x� can be simultaneously
periodic even though their periods are different. In this way, by starting from the analytically
solvable Lamé and associated Lamé potentials and using the excited state band edges of the
corresponding PT-symmetric potentials, we discover a wide range of analytically solvable, com-
plex PT-invariant periodic potentials with a finite number of band gaps. As an illustration, we
discuss a few of these potentials in detail.

The plan of the paper is the following. In Sec. II we discuss the PT-invariant GAL potentials
�3� in some detail and obtain band edges as well as midband states of several of these potentials.
As a byproduct we also obtain some solutions of the AL potentials �which we had missed in earlier
work5,6�. Further, we show that the class of potentials �a�a+1�, 0, 0, g�g+1�� have finite number
of band gaps in case a,g are integers. In Sec. III we start from the energy eigenstates obtained in
Sec. II and using both the ground state as well as excited state wave functions, obtain periodic
PT-invariant potentials with a finite number of band gaps. In Sec. IV we briefly discuss the
connection between the solutions of the potentials �3� and Heun’s differential equation.

II. SOLUTIONS FOR THE GENERALIZED ASSOCIATED LAMÉ „GAL… POTENTIALS

A few years ago, we obtained analytic solutions of the associated Lamé potentials �1�5,6 and
showed that when a,b are integers, then the resulting potentials all had a finite number of band
gaps. The purpose of this section is to show that the complex PT-invariant GAL potentials as given
by Eq. �3� are also quasiexactly solvable. In particular, we show that the band edges or midband
states of these problems can be obtained depending on whether a+b+ f +g �or a−b− f −g� is an
integer or an arbitrary noninteger number. It should be noted that we are considering PT-invariant
potentials �3�, since the corresponding real potentials �2� are singular on the real axis.

It may be worthwhile explaining the underlying basic idea here, even though it has been well
established by us before.4 Note that if ��x� is a solution of the Schrödinger equation for the real
potential V�x� with energy E, then ��ix+�� is a solution of the Schrödinger equation for the
complex potential −V�ix+�� with energy −E, where � is an arbitrary nonzero constant. The
potential −V�ix+��, generated by the anti-isospectral transformation x→ ix+�,12 is clearly PT
symmetric and will be denoted by VPT�x�. Further, if ��x� and ��ix+�� satisfy appropriate bound-
ary conditions, they are eigenfunctions of V�x� and VPT�x�, respectively. The ordering of energy
levels for VPT�x� is the opposite of the ordering of energy levels for V�x�.

In this paper, our main focus is on the Schrödinger equation ��=2m=1�

−
d2

dx2��x� + VPT�x���x� = E��x� , �5�

where VPT�x� is the potential given by Eq. �3�. Equation �5� is called the generalized associated
Lamé equation, and we are seeking its eigenstates and midband states.

A. Symmetries

At this stage, it is worth pointing out the symmetries of the PT-invariant GAL potential �3� and
hence the corresponding Schrödinger equation �5�.

�1� The potential �3� and hence the Schrödinger equation �5� remains unchanged when any one
�or more� of the four parameters a,b,f ,g change to −a−1, −b−1, −f −1, −g−1, respectively.

�2� Under the translation y→y+K�m�, the GAL potential �a�a+1�,b�b+1�,f�f +1�,g�g+1�� goes
to the potential �b�b+1�, a�a+1�, g�g+1�, f�f +1��. Hence, both GAL potentials must have
the same energy eigenvalues and the corresponding energy eigenfunctions are simply related,
y→y+K�m�, i.e.,
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EPT�b,a,g, f ;m� = EPT�a,b, f ,g;m�, ��y,b,a,g, f ;m� � ��y + K�m�,a,b, f ,g;m� . �6�

�3� Similarly, by considering the translations y→y+K�m�+ iK��m�, and y→y+ iK��m�, it is easy
to show that

EPT�f ,g,a,b;m� = EPT�a,b, f ,g;m�, ��y, f ,g,a,b;m� � ��y + K�m� + iK��m�,a,b, f ,g;m� ,

�7�

EPT�g, f ,b,a;m� = EPT�a,b, f ,g;m�, ��y,g, f ,b,a;m� � ��y + iK��m�,a,b, f ,g;m� . �8�

Thus, once we obtain the eigenvalues and eigenfunctions of a given GAL potential �a�a+1�,b�b
+1�,f�f +1�,g�g+1��, then we immediately know the eigenvalues and eigenfunctions of three other
potentials, �b�b+1�,a�a+1�,g�g+1�,f�f +1��, �f�f +1�,g�g+1�,a�a+1�,b�b+1��, and �g�g+1�,f�f
+1�,b�b+1�,a�a+1��. Therefore, it suffices to present results for only one of the four potentials.

B. Duality relations

We shall now derive some remarkable relations relating the quasiexactly solvable eigenvalues
and eigenfunctions �corresponding either to the band edges or midband states� of two GAL
potentials at two different values m and 1−m of the modulus parameter.

To that purpose we start from the Schrödinger equation �5� for the PT-invariant GAL potential
�3�. On using the relations13

�m sn�y,m� = − dn�iy + K��m� + iK�m�,1 − m� ,

dn�y,m� = �1 − m sn�iy + K��m� + iK�m�,1 − m� , �9�

�m cn�y,m� = i�1 − m cn�iy + K��m� + iK�m�,1 − m� ,

and defining a variable w= iy+K��m�+ iK�m�, the Schrödinger equation �5� takes the form

���w� − �a�a + 1��1 − m�sn2�w,1 − m� + g�g + 1��1 − m�
cn2�w,1 − m�
dn2�w,1 − m�

+ f�f + 1�
dn2�w,1 − m�
cn2�w,1 − m�

+ b�b + 1�
1

sn2�w,1 − m�	��w� = − �a�a + 1� + b�b + 1� + f�f + 1� + g�g + 1� + E���w� .

�10�

On comparing Eqs. �5� and �10� we then have the remarkable relations

EPT�a,b, f ,g,m� = − �a�a + 1� + b�b + 1� + f�f + 1� + g�g + 1�� − EPT�a,g, f ,b,1 − m�,

��y,m� � ��iy + K��m� + iK�m�,1 − m� , �11�

which is valid for the QES states corresponding to either the band edges or midband states. Note
that here, a,b,f ,g can be arbitrary �real� numbers and are not restricted to integer values. This is a
very powerful relation which has several interesting consequences. One immediate important
consequence of Eq. �11� is that for arbitrary integer values of a,g, the potential �a�a+1�,0,0,g�g
+1�� has only a finite number of band gaps. This happens because, for f =g=0, one has

EPT�a,b,0,0,m� = − �a�a + 1� + b�b + 1�� − EPT�a,0,0,g = b,1 − m� , �12�

so that both the potentials must have the same number of band edges and band gaps and we have
already proved6 that the AL potentials have a finite number of band gaps in case a,b are integers.
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C. QES solutions

Let us now seek solutions of the Schrödinger Equation �5� for the PT-invariant GAL potential
�3�. On making the ansatz

��x� = dn−b�y�sn−g�y�cn−f�y�	�y�, y = ix + � , �13�

it is easily shown that 	 satisfies the equation

	��y� + 2�mb
sn�y�cn�y�

dn�y�
− g

cn�y�dn�y�
sn�y�

+ f
dn�y�sn�y�

cn�y� 		��y� + �Qm sn2�y� − R�	�y� = 0,

�14�

where

Q = �b + g + f��b + g + f − 1� − a�a + 1�, R = E + �f + g�2 + m�g + b�2. �15�

It is well known14 that this is a quasiexactly solvable �QES� problem. We shall now systematically
consider solutions of Eq. �14� for several special cases and then finally consider the most general
case.

D. b= f=g=0

The simplest possibility is when three out of the four parameters a,b,f ,g are zero. For ex-
ample, when b= f =g=0, then the problem reduces to the PT-invariant version of the well-studied
Lamé potential problem. We might add here that, instead of a, if any one of the other parameters
b,f ,g is nonzero, one still has a potential which is strictly isospectral to the PT invariant Lamé
potential. It may be noted that while the Lamé potential is a periodic potential with �real� period
2K�m�, the PT-invariant Lamé potential has real period 2K��m�. Further, the band-edge eigenval-
ues, eigenfunctions, and the discriminant 
 of VPT�x� are related to those of Lamé potential by4

Ej
PT�m� = − E2a−j�m�, � j

PT�x,m� � �2a−j�ix + �,m�, j = 0,1,2,…,2a ,

�16�

PT�E,m� = 
�E + a�a + 1�,1 − m� .

From Eq. �11�, it follows that the PT-invariant Lamé band-edge eigenvalues and eigenfunc-
tions, for integral a satisfy the remarkable relations �j=0,1 ,2 ,… ,2a�

Ej
PT�m� = − a�a + 1� − E2a−j

PT �1 − m�, � j�y,m� � �2a−j�iy + K��m� + iK�m�,1 − m� . �17�

We would like to add here that even the midband states satisfy �for half-integral a� relations
analogous to �17�,

Ej�m� = a�a + 1� − Ea−1/2−j�1 − m�, � j�y,m� � �a−1/2−j�iy + K��m� + iK�m�,1 − m� , �18�

where j=0,1 ,2 ,… ,a−1/2 . Note the remarkable fact that for any integer a, all bands and band
gaps exchange their role as one goes from the Lamé potential to its PT-invariant version VPT�x�.4

The next simple possibility is when two of the four parameters a,b,f ,g are zero. Here there are
three distinct possibilities which we discuss one by one.

E. f=g=0

In this case the problem reduces to the PT-invariant AL potential which we have already
discussed at great length.5,6 Note that if either a or b is zero �or −1�, then this potential reduces to
the PT-invariant of the Lamé potential. As previously shown by us,6 for arbitrary integral values of
a and b, AL potentials are exactly solvable problems with finite number of band gaps for which
one can write down the form of all the band-edge eigenfunctions, as we do below. We note here
that when a�b are both integers, then there are precisely a bound bands �some of which are
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unusual in that both the band edges are of the same period�, same �a� number of band gaps and all
the 2a+1 band edges are analytically known beyond which there is a continuum band extending
to E=�. Note that if b�a, then also there are b bound bands and b band gaps and the corre-
sponding eigenfunctions are simply obtained from the a�b case by the transformation x→x
+K�m� while the a=b case essentially corresponds to the Lamé potential �a�a+1�,0,0,0�. Without
any loss of generality, we shall only consider AL potentials with a�b.

The form of the 2a+1 band edge eigenfunctions of the AL potential depends on whether a
−b is an odd or an even integer. For example, when b=a−2p−1 �p=0, 1, 2,…�, then there are

p eigenstates of the form sn�x�cn�x�dn�x�Fp−1�sn2�x�� ,

p + 1 eigenstates of the form dna−2p�x�Fp�sn2�x�� ,

a − p eigenstates of the form cn�x�dn2p+1−a�x�Fa−p−1�sn2�x�� ,

a − p eigenstates of the form sn�x�dn2p+1−a�x�Fa−p−1�sn2�x�� .

On the other hand, when b=a−2p, there are

p eigenstates of the form cn�x�dna−2p+1�x�Fp−1�sn2�x�� ,

p eigenstates of the form sn�x�dna−2p+1�x�Fp−1�sn2�x�� ,

a − p eigenstates of the form sn�x�cn�x�dn2p−a�x�Fa−p−1�sn2�x�� ,

a − p + 1 eigenstates of the form dn2p−a�x�Fa−p�sn2�x�� .

Here Fn�sn2�x�� denotes a polynomial in sn2�x� of order n.
We would like to restate here that all the eigenstates of the PT-invariant version of the AL

potentials are immediately obtained from the known eigenfunctions of the associated Lamé prob-
lem and the ordering of energy levels of these is the opposite of the corresponding AL problem.
Hence, this is also an exactly solvable problem with a finite number �a� of band gaps and 2a
+1 known band edges when both a,b are integers.

F. b= f=0

Following our discussion for the AL case, without any loss of generality we assume here that
a�g. In this case, one obtains n+1 QES solutions when a+g=n �or g−a=n+1� with n=01,2,… .
The QES solutions for n=0,1,2,3,4 are given in Table I. In particular, for any choice of a�a+1�,
Table I lists the eigenstates for various values of g�g+1�. The general form of these eigenfunctions
is obtained from the corresponding AL eigenfunctions as given in Table 3 of Ref. 5 by simply
interchanging dn�y� and sn�y�.

A few remarks are in order.

�1� Since we are considering the case �b= f =0�, the duality relation �11� takes the form

EPT�a,0,0,g;m� = − �a�a + 1� + g�g + 1�� − EPT�a,b = g,0,0;1 − m� ,
�19�

��y,a,0,0,g;m� � ��iy + K��m� + iK�m�,a,b = g,0,0;1 − m� .

Using Table 3 of Ref. 5 and this duality relation, it is straightforward to obtain all the QES
eigenstates, thereby providing an independent check on the results given in Table I. Further,
it follows that for arbitrary integer values of a and g, �a�a+1�,0,0,g�g+1�� is an exactly
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solvable potential problem with a finite number �a� of bandgaps. From the duality relation
�19�, it follows that for integer values of a,g,

Ej
PT�a,0,0,g;m� = − �a�a + 1� + g�g + 1�� + Ej�a,b = g,0,0;1 − m� , �20�

and hence the corresponding discriminants 
 are related by


PT�E,m;a,0,0,g� = 
�E + a�a + 1� + g�g + 1�,1 − m;a,b = g,0,0� . �21�

�2� Following the structure of the eigenfunctions of the AL potentials as given above, it is now
straightforward to write down the general form of the eigenfunctions for arbitrary value of n.
However, to obtain the corresponding eigenvalues, one needs to solve cubic and higher order
equations.

�3� Under the transformation y→y+ iK��m� followed by the interchange of a and g �note b= f
=0�, the Schrödinger equation �5� for the GAL potential �3� remains unchanged. Thus it
follows that under the interchange of a with g, the eigenvalue spectrum must remain unal-
tered. Clearly, this is only possible if either the energy eigenvalues remain unchanged under
this transformation, or if two of the eigenvalues go into each other. It is easy to verify from
Table I that the eigenvalues corresponding to the eigenfunctions of period 2iK��m� remain
unaltered under a→g while the other eigenvalues go into each other under this transforma-
tion.

�4� Similarly, From Table 3 of Ref. 5, it is easy to check that for the AL potentials �1�, the
eigenvalues corresponding to the eigenfunctions of period 2K�m� remain unaltered under
a→b while the other eigenvalues go into each other under this transformation. This happens
because the AL potentials remain unaltered under the transformation y→y+K�m� followed
by the interchange of a with b.

Summarizing, we have discovered exactly solvable potential problems with a finite number of
band gaps when a,g are arbitrary integers. In fact everything about these potentials can be derived
from previously known results for AL potentials.

TABLE I. Energy eigenstates of PT-invariant GAL potentials with b= f =0, g=n−a, n=0, 1, 2,…;
1���1+m�2�a−1�2− �2a−1��2a−3�m , 2���a−1+m�a−2��2− �2a−1��2a−5�m,
3���a−2+m�a−1��2− �2a−1��2a−5�m , 4���1+m�2�a−2�2− �2a−1��2a−7�m.

n g�g+1� E sn−a�y��

0 �a−1�a −�1+m�a2 1

1 �a−2��a−1� −a2−m�a−1�2 cn�y�

sn�y�
1 �a−2��a−1� −�a−1�2−ma2 dn�y�

sn�y�
2 �a−3��a−2� −�1+m��a−1�2 cn�y�dn�y�

sn2�y�
2 �a−3��a−2� −�1+m��a2−2a+2�±21 �E+ �1+m��a−2�2�sn2�y�+2�2a−3�

sn2�y�
3 �a−4��a−3� −�a2−2a+2�− �a2−4a+5�m±22 ��E+ �a−2�2+m�a−3�2�sn2�y�+2�2a−5��cn�y�

sn3�y�
3 �a−4��a−3� −�a2−4a+5�− �a2−2a+2�m±23 ��E+ �a−3�2+m�a−2�2�sn2�y�+2�2a−5��dn�y�

sn3�y�
4 �a−5��a−4� −�1+m��a2−4a+5�±24 ��E+ �1+m��a−3�2�sn2�y�+2�2a−7��cn�y�dn�y�

sn4�y�
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G. b=g=0

In this case, one obtains n+1 QES solutions when a+ f =n with n=0,1,2,… . The solutions for
n=0,1,2,3,4 are given in Table II. In particular, for any choice of a�a+1�, Table II lists the
eigenstates for various values of f�f +1�. The general form of these eigenfunctions is simply
obtained from the corresponding AL eigenfunctions as given in Table 2 of Ref. 5 by interchanging
dn�y� and cn�y�.

Some comments are in order at this stage.

�1� The form of eigenfunctions for arbitrary value of n is easily written down following the
structure of the AL eigenfunctions given in the preceding section.

�2� From Eq. �11� it follows that the potential �3� with b=g=0 is a self-dual potential, satisfying

Ej1
PT�a, f ,m� = − �a�a + 1� + f�f + 1�� − Ej2

PT�a, f ,1 − m� . �22�

Using Table II, it is easily checked that indeed this is true, for any values of a,f . In particular,
whereas 5,8 are invariant under m→1−m, 6↔7 under the same transformation.

�3� Under the transformation y→y+K�m�+ iK��m� followed by the interchange of a and f �note
b=g=0�, the Schrödinger equation �5� for the GAL potential �3� remains unchanged. Thus it
follows that under the interchange of a with f , the eigenvalue spectrum must remain unal-
tered. Clearly, this is only possible if either the energy eigenvalues remain unchanged under
this transformation, or if two of the eigenvalues go into each other. It is easy to verify from
Table II that the eigenvalues corresponding to the eigenfunctions of period 2K�m�
+2iK��m� remain unaltered under a→ f while the other eigenvalues go into each other under
this transformation. In particular, while 5,8 are invariant under a↔ f , 6↔7 under the
same transformation.

TABLE II. Energy eigenstates of PT-invariant GAL potentials with parameters b=g=0, f =n−a, n=0, 1, 2,… ;
5���a−1+m�2− �2a−1�m, 6���a−1+2m�2−3�2a−1�m,
7���a−2+2m�2− �2a−1�m ,8���a−2+3m�2−3�2a−1�m.

n f�f +1� E cn−a�y��

0 �a−1�a −a2 1

1 �a−2��a−1� −a2−m sn�y�

cn�y�
1 �a−2��a−1� −�a−1�2−m dn�y�

cn�y�
2 �a−3��a−2� −�a−1�2−4m dn�y�sn�y�

cn2�y�
2 �a−3��a−2� −�a2+2−2a+2m�±25 �E+ �a−2�2�sn2�y�+2

cn2�y�
3 �a−4��a−3� −�a2+2−2a+5m�±26 ��E+ �a−2�2+m�sn2�y�+6�sn�y�

cn3�y�
3 �a−4��a−3� −�a2+5−4a+5m�±27 ��E+ �a−3�2+m�sn2�y�+2�dn�y�

cn3�y�
4 �a−5��a−4� −�a2+5−4a+10m�±28 ��E+ �a−3�2+4m�sn2�y�+6�dn�y�sn�y�

cn4�y�
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H. f=0

Let us consider the case when only one out of the four parameters a,b,f ,g is zero. As an
illustration, we discuss the case f =0. In fact, as described below, once we know the eigenstates of
this problem, the eigenstates of the other three problems corresponding to either b or g or a equal
to zero are immediately obtainable, since the four potentials are related by translations of the
independent variable.

For the case f =0, one obtains �n+2� /2��n+1� /2� QES solutions when n is even �odd�. Here
a+b+g=n with n=0,1,2,… . The QES solutions for n=0,1,2,3 are given in Table III. In particular,
for any choice of a�a+1�, Table III lists the eigenstates for various values of �b+g��b+g+1�.

Some remarks are appropriate.

�1� By looking at the structure of the QES eigenfunctions in Table III, it is easy to write down
the nature of eigenfunctions for the general case.

�2� From Table III, it is easily checked that the duality relation

EPT�a,b,g,m� = − �a�a + 1� + b�b + 1� + g�g + 1�� − EPT�a,g,b,1 − m� �23�

is indeed satisfied. In particular, both 9,10 are invariant under b↔g followed by m→1
−m.

�3� Under the transformation y→y+K�m� followed by the interchange of a and b, and replacing
g by f , the Schrödinger equation �5� for the GAL potential �3� with f =0 goes over to the
Schrödinger equation for the GAL potential �3� with g=0. Hence, under the interchange of a
and b and replacing g by f , all the energy eigenvalues of the potential �3� with f =0 must go
over into those of �3� with g=0, while the corresponding eigenfunctions are simply obtained
from Table III by replacing y by y+K�m�.

�4� Using similar reasoning it also follows that under the interchange of a with g and replacing
b by f , all the energy eigenvalues of the GAL potential �3� with f =0 go over to those of
potential �3� with b=0 while the corresponding eigenfunctions are obtained from Table III by
replacing y by y+ iK��m�. And finally, under the interchange of b with g and replacing a by
f , all the energy eigenvalues of the GAL potential �3� with f =0 go over to those of potential
�3� with a=0, while the corresponding eigenfunctions are easily obtained from Table III by
replacing y by y+K�m�+ iK��m�.

TABLE III. Energy eigenstates of PT-invariant GAL potentials with f =0, g=n−a−b, n=0, 1, 2,…;
9����1+m��a−1�+b�2− �2a−1��2a+2b−3�m, 10���a+b−1+m�a−2��2− �2a−1��2a+2b−5�m.

n E dnb�y�sn−�a+b��y��

0 −�a+b�2−ma2 1

1 −�a+b�2−m�a−1�2 cn�y�

sn�y�

2 −�1+m�− �a+b−1�2−m�a−1�2±29 �E+ �a+b−2�2+m�a−2�2�sn2�y�+2�2a+2b−3�

sn2�y�

3 −�1+m�− �a+b−1�2−m�a−2�2±210 ��E+ �a+b−2�2+m�a−3�2�sn2�y�+2�2a+2b−5��cn�y�

sn3�y�
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I. The general case: a,b,f,g all nonzero

Finally, let us discuss the most general case when all four parameters are nonzero. In this case
one obtains n+1 solutions when a+b+ f +g=2n with n=0,1,2,… . The QES solutions for n=0, 1
are given in Table IV.

�1� It is easy to see that in the general case, the eigenfunction is of the form

� = sn−g�y�cn−f�y�dn−b�y�

k=0

n

Ak sn2k�y� , �24�

while the corresponding eigenvalues are solutions of a n+1th order equation.
�2� It can be checked from Table IV that 11 is invariant under b↔g followed by m→1−m.
�3� The GAL potential �3� and hence the corresponding Schrödinger equation �5� is invariant

under the transformation y→y+K�m� followed by the interchange of a with b and f with g.
Hence, under the interchange of a with b and f with g, all the eigenvalues of the GAL system
must either remain invariant or go into each other. In fact it is easily checked from Table IV
that all the eigenvalues are invariant under the interchange of a with b and f with g.
Extending this argument, in fact one finds that all the eigenvalues are also invariant under
a↔ f , b↔g as well as under a↔g, b↔ f .

J. Midband states

So far we have discussed the results for the PT-invariant GAL potentials, which give eigen-
values and eigenfunctions corresponding to the band edges. It may be noted that in all these cases,
while a,b,f ,g need not be integers, either a+b+ f +g or a−b− f −g is always integral. We now
show that when at least one of a, b, f , g is half-integral and either a+b+ f +g and/or a−b− f −g is
an arbitrary number �being an integer is of course a very special case here�, then one can obtain
doubly degenerate eigenstates which correspond to midband states. In fact depending on whether
we want b or f or g to be half-integral �with the other two parameters being integral�, we need to
use different trial solutions. Therefore, we shall consider all three cases one by one.

Case 1. b half-integral: We start from Eq. �14� and further substitute the ansatz

	�y� = �cn�y� + i sn�y��tZ�y� , �25�

where t is any real number. After lengthy but straightforward algebra, one can show that Z�y�
satisfies the equation

Z��y� + �2it dn�y� + 2mb
sn�y�cn�y�

dn�y�
− 2g

cn�y�dn�y�
sn�y�

+ 2f
dn�y�sn�y�

cn�y� 	Z��y� + �− �R + t2�

+ �Q + t2�m sn2�y� − 2itg
cn�y�
sn�y�

+ 2itf�1 − m�
sn�y�
cn�y�

+ imt�2b + 2f + 2g − 1�sn�y�cn�y�	Z�y�

= 0, �26�

TABLE IV. Energy eigenstates of PT-invariant GAL potentials with f =2n−a−b−g, n=0, 1, 2,…;
11����a+b−1�+m�1−b−g��2− �2a−1��1−2g�m .

n E sng�y�dnb�y�cn−�a+b+g��y��

0 −�a+b�2−m�g+b�2 1

1 −�a+b−1�2−m�b+g−1�2− �1+m�±211 �E+ �a+b−2�2+m�b+g�2�sn2�y�−2�2g−1�

cn2�y�
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where R and Q are as given by Eq. �15�. Not surprisingly, Z�y�=constant is a solution with energy
E=−�4t2+m� /4 provided f =g=0, b=1/2, a= t−1/2 �i.e., b+ f +g=1/2�.

One can build solutions for higher values of b+ f +g from here. In particular, for b+ f +g
=2M +1/2, we consider the ansatz �M =0,1,2,…�

Z�y� = 

k=0

M

Ak sn2k�y� + cn�y�sn�y� 

k=0

M−1

Bk sn2k�y� , �27�

while if b+ f +g=2M +3/2 then we consider the ansatz �M =0,1,2,…�

Z�y� = cn�y�

k=0

M

Ak sn2k�y� + sn�y�

k=0

M

Bk sn2k�y� . �28�

Substitution into Eq. �26� and simplification yields analytic expressions for the energy eigenvalues
and eigenfunctions for arbitrary M for b=1/2 and b=3/2. In particular, for b=1/2, we find that

b = 1/2, f = p, f + g = N, a = t − 1/2, E = − �t2 + m�g + b�2� , �29�

where both f ,g are non-negative integers satisfying f +g=N with N=0,1,2,… .
Similarly, when b=3/2, a= t−1/2, f =p, f +g=N we find that

E = m�2g + 1� − �1 + t2 + m�g + b�2� ± ��2g + 1�2m2 + 4m�N + 1��f − g� + 4�1 − m�t2, �30�

where, f and g are again non-negative integers. In all these cases, the corresponding eigenfunc-
tions have the form as given above in Eqs. �27� and �28�. For small values of N, the explicit
coefficients Ak,Bk appearing in the eigenfunction expressions can be easily written down. For
example, for b=1/2 and N=1, the eigenfunction is Z�y�=A cn�y�+B sn�y� with A /B= it in case
f =1, g=0 while B /A=−it in case g=1, f =0.

For the special case of f =g=0 and t�1/2, these results represent the generalization of results
obtained by us previously6 in the case of AL potential. Further, for f =g=0, t=1/2, the results
obtained above match with the energy eigenvalue expressions obtained in Ref. 6 �as they should�.

Several comments can be readily made.

�1� Since, in the variable y, the GAL potential �3� has period 2K�m� as well as 2iK��m�, hence
��y� and ��y+2K�m�� as well as ��y+2iK��m�� are all eigenfunctions of the GAL equation
with the same eigenvalue. As a consequence, 	�y�= �cn�y�− i sn�y��tZ�y� is also the eigen-
function with the same eigenvalue. Thus for any nonintegral t, each level is doubly degen-
erate. The same remark also applies to the other two solutions �when f or g is half-integral�
discussed below.

�2� There is one remarkable symmetry associated with Eq. �26�. In particular, notice that this
equation is invariant under t→−t followed by i→−i �where i=�−1�. But under this trans-
formation, the ansatz �25� becomes

	�y� = �cn�y,m� − i sn�y,m��−t. �31�

Hence it follows that the energy eigenvalues must be independent of sign of t, i.e., they must
be a function of t2. Similar remarks also apply in the other two cases discussed below �i.e.,
when f ,g are half-integral�.

�3� For integral t, both a,b are half-integral and these solutions reduce to those discussed in the
preceding section and in that case they correspond to QES band-edge eigenstates.

�4� Here we have obtained solutions ��y� in which a= t−1/2, f =p, g=N−p, and b=1/2 or 3 /2.
In view of the symmetries of the GAL potentials, we then also have solutions ��y+K�m��
with the same energy in the case b= t−1/2, g=p, f =N−p, and a is either 1 /2 or 3 /2.
Similarly we have solutions ��y+K�m�+ iK��m�� with the same energy in the case f = t
−1/2, a=p, b=N−p, and g=1/2 or 3 /2. Further, we also have solutions ��y+ iK��m�� with
the same energy in the case g= t−1/2, a=N−p, b=p, and f =1/2 or 3 /2.
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Case 2. f half-integral: We start from Eq. �14� and further substitute the ansatz

	�y� = �dn�y� + ik sn�y��tZ�y� , �32�

where t is any real number and k=�m. After some lengthy but straightforward algebra, one finds
that Z�y� satisfies the equation

Z��y� + �2ikt cn�y� + 2mb
sn�y�cn�y�

dn�y�
− 2g

cn�y�dn�y�
sn�y�

+ 2f
dn�y�sn�y�

cn�y� 	Z��y� + �− �R + mt2�

+ �Q + t2�m sn2�y� − 2itkg
dn�y�
sn�y�

− 2iktb�1 − m�
sn�y�
dn�y�

+ ikt�2b + 2f + 2g − 1�sn�y�dn�y�	Z�y�

= 0, �33�

where R and Q are as given by Eq. �15�. Not surprisingly, Z�y�=constant is a solution with energy
E=−�4mt2+1� /4 provided b=g=0, f =1/2, a= t−1/2 �i.e. b+ f +g=1/2�.

One can build solutions for higher values of b+ f +g from here. In particular, in the case b
+ f +g=2M +1/2, we consider the ansatz �M =0,1,2,…�

Z�y� = 

k=0

M

Ak sn2k�y� + sn�y�dn�y� 

k=0

M−1

Bk sn2k�y� , �34�

while if b+ f +g=2M +3/2 then we consider the ansatz �M =0,1,2,…�

Z�y� = dn�y�

k=0

M

Ak sn2k�y� + sn�y�

k=0

M

Bk sn2k�y� . �35�

On substituting this ansatz in Eq. �33� and making algebraic simplifications, we obtain analytic
expressions for the energy eigenvalues and eigenfunctions for arbitrary M for f =1/2 and f
=3/2. In particular, for f =1/2, we find that

f = 1/2, b + g = N, a = t − 1/2, E = − �mt2 + �g + f�2� , �36�

where both b,g are non-negative integers satisfying b+g=N with N=0,1,2,… .
Similarly, when f =3/2, a= t−1/2, b+g=N we find that

E = �2g + 1� − ��1 + t2�m + �g + f�2� ± ��2g + 1�2 + 4m�N + 1��b − g� − 4m�1 − m�t2, �37�

where, b and g are again non-negative integers. In all these cases, the corresponding eigenfunc-
tions have the form as given above in Eqs. �34� and �35�. For small values of N, the explicit
coefficients Ak, Bk in the eigenfunction expressions can be easily written down. Further, as in the
half-integral b case, one can write down three more solutions with the same energy.

Case 3. g half-integral: We start from Eq. �14� and further substitute the ansatz

	�y� = �dn�y� + k cn�y��tZ�y� , �38�

where t is any real number. After algebraic simplification, it is easy to show that Z�y� satisfies the
equation

Z��y� + �− 2kt sn�y� + 2mb
sn�y�cn�y�

dn�y�
− 2g

cn�y�dn�y�
sn�y�

+ 2f
dn�y�sn�y�

cn�y� 	Z��y�

+ �− R + �Q + t2�m sn2�y� − 2ktb
cn�y�
dn�y�

− 2ktf
dn�y�
cn�y�

+ kt�2b + 2f + 2g − 1�cn�y�dn�y�	
�Z�y� = 0, �39�
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where R and Q are as given by Eq. �15�. Not surprisingly, Z�y�=constant is a solution with energy
E=−�1+m� /4 provided b= f =0, g=1/2, a= t−1/2 �i.e., b+ f +g=1/2�.

One can build solutions for higher values of b+ f +g from here. In particular, in the case b
+ f +g=2M +1/2, we consider the ansatz �M =0,1,2,…�

Z�y� = 

k=0

M

Ak sn2k�y� + cn�y�dn�y� 

k=0

M−1

Bk sn2k�y� , �40�

while if b+ f +g=2M +3/2 then we consider the ansatz �M =0,1,2,…�

Z�y� = cn�y,m�

k=0

M

Ak sn2k�y� + dn�y�

k=0

M

Bk sn2k�y� . �41�

Substituting this ansatz in Eq. �39� and simplifying, one gets analytic expressions for the energy
eigenvalues and eigenfunctions for arbitrary M for b=1/2 and b=3/2. In particular, for b=1/2,
we find that

g = 1/2, b + f = N, a = t − 1/2, E = − ��f + g�2 + m�g + b�2� , �42�

where both b,f are non-negative integers satisfying b+ f =N with N=0,1,2,… .
Similarly, when g=3/2, a= t−1/2, b+ f =N we find that

E = 1 + 2f + �2b + 1�m − ��f + g�2 + m�g + b�2� ± ��1 − m���2f + 1�2 − �2b + 1�2m� + 4mt2,

�43�

where, b and f are again non-negative integers. In all these cases, the corresponding eigenfunc-
tions have the form as given in Eqs. �40� and �41�. For small values of N, the coefficients Ak,Bk

appearing in the eigenfunctions can be easily written down. Further, as in the half-integral b case,
one can write down three more solutions with the same energy.

III. SUPERSYMMETRY AND POTENTIALS WITH A FINITE NUMBER OF BAND GAPS

We shall now start with the ground state as well as the excited state eigenfunctions of various
PT-invariant GAL potentials discussed in the preceding section and using supersymmetry obtain
the corresponding SUSY partner potentials. In this manner, we obtain many periodic potentials
V+�x� with a finite number of band gaps. As emphasized in the introduction, unlike real potentials,
if we take a complex PT-invariant potential, then even if we start with an excited state wave
function and calculate the corresponding superpotential W, the singularities in W and hence V+�x�
are not on the real axis, and do not cause problems.

A. Supersymmetry partners of PT-invariant Lamé potentials

The simplest case is when only one parameter, �say a� is nonzero. This gives the PT-invariant
Lamé potential

V�x� = − a�a + 1�m sn2�y� . �44�

For concreteness, take a=1, which yields V�x�=−2m sn2�y�. Here, the three band-edge eigenfunc-
tions �in order of increasing energy eigenvalues� are sn�y�, cn�y�, dn�y�. It is easily computed that
corresponding to these three eigenstates, the corresponding partner potentials �up to a constant� are
V+�x�=−2m sn2�y+K�m��, −2m sn2�y+ iK��m��, −2m sn2�y+K�m�+ iK��m�� which are all strictly
isospectral potentials to the original Lamé potential. Thus, in this case we do not obtain any
different solvable potentials by using supersymmetry.

Now consider the case a=2. All the five band-edge eigenvalues and eigenfunctions of the
PT-invariant Lamé potential V�x�=−6m sn2�y� have already been given by us in Table 4 of Ref.
11. Starting from any of the five band-edge eigenfunctions and calculating the corresponding
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superpotentials, we obtain five different supersymmetric partner potentials all of which have the
same band-edge energy eigenvalues as given in Table 4 of Ref. 11. In Table V we have given the
expressions for these five different strictly isospectral potentials. It is worth noting that out of these
five potentials, three are self-isospectral—they are the PT-invariant GAL potentials �2,2,2,0�.
Hence, truly speaking, we only have three genuinely different potentials, all having the same
band-edge energies. For each of these cases, using the formalism of supersymmetric quantum
mechanics,9 we can easily obtain expressions for the corresponding five eigenstates. Now, again
by starting from these eigenfunctions, we can construct still different partner potentials but with
identical band edges. In this way, one could construct a large number of periodic potentials with
five band edges and two band gaps, all strictly isospectral to the PT-invariant Lamé potential �44�
with a=2.

Similarly, if we consider the PT-invariant Lamé potential �44� with a=3, then we have seven
band-edge eigenfunctions and eigenvalues all of which are analytically known and are given in
Table 1 of Ref. 4. Again, using supersymmetry, we can obtain seven different partner potentials V+

all with the same band-edge eigenvalues. By starting from any one of them and using other
eigenfunctions recursively, we can in principle construct a huge class of isospectral potentials.
Particular mention may be made of the case when we start from the eigenfunction sn�y�cn�y�dn�y�
of the potential V�x�=−12m sn2�y�. It is easily shown that the corresponding partner potential V+

�up to a constant� is given by

V�x� = − m�6 sn2�y� + 2 sn2�y + K�m�� + 2 sn2�y + iK��m�� + 2 sn2�y + K�m� + iK��m��� .

�45�

Thus, we see that the PT-invariant GAL potential �6,2,2,2� has precisely three bands, three band
gaps, and seven band edges, since it is the supersymmetric partner of the PT-invariant Lamé
potential �44� with a=3. The process described above is readily extended to any Lamé potential
with integer a. We can start from any of the 2a+1 band edges and obtain the corresponding
supersymmetric partner potentials all having the same band edges.

We have shown that the SUSY partners of the PT-invariant Lamé potentials �6,0,0,0� and
�12,0,0,0� are the potentials �2,2,2,0� and �6,2,2,2�, respectively. What about the higher Lamé
potentials? In this connection, it is amusing to notice that the band edges of the PT-invariant Lamé
potential �20,0,0,0� and the potential �6,6,6,2� �which follow from Table IV� are identical. For
example, out of nine band edges, the six band-edge energy eigenvalues of �20,0,0,0� are given by

TABLE V. The five supersymmetric partner potentials of the PT-invariant Lamé potential V−
PT�x�=−6m sn2�y�. Here y

= ix+� and ��1−m+m2. All partner potentials have a period 2K��m�.

E ��−� V+�x�

−2�1+m�−2
1+

E

2
sn2�y� 6m sn2�y�+E−

2E2sn2�y�cn2�y�dn2�y�

�1+ E
2 sn2�y��

−4−m sn�y�cn�y� −2m�sn2�y�+sn2�y+K�m�+ iK��m��+sn2�y+ iK��m��−E

−1−4m sn�y�dn�y� −2m�sn2�y�+sn2�y+K�m��+sn2�y+ iK��m��−E

−1−m cn�y�dn�y� −2m�sn2�y�+sn2�y+K�m��+sn2�y+K�m�+ iK��m��−E

−2�1+m�+2
1+

E

2
sn2�y� 6m sn2�y�+E−

2E2 sn2�y�cn2�y�dn2�y�

�1+ E
2 sn2�y��
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E = − 5�m + 2� ± �4m2 − 9m + 9, E = − 5�1 + m� ± 2�4m2 + m + 4,

E = 5�1 + 2m� ± 2�9m2 − 9m + 4. �46�

It is easily seen from Table IV that exactly the same eigenvalues are obtained when a,b,f ,g take
the values �2,2,−3,1�, �2,−3,2,1�, �−3,2,2,1�. Similarly, one can show that the three remaining
eigenvalues of �20,0,0,0� satisfy the same cubic equation as �6,6,6,2� when a, b, f , g take the
values �2,2,2,−2�.

In fact, one can show that the number �and structure� of band edges of the PT-invariant Lamé
potential �2a�2a+1�,0,0,0� is the same as the QES states of the potential �a�a+1�, a�a+1�, a�a
+1�, �a−1�a�. For example, for this PT-invariant Lamé potential it is well known that out of the
4a+1 band edges of the Lamé potential, a states each are of the form cn�y�sn�y�Fa−1�sn2�y��,
cn�y�dn�y�Fa−1�sn2�y��, dn�y�sn�y�Fa−1�sn2�y��, while the remaining a+1 states are of the form
Fa�sn2�y��. Using Table IV, it is easily shown that there are again 4a+1 QES states of the potential
�a�a+1�, a�a+1�, a�a+1�, �a−1�a�, out of which a QES states each are obtained when a,b,f ,g are
of the form a, a, a−1, a−1, or a, a−1, a, a−1, or a−1,a,a,a−1, while a+1 QES states are
obtained when a, b, f , g are of the form a, a, a, −a. In fact we believe that all the band-edge
eigenvalues of the potentials �2a�2a+1�,0,0,0� and �a�a+1�, a�a+1�, a�a+1�, �a−1�a� are iden-
tical. While this is easily shown for low values of a, at the moment, a general proof is still lacking.

Similarly, one can show that the number �as well as the structure� of band edges of the
PT-invariant Lamé potential ��2a−1�2a,0,0,0� is the same as the QES states of the potential
�a�a+1�, �a−1�a, �a−1�a, �a−1�a�. For example, it is well known that out of the 4a−1 band
edges of the PT-invariant Lamé potential, a states each are of the form cn�y�Fa−1�sn2�y��,
dn�y�Fa−1�sn2�y��, sn�y�Fa−1�sn2�y��, while the remaining a−1 states are of the form
sn�y�cn�y�dn�y�Fa−2�sn2�y��. Using Table IV, it is easily shown that there are 4a−1 QES states of
the potential �a�a+1�,�a−1�a,�a−1�a,�a−1�a�, out of which a QES states each are obtained when
a,b,f ,g are of the form a, −a, a−1, a−1, or a, a−1, −a, a−1, or a, a−1, a−1, −a, while a−1 QES
states are obtained when a, b, f , g are of the form −a−1, a−1, a−1, a−1. In fact we believe that
all the band-edge eigenvalues of the potentials ��2a−1�2a,0,0,0� and �a�a+1�,�a−1�a,�a−1�a,
�a−1�a� are identical. While this is easily shown for low values of a, a general proof is not
available.

On the basis of these results, we then conjecture that the potentials �a�a+1�, a�a+1�, a�a
+1�, �a−1�a�, for integer a, have the same band edges as the Lamé potential �2a�2a+1�, 0, 0, 0�
and hence these potentials also have precisely 2a band gaps and �4a+1� band edges, all of which
are known in principle. Further, the potentials �a�a+1�, �a−1�a, �a−1�a, �a−1�a� have the same
band edges as the Lamé potential ��2a−1�2a, 0, 0, 0� and hence are also potentials with a finite
number �2a−1� of band gaps. It would be nice to have a general proof.

B. Supersymmetry partners of PT-invariant associated Lamé potentials

We start our discussion with the a=2, b=1 associated Lamé potential and its corresponding
PT-invariant potential VPT�x�=−6m sn2�y�−2m cn2�y� /dn2�y�. All five band-edge eigenvalues and
eigenfunctions for this potential have been given by us in Table 3 of Ref. 11. As established
previously,5,11 this is a self-isospectral potential and hence using the band-edge eigenfunction
dn2�y� does not give any partner potential. However, if instead we use the remaining four band-
edge eigenfunctions, then one gets four SUSY partner potentials which are strictly isospectral to
the PT-invariant �6,2,0,0� potential.

Let us now consider the PT-invariant AL potential �a�a+1�,�a−2��a−1�,0,0�, i.e., the poten-
tial �3� with b=a−2, f =g=0. As shown by us,5 one of its exact band-edge eigenfunctions is
��x�=cn�y�dna−1�y�. It is easy to see that the corresponding partner potential V+ �up to a constant�
is the potential ��a−1�a,�a−1�a,2,0�. Thus we immediately conclude that the PT-invariant poten-
tial ��a−1�a,�a−1�a,2,0� is strictly isospectral to the PT-invariant AL potential �a�a+1�,�a−2��a
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−1�,0,0�. In the special case when both a,b are integers, in view of our results on AL potentials,6

it then follows that the GAL potential ��a−1�a, �a−1�a, 2, 0� has a band gaps and a bands, out of
which b=a−2 bands are rather unusual.

Note that if instead we use ��x�=sn�y�dna−1�y ,m�, which is also one of the exact eigenfunc-
tions of the above AL potential, then nothing different is obtained. In particular, the corresponding
partner potential is ��a−1�a,�a−1�a,0,2� which is strictly isospectral to the potential ��a−1�a,
�a−1�a, 2, 0�.

Let us now consider the PT-invariant AL potential �a�a+1�,�a−3��a−2�,0,0�, i.e., the poten-
tial �3� with b=a−3, f =g=0. As shown by us,5 one of its exact band-edge eigenfunctions is
��x�=sn�y�cn�y�dna−2�y�. It is easy to see that the corresponding partner potential V+ �up to a
constant� is the potential ��a−1�a,�a−2��a−1�,2,2� in the notation of �3�. Thus we immediately
conclude that when a, b are integers, then this PT-invariant potential is strictly isospectral to the
AL potential �a�a+1�,�a−3��a−2�,0,0�, has a band gaps and a bands, out of which b=a−3 bands
are rather unusual.

We can generalize the above arguments. In particular, we find that the number �and even
structure� of the potentials ��a−p��a−p+1�,�a−p−1��a−p�,p�p+1�,p�p+1�� is the same as the
AL potentials �a�a+1�,�a−2p−1��a−2p�,0,0�. For example, as remarked in the preceding section,
if b=a−2p−1 �p=0,1,2,…�, then there are p eigenstates of the form sn�y�cn�y�dn�y�Fp−1�sn2�y��,
p+1 eigenstates of the form dna−2p�y�Fp�sn2�y��, a−p eigenstates of the form
cn�y�dn2p+1−a�y�Fa−p−1�sn2�y��, and also a−p eigenstates of the form
sn�y�dn2p+1−a�y�Fa−p−1�sn2�y��. Using Table IV it is easy to show that for the GAL potential ��a
−p��a−p+1�, �a−p−1��a−p�,p�p+1�,p�p+1��, there are p eigenstates of the form
sn−p�y�cn−p�y�dn1+p−a�y�Fp−1�sn2�y��, p+1 eigenstates of the form dna−p�y�cn−p�y�sn−p

�y�Fp�sn2�y��, a−p eigenstates of the form cnp+1�y�sn−p�y�dnp+1−a�y�Fa−p−1�sn2�y��, and also a
−p eigenstates of the form snp+1�y�cn−p�y�dnp+1−a�y�Fa−p−1�sn2�y��. In fact we believe that all the
band-edge eigenvalues of the potentials �a�a+1�,�a−2p��a−2p+1�,0,0� and ��a−p��a−p+1�,�a
−p−1��a−p�, p�p+1�,p�p+1�� are identical. While this is easily shown for low values of a and p,
a general proof is still lacking.

Similarly, we can show that the number �and even structure� of the potentials ��a−p��a−p
+1�,�a−p��a−p+1�,p�p+1�,�p−1�p� is the same as the AL potentials �a�a+1�,�a−2p��a−2p
+1�,0,0�. In particular, for the AL potential, as shown in Sec. II, when b=a−2p, then there are p
eigenstates of the form cn�x�dna−2p+1�x�Fp−1�sn2�x��, p eigenstates of the form
sn�x�dna−2p+1�x�Fp−1�sn2�x��, a−p eigenstates of the form sn�x�cn�x�dn2p−a�x�Fa−p−1�sn2�x��, and
a−p+1 eigenstates of the form dn2p−a�x�Fa−p�sn2�x��. It is easily shown that for the potential
��a−p��a−p+1�,�a−p��a−p+1�,p�p+1�,�p−1�p�, there are 4a−1 QES states of similar form. In
particular, there are p eigenstates of the form sn−p�y�cn1−p�y�dnp−a�y�Fp−1�sn2�y��, p eigenstates of
the form dna+1−p�y�cn1−p�y�sn−p�y�Fp−1�sn2�y��, a−p+1 eigenstates of the form
cnp�y�sn−p�y�dnp−a�y�Fa−p�sn2�y�� and also a−p eigenstates of the form
snp+1�y�cn1−p�y�dnp−a�y�Fa−p−1�sn2�y��. In fact we believe that all the band-edge eigenvalues of
the potentials �a�a+1�,�a−2p��a−2p+1�,0,0� and ��a−p��a−p+1�,�a−p��a−p+1�,p�p+1�,�p
−1�p� are identical. While this is easily shown for low values of a and p, we do not yet have a
general proof.

C. SUSY partners of potentials with b= f=0

Let us now consider the SUSY partners of the potential �a�a+1�,0,0,g�g+1�� which for
integral values of a,g, is a problem with a finite number of band gaps. By exactly following the
above discussion about the PT-invariant AL potential, we can construct a host of potentials with a
finite number of band gaps. For example, by starting from the potential �6,0,0,2� and following the
procedure as in the AL case, we can easily obtain four SUSY partner potentials, all with two band
gaps.

From Table I we observe that for integral a, two of the exact eigenfunctions of the potential
�a�a+1�,0,0,�a−2��a−1�� with a band gaps are cn�y�sna−2�y� and dn�y�sna−2�y�. It is easily seen
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that if we start with either of these eigenfunctions, then the corresponding SUSY partner potential
with the same finite �a� number of band gaps is the potential ��a−1�a,2,0,�a−1�a��or its isospec-
tral partner ��a−1�a,0,2,�a−1�a��.

From Table I we also observe that one of the exact eigenfunctions of the potential
�a�a+1�,0,0,�a−3��a−2�� is cn�y ,m�dn�y ,m�sna−3�y ,m�. On starting with this eigenfunction, it is
easily shown that the corresponding SUSY partner potential is ��a−1�a,2,2,�a−2��a−1�� which
therefore must also be a potential with finite �a� number of band gaps when a is an integer.

Similarly, by starting from the finite band-gap potentials �a�a+1�,0,0,�a−2p−1��a−2p�� as
well as �a�a+1�,0,0,�a−2p��a−2p+1��, and following the discussion in the case of PT-invariant
AL potential, it is easily shown that the corresponding GAL potentials with the same �finite�
number of band gaps are ��a−p��a−p+1�,p�p+1�,p�p+1�,�a−p−1��a−p�� and
��a−p��a−p+1�,p�p+1�,�p−1�p,�a−p��a−p+1��, respectively, where a and p are positive inte-
gers.

D. SUSY partners of potentials with b=g=0

Let us now consider the SUSY partners of the PT-invariant potential �a�a+1�,0,f�f +1�,0�.
From Table II we observe that two of the exact eigenfunctions of the potential �a�a+1�,0,�a−2�
��a−1�,0� are sn�y�cna−2�y� and dn�y�cna−2�y�. It is easily seen that if we start with either of these
eigenfunctions, then the corresponding GAL potentials turn out to be ��a−1�a,2,�a−1�a,0� or
��a−1�a,0,�a−1�a,2�. Since we know that the potentials �a�a+1�,a�a−1�,2,0� as well as
�a�a+1�,2,0,�a−1�a� have a finite number of band gaps, we conjecture that maybe the potential
�a�a+1�,2,�a−1�a,0� also has only a finite number �a� of band gaps when a is an integer.

From Table II we also observe that one of the exact eigenfunctions of the potential �a�a+1�,0,
�a−3��a−2�,0� is sn�y�dn�y�cna−3�y�. Starting with this eigenfunction, it is easily shown that the
corresponding SUSY partner potential is ��a−1�a,2,�a−2��a−1�,2�. Again, since for integer a, the
potential ��a−1�a,�a−2��a−1�,2,2� has only a finite number of band gaps, it is tempting to con-
jecture that the same may also be true for the potential ��a−1�a,2,�a−2��a−1�,2�.

Similarly, by starting from the finite band-gap potentials �a�a+1�,0,�a−2p−1��a−2p�,0� as
well as �a�a+1�,0,�a−2p��a−2p+1�,0�, and following the discussion in the case of PT-invariant
AL potentials, it is easily shown that the corresponding SUSY partners with the same number of
band gaps are the GAL potentials ��a−p��a−p+1�,p�p+1�,p�p+1�,�a−p−1��a−p�� and ��a−p�
��a−p+1�,p�p+1�,�p−1�p,�a−p��a−p+1��, respectively, when a and p are integers.

E. SUSY partners of potentials with f=0

Let us now consider the SUSY partners of the potential �a�a+1�,b�b+1�,0,g�g+1��. From
Table III we observe that one of the exact eigenfunctions is dn−b�y�sn−g�y� when a+b+g=0. If we
start with this eigenfunction, then the corresponding SUSY partner potential turns out to be
��a−1�a,�b−1�b,0,�g−1�g�.

From Table III we also observe that an exact eigenfunction of the potential �a�a+1�,b�b+1�,0,
g�g+1�� is cn�y�dn−b�y�sn−g�y� when a+b+g=1. Starting with this eigenfunction, it is easily
shown that the corresponding SUSY partner potential is ��a−1�a,�b−1�b,2,�g−1�g�.

In summary, we have discovered a large number of complex PT-invariant periodic potentials
with a finite number of band gaps, many occurring when the parameters a,b,c,d have specific
integer values. This leads us to make the plausible conjecture that all GAL potentials �3� for
integer values of a,b,f ,g have a finite number of band gaps, but there is as yet no formal proof.

IV. HEUN’S EQUATION AND THE GENERALIZED ASSOCIATED LAMÉ EQUATION

In this section, we point out an interesting connection between Heun’s differential equation7

and the generalized associated Lamé equation �5�. This connection enables us to use the various
solutions of Eq. �5� obtained in this paper to write down several solutions of Heun’s equation
which have apparently not been studied in the mathematics literature.

The canonical form of Heun’s equation is given by7
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� d2

dx2 + ��

x
+



x − 1
+

�

x − c
� d

dx
+

��x − q

x�x − 1��x − c�	G�x� = 0, �47�

where �, �, �, , �, q, c are real parameters, except that c�0,1 and the first five parameters are
constrained by the relation

� +  + � = � + � + 1. �48�

If we make the transformation x=sn2�y ,m�, then Heun’s equation takes the form7

F��y� + ��1 − 2��m
sn�y�cn�y�

dn�y�
+ �1 − 2�

sn�y�dn�y�
cn�y�

+ �2� − 1�
cn�y�dn�y�

sn�y� 	F��y�

− �4mq − 4��m sn2�y��F�y� = 0, �49�

where �G�x��F�y�� and m=1/c. It is interesting to note that Eq. �49� is very similar to the 	
equation �14� which we have analyzed in great detail. In particular, with the identification

b = 1
2 − �, f = 1

2 − , g = 1
2 − �, b + f + g = 1

2 − � − �, 4�� = Q, 4mq = R , �50�

all the results discussed above can be immediately used to obtain different solutions of Heun’s
equation. It turns out that using the midband states obtained in Sec. II, one generates quasiperiodic
solutions of Heun’s equation �49�, which we discuss in a separate presentation.8
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We investigate the so-called localizable information of bipartite states and a parallel
notion of information deficit. Localizable information is defined as the amount of
information that can be concentrated by means of classical communication and
local operations where only maximally mixed states can be added for free. The
information deficit is defined as difference between total information contents of
the state and localizable information. We consider a larger class of operations, the
so-called PPT operations, which in addition preserve maximally mixed state �PPT-
PMM operations�. We formulate the related optimization problem as a semidefinite
program with suitable constraints. We then provide bound for fidelity of transition
of a given state into product pure state on Hilbert space of dimension d. This allows
to obtain a general upper bound for localizable information �and also for informa-
tion deficit�. We calculated the bounds exactly for Werner states and isotropic states
in any dimension. Surprisingly it turns out that related bounds for information
deficit are equal to relative entropy of entanglement �in the case of Werner states,
regularized one�. We compare the upper bounds with lower bounds based on simple
protocol of localization of information. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2000707�

I. INTRODUCTION

In recent developments1,2 an idea of localizing �or concentrating� information in paradigm of
distant laboratories was devised. It originated from the concept of drawing thermodynamical work
from heat bath and an additional physical system used as entropy sink �see, e.g., Refs. 3 and 4�.
Namely, using one qubit in pure state, one can draw kT ln 2 of work5 from heat bath of tempera-
ture T. More generally, using n qubit state � one can draw n−S��� of work. �We neglect the
obvious factor ln kT, counting work in bits.� In Ref. 1 this idea was applied to the distant labora-
tory paradigm. There are distant parties, who share some n qubit quantum state, and have local
heat baths of temperature T. If the parties can communicate quantum information, then they can
use the shared state to draw n−S��� bits of work. This can be achieved, by sending the whole
subsystem to one party. The party can then draw work from local heat bath by use of the total
state. However, if they can only use local operations and classical communication �LOCC�, then
they usually will not be able to draw such amount of work. Indeed, if they try to send all
subsystems to one party, the state will be decohered, due to transmission via classical channel.
Thus all quantum correlations will disappear, which will result in increase of entropy of the state
to some value S��S, so that we will observe a difference between total information n−S and
information localizable by LOCC. The difference is called quantum deficit and denoted by �.
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Since it represents the information that must be destroyed during travel through classical channel,
it reports quantumness of correlations of a state. In this way tracing what is local, we can also
understand what is nonlocal.

The basic problem arises. Given a quantum compound state, how much information can be
localized by LOCC? Or, equivalently, how large is quantum deficit for a given state? For pure
state the answer is known,2 the amount of information that cannot be localized is precisely the
entanglement of formation of the state,6 given by entropy of the subsystem. However, for mixed
states even separable states can have nonzero deficit. Thus the deficit can account for quantumness
that is not covered by entanglement. One could also expect that deficit is the measure of all
quantumness of correlations, so that reasonable entanglement measures should not exceed it. In
any case, it is important to evaluate deficit for different states.

In Ref. 2 the problem of localizing information into a subsystem was translated into a problem
of distilling pure local states. In this paper, basing on this concept, we provide general upper
bound for the localizable information, which gives in turn lower bound for information deficit. We
compute the bound for symmetric states, like Werner states7 and isotropic states.8 We use the
method of semidefinite programming following Rains approach to the problem of entanglement
distillation.9 Though our problem is quite opposite, instead of singlets, we want to draw pure
product states, the technique can be still applied, and the bounds we obtain share some features of
Rains bound for distillable entanglement. Even more suprisingly, the bounds for information
deficit obtained for Werner and isotropic states are just equal to Rains bounds for those states,
which in turn are equal to relative entropy of entanglement �regularized in the case of Werner
states�. We also present lower bounds, obtained by some specific protocols of localizing informa-
tion.

II. PRELIMINARIES

In this section we will provide some definitions. The set of linear operators on Hilbert space
H will be denoted as B�H�. By H we will mean finite dimensional Hilbert space with a fixed
isomorphism to Cd, where d=dim H. For a vector ����H, the projector P= ������ is a pure state
represented by this vector. Any mixed state is a mixture of such projectors, i.e., it is of the form
�=�ipi��i���i�, where 	pi
 is a probability distribution. Equivalently, a state is positive operator on
H with trace one.

We will need the notion of positive and negative parts of the operator. An operator A is
Hermitian if A=A† where † denotes Hermitian conjugation. The set of Hermitian operators acting
on H will be denoted as ��H�. For Hermitian operator H�B�H� positive H+ and negative H−

parts are defined by H+−H−=H and H+H−=0, i.e., H+=�i�i
+��i

+���i
+�, H−=�i�i

−��i
−���i

−� where
�i

+��i
−� are non-negative �negative� eigenvalues and �i

± are corresponding eigenvectors.
Trace norm and operator norm will be denoted by � . �tr and � . �op, respectively, where

�A�tr = Tr��AA†� , �1�

�A�op = sup
���=1

�A���� . �2�

We shall consider composite quantum systems which are represented by tensor product of Hilbert
spaces HAB=HA � HBCdA � CdB, where HA and HB are spaces of subsystems A and B. There are
two kinds of states, separable and entangled ones. Separable state �sep can be written as a convex
combination of products of states

�sep = �
k

pk�k
A

� �k
B, �3�

where �k
A and �k

B are states acting on Hilbert spaces HA and HB, respectively. Entangled state are
those that cannot be written in form �3�.
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Some of the obtained results will hold for any bipartite states, and some will be shown for
specific classes of the states. We shall consider two well known classes of symmetric states,
Werner states7 and isotropic states,8 which we recall here.

The Werner states are the states acting on Hilbert space Cd � Cd, which do not change if
subjected to the same unitary transformation to both subsystems,

� = U � U�U†
� U† �4�

for any unitary U. Such states have the following form:7

�W =
1

d2 + d�
�I + �V�, − 1 	 � 	 1, �5�

where V is a unitary flip operator V acting on Hilbert space Cd � Cd system defined by V
 � �
=� � 
. Another useful form of �W is

�W = p
PA

NA
+ �1 − p�

PS

NS
, �6�

where PS= �I+V� /2 and PA= I− PS are projectors onto symmetric and antisymmetric subspaces of
total space, respectively. NA= �d2−d� /2 and NS= �d2+d� /2 are the dimensions of the antisymmet-
ric and symmetric subspaces, respectively.

The isotropic states are those bipartite states which are invariant under U � Ū transformations8

�where Ū is complex comjugate of U�. They are of the following form:

�iso = �P+ +
1 − �

d2 I, � � �−
1

d
,1� , �7�

where P+ is a projector onto maximally entangled state ���+=�k=1
d �1/�d��kk� �which one can call

the singlet state� and I /d2 is the maximally mixed state.
We will consider states that have more than two subsystems, however we will always consider

a distinguished cut dividing groups of subsystems into two groups. For example, we can have state
�AA�B� which is tripartite, though from our point of view it is a bipartite state of two subsystems
AA� and B.

In the paper we consider some transformations of the bipartite state. Apart from transforma-
tions that have physical meaing it is good, for technical reasons, to consider some purely math-
ematical transformations as well. For this reason we recall here the operation of partial transpo-
sition, and its basic properties. Namely it is a linear map � :B�HA � HB�→B�HA � HB� which acts
on a state with matrix elements �ijkl,

�AB = �
i,k=1

dA

�
j,l=1

dB

�ijkl�ij��kl� �8�

as the following permutation:

�AB
� = �

i,k=1

dA

�
j,l=1

dB

�ijkl�il��kj� . �9�

The state is written in a canonical product basis 	�ij�
. This map has useful properties. For any
operators A and B one has

��1� Tr A� = Tr A ,

��2� Tr A�B = Tr AB�,
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��3� Tr�AB� = Tr A�B�,

��4� �A��� = A ,

��5� � preserves Hermiticity. �10�

Note, that ��2� follows from ��1�, ��3�, and ��4�, but we state it separately for clarity. The operator
�� depends on the chosen basis 	�ij�
, however its eigenvalues do not.

In QIT one investigates processing of quantum state by means of different subclasses of all
physical operations. In this paper we consider the following classes, given below.

Class of quantum operations �QO� is the set of completely positive,10,11 trace preserving maps
�CPTP� i.e. �as it has been shown by Choi and Kraus10–13�, for Hilbert spaces H1, H2, with
dimensions d1 and d2 respectively,

QO = �:��H1� → ��H2��∀B���H1��B� = �
i=1

d1d2

ViBVi
†,Vi:H1 → H2, �

i=1

d1d2

Vi
†Vi = I� �11�

the operators Vi are often referred to as Kraus operators.
Quantum operation can be composed out of the following operations:

�i� unitary transformations, �→U�U†;
�ii� adding ancilla, �→� � �;
�iii� discarding subsystem �AB→�A=TrB�AB.

Class of noisy operations �NO� is a subclass of the QO class. This differs from them by
restriction that we allow adding only maximally mixed ancillas, i.e., �= I /d where d is dimension
of the added system.

Class of local quantum operations and classical communication �LOCC� is defined for states
from ��HA � HB�. By LOCC operations on the bipartite system of nAB qubits we mean all opera-
tions that can be composed out of

�i� local unitary transformations �AB→UA � UB�ABUA
†

� UB
† ,

�ii� sending subsystem down completely decohering �dephasing� channel �AA�B→�AB�B= IAB
�  where  :B�HA��→HB� is a composition of the complete von Neumann measurement
performed on subsystem A� given by

��·� = �
i

Pi�·�Pi, �12�

where Pi are one-dimensional projectors satisfying �iPi= IA� and an operation that transfers
subsystem A� into B� �the spaces HB� and HA� must be equal, and we assume some fixed
isomorphism between them; then the map of transfer acts simply as identity on AB tensored
with the isomorphism�,

�iii� adding local ancilla �AB→�A� � �AB,
�iv� discarding local subsystem �A�AB→�AB=TrA��A�AB.

Class of noisy quantum operations and classical communication �NLOCC� is a subclass of the
LOCC class. The difference is that we allow to add only the maximally mixed state as an ancilla.

By NLOCC operations on the bipartite system of nAB qubits we mean all operations that can
be composed out of

�i� local unitary transformations,
�ii� sending subsystem from the down completely decohering �dephasing� channel,
�iii� adding ancilla in the maximally mixed state,
�iv� discarding local subsystem.
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Class of PPT operations. They have been introduced by Rains in Ref. 14 and are defined as
those CPTP maps , which conjugated with partial transposition, � � �� are still legitimate CPTP
maps.

Class of PPT maps which preserves maximally mixed state �PPT-PMM� is given by the
intersection of class of PPT operations, and those linear maps  :H1→H2 with din=dim H1 and
dout=dim H2, which satisfies

� I

din
� =

I

dout
. �13�

In the context of distant laboratory paradigm, all but the two last classes have operational
meaning, while the last two ones are some abstract subclasses of quantum operations. For these
classes, the following inclusions holds:

NLOCC � PPT-PMM � QO, NLOCC � LOCC � QO, NLOCC � NQ � QO. �14�

Using this, one can study features of operational class NLOCC, considering mathematical, i.e.,
more easy to deal with, PPT-PMM class.

A. Paradigm of localizing information

In any paradigm of manipulating states by operations the basic notion is rate of transition.
Given a class of operations, one can ask, at what rate it is possible to transform state � into �,
given large amount of n independent copies of �, where � and � act on Hilbert space H=HA

� HB,

��n → ��m. �15�

In our case the target state � will be a pure product state �0��0� on Hilbert space C2 � C2, and
the class of allowed operations will be the NLOCC class, since we consider the scenario intro-
duced in Ref. 1. Namely, Alice and Bob are given some bipartite state � acting on Cd � Cd and their
task is to obtain from this state the greatest possible amount of C2 � C2 systems in bipartite pure
product state �0��0� by means of noisy operations and classical communication. Clearly, to achieve
this goal they should try to avoid producing much entropy, since any entropy increase would
decrease the amount of desired �pure� output systems. The task can be viewed as localizing
information, since the bipartite system in the pure product state has the maximal amount of local
information contents.

To state it formally we provide here definition of localizable information Il.
Definition 1: For any given state �AB�Cd � Cd let us consider sequence Pn of NLOCC opera-

tions such that Pn��AB
�n�=�n, where �n acting on �C2 � C2��mn.

Set of operations P��n=1
� 	Pn
 is called a protocol of localizing information if there holds

lim
n→�

��n − P00
�mn�Tr = 0, �16�

with P00= �00��00� acting on C2 � C2. For given protocol P, its rate is given by

rP��AB� = lim sup
n,dn→�

2mn

n
. �17�

Then the localizable information of state �AB is given by

Il��AB� = sup
P

rP��AB� . �18�

We will write rP omitting the state �AB if it will not lead to confusion. Please note, that for any
protocol P, its rate rP gives the lower bound on optimal rate, i.e., on localizable information Il. It
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is then easy to obtain a bound on Il by considering protocol P which needs only one-way �say
from Alice to Bob� communication. A rate gained by such one-way protocol will be denoted as rP

→.
Please note, that this definition is nontrivial, due to the choice of class of allowed operations.

We can see it when replacing in the above definition NLOCC class with larger class of quantum
operations NO.15,2,16 The information which can be localized is in this case �due to Schumacher
compression� equal to the information contents of the state, i.e., Itot=n−S��AB�, where n is the
number of qubit the state �AB occupies. The completely trivial answer is obtained only when one
uses operations without the prefix N, i.e., either QO or LOCC. Then the quantity would be always
equal to infinity, because within these classes it is possible to add unlimited amount of systems in
pure state.

Having defined localizable information we can proceed to recall here the definition of infor-
mation deficit. The information deficit � equals difference between the mentioned total informa-
tion content of the state Itot and the localizable information Il

Definition 2: For any bipartite state �AB which acts on Hilbert space HA � HB, the informa-
tion deficit � is given by

���AB� = n − S��AB� − Il��AB� , �19�

where n=log dA+log dB is the number of qubits which �AB occupies.
This quantity tells us to what extent the optimal process of localizing information is irrevers-

ible. In other words, how much of the total information content of the state is of the nonlocal form
in a sense that it cannot be transformed into a local form, but gets destroyed during the localization
process. For technical reasons, instead of norm condition �16� we will consider condition for
fidelity,

lim
n→�

F̃��n,P00
�dn� = 1. �20�

Those conditions are shown to be equivalent in Ref. 17. Fidelity is defined as

F̃��,�� = Tr������ . �21�

In our case the state � is pure so that we have a simpler expression,

F��,�� = �Tr �� . �22�

Now, the monotonicity of the square root, allows for considering the quantity F�� ,��=Tr ��.
Since the information deficit � reports some nonlocality of the state, it would be of great

interest to compare this quantity with the well-known functions of nonlocal parameters of the
state—entanglement measures. Let us here recall the main definitions of the entanglement mea-
sures, that we shall refer to when comparing with information deficit �. For any states � and �

acting on Cd � Cd� we have, among others, the following functions:

�1� Entanglement of distillation ED �Ref. 6� is a maximal number of singlets per copy distillable
by LOCC operations from the state � in asymptotic regime of n→� copies.

�2� Entanglement of formation6 Ef is defined as

Ef��� = inf
	pi,�i


�
i

piS��red
i � , �23�

where the infimum is taken over all decompositions of state �, i.e., ensembles 	pi ,�i
 satis-
fying �=�ipi�i, and S��red

i � being von Neumann entropy of the subsystem of state �i.
�3� Entanglement cost Ec �Refs. 6 and 18� is the minimal number of singlets per copy needed to

create a state � by LOCC operations in asymptotic regime of n→� copies.
�4� Relative entropy of entanglement ER �Ref. 19� is defined as follows:
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ER��� = inf
�sep

S����� , �24�

where S�� ���=tr � log2 �−tr � log2 � is relative entropy and the infimum is taken over
all separable states �.

For an entanglement measure E, its regularization is denoted by E� given by
limn→��E���n� /n�. In this paper we will consider regularized relative entropy of entanglement Er

�.
Comparison of work deficit with Ef will also be important, for it has been proven18 that regular-
ized entanglement of formation Ef

� equals entanglement cost of the state Ec.
In this paper we will not use definitions of these entanglement measures. We will only need

values of those measures for the mentioned symmetric states, which one can find in the literature.

III. BOUNDS ON THE FIDELITY OF TRANSITIONS

Given a quantum mixed state � one may ask how much of the information it contains which
can be concentrated to a local form.1 In other words, how many pairs of pure product states P00

can one achieve from � per copy of � in asymptotic regime under noisy local operations and
classical communication �NLOCC�.2 The class of NLOCC maps is rather difficult to deal with.
Then similarly as in entanglement theory, it is more convenient to consider some larger class that
has clear mathematical characterization. In Ref. 14 a class of PPT maps was introduced which is
larger than LOCC. In our case, the analogous larger class will be PPT-PMM maps. If we are able
to get upper bound for the rate of distillation of pure product states with this class it will be also
upper bound for rate achievable by NLOCC maps. Our analysis of the rate under PPT-PMM maps,
will be analogous to the analysis of distillation of entanglement in Ref. 9. Having fixed the rate of
conversion from � to P00 we evaluate the fidelity of conversion, i.e., the overlap of the current
output with desired output. If the fidelity can approach 1 in limit of many input copies, the rate is
attainable.

Let us then fix the rate r which means, that for n input copies of a given state we will obtain
m= �nr /2� output copies. The m pairs are in a final joint state ��=���n�, where  is an operation
of conversion. In the following we will assume, that operations of conversion �operations� are
PPT-PMM. Then we will maximize the following quantity:

Fn = Tr�P00
�m���n�� . �25�

The fidelity F is a function of n, since the rate r is fixed. Our general argument will be the
following. If for given rate F optimized over such operations is smaller than one, then the rate is
not achievable. Infimum over such rates is the upper bound for the optimal achievable rate, hence
for IL.

We will optimize F in two stages. First we will change the problem of optimization over  to
optimization over set of some positive operators �, which fulfills some �rather complicated�
constraints. We will however not optimize F over those constraints. Rather, in second stage by
duality method used in semidefinite programming we will find the bound on F expressed as
infimum over Hermitian operators �without any additional constraints�. We will then obtain
bounds for localizable information for Werner and isotropic states by choosing appropriate Her-
mitian operator or by optimizing over a class of Hermitian operators.

It is useful to observe, that since  is a CPTP map we have

Tr�P00
�m���n�� Tr�P00

�m�
i

Vi�
�nVi

†� = Tr��
i

Vi
†P00

�mVi�
�n� , �26�

where Vi are Kraus operators of the map. We used here the fact Tr AB=Tr BA for any operators A
and B. The map �iVi

†�·�Vi�† is called dual map �with respect to �. It is clearly a CP map too
�yet it need not be trace preserving�. The meaning of dual maps to NLOCC operations is exhibited
in Ref. 20. Here we are interested in the following operator:
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� = †�P00
�m� . �27�

We can write fidelity by means of � as follows:

F = sup
�

Tr���n�� , �28�

where supremum is taken over all � of the form �27�. Let us now prove the following fact, which
amounts to the first stage of optimization.

Fact 1: For given rate r and the number of input copies n of any state ��B�Cd � Cd�, the
optimal fidelity is bounded by

F 	 sup
�

Tr�����n�� , �29�

where

0 	 � 	 I, �� � 0, Tr � = 2n�2 log d−r� � K . �30�

This problem is a particular example of so-called semidefinite program. After proving the
above fact we will provide the dual problem, which give bound for fidelity in the original problem
�29�.

Proof: We need to show that � satisfies the displayed constraints. To this end we will use
previously mentioned properties of partial transposition. Let us first check if the � defined above
operator fulfills the stated constraints. Actually, we will see, that 0	�	 I is a consequence of the
fact that  is CPTP map and that P00

�m	 I, and positivity of �� is a consequence of  being PPT
map and the fact that �P00

�m���0. We will use P instead of P00
�m for convenient notation.

Positivity of � is rather clear, since—as it came up—† is a positive map. Comparing � with
identity is simple, too. For any state � we have �	 I, which implies that for any positive operator
A,

Tr ��A��� 	 Tr �A� = Tr A , �31�

where the equality expresses the fact that  is trace preserving. This however is equivalent to the

Tr �A†���� 	 Tr�AI� �32�

which for �= P gives �	 I. To check positivity of partially transposed � we need to show, that
for any state �,

Tr ���†�P���� � 0. �33�

Applying ��2� of Eq. �11� one gets

Tr ���†�P�� � 0, �34�

what by definition of dual map is equivalent to

Tr �����P� � 0. �35�

Applying subsequently ��1� and ��3� one ends up with

Tr ��������P�� � 0, �36�

which is true, since both ������� and P� are positive operators. First because  is a PPT map
and second because P is a product state for which Peres separability criterion guarantees positivity
of partial transposition.

To prove the last property of � we use the fact that  is PMM, we then obtain
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Tr � � Tr †�P�Iin = din Tr P� Iin

din
� = din Tr P

I

dout
=

din

dout
= K , �37�

where din=d2n and dout=22m. This ends the proof. �

Now, in a second stage of optimization of the fidelity, we can rearrange our task, using the
concept of duality in semidefinite programming.

Theorem 1: For any state � acting on Hilbert space Cd � Cd and a fixed rate r,

F 	 inf
D���H�

�Tr�� − D�+ + K�max�D��� , �38�

where �max�D�� is the maximal eigenvalue of Hermitian operator D� and K=2n�2 log d−r�.
Proof: By just adding and subtracting proper terms which is similar to the Lagrange multi-

pliers method, using ��2� we can state that for any operators A, B, and for any real parameter �,
we have

Tr �� = Tr A − Tr�− � + A − B� + �I�� + �K − Tr A�I − �� − Tr B�� + ��Tr � − K� . �39�

Now if A and B are positive operators and A��+B�−�I we have

Tr �� 	 Tr A + �K , �40�

since absent terms on the right-handside �RHS� are nonpositive according to the constraints on �.
Then

sup
�

Tr �� 	 inf
A,B,�

Tr�A + �
K

d2 I� , �41�

where A�0, B�0, A−B�+�I�� ,��R. By introducing variable D=�I−B it can be changed into
the following form:

F 	 inf
A�0,B�0

A��−D�

D=�I−B,��R

Tr�A + �
K

d2 I� . �42�

Taking subsequently infimum over D, A, and B we obtain

F 	 inf
D � inf

A�0
A��−D�

�Tr A� + inf
B�0

�I=D+B,��R

Tr��
K

d2 I�� , �43�

where D �as a combination of positive operators� is a Hermitian operator. Having D fixed one can
easily minimize two separate terms over A and B, respectively. Concerning the first term, since
A�0 and A��−D�, the eigenvalues �i

A of A must be greater than zero, and greater than the
eigenvalues �i

�,D of the �−D� operator. Thus we have �i
A=max��i

�,D ,0� which gives

inf
A�0

A��−D�

�Tr A� = Tr�� − D��+. �44�

Turning now to the second term, one can see, that �I−D�0, hence � must be not less than
maximal eigenvalue of D, thus we end up with
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inf
B�0

�I=D+B
��R

Tr��
K

d2 I�K�max�D� . �45�

This leds to the formula

F 	 inf
D���H�

	Tr�� − D��+ + K�max�D�
 . �46�

By �4 and �5 any Hermitian operator D is of the form D̃�, where D̃ is also Hermitian operator,
hence we can rewrite the formula in the following way:

F 	 inf
D���H�

	Tr�� − D�+ + K�max�D��
 , �47�

which ends the proof. �

The above result, gives us the condition on F with much simpler constraints—we optimize
over a set of Hermitian operators. Analogously, one can prove a similar theorem for the case of not
equal dimensions, i.e., for �� �Cd1 � Cd2��n.

IV. BOUND FOR RATE OF CONCENTRATING INFORMATION

In the preceding section we showed that the fidelity of concentrating information by NLOCC
is bounded by

F 	 inf
D���H�

Tr���n − D�+ + 2n�2 log2 d−r��max�D�� . �48�

Starting from this inequality we can find two bounds for the rate r �by PPT-PMM operations�
denoted by B1 and B2. The bound B1 is weaker than B2, however we derive it separately, as the
proof for B1 is more transparent than that for B2.

Theorem 2: For any states � acting on Hilbert space Cd � Cd

r 	 2 log2 d + log2 �max������ � B1��� , �49�

where �max������ is maximal eigenvalue of operator ����.
Proof: We will show that inequality �49� must be true to make the fidelity converge to 1. Let

us choose in �48� D=��n. Then

F 	 lim sup
n→�

2n�2 log2 d−r��max����n��� . �50�

The requirement F→1 is equivalent to condition

It implies

r 	 2 log2 d + lim sup
n→�

1

n
log2 �max�����n. �52�

Notice that

lim sup
n→�

1

n
log2 �max�����n = lim sup

n→�

1

n
log2�max��������n = lim sup

n→�
log2 �max������

= log2 �max������ .

Then we have
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r 	 2 log2 d + log2 �max������ . �53�

This ends the proof.
Theorem 3: For any states � and � acting on Hilbert space Cd � Cd,

r��� 	 2 log2 d + S����� + log2 �max������ � B2��,�� . �54�

Remark 1: Notice, that �max������= ����op. Then the bound can be written as

B2��,�� = 2 log2 d + S����� + log2����op. �55�

It is interesting to compare this expression this formula with Rains bound for PPT distillable
entanglement D:

D 	 S����� + log2����Tr. �56�

Proof: Let S=S�� ��� and L=log2 �max������=log2����op. We will show that if

r − 2 log2 d � x � S + L �57�

then F cannot converge to 1. We have

F 	 Tr���n − D�+ + 2−nx�max�D�� . �58�

Let us take

D = 2ny��n, �59�

where S�y�x−L . �We can find such y, because x�S+L�
Notice that

2−nx�max��2ny��n��� 	 2n�y−x+L�. �60�

Then

F 	 Tr���n − 2ny��n�+ + 2n�y−x+L�, �61�

2n�y−x+L� converges to 0 because

y − x + L � 0. �62�

The first term in �61� cannot converge to 1 because y�S�� ���, as shown by Rains.9 �It follows
from quantum Stein lemma, see, e.g., Ref. 21.� This ends the proof.

Remark 2: To obtain the full strength of bound of Theorem 3, one should optimize over the
choices of state �. In what follows, we will say that � is optimal for � if

B2��,�� = min
��

B2��,���=
df

B2��� , �63�

where �� ranges over all states acting on Cd � Cd.

V. RESULTS FOR WERNER AND ISOTROPIC STATES

In this section we will find bounds for the rate of states possessing high symmetry, Werner
states, and isotropic ones, as well as compare bounds B1 and B2 with each other.

Let us start with the Werner state. We describe our results for the Werner state of the form �5�.
Using Theorem 2 we obtained the following bound:

B1 = �2 log2 d − log2�d2 + d�� for − 2
d � � � 0,

2 log2 d + log2� 1+d�

d2+d�
� for 0 	 � 	 1 and − 1 	 � 	 − 2

d .
� �64�
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If we want to find the bound using Theorem 3 we must optimize B2�� ,��. As in Ref. 9, it boils
down to minimizing only over the Werner states. It is due to the following facts. First, any state �
if subjected to random transformation of form U � U �called U � U twirling� becomes the Werner
state,

� U � U�U†
� U† dU = �W. �65�

Second, the value of B2�� ,�� is nonincreasing after the twirling operation. Third, B2�� ,�� is a
convex function, because the quantities S and L possess these properties. Then for any state �,

B2��W,�� =� B2��W,��dU� B2�U � U�WU†
� U†,U � U�U†

� U†�dU

� B2�� U � U�WU†
� U† dU,� U � U�U†

� U† dU�
= B2��W,� U � U�U†

� U† dU� = B2��W,�W� ,

where �W is a Werner state. Thus, we can see that for any state � we can find such Werner state
�W, which gives no greater value of B2 than �. This fact simplifies our calculation to optimize
B2��W ,�� on Werner state. Now, we can find the smallest value of B2��W ,�W�, where �W is given
by the formula � �5� � and �W is of the following form:

�W =
1

d2 + d�
�I + �V�, − 1 	 � 	 1. �66�

In this case B2��W ,�� is a function of three parameters, d, �, and �, where the first two parameters
are fixed. So to optimize B2��W ,����� it is enough to find a minimum of this function depending
on �. This way we obtain the following value of B2���,

B2 =�2 log2 d − S��W� − d2+d
2

1+�

d2+d�
log2

d−2
d − d2−d

2
1−�

d2+d�
log2

d + 2

d
for − 1 	 � �

−3d
d2+2

,

2 log2 d − S��W� − d2+d
2

1+�

d2+d�
log2�1 + �� − d2−d

2
1−�

d2+d�
log2�1 − �� for −3d

d2+2
	 � �

−1
d ,

2 log2 d − S��W� for
− 1

d
	 � 	 1,

�
�67�

where �= �1+d�� / �d+��. The entropy S��W� is given by

S��W� = −
d2 − d

2

1 − �

d2 + d�
log2

1 − �

d2 + d�
−

d2 + d

2

1 + �

d2 + d�
log2

1 + �

d2 + d�
. �68�

We have obtained two upper bounds for the amount of information one can localize. Of course B2

is not always worse than B1, so we will consider B1 only to compare with B2. Now, we would like
to find a lower bound for Il. To this end we shall consider some NLOCC �one-way � protocol P for
concentrating information to the local form. The amount of information we can concentrate using
P is a lower bound for Il. Our protocol P is the following: �i� Alice makes an optimal complete
von Neumann measurement represented by Pi= �i��i� on her subsystem. �ii� After that she sends her
part to Bob. Alice can do this, because after measurement her part of the state is classical-like and
classical channel does not destroy it, if she does it adequately, i.e., sometimes before sending she
should perform some unitary operation to avoid changing the state by the channel. �iii� Bob upon
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receiving the whole state can extract 2 log2 d−S��AB� � bits of information, where �AB� is obtained
from �AB by Alice’s operation �i� and �ii�.

Lemma V.1: For state �AB acting on Hilbert space Cd � Cd with maximally mixed subsystem A
by use of the protocol P, we can concentrate to local form rP

→ information, where rP
→ is described

by

rP
→ = sup

Pi
�log2 d − �

i

piS��B
i �� ,

where pi = tr��ABPi � I� and �B
i =

1

pi
trA�Pi � I�ABPi � I� . �69�

Proof: After sending by Alice her part, Bob possesses the whole state and can extract
2 log2 d−S��AB� �, where �AB� =�ipi�i��i� � �B

i . The states �i� are orthogonal and it implies that
S��AB� �=H�pi�+�ipiS���B

i �. Shannon entropy H�pi� is the amount to entropy of Alice’s part after
her measurement. We know, that entropy cannot decrease after measurement but also cannot
increase, because it is maximal. It implies that H�pi�=log2 d. Then we have

rP
→ = 2 log2 d − S��AB� � = 2 log2 d − �log2 d + sup

Pi
��

i

piS���B
i ��� = log2 d − sup

Pi
��

i

piS���B
i �� .

This ends the proof.
For Werner states rP

→ is achieved by any measurement of Alice. It follows from the fact that
�W is U � U invariant. We obtain

rP
→��W� = log2 d +

1 + �

d + �
log2�1 + �� − log2�d + �� . �70�

Let us here compare the bounds for amount of localizable information with each other.
Figure 1 shows lower and upper bounds for rate in comparison to information content of state.

For Werner states bound B2 is much better than B1. For separable state B2 is trivial, it coincides
with information contents of state I=2 log2 d−S���. For entangled states it is better than I.

Looking at Fig. 2 we can see B2 and rP
→ for some different dimensions of Hilbert space of the

Werner state. Continuous lines represent bounds for d=3 , the long dashed lines bounds for d
=4 and the short dashed lines for d=5.

Now, let us present results for the isotropic state. For these states the bound B1 is given by

FIG. 1. The dashed lines represent bounds of rate for Werner states �d=3��rP
→	B2	B1� and continuous line represents

quantity described by I=2 log2 d−S���. Note that B2 is equal to the information content of the state in the whole range of
separability ���− 1

3
�.
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B1 = �log2�− ��d + 1� + 1� for � � 0,

log2���d − 1� + 1� for � � 0.
� �71�

Using the same arguments as for the Werner state we can show that if we want to find the value
of B2��iso� we should optimize B2��iso ,�� on the isotropic state. Analogously, as in the previous
case, we can find out that

B2 = �2 log2 d − S��iso� for
− 1

d2 − 1
	 � 	

1

d + 1
,

2 log2 d − S��iso� + log2
1 + p�d − 1�

1 − p
−

1 + ��d2 − 1�
d2

log2
1 − p

1 + p�d2 − 1�
for

1

d + 1
	 � 	 1. �

�72�

where p= ��d+1��−1� / ��1−d2���−1�+d�. The entropy of the isotropic state is given by

S��iso� = −
1 + ��d2 − 1�

d2 log2
1 + ��d2 − 1�

d2 −
�1 − ���d2 − 1�

d2 log2
1 − �

d2 . �73�

Isotropic state possesses similar properties as the Werner states, so if we want to obtain a value of
rP
→ we should proceed similarly for that family of state. Then we have

rP
→ = log2 d + �� +

1 − �

d
�log2�� +

1 − �

d
� + �d − 1�

1 − �

d
log2�1 − �

d
� . �74�

For the isotropic state the bound B2 is better again than B1 and also only for entangled isotropic
state the upper bound is nontrivial. The upper and lower bounds agree for P+ and are obviously
equal to log2 d. The bounds and information content are compared in Fig. 3 for d=3. The upper
dashed line represents B2, the lower rP

→. The gray continuous line is the information content of
state, i.e., 2 log2 d−S��iso�.

FIG. 2. Upper bound B2 and lower bound rP
→ of rate for the Werner states �d=3,4,5�.

FIG. 3. The dashed lines represent bounds of rate for isotropic states �d=3� and continuous line represents information
content of state. Note that B2 is equal to I=2 log2 d−S��� for the whole range of separability ��	1/ �1+d���.
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In Fig. 4 quantities B2 and rP
→ are compared for some different dimension �d=3,4,5�.

VI. COMPARING QUANTUM DEFICIT WITH MEASURES OF ENTANGLEMENT

As one knows, quantum deficit � can be treated as a measure of quantum correlations.1

Having bound localizable information we can find bounds for �. We can do this, because quantum
deficit is defined as a difference between total information and information Il, which can be
localized by NLOCC �19� and we know that Il is bounded by information localizable by using
PPT-PMM operations. That is, by Il	B2 we have lower bound �B on quantum deficit,

�B��� = 2 log2 d − S��� − B2. �75�

On the other hand, we have considered particular NLOCC protocol, namely the one which uses
only one-way communication. This gives Il�rP

→, which in turn gives upper bound �P on quantum
deficit,

�P��� = 2 log2 d − S��� − rP
→. �76�

Quantum deficit is believed to be a more general measure of “quantumness” of state, than
measures of entanglement. It is then interesting to compare it with some known entanglement
measures.

We now compare bounds on � with the relative entropy of entanglement and entanglement of
formation of the bipartite state.

The regularized relative entropy of entanglement ER
� for Werner states is given by22

ER
��log2

d−2
d +

�d−1��1−��
2�d+�� log2

d+2
d−2 for − 1 	 � 	 − 3d

d2+2
,

1 − H� �d−1��1−��
2�d+�� � for − 3d

d2+2
	 � 	 − 1

d ,

0 for − 1
d 	 � 	 1.

� �77�

Entanglement of formation is described by the following formula:

EF�H� 1
2�1 − �1 − � 1+d�

d+� �2� for − 1 	 � 	 − 1
d ,

0 for − 1
d � � 	 1.

� �78�

We can see in Fig. 5 the graphs of �B , �P, EF, and ER
� for the Werner states. We obtain that

�B and ER
� are equal. For Werner states with ��0.42 we have that quantum deficit is not greater

than entanglement of formation, �	EF.
Let us now pass to isotropic states. For entangled ones with parameter �� �1/ �d+1� ,1� the

relative entropy of entanglement ER is given by

FIG. 4. Upper bound B2 and lower bound rP
→ of rate for isotropic states �d=3,4,5�.
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ER = log2 d + f log2 f + �1 − f�log2
1 − f

d − 1
, �79�

where f = ��d2−1��+1� /d2. For another isotropic states it is zero. The formula of entanglement of
formation can be found in Ref. 23. For nonseparable states it is in the form of

EF��� = co�g���� , �80�

g��� = �H2��� + �1 − ��log2�d − 1�� , �81�

where �= �1/d2���d�+ ��1−�� /d�+��d−1���d2−1��1−�� /d��2 and co means a convex hull.23 In
Fig. 6 we can see graphs of two measures of entanglement and bounds for �.

We can notice that the graphs of �B agree with ER. Similary as for the Werner states we have
�B=ER. �P is greater than EF for most isotropic states. �We do not know, if it is true for all
isotropic states.� For maximally entangled state P+ all these quantities are equal.

VII. FIDELITY FOR DISTILLATION OF LOCAL PURE STATES AND SINGLETS

The well-known counterpart of a qubit which represents the unit of local information is
ebit—one bit of entanglement, represented by singled state, i.e., unit of nonlocal information. It
has been stated in Ref. 24 that these two forms of information are complementary. If one distills
maximal possible amount of one type of information, possibility of gaining the second type
disappears. The optimal protocol in the case of pure initial state �AB

�n, in which both types are
obtained with some ratios, has been also shown there. We will find a bound for the fidelity of such
transition, in which both qubits and ebits are drawn in an NLOCC protocol in case of general
mixed state �AB

�n. One can view this as a purity distillation protocol, because purity in general has
two extreme forms, purely local and purely nonlocal. This is due to the fact, that any nonproduct
pure state, is asymptotically equivalent to the singlet state under the set of NLOCC operations.2 To
this end—as before—we will consider a broader class than the NLOCC, namely the class PPT-

FIG. 5. The dashed lines represent upper and lower bounds of � for Werner states �d=5�, grey continuous regularized
relative entropy of entanglement ER

� and black continuous entanglement of formation EF.

FIG. 6. The dashed lines represent bounds for � for isotropic states �d=3�, grey continuous regularized relative entropy of
entanglement ER, and black continuous g��� �whose convex hull is entanglement of formation EF�.
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PMM. This time we must fix two rates, one which tells us how many pure local qubits we would
like to obtain �rl�, but also how many singlet states �rs� will be acheived per n copies of input state
�see Fig. 7�.

Namely

rs =
log Ks

n
, rl =

2m − 2 log Ks

n
, �82�

where n is the number of input states, m is the number of qubits that output states occupy �both
pure qubits, and singlets together� and log Ks is the output number of singlet states. We get less
than 2m /n pure qubits since log Ks singlets use up 2 log Ks qubits out of 2m final. We should
maximize the fidelity of transition,

F = Tr�P+
� log Ks � P00

��m−log Ks����n�� , �83�

where P+
� log Ks is the projector onto the singlet state on CKs � CKs. Instead of tensor product of

singlets and product states, we can equally well consider the output state as the same singlet state
embedded in the larger Hilbert space Cm � Cm. Thus we shall maximize the following quantity:

F = Tr�P+
Ks���n�� , �84�

where Ks reminds that P+ is of less dimension than the whole Hilbert space it is embedded in. The
rest of the space is occupied by pure local qubits, i.e., the second resource drawn in this process.

Consequently we will first consider the fidelity in terms of the �=†�P+
Ks� operator where †

is dual �hence CP� to the  which is CPTP from assumption.
Analogously as in Sec. III we can obtain the following fact.
Fact 2: For given rates rl, rs and the number of input copies n, the optimal fidelity is given by

F 	 sup
�

Tr�����n�� , �85�

where

0 	 � 	 I,
− I

Ks
	 �� 	

I

Ks
, Tr��� = 2n�2 log d−rl−2rs� � K . �86�

FIG. 7. Scenario of distillation of pure states in their two extremal forms, purely local �product� states and purely nonlocal
�maximally entangled� states. The fixed rates of transition gives the proportion of the number of input copies n of state �
to the numbers of output copies of local states �log Kl� and singlet states �log Ks�.
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Passing to the dual problem, after some algebra we get the following.
Theorem 4: For any state � acting on Cd � Cd and rates rl and rs we have

F 	 inf
D
�Tr�� − D�+ + inf

�
� 1

Ks
Tr�D� − �I� + �K�� , �87�

where infimum are taken over all Hermitian operators D and all real numbers �, respectively,
K=2n�2 log d−rl−2rs� and Ks=2nrs.

It is not easy to obtain nontrivial results. Suppose that we want to apply analogous ideas to
those applied in Sec. IV. Let us rewrite fidelity as follows �for some fixed D�:

F 	 Tr���n − D� + 2−nrs Tr�D� − �I� + �2n�2 log d−rl�. �88�

The simplest approach would be to force first terms to vanish by choosing D=��n. However, even
by this simplification it is very difficult to find any bound for rates.

Yet, there are also “higher level” problems. Namely the main problem within the connection
between distillation of entanglement and the paradigm of localizing information, is whether dis-
tillation process consumes local information.25 It seems that our class of operations cannot feel
this problem at all. Indeed, it is likely, that any distillation process is a map that preserves a
maximally mixed state.26 Thus one should perhaps improve the approach, by imposing more
stringent constraints on class of operations. This is because for initial maximally mixed state, we
impose only final maximally mixed state. However generically, the final dimension is smaller than
the initial one. This means that some tracing out must take place, and we do not require the state
that was traced out to be maximally mixed. Thus in our class, pure ancillas can be added, under
the condition that they are finally traced out.

VIII. DISCUSSION

In this paper we have investigated localizable information and associated information deficit
of the quantum bipartite states. We used the fact, that localizable information can be defined as the
amount of pure local qubits �per input copy� that can be distilled by means of classical commu-
nication and local operations that do not allow adding local ancilla in the nonmaximally mixed
state.

We considered a larger class of operations which we called PPT-PMM operations. They are
those PPT operations which preserve the maximally mixed state. Then we managed to formulate
the problem of distillation of pure product qubits in terms of semidefinite program. Using duality
concept in semidefinite programming we have obtained bound for fidelity of transition from given
state to pure product ones by PPT-PMM operations. In this way we have found a general upper
bound for the amount of localizable information of arbitrary state. The bound was denoted B2 �we
also obtained a simpler, but weaker bound B1�. It gives bound �B for information deficit.

We were able to evaluate exactly the value of the bound B2 for states exhibiting high
symmetry—Werner states and isotropic states. Quite surprisingly, the obtained related lower
bound �B for information deficit turned out to coincide with relative entropy of entanglement in
the case of isotropic states, and with regularized relative entropy of entanglement for Werner
states. In other words, in those two cases, our bound for information deficit, turned out to be equal
to Rains bound for distillable entanglement.

We have also analyzed a simple lower bound rP for localizable information, and a parallel
upper bound �P for information deficit. We compared the latter bound with entanglement of
formation. In particular we obtained that for Werner states �d=3�, in entangled region it is strictly
smaller than entanglement of formation. If one believes that information deficit is a measure of
total quantumness of correlations, the conclusion would be that either EF is nonadditive for some
Werner states, or, which is more likely, it is additive, i.e., equal to entanglement cost Ec, but Ec

does not describe the entanglement present in the state in this case. Rather it includes also the
entanglement that got dissipated during formation of the state.
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We have also discussed possibility of application of our approach to the problem of simulta-
neous distillation of singlets and pure local states. We provided bound for fidelity in this case.
However it is likely, that the chosen class of operations is too large to describe information
consumption in the process of distillation of entanglement.

There are a lot of open problems, which we have not addressed in this paper. For example, the
question of continuity of the localizable information. For operationally defined quantities such as
Il, this is usually not an easy question. However one can hope that Il continues to some extent.
Namely, in Ref. 27 Vidal has proven some continuity properties of distillable entanglement ED.
Though distillable entanglement is quite an opposite quantity to localizable information �cf. Ref.
24� it is also operationally defined. Moreover Il and ED are both based on the notion of
distillation.2 In this context, the techniques used in Ref. 27 may be fruitful for investigations of
continuity of localizable information.

An important open question is also the connection between information deficit and entangle-
ment measures. In particular, it is intriguing, how general is the equality of our lower bound for
deficit, and the relative entropy of entanglement Er—upper bound for distillable entanglement.

Another interesting question arises in the context of phenomenon of locking28–30 where re-
moving a single qubit can result in a big change of a quantity. It is likely that Il cannot be locked,
due to its relations with relative entropy distance �see Ref. 31 in this context�. However, we have
not been able to prove it.

Finally, we believe that our results will stimulate further research on the properties of local-
izable information and information deficit, as well as their relations with other quantum informa-
tional quantites.
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We present an explicit numerical method to obtain the Cartan-Khaneja-Glaser de-
composition of a general element G�SU�2N� in terms of its “Cartan” and “non-
Cartan” components. This effectively factors G in terms of group elements that
belong in SU�2n� with n�N, a procedure that can be iterated down to n=2. We
show that every step reduces to solving the zeros of a matrix polynomial, obtained
by truncation of the Baker-Campbell-Hausdorff formula, numerically. All compu-
tational tasks involved are straightforward and the overall truncation errors are well
under control. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008210�

I. INTRODUCTION

In their seminal paper, Khaneja and Glaser1 presented a generic method to decompose “large”
unitary elements in terms of “smaller” ones. The initial unitaries can be viewed as evolution
operators of a multipartite system of spin-1 /2’s or as quantum algorithms acting on qubits. Ex-
perimentally it is only possible to control the interactions between a small number of subsystems
at a time. Hence, this decomposition is of particular interest. It allows us to address questions such
as how to optimize a dynamical evolution in terms of control procedures applied to a small
number of spins or how a certain quantum algorithm can be obtained with the smallest possible
number of experimentally feasible one and two qubit gates.

In particular, Khaneja and Glaser show that any element of the Lie group G=SU�2N� is, up to
local unitaries in SU�2��N, determined by components generated from certain Abelian subalgebras
hn and fn , n=2,… ,N, of the Lie algebra su�2N�. This is achieved by employing iteratively the
Cartan decomposition

G = K�HK�,

where H is generated by hn�fn� and the factors K� and K� belong to the subgroup K�G generated
by a particular subalgebra orthogonal to hn�fn�. These relevant substructures are specified in terms
of a fortunate choice of basis for su�2n� that can be obtained recurrently for n=2,… ,N.

The beauty of this result and its promising applications in quantum algorithms,2,3 control
theory, quantum error correction,4 or the quantification of entanglement in multi-partite systems5

have motivated the search for a constructive method to perform the decompositions for any given
matrix G�SU�2N�. Although substantial work has been done on the first non-trivial instance
SU�4�,6,7 little seems to be known so far for the higher N case.8

Here we address the decomposition problem for the general group SU�2N�. Employing a
convenient truncation of the Baker-Campbell-Hausdorff �BCH� formula, we show that the prob-
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lem allows for a numerical algorithm to calculate all such KHK decompositions with controlled
error. Hence, we can perform the full Khaneja-Glaser decomposition of a general element G
�SU�2N� with arbitrary computational precision.

This article is organized as follows. In Sec. II we briefly review the Khaneja-Glaser
decomposition1 and establish the formalism for our approach. In Sec. III we reinterpret the prob-
lem in terms of the BCH formula; we explain how a truncation of the BCH series renders our
problem solvable by straightforward numerical tasks. In Sec. IV we give a user-friendly summary
of the essential steps involved and we finally conclude in Sec. V.

II. THE KHANEJA-GLASER DECOMPOSITION

We consider the compact semi-simple Lie group G=SU�2N� and a particular compact closed
subgroup K�G; we denote by g=su�2N� the Lie algebra of G and by k�g the Lie algebra of K
understood as a subalgebra of g. Since G is semi-simple, the Killing form �. , . � is non-degenerate
and defines a bi-invariant metric on G. Hence, we can define m=k� to be the orthogonal comple-
ment of k with respect to the metric. Notice that, in general, the vector space m�g is not a
subalgebra. Since m is determined by k and the Killing metric, we shall refer to this structure as
the Lie algebra pair �g ,k�.

We shall adopt the following typographic conventions in most cases:

G capital bold group or subgroup
G capital italic element of G
g German fraktur Lie algebra or subspace
g normal element of g

The only exception to the choice of fonts just stated will be the familiar Pauli matrices, seen
as elements of su�2�, which will be denoted by majuscules

X =
i

2
�0 1

1 0
�, Y =

i

2
�0 − i

i 0
�, Z =

i

2
�1 0

0 − 1
�

and the 2�2 identity matrix

I = �1 0

0 1
� .

Finally, we shall use an abbreviated normalized notation for their tensor products given by

A1A2…Bj…Ak � �2

i
�k−1

A1 � A2 � … � Bj � … � Ak,
Ai = X,Y,Z

Bj = I .

For example, YXI=
i
2 �0 −i

i 0 � � �0 1

1 0 � � �1 0

0 1 �.
A. Cartan decomposition

Definition 1: A Cartan decomposition of g is an orthogonal split of g,

g = k � m

given by a Lie algebra pair �g ,k� satisfying the commutation relations

�k,k� � k, �m,k� � m, �m,m� � k . �1�

In this case �g ,k� is called a symmetric Lie algebra pair.
Remark 2: The appearently artificial conditions in the above definition have an interpretation

in Riemannian geometry: g=k � m is a Cartan decomposition if and only if the quotient manifold
G /K=exp�m� is a globally Riemannian symmetric space.9 Such a space possesses a canonical
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global involution (i.e., an automorphism s of the space onto itself such that s2= I) which induces
naturally a linear involution s* on g that preserves the Lie algebra structure �. , . �. Since s* squares
to identity, its eigenvalues must be ±1, and the subspaces k and m emerge, respectively, as the +1
and −1-eigenspaces of s*.

We can start exploring the Cartan decomposition g=k � m by noticing that if h�m is a
subalgebra of g then, by �1�, h is automatically Abelian. Since m itself is not in general a
subalgebra of g, it is natural to look for a maximal �Abelian� subalgebra h�m.

Definition 3: A Cartan subalgebra of the pair �g ,k� is a maximal (in m) Abelian subalgebra
h�m.

From now on we shall assume that the Cartan subalgebra h refers to the pair �g ,k� unless
stated otherwise. The following Proposition shows that the whole m is obtained from h by the
adjoint action of K and that there is only one such h up to this action. In the context of the
particular application we have in mind, this means h carries the “essential” information about m.

Proposition 4: Let h and h� be two Cartan subalgebras; then

1. m= �
K�K

AdK�h�;

2. h�=AdK�h� for some element K�K.

Proof: Please see Appendix B. �

Denote H=exp�h��G the subgroup generated by h. The Cartan decomposition theorem
states that any group element G�G can be written as an element H�H together with left- and
right-multiplications by elements of K:

Theorem 5 (Cartan decomposition): The Cartan decomposition g=k � m induces a Cartan
decomposition of the group G,

G = KHK, �2�

where H=exp�h�.
The Cartan decomposition of a given element G�G has the form

�3�

where K0 ,K1�K, H�H and M =K1HK1
†� exp�m�.

Proof: Since G /K=exp�m�, there exist K0�K and M � exp�m� such that G=K0M. Let m
=log�M��m; from Proposition 4, item 1, there exists K1�K such that AdK1

m=h�h, so

�

B. The Khaneja-Glaser basis

The Khaneja-Glaser basis1 for arbitrary su�2n� makes explicit all the structures which concern
us. In particular, the splitting g=k � m and the Cartan subalgebras hn and fn are manifest.

We start with a familiar example:
Example 6: For n=2, we propose basis elements for the Lie algebra su�4� and organize them

into subspaces m2 and k2 as follows:
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�4�

Now we obtain the Khaneja-Glaser basis for su�2n� by a relatively simple iteration process
starting from su�4�, as summarized in the following:

NB.: Terms of the form su�2n−1� � A denote the set obtained by tensoring each element of su�2n−1�
with the matrix A=X ,Y ,X , I; in all cases we consider the span of the basis elements over R.

Notice that for n�2 two successive Cartan decompositions can be performed. First, the
expected one referring to the pair �su�2n� ,kn�, with Cartan subalgebra hn. In the terms of Theorem
5, this means we can write G�SU�2n� as G=K�HK� with H� exp�hn� and K� ,K�� exp�kn�.
However, the decomposition of kn given by diagram �4� is
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kn = kn,1 � kn,0 � span	In−1Z
 � su�2n−1� � su�2n−1� � u�1� ,

where both kn,1 and kn,0 are canonically isomorphic to su�2n−1�. Since our aim is to iteratively
decompose the factors K�j� until they eventually reduce to “local” unitaries in SU�2��N and non-
local “Cartan” factors, we would expect kn to generate something of the form SU�2n−1� � SU�2�.
Thus, there is a su�2n−1� component too many in kn that we need to factor away in order to define
the complete recurrence step.

A closer look at kn reveals another Lie Algebra pair, thereby clearing the way for a second
Cartan decomposition: we just have to leave aside the “complex phase” generated by In−1Z �see
diagram �4�� that can be seen as a “local” transformation under the inclusion U�1��SU�2�. Let

kn̂=kn,1 � kn,0 denote the subalgebra obtained from kn in this manner, so that kn=kn̂ � u�1��kn̂

� su�2�. Accordingly, given a group element K=exp�k��K, let us write K̂=exp�k̂�, where k̂

�kn̂ is obtained from k�k by eliminating the component spanned by In−1Z. This is well defined as
In−1Z commutes with every element in kn.

It is now straightforward to check that �kn̂ ,kn,0� is also a Lie algebra pair,1 whose Cartan

subalgebra we call fn. Hence, we can apply Theorem 5 again to decompose the factors K�̂ and K�̂
into elements of exp �fn� together with left and right multiplication by some new factors generated
by kn,0. This time the orthogonal subalgebra kn,0=su�2n−1� � I is canonically isomorphic to
su�2n−1�, so it generates exp�kn,0 � span	In−1Z
��SU�2n−1� � SU�2�. Thus, we have accomplished
the complete nth recurrence step that yields the decomposition

G = K�1�F�1�K�2�HK�3�F�2�K�4�,

with F�j�� exp�fn�, H� exp�hn� and K�j��SU�2n−1� � SU�2�.
Note, finally, that we are particularly interested in the “Cartan” factors, i.e. those generated by

the Cartan subalgebras hn of �su�2n� ,kn� and fn of �kn̂ ,kn,0�, that emerge in each step. It is thus
convenient to know explicitly a set of basis elements for each of these subalgebras. This can be
achieved by the following recurrence formula, starting from h2=span	XX ,YY ,ZZ
,

�5�

The Example below illustrates all the above constructions for the first non-trivial case su�8�:
Example 7: n=3:su�8�
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C. The Baker-Campbell-Hausdorff formula

The matrix Lie algebra g is noncommutative and thus, for general elements a ,b�g, the
product of exponentials eaeb does not coincide with the exponential of their sum, ea+b. In fact the
expression for log�eaeb� has an infinite series of correction terms and is known as the BCH
formula, after Baker-Campbell-Hausdorff.

Although the original formula was rather complicated and computationally unpractical, a
remarkable simplification made by Dynkin10,11 expresses all the terms as successive commutators
of a and b,

log�eaeb� = �
i,j=1

�

Ti,j�a,b� .

Here Ti,j�a ,b� denotes the homogeneous term of degree i in a and degree j in b; its expression is

Ti,j�a,b� =
1

i + j
�

�i1,j1,…,ik,jk�

�− 1�k−1

k

1

i1 ! j1 ! …ik ! jk!
�ai1bj1…aikbjk� ,

and the sum ranges over all possible 2k-uples of non-negative integers �i1 , j1 ,… , ik , jk� such that

�
c=1

k

ic = i, �
c=1

k

jc = j and ic + jc � 0.

The first few terms are

log�eaeb� = a + b +
1

2
�a,b� +

1

12
�a,�a,b�� +

1

12
�b,�b,a�� +

1

24
�a,�b,�a,b��� +

1

120
�…� �6�

and the higher order coefficients after 1
120 decrease quickly �see, e.g., Ref. 12�. This will motivate

us later on to perform convenient truncations on this convergent series.
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III. NUMERICAL ALGORITHM FOR THE KHK DECOMPOSITION

In this section we will develop a technique that allows the explicit numerical calculation of the
components of a general group element G�G under Cartan decomposition. The idea is to con-
sider the Cartan decomposition �3� in the light of the BCH expansion �6�. Let g�g, m�m, and
k�k be the generators of G, M, and K0, respectively. Then �3� reads

G = eg = ekem. �7�

Since the matrix G is given, �3� shows that k can be obtained from m �and vice-versa� by

k = k�m� = log�Ge−m� . �8�

Hence, the decomposition problem is reduced to finding m.

A. Determining m

First, taking logarithms in �3�, we obtain

g = log�ekem� . �9�

We then apply �6� to expand g in terms of successive brackets of k and m. In light of Remark
2 we can easily deduce that each of the brackets belongs in either k or m. Hence, the expansion is
split into two orthogonal components,

where

gk = k + 1
12�m,�m,k�� + 1

24�k,�m,�k,m��� + … � k , �10�

gm = m + 1
2 �k,m� + 1

12�k,�k,m�� + … � m . �11�

Note that computing gk and gm from g is a straightforward task since the Khaneja-Glaser basis �4�
makes explicit the partition g=k � m.

At this stage we can use �3� to eliminate k=k�m� in either of the equations �10� or �11�.
Choosing �11� whose first few terms are simpler we obtain

gm = gm�m� = m + 1
2 �k�m�,m� + 1

12�k�m�,�k�m�,m�� + … , �12�

which is an infinite series with rapidly decreasing coefficients. As gm�m� is a converging series we
can truncate it so that the resulting equation will provide an approximation of m with an error that

decreases by including higher commutator terms. If we call P̃p�m� the truncation that includes all
terms with up to p commutators, i.e.,

gm�m� = P̃p�m� + further terms, �13�

we can in principle solve

Pp�m�  P̃p�m� − gm = 0 �14�

with respect to the single matrix variable m. However, the expression of k�m� given by �3� is rather
complicated. So we propose using again the BCH expansion to obtain
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k�m� = log�ege−m� = g − m − 1
2 �g,m� − 1

12�g,�g,m�� + 1
12�m,�m,g��… . �15�

As before, we can truncate �15� to a term that includes all qth order brackets. This yields a
polynomial Qq�m� that approximates k�m� as well as we desire at the cost of taking extra high-
order commutators

k�m� = Qq�m� + further terms. �16�

After both truncations, Eq. �14� is approximated by

0 = Pp�m� � − gm + m + 1
2 �Qq�m�,m� + 1

12�Qq�m�,�Qq�m�,m�� + … ,

where Pp�m� is now a polynomial in one matrix variable with matrix coefficients. Our problem of
finding m has thus been reduced to finding the zeros of a polynomial. This can be easily performed
with a numerical algorithm.13 The accuracy of the result can be increased by including more terms
in the truncated series Pp and Qq, i.e., increasing p and q. Specifically, we prove in Appendix A
that, in this way, the errors in determining m by the truncation procedure are well under control.

Example 8: Take the “first order” truncations p=1,q=1:

P1�m� = − gm + m + 1
2 �k�m�,m� ,

Q1�m� = g − m − 1
2 �g,m� .

Then, approximating k�m��Q1�m�, we obtain

P1�m� � − gm + m + 1
2�g − m − 1

2 �g,m�,m� = − gm + m + 1
2 �g,m� − 1

4 �m,�m,g�� .

B. The M=K1HK1
† decomposition

Once m is known, it remains to find the subgroup element K1
†�K whose adjoint action rotates

M onto H=eh ,h�h.
Lemma 9: The following properties are associated to H=exp�h�:

1. H is a torus (compact connected Abelian Lie subgroup) of G;
2. any vector v�h whose 1-parameter subgroup 	exp�tv�
 is dense in H is centralized in m just

by h:

	u � m��u,v� = 0
 = h �17�

Proof: See, e.g., Spaces of Constant Curvature (Sec. 8.6).14
�

As shown in Appendix B, the first necessary ingredient to perform the decomposition M
=K1HK1

† is some vector v�h that generates a dense 1-parameter subgroup exp�tv��h. This may
seem abstract, but since we have an explicit basis �5� for h, it suffices to take any irrational
combination of the Cartan generators.

Example 10: In su�8�, take, e.g.,

v = IIX + � . XXX + �2 . YYX + �3 . ZZX .

The reluctant reader may verify that, indeed, the centralizer of such v in m is just h.
Now, we may define fv,m as in Appendix B to be given by

fv,m�K� = �v,AdK�m�� = �
a,b,c,d

Cad
c Cbc

d va�K†mK�b �18�

and recover K1 numerically as a minimum of fv,m.
We conclude that m can be rotated into h=AdK1

�m�. Thus we have completed the decompo-
sition
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G = K0K1ehK1
†.

IV. STEP-BY-STEP SUMMARY

What we have described so far consists of the main building blocks necessary to perform the
Khaneja-Glaser decomposition. Here, we will summarize all the steps one needs to take when
given an arbitrary unitary G�SU�2n�.

1. Calculate its �matrix� logarithm g=log�G��g=su�2n�.
2. Compute the Khaneja-Glaser basis following the recurrence in diagram �4�; take gm, the

component of g on the subspace mn.

3. Truncate �12� including pth commutators to get P̃p�m�; let Pp�m�= P̃p�m�−gm.
4. Truncate �15� including qth commutator to get Qq�m�, as in �16�.
5. Replace Qq�m� for k�m� in the expression of Pp�m� obtained in 3, so that Pp�m� becomes a

polynomial in m.
6. Solve the zeros of Pp�m� to get a solution m to �14�.
7. Use m from item 6 above to calculate K0=Ge−m as in �3�.
8. Compute hn following �5�; order its elements 	uj
, e.g., alphabetically and define v

=�� j−1uj to satisfy the density hypothesis of Lemma 9.
9. Use m and v to define fv,m�K�=�a,b,c,dCad

c Cbc
d va�K†mK�b as in �18�; minimize f on K

=exp�kn� to find K1.
10. Calculate h=K1

†mK1, and thus H=exp�h�.
11. Assembling the results from items 7, 9. and 10, obtain

G = K0K1HK1
†.

12. Repeat the above steps for G=K0K1̂ and then for G=K1
†̂, replacing kn→kn,0, mn→kn,1 and

hn→ fn.
13. Items 11 and 12 yield the decomposition

G = K�1�F�1�K�2�HK�3�F�2�K�4�,

with F�j��exp�fn�, H�exp�hn�, and K�j��SU�2n−1� � SU�2�.
14. Decrease n→n−1 and iterate this process to further decompose each factor K�j�

�SU�2n−1� � SU�2� until they all reduce to a product of Cartan factors Fn
�j� and Hn

�l� and local
unitaries in SU�2��N.

NB.: As far as accuracy in step 6 is concerned, tasks 3 to 5 should be performed in light of
Appendix A. Namely, truncations at higher order should be tried until numerical errors are satis-
factory, which will happen after a finite number of attempts.

V. CONCLUSIONS

As the advances in quantum technologies move beyond the control of one or two spins, or
qubits, it is important to minimize the overall cost of processing quantum information. The
Khaneja-Glaser decomposition of SU�2N� offers an upper bound for this optimization procedure
given by 4N−1 multi-local SU�2��N rotations together with 4N−1−1 purely entangling operations.
The latter can be reduced, if desired, into bipartite interactions, or two-qubit gates. Moreover, in
Ref. 15, Nielsen gives lower bounds for such optimization. Here we exploit the Khaneja-Glaser
approach to build a constructive method for decomposing a general unitary in terms of its local
unitary components. Abstract as it may seem, the decomposition problem can be cast in such a
way that can be easily solved by a numerical algorithm that can be found at http://cam.qubit.org/
users/jiannis/lie_solve[1].tar.gz.

Finally, one should notice that the solutions we obtained are not necessarily unique. In gen-
eral, neither the zeros of the matrix polynomials, Pp�m�, nor the minima of the functions, f , are
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unique. In particular, viewing the minimization procedure from the equivalent point of view of the
diagonalization of the matrix m, where K1 is constructed out of the eigenvectors of m, there are
many equivalent solutions depending on the particular ordering of the eigenvectors. Moreover, one
should also take into account that the exponential function has a natural 2� periodicity and the
adjoint action is Z2-symmetric.6,7 While our approach is not concerned with the actual parametri-
zations of the group elements, this is an important issue which should be addressed in the future.
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APPENDIX A: ACCURACY OF BCH TRUNCATIONS

Here, a generalized version of Rouché’s theorem16 is employed to show that the truncations
performed in Sec. III A yield a rigorous approximation for the zeros of �12�.

Theorem 11: Let � ,� :Cr→Cr be holomorphic functions and D�Cr be an open domain such
that neither � nor � have zeros on �D; if

���m� − ��m�� � ���m�� + ���m��, ∀ m � �D , �A1�

then � and � have the same number of zeros in D.
NB.: We adopt, e.g., the norm ���=maxi,j��ij�, but the argument holds for any Lp-norm.
Let r=22n be the number of entries of a matrix m�su�2n�, seen as a complex vector. Consider

then a BCH-type series ��m� and its truncated version ��m�= Pp�m� containing all its terms of up
to p successive brackets, calling Rp�m� the truncation remainder

��m� = Pp�m� + Rp�m� .

Suppose m̂�su�2n� is a zero of Pp�m�; then ��m� will also have a zero inside the polydisc D
=�	�m̂��Cr of radius 	�0 about m̂ if the following �stronger� instance of �A1� holds:

�Rp�m�� � �Pp�m��, ∀ m � ��	�m̂� . �A2�

In other words, m̂ approximates at least one zero of ��m� with error inferior to an arbitrarily
chosen 	.

All we have to show is that condition �A2� holds for suitably large p; this is a relatively
straightforward consequence of the uniform convergence of the BCH series ��m�=limp→�Pp�m�,
as we will now see. For any �small� 
0�0, there is a p0 such that

p � p0 ⇒ �Pp�m� − Pp0
�m�� � 
0, ∀ m , �A3a�

hence

�Pp�m�� � �Pp0
�m�� − 
0, ∀ m . �A3b�

In particular, if m0 is a zero of Pp0
�m�, Eq. �A3a� restricted to the boundary ��	�m0� implies that

all polynomials Pp�m� , p� p0, also have at least one zero inside �	�m0�, by Rouché’s theorem.
On the other hand, convergence also implies limp→��Rp�m��=0, hence, for a given 
1�0,

there is p1 such that

p � p1 ⇒ �Rp�m�� � 
1, ∀ m . �A4�

Set 
1=minm���	�m0��Pp0
�m��−
0; assuming this is positive �if not, take a larger p0 for a smaller


0�, take some p�max	p0 , p1
 and find m1��	�m0� such that Pp�m1�=0. Then consider any
smaller polydisc �	��m1���	�m0�, and restrict Eqs. �A3b� and �A4� to its boundary. We obtain
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�Rp�m�� � �Pp�m��, ∀ m � ��	��m1� ,

thus, by Rouché’s theorem again, ��m�= Pp�m�+Rp�m� has a zero inside �	��m1���	�m0�.

APPENDIX B: PROOF OF PROPOSITION 4

In this Appendix we will develop the proof of Proposition 4, following Ref. 14 �Sec. 8.3�. This
argument contains most of the crucial elements to understanding the KHK decomposition in
detail.

Proof of Proposition 4.

1. Given m�m, we want to find K1
†�K whose action rotates m onto some element h of the

Cartan subalgebra h. First, take any v�h that generates a dense 1-parameter subgroup
exp�tv��H=exp�h�, as in Lemma 9 and define the function

fv,m = f:K → R ,

K � f�K� = �v,AdK�m�� , �B1�

where �a ,b�=tr�ada adb� is the Killing form on g. Since f is continuous and K is compact,
f admits an absolute minimum K1�K. If we consider a local perturbation of K1 by etk,
for any k�k, we have

But the Killing form is non-degenerate on k, so we must have �h ,v�=0 and thus h�h, as v
is centralized by h; hence, we have shown that

m = AdK1
†�h�, h � h .

2. By 1. there exists K�K such that

AdK�v� � h�.

Now take centralizers on both sides. �
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In quantum mechanics the statistics of the outcomes of a measuring apparatus is
described by a positive operator valued measure �POVM�. A quantum channel
transforms POVMs into POVMs, generally irreversibly, thus losing some of the
information retrieved from the measurement. This poses the problem of which
POVMs are “undisturbed,” i.e., they are not irreversibly connected to another
POVM. We will call such POVMs clean. In a sense, the clean POVMs would be
“perfect,” since they would not have any additional “extrinsical” noise. Quite un-
expectedly, it turns out that such a “cleanness” property is largely unrelated to the
convex structure of POVMs, and there are clean POVMs that are not extremal and
vice versa. In this article we solve the cleannes classification problem for number n
of outcomes n�d �d dimension of the Hilbert space�, and we provide a set of either
necessary or sufficient conditions for n�d, along with an iff condition for the case
of informationally complete POVMs for n=d2. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2008996�

I. INTRODUCTION

The new quantum information technology1 has resurrected the interest in the theory of quan-
tum measurements2 and quantum open systems,3,4 shifting the interest from applications to high-
sensitivity and high-precision experiments5 to its use in quantum information processing.6 De-
pending on the particular kind of quantum processing—e.g., teleportation,7,8 entanglement
detection,9 and distillation10—that are used in quantum computation1,6 and quantum
cryptography,11 various new types of quantum measurements are now needed. The theory for
engineering new quantum measurements optimized according to given criteria has been pioneered
since the late 1960s by many authors12 who concurred to the making of the quantum estimation
theory,13 the ancestor of the modern quantum information theory.

The general strategy of quantum estimation theory is to optimize the output statistics of the
measuring apparatus according to a given criterion/fidelity, which depends on the specific use of
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d�Electronic mail: perinotti@fisicavolta.unipv.it
e�Electronic mail: r.werner@tu-bs.de

JOURNAL OF MATHEMATICAL PHYSICS 46, 082109 �2005�

46, 082109-10022-2488/2005/46�8�/082109/17/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.2008996


the measurement, the outcome statistics of the measurement for all possible input states being
described by a positive operator valued measure �POVM�.13 POVMs form a convex set, where
convex combinations correspond to random choices among different apparatuses. Most optimiza-
tion problems actually resort to minimize a concave function on such a convex set, thereby
optimization can be restricted to its extremal points, where concave functions attain their mini-
mum. Coincidentally, due to the specific form of the optimization function, in many applications
the optimal POVMs turn out to have unit rank—e.g., for phase estimation on pure states13,14—and
this has led to the widespread belief that optimality is synonym of rank-one, whereas for suffi-
ciently large dimension, and typically for optimization with input mixed states, the rank of ex-
tremal POVMs can be easily larger than one, as shown in Refs. 15–17.

In a specific application the optimal POVM does not necessarily attain the whole accessible
information. At first sight, this assertion may appear contradictory: how a POVM can be optimal,
if it wastes accessible information? However, once the measurement is performed, no other pos-
sibility for optimization is left apart from the processing of the outcome—postprocessing for
short—and, being purely classical, the postprocessing cannot generally achieve the same result of
a preprocessing by a quantum channel. The situation is depicted in Fig. 1. Clearly, the prepro-
cessing can change the POVM irreversibly, reducing the information from the measurement. On
the other hand, it is possible that a POVM optimal for a given criterion is obtainable from another
cleaner one via an irreversible preprocessing as in Fig. 1�b�. This means that in some cases we
need to give up some quantity of information for the quality of the information.

The above-mentioned scenario poses the problem of which POVMs are “undisturbed,”
namely are not irreversibly connected to another POVM. We will call such POVMs clean—in a
sense a clean POVM would be “perfect,” since it would not have any additional “extrinsical”
noise, or it has lost no information irreversibly. Quite surprisingly, as announced, in this article we
will see that the cleanness property of the POVM is largely unrelated to its extremality, and there
are clean POVMs that are not extremal and vice versa. The problem of classifying clean POVMs
turns out to be more difficult than that of classifying extremal ones, and in this article we will give
a complete classification of clean POVMs only for a number n of outcomes n�d, whereas for
n�d we will give a set of interesting necessary conditions, and an iff condition for the case of
informationally complete POVMs for n=d2. Clearly, the need for a number of outcomes n�d can
be required by the particular optimization problem �see, e.g., Refs. 18 and 19�, however, no more
than n=d2 elements are needed, which is the maximum number of outcomes for extremality.15

Davies20 proved d2 to be an upper bound for the maximal cardinality of the POVM needed to
attain the accessible information, and still it is debated if d2 outcomes are actually needed �the
cases of Refs. 18 and 19 proved that the lower bound is actually larger than d�. This difficulties
reflect those in classifying cleanness for n�d. In a sense it is clear that d2 elements are needed to
retrieve the accessible information, when the kind of information needs to be decided after the
measurement has been performed. Indeed, an extremal POVM with d2 outcomes is versatile to any
kind of information encoding, as it is “informationally complete,”21 namely it makes it possible to
estimate any ensemble average by changing only the data processing of the outcomes �such an
extremal measurement with d2 elements can be proved to exist for any dimension d15�. Clearly, for
an extremal informationally complete measurement, a further optimization step can be achieved at
the level of data processing,22,23 once the kind of information of interest has been decided. Thus,

FIG. 1. There are two ways of processing POVMs: �a� the postprocessing of the output data and �b� preprocessing of the
input state by a quantum channel. The postprocessing cannot generally achieve the same result of a preprocessing: the
postprocessing is purely classical, whereas the preprocessing is quantum.
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the postprocessing of the measurement is still a useful tool in retrieving the right information from
a measurement.

The article is organized as follows. After introducing some notations and prerequisites in Sec.
II, in Sec. III we state some general results about channels and POVMs which will be used
throughout the article. In Sec. IV we analyze the convex set of channels connecting two POVMs.
Section V is devoted to a complete analysis of the classical postprocessing, and give a complete
characterization of “cleanness” under postprocessing. Section VI addresses the problem of the
preprocessing ordering of POVMs, namely if a POVM is “cleaner” than another, and when they
are “equivalent,” which corresponds to the possibility of reversing the action of the channel
connecting the two POVMs. Section VIII shows that for dimension d=2 equivalence under clean-
ness is the same as unitary equivalence. Section IX fully solves the case of number of outcomes
n�d, and gives some interesting alternative theorems for the case of effects, namely the two-
outcome POVMs. Section X analyzes the case of informationally complete POVMs, giving also
an iff condition characterizing the clean POVMs. Section XI gives some conditions for rank-one
measurements. Finally, we conclude the paper in Sec. XII with a list of most relevant results and
of the main open problems.

II. NOTATION AND PREREQUISITES

Throughout this article we will consider a quantum system with Hilbert space H with finite
dimension d=dim�H�, and denote by S the set of states on H �corresponding to a positive unit-
trace operator on H�, and by B�H� the algebra of bounded operators on H. We will use capital
script fonts e.g., A ,B , . . ., to denote operator algebras in B�H�, and with the symbol A� we will
denote the commutant of A, namely the algebra defined as A�� �Y �B�H� � �X ,Y�=0,X�A�.
Completely positive trace-preserving �CPT� and identity-preserving maps on S and B�H�,
respectively—all generally referred to as channels—will be denoted by capital calligraphic letters,
e.g., A ,B , . . ., whereas we will always use capital Roman letters for operators. We will restrict
attention to POVMs �Pe�e�E with finite sampling space E, namely

Pe � 0, ∀ e � E, �
e�E

Pe = I . �1�

We will extensively use the vector notation P	�Pe�, E�P� denoting the sampling space of P, and
�P� the cardinality of E�P�. The vector notation will be naturally extended to tensor products—e.g.,
P � Q for the POVM �Pe � Qf�e�E�P�,f�E�Q� on H � H—and to functionals—e.g., Tr��P� for the
vector of probabilities Tr��Pe�. By Span�P� we will denote the linear operator space spanned by
the POVM elements �Pe�e�E�P�, and by Rng�P� the range of the POVM P, which is defined as the
following convex subset of R+

�P�

Rng�P� � �R+
�P� � p = Tr��P�, � � S� . �2�

The convex set of POVMs with cardinality N will be denoted by PN.
Finally, we will use the symbol �A

 to denote the following bipartite vector in H � H

�A

 � �
m,n=1

d

Am,n�m
�n
 , �3�

where A�B�H� is the operator corresponding to the d�d matrix with elements Am,n on the basis
��n
�. One can easily verify the following useful identities

A � BT�C

 = �ACB

 ,

Tr1��A

��B�� = ATB*, �4�
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Tr2��A

��B�� = AB†,

where XT denotes the transpose in the basis ��n
�, while X* is the complex conjugate in the same
basis. Tri denotes the partial trace on the ith space.

III. USEFUL LEMMAS ABOUT CHANNELS AND POVMs

In the following we will name a map E spectrum-width decreasing when it reduces the
“spectral width” of a real symmetric operator X, namely when

��m�E�X��,�M�E�X��� � ��m�X�,�M�X�� , �5�

�M�X� and �m�X� denoting the maximum and minimum eigenvalues of X, respectively.
Lemma III.1: Channels are spectrum-width decreasing.
Proof: Consider the eigenvector �� j
 of E�X� corresponding to the eigenvalue � j�E�X��. One

has

� j�E�X�� = Tr�E�X��� j
�� j�� = Tr�XET��� j
�� j��� � ��m�X�,�M�X�� , �6�

since the dual map ET is CPT. �

Notice that in the above-mentioned lemma the identity-preserving condition is crucial, since
the lemma would not hold for a CPT map E, e.g., E���= ��
���, and the spectral width increases
from ��m��� ,�M���� to �0, 1�.

The inverse of a non-unitary invertible channel is necessarily not completely positive.
Theorem III. 2 (Wigner): Any invertible channel has CP inverse iff it is unitary.
Proof: Let E1 and E2 be two channels such that E2

T �E1
T���=�. Hence:

��
��� = �
ij

BjAi��
���Ai
†Bj

†, ∀ ��
 , �7�

where Ai and Bj are canonical Kraus representations for E1 and E2, respectively. Since all terms in
the sum are positive, this means that BjAi��
=�ij

���
, for all ��
 and all i , j. By linearity, it is clear
that �ij cannot depend on ��
, implying that BjAi=�ijI, for all i , j.

We can now prove that �ij�0, for all i , j. Otherwise, there exists a couple of operators Bk and
Al for which BkAl=0. These two operators must both be noninvertible, since, if one is invertible,
the other has to be null, and we can without loss of generality �w.l.o.g.� drop it from the Kraus
representation �7�. Let us fix the couple k , l for which BkAl=0, namely both are not invertible.
Now, the only possibility to have BjAi=�ijI for all i , j is that BkAi=0 for all i �since Bk is not
invertible, whence necessarily BkAi cannot be full rank�, and analogously BjAl=0 for all j. In this
case, all Bj’s supports would be forced to be contained in the orthogonal complement to the range
of Al �which is strictly contained in the full Hilbert space�, and this would be in contradiction with
the normalization condition � jBj

†Bj = I. Therefore, �ij�0 for all i , j, and the operators Ai and Bj

are all invertible. This allows us to write

Bj = �ijAi
−1, ∀ j ,

�8�
Ai = �ijBj

−1, ∀ i ,

whence all Bj’s are proportional to each other, and analogously for the Ai. In other words, the
Kraus representations of E1 and E2 are made of only one operator. This means that E1 and E2 are
unitary, one the inverse of the other.

The converse direction is trivial. In Corollary X.4, we will prove that the inverse map of an
invertible nonunitary channel is indeed nonpositive. �

Theorem III.3 (Chefles, Jozsa, Winter): Consider two sets of pure states on H with the same
cardinality. There exist two channels mapping the elements of the first set to the corresponding
elements of the second set and vice versa, iff the two sets of states are unitarily equivalent.
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Proof: See Ref. 24. �

Lemma III.4. (Lindblad): A channel E stabilizes an algebra S�B�H�, namely

E�X� = X, ∀ X � S , �9�

iff the operators �Ek� of any Kraus form E�X�=�kEk
†XEk belong to the commutant S� of the

algebra S.
Proof: See Ref. 25. �

Finally let us state some results about extendiblity of completely positive maps �mostly taken
from Ref. 26�. To this end let us consider a linear subset S of B�H� which contains the identity and
is closed under adjoints—each set S of this type will be called in the following an operator
system. It is easy to see that S is generated �as a linear space� by its positive elements. It makes
therefore sense to speak about positive maps E :S→A into an algebra A and we can define also
complete positivity in the usual way. Now the question arises whether such an E can be extended
as a completely positive map to B�H�. The following theorem gives a positive answer �Ref. 26,
Theorems 6.2 and 7.5�:

Theorem III.5. (Arveson’s extension theorem): Each completely positive map E :S
→B�H� defined on an operator system S�B�H� can be extended to a completely positive map on
B�H�.

If E is only positive �and not necessarily completely positive� a similar result is not available
�cf. the corresponding discussion in Sec. VII�. An important exception arises however, if the
algebra A is abelian �Ref. 26, Theorem 3.9�.

Theorem III.6: If E :S→A is positive, S an operator system and A an abelian algebra, the
map E is completely positive.

IV. THE CONVEX SET OF CHANNELS CONNECTING TWO POVMs

We now analyze the convex set of channels connecting two given POVMs P and Q, in
equations

CPQ = �E channel�E�P� = Q� . �10�

The extremal elements of CPQ can be characterized in terms of the operators �Ei� of the canonical
Krauss decomposition by the following theorem.

Theorem IV.1: The map E�CPQ is extremal iff for some element Pk of the POVM P the
operators �Ei

†PkEj�ij made with the canonical Kraus operators �Ei� of the map are linearly inde-
pendent.

Proof: First we show by contradiction that the condition is sufficient. In fact, suppose that E,
with �Ei

†PkEj�ij linearly independent, is not extremal in CPQ. Then there exist two different chan-
nels E±�CPQ such that

E = 1
2 �E+ + E−� . �11�

Upon defining P	E+−E, clearly one has P�P�=0 and E±P=E±, which are channels. Then RE±
	RE±RP�0, where for any channel E the positive operator RE in linear correspondence with E is
defined as RE=� j�Ej

��Ej� for �Ej� Kraus operators of E.27 This implies that
Supp�RP��Supp�RE�, namely there exists a nonvanishing matrix pij such that RP
=�ijpij�Ei

��Ej�. As a consequence we have

P�Pk� = �
ij

pijEi
†PkEj = 0, ∀ k . �12�

This contradicts the hypothesis. The proof that it is also necessary is now straightforward. Suppose
indeed that the operators �Ei

†PkEj�ij are linearly dependent. Then there exists a nonvanishing
matrix of coefficients aij such that �ijaijEi

†PkEj =0 for all k. If we define pij =	�aij +aij
* �, then the

map P�X�=�ijpijEj
†XEi will annihilate all elements of the POVM P, namely P�P�=0. Moreover,
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for a sufficiently small 	�0 both maps E±=E±P will be channels and will belong to CPQ. This
implies that E= 1

2 �E++E−�, namely E is not extremal. �

One can prove that either any element of the border of CPQ is also an element of the border of
the full convex set of channels, or CPQ	�E�. This comes from the definition of the border of a
convex set

Definition IV.2: For a convex set C, an element p�C belongs to its boundary �C if and only
if there exists q�C such that

p + 
�q − p� � C, p − 
�q − p� � C, ∀ 
 � �0,1�, . �13�

or, equivalently iff there exists q�C such that for all 
�0 for which p+
q�C then p−
q�C.
We will now prove the following lemma.
Lemma IV.3: The border of the convex CPQ is a subset of the border of the convex of all

channels.
Proof: Consider a channel E�CPQ and a “perturbation” P such that E+
P�CPQ∀
� �0, 1�.

By definition P�Pi�=0 for all Pi, whence, if E−
P is completely positive, then it necessarily
belongs to CPQ. Therefore, the only way to have E on the border of CPQ is to have E−
P not CP,
namely E lies on the border of the convex of all channels. �

A “geometrical” proof is also the following. Since the constraint defining CPQ is linear, then
CPQ is a linear section of the convex of all channels, whence its border belongs to the border of the
convex of all channels.

Remark: Notice that the convex set CII will coincide with that of all channels, I= �I� denoting
the trivial POVM.

Remark: From Lemma IV.3 it follows that when two POVMs are connected by a channel they
can be always connected by a border channel, apart from the case in which the connecting channel
is unique.

V. POSTPROCESSING

The most general postprocessing of a POVM, is a shuffling of the POVM elements with
conditional probability p�i � j�, corresponding to the mapping

Qi = �
j

p�i�j�Pj . �14�

When two POVMs P and Q are connected by a mapping of the form �14� for some conditional
probability p�i � j� we will write P�pQ, and say that the POVM P is cleaner under
postprocessing—for short postprocessing cleaner—than the POVM Q. Notice that a relation of
the form �14� is meaningful generally for �P�� �Q�, with the number of outcomes changing from
input to output.

Relevant examples of post processing are:

�i� identification of two outcomes, e.g., j and k are identified with the same outcome l, corre-
sponding to p�n � j�=�ln, p�n �k�=�ln and

�ii� permutation � of outcomes, corresponding to p���j� �k�=� jk.

The relation �p is a pseudo-ordering, since it is

�i� reflexive, corresponding to

P�pP, p�i�j� = �ij; �15�

�ii� transitive, i.e., P�pQ�pR, corresponding to

Ri = �
j

p�i�k�Qk, Qk = �
j

p��k�j�Pj, ⇒ Ri = �
j

p��i�j�Pj ,
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p��i�j� = �
k

p�i�k�p��k�j� . �16�

An equivalence relation under postprocessing can be defined as follows.
Definition V.1: The POVMs P and Q are postprocessing equivalent—in symbols P�pQ—iff

both relations P�pQ and Q�pP hold.
We are now in position to define cleanness under postprocessing, namely
Definition V.2: A POVM P is postprocessing clean if for any POVM Q such that Q�pP, then

also P�pQ holds, namely P�pQ.
The characterization of cleanness under postprocessing �classical� is much easier than that of

cleanness under preprocessing �quantum�, and is given by the following theorem.
Theorem V.3: A POVM P is postprocessing clean iff it is rank-one.
Proof: First notice that a POVM P with elements having rank higher than one are not post-

processing clean. In fact, in this case one can diagonalize all the POVM elements and consider the
POVM P� made of rank-one projections over all eigenvectors multiplied by the corresponding
eigenvalue. Then, clearly P��pP by identification of outcomes. In equations

Pi = �
ki

��ki

�i�
��ki

�i��, Pi,k� = ��k
�i�
��k

�i��, ⇒ P��pP , �17�

corresponding to the identification of outcomes

p�i�j,kj� = �ij ∀ kj . �18�

Reversely, all rank-one POVMs are postprocessing clean, namely if Q�pP, then also P�pQ must
hold. In fact, suppose that P is rank one and that there exists a POVM Q such that Q�pP, namely

Pi = �
j

p�i�j�Qj . �19�

Now, since all elements Pi are rank one, the elements Qj are necessarily proportional to Pi for all
the indices j such that p�i � j��0, namely also Q is rank one, with

p�i�j�Qj =  jPi, �20�

with � j j =1, and  j �0. For a fixed j, p�i � j�=0 for at least one i, otherwise all the Pi’s would be
proportional. For the same reason, for a fixed i, p�i � j�=0 for at least one j. We can then collect the
indices i such that p�i � j��0 in the set I�j�, and write

Qj = �
i

p�i�j�Qj = �
i�I�j�

p�i�j�Qj = �
i�I�j�

 jPi. �21�

Finally, it is immediately verified that

q�j�i� =  j , i � I�j�
0 otherwise

� �22�

is a conditional probability since for all i one has � jq�j � i�=� j j =1. Therefore, from Eq. �21� it
follows that we have also P�pQ, namely P�pQ. �

VI. PREPROCESSING: ORDERING AND EQUIVALENCE OF POVMs

The action of channels allows to define the following pseudo-ordering.
Definition VI.1: Given the POVMs P and Q with �P�= �Q� we define P�Q iff there exists a

channel E such that

Q = E�P� , �23�
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and we will say that the POVM P is cleaner than the POVM Q.
Definition VI.2: We call a POVM P “clean” iff for any POVM Q such that Q�P one also has

P�Q.
It is easily proved that the relation � is transitive and reflexive, namely it is a pseudo-

ordering. Let us now define the following relation
Definition VI.3: We say that the two POVMs P and Q are equivalent—denoted as

P�Q—when one has both P�Q and Q�P.
Clearly � is an equivalence relation. The pseudo-ordering � now defines a partial ordering

between equivalence classes. Indeed define the ordering between classes as follows:

�P� � �Q� iff P� � Q�, ∀ P� � �P�, Q� � �Q� . �24�

The above-mentioned ordering is consistently defined, since P� ,P�� �P� means both P��P� and
P��P�, whence, by transitivity P��P��Q��Q�, and the ordering does not depend on the
chosen elements of the equivalence classes. This proves the consistency of the definition of �.
Therefore, in the following we can consider a single element P instead of the class �P�. In this way
we can easily prove reflexivity �P�� �P�, since P�P, and transitivity

�P� � �Q�, �Q� � �R� ⇒ �P� � �R� , �25�

since P�Q, Q�R implies P�R by transitivity of �. Now let us consider the case when both
�P�� �Q� and �Q�� �P�. Then we have P�Q and Q�P, namely �P�	�Q�. �

One would be tempted to conjecture that the relation � is equivalent to unitary equivalence,
which is defined through

Definition VI.4: The POVMs P and Q are unitarily equivalent, for short P�UQ iff there exists
a unitary operator U such that Q=UPU†.

However, as we will see in the following, there exist equivalent POVMs which are not
unitarily equivalent.

We have now the following necessary condition for equivalence under preprocessing
Theorem VI.5: If P�Q then for each event e�E�P� we have

�M�Pe� = �M�Qe� 	 �M�e�, �m�Pe� = �m�Qe� 	 �m�e� . �26�

Proof: By Lemma III.1 we have both �M�Pi���M�Qi� and �M�Pi���M�Qi�, and similarly for
the minimum eigenvalues. �

VII. PREPROCESSING: POSITIVE MAPS AND RELATED THEOREMS

There are two interesting variants of the relation � just introduced, which help to get a more
geometric insight into the structure. The first arises, if we replace the completely positive map E
in Definition VI.1 by positive �but not necessarily completely positive� one. Hence we can define
for two POVMs P, Q with �P�= �Q�

P � Q ⇔ Q = E�P�, E positive. �27�

It is obvious that P�Q implies P�Q but the other way round does not hold. This can be seen,
if we consider an informationally complete POVM P and define Q=��P�, where � denotes the
transposition map �i.e. ��A�=AT�. Positivity of � implies P�Q. But � is only positive and not
completely positive and it is the only map which connects P and Q. The latter follows from
informational completeness of P, because this implies that the elements of P are a basis of B�H�.
Hence P�Q does not hold.

Now consider the ranges Rng�P�, Rng�Q� of P and Q, defined in Eq. �2�. If p�Rng�Q�
there is by definition a density operator � with p=Tr�Q��. Hence, P�Q implies

p = Tr�Q�� = Tr�E�P��� = Tr�PET���� �28�

and therefore we get p�Rng�P�. This observation motivates the definition:
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P�rQ ⇔ Rng�Q� � Rng�P� . �29�

According to our previous discussion we get in this way a hierarchy of relations

P � Q ⇒ P � Q ⇒ P�rQ . �30�

We have already seen that the direction of the implication between � and � cannot be reversed.
For � and �r this is more difficult. To see that they are �very� closely related, consider the linear
hull Span�P� of the elements of P, which is obviously an operator system �cf. Sec. III�. Hence we
can speak about positive linear maps from Span�P� to Span�Q�. This fact can be used to
characterize the relation �r in the following way.

Proposition VII.1: Consider two POVMs P, Q with �P�= �Q�. Then the following statements are
equivalent:

(i) P�rQ
(ii) There is a (unique) positive map E: Span�P�→Span�Q� with E�P�=Q.

Proof: The implication �ii�⇒ �i� is trivial. Hence consider only the other direction. Here, the
idea is to define the map E by

E�Pe� = Qe, ∀ e � E . �31�

This map is well defined because we have �by assumption� for each density operator � a second
density operator � such that Tr�Qe��=Tr�Pe�� holds for all e�E. Hence if �e�ePe=0 for some
real �e we get

�
e�E

�eTr��Qe� = �
e�E

�eTr��Pe� = Tr�� �
e�E

�ePe� = 0. �32�

Since � is arbitrary this implies �e�eQe=0. Therefore E defined in �31� is well defined, as stated.
Using the same reasoning we can show that E is positive, which concludes the proof. �

The difference between condition �ii� of this lemma and the definition of � in Eq. �27� is the
domain of the the map E. The following counter example which is taken �in a slightly modified
form� from Ref. 26 shows that such a map is in general not extendible as a positive map to B�H�.

Consider the diagonal 4�4 matrix X=diag�1, i ,−1 ,−i� and the operator system S spanned by
I ,X ,X†. It is easy to see that a general element A=aI+bX+cX† is Hermitian iff c=b* and a=a*

hold, and it is positive iff in addition a�2 max��Rb� , �Ib�� hence,

A � 0 ⇒ c = b*, a � �2�b� . �33�

Now consider the linear map

S � A = aI + bX + cX† � E�A� = � a �2b

�2c a
� � I2, �34�

where I2 denotes the 2�2 unit matrix. Since a 2�2 matrix is positive iff its diagonal elements
and its determinant are positive, positivity of E follows directly from Eq. �33�. On the other hand
we have �E�I��=1 and �E�X��=�2. Since �X�=1 this implies �E���2� �E�I��. But a positive map
from a C* algebra A into a a C* algebra B always satisfies �Ref. 26, Corollary 2.9� �E�= �E�I��.
Hence the map defined in Eq. �34� can not be extended to B�C4�—not even to the abelian algebra
generated by I ,X ,X†. As a consequence of this reasoning we have shown that P�rQ does not
imply P�Q.

Hence positive maps can in general not be extended as a positive map to a bigger algebra. A
very important special case arises, however, if the map E is completely positive. In this case a
completely positive extension always exists �cf. Theorem III.5� This fact can be used along with
Proposition VII.1 to get an interesting characterisation of � in terms of ranges.
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Theorem VII.2: Consider two POVMs P, Q with �P�= �Q�. Then the following statements are
equivalent:

(i) P�Q
(ii) There is an informationally complete POVM M such that P � M�rQ � M
(iii) P � M�rQ � M holds for all POVMs M.

Proof: The implication �i�⇒ �iii� follows from the fact that �i� implies the existence of a map
E such that Q=E�P�, and trivially the map E � I connects P � M with Q � M, whence the state-
ment via Eq. �29�. Implication �i�⇒ �ii� is just a special case of the previous one. Implication
�iii�⇒ �ii� is trivial. Hence only �ii�⇒ �i� remains to be shown.

To this end note that informational completeness of M implies

Span�Q � M� = Span�Q� � B�H� , �35�

and similarly for P � M. Therefore we have �according to �ii� and Proposition VII.1� a unique
positive map

F:Span�P� � B�H� → Span�Q� � B�H� �36�

with

F�P � M� = Q � M . �37�

If we can show that F has the form

F = E � I �38�

with a positive map E: Span�P�→Span�Q� and the identity I on B�H�, the theorem is proved
because:

• Due to Eq. �38� and positivity of F the map E is completely positive as a map on the operator
system Span�P�. Hence by theorem III.5 it is extendible to a completely positive map on
B�H�.

• Eqs. �37� and �38� imply E�P�=Q and therefore P�Q.

To prove Eq. �38� firstly note that �ii� implies P�rQ. This follows from �with e�E�Q� and a
density matrix � on H�:

Tr��Qe� = Tr�� � I

d �Qe � �
f�E�M�

Mf�� �39�

= �
f�E�M�

Tr��Qe � Mf��� �
I

d
�� �40�

because we have by assumption a density matrix � on H � H such that

Tr��Q � M��� �
I

d
�� = Tr��P � M��� �41�

which in turn implies

Tr��Qe� = �
f�E�M�

Tr��Pe � Mf��� �42�

=Tr�Pe � � �
f�E�M�

Mf��� �43�

082109-10 Buscemi et al. J. Math. Phys. 46, 082109 �2005�

                                                                                                                                    



=Tr��Pe � I��� = Tr�Pe Tr2 �� , �44�

where Tr2 denotes the partial trace over the second tensor factor. Hence Tr��Q�=Tr��Tr2��P�
which implies P�rQ as stated.

Now we can apply again Propostion VII.1 and get a positive map E: Span�P�→Span�Q�
satisfying E�P�=Q and therefore E � I�P � M�=Q � M. Since F is uniquely determined by Eq.
�37� this implies F=E � I, which completes the proof. �

This theorem gives a clear geometric picture for the relation � and it helps to understand the
difference between � and �: if P�Q holds we find for each separable state � on H � H a second
separable state � such that Tr�Q � M��=Tr�P � M��. Hence, if P�Q does not hold �but P�Q�
there must be an entangled state � such that the probability vector Tr�Q � M�� can not be repro-
duced by any expectation value of P � M. This can be rephrased as follows: If P�Q holds but not
P�Q we can reproduce the distribution of outcomes of Q measurements on one system by
appropriate P measurements, but there is information about entangled states which can be gained
only by Q and not by P.

A second special case of Proposition VII.1 arises, when Q is abelian �i.e., all elements of the
POVM commute�. In this case the map E constructed in Proposition VII.1 is a map into an abelian
algebra and therefore completely positive. Hence we get

Theorem VII.3: Consider two POVMs P ,Q with �P�= �Q� and assume that Q is abelian. Then
P�rQ and P�Q are equivalent.

Proof: According to Proposition VII.1 there is a positive map E from Span�P� into the abelian
C* algebra A generated by the elements of Q. According to Theorem III.6 this map is completely
positive and by Theorem III.5 therefore extendible as a completely positive map to B�H�. Hence
P�rQ implies P�Q. Since the other implication is trivial the proof is completed. �

Note that a similar result does not hold if P is abelian and Q is not. The counter example given
after Proposition VII.1 applies even in this case.

The result from Theorem VII.3 is very useful, in particular because the range Rng�P� of an
abelian POVM has a very simple structure, which is completely characterized by the joint eigen-
values of the elements of P. To see this, consider a joint set of eigenvectors �, =1, . . . ,d and

Pe = �
=1

d

�e,��
���, ∀ e � E . �45�

The joint eigenvalues vectors

� = ��e,�e�E � R�P� �46�

form a set of probability vectors �in the case of joint degeneracies of the elements of P some of
them may coincide� and for each convex linear combination

p = �
=1

d

p�, p � 0, �


p = 1 �47�

we can find a density operator ��=�p��
��� will do� such that p=Tr��P� holds. Hence the
convex hull of the � satisfies conv��1 , . . . ,�d��Rng�P�. On the other hand we have for each
density operator �:

Tr��P� = �
=1

d

��,��
� �48�

which implies Tr��P��conv��1 , . . . ,�d�. Hence we have just shown the following proposition
Proposition VII.4: The range Rng�P� of an abelian POVM P coincides with the convex hull

of the �1 , . . . ,�d.
The most simple example arises in the case of effects, i.e., measurements with two outcomes.
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Obviously, each effect is abelian and has the form P= �P , I− P� with a positive operator P� I. If
�1 , . . . ,�d are the eigenvalues of P given in decreasing order we get �= �� ,1−��. Hence all
��R2 are located on the graph of the function R�x�1−x�R, and �1 respectively �d are the
outermost points. This leads immediately to the following characterization of the relation � for
effects:

Theorem VII.5: The effect P is “cleaner” than the effect Q, i.e. P�Q iff

��M�P�,�m�P�� � ��M�Q�,�m�Q�� . �49�

Corollary VII.6: Given two effects P and Q, then P�Q iff �M�P�=�M�Q� and �m�P�
=�m�Q�.

VIII. PREPROCESSING: EQUIVALENCE IN DIMENSION TWO

For dimension two the cleanness equivalence � and the unitary equivalence �U coincide.
Theorem VIII.1: For two-level systems P�Q iff P�UQ.
Proof: If all the elements of both POVM are trivial, i.e., Pe=eI and Qe=�eI, ∀e, then the

thesis follows easily. Therefore, we will focus on the nontrivial case, in which there exists at least
one element Pi of P �or Qi of Q� that is nontrivial. Then, first, also Qi �or Pi� is not proportional
to the identity, since otherwise Pi=F�Qi�=iF�I�=iI, which contradicts the hypothesis. Second,
by Theorem VI.5 one has

Pi = �M�i���M
�i�
��M

�i�� + �m�i���m
�i�
��m

�i�� , �50�

Qi = �M�i���M
�i�
��M

�i�� + �m�i���m
�i�
��m

�i�� . �51�

Now, by hypothesis, there exist channels E and F such that Qi=E�Pi� and Pi=F�Qi�. Then, by
linearity,

Qi = �M�i�E���M
�i�
��M

�i��� + �m�i�E���m
�i�
��m

�i��� . �52�

We will now consider

Tr�Qi��M
�i�
��M

�i��� = �M�i� = Tr�PiET���M
�i�
��M

�i���� , �53�

and this clearly implies that ET���M
�i�
��M

�i���= ��M
�i�
��M

�i��. Analogous arguments lead to the conclu-
sion that ET���m

�i�
��m
�i���= ��m

�i�
��m
�i��, and moreover FT���M

�i�
��M
�i���= ��M

�i�
��M
�i�� and FT���m

�i�
��m
�i���

= ��m
�i�
��m

�i��. By collecting all the eigenstates of nondegenerate Pi’s and Qi’s in two sets, namely,

ET:���M
�i�
��M

�i��, ��m
�i�
��m

�i���i � ���M
�i�
��M

�i��, ��m
�i�
��m

�i���i

�54�
FT:���M

�i�
��M
�i��, ��m

�i�
��m
�i���i � ���M

�i�
��M
�i��, ��m

�i�
��m
�i���i,

and applying Theorem III.3 it follows that there exists a unitary U such that Qi=UPiU
† for all

nontrivial Qi’s. Clearly, the same unitary transformation maps the trivial elements. �

IX. PREPROCESSING: CLEANNESS FOR NUMBER OF OUTCOMES nÏd

Lemma IX.1: For fixed number of elements n�d the POVM P is clean iff �M�Pi�=1 for all i.
Such condition is also equivalent to �m�Pi�=0 with multiplicity at least n−1, and each vector
which is eigenvector with unit eigenvalue for some element Pj must belong to the kernel of all
other POVM elements.

Proof: We first prove that the condition is also equivalent to �m�Pi�=0 for all i. Indeed,
consider a normalized eigenvector �u
 of Pj with eigenvalue 1, and suppose by absurd that some
element Pi has �m�Pi��0. Then
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�u�u
 = �
k

�u�Pk�u
 = �u�Pj�u
 + �u�Pi�u
 + �
k�i,j

�u�Pk�u
 � 1, �55�

and in order to have no contradiction one must have �u�Pi�u
=0, namely �m�Pi�=0. Notice that Eq.
�55� also implies that �u�Pk�u
=0 for all k� j, namely the same eigenvector �u
 of Pj is eigenvector
of all Pk for all k� j. Moreover, since there must be at least n vectors as �u
, each being eigen-
vector of a different element Pj corresponding to unit eigenvalue, and since any two vectors must
be orthogonal �since for some j they are eigenvectors corresponding to different eigenvalues of
Pj�, this means that the 0 eigenvalue for each POVM element must have multiplicity at least n
−1, and all the eigenvectors of any element with eigenvalue 1 are in the kernel of the remaining
elements.

We now prove that the condition is sufficient. Suppose that a POVM Q exists such that Q
�P. Then by Lemma III.1 �0,1��Sp�Qi� for all i. We then need to prove that in this case P
�Q. From now on we will denote by �u
i

P an eigenvector of Pi with eigenvalue 1 and by �u
i
Q the

same for Qi. The proof is constructive: consider the map with Stinespring form E�X�=V†�I
� X�V, where

V = �
i

�Pi � �u
i
Q, �56�

and the notation T=O � �u
 denotes the operator defined as T��
=O��
 � �u
 for all ��
�H. It is
clear that E�Qi�= Pi. Similarly, consider the map F�X�=W†�I � X�W, where

W = �
i

�Qi � �u
i
P. �57�

This is such that F�Pi�=Qi. We proved that POVMs P such that �M�Pi�=1 for all i are clean. We
will now prove that it is also a necessary condition. Consider indeed a generic POVM Q such that
at least for one outcome j �M�Qj��1. Then one can consider any POVM P with �M�Pi�=1 for all
i and construct the isometry

W = �
i

�Qi � �u
i
P. �58�

It is clear that the Stinespring form W†�I � X�W defines a channel E such that E�Pi�=Qi for all i.
Then P�Q. Moreover, by hypothesis �M�Pj���M�Qj� and then it is impossible that P�Q. �

An immediate corollary is the following
Corollary IX.2: The only clean elements with n=d are the observables.
Proof: In Lemma IX.1 for n=d the iff condition is equivalent to have eigenvalue 0 with

multiplicity d−1 for each POVM element, namely each POVM element is rank one, and they are
orthogonal. �

Allowing mapping between POVMs with different number of outcomes, the situation simpli-
fies:

Theorem IX.3: For n�d outcomes the set of clean POVMs coincides with the set of observ-
ables.

Proof: Consider a generic POVM Pi with i=1, . . . ,n�d. This can be always regarded as the
preprocessing of any desired observable ��i
�i��i=1,. . .,d. In fact, using the isometry from H to H�2

V = �
i=1

n

�Pi � �i
 , �59�

the following channel expressed in the Stinespring form

M�X� = V†�I � X�V �60�

gives
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M��i
�i�� = Pi, i = 1, . . . d . �61�

For a POVM with n�d outcomes �strictly�, notice that it is equivalent to a POVM with d
outcomes and d−n vanishing elements. On the other hand, for n�d there is no channel that can
increase the number of outcomes back to d, whence a POVM with n�d outcomes cannot be
clean. For n=d Corollary IX.2 asserts that the only clean POVMs are the observables. �

X. PREPROCESSING: ORDERING OF INFORMATIONALLY COMPLETE POVMs

Lemma X.1: If the POVM Q is infocomplete then every P such that P�Q is infocomplete, too.
Proof: For d2 outcomes POVMs, P and Q are infocomplete iff their elements are linearly

independent. Suppose by absurd that there exists a nonnull vector of d2 coefficients ci such that

�i=1
d2

ciPi=0, then also

E��
i=1

d2

ciPi� = 0 = �
i=1

d2

ciQi = 0, �62�

which contradicts the hypothesis.
If the number of outcomes is greater than d2, suppose

E�X� = 0, �63�

for some X�0, namely E would have non trivial kernel, in which case
Span�Q��Rng�E��B�H�, which contradicts the hypothesis that Q=E�P� is infocomplete. Then
E is invertible. Now, P must be infocomplete, otherwise the inverse of E would not have full rank,
which is absurd. �

The above theorem is immediately extended to any linearly independent POVM Q. More
interestingly, for any infocomplete POVM P one can prove the following lemma

Lemma X.2: If the POVM P is infocomplete then every Q such that P�Q is infocomplete, too.
Proof: It follows immediately from definition of � and Lemma X.1. �

On the other hand, each POVM that is equivalent to an infocomplete one, is also unitarily
equivalent to it, namely, more precisely

Theorem X.3: If P is an infocomplete POVM, then P�Q iff P�UQ.
Proof: Since the POVMs P and Q must be both infocomplete by the previous lemma, then the

maps E and F are uniquely defined, and are the inverse of each other. Then, by Theorem III.2
E�X�=UXU† for some unitary U. �

An alternative elegant proof of the above theorem would be the following.
Proof: By hypothesis, there exist E and F such that E�P�=Q and F�Q�=P. This means that

F �E stabilizes the algebra generated by P, that is Span�P�	B�H�. On the other hand, the
commutant of an infocomplete POVM is only the identity, since �Pi ,X�=0 for all i implies
�A ,X�=�iai�Pi ,X�=0 for all A�B�H�. This fact along with Lemma III.4 implies that F �E is the
identical map. The thesis is then a straightforward consequence of Theorem III.2. �

Corollary X.4: For each non unitary invertible channel E on B�H� there exists at least a pure
state ��H such that ET−1���
�����0.

Proof: Let us consider an extremal POVM with d2 rank-one elements ��i
�i�� i=1, . . . ,d2

�according to Ref. 15 such a POVM always exists for any dimension d, and it is necessarily
informationally complete�. Assuming E invertible, let’s consider Qi=E−1��i
�i��. The POVM
�i
�i� is clean since it is rank-one. However, since it is also infocomplete, then Qi cannot be itself
a POVM, otherwise according to Theorem X.3 it would be unitarily equivalent to �i
�i�. More-
over, being both �i
�i� and Qi infocomplete, the map E would be univocally defined, whence
itself unitary, contrarily to the hypothesis. Then, �Qi� is not a POVM. However, since the map E
is a channel, whence E−1 must be identity preserving, one has �iQi= I, then necessarily at least one
element Qj cannot be positive, namely there exists a vector ��H for which
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���Qj��
 � 0. �64�

This inequality can be rewritten as follows:

Tr���
���E−1�� j
� j��� = Tr�ET−1���
����� j
� j�� � 0, �65�

namely ET−1���
���� is not positive. �

We have also the following interesting theorem.
Theorem X.5: Every channel F which maps the set of states S surjectively on itself, i. e. such

that F�S�	S, is necessarily unitary.
Proof: First, suppose that F is invertible, then F must be unitary, otherwise F−1�S�=S would

not be possible by Lemma X.4. On the other hand, if F is not invertible, then its range must have
dimension strictly smaller than d2. Now, consider a rank-one infocomplete POVM P with �P�
=d2. Clearly, some POVM element cannot belong to F�S�, and this proves that F�S��S strictly,
since such normalized POVM elements are just pure states. �

For qubits this theorem has the simple geometric interpretation that the Bloch sphere trans-
formed under F−1 for any invertible non unitary F becomes an ellipsoid which contains elements
outside the Bloch sphere.

By definition, and according to Theorem X.3 an infocomplete POVM P is clean iff E−1�P� is
not a POVM for all invertible non unitary maps E. This means that as soon as the set S of states
is transformed by E−1, the POVM is able to detect at least one of the points in E−1�S�−S, say
E−1���
����, since the “probability distribution” corresponding to E−1���
���� is no longer positive.

XI. PREPROCESSING: ORDERING OF RANK-ONE POVMs

Intuitively one thinks that a rank-one POVM is clean. This is actually true, and it is more
precisely stated by theorem XI.2 in this section. In order to prove it, we first need the following

Lemma XI.1: If the POVM Q is rank-one �i.e. each element Qi can be written as Qi

= �wi
�wi��, then for any POVM P such that P�Q, also P is rank one, and Tr�Pi�=Tr�Qi�, ∀i.
Proof: Consider the following normalized vectors

�w̃i
 =
1

�Ni

�wi
, Qi = Ni�w̃i
�w̃i� , �66�

where Ni=Tr�Qi�= �wi�2, whence �iNi=d. Suppose P�Q, and E�P�=Q. Then one can easily
verify the following identity:

Ni = Tr�Qi�w̃i
�w̃i�� = Tr�E�Pi��w̃i
�w̃i�� = Tr�PiET��w̃i
�w̃i��� . �67�

Now, by the CPT property of ET, ET��w̃i
�w̃i�� is a state and clearly the last expression in Eq. �67�
is less than or equal to the maximum eigenvalue �M�Pi� of Pi. We have than the following
situation:

Ni � �M�Pi� � Tr�Pi� . �68�

By the normalization and positivity of POVMs, we have that d=�iNi=�iTr�Pi� and Ni�0,
Tr�Pi��0. These conditions along with Eq. �68� imply

Ni 	 Tr�Pi� ∀ i , �69�

and this in turn implies �M�Pi�=Tr�Pi�, namely Pi is rank one. �

We will now prove the following theorem.
Theorem XI.2: If Q is rank one, then P�Q iff P�UQ. Namely, rank-one POVMs are clean.
Proof: First, notice that by Lemma XI.1, P�Q implies that P is rank one with Tr�Pi�

=Tr�Qi�, for all i. We have then

Pi = �vi
�vi� = Mi�ṽi
�ṽi�, �ṽi� = 1, �70�
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Qi = �wi
�wi� = Mi�w̃i
�w̃i�, �w̃i� = 1, �71�

where Mi	Tr�Pi�=Tr�Qi�, consistently with Lemma XI.1. Now, by hypothesis we have

Mi = Tr�E�Pi��w̃i
�w̃i�� = Tr�PiET��w̃i
�w̃i��� = Mi Tr��ṽi
�ṽi�ET��w̃i
�w̃i��� . �72�

As a consequence, necessarily Tr��ṽi
�ṽi�ET��w̃i
�w̃i���=1, and by CPT property of ET this implies
ET��w̃i
�w̃i��	�ṽi
�ṽi�. Notice that since ET�I�=�iMiET��w̃i
�w̃i��=�iMi�ṽi
�ṽi�= I, then ET and E are
unital, namely both CPT and CPI. Then, by applying Theorem III.3 one has P�UQ. The converse
is trivial. �

XII. CONCLUSIONS

In this paper we have introduced the notion of clean POVMs, namely which are not irrevers-
ibly connected to another POVM via a quantum channel. We used the adjective clean for such
POVMs in the sense that they are not affected by extrinsical quantum noise from the action of a
channel which is in principle avoidable. We have seen that, quite unexpectedly, the cleanness
property is largely unrelated to the convex structure of POVMs, and there are clean POVMs that
are not extremal and extremal POVMs that are not clean.

The classification problem of POVMs cleanness turned out to be much harder than that of
their extremality, and in this paper we gave a complete classification of clean POVMs only for
number n of outcomes n�d �d dimension of the Hilbert space�, whereas for n�d we gave a set
of either necessary or sufficient conditions, and an iff condition for the case of informationally
complete POVMs for n=d2. The difficulty for classifying the case n�d reflects analogous diffi-
culties in the theory of quantum measurements in assessing the maximal POVM cardinality
needed to attain the accessible information, cardinality whose lower bound has been shown to be
actually larger than d.18,19

The novel issue of clean POVMs naturally opens new problems in the theory of quantum
information and quantum measurements. Besides the problem of the general classification of
cleanness, it raises the problem of characterizing all POVMs achievable from a given one via a
quantum channel, or, reversely, of all POVMs which can be evolved toward a given one via a
quantum channel. These are only initial steps toward a thorough analysis of the general problem
of the partial ordering induced by channels on the convex set of measurements, an issue which is
not an academic mathematical problem, but which is relevant for engineering new quantum
measurements with minimal available resources.
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We consider the non-Hermitian eigenvalue problems −u��z�± �iz�mu�z�=�u�z� , m
�3, under every rapid decay boundary condition that is symmetric with respect to
the imaginary axis in the complex z plane. We prove that the eigenvalues � are all
real and positive. © 2005 American Institute of Physics.
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I. INTRODUCTION

For integers m�3 fixed and 1���m−1, we are considering the non-Hermitian eigenvalue
problems

�H�u��z� ª �−
d2

dz2 + �− 1���iz�m�u�z� = �u�z� for some � � C , �1�

with the boundary condition that

u�z� → 0 exponentially, as z → � along the two rays arg z = −
�

2
±

� + 1

m + 2
� . �2�

If a non-constant function u along with a complex number � solves �1� with the boundary condi-
tion �2�, then we call � an eigenvalue of H� and u an eigenfunction associated with the eigenvalue
�. It is known that any solution of �1� is entire �analytic on the complex plane�. In Section 7.4 of
Ref. 1, Hille shows that every solution of �1� is either decaying to zero or blowing up exponen-
tially as z tends to infinity along any ray �z�C : arg z=const.�, except along m+2 critical rays
where the transition between decaying and blowing-up sectors might occur. Along these m+2
critical rays, any non-constant solution decays algebraically. We will explain these asymptotic
properties of the solution in Sec. II.

Before we state our main theorem, we first introduce some known facts about the eigenvalues
� of H�, facts due to Hille1 and Sibuya.2

Proposition 1: For 1���m−1, the eigenvalues � of H� are the zeros of a certain entire
function of order 1

2 +1/m� � 1
2 ,1�. In particular, the eigenvalues have the following properties.

�i� eigenvalues are discrete;
�ii� all eigenvalues are simple; and
�iii� infinitely many eigenvalues exist.

For our purposes, we will need to examine the proof of this proposition in some detail. In
Lemmas 7 and 8, we prove that the eigenvalues are zeros of certain entire functions of order 1

2
+1/m� � 1

2 ,1�, due to Sibuya.2 Then claims �i� and �iii� are consequences of the Hadamard fac-
torization theorem, whereas claim �ii� is due to Hille.1
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In this paper, we will prove the following main theorem regarding the positivity of the
eigenvalues.

Theorem 2. The eigenvalues � of H� for integers 1���m−1 are all real and positive.
One can show that the eigenvalues of H� are the same as those of Hm−�, by using the reflection

z�−z. The case �=1 of the theorem is due to Dorey et al.3 Also when m is even and �=m /2, one
can see that H� in L2�R� is Hermitian and hence, ��R. In all other cases, Theorem 2 is new and
provides the first result of its kind for boundary conditions that neither cluster near the negative
imaginary axis nor lie on the real axis. We will explain how Theorem 2 covers every symmetric
rapid decay condition when we discuss admissible boundary conditions in Sec. II.

For the rest of the Introduction, we will mention brief history and give some background
about our main problem and our method of proof. Then in Sec. II, we will introduce work of Hille1

and Sibuya2 about some properties of solutions of �1�. In Sec. III, we establish an induction step
on �, which is the key element in our proof of Theorem 2. More precisely, we will prove that for
1���m /2−1, every eigenvalue � of H�+1 is real and positive if all eigenvalues � of H� lie in the
sector 	arg �	�2� / �m+2� in the complex plane. In Sec. IV, we will outline a proof of the
induction basis �=1, that is, the eigenvalues of H1 lie in the sector 	arg �	�2� / �m+2� �in fact,
arg �=0; see Refs. 3 and 4�. We then prove Theorem 2 by induction on � and the reflection z�−z.
In the last section, we mention some open problems.

A. History and overview of the method

In this subsection, we introduce some earlier work related with Theorem 2. Also, we discuss
our method of the proof of Theorem 2.

The Hamiltonians with the potential ±�iz�m have been studied in many physics and mathemat-
ics papers, either under a boundary condition on the real axis,5–7 u�±�+0i�=0, or under the
boundary condition �2� with the �=1 case.3,4,8 Also, Bender and Turbiner9 considered all the
boundary conditions �2� with 1���m−1.

Caliceti et al.5 and Simon6 studied the Hamiltonians −d2/dx2+x2+�xm on the real line, where
��C \R− and integers m�3, and they proved compactness of the resolvent and discreteness of the
spectrum. Regarding the reality of the eigenvalues, Caliceti et al.5 showed that the eigenvalues for
�−d2/dx2�+x2+�x2n+1 are real if � is small enough.

Recently, a conjecture of Bessis and Zinn-Justin has been verified by Dorey et al.3 and
extended by Shin.4 That is, the eigenvalues � of

�−
d2

dz2 − �iz�3 + �z2�u�z� = �u�z�, u�±� + 0i� = 0 for � � R , �3�

are all real and positive. Dorey et al.3 verified for the case �=0, and later Shin4 extended it for the
case ��R.

In fact, Dorey et al.3 have proved more. They studied the following eigenvalue problem:

�−
d2

dz2 − �iz�2M − ��iz�M−1 +
l�l + 1�

z2 �u�z� = �u�z� , �4�

under the boundary condition �2� with �=1, and M ,� , l being all real. They proved that for M
	1,�
M +1+ 	2l+1	, the eigenvalues are all real, and for M 	1,�
M +1− 	2l+1	, they are all
positive. A special case of �4� is the potential iz3 �when M = 3

2 ,�= l=0�, which is the �=0 version
of the Bessis and Zinn-Justin �BZJ� conjecture, but their results do not cover the ��0 version.

Later, Shin4 studied the following eigenvalue problem:
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− � d2

dz2 + �iz�m + a1�iz�m−1 + a2�iz�m−2 + ¯ + am−1�iz��u�z� = �u�z� ,

with the boundary condition �2� with �=1, where ak�R for all k. He proved that if for some 1
� j�m /2 we have �j−k�ak�0 for all k, then the eigenvalues � are all real and positive.4 This
covers the full BZJ conjecture.

The proof of our main theorem, Theorem 2, has four parts. The first part follows closely the
method of Dorey et al.,3 developing functional equations for spectral determinants, expressing
them in factored forms and estimating eigenvalues by Green’s transform. The second part estab-
lishes an induction step on 1���m /2 and estimates eigenvalues by Green’s transform again. In
the third part, we use the result of Dorey et al.3 that says the eigenvalues of H1 are all real and
positive �also, see Theorem 2 in Ref. 4�. This induction basis, along with the induction step
established in the second part, proves our main theorem for 1���m /2. Last, we use the reflec-
tion z�−z to cover m /2
��m−1. Of course both this paper, and Dorey et al.3 and Shin4 are
indebted to the work of Sibuya.2

B. PT-symmetric oscillators

The above-mentioned Hamiltonians are not Hermitian in general, and hence the reality of
eigenvalues is not obviously guaranteed. However, these Hamiltonians share a common symmetry,
the so-called PT symmetry. A PT-symmetric Hamiltonian is a Hamiltonian which is invariant
under the combination of the parity operation P�:z�−z̄� �an over bar denotes the complex con-
jugate� and the time reversal operation T�:i�−i�. These PT-symmetric Hamiltonians have arisen
in recent years in a number of physics papers10–20 and other references mentioned previously,
which support that some PT-symmetric Hamiltonians have real eigenvalues only. The work of
Dorey et al.3 and Shin,4 and the results in this paper, prove rigorously that some PT-symmetric
Hamiltonians indeed have real eigenvalues only.

We also know that if H=−d2/dz2+V�z� is PT symmetric and if V�z� is a polynomial, then
V�z�=Q�iz� for some real polynomial Q, because V�−z̄�=V�z�. Thus, Re V�z� is an even function
and Im V�z� is an odd function. Certainly, �1� is a PT-symmetric Hamiltonian. Moreover, if u�z� is
an eigenfunction of H� associated with the eigenvalue ��C, then so is u�−z̄�, associated with the

eigenvalue �̄.

II. PROPERTIES OF THE SOLUTIONS

In this section we will introduce some definitions and known facts related to Eq. �1�. One of
our main tasks is to identify the eigenvalues as being zeros of certain entire functions, in Lemmas
7 and 8. But first, we rotate Eq. �1� as follows because some known facts, which are related to our
argument throughout, are directly available for this rotated equation.

Fix the integer m�3. Let u be a solution of �1� and let v�z�=u�−iz�. Then v solves

− v��z� + ��− 1��+1zm + ��v�z� = 0.

The boundary condition �2� of u becomes that v�z�→0 exponentially as z→� along the two rays

arg z = ±
� + 1

m + 2
� .

Throughout this paper, we will use the complex number

� = exp� 2�i
m+2� .

When � is even, it will be convenient to rotate it once more, letting w�z�ªv��1/2z� so that w�z�
solves

− w��z� + �zm + ���w�z� = 0.
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We mention that Hille1 and Sibuya2 have studied the general equation of the form

− v��z� + �zm + P�z� + ��v�z� = 0,

where P�z� is a polynomial of degree less than m. We proceed now to summarize work of Hille1

and expand on some work of Sibuya2 for P
0, that is, for

− v��z� + �zm + ��v�z� = 0, where m � 3. �5�

A. Results of Hille

It is known that every solution of �5� has simple asymptotic behavior near infinity.1 We will
explain this asymptotic behavior using the following.

Definition: Consider the equation

g��z� + �bmzm + bm−1zm−1 + ¯ + b1z + b0�g�z� = 0, �6�

where bk�C for 0�k�m with bm�0. Let

� j =
2j� − arg bm

m + 2
for j � Z ,

where we choose −�
arg bm��. For j�Z we call the open sectors

Sj = �z � C:� j 
 arg z 
 � j+1� �7�

the Stokes sectors of �6�. Also we call the rays �arg z=� j� the critical rays.
In particular, the Stokes sectors of �5� are

Sj = �z � C:
�2j − 1��

m + 2

 arg z 


�2j + 1��
m + 2

� for j � Z . �8�

See Fig. 1.
Now we are ready to introduce some asymptotic behavior of solutions of �5�, due to Hille.1

Lemma 3: Let v be a non-constant solution of (5) (with no boundary conditions imposed).
Then the following hold.

�i� In each Stokes sector Sj, the solution v is asymptotic to

FIG. 1. The Stokes sectors Sj of �5� with m=3. The dashed rays are the critical rays: arg z= ±� /5 , ±3� /5 ,�.
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�const.�z−m/4 exp�±
2

m + 2
z�m+2�/2� �9�

as z→� in every closed subsector of Sj.
�ii� If v decays to zero in Sj, for some j�Z, then it must blow up in Sj−1 and Sj+1. (However, it

is possible for v to blow up in many adjacent Stokes sectors.) Moreover, the asymptotic
expansion (9) is valid with the same constant for the three consecutive Stokes sectors
Sj−1�cl�Sj��Sj+1, where cl�Sj� is the closure of Sj.

�iii� For each Stokes sector Sj, there exists a solution of (5) that decays in Sj, and there exists a
solution of (5) that blows up in Sj. And any solution of (5) can be expressed as a linear
combination of these two solutions.

Proof: See the Section 7.4 in Ref. 1 for a proof. �

Remark: In Lemma 3, we state some asymptotic behavior of solutions of �5�. In the general
case, the corresponding Stokes sectors of �6� are given by �7�. With these Stokes sectors, Lemma
3 holds though the asymptotic expansion �9� becomes more complicated due to more complicated
potentials.

Note that Lemma 3 �iii� implies Proposition 1 �ii�. More precisely, if an eigenvalue were not
simple, then Eq. �1� would have two linearly independent solutions satisfying the boundary con-
dition in �2�. Hence, any solution of �1� could be expressed as a linear combination of these
solutions. So there would be no solution of �1� that blows up in either of the two Stokes sectors
containing the rays in �2�. This contradicts Lemma 3 �iii�. Therefore, every eigenvalue is simple.

From now on, we denote Sj the Stokes sectors of �5�.

B. Admissible boundary conditions

Note, in particular, that the asymptotic expansion �9� implies that for each j , v�z� either
decays to zero or blows up exponentially, as z approaches infinity in closed subsectors of Sj. Also,
the asymptotic expansion �9� implies that if v�z�→0 as z→� along one ray in Sj, then v�z�→0 as
z→� along every ray in Sj. Likewise, if v�z�→� as z→� along one ray in Sj, then v�z�→� as
z→� along every ray in Sj.

Let u be an eigenfunction of H�. Then the above-mentioned observation shows that when �
=2n−1 is odd, the boundary condition �2� for H� is equivalent to having v�z�=u�−iz� decaying to
zero as z→� along rays in S−n and Sn. �Note that the rays arg z= ± ���+1� / �m+2��� are center
rays of S−n and Sn.� Also, when �=2n is even, the boundary condition �2� for H� is equivalent to
having w�z�=u�−i��1/2z�� decaying to zero as z→� along the rays in S−n−1 and Sn.

As we see, one needs not choose the two rays being symmetric, as in �2�, so long as they stay
in the Stokes sectors that are symmetric with respect to the imaginary axis.

Next, we will show that for each j�Z, there exist two linearly independent solutions of �5�
decaying to zero algebraically as z→� along the critical ray arg�z�=� j. Then, this implies that
every solution of �5� decays to zero algebraically as z tends to infinity along the critical ray since
the solution can be expressed as a linear combination of two linearly independent solutions of �5�.
To this end, we will use Lemma 3.

Equation �5� has two solutions f j−1 and f j, decaying in Sj−1 and in Sj, respectively. Then it is
not difficult to see that f j−1 blows up in Sj and hence, f j−1 and f j are linearly independent.
Moreover, the asymptotic expansions �9� of f j−1 and f j are valid as z→� in Sj−2�cl�Sj−1��Sj and
in Sj−1�cl�Sj��Sj+1, respectively. Note that the critical ray arg�z�=� j is contained in both sectors.
Finally, since Re�z�m+2�/2�=0 for all z on the critical ray, we see that both f j−1 and f j �and hence all
solutions of �5�� decay to zero algebraically as z tends to infinity along the critical ray arg�z�
=� j. �Incidently, the Stokes sectors Sj are the sectors where Re�z�m+2�/2� keeps a constant sign.�

One might wonder why we do not consider the eigenvalue problem
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�−
d2

dz2 − �− 1���iz�m�u�z� = �u�z� ,

under the boundary condition �2�. �Here we have the opposite sign in front of �−1��, compared to
�1�.� In this case, under the rotation v�z�=u�−iz� and w�z�=v��1/2z� if necessary, the two rays in
�2� map to two of the critical rays of �5�. So we have algebraic decay of the solution. Thus, if one
requires the eigenfunction decay to zero exponentially, there are no eigenvalues, whereas if one
requires the eigenfunction decay to zero merely algebraically, then every complex number � is an
eigenvalue. Hence, we have no interest in this case.

Now we are ready to explain how Theorem 2 covers every symmetric rapid decay boundary
condition. When � is odd, Eq. �1� becomes −u��z�− �iz�mu�z�=�u�z�. In this case, the negative
imaginary axis is the center of a Stokes sector and the critical rays are arg z=−� /2± �2k
−1�� / �m+2� for integers 1�k� �m+3� /2. The two rays in �2� are not critical rays and they are,
in fact, centers of the Stokes sectors. When � is increased by 2, the rays in �2� move, away from
the negative imaginary axis, to the centers of adjacent Stokes sectors. So Theorem 2 covers all
symmetric rapid decay boundary condition for the potential −�iz�m. Similarly, one can see that
when � is even, Theorem 2 covers all symmetric rapid decay boundary condition for the potential
�iz�m.

So far in this subsection, we have discussed all possible symmetric decaying boundary con-
ditions, except the “imaginary axis” boundary condition that u�z� decays to zero as z→� along the
both ends of the imaginary axis when m is even. In this case, if u�z� is an eigenfunction of
−u��z�− �iz�mu�z�=�u�z� satisfying this “imaginary axis” boundary condition, then ��R since
v�z�ªu�−iz� is an eigenfunction of the Hermitian equation

− v��z� + zmv�z� = − �v�z�, v�±� + 0i� = 0.

Next, we briefly mention nonsymmetric decaying boundary conditions. Let us consider, as an
example,

�−
d2

dz2 − �iz�m�u�z� = �u�z� ,

under the boundary condition that u�z� decays to zero exponentially as z tends to infinity along the
rays arg z=−�� /2�+2� / �m+2� and arg z=−�� /2�−4� / �m+2�. Set u1�z�ªu��−1/2z�. Then u1�z�
solves

�−
d2

dz2 + �iz�m�u1�z� = �−1�u1�z� ,

under the boundary condition �2� with �=2. Theorem 2 shows that �−1� is real and positive and
hence, � is not real. In general, if we impose a decaying boundary condition along the two rays in
some Stokes sectors that are not symmetric with respect to the imaginary axis, then the eigenval-
ues are not real and positive.

Finally, we mention that the integer � in �1� and �2� equals to the number of Stokes sectors
between the two sectors where we impose the boundary condition �2�.

C. Results of Sibuya

We will introduce Sibuya’s results, but first we define the order of an entire function g as

order�g� = lim sup
r→�

log log M�r,g�
log r

,

where M�r ,g�=max�	g�rei��	 :0���2�� for r	0. If for some positive real numbers � ,c1 ,c2, we
have M�r ,g��c1 exp�c2r�� for all large r, then the order of g is finite and less than or equal to �.
In this paper, we choose arg z�=� arg z for −�
arg z�� and ��R.
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Now we are ready to introduce some existence results and asymptotic estimates of Sibuya.2

The existence of an entire solution with a specified asymptotic representation for fixed �, is
presented as well as an asymptotic expansion of the value of the solution at z=0 as � tends to
infinity. These results are in Theorems 6.1, 7.2, 19.1, and 20.1 of Sibuya’s book.2 The following is
a special case of these theorems that is enough for our later argument.

Proposition 4: Equation (5) admits a solution f�z ,�� with the following properties.

�i� f�z ,�� is an entire function of �z ,��.
�ii� f�z ,�� and f��z ,��= �d/dz�f�z ,�� admit the following asymptotic expansions. Let 	0.

Then

f�z,�� = z−m/4�1 + O�z−1/2��exp�−
2

m + 2
z�m+2�/2� ,

f��z,�� = − zm/4�1 + O�z−1/2��exp�−
2

m + 2
z�m+2�/2� ,

as z tends to infinity in the sector 	arg z	�3� / �m+2�−, uniformly on each compact set of
the complex �-plane.

�iii� Properties �i� and �ii� uniquely determine the solution f�z ,�� of �5��.
�iv� For each fixed �	0, f and f� also admit the asymptotic expansions,

f�0,�� = �1 + o�1���−1/4exp�K�1/2+1/m� , �10�

f��0,�� = − �1 + o�1���1/4exp�K�1/2+1/m� , �11�

as � tends to infinity in the sector 	arg �	��−�, where

K = 
0

�

��1 + tm − �tm�dt . �12�

�v� The entire functions �� f�0,�� and �� f��0,�� have orders 1
2 +1/m.

Proof: In Sibuya’s book,2 see Theorem 6.1 for a proof of �i� and �ii�; Theorem 7.2 for a proof
of �iii�; and Theorem 19.1 for a proof of �iv�. And �v� is a consequence of �iv� along with Theorem
20.1. Note that properties �i�, �ii� and �iv� are summarized on pages 112 and 113 of Sibuya’s
book.2 �

The next thing we want to introduce is the Stokes multiplier. Let f�z ,�� be the function in
Proposition 4. Note that f�z ,�� decays to zero exponentially as z→� in S0, and blows up in
S−1�S1. Then, the function

fk�z,�� ª f��−kz,�−mk�� , �13�

obtained by rotating f�z ,�−mk�� in the z variable, solves �5�. It is clear that f0�z ,��= f�z ,��, and
that fk�z ,�� decays in Sk and blows up in Sk−1�Sk+1 since f�z ,�−mk�� decays in S0. Since no
non-constant solution decays in two adjacent Stokes sectors, fk and fk+1 are linearly independent
and hence, any solution of �5� can be expressed as a linear combination of these two. Especially,
for some coefficients Cj,k��� and Dj,k���,

f j�z,�� = Cj,k���fk�z,�� + Dj,k���fk+1�z,��, j,k � Z . �14�

These Cj,k��� and Dj,k��� are called the Stokes multipliers of f j with respect to fk and fk+1.
Then,
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Cj,k��� =
Wj,k+1���
Wk,k+1���

, Dj,k��� = −
Wj,k���

Wk,k+1���
, �15�

where Wj,k= f j fk�− f j�fk is the Wronskian of f j and fk. Since both f j and fk are solutions of the same
linear equation �5�, the Wronskians are constant functions of z. Also, since fk and fk+1 are linearly
independent, Wk,k+1�0 for all k�Z. In the next lemma, we will show that the Wronskian
Wk,k+1��� is constant, which is needed in the proof of our main theorem.

Lemma 5: For each k�Z ,Wk,k+1���=−2�−m/4−k−1, that is independent of �.
Proof: Since fk�z ,��= f��−kz ,�−mk��, we get

fk+1�z,�� = f��−�k+1�z,�−m�k+1��� = fk��−1z,�−m�� = fk��−1z,�2��, by �m+2 = 1.

This along with fk+1� �z ,��=�−1fk���
−1z ,�2��, one can show that

Wj+1,k+1��� = �−1Wj,k��2�� . �16�

Using Proposition 4 �ii� and

W−1,0��� = f−1f0� − f0f−1� = f��z,�−2��f��z,�� − f�z,���f���z,�−2�� ,

one can show that as z tends to infinity in S0 �for which above-mentioned asymptotics are valid�,

W−1,0��� = − ��z�−m/4zm/4�1 + O�z−1/2��exp�−
2

m + 2
��z��m+2�/2 −

2

m + 2
z�m+2�/2�

+ z−m/4���z�m/4�1 + O�z−1/2��exp�−
2

m + 2
��z��m+2�/2 −

2

m + 2
z�m+2�/2�

= − 2�−m/4�1 + O�z−1/2�� since ��m+2�/2 = − 1.

Finally,

W−1,0�a,�� = − 2�−m/4. �17�

Thus �16� and �17� complete the proof. �

In the next lemma, we will show that the Wronskians Wk,0��� for 2�k�m have orders 1
2

+1/m, which is needed in establishing the induction step in Theorem 11 and proving existence of
the eigenvalues under various boundary conditions. This lemma is due to Sibuya,2 but we give a
full proof here.

Lemma 6: For each 2�k�m, the Wronskian Wk,0��� has its order 1
2 + 1

m � � 1
2 ,1�.

Proof: First, we look at

Wk,0��� = fk�z,��f0��z,�� − f0�z,��fk��z,�� = f�0,�2k��f��0,�� − f�0,���−kf��0,�2k�� , �18�

where we take z=0 since the Wronskian is independent of z. Then the Wronskian Wk,0��� has
order less than or equal to 1

2 +1/m because each term in the right hand side of �18� has order 1
2

+1/m by Lemma 4 �v�. So in order to show Wk,0��� has order equal to 1
2 +1/m, it suffices to show

that there exist c1	0 and c2	0 such that 	Wk,0���	�c1 exp�c2	�	1/2+1/m� for all large 	�	 along
some ray.

Next, we examine the right-hand side of �18� along the ray

arg � 
 � = � −
4�

m + 2
,

by using the asymptotic expansions �10� and �11�. Note that �� �−�+� ,�−��, for all 0
�

� / �m+2�. Recall that the expansions �10� and �11� are valid when �→� in 	arg �	��−�.
Since
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arg��2k�� 
 �* = � +
4k�

m + 2
− 2� for 2 � k �

m + 2

2
, �19�

we have

− � 
 −
m�

m + 2

 �* 
 � 


m�

m + 2

 � for 2 � k �

m + 2

2
. �20�

Thus,

f�0,�2k�� = �1 + o�1��	�	−1/4e−i�*/4 exp�K	�	1/2+1/mei��m+2�/2m��*� ,

f��0,�2k�� = − �1 + o�1��	�	−1/4e−i�*/4 exp�K	�	1/2+1/mei��m+2�/2m��*� .

This along with �18� yields

Wk,0��� = − �1 + o�1��	�	1/4ei�/4	�	−1/4e−i�*/4 exp�K	�	1/2+1/m�ei�1/2+1/m�� + ei�1/2+1/m��*��
+ �1 + o�1��	�	−1/4e−i�/4�−k	�	1/4ei�*/4 exp�K	�	1/2+1/m�ei�1/2+1/m�� + ei�1/2+1/m��*��

= �− ei��−�*�/4 + �−kei��*−��/4��1 + o�1��exp�K	�	1/2+1/m�ei�1/2+1/m�� + ei�1/2+1m��*��
= − 2i�−k/2�1 + o�1��exp�K	�	1/2+1/m�ei�1/2+1/m�� + ei�1/2+1/m��*�� ,

where the last step is by �−�*=2�−4k� / �m+2�. So when arg �=�−4� / �m+2�, we have

Re�ei�1/2+1/m�� + ei�1/2+1/m��*� = Re�cos�m + 2

2m
�� + cos�m + 2

2m
�*�� 	 0,

where the last step is by �20�.
So for 2�k� �m+2� /2, since K	0, there exists c2	0 such that 	Wk,0���	

�exp�c2	�	1/2+1/m� for all large 	�	 on the ray arg �=�−4� / �m+2�. Thus the order of Wk,0��� for
2�k� �m+2� /2 is 1 /2+1/m.

Certainly, the Wronskian Wk,0��� for 2�k� �m+2� /2 is blowing up in some other directions
as well. If one finds � and �* satisfying �20�, the above argument will show that Wk,0��� is blowing
up along arg �=�.

Next for �m+2� /2
k�m, one can choose �=−�+4� / �m+2� and �* by �19�, and then
follow an argument similar to the above to conclude that the order of Wk,0��� is 1 /2+1/m. Or one
uses an index change to reduce to the case already considered. That is,

Wk,0��� = Wk−�m+2�,0���

= �m+2−kW0,m+2−k��−2�m+2−k��� by �16�

= − �m+2−kWm+2−k,0��−2�m+2−k��� .

Then since 2�m+2−k
 �m+2� /2, we know the order of Wm+2−k,0��2�m+2−k��� is 1 /2+1/m, and
hence so is the order of Wk,0��� for �m+2� /2
k�m. This completes the proof. �

D. Further results of Sibuya; identifying the eigenvalues as zeros of certain entire
functions

We can relate the zeros of C−n,n−1��� and D−n,n��� with the eigenvalues of H�. First, we study
the case when � is odd, as follows.

Lemma 7: Let �=2n−1 be odd, with 1���m−1. Then the following are equivalent:

�i� a complex number � is an eigenvalue of H�;
�ii� � is a zero of the entire function C−n,n−1���; and
�iii� � is a zero of the entire function D−n,n���.
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Moreover, the orders of the entire functions C−n,n−1��� and D−n,n��� are 1
2 +1/m� � 1

2 ,1�.
Hence, the eigenvalues are discrete because they are zeros of a non-constant entire function.

Note that the Stokes multipliers C−n,n−1��� and D−n,n��� are called spectral determinants or Evans
functions.

Proof: Suppose that � is an eigenvalue of H2n−1 with the corresponding eigenfunction u. We
let v�z�=u�−iz�. Then v solves

− v��z� + �zm + ��v�z� = 0,

and decays in S−n�Sn. Since f−n�z ,�� is another solution of this equation that decays in S−n, we
see that f−n�z ,�� is a multiple of v. Similarly fn�z ,�� is a multiple of v. Since

f−n�z,�� = C−n,n−1���fn−1�z,�� + D−n,n−1���fn�z,�� , �21�

and since fn−1�z ,�� blows up in Sn, we conclude that C−n,n−1���=0.
Conversely, we suppose that C−n,n−1���=0 for some ��C. Then from �21� we see that

f−n�z ,�� is a constant multiple of fn�z ,��. Thus both are decaying in S−n�Sn, and hence u�z�
ª f−n�iz ,�� is an eigenfunction of H2n−1 associated with the eigenvalue �.

Similarly, since

f−n�z,�� = C−n,n���fn�z,�� + D−n,n���fn+1�z,�� ,

we see that � is an eigenvalue of H2n−1 if and only if D−n,n���=0.
Finally, since Wk,k+1��� is a constant by Lemma 5 and since Wk,0��� for 2�k�m has order

1
2 + 1

m by Lemma 6, we see from �15� that C−n,n−1��� and D−n,n��� are of order 1
2 + 1

m � � 1
2 ,1�. This

completes the proof. �

Second, we can relate the zeros of C−n−1,n−1��� and D−n−1,n��� with the eigenvalues of H�,
when � is even, as follows.

Lemma 8: Let �=2n be even, with 1���m−1. Then the following are equivalent:

�i� a complex number � is an eigenvalue of H�;
�ii� � is a zero of the entire function ��C−n,n��−1��; and
�iii� � is a zero of the entire function ��D−n−1,n����.

Moreover, the orders of the entire functions ��C−n,n��−1�� and ��D−n−1,n���� are 1
2 + 1

m
� � 1

2 ,1�.
Note again that the Stokes multipliers C−n,n��−1�� and D−n−1,n���� are spectral determinants

or Evans functions.
Proof: Let u be an eigenfunction of H2n associated with the eigenvalue �. Then

v�z�ªu�−iz� solves

v��z� + zmv�z� = �v�z� .

Next we set w1�z�ªv��−1/2z�. Then w1�z� solves

− w1��z� + �zm + �−1��w1�z� = 0. �22�

One can then check that the boundary condition of H2n becomes that w1�z�→0 as z→� in
S−n�Sn+1. Then like we did for Lemma 7, since

f−n�z,�−1�� = C−n,n��−1��fn�z,�−1�� + D−n,n��−1��fn+1�z,�−1�� ,

� is an eigenvalue of H2n if and only if C−n,n��−1��=0.
Similarly, we let w2�z�ªv��1/2z�. Then w2�z� solves

− w2��z� + �zm + ���w2�z� = 0, �23�

and the boundary condition of H2n becomes that w2�z�→0 as z→� in S−n−1�Sn. Then since
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f−n−1�z,��� = C−n−1,n����fn�z,��� + D−n−1,n����fn+1�z,��� ,

� is an eigenvalue of H2n if and only if D−n−1,n����=0. This completes the proof. �

Next we want infinite product representations of the entire functions f�0,�� and f��0,��.
Recall that the integer m�3 is fixed.

Lemma 9: The functions f�0,�� and f��0,�� have infinitely many zeros Ej 
0 and Ej�
0,
respectively. Moreover, they admit the following infinite product representations:

f�0,�� = A1�
j=1

� �1 −
�

Ej
� for some A1 � C \ �0� . �24�

f��0,�� = A2�
j=1

� �1 −
�

Ej�
� for some A2 � C \ �0� . �25�

Proof: We know that f�0,�� and f��0,�� have orders 1
2 +1/m� �0,1� by Proposition 4 �v�, and

hence by the Hadamard factorization theorem �see, for example, Theorem 14.2.6 on page 199 of
Ref. 21�, we know f�0,�� and f��0,�� have infinite product representations �24� and �25� where
f�0,Ej�=0 and f��0,Ej��=0 for all j�N. So in order to complete the proof, we need to show E

0 if f�0,E�=0, and E�
0 if f��0,E��=0.

Suppose f�0,E*�=0 or f��0,E*�=0. By the definition, we know that f�z ,E*� solves

− f��z,E*� + zmf�z,E*� = − E*f�z,E*� ,

and decays to zero exponentially in S0. �Note that −d2/dx2+xm is Hermitian in L2��0, +���.� In
order to show E*
0, we multiply this equation by f�z ,E*� and integrate over the positive real axis
to get

− 
0

�

f��x,E*�f�x,E*�dx + 
0

�

xm	f�x,E*�	2dx = − E*
0

�

	f�x,E*�	2dx .

Next we integrate the first term by parts, and use f�0,E*�=0 or f��0,E*�=0. Clearly the left-hand
side of the resulting equation is positive, and hence we conclude E*
0. This completes the
proof. �

Next, we will introduce a symmetry lemma, regarding f�z ,�� and f�z ,��.
Lemma 10: For each ��C,

f�z̄,�� = f�z,�̄�, f��z̄,�� = f��z,�̄� . �26�

Proof: This lemma for z=0 is contained in Lemma 8 in Ref. 4, and in fact that is all we will
need in this paper. A proof of this lemma is essentially the same as that of Lemma 8 in Ref. 4. So
we omit the proof here. �

III. THE INDUCTION STEP

In proving Theorem 2, we will use induction on �. The induction step will be provided by the
following theorem.

Theorem 11: If 1���m /2−1 and all the eigenvalues of H� lie in the sector 	arg· 	
�2� / �m+2�, then every eigenvalue of H�+1 is real and positive.

Proof of Theorem 11 (Case I: �=2n−1 is odd, with 1�n�
m
4 �: Suppose that all the eigenval-

ues � j of H2n−1 lie in the sector 	arg � j	�2� / �m+2�. That is, zeros � j of the entire function
��D−n,n��� lie in the sector 	arg �	�2� / �m+2� �see Lemma 7�. We will show that every
eigenvalue � of H2n is real and positive.

Suppose u�z� is an eigenfunction of H2n associated with the eigenvalue �. Then u�z� solves
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− u��z� + �iz�mu�z� = �u�z� ,

and decays to zero as z tends to infinity along the two rays arg z=−� /2± �2n+1�� / �m+2�. Set
v�z�=u�−iz�. Then v�z� solves

v��z� + zmv�z� = �v�z� , �27�

and decays to zero as z tends to infinity along the two rays arg z= ± �2n+1�� / �m+2�.
Next we let w�z�=v��−1/2z� so that w�z� solves

− w��z� + �zm + �−1��w�z� = 0, �28�

and decays to zero as z tends to infinity along the two rays arg z= �2n+2�� / �m+2� , −2n� / �m
+2�, the center rays of Sn+1 and S−n.

Then we examine

f−n�z,�−1�� = C−n,n��−1��fn�z,�−1�� + D−n,n��−1��fn+1�z,�−1�� ,

or equivalently,

f��nz,�−2n−1�� = C−n,n��−1��f��−nz,�2n−1�� + D−n,n��−1��f��−n−1z,�2n+1�� . �29�

Since C−n,n��−1��=0 by Lemma 8, we get D−n,n��−1���0.
Next we will show that 	D−n,n��−1��	�1 when � is an eigenvalue of H2n with Im ��0. To

this end, we evaluate the Eq. �29� and its differentiated form at z=0 to get

f�0,�−2n−1�� = D−n,n��−1��f�0,�2n+1�� , �30�

�nf��0,�−2n−1�� = �−n−1D−n,n��−1��f��0,�2n+1�� . �31�

Since � is an eigenvalue, so is �̄. Thus,

f�0,�−2n−1�̄� = D−n,n��−1�̄�f�0,�2n+1�̄� ,

�nf��0,�−2n−1�̄� = �−n−1D−n,n��−1�̄�f��0,�2n+1�̄� .

We take the complex conjugates of these, and apply �26� at z=0 to get

f�0,�2n+1�� = D−n,n��−1�̄�f�0,�−2n−1�� ,

�−nf��0,�2n+1�� = �n+1D−n,n��−1�̄�f��0,�−2n−1�� .

So these along with �30� and �31� imply

D−n,n��−1��D−n,n��−1�̄� = 1. �32�

Clearly the order of the entire function ��D−n,n��� is 1
2 +1/m� �0,1�. So by the Hadamard

factorization theorem we have

D−n,n��� = B�
j=1

� �1 −
�

� j
� for some B � C \ �0� ,

where the � j are the zeros of D−n,n���, and so 	arg � j	�2� / �m+2� for all j�N, by hypothesis.
Thus,
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�D−n,n��−1��

D−n,n��−1�̄�
� = �

j=1

� � 1 −
�−1�

� j

1 −
�−1�̄

� j

� = �
j=1

� ��� j − �

�� j − �̄
� � 1, when Im � � 0, �33�

since Im��� j��0 for all j�N. This along with �32� implies

	D−n,n��−1��	 � 1 when Im � � 0.

Since the non-constant entire function f�z ,�2n+1�� solves

− f��z,�2n+1�� + �zm + �2n+1��f�z,�2n+1�� = 0,

we know f�0,�2n+1�� and f��0,�2n+1�� cannot be zero at the same time. Otherwise,
f�z ,�2n+1��=0 for all z�C.

Suppose that f�0,�2n+1���0. Then we get

1 � 	D−n,n��−1��	 = �
j=1

� � 1 −
�−2n−1�

Ej

1 −
�2n+1�

Ej

� = �
j=1

� ��2n+1Ej − �

�2n+1Ej − �̄
� � 1 when Im � � 0,

where the last inequality holds since Im��2n+1Ej��0 if 0�arg��2n+1���, by Lemma 9 �this is
where we use 1�n�m /4�. So we obtain

	D−n,n��−1��	 = 1 when Im � � 0. �34�

Similarly, when f��0,�2n+1���0,

1 � 	D−n,n��−1��	 = �
j=1

� � 1 −
�−2n−1�

Ej�

1 −
�2n+1�

Ej�
� = �

j=1

� ��2n+1Ej� − �

�2n+1Ej� − �̄
� � 1 when Im � � 0,

where the Ej� are zeros of f��0,E�. So we again have �34�. Hence �33� along with combining �32�
and �34� yields

�
j=1

� ��� j − �

�� j − �̄
� = 1. �35�

Since 	arg � j	�2� / �m+2� for all j�N, we know Im��� j��0 for all j�N. Moreover, Im��� j�
	0 for some j since both � j and � j are eigenvalues of the PT-symmetric oscillator H2n−1.

Therefore, from �35� we conclude �= �̄, and so � is real.
We still need to show positivity of the eigenvalues. The function v�z� solves �27� and we know

��R. Also, one can check that v�z̄� solves the same equation. Since the eigenvalues are simple,
v�z� and v�z̄� must be linearly dependent, and hence v�z�=cv�z̄� for some c�C. Since 	v�z�	 and
	v�z̄�	 agree on the real line, we see that 	c	=1 and 	v�z�	= 	v�z̄�	 for all z�C. That is, 	v�x+ iy�	 is
even in y. From this we have that

0 = � �

�y
	v�x + iy�	2�

y=0
= − 2 Im�v��x�v�x�� for all x � R . �36�
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Let g�r�=v�rei�� for 2n� / �m+2�
�
 �2n+2�� / �m+2�. Then g�r� satisfies

e−2i�g��r� + emi�rmg�r� = �g�r� .

Multiplying this by g�r� and integrating the resulting equation over r� �0,�� yield

e−2i�
0

�

g��r�g�r�dr + emi�
0

�

rm	g�r�	2dr = �
0

�

	g�r�	2dr .

Next we integrate the first term by parts and multiply the resulting equation by ei� to have

− e−i�g��0�g�0� − e−i�
0

�

	g��r�	2dr + e�m+1�i�
0

�

rm	g�r�	2dr = �ei�
0

�

	g�r�	2dr .

Then we use e−i�g��0�=v�0� and take the imaginary parts to get, for all 2n� / �m+2�
�
 �2n
+2�� / �m+2�,

sin �
0

�

	g��r�	2dr + sin��m + 1���
0

�

rm	g�r�	2dr = � sin �
0

�

	g�r�	2dr .

We evaluate this at �= �2n+1�� / �m+1� to have �	0. Note that since 1�n� �m−2� /4, we see
that 2n� / �m+2�
�= �2n+1�� / �m+1�
 �2n+2�� / �m+2�. �

Proof of Theorem 11 (Case II: �=2n is even, with 1�n� �m−2� /4�: Suppose that all the
eigenvalues � j of H2n lie in the sector 	arg �	�2� / �m+2�. Equivalently, zeros of the entire func-
tion ��D−n−1,n���� lie in the sector 	arg �	�2� / �m+2�. We will show that every eigenvalue � of
H2n+1 is real and positive.

First, we examine D−n−1,n���. From Lemma 8 �iii�, the zeros of ��D−n−1,n���� are the eigen-
values � j of H2n, which lie in the sector 	arg �	�2� / �m+2�, by hypothesis. So

D−n−1,n���� = B1�
j=1

� �1 −
�

� j
� for some B1 � C − �0� ,

where Im��� j��0 for all j�N. Hence,

D−n−1,n��� = B1�
j=1

� �1 −
�−1�

� j
� .

Thus, since Im��� j��0,

�D−n−1,n���

D−n−1,n��̄�
� = �

j=1

� � 1 −
�−1�

� j

1 −
�−1�̄

� j

� = �
j=1

� ��� j − �

�� j − �̄
� � 1 when Im � � 0. �37�

Next, we suppose that u�z� is an eigenfunction of H2n+1 associate with the eigenvalue �. That
is, u�z� solves

− u��z� + �− 1�2n+1�iz�mu�z� = �u�z� ,

and decays to zero as z tends to infinity along the two rays arg z=−� /2± �2n+2�� / �m+2�. Set
v�z�=u�−iz�. Then v�z� solves
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− v��z� + �zm + ��v�z� = 0, �38�

and decays to zero as z tends to infinity along the two rays arg z= ± �2n+2�� / �m+2�, the center
rays of Sn+1 and S−n−1.

We take a close look at

f−n−1�z,�� = C−n−1,n���fn�z,�� + D−n−1,n���fn+1�z,�� . �39�

Since C−n−1,n���=0 by Lemma 7, D−n−1,n����0. So

f��n+1z,�−2n−2�� = D−n−1,n���f��−n−1z,�2n+2�� . �40�

We will show that 	D−n−1,n���	�1 when � is an eigenvalue of H2n+1 with Im ��0.

Suppose f�0,�−2n−2���0. Since � is an eigenvalue, so is �̄. We replace � by �̄ in �40�, and
then evaluate the resulting equation at z=0 to get

f�0,�−2n−2�̄� = D−n−1,n��̄�f�0,�2n+2�̄� .

Then we take the complex conjugate of this and apply �26� so that we have

f�0,�2n+2�� = D−n−1,n��̄�f�0,�−2n−2�� .

Combining this with �40� at z=0 yields

D−n−1,n��̄�D−n−1,n��� = 1, �41�

where we used f�0,�−2n−2���0.
Similarly, when f��0,�−2n−2���0, we get �41� again.
Eq. �41� along with the inequality in �37� implies 	D−n−1,n���	�1 when � is an eigenvalue of

H2n+1 with Im ��0. So from �40� at z=0 we have

1 � 	D−n−1,n���	 = �
j=1

� � 1 −
�−2n−2�

Ej

1 −
�2n+2�

Ej

� = �
j=1

� ��2n+2Ej − �

�2n+2Ej − �̄
� � 1 when Im � � 0, �42�

where the last inequality holds since Im��2n+2Ej��0 if 0�arg��2n+2��� �this is where we use
1�n� �m−2� /4�. Then like in the proof for the case � odd, we have 	D−n−1,n���	=1, which is also

obtained when f�0,�−2n−2��=0 �and hence f��0,�−2n−2���0.� Therefore, we conclude �= �̄, and
so � is real, like in the proof of the case � odd.

We still need to show positivity of the eigenvalues �. Recall that ��R and that
v�z�=u�−iz� solves �38�. Let g�r�=v�rei��. Then,

e−2i�g��r� + emi�rmg�r� = �g�r� .

We multiply this by g�r� and integrate over r� �0,�� to get

e−2i�
0

�

g��r�g�r�dr + emi�
0

�

rm	g�r�	2dr = �
0

�

	g�r�	2dr .

Since v�z� decays exponentially to zero as z tends to infinity in Sn+1�S−n−1, we have integrability
for �2n+1�� / �m+2�
�
 �2n+3�� / �m+2�.

Note that since ��R, Eq. �36� is valid for this case as well. We integrate the first term by
parts and multiply the resulting equation by ei� to get
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− e−i�g��0�g�0� − e−i�
0

�

	g��r�	2dr + e�m+1�i�
0

�

rm	g�r�	2dr = �ei�
0

�

	g�r�	2dr .

Then we use e−i�g��0�=v�0� and take the imaginary parts with using �36� to get, for all �2n
+1�� / �m+2�
�
 �2n+3�� / �m+2�,

sin �
0

�

	g��r�	2dr + sin��m + 1���
0

�

rm	g�r�	2dr = � sin �
0

�

	g�r�	2dr .

Evaluating this at �= �2n+1�� / �m+1� proves �	0. Note that since 1�n� �m−2� /4, we see
that �2n+1�� / �m+2�
�= �2n+1�� / �m+1�
 �2n+3�� / �m+2�. �

IV. PROOF OF THEOREM 2

In proving Theorem 2, our induction basis is provided by the following lemma that is due to
Dorey et al.3 �also, see Shin4�.

Lemma 12: The eigenvalues � of H1 are all real and positive.
Here we will give an outline of the proof.
Proof: Let � be an eigenvalue of H1 with the corresponding eigenfunction u�z�. Set v�z�

=u�−iz�. Then v�z� decays in S−1�S1 and solves

− v�z� + �zm + ��v�z� = 0.

Since

f−1�z,�� = C−1,0���f0�z,�� + D−1,0���f1�z,�� , �43�

C−1,0���=0. Moreover, we know that from �15� and �16�, and Lemma 5,

	D−1,0���	 = �W−1,0���
W0,1���

� = 1.

Next, we use infinite product forms of either �43� when f−1�0,���0, or its differentiated form
when f−1� �0,���0 at z=0. Then like in the proof of Theorem 11, one can show that �	0. Note
that the hypothesis in Theorem 11 is needed for showing 	D−1,0���	=1 only. �

Now we are ready to prove Theorem 2.
Proof of Theorem 2. For integers 1���m /2, the theorem easily follows from induction on �

along with Theorem 11 and Lemma 12.
For m /2
��m−1, suppose that � is an eigenvalue of H� with the corresponding eigenfunc-

tion u1�z�. Let u�z�ªu1�−z�. Then u�z� solves −u��z�+ �−1���−iz�mu�z�=�u�z�, that is, u�z� solves

− u��z� + �− 1�m−��iz�mu�z� = �u�z� .

Next, we examine the boundary condition. It is clear that since u1�z� decays along the two rays
arg z=−� /2± ��+1/ �m+2���, we see that u�z� decays along the two rays

arg z = − � −
�

2
+

� + 1

m + 2
� = −

�

2
−

�m − �� + 1

m + 2
� ,

arg z = � −
�

2
−

� + 1

m + 2
� = −

�

2
+

�m − �� + 1

m + 2
� .

This is the boundary condition �2� with m−� in the place of �. Hence, u�z� is an eigenfunction of
Hm−� associated with the eigenvalue �. Since m /2
��m−1, we see that 1�m−�
m /2. So
�	0. This completes the proof. �

Remark: Our method in this paper closely follows the �=1 method of Dorey et al.3 and Shin.4
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One big difference is that if �=1 then 	D−1,0���	=1 for all ��C, whereas for 1
�
m−1, the
corresponding functions ��D−n,n��−1�� in �29� and ��D−n−1,n��� in �39� are entire functions of
order 1

2 +1/m. However, when � is an eigenvalue of H�+1, under some hypothesis on the eigen-
values � of H� we are able to show that 	D−n,n��−1��	=1 for �=2n−1 odd, and 	D−n−1,n���	=1 for
�=2n even. This is the new and main idea in proving the induction step, Theorem 11.

V. CONCLUSIONS

In this paper, we proved that for each integer 1���m−1, the eigenvalues ��C of

− u��z� + �− 1���iz�mu�z� = �u�z� ,

under the boundary condition that u�z�→0 exponentially, as z→� along the two rays arg z=
−� /2± ��+1� / �m+2�, are all real and positive. And we studied other boundary conditions. Due to
asymptotic behavior of the solution u�z� as z→�, if the Stokes sectors that contain the two ray
where we impose the boundary condition are symmetric with respect to the imaginary axis, then
the eigenvalues are all real and positive, except the case when the two Stokes sectors contain the
imaginary axis. For all other rapid decaying boundary conditions, either there is no eigenvalue or
the eigenvalues are not real.

It will be interesting to consider the eigenvalue problem with more general polynomial
potentials �−1���iz�m+ P�iz� where P�z� is a real polynomial with degree less than m, under the
boundary condition �2�.

It is known that some PT-symmetric oscillators with some cubic and quartic polynomial
potentials have nonreal eigenvalues.13,14,16,17 One would like to classify when PT-symmetric
oscillators with polynomial potentials have nonreal eigenvalues.
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The SU�2� Yang-Mills-Higgs theory supports the existence of monopoles, anti-
monopoles, and vortex rings. In this paper, we would like to present new exact
static antimonopole-monopole-antimonopole �A-M-A� configurations. The net
magnetic charge of these configurations is always −1, while the net magnetic
charge at the origin is always +1 for all positive integer values of the solution’s
parameter m. However, when m increases beyond 1, vortex rings appear coexisting
with these AMA configurations. The number of vortex rings increases proportion-
ally with the value of m. They are located in space where the Higgs field vanishes
along rings. We also show that a single-point singularity in the Higgs field does not
necessarily correspond to a structureless 1-monopole at the origin but to a zero-size
monopole-antimonopole-monopole �MAM� structure when the solution’s param-
eter m is odd. This monopole is the Wu-Yang-type monopole and it possesses the
Dirac string potential in the Abelian gauge. These exact solutions are a different
kind of Bogomol’nyi-Prasad-Sommerfield �BPS� solutions as they satisfy the first-
order Bogomol’nyi equation but possess infinite energy due to a point singularity at
the origin of the coordinate axes. They are all axially symmetrical about the
z-axis. © 2005 American Institute of Physics. �DOI: 10.1063/1.1996832�

I. INTRODUCTION

The SU�2� Yang-Mills-Higgs �YMH� field theory, with the Higgs field in the adjoint repre-
sentation, possesses magnetic monopole, multimonopole, antimonopoles, and vortex rings
solutions.1–8 The only spherically symmetric monopole solution is the unit magnetic charge mono-
pole. The ’t Hooft–Polyakov monopole solution with nonzero Higgs mass and Higgs self-
interaction is numerically and spherically symmetrical.1,2 Multimonopole solutions possess at
most axial symmetry.3

The model with nonvanishing Higgs vacuum expectation value but vanishing Higgs potential
possesses exact monopole and multimonopole solutions which can be obtained by solving the
first-order Bogomol’nyi equations.9 These solutions satisfying the Bogomol’nyi-Prasad-
Sommerfield �BPS� limit possess minimal energies. Exact monopole and multimonopoles solu-
tions exist in the BPS limit,2,3 while outside the BPS limit, when the Higgs field potential is
nonvanishing, only numerical solutions are known. Asymmetric multimonopole solutions with no
rotational symmetry are numerical solutions even in the BPS limit.4

At present, the different exact configurations of monopoles found are the BPS multimonopole
solutions of magnetic charges M greater than unity with all the magnetic charges superimposed
into a single point in space.3 These superimposed multimonopole solutions possess axial and
mirror symmetries. Following these works, finitely separated 1-monopoles were also
constructed.4,5

Numerical axially symmetric non-Bogomol’nyi monopole-antimonopole chain solutions were

a�Electronic mail: rosyteh@usm.my

JOURNAL OF MATHEMATICAL PHYSICS 46, 082301 �2005�

46, 082301-10022-2488/2005/46�8�/082301/13/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.1996832


also found to exist both in the limit of a vanishing Higgs potential as well as in the presence of a
finite Higgs potential. Recently, numerical BPS axially symmetric vortex rings solutions have also
been reported.6

We have reported on the existence of a different type of BPS static monopole-antimonopole
solution in Ref. 7. This solution, which is exact and axially symmetric, represents two separate
antimonopoles located at equal distances along the z-axis from a 1-monopole which is located at
the origin. We have also shown that the extended ansatz of Ref. 7 possesses more multimonopole-
antimonopole configurations, together with their anticonfigurations.8 These configurations possess
either radial, axial, or mirror symmetries about the z-axis, and they represent different combina-
tions of monopoles, multimonopole, and antimonopoles.

In general, configurations of the YMH field theory with a unit magnetic charge are spherically
symmetric,1,2 while multimonopole configurations with magnetic charges greater than unity pos-
sess at most axial symmetry.3 However, we have emphasized in a recent work10 that unit magnetic
charge configurations are not necessarily spherically symmetric. By employing the ansatz of Ref.
7, we have found an exact unit magnetic charge solution that does not even possess axial sym-
metry but only mirror symmetry about a vertical plane through the z-axis. However, the converse
is true, and it has been shown that multimonopole solutions cannot possess spherical symmetry.11

We would also like to mention that, within the ansatz of Ref. 7, half-monopole solutions have also
been reported.10

In this paper we would like to present new static axially symmetric antimonopole-monopole-
antimonopole �A-M-A� configurations of the SU�2� YMH theory with the Higgs field in the
adjoint representation. Here, the Higgs field vanishes either at points corresponding to antimono-
poles or at rings corresponding to vortex loops. The net magnetic charge of these configurations is
always −1, while the net magnetic charge at the origin, r=0, is always +1 for all positive integer
values of the solution’s parameter m. However, when m increases beyond 1, vortex rings appear
coexisting with these A-M-A configurations. The number of vortex rings in the configuration is
equal to �m−1�, where m�1. They are located horizontally in space where the Higgs field is zero
along rings. Hence, this family of solutions all lies in the topologically nontrivial sector with
topogical charge −1.

The two antimonopoles of the solutions are located at the two zeros of the Higgs field along
the z-axis, while the Wu-Yang-type 1-monopole is located at a point singularity of the Higgs field
at the origin. We also show that this single-point singularity in the Higgs field need not correspond
to a structureless 1-monopole at the origin but to a zero-size monopole-antimonopole-monopole
�MAM� structure when m is odd. These exact solutions are a different kind of BPS solution as they
satisfy the first-order Bogomol’nyi equation, but possess infinite energy due to a point singularity
at the origin of the coordinate axes.

We briefly review the SU�2� Yang-Mills-Higgs field theory and discuss the boundary condi-
tions of these solutions in Sec. II. We discuss the magnetic ansatz and its formulation in Sec. III
and present the solutions in Sec. IV. We end with some comments in Sec. V.

II. THE SU„2… YANG-MILLS-HIGGS THEORY

The SU�2� group admits the triplet Yang-Mills gauge fields potential A�
a which when coupled

to a scalar Higgs triplets field �a in 3+1 dimensions gives the SU�2� YMH theory.12 The index a
is the SU�2� internal space index and, for a given a, �a is a scalar whereas A�

a is a vector under
Lorentz transformation. The SU�2� YMH Lagrangian is given by

L = −
1

4
F��

a Fa�� +
1

2
D��aD��a −

1

4
���a�a −

�2

�
�2

, �1�

where the Higgs field mass, �, and the strength of the Higgs potential, �, are constants. The
vacuum expectation value of the Higgs field is then � /��. The Lagrangian �1� is gauge invariant
under the set of independent local SU�2� transformations at each space–time point. The covariant
derivative of the Higgs field and the gauge field strength tensor are given, respectively, by
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D��a = ���a + �abcA�
b �c, �2�

F��
a = ��A�

a − ��A�
a + �abcA�

b A�
c . �3�

Since the gauge field coupling constant g can be scaled away, we can set g to 1 without any loss
of generality. The metric used is g��= �−+ + + �. The SU�2� internal group indices a, b, c run from
1 to 3 and the spatial indices are �, �, �=0, 1, 2, and 3 in Minkowski space.

The equations of motion that follow from the Lagrangian �1� are

D�F��
a = ��F��

a + �abcAb�F��
c = �abc�bD��c,

D�D��a = − ��a��b�b −
�2

�
� . �4�

The tensor to be identified with the Abelian electromagnetic field, as proposed by ’t Hooft,1,13 is

F�� = �̂aF��
a − �abc�̂aD��̂bD��̂c = ��A� − ��A� − �abc�̂a���̂b���̂c, �5�

where A�=�̂aA�
a , �̂a=�a / ���, ���=��a�a. Hence, the Abelian electric field is Ei=F0i, and the

Abelian magnetic field is Bi=− 1
2�ijkFjk, where the indices i, j, k=1,2 ,3. The topological magnetic

current, which is also the topological current density of the system, is13

k� =
1

8�
���	
�abc�

��̂a�	�̂b�
�̂c. �6�

Therefore, the corresponding conserved topological magnetic charge is

M =	 d3xk0 =
1

8�
	 �ijk�

abc�i��̂a� j�̂
b�k�̂

c�d3x =
1

8�

 d2
i��ijk�

abc�̂a� j�̂
b�k�̂

c� =
1

4�

 d2
iBi.

�7�

Our work is restricted to the static case where A0
a=0 with massless Higgs field and vanishing

self-interaction. The magnitude of the Higgs field vanishes as 1 /r at large r. However, this does
not affect the Abelian magnetic field of the solutions, as this magnetic field depends only on the
unit vector of the Higgs field. It is in this limit that the solutions are solved using both the
second-order Euler-Lagrange equations and the Bogomol’nyi equations, Bi

a±Di�
a=0. The � sign

corresponds to monopoles and antimonopoles, respectively, for the usual BPS solutions.13 In our
case, the A-M-A configuration is solved with the � sign, and its anticonfiguration, that is, the
M-A-M configuration, is solved with the  sign.8

III. THE ANSATZ AND ITS FORMULATION

The static gauge fields and Higgs field which will lead to the axially symmetric vortex rings
solutions are given, respectively, by7

A�
a =

1

r
��r���̂a�̂� − �̂a�̂�� +

1

r
R�����̂ar̂� − r̂a�̂�� ,

�a = �1r̂a + �2�̂a, �8�

where �1= �1/r���r�, �2= �1/r�R���. The spherical coordinate orthonormal unit vectors, r̂a, �̂a,
and �̂a, are defined by

r̂a = sin � cos ��1
a + sin � sin ��2

a + cos ��3
a,

082301-3 Monopole-antimonopole and vortex rings J. Math. Phys. 46, 082301 �2005�

                                                                                                                                    



�̂a = cos � cos ��1
a + cos � sin ��2

a − sin ��3
a,

�̂a = − sin ��1
a + cos ��2

a, �9�

where r=�xixi, �=cos−1�x3 /r�, and �=tan−1�x2 /x1�. The gauge field strength tensor and the cova-
riant derivative of the Higgs field are given, respectively, by

F��
a =

1

r2 r̂a�Ṙ + R cot � + 2� − �2���̂��̂� − �̂��̂�� +
1

r2 �̂a�R�1 − �����̂��̂� − �̂��̂��

+
1

r2 �r̂aR�1 − �� + �̂a�r�� + R cot � − R2���r̂��̂� − r̂��̂��

+
1

r2 �̂a�− �r�� + Ṙ���r̂��̂� − r̂��̂�� , �10�

D��a =
1

r2 �r̂a�r�� − � − R2� − �̂aR�1 − ���r̂� +
1

r2 �− r̂aR�1 − �� + �̂a�Ṙ + � − �2���̂�

+
1

r2 ��̂a�� − �2 + R cot � − R2���̂�. �11�

Here, prime means � /�r and dot means � /��. The gauge-fixing condition that we used here is the
radiation or Coulomb gauge, �iAi

a=0, A0
a=0.

The ansatz �8� is substituted into the equations of motion �4� as well as the Bogomol’nyi
equations with the positive sign, and the resulting equations of motion are just two first-order
differential equations

r�� + � − �2 = − p , �12�

Ṙ + R cot � − R2 = p , �13�

where p is an arbitary constant. Equation �12� is exactly solvable for all real values of p and the
integration constant can be scaled away by letting r→r /c, where c is the arbitrary integration
constant. Hence, without any loss in generality, c is set to unity. In order to obtain solutions of �
with �2m+1� powers of r, we can write p=m�m+1�, where m is real. By doing so, the solutions
of the Riccati equation �13� can be exactly solved in terms of the Legendre functions of the first
and second kind. For the solutions of Eq. �13� to be regular along the z-axis, we require R��� to
vanish when �=0 and �=�. To achieve these boundary conditions, the integration constant of Eq.
�13� is set to zero and m is restricted to take integer values. The solutions for � and R are then
given, respectively, by

��r� =
�m + 1� − mr2m+1

1 + r2m+1 ,

R��� = �m + 1�cot � −
Pm+1�cos ��
Pm�cos ��

csc �� , �14�

where Pm is the Legendre polynomial of degree m, and m=0,1 ,2 ,3 , . . . . Hence, the boundary
conditions of the solutions, Eq. �14�, are ��0�=m+1, ����=−m, R�0�=R���=0.

In the BPS limit, the energy can be written in the form
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E = �	 �i�Bi
a�a�d3x +	 1

2
�Bi

a ± Di�
a�2d3x = �	 �i�Bi

a�a�d3x = 4�M
�

��
, �15�

where M is the “topological charge” when the vacuum expectation value of the Higgs field, � /��,
is nonzero coupled with some nontrivial topological structure of the fields at large r.

The energy density �i�Bi
a�a� of the non-Abelian system is finite everywhere and vanishes as

1/r2 at large r except at the origin r=0 due to the presence of a point singularity there and along
singular planes where Pm�cos �� vanishes. The two antimonopoles which are regular antimono-
poles and the vortex rings are located at points and rings where the Higgs field, r�a, vanishes,
respectively. The monopole at the origin is of a different nature and is located where the Higgs
field is singular. In the Abelian gauge, this monopole carries a Dirac string singularity.

The topological charge is also related to another gauge invariant quantity of the system as
given by Eq. �7�

M� =
1

8�

 d2
i���ijk�

abc�̂a� j�̂
b�k�̂

c��r→�. �16�

The magnetic charges enclosed by the sphere at infinity can be associated with the zeros of the

Higgs field, r�a, and at points where �̂a becomes indeterminate. The positions of the two anti-
monopole do correspond to the two point zeros of the Higgs field in the A-M-A solutions. How-
ever, the Wu-Yang-type 1-monopole is not located at the zeros of the Higgs field but at the origin
of the coordinate axes where the Higgs field is singular.

From the ansatz �8�, A�=�̂aA�
a =0. Hence, from Eq. �5�, the Abelian electric field is zero and

the Abelian magnetic field is independent of the gauge fields A�
a . To calculate for the ’t Hooft

Abelian magnetic field Bi, we rewrite the Higgs field of Eq. �8� from the spherical to the Cartesian
coordinate system6–8

�a = �1r̂a + �2�̂a + �3�̂a = �̃1�a1 + �̃2�a2 + �̃3�a3, �17�

where

�̃1 = sin � cos ��1 + cos � cos ��2 − sin ��3 = ���cos � sin � ,

�̃2 = sin � sin ��1 + cos � sin ��2 + cos ��3 = ���cos � cos � ,

�̃3 = cos ��1 − sin ��2 = ���sin � . �18�

The Higgs unit vector is then simplified to

�̂a = cos � sin ��a1 + cos � cos ��a2 + sin ��a3, �19�

where

sin � =
� cos � − R sin �

��2 + R2
, � =

�

2
− � ,

and the Abelian magnetic field is found to reduce to only the r̂i and �̂i components

Bi =
1

r2 sin �
 � sin �

��

��

��
−

� sin �

��

��

��
�r̂i +

1

r sin �
 � sin �

��

��

�r
−

� sin �

�r

��

��
��̂i

+
1

r
 � sin �

�r

��

��
−

� sin �

��

��

�r
��̂i,
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=−
1

r2 sin �
 � sin �

��
�r̂i +

1

r sin �
 � sin �

�r
��̂i. �20�

Since sin � is a nonsingular function except at the points where the Higgs field, r�a, vanishes, the
’t Hooft magnetic field is regular everywhere except at the locations of the A-M-A and the vortex
rings.

By noticing that the magnetic field, Eq. �20�, can also be written as

Bi = �ijk�
j�sin ���k� ,

=�ijk�
j�sin ��k�� , �21�

we found that a suitable Maxwell four-vector gauge potential for this ’t Hooft magnetic field is

A0 = 0,

Ai = �sin � − 1��i� = −
�sin � − 1�

r sin �
�̂i. �22�

This gauge potential also satisfies the Coulomb gauge condition, �iAi=0. The function sin � is a
bounded function of r and �, and it is not smooth and discontinuous only when the profile function
R��� is singular. When m=0, the gauge potential Eq. �22� is just the usual Dirac string potential
and it is singular along the negative z-axis. However, when m�0, the gauge potential Ai pos-
sesses a broken Dirac string singularity. This Dirac string singularity extends from the origin to
z=−

2m+1��m+1� /m along the negative z-axis and from z=
2m+1��m+1� /m to infinity along the posi-

tive z-axis. The gauge potential, Ai, is only discontinuous at values of � when R��� is singular.
From Eq. �21�, it is obvious that the magnetic field is always perpendicular to the gradient of

sin �. Hence, the magnetic field lines lie on the line sin �=k, −1�k�1, and �=constant. By
plotting sin �=k on a vertical plane through the origin, we manage to draw the magnetic field lines
for the configurations when m=1, Fig. 2; m=2, Fig. 6; and m=3, Fig. 8.

Defining the Abelian field magnetic flux as

� = 4�M =
 d2
iBi =	 Bi�r2 sin � d��r̂id� , �23�

the magnetic charge enclosed by the sphere at infinity, M�, is calculated to be

M� = − �1

2
sin ��

0,r→�

�

= − 1, when m = 1,2,3, . . . ;M� = 1, when m = 0. �24�

From Eq. �24�, we can conclude that the total magnetic charge M of these axially symmetric
solutions does not depend on the degree of the Legendre polynomial when m�0. Hence, the net
magnetic charge of the system when m�0 is always −1. By letting M0 be the net magnetic charge
when the radius of the enclosing sphere tends to zero at the origin, we get

M0 = − �1

2
sin ��

0,r→0

�

= 1, m = 0,1,2,3, . . . . �25�

Similarly, the net magnetic charge, M0, at the point singularity of the solution is independent of the
value of m. In fact, it is true that for positive nonzero m, when r�

2m+1��m+1� /m, the topological
magnetic charge is +1, and when r�

2m+1��m+1� /m, the topological magnetic charge is −1. Hence,
there is a 1-monopole located at r=0 and two antimonopoles located along the z-axis at r
=

2m+1��m+1� /m.
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We also notice that we can write the net magnetic flux per 4� sterad passing through the
spherical surface of a partial enclosing sphere of radius r, sustaining an angle � at the origin with
the positive z-axis as

Mr��� = − � ���r�cos � − R���sin ��
2��2�r� + R2���

�
0

�

=
1

2 �

���
− sin �� . �26�

IV. MONOPOLE, ANTIMONOPOLES, AND VORTEX RINGS

The first member of this series of axially symmetric solutions is when m=0. As discussed in
our previous work,7 this solution is the Wu-Yang-type monopole located at r=0. This radially
symmetric monopole with its magnetic field, Bi= �1/r2�r̂i, has the vector potential Ai given by Eq.
�22�. This is just the Dirac string gauge potential, A�= �1/r�tan� 1

2���̂�, which is singular along the
negative z-axis.

When m=1, the configuration is the second member of the axially symmetric monopole
solutions. This configuration is similar to the �A1� solution of Refs. 7 and 8 with gauge potentials
and Higgs field given by

A�
a =

1

r
2 − r3

1 + r3���̂a�̂� − �̂a�̂�� +
1

r
tan ���̂ar̂� − r̂a�̂�� ,

�a =
1

r
2 − r3

1 + r3�r̂a +
1

r
tan ��̂a. �27�

It was first thought to consist of a 1-monopole at r=0, surrounded by two antimonopoles located
at the point zeros of the Higgs field at z= ±�3 2= ±1.2599. However, a closer study of this solution
reveals that the 1-monopole actually has a zero-size MAM structure along the z-axis and hence
possesses a net unit magnetic charge. The MAM structure can be read from the plots of Eq. �26�,
Mr��� versus � for the cases of r→0 and r→�; see Fig. 1. The plot at r→� indicates that there

FIG. 1. A plot of Mr��� at small r close to zero and Mr��� at r infinity when m=1, versus �.

082301-7 Monopole-antimonopole and vortex rings J. Math. Phys. 46, 082301 �2005�

                                                                                                                                    



is zero flux through the spherical shell at infinity when ��� /2 rad. Hence, all the flux at infinity
is radially inward along the equatorial plane toward the origin, r=0, giving a net topological
charge of −1 for the m=1 configuration. The radial component of the magnetic field at large r is
just a Dirac delta function of �, given by Br=−�2/r2sin �����− �� /2��. Hence, the singularity of
the solution R��� at the equatorial plane �=� /2 gives rise to a Dirac delta function singularity in
the magnetic field. The antimonopole at the positive z-axis interacts with the nearest MAM
1-monopole at r=0 to form a dipole pair; similarly, the antimonopole at the negative z-axis
interacts with the other MAM 1-monopole at r=0 to form the other dipole pair, leaving behind an
antimonopole at the origin; see Fig. 2. At large distances all the magnetic fields above and below
the equatorial plane are being screened off by the two dipole pairs along the z-axis, leaving behind
a Dirac delta function magnetic field along the plane of singularity, �=� /2.

At finite r��3 2, the radial component of the magnetic field is a regular function of r and � but
not smooth at �=� /2. In fact, at �=� /2, Br possesses a negative Dirac delta function singularity,
indicating an antimonopole at the center of the composite 1-monopole. Figure 1 shows that at
small r, the net flux through the upper �0���� /2� and lower �� /2����� spherical shell is
+4� each and the flux through the circle at constant r and �=� /2 is −4�, hence indicating a
MAM structure for the 1-monopole at the origin.

By plotting the magnetic field lines of this configuration, we can confirm that at large r all the
magnetic field lies in the equatorial plane and is pointing radially inward as the net magnetic
charge M� is −1. A plot of the magnetic field lines is shown in Fig. 2. Hence, the pole at the center
of the composite monopole is an antimonopole surrounded by two 1-monopoles at zero range from
each other and yet they do not annihilate each other. The antimonopoles situated at z= ±�3 2 form
dipole pairs with the nearest 1-monopoles of the MAM structure, thus screening off all the
magnetic field above and below the equatorial plane at r infinity. There is no vortex ring in this
configuration. The Abelian gauge potential, A�=−�sin �−1� / �r sin ���̂�, possesses a Dirac string
singularity along the negative z-axis for 0�r��3 2 and along the positive z-axis for r��3 2 to
infinity.

The vortex ring appears when m=2, that is, when the gauge field potentials and Higgs field
are, respectively

FIG. 2. A plot of the magnetic field lines when m=1 along a vertical plane through the z-axis. At large r, all the field lines
are concentrated radially inward along the equatorial plane. The two antimonopoles are located along the z-axis at z
= ±1.2599.
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A�
a =

1

r
3 − 2r5

1 + r5 ���̂a�̂� − �̂a�̂�� +
1

r
6 cos � sin �

3 cos2 � − 1
���̂ar̂� − r̂a�̂�� ,

�a =
1

r
3 − 2r5

1 + r5 �r̂a +
1

r
6 cos � sin �

3 cos2 � − 1
��̂a. �28�

The plots of the magnetic flux, Eq. �26�, versus �, for values of r→0 and r at infinity, Fig. 3,
reveal that the 1-monopole at r=0 has an MAMAM structure. However, only the monopole at the
center has unit charge. All the other four poles have charge less than unity. Hence, there exist a
vortex point both above and below the 1-monopole.

The two outer regular antimonopoles are located at the two point zeros of the Higgs field at
z= ±�5 3 /2= ±1.0845, Fig. 4, and the vortex ring is located along the ring of radius 1.0845 on the
equatorial plane where the Higgs field vanishes, Fig. 5. The magnetic field lines of this one vortex
ring solution is shown in Fig. 6.

The two vortex rings solution is the next solution of this series of axially symmetric monopole
configurations with parameter m=3. The gauge field potentials and Higgs field are, respectively,
given by

A�
a =

1

r
4 − 3r7

1 + r7 ���̂a�̂� − �̂a�̂�� +
3 tan �

r
5 cos2 � − 1

5 cos2 � − 3
���̂ar̂� − r̂a�̂�� ,

�a =
1

r
4 − 3r7

1 + r7 �r̂a +
3 tan �

r
5 cos2 � − 1

5 cos2 � − 3
��̂a. �29�

As usual, the two point antimonopoles are situated at the two point zeros, z= ±�7 4 /3= ±1.0420, of
the Higgs field. The two vortex rings are located horizontally at r=1.0420 and �=1.1071 ��
−1.1071� rad. Again, from the plots of magnetic flux, �Mr����r→0 and �Mr����r→�, Fig. 7, of Eq.
�26�, together with the plot of the magnetic field lines, Fig. 8, we can conclude that the structure

FIG. 3. A plot of Mr��� at r close to zero and Mr��� at r infinity, when m=2, versus �.
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of the composite 1-monopole at the origin is MAMAMAM, with an antimonopole at the center.
The three poles in the center, MAM, possess unity charge, whereas the other four poles possess
charge less than unity. Hence, there exist a vortex point both above and below the MAM
1-monopole. Hence, by induction, we conclude that the number of A and M “poles” in the
composite monopole is equal to 2m+1, and when m is even, the pole in the center of the structure

FIG. 4. The Abelian magnetic field of the m=2 solution at finite distances showing the presence of the two dipole pairs
along the z-axis and the vortex ring at z=0, 	=1.0845.

FIG. 5. The Abelian magnetic field of the m=2 solution at distances close to z=0 and 	=1.0845 showing the presence of
the vortex ring.

082301-10 R. Teh and K. Wong J. Math. Phys. 46, 082301 �2005�

                                                                                                                                    



is a monopole and when m is odd, we have an antimonopole or a MAM 1-monopole in the center
of the structure.6 The number of vortex rings in the solution increases with m and is equal to
�m−1�.

V. COMMENTS

We have obtained exact axially symmetric A-M-A configurations of the SU�2� YMH theory
which are characterized by a positive integer parameter m. The 1-monopole which is located at the

FIG. 6. A plot of the magnetic field lines when m=2 along a vertical plane through the z-axis. The vortex ring is situated
horizontally at equal distances from the origin as the two antimonopoles at z= ±1.0845.

FIG. 7. A plot of Mr��� at r close to zero and Mr��� at r infinity, when m=3, versus �.
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origin, r=0, where the Higgs field is singular, is a Wu-Yang-type monopole. The two regular outer
antimonopoles are located at the two point zeros of the Higgs field along the z-axis at z
= ±

2m+1��m+1� /m. When the parameter m exceeds unity, vortex rings start to appear around the
z-axis. The number of vortex rings in the solution is equal to �m−1�.

Further investigations reveal that the 1-monopole at the origin possesses structure. It corre-
sponds to a zero-size composite monopole with its axis lying along the z-axis. By induction, we
conclude that the number of “poles” in the composite monopole is given by 2m+1. When m is
even, the center of the structure corresponds to a 1-monopole M and, when m is odd, it corre-
sponds to an antimonopole or a MAM 1-monopole. We have analyzed the solutions for the cases
of m=0, 1, 2, and 3, with 1-monopole given by M, MAM, MAMAM, and MAMAMAM, respec-
tively. The MA and AM above and below the 1-monopole when m=2 and 3 can be thought of as
a vortex point as the magnetic charges of these poles are less than unity.

There are two types of singularities in solutions �14�. The point singularity at the origin, r
=0, gives rise to a Wu-Yang-type monopole, M or MAM. This monopole possesses the usual
Dirac string potential in the Abelian gauge when m=0. However, when m=1,2 ,3 , . . ., the Dirac
string is broken into two parts. The string stretches from z=0 to z=−

2m+1��m+1� /m along the
negative z-axis and from z=

2m+1��m+1� /m to positive infinity along the positive z-axis.
The singularities in R��� when Pm�cos ��=0 give rise to plane singularities. The number of

singular planes in the solution is equal to m. Hence, when m=1, the singular plane is the equatorial
plane. The Abelian magnetic field possesses a negative Dirac delta function singularity along this
plane, Br=−2/ �r2 sin �����− �� /2��. Similarly, when m=2, the singular planes are �=0.9553 and
2.1863 rad, and when m=3, the singular planes are �=0.6847, 0, and 2.4569 rad. In all these
solutions, the Abelian magnetic fields possess negative Dirac delta function singularity along these
planes as the Abelian gauge potentials are discontinuous at these values of �.

Numerical static axially symmetric M-A-M-… chain at finite pole separation has also been
discussed in Ref. 6. These numerical solutions belong to the topologically trivial sector when the
total number of poles and antipoles is even and to the topological unit sector when the total
number of poles and antipoles is odd. We have only managed to find odd total number of poles and
antipoles in our solutions. Similar to the results of Ref. 6, we have a monopole at the center of the

FIG. 8. A plot of the magnetic field lines when m=3 along a vertical plane through the z-axis. The two vortex rings are
situated horizontally at equal distances from the origin as the two antimonopoles at z= ±1.0420.
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composite 1-monopole when m is even and an antimonopole in the center when m is odd. Also
similar is that our solutions have zero magnetic dipole moment as the number of poles in our
solutions is odd.

Unlike the monopole solutions of Ref. 6, our A-M-A poles here are of unit charge only. We
did not manage to get monopoles and antimonopoles of charge equal to two units for our axially
symmetric monopoles solutions. In fact, we have not found any M-monopoles with finite separa-
tions when �M��2.

We would also like to mention that, for every monopole, antimonopole, vortex rings solution
that we have discussed so far, there always exists an anticonfiguration of the configurations
discussed. This can be done by changing the � winding number in the ansatz �8� from +1 to −1
and solving the Bogomol’nyi equation with the negative sign.8

We would also like to mention that one-half topological magnetic charge monopole is ob-
tained when the parameter m is set to − 1

2 in the solution, Eq. �14�.10

ACKNOWLEDGMENT

The authors would like to thank the Academy of Sciences Malaysia for the Scientific
Advancement Grant Allocation, SAGA �Account No. 304/pfizik/653004/A118�.

1 G. ’t Hooft, Nucl. Phys. B 79, 276 �1974�; A. M. Polyakov, Sov. Phys. JETP 41, 988 �1975�; Phys. Lett. B 59, 82
�1975�; JETP Lett. 20, 194 �1974�.

2 M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett. 35, 760 �1975�; E. B. Bogomol’nyi and M. S. Marinov, Sov. J.
Nucl. Phys. 23, 355 �1976�.

3 C. Rebbi and P. Rossi, Phys. Rev. D 22, 2010 �1980�; R. S. Ward, Commun. Math. Phys. 79, 317 �1981�; P. Forgacs, Z.
Horvarth, and L. Palla, Phys. Lett. B 99, 232 �1981�; Nucl. Phys. B 192, 141 �1981�; M. K. Prasad, Commun. Math.
Phys. 80, 137 �1981�; M. K. Prasad and P. Rossi, Phys. Rev. D 24, 2182 �1981�.

4 P. M. Sutcliffe, Int. J. Mod. Phys. A 12, 4663 �1997�; C. J. Houghton, N. S. Manton, and P. M. Sutcliffe, Nucl. Phys. B
510, 507 �1998�.

5 P. Forgacs, Z. Horvarth, and L. Palla, Phys. Lett. B 109, 200 �1982�; S. A. Brown and H. Panagopoulos, Phys. Rev. D
26, 854 �1982�.

6 B. Kleihaus and J. Kunz, Phys. Rev. D 61, 025003 �2000�; B. Kleihaus, J. Kunz, and Y. Shnir, Phys. Lett. B 570, 237
�2003�; Phys. Rev. D 68, 101701 �2003�.

7 Rosy Teh, Int. J. Mod. Phys. A 16, 3479 �2001�; J. Fiz. Mal. 23, 196 �2002�.
8 Rosy Teh and K. M. Wong, Int. J. Mod. Phys. A 19, 371 �2004�; “Static Monopoles and their Anti-Configurations,”
hep-th/0406094, Int. J. Mod. Phys. A �in press�; K. M. Wong, M.Sc. thesis, University of Science of Malaysia, 2004.

9 E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 �1976�.
10 Rosy Teh and K. M. Wong, Int. J. Mod. Phys. A 20, 2195 �2005�.
11 E. J. Weinberg and A. H. Guth, Phys. Rev. D 14, 1660 �1976�.
12 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 �1954�; R. Shaw, Ph.D. thesis, Cambridge University, U. K. �1955�; M.

Georgi and S. L. Glashow, Phys. Rev. Lett. 28, 1494 �1972�.
13 J. Arafune, P. G. O. Freund, and C. J. Goebel, J. Math. Phys. 16, 433 �1975�; N. S. Manton, Nucl. Phys. B 126, 525

�1977�; P. Rossi, Phys. Rep. 86, 317 �1982�.

082301-13 Monopole-antimonopole and vortex rings J. Math. Phys. 46, 082301 �2005�

                                                                                                                                    



Extending the Picard-Fuchs system of local mirror
symmetry

Brian Forbesa� and Masao Jinzenjib�

Division of Mathematics, Graduate School of Science, Hokkaido University, Kita-ku,
Sapporo, 060-0810, Japan

�Received 1 April 2005; accepted 15 June 2005; published online 1 August 2005�

We propose an extended set of differential operators for local mirror symmetry. If
X is Calabi-Yau such that dim H4�X ,Z�=0, then we show that our operators fully
describe mirror symmetry. In the process, a conjecture for intersection theory for
such X is uncovered. We also find operators on several examples of type X=KS

through similar techniques. In addition, open string Picard-Fuchs systems are
considered. © 2005 American Institute of Physics. �DOI: 10.1063/1.1996441�

I. INTRODUCTION

For some time now, mirror symmetry has been successfully used to make enumerative pre-
dictions on certain Calabi-Yau manifolds. While mirror symmetry for the compact Calabi-Yau has
been extensively studied, local mirror symmetry is relatively new, and a complete formulation
does not yet exist.

The first unified treatment of local mirror symmetry was written down in Ref. 3, in the case
that the space looks like X=KS, where S is a Fano surface and KS is its canonical bundle. Very
recently,10 the work of Ref. 3 was formulated more mathematically. With the ideas of Ref. 10, we
are able to determine all information relevant for mirror symmetry directly from the Picard-Fuchs
equations of the mirror. These techniques are limited to the case that X satisfies b2�X�=b4�X�.

The aim of this paper is to further the program of local mirror symmetry. We propose a set of
differential operators, whose solutions contain the usual local mirror symmetry solutions as a
subset. In the event that the space in question contains no 4 cycle, the operators completely solve
the problem for an arbitrary number of Kähler parameters. For the more traditional mirror sym-
metry constructions of Ref. 3, our methods still complete missing data; however, a general for-
mulation here is lacking.

The key point in the construction of the extended Picard-Fuchs system is the determination of
triple intersection numbers of Kähler classes for open Calabi-Yau manifolds. Up to now, a natural
definition of triple intersection numbers of Kähler classes on open Calabi-Yau manifolds is not
known, but in this paper, we search for triple intersection numbers that are “natural” from the
point of view of mirror symmetry in the sense of the following conjecture.

Conjecture 1: Consider the A-model on a Calabi-Yau threefold X. Let ui be the logarithm of
the B-model complex deformation parameter zi obtained from the toric construction of the mirror

Calabi-Yau manifold X̂. Then the B-model Yukawa coupling Cuiujuk
of X̂ obtained from the A-model

Yukawa coupling of X via the mirror map is a rational function in zi=exp�ui�. Moreover, its

denominator consists of the factors of the defining equation of the discriminant locus of X̂.
Since the triple intersection number is just the constant term of the B-model Yukawa coupling

Cuiujuk, the above conjecture imposes constraints on these triple intersection numbers.
We regard the existence of such intersection theory as an interesting analogue of the physical

predictions arising from large N duality, e.g., Ref. 7. Recall that in Ref. 7, the postulated large N

a�Electronic mail: brian@math.sci.hokudai.ac.jp
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dual of X=O�−1� � O�−1�→P1 led to a fractional triple intersection number for P1
�X. We find

a similar fractional intersection theory, and this is done via calculations which are independent of
a large N dual. Hence, we may think of this intersection theory as a prediction for what one would
find if computations were done on a large N dual theory.

With these intersection numbers in hand, we can construct an extended quantum cohomology
ring of X and an associated Gauss-Manin system. In the examples treated in this paper, this
quantum cohomology ring satisfies Poincare duality as a compact threefold, even if X is an open
Calabi-Yau threefold. Let ti be coordinates on the complexified Kähler moduli space of X. With
this Gauss-Manin system, we can write down differential equations for �0�ti�, the function asso-
ciated to the identity element of the quantum cohomology ring. Then we can rewrite these differ-
ential equations by using the mirror map ti= ti�z*�. Our assertion in this paper is that the differential
equations so obtained are the extension of the Picard-Fuchs operators obtained from the standard

toric construction of X̂. Moreover, the extended Picard-Fuchs system has all the properties that the
Picard-Fuchs system associated to a compact Calabi-Yau threefold should have a unique triple log
solution, B-model Yukawa couplings, etc. These extended Picard-Fuchs systems give us a very
simple derivation of B-model Yukawa couplings of local mirror symmetry known in some special
cases. In particular, we can compute B-model Yukawa couplings of any KS case. Therefore, we can
see the global behavior of the instanton expansion of local mirror symmetry. We expect that the
extended Picard-Fuchs system can be derived from the B-model point of view. The results of this
paper gives us some useful guidelines of such a construction, since extended Picard-Fuchs systems
have a very elegant form in some cases.

One problem in the construction is that in some cases, the constraints obtained from the above
conjecture are not strong enough to determine all the triple intersection numbers. In other words,
we have some real moduli parameters in the triple intersection numbers. Yet, we can still construct
the extended Picard-Fuchs system for each value of the moduli parameters, and these systems
have all the properties desired for a Picard-Fuchs system associated to a compact Calabi-Yau
threefold. In the case that b4�X�=b6�X�=0, we find unique triple intersection numbers compatible
with the above conjecture by considering the change of the prepotential under flops. Hence, our
construction of an extended Picard-Fuchs system has no ambiguity in this situation.

We should mention that our constructions do not lead to Gromov-Witten invariants on the
spaces we consider. Rather, the differential systems we find have the property that all Gromov-
Witten invariants can be derived purely as solutions of our differential systems, a feature which
was absent in the original work.3 Moreover, we believe that through the study of such systems, we
will come closer to a formulation of local mirror symmetry on all Calabi-Yau purely in terms of
the complex geometry of the mirror.

Here is the organization of the paper. Section II spells out the generalities of the Gauss-Manin
system and intersection theory for open Calabi-Yau manifolds. In Sec. III, we thoroughly consider
O�−1� � O�−1�→P1, giving a PF operator for mirror symmetry and a geometric view of the
meaning of the operator. Section IV is the generalization, which spells out a conjecture on how to
deal with all X such that dim H4�X ,Z�=0. This is subsequently applied to several cases and shown
to produce the expected results. Section V explores the application of our techniques to open string
theory on O�−1� � O�−1�→P1, while Secs. VI and VII work through examples of type KS. Some
of the results for our more unwieldy examples are collected in the appendixes.

II. THE MAIN STRATEGY: OVERVIEW OF THE GAUSS-MANIN SYSTEM

Let X be a noncompact Calabi-Yau threefold, and choose a basis �ki� for H1,1�X ,C�. Suppose
that we have obtained “natural” classical triple intersection numbers �kakbkc��Q for two cycles on
X under the assumption of Conjecture 1. Suppose also that we know the instanton part of the
prepotential for X. Recall that the prepotential is the generating function of Gromov-Witten in-
variants for X; then we denote this instanton part by Finst�t*�, where ta is the Kähler deformation
parameter associated to the Kähler form ka �a=1,… ,h1,1�X��. With this data, we can construct an
A-model Yukawa coupling for X,
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Yabc�t*� = �kakbkc� +
�3Finst�t*�
�ta � tb � tc

. �1�

Using the classical intersection numbers �kakbkc�, we can construct a virtual basis m� ��
=1,… ,h1,1�X�� of formal 4 cycles with the following property. If �a� is the virtual intersection
matrix of 2 cycles and formal 4 cycles, then with respect to the basis m�, we have

�a� ª �a�. �2�

With this setup, we obtain a �virtually compactified� quantum cohomology ring of X, which is the
usual cohomology ring with a deformed product, defined as follows:

ka � 1 = ka,

ka � kb = 	
c,�

Yabc�t*��c�m� = 	
�

Yab��t*�m�,

�3�
ka � m� = Ya�0v = �a�v ,

ka � v = 0.

Above, we have taken advantage of a standard feature of the quantum cohomology ring, namely

Ya�0 = �a�. �4�

Here v is the formal volume form of X and we use the subscript 0 to denote the identity 1 of this
quantum cohomology ring. Then we consider a system of partial differential equations,

�a�0 = �a,

�a�b = 	
c,�

Yabc�t*��c��� = 	
�

Yab��t*���,

�5�
�a�� = Ya�0�v = �a��v,

�a�v = 0.

Next, we consider the inverse matrix �Ya
−1�t*��bc of �Ya�t*��bcªYabc�t*�. From �5�, we obtain,

�� = 	
b,c

��c · �Ya
−1�t*��cb�a�b�0 = 	

b

�Ya
−1�t*���b�a�b�0. �6�

Since �� is unique for each �, we must impose integrability conditions

	
c

�Ya
−1�t*���c�a�c�0 = 	

c

�Yb
−1�t*���c�b�c�0 �a � b� �7�

for any a, b� �1,2 ,… ,h1,1�X��. We have another integrability condition from the third line of �5�:

�a
	
c

�Ya
−1�t*��ac�a�c�0� = �b
	

c

�Yb
−1�t*��bc�b�c�0� �a � b� ,
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�b
	
c

�Ya
−1�t*��ac�a�c�0� = 0 �a � b� , �8�

for any a, b� �1,2 ,… ,h1,1�X��. Finally, we can derive differential equations from the fourth line
of �5�,

�a
2
	

c

�Ya
−1�t*��ac�a�c�0� = 0. �9�

Our strategy in this paper is to translate the equations �7�–�9� in terms of the mirror map

ta = ta�z*� �10�

into the differential equations of the complex deformation parameters za of the mirror manifold X̂.
Of course, in the one parameter case, the equations �7� and �8� become trivial, and the only
nontrivial equation is

�t
2
 1

Yttt
��t

2�0�t� = 0, �11�

which follows from �9� with the identification t= t1.
In the following, we will explicitly compute �7�–�9� in many examples, and we find that these

equations are highly overdetermined. Therefore, in this paper, we will choose the minimal inde-
pendent set of equations for an extended Picard-Fuchs system.

By construction, the Picard-Fuchs system so obtained has a solution space given by


1,t1,…,th1,1�X�,
�F
�t1

,…,
�F

�th1,1�X�
,2F − 	

a=1

h1,1�X�

ta

�F
�ta
� �12�

for some function F which is smooth in the ti. Then F is that relevant for the counting of
Gromov-Witten invariants.

III. MIRROR SYMMETRY FOR LOCAL P1

A. A Picard-Fuchs operator for local P1

Before diving into the details of Gauss-Manin systems and the like, we will first take a
simple-minded look at a familiar example, namely O�−1� � O�−1�→P1. We will see that in trying
to apply the techniques of local mirror symmetry to this basic case, we are inevitably led to
introduce the generalized intersection theory explained in the introduction. In fact, this is the
example that originally motivated the investigations of this paper.

Recall the symplectic quotient definition of O�−1� � O�−1�→P1,

X = ��w1,…,w4� � C4 − Z:�w1�2 + �w2�2 − �w3�2 − �w4�2 = r�/S1. �13�

Above, Z= �w1=w2=0�, r�R+ and

S1:�w1,…,w4� → �ei�w1,ei�w2,e−i�w3,e−i�w4�, � � S1.

We can naively employ the methods of Ref. 10 to produce a Picard-Fuchs operator associated to

the mirror Calabi-Yau X̂ of X. The family X̂ is described as9

X̂z = ��u,v,y1,y2� � C2 � �C*�2:uv + 1 + y1 + y2 + zy1y2
−1 = 0� . �14�

Then Ref. 10 provides a recipe for dealing with noncompact period integrals for such an X̂. They
are defined by
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�	�z� = 
	

du dv dy1 dy2/�y1y2�
uv + 1 + y1 + y2 + zy1y2

−1

for 	�H4�C2� �C*�2− X̂ ,Z�. As usual, we utilize the GKZ formalism in order to exhibit a differ-
ential operator which annihilates the �	. One finds

D = �1 − z��2, � = z
d

dz
�15�

as the relevant PF operator.
This is a puzzling situation. Clearly, the solutions of Df =0 are given by �1, log z�. This is

sensible, because noncompact PF systems always have a constant solution,3 and the mirror map is
trivial for O�−1� � O�−1�→P1, leading to a log z solution. However, there is no double-
logarithmic solution, because D is only of order 2. Hence, we have no function F with which to
count holomorphic curves on X! But, since X contains exactly 1 holomorphic curve, we know that
the sought after function should be of the form

F�z� = K
�log z�3

6
+ 	

n
0

zn

n3 . �16�

Here K is a classical triple intersection number for P1
�X. Also, notice that the leading factor of

1−z in front of D, while naturally appearing through the techniques of the GKZ formalism, is
auxiliary to the solution set of D.

At this point, we can gain a bit of insight from the compact case. Recall4 that in the event of
a compact Calabi-Yau X with one Kähler parameter, there is always a flat coordinate t in which the
Picard-Fuchs operator for the mirror family is given as

Dcompact�t� = �t
2
 1

Y
��t

2, �17�

which is the same as formula �11�. This is reminiscent of our situation �15�, upon making the
identification t=log z.

If one surrendered to the impulse of emulating the above compact expression, one would be
compelled to work with the following modified differential operator:

D → D� = �2D .

Rewrite this as

�2�1 − z��2 = �2
 1

1 − z
�−1

�2.

By comparison with �17�, it is natural to identify the Yukawa coupling Y of O�−1� � O�−1�
→P1 as

Y =
1

1 − z
. �18�

And indeed, the condition that Y =�3F, which follows from the form of D�, yields the expected
function F �16�, if we take K=1. Later, we will find that a more natural choice for generalization
is K=1/2.

The resulting period vector of solutions for D�f =0 is
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�� = �1,log z,�F,2F − �log z��F� ,

which is of the same type as encountered when dealing with the compact Calabi-Yau. Hence, we
have found a cure for mirror symmetry on X=O�−1� � O�−1�→P1; the operator �2D reproduces
all relevant data to describe mirror symmetry for X.

We can also view this �2D from the vantage of the Frobenius method. The geometry of X is
determined by the set of vertices ��0 ,… ,�3�= ��0,0� , �1,0��0,1� , �1,1��, together with a choice of
triangulation of the resulting toric graph. These give rise to the lattice vector l= �1,−1,−1,1�, and

identify z as the correct variable on the complex moduli space of X̂. Then the solutions of our
extended PF operator �2D can be generated, via the Frobenius method, from the function
�0�z ,�=	n�0c�n ,�zn+, with c�n ,�−1=	�1+n+�2	�1−n−�2. It is a simple matter to verify
that

�� = ��0�z,0�,��0�z,��=0, �
2�0�z,��=0, �

3�0�z,��=0� .

Clearly this had to be the case, since the extension of the original D on the left-hand side by each
factor of � adds one more Frobenius-generated solution.

B. PF extensions and Riemann surfaces

In physics literature,1,10 a frequently used technique of local mirror symmetry is to consider

periods on a Riemann surface �� X̂, rather than periods of the full mirror geometry X̂. In this
section, we will review evidence in favor of this approach.

Looking back at the mirror geometry �14�, this can be rewritten as

X̂z = �uv + 1 + y1 + y2 + zy1y2
−1 = uv + f�z,y1,y2� = 0� ,

which is a hypersurface in C2� �C*�2. Notice that there is an imbedded Riemann surface in this
space, defined as

�z = ��y1,y2� � �C*�2:f�z,y1,y2� = 0� . �19�

In fact, this statement applies not only to the local P1 case, but to all toric local mirror symmetry

constructions.1 Now take �a0 ,… ,a3� as homogeneous coordinates on the moduli spaces of X̂ and
�, i.e.,

X̂a = �uv + a0 + a1y1 + a2y2 + a3zy1y2
−1 = uv + f�a,y1,y2� = 0� .

Recall that the GKZ operators are differential operators �Li� in the variables a, such that

Li
	

du dv dy1 dy2/�y1y2�
uv + f�a,y1,y2�

= 0, ∀ i .

We can recover the PF operators from the GKZ operators via a canonical reduction on the
homogeneous moduli space.

With these things in mind, we note the following.

Proposition 1: The GKZ operators associated to the geometry X̂ are the same as those
associated to �.

Proof: Notice that � is a complex dimension 1 noncompact Calabi-Yau manifold. In particu-
lar, it makes sense to define the period integrals of � as
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��
��a� = 

�

dy1 dy2/�y1y2�
f�a,y1,y2�

with ��H2��C*�2−� ,Z�. Let L be a GKZ operator on the moduli space of �a, so that L��
��a�

=0. If ai are homogeneous coordinates on the moduli space of �, then L is a homogeneous
polynomial �say, of degree n� in �ai

. We obtain

L 1

f�a,y1,y2�
=

PL�y1,y2�
f�a,y1,y2�n+1 , �20�

where PL is a polynomial in y1, y2 which is identically zero. We now want to apply this L to

period integrals in X̂a. Recall that these are given as

�	
X̂�a� = 

	

du dv dy1 dy2/�y1y2�
uv + f�a,y1,y2�

�21�

for 	�H4�C2� �C*�2− X̂ ,Z�. Then operating on the left-hand side of the integral, we find

L 1

uv + f�a,y1,y2�
=

PL�y1,y2�
�uv + f�a,y1,y2��n+1

because the additive factor of uv in the period integrals of X̂ is independent of a. Since PL�0, we

have demonstrated that L�	
X̂�a�=0. Clearly the converse of this statement is also true, so the

proposition follows. �

Note that, as pointed out in Ref. 10, there is a subtlety in terms of the scaling properties of the

period integrals on X̂a and 	a; this scaling difference implies that the PF operators we derive from

the above L will be different on 	z and X̂z. In the following, we will ignore this point, and carry
on as though the period integrals on 	z actually reproduce the same PF operators.

As the geometry of � is far simpler than that of X̂, this proposition will greatly aid the search
for a geometric interpretation of our extended Picard-Fuchs operator. We will explore this in the
next section.

C. Geometric interpretation through the Riemann surface

First, we will give a brief description of what “adding extra period integrals” means �which

we are doing, via the extended PF operator� in the context of the space X̂. This follows the lead of,
e.g., Refs. 9 and 2.

Recall that mirror symmetry between compact spaces X and X̂ means, in particular, that

dim H1,1�X�=dim H2,1�X̂�. Hence, for every 2 cycles of X, we can expect a mirror 3 cycle of X̂. Let

dim H3�X̂ ,Z�=n, and take 	i, 	 j �H3�X̂ ,Z� with Poincaré duals �i, � j �H3�X̂ ,Z�. Then there is a

symplectic structure on H3�X̂ ,Z�, defined by the intersection pairing

�	i,	 j� = 
X̂

�i ∧ � j .

In the compact case, we can find a basis ��1 ,… ,�n/2, �1 ,… ,�n/2� for H3�X̂ ,Z� satisfying

��i,� j� = ��i,� j� = 0, ��i,� j� = �ij .

Next, consider the case in which X and X̂ are noncompact. Here, we find there is no such nice
construction. In fact, we can explicitly exhibit this failure in the example we are considering,

O�−1� � O�−1�→P1. First, rewrite the equation for the mirror X̂,
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X̂z = ��ũ,v, ỹ1, ỹ2� � C2 � �C*�2:ũv + z + ỹ1 + ỹ2 + ỹ1ỹ2 = 0� ,

where we have taken ỹi=yi
−1 and ũ=u /y1y2. Set z=1−a, where a�R+. Then

X̂z = �ũv + 1 + ỹ1 + ỹ2 + ỹ1ỹ2 = a� ,

and we can identify a 3 cycle,

	1 = X̂z � �ũ = v̄, ỹ2 = ỹ1� = �vv̄ + �1 + ỹ1��1 + ỹ1� = a � .

It is easy to verify that this cycle has no symplectic dual in H3�X̂ ,Z�.
We may, however, define a noncompact symplectic dual for 	1. This proceeds as follows. Let

p�	1, and take 	̃1= �N	1/X̂�p. Then 	̃1 intersects 	1 in a point, and could be thought of as a dual;

however, integrals over 	̃1 may not be well defined. Instead take

	̃1
� = �v � �N	1/X̂�p:�v� � ��, � � R+.

The norm � � is defined with respect to the metric inherited from C2� �C*�2. Set

�X̂ = Res�uv+f�z,y1,y2�=0�
du dv dy1 dy2/�y1y2�
uv + f�z,y1,y2� � .

We recall the proposal of Ref. 9 for dealing with the “missing” period integrals for local
mirror symmetry. Specifically for the local P1 case we are considering, Ref. 9 makes the claim that
the period integral which is the symplectic dual of the mirror map represents a truncated volume
of the �noncompact� 4 cycle which is dual to the P1. In our notation, this means we should be

considering �	̄1
��X̂ as periods of the noncompact geometry X̂. Mathematically, this means that the

definition of noncompact period integrals of X̂ are to be taken as all �	�X̂ for 	�H3�X̂ ,Z�
� �H3�X̂ ,Z��c. Here, the subscript c indicates compactly supported homology. In view of Propo-
sition 1, one can then make the following.

Definition 1: Let X̂ be the noncompact Calabi-Yau hypersurface,

X̂ = ��u,v,y1,y2� � C2 � �C*�2:uv + f�z,y1,y2� = 0�

and � the imbedded Riemann surface �z= X̂� �u=v=0�. Then the period integrals of X̂ are
defined to be

���z� = 
�

Resf=0
dy1 dy2/�y1y2�
f�z,y1,y2� �

for ��H1�� ,Z� � �H1�� ,Z��c.
In the next section, we will apply this definition to O�−1� � O�−1�→P1, and see that the

explicit evaluation of the period integrals on � gives the same answer as the extended PF operator
of Sec. III A.

D. Period integrals for local P1

Before describing the cycles of � and computing their associated integrals, we will need to
make use of the following proposition. This will give a �1, 0� form ��H1�log��� ,Z�, which can
be integrated over lines in �. Some of the arguments below can be found in Ref. 13.

Proposition 2: Let � be as above, and choose ��H1�� ,Z� � �H1�� ,Z��c. Then


�

Resf=0
dy1 dy2/�y1y2�
f�z,y1,y2� � = − 

�

log y2
dy1

y1
= − 

�

log y1
dy2

y2
.
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Proof: Let T��� be a tubular neighborhood of � in �. We first claim that the same GKZ
operators annihilate both of the following types of integrals:


T���

dy1 dy2/�y1y2�
f�z,y1,y2�

, 
T���

log�f�dy1 dy2/�y1y2� . �22�

In fact, we can see this immediately from the proof of Proposition 1. That is, if L is a degree n
GKZ operator annihilating �T����dy1 dy2 / �y1y2� / f�z ,y1 ,y2��, then as before write

L 1

f�z,y1,y2�
=

PL�y1,y2�
f�z,y1,y2�n+1 , �23�

where PL�y1 ,y2��0. Then it follows immediately that L log�f�= PL�y1 ,y2� / fn�0, as claimed.
Now, note that we are only interested in computations of period integrals as they arise as

solutions of the GKZ system. Therefore, since they are both annihilated by the same system, we
have that


T���

dy1 dy2/�y1y2�
f�z,y1,y2�

= 
T���

log�f�dy1 dy2/�y1y2� . �24�

The rest of the proof is then straightforward,


�

Resf=0
dy1 dy2/�y1y2�
f�z,y1,y2� � = 

�

Resf=0�log�f�dy1 dy2/�y1y2�� = − 
�

Resf=0
d�log�f��log y2
dy1

y1
�

= − 
�

Resf=0
df

f
log y2

dy1

y1
� = − 

�

log y2
dy1

y1
.

This argument applies equally well upon exchanging y1 and y2. �

With this proposition in hand, we can take up the task of working out period integrals on local
P1. Recall that the original, unmodified PF operator for this space was found to be D= �1−z��2,
with solution set �1, log z�. We will at first content ourselves with finding cycles �0,�1

�H1�� ,Z� whose period integrals reproduce these solutions. To this end, note that the defining
equation

� = ��y1,y2� � �C*�2:1 + y1 + y2 + zy1y2
−1 = 0� �25�

can be solved in two ways,

y1 =
− 1 − y2

1 + zy2
−1 , y2

± =
− 1 − y1 ± ��1 + y1�2 − 4zy1

2
.

Now, since y1 and y2 are C* variables, we can define three elements of H1�� ,Z� from these
equations,

�0 = ��y1,y2� � �C*�2:y1 =
− 1 − y2

1 + zy2
−1 , �y2� = �� ,

�± = ��y1,y2� � �C*�2:y2
± =

− 1 − y1 ± ��1 + y1�2 − 4zy1

2
, �y1� = �� .

Then, two of these must be responsible for the solution set �1, log z�. To motivate the correct
choice of cycles, let us first look closely at the mirror construction that originally provided Eq.
�25�. Starting with the description
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O�− 1� � O�− 1� → P1 = ��w1,…,w4� � C4 − Z:�w1�2 + �w2�2 − �w3�2 − �w4�2 = r�/S1,

from Ref. 2, the mirror geometry can be characterized as

�uv + x1 + ¯ + x4 = 0:x1x2x3
−1x4

−1 = z,xi = 1 for some i� .

Here u, v�C and xi�C*. Also, the xi obey �xi�=exp�−�wi�2�, and �z�=e−r. To arrive at the form
�25�, we set x3=1 and solved for x1 in the constraint x1x2x3

−1x4
−1=z. Finally, the identification y1

=x4, y2=x2 was made. Note that in choosing x3=1, we are working in a specific coordinate patch
on the Riemann surface. This coordinate patch is convenient for the problem at hand, as we now
explain.

We can motivate the final choice of variables x2, x4 on � as follows. On O�−1� � O�−1�
→P1, �w1 ,w2� are homogeneous coordinates on the base P1, while w3, w4 are coordinates on each
respective O�−1� factor. In order to study curves which start from the P1 and move off into a
normal direction, we should use a coordinate patch with one base and one fiber variable, i.e., w2,
w4. The mirror variables are then x2, x4, and hence our choice of them as local variables on �. To
be more precise, the locus where w3=w4=0, we thus have a bound 0� �w2�2�r. Then �y2�
=exp�−�w2�2� implies that 1� �y2��e−r= �z�; taking these considerations together, we may accu-
rately label Fig. 1.

Proposition 3: Let �0, �± be as described above, and set �1= ��+�+ ��−�, with the sum taken in
H1�� ,Z�. Then


�0

log y1
dy2

y2
, 

�1

log y2
dy1

y1

span the space of solutions �1, log�z�� of the PF operator �1−z��2.
Proof: The first integral is trivial,


�0

log y1
dy2

y2
= 

�y2�=�

log
− 1 − y2

1 + zy2
−1�dy2

y2
= 

�y2�=�

i� + log
 1 + y2

1 + zy2
−1��dy2

y2

and this is a constant. Of course, the branch cut of log must be taken to lie off the negative real
axis. For the second,


�1

log y2
dy1

y1
= 

�+

log y2
+dy1

y1
+ 

�−

log y2
−dy1

y1
= 

�y1�=�

log�y2
+y2

−�
dy1

y1
= 

�y1�=�

log�zy1�
dy1

y1

= const + 2�i log z .

�

Next, we turn to locating a period integral based on Definition 1. Since the constraint 1� �y2�

FIG. 1. 1-cycles on �. ��0 ,�+ ,�−� is a basis for H1�� ,Z�.
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� �z� only applies in regions with w3=w4=0, outside of this locus, it is sensible to define a path on
� as follows. Let �� �z� be real, and take a smooth increasing function � : �0,1� : →� such that
��0�=�, ��1�=z. Then

�2��� = ��y1,y2� � �C*�2:y1 =
− 1 − y2

1 + zy2
−1 , y2 = ��0,1�, y1 � 1�

defines an element of �H1�� ,Z��c.
Proposition 4: Let �, �2 be defined as above. Then

�F = 
�2

log y1
dy2

y2
,

where �=z�d /dz� and �F is the double-logarithmic solution of the extended PF operator D�
=�2�1−z��2 associated to the mirror of the local model O�−1� � O�−1�→P1.

Proof: The computation is straightforward,


�2

log y1
dy2

y2
= 

�

z

log
− 1 − y2

1 + zy2
−1�dy2

y2
= 

�

z 
i� + 	
n
0

�− y2�n

n
− 	

n
0

�− zy2
−1�n

n �dy2

y2

= const + �� − dependent� + 	
n
0

�− z�n

n2 = ��F��− z� .

In order to achieve the result, we should have z rather than −z in the above. However, this is
accounted for by the fact that arg�y2� is not determined in local mirror symmetry, and hence we are
free to use the variable y2�=ei�y2 in place of y2. �

Notice that, with this definition of period integrals, the logarithmic terms of �F are not
uniquely determined, as they depend on �. It is for this reason that � dependent terms are
disregarded in the calculation.

It may seem that the choice of �2 is artificial, since we could have equally well chosen an
increasing function �� : �0,1�→� with ���0�=1, ���1�=�
1. However, it is easy to show that
this is equivalent; if

�2���� = ��y1,y2� � �C*�2:y1 =
− 1 − y2

1 + zy2
−1 , y2 = ���0,1�, y1 � 1� ,

then

lim
�→�


�
�2�

log y1
dy2

y2
� = 	

n
0

�− z�n

n
,

so the two approaches are interchangeable.
Thus, we have demonstrated that the ordinary period integrals obtained by integrating a

meromorphic 1-form on � over a basis of H1�� ,Z� is not sufficient to provide all the information
we need, from the perspective of mirror symmetry. We must also consider “noncompact cycles” in
order to fill in the missing data, which is what we showed in this section.

IV. MIRROR SYMMETRY FOR TORIC TREES

In this section, we will exhibit Picard-Fuchs operators for a broad class of noncompact three-
folds X such that dim H4�X ,Z�=0.
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A. Ordinary Picard-Fuchs systems

Our first interest will be to take a look at the PF systems one would arrive at through use of
existing local mirror symmetry techniques. We wish to understand exactly how much information
one might recover through these systems alone, in order to determine an appropriate fix.

Let us clarify what we are exploring here. Let �l1 ,… , ln��Zm be a choice of basis for the
secondary fan of a noncompact toric Calabi-Yau threefold X satisfying dim H4�X ,Z�=0. Recall

that we can derive all solutions of the Picard-Fuchs system on the mirror X̂ to X by taking
appropriate linear combinations of derivatives �in � of the generating function ��z , p�
=	n
0c�n ,�zn+. Here z is the complex variable on the complex structure moduli space of X̂,
which we note is canonically identified by the basis vectors �l1 ,… , ln�. In the above expression,
c�n ,�−1=�i	�1+	kli

k�nk+k��, where we are using the convention that lk= �l1
k ,… , lm

k �. Then we
want to look at the functions

�ij = ��i
�j

��z,��=0. �26�

Our interest in this section, then, is to ascertain how much information we can find by looking at
the �ij. In so doing, we will gain a better understanding of what to do in order to remedy mirror
symmetry in this situation. Note that if X satisfies dim H4�X ,Z�=0, then there is no linear com-
bination of the �ij’s that is a solution of the associated PF system. But, we could consider a simple
extension of a given PF system �D1, D2, … � of the form ��1D1, �2D2, … � which would have all
the �ij as solutions.

Example 1: Consider the space

X1 = �− 2�w1�2 + �w2�2 + �w3�2 = tR, �w1�2 − �w2�2 + �w4�2 − �w5�2 = sR�/�S1�2,

where �w1 ,… ,w5��C5− ��w2=w3=0�� �w1=w4=0�� �w4=w5=0��, and sR, tR are positive real
numbers. Choose s, t�C satisfying Re�s�=sR, Re�t�= tR. Then X1 contains two curves Ct, Cs with
respective normal bundles O � O�−2� and O�−1� � O�−1� in X1. Note also that sR, tR determine
the radius of each respective curve. We have that b2=2 and b4=0.

From Ref. 16 we can draw a planar trivalent graph for X1 corresponding to the torus weights.
Using the rules of that paper, we find the toric skeleton shown in Fig. 2. Through the GKZ
formalism, we have the PF operators associated to X1,

D1 = �1��1 − �2� − z1�2�1 − �2��2�1 − �2 + 1� ,

D2 = �2�1 − �2��2 − z2��1 − �2��2, �27�

D3 = �1�2 − z1z2�2�1 − �2��2.

Let s, t be the logarithmic solutions of this system. From physics5,11 the instanton part of the
prepotential in s, t variables is

FIG. 2. Toric diagram for X1.
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F1
inst = 	

n
0

ens

n3 +
en�s+t�

n3 −
ent

n3 . �28�

The Frobenius functions are

�11�s,t� = 0,

�12�s,t� = 	
n
0

en�t+s�

n2 −
ens

n2 , �29�

�22�s,t� = 2	
n
0

ens

n2 .

We have neglected the logarithmic terms of each function. Notice that there is no linear combi-
nation of �ij’s that we can take to reproduce the term 	n
0ent /n2. Apparently, the PF system
cannot see the curve with normal bundle O � O�−2�.

Example 2: Next, consider the space

X2 = ��w1�2 + �w2�2 − �w3�2 − �w4�2 = s1,R,− �w1�2 − �w3�2 + �w4�2 + �w5�2 = s2,R�/�S1�2,

with �w1 ,… ,w5��C5− ��w1=w2=0�� �w4=w5=0�� �w2=w5=0��. Also si,R�R+ and we choose
si�C with Re�si�=si,R. We again have b2=2, b4=0, and now NCi/X2

�O�−1� � O�−1� for each i.
Notice that we can flop from X2 to X1, if l1= �1,1 ,−1 ,−1,0� and l2= �−1,0 ,−1 ,1 ,1�, then the
combinations l1+ l2, −l2 give the secondary fan for X1. The planar trivalent toric graph for X2 is
given in Fig. 3. We have the PF system from the mirror manifold,

D1 = ��1 − �2��1 − z1�− �1 − �2��− �1 + �2� ,

D2 = ��2 − �1��2 − z2�− �2 − �1��− �2 + �1� , �30�

D3 = �1�2 − z1z2��1 + �2 + 1���1 + �2� .

Let si be the logarithmic solutions. Using the same conventions as example 1, we find

�
11

�s1,s2� = 	
n
0

ens1

n2 −
ens2

n2 ,

FIG. 3. Toric diagram for X2.
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�
12

�s1,s2� = 0,

with �22=−�11. Again, these expressions already include the mirror map. Let us take a look at the
prepotential,

F2
inst = 	

n�0

ens1

n3 +
ens2

n3 −
en�s1+s2�

n3 .

Then we see that

�
11

=
�F2

inst

�s1
−

�F2
inst

�s2
.

However, the cross term corresponding to Cs1+s2
cannot be detected from the �ij’s. Our work with

example 1 suggests the reason for the problem with the Cs1+s2
curve. To exhibit this, recall that the

lattice vectors �l1 , l2� for this geometry are


l1

l2 � = 
1 1 − 1 − 1 0

0 − 1 − 1 1 1
� .

Each vector represents a curve Csi
in X2. Then Cs1+s2

is determined by the single vector

l1 + l2 = �1 0 − 2 0 1 � .

This curve satisfied NCs1+s2
/X2

�O � O�−2�. Hence, we do not expect that we can retrieve its

information from the PF system.
We have performed similar computations for three and four parameter cases, all of which

support this general principle. This leads us to the following.
Conjecture 2: Let X be a noncompact toric Calabi-Yau threefold with dim H4�X ,Z�=0, and

say �l1 ,…lm� define X via symplectic quotient. Let �=	n
0c�n ,�zn+ be the generating function
for

�ij
inst = 	

n

��i
�j

c�n,���=0zn �31�

with c�n ,�−1=�i	�1+	kli
k�nk+k��. If F is the prepotential, and si=�i

��=0 for each i such that
li= �1 1 −1 −1 0 … 0 � �up to a permutation of the columns of li�, then there are rational
numbers mij �Q such that

	
i,j

mij�ij
inst = 	

i

�− 1�i−1
�Finst

�si
.

Here, Finst is the instanton part of the prepotential. We use the notation �ij
inst to distinguish these

functions from the usual derivatives of � �i.e., �ij =�i
�j

��=0�. We remark that no linear combi-
nation of the �ij is a solution of the associated PF system; yet, since these functions are essential
to the counting of Gromov-Witten invariants in usual mirror symmetry constructions, we have
tested the limits of the information they carry. This conjecture is equivalent to the statement that
although we cannot detect curves with normal bundle O � O�−2� via the �ij, we can exhibit all
curves with normal bundle O�−1� � O�−1� using these functions.

Let us now briefly recap what we have explored, and what we have learned, in this section.
First, from general principles we know that the PF systems have no double-logarithmic solutions,
and hence there are no curve-counting functions on these spaces. Second, we looked at the
functions �ij to determine if we could fix the problem by simply considering some basic extended
system �e.g, �D1 ,D2 ,…�→ ��1D1 ,�2D2 ,…��. However, the absence of curves with normal bundle
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O � O�−2� in the functions �ij means that we must work a little harder to find the right extended
systems. We will now turn to this task, by seeking a way to include such curves in the differential
systems.

B. Two building blocks of solutions

Assume X is a noncompact Calabi-Yau threefold such that dim H4�X ,Z�=0, and that every
two cycle C�X has normal bundle O � O�−2� or O�−1� � O�−1�. We will refer to these as t and
s curves, respectively, in the following. Then, as any such space X is obtained by gluing s and t
curves together in some way, it is reasonable to expect that we can solve all these models by
extension from the two basic one parameter cases

Xs = O�− 1� � O�− 1� → P1,

Xt = O � O�− 2� → P1.

We have already exhibited the solution on Xs. We will now modify this slightly to allow extension
to the general cases, and subsequently demonstrate a similar solution on Xt.

Recall, from Sec. II A, the differential operator for Xs,

D̃1 = �s
2�1 − zs��s

2.

As before, �s=zsd /dzs, and Ỹ1=1/ �1−zs� is the Yukawa coupling. Note that this expression for Ỹ1

implies a classical triple intersection number 1 for P1
�Xs.

We will now need to make a slightly different choice of Yukawa coupling on Xs. Recall17,7

that, in the context of the toric flop s→−s, the natural value for the triple intersection number is
1 /2. There is a simple proof for this, which we give now. From Sec. II A, we had the prepotential
on local P1 with arbitrary triple intersection number �Eq. �16��,

F�z� = K
�log z�3

6
+ 	

n
0

zn

n3 . �32�

A flop of the P1 on Xs is the same as a change of variables z→1/z in the prepotential

Fflop�z� = K
�− log z�3

6
+ 	

n
0

z−n

n3 . �33�

Taking the difference of these,

F�z� − Fflop�z� = − 1
3K�log z�3. �34�

We have ignored the terms including �−1, since the Yukawa coupling is insensitive to them. Then
according to Witten,17 we are supposed to find

F�z� − Fflop�z� = − 1
6 �log z�3, �35�

and hence K=1/2 is uniquely determined. Recall that the result17 cited here was derived by
considering the analytic continuation of the instanton sum across a flop; the difference in inter-
section pairings between the geometries Xs and X−s was shown to be −1, which is equivalent to Eq.
�35�.

This means that we should really be using
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Y1 =
1

2
+

zs

1 − zs

for the Yukawa coupling. We obtain the following differential operator describing mirror symme-
try for Xs:

D1 = �s
2
2�1 − zs�

1 + zs
��s

2.

Next, let us turn to Xt. Note that the naturally occurring PF operator on the mirror to O
� O�−2�→P1, which is D2�=�t

2−zt�2�t��2�t+1�, has no curve information, since there is no
double-logarithmic solution. Moreover, the second Frobenius derivative of the generating function
of solutions has no instanton part. Yet, in view of the solution on Xs, we can easily exhibit a
Picard-Fuchs operator for Xt; it is given by

D2 = �t
2�1/Y2��t

2.

Here

t�z� = log�zt� + 2	
n
0

�2n − 1�!
n!2 zt

n

is the mirror map for Xt, and Y2 is the Yukawa coupling on Xt, which in these coordinates is

Y2 = −
1 + et

2�1 − et�
.

Let us briefly discuss the motivation for this choice of Y2. First of all, we take an overall minus
sign on the instanton part of Y2 relative to the Xs case, because of considerations coming from the
topological vertex.11 Also, the constant term of −1/2 is determined from Conjecture 1, i.e., from
the requirement of rationality of the B-model Yukawa coupling.

Then, as in the compact case, it follows automatically that the solutions �t of D2�t=0 are
given as

�t = 
1,t,
�F
�t

,t
�F
�t

− 2F� ,

where F is a holomorphic function in t such that �3F /�t3=Y2. Then it is a simple matter to write
down an explicit differential operator on the mirror of Xt, by a change of coordinates for D2. We
find

D2 = �t
4 − zt�2�t + 2��2�t + 1�2�t + �zt�2�2�t + 4��2�t + 3��2�t + 1�2�t 
�t ª zt

d

dzt
� . �36�

The solutions of �36� are generated by the Fröbenius function,

w�zt,� ª 	
n=0

�
1

	�1 − 2n − 2��	�1 + n + ��2
1 + 	
j=1

n


j + 
�zt

n+.

We can easily check that the vector space

�1,t,
�F
�t

,2F − t
�F
�t
�

C
,

is equal to the vector space

082302-16 B. Forbes and M. Jinzenji J. Math. Phys. 46, 082302 �2005�

                                                                                                                                    



�w�zt,0�,�w�zt,0�,�
2w�zt,0�,�

3w�zt,0��C.

Hence, we have demonstrated the existence of mirror symmetry for both Xs and Xt, in terms of
solutions of differential operators. It should be noted that D1, D2 cannot be derived from any GKZ
system on these spaces.

We close this section by making a general remark about the constructions here. Note that, on
Xt, we have simply taken the known results of Gromov-Witten invariants and translated this into
a Picard-Fuchs equation on the mirror. Yet, we view this as an important step towards our ultimate
goal, which is a formulation of local mirror symmetry purely in terms of the complex geometry of

the mirror X̂t. By a careful study of such operators, we hope to better understand exactly why local
mirror symmetry fails on spaces such as Xt.

C. Mirror symmetry when dim H4„X ,Z…=0

We can use the results of the preceding section to find a general solution for such spaces, as
follows. We are interested in noncompact toric Calabi-Yau threefolds X with dim H4�X ,Z�=0 such
that for each C�H2�X ,Z�, we have

NC/X � O�− 1� � O�− 1�

or

NC/X � O � O�− 2� .

Let �Cs1
,… ,Csm

,Ct1
,… ,Ctn

� is a basis of H2�X ,Z�, where NCsi
/X�O�−1� � O�−1�, NCtj

/X�O
� O�−2�∀ i , j, and u= �s1 ,… ,sm , t1 ,… , tn�.

From the topological vertex formalism, the authors of Ref. 11 were able to determine the
instanton part of the prepotential for the class of examples we are considering. Explicitly,

Pinst = 	
Cs

	
k
0

eks

k3 − 	
Ct

	
k
0

ekt

k3 .

Here, the sum over Cs represents the sum over all curves Cs�X such that NCs/X
�O�−1� � O

�−1�, and similarly for the sum over Ct.
As explained in the introduction, our problem reduces to that of defining a consistent �triple�

intersection theory on X. Thanks to the simple structure of X, together with our preliminary choice
of intersection numbers for O�−1� � O�−1�→P1 and O � O�−2�→P1, there is in fact a unique
choice. We will first give the general definition, and afterward explain its significance through an
example. To give the prescription for intersection theory for the general case, we will only con-
sider X with the toric diagram as shown in Fig. 4. That is, only two curves in X are allowed to

FIG. 4. X containing a string of curves.
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intersect at any point. Hence, we exclude cases where three curves meet at one point in X, etc.
With this restriction, we can introduce an ordering on the curves in X,

Cu1
� Cu2

� Cu3
� ¯ .

Define a function

sgn:H2�X,Z� → �1,− 1�

so that sgn�C�=1 if NC/X�O�−1� � O�−1�, and sgn�C�=−1 otherwise. With these conventions,
we can now state our conjecture on intersection theory.

Definition 2: Let X and u be as above. Then the classical intersection numbers for X are given
by

Kabc =
1

2 	
C�A

sgn��Cabc� + �C�� , �37�

where the sum is taken in homology, and

�Cabc� = �Cua
� + 	

Cua
�C��Cub

�C�� + �Cub
� + 	

Cub
�C��Cuc

�C�� + �Cuc
� .

The sum is taken away from the set A= ��Cua
� , �Cub

� ,… , �Cua
+Cua+1

� ,…�.
This formula can be most simply understood as follows. The curve of minimum volume

containing all three curves Cua
, Cub

, and Cuc
can be represented by the homology class

�Cabc� = �Cua
� + 	

Cua
�C��Cub

�C�� + �Cub
� + 	

cub
�C��Cuc

�C�� + �Cuc
� .

Then each term of the sum �Cabc�+ �C� corresponds to a curve in X containing Cabc.
For example, consider the case a=b=c. Then both of the sums collapse, we are left with only

sgn��Cua
�+ �C��. The sum will contribute ±1/2 for each curve containing Cua

, depending on the
normal bundle of that curve.

Let us now apply this definition to a concrete case. Consider again the instanton part of the
prepotential from example 1 above, Eq. �28�,

Finst = 	
n
0

ens

n3 +
en�s+t�

n3 −
ent

n3 .

Then, e.g.,

�3Finst

�s3 = 	
n
0

�ens + en�s+t�� .

Both the s curve and the s+ t curve have normal bundle O�−1� � O�−1� �this can be seen from the
toric diagram, or directly from the vectors defining the secondary fan�. Thus, each curve should
have an intersection number equal to 1/2, which implies

Ksss = 1
2 + 1

2 = 1.

By applying similar reasoning, we obtain the other intersection numbers Ktss=Ktts=1/2, Kttt=0.
In fact, we can provide a simple argument as to why this is the correct choice of intersection

theory for this class of examples. We must only verify that the intersection numbers are consistent
under the analytic continuation of the prepotential through a flop transformation. And indeed, the
numbers given above are the unique ones that satisfy this requirement.
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D. Extended Picard-Fuchs system for X1 and X2

In this section, we derive an extended PF system under the assumption of the conjecture given
in the preceding section. The operators Di appearing below are the same as in Sec. IV A. First, we
look at the example X1. In this case, we start from four A-model Yukawa couplings,

Yttt ª −
et

1 − et +
es+t

1 − es+t ,

Ytts ª
1

2
+

es+t

1 − es+t ,

�38�

Ytss ª
1

2
+

es+t

1 − es+t ,

Ysss ª 1 +
es

1 − es +
es+t

1 − es+t .

The constant part of each Yukawa coupling is given by the conjecture, and the instanton �noncon-
stant� part was taken from Ref. 11. By solving �27�, we obtain mirror maps s=s�z1 ,z2� and t
= t�z1 ,z2�. In particular, the Jacobian of these mirror maps are written in terms of simple functions,
as follows:

�t

�u1
=

1
�1 − 4z1

,
�t

�u2
ª 0,

�s

�u1
=

1

2

− 1 + 4z1 + �1 − 4z1

− 1 + 4z1
,

�s

�u2
= 1, �39�

where ui=log�zi�. With this data, we can compute the B-model Yukawa couplings in ui coordi-
nates, and they turn out to be rational functions in zi whose denominators are given by the divisor

of the defining equation of discriminant locus of X̂1,

dis�X̂1� = �1 − z2 + z1z2
2��1 − 4z1� . �40�

The explicit results are given as follows:

Y111 = −
1

2

z1�− 4z1 + 5 − 7z2 + 12z1z2 + 2z2
2 − 5z1z2

2 + 4z1
2z2

2�
�1 − z2 + z1z2

2��− 1 + 4z1�2 ,

Y112 = −
1

2

�1 − 2z1 − z2 + 4z1z2 − z1z2
2 + 2z1

2z2
2�

�1 − z2 + z1z2
2��− 1 + 4z1�

,

�41�

Y122 = −
1

2

�− 1 + z2 + z1z2
2�

�1 − z2 + z1z2
2�

,

Y222 =
1 − z1z2

2

1 − z2 + z1z2
2 .

These results show that the conjecture given in the preceding section is compatible with Conjec-
ture 1 in Sec. I. Therefore, we can construct an extended PF system by using the strategy outlined
in Sec. II. For brevity, we introduce here the following notation:
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Ma
��t*� ª 	

b

�Ya
−1�t*���b�a�b�0. �42�

In the case of X1, we have two integrability conditions given in �7�,

M1
1�s,t� = M2

1�s,t�, M1
2�s,t� = M2

2�s,t� , �43�

where we use the subscripts 1 and 2 for s and t. By explicit computation, these two conditions turn
out to be the same, and translated into a differential equation in zi variables by using �39� and �41�,
we obtain

��1 + z2 + z1z2
2�D1 + D2 + z2D3��0 = 0. �44�

Next, we consider the second integrability condition given in �8�,

�1M1
1�s,t� = �2M2

2�s,t�, �2M1
1�s,t� = 0, �1M2

2�s,t� = 0. �45�

By explicit computation, we found that the second and third conditions are translated into one
rational differential equation,

�2D1�0 = 0. �46�

The first condition is also translated into a rational differential equation but the result is very
complicated. We do not have to use this equation because we can say that �44� and �46� are a
minimal set of extended PF operators for X1. The reason is the following. Let us consider the large
radius limit of �44� and �46�,

��1
2 + �1�2 − �2

2��0 = 0, ��1
2�2 − �1�2

2��0 = 0. �47�

These conditions are equivalent to the relations of the classical cohomology ring of X̄1,

kt
2 + ktks − ks

2 = 0, kt
2ks − ktks

2 = 0, �48�

which reproduces the conjectured triple intersection numbers, up to an overall scaling. From this
fact, we can see that �44� and �46� give us a complete set of relations for the classical cohomology
ring of X1 at the large radius limit. Since the PF equations are nothing but the noncommutative
version of the relations of the quantum cohomology ring of X1, which reduce to relations of
classical cohomology at the large radius limit,8 we can propose the following set of differential
operators as an extended PF system:

D̃1 = �1 + z2 + z1z2
2�D1 + D2 + z2D3,

�49�
D̃2 = �2D1.

We checked that the solution space of �49� is given by

�1,t,s,
�F
�t

,
�F
�s

,2F − t
�F
�t

− s
�F
�s
�

C
. �50�

Of course, we can derive the B-model Yukawa couplings �41� by using �49� as the starting point.
An explicit example of this kind of computation will be given in Sec. VI of this paper.

We can also construct an extended PF system of X2 in the same way as X1. Here, we briefly
present the data of this construction. The starting point is the A-model Yukawa couplings,

Y111 ª
es1

1 − es1
−

es1+s2

1 − es1+s2
,
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Y112 ª −
1

2
−

es1+s2

1 − es1+s2
,

�51�

Y122 ª −
1

2
−

es1+s2

1 − es1+s2
,

Y222 ª
es2

1 − es2
−

es1+s2

1 − es1+s2
.

Let us introduce the logarithm of the B-model coordinates zi,

u1 = log�z1�, u2 = log�z2� . �52�

By solving �30�, we obtain the mirror maps s1=s1�z1 ,z2� and s2=s2�z1 ,z2� and their Jacobian,

�s1

�u1
=

1

2

�− �1 − 4z1z2 − 1 + 4z1z2�
�4z1z2 − 1�

,
�s1

�u2
= −

1

2

�− 1 + 4z1z2 + �1 − 4z1z2�
�4z1z2 − 1�

,

�53�
�s2

�u1
= −

1

2

�− 1 + 4z1z2 + �1 − 4z1z2�
�4z1z2 − 1�

,
�s2

�u2
=

1

2

�− �1 − 4z1z2 − 1 + 4z1z2�
�4z1z2 − 1�

.

With this data, we can compute the B-model Yukawa couplings in ui,

Y111 =
1

2
z1

�5z1z2 − 2 − 12z1z2
2 + 7z2 + 4z2

3z1 − 5z2
2 − 4z1

2z2
2�

�z2 − 1 + z1��4z1z2 − 1�2 ,

Y112 =
1

2

�1 − z1 − z2 − z1z2 − z2z1
2 + z1z2

2 + 4z1
2z2

2 + 4z2
2z1

3 − 4z2
3z1

2�
�z2 − 1 + z1��4z1z2 − 1�2 ,

�54�

Y122 =
1

2

�1 − z2 − z1 − z2z1 − z1z2
2 + z2z1

2 + 4z2
2z1

2 + 4z1
2z2

3 − 4z1
3z2

2�
�z1 − 1 + z2��4z2z1 − 1�2 ,

Y222 =
1

2
z2

�5z2z1 − 2 − 12z2z1
2 + 7z1 + 4z1

3z2 − 5z1
2 − 4z2

2z1
2�

�z1 − 1 + z2��4z2z1 − 1�2 ,

and they turn out to be rational functions in zi whose denominators are divisors of defining

equation of discriminant locus of X̂2,

dis�X̂2� = �1 − z1 − z2��1 − 4z1z2� . �55�

The derivation of the extended PF system by using the recipe in Sec. II proceeds in the same way
as X1. In this case, we must only consider

M1
1�s1,s2� = M2

1�s1,s2�, M1
2�s1,s2� = M2

2�s1,s2� �56�

and

�1M1
1�s1,s2� = �2M2

2�s1,s2�, �2M1
1�s1,s2� = 0, �1M2

2�s1,s2� = 0. �57�

Equation �56� gives us one differential equation for �0 with rational function coefficients in zi,

�D1 + D2 + �1 + z1 + z2�D3��0 = 0. �58�

As for �57�, the second and the third conditions give us a differential equation for �0,
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��1 − �2�D3�0 = 0, �59�

and the first one gives us a complicated rational differential equation. For the same reasoning as
X1, we can propose an extended PF system for X2 as follows:

D̃1 ª D1 + D2 + �1 + z1 + z2�D3,

�60�
D̃2 ª ��1 − �2�D3.

We have also constructed an extended PF system for a three parameter space X3, in order to further
test the conjecture made in the preceding section. Specifically, X3 satisfies dim H2�X ,Z=3�,
dim H4�X ,Z=0�, and is defined by the following vectors:

�l1

l2

l3� = �1 1 − 1 − 1 0 0

0 − 1 − 1 1 1 0

0 − 1 1 0 − 1 1
� . �61�

The results are collected in Appendix A.

V. ADDING OPEN STRINGS TO Ȯ„−1…ŠO„−1…\P1

So far, we have been able to demonstrate the existence of differential operators which deter-
mine mirror symmetry for noncompact toric Calabi-Yau manifolds which have no 4 cycle. One
may also wonder what the applications are to the PF system derived for open string mirror
symmetry.14,6 Briefly, we recall that in Ref. 14, a system of Picard-Fuchs differential operators for
open strings was proposed. By considering the toric data arising from a noncompact toric Calabi-
Yau threefold X and a Lagrangian submanifold L�X,14 gives a method of associated PF differ-
ential equations, whose solutions are then shown to reproduce known open string mirror symmetry
data,6 subsequently identified the integrals which correspond to these differential operators. Below,
we will see that in some cases, the PF system of Ref. 14 also requires extension.

Recall1,6 that open string mirror symmetry is a local isomorphism of moduli spaces �X ,L� and

�X̂ ,C�; X and X̂ are Calabi-Yau manifolds which are mirror in the usual sense, and L�X is

Lagrangian, while C� X̂ is holomorphic. In the case at hand, �X ,L� will be given by

Xr = ��w1,…,w4� � C4 − Z:�w1�2 + �w2�2 − �w3�2 − �w4�2 = r�/S1,

together with either

Lr,c = Xr � ��w2�2 − �w4�2 = c, �w3�2 − �w4�2 = 0, 	
i

arg�wi� = 0� �62�

or

Lr,c� = Xr � ��w2�2 − �w4�2 = 0, �w3�2 − �w4�2 = c, 	
i

arg�wi� = 0� . �63�

There are then local moduli space isomorphisms �X ,L���X̂ ,C�, �X ,L����X̂ ,C��, where

X̂z1
= ��u,v,y1,y2� � C2 � �C*�2:uv + 1 + y1 + y2 + z1y1y2

−1 = 0� ,

Cz1,z2
= X̂z1

� �y2
−1y1 = z2, y1 = 1� , �64�
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Cz1,z2
� = X̂z1

� �y2
−1y1 = 1, y1 = z2� . �65�

The detailed derivation of these spaces is given in Ref. 1. One mathematical implication of open

string mirror symmetry is that the geometry of �X̂ ,C� should determine the genus 0 open Gromov-
Witten invariants of �X ,L�. This means that there should be functions defined on the moduli space

�X̂ ,C� which count holomorphic maps f :D= �z�C : �z��1�→X such that f��D��L. Furthermore,

in many cases such functions can be derived from an open string Picard-Fuchs system on �X̂ ,C�.
However, for the case at hand, it will be shown that the same sort of modification of the PF
system, proposed for ordinary closed mirror symmetry, is also necessary in the open string setting.

We turn to the PF system on the moduli spaces �X̂ ,C� and �X̂ ,C��.
From Ref. 6, we can define “open period integrals” on �X̂ ,C� by

�	�z1,z2� = 
	

du dv dy1 dy2/�y1y2�
�uv + 1 + y1 + y2 + z1y1y2

−1��y1 − z2y2��y1 − 1�
, �66�

	�H4�C2� �C*�2− X̂ , X̂−C ,Z�. Then the derivations in Ref. 6 lead to a Picard-Fuchs system for

�X̂ ,C�, given as

D1 = �1��1 + �2� − z1�1��1 + �2� ,

�67�
D2 = �2��1 + �2� − z2�2��1 + �2� ,

�i=zi�d /dzi�. These operators satisfy Di�	�z1 ,z2�=0. This is exactly the noncompact PF system of
the vectors l1= �1,1 ,−1 ,−1,0 ,0�, l2= �0,1 ,0 ,−1 ,1 ,−1�, and agrees with the results of Ref. 14.

As was shown in Ref. 3, the solution space of �D1 ,D2� can be obtained, using the Frobenius
method, from a function �0�z ,�=	n�0c�n ,�z1

n1+1z2
n2+2, where c�n ,� is

	�1 + n1 + 1�	�1 + n1 + 1 + n2 + 2�	�1 − n1 − 1�	�1 − n1 − 1 − n2 − 2�	�1 + n2 + 2�

�	�1 − n2 − 2� . �68�

According to Ref. 15, the solutions are expected to be �1, t1, t2, W1, W2, …�. t1 and t2 give the open
string mirror map, and this is trivial for the present example, so we have ti�z�=log�zi�. Also, the Wi

count disks on �X ,L�.
Upon looking at the equations of �X ,L�, we can make the following geometric observation

about a map f :D→X with f��D��L. In the region where w3=w4=0, L will intersect the P1 of X;
hence, such an f must obey f�D��P1. Then the natural interpretation of the variable z2 is as a
parameter controlling the size of a holomorphic disk f�D� in X. It is therefore expected that one of
the double-logarithmic solutions of �67� will look like

W1�z2� = 	
n
0

z2
n

n2 , �69�

where the log terms have been disregarded due to ambiguity.1 And indeed, it is the case that
W1�z2�= ��2

2 �0��=0. The problem, though, is that ��2

2 �0��=0 is not a solution of �67�. The easiest
way to see this is to note that W1 is independent of z1, and �67� reduces to D2= �1−z2��2

2 if z1

=0. The minimal resolution of this issue, which continues in the spirit of extended operators, is to
instead work with the system

�D1,�2D2� . �70�

W1 is indeed a solution of these higher order operators.

Similarly, we can perform calculations on the family �X̂ ,C��. This moduli space is given by
vectors k1= l1, k2= �0,0 ,1 ,−1 ,1 ,−1�, and the open string PF system we arrive at is
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D1� = �1
2 − z1��1 − �2���1 + �2� ,

�71�
D2� = ��2 − �1��2 − z2��1 + �2��2.

Again, analogously to the above, let �0� be the generator of solutions of �D1� ,D2��. Then there is a
disc counting function

�2

2 �0�=0 = W��z1,z2� = 	
n2
n1�0

�− 1�n1�n1 + n2 − 1�!
�n1 ! �2�n2 − n1� ! n2

z1
n1z2

n2 �72�

which agrees with the result of Ref. 1. Yet, once again we have the problem of this not being a
solution of the given PF system, the same modification gives the system �D1� ,�2D2��. W� is now
among the solutions of this.

Next, we will give an open string period integral definition for these degenerate situations. For

motivation, let us review some geometric facts about �X̂ ,C�. Let y be a local coordinate on �.
Then following Ref. 1, we can think of the curve C as

Cz1,z2
= X̂z1

� �v = 0,y = z2� = C � �z2 � �� .

Then the coordinate on C�C is u, and z2 parametrizes a family of curves in �.
Earlier, it was noted that the problem of period integrals was reducible to that of integrals on

�. Here it is beneficial to make the same simplification. Notice that, when projected to �, the
family of curves �Cz1,y �y� �z ,z2�� becomes a real curve connecting z to z2. Hence, the sensible
extension of Definition 1 to open strings is the following.

Definition 3: Let X̂, � be as given in Definition 1, and C as above. Choose z, z2�� and �̂

�H1�� , �z ,z2� ,Z�. Then the open period integrals of �X̂ ,C� are defined to be

W�z1,z2� = 
�̂

Resf=0
dy1 dy2/�y1y2�
f�z1,y1,y2� � .

For the purposes of the definition, z is considered to be fixed on �, and z2 is taken as a parameter.
In the local P1 example, the relevant curves �̂ are shown in Fig. 5. Note that these are smooth real
curves, so that, e.g., �̂ : �0,1�→� is smooth and such that �̂�0�=z, �̂�1�=z2, and similarly for �̂�.
In Fig. 5, we have abused notation and set �̂= �̂�0,1�.

We now move on to the evaluation of these, and show agreement with the solutions of the
proposed extended open string PF system of the last section. There are two integrals associated to
the curves of the figure, and their calculation proceeds as follows:

FIG. 5. Real curves defining open string periods on �.
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W�z1,z2� = 
�̂

log y1
dy2

y2
= 

z

z2

log
 − 1 − y2

1 + z1y2
−1�dy2

y2
= 	

n
0

�− z2�n

n2 − 	
n
0

�− z2
−1z1�n

n2 .

We also find

W��z1,z2� = 
�̂�

log y2
dy1

y1
= 

z

z2

log
− 1 − y1 − ��1 + y1�2 − 4z1y1

2
�dy1

y1
.

This integral is more difficult to directly evaluate, but as in Ref. 1 we can simply note that

z2
d

dz2
W� = log
− 1 − z2 − ��1 + z2�2 − 4z1z2

2
� .

After Taylor expanding about z1=0 and integrating the result in z2, this matches �72�.

VI. MORE GENERAL LOCAL GEOMETRIES

We have come a long way toward a more complete picture of the differential equations
governing local mirror symmetry. However, we have yet to test these ideas in the domain of
applicability of Ref. 3; namely, local Calabi-Yau manifolds KS, where S is a Fano surface and KS

is its canonical bundle. The system of differential operators as given in Ref. 3 is not complete
unless

dim H2�S� = dim H4�S� . �73�

Notice the only surface S satisfying this condition is P2. We should give some explanation as to
what we mean by complete. Assume that there exists a physical definition for a prepotential F for
KS. Then a double-logarithmic solution W of the Picard-Fuchs system on KS will satisfy W
=	iai

W�F /�ti for some rational numbers ai
W, where ti are logarithmic solutions of the system.

Then we cannot integrate the functions W to a single prepotential F unless there are dim H2�S�
double-logarithmic solutions; since the set of independent double-logarithmic solutions has the
same cardinality as dim H4�S�, we see that the condition �73� is required. We will now test our
techniques on such cases.

A. One one-parameter example

The simplest, though rather trivial, example is KP2 =O�−3�→P2. This can be defined as a
symplectic quotient,

KP2 = ��w1,…,w4� � C4 − Z:�w1�2 + �w2�2 + �w3�2 − 3�w4�2 = r�/S1,

where Z= �w1=w2=w3=0�, r�R+ and the S1 action is given as �w1 ,… ,w4�
→ �ei�w1 ,ei�w2 ,ei�w3 ,e−3i�w4�. The original paper3 associates a Picard-Fuchs system here, which
is ultimately derivable from the period integrals of the mirror

X̂z = ��u,v,y1,y2� � C2 � �C*�2:uv + 1 + y1 + y2 + zy1
−1y2

−1 = 0� .

Again, from Ref. 10,

�	�z� = 
	

du dv dy1 dy2/�y1y2�
uv + 1 + y1 + y2 + zy1

−1y2
−1

for 	�H4�C2� �C*�2− X̂ ,Z� are the period integrals. Then we immediately recover the well-
known PF operator

082302-25 Extending local mirror symmetry J. Math. Phys. 46, 082302 �2005�

                                                                                                                                    



D = �3 + z�3���3� + 1��3� + 2�, � = z
d

dz
,

whose solution space is generated by a function �0�z ,�=	n�0c�n ,�zn+. Here, the coefficients
can be written c�n ,�−1=	�1−3n−3�	�1+n+�3. If we write the solutions in the variable t
=��0�=0, we get �= �1, t ,�F /�t�. Naturally, this implies that in the t variable, it must be the case
that

D = �t
 �3F
�t3 �−1

�t
2.

Then, we can again give a compactified operator �tD which possesses a completed set of solutions,
i.e., the solution space can be written as


1,t,
�F
�t

,2F − t
�F
�t
� . �74�

It is actually equivalent to just work with

�D = ���3 + z�3���3� + 1��3� + 2��

on account of the invertibility of the Jacobian. This is our extended PF operator.

B. Completing mirror symmetry for Hirzebruch surfaces

One parameter spaces of type KS have already been exhausted, by the KP2 case. We will now
turn to the two-parameter spaces, namely the canonical bundle over the Hirzebruch surfaces F0,
F1, F2. As is well known,3 the instanton part of the double-log arithmic solution of the standard PF
system is given by a linear combination of the �Finst /�ta. This fact tells us that the standard PF
system of KS already includes the information coming from Ya

−1�t*� in �6�. Therefore, we can take
a short cut in the process of constructing an extended PF system on KS. Examples of this explicit
construction will be given in the next section.

The symplectic quotient description is given by

KFn
= �− 2�w1�2 + �w2�2 + �w3�2 = r1

n, �− 2 + n��w1�2 − n�w2� + �w4�2 + �w5�2 = r2
n�/�S1�2

where �w1 ,… ,w5��C5−Zn. That is, the vectors in the secondary fan are


ln
1

ln
2 � = 
 − 2 1 1 0 0

− 2 + n − n 0 1 1
� .

The methods of Ref. 3 lead to PF operators, KF0
,

D1
0 = �1

2 − z1�2�1 + 2�2��2�1 + 2�2 + 1� ,

D2
0 = �2

2 − z2�2�1 + 2�2��2�1 + 2�2 + 1�;

KF1
,

D1
1 = �1��1 − �2� − z1�2�1 + �2��2�1 + �2 + 1� ,

D2
1 = �2

2 − z2�2�1 + �2���1 − �2�;

KF2
,

D1
2 = �1��1 − 2�2� − z12�1�2�1 + 1� ,
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D2
2 = �2

2 − z2�2�2 − �1��2�2 − �1 + 1� .

For each respective system, we let t1
n, t2

n be the logarithmic solutions. Each case comes
equipped with a single double-logarithmic solution Wn. If �n is the generating function of solu-
tions on KFn

and �ij
n =�i

�j
�n�=0, then we can write these as

W0 = �12
0 , W1 = �11

1 + 2�12
1 , W2 = �11

2 + �12
2 .

Taking Fn for the prepotential on KFn
, we have the following equalities:

Wn = 2
�Fn

�t1
n + �2 − n�

�Fn

�t2
n .

By a comparison of power series, we can demonstrate that the �ij
n contain all the information

necessary to derive the �instanton part of� the prepotential on KFn
. We find


�11
n

�12
n � = 
0 4

2 − 3n + 2
�
�Fn/�t1

n

�Fn/�t2
n� . �75�

The equality above holds at the level of instanton parts of Fn. We will now investigate the
classical terms of these prepotentials.

First, we give here the discriminant locus of KFn
where the corresponding mirror hypersurface

K̂Fn
becomes singular,

dis�K̂F0
� = 1 − 8�z1 + z2� + 16�z1 − z2�2, �76�

dis�K̂F1
� = �1 − 4z1�2 − z2 + 36z1z2 − 27z1z2

2, �77�

dis�K̂F2
� = �1 − 4z1�2 − 64z1

2z2. �78�

In the KF2
case, there is another component of the discriminant locus defined by 1−4z2; we note

that this appears in the B-model Yukawa couplings. With these results, Naka determined the
B-model Yukawa couplings of KFn

with respect to u=log�z1�, v=log�z2� variables by assuming
compatibility with the instanton expansion given by the double-logarithmic solution, and that they

should be written in terms of simple rational functions multiplied by 1/dis�K̂Fn
�,12 n=0,

Yuuu =
− 4z1

2 + 4z2
2 − 4z1 − 2z2 + 1

4

dis�K̂F0
�

, Yuuv =
4z1

2 − 4z2
2 + 2z2 − 1

4

dis�K̂F0
�

,

Yuvv =
− 4z1

2 + 4z2
2 + 2z1 − 1

4

dis�K̂F0
�

, Yvvv =
4z1

2 − 4z2
2 − 2z1 − 4z2 + 1

4

dis�K̂F0
�

;

n=1,

Yuuu = −
��− 162x + 9�z1z2

2 + �96x − 4�z1
2 + �216x − 14�z1z2 + �5 − 48x�z1 − 6x�z2 − 1��

dis�K̂F1
�

,

Yuuv =

−
��324x − 18�z1z2

2 + �8 − 192x�z1
2 + �25 − 432x�z1z2 + �96x − 6�z1 + �12x − 1��z2 − 1��

dis�K̂F1
�

,
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Yuvv =

−
��36 − 648x�z1z2

2 + �384x − 16�z1
2 + �864x − 44�z1z2 + �8 − 192x�z1 − �24x − 1��z2 − 1��

dis�K̂F1
�

,

Yvvv =

−
��1296x − 72�z1z2

2 + �32 − 768x�z1
2 + �76 − 1728x�z1z2 + �384x − 16�z1 + �48x − 2��z2 − 1� − z2�

dis�K̂F1
�

,

n=2,

Yuuu =
− 1

dis�K̂F2
�
, Yuuv =

2z1 − 1
2

dis�K̂F2
�

,

Yuvv =
− z2�8z1 − 1�

dis�K̂F2
��1 − 4z2�

, Yvvv =
− z2�24z1z2 + 2z1 − 2z2 − 1

2�
dis�K̂F2

��1 − 4z2�2
. �79�

In the n=1 case, there exists a moduli parameter x that leaves the instanton part of Yijk invariant.
�In the n=0 case, we also have one moduli parameter if we do not assume symmetry between u
and v.� In other words, we cannot determine the value of x from the compatibility of the instanton
numbers. The aim of this section is to give a derivation of these Yukawa couplings by using an
extended set of Picard-Fuchs operators of local Fn as the starting point. First, we notice that �79�
tells us of the existence of a natural classical triple intersection theory on KFn

compatible with the
instanton expansion, n=0,

�kukuku� = 1
4 , �kukukv� = − 1

4 , �kukvkv� = − 1
4 , �kvkvkv� = 1

4 ;

n=1,

�kukuku� = − 6x, �kukukv� = − 1 + 12x, �kukvkv� = − 24x + 1, �kvkvkv� = − 2 + 48x;

n=2,

�kukuku� = − 1, �kukukv� = − 1
2 , �kukvkv� = 0, �kvkvkv� = 0. �80�

In �80�, we denote the classical triple intersection numbers of Kähler forms ku, kv by �kukuku�, etc.
Therefore, we must reproduce �80� from the information obtained from some extended PF system.
The key idea of constructing such an extended system becomes more clear upon looking at the
triple log series obtained from the generating hypergeometric series of the solution of the PF
system,

w�u,v,r1,r2� ª 	
n=0

�

	
m=0

�
1

�
j=0

4

	�1 + lj
1�m + r1� + lj

2�n + r2��

exp��m + r1�u + �n + r2�v� . �81�

It is well known that w�u ,v ,r1 ,r2���r1,r2�=�0,0�=1 is the trivial solution of the PF system, and that
the log arithmic solutions �ri

w�u ,v ,r1 ,r2���r1,r2�=�0,0� gives us the mirror map ti. Then we consider
the relation between the triple log series Wijk�u ,v�ª�ri

�rj
�rk

w�u ,v ,r1 ,r2���r1,r2�=�0,0� and the pre-
potential F�t1 , t2� of KFn

. Surprisingly, the classical intersection number �80� is determined from
the following assumption:
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1

6
�kukuku� · W111�u�t*�,v�t*�� +

1

2
�kukukv� · W112�u�t*�,v�t*�� +

1

2
�kukvkv� · W122�u�t*�,v�t*��

+
1

6
�kvkvkv� · W222�u�t*�,v�t*�� = t1

�F�t*�
�t1

+ t2

�F�t*�
�t2

− 2F�t*� , �82�

that holds in mirror symmetry of compact Calabi-Yau threefolds if we look at the logarithmic part
of the triple log functions. In the n=0, 2 cases, we can determine classical intersection number
�80� uniquely from the instanton expansion of the right-hand side of �82�, but in the n=1 case, we
have one moduli parameter x that leaves the instanton expansion invariant. Therefore, this situa-
tion is the same as in Naka’s result. With these intersection numbers, we can construct the set of
relations of the classical cohomology ring of KFn

in the sense of Sec. II as follows:
n=0,

ku
2 + kv

2 = 0, kukv
2 − ku

2kv = 0;

n=1,

�24x − 1��ku
2 − kukv� − �18x − 1�kv

2 = 0, 2kukv
2 + kv

3 = 0 �x � 1
24� ,

kv
2 = 0, 2ku

3 − ku
2kv = 0 �x = 1

24�;

n=2,

kv
2 = 0, ku

3 − 2ku
2kv = 0. �83�

With this set up, we can construct an extended Picard-Fuchs system of KFn
that has the same

principle part as �83�, and is constructed from the linear combination of Di, �1Di, �2Di �i=1, 2�,
n=0,

D̃1
0 = D1

0 + D2
0, D̃2

0 = �1D2
0 − �2D1

0;

n=1,

D̃1
1 = �24x − 1�D1

1 − �18x − 1�D2
1, D̃2

1 = �2�1 + �2�D̃2
1 �x � 1

24� ,

D̃1
1 = D2

1, D̃2
1 = �2�1 + �2�D1

1 �x = 1
24� ,

n=2,

D̃1
2 = D2

2, D̃2
2 = �1D1

2. �84�

In the remaining part of this section, we briefly discuss the derivation of the Yukawa coupling of
F0 in �79� by using �84� as the starting point. The other cases can be done in exactly the same way
as in this computation. First, we use the standard definition of the B-model Yukawa coupling of
mirror symmetry for a compact Calabi-Yau threefold,

Yijk = 
M

� ∧ �i� j�k� . �85�

In the case of KFn
, the existence of M and of a global holomomorphic three form � are not

guaranteed, but we proceed here by assuming the existence of such an M and �. We also apply the
standard results obtained from Kodaira-Spencer theory on a compact Calabi-Yau threefold to the
computation on M. It is easy to show the following formula by application of this machinery:
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M

� ∧ �i� j�k�l� =
1

2
��iY jkl + � jYikl + �kYijl + �lYijk� . �86�

Next, we derive two relations among different Yukawa couplings obtained from �1�D1
0+D2

0��
=�2�D1

0+D2
0��=0,

Yuuu + Yuvv − 4�z1 + z2��Yuuu + 2Yuuv + Yuvv� = 0,

�87�
Yuuv + Yvvv − 4�z1 + z2��Yuuv + 2Yuvv + Yvvv� = 0.

We can also derive another relation from ��1D2
0−�2D1

0��=0,

Yuuv − 4z1�Yuuv + 2Yuvv + Yvvv� = Yuvv − 4z2�Yuuu + 2Yuuv + Yuvv� . �88�

Since �87� and �88� are linear relations, we can easily solve them and obtain

Yuuu = �1 − 16z1 − 8z2 − 16z1
2 + 16z2

2�S�u,v� ,

Yuuv = �− 1 + 8z2 + 16z1
2 − 16z2

2�S�u,v� ,

�89�
Yuuv = �− 1 + 8z1 + 16z2

2 − 16z1
2�S�u,v� ,

Yvvv = �1 − 16z2 − 8z1 − 16z2
2 + 16z1

2�S�u,v� .

where S�u ,v� is an unknown function at this stage. Then we can derive differential equations of
S�u ,v� from the relations ���1�2− ��2�2�D2

0�= ���1�2− ��2�2�D1
0�=0 and �86� by substituting the

right-handside �rhs� of �89�. These operations result in the following differential equations of
S�u ,v�:

�uS�u,v�
S�u,v�

=
8z1 − 32z1

2 + 32z1z2

1 − 8z1 − 8z2 + 16z1
2 − 32z1z2 + 16z2

2 ,

�90�
�vS�u,v�
S�u,v�

=
8z2 − 32z2

2 + 32z1z2

1 − 8z1 − 8z2 + 16z1
2 − 32z1z2 + 16z2

2 .

We can immediately solve the above equations and obtain

S�u,v� = �const�
1

1 − 8z1 − 8z2 + 16z1
2 − 32z1z2 + 16z2

2 . �91�

Finally, the classical intersection numbers in �80� tell us that �const�= 1
4 .

VII. THE DEL PEZZO SURFACE KdP2

We can also look to a three-parameter model, in order to determine what we might expect in
more general situations �Fig. 6�. The examples of the two-parameter case might cause one to hope
that, for every local geometry of the form KS, we can extend the original PF system to give a
complete description of mirror symmetry from the B-model geometry alone. Here we will dem-
onstrate that this is indeed the case for KdP2

. However, it is no longer necessary to use a higher
order system for three and higher parameter cases; we can find a complete set of solutions by
“forgetting” about some of the originally proposed local mirror symmetry operators.

The symplectic quotient description of KdP2
may be written as
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��w1,…,w6� � C6 − Z:	
k=1

6

lk
i �wk�2 = ri ,i = 1,2,3�/�S1�3

with the vectors

�l1

l2

l3� = �− 1 1 − 1 1 0 0

− 1 − 1 1 0 0 1

− 1 0 1 − 1 1 0
� .

Note that b2=3 and b4=1. This comes with PF operators

D1 = ��1 − �2���1 − �3� − z1��1 + �2 + �3���1 − �2 − �3� ,

D2 = ��2 + �3 − �1��2 − z2��1 + �2 + �3���2 − �1� ,

D3 = ��2 + �3 − �1��3 − z3��1 + �2 + �3���3 − �1� , �92�

D4 = �2��1 − �3� − z1z2��1 + �2 + �3 + 1���1 + �2 + �3� ,

D5 = �3��1 − �2� − z1z3��1 + �2 + �3 + 1���1 + �2 + �3� .

Let F, t1, t2, t3 and the �ij’s be as before. Then Ref. 3 provides a single double-logarithmic
solution W, corresponding to the 4 cycle in the base of the A-model geometry, which satisfies

W = �11 + �12 + �13 + �23 =
�F
�t1

+
�F
�t2

+
�F
�t3

.

The naive approach in this case suggests that we need to add two 4 cycles to the A-model
geometry. Using as motivation the notion that each double-logarithmic solution of the system
should correspond to a 4 cycle on the mirror, we are led to work with a system consisting of three
of the original five PF differential operators. For reasons to be discussed shortly, we will use the
set

D̃1 = �6x + 2y − 1��D1 − D2 − D3� − x�D2 + D3� ,

D̃2 = �5x + y − 1��D2 + D3 + D4 + D5� + �x + y��D4 + D5� , �93�

FIG. 6. The del Pezzo dP2. Each curve Cui
corresponds to a vector li.
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D̃3 = �x − y − 1��D2 − D3 + D4 − D5� + �x − y��D4 − D5� ,

where x and y are real free parameters. If we set �x ,y�= �0,0�, we can easily show that a basis of
the solution space with double-logarithmic singularities is three dimensional, and is provided by

�12 =
�F
�t2

, �13 =
�F
�t3

, �11 + �23 =
�F
�t1

. �94�

Hence, we can recover the full prepotential from solutions of the PF system alone. We expect
that this phenomenon will continue to hold true in all cases of the type KS.

The extended PF system of KdP2
�93� is derived in the same way as KFn

. Let us introduce the
logarithm of the standard B-model coordinates zi,

u1 = log�z1�, u2 = log�z2�, u3 = log�z3� , �95�

and consider the generating function of solutions of the PF system �92�,

w�u1,u2,u3,r1,r2,r3� ª 	
n1=0

�

	
n2=0

�

	
n3=0

�
1

�
j=0

5

	�1 + lj
1�n1 + r1� + lj

2�n2 + r2� + lj
3�n3 + r3��

� exp��n1 + r1�u1 + �n2 + r2�u2 + �n3 + r3�u3� . �96�

The mirror map of KdP2
is given by

ti�u*� ª �ri
w�u1,u2,u3,r1,r2,r3�ri=0. �97�

From the triple-logarithmic function

Wijk�u1,u2,u3� ª �ri
�r2

�r3
w�u1,u2,u3,r1,r2,r3�ri=0, �98�

obtained from �96�, we can find the classical triple intersection number �kui
kuj

kum
� of Kähler forms

kui
by assuming the following relation:

1

6
�ku1

ku1
ku1

�W111�u1�t*�,u2�t*�,u3�t*�� +
1

6
�ku2

ku2
ku2

�W222�u1�t*�,u2�t*�,u3�t*��

+
1

6
�ku3

ku3
ku3

�W333�u1�t*�,u2�t*�,u3�t*�� +
1

2
�ku1

ku1
ku2

�W112�u1�t*�,u2�t*�,u3�t*��

+
1

2
�ku1

ku2
ku2

�W122�u1�t*�,u2�t*�,u3�t*�� +
1

2
�ku2

ku2
ku3

�W223�u1�t*�,u2�t*�,u3�t*��

+
1

2
�ku2

ku3
ku3

�W233�u1�t*�,u2�t*�,u3�t*�� +
1

2
�ku1

ku1
ku3

�W113�u1�t*�,u2�t*�,u3�t*��

+
1

2
�ku1

ku3
ku3

�W133�u1�t*�,u2�t*�,u3�t*�� + �ku1
ku2

ku3
�W123�u1�t*�,u2�t*�,u3�t*��

= t1

�F�t*�
�t1

+ t2

�F�t*�
�t2

+ t3

�F�t*�
�t3

− 2F�t*� , �99�

where we used instanton expansion part of F�t1 , t2 , t3� read off from the double-logarithmic solu-
tion of �92�. Taking the symmetry between ku2

and ku3
into account, we found the following

classical intersection numbers with two free parameters �in this case, we have four moduli param-
eters unless we assume symmetry between ku2

and ku3
� x and y:
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�ku1
ku1

ku1
� = − 1 + 6x + 2y, �ku2

ku2
ku2

� = − y, �ku3
ku3

ku3
� = − y, �ku1

ku1
ku2

� = − 3x − y ,

�ku1
ku2

ku2
� = x + y, �ku2

ku2
ku3

� = − x, �ku2
ku3

ku3
� = − x, �ku1

ku1
ku3

� = − 3x − y ,

�ku1
ku3

ku3
� = x + y, �ku1

ku2
ku3

� = − 1 + 2x . �100�

With this data, we can construct a complete set of relations of kui that reproduce �100� as follows:

R1 = �6x + 2y − 1��p1 − p2 − p3� − x�p2 + p3� ,

R2 = �5x + y − 1��p2 + p3 + p4 + p5� + �x + y��p4 + p5� , �101�

R3 = �x − y − 1��p2 − p3 + p4 − p5� + �x − y��p4 − p5� ,

where

p1 = �ku1
− ku2

��ku1
− ku3

�, p2 = ku2
�ku2

+ ku3
− ku1

�, p3 = ku3
�ku2

+ ku3
− ku1

� ,

p4 = ku2
�ku1

− ku3
�, p5 = ku3

�ku1
− ku2

� . �102�

The extended PF system �93� is obtained from linear combinations of the Di’s that reduce to �101�
at the large radius limit. Of course, we can compute the B-model Yukawa coupling of KdP2

by
using �93� as the starting point in the same way as F0, and we collect the resulting Yukawa
couplings in Appendix B.

VIII. CONCLUSION

Through a variety of examples, we have seen the emergence of a set of differential operators
for local mirror symmetry. In this sense, we may view this as a next step towards a complete
treatment of the program initiated in Ref. 3. There are, however, some outstanding issues. First,
our constructions have taken for granted the instanton expansion from the A model. In principle,
we would like to be able to canonically associate an extended Picard-Fuchs system to a B-model
geometry without reference to the A model. Second, it would be interesting to exhibit a family of
Calabi-Yau manifolds parametrized by a complex structure such that the period integrals agreed
with the ones we find as solutions to the extended Picard-Fuchs system. We leave these questions
for future work.
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APPENDIX A: AN EXTENDED PICARD-FUCHS SYSTEM FOR X3

Here, we apply our conjecture on intersection theory for X satisfying dim H4�X ,Z�=0 to a
three-parameter example, in order to more fully explore its applicability. We will work with

X3 = ��w1,…,w6� � C6 − Z:	
k=1

6

lk
i �wk�2 = ri, i = 1,2,3�/�S1�3

where
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�l1

l2

l3� = �1 1 − 1 − 1 0 0

0 − 1 − 1 1 1 0

0 − 1 1 0 − 1 1
� . �A1�

The toric graph is provided in Fig. 7. Then X3 has no 4 cycle, and for each curve Csi
corresponding

to the secondary fan vector li, we have that NCsi/X3
�O�−1� � O�−1�.

By making use of the instanton parts given in Ref. 11 and our conjecture, we immediately
have the Yukawa couplings.

A-model Yukawa couplings of X3 (with respect to si�,

Y111 =
1

2
+

es1

1 − es1
−

es1+s2

1 − es1+s2
+

es1+s2+s3

1 − es1+s2+s3
,

Y113 =
1

2
+

es1+s2+s3

1 − es1+s2+s3
,

Y113 =
1

2
+

es1+s2+s3

1 − es1+s2+s3
,

Y333 =
1

2
+

es3

1 − es3
−

es3+s2

1 − es3+s2
+

es1+s2+s3

1 − es1+s2+s3
,

Y112 = −
es1+s2

1 − es1+s2
+

es1+s2+s3

1 − es1+s2+s3
,

Y233 = −
es3+s2

1 − es3+s2
+

es1+s2+s3

1 − es1+s2+s3
,

Y122 = −
es1+s2

1 − es1+s2
+

es1+s2+s3

1 − es1+s2+s3
,

Y223 = −
es3+s2

1 − es3+s2
+

es1+s2+s3

1 − es1+s2+s3
,

FIG. 7. Toric graph for X3.
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Y222 =
es2

1 − es2
−

es1+s2

1 − es1+s2
−

es3+s2

1 − es3+s2
+

es1+s2+s3

1 − es1+s2+s3
,

Y123 =
1

2
+

es1+s2+s3

1 − es1+s2+s3
, �A2�

Once we have these, the rest of the calculations are routine. We list the results here.
Ordinary Picard-Fuchs system of X3,

D1 = �1��1 − �2 − �3� − z1��1 − �2���1 + �2 − �3� ,

D2 = ��2 − �1���2 − �3� − z2��2 + �3 − �1���2 + �1 − �3� ,

D3 = �3��3 − �2 − �1� − z3��3 − �2���3 + �2 − �1� ,

�A3�
D4 = �1��1 − �3� − z1z2��1 + �2 − �3 + 1���1 + �2 − �3� ,

D5 = �1�3 − z1z3��2 − �1���2 − �3� ,

D6 = �3��3 − �1� − z2z3��3 + �2 − �1 + 1���3 + �2 − �1� .

Jacobian of the mirror map,

u1 = log�z1�, u2 = log�z2�, u3 = log�z3� ,

�s1

�u1
=

1

2

− �1 − 4z1z2 − 1 + 4z1z2

4z1z2 − 1
,

�s1

�u2
=

1

2

4z1z2
�1 − 4z2z3 + �1 − 4z1z2 − �1 − 4z2z3 − 4z2z3

�1 − 4z1z2

�4z1z2 − 1��4z2z3 − 1�
,

�s1

�u3
=

1

2

− 1 + 4z2z3 + �1 − 4z2z3

4z2z3 − 1
,

�s2

�u1
= −

1

2

− 1 + 4z1z2 + �1 − 4z1z2

4z1z2 − 1
,

�s2

�u2
= −

1

2

− �1 − 4z1z2 + 4z1z2
�1 − 4z2z3 − �1 − 4z2z3 + 4z2z3

�1 − 4z1z2

�4z1z2 − 1��4z2z3 − 1�
,

�s2

�u3
= −

1

2

− 1 + 4z2z3 + �1 − 4z2z3

4z2z3 − 1
,

�s3

�u1
=

1

2

− 1 + 4z1z2 + �1 − 4z1z2

4z1z2 − 1
,
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�s3

�u2
=

1

2

�1 − 4z2z3 + 4z2z3
�1 − 4z1z2 − 4z1z2

�1 − 4z2z3 − �1 − 4z1z2

�4z1z2 − 1��4z2z3 − 1�
,

�s3

�u3
=

1

2

− �1 − 4z2z3 − 1 + 4z2z3

4z2z3 − 1
. �A4�

B-model Yukawa couplings of X3 (with respect to ui�,

Y111 = �8z2
3z1

4z3
2 − 10z3

2z1
3z2

2 + 3z1
2z2z3

2 + 8z3z1
3z2

2 − 24z3z1
2z2

2 − 2z3z2z1
2 + 12z3z1z2 − z3 − z3z1 − 8z1

2z2
3

+ 16z1
2z2

2 + 10z1z2
2 − z2 − 12z1z2 + 1 + z1�

�/���4z1z2 − 1�2� ,

Y113 = �2z3
2z1

3z2
2 − z1

2z2z3
2 + 4z3z2z1

2 − 4z3z1z2 − z3z1 + z3 − 2z1z2
2 − 2z2z1

2 + 2z1z2 + z2 + z1 − 1�

�/���4z1z2 − 1�� ,

Y133 = �2z1
2z2

2z3
3 − 2z3z2

2 − z1
2z2z3

2 + 4z3
2z2z1 − 4z3z1z2 + z2 + 2z2z3 − 2z3

2z2 − z3z1 + z1 + z3 − 1�

�/���4z2z3 − 1�� , �A5�

Y333 = �8z3
4z2

3z1
2 − 8z3

2z2
3 − 10z1

2z2
2z3

3 + 8z3
3z2

2z1 − 24z3
2z1z2

2 + 16z3
2z2

2 + 10z3z2
2 + 3z1

2z2z3
2 − 2z3

2z2z1

+ 12z3z1z2 − z2 − 12z2z3 + 1 + z3 − z1 − z3z1�/���4z2z3 − 1�2� ,

Y112 = − 2z2z1�2z1
2z2z3

2 − z3
2z1 − 8z3z2z1

2 + 4z3z1z2 + 4z3z1 − 2z3 + 4z2 * z1
2 − 2z2 − 3z1 + 2�

�/���4z1z2 − 1�2� ,

Y233 = − 2z2z3�2z1
2z2z3

2 − 8z3
2z2z1 + 4z3

2z2 + 4z3z1z2 + 4z3z1 − 3z3 − z3z1
2 − 2z2 − 2z1 + 2�

�/���4z2z3 − 1�2� ,

Y122 = − 2�4z3
3z2

2z1
3 − 3z3

3z2z1
2 − 16z3

2z1
3z2

2 + 4z3
2z1

4z2
2 + 12z1

2z2z3
2 − 3z3

2z2z1
3 + z1

2z3
2 − z3

2 − 4z2
2z3z1

+ 16z3z1
2z2

2 − z2z3 + 4z3z2z1
3 − 12z3z2z1

2 + 2z3z1 + z3 − 3z3z1
2 − 2z1 + 2z1

2 + 3z1z2

− 4z1
2z2

2�z2/���4z2z3 − 1��4z1z2 − 1�2� ,

Y223 = − 2�4z3
4z2

2z1
2 + 4z3

3z2
2z1

3 − 16z1
2z2

2z3
3 − 3z3

3z2z1
2 + 4z3

3z2z1 + 16z3
2z1z2

2 − 4z3
2z2

2 − 3z3
2z2z1

3 + 12z1
2z2z3

2

− 12z3
2z2z1 + z1

2z3
2 − 3z3

2z1 + 2z3
2 − 4z2

2z3z1 + 3z2z3 + 2z3z1 − 2z3 − z1z2 − z1
2 + z1�z2

�/���4z2z3 − 1�2�4z1z2 − 1�� ,

Y222 = 2�1 + 32z3z1z2 − 28z3z2z1
2 − 32z3z1

2z2
2 + 32z1

2z2z3
2 − 32z3

2z1
3z2

2 − 28z3
2z2z1 − 4z3

2z2z1
3 − 32z3

2z1z2
2

− 4z3
3z2z1

2 − 32z1
2z2

2z3
3 + 8z3

4z2
2z1

2 + 8z3
2z1

4z2
2 + 96z3

2z2
2z1

2 − 2z1 − 2z3 + 8z1
2z2

2 − 4z1z2 + 4z3z1 + 8z3
2z2

2

+ z1
2z3

2 − 2z3
2z1 − 4z2z3 + z1

2 + z3
2 − 2z3z1

2 + 4z1
3z2 + 4z3

3z2�z2/���4z2z3 − 1�2�4z1z2 − 1�2� ,

Y123 = − �2z1
2z2

2z3
3 − 16z3

2z2
2z1

2 + 8z3
2z1z2

2 + 2z3
2z1

3z2
2 + 4z3

2z2z1 − z1
2z2z3

2 − 2z3
2z2 − 2z3z2

2 + 8z3z1
2z2

2

− 8z3z1z2 + 4z3z2z1
2 + 2z2z3 − z3z1 + z3 − 1 + 2z1z2 − 2z1z2

2 + z1 − 2z2z1
2z2�

�/���4z2z3 − 1��4z1z2 − 1�� . �A6�
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Discriminant of X3,

� = 2�− z1
2z2z3

2 + 2z3z1z2 + z3z1 − z3 − z2 − z1 + 1� . �A7�

Extended Picard-Fuchs system of X3,

D̃1 = a1�z1,z2,z3� · D1 + a2�z1,z2,z3� · D2 + a3�z1,z2,z3� · D3 + a5�z1,z2,z3� · D5

− 2�1 + z1 + z2 + z3 − 2z1z2z3 + z1z3 + z1
2z2z3

2�D6

= �− �2
2 − 2�2�3 − �1

2 + 2�2�1 + 3�3
2�z1

2z2z3
2 + ���− 4�1

2 + 4�2
2 + 8�1�3 + 4�2�3 − 8�3

2�z1

+ �4�1�3 − 4�3
2 + 4�2�3�z1

2�z2 + �− 2�2�3 + 2�2�1 − 2�1�3 − �1
2 − �2

2 + 3�3
2�z1 − �2

2

− 2�2�3 − 2�1�3 + 3�3
2 + �1

2�z3 + ��− 4�1
2 + 4�2

2 + 4�1�3 − 4�2�3�z1 + �1
2 + �3

2 − 2�2�1

+ �2
2 − 2�2�3�z2 + �− �1

2 + �3
2 + 2�2�1 − �2

2 − 2�1�3�z1 + �1
2 + �3

2 − �2
2 − 2�1�3

− 2�1 + z1 + z2 + z3 − 2z1z2z3 + z1z3 + z1
2z2z3

2�D6,

D̃2 = interchange between z1 and z3 of D̃1,

D̃3 = �1 + z3�D1 + �1 + z1�D3 + �1 − z1
2z3

2�D2 + �1 − z1z3�D5, �A8�

where aj�z1 ,z2 ,z3� are rational functions in zi whose denominators are given by �.

APPENDIX B: B-MODEL YUKAWA COUPLINGS OF KdP2

In this Appendix, we present the B-model Yukawa couplings of KdP2
computed from the

extended PF system �93�, and the assumption of the existence of Kodaira-Spencer theory,

Yijk = 
M

� ∧
�3�

�ui � uj � uk
, �B1�

Y222 = − �16z3
3yz1

2 + ��− 27y − 18�z1z2
2 + 16yz1

3 − 16yz1
2 + ��− 24y − 8�z1

2 + �4 + 36y�z1�z2 − 8z1y�z3
2

+ ���− 24y − 14�z1
2 + �22 + 36y�z1�z2

2 − 8yz1
2 + ��64y + 12�z1

2 + �− 2 − 46y�z1

+ �− 32y − 8�z1
3 − y − 1�z2 + 8z1y + y�z3 + �12 + 16y�z1

2z2
3 + ��16y + 8�z1

3 + �− 16y − 4�z1
2

+ �− 3 − 8y�z1�z2
2 + �y + �2 − 8y�z1

2 + 1 + �− 3 + 8y�z1�z2 + z1y − y�/� ,

Y223 = − �16z3
3xz1

2 + ��− 27x + 9�z1z2
2 + 16xz1

3 − 16xz1
2 + ��− 24x + 8�z1

2 + �36x − 8�z1�z2 − 8z1x�z3
2

+ ���36x − 11�z1 + �− 24x + 6�z1
2�z2

2 − 8xz1
2 + ��− 16 + 64x�z1

2 + �− 32x + 8�z1
3

+ �10 − 46x�z1 − x�z2 + 8z1x + x�z3 + �16x − 8�z1
2z2

3 + ��− 16x + 8�z1
2 + �16x − 8�z1

3

+ �− 8x + 2�z1�z2
2 + ��8x − 2�z1 + �− 8x + 2�z1

2 + x�z2 + z1x − x�/� ,

Y233 = − ��16x − 8�z1
2z3

3 + ��− 27x + 9�z1z2
2 + �16x − 8�z1

3 + �− 16x + 8�z1
2

+ ��36x − 11�z1 + �− 24x + 6�z1
2�z2 + �− 8x + 2�z1�z3

2 + ���− 24x + 8�z1
2

+ �36x − 8�z1�z2
2 + �− 8x + 2�z1

2 + ��− 16 + 64x�z1
2 + �− 32x + 8�z1

3 + �10 − 46x�z1 − x�z2

+ �8x − 2�z1 + x�z3 + 16z2
3xz1

2 + �− 16xz1
2 + 16xz1

3 − 8z1x�z2
2

+ �8z1x − 8xz1
2 + x�z2 + z1x − x�/� ,
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Y333 = − ��12 + 16y�z1
2z3

3 + ��− 27y − 18�z1z2
2 + �− 16y − 4�z1

2 + ��− 24y − 14�z1
2 + �22 + 36y�z1�z2

+ �16y + 8�z1
3 + �− 3 − 8y�z1�z3

2 + ��2 − 8y�z1
2 + ��− 24y − 8�z1

2 + �4 + 36y�z1�z2
2 + �− 3 + 8y�z1

+ 1 + ��64y + 12�z1
2 + �− 2 − 46y�z1 + �− 32y − 8�z1

3 − y − 1�z2 + y�z3 + 16z2
3yz1

2

+ �16yz1
3 − 16yz1

2 − 8z1y�z2
2 + z1y + �− 8yz1

2 + y + 8z1y�z2 − y�/� ,

Y122 = ��16x + 16y�z1
2z3

3 + ��16x + 16y�z1
3 + �− 27y − 9 − 27x�z1z2

2

+ ��− 24x − 24y�z1
2 + �8 + 36y + 36x�z1�z2 + �− 16x − 16y�z1

2 + �− 8x − 8y�z1�z3
2

+ ��8y + 8x�z1 + �− 8x − 8y�z1
2 + ��− 8 − 24x − 24y�z1

2 + �36y + 36x + 14�z1�z2
2

+ ��− 32x − 32y�z1
3 + �− 46y − 46x − 12�z1 − x − y + �64y + 8 + 64x�z1

2�z2 + x + y�z3

+ �4 + 16y + 16x�z1
2z2

3 + ��16x + 16y�z1
3 + �− 16x − 16y�z1

2 + �− 8x − 8y − 5�z1�z2
2�y + x�z1

+ ��8y + 4 + 8x�z1 + x + y + �− 8y − 8x − 4�z1
2�z2 − x − y�/� ,

Y133 = ��4 + 16y + 16x�z1
2z3

3 + ��16x + 16y�z1
3 + �− 27y − 9 − 27x�z1z2

2 + ��− 8 − 24x − 24y�z1
2

+ �36y + 36x + 14�z1�z2 + �− 16x − 16y�z1
2 + �− 8x − 8y − 5�z1�z3

2 + ��8y + 4 + 8x�z1

+ �− 8y − 8x − 4�z1
2 + ��− 24x − 24y�z1

2 + �8 + 36y + 36x�z1�z2
2 + ��− 32x − 32y�z1

3

+ �− 46y − 46x − 12�z1 − x − y + �64y + 8 + 64x�z1
2�z2 + x + y�z3 + �16x + 16y�z1

2z2
3

+ ��16x + 16y�z1
3 + �− 16x − 16y�z1

2 + �− 8x − 8y�z1�z2
2 + �y + x�z1 + ��8y + 8x�z1x

+ y + �− 8x − 8y�z1
2�z2 − x − y�/� ,

Y112 = − ��48x + 16y − 8�z1
2z3

3 + ��48x + 16y − 8�z1
3 + �− 27y − 81x + 9�z1z2

2

+ ��− 24y − 72x + 14�z1
2 + �36y + 108x − 11�z1�z2 + �8 − 16y − 48x�z1

2

+ �− 8y + 2 − 24x�z1�z3
2 + ��8y + 24x − 2�z1 + �− 8y + 2 − 24x�z1

2 + ��6 − 72x − 24y�z1
2

+ �36y + 108x − 14�z1�z2
2 + ��− 32y − 96x + 16�z1

3 + �− 138x + 16 − 46y�z1 − 3x − y

+ �64y + 192x − 28�z1
2�z2 + 3x + y�z3 + �48x − 4 + 16y�z1

2z2
3 + ��48x + 16y − 8�z1

3

+ �4 − 48x − 16y�z1
2 + �− 8y + 5 − 24x�z1�z2

2 + �y + 3x�z1 + ��24x + 8y − 5�z1 + 3x + y

+ �− 24x − 8y + 6�z1
2�z2 − 3x − y�/� ,

Y113 = − ��48x − 4 + 16y�z1
2z3

3 + ��48x + 16y − 8�z1
3 + �− 27y − 81x + 9�z1z2

2

+ ��6 − 72x − 24y�z1
2 + �36y + 108x − 14�z1�z2 + �4 − 48x − 16y�z1

2

+ �− 8y + 5 − 24x�z1�z3
2 + ��24x + 8y − 5�z1 + �− 24x − 8y + 6�z1

2

+ ��− 24y − 72x + 14�z1
2 + �36y + 108x − 11�z1�z2

2 + ��− 32y − 96x + 16�z1
3 + �− 138x + 16

− 46y�z1 − 3x − y + �64y + 192x − 28�z1
2�z2 + 3x + y�z3 + �48x + 16y − 8�z1

2z2
3 + ��48x + 16y

− 8�z1
3 + �8 − 16y − 48x�z1

2 + �− 8y + 2 − 24x�z1�z2
2 + �y + 3x�z1

+ ��8y + 24x − 2�z1 + 3x + y + �− 8y + 2 − 24x�z1
2�z2 − 3x − y�/� ,
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Y123 = ��− 8 + 32x�z1
2z3

3 + ��− 32x + 8�z1
2 + �6 − 16x�z1 + ��72x − 25�z1 + �14 − 48x�z1

2�z2

+ �− 8 + 32x�z1
3 + �18 − 54x�z1z2

2�z3
2 + ��16x − 6�z1 + �1 + �− 40 + 128x�z1

2 + �16 − 64x�z1
3

− 2x + �33 − 92x�z1�z2 + �6 − 16x�z1
2 + 2x − 1 + ��72x − 25�z1 + �14 − 48x�z1

2�z2
2�z3

+ �− 8 + 32x�z1
2z2

3 + ��− 32x + 8�z1
2 + �− 8 + 32x�z1

3 + �6 − 16x�z1�z2
2 + �− 1 + 2x�z1

+ ��− 6 − 16x�z1
2 − 1 + 2x + �16x − 6�z1�z2 + 1 − 2x�/� ,

Y111 = ��− 12 + 96x + 32y�z1
2z3

3 + ��8 − 32y − 96x�z1
2 + �− 16 + 96x + 32y�z1

3

+ �− 162x + 18 − 54y�z1z2
2 + �− 48x − 16y + 3�z1 + ��20 − 48y − 144x�z1

2

+ �216x + 72y − 22�z1�z2�z3
2 + ��− 6x + 1 + �− 192x + 32 − 64y�z1

3 − 2y + �128y − 48

+ 384x�z1
2

+ �− 92y + 26 − 276x�z1�z2 + �8 − 16y − 48x�z1
2 + 2y + ��20 − 48y − 144x�z1

2 + �216x + 72y

− 22�z1�z2
2

+ 6x + �48x + 16y − 2�z1 − 1�z3 + �− 12 + 96x + 32y�z1
2z2

3 + ��8 − 32y − 96x�z1
2

+ �− 16 + 96x + 32y�z1
3 + �− 48x − 16y + 3�z1�z2

2 + 1 + �2y − 2 + 6x�z1 + �6x + 2y + �8 − 16y

− 48x�z1
2 − 1

+ �48x + 16y − 2�z1�z2 − 6x − 2y�/� ,

� = − ��− 16z2
2 + 32z3z2 − 16z3

2�z1
3 + �24z3

2z2 − 16z3
3 − 16z2

3 − 64z3z2 + 24z3z2
2 + 16z2

2 + 8z3 + 16z3
2

+ 8z2�z1
2 + �8z3

2 − 1 + 27z2
2z3

2 − 36z3z2
2 − 8z2 + 8z2

2 − 8z3 − 36z3
2z2 + 46z3z2�z1 + 1 − z2 + z3z2 − z3� .
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Superselection and constraints occur together in many gauge theories, and here we
begin a study of such systems. Our main focus will be to analyze compatibility
questions between constraining and superselection, and we will develop an ex-
ample modelled on QED in which our framework is realized. We proceed from a
generalization of Doplicher-Roberts superselection theory to the case of the non-
trivial center, and a set of Dirac quantum constraints and find conditions under
which the superselection structures will survive constraining in some form. This
involves an analysis of the restriction and factorization of superselection
structures. © 2005 American Institute of Physics. �DOI: 10.1063/1.1985038�

I. INTRODUCTION

In heuristic quantum field theory, there are many examples of systems which contain global
charges �hence superselection structure� as well as a local gauge symmetry �hence constraints�.
Most of these systems cannot currently be written in a consistent mathematical framework, due to
the presence of interactions. Nevertheless, the mathematical structure of superselection by itself
has been properly developed �cf. Refs. 1–3�, as well as the mathematical structure of quantum
constraints �Refs. 4–6�, hence one can at least abstractly consider systems which contain both.
This will be the focus of our investigations in this paper, which is a first step in this direction. We
will address the natural intertwining questions for the two structures, as well as compatibility
issues. Unfortunately, in spite of our physical motivation the discussion will be unavoidably
technical, but we have an interesting model which goes at least part way to illustrating our general
setting.

The class of physical systems with both superselection and constraints, is a large one. One of
the most important examples in this class, is that of a quantized local gauge field, acting on a
fermion field. It has a Gauss law constraint �implementing the local gauge transformations� as well
as a set of global charges �leading to superselection�. An important feature of it, is that the global
gauge transformations preserve the set of constraints, and we will assume this property for the
systems we analyze. There are plenty of other examples of systems satisfying this property, e.g.,
the constraints can be independent of the global gauge group, for instance, they can be equations
of motion, or restriction to a submanifold. Or there may be two or more local gauge symmetries
which commute �e.g., isospin and electromagnetism�, in which case the Gauss law constraint of
one symmetry will commute with the global charges of the other.

We will be concerned with the question of under what conditions �and how much of� the
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superselection structures will survive the constraining procedure. Since charge is a physically
measurable quantity, this should survive constraining, which removes nonphysical information
from the system.

For superselection, we will use the Doplicher-Roberts theory which originated in the
Doplicher-Haag-Roberts concept of admissible representations.2 In the context of a local net of
von Neumann algebras on Minkowski space with a distinguished vacuum representation �0, a
representation � is admissible if on the C*-algebra associated to the causal complement of any
double cone, � is unitarily equivalent to �0. In physical terms this means that � and the vacuum
�0 cannot be distinguished at spacelike infinity �e.g., if the only difference is a finite charge in
some bounded set�. The unitary equivalence classes of admissible representations �e.g., corre-
sponding to different total charges� are in bijection with a class of “canonical endomorphisms” by
���0 ��, and this leads to the study of these endomorphisms, and the construction of a Hilbert
system from them. These concepts will all be defined and discussed in Sec. II, where we include
recent results for an observable algebra with nontrivial center �cf. Ref. 7�. The Doplicher-Haag-
Roberts theory is presently not directly applicable to QED due to the presence of massless par-
ticles, however we were able to realize the abstract Doplicher-Roberts version explicitly in our
model, using the global charge.

For quantum constraints, we will use the framework developed by Grundling and Hurst4,8,5

which is based on Dirac’s constraint theory, and produced physically correct results on application
to QEM and other systems. The basic idea is to select those cyclic representations of the field
algebra, where the cyclic vector is annihilated by the constraints. The observables consist of those
elements of the field algebra which map a vector annihilated by the constraints to another such
vector in any representation. These satisfy a “weak commutativity” condition with the constraints,
so can be identified with Dirac’s observables. There are quite a number of diverse quantum
constraint methods available in the literature at various levels of rigour �cf. Ref. 6�. The one we
use here is the most congenial from the point of view of C*-algebraic methods, and we summarize
it in Sec. III. In fact, in Ref. 5 it was shown that this method can avoid indefinite inner product
representations �endemic to gauge theories�, yet it produced the same results as those obtained
from such representations.

In Sec. IV we collect our main results. The proofs for these are in Sec. VI, and in Sec. V we
present our example which is based on the Maxwell equation in �interacting� QED.

II. FUNDAMENTALS OF SUPERSELECTION

In this section we summarize the structures from superselection theory which we need. For
proofs, we refer to the literature if possible.

The superselection problem in algebraic quantum field theory, as stated by the Doplicher-
Haag-Roberts �DHR� selection criterion, led to a profound body of work, culminating in the
general Doplicher-Roberts �DR� duality theory for compact groups. The DHR criterion selects a
distinguished class of “admissible” representations of a quasilocal algebra A of observables,
where the center is trivial, i.e., Z�A�=C 1, or even A is assumed to be simple. This corresponds to
the selection of a DR-category T of “admissible” endomorphisms of A. Furthermore, from this
endomorphism category T the DR-analysis constructs a C*-algebra F�A together with a compact
group action � :G�g→�g�Aut F such that

�i� A is the fixed point algebra of this action,
�ii� T coincides with the category of all “canonical endomorphisms” of A �cf. Sec. II C�.

F is called a Hilbert extension of A in Ref. 3. Physically, F is identified as a field algebra and
G with a global gauge group of the system. �F ,�G� is uniquely determined by T up to A-module
isomorphisms. Conversely, �F ,�G� determines uniquely its category of all canonical endomor-
phisms. Therefore one can state the equivalence of the “selection principle,” given by T and the
“symmetry principle,” given by G. This duality is one of the crucial theorems of the Doplicher-
Roberts theory.
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In contrast to the original theory of Doplicher and Roberts, we allow here a nontrivial center
for A. The reason for this is that when there are constraints present, the system contains nonphysi-
cal information, so there is no physical reason why A should be simple. Only after eliminating the
constraints should one require the final observable algebra to be simple, hence having trivial
center. Now a duality theorem for a C*-algebra with nontrivial center has been proven recently,7,9

establishing a bijection between distinguished categories of endomorphisms of A and Hilbert
extensions of A satisfying some additional conditions, of which the most important is A��F
=Z�A� �i.e., the relative commutant is assumed to be minimal�. This will be properly explained
below. This condition has already been used by Mack and Schomerus10 as a “new principle.”

A. Basic properties of Hilbert systems

Below F will always denote a unital C*-algebra. A Hilbert space H�F is called algebraic if
the scalar product �· , · 	 of H is given by �A ,B	1ªA*B for A, B�H. Henceforth we consider only
finite-dimensional algebraic Hilbert spaces. The support supp H of H is defined by supp H
ª
 j=1

d � j� j
*, where �� j � j=1,… ,d� is any orthonormal basis of H. Unless otherwise specified, we

assume below that each algebraic Hilbert space H considered, satisfies supp H=1.
We also fix a compact C*-dynamical system �F ,G ,��, i.e., G is a compact group and � :G

�g→�g�Aut F is a pointwise norm-continuous morphism. For �� Ĝ �the dual of G� its spectral
projection ���L�F� is defined by

���F� ª �
G
���g��g�F�dg for all F � F ,

where

���g� ª dim � · Tr ��g�, � � �

and its spectral subspace ��F satisfies ��F=clo-span�L�F� where L runs through all invariant
subspaces of F which transform under �G according to � �cf. Ref. 11�. Define the spectrum of �G
by

spec �G ª �� � Ĝ��� � 0� .

Our central object of study is the following.
Definition 2.1: The C*-dynamical system �F ,G ,�� is called a Hilbert system if for each �

� Ĝ there is an algebraic Hilbert space H��F, such that �G acts invariantly on H�, and the

unitary representation G�H� is in the equivalence class �� Ĝ.
Remark 2.2: Note that for a Hilbert system �F ,G ,�� we have necessarily that the algebraic

Hilbert spaces satisfy H����F for all �, and hence that spec �G= Ĝ, i.e., the spectrum is full. The
morphism � :G→Aut F is necessarily faithful. So, since G is compact and Aut F is Hausdorff
with respect to the topology of pointwise norm convergence, � is a homeomorphism of G onto its
image. Thus G and �G are isomorphic as topological groups.

We are mainly interested in Hilbert systems whose fixed point algebras coincide such that they
appear as extensions of it.

Definition 2.3: A Hilbert system �F ,G ,�� is called a Hilbert extension of a C*-algebra A�F
if A is the fixed point algebra of G. Two Hilbert extensions �Fi ,G ,�i�, i=1, 2 of A (with respect
to the same group G) are called A-module isomorphic if there is an isomorphism � :F1→F2 such
that ��A�=A for A�A, and � intertwines the group actions, i.e., � ��g

1=�g
2 ��.

Remark 2.4: �i� Group automorphisms of G lead to A-module isomorphic Hilbert extensions
of A, i.e., if �F ,G ,�� is a Hilbert extension of A and 	 an automorphism of G, then the Hilbert
extensions �F ,G ,�� and �F ,G ,� �	� are A-module isomorphic. So the Hilbert system �F ,G ,��
depends, up to A-module isomorphisms, only on �G, which is isomorphic to G. In other words, up
to A-module isomorphism we may identify G and �G�Aut F neglecting the action � which has
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no relevance from this point of view. Therefore in the following, unless it is otherwise specified,
we use the notation �F ,G� for a Hilbert extension of A, where G�Aut F.

�ii� As mentioned above, examples of Hilbert systems arise in DHR-superselection theory �cf.
Refs. 3 and 2�. There are also constructions by means of tensor products of Cuntz algebras �cf.
Ref. 12�. In these examples the relative commutant of the fixed point algebra A, hence also its
center, is trivial. Another construction for G=T, by means of the loop group C
�S1 ,T� is in Ref.
13, and for this Z�A� is nontrivial.

Remark 2.5: A Hilbert system �F ,G� is a highly structured object; we list some important facts
and properties �for details, consult Refs. 2 and 3�.

�i� The spectral projections satisfy

��1
��2

= ��2
��1

= ��1�2
��1

,

�� � d���3/2, d��� ª dim�H�� ,

��F = span�AH��, �F = A ,

where � Ĝ denotes the trivial representation of G.

�ii� Each F�F is uniquely determined by its projections ��F, �� Ĝ, i.e., F=0 iff ��F=0 for

all �� Ĝ, cf. Corollary 2.6 of Ref. 9.
�iii� A useful *-subalgebra of F is

Ffin ª �F � F���F � 0 for only finitely many � � Ĝ�

which is dense in F with respect to the C*-norm �cf. Ref. 14�.
�iv� In F there is an A-scalar product given by �F ,G	Aª�FG*, with respect to which the

spectral projections are symmetric, i.e., ���F ,G	A= �F ,��G	A for all F, G�F, �� Ĝ.
Using the A-scalar product one can define a norm on F, called the A-norm,

�F�A ª �F,F	A1/2, F � F .

Note that �F�A� F and that F in general is not closed with respect to the A-norm. Then
for each F�F we have that F=
��Ĝ��F where the sum on the right-hand side is conver-
gent with respect to the A-norm but not necessarily with respect to the C*-norm  · . We
also have Parseval’s equation, �F ,F	A=
��Ĝ���F ,��F	A, cf. Proposition 2.5 in Ref. 9.

Moreover ����A=1 for all �� Ĝ, where � · �A denotes the operator norm of �� with respect
to the norm � · �A in F.

�v� Generally for a Hilbert system, the assignment �→H� is not unique. If U�A is unitary
then also UH����F is a G-invariant algebraic Hilbert space carrying the representation

�� Ĝ. Each G-invariant algebraic Hilbert space K which carries the representation � is of
this form, i.e., there is a unitary V�A such that K=VH�. For a general G-invariant
algebraic Hilbert space H�F, we may have that G�H is not irreducible, i.e., it need not be
of the form K=VH�. Below we will consider further conditions on the Hilbert system to
control the structure of these.

�vi� Given two G-invariant algebraic Hilbert spaces H, K�F, then span�H ·K� is also a
G-invariant algebraic Hilbert space which we will briefly denote by H ·K. It is a realization
of the tensor product H � K within F and carries the tensor product of the representations
of G carried by H and K in the obvious way.

�vii� Let H, K be two G-invariant algebraic Hilbert spaces, but not necessarily of support 1.
Then there is a natural isometric embedding J :L�H ,K�→F given by
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J�T� ª 

j,k

tj,k� j�k
*, tj,k � C, T � L�H,K� ,

where ��k�k, �� j� j are orthonormal bases of H and K, respectively, and where

T��k� = 

j

tj,k� j ,

i.e., �tj,k� is the matrix of T with respect to these orthonormal bases. One has

T��� = J�T� · �, � � H .

This implies the following: if Tj �L�H j ,K j�, j=1, 2, hence T1 � T2�L�H1H2 ,K1K2�,
then J�T1 � T2��1�2=J�T1��1J�T2��2 for � j �H j. Moreover J�T��A iff T
�LG�H ,K�, where LG�H ,K� denotes the linear subspace of L�H ,K� consisting of all
intertwining operators of the representations of G on H and K �cf. Ref. 3, p. 222�.

B. The category of G-invariant algebraic Hilbert spaces

The G-invariant algebraic Hilbert spaces H of �F ,G� form the objects of a category TG
associated to �F ,G� whose arrows are given by the elements of �H ,K�ªJ�LG�H ,K���A. It is
already large enough to carry all tensor products of the representations of G on its objects by
Remark 2.5�vi� �though not necessarily subrepresentations and direct sums�. First, let us state
some of its rich structure �cf. Refs. 3 and 12�.

Proposition 2.6: For �F ,G� the category TG is a tensor C*-category, i.e., the arrow spaces
�H ,K� are Banach spaces such that

�i� with respect to composition of arrows R, S we have R �S� R S,
�ii� there is an antilinear involutive contravariant functor *:TG→TG such that R* �R= R2 for

all arrows R with the same range and domain (here the functor * is given by the involution
in F�.

�iii� There is an associative product · on Ob TG and an identity object 1�Ob TG (i.e., 1·H
=H=H ·1� and there is an associative bilinear product � of the arrows, such that if R
� �H ,K� and R�� �H� ,K�� then R�R�� �H ·H� ,K ·K��. Moreover we require that for R,
R� as above,

1 � R = R � 1 = R, �R � R��* = R* � R�*, �1�

where 1� �1,1� is the identity arrow, as well as the interchange law

�S � R� � �S� � R�� = �S � S�� � �R � R�� ,

whenever the left-hand side is defined. Here in TG, the product · is given by the product of
F, the identity object is 1ªC I and the product � is defined by

R � R� ª J�T � T�� ,

for R=J�T�, R�=J�T��, where T�LG�H ,K�, T��LG�H� ,K��. Note that �1,1�
= �C I ,C I�=C I, i.e., 1= I.

TG has additional important structures �permutation and conjugation�, which we will consider
below in Sec. II D.

We need to examine conditions on �F ,G� to ensure that TG carries subrepresentations and
direct sums.

Definition 2.7: Let H, K�Ob TG, and define H�K to mean that there is an orthoprojection
E on K such that EK is invariant with respect to G and the representation G �H is unitarily
equivalent to G �EK. Call H a subobject of K.
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It is easy to see that � is a partial order. Note that H�K iff there is an isometry V
�LG�H ,K� such that VV*

¬E is a projection of K, i.e., VH=EK. Then J�V��A and EK
=J�V� ·H.

If E�LG�K� is an orthoprojection 0�E� I, i.e., E is a reducing projection for the represen-
tation of G on K, then the question arises whether there is an object H such that the representa-
tions on H and EK are unitarily equivalent. This suggests the concept of closedness of TG with
respect to subobjects.

Definition 2.8: The category TG is closed with respect to subobjects if to each K�Ob TG and

to each nontrivial orthoprojection E�LG�K� there is an isometry V̂�A with V̂V̂*=J�E�. In this

case Hª V̂* ·K is a subobject H�K assigned to E, where V̂=J�V� for some isometry V
�LG�H ,K� with VV*=E.

Next, we consider when an object of TG carries the direct sum of the representations of two
other objects. If V, W�A are isometries with VV*+WW*= I and H, K�Ob TG then we call the
algebraic Hilbert space VH+WK of support 1 a direct sum of H and K. It is G-invariant and
carries the direct sum of the representations on H and K but in general depends on the choice of
isometries V, W. We define the following.

Definition 2.9: (i) The category TG is closed with respect to direct sums if to each H1, H2

�Ob TG there is an object K�Ob TG and there are isometries V1, V2�A with V1V1
*+V2V2

*= I
such that K=V1H1+V2H2 [then V1� �H1 ,K� and V2� �H2 ,K� follow].

(ii) A C*-algebra A satisfies Property B if there are isometries V1, V2�A such that V1V1
*

+V2V2
*=1. A Hilbert system �F ,G� is said to satisfy Property B if its fixed point algebra A

ª�F satisfies Property B.
Remark 2.10: For a Hilbert system �F ,G� we have the following.

�i� It satisfies Property B iff TG is closed with respect to direct sums.
�ii� For non-Abelian G, the category TG is closed with respect to subobjects iff it is closed with

respect to direct sums iff it has Property B, cf. Proposition 3.5 of Ref. 9.
�iii� In the case that G is Abelian, the theory simplifies. This is because we already have

Pontryagin’s duality theorem, hence it is not necessary to consider closure under subobjects
and direct sums to obtain a duality theory.

C. The category of canonical endomorphisms

The main aim of DR theory is to obtain an intrinsic structure on A from which we can
reconstruct the Hilbert system �F ,G� in an essentially unique way. Here we want to transport the
rich structure of TG to A.

Definition 2.11: To each G-invariant algebraic Hilbert space H�F there is assigned a cor-
responding inner endomorphism �H�End F given by

�H�F� ª 

j=1

d�H�

� jF� j
*,

where �� j � j=1,… ,d�H�� is any orthonormal basis of H. Note that �H preserves A. A canonical
endomorphism is the restriction of an inner endomorphism to A, i.e., it is of the form �H�A
�End A.

Remark 2.12: �i� The definition of the canonical endomorphisms uses F explicitly. The ques-
tion arises whether the canonical endomorphisms can be characterized by intrinsic properties
within A. This interplay between the �H and the �H�A plays an essential role in the DR theory.
Below, we omit the restriction symbol and regard the �H also as endomorphisms of A.

�ii� If the emphasis is only on the representation � and not on its corresponding algebraic
Hilbert space H�, we will write �� instead of �H�

.
�iii� Note that �A=�H�A�� for all ��H and A�A.
�iv� Note that the identity endomorphism  is assigned to H=C I, i.e., �CIª .
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�v� Let H, K be as before, then �H ��K=�H·K.
�vi� The map � from Ob TG to the canonical endomorphisms is in general not injective. In fact

we have the following: if H, K�Ob TG, then �H�A=�K�A iff �*��A��F for all ��H,
��K, cf. Proposition 3.9 in Ref. 9.

Definition 2.13: Define T to be the category with objects the canonical endomorphisms, and
arrows the intertwiner spaces, where the intertwiner space of canonical endomorphisms �, �
�End A is

��,�� ª �X � A�X��A� = ��A�X for all A � A� ,

and this is a complex Banach space. For A� �� ,���, B� �� ,���, we define A�BªA��B�
� ��� ,�����. We will say that �, ��End A are mutually disjoint if �� ,��= �0� when ���.

Remark 2.14: �i� We have � , �=Z�A�ªcenter of A.
�ii� The composition of two canonical endomorphisms �which corresponds to products of the

generating Hilbert spaces, see Remark 2.13 �v�, i.e., to tensor products of representations� satisfies
the correct compatibility conditions with the product � of intertwiners to ensure that T is a
C*-tensor category cf. Proposition 2.6 and Ref. 1. The identity object is .

�iii� Recall the isometry J :LG�H ,K�→A encountered in Remark 2.5 �vii�. We claim that its
image is in fact contained in ��H ,�K�. To see this, let ��H, A�A, and T�LG�H ,K�. Then

J�T��H�A�� = J�T�� · A = T��� · A = �K�A�T��� = �K�A�J�T� · �

hence

J�T��H�A� = �K�A�J�T� ,

i.e., J�T�� ��H ,�K� or

�H,K� = J�LG�H,K�� � ��H,�K� . �2�

In general, the inclusion is proper. Note that for R� �H ,K�, R�� �H� ,K�� we have J�R � R��
=R�H�R��, i.e., � restricted to the �H ,K�’s coincides with the definition of � in Proposition 2.6
of the category TG.

Next we would like to define the concepts of subobject and direct sums on Ob T compatibly
with those on Ob TG under the morphism �. Recall that H�K iff we have an isometry V
�LG�H ,K� and a projection E�LG�K� with VH=EK=J�E� ·K=J�V� ·H. Then by �2� we get
that J�V�� ��H ,�K� and J�E�� ��K ,�K�.

Note that if L=VH+WK for isometries V, W�A with VV*+WW*=1, then V� ��H ,�L� and
W� ��K ,�L�.

Definition 2.15: (i) ��Ob T is a subobject of ��Ob T, denoted ���, if there is an isometry
V� �� ,��. In this case ��·�=V*��·�V and VV*

¬E� �� ,�� follow.
(ii) ��Ob T is a direct sum of �, ��Ob T, if there are isometries V� �� ,��, W� �� ,�� with

VV*+WW*=1 such that

��·� = V��·�V* + W��·�W*.

Remark 2.16: �i� The subobject relation ��� is again a partial order, because ��� and �
�� imply the existence of isometries V� �� ,��, W� �� ,��. Then WV� �� ,�� is also an isom-
etry, i.e., ���.

�ii� A direct sum as defined above is only unique up to unitary equivalence, i.e., if �, �� are
direct sums of �, ��Ob T, then there is a unitary U� �� ,���.

�iii� We have �VH+WK�·�=V�H�·�V*+W�K�·�W* where the isometries V, W�A satisfy VV*

+WW*=1. Also, if H�K, then �ª�H��K¬�. However, this does not mean that the partial
order ��� can be defined by H�K because the transitivity can be violated for some choices of
H, K, cf. Remark 2.12 �vi�.
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The closedness of T with respect to direct sums is defined by the closedness of TG with respect
to direct sums. The closedness with respect to subobjects for T is defined by the closedness with
respect to subobjects for TG in the following sense: If

� = �H � Ob T �3�

is given then for all H satisfying �3� and to each nontrivial projection E�J�LG�H�� there is an
isometry V�A with VV*=E. Then we have the following.

Proposition 2.17: If �F ,G� is non-Abelian and satisfies Property B then T is closed with
respect to direct sums and subobjects.

D. Connection between TG and T and further structures

In the following we assume that �F ,G� satisfies Property B.
There is a very important relation between the two categories TG and T, obtained as follows.

The two assignments � :Ob TG→T �by H→�H� and J :LG��H ,K��→ ��H ,�K� combine into a
faithful categorial morphism from TG to T which is compatible with direct sums and subobjects
�cf. Remark 2.16 �iii�� but is not full in general, i.e., the inclusion in Eq. �2� is improper for some
H and K. If A��F=C 1, then this categorial morphism becomes an isomorphism, cf. Proposition
3.12 in Ref. 9.

The category TG has the following additional structures �Refs. 3 and 12�.
Proposition 2.18: For �F ,G� the category TG satisfies

�1� it has a permutation structure, i.e., a map � from Ob TG�Ob TG into the arrows such that

�i� ��H ,K�� �HK ,KH� is a unitary,
�ii� ��H ,K���K ,H�=1,
�iii� ��1,H�=��H ,1�=1,
�iv� ��HK ,L�=��H ,L��H���K ,L��,
�v� ��H� ,K��A�B=B�A��H ,K� for all A� �H ,H��, B� �K ,K��.

For TG the permutation structure is given by

��H,K� ª J���H,K�� = 

j,k
� j�k� j

*�k
*,

where � is the flip operator H � K→K � H, and where ��k�k, �� j� j are orthonormal bases of H
and K, respectively.

�2� It has a conjugation structure, i.e., for each H�Ob TG there is a conjugated object H̄
�Ob TG, carrying the conjugated representation of G and there are conjugate arrows RH
� �1,H̄H�, SH=��H̄ ,H�RH such that

SH
* �H�RH� = 1, RH

* �H̄�SH� = 1 .

For TG we have RHª
 j�̄ j� j, where ��̄ j� j is an orthonormal basis of H̄. If H carries the

representation � j� j, � j � Ĝ, then H̄ is given by a direct sum of H�j
, where � j � Ĝ represents

the conjugated representation of � j.

Remark 2.19: Using the categorial morphism from TG to T we equip T with the image
permutation and conjugation structures of those on TG. Note that for the image permutation
structure in T, property �v� need not hold for all arrows �cf. Remark 2.14 �iii��.

For the next definition, observe first that from the operations defined for an abstract tensor
category �cf. Proposition 2.6�, we can define isometries and projections in its arrow spaces, i.e., an
arrow V� �� ,�� is an isometry if V* �V=1�, and an arrow E� �� ,�� is a projection if E=E*

=E �E.
Definition 2.20: An �abstract� DR category is an (abstract) tensor C*-category C with �1,1�
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=C I which has a permutation and a conjugation structure, and has direct sums and subobjects,
i.e., to all objects �, � there is an object � and isometries V� �� ,��, W� �� ,�� such that VV*

+WW*=1�, and to each nontrivial projection E� �� ,�� there is an object � and an isometry V
� �� ,�� such that E=VV*.

If the Hilbert system �F ,G� satisfies Property B then TG is an example of a DR category, but
not necessarily T �since property �v� in Proposition 2.18 need not hold for all arrows�. However,
if additionally A��F=C I holds then also T is a DR category.

E. Duality theorems

Unless otherwise specified, in the following we assume Property B for �F ,G� when G is
non-Abelian. The DR theorem produces a bijection between pairs

�A,T� and �F,G� ,

where T is a DR category of unital endomorphisms of the unital C*-algebra A with Z�A�=C I, and
�F ,G� is a Hilbert extension of A having trivial relative commutant, i.e., A��F=C I �see Refs.
1,15, and 16�. The DR theorem says that in the case of Hilbert extensions of A with trivial relative
commutant, the category T of all canonical endomorphisms can indeed be characterized intrinsi-
cally by their abstract algebraic properties as endomorphisms of A and a corresponding bijection
can be established.

In this section we want to state how to obtain such a bijection for C*-algebras A with
nontrivial center Z�C I. A first problem is that the category TG and T need not be isomorphic
anymore, cf. Remark 2.14 �iv� and Remark 2.12 �vi�, since now we have

C I � Z � A� � F .

We will investigate in the following the class of Hilbert extensions �F ,G� with compact group G
and where the relative commutant satisfies the following minimality condition.

Definition 2.21: A Hilbert system �F ,G� is called minimal if the condition

A� � F = Z�A� �4�

is satisfied.
Then we have �cf. Proposition 4.3 of Ref. 9� the following.

Proposition 2.22: Let �F ,G� be a given Hilbert system. Then A��F=Z�A� iff ��� ,����
= �0� for ����, i.e., iff the set ��� ��� Ĝ� is mutually disjoint.

Observe that in any Hilbert system, for each ��Ob T the space h�ªH�Z�A� �where H� is a
G-invariant algebraic Hilbert space� is a G-invariant right Hilbert Z�A�-module, i.e., there is a
nondegenerate inner product taking its values in Z�A� and it is �A ,B	=A*B. Now we have �cf.
Proposition 3.1 of Ref. 17� the following.

Proposition 2.23: Let �F ,G� be a given minimal Hilbert system, then the correspondence
�↔h� is a bijection. Thus h�=H�Z�A� is independent of the choice of H�, providing that �
=�H�

. This bijection satisfies the conditions

� � �↔ h� · h�,

� = �Ad V� � � + �Ad W� � �↔ h� = Vh� + Wh�.

Thus for minimal Hilbert systems, the Z�A�-modules h� are uniquely determined by their
canonical endomorphisms �, even though the choice of H� is not unique. We are now interested in
those choices of H� which are compatible with products.

Definition 2.24: A Hilbert system �F ,G� is called regular if there is an assignment �→H�

from Ob T to G-invariant algebraic Hilbert spaces in F such that

�i� �=�H�
, i.e., � is the canonical endomorphism of H�,
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�ii� � ��→H� ·H�.

In a minimal Hilbert system regularity means that there is a “representing” Hilbert space
H��h� for each � with h�=H�Z�A� such that the compatibility relation �ii� holds.

If a Hilbert system is minimal and Z�A�=C1 then it is necessarily regular. Thus a class of
examples which are trivially minimal and regular, is provided by DHR-superselection theory. A
nontrivial example of a minimal and regular Hilbert system is constructed in Ref. 9.

Then we obtain, cf. Theorem 4.9 of Ref. 9, the following.
Theorem 2.25: Let �F ,G� be a minimal and regular Hilbert system, then T contains a

C*-subcategory TC with the same objects, Ob TC=Ob T, and arrows �� ,��Cª �H� ,H��
=J�LG�H� ,H���� �� ,�� such that

P.1, TC is a DR-category �in particular � , �C=C1�,
P.2, �� ,��= �� ,��C��Z�A��=��Z�A���� ,��C��Z�A��.
Remark 2.26: �i� The conditions P.1 and P.2 imply that each basis of �� ,��C is simultaneously

a module basis of �� ,�� modulo ��Z�A�� as a right module, i.e., the module �� ,�� is free.
�ii� We will call the DR-subcategory TC in Theorem 2.25 admissible. If “minimality” is

omitted from the hypotheses of Theorem 2.25, then property P.1 remains valid, but not P.2. In this
case TC is a DR-subcategory only. A construction of an example with admissible subcategory can
be found in Ref. 9.

The converse of Theorem 2.25 is also true, and states the main duality result, cf. Ref. 7.
Theorem 2.27: Let T be a C*-tensor category of unital endomorphisms of A and let TC be an

admissible (DR-) subcategory. Then there is a minimal and regular Hilbert extension �F ,G� of A
such that T is isomorphic to the category of all canonical endomorphisms of �F ,G�. Moreover, if
TC, TC� are two admissible subcategories of T, then the corresponding Hilbert extensions are
A-module isomorphic iff TC is equivalent to TC�, i.e., iff there is a map V from Ob T to the arrows
such that

V� � ��,��, V� is unitary, and V��� = V� � V�,

��,��C� = V���,��CV�
* � ��,��

and we have the following compatibility relations for the corresponding permutators �, �� and
conjugates R�, R��:

����,�� = �V� � V�� · ���,�� · �V� � V��*

R�� = V�̄��R�, S�� = ����,�̄�R�� .

Thus, in minimal and regular Hilbert systems there is an intrinsic characterization of the category
of all canonical endomorphisms in terms of A only. Moreover, up to A-module isomorphisms,
there is a bijection between minimal and regular Hilbert extensions and C*-tensor categories T of
unital endomorphisms of A with admissible subcategories.

Note that Theorem 2.27 is a generalization of the DR theorem for the case of nontrivial center
Z�A��C1, i.e., it contains the case of the DR theorem, in that if Z�A�=C1 then T itself is
admissible �hence a DR-category� and the corresponding Hilbert extensions have trivial relative
commutant.

F. Hilbert systems with Abelian groups

If G is Abelian the preceding structure simplifies radically. Specifically, Ĝ is a discrete Abelian

group �the character group�, each H�, �� Ĝ is one-dimensional with a generating unitary U�,
hence the canonical endomorphisms �H�

�denoted by ��,� are in fact automorphisms, necessarily
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outer on A. Since ��1
���2

=��1�2
in this case the set � of all canonical endomorphisms �H�

is a

group with the property Ĝ�� / int A. Hence it is not necessary to consider direct sums, i.e.,
Property B for A can be dropped.

In the case Z�A�=C1 the permutators � �restricted to Ĝ� Ĝ� are elements of the second

cohomology group H2�Ĝ� and

U�1
· U�2

= ���1,�2�U�1��2
,

where

���1,�2� =
���1,�2�
���2,�1�

and � is a corresponding 2-cocycle. The field algebra F is just the �-twisted discrete crossed

product of A with Ĝ �see, e.g., Ref. 2, p. 86ff for details�. For the case Z�A��C1 see Ref. 18
�though the minimal case is not mentioned there�.

III. KINEMATICS FOR QUANTUM CONSTRAINTS

In this section we give a brief summary of the method of imposing quantum constraints,
developed by Grundling and Hurst.4,8,5 Our starting point is the following.

Definition 3.1: A quantum system with constraints is a pair �B ,C� where the system algebra B
is a unital C*-algebra containing the constraint set C=C*. A constraint condition on �B ,C� consists
of the selection of the physical state space by

SD ª �� � S�B�����C��� = 0 ∀ C � C� ,

where S�B� denotes the state space of B, and ��� ,H� ,��� denotes the GNS data of �. The
elements of SD are called Dirac states. The case of unitary constraints means that C=U− I, U�Bu,
and for this we will also use the notation �B ,U�.

The assumption is that all physical information is contained in the pair �B ,SD�. Examples of
constraint theories as defined here, have been worked out in detail for various forms of electro-
magnetism cf. Refs. 4,19, and 5.

For the case of unitary constraints we have the following equivalent characterizations of the
Dirac states �cf. Ref. 4, Theorem 2.19 �ii��:

SD = �� � S�B����U� = 1 ∀ U � U� �5�

=�� � S�B����FU� = ��F� = ��UF� ∀ F � B,U � U� . �6�

Moreover, the set ��UªAd�U� �U�U� of automorphisms of B leaves every Dirac state invariant,
i.e., we have � ��U=� for all ��SD, U�U.

For a general constraint set C, observe that we have

SD = �� � S�B����C*C� = 0 ∀ C � C� = �� � S�B��C � N�� = N� � S�B� .

Here N�ª �F�B ���F*F�=0� is the left kernel of � and Nª � �N� ���SD�, and N� denotes
the annihilator of N in the dual of B. Now N=clo-span�BC� because every closed left ideal is the
intersection of the left kernels which contains it �cf. 3.13.5 in Ref. 20�. Thus N is the left ideal
generated by C. Since C is self-adjoint and contained in N we conclude

C � C*�C� � N � N* = clo-span�BC� � clo-span�CB� ,

where C*�·� denotes the C*-algebra in B generated by its argument. Then we have �cf. Ref. 5� the
following.

Theorem 3.2: For the Dirac states we have
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�i� SD�� iff I�C*�C� iff I�N�N*
¬D.

�ii� ��SD iff ���D���=0.
�iii� An extreme Dirac state is pure.

We will call a constraint set C first class if I�C*�C�, and this is the nontriviality assumption
which we henceforth make �Ref. 21, Sec. 3�.

Now define

O ª �F � B��F,D� ª FD − DF � D ∀ D � D� .

Then O is the C*-algebraic analog of Dirac’s observables �the weak commutant of the
constraints�.22 Then �cf. Ref. 5� we have the following.

Theorem 3.3: With the preceding notation we have

�i� D=N�N* is the unique maximal C*-algebra in ��Ker � ���SD�. Moreover D is a
hereditary C*-subalgebra of B.

�ii� O=MB�D�ª �F�B �FD�D�DF ∀D�D�, i.e., it is the relative multiplier algebra of D
in B.

�iii� O= �F�B � �F ,C��D�, hence C��B�O.
�iv� D=clo-span�OC�=clo-span�CO�.
�v� For the case of unitary constraints, i.e., C=U−1, we have U�O and

O= �F�B ��U�F�−F�D ∀U�U� where �UªAd U.

Thus D is a closed two-sided ideal of O and it is proper when SD�� �which we assume here
by 1�C*�C��. Since the traditional observables are C��B, by �iii� we see that these are in O. In
general O can be much larger than C��B.

Define the maximal C*-algebra of physical observables as

R ª O/D .

The factoring procedure is the actual step of imposing constraints. This method of constructing R
from �B ,C� is called the T-procedure in Ref. 4, and it defines a map T from first class constraint
pairs �B ,C� to unital C*-algebras by T�B ,C�ªR=O /D. We require that after the T-procedure all
physical information is contained in the pair �R ,S�R��, where S�R� denotes the set of states on
R. Now, it is possible that R may not be simple �Ref. 4, Sec. 2�, and this would not be acceptable
for a physical algebra. So, using physical arguments, one would in practice choose a
C*-subalgebra Oc�O containing the traditional observables C� such that

Rc ª Oc/�D � Oc� � R

is simple. The following result justifies the choice of R as the algebra of physical observables �cf.
Theorem 2.20 in Ref. 4�.

Theorem 3.4: There exists a w*-continuous isometric bijection between the Dirac states on O
and the states on R.

Insofar as the physics is now specified by R, this suggests that we call two constraint sets
equivalent if they produce the same R. More precisely two constraint sets C1�B�C2 are called
equivalent, denoted C1�C2, if they select the same set of Dirac states, cf. Ref. 5. In fact

C1 � C2 iff clo-span�BC1� = clo-span�BC2� iff D1 = D2.

The hereditary property of D can be further analyzed, and we list the main points �the proofs
are in Appendix A of Ref. 5�.

Denote by �u the universal representation of B on the universal Hilbert space Hu �Ref. 20,
Sec. 3.7�. B� is the strong closure of �u�B� and since �u is faithful we make the usual identifi-
cation of B with a subalgebra of B�, i.e., generally omit explicit indication of �u. If ��S�B�, we
will use the same symbol for the unique extension of � from B to B�.

Theorem 3.5: For a constrained system �B ,C� there exists a projection P�B� such that
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�i� N=B�P�B,
�ii� D= PB�P�B,
�iii� SD= ���S�B� ���P�=0�,
�iv� O= �A�B � PA�I− P�=0= �I− P�AP�= P��B.

A projection satisfying the conditions of Theorem 3.5 is called open in Ref. 20.
What this theorem means, is that with respect to the decomposition

Hu = PHu � �I − P�Hu

we may rewrite

D = �F � B�F = �D 0

0 0
�,D � PBP�

and

O = �F � B�F = �A 0

0 B
�,A � PBP,B � �I − P�B�I − P�� .

It is clear that, in general, O can be much greater than the traditional observables C��B. Next we
show how to identify the final algebra of physical observables R with a subalgebra of B�.

Theorem 3.6: For P as above we have

R � �F � B�F = �0 0

0 A
�� = �1 − P��P� � B� � B�.

Below we will need to consider a constraint system contained in a larger algebra, specifically,
C�A�F where C is a first-class constraint set, and A, F are unital C*-algebras. Now there are
two constrained systems to consider; �A ,C� and �F ,C�. The first one produces the algebras
D�O�A, and the second produces DF�OF�F, where as usual,

N = clo-span�AC�, D = N � N*, O = MA�D�

and

NF = clo-span�FC�, DF = NF � NF
* , OF = MF�DF� .

Then we have �cf. Theorem 3.2 of Ref. 8� the following.
Theorem 3.7: Given as above C�A�F then

NF � A = N, DF � A = D, and OF � A = O .

Hence R=O /D= �OF�A� / �DF�A�.

IV. SUPERSELECTION WITH CONSTRAINTS

Next we would like to consider systems containing both constraints and superselection. There
is a choice in how to define this problem mathematically, so let us consider the physical back-
ground. Perhaps the most important example, is that of a local gauge theory. It usually has a set of
global charges �leading to superselection� as well as a Gauss law constraint �implementing the
local gauge symmetry�, and possibly also other constraints associated with the field equation. Only
if the gauge group is Abelian will the Gauss law constraint commute with the global charge, since
the Gauss law constraint takes its values in the Lie algebra of the gauge group. Thus, for non-
Abelian local gauge theories we do not expect the constraints to be in the algebra of gauge
invariant observables A of the superselection theory of the global charge. This problem is however
not as serious as it looks. The reason is that while the global gauge group does not preserve the
individual Gauss law constraints, it does preserve the set of these, hence it also preserves the set
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of Dirac states selected by them. Thus we can replace the original constraint set by an equivalent
constraint �i.e., selecting the same set of Dirac states� which is invariant under the global gauge
group. Such an equivalent constraint is given by the projection in Theorem 3.5. It comes at the
cost of slightly enlarging the system algebra B, since P is in the universal von Neumann algebra
of B. We can avoid this cost if clo-span�C� is separable, since then there is an equivalent constraint
in B itself, cf. Theorem 3.4 of Ref. 5.

We therefore will assume below that the constraints are in A. This will include a large class
of physical examples, as mentioned in Sec. I.

Let now �A ,C� be a first-class constraint system, hence we have the associated algebras
D�O�A, and R=O /D. In addition, let A have a superselection structure, i.e., there is a given
Hilbert extension �F ,G� of A. Thus the category T of canonical endomorphisms of A defines a
selection criterion of unital endomorphisms of A. In the case that the Hilbert extension is minimal
and regular, the superselection structure of T is given within A without any reference to the
Hilbert extension.

Then the following natural questions arise:

�1� what compatibility conditions should be satisfied in order to pass the superselection structure
through T, thus obtaining a superselection structure on T�A ,C�=R?

�2� what is the relation between T�A ,C� and T�F ,C� where F is the field algebra generated from
T?
An inverse question also arises, i.e.,

�3� if R has a superselection structure, what is the weakest structure one can expect on A which
would produce this superselection structure on R via T? �One should call this a weak
superselection structure.�

To address �1� and �2�, recall that the map T consists of a restriction �of A to O� followed by
a factoring �O→O /D�. So, we first work out the compatibility conditions involved with restric-
tions and factoring maps.

Since C�A�F, there are two constrained systems to consider; �A ,C� and �F ,C�. The first
one produces the algebras D�O�A, and the second produces DF�OF�F �cf. Theorem 3.7�.
Now since C�A, the G-invariant part of F, it follows that G preserves the set of Dirac states,
hence G preserves both DF and OF, i.e., gDF=DF and gOF=OF for all g�G.

We denote the restriction of G to OF by �gªg�OF. The homomorphism � :G�g→�g

�Aut OF is not necessarily injective but � is again pointwise norm-continuous, hence G /K is

compact where KªKer �. The isomorphism �̃ :G /K→�G by �̃�gK�ª�g is also a topological

one �cf. p. 58 of Ref. 23�. Note that �G /K̂�= ��� Ĝ ���k�=1 for all k�K��spec �G.
The spectral projections ��

� of �G are given by the restriction to OF of the spectral projections
�� of G, i.e., ��

�X=��X for X�OF.
We now have the following:

�I� Restriction problem: Find conditions to guarantee that the C*-dynamical system �OF ,G ,��
is a Hilbert system �OF ,�G�. Thus we must find conditions to ensure there are algebraic

Hilbert spaces in ��
�OF for �� �G /K̂�. �Note that this is stronger than what we need; we

only need a Hilbert system on RF after factoring out by DF.�
�II� Factoring problem: Find conditions to guarantee that under the map OF→RFªOF /DF

the factoring through of the action of G to RF is a Hilbert system corresponding to a
DR-category. This is of course a special case of the general problem for homomorphic
images of Hilbert systems under factoring by invariant ideals. The reason why we require
Z�A�=C1 for RF is because after implementing constraints, the final physical algebra
should be simple.

Below we list our major results; since some proofs are lengthy, we defer these to Sec. VI to
preserve the main flow of ideas.
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A. Restricting a superselection structure

We consider now for the system above the restriction problem �I�, i.e., we are given a Hilbert
extension �F ,G� of A, containing constraints C�A, and we need to examine when �OF ,�G� is a
Hilbert system.

Theorem 4.1: (i) �OF ,G ,�� has fixed point algebra O. Moreover, Z�A��Z�O�.
(ii) For any G -invariant algebraic Hilbert space H����F we have either H��OF= �0�, or

H��OF. In the latter case we have ��G /K̂ where K=Ker �, and

H� � ��OF = clo-span�OH�� .

(iii) Let ��Ob T, with H��F a G -invariant algebraic Hilbert space such that �=�H�
. If

H��OF, then ��D��D and ��O��O. Thus � restricts to O, ��O�End O.
The central condition for �OF ,G ,�� to be a Hilbert system �OF ,�G� with respect to the factor

group G /K is H��OF, i.e., H����
�OF for all ��G /K̂.

Next, we develop an internal criterion on A to guarantee that a given H�Ob TG is contained
in OF.

Theorem 4.2: (i) Given the Hilbert extension �F ,G� of the constrained system C�A assumed
here, we have for any G-invariant algebraic Hilbert space H that

H � OF iff D � �H�D�, i.e., D = clo-span�A�H�D�� � clo-span��H�D�A� .

(ii) For all �, ��Ob T with H�, H��OF we have

��,��A � ���O,��O�O.

Observe that D��H�D� implies that �H�D��D.

Corollary 4.3: We have that �OF ,G /K , �̃� is a Hilbert system �OF ,�G� with respect to G /K iff

D����D� holds for all ��G /K̂. In particular, if D����D� holds for all �� Ĝ then G /K�G i.e.,
K is trivial.

While the condition D����D� is exact for H��OF, it may not be in practice that easy to
verify. We therefore consider alternative conditions which will allow the main structures involved
with Hilbert extensions to survive the restriction of �F ,G� to �OF ,�G�.

Recalling the definition of subobjects, introduce the notation E�1�mod A� for a projection
E�A to mean that there is an isometry V�A, V*V=1 such that VV*=E �i.e., Murray-von Neu-
mann equivalence of E and 1�.

Definition 4.4: We say the constraint set C�A is an E-constraint set if for each projection
E�O such that E�1�mod A�, we have that E�1�mod O�.

The E-constraint condition will ensure the survival of decomposition relations of restrictable
canonical endomorphisms.

Proposition 4.5: Let �F ,G� be a Hilbert system and let C�O be an E-constraint set, �
�Ob T and H��OF a G-invariant algebraic Hilbert space. Then

�i� to each decomposition

��·� = 

j

Vj��j
�·�Vj

*, Vj � ���j
,��A,

where � j � Ĝ and Vj �A are isometries, there corresponds a decomposition on O, i.e.,
there are G-invariant algebraic Hilbert spaces K j �OF, which carry the representation � j
and with canonical endomorphisms � jª�Kj

�O�End O such that on O,

��·� = 

j

Wj� j�·�Wj
*, Wj � �� j,��O,

where Wj �O are isometries.
�ii� Let �F ,G� in addition satisfies Property B and let ����T in the sense of A, i.e., there is
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an isometry V� �� ,��A, and let H��OF. Then there is a corresponding Hilbert space
H��OF, i.e., ��O���O�End O also in the sense of O.

Theorem 4.6: Let the Hilbert system �F ,G� satisfy Property B where G is a group with a

distinguished irreducible representation �0� Ĝ such that every irreducible representation of G is
contained in a tensor representation of �0. Let C�A be an E-constraint set then H�0

�OF implies
that �OF ,�G� is a Hilbert system.

Proof: This follows from Proposition 4.5, by making use of the obvious fact that
H��OF�H� implies that H� ·H��OF for �, ��Ob T. �

If the group G is isomorphic to U�N� then it satisfies the condition of Theorem 4.6.
The property of being an E-constraint set can be characterized in terms of the open projection

P�A� corresponding to the constraints �cf. Theorem 3.5�. Observe that if there is an E�O with
E� I�mod A�, then the set of isometries

VE ª �V � A�VV* = E,V*V = I�

is nonempty. We have the following.
Proposition 4.7: Let E�O with E� I�mod A�, then VE�O�� iff for each V�VE there is a

U � UE ª �U � A�U*U = E = UU*�

such that VPV*=UPU*.

B. Morphisms of general Hilbert systems

Recall that the second step in the enforcement of constraints, is the factoring OF→RF
ªOF /DF. We now consider problem �II�, the factoring problem, first in a general context. Con-
sider a morphism of C*-algebras 	 :F→L=	�F�. This specifies the subgroup of automorphisms

Aut	 F ª �� � Aut F���Ker 	� � Ker 	�

and a homomorphism Aut	 F→Aut L by �→�	 where �	�	�F��ª	���F�� for all F�F. Hence-
forth let �F ,G� be a Hilbert system with Property B and G�Aut	 F. Our task will be to find the
best conditions to ensure that �L ,G	� is a Hilbert system associated with a category described in
Theorem 2.25. We will denote the spectral projections of G �respectively, G	� by �� �respectively,
��
	�. �Recall that in the context of the T-procedure, we have that G preserves DF due to the

invariance of the constraints under G. So the current analysis applies.�
Theorem 4.8: Given a Hilbert system �F ,G� and a unital morphism 	 :F→L=	�F�, such that

G�Aut	 F, then we have

�i� �L ,G	� is a Hilbert system and G�G	.
�ii� If H����F is an invariant algebraic Hilbert space for G, then so is 	�H�����

	L for G	.
�iii� Let N� be any orthonormal basis for 	�H��, then ��N� ��� Ĝ� is a left module basis of

	�Ffin� with respect to 	�A�, i.e., the “essential part” of 	 is its action on A.
�iv� The fixed point algebra of L with respect to G	 is exactly 	�A�, and 	�Ffin�=Lfin.
�v� If �F ,G� has Property B, so does �L ,G	�.

Thus corresponding to the two Hilbert systems �F ,G� and �L ,G	� we now have the two
categories T and T	, respectively. Moreover we have the following.

Corollary 4.9: Under the conditions of Theorem 4.8 we have that

�i� for any canonical endomorphism ��Ob T,

��Ker 	 � A� � Ker 	 � A .

Hence there is a well-defined map Ob T��→�	�Ob T	, given by �	�	�A��ª	���A�� for
all A�A.
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�ii� The map Ob T��→�	�Ob T	 is compatible with products, direct sums and subobjects. It
also preserves unitary equivalence.

We have that �Ob T�	�Ob T	, and we now claim that up to unitary equivalence, we have in
fact equality.

Theorem 4.10: Under the conditions of Theorem 4.8 we have that

�i� if ��Ob T	, then there is always a ��Ob T such that �	 is unitarily equivalent to �, i.e.,
each unitary equivalence class in Ob T	 contains at least one element of the form �	.

�ii� The map Ob T��→�	�Ob T	 produces an isomorphism between the sets of unitary
equivalence classes of Ob T and Ob T	 which is compatible with products direct sums and
subobjects.

The relation between the arrows of the two categories is however less direct.
Lemma 4.11: Under the conditions of Theorem 4.8 we have

	���,��A� � ��	,�	�	�A�.

Next we show that Ker 	 is uniquely determined by Ker 	�Ffin.
Proposition 4.12: Under the conditions of Theorem 4.8 we have that

�i� Ker 	�Ffin=Span��Ker 	�A�H� ��� Ĝ�,
�ii� Ker 	=clo� · �A

�Ker 	�Ffin��F.

Thus Ker 	 is in fact uniquely determined by Ker 	�A, as is already suggested by Theorem
4.8 �iii�. Since F is in general not complete with respect to � · �A, the intersection with F in
Proposition 4.12 �ii� is necessary.

Theorem 4.8 suggests that we consider the following subcategory of T	.
Definition 4.13: The subcategory 	�T� of T	 is defined by the objects

Ob 	�T� ª �Ob T�	

and the arrows

��	,�	�	�A�
�0�

ª 	���,��A� .

By Theorem 4.10 the sets of all unitary equivalence classes of Ob 	�T� and Ob T	 coincide,
each equivalence class of Ob 	�T� is a subset of the corresponding equivalence class of Ob T	, but
in general these equivalence classes are much larger.

Lemma 4.11 says that the arrow sets ��	 ,�	�	�A� of the objects of Ob 	�T� considered as
objects of Ob T	 are in general larger than the corresponding arrow sets in 	�T�. The reason is that
an element X=	�Y�, Y �A, belongs to ��	 ,�	�	�A� iff Y��A�−��A�Y �Ker 	 for all A�A. The
arrow sets coincide only if this relation already implies Y��A�−��A�Y =0.

C. Morphisms of minimal and regular Hilbert systems

Recall now that by Theorems 2.25 and 2.27 we have an equivalence between minimal and
regular Hilbert systems with Property B and the endomorphism category T with an admissible
subcategory TC. We called a subcategory TC admissible if it satisfies conditions P.1 and P.2 in
Theorem 2.25.

As in the last section, we consider a unital morphism 	 :F→L=	�F�, and recall by Proposi-
tion 4.12 that 	 is determined by its action on A. Now while it is obvious that 	�Z�A���Z�	�A��,
we require below the stronger condition
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	�Z�A�� = Z�	�A�� . �7�

When 	�A� is a simple C*-algebra �as we require for the final observables after a T-procedure�, the
condition �7� will be satisfied.

Theorem 4.14: Given a minimal and regular Hilbert system �F ,G� with Property B, and a
unital morphism 	 :F→L=	�F� such that G�Aut	 F and condition (7) holds, then

�i� there is a DR-subcategory TC
	 of 	�T�,

�ii� property P.2 is satisfied for TC
	 iff 	�A���	�F�=	�Z�A��. In this case the subcategory TC

	 is
admissible.

�iii� If 	�A���	�F�=	�Z�A��, then

��	,�	�	�A� = 	���,��A�

for all �, ��Ob T, where we made use of the notation and result in Corollary 4.9.
�iv� In this case choose H��Ob TG. Then

M	
ª ��	�H���� � Ĝ� � Ob 	�T�

is a complete system of (irreducible) and mutually disjoint objects of Ob 	�T�.

D. The inverse problem

Theorem 4.15: Let A be a unital C*-algebra with Property B, and let T be a C*-tensor
category of unital endomorphisms of A. Let T have an admissible subcategory TC whose arrow
spaces are denoted by �� ,��C. Furthermore, let 	 be a unital morphism of A such that

�i� 	�Z�A��=Z�	�A��,
�ii� ��Ker 	��Ker 	 for all ��Ob T. Thus we can define endomorphisms �	�End 	�A� by

�	�	�A��ª	���A�� for all A�A and a category 	�T� with objects

Ob 	�T� ª ��	�� � Ob T� �8�

and arrows ��	 ,�	�	�A�, which is closed with respect to direct sums and products,
�iii� 	��� ,��A�= ��	 ,�	�	�A� for all �, ��Ob T.

Then there is a subcategory TC
	 of 	�T� with Ob TC

	 =Ob 	�T� which is admissible for 	�T�.
Thus by Theorem 2.27 there are Hilbert extensions F and F	 corresponding to T and 	�T�,

repectively. Moreover, the Hilbert extension F	 of 	�A� can be chosen in such a way that it is the

homomorphic image of F under a morphism which is an extension of 	. That is, F	= 	̃�F� where

	̃ is a morphism of F such that 	̃�A�=	�A� for all A�A.
Remark 4.16: A posteriori, the set of objects Ob 	�T� defined in �8� could be enlarged by

filling up the unitary equivalence classes of each �	 by all � with �=Ad V �	���, where V
�	�A� is unitary. This corresponds to the objects of the category T	 of Definition 4.13. In this case
we must also add additional arrows, so if �i=Ad Vi �	��i�, i=1, 2, then we also need

��1,�2�	�A� ª V2��1
	,�2

	�	�A�V1
−1.

However, for the application of Theorem 2.27 this is not necessary.

E. Superselection structures left after constraining

Recall that the enforcement of constraints by T-procedure produces a final physical algebra R.
This algebra is usually assumed to be simple; if it is not, then the physics is not fully defined, and
one should extend the constraint set C�A to make R simple �the choice of the extension needs to
be physically motivated�.
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In the preceding sections we examined which conditions need to be satisfied by a Hilbert
extension �F ,G� of A for its structure to pass through the two parts of the T-procedure. Here we
combine these to produce conditions on the initial system which will ensure that we obtain a
Hilbert extension of R. We will also examine when this final Hilbert extension is regular �and this
produces then a DR-category via simplicity of R�.

Theorem 4.17: Let �F ,G� be a Hilbert extension of A, and let C�A be a first-class con-

straint set such that D����D� holds for all ��G /K̂. Then �RF ,�G� is a Hilbert extension of R,
where RF=	�OF�, and 	 is the factor map OF→OF /DF.

Proof: By Corollary 4.3 it follows from the hypotheses that �OF ,�G� is a Hilbert extension of
O. Since the constraint set C�A is G-invariant, we have that ��DF�=DF for all �
��G�Aut OF, i.e., �G�Aut	 OF. �Recall the discussion in the introductory part of Sec. IV.� Thus
by Theorem 4.8 it follows that ��G�	��G, and that

�	�OF�,��G�	� = �RF,�G�

is a Hilbert extension of R=	�O�. �

Next, we would like to examine when a Hilbert extension as in Theorem 4.17 will produce a
minimal and regular Hilbert extension of R �with Property B�.

First recall the requirement for a Hilbert system �F ,G� to be regular, there is an assignment
�→H� from Ob T to G-invariant algebraic Hilbert spaces in F such that

�i� �=�H�
, i.e., � is the canonical endomorphism of H�,

�ii� � ��→H� ·H�,

that is, the assignment is compatible with products.
We now want to check whether this property also survives the map T : �F ,G�→ �RF ,�G�.
Proposition 4.18: Let T satisfy regularity. Let D����D� for all ��G /K̂, then �RF ,�G�

satisfies regularity, i.e., there is an assignment �→H� such that

�i� �=�H�
, i.e., � is the canonical endomorphism of H�,

�ii� � ��→H� ·H�.

Proof: Given the assignment �→H� in F, then whenever �=��, ���Ĝ we have

�→ H� � OF → RF,

where the last map is 	, so the assignment which we take for this proposition is �→	�H��. Then
�i� and �ii� are automatic. �

Second, we consider Property B.
Proposition 4.19: Let �F ,G� satisfy Property B, let G be non-Abelian and C�A be an

E-constraint set. If D����D� for all �� �G /K̂�, then �OF ,�G� satisfies Property B.
Proof: First �OF ,�G� is a Hilbert extension of O with respect to G /K because of Corollary

4.3. Choose a G-invariant Hilbert space H�OF�F which is not irreducible, i.e., there is a
projection E�J�LG�H��, 0�E�1. Then one has E� ��H ,�H�A� ��H�O ,�H�O�O�O by Theo-
rem 4.2 �ii�. By Property B we get closure under subobjects, so there is a V�A, V*V=1, VV*

=E. In other words, E�1�mod A�. Similarly we obtain 1−E�1�mod A�. Since C is an
E-constraint set and E�O we get that E�1�mod O� and 1−E�1�mod O� and this is the asser-
tion. �

Finally, we need to consider whether the requirement

A� � F = Z�A�

passes through the T-procedure. In full generality, this is a very hard problem, because both stages
of the T-procedure can eliminate or create elements of A�. In fact, since A��F�D��F�OF
and Z�A��Z�O�, we can only deduce from A��F=Z�A� that 	�A��F�=	�Z�A��. On the other
hand, R��RF=Z�R� iff
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A � OF and �A,O� � DF implies A � O + DF

which can be true in general for more elements than those in 	�A��F�.
We do have from Theorem 4.2 and Proposition 2.22 the following condition.
Proposition 4.20: Let �F ,G� be a minimal Hilbert extension of A, and let C�A be a first-

class constraint set such that D����D� holds for all ��G /K̂. If the disjointness of canonical
endomorphisms survives the restriction to O then the Hilbert system �OF ,�G� is minimal, i.e.,
O��OF=Z�O�.

V. EXAMPLE

It is difficult to produce interesting worked examples in the current state of the theory. The
problem is that in almost all theories of physical significance, the canonical endomorphisms �� are
not known explicitly, and so one cannot check the compatibility conditions with the constraints
explicitly �cf. Corollary 4.3�. Here we give an example which is extracted from QED, so it may
have some physical interest. It consists of a fermion in an Abelian gauge potential. Since the
global gauge group G is Abelian, the superselection theory simplifies radically. However, we have
explicit endomorphisms �� and can check the compatibility conditions with the constraints. Nev-
ertheless, even at this simple level, it is not possible to verify all the conditions of regularity. We
will not treat the issue of dynamics.

A. Constraint structure of QED

We start with a discussion of the setup of QED in order to motivate our subsequent example.
The starting point for QED, is a fermion field � in R4 satisfying the free CARs, and a U�1�-gauge
potential A in R4 satisfying free CCRs, and initially these are assumed to commute. So the
appropriate C*-algebraic framework at this initial level is

B ª CAR�H� � CCR�S,B� ,

where H=L2�R4 ,C4�, S=S�R4 ,R4� /Ker B, and B denotes the symplectic form for QEM, coming
from the Jordan-Wigner distribution, cf. Sec. 5 of Ref. 5. �Note that the tensor product B is unique
because CAR�H� is a nuclear algebra.� There is a global charge Q acting on CAR�H� and there
are constraints in the heuristic theory,

A�
,��x� ª 0 �Lorentz condition�

and

�A�ª j� �Maxwell equation� ,

where j�ª−e�̃��� is the electron current, and we denote �̃ª�*�0. The Lorentz condition has
been treated in the C*-algebra context �cf. Ref. 5� and it needs special treatment, e.g., indefinite
metric or nonregular states, but it is not very interesting for us, since it only affects the electro-
magnetic field CCR�S ,B�, hence is independent of the charge Q. The Maxwell equation is more
interesting, since it involves both factors of B and it expresses part of the interaction between the
two fields. It is however very difficult to enforce in the C*-algebra context �and ultimately leads to
the conclusion that B is too small an algebra to do this in�. Naively, it seems that we can easily
realize both sides of the Maxwell equation in the present C*-setting, smear the left-hand side over
S�R4 ,R4�,

� �A��x�f��x�dx =� A��f� dx = A��f�

then this is realized in CCR�S ,B� through the identification of the generating Weyl unitaries �h

with the heuristic exp iA�h� where h=�f . If we smear the right-hand side of the Maxwell equation
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j�f� = − e� �̃�x�����x�f��x�dx ,

then j�f� generates a Bogoliubov transformation Tf on L2�R4 ,C4� by

Ad�exp ij�f����g� ª �exp i ad j�f�����g�� = ��Tfg� ¬ �Tf
���g�� ,

where �Tf
is its associated automorphism on CAR�H� �we will calculate Tf explicitly in a sim-

plified setting below�. Let G�Aut B be the discrete group generated in Aut B by

�� f ª �Tf
� �f � S�R4,R4��

and let � denote its action on B. Define the crossed product

E ª G�
�
B = C*�B,Ug�Ug

* = Ug
−1,�g = Ad Ug,UgUh = Ugh,g,h � G�

then we identify the heuristic objects exp ij�f� with the implementing unitaries U�f
. So each side

of the Maxwell equation has a C*-realization, and we only need to decide how to impose the
constraint equation. Heuristically, the Maxwell equations are imposed as state conditions,
A��f��= j�f�� for vectors � in the representing Hilbert �or Krein� space. If we take instead the
stronger condition A��f�n�= j�f�n� for n�N, then we can rewrite the constraint conditions in the
form eiA��f��=eif�f��. This suggests that we choose constraint unitaries VfªU−�f

·��f in E and
thus select our Dirac states � on E by

��Vf� = 1 ∀ f � S�R4,R4� .

As one expects from the interaction, this program encounters problems.

�1� We always have that �f �Ker B, hence �f corresponds to zero in S �since we factor out by
Ker B�. This can be remedied by changing S to S�R4 ,R4�, in which case �S ,B� is a degen-
erate symplectic space. This problem is connected to the fact that the heuristic smearing
formula

A�f� =�
C+

�a��p� f̂��p� + a�
+�p� f̂

¯��p��
d3p

p0

cannot be correct for the interacting theory, since it implies that A��f�=0, in contradiction
with the Maxwell equation.

�2� Interaction mixes the fermions and bosons, so it is unrealistic to expect that the interacting
fermion and boson fields will commute �as in the tensor product structure of B�. In fact, if
one assumes that the bosons and fermions commute, then the Maxwell equation forces the
local charges to become central, in which case only neutral local fields are allowed, which is
too restrictive for QED. Even worse, perturbation theory suggests that the interacting fields
need not be canonical, so the assumption of the CCR and CAR relations for the interacting
bosons and fermions is problematic.

B. Model for the interacting Maxwell constraint

Inspired by the observations above, we now propose an example which is a simplified version
of the Maxwell constraint. Heuristically, we want to impose a constraint of the form

a*�x�a�x� = LA�x� ,

where a�x� is a fermion field on R4, A is a boson field and L is a linear differential operator on
S�R4�. To realize this, together with a superselection structure in a suitable C*-algebra setting, we
present our construction in six steps.
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Step 1: For the fermion field, let H=L2�R4� and define CAR�H� in Araki’s self-dual form �cf.

Ref. 24� as follows. On KªH � H define an antiunitary involution � by ��h1 � h2�ª h̄2 � h̄1.
Then CAR�H� is the unique simple C*-algebra with generators ���k� �k�K� such that k→��k� is
antilinear, ��k�*=���k�, and

���k1�,��k2�*� = �k1,k2�1, ki � K .

The correspondence with the heuristic creators and annihilators of fermions is given by ��h1

� h2�=a�h1�+a*�h̄2�, where

a�h� =� a�x�h�x�d4x, a*�h� =� a*�x�h�x�d4x .

Step 2: For the boson field, let S=S�R4 ,R�, and let K :S→L2�M ,�� be a linear map, where
�M ,�� is a fixed measure space. Define a symplectic form on S by B�f ,g�ª Im�Kf ,Kg�, where
�·, ·� is the inner product of L2�M ,��. Note that B is degenerate if Ker K is nonzero. Define then
CCR�S ,B�=C*�� f � f �S� where the � f are unitaries satisfying the Weyl relations

� f · �g = � f+g exp�iB�f ,g�/2� ,

i.e., CCR�S ,B� is the �-twisted discrete group algebra of S with respect to the two-cocycle
��f ,g�ªexp�iB�f ,g� /2�.

Step 3: To combine the bosons and fermions in one C*-algebra, we want to allow for the
possibility that they may not commute with each other, hence we will not take the tensor algebra
CAR�H� � CCR�S ,B�. However, we do not know what form their commutators should take, so we
start with the free C*-algebra E generated by CAR�H� and CCR�S ,B�. The free C*-algebra E
seems to be big enough to allow for possible interactions, but it is also likely to contain redundant
elements.

To be explicit, let L be the linear space spanned by all monomials of the form
A0B0A1B1¯AnBn where Ai�CAR�H� and Bi�CCR�S ,B�. Note that L is an algebra with respect
to concatenation. Factor out by the ideal generated by 1CAR−1CCR and replace concatenation by
multiplication for any two elements in a monomial which are in the same algebra �either CAR or
CCR� after the factorization. Note that this will now produce all possible monomials of elements
in CAR�H� and CCR�S ,B�, just consider those monomials in L with A0 or Bn the identity to
obtain all other monomials. Now the resultant algebra N is a *-algebra with the involution given
by

�A0B0 ¯ AnBn�* = Bn
*An

*
¯ B0

*A0
*.

Form the enveloping C*-algebra E of N, i.e., let

I0 ª � �Ker ��� � Hilbert space representations of N�

and set EªN /I0 where the closure is with respect to the enveloping C*-norm, i.e.,

A ª sup���A� �� � Hilbert space representations of N� .

That E is nontrivial, follows from the fact that any tensor product representation of CAR�H�
� CCR�S ,B� defines a Hilbert space representation of N, hence it follows that E is nonzero and
that CAR�H� and CCR�S ,B� are faithfully embedded in E �as the images under the factorization
maps of the original generating algebras in the construction�. Note that we have a surjective
homomorphism � :E→CAR�H� � CCR�S ,B� given by

082303-22 H. Baumgaertel and H. Grundling J. Math. Phys. 46, 082303 �2005�

                                                                                                                                    



��A0B0 ¯ AnBn� ª �A0 ¯ An� � �B0 ¯ Bn�, Ai � CAR�H�, Bi � CCR�S,B� .

Clearly the ideal IT of E generated by the commutators �CAR�H�, CCR�S ,B�� is in Ker �. Since
E probably contains redundant elements, we do not require it to be simple. � will be important in
proofs below.

Step 4: Next, we would like to model in the curent C*-setting, the global and local heuristic
charges,

Q =� a*�x�a�x�d4x, Q�f� =� a*�x�a�x�f�x�d4x, f � S�R4,R� .

Let us calculate the Bogoliubov transformations which they induce,

�Q�f�,��h1 � h2�� =� � �a*�x�a�x�f�x�,a�y�h1�y� + a*�y�h2�y��d4x d4y

=� � f�x���a*�x�a�x�a�y� − a�y�a*�x�a�x��h1�y�

+ �a*�x�a�x�a*�y� − a*�y�a*�x�a�x��h2�y��d4x d4y

=� � f�x��− �a*�x�,a�y��a�x�h1�y�+ �a*�x����x − y� − a*�y�a�x��

− a*�y�a*�x�a�x��h2�y��d4x d4y

=� � f�x��− ��x − y�h1�y�a�x� + ��x − y�a*�x�h2�y��d4x d4y

= − a� f̄ · h1� + a*�f · h2� = ��− f̄ · h1 � f̄ · h2� = ��f�− h1 � h2��

since f is real. For the global charge Q, just set f =1 in the last calculation. Thus

�ad Q�f��n���h1 � h2�� = ��fn · ��− 1�nh1 � h2�� ,

hence,

�Ad�exp iQ�f������h1 � h2�� = �exp i ad Q�f�����h1 � h2��

= 

n=0



�i ad Q�f��n

n!
���h1 � h2��

= 

n=0



in

n!
��fn��− 1�nh1 � h2�� = ��e−ifh1 � eifh2� ¬��Tf�h1 � h2�� .

Now Tf is unitary on K, and satisfies �Tf ,��=0, hence it is a Bogoliubov transformation �cf. p. 43
in Ref. 24�, and so we can define automorphisms on CAR�H� by

�̃ f���k�� ª��Tfk� .

It is clear that TfTg=Tf+g, hence that �̃ :S�R4�+R→Aut�CAR�H�� is a homomorphism. We extend
these automorphisms to maps � f on E by setting

� f � CAR�H� = �̃ f, and � f � CCR�S,B� =  ,

where  is the identity map. The only relations between CAR�H� and CCR�S ,B� in the free
construction of E, is 1CAR=1CCR, so since the definition of � f preserves this relation, it will extend
to a well-defined map on the free *-algebra N. In fact, since � f replaces CAR�H� by an isomor-
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phic one in a free construction, it will be an automorphism on N, and so will define an automor-
phism on the enveloping algebra E.

Let G denote the Abelian group generated in Aut E by �� f � f �S�R4��R� and equip it with the
discrete topology. Denote its action by � :G→Aut E, and define the algebra

A ª G�
�

E ,

then we identify the implementing unitaries U�f
�A of � f �Aut E with the heuristic objects

exp iQ�f�, f �S�R4��R �in the case that f = t�R, we denote Q�t�= tQ�. Now � is a surjective
homomorphism � :S�R4�+R→G and from the definitions above, it is clear that its kernel is
2�Z�R, hence the discrete group G is isomorphic to S�R4��T. Of course T will be our global
gauge group below.

Step 5: Next, we would like to realize in E the heuristic constraints

Q�f�n� = A�Lf�n� ∀ f � S�R4�, n � N ,

where L :S→Ker K�Ker B is a given linear map. First write the heuristic constraints in bounded
form

eiQ�f�� = eiA�Lf��, i.e., e−iA�Lf�eiQ�f�� = � .

So, given the identifications with heuristic objects above, we define our constraint unitaries to be

U ª ��−Lf · U�f
¬ Vf�f � S�R4,R�� � A .

Proposition 5.1: U is first class.
The proof is in the next section. The heuristic constraint conditions now correspond to the

application of the T-procedure to U.
Step 6: Now we will specify the superselection structure associated with the global charge Q

using the fact that Q must take integer values on the vacuum state. Recall that the global gauge
transformations �t, t�R are implemented by the unitaries U�t

�A which we identify with the
heuristic objects exp itQ �cf. Step 3�. For the superselection sectors we need to find cyclic repre-
sentations �� ,�� such that

��U�t
�� = eitn� ∀ t � R

and some n�Z �the heuristic corresponding conditions are Q�=n��. We recognize these as
constraint conditions for Dirac states of the constraint unitaries,

Vn ª �Vt
�n�

ª e−itnU�t
�t � R� .

Denote the sets of these Dirac states by

SD
�n�

ª �� � S�A����Vt
�n�� = 1 ∀ t � R� .

These folia of states will be our superselection sectors.
Lemma 5.2: With notation as above, we have

�i� SD
�n��SD

�m�=� if n�m,

�ii� SD
�0���.

Proof: �i� If there is a ��SD
�n��SD

�m� for n�m, then

��e−itnU�t
� = 1 = ��e−itmU�t

� ,

so
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��U�t
� = eitn = eitm ∀ t

which contradicts n�m.
�ii� In the proof of Lemma 5.1 we constructed a state �3�S�A� satisfying �3�Ug�=1 for all

g�G. If we take g=�t, then this implies that �3�SD
�0�. �

To connect with the usual machinery for superselection used above, we need to exhibit the
canonical endomorphisms �automorphisms in the Abelian case�. We construct an action � :Z
→Aut A such that its dual action on A* satisfies �k

*�SD
�n��=SD

�n+k�.
Definition 5.3: For each k�Z define a �-automorphism �k of A by

�k�A� = A ∀ A � E, �k�U�t
� = eitkU�t

∀ t � R ,

�k�U�f
� = U�f

∀ f � S�R4� .

Lemma 5.4: �k is well-defined, and �k�Aut A.
The proof is in the next section. Recall that for any ��Aut A we define its dual �* :A*

→A* by �*�f�ª f �� for all functionals f �A*.
Proposition 5.5: With notation as above, we have �k

*�SD
�n��=SD

�n+k� and SD
�n��� for all n

�Z.
Proof: Let ���k

*�SD
�n��, i.e., �=�n ��k for some �n�SD

�n�. Thus

��e−it�n+k�U�t
� = �n�e−it�n+k��k�U�t

�� = �n�e−itnU�t
� = 1,

i.e., ��SD
�n+k�. Conversely, for any ��SD

�n+k� there is a �n�SD
�n� for which �=�n ��k and it is

obviously �n=� ��−k. Thus �k
*�SD

�n��=SD
�n+k�. Since we have that SD

�0���, it is now immediate
that SD

�n�=�k
*�SD

�0����. �

Recall from our earlier discussions that the canonical automorphisms �Abelian case� must
necessarily be outer on A.

Proposition 5.6: With notation as above, �k�Out A if k�0.
The proof of this is long, and is in the next section.
From the action � :Z→Out A we construct a Hilbert extension �cf. Sec. II F�. First set

�ª �Ad U � �k�U � A unitary,k � Z�

so Z�� / Inn A. So the class of k�Z in � / Inn A is �kª �Ad U ��k �U�Au�. Take the monomor-
phic section �k→k, then it has a trivial cocycle ��n ,m�=1 for all n, m�Z. Define FªZ�

�

A, then

it has the dense �-algebra

F0 ª �

n�F

AnUn�An � A,F � Z finite� ,

where U�F is the unitary which implements �1, i.e., �1=Ad U�A. Fix t�T= Ẑ and define an
action � :T→Aut F by

�t�

n�F

AnUn�ª 

n�F

AntnUn on F0.

Then the fixed point algebra of � is A. We verify the compatibility condition in Corollary 4.3.
Proposition 5.7: �k�D��D for all k�Z.
Proof: The constraint unitaries from which we define D are Vfª�−Lf ·U�f

, f �S�R4�. By
Definition 5.3 we have �k�E= , hence �k��−Lf�=�−Lf. Also �k�U�f

�=U�f
for all f �S�R4�, hence

�k�Vf�=Vf for all f �S�R4�. Thus �k preserves the Dirac states SD and hence �k�D�=D for all
k�Z. �

It remains to show that this Hilbert system is regular and minimal. However, at this stage we
do not have a proof because little is known about the ideal I0 factored out in Step 3.
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VI. PROOFS

Proof of Theorem 4.1: �i� We have that �gªg�OF. The pointwise norm-continuity of �G
follows from the pointwise norm-convergence topology of G. So �OF ,G ,�� is a C*-dynamical
system. Since A is the fixed point algebra of G, the fixed point algebra of �G is OF�A. By
Theorem 3.7 we have that OF�A=O.

If A�Z�A�, then �A ,C�=0, hence A�O by Theorem 3.3 �iii�, and from this it follows that
Z�A��Z�O�.

�ii� Now let H����F. If there is a unit vector ��H��OF, then by invariance of H��OF
under G, we also have H��OF� span �G��=H�, where the last equality follows from irreduc-
ibility of the action of G on H�. Thus H��OF� �0� implies that H��OF, hence H����OF.

To prove that ��OF=clo-span�OH�� we follow the proof of Lemma 10.1.3 in Ref. 3. First,
since O=�OF, it follows that OH����OF by Remark 2.5 �v�.

By Evans and Sund,11 ��OF is the closed span of all the G-invariant subspaces E�OF such

that �G acts on E as an element of ��G /K̂. So for the reverse inclusion, ��OF�
clo-span�OH��, it suffices to show that span �OH�� contains all G-invariant subspaces E�OF
such that G acts on E as an element of �. Let ��1 ,… ,�d�, d=dim � be a basis of such an E under
which the matrix representation of the action of G is an element of �, i.e.,

g�i = 

j

� ji�g�� j ,

where the matrix �� ji�g�� is a unitary matrix representation of G of the type �. Choose an ortho-
normal basis ��1 ,… ,�d� of H� which also transforms under G according to �� ji�g��. Consider
now the element Aª
 j� j� j

*�OF. Then

g�A� = 

j

g�� j� j
*� = 


i,k
�


j

�ij�g��kj�g���i�k
* = 


i,k
�ik�i�k

* = 

j

� j� j
* = A .

Thus A�O, and hence all �i=A�i�OH�, i.e., E�span �OH��.
�iii� Let H� have an orthonormal basis ��1 ,… ,�d� hence ���F�=
 j=1

d � jF� j
* for F�F,

���A=�. Since �� j��OF=M�DF� it is clear that �� preserves both DF and OF. Since �� also
preserves A, it preserves D=DF�A and O=OF�A, where these equalities come from Theorem
3.7.

Proof of Theorem 4.2: �i� Let H�OF have an orthonormal basis �� j�. By the same proof as
for Theorem 4.1 �iii� we have that �H�D��D.

Since OF is a *-algebra and the relative multiplier algebra of DF�D, we have that

�� j
*,D� � DF for all D � D, j .

Thus

� j�� j
*,D� � � jDF = �H�DF�� j � clo-span��H�DF�F� ,

i.e.,

D − �H�D� = 

j

�� j� j
*D − � jD� j

*� � clo-span��H�DF�F� .

So

D � clo-span��H�DF�F� for all D � D .

Thus we have shown that D�clo-span��H�DF�F�, and now we would like to show that
clo-span��H�DF�F�=clo-span��H�D�F�. We have that
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clo-span�CF� = clo-span�DF� = clo-span�DFF� ,

so if we apply �H to both sides of the last equation, multiply by F on the right and take closed
span, we get

clo-span��H�D��H�F�F� = clo-span��H�DF��H�F�F� ,

i.e.,

clo-span��H�DF�F� = clo-span��H�D�F� .

Thus

D � clo-span��H�D�F� and since D is a * -algebra in A ,

D � clo-span��H�D�F� � clo-span�F�H�D�� � A � clo-span�DF� � clo-span�FD� � A = D ,

where we used DF�A=D. Thus,

D = clo-span��H�D�F� � clo-span�F�H�D�� � A = clo-span��H�D�A� � clo-span�A�H�D��

which also follows from Theorem 3.7, treating �H�D��D as a second constraint set. Thus D
��H�D� in A.

For the converse, let D��H�D� and take ��H. From the equation �D=�H�D�� for all
D�D, we conclude that

� · clo-span�DF� � clo-span��H�D�F� = clo-span�DF�

using D��H�D�. Since we have trivially that � · clo-span�FD��clo-span�FD�, it follows that

�DF = ��clo-span�FD� � clo-span�DF�� � DF

so � is in the left multiplier of DF. We also have that

clo-span�FD�� = clo-span�F�H�D��� = clo-span�F�D� � clo-span�FD� .

Since trivially clo-span�DF���clo-span�DF�, it follows that

DF� = �clo-span�FD� � clo-span�DF��� � DF

and hence � is in the relative multiplier algebra of DF, i.e., ��OF by Theorem 3.3 �ii�.
�ii� Let H��OF�H�, hence by �i� D���D����D�.
First let X� �� ,��A�O, i.e., X�O and X��A�=��A�X for all A�A. By letting A range over

only O�A, we immediately get that X� ���O ,��O�O, making use of Theorem 4.1 �iii�. There-
fore, it suffices to prove that �� ,��A�O.

Let X� �� ,��A, i.e., X�A and X��A�=��A�X for all A�A. Thus

X · clo-span�DA� = X · clo-span���D�A� = clo-span�X��D�A� � clo-span���D�XA�

� clo-span���D�A� = clo-span�DA� .

Since we have trivially that X · clo-span�AD��clo-span�AD�, it follows that

XD � clo-span�AD� � clo-span�DA� = D ,

i.e., X is in the left multiplier of D. Likewise,
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clo-span�AD� · X = clo-span�A��D�� · X = clo-span�A��D�X�

� clo-span�AX��D�� � clo-span�A��D�� = clo-span�AD� .

Since trivially clo-span�DA� ·X�clo-span�DA�, we have

D · X � clo-span�AD� � clo-span�DA� = D ,

and hence X is in the relative multiplier of D, i.e., X�O.
Proof of Proposition 4.5: �i� According to the decomposition

��·� = 

j

Vj��j
�·�Vj

*, Vj � ���j
,��A,

we have H�=
 jVjK j� where ��j
=�Kj�

and the K j� are irreducible with respect to G carrying the

representation � j � Ĝ. Moreover supp K j�=1.
Set EjªVjVj

*. Then 
 jEj =1. Since VjK j��H��OF it follows that

Ej = supp VjK j� � O

for all j. Therefore, by assumption, there are isometries Wj �O with Ej =WjWj
*. Now we set

K j ª Wj
*VjK j� � OF.

Then K j is an algebraic Hilbert space with supp K j =1, carrying the representation � j and we have
VjK j�=WjK j. Hence H�=
 jWjK j and

��·� = 

j

Wj�Kj
�·�Wj

*, Wj � ��Kj
,��O

follows.
�ii� This follows from �i� using the existence of subobjects.
Proof of Theorem 4.8: Let H�F be an arbitrary algebraic Hilbert space. Then 	�H��L is

also an algebraic Hilbert space, with support 1. To see this, let �� j� j be an orthonormal basis of H,
i.e., � j

*�k=� j,k1 and 
 j� j� j
*=1 then the same relations are true for the system �	�� j�� j. In

particular 	 is injective on H. Moreover, if H is G-invariant and g�� j�=
kuk,j�g��k then
g	�	�� j��=
kuk,j�g�	��k�, i.e., 	�H� carries the same representation as H. In particular, if H�

carries �, i.e., H����F then 	�H�����
	L. This proves �ii� and �i�.

Let N� be an orthonormal basis for 	�H��, then by the first part it is the image under 	 of an
orthonormal basis ���,j� j of H�. Let F=
A�,j��,j �Ffin such that 	�F�=0=
	�A�,j�	���,j�. By
applying G	 to this equality, and using the relation g	�	���,j��=
kuk,j�g�	���,k� we get

�,j,kuk,j

� �g�	�A�,j�	���,k�=0 for all g�G. Now the orthogonality relations for the matrix elements

of the irreducible representations of G imply 	�A�,j�	���,k�=0 for all �� Ĝ , j ,k. Hence 	�A�,j�
=0 follows. This proves �iii�. From 	 ���=��

	 �	 �iv� follows.
For �v� observe that the homomorphic images of isometries Vi�A with V1V1

*+V2V2
*=1 pro-

duces a pair of isometries in 	�A� satisfying the same relation. So Property B for A implies
Property B for 	�A�.

Proof of Corollary 4.9: �i� Let � be generated by H, i.e., let �=�H such that ��A�
=
 j� jA� j

* where �� j� j is an orthonormal basis of H. Then 	���A��=
 j	�� j�	�A�	�� j�* and
	�A�=0 implies 	���A��=0. Furthermore, �	�	�A��=�	�H��	�A��.

�ii� ��·�=
 jWj� j�·�Wj
* implies �	�·�=
 j	�Wj�� j

	�·�	�Wj�* and �� ���	=�	 ��	. Further, if ��·�
=V*��·�V where V� �� ,��, i.e., V��·�=��·�V then 	�V��	�·�=�	�·�	�V� and �	�·�
=	�V�*�	�·�	�V�.

In particular, if ��� then �	��	.
Proof of Theorem 4.10: �i� Let ��Ob T	. Then there is a G-invariant algebraic Hilbert space

H�L such that ��X�=
 j� jX� j
*, X�	�A�, where �� j� j denotes an orthonormal basis of H. On
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the other hand, there is a corresponding G-invariant Hilbert space K�F such that H and K carry
unitarily equivalent representations of G. In K we choose an orthonormal basis �� j� j such that the
representation matrix of G in H with respect to �� j� j coincides with that in K with respect to �� j� j.
Then 	�K� transforms under G with respect to �	�� j�� j with the same representation matrix. Now
we set

V ª 

j

� j	�� j�* � L .

Obviously, V is unitary and g	�V�=V for all g�G, i.e., V�	�A�. Then V	�� j�=� j or H
=V	�K� and �=Ad V ��K

	 .
�ii� According to Corollary 4.9 and �Ob T�	�Ob T	 the image C	 of an equivalence class

C�Ob T is contained in a unique equivalence class of Ob T	. But �i� says that every equivalence
class E of Ob T	 is an image E=C	.

Proof of Lemma 4.11: Let A� �� ,��A, then it follows immediately from A��B�=��B�A, B
�A that 	�A��	�	�B��=�	�	�B��	�A� for all B�A. Recall that 	�A� is the fixed point algebra of
G	.

Proof of Proposition 4.12: �i� This is obvious because the union ��N� of orthonormal bases
N� of H� is an A-left module basis of Ffin.

�ii� By a straightforward calculation one obtains for all F�F that

�	�F�,	�F�		�A� = 	��F,F	A�

and

�	�F��	�A� = 	��F,F	A�1/2 � �F,F	A1/2 = �F�A,

i.e., 	 is continuous with respect to the norm � · �A. Now let F�clo� · �A
�Ker 	�Ffin�, hence there is

a sequence �Fn��Ker 	�Ffin such that �Fn−F�A→0. Then 	�F�=0 follows. Conversely, let F
�Ker 	. Recall 	 ���=��

	 �	 which implies ��F�Ker 	. Now, according to Remark 2.5 �iv� we
have F=
���F with respect to the � · �A-norm convergence. This implies

F � clo� · �A
�Ker 	 � Ffin� .

Proof of Theorem 4.14: �i� Since �F ,G� is minimal and regular, there exists an assignment
�→H� such that an admissible �DR-� subcategory TC can be defined by

��,��A,C ª �H�,H�� ,

cf. Theorem 2.25. Now we use the morphism 	 to define a corresponding subcategory TC
	 for 	�T�.

Recall Ob 	�T�= �Ob T�	�Ob T	. We set

Ob TC
	
ª Ob 	�T� .

Let � ,��Ob T. Then �	, �	�Ob 	�T� and the arrows are defined by

��	,�	�	�A�,C ª 	���,��A,C� = �	�H��,	�H��� .

Then

�	,	�	�A�,C = 	��,�A,C� = 	�C I� = C	�I� .

It is straightforward to show that TC
	 has direct sums and subobjects �in the latter case note that if

F is a nontrivial projection from ��	 ,�	�	�A�,C then there is a nontrivial projection E� �� ,��A,C

such that F=	�E� because the �G -invariant� matrix �pj,k� j,k of F with respect to �	���,j�� j, where
the ��,j form an orthonormal basis of H�, can be used to define a corresponding E in �� ,��A,C�.
Furthermore, the permutation and conjugation structures of TC survive the morphism 	. Thus TC

	 is
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a DR-category. We use the notation TC
	 =	�TC�. �This result means, the Hilbert system �	�F� ,G� is

regular.�
�ii� First let 	�A���	�F�=	�Z�A��. Then, according to Theorem 2.25, property P.2 can be

fulfilled by an appropriate subcategory of the form described before. Second, let property P.2 be
satisfied. Then 	�TC� is an admissible �DR-� subcategory of 	�T�. Therefore, according to Theorem

2.27 there is a corresponding minimal and regular Hilbert extension F̃ of 	�A�. The uniqueness

part of Theorem 2.27 gives that F̃ and 	�F� are A-module isomorphic, hence 	�A���	�F�
=Z�	�A�� is also true.

�iii� The inclusion � is obvious �see Lemma 4.11�. The assertion is

��	,�	�	�A� � 	���,��A� . �9�

First we prove this inclusion for the admissible subcategory, i.e., we assert

��	,�	�	�A�,C � 	���,��A� .

This is obvious by

��	,�	�	�A�,C = 	���,��C� � 	���,��A� .

Second, recall that 	��� ,��A� is a right module with respect to �	�	�Z�A��� and a left module with
respect to �	�	�Z�A���. On the other hand, ��	 ,�	�	�A� is a right module with respect to
�	�Z�	�A��� and a left module with respect to �	�Z�	�A���. Further, according to P.2. ��	 ,�	�	�A�,C
is a generating subset for this module. Since, by assumption, Z�	�A�� and 	�Z�A�� coincide, the
inclusion �9� follows.

�iv� This follows directly from 	�A���	�F�=Z�	�A�� and the fact that the unitary equiva-
lence classes of T	 and 	�T� coincide.

Proof of Theorem 4.15: Since TC is an admissible �DR-� subcategory of T we can apply
Theorem 2.27, i.e., there is a corresponding minimal and regular Hilbert extension �F ,G� of A.
Therefore the arrows of the category TC are given by

��,��A,C = �H�,H�� , �10�

where the Hilbert spaces H�, H� generate the endomorphisms �, �, respectively.
Now it is not hard to show that the morphism 	 can be extended to a morphism of F by setting

	���,j� ª��,j , �11�

where � runs through a complete system of irreducible and mutually disjoint endomorphisms and
���,j� denotes an orthonormal basis of the Hilbert space H� which generates � �recall and use
Proposition 4.12�. This morphism satisfies the assumptions of Theorem 4.8. The corresponding
Hilbert system is denoted by �F	 ,G� �recall that G	�G�. Equations �10� and �11� imply

�	�	�A�� = 

j

��,j	�A���,j
* and 	���,��A,C� = ��,��A,C.

By assumption �iii� we have 	��� ,��A�= ��	 ,�	�	�A�. Since �� ,��A,C� �� ,��A we have
	��� ,��A,C�� ��	 ,�	�	�A�. Therefore the subcategory TC

	 of 	�T� defined by

��	,�	�	�A�,C ª 	���,��A,C = ��,��A,C

is a DR-category.
Now we prove property P.2 for TC

	 . We must show

�	�Z�	�A�����	,�	�	�A�,C�
	�Z�	�A��� = ��	,�	�	�A�.

The left-hand side equals
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�		�Z�A����	,�	�	�A�,C�
	�	�Z�A��� = 	���Z�A�����	,�	�	�A�,C	���Z�A���

= 	���Z�A���	���,��A,C�	���Z�A���

= 	���Z�A����,��A,C��Z�A��� = 	���,��A�

and this coincides, by assumption, with the right-hand side.

Now we can apply Theorem 2.27 to obtain a further Hilbert extension �F̃	 ,G	� where again
G	�G. Using the uniqueness part of Theorem 2.27 we obtain that both Hilbert extensions are
	�A�-module isomorphic.

Proof of Proposition 5.1: It suffices to show that there is one Dirac state, i.e., a state �
�S�A� with ��U�=1. Recall the homomorphism � :E→CAR�H� � CCR�S ,B�. Let �0

�S�CAR�H�� be that quasifree state which is zero on any normal-ordered monomial of a�f� and
a*�h� of degree greater or equal to 1. Then �0 is invariant with respect to �̃ f for all f
�S�R4��R. Moreover, since L�S��Ker B, there is a state �1�S�CCR�S ,B�� such that
�1��Lf�=1 for all f �S. Then �2ª�0 ��1�S�CAR�H� � CCR�S ,B�� is a �̃ f � -invariant state
on CAR�H� � CCR�S ,B� such that �2�I � �Lf�=1 for all f �S. From this we define a state on E by
�̃2ª�2 �� and since � ���f

= �̃ f � , it follows that �̃2 is �G-invariant on E. Thus �̃2 extends to a
state �3 on A=G��E by �3�Ug�=1 for all g�G, where Ug denotes the unitary implementer for
�g. So �3�S�A� is a Dirac state with respect to the unitaries UG��LS. Since the maximal set of
constraint unitaries for a Dirac state is a group, it follows that for the products Vf =�−Lf ·U�f

we
have �3�Vf�=1 for all f , i.e., �3 is a Dirac state with respect to U, hence U is first class.

Proof of Lemma 5.4: Note that �k on the unitary implementers �k :UG→A is a faithful group
homomorphism. This is because it is the pointwise product of the identity map  with the character
�k :UG→C given by �k�U�f+t

�ªeitk, t�R, f �S�R4�. Furthermore, A=C*��k�UG��E�. Thus the
pair ��k�UG� ,E� is also a covariant system for the action � :G→Aut E �cf. Step 3�, hence by the
universal property of cross products �cf. Ref. 25� there is a *-homomorphism � :A→A such that
��A�=A for A�A, and ��Ug�=�k�Ug�� implementing unitary of the second system. Then �
coincides with the definition of �k on the generating elements, so it follows that �k extends
uniquely to a homomorphism. Since it is clear that �k is bijective �its inverse is �−k� it follows that
�k is an automorphism of A.

Proof of Proposition 5.6: Proof by contradiction. Let k�0 and assume �k� Inn A, i.e., �k

=Ad V for some unitary V�A. Recall the homomorphism

�:E → CAR�H� � CCR�S,B�

encountered in Step 3. Since �S ,B� is degenerate, ��E� is not simple which will be inconvenient in
the proof below. Choose therefore a maximal ideal I of CCR�S ,B� �necessarily associated with a
character of the center Z�CCR�S ,B���, and let

 :CAR�H� � CCR�S,B� → CAR�H� � CCR�S,B�/I

be the factorization by the ideal 1 � I. Then the composition

	ª  � �:E → CAR�H� � CCR�S,B�/I

is a homomorphism of which the image is a simple algebra.
Now the action � :G→Aut E �Step 4� only affects CAR�H� in E, so preserves the ideal

generated by the commutators �CAR�H� ,CCR�S ,B�� in E as well as the ideal 1 � I. Thus each �g

can be taken through the homomorphism 	 to define an action �	 :G→Aut�CAR�H�

� CCR�S ,B� /I� and it is just ��f

	 = �̃ f � . Thus we can extend 	 from E to A=G
�

�
E to get a

surjective homomorphism
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	:A → G�
�	

�CAR�H� � CCR�S,B�/I� .

Now �k�Aut A only affects UG, leaving E invariant, hence it preserves Ker 	�A. Thus �k can be
factored through 	 to obtain the automorphisms �k

	�Aut 	�A� by

�k
	�	�A�� ª 	��k�A�� ∀ A � A, and so �k

	 = Ad 	�V� . �12�

Recall now that each element of the discrete crossed product	�A�=G�
�	
	�E� �with 	�E�

=CAR�H� � CCR�S ,R� /I� can be written as a C*-norm convergent series 
n=1

 BnUgn

where Bn

�	�E� and gn�G �with gn distinct for different n� and that the unitaries UG form a left
	�E�-module basis. In particular, for the implementing unitaries 	�V� of �k

	 we have a series
	�V�=
n=1


 BnUgn
, Bn�	�E� \0. Since �k�E= , it follows from Eq. �12� that 	�V�A=A	�V� for all

A�	�E�, i.e.,

A	�V� = 

n=1




ABnUgn
= 	�V�A = 


n=1




BnUgn
A = 


n=1




Bn�gn

	 �A�Ugn

for all A�	�E�. So by the basis property of UG we have

ABn = Bn�gn

	 �A� ∀ A � 	�E� = CAR�H� � CCR�S,B�/I . �13�

Since �gn

	 �CCR�S ,B� /I= , this implies that Bn� �CCR�S ,B� /I��. From the fact that
CCR�S ,B� /I is simple �hence has trivial center� this means that Bn�CAR�H� � 1, and hence Eq.
�13� claims that Bn is a nonzero intertwiner between  and �gn

	 in CAR�H�. We next prove that Bn

is invertible, in which case �gn

	 becomes inner on CAR�H�.
Let � :CAR�H�→B�L� be any faithful irreducible representation of CAR�H� on a Hilbert

space L, e.g., the Fock representation, and let ��Ker ��Bn�. Then by �13�,

��BnA�� = ���gn
−1�A����Bn�� = 0 ∀ A � CAR�H� .

Thus ��CAR�H����Ker ��Bn�. However, in an irreducible representation every nonzero vector
is cyclic, so either �=0 or ��Bn�=0, and the latter case is excluded by Bn�0, � faithful. Thus
�=0, i.e., we have shown that Ker ��Bn�= �0�. Moreover by Eq. �13� we have

��A���Bn�! = ��Bn����gn
�A��! ∀ ! � L \ 0, A � CAR�H� ,

hence ��CAR�H�����Bn�!��Ran ��Bn� for all !�L \0. Now ��Bn�!�0 �by Ker ��Bn�= �0��
and so by Dixmier 2.8.4 �Ref. 26� we have that ��CAR�H�����Bn�!�=L �no closure is neces-
sary�. Thus Ran ��Bn�=L, i.e., ��Bn� is invertible, and so since � is faithful �hence preserves the
spectrum of an element� it follows that Bn is also invertible in CAR�H�.

Using the fact that Bn is invertible, Eq. �13� becomes �gn
�A�=Bn

−1ABn for all A�CAR�H�.
Since �gn

is a *-homomorphism, this implies that Bn
−1A*Bn=Bn

*A*�Bn
−1�*, i.e., BnBn

*A*=A*BnBn
* for

all A�CAR�H�, and since CAR�H� has trivial center, this means BnBn
*�C 1. Set BnBn

*
¬ tn

�necessarily tn"0� then UnªBn /�tn satisfies UnUn
*=1. By substituting A by �gn

−1�A� in �13� we
also obtain Bn

*Bn�C 1 by the above argument, then using tn= BnBn
*= Bn2= Bn

*Bn=Bn
*Bn we get

also Un
*Un=1. Thus

�gn
�A� = Bn

−1ABn = � Bn

�tn
�−1

A� Bn

�tn
� = Un

*AUn

for A�CAR�H�, i.e., �gn
is inner on CAR�H�. Recall however, that on CAR�H� , �gn

is just an
automorphism �̃ fn

for some fn�S�R4�+R, coming from a Bogoliubov transformation,
�̃ fn

���k��ª��Tfn
k� �cf. Step 4�. So for �gn

to be inner on CAR�H�, this means that either of
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I±Tfn
must be trace-class �cf. Theorem 4.1, p. 48 of Ref. 24 or Theorem 4.1.4 in Ref. 27�.

However,

Tfn
�h1 � h2� ª e−ifnh1 � eifnh2 ∀ hi � H = L2�R4� .

Now for any fn such that Tfn
� I, it is clear that the multiplication operators on L2�R4� by �I±e±ifn�

cannot be trace-class. This contradicts our finding that �gn
is inner if gn�e, hence only gn=e is

possible in the series 	�V�=
n=1

 BnUgn

, i.e., 	�V�=B ·Ue, B�	�E� \0. But in this case, Eq. �13�
becomes AB=BA for all A�	�E� and so since 	�E� is simple, B�C I. This however implies that
=Ad 	�V�=�k

	 which cannot be because �k�U�t
�=eiktU�t

factors unchanged through 	. From this
contradiction, it follows that our initial assumption �k� Inn A is false.

VII. CONCLUSIONS

In this paper, we studied the question of under what conditions, and how much of the super-
selection structures will survive the constraining procedure. We did this in the context of DR
theory �extended to the case of nontrivial center of the observable algebra�, and the method of the
T-procedure for enforcing constraints.

Since the T-procedure involves a restriction and a factoring, this meant that we had to analyze
for Hilbert systems their behavior first, with respect to restriction, and then with respect to general
morphisms �this seems to be of independent interest�. Finally, in Sec. IV E we combined these to
obtain conditions for a Hilbert system to pass through a constraining. We also obtained conditions
for the preservation of the regularity property, and partial conditions for the preservation of the
minimality property as well as Property B.

In Sec. V we developed an example based on the Maxwell constraint of interacting QED. In
this setting the superselection structure came explicitly from the usual global electromagnetic
charge, and we could verify the basic compatibility conditions on the endomorphisms, but not the
additional conditions of regularity, minimality and Property B.

Our results suggest the following further directions: to solve the compatibility problem of
minimality and Property B with respect to constraining; to obtain a physically convincing example
with a non-Abelian global gauge group where supersymmetry passes through the constraining.

There is also another possible line of analysis; since the initial constraint system contains
nonphysical information, the supersymmetry structures need not be precisely defined as in the DR
theory, indeed one can ask for a “weak” supersymmetry structure, with the only requirement on it,
that after constraining it produces the usual DR structures on the physical algebra. �This line of
thought is parallel to the development of “weak” Haag-Kastler axioms in Ref. 5.� This will enlarge
the set of examples of systems with both supersymmetry and constraints.
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The paper presents a model-independent, nonperturbative proof of operator product
expansions in quantum field theory. As an input, a recently proposed phase space
condition is used that allows a precise description of point field structures. Based on
the product expansions, we also define and analyze normal products �in the sense of
Zimmermann�. © 2005 American Institute of Physics. �DOI: 10.1063/1.2007567�

I. INTRODUCTION

Quantum fields, representing observables sharply localized in space–time, generally are quite
singular objects.1 In particular, their products at coinciding space–time points are ill-defined and
lead to divergences. Since such products play a vital role in the definition and classification of
models �by means of path integrals or field equations�, a thorough understanding and precise
description of their singularities is of considerable interest.

A step toward this goal was taken by Wilson,2 who proposed that a product of two fields ��x�
and ���y� should be expandable into a series,

��x� · ���y� = �
j

cj�x − y�� j� x + y

2
� , �1.1�

where � j�·� are local fields as well, and cj�·� are �generalized� functions which show singularities
at the origin. This operator product expansion should then be valid at short distances, i.e., in the
limit x→y.

The operator product expansion provides a detailed description of the product’s singular
behavior. It may furthermore serve to define “normal products” of fields, in generalization of the
Wick product. Any field � j in Eq. �1.1� whose coefficient cj�·� does not vanish in the limit may be
taken as a candidate for such a normal product.3

However, it remains to clear up in which sense and under which conditions Eq. �1.1� holds
precisely. The expansion has originally been proposed in perturbation theory2,3 and has widely
been used as a tool in Lagrangian field theory.4 Investigations in the framework of axiomatic field
theory5 aimed at a rigorous proof; it seems that the Wightman axioms are too weak to ensure
existence of the expansion structure, and that additional conditions are needed. Unfortunately,
these conditions could not be connected directly to physical properties of the theory. More detailed
results are available in conformal field theory,6 especially in 1+1-dimensional models.7 Here the
expansion is a consequence of conformal symmetry. These methods cannot be carried over to
physically more realistic situations, though.

This paper presents an approach that explains operator product expansions in a model-
independent way, based on physically motivated assumptions. We make use of the theory’s phase
space behavior, which has recently been shown to have a strong impact on the field content.8,9 A
phase space condition proposed in Ref. 9 can be taken as a physically natural assumption to ensure
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a regular short distance behavior. On these grounds, we will establish operator product expansions
rigorously in the sense of an asymptotic series. Furthermore, we will define normal products of
fields and investigate their properties.

In Sec. II, we recall the relevant facts and results on the point field structure established in
Ref. 9, which lie at the root of our investigation. Section III defines products of pointlike fields and
gives a proof of their product expansion. Normal products and their properties are discussed in
Sec. IV. We end with a brief outlook on the classification of models in Sec. V.

The present work is based on the author’s thesis;10 it presents an abbreviated and partially
improved version of material developed there. The reader is referred to the original text for a more
detailed exposition, especially regarding mathematical aspects and the development of proofs.

II. POINTLIKE FIELDS AND PHASE SPACE PROPERTIES

It has been outlined in Refs. 8 and 11 that a strong connection exists between the phase space
properties of a quantum field theory and its point field structure. A natural phase space condition,
similar but not identical to the usual compactness or nuclearity conditions,12 was proposed in Ref.
9 and shown to allow a precise description of the theory’s field content. We will give a brief
review of the results established in Ref. 9, mainly to fix our notation.

We start from a quantum field theory in the framework of local quantum physics13 in the
vacuum sector, i.e., given by a net of observable algebras O�A�O�, where O�MªRs+1 are
open bounded regions in Minkowski space of s+1 space–time dimensions, and A�O� are
W*-algebras acting on some common Hilbert space H. We assume the standard axioms: isotony,
locality, covariance with respect to some strongly continuous unitary representation U�x ,�� of the
connected Poincaré group P+

↑, and the spectrum condition �positivity of energy�. We will denote
the elements of the translation subgroup of P+

↑ as U�x�=exp�iP�x��, where HªP0 is the Hamil-
tonian; its spectral projections will be written as PH�E�. � stands for the predual space of B�H�,
i.e. the space of weak-�-continuous linear functionals on B�H�, the positive normed elements of
which represent the physical states of the system.

As we restrict our attention to point fields fulfilling polynomial H-bounds �cf. Ref. 1�, we
consider the space

C����ª �
��0

R��R�, where R = �1 + H�−1, �2.1�

equipped with the topology of simultaneous convergence in the norms ������
ª�R−��R−��, ��0.

We also make use of its dual space C����*, equipped with the weak topology; its elements are
linear forms � which fulfill

������
ª�R��R�� � � for some � � 0. �2.2�

For linear maps 	 :C����*→C����*, we sometimes consider

�	���,���
ª�R��	�R−� · R−��R��� �� ,�� � 0� �2.3�

in case this expression is finite.
Let 
 be the space of linear continuous maps from C���� to �, where � is equipped with the

norm topology. For our setup, the inclusion map ��
 plays a central role,

�: C���� → �, � � � . �2.4�

In order to analyze this map in the short distance limit, we refer to the algebras A�r�ªA�Or�,
where Or is the standard double cone of radius r�0 centered at the origin, then define for ��
,

���r
���
ª�� � A�r����� = sup

���
sup

A�A�r�

	��R��R���A�	
��� �A�

, �2.5�

which is finite for sufficiently large ��0, and for �0 consider the pseudometrics,
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�2.6�

We say that the net A fulfills the microscopic phase space condition if for every �0, there exists
a map ��
 of finite rank such that

��� − �� = 0. �2.7�

It is not overly difficult to see that this condition holds for a wide range of free theories �see the
Appendix of Ref. 9�, and it seems plausible that the same condition is fulfilled in any model with
a sufficiently regular short distance behavior. Its consequences are the following: There exists an
increasing sequence of finite-dimensional vector spaces ��C����*, �0, the elements of which
are Wightman fields located at x=0. Their union ��= :�FH exhausts the field content of the
theory as investigated by Fredenhagen and Hertel.1 Given ���FH, we can find a sequence
Ar�A�r� �r�0� such that

�� − Ar���� = O�r�, �Ar� = O�r−k� �2.8�

as r→0, where k,��0 can be chosen uniformly for all ���, with  being fixed. If
p :C����*→C����* is any continuous projection onto �, and p� its predual, then we find

��� − � � p�� = 0. �2.9�

�Note that a continuous projection can be found for any given finite-dimensional subspace
V�C����*. We will require all such projections considered in the following to be continuous and
refrain from noting this fact repeatedly.�

Every � is invariant under a certain class of symmetry transformations, including Lorentz
transformations, dilations and inner symmetries, provided that they exist as symmetries of the
underlying net A. Linear differential operators act as maps �FH→�FH as well, but typically map
� into some larger space ��.

III. PRODUCT EXPANSIONS

Our task will now be to establish operator product expansions, assuming that the theory under
discussion fulfills the microscopic phase space condition. We will prove the expansion in the form

��x� · ���y� = �
j

cj�x,y�� j�0� �x,y → 0� , �3.1�

which can easily be transformed into the more familiar form �1.1� and vice versa.
The proof is based on the following heuristic idea: Let A, A��A�r� be two bounded localized

observables, and A�x�ªU�x�AU�x�*, etc. Choosing a projector p onto �, the phase space prop-
erty �2.9� can roughly be expressed as �
� � p� at small distances. This means

A�x�A��y� 
 p�A�x�A��y�� �3.2�

if x, y, and r are small enough. Expanding p=� j� j�·�� j in a finite basis, this reads

A�x�A��y� 
 �
j

� j�A�x�A��y��� j �3.3�

in the limit x,y ,r→0. If now A
� and A�
�� in this limit, we can define
cj�x ,y�ª� j�A�x�A��y�� and arrive at the expansion �3.1�.

In order to transfer this heuristic idea into a rigorous expression for the product of pointlike
fields, we will first define the product of two fields �the left-hand side of Eq. �3.1�� for spacelike-
separated x and y, namely by means of approximating them with bounded observables; this is
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done in Sec. III A. On these grounds, we will then establish the product expansion in Sec. III B.
Some generalizations, such as products of more than two factors and products for non-spacelike-
separated arguments, will be discussed in Sec. III C.

A. Spacelike products

In the following, let �, ����FH be fixed. As a first step towards the expansion �3.1�, we will
give meaning to the a priori ill-defined product ��x� ·���y�. This is certainly possible in a dis-
tributive sense �as a product of smeared Wightman fields�; however, we shall use a more direct
approach here. For �x−y�2�0, we will define ��x� ·���y� as an element of C����*, i.e., as a
sesquilinear form.

This will be achieved by an approximation with bounded operators. We choose sequences
Ar→�, Ar�→�� as specified in Eq. �2.8�. Then it seems natural to define

��x� · ���y�ªlim
r→0

Ar�x�Ar��y�, �x − y�2 � 0. �3.4�

We will use methods from complex analysis to establish the existence of this limit and to control
the convergence dependent on x and y.

To this end, let �= ��	 · 	��� be an energy-bounded functional, i.e., ����� PH�E�H for some E
�0. We assume ���=1. Leaving x fixed for the moment, we consider the function

fr�z� = ��U�x�ArU�z�Ar�U�− x − z��, z � M . �3.5�

f is the boundary value of a function analytic on M+ iV+, where V+ denotes the open forward light
cone. This is seen from

fr�z� = ��U�x�Ar exp�iP�z��Ar�U�x�* exp�− iP�z��� , �3.6�

using the spectrum condition and the strong continuity of translations. �Note that the factor
exp�−iP�z�� does not disturb analyticity here, since � is energy bounded.� We can estimate the
modulus of fr on M+ iV+ as

	fr�z�	 � �PH�E�R−�� �R�ArR
�� �R−� exp�iP�z��R−�� �R�Ar�R

�� �R−�PH�E�� �PH�E�exp�− iP�z��� .

�3.7�

Here �R�Ar
���R�� stays bounded in the limit r→0 if � is sufficiently large. A straightforward

calculation shows that

�R−2� exp�iP�z��� � �Im z�−2� · c1, �PH�E�exp�− iP�z��� � ec2E�Im z� for �Im z� � 1,

�3.8�

where c1,c2�0 can be chosen constant if Im z varies over some open convex cone C with C̄�V+,
which we keep fixed in the following. �All ci will be positive constants in what follows.� Thus we
have

	fr�z�	 � �1 + E�2�ec2E�Im z��Im z�−2� · c3 for r � 1, Im z � C, �Im z� � 1. �3.9�

By these and similar arguments, it follows in particular that �fr�r�1 is a normal family of analytic
functions on M+ iV+, i.e., uniformly bounded on compact subsets.

In just the same way, we may represent

f̂ r�z� = ��U�x + z�Ar�U�− z�ArU�− x�� �3.10�

as a boundary value of functions analytic on M− iV+; similar bounds as in Eq. �3.9� can be
established. If we choose z real and spacelike, the operators Ar and Ar��z� will commute for small
r, hence we find
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fr�z� = f̂ r�z� for z real, z2 � 0, and small r . �3.11�

This allows us to apply the edge of the wedge theorem to fr and f̂ r: They are parts of a single
function fr analytic on M± iV+ and on some complex neighborhood of those real points where
�3.11� holds.

Let us investigate this common analytic continuation more closely. We choose some fixed
v�M, u�C with v2�0, �u�=1. For r small enough, the function

fr,v,u�t� =  fr�v + tu� if Im t � 0,

f̂ r�v + tu� if Im t � 0
�3.12�

is analytic on C \R and continuous on some real neighborhood of t=0, which is, e.g., given by

	t	 �
1
2d�v�, where d�v�ªmin�1,dist�v,�V+ � − �V+�� , �3.13�

assuming r�
1
4d�v�. Applying Painlevé’s theorem,14 we see that fr,v,u is indeed analytic on

C \�t 	 Im t=0, 	t	�
1
2d�v��. From Eq. �3.9�, we can derive the estimate

	fr,v,u�t�	 � c4�1 + E�2�ec2E	Im t		Im t	−2� if 	t	 �
1
2d�v�, r � 1. �3.14�

A Phragmén-Lindelöf-type of argument �cf. Lemma 5.7 of Ref. 10� then leads us to

	fr,v,u�t�	 � c5�1 + E�2�e�c2E�−2� for r �
1
4d�v�, 	t	 � �, and any � �

1
4d�v� , �3.15�

where c5 depends neither on v nor on u. Choosing t to be purely imaginary, this means

	fr�v + iu�	 � c5�1 + E�2�e�c2E�−2� for v2 � 0, u � C, �u� � �, � �
1
4d�v�, r �

1
4d�v� .

�3.16�

The same estimate holds at the real points �u=0�, setting t=0 in Eq. �3.15�.
As mentioned above, fr possesses an analytic continuation to a complex neighborhood of any

real spacelike z, provided that r is sufficiently small for z. This continuation is known very
explicitly �see the proof of the edge of the wedge theorem in Ref. 14 for details�; in fact, the
domain of holomorphy depends only on the geometry of C, and the estimate �3.16� can be carried
over to the continued function, showing that �fr�r�1 is a normal family throughout its domain.

We are now in the position to control the limit r→0. Since �R−2� exp�iP�z����� for
Im z�V+, the expression

f�z�ª��U�x��U�z���U�− x − z�� �3.17�

is well-defined for z�M + iV+. Using the approximation properties �2.8� of Ar and Ar�, and apply-
ing the same methods that lead to Eq. �3.14�, we can establish the estimate

	f�z� − fr�z�	 � c6�1 + E�2�ec2E	Im t		Im t	−2� · r

�3.18�
for z = v + itu, v � M, u � C, �u� = 1, 	t	 �

1
2d�v�, r � 1.

Combined with similar estimates for �Im z��1, we see in particular that fr�z�→ f�z� for z�M
+ iV+. In analogy to �3.10�, we may define f�z� on M− iV+; pointwise convergence fr→ f and
estimates of the form �3.18� hold there, too. Now, since �fr�r�1 is a normal family, we know that
fr converges to some analytic limit throughout its domain, where the convergence is uniform on
compact subsets; so f has an analytic continuation to that region, and fr→ f holds in particular at
the real points. Thus the limit
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����x� · ���y��ªlim
r→0

fr�y − x� �3.19�

is well-defined and—cf. Eq. �3.17�—independent of the choice of sequences Ar, Ar�. This defini-
tion obviously is linear in �; so ��x� ·���y� is a well-defined linear form on PH�E��PH�E� for any
E. In view of Eq. �3.16�, the following estimate holds:

�PH�E���x� · ���y�PH�E� � � c5�1 + E�2�e�c2E�−2� for �x − y�2 � 0, � �
1
4d�x − y� .

�3.20�

Applying this result with �= �c2E�−1 for �c2E�−1�
1
4d�x−y�, and with �= 1

4d�x−y� otherwise, we
obtain a c7�0 such that

�PH�E���x� · ���y�PH�E� � � c7�1 + E�4�d�x − y�−2� for any E � 0. �3.21�

Using the spectral representation of R, one can show on these grounds that ��x� ·���y��C����*,
and

���x� · ���y���4�+1� � c8d�x − y�−2�. �3.22�

The same methods can be applied to quantify the convergence Ar�x�Ar��y�→��x� ·���y�. Starting
from Eq. �3.18� and using the arguments that lead to Eqs. �3.16� and �3.21�, we arrive at the
estimate

���x� · ���y� − Ar�x�Ar��y���4�+1� � c9d�x − y�−2�r for r �
1
4d�x − y� . �3.23�

To summarize, we have established the following result:
Theorem 3.1: For �,����FH, there exist linear forms

��x� · ���y� � C����* for x,y � M, �x − y�2 � 0,

with the following properties: Given , we can choose constants �,m�0, and for any fixed �,
���� another constant c�0 such that

���x� · ���y���m� � cd�x − y�−2�.

If Ar, Ar��A�r� are sequences of operators with �����−Ar
�������=O�r�, then

���x� · ���y� − Ar�x�Ar��y���m� � O�r�d�x − y�−2�,

where the estimate O�r� is uniform in x,y, given that r�
1
4d�x−y�.

Note that the spacelike product usually diverges as x→y, say, on a straight line, but that the
singularity is bounded by an inverse power of d�x−y�.

B. Proof of the expansion

Based on the detailed results established for the spacelike product ��x� ·���y�, we are now
going to prove the operator product expansion for this case, making use of the phase space
approximation

��� − � � p�� = 0. �3.24�

We follow the heuristic motivation given at the beginning of this section. To be precise, let 
�0 be given, and let �,����. As before, we choose approximating sequences Ar, Ar��A�r�
with

����� − Ar
������� = O�r�, �Ar

���� = O�r−k� , �3.25�

where k,��0 are suitably chosen; note that we can choose them dependent on  only.
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First of all, we will approximate the bounded product Ar�x�Ar��y�. Let ��0 �its value will be
specified later�, and fix a projector p� onto ��. Since Ar�x�Ar��y��A�r+2�x�+2�y��, it follows
from Eqs. �3.24� and �3.25� that for some m�0 �dependent on �,

�p��Ar�x�Ar��y�� − Ar�x�Ar��y���m� � �r + 2�x� + 2�y���O�r−2k� . �3.26�

Since �� is finite dimensional, we can find m��m such that �p��
�m,m����; in fact, this choice

depends on � only. Now on the left-hand side of Eq. �3.26�, Ar�x�Ar��y� converges to ��x� ·���y�
in the limit r→0: In view of Theorem 3.1, one sees that

�p����x� · ���y�� − ��x� · ���y���m�� � �r + 2�x� + 2�y���O�r−2k� + d�x − y�−2�O�r� ,

�3.27�

given that r�
1
4d�x−y�.

We will now consider the limit x, y→0, where we assume that

d�x − y� � ��x� + �y�� · const, �3.28�

i.e., we demand that x−y does not approach the light cone too fast. We will refer to this approxi-
mation as the spacelike limit and denote it by →sp. Now given some ��0, we set

r�x,y�ª��x� + �y��1+�+2�, �3.29�

which fulfills r�
1
4d�x−y� for small x,y due to Eq. �3.28�. If now � was chosen sufficiently large

�dependent on ��, we see that �3.27� vanishes faster than ��x�+ �y��� in the spacelike limit. Thus,
we have achieved the following.

Theorem 3.2: Let �0, ��0 be given. We can find constants ��0 and ��0 such that for
any �, ���� and any projection p� onto ��:

��x� + �y��−����x� · ���y� − p����x� · ���y������→
sp

0.

This establishes the operator product expansion—as explained at the beginning of this section,
we may expand p� in a basis in order to pass to the more explicit form �3.1�. In mathematical
terms, product expansions are asymptotic series; while with increasing � we will usually have to
increase �, to any finite approximation order � a finite “number of approximation terms” will
suffice. Note that the approximation terms are not unique �since p� is not�; however, the ambi-
guities are restricted to terms that vanish rapidly in the limit, so at least the singular structure of an
operator product expansion can be understood as an intrinsic property of the theory. It is also
worth noting that the approximation is not only valid in the weak sense, as originally proposed in
Ref. 2, but holds uniformly for all states of sufficiently regular high energy behavior.

Furthermore, the coefficients of the product expansion are simply matrix elements of the
spacelike product ��x� ·���y�; thus, we can apply Theorem 3.1 directly, which shows that their
divergences at x=y=0 are bounded by an inverse power of d�x−y�.

C. Further directions

The results established in Secs. III A and III B can be generalized in many ways. For the sake
of brevity, we will just sketch these findings; the reader is referred to Chap. 5 of Ref. 10 for details
of the construction.

First, we may consider products of arbitrary many factors; though we restricted ourselves to
the case of two factors in the above, our methods carry over quite directly. In the following, let
n�N and �0 be given. It seems natural not only to consider n-fold products, but also their
linear combinations; by the same methods as outlined in Sec. III A, we may define spacelike
products
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��x� = �
k

ck�k
�1��x�1�� · ¯ · �k

�n��x�n�� � C����*, where ck � C, �k
�j� � �. �3.30�

This expression is multilinear in the fields �k
�j� �note that the products ��x� ·���y� were bilinear in

�,�� by definition�, so we can formally obtain the products from a map ����x� which is
well-defined on the tensor product space �

�n. In Eq. �3.30�, we must demand that the components
of x= �x�1� ,… ,x�n���Mn are �pairwise� spacelike separated. More abstractly, let

Msp
n
ª�x � Mn	�x�i� − x�j��2 � 0 ∀ 1 � i � j � n� , �3.31�

and define

d�x�ª min�1,dist�x,�Msp
n ��; �3.32�

we then demand of the spacelike limit x→sp 0 that

x � Msp
n , �x� � d�x� · const, x → 0, �3.33�

where �x� stands for the Euclidean norm of x in Mn=Rn�s+1�. Following the line of arguments
given in Sec. III A, the divergence of the spacelike products can be estimated as

���x���n·m� = O�d�x�−n·�� �x→
sp

0� , �3.34�

where m,� depend on  only. Finally, we may obtain the following analog of Theorem 3.2.
Theorem 3.3: Let �0, ��0, n�N be given. We can find constants ��0 and ��0 such

that for any ���
�n and any projection p� onto ��,

�x�−����x� − p���x�����→
sp

0.

Hence product expansions exist for products of an arbitrary �finite� number of fields.
Moreover, similar expansions can be established for arbitrary �not necessarily spacelike� dis-

tances of arguments. Here the field products are defined in the sense of distributions only, i.e., we
replace ��x� with ��f��C����*, where f �S�Mn� is a test function with compact support.
Theorem 3.3 holds in an analogous way, where �x� is substituted with

d�f�ª sup��x� 	 x � supp f�; �3.35�

instead of the spacelike limit, we consider the limit d�f�→0, and we must require that for every
multi-index �, a constant c� exists such that

���f�L1
� d�f�−	�	c� as d�f� → 0. �3.36�

So the product expansions can be extended to the non-space-like region, where their coefficients
are no longer functions, but rather tempered distributions.

Furthermore, one may investigate the action of symmetry transformations on the products and
their expansions, demanding that these transformations are compatible with translations and with
the product structure on B�H� �in a suitably defined way—see Chap. 5.4 of Ref. 10; these
conditions are, e.g., fulfilled for Lorentz transforms, dilations and inner symmetries�. The results
are compatible with what is expected from perturbation theory.15

IV. ZIMMERMANN’S NORMAL PRODUCTS

In the preceding section, we have defined and analyzed products of fields at different �space-
like separated� space–time points, and investigated their divergences at small distances. However,
with possible applications in mind, one would like to develop some substitute for the ill-defined
product at coinciding points in the sense of a local field �i.e., an element of �FH�. In free field
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theory, such a substitute is given by means of the Wick product, e.g., the normal ordered square
:�2 : �x� of a real scalar field. According to Wick’s theorem,16 it can be constructed from spacelike
products by subtraction of divergent terms,

:�2:�0� = lim
x,y→0

���x� · ��y� − ��	��x� · ��y�	��1� . �4.1�

In interacting theories, one would not expect such a limit to exist; nevertheless, similar “subtrac-
tion methods” combined with a suitable “renormalization factor” can be used at least in a pertur-
bative context to justify the existence of local field equations.17,18 Zimmermann3 used operator
product expansions to derive these constructions more generally: For any field �k occuring in the
expansion �1.1�, one obtains heuristically

�k�0� = lim
x,y→0

1

ck�x − y����x� · ���y� − �
j�k

cj�x − y�� j� x + y

2
�� , �4.2�

provided that the coefficient ck does not vanish in the limit. So every “composite field operator” �k

that appears in the expansion can serve as a candidate for a normal product.
Let us see how this can be formalized in our context. We fix a product ���FH

�n and try to
collect all “relevant” terms in its product expansion. To this end, we make the following definition:
We say that a finite-dimensional subspace V�C����* is spacelike approximating for � if for some
projection pV onto V and some ��0,

���x� − pV��x�����→
sp

0. �4.3�

It can easily be seen, using the triangle inequality, that then the same is true for any projection pV

onto V. In view of Theorem 3.3, � always is spacelike approximating �sp-app� for � if  is
chosen sufficiently large. Moreover, a short calculation shows that if V and W are two spaces
which are sp-app for �, then the same holds for V�W; this is easily extended to the intersection
�i�IVi of an arbitrary family �Vi�i�I of sp-app spaces, even if I is infinite. �Note that all spaces in
question are finite dimensional.� That justifies the following definition.

Definition 4.1: Let ���FH
�n. The finite-dimensional space

N���ª �
Vsp-app for �

V � �FH

is called the normal product space of �. It is the smallest space that is spacelike approximating
for �.

Let p be a projection onto N���, and choose a basis �� j� j=1
J of N���. Since N�����FH, the

basis elements � j are local Wightman fields. Expanding p in this basis, we find functions cj�x�
such that

p��x� = �
j=1

J

cj�x�� j . �4.4�

Due to the minimality of N���, none of the coefficients cj�x� vanishes in the spacelike limit. Thus
for every k� �1,… ,J�, we can find a sequence �xn� with xn→sp 0 such that

�k = lim
n→�

1

ck�xn����xn� − �
j�k

cj�xn�� j� �4.5�

with respect to some norm � · ����; we have recovered Zimmermann’s approximation formula.
N��� is a normal product not in the sense of a single field, but as a vector space containing all

possible candidates for such a normal product field. In the case of a real scalar free field ��x�, one
obtains the result �cf. Chap. 5.7 of Ref. 10�
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N�� � �� = span�1, :�2:� , �4.6�

so the normal product space gives us some generalization of the Wick product. In free field theory,
it is possible to choose a distinct element :�2 : �N�� � �� by virtue of “normal ordering” or of Eq.
�4.1�. This structure is lost in the general case, as is suggested by perturbation theory and low-
dimensional integrable models. Certainly, for specific applications, there may be additional restric-
tions on the choice of a normal product field. One can try to isolate a “most divergent term” in the
product expansion, seek for specific representations of the Lorentz group19 �see also below�, or use
field equations as selection criteria.18 Still, some ambiguities may remain;20 in our general setting,
it does not seem possible to establish a full substitute for the Wick product.

We can slightly modify the methods developed above in order to define “extended” normal
product spaces N���� for ��0, requiring that the left-hand side of Eq. �4.3� vanishes faster than
�x�� in the limit. That provides us with an increasing sequence of vector spaces
N���0�N���1�¯ containing higher and higher order composite field operators of some fixed
product �. This construction has recently found application in a characterization of nonequilibrum
thermodynamical states.21

We shall now investigate the behavior of N��� under Lorentz transformations or other sym-
metries and under differential operators. All these cases will be treated within a single concept. We
consider a transformation 	 which acts in three different ways �denoted by the same symbol for
simplicity�,

�i� a linear, continuous map 	 :C����*→C����*,
�ii� linear maps 	 :�FH

�n→�FH
�n �for every n�,

�iii� an invertible action x�	 .x on Mn �for every n�

with the following properties:

�1� 	���x��= �	���	 .x� ∀���FH
�n, n�N, x�Mn,

�2� 	 .x→sp 0⇔x→sp 0,
�3� �	���,����� for any ��0 and appropriate ���0 �dependent on ��.

We shall show that under these conditions, one has 	N���=N�	��; applications of this
“covariance property” will be discussed below. As a first step, we shall prove the following
lemma:

Lemma 4.2: Let V�C����* be a finite-dimensional subspace. There exist projections p onto
V and p� onto 	V such that

	 � p = p� � 	 .

Proof: Let Kªker 	�V. Choose a space V̂ such that V=K � V̂. Furthermore, choose projec-

tions pK onto K such that pK�V̂=0, and p� onto 	V=	V̂. �This is certainly possible, since V is finite

dimensional.� Denote the inverse of 	 : V̂→	V by 	̂−1. We define

pªpK + 	̂−1 � p� � 	 . �4.7�

A short calculation shows p2= p, img p=V, 	 � p= p� �	, so p has the properties desired. �

Now we are in the position to prove the “covariance” of N���.
Theorem 4.3: Let 	 fulfill the conditions (1) to (3) listed above. Then

N�	�� = 	N��� ∀ � � �FH
�n, n � N .

Proof: Let V�C����* be sp-app for �, and p,p� projections as in Lemma 4.2. Then for
sufficiently large �,��, we have
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��	���	 . x� − p��	���	 . x����� = �	���x� − p��x������ � �	���,������x� − p��x������→
sp

0;

�4.8�

due to property �2�, this means that 	V is sp-app for 	�. Hence N�	���	N���.
To show the opposite inclusion, split VªN��� into a direct sum

N��� = V = V0 � V1 � V2, �4.9�

where

V0 = ker 	 � V, 	V1 = N�	��, 	V2 � N�	�� = �0� .

Let pi : V→Vi �i=0,1,2� denote the projection operators with respect to that direct sum, and let
pi� : 	V→	Vi �i=1,2� be the projections with regard to the direct sum 	V=	V1 � 	V2. We then
have pi�	=	pi for i=1,2. We choose projections p,p� as in Lemma 4.2; then pi � p :C����→Vi are
projections onto Vi, and pi� � p� :C����→	Vi are projections onto 	Vi. Now, since both 	V and
	V1=N�	�� are sp-app for 	�, we see that for sufficiently large �,

��	���x� − �p1� + p2��p��	���x�����→
sp

0 and ��	���x� − p1�p��	���x�����→
sp

0, �4.10�

which means that

�p2�p��	���x�����→
sp

0. �4.11�

Using the relation p2�p�	=	p2p together with properties �1� and �2�, and noting that 	 is invertible
on 	V2, it follows that

�p2p��x�����→
sp

0 ⇒ ���x� − �p0 + p1�p��x�����→
sp

0; �4.12�

thus V0 � V1 is sp-app for �. Due to the minimality of N���, this is only possible if V2= �0�; hence
	N���=	V1=N�	��. �

The properties �1�–�3� requested for 	 are fulfilled by a number of relevant transformations.
Lorentz transformations: A Lorentz transformation 	=	��� acts on C����* “as usual” �i.e.

through ad U����, on �FH
�n in the same way on every tensor factor, and on M by 	 .x=�x, which

is extended to Mn componentwise. The properties �2� and �3� are obvious. Applying ad U��� to
the approximating sequences in Eq. �3.4�, it is also easy to see that 	���x��= �	���	 .x�. So
Theorem 4.3 tells us that N�	�����=	���N���; the normal product spaces are Lorentz covariant
as vector spaces. Note that N��� is not necessarily stable under 	���, since possibly �

�	����; we would have to pass to a closure N̂���=span��N�	����� if we aim at a decom-
position of ��	��� into irreducible subrepresentations.

Other symmetries with “geometric action,” such as dilations �	��� .x=�x� and inner symme-
tries �	 .x=x�, show the same behavior as Lorentz transformations, as long as they are unitary
implemented and fulfill certain regularity properties �cf. Lemma 5.5 of Ref. 10�. Since for our
construction, it suffices to use a local unitary implementation rather than a global one, it does not
matter whether the symmetries are broken or unbroken.22

Derivatives: To treat linear differential operators in our context, it suffices to consider first
order operators D�, which act on C����* through i�P� , · �. Since they leave �FH invariant,9 they
also act on �FH

�n by a formal product rule. As D� satisfies the product rule on B�H�, one may
establish

D����x�� = �D����x� . �4.13�

�To see this, note that the approximating sequences “Ar→�” can be chosen to be “smeared” with
some test function fr—compare the remark after the proof of Lemma 3.5 in Ref. 9—such that
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D�Ar=D��Âr�fr��= Âr�−��fr�, so D� preserves the localization of the operator sequence.� Again,
property �3� is obvious, so the differential operators D� fulfill properties �1�–�3�, with D� acting
trivially on Mn. By concatenation and linear combination, the same is then true for linear differ-
ential operators D of arbitrary order. Hence we have

N�D�� = DN��� . �4.14�

The perturbative analog to this relation is known as Lowenstein’s rule.23

V. CONCLUSIONS AND OUTLOOK

In the course of the present paper, we have given a rigorous model-independent proof of
operator product expansions, based on a physically motivated assumption that was formulated as
a phase space condition. In this context, product expansions are asymptotic series in the short
distance limit; their singular behavior is bounded by an inverse power. We have introduced normal
products in the sense of vector spaces that consist of all fields contributing to the product expan-
sion �up to a given level of accuracy�. These vector spaces show the expected properties, such as
Lorentz covariance and Lowenstein’s rule.

Originally, Wilson2 proposed operator product expansions as a substitute for the Lagrangian,
as a method of defining field theoretic models. Though it would seem exaggerated to aim at
constructive approaches from our results, they might indeed serve as a basis for the classification
of models. For example, they could give a well-defined sense to the concept of local field equa-
tions: The famous �4 equation

�� + m2�� = �:�3:, � � 0, �5.1�

well known in perturbation theory,18 can be introduced in our context as

�� + m2�� � N���3� \ C� . �5.2�

At present, it is unknown whether such a relation is stringent enough to define a field theory �nor,
in fact, whether it is compatible with any field theory at all�. There is strong evidence24 that in
physical space–time, the standard lattice approximation approach does not lead to a theory that
fulfills Eq. �5.2�; however, other methods have been proposed that might result in such a
solution.25 Equation �5.2� at least allows us to pose the existence problem of �4

4 independent of
specific construction schemes.

More generally, it seems interesting to what extent field equations—or other properties of
product expansions—can define a field theory uniquely. One encounters some obvious obstruc-
tions here, since there exist nontrivial theories with a trivial field content26 �FH=C1, which might
always occur as a tensor factor. We can exclude these components, however, by defining the
following subnet AF of A which may be regarded as the “point field part” of the theory �as
remarked in Ref. 9�:

AF�O�ªP�O��, �5.3�

where P�O� is the polynomial algebra generated by all ��f� with ���FH, supp f �O.
In models which are generated by observable point fields �such as the free-field examples in

Ref. 9�, we have A=AF, and one would hope to find a description of A in terms of field equations
or similar relations. In the presence of gauge fields, on the other hand, it might happen that
AF�A, since A may include inherently non-point-like observables like Wilson loops or Mandel-
stam strings. In this case, it is possible that the dynamics of the system cannot be described in
terms of �FH alone, but that field equations need to involve the extended objects mentioned. Still,
it would be worthwhile to ask what physical properties �such as cross sections� are determined by
AF only. However, the details of such an analysis remain vague at the present stage.
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We evaluate the ideas of �-stability at the Landau-Ginzburg �LG� point in moduli
space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the
topological D-brane category. The standard requirement of unitarity at the IR fixed
point is argued to lead to a notion of “R-stability” for matrix factorizations of
quasihomogeneous LG potentials. The D0-brane on the quintic at the Landau-
Ginzburg point is not obviously unstable. Aiming to relate R-stability to a moduli
space problem, we then study the action of the gauge group of similarity transfor-
mations on matrix factorizations. We define a naive moment maplike flow on the
gauge orbits and use it to study boundary flows in several examples. Gauge trans-
formations of nonzero degree play an interesting role for brane-antibrane annihila-
tion. We also give a careful exposition of the grading of the Landau-Ginzburg
category of B-branes, and prove an index theorem for matrix factorizations. ©
2005 American Institute of Physics. �DOI: 10.1063/1.2007590�

I. INTRODUCTION

The main purpose of this work is to develop a stability condition, to be called “R-stability,” on
the triangulated category of matrix factorizations describing D-branes at the Landau-Ginzburg
point pLG in the Kähler moduli space Mk of a compact Calabi-Yau manifold X. The proposal is
motivated by physical considerations similar to the ones leading to the notion of �-stability on the
derived category of coherent sheaves D�X�, which describes the variation of the spectrum of
B-type BPS branes over Mk. In fact, the notion of R-stability can be thought of as the special-
ization of �-stability to pLG. It is expected, however, that R-stability should be intrinsic to the
Landau-Ginzburg model and does in principle not depend on knowledge of the stable spectrum
elsewhere in Mk.

In this paper, Sec. II is a brief review of the relevant aspects of �-stability that we want to
abstract to the Landau-Ginzburg model. Section III contains the basic definitions related to matrix
factorizations. Section IV explains how quasihomogeneous matrix factorizations can be, first Q-,
then Z-graded. Section V is a somewhat independent unit concerned with the �RR� Ramond-
Ramond charges of matrix factorizations in string theory and an index theorem. Section VI gives
a preliminary definition of R-stability and partial answers to the difficulties in relating it to the
action of the gauge group on matrix factorizations. This general discussion is then applied in Sec.
VII and the proposal shown to work well in several relevant examples. Section VIII gives a
summary.

II. REVIEW OF �-STABILITY

�-stability was introduced in Refs. 1 and 2, and further sharpened and tested in Refs. 3 and 4.
It was subsequently abstracted into a precise mathematical definition of stability condition on
triangulated categories in Ref. 5. We refer to these works for the categorical aspects of �-stability,
as well as to Aspinwall’s review6 for more extensive background material. Instead, we begin with
a slightly personal review of the worldsheet origin of �-stability, following Douglas.2

The basic physical intuition is quite simple. Consider a fixed two-dimensional conformally
invariant string worldsheet quantum field theory C defining a closed string background. By defi-
nition, a D-brane in this background is a conformally invariant boundary condition, B, for C. A
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popular way to define C’s and B’s is as IR fixed points of bulk or boundary RG flows, induced by
turning on a relevant operator O in a known bulk or boundary theory. Such a UV description is
“stable” if it flows to a theory in the infrared which is “acceptable” in the sense of, e.g., having the
right central charge, being unitary, etc. Finding necessary and/or sufficient stability conditions on
O is in general a very hard question.

A situation in which more can be said is when one requires bulk and boundary theories to
preserve N=2 supersymmetry with a nonanomalous U �1� R-symmetry, so that the chiral algebra
underlying C and B will contain the N=2 superconformal algebra. A necessary condition on
acceptable B’s is that the R-charges of all open string NS chiral primary operators satisfy the
unitarity constraint7

0 � q � ĉ , �2.1�

where ĉ is the central charge of the superconformal algebra. Often, ĉ and q can be determined in
the UV and the Eq. �2.1� therefore provides a stability condition in the above sense.

The ideas of �-stability in fact go further than �2.1�. Assume that ĉ and the R-charges of C are
all integral. The chiral algebra of C then contains, in addition to the N=2 superconformal algebra,
the �square of the� spectral flow operator S. One can then contemplate imposing a boundary
condition of the form

SL = ei��SR, �2.2�

involving an arbitrary phase, �. Standard conformal field theory arguments �using the doubling
trick, one transports S2 around an open string vertex operator inserted at the boundary of the
worldsheet, and notes that the total monodromy of S2, which evaluates to the difference of phases,
measures the U �1� charge of the operator up to an integer� then show that the R-charges of an
open string spanning between two branes B and B� �with phase � and ��� satisfy

q = �� − � mod Z . �2.3�

If we bosonize the left- and right-moving U �1� currents in terms of two canonically normalized
chiral bosons �L and �R, the spectral flow operators are SL,R=ei��ĉ/2��L,R, and we can visualize the
boundary condition �2.2� as Dirichlet or Neumann boundary condition on the compact boson �

=�L±�R with radius �ĉ. �The sign depending on which side �A or B� of the mirror one chooses
to present the conformal field theory.� Of course, the equation ei��ĉ/2��L=ei��ei��ĉ/2��R leaves a
ĉ-fold ambiguity on the position/Wilson line of the boundary condition on �. In such a picture,2

the strings stretching between the different images correspond to the different values of q in �2.3�.
We emphasize that, in conformal field theory, � is defined as a real number modulo even

integers. We should also like to stress that � is, in general, independent of the phases appearing in
the boundary condition on the N=2 currents, as in, GL

±=e±i�GR
±, GL

±=e±i�GR
� for A- and B-type,

respectively. �See, e.g., Ref. 8 for a BCFT discussion of this.� � determines which N=1 space–
time supersymmetry is preserved by the brane, and can be different for different branes. On the
other hand, the phases appearing in the boundary condition on the N=2 currents determine which
N=1 worldsheet supersymmetry is preserved. This is a gauge symmetry and must be the same for
all branes.

Now recall that an N=2 field theory �conformal or not� with a conserved U �1� R-current can
be twisted to a topological theory. As anticipated in Ref. 9, and by now well appreciated in the
physics literature, the set of branes in the topological theory together with open strings between
them carries the algebraic structure of a “triangulated category” �plus more�. Two important pieces
of structure are, first, the so-called “distinguished triangles,” such as
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�2.4�

which expresses the fact that the topological brane B can be obtained as a topological bound state
of the two branes B1 and B2 by condensing the “topological tachyon” T on the base of the triangle.
Second, a triangulated category has a so-called shift functor, which in physics terms sends a brane
B to a copy of its antibrane B.1

In relating the physical to the topological theory, one chooses a lift of the phase � to a real
number called “grade” and identifies the ghost number n of open strings as the integer appearing
in �2.3�, i.e.,

n = q + � − ��. �2.5�

Consequently, for every physical brane B there are in fact an infinite number of topological branes
B�m� whose grade differs by an integers. Shifting the grade shifts the ghost number by integers,
and hence modifies the topological theory. On the other hand, the topological theory is unaware of
the unitarity constraint �2.1�. In particular, the topological theory is independent of changes of q
and �. This decoupling of the topological theory from the variation of q with �part of� the moduli
is one of the central ideas underlying �-stability.

�-stability, then, is designed to decide when the bound state formation described in the
topological theory by triangles such as �2.4� is stable in the physical theory, and thereby provides
a picture of the spectrum of BPS branes in some given closed string background. Let us, for
concreteness, focus on the case of B-type D-branes on a Calabi-Yau manifold X. In that case, the
topological branes are objects of the derived category of coherent sheaves, D�X�, of the algebraic
variety underlying X. D�X� depends only on the complex structure of X, and is independent of the
Kähler moduli. Within this category of topological branes, the set of stable branes, conjectured to
flow to BPS branes in the physical theory, varies over the stringy Kähler moduli space Mk of X.
Essentially, one follows the continuous variation of the phases �, and hence of U �1� R-charges of
open strings, over Mk. Charges leaving and/or entering the unitarity bound �2.1� signal loss and/or
gain of stable branes, with decay and bound state formation described by the triangles �2.4�.

For the details of this construction, consistency with monodromies in Mk, and a lot of
examples, see Ref. 6 One peculiar aspect of the story is that �-stability really only describes the
changes of the BPS spectrum as one moves around in Mk. To determine the spectrum at any given
point p of M�X�, one must know the spectrum at some distinguished point p0 and then follow it
to p using �-stability.

One natural choice for basepoint is large volume, pLV, in the compactification of Mk. At
pLV, �-stability reduces to 	-stability for the Abelian category of coherent sheaves on X.1 Al-
though 	-stability does not extend over an open neighborhood of pLV �and hence does not allow
determining the complete BPS spectrum there�, it is at present the only useful handle on the
spectrum elsewhere in Mk.

Another special point, which one expects exists when X is a noncompact Calabi-Yau mani-
fold, is the so-called “orbifold point” pO in M. Even if X is not the resolution of an actual orbifold
singularity, one may define pO as a point in Mk at which the phases of all branes are aligned. In
such a situation, determining the BPS spectrum is a problem of solving F- and D-flatness condi-
tions in a supersymmetric quiver gauge theory, as argued in Ref. 1. More rigorously, Aspinwall
shows in Ref. 10 that in an open neighborhood of such an orbifold point, �-stability reduces to

-stability for the Abelian category of quiver representations in the sense of King.11

Such a point at which all phases align is expected not to exist in the moduli space of a generic
compact Calabi-Yau model. The closest one can get seems to be the Landau-Ginzburg point,
which resembles ordinary orbifolds in the appearance of a discrete quantum symmetry, but with
the important difference that not all phases of branes are aligned. The purpose of the present paper,
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pursuing a suggestion made in Refs. 12 and 13, is to investigate the ideas underlying �-stability
at the Landau-Ginzburg orbifold point in the Kähler moduli space of compact Calabi-Yau mani-
folds, using the recently introduced description of the topological category using matrix factoriza-
tions. We now turn to explaining various �old and new� aspects of matrix factorizations, and pick
up the stability discussion in Sec. VI.

III. MATRIX FACTORIZATIONS

Let W�R=C�x1 ,… ,xr� be a polynomial. To keep things simple, we will assume throughout
that W has an isolated critical point at the origin xi=0. A matrix factorization �of dimension N� of
W is a pair of square matrices f ,g�Mat�N�N ,R� with polynomial entries satisfying

fg = gf = W · idN�N. �3.1�

A matrix factorization is called reduced if all entries of f and g have no constant term, i.e.,
f�0�=g�0�=0.

Matrix factorizations �f ,g� and �f� ,g�� are called equivalent if they are related by a similarity
transformation

U1f = f�U2, U2g = g�U1, �3.2�

where U1 ,U2�GL�N ,R� are invertible matrices with polynomial entries.

A. Maximal Cohen-Macaulay modules

Matrix factorizations originated in Eisenbud’s work14 in the context of so-called maximal
Cohen-Macaulay modules over local rings of hypersurface singularities. See Refs. 15 and 16 for

some background. An example of such a ring is given by R̃m=Rm / �W�, where Rm

=C��x1 ,… ,xr�� is the complete local ring of power series, with maximal ideal m= �x1 ,… ,xr�, and
W is a polynomial, as above. If �f ,g� is a matrix factorization of W, consider the Rm-module
M =Coker f with the Rm-free resolution

0 → G→
f

F → M → 0, �3.3�

where F�G��Rm�N are rank N free modules. Since multiplication by W on ��3.3�� is homotopic

to zero, M descends to a R̃m-module, with the infinite free resolution

¯ → G̃→
f

F̃→
g

G̃→
f

F̃ → M → 0 �3.4�

with F̃� G̃��R̃m�N.
The resolution �3.3� being of length one, which is the codimension of a hypersurface, makes

M into a so-called maximal Cohen-Macaulay module �MCM� over R̃m �see Refs. 15 and 16 for
the definitions�. Eisenbud’s theorem14 essentially says that all MCMs over hypersurface rings
come from matrix factorizations.

The category of Cohen-Macaulay modules15 will be denoted by MCM�W�. Objects of
MCM�W� are matrix factorizations of W and morphism are morphisms of Cohen-Macaulay mod-
ules. In other words, a morphism from �f ,g� to �f� ,g�� in MCM�W� is a pair of
N��N-dimensional matrices a ,b, with polynomial entries, satisfying

bg = g�a, af = f�b , �3.5�

so that the diagram
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�3.6�

commutes. We will make no direct use of the category MCM�W�, but have included its definition
here since it might play a role in a precise formulation of R-stability.

B. Triangulated category

A different category’s construction based on matrix factorization was observed by
Kontsevich.17 The construction starts from triples �M ,� ,Q�, where M is a free
R=C�x1 ,… ,xr�-module with a Z2-grading �, and Q is an odd ��Q+Q�=0� endomorphism of M
satisfying

Q2 = W · idM . �3.7�

Decomposing M =M0 � M1 into homogeneous components, with equal rank N ,Q can be repre-
sented as the matrix

Q = �0 f

g 0
� , �3.8�

making the relation of �3.7� to �3.1� obvious. The grading is then given by the matrix

� = �idN�N 0

0 − idN�N
� . �3.9�

Let us denote by DG�W� the category which has such triples as objects and as morphisms the
�even� morphisms of free modules �forgetting the Q’s�. The gauge transformations in DG�W� are
the even automorphisms of M as an R-module, GL+�2N ,R�, acting as

GL+�2N,R� � U = �U1 0

0 U2
�:Q � UQU−1 �3.10�

with U1 ,U2�GL�N ,R�, as in �3.2�.
The point of the construction �Refs. 30 and 19� is that the category DG�W� has the structure

of a differential graded category. This means that morphism spaces HomR�M ,M�� are equipped
with an odd differential D acting as a supercommutator

D = Q� − ��� Q = � 0 f�

g� 0
��A B

C D
� − � A − B

− C D
��0 f

g 0
� , �3.11�

on morphisms

 = �A B

C D
� �3.12�

in DG�W�. One easily checks that D2=0 by the super-Jacobi identity. By a general
construction,18,19 one can then associate a triangulated category, MF�W� to DG�W�, which has the
same objects as DG�W� �i.e., triples �M ,� ,Q��, but in which morphisms are given by the
Z2-graded cohomology of Q. Thus HomMF�W��M ,M��=H*�D�=Ker D / Im D. We shall usually
embezzle M and �, and simply write HomMF�W��Q ,Q��=H0�Q ,Q�� � H1�Q ,Q�� for the mor-
phisms in MF�W�. We also write H0�Q� ,H1�Q� for the morphisms from Q to itself.
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For future reference, let us spell out a few triangulated constructions in the language of matrix
factorizations. First, the shift functor1 is nothing but the reversal of the Z2-grading �→−�, or,
equivalently, the exchange of f and g, i.e.,

Q�1� = �0 f

g 0
��1� = �0 g

f 0
� , �3.13�

with M and � fixed. This operation obviously exchanges H0 with H1. Second, given two matrix
factorizations Q1 and Q2 and an odd morphism T�H1�Q1 ,Q2�, we obtain a third factorization
simply as

Q = �Q1 0

T Q2
� , �3.14�

fitting into the triangle

�3.15�

where

S1 = �1 0 �, S2 = �0

1
� . �3.16�

The construction �3.14� is referred to as the “cone” over the map T�1��H0�Q1 ,Q2�1��.
Let us also note explicitly that the construction of MF�W� implies in particular that we

identify matrix factorizations which differ by the direct addition of the trivial factorization f =1,
g=W,

Q 	 Q � � 0 1

W 0
� 	 Q � �0 W

1 0
� . �3.17�

This identification occurs because adding the trivial factorization does not affect the cohomology
of D between Q and any other factorization Q�.

C. Relation to N=2 Landau-Ginzburg model

Orbifoldized N=2 Landau-Ginzburg models20 are known21,22 to describe the small-volume
continuation of Calabi-Yau sigma models, see Ref. 23 for the background. �LG also describe, in
particular, the mirrors of CY sigma models, as well as the mirrors of toric Fano and noncompact
Calabi-Yau manifolds, but this will not be important here. We will stay on the B side throughout.�

In the bulk, LG models are characterized by the worldsheet superpotential W, such as the
polynomial we have been studying in this section. The xi are N=2 chiral field variables, whose
interaction is described by W. The kinetic term for the xi is described by a Kähler potential
K�xi , x̄i�, and is usually ignored in the discussion of LG models because it does not affect topo-
logical quantities such as the chiral ring. What is more, in the quasihomogeneous case, it is
actually conjectured that there is a Kähler potential, uniquely determined by the superpotential,
such that the associated model is conformal. This Kähler potential can be reached by RG flow
along which W is unchanged by nonrenormalization theorems.

When adding boundaries to the worldsheet of an N=2 LG model, the supersymmetry varia-
tion of the superpotential exhibits a peculiar boundary term, whose nonvanishing is known as the
Warner problem.24–28 Following a proposal of Kontsevich, it was shown in Refs. 29–31 that
matrix factorizations of W provide a solution of the Warner problem. More precisely, it was argued
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there that the category of topological B-branes in a Landau-Ginzburg model is equivalent to the
category MF�W� we have described in the preceding section. The extent to which MF�W� also
describes “physical” branes in the untwisted Landau-Ginzburg model will be the subject of the
present paper.

In the LG application, the space M is the Chan-Paton space of a �target space–time filling�
DDbar-system, with equal number of branes and antibranes, and f and g describe a tachyon
configuration. The shift functor1 is nothing but the exchange of branes with antibranes. The matrix
Q is part of the BRST charge, and the matrix factorization equation Q2=W is the condition that the
tachyon configuration be BRST invariant �or preserve N=2 supersymmetry in the untwisted
model�. Open string states between two such brane systems are given by the cohomology of D,
i.e., are elements of H*�Q ,Q��. �H0 being referred to as bosonic, and H1 as fermionic.� The cone
�3.14� describes the formation of a “topological bound state” between two such configurations.
Finally, �3.17� simply corresponds to the addition of a brane-antibrane pair which is canceled by
an identical tachyon.

For other recent work on matrix factorizations in their relation to D-branes in Landau-
Ginzburg models, see Refs. 32–43 and 12.

IV. GRADED MATRIX FACTORIZATIONS

By construction so far, our D-brane category MF�W� is Z2-graded. In particular, the shift
functor squares to the identity. On the other hand, the prime example of a triangulated category,
namely the derived category of coherent sheaves on an algebraic variety D�X�, is Z-graded �and
has shifts by arbitrary integers�. As pointed out in Ref. 12, there is a simple way to improve
MF�W� to a Z-graded category in the special case that W is quasihomogeneous.

A. R-symmetry

W being quasihomogeneous is the condition that there exists an assignment of degrees to the
variables xi such that W has definite degree. In the physical model, this grading is worldsheet
R-charge, and W having R-charge 2 is the conventional normalization. Thus, we assume that there
exist R-charges qi�Q such that

W�ei�qixi� = e2i�W�xi� for all � � R . �4.1�

One can think of R-charge as a U�1� �or C�� action on the space of polynomials with respect to
which W is equivariant. The U�1� action closes for �=�H, where H is the smallest integer such
that Hqi�2Z for all i.

When considering matrix factorizations of W, it is natural to require that this U�1� action can
be extended to �M ,� ,Q�. This condition that the boundary interactions preserve the U�1�
R-symmetry is a necessary condition for the existence of a conformal IR fixed point. We will call
such matrix factorizations quasihomogeneous. For compatibility with �3.7�, we must require that
Q has R-charge 1. We will, at first, assume that this U�1� acts on M as an R=C�x1 ,… ,xr�-module
�instead of as a C-vector space�. We will, however, assume that the action is even, i.e., commutes
with �. Explicitly, we assume that there exists a map

�:R → GL+�2N,R� = GL�N,R� � GL�N,R� , �4.2�

such that

��0,xi� = ���H,xi� = id2N�2N, �4.3�

���,xi�Q�ei�qixi� = ei�Q�xi����,xi� . �4.4�

Note that this implies the slightly nonstandard group law
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���,xi�����,ei�qixi� = ��� + ��,xi� . �4.5�

In �4.2�, GL�N ,R� is the group of invertible N�N matrices with polynomial entries. Under gauge
transformations, Q�xi�→U�xi�Q�xi�U�xi�−1 with U�GL+�2N ,R� ,� transforms as

�U��,xi� = U�xi����,xi�U�ei�qixi�−1. �4.6�

Note that if we can find a gauge transformation such that �U is diagonal, then by �4.3�, �U must be
independent of the xi. Hence �U is an ordinary U�1� representation on M as a C-vector space. On
general grounds, one expects that one can always find such gauge transformation that makes �
diagonal. We will assume that this is true. But, as will become clear later, we do not want to
exclude altogether gauge transformations of nonzero degree which might make � nondiagonal
�and xi dependent�.

B. Gradability is a topological condition

Consider the vector field generating the U�1� action �4.2�

R��,xi� = − i�����,xi����,xi�−1. �4.7�

In general, this will depend on �, but it is easy to see that R�� ,xi� is actually determined for all �
by �4.5� and R�0,xi�. At �=0, the condition �4.4� becomes

EQ + �R,Q� = Q , �4.8�

where

E = 

i

qixi
�

�xi
�4.9�

is the “Euler vector field.” Note that W being quasihomogeneous means EW=2W, and therefore,
if Q2=W,

�Q,EQ − Q� = 0, �4.10�

where �· , · � is the anticommutator. In other words, EQ−Q defines a class in H1�Q�. The existence
of R is the statement that this class is trivial.

The quasihomogeneity condition on matrix factorizations is therefore a topological condition
that is roughly analogous, by mirror symmetry, to the vanishing of the Maslov class of Lagrangian
cycles. Recall44 that the vanishing of the Maslov class ensures that Floer cohomology can be
Z-graded. Here, requiring �4.8� will immediately only give a Q-grading, which commutes with the
Z2 grading. In Sec. IV F, we will combine the two gradings into a single Z-grading.

Actually, requiring the infinitesimal version �4.8� is somewhat weaker than the integrated
version �4.3� and �4.4�, because it does not guarantee that R generates a compact U�1� action.
Equivalently, we might not be able to diagonalize R by a gauge transformation. Deferring a
discussion of this point to Sec. IV D, let us assume that R is diagonalized �and hence its entries are
in Q�. We then obtain an induced �diagonalizable� U�1� action on the morphism spaces in the
DG-category DG�W�. Q-homogeneous elements of HomDG�W��Q ,Q�� satisfy

E + R� − R = q . �4.11�

By �4.8�, this descends to a Q-grading of D-cohomology, and hence, of MF�W�. To avoid confu-
sion, we will use H*�Q ,Q��= �q�QH

q�Q ,Q�� to denote this Q-graded cohomology, and also use
the split

Hq�Q,Q�� = Hq,0�Q,Q�� � Hq,1�Q,Q�� �4.12�

into Z2 even and odd pieces.
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C. Serre duality

If the boundary tachyon configuration described by Q and Q� flows to a conformal theory in
the IR, one expects the spectrum of Ramond ground states to be charge conjugation symmetric. As
usual,7 by spectral flow, this means for the chiral primaries, which are given by D-cohomology,

H*�Q,Q�� = H*+r�Q�,Q� ,

�4.13�
Hq�Q,Q�� = Hĉ−q�Q�,Q� ,

for the Z2- and Q-graded cohomologies, respectively. Here ĉ=
i=1
r �1−qi� is the central charge of

the bulk CFT associated with W. In mathematical terms, �4.13� expresses “Serre duality” for the
category MF�W�, with trivial Serre functor given purely by a shift in rational degree by ĉ, and
reversal of Z2 degree if the number of variables is odd.

Serre duality is equivalent to nondegeneracy of the boundary topological metric, which was
computed in Refs. 32 and 39. If �HomMF�W��Q ,Q�� and ��HomMF�W��Q� ,Q�, this Serre
pairing is given by

�� = � StrM���Q�∧r��
�1W ¯ �rW

, �4.14�

where the integral is a multidimensional residue. It is easy to see that this pairing has Q-degree ĉ,
i.e., ��=0 unless q+q�= ĉ. It also has Z2 grading given by r, the number of variables in the
model. Thus, proving nondegeneracy of �4.14� is equivalent to �4.13�. It would be interesting to
show this.

D. Ambiguities of R

As we have mentioned, the condition �4.8� does not guarantee that R generates a compact
U�1� action that closes for �=�H. On the other hand, it determines R only up to an even matrix
that commutes with Q, i.e., a representative of H0�Q�. The author is not aware of any example in
which �4.8� has a solution, but no solution which does not generate a compact U�1� action, or
which is not diagonalizable.

For example, if all entries of Q= �0 f

g 0 � are in fact homogeneous polynomials, then one

expects that �4.8� generically has a solution R=diag�R1 ,… ,R2N� which is diagonal. Indeed, de-
noting polynomial degree by deg, Eq. �4.8� becomes

Rj − Rk+N = 1 − deg�f jk�
for j,k = 1,…,N ,

Rk+N − Rj = 1 − deg�gkj�
�4.15�

which is a system of 2N2 equations for 2N unknowns. The nontrivial relations on the left-hand
side of �4.15� are given by permutations ��
N on N indices,



j

�Rj − R��j�+N� , �4.16�

being independent of �. On the right-hand side, these relations become

N − 

j

deg�f j��j�� . �4.17�

On the other hand, on taking determinant of �3.1�, we see that
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det�f�det�g� = WN, �4.18�

which, assuming that W is irreducible, implies det�f�=Wk for some 0�k�N. Since 
deg�f j��j�� is
the degree of a summand of det�f�, we see that if there are no exceptional cancellations, �4.17� is
independent of �. Similarly, gf =W generically implies deg�f jk�+deg�gkj�=2.

Thus if all entries of Q are homogeneous, we expect that there is a diagonal solution of �4.8�
�this is true in all examples the author has studied�. It is easy to see that the converse is also true,
R is diagonal, then all entries of Q must be homogeneous. �But there are factorizations that are not
quasihomogeneous, see Sec. VIII F.�

We will generally assume that there is a solution of �4.8� that is diagonalizable, keeping in
mind that this assumption can conceivably fail at singular loci in the moduli space of matrix
factorizations. Let us then analyze the ambiguities of R.

The proposal for fixing the ambiguity of R is motivated by the examples of Sec. VII and the
general considerations of Sec. VI. �It is also reminiscent of the “a-maximization” procedure used
to find the R-charge of N=1 superconformal gauge theories in four dimensions.45� The essential
idea is that R defines a character on the gauge group of similarity transformations. Infinitesimally,
such gauge transformations are given by even endomorphisms of M as a R-module, i.e., block-
diagonal matrices V�Mat+�2N�2N ,R�, with Tr V�C. They act on Q by �Q= �V ,Q�, and the
character induced by R is given by

�R�V� = TrM�RV� . �4.19�

The condition we would like to impose on R is that this character be trivial on the part of the
gauge group acting trivially,

Tr�RV� = 0 whenever �V,Q� = 0. �4.20�

Note that under such infinitesimal gauge transformations, R transforms according to

�R = − EV − �R,V� �4.21�

which leaves �4.8� invariant to first order. By all we have said, it might then seem natural to fix a
diagonal R and restrict to gauge transformation of degree 0, i.e., those which satisfy EV+ �R ,V�
=0 leave R invariant. As we will see in Sec. VII, however, this would be too restrictive, as we
would not be able to describe brane-antibrane annihilation.

To fix the ambiguity, and impose �4.20�, one may proceed as follows. Start with a reference
solution R0, assumed to be diagonal. The ambiguities of �4.8�, which are parametrized by even
cycles of Q, can be decomposed according to the degree with respect to R0,

C0�Q� = �qC
q,0�Q� , �4.22�

where

Cq,0 = �V � Mat�2N � 2N,R�;�Q,V� = 0,��,V� = 0,EV + �R0,V� = qV� . �4.23�

To see what can happen if we modify R0 by an element of C0�Q�, it is instructive to consider
the following example. Let

R0 = �a 0

0 b
� �4.24�

with a and b rational. Then �we are neglecting Q and � in this discussion—R0 and V could be
submatrices in a larger problem�,
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V = �0 x

0 0
� �4.25�

is of �total� degree q�V�=deg�x�+a−b with respect to R0. Clearly, R0 generates a compact U�1� by
�0���=ei�R0, but R0+V not necessarily so. Indeed, it is easy to see that the solution of �4.5�
generated by R0+V at �=0 is

���,x� = �ei�a x
ei��a+deg�x�� − ei�b

a + deg�x� − b

0 ei�b � , �4.26�

which for b=a+deg�x� goes over into

���,x� = �ei�a ix�ei�b

0 ei�b � . �4.27�

We see that as long as q�V�=deg�x�+a−b�0, R=R0+V generates a compact U�1� and can be
diagonalized. This fails when q�V�=0.

Thus, by rediagonalizing R if necessary, we can neglect the modifications of R0 by elements
of Cq,0�Q� for q�0. And clearly, �R0

vanishes automatically on V�Cq,0�Q�, because such V does
not have diagonal entries.

What about the ambiguities parametrized by C0,0�Q�? As we have just seen, we cannot add V’s
without diagonal entries. Among those with diagonal entries, we choose a maximal commuting
subalgebra, with basis �Vi�i=1,…,s, and impose �4.20� on the ansatz

R = R0 + 

i=1

s

aiVi. �4.28�

In all examples the author has studied, this procedure leads to an unambiguously determined R
which is diagonalizable and satisfies �4.20�.

E. Cone construction

We next show that the grading we just introduced is compatible with the triangulated struc-
ture. In particular, we show that the cone �3.14� over a map T�1��H0�Q1 ,Q2�1�� between two
quasihomogeneous matrix factorizations is again quasihomogeneous.

Indeed,

EQ − Q = �EQ1 − Q1 0

ET − T EQ2 − Q2
� = � �Q1,R1� 0

�qT − 1�T − R2T + TR1 �Q2,R2�
�

= �Q,�R1 + �qT − 1�id1 0

0 R2
�� �4.29�

is exact. More properly, we could choose

R =�R1 + �qT − 1�
N2

N1 + N2
id1 0

0 R2 − �qT − 1�
N1

N1 + N2
id2
� �4.30�

so as to satisfy Tr�R�=0 as well as EQ−Q= �Q ,R�. But in the generic case, C0�Q� will contain
more elements than just the identity so that we will not satisfy �4.20� in general.
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F. Orbifolding and the phase of matrix factorizations

Recall that the Calabi-Yau/Landau-Ginzburg correspondence relates Calabi-Yau manifolds
given as complete intersections in toric varieties to Landau-Ginzburg orbifold models.22 In the
simplest case, the Calabi-Yau is a hypersurface X given as the vanishing locus of a polynomial P
of total degree H in weighted projective space Pw1,…,wr

r−1 such that 
i=1
r wi=H. Such an X corre-

sponds, via CY/LG correspondence, to the Landau-Ginzburg orbifold model with superpotential
W= P and orbifold group �=ZH, with central charge ĉ=r−2. The xi have R-charge qi=2wi /H and
� is generated by xi��ixi with �i=ei�qi. The R-charges of the invariant part of the bulk chiral
ring J= �R /�W�� are then all even integers.

Now let Q be a quasihomogeneous matrix factorization of W with R-matrix R uniquely
determined as in Sec. IV D, and diagonal. Obviously, we would like to extend the � action to Q,
and we require that it commutes with the rational and the Z2-grading. In other words, we are
looking for a representation of � on �the associated Z2-graded R-module of CP factors� M such
that

�Q��ixi��−1 = Q�xi� . �4.31�

It is easy to see that such a representation must be related to R in a simple manner. Indeed, we see
that

�̃ = �e−i�R� �4.32�

commutes with Q. It is no restriction to assume that it is diagonal. If Q is reduced �i.e., contains
not entries with a constant term�, then all diagonal degree 0 elements of C0�Q� are actually
nontrivial in H0,0�Q�. We conclude that if Q is reduced and irreducible �i.e., H0,0�Q� is one
dimensional�, then �̃ is a multiple of the identity, �̃=ei��. In other words, we find

� = �ei�Re−i��. �4.33�

Imposing �H=1 fixes ��R mod 2/H. Lifting to ��R mod 2 gives H different equivariant fac-
torizations for each factorization of W. �To be sure, if H is even, these correspond to H /2 branes
together with their antibranes.�

A �-action on the objects induces an action on the morphism spaces H*�Q ,Q��, and we can
project onto invariant morphisms by requiring

����ixi��−1 =  . �4.34�

By combining the definitions, it is easy to see that invariant morphisms satisfy the condition

ei�q�− 1�e�i��−��� = 1. �4.35�

In other words, q=��−�+n, where n has the same parity as . This constraint on the U�1�
charges is the same as �2.3�, and leads to the identification of � as the phase of the matrix
factorization.

Let us then define the category MF�W�, in which objects are quasihomogeneous matrix
factorizations Q together with a lift of the phase � to a real “grade,” and morphism spaces are

Homn��Q,��,�Q�,���� = Hq=n+��−��Q,Q�� . �4.36�

This is the promised Z-graded category of matrix factorizations. Note in particular that the shift
functor, which, because of �4.32�, must be accompanied by �→�+1, does not square to the
identity in MF�W�.

G. Conjecture

The general decoupling statements of Ref. 2, the result that B-branes are described at large
volume by the derived category of coherent sheaves, together with the assumption that all topo-
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logical B-branes of the Landau-Ginzburg model have a description using matrix factorizations,
naturally lead to the statement that—in appropriate cases—there should be an equivalence of
categories

MF�W� � D�X� , �4.37�

where MF�W� is the category of quasihomogeneous �-equivariant matrix factorizations of W and
D�X� is the derived category of coherent sheaves on the Calabi–Yau manifold X related to W /� by
Witten’s gauged linear sigma model construction.22 Cases in which one expects such a correspon-
dence include those GLSM’s in which both large volume and Landau-Ginzburg points exist and
are unique, such as the quintic in P4, or hypersurfaces in weighted projective spaces.

The author hopes that such a correspondence appears well-motivated from the physics point
of view. It has essentially already been stated by Ashok, Dell’Aquila, and Diaconescu in Ref. 35
�for the quintic case and without the homogeneity condition�. The author should, however, add
that the correspondence is somewhat different from existing �and mathematically proven� equiva-
lences between categories of matrix factorizations and other structures. Besides Eisenbud’s ca-
nonical correspondence14 with maximal Cohen-Macaulay modules, there is also an equivalence
between matrix factorizations and a so-called “triangulated category of singularities” which was
proven by Orlov.19 Moreover, there is the classical correspondence of Grothendieck and Serre
between graded modules over graded rings and vector bundles over the associated projective
variety. This correspondence was exploited by Laza, Pfister, and Popescu in Ref. 46 for the case of
the elliptic curve. If �4.37� is true, it is likely that the equivalence favored by physics is different
from those just mentioned. For the elliptic curve, for instance, the methods of Ref. 46 on the one
hand and Refs. 47 and 42 on the other hand yield quite different bundles corresponding to some
given matrix factorization.

H. Landau-Ginzburg monodromy

We can make one further check that our conjecture makes sense. The Landau-Ginzburg point
pLG is an orbifold point in the Kähler moduli space Mk. The action of the monodromy around pLG

acts on matrix factorizations in MF�W� simply by rotating the choice of lift of � in �4.33�,

� → � + 2/H . �4.38�

As a consequence, the Hth power of the Landau-Ginzburg monodromy operator acts by �→�
+2. This does nothing on the physical brane associated with Q, but is a shift by 2 in the triangu-
lated category. This solves a problem posed in Ref. 6, in which the fifth power of the Landau-
Ginzburg monodromy on the quintic Calabi-Yau was computed and found to correspond to a shift
by 2 on the derived category. We can simply confirm this result using matrix factorizations, and in
fact extend it to all Calabi-Yau manifolds with a Landau-Ginzburg description.

V. RR CHARGES AND INDEX THEOREM

If matrix factorizations represent D-branes in string theory, they must carry Ramond-Ramond
�RR� charge. This charge takes value in the dual of the appropriate space HRR

B of closed string RR
ground states. Because of the boundary condition on the worldsheet U�1� current, B-branes couple
to those RR ground states with opposite left and right-moving R-charge, qL=−qR. The purpose of
this section is to determine these RR charges of matrix factorizations. We first describe HRR

B .
The space of Ramond-Ramond ground states in Landau-Ginzburg orbifolds and their left-right

R-charges was computed in Ref. 20. For simplicity, we will restrict here to a cyclic orbifold group
�=ZH, as well as to integer central charge �we mostly have in mind, of course, ĉ=3�. The
generalization of at least some of the formulas to the more general case should be obvious. In
general, those RR ground states with qL�qR arise purely from the twisted sector, and if ĉ is
integer, the ZH projection on twisted sectors implies that the RR ground states have qL	qR

	 ĉ /2 mod Z.
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Consider the lth twisted sector, and divide the field variables of the LG model into two
classes, according to whether lqi�2Z or lqi�2Z. Those fields, �xi

t�, with lqi�2Z satisfy twisted
boundary condition in this sector, and must be set to zero in the semiclassical analysis used to
determine the RR ground states. The contribution of those fields to the R-charges is �what we have
called qi is the sum of left- and right-moving charges of the variables xi in the normalization of
Ref. 20�

qL
t = − qR

t = 

lqi�Z

�l
qi

2
− �l

qi

2
� −

1

2
� . �5.1�

On the other hand, those fields, �xi
u�i=1,…,rl

, with lqi�2Z satisfy untwisted boundary conditions in
the lth twisted sector. Their quantization leads to a spectrum of RR ground states which is that
corresponding to the effective potential Wl�xi

u�=W�xi
u ,xi

t=0�. In particular, they contribute, qL
u

=qR
u , equal amounts to left and right charge.

What is important for us, the ground states with qL=qL
u +qL

t =−qR=qR
u +qR

t from the lth twisted
sector correspond precisely to the neutral ground states of the effective potential Wl�xi

u� obtained
by setting those fields with lqi�2Z to zero. These ground states have qL	qR	 ĉ /2 mod Z if the
number, rl, of fields with lqi�2Z is even. A basis of these ground states can be labeled as �l ;��,
where l ranges between 0 and H−1, and � ranges over a basis �l

�= �xu��=�i=1
rl �xi

u��i of the
subspace, Jl

0, of the untwisted chiral ring Jl=C�xi
u� /�Wl with R-charge qL

u =qR
u =
lqi�2Z�iqi /2

= ĉu /2. Here, ĉu=
lqi�2Z�1−qi� is the central charge corresponding to Wl. The states �l ;�� can be
thought of as being obtained by acting with ��

l on the unique state �l ;0�, which has R-charge
−ĉu /2.

Now by definition, the RR charge is the correlation function on the disk with the RR ground
state inserted in the bulk. We propose that for a matrix factorization Q�MF�W�, this is given by

ch�Q�:HRR
B → C ,

ch�Q���l;��� = l;��Qdisk =
1

rl!
ResWl

��l
� Str�� l��Ql�∧rl�� =

1

rl!
� �l

� Str�� l��Ql�∧rl�
�1Wl ¯ �rl

Wl
,

�5.2�

where � is the representation of the generator of ZH on the matrix factorization, and Str�·�
=TrM�� · � is the supertrace over the Z2-graded module M. The residue is the same as the one
appearing in the Serre pairing �4.14�. It is normalized48 such that the determinant of the Hessian of
the superpotential Wl has residue equal to the dimension of the chiral ring,

Resl�det �i� jWl� = � det �i� jWl

�1Wl ¯ �rl
Wl

= dim Jl = 	l = �
lqi�2Z

2 − qi

qi

. �5.3�

Moreover, in �5.2�, Ql�xi
u�=Q�xi

u ,xi
t=0� is the restriction of Q to the untwisted fields in the lth

sector. It satisfies Ql
2=Wl.

Formula �5.2� makes sense since by �4.31�,

� lQl�xi
u� = Ql�xi

u�� l, �5.4�

so � l represents a cohomology class of the matrix factorization Ql, and �5.2� computes the disk
correlation function32,39 of � l�l

� in this model. Moreover, since Resl has Q degree ĉu and Z2

degree rl, we see that �5.2� would vanish if rl were odd or if we tried to insert an element of Jl

with charge not equal to ĉu.
In those twisted sectors with rl=0, i.e., lqi�2Z for all i, �5.2� reduces to

ch�Q���l;0�� = Str � l. �5.5�
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One can check that �5.2� gives the correct value for the RR charges in those cases where an
alternate computation exists, namely minimal models and their tensor products. Also, we see
immediately that ch�Q�1��=−ch�Q�. The main evidence, however, that �5.2� is the correct expres-
sion for the RR charge is the index theorem for matrix factorizations, i.e., the fact that the Witten
index for open strings between two matrix factorization Q and Q� can be computed via ch�Q� and
ch�Q�� as

Tr�− 1�F = 

n�Z

�− 1�n dim HomMF�W�
n �Q,Q�� = ch�Q��,ch�Q�� , �5.6�

where �−1�F is the Z2 grading �fermion number� of matrix factorizations. The Chern pairing is
given by

ch�Q��,ch�Q�� =
1

H


l=0

H−1



�,�

ch�Q����l;���
1

�
lqi�2Z

�1 − �i
l�

�l
�� ch�Q���l;���*. �5.7�

For fixed l , 
�,� is a sum over the chosen basis of Jl
0 of elements of the chiral ring Jl with charge

ĉu /2, and �l
�� is the inverse of the closed string topological metric in this sector,

���
l = Resl��l

��l
�� . �5.8�

We will now prove �5.6� in the case that rl=0 in all twisted sectors. The index of interest is the
equivariant index of the operator D acting as in �3.11� on the complex given by the morphism
space in DG�W�, i.e.,

Tr�− 1�F =
1

H


l=0

H−1

Tr�− 1�F�̃ l, �5.9�

where �̃ is the action of the generator of ZH on the cohomology spaces. We can regularize the
computation of Tr�−1�F�̃=limt→1 Zl�t� by using the Q-grading by U�1� charge

Zl�t� = Tr�− 1�Ftq�̃ l. �5.10�

�More precisely, we should use an appropriate covering of this U�1� to make the charges integer.�
By a standard argument, we can then replace the trace over the space of ground states by the trace
over HomDG�W��Q ,Q��=HomR�M ,M��, effectively reducing the computation to the setting Q
=Q�=0. We decompose

HomR�M,M�� = �
j,k=1

2N

�
�
V j,k,� �5.11�

into one-dimensional pieces indexed by matrix entries �j ,k� and monomials x�=�xi
�i with multi-

index �= ��1 ,… ,�r�. Note that the combination of fermion number and ZH-action restricts on
V j,k,� to

��− 1�F�̃�Vj,k,�
= ��j��j��

i=1

r

�i
�i��k�k

−1, �5.12�

where �i=e�iqi, and we are using that both � and � are diagonal matrices. Therefore,
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Zl�t� = 

j,k=1

2N



�

� j��� j��
ltRj���

i=1

r

�i
l�itqi�i��k��k�−lt−Rk = Str�����ltR��

1

�
i

�1 − tqi�i
l�

Str��−lt−R� .

�5.13�

Since Str�id�=0, and we are assuming that lqi�Z for all other l and i, we can smoothly take t
→1, and obtain

Tr�− 1�F =
1

H


l=1

H−1

Str����l 1

�
i

�1 − �i
l�

Str �−l, �5.14�

as was to be shown.
To establish �5.6� and �5.7� in general, one should combine the proof we just gave with the

formula

1

�rl ! �2Resl�Str���Ql��
∧rl�Str���Ql�∧rl�� = 


�,�

1

rl!
Resl��l

� Str���Ql��
∧rl���l

�� 1

rl!
Resl��l

� Str���Ql�∧rl�� .

�5.15�

This formula expresses the factorization rule for the topological annulus correlator32 with no
boundary insertions via two disk amplitudes and �the inverse of� the closed string topological
metric ��,�

l �5.8� given by the sphere amplitude.48 �Note that in �5.15�, the sum over � ,� can be
extended to the full chiral ring Jl because the disk correlators vanish outside of Jl

0.� In the general
axioms of open-closed topological field theory,49,50 this factorization is known as the “Cardy
condition.” By the same axioms, the annulus correlator �5.15� computes the open string Witten
index Tr�−1�F between the matrix factorizations Ql ,Q�l in the untwisted Landau-Ginzburg model
corresponding to Wl. The author has checked the equality of the two sides of �5.15�, and that they
compute the open string Witten index, in all known examples, but the author does not know a
proof based directly on the residue formula.

We close this section with a few comments.
First, we note that there is an obvious analogy between �5.6� and �5.7� and the well-known

Hirzebruch-Riemann-Roch theorem which computes the Witten index for open strings coupled to
two vector bundles E and F on the Calabi-Yau manifold X,

Tr�− 1�F =� ch�E*�ch�F�Td�X� . �5.16�

Our formula is simply the small volume version of this. In particular, the factor �l
�� /��1−�i

l� can
be viewed as the analog of the Todd class of X. From this perspective, the normalization in which
the square root of this factor is included in the charge might seem more natural.

Second, we return to the split of the Ramond ground states into those from twisted sectors
with rl=0 and those from twisted sectors with rl�0 and even. In the RCFT description of LG
models as Gepner models,51 the ground states with rl�0 are not left-right symmetric in each
individual N=2 minimal model. �Geometrically, they correspond to nontoric blowups of X. For
this reason, most models that have been studied geometrically in any depth do not have such
states.� As a consequence, the BCFT constructions of boundary states in Gepner models52 did not
produce boundary states with charge under those RR ground states with rl�0, the only exception
being related to the so-called fixed point resolution phenomenon discussed in Refs. 53 and 54 �see
also Refs. 55 and 32�. On the other hand, it is easy to find matrix factorizations for which charges
with rl�0 do not vanish. �The two-variable factorizations of Sec. VII D, when embedded in the
appropriate Calabi-Yau model, provide useful examples.� It seems likely that matrix factorizations
span the free part of K-theory that is expected from cohomology. What the Chern classes �5.2�
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miss, of course, is the torsion part of the K-theory. Unorbifolded minimal models, for example,
have K-theory that is purely torsion. One might expect that some of this will survive the orbifold
procedure, conceivably in the twisted sectors with rl odd. It would be interesting to determine the
full K-theory of these Landau-Ginzburg orbifolds and compare with their geometric computation.
This would be a zeroth order check of �4.37�.

VI. A STABILITY CONDITION

In mathematical models of D-branes similar to the one we are studying, such as Lagrangian
submanifolds of symplectic manifolds, holomorphic vector bundles on complex manifolds, or
representations of a quiver algebra, a stability condition is introduced with the purpose of identi-
fying a subset of objects whose orbits under the group of appropriate automorphisms fit together
into “nice” moduli spaces. Often, the stable orbits admit a distinct �unique� representative at the
zero of a “moment map” associated with the stability condition �for instance, the special condition
for Lagrangians or the Hermitian Yang-Mills equation for the connection on the holomorphic
vector bundle�. �See, e.g., Chap. 38 of Ref. 23 for a recount of these stories.�

In physics, the zeroes of the moment map are associated with the solution of the condition that
the D-brane preserve supersymmetry in the uncompactified part of space–time. Stability is the
condition that such a supersymmetric configuration can be reached by boundary renormalization
group �RG� flow on the string worldsheet. In the unstable �including semistable� case, the theory
is expected to split at singular points along RG flow into the direct sum of several decoupled
theories. The endpoint of the flow is the decomposition into the stable pieces.

For a general Landau-Ginzburg model �orbifolded or not, with arbitrary central charge�, the
interpretation involving spacetime supersymmetry is not necessarily available, and we will factor
it out accordingly. What remains is the unitarity constraint �2.1� and the assertion that if this
condition is satisfied, worldsheet RG flow should lead to a single unitary boundary CFT in the IR
�i.e., a theory with a unique open string vacuum�. This is a stability condition that can be imposed
on the triangulated category of any quasihomogeneous Landau-Ginzburg model.

If the model has a geometric interpretation, then in view of the expected equivalence �4.37�,
this is a particular stability condition on D�X�. It is distinguished by the fact that it arises only from
data involving the unorbifolded model �or equivalently, the orbifolded model divided by the
quantum symmetry�. In the general framework of Ref. 5, the space of �numerical� stability con-
ditions is locally modeled on the free part of the K-theory. As we have seen in Sec. V, most of the
K-theory �all of it for an odd number of variables� appears during orbifolding. Therefore, the
stability condition in the Landau-Ginzburg model should be more rigid than the ones on D�X�.

A. A notion of stability

As we have reviewed in Sec. II, the basic idea underlying �-stability is that open strings
between physical branes should satisfy the unitarity constraint 0�q� ĉ. It is hard, however, to
impose such a constraint directly on individual objects to determine whether they are stable,
essentially because this would involve an infinite number of checks, and moreover because a
stable object does not only have strings satisfying �2.1� ending on it. Physically,2 one should not
try to impose the condition �2.1� on configurations described as �topological� bound states con-
taining both branes and antibranes. One expects that in certain regimes,2,4 or even at all points in
the space of stability conditions,5 integrating out all canceling brane-antibrane pairs will reduce
the problem to a stability condition on an Abelian category, which involves only a finite number
of checks. Still, these discussions leave open the question whether �-stability is sufficient or just
a self-consistent “bootstrap” condition. Our point of view is that the Landau-Ginzburg model
should posses an intrinsic �rigid� stability condition that does not depend on what is going on in
the rest of the moduli space. It is this notion of stability that we are after.

In the Landau-Ginzburg context, “integrating out brane-antibrane pairs” simply corresponds to
restricting to reduced matrix factorizations, i.e., those without scalar entries. It is not unreasonable
to expect, therefore, that by going to reduced matrix factorizations, one obtains the Abelian
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category of interest for the discussion of Ref. 5. This Abelian category could be simply related to
the category of Cohen-Macaulay module of Sec. III A. In any case, we now make the following
tentative definition.

Let W�x1 ,… ,xr� be a quasihomogeneous Landau-Ginzburg polynomial, EW=2W, where E
=
qixi�i. Let Q be a reduced quasihomogeneous matrix factorization of W. Q is called
R-semistable if in all triangles

�6.1�

in which Q participates opposite to the fermionic morphism T, we have

qT � 1 ⇔ qS1
� 0 ⇔ qS2

� 0. �6.2�

Q is stable if the only triangles for which qT=1 are those with Q1 or Q2 equal to Q �and the other
equivalent to 0�.

Here qT is defined by the condition

ET + R2T − TR1 = qTT , �6.3�

where R1 and R2 are the R-matrices of Q1 and Q2, respectively.
We can give one simple check that relates R-stability to a stability condition in the sense of

Bridgeland.5 Recall that in the orbifolded case �Sec. IV F�, we have defined morphism between
objects in MF�W� by Hom0�Q ,Q��=Hq=��−��Q ,Q��. Therefore, our condition �6.2� directly im-
plies

� � �� ⇒ Hom0�Q,Q�� = 0, �6.4�

which is one of the axioms of Ref. 5.
We also note that our formulation is similar to those of a stability condition for Lagrangian

submanifolds proposed by Thomas56 and further studied in Ref. 57.

B. A moment map problem?

The stability condition we have proposed is physically well motivated. It only deserves its
name, however, if it can be related to the moduli space problem for matrix factorizations. In other
words, one would like to show that stable matrix factorizations have nicely behaved orbits under
the group of gauge equivalences. As we have mentioned before, this group is the group of
similarity transformations

G � GL+�2N,R� � GL�N,R� � GL�N,R� �6.5�

acting as in �3.2�. Thus we have an algebraic group acting on a linear space with a constraint. This
problem is quite similar to the one studied by King.11

In Ref. 11, the general setup of geometric invariant theory �GIT�58 is used to define moduli
spaces for representations of finite-dimensional algebras, which can be equivalently described as
the representations of quiver diagrams. Quivers arise naturally as world-volume theories for
D-branes at singularities, and the theory of quivers has played an important role in the develop-
ment of �-stability.1,10 In the quiver case, the gauge group G is the product of general linear
groups acting on the vector spaces at each node of the quiver. King uses GIT to give a geometric
description of the algebraic quotient of the representation space Y with respect to a character
� :G→C� via “Mumford’s numerical criterion:” A representation y�Y is �-semistable iff � is
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trivial on the stabilizer of y and if every one-parameter subgroup g���=e�a of G, for which
lim�→� y exists, satisfies d� ,a��0, where d� is the infinitesimal version of � evaluated on the
generator a of g���.

Our stability condition is precisely equivalent to such a “numerical criterion.” To see this, note
that all triangles in MF�W� are isomorphic to the standard cone �4.29�, namely

Q = Q1 � Q2 + T, R = R1 � R2 + �qt − 1�� N2

N1 + N2
S1 −

N1

N1 + N2
S2� , �6.6�

where Si=idi. Under the one-parameter group of gauge transformations generated by V=S1, this
cone transforms as

Q� = e�VQe−�V = Q1 � Q2 + e−�T →
�→�

Q1 � Q2. �6.7�

The limit �→� simply splits the cone back into its constituents. The condition qT�1 is equiva-
lent to

− Tr�RV� = − �qt − 1�
2N2N1

N2 + N1
� 0, �6.8�

thus identifying Tr�R · � as the character of G with respect to which we are defining stability. The
condition �4.20� we are imposing to fix the ambiguities of R is precisely the condition that Tr�R · �
should vanish on the trivially acting gauge transformations. Similarly as in Ref. 11, we can then
formulate a “numerical criterion” that a matrix factorization Q is R-semistable if all one-parameter
subgroups e�V of the gauge group, for which the limit lim�→� e�VQe−�V exists, satisfy Tr�RV�
�0.

In Ref. 11, King then goes on to describing a symplectic quotient construction of the moduli
space, which is the basis for the relation to quiver gauge theories.

We can at present see two difficulties in making such a relation in our situation more precise,
both of which due to the fact that G is not as simple a gauge group as the one acting on quiver
representations. First of all, as a complex Lie group, G is infinite-dimensional. This is similar to
the situation with vector bundles or Lagrangian submanifolds, giving reason for hope. The second
difficulty appears if, as might seem natural, we would restrict to the degree 0 gauge transforma-
tions, i.e., those generated by

g0 = �V � g;EV + �R,V� = 0� . �6.9�

The problem with g0 is that it is nonreductive. Indeed, since both polynomial and total degree are
preserved in matrix multiplication, g0 has a maximal solvable subalgebra consisting of those
matrices without constant term. In other words, we can decompose g0 into its maximal reductive
subalgebra consisting of those elements annihilated by E, and the nilpotent part. This nonreduc-
tiveness of g0 makes it more difficult to apply the general results of GIT and to find a relation with
a moment map problem. In any case, however, restricting to gauge transformations of degree 0
makes the description of brane-antibrane annihilation somewhat unnatural, see Sec. VII B.

Setting aside these difficulties for the moment, we will naively follow the usual steps to write
down a moment maplike flow equation on the gauge orbits. As we will see in Sec. VII, this naive
flow works quite well in a number of examples. Imitating,11 we introduce a metric on the space of
matrix factorizations,

Q,Q�� = 

�

Tr�Q�
†Q��� , �6.10�

where
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Q = 

�

Q�x�, Q� = 

�

Q��x� �6.11�

is the decomposition of Q and Q� into a sum over monomials x�=�ixi
�i. In any given case, we

restrict to a finite-dimensional subgroup of G and choose a basis of generators, �Vi�. The flow
equation then is

dQ

dt
= − �Q,�Vi,Q�� − Tr RVi��Vi,Q� . �6.12�

Note that by construction, �6.12� is indeed a moment map for the maximal reductive subgroup of
the degree 0 gauge group.

Moreover, one can see that the flow �6.12� indeed reproduces the correct splitting �6.7� of the
standard cone �4.29� in the case that qT�1. A simple calculation gives

d�

dt
= �e−2��T�2 + �qT − 1��� �6.13�

where �=2N2N2 / �N2+N1�. Evidently, this has a solution at finite � if qT�1, whereas for qT�1,
the flow drives us to �→�. The form of Eq. �6.13� is of course familiar in the context of solving
D-flatness conditions in four-dimensional N=1 supersymmetric gauge theories.

VII. EXAMPLES

We conclude the paper with several concrete examples of matrix factorizations and flows on
their gauge orbits defined by �6.12�. As alluded to before, one can view these flows as toy models
for boundary flows in Landau-Ginzburg models. �Landau-Ginzburg descriptions of boundary
flows have also recently been discussed in Ref. 59.�

A. Minimal models

Matrix factorizations of A-type minimal models with type 0A GSO projection, corresponding
to the LG superpotential W=xh were discussed in detail in Refs. 31, 33, 36, and 41. They are given
by

Qn = � 0 xn

xh−n 0
� for n = 1,…,h − 1. �7.1�

The R-matrix is

R = � 1
2 − n

h 0

0 − 1
2 + n

h

� . �7.2�

It is easy to see that there is only one nontrivial element of the degree 0 gauge algebra,

V = � 1
2 0

0 − 1
2

� . �7.3�

The orbit generated by V looks like

Qn��� = e�VQne
−�V = � 0 e�xn

e−�xh−n � , �7.4�

so that the flow �6.12� becomes
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d�

dt
= − �Qn���,�V,Qn����� − Tr RV� = − �e2 Re � − e−2 Re � −

1

2
+

n

h
� . �7.5�

Obviously, this flow has just one stationary point, which is stable. This is as expected. Indeed, one
can check explicitly that all open strings between different minimal model factorizations satisfy
0�q� ĉ=1− �2/h��1.

B. Brane-antibrane annihilation

We have been tempted several times in this paper to restrict attention to the gauge transfor-
mations of degree 0 only. In this section, we show that in fact, the description of brane-antibrane
annihilation in the context of matrix factorizations requires the inclusion of gauge transformation
of nonzero degree.

Let �f ,g� be a matrix factorization of W with R-matrix R= �R+ ,R−�, and consider the cone over
the identity id, �f ,g�→ �f ,g�,

Q0 =�
0 0 f 0

0 0 1 g

g 0 0 0

− 1 f 0 0
� . �7.6�

This is gauge equivalent to direct sums of the trivial factorization W=1·W via the gauge trans-
formation

U� =�
1 − �f 0 0

0 1 0 0

0 0 1 �g

0 0 0 1
� . �7.7�

Namely,

Q� = U�Q0U�
−1 =�

0 0 �1 − ��f ��2 − 2��W
0 0 1 �1 − ��g

�1 − ��g �2� − �2�W 0 0

− 1 �1 − ��f 0 0
� �7.8�

which for �=1 becomes

Q1 =�
0 0 0 − W

0 0 1 0

0 W 0 0

− 1 0 0 0
� . �7.9�

What is the R-matrix associated with Q0? The cone construction of Sec. IV E gives one possible
solution �4.30�

Rcone =�
R+ − 1

2 0 0 0

0 R− + 1
2 0 0

0 0 R− − 1
2 0

0 0 0 R+ + 1
2

� . �7.10�

However, this R-matrix does not satisfy �4.20�. By using the equivalence with Q1, one finds that
the generators of C0�Q0� with nonvanishing diagonal entries and degree 0 with respect to Rcone are
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Vi =�
ei − f i 0 0

0 0 0 0

0 0 0 − gi

0 0 0 ei

� and Vi =�
0 f i 0 0

0 ei 0 0

0 0 ei gi

0 0 0 0
� , �7.11�

where ei is the N�N matrix with a 1 at the ith position on the diagonal, and zeroes elsewhere, and
f i=eif and f i= fei are the ith row and column of f , respectively.

Then the combination of Rcone , Vi, and Vi satisfying �4.20� is

R0 =�
− 1

2 R+f − fR− 0 0

0 1
2 0 0

0 0 − 1
2 gR+ − R−g

0 0 0 1
2

� =�
− 1

2 − Ef + f 0 0

0 1
2 0 0

0 0 − 1
2 Eg − g

0 0 0 1
2

� . �7.12�

Under the similarity transformation �7.8�, R0 transforms into the diagonal matrix R1=diag
�−1/2 ,1 /2 ,−1/2 ,1 /2�. This R1 is the R-matrix one would naturally assign to a sum of copies of
the trivial branes described by Q1.

Note that while the gauge transformation relating Q0 and Q1 has degree zero with respect to
Rcone, it does not have definite degree with respect to R0. We conclude that either we are forced to
work with gauge transformations of nonzero degree or we should be using Rcone as R-matrix for
the cone. We cannot completely exclude the second possibility since �by definition� the factoriza-
tion �1,W� does not have any nontrivial morphism ending on it, so there are no R-charges to
check. But the symmetric end result, R1, is good justification for the procedure we have proposed.
And the moment map equation only makes sense if we use R0. One can also check that the flow
defined by �6.12� on the gauge orbit �7.8� flows to �=1.

C. Boundary flows in minimal models

Having argued for the general relevance of gauge transformations of nonzero degree, we now
return to minimal models and study boundary flows associated with perturbations by a boundary
condition changing operator. General aspects of such boundary flows in N=2 minimal models
were discussed recently in Ref. 36 and in Ref. 41. In particular, these works discuss the similarity
transformations relating the different minimal model branes at the topological level, as well as the
operators inducing these relations. Our flow equation �6.12� gives a handle on the complete flow
in the physical theory.

We will consider as an example the starting point

Q0 =�
0 0 x2 0

0 0 − x x3

xh−2 0 0 0

xh−4 xh−3 0 0
� . �7.13�

The R-matrix, obtained by the methods above is

�
1
2 − 4

h − x
h 0 0

0 1
2 − 1

h 0 0

0 0 − 1
2 + 1

h − x2

h

0 0 0 − 1
2 + 4

h

� . �7.14�

We have studied the flow induced by �6.12� on the orbit of Q0 under the gauge transformations
generated by
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V =�
�1 �3x 0 0

0 �2 0 0

0 0 − �2 �4x
2

0 0 0 − �1

� �7.15�

and find that it does converge to the diagonal

�
0 0 0 �x4

0 0 − �x 0

0 − �−1xh−1 0 0

�−1xh−4 0 0 0
� � Q1 � Q4, �7.16�

where � and � are the appropriate solutions of �7.5�. The R-matrix becomes diag�1/2
−4/h ,1 /2−1/h ,−1/2+1/h ,−1/2+4/h�, which is certainly the correct result for this factoriza-
tion.

We should note that the perturbation we have turned on in �7.13� is not the most relevant
between the two minimal model branes Q2 and Q3. We have chosen this one to illustrate that there
are various possible flow patterns in N=2 minimal models. In this simple case the range of
possibilities is essentially governed by the K-theory, isomorphic to ZH. One can create a free
K-theory �and make the perturbation in �7.13� the most relevant one� by considering an appropri-
ate orbifold.

In any case, the end result of the flow is consistent with the predictions made, for instance, in
Refs. 36 and 59.

D. D0-brane in quintic Gepner model

In Ref. 35, matrix factorizations were constructed which describe �at the topological level�
D0-branes at the Landau-Ginzburg orbifold point in the Kähler moduli space of the quintic
Calabi-Yau. We here want to address the issue whether these factorizations can be stable by
checking that the open strings stretched between this D0-brane and the rational tensor products of
minimal model branes satisfy the unitarity bound. While this does of course not settle the question
whether the D0-brane can become unstable far away from the large volume limit, it is certainly a
nontrivial check.

The superpotential of interest is W=
i=1
5 xi

5. The factorizations of Ref. 35 are tensor products
of minimal model factorizations in three of the five minimal factors together with a nonfactoriz-
able factorization in the remaining two factors. Since taking tensor products simply adds U�1�
charges, but does not affect the unitarity bound, it will suffice to consider this two-variable
factorization. We can factorize

x5 − y5 = �x − y��x4 + x3y + x2y2 + xy3 + y4� . �7.17�

One can see that the R-matrix associated with this factorization is diag�3/10,−3/10�. We want to
compute the charges of open strings between this factorization and the tensor product of minimal
model branes

f = � x − y

− y4 x4 �, g = �x4 y

y4 x
�, R = diag�3/5,− 3/5,0,0� . �7.18�

As computed in Ref. 35, there is one bosonic and one fermionic cohomology class between �7.17�
and �7.18�, represented by

0 = �y3 1 0 0

0 0 y3 x3 + x2y + xy2 + y3 � ,
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1 = � 0 0 − 1 1

x3 + x2y + xy2 + y3 − 1 0 0
� , �7.19�

respectively. We easily find

q�0� = 9
10, q�1� = 3

10 �7.20�

satisfying the unitarity bound 0�q� ĉ= 6
5 . We have also checked the open strings between the

D0-brane factorization and the other minimal model branes. They all satisfy the bound.

E. Decay of an unstable factorization

In this section, we give an example of a matrix factorization that is unstable and investigate to
what extent our flow �6.12� can detect this without having to check the charges of open strings.
The superpotential is W=x5+y5, and the factorization given by

funst = � x y 0

0 x3 y

y3 0 x
�, gunst = � x4 − xy y2

y4 x2 − xy

− x3y3 y4 x4 � ,

R = diag�7/10,− 1/10,− 1/10,1/10,1/10,− 7/10� , �7.21�

A morphism between this factorization and the tensor product of minimal model branes �7.18� is
given by

T =�
1 0 0 0 0 0

0 x − y 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
� �7.22�

and one can easily check that this field has R-charge − 1
10, violating the unitarity bound. �Note that

since T has scalar entries, it cannot be exact.� The cone over T is another copy of the tensor
product of minimal branes, thus exhibiting �7.21� as an unstable bound state, obtained by “con-
densing” a field with q�1 between two such objects. Namely, �funst ,gunst� is stably equivalent to

Funst =�
x y 0 0

− y4 x4 0 0

0 − x3 x4 − y

y3 0 y4 x
�, with corresponding Gunst. �7.23�

To be precise, we should note that �Funst ,Gunst� is really a cone over a brane and its own antibrane,
but via a field that is not the identity. As a consequence, �funst ,gunst� has a unitarity violating field
in the spectrum with itself. But since this field can easily be projected out by going to an appro-
priate orbifold, it should not be viewed as the cause of the instability.

In discussing the flow, it is useful to contrast the unstable factorization with a very similarly
structured stable �with the same caveat as before� bound state of two minimal model tensor
products, namely

Fstab =�
x y2 0 0

− y3 x4 0 0

0 − x3 x4 − y2

y 0 y3 x
�, Gstab, �7.24�

which can be reduced to
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fstab = �x y2 0

0 x3 y2

y 0 x
�, gstab = adj�fstab� . �7.25�

We have studied numerically the flow defined by �6.12� on the 12-parameter gauge orbit of
�Funst ,Funst� and �Fstab ,Gstab� generated by

�
�1 0 0 0 0 0 0 0

0 �2 x�3 y�4 0 0 0 0

0 0 �5 0 0 0 0 0

0 0 0 �6 0 0 0 0

0 0 0 0 �7 0 y�8 0

0 0 0 0 0 �9 x�10 0

0 0 0 0 0 0 �11 0

0 0 0 0 0 0 0 �12

� �7.26�

and

�
�1 0 0 0 0 0 0 0

0 �2 x�3 y2�4 0 0 0 0

0 0 �5 0 0 0 0 0

0 0 0 �6 0 0 0 0

0 0 0 0 �7 0 y2�8 0

0 0 0 0 0 �9 x�10 0

0 0 0 0 0 0 �11 0

0 0 0 0 0 0 0 �12

� , �7.27�

respectively. We find that starting from quite general initial conditions, �6.12� indeed drives
�Funst ,Gunst� to the split into the direct sum of two copies of the tensor product brane. On the other
hand �Fstab ,Gstab� flows to the direct sum of �fstab ,gstab� and a copy of the trivial factorization
�1,W�.

It is worthwhile emphasizing that this statement does not hold for all initial conditions. One of
the consequence of nonreductiveness is that the flow defined by �6.12� is not convex. Taking a
second derivative on the right-hand side does not produce something positive definite because
Q , �V ,Q���� �V† ,Q� ,Q�� in general. If the flow is not convex, there is no guarantee that sta-
tionary points will be unique. In the present case, there does exist a stationary point for the flow
close to funst ,gunst � �1,W�. But this point is a saddle point of the flow, i.e., it is unstable in the
sense of dynamical systems. One must account for this possibility if one wants to make sense of
�6.12� in general.

Another example of the same character as the one we have been discussing in this section
arises in the series of models W=xh+y3, with factorizations given by

f = �xn y 0

0 xn y

y 0 xh−2n� �7.28�

�and, as by now familiar, g=adj�f��. By considerations similar to those we have given above, one
finds that the factorizations �7.28� are stable when n�h /6 and �apparently� stable otherwise. �In
particular, for h�6, where W describes an E-type minimal model, these factorizations are all
stable.�
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F. A nonhomogeneous factorization

Lest we leave the impression that all matrix factorizations of quasihomogeneous polynomials
are quasihomogeneous, here is a counter-example.

The superpotential W=x3+y7 is one of the simplest superpotentials that is not a simple sin-
gularity. In fact, it is unimodular. Torsion free rank one modules over local rings of unimodular
singularities were classified in Ref. 60. It is a simple exercise to determine the associated matrix
factorizations. On the list for W=x3+y7, one finds the following one-parameter family of factor-
izations:

f = � x2 − �y5 xy

xy + �2y4 − �x + y2 � ,

g = � x − y2

�

xy
�

xy
� + �y4 − x2

� + y5� . �7.29�

For ��0, this is stably equivalent to the following factorization:

f̃ = � − xy5 �xy4 + y6 − x2

y6 x2 − �y5 xy

− x2 − �y5 yx + �2y4 − �x + y2� ,

�7.30�

g̃ = � � y − x

y x 0

− x �y4 y5 � ,

which is nonreduced, but has a limit as �→0. While W is quasihomogeneous with qx=2/3, qy

=2/7, we see that

Ef − f + R+f − fR− =
2

21
�� − y5 0

2�y4 − x
� =

2

21
���f , �7.31�

where

R = �R+ 0

0 R−
� =�

− 7
42 0 0 0

0 9
42 0 0

0 0 7
42 0

0 0 0 − 9
42

� . �7.32�

Since this ��f is the marginal deformation of the family �7.29�, it is a nontrivial cohomology class
�this can also be checked directly�. As a consequence, the matrix factorization �f ,g� is not quasi-
homogeneous.

It is interesting to ask for a geometric interpretation of this example. For example, one could
embed W=x3+y7 into the appropriate Calabi-Yau Landau-Ginzburg model, and try to identify a
mirror Lagrangian cycle. Nonhomogeneity of �f ,g� should be mirror to nonvanishing of the
Maslov class. Of course, it is not clear to what extent Lagrangians with nonvanishing Maslov
anomaly participate in mirror symmetry. The intriguing point is that the limit of �7.29� for �
→0 is actually quasihomogeneous and therefore might have a good mirror. One way to avoid the
paradox conclusion that the deformation of a nonanomalous Lagrangian is anomalous would be to
show that the brane described by this factorization is never stable on the moduli space. �It is
unstable in the Landau-Ginzburg model, as the examples in Sec. VII E.�

082305-26 Johannes Walcher J. Math. Phys. 46, 082305 �2005�

                                                                                                                                    



VIII. SUMMARY

For convenience and definiteness, we shall here give a summary of the main ingredients that
are proposed to enter into a stability condition for matrix factorizations.

As explained in Sec. II, the physical origin of stability conditions in string theory is the
grading by worldsheet R-charge. In the context of matrix factorizations, which originate in local
commutative algebra, it is also quite natural to consider the graded situation, so it would not seem
that physics has much input to give. Before repeating the claim that it does, it is worthwhile to fix
the convenient normalization of the grading: Physics suggests a normalization in which W has
charge 2, giving the field variables fractional charge, whereas a more standard mathematical
choice is to make all degrees integer.

With this in mind, we have associated to any matrix factorization

Q2 = W

of a Landau-Ginzburg potential W, satisfying the anomaly free condition that EQ−Q is cohomo-
logically trivial, a matrix R, defined by the conditions �4.8� and �4.20�,

EQ − Q = �Q,R� and Tr�RV� = 0 whenever �V,Q� = 0,

where we have argued that the latter condition would fix R uniquely. Via �4.11�, this induces a
grading, q, of the morphism spaces.

The choice of normalization of the grading is important because we intend to compare the
grading of morphisms with another natural quantity that can be associated to a Landau-Ginzburg
potential, namely the central charge

ĉ .

A mathematical quantity that is closely related to ĉ is the so-called “singular index” that appears
in singularity theory �see Ref. 61�, but it does not seem to have played a crucial role in the purely
algebraic context so far.

The basic idea, motivated by �-stability as we have explained, is to impose the unitarity
constraint �2.1�

0 � q � ĉ

as a stability condition on the category of topological D-branes.
The problem at this point, which is inherited from �-stability, is that it is not a priori clear

exactly how to impose this condition. For example, should it be imposed on all morphisms, or
only on all morphisms involving stable objects? Or should one rather attempt to define the stable
branes as a “maximal set” of objects satisfying this �and maybe some other� condition? Although
the latter option would seem to depend on too many arbitrary choices, such ambiguities might not
be unnecessary. The set of stable objects is expected to be unique only up to autoequivalences of
the topological category or monodromies in the moduli space.2,6

In the mathematical approach of Ref. 5, the problem is circumvented by postulating the
existence of Abelian subcategories at each point in moduli space, on which a stability condition
can be imposed in a more standard well-defined form.

We have argued here that there should be a way to identify uniquely a set of stable objects at
the Landau-Ginzburg point, essentially because our definition of the grading does not depend on
the rest of moduli space, and is hence insensitive to monodromies. A posteriori, this should also
provide an Abelian subcategory.

To gain further confidence that such an approach is possible, we have then proposed a relation
to a moduli space problem via a “moment maplike” flow equation �6.12�
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dQ

dt
= − �Q,�Vi,Q�� − Tr RVi��Vi,Q� ,

which is expected to provide the split of any given object into its stable constituents. We have
implemented this flow in various relevant examples, with reasonable results.
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We show how to use the quasi-Maxwell formalism to obtain solutions of Einstein’s
field equations corresponding to homogeneous cosmologies—namely Einstein’s
universe, Gödel’s universe, and the Ozsvath-Farnsworth-Kerr class I solutions—
written in frames for which the associated observers are stationary. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2009587�

I. INTRODUCTION

A particularly intuitive framework for obtaining and interpreting stationary solutions of Ein-
stein’s field equations is the so-called quasi-Maxwell formalism.2,5 Although such solutions have
been extensively treated in the past,1,7 this approach has been successfully used in recent times.3,4

In this paper we apply the quasi-Maxwell formalism in the case when the space manifold is a Lie
group with left-invariant metric and fields, and rediscover Einstein’s universe, Gödel’s universe
and the Ozsvath-Farnsworth-Kerr class I solutions, sometimes written in unconventional frames.

The organization of the paper is as follows: In the first section we briefly review the quasi-
Maxwell formalism for stationary spacetimes. In the second section we analyze the form taken by
the quasi-Maxwell equations when the space manifold is a Lie group. In the third section we
further specialize to Lie groups with class A Lie algebras. Finally, solutions of the quasi-Maxwell
equations for these space manifold are obtained and identified in the last section.

We use Einstein summation convention, irrespective of the position of the indices �which will
often be irrelevant as we will be leading with orthonormal frames on Riemannian manifolds�. We
will take Latin indices i , j, … to run from 1 to 3.

II. QUASI-MAXWELL FORMALISM

In this section we briefly review the quasi-Maxwell formalism for stationary spacetimes. For
more details, see Ref. 5.

Recall that a stationary spacetime �M ,g� is a Lorentzian four-manifold with a global timelike
Killing vector field T. We assume that there exists a global time function t :M→R such that T
=� /�t. The quotient of M by the integral curves of T is a three-dimensional manifold � to which
we refer as the space manifold. If �xi� are local coordinates in �, we can write the line element of
�M ,g� as

ds2 = − e2��dt + Aidxi�2 + �ijdxidxj

where �, Ai, and �ij do not depend on t. This allows us to interpret �, A=Aidxi and �=�ijdxi

� dxj as tensor fields on the space manifold. It turns out that � is a Riemannian metric in �,
independent of the choice of the global time function t. The differential forms G=−d� and H
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=−e�dA are also independent of this choice, and play a central role in the so-called quasi-Maxwell
formalism. We define the gravitational and gravitomagnetic �vector� fields G and H through

G = ��G, · � , �1�

H = ��H, · , · � �2�

where � is a Riemannian volume form in �� ,�� �which we assume to be orientable�.
We identify a vector v�Tp� with the unique vector field v along the integral curve of T

through p which is orthogonal to T and satisfies �*v=v �� :M→� being the quotient map�. Let
�X0 ,Xi� be a local orthonormal frame on M, where X0= �−g�T ,T��−1/2T. If

u = u0X0 + uiXi = u0X0 + u

represents the unit tangent vector to a timelike geodesic, the motion equation

�̃uu = 0

is equivalent to

�uu = u0�u0G + u � H�

with u0= �1+u2�1/2 �where �̃ is the Levi-Civita connection of �M ,g� ,� is the Levi-Civita connec-
tion of �� ,��, and u2=��u ,u��.

If we let Rij and �iGj represent the components of the Ricci tensor of � and of the covariant
derivative of G, Einstein’s equations for a perfect fluid with density �, pressure p and 4-velocity
u reduce to the quasi-Maxwell equations �QM�

div G = G2 + 1
2H2 − 8��� + p�u2 − 4��� + 3p� , �QM.1�

curl H = 2G � H − 16��� + p�u0u , �QM.2�

Rij + �iGj = GiGj + 1
2HiHj − 1

2H2�ij + 8���� + p�uiuj + 1
2 �� − p��ij� . �QM.3.ij�

We can use QM to solve Einstein’s equations by writing down a Riemannian metric for the
space manifold �eventually depending on unknown functions�, and solving for the fields �see Refs.
2–5�. For instance, the Schwarzchild solution is the static solution �i.e., H=0� obtained when we
consider a spherically symmetric space manifold with radial G.

A word of caution must be issued here: the quasi-Maxwell decomposition does depend on the
choice of the timelike Killing vector field T. Therefore when one solves the QM equations, one is
really solving for �M ,g ,T�. If a given space-time has a large enough isometry group, it can yield
many different solutions of QM.

The goal of this paper is the classification of solutions whose space manifolds are Lie groups
with left-invariant metrics, and whose vector fields G and H are left invariant.

III. QUASI-MAXWELL EQUATIONS FOR A LIE GROUP

Let the space manifold � be a three-dimensional Lie group. To choose a left-invariant metric
we fix a frame �Xi� of left-invariant vector fields and declare it to be orthonormal. All the infor-
mation about the geometry of the space manifold will then be encoded in the structure constants,
defined by
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�Xi,Xj� = Cij
k Xk = CkijXk.

The last equality emphasizes that there is no need to worry about the vertical position of the
indices, as we’re working with an orthonormal frame. The Christoffel symbols of the Levi-Civita
connection are then given by

� jk
i = 1

2 �Cijk + Ckij − Cjki� .

Letting G=Gi	
i, where �	i� is the dual basis of �Xi�, we have

�iGj = − �ij
k Gk.

Consequently,

div G = �iGi = − �ii
k Gk.

The Maurer-Cartan formula

d	i = − 1
2Cjk

i 	 j ∧ 	k

assures us that the exterior derivative is a linear transformation between the spaces 
L
1��� and


L
2��� of the left-invariant 1 and 2 forms, whose matrix for the bases �	1 ,	2 ,	3� of 
L

1��� and
�	2∧	3 ,	3∧	1 ,	1∧	2� of 
L

2��� is

D = �C132 C232 C332

C113 C213 C313

C121 C221 C321
� .

By definition, curl H is the only vector field satisfying

��curl H, · , · � = d���H, · �� .

Since vectors, 1 and 2 forms are related by the isomorphisms given by the metric and the volume
element of �, we obtain

curl H = �X1X2X3� · D · �H1

H2

H3
� .

The fact that �, G, and H are left-invariant imposes restrictions on the fluid generating the
gravitational field:

Proposition 2.1: The density and pressure are constant and u is left invariant.
Proof: QM.3. ii gives us

�� + p�ui
2 = − 1

2 �� − p� + constant.

Adding these three equations we obtain

�� + p�u2 = − 3
2 �� − p� + constant,

which substituted in Eq. QM.1 yields

− 3�� − p� + � + 3p = constant ⇔ 3p − � = constant.

From Eq. QM.2 we see that

�� + p�u0ui = constant ⇒ �� + p�2�u0�2ui
2 = constant
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⇔�� + p��u2 + 1��� + p�ui
2 = constant

⇔�− 3
2 �� − p� + constant + �� + p�� · �− 1

2 �� − p� + constant�
= constant

⇔ 1
4�2 + 5

4 p2 − 3
2�p + first order terms = constant.

But since �=3p+constant, we get

− p2 + first order terms = constant.

We conclude that � and p can take at most two distinct values in �, and, being so, the result
follows from their continuity.

Its now clear that for �+ p�0 the components of u are constant, which suffices to insure that
it is left invariant. For �+ p=0,u becomes undefined and we can take it to be left invariant �e.g.,
zero� without loss of generality. �

Corollary 2.2. The vector field u has the following proprieties:

diṽ u = 0

and

�̃uu = 0.

Proof: We have seen that we only have to consider the case �+ p�0. Euler’s equation for a
perfect fluid is

diṽ T = 0 ⇔	diṽ��u� + p diṽ u = 0

�� + p��̃uu = − �grad̃ p��



where �grad̃ p�� designates the component of grad̃ p orthogonal to u. Since � and p are constant
with �+ p�0, it follows that

	�� + p�diṽ u = 0

�� + p��̃uu = 0

⇔	diṽ u = 0

�̃uu = 0.



�

Corollary 2.3: The vector fields u and G are orthogonal.
Proof: The motion equation yields

�̃uu = 0 ⇒ �uu = u0�u0G + u � H� .

Since u is left invariant and u0 is a nonzero constant,

0 =
d

d�
��u,u� = 2���uu,u� = 2�u0�2��G,u� ⇒ ��G,u� = 0.

�

The following result relates solutions corresponding to conformally related left-invariant met-
rics.

Proposition 2.4. (Rescaling Lemma): From a solution �Gi ,Hj ,uk ,� , p� of QM, where the

left-invariant metric is associated to the frame �Xi�, we can construct a solution �Ĝi , Ĥj , ûk , �̂ , p̂�
for the left-invariant metric associated to the frame �X̂i=�Xi�, by setting
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Ĝi = �Gi,

Ĥj = �Hj ,

ûk = uk,

�̂ = �2� ,

p̂ = �2p .

Proof: Since

�X̂i,X̂j� = �2�Xi,Xj� = �2CkijXk = �CkijX̂k,

we obtain

Ĉkij = �Ckij ,

from which follows

�̂ jk
i = �� jk

i and D̂ = �D

and consequently

R̂ij = �2Rij, div̂ Ĝ = �2 div G, curl̂ Ĥ = �2 curl H .

Since that, by construction, �̂ij =�ij =ij, the result follows. �

It is easy to see that this rescaling corresponds to rescaling the full space-time metric by 1/�2.

IV. CLASS A LIE ALGEBRAS

If we take � to be connected and simply connected, Lie’s theorem9 guarantees that the space
manifold will be uniquely determined, up to isomorphism, by its Lie algebra. Therefore, the
consideration of all possible space manifolds becomes the classification of three-dimensional Lie
algebras—a much simpler task!

Following Ref. 8, we learn that this classification may be realized by means of a �2/0�
symmetric tensor M and a covector ��ker M, whose components in a given basis for the Lie
algebra are �i=Cki

k . It becomes natural to divide the classification in two classes: class A for Lie
algebras with �=0, and class B for Lie algebras with ��0.

We shall restrict ourselves to class A algebras. These are classified by the rank and signature
of the symmetric tensor M, and are six in total: the abelian algebra �corresponding to rank M
=0�, the Heisenberg algebra �corresponding to rank M =1�, the semidirect products so�1,1�›R2

and so�2�›R2 �corresponding to the two possible signatures for rank M =2� and the simple
algebras sl�2� and so�3� �corresponding to the two possible signatures for rank M =3�. In terms of
the more usual Bianchi classification, these are Bianchi types I, II, VI with parameter h=−1, VII
with parameter h=0, VIII and IX, respectively �see Refs. 6 and 7�.

Since Cki
k =0, M can be identified, using the left-invariant metric on which the Lie algebra

basis is orthonormal, with minus the linear operator yielding the exterior derivative restricted to

L

1. Therefore, class A Lie algebras are classified by the rank and signature of the matrix D of the
previous section. This matrix is also useful for computing the Ricci tensor:

Proposition 3.1: In a Lie group with class A Lie algebra and left-invariant metric, the matrix
of components of the Ricci tensor in the basis �	i � 	 j�, where �	i� is an orthonormal left-
invariant co-frame, is given by
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�Rij� = D2 − 1
2 tr�D2�I + cof�D� .

The proof of this result is straightforward but lengthy and will be omitted.
Since D is symmetric, we are guaranteed the existence of a left-invariant orthonormal co-

frame �	i� for which

D = diag�C132,C213,C321� .

Consequently, we can eliminate two unknowns in QM:

Proposition 3.2: There exists a left-invariant orthonormal frame �X̂i� for which the exterior

derivative matrix in the basis ���X̂k , · �� and ���X̂k , · , · �� is diagonal and G=GX̂1.
Proof: Choose �Xi� such that D=diag�a ,b ,c� and let G=GiXi. Since G is a closed 1 form, we

get

dG = d���G, · �� = 0 ⇔ aG1X1 + bG2X2 + cG3X3 = 0.

Rearranging the indices if necessary, the last equation tells us that:

�1� rank�D�=3⇒a ,b ,c�0⇒G=0;
�2� rank�D�=2⇒a=0,b ,c�0⇒G2=G3=0;
�3� rank�D�=1⇒a ,b=0,c�0⇒G3=0⇒G�X3. For the nontrivial case �i.e., G�0� it suffices

to choose X̂1= 1
�G�G, X̂3=X3 and X̂2 in such a way as to complete the basis as an orthonormal

basis;
�4� rank�D�=0: identical to �3�.

�
We end this section with three useful results easily proved from the diagonalization of the

exterior derivative matrix.
Proposition 3.3: Left-invariant vector fields have vanishing divergence.
Proof: If we choose a basis for which D is diagonal, we conclude that the only structure

constants not necessarily zero are those with no repeated indices, and consequently

� jk
i � 0 ⇒ �i, j,k� is a permutation of �1,2,3� .

The result then follows from the equation

div G = − �ii
k Gk.

�

Equivalently, we have
Proposition 3.4: d�
L

2�=0.
Corollary 3.5: G and H are orthogonal.
Proof: Since H is a left-invariant 2 form, the last result tells us that

dH = 0 ⇔ d�− e�dA� = 0

⇔− e�d� ∧ dA − e�d�dA� = 0

⇔G ∧ H = 0.

Using Proposition 3.2, we get

G1	1 ∧ �H1	2 ∧ 	3 + H2	3 ∧ 	1 + H3	1 ∧ 	2� = 0

⇔G1H1	1 ∧ 	2 ∧ 	3 = 0 ⇔ G1H1 = 0 ⇔ ��G,H� = 0.

�
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V. CLASSIFICATION

For now on we will consider only orthonormal bases �Xi� of left-invariant vector fields for the
class A Lie algebras of the space manifold such that D=diag�a ,b ,c�. From Proposition 3.1 we
have

�Rij� = diag� 1
2a2 − 1

2b2 − 1
2c2 + bc,− 1

2a2 + 1
2b2 − 1

2c2 + ac,− 1
2a2 − 1

2b2 + 1
2c2 + ab�.

A. Vacuum solutions with cosmological constant

For convenience, we begin with the computation of QM solutions such that �+ p=0. These
correspond to vacuum solutions with cosmological constant.

Proposition 4.1. The only QM vacuum solution with cosmological constant (�+ p=0) is
Minkowski spacetime, i.e., G=H=0 and �= p=0. The space manifold is then Ricci-flat (Ricci
=0), and hence we necessarily have D=diag�0,b ,b� for some b�R in an appropriate basis of the
space manifold’s Lie algebra.

Proof: Let �+ p=0. The indefiniteness of u allows us to assume, without loss of generality
�wlg�, that u=0. From the motion equation we get

0 = �u0�2G = 0 ⇔ G = 0.

Therefore,

QM.1 ⇔ 0 = 1
2H2 − 4��� + 3p� ⇔ H2 = 16�p .

Since �Rij� is diagonal,

QM.3 . ij�i � j� ⇔ 0 = HiHj .

Therefore, two of the components of H must vanish. Taking, wlg, H=HX1 and writing D
=diag�a ,b ,c�, we get

QM.2 ⇔ D · H = 0 ⇔ aH = 0.

If H=0, we obtain p=0⇒�=0.
If a=0,

QM.3 . ii�i � 1� ⇔ R22 = R33 = − 1
2H2 + 4��� − p� = 4��� − 3p� .

But

R22 = R33 ⇔ 1
2b2 − 1

2c2 = − 1
2b2 + 1

2c2 ⇔ b2 = c2 ⇒ R22 = R33 = 0,

yielding �−3p=0, and therefore �= p=0 �hence H=0�.
Thus the only solution with �+ p=0 is Minkowski spacetime, and verifies Ricci=0. From the

diagonalization of D, it is easily seen that a space manifold is Ricci-flat if and only if there is a
basis for its Lie algebra such that D=diag�0,b ,b� ,b�R. �

For the remaining computations we will therefore assume that �+ p�0.

B. Solutions with a flat space manifold

In this section we will compute all solutions of QM with flat space manifold �� ,��. Since this
is a three-dimensional manifold, the curvature tensor is completely determined by the Ricci tensor,
and therefore flatness is equivalent to Ricci-flatness.

Theorem 4.2: The QM solutions with flat space manifold (i.e., with Ricci=0) correspond to
Lie algebras with a basis for which D=diag�0,b ,b� ,b�R, and such that:

�1� (Gödel’s universe) b=0, G=�16�pX1, H=�32�pX2, u=X3 and �= p�R+;
�2� (Minkowski spacetime) G=H=0 , p=�=0 is a solution, for all b�R (cf. Proposition 4.1).
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Proof: We already saw that Ricci-flatness implies that we can choose D=diag�0,b ,b� ,b�R.
Arguing as in the demonstration of proposition 3.2, we can take G=GX1 and H=H1X1+H2X2.

Suppose first that G=0. In this case,

QM.2 ⇔ 0 = 16��� + p�u0u1

bH2 = − 16��� + p�u0u2

0 = 16��� + p�u0u3
�⇒ u1 = u3 = 0 ⇔ u = uX2.

We then have as the only nontrivial equation Eq. QM.3.ij �i� j�

QM.3.12 ⇔ H1H2 = 0.

If H1=0, then H=HX2. Therefore

QM.3 . ii ⇔
0 = −

1

2
H2 + 4��� − p�

0 =
1

2
H2 −

1

2
H2 + 8��� + p�u2 + 4��� − p�

0 = −
1

2
H2 + 4��� − p�

�
⇔H2 = 8��� − p�

8��� + p�u2 = − 4��� − p� = −
1

2
H2 �

and

QM.1 ⇔ 0 = 1
2H2 − 8��� + p�u2 − 4��� + 3p� ⇔ H2 = 4��� + 3p� .

Consequently,

4��� + 3p� = 8��� − p� ⇔ � = 5p ,

and therefore

QM.3.22 ⇔ 8��� + p�u2 = − 4��� − p� ⇔ 12pu2 = − 4p ⇒ p = 0 ⇒ � = 0.

If H2=0�⇒H=HX1�, we get

QM.3 . ii ⇔
0 = 4��� − p�

0 = −
1

2
H2 + 8��� + p�u2 + 4��� − p�

0 = −
1

2
H2 + 4��� − p� �

⇔	� = p

u = H = 0



and

QM.1 ⇔ 0 = 4��� + 3p� .

But since �= p, we obtain �= p=0.
Let us now consider the case G�0. From Corollary 3.5 we have
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��G,H� = 0 ⇔ H1 = 0 ⇔ H = HX2.

If b=0,

QM.2 ⇔ 0 = u1

0 = u2

0 = 2GH − 16��� + p�u0u3
� ⇔ 	u = uX3

GH = 8��� + p�u0u

 ,

and since

�G = �iGj	
i

� 	 j = − �ij
k Gk	

i
� 	 j = − �23

1 G1	2
� 	3 − �32

1 G1	3
� 	2

= − 1
2 �C123 + C312 − C231�G	2

� 	3 − 1
2 �C132 + C213 − C321�G	3

� 	2

= − 1
2 �0 − b + b�G	2

� 	3 − 1
2 �0 + b − b�G	3

� 	2 = 0,

equations QM.3ij�i� j� are trivial.
On the other hand,

QM.3 . ii ⇔0 = G2 −
1

2
H2 + 4��� − p�

0 = 4��� − p�

0 = −
1

2
H2 + 8��� + p�u2 + 4��� − p� �

⇔G2 =
1

2
H2 ⇒ H � 0

� = p

16�pu2 =
1

2
H2 �

from which

QM.1 ⇔ 0 = G2 + 1
2H2 − 8��� + p�u2 − 4��� + 3p�

⇔G2 = 4��� + 3p� = 16�p ⇒ H2 = 32�p and p � 0.

Consequently,

16�pu2 = 1
2H2 = 16�p ⇔ u2 = 1.

Equation QM.2.3 is immediately satisfied if we respect its only imposition: GHu�0. It can be
shown that this solution is in fact Gödel’s universe �see Sec. V F�.

We are now left with the case G�0 , b�0. We have

QM.2 ⇔ 0 = u1

bH = − 16��� + p�u0u2

0 = 2GH − 16��� + p�u0u3
�

Since �G=0, H=HX2 and u1=0, all of the QM.3. ij �i� j� are trivial with the exception of

QM.3.23 ⇔ QM.3.32 ⇔ 0 = 8��� + p�u2u3 ⇔ 0 = u2u3.

But since the components of u are constant,

082501-9 Homogeneous cosmologies from quasi-Maxwell J. Math. Phys. 46, 082501 �2005�

                                                                                                                                    



�uu = uiuj�Xi
Xj = u2u3��X2

X3 + �X3
X2� = 0.

If u3=0 we obtain u parallel to H and hence

motion equation ⇔ 0 = �u0�2G ⇔ G = 0,

yielding a contradiction.
If u2=0 , QM.2.2⇒H=0 and again the motion equation will lead us to G=0. Therefore we

must have b=0 whenever G�0. �

C. Solutions for Lie algebras with rank D=3

It is easily seen that a change of basis from �X1 ,X2 ,X3� to �−X1 ,X2 ,X3� changes the exterior
derivative matrix from D=diag�a ,b ,c� to D=diag�−a ,−b ,−c�. Therefore we can assume wlg that
a�0.

Theorem 4.3: The QM solutions with rank D=3 correspond to Lie algebras with a basis such
that a�0 and:

�1� (Einstein’s universe) D=diag�a ,b ,b�, with b�0, a�b, G=0, H=�a�a−b�X1,

u=−��a−b� /bX1 and �=−3p=3ab /32�;
�2� (Gödel’s universe) D=diag�a ,b ,b�, with b�0, G=0, H=�a�a−2b�X1, u=−�−a /2bX1 and

�= p=−ab /16�;
�3� (Ozsvath-Farnsworth-Kerr class I) D=diag�a ,b ,a−b�, with 16b�a−b��3a2⇔ 1

4a�b�
3
4a,

G=0, H=�4b�a−b�− 1
2a2X1, u=−a /�16b�a−b�−3a2X1, p=−a2 /64� and �=32b�a−b�

−5a2 /64�.

Proof: Let D=diag�d1 ,d2 ,d3�, with �idi�0. Then G=0, and consequently

QM.2 ⇔ diHi = − 16��� + p�u0ui ⇔ Hi = −
16��� + p�

di
u0ui

�the Einstein summation convention will not apply for the duration of this proof�. Therefore,

QM.3 . ij�i � j� ⇔ 0 = HiHj + 16��� + p�uiuj

⇔0 =
�16��� + p��2

didj
�u0�2uiuj + 16��� + p�uiuj

⇔0 = 16��� + p�uiuj�16��� + p�
didj

�u0�2 + 1�
⇔0 = uiuj or �u0�2 = −

didj

16��� + p�
.

We have to consider the following cases.

�1� ui1
=0 and:

�a� ui2
=0;

�b� �u0�2=−di2
di3

/16���+ p� �where �i1 , i2 , i3� is an arbitrary permutation of �1, 2, 3��;

�2� �u0�2=−didj /16���+ p�, for all i , j� �1,2 ,3� with i� j.

Let us do so:
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�1� �a� Suppose, wlg, that u2=u3=0⇒u=uX1. Then QM.2⇒H=HX1, and therefore

QM.3 . ii�i � 1� ⇔ R22 = R33 = − 1
2H2 + 4��� − p� .

However,

R22 = R33 ⇔ − 1
2a2 + 1

2b2 − 1
2c2 + ac = − 1

2a2 − 1
2b2 + 1

2c2 + ab

⇔b2 − c2 + ac − ab = 0

⇔�b − c��b + c� − a�b − c� = 0

⇔�b − c��b + c − a� = 0

⇔c = b or c = a − b ,

which leads us to the consideration of two subcases:

�i� c=b;
�ii� c=a−b.

Let us do so:
�i� We have D=diag�a ,b ,b�. The Rescaling Lemma �Proposition 2.4� allows us to choose a

=1. Let 
=8���+ p��0. The QM equations are:

QM.1 ⇔ 1
2H2 = 
 u2 + 1

2
 + 8�p;

QM.2 ⇔ H = − 2
 u0u;

QM.3 . ij �i � j� are already satisfied;

QM.3 . ii ⇔ 	R11 = 1
2 = 
 u2 + 4��� − p�

R22 = R33 = b − 1
2 = − 1

2H2 + 4��� − p� 

We then have

QM.3.11 + QM.3.22 ⇔ b = − 1
2H2 + 
u2 + 8��� − p� .

Inserting QM.1 in the last equation yields

b = − 
 u2 − 1
2
 − 8�p + 
 u2 + 8��� − p�

⇔b = − 1
2
 − 8�p + 8��� + p� − 16�p = 1

2
 − 24�p

⇔p =
1

24�
� 1

2
 − b� .

On the other hand,

QM.3.11 ⇔ 
 u2 = 1
2 − 4��� − p� = 1

2 − 4��� + p� + 8�p = 1
2 − 1

3
 − 1
3b .

Therefore,
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u2 =
3 − 2b

6

−

1

3
.

Similarly,

QM.1 ⇔ H2 =
2

3
�
 − 2b� + 1.

Now

QM.2 ⇔ H = − 2 
 u0u

⇒H2 = 4 
2�u0�2u2 ⇔
1

4 
2H2 = u4 + u2

⇔
1

4 
2�2

3
�
 − 2b� + 1� − �3 − 2b

6

−

1

3
�2

− �3 − 2b

6

−

1

3
� = 0

⇔�−
b

3
+

1

4
−

�3 − 2b�2

36
� 1


2 + �1

6
+

6 − 4b

18
+

2b − 3

6
� 1



+

2

9
= 0

⇔− b2 1


2 + b
1



+ 2 = 0 ⇔

1



=

− b ± 3b

− 2b2

⇔
 =
b

2
or 
 = − b .

Let 
=b /2. We easily obtain
H2 = 1 − b;

u2 =
1 − b

b
;

p = −
b

32�
;

� = − 3p .

To obtain the general solution, i.e., for D=diag�a ,b ,b�, we have to use the Rescaling Lemma.
We have

H2�a,b,b� = a2H2�1,
b

a
,
b

a
� = a2�1 −

b

a
� = a�a − b�

yielding the condition a�b. Similarly,

u2�a,b,b� = u2�1,
b

a
,
b

a
� =

1 − b/a

b/a
=

a − b

b
,

yielding the condition b�0. QM.2 requires only that H and u satisfy Hu�0. Finally,
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p�a,b,b� = a2�−
b/a

32�
� = −

ab

32�
.

It can be shown that all these solutions of QM are in fact Einstein’s universe in different frames
�see Sec. V F�.

If 
=−b, the procedure above yields the second family of solutions, corresponding to Gödel’s
universe.

�ii� We have D=diag�a ,b ,a−b�. Let us set a=1. The only changes with respect to the previ-
ous case occur in

QM.3 . ii ⇔ R11 = 2b�1 − b� = 8��� + p�u2 + 4��� − p�

R22 = R33 = 0 = −
1

2
H2 + 4��� − p� ⇔ H2 = 8��� − p� � .

From the last equation we obtain

QM.1 ⇔ 4��� − p� = 8��� + p�u2 + 4��� + 3p�

⇔8��� + p�u2 = − 16�p

⇔u2 = −
2p

� + p

⇒�p � 0 and � + p � 0� or �p � 0 and � + p � 0� .

The second condition implies �− p�−2p�0, contradicting H2=8���− p�. Since �+ p�0, H and
u must have opposite signs and

QM.2 ⇔ �8��� − p� = 16��� + p��1 −
2p

� + p
� − 2p

� + p

⇔� − p = 64�p�p − �� .

But �− p=0⇒H=0 ⇒
QM.2

u=0 ⇒
QM.3.11

R11=0⇔bc=0, which is absurd. We then have

p = −
1

64�

and

QM.3.11 ⇔ � =
32b�1 − b� − 5

64�
.

From the above-mentioned equations we can then obtain the expression for H2 and u2, in the
special case a=1. To obtain the general solution and the restrictions over a and b, we proceed as
in the previous case. This third family of solutions can be shown to be the Ozsvath-Farnsworth-
Kerr class I family of solutions.

�b� Let u1=0�⇒H1=0� and �u0�2=−bc /16���+ p�. We will prove that there are no solutions
satisfying these hypotheses. We start by checking that

u2+1=−bc� 16���+ p� ⇔8���+ p�u2=−1 � 2bc−8���+ p�, and hence

QM.1 ⇔ H2 = − bc − 8��� − p� .
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On the other hand,

QM.3.11 ⇔ 8��� − p� = R11 − 1
2bc

and so

QM.3.22 + QM.3.33 ⇔ R22 + R33 = 4��� − p� − 16�p

⇔p =
2R11 − 4R22 − 4R33 − bc

64�
.

It is now immediate that

� =
10R11 − 4R22 − 4R33 − 5bc

64�
.

On the other hand,

QM.2 ⇔ 	bH2 = − 16��� + p�u0u2

cH3 = − 16��� + p�u0u3

 ⇒ 	b2�H2�2 = �16��� + p��2�u0�2�u2�2

c2�H3�2 = �16��� + p��2�u0�2�u3�2 


⇔�H2�2 = − 16��� + p�
c

b
�u2�2

�H3�2 = − 16��� + p�
b

c
�u3�2� .

Using �QM.2.2�2, we get

QM.3.22 ⇔ R22 =
1

2
�H2�2 −

1

2
H2 + 8��� + p��u2�2 + 4��� − p�

⇔�1 −
c

b
�8��� + p��u2�2 = R22 − R11.

It is easily checked that there are no solutions with b=c, and hence

8��� + p��u2�2 =
b

b − c
�R22 − R11� .

As a consequence of �QM.2.2�2, we have

�H2�2 =
2c

c − b
�R22 − R11� .

A similar procedure will give us

8��� + p��u3�2 =
c

c − b
�R33 − R11�;

�H3�2 =
2b

b − c
�R33 − R11� .

From equation
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�H2�2 + �H3�2 = − bc − 8��� − p�

we obtain the restriction

− 3a2b + 3a2c + 4ab2 − 4ac2 − b3 − 4b2c + 4bc2 + c3 = 0.

To simplify this last expression we use the Rescaling lemma to set a=1 and divide the resulting
polynomial equation by b−c, thus obtaining

b2 + c2 + 5bc − 4b − 4c + 3 = 0.

We have

�u0�2 = −
bc

16��� + p�
⇒ bc�� + p� � 0.

The expression for �H3�2 implies that �b / �b−c���R33−R11��0, and since 8���+ p��u2�2= �b / �b
−c���R22−R11�⇔8�bc��+ p��u2�2= �b2c / �b−c���R22−R11�, the restriction implied by the expres-
sion for �u0�2 gives us

c

c − b
�R22 − R11� � 0.

If we proceed in a similar fashion using the expressions for �H2�2 and 8���+ p��u3�2, and then
compute the components of the Ricci tensor in terms of a and b, we will obtain the following
restrictions:

�i� b2+c2+5bc−4b−4c+3=0;
�ii� c�c−b��b−1��b−c+1��0;
�iii� b�b−c��c−1��c−b+1��0;
�iv� bc��+ p��0⇒64�bc��+ p��0⇒bc�3�b2+c2−3bc+4�b+c�−7��0.

From �i� we obtain b2+c2=−5bc+4b+4c−3, which when used in �iv� yields

�iv’� bc�−9bc+8b+8c−8��0.

It is now easy to use a geometrical argument to determine the incompatibility of restrictions �ii�,
�iii� and �iv’�: we just have to check that the regions determined in the bc-plane by these restric-
tions do not intersect.

�2� It is obvious that

ab = bc = ac ⇔ a = b = c .

Symmetry allows us to consider u2=u3=0, and thus we are back to the very first case we ana-
lyzed. �

D. Solutions with G=0

The next two results complete the classification of QM class A solutions with zero gravita-
tional field.

Proposition 4.4: There are no class A QM solutions with zero gravitational field correspond-
ing to Lie algebras with rank D=1.

Proof: Let D=diag�0,0 ,1�. Symmetry allows us to take H=H2X2+H3X3 ⇒
QM.2

u=uX3. There-
fore, QM.3.23⇔0=H2H3.

If H3=0 ⇒
QM.2

u=0, we have

QM.3 . ii ⇔ H2 = − 1.
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If H2=0, we have

QM.3 . ii ⇔ H2 = 8��� − p� + 1

8��� + p�u2 =
1

2
− 4��� − p� �

and
QM.1 ⇔ � = 5p ⇒ p � 0.

Using all this in QM.2.2 leads to p=0. �

Proposition 4.5: The only class A solution of QM with zero gravitational field corresponding
to a Lie algebra with rank D=2 is Minkowski spacetime.

Proof: We can assume a=0. Thus QM.2⇒u1=0, and therefore

�uu = u2u3��23
1 + �32

1 �X1 = 1
2u2u3�C123 + C312 − C231 + C132 + C213 − C321�X1

= 1
2u2u3�0 − c + b + 0 + b − c�X1 = �b − c�u2u3X1.

We then have

Motion equation ⇔ �b − c�u2u3 = u0�u2H3 − u3H2�
u3H1 = 0

u2H1 = 0
� ⇒ H1 = 0 or u = 0 .

It can be easily seen that no solutions exist for u=0, and that solutions featuring H1=0 and
u2u3=0 must verify b=c, and hence are Minkowski spacetime �cf. Theorem 4.2�.

We are left with the case H1=0 and u2u3�0. Using QM.2 we obtain

Motion equation ⇔ QM.3 . ij�i � j� ⇔ �u0�2 = −
bc

16��� + p�
.

The situation is now quite similar to the one in the demonstration of case 1b of Theorem 4.3.
Using the same procedure we obtain

u2 = ±
2�3

3
� b2

− b2 − c2 + bc
⇒ − b2 − c2 + bc � 0

and

H2 = ± �− 2bc ⇒ bc � 0.

But

1 + �u2�2 + �u3�2 = −
bc

16��� + p�
⇔ b2 + c2 + 5bc = 0

and, therefore,

− b2 − c2 + bc � 0 ⇔ b2 + c2 + 5bc − 6bc � 0 ⇔ bc � 0,

yielding a contradiction. �

E. Solutions with GÅ0

For solutions with G�0 we can assume G=GX1 with G�0, which implies H1=u1=0 and
D=diag�0,b ,c�. It is then easy to see that QM.1+QM.3.22+QM.3.33 yields

082501-16 J. Costa and J. M. Natário J. Math. Phys. 46, 082501 �2005�

                                                                                                                                    



G2 + 4��� − 5p� = 0.

These solutions must of course include the two-parameter family given by

H2 = �2G cos �;

H3 = �2G sin �;

u2 = − sin �;

u3 = cos �;

p = � =
G2

16�
;

b = c = 0,

corresponding to the Gödel universe. Apart from these, one can show that there exist further
solutions, belonging to the category 2 of Ozsvath classification �see Sec. V F�. Unfortunately, it is
not possible to obtain simple expressions for these solutions.

F. Identifying the solutions

Recall that a solution of Einstein’s field equations is said to be spacetime homogeneous if it
admits a transitive action by isometries. This will happen if, for instance, the solution is a left-
invariant metric on a �four-dimensional� Lie group.

The solutions we have been considering have in fact a Lie group structure, as M =R�� and
� is a three-dimensional Lie group.

Proposition 4.6: A stationary spacetime �M ,g� corresponding to a solution of QM for which
the space manifold �� ,�� is a Lie group with a left-invariant Riemannian metric and whose fields
G and H are left-invariant is a Lie group with a left-invariant Lorentzian metric.

Proof: One just has to check that

�X0,Xi�

is a left-invariant orthonormal frame, where �Xi� are the vector fields in M associated to a left-
invariant orthonormal frame on the space manifold. �

Since all spacetime homogeneous perfect fluid solutions which are left-invariant Lorentzian
metrics on a Lie group have been classified �see Refs. 6 and 7�, we can use this classification to
identify the solutions we have obtained. One must be careful to use frame-independent quantities
when comparing solutions; in most cases it suffices to compare the equations of state.
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We study the closed universe recollapse conjecture for positively curved
Friedmann–Robertson–Walker models with a perfect fluid matter source and a sca-
lar field which arises in the conformal frame of the R+�R2 theory. By including
ordinary matter, we extend the analysis of a previous work. We analyze the struc-
ture of the resulted four-dimensional dynamical system with the methods of the
center manifold theory and the normal form theory. It is shown that an initially
expanding closed FRW universe, starting close to the Minkowski space-time, can-
not avoid recollapse. We discuss the possibility that potentials with a positive
minimum may prevent the recollapse of closed universes. © 2005 American Insti-
tute of Physics. �DOI: 10.1063/1.2009648�

I. INTRODUCTION

A closed Friedmann–Robertson–Walker �FRW� universe is often considered almost synony-
mous to a recollapsing universe. This is mainly due to our experience with the dust and radiation
filled FRW models usually treated in textbooks. That this picture is misleading follows clearly
from an example found by Barrow et al.1 according to which an expanding homogeneous and
isotropic model with spatial topology S3 satisfying the weak, the strong, the dominant energy
conditions and the generic condition may not recollapse. Thus the problem of recollapse of a
closed universe to a second singularity is delicate already in the FRW case.

The closed-universe recollapse conjecture states roughly that a closed universe cannot expand
forever, provided that the matter content satisfies some energy condition and has nonnegative
pressures. The conjecture was found true in certain spatially homogeneous cosmologies,2 in cer-
tain spherically symmetric space-times3 and in space-times admitting a constant mean-curvature
foliation that possesses a maximal hypersurface.4 In these investigations it has proved useful to
demand that the dominant energy condition and the positive pressure criterion hold �see also
Ref. 5 for a dynamical system approach�.

In this paper we investigate the evolution of positively curved FRW models with a scalar field
having the potential which arises in the conformal frame of the R+�R2 theory6–8 and ordinary
matter described by a perfect fluid with energy density � and pressure p. The motivation for this
choice was presented in Ref. 9. The purpose of the present article is to generalize the results in
Ref. 9 by including ordinary matter and to correct the mistake found therein. �In Ref. 9, inequality
�11� has the wrong direction �compare with �12� in this paper�. This mistake and a different
rescaling �compare with �8�� were the sources of the erroneous conclusion that an initially ex-
panding universe avoids recollapse. In fact, inequality �11� must be reversed and as a consequence,
the admissible trajectories of the system �16� start below the line H=�2r in Fig. 1. This implies
that an initially expanded closed universe cannot avoid recollapse. Nevertheless, the calculations
and the mathematical analysis of the system �12� near the equilibrium �0,0,0� remain correct.
Moreover, the above-mentioned mistake does not essentially affect the rest of the paper.�
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The plan of the paper is as follows. In the next section we write down the field equations, as
a constrained five-dimensional dynamical system. We use the constraint equation to reduce the
dimension of the system to four and after a suitable change of variables the system becomes
quadratic. In Sec. III we analyze the structure of the equilibrium corresponding to the de Sitter
solution using the methods of the center manifold theory. Further, we find the so-called normal
form of the dynamical system describing a large, slowly expanding universe with low total energy
density; we show that such a universe cannot avoid recollapse. In the last section, we consider
potentials having a strict positive minimum and argue that this class of potentials prevent a closed
universe from recollapse.

II. REDUCTION TO A FOUR-DIMENSIONAL QUADRATIC SYSTEM

In General Relativity the evolution of FRW models with a scalar field �ordinary matter is
described by a perfect fluid with energy density � and pressure p� are governed by the Friedmann
equation,

� ȧ

a
	2

+
k

a2 =
1

3

� +

1

2
�̇2 + V���� , �1�

the Raychaudhuri equation,

�̈

a
= −

1

6
�� + 3p + 2�̇2 − 2V� , �2�

the equation of motion of the scalar field,

�̈ + 3
ȧ

a
�̇ + V���� = 0, �3�

and the conservation equation,

�̇ + 3�� + p�
ȧ

a
= 0. �4�

We adopt the metric and curvature conventions of Ref. 10. a�t� is the scale factor, an overdot
denotes differentiation with respect to time t, and units have been chosen so that c=1=8�G. Here
V��� is the potential energy of the scalar field and V�=dV /d�. We assume an equation of state of
the form p= ��−1��, with 2/3���2.

In what follows we assume that the potential function of the scalar field is

V��� = V��1 − e−�2/3��2 �5�

which arises in the conformal frame of the R+�R2 theory.7 The conformal equivalence of f�R�
theories to general relativity raises several conceptual problems, for example, does conformal

FIG. 1. The potential �5�.
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equivalence imply physical equivalence between the two theories? For an extensive discussion of
related issues see Ref. 8 and references therein. For our purposes the conformal transformation is
well behaved as far as f��R� does not vanish.

The flat plateau of this potential is responsible for an early inflationary period of the universe
and, for homogeneous spacetimes provides a mechanism of isotropization.7,11 From the field
equations it is easy to see that in an expanding universe the energy density of the scalar field,
namely

E = 1
2 �̇2 + V���

is a decreasing function of time. Since the energy density, �, of ordinary matter also decreases, it
may happen that in a future time, E be comparable to �. In particular, for closed, k=1, models,
once the scale factor reaches its maximum value and recollapse commences i.e., H�0, the term
3H�̇ in �3� is no longer a damping factor, but acts as a driving force which forces the field � to
oscillate with larger and larger amplitude. If this be the case, the repulsive effect of the cosmo-
logical term may drastically change the evolution of a classical FRW model.

Setting �̇¬y, ȧ /a¬H, we obtain from �1� the constraint equation

3H2 + 3k/a2 = � + 1
2 y2 + V��� , �6�

which we use to eliminate a from the evolution equations �2�–�4�. As a consequence, the dimen-
sion of the dynamical system is reduced to four and we obtain

�̇ = y ,

ẏ = − 3Hy − V���� ,

�7�
�̇ = − 3��H ,

Ḣ =
1

3
V��� −

1

3
y2 −

3� − 2

6
� − H2.

We remind the reader that the exponential potential which is popular in the literature of scalar-field
cosmologies has the nice property that V�	V, which allows the introduction of normalized vari-
ables according to the formalism of Wainwright and Ellis.10 For an exponential potential the
dimension of the dynamical system for a closed FRW model reduces to three.12

We simplify the system by rescaling the variables by the equations

� → �3/2�, y → �2V�y, � →
4V�

3
�, H →�4V�

3
H, t →� 3

4V�

t . �8�

Further, in order to take into account the equilibrium point corresponding to the point at “infinity”
and to remove the transcendental functions, it is convenient to introduce the variable u defined by

u ª e−�, �9�

and system �7� finally becomes

u̇ = − uy ,

ẏ = − u + u2 − 3Hy ,

�̇ = − 3��H ,
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Ḣ =
1

4
�1 − u�2 −

1

2
y2 −

3� − 2

6
� − H2. �10�

Note that under the transformation �9�, the resulted four-dimensional dynamical system �10� is
quadratic.

Remark: The system �10� is not an arbitrary “free” four-dimensional system. In view of �6� the
initial conditions have to satisfy the condition 3H0

2−�− 1
2 y0

2−V��0��0, or, in terms of the new
variables,

H0
2 −

1

3
� −

1

4
y0

2 −
1

4
�1 − u0�2 � 0. �11�

With a little manipulation of the equations �10� it can be shown that, once we start with initial
conditions satisfying at time t0 the inequality �11�, the solutions of the system satisfy

H�t�2 − 1
3��t� − 1

4 y�t�2 − 1
4 �1 − u�t��2 � 0

for all t
 t0. This is a general property of the Einstein equations, namely that the subsequent
evolution of the system is such that the solutions respect the constraint. We conclude that the phase
space of the system �10� is the set

� ª ��u,y,�,H� � R4:H2 − 1
3� − 1

4 y2 − 1
4 �1 − u�2 � 0� . �12�

III. STABILITY ANALYSIS

There are several equilibrium points of �10�. Some of them correspond to static universes with
a cosmological constant equal to �V�. In the study of the equilibrium points we note that u=1
corresponds to �=0, i.e., to the minimum of the potential and u=0 corresponds to �=�, i.e., to
the flat plateau of the potential. In the following we pay attention to the most interesting equilib-
rium solutions which are as follows.

EQ1: �u=0,y=0,�=0,H=1/2�. This corresponds to the de Sitter universe with a cosmologi-
cal constant equal to �V�. We analyze the flow of �10� near EQ1 in the next subsection.

EQ2: �u=1,y=0,�=0,H=0�. This corresponds to the limiting state of an ever-expanding
universe with H→0 while the scalar field approaches the minimum of the potential and the scale
factor goes to infinity. Equality in �12� which arises from the flat, k=0, case defines a set on the
boundary of �. We conclude that the point EQ2 which corresponds to the Minkowski solution, is
located on this boundary. The detailed structure of this equilibrium will be analyzed in Sec. III B.

As we shall see, both equilibria are non-hyperbolic, i.e., some or all of the eigenvalues of the
Jacobian have zero real parts. That means that the linearization theorem does not yield any
information about the stability of the equilibria and therefore, more powerful methods are needed.
The study of the qualitative behaviour of a dynamical system near a nonhyperbolic equilibrium
point is difficult even in two dimensions. There are two general methods for simplifying a dy-
namical system having a nonhyperbolic equilibrium. The first is the center manifold theory. Ac-
cording to the center manifold theorem, the qualitative behavior in a neighborhood of a nonhy-
perbolic equilibrium point q is determined by its behavior on the center manifold near q. Since the
dimension of the center manifold is generally smaller than the dimension of the dynamical system,
this greatly simplifies the problem �cf. Refs. 13 and also 14 for cosmological applications�. The
second method is the normal form theory, which consists in a nonlinear coordinate transformation
that allows to simplify the nonlinear part of the system �cf. Ref. 13 for a brief introduction�. Both
methods are used in the next two subsections.

A. Center manifold for the system at EQ1

It is easy to see that at the equilibrium point q= �u=0,y=0,�=0,H=1/2�, the Jacobian matrix
of �10� has one zero and three negative eigenvalues and, consequently the Hartman-Grobman
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theorem does not apply. The center manifold theorem implies that there exists a local three-
dimensional stable manifold through q �see, e.g., Ref. 13�. That means that all trajectories asymp-
totically approaching q as t→�, lie on a three-dimensional invariant manifold. Since q is a
nonhyperbolic fixed point, the topology of the flow near q is nontrivial and is characterized by a
one-dimensional local center manifold containing q. We prove the following result.

Proposition: The equilibrium point q= �0,0 ,0 ,1 /2� of �10� is locally asymptotically unstable.
In order to determine the local center manifold of �10� at q, we have to transform the system

into a form suitable for the application of the center manifold theorem. The procedure is fairly
systematic and will be accomplished in the following steps.

1. The Jacobian of �10� at q= �0,0 ,0 ,1 /2� has eigenvalues 0, −1, −3/2, and −3� /2 with
corresponding eigenvectors �−2,4 /3 ,0 ,1�T, �0,0 ,0 ,1�T, �0,1 ,0 ,0�T, and �0,0 ,3 ,1�T. Let T be the
matrix having as columns these eigenvectors. We shift the fixed point to �0, 0, 0, 0� by setting

H̃=H−1/2 and write �10� in vector notation as

ż = Az + F�z� , �13�

where A is the linear part of the vector field and F�0�=0.
2. Using the matrix T which transforms the linear part of the vector field into Jordan canonical

form, we define new variables, �x ,y1 ,y2 ,y3��x, by the equations

u = − 2x ,

y = 4
3x + y2,

� = 3y3,

H̃ = x + y1 + y3,

or in vector notation z=Tx, so that �13� becomes

ẋ = T−1ATx + T−1F�Tx� .

Denoting the canonical form of A by B we finally obtain the system

ẋ = Bx + f�x� , �14�

where f�x�ªT−1F�Tx�. In components system �14� is


ẋ

ẏ1

ẏ2

ẏ3

� = 
0 0 0 0

0 − 1 0 0

0 0 − 3/2 0

0 0 0 − 3�/2
�

x

y1

y2

y3

�
+ 

−
4

3
x2 − xy2

4

9
x2 − y1

2 −
1

2
y2

2 + �3� − 1�y3
2 − 2xy1 −

1

3
xy2 + �3� − 2�xy3 + �3� − 2�y1y3

16

9
x2 −

3

2
y2

2 − 4xy1 −
5

3
xy2 − 4xy3 − 3y1y2 − 3y2y3

− 3��xy3 + y1y3 + y3
2�

� .

�15�

3. The system �15� is written in diagonal form
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ẋ = Cx + f�x,y� ,

�16�
ẏ = Py + g�x,y� ,

where �x ,y��R�R3, C is the zero 1�1 matrix, P is a 3�3 matrix with negative eigenvalues
and f ,g vanish at 0 and have vanishing derivatives at 0. The center manifold theorem asserts that
there exists a one-dimensional invariant local center manifold Wc�0� of �16� tangent to the center
subspace �the y=0 space� at 0. Moreover, Wc�0� can be represented as

Wc�0� = ��x,y� � R � R3:y = h�x�, �x� � �; h�0� = 0, Dh�0� = 0 ,

for  sufficiently small �cf. Ref. 13, p. 155�. The restriction of �16� to the center manifold is

ẋ = f�x,h�x�� . �17�

According to Theorem 3.2.2 in Ref. 15, if the origin x=0 of �17� is stable �respectively, unstable�
then the origin of �16� is also stable �respectively, unstable�. Therefore, we have to find the local
center manifold, i.e., the problem reduces to the computation of h�x�.

4. Substituting y=h�x� in the second component of �16� and using the chain rule, ẏ
=Dh�x�ẋ, one can show that the function h�x� that defines the local center manifold satisfies

Dh�x��f�x,h�x��� − Ph�x� − g�x,h�x�� = 0. �18�

This condition allows for an approximation of h�x� by a Taylor series at x=0. Since h�0�=0 and
Dh�0�=0, it is obvious that h�x� commences with quadratic terms. We substitute

h�x� ¬ h1�x�
h2�x�
h3�x�

� = a1x2 + a2x3 + O�x4�
b1x2 + b2x3 + O�x4�
c1x2 + c2x3 + O�x4�

�
into �18� and set the coefficients of like powers of x equal to zero to find the unknowns
a1 ,b1 ,c1 , . . . .

5. Since y1 and y3 are absent from the first of �15�, we give only the result for h2�x�. We find
b1=32/27, b2=−32/81. Therefore, �17� yields

ẋ = − 4
3x2 − 32

27x3 + 32
81x4 + O�x5� . �19�

It is obvious that the origin x=0 of �19� is asymptotically unstable �saddle point�. The theorem
mentioned after �17� implies that the origin x=0 of the full four-dimensional system is unstable.
This completes the proof.

B. Normal form of the system near EQ2

Regarding the stability of this equilibrium, it is easy to see that the eigenvalues of the Jacobian
of �10� are, ±i ,0 ,0, i.e., it is totally degenerate. Nevertheless, it is the most interesting case
because in other equilibria the scalar field reaches the flat plateau, which is impossible if we
restrict ourselves to initial values of H smaller than �V�. We find the normal form of the system
�10� near the equilibrium point �u=1,y=0,�=0,H=0�. The idea of the normal form theory is the
following: Given a dynamical system with equilibrium point at the origin, ẋ=Ax+ f�x�, where A is
the Jordan form of the linear part and f�0�=0, perform a nonlinear transformation x→x+h�x�,
where h�x�=O��x�2� as �x�→0, such that the system becomes “as simple as possible.”

To write the system in a form suitable for the application of the normal form theory, we shift
the fixed point to �0, 0, 0, 0� by setting x=u−1 and the system becomes

ẋ = − y − xy ,
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ẏ = x + x2 − 3Hy ,

�20�
�̇ = − 3��H ,

Ḣ =
1

4
x2 −

1

2
y2 −

3� − 2

6
� − H2.

Now we make the nonlinear change of variables

x → x − y2 −
3� − 2

16
�x +

3

4
Hy ,

y → y + xy +
3� − 2

16
�y +

3

4
Hx ,

� → � ,

H → H +
3

8
xy ,

and keeping only terms up to second order, we obtain the normal form of the system, viz.,

ẋ = − y −
3

2
Hx ,

ẏ = x −
3

2
Hy ,

�̇ = − 3��H ,

Ḣ = −
3� − 2

6
� −

1

8
�x2 + y2� − H2. �21�

Note that the results are valid only near the origin.
Passing to cylindrical coordinates �x=r cos � ,y=r sin � ,�=� ,H=H�, we have

ṙ = −
3

2
rH ,

�̇ = 1,

�22�
�̇ = − 3��H ,

Ḣ = −
1

8
r2 − H2 −

3� − 2

6
� .

We note that the � dependence of the vector field has been eliminated, so that we can study the

system in the �r ,� ,H� space. The equation �̇=1 means that the trajectory in the x–y plane spirals
with angular velocity 1. The constraint �cf. �12��
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H2 �
1
3� + 1

4 y2 + 1
4x2

becomes

H2 �
1
4r2 + 1

3� . �23�

We observe that the first and third of �22� can be written as a differential equation

d�

dr
= 2�

�

r
,

which has the general solution

� = Cr2�, C 
 0. �24�

Therefore, for �=1, we obtain from �22�

ṙ = − 3
2rH ,

Ḣ = − 1
8r2 − 1

6Cr2 − H2.

It is convenient to rescale r by

r →� 24

4C + 3
r , �25�

so that the projection of �22� on the r–H plane is

ṙ = − 3
2rH ,

�26�
Ḣ = − r2 − H2.

This system belongs to a family of systems studied in 1974 by Takens.16 Note that the constraint
�23� becomes in the new variables

H2 � 2r2

and we conclude that the phase space of �26� is given by

− �2r � H � �2r . �27�

The phase portrait of �26� is shown in Fig. 2 �see Ref. 9 for a detailed analysis�. The system
�26� has invariant lines H=cr with c= ±�2. Since no trajectory can cross the line H=cr, on any
trajectory starting in the first quadrant below the line H=cr, H becomes zero at some time and the
trajectory crosses vertically the r axis. Once the trajectory enters the second quadrant, r increases
and H decreases. At first sight, it seems probable that an initially expanding universe may avoid
recollapse; in fact all trajectories starting above the line H=�2r, asymptotically approaches the
origin and the corresponding universes would be ever-expanding. But, �27� implies that all trajec-
tories with H
0 must start below the line H=�2r. In conclusion, inequality �27� leaves no room
for an ever-expanding closed universe, contrary to what was claimed in Ref. 9.

We conclude that for an initially expanding universe H continuously decreases while x and y
oscillate with decreasing amplitude. H becomes zero at some time and the scale factor reaches a
maximum value. Subsequently the universe begins to recollapse, i.e., H continuously decreases
below zero while x and y oscillate with increasing amplitude. A typical trajectory of �21� is shown
in Fig. 3, where the variable � was suppressed. One obtains qualitatively the same picture for all
�� �2/3 ,2�.
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IV. FURTHER COMMENTS

We have analyzed the qualitative behavior of a positively curved FRW model filled with
ordinary matter and containing a scalar field with the potential �5�. This model is conformally
equivalent to the positively curved FRW space-time in the simplest higher order gravity theory,
namely the R+�R2 theory. We have shown that even for large initial values of H, near the flat
plateau of the potential, the corresponding de Sitter equilibrium is asymptotically unstable. Fur-
ther, an initially expanding closed universe in the neighborhood of EQ2 cannot avoid recollapse.
This is in accordance to the well known global result concerning the closed universe recollapse
conjecture, namely that a closed universe recollapses provided that the strong energy condition
�SEC� is satisfied and there exists a maximal spacelike hypersurface �, i.e., the expansion is zero
on � �cf. Ref. 17�. In fact, it can be shown that for � oscillating around the minimum of the
potential, V�0�=0, the energy density, E, of the scalar field varies as E�a−3.18 Comparing this
with the time dependence of the density ��a−3� we arrive at the conclusion that for ��1, if at
some time t= t0

E � �, 2�̇2 − 2V � � + 3p ,

then the SEC on the total stress-energy tensor is satisfied for all t� t0. Hence the universe follows
the classical Friedmannian evolution and has a time of maximum expansion. The above mentioned
global theorem implies that this universe recollapses.

FIG. 2. The phase portrait of �26�.

FIG. 3. A trajectory of �21�.
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For open and flat models having potentials with a unique minimum, V�0�=0, we have shown
elsewhere,18 that in an expanding universe, the energy density � of ordinary matter, the Hubble
function H and the scalar field � asymptotically approach zero. This theorem was proved without
referring to the precise form of the potential. Putting all these results together, we may conjecture
that potentials with a minimum equal to zero, cannot provide a mechanism of late accelerating
expansion of the universe. On the other hand, in expanding universes with a potential having a
positive minimum, the scalar field rolls down to the minimum of the potential and this residual
cosmological term may explain the late accelerating expansion of the universe.19

We illustrate this idea by the example of the more general quadratic theory, derived from the
Lagrangian density R+�R2−2�. The corresponding potential in the Einstein frame is

V���� = V��1 − e−�2/3��2 + �e−2�2/3�. �28�

For every �
0, the functions V���� have the same qualitative behavior as �5� but, have a positive
minimum, say Vmin at some �m
0. Both Vmin and �m increase with increasing �.

We consider again expanding closed FRW models. It is easy to see that when V����=Vmin, the
system �7� has an equilibrium ��=�m ,y=0,�=0,H=�Vmin/3� representing the de Sitter solution.
It can be shown simply by the linearization theorem that this equilibrium is stable. To avoid
complicating expressions for the eigenvalues we proceed as in Sec. II and obtain the following
system �compare to �10��:

u̇ = − uy ,

ẏ = − u�1 − u� + �u2 − 3Hy ,

�29�
�̇ = − 3��H ,

Ḣ =
1

4
�1 − u�2 +

�

4
u2 −

1

2
y2 −

3y − 2

6
� − H2,

with �=� /V�. The equilibrium point

p = �� =
1

1 + �
, y = 0, � = 0, H =

1

2
� �

1 + �
	

corresponds to the de Sitter solution with a cosmological term equal to Vmin. Linearization of �29�
near p is sufficient to show that this point is a sink �all eigenvalues of the Jacobian matrix of �29�
have negative real parts�. Therefore p attracts all nearby solutions and initially expanding closed
universes enter a phase of accelerating expansion. This attracting property of the de Sitter solution
for expanding models is well known from the cosmic no-hair conjecture and is not restricted only
to isotropic cosmology. We conclude that �=0 in �28� is a bifurcation value for closed models that
recollapse or not.

However, de Sitter universe is not a global attractor for �29�. Numerical experiments show that
for highly curved models, or models filled with an excess of ordinary matter, there are solutions of
�29� which recollapse. Conditions to prevent the premature recollapse of closed models were given
in Ref. 20.

Our results are based on the analysis of the behavior of the dynamical system �10� near the
equilibrium solutions. A rigorous proof of the closed universe recollapse conjecture may come
from the investigation of the global structure of the solutions of �2�–�4� with k= +1. The study of
the same question for Bianchi-IX models is an interesting challenge for mathematical relativity.
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Hamiltonian systems, with bisymplectic structure, are known to model a wide
range of interesting phenomena occurring in optics, oceanography, biochemistry,
geology, and materials science. Examples of such systems are nonlinear
Schrödinger �NLS� equations and Klein-Gordon �KG� equations. The paper focuses
on a general class of the former and presents a linear stability theory for the
interaction of a basic class of periodic traveling wave solutions, which exploits the
geometric structure of the system. A criterion for linear instability is derived.
Additionally, for the qualitatively tractable cases, criteria for linear instability are
given explicitly in terms of: the amplitudes of the modes; the parameters of the
system that characterize the medium as well as the interaction between component
modes; and, when the solutions of the system are both time-and space dependent,
the wave numbers. An extension to the coupled NLS equations case study is intro-
duced, namely the consideration of a related class of coupled KG equations, which
has the potential to lead to further development for the underlying bisymplectic
systems theory. © 2005 American Institute of Physics. �DOI: 10.1063/1.1996831�

I. INTRODUCTION

Bisymplectic systems1 appear in many areas of the physical sciences. Formally, they are
dynamical systems, describable by a Hamiltonian function, with bisymplectic structure. To put
such systems into context, recall that classical symplecticity considers a system of Hamiltonian
partial differential equations �PDEs� based on a single symplectic operator and a Hamiltonian
function. Bisymplecticity naturally extends this concept by requiring that a distinct symplectic
operator is associated with each of two coordinates �in this paper, these coordinates will be a
single spatial direction and time�. Consequentially, bisymplecticity will contain more geometric
information than its classical �symplectic� counterpart.

There is a plethora of PDEs that can be cast into a bisymplectic framework. Examples include
the semilinear wave equation,2 the water wave equations3,4 and classes of coupled nonlinear
Schrödinger �CNLS� equations5 as well as classes of coupled Klein-Gordon �CKG� equations.2

Therefore, since there are numerous members of the bisymplectic systems family and bisymplec-
ticity has more to offer than classical symplecticity, it is highly motivational to acquire the addi-
tional detail revealed by the bisymplectic structure.

The objective of this paper is to present a theory for the instability of multiphase wave-train
solutions of a general class of CNLS equations by casting the system into a bisymplectic frame-
work. The purpose is to demonstrate what can be achieved through exploiting the structure of
bisymplectic systems.

The specific class of CNLS equations considered are those that can be expressed as

a�Electronic mail: f.laine-pearson@surrey.ac.uk
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i� jMj,T + idjMj,X + � jMj,XX + �
�=1

N

� j��M��2Mj = 0, for j = 1, . . . ,N ,

where subscripts in T and X �after the comma� denote partial derivatives, Mj=Mj�X ,T� are the
modes, and � j�0, dj, � j�0, � j�, for j, �=1, . . . ,N, are real-valued scalars with the usual hypoth-
esis that � j�=��j. From now on, these equations will be referred to as the “N CNLS equations.”
Roskes6 remarked that similar equations can be derived from multiphase envelope equations for
weakly nonlinear conservative physical systems. Moreover, these types of systems are known to
appear in optics applications.7 They are also associated with CKG equations, which have been
used to model, and subsequently analyze, a wide variety of physical phenomena such as disloca-
tions in metals, processes in DNA double helices, and wave processes in bilayers as well as crack
propagation in composites �see the literature, Refs. 8–12, for further details�. In particular, CNLS
equations can be constructed to govern the modes of weakly nonlinear solutions of CKG equa-
tions; for recent interest see Khusnutdinova et al.13,14

It is well known that CNLS equations can be formulated as an infinite-dimensional Hamil-
tonian system �illustrated by Bridges and Laine-Pearson5 for N=2�. However, there are two dis-
advantages of the Hamiltonian formulation, namely

�1� the symplectic structure is on an infinite-dimensional phase space;
�2� a function space is required for the X-dependence.

In contrast, the bisymplectic formulation is advantageous as it is posed on a phase space of
finite dimension. In this paper, it will be shown that N CNLS equations can be re-expressed using
such a formulation.

The theory presented will indicate that in systems with N-phase wave trains and a bisymplec-
tic structure, there are natural 2N-parameter families of wave trains with a variational principle
and a geometric instability condition. These results are presented for the N CNLS equations when
accompanied by the class of solutions

Mj�X,T� = M0je
i�j�X,T�, for j = 1, . . . ,N ,

with complex-valued scalars M0j and where � j�X ,T� depends linearly on X and T; that is, say,
� j�X ,T�=� jT+kjX, where ��1 , . . . ,�N ,k1 , . . . ,kN� are linked with the 2N-parameter family. More-
over, since these exact solutions are associated with a generalized toral symmetry of the N CNLS
equations,5 their linear stability equation can be analyzed explicitly. It will be shown that obtaining
instability results for the N CNLS case study rests on the analysis of a 2Nth-order polynomial
equation, which also can be analyzed explicitly. Inevitably, a complete investigation into such an
equation will increase in difficulty as N increases.

Incidentally, the 2Nth-order stability polynomial equation can be thoroughly investigated
given N small enough. Furthermore, only considering X-independent solutions will remove the
odd coefficients of the polynomial equation, making the sufficient conditions for instability fully
obtainable for N�4 �deduced in Sec. IV�. Some of these tractable cases have already been
considered in the literature: the case N=1 is a standard result6 and the case N=2 has been
completely discussed.5 In this exposition, the cases N=3,4 are qualitatively explored in full
�motivated by the belief that these cases have previously only been partially investigated�; in
addition, remarks are made regarding partial results for arbitrary N. Additionally, kj�0 is consid-
ered for the tractable cases N=1,2, which are fully explored, resulting in criteria for linear
instability of �X ,T�-dependent solutions.

The paper is organized as follows. In Sec. II a general system of N CNLS equations is
re-expressed as a bisymplectic system. A generalization of the instability theory for two-phase
solutions �given in Bridges and Laine-Pearson5� to multiphase solutions is presented and applied
in Sec. III so that the associated stability polynomial is obtained. In Sec. IV, the stability polyno-
mial equation is analyzed in full for the tractable cases. For kj�0, instability criteria are deter-
mined by evaluating the polynomial equation and are found to be based on the parameters of the
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governing equations, the amplitudes �M0j�, and the wave numbers kj. �For brevity, the instability
results when kj=0, for all j, are relegated to Appendix A.� A particular case for N=2 when kj

�0 is presented �primarily for illustration of how the conditions for linear instability may simplify
when more qualitative information is known, or can be deduced, about the modes and associated
parmaeters� for the reduction of the arbitrary superposition of two traveling wave trains with
quasiperiodic motion to synchronized counterpropagating waves, determining that the interaction
of a pair of stable component periodic traveling waves can be stable and also that an unstable
component periodic traveling wave may stabilize under the influence of a stable one. The paper
concludes �Sec. V� with a short discussion on the case study as well as an introduction to a more
challenging system related to the N CNLS equations that also has a bisymplectic structure �a class
of CKG equations� but does not have the luxury of exact solutions associated with a symmetry of
the governing equations.

II. A BISYMPLECTIC FRAMEWORK FOR CNLS EQUATIONS

Consider N CNLS equations expressed in the following form:

i� jMj,T + idjMj,X + � jMj,XX + rjMj = 0, for j = 1, . . . ,N , �2.1�

where subscripts in T and X �after the comma� denote partial derivatives, and

r = �a, where r =�
r1

r2

]

rN

�, � =�
�11 �12 ¯ �1N

�21 �22 ¯ �2N

] ] � ]

�N1 �N2 ¯ �NN

� and a =�
�M1�2

�M2�2

]

�MN�2
� ,

with real-valued scalars � j�0, � j�0, dj, and � j�, for j ,�=1, . . . ,N, which characterize the me-
dium and the interaction between component modes Mj=Mj�X ,T�. To cast system �2.1� into a
bisymplectic framework, it is necessary that r is associated with a symmetric matrix �otherwise a
suitable functional cannot be constructed, which is a necessary requirement so that system �2.1�
can be rewritten as a bisymplectic system; this will be elaborated on in due course�. Therefore,
assume that � j�=��j for all j ,�. It is also beneficial to scale away the dj. This is accomplished by
calling on the substitution

Mj = ei��jT+�jX�M̂ j, where � j =
dj

2

4� j� j
and � j = −

dj

2� j
.

So, the interest now lies with the following set of N CNLS equations:

i� jM̂ j,T + � jM̂ j,XX + �
�=1

N

� j��M̂��2M̂ j = 0, for j = 1, . . . ,N . �2.2�

It is this transformed system that will be cast into a bisymplectic framework. �Incidentally, system
�2.1� can also be directly manipulated into a bisymplectic framework, but the formulation is
unnecessarily complicated—this matter will be readdressed in Sec. V�.

To cast system �2.2� into a bisymplectic framework, introduce real variables q2j−1 and q2j such
that

M̂ j = q2j−1 + iq2j, for j = 1, . . . ,N .

Furthermore, introduce the associated real variables p2j−1 and p2j, satisfying the following expres-
sions:
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� jM̂ j,X = � j
�

�X
�q2j−1 + iq2j� = p2j−1 + ip2j .

By using the q2j−1, q2j, p2j−1, and p2j coordinates to construct the vector

Z�X,T� = �q�X,T�,p�X,T��T � R4N,

where

q = �q1,q2, . . . ,q2N−1,q2N�T and p = �p1,p2, . . . ,p2N−1,p2N�T,

system �2.2� can be re-expressed as

MZT + KZX = �S�Z� , �2.3�

where

M =�
− �1J 02 ¯ 02 02 02 ¯ 02

02 − �2J ¯ 02 02 02 ¯ 02

] ] � ] ] ] � ]

02 02 ¯ − �NJ 02 02 ¯ 02

02 02 ¯ 02 02 02 ¯ 02

02 02 ¯ 02 02 02 ¯ 02

] ] � ] ] ] � ]

02 02 ¯ 02 02 02 ¯ 02

� ,

K = 	02N − I2N

I2N 02N

, J = 	0 − 1

1 0

 ,

0 j and I j are the j	 j zero matrix and identity matrix, respectively. A fundamental underpinning of
Eq. �2.3� is that both matrices M and K are skew-symmetric. The symmetry requirement � j�

=��j permits the construction of the functional

S�Z� = �
j=1

N
1

2� j
�p2j−1

2 + p2j
2 � +

1

4�
�=1

N

�
j=1

N

� j��q2j−1
2 + q2j

2 ��q2�−1
2 + q2�

2 � .

The gradient of this functional is taken with respect to the standard �Euclidean� inner product on
R4N, resulting in the vector �S�Z�= �Sq ,Sp�T, where

Sq = �r̂1q1, r̂1q2, . . . , r̂Nq2N−1, r̂Nq2N�T,

Sp = 	 1

�1
p1,

1

�1
p2, . . . ,

1

�N
p2N−1,

1

�N
p2N
T

,

with

r̂ j = �
�=1

N

� j��q2�−1
2 + q2�

2 � .

We conclude that system �2.2� has a “bisymplectic system” form, as it can be re-expressed as
system �2.3�, namely a system that has two distinct symplectic operators �M and K� associated
with each of two coordinates �T and X, respectively�. Additionally, it is noted that system �2.2� cast
as system �2.3� is a generalization of a result deduced by Bridges and Laine-Pearson.5
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III. DETERMINING THE STABILITY POLYNOMIAL FOR A CLASS OF SOLUTIONS

A basic class of solutions of system �2.2� take the form

M̂ j�X,T� = M̂0je
i
j�X,T�, where 
 j�X,T� = � jT + kjX , �3.1�

for j=1, . . . ,N, with complex-valued scalars M̂0j. Assume such solutions are 2�-periodic in 
 j for
each j. Substituting the coupled-wave solution �3.1� into system �2.2� results in a set of relations

for the parameters � j, kj, � j, � j, � j� and the amplitudes M̂0j, namely

�a0 = b, a0 =�
�M̂01�2

�M̂02�2

]

�M̂0N�2
� and b =�

�1�1 + �1k1
2

�2�2 + �2k2
2

]

�N�N + �NkN
2
� . �3.2�

The approach that follows is a generalization �from N=2 to arbitrary N� of results contained in a
sister paper.5 The family of solutions �3.1� can be re-expressed in bisymplectic coordinates by

introducing Z�X ,T�= Ẑ���, where �= �
1 ,
2 , . . . ,
N�, such that

Ẑ��� = G���X,T��U , �3.3�

with a starting point

U = �U1, . . . ,U4N�T � R4N,

where

M̂0j = U2j−1 + iU2j and � jkjM̂0j = U2N+2j − iU2N+2j−1, �3.4�

and an orthogonal matrix

G��� = R�
1� � ¯ � R�
N� � R�
1� ¯ � R�
N� � R4N	4N,

where

R�
 j� = 	cos 
 j − sin 
 j

sin 
 j cos 
 j

 for j = 1, . . . ,N .

It is emphasized that the approach embeds the family of solutions Z�X ,T�= Ẑ��� in
�X ,T ,�1 , . . . ,�N ,k1 , . . . ,kN�-space, and so the introduction of � has reduced 2+2N variables to N
independent variables 
 j. For then the geometry of Eq. �2.3�—reformulated from system �2.2�—
and the character of solutions �3.1� suggests the association of 2N functionals Pj :R4N→R and
Qj :R4N→R such that

Pj�Ẑ� = 1
2 �MẐ
j

,Ẑ� and Qj�Ẑ� = 1
2 �KẐ
j

,Ẑ�

�where the subscript 
 j denotes partial differentiation with respect to 
 j�, which satisfy MG
j
U

= �Pj�Ẑ� and KG
j
U= �Qj�Ẑ�. Then, Eq. �2.3�, with the substitution Z�X ,T�= Ẑ���, can be re-

expressed as

�
j=1

N

�� j � Pj�Ẑ� + kj � Qj�Ẑ�� = � S�Ẑ� ,

and as such characterizes Ẑ as a critical point of S�Ẑ� restricted to level sets of the Pj and Qj, with
the components � j and kj cast as Lagrange multipliers; in other words, the expression can be

082701-5 Instabilities of multi-phase wave trains in NLS eq J. Math. Phys. 46, 082701 �2005�

                                                                                                                                    



interpreted as the necessary condition for a constrained variational principle. The nondegeneracy

condition for the basic state Ẑ is given by the following expression:

det�
�P

��

�P

�k

�Q

��

�Q

�k
� � 0, �3.5�

where

�P

��
=�

�P1

��1
¯

�P1

��N

] � ]

�PN

��1
¯

�PN

��N

� and
�P

�k
=�

�P1

�k1
¯

�P1

�kN

] � ]

�PN

�k1
¯

�PN

�kN

�;

similarly,

�Q

��
=�

�Q1

��1
¯

�Q1

��N

] � ]

�QN

��1
¯

�QN

��N

� and
�Q

�k
=�

�Q1

�k1
¯

�Q1

�kN

] � ]

�QN

�k1
¯

�QN

�kN

� .

The entries of the matrix presented in expression �3.5� encode information regarding the linear

stability problem for the basic state Ẑ=GU. The linear stability problem associated with basic state
�3.3� and governing equation �2.3� is formulated by letting

Z�X,T� = G���X,T���U + V̂��,X,T�� ,

where V̂�� ,X ,T� is a perturbation considered for fixed � j and kj and is assumed to be 2�-periodic

in each 
 j. Substituting into system �2.3� and linearizing about Ẑ gives

MV̂T + KV̂X = LV̂, where L = D2S�U� − �
j=1

N

�� jD
2Pj�U� + kjD

2Qj�U�� ,

due to Pj�Ẑ�= Pj�U� and Qj�Ẑ�=Qj�U�. The spectral problem associated with this equation, ob-

tained by letting V̂�� ,X ,T�=Re�eT+i�XV�� ; ,���, is

LV = MV + i�KV, V � C4N.

The entries of condition �3.5� will now be calculated. First, note that Pj and Qj evaluate to the
following:

Pj�U� = 1
2� j�U2j−1

2 + U2j
2 � and Qj�U� = U2j−1U2N+2j − U2jU2N+2j−1.

Therefore, under the assumption that � is invertible

�P1�U�,P2�U�, . . . ,PN�U��T = 1
2� �−1b

and
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�Q1�U�,Q2�U�, . . . ,QN�U��T = � �−1b ,

with

� =�
�1 0 ¯ 0

0 �2 ¯ 0

] ] � ]

0 0 ¯ �N

�, � =�
�1k1 0 ¯ 0

0 �2k2 ¯ 0

] ] � ]

0 0 ¯ �NkN

� ,

which is determined by noting the first set of expressions �3.4�, consequently, relation �3.2� can be
used. Hence

�P

��
=

1

2
� �−1�,

�P

�k
= � �−1�,

�Q

��
= � �−1� ,

and

�Q

�k
= 2� �−1� + diag��1�M̂01�2, . . . ,�N�M̂0N�2� ,

with the last evaluation simplified by noting relation �3.2�. A definition for linear instability now
follows.

Given

�̂��,�� ª det�2 �P

��
+ ��	�P

�k
+

�Q

��

 + �2�Q

�k
�, where � = − i .

If �̂�� ,��=0 for some ��R and ��C with Im����0 and ���2+ ���2 sufficiently small, then the

basic state Ẑ���=G���U is “linearly unstable.” �The above definition is similar to the one used for
two-phase solutions5 and is consistent with the theory developed by Bridges.3� For the N CNLS

system, the introduction of = i� into the spectral problem results in �̂�� ,��=0, which is a
polynomial equation with real coefficients.

Therefore, to determine sufficient conditions for linear instability, it is enough to study the

qualitative aspect of the roots of the 2Nth-order polynomial equation �̂�� ,��=0. This deduction
agrees with the expected outcome from implementing a classical approach to the linear stability
problem, which usually consists of taking a solution of interest plus a �suitable� perturbation and
then substituting the perturbed solution directly into the particular system �in this case, N CNLS
equations�. Such a classical approach is illustrated, for instance, by Roskes6 when N=2 and kj

=0.

IV. EVALUATING THE STABILITY POLYNOMIAL

Returning to �̂�� ,��=0, determining when

at least one � exists such that Im��� � 0, �4.1�

will encapsulate sufficient conditions for linear instability. Fortunately, the task is less demanding
when kj=0 for all j=1, . . . ,N, i.e., X-independent basic solutions. In particular, determining a
complete description of the parameter space where requirement �4.1� occurs is tractable for N
�4.

Under the assumption that kj=0 for all j=1, . . . ,N, the components of the matrix given in
expression �3.5� simplify to
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�P

��
=

1

2
��−1�,

�P

�k
=

�Q

��
= 0,

�Q

�k
= diag��1�M̂01�2, . . . ,�N�M̂0N�2� .

Therefore, obtaining stability information relies on the analysis of the roots of the even polynomial
equation of order 2N

a2N�̂2N + a2�N−1��̂
2�N−1� + ¯ + a2�̂2 + a0 = 0, with �̂ =

�

�
, �4.2�

where the coefficients a2�, for �=0,1 , . . . ,N, follow a predictable pattern—this is detailed in

Appendix B; additionally, the rescaling of � to �̂ has removed the parameter � from the assign-
ments of the coefficients a2�. Furthermore, a complete qualitative description of the parameter
space satisfying requirement �4.1�, when � is governed by Eq. �4.2�, can be given for N�4. For
completeness, these analyses are presented in Appendix A; some remarks are also made regarding
partial descriptions of the parameter space satisfying requirement �4.1� for arbitrary N.

Now, consider kj�0. For N�2, a full qualitative description of the parameter space satisfying
requirement �4.1� can be given for the one-phase and two-phase solutions with nonzero kj. These
cases will be presented, followed by remarks regarding arbitrary N as well as an application of the
case N=2 for a family of synchronized counterpropagating wave trains.

A. A single wave

The single wave basic state M̂1�X ,T�=M̂01e
i��1T+k1X�, where ��1 ,k1� satisfy �11�M̂01�2=�1�1

+�1k1
2, determined from relation �3.2�, has a quadratic stability equation

a2�̂2 + a1�̂ + a0 = 0,

where a2=�1
2, a1=4�1�1k1 and a0=2�1�2�1k1

2+�11�M̂01�2�. For a general quadratic equation, the

existence of at least one �̂ with nonzero imaginary part �requirement �4.1�� is confirmed whenever
a1

2−4a2a0�0 holds. Since a2 ,a1 ,a0 are known, the condition evaluates to �1�11�0, which is the
same for when k=0 �confirmed in Appendix A�.

B. Two coupled waves

Consider two coupled waves �3.1� with kj�0. Instability criteria for the arbitrary superposi-
tion of two traveling wave trains with quasiperiodic motion will now be deduced from the asso-
ciated quartic stability equation

a4�̂4 + a3�̂3 + a2�̂2 + a1�̂ + a0 = 0,

where

a4 =
1

4
�1

2�2
2,

a3 = �1�2��2�1k1 + �1�2k2� ,

a2 = ��2�1k1 + �1�2k2�2 + 2�1�2�1�2k1k2 + 1
2 ��2

2�1�11�M̂01�2 + �1
2�2�22�M̂02�2� ,

a1 = 2�1�2��1�22�M̂02�2k1 + �2�11�M̂01�2k2 + 2��2�1k1 + �1�2k2�k1k2� ,
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a0 = �1�2�2�2�1�2k1
2k2

2 + �1�22�M̂02�2k1
2 + �2�11�M̂01�2k2

2� + det����M̂01�2�M̂02�2� ,

with

�11�M̂01�2 + �12�M̂02�2 = �1�1 + �1k1
2 and �21�M̂01�2 + �22�M̂02�2 = �2�2 + �2k2

2,

where �12=�21. Divide through by a4 and transform the cubic term away by introducing Y = �̂
+a3 /4a4, resulting in

Y4 + �1Y
2 + �2Y + �3 = 0, �4.3�

where

�1 =
1

a4
2	−

3

8
a3

2 + a4a2
 ,

�2 =
1

a4
3	1

8
a3

3 −
1

2
a4a3a2 + a4

2a1
 ,

�3 =
1

a4
4	−

3

256
a3

4 +
1

16
a4a3

2a2 −
1

4
a4

2a3a1 + a4
3a0
 .

There are three diagnostic functions associated with the general reduced quartic equation �4.3�

D1 = �1, D2 = DISCRIMINANT, D3 = �1
2 − 4�3,

where

DISCRIMINANT = 16�3�1
4 − 4�2

2�1
3 − 128�3

2�1
2 + 144�2

2�3�1 − 27�2
4 + 256�3

3.

Note that, since a4 and a3 are real, Im��̂��0 if and only if Im�Y��0. Therefore, the conditions

for instability �the existence of at least one root �̂ with nonzero imaginary part� are

�D1 � 0� or �D1 = 0 and ��2 � 0 or �3 � 0��

or �D1 � 0 and D2 � 0� or �D1 � 0,D2 � 0 and D3 � 0� .

The discriminant surface, plotted in �-space, is illustrated in Fig. 1. If �1�0, then it is immediate
that there is at least one unstable eigenvalue. When �1�0, then additional diagnostics require
checking. A section through the discriminant surface for �1�0 is shown in Fig. 2. Unless �2 and
�3 are in the enclosed central region �marked with “4” in the figure� there will be a root which is
unstable �having a nonzero imaginary part�. Therefore, given a basic state, the problem of insta-
bility for the two-wave interaction reduces to checking the above conditions for the quartic equa-
tion. So, for a particular application, sufficient conditions for instability can be deduced by sub-
stituting the values of parameters into the diagnostic functions.

C. Remarks on N-coupled waves

Determining conditions for linear instability of N-interacting wave trains boils down to ana-
lyzing a 2Nth order polynomial equation. This task becomes increasingly difficult to do in full as
N increases. This is clearly demonstrated by the complexity of conditions for the case of N=2. If
further qualitative information is known about the wave type, then evaluation can become a more
straightforward task. To illustrate this fact, consider the example that follows for a particular
instance of the interaction of two counterpropagating waves.
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D. An application: Synchronized counterpropagating waves

Consider a special case of N=2 where the waves are counterpropagating. Set k1=−k2=k with

M̂01=M̂02=M̂0�0, �1=�2=�, and �1=�2=�. Then, since a3=0 �the special case Y = �̂�

D1 =
4�

�2 − 2�k2 +
1

2
��11 + �22��M̂0�2�;

the other diagnostic functions can be determined similarly.
For simplicity, set �1=�2=�. Then, �11=�22 �determined using relations �3.2�� and a1=0,

which means that �2=0 too and D2=16�3D3
2. The quartic equation �4.3� simplifies to Y4+�1Y

2

+�3=0, which is a bi-quadratic equation. Therefore, for at least one Y2 with Im�Y2��0 to occur
then �1

2−4�3�0 must hold—this is sufficient but not necessary for at least one Y such that
Im�Y��0. The region of ��1 ,�3�-space represented by the shaded region in Fig. 3 �in the diagram
y=Y, c1=�1, and c2=�3� depicts the qualitative nature of the roots Y—for instance, the third and
fourth quadrants show that two real roots and one complex pair of roots occur whenever �3�0.
For the linear instability conditions, at least one Y with Im�Y��0 is required and so the shaded

FIG. 1. The discriminant surface for the quartic equation.

FIG. 2. A constant �1 section through the discriminant surface with �1�0. The number of real roots of the quartic equation
in each region of parameter space is labeled 0, 2, or 4.
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region includes these two quadrants. To describe this whole region in ��1 ,�3�-space, break it up

into smaller, easily expressible, parts. �Note that this is not a unique process.� Since Y = �̂, insta-

bility �the existence of at least one root �̂ with nonzero imaginary part� can occur whenever any
of the following conditions are satisfied:

�i� �3�0;
�ii� �3�0 and �1�0;
�iii� �1�0 and �1

2−4�3�0;

which evaluates to the following:

�i� C�0;

�ii� C�0 and ���11�M̂0�2−2�k2��0;

�iii� ���11�M̂0�2−2�k2��0 and �12
2 �M̂0�2−8��11k

2�0;

where C= ��11
2 −�12

2 ��M̂0�4+4��11k
2�M̂0�2+4�2k4 and, due to the relations �3.2�, with ��11

+�12��M̂0�2=��+�k2. It should be noted that these three conditions reduce to the three conditions

given in Appendix A when k=0, �1=�2=�, �1=�2=�, �M̂01�= �M̂02�= �M̂0�, �11=�22, and �12
=�21, which is consistent.

In application, � and � may be given. For ease of calculation, set �=1/2 and �=1. Then

��11+�12��M̂0�2=�+k2 /2. Considering the interaction of both waves �see above and Sec. IV B�,
the criteria for linear instability simplify to the following:

�i� C0�0;

�ii� C0�0 and �11�M̂0�2−k2�0;

�iii� �11�M̂0�2−k2�0 and �12
2 �M̂0�2−4�11k

2�0;

where C0= ��11
2 −�12

2 ��M̂0�4+2�11k
2�M̂0�2+k4. Note that the instability condition for the wave so-

lutions M̂1�X ,T�=M̂0e
i��T+kX� and M̂2�X ,T�=M̂0e

i��T−kX� considered separately is �1j�0 �see Sec.
IV A�. Therefore, the instability of the synchronized counterpropagating waves is determined by a
much more complex mechanism than that for single waves.

Conversely, consider a criterion for stability, namely Im��̂�=0 for all �̂. For the single-wave

FIG. 3. The qualitative nature of the roots y satisfying y4+c1y
2+c2=0. The shaded region indicates where at least one root

y exists with Im�y��0. Four real roots, y, occur in the unshaded region.

082701-11 Instabilities of multi-phase wave trains in NLS eq J. Math. Phys. 46, 082701 �2005�

                                                                                                                                    



case, the required condition is a1
2−4a2a0�0, which, for the example, simplifies to �11�0 �noting,

by construction, �11�0�. For two coupled waves, the unshaded area in Fig. 3 �in the diagram y
=Y, c1=�1, and c2=�3� will give the condition for stability, namely

�3 � 0, �1 � 0, and �1
2 − 4�3 � 0,

which, for the example, simplifies to

C0 � 0, �11�M̂0�2 − k2 � 0, and �12
2 �M̂0�2 − 4�11k

2 � 0.

Therefore the condition for stability is also more complex for the interaction of synchronized
counterpropagating waves, and the region of stability is much smaller, when comparing to the
component traveling waves.

A little more can be deduced. Let D0=�11�M̂0�2−k2. Consider two unstable component waves,
for then �11�0 and �12�0. Assume that �11��12. Recall that by viewing each of conditions �i�
to �iii� separately, they are each a sufficient condition for instability. Instability condition

�i� is not valid, whereas

�ii� �11�k2 / �M̂0�2, is a possibility, and

�iii� �11�k2 / �M̂0�2 and �12
2 �4k4 / �M̂0�4 is also a possibility.

Therefore it is possible that either condition �ii� or condition �iii� may be satisfied. The stability
condition is not valid, that is, when �11��12 the interaction of the two component waves cannot
be stable. We conclude that when two component waves are unstable such that �11��12�0, then
the two-wave interaction is unstable. Now, consider when one component wave is unstable and the
other is stable such that �11�0 and �12�0. Assume further that ��11�� ��12�. The conditions
mimic those of two unstable component waves previously discussed. Consequently, when one of
the component waves is unstable and the other stable such that �11�0, �12�0 and ��11�� ��12�,
then the two-wave interaction is also unstable. Although these two situations conclude with such
straightforward results, the interplay of component modes is generally a delicate issue. For in-
stance, this may be seen when the behavior of the previous two component waves is swapped or
when both component waves are stable, which could occur through �11�0 �and possibly when
��12�� ��11��, then allowing the possibility of any of the three instability conditions or the stability

condition to hold for a particular application �for it is the relative magnitudes of �11, �12, �M̂0�, and
k that open up the possibilities further�. Now there may be the potential that two stable component
modes may interact in a stable manner and, perhaps, it is plausible that an unstable component
mode may stabilize by interacting with a stable component mode.

These speculations can be made concrete. Note that C0=D0
2+E0, where E0= �4�11k

2

−�12
2 �M̂0�2��M̂0�2. Therefore, the two-wave interaction is unstable if any of the following condi-

tions hold:

�C0 � 0� or �C0 � 0 and D0 � 0� or �D0 � 0 and E0 � 0� .

Conversely, the interaction is stable if

C0 � 0, D0 � 0, and E0 � 0.

Figure 4 shows the intersection of surface C0 in �E0 ,D0 ,C0�-space. The regions of instability/
stability are shown for a constant E0 section through C0 with E0�0 in Fig. 5 and for a constant D0

section through C0 with D0�0 in Fig. 6. The second and third quadrants of Fig. 5 and Fig. 6 show
that stability can occur when D0�0 and E0�0, which automatically happens when �11 is nega-
tive, but must be sufficiently negative, relative to −��12�, especially as C0�0 is also required for
stability; additionally, note that a component mode with �11�0 is stable. Since �12 appears only
through �12

2 in the instability/stability conditions, the relevancy of whether the corresponding
component mode is stable ��12�0� or unstable ��12�0� is of no importance for the form of the
conditions derived; it is only the magnitude, ��12�, that is crucial. We conclude, for this particular
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application, that it is possible that two component stable modes can interact in a stable manner and
an unstable component mode ��12�0� can be stabilized by a stable component mode ��11�0�.

Last, briefly consider a specific application with the same parameters as above but with the
exception that �=1 and �11=�12=�21=�22=� /2, where �= ±1. It is noted that the � j� values
imply that individual component modes are either both unstable ��= +1� or both stable ��=−1�.
For focusing behavior ��= +1�, the two-wave interaction is unstable. However, for defocusing

behavior ��=−1�, the two-wave interaction is stable if 2k2� �M̂0�2 and unstable if 2k2� �M̂0�2; in
other words, at small amplitudes, the plane waves are stable to long-wave disturbances, whereas at
larger amplitudes the two CNLS equations can exhibit long-wave instabilities. These deductions
agree with those of Forest et al.15

FIG. 4. The surface C0=D0
2+E0.

FIG. 5. A constant E0 section through the surface C0=D0
2+E0 with E0�0. The regions of instability/stability are indicated.
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V. DISCUSSION

Although it was mentioned, in Sec. II, that Eq. �2.1� can be cast into a bisymplectic frame-

work, it is not required for directly relating the instability conditions for the modes M̂ j to the
modes Mj. Recall that

Mj = ei��jT+�jX�M̂ j = M̂0je
i���j+�j�T+��j+kj�X�,

and let

Mj = M̂0je
i��̂jT+k̂ jX�,

where �̂ j=� j+� j and k̂j=� j+kj. Substitute � j= �̂ j−� j and kj= k̂j−� j, where

� j =
dj

2

4� j� j
and � j = −

dj

2� j
,

into the instability conditions: they will now be expressed in terms of the basic solution Mj

=M̂0je
i
̂�X,T�, where 
̂�X ,T�= �̂ jT+ k̂jX, of governing equations �2.1�.

Returning to the transformed governing equations �2.2�, in Sec. II, it was shown that this
general class of N CNLS equations can be re-expressed as a bisymplectic system. The successful
application of the theory to these CNLS equations is due to a very special feature of the multi-
phase wave trains considered, namely the basic class of N-phase wave trains can be characterized
as �bisymplectic� relative equilibria.5,16 “Relative equilibria” are solutions associated with some
symmetry of the system of governing equations; for the N CNLS equations �2.2� it is a generalized
toral symmetry �the symmetry group is TN with action G, a generalized rotational matrix�. For the
stability analysis, it is the parameter structure naturally associated with relative equilibria that is
required.16 The geometric structure is such that for the CNLS system with a basic class of multi-
phase wave trains with N-components, and a bisymplectic structure, there are natural
2N-parameter families �P1 , . . . , PN ,Q1 , . . . ,QN� with a variational principle and a geometric insta-
bility condition. Moreover, since these parameters do not appear explicitly in the equations—
although they are an intrinsic part of the structure of the system—they are not obvious. Further-
more, when treated as functions of the wave numbers and frequencies, the partial derivatives of
these parameters encode stability information. Specifically, sufficient conditions for linear insta-
bility can be offered through these partial derivatives. This remarkable feature does not depend on
explicit properties of N CNLS equations; it only depends on their structure.

FIG. 6. A constant D0 section through the surface C0=D0
2+E0 with D0�0. The regions of instability/stability are indicated.
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A potentially interesting case study would be to consider the CKG equations

utt − uxx = fu�u,w� ,

wtt − c2wxx = fw�u,w� ,

where f�u ,w� is a potential function of the nonlinear coupling and c is a real-valued scalar. These
type of equations can also be re-expressed as a bisymplectic system.2 Particular interest lies with
weakly nonlinear solutions, which are not associated with a symmetry of the system. These
weakly nonlinear solutions can be expanded in Fourier series—with the first term resembling the
basic class of solution—and the linear stability problem could be investigated within a geometric
framework. Although there is a potential small divisor problem,2 the beauty of this investigation is
that CNLS equations can be constructed to govern the modes of weakly nonlinear solutions of the
CKG equations.13,14 Therefore, the analysis of associated systems of CNLS equations �N=2,13 and
N=4,14 have been proposed�—with the basic class of solution identified with the toral symmetry
of the equations—may provide some insight into the stability problem for weakly nonlinear
solutions of the connected CKG equations. Further details of this investigation will be presented
elsewhere.
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APPENDIX A: SUFFICIENT CONDITIONS FOR LINEAR INSTABILITY

The analyses for solutions �3.1� with kj=0, for all j, governed by system �2.2�, that lead to
determining a complete description of the parameter space satisfying requirement �4.1� for N
�4 are presented. A partial description of the required region of parameter space for arbitrary N
is also mentioned.

1. A single wave

The one-wave basic state

M̂1�X,T� = M̂01e
i�1T, where �1 =

1

�1
�11�M̂01�2,

determined from relation �3.2�, has a quadratic �or bilinear� stability equation a2�̂2+a0=0.

Clearly, �̂= ±�−a0 /a2. Thus, the existence of at least one root �̂ with nonzero imaginary part is
confirmed whenever a0a2�0. Referring to Appendix B, this inequality evaluates to �1�11�0.

According to Roskes,6 this is exactly the necessary and sufficient condition for the single mode M̂1

to be unstable.

2. Two coupled waves

Consider two coupled waves �3.1� with kj=0. The associated bi-quadratic stability equation is

a4�̂4+a2�̂2+a0=0. For a general bi-quadratic equation with a4�0, the existence of at least one �̂
with nonzero imaginary part is confirmed whenever any of the following criteria are satisfied:

�i� a0a4�0;
�ii� a0a4�0 and a2a4�0;
�iii� a2a4�0 and a2

2−4a4a0�0.

It should be noted that this description is not unique—see Fig. 3 �in the diagram y= �̂, c1= â2, and
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c2= â0, where â2�=a2� /a4�. This figure highlights �shaded region� where at least one root �̂ exists

with Im��̂��0. It completely describes the region of parameter space satisfying requirement
�4.1�. For instance, when a0 /a4�0 �exactly condition �i� given above� the root sketches show that

two real roots �̂ exist �denoted by the circles on the horizontal axes� and a pair of complex roots

�̂ exists �denoted by the circles on the vertical axes�. Hence, at least one �̂ with Im��̂��0 occurs
in this part of the �a0 ,a2 ,a4�-space. Referring to Appendix B, the conditions evaluate to the
following:

�i� �1�2 det����0;
�ii� �1�2 det����0 and ã2�0;

�iii� ã2�0 and ã2
2�4�1

2�2
2�M̂01�2�M̂02�2�1�2 det���;

where ã2=�1�2
2�11�M̂01�2+�1

2�2�22�M̂02�2. The first condition was originally presented by Roskes,6

while the other two conditions are additions presented by Bridges and Laine-Pearson.5

3. Three coupled waves

Consider three coupled waves �3.1� with kj=0. The associated bicubic stability equation is

a6�̂6 + a4�̂4 + a2�̂2 + a0 = 0. �A1�

Assuming a6�0, the simplest way of retrieving qualitative information from this equation is to
transform the fourth-order term away, obtaining

Y6 + �1Y
2 + �2 = 0, where Y2 = �̂2 +

a4

3a6
, �A2�

with

�1 =
1

a6
2	−

1

3
a4

2 + a2a6
 and �2 =
1

a6
3	 2

27
a4

3 −
1

3
a2a4a6 + a0a6

2
 .

The qualitative nature of the roots Y2 for the reduced cubic equation �A2� is illustrated in Fig. 7.
The shaded region indicates where there exists at least one Y2 satisfying Im�Y2��0, which comes
from one real root Y2 �denoted by a circle on each horizontal axis of the root sketches in the
shaded region� and one pair of complex roots Y2. These roots will directly relate back to the roots

�̂—see the remarks that follow. The details for the construction of the split ��1 ,�2�-plane are

FIG. 7. The qualitative nature of the roots Y2 satisfying Y6+�1Y
2+�2=0. The shaded region indicates where at least one

root Y2 exists with Im�Y2��0. Three real roots, Y2, occur in the unshaded region.
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given, for instance, by Bruce and Giblin.17 To describe the region where requirement �4.1� holds,
note the following remarks:

�1� Im��̂2��0 if and only if Im�Y2��0;

�2� Im��̂��0 whenever Im��̂2��0;

�3� all real roots Y2 relate back to all real roots �̂2 but there is the possibility that at least one of

these roots will be negative; hence, Im��̂��0 for at least one �̂.

Therefore, the existence of at least one root �̂ with nonzero imaginary part is confirmed whenever
any of the following criteria are satisfied:

�i� 27�2
2+4�1

3�0;

�ii� 27�2
2+4�1

3�0, Y2− �a4 /3a6��0, and �1�2�0.

It should be noted that, for N CNLS equations, substituting the appropriate coefficient expressions
from Appendix B will result in a particularly complicated pair of criteria �one of which will only
be obtainable after solving the reduced cubic equation�. Fortunately, condition �i� can be split into
a number of smaller disjoint areas; for example, it can be represented as the union of the follow-
ing:

�i�

�a� �1�0;
�b� �1�0 and 27�2

2+4�1
3�0;

which is just another way of describing the shaded region in Fig. 7. Indeed, condition �i��a� is a lot
more pleasant to evaluate. Although it does not give the complete picture, it does give a relatively
simpler sufficient condition for instability. On evaluating condition �i��a�, under the convenient
assumption that � j

2=1 for all j, the following is obtained:

3MIXED � ��1�11�M̂01�2 + �2�22�M̂02�2 + �3�33�M̂03�2�2,

where

MIXED = �1�2��11�22 − �12�21��M̂01�2�M̂02�2 + �1�3��11�33 − �13�31��M̂01�2�M̂03�2

+ �2�3��22�33 − �23�32��M̂02�2�M̂03�2.

It is noted that condition �ii� can be simplified for the nontrivial case �all roots nonzero� whenever
Eq. �A1� has an odd number of negative real roots. This can be determined by considering
sign�a0 /a6�. Therefore, a partial—but, in practice, useful—alternative to condition �ii� is the fol-
lowing:

27�2
2 + 4�1

3 � 0,
a0

a6
� 0, and �1�2 � 0.

It should also be noted that there is no obvious way to distinguish between two negative real roots
�from three nontrivial real roots� using sign�a0 /a6�, as one positive and two negative real roots
share the same sign as three positive real roots.

4. Four coupled waves

Consider four coupled waves �3.1� with kj=0. The associated biquartic stability equation is

a8�̂8 + a6�̂6 + a4�̂4 + a2�̂2 + a0 = 0. �A3�

The retrieve qualitative information regarding the roots of Eq. �A3�, first divide through by a8

�assuming a8�0� and reduce Eq. �A3� to the following form:
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Y8 + �1Y
4 + �2Y

2 + �3 = 0, where Y2 = �̂2 +
a6

4a8
, �A4�

with

�1 =
1

a8
2	−

3

8
a6

2 + a8a4
 ,

�2 =
1

a8
3	1

8
a6

3 −
1

2
a8a6a4 + a8

2a2
 ,

�3 =
1

a8
4	−

3

256
a6

4 +
1

16
a8a6

2a4 −
1

4
a8

2a6a2 + a8
3a0
 .

Therefore, the transformation has reduced the four-parameter set �â6 , â4 , â2 , â0� where â2�

=a2� /a8 to a related three-parameter set ��1 ,�2 ,�3�, which greatly aids realizing the division of
parameter space. The envelope surface for a general quartic equation, plotted in ��1 ,�2 ,�3�-space,
is commonly known as a dovetail or swallowtail surface.17 �See also Fig. 1.� There are three
diagnostic functions associated with the general reduced quartic equation �A4�, namely

D1 = �1, D2 = DISCRIMINANT, D3 = �1
2 − 4�3,

where

DISCRIMINANT = 16�3�1
4 − 4�2

2�1
3 − 128�3

2�1
2 + 144�2

2�3�1 − 27�2
4 + 256�3

3.

These diagnostics will allow the region where requirement �4.1� holds to be completely described.

Taking into account remarks �1�–�3�, the existence of at least one �̂ with nonzero imaginary part
is confirmed whenever any of the following criteria are satisfied:

�i� D1�0;
�ii� D1=0 and ��2�0 or �3�0�;
�iii� D1�0 and D2�0;
�iv� D1�0, D2�0, and D3�0;
�v� D1�0, D2�0, D3�0, and Y2− �a6 /4a8��0.

Criteria �i�–�iv� result from directly analyzing the quartic equation in Y2, while criterion �v� is an

additional possibility due to investigating the roots �̂ and can be verified for each particular
application as both a6 and a8 will be known and Y2 can be calculated �by solving the quartic
equation �A4� for Y2 by hand18 or by using computer algebra software such as MAPLE

19�. Calling
on Appendix B, supposing � j

2=1 for all j, condition �i� evaluates to

3��1
2�11

2 �M̂01�4 + �2
2�22

2 �M̂02�4 + �3
2�33

2 �M̂03�4 + �4
2�44

2 �M̂04�4� − 2MIXED � 0,

where

MIXED = �1�2��11�22 − 4�12�21��M̂01�2�M̂02�2 + �1�3��11�33 − 4�13�31��M̂01�2�M̂03�2 + �1�4��11�44

− 4�14�41��M̂01�2�M̂04�2 + �2�3��22�33 − 4�23�32��M̂02�2�M̂03�2 + �2�4��22�44 − 4�24�42�

	�M̂02�2�M̂04�2 + �3�4��33�44 − 4�34�43��M̂03�2�M̂04�2.

Conditions �ii�–�v� can be evaluated likewise. Similar to the analysis for the bicubic equation �A1�,
if Eq. �A3� has an odd number of negative real roots �for the nontrivial four real roots case�, then
condition �v� can be partially substituted for the simpler condition
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D1 � 0, D2 � 0, D3 � 0, and
a0

a8
� 0.

Just as for the bicubic analysis, no simplified expression is offered for �v� with two or four
negative real roots as they cannot be distinguished from an even number of positive real roots by
using sign�a0 /a8�.

A simpler set of criteria can be offered for the special case when �2=0. Under this assumption,
Y is governed by Y8+�1Y

4+�3=0. So, Y4 satisfies a quadratic equation and, therefore, by noting

remarks �1�–�3�, the existence of at least one root �̂ with nonzero imaginary part is confirmed
whenever any of the following criteria are satisfied:

�I� �1�0;
�II� �1�0 and �3�0;
�III� �1�0 and �1

2−4�3�0;
�IV�

�1 � 0, �1
2 − 4�3 � 0, and ± 	− �1 ± ��1

2 − 4�3

2

1/2

−
a6

4a8
� 0.

To emphasize the nonuniqueness for a complete description of requirement �4.1�, the region
encapsulated by criteria �I� and �II� could equally well be given as the following pair of criteria:

�I� �3�0;
�II� �3�0 and �1�0.

See Fig. 3 for a graphical representation of where at least one root Y2 exists with Im�Y2��0—the
shaded parts denote the relevant region �in the diagram y=Y2, c1=�1 and c2=�3�.

5. Remarks on N coupled waves

Consider N coupled waves �3.1� with kj=0. It has already been illustrated that sufficient
conditions for linear instability can be offered from criteria that only partially describe the param-
eter space satisfying requirement �4.1�. These criteria must be used with care as they do not tell the
whole story.

Determining sufficient conditions for instability pivots on how one attempts to analyze the
stability polynomial equation �4.2�. After all, other assumptions can be made, which will result in
a reduced parameter space. For example, Roskes6 noted that a generalization to N modes may be
obtained by recalling there will be a suitable root of Eq. �4.2�, whenever POLY�0��0, where

POLY��̂� = �̂2N +
a2�N−1�

a2N
�̂2�N−1� + ¯ +

a2

a2N
�̂2 +

a0

a2N
,

occurring for � small, if

�− 1�Ndet����
j=1

N

� j � 0.

Roskes also remarked that, although this criterion conveniently generalizes the necessary and
sufficient condition for instability of one mode ��1�11�0�, by no means is it necessary for
instability of more than one mode. This was illustrated by Roskes6 for N=2, which is recapped �by
fixing �1 and �2� as follows. An unstable system for which �1�2 det����0 does not hold may be

constructed by setting �1=�2=1, �1=�2�0, �11=�22=2�12=2�21�0 and, if one sets M̂1=M̂2

�0, this returns the problem to the unstable single-mode case. Although Roskes’ criterion6 does
not hold, the criterion
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�1�2 det��� � 0 and �1�2
2�11�M̂01�2 + �1

2�2�22�M̂02�2 � 0

presented by Bridges and Laine-Pearson5—and recalled in this paper—does.

APPENDIX B: COEFFICIENTS FOR THE N CNLS EQUATIONS

The coefficients that follow relate to the system of N CNLS equations �2.2� governing the
solution family �3.1� with kj=0, for all j.

1. One wave

For N=1 the stability equation is a2�̂2+a0=0, where

a2 =
�1

2

2 det���
and a0 = �1�M̂01�2.

2. Two waves

For N=2 the stability equation is a4�̂4+a2�̂2+a0=0, where

a4 =
�1

2�2
2

4 det���
,

a2 =
1

2 det���
��1�2

2�11�M̂01�2 + �1
2�2�22�M̂02�2� ,

a0 = �1�2�M̂01�2�M̂02�2.

3. Three waves

For N=3 the stability equation is a6�̂6+a4�̂4+a2�̂2+a0=0, where

a6 =
�1

2�2
2�3

2

8 det���
,

a4 =
1

4 det���
��1�2

2�3
2�11�M̂01�2 + �1

2�2�3
2�22�M̂02�2 + �1

2�2
2�3�33�M̂03�2� ,

a2 =
1

2 det���
	�1�2�3

2��11 �12

�21 �22
��M̂01�2�M̂02�2 + �1�2

2�3��11 �13

�31 �33
��M̂01�2�M̂03�2�1

2�2�3��22 �23

�32 �33
�


	�M̂02�2�M̂03�2,

a0 = �1�2�3�M̂01�2�M̂02�2�M̂03�2.

4. Four waves

For N=4 the stability equation is a8�̂8+a6�̂6+a4�̂4+a2�̂2+a0=0, where

a8 =
�1

2�2
2�3

3�4
2

16 det���
,
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a6 =
1

8 det���
��1�2

2�3
2�4

2�11�M̂01�2 + �1
2�2�3

3�4
2�22�M̂02�2 + �1

2�2
2�3�4

2�33�M̂03�2 + �1
2�2

2�3
3�4�44�M̂04�2� ,

a4 =
1

4 det���
	�1�2�3

2�4
2��11 �12

�21 �22
��M̂01�2�M̂02�2 + �1�2

2�3�4
2��11 �13

�31 �33
��M̂01�2�M̂03�2

+ �1�2
2�3

2�4��11 �14

�41 �44
��M̂01�2�M̂04�2 + �1

2�2�3�4
2��22 �23

�32 �33
��M̂02�2�M̂03�2 + �1

2�2�3
2�4��22 �24

�42 �44
�

	�M̂02�2�M̂04�2 + �1
2�2

2�3�4��33 �34

�43 �44
��M̂03�2�M̂04�2
 ,

a2 =
1

2 det�����1�2�3�4
2��11 �12 �13

�21 �22 �23

�31 �32 �33
��M̂01�2�M̂02�2�M̂03�2 + �1�2�3

2�4��11 �12 �14

�21 �22 �24

�41 �42 �44
�

	�M̂01�2�M̂02�2�M̂04�2 + �1�2
2�3�4��11 �13 �14

�31 �33 �34

�41 �43 �44
��M̂01�2�M̂03�2�M̂04�2

+ �1
2�2�3�4��22 �23 �24

�32 �33 �34

�42 �43 �44
��M̂02�2�M̂03�2�M̂04�2� ,

a0 = �1�2�3�4�M̂01�2�M̂02�2�M̂03�2�M̂04�2.

5. N waves

For arbitrary N waves the stability equation is

a2N�̂2N + a2�N−1��̂
2�N−1� + ¯ + a2�̂2 + a0 = 0,

where

a2N =
1

2N det����j=1

N

� j
2,

a2�N−1� =
1

2N−1 det����j=1

N

��
�=1

��j

N

��
2�� j� j j�M̂0j�2,

]

a0 = �
j=1

N

� j�M̂0j�2.

1 Note that the notion of a ‘bisymplectic system’ is not the same as a ‘bi-Hamiltonian system’ �see Olver Ref. 20, for
details regarding the latter�.
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In this paper we study systematically the question of supersymmetrization of the
nonlocal gas equation. We obtain both the N=1 and the N=2 supersymmetric
generalizations of the system which are integrable. We show that both the systems
are bi-Hamiltonian. While the N=1 supersymmetrization allows the hierarchy of
equations to be extended to negative orders �local equations�, we argue that this is
not the case for the N=2 supersymmetrization. In the bosonic limit, however, the
N=2 system of equations lead to a new coupled integrable system of equations. ©
2005 American Institute of Physics. �DOI: 10.1063/1.1993547�

I. INTRODUCTION

The classical isentropic gas equations1

ut + uux +
1

v
Px = 0,

vt + �vu�x = 0, �1�

where u, v denote, respectively, the velocity and the density of the gas, are known to constitute an
interesting class of dispersionless integrable systems when the pressure is a monomial function of
the density. For example, P=v�, ��0, 1 corresponds to the polytropic gas, while P=−1/v de-
scribes the Chaplygin gas.2,3 Both these systems are of hydrodynamic type,4 integrable, and a lot
is known about the properties of these systems. Recently, it was shown that the gas equation for
the case P=− 1

2 ��−1v�2 �called the nonlocal gas equation� is also integrable and has a very rich
algebraic structure.5,6 This system of equations arises in astrophysical models of dark matter.7 In
this paper, we will study the supersymmetrization of this system maintaining integrability of the
model.

It is worth recalling that supersymmetrization of dispersionless systems is at best poorly
understood at the present.8,9 For example, in the case of polytropic gas, an integrable supersym-
metric hierarchy has been obtained only for N=1 supersymmetrization besides the “trivial” susy-B
supersymmetrization10,11 and the supersymmetrization of the Chaplygin gas12 resembles a susy-B
symmetrization.9 Even in the case of the N=1 supersymmetric polytropic gas �which is inte-
grable�, it is not known if it is a bi-Hamiltonian system. In contrast, we will show that integrable
N=1 and N=2 supersymmetrizations are possible for the system of nonlocal gas dynamics. Fur-
thermore, the N=1 supersymmetric system possesses two Hamiltonian structures which are com-

a�Electronic mail: ziemek@ift.uni.wroc.pl
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patible so that it is truly a bi-Hamiltonian system and possesses all the rich algebraic structures of
its bosonic counterpart. The N=2 supersymmetrization, on the other hand, leads to a new system
of coupled integrable equations in the bosonic limit.

The paper is organized as follows. In Sec. II, we briefly recapitulate the essential features of
the bosonic system and present results on the N=1 supersymmetric generalization that is inte-
grable. We obtain the bi-Hamiltonian structure, the Casimir functionals as well as the conserved
charges �local and nonlocal� of the system. In Sec. III, we present the essential results on the N
=2 supersymmetrization of the system preserving integrability. We obtain the bi-Hamiltonian
structure and argue that the second structure has no Casimir functional so that the system of
equations cannot be extended to the negative orders. We present a brief summary of our results in
Sec. IV.

II. N=1 SUPERSYMMETRIZATION

The nonlocal gas equation is described by the system of equations

ut = − uux + ��−1v� ,

vt = − �uv�x. �2�

This system of equations is known to be integrable and alot of the algebraic properties for the
system are well known. For example, it is known5 that the system of Eqs. �2� is a bi-Hamiltonian
system with the two compatible Hamiltonian structures described by

D1 = � 0 − �

− � 0
�, D2 = ��−1 − ux

ux − �v � + �v�
� . �3�

The conserved charges satisfying the recursion relation can be constructed recursively and these
charges are in involution by construction making the system integrable. Furthermore, the Hamil-
tonian structure D1 has three Casimir functionals �conserved charges whose gradients are annihi-
lated by the Hamiltonian structures�

H1 =� dx v ,

H1
�1� = −� dx ux → 0,

H1
�2� =� dx u , �4�

while the second Hamiltonian structure has a single Casimir functional

H−1 = 2� dx�v − 1
2ux

2�1/2. �5�

The existence of the Casimir functionals allows the hierarchy of flows to be extended to the
negative order using the recursion relation and these are local equations unlike �2�. In addition to
the charges that are recursively constructed, the model also possesses two series of conserved
charges whose gradients are not related by the recursion operator �and, therefore, are not in
involution with the infinitely many charges which are in involution�

Gn =� dx ux��−1v�n, G̃n =� dx�u2v +
2

2 + n
��−1v�2	��−1v�n. �6�
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However, a scalar Lax representation for the system is not known which leads to difficulties
in applying the standard techniques of supersymmetrizing the system. Therefore, we construct the
N=1 supersymmetric extension of the non-local gas equation which is integrable as follows.

Let us introduce the two fermionic superfields

U = � + �u, V = � + �v , �7�

where � represents the Grassmann coordinate of the supermanifold and we assume the canonical
dimensions

�x� = − 1, �t� = 2, �U� = 1
2 , �V� = 7

2 . �8�

Writing out the most general equation of dimension � 5
2
�, the one that leads to the correct bosonic

limit is given by

Ut = − Ux�DU� + �D−2V� , �9�

Vt = − ��DU�V�x, �10�

where

D =
�

��
+ �

�

�x
, D2 = �x, �11�

represents the supercovariant derivative on the superspace. In components, the equations take the
forms

ut = − uux + ��−1v� ,

vt = − �uv + �x��x,

�t = − �xu + ��−1�� ,

�t = − �u��x. �12�

Clearly, this represents a nontrivial N=1 supersymmetrization �and not a B-supersymmetrization�
of �2�. However, it is not obvious immediately if this is integrable.

We note that the system of Eqs. �10� is a Hamiltonian system of equations. In fact, the
Hamiltonian

H3 = 1
2 � dZ�V�DU�2 + �D−2V��D−1V�� , �13�

where dZ=dxd�, together with the Hamiltonian structure

D1 = � 0 − D

− D 0
� , �14�

leads to �10� as
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�Ut

Vt
� = D1


�H3

�U

�H3

�V
� . �15�

Similarly, it can also be checked that �10� can also be written as Hamiltonian equations with the
Hamiltonian

H2 =� dZ U�DV� , �16�

and the Hamiltonian structure

D2 = � D−3 − 1
2 �Ux + D−1�DUx��

1
2 �Ux + �DUx�D−1� − �D�DV� + �DV�D − 3

2DVD� � , �17�

as

�Ut

Vt
� = D2


�H2

�U

�H2

�V
� . �18�

The Hamiltonian structures �14� and �17� have the necessary symmetry properties and it can
be checked through the method of prolongation13 that they satisfy Jacobi identity as well. There-
fore, both D1 as well as D2 define genuine Hamiltonian structures. In fact, it is obvious that D1

satisfies Jacobi identity trivially. It can also be checked that the change of variables

Ũ = Ux, Ṽ = V − 1
2 �DUx�Ux = V − 1

2 �DŨ�Ũ , �19�

diagonalizes the second Hamiltonian structure which coincides with the supersymmetric SL�2�
� U�1� algebra and thereby satisfies the Jacobi identity. More importantly, it can also be checked
through the method of prolongation that an arbitrary linear combination

D = D2 + �D1, �20�

also defines a Hamiltonian structure �satisfies Jacobi identity� so that we conclude that the system
of Eqs. �10� is truly a bi-Hamiltonian system. It follows now from Magri’s theorem that the
supersymmetric system of equations is integrable.

From the two Hamiltonian structures in �14� and �17�, we can obtain the recursion operator
associated with the system defined as

R = D2D1
−1 �21�

=� 1
2 �Ux + D−1�DUx��D−1 − D−4

�D2V�D−1 + 1
2 �DV� + 3

2VD − 1
2 �Ux + D−1�DUx�D−1� . �22�

This helps us determine the conserved quantities associated with the system recursively and the
first few take the forms
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H1 =� dZ V ,

H2 =� dZ U�DV� ,

H3 = 1
2 � dZ��DU�2V + �D−1V��D−2V�� ,

H4 =� dZ��DU�3V − 3U�D−1V�2 − 6�DU�V�D−3V�� ,

] �23�

These charges are all conserved and are in involution with one another by construction reflecting
the integrability of the system.

It is worth noting that all the charges in the series �23� are bosonic. In addition, we have found
a charge that is fermionic and is conserved under the flow. It has the form

H̃ =� dZ UV�D−2V� . �24�

Furthermore, much like the bosonic system, we have also found two series of bosonic conserved
charges that are not related recursively

Gn =� dZ U�DV��D−1V�n,

G̃n =� dZ��−1V��D−1V�n��n + 2��D−1V�2 + �n + 1��n + 3�UxV�DU� − �n + 3��D−1U��DU��DUx�� .

�25�

Much like the bosonic system, the N=1 supersymmetric system also has Casimir functionals
whose gradients are annihilated by the two Hamiltonian structures of the system. It is easy to
check that the three conserved quantities

H1 =� dZ V ,

H1
�1� = −� dZ Ux → 0,
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H1
�2� =� dZ U , �26�

are conserved and are Casimir functionals of the first Hamiltonian structure �14�, namely,

D1

�H1

�U

�H1

�V
� = D1


�H1
�1�

�U

�H1
�1�

�V
� = D1


�H1
�2�

�U

�H1
�2�

�V
� = 0. �27�

This is very much like in the bosonic model. Furthermore, the second Hamiltonian structure �17�
also has a Casimir functional

H−1 =� dZ
V − 1

2 �DUx�Ux

��DV� − 1
2 �DUx�2 − 1

2UxxUx

, �28�

which is conserved and satisfies

D2

�H−1

�U

�H−1

�V
� = 0. �29�

The existence of Casimir functionals suggests that the hierarchy of equations generated by Hn,
n�0 can be extended to the negative orders through the inverse of the recursion operator �22�.
Formally, the inverse can be defined as

R−1 = D1D2
−1. �30�

However, it is worth noting here that unlike in the bosonic case where a closed form expression
for the inverse exists, here we have not found such a form. However, one can easily construct the
conserved charges associated with the negative order of the hierarchy using the recursion relation

D1

�H−n

�U

�H−n

�V
� = D2


�H−n−1

�U

�H−n−1

�V
� . �31�

For example, this leads to the first few conserved local charges of the forms
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H−1 = 2� dZ
Ṽ

��DṼ�
,

H−2 = −� dZ� 2Uxx

��DṼ�
−

�DUxx�Ṽ

�DṼ�3/2 	 ,

H−3 =
1

12
� dZ��12Uxx�DUxx� + 10Ṽxx�

�DṼ�3/2
−

9Ṽ��DṼxx� + �DUxx�2�
�DṼ�5/2

	 ,

H−4 =
1

8
� dZ� 10Uxxx�DṼx� − 6Uxx�DṼxx� − 6Uxx�DUxx�2 − 10Ṽxx�DUxx� − 6Ṽ�DUxxxx�

�DṼ�5/2

+
15Ṽ�DṼxx��DUxx� + 5Ṽ�DUxx�3

�DṼ�7/2
	 ,

] �32�

where Ṽ is defined in �19�. These charges, of course, satisfy the recursion relation �and, therefore,
are in involution� and reduce to the known charges in the bosonic limit, but it is interesting to note
that in the bosonic limit, the last two terms in H−4 vanish.

Given the Hamiltonians in the negative hierarchy, we can obtain the equations through the
known Hamiltonian structures. We simply note that the lowest order equation in the negative
hierarchy has the form

Ut−1
= − D� 1

�DṼ�1/2
− D

Ṽ

2Ṽx
3/2� , �33�

Vt−1
= − D � ��DUx − �DUX��

1

�DṼ�1/2
− �2�DUX�D − UX � �

Ṽ

2�DṼ�3/2
�

The bosonic limit of these equations can be easily checked to be the local equations of the
negative hierarchy of the nonlocal gas equation.5

III. N=2 SUPERSYMMETRIZATION

The N=2 supersymmetrization of the nonlocal gas equation can now be obtained in a simple

manner. Let us define bosonic superfields Ū, V̄ in the N=2 extended superspace as

Ū = U1 + �2U, V̄ = V1 + �2V , �34�

where U, V are the N=1 superfields defined in the last section while U1, V1 represent two new
N=1 bosonic superfields. In this extended superspace, we can define two covariant derivatives as

D1 =
�

��1
+ �1

�

�x
,

D2 =
�

��2
+ �2

�

�x
,
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D1
2 = D2

2 =
�

�x
, D1D2 + D2D1 = 0. �35�

With these, the N=2 supersymmetric nonlocal gas equation which reduces to the N=1 system �10�
and is integrable takes the form

Ūt = − �D1D2Ū�Ūx + ��−1V̄� ,

V̄t = − �V̄�D1D2Ū��x + D1D2�V̄Ūx + �D2Ūx��D1Ūx�Ūx − �D1D2Ūx�Ūx
2� . �36�

The system of Eqs. �36� can be written as a Hamiltonian system with

D1 = � 0 D1D2�
−1

D1D2�
−1 0

� ,

H = 1
6 � dZ̄��D1D2Ūx�Ūx

3 − 3�D1D2�
−1V̄��2�D1D2Ū�Ūx − ��−1V̄��� , �37�

�where dZ̄=dxd�1d�2� so that

�Ūt

V̄t

� = D1

�H

�Ū

�H

�V̄
� . �38�

The Hamiltonian structure clearly has the necessary antisymmetry properties and trivially satisfies
the Jacobi identity.

The system of Eqs. �36� has a second Hamiltonian description as well. It can be checked that
the equations can be written in the Hamiltonian form

�Ūt

V̄t

� = D2

�H̄

�Ū

�H̄

�V̄
� �39�

with the Hamiltonian

H̄ =� dZ̄�D1D2Ū��V̄ − 1
2D1�Ūx�D2Ūx��� , �40�

and the second Hamiltonian structure D2 with the elements

�D2�11 = − �−1D1
−1D2

−1,

�D2�12 = 1
2 �− 2Ūx + D1

−1�D1Ūx� + D2
−1�D2Ūx� + 2D1

−1D2
−1�D1D2Ūx�� ,

�D2�21 = 1
2 �2Ūx + �D1Ūx�D1

−1 + �D2Ūx�D2
−1 − 2�D1D2Ūx�D1

−1D2
−1� ,
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�D2�22 = 1
2 �− 2 � V̄ − 2V̄ � + D1V̄D1 + D2V̄D2 − �Ūx

2D1D2 + Ūx
2 � D1D2 + D2Ūx

2 � D1 − D1Ūx
2 � D2�

+ �D1D2Ūx��−1D1D2ŪxD1D2. �41�

The second Hamiltonian structure is quite complicated and one can check the Jacobi identity
through the method of prolongation. However, it is much easier to check this through a change of
variables

U
˜

= Ūx, V
˜

= V̄ − �D1D2U
˜ �U˜ − 1

2 �D1U
˜ ��D2U

˜ � , �42�

the second Hamiltonian structure coincides with the N=2 supersymmetric generalization of the
SL�2� � U�1� algebra and thereby satisfies the Jacobi identity. Furthermore, the compatibility of
the two structures D1 and D2 can also be checked in a straightforward manner through prolonga-
tion. Therefore, it follows that the system of N=2 supersymmetric Eqs. �36� are integrable. The
infinite set of conserved charges in involution can be constructed using the recursion relation.
However, their forms are extremely complicated and are not very enlightening. So, we do not list
them here.

The bosonic limit of �36� leads to a new and interesting coupled equation that is integrable.

Introducing the notation that u0, u1 represent the bosonic variables of the superfield Ū and v0, v1

represent the bosonic variables of the superfield V̄, the equations can be written as

u0,t = − u1u0,x + ��−1v0� ,

u1,t = u0,xxu0,x − u1,xu1 + ��−1v1� ,

v0,t = u0,xxxu0,x
2 + u0,xx

2 u0,x − u1,x
2 u0,x − v0,xu1 + v1u0,x,

v1,t = �u1,xxu0,x
2 + 2u1,xu0,xxu0,x − v0,xu0,x − v1u1�x. �43�

This is a new integrable system of equations and has the interesting feature that the second
Hamiltonian structure for this system does not have any Casimir functional. As a result, the second
Hamiltonian structure for the N=2 supersymmetric system in �41� does not also possess any
Casimir functional �although the first structure does� and the system of Eqs. �36� cannot be
extended to the negative hierarchy.

IV. SUMMARY

In this paper we have systematically studied the supersymmetrization of the nonlocal gas
equation preserving integrability. We obtain the N=1 supersymmetric system of equations and
show that it has two compatible Hamiltonian structures making it a bi-Hamiltonian system. We
construct the conserved charges of the system and show that the two Hamiltonian structures
possess Casimir functionals. As a result, the system of supersymmetric equations can be extended
to negative orders and these give rise to local equations of motion. We also construct the N=2
supersymmetric generalization of the nonlocal gas equation and show that it is a bi-Hamiltonian
system. In the bosonic limit, this equation leads to a new coupled integrable system of equations.
Furthermore, we argue that in the N=2 supersymmetric case, while the first Hamiltonian structure
possesses Casimir functionals, the second does not. As a result, these equations cannot be ex-
tended to negative orders.
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The description of a plasma as composed by two types of fluids, formed by ions
and electrons, is more complete than the classical one-fluid magnetohydrodynamics
�MHD� model and it has proved necessary to explain the phenomena of fast mag-
netic reconnection. We prove a finite-time theorem of existence and uniqueness of
solutions for this system for either Dirichlet or periodic boundary conditions in
dimension three. It turns out that the regularity estimates for the magnetic field are
finer than the MHD ones. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1985009�

I. INTRODUCTION AND MATHEMATICAL SETTING

The evolution of a collection of charged particles can often be modeled as the motion of
several fluid species linked by electromagnetic forces. The most important instance is probably the
two-fluid case, where positive ions and electrons form a quasineutral plasma. The equations of
motion of both species, under reasonable approximations1–3 may be combined to yield

�� �v

�t
+ v · � v� = ��v + J Ã B − � p + f

�1�

E + v � B = �J +
1

en
J Ã B −

1

en
� pe +

m

e2n

�J

�t
,

where the variables are explained as follows:

�1� v is the mass velocity

v =
Mvi + mve

M + m
,

where vi is the ions velocity, M is its mass, ve is the electrons velocity, and m is its mass.
Since M �m , v�vi.

�2� e is the electron charge.
�3� n is the electrons number density, approximately equal to the ions one, �=n�M +m� the mass

density. We will assume the fluid incompressible and will scale � to 1.
�4� � is the kinematic viscosity and � is the resistivity. Both are taken as constant �positive�

scalars, meaning that these plasma properties are homogeneous and isotropic.
�5� p= pi+ pe is the total pressure, sum of the ion and electron ones.
�6� E is the electric field, B is the magnetic one, and J= � ÃB is the current density. This is also

equal to �vi−ve�en.
�7� f is an arbitrary forcing on the momentum equation, given, e.g., by gravitational forces.

a�Electronic mail: mnjmhd@am.uva.es
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It is apparent that the coefficient m / �e2n� is very small. Neglecting it we are left with the Hall
magnetohydrodynamics �MHD� system. By neglecting also the current displacement in Maxwell’s
equations, an admissible procedure in low-frequency phenomena, and using Faraday’s law

�B

�t
= − � Ã E ,

we are left with the Hall induction equation

�B

�t
= − � � ��J� + � Ã �v Ã B� −

1

en
� Ã �J Ã B� . �2�

The Hall current term �1/en�� Ã �JÃB� is small in dense plasmas, and in general at large scales
its effect is less important than the one of the velocity. Omitting it and using certain vector analysis
identities, we obtain the classical incompressible MHD equations

�v

�t
= ��v − v · � v + B · � B − � �p +

1

2
B2� + f ,

�B

�t
= ��B + � Ã �v Ã B� , �3�

� · v = � · B = 0.

Its study is well known and similar in many aspects to the one of the Navier–Stokes equation.4

However, it has become apparent that in certain important physical phenomena, in particular those
involving magnetic reconnection, the one-fluid description given by �3� is not appropriate. The
extremely rapid conversion rate from magnetic to kinetic energy present in such spectacular
phenomena as solar flares could not be adequately explained by any MHD model, and there was
no lack of effort in this sense. There exists an enormous literature on this problem: see, e.g., Refs.
5–7, and references therein. It is generally accepted now that near the current sheets where
reconnection occurs, electrons and ions cease to move together: it is the high electron velocity
which prevents the throttling of MHD reconnection schemes and allows fast energy conversion. It
is clear that a two-fluid description is necessary and therefore it seems natural to ask for some
existence theorem for the relevant equation. Although admittedly the electron inertia term m / �e2n�
is small, its presence is necessary to obtain a mathematically consistent model. By taking the curl
of �1� and using Faraday’s law, we obtain the two-fluid MHD system

�v

�t
= ��v − v · � v + B · � B − � �p +

1

2
B2� + f , �4�

m

e2n

� � Ã J

�t
+

�B

�t
= ��B + � Ã �v Ã B� −

1

en
� Ã �J Ã B� , �5�

which will be our object of study. We will abbreviate the electron inertia term m / �e2n� to �, the
Hall coefficient 1 / �en� to h. In addition to these equations, both v and B must be solenoidal. This
follows automatically for B for all time if it happens for the initial condition at time zero, because
the divergence of the induction equation yields
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��� · B�
�t

= 0.

As for the momentum one, the task of keeping v solenoidal is given to the pressure: p satisfies an
elliptic equation to this end. Indeed, physically the pressure compensates for the tensions created
by the fluid incompressibility.

Finally, boundary conditions must be added. Although other possibilities exist, we will con-
centrate for simplicity on two cases:

�1� The domain � is smooth, and both v and B satisfy homogeneous Dirichlet conditions at its
boundary ��.

�2� � is a box �0,L1�� �0,L2�� �0,L3�, and both v and B are periodic at opposite faces. More-
over, in this case the mean of both in � is zero.

Incidently, notice that, in contrast to the MHD and Navier–Stokes cases, there is no possibility
here of studying two-dimensional problems, because even when both velocity and magnetic field
are horizontal, the current density and the Hall term are not.

We first recall the definitions of the classical Lebesgue and Sobolev spaces: Lp��� is the space
of measurable functions f defined in � whose Lp-norm

�f�p = �	
�


f 
pdV�1/p

is bounded. L	��� is the space of measurable functions defined in � such that they are bounded
outside a set of zero measure E, and �f�	 is the maximum of 
f�x�
 when x�E. Hp��� is the space
of functions whose differentials up to the order p are square integrable �i.e., they belong to L2����.
The norm �f�Hp��� is the sum of the L2-norms of all the partial derivatives of f up to the order p.
We will only use H1��� and H2���. H0

1��� is the subspace of H1��� formed �roughly� by the
functions vanishing in the boundary ��. �The correct definition is somewhat more involved, but
essentially amounts to this�. We will use a number of standard notations:4,8

In the Dirichlet case,

H = �B � L2���3: � · B = 0,B · n
�� = 0� . �6�

Although this divergence and trace term must be understood in the sense of distributions, it is
known that H is a closed subspace of L2���3.

V = H0
1���3 � H ,

D�A� = H2���3 � V , �7�

A:D�A� → H, A = PH� ,

where PH is the orthogonal projection on H. In the periodic case,

H = u � L2���3:	
�

u dV = 0, � · u = 0, u · n antiperiodic at opposite sides of �� .

�8�

Again H is a closed subspace of L2���3

V = H1���3 � H ,

D�A� = H2���3 � V , �9�
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A:D�A� → H, A = � .

In connection with these spaces, we will use the following inequality �see Ref. 8�: For all f
�V ,g�D�A� ,h�H,

�	
�

f · � g · h dV� 
 c�f�H1�g�H1
1/2�Ag�2

1/2�h�2. �10�

c is a constant depending only on �. To avoid an unmanageable proliferation of constants, we will
always denote such parameters by c: thus, e.g., 3c+c1/2=c. Constants not depending on �, such as
the diffusivity terms or bounds depending on specific functions will be given different names.

We intend to prove local existence and uniqueness of the solution to the problem �4� and �5�
with initial condition v�0��V ,B�0��D�A�. We will consider first the induction equation, which
in the MHD case models the so-called kinematic dynamo, where the velocity is taken as a datum.
The momentum equation in a classical Navier–Stokes one with a forcing given by the Lorentz
force, for which well-known estimates are available. Combining the bounds for both equations we
will obtain a contractive operator whose fixed point is the unique solution. Finally we will obtain
some energy inequalities emphasizing the difference with the single-fluid MHD model. All these
results will hold even in infinitely conducting plasmas ��=0�, in contrast with classical MHD.

II. INDUCTION EQUATION

Definition 2.1: For B�D�A� we will denote by w the function

w = − ��B + B . �11�

Notice that the properties of elliptic systems guarantee that w�H and �B�H2 
c�w�2.
Lemma 2.2: Consider the term ��B+ � Ã �vÃB�−h� Ã �JÃB� as a (nonlocal) function

F�w ,v�. Then, for every v�V ,F is a continuous function from H into H. Moreover, for any v
�V ,w�H,

�F�w,v��2 
 c�� + �v�H1 + �w�2��w�2, �12�

and for any v1 ,v2�V ,w1 ,w2�H,

�F�w1,v1� − F�w2,v2��2


 c�� + �v1�H1 + �v2�H1 + �w1�2 + �w2�2��w1 − w2�2 + c��w1�2 + �w2���v1 − v2�H1. �13�

Proof: Recall that

� Ã �v Ã B� = − v · � B + B · � v ,

� Ã �J Ã B� = − J · � B + B · � J .

By standard Sobolev inequalities:

���B1 − �B2�2 
 c��B1 − B2�H2 
 c��w1 − w2�2,

and

� � Ã �v1 Ã B1� − � Ã �v2 Ã B2��2

= �− v1 · � �B1 − B2� − �v1 − v2� · � B2 + B1 · � �v1 − v2� + �B1 − B2� · � v2�2


 �v1�4� � �B1 − B2��4 + �v1 − v2�4� � B2�4 + �B1�	� � �v1 − v2��2 + �B1 − B2�	� � v2�2.

Since for dimension 3, V�L4��� , D�A��L	���, this amount may be bounded by
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c��v1�H1�B1 − B2�H2 + �B2�H2�v1 − v2�H1 + �B1�H2�v1 − v2�H1 + �v2�H1�B1 − B2�H2


 c��v1�H1 + �v2�H1��w1 − w2�2 + c��w1�2 + �w�2��v1 − v2�H1.

Finally, by changing in the previous inequalities vi to Ji we find

� � Ã �J1 Ã B1� − � Ã �J2 Ã B2��2


 �J1�4� � �B1 − B2��4 + �J1 − J2�4� � B2�4 + �B1�	� � �J1 − J2��2 + �B1 − B2�	� � J2�2


 c��J1�H1 + �B2�H2 + �B1�H2 + �J2�H1��B1 − B2�H2 
 c��w1�2 + �w2�2��w1 − w2�2.

The inequality �12� is a simplified version of the previous calculation, with only a single v and w.
This concludes the proof. �

Theorem 2.3: For fixed v�L2��0,S� ,V�, Eq. (5), which may be written in the form

dw

dt
= F�w,v� ,

�14�
w�0� � H ,

admits a unique a.e. differentiable solution w : �0,T�→H, for some T
S , T�0. We may take T so
that this solution satisfies �w�t��2
 �w�0��2+1 for all t� �0,T�. Moreover, the interval �0,T�
depends only on �w�0��2 and �v�L2��0,T�,V�.

Proof: Let us prove that the integral operator, defined in the closed ball of C��0,T� ,H� of
center 0 and radius �w�0��2+1 given by

w → w�0� + 	
0

t

F�w�s�,v�s��ds ,

takes the ball to itself and is contractive for T small enough. Using �12�, for any w bounded by
�w�0��2+1,

	
0

t

�F�w,v��2ds 
 c	
0

t

�� + �v�H1 + �w�2��w�2ds


 c��T�	
0

T

�v�H1
2 ds�1/2

+ T�� + �w�0��2 + 1����w�0��2 + 1� .

Clearly we can take T so that this amount is less than 1 for all t� �0,T�. Taking now �13�,

	
0

t

�F�w1,v� − F�w2,v��2ds 
 c	
0

t

�� + 2�v�H1 + �w1�2 + �w2�2��w1 − w2�2ds ,

so that

�w1 − w2�C�0,T�,H 
 c�	
0

T

2�v�H1 + �w1�2 + �w2�2ds��w1 − w2�C�0,T�,H


 c�2�T�	
0

T

�v�H1
2 ds�1/2

+ 2T��w�0��2 + 1���w1 − w2�C�0,T�,H.

Obviously by taking T small enough we can make this functional to take the ball of radius
�w�0��2+1 in itself in a contractive manner. The classical proof follows. �

Let us study now the dependence of the solutions upon the velocity:
Theorem 2.4: Let w1 , w2 be the respective solutions of
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dwi

dt
= F�wi,vi�

�15�
wi�0� = w�0� ,

for vi�L2��0,S� ,V�, and let �0,T� be a common interval of existence of w1 , w2. Then there exists
T1
T, depending only on �w�0��2 , �vi�L2��0,T�,V�, such that

�w1 − w2�C��0,T1�,H� 

1
2 �v1 − v2�L2��0,T1�,V�. �16�

Proof: Using inequality �13�, and taking an interval short enough for Therom 2.3 to hold for
both wi,

�w1�t� − w2�t��2 = �	
0

t

F�w1,v1� − F�w2,v2�ds�
2


 c	
0

t

�� + �v1�H1 + �v2�H1 + �w1�2 + �w2�2��w1

− w2�2 + ��w1�2 + �w2�2��v1 − v2�H1ds 
 c��T��v1�L2��0,T�,V� + �v2�L2��0,T�,V�� + T�

+ 2T��w�0��2 + 1���w1 − w2�C��0,T�,H� + 2�T��w�0��2 + 1��v1 − v2�L2��0,T�,V�.

Hence it is enough to take T1 small enough for

c��T1��v1�L2��0,T1�,V� + �v2�L2��0,T1�,V�� + T1� + 2T1��w�0��2 + 1�� �
1
2 ,2�T1��w�0��2 + 1� �

1
4 .

III. MOMENTUM EQUATION

This is the Navier–Stokes one with two forcings: the independent one f and the Lorentz force
JÃB. We will denote the last one by G�w�. Notice that

�J Ã B�2 
 �J�4�B�4 
 c�w�2
2. �17�

We may apply the classical results �see, e.g., Ref. 8� and conclude the following.

�a� For every initial condition v�0��V, there exists a unique solution for an interval �0,T�
satisfying

�v�t��H1 
 2��v�0��H1 + 1� , �18�

where T depends only on �v�0��H1 , �G�w��C��0,T�,H� , sup�0,T��f�2.
�b� v�L2��0,T� ,D�A��, and the norm of v in this space is bounded by a constant depending

only on the same quantities given in �a�. We will first estimate the norm of v in the space
L2��0,T� ,V�. To emphasize its value, it is convenient to single out �only in this instance� the
Poincaré constant in V , �v�H1

2

kp��v�2

2.

Proposition 3.1.: If v is the solution of �4� in the interval �0,T�,

�v�L2��0,T�,V�
2



kp

�
�v�0��2

2 + c
T

�2 �w�C��0,T�,H�
4 + c

T

�2 sup
�0,T�

�f�2
2. �19�

Proof: By making the scalar product of �4� with v, and using standard inequalities �Cauchy–
Schwarz, Poincaré, and Young’s�,
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1

2

d�v�2
2

dt

 − �� � v�2

2 + �G�w��2�v�2 + �f�2�v�2 
 − �� � v�2
2 + c�G�w��2� � v�2 + c�f�2� � v�2


 − �� � v�2
2 +

c2

�
�G�w��2

2 +
�

4
� � v�2

2 +
c2

�
�f�2

2 +
�

4
� � v�2

2.

Integrating in �0,T� and omitting the term in �v�t��2,

�

2
	

0

T

� � v�2
2ds 


1

2
�v�0��2

2 +
c2

�
	

0

T

�G�w��2
2ds +

c2

�
	

0

T

�f�2
2ds ,

from which, in view of �17�, the result follows. �

Corollary 3.2.: There exists a time T1
T, depending only on �w�C��0,T1�,H�, such that

�v�L2��0,T1�,V� 

kp

��
�v�0��2 + 1 


kp

��
�v�0��H1 + 1. �20�

We will consider now the difference between two solutions corresponding to different wi and the
same initial condition:

Theorem 3.2: Let v1 ,v2 be the respective solutions of Eq. (4) in �0,T� corresponding to
Lorentz forces w1 ,w2�C��0,T� ,H� and the same initial condition. Then there exists T2
T, de-
pending only on �wi�C��0,T�,H�, such that

�v1 − v2�L2��0,T2�,V� 

1

2
�w1 − w2�C��0,T2�,H�. �21�

Proof: The scalar product of ���v1−v2�� / ��t� with v1−v2 yields

1

2

�

�t
�v1 − v2�2

2 + �� � �v1 − v2��2
2 = �− v1 · � v1 + v2 · � v2,v1 − v2� + �G�w1� − G�w2�,v1 − v2�

− ���p1 − p2�,v1 − v2� .

The last term is zero. We have

�− v1 · � v1 + v2 · � v2,v1 − v2� = �− v1 · � �v1 − v2� + �− v1 + v2� · � v2,v1 − v2� ,

and �−v1 · � �v1−v2� ,v1−v2�=0. By using inequality �10�, we find


�− v1 · � v1 + v2 · � v2,v1 − v2�
 
 �v1 − v2�H1�v1 − v2�2�v2�H1
1/2�Av2�2

1/2.

Finally


�G�w1� − G�w2�,v1 − v2�
 
 �G�w1� − G�w2��2�v1 − v2�2.

In order to abbreviate the notation, let us denote by �g�2,	 the supremum of �g�2 when t� �0,T�.
Property �a� of the solutions of the Navier–Stokes equations guarantees that �v2�H1 is bounded in
�0,T� by an amount depending only on �v2�0��H1, �G�w2��2,	, and �f�2,	. Let M be an upper bound
of �v2�H1

1/2 in �0,T�. Integrating the resulting inequality in time,
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1

2
��v1 − v2��t��2

2 + �	
0

t

� � �v1 − v2��2
2ds


 cM	
0

t

�v1 − v2�2�v1 − v2�H1�v2�H2
1/2ds + c	

0

t

�G�w1� − G�w2��2�v1 − v2�2ds


 cM�v1 − v2�2,	�	
0

T

�v1 − v2�H1
2 ds�1/2�	

0

T

�v2�H2ds�1/2

+ cT�G�w1� − G�w2��2,	�v1 − v2�2,	. �22�

Since this is valid for any t� �0,T�, by considering only the first term in the left-hand side of �22�
and using Young’s inequality,

1

2
�v1 − v2�2,	

2 

c2M2

2 �	
0

T

�v2�H2ds��v1 − v2�2,	
2 +

1

2
	

0

T

�v1 − v2�H1
2 ds +

T

2
�G�w1� − G�w2��2,	

2

+
c2

2
T�v1 − v2�2,	

2 .

Since by property �b�

	
0

T

�v2�H2ds 
 �T�	
0

T

�v2�H2
2 ds�1/2


 N�T ,

where N is a constant depending on the same functions stated before for �v2�H1, we find

�1 − c2M2N�T − c2T��v1 − v2�2,	
2 
 	

0

T

�v1 − v2�H1
2 ds + T�G�w1� − G�w2��2,	

2 .

Taking T small enough for the constant before �v1−v2�2,	
2 to be at least 1 /2, we find

�v1 − v2�2,	
2 
 2	

0

T

�v1 − v2�H1
2 ds + 2T�G�w1� − G�w2��2,	

2 ,

which implies

�v1 − v2�2,	 
 �2�	
0

T

�v1 − v2�H1
2 ds�1/2

+ �2T�G�w1� − G�w2��2,	. �23�

Let us now return to �22� omitting now the term ��v1−v2��t��2,	
2 , and bounding the last term in a

slightly different form:

	
0

T

�G�w1� − G�w2��2�v1 − v2�ds 
 �G�w1� − G�w2��2,		
0

T

�v1 − v2�2ds


 �G�w1� − G�w2��2,		
0

T

�v1 − v2�H1ds .

By using again Poincaré’s inequality on v1−v2, we get
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�	
0

T

�v1 − v2�H1
2 ds


 cM�v1 − v2�2,	�	
0

T

�v1 − v2�H1
2 ds�1/2�	

0

T

�v2�H2ds�1/2

+ c�G�w1� − G�w2��2,		
0

T

�v1 − v2�H1ds . �24�

This, jointly with �23�, yields

�	
0

T

�v1 − v2�H1
2 ds 
 cM�	

0

T

�v1 − v2�H1
2 ds��	

0

T

�v2�H2ds�1/2

+ cM�T�G�w1� − G�w2��2,	�	
0

T

�v1 − v2�H1
2 ds�1/2�	

0

T

�v2�H2ds�1/2

+ c�T�G�w1� − G�w2��2,	�	
0

T

�v1 − v2�H1
2 ds�1/2

.

Our previous bound on the H2 norm of v2 and Young’s inequality yield

�	
0

T

�v1 − v2�H1
2 ds 
 cMN1/2T1/4	

0

T

�v1 − v2�H1
2 ds

+ cMN1/2T3/4�G�w1� − G�w2��2,	�	
0

T

�v1 − v2�H1
2 ds�1/2

+ c�T�G�w1� − G�w2��2,	�	
0

T

�v1 − v2�H1
2 ds�1/2


 �cMN1/2T1/4 +
c2M2N

2
T3/4 +

c2

2
T1/2�	

0

T

�v1 − v2�H1
2 ds

+
1

2
�T3/4 + T1/2��G�w1� − G�w2��2,	

2 .

It is therefore to take T2
T small enough for

cMN1/2T2
1/4 + c2M2NT2

3/4 + c2T2
1/2 


�

2
, T2

3/4 + T2
1/2 


�

2
,

for the theorem to hold. Notice that if we know an a priori bound on

�wi�2,	 = �wi�C��0,T�,H�

�say �w�0��2+1�, then M and N may also be bounded a priori and T2 does not depend on any
unknown quantity. �

IV. EXISTENCE AND UNIQUENESS OF THE SOLUTIONS

We now state the main theorem of the paper. For the benefit of readers unwilling to spend time
mastering all the previous mathematical notations, perhaps it is appropriate to state the result, at
least approximately, in words: When the velocity at time t=0 is differentiable, and the magnetic
field is twice differentiable, there exists a solution of the two-fluid magnetohydrodynamics equa-
tions up to some time T. This solution is such that the velocity and its differential (with respect to
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the space variables) are continuous in time, and the magnetic field, plus its first and second
differentials, are also continous in time. The rigorous form is as follows.

Theorem 4.1: Take initial conditions v�0�=v0�V , B�0�=B0�D�A�. Then there exists an
interval �0,T� such that the two-fluid MHD Eqs. (4) and (5) have a unique solution. Moreover

v � C��0,T�,V� � L2��0,T�,D�A�� ,

�25�
B � C��0,T�,D�A�� .

Proof: Take T�0 small enough for:

�a� For v*�L2��0,T� ,V�, with

�v*�L2��0,T�,V� 

kp

��
�v0�H1 + 1, �26�

the solution of

dw

dt
= F�w,v*� , �27�

w�0� = w0 = − ��B0 + B0, �28�

satisfies

�w�C��0,T�,H� 
 �w�0��2 + 1, �29�

and, for two functions v1
* ,v2

* satisfying �26�, the solutions of

dwi

dt
= F�wi,vi

*� , �30�

wi�0� = − ��B0 + B0, �31�

satisfy

�w1 − w2�C��0,T�,H� 

1
2 �v1

* − v2
*�L2��0,T�,V�. �32�

�b� For w*�C��0,T� ,H�, with

�w*�C��0,T�,H� 
 �w�0��2 + 1, �33�

the solution of

�v

�t
= ��v − v · � v + G�w*� − � p + f ,

�34�
v�0� = v0,

satisfies

�v�L2��0,T�,V� 

kp

��
�v0�H1 + 1, �35�

and, for two functions w1
* ,w2

* satisfying �33�, the solutions of �34� with parameters w1
* and w2

*

satisfy
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�v1 − v2�L2��0,T�,V� 

1
2 �w1

* − w2
*�C��0,T�,H�. �36�

That T may be found satisfying �a� follows from Theorems 2.3 and 2.4, whereas proposition 3.1
and Theorem 3.2 guarantee that for T small enough, it also satisfies �b�. Then the mapping defined
in the product

B̄L2��0,T�,V�� kp

��
�v0�H1 + 1� � B̄C��0,T�,H���w0�2 + 1� �37�

and given by �v* ,w*�→ �v ,w�, takes this product of balls into itself in a contractive manner.
Therefore it has a unique fixed point. This is a solution of the equation, and conversely every
solution is a fixed point, which guarantees uniqueness. Although in principle we only know that
v�L2��0,T� ,V�, since w and therefore G�w� are uniformly bounded in H for all t� �0,T�, implies
that v, as the solution to a Navier–Stokes equation with a bounded forcing, belongs to
C��0,T� ,V��L2��0,T� ,D�A��. On the other hand, since �B�H2 
c�w�2, we find B
�C��0,T� ,D�A��.

V. FINAL CONSIDERATIONS

The key difference with classical MHD is that the induction equation is actually simpler in our
case, since the advective and diffusive terms are actually continuous functions of the new variable
w=�� ÃJ+B. However, this will not help us to prove global existence. For one thing, the
induction equation remains nonlinear in w; and second, no matter how regular the magnetic field
is, the momentum equation is a Navier–Stokes one, where global existence of solutions is a
celebrated unsolved question. Still, it is apparent from our proofs that the difussive term ��B does
not play any role and can be dispensed with. This is in sharp contrast with one-fluid MHD, and it
is a welcome feature, since most of the reconnection models where two-fluid MHD becomes
necessary are actually infinitely conducting, i.e., the resistivity is taken as zero. That the two-fluid
MHD equations yield more regularity than the classical MHD ones is apparent from the following
energy inequality: it does not involve the L2-norm of w, whose evolution is complex, but rather the
current density norm.

Theorem 5.1: Let kp be the Poincaré constant �v�2
2
kp��v�2

2. The solutions to systems (4)
and (5) satisfy, for as long as they are defined,

��J�t��2
2 + �B�t��2

2 + �v�t��2
2 + 2�	

0

t

� � B�2
2 + �	

0

t

� � v�2
2ds


 ��J�0��2
2 + �B�0��2

2 + �v�0��2
2 +

kp

�
	

0

t

�f�2
2ds . �38�

Proof: With our boundary conditions

	
�

J2dV = 	
�

J · �� Ã B�dV = 	
�

�� Ã J� · B dV = − 	
�

�B · B dV = 	
�


 � B
2dV .

Therefore

�

�t
	

�

J2dV = 2	
�

� � B

�t
· � B dV = − 2	

�

��B

�t
· B dV = 2	

�

��� Ã J�
�t

· B dV .

Let us multiply the momentum equation by v, the induction one by B, and add both. As in
classical MHD, the advective terms add to zero, as well as
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�

� �1

2
B2 + p� · v dV = 	

��

�1

2
B2 + p�v · n d = 0.

As for the Hall term,

	
�

�� Ã �J Ã B�� · B dV = 	
�

�J Ã B� · J dV = 0.

Writing as usual

�	
�

f · v dV� 
 �kp�f�2� � v�2 

�

2
� � v�2

2 +
kp

2�
�f�2

2,

we obtain the stated inequality. �

Thus, although the main existence theorem proved a finite-time bound for the maximum of
�v�H1 and �B�H2, the present one remains valid for as long as the integrals make sense and is
therefore more robust than the previous one. It plays the role of the energy inequality for MHD,
but supplies more information about the smoothness of the field. Whereas in one-fluid MHD it was
the total �kinetic plus magnetic� energy �v�2

2+ �B�2
2 which remained bounded, here also the current

density energy �J�2
2 does: hence the H1-norm of the magnetic field is kept by the flow, which

precludes any sharp gradients.
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It is shown that a time-dependent equation generates a Beltrami flow �or a force-
free field� at time t=� from non-Beltrami initial data in an arbitrary bounded
domain in three dimensions. The generated Beltrami flow has a zero normal com-
ponent on the boundary and its helicity is equal to a prescribed value. The existence
and uniqueness of a solution to the equation are guaranteed globally in time and no
finite-time singularity occurs. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1996440�

I. INTRODUCTION

The three-dimensional function u which satisfies

�� Ã u� Ã u = 0, � · u = 0 �1�

is called a Beltrami flow or a force-free field. It is known to play an important role in fluid
mechanics, magnetohydrodynamics, astrophysics, etc., and has been studied by many authors �see
Refs. 4–7, 9, 13, 17, 21, and 28, and references therein�. One of its properties is that its streamlines
�field lines of u� can be complex. In fact, Dombre et al.10 showed that the Arnold–Beltrami–
Childress �ABC� flow, which is a spatially periodic solution of �Ãu=u, has chaotic streamlines
�see also Refs. 12 and 29�. Moreover, it was shown in Refs. 23 and 30 that some Beltrami flows
in a sphere have chaotic streamlines, too.

It is obvious that every Beltrami flow is a solution to the stationary Euler equations.
Moffatt19,20 pointed out that some nonstationary systems of equations for a viscous and perfectly
conductive magnetofluid generate stationary Euler flows, at time t=�, whose streamline topology
is complex if the topology of initial magnetic force lines is complex. Vallis et al.27 obtained
stationary Euler flows as equilibria of the nonstationary Euler equations with an artificial term
added.

Using these ideas of Moffatt and Vallis et al., the author22 proposed the equation

wt = � Ã ���� Ã w� Ã w� Ã w� �2�

with periodic boundary conditions. He deduced that its solution w converges to a Beltrami flow, as
t→�, by noting that �� ·w�t=0,

1

2

d

dt
�

cube
�w�2d3x = − �

cube
��� Ã w� Ã w�2d3x ,

a�Electronic mail: t-nishi@yamaguchi-u.ac.jp
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d

dt
�

cube
� · w d3x = 0.

Here “cube” means a cube in which periodic boundary conditions are applied and � is a vector
potential of w. Furthermore, noting that �2� is similar to the vorticity equation of a compressible
perfect fluid, we can rewrite it as

	w

�



t
+ �U · � �

w

�
= 	w

�
· �
U with �t + � · ��U� = 0,

where U= ��Ãw�Ãw. This implies that field lines of w /� are “frozen” in the fluid which moves
with the pseudo-velocity U. Therefore, we can obtain a Beltrami flow w�t=� with complex stream-
line topology if topologically complex initial data w�t=0 are given. However, from a practical point
of view, �2� has some problems. The integrability of �� Ãw�2 over the cube at t=� is not
guaranteed and some singularities may occur at finite time. Besides, the applicability of �2� to a
nonperiodic case has not been known.

The aim of this paper is to propose a time-dependent equation, �11� below, which generates a
Beltrami flow at t=� from non-Beltrami initial data in a bounded domain � in three dimensions.
Here � is simply or multiply connected and its shape is arbitrary but its boundary �� is suffi-
ciently smooth. The Beltrami flow obtained in this way has a zero normal component on ��. Its
helicity, which measures the degree of knottedness of vortex lines, is equal to a prescribed value,
although �11� does not have frozen-field structure unlike �2�. These facts are shown in Sec. III,
after introducing some inequalities of function analysis and an operator PX in Sec. II.

In addition to the applicability to a nonperiodic case, another advantage of �11� over �2� is that
the existence and uniqueness of a solution to our initial-boundary value problem for �11� can be
proved globally in time. Moreover, this solution at any t�� is as smooth as initial data, that is, no
finite-time singularity occurs. These are studied in Sec. IV. In Sec. V, our results are summarized.

We can rewrite �1� as �Ãu=�u with a scalar function � satisfying u· ��=0. The existence
of solutions u to boundary value problems for this equation was rigorously proved for constant �
in Refs. 7, 17, and 28, and for nonconstant � in Refs. 5 and 13. Our method is completely different
from the approaches in these references, although it is open whether � is constant or nonconstant
for our Beltrami flow.

The time evolution of solutions to �11� does not seem difficult to investigate numerically. This
approach to numerical construction of a Beltrami flow is completely different from the algorithms
in Refs. 4 and 6.

II. PRELIMINARIES

First, we define the norms � · �Lp, ��·n,Lp, and � · �n,Lp �n=1,2 ,3 ,…; p�1� by

�f�Lp = 	�
�

�f�pd3x
1/p

,

��fn,Lp = 	 �
k+l+m=n

� �nf

�x1
k � x2

l � x3
m�

Lp

p 
1/p

,

�f�n,Lp = 	�f�Lp
p + �

k=1

n

��fk,Lp
p 
1/p

.

Particularly, in the case p=2, they are simply written as � · �, ��·n, and � · �n, respectively.
The inequalities
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�f�Lq � C�f�1,Lp, 1 � p � 3, 1 � q �
3p

3 − p
, �3�

sup
x��

�f�x�� + sup
x,x���

�f�x� − f�x���
�x − x��1−3/p � C�f�1,Lp, p � 3 �4�

are derived from the embedding theorem �see Ref. 16�. Here, and from now on, we use C to
denote positive constants independent of estimated functions. Its value depends on each individual
equality or inequality. In the same way, C� will be also used.

It is well known that Hölder’s inequality

�
�
�
k=1

n

�fk�d3x � �f1�Lp�f2�Lq ¯ �fn�Lr �5�

is valid when p−1+q−1+ ¯ +r−1=1. Its combination with Young’s inequality leads to

�
�
�
k=1

n

�fk�d3x � �f1�Lp
p + �f2�Lq

q + ¯ + �fn�Lr
r . �6�

If �d/dt�y�t��c1�t�y�t�+c2�t� for non-negative functions y ,c1, and c2, then Gronwall’s in-
equality

y�t� � �y�0� + �
0

t

c2�t��dt��exp��
0

t

c1�t��dt�� �7�

is valid �an extension of Lemma 5.5 of Ref. 16�.
It was shown in Refs. 11 and 24 that the space Lp���= �f :�→R3 � �f�Lp��� with p�1 is

decomposed into the two subspaces

L	
p = �f � Lp���� � · f = 0, f · n̂��� = 0�, Gp = �f�f = � Q, �Q�1,Lp � �� ,

where n̂ is the unit outward normal vector on ��. Moreover, if � is �N+1�-ply connected and the
N cuts 
1 ,
2 ,… ,
N �
 j�
k=� for j�k� make �−� j=1

N 
 j simply connected, then L	
p is de-

composed into

Xp = �f � L	
p ��


j

f · n̂ jdS = 0 for j = 1,2, ¯ ,N�
and the N-dimensional irrotational subspace FN spanned by ��Q1 , �Q2 ,… , �QN�. Here n̂ j is a
unit normal vector on 
 j and Qj is a solution to

�Qj = 0 in � − �k=1
N 
k,

�Qj · n̂��� = 0, ��Qj · n̂k�k = 0 for k = 1,2,…,N ,

�Qj�k = �1 for k = j

0 for k � j ,
�

�·�k denotes the jump of value in passing through 
k in the opposite direction to n̂k �see Ref. 26�.
For example, when � is the interior of a torus �N=1� which is symmetrical with respect to the
x3-axis, 
1=�� ��=0� and Q1=� / �2� in the cylindrical coordinate system �R ,� ,x3�. Another
equivalent definition of FN was introduced in Refs. 3 and 8. If � is simply connected, then we set
Xp=L	

p .
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Let us introduce the projection operator PX from Lp���, p�1, onto Xp such that

� · �PXf� = 0, �PXf� · n̂��� = 0 for any f � Lp��� ,

and in addition,

�

j

�PXf� · n̂ jdS = 0 for j = 1,2,…,N if � is �N + 1�-ply connected.

When � is simply connected, we define PX by PXf= f− �Q0 with Q0 satisfying

�Q0 = � · f, �Q0 · n̂��� = f · n̂���. �8�

In general, it is not easy to write Q0 explicitly by using f. For example, however, if � is the
interior of a unit sphere, then

Q0�x� = �
�

G�x,x�� � · f�x��d3x� − �
��

G�x,x��f�x�� · n̂�x��dS� + const,

where

G�x,x�� = −
1

4
	 1

�x − x��
+

1

�x���x − x*�
+ ln

1

1 − x · x� + �x���x − x*�

and x*=x� / �x��2 �see Eq. �2.6.62� in Ref. 14�.

When � is �N+1�-ply connected, we define PX by

PXf = f − � Q0 − �
j=1

N

aj � Qj .

Here Q0 is determined by �8� with �
j
�Q0 · n̂ jdS=0 �j=1,2 ,… ,N� and aj is given by the system

of N linear equations

�
k=1

N 	�

j

� Qk · n̂ jdS
ak = �

j

f · n̂ jdS ,

which is uniquely solvable �Eq. �1.18� in Ref. 26�.
The inequality

�PXf�Lp � C�f�Lp, p � 1 �9�

was proved in Refs. 11 and 24. Moreover, using Lemma 2.14 of Ref. 15 in � �or �−� j=1
N 
 j if �

is �N+1�-ply connected� and noting that �ÃPXf= � Ã f, we have

� �PXf�1,Lp � C� � Ã f�Lp, p � 2,

�PXf�n+1,Lq � C� � Ã f�n,Lq, n = 1,2,3,…;q � 1.� �10�

III. MAIN EQUATION AND BELTRAMI FLOW

The following is our main equation:

�t = PX� �� Ã v� Ã v
�1 + ���2�1 + �v�2�� �11�

with v defined by v= PXV, where
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V = � Ã � = � Ã �
�

��x�,t�
4�x − x��

d3x� = �
�

��x�,t� Ã �x − x��
4�x − x��3

d3x�.

As an initial condition,

��t=0 = �0�x� �12�

is imposed, where �0�X2, that is,

�13�

We denote v�t=0 by v0 and assume that it is non-Beltrami, that is,

�� Ã v0� Ã v0 � 0 . �14�

In this section, let us consider the evolution of � �and v� for t�0 and show that v�t=� is a
Beltrami flow whose normal component on �� vanishes and helicity is equal to ��v0 ·�0d3x.

First, it should be noted that PX�=�, that is, � ·�=0 and � · n̂���=0 for every t�0 because
of �13� and PX�t=�t. This fact yields that � ·�=0 �see Ref. 1� and we get

� Ã v = � Ã V = − �� = � .

It is clear that � ·v= � ·V=0. The difference between v and V is that v· n̂���=0 for all t
� �0,��, while V·n̂��� does not always vanish.

Note that

�
�

�PXf� · g d3x = �
�

f · �PXg�d3x = �
�

�PXf� · �PXg�d3x

is valid for any f and g if the integrals have a finite value. Particularly, if f is the gradient of some
function, then the integrals are equal to zero. Then, from �11�, �= PX�, and

�
�

vt · � d3x = �
�

Vt�x,t� · ��x,t�d3x = �
�
�

�

��x,t� · ��t�x�,t� Ã �x − x���
4�x − x��3

d3x d3x�

= �
�

V�x�,t� · �t�x�,t�d3x� = �
�

v · �td
3x ,

we calculate

1

2

d

dt
���2 = − �

�

�� Ã v�2

�1 + ���2�1 + �v�2�
d3x , �15�

d

dt
�

�

v · � d3x = 0. �16�

It follows from �15� that ���2 keeps decreasing with t as long as ��Ãv��0, and ���� ��0� is
valid because of �14�. Moreover, �15� gives

�
0

� ��
�

�� Ã v�2

�1 + ���2�1 + �v�2�
d3x�dt �

1

2
��0�2.

Making use of �5� and noting that
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�v�L4 � C�v�1 � C���� � C���0� �17�

follows from �3� and �10�, we derive

	�
�

�� Ã v�d3x
2

� �
�

�� Ã v�2

�1 + ���2�1 + �v�2�
d3x��

�

�1 + ���2�d3x�
�

�1 + �v�2�2d3x�1/2

� C���0�3 + 1��
�

�� Ã v�2

�1 + ���2�1 + �v�2�
d3x .

Therefore,

�
0

� 	�
�

�� Ã v�d3x
2

dt � � ,

which means that

�
�

�� Ã v�d3x = �
�

��� Ã v� Ã v�d3x = 0 at t = � .

Furthermore, by �9�, we obtainF

��t�2 � C� �� Ã v� Ã v
�1 + ���2�1 + �v�2��2

� C�
�

�� Ã v�d3x = 0 at t = � .

These facts imply that � reaches a steady state at t=� and v�t=� is a Beltrami flow whose
enstrophy �1

2 ���2 at t=�� is less than 1
2 ��0�2 and helicity ���v·� d3x at t=�� is equal to the

prescribed value ��v0 ·�0d3x. Particularly, if ��v0 ·�0d3x�0, then it is easy to see that ��� at
t=� is nonzero. Indeed, �16� with �5� and �10� yields

0 � ��
�

v0 · �0d3x� = ��
�

v · � d3x� � �v���� � C���2. �18�

The quantity ��v·� d3x is known to measure the degree of knottedness of �-lines �Refs. 2
and 18�. Thus we can expect that streamlines of the Beltrami flow v�t=� �parallel to lines of vortex
��t=�� are complex if field lines of �0 are topologically complex, although �11� does not have
frozen-field structure unlike �2�.

IV. UNIQUE SOLVABILITY OF MAIN EQUATION

In this section, we discuss the existence and uniqueness of a solution � to our initial-boundary
value problem �11� and �12�, and � · n̂���=0. For this, we first calculate some estimates of �
assuming its existence in a sufficiently smooth class.

In addition to �13�, let us assume that ��0�2,L� �� with ��3. Then, by �5�, �9�, and �11�, we
derive, for ��2

d

dt
���L�

� = ��
�

����−2� · �td
3x � ����L�

�−1��t�L�,

��t�L� � C� �� Ã v� Ã v
�1 + ���2�1 + �v�2��L�

� C	�
�

d3x
1/�

,

which mean �d/dt����L� �C. This and �10� give
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�v�1,L� � C���L� � C��0�L� + C�t, � � 2. �19�

Next, verifying that

� �

�xj

�� Ã v� Ã v
�1 + ���2�1 + �v�2�

� � C���xj
� + �vxj

��

and making use of �6�, �10�, �17�, and �19�, we get, for ��2

d

dt
���1,L�

� = ��
j=1

3 �
�

��xj
��−2�xj

· �txj
d3x � �����1,L�

� + ���t1,L�
� � ,

���t1,L�
�

� C�� Ã
�� Ã v� Ã v

�1 + ���2�1 + �v�2��L�

�

� C�����1,L�
� + ��v1,L�

� � � C����1,L�
� + c�t,��0�L�� .

Here, and from now on, c�t ,s� is used without distinction in order to denote positive functions
which are monotonically increasing in each of t and s, finite for any t�� and s��, and inde-
pendent of estimated functions. From �7� and �10�,

�v�2,L� � C���1,L� � c�t,��0�1,L��, � � 2 �20�

follows. In the same way, noting that

� �2

�xj � xk

�� Ã v� Ã v
�1 + ���2�1 + �v�2�

� � C���xjxk
� + �vxjxk

� + ���xj
� + �vxj

�����xk
� + �vxk

��� ,

we have

d

dt
���2,L�/2

�/2
�

�

2
����2,L�/2

�/2 + ���t2,L�/2
�/2 � ,

���t2,L�/2
�/2

� C�� Ã
�� Ã v� Ã v

�1 + ���2�1 + �v�2��1,L�/2

�/2

� C����2,L�/2
�/2 + c�t,��0�1,L��

for ��2. They lead to

�v�3,L�/2 � C���2,L�/2 � c�t,��0�2,L�/2 + ��0�1,L��, � � 2. �21�

For � /2=��3,

sup
x��

j=1,2,3

��xj
�x,t�� + sup

x,x���

j=1,2,3

��xj
�x,t� − �xj

�x�,t��

�x − x��1−3/� � C���2,L� � c�t,��0�2,L�� �22�

follows from �4�. This means that � at any t�� is as smooth in x as �0, if it exists. Furthermore,
since

��t�2,L� � c�t,��0�2,L�� �23�

is derived from the above calculations, � is also smooth in t.
Using the Galerkin method in Ref. 25 and �20� for �=2 with ��t��C, we can prove the

temporally global existence of � such that ��· , t��X2 is continuous in t. Then the differentiability
of � is raised so that �19�–�23� hold.
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This smoothness of � enables us to prove that the initial data �0 cannot generate two different
solutions. Indeed, supposing that �=�1 ,�2 �correspondingly, v=v1 ,v2� are generated by �11�
from the same initial condition and noting that sup��v� and sup���� are bounded by c�t , ��0�1,L��
with ��3, we can obtain

d

dt
��1 − �2�2 � c�t,��0�1,L����1 − �2�2.

From this,

�v1 − v2� � C��1 − �2� = 0

is deduced by virtue of �7� and �10�. By contrast we do not know whether or not two different
initial data reach the same steady state ��t=�.

V. CONCLUSIONS

It was shown that each solution � to �11� with �12� reaches a steady state at t=� and u
=v�t=� is a solution to �1�, that is, a Beltrami flow such that u· n̂���=0,

�u�1 � C� � Ã u� � C��0�, �
�

u · �� Ã u�d3x = �
�

v0 · �0d3x .

Unlike �17� and �18�, which remain valid at t=�, the estimates �19�–�23� hold only for t�� and
� may be nonsmooth at t=�. Nevertheless, �19�–�23� guarantee that �11� is really solvable
globally in time, � is unique for �0 �not for ��t=��, and no finite-time singularity occurs. This fact
seems convenient for numerical construction of a Beltrami flow.

It should be noted that v�t=� generated by

�t = PX��� Ã v� Ã v� �24�

is a Beltrami flow, too. Indeed, instead of �15�

1

2

d

dt
���2 = − �� Ã v�2

is derived and �16� is also valid for �24�. However, we do not know whether �19�–�23� are deduced
from �24� or not. The denominator �1+ ���2�1+ �v�2� in �11� helps to obtain �19�–�23�. Thus �11�
seems more suitable to numerical construction of a Beltrami flow than �24�.
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We prove, in great generality, that in a system of bosons, whenever Bose conden-
sation in a nonzero mode occurs then there is also spontaneous breaking of trans-
lation symmetry. In particular the proof holds for realistic Bose systems with two-
body superstable interaction. This generalizes an old result proving that the
occurrence of Bose-Einstein condensation in the zero mode implies spontaneous
breaking of gauge invariance. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1985025�

I. INTRODUCTION

For homogenous systems of bosons, the phenomenon of Bose-Einstein condensation into the
ground state is very well known and intensively studied. In this situation, the ground state density
�0 is nonzero, that is we have

�0 = lim
�

��a0
*a0

V
� � 0, �1.1�

where lim� stands for lim�↗R�, ��·� denotes the expectation with respect to the equilibrium state
and

ak
# =

1
�V
�

�

dx a#�x�eik·x

are the usual creation and annihilation operators for momentum k for the system in a �cubic�
domain ��R� of volume V. Another manifestation of this phenomenon is breaking of gauge
symmetry as expressed by the formula

lim
�

�� a0

�V
� � 0. �1.2�

In this case we also have that
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�0 = lim
�

��a0
*a0

V
� = lim

�
	�� a0

�V
�	2

. �1.3�

It is easy to deduce from the Cauchy-Schwarz inequality that spontaneous breaking of gauge
symmetry in the sense of �1.2� implies the existence of condensation. However in the literature on
Bose condensation of homogenous systems, one notices that many authors seem to take for
granted or consider trivially true the converse of this statement, that is, the fact that the existence
of condensation ��0�0� implies spontaneous breaking of gauge symmetry. This result �1.3�,
which is far from trivial, indeed holds true and was first proved in a very general setting in Ref. 1,
where one finds the following proposition.

Proposition 1.1: If in the state �, the ground state condensate density �0�0, then there exists
a family of equilibrium states 
�� ��� �0,2��� such that

�a� �= �1/2��0
2�d� ��,

�b� lim� ���a0 /�V��0 for all �� �0,2��.

Through the recent activity in the domain of condensation in traps �see, for example, Ref. 2�,
the possibility of condensation in a mode corresponding to a nonzero momentum q has arisen.
This requires a generalization of above theorem to the case q�0. In this paper we shall prove the
following proposition.

Proposition 1.2: Suppose that for the equilibrium state �, for some q�0 the condensate
density �q�0 and let q= �2� /��e where e is a unit vector in R� and ��0. Then there exists a
family of periodic equilibrium states 
�̃te � t� �0,���, with period � such that

�a� �= �1/��0
�dt �̃te,

�b� lim� �̃te�aq /�V��0 for all t� �0,��.

We give the exact formulation and proof of this result in Sec. II �see Theorems 2.1 and 2.2�.
The statement in �b� means that now, not only the gauge symmetry is spontaneously broken, but
also the space translation invariance since under translation by y, for example, the operator aq is
transformed into e−iq·yaq. For an explicit application of this result see Ref. 3. The main practical
result is that for homogenous gauge invariant systems, a thermodynamic limit Gibbs states, show-
ing condensation in a mode q�0, can be decomposed with respect to periodic equilibrium states
also showing gauge symmetry breaking. This decomposition of the state � in the direction of q
can straightforwardly be generalized to more dimensions by constructing from � states which are
periodic in any dimension at the same time.

II. CONDENSATION AND SPONTANEOUS SYMMETRY BREAKING

The models we have in mind in this note are realistic Bose systems, with two-body interac-
tions in dimension �	1. The two-body potential v is supposed to be well-behaved and in par-
ticular superstable.4

The algebra of observables A �Ref. 5� is as usual generated by the Weyl operators,

W�h� = exp i
a�h� + a*�h��h � H = L2�R�� ,

where a#�h� are the boson annihilation and creation operators in the symmetric Fock space F�H�
satisfying the canonical commutation relations

�a�f�,a*�g�� = �f ,g�H, �2.1�

with �· , · �H denoting the scalar product in the Hilbert space H.
For a cubic region � in R� centered at the origin let H�=L2���. Then the algebra A�

generated by 
W�h� �h�H�� is embedded in A in the natural way.
On the n-particle subspaces of F�H��, the local Hamiltonians H� are given by
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H�
n = T�

n + U�
n , �2.2�

where T�
n =−�i=1

n 
i /2, 
 being the self-adjoint extension of the Laplacian on H� corresponding to
periodic boundary conditions, and U�

n the multiplication operator by �1�i�j�nv��xi−xj��, xi ,xj

��. The superstability condition ensures the existence of local Gibbs states and all n-point
correlation functions for any number of creation and annihilation functions, see, e.g., Refs. 4 and
5, Chap. 6.3.4. We denote the number operator for the volume � by N�.

We are interested in the properties of the equilibrium states corresponding to the system �2.2�.
In what follows the most convenient way to define these states is by means of the correlation
inequalities.6 In particular a state � on A is an equilibrium state at inverse temperature  and
chemical potential ��R if it satisfies the following energy-entropy balance conditions:

��X*�H� − �N�,X�� 	 ��X*X�ln
��X*X�
��XX*�

�2.3�

for all � and for any observable X�A� in the domain D��H�−�N� , · ��. Our aim is to find
solutions � satisfying �2.3�. The thermodynamic limit Gibbs states are solutions of �2.3� and
because of the homogeneity and gauge invariance of the Hamiltonian �2.2�, they are translation
and gauge invariant solutions. With this in mind, we consider the class of states � satisfying �2.3�,
and the following conditions which are satisfied in realistic Bose systems with superstable inter-
action:

�A� The state � is translation and gauge invariant.
�B� The state � is analytic in the sense of Ref. 5, Chap. 5.2.3, this means that the state can be

completely described in terms of all n-point correlation functions of the creation and anni-
hilation operators.

Denote the volume of � by V and let

�* = 
2�n/V1/��n � Z��

be the dual momentum set for the cubic region � with periodic boundary conditions. As above for
any k��*, we define the creation and annihilation operators of a particle with momentum k,

ak
# = a#���,k� where ��,k�x� =

1
�V

eik·xI��x� ,

I� being the characteristic function of region �.
We say that the state � shows condensation in the mode q��* if

�q = lim
�

��aq
*aq

V
� � 0 �2.4�

and then �q is called the condensate density in the q mode.
We consider the system �A ,�� and its GNS construction5 on the Hilbert space H with cyclic

and separating vector ��H, i.e., for all X�A, one has

��X� = ��,X�� , �2.5�

where for notational convenience, we denote by the same symbol the element X of A and its image
under the GNS representation, an operator on H. We denote by A� the von Neumann algebra
generated by the representation of A, and by A� its commutant. Take q��* with q�0 and let

�q,� ª a���,q/�V� =
1

V
�

�

dx eiq·xa�x� . �2.6�

This operator converges strongly to an operator �q in the representation space H.5 So, we define
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�q = lim
�

�q,� and �q
* = lim

�
�q,�

* . �2.7�

Because the operators �q,� are local averages �2.6�, �q is a limit average operator, also called
observable at infinity, and therefore affiliated to the center C=A��A� of the algebra A�, see, e.g.,
Ref. 5.

For y�R� let �y be the translation �-automorphism of A over the distance y, that is,

��ya
#��x� = a#�x + y� . �2.8�

Then from �2.6�–�2.8� we obtain

�y�q = e−iq·y�q, �2.9�

�y��q
*�q� = �q

*�q. �2.10�

From �2.10� we see that the particle density operator in the mode q, nqª�q
*�q, is translation

invariant.
For the rest of this section we make the assumption that in the state � there is condensation in

the nonzero mode q�0, i.e., we shall assume that

�q = ���q
*�q� = ��nq� � 0. �2.11�

This implies that nq�0 and therefore also that

��nq
1/2� � 0, �2.12�

since ��nq
1/2� cannot be zero because of the separating character of the equilibrium state.5 Con-

sider the polar decomposition of the operator �q,

�q = Uqnq
1/2. �2.13�

As �q belongs to the center C, it is a normal operator. By Ref. 7, Chap. X.9, operator Uq can be
taken as the unitary extension of the partial isometry defined by the polar decomposition. Since

0 � ��nq
1/2� = ��Uq

*�q� = lim
�

��Uq
*�q,�� ,

we can find h�H such that

��Uq
*a�h�� � 0. �2.14�

Now we define a representation of A on H. For any h�H, define the boson field

�̃�h� ª 
Uq
*a�h� + Uqa*�h��*. �2.15�

By definition �2.15�, the operator �̃�h� is essentially self-adjoint in H, and we can define Weyl

operators W̃, H→B�H�,

W̃�h� ª ei�̃�h�, h � H . �2.16�

Using the fact that Uq is a unitary belonging to the center, it is trivial to check that W̃ is a
representation of A on H. Denote by � the �-isomorphic map of A into B�H�,

��W�h�� = W̃�h� . �2.17�

Then one can easily derive the following identities for the annihilation and creation operators:

ã�h� ª ��a�h�� = Uq
*a�h� ,
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ã*�h� ª ��a*�h�� = Uqa*�h� .

For any x�R�, we define the functional �̃x on A by

�̃x�W�h�� ª ��,W̃�hx��� = ��� � �x�W�h��� , �2.18�

where hx�y�=h�x+y� is the translate of h over x. It is clear from �2.18� that �̃x is again a state on
algebra A.

It follows immediately from �2.14� and �2.18� that the states �̃x are not gauge invariant, in
particular �̃x�a�h��=��Uq

*�xa�h���0 for some h�H. Also directly from the definition �2.18� one
sees that the states �̃x, x�R�, have the property that for all y�R�,

�̃x � �y = �̃x+y . �2.19�

Now we concentrate on the direction of the translation. Let q= �2� /��e where e�R� is the unit
vector in the direction of q and let � be the period or wavelength of the mode q, i.e., �
=2� / �q�. We have the following.

Theorem 2.1 (existence of periodic states):
�a� Each state �̃x is translation invariant in any direction orthogonal to q: for all y�R� such

that y ·q=0,

�̃x+y = �̃x.

�b� Each state �̃x is periodic with period � in the direction of q:

�̃x+�e = �̃x.

Proof: From �2.15�, �2.16�, and �2.18� we obtain

�̃x+y�W�h�� = ��,ei�̃�hx+y��� . �2.20�

Now we have

�̃�hx+y� = 
Uq
*�ya�hx� + Uq�ya

*�hx��* = �y
�−y�Uq
*�a�hx� + �−y�Uq�a*�hx��* �2.21�

and from �2.9�, �2.10�, and �2.13� it follows that

�y�Uq� = Uqe−iq·y .

Therefore, if y ·q=0 or y=�e �since then q ·y=2��, one gets �y�Uq�=Uq. Thus for both cases we
get

�̃�hx+y� = �y�̃�hx� . �2.22�

Then inserting �2.22� into �2.20� and using the translation invariance of the state � �2.5� one gets
the proof of �a� and �b�. �

Now we come to the analysis of the states and their translates in the direction of the vector q.
Theorem 2.2 (decomposition into periodic states):
�c� The states �̃te are all distinct, that is, for any t , t�� �0,�� such that t� t� one has

�̃te � �̃t�e.

�d� The original state � is the convex combination of the family of states 
�̃te � t� �0,���:

� =
1

�
�

0

�

dt �̃te.

�e� All the states 
�̃te � t� �0,��� are equilibrium states.
Proof: Since the state � is analytic �condition �B��, it follows from definition �2.18� that the
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states �̃x are also analytic. Therefore, it is sufficient to check the statements of the theorem only
for all monomials in the field operators �Ref. 5, Chap. 5.2.3.�.

Recall that by �2.18� we have

�̃te�a�h�� = ��Uq
*�tea�h�� .

Using �2.9� and the translation invariance of the state � �condition �A��, we obtain

�̃te�a�h�� = e−iq·te��Uq
*a�h�� = e−i�2�/��t��Uq

*a�h�� .

By �2.14�, there exists an element h�H such that ��Uq
*a�h���0. Then for any t , t�� �0,��, t

� t� one gets

��̃te − �̃t�e��a�h�� = �e−it�2�/�� − e−it��2�/�����Uq
*a�h�� � 0,

proving �c�.
We now prove �d�. Let m ,n�N and f �H. Then we have

1

�
�

0

�

dt �̃te�a*�f�na�f�m� =
1

�
�

0

�

dt ���te�a*�f�n��te�ate�f�m�Uq
nUq

−m� .

By virtue of �2.9� and by translation and gauge invariance of the state � �condition �A�� we get

1

�
�

0

�

dt �̃te�a*�f�na�f�m� =
1

�
�

0

�

dt ei�2�/��t�m−n���a*�f�na�f�mUq
n−m�

= �n,m��a*�f�na�f�m� = ��a*�f�na�f�n� ,

which proves �d�.
Finally we prove that for any t� �0,�� the state �̃te is an equilibrium state, by showing that

these states satisfy the equilibrium conditions �2.3�. Let X be an arbitrary monomial in the creation
and annihilation operators. Then using condition �A� for the state � together with the translation
and gauge invariance of the local Hamiltonians �2.2�, one gets

lim
�

�̃te�X*�H� − �N�,X�� = lim
�

��� � �te�X*�H� − �N�,X���

= lim
�

���� � �te�X��*�H� − �N�,� � �te�X��� 	 ���� � �te�X��*��

� �te�X���

�ln
���� � �te�X��*� � �te�X��
��� � �te�X��� � �te�X��*�

= �̃te�X*X�ln
�̃te�X*X�
�̃te�XX*�

.

This yields �e� concluding the proof of the theorem. �

Theorems 2.1 and 2.2 prove that if one has an equilibrium state � showing condensation in the
non zero q mode �2.4� then there exists a set of periodic equilibrium states 
�̃te � t� �0,��� in the
q direction with period �. In directions orthogonal to q, these states remain homogenous. Note that
these states simultaneously break the gauge symmetry and that they live in the same representation
space H of the CCR algebra A determined by the original state �. We have proved that sponta-
neous translation and gauge symmetry breaking occur simultaneously.

The converse statement is clearly not true in general. For example, bosonic atoms may crys-
tallize without undergoing Bose condensation as in the case of 4He at sufficiently high pressure,
see also the discussion in Sec. III. However, if we assume a stronger form of translation invariance
symmetry breaking of the state �̃x, namely,
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�̃x��q� = lim
�

�̃x��q,�� � 0, �2.23�

then the existence of Bose condensation in the q mode follows immediately from the Cauchy-
Schwarz inequality as it does for the zero mode.

Remark 2.1: Theorems 2.1 and 2.2 are in fact valid under weaker assumptions. In particular
the second condition �B� can be dispensed with. But then one must work almost entirely with the
Weyl operators as observables and not the creation/annihilation operators. Also one must replace
the equilibrium conditions �2.3� by the KMS-state definition of equilibrium.5

Remark 2.2: Above we analyzed the situation for one direction q. It is a simple exercise to
generalize the analysis to an arbitrary number of dimensions. In particular, suppose that one has
condensation in � independent directions q1 , . . . ,q�, i.e., that �qi

�0 for i=1, . . .�, and

qi · qj = �ij�qi�2.

Then we can perform the above constructions in each direction independently because the corre-
sponding �-operators commute with each other and with their adjoints. One obtains equilibrium
states �̃x, with x= t1e1+ ¯ + t�e�, periodic in all directions creating a �-dimensional lattice.

III. CONCLUSION

As we mentioned in the Introduction there are situations when there is condensation in a
nonzero mode. In fact in Ref. 3 we considered a model that exhibits condensation in the zero mode
and a nonzero mode simultaneously. For this model Theorems 2.1 and 2.2 can be used to show the
existence of periodic interference fringes �condensate grating�, which is observed experimentally,
see discussion in Ref. 3. Here we give a brief account of this argument.

In the limiting equilibrium state �, which is translation invariant, clearly the average local
particle density is constant. However in this model when condensation occurs in the mode q�0
also, by Theorem 2.1 the translation invariance of equilibrium states will be broken in the direc-
tion of e simultaneously with the gauge symmetry. This implies that

�0�t� ª lim
�

�̃te��0,�� � 0 and �q�t� ª lim
�

�̃te��q,�� � 0 �3.1�

for any of the states 
�̃te � t� �0,���, see Proposition 1.2 �b�. Recall that the local particle density
operator is given by

���x� ª �
k��*

�̂k,�eik·x, �3.2�

where

�̂k,� ª �
p��*

�p+k,�
* �p,�. �3.3�

The conservation laws for this model imply that

�̃te��p+k,�
* �p,�� = �k,q�p,0�̃te��k,�

* �0,�� + �k,0�̃te��p,�
* �p,�� �3.4�

and one also has �see Ref. 3, Sec. 4�

lim
�

�̃te��q,�
* �0,�� = lim

�
�̃te��q,�

* �lim
�

�̃te��0,�� = �q�t��0�t� . �3.5�

Then by definition �3.2� and �3.3� and by virtue of �3.1�, �3.4�, and �3.5� we obtain

lim
�

�̃te����x�� = 2 Re
eiq·x�q�t��0�t�� + lim
�

�̃te����0�� . �3.6�

This means that one gets a nonhomogeneity �grating� of the equilibrium total particle density, as
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observed experimentally �see Refs. 2 and 3�, if and only if there is simultaneous condensation in
some nonzero mode and in the zero mode.

Another possible application of our general results is motivated by Remark 2. This is related
to the theory of a hypothetic coherent boson crystals,8,9 proposed to explain some unusual prop-
erties of 4He in the solid phase. The main ingredients of this approach are the Hartree or the
Gross-Pitaevskii variational calculations based on the hypothesis of the existence of the conden-
sate in the zero mode as well as in several other nonzero modes to imitate an elementary cell of the
solid helium. In this case the Helium atoms are not localized and the corresponding periodic state
implies the occurrence of space variation in the particle density by virtue of �2.23� and by the
arguments �3.1� and �3.6� in this section. Note that the coherent crystallization is drastically
different from the standard one, where the atoms on the lattice sites are completely localized, thus
do not obey many-body quantum statistics and the assumption �2.23� cannot be valid. This point
of view on the crystal state, in which delocalized particles still satisfy Bose statistics, has led in
turn to the hypothesis of superfluidity of quantum crystals, see, e.g., Ref. 10.
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We study the critical points of a nonlocal free energy functional. The functional has
two minimizers �ground states� m�±� with zero energy. We prove that there is a first
excited state identified as the instanton m̂L, and that above the energy of the instan-
ton there is a gap. We also characterize parts of the basin of attraction of m�±� and
m̂L under a dynamics associated to the free energy functional. The result completes
the analysis of tunneling from m�−� to m�+�. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1990107�

I. INTRODUCTION

In this paper we consider a nonlocal free energy functional FL on L���−L ,L� ; �−1,1�� defined
by

FL�m� = �
−L

L

���m�dx +
1

4
�

−L

L �
−L

L

Jneum�x,x���m�x� − m�x���2dx dx�, �1.1�

where ��1,

���m� = �̃��m� − min
�s��1

�̃��s�, �̃��m� = −
m2

2
−

1

�
S�m� ,

S�m� = −
1 − m

2
log

1 − m

2
−

1 + m

2
log

1 + m

2
,

and

Jneum�x,y� = J�x,y� + J�x,RL�y�� + J�x,R−L�y��

with R��y�=�− �y−�� the reflection of y around � and J�x ,y�, �x ,y��R�R, a smooth, symmetric,
translational invariant probability kernel supported in �y−x��1. We also assume that J�0,x� is a
nonincreasing function whenever restricted to x�0. The functional �1.1� arises in statistical me-
chanics in the analysis of Ising systems with Kac potentials,9 and it has been extensively studied
in the recent years.
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The critical points of FL are defined as the functions m�L���−L ,L� ; �−1,1�� which solve in
the whole of �−L ,L� the “nonlocal mean field equation”

m = tanh��Jneum � m� . �1.2�

�1.2� also has a dynamical interpretation as the equation for the stationary points of the evolution
equation

ut = gL�u� ª − u + tanh��Jneum � u� �1.3�

which is derived from Glauber dynamics in the Ising systems with Kac potentials mentioned
previously.9

We call “energy levels” of FL its values at the critical points and borrowing from the termi-
nology on linear operators, we call “spectrum” of FL the set of all its energy levels. Many physical
properties are determined by the structure of the spectrum at its bottom and its investigation is the
main aim of this article. We start by observing that the spectrum of FL is contained in the positive
axis, as both terms on the right-hand side �r.h.s.� of �1.1� are nonnegative. The spectrum actually
starts at 0. Indeed, since Jneum is a probability kernel, the solutions of �1.2� which are spatially
homogeneous, namely m�x�=u� �−1,1� for all x� �−L ,L�, satisfy the “mean field equation” u
=tanh��u�. As ��1, there are three solutions u= ±m�, m�� �0,1�, and u=0. The two critical
points m�±��x�= ±m�, x� �−L ,L�, have zero energy, FL�m�±��=0, and are called “ground states,”
while FL�0�=2���0�L�0.

Thus the spectrum starts at 0 and 0 has degeneracy 2 as there is no other m besides m�±� with
0 energy. In fact the second term on the r.h.s. of �1.1� forces a minimizer to be spatially homo-
geneous and we have already seen that, among the spatially homogeneous functions, m�±� are the
only ground states. We also know from the literature that the state m	0 is not the first excited
state �i.e., with minimal positive energy�, at least for L large enough. In fact its energy 2���0�L
becomes, as L increases, larger than the energy of the instanton m̂L �a spatially nonhomogeneous
critical point�, which instead remains bounded as L→�.5–7 In this article we will prove the
following.

Theorem 1.1: For all L large enough, FL�m̂L� is the first energy level above 0, it is not
degenerate and above FL�m̂L� there is a spectral gap, namely there is 	�0 so that if m is a
critical point and FL�m��FL�m̂L�+	, then m� �m�−� ,m�+� , m̂L�.

Such a characterization of the spectrum was the missing element in Ref. 3 in the analysis of
tunnelling from m�−� to m�+�, which therefore with the help of Theorem 1.1 is now complete. We
can also use Theorem 1.1 to determine partially the basin of attraction of m�±� and m̂L.

Theorem 1.2: For all L large enough, there is 	�0 so that for any m such that FL�m�
�FL�m̂L�+	

lim
t→�

St�m� � �m�−�,m�+�,m̂L� , �1.4�

where St�m� is the solution of �1.3� starting from m at time 0.
Theorem 1.2 is a corollary of Theorem 1.1 �but the converse is also true and indeed we will

prove Theorem 1.1 as a consequence of Theorem 1.2�. In fact, the semigroup St�m� decreases the
energy, in the sense that FL�St�m�� is a strictly decreasing function of t, unless m is a critical point.
Moreover, by compactness and continuity the limit points of an orbit St�m� are critical points and
by lower semicontinuity of FL their energy is smaller than FL�m�, hence �1.4�.

The information on the basin of attraction of �m�−� ,m�+� , m̂L� contained in Theorem 1.2 is
sufficient for the analysis of tunneling, because the control parameter is the energy, but in many
applications in statistical physics natural neighborhoods are in the L� topology. In such neighbor-
hoods the energy may grow proportionally to L �the domain size� and new criteria for being
attracted to �m�−� ,m�+� , m̂L� are needed. To formulate the results we need some more notation and
definition and we postpone the issue to the next section at the end of which we give an outline on
the content of the paper. A preliminary version of the present paper is in Ref. 4.
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II. DEFINITIONS AND RESULTS

For ease of notation it is sometimes convenient to work in the whole line rather than in
�−L ,L�, this is possible provided we suitably restrict the space of functions. m�L��R ; �−1,1�� is
symmetric around � if m��+x�=m��−x�, x�R; it is called L-symmetric if it is symmetric around
all points �2n+1�L, n�Z. The symmetric extension of m�L���−L ,L� ; �−1,1�� is then the
L-symmetric function on R which agrees with m in �−L ,L� and

�
−L

L

���m�dx +
1

4
�

−L

L �
R

J�x,x���m�x� − m�x���2dx dx� �2.1�

is equal to FL�m1�x��L�. Moreover if m is L-symmetric and St�m� solves

ut = g�u� ª − u + tanh��J � u�, u�· ,0� = m , �2.2�

then St�m� is L-symmetric and its restriction to �−L ,L� solves �1.3�. It is therefore equivalent to
consider �2.1� and �2.2� on the space of L-symmetric functions or to work in the context of Sec. I,
and we take advantage of this equivalence by setting each problem in the one of the two contexts
which is more convenient for the specific purpose. To have more compact notation we sometimes
use the same symbol for a function and its L-symmetric extension. Natural neighborhoods in
statistical mechanics are defined in terms of “closeness in the average” and of “coarse graining”
transformations. We briefly recall the main notion adapted to the present context.

Definition 2.1. (Coarse graining): Let D���, ��0, be the partition of R into the intervals �n�,
�n+1���, n�Z, and Ix

��� the interval in D��� which contains the point x. Then the �-coarse grained
image of a L� function m is

m����x� ª
W

Ix
���

m�y�dy,
W



m�y�dy ª
1

�
��
 m�y�dy . �2.3�

Definition 2.2. (Phase indicators): Given an “accuracy parameter” ��0, let

���,���m;x� = 
±1 if �m����x� m��� �

0 otherwise.
�

Denoting �− and �+ two values of the parameter �, with �+ an integer multiple of �−, we then
define the “phase indicator”

���,�−,�+��m;x� = 
±1 if ���,�−��m; · � = ± 1 in �− L,L� � �Ix−�+

��+� � Ix
��+� � Ix+�+

��+� �

0 otherwise.
�

Definition 2.3. (Contours): The contours of a function m�L� are defined as the connected
components of the set �x :���,�−,�+��m ;x�=0�. �= �x− ,x+� is a plus contour if ���,�−��m ;x±�=1, a
minus contour if ���,�−��m ;x±�=−1, otherwise it is called mixed. The parameters �� ,�− ,�+ ,L� are
called compatible with ��0 ,c1 ,���R+

3 if �� �0,�0�, �−���, 1 /�−��+; L is a multiple integer of
�+ and �+ a multiple integer of �−.

Definition 2.4. (Good choice of parameters): In the sequel we take ���0, �0�0 suitably
small, L��−8 and �± determined by L and � as follows. �+ is the smallest number ��−4 such that
L=n�+, n�N; �− is the largest number ��2 such that �+= p�−, p�N, p�1. To have more
compact notation we will omit the dependence on �� ,�− ,�+�, unless ambiguities may arise.

The regions where ���,�−,�+��m ;x�=1 are said to be in plus equilibrium �or in the plus phase�,
those where ���,�−,�+�=−1 are in the minus equilibrium and the mixed contours which separate
plus and minus regions represent an interface. The equilibrium interface �defined by an optimiza-
tion problem, see Refs. 1 and 2� is represented, when the minus phase is to the left, by the
instanton m̄�x� which is a stationary solution of �2.2�
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m̄�x� = tanh���J � m̄��x��, x � R , �2.4�

with asymptotic behavior

lim
x→±�

m̄�x� = ± m�. �2.5�

As recalled in Sec III, m̄�x� is unique �modulo translations� and it is a C�, strictly increasing,
antisymmetric function. We denote by m̄� a translation of the instanton, namely

m̄��x� = m̄�x − ��, �� R �2.6�

which is interpreted as the equilibrium interface located at �.
Definition 2.5. (Neighborhoods of pure phases and interfaces): Given k�N and �� ,�− ,�+ ,L�

as in Definition 2.4, setting �=���,�−,�+�, we define
U−= �m�L���−L ,L� ; �−1,1�� :��m , · ��1, ����m , · �=0���k�+�,
U+= �m :−m�U−�,
U−,+= �m�L���−L ,L� ; �−1,1�� :m has a unique mixed contour � , ����k�+, and there exists
��� such that dist�� , �−L ,L� \����+ /2, and �m��−�− m̄�

��−���2� on �−L ,L� � ,
U+,−= �m :−m�U−,+�.

Observing that U−, U+, U−,+, U+,− are pairwise disjoint, we finally define

U = U− � U−,+ � U+,− � U+.

A first step in the proof of Theorem 1.2 is the following result, proved in Sec. VI.
Theorem 2.6: If ��0 is small enough, there is k�N such that, for L large enough

�m � L���− L,L�;�− 1,1��:FL�m�� FL�m̂L� + �100� � U

(recall that U depends on k and ��.
Of course, the number 100 in the previous statement can be replaced by any number suffi-

ciently large. The profiles in U−�U+ are attracted by m�±�, more precisely in Sec. VII we prove the
following theorem.

Theorem 2.7: If ��0 is small enough, there is k�N such that, for L large enough

lim
t→�

�St�m� − m�±��� = 0 for all m � U±

so that if m�U± is stationary then m=m�±�.
If m�U \ �U−�U+�, then m may either be attracted by m�±� as in Theorem 2.7 but it could also

be attracted by m̂L.
Theorem 2.8: Given any r� �0,1�, for all L large enough the set �m�U−,+ :�� �−L ,−rL�

��� (� the contour of m�U−,+� is attracted by m�+�; the set �m�U−,+ :�� �rL ,L���� by m�−�;
any other m�U−,+ is attracted either by m�±� or by m̂L.

By symmetry under sign change, Theorem 2.8 extends to its analog in U+,−, we do not state
explicitly the result. Theorem 2.8 is proved in two steps. We show that any element in U−,+

evolves after a finite time to a function which is in sup norm close to an instanton �restricted to
�−L ,L��; we then prove that functions close to an instanton in sup norm are attracted to m�±� if the
center of the instanton is not too close to the origin, otherwise they may as well converge to m̂L.

Outline of the paper: In Sec. III we recall results known in the literature and which are used
later in the proofs. Therefore in a first reading Sec. III may be skipped: specific references to the
results stated in Sec. III will be given when needed. In Sec. IV we prove lower bounds on FL

analogous to the Peierls bounds in statistical mechanics. In Sec. V we prove lower bounds on the
infinite volume version F of the free energy functional. With such a background, in Sec. VI we
then prove the localization statement in Theorem 2.6. The second part of this article contains the
analysis of the critical points in U: in Sec. VII we prove Theorem 2.7. In Sec. VIII we prove that
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functions close to an instanton in sup norm are attracted to m�±� if the center of the instanton is not
too close to the origin. This proof exploits the existence of a traveling subsolution that converges
to m�±� as proved in Sec. IX and the Appendix . Finally in Sec. X we complete the proof of
Theorem 2.8.

III. GENERAL BACKGROUND

In this section we collect some results in the literature which will be useful in the sequel.
Some statements are not really explicit in the literature, in particular those about the finite volume
instantons �see Sec. III C� which often have been proved in the presence of an external magnetic
field, but they are all close enough to omit their proofs. The assumption that J�0,x� is a nonin-
creasing function of x�0 is used only in Sec. III C, all the other statements hold without such an
assumption and in more generality.

In Sec. III A we state results on the spirit of the Peierls estimates for the free energy func-
tional. To this end we need some definitions.

If 
 is a finite union of intervals contained in �−L ,L�, we write 
c
ª �−L ,L� \
 for its

complement in �−L ,L� and m
 for the restriction of m to 
. We define

FL;
�m
� = �



���m
�dx +
1

4
�


�



Jneum�x,x���m
�x� − m
�x���2dx dx�,

FL;
�m
�m
c� = FL;
�m
� +
1

2
�


�

c

Jneum�x,x���m
�x� − m
c�x���2dx dx�. �3.1�

We let F�m� be the functional on L��R ; �−1,1�� with values in �0,�� defined by �1.1� with L
=� and J in place of Jneum.

A. Properties of the free energy functional „Ref. 11…

We suppose that �0, c1, and 0���1 are small enough and that the parameters �� ,�− ,�+ ,L�
are compatible with �0, c1, and �.

• There is ��0 so that for any interval 
= �x� ,x��� �−L ,L�, union of intervals belonging to
D��+�, and for any m such that ���,�−��m ; · �=1 on 
, there is � with the following properties.
FL�m��FL���; �=m on �x�+1,x�−1�c; ���,�−��� ; · �=1 on 
;

� = tanh��Jneum � ��, on �x� + 1,x� − 1� , �3.2�

���x� − m��� c2e−� dist�x,
c�, x � �x� + 1,x� − 1� . �3.3�

Equation �3.2� supplemented by the condition �=m outside �x�+1,x�−1�, has a unique
solution. The analogous result holds for ���,�−,�+��m ; · �=−1 on 
 and −m� replaced by m�

and when L=� �in which case �x� ,x�� may also be unbounded�.
• Let �= �x� ,x�� be a contour for m�L���−L ,L� ; �−1,1��. Then

FL;��m��m�c�� 2c1�
2
�−

�+
. �3.4�

• The functional FL�m� is continuous both in L2 and L�. Then �lower semicontinuity� if mn

converges to m in Lloc
2 �R�,
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lim inf
n→�

F�mn�� F�m� .

We now state results on the dynamics �2.2� which will be used in the sequel. We start with the
following theorem that summarizes general properties of the evolution whose proof can be found
for instance in Ref. 11.

Theorem 3.1: The following holds.

�1� Super and subsolutions. z�x , t�, x�R, t�0, is a subsolution (respectively, a supersolution) of
�1.3� if zt−gL�z��0 [respectively �0]. Then z�· , t��St�m�, if z�· ,0��m [respectively
z�· , t��St�m�, if z�· ,0��m].

�2� Barrier Lemma. There is a constant C�0 so that, setting mi�· , t�=St�mi�, i=1, 2, for any
V�e2� and for any t�0,

sup
s�t

�m1�0,s� − m2�0,s��� e��−1�t sup
�r��Vt

�m1�r,0� − m2�r,0�� + Ce−tV log �V/�e���. �3.5�

�3� Basin of attraction of m±. The sets �m�L��R ; �−1,1�� : limt→��St�m�−m±��=0� are open
both in L2 and L� and they contain the functions which are strictly positive, respectively
negative.

We call instantons stationary solutions of �1.3� and �2.2� which are increasing, antisymmetric, and
bounded in modulus by m�. In particular we denote by m̄ :R→ �−m� ,m�� an instanton on the
whole of R and by m̂L : �−L ,L�→ �−m� ,m�� a finite volume instanton, thus

m̄�x� = tanh ��J � m̄�x��, x � R; m̂L�x� = tanh��Jneum � m̂L�x��, x � �− L,L� .

Properties like existence, uniqueness, and stability of instantons have been widely studied and, in
the next two subsections, we summarize those needed in the sequel.

B. Properties of the instanton „see Refs. 8 and 11…

There is a unique antisymmetric m̄�x� solution of �2.4� and �2.5�. Further, m̄�x� is a C�, strictly
increasing and antisymmetric function.

�1� Asymptotic behavior of the instanton. For ��1, let ��0 be such that

��1 − m�
2��

R
J�0,y�e�ydy = 1. �3.6�

Then there are a�0, �0�� and c�0 so that for all x�0

�m̄�x� − �m� − ae−�x�� + �m̄��x� − a�e−�x� + �m̄��x� + a�2e−�x�� ce−�0x, �3.7�

where m̄� and m̄� are, respectively, the first and second derivatives of m̄.
�2� Basin of attraction of the instantons manifold. All the translations of m̄ are solutions of �2.4�

and, recalling �2.6�, we have that the set �m̄� :��R� attracts the set

N ª �m � L��R;�− 1,1��:lim sup
x→−�

m�x�� 0, lim inf
x→�

m�x�� 0� . �3.8�

Namely, if m�N, then there is ��R so that

lim
t→�

�St�m� − m̄��� = 0. �3.9�

�3� � is a center of m if

�m − m̄�,m̄���� = 0, �3.10�

where �· , · �� denotes the scalar product in L2�R ,d���, and
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d���x�
dx

= p��x�−1, p��x� = ��1 − m̄��x�2� . �3.11�

�4� Any m�N has a center. Moreover, there are positive constants c and � so that if v=m
− m̄�0

, �v���� then m has a unique center � and letting

Nv,� =
�v,m̄���

�m̄�,m̄���
, Nv,0 = Nv

we have

�� − ��0 − Nv,�0
��� c�v��

2 , �Nv,�0
�� c�v��.

�5� Let �� be the linear operator on L��R� or L2�R ,d���

��� = − � + p�J � � �3.12�

obtained by linearizing �2.2� around m̄�. �� has eigenvalue 0 with eigenvector m̄�� and a
strictly positive spectral gap both as an operator in L��R� and in L2�R ,d���. Thus, there is
B�0 so that

�v,��v�� � − B�v,v��, �v,m̄���� = 0. �3.13�

C. Properties of finite volume instantons „see Refs. 5–8…

�1� The instanton m̂L is an antisymmetric function, and there are � and C so that

�m̂L�x� − m��� Ce−��L−x�, 0� x� L . �3.14�

Moreover, given any 	�0, if L is large enough

sup
�x��L

�m̂L�x� − m̄�x��� 	 .

�2� Let L̂ be the operator on L2��−L ,L�, d�̂L�, d�̂L /dx= ���1− m̂L
2��−1,

L̂� = − � + ��1 − m̂L
2�J � �

obtained by linearizing �1.3� around m̂L. If L is large enough, L̂ has a positive eigenvalue �,
c−e−2L���c+e−2L, c± positive constants, with eigenvector em̂L

�x�, �x��L, which is a strictly
positive, regular symmetric function. Moreover, there is B��0 so that for all L large enough

�v,L̂v�m̂L
� − B��v,v�m̂L

, �v,em̂L
�m̂L

= 0,

where �· , · �m̂L
is the scalar product on L2��−L ,L� ,d�̂L�.

�3� Given any 	�0 small enough and r� �0,1�, define

B	,r ª �m � L���− L,L�;�− 1,1��: ∃ �� �− rL,rL�:�m − m̄�1�x��L�� � 	� �3.15�

�	,r
±
ª �m � L���− L,L�;�− 1,1��:�m − m̄�1�x��L�� � 	 for � = ± rL� .

Then, for L large enough, if m is in B	,r either limt→��St�m�− m̂L��=0 or else there is a time
t when St�m���2	,r

− ��2	,r
+ while Ss�m��B2	,r for all s� t.

�4� There exist two manifolds, w�±��x ,s�, x� �−L ,L�, s�R, such that FL�w±�· ,s���FL�m̂L�,

St�w�±��· ,s�� = w�±��· ,s + t�

w�±��· , · �� �−m� ,m�� and
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lim
s→−�

w�±��· ,s� = m̂L, lim
s→�

w�±��· ,s� = m�±�

�the limits can be taken both in L� and in L2�. Moreover, for any s�R, w�+��x ,s� is a non
decreasing function of x� �−L ,L�, w�−��x ,s�=−w�+��−x ,s� and w�+��x ,s��w�−��x ,s�.

IV. LOWER BOUNDS FOR FL

The main result of this section is Theorem 4.2 where we estimate the cost in energy of the
contours. This result extends �3.4� and its proof is mainly taken from Ref. 12.

We first prove the following preliminary proposition.
Proposition 4.1: There are c�0 and ��0 so that for all L large enough

�F�m̄� − FL�m̂L��� ce−�L. �4.1�

Proof: The orbit St�m̄�x�1�x��L� is made of antisymmetric functions since antisymmetry is
preserved by the dynamics. Thus any limit point of the orbit is antisymmetric and it is a stationary
solution because FL is strictly decreasing at points which are not stationary solutions. Then by
item 3 of Sec. III C, St�m̄�x�1�x��L� converges to m̂L so that

FL�m̄1�x��L�� FL�m̂L� . �4.2�

On the other hand,

FL�m̄1�x��L�� F�m̄� +
1

2
�

�−L,L�
�

�− L,L�c
J�x,y���m̄�x� − m̄�R�y��2 − �m̄�x� − m̄�y��2�dy dx ,

�4.3�

where R�y� denotes the point obtained by reflecting y around −L or L, respectively, when y�L
and y�−L. By �3.7�, �4.2�, and �4.3� we get FL�m̂L��F�m̄�+ce−�L for L large enough.

To prove the lower bound, we denote by m̃�x� the function equal to m̂L for �x��L and to ±m�,
for x�L and, respectively, x�−L. Then

FL�m̂L� = F�m̃� +
1

2
�

�−L,L�
�

�− L,L�c
J�x,y���m̂L�x� − m̂L�R�y��2 − �m̂L�x� m��2�dy dx ,

where  is minus if x�0 and plus if x�0. By �3.9�, limt→� St�m̃�= m̄ and since F is lower
semicontinuous, F�m̃��F�m̄�. Then, by �3.14�, we conclude the proof. �

Theorem 4.2: There are positive constants �0, c1, �, c2, and � so that if �� ,�− ,�+ ,L� is
compatible with ��0 ,c1 ,��, then

FL�m�� 
� contour of m

w�,�−,�+
��� ∀ m � L���− L,L�;�− 1,1�� , �4.4�

where

w�,�−,�+
��� =�2c1�

2
�−

�+
��� if � is a plus or a minus contour

max
2c1�
2
�−

�+
���;F�m̄� − c2e−��+� if � is a mixed contour.�

Proof: Let G+, respectively G−, be the collection of all plus, minus, contours for m. By �3.1�
and �3.4�, for any ��G+�G−,
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FL�m� = FL;�c�m�c� + FL;��m��m�c�� FL;�c�m�c� + 2c1�
2
�−

�+
��� .

Denoting by � the complement in �−L ,L� of G+�G−, iterating we deduce

FL�m�� FL;��m�� + 2c1�
2
�−

�+


��G+�G−

��� .

Let �= �x� ,x�� be a mixed contour possibly still present in �. We could bound it using the previous
procedure, but we could also use the following alternative, which will be adopted when it gives a
better bound. We have ���,�−��m ; · �=−1 on �x�−�+ ,x�+�+� and ���,�−��m ; · �=1 on �x�−�+ ,x�
+�+� or viceversa. Suppose for instance that the former holds. By �3.2� and �3.3�, there is � equal
to m� outside �x�−�++1,x�+�+−1� such that ���,�−��� ; · �=−1 on �x�−�+ ,x�+�+�, �=−m� on
�x�−1,x�� and

FL;��m��� FL;���� − c�e−��+.

By repeating the argument relative to the interval �x�−�++1,x�+�+−1�, we conclude that there is
� equal to � outside �x�−�++1,x�+�+−1� such that ���,�−��� ; · �=1 on �x�−�+ ,x�+�+�, �=m� on
�x�−1,x�+1� and

FL;��m��� FL;���� − 2c�e−��+.

We then have

FL;��m��� FL;�\��m�\�� + F�����m�1x�x� − m�1x�x�� − 2c�e−��+.

Let u�x�, x�R, be equal to � on � and =±m� to the right and left of �, then

F�����m�1x�x� − m�1x�x�� = F�u�� F�m̄�

by �3.9� and because F�St�u�� is decreasing and lower semicontinuous. Thus

FL;��m��� FL;�\��m�\�� + max
F�m̄� − 2c�e−��+;2c1�
2
�−

�+
���� .

By iterating the argument over all the other, possibly still present, mixed contours, we conclude
the proof. �

V. LOWER BOUNDS FOR F

In this section we prove that the free energy of a profile m�L��R ; �−1,1�� which is asymp-
totically strictly positive as x→� and negative as x→−� increases quadratically with the distance
of m from m̄, the precise statement is given in Proposition 5.2. We need preliminarily a regular-
ization result.

Proposition 5.1: There is c�0 and for all � small enough and such that L=n�, n�N, there
is a (regularizing) map R from L���−L ,L� ; �−1,1�� into itself, continuous in the L� norm, such
that FL�m��FL�R�m��,

�R�m����� = m���,

where R�m� is differentiable at all points of �−L ,L� \�Z, and

� dR�m��x�
dx

� � ��J���, x � �− L,L� \ �Z . �5.1�

Proof: Given m we denote by
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Mi ª W
Ii

m�y�dy ,

where Ii�D��� is the ith element of the partition of �−L ,L�.
We want to prove that there is a unique function �i which verifies the following properties:

�1� �i�x�=m�x� for all x� Ii
c,

�2� WIi
�i�y�dy=Mi, and

�3� if � verifies �1� and �2�, then FL�� �mIi
c��FL��i �mIi

c�.

To prove the above-mentioned properties we introduce a Lagrange multiplier h and define

FL,h���mIi
c� ª FL���mIi

c� − h�
Ii

��y�dy .

The inf of FL,h�·�mIi
c� over L���−L ,L� ; �−1,1�� is reached on functions u such that Ah�u�=u, where

Ah�u� = 
tanh���J � u + h�� on Ii

mIi
c on Ii

c �
�see for instance Ref. 11�. For � such that ��J����1/2, Ah is a contraction:

�Ah��� − Ah����� � ��J����� − ���.

Denote by ��h� its unique fixed point: ��h�=Ah���h��, ��h�=limn→�Ah
n�u�, where, for instance u

	0. From such a representation we deduce that, for each x, ��h��x� is differentiable in h. By
differentiating the fixed point equation, we find for x� Ii,

d��h�

dh
= ph
J �

d��h�

dh
+ 1�, ph =

�

cosh2���J �
d��h�

dh + h��
with d��h��x� /dh=0 when x� Ii. For the above-mentioned �, this identifies uniquely d��h� /dh and
shows that when x� Ii, the derivative is strictly positive. Then

a�h� ª
W

Ii

��h��x�dx

is a strictly increasing, continuous function of h; since a�h�→ ±1 as h→ ±�, there is h* such that,
a�h*�=Mi and h* depends continuously on Mi and since Mi is a continuous function of m, ��h*� is
a continuous function of m.

The function �iª��h*� verifies the previous �1� and �2�. Let � be any other function which
verifies �1� and �2�. Then, unless �=�i almost everywhere,

FL���mIi
c� = FL,h*���mIi

c� + h*�Mi � FL,h*��i�mIi
c� + h*�Mi = FL��i�mIi

c� .

Finally ��h*��x� is differentiable with respect to �w.r.t.� x in the interior of Ii and its derivative is
bounded as in �5.1�, as it follows by differentiating the fixed point equation and integrating by
parts using regularity of J.

By repeating the argument for the other intervals Ij’s we conclude the proof of the proposition.
�

Since the proof is local, Proposition 5.1 holds also when �−L ,L� is replaced by R.
Proposition 5.2: There is c�0 so that for all � small enough,

F�m�� F�m̄� + c �� inf
��R

�m��� − m̄�
������2, m � N �5.2�
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with N defined in �3.8�.
Proof: Set

w��m� = inf
��R

�m��� − m̄�
�����. �5.3�

We start with an outline of the proof. By expanding F�m� around m̄�, and calling v=m− m̄�,

F�m� = F�m̄�� − �v,��v�� + remainder terms �5.4�

with �� defined in �3.12� and the scalar product right after �3.10�. By �3.13�, there is B�0 so that
if �v , m̄����=0 then �v ,��v���−B�v ,v��. To prove �5.2� we thus have to take care of the remainder
terms in �5.4�, fit in the condition �v , m̄����=0 and finally relate the bound �v ,v�� to the quantity
w��m�.

We will prove that there are �0� �0,1 /2� and c��0 so that

inf
���0

�−2 inf
m�N:w��m���

�F�m� − F�m̄��� c�� . �5.5�

We claim that �5.2� will then hold with c=c��0
2 /4. We first prove the claim for a function m*

�N such that �*
ªw��m*���0. Then, the inf on the left-hand side �l.h.s.� of �5.5� is not larger

than the value at �=�*, so that it is ��*−2�F�m*�−F�m̄��, hence c��w��m*�2� �F�m*�−F�m̄��,
which yields �5.2� with c replaced by c�. Finally, c��c��0

2 /4 because �0�1/2.
If instead w��m*���0, then �5.5� yields �0

−2�F�m*�−F�m̄���c�� hence

F�m*� − F�m̄�� c��w��m*�2 �0
2

w��m*�2

which concludes the proof of the claim because w��m*��2.
Thus �5.2� will be proved, once we show that if m̃�N and w��m̃���, then

F�m̃�� F�m̄� + c���2. �5.6�

We first suppose that w��m̃���0. By Proposition 5.1, there is m in N such that

F�m̃�� F�m�, m̃��� = m���, w��m� = w��m̃�� � �5.7�

with the derivative m� of m, almost everywhere well defined and such that

�m��� � ��J���.

Then, given any �,

�m��� − m̄�
����� � �m − m̄��� � �m��� − m̄�

����� + ��J���� .

Since �m���− m̄�
�����= �m̃���− m̄�

�����, if �0 and � are small enough, by �3.12�, m has a unique center
� and

�0 + ��J���� ¬ 	 � �m − m̄���. �5.8�

There is a�0 so that ���m��a��m�−m��2 and, since ���m��L1�R� �because F�m����,
mm��L2�R±�. Then, with � the center of m,

F�m� − F�m̄�� = −
1

�
� S�m�x�� − S�m̄��x��dx −

1

2
� � J�x,y��m�x�m�y� − m̄��x�m̄��y��dx dy .

Calling v=m− m̄� and �=max��m� , �m̄���,
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− �S�m� − S�m̄���� − S��m̄��v +
1

1 − m̄�
2v2 −

2

1 − �2 �v�3.

By �5.8�, ��m�+	 and by letting � and � small enough, 1−�2� �1−m�
2� /2 so that

− �S�m� − S�m̄���� − S��m̄��v +
1

1 − m̄�
2v2 −

8

1 − m�
2 �v�3. �5.9�

By �5.9� and since −�−1S��m̄��−J� m̄�=0,

F�m� − F�m̄��� − �v,��v�� −
8�v��
1 − m�

2 �v,v��. �5.10�

Since �v , m̄����=0, because � is the center of m, by �3.13�,

F�m� − F�m̄��� �v,v���B −
8�v��
1 − m�

2 � . �5.11�

By letting � small enough we conclude that there is c��0 so that, recalling �5.7�,

F�m̃� − F�m̄��� c��v,v�� � c���2. �5.12�

The last inequality is proved as follows. Since w��m�=�, there is an interval of D��� where �m���

− m̄�
������. By using Cauchy–Schwartz in such an interval we then get �5.12�.
This proves �5.6� when w��m̃���0. This is what needed in the text and we omit, for brevity,

the proof of the full statement in the theorem, which uses that if m�N, then St�m�→ m̄� as t
→�, while F�St�m���F�m�. The result then follows by showing that w��St�m�� is a continuous
function of t, so that there is s�0 so that w��Ss�m��=� with ���0. The proposition is proved.�

VI. LOCALIZATION OF THE ENERGY SUBLEVELS

In this section we prove the localization property of the free energy sublevels stated in
Theorem 2.6, indeed the proof of Theorem 2.6 follows directly from Lemma 6.1 and Lemma 6.2.

Recalling Definitions 2.3 and 2.4, we choose L and �± as functions of � so that �� ,�− ,�+� is a
good choice of the parameters. We also fix the positive constants �0, c1, �, and c2 of Theorem 4.2
and we write ��m ; · � for ���,�−,�+��m ; · �. The following preliminary Lemmas are in fact corollaries
of Theorem 4.2.

Lemma 6.1: There is ���0 so that if m�L���−L ,L� ; �−1,1�� is such that FL�m��FL�m̂L�
+�100, then the following holds:

����m; · � = 0��� k�+, k = smallest integer�
1

c1�
2�−

�FL�m̂L� + �100� . �6.1�

Further, if there are two points x±� �−L ,L�, x+�x−, where ��m ;x+���m ;x−�=−1, then there is a
unique contour � and ����k�+, k as in �6.1�.

Proof: By �4.4� we have

c1�
2
�−

�+

�

���� FL�m̂L� + �100

so that

����m; · � = 0���
�+

c1�
2�−

�FL�m̂L� + �100�

hence �6.1�.
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Assume now that there are x± as in the statement. Then there is at least one mixed contour that
we denote by �. Suppose by contradiction that there is another contour ��. By using Theorem 4.2,
the inequality �4.1� and the fact that ������+ we get

FL�m�� F�m̄� − c2e−��+ + c1�
2�− � FL�m̂L� − ce−�L − c2e−��+ + c1�

2�−. �6.2�

Since L��−8, if � is small enough, then the r.h.s. of �6.2� is larger than FL�m̂L�+�100, hence the
desired contradiction, which shows that there is a unique contour � with �6.1� holding. �

Lemma 6.2: Let m, x−, x+ be as in Lemma 6.1 and let �= �x− ,x+� be the unique contour of m.
Suppose ��m ;x�= ±1 for x�x+, respectively x�x−. Then there is �� �x−+�+ /2 ,x+−�+ /2�, so
that, for all � small enough,

�m��−� − m̄�
��−��� � 2� .

Proof: If x�x+ then ��m ;x�=1 and for any ���, dist�� ,�c���+ /2 from �3.7� we get

�m��−��x� − m̄�
��−��x��� �m��−��x� − m�� + ce−��+/2.

Since ��m ;x�=1 by taking � small enough we then get

�m��−��x� − m̄�
��−��x��� � + ce−��+/2 � 2� for all x� x+.

An analogous argument applies in the case x�x− for which ��m ;x�=−1. Thus we only need to
prove that there is �� ��− ,�+�, where �±=x±�+ /2 , so that,

sup
x��

�m��−��x� − m̄�
��−��x��� 2� . �6.3�

We suppose by contradiction that �6.3� is not verified by any �� ��− ,�+� and want to deduce that
FL�m��FL�m̂L�+�100. The strategy for the proof is to reduce to a similar problem on the whole
line where we can use Proposition 5.2.

By item 1 in Sec. III A, there is � which is equal to m on �, FL����FL�m� and

sup
x��−L,−L+1�

���x� + m��� c2e−��+, sup
x��L−1,L�

���x� − m��� c2e−��+. �6.4�

We denote by � the function on R, equal to � on �−L ,L� and to m� on x�L and to −m� in x
�−L. Then from �6.4� it follows that FL����F���−ce−��+ that implies

FL�m�� F��� − c�e−��+.

Since ���−��x�=m��−��x�, for all x�� and all �� ��− ,�+�, by the contradiction assumption

sup
x��

����−��x� − m̄�
��−��x��� 2� for all �� ��−,�+� .

Note now that if ���− and x=�−+�+ /4, then ����−��x�− m̄�
��−��x���2m�−2c2e−��+/4−ce−��+/8

�2�. An analogous argument applies for ���+, so that

inf
��R

����−� − m̄�
��−��� � 2� .

Then, by Proposition 5.2, F����F�m̄�+c�−�2��2. Moreover, by �4.1�, F�m̄��FL�m̂L�−ce−�L, so
that FL�m��FL�m̂L�+2� for � small enough, hence the desired contradiction. �

VII. ON THE BASIN OF ATTRACTION OF THE PURE PHASES

In this section we will prove Theorem 2.7. By symmetry it suffices to prove the statements
relative to U+. We start with the following preliminary proposition whose proof is taken from Ref.
12. Given b�0, R�0 let
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Mb,R = �m � L��R;�− 1,1��:m�x�� b, �x�� R� .

Proposition 7.1: For any 	, b, R positive there is �	,b,R so that

St�m�� m� − 	 for all m � Mb,R and t� �	,b,R. �7.1�

Further

lim
t→�

�St�m� − m�+��� = 0 for all m � Mb,R. �7.2�

Proof: By item 3 of Theorem 3.1, limt→� St�−1�=−m�, where we shorthand by St�a�, a�R,
the function St�m� with m	a. By item 1 of Theorem 3.1, for any 	−�0 there is t−�0 so that for
all m, St−

�m��St−
�−1��−m�−	−.

Since limt→� St�b�=m� by the Barrier Lemma �see item 2 of Theorem 3.1�, for any 	��0,
there are t0= t0�b ,	�� and a=a�b ,R ,	��, a�R, so that, for any m�Mb,R,

St0
�m�� St0

�b� −
	�

2
� m� − 	�, �x�� a .

Thus

St0
�m�� �, ��x� = 
m� − 	� for �x�� a

− m� − 	� otherwise.
� �7.3�

Let d�0 be such that m̄�x��−m�+	� for all x�−d. Then

m̄d+a�x�� − m� + 	� for all x� a �7.4�

so that, by �7.3�, ��x�� m̄d+a�x�−2	� for all x�a and �� m̄d+a−	� for all x�a. Hence

� � m̄d+a − 2	� for all x . �7.5�

By item 2 of Sec. III B, if 	��0 is small enough, there is � so that

lim
s→�

�Ss�m̄d+a − 2	�� − m̄��� = 0.

Then any limit point �* of Ss��� �under uniform convergence on the compacts� verifies �*� m̄�.
The set Aª ����R :�*� m̄��� is thus nonempty and closed. In Sec. 5 of Ref. 11 it is proved that
if m* is stationary, m*� m̄� and m*� m̄� then there is ���� such that m*� m̄��. It then follows that
either A=R or there is �� so that �*= m̄��. The second alternative cannot be verified: denoting by
R the reflection operator around 0, R�=�, St���=St�R��=RSt��� and by �tn� the time sequence
defining �*,

�* = lim
tn→�

Stn
��� = R lim

tn→�
Stn

��� = R�* � − m̄−�

hence �*� m̄�� for all ��. Then �* is strictly positive, and since �* is stationary, �*=m�. Thus there
is t1 so that St1

����m�−	 and St0+t1
�m��m�−	 for any m�Mb,R. From item 1 of Theorem 3.1

and from �7.1� it follows that

St�m� − 	�� St+�	,b,R
�m�� St�1� . �7.6�

Since St�1� and St�m�−	� converge exponentially fast to m� as t→�, there are c and � positive so
that, for any m�Mb,R,
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�St+�	,b,R
�m� − m��� � ce−�t. �7.7�

�

By the Barrier Lemma �item 2 of Theorem 3.1� it is possible to weaken the condition m�x��b for
all �x��R in Proposition 7.1. The extension is needed for applications to L-symmetric functions,
which cannot be in Mb,R unless m�x��b for all x.

Let C and V=e2� be as in the Barrier Lemma, �, ���� and R all positive with �� small
enough. Let

��,m�−��,R
+ = max���,m�−��,R,t*�, Ce−t*V = � . �7.8�

Notice that

Ce−�+V log�V/�e��� � �, �+ = ��,m�−��,R
+ . �7.9�

By Proposition 7.1 we have S�+�m��m�−� for all m�Mm�−��,R. Moreover by items 1 and 2 of
Theorem 3.1,

St�m�� m� − �� − � for �x�� R + V�+ and t� �+. �7.10�

Lemma 7.2: For any �����0 small enough, any R�0 and � such that ��x��m�−�� for all
R� �x��R+2V�++1, �+=��,m�−��,R

+ , we have

S�+���� m� − 2� for all �x�� R + V�+ + 1, �7.11�

St���� m� − �� − � for all t� �+ and all �x� � �R + V�+,R + V�+ + 1� . �7.12�

Proof: We define

�*�x� = 
��x� if �x�� R + 2V�+ + 1

m� − �� otherwise.
�

By �3.5� and �7.9�,

St���� St��*� − � for all �x�� R + V�+ + 1 and t� �+ �7.13�

and by �7.1�

S�+��*��x�� m� − � for all x � R

and �7.11� follows. Set

�̃�x� = 
��x� for �x� � �R,R + 2V�+ + 1�
m� − �� elsewhere

�
so that �̃�m�−�� everywhere. By the Barrier Lemma, St����St��̃�−� for all �x�� �R+V�+ ,R

+V�++1� and all t��+. Then �7.12� follows from the inequality St��̃��m�−��. �

In the next lemma we will require � so small that

��J����− �
�

2
, Ce−�+ � �, C as in the Barrier Lemma �7.14�

�recall that �− and �+ are determined by �, see Definition 2.4�.
Lemma 7.3: Let ��0 be small enough and such that �7.14� holds. Then for all t��+ /V, V

=e2�, and all m�L��R , �−1,1��,

�St�m� − m��� 3� for all x such that ��m;x� = 1, �7.15�
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where �	���,�−,�+�.
Proof: Calling ��x , t�=St�m�−e−tm, by differentiating w.r.t. x the integral version of �1.3�,

� d

dx
��x,t�� � ��J���.

Let Ix
��−� be the interval �n�− , �n+1��−� which contains x; we have

���x,t� −
W

Ix
��−�
�� � ��J����− �

�

2
.

In �Ref. 12� it is proved that for � small enough, ��St�m� ; · �	1 for all t�0 if it holds at t=0.
Suppose ��m ; · �	1, then, taking t=log�4��,

�St�m��x� − m��� 2e−t + ���x,t� −
W

Ix
��−�
�� + �W

Ix
��−�

St�m� − m�� � 2� .

We will next use the Barrier Lemma to drop the assumption ��m ; · �	1. Let �a ,b� be a maximal
connected component of �x :��m ;x�=1� and G= �a−�+ ,b+�+�. By definition of �, ��m ;x�=1 for
all x�G. Set m*=m in G and m*=m� in Gc and t*=�+ /V. Then, if x� �a ,b� and t� t*,

�St�m��x� − m��� �St�m*��x� − m�� + Ce−t*V � 3� .

�

Lemma 7.4: For all ���0 small enough the following holds. Suppose there are m, an interval
�a ,b� and T�0 such that m�m�−�� in �a ,b� and St�m��m�−�� in ��a−1,a�� �b ,b+1��
� �0,T�. Then

St�m�� m� − �� for all x � �a,b� and all t� T . �7.16�

Proof: Denote by � the restriction of St�m� to �a ,b�, so that � is a function on �a ,b�
� �0,T�. It then solves the equation

d��x,t�
dt

= − ��x,t� + tanh
h�x,t� + �
�a,b�

J�x,y���y,t��, x � �a,b�,t � �0,T�

with

h�x,t� =�
�a,b�c

J�x,y�m�y,t� .

Notice that in the previous integral m�y , t��m�−�� because J has range 1.
By the comparison theorem �whose validity extends to the present situation� ��x , t�

��*�x , t� for any �* which solves the above equation with h*�h and ��x ,0���*�x ,0�, hence
�7.16�. �

As a corollary of the above lemmas we have the following result.
Proposition 7.5: For � small enough and L large enough, there is ��0 such that if m�U+

then S��m��x��m�−4� for all x� �−L ,L�.
Proof: We need some preliminary definitions. Recalling �7.8� we shorthand

�R
+ = ��,m�−3�,R

+ . �7.17�

For any interval I= �a ,b�, denote
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I* = �a�,b��, b� = b + 2��b−a�/2
+ + 1; a� = a − 2��b−a�/2

+ − 1. �7.18�

Call connected two intervals I1 and I2 if I1
*� I2

*��. Given a sequence �Ii� of disjoint intervals, let
�Ii�� be the sequence of intervals obtained as follows. For any maximal connected component �Iik

�
of �Ii�, let �a ,b� be the minimal interval which contains all Iik

; the set of all such intervals defines
�Ii��.

We apply the previous to the set of contours of m. By an abuse of notation, we still denote by
m its L-symmetric extension, see the notation at the beginning of Sec. II. Since m�U+, the
contours ��i� of the L-symmetric extension of m are such that


�i

��i � �− L,L��� ��+. �7.19�

We then define iteratively �Ii;n� by setting �Ii;1�= ��i� and, for n�1, �Ii;n�= �Ii;n−1� �. Since m is
L-symmetric, there is N so that �Ii;n�= �Ii;N� for all n�N. Moreover by �7.19�, for L large enough
all Ii;N are bounded and mutually disconnected, in particular they do not cover R. We still need a
few notations. Recalling �7.17�, given an interval I we call I+= �x :dist�x , I����I�/2

+ �, and �I+

= �x� I+ :dist�x , I+��1�. Denote by �t1 , t2 ,… , tk� the set ���Ii;N�/2
+ �, where ti are in increasing order,

t1� t2¯� tk. Let I j = �Ii,N :��Ii;N�/2
+ = tj� and


 j = �
I�Ij

Ij
+, 
 = � 
 j , �7.20�

�
 j = �
I�Ij

� Ij
+. �7.21�

By Lemma 7.3, for � small enough there is s0 so that

�Ss0
�m��x� − m��� 3� for all x � G ª �x:��m;x� = 1� . �7.22�

Define ��ª3� and �ªSs0
�m�. By �7.22� we have ��x��m�−�� for all x�
c. By Lemma 7.2

Stj
����m�−2� on 
 j and St����m�−�−�� on �
 j for t� tj. By Lemma 7.4, St1

����m�−�
−�� on 
c�
1; St2

����m�−�−�� on 
c� �
1�
2� and, by iteration, Stk
����m�−�−�� every-

where. �

Proof of Theorem 2.7: From Proposition 7.5 it follows that for any m�U+ and any t�0,

St+��m� − 3��� St+��m�� St+��1� .

Both St�m�−3�� and St�1� converge exponentially to m�+� as t→�, hence Theorem 2.7 is
proved. �

VIII. INTERFACE MOTION

In this section we prove the following result. For any 	�0 and r� �0,1�, define 
r
+
ª �−L ,

−rL�, 
r
−
ª �rL ,L� and

M	,r
± = �m � L���− L,L�;�− 1,1��: ∃ �� 
r

±:�m − m̄��� � 	� .

Theorem 8.1: For any 	�0 and r� �0,1� there is L�	 ,r� so that for L�L�	 ,r�,

lim
t→�

�St�m� − m�±��� = 0 for all m � M	,r
± . �8.1�

It is enough to prove �8.1� when m�M	,r
+ , because, by symmetry, the result extends to m

�M	,r
− . The scheme of the proof is the following.
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We will prove that at the end of an initial time layer, St�m� is above a function “much closer”
than 	 to an instanton which is “only slightly” shifted to the right of the original one �to which m
is close as an element of M	,r

+ �. We will then complete the proof by showing that this is above a
travelling subsolution of �1.3� which converges to m�+�.

For any m close to an instanton we will construct a subsolution which starts below m and
which, after a suitably long time, is much closer to a new instanton than the original m. We
introduce below the parameters which will be used in the construction of the subsolution, their
justification lies in the proof of Proposition 8.2 below.

Let

b�
+ = ce−��L−��, � � 0; c = sup

L�1,��0
max

x��L−1,L�,y��L,L+1�
�m̄��x� − m̄��y�� �8.2�

with c being finite by �3.7�. Let p� be as in �3.11�. Since lim�x�→�p��x�=��1−m�
2��1, if L is large

enough there is N�0 �large enough� so that, for all ��−x��N,

p��x� + Cb0
+ � p� 1, C = �2sup

x�R
�tanh��x�� . �8.3�

We finally define the positive parameters � and T� as

� =
1 − p

2
,

1 − p

4
2	e−�T� = b�

+ + Cb�
+2 �8.4�

with T� being well defined for L large enough, as the r.h.s. in the second equality vanishes as L
→�.

Proposition 8.2: With �, N as above and 	�0 sufficiently small, let �0 be such that

�0 � − �, � =
2�� + 1�	

��min�x��Nm̄��x��
. �8.5�

Then, for all L large enough and any t� �0,T�0
� the function

u�x,t� ª m̄��t��x�1�x��L − ��t�, ��t� = 2	e−�t, �8.6�

��t� = �0 + ��1 − e−�t� �8.7�

is a subsolution of �1.3�, namely

ut − gL�u�� 0. �8.8�

Proof: The time derivative of u�x , t� is

ut = − �t1�x��Lm̄��t�� + ���t� . �8.9�

We will see that for x���t�, �gL�u���c��t�, c�0 a suitable constant. Since m̄� has the order of
unity and, by �8.7�, �t is larger than ��+c���t�, �8.8� will hold for x���t�. For �x−��t�� large,
instead, ���t�, which is dangerously positive, becomes dominant in �8.9�, but, as we will see,
gL�u� will contrast it.

For �x��L−1, Jneum�x , · �=J�x , · �, so that

gL�u� = � + tanh���J � m̄� − ��t��� − tanh��J � m̄�� �8.10�

and, by a Taylor expansion,
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gL�u�� − �p��t� − 1���t� −
C

2
��t�2 �8.11�

with C as in �8.3� and p� as in �3.11�.
Define b��x�ªJneum� m̄�−J� m̄� and notice that b��x�=0 for �x��L−1. Since m̄��x� is an

increasing function of x, for x� �−L ,−L+1�, b��x��0, and we get the same bound as in �8.11�:

gL�u� = � + tanh���J � m̄� + b� − ��� − tanh��J � m̄��� − �p� − 1�� −
C

2
��t�2.

For x� �L−1,L�, instead, b��x��0 and the previous inequality fails. Recalling �8.2�, for �
�0,b�

+�maxx��L−1,L��b��x��, and, since ��t���0+��0,

gL�u�� − �p� − 1 + Cb0
+�� + p�b� −

C

2
���t�2 + b�

+2� .

For �x−��t���N, we bound gL�u����t� �see �8.10�� while, for �x−��t���N, we use �8.3� and �8.4�
getting

ut − gL�u�� �− �t�min
�x��N

m̄��x�� + ���t� + ��t� , �x − ��t��� N

p − 1

2
��t� + b�

+ +
C

2
���t�2 + b�

+2� , �x − ��t��� N .� �8.12�

By �8.7� the first line in �8.12� is non positive. By the second inequality in �8.4�, for �x−��t��
�N and t�T�0

,

ut − gL�u�� −
1 − p

4
��t� +

C

2
��t�2 � 0

having supposed 	 so small that �1− p� /4� �C /2�2	. �

Let m�M	,r
+ ; then there is �0� �−L ,−rL� such that �m− m̄�0

�L���−L,L���	. Given any r
� �0,1� for L large enough we have that −rL�−� so that by �8.6�, m�u�· ,0�. Then, by Propo-
sition 8.2,

ST�0
�m�� m̄��T�0

� − 2	e−�T�0.

Since m̄� is a decreasing function of �, there is a positive constant c� so that

ST�0
�m�� m̄�0+� − c�e−��L−�0�, �8.13�

with � as in �8.5�. We will prove �see �8.17�� that the r.h.s. of �8.13� is bounded from below by a
function z��, ����0+�, where z� has the following structure:

z��x� = m̄��x� − ae−��2L−�−x� + ae−��2L+�+x� +���x� �8.14�

with � and a positive constants defined in �3.7�, whereas the function �� is small �see �8.16�� at
least when � is away from the boundaries. The important point is that there is a decreasing
function ��t� so that z��t� is a traveling subsolution of �1.3�.

Theorem 8.3: For any r� �0,1� and ��0, there is L0�r ,�� such that, for any L�L0�r ,��, z��t�
is a subsolution of �1.3� for all t such that ��t�� �−�1−r�L ,−rL� and provided

d��t�
dt

= − � K�1 − ��e−2���t� �8.15�

with � defined in �9.13�, K in �9.23�. Moreover �z��x���m� for all �x��L and
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����x��� �e−���−x�. �8.16�

Theorem 8.3 will be proved in Sec. IX, where we will see that � can be chosen exponentially small
in L.

Proposition 8.4: Given any r� �0, r̄�, for all L large enough and any �0� �−L ,−r̄L� there is
��� �−�1−r�L ,−rL� so that

m̄�0+��x� − c�e−��L−�0� � z���x�, �x�� L . �8.17�

Proof: Since m̄�0+��x�−c�e−��L−�0� is a decreasing function of �0, without loss of generality we
may suppose �0� �−�1− r̄�L ,−r̄L�. To simplify notation, we let �=�0+� and will prove �8.17� with
��=�+R, R being a “large” constant independent of L. We will do that by deriving a lower bound
for m̄��x�− m̄�+R�x�, an upper bound for z�+R�x�− m̄�+R�x�, with the former larger than the latter.
Recalling �8.14�–�8.16�,

z�+R�x� − m̄�+R�x�� ae−��2L+�+R+x� + �e−���+R−x�. �8.18�

Let N�0 be such that ce−�0N= �a /2�e−�N, where a, �, �0, and c are as in �3.7� �without loss of
generality we may and will suppose that c�a�. Call m�= m̄�N�, choose arbitrarily m�� �m� ,m��,
define R0 so that m̄�R0�=m� and require R�2R0. Then,

m̄��x� − m̄�+R�x�� m�, x � ��,� + R�

as it follows by bounding m̄��x��0, m̄�+R�x��−m� for x� �� ,�+R /2� and using an analogous
bound for x� ��+R /2 ,�+R�. Moreover

m̄��x� − m̄�+R�x�� m� − m�, x � �� − N,��

because m̄��x��−m� and m̄�+R�x��−m�. For x��−N, using that m̄ is antisymmetric and �3.7�, we
write

m̄��x� − m̄�+R�x� = �m̄�x − �� + m�� + �m̄�� + R − x� − m��

� ae−���−x� − ce−�0��−x� − ae−���+R−x� − ce−�0��+R−x�.

Using the definition of N we then get

m̄��x� − m̄�+R�x��
a

2
e−���−x� −

3a

2
e−���+R−x�, x� � − N .

Similarly

m̄��x� − m̄�+R�x�� m� − m�, x � �� + R,� + R + N� ,

m̄��x� − m̄�+R�x�� −
3a

2
e−��x−�� +

a

2
e−��x−��+R��, x� � + R + N .

Using the above-mentioned upper bounds and by taking ��a /4 in Theorem 8.3 it is not difficult
to check that for L and R sufficiently large,

m̄��x� − m̄�+R�x� − c�e−��L−�� � ae−��2L+�+R+x� + �e−���+R−x�.

This, together with �8.18� concludes the proof of the proposition. �

By �8.13� and �8.17�, pointwise,

ST�
�m�� z��. �8.19�

We will prove convergence of St�z�+�+R� to m�+� in L� and this will prove that any limit point � of
St�m� is not smaller than m�+�. Since any limit point is stationary, �=tanh��Jneum���; then b
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ªmax�x��L��x� must be such that b� tanh��b�, hence ��x��m� for all x, which will then con-
clude the proof of �8.1� of Proposition 8.1.

Proposition 8.5: For any positive r� r̄ there is a constant L2�r ,	� so that for any L
�L2�r ,	�, if m�M	,r̄

+ then there is a time t* such that

St*�m�� z−�1−r�L. �8.20�

Proof: For L large enough, �8.19� �recalling from Proposition 8.4 that ��� �−�1−r�L ,−rL��
and Theorem 8.3 yield �8.20�. �

Let N�0 be such that m̄�x��m�−	 for all x�N �	 as in M	,r̄
+ �. Let

w�x� = �− m�, x� − �1 − r�L − N

z−�1−r�L, �x + �1 − r�L�� N

m� − 2	 , x� − �1 − r�L + N .
�

Then, for L large enough, z−�1−r�L�x��w�x�, �x��L and �w�x�− m̄−�1−r�L�x���2	 for all �x��L.
We will prove that there is a time T such that

ST�w��x�� �� 0 for all �x�� L �8.21�

so that also ST�z−�1−r�L���. Since the strictly positive functions are in the basin of attraction of
m�+� �because a strictly positive function is bounded in between two positive constants, and all
constant, positive functions are attracted by m�+��, it then follows that the limit points of St�z−�1−r�L�
are above m�+� which is what we wanted to prove.

Thus we are left with the proof of �8.21�. It is now convenient to regard �1.3� as an equation
on the whole line, with Jneum�x ,y� replaced by J�x ,y�, namely we will consider Eq. �2.2�. We thus
need to show that there are � and T positive such that

u�x,T�� � for all �x�� L, u�· ,t� solving �2.2� with u�· ,0� = w�·� ,

where, by an abuse of notation, we have denoted by w the symmetric extension of w.
Let

k = − �1 − r�L − N − �− L� = rL − N

so that w�x�=−m� when x is in the interval �−L−k ,−L+k�, as well as in all its translates by 4nL,
n�Z. We then introduce a function w* as follows. Let k�=11k and define w*�x�=−m� for all x
� �−L−k� ,−L+k�. Let then w*�x�=w�x+10k� for x� �−L−k�−2N ,−L−k��. We then set w*�x
+4nL�=w*�x�, for all x� �−L−k�−2N ,−L+k� and all n�Z. We complete the definition of w* by
setting w*�x�=w�x� at all other points x�R. It follows from this construction that w*�x��w�x� for
all x�R and that w*�x� is invariant under reflections around the points �−L−5k�+4nL, n�Z, so
that, modulo a translation, we are still in the context of �1.3�.

By applying the analysis in Proposition 8.2, Theorem 8.3, and Proposition 8.4 to the evolution
starting from w*, we conclude that there is a time T so that, denoting by z� the symmetric
extension of the function defined in �8.14�, then

ST�w*��x�� z−�1−r�L�x + 5k�

which shows that for L large enough, ST�w*��x��0 for x� �−L ,L�. This concludes the proof. �

IX. A TRAVELING SUBSOLUTION

In this section we will prove Theorem 8.3. As the analysis will focus on what happens around
the left end of the spatial domain, it is convenient to change coordinates, considering the interval
�0,2L� instead of �−L ,L�. By an abuse of notation, we will not change symbols, thus writing

083302-21 Energy levels of a nonlocal functional J. Math. Phys. 46, 083302 �2005�

                                                                                                                                    



ut�x,t� = gL�u�x,t��, x � �0,2L�, gL�u� = − u + tanh��Jneum � u� �9.1�

with Jneum now defined with reflections at 0 and 2L; St;L�m� is here the flow solution of �9.1� with
initial datum m.

As discussed in Sec. I we may regard �9.1� as an equation on the whole of R, writing

ut�x,t� = g�u�x,t��, x � R, g�u� = − u + tanh��J � u� . �9.2�

Call “symmetric” the functions invariant under all reflections Rn2L, n�Z, then the solution of �9.2�
starting from a symmetric function, is symmetric and its restriction to x� �0,2L� solves �9.1�.
Thus �9.2� restricted to the space of symmetric functions is equivalent to our �9.1� and we will
shift back and forth in the sequel between the two representations.

The construction of a subsolution is done by adding “corrections” to the instanton like func-
tion m̄��x�, x� �0,2L�. m̄��t��x� alone, in fact, does not do the job: indeed, g�m̄��t��=0 for x
� �1,2L−1� while

d

dt
m̄��t��x� = − m̄��t�� �x��t�t�� 0, �t�t�� 0.

The instanton however must have an important role, as it solves the stationary equation in the limit
L→� and it is natural to expect that, when L is finite, the boundary effects are responsible for the
motion of the “instanton.” To catch the effect, we “correct” the instanton into a function m�

0�x�,
which is the symmetric extension of

m�
0�x� = m̄��x� + A��x�, x � �0,2L�; A��x� = − ae−��4L−�−x� + ae−���+x�. �9.3�

Recalling �3.7�, we have the following nice interpretation of A�, by remarking that the terms
ae−��x+�� and −ae−��4L−�−x� are the corrections to the asymptotic behavior of m̄��−x�, which is the
reflection of the original instanton through the origin, and, respectively, to −m̄�2L−�−x�, which is
the reflection through the point 2L.

In the end, we will show that the true subsolution, denoted by z��t��x�, differs from m��t�
0 by

higher order terms, for L large. These are however necessary to have g�z���x��0 for all x, and all
�� �rL , �1−r�L�; then since dz� /d� is uniformly bounded, zt−g�z��t���0 if d��t� /dt is negative,
but sufficiently small, hence z��t� is a sub-solution. By a more careful analysis we will also find the
right speed.

We will write

z� = m�
0 + �� + ��

*,

where �� and ��
* are two symmetric functions to be determined. To this end, we write, for x

� �0,2L�,

g�z�� = − �m̄� + A� + �� + ��
*� + tanh��J � �m̄� + A� + B� + �� + ��

*�� , �9.4�

where

B��x� = m�
0�x� − �m̄��x� + A��x�� , �9.5�

namely B� denotes the difference between the symmetric function m�
0�x� and the non symmetric

one, m̄�+A�. Thus B��x�=0 for x� �0,2L� and �0 elsewhere and for this reason its contribution
appears only in the convolution term and it is different from zero except for some x� �0,1� and
x� �2L−1,2L�.

Recalling that m̄�=tanh��J� m̄��, we will next rewrite �9.4� via a Taylor expansion to second
order around m̄�. Let
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��m = − m + p�J � m ,

where p��x� is here the symmetric function equal to ��1− m̄��x�2� when x� �0,2L�. We regard ��

as an operator on L��R�, noticing that it maps symmetric functions into symmetric ones. We then
get from �9.4� the following equality, valid for all x in �0,2L�:

g�m�
0 + �� + ��

*� =���A� + �� + ��
*� + p�J � B� + ���J � �A� + B� + �� + ��

*��2 + 03, �9.6�

where

�� =
�2

2
tanh���J � m̄�� �9.7�

and 03 is the remainder term in the expansion: there is a constant c �proportional to �3� so that

�03���,��
�,A�,B���� c 

i1+i2+i3=3
�J � ���i1�J � ��

��i2�J � �A� + B���i3.

In the sequel we will denote by the same symbol the symmetric extension of each term on the r.h.s
of �9.6�, so that equality holds on the whole of R. Thus, for instance, by ���x� we mean the
expression �9.7� if x� �0,2L�, and its symmetric extension elsewhere. The same applies to all the
other terms of �9.6�.

By an explicit computation which uses �3.6�, we get for x� �0,2L�,

a� =��A� = − e−2��2L−��k�
+ + e−2��k�

−, k�
±�x� ª ae±��x−��m�

2 − m̄��x�2

1 − m�
2 � 0 �9.8�

which, as said previously, is then regarded as a function on the whole of R by symmetric exten-
sion. To specify �� and ��

*, we introduce the operator

T� = 
n=0

N

�1 +���n, N = integer part of L2

and define

�� = T��a� + p�J � B� + ���J � �A� + B���2� , �9.9�

��
� = T��2���J � ����J � �A� + B��� + ���J � ���2� , �9.10�

where, according to the previous convention, all terms on which T� acts are symmetric functions.
Lemma 9.1: �� as an operator on the L� symmetric functions is invertible and

��T�m = − m + �1 +���N+1m . �9.11�

Proof: The invertibility statement is proved in Ref. 8, the remaining statements are well
known algebraic identities. �

With the choice �9.9� and �9.10� and using �9.11�, we get from �9.6�

g�m�
0 + �� + ��

*� = �1 +���N+1�a� + p�J � B� + ���J � �A� + B���2� + �1 +���N+1�2���J � ����J � �A�

+ B��� + ���J � ���2� + ����J � ��
*�2 + 2�J � ��

*���J � ��� + �J � �A� + B����� + 03

so that all terms, except those that multiply ��, which we will prove to be suitably small, are in the
range of the operator �1+���N+1 which, as we are going to see, has a nice behavior. In Ref. 8 it has
been proved that there is s��0 so that for all �� �s� ,2L−s��, a Perron–Frobenius theorem holds
for 1+�� �with domain the space of symmetric L� functions�. It is shown that �� has a strictly
positive eigenvalue �� with strictly positive eigenvector v�; �����=�� and the remaining part of
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the spectrum is made by complex numbers whose real part is not larger than −�, ��0. Let then
!� be the linear functional on L��R�, defined by

!��m� ª �
0

2L

m�x�v��x�
dx

p��x�
�9.12�

and normalize v� so that

!��v�� = 1

while we call  �0 the normalizing constant when L=�, i.e.,

 �
R

m̄���x�2 dx

1 − m̄��x�2dx = 1. �9.13�

We recall some results we need in the sequel, see �Ref. 8, Theorems 2.1, 2.3, 2.4�, and also �Ref.
7, Theorem 3.2�. There are constants c±�0, c��0 and ��0 so that for �� �s� ,2L−s��

c−�e−2�� + e−2��2L−���� �� � c+�e−2�� + e−2��2L−��� , �9.14�

�v��x� − � m̄���x��� c+�e−2�� + e−2��2L−���e���−x��4 for �� − x��
�

2
, �9.15�

�v��x� − � a�e−���e−�x + e�x��� c+e−��+����−x� for x � �0,
�

2
� , �9.16�

�v��x� − � a�e−��2L−���e−�x + e�x��� c+e−��+���x−�� for x � �3�

2
,2L� . �9.17�

Lemma 9.2: There are c and � positive so that for any L� symmetric function m,

��1 +���N+1m − �1 + ���N+1!��m�v��� � ce−�N�m��.

Proof: It follows from Theorem 2.4 in Ref. 8. �

Notice that e−�N�e−��L2−1�, which will be a negligible error. Moreover, by �9.14�, for � large
enough, �1+���N+1�1+���N+1� and to leading order �1, so that we may think that �1
+���N+1m is essentially given by !��m�v�. We then rewrite �9.6� as

g�m�
0 + �� + ��

*� = d�v� + E� + 03 + 0exp, �9.18�

where

d� = �1 + ���N+1!��a� + p�J � B� + ����J � �A� + B���2 + 2�J � ����J � �A� + B��� + �J � ���2�� ,

�9.19�

E� = ����J � ��
��2 + 2�J � ��

���J � �� + J � �A� + B���� , �9.20�

and 0exp is the error term, for replacing �1+���N+1�·� by �1+���N+1!��·�v�.
Lemma 9.3: There is a constant c� so that

�0exp�� c�N2e−�N. �9.21�

Proof: Since �a����c�, �A����c� and �B����c�, �T����N+1, then ������C�N+1� and
���

*���C��N+1�2 and �9.21� follows. �

Lemma 9.4: There is c1�0 such that �k�
±���c1 and moreover
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�!��a�� − � K�e−2�� − e−2��2L−����� c1�e−5�/2�2L−�� + e−5�/2�� , �9.22�

where

K =
a

��1 − m�
2�
�

R
dx

e�xm̄��x��m�
2 − m̄2�x��

1 − m̄2�x�
� 0. �9.23�

Proof: By �3.7�,

0� k�
±�y��

2m�

1 − m�
2 �1 + e−��0−���y−���, y � �0,2L� .

Then

!��k�
±� = �

�x−����/2

v��x�
p��x�

k�
±�x� + O�e−��/2� .

From �9.15� we then get that for a suitable constant c�0,

�!��k�±� − �
�y���/2

� m̄��y�
p�y�

k0
±�y�� � ce−2��e��/2�4.

On the other hand, using �3.7� and recalling the definition �9.23� of K we have

� K = � � dx
m̄��x�
pm̄�x�

k±�x� = �
�y���/2

� m̄��y�
p�y�

k0
±�y� + O�e−��/2�

so that

�!��k�
±� − � K�� Ce−��/2.

Hence �9.22� follows. �

By using Lemma 9.4 on the r.h.s. of �9.19�, we then get from �9.18�

g�m�
0 + �� + ��

�� = �1 + ���N+1� K�e−2�� − e−2��2L−���v� + D�v� + E� + 03 + 0exp, �9.24�

where

D� = �1 + ���N+1�!��a�� − � K�e−2�� − e−2��2L−���� + �1 + ���N+1!��p�J � B� + ���J � �A� + B���2

+ 2�J � ����J � �A� + B��� + ���J � ���2� . �9.25�

The analysis proceeds by showing that �D�� is negligible w.r.t. the coefficient multiplying v� in the
first term on the r.h.s. of �9.24�. We will then show that �E���	e−2��−���−x� with 	→0 as L→�,
while �03���ce−2�L and 0exp can be also bounded in the same way. The proof of such statements
requires a careful bound of each one of the terms which appear in the previous expressions and
uses essentially the following estimate proved by Eqs. �6.28� and �6.29� of Ref. 8: for any �
� �0,�� there is a constant c so that, denoting by T��x ,y�+��x−y� the kernel of T� �the � function
coming from n=0�,

�T��x,y��� cN2e−��x−y�, x � y .

We will thus bound

�T�m�x��� cN2
�m�x�� + �
0

2L

e−��x−y��m�y��dy� . �9.26�

To use �9.26� we need bounds on �m�y��, which, in the case of B�, are proved below.
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Lemma 9.5: There are positive constants c1 and c2 so that

�p�J � B��x��� c1��e−�0� + e−��4L−���1x��0,1� + �e−�0�2L−�� + e−��2L+���1x��2L−1,2L�� , �9.27�

�!��p�J � B���� c2�e−��0+��� + e−��0+���2L−�� + e−�4L� �9.28�

with �0 as in �3.7�.
Proof: By �9.5�, B��x�=0 for x� �0,2L� and we just need to specify its values in the two

intervals �−1,0� and �2L ,2L+1�. We write B�
0�x�=B��x�1x��−1,0� and B�

+�x�=B��x�1x��2L,2L+1�. Ex-
plicitly

B�
0�x� = ��m̄�− x − �� − ae−��4L+x−�� + ae−��−x+��� − �m̄�x − �� − ae−��4L−x−�� + ae−��x+����1x��−1,0�

= �ae−��4L−���e�x − e−�x� + �m̄�− x − �� − �− m� + ae−��x+����

− �m̄�x − �� − �− m� + ae−���−x����1x��−1,0�.

Since J has support equal to one, by using �3.7�, we get

�p�J � B�
0�x��� c�e−��4L−�� + e−�0��1x��0,1�.

Analogously we write

B�
+�x� = ��m̄�4L − x − �� − ae−��x−�� + ae−��4L−x+��� − �m̄�x − �� − ae−��4L−x−�� + ae−��x+����1x��2L,2L+1�

= �ae−��2L+���e��2L−x� − e−��2L−x�� + �m̄�4L − x − �� − m� + ae−��4L−x−���� − �m̄�x − �� − m�

+ ae−��x−�� � �1x��2L,2L+1�.

By using again �3.7�, we then get

�p�J � B�
+�x��� c�e−�0�2L−�� + e−��2L+���1x��2L−1,2L�

hence �9.27� follows. Applying the definition �9.12� of !�, we bound �!��p�J�B��� using the l.h.s.
of �9.27�. We then get �9.28�. �

The remaining part of the proof of Theorem 8.3 is just computational, we thus outline the way
computations are performed and state the results, a few details are reported in the Appendix . The
result holds for L large enough: given r we need to choose � �� as in �9.26�� sufficiently close to
�, in a way which depends on r, and which then determines how large L should be. Recall that
�� ��1−r�L ,rL�.

We need first to estimate ���x�, which is given by �9.9�. We use �9.26�, expressing a� as in
�9.8�; bound p�J�B� using �9.27�; we are then left with integrals of functions which are piecewise
pure exponentials. The result is then bounded proportionally to the value of the integrand com-
puted at the endpoints of the intervals where it is a pure exponential. The bound is reported in
�A1�. The same strategy is used for ��

�, the result is �A4�.
The next step is to prove that for any 	�0, if L is large enough, then �D��e2���	, so that the

first term on the r.h.s. of �9.24� dominates the second one, with D�. Expression �9.25� for D�

involves the action of the linear functional !�, namely an integral with the function v�. We then
take �9.15�–�9.17� and reduce them to integrals which are like those for �� and ��

*.
By direct inspection, given any 	�0 and L large enough, e2��e���−x��E��x���	. Also

e−2��2L−���e−2��	, because 2L−��Lr, it then follows from �9.24� that
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g�m�
0 + �� + ��

��� � Ke−2���1 − 	�v�.

We then have

zt�x,t� − g�z�x,t��� − �m̄���x� + a�e−��x+�� −
����x�

��
−

���
��x�

��
��t − � Ke−2���1 − 	�v��x� .

Since the square bracket which multiplies �t is bounded, the whole expression is negative with �t

negative but sufficiently small, hence z� is a subsolution. A further analysis shows that for any
	�0 if L is large enough, then

e���−x�� ����x�
��

� � 	; e���−x�� ���
��x�

��
� � 	

which proves �8.15� since we can take �t arbitrarily close to −� Ke−2��. The proof of �8.16� is
given in the Appendix , see �A6� and �A7�. The proof of Theorem 8.3 is completed.

X. PROOF OF THEOREM 2.8

By Definition 2.5, for any m�U−,+ there exists � such that L− �����+ /2 and sup�x��L�m��−�

− m̄�
��−���2�.
Lemma 10.1: There is c�0 so that for all L large enough, the following holds. For any m

�U−,+ and any t�0,

sup
�x��L

�St�m� − m̄��� e�t�2� + c�−� + 2e−t. �10.1�

Proof: Let u�· , t�=St�m�− m̄�, then, with u��−� as in �2.3�,

d

dt
u��−� = − u��−� + tanh��J��−� � m��−�� − tanh��J��−� � m̄�

��−�� + R , �10.2�

where, calling Ix the interval in D��−� which contains x,

J��−��x,y� =
W

Ix
W

Iy

Jneum�x�,y��dx�dy�

whereas the remainder R such that sup�x��L�R��c���−+e−��+/2�, for a suitable constant c�. The term
e−��+/2 takes into account the fact that m̄�� tanh�Jneum� m̄�� when �x��L−1, but the error is
exponentially small by �3.9�. From �10.2� we then get

sup
�x��L

�u��−��x,t��� e��−1�t2� +
�R��
� − 1

e��−1�t.

�10.1� is then a consequence of the inequality �m̄������J��� and

� d

dx
�m�x,t� − e−tm�x,0��� � ��J���

which follows straightly from the integral version of �2.2�. Then �u�x , t��� �u��−��x , t��+2e−t

+c��− and Lemma 10.1 is proved. �

Proof of Theorem 2.8: Given 	�0 let t0 be such that 2e−t0 =	 /2 and � so small that e�t0�2�
+c�−�=	 /2. Then by �10.1�
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sup
�x��L

�St0
�m� − m̄��� 	 for some �	 ��m� � �− L,L� .

We fix r� �0,1� as in Proposition 8.1 and we consider the set B	,r defined in �3.16�. It then follows
that either St0

�m��M	,r
+ �M	,r

− or St0
�m��B	,r. In the first case, from Proposition 8.1 it follows

that St0+s�m� converges to m�+� or to m�−� as s→�. In the second case, using Ref. 5, we have that
either St0+s�m� converges to m̂L as s→�, or else, at some time s1, St0+s1

�m�� ��2	,r
− ��2	,r

+ �, see
�3.16� for the definition of the latter. Since ��2	,r

− ��2	,r
+ � is a subset of M2	,r

+ �M2	,r
− , from

Proposition 8.1 it follows that St0+s1+s�m� converges to m�+� or to m�−� as s→�, concluding the
proof of Theorem 2.8.
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APPENDIX: SOME DETAILS ON THE TRAVELING SUBSOLUTION

1. Analysis of ��„x…

We have

����x��� n−�x�1x�� + n+�x�1x��, �A1�

where

n−�x� = cL4�e−2�� + e−�0�−�x� ,

n+�x� = cL4�e−2��2L−�� + e−2��−��x−�� + �e−�0�2L−�� + e−��2L+���e−��2L−x�� .

Recalling its definition �9.9� we start by examining T�a�, with a� given by �9.8�. We have

�k�
+�y��� c�1y�� + 1y��e

−2���−y��, �k�
−�y��� c�e−2��y−��1y�� + 1y��� .

We will use �9.26�, so that, calling a�
± the contributions to a� with k�

±, and recalling that ���,

�T�a�+�� cN2e−2��2L−��
e−���−x�, x� �

1, x� � ,
�

�T�a�−�� cN2e−2��
1, x� �

e−��x−��, x� � .
�

Since ��L,

�T�a��� cL4
e−2��, x� �

e−2��2L−�� + e−2��e−��x−��, x� � .
�

Recalling �9.27�, and since �0�2�,

�T��p�J � B���� cL4�e−�0�e−�x + �e−�0�2L−�� + e−��2L+���e−��2L−x��

and same bounds �even better� holds for �T�����J�B��2��.
Recalling definition �9.3� of A�, we have

�T����J � A��2�� cL4�e−2��2L−��e−��2L−x� + e−�xe−2��� . �A2�

�A1� is thus proved. �
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2. Analysis of ��
*
„x…

We have

�T�����J � ���2��� V1
−�x�1x�� + V1

+�x�1x�� = V1�x� ,

�T�����J � ����J � A����� V2
−�x�1x�� + V2

+�x�1x�� = V2�x� ,

�T�����J � ����J � B����� V3�x� �A3�

so that

���
*�x��� V1�x� + V2�x� + V3�x� �A4�

where �bounding e−�2L−����−���1�

V1
− = cL4�e−4�� + e−2�0�−�x� ,

V1
+ = cL4�e−��2L−x�n+�2L�2 + n+�x�2 + e−��x−���n+���2 + n−���2� + e−�xn−�0�2� ,

V2
− = cL4�e−�x−��0+��� + e−��2L−x�−��2L−��� ,

V2
+ = cL4�e−��2L−x�n+�2L�A��2L� + n+�x�A��x� + e−��x−���n+��� + n−����A���� + e−�xn−�0�A��0�� ,

V3 = cL4�e−�xn−�0��e−�0� + e−��4L−��� + e−��2L−x�n+�2L��e−�0�2L−�� + e−��2L+���� .

3. Bounds on D�

We will prove that for any 	�0 there is L	 so that for any L�L	

e2���D��� 	 .

Since �1+���N+1�2, using �9.22�, the contribution of the first term on the r.h.s. of �9.25� is
bounded by

2c1e2���e−�5/2����2L−�� + e−�5/2���

which, for ��rL is exponentially small in L.
By �9.28�, the contribution of the second term on the r.h.s. of �9.25� is bounded by

2e2��c2�e−��0+��� + e−��0+���2L−�� + e−�4L�

which is again exponentially small. Moreover

e2��!�����J � B��2�� ce2���e−2�0�e−�� + �e−2�0�2L−�� + e−2��2L+���e−��2L−��� .

Observe that the next bounds can be recovered from the corresponding ones with T��·�, provided
the latter are computed at x=� and with � replaced by �, the term L4 being dropped. Thus, from
�A2�,

e2��!�����J � A��2�� ce2���e−2��e−�� + e−2��2L−��e−��2L−���� e−�� + e−��2L−��.

The same strategy applies to the terms
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e2��!�����J � ����J � A���, e2���!�����J � ����J � B����, e2���!�����J � ���2��

which are estimated in terms of �A3�. They also vanish as L→�. In particular, the first one is
bounded by e−��+����2L−��+2�� which vanishes by the assumption that ��rL, r�0.

4. Bounds on E�

We will prove that for any 	�0 there is L	 so that for any L�L	

sup
x��0,2L�

e2��e���−x��E��x��� 	 . �A5�

We bound the terms in �9.20�, using the bounds on ��, ��
*, A�, and B� already obtained. We

distinguish the intervals x�� and x��. In each of them the dependence on x is of the form ebx,
with b depending on the term under consideration. Thus the max of the function to bound will be
achieved at one of the endpoints. The bound at x=0 is

e3�����J � ��
��2�0 � cL8e3���e−2�0� + �e−��0+��� + e−�2L−��2L−��� + �n−�0��e−�0� + e−��4L−���

+ e−�2Ln+�2L��e−�0�2L−�� + e−��2L+�����2,

e3��2���J � ��
���J � ����0 � cL8e3���e−2�0� + �e−��0+��� + e−�2L−��2L−��� + �n−�0��e−�0� + e−��4L−���

+ e−�2Ln+�2L��e−�0�2L−�� + e−��2L+�����n−�0� ,

e3��2���J � ��
���J � A���0 � cL8e3���e−2�0� + �e−��0+��� + e−�2L−��2L−��� + �n−�0��e−�0� + e−��4L−���

+ e−�2Ln+�2L��e−�0�2L−�� + e−��2L+������e−��4L−�� + e−��� ,

e3��2���J � ��
���J � B���0 � cL8e3���e−2�0� + �e−��0+��� + e−�2L−��2L−��� + �n−�0��e−�0� + e−��4L−���

+ e−�2Ln+�2L��e−�0�2L−�� + e−��2L+�����e−�0�.

All these terms, with ��L, are bounded by 	 for L large enough.
When x=�, we have from �A5�,

e2�����J � ��
���� � cL8e2���e−�4� + e−�2�0+��� + e−��+�+�0�� + e−��+���2L−���

which vanishes as L→� and �1−r�L���rL. It then follows that the contribution in �A5� of x
=� can be made as small as desired, by taking L large. When x=2L,

e2��+��2L−�����J � ��
���2L � cL8e2��+��2L−���e−��+�0��2L−��� .

This term alone does not vanish as L→�, but once multiplied by J���, J�A�, J�B� the contri-
bution to �A5� becomes as small as desired, for L large.

5. Asymptotic behavior of the subsolution

We will first prove that for any 	�0 there is L	 so that for L�L	 and �� �rL , �1−r�L�,

sup
x��0,2L�

e���−x�����x��� 	 . �A6�

For x�� ,e���−x�����x�� is bounded by cL4 times

e���−x�n−�x�� e���−x�−2�� + e���−x�−�0�−�x � e−���+x� + e−��+��x−��0−���

which vanishes as L→�. For x��, ����x���n+�x� which is the sum of three terms, thus
e���−x�����x�� is bounded by cL4 times the sum of the following three terms.
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e��x−��e−2��2L−�� � e−��2L−��,

e��x−��e−2��−��x−�� � e��−���2L−��−2��,

e��x−��e−��2L−x��e−�0�2L−�� + e−��2L+���� e−��0−���2L−�� + e−2��.

We will next prove that for any 	�0 there is L	 so that for L�L	 and �� �rL , �1−r�L�,

sup
x��0,2L�

e���−x����
*�x��� 	 . �A7�

Recalling �A4�, we have, with x��,

e���−x��V1
− + V2

−�� cL4��e−2�� + e−�2�0−���� + �e−�0� + e2��−��+��2L��

e���−x�V3�x�� cL4e��V3�0�

which vanish as L→�.
For x��,

e��x−���V1
+�x� + V2

+�x� + V3
+�x��� e��2L−���V1

+�2L� + V2
+�2L� + V3

+�2L��

which vanishes as L→�.
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It is shown that the set of all quantum states corresponding to the motion of a free
particle on the group manifold AdS3 as the bases with two different labels, consti-
tute a Hilbert space. The second label is bounded by the first one however, the first
label is semibounded. The Casimir operator corresponding to the simultaneous and
agreeable shifting generators of both labels along with the Cartan subalgebra gen-
erator describe the Hamiltonian of a free particle on AdS3 with dynamical symme-
try group U�1,1� and infinite-fold degeneracy for the energy spectrum. The Hilbert
space for the Lie algebra of the dynamical symmetry group is a reducible repre-
sentation space. But the Hilbert subspaces constructed by all the bases which have
a given constant value for the difference of two their labels, constitute an irreduc-
ible representation for it. It is also shown that the irreducible representation sub-
spaces of the Lie algebras u�1,1� and u�2� are separately spanned by the bases
which have the same value for the second and first labels, respectively. These two
bunches of Hilbert subspaces present two different types of quantum splittings on
the Hilbert space. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1982767�

I. INTRODUCTION AND MOTIVATION

After introducing nonrelativistic supersymmetric quantum mechanics,1–3 the study of solvable
problems has attracted a considerable attention. In the beginning of the theory, a lot of fundamen-
tal results were obtained �for further review see Refs. 4–7�. Based on supersymmetry, if we know
the wave function of the ground state with the zero energy for a given potential then we will obtain
a hierarchy of partner potentials and their wave functions as well as energy eigenvalues. During
that time, Gendenshtein remarkably developed supersymmetric quantum mechanics by defining
the shape invariance concept for the potentials.8 On this basis, most of the potentials obtained by
the supersymmetry and shape invariance methods had the same functional of spatial coordinates,
however, they had different parameters with respect to each other. Thus, the shape invariant
potentials were identified with the known potentials which had analytic solutions. At first, it was
supposed that all of the solvable potentials are shape invariant. Afterwards, it was realized that the
shape invariance is a sufficient and not a necessary condition for the solvability.9 Much work has
been done to investigate shape invariance in the framework of supersymmetry �for example, see
Refs. 10–18�.
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Simultaneous shape invariance with respect to two different parameters whose formulation
was first performed for the associated hypergeometric and Jacobi functions,19,20 and then for the
associated Laguerre functions,21 provides a rich algebraic structure for the special functions and
their corresponding differential equations. However, for the special functions �polynomials� of
Hermite, simultaneous shape invariance with respect to two parameters has not been propounded.
Due to this fact, the harmonic oscillator as the simplest problem of quantum mechanics is derived
from the Hermite differential equation and occurred as the base and foundation of much studies in
physics. Since, first, the factorization and consequently the shape invariance of the Hermite dif-
ferential equation take place with respect to only one parameter. Second, the corresponding raising
and lowering operators are not functions from the shape invariance parameter. On the other hand,
in contrast with this simple case, the complication of the hypergeometric, Jacobi �which is from
the same hypergeometric type� and Laguerre �which is from the confluent hypergeometric type�
differential equations supplies the simultaneous shape invariance with respect to two different
parameters and also the corresponding operators are functions from the shape invariance param-
eters.

It seems that introducing the simultaneous shape invariance with respect to two different
parameters in the equations leads to the simplification of them like the Hermite differential equa-
tion however, their applications become rich. For example, the simultaneous shape invariance with
respect to two different parameters of the associated Gegenbauer differential equation has played
an important role in connection with investigating dynamical symmetry groups SU�2� and SU�1,1�
and realizing the representation of parasupersymmetry algebra by the quantum states correspond-
ing to the motion of a free particle on the sphere S2 and the two-dimensional manifold AdS2,
respectively.22 Further, for a free particle on the sphere, Barut–Girardello coherent states have
been constructed by the spherical harmonics.23 As another two-dimensional example, applying the
simultaneous shape invariance with respect to two parameters in the associated Laguerre func-
tions, we obtained the realization of new quantum splittings for the Landau levels, and conse-
quently construction of the corresponding coherent states.24,25 Besides, the simultaneous shape
invariance with respect to two parameters leads to a deep and extended understanding of super-
symmetry for the one-dimensional solvable models like the Morse, three-dimensional harmonic
oscillator, and generalized radial Hulthén potentials, and radial potential of hydrogen-like
atoms.26–28 In Ref. 29, it has been emphasized that most of the shape invariant models are
classified in two different classes so that in the first and second classes, the shape invariance
parameters are n �degree of polynomial� and m �the dependence index of the special functions�,
respectively.

In this article, by using the associated Gegenbuer functions, we construct the Hilbert space
H=span��n ,m��0�m�n�� spanned by the orthonormal bases �n ,m�, with two labels and restrictions
n�0 and 0�m�n for two integers n and m, which in fact are the solutions of the eigenvalue
equation associated with the Hamiltonian of a free particle on the group manifold AdS3

	SU�1,1�	SL�2,R�. We introduce four generators of the noncompact Lie algebra u�1,1� in such
a manner that their corresponding laddering generators shift both the indices n and m of quantum
states �n ,m� simultaneously and agreeably. The Casimir operator of these generators is basically
the Hamiltonian that describes the dynamical symmetry group U�1,1� for the free particle moving
on AdS3. It is shown that the Hilbert space H as the set of all quantum states of this problem
represents reducibly the Lie algebra of the dynamical symmetry group U�1,1� which has an
infinite-fold degeneracy for the energy spectrum. However, the infinite dimensional Hilbert sub-
spaces Hi=span��m+ i ,m��m�0 , i�0, which divide the whole Hilbert space H �as H=�i=0

� Hi and
Hi�Hi�=� for i� i��, represent the Lie algebra irreducibly. Moreover, the Hilbert space H is
divided by two other different ways through infinite dimensional Hilbert subspaces Hm

=span��n ,m��n�m �as H=�m=0
� Hm and Hm�Hm�=� for m�m�� and finite dimensional ones

Hn=span��n ,m��m�n �as H=�n=0
� Hn and Hn�Hn�=� for n�n��. We show that the Hilbert

subspaces Hm as positive discrete series, and Hn represent the noncompact Lie algebra u�1,1�, and
the compact Lie algebra u�2�, respectively. These representations automatically propose infinite-
u�1,1�- and finite-u�2�-quantum splittings on the whole space of quantum states. Realization of the
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dynamical symmetry group U�1,1� by simultaneous shift operators of both quantum states labels
and also u�1,1�- and u�2�-quantum splittings is a direct consequence of the simultaneous shape
invariance idea with respect to two different parameters. The discussions performed in this article
may be compared with the classical and quantum mechanical investigations done in Ref. 30 for a
massive particle on the group manifold AdS3 in the framework of the Klein–Gordon equation.

II. MATHEMATICAL FOUNDATION

In Ref. 20 it has been shown that if the normalization coefficients of the associated Gegen-
bauer functions Pn,m

��� �x� in the Rodrigues representation are chosen as

Pn,m
��� �x� =

�− 1�m

2n��� + n + 1�

��2� + n + m + 1�

��n − m + 1�
1

�1 − x2��+m/2� d

dx
�n−m

�1 − x2��+n, �1�

then the following laddering relations are simultaneously realized with respect to the parameters n
and m, respectively:

A+�n;x�Pn−1,m
��� �x� = 
�n − m��2� + n + m�Pn,m

��� �x� , �2a�

A−�n;x�Pn,m
��� �x� = 
�n − m��2� + n + m�Pn−1,m

��� �x� , �2b�

and

A+�m;x�Pn,m−1
��� �x� = 
�n − m + 1��2� + n + m�Pn,m

��� �x� , �3a�

A−�m;x�Pn,m
��� �x� = 
�n − m + 1��2� + n + m�Pn,m−1

��� �x� , �3b�

where the parameters n and m take nonnegative integer values. The explicit forms of the laddering
operators A±�n ;x� and A±�m ;x� are calculated as

A±�n,x� = ± �1 − x2�
d

dx
− �n + � ± ��x , �4�

A±�m,x� = ± 
1 − x2 d

dx
+
�m + � � � −

1

2
�

1

2
�x


1 − x2
. �5�

For a given m the number of the laddering equations with respect to n is infinite. However, for a
given m, the number of the laddering equations with respect to m is finite. Combination of Eqs.
�2a� and �2b� by two different ways leads to the shape invariance equations with respect to the
parameter n. Similarly, combination of Eqs. �3a� and �3b� by the same procedure gives rise to the
shape invariance equations with respect to the parameter n.

It is also shown that if the real parameter � is chosen as ��−1 then, the associated Gegen-
bauer functions Pn,m

��� �x� for a given m but with different n’s are orthogonal with respect to an inner
product with the weight function �1−x2�� in the interval �−1, +1� so that their norms are given by
the following relation:


−1

+1

Pn,m
��� �x�Pn�,m

��� �x��1 − x2��dx = 	nn�hn
2���, n,n� � m �6�

with

083501-3 Dynamical symmetry group and quantum splittings J. Math. Phys. 46, 083501 �2005�

                                                                                                                                    



hn��� =
2�+1/2


2� + 2n + 1
.

Now by using the Rodrigues representation �1�, let us rewrite relation �6� as


0

1

Pn,m
��� �x�Pn�,m

��� �x��1 − x2��dx = 	n n�
hn

2���
2

, n,n� � m . �7�

It should be pointed out that the special case �=0 yields the associated Legendre functions Pn,m
�0�


�x�= Pn,m�x�. In this case by using just the laddering equations �3� and by replacing n with l, it
is well-known that representation of Lie algebra su�2� on the space of spherical harmonics
�l ,m�=Yl m�� ,�� via shifting just m, is realized. In trigonometric harmonics Yl m�� ,�� , � and �
are local coordinate patch on the two-dimensional sphere S2. Realization of irreducible represen-
tation su�2� via �deformed� spherical harmonics is a problem which arises in the many many
contents in mathematical physics �for example, see Refs. 31–34�. In a similar approach, we shall
show that simultaneous formulation of Eqs. �2� and �3� gives rise to the derivation of the hyper-
bolic harmonics �n ,m� as functions of three coordinates corresponding to the parametrization of
the group manifold AdS3	SL�2,R�.

III. REALIZATION OF REDUCIBLE REPRESENTATIONS OF THE LIE ALGEBRAS u„1,1…
AND u„2… BY A HILBERT SPACE

In this section a Hilbert space is constructed to represent the noncompact Lie algebra u�1,1� as
well as the compact Lie algebra u�2� reducibly. We also obtain the irreducible Hilbert subspaces
corresponding to the representations of the Lie algebras so that each of them divides the Hilbert
space separately. First of all we define the kets �n ,m� as functions of the variables 0�r��, 0
���2 and −���:

�n,m� ª
ein�+im�Pn,m

��� � 1

cosh r
�


2hn���
. �8�

It is easily shown that the kets �n ,m� form an orthonormal set with respect to both the indices, and
with an inner product whose measure is �tanh2�+1r / cosh r�drd�d�:

�n,m�n�,m�� = 
r=0

� 
�=0

2 
�=−

 � ein�+im�Pn,m
��� � 1

cosh r
�


2hn���
�

*


� ein��+im��Pn�,m�
��� � 1

cosh r
�


2hn���� � tanh2�+1r

cosh r
drd�d� = 	n n�	m m�. �9�

Note that by using x=1/cosh r, the relation �9� converts to the relation �7�. Consequently, we can
introduce infinite dimensional Hilbert space H which is spanned by the bases �n ,m�, i.e., H
ªspan��n ,m��0�m�n��.

Now if we define the operators L+ and L− as

L± = e±i���sinh r
�

�r
+

i

cosh r

�

��
−

� +
1

2
± �� +

1

2
�

cosh r
� , �10�

then by using Eq. �2� we may show that they satisfy the raising and lowering relations of the index
n for a given m as
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L+�n − 1,m� =
�n − m��2� + n + m��2� + 2n − 1�
2� + 2n + 1

�n,m� , �11a�

L−�n,m� =
�n − m��2� + n + m��2� + 2n + 1�
2� + 2n − 1

�n − 1,m� , �11b�

respectively. Meanwhile by defining L3=−i� /��, we have

L3�n,m� = n�n,m� . �12�

Using the explicit forms of the operators or Eqs. �11� and �12� which represent these operators in
the Hilbert space H, it is easily seen that four generators L+, L−, L3, and Iª1 satisfy the com-
mutation relations of the noncompact Lie algebra u�1,1� as follows

�L+,L−� = − 2L3 − �2� + 1�I ,

�L3,L±� = ± L±,

�L,I� = 0. �13�

It is evident that for �=− 1
2 �the associated Chebyshev functions of the first type�, the Lie algebra

u�1, 1� is decomposed into su�1,1� � u�1�. The representation of the noncompact Lie algebra
u�1,1�, i.e., �13� in the Hilbert space H is reducibly realized by Eqs. �11� and �12� as well as the
following relation:

I�n,m� = �n,m� . �14�

In fact for every given m, we obtain a positive discrete irreducible representation Dm
+ = �m ,m

+1,m+2,…� for the Lie algebra u�1,1�. The infinite dimensional Hilbert subspaces Hm which are
defined as Hmªspan��n ,m��n�m represent irreducibly the Lie algebra u�1,1� again as Eqs. �11�,
�12�, and �14�. They divide the Hilbert space H �as H=�m=0

� Hm and Hm�Hm�=� for m�m��.
All bases of the irreducible subspaces Hm are algebraically generated by the representation rela-
tions. For this purpose by solving the differential equation L−�m ,m�=0 which is obtained by �11b�,
we get the lowest base �m ,m� as

�m,m� =
eim�+im��− 1�m

2�+m+1


��2� + 2m + 2�
��� + m + 1�

tanhmr , �15�

which is consistent with �8�. Equation �11a� gives all other bases of Hm as

�n,m� =
 �2� + 2n + 1���2� + 2m + 1�
�2� + 2m + 1���n − m + 1���2� + n + m + 1�

L+
n−m�m,m�, n � m . �16�

Also, if we define operators K+ and K+ as

K± ª e±i���cosh r
�

�r
−

i

sinh r

�

��
+

� � �

sinh r
� , �17�

then by using relations �3� for a given n, we derive the raising and lowering relation of the label
m, that is,

K+�n,m − 1� = 
�n − m + 1��2� + n + m��n,m� , �18a�
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K−�n,m� = 
�n − m + 1��2� + n + m��n,m − 1� . �18b�

For K3ª−i� /�� we have

K3�n,m� = m�n,m� . �19�

Using the explicit forms of the operators K+, K−, K3, and I or equations which are related to the
operation of these operators on the Hilbert space H, one may deduce

�K+,K−� = 2K3 + 2�I ,

�K3,K±� = ± K±,

�K,I� = 0. �20�

Therefore, the four generators K+, K−, K3, and I satisfy the commutation relations of the compact
Lie algebra u�2�. The Hilbert space H represents this Lie algebra reducibly through Eqs. �18�,
�19�, and �14�. It is clear that for �=0 �the associated Legendre functions�, the Lie algebra u�2�
i.e., �20� is decomposed into su�2� � u�1�. The �n+1�-dimensional Hilbert subspaces Hn

ªspan��n ,m��m�n, which divide the Hilbert space H �as H=�n=0
� Hn and Hn�Hn�=� for n

�n��, represent the compact Lie algebra u�2� reducibly via the relations �18�, �19�, and �14� once
again. In other words for a given n, all bases of Hn are calculated by an algebraic method. The
highest base �n ,n� is computed by �18a� as �15� except that m is replaced by n. Using �18b�, all
other bases are obtained as

�n,m� =
 ��2� + n + m + 1�
��n − m + 1���2� + 2n + 1�

K−
n−m�n,n�, m � n . �21�

In the next section we shall show that the bases �n ,m� of the Hilbert space H are the eigen-
solutions of the Schrödinger operator corresponding to the motion of a free particle on the group
manifold AdS3. In addition, H will also represent the noncompact Lie algebra u�1,1� in a manner
that is different from Eqs. �11� and �12�.

IV. REALIZATION OF DYNAMICAL SYMMETRY GROUP U„1,1… FOR A FREE PARTICLE
ON THE AdS3 BY THE HILBERT SPACE H

Simultaneous realization of representations of the noncompact Lie algebra u�1,1� and compact
Lie algebra u�2� by the Hilbert space H via equations �11�, �12�, and �14�, and �18�, �19�, and �14�
respectively, gives us the possibility to define new differential generators for the Lie algebra u�1,1�
�this time, they are functions from three coordinates r, �, and � of the group manifold AdS3� by
a different method. So in addition to obtain a different representation for the Lie algebra u�1,1� by
the Hilbert space H, we can show that the Casimir operator of these new generators is basically
the Schrödinger operator corresponding to the motion of a free particle on the group manifold
AdS3. First of all let us define

J± ª ± �K±,L±� = e±i�±i��±
�

�r
+ i tanh r

�

��
+ i coth r

�

��
− ��� +

1

2
� ± �� +

1

2
��tanh r

− �� � ��coth r�
J3 ª L3 + K3 = − i� �

��
+

�

��
� . �22�

Using equations �11�, �12�, �18�, and �19� it is easily shown that
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J+�n − 1,m − 1� =
�2� + n + m��2� + n + m − 1��2� + 2n − 1�
2� + 2n + 1

�n,m� , �23a�

J−�n,m� =
�2� + n + m��2� + n + m − 1��2� + 2n + 1�
2� + 2n − 1

�n − 1,m − 1� , �23b�

J3�n,m� = �n + m��n,m� . �23c�

Applying the recent result and also by using the explicit form of the generators, one can derive the
commutation relations of the noncompact Lie algebra u�1,1� as

�J+,J−� = − 4J3 − 2�4� + 1� ,

�J3,J±� = ± 2J±,

�J,I� = 0. �24�

Obviously, the representation of the Lie algebra u�1,1� in the Hilbert space H via Eqs. �23� and
�14� is reducible. If we divide H in terms of the Hilbert subspaces Hi=span��m+ i ,m��m�0 , i
�0, �as H=�i=0

� Hi and Hi�Hi�=� for i� i�� then the representation of the Lie algebra u�1,1� by
Hi’s through the four generators J+, J−, J3, and I will be irreducible.

The Casimir operator of the generators J+, J−, and J3 has the following explicit form:

H =
1

2
�J+J− − J3

2 − �4� − 1�J3� =
1

2
�−

�2

�r2 +
1

cosh2 r

�2

��2 −
1

sinh2 r

�2

��2 + �2� tanh r

− �2� + 1�coth r�
�

�r
+ i

�2� + 1�
cosh2 r

�

��
− i

2�

sinh2 r

�

��
+ 2��2� − 1�� . �25�

The general form of the Schrödinger operator is L=− 1
2Di

ADAi+V in which the index i takes the
values r, �, and �, respectively. Further, Di

A is the covariant derivative and A stands for the
connection associated with the presence of an external magnetic field. If we equalize the Casimir
operator given in �25� with L then by comparing the coefficients of the second-order derivatives,
the metric tensor will be calculated to yield

gij = �1 0 0

0 − cosh2 r 0

0 0 sinh2 r
� . �26�

The nonzero components of the Christoffel symbols related to the metric �26� are computed as

���
r = 1

2sinh 2r, ���
r = − 1

2sinh 2r, �r�
� = tanh r, �r�

� = coth r . �27�

Thus, the nonzero component of the Ricci tensor are given by

Rrr = − 2, R�� = 2 cosh2 r, R�� = − 2 sinh2 r . �28�

Consequently, Ricci scalar curvature becomes R=gijRij=−6. So, the parameters r, �, and � de-
scribe the coordinates of a three-dimensional manifold with constant negative curvature. It is
well-known that35,36 r, �, and � can show an appropriate parametrization for the elements of the
group manifold AdS3	SL�2,R�	SU�1,1�. Therefore, by using suitable matrix generators for the
Lie algebra su�1,1�, one can construct left and right invariant differential forms of these generators
which may be compared with �22�. Note that AdS3 is not globally a hyperbolic space.
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Comparing the coefficients of the first-order derivative and the terms without derivative in the
Casimir and Schrödinger operators, then the components of the gauge and scalar potentials are
obtained as

Ar =
− i

2
�2� + 1�tanh r, A� = −

1

2
�2� + 1�, A� = − �, V = ��2� − 1� −

3

8
. �29�

Hence, the two-form magnetic field and the electric field vector become zero:

B =
�Aj

�xi
dxi ∧ dxj = 0, E = − � V = 0. �30�

Thus, the Casimir operator H describes the Hamiltonian corresponding to a particle moving on the
group manifold SL�2,R� in the absence of magnetic and electric fields. Equations �23a�–�23c�
immediately give the following eigenvalue equation on the reducible representation space H with
infinite-fold degeneracy for the energy spectrum:

H�n,m� = ��2� − 1��n,m�, 0 � m � n � � . �31�

It is clear that if we restrict the eigenvalue equation �31� on the Hilbert subspaces Hi which
represent the Lie algebra u�1,1�, i.e., �24� irreducibly, then it will have infinite-fold degeneracy for
the spectrum once again. So, the bases of the Hilbert space, i.e., the kets �n ,m� are the quantum
states associated to the motion of a free particle on the group manifold AdS3. Besides, the
dynamical symmetry group U�1,1� with infinite-fold degeneracy for the spectrum is described by
means of the Casimir operator H. At the same time, as has been shown in the previous section, two
other symmetry are exhibited by the space H of quantum states. In these symmetries we introduce
the generators of the non-compact Lie algebra u�1,1� and compact Lie algebra u�2� such that their
irreducible representation subspaces are irrelevant with respect to the functional behavior of the
variables � and �, respectively.

V. CONCLUSION

In this article, in addition to obtaining a dynamical symmetry group U�1,1� via simultaneous
shift operators of two parameters n and m, we obtained two different quantum splittings for all the
quantum states of a free particle on AdS3. These two types of quantum splittings are realized by
the raising and lowering generators of the noncompact Lie algebra u�1,1� and compact Lie algebra
u�2� corresponding to the shift of just the index n for a given m, and the shift of just the index m
for a given n, respectively. In other words, there exist two different types of quantum splitting with
u�1,1�- and u�2�-irreducible representations on the space of all quantum states. They are infinite-
and finite-dimensional Hilbert subspaces with the same functionalities of variables � and � for the
bases, respectively. Further, the functionalities of both variables � and � are changed in the
irreducible representations of dynamical symmetry group U�1,1�.
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We consider wavelets in L2�Rd� which have generalized multiresolutions. This
means that the initial resolution subspace V0 in L2�Rd� is not singly generated. As
a result, the representation of the integer lattice Zd restricted to V0 has a nontrivial
multiplicity function. We show how the corresponding analysis and synthesis for
these wavelets can be understood in terms of unitary-matrix-valued functions on a
torus acting on a certain vector bundle. Specifically, we show how the wavelet
functions on Rd can be constructed directly from the generalized wavelet filters. ©
2005 American Institute of Physics. �DOI: 10.1063/1.1982768�

I. INTRODUCTION

The theory of wavelets is concerned with the Hilbert space L2�Rd�. The problem is to find
“good” orthonormal bases �ONB�, where “good” makes reference to several conflicting require-
ments:

�1� These bases must be constructed from a small number of model functions, called wavelets,
and two discrete operations, translation, and scaling. In this article, we are concerned with
translation by the standard integer lattice Zd, and scaling by some prescribed integral matrix
A which is assumed expansive.

�2� In passing from function to expansion coefficients, referring to a wavelet basis, and back
again �this is called analysis/synthesis�, the steps must be algorithmic, ideally avoiding direct
reference to integration over Rd.

�3� The wavelet functions should have compact support, and should have some prescribed num-
ber of derivatives.

The algorithms that have been popular since the mid-1980s are based on what is called
multiresolution analysis �MRA�. This was pioneered by Daubechies,1 Mallat,2 and Meyer,3,4 and
the idea, although simple, has been extremely powerful. The idea itself is much like that of the

a�Electronic mail: baggett@euclid.colorado.edu
b�Electronic mail: jorgen@math.uiowa.edu
c�Electronic mail: kmerrill@coloradocollege.edu
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Gram–Schmidt algorithm from Hilbert space, in that it is based on a scale of closed subspaces,
resolutions Vn, and relative orthogonal complements, detail subspaces Wn. The scale of subspaces
Vn play the role of martingales from probability theory.

Daubechies’s book1 stresses how Requirements �1�–�3� can be met with the MRA approach,
and all starting with a fixed cleverly chosen function � in the subspace V0 from the resolution. The
function �, the father function, is the solution in L2 to a scaling, or refinement, equation; a solution
which results from a cascade approximation. The wavelet functions, mother functions, can then be
constructed from the subspace W0 which is the relative orthocomplement of V0 in V1. One draw-
back of this approach is that if N= �det A�, then N−1 wavelet generators from W0 are needed. In
the dyadic case, d=1, N=2, that makes one function, but in general, N can be large. Now the
spaces V0 and W0 are invariant under translation by Zd, and there is a corresponding pair of
multiplicity functions which dictate a minimal choice of generators for V0 and W0.

In fact, for the general case of L2�Rd� and a fixed scaling matrix A, it is possible to get W0

singly generated, i.e., to find a single generator �. In some cases � may be taken to be the inverse
Fourier transform of a subset E of Rd. Such subsets E are called wavelet sets, see Refs. 5–10. But
there are other choices of sets of generating functions �, with the number of generators between
1 and N−1. What emerges is that these constructions force frequency localization, and the com-
pact support in the x variable is typically lost, i.e., we must relax Requirement �3�. As it turns out,
the kind of frequency localization we obtain is well suited for effective sampling algorithms. A
second issue enters: The wavelet algorithm may lead to bases which only satisfy a certain Parseval
property �also called “normalized tight frames”�. Although we still have the resolution structure
Vn, the number of generators in V0 may increase, but they are not directly part of the wavelet basis.
This setup is referred to as a generalized multiresolution analysis �GMRA�; see Refs. 8–10.

The GMRA theory was in fact introduced �in an operator-theoretic/operator-algebraic frame-
work� in a pioneering paper by Baggett, et al.11 By now there is a rich journal literature which
reflects wavelet constructions with some degree of multiplicity; see, e.g., Refs. 12–24. In addition
our multiplicity analysis has recently been used in papers by Dutkay and Jorgensen25–28 in the
study of nonlinear dynamical models.

A recent and interesting paper of Papadakis29 offers a global and natural approach to gener-
alized multiresolution analyses �GMRAs� based on a geometric frame construction which has the
advantage of including all GMRA constructions in L2�R�. Some of the differences between the
approach in Ref. 29 and the present one lie in our use here of operator algebraic tools deriving
from the Cuntz algebras30 in operator theory. Further, our use of vector bundles in Sec. IV offers
a rather explicit and concrete representation of the matrix functions which in turn describe the
filters for GMRA normalized tight frame wavelets, alias, for Parseval wavelet frames.

Our article and other recent articles on wavelet frames may be said to generalize a celebrated
theorem first proved by Lawton in this journal.31 Lawton’s pioneering result states that a trigono-
metric low-pass filter which satisfies a certain conjugate-mirror filter condition must give rise to a
wavelet frame. However, the resulting wavelet frame may not be associated with a classical MRA.
We generalize Lawton’s theorem in several directions to a much broader class of subband wavelet
filters. Our matrix-valued low-pass filters are still associated with GMRA wavelets. These in turn
are the most general types of multiresolution structures.

Finally, we emphasize that the use of wavelet filters derives historically from signal process-
ing in communications engineering, see e.g., Ref. 32.

In the standard case of MRAs, it is well known how the subband filters from signal processing
allow us to construct the wavelet functions by an elegant algorithm. The function � is a solution
to a certain refinement equation. The subband filters may be thought of as functions on a torus T,
frequency response functions. But in the case of multiplicity and multiple generators, the corre-
sponding functions on T are matrix valued, and the refinement equation is a matrix equation.

In this article we show that the generalized setup admits solutions in L2�Rd� starting with this
matrix/vector version of the refinement equation. Starting with a matrix system of subband filter
functions on a torus, we show that our corresponding wavelet solutions are in L2�Rd�, and that they
will be Parseval frames for the Hilbert space L2�Rd�.
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Although this is a weakening of the stricter ONB in Requirement �2�, the Parseval frame
property still allows the same recursive analysis/synthesis algorithms popular in the MRA case.
The now classical method of Mallat and Meyer for constructing an orthonormal wavelet in L2�R�
�relative to translation by integers and dilation by 2 �Refs. 2 and 3�� proceeds as follows: Let h be
a periodic function on R that satisfies the “conjugate mirror filter condition” �the so-called Smith–
Barnwell condition�

�h�x��2 + �h�x + 1
2��2 = 2. �1.1�

The function h is the conjugate mirror filter, referred to previously, and in our context is called a
low-pass filter. Consider the infinite product

P�x� = �
j=1

�
1
�2

h� x

2 j	 ,

and suppose that there exists a nonzero L2 function � whose Fourier transform �̂ coincides with
P. Under not too strenuous assumptions on h, this does in fact hold. For instance, if we take h to
be smooth, and satisfying Cohen’s orthogonality conditions and the low-pass condition �h�0��
=�2, the set of integer translates of � turn out to be orthonormal functions in L2, and in fact � is
a scaling function for a multiresolution analysis 
Vj�.

Given such a low-pass filter function h, there exists an associated periodic function g, which
also satisfies the filter equation �1.1�, and such that h and g satisfy the following orthogonality
condition:

h�x�g�x� + h�x + 1
2�g�x + 1

2� = 0. �1.2�

Any such function g, called a high-pass filter, can be obtained from the low-pass filter function via
the standard technique of constructing a unitary matrix whose first row is given by
��h�x� /�2� , �h�x+1/2� /�2� Finally, the function �, defined by

�̂�x� =
1
�2

g� x

2
	�̂� x

2
	

is an orthonormal wavelet. That is, the collection 
� j,n��
�2 j��2 jx−n��, for j and n in Z, forms an
orthonormal basis for L2�R�.

A famous example of Cohen33 shows that eliminating the nonvanishing condition can cause
the Mallat–Meyer method to go wrong in an interesting but not disastrous way. Cohen exhibited
a low-pass filter function h, for which the infinite product P exists, is the Fourier transform of a
nonzero L2 function �, but for which the integer translates of � are not orthonormal. Further, the
translates and dilates 
� j,n� of the corresponding function �, defined just as in the classical method,
is not an orthonormal basis. So, for this choice of filter h, the Mallat–Meyer procedure fails to
produce a scaling function, and the resulting function � is not an orthonormal wavelet. Neverthe-
less, its translates and dilates do form what is called a Parseval frame. By definition, this means
that for each f �L2�R� we have

f2 = �
j

�
n

��f �� j,n��2.

In Refs. 31 and 34, the Mallat–Meyer phenomenon was generalized to incorporate the Cohen
example in the following way. Suppose h is a low-pass filter for dilation by a positive integer N,
i.e., satisfies the filter equation
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�
l=0

N−1 �h�x +
l

N
	�2

= N

and the low-pass condition �h�0��=�N, and suppose g1 ,… ,gN−1 are corresponding high-pass fil-
ters, i.e., are periodic functions for which the N functions h ,g1 ,… ,gN−1 satisfy the following
orthogonality conditions:

�
l=0

N−1

h�x +
l

N
	gi�x +

l

N
	 = 0

for all 1� i�N−1, and

�
l=0

N−1

gi�x +
l

N
	gj�x +

l

N
	 = �N , i = j

0, i � j ,
�

for all i , j between 1 and N−1. Again, these N−1 high-pass filters can be constructed from the
low-pass filter h by the matrix completion technique.

Let P be the infinite product

P = �
j=1

�
1

�N
h� x

Nj	 .

Then, if the functions h ,g1 ,… ,gN−1 are Lipschitz continuous, it is shown in Ref. 34 that there
exists a nonzero L2 function � whose Fourier transform coincides with P, and the N−1 functions

�k�, defined by

�k̂�x� =
1

�N
gk� x

N
	�̂� x

N
	 ,

form a Parseval frame multiwavelet. That is, the collection


� j,n,k � �Nj�k�Njx − n�� ,

j ,n�Z and 1�k�N−1, forms a Parseval frame for L2�R�.
Just as in the Cohen phenomenon in the Mallat–Meyer constructions, the integer translates of

the function � may or may not be orthonormal, even though their closed linear span V0 does form
the core subspace of a �generalized� multiresolution analysis. Also, the wavelets �k may or may
not have orthonormal translates and dilates, and may or may not belong to the subspace V1 � V0 of
this associated GMRA.

The arguments in the proof of this result introduce some ideas from operator theory, specifi-
cally in the form of the Ruelle operator and partial isometries that satisfy relations similar to the
Cuntz relations.30 In the case of dilation by 2, Lawton31 used a cascade algorithm in the time
domain to independently derive the same result �in the special case of trigonometric polynomials,
i.e., the case corresponding to a single compactly supported scaling function�.

Although the constructions of Refs. 31 and 34 start with filters associated with a classical
multiresolution analysis, they build a frame wavelet that may be obtained from only a generalized
multiresolution analysis. The purpose of the present article is to extend and clarify this kind of
result to filters defined in higher dimensional and non MRA contexts. That is, we suppose that A
is an expansive, integral, d�d matrix, and we investigate frame wavelets constructed from filter
systems associated to generalized multiresolution analyses in L2�Rd� relative to dilation by A and
translation by lattice points in Zd.

The theory of generalized conjugate mirror filters relative to a generalized multiresolution
analysis was first developed in Refs. 35 and 36. In Sec. II we briefly review that subject, and in
particular we recall the analogs to Eqs. �1.1� and �1.2�, i.e., generalized filter and orthogonality
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equations. These generalized equations are considerably different from the original ones, because
the right-hand side now involves an integer-valued multiplicity function on the d-dimensional
torus Td��− 1

2 , 1
2

�d. In general, the low-pass filter becomes a square matrix H= �hi,j� of periodic
functions, and the high-pass filter becomes a not necessarily square matrix G= �gk,j� of periodic
functions. Because the filters in this generalized context are matrices of periodic functions, we
refer to them as redundant systems of filters.

By generalizing the arguments in Ref. 34, we are able here to build wavelets from generalized
filters more simply and with fewer restrictions than in Ref. 36. In Sec. III, under smoothness and
low-pass conditions analogous to those in Ref. 34, we prove that the infinite matrix product

P = �
j=1

�
1

��det�A��
H�At−j

�x��

converges pointwise, and the first column � of P is the Fourier transform of a set �1 ,�2,… of L2

functions that together generate a generalized multiresolution analysis. We then prove that the
functions 
�k� given by

�k̂�x� =
1

��det�A��
�

j

gk,j�At−1
�x��� ĵ�At−1

�x��

form a Parseval wavelet frame for L2�Rd�.
In engineering, the various classes of multiresolution analyses are motivated by filters from

signal and image processing. Although these are practical concerns, our present aim is theoretical.
In most of the engineering MRA constructions, the multiplicity function is equal to 1 on the entire
fundamental domain �−1/2 ,1 /2�, so this only produces classical MRA quadrature-mirror filters.
One must choose the multiplicity function to be mixed, i.e., equal to the characteristic function of
delicately selected configurations of subsets of �−1/2 ,1 /2�, to get genuinely generalized filters,
i.e., GMRA filters. If the multiplicity function is not constant, the filters can never all be continu-
ous in the frequency domain, which can be a problem for engineers. The reason that all the filters
for a GMRA cannot be continuous is that they must satisfy the filter equations �2.4� and �2.5�, both
of which involve noncontinuous characteristic functions for nonconstant multiplicity functions.
This particular feature of our theory becomes evident in our example in Sec. III, Example 3.6. Yet,
this example is surprising in two ways. First, it is related to a nonclassical MRA wavelet, the
Journé wavelet. Second, we construct two low-pass filters which have discontinuities in the fre-
quency domain, but the resulting scaling functions are C� in the frequency domain! This prompts
the following question: can the scaling functions and wavelets associated to GMRAs be con-
structed to have nice properties in both the time and the frequency domains? From the viewpoint
of engineering, this is an important question, and it is addressed in a sequel paper37 in much more
detail. We have established this in the affirmative in Ref. 37, where we construct a frame wavelet
that is Cr in the time domain and C� in the frequency domain. More importantly, it would be
interesting to know whether or not scaling functions and frame wavelets that have nice properties
in both the time and frequency domains can be constructed for every choice of a multiplicity
function.

In Ref. 34 the set of functions h ,g1 ,… ,gN−1 is called an M system. It is shown in Ref. 34 that
there is a group that acts freely and transitively on the set of M systems, thus suggesting a natural
structure on these systems and therefore on the corresponding frame wavelet systems. In Sec. IV
of this article, we describe an analogous action on the generalized filter systems we have intro-
duced. This time, it is a group bundle that acts freely and transitively.

II. GENERALIZED FILTERS

We collect here the relevant definitions concerning wavelets and multiresolution analyses in
L2�Rd�, relative to translation by lattice points and dilation by an expansive integer matrix A; i.e.,
a matrix each of whose eigenvalues has modulus greater than 1.
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Recall that a frame in L2�Rd� is a sequence 
fn� for which there exist positive numbers a and
b such that

af2
2 � �

n

��f �fn��2 � bf2
2

for every f �L2�Rd�. It is called a Parseval frame or a normalized tight frame if a=b=1 in the
inequalities above. That is, 
fn� is a Parseval frame if f2

2=�n��f � fn��2 for every f �L2�Rd�.
For each z�Zd, we write �z for the unitary translation operator on L2�Rd� given by

��z�f���t�= f�t+z�. Fix an expansive, d�d, integer matrix A and let B=At and N= �det�A��. We
write 	 for the unitary dilation operator given by �	�f���t�=�Nf�A�t��. For each element 
�Td,
there exist exactly N distinct points ��Td such that ����=
, where � denotes the endomorphism
on Td induced by the action of B on Rd. We denote these points � in a Borel manner as

0 ,
1 ,… ,
N−1. Note also that, because A is an expansive matrix, the endomorphism � is ergodic.

Definition 2.1: A MRA in L2�Rd�, relative to the group 
�z� of translation operators and the
dilation operator 	, is a sequence 
Vj�−�

� of closed subspaces of L2�Rd� for which:

�1� Vj �Vj+1;
�2� Vj+1=	�Vj�;
�3� �Vj is dense in L2�Rd�, and �Vj = 
0�; and
�4� There exists an element ��V0 whose translates 
�z���� form an orthonormal basis for V0.

Such an element � is called a scaling function for the multiresolution analysis.

A GMRA is a sequence 
Vj� of closed subspaces of L2�Rd� that satisfies Conditions �1�, �2�,
and �3� mentioned above, but satisfies the weaker fourth condition

�4�� V0 is invariant under all the translation operators �z.

In both cases, the subspace V0 is called the core subspace of the GMRA.
The theory of GMRAs is developed in Refs. 9–11 �see also Ref. 20�. In particular, it is shown

there that by Stone’s theorem for unitary representations of the group Zd, or more generally by
spectral multiplicity theory for a set of commuting unitary operators, the invariance under trans-
lation of the core subspace V0 implies the existence of a multiplicity function
m :Td� 
0,1 ,2 ,… ,��. The multiplicity function m counts the number of times each exponential
function is represented as a subrepresentation of translation by Zd on V0. We will assume in this
paper that m is bounded, with maximum value c. We let Si= 

�Td :m�
� i�, and recall from
Ref. 10 that there exist generalized scaling functions 
�i�1�i�c such that the collection 
�z��i�� for
z�Zd and 1� i�c forms a Parseval frame for V0, and such that �z�Zd��̂i�
+z��2=�Si

�
�. Note
that these results translate to the classical conditions in an MRA, which is the special case of a
GMRA in which the multiplicity function is identically 1.

If V0 is the core subspace of a generalized multiresolution analysis 
Vj�, then the subspace
W0=V1�V0

� of a GMRA 
Vj� also is invariant under all the translation operators �z. Hence, again
by Stone’s theorem, there exists a complementary multiplicity function m̃ :Td� 
0,1 ,2 ,… ,�� that
characterizes the representation of Zd on W0. As a direct result of the fact that V1=V0 � W0, the
multiplicity functions m and m̃ must satisfy the following consistency equation �see Ref. 9�:

m�
� + m̃�
� = �
l=0

N−1

m�
l� . �2.1�

By the consistency equation, the assumption that m is bounded implies that m̃ is bounded as well.

We write c̃ for the maximum value of m̃, and S̃k for 

�Td : m̃�
�k�.
Generalized multiresolution analyses are useful because of their relationship to wavelets. In

particular, in Ref. 9 it is shown that every orthonormal multiwavelet is associated to a GMRA with
m̃=the number of wavelets. We recall the relevant definitions here:

Definition 2.2: An orthonormal wavelet, or more generally an orthonormal multiwavelet, in
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L2�Rd�, relative to the group 
�z� of translation operators and the dilation operator 	, is a finite set
�1 ,… ,�m of functions in L2�Rd� for which the collection 
� j,z,k��
	 j��z��k��� forms an orthonor-
mal basis for L2�Rd�. A set of functions �1 ,… ,�m forms a frame multiwavelet if the collection

� j,z,k� forms a frame for L2�Rd�, and the set is called a Parseval frame multiwavelet if the
collection 
� j,z,k� forms a Parseval frame for L2�Rd�.

We now are ready to develop the definition of generalized filters. The classical filter equation
�Eq. �1.1��, which is the basis for the Mallat–Meyer construction of scaling functions and wave-
lets, emerges naturally from the study of classical multiresolution analyses. For, if � is a function,
for which the closure of the linear span of the translates of � is invariant under the dilation
f�x�→ f�x /2�, e.g., if � is a scaling function for a MRA, then it follows from elementary Fourier
analysis that �̂ satisfies the following classical refinement equation:

�2�̂�2x� = h�x��̂�x� , �2.2�

where h is a periodic function that satisfies the filter equation �1.1�. As described in Sec. I, the
Mallat–Meyer construction2,3 reverses this procedure, by beginning with a sufficiently well be-
haved function h that satisfies filter equation �1.1�, and producing a corresponding scaling function
and multiresolution analysis by iterating Eq. �2.2� to get an infinite product expression for �̂.

In an analogous way, the theory of generalized filters emerges naturally from the study of
generalized multiresolution analyses �see Refs. 35 and 36�. Because V−1=	−1�V0� is contained in
V0, it follows that, for each i, there exists a sequence 
hi,j� of functions on the torus Td such that

�N�̂i�B�x�� = �
j

hi,j�x�� ĵ�x� . �2.3�

As is shown in Ref. 36, these generalized filters satisfy the generalized filter equation:

�
j

�
l=0

N−1

hi,j�
l�hi�,j�
l� = 	i,i�N�Si
�
� , �2.4�

and also have hi,j supported on Sj. In analogy with the classical case, we make the following
definition.

Definition 2.3: A generalized low-pass filter relative to a GMRA with multiplicity functions m
and m̃ is a matrix of functions H= �hi,j� on Td �or equivalently Zd periodic functions on Rd�, with
hi,j supported on Sj �or the periodization of Sj�, that satisfy both the generalized filter equation
�2.4� and the generalized low-pass condition hi,j�0�=	i,1	 j,1

�N.
Just as in the classical case, we can sometimes reverse the procedure of producing filters from

wavelets. In particular, generalized low-pass filters give rise to generalized high-pass filters. The
relevant result is contained in the following theorem, again from Ref. 36.

Theorem 2.4: Let H= �hi,j� be a generalized low-pass filter relative to a GMRA with multi-
plicity functions m and m̃. Then there exists a matrix G= �gk,j� of functions on Td satisfying

�
j

�
l=0

N−1

gk,j�
l�gk�,j�
l� = 	k,k�N�S̃k
�
� , �2.5�

and

�
j

�
l=0

N−1

hi,j�
l�gk,j�
l� = 0 �2.6�

for all i and k. The matrix of functions G= �gk,j� is called a generalized high-pass filter.
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Under conditions which allow the production of generalized scaling functions from general-
ized low-pass filters, these high-pass filters can be used to build frame multiwavelets. Some
narrow conditions that allow this are described in Ref. 36. In Sec. III, we show that more general
conditions allow the same construction.

There is one final property of a generalized low-pass and high-pass filter that we will need in
Sec. III, which was not presented in Ref. 36.

Theorem 2.5: Let H and G be a generalized low-pass and high-pass filter relative to multi-
plicity and complementary multiplicity functions m and m̃. Assume that the maximum value of m
is c and the maximum value of m̃ is c̃. Then

�
i=1

c

hi,j�
l�hi,j��
l�� + �
k=1

c̃

gk,j�
l�gk,j��
l�� = 	 j,j�	l,l�N�Sj
�
l� . �2.7�

Proof: For each 
�Td, we define a matrix K�
� having c+ c̃ rows and c�N columns as
follows: We index the c�N columns of K�
� by pairs �j , l�, where 1� j�c and 0� l�N−1.
Then the entry ki,�j,l��
� is defined to be �1/�N�hi,j�
l� if 1� i�c, and ki,�j,l��
�
= �1/�N�gi−c,j�
l� if c� i� c̃. We see directly from Eq. �2.4� that, for 1� i�c, the ith row of the
matrix K�
� contains a nonzero entry if and only if 
�Si, i.e., if and only if i�m�
�. And, from

Eq. �2.5�, for c� i�c+ c̃, the ith row of K�
� contains a nonzero entry if and only if 
� S̃�i−c�,
i.e., if and only if i−c� m̃�
�. Therefore, there are exactly m�
�+ m̃�
� nonzero rows in K�
�.

Next, we note that the column indexed by the pair �j , l� has a nonzero entry only when some
hi,j�
l� or gi,j�
l� is nonzero. That is, the �j , l�th column has a nonzero entry only when 
l�Sj,
i.e., only when j�m�
l�. So, the maximum number of columns having a nonzero entry in them is
equal to �l=0

N−1m�
l�, which, by the consistency equation �2.1�, equals m�
�+ m̃�
�, and this is
exactly the number of rows of K�
� that have a nonzero entry.

Therefore, the set of nonzero entries in the matrix K�
� are contained in a square submatrix
L�
� of size �m�
�+ m̃�
��� �m�
�+ m̃�
��.

Finally, from Eqs. �2.4�–�2.6�, we see that the rows of this square matrix L�
� are orthonor-
mal. Hence, the columns of L�
� are also orthonormal, and this implies the orthogonality equa-
tions of the theorem. �

III. CONSTRUCTION OF FRAME WAVELETS FROM GENERALIZED FILTERS

We are now ready to use the generalized filters from Sec. II to extend the construction
procedure for frame wavelets described in Ref. 34. Just as in the classical case, the first step of the
construction is to take an infinite product of dilations of the low-pass filters.

Proposition 3.1: Let H= �hi,j� be a generalized low-pass filter as in Definition 2.3 Assume that
the components of H are Lipschitz continuous functions in a neighborhood of 0.

�1� The infinite product

P = �
q=1

�
1

�N
H�B−q�x��

converges almost everywhere on Rd, and the entries Pi,j of P are square-integrable functions
on Rd, with Pi,j =0 for j�1.

�2� For 1� i�c, let �i be the inverse Fourier transform of the function Pi,1. Then the �̂i’s are
continuous at 0, satisfy �̂i,1�0�=	i,1, and also satisfy the following generalized refinement
equation.

�̂i�B�x�� =
1

�N
�
j=1

c

hi,j�x��̂ j�x� .

Proof: Throughout the proof, we will use the following result from linear algebra. If C is a
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c�c matrix all of whose eigenvalues have modulus less than 1, then �k=0
� Ck�x� converges, for

every x�Rc. This result follows by using the Jordan canonical form for the matrix C to show that
�Ck�x� is dominated by a convergent geometric series.

We prove the convergence of the infinite product first. If � is the Lipschitz constant, note that
by the low-pass condition we have hi,j�x���x for 
i , j�� 
1,1�, and h1,1�x�−�N��x, both

for x sufficiently small. Write Pk for the partial product �q=1
k �1��N �H�B−q�x��, where as before

N= �det�A��. We first show by induction that for each fixed x, there is a bound K such that
�Pi,j

k �x���K for all 1� i , j�c, and k1. To see this, write

�Pi,j
k �x�� = �

l=1

c

Pi,l
k−1�x�

1
�N

hl,j�B−k�x�� � �Pi,1
k−1�x�� + ��

l=2

c

Pi,l
k−1�x�� �

�N
B−k�x� ,

for k sufficiently large �where in the first term we use the fact that the orthogonality conditions
give �hi,1���N�. Using induction on k, and the linear algebra result mentioned above, we get the
bound we seek.

Now, using this bound, we see that for fixed x and for j2, �Pi,j
k �x��

� ��l=1
c Pi,l

k−1�x������N �B−k�x�→0 as k→�. For the remaining case of j=1, we have

�Pi,1
k �x� − Pi,1

k−1�x�� = ��
l=1

c

Pi,l
k−1�x�

1
�N

hl,1�B−kx� − Pi,1
k−1�x��

= �Pi,1
k−1�x�� 1

�N
h1,1�B−kx� − 1	 + �

l=2

c

Pi,l
k−1�x�� 1

�N
hl,1�B−kx�	�

� �
l=1

c

�Pi,l
k−1�x��

�

�N
B−kx �

�

�N
cKB−kx .

We then see that 
Pi,1
k �x�� is Cauchy and thus convergent, again by using the linear algebra result

mentioned at the beginning of the proof.
To complete the proof of �1�, it remains to show that the limiting functions Pi,1 are in L2�Rd�.

To do this, we will first use induction to prove that

�
j=1

c �
Bk�Q�

�Pi,j
k �x��2dx � 1.

We note that because the hk,j are periodic modulo Zd, the Pi,j
k are periodic modulo Bk�Zd�, and thus

the domain of integration can be replaced by any set that is congruent to Bk�Q� modulo Bk�Zd�. To
select the replacement set, we first choose coset representatives 
1=0 ,
2 , ¯ ,
N of Zd /B�Zd�.
Since

�n=1
N �Q + 
n� � B�Q� modulo B�Zd� ,

we can take as our domain of integration the set Bk−1��n=1
N �Q+
n�� Using this, we have

�
j=1

c �
Bk�Q�

�Pi,j
k �x��2dx = �

j=1

c �
Bk−1�n=1

N �Q+
n�
��

l=1

c

Pi,l
k−1�x�

1

�N
hl,j�B−kx�	��

m=1

c

Pi,m
k−1�x�

1

�N
hm,j�B−lx�	dx

= Nk−1�
�n=1

N �Q+
n�
�
j,l,m

Pi,l
k−1�Bk−1x�Pi,m

k−1�Bk−1x�
1

�N
hl,j�B−1x�

1

�N
hm,j�B−1x�dx

= Nk−1�
Q
�
l,m

Pi,l
k−1�Bk−1x�Pi,m

k−1�Bk−1x��
j=1

c

�
n=1

N
1

�N
hl,j�B−1x − B−1
n�

1

�N
hm,j�B−1x − B−1
n�dx .
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We note now that modulo Zd, the set 
B−1
1 ,B−1
2 ,… ,B−1
N� parameterize the distinct N
elements of Q=�− 1

2 , 1
2

�d that map to �0, 0, …, 0 � under the endomorphism � :Td→Td, where here
we are identifying Td and �− 1

2 , 1
2

�d. Using the orthogonality relations satisfied by the hl,j, the last
equation simplifies to

Nk−1�
Q
�
l=1

c

Pi,l
k−1�Bk−1x�Pi,l

k−1�Bk−1x��Sl
�x�dx � �

l=1

c �
Bk−1�Q�

�Pi,l
k−1�x��2dx � 1.

It follows that

�
j=1

c �
Bk�Q�

�Pi,j
k �x��2dx � 1

for all k�N, and since �k=0
� Bk�Q�=Rd, by Fatou’s Lemma we have

�
j=1

c �
Rd

�Pi,j�x��2dx � 1.

In particular we get Pi,j �L2�Rd�, which completes the proof of Part �1�.
The refinement equation in Part �2� is immediate. It also follows from the proof above that the

infinite product P converges uniformly on neighborhoods of 0, and thus that the �̂i’s are continu-
ous at 0. Finally, �̂i�0�=	i,1 is a consequence of the low-pass condition. �

We will now use the results of Proposition 3.1 to build a frame wavelet. We begin by

generalizing the computational ideas in Ref. 34. Define two Hilbert spaces H and H̃ by H
= � j=1

c L2�Si� and H̃= �k=1
c̃ L2�S̃k�; and two operators SH :H→H and SG :H̃→H by

�SH�f���
� = Ht�
�f���
��

and

�SG� f̃���
� = Gt�
� f̃���
�� ,

where f � � f j �H , Ht and Gt denote the transposes of the matrix functions H and G, respec-
tively, and as � denotes the map on the torus Td induced by the action of the transpose B of A

acting on Rd. Note that f j���
�� and f̃ k���
�� are necessarily only defined when ��
� belongs to

Sj for the first case and S̃k for the second. We define these functions to be 0 outside of these
domains. We record here the formulas for the adjoints of the two operators:

�SH
* �f���
� =

1

N
�
l=0

N−1

H̄�
l�f�
l� ,

�SG
* �f���
� =

1

N
�
l=0

N−1

Ḡ�
l�f�
l� . �3.1�

It will also be convenient to have explicit formulas for the powers of both SH and SH
* :

�SH
n �f���
� = �

k=0

n−1

Ht��k�
��f��n�
� , �3.2�
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�SH
* n�f���
� =

1

Nn �
l=0

Nn−1

�
k=n−1

0

H̄��k�
l,n��f�
l,n� ,

where the 
l,n’s are the Nn points ��Td for which 
=�n���.
We also include here an estimate involving these operators that we will need later,

�
i=1

c

�
j=1

c

�
l=0

Nn−1 ���
k=0

n−1

Ht��k�
l,n���
i,j

�2

� cNn, �3.3�

which we prove using induction. The case n=1,

�
i=1

c

�
j=1

c

�
l=0

N−1

�hj,i�
l��2 � cN ,

follows from Eq. �2.4� together with the fact that � j=1
c �Sj

�
�=m�
��c. For the induction step,
note that the 
l,n+1 can be labeled in such a way that �n�
sN+q,n+1�=
q, so that 
sN+q,n+1

= �
q�s,N. Thus, writing l=sN+q and using the Cauchy–Schwarz inequality, we obtain:

�
i=1

c

�
j=1

c

�
l=0

Nn+1−1 ���
k=0

n

Ht��k�
l,n+1���
i,j

�2

= �
i=1

c

�
j=1

c

�
l=0

Nn+1−1 ��
r=1

c ��
k=0

n−1

Ht��k�
l,n+1���
i,r

�Ht�
q��r,j�2

� �
i=1

c

�
j=1

c

�
s=0

Nn−1

�
q=0

N−1 ��
r=1

c

��
k=0

n−1

hr,i��k�
sN+q,n+1��2�

���
r�=1

c

�hj,r��
q��2	 � cNnN

Lemma 3.2: The operators SH and SG satisfy the following relations:

�1� SH
* SH= I, the identity operator on H;

�2� SG
* SG= Ĩ, the identity operator on H̃;

�3� SH
* SG=0 and SG

* SH=0̃, the 0 operators on the appropriate Hilbert spaces; and
�4� SHSH

* +SGSG
* = I, the identity operator on H.

Proof: These are direct consequences of the orthogonality relations satisfied by generalized
filter systems relative to m and m̃. For example, to prove relation �1�, in Lemma 3.2 for f �H, we
write

SH
* SHf�
� =

1

N
�
l=0

N−1

H�
lSHf�
l� =
1

N
�
l=0

N−1

H�
l�Ht�
l�f�
� = f�
� ,

where the last equality follows from �2.4�. The other parts of the lemma follow similarly from
�2.5�, �2.6�, and �2.7�, respectively. �

We note that both SH and SG are partial isometries, and that the relations in the lemma are
similar to the famous relations defining the Cuntz algebra O2. We now use these operators to
decompose the Hilbert space H in a convenient way.

Lemma 3.3: Let R0 denote the range of SG, and let Rn=SH
n �R0�. Then H= �n=0

� Rn. Moreover, if

z is any element in Zd, and f̃k,z is the element of H̃ whose kth component is the exponential

function e2�i�
�z� and whose other components are 0, then the collection 
SH
n �SG� f̃ k,z���, for k

running from 1 to c̃ and each z running through Zd, forms a Parseval frame for the subspace Rn.

Consequently, the collection 
SH
n �SG� f̃ k,z���, 1�k� c̃, z�Zd, and 0�n��, forms a Parseval

frame for H.
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Proof: That the subspaces 
Rn� are orthogonal follows directly from the relations in Lemma

3.2. That the elements 
SH
n �Sg� f̃ k,z��� form a Parseval frame for Rn follows from the fact that SH and

SG are partial isometries, together with the fact that the elements 
 f̃ k,z�, as k runs from 1 to c̃ and

z runs over Zd, form a Parseval frame for H̃.
Write R� for the orthogonal complement in H of the direct sum �Rn. We must show that

R�= 
0�. Note that R� is invariant under both SH and SH
* , and therefore that the restriction of both

these operators to R� are unitary operators.
By way of contradiction, suppose that f0 is a unit vector in R�. For each natural number n,

write fn=SH
* n�f0�. Note that fn+m=SH

* m�fn�. We make two observations about fn. First of all, for
almost all 
�Td, we have

 fn�
�2 = SH
* n�f0�
��2 =

1

N2n�
i=1

c ��
p=1

c

�
l=0

Nn−1 � �
k=n−1

0

H̄��k�
l,n���
i,p

�f0�p�
l,n��2

�
1

Nn�
i=1

c

�
p=1

c

�
l=0

Nn−1 �� �
k=n−1

0

H̄��k�
l,n���
i,p

�2

�
1

Nn �
p�=1

c

�
l�=0

Nn−1

��f0�p��
l�,n��2

� c �
1

Nn �
p�=1

c

�
l�=0

Nn−1

��f0�p��
l�,n��2,

where the last inequality follows from the transpose of Eq. �3.3�. By the pointwise ergodic
theorem this then implies that

lim sup fn�
�2 � c�
0

1

 f0�
�2d
 = c .

Second, since SH is unitary on R�, we have

1

Nn �
l=0

Nn−1

 f0�
l,n�2 =
1

Nn �
l=0

Nn−1

SH
n SH

* n�f0��
l,n�2

=
1

Nn �
l=0

Nn−1

�
i=1

c ��
p=1

c ��
k=0

n−1

Ht��k�
l,n���
i,p

�SH
* n�f0��p�
��2

�
1

Nn�
i=1

c

�
l=0

Nn−1

�
p=1

c ���
k=0

n−1

Ht��k�
l,n���
i,p

�2

� �
p�=1

c

��fn�p��
��2 � c fn�
�2,

implying �again by the pointwise ergodic theorem� that

lim inf fn�
�2 
1

c
.

Consequently, by Egorov’s Theorem, for any ��0, there exists an M0 and a set E�Td such that
the measure of the complement of E is less than �, and 1/c−��  fn�
�2�c+� for all 
�E and
all nM0. Before we apply this theorem, we will establish some other estimates needed in our
choice of �.

First, we pick an integer K03 log2 c+9, so that we then have

�NK0+1 � 32c3/2. �3.4�

�This follows since N= �det A�2.�
Next, we choose a 	�0 so that
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	 �
1

4cK0+3�NK0
�3.5�

and

�N�1 − 	�K0+1 − 	cK0 �
�N

2
. �3.6�

Note the second condition is possible since the function on the left-hand side approaches �N as 	
goes to 0.

From the low-pass condition and the requirement of Lipschitz near 0, we know that for any
	�0 there exists a neighborhood U of 0�Td such that �hi,j�
���	 for all 
�U and all pairs
�i , j�� �1,1�, and �h1,1�
����N�1−	� for all 
�U. Let U be the neighborhood corresponding to
our choice of 	 satisfying �1� and �2�. By continuity of �, there further exists a neighborhood

V�U such that for every 
�V we have �k�
��U for all 0�k�2�K0+1�. Hence, if P̃�
� is the

matrix given by P̃�
�=�k=0
5 Ht��k�
��, then for �i , j�� �1,1�, 0� l�K0+1 and 
�V,

�P̃i,j��l�
��� � 	�c�N�K0.

�There are cK0 summands, each having K0 factors, and in each, one factor is bounded by 	, and the
other factors �by �2.4�� are bounded by �N.� For �i , j�= �1,1�, we have

��N�1 − 	��K0+1 − 	�c�N�K0 � �P̃1,1��l�
��� � �NK0+1 + 	�c�N�K0.

�Again, there are cK0 summands, each having K0+1 factors. One of these summands is bounded
below by ��N�1−	��K0+1 and above by �NK0+1, and the other �cK0 −1� summands are bounded by
	�NK0.�

Now choose an � smaller than the measure of V, and also smaller than 1/ �4c�, so that we are
assured that the corresponding set E will satisfy ��E�V��0. In fact, we may even assume that
the set of 
�V for which �k�
��E�U for all 0�k�2�K0+1� has positive measure.

Fix an 
�E�V for which �k�
��E�U for 0�k�2�K0+1�. If M0 is the natural number
corresponding to this choice of � as mentioned above, and nM0, we have the following esti-
mates on the components of fn�
�. First, for i�1 and 0� l�K0+1,

�fni
��l�
��� = ��SH

K0+1�fn+K0+1��i��l�
��� = ��
j=1

c

P̃i,j��l�
���fn+K0+1� j��l+K0+1�
��� � �
j=1

c

�P̃i,j��l�
���

� ��fn+K0+1� j��l+K0+1�
��� � c	�c�N�K0�c + � � 2	cK0+2�NK0,

so that by condition �3.5� on 	,

�
i=2

c

��fn�i��l�
���2 � 4c	2c2�K0+2�NK0 �
1

2c
.

Therefore, because 
�E, for all nN0 we must have, for 0� l�K0+1,

��fn�1��l�
���2 �
1

2c
− � �

1

4c
.

On the other hand,

083502-13 Wavelets from redundant filter systems J. Math. Phys. 46, 083502 �2005�

                                                                                                                                    



�fn�1�
� = �
j=1

c

P̃1,j�
��fn+K0+1� j��K0+1�
�� = P̃1,1�
��fn+K0+1�1��K0+1�
�� + �
j=2

c

P̃1,j�
�

��fn+K0+1� j��K0+1�
�� ,

implying that

��fn+K0+1�1��K0+1�
��� �

��fn�1�
�� + �
j=2

c

�P̃1,j�
�� � ��fn+K0+1� j��K0+1�
���

�P̃1,1�
��

�
�c + � + c	�c�N�K0�c + �

��N�1 − 	��K0+1 − 	�c�N�K0
�

4�c + �

�NK0+1
�

8�c
�NK0+1

�
1

4c
,

where in the third step we use conditions �3.5� and �3.6� to simplify the numerator and denomi-
nator, respectively, and in the final step, we use condition �3.4�. Hence, the point �K0+1�
� satisfies

1

4c
� ��fn+K0+1�1��K0+1�
���2 �

1

4c
,

which is a contradiction. �

We now state our main result.
Theorem 3.4: Let �i be defined from the infinite product of the low-pass filter system H as in

Proposition 3.1, and let G= �gk,j� be the corresponding high-pass filter system. Then, if we define
a function �k�L2�Rd�, for 1�k� c̃, by

�k̂�x� =
1

�N
�
j=1

c

gk,j�B−1�x��� ĵ�B−1�x�� ,

the collection 
�k� is a Parseval frame wavelet for L2�Rd� relative to dilation by A and translation
by lattice points z�Zd. Further, if V0 is the closed linear span of the translates of the �i’s by
lattice elements z�Zd, then 
Vj��
	 j�V0�� j�Z is a generalized multiresolution analysis for L2�Rd�.

Proof: We prove first that the 
�k� form a frame wavelet. For convenience in what follows, we
introduce the following notation. For each 1�k� c̃ and each z�Zd, write �k,z for the element

SG� f̃ k,z� of R0�H, where as in the previous lemma, f̃ k,z is the element of H̃ whose kth component
is the exponential function e2�i�
�z� and whose other components are 0. Note that �k,z= � j=1

c � j
k,z,

where

� j
k,z�
� = gk,j�
�e2�i���
��z�.

It then follows from Lemma 3.3 that for each F�H we have

F2 = �
n=0

�

�
k=1

c̃

�
z�Zd

��F�SH
n ��k,z���2.

For each integer n, each 1�k� c̃, and each z�Zd, define the function �n,k,z by

�n,k,z�t� = �Nn�k�An�t� + z� ,

and note that the Fourier transform of �n,k,z is given by
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�n,k,ẑ�x� = N�−n−1�/2e2�i�B−n�x��z��
j=1

c

gk,j�B−n−1�x��� ĵ�B−n−1�x�� .

We wish to prove that the collection 
�n,k,z� is a Parseval frame for L2�Rd�.
Now, let f be an element of L2�Rd� whose Fourier transform f̂ has compact support. For a

fixed integer J0, we have

�
n=−�

J

�
k=1

c̃

�
z�Zd

��f ��n,k,z��2

= �
n=−�

J

�
k=1

c̃

�
z�Zd

�� f̂ ��n,k,ẑ��2

= �
n=−�

J

�
k=1

c̃

�
z�Zd

��
Rd

f̂�x�N
−n−1

2 �
j=1

c

e2�i�B−n�x��z�gk,j�B−n−1�x��� ĵ�B−n−1�x��dx�2

= �
n=−�

J

�
k=1

c̃

�
z�Zd

N−n+2J+1��
Rd

f̂�BJ+1�x��e2�i�B−n+J+1�x��z� � �
j=1

c

gk,j�B−n+J�x��� ĵ�B−n+J�x��dx�2

= �
n=0

�

�
k=1

c̃

�
z�Zd

Nn+1+J��
Rd

f̂�BJ+1�x��e2�i�Bn+1�x��z��
j=1

c

gk,j�Bn�x��� ĵ�Bn�x��dx�2

= �
n=0

�

�
k=1

c̃

�
z�Zd

N1+J��
Rd

f̂�BJ+1�x�e2�i�Bn+1�x��z��
j=1

c

gk,j�Bn�x�� � � �
p=n−1

0

H�Bp�x����x�� jdx�2

= �
n=0

�

�
k=1

c̃

�
z�Zd

N1+J��
Td

�
j=1

c

�
��Zd

f̂�BJ+1�x + ���� ĵ�x + ���
p=0

n−1

Ht�Bp�x���k,z�Bn�x��dx�2

= �
n=0

�

�
k=1

c̃

�
z�Zd

��FJ�SH
n ��k,z��H�2 = FJH

2 ,

where FJ= � F j
J is the element of H given by

F j
J �
� = �N1+J �

��Zd

f̂�B1+J�x + ���� ĵ�x + �� .

Hence,

�
n=−�

J

�
k=1

c̃

�
z�Zd

��f ��n,k,z��2 = �
j=1

c �
Td

�F j
J �
��2d


= �
j=1

c �
B1+J�Td�

� �
��Zd

f̂�x + B1+J����� ĵ�B−1−J�x� + ���2

dx

= �
j=1

c �
Rd

�B1+J�Td��x�� �
��Zd

f̂�x + B1+J����� j�B−1−J�x� + ���2
dx .

Now, because f̂ has compact support, and the matrix B is expansive, there exists a J� such that the

support of f̂ is contained in B1+J��Q�. There must also exist, by the compactness of B1+J��Q�, a J0
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such that B1+J�Q� contains B1+J��Q� for all JJ0. Now, for JJ0, the product

�B1+J�Q��x� f̂�x+B1+J���� is nonzero only if x=B1+J�y� for some y�Q, and also x+B1+J���
=B1+J�y+���B1+J�Q�. Consequently, for any J�J0, and any ��0, we must have �B1+J�Q��x� f̂�x
+B1+J����=0 for all x�0. Hence, for J�J0 we have

�
n=−�

J

�
k=1

c̃

�
z�Zd

��f ��n,k,z��2 = �
j=1

c �
Rd

� f̂�x��2�� ĵ�B−1−J�x���2dx ,

so that, by the Dominated Convergence Theorem, we obtain

�
n=−�

�

�
k=1

c̃

�
z�Zd

��f ��n,k,z��2 = �
Rd

� f̂�x��2�
j=1

c

�� ĵ�0��2dx =  f 2.

This demonstrates the Parseval frame property for elements f whose Fourier transforms have
compact support. For general f �L2�Rd�, the Parseval equality follows from the density of these
functions.

It remains to show that 
Vj� form a GMRA. Properties �2� and �4�� of Definition 2.1 are direct
consequences of the definition of the Vj, and property �1� follows immediately from Proposition
3.1 �2�. The density required in Property �3� is a consequence of the fact that the 
�n,k,z� form a
Parseval frame for L2�Rd�.

To finish the proof, we now show that �Vj = 
0�. Write 
�i�� for a sequence of elements whose
translates form a Parseval frame for V0 �such a sequence must exist since V0 is closed under
translation�, and Pj for the orthogonal projection operator onto the subspace Vj. To prove that
�Vj = 
0�, it will suffice to show that limj→�P−j�f�=0 for each f �L2�Rd�. By a standard ap-
proximation argument, it will suffice to show this holds on a dense subset of L2�Rd�. Thus, let f be

a Schwartz function for which f̂ vanishes in some neighborhood Nf of 0, and write Cf for the
�finite� number �k�f � f*�k��. Such f’s are dense in L2�Rd�. The Poisson summation formula holds
for such an f , and we will use it in the following form:

1

Nj�
l

� f̂�B−j�� + l���2 = �
k

f � f*�Aj�k��e−2�i�k���.

Now, for each ��Td, let lj��� be the largest number for which B−j��+ l��Nf for all l� lj���.
Because A �and thus B=At� is expansive, we must have that lj��� tends to infinity for almost every
�. Finally, we use the fact that the function

m�
� = �
i

�Si
�
� = �

i
�

l

��i�̂�
 + l��2

is integrable on the cube. Hence, we have

P−j�f�2 = Nj�
i

�
z
��

Rd
�i�̂�B

j���� f̂���e−2�i�Bj����z�d��2

=
1
Nj�

i
�

z
��

Rd
�i�̂��� f̂�B−j����e−2�i�z���d��2

=
1
Nj�

i
�

Td
��

l

�i�̂�� + l� f̂�B−j�� + l���2
d�

=
1
Nj�

i
�

Td
� �

llj���
�i�̂�� + l� f̂�B−j�� + l���2

d� �
1
Nj�

i
�

Td
�

�l�lj���
��i�̂�� + l��2

��
�l�lj���

� f̂�B−j�� + l���2d� = �
Td ��i

�
�l�lj���

��i�̂�� + l��2�� 1
Nj�

l

� f̂�B−j�� + l���2�d�
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= �
Td ��i

�
�l�lj���

��i�̂�� + l��2���
k

f � f*�Aj�k��e−2�i�k����d� � �
Td ��i

�
�l�lj���

��i�̂�� + l��2�
����

k

�f � f*�Aj�k����d� � Cf�
Td

�
i

�
�l�lj���

��i�̂�� + l��2d� ,

which approaches 0 as j goes to infinity by the dominated convergence theorem, the integrand
here being bounded by m. �

Theorem 3.4 shows that the functions �k are in the set V1, so that the Parseval frame wavelet

�k� that we have constructed is obtained from the GMRA 
Vj�, in the sense defined by Zalik.38 It
is an open question whether the wavelet is associated with the GMRA 
Vj� in the sense that Vj is
the closure of the span of 
	l��z��k���l�j �see e.g., Ref. 39�. Moreover, the multiplicity function of
the GMRA produced by the theorem may not coincide with the multiplicity function used in the
construction of the filters, as the first of the examples shows.

Example 3.5: Let d=1, A=2, and the multiplicity functions m and m̃ both be identically 1, so
that we start in the classical setting. For our filters, we take

h = �2��−1/8,1/8� + �±�1/4,3/8� � ,

and

g = �2��±1/8,1/4� + �±�3/8,1/2� � .

Note that h and g satisfy the definitions of generalized low- and high-pass filters, and are Lipschitz
in a neighborhood of 0. The infinite product P=� j=1

� 1
�2

h�x /2 j� equals ��−1/4,1/4�. The integer trans-
lates of the function � whose Fourier transform is this infinite product P, are not orthonormal, and
do not determine the core subspace of any classical multiresolution analysis. On the other hand, as
predicted by Theorem 3.4, the standard construction in this case does produce a generalized
multiresolution analysis 
Vj�, with multiplicity function m=��−1/4,1/4�. As guaranteed by Theorem
3.4, the construction also produces a Parseval frame wavelet �, here given by

�̂�x� = ��−1/2,−1/4� + ��1/4,1/2�.

In this case the function � is easily constructed out of negative dilates of �, so the wavelet is
necessarily associated with as well as obtained by the GMRA.

We end this section with an another example for dilation by 2 in L2�R�. This one begins with
filters for the multiplicity function of the well-known Journé wavelet, whose Fourier transform is
the characteristic function of the set

�−
16

7
,− 2	 � �−

1

2
,−

2

7
	 � �2

7
,
1

2
� � �2,

16

7
	 .

We use Theorem 3.4 to build a Parseval wavelet with a C� Fourier transform that is associated
with the Journé multiplicity function.

Example 3.6: The Journé multiplicity function m takes on the values 0, 1, and 2, with S1

=�− 1
2 ,− 3

7
���− 2

7 , 2
7

��� 3
7 , 1

2
� and S2=�− 1

7 , 1
7

�. The complementary multiplicity function m̃�x��1,
since the Journé wavelet is a single orthonormal wavelet.

To build the filters, we let p0 be a C� classical �MRA� low-pass filter for dilation by 2 �i.e.,
that satisfies the classical filter equation �1.1��, that in addition satisfies p0�x�=0 for x� ± � 1

7
−� , 3

14 +��� � 3
7 −� , 4

7 +��. Note that by �1.1�, we then have p0�x�=�2 for x� ± � 2
7 −� , 5

14 +��
� �− 1

14 −� , 1
14 +��. Let p1 be the standard choice of C� high-pass filter associated to p0, given

by p1�x�=e2�ixp0�x+ 1
2

�. Then it is easily checked that the following functions satisfy �2.4�–�2.6�,
and thus are generalized low- and high-pass filters by our definitions in Sec. II.
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h1,1�x� = �p0�x� , x � �−
2

7
,
2

7
	

0 otherwise,
�

h1,2�x� = �p0�x +
1

2
	 , x � �−

1

7
,
1

7
	

0 otherwise,
�

h2,1�x� = ��2, x � ± �3

7
,
1

2
	

0 otherwise,
�

h2,2�x� = 0,

g1�x� = �p1�x� , x � �−
2

7
,
2

7
	

0 otherwise,
�

g2�x� = �p1�x +
1

2
	 , x � �− 1

7
,
1

7
	

0 otherwise.
�

Now we check that the resulting wavelet does in fact have a C� transform. We first fix an x
and show that �̂1 and �̂2 are C� in a neighborhood of x. Recall that these functions form the first
column of the infinite product matrix

�
j=1

�
1
�2�h1,1� x

2 j	 h1,2� x

2 j	
h2,1� x

2 j	 0 � .

Because h2,1 is 0 on �− 3
7 , 3

7
�, all but a finite number of the matrix factors are upper triangular. Thus,

each of the entries in the first column of the infinite product contains only a finite number of terms.
Since h1,1=�2 in a neighborhood of 0, each of the terms has only a finite number of factors not
equal to 1. Thus, it will suffice to show that each of the factors in each of the terms is C�.

By construction, we have that the hi,j are all C� everywhere except for h1,1 at n± 2
7 , h1,2 at

n± 1
7 , and h2,1 at n± 3

7 for n�Z. We will show that whenever one of these discontinuities occurs as
a factor in the infinite product, it is cancelled by a following factor that is 0 in a neighborhood of
the point of discontinuity. Note that the product of two adjacent factors in the infinite matrix
product has the form

�h1,1�y�h1,1� y

2
	 + h1,2�y�h2,1� y

2
	 h1,1�y�h1,2� y

2
	

h2,1�y�h1,1� y

2
	 h2,1�y�h1,2� y

2
	 � .

Thus any term in the infinite product that contains a factor of h2,1�n± 3
7

� must also contain a factor
of one of the forms h1,1�n± 2

7
�, h1,1�n± 3

14
�, h1,2�n± 3

14
�, and h1,2�n± 2

7
�. The first three possibilities

are 0 in a neighborhood of the point in question, so if we have a discontinuous factor of h2,1, it is
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either cancelled out by a 0 factor, or we also have a factor of h1,1�n± 2
7

� with a smaller n. Similarly,
any term in the infinite product that contains a factor of h1,1�n± 2

7
� must also contain a factor of one

of the forms h1,1�n± 5
14

� , h1,1�n± 1
7

� , h1,2�n± 5
14

�, or h1,2�n± 1
7

�. The first three of these possibilities
are 0 in a neighborhood of the points in question, so any discontinuous factor of h1,1 is either
cancelled out by a 0 factor, or is followed by a factor of h1,2�n± 1

7
� with an equal or smaller n.

Finally, any term in the infinite product that contains a factor of h1,2�n± 1
7

� must also contain a
factor of either the form h2,1�n± 1

14
� or the form h2,1�n± 3

7
�. The first of these possibilities is 0 in

again 0 in a neighborhood of the point in question; the second possibility throws us back into the
first type of discontinuity we considered above, but with a smaller n. We can repeat the above
sequence of arguments if necessary, noting that each succeeding factor is evaluated at a point half
the distance from the origin as its predecessor, so that the chain above must eventually end with a
factor of 0.

This argument shows that �̂1 and �̂2 are C�. To see that �̂ is C� as well, it suffices to note that
g1 and g2 are.

Remark 3.7: With some more work it is possible to slightly improve the previous arguments
and to show that in fact the Fourier transform vanishes rapidly at infinity.

IV. A GENERALIZED LOOP GROUPOID ACTION ON THE BUNDLE OF GENERALIZED
FILTER SYSTEMS

Let 
hi,j�1�i,j�c and 
gk,j�1�k�c̃,1�j�c be generalized low-pass and high-pass filter functions
defined as in Sec. II. Since � i=1

c L2�Si��L2��i=1
c Si�, we can suppress the second index of the filter

functions and view generalized filter functions as a vector �c+ c̃-tuple� of functions:

�h1,h2,…,hc,g1,g2,…,gc̃� � �L2��
i=1

c

Si	�c+c̃

.

Further, we note that for any fixed 
�Td, all the information in the output of the vector of
functions �h1 ,h2 ,… ,hc ,g1 ,g2 ,… ,gc̃� is actually in Cm���
��+m̃���
��, where as in Sec. II, � is the
endomorphism of Td defined by the matrix B=At, since by the orthogonality relations, hi�
�=0 if
i�m���
�� and gk�x�=0 if k� m̃���
��.

We want to generalize the discussion given by Bratteli and Jorgensen in Ref. 40, and construct
a loop groupoid which acts on the class of filter systems with bounded multiplicity functions
corresponding to a fixed dilation matrix A acting on Rn. We will also impose the condition the
filter systems satisfy some “initial conditions” that are in some sense canonical.

We first remind readers of the notion of a vector bundle over a topological space X; more
details can be found in Ref. 41.

Definition 4.1: Let X be a topological space. A �finite dimensional� vector bundle over the
space X, denoted by �E , p ,X�, is a topological space E, together with a continuous open surjection
p :E→X, and operations and norms making each fiber Ex= p−1�X� into a �finite dimensional�
vector space, which in addition satisfies the following conditions:

�i� y� y is continuous from E to R.
�ii� The operation + is continuous as a function from 
�y ,z��E�E : p�y�= p�z�� to E.
�iii� For each ��C, the map y�� ·y is continuous from E to E.
�iv� If x�X and 
yi� is any net of elements of E such that yi→0 and p�yi�→x in X, then

yi→0� �Ex in E.

A Borel map s :X→E is called a Borel cross section if p �s�x�=x , ∀x�X.
We review the notion of essentially bounded multiplicity functions m associated to a dilation

matrix A that can give rise to GMRAs, as described in Refs. 10 and 36. We first recall that m must
satisfy the consistency inequality
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m�
� � �
l=0

N−1

m�
l� , �4.1�

where we recall from Sec. II that 

l :0� l�N−1� is the set of N distinct preimages of 
�Td

under the endomorphism � given by ��
�=B�
�, for 
�Td=Rd /Zd and B=At. This inequality
leads to the consistency equality Equation �2.1� discussed in Sec. II. Moreover, we can enumerate

the 
l as follows. Enumerate a set of coset representatives 
�0=0� ,�1 ,… ,�N−1� for B−1�Zd� /Zd

including 0� �B−1�Zd�. For each l ,0� l�N−1� let �l be the image of �l under the natural projec-

tion from Rd onto Td=Rd /Zd. Note that the �l are distinct elements of Td and that ���l�=0� , 0
� l�N−1. Find a Borel cross section � :Tn=Rd /Zd→Tn=Rd /B−1�Zd���Rd /Zd� / �B−1�Zd� /Zd�,
with ��0��=0� . This Borel map satisfies � ���
�=
 for all 
�Td. Then define


l = ��
��l, 0 � l � N − 1;

one easily verifies that the 

l :0� l�N−1� are the N distinct preimages of 
�Td under �.
Let �=�k=0

� Bk�S1+Zd�. Recall from Refs. 10 and 42 that in order for m to be the multiplicity
function for a GMRA, � must satisfy

�
n�Zd

���
 + n�  m�
� . �4.2�

Finally, � should satisfy

�p�ZBp��� = Rn. �4.3�

If conditions �4.1�–�4.3� are satisfied we say that m is an �essentially� bounded multiplicity func-
tion with respect to the dilation matrix A. Given such an m, we construct the conjugate multiplicity
function m̃ by defining

m̃�
� = �
l=0

N−1

m�
l� − m�
�,
 � Td; �4.4�

by definition, m and m̃ will satisfy Eq. �2.1�.
Given an �essentially� bounded multiplicity function m on Td, let c=ess sup m, and c̃

=ess sup m̃. We recall from Baggett et al. that to such an m we can explicitly construct a canonical
system of low-pass filters, or “generalized conjugate mirror filters” 
hi,j

C :1� i , j�c�, by using the
method of Theorem 3.6 of Ref. 36. Given this system 
hi,j

C :1� i , j�c�, Theorem 2.5 item �1� of
Ref. 36 gives us a way of explicitly constructing an associated system of high-pass filters, or
“complementary conjugate mirror filters,” 
gk,j

C :1�k� c̃ ,1� j�c�. We call this family of filters

hi,j

C :1� i , j�c�� 
gk,j
C :1�k� c̃ ,1� j�c� the canonical filter system associated to the multi-

plicity function m.
Now let Tj = 

�Td :m���
��+ m̃���
��= j� , 0� j�c+ c̃. Set Ti,j =Si�Tj , 0� j�c+ c̃; then

each Ti,j is Borel and Si=� j=0
c+c̃Ti,j.

Definition 4.2: Fix a bounded multiplicity function m associated to the dilation matrix A. Let
Em be the Borel space given by

Em = �
i=1

c

�
j=0

c+c̃

�Ti,j � C j� .

Let �Em , p ,�i=1
c Si� be the Borel vector bundle where the map p :Em→�i=1

c Si is defined by
p�x ,v��=x , �x ,v���Ti,j �C j. By definition, �Em , p ,�i=1

c Si� is a vector bundle over �i=1
c Si whose

fiber over 
�Si is a complex vector space of dimension m���
��+ m̃���
��. An M system
associated to the multiplicity function m is a Borel cross section M :� j=1

c Sj→Em of this bundle
whose values, �M1�
� ,M2�
� ,… ,Mm���
��+m̃���
���, are the output of a vector of generalized low-
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and high-pass filters. That is, for fixed 
�� j=1
c Sj, the first m���
�� components of the vector

M�
� correspond exactly to the generalized low-pass filter function values
h1�
� , h2�
� , … , hm����
���
�, and the last m̃���
�� components of M�
� correspond to the gen-
eralized high-pass filter function values g1�
� , g2�
� , … , gm̃���
���
�, where the filters involved
satisfy the low-pass and Lipschitz conditions defined in Sec. II, and where in addition the filters

hi�� 
gk� satisfy the initial conditions hi��l�=hi

C��l�, 1� i�c, 0� l�N−1, and gk��l�=gk
C��l� , 1

�k� c̃ , 0� l�N−1, where the hi
C and the gk

C are the canonical filters associated to m in the
previous paragraph. Denote by Mm the set of M systems associated to the bounded multiplicity
function m. We remark that Mm can be given the structure of a topological space if its elements
are viewed as elements of the Hilbert space � i=0

c
� j=0

c+c̃L2�Ti,j� � C j.
Remark 4.3: The above-mentioned definition is essentially the same as Definition 4.2 of Ref.

8 except for the additional assumption that the M system have the appropriate canonical values at

the preimages of 0� under the endomorphism �, which was missing from Ref. 8. Note all the
information about the generalized filters 
hi,j� and 
gk,j� is encoded in the M system. In particular,
for any fixed multiplicity function m, such that both m and m̃ are constant in a neighborhood of the
origin, we have a one-to-one correspondence between M systems and collections of generalized
filter functions as defined in Section II which satisfy the canonical initial conditions. These gen-
eralized filters will in turn give rise to an orthonormal frame wavelet family and its associated
GMRA 
Vj� by Theorem 3.4 from Sec. III. However, as shown by one of the examples given in
Sec. III, the multiplicity function m� for the GMRA 
Vj� need not be equal to m. So, there is no
correspondence in general, between the class of M-systems associated to a given multiplicity
function m and the class of GMRAs associated to m.

To develop the loop group action on these M systems, we first define an endomorphism
�� :�i=1

c Si→Td by ���
�=��
�. Each 
�Td has �l=0
N−1m�
l�=m�
�+ m̃�
� preimages in �i=1

c Si,
where the 

l :0� l�N−1� are the N distinct preimages of 
 in Td under the endomorphism �,
parametrized as discussed earlier. For convenience of notation, we label these preimage maps r�l,j�,
where r�l,j��
�=
l�Sj ��i=1

c Si for 1� j�m�
l�. �Note that this range on j, as l varies from 0 to
N−1, gives all the preimages, since if j�m�
l�, by definition 
l is not an element of Sj.� For each
fixed 
, we give the pairs �l , j� the lexicographical order, so that �l1 , j1�� �l2 , j2� if l1� l2 or if
l1= l2 and j1� j2. We thus implicitly define a 1-1 map �
 taking the pairs �l , j� onto the integers
from 1 to m�
�+ m̃�
�.

We now construct a unitary group bundle �F ,q ,Td� as follows. For each j� 
1,… ,c+ c̃ , �, let
Zj = 

�Td :m�
�+m�
̃�= j�. Let

Fm = � j=0
c+c̃�Zj � U�j,C�� ,

where U�j ,C� is viewed as a the topological group of unitary j� j matrices: it inherits its topology
from being a subset of C*-algebra of complex j� j matrices given the operator norm. Define
q :Fm→Td by q�
 ,T�=
, for �
 ,T��Fm, and note that q :Fm→Td is a continuous open surjec-
tion, and the fiber q−1�
� of the bundle consists of the group of complex unitary matrices
U�m�
�+ m̃�
� ,C�. Borel cross sections to this group bundle consist of Borel maps L :Td→Fm

such that q �L�
�=
. Note also that �Fm ,q ,Td� is a subset of a Borel vector bundle over Td in the
sense of Definition 4.1, whose fibers over particular values of 
�Td are made up of algebras of
finite-dimensional matrices of varying dimension. We denote the set of sections of this bundle by
�m�Fm ,q�. Note �m�Fm ,q� is a group under pointwise operations on Td, where the identity element
of the group is given by that section whose value at 
 is equal to Idm�
�+m̃�
�.

Also, it is possible to define a groupoid corresponding to a dilation matrix A as follows. Let
�A consist of the set of all bounded multiplicity functions corresponding to the dilation matrix A,
that is, �A= 
m :Td→N� 
0� :m is essentially bounded and satisties �4.1�–�4.3��, where two mul-
tiplicity functions for A are identified if they are equal almost everywhere on Td. There are a
variety of topologies we can put on �A; for the moment the Hilbert space topology of L2 functions
on Td will do. We call �A the multiplicity function space associated to A. Now set
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LA = �
m��A

�m�Fm,q� .

Then LA is a groupoid, with range map r equal to the source map s defined from LA to �A by
r���=s���=m for ���m�Fm ,q�. Hence two elements �1 and �2 of LA can be multiplied together
if and only if �1 , �2� �m�Fm ,q� for a fixed bounded multiplicity function m.

We are now state a theorem about M-systems that can be derived in a fairly straightforward
fashion from the orthogonality relations. This theorem is a generalization of Theorem 4.3 of Ref.
8, and thus we merely sketch the proof and refer the reader to Ref. 8 for details.

Theorem 4.4: Let �m�Fm ,q� be the group of cross sections of the group bundle associated to
a fixed bounded multiplicity function m defined above. Let M :� j=1

c Sj→E be an M-system associ-
ated to m. Then 
� �Li,�
�l,j��
��, where

Li,�
�l,j��
� =� 1

N
Mi�r�l,j��
��

is an element of �m�Fm ,q�.
Proof: As noted previously, 1��
�l , j��m�
�+ m̃�
�, so for each 
�T, the matrix

�Li,�
�l,j��
�� is a square matrix of the correct dimension.
We shall show that for all 
�Td, the rows of �Li,�
�l,j��
�� are orthonormal, by means of the

orthogonality relations for generalized filter functions given in Eq. �2.7� in the statement of
Theorem 2.5.

Write Li for the ith row of �Li,�
�l,j��
��. If 1� i� i��m�
�,

�Li,Li�� = �
�
�l,j�=1

m�
�+m̃�
�

Li,�
�l,j��
�Li,�
�l,j��
� = �
l=0

N−1

�
j=1

m�
l�� 1

N
Mi�r�l,j��
��� 1

N
Mi��r�l,j��x��

= �
l=0

N−1

�
j=1

m�
l� 1

N
hi,j�
l�hi�,j�
l� =

1

N
�
j=1

c

�
l=0

N−1

hi,j�
l�hi�,j�
l�

�as hi,j�
l�=0 for j���
l�, since 
l�Sj in that case�

=�by Eq. 2.2�N 1
N	i,i��Si

�
� = 	i,i�

�we note that �Si
�
�=1 since we have i�m�
� and for those values of i , 
�Si by definition of

m�
��.
The cases m�
�� i� i��m�
�+ m̃�
� and 1� i�m�
�� i��m�
�+ m̃�
� follow from simi-

lar arguments using Eqs. �2.4� and �2.5�. Thus we have that in all cases, the rows of �Li,�
�l,j�
��
�� are orthonormal, and we have the desired unitary matrix. �

Remark 4.5: We note that for 
�Td, the �m�
�+ m̃�
��� �m�
�+ m̃�
�� matrix L�
� is ex-
actly the submatrix L�
� of the matrix K�
� defined in Theorem 2.5. Thus in some sense the proof
given above is redundant. We have added in the extra detail because we want to exercise care in
enumerating the rows and columns of L�
� for future use. We also note that the “initial condition”
on M systems given in Definition 4.2 can be rephrased as follows. Let Li,�
�l,j�

C �
�� be the element

of �m�Fm ,q� corresponding to the “canonical” filter system associated to the multiplicity function

m, and let LC be the �m�0��+ m̃�0���� �m�0��+ m̃�0��� unitary matrix Li,�
�l,j�
C �0��. Then for any M

system M associated to m, we have �1 �NMi�r�l,j��0���=LC. This follows from the initial condi-
tions satisfied by any M system outlined in Definition 4.2.

The results of Theorem 4.4 imply that the columns of �Li,�
�l,j��
�� are orthonormal as well,
and allow us to obtain the following corollary, which is a generalization of Corollary 4.4 of Ref.
8.

Corollary 4.6: Let m and m̃ be bounded multiplicity and conjugate multiplicity functions
associated to a dilation matrix A that are constant in a neighborhood of the origin, with related
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sequences of sets 
Si �1� i�c� and 
S̃k �1�k� c̃�. Suppose 
hi,j�1�i,j�c and 
gk,j�1�k�c̃,1�j�c are
generalized low-pass and high-pass filter functions associated to the multiplicity function m. Then
for all 
�Td, and for all l , l�� 
0,1 ,… ,N−1� and j , j�� 
1,… ,c��, we have

�
i=1

c+c̃
1

N
Mi�r�l,j��
��Mi�r�l�,j���
�� = �

i=1

c
1

N
hi,j�
l�hi,j��
l� + �

k=1

c̃
1

N
gk,j�
l�gk,j��
l� = 	 j,j�	l,l�,

where here the Mi correspond to the generalized filter functions hi,j and gk,j as given in Definition
4.2.

Proof: This result follows fairly directly from Theorems 2.5 and 4.4, and we omit the details
of the proof. �

We are ready to define the generalized loop group and its associated action on the set of M
systems associated to a multiplicity function m.

Definition 4.7: The loop group associated to the multiplicity function m is defined to be the

subgroup Loopm�Fm ,q� of the group of Borel sections �m�Fm ,q� whose elements K satisfy L�0��
= Idm�0��+m̃�0��, and Li,�
�j,l� are Lip1 in a neighborhood of the origin.

We now prove that the generalized loop group Loopm�F ,q� acts freely and transitively on the
set of M-systems associated to the multiplicity function m. The following theorem generalizes
Theorem 4.7 of Ref. 8.

Theorem 4.8: There is a free and transitive action of Loopm�F ,q� on the set of M-systems
associated to an essentially bounded multiplicity function m such that m is constant in neighbor-
hoods of 0l , 0� l�N−1, where the set 
0l :0� l�N−1� consists of the preimages of 0 under the
endomorphism � :Td→Td. This action is given by

L · M�
� = L����
����M1�
�,M2�
�,…,Mm���
��+m̃���
���
���t.

Proof: We first prove the transitivity. Suppose we are given two different M-systems, labeled

M = �Mi� and M̃ = �M̃i�. Define an element L of the group bundle associated to m, that is, an
element of �m�F ,q�, where L�
� has dimension m�
�+ m̃�
�, as follows:

Li,i��
� =
1

N
�

�
�l,j�=1

m�
�+m̃�
�

Mi��r�l,j��
��M̃i�r�l,j��
�� . �4.5�

Since the M systems M and M̃ have the same values at 0� and at the preimages �l of 0� under the

automorphism �, one easily verifies that L�0��= Idm�0��+m̃�0��. Also, one sees by inspection that if LM

and LM̃ are the elements of �m�Fm ,q� corresponding to the M-systems M and M̃ as in Theorem
4.4, then the proposed element L of Loopm�F ,q� given in Eq. �4.5� is exactly L�
�=LM̃�
�
��LM�
��*.

In addition, as shown by Bratteli and Jorgensen in the classical case, we have

�L · M�i�
� = �
i�=1

m���
��+m̃���
��

Li,i�����
��Mi��
�

= �
i�=1

m���
��+m̃���
�� � 1

N
�

���
��l,j�=1

m���
��+m̃���
��

Mi��r�l,j����
���M̃i�r�l,j����
���	Mi��
�

= �
���
��l,j�=1

m���
��+m̃���
��

M̃i�r�l,j����
���� �
i�=1

m���
��+m̃���
��

Mi��r�l,j����
���Mi��
�	 = M̃i�
� ,

where the last equality follows from the orthogonality of the columns of M as established in
Corollary 2.7, so that the inside sum is 0 except for the single values of l and j where
rl,j���
��=
.
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To prove that the action is free, suppose M = �Mi� is a M system associated to m and L
�Loopm�F ,q� satisfies

L����
����M1�
�,M2�
�,…,Mm���
��+m̃���
���
���t = ��M1�
�,M2�
�,…,Mm���
��+m̃���
���
���t.

Using Theorem 4.4, for each 
�Td we define a �m���
��+ m̃���
���� �m���
��+ m̃���
���
unitary matrix M by

Mi,���
��l,j�
�
� =� 1

N
Mi�r�l,j����
��� ,

1 � i � m���
�� + m̃���
��, 0 � l � N − 1, 1 � j � m���
�l� .

We then see that L���
��M�
�=M�
� for all 
�Td. By unitarity of M�
�, this shows that
L���
�� is the �m���
��+ m̃���
���� �m���
��+ m̃���
��� identity matrix for all 
�Td, which
implies that L is the identity element of Loopm�F ,q�, as desired. �

Similarly, we can define the generalized loop groupoid assigned to a dilation matrix A.
Definition 4.9: Let A be a d�d integer dilation matrix. Let �A be the multiplicity function

space associated to A. The loop groupoid associated to A consists of the set

LOOPA = �
m��A

Loopm�Fm,q� ,

where r=s :LOOPA→�A is defined by r�L�=s�L�=m for L�Loopm�Fm ,q�.
We can also define a fiber bundle of M systems over �A as follows.
Definition 4.10: Let �A be the multiplicity function space associated to A. Define MA

=�m��A

m��Mm, where Mm consists of the set of M systems associated to a fixed multiplicity

function m, where two M systems are identified if they are equal almost everywhere. Give ele-
ments of Mm the Hilbert space topology mentioned in Definition 4.2. The topology on MA is
obtained from viewing an element �m ,M��MA as a tuple �m ,M� of functions defined on the
Cartesian product space Td��i=1

� �Td�i, taking on values in �N� 
0�� � l2�N�, where

�m,M��
,z� = �m�
�,M1�z�,M2�z�,…,Mm���z��+m̃���z���z�,0,0,0, ¯ � ,

and where M j�z�=Mj�z� if z��i=1
c Si and 1� j�m���z��+ m̃���z��, and M j�z�=0 if z��i=1

c Si,
for 
Si� the standard subsets of Td associated to the multiplicity function m. Then MA is a topo-
logical space, if we view elements of MA as elements in the Hilbert space L2�Td�
� L2��i=1

� �Td�i� � �l2�N��. Define a map � :MA→�A by ���m ,M��=m. Then � is a continuous
surjection, since it is a restriction of the Hilbert space projection from L2�Td� � L2��i=1

� �Td�i�
� �l2�N�� onto L2�Td� � �
0����L2�Td�, and �−1�m�=Mm, so that MA is a fiber bundle over �A,
called the fiber bundle of M systems associated to A.

Using these definitions, we obtain the following corollary to Theorem 4.8.
Corollary 4.11: Let A be a d�d integer dilation matrix, and let LOOPA and MA the loop

groupoid and fiber bundle of M systems associated to A, respectively. Then there is a groupoid
action of LOOPA on MA, where L�LOOPA is allowed to act on M�MA if and only if r�L�
=��M�=m. This action is fiber-wise transitive.

Proof: This is just a restatement of part of Theorem 4.8. �

We now modify Example 4.5 of Ref. 8, in order to show how we can use the loop group
action to transform the canonical filter functions for the Journé wavelet into the filter functions
discussed in Example 3.6. The construction of the canonical filter functions for the Journé wavelet
was first done in the thesis of Courter.35

Example 4.12: The Journé wavelet in the frequency domain is the characteristic function of
the set
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�−
16

7
,− 2	 � �−

1

2
,−

2

7
	 � �2

7
,
1

2
� � �2,

16

7
	 .

Here the multiplicity function m takes on the values 0, 1, and 2, and m̃�x��1, since the Journé
wavelet is a single orthonormal wavelet. If we identify T with �− 1

2 , 1
2

�, we can write S1=�− 1
2 ,

− 3
7

���− 2
7 , 2

7
��� 3

7 , 1
2

�, S2=�− 1
7 , 1

7
�, and S1̃=�− 1

2 , 1
2
�. The canonical generalized filter functions then

are:

h1,1
C �x� = �2��− 2

7
,− 1

4���− 1
7

, 1
7���1

4
, 2
7��x� ,

h2,1
C = �2��− 1

2
,− 3

7���3
7

, 1
2��x� ,

g1
C�x� = �2��− 1

4
,− 1

7���1
7

, 1
4��x�;

h1,2
C �x� = 0,

h2,2
C �x� = 0,

g2
C�x� = �2��− 1

7
, 1
7��x� .

One calculates that the “initial condition” matrix LC discussed in Remark 4.5 corresponding to this
canonical filter system is the 3�3 matrix

LC = �1 0 0

0 0 1

0 1 0
� .

We now construct an element of the loop group Lp such that if MJ is the M-system corresponding
to the above output of generalized low- and high-pass filters, the M-system Lp ·MJ has as its output
the filter functions corresponding to those given in the example in Section III. Consider the
decomposition of the disjoint union S1�S2 �identified with a subset of �− 1

2 , 1
2

���− 1
2 , 1

2
�� given by

T1,1 = ± �1

7
,

3

14
	�here m�x�  1,m�2x� + m̃�2x� = 1� ,

T1,2 = ± � 1

14
,
1

7
	 � ± � 3

14
,
2

7
	�here m�x�  1,m�2x� + m̃�2x� = 2� ,

T1,3 = �−
1

14
,

1

14
	 � ± �3

7
,
1

2
	�here m�x�  1,m�2x� + m̃�2x� = 3� ,

T2,2 = ± � 1

14
,
1

7
	�here m�x� = 2,m�2x� + m̃�2x� = 2� ,

T2,3 = �−
1

14
,

1

14
	�here m�x� = 2,m�2x� + m̃�2x� = 3� .

Then as in the general case, Sj =�k=0
3 Tj,k , j=1,2.
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We now describe the M system MJ :�i=1
2 Si→Em associated to the filter functions above. We

describe MJ as a cross section separately on both of the �disjoint� sets S1 and S2.
On S1 , MJ is given by

�MJ�x�� =�
��2� if x � T1,1

��2,0� if x � ± � 1

14
,
1

7
	 � ± �1

4
,
2

7
	 � T1,2

�0,�2� if x � ± � 3

14
,
1

4
	 � T1,2

�0,�2,0� if x � T1,3 \ T2,3

��2,0,0� if x � �T1,3 � T2,3� .

�
On S2 , MJ is given by

�MJ�x�� = ��0,�2� if x � T2,2

�0,0,�2� if x � T2,3.
�

Consider the decomposition of the circle T �identified with �− 1
2 , 1

2
�� given by

P1 = �−
1

7
,
1

7
	�here m�x� = 2,m� x

2
	 = 2,m� x + 1

2
	 = 1	 ,

P2 = ± �1

7
,
2

7
	�here m�x� = 1,m� x

2
	 = 2,m� x + 1

2
	 = 0	 ,

P3 = ± �2

7
,
3

7
	,�here m�x� = 0,m� x

2
	 = 1,m� x + 1

2
	 = 0	 ,

P4 = ± �3

7
,
1

2
	�here m�x� = 1,m� x

2
	 = 1,m� x + 1

2
	 = 1	 .

We note the following, which will be useful in our calculations: 2T1,1= P3, 2�±� 3
14 , 1

4
��

=2�±� 1
4 , 2

7
��= P4, 2T1,3= P1, 2�±� 1

14 , 1
7

��=2T2,2= P2, and 2T2,3= P1.
Now as in Example 3.5, let p0 be any classical �MRA� low-pass filter for dilation by 2, �i.e.,

one that satisfies the classical filter equation �1.1��, that also satisfies p0�x�=0 for x� ± � 1
7 −� , 3

14

+��� � 3
7 −� , 4

7 +��. Note that by Eq. �1.1�, we then have p0�x�=�2 for x� ± � 2
7 −� , 5

14 +��� �− 1
14

−� , 1
14 +��. Let p0̃= p0 /�2 be the normalization of p0, so that p0̃�0�=1. Let p1 be the standard

choice of associated high-pass filter, so that p1�x�=e2�ixp0�x+ 1
2

�, and let p1̃= p1 /�2 be the normal-

ization of p1. Again, by Eq. �1.1�, p1̃ must have modulus 1 for x� ± � 1
7 −� , 3

14 +��� � 3
7 −� , 4

7 +��.
The associated element of the loop group Lp that we want to choose is:
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Lp�x� =

⎩
⎪
⎨
⎪
⎧�p0̃� x

2
	 0 p0̃� x + 1

2
	

0 1 0

p1̃� x

2
	 0 p1̃� x + 1

2
	� if x � P1

�p0̃� x

2
	 p0̃� x + 1

2
	

p1̃� x

2
	 p1̃� x + 1

2
	 � if x � P2

p1̃� x

2
	 if x � P3

�p0̃� x + 1

2
	 p0̃� x

2
	

p1̃� x + 1

2
	 p1̃� x

2
	 � if x � P4. ⎭

⎪
⎬
⎪
⎫

On S1, our new M system �Mp,J�x��= �Lp�2x��MJ�x��t�t is the M system Mp,J defined by

�Mp,J��x� =�
�p1�x�� if x � T1,1

�p0�x�,p1�x�� if x � ± � 1

14
,
1

7
	 � ± � 3

14
,
1

4
	 � T1,2

�p0�x�,p1�x�� if x � ± �1

4
,
2

7
	 � T1,2

�0,�2,0� if x � ± �3

7
,
1

2
	 = T1,3 \ T2,3

�p0�x�,0,p1�x�� if x � �−
1

14
,

1

14
	 = T1,3 � T2,3

�p0�x +
1

2
	,p1�x +

1

2
	� if x � T2,2

�p0�x +
1

2
	,0,p1�x +

1

2
	� if x � T2,3.

�
We thus obtain the generalized filter functions coming from Mp,J:

h1,1
p �x� = p0�x���−2/7,2/7��x� ,

h2,1
p �x� = �2��−1/2,−3/7���3/7,1/2��x� ,

g1
p�x� = p1�x���−2/7,1/7���1/7,2/7��x� ,

h1,2
p �x� = p0�x + 1

2���−1/7,1/7��x� ,

h2,2
p �x� = 0,

g2
p�x� = p1�x + 1

2���−1/7,1/7��x� .

Note that these are exactly the filter functions obtained in Example 3.6.
One could no doubt adapt the previous example to obtain generalized filters similar to those

given in Examples 4.2 and 4.3 of Ref. 36.
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We propose an alternative axiomatic description for noncommutative field theories
�NCFT� based on some ideas by Soloviev to nonlocal quantum fields. The local
commutativity axiom is replaced by the weaker condition that the fields commute
at sufficiently large spatial separations, called asymptotic commutativity, formu-
lated in terms of the theory of analytic functionals. The question of a possible
violation of the CPT and spin-statistics theorems caused by nonlocality of the
commutation relations �x̂� , x̂��= i��� is investigated. In spite of this inherent non-
locality, we show that the modification aforementioned is sufficient to ensure the
validity of these theorems for NCFT. We restrict ourselves to the simplest model of
a scalar field in the case of only space–space noncommutativity. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1982769�

I. INTRODUCTION

In recent years a considerable effort has been made to clarify the structural aspects of non-
commutative field theories �NCFT�. The first paper on quantum field theory by exploring the
noncommutativity of a space–time manifold was published by Snyder, in 1947,1 who used this
idea to give a solution for the problem of ultraviolet divergences which had plagued quantum field
theories from the very beginning. Since then, due to the success of the renormalization theory, this
subject was abandoned. Only recently the plan of investigating field theories on noncommutative
space–times has been revived. In a fundamental paper Doplicher–Fredenhagen–Roberts2 have
shown that a model quantum space–time can be described by a noncommutative algebra whose
commutation relations do imply uncertainty relations motivated by Heisenberg’s uncertainty prin-
ciple and by Einstein’s theory. Later, in a different context, NCFT appear directly related with the
string theory:3 the noncommutative Yang–Mills theory can be seen as a vestige, in the low-energy
limit, of open strings in the presence of a constant magnetic field, B�� �for a review see Refs. 4 and
5�.

From an axiomatic standpoint, a language has been developed which, in principle, ought to
enable one to extend the Wightman axioms to this context. Álvarez-Gaumé and Vásquez-Mozo6

have recently taken the first step to examine general properties of NCFT within the axiomatic
framework by modifying the standard Wightman axioms. By using as guiding principles the
breaking of Lorentz symmetry down to the subgroup O�1,1��SO�2�, which leaves invariant the
commutation relations for the coordinate operators �x̂� , x̂��= i���, and the relaxation of local com-
mutativity to make it compatible with the causal structure of the theory, described by the light
wedge associated with the O�1, 1� factor of the kinematical symmetry group, they have demon-
strated the validity of the CPT theorem for NCFT. As it was stressed in Ref. 6, a source of
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difficulty in formulating NCFT which satisfy the adapted axioms has been the very harmful UV/IR
mixing, which is probably the most surprising feature of these theories. The existence of hard
infrared singularities in the nonplanar sector of the theory, induced by uncancelled quadratic
ultraviolet divergences, can result in two kinds of problems: they can destroy the tempered nature
of the Wightman functions and/or they can introduce tachyonic states in the spectrum, so the
modified postulate of local commutativity is not preserved. This can be a signal that the NCFT
must be analyzed from another set of principles, whose mathematical basis may shed new light on
the existence �or not� of many of the desirable properties of fields, in particular the CPT operator
and the connection between spin-statistics.

Clearly, in order to formulate a NCFT, a different type of generalized function space has to be
used. First, we must to keep in mind that NCFT are nonlocal due to the commutation relations
�x̂� , x̂��= i���. Second, this nonlocality can have implications on highly physical properties. For
example, in the formulation of general properties of a field theory the localization plays a funda-
mental role in the concrete realization of the locality of field operators in coordinate space and the
spectral condition in energy–momentum space, which are achieved through the localization of test
functions—the fields are considered tempered functionals on the test function space S�Rn�, the
Schwartz space of rapidly decreasing functions. However, the nonlocal character of the interac-
tions in NCFT seems to suggest that there are good reasons to expect that fields are not tempered.
Therefore, from a mathematical point of view, we must to have serious attention with the decision
about the choice of the test function space to be used. This means that the extension of Wightman
axioms to the context of NCFT has deeper roots in the mathematical structure and must first start
with the replacement of the standard space S�Rn� by another suitable space. As a matter of fact,
since Wightman and Gårding formulated the quantum field theory in an axiomatic way, by regard-
ing fields as operator-valued tempered distributions, many authors have attempted to generalize
the theory to take in more fields represented by more singular generalized functions by restricting
the class of test functions. We would like to mention the work by Jaffe,7 on the strictly localizable
field theory, and the work by Nagamachi–Mugibayashi8 and Brüning–Nagamachi9 on the field
theory in terms of Fourier hyperfunctions. Wightman himself suggested that physically relevant
interacting fields do not seem to be tempered.10

The class of distributions on which a NCFT should be built has been explored some time by
Lücke11–13 and Soloviev.14–17 These authors have shown that one adequate solution to treat field
theories with nonlocal interactions, it is to take the fields to be averaged with test functions
belonging to the space S0�Rn� consisting of the restrictions to Rn of entire analytic functions on Cn,
whose Fourier transform is just the Schwartz space D�Rn� of C� functions of compact support.
The space S0�Rn� is the smallest space among the Gelfand–Shilov spaces,18 S��Rn�, where 0
���1, which naturally allows us to treat a theory of nonlocalizable fields. Elements in the dual
space S�0 of the space of entire functions are called analytic functionals. Because the elements in
S0 are entire functions, the locality axiom cannot be formulated in the usual way, i.e., there is no
sensible notion of support for distributions in S�0. For this reason, in principle, expressing physical
requirements such as the causality in clear way become problematic. Consequently, structural
results of quantum field theories �QFT� usually seen to be firmly dependent on the locality, and
that are supposed to be universally valid, do not a priori hold to the NCFT case. These structural
results of QFT we have in mind here are �i� the existence of the fundamental symmetry CPT, and
�ii� the spin-statistics connection.

The main purpose of this work is to show that, from a distributional-theoretical framework,
the analysis of Álvarez-Gaumé and Vásquez-Mozo6 on the extension of the Wightman axioms to
the context of NCFT can be reformulated by adoption immediate of some ideas introduced by
Soloviev,14–17 which are applicable to noncommutative quantum field models. Then, we examine
how essential are the locality of interactions and the microcausality axiom in order to reach a
conclusion about the validity of the CPT and spin-statistics theorems in NCFT, in the case of only
spatial noncommutativity—this choice preserves the unitarity19 and the causality.20 We show that
both theorems hold within this environment if the postulate of microcausality suggested by
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Álvarez-Gaumé and Vásquez-Mozo6 is replaced with a condition implying the macrocausality as
suggested by Soloviev.14–17 This makes our proofs stronger than ones given byÁlvarez-Gaumé and
Vásquez-Mozo,6 in the sense that our hypotheses are weaker.

The article is organized as follows. Section II contains a brief sketch of some results by
Soloviev about modern functional analysis that make it possible to extend the basic results of
axiomatic approach21,22 to nonlocal interactions. In Sec. III, the necessary modifications of the
Wightman axioms to include the case of NCFT are explained. In Sec. IV, we outline the arguments
that guarantee the validity of the CPT theorem and the spin-statistics relation for NCFT. Section V
contains concluding remarks. We conclude with the Appendix which contains the sketch of proof
of Proposition 4.1.

II. ANALYTIC FUNCTIONALS AND ANGULAR LOCALIZABILITY

In this section, we are going to introduce the basic facts which allow handling the analytic
functionals of class S�0, in most cases, as easily as tempered distributions. As mentioned previ-
ously, the elements of S�0 are analytic functionals in the coordinate representation for which the
notion of support is inapplicable. Nevertheless, Soloviev has shown that the functionals of this
class retain a kind of angular localizability, which ensures the existence of minimal carrier cones
of the distributions in S�0. This replaces the notion of support for nonlocalizable distributions and
leads to a natural generalization of the local commutativity in NCFT with singular short distance
behavior, since the latter theories are nonlocal. For sake of completeness, we recall this property
here mutatis mutandis—the reader is referred to Refs. 14–17, and references therein for details.

We start recalling that the space of test functions composed by entire analytic functions is such
that the following estimate holds:

�f�z�� � CN�1 + �x��−Neb�y� �z = x + iy�, N = 0,1,… ,

where b and CN are positive constants depending on f . The space of functions satisfying the
previous estimate, with fixed b, is denoted as S0,b, whereas in nonlocal field theory the union
�b	0S0,b is denoted as S0. Together with space S0�Rn�, we introduce a space associated with
closed cones K�Rn. One recalls that K is called a cone if x�K implies 
x�K for all 
	0. Let
U be an open cone in Rn. For each U, one assigns a space S0�U� consisting of those entire analytic
functions on Cn, that satisfy the inequalities

�f�z�� � CN�1 + �x��−Neb�y�+bd�x,U�, N = 0,1,… , �2.1�

with d�x ,U� being the distance from the point x to the cone U �the norm in Rn is assumed to be
Euclidean�. This space can naturally be given a topology by regarding it as the inductive limit of
the family of countably normed spaces S0,b�U� whose norms are defined in accordance with
inequalities �2.1�, i.e.,

�f�U,b,N = sup
z

�f�z���1 + �x��Ne−b�y�−bd�x,U�.

For each closed cone K�Rn, one also defines a space S0�K� by taking another inductive limit
through those open cones U that contain the set K \ �0� and shrink to it. Clearly, S0�Rn�=S0. As
usual, we use a prime to denote the continuous dual of a space under consideration. A closed cone
K�Rn is said to be a carrier of a functional v�S�0 if v has a continuous extension to the space
S0�K�, i.e., belongs to S�0�K�. As is seen from estimate �2.1�, this property may be thought of as
a fast decrease—no worse than an exponential decrease of order 1 and maximum type—of v in the
complement of K. It should also be emphasized that if v is a tempered distribution with support in
K, then the restriction v�S0 is carried by K.

We now list some results proved by Soloviev, which formalize the property of angular local-
izability:

R.1: The spaces S0�U� are Hausdorff and complete. A set B�S0�U� is bounded if, and only
if, it is contained in some space S0,b�U� and is bounded in each of its norms.
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R.2: The space S0 is dense in every S0�U� and in every S0�K�.
R.3: If a functional v�S�0 is carried by each of closed cones K1 and K2, then it is carried by

their intersection.
R.4: If v�S�0�K1�K2�, then v=v1+v2, where v j �S�0�Uj� and Uj are any open cones such

that Uj �Kj \ �0� , j=1, 2.

III. ALTERNATIVE AXIOMATIC DESCRIPTION FOR NCFT

The axiomatic approach proposed by Gårding and Wightman for QFT consists of studying the
consequences of a set of a few fundamental postulates on the theory such as the relativistic
invariance, the locality, the existence and stability of the vacuum, in order to verify whether are
logically consistent the basic principles suggested by the two pillars of the modern physics: the
relativity theory and the quantum mechanics. The Wightman axioms can be summarized as fol-
lows: �i� States are described by vectors of a Hilbert space with positive definite metric. �ii� There
is a vacuum state ��0	 with the properties of being the state of lowest energy and invariant by all
the unitary operators U�� ,a� of the Poincaré group, where a is a space–time translation and � is
a Lorentz transformation. �iii� The local fields are tempered distribution valued field operators. �iv�
The spectrum of the energy–momentum operator is contained in the closed forward light cone.
This condition is equivalent to the condition that the operators p0 and p2 are both positive. �v�
Cyclicity of the vacuum. This means that one can construct a dense set of states in Hilbert space
by application of products of field operators on this state. This condition ensures that the Hilbert
space is not too large.

It turns out that these properties can be fully re-expressed in terms of an equivalent set of
properties of the vacuum expectation values of their ordinary field products, called Wightman
functions �or correlation functions of the theory�:

Wn�x1,…,xn� =
def


�0��x1� ¯ �xn���0	 . �3.1�

For most purposes, the basis of the formulation of a QFT starts from a given set of Wightman
functions which are assumed to satisfy the following properties:

P.1: Wightman functions are tempered distributions.
P.2: Wightman functions are invariant under the inhomogeneous Lorentz group.
P.3: Spectral condition: the Fourier transforms of the Wightman functions have support in the

region

��p1,…,pn� � R4n��
j=1

n

pj = 0,�
j=1

k

pj � V̄+,k = 1,…,n − 1 , �SC�

where V̄+= ��p0 ,p��R4 � p2�0, p0�0� is the closed forward light cone.
P.4: Local commutativity

Wn�x1,…,xi,xi+1,…,xn� = Wn�x1,…,xi+1,xi,…,xn� if �xi − xi+1�2 � 0.

P.5: Condition of positive definiteness.
It can be shown on general grounds that a quantum field theory which satisfies all these

conditions respect the CPT and spin-statistics theorems.21,22

As indicated in Sec. I, in NCFT the contact with the axiomatic formalism is made by modi-
fying some of the Wightman axioms. In effect, most of the properties can be taken over in parallel
with Wightman approach for tempered fields, except by following modifications:

Modification 1: We replace the test function space S�Rn� by S0�Rn�.
Modification 2: We replace the axiom of local commutativity, which cannot be formulated in

terms of the analytic test functions, by asymptotic commutativity in the sense of Soloviev.
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The main purpose of the present article is to show that NCFT subject to these modifications
respect the CPT and spin-statistics theorems, within the same framework along the lines sketched
in Refs. 14–17.

A. Fields are operator-valued distributions

As already mentioned, for NCFT we will assume that all fields are operator-valued general-
ized functions �throughout this paper, the term generalized functions is used synonymously with
distributions� living in an appropriate space of functions f�x��S0�R4n�, the space of entire ana-
lytic test functions. In particular, we will consider only one scalar field �x�. We shall denote by
D0 the minimal common invariant domain, which is assumed to be dense, of the field operators in
the Hilbert space H of states, i.e., the vector subspace of H that is spanned by the vacuum state
��0	 and by various vectors of the form �f1�…�fn���0	—with �n=1,2,…�–where f i�x�
�S0�R4�. It should be noted that, the space S0, being Fourier isomorphic to D, is nuclear. The
property of nuclearity enables us to define in addition the expressions

n�f� =� dx1 ¯ dxn�x1� ¯ �xn�f�x1,…,xn���0	 �n = 1,2,…� , �3.2�

and to verify that every operator �f� can be extended to the subspace D1�D0 spanned by vectors
�3.2�.

Vacuum Expectation Values of Fields: The Wightman generalized functions Wn�S�0�R4n�,
i.e., the vacuum expectation values of fields �3.1� define analytic distributions on space S0�R4n�. In
Ref. 23, Chaichian et al. propose new Wightman functions as vacuum expectation values of field
operators which involve the � products

W��x1,…,xn� =
def


�0��x1� � �x2� � ¯ � �xn���0	 , �3.3�

where

�x1� � �x2� = exp� i

2
��� �

�x1
�

�

�x2
���x1��x2� ,

represents a generalization of the � product for noncoinciding points, with the relation between
the ordinary Wightman functions Wn�x1 ,… ,xn� and the new functions W��x1 ,… ,xn� being de-
fined by

W��x1,…,xn� = exp� i

2
����

i�j

�

�xi
�

�

�xj
��Wn�x1,…,xn� ,

which is a consequence of

�x1� � ¯ � �xn� = exp� i

2
����

i�j

�

�xi
�

�

�xj
���x1� ¯ �xn� .

The new formulation of the Wightman functions has the advantage of including explicitly
noncommutativity effects. In Ref. 6 the deformation parameter � appears only to indicate that the
Lorentz invariance is “broken” to a lower symmetry. However, in Ref. 23 the fields are still
assumed to be tempered fields. In our opinion, same within the framework proposed in Ref. 23 the
fields must be considered as generalized functions on space S0�R4n�.

In what follows, by Wightman distributions we shall understand the vacuum expectation
values of fields given by �3.1�. It is very clear that the proofs of the CPT and spin-statistics
theorems in Sec. V hold without modifications for the distributions �3.3�, since the �-products
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introduced in the new Wightman functions no affect the analytic continuation of these functions to
the complex plane with respect the “electrical” coordinates xe= �x0 ,x1�. �The coordinates x�m

= �x2 ,x3� are called “magnetic” coordinates in Ref. 6.�

B. Asymptotic commutativity

In extending the usual Wightman framework of the axiomatic quantum field theory our great-
est concern is how to formulate the locality axiom for NCFT. The strict localizability of fields is
connected, mathematically, with the fact that the test function space contains C� functions of
compact support. This requirement is satisfied by Wightman fields, because these fields were
originally constructed on the basis of the space S. But, this is not the case for fields constructed
on the basis of the space S0.

In order to adapt the postulate of microcausality for NCFT, Álvarez-Gaumé and
Vázquez-Mozo6 �see also Ref. 24� have relaxed the condition that field �anti�commutators vanish
outside the light cone, by replacing the light cone by the light wedge Vlw= ��xe ,x�m��R4 �xe

2=0� so
that

��xe,x�m�,�xe�,x�m� ��± = 0 if �xe − xe��
2 = �x0 − x�0�2 − �x1 − x�1�2 � 0. �3.4�

Here, following Soloviev,14–17 we relax the condition �3.4� and introduce, as a substitute for
the axiom of locality, the following axiom:

Definition 3.1 (axiom of asymptotic (anti)commutativity): �It should be mentioned that the
term “asymptotic commutativity” was introduced within the context which we have followed in
Ref. 25 and with some other meaning in Ref. 11.� The field components �xe ,x�m� and �xe� ,x�m� �
are said to (anti)commute asymptotically for sufficiently large space-like separation of their ar-
guments, if the functional

f = 
�,��xe,x�m�,�xe�,x�m� ��±�	 , �3.5�

is carried by the closed light wedge V̄e
�2��R4= ��xe ,x�m� ; �xe� ,x�m� ��R4·2 � �xe−xe��

2�0� for any vec-
tors � , ��D0.

A few comments about our requirement that the functional �3.5� is carried by the closed

wedge V̄e
�2��R4 are now in order. In Ref. 6 this condition has been supported by the SO�1,1�

�SO�2� symmetry, which is the feature arising when one has only spatial noncommutativity.26

This fact leads the authors of Ref. 6 to argue that the notion of a light cone is generally modified
to that of a light wedge. More recently, Chu et al.29 have shown that the reduction from light cone
to light wedge is a generic effect for noncommutative geometry and it is independent of the type
of Lorentz symmetry breaking interaction.

A key point of the our argument is the equality S0�R4�R4�=S0�R4��̂ iS0�R4�, where the
index i indicates that the tensor product is endowed with the inductive topology and the hat means
the corresponding completion. By definition of the inductive topology, the dual space of S0�R4�
�̂ iS0�R4� is isomorphic to the space of separately continuous functionals on S0�R4��S0�R4� �see
Refs. 16 and 17�. By result R.2 in Sec. II, the space S0�R4� is dense in S0�U�, where U is any open

cone in R4 such that V̄e
�2� \ �0��U. Hence, the functional f is carried by the closed cone V̄e

�2�

�R4. Moreover, a consideration analogous to that of Lemma 3 in Ref. 16 shows that if we
introduce, for 0� j�n and n=0,1,2,…, Wightman functions Wn,j �S�0�R4�n+2�� defined by

Wn,j�x1,…,xj,x,y,xj+1,…,xn� = Wn+2�x1,…,xj,x,y,xj+1,…,xn� ± Wn+2�x1,…,xj,y,x,xj+1,…,xn� ,

it follows from the asymptotic commutativity condition that Wn,j defined on S0�R4�n+2�� has a
continuous extension to the space S0�R4j � �U�R4��R4�n−j��. Then, Wn,j is carried by the closed

cone R4j � �V̄e
�2��R4��R4�n−j�.
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IV. PROOF OF THE CPT AND SPIN-STATISTICS THEOREMS

In this section, we want to show that the above-mentioned arguments allow us to deduce some
structural results of NCFT. We have in mind here the existence of the CPT symmetry6,30 and the
connection between spin and statistics.30 The proof of these results as given in the literature21,22

usually seem to rely on the tempered character of the distributions in an essential way. In the
approach which we follow the main sources of difficulties in proving these results are: the absence
of test functions of compact support and the fact that for functionals belonging to S�0 the notion
of support breaks down. In Refs. 12 and 13, Lücke overcame this problem using the analyticity
properties of vacuum expectation values in the momentum space and analyzed the relevant enve-
lopes of holomorphy. More recently, an alternative and elegant solution has been given by
Soloviev14–16 using the notion of the analytic wavefront set and a type of uniqueness theorem for
distributions. For simplicity, we are going to discuss the CPT and spin-statistics theorems only for
the scalar field �x�. Ours results are corollaries of the Soloviev’s theorems generalizing the CPT
invariance and spin-statistics connection for nonlocal field theories, and our proofs follow directly
from the chain of reasoning of Refs. 14–17.

A. CPT invariance

Let �x� be a Hermitian scalar field. For this field, it is well known that in terms of the
Wightman functions, a necessary and sufficient condition for the existence of CPT theorem is
given by

Wn�x1,…,xn� = Wn�− xn,…,− x1� . �4.1�

Under the usual temperedness assumption, the proof of the equality �4.1� as given by Jost31 starts
from the weak local commutativity �WLC� condition, namely under the condition that the vacuum
expectation value of the commutator of n scalar fields vanishes outside the light cone, which in
terms of Wightman functions takes the form

Wn�x1,…,xn� − Wn�xn,…,x1� = 0 for �x1,…,xn� � Jn, �4.2�

where Jn represents the set of Jost points, which are real points lying outside the light cone. This
implies that �xk−xk+1�2�0 for k=1,… ,n−1. Jost’s proof that the WLC condition �4.2� is equiva-
lent to the CPT symmetry �4.1� one relies on the fact that the proper complex Lorentz group
contains the total space–time inversion. Therefore, by the Bargmann-Hall-Wightman �BHW� theo-
rem, the equality Wn�xn ,… ,x1�=Wn�−xn ,… ,−x1� holds taking into account the symmetry prop-
erty Jn=−Jn in whole extended analyticity domain.

In order to prove that equality �4.1� holds in NCFT, the following auxiliary proposition
�proved in the Appendix� will be fundamental.

Proposition 4.1: The functional F�x�=Wn�x1 ,… ,xn�−Wn�−x1 ,… ,−xn�, is carried by the
complement of the Jost points

Jn = ��x1,…,xn� � R4n���
i=1

n−1


i�xei
− xei+1

��2

� 0,
i � 0,�
i=1

n−1


i 	 0 . �JP�

Remark 1: It is worthwhile to emphasize that, according to Ref. 6, for n	2 the Jost points are
formed by �xei

−xei+1
�2�0 with the condition that xi

1−xi+1
1 	0.

We also formulate an analogous of the WLC condition:
Definition 4.2: The noncommutative quantum field �x� defined on the test function space

S0�R4n� is said to satisfy the weak asymptotic commutativity (WAC) condition if the functional on
left-hand side of Eq. (4.2) is carried by the set �Jn complementary to the Jost points (JP).

Theorem 4.3 (Modified CPT Theorem): In a noncommutative scalar field theory in which
the modified Wightman axioms hold, the weak asymptotic commutativity condition is equivalent to
the CPT invariance.
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Proof: We start assuming that the CPT invariance is fulfilled. This implies the equality

Wn�x1,…,xn� = Wn�− xn,…,− x1� . �4.3�

Then, one subtracts the functional Wn�−x1 ,… ,−xn� from the left-hand and right-hand sides of
�4.3� in order to obtain the expression:

�Wn�x1,…,xn� − Wn�− x1,…,− xn�� = �Wn�− xn,…,− x1� − Wn�− x1,…,− xn�� .

By Proposition 4.1, the difference functional on the left-hand side, denoted by F�x�, is carried by
set �Jn. Hence, from the previous functional equality, we conclude that the weak asymptotic
commutativity condition is fulfilled. The reverse is also easily proved. If the WAC is satisfied, then
the difference Wn�x1 ,… ,xn�−Wn�−xn ,… ,−x1� is carried by the set �Jn�R4n. On the other hand,
by virtue of the spectral condition,32 the Fourier transform of this difference has support in the
properly convex cone �SC�, defined by Property P.3, in Sec. III. Therefore, the CPT invariance
holds identically by Theorem 4 in Ref. 15, which asserts that Wn�x1 ,… ,xn�−Wn�−xn ,… ,−x1�
�0, since the property of this functional of having its Fourier transform supported by the afore-
mentioned properly convex cone requires that each carrier of Wn�x1 ,… ,xn�−Wn�−xn ,… ,−x1�
cannot be different from the whole space R4n. �

B. Spin-statistics connection

Here, let us state the theorem for a scalar field only. The general case, mainly when gauge
fields are present, deserves careful study once we have to admit an indefinite metric, which
invalidates the connection of spin with statistics due the existence of “scalar fermions” as the
Faddeev–Popov ghosts.33

Theorem 4.4 (Spin-Statistics Theorem): Suppose that  and its Hermitian conjugate *

satisfy the weak asymptotic condition with the “wrong” connection of spin and statistics. Then
�x��0=*�x��0=0.

Proof: Under the hypothesis of the anomalous connection between spin and statistics, the
weak asymptotic condition implies that

W2��� + W2
tr�− �� � S�0�V̄e � R2�, � = x1 − x2, �4.4�

with W2�x1−x2�= 
�0 ,�x1�*�x2��0	 and W2
tr�x2−x1�= 
�0 ,*�x2��x1��0	. Using the same ar-

guments as in the proof of the Proposition 4.1, we conclude that for the regularized function
W2

������, the equality W2
������=W2

����−�� takes place for the complement of the closed light wedge

V̄e�R2, according to BHW theorem. This implies that the difference W2
������−W2

����−�� is carried

by V̄e�R2. Since the unregularized difference W2���−W2�−�� admits a continuous extension to

the space S0�V̄e�R2� as �→�, it is possible to rewrite the condition �4.4� as W2���+W2
tr���

�S�0�V̄e�R2�. On the other hand, because of the spectral condition, in momentum space, W̃2

+W̃2
tr has support in the convex cone ��p1 , p2��R8 � p1+ p2=0 , p1� V̄+�. Hence, again by Theorem

4 in Ref. 15 we get W2���+W2
tr����0. Finally, after averaging the fields with a test function, we

obtain �*�f��0�2+ �� f̄��0�2=0, which yields �x��0=*�x��0=0. �

V. CONCLUDING REMARKS

In the present paper, we reexamine the recent work byÁlvarez-Gaumé and Vásquez-Mozo6 on
the extension of the Wightman axioms to the context of NCFT under another outlook. Our results
are similar to those published in Ref. 6, but are obtained under mildly more general assumptions.
We assume a weaker version of Wightman’s axioms, where �a� fields are operator-valued gener-
alized functions living in an appropriate space of functions f�x��S0�R4n�, the space of entire
analytic test functions, �b� the local �anti�commutativity is replaced by the asymptotic variant in
the sense of Soloviev. Two profound results of the ordinary QFT, the existence of the symmetry
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CPT and the spin-statistics connection were proved to hold for the case of a theory with space–
space noncommutativity. Here, we restrict ourselves to the simplest case, that of a single, scalar,
Hermitian field �x� associated with spinless particles of mass m	0.

We would like to conclude mentioning a number of questions for future research based on the
ideas of this paper:

�1� The arguments that we have used evidently may provide new insights which will allow us to
study others structural results of QFT within the axiomatic description of NCFT, such as the
existence of the Borchers class of quantum fields, a representation of the Jost–Lehmann–
Dyson type, the Haag’s theorem and so on.

�2� As it was pointed out in Ref. 6, for gauge theories, in particular the noncommutative QED
�NCQED�, the questions associated to the Wightman axioms and their consequences are
more involved due to the UV/IR mixing. As already mentioned, the existence of hard infra-
red singularities in the nonplanar sector of the theory, induced by uncanceled quadratic
ultraviolet divergences, can result in two kinds of problems: they can destroy the tempered
nature of the Wightman functions and/or they can introduce tachyonic states in the spectrum,
so the modified postulate of local commutativity is not preserved. Nevertheless, it is worth-
while to call attention to the fact that the nontemperedness arising from hard infrared singu-
larities in NCFT is not a newness. Actually, in the case of the local and covariant formulation
of standard gauge quantum field theories the necessary lack of positivity allows the occur-
rence of hard infrared singularities which recall those related to the UV/IR mixing in NCFT.
These results appear to reinforce the hypothesis that the infrared issue in NCFT must be dealt
with another approach which enables the simultaneous control of infrared singularities. This
problem could be attacked with the Gelfand–Shilov spaces S�

0�Rn�, with �	1—in order to
obtain the nontriviality of S�

0—being a multi-index which control the infrared behavior of the
Wightman functions.16,34 In this case the fields under consideration are ultradistributions, not
distributions, in variables of the momentum space. This may be an interesting step in the
proof of absence of the UV/IR mixing in NCFT and of the spin-statistics theorem for
NCQED.

These topics are under investigation. We intend to report our conclusions on these issues in
forthcoming papers.
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APPENDIX: SKETCH OF PROOF OF THE PROPOSITION 4.1

Due to the nuclearity property for S0�R4n�,36 Wn is a multilinear functional which can be
uniquely identified with a functional Wn�f ,g� in S�0�R2n�R2n�, continuous separately over f
�S0�R2n� and g�S0�R2n�, defined by

� �
i=1

n

d2xei
d2x�mi

Wn��xe1
,x�m1

�,…,�xen
,x�mn

��f�xe1
,…,xen

�g�x�m1
,…,x�mn

� .

Taking into account the invariance under translations, we pass to the difference variables �k, in
order to obtain a generalized function
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Wn��xe1
,x�m1

�,…,�xen
,x�mn

�� = Wn���e1
,��m1

�,…,��en−1
,��mn−1

�� ,

in S�0�R2�n−1��R2�n−1��, which depends on the variables �ei
�R2�n−1� and ��mi

�R2�n−1�. Following

Soloviev,16 we regularize the ultraviolet behavior of Wn by multiplying its Fourier transform W̃n

with a cutoff function. Then, with the “magnetic” coordinates being held fixed, we regularize the

Fourier transform of Wn���e1
,��m1

� ,… , ��en−1
,��mn−1

�� with an invariant cutoff function of form
���pe�=���pe · pe� /�2��C0

��R�, where pe · pe= p0
2− p1

2 and such that ���pe�=1 for ��pe · pe� /�2�
�1. The regularized distribution Wn

��� turns into a tempered distribution, in the “electrical” coor-

dinates. Thus, W̃n
��� has an inverse Fourier–Laplace transform Wn

���. The generalized function

Wn
������e1

,��m1
� ,… , ��en−1

,��mn−1
��, with �ej

=�ej
− i�ej

, is an analytic function of 2�n−1� complex
variables on the “subtube” Tn−1=R2�n−1�− iVe+

�n−1�, where Ve+
is a subcone of the forward light cone

V+:

Ve+
= ���e,�� m� � V+��e

2 	 0,�0 	 0,�� m = 0� .

Under temperedness assumption, the function Wn
��� can be analytically continued into the ex-

tended subtube Tn−1
ext. by the BHW theorem, with the continued function being covariant under the

Lorentz group L+�C�—the complexification of O�1,1� is made of similar way with that of the
Lorentz group O�1,3�. In particular, the transformations of L+�C� leave the magnetic coordinates

invariant �see Ref. 6 for details�. Moreover, Wn
��� has Wn

������e1
,��m1

� ,… , ��en−1
,��mn−1

��
=Wn

�����xe1
,x�m1

� ,… , �xen
,x�mn

�� as boundary value as �ej
→0. Hence, the equality

Wn
����x1 ,… ,xn�=Wn

����−x1 ,… ,−xn� takes place in the corresponding analyticity domain, keeping
in mind that the inversion of the four space-time coordinates is the product of the transformations
Ist�L+�C� �see Eq. �3.5� in Ref. 6� and a SO�2� rotation of 180°. Since Tn−1

ext. contains the Jost
points, the tempered distribution F��x�=Wn

����x1 ,… ,xn�−Wn
����−x1 ,… ,−xn� vanishes for the Jost

points and its restriction to S0 is carried by �Jn. By construction, F̃��p� coincides with F̃�p� in a
neighborhood of the origin, which enlarges indefinitely as �→�, and given that the space S0�R4n�
is dense in S0��Jn�, the unregularized generalized function F�x��S�0�R4n� admits a continuous
extension to the space S0��Jn�. This completes the outline of the proof.
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In this article we study the following nonlinear Schrödinger equation iut=�u
−g�u�p−1u in a domain ��Rn with initial condition u�x ,0�=��x� and the Dirichlet
boundary condition u�x , t�=Q�x , t� on ��, where �, Q are given smooth functions.
The nonlinear term contributes a negative term to the energy �i.e., g�0�. We
present the existence theorem for a global solution of finite energy when p�1
+2/n. © 2005 American Institute of Physics. �DOI: 10.1063/1.1914730�

I. PRELIMINARIES

In this paper we are concerned with a Dirichlet inhomogeneous boundary value problem for a
nonlinear Schrödinger equation in n space dimensions:

i �tu = �u − g�u�p−1u, for x � � � Rn,

�1.1�
u�x,0� = ��x�, u�x,t� = Q�x,t�, for x � �� ,

where g�R is a constant.
Inhomogeneous boundary value problems for nonlinear PDEs such as the NLS have physical

implications. For example, in one space dimension, such problems are often called forced prob-
lems when an external force is applied to the time evolution of systems governed by nonlinear
partial differential equations. Frequently the forcing is put in as a boundary condition. For in-
stance, in ionospheric modification experiments of one space dimension, one directs a radio
frequency wave at the ionosphere. At the reflection point of the wave, a sufficient level of electron
plasma waves is excited to make the nonlinear behavior important. This may be described by the
NLS equation with the cubic nonlinear term and a Dirichlet type of boundary condition.

It is well known that there is a very large literature on nonlinear Schrödinger equations in Rn.
However, for boundary value problems in a domain �, results are rare. Tsutsumi1 and Tsutsumi2

obtained well-posedness for the homogeneous problem in an exterior domain with sufficiently
small and smooth initial data. Brezis and Gallouet3 and Tsutsumi4 studied the case of large initial
data in two dimensions.

For inhomogeneous boundary conditions there were certain results in one space dimension.
Bu5 proved the well-posedness of smooth solutions with arbitrarily large data for n=1 and a
nonlinear term of positive energy. Carroll and Bu6 proved the same for n=1 and a nonlinear cubic
term of either sign. There are also some results in one dimension using inverse scattering tech-
niques.

a�Corresponding author. Electronic mail: cbu@wellesley.edu; fax �781� 283-3642.
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When space dimension n�1, Strauss and Bu7 obtained the global existence of an H1 solution
if the nonlinear term contributes a positive term to the energy, i.e., g�0.

Our main objective is to prove a similar theorem when g�0.

II. A PRIORI ESTIMATES

Write P= ��u���, �=� j� j� j = � ·�, and n= �n1 ,n2 , . . . ,nn� standard unit outer normal vector
for ��. Since �� is smooth, there exists a smooth function �= ��1 ,�2 , . . . ,�n� independent of t
from Rn to Rn, such that �����= �n1 ,n2 , . . . ,nn�=n. In case �� is unbounded, we assume that �a�
the derivatives up to third order of � are bounded and �b� there exists R�0 such that Q�x , t�=0 for
�x��R. We sometimes denote � ju=�u /�xj for j=1,2 , . . . ,n.

The following lemma was proved in Ref. 7.
Lemma 2.1: For the nonlinear Schrödinger equation in n space dimensions with Dirichlet

inhomogeneous boundary condition (1.1), four a priori identities are available: First,

�t�
�

�u�2 dx = 2 Im �
��

�n · P�Q̄ dS . �2.1�

Second,

�t�
�

�� � u�2 +
2g

p + 1
�u�p+1	dx = 2 Re �

��

�n · P�Q̄t dS . �2.2�

Third,

�t�
�

u�� · � u�dx − �
��

QQ̄t dS + �
�

�uūt dx = − 2i�
��

�n · P�2 dS − �
m,j
�

�

�m� j �mu � jū dx

+ i�
��

�P�2 dS − i�
�

�� � u�2 dx

+ i
2g

p + 1
�

��

�Q�p+1 dS − i
2g

p + 1
�

�

��u�p+1 dx .

�2.3�

Fourth,

i�
��

�2�n · P�2 − �P�2 + �n · P̄�Q��dS = �
��

QQ̄t + i

2g

p + 1
�Q�p+1�dS − �t�

�

u�� · � u�dx

− i�
�
��
+

2g

p + 1
�u�p+1� − ��� · � ū�udx

− �
�
��

j,m
�m� j �mu � jū − i��u�p+1dx . �2.4�

To prove global existence, consider �0,T� for any T�0. We define

�P�2 = �n · P�2 + �A · P�2 = �n · P�2 + �A · � Q̃�2 �2.5�

and
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J2 = �
0

t �
��

�n · P�2 dS d	 , �2.6�

where A · P denotes the tangential component of P. Integrating �2.1� and �2.2� over �0, t�, we
obtain

�u�2
2 � c + cJ and ��u�2

2 +
2g

p + 1
�u�p+1

p+1 � c + cJ , �2.7�

where c is treated as a generic constant �see Ref. 7, for example�.
From Gagliardo-Nirenburg estimate:10

�u�p+1 � m���u�2
a�u�2

1−a + �u�2� , �2.8�

where

1

p + 1
= a�1

2
−

1

n
	 +

1 − a

2
. �2.9�

We find

a =
n

2
−

n

p + 1
, �2.10�

a�p + 1� =
n

2
�p − 1� , �2.11�

and

�1 − a��p + 1� = �1 −
n

2
	�p + 1� + n . �2.12�

Case (i): p�1+2/n. From �2.11� and �2.12� one has

a�p + 1� = 
 �
n

2
�1 +

2

n
− 1	 = 1 �2.13�

and

�1 − a��p + 1� � �1 −
n

2
	�2 +

2

n
	 + n = 1 +

2

n
� 2; �2.14�

here we assume that n�2.

Therefore �2.8�, �2.13�, and �2.14� imply that �noting that p+1�2+
2

h
�3�

�u�p+1
p+1 � ���u�2


��u�2
2 + 1� + �u�2

3 + 1� � ���u�2
2 + ��u�2

4 + c � c + cJ + c�J2, �2.15�

for any ��0 and some c depending on m, � and initial data.
Combining �2.6�, �2.7�, and �2.15� one has �again we treat c as a generic constant�

�u�2
2 + ��u�2

2 � c + cJ + c�J2. �2.16�

Substituting �2.5� into �2.4�, integrating over �0, t�, where t�T and using the assumption that
up to three derivatives of � are bounded, we obtain
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J2 � ��
�

u�� · � u�dx� + ��
�

��� · � ��dx� + �
0

t �
��

�A · � Q̃�2 dS d	 + �
0

t �
��

�QQ̄t�dS d	

+ c�
0

t �
��

��n · P̄�Q�dS d	 + c�
0

t �
�

� � u��u�dx d	 + c�
0

t �
�

� � u�2 dx d	

−
2g

p + 1
�

0

t �
��

�Q�p+1 dS d	 −
2g

p + 1
�

0

t �
�

�u�p+1 dx d	 . �2.17�

Since ��H1���, Q is C3 with compact support in x, each term in �2.17� involving � and Q
is bounded. Therefore �2.17� is estimated as

J2 � c� + c�J + c��
�

��u�2 + � � u�2�dx + c��
0

t �
�

��u�2 + � � u�2�dx d	 + c��
0

t �
�

�u�p+1 dx d	 .

�2.18�

It is important to note that all the constants denoted by c and c� only depend on n, p, Q, T, �, and
��, but not on u. Let � be sufficiently small such that �cc�= 1

4 . Substituting �2.15� and �2.16� into
�2.18� we obtain

J2 � c� + c�J + c��c + cJ + c�J2� + 2c��
0

t

�c + cJ + c�J2�d	

� c� +
1

2
��2c��2 + � J

2
	2	 + c�c +

1

2
��2c�c�2 + � J

2
	2	 +

J2

4
+ 2c��

0

t �c +
1

2
�c2 + J2� + c�J2	d	

� c� + 2�c��2 +
J2

8
+ c�c + 2�c�c�2 +

J2

8
+

J2

4
+ 2c�cT + c�c2T + �c� +

1

2
	�

0

t

J2 d	

� c0 +
J2

2
+ c0�

0

t

J2 d	 . �2.19�

Then �2.19� implies that

J2 � 2c0 + 2c0�
0

t

J2 d	 . �2.20�

By Gronwall’s lemma there exists M �0 depending on n, p, Q, T, �, and ��, such that

J2 � M , �2.21�

for any t� �0,T�.
By �2.16� we deduce that �u�H1 is bounded for bounded T.
Case �ii� p=1+2/n. For any ��0, let t1 be sufficiently small, such that

�
0

t1 �
��

��Q�2 + �Qt�2�dS d	 � � . �2.22�

Thus �2.6� and �2.7� are modified as

�u�2
2 � c + �J �2.23�

and
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��u�2
2 +

2g

p + 1
�u�p+1

p+1 � c + �J , �2.24�

for t� �0, t1�. Since

a�p + 1� =
n

2
�1 +

2

n
− 1	 = 1 �2.25�

and

�1 − a��p + 1� = �1 −
n

2
	�2 +

2

n
	 + n = 1 +

2

n
� 2, �2.26�

�2.15� becomes �for any t� �0, t1��

�u�p+1
p+1 � ���u�2��u�2

2 + 1� + �u�2
3 + 1� � ��u�2

2 + c��u�2
4 + c�, �2.27�

for any sufficiently small .
Substituting �2.23� and �2.27� into �2.24� we obtain

��u�2
2 � c̃�c + �J + �u�2

4� � c̃„c + �J + �c + �J�2
… � ĉ + ĉ�J2. �2.28�

By combining �2.23�, �2.27�, and �2.28�, and choosing �,  sufficiently small, we estimate
�2.17� as

J2 � c + c�J2 + �
0

t

�c + c�J2�d	 , �2.29�

where c only depends on �, , n, p, Q, t1, �, and ��. This proves that u is bounded in H1 space
on �0, t1�.

Since Q�C3 has compact support, for any ��0, T�0 there exists a finite partition 0� t1

� t2 , ¯ � tN=T, such that

�
ti

ti+1

��Q�2 + �Qt�2�d	 � � , �2.30�

for i=1,2 , . . . ,N−1. By mathematical induction we conclude that u is bounded in H1 space on
�0,T�. Since T is arbitrary, this solution is a global solution in H1.

The existence and uniqueness theorem can be obtained in the similar manner as in Refs. 7–9
by truncating the nonlinear term, converting the original problem into a problem with a homoge-
neous boundary condition, and applying Aubin’s compactness theorem and Cantor diagonaliza-
tion. For uniqueness, we notice that p�1+4/ �n−2� is required in case of g�0 for a Dirichlet
inhomogeneous boundary value problem for the NLS.7 However, p�1+2/n would ensure that.
Therefore, we have the following result.

Global existence-uniqueness theorem: For n�1, g�0, assume that p�1+2/n. Let
��H1��� and � be a (bounded or unbounded) open subset of Rn with a C� boundary. Suppose
that Q�C3(��� �−� ,��) has compact support and satisfies the compatibility condition
��x��Q�x ,0� on �� in the sense of traces. Then there exists a solution
u�Lloc

� (�−� ,�� ;H1����Lp+1���) to the problem (1.1) for −�� t��. The PDE is understood in
the sense of distributions while the boundary condition is understood as u�· , t�−Q�· , t��H0

1��� for
a.e. t. Further, if �ei�t�L�L1���,L������c / tn/2, where ei �t denotes the evolution operator for the free
Schrödinger equation with a homogeneous boundary condition on ��, then this solution is unique.

We state the following remark as the conclusion of this paper.
Remark: In the case of n=1, we note that global existence was found if p�3 (see Ref. 6),

which is consistent with our criteria for global existence in general n space dimensions p�1
+2/n. We also did some numerical calculations using the FLEXPDE program when n=2,3. We are
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particularly interested in the situation p�1+2/n when n=2 and 1+2/n� p�1+4/ �n−2� when
n=3 with assorted initial and boundary data. However, the results do not seem to be conclusive
and therefore further study is needed.
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We consider the variational problem of maximizing the weighted equilibrium
Green’s energy of a distribution of charges free to move in a subset of the upper
half-plane, under a particular external field. We show that this problem admits a
solution and that, under some conditions, this solution is an S-curve �in the sense of
Gonchar-Rakhmanov�. The above problem appears in the theory of the semiclassi-
cal limit of the integrable focusing nonlinear Schrödinger equation. In particular, its
solution provides a justification of a crucial step in the asymptotic theory of non-
linear steepest descent for the inverse scattering problem of the associated linear
non-self-adjoint Zakharov-Shabat operator and the equivalent Riemann-Hilbert fac-
torization problem. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1985069�

I. INTRODUCTION

Let H= �z : Im z�0� be the complex upper-half plane and H̄= �z : Im z�0�� ��� be the closure
of H. Let also K= �z : Im z�0� \ �z :Re z=0,0� Im z�A�, where A is a positive constant. In the

closure of this space, K̄, we consider the points ix+ and ix−, where 0�x�A as distinct. In other
words, we cut a slit in the upper half-plane along the segment �0, iA� and distinguish between the

two sides of the slit. The point infinity belongs to K̄, but not K. We define F to be the set of all

“continua” F in K̄ �i.e., connected compact sets� containing the distinguished points 0+ ,0−.

Next, let �0�z� be a given complex-valued function on H̄ satisfying

�0�z� is holomorphic in H ,

�0�z� is continuous in H̄ ,

�1�
Re��0�z�� = 0, for z � �0,iA� ,

Im��0�z�� � 0, for z � �0,iA� � R .

Define G�z ;�� to be the Green’s function for the upper half-plane

G�z;�� = log
�z − �*�
�z − ��

�2�

and let d�0��� be the non-negative measure −�0���d� on the segment �0, iA� oriented from 0 to
iA. The star denotes complex conjugation. Let the “external field” 	 be defined by
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	�z� = −� G�z;��d�0��� − Re	i
J�
z

iA

�0���d� + 2iJ�zx + z2t�
 , �3�

where x , t are real parameters with t�0 and J=1, for x�0, while J=−1, for x�0. Re denotes the
real part.

The particular form of this field is dictated by the particular application to the dynamical
system we are interested in. The conditions �1� are natural in view of this application. But many
of our results in this paper are valid if the term zx+z2t is replaced by any polynomial in z. Here x , t
are in fact the space and time variables for the associated partial differential equation �PDE�
problem �see �9� and �10� below�.

Let M be the set of all positive Borel measures on K̄, such that both the free energy

E��� =� � G�x,y�d��x�d��y�, � � M �4�

and �	 d� are finite. Also, let

V��z� =� G�z,x�d��x�, � � M �5�

be the Green’s potential of the measure �.
The weighted energy of the field 	 is

E	��� = E��� + 2� 	 d�, � � M . �6�

Now, given any continuum F�F, the equilibrium measure �F supported in F is defined by

E	��F� = min��M�F� E	��� , �7�

where M�F� is the set of measures in M which are supported in F, provided such a measure exists.
E	��F� is the equilibrium energy of F.

The aim of this paper is to prove the existence of a so-called S-curve �Ref. 1� joining the

points 0+ and 0− and lying entirely in K̄, at least under some extra assumptions. By S-curve we
mean an oriented curve F such that the equilibrium measure �F exists, its support consists of a
finite union of analytic arcs and at any interior point of supp �,

d

dn+
�	 + V�F

� =
d

dn−
�	 + V�F

� , �8�

where the two derivatives above denote the normal �to supp �� derivatives.
To prove the existence of the S-curve we will first need to prove the existence of a continuum

F maximizing the equilibrium energy over F. Then we will show that the maximizer is in fact an
S-curve.

It is not always true that an equilibrium measure exists for a given continuum. The Gauss-
Frostman theorem �Ref. 2, p.135� guarantees the existence of the equilibrium measure when F
does not touch the boundary of the domain H. This is not the case here. Still, as we show in the
next section, in the particular case of our special external field, for any given x , t and for a large
class of continua F not containing infinity, the weighted energy is bounded below and �F exists.
So, in particular, we do know that the supremum of the equilibrium weighted energies over all
continua is greater than −�.

S-curves were first defined in Ref. 1, where the concept first arose in connection with the
problem of rational approximation of analytic functions. Our own motivation comes from a seem-
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ingly completely different problem, which is the analysis of the so-called semiclassical asymptot-
ics for the focusing nonlinear Schrödinger equation. More precisely, we are interested in studying
the behavior of solutions of

i��t +
�2

2
�x

2 + ��2 = 0,

�9�
under �x,0� = 0�x� ,

in the so-called semiclassical limit, i.e., as �→0. For a concrete discussion, let us here assume that
0�x� is a positive “bell-shaped” function; in other words assume that

0�x� � 0, x � R ,

0�− x� = 0�x� ,

0 has one single local maximum at 0, 0�0� = A , �10�

0��0� � 0,

0 is Schwartz.

This is a completely integrable PDE and can be solved via the method of inverse scattering.
The semiclassical limit is analyzed in the recent research monograph.3 In Chap. 8 of Ref. 3 it is
noted that the semiclassical problem is related and can be reduced to a particular “electrostatic”
variational problem of maximizing the equilibrium energy of a distribution of charges that are free
to move under a given external electrostatic field �assuming that the WKB-approximated density
of the eigenvalues admits a holomorphic extension in the upper half-plane�. In fact, it is pointed
out that the existence and regularity of an S-curve implies the existence of the so-called
“g-function” necessary to justify the otherwise rigorous methods employed in Ref. 3.

We would like to point out that the problem of the existence of the “g function” for the
semiclassical nonlinear Schrödinger problem is not a mere technicality of isolated interest. Rather,
it is an instance of a crucial element in the asymptotic theory of Riemann-Hilbert problem factor-
izations associated to integrable systems. This asymptotic method has been made rigorous and
systematic in Ref. 4 where in fact the term “nonlinear steepest descent method” was first employed
to stress the relation with the classical “steepest descent method” initiated by Riemann in the study
of exponential integrals with a large phase parameter. Such exponential integrals appear in the
solution of Cauchy problems for linear evolution equations, when one employs the method of
Fourier transforms. In the case of nonlinear integrable equations, on the other hand, the nonlinear
analog of the Fourier transform is the scattering transform and the inverse problem is now a
Riemann-Hilbert factorization problem. While in the “linear steepest descent method” the contour
of integration must be deformed to a union of contours of “steepest descent” which will make the
explicit integration of the integral possible, in the case of the “nonlinear steepest descent method”
one deforms the original Riemann-Hilbert factorization contour to appropriate steepest descent
contours where the resulting Riemann-Hilbert problems are explicitly solvable.

In the linear case, if the phase and the critical points of the phase are real it may not be
necessary to deform the integration contour. One has rather a Laplace integral problem on the
contour given. For Riemann-Hilbert problems the analog is the self-adjointness of the underlying
Lax operator. In this case the spectrum of the associated linear Lax operator is real and the original
Riemann-Hilbert contour is real. The “deformation contour” must then stay near the real line. One
novelty of the semiclassical problem for �9� and �10� studied in Ref. 3 however is that, due to the
non-self-adjointness of the underlying Lax operator, the “target contour” is very specific �if not
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unique� and by no means obvious. It is best characterized via the solution of a maximin energy
problem, in fact it is an S-curve. The term “nonlinear steepest descent method” thus acquires full
meaning in the non-self-adjoint case.

Given the importance and the recent popularity of the “steepest descent method” and the
various different applications to such topics as soliton theory, orthogonal polynomials, solvable
models in statistical mechanics, random matrices, combinatorics and representation theory, we
believe that the present work offers an important contribution. In particular we expect that the
results of this paper may be useful in the treatment of Riemann-Hilbert problems arising in the
analysis of general complex or normal random matrices.

On the other hand, we believe that the main results of this paper, Theorems 3, 4, 5, 7, 8 are
interesting on their own. This paper can be read without the applications to dynamical systems in
mind. It concerns existence and regularity of a solution to an energy variational maximin problem
in the complex plane.

The method used to prove the existence of the S-curves arising in the solution of the “max-
min” energy problem was first outlined in Ref. 1 and further developed in Ref. 5, at least for
logarithmic potentials. But, the concrete particular problem addressed in this paper involves ad-
ditional technical issues.

The main points of the proof of our results are as follows:

�i� Appropriate definition of the underlying space of continua �connected compact sets� and its
topology. This ensures the compactness of our space of continua which is crucial in proving
the existence of an energy maximizing element.

�ii� Proof of the semicontinuity of the energy functional that takes a continuum to the energy of
its associated equilibrium measure �Theorem 3�.

�iii� Proof of existence of an energy maximizing continuum �Theorem 4�.
�iv� A discussion of how some assumptions ensure that the maximizing continuum does not

touch the boundary of the underlying space except at a finite number of points. This ensures
that variations of continua can be taken.

�v� Proof of formula �22� involving the support of the equilibrium measure on the maximizing
continuum and the external field �Theorem 5�.

�vi� Proof that the support of the equilibrium measure on the maximizing continuum consists of
a union of finitely many analytic arcs.

�vii� Proof that the maximizing continuum is an S-curve �Theorems 7 and 8�.

The paper is organized as follows. In the rest of Sec. I, we introduce the appropriate topology
for our set of continua that will provide the necessary compactness. In Sec. II, we prove a
“Gauss-Frostman” type theorem which shows that the variational problem that we wish to solve is
not vacuous. In Sec. III, we present the proof of upper semicontinuity of a particularly defined
“energy functional.” In Sec. IV, we present a proof of existence of a solution of the variational
problem. Existence is thus derived from the semicontinuity and the compactness results acquired
earlier. In Sec. V, we show that, at least under a simplifying assumption, the “max-min” solution
of the variational problem does not touch the boundary of the underlying domain, except possibly
at some special points. This enables us to eventually take variations and show that the max-min
property implies regularity of the support of the solution and the S-property in Secs. VI and VII.
By regularity, we mean that the support of the maximizing measure is a finite union of analytic
arcs. In Sec. VIII, we conclude by stating the consequence of the above results in regard to the
semiclassical limit of the nonlinear Schödinger equation.

We also include three appendixes. The first one discusses in detail some topological facts
regarding the set of closed subsets of a compact space, equipped with the so-called Hausdorff
distance. The fact that such a space is compact is vital for proving existence of a solution for the
variational problem. The second appendix presents the semiclassical asymptotics for the initial
value problem �9� and �10� in terms of theta functions, under the S-curve assumption �as in Ref.
3�. It is included so that the connection with the original motivating problem of semiclassical NLS
is made more explicit. The third appendix sketches an argument on how to get rid of the simpli-
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fying assumption introduced in Sec. V. We feel that the argument leading to Theorem 9 is quite
transparent, although an absolutely rigorous proof would require a thorough revisiting of the
discussion and results in Ref. 3.

Following Ref. 6 �see Appendix A� we introduce an appropriate topology on F. We think of

the closed upper half-plane H̄ as a compact space in the Riemann sphere. We thus choose to equip

H̄ with the “chordal” distance, denoted by d0, that is the distance between the images of z and �

under the stereographic projection. This induces naturally a distance in K̄ �so d0�0+,0−��0�. We

also denote by d0 the induced distance between compact sets E ,F in K̄, d0�E ,F�
=maxz�E min��F d0�z ,��. Then, we define the so-called Hausdorff metric on the set I�K̄� of closed

nonempty subsets of K̄ as follows:

dK�A,B� = sup�d0�A,B�,d0�B,A�� . �11�

In Appendix A, we prove the following.

Lemma A.1: The Hausdorff metric defined by �11� is indeed a metric. The set I�K̄� is compact
and complete.

Now, it is easy to see that F is a closed subset of I�K̄�. Hence F is also compact and complete.
Remarks: �1� Because of the particular symmetry �x�=�−x� of the solution to the Cauchy

problem �9� and �10� we will restrict ourselves to the case x�0 from now on. We then set J=1 and
the external field is

	�z� = −� G�z;��d�0��� − Re	i
�
z

iA

�0���d� + 2i�zx + z2t�
 . �3��

�2� The function �0 expresses the density of eigenvalues of the Lax operator associated to �9�,
in the limit as h→0. WKB theory can be used to derive an expression for �0 in terms of the initial
data 0�x� via an Abel transform �see Ref. 3�, from which it follows that

Re��0�z�� = 0 for z � �0,iA� ,

Im��0�z�� � 0 for z � �0,iA� .

The rest of the conditions �1� are not a necessary consequence of WKB theory. In particular, it is
not a priori clear what the analyticity properties of �0 are. In this paper, we assume, for simplicity,
that �0 admits a continuous extension in the closed upper complex plane which is holomorphic in
the open upper complex plane. We also assume that Im �0 is positive in the real axis. This will be
used later to show that the maximizing continuum does not touch the real line, except at 0+ ,0− ,�.
It is a simplifying but not essential assumption. All conditions �1� are satisfied in the simple case
where the initial data are given by �x ,0�=A sech x, where A is a positive constant.

�3� It follows that 	 is a subharmonic function in H which is actually harmonic in K; it also
follows that it is upper semicontinuous in H. It is then subharmonic and upper semicontinuous in

H̄ except at infinity.
�4� Even though in the end we wish that the maximum of E	��F� over “continua” F is a

regular curve, we will begin by studying the variational problem over the set of continua F and
only later �in Sec. VI� we will show that the maximizing continuum is in fact a nice curve. The
reason is that the set F is compact, so once we prove in Sec. III the upper semicontinuity of the
energy functional, existence of a maximizing continuum will follow immediately.
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II. A GAUSS-FROSTMAN THEOREM

We claim that for any continuum F�F, not containing the point � and approaching 0+, 0−

nontangentially to the real line, the weighted energy is bounded below and the equilibrium mea-
sure �F exists. This is not true for any external field, but it is true for the field given by �3��
because of the particular behavior of the function �0 near zero.

We begin by considering the equilibrium measure on the particular contour F0 that wraps
itself around the straight line segment �0, iA�, say �0

F. We have
Proposition 1: Consider the contour F0�F consisting of the straight line segments joining 0+

to iA+= iA and iA= iA− to 0−. The equilibrium measure �0
F exists. Its support is the imaginary

segment �0, ib0�x��, for some 0�b0�x��A, lying on the right-hand side of the slit �0, iA�. It can be
written as ��z�dz where ��z� is a differentiable function in �0, ib�x��, such that �−�0 belongs in the
Hölder class with exponent 1 /2.

Proof: See section 6.2.1 of Ref. 3; ��z� can be expressed explicitly. The Hölder condition
follows from 5.14 of Ref. 3. Note that the field 	 is independent of time on F0, so �0

F is also
independent of time.

From Proposition 1, it follows that the maximum equilibrium energy over continua is bounded
below,

maxF�F E	��F� = maxF�F min��M�F� E	��� � − � . �12�

The following formula is easy to verify:

E	��� − E	��F� = E�� − �F� + 2� �V�F
+ 	�d�� − �F� , �13�

for any � which is a positive measure on the continuum F. Here

V�F
�u� =� G�u,v�d�F�v� ,

where again G�u ,v� is the Green function for the upper half-plane.
To show that E	��� is bounded below, all we need to show is that the difference E	���

−E	��F� is bounded below.
Note that since V�F

+	=0, on supp��F�, the integral in �13� can be written as ��V�F
+	�d�.

We have

V�F
�z� + 	�z� = �

0

b0�x�

log
�z + iu�
�z − iu�

�− ��t=0 du + 	

= − Re	�
0

b0�x�

log
�z + iu�
�z − iu�

u1/2 du
 + O��z�� = O��z�� near z = 0.

So we can write V�F
+	�c�A ,x��z� in a neighborhood of z=0, where c�A ,x� will be some nega-

tive constant independent of z. Note that the dependence on t is not suppressed, but it is of order
O��z2��.

It is now not hard to see that the O��z�� decay implies our result.
Write �=M�, where M�0 is the total mass of � and � is a probability measure �on F�.

Choose � such that for �u��� we have V�F
+	�c�A ,x��u�. Then

E	��� − E	��F� �� G�u,v�d�� − �F��u�d�� − �F��v� + 2�
�v���

�V�F
+ 	��v�d��v�

+ �
�v���

2c�A,x��v�d�� − �F��v� . �14�
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The first integral of the right-hand side �RHS� can be written as ��u���,�v���+2��u���,�v���

+��u�,�v���. The sum of the first integral plus the second term on the RHS of �14� is bounded below,
by the standard Gauss-Frostman theorem �Ref. 6, p. 135�. It remains to consider

	�
F

+ �
�v���


	�
�u���

G�u,v�d�� − �F��u�
d�� − �F��v� + �
�v���

2c�A,x��v�d�� − �F��v�

� 	�
F

+ �
�v���


	�
�u���

G�u,v�d�M� − �F��u� + 2c�A,x��v�
d�M� − �F��v� . �15�

Now, it is easy to see that for M large, and since F is nontangential to the real line,

�
�u���

G�u,v�d�M� − �F��u� + 2c�A,x��v� � �v log v� + 2c�A,x��v� . �16�

By adjusting � if necessary, we have �v log v��2�c�A ,x���v�, and hence the integral in �16� is
positive. Integrating again with respect to M d�−d�F, again for M large, we see that the integral
of �15� is positive.

Since when M is bounded above we have our estimates trivially, we get boundedness below
over all positive M.

We have thus proved one part of our �generalized� Gauss-Frostman theorem.

Theorem 1: Let 	 be given by �3��. Let F be a continuum in K̄ \� and suppose that F is
contained in some sector 
���arg������0 as �→0. Let M�F� be the set of measures�M
which are supported in F. �So, in particular their free energy is finite and 	�L1���.� We have

inf��M�F� E	��� � − � . �17�

Furthermore the equilibrium measure on F exists, that is there is a measure �F�M�F� such that
E	�F�=E	��F�=inf��M�F� E	���.

Proof: The proof that �17� implies the existence of an equilibrium measure is a well-known
theorem. For our particular field 	 given by �3� it is easy to prove. Indeed, the identity

E�� − �� = 2E	��� + 2E	��� − 4E		� + �

2



implies that any sequence �n minimizing E	��� is a Cauchy sequence in �unweighted� energy.
Since the space of positive measures is complete �see, for example, Ref. 7, Theorem 1.18, p. 90�,
there is a measure �0 such that E��n−�0�→0. We then have E��n�→E��0�� +� and hence
�n→�0 weakly �see, e.g., Ref. 7, pp. 82–88; this is a standard result�.

The fact that 	�L1��0� is trivial for our particular field.

III. SEMICONTINUITY OF THE ENERGY FUNCTIONAL

We consider the functional that takes a given continuum F to the equilibrium energy on this
continuum,

E:F → E�F� = E��F� = inf
��M�F�

	E��� + 2�  d�
 �18�

and we want to show that it is continuous, if  is continuous in H̄. Note that this is not the case
for the field 	 given by �3��, since it has a singularity at �; that field is only upper semicontinuous.
We will see how to circumvent this difficulty later. For the moment,  is simply assumed to be a

continuous function in H̄.

Theorem 2: If  is a continuous function in H̄ \� then the energy functional defined by �18�
is continuous at any given continuum F not containing the point �.
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Proof: Suppose G�F, also not containing �, with dK�F ,G��d, a small positive constant. Let
�=�

F be the equilibrium measure on F and �=�
G be the equilibrium measure on G.

We consider the Green’s balayage of � on F, say �̂. Then supp �̂�F and

V�̂ = V� on F ,

� u d�̂ =� u d� ,

for any function u that is harmonic in H \F and continuous in H̄.

Similarly consider �̂, the balayage of � to G. We trivially have

E�G� � E��̂� ,

E�F� � E��̂� .

Lemma 1: Suppose Q�F, � some positive measure supported in K and �̂ is the Green’s
balayage to Q. Then

V�̂ = V� − VQc
� ,

E��̂� = E��� − EQc��� ,

where EQc��� is the unweighted Green energy with respect to Qc=K \Q. In particular, since
unweighted energies are non-negative,

E��̂� � E��� .

Proof: The first identity follows from the fact that V�̂−V� vanishes on Q and the real line, and
is harmonic in Qc and superharmonic in K.

Integrating E��̂�=�V�̂ d�̂=�V� d�̂−�VQc
� d�̂=��V�−VQc

� �d�=E���−EQc���. The proof of
the Lemma follows.

So, let u be a function harmonic in H \F such that u= on F and u=0 on �H \F. By the
definition of balayage one has � d�̂=�u d�.

We have E�F��E��̂�=E��̂�+2� d�̂�E���+2� d�+2��u−�d�=E���+2��u

−�d�=E�G�+2��u−�d�.

In a small neighborhood of F, F̄d= �z :d�z ,F��d�, we have

�2� �u − ��y�d��y�� � C maxy�F̄d
�u�y� − �y�� . �19�

We assumed here that the equilibrium measures on continua near F are bounded above. This
is easy to see. Suppose, first, that the point � is not in F. Indeed, on the support of the equilibrium
measure �, we have

V� +  = 0.

If the equilibrium measures on continua near F were unbounded, then so would be the potentials
V�. But  is definitely bounded near F. This contradicts the above equality.

Now given y� F̄d, choose z�F such that �z−y�=d. The above expression �19� is less or equal
than

C maxy�F̄d
�u�y� − �y� − u�z� + �z�� � o�1� + C maxy�F̄d

�u�y� − u�z�� .

It remains to bound �u�y�−u�z�� by an o�1� quantity.
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The next Lemma is due to Milloux and can be found in Ref. 8.
Lemma 2: Suppose D is an open disc of radius R, with center z0; let y be a point in D, F a

continuum in C, containing z0, and � be the connected component of D \F containing y. Let w�z�
be a function harmonic in � such that

w�z� = 0, z � F � �� ,

w�z� = 1, z � �� \ F .

Then w�y��C��y−z0� /R�1/2.
Proof: See Ref. 8, p. 347.
Now, select a disc of radius d1/2, centered on z. We have �u�y�−u�z��=o�1� on the part of F

lying in the disc, while �u�y�−u�z�� is bounded by some positive constant M on the disc bound-
ary.

Lemma 3: Let � be a domain, ��=F1�F2 and

w1 = 0, z � F1 = 1, z � F2,

w2 = 1, z � F1 = 0, z � F2.

Suppose u is harmonic in � and

u�z� � �, z � F1,

u�z� � M, z � F2.

Then u�z���w2�z�+Mw1�z�.
Proof: Maximum principle.
Now, using Milloux’s lemma, we get �u�y�−u�z���o�1�w2�z�+Mw1�z��o�1�+MC��y

−z� /d�1/2�o�1�+MCd1/2. This concludes the proof of Theorem 2.
We now recall that the energy continuity proof was based on the continuity of . In our case,

	 is upper semicontinuous and discontinuous at �. Still we can prove that the energy is upper
semicontinuous and that will be enough.

Theorem 3: For the external field given by �3��, the energy functional defined in �18� is upper
semicontinuous.

Proof: We first note that if the external field 	� is upper semicontinuous away from infinity
then so is the energy functional that takes a given continuum F to the equilibrium energy of F.
Indeed, if 	� is upper semicontinuous away from infinity, then there exists a sequence of continu-
ous functions �away from infinity� such that 	n↓	�. Each functional E	n

�F� is continuous, away
from infinity, and E	n

�F�↓E	��F�. So, E	��F� is upper semicontinuous, away from infinity.
Now consider the field 	 given by �3��. Let F be a continuum. If � is not in F, then we are

done. If ��F, let �=�F be the equilibrium measure. We can assume that on the equilibrium
measure 	 is bounded by 0. Indeed, on the support of the equilibrium measure �, we have

V� + 	 = 0.

But V��0, so 	�0.
This means that we can change 	 to 	�=min�	 ,0�, which is an upper semicontinuous func-

tion. Theorem 3 is proved.
Remark: If we naively consider the functional taking a measure to its weighted energy we will

see that it is not continuous even if the external field is continuous. It is essential that the energy
functional is defined on equilibrium measures.
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IV. PROOF OF EXISTENCE OF A MAXIMIZING CONTINUUM

Theorem 4: For the external field given by �3��, there exists a continuum F�F such that the
equilibrium measure �F exists and

E	�F��=E	��F�� = maxF�F min��M�F� E	��� .

Proof: We know �see, for example, Sec. II� that there is at least one continuum F for which the
equilibrium measure exists and E	��F��−�, for all time. On the other hand, clearly E	��F��0
for any F. Hence the supremum over continua in F is finite �and trivially nonpositive�, since F is
compact. Call it L.

We can now take a sequence Fn such that E	�Fn�→L. Choose a convergent subsequence of
continua Fn→F, say. By upper semicontinuity of the weighted energy functional,

lim sup E	�Fn� � E	�F� � L = lim E	�Fn� .

So L=E	�F�. The theorem is proved.

V. ACCEPTABILITY OF THE CONTINUUM

We have thus shown that a solution of the maximum-minimum problem exists. We do not
know yet that the maximizing continuum is a contour. Clearly the pieces of the continuum lying
in the region where the external field is positive do not support the equilibrium measure and by the
continuity of the external field they can be perturbed to a finite union of analytic arcs. The real
problem is to show that the support of the equilibrium measure is a finite union of analytic arcs.
This will follow from the analyticity properties of the external field.

Note that the maximizing continuum cannot be unique, since the subset where the equilibrium
measure is zero can be perturbed without changing the energy. A more interesting question is
whether the support of the equilibrium measure of the maximizing contour is unique. We do not
know the answer to this question but it is not important as far as the application to the semiclas-
sical limit of NLS is concerned. �See Appendix B.�

It is important however, that the maximizing continuum does not touch the boundary of the
space K except of course at the points 0−, 0+, and perhaps at �. This is to guarantee that variations
with respect to the maximizing contour can be properly taken.

The proof of the acceptability of the continuum requires two things.

�i� The continuum does not touch the real negative axis.
�ii� The continuum does not touch the real positive axis.

We will also make the following assumption.
Assumption (A): The continuum maximizing the equilibrium energy does not touch the linear

segment �0, iA�.
Remark: Assumption �A� is not satisfied at t=0, where in fact the continuum is a contour F0

wrapping around the linear segment �0, iA�. However, the case t=0 is well understood. The
equilibrium measure for F0 exists and its support is connected. On the other hand, assumption �A�
is satisfied for small t�0. �See Chap. 6 of Ref. 3.�

Remark: It is conceivable that at some positive t0 there is an x for which assumption �A� is not
satisfied. It can in fact be dropped but the analysis of the semiclassical limit of the nonlinear
Schrödinger equation will get more tedious; see Appendix C.

Proposition 2: The continuum maximizing the equilibrium energy does not touch the real axis
except at the points zero and possibly infinity.

Proof: �i� If z�0, then 	�z�=
�z
0��0����d��0.

This follows from an easy calculation, using the conditions defining �0. But we can always
delete the strictly positive measure lying in a region where the field is positive and make the
energy smaller. So even the solution of the “inner” minimizing problem must lie away from the
real negative axis.
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�ii� If z�0, then again a short calculation shows that d	 /d Im z�0, for t�0.
It is crucial here that if u�R then G�u ,v�=0, while if both u, v are off the real line

G�u ,v��0. Hence, for any configuration that involves a continuum including points on the real
line, we can find a configuration with no points on the real line, by pushing measures up away
from the real axis, which has greater �unweighted and weighted� energy. So, suppose the maxi-
mizing continuum touches the axis. We can always push the measures up away from the real axis
and end up with a continuum that has greater minimal energy, thus arriving at a contradiction.

The proposition is now proved.
Remark: It is also important to consider the point at infinity. We cannot prove that the

continuum does not hit this point. �In fact, our numerics �Ref. 3, Chap. 6� show that it may well
do so.� In connection with the semiclassical problem �9� and �10� as analyzed in Ref. 3, it might
seem at first that the maximizing continuum should not pass through infinity. Indeed, the trans-
formations �2.17� and �4.1� of Ref. 3 implicitly assume that the continuum C lies in C. Otherwise,
one would lose the appropriate normalization for M at infinity. However, one must simply notice
that infinity is just an arbitrary choice of normalizing point, once we view our Riemann-Hilbert
problems in the compact Riemann sphere. The important observation is that the composition of
transformations �2.17� and �4.1� �which are purely formal, i.e., no estimates are required and no
approximation is needed� does not introduce any bad �essential� singularities. In the end, the

asymptotic behavior of Ñ� is still the identity as z→� in the lower half-plane and nonsingular as
z→� in the upper half-plane. So, in the end it is acceptable for a continuum to go through the
point infinity.

VI. TAKING SMALL VARIATIONS

We now complexify the external field and extend it to a function in the whole complex plane,
by turning a Green’s potential to a logarithmic potential. We will thus be able to make direct use
of the results of Ref. 5.

We let, for any complex z,

V�z� = − �
−iA

iA

log�z − ���0���d� − 	2ixz + 2itz2 + i
�
z

iA

�0���d�
 �20�

and VR=Re V be the real part of V. In the lower half-plane the function �0 is extended simply by

�0��*� = ��0����*. �20��

Note right away that the field 	 defined in �3�� is the restriction of VR=Re V to the closed upper
half-plane.

The actual contour of the logarithmic integral is chosen to be the linear segment � joining the
points −iA ,0 , iA. The branch of the logarithm function log�z−�� is then defined to agree with the
principal branch as z→�, and with jump across the very contour �.

The unweighted Green’s energy �4� can be written as

EVR
��� = �

supp �
�

supp �

log
1

�u − v�
d��u�d��v� + 2�

supp �

VR�u�d��u� , �21�

where the measures � are extended to the lower half complex plane by

��z*� = − ��z� . �21��

�So they are “signed” measures.�
Having established in Sec. V that the contour solving the variational problem does not touch

the real line we can take small variations of measures and contours, never intersecting the real line,
and keeping the points 0−, 0+ fixed. In view of �21�� we can think of them as variations of
measures symmetric under �21�� in the full complex plane, never intersecting the real line, and
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keeping the points 0−, 0+ fixed. The perturbed measures do not change sign. The fact that � can
belong to the contour is not a problem. Our variations will keep it automatically fixed.

The first step is to show that the solution of the variational problem satisfies a crucial relation.
Remark: It is not hard to see that the variational problem of Theorem 4 is actually equivalent

to the variational problem of maximizing equilibrium measures on continua in the whole complex
plane, under the symmetry �21�� and the condition that measures are to positive in the upper
half-plane and negative in the lower half-plane.

Theorem 5: Let F be the maximizing continuum of Theorem 4 and �F be the equilibrium
measure minimizing the weighted logarithmic energy �6� under the external field VR=Re V where
V is given by �20�. Let � be the extension of �F to the lower complex plane via ��z*�=−��z�.
Then

Re	� d��u�
u − z

+ V��z�
2

= Re�V��z��2 − 2 Re� V��z� − V��u�
z − u

d��u�

+ Re	 1

z2 � 2�u + z�V��u�d��u�
 . �22�

Proof: We first need to prove the following.
Theorem 6: Let � be a critical point of the functional taking a continuum ��F to EVR

����,
and assume that � is not tangent to R. Also assume that � does not touch the segment �0, iA�
except at zero. Let � be the extension of �� via ��z*�=−��z�, O� be an open set containing the
interior of ���* and h�C1�O�� such that h�0�=0. We have

Re	� � h�u� − h�v�
u − v

d��u�d��v�
 = 2 Re	� V��u�h�u�d��u�
 . �23�

Proof: Consider the family of �signed� measures ��� ,��C , �����0� defined by d���z��
=d��z� where z�=z+�h�z�, or equivalently, �f�z�d���z�=�f�z��d��z�, f �L1�O��. Assume that �
is small enough so that the support of the deformed continuum does not hit the linear segment
�0, iA� or a nonzero point in the real line.

With ĥ= ĥ�u ,v�= �h�u�−h�v�� / �u−v�, we have �u�−v�� / �u−v�=1+�ĥ, so that log�1/ �u�

−v���−log�1/ �u−v��=−log�1+�ĥ�=−Re��ĥ�+O��2�.
Integrating with respect to d��u�d��v� we arrive at

E���� − E��� = − Re	�� ĥ d��u�d��v�
 + O��2� , �24�

where E��� denotes the free logarithmic energy of the measure �. Also,

� VR d�� −� VR d� = 2� �VR�u�� − VR�u��d��u� = 2 Re	�� V��u�h�u�d��u�
 + O��2� .

Combining with the above,

EVR
���� − EVR

��� = Re	− �� ĥ d��u�d��v� + 2�� V�h d�
 + O��2� . �25�

So, if � is �the symmetric extension of� a critical point of the map �→EVR
��� the linear part

of the increment is zero. In other words given a C1 function h and a measure � the function
EVR

���� of � is differentiable at �=0 and the derivative is

Re�− H����, where H��� =� � ĥ d�2 − 2� V�h d� . �26�
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But what we really want is the derivative of the energy as a function of the equilibrium
measure. This function can be shown to be differentiable and its derivative can be set to zero at a
critical continuum.

Indeed, we need to show the following.
Lemma 4:

d

d�
EVR

����������=0 =
d

d�
EVR

��������=0 = 0.

In the relation above ��=supp�����. The first derivative is of a function of general measures. The
second derivative is of a function of equilibrium measures.

Proof: Define the measure �� with support � and such that �����=���.
LEMMA 5: With H defined by �26�, we have

Re H���� → Re H���� ,

as �→0.
Proof: By �25� and �26�, we have

EVR
������� − EVR

���� = − Re��H���� + O��2�� ,

EVR
����� − EVR

���� = − Re��H���� + O��2�� .

On the other hand, EVR
�����EVR

����, and EVR
��������EVR

�����. It follows that

EVR
���� − Re��H����� + O��2� = EVR

����� � EVR
������� = EVR

���� − Re��H����� + O��2� .

Hence EVR
����→EVR

����.
As in the proof of Theorem 1, it follows that ��→�� weakly; see Ref. 7, pp. 82–88. It then

follows immediately that H����→H����. This proves Lemma 5.
To complete the proof of Lemma 4, we note that 0�EVR

�������−EVR
�����EVR

�����
−EVR

����=−Re��H�����+O��2�. Hence the derivative of EVR
������� at �=0 is equal to the deriva-

tive of EVR
����� at �=0 which is equal to Re H����. This proves Lemma 4 and Theorem 6.

Proof of Theorem 5: Consider the Schiffer variation, i.e., take h�u�=u2 / �u−z� where z is some
fixed point not in �. Note that h�0�=0 so that the deformation z�=z+�h�z� keeps the points 0+ ,0−

fixed. Also assume that � is small enough so that the support of the deformed continuum does not
hit the linear segment �0, iA� or a nonzero point in the real line. We have

ĥ = ĥ�u,v� =
h�u� − h�v�

u − v
= 1 −

z2

�u − z��v − z�
,

and therefore

Re	� � ĥ�u,v�d��u�d��v�
 = Re� � du�u�d��v� − z2	�
supp �

d��u�
u − z 
2� .

Next
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Re	� 2V��u�h�u�d��u�
 = 2 Re	� �u + z�V��u�d��u� + z2� V��u�d��u�
u − z



= Re	� 2V��u��u + z�d��u� + 2z2� V��u� − V��z�

u − z
d��u�

+ 2z2V��z� � d��u�
u − z


 .

Theorem 5 now follows from Theorem 6.
Remark: If our continuum is allowed to touch the point iA �so we slightly weaken assumption

�A�� then we may need to keep points ±iA fixed under a small variation. We can then choose the
Schiffer variation h�u�=u2�u2+A2� / �u−z�. We will arrive at a similar and equally useful formula.

In general if one wants to keep points a1 , . . . ,as fixed, the appropriate Schiffer variation is
h�u�=�i=1

i=s�u−ai� / �u−z�.
Proposition 3: The support of the equilibrium measure consists of a finite number of analytic

arcs.
Proof: Theorem 5 above implies that the support of � is the level set of the real part of a

function that is analytic except at countably many branch points. In fact, supp � is characterized
by �log�1/ �u−z��d��u�+VR�z�=0. From Theorem 5 we get

Re	� d��u�
u − z

+ V��z�
 = Re��R��z��1/2� , �27�

where

R��z� = �V��z��2 − 2�
supp �

V��z� − V��u�
z − u

d��u� +
1

z2	�
supp �

2�u + z�V��u�d��u�
 . �28�

This is a function analytic in K, with possibly a pole at zero. By integrating, we have that supp���
is characterized by

Re �z

�R��1/2 dz = 0. �29�

The locus defined by �29� is a union of arcs with endpoints at zeros of R�. To see this, consider
�29� as an equation of two real variables f�u ,v�=0 and try to solve for u as an analytic expression
of v. One can only do this if the derivative of f is nonzero, which means �via the Cauchy-Riemann
equations� that R��0. The points where R�=0 are exactly the points where the analytic arcs
cannot be continued.

Note that

R��z� � − �16t2z2 + 
2��0�z��2�, as z → � ,

�30�

R��z� �
1

z2 � 2uV��u�d��u�, as z → 0.

By conditions �1� for �0, R� is blowing up at the point � �at least for t�0; but the case t
=0 is well understood: the equilibrium measure consists of a single analytic arc; see Sec. V�.
Hence it can only have finitely many zeros near infinity, otherwise they would have to accumulate
near � and then R� would be 0 there. On the other hand, R� cannot have an accumulation point
of zeros at z=0, because even if the pole at 0 were removed �the coefficients of 1 /z2, 1 /z being
zero�, R� would be holomorphically extended across z=0. So, R� can only have a finite number of

zeros in K̄. It follows that the support of the maximizing equilibrium measure consists of only
finitely many arcs.
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REMARK: Of course, conditions �1� can be weakened. We could allow �0 to have a pole at
infinity of order other than two. But our aim here is not to prove the most general theorem
possible, but instead illustrate a method that can be applied in the most general settings under
appropriate amendments.

Remark: The assumption that �0 is continuous and hence bounded at infinity is only needed to
prove the finiteness of the components of the support of the equilibrium measure of the maximiz-
ing continuum. If it is dropped then we may have an infinite number of components for isolated
values of x , t. This will result in infinite genus representations of the semiclassical asymptotics. Of
course infinite genus solutions of the focusing NLS equation are known and well understood. So
the analysis of Ref. 3 is expected to also apply in that case, although it will be more tedious.

For a justification of the “finite gap ansatz,” concerning the semiclassical limit of focusing
NLS, it only remains to verify the “S-property.”

VII. THE S-PROPERTY

Theorem 7: �The S-property.�
Let C be the contour maximizing the equilibrium energy, for the field given by �3�� with

conditions �1�. Let � be the extension of its equilibrium measure to the full complex plane via
�21��. Assume for simplicity that assumption �A� holds. Let X�z�=�supp �log�1/ �u−z��d��u�,
XR�z�=Re X�z�=�supp �log�1/ �u−z��d��u�, W�=X�. Then, at any interior point of supp � other
than zero,

d

dn+
�VR + XR� =

d

dn−
�VR + XR� , �8��

where the two derivatives above denote the normal derivatives, on the � and � sides, respec-
tively.

Proof: From Theorem 5, we have

�Re�W��z� + V��z��� = �Re�R���1/2.

Using the definition for X, the above relation becomes

� d

dz
Re�X + V�� = �Re�R���1/2.

Now, Re�X+V�=0 on the support of the equilibrium measure. So, in particular Re�X+V� is
constant along the equilibrium measure. Hence ��d /dz�Re�X+V�� must be equal to the modulus of
each normal derivative across the equilibrium measure. So,

� d

dn±
�VR + Re X�� = � d

dz
Re�X + V�� = �Re�R���1/2.

Hence,

� d

dn+
�VR + Re X�� = � d

dn−
�VR + Re X�� .

But it is easy to see that both LHS and RHS quantities inside the modulus sign are negative. This
is because VR+Re X=0 on supp � and negative on each side of supp �. Hence result.

Remark: Once Theorem 7 is proved it follows by the Cauchy-Riemann equations that �VI

+Im X�++ �VI+Im X�− is constant on each connected component of supp �, which means that
Im 	̃ is constant on connected components of the contour, where 	̃ is as defined in formula �4.13�
of Ref. 3. This proves the existence of the appropriate “g functions” in Ref. 3.

We recapitulate our results in the following theorem, set in the upper complex half-plane.
Note that �8�� is the “doubled up” version of �8�.
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Theorem 8: Let 	 be given by �3��, where �0 satisfies conditions �1�. Under assumption �A�,
there is a piecewise smooth contour C�F, containing points 0+ ,0− and otherwise lying in the cut
upper half-plane K, with equilibrium measure �C, such that supp��C� consists of a union of finitely
many analytic arcs and

E	��C� = maxC��F E	��C�� = maxC��F�inf��M�F� E	���� .

On each interior point of supp��C� we have

d

dn+
�	 + V�C

� =
d

dn−
�	 + V�C

� , �8��

where V�C
is the Green’s potential of the equilibrium measure �C �see �5�� and the two derivatives

above are the normal derivatives.
A curve satisfying �8� such that the support of its equilibrium measure consists of a union of

finitely many analytic arcs is called an S-curve.
Proof: The fact that the maximizing continuum C is actually a contour is proved as follows.

If this were not the case, then we could choose a subset of C, say F, which is a contour, starting
at 0+ and ending at 0−, and going around the point iA. Clearly, by definition, the equilibrium
energy of C is less than the equilibrium energy of F, i.e., E	��C��E	��F�. On the other hand,
since C maximizes the equilibrium energy, we have E	��F��E	��C�. So E	��F�=E	��C�.

VIII. CONCLUSION

In view of the interpretation of the variational problem in terms of the semiclassical NLS
problem, we have the following result.

Consider the semiclassical limit ��→0� of the solution of �9� and �10� with bell-shaped initial
data. Replace the initial data by the so-called soliton ensembles data �as introduced in Ref. 3�
defined by replacing the scattering data for �x ,0�=0�x� by their WKB approximation, so that
the spectral density of eigenvalues is

d�0
WKB��� ª �0�����0,iA����d� + �0��*���−iA,0����d� ,

with �0��� ª
�



�

x−���

x+��� dx
�A�x�2 + �2

=
1




d

d�
�

x−���

x+���
�A�x�2 + �2d� ,

for �� �0, iA�, where x−����x+��� are the two real turning points, i.e., �A�x±��2+�2=0, the
square root is positive and the imaginary segments �−iA ,0� and �0, iA� are both considered to be
oriented from bottom to top to define the differential d�.

Assume that �0 satisfies conditions �1�. Then, under assumption �A�, asymptotically as �
→0, the solution �x , t� admits a “finite genus description.” �For a more precise explanation, see
Appendix B.�

The proof of this is the main result of Ref. 3, assuming that the variational problem of Sec. I
has an S-curve as a solution. But this is now guaranteed by Theorem 8.

Remark: For conditions weaker than the above, the particular spectral density �0 arising in the
semiclassical NLS problem can conceivably admit branch singularities in the upper complex plane
and condition �1� will not be satisfied. We claim that even in such a case the finite gap genus can
be justified, at least generically. The proof of this fact will require setting the variational problem
on a Riemann surface with moduli at the branch singularities of �0.

Remark: Consider the semiclassical problem �9� and �10� in the case of initial data 0�x�
=A sech x, where A�0. Then the WKB density is given by �0= i �see �3.1� and �3.2� of Ref. 3;
note that condition �1� is satisfied�. So the finite genus ansatz holds for any x, t, as long as the
assumption �A� of Sec. V holds. But then assumption �A� can be eventually dropped; see Appen-
dix C.
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Remark: The behavior of a solution of �9� in general depends not only on the eigenvalues of
the Lax operator, but also on the associated norming constants and the reflection coefficient. In the
special case of the soliton ensembles data the norming constants alternate between −1 and 1 while
the reflection coefficient is by definition zero. More generally, for real analytic data decaying at
infinity the reflection coefficient is exponentially small everywhere except at zero and can be
neglected �although the rigorous proof of this is not trivial�.
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APPENDIX A: COMPACTNESS OF THE SET OF CONTINUA

In this section we prove that the sets I�K̄� and hence F defined in Sec. I are compact and
complete.

As stated in Sec. I, the space we must work with is the upper half-plane: H= �z : Im z�0�. The

closure of this space is H̄= �z : Im z�0�� ���. Also K= �z : Im z�0� \ �z :Re z=0,0� Im z�A�. In

the closure of this space, K̄, we consider the points ix+ and ix−, where 0�x�A as distinct.
Even though we eventually wish to consider only smooth contours, we are forced to a priori

work with general closed sets. The reason is that the set of contours is not compact in any
reasonable way, so it seems impossible to prove any existence theorem for a variational problem

defined only on contours. Instead, we define F to be the set of all “continua” F in K̄ �i.e.,
connected compact sets, containing the points 0+ ,0−�.

Furthermore, we need to introduce an appropriate topology on F, that will make it a compact
set. In this we follow the discussion of Dieudonné �Ref. 6, Chap. III.16�.

We think of the closed upper half-plane H̄ as a compact space in the Riemann sphere. We thus

choose to equip H̄ with the “chordal” distance, denoted by d0�z ,��, that is the distance between the

images of z and � under the stereographic projection. This induces naturally a distance in K̄ �so,
for example, d0�0+,0−��0�. We also denote by d0 the induced distance between compact sets E ,F

in K̄: d0�E ,F�=maxz�E min��F d0�z ,��. Then, we define the so-called Hausdorff metric on the set

I�K̄� of closed nonempty subsets of K̄ as follows:

dK�A,B� = sup�d0�A,B�,d0�B,A�� . �A1�

Lemma A.1: The Hausdorff metric defined by �A1� is indeed a metric. The set I�K̄� is compact
and complete.

Proof: It is clear that dK�A ,B� is non-negative and symmetric by definition. Also if
dK�A ,B�=0, then d0�A ,B�=0, hence maxz�A min��B d0�z ,��=0 and thus for all z�A, we have
min��B d0�z ,��=0. In other words, z�B. By symmetry, A=B.

The triangle inequality follows from the triangle inequality for d0. Indeed, suppose A ,B ,C

� I�K̄�. Then dK�A ,B�=sup�d0�A ,B� ,d0�B ,A��=d0�A ,B�, without loss of generality. Now,

d0�A,B� = maxz�A min��B d0�z,�� � maxz�A min��B min�0�C�d0�z,�0� + d0��0,��� ,

by the triangle inequality for d0. Let z=z0�A be the value of z that maximizes
min��B min�0�C�d0�z ,�0�+d0��0 ,���. This is then
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min��B min�0�C�d0�z0,�0� + d0��0,��� � min�0�C d0�z0,�0� + min��B min�0�C d0��0,��

� maxz�A min�0�C d0�z,�0� + max��B min�0�C d0��0,��

� d0�A,C� + d0�B,C� � dK�A,C� + dK�B,C� .

The result follows from symmetry.

We will next show that I�K̄� is complete and precompact. Since a precompact, complete
metric space is compact �Ref. 6, proposition �3.16.1�� the proof of Lemma A.1 follows.

Lemma A.2: If the metric space E equipped with a distance d0 is complete, then so is I�E�, the
set of closed nonempty subsets of E, equipped with the Hausdorff distance

dE�A,B� = sup�d0�A,B�,d0�B,A�� ,

for any closed nonempty subsets A ,B, where d0�A ,B�=maxa�A minb�B d0�a ,b�.
Furthermore, if E is precompact, then so is I�E�.
Proof: Suppose E is complete. Let Xn be a Cauchy sequence in I�E�. We will show that Xn

converges to X=�n�0�̄p�0Xn+p. �Overbar denotes closure.�
Indeed, given any ��0,

d0�Xn,X� = maxx�Xn
miny�X d0�x,y� � maxx�Xn

maxy��̄p�0Xn+p
d0�x,y� � � ,

for large n, by the completeness of E. Similarly,

d0�X,Xn� = maxx�X miny�Xn
d0�x,y� � maxx��̄p�0Xn+p

miny�Xn
d0�x,y� � � .

Next, suppose E is precompact. Then, by definition, given any ��0, there is a finite set, say
S= �s1 ,s2 , . . . ,sn�, where n is a finite integer, such that any point x of E is at a distance d0 less than
� to the set S. Now, consider the set of subsets of S, which is of course finite. Clearly every closed
set is at a distance less than � to a member of that set,

d0�A,S� = maxa�A mins�S d0�a,s� � � ,

d0�S,A� = maxs�S mina�A d0�a,s� � � ,

for any closed nonempty set A. Hence dE�A ,S���.
So, any closed nonempty set A is at a distance less than � to the finite power set of S. So I�E�

is precompact.

APPENDIX B: THE DESCRIPTION OF THE SEMICLASSICAL LIMIT OF THE FOCUSING
NLS EQUATION UNDER THE FINITE GENUS ANSATZ

We present one of the main results of Ref. 3 on the semiclassical asymptotics for problem �9�
and �10�, in view of the fact that the finite genus ansatz holds. In particular, we fix x , t and use the
result that the support of the maximizing measure of Theorems 4 and 8 consists of a finite union
of analytic arcs.

First, we define the so-called g function. Let C be the maximizing contour of Theorem 4. A
priori we seek a function satisfying

g��� is independent of � ,

g��� is analytic for � � C \ �C � C*� ,

g��� → 0 as � → � ,

g��� assumes continuous boundary values from both sides of C � C*,
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denoted by g+�g−� on the left �right� of C � C*,

g��*� + g���* = 0 for all � � C \ �C � C*� .

The assumptions above are satisfied if we write g in terms of the maximizing equilibrium
measure of Theorem 8, d�=d�C=����d�, doubled up according to �21��. Indeed,

g��� = �
C�C*

log�� − ������d� ,

for an appropriate definition of the logarithm branch �see Ref. 3�.
For ��C, define the functions

���� ª i�g+��� − g−���� ,

���� ª �
0

iA

log�� − ���0���d� + �
−iA

0

log�� − ���0��*�*d�

+ 2i�x + 2i�2t + i
�
�

iA

�0���d� − g+��� − g−��� ,

where �0��� is the holomorphic function �WKB density of eigenvalues� introduced in Sec. I �see
conditions �1��.

The finite genus ansatz implies that for each x , t there is a finite positive integer G such that
the contour C can be divided into “bands” �the support of ����d�� and “gaps” �where �=0�. We
denote these bands by Ij. More precisely, we define the analytic arcs Ij , Ij

* , j=1, . . . ,G /2 as follows
�they come in conjugate pairs�. Let the points � j, j=0, . . . ,G, in the open upper half-plane be the
branch points of the function g. All such points lie on the contour C and we order them as
�0 ,�1 , . . . ,�G, according to the direction given to C. The points �0

* ,�1
* , . . . ,�G

* are their complex
conjugates. Then let I0= �0,�0� be the subarc of C joining points 0 and �0. Similarly, Ij

= ��2j−1 ,�2j�, j=1, . . . ,G /2. The connected components of the set C \� j�Ij� Ij
*� are the so-called

“gaps,” for example, the gap �1 joins �0 to �1, etc.
It actually follows from the properties of g, � that the function ���� defined on C is constant

on each of the gaps � j, taking a value which we will denote by � j, while the function � is constant
on each of the bands, taking the value denoted by � j on the band Ij.

The finite genus ansatz for the given fixed x , t implies that the asymptotics of the solution of
�9� and �10� as �→0 can be given by the next theorem.

Theorem A.1: Let x0, t0 be given. The solution �x , t� of �9� and �10� is asymptotically
described �locally� as a slowly modulated G+1 phase wavetrain. Setting x=x0+�x̂ and t= t0+�t̂,
so that x0 , t0 are “slow” variables while x̂ , t̂ are “fast” variables, there exist parameters

a ,U= �U0 ,U1 , . . . ,UG�T, k= �k0 ,k1 , . . . ,kG�T, w= �w0 ,w1 , . . . ,wG�T, Y = �Y0 ,Y1 , . . . ,YG�T, Z
= �Z0 ,Z1 , . . . ,ZG�T �depending on the slow variables x0 and t0 �but not x̂t̂� such that

�x,t� = �x0 + �x̂,t0 + �t� � a�x0,t0�eiU0�x0,t0�/�ei�k0�x0,t0�x̂−w0�x0,t0�t�

�
��Y�x0,t0� + iU�x0,t0�/� + i�k�x0,t0�x̂ − w�x0,t0�t��
��Z�x0,t0� + iU�x0,t0�/� + i�k�x0,t0�x̂ − w�x0,t0�t��

. �B1�

All parameters can be defined in terms of an underlying Riemann surface X. The moduli of X
are given by � j, j=0, . . . ,G and their complex conjugates � j

*, j=0, . . . ,G. The genus of X is G.
The moduli of X vary slowly with x , t, i.e., they depend on x0 , t0 but not x̂ , t̂. For the exact formulas
for the parameters as well as the definition of the theta functions we present the following con-
struction.
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The Riemann surface X is constructed by cutting two copies of the complex sphere along the
slits I0� I0

* , Ij , Ij
* , j=1, . . . ,G, and pasting the “top” copy to the “bottom” copy along these very

slits.
We define the homology cycles aj ,bj, j=1, . . . ,G as follows. Cycle a1 goes around the slit

I0� I0
* joining �0 to �0

*, remaining on the top sheet, oriented counterclockwise, a2 goes through the
slits I−1 and I1 starting from the top sheet, also oriented counterclockwise, a3 goes around the slits
I−1 , I0� I0

* , I1 remaining on the top sheet, oriented counterclockwise, etc. Cycle b1 goes through I0

and I1 oriented counterclockwise, cycle b2 goes through I−1 and I1, also oriented counterclockwise,
cycle b3 goes through I−1 and I2, and around the slits I−1 , I0� I0

* , I1, oriented counterclockwise, etc.
On X there is a complex G-dimensional linear space of holomorphic differentials, with basis

elements �k�P� for k=1, . . . ,G that can be written in the form

�k�P� =
� j=0

G−1
ckj��P� j

RX�P�
d��P� ,

where RX�P� is a “lifting” of the function R��� from the cut plane to X, if P is on the first sheet of
X then RX�P�=R���P�� and if P is on the second sheet of X then RX�P�=−R���P��. The coeffi-
cients ckj are uniquely determined by the constraint that the differentials satisfy the normalization
conditions

�
aj

�k�P� = 2
i jk.

From the normalized differentials, one defines a G�G matrix H �the period matrix� by the
formula

Hjk = �
bj

�k�P� .

It is a consequence of the standard theory of Riemann surfaces that H is a symmetric matrix whose
real part is negative definite.

In particular, we can define the theta function

��w� ª �
n�ZG

exp	1

2
nTHn + nTw
 ,

where H is the period matrix associated to X. Since the real part of H is negative definite, the
series converges.

We arbitrarily fix a base point P0 on X. The Abel map A: X→Jac�X� is then defined compo-
nentwise as follows:

Ak�P;P0� ª �
P0

P

�k�P��, k = 1, . . . ,G ,

where P� is an integration variable.
A particularly important element of the Jacobian is the Riemann constant vector K which is

defined, modulo the lattice !, componentwise by

Kk ª 
i +
Hkk

2
−

1

2
i
�
j=1

j�k

G �
aj

	� j�P��
P0

P

�k�P��
 ,

where the index k varies between 1 and G.
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Next, we will need to define a certain meromorphic differential on X. Let ��P� be holomor-
phic away from the points �1 and �2, where it has the behavior

��P� = dp���P�� + 	d��P�
��P�2 
, P → �1,

��P� = − dp���P�� + O	d��P�
��P�2 
, P → �2,

and made unique by the normalization conditions

�
aj

��P� = 0, j = 1, . . . ,G .

Here p is a polynomial, defined as follows.
First, let us introduce the function R��� defined by

R���2 = �
k=0

G

�� − �k��� − �k
*� ,

choosing the particular branch that is cut along the bands Ik
+ and Ik

− and satisfies

lim
x→�

R���
�G+1 = − 1.

This defines a real function, i.e., one that satisfies R��*�=R���*. At the bands, we have R+���
=−R−���, while R��� is analytic in the gaps. Next, let us introduce the function k��� defined by

k��� =
1

2
i
�
n=1

G/2

�n�
�n

+��n
−

d�

�� − ��R���
+

1

2
i
�
n=0

G/2 �
In
+�In

−

�n d�

�� − ��R+���
.

Next let

H��� = k���R��� .

The function k satisfies the jump relations

k+��� − k−��� = −
�n

R���
, � � �n

+ � �n
−,

k+��� − k−��� = −
�n

R+���
, � � In

+ � In
−,

and is otherwise analytic. It blows up like ��−�n�−1/2 near each endpoint, has continuous boundary
values in between the endpoints, and vanishes like 1/� for large �. It is the only such solution of
the jump relations. The factor of R��� renormalizes the singularities at the endpoints, so that, as
desired, the boundary values of H��� are bounded continuous functions. Near infinity, there is the
asymptotic expansion

H��� = HG�
G + HG−1�

G−1 + ¯ + H1� + H0 + O��−1� = p��� + O��−1� , �B2�

where all coefficients Hj of the polynomial p��� can be found explicitly by expanding R��� and
the Cauchy integral k��� for large �. It is easy to see from the reality of � j and � j that p��� is a
polynomial with real coefficients.

Thus the polynomial p��� is defined and hence the meromorphic differential ��P� is defined.
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Let the vector U�CG be defined componentwise by

Uj ª �
bj

��P� .

Note that ��P� has no residues.
Let the vectors V1, V2 be defined componentwise by

V1,k = �Ak��1+
* � + Ak��2+� + Ak��3+

* � + ¯ + Ak��G+�� + Ak��� + 
i +
Hkk

2
,

V2,k = �Ak��1+
* � + Ak��2+� + Ak��3+

* � + ¯ + Ak��G+�� − Ak��� + 
i +
Hkk

2
,

where k=1, . . . ,G, and the � index means that the integral for A is to be taken on the first sheet
of X, with base point �+

0.
Finally, let

a =
��Z�
��Y��k=0

G

�− 1�kJ��k� ,

kn = �xUn, wn = − �tUn, n = 0, . . . ,G ,

where

Y = − A��� − V1, Z = A��� − V1,

and U0=−��1+�0� where �1 is the �constant in �� value of the function � in the gap �1 and �0 is
the �constant� value of the function 	 in the band I0.

Now, the parameters appearing in formula �B1� are completely described.
We simply note here that the Ui and hence the ki and wi are real. We also note that the

denominator in �B1� never vanishes �for any x0 , t0 , x̂ , t̂�.
Remark: Theorem A.1 presents pointwise asymptotics in x , t. In Ref. 3, these are extended to

uniform asymptotics in certain compact sets covering the x , t plane. Error estimates are also given
in Ref. 3.

Remark: As mentioned above, we do not know if the support of the equilibrium measure of
the maximizing continuum is unique. But the asymptotic formula �B1� depends only on the
endpoints � j of the analytic subarcs of the support. Since the asymptotic expression �B1� must be
unique, it is easy to see that the endpoints also must be unique. Different Riemann surfaces give
different formulas �except of course in degenerate cases, a degenerate genus 2 surface can be a
pinched genus 0 surface and so on�.

APPENDIX C: DROPPING ASSUMPTION „A… OF SEC. V

In Sec. V, we have assumed that the solution of the problem of the maximization of the
equilibrium energy is a continuum, say F, which does not intersect the linear segment �0, iA�
except of course at 0+ ,0−. We also prove that F does not touch the real line, except of course at 0
and possibly �. This enables us to take variations in Sec. VI, keeping fixed a finite number of
points, and thus arrive at the identity of Theorem 5, from which we derive the regularity of F and
the fact that F is, after all, an S-curve.

In general, it is conceivable that F intersects the linear segment �0, iA� at points other than
0+ ,0−. If the set of such points is finite, there is no problem, since we can always consider
variations keeping fixed a finite number of points, and arrive at the same result �see the remark
after the proof of Theorem 5�.
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If, on the other hand, this is not the case, we have a different kind of problem, because the
function V introduced in Sec. VI �the complexification of the field� is not analytic across the
segment �−iA , iA�.

What is true, however, is that V is analytic in a Riemann surface consisting of infinitely many
sheets, cut along the line segment �−iA , iA�. So, the appropriate, underlying space for the �doubled
up� variational problem should now be a noncompact Riemann surface, say L.

Compactness is crucial in the proof of a maximizing continuum. But we can compactify the
Riemann surface L by compactifying the complex plane. Let the map C→L be defined by

y = log�z − iA� − log�z + iA� .

The point z= iA corresponds to infinitely many y points, i.e., y=−�+ i�, ��R, which will be
identified. Similarly, the point z=−iA corresponds to infinitely many points y= +�+ i�, ��R,
which will also be identified. The point 0�C corresponds to the points k
i, k odd.

By compactifying the plane we then compactify the Riemann surface L. The distance between
two points in the Riemann surface L is defined to be the corresponding stereographic distance
between the images of these points in the compactified C.

With these changes, the proof of the existence of the maximizing continuum in Secs. I, III, and
IV goes through virtually unaltered. In Sec. VI, we would have to consider the complex field V as
a function defined in the Riemann surface L and all proofs go through. The corresponding result
of Sec. VII will give us an S-curve C in the Riemann surface L. We then have the following facts.

Consider the image D of the closed upper half-plane under

y = log�z − iA� − log�z + iA� .

Consider continua in D containing the points y=
i and y=−
i. Define the Green’s potential and
Green’s energy of a Borel measure by �4�–�6� and the equilibrium measure by �7�. Then there
exists a continuum C maximizing the equilibrium energy, for the field given by �3� with conditions
�1�. C does not touch �D except at a finite number of points. By taking variations as in Sec. VI,
one sees that C is a S-curve. In particular, the support of the equilibrium measure on C is a union
of analytic arcs and at any interior point of supp �,

d

dn+
�	 + V�C

� =
d

dn−
�	 + V�C

� , �8"�

where the two derivatives above denote the normal derivatives.
As far as the consequences of the above facts regarding the semiclassical limit of NLS, some

more work on the details is necessary. Indeed, the analysis of the dynamics of the semiclassical
problem �9� and �10� presented in Ref. 3 assumes that the S-curve C lies entirely in K� �0+,0−�.
However, the explicit computation of the equilibrium measure on the S-curve and the derivation of
the equations implicitly defining the endpoints of the components of the support of the equilibrium
measure also make sense when extended to the Riemann surface L. As a result the statement of
Theorem A.1 is correct, when interpreted correctly, i.e., allowing for all contours involved in the
definition of the line integrals appearing in formula �B1� as well as the bands I0� I0

* , Ij , Ij
* , j

=1, . . . ,G and the gaps � j to lie in L.
We plan to describe the details of the evolution of the S-curve in the Riemann surface L in a

later publication. In particular, one must check that all the deformations described in Ref. 3 are
valid; this is indeed true, as one can see by the analysis of Ref. 3 transferred to the Riemann
surface L.

Remark: The “discrete-to-continuous” passage.
The following caveat has to be addressed here. One of the problems dealt with in Ref. 3 was

to transform the so-called “discrete” Riemann-Hilbert problem �problem 4.1.1 of Ref. 3� to a
“continuous” Riemann-Hilbert problem �problem 4.2.1 of Ref. 3�. The initial �discrete� problem
posed is to construct a �matrix� meromorphic function from the information on its poles. These
poles indeed accumulate �as � goes to 0� along the segment �−iA , iA�. Then one transforms the
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problem to a properly speaking �continuous� holomorphic Riemann-Hilbert problem with jumps,
by constructing two contours, one encircling the poles with positive imaginary part and the other
encircling the poles with negative imaginary part, and redefining the matrix functions inside the
contours so that the singularities are removed. Naturally the information concerning the poles
appears in the arising jump along the two loops.

One then �formally at first� approximates the jump on the loops in an obvious way �it is a
Riemann sum approximated by an integral�. This jump involves a logarithmic function with a cut
along the linear segment �−iA , iA�.

Now, to rigorously show that the approximation is valid one needs a very careful analysis of
what happens near 0, because the “Riemann sum” approximation breaks down there. Indeed this
is done in Sec. 4.4.3 of Ref. 3, where, however, it is assumed that the loop �the jump contour� is
located exactly at the S-curve �which solves the variational problem�, and that this S-curve ema-
nates from 0+ at an acute, nonright, angle to the horizontal axis.

Even though in Ref. 3 the S-curve is assumed not to touch the linear segment �−iA , iA�, this
condition is actually only necessary locally near 0. There is no problem in allowing the S-curve to
intersect the spike, as long as it emanates from 0+ at an acute, nonright, angle to the horizontal
axis. Now it is proved in Ref. 3 that the S-curve solving the variational problem must emanate
from 0+ at an acute, nonright, angle to the horizontal axis. �This in fact follows immediately from
the measure reality condition �4.18� applied at the origin.� So the proof of Theorem A.1 will go
through even if the S-curve intersects the linear segment �−iA , iA�.

We then have the following.
Theorem 9: Consider the semiclassical limit ��→0� of the solution of �9� and �10� with

bell-shaped initial data. Replace the initial data by the so-called soliton ensembles data �as intro-
duced in Ref. 3� defined by replacing the scattering data for �x ,0�=0�x� by their WKB approxi-
mation. Assume, for simplicity, that the spectral density of eigenvalues satisfies conditions �1�.

Then, asymptotically as �→0, the solution �x , t� admits a “finite genus description,” in the
sense of Theorem A.1.
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The nonlinear fractional diffusion equation �t�=r1−d�r
���rd−1D�r , t ;���r

����
−r1−d�r�rd−1F�r , t���+ �̄�t�� is studied by considering the diffusion coefficient
D�r , t ;��=D�t�r−��� and the external force F�r , t�=−k1�t�r+k�r�. In addition, a
rich class of diffusive processes, including normal and anomalous ones, is obtained
from the study present in this work. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1993527�

I. INTRODUCTION

Due to the broadness of physical applications covering almost every field, the diffusion equa-
tions have been widely investigated. In this direction, we have, for instance, the nonlinear diffu-
sion equations, the fractional diffusion equations, and the diffusion equations that contain a mix of
nonlinear terms and fractional derivatives. These equations extend the usual diffusion equation by
considering the presence of nonlinear terms and fractional derivatives. They have been applied to
several scenarios such as percolation of gases through porous media,1 thin saturated regions in
porous media,2 a standard solid-on-solid model for surface growth, thin liquid films spreading
under gravity,3 modeling of non-Markovian dynamical processes in protein folding,4 relaxation to
equilibrium in system �such as polymer chains and membranes� with long temporal memory,5 and
in anomalous transport in disordered systems.6 A representative nonlinear diffusion equation usu-
ally employed in the above context is the porous medium equation.7,8 We may also have the high
order diffusion-like equation such as the thin film equation,9 which contains a fourth order deriva-
tive. This kind of diffusion equation can be applied to describe the lubrication models for thin
viscous films, spreading droplets, and Hele–Shaw cells.10 In addition to the above context, the
fractional equations11 have also been employed to investigate the situations related to the anoma-
lous diffusion and, in particular, the diffusion equations that accomplish nonlinear terms and
fractional derivatives.12,13

From the previous discussion, we note the importance of these equations not only due to the
various types of scenarios which can be described, but also due to the growing interest on the
feasibility of covering new situations. In this direction, we have, for example, the displacement of
a viscous fluid by a less viscous one in a petroleum reservoir requires a more general approach in
order to take the nonlinear behavior of the interface into account, and also the fractal or multi-
fractal characteristics of porous rocks in which the oil is immersed. In particular, the geostatistics
of these reservoirs are well described by a fractional Brownian motion and fractional Levy
motion.14 Thus, the present work intends to establish some classes of solutions of a general
nonlinear fractional diffusion equation with absorption and investigate the classes of diffusive
processes described by this equation. More precisely, we focus our attention on the following
generalized equation:
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�

�t
��r,t� =

1

rd−1

���

�r��
�rd−1D�r,t;��

��

�r� ���r,t���� −
1

rd−1

�

�r
�rd−1F�r,t���r,t�� + �̄�t���r,t� ,

�1�

where � is a density function, d is a spatial dimension of the system under consideration, r is
nonnegative, the parameters � ,�� ,��R ,D�r , t ;��=D�t�r−����r , t��� is the diffusion coefficient,
F�r , t� is an external force �drift�, and �̄�t� plays the role of an absorbent �or source� rate related
to a reaction-diffusion process. The presence of the reaction term like the one given in the above
equation has been studied in several situations. Here, for example, we may recall the catalytic
processes in regular, heterogeneous, or disordered systems.15 Another example is an irreversible
first-order reaction of transported substance so that the rate of removal is �̄�.16 This extra term
may also appear when a tracer undergoing radioactive decay is transported through a porous
medium,17 in heat flow involving heat production.18 Equation �1� applies in these situations and in
solute transport through adsorbent samples that are usually proportional to the concentration in the
solution. It is also interesting to note that Eq. �1� may be related to several physical situations such
as the axisymmetric flow of a very viscous fluid,19 turbulent diffusion,20 adsorption-desorption
equilibrium locally maintained through a permeable solid,21 and nonlinear diffusion in hard and
soft superconductors.22

For �̄�t�=0, one can verify that 	0
�drrd−1��r , t� is time independent �hence, if � is normalized

at t=0, it will remain so forever�. Indeed, if Eq. �1� is written as �t�=−r1−d�rJ and the boundary
condition J�r→� , t�→0 is assumed, it can be shown that 	0

�drrd−1��r , t� is a constant of motion.
According to Refs. 12 and 13, we use the Riemann–Liouville operator11,23 for the spatial fractional
derivatives. Also, we employ the boundary condition ��r→� , t�→0. Note that Eq. �1� recovers,
for ��� ,� ,� ,��= �1,1 ,0 ,1�, the standard Fokker–Planck equation24 in the presence of a drift with
an adsorbent �source� term for a d-dimensional case within radial symmetry. The particular case
F�r , t�=0 �no drift�, D�r , t�=constant, and ��� ,� ,� ,d�= �1,1 ,0 ,1� has been considered by
Spohn.8 Other features of Eq. �1� with ��� ,� ,� ,� ,d�= �1,1 ,0 ,0 ,1� have also been considered in
Refs. 25 and 26. The case ��� ,� ,� ,d�= �0,0 ,0 ,1� with D�t�=constant without external force has
been investigated in Ref. 12. In Ref. 13 the presence of external forces and a spatial time depen-
dence on the diffusion coefficient has been considered for �d ,���= �1,1�. Therefore, our present
discussion involves extensions of these cases by taking a wide variety of situations into account;
employing the nonlinear, fractional, and the mixing of these cases. Moreover, we develop, in a
unified approach, extending the results presented in Refs. 8, 12, 25, and 26 for a d-dimensional
case by considering the presence of fractional derivatives, external forces and a spatial time
dependent diffusion coefficient. The remainder of this paper goes as follows. In Sec. II, we
consider several situations for Eq. �1� as well as the connection of the solutions with the ones
obtained within the maximum entropy principle. In Sec. III, we present our conclusions.

II. DIFFUSION EQUATION: SOLUTIONS

This section considers the solutions for Eq. �1� expressed as a scaled function of the type

�̄�r,t� =
1

��t�
�̃
 r

��t�� , �2�

where ��t� is a positive time dependent function. These solutions may satisfy the initial and the
boundary condition. Before substituting Eq. �2� in Eq. �1�, some changes in Eq. �1� are carried out
in order to simplify the analysis. Supposing the solution of Eq. �1� can be given by ��r , t�
=exp�	0

t dt̃�̄�t̃���̄�r , t� /rd−1, where �̄�r , t� is a function to be determined, yields

�

�t
�̄�r,t� = D̄�t�

���

�r��
�r�1−���d−1�−���̄�r,t��� ��

�r� �r−��d−1���̄�r,t����� −
�

�r
�F�r,t��̄�r,t�� , �3�

with D̄�t�=D�t�exp���+�−1�	0
t dt̃�̄�t̃��.
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Applying Eq. �2� in Eq. �3� by taking the drift term, specifically, F�r , t�=−k1�t�r into account
and following the procedure employed in Refs. 12 and 13, Eq. �3� can be reduced to

d��

dz��
�z�1−���d−1�−���̃�z��� d�

dz� �z−��d−1���̃�z����� = k̄
d

dz
�z�̃�z�� �4�

and

���t��	−2 d

dt
��t� + k1�t����t��	−1 = − k̄D̄�t� , �5�

where 	=d��+��− �d−1�+�+��+� , z=r /��t� and k̄ is an arbitrary constant. Note that we have
used the generic property

d


dx
G�ax� = a
 d


dz̄

G�z̄� �
 � R� , �6�

where z̄=ax. This basic property holds not only for the ordinary derivative but also for all frac-
tional operators which are considered in this analysis. By solving Eq. �5�, results

��t� = 
���0��	−1 + k��
0

t

dt̃D�t̃�e��+�−1�	0
t̃ dt��̄�t��+�	−1�	0

t̃ dt�k1�t���1 � �	−1�

e−	0
t dt�k1�t��, �7�

with k�= �1−	�k̄. Performing an integration in Eq. �4�, we have that

d��−1

dz��−1
�z�1−���d−1�−���̃�z��� d�

dz� �z−��d−1���̃�z����� = k̄z�̃�z� + C , �8�

where C is an integration constant �see Refs. 12 and 13 for details�.
The next step is the analysis of the solutions of Eq. �8� by considering several situations of the

parameters �� , � , � , �, and d. Starting our study by the solutions of Eq. �8� with the following
case, ��=1, C=0 and �� ,� ,� ,d� being arbitraries, it is feasible to propose the following ansatz:
�̃�z�=Nz� � ��a+bz�� � �, as a solution for Eq. �8�. To verify the last statement, the following result
is considered:

d


dz
�z��a + bz��� = a
 �� + 1�
�� + 1 − 
�

z�−
�a + bz��−
, �9�

when 
=�+�+1 ��…� is the Gamma function�. By applying the ansatz and the above equation
in Eq. �8�, we find

�

�
=

�1 + � + ���2 + � + ��
�1 + 2� + ���� − 1�

+ d − 1,

�

�
=

��2 + � + ��
�1 + 2� + ���� − 1�

,

� =
�� − 1��� − 1�

2 + � + �
. �10�

Note that the above results recover those obtained in Ref. 12 for �� ,� ,d�= �0,0 ,1� and contain the
results obtained in Ref. 13 for d=1 by replacing � with �−1 as a consequence. These results
allow us to write the solution in the form
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�̃�z� = Nzd−1�z1+�+��1 + bz����2+�+�� � ��1+2�+����−1��, �11�

with

N = 
 k̄�− ��
�1 + � − ��d − 1��

�1 � ��+�−1�

, �12�

where b is an arbitrary constant to be taken as ±1 according to the specific solutions to be studied
in order that the solution satisfies the boundary condition �consequently normalization condition�
and N can be determined be the normalization condition. For b=−1, we have a cutoff distribution
and for b=1 we have classical solutions which are nonvanishing on the whole positive axis. In
addition, the requirement of normalization for N implies that ��r , t� is normalized to unity at least
for the initial time t=0. Note that the explicit form of N and b depend on the behavior of the
density function which is defined by the parameters � , � , �, and d, see the cases worked below.

In order to analyze the behavior of the solution ��r , t� several range values for the parameters
� , d , �, and � may be considered. For simplicity, taking ��t�=0 we illustrate three of them: �i�
��0 with �+��0 and ��1, �ii� −1��+��0 with ��1 and �=1−1/d, and �iii� d�1−��
− �2+�����−�1+�� /2 , d�2, 1 /d���1−1/d , ��0 and ��2d�1−��−3. Starting by case
�i�, without loss of generality, b=−1 can be chosen. The normalization condition

N�
0

1

zd−1�z1+�+��1 − z����2+�+��/��1+2�+����−1��dz = 1 �13�

implies that

N =

1 + d +
2 + � + �

� − 1
�

1 +
��2 + � + ��

�1 + 2� + ���� − 1��d +
�1 + � + ���2 + � + ��

�1 + 2� + ���� − 1� � , �14�

�see Fig. 1�. The second moment obtained from the above equation is �r2�� ���t��2. For cases �ii�
and �iii�, b=1 is taken. The normalization factor yields

N =

 ��2 + � + ��
�1 + 2� + ���1 − ���

d −
�1 + � + ���2 + � + ��

�1 + 2� + ���1 − �� �2 + � + �

1 − �
− d� �15�

�see Fig. 2�. It is interesting to note that this case has a divergent behavior at the origin for the
normalized density probability. Case �iii�, in contrast to case �ii�, presents a defined behavior at the
origin as shown in Fig. 3 and it has a long tail behavior.

Following the previous procedure, the above result can be extended by considering ���1,
leading to the solution for this case given by

�̃�z� = N̄zd−1�z�+�+���1 + bz��+��−1���+2��+��/��1−2��+���−���1−���
, �16�

where

N̄ = � �1 + � − ��d − 1��

k̄�1 + � − ��d − 1� − ��

�1 +
�

�
� + �1 − � − ���d − 1� − � − � + 1�

�1 +
�

�
� + �1 − � − ���d − 1� − � − � − �� + 2��

1 � �1−�−��

and
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�

�
=

�� + �� − 1��� + 2�� + ��
�1 − 2�� + ��� − ���1 − ��

,

�

�
=

�� + �� + ���� + 2�� + ��
�1 − 2�� + ��� − ���1 − ��

+ d − 1,

� =
�1 − ���1 − ��
� + 2�� + �

,

� = −
� + � − d

�� + d
. �17�

Note that Eq. �16� presents a similar structure of Eq. �11�, however, the conditions on the param-
eters � , � , � , �� , �, and � are different.

Now, particular cases of Eq. �8� are discussed by considering special values of � and ��, with

C=0 and �� ,� ,d� arbitraries. Considering �=0, ��=2, and k̄=−k�, Eq. �8� turns out to be

d

dz
�z�1−�−���d−1�−���̃�z���+�� = − k�z�̃�z� . �18�

Solving Eq. �18�, we obtain

FIG. 1. Behavior of ���t��d��r , t� vs r /��t� which illustrates the solution with typical values for ��0 with �+�
�0, d=3, ��1 and �̄�t�=0. We notice that the distribution vanishes at the abcissa equal to 1, and remains zero outside
this interval.
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�̃�z� = zd−1+�1+�−d�/��+��expq�− Kz1+d+1+�−d � �+�� �19�

with K=k� / �1−d+�+ ��+���d+1�� , q=2−�−�, where expq�r���1+ �1−q�r�1 � 1−q is the
q-exponential function that arises within the nonextensive thermostatistical formalism by optimiz-
ing, under appropriate constraints, the entropic form27

Sq =

1 −� dr�r�d−1�p�r���q

q − 1
. �20�

The constant k� can be obtained from the normalization condition. By using Eq. �19�, ��r , t� is
illustrated in Fig. 4 by considering the absence of source �absorbent� term. Note that d��+��−d
+��0, d��+��−d+�=0, and d��+��−d+��0, respectively, correspond to the subdiffusive,
normal, and superdiffusive regimes for �k1�t� , �̄�t��= �0,0�, since �r2�� t2/�2+d��+��−d+��. Note that
the above equation leads to an explicit dependence on the dimension d in ��r , t�, differently from
Eqs. �11� and �16�.

The solution �19� can also be extended by assuming the external force as F�r , t�=−k1�t�r
+k�r� and D̄�t�=constant. It is still not known what happens in the general case for �� ,� ,� ,��, but
there is a special case for which the scaled solution of the type indicated in Eq. �2� can be used.
This special case corresponds to �=d�1−�−��−1−�, i.e., �+�+ �2−q�d=d−1. If this condition
is satisfied, we obtain

�̃�z�� = z�d−1z��1+�−d� � ��+��expq
−
K

D̄
z�1+d+�1+�−d� � ��+�� +

k�

�� + ��D̄
lnq̄�z��� ,

FIG. 2. Behavior of ���t��d��r , t� vs r /��t� which illustrates the solution with typical values for −1��+��0 with �
�1, �=1−1/d, and �̄�t�=0.
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�̄�t� = 
��̄�0��	̄+1 + C1�
0

t

dt̃e�	̄+1�	0
t̃ dt�k1�t���1 � 	̄+1

e−	0
t dt�k1�t�� and z� =

r

�̄�t�
, �21�

where q̄=1+ 	̄−d− �1+�−d� / ��+�� , 	̄=1−d+�+d��+�� , C1= �	̄+1�k�, and lnqx��x1−q−1� / �1
−q� is the q-logarithm function �that is, the inverse function of the q-exponential�. Eq. �21�
exhibits an explicit dependence on the dimension d in ��r , t� as well as Eq. �19�.

Now we focus our attention on the case �=1, ��=1 and k̄=−k̃. By substituting these values
in Eq. �8�, we obtain

z�1−���d−1�−���̃�z��� d

dz
�z−��d−1���̃�z���� = k̃z�̃�z� . �22�

The solution for the above equation is also given in terms of the q-exponential functions as well
as the solutions found for Eq. �18�. In particular, the solution for Eq. �22� is given by

�̃�z� = zd−1expq
−
k̃

��2 + ��
z2+�� , �23�

with q=2− ��+��.
Another interesting case is given by ��=1 and �=−1. For this case Eq. �8� reads

FIG. 3. Behavior of ���t��d��r , t� vs r /��t�, which illustrates the solution with typical values for d�1−��− �2+�����
−�1+�� /2 , d�2, 1 /d���1−1/d , ��0,��2d�1−��−3, and �̄�t�=0.
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z�1−���d−1�−���̃�z̄����
0

z

dz̄ z̄−��d−1���̃�z̄��� = k̄z�̃�z� . �24�

After some calculations, it is possible to show that a solution for Eq. �24� is

�̃�z� = zd−1−�1+�� � �1−���1 + C̄z1−��1+�� � 1−��1 � �1−�−��
, �25�

where C̄ is a constant.
The case ��=0 and �=0 leads to

�
0

z

dz̄ z̄�d−1��1−�−��−���̃�z̄���+� = k̄z�̃�z� . �26�

The corresponding solution is given by

�̃�z� =
1

z
�1 + K�z���1/�1−�−��

, �27�

where K�= �1−�−�� / �1−�+ �d−1��1−2��+���k̄� and ��=1−�+ �d−1��1−2��+���.

FIG. 4. We show the behavior of ���t��d��r , t� vs r /��t� for a typical value of d with �=1, �+�=1/2 and �̄�t�=0. It is
interesting to note that depending on the value of d we can have a divergent behavior for ��r , t�, since in these cases ��r , t�
is normalized.
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To analyze the case �=0, ��=1, and C�0 it is convenient to go back to Eq. �4� in order to
obtain its solution. Thus, it follows that:

k̄z�̃�z� = z�1−�−���d−1�−���̃�z���+� + C̄ , �28�

which implicitly determines �̃�z�. The solution corresponding to C=0 is �̃�z��zd−1+�1+��/��+�−1�.

Considering ��=1, �=2, and k̄=−k̃� Eq. �1� can be reduced to a thin-film-like equation. By
applying these assumptions into Eq. �1� and using the above procedure the equation for �̃�z�
obtained from Eq. �8� is given by

z�1−���d−1�−���̃�z��� d2

dz2 �z−��d−1���̃�z���� = − k̃�z�̃�z� , �29�

and for the time function, by using Eq. �7�, we obtain

��t� = 
���0���−1 + k��
0

t

dt̃D�t̃�e��+�−1��
0

t̃

dt��̄�t��+��−1��
0

t̃

dt�k1�t���1 � ��−1�

e−�
0

t

dt�k1�t��, �30�

with k�= ��−1�k̃� where �=4+d��+��−d+�. The solution for Eq. �29� may be obtained by
considering the ansatz: �̃�z�=N�zd−1�1+��z���/�. Applying the proposed ansatz in Eq. �29� we
obtain the following conditions on the parameters � , �, and �:

� = 3 + �; � =
1

3 + �
; � =

� − 1

5 + 2�
, �31�

with ��=−k̃� / �2+�� where ��1 and ��−2. By substituting the above parameters in Eq. �19�,
�̃�z� is given by

�̃�z� = N�zd−1�1 + ��z3+���5+2�� � ���−1��3+��� . �32�

III. CONCLUSIONS

In summary, a generalized diffusion equation �Eq. �1�� has been worked out for several
situations by incorporating some space and time dependent classes of drifts and diffusion coeffi-
cients. We have shown that it admits exact solutions where the space scales with a function of
time. For Eqs. �19� and �21�, we have discussed the explicit dependence on the dimension d in the
solution ��r , t�. This result is very interesting since it shows that, depending on the parameters
� , �, and �, we may have an anomalous diffusion �i.e., �r2�� t�� for a given dimension and a usual
diffusion �i.e., �r2�� t� for other dimensions. Another interesting point is the presence of the
q-exponential and the q-logarithm functions of the nonextensive formalism in some solutions,
suggesting that these solutions may also be obtained by using the maximum principle of entropy
and the nonextensive entropy with adequate constraints. The results obtained in Refs. 12, 13, 25,
and 26 have been extended. Finally, we hope that the results obtained here may be useful to
discuss the physical situations where the anomalous diffusion is present.
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We present some results on the perturbation of eigenvalues embedded at a threshold
for a two-channel Hamiltonian with three-dimensional Schrödinger operators as
entries and with a small off-diagonal perturbation. In particular, we show how the
threshold eigenvalue gives rise to discrete eigenvalues below the threshold and,
moreover, we establish a criterion on existence of half-bound states associated with
embedded pseudo eigenvalues. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1993528�

I. INTRODUCTION

Consider matrix-valued Schrödinger operators of the form

H = H̃0 + V = �− � 0

0 − � + �0
� + V�x�, x � R3, �1.1�

in H=L2�R3� � L2�R3�, where 0��0�R and V�x� is a 2�2 operator-valued matrix

V�x� = � Va Vab

Vba Vb
�, V�x�* = V�x� , �1.2�

which is H̃0 compact. We may introduce

H0 = �Ha 0

0 Hb
� = �− � + Va 0

0 − � + �0 + Vb
� �1.3�

and write, with g being a real off-diagonal coupling constant

H�g� ª H0 + g� 0 Vab

Vba 0
� . �1.4�

In particular, H=H�1�. The direct sum structure of H0 means that one can easily give examples of
eigenvalues embedded at the threshold �0.

A particular case of interest is the following. Under appropriate conditions on Va we have
�ac�Ha�= �0,�� and Ha has discrete spectrum in �−� ,0�. Similarly, �ac�Hb�= ��0 ,�� and Hb has
discrete spectrum in �−� ,�0�. Furthermore, we assume that 0 is an �isolated� eigenvalue of Hb

�well-defined under suitable decay conditions on Vb� with, say, multiplicity �. Thus H�0�=H0 has
an eigenvalue embedded at the threshold 0. To obtain information on what happens when the
off-diagonal interaction is switched on, we assume that 0 is a regular point of Ha �see Sec. IV for
the terminology�. It turns out that the spectral properties of H�g� in the vicinity of 0 are determined
by a matrix

a�Electronic mail: melgaard@math.uu.se
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Mab = ��Ra�0�Vab� j,Vab�k��1	j,k	�, �1.5�

where Ra�
�= �Ha−
�−1 is the resolvent of Ha and �k, k=1,… ,�, are the normalized eigenfunc-
tions corresponding to the zero eigenvalue of Hb. Assuming that Mab has strictly positive �real�
eigenvalues, the following result holds �see Theorem 4.2�. There exist �0�0 and 0�0 such that

�− 0,0� � �pp�H�g�� is discrete and nonempty �1.6�

for all g with g� �0,�0�. This result should be compared with the one in Ref. 7, where the same
situation �and several other cases� is considered. Under the hypothesis that a certain �effective
interaction of off-diagonal part� operator is strictly positive and invertible, it is shown in Ref. 7
that there are no eigenvalues of H�g� contained in an interval of the form �−cg2 ,0�, some c�0.
It is worth it to mention that the methods used in the present work are quite different from the ones
used in Ref. 7.

In some cases one would expect that embedded eigenvalues become resonances under pertur-
bation. In this paper we are not imposing assumptions on the Hamiltonians, which makes it
possible to give a reasonable definition of a resonance, hence, we have no results in this direction
here; for two-channel Hamiltonians with one-dimensional Schrödinger operators as components,
some results were established in Ref. 11 by a different method.

The proof of Theorem 4.2 can easily be seen to give a necessary and sufficient criterion �see
Theorem 5.2� on the existence of half-bound states associated with embedded pseudo eigenvalues
of H�g�; see Definition 5.1 for this notion. Within this context Theorem 5.4 asserts that if �
� �0,�0� is an eigenvalue of Hb and Mab��+ i0� �see �1.5�� has no real eigenvalues, then there
exist �0�0 and 0�0 such that

�� − 0,� + 0� � �pp�H�g�� = � . �1.7�

The results obtained herein give rise to two open problems: under suitable hypotheses on V,
can one prove that

• negative eigenvalues of Mab �cf. Theorem 4.2� give rise to resonances?
• Theorem 5.2 holds if, in its formulation, pseudo eigenvalues are replaced by eigenvalues in

the usual sense?

These problems will be pursued elsewhere.
Except for the work in Ref. 7, there seems to be few results on this problem. A general result

on absorption of eigenvalues in the continuum is given in Ref. 16. In Ref. 1 a result is obtained
concerning the survival of the ground state of a Pauli–Fierz Hamiltonian. In Ref. 2 the possibility
of having a modified Fermi Golden Rule at a threshold is considered. In a time-dependent frame-
work the perturbation of threshold eigenvalues has been discussed in Ref. 17. Another closely
related issue is the derivation of asymptotic expansions of the resolvent as the spectral parameter
tends to a threshold. Results on two-channel Hamiltonians are given in Ref. 9, based on resolvent
expansions for three-dimensional and one-dimensional Schrödinger operators found in Refs. 6 and
12. The latter results are applied to scattering theory for pairs of two-channel Hamiltonians in Ref.
10 and also to scattering theory near the lowest Landau threshold for the three-dimensional
Schrödinger operator with a constant magnetic field.13,14 There is a vast literature on 2�2
operator-valued matrices, e.g., in system theory �see, e.g., Ref. 3� and in semigroup theory �see,
e.g., Ref. 5�. Most notably in this context is the substantial number of questions of a general nature
which have been answered on spectral theory in recent years, see, e.g., Ref. 18. However, the
methods therein are not related to ours although some of the questions addressed clearly are, e.g.
the appearance of resonances discussed in Ref. 15.

II. PRELIMINARIES

Let us fix some basic notation. Let H be a separable complex Hilbert space. We denote its
scalar product and norm by �· , · �H and 	 · 	H, respectively. If K is another Hilbert space, then we
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write K�H if K is embedded in H. Let T be a self-adjoint operator on a Hilbert space H with
domain D�T�. The spectrum and resolvent set are denoted by ��T� and ��T�, respectively. We use
standard terminology for the various parts of the spectrum, see for example, Ref. 8. The resolvent
is R�
�= �T−
�−1. The spaces of bounded and compact operators from a Hilbert space H1 into a
Hilbert space H2 are denoted by B�H1 ,H2� and K�H1 ,H2�, respectively. If HªH1=H2 we use
the notation B�H� and K�H�, respectively.

We adopt the usual notation for function spaces: C0
�, L2, etc. The Schwartz space of rapidly

decreasing functions and its adjoint space of tempered distributions are denoted by L and L�,
respectively. The Fourier transformation is denoted by F. The weighted Sobolev spaces on R3 are
defined by

Ht,s�R3� = 
� � L��R3�:�p�s�x�t� � L2�R3�� .

Here �x� denotes the operator of multiplication by the function �1+ �x�2�1/2 and �p�=F*�x�F. In
particular, the weighted L2 spaces are defined by L2,s�R3�ªH0,s�R3� and the standard Sobolev
spaces are defined by Ht�R3�=Ht,0�R3�.

It is convenient to introduce the following short-hand notation: L2,s�R3�ªL2,s�R3�
� L2,s�R3�, L2�R3�ªL2,0�R3�, Ht�R3�ªHt�R3� � Ht�R3� and also Ht,s�R3�ªHt,s�R3� � Ht,s�R3�.

The Feshbach formula gives a convenient explicit representation of the resolvent R�g ;
� of
H�g�. There are two variants. We give only one of them. The other version is just an interchange
of indices. Define

Ra�
� ª �Ha − 
�−1, Rb�
� ª �Hb − 
�−1, �2.1�

Wb�
� ª VabRb�
�Vba, �2.2�

and

Ta�g;
� ª Ra�
��1 − g2Wb�
�Ra�
��−1. �2.3�

Then, for Im 
�0, we have

R�g;
� = � Ta�g;
� − gTa�g;
�VabRb�
�
− gRb�
�VbaTa�g;
� Rb�
��1 + g2VbaTa�g;
�VabRb�
��

� . �2.4�

In this way we have solved the �Feshbach� problem �H�g�−
��=�, Im 
�0.
We impose the following hypotheses on Va, Vb, and Vab:
Assumption 2.1:

�i� V#�K�H2�R3� ,L2�R3�� for #=a ,b.
�ii� x�V�K�H2�R3� ,H−2�R3�� for #=a ,b.
�iii� For #=a ,b and some �#�0,

�V#�x�� 	 C�x�−�#

for �x� large.
�iv� Vab�K�H2�R3� ,L2�R3��, x�Vab�K�H2�R3� ,H−2�R3�� and, for some ��0,

�Vab�x�� 	 C�x�−�,

for large �x�.

Assumption 2.1, in conjunction with the Kato–Rellich theorem, ensures that Ha and Hb are
well-defined as self-adjoint operators in L2�R3�, with domain D�Ha�=D�Hb�=H2�R3�, and the

basic spectral properties are as described in the Introduction. Moreover, V is H̃0 compact, which
implies that H is a well-defined self-adjoint operator in L2�R3�, with domain H2�R3�.
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We begin by considering the resolvent of H�g�. For this purpose we define the following set.
Let 0� l�r��0 and set �= �l ,r�. For some 0�0 define

� = 

 = � + i� � C:� � �,dist��,��Hb�� � 0 and � � �0,1�� . �2.5�

Lemma 2.2: Let Assumption 2.1 hold with ��1/2. Then there exists �0�0 such that, for

g� �0,�0�, 
�R�g ;
� has a norm-continuous extension to �̄, uniformly bounded in g, with
values in B�L2,s�R3� � L2�R3� ,H2,−s�R3� � H2�R3��, s�1/2.

Proof: Under the hypotheses, the limiting absorption principle is valid for Ha �see, e.g., Ref.

4�. It asserts that Ra�
�, defined initially on Im 
�0, extends continuously to 
��̄ as an operator
in B�L2,s�R3� ,L2,−s�R3��, s�1/2. Taking ��1/2 and 1/2�s�� ensure that g2Wb�
�Ra�
� maps
L2,s�R3� into L2,2�−s�R3��L2,s�R3� and it is uniformly bounded by g2 �up to a multiplicative
constant�. Hence, choosing �0 sufficiently small,

1 − g2Wb�
�Ra�
�:L2,s�R3� → L2,s�R3�

is invertible and it has a uniformly bounded inverse. It follows that:

Ta�g;
� = Ra�
��1 − g2Wb�
�Ra�
��−1:L2,s�R3� → H2,−s�R3�

is uniformly bounded and it extends continuously to �̄. �

III. A FACTORIZATION OF THE RESOLVENT

Throughout this section we consider the following situation.
Assumption 3.1: Let ����Hb�

�i� Assume �� �0,�0� is an eigenvalue of Hb having multiplicity �, with normalized eigen-
functions �k, k=1,… ,�.

�ii� Assume that 0�0 is chosen such that dist�� ,��Hb� \ 
����20.

Corresponding to the eigenvalue � of Hb we use the notation Pb for the eigenprojection and,
moreover, we set Qbª1− Pb.

Define H̃bªQbHbQb, R̃b�
�ª �H̃b−
�−1Qb,

W̃b�
� ª VabR̃b�
�Vba, �3.1�

T̃a�g;
� ª Ra�
��1 − g2W̃b�
�Ra�
��−1, �3.2�

and

R̃�g;
� ª � T̃a�g;
� − gT̃a�g;
�VabR̃b�
�

− gR̃b�
�VbaT̃a�g;
� R̃b�
��1 + g2VbaT̃a�g;
�VabR̃b�
��
� . �3.3�

Define

�+�0;�� ª 

 = � + i� � C:� � �� − 0,� + 0�and � � �0,1�� .

Then, for 
��+�0 ;��, we have that

�H�g� − 
�R̃�g;
� = � 1 0

gPbVbaT̃a�g;
� Qb − g2PbVbaT̃a�g;
�VabR̃b�
�
� . �3.4�

Consider the equation �H�g�−
��=� on �+�0 ;��. We wish to derive a formula for the
resolvent which solves this problem. For this purpose we define
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X̃r:C
� � �z1,…,z�� � �0,

k=1

�

zk�k� � H2�R3� , �3.5�

X̃l:L2�R3� � ��,�� � ���1,��,…,���,��� � C�, �3.6�

and consider an analogous equation related to the operator

H�g;
� = �H�g� − 
 X̃r

X̃l 0
�:H2�R3� � C� → L2�R3� � C�. �3.7�

The structure of �3.4� motivates the introduction of

Y�g;
� ª � 0 0

gPbVbaT̃a�g;
� − g2PbVbaT̃a�g;
�VabR̃b�
�
� , �3.8�

Z�g;
� ª �H�g� − 
�X̃r. �3.9�

Then the inverse of H�g ;
�, denoted by R�g ;
�, is given by

R�g;
� = �R̃�g;
��1 − Y�g;
�� X̃r − R̃�g;
��1 − Y�g;
��Z�g;
�

X̃l�1 − Y�g;
�� − X̃l�1 − Y�g;
��Z�g;
�
�¬ �X�g;
� Xr�g;
�

Xl�g;
� Xrl�g;
�
� .

�3.10�

By introducing

X̃r�:C
� � �z1,…,z�� � � = 

k=1

�

zk�k

and its adjoint, denoted by X̃l�, we may write

Xrl�g;
� = X̃l��
 − � + g2VbaT̃a�g;
�Vab�X̃r�. �3.11�

Then it follows from the latter that, for 
�C+,

R�g;
� = X�g;
� − Xr�g;
�Xrl�g;
�−1Xl�g;
� . �3.12�

To determine the mapping properties of the operator-valued functions X, Xr, etc., we begin by

taking a closer look at T̃a�g ;�+ i0�.
Lemma 3.2: Let Assumption 2.1 hold with ��1/2. Moreover, let Assumption 3.1 be satisfied.

Then there exists �0�0 such that, for g� �0,�0�, T̃a�g ;�+ i0� exists in B�L2,s�R3� ,L2,−s�R3��, s
�1/2, and it is Hölder continuous in � provided ��−��	0; uniformly in g� �0,�0�.

Proof: As an operator from L2�R3� into L2,2��R3�, W̃b�
�=VabR̃b�
�Vba is continuous in 

��+�0 ;��. Since Ra��+ i0� :L2,s→L2,−s exists �due, once again, to the limiting absorption prin-
ciple� and is Hölder continuous in ��0 �provided s�1/2�, we infer that


 � W̃b�
�Ra�
� � B�L2,s�R3�,L2,s�R3��

is uniformly bounded and the limiting value W̃b���Ra��+ i0� exists in B�L2,s�R3� ,L2,−s�R3�� pro-
vided 1/2�s�� and ��−��	0. In particular, for g� �0,�0� with �0 sufficiently small, the

operator 1−g2W̃b���Ra��+ i0� :L2,s�R3�→L2,s�R3� is invertible and
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T̃a�g;� + i0� = Ra�� + i0��1 − g2W̃b���Ra�� + i0��−1:L2,s�R3� → L2,−s�R3�

exists and it is Hölder continuous in � on ��−��	0; uniformly in g. �

We immediately obtain the next result.
Proposition 3.3: Let Assumption 2.1 hold with ��1/2. Moreover, let Assumption 3.1 be

satisfied. Then there exists �0�0 such that, for g� �0,�0� and s�1/2, the operator-valued
functions


 � X�g;
� � B�L2,s�R3� � L2�R3�,H2,−s�R3� � H2�R3�� ,


 � Xr�g;
� � B�C�,H2,−s�R3� � H2�R3�� ,


 � Xl�g;
� � B�L2,s�R3� � L2�R3�,C�� ,


 � Xrl�g;
� � B�C��

are analytic in 
 on 
�C+ and they extend continuously to 
��+�0 ,��; uniformly in g
� �0,�0�.

IV. PERTURBATION OF AN EIGENVALUE AT A THRESHOLD

A priori zero can be an eigenvalue of Ha or a zero resonance for Ha, or both. We have a zero
resonance �or half-bound state� if Ha�=0 has a solution � in a space slightly larger than L2�R3�.
It turns out that essentially three cases may occur: Ha has no eigenvalue zero and no zero reso-
nance �zero is a regular point�, Ha has no eigenvalue zero but has a zero resonance �zero is an
exceptional point of first kind�, Ha has eigenvalue zero but has no zero resonance �zero is an
exceptional point of second kind�, or Ha has both eigenvalue zero and a zero resonance �zero is an
exceptional point of the third kind�.

When zero is a regular point, say, of Ha, then 
�Ra�
��B�L2,s�R3� ,L2,−s�R3��, s�1/2,
defined on 
�C+, extends continuously up to the real axis in a neighborhood of zero.

We first consider the case, which we discussed in the Introduction.
Assumption 4.1:
�i� Assume that zero is a regular point of Ha.
�ii� Assume that zero is an eigenvalue of Hb having multiplicity �, with normalized eigen-

functions �k, k=1,… ,�.
To ensure that a zero eigenvalue of Hb is well-defined, we require that Assumption 2.1�iii�

holds with �b�2; see Ref. 6, Sec. 2 for an explanation.
Theorem 4.2: Let Assumption 2.1 hold with �b�2 and ��1/2. Moreover, let Assumption 4.1

hold. If

Mab = ��Ra�0�Vab� j,Vab�k��1	j,k	�

has � strictly positive eigenvalues �l, 1	 l	� (taking into account multiplicity), then there exist
�0�0 and 0�0 such that, for g� �0,�0�, the operator H�g� has at least � eigenvalues (again
counting multiplicity) �l�g� in �−0 ,0� obeying

�l�g� = − �lg
2 + o�g2�, 1 	 l 	 � . �4.1�

If, in particular, Mab is positive definite, then H�g� has exactly � eigenvalues in �−0 ,0� given by
�4.1� with �=�.

Proof: We divide the proof into two steps.
Step 1. In this step we prove that, for �� �−0 ,0�, the equation H�g��=�� has a solution

��H2,−s�R3� for any s�1/2 if and only if det Xrl�g ;�+ i0�=0; see �3.10� for the definition of
Xrl�g ;
�.
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We first observe that Proposition 3.3 asserts that the identities H�g ;
�R�g ;
�=1 on L2�R3�
and R�g ;
�H�g ;
�=1 on H2�R3� extend continuously to �−0 ,0� in the setting of weighted
spaces. In particular

�H�g� − 
�Xr�g;
� + X̃rXrl�g;
� = 0, �4.2�

Xl�g;
��H�g� − 
� + Xrl�g;
�X̃l = 0 �4.3�

are valid for 
��+�0 ;0�.
Now if �� �−0 ,0� fulfills H�g��=�� with �= ��a ,�b��0 as above, then �4.3� implies

that

Xrl�g;� + i0�X̃l� = 0.

Since, as an operator from H2,−s�R3� � H2�R3� into itself

X�g;� + i0��H�g� − �� + Xr�g;� + i0�X̃l = 1,

we deduce that

Xr�g;� + i0�X̃l� = � ,

and X̃l�= ���b ,�1� ,… , ��b ,�����0. Hence, det Xrl�g ;�+ i0�=0. On the other hand, if
det Xrl�g ;�+ i0�=0 and z�C� \ 
0� belongs to Ker Xrl�g ;�+ i0�, then, by setting �=Xr�g ;�
+ i0�z�H2,−s�R3� � H2�R3� for any s�1/2, �4.2� implies that �H�g�−���=0 and ��0 because

X̃r�= X̃lXr�g ;�+ i0�z=z�0. This proves the assertion.
Step 2. For 0�0 we bear in mind that �−0 ,0����Ha�=� and that Ra��+ i0�=Ra��� is

symmetric for �� �−0 ,0�. In view of �3.11� with �=0, we have that, for �� �−0 ,0�,

Xrl�g;� + i0� = � + g2M��� + g4N�g;�� ,

where the matrices M��� and N�g ;�� are given by

M��� = �Ra���Vab� j,Vab�k � 1	j,k	�,

N�g;�� = ��Ra���W̃b���T̃a�g;��Vab� j,Vab�k��1	j,k	�.

Let �0�0 be an eigenvalue of Mab having multiplicity �0. The continuity of N�g ;�� in � and its
analyticity with respect to g2 in a neighborhood of 0 in conjunction with standard �finite-
dimensional� perturbation theory imply that, for every �� �−0 ,0�, there exist �0 eigenvalues
�k�g ;�� of M���+g2N�g ;�� �taking into counting multiplicity�. The eigenvalues are analytic in g2

in a neighborhood of 0 and they satisfy

�k�g;�� = �k��� + 
l=1

�

g2l�kl���, k = 1,…,�0, �4.4�

where �k��� are eigenvalues of M��� which converge to �0 as �→0. Provided �0 is sufficiently
small, the function hk�g ;��=�+g2�k�g ;�� obeys hk�g ;−0��0 and hk�g ;0�=�0+O�g2��0. The
continuity and real valuedness of hk imply that hk has at least one zero in �−0 ,0�, �=�k�g�, which
fulfills

�k�g� = − g2�k�g;�k�g�� .

Then �4.4� yields that
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�k�g� = − g2��0 + o�1�� as g↓0.

Now let wk�g ;�� be normalized eigenfunctions of M���+g2N�g ;�� corresponding to the eigen-
values �k�g ;��, k=1,… ,�0. Evidently vk�g�=wk�g ;�k�g���Ker Xrl�g ;�k�g�+ i0�, k=1,… ,�0. If
� j�g�=�k�g�, then v j�g� and vk�g� are orthogonal. Following the reasoning in Step 1, we deduce
that vk�g� generates �0 linearly independent functions, namely �k�g�=X�g ;�k�g�+ i0�vk�g�
�H2,−s�R3� � H2�R3�, which satisfy H�g��k�g�=�k�g��k�g�. We note that, in fact, �k�g��0 im-
plies that �k�g��H2�R3� is an eigenfunction of H�g� in the usual sense. Consequently, from a
positive eigenvalue of multiplicity �0 of Mab, we can construct �0 independent eigenfunctions of
H�g�. This proves the first assertion. Invoking �3.12� we infer that H�g� has at most � eigenvalues
in �−0 ,0� �counting multiplicity�. Therefore, if Mab is positive definite, then each of these
eigenvalues is given by �4.1� with �=�. �

Next we investigate another situation.
Assumption 4.3:

�i� Assume that 0 is an eigenvalue of Ha, but not a zero resonance, having multiplicity �, with
normalized eigenfunctions �k, k=1,… ,�.

�ii� Assume that 0��d�Hb�.

Bear in mind that G0=lim
→0,Im 
�0�−�−
�−1 exists as an operator from H−1,s�R3� to H1,−s�R3�
provided s�1, and Ker�1+G0Va� in H1,−s�R3� coincides with the eigenspace of Ha corresponding
to the zero eigenvalue provided and s�1 � 2 and �a�2�a�2.9 As usual we use the notation Pa

for the eigenprojection corresponding to the zero eigenvalue of Ha. Its complement is denoted by
Qa. The operator

R̃a�
� ª �QaHaQa − 
�−1Qa,

defined initially on Im 
�0 is bounded as a map from L2,s�R3� to L2,−s�R3� and it extends con-
tinuously up to the real axis in a neighborhood of 0. Define

R̃�g;
� ª �R̃a�
� + g2R̃a�
�VabT̃b�g;
�VbaR̃a�
� − gR̃a�
�VabT̃b�g;
�

− gT̃b�g;
�VbaR̃a�
� T̃b�g;
�
�

with

W̃a�
� ª VbaR̃a�
�Vab �4.5�

and

T̃b�g;
� ª �Hb − 
 − g2W̃a�
��−1. �4.6�

Introduce

Ỹr:C
� � �z1,…,z�� � �

k=1

�

zk�k,0� � H2�R3� , �4.7�

Ỹl:L2�R3� � ��,�� � ���1,��,…,���,��� � C�. �4.8�

We shall investigate the Feshbach problem related to the operator

H�g;
� = �H�g� − 
 Ỹr

Ỹl 0
�:H2�R3� � C� → L2�R3� � C�. �4.9�

Similar to �3.10�, the inverse
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R�g;
� = �Y�g;
� Yr�g;
�
Yl�g;
� Yrl�g;
�

� �4.10�

is computed explicitly for 
�C+ and, in suitable function spaces, it extends continuously up to a
small interval containing 0. In analogy with �3.11�, we find that

Yrl�g;
� = Ỹl��
 − � + g2VbaT̃b�g;
�Vab�Ỹr�,

where

Ỹr,2:C� � �z1,…,z�� → � = 
k=1

�

zk�k

and its adjoint is denoted by Ỹl,2.
In analogy with Theorem 4.2 we obtain the following result.
Theorem 4.4: Let Assumption 2.1 hold with �a�2 and ��1/2. Moreover, let Assumption 4.3

hold. If

Mba = ��Rb�0�Vba� j,Vba�k��1	j,k	�

has � strictly positive eigenvalues �l, 1	 l	� (taking into account multiplicity). Then there exist
�0�0 and 0�0 such that, for g� �0,�0�, the operator H�g� has at least � eigenvalues (again
counting multiplicity) �l�g� in �−0 ,0� obeying

�l�g� = − �lg
2 + o�g2�, 1 	 l 	 � . �4.11�

If, in particular, Mab is positive definite, then H�g� has exactly � eigenvalues in �−0 ,0� given by
(4.11) with �=�.

Proof: Follows the same reasoning as in the proof of Theorem 4.2. �

The results in Theorems 4.2 and 4.4 should be compared with the results in Ref. 7. We have
already discussed this issue in the Introduction.

Our approach allows us to treat also the case where zero is an eigenvalue of both Ha and Hb,
provided Ha does not have a zero resonance. The situation where Ha has a zero resonance seems
to be more difficult to handle.

V. EXISTENCE OF HALF-BOUND STATES

Now we return to the situation characterized in Assumption 3.1. We begin with a definition.
Definition 5.1: A real number � is said to be a pseudo eigenvalue of H�g� if there exists a

nonzero function ��L2,−s�R3� satisfying

H�g�� = ��

with s�1 if �=0 or �=�0, and with s�1 � 2 if ��0,�0.
The function � is called a half-bound state.

From Step 1 in the proof of Theorem 4.2 we immediately obtain the following result.
Theorem 5.2: Let Assumption 2.1 hold with ��1/2. Moreover, let Assumption 3.1 be satis-

fied and let �� ��−0 ,�+0�. Then there exists �0 such that, for g� �0,�0�, � is a pseudo
eigenvalue of H�g� if and only if

det Xrl�g;� + i0� = 0.

Remark 5.3: Theorem 5.2 also holds when Assumption 3.1 is replaced by Assumption 4.1; see
the proof of Theorem 4.2, Step 1.

To formulate the next result, we define

M�
� = ��Ra�
�Vab� j,Vab�k��1	j,k	�, 
 � �+�0;�� .
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Theorem 5.4: Let Assumption 2.1 hold with ��1/2. Moreover, let Assumption 3.1 be satis-
fied. If M��+ i0� has no real eigenvalues, then there exists �0 such that ��−0 ,�
+0���pp�H�g��=� for any g� �0,�0�.

Proof: As g→0, the definition of T̃a�g ;
� and Lemma 3.2 imply that

T̃a�g;
� = Ra�
� + O�g2�

holds in B�L2,s�R3� ,L2,−s�R3��, 1 /2�s��, uniformly in 
=�+ i���+�0 ;��. In addition, we
have that

Xrl�g;� + i0� = � − � + g2�M�� + i0� + O�g2�� �5.1�

=� − � + g2�M�� + i0� + o�1� + O�g2�� , �5.2�

which holds uniformly in � in the vicinity of �. By hypothesis, M��+ i0� has no real eigenvalues,
i.e., there exists C0 such that, for all ��R,

	�� + M�� + i0��−1	B�C�� 	 C0.

We next let �=�+g2�̃�g� for a real �̃�g�. Choosing ��−���0 and �0�0 sufficiently small
ensures invertibility of the matrix

Xrl�� + i0� = g2��̃�g� + M�� + i0�� � 
1 + ��̃�g� + M�� + i0��−1�o�1� + O�g2�� . �5.3�

This verifies that det Xrl�g ;�+ i0��0. In view of Theorem 5.2, H�g� has no pseudo eigenvalues
and thus no usual eigenvalues in �−�−0 ,�+0�. �

Remark 5.5: Theorem 5.4 also holds when Assumption 3.1 is replaced by Assumption 4.1.
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We construct and investigate smooth orientable surfaces in su�N� algebras. The
structural equations of surfaces associated with Grassmannian sigma models on
Minkowski space are studied using moving frames adapted to the surfaces. The first
and second fundamental forms of these surfaces as well as the relations between
them as expressed in the Gauss–Weingarten and Gauss–Codazzi–Ricci equations
are found. The scalar curvature and the mean curvature vector expressed in terms of
a solution of Grassmanian sigma model are obtained. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1996369�

I. INTRODUCTION

Sigma models are of great interest in mathematical physics because a significant number of
physical systems can be reduced to these relatively simple models, either on Euclidean or
Minkowski space. One such example is the string theory in which sigma models on spacetime and
their supersymmetric extensions play a crucial role. Other relevant applications of recent interest
are in the areas of statistical physics �for example, reduction of self-dual Yang–Mills equations to
the Ernst model1,2�, phase transitions,3,4 and the theory of fluid membranes.5,6

The objective of this paper is to study geometric properties of surfaces in Lie algebras asso-
ciated with sigma models on Minkowski space. Recently, we investigated surfaces in su�N�
associated with CPN−1 sigma models7 and found a few examples.8 In this paper we extend this
approach to more general models based on Grassmannian manifolds, i.e., the homogeneous spaces

G�m,n� =
SU�N�

S�U�m� � U�n��
, N = m + n .

Grassmannian sigma models are a generalization of CPN−1 sigma models. Their important com-
mon feature is that the Euler–Lagrange equations can be written in terms of projectors only.9 They
share a lot of properties like an infinite number of local and/or nonlocal conserved quantities,
Hamiltonian structure, complete integrability, infinite-dimensional symmetry algebra, existence of
multisoliton solutions, etc. The N�N projector matrix P for the complex Grassmannian sigma
models has, in general, rank lower than the corresponding one for the CPN−1 sigma model and
consequently some new phenomena can arise.

The generalization of our previous results7,8 to Grassmannian sigma models seemed to be
rather natural—in fact, it was in a sense more straightforward than the generalization from CP1 to
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CPN−1, provided one expressed the corresponding formulas in terms of the projector �2.8�. On the
other hand, a different perspective obtained in more general case allowed us to write some of the
results in a more compact and presumably more natural way.

The results can be of interest in the area of relativistic classical and quantum field theory10,11

and in string theory in which sigma models on space-time and their supersymmetric extensions
play a crucial role.12 Other relevant applications of recent interest are in the areas of nonlinear
interactions in particle physics.13 The explicit forms of the surfaces can serve to illuminate the role
of the Kac–Moody algebras in integrable models associated with the Grassmannian sigma
models.14,15

The paper is organized as follows. In Sec. II we recall some basic notions and definitions
dealing with the complex Grassmannian sigma models and their Euler–Lagrange equations. In
Sec. III we perform the analysis of two-dimensional surfaces immersed in the su�N� algebra,
associated with these models. The geometric properties of surfaces and the construction of moving
frames are discussed in detail in Sec. IV and V. Finally, we summarize our results.

II. GRASSMANNIAN SIGMA MODELS AND THEIR EULER–LAGRANGE EQUATIONS

As a starting point let us present some basic formulas and notation for complex Grassmannian
sigma models defined on Minkowski space. We adapt to our signature the notation introduced in
Ref. 9 for Euclidean Grassmannian sigma models.

The Grassmannian manifold is defined as a homogeneous space

G�m,n� =
SU�N�

S�U�m� � U�n��
, N = m + n . �2.1�

We express the elements of G�m ,n� using the equivalence classes of elements g�SU�N� as

�g� = �g . ��� = �Um 0

0 Un
�, Um � U�m�, Un � U�n�, det � = 1	 . �2.2�

We decompose g�SU�N� into the submatrices X ,Y,

g = ��1,…,�N� = �X,Y�, X = ��1,…,�m�, Y = ��m+1,…,�N� , �2.3�

and from g†g=1, i.e., � j
†�k=� jk, we find

X†X = 1m�m, X†Y = 0, Y†X = 0, Y†Y = 1n�n.

From these orthogonality relations and �2.2� we realize that on the subset of G�m ,n� such that the
lower square n�n submatrix of Y is nonsingular, X itself is sufficient to determine �g� �since Un

can be used to bring the lower square part of Y to 1n�n and the remaining entries in Y are fully
determined by the orthogonality properties�. In the following we shall assume that we are working
in such a chart. Evidently it covers the whole G�m ,n� up to lower dimensional submanifolds. We
shall denote the equivalence classes either �X� or �g� depending on circumstances. Note that there

is still some freedom in the choice of X, namely X and X .h ,h� �SU�m� 0

0 1 � give rise to the same

equivalence class �X�= �Xh�. Therefore, one cannot identify X= �X�.
Let �0, �1 be the standard Minkowski coordinates in R2, with the metric

�ds�2 = �d�0�2 − �d�1�2.

In what follows we suppose that �L=�0+�1, �R=�0−�1 are the light-cone coordinates in R2, i.e.,

�ds�2 = d�Ld�R. �2.4�

We shall denote by �L and �R the derivatives with respect to �L and �R, respectively.
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Let us assume that � is an open, connected, and simply connected subset in R2 with
Minkowski metric �2.4�. We define covariant derivatives D� acting on maps X :�→G�m ,n� by

D�X = ��X − XX†��X, �� 
 ���, � = 0,1. �2.5�

In the study of Grassmannian sigma models we are interested in maps X :�→G�m ,n� which
are stationary points of the action functional

S =�
�

tr��D�X�†�D�X�	d�0d�1. �2.6�

The Lagrangian density can be further developed to get

L = tr��D�X�†�D�X�	 = tr���X���X�†P	 , �2.7�

where

P = 1 − XX† �2.8�

is an orthogonal projector, i.e., P2= P, P†= P satisfying PX=0, X†P=0.
The action �2.6� has the local �gauge� SU�m� symmetry

X��L,�R� → X��L,�R� . h��L,�R�, h��L,�R� � �SU�m� 0

0 1
� �2.9�

proving that the model does not depend on the choice of representatives X of elements �X� of
G�m ,n�; and the SU�N� global symmetry

X��L,�R� → g . X��L,�R�, g � SU�N� . �2.10�

It is also invariant under the conformal transformations

�L → ���L�, �R → 	��R� , �2.11�

where � ,	 :R→R are arbitrary 1-to-1 maps such that �L���L��0, �R	��R��0, as well as under
the parity transformation

�L → �R, �R → �L. �2.12�

Let us note that the invariance properties �2.9�–�2.12� are naturally reproduced on the level of the
Euler–Lagrange equations.

By variation of the action �2.6� respecting the constraint

X†X = 1 ,

i.e.,

�X†X + X†�X = 0, ��X†X + X���X = 0, �2.13�

and assuming that due to suitable boundary conditions the boundary terms vanish we find the
Euler–Lagrange equations

P��L�RX − �LXX†�RX − �RXX†�LX� = 0. �2.14�

They can be also expressed in the matrix form

��L�RP,P� = 0 �2.15�

or in the form of a conservation law
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�L��RP,P� + �R��LP,P� = 0. �2.16�

Methods for finding special solutions of �2.14�, e.g., soliton solutions, are known.16,17

By explicit calculation one can check that the real-valued functions

JL = tr��LX�LX†P�, JR = tr��RX�RX†P� �2.17�

satisfy

�LJR = �RJL = 0 �2.18�

for any solution X of the Euler–Lagrange equations �2.14�. The functions JL ,JR are invariant under
local SU�m� and global SU�N� transformations �2.9� and �2.10�.

III. SURFACES OBTAINED FROM THE GRASSMANNIAN SIGMA MODEL

Let us now discuss the analytical description of a two-dimensional smooth orientable surface
F immersed in the su�N� algebra, associated with the Grassmannian sigma model �2.14�. We shall
construct an exact su�N�-valued one-form whose “potential” zero-form defines the surface F.
Next, we shall investigate the geometric characteristics of the surface F.

Let us introduce a scalar product

�A,B� = − 1
2 tr AB

on su�N� and identify the �N2−1�-dimensional Euclidean space with the su�N� algebra

RN2−1 � su�N� .

We denote

ML = ��LP,P�, MR = ��RP,P� . �3.1�

It follows from �2.16� that if X is a solution of the Euler–Lagrange equations �2.14� then

�LMR + �RML = 0. �3.2�

We identify tangent vectors to the surface F with the matrices ML and MR, as follows:

ZL = ML, ZR = − MR. �3.3�

Equation �3.2� implies there exists a closed su�N�-valued one-form on �,

Z = ZLd�L + ZRd�R, dZ = 0.

Because Z is closed and � is connected and simply connected, Z is also exact. In other words,
there exists a well-defined su�N�-valued function Z on � such that Z=dZ. The matrix function Z
is unique up to addition of any constant element of su�N� and we identify the components of Z
with the coordinates of the sought-after surface F in RN2−1. Consequently, we get

�LZ = ZL, �RZ = ZR. �3.4�

The map Z is called the Weierstrass formula for immersion. In practice, the surface F is found by
integration

F:Z ��L,�R� = �

��L,�R�

Z �3.5�

along any curve 
��L ,�R� in � connecting the point ��L ,�R��� with an arbitrary chosen point
��L

0 ,�R
0���.
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By computation of the traces of ZB .ZD, B ,D=L ,R we find the components of the induced
metric on the surface F,

G = �GLL, GLR

GLR, GRR
� = � JL − tr� �LX�RX†+�RX�LX†

2 P�
− tr� �LX�RX†+�RX�LX†

2 P� JR
� . �3.6�

The first fundamental form of the surface F takes surprisingly compact form

I = JL�d�L�2 − 2GLRd�Ld�R + JR�d�R�2

=�2�B,D − 1�tr��BX�DX†P�d�Bd�D, �3.7�

where summation over repeated indices B ,D=L ,R applies and �B,D=1 if B=D and 0 otherwise.
In order to establish conditions on a solution X of the Euler–Lagrange equations �2.14� under

which the surface exists, we check explicitly whether the induced first fundamental form �3.7� is
positive �as it must be by construction even when the surface degenerates to a curve� and when it
is positively definite, i.e., we really have a surface.

We introduce a scalar product on the space of N�m matrices X,

a,b� = tr�a† · b�,a,b � CN�m.

Due to the positivity of the projector P we may write

JD = P�DX,�DX� � 0, D = L,R . �3.8�

Further, using the Schwarz inequality

�Ab,a��2 � Aa,a�Ab,b� �3.9�

valid for any positive Hermitian operator A, namely for P : P�a�= P ·a we find

P�LX,�LX�P�RX,�RX� � �P�LX,�RX��2 � �RP�LX,�RX��2,

i.e.,

det G = P�LX,�LX�P�RX,�RX� − �RP�LX,�RX��2 � 0. �3.10�

Therefore, the 2�2 Hermitian matrix of the metric �3.6� has non-negative diagonal elements and
determinant, and consequently, as one may easily show, its eigenvalues are non-negative. This
means that the first fundamental form I defined by �3.7� is positive for any solution X of the
Euler–Lagrange equations �2.14�.

Investigating when sharp inequalities hold we find that I is positive definite in the point
��L

0 ,�R
0� either if the inequality

I tr��LX�RX†P� � 0 �3.11�

holds in ��L
0 ,�R

0� or if the matrices

�LX��L
0,�R

0�, �RX��L
0,�R

0�, X��L
0,�R

0� �3.12�

are linearly independent. Therefore any of the conditions �3.11� and �3.12� is a sufficient condition
for the existence of the surface F associated with the solution X of the Euler–Lagrange equations
�2.14� in the vicinity of the point ��L

0 ,�R
0�.

Using �3.6� we can write the formula for scalar curvature18 as

K =
1

�JLJR − GLR
2

�R� �LGLR − 1
2GLR�L�ln JL�

�JLJR − GLR
2 � . �3.13�
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IV. THE GAUSS–WEINGARTEN EQUATIONS

Now we may formally determine a moving frame on the surface F and write the Gauss–
Weingarten equations. Let X be a solution of the Euler–Lagrange equations �2.14� such that det�G�
is not zero in a neighborhood of a regular point ��L

0 ,�R
0� in �. Assume also that the surface F �3.5�,

associated with these equations is described by the moving frame

� = ��LZ,�RZ,n3,…,nN2−1�T,

where the vectors �LZ ,�RZ ,n3 ,… ,nN2−1 satisfy the normalization conditions

��LZ,nk� = ��RZ,nk� = 0, �nj,nk� = � jk. �4.1�

We now show that the moving frame satisfies the Gauss–Weingarten equations

�L�LZ = AL
L�LZ + AR

L�RZ + Qj
Lnj ,

�L�RZ = Hjnj ,

�Lnj = � j
L�LZ + 	 j

L�RZ + sjk
L nk,

�4.2�
�R�LZ = Hjnj ,

�R�RZ = AL
R�LZ + AR

R�RZ + Qj
Rnj ,

�Rnj = � j
R�LZ + 	 j

R�RZ + sjk
R nk,

where sjk
L +skj

L =0, sjk
R +skj

R =0, j ,k=3,… ,N2−1,

� j
L =

HjGLR − Qj
LJR

det G
, 	 j

L =
Qj

LGLR − HjJL

det G
,

� j
R =

Qj
RGLR − HjJR

det G
, 	 j

R =
HjGLR − Qj

RJL

det G
,

and AL
L ,AR

L �AL
R ,AR

R have similar form which can be obtained by exchanging L↔R� are written as

AL
L =

1

det G
�JR��L�LZ,�LZ� − GLR��L�LZ,�RZ�� ,

�4.3�

AR
L =

1

det G
�JL��L�LZ,�RZ� − GLR��L�LZ,�LZ�� ,

where

��L�LZ,�LZ� = 1
2 tr���L�LX�LX† + �LX�L�LX†�P� ,

��L�LZ,�RZ� = − 1
2 tr���L�LX�RX† + �RX�L�LX†�P + 2�LX�LX†�X�RX† + �RXX†�� . �4.4�

Note that in fact we can write it in a compact way

��B�BZ,�DZ� = ��B,D − 1
2�tr���B�BX�DX† + �DX�B�BX†�P + 2�BX�BX†�X�DX† + �DXX†�� .

�4.5�
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The explicit form of the coefficients Hj ,Qj
D �where D=L ,R; j=3,… ,N2−1� depends on the

chosen orthonormal basis �n3 ,… ,nN2−1	 of the normal space to the surface F at the point X��L
0 ,�R

0�.
Partial information about them will be obtained in �5.6�.

Indeed, if �LZ ,�RZ are defined by �3.4� for an arbitrary solution X of the Euler–Lagrange
equations �2.14�, then by straightforward calculation using �2.15� one finds that

�L�RZ = �R�LZ = ��LP,�RP� = � − �XX† − XX†� + X��LX†�RX − �RX†�LX�X†,

where

� = �LX�RX† − �RX�LX†.

By computing

tr��L�RZ . �DZ� = ± tr���LP,�RP� . ��DP,P�� = 0, D = L,R �4.6�

we conclude that �L�RZ is perpendicular to the surface F and consequently it has the form given
in �4.2�.

The remaining relations in �4.2� and �4.3� follow as differential consequences from the as-
sumed normalizations of the normals �4.1�, e.g.,

�nj,nk� = 0, j � k ,

which gives

0 = ��Lnj,nk� + ��Lnk,nj� = sjk
L + skj

L .

Similarly

�nj,�LZ� = 0, �nj,�RZ� = 0

by differentiation leads to

��Rnj,�LZ� + �nj,�L�RZ� = 0, ��Rnj,�RZ� + �nj,�R�RZ� = 0

implying

JL� j
R + GLR	 j

R + Hj = 0, GLR� j
R + JR	 j

R + Qj
R = 0.

Consequently, � j
R ,	 j

R can be determined in terms of Hj ,Qj
R and of the components of the induced

metric G. The remaining coefficients � j
L ,	 j

L are derived in an analogous way by exchanging
indices L↔R in the successive differentiations.

The coefficients AL
L ,… ,AR

R are obtained by the requirement that ��D�DZ−AL
D�LZ−AR

D�RZ� is
normal to the surface, i.e.,

tr��BZ . ��D�DZ − AL
D�LZ − AR

D�RZ�� = 0, B,D = L,R . �4.7�

From �3.1� and �3.4� we find

�L�LZ = ��L�LP,P� = �L�LXX† − XX†�L�LXX† + X�L�LX†XX† − X�L�LX† + 2X�LX†X�LX†

− 2�LXX†�LXX†. �4.8�

The expression for �R�RZ is obtained by the change of the overall sign and L↔R. After substi-
tuting the above expressions into �4.7� we solve the resulting linear equations for AB

D.
Let us note that the Gauss–Weingarten equations �4.2� can be written equivalently in the N

�N matrix form

�L� = U�, �R� = V� , �4.9�

where
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U =�
AL

L AR
L Q3

L … QN2−1
L

0 0 H3 … HN2−1

�3
L 	3

L s33
L … s3�N2−1�

L

… … … … …

��N2−1�
L

	�N2−1�
L s�N2−1�3

L … s�N2−1��N2−1�
L

� ,

�4.10�

V =�
0 0 H3 … HN2−1

AL
R AR

R Q3
R … QN2−1

R

�3
R 	3

R s33
R … s3�N2−1�

R

… … … … …

��N2−1�
R

	�N2−1�
R s�N2−1�3

R … s�N2−1��N2−1�
R

� .

The Gauss–Codazzi–Ricci equations

�RU − �LV + �U,V� = 0 �4.11�

are the compatibility conditions for the Gauss–Weingarten equations �4.2�. They are the necessary
and sufficient conditions for the local existence of the corresponding surface F. They are satisfied
for any solution X of the Euler–Lagrange equations �2.14�, provided that explicit forms of Qj

D ,Hj

are inserted �they can be found, for example, by the method developed in Sec V.�. On the other
hand, the Gauss–Codazzi–Ricci equations �4.11� can be used to derive differential constraints that
Qj

D ,Hj must satisfy for any possible choice of normals nj.
The second fundamental form and the mean curvature vector of the surface F at the regular

point p can be expressed, according to Refs. 19 and 20, as

II = ��L�LZ��d�Ld�L + 2��L�RZ��d�Ld�R + ��R�RZ��d�Rd�R,

�4.12�

H =
1

det G
�JR��L�LZ�� − 2GLR��L�RZ�� + JL��R�RZ��� ,

where � �� denotes the normal part of the vector. In our case the expressions �4.12� take the form

II = �Qj
Ld�Ld�L + 2Hjd�Ld�R + Qj

Rd�Rd�R�nj = ��L�LZ − AL
L�LZ − AR

L�RZ�d�Ld�L + 2��L�RZ�d�Ld�R

+ ��R�RZ − AL
R�LZ − AR

R�RZ�d�Rd�R,

�4.13�

H =
1

det G
�JRQj

L − 2GLRHj + JLQj
R�nj =

1

det G
�JR��L�LZ − AL

L�LZ − AR
L�RZ� − 2GLR��L�RZ�

+ JL��R�RZ − AL
R�LZ − AR

R�RZ�� .

The derivatives �D�BZ are expressed explicitly in terms of X in Eqs. �4.6� and �4.8� but after
substitution of them into �4.13� the expressions get rather complicated, therefore we do not present
them here.

V. THE MOVING FRAME OF A SURFACE IN THE ALGEBRA su„N…

Now we proceed to construct the moving frame of the surface F immersed in the su�N�
algebra, i.e., matrices �LZ ,�RZ ,na, a=3,… ,N2−1 satisfying �4.1�.

Let X be a solution of the Euler–Lagrange equations �2.14� and let ��L
0 ,�R

0� be a regular point
in �, i.e., such that det G�X��L

0 ,�R
0���0. Let us denote X0=X��L

0 ,�R
0�, Z0=Z��L

0 ,�R
0�. Taking into

account that
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tr�A� = tr��A�†�, A � su�N�, � � SU�N� ,

we employ the adjoint representation of the group SU�N� in order to bring �LZ ,�RZ ,na to the
simplest form possible. We shall request in the neighborhood of ��L

0 ,�R
0� that

X��L,�R� = ���L,�R��1m�m

0n�m
� . �5.1�

The existence of such a matrix function ���L ,�R� follows from the fact that G�m ,n� is a homo-
geneous space �2.1�. In fact ���L ,�R� is just any representative in SU�N� of the equivalence class
�X��L ,�R�� such that

X��L,�R� = ��11��L,�R� … �1m��L,�R�
…

�N1��L,�R� … �Nm��L,�R�
� ,

�X��L,�R�� = ����L,�R��

and consequently ���L ,�R� is not unique. An explicit �local� construction of ���L ,�R� can be
performed algorithmically in such a way that � depends smoothly on �L ,�R �for a detailed
explanation in the case G�m ,1�=CPm see Ref. 7�.

Let us choose an orthonormal basis in su�N� of the following form:

�Ajk�ab = i�� ja�kb + � jb�ka�, 1 � j � k � N ,

�5.2�
�Bjk�ab = �� ja�kb − � jb�ka�, 1 � j � k � N ,

�Cp�ab = i� 2

p�p + 1���
d=1

p

�da�db − p�p+1,a�p+1,b�, 1 � p � N − 1.

Using the definition of �DZ �3.1�–�3.4� in terms of the projector P and its derivatives, we find
that �D

�Z
�†�DZ��L ,�R�� has a simple block off-diagonal structure

�D
�Z = �†�DZ��L,�R�� = �0m�m − �ZD

��†

ZD
� 0n�n

� , �5.3�

where the nontrivial blocks ZD
� are defined by the relation �5.3�.

When the matrix function � satisfying �5.1� is found, the construction of the moving frame
can proceed as follows. Assume that one finds, using a variant of Gramm–Schmidt orthogonal-
ization procedure, for each �L ,�R, the orthonormal vectors

Ãaj,B̃aj, a = 1,…,m, j = m + 1,…,N, a + j � m + 2

satisfying

��D
�Z,Ãaj� = 0, ��D

�Z,B̃bj� = 0

and

span��D
�Z,Ãaj,B̃aj�D=L,R,a=1,…,m,j=m+2,…,N,a+j�m+2 = span�Aaj,Baj�a=1,…,m,j=m+1,…,N. �5.4�

�The vectors Ãaj , B̃aj as well as �D
�Z are functions of �L ,�R, the arguments are not written out in

order to save space. The relations hold for each pair of values of �L ,�R in the considered neigh-
borhood of ��L

0 ,�R
0��. We identify the remaining tilded and untilded matrices
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Ãjk = Ajk, B̃jk = Bjk, C̃p = Cp,

where a , j=1,… ,m or a , j=m+1,… ,N, 1�p�N−1. As a result, from Gramm–Schmidt or-
thogonalization and �5.3� we get

��D
�Z,Ãak� = ��D

�Z,B̃ak� = ��D
�Z,C̃p� = 0

and

�Ãai,Ãbk� = �B̃ai,Ãbk� = �ab�ik, �C̃p,C̃q� = �pq,

�Ã1i,B̃jk� = �Ã1i,C̃p� = �B̃1i,C̃p� = 0,

where indices run through all the values for which the respective tilded matrices are defined.
Therefore, under the above-given assumptions and notation, we can state the following
Proposition 1: Let the moving frame of the surface F in the neighborhood � of point Z0

=Z��L
0 ,�R

0� be

�LZ = ��L
�Z�†,

�RZ = ��R
�Z�†,

njk
A = �Ãjk�

†, �5.5�

njk
B = �B̃jk�

†,

np
C = �C̃p�†,

where indices run through the values for which Ã , B̃ , C̃ are defined and ���L ,�R� on � satisfies

X��L,�R� = ���L,�R��1m�m

0n�m
� .

Then �5.5� satisfies the normalization conditions �4.1� and consequently the Gauss–Weingarten
equations �4.2�.

Note that the first two lines of �5.5� are equivalent to �5.3�. The remaining lines of �5.5� give
a rather explicit description of the normals to the surface F. Since the construction is local, we do
not have an a priori control of the orientation of the normals. Of course, in the neighborhood
where the procedure is applied the normals have the same orientation.

The explicit form of the moving frame �5.5� might be quite complicated because of the
orthogonalization process involved in the construction of

naj
A ,naj

B , a = 1,…,m, j = m + 1,…,N, a + j � m + 2

�i.e., in the construction of Ã1j , B̃1j�. On the other hand, the remaining normals

nak
A ,nak

B ,np
C

where a , j=1,… ,m or a , j=m+1,… ,N, 1�p�N−1 can be constructed immediately after find-
ing �. In fact, one particular combination of normals np

C of the form
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nP = i�2��N − m

mN
1 −� N − m

m�N − m�
P�

can be constructed from X, i.e., P, alone, without the knowledge of corresponding �.
If we choose another matrix � satisfying �5.1�, the constructed normals would have been

rotated by a local �gauge� transformation from the subgroup of SU�N� leaving �LZ ,�RZ invariant.
It is worth noting that from Eqs. �4.6� and �4.8� it immediately follows that

��L�LZ��,��R�RZ�� � span�n1j
A ,n1j

B �a=1,…,m,j=m+1,…,N,

�5.6�
��L�RZ�� = �L�RZ � span�njk

A ,njk
B ,np

C�a,j=1,…,m, or a,j=m+1,…,N,p�N,

i.e., �L�RZ is orthogonal to �L�LZ ,�R�RZ �and also to the surface, see �4.2��.

VI. FINAL REMARKS

The above presented technique for finding surfaces associated with complex Grassmannian
sigma models defined on Minkowski space can be seen to give a rather detailed analytical de-
scription of the surfaces in question. This description provides effective tools for constructing
surfaces without reference to additional considerations, proceeding directly from the given com-
plex Grassmannian sigma model equations �2.14�. Through the use of Cartan’s language of mov-
ing frames we derived via this sigma model, the structural equations of two-dimensional smooth
surfaces immersed in su�N� algebra. It allows one to find the first and second fundamental forms
of the surfaces as well as the relations between them as expressed in the Gauss–Weingarten and
Gauss–Codazzi–Ricci equations. An extension of the classical Enneper–Weierstrass representation
of surfaces in multidimensional spaces, expressed in terms of any nonsingular solution of �2.14�,
was presented in an explicit form.

Explicit examples of surfaces constructed by the presented method were given in Ref. 8 in the
CP1 case. In the more complicated CPN and truly Grassmannian cases the construction of ex-
amples relies on the knowledge of explicit solutions in closed form of the corresponding sigma
models on Minkowski space �numerical solutions are not good enough, since the numerical com-
putation of derivatives in the construction of the tangent vectors Z would lead to unreliable
results�. Finding such solutions is by itself a nontrivial task which we plan to investigate in the
future. �For example, the solutions obtained by the method presented in Ref. 21 are becoming
computationally too complicated to allow even numerical computation of the surface in feasible
time.�
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We consider sums over the square lattice which depend only on radial distance, and
provide formulas which enable sums of functions with Neumann series to be reex-
pressed as combinations of hypergeometric series. We illustrate the procedure using
trigonometric sums previously studied by Borwein and Borwein, sums combining
logarithms, Bessel functions J�, and powers of distance, and sums of Neumann
functions. We also exhibit sums which may be evaluated analytically and recur-
rence formulas linking sums. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1998827�

I. INTRODUCTION

Many problems involving wave propagation through periodic structures can be dealt with
through the construction of Green’s functions built up from lattice sums which incorporate the
periodicity required of the solution. The long history of lattice sums was reviewed by Glasser and
Zucker1 in 1980, but there have been a number of recent papers dealing with new methods to
evaluate efficiently and accurately these slowly converging or conditionally converging series.2–8

Many of these papers deal with techniques well adapted to particular sums, but difficult to adapt
to variants on the form of the summand. Here we will deal with more general methods and will
concentrate on sums over the square lattice which depend only on the radial distance to the lattice
point. While similar methods may be applied to sums depending on the angle of the lattice point
as well as its distance,9 there are considerable advantages of simplicity to be gained by considering
sums over distance alone.

We commence by studying a Schlömilch series of general form over the square lattice and
treat this using the Poisson summation formula, expressing it as a series of hypergeometric type in
which the sums over the square lattice have been evaluated analytically. We illustrate particular
cases where the Schlömilch series can be summed analytically, as well as integral and differential
recurrence relations for them.

We next apply these results to Neumann series involving Bessel functions of even order, for
which simple results can be obtained. We illustrate this by considering a cosine double sum
previously evaluated by Borwein and Borwein.10 For sums over Bessel functions of odd order, the
results are more complicated, but once again we show the results agree with those previously
established for a sine double sum.

We show next that, by taking an appropriate partial derivative of the Schlömilch series, we can
generate a general formula for a sum involving the logarithm of distance, as well as Bessel
functions and powers of it. We then consider double sums over Neumann functions, Yn, where
another partial derivative of the Schlömilch series is required. We obtain highly accurate and
efficient expressions for the sums of Y0 and Y2 over the square lattice, and show for the former
how the range of convergence of these expressions may be increased if required.
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II. ANALYTIC EXPRESSIONS FOR NONANGULAR ARRAY SUMS

Many interesting results have been derived for lattice sums using Schlömilch series.1,11,12 We
wish to consider here a general sum S which depends on distance from the origin to a general
point Kh=2��h1

2+h2
2 in the reciprocal lattice of a square lattice with unit period:

S�,0,���� = �
h�0

J��Kh��
Kh

� , �1�

where the indices � and � are integral, real, or complex, and h is a pair of subscripts �h1 ,h2�. The
parameter � is taken to be real and positive. We generalize the argument in Ref. 3 to allow for
these �possibly� complex indices. We use the Poisson summation formula

�
h

f�Kh� =
1

�2��2�
p

F�Rp� , �2�

where

F�Rp� =� �
R2

f�k�e−ik·Rp dk, f�Kh� =
1

�2��2 � �
R2

F�r�eiKh·r dr , �3�

Rp are direct lattice vectors, and p= �p1 ,p2�. We assume Re����Re���, so the term h= �0,0� can
be included in S without changing its value. From �3�, with

f�k� =
J��k��

k� , �4�

we arrive at an integral of the Weber-Schafheitlin form:13,14

F�Rp� = 2��
0

� J��k��J0�kRp�
k�−1 dk . �5�

If ��Rp and Re����0, or �	Rp and Re����1, the integral converges for Re��−�+2��0 and
may be expressed as a hypergeometric function:

F�Rp� =
���
��� − � + 2�2�

2�−2Rp
�−�+2
�� + 1�
��� − ��/2� 2F1�� − � + 2

2
,
� − � + 2

2
;� + 1;� �

Rp
	2	 . �6�

For p=0, we have R0=0, and the integral in �5� is

F�0� = 2��
0

� J��k��
k�−1 dk = 2���−22−�+1
��� − � + 2�/2�


��� + ��/2�
, �7�

provided that Re��−���−2, Re����
1
2 .13,14 Consequently,

S�,0,���� = ��−2 
��� − � + 2�/2�
2��
��� + ��/2�

+ �
p�0

��
��� − � + 2�/2�
2��Rp

�−�+2
�� + 1�
��� − ��/2�

�2F1�� − � + 2

2
,
� − � + 2

2
;� + 1;� �

Rp
	2	 . �8�

We complete this derivation using the series expansion for the hypergeometric function:
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2F1�a,b;c;z� =

�c�


�a�
�b��k=0

�

�a + k�
�b + k�


�c + k�
zk

k!
, �9�

which converges absolutely in 
z
�1, and absolutely on 
z
=1 provided that Re�c−a−b��0.14 In
our case, this translates to Re����1, and �9� gives

S�,0,���� = ��−2 
��� − � + 2�/2�
2��
��� + ��/2�

+
�� sin ���� − ��/2�

2��2 �
k=0

�
�
��� − ��/2 + 1 + k��2


�� + k + 1�k!
�2k�2k+2+�−�

0 .

�10�

Here1

�2s
0 = �

p1,p2

� 1

�p1
2 + p2

2�s = 4�s���s� , �11�

where the sum over �p1 ,p2��Z2 excludes p1=p2=0, as denoted by the prime, with ��s� denoting
the Catalan � function

��s� = �
k=0

�
�− 1�k

�2k + 1�s . �12�

A useful summary of the properties of ��s� has been given by Glasser.15 The quantities �2s
0 satisfy

the reflection formula

�2s
0 = �2−2s

0 ��2s−1
�1 − s�

�s� � , �13�

which follows from the reflection formulae for the � function15

2s
�s� sin �s�/2���s� = �s��1 − s� ,

and for the  function14

�s� = 2s�s−1 sin �s�/2�
�1 − s��1 − s� .

The expression �10� was derived under the conditions Re����Re���, Re����
1
2 and 
�
�1. How-

ever, wherever the right-hand side is convergent, it provides, by analytic continuation, the defini-
tion of the left-hand side. The sum in �10� is cancelled out by its prefactor when �−�=2p, for p
a positive integer, in which case

S�+2p,0,���� = ��−2 
�p + 1�
2��
�� + p�

. �14�

This expression may be verified by direct numerical summation when Re����2. Regarded as a
function of �, S�+2p,0,���� is analytic, with simple zeros at �=−p−n, for n=0,1 ,2 , . . ., for fixed
��0.

We can derive the result for �=� from �10� letting �→�, and noting that the pole of �s
0 at s=1

cancels the zero of sin ���−�� /2. Alternatively, we can use �13� in �10�, to give

S�,0,���� = ��−2 
��� − � + 2�/2�
2��
��� + ��/2�

+
����−�

2�−2 �
k=0

�
�2k�− 1�k�2k


�� + k + 1�k!
��− k + �� − ��/2��− k + �� − ��/2� ,

�15�

where we note that the product �s���s� is zero whenever s is a negative integer. The result is
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S�,0,���� =
��−2

2��
���
−

��

2�
�� + 1�
=

��−2

2�
�� + 1�
� �

�
− �2	 , �16�

which is a generalization of the result

Sn,0,n��� =
1

�2n�!!
� n

�
�n−2 − �n	, n � N ,

derived in Ref. 5 in a different fashion. It is interesting to take �=0 in �16�, with the result
S0,0,0���=−1. The result from Ref. 5 is

S0,0,0��� =
����
2��

− 1, �17�

which agrees with �16� apart from the distributive term, which one would not expect to exist in an
analytic continuation. Indeed, in the definition of sums �1� we have assumed that � is real and
positive so that the two results are equivalent. For fixed ��0, the expression �16� is an analytic
function of �, with zeros at �=−1,−2, . . ., and also at �=��2. Once again, the expression �16� may
be exemplified numerically by choosing Re����2.

Another special case of �10� is the formula �43� from Ref. 3, valid for �−�=2p+1, where �
and � are non-negative integers, and p is a positive integer. We repeat it here, with an error in a
sign factor corrected:

S�,0,���� = ��−2 
��� − � + 2�/2�
2��
��� + ��/2�

+
�− 1���−�+1�/2��

2��2 �
k=0

�
�
��� − ��/2 + 1 + k��2

k!�k + ��!
�2k�2k+2+�−�

0 .

The lattice sums S obey four recurrence relations based on certain integral and differential
relations, satisfied by the Bessel functions3 �see also the Appendix�. The forms

S�+1,0,�+1��� =
1

��+1�
0

�

��+1S�,0,����d�, for Re��� � − 1, �18�

and

S�−1,0,�+1��� =
��−1

2�−1�2���−�+2
���
��−�+2

0 −
1

� −�+1�
0

�

�−�+1S�,0,����d� �19�

act by integration to increment the third subscript. The two differential relations are

S�−1,0,�−1��� = � −����S�,0,������, �20�

and

S�+1,0,�−1��� = − ���� −�S�,0,������, �21�

which both decrement the third subscript. Appropriate pairwise combinations of these act on either
the first or the third subscript alone:

S�+2,0,���� =
2�� + 1�

��+2 �
0

�

��+1S�,0,����d� − S�,0,���� , �22�
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S�,0,���� =
��

2��2���−�
�� + 1�
��−�

0 −
2�� + 1�

� −� �
0

�

�−�−1S�+2,0,����d� − S�+2,0,���� �23�

are inverse operations on the first subscript. The lowering and raising relations for the third
subscript are

S�,0,�−2��� =
�2

�2 S�,0,���� −
1

�
S�,0,�� ��� − S�−0,�� ��� �24�

and

S�,0,�+2��� =
��

2��2���−�+2
�� + 1�
��−�+2

0 −
1

� −��
0

� � 1

�2�+1�
0

�

��+1S�,0,����d��d� . �25�

We can verify that the expression �10� satisfies each of the recurrence relations �18�–�21�. The
algebra is elementary, with the exception of �19�, where �13� needs to be used to transform ��−�+2

0

into ��−�
0 , before this term is combined with the hypergeometric series. We can thus use either the

recurrence relations or the hypergeometric expression �10� in order to extend the calculation of the
S�,0,���� from the region of derivation Re��−���−2, Re����1 over the whole range of the two
complex variables � and �. Note the structure of �10�; the first term will have simple poles at �
−�=−2m, where m is a positive integer, whereas in the hypergeometric sum the poles of �
���
−�� /2+1+k��2 are exactly compensated for by the zeros of sin����−�� /2� and �2k+2+�−�

0 at the
same locations. This is also evident from �15�. The hypergeometric sum gives a simple pole at
�−�=2k+2, due to the pole of �0.

III. NEUMANN SERIES WITH BESSEL FUNCTIONS OF EVEN ORDER

Neumann series express general functions as a combination of Bessel functions Jl of constant
argument and varying integer order l.13,14 The expansion coefficients are given by contour integral
of the product of the function and the Neumann polynomials, or can be deduced from the Ma-
claurin series coefficients of the function.

We start with sums over the square array of Bessel functions of even order:5

�
h

J0�Kh�� = �
h1,h2=−�

�

J0�2���h1
2 + h2

2� =
����
2��

�26�

and

�
h

J2l�Kh�� = �
h1,h2=−�

�

J2l�2���h1
2 + h2

2� =
1

��2 , �27�

for l�0. These results can be used to evaluate sums over the square array of functions of distance
whose Neumann expansions only involve Bessel functions of even order. As an example, we
consider one of the sums evaluated using Abel summation by Borwein and Borwein:10

�
h1,h2

�sin���h1
2 + h2

2�
�h1

2 + h2
2

=
2�

�
− �, 0 � 
�
 � 2� . �28�

Firstly, we use a Neumann series from Prudnikov et al.:16

sin z

z
= J0�z� − 2�

l=1

�
�− 1�lJ2l�z�
�4l2 − 1�

. �29�

Then, substituting �26� and �27� into �29� we have
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�
h1,h2

�sin�2���h1
2 + h2

2�
�h1

2 + h2
2

= ���� − 2�� −
4

�
�
l=1

�
�− 1�l

4l2 − 1
, �30�

where the sum over h1 and h2 excludes h1=h2=0, as denoted by the prime. The sum on the
right-hand side of �30� has the value �− 1

4
�, so that we obtain

�
h1,h2

�sin�2���h1
2 + h2

2�
�h1

2 + h2
2

= ���� − 2�� +
1

�
. �31�

This can be compared with the result of Borwein and Borwein �28�. Evidently the two results
agree, except that �31�, having been obtained using the theory of distributions, includes a delta
function term missing from �28�.

We next consider the Neumann series:

cos z = J0�z� + 2�
l=1

�

�− 1�lJ2l�z� . �32�

Hence,

�
h1,h2

� cos�2���h1
2 + h2

2� =
����
2��

− 1 +
2

��2�
l=1

�

�− 1�ll . �33�

The sum is evaluated using the binomial series for −1/ �1+z�2 at z=1, with the result

C��� = �
h1,h2

� cos�2���h1
2 + h2

2� =
����
2��

− 1 −
1

2��2 . �34�

Note that, if we differentiate �31� with respect to �, we obtain the nondistributive terms in �34�.

IV. NEUMANN SERIES WITH BESSEL FUNCTIONS OF ODD ORDER

Results for odd orders corresponding to �26� and �27� were not given in Ref. 5. They may be
derived from �10�. Hence, we have

�
h

J2l+1�Kh�� = �
h1,h2=−�

�

J2l+1�2���h1
2 + h2

2� =
1

��2�l +
1

2
	 −

4

�2 �− 1�l�
k=0

�
�
�k + l + 3/2��2

k!�k + 2l + 1�!
�k + l

+ 3/2���k + l + 3/2��2k+2l+1. �35�

We apply �35� to the evaluation of

S��� = �
h1,h2

� sin�2���h1
2 + h2

2� = 2 �
h1,h2

��
l=0

�

�− 1�lJ2l+1�2���h1
2 + h2

2� . �36�

We note that there is no contribution from the 1/�2 term which arises from using �35� in �36�. The
evaluation of this contribution is somewhat delicate, since conditionally convergent sums arise. It
may be approached using binomial series of the functions 1/ �1+z� and −1/ �1+z�2, and analytic
continuation for z=1. More rapidly, we may note15 that

�
l=0

�

�− 1�l�l +
1

2
	 =

1

2�
l=0

�
�− 1�l

�2l + 1�−1 =
1

2
��− 1� = 0. �37�

Hence,
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S��� = −
8

�2�
k=0

�

�
l=0

�
�
�k + l + 3/2��2

k!�k + 2l + 1�!
�k + l + 3/2���k + l + 3/2��2k+2l+1. �38�

We can transform the double sum to a single sum, by replacing k+ l by n, and using the result

�
k,l�0,k+l=n

�2n + 1�!
k!�k + 2l + 1�!

=
1

2 �
k=0

2n+1 �2n + 1

k
	 = 22n. �39�

We find

S��� = −
8

�2 �
n=0

�
�
�n + 3/2��2

�2n + 1�!
22n�n + 3/2���n + 3/2��2n+1. �40�

After some manipulation of the 
 function term, this becomes

S��� = �
h1,h2

�sin�2���h1
2 + h2

2� = −
4

�
�
n=0

�
�2n + 1�!

�n!�2 �n + 3/2���n + 3/2�� �

2
	2n+1

. �41�

This will be recognized as being identical to the derivative of the result from Borwein and
Borwein,10

�
h1,h2

�cos���h1
2 + h2

2�
�h1

2 + h2
2

= 4�
n=0

�
�2n�!
�n!�2 �n + 1/2���n + 1/2�� �

4�
	2n

, 0 � 
�
 � 2� . �42�

Borwein and Borwein10 also consider the series on the left of �42� with an alternating sign
included:

�
h1,h2

��− 1�h1+h2
cos���h1

2 + h2
2�

�h1
2 + h2

2
= 4�

n=0

�
�2n�!
�n!�2 �n + 1/2���n + 1/2��2n+1/2 − 1�� �

4�
	2n

,

0 � 
�
 � �2� . �43�

Numerical examples of the convergence of �42� �left� and �43� �right� by direct summation are
presented in Fig. 1, together with the results of the rapidly convergent series on their right-hand
sides.

V. SERIES COMBINING BESSEL FUNCTIONS AND LOGARITHMS

From the definition �1� we can construct a general formula for sums combining a logarithm
with a Bessel function and a power of the distance:

FIG. 1. Partial sums for the left-hand sides of �42� �left� and �43� �right� obtained by summation over a square region,
centered on the origin and having side length of 2N+1, for N up to 400. These are compared with the right-hand sides
�solid line� of these equations for �=0.583.
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L�,0,���� = −
�

��
S�,0,���� = �

h�0
log�Kh�

J��Kh��
Kh

� . �44�

Using the sum �11� and the expansion �15�, we find

L�,0,���� = �− log� �

2
	 +

1

2
��� − � + 2

2
	 +

1

2
��� + �

2
	���−2 
��� − � + 2�/2�

2��
��� + ��/2�

+
����−� log�2��

2� �
k=0

�
�2k�− 1�k�2k


�� + k + 1�k!
��−�−2k

0 −
����−�

2� �
k=0

�
�2k�− 1�k�2k


�� + k + 1�k!
��−�−2k

0� .

�45�

We now evaluate L0,0,0���:

L0,0,0��� = �− log� �

2
	 +

1

2
��1� +

1

2
��0��� −2 1

�
�0�
+ log�2���

k=0

�
�− 1�k����2k

�k!�2 �−2k
0

− �
k=0

�
�− 1�k����2k

�k!�2 �−2k
0� . �46�

The factor 1 /
�0� makes zero the first term on the right-hand side of �46�, apart from the term
involving ��0�. Taking the appropriate limit from �45�, we find that we should make the identifi-
cation ��0� /
�0�=−1. The first infinite series reduces just to the term k=0, since �−2k

0 =0 for k
�1, while �0

0=−1. The second series involves the derivative

�−2k
0� =  ���−�−2k

0

��


�=�=0

for negative even order subscripts. Separating out k=0 first of all, we use the expansion

�2+��
0 =

2�

��
+ D , �47�

where D=��2�+log�� /2�−C�, and C=log�
�1/4�4 / �8�2���0.783 188 785 414.17 We may also
write D=�S�2.584 981 759 5, where S is the Sierpinski constant.18 We then obtain

�0
0� =

D

2�
− � − log��� . �48�

For general �−2k
0� , we take the derivative of the reflection equation �13�, and obtain for positive

integral k

�−2k
0� =

�− 1�k�k!�2

2�2k+1 �2+2k
0 . �49�

Using �48� and �49� in �46�, we find

L0,0,0��� = −
1

2��2 −
D

2�
+ � − log�2� −

1

2�
�
k=1

�

�2k�2+2k
0 . �50�

A numerical example of this is given in Fig. 2. Note how the envelopes of the results of direct
summation separate slowly, due to the extra logarithmic factor in the definition of L. However, the
mean of the numerical results �−1.800 32� is in reasonable accord with the analytic result
�−1.837 134�.
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Consider next the form of L2,0,0���. This is more straightforward than L0,0,0���, in that the first
series in �45� vanishes, and only �49� is needed in the second series. We obtain

L2,0,0��� = −
1

��2 log� �

2
	 +

1 − 2�

2��2 +
�2

2�
�
k=0

�
k + 1

k + 2
�2k�4+2k

0 . �51�

A numerical example of this is given in Fig. 3. The mean of the numerical results is 3.781 26,
while the result of �51� is 3.820 33.

VI. SERIES OF NEUMANN FUNCTIONS

These series are of particular interest in the construction of Green’s functions for the Helm-
holtz equation.2,3,5–8 We start with a particular case of �10�:

S�,0,0��� =
�

2��2 −
sin���/2��
�1 + �/2��2

�2
�1 + ��
���2+�

0 −
sin���/2�

�2 �
k=1

�
�
��/2 + 1 + k��2


�� + k + 1�k!
�2k+��2k+2+�

0 .

�52�

We will replace � by ��, and expand this to first order in ��. We use �47� to give

FIG. 2. Partial sums for L0,0,0���, with �=0.37, obtained by summation over a square region, centered on the origin and
having side length of 2N+1, for N up to 200. The analytical result �50� is indicated by the horizontal line.

FIG. 3. Partial sums for L2,0,0���, with �=0.37, obtained by summation over a square region, centered on the origin and
having side length of 2N+1, for N up to 200. The analytical result �51� is indicated by the horizontal line.
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S��,0,0��� =
��

2��2 − 1 − ���log � +
D

2�
+

2

�
�
k=1

�

�2k�k + 1���k + 1�� . �53�

Now, the Neumann functions of zeroth order are defined13,14 as

Y0�z� = lim
�→0

J��z�cos���� − J−��z�
sin����

= lim
�→0

J��z� − J−��z�
��

and, if we denote by

T0,0,0��� = �
h�0

Y0�Kh�� , �54�

then

T0,0,0��� = lim
��→0

S��,0,0��� − S−��,0,0���
���

. �55�

Using �53� in �55�, we obtain

T0,0,0��� =
1

�2�2 −
2

�
log � −

D

�2 −
4

�2�
k=1

�

�2k�k + 1���k + 1� . �56�

In Fig. 4 we show a comparison of direct summation of �54�, and running averages, with the
result of �56�. Such comparisons are useful in detecting possible algebraic errors in formulas such
as �56�, but do not provide precise validation because of the slowness of convergence of direct
summation. However, rapidly convergent representations of Bessel function series have been
found which give T0,0,0���.2,4 In the example of Fig. 4, both �56� and accelerated summation4 give
the value 1.384 941 001 791 97. Of course, the computational burden in using Bessel function
summation as in Ref. 4 is much larger than that involved in using �56� �for which 15 terms in a
Mathematica19 evaluation of the series gave the 14 decimal places quoted�.

An alternative derivation of �56� uses the result �50� and the Neumann expansion:13,14

Y0�z� =
2

�
�log� z

2
	 + ��J0�z� −

4

�
�
k=1

�
�− 1�kJ2k�z�

k
. �57�

This procedure also uses �27� to arrive at �56�.
The radius of convergence of the series on the right-hand side of �56� is unity. This may be

increased by subtracting terms from the product � and adding them analytically. The product

FIG. 4. On the left: partial sums for T0,0,0��� obtained by summation over a square region, centered on the origin and
having side length of 2N+1, for N up to 400. On the right: the growing mean of the data in the graph on the left. We used
�=0.32, with the analytic result �56� being given by the horizontal line.
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�s���s� = 1 +
1

2s +
1

4s +
2

5s +
1

8s +
1

9s +
2

10s +
2

13s +
1

16s +
2

17s + ¯ �58�

may be written as

�s���s� =
1

4�
n=1

�
r2�n�

ns , �59�

where the multiplicities r2�n� are equal to the number of representations of n by a sum of two
squares of integers, allowing zeros and distinguishing signs and order.20 We substitute �59� into
�56�, change the order of summation in the double sum, and split the sum over n at n=N to obtain

T0,0,0��� =
1

�2�2 −
2

�
log � −

D

�2 −
1

�2�
k=1

�

�2k�N
��2k + 2� −

1

�2 �
n=1

N

r2�n�� 1

n − �2 −
1

n
� , �60�

where the symbol �N
��2k+2� denotes the lattice sum obtained by including only n values in excess

of N:

�N
��2k + 2� = �

n=N+1

�
r2�n�
nk+1 .

This procedure extends the � range over which the expression �56� is valid, and the expansion �60�
works up until �=�N.

As an example of the use of �60�, we show in Fig. 5 a comparison of the results for summation
over k with 10 and 20 terms for N=5. The two curves lie on top of each other for � up to the last
singularity taken into account at an abscissa of �5, but then start to separate.

Note that in �60�, the only transcendental quantities which require evaluation are the �N
��2k

+2�. N may be chosen taking into account the upper limit desired for the frequency �say�, given by
the limit on �, and then the �N

��2k+2� may be evaluated once and for all and stored, since they do
not depend on �. This makes the numerical evaluation of T0,0,0��� from �60� particularly rapid.

The differential recurrence relations �20� and �21� apply equally to the Neumann sums

T�,0,���� = �
h�0

Y��Kh��
Kh

� . �61�

However, due to the different behaviors between J� and Y� at the origin, the integral relations �18�
and �19� must be altered and become �see the Appendix�

FIG. 5. T0,0,0��� from Eq. �60� with N=5 is compared for summation over k with 10 and 20 terms.
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T�+1,0,�+1��� = −

�1 + ��

2�+1��+�+3��+1��+�+2
0 +

1

��+1�
0

�

��+1T�,0,����d� , �62�

and

T�−1,0,�+1��� =

�1 − �� cos ����
2�+1��−�+3�−�+1 ��−�+2

0 −
1

� −�+1�
0

�

�−�+1T�,0,����d�, for Re��� � 1.

�63�

The recurrence relation which increments the first subscript alone follows from �62� and the
recurrence relations satisfied by Bessel functions

2�� + 1�
z

Y�+1�z� = Y��z� + Y�+2�z� ,

and has the form

T�+2,0,���� = −

�2 + ��

2���+�+3��+2��+�+2
0 +

2�� + 1�
��+2 �

0

�

��+1T�,0,����d� − T�,0,���� . �64�

That which decrements the first subscript alone is

T�−2,0,���� = −

�2 − �� cos ����

2���−�+3�−�+2 ��−�+2
0 −

2�� − 1�
� −�+2 �

0

�

�−�+1T�,0,����d� − T�,0,���� , �65�

and holds for Re����1.
Note that we cannot apply �64� directly to �56�, since we would encounter the divergent

quantity �2
0. Instead, to find T2,0,0���, we use the same limiting argument as we used to derive �56�.

We use

S2+��,0,0��� =
1

��2 +
��

2��2 +
��

2�
�
k=0

�
k + 1

k + 2
�2k+2�2k+4

0 . �66�

The calculation for S−2−��,0,0��� is more involved, since in the sum over k the first two terms are
best treated using the form of summand found in �15� rather than �10�. The result is

S−2−��,0,0��� =
1

��2 −
��

2��2 −
��

2�
�
k=0

�
k + 1

k + 2
�2k+2�2k+4

0 − �� +
��

�2�2 �D − 2� log���� + 2��1 − ��� .

�67�

Combining �66� and �67�, we obtain

T2,0,0��� = lim
��→0

S2+��,0,0��� − S−2−��,0,0���
���

=
1

�2�2�− 1 + 2� −
D

�
+ 2 log����� +

1

�

+
1

�2�
k=0

�
k + 1

k + 2
�2k+2�2k+4

0 . �68�

In the numerical example shown in Fig. 6 the mean of the results from direct summation is
−0.285 082, while the result of �68� is −0.297 607.
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VII. CONCLUSIONS

The results we have given here by no means exhaust those which may be derived using the
basic sums �26� and �27� in the Neumann series, or the Schlömilch series �10� and �15�. We have
also obtained similar results for sums over positive integers rather than the square lattice, which
we will submit for publication.
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APPENDIX: RAISING AND LOWERING OPERATORS FOR BESSEL FUNCTIONS

The derivation of recurrence relations for the sums �1� and �61� are based on two differential
and two integral relations, satisfied by the Bessel functions. The differential relations are the same
for both kinds of Bessel functions,13,14

�1

b
x�+1Z�+1�bx���

= x�+1Z��bx� ,

�1

b
x−�+1Z�−1�bx���

= − x−�+1Z��bx� , �A1�

where Z represents one of the Bessel functions J or Y, and the prime denotes a differentiation with
respect to x. Due to the different behaviors between J� and Y� at the origin, the corresponding
integral relations are13,14

�
0

a

x�+1J��bx�dx = a�+1J�+1�ba�
b

, for Re��� � − 1 and a,b � 0,

�
0

a

x−�+1J��bx�dx =
b�−2

2�−1
���
− a−�+1J�−1�ba�

b
, for a,b � 0, �A2�

for Bessel functions of the first kind, and

FIG. 6. Partial sums for T2,0,0���, with �=0.32, obtained by summation over a square region, centered on the origin and
having side length of 2N+1, for N up to 200. The analytical result �68� is indicated by the horizontal line.
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�
0

a

x�+1Y��bx�dx =
2�+1
�1 + ��

�b�+2 + a�+1Y�+1�ba�
b

, for a,b � 0,

�
0

a

x−�+1Y��bx�dx =
b�−2
�1 − ��cos����

2�−1�
− a−�+1Y�−1�ba�

b
, for Re��� � 1 and a,b � 0,

�A3�

for Bessel functions of the second kind.
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The relationship between two different asymptotic techniques, namely, the Wigner-
Weyl kinetic formalism and the complex geometrical optics method, is addressed
within the framework of semiclassical theory of wave propagation. More specifi-
cally, in correspondence to appropriate boundary conditions, the solution of the
wave kinetic equation, relevant to the Wigner-Weyl formalism, is obtained in terms
of the corresponding solution of the complex geometrical optics equations. In par-
ticular, this implies that the two considered techniques yield the same wavefield
intensity. Such a result is also discussed on the basis of the analytical solution of the
wave kinetic equation specific to Gaussian beams of electromagnetic waves propa-
gating in a “lens-like” medium for which the complex geometrical optics solution is
already available. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1998833�

I. INTRODUCTION

In the framework of the semiclassical theory of waves,1–5 i.e., short wavelength asymptotics,
the uniform �global� description of the wavefield is complicated by the formation of caustic
singularities.1,2,6–8 Although a complete and deep understanding of the wavefield structure near
caustic regions is obtained on the basis of catastrophe theory2,6,8 and the unfolding of the corre-
sponding singularities can be treated by means of symplectic techniques,1,2,9 the application of
such methods to realistic cases, e.g., to waves in magnetically confined plasmas,10 appears rather
difficult. Therefore, with specific regard to physical applications, several asymptotic methods have
been developed which yield numerically tractable equations, though being limited concerning the
global properties of the asymptotic solutions.

Such asymptotic techniques can be classified into two different families, depending on
whether the relevant wave equation is described in the phase space, microlocal techniques, or
directly in the configuration space where the wavefield is defined, quasi-optical methods.

This work aims to give a detailed comparative analysis of two such techniques, namely, the
Wigner-Weyl kinetic formalism11–13 and the complex geometrical optics �CGO� method,14–17

which can be considered as benchmarks for microlocal and quasi-optical methods, respectively.
Specifically, in Sec. II, the Wigner-Weyl formalism and the complex geometrical optics

method are reviewed and compared. In particular, it is pointed out that, within the Wigner-Weyl
formalism, physically meaningful solutions should have a specific form, referred to as momentum
distribution, which is characterized in Sec. III.

On the basis of the mathematical properties of momentum distributions, our main result is
obtained in Sec. IV. In particular, it is shown that, in correspondence to appropriate boundary
conditions, there exists a specific asymptotic solution of the wave kinetic equation relevant to the
Wigner-Weyl formalism that can be written in terms of the corresponding solution of the complex
geometrical optics equations. This allows us to relate the two considered methods as well as to

a�Electronic mail: maj@fisicavolta.unipv.it
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determine the specific class of boundary conditions for which they are equivalent. In Sec. V, this
general result is illustrated by means of an analytically tractable example, i.e., the propagation of
a Gaussian beam of electromagnetic waves in an isotropic “lens-like” medium. In conclusion, a
summary of the main results is given in Sec. VI.

II. THE WIGNER-WEYL FORMALISM VERSUS THE CGO METHOD

In order to set up the framework, let us discuss the relevant boundary value problem for a
generic scalar pseudodifferential wave equation, together with the required mathematical defini-
tions.

Specifically, we will consider the case of a scalar �real or complex� wavefield ��x� propagat-
ing in the N-dimensional linear space RN with x= �x1 , . . . ,xN� a generic set of Cartesian coordi-
nates and denote by k= �k1 , . . . ,kN� the corresponding coordinates in the dual space �RN���RN.
Time-dependent wavefields are included as one of the coordinates can play the role of time, e.g.,
xN=ct, c being a reference speed, and the corresponding dual coordinate is related to frequency,
e.g., kN=−� /c. To some extent, the results for a scalar wave equation are valid also for a multi-
component wave equation as the latter can be reduced to a set of independent scalar equations far
from mode conversion regions.5

Thereafter, the Wigner-Weyl formalism will be formulated entirely in the space RN� �RN��
�R2N, with coordinates �x ,k�, which is viewed as the trivial cotangent bundle21 over the configu-
ration space RN where the wavefield is defined. No explicit reference to the propagation direction
is made, differently from the classical derivations.13 As for the CGO method, it has been originally
developed for solving the second-order partial differential equation relevant to the propagation of
electromagnetic wave beams in stationary spatially nondispersive media. Hence, we will need to
discuss its application to generic pseudodifferential equations. In particular, it is shown that the
CGO method yields an approximation of the wavefield directly in the configuration space, pro-
vided that the wave equation satisfies an appropriate condition.

First, let us define the class of wave equations undergone to solution. A pseudodifferential
wave equation is an equation of the form

�D̂���x� =
1

�2��N � eik·�x−x��d�x,x�,k���x�� dNx� dNk = 0, �1�

which admits propagating wave solutions. The operator D̂ is a pseudodifferential operator3,18–20

acting on the wavefield as a Fourier integral operator20 characterized by the bilinear phase function
k · �x−x��. Here, d�x ,x� ,k� belongs to a particular class of smooth functions, referred to as sym-
bols, which, roughly speaking, behave like a polynomial in k for �k� large enough. Specifically, a
smooth function a�z ,k� with z�RM and k� �RN�� is a symbol of order m�R if for every multi-
indices �, � there is a constant C�,��0 such that

��z
��k

�a�z,k�� �
C�,�

L���−��� �1 + �kL��m−���, uniformly in �z,k� � RM � �RN��, �2�

and one writes a�Sm�RM � �RN���. In virtue of the symbol estimate �2� the integral in �1� makes
sense for ��S��RN�, the space of tempered distribution.18,21 Moreover, the scale length L char-
acterizes the variations of symbols with respect to the spatial coordinate z and it can be eliminated
by the rescaling z→z /L and k→kL. It is worth noting that any linear differential operator with
smooth and bounded coefficients is a pseudodifferential operator.19

Boundary conditions of Cauchy type are given on an �N−1�-dimensional hypersurface 	: for
simplicity, one can assume 	 to be the hyperplane �x :xN=0	 where the wavefield �0�x�, x
= �x1 , . . . ,xN−1�, is assigned together with as many derivatives �n�x�=�n� /��xN�n as appropriate.
We are interested in semiclassical solutions for which only the covectors k with

083510-2 Omar Maj J. Math. Phys. 46, 083510 �2005�

                                                                                                                                    




 = �kL� � 1

are significant, in the integral in �1�. As a consequence, the wavefield should be a highly oscillat-
ing function on the �large� scale length L and it should correspond to a specific set of highly
oscillating boundary conditions of the form

�0�x� = A0�x�eiS0�x�, �xS0�x�L 
 
 � 1, �3�

the amplitude A being slowly varying, that is, ��xA�
�A� /L.

A. The Wigner-Weyl formalism

In the Wigner-Weyl formalism, the Weyl-symbol map �W is applied in order to represent the
wave equation �1� in RN� �RN�� which is naturally endowed with a phase-space structure. The

Weyl-symbol map transforms an operator Â :S�RN�→S��RN�, S�RN� being the space of
Schwartz’s functions,21 into a tempered distribution by acting on the Schwartz kernel A�x1 ,x2�
�S��R2N� of the operator Â according to13

A�x1,x2� � �W�Â��x,k� =� A�x +
1

2
s,x −

1

2
s�e−ik·sdNs . �4�

It is worth noting that for the pseudodifferential operator in �1� the Schwartz kernel is

D�x1,x2� =
1

�2��N � eik·�x1−x2� d�x1,x2,k� dNk ,

thus, the image of D̂ under the Weyl-symbol map amounts to the formal series of decreasing order
symbols

�W�D̂��x,k� = 
�

i���

�!
�s

��k
�d��x +

1

2
s,x −

1

2
s,k��

s=0
,

where Taylor expansion has been used and �s
��k

�d�Sm−���. Series of that kind admit always an
asymptotic resummation3,19 to a symbol of order m,

D�x,k� 
 �W�D̂��x,k� � Sm, �5�

which is referred to as Weyl symbol of D̂. In �5� the � denotes the asymptotic equivalence of

symbols.3,19 On the other hand, one can consider the correlation operator13 Ŝ whose Schwartz
kernel is given by the tensor product ��x1��*�x2�. Then the Weyl-symbol map yields the Wigner
function

W�x,k� = �W�Ŝ��x,k� =� ��x +
1

2
s��*�x −

1

2
s�e−ik·s dNs . �6�

The wave equation �1� can be written in the equivalent form D̂Ŝ=0 and, on applying the
Weyl-symbol map, one gets3,13

�W�D̂Ŝ��x,k� 
 
�,�

�− 1����

�2i���+���!�!
��x

��k
�D�x,k����x

��k
�W�x,k�� = 0. �7�

In the semiclassical limit one has �x
��k

�D=O�
m−���� so that, on assuming the same ordering for the
Wigner function,13 the foregoing equation separates into

D��x,k�W�x,k� = 0, �8a�
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�W�x,k�,D��x,k�	 = 2D��x,k�W�x,k� , �8b�

where D��Sm and D��Sm−1 are the real and imaginary parts of the Weyl symbol; in particular,
one has D� /D�=O�
−1� which is the condition for weak absorption and/or instabilities.13 Equation
�8a� is a constraint to Eq. �8b� which, on the other hand, has the form of a kinetic equation in the
x-k phase space, �·,·	 being the corresponding Poisson brackets. We will refer to the whole system
�8� as the wave kinetic equation.

In general, a solution of the wave kinetic equation is a tempered distribution, however, one
usually restricts the class of solutions to semiclassical measures. This allows us to make sense of
the integrals of the form3,13

�Â�� =
1

�2��N � A�x,k�W�x,k� dNx dNk ,

which expresses the expectation value of a physical quantity represented by the pseudodifferential

operator Â with Weyl symbol A�x ,k�. In the following we will assume further regularity with
respect to x so that the expectation values of physical quantities can be defined locally, that is,

A�x� =� dNk

�2��NA�x,k�W�x,k� �9a�

makes sense as a smooth function in x�RN. In particular, the wavefield intensity amounts to

���x��2 =� dNk

�2��NW�x,k� . �9b�

Such a restriction of the class of solutions is justified as, in general wave propagation problems,
one needs a description of the space and time profiles of physical quantities.

Let us now discuss the appropriate boundary conditions for �8�. On the hyperplane 	
= �x :xN=0	 the wavefield �0�x� has been assigned and one can compute the corresponding Wigner

function W0�x ,k�=�W�Ŝ0��x ,k�, Ŝ0 being the correlation operator associated to �0 and k
= �k1 , . . . ,kN−1� the coordinates dual to x; then a solution W�x ,k� should match W0�x ,k� in some
appropriate sense. Specifically, one should impose that the local value A�x� of any physical
quantity evaluated on 	 is the same whether it is evaluated by W�x ,k� or by W0�x ,k�. Within this
formulation, the Weyl symbol A�x ,k� should be restricted to R2N−2 where W0 is defined. One can
note that the suitable embeddings  of R2N−2 into R2N such that  lies over 	, i.e., �=	 with
� : �x ,k��x the canonical projection,21 are of the form = ��x ,k� :xN=0,kN=H�x ,k�	 with H�x ,k�
a generic smooth function; correspondingly, the restriction of a symbol is readily defined as
�A��x ,k�=A�x ,0 ,k ,H�x ,k��. Then the boundary value conditions read

� � dNk

�2��NW�x,k�A�x,k��
	

=� dN−1k

�2��N−1W0�x,k�A��x,k� , �10a�

which is equivalent to

�W�	�x,k,kN� = 2�W0�x,k���kN − H�x,k�� . �10b�

The function H cannot be arbitrary as �10b� should satisfy the constraint �8a� which reads

D��x,0,k,H�x,k�� = 0, �11�

hence, the appropriate functions H are obtained on solving the so-called local dispersion relation
evaluated on 	. Since 	 has been assumed to be noncharacteristic, i.e., �D� /�kN�0 on , the
function H is well defined and smooth at least locally, in view of the implicit function theorem. On
the other hand, it is not unique since �11� may have multiple solutions, each one corresponding to
a specific branch of the dispersion relation. In virtue of the superposition principle for linear wave
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equations, the total wavefield is a linear superposition of the contributions from each branch of the
dispersion relation, the coefficients being determined by the Cauchy boundary values of the
normal derivatives ��n� /��xN�n�	. Therefore, one has a specific Cauchy boundary value problem
for the Wigner function of each branch and the sum over all branches yields the total Wigner
function. Since one has

���2 = 
b,b�

�b�
* �b = 

b

��b�2 + 
b�b�

�b�
* �b,

where the indices b and b� run over all branches, and, on noting that the average �·� over short-
scale oscillations cancels out the mixed terms, ��b�

* �b�=0 for b��b, whereas ���b�2�= ��b�2, one
gets

����x��2� = 
b
� dNk

�2��NWb�x,k� =� dNk

�2��NW�x,k� , �12�

that is, the projection of the total Wigner function yields the averaged wavefield intensity and,
thus, it does not account for, e.g., the formation of short-scale diffraction patterns.

B. The complex geometrical optics method

Let us now turn to the complex geometrical optics �CGO� method and, in particular, let us
discuss its application to pseudodifferential wave equations. This is based on approximating the
solution of �1� by a smooth wave function of the form

��x� = u�x�eiS̄�x� = u�x�e−��x�eiS�x�, �13�

where, according to the semiclassical limit, ��xS�x�L�

 and ��xu�x��
�u�x�� /L. In addition to the
standard oscillating exponential eiS�x�, the wave object �13� exhibits a novel scale length w

��x��x��−1 which accounts for intermediate-scales variations of the amplitude profile A�x�
=u�x�e−��x� with 
� �kw��1. In general, such an intermediate scale length w can be determined
by both �strong� absorption16 and diffraction;17 however, in this paper, it is assumed that the
medium is weakly nondissipative �cf. comments after Eqs. �8�� so that only diffraction effects are
significant. The total short- and intermediate-scale variations of the wavefield are accounted for by

the complex eikonal function S̄�x�=S�x�+ i��x�.
The relevant equations for the three unknown functions u, �, and S are determined on sub-

stituting the ansatz �13� into the wave equation �1�. For the specific case for which D̂ is a
differential operator this is straightforward. On the other hand, for the general case, one should
deal with the nonlocal response of the operator.22 With this aim it is convenient writing �1� in the
configuration space in terms of the Schwartz kernel, namely,

� D�x,x����x��dNx� 
� D�s�� x + x�

2
,x − x����x�� dNx� = 0,

where the exact kernel has been replaced by the D�s�=�W−1�D� where D is the Weyl symbol.
Actually, one could make use of other symbol maps,3 yielding asymptotically equivalent results;
here the Weyl-symbol maps has been chosen for direct comparison with the Wigner-Weyl ap-
proach.

Let us further assume that the kernel D�s��x1 ,x2� amounts to a distribution smoothly dependent
on x1 and with compact support in x2. In virtue of the Paley-Wiener-Schwartz theorem,21 this is
equivalent to assume that the corresponding Weyl symbol D�x ,k� extends to an entire function of

the complex-valued dual vector k̄=k+ ik�, smoothly dependent on x�RN. From a physical stand-
point, the foregoing assumption implies that nonlocal effects have a finite range: the response

�D̂���x� of the operator D̂ depends only on the value of the wavefield � in a compact set.
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Within this condition, one can substitute the complex eikonal ansatz �13� into �1� and expand
in Taylor series with respect to s=x−x�. As a result one has22

D�x, k̄�x��u�x� − i
�D�x, k̄�x��

�ki

�u�x�
�xi −

i

2

�2D�x, k̄�x��
�xi�ki

u�x� −
i

2

�2S̄�x�
�xi�xj

�2D�x, k̄�x��
�ki�kj

u�x� = O�
−2� ,

where k̄�x�=�xS�x�+ i�x��x� and, for the Paley-Wiener-Schwartz theorem, the estimate ��x
��k

�D�
=O�
m−���� is still valid for complex-extended symbols. To leading orders in 
, and for a weakly
dissipative media, i.e., D� /D�=O�
−1�, one gets

D��x,�xS̄�x�� = 0, �14a�

�D��x,�xS̄�x��
�ki

�u�x�
�xi = �D��x,�xS̄�x�� −

1

2

�

�xi� �D��x,�xS̄�x��
�ki

��u�x� , �14b�

D��x , k̄� and D��x , k̄� being the real and imaginary parts of D extended in the complex k̄ space and,
in general, are complex valued. It is worth noting that the foregoing equations can be formally
obtained from the standard geometrical optics equations, e.g., in the form given by Littlejohn and

Flynn,5 by replacing k�x� with k̄�x�.
The CGO equations �14� have been dealt with both by means of the characteristics method in

the complex domain15 and on expanding the equations with respect to ���k��x�� / �k�x��

�k�x�w�−1�1.17 In particular, on referring to the latter approach, in the weak-diffraction regime
�

−1/2, terms up to order �2

−1 should be considered in the CGO equation for the complex

eikonal S̄�x�, which, after separating the real and imaginary parts, amounts to

D��x,k�x�� −
1

2
ki��x�kj��x�

�2D��x,k�x��
�ki�kj

= 0, �15a�

ki��x�
�D��x,k�x��

�ki
= 0. �15b�

Equations �15a� and �15b� constitute a set of coupled first-order partial differential equations for
S�x� and ��x� with k�x�=�xS�x� and k��x�=�x��x�. As for the complex amplitude u�x�, only the
lowest order approximation with respect to � is significant, so that the real amplitude �u�x�� is
decoupled from the phase arg�u�x�� �not considered hereafter� and determined by means of the
transport equation

�

�xi� �D��x,k�x��
�ki

�u�x��2� = 2D��x,k�x���u�x��2. �15c�

This is formally the same equation as the geometrical optics transport equation,5 but diffraction
effects are accounted for through the wavevector-field k�x� which differs from that obtained in the
geometrical optics. The approximated form �15� of the CGO equations is the one used in physical
applications. Moreover, in the zero-diffraction regime �w�L�, one has �

−1, thus terms up to
first order only should be considered, with the result that equations �15a� and �15b� are decoupled
and the whole set of CGO equations �15� reduces to the standard geometrical optics equations, �
being effectively zero.

Equations �15a� and �15b� are usually solved by computing the characteristic curves18,21 of
�15a� with �15b� regarded as a constraint with the result that the characteristics curves thus
obtained resemble the geometrical optics rays.4,5 Therefore, the appropriate boundary conditions

should be enough to determine the initial values of the complex vector �k̄�	�x� evaluated on the
boundary surface 	.
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Such conditions are obtained from the Cauchy data �3� on writing

�0�x� = A0�x�eiS0�x� = u0�x�e−�0�x�eiS0�x� + O��� , �16�

for some functions u0 and �0 such that ��xu0�
�u0� /L and ��x�0�
�0 /w. From �16� one readily

gets the value of the component of the complex vector k̄=k+ ik� tangent to 	, namely, k�x�
=�xS0�x� and k��x�=�x�0�x�. The remaining normal component is obtained on imposing that the
CGO equations �15� are satisfied on 	; this yields two equations for kN and kN� , viz.,

D��x,0,k�x�,kN� −
1

2 
i,j�N

Aij�x,0,k�x�,kN�ki��x�kj��x� = 0, �17a�

kN� �x� = − 
i�N

ki��x�Xi�x,0,k�x�,kN� , �17b�

where Aij�x ,k��Sm−2 and Xi�x ,k��S0 are obtained in terms of the first- and second-order k
derivatives of D� and evaluated at xN=0. Equation �17a� is an O��2� perturbation of the local
dispersion relation �11�, hence, it can be solved by

kN�x� = H�x,k�x�� + O��2� , �18�

and, in correspondence of �18�, Eq. �17b� yields kN� �x�. As in the Wigner-Weyl formalism, if
multiple solutions are found, one should write the wavefield as a sum of contributions from each
branch of the local dispersion relation.

From the foregoing discussion, one should note that the CGO method yields the solution
directly in the configuration space, but one should deal with the set of partial differential equations
�15�, the numerical solution of which can be rather cumbersome. Although the characteristics
technique can be used for Eq. �15a�, the constraint �15b� should be solved in parallel, thus
increasing the computational complexity of the problem. As for the global properties of the CGO
solution, to our knowledge no general result is still available, though numerical solutions17 show
that the CGO solution is regular even near focal points where the standard geometrical optics
solution exhibits a caustic singularity.

In contrast, the Wigner-Weyl formalism appears better suited for numerical solutions. In
particular, the wave kinetic equation can be solved along the corresponding Hamiltonian orbits in
the phase space so that it is reduced to a set of ordinary differential equations that require limited
computational efforts and the solution thus obtained has a global validity in the phase space since
the Hamiltonian orbits do not cross each other. In this respect, the constraint �8a� does not
constitute a limitation as D� is a constant of motion. Moreover, there is no limitation on the
nonlocal response of pseudodifferential operators to which the Wigner-Weyl formalism applies.
On the other hand, the solution in the phase space should be projected into the configuration space
and, thus, an integral with respect to the momentum k should be carried out numerically.

Notwithstanding these differences, the Wigner-Weyl kinetic formalism and the complex geo-
metrical optics method share a number of features, e.g., the solution of the local dispersion relation
�18� relevant to the CGO method is obtained, to the lowest significant order in �, on evaluating the
corresponding solution �11� for k=k�x�. In the following sections, it will be proved that one can
project the wave kinetic equation from the phase space into the configuration space in such a way
that the CGO equations �15� are recovered.

III. A NOVEL CLASS OF SOLUTIONS TO THE WAVE KINETIC EQUATION

As discussed in Sec. II, the solutions of the wave kinetic equation are usually sought in the
space S��RN� of tempered distributions,24 or in the space of semiclassical measures.3 The first
formulation is the more general, whereas the second follows from the physical requirement that
expectation values �9a� are well defined. Moreover, we have pointed out that, for general wave
propagation problems, physics requires a stronger condition on the Wigner function, namely, the
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expectation values of physical quantities should be locally defined according to �9b�. For instance,
if one deals with a time-dependent wavefield for which xN=ct and kN=−� /c, the integral

J�x,t� =� dN−1k

�2��N−1 � d�

2�

�D�

��
W

yields the wave action density J�x , t� in the space-time.13

In this section, a mathematical characterization of such novel solutions is given and the
corresponding differential calculus is put forward.

First, let us note that for any Schwartz function ��k��S�RN� and for any tempered distribu-
tion f �S��R2N� one can define a tempered distribution f��S��RN� over the configuration space
only, given by

�f�,�� = �f ,��� =� f�x,k���x���k� dNx dNk, � � S�RN� , �19�

where, in general, angle brackets and the integral are alternative ways to denote the action of a
distribution on the corresponding test function. The distribution f is smooth with respect to x
�RN if and only if f� amounts to a smooth function f��x�. In this case the map �� f��x� for
��S�RN� defines at every point location x�RN a tempered distribution fx�S��RN� with

�fx,�� = f��x� for � � S�RN� . �20�

This is a consequence of the completeness of S��RN� along with the identity f��x�
=lim�→0�f ,���·−x��� where �� is a compact-supported function that approximates the Dirac’s �
function for �→0.

Let us now consider a symbol A�S−�=�mSm, that is, A fulfills the symbol estimate �2� for
every order m. It follows that Ax=A�x , · ��S�RN� and for any f �S��R2N� which is smooth with
respect to x one can define

� f�x,k�A�x,k� dNk = �fx,Ax� , �21�

and this is a smooth function on RN as required in �9b�. The definition �21� should be extended for
any symbol A�Sm with arbitrary order. With this aim, the class of physically admissible solutions
�in the sense of �9b�� is restricted. In particular, it is appropriate considering the tempered distri-
butions f �S��R2N� that satisfy the following conditions:

�1� f is smooth with respect to x and
�2� the restriction fx amounts to a distribution with compact support, i.e., fx�E��RN�, where

E��RN� is continuously embedded in S��RN� in the weak topology.

Such a distribution f will be called momentum distribution since for every x its restriction fx

represents the distribution of momentum k over x. For short let us write f �M for the space of
momentum distributions.

Within this formulation for every f �M and for every A�Sm Eq. �21� is well posed and
defines a smooth function on RN. Let us note that the foregoing definition of the space M is not
the optimal one as functions rapidly decreasing in k are also admissible momentum distributions.
However, in the semiclassical limit these functions can be ignored and only compact-supported
distributions are significant.

Let us now address the derivatives of a momentum distribution f �M. First, the derivatives
with respect to the momentum k are defined throughout every order. Specifically, since

���k
�f��,�� = ��k

�f ,��� = �− 1�����f ,��k
��� = �− 1�����f�k

��,�� ,

�k
�f is smooth with respect to x; moreover, for every ��S�RN�,
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���k
�f�x,�� = �− 1����f�k

���x� = �− 1�����fx,�k
��� = ��k

�fx,�� ,

hence, ��k
�f�x is compactly supported, and, thus, �k

�f �M. In terms of the integral notation the
latter result evaluated for symbols reads

� �k
�f�x,k�A�x,k� dNk = �− 1���� � f�x,k��k

�A�x,k� dNk , �22�

which is the “integration-by-parts” formula. On the other hand, the derivatives with respect to x
should be dealt with more carefully. For simplicity, let us consider first-order derivative �f /�xi for
f �M. One has that

��f/�xi�� = �f�/�xi,

in virtue of �19�, so that �f /�xi is smooth with respect to x. Furthermore,

���f/�xi�x,�� =
�

�xi �fx,�� ,

hence ��f /�xi�x is compactly supported and �f /�xi�M. The explicit formula for the derivative is
obtained on noting that for every symbol A�Sm, Af �M and

���Af/�xi�x,1� = ��f�A/�xi + A�f/�xi�x,1� = �fx,��A/�xi�x� + ���f/�xi�x,Ax� ,

which in the integral notation takes the form

� �f�x,k�
�xi A�x,k� dNk =

�

�xi � f�x,k�A�x,k� dNk −� f�x,k�
�A�x,k�

�xi dNk . �23�

The same result would be obtained from the definition lim�→0��f /�xi ,���·−x�Ax� through straight-
forward but longer calculations. Higher-order derivatives can be defined by recurrence, but they
are not explicitly needed in the following.

Searching for solutions of the wave kinetic equations �8� in the space of momentum distribu-
tions leads to the weak formulation

� D��x,k�W�x,k�A�x,k�dNk = 0, �24a�

1

�2��N � ��W�x,k�,D��x,k�	 − 2D��x,k�W�x,k��A�x,k�dNk = 0, �24b�

with W�M. Furthermore, we are interested in semiclassical solutions for which only large-
enough momenta are significant. On recalling that �Wx ,1�= �2��N���x��2, we will search for solu-
tion of �24� in the form

W�x,k� = �2��Nf�x,k − �xS�x�����x��2 �25�

where S�x� and ���x��2 are smooth functions to be determined; in particular, S�x� defines a La-
grangian manifold k=�xS�x� in the x-k phase space. Moreover, f �M is normalized, i.e.,
�f dNk= �fx ,1�=1, and such that

K��x� � � f�x, k̃�k̃� dNk̃ = O�w̃−���� , �26�

for any multi-index �. The integrals in �26� are well posed since k̃�= �k−�xS�x��� are symbols of
order ���, and the corresponding quantities K��x� express the statistical moments of the distribu-
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tion f , i.e., they express how important are the deviations k̃ of the momentum from the Lagrangian
manifold k=�xS�x�. In particular, K0�x�=1 in view of the normalization condition. In the semi-
classical limit it is assumed that the scale length w̃ characterizing the range of the momentum
deviations is large enough as compared to ��xS�x��−1= �k�x��−1, namely, �k�x�w̃��1.

In the Appendix, it is proved that, within the weak formulation �24�, the momentum distribu-
tion f , satisfying the foregoing conditions, can be represented by the asymptotic series, cf. Eq.
�A4�,

f�x,k − �xS�x�� 
 
�

�− 1����

�!
K��x��k

���k − �xS�x�� , �27�

controlled by the small parameter �̃��k�x�w̃�−1�1. It is worth noting that f�x ,k−�xS�x�� is thus
represented by a distribution which is point supported on the Lagrangian manifold k=�xS�x� and
completely determined by its statistical moments K��x�.

In correspondence of the asymptotic expansion �27�, Eq. �24a� reduces to


�

1

�!
�k

�D��x,�xS�x��K�+��x� = 0, �28�

as shown in details in the Appendix, cf., in particular, Eq. �A5�. Formally, Eq. �28� constitutes an
infinite set of algebraic equations for the statistical moments K��x� characterizing the momentum
distribution, where each equation, labelled by �, is expressed as an asymptotic series in �̃; the
function S�x� is determined by imposing that the system �28� admits nontrivial solutions. Equa-
tions �28� are valid for a general momentum distribution f which satisfies �24a�. In particular, on
setting K��x�=0 for ��0, Eq. �27� reduces to

f�x,k − �xS�x�� = �2��N��k − �xS�x�� ,

which is the geometrical-optics-like solution obtained by Bornatici and Kravtsov23 and by Sparber,
Markowich and Mauser,24 whereas in �28� the only nontrivial equation reduces to the geometrical
optics eikonal equation5 for S�x�, namely, D��x ,�xS�x��=0.

IV. THE CGO-LIKE SOLUTION OF THE WAVE KINETIC EQUATION

On the basis of the asymptotic expansion �27� for a momentum distribution, one can prove the
main result of this paper, that is, relating the wave kinetic equation to the CGO equations for
suitable boundary conditions.

First let us consider the specific momentum distribution for which

K��x� = �0, for ��� = 2n + 1�odd� ,

�− 1�n�k��x���, for ��� = 2n �even� ,
� �29�

that is, odd-order moments have been set to zero, whereas even-order moments have been related
to a single vector field k��x�=�x��x�, with � an unknown smooth function. Correspondingly, the
momentum distribution �27� takes the form

f�x,k − �xS�x�� 
 
���=even

�− 1����/2

�!
�k��x����k

���k − �xS�x�� = 
n=0

+�
�− 1�n

�2n�! �ki��x�
�

�ki
�2n

��k − �xS�x�� ,

�30�

the second identity being obtained by means of the multinomial formula
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���=n

1

�!
a1

�1
¯ aN

�N =
1

n!
�a1 + ¯ + aN�n, �31�

with ai=ki�� /�ki �no sum over i�. Let us note that the momentum distribution �30� is symmetric
with respect to the Lagrangian manifold k=�xS�x�, as even-order moments only appear; in par-
ticular, the second order moment −ki��x�kj��x� for i= j is negative, so that such a distribution cannot
be interpreted as a probability measure.

The momentum distribution �30� should be multiplied by ���x��2 to get the whole Wigner
function �25�. Let us consider the case for which

���x��2 = �u�x��2e−2��x�, �32�

��x� being defined in �29� and �u�x��2 is ordered according to ��xu�
�u� /L with L� w̃
��x��−1. As
a consequence, w̃ is the shortest scale length characterizing the wavefield intensity ���x��2, hence
it can be identified with the scale length w defined after Eq. �13�, namely, w̃
w and �̃
�.

Then one has the following:

The Wigner function W�x ,k�= �2��Nf�x ,k−�xS�x�����x��2, with f given by (30) and ���x��2
expressed in the form (32), satisfies asymptotically the wave kinetic equation in the weak formu-
lation (24) with an O��� remainder if and only if

�i� the smooth functions S�x� and ��x� satisfy the complex geometrical optics equations (15a)
and (15b), and

(ii) the smooth slowly varying function �u�x��2 satisfies the transport equation (15c).

First, let us prove the statement �i�. In view of the ansatz �29�, all the equations obtained from
�28� with � such that ��� is an even integer reduce to the same equation which reads


���=even

�− 1����/2

�!
�k

�D��x,k�x���k��x��� = 
n=0

+�
�− 1�n

�2n�! �ki��x�
�

�ki
�2n

D��x,k�x�� = 0, �33a�

and, analogously, all the equations obtained from �28� with � such that ��� is an odd integer reduce
to


���=odd

�− 1�����+1�/2

�!
�k

�D��x,k�x���k��x��� = 
n=0

+�
�− 1�n+1

�2n + 1�!�ki��x�
�

�ki
�2n+1

D��x,k�x�� = 0,

�33b�

where the second identity in both equations �33� follows on using the multinomial formula �31�.
Equations �33� constitute a set of two coupled equations for the real functions S�x� and ��x�, and,
to lowest significant orders in �, they are the same as the CGO equations �15a� and �15b�; this
completes the proof of �i�.

As for �ii�, on account of the differential calculus for momentum distributions put forward in
Sec. III, the term connected with the Poisson brackets in Eq. �24b� should be written in the form,
cf. Eq. �23�,

� dNk

�2��N �W,D�	A =
�

�xi � dNk

�2��NW
�D�

�ki
A −� dNk

�2��NW
�

�xi� �D�

�ki
A� −� dNk

�2��N

�W

�ki

�D�

�xi A .

�34�

Using the specific momentum distribution �30� for which

W�x,k� = �2��N��k − �xS�x�����x��2 + O��2� �35�

yields
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� dNk

�2��N �W,D�	A =
�

�xi� �D��x,k�x��
�ki

���x��2A�x,k�x��� − � �D��x,k�x��
�ki

�A�x,k�x��
�xi

−
�D��x,k�x��

�xi

�A�x,k�x��
�ki

����x��2 + O��2�

=
�

�xi� �D��x,k�x��
�ki

���x��2�A�x,k�x�� + O��� . �36�

The last identity follows on noting that taking the derivative of �33a� with respect to xj yields

�D��x, k�x��

�ki

�kj�x�

�xi
=

�D��x, k�x��

�ki

�ki�x�

�xj
= −

�D��x, k�x��

�xj
+ O���

with kj�x�=�S�x� /�xj. Equation �36� implies that

�W,D�	 = �2��N �

�xi� �D��x,k�x��
�ki

���x��2���k − �xS�x�� + O���

in the weak sense. Hence, from the wave kinetic equation, to lowest order in �, one gets the
transport equation

�

�xi� �D��x,k�x��
�ki

���x��2� = 2D��x,k�x�����x��2,

which reduces to the CGO transport equation �15c� for �u�x��2, cf. Eq. �32�, on noting that, to
lowest significant order,

�

�xi� �D��x,k�x��
�ki

�u�x��2e−2��x�� = e−2��x� �

�xi� �D��x,k�x��
�ki

�u�x��2� ,

in view of Eq. �33b�. This concludes the proof.
The foregoing result shows that there exists a specific form of the Wigner function for which

the wave kinetic equation is reduced to the CGO equations.
In order to compare the wavefield intensities predicted by the wave kinetic description with

that obtained on solving the CGO equations, one should complete the foregoing argument by
discussing Cauchy boundary conditions. With reference to �10� and �11� one has the following:

Let W�x ,k� be the weak solution of the wave kinetic equation (8) corresponding to the Cauchy
boundary conditions

�W�	�x,k,kN� = �2��N��k − k�x����kN − H�x,k�x����u0�x��2e−2�0�x� + O��� , �37�

for some smooth functions S0�x�, �0�x��0, and �u0�x��2 with k�x�=�xS0�x� satisfying the CGO
ordering defined after (16), and let S�x�, ��x�, and �u�x��2 be solution of the CGO equations (15)
with Cauchy boundary conditions given by the same function S0, �0, and �u0�2. Then W�x ,k� can
be approximated according to

W�x,k� = �2��N��k − �xS�x���u�x��2e−2��x� + O��� �38�

in the weak sense of Sec. III.

First, let us note that the Cauchy data �37� is a particular case of �10b� which corresponds to
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W0�x,k� = �2��N−1��k − �xS0�x���u0�x��2e−2�0�x� + O���; �39�

in particular, the Wigner function corresponding to the complex-eikonal wave object �16� can be
written in the form �39�.

In order to prove the foregoing statement, we will make use of the previous result of this
section. Specifically, we have proved that the Wigner function

W̃�x,k� = �2��Nf�x,k − �xS�x���u�x��2e−2��x�,

f being the momentum distribution �30�, solves asymptotically the wave kinetic equation in the
weak sense within an O��� accuracy. Moreover,

W̃�x,k� = �2��N��k − �xS�x���u�x��2e−2��x� + O��2� ,

in view of �35�. As for the boundary condition �37� one gets

�W̃�	�x,k,kN� = �2��N��k − �xS�x,0����kN − �xNS�x,0���u�x,0��2e−2��x,0� + O��2�

= �2��N��k − �xS0�x����kN − kN�x���u0�x��2e−2�0�x� + O��2� ,

where kN�x�=�xS�x ,0�. According to �18�, kN�x�=H�x ,k�x��+O��2�, and, thus, ��kN−kN�x��
=��kN−H�x ,k�x���+O��2� in the weak sense, so that W̃�x ,k� matches the boundary conditions
�37�. Since the solution of the wave kinetic equation along with the Cauchy boundary condition

�37� is unique and since W̃ is an O��� solution, it follows that

W�x,k� = W̃�x,k� + O��� ,

which concludes the proof of �38�.
This implies that, whenever the solutions of both the wave kinetic equation and the CGO

equations exist, thus, in particular, the Cauchy boundary conditions are of the form �39�, the
Wigner-Weyl formalism and the complex geometrical optics method are equivalent within an O���
accuracy. In particular, the wavefield intensity predicted by the Wigner-Weyl kinetic formalism is
the same as that predicted by the CGO method, namely,

���x��2 =� dNk

�2��NW�x,k� = �u�x��2e−2��x� + O��� , �40�

the second identity following from �38�. In the next section, an analytically tractable case is
considered as an example. Specifically, the solution of the wave kinetic equation relevant to the
paraxial propagation of a Gaussian wave beam in a “lens-like” medium is obtained and shown to
be the same as the corresponding CGO solution.

V. THE KINETIC DESCRIPTION OF DIFFRACTION EFFECTS FOR A “LENS-LIKE”
MEDIUM AND ITS ANALOGY WITH THE QUANTUM HARMONIC OSCILLATOR

Let us address the case of a monochromatic �e−i�t� beam of electromagnetic waves propagat-
ing in a lossless “lens-like” medium25 with real refractive index n�r ,���n�x�=n0�1− �x /L��1/2. It
is assumed that the wavefield is localized near the axis x=0 of the medium, that is, �x /L��1;
moreover, the wave electric field is written in the form E�r ,��= ŷE�x ,z ;��, i.e., it is polarized
along the y axis and propagates in the x-z plane. The relevant wave equation for the wavefield real
amplitude E�x ,z ;�� is thus the Helmholtz equation. The corresponding Weyl symbol is real
valued and given by
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D�x,kx,kz� = − �kx
2 + kz

2� +
�2

c2 n2�x� = − �kx
2 + kz

2� +
�2

c2 n0
2�1 − �x/L�2� , �41�

thus, the dispersion relation D=0 yields two branches, to be referred to as the progressive and the
regressive waves. As for the Cauchy boundary conditions, let us assume that the wavefield is
purely Gaussian at z=0, i.e., E�x ,0 ;��=u0 exp�−�x−x0�2 /w0

2�, w0 being the initial width, and the
propagation occurs along the z axis, so that one should solve the dispersion relation D=0 for kz.
On assuming that each branch of the dispersion relation carries half of the wavefield intensity, one
can consider the progressive wave only which reads

kz

k0
=�1 − � x

L
�2

− � kx

k0
�2

� 1 −
1

2
� x

L
�2

−
1

2
� kx

k0
�2

�42�

where k0=�n0 /c is the wavevector at x=0 and the paraxial approximation �kx /k0�2
�x /L�2


�w /L�2
� /L�1 has been exploited as relevant to the weak-diffraction regime.25 It is conve-
nient noting that the dispersion relation corresponding to the second form of �42� can be written as

1

k0
�k0 − kz� −

1

2
� kx

k0
�2

−
1

2
� x

L
�2

= 0, �43�

which is formally analogous to the dispersion relation relevant to a quantum harmonic oscillator13

with unit mass and 1/k0→�, 1 /L→�0, �0 being the characteristic frequency of the oscillator,
z→ t, and k0−kz��0�→�. In particular, the frequency � corresponds to the shifted wavevector
k0−kz along the propagation direction z. The shift occurs because of the oscillations of the wave-
field along the propagation direction z.

This analogy allows to make use of the well-known solution of the wave kinetic equation for
the quantum harmonic oscillator13 to describe the paraxial propagation of a Gaussian beam in the
“lens-like” medium. More specifically, the solution of the wave kinetic equation for the harmonic
oscillator corresponding to an initially Gaussian wave packet ��x ,0�= �w0

�� /2�−1/2 exp�−�x
−x0�2 /w0

2� is13

���x,t��2 =� 2

�w�t�2 exp�− 2
�x − x0 cos��0t��2

w�t�2 � , �44a�

w2�t� = �cos2��0t� + �2 sin2��0t��w0
2, �44b�

where w�t� is the width of the wave packet as a function of time and �=2� /m�0w0
2, m being the

mass of the oscillator and x0 the initial displacement of the Gaussian from the center of the elastic
force acting on the oscillator.

Correspondingly, the solution for the wave electric field intensity in the “lens-like” medium,
with the considered launching conditions, is

��E�x,z;���2� = u0
2 w0

w�z�
exp�− 2

�x − x0 cos�z/L��2

w�z�2 � , �45a�

w2�z� = �cos2�z/L� + � 2L

k0w0
2�2

sin2�z/L��w0
2 = �1 + �� L

zR
�2

− 1�sin2�z/L��w0
2, �45b�

with zR=k0w0
2 /2 the Rayleigh range in the medium. In Eq. �45b�, it has been explicitly indicated

that the solution obtained from the wave kinetic equation amounts to the averaged intensity
��E�x ,z ;��2�, rather than to the exact value�E�x ,z ;���2 since two branches of the dispersion
relation exist, each one carrying half of the wavefield intensity, cf. comments after Eqs. �12�. The
intensity �45a� and the beam width �45b� are the same as the corresponding quantities obtained
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from the CGO solution.25 As a consequence the intensity profile �45� accounts for diffraction
effects as shown in Fig. 1.

One can conclude that, according to results of Sec. IV, the kinetic formalism can be used to
describe the effects of diffraction on the propagation of wave beams, and, for the case under
consideration, it yields the same result as the CGO method. Nevertheless, the detailed structure of
the wavefield, i.e., the oscillations along the propagation direction z, the effects of the curvature of
phase fronts and the Gouy shift, which are available from the CGO solution,25 cannot be resolved
by means of the wave kinetic equation, which instead gives the averaged intensity distribution.

VI. CONCLUSIONS

Within the framework of semiclassical wave propagation, two specific asymptotic techniques
have been considered, namely, the Wigner-Weyl kinetic formalism and the complex geometrical
optics �CGO� method. A detailed comparative analysis of these techniques has been given in Sec.
II, for the case of scalar pseudodifferential wave equations, with Cauchy boundary conditions.

In particular, in the Wigner-Weyl formalism, the wavefield is represented in the phase space
by the Wigner function which is a solution to the wave kinetic equation. In the most general case
the Wigner function amounts to a tempered distribution. However, physical considerations lead to
the definition of a novel class of weak solutions which have been characterized in Sec. III. Such
specific weak solutions are referred to as momentum distributions since, for every point location x
in the configuration space, they give the distribution of momentum k over x, in the x-k phase
space.

On the other hand, the CGO method yields an asymptotics solution of a pseudodifferential
wave equation directly in the configuration space, in terms of three smoothly varying functions
representing, the phase, the wavefield envelope, and the amplitude, respectively.

In Sec. IV, on the basis of the mathematical framework developed in Sec. III, we have proved
that, whenever both the solutions of the wave kinetic equation and of the CGO equations exist,
thus, in particular, the Cauchy data are of the form �39�, the former can be approximated by a
momentum distribution, cf. Eq. �38�, written in terms of the three smoothly varying functions that
solve the CGO equations �15�. As a consequence, the two considered techniques are asymptoti-
cally equivalent and, in particular, to lowest significant order, the wavefield intensity predicted by
the Wigner-Weyl formalism is the same as that predicted by the CGO method, cf. Eq. �40�.

In addition, one can conclude that the Wigner-Weyl kinetic formalism properly describes the
wavefield near focal points. This is also shown by comparing the solution of the kinetic equation
to that of the CGO equations for a specific case, namely, the propagation of electromagnetic
Gaussian wave beams in an isotropic “lens-like” medium, cf. Sec. V. In particular, the relevant
solution of the wave kinetic equation has been obtained on the basis of the analogy between the
“lens-like” medium and the quantum harmonic oscillator.

FIG. 1. The wavefield intensity �45� in the �x ,z�-plane as obtained from the wave kinetic equations �8� �bright regions
correspond to high intensity�, for the case L /zR=0.5 �cf. Eq. �45b�� with x0=0 and x0= 1

2w0, respectively. One should note
that the wave beam exhibits a finite width even near focal points �characterized by bright spots� where the geometrical
optics solution exhibits caustic singularities.
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APPENDIX: THE ASYMPTOTIC SERIES EXPANSION OF THE MOMENTUM
DISTRIBUTION

In this appendix the asymptotic series expansion �27� of the momentum distribution is proved
and the corresponding equations �28� are derived from the weak form �24a� of the dispersion
relationship �8a�.

Since both D��x ,k� and A�x ,k� are symbols, they are, in particular, smooth functions, and one
can apply the Taylor’s formula

�D�

A
��x,k�x� + k̃� = 

����n−1

1

�!
��k

�D�

�k
�A

��x,k�x��k̃� + 
���=n

�d��x, k̃�

a��x, k̃�
�k̃�, �A1�

�= ��1 , . . . ,�N� being an N-dimensional multi-index and

�d��x, k̃�

a��x, k̃�
� =

���
�!
�

0

1

dt�1 − t�n−1��k
�D�

�k
�A

��x,�1 − t�k�x� + tk̃�

the remainder of order n relevant to the expansions of D� and A, respectively. More specifically, on
making use of �A1� to evaluate the left-hand side of �24a�, one gets

� f�x, k̃�D��x,k�x� + k̃�A�x,k�x� + k̃�dNk̃ 
 
�,�

1

�!�!
�k

�D��x,k�x���k
�A�x,k�x��K�+��x� ,

�A2�

where K��x�=O�w̃−���� are the statistical moments of the momentum distribution f�x , k̃�, cf. Eq.
�26�. By virtue of the symbol estimate �2�, symbols are such that, e.g., ��k

�A�x ,k��=O��k�m−���� in
the semiclassical limit �k�→ +� uniformly in x, hence, the asymptotic series expansion �A2� is
controlled by the �small� parameter �̃��k�x�w̃�−1. Moreover, on noting that

�k
�A�x,k�x�� = �− 1���� � �k

���k − k�x��A�x,k�dNk ,

Eq. �A2� takes the form

� D��x,k�f�x,k − k�x��A�x,k�dNk 
� �
�,�

�− 1����

�!�!
�k

�D��x,k�x��K�+��x��k
���k − k�x���A�x,k�dNk

and, in view of the arbitrariness of A�x ,k�, one gets

D��x,k�f�x,k − k�x�� 
 
�,�

�− 1����

�!�!
�k

�D��x,k�x��K�+��x��k
���k − k�x�� , �A3�

in the weak sense. It is worth noting that the derivation of �A3� does not depend on the explicit
form of the symbol D��x ,k�, thus, on setting D��x ,k�=1, Eq. �A3� reduces to
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f�x,k − k�x�� 
 
�

�− 1����

�!
K��x��k

���k − k�x�� , �A4�

which is just the general asymptotic expansion �27� of the momentum distribution.
Going back to Eq. �24a�, its solution is obtained on setting the expansion �A3� to zero and

exploiting the linear independence of the derivatives of the Dirac’s � function, thus yielding a set
of equations for the statistical moments, namely,


�

1

�!
�k

�D��x,k�x��K�+��x� = 0, �A5�

which is just Eq. �28�. It is worth noting that Eq. �A5� can be also obtained on substituting �A4�
into �24a� and exploiting the Leibniz’s formula

�k
��D�A� = 

�+�=�

�!

�!�!
�k

�D��k
�A ,

which expresses the derivative of a product to any orders.
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We consider the numbers arising in the problem of normal ordering of expressions
in boson creation a† and annihilation a operators ��a ,a†�=1�. We treat a general
form of a boson string �a†�rnasn . . . �a†�r2as2�a†�r1as1 which is shown to be associated
with generalizations of Stirling and Bell numbers. The recurrence relations and
closed-form expressions �Dobiński-type formulas� are obtained for these quantities
by both algebraic and combinatorial methods. By extensive use of methods of
combinatorial analysis we prove the equivalence of the aforementioned problem to
the enumeration of special families of graphs. This link provides a combinatorial
interpretation of the numbers arising in this normal ordering problem. © 2005
American Institute of Physics. �DOI: 10.1063/1.1990120�

I. INTRODUCTION

In this article we consider a pair of boson creation a† and annihilation a operators satisfying
the commutation relation

�a,a†� = 1. �1�

These operators play a fundamental role in the formalism of second quantization in quantum
mechanics and quantum field theory �QFT�.1–3 Because the creation and annihilation operators do
not commute there are certain problems with their ordering. A very convenient and well defined
form of the operators depending on a and a† is the so-called normally ordered form.4 An operator
is said to be in a normally ordered form if all creation operators stand to the left of the annihilation
operators. The most important application field of the normal order is the QFT.3 For a recent study
of the interplay of the QFT, normal order, and combinatorics see Ref. 5. Procedure of normal
ordering of the operator, i.e., moving all the creation operators to the left with the use of relation
�1�, is in general a nontrivial task. A first example is ordering of the power of the number
operator:6,7

a�Electronic mail: mmendez@cauchy.ivic.ve
b�Electronic mail: Pawel.Blasiak@ifj.edu.pl
c�Electronic mail: penson@lptl.jussieu.fr
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�a†a�n = �
k=1

n

S�n,k��a†�kak, �2�

where S�n ,k� are the Stirling numbers of the second kind8 enumerating partitions of the set of n
elements into k nonempty subsets, and satisfying the following recurrence relation: S�n+1,k�
=S�n ,k−1�+kS�n ,k� with initial values S�n ,n�=S�n ,1�=1.

As the extension of this result we have considered operators in the form �a†�ras �r, s positive
integers, r�s�, for which a normally ordered form is given by

��a†�ras�n = �a†�n�r−s��
k=s

ns

Sr,s�n,k��a†�kak, �3�

where Sr,s�n ,k� are generalized Stirling numbers.9–14 These kinds of formulas allow one to write
the exponentials e��a†�ras

in the normally ordered form and then easily calculate the coherent state
expectation values which are of importance, e.g., in quantum optics.4 The clue to these calcula-
tions is the knowledge of the properties of the numbers Sr,s�n ,k�. As they are of a combinatorial
origin, the recurrence relations, Dobiński-type formulas, closed-form expresions and generating
functions were extensively studied.10 In the following we further extend these results to normal
ordering of a general boson string in the form �a†�rnasn . . . �a†�r2as2�a†�r1as1, by establishing a link
to special structures in enumerative combinatorics. This in turn gives us the rigorous demonstra-
tion of the properties of the generalized Stirling and Bell numbers arising in this problem. The
construction of the graphs �the so called “bugs”� associated with these numbers provides a graphi-
cal interpretation of the normal ordering procedure.

II. GENERALIZED BELL AND STIRLING NUMBERS

In this section we define the generalization of ordinary Bell and Stirling numbers which arise
in the solution of the normal ordering problem for a boson string. Given two sequences of positive
integers r= �r1 ,r2 ,… ,rn� and s= �s1 ,s2 ,… ,sn� we let Sr,s�k� be the positive integers appearing in

�a†�rnasn . . . �a†�r2as2�a†�r1as1 = �a†�dn �
k=s1

s1+s2+. . .+sn

Sr,s�k��a†�kak, �4�

where dn=�i=1
n �ri−si�, which we assume here to be nonnegative. We observe that the whole theory

can be carried through for dn negative, at the cost of minor adaptations, which however do not
change the numbers involved. Note that the r.h.s. of Eq. �4� is already normally ordered.

We call Sr,s�k� the generalized Stirling numbers of the second kind. The generalized Bell
number is defined as the sum

Br,s = �
k=s1

s1+s2+. . .+sn

Sr,s�k� . �5�

In this notation the generalized Stirling numbers defined in Eq. �3� correspond to a uniform case

�6�

where �l�p= l · �l−1� · . . . · �l− p+1� is the falling factorial.

083511-2 Méndez, Blasiak, and Penson J. Math. Phys. 46, 083511 �2005�

                                                                                                                                    



One can give the derivation of Eq. �6� by induction using the following consequence of Eq.
�1� �see the proof in Ref. 2�:

ak�a†�l = �
p=0

k �k

p
��l�p�a†�l−pak−p. �7�

The full details of this approach can be consulted in Ref. 14.
Observe that the problem stated previously can also be formulated in terms of the multipli-

cation X and derivative D operators as they satisfy �D ,X�=1. The representation of boson com-
mutation relation with the D and X operators resembles the Bargmann representation,4 used in
connection with coherent states. �Here we do not enter into that framework, with all the intricacies
of the scalar product, hermiticity, etc., as in our context only the algebraic properties matter.� Then
Eq. �4� can be rewritten as

XrnDsn . . . Xr2Ds2Xr1Ds1 = Xdn �
k=s1

s1+s2+. . .+sn

Sr,s�k�XkDk. �8�

Acting with both sides of Eq. �8� on the exponential function ex we get the identity

XrnDsn . . . Xr2Ds2Xr1Ds1ex = xdnexBr,s�x� , �9�

where

Br,s�x� = �
k=s1

s1+s2+. . .+sn

Sr,s�k�xk �10�

is the so-called generalized Bell polynomial. Observe that the order of the so-defined generalized
Bell polynomial does not depend on r. Equation �9� gives the formula

�11�

Using the well known commutation rule �equivalent to the Leibniz rule� Dnexf�x�=ex�D+ I�nf�x�
we get the recursive formula

�12�

By taking coefficients of xk on both sides of Eq. �12� we obtain the recurrence relation for the
generalized Stirling numbers of Eq. �6�.
Observe that the action of the left-hand-side �l.h.s.� of Eq. �8� on ex may be calculated explicitly.
To this end one first evaluates it on the monomial xn yielding �� j=1

n �dj−1+n�sj
�xn+dn which in turn

easily gives the result of the action on the exponential function ex.
With this observation, together with Eq. �9� we arrive at the extended Dobiński-type relation for
generalized Bell polynomials

Br,s�x� = e−x �
m=s1

� 	�
j=1

n

�m + dj−1�sj
 xm

m!
, �13�

which by Cauchy’s multiplication of series yields the expression for Sr,s�k�:

Sr,s�k� =
1

k! �
m=0

k � k

m
��− 1�k−m · �

j=1

n

�m + dj−1�sj
. �14�

An alternative, very similar demonstration of the previous results can be carried through with the
use of coherent states. These are defined for complex z, as �z�=e−�z�2/2�n=0

� �zn /n!��n�, where
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a†a�n�=n�n�, a�z�=z�z�, and �n �n��=�n,n�.
4 The �n�’s are called the number states. The coherent

state matrix element of Eq. �4� establishes a link to generalized Bell polynomials of Eq. �10�:

�z��a†�rnasn . . . �a†�r2as2�a†�r1as1�z� = �z*�dnBr,s��z�2� , �15�

which after some algebra, provides an equivalent derivation of Eqs. �13� and �14�. The first
instance where the relation between the coherent state matrix elements and the Bell polynomials
appears is Ref. 7, again for the generic case of Eq. �2�, for which conventional Bell polynomials
are obtained.

We shall proceed now to give a combinatorial interpretation of the previous results. The
essence of subsequent paragraphs will be a graph-theoretical description of the problem. We define
the structures �graphs� that are counted by the generalized Bell and Stirling numbers and then give
a thorough combinatorial derivation of the recurrence relations, Dobiński-type formulas and other
closed-form expressions. The Eqs. �6�, �13�, and �14� will emerge from purely combinatorial
considerations and this will permit the bijective identification of algebraic and combinatorial
structures.

III. BUGS, COLONIES, SETTLEMENTS, AND RECURRENCE RELATIONS

We introduce now a number of tools needed to describe the problem in the graph-theoretical
language.

Definition 3.1: A bug of type �r ,s� consists of a body and s legs. The body is formed by r
linearly ordered empty cells. Each foot of the s legs is labeled with one number from an integer
segment �m ,m+s�ª�m+1,m+2,… ,m+s�, see Fig. 1.

Definition 3.2: Consider a set of n bugs, the first one of type �r1 ,s1� and feet labeled with
labels in �0,s1�, the second of type �r2 ,s2� with labels in �s1 ,s1+s2� and so on. A colony is one of
the possible ways of organizing the bugs using the following procedure. The first bug has to stand
over the ground. Once the �j−1�th bug is placed, the jth is placed by putting some �or none� of its
sj feet in the ground and each one of the rest in one of the empty cells of the bodies of the
preceding bugs, see Fig. 2. The pair of sequences �r ,s�, r= �r1 ,r2 ,… ,rn�, s= �s1 ,s2 ,… ,sn�, carry-
ing the information about the types of the bugs is called the type of the colony. The legs of the
colony standing on the ground are called free.

Assume now that there is a set of m empty cells in the ground. An m-settlement is a colony

FIG. 1. A �3, 2�-bug.

FIG. 2. A colony of type �3,2,1,3;2,2,2,3� and 5 free legs.
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where each one of the feet corresponding to the free legs is placed in one of the ground cells. A
surjective settlement is one where all the ground cells are occupied. The type of a settlement is
defined to be the type of the subjacent colony.
The main theorem of interest for us is as follows.

Theorem 3.1: The Stirling number Sr,s�k�, s1�k�s1+s2+ . . . +sn, counts the number of colo-
nies of type �r ,s� having exactly k free legs. The Bell number Br,s counts the number of colonies
of type �r ,s�.
Before proving it, we state the following.

Lemma 3.1: A colony of type �r ,s� and with k free legs has exactly dn+k empty cells.
Proof: The total number of cells of the colony is equal to �i=1

n ri. The number of occupied cells
is equal to the total number of legs minus the number of free legs ��i=1

n si−k�. �

Now we are ready to prove the Theorem 3.1.
Proof: Denote by Cr,s�k� the number of colonies of type �r ,s� with exactly k free legs. Since

C�r1;s1��k�=S�r1;s1��k�=��s1 ,k� it is enough to prove that the numbers Cr,s�k� satisfy the same
recursion as the generalized Stirling numbers of Eq. �6�

�16�

�sn+1

j
��dn + k − j�sn+1−j

Cr,s�k − j�

gives the number of such colonies where the �n+1�th bug has exactly j free legs. Obviously, this
would prove the identity. We now prove our claim. In order to get a colony with k free legs the
�n+1�th bug has to be placed in a colony of type �r ,s� and k− j free legs. Cr,s�k− j� is the number

of such colonies. We choose the free legs of the �n+1�th bug in �sn+1

j � ways. Since by Lemma

�3.1� there are dn+k− j empty cells in the n bugs colony, �dn+k− j�sn+1−j
gives the number of ways

of distributing the rest of the feet of the �n+1�th bug into the empty cells. �

In the next section will follow a number of propositions clarifying the properties of structures
in question.

IV. COUNTING SETTLEMENTS AND DOBIŃSKI-TYPE RELATIONS

We shall count now the number of m-settlements which will provide the link with Eqs. �13�
and �14� viewed from the combinatorial perspective �see Fig. 3�.

Theorem 4.1: Let p�m ,r ,s� be the number of m-settlements of type �r ,s�. We have

p�m,r,s� = �
j=1

n

�m + dj−1�sj
. �17�

FIG. 3. A 12-settlement of the colony in Fig. 2.
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Proof: There are �m�s1
ways of placing the feet of the first bug into the m ground cells. After

placing the �j−1�th bug there are m+dj−1 empty cells available �the previously placed bugs have
provided �i=1

j−1ri empty cells and occupied �i=1
j−1si cells�. Then, there are �m+dj−1�sj

ways of placing
the sj feet of the jth bug. �

Corollary 4.1: We have the polynomial identity

�
j=1

n

�x + dj−1�sj
= �

k=s1

s1+s2+. . .+sn

Sr,s�k��x�k. �18�

Proof: By the previous theorem, for an integer value of x the l.h.s. counts the number of x
settlements of type �r ,s�. Sr,s�k��x�k counts the number of ways of settling a colony of type �r ,s�
with k free legs in x ground cells. Then, the r.h.s. is another way of counting x-settlements. �

The exponential generating function of the surjective settlements is equal to the polynomials

Br,s�x� = �
k=s1

s1+s2+. . .+sn

Sr,s�k�k!
xk

k!
= �

k=s1

s1+s2+. . .+sn

Sr,s�k�xk.

Corollary 4.2 (Extended Dobiński-type relations):
We have the identity

Br,s�x�ex = �
m=s1

�

�
j=1

n

�m + dj−1�sj

xm

m!
. �19�

Proof: Taking the coefficient of xm /m! on the l.h.s. we obtain

�
k=0

m �m

k
�Sr,s�k�k! = �

k=0

m

Sr,s�k��m�k.

By the previous corollary it is equal to the coefficient of xm /m! on the r.h.s. �

From Eq. �19� we obtain

Br,s�x� = e−x �
m=s1

�

�
j=1

n

�m + dj−1�sj

xm

m!
�20�

and

Br,s � Br,s�1� = e−1 �
m=s1

�
1

m!�j=1

n

�m + dj−1�sj
. �21�

Taking the coefficient of xk /k! on both sides of Eq. �20� we obtain the formula for the generalized
Stirling numbers

Sr,s�k� =
1

k! �
m=0

k � k

m
��− 1�k−m�

j=1

n

�m + dj−1�sj
. �22�

Evidently Eq. �20� is identical to Eq. �13� and so are Eqs. �22� and �14�. This emphasizes again the
already stated bijective correspondence between algebraic and combinatorial structures.
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V. UNIFORM COLONIES AND SETTLEMENTS

The case s=1 can be mapped into trees and forests. An �r ,1� bug can be identified with a
planar tree, i.e., a tree where the leaves are all connected to the root and linearly ordered �see Fig.
4�. An increasing tree is one where the internal vertices are labeled with labels in a totally ordered
set and the labels increase on any path from the root to any internal vertex. The uniform colonies
with s=1 corresponds to forests of increasing r-ary planar trees. The free legs are the roots of the
trees �see Fig. 5�. For r=1, there is only one 1-ary increasing tree for each n. Then B1,1�n�
=B�n� is the ordinary Bell number.

The exponential generating function of the r-ary planar increasing trees Tr�x� satisfy the
differential equation �see Ref. 15, Chap. 5� y�= �y�r. From this we obtain Tr�x�=

1−r1− �r−1�x, for
r�1. The generalized Bell number Br,1�n� counts the number of r-forests with n internal vertices.
By the exponential formula we obtain

�
n=0

�

Br,1�n�
xn

n!
= exp�

1−r
1 − �r − 1�x − 1� . �23�

We quote the explicit expression:10

Br,1�n� =
�r − 1�n−1

e
�
k=1

� ��n +
k

r − 1
�

��1 +
k

r − 1
��k − 1�!

. �24�

In a subsequent publication we shall demonstrate that the summation formulas of the type Eq. �24�
can be also obtained for many other strings describing the uniform case.

FIG. 4. A �3, 1�-bug and corresponding small planar tree.

FIG. 5. A uniform colony of type �3,1�3 and the corresponding forest of increasing trees.
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VI. CONCLUSIONS

We have obtained analytic expressions and combinatorial interpretation of the integers gen-
eralizing conventional Bell and Stirling numbers, arising in the normal ordering of a boson string.
All of their properties can be interpreted in terms of graph-theoretical language. The proof of the
main result may also be obtained with the use of combinatorial theory of species.15–17 The results
constitute an application of combinatorial analysis which produces the solution of quantum me-
chanical problem of normal ordering. For alternative interpretations of the numbers investigated in
this work see Refs. 18 and 19. It is an outstanding problem how to extend the key results of this
work to the boson q-analogs. In this respect the Refs. 20–22 will be of essential help.
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We provide a simple coordinatization for the group G2, which is analogous to the
Euler coordinatization for SU�2�. We show how to obtain the general element of the
group in a form emphasizing the structure of the fibration of G2 with fiber SO�4�
and base H, the variety of quaternionic subalgebras of octonions. In particular this
allows us to obtain a simple expression for the Haar measure on G2. Moreover, as
a by-product it yields a concrete realization and an Einstein metric for H. © 2005
American Institute of Physics. �DOI: 10.1063/1.1993549�

I. INTRODUCTION

The relevance of Lie groups in physics is a well established fact: They appear both in classical
and in quantum problems. In this context an important role is played by the Haar measure, needed,
e.g., for the construction of a consistent path integral in lattice gauge theories.1 The canonical
1-form � of the compact Lie group G is the fundamental structure customarily used to find this
measure. In fact the components of � with respect to a basis of Lie�G� are everywhere linear
independent, smooth, left-invariant 1-form on G.2 So their wedge product gives us a left-invariant
volume form. In order to perform explicit calculations we have to choose a suitable local chart and
the related local expression for the Haar measure. The logarithmic coordinates3 are the most
obvious choice for a coordinatization of G. In this case the canonical 1-form becomes

��X� = �
0

1

es adXds .

The related volume form is
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� = �
����adX�

1 − e−�

�
d�1 ∧ ¯ ∧ d�n,

where ��adX� denotes the spectrum of adX and �i are a basis of Lie�G�*. However, these coor-
dinates do not display generally the subgroup structure of G which usually is relevant in the
physical applications. The difficulties of such a kind of coordinatization arise when one needs to
explicitly determine the global range of the coordinates. A coordinatization which yields a simple
form for the Haar measure and at the same time allows a simple determination of the range for the
angles can become crucial for numerical computations, e.g., in lattice gauge theories or in random
matrix models. For unitary groups such a coordinatization has been constructed in Ref. 4, gener-
alizing the “Euler angle parameterization” for SU�2�.

In this paper we provide an analogous simple coordinatization for the exceptional Lie group
G2. We start by showing how a simple matrix realization of the algebra can be obtained starting
from the octonions. Then a proposal for a representation of the group elements, based on the
previous construction and emphasizing the SO�4� subgroup embedded in G2, is given and it is
proven to cover the whole group.

After computing the left-invariant currents in a way that respects the structure of the fibration,
the infinitesimal invariant measure is determined with a suitable normalization. We then use
topological tools and symmetry arguments to determine the correct range of the coordinates. As a
by-product we obtain a coordinatization and an Einstein metric for the eight-dimensional variety
of quaternionic subalgebras of octonions.

Motivations for considering models with G2 symmetries are provided by different physical
systems, for example they arise in the study of deconfinement phase transitions,5 in random matrix
models,6 or in the new matrix models related to D-brane physics.7

II. THE G2 ALGEBRA

The octonions O are an eight-dimensional real algebra whose generic element a is a pair of
quaternions ��1 ,�2� with the following multiplication rules:

��1,�2� · ��1,�2� = ��1�1 − �̄2�2,�2�1 + �2�̄1� . �2.1�

Here ��1 ,�2�, ��1 ,�2� are generic octonions. This algebra comes naturally equipped with an
involution called conjugation

��1,�2� = ��̄1,− �2� .

Denoting by 1, i, j, k the usual basis of the quaternions yields the following canonical basis for the
algebra O

e0 = �1,0�, e1 = �i,0�, e2 = �j,0�, e3 = �k,0�, e4 = �0,1�, e5 = �0,i�, e6 = �0, j�,

e7 = �0,k� .

Using this basis it follows easily that the subspace H spanned by �1, e1, e2, e3� is in fact a
quaternionic subalgebra that we call the canonical quaternionic subalgebra. Moreover we can
consider O as a two-dimensional module over H, i.e., every octonion z can be decomposed as
z=x+ye4, where x, y are suitable quaternions.

The octonions, together with R, C, and H, are the only normed division algebras. The norm is
induced by the standard Euclidean structure of the underlying real vector space. They are neither
commutative nor associative, but they are alternative, i.e., any subalgebra generated by two octo-
nions is associative. This weak form of associativity implies the Moufang identities,8 which are
multiplication laws among octonions and will prove very useful in the following:

�ax��ya� = a�xy�a ,
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a�x�ay�� = �axa�y ,

y�a�xa�� = y�axa� . �2.2�

The relevance of the octonions in mathematics is due to their deep connection with the exceptional
Lie groups �Ref. 9, and references therein�. We are interested in the group G2. In this case the link
is easy to understand: G2 is the automorphism group of the octonions. For every octonion a we
denote by la the left multiplication la�x�=ax. Under suitable hypothesis the composition of left
multiplications generates elements of G2. In fact it holds

Proposition 1: Let g= la1
…lan

, where a1 ,… ,an are unitary purely imaginary octonions. If
g�1�=1, then g�G2.

Proof: We have to show that g�x�g�y�=g�xy� for all x ,y�O. To this end we prove by induc-
tion on n that

g�x�g�y� = g��xb�y� , �2.3�

where b= �…�a1a2�…�an.
For the moment we avoid the hypothesis g�1�=1.
If n=1 we have

�ax��ay� = − a2��ax��ay�� = − a��a�ax�a�y� = a��xa�y� ,

where the first equality holds because a is purely imaginary and the others by the Moufang
identities.

Now we suppose the statement is true for n. So we have

g�ax�g�ay� = g���ax�b��ay�� = − g�a2���ax�b��ay��� = g�a��x�ba��y�� ,

which is Eq. �2.3�, if we replace g by gla and b by ba.
Finally, to complete the proof we have to show that b= �…�a1a2�…�an=1. So, applying the

operator lan
…la1

to both members of the equation 1=g�1�=a1�…�an−1an�…� gives us
an�an−1�…�a2a1�…��= �−1�n, and then by conjugation we obtain �−1�n�…�a1a2�…�an= �−1�n

which implies b=1. �

We can get some interesting subgroups of G2 by imposing additional conditions on g. If we
add the hypothesis g�e1�=e1 we obtain a SU�3� subgroup denoted in the following by P. More-
over, imposing also g�e2�=e2, the resulting subgroup is a copy of SU�2�, which we call S.

In order to write down generalized Eulerian coordinates we need to describe the embedding of
SO�4� in G2.10

To this end we identify as usual SU�2� with the 3–sphere of unitary quaternions and we
consider the following homomorphism:

�:SU�2� � SU�2� → G2,

�a,b� � �ab, �2.4�

where �ab�x+ye4�=axā+ �byā�e4. Using the Moufang identities it is not hard to check that �ab is
truly an octonion automorphism. Fixing a=1 provides us with the embedding �1b of SU�2� in G2,
whose image is the subgroup S. On the other hand the image of the embedding �a1 is a SU�2�,
which we denote by 	 and which is not conjugate to S.

The map � is not injective and its kernel is the subgroup Z2= ��1,1� , �−1,−1��. By the homo-
morphism theorem the image of the map � in G2 is isomorphic to �SU�2��SU�2�� /Z2, which is
SO�4� as well known. In the following sections we will refer to the image of � simply as SO�4�.
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The homogeneous space H=G2 /SO�4� is the eight-dimensional variety of the quaternionic
subalgebras of O. So H can be thought as a point of H. G2 acts transitively on H and the stabilizer
of H is the image of �.10

Then we have the fibration

SO�4� � G2

↓
H .

The G2 generators provided in proposition 1 are useful in particular to find a basis of the Lie
algebra Lie�G2�. Actually, let us take an element of G2 of the form gabc=−l�cb�alalblc, where �cb�a,
a, b, c are unitary and purely imaginary �i.e., a+ ā=0�. Notice that the choice of −�cb�a guarantees
gabc1=1. The condition that �cb�a be purely imaginary amounts to �cb��a.

Consider now a path gatbc=−l�cb�at
lat

lblc where at=c cos�t�+a sin�t� and with the additional
requirements b�c, b�a, and a�c.

By definition Cabc=d /dt	t=0gabc�t� is an element of Lie�G2�. With suitable choices of the
elements a, b, and c among the elements of the canonical basis of O we can find a basis of this
algebra. The representative matrices, written below with respect to the canonical basis, are nor-
malized with the condition Tr�CICJ�=−4
IJ. We remark that they are seven-dimensional because
of the trivial action on the real unity.

C1 =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 − 1

0 0 0 0 0 − 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

� C2 =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 − 1

0 0 0 − 1 0 0 0

0 0 0 0 1 0 0

�
C3 =


0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 − 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 − 1

0 0 0 0 0 1 0

� C4 =

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 − 1 0 0 0 0

0 − 1 0 0 0 0 0

�
C5 =


0 0 0 0 0 0 0

0 0 0 0 0 − 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 − 1 0 0 0 0

� C6 =

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 − 1 0 0 0

0 0 1 0 0 0 0

0 − 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

�
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C7 =

0 0 0 0 0 0 0

0 0 0 − 1 0 0 0

0 0 0 0 − 1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

� C8 =
1

�3

0 0 0 0 0 0 0

0 0 − 2 0 0 0 0

0 2 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 − 1 0 0 0

0 0 0 0 0 0 − 1

0 0 0 0 0 1 0

�
C9 =

1

�3

0 − 2 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 − 1 0

0 0 0 0 1 0 0

0 0 0 − 1 0 0 0

� C10 =
1

�3

0 0 − 2 0 0 0 0

0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 − 1 0

0 0 0 0 0 0 − 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

�
C11 =

1

�3

0 0 0 − 2 0 0 0

0 0 0 0 0 0 − 1

0 0 0 0 0 1 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 − 1 0 0 0 0

0 1 0 0 0 0 0

� C12 =
1

�3

0 0 0 0 − 2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 − 1 0 0 0 0 0

0 0 − 1 0 0 0 0

�
C13 =

1

�3

0 0 0 0 0 − 2 0

0 0 0 0 − 1 0 0

0 0 0 − 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0 0

� C14 =
1

�3

0 0 0 0 0 0 − 2

0 0 0 1 0 0 0

0 0 0 0 − 1 0 0

0 − 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

2 0 0 0 0 0 0

�
This basis satisfies the commutation rules summarized in the antisymmetric matrix BIJ= �CI ,CJ�
given in Appendix A.

Among that matrices we can recognize the Lie algebras corresponding to the subgroups of G2

mentioned above. The first eight matrices generate Lie�P� and they are reminiscent of the Gell–
Mann matrices. Moreover, the matrices �C1 ,C2 ,C3� generate Lie�S� and finally �C8 ,C9 ,C10� gen-
erate Lie�	�.

Since the elements C5 and C11 commute, they generate a Cartan subalgebra of Lie�G2� which
is the Lie algebra of the maximal torus T of G2. Notice that the commutators among the basis of
Lie�S�, Lie�	�, and Lie�T� generate the whole basis of Lie�G2�. Our previous observations lead us
to the conjecture that a good coordinatization for the generic element g�G2 can be defined by

g = ��a1,a2,a3�s�a4,a5,a6�e�3a7C11ea8C5u�a9,a10,a11;a12,a13,a14� , �2.5�

where

s�x,y,z� = exC3eyC2ezC3, �2.6�
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��x�,y�,z�� = e�3x�C8e�3y�C9e�3z�C8, �2.7�

u�x,y,z;x�,y�,z�� = s�x,y,z���x�,y�,z�� �2.8�

are elements, respectively, of S, 	, and SO�4�.
In this paper we prove that this is in fact a good coordinatization for G2, which could be used

to determine a simple form for the Haar measure on the group. In order to achieve this we will first
determine the corresponding invariant metric and then compute the range of the coordinates
a1 ,a2 ,… ,a14.

III. THE INVARIANT METRIC FOR G2

In order to compute the invariant metric over the Lie group G2 we will first show how our
coordinatization �2.5� is related to the fibration described in the previous section.

It is well known that for a simple group, and therefore in particular for G2, the invariant metric
is uniquely defined �up to a normalization constant� by the Killing form over the algebra. More
precisely, the Killing form defines a metric �and a Lebesgue measure� over the tangent space to the
identity, which can be pulled back via the left �or right� multiplication. If f IJ

K are the structure
constants of the algebra, then the Killing metric has components

KIJ = �CI,CJ� = − kfIL
MfJM

L, �3.1�

where k is a normalization constant. In our case we find KIJ=16k
IJ, which suggests to choose
k=1/16 conveniently in such a way that the generators �CI�I=1

14 are orthonormal: �CI ,CJ�=
IJ. By
right multiplication we can associate to every matrix CI a vector field in the tangent bundle. Its
dual �defined using the pullback of the Killing form� is a left-invariant 1-form and the collection
of those 1-forms provides a trivialization of the cotangent bundle. In a coordinate patch �wI� the
canonical 1-form J becomes

J = JICI = g−1 �g

�wJdwJ, �3.2�

so that the invariant metric is

ds2 = gIJdwI
� dwJ = JL

� JM�CL,CM� . �3.3�

Therefore, if we define the matrix J= �JI
K� with components JI=JI

KdwK and remember our nor-
malization, we find for the components of the metric

gIJ = 
LMJL
IJ

M
J. �3.4�

This means that the right currents define a 14–bein over the Lie group G2. In particular the
invariant volume form is

� = J1 ∧ … ∧ J14 = det�J�dx1 ∧ … ∧ dx14 �3.5�

and the associated Haar measure is

d� = det�J��
I=1

14

dwI. �3.6�

Now we use our coordinatization �2.5�, which we rewrite in the form
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g = h�a1,a2,a3,a4,a5,a6,a7,a8�u�a9,a10,a11;a12,a13,a14� . �3.7�

Note that u is the generic element of the subgroup SO�4�, while h is an element of S	T which is
not a subgroup of G2. We can express the currents associated to the elements u and h, respectively,
as

Ju = duu−1 = 
i�A

Ju
i Ci, Jh = h−1dh = 

i=1

14

Jh
i Ci, �3.8�

where A= �1,2 ,3 ,8 ,9 ,10�. Note that for Ju we have chosen the left currents. This is because from
the orthonormality condition it follows that:

ds2 = 
i�A

�Ju
i + Jh

i �2 + 
i�A

�Jh
i �2. �3.9�

This particular form of the metric stresses the relation with the fibration of G2 over the variety H.
In fact it shows explicitly the separation between the base and the fiber and if we fix the coordi-
nates �a1 ,a2 ,a3 ,a4 ,a5 ,a6 ,a7 ,a8�, it reduces to the metric on the fiber SO�4�. On the other hand the

term 	i�A�Jh
i �2 corresponds to the acht-bein J̃h obtained after projecting the currents Jh orthogo-

nally to the fiber, and therefore it has to coincide with the metric on the base.
This decomposition greatly simplifies the explicit computation of the metric, the main task

being the computation of Jh.
In order to determine Ju remember that u�x ,y ,z ;x� ,y� ,z��=s�x ,y ,z���x� ,y� ,z�� and that s and

� commute, so that in terms of Js=dss−1 and J�=d��−1, we get Ju=Js+J� with

JS�x,y,z� = �− sin�2x�dy + cos�2x�sin�2y�dz�C1 + �cos�2x�dy + sin�2x�sin�2y�dz�C2

+ �dx + cos�2y�dz�C3,

J	�x,y,z� = �3�dx + cos�2y�dz�C8 + �3�cos�2x�dy + sin�2x�sin�2y�dz�C9

+ �3�sin�2x�dy − cos�2x�sin�2y�dz�C10. �3.10�

Using Mathematica we have found for the currents Jh the expressions written in Appendix B.

We are now able to compute the Haar measure in our coordinates. In fact, if J̃h is the 8�8

matrix given by the acht-bein J̃h and Js, J� are the 3�3 matrices associated to the drei-bein Js and

J�, respectively, then det�J�=det�J̃h�det�Js�det�J�� so that

d� = 27�3f�2a7,2a8�sin�2a2�sin�2a5�sin�2a10�sin�2a13��
i=1

14

dai, �3.11�

where

f��,�� = sin�� − �

2
�sin�� + �

2
�sin�� − 3�

2
�sin�� + 3�

2
�sin���sin���

= 1
4 �cos��� + cos�����cos�3�� + cos����sin���sin��� . �3.12�

This, however, is not the end of the story. We need in fact to determine the range of the coordi-
nates which covers the whole group G2, apart from a subset of zero measure. To this end we will
use a topological argument.

IV. THE RANGE OF THE COORDINATES

Before entering into more details, let us explain our strategy.
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Looking at the measure �3.11� one immediately sees that for some values of the coordinates it
vanishes. This happens for certain values of the angles a2, a5 , a7 , a8 , a10 , a13. Let us suppose
we choose the range for these coordinates in such a way that it delimits a region where d� is
vanishing only on the boundary. For the other coordinates the range is fixed in such a way that
each of them goes around a closed orbit exactly once.

This describes a 14-dimensional closed cycle V which represents an element of the homology
group �V��H14�G2 ,Z�. �However, for our purposes it would be enough to consider the homology
with rational or real coefficients.� Using the pairing B :Hk�Hk→R given by

B����,�W�� = �
W

� , �4.1�

we define the normalized form

 = B����,�G2��−1� . �4.2�

It is clear that the function B��� , · � takes only integer values. In particular B��� , �W�� counts the
number of times the cycle W wraps G2. Once this is known all we need to do is to find how to
restrict the range of coordinates until we obtain a cycle V which wraps G2 once. We are now going
to enter into more details and compute  in three steps.

A. The evaluation of B„†�‡ , †G2‡…

There is a simple way to compute the total volume of a connected simple Lie group, described
by Macdonald in Ref. 11. It works as follows.

If G is the group, t�Lie�G� a Cartan subalgebra, and tZ the integer lattice generated in t by
the simple roots, then T= t / tZ is a torus with the same dimension as t. Let ��0 denote the positive
roots and 	�	 their length.

Then from Hopf theorem, the rational homology of G is equal to the rational homology of a
product of odd-dimensional spheres: H*�G ,Q��H*��i=1

k �S2i+1�ni ,Q�, where ni is the number of
times the given sphere appears. Let Vol�S2i+1�=2�i+1 / i! be the volume of the �2i+1�-dimensional
unit sphere and Vol�T� be the volume of the torus computed using the measure induced by the
Lebesgue measure on the algebra. Then the whole volume determined via the pullback of the
Lebesgue measure on the algebra is

Vol�G� = Vol�T� · �
i=1

k

Vol�S2i+1�ni · �
��0

4

	�	2
. �4.3�

The roots of G2 computed with our choice for the algebra and the normalization, are shown in
Appendix C. From the figure we see that there are three positive roots of length 2 and three of
length 2/�3. The torus associated to the simple roots �1 and �2 is generated by the coroots H1 and
H2. Remembering the relations 	H	=2/ 	�	, we find Vol�T�=�3/2. Since S3 and S11 are the odd
spheres which generate the rational homology of G2, we obtain the desired result

B��,G2� = Vol�G2� = 9�3
�8

20
. �4.4�

We are now ready for the next step.

B. The construction of the cycle V

Let us look at �2.5�: to determine a closed cycle we first observe that for each one of the two
SU�2� subgroups S and 	 it is possible to choose the range of the coordinates in such a way as to
cover the whole 3-sphere. The method to do this is well-known �Euler angles� and here we give
only the final result
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0 � a1 � 2�, 0 � a2 �
�

2
, 0 � a3 � � ,

0 � a4 � 2�, 0 � a5 �
�

2
, 0 � a6 � � ,

0 � a9 � 2�, 0 � a10 �
�

2
, 0 � a11 � � ,

0 � a12 � 2�, 0 � a13 �
�

2
, 0 � a14 � � . �4.5�

To complete the cycle we need to determine the range for a7 and a8 in such a way that d� does
not vanish. To this end we solve the inequality f�x ,y��0 and obtain a tiling of the fundamental
region

�2a7,2a8� � �0,2�� � �0,2�� , �4.6�

as we show in Appendix D. There, we also prove that every region of the tiling gives the same
�absolute value� contribution to the measure.

The cycle V is then obtained by choosing any one of these regions, for example the one
denoted by B in the figure.

C. The evaluation of � and the range of the Euler angles for G2

We can now evaluate the degree of the map V→G2. Using �4.5� for the range of the coordi-
nates, �3.11� for d� and �4.4� for Vol�G2�, we easily find B� ,V�=16. Therefore, our next task is
to understand the origin of this factor.

A factor of 4 can be easily accounted for in the following way. We have built the cycle V
starting from the closed submanifolds S and 	 corresponding to the two SU�2� embeddings. Thus,
naively, we would expect to find a SU�2��SU�2� submanifold embedded in G2. But a direct
inspection shows that this is not exactly true. In fact, varying for example a1� �0,2�� provides a
double covering of the six-dimensional submanifold obtained by taking a1� �0,�� and a2 ,… ,a6

as in �4.5�. This is because the image of SU�2��SU�2� in G2 is SO�4�= �SU�2��SU�2�� /Z2, as
previously remarked in Sec. II.

Similarly, we must reduce the range of a12 to a12� �0,��. The new cycle we obtain in this
way wraps G2 four times.

Now, let us consider the torus T�a7 ,a8�ªe�3a7C11ea8C5. We need to determine the subgroup of
7�7 orthogonal matrices A of SO�4�, which leaves each element T�a7 ,a8� invariant under the
adjoint action

AT�a7,a8�At = T�a7,a8� . �4.7�

It turns out that it is a finite group generated by the idempotent matrices ���=�−1� and
� ��=�−1�
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� =

1 0 0 0 0 0 0

0 − 1 0 0 0 0 0

0 0 − 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 − 1 0

0 0 0 0 0 0 − 1

� � =

− 1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 − 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 − 1

0 0 0 0 0 − 1 0

� . �4.8�

Considering the action of � one finds

g = U�a4,a5,a6;a1,a2,a3�T�a7,a8�U�a9,a10,a11;a12,a13,a14�

= U�a4,a5,a6;a1,a2,a3��T�a7,a8��U�a9,a10,a11;a12,a13,a14�

= U�a4,a5,a6 +
�

2
;a1,a2,a3 +

�

2
�T�a7,a8�U�a9 +

�

2
,a10,a11;a12 +

�

2
,a13,a14� . �4.9�

Therefore, we can restrict 0�a3�� /2.
Analogously, let us now look at the symmetry generated by �:

g = U�a4,a5,a6;a1,a2,a3�T�a7,a8�U�a9,a10,a11;a12,a13,a14�

= U�a4,a5,a6;a1,a2,a3��T�a7,a8��U�a9,a10,a11;a12,a13,a14� , �4.10�

and restrict our attention to the factor �U on the right. �Similar relations are true for the factor on
the left.� A direct computation using the explicit expression of the matrices shows that the left
action of � on U is equivalent to the shift

a9 �
�

4
− a9, a10 � a10 +

�

2
, a11 � a11,

a12 � −
�

4
− a12, a13 � a13 +

�

2
, a14 � a14. �4.11�

The analysis is more complicated than for the action of �, because now some of the
angles are mapped to values which are outside of the range �4.5� we have fixed. For example,
a10+� /2� �� /2 ,��, when a10� �0,� /2�. Therefore, we need to use other equivalence relations
to map the angles back to the original region �4.5�.

In fact, the following symmetries hold for S and 	:

S�a9,a10,a11� � S�a9 +
�

2
,� − a10,a11 +

�

2
�

	�a12,a13,a14� � 	�a12 +
�

2
,� − a13,a14 +

�

2
� . �4.12�

These are the known symmetries which have been used to determine �4.5� in the first place. Thus
the action �4.11� of � is equivalent to

a9 �
3

4
� − a9, a10 �

�

2
− a10, a11 � a11 +

�

2
,
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a12 �
�

4
− a12, a13 �

�

2
− a13, a14 � a14 +

�

2
, �4.13�

where now a10 and a13 stay inside the allowed intervals. The next point to notice is that for the
remaining coordinates it is possible to use similarity relations which does not involve a10 and a13,
e.g.,

S�a9,a10,a11�	�a12,a13,a14� � S�a9 + �,a10,a11�	�a12 + �,a13,a14� �4.14�

and similar symmetries. Moreover, � is a linear transformation, so that it is enough to restrict the
range of one of the angles. Therefore, luckily, we actually do not need to know the action of � on
the whole set of coordinates. The solution of our problem simply consists in restricting the range
of either a10 or a13 in the SO�4� factor U�a9 ,a10,a11;a12,a13,a14� on the right. Alternatively, the
same result can be achieved by restricting the range of either a2 or a5 in the factor
U�a4 ,a5 ,a6 ;a1 ,a2 ,a3� on the left. Since we prefer a coordinatization which respects the fibration
described in Sec. II and we want the angles a9 ,… ,a14 to span the whole fiber U�a9 ,… ,a14�, we
choose the second option and restrict the range of a5.

Finally, we can summarize our results for the range of the angles describing G2:

0 � a1 � �, 0 � a2 �
�

2
, 0 � a3 �

�

2
,

0 � a4 � 2�, 0 � a5 �
�

4
, 0 � a6 � � ,

0 � a9 � 2�, 0 � a10 �
�

2
, 0 � a11 � � ,

0 � a12 � �, 0 � a13 �
�

2
, 0 � a14 � � ,

0 � a7 �
�

6
, 3a7 � a8 �

�

2
. �4.15�

V. CONCLUSIONS

We have found a coordinatization of the G2 group with a one to one correspondence between
the range of coordinates and a full measure subset of the group. In particular, this has allowed us
to obtain a quite simple expression for the Haar measure, which should make numerical compu-
tations involving the geometry of G2 much easier, for example in lattice gauge theories or in
random matrix models.

However, note that to find an Haar measure on the group we would not have actually needed
the last step of the work, i.e., the determination of the correct range of the coordinates which
yields an injective map.
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In fact, if d� indicates the measure over the cycle V, it is possible to simply get an Haar
measure d�̃ over the Lie group G2 by just taking

d�̃ ª

1
16d� , �5.1�

16 being the degree of the map V→G2.
On the other hand the determination of the correct range of coordinates, which covers the

whole G2 wrapping it exactly once except for a subset of vanishing measure, provides a new
result, since it determines also a coordinatization of the homogeneous space H=G2 /SO�4� of
quaternionic subalgebras of octonions.

Moreover, we have also computed the induced metric of H

dsH
2 = 
abJ̃h

a
� J̃h

b, �5.2�

and shown that it is an Einstein metric. This result is proven in Appendix E.
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APPENDIX A: COMMUTATORS

B =

⎝
⎜
⎜
⎜
⎛

0 2C3 − 2C2 C7 C6 − C5 − C4 0 0 0 C14 C13 − C12 − C11

* 0 2C1 − C6 C7 C4 − C5 0 0 0 − C13 C14 C11 − C12

* * 0 C5 − C4 C7 − C6 0 0 0 C12 − C11 C14 − C13

* * * 0 C3 + �3C8 − C2 C1 − �3C5 − C14 − C13 0 0 C10 C9

* * * * 0 C1 C2
�3C4 C13 − C14 0 0 − C9 C10

* * * * * 0 C3 − �3C8
�3C7 − C12 C11 − C10 C9 0 0

* * * * * * 0 − �3C6 C11 C12 − C9 − C10 0 0

* * * * * * * 0
2
�3

C10 −
2
�3

C9 −
1
�3

C12
1
�3

C11
1
�3

C14 −
1
�3

C13

* * * * * * * * 0
2
�3

C8 C7 −
2
�3

C14
2
�3

C13 − C6 C5 −
2
�3

C12
2
�3

C11 − C4

* * * * * * * * * 0
2
�3

C13 + C6
2
�3

C14 + C7 −
2
�3

C11 − C4 −
2
�3

C12 + C5

* * * * * * * * * * 0 −
1
�3

C8 + C3
2
�3

C10 − C2 −
2
�3

C9 + C1

* * * * * * * * * * * 0
2
�3

C9 + C1
2
�3

C10 + C2

* * * * * * * * * * * * 0
1
�3

C8 + C3

* * * * * * * * * * * * * 0

⎠
⎟
⎟
⎟
⎞
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APPENDIX B: THE LEFT-INVARIANT 1-FORMS Jh

Jh
1 = �cos3�a7�sin�2a6�cos�a8� − sin3�a7�cos�2a6�sin�a8��da5

− sin�2a5��cos3�a7�cos�2a6�cos�a8� + sin3�a7�sin�2a6�sin�a8��da4

+ 3
2sin�2a7��cos�2a3�sin�a7�cos�a8� + sin�2a3�cos�a7�sin�a8��da2 + 3

2sin�2a7�sin�2a2�

��sin�2a3�sin�a7�cos�a8� − cos�2a3�cos�a7�sin�a8��da1, �B1�

Jh
2 = �cos3�a7�cos�2a6�cos�a8� − sin3�a7�sin�2a6�sin�a8��da5

+ sin�2a5��cos3�a7�sin�2a6�cos�a8� + sin3�a7�cos�2a6�sin�a8��da4

− 3
2sin�2a7��sin�2a3�sin�a7�cos�a8� + cos�2a3�cos�a7�sin�a8��da2 + 3

2sin�2a7�sin�2a2�

��cos�2a3�sin�a7�cos�a8� − sin�2a3�cos�a7�sin�a8��da1, �B2�

Jh
3 = 1

4 �3 cos�2a7� + cos�2a8���da6 + cos�2a5�da4� − �3/4�cos�2a7� − cos�2a8���da3 + cos�2a2�da1� ,

�B3�

Jh
4 = − 1

2sin�2a8�da6 − 1
2cos�2a5�sin�2a8�da4 − 3

2sin�2a8�da3 − 3
2sin�2a8�cos�2a2�da1, �B4�

Jh
5 = da8, �B5�

Jh
6 = �sin3�a7�cos�2a6�cos�a8� + cos3�a7�sin�2a6�sin�a8��da5

+ sin�2a5��sin3�a7�sin�2a6�cos�a8� − cos3�a7�cos�2a6�sin�a8��da4

+ 3
2sin�2a7��− sin�2a3�cos�a7�cos�a8� + cos�2a3�sin�a7�sin�a8��da2 + 3

2sin�2a7�sin�2a2�

��cos�2a3�cos�a7�cos�a8� + sin�2a3�sin�a7�sin�a8��da1, �B6�

Jh
7 = �sin3�a7�sin�2a6�cos�a8� + cos3�a7�cos�2a6�sin�a8��da5

− sin�2a5��sin3�a7�cos�2a6�cos�a8� − cos3�a7�sin�2a6�sin�a8��da4

+ 3
2sin�2a7��cos�2a3�cos�a7�cos�a8� − sin�2a3�sin�a7�sin�a8��da2 + 3

2sin�2a7�sin�2a2�

��sin�2a3�cos�a7�cos�a8� + cos�2a3�sin�a7�sin�a8��da1, �B7�

Jh
11 = da7, �B8�
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Jh
12 = ��3/2�sin�2a7�da6 + ��3/2�cos�2a5�sin�2a7�da4 − ��3/2�sin�2a7�da3

− ��3/2�sin�2a7�cos�2a2�da1, �B9�

Jh
13 = − ��3/2�sin�2a7��cos�a7�cos�2a6�cos�a8� + sin�a7�sin�2a6�sin�a8��da5

+ ��3/2�sin�2a7�sin�2a5��− cos�a7�sin�2a6�cos�a8� + sin�a7�cos�2a6�sin�a8��da4

+ �3�sin�2a3�sin�a7��3 sin2�a7� − 2�cos�a8�− cos�2a3�cos�a7��3 cos2�a7� − 2�sin�a8��da2

− �3sin�2a2��cos�2a3�sin�a7��3 sin2�a7� − 2�cos�a8�

+ sin�2a3�cos�a7��3 cos2�a7� − 2�sin�a8��da1, �B10�

Jh
14 = ��3/2�sin�2a7��cos�a7�sin�2a6�cos�a8� + sin�a7�cos�2a6�sin�a8��da5

− ��3/2�sin�2a7�sin�2a5��cos�a7�cos�2a6�cos�a8� − sin�a7�sin�2a6�sin�a8��da4

+ �3�cos�2a3�sin�a7��3 sin2�a7� − 2�cos�a8�− sin�2a3�cos�a7��3 cos2�a7� − 2�sin�a8��da2

+ �3sin�2a2��sin�2a3�sin�a7��3 sin2�a7� − 2�cos�a8�+ cos�2a3�cos�a7��3 cos2�a7�

− 2�sin�a8��da1. �B11�

APPENDIX C: THE ROOT SYSTEM

Here we show the roots computed using C5 and C11 normalized to 1. The long roots have
length 2 and the short ones have length 2/�3.
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APPENDIX D: THE RANGE FOR a7 AND a8

Here we show a plot of the fundamental region for the variables a7 and a8, which is deter-
mined by the condition f�� ,���0 where f is given in �3.12�. We obtain a tiling of the torus in 24
triangles, over which the sign of the measure alternates, starting with a positive sign
in the region B. In the edges the measure vanishes.

We now show that any sector of this tiling gives exactly the same contribution �obviously up to a
sign� to the volume of G2. To this end we describe some symmetry property of the function
f�� ,��. The translation symmetries f�� ,��= f��+� ,�+��= f��−� ,�+�� and the reflection
symmetries −f�� ,��= f�−� ,��= f�� ,−�� allows to restrict us to the square �0,��� �0,��. More-
over, the translations gives the equivalence of the triangles A, B, and D with F, E, and C,
respectively.

At this point we are left with only three different kinds of triangles: A, B, and D. The
symmetry f�� ,��= f���+�� /2 , �3�−�� /2� maps A to B, B to A, and D to G. This proves that we
can choose whatever triangle, for example A, as the fundamental region.

APPENDIX E: A METRIC FOR H

Here we give the expression for the metric on H induced by the metric on G2, and show that
it is an Einstein metric. Let us introduce the 1-forms

I1�x,y,z� ª sin�2y�cos�2z�dx − sin�2z�dy ,

I2�x,y,z� ª sin�2y�sin�2z�dx + cos�2z�dy ,

I3�x,y,z� ª dz + cos�2y�dx . �E1�

Thus we can write
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dsH
2 = da8

2 + da7
2 + �sin2 a8 cos2 a7 + cos2 a8 sin2 a7�

��da5
2 + sin2�2a5�da4

2 + 3da2
2 + 3 sin2 2a2da1

2� 1
2cos�2a8�cos 2a7 sin2 2a7

���I1�a4,a5,a6� + 3I2�a1,a2,a3��2 + �I2�a4,a5,a6� − 3I1�a1,a2,a3��2�

+ 3
4sin2 2a7�I3�a4,a5,a6� − I3�a1,a2,a3��2 + 1

4sin2�2a8��I3�a4,a5,a6� + 3I3�a1,a2,a3��2.

�E2�

We will now compute the curvature of such a metric. Let us use capital indices for the full algebra,
I=1, … , 14, Latin indices for the SO�4� subalgebra, i� �1,2 ,3 ,8 ,9 ,10�, and Greek indices for
the complementary elements, �� �4,5 ,6 ,7 ,11,12,13,14�. Let f IJK be the structure constants with
one index lowered through the identity matrix. It is then clear that the nonvanishing structure
constants are those with either none or two Greek indices: f ijk, f��k and permutations. Using
this fact and the Maurer-Cartan equations �we use the following notations: The spin connection

is uniquely defined by dJ̃h
�=−��

�J̃h
� and ���=−���; the Riemann tensor field is then

R�
�=d��

�+��
�∧��

� with components R��
�


 such that R�

= �1/2�R��

�

Jh

�∧Jh
��, the components

of the Riemann tensor with respect to the acht-bein are found using only the algebra.
In fact by construction we have that �E2� takes the form dsH

2 =g��da� � da�, with

g�� = J̃�
�J̃�



�
. �E3�

Let us note that, using notations as in Sec. III, we have

Jh = J̃h + Jh
i Ci. �E4�

On the other hand, using Jh=h−1dh one finds

dJh = − Jh ∧ Jh = − 1
2JI ∧ JJfIJ

KCK. �E5�

The spin connection can be determined computing dJ̃h from �E4�. Being J̃h
�=Jh

� we can omit the
tilde in what follows and write:

dJh
� = − 1

2JIJJfIJ
� = − 1

2J�J�f��
� − JiJ�f i�

�, �E6�

where we used the properties of the structure constants. From this we can read the expression for
the spin connection one-form, which can be written in the form

��
� = Jh

I f I�
� − 1

2Jh
�f��

�. �E7�

The curvature tensor can then be computed directly

R�
� = Jh

�Jh
��− f�i

�f��
i + 1

4 f��
�f��

� − 1
4 f��

�f��
� − f��

�f��
�� , �E8�

or in components

R��
�


 = − f�I
�f�


I + f�I
�f�


I + 1
2 f��

If I

� − 1

4 f�

If I�

� + 1
4 f�


If I�
�. �E9�

The Ricci tensor ���ªR��
�

� is then

��� = 1
4 f�

IJf�IJ + 1
2 f�

�i f��i + 1
2 f�

�i f��i. �E10�

The explicit form of the structure constants in our base then yields

��� = 8
��, �E11�

or in curvilinear coordinates ���dx� � dx�=8dsH
2 .

083512-16 Cacciatori et al. J. Math. Phys. 46, 083512 �2005�

                                                                                                                                    



1 H. J. Rothe, Lattice Gauge Theories: An Introduction, Lecture Notes in Physics, Vol. 59 �World Scientific, Singapore,
1997�, 512 pp.

2 B. Simon, “Representations of finite and compact groups,” Graduate studies in Mathematics Vol. 10 �AMS, Providence,
RI, 1996�.

3 J. J. Duistermaat and J. A. C. Kolk, “Lie groups,” �Universitext, Springer, Berlin, 2002�.
4 T. Tilma and E. C. G. Sudarshan, “Generalized Euler angle parameterization for SU�N�,” J. Phys. A 35, 10467 �2002�;
“Generalized Euler Angle Parameterization for U�N� with Applications to SU�N� Coset Volume Measures,” J. Geom.
Phys. 52�3�, 263 �2004� .

5 K. Holland, P. Minkowski, M. Pepe, and U. J. Wiese, “Exceptional confinement in G�2� gauge theory,” Nucl. Phys. B
668, 207 �2003�; K. Holland, M. Pepe, and U. J. Wiese, “The deconfinement phase transition in Yang-Mills theory with
general Lie group G,” Nucl. Phys. B, Proc. Suppl. 129, 712 �2004�; M. Pepe, “Deconfinement in Yang-Mills: A
conjecture for a general gauge Lie group G,” e-print arXiv: hep-lat/0407019.

6 J. P. Keating, N. Linden, and Z. Rudnick, “The exceptional Lie groups and L-functions,” J. Phys. A 36�12�, 2933 �2003�.
7 W. Krauth and M. Staudacher, “Yang-Mills integrals for orthogonal, symplectic and exceptional groups,” Nucl. Phys. B

584, 641 �2000�; e-print �arXiv: hep-th/0004076�.
8 R. D. Schafer, An Introduction to Nonassociative Algebra �Dover, New York, 1995�.
9 J. C. Baez, “The Octonions,” Bull. Am. Math. Soc. 39�2�, 145 �2002�.

10 J. H. Conway and D. Smith, On Quaternions and Octonions �A. K. Peters, 2001�.
11 I. G. Macdonald, “The volume of a compact Lie group,” Invent. Math. 56, 93 �1980�.

083512-17 Euler angles for G2 J. Math. Phys. 46, 083512 �2005�

                                                                                                                                    



Lp estimates on a time-inhomogeneous diffusion process
Litan Yana�

Department of Mathematics, College of Science, Donghua University, Shanghai 200051,
People’s Republic of China

Ligang Lu and Zhiqiang Xu
Basic College, Zhejiang Wanli University, Qiuai, Ningbo 315101, People’s Republic
of China

�Received 14 October 2004; accepted 17 June 2005; published online 10 August 2005�

In this paper we consider the diffusion process X determined by the one-variable
time-dependent Fokker-Planck equation, �� /�t�P�y , t�=−g�t��� /�y�yP�y , t�
+ 1

2 f�t�2��2 /�y2�P�y , t�, where f ,g :R+→R+ are two continuous functions, i.e., X
satisfies Itô stochastic differential equation, dXt= f�t�dBt−g�t�Xt dt, where B is a
standard Brownian motion starting at zero. We obtain Lp estimates on the process,
and we show that ��log�1+J���p and �sup0�t���a�t�Xt��p are equivalent for all stop-
ping times � of B, where Jt=�0

t a2�s�f2�s�ds and a :R+→R+ the solution to the
equation �da /dt�−g�t�a=−a3f2�t� , a�0�=1. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2000208�

I. INTRODUCTION

The Fokker-Planck equation �see, for example, Refs. 4, 19, and 22� is one of the most
celebrated equations in Physics, since it has been very useful for studying dynamic behavior of
stochastic differential equations driven by Gaussian noises. It is a special type of master equation,
which is often used as an approximation to the actual equation or as a model for more general
Markov processes. We have known that the linear Fokker-Planck equation

�

�t
P�y,t� = − �

�

�y
yP�y,t� +

1

2
�

�2

�y2 P�y,t� , �1.1�

arises in many fields of applied sciences such that statistical mechanics, chemistry, mathematical
finance �see Refs. 4, 19, and 22�. Such that a drift-diffusion equation can be derived from the
Langevin equation

dVt = − �Vt dt + �1/2 dBt, V0 = x , �1.2�

where B is a standard Brownian motion starting at 0, to model the Brownian motion of particles
in thermodynamical equilibrium. In this case, the parameters � and � are two positive constants
which represent, respectively, the friction term and the temperature of the system. The stationary
Markov process determined by the linear Fokker-Planck equation �1.1� with � ,��0 is the
Ornstein-Uhlenbeck process. The Ornstein-Uhlenbeck process has a notable history in physics,
and it is a better model to make the velocity of the particle diffusion process, and it is the solution
of the Langevin equation �1.2�. Clearly, we have

a�Electronic mail: litanyan@dhu.edu.cn
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Vt = e−�t	x + �

0

t

e�s dBs� ,

and furthermore, one can also write

Vt = xe−�t +
�

�2�
B1−e−2�t

in the sense of the same finite dimensional distributions. For more information on the Ornstein-
Uhlenbeck process, see Refs. 4, 16, 18, 20, and 22.

Recently, for the Ornstein-Uhlenbeck process V with V0=0, Graversen and Peskir9 showed
that there exist two universal constants b1 ,b2�0 such that the inequalities

b1

��
E��log�1 + ���� � E sup

0�t��
�Vt� �

b1

��
E��log�1 + ���� �1.3�

hold for all stopping times � of B, where �=� /�. This result shows that the maximal velocity of
the Brownian particle, taken up to a stopping time �, in average behaves as �log�1+��. The main
objective of this paper is to generalize this result allowing the friction term � and the temperature
� to fluctuate with time. In this case, the Fokker-Planck equation �1.1� reads

�

�t
P�y,t� = − g�t�

�

�y
yP�y,t� +

1

2
f�t�2 �2

�y2 P�y,t� , �1.4�

where f ,g :R+→R+ are two continuous functions. Nonautonomous Fokker-Planck equations arise
for instance in the study of a periodically driven Brownian rotor1 and in this case g�t� and f�t� are
periodic functions of time. In statistical mechanics, Eq. �1.4� arises as a natural generalization of
Eq. �1.1� in the context of nonequilibrium thermodynamics.15 Among other models, Eq. �1.4�
appears in the study of the tagged particle dynamics of a heavy particle in a gas of much lighter
inelastic particles. As observed by Brey, Dufty, and Santos,3 the large particles exhibit Brownian
motion and the Boltzmann-Lorentz kinetic equation satisfied by the distribution function of large
particles can be reduced to a Fokker-Planck equation whose coefficients depend on the tempera-
ture of the surrounding gas. Granular gases being nonequilibrium systems, this temperature turns
out to be time dependent and the Fokker-Planck equation derived in Ref. 3 is of the shape �1.4�.
Furthermore, in Ref. 14, Lods and Toscani analyzed the asymptotic behavior of the time-
dependent Fokker-Planck equation �1.1�.

Clearly, the time-inhomogeneous diffusion processes X determined by Eq. �1.4� is the unique
strong solution to the stochastic differential equation

dXt = f�t�dBt − g�t�Xt dt, X0 = y . �1.5�

According to Ref. 12, the process X is called the Ornstein-Uhlenbeck type process. Our starting
point is Theorem 2.1, where, we show that for all stopping times � and all 0� p��, the inequali-
ties

1

bp
��log�1 + J���p � � sup

0�t��
�a�t�Xt��p � �2bp��log�1 + J���p �1.6�

hold with bp=3�e+ep��1+p�/p, where Jt=�0
t a2�s�f2�s�ds and a :R+→R+ the solution to the equation

da

dt
− g�t�a = − a3f2�t�, a�0� = 1.

As an interesting related problem, we consider the process X given by the equation
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dXt = 2f�t��Xt dBt + 	g�t�dt, X0 = 0 �1.7�

with 	�0. Clearly, If f �1 and g�1, then the squares of the solution is a Bessel process of
dimension 	�0 starting at �x0 �see Refs. 6, 7, and 18 for Bessel processes�. For the process X
given by �1.7� we show that the inequalities

	

Cp



0

�

g�t�dt
p

� � sup
0�t��

Xt�p � 	Cp

0

�

g�t�dt
p

hold for all stopping times � and all 0� p��, where Cp=9�e+2ep��1+2p�/p. This extends the
inequalities with 	
1 obtained by Graversen and Peskir8 �see also DeBlassie,5 Dubins et al.,6

Rosenkrantz and Sawyer21�. �Also see Ref. 10.�

II. RESULTS AND PROOFS

In this section we give Lp estimates on the time-inhomogeneous diffusion process determined
by Eq. �1.4� and some related results. In order to obtain these inequalities we need some prelimi-
naries.

Let a :R+→R+ be the solution to the equation

da

dt
− g�t�a = − a3f2�t�, a�0� = 1 �2.1�

and let for x�R,

h�x� = 2

0

x

ez2
dz


0

z

e−s2
ds . �2.2�

For x�R , t
0 we set F�t ,x�=h�a�t�x�. Then F satisfies

�F

�t
− g�t�x

�F

�x
+

1

2
f2�t�

�2F

�x2 = a2�t�f2�t� �2.3�

and F�t ,0�= ��F /�x��t ,0�=0 for all t
0.
On the other hand, it is not difficult to show that

ex2/2 − 1 � h�x� � ex2
− 1 �x 
 0� �2.4�

hold. For x
0 we define the function Hp :R+→R+ by

Hp�h�x�� = xp �p � 0� .

Then Hp is an increasing continuous function on R+ with Hp�0�=0. For x
0 we set

H̃p�x� = x

x

� 1

s
dHp�s� + 2Hp�x� .

Lemma 2.1: Let Hp and H̃p be defined as above. Then for all p�0 we have

logp/2�1 + x� � Hp�x� � 2p/2 logp/2�1 + x� �x 
 0� , �2.5�

and for 0� p�2 we have

H̃p�x� �
4 − p

2 − p
Hp�x� �x 
 0� . �2.6�

Proof: The inequalities �2.5� follows from �2.4�. To prove �2.6�, it now is enough to assume
that
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Hp�x� = Ap logp/2�1 + x� �p � 0�

for some constant Ap�0 depending only on p. For x
0 we set Gp�x�
��x /Hp�x���x

��1/s�dHp�s�. An elementary calculation can show that for all x
0 and all 0� p
�2,

lim
x↓0

Gp�x� =
p

2 − p
, lim

x→+�
G�x� = 0

and

0 � Gp�x� �
p

2 − p
.

It follows that

H̃p�x� = x

x

� 1

s
dHp�s� + 2Hp�x� �

4 − p

2 − p
Hp�x�

for all x
0 and all 0� p�2. This completes the proof. �

Lemma 2.2: Let D= �Dt�t
0 be a non-negative right-continuous process, and let A= �At�t
0 be
an increasing continuous process with A0=0. Assume that H :R+→R+ is an increasing continuous
function with H�0�=0. If for all bounded stopping times �

E�D�� � E�A�� ,

then

E� sup
0�t��

H�Dt�� � E�H̃�A���

holds for all stopping times �, where H̃ :R+→R+ is defined by

H̃�x� = x

x

� 1

s
dH�s� + 2H�x�, x 
 0.

The proof of the lemma above can be found in �Ref. 18, pp. 162–163� �also see Lemma 2.1 in
Ref. 17�, and the following lemma is a modification of Lemma 1.1 in Ref. 13, and it is a useful
technique to obtain Lp estimates of random variables, which is proved in Ref. 11 �see also Ref. 2�.

Lemma 2.3 (Ref. 11): Let A and B be two continuous, �Ft�-adapted, increasing processes, with
A0=0 and B0=0. If there exist some constants � ,��0 such that

E��AT
� − AS

���� � �BT��
��P�S � T�

holds for all couples �S ,T� of stopping times S ,T with S�T. Then, for any 0� p��, we have

E�A�
p � � �e + ep/���1+p/�E�B�

p � .

Theorem 2.1: Let the diffusion process X be given by the equation

dXt = f�t�dBt − g�t�Xt dt �2.7�

with X0=0, where f ,g :R+→R+ are two continuous functions, and let a :R+→R+ be the solution to
Eq. �2.1�. For t
0 we define

Jt = 

0

t

a2�s�f2�s�ds .
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Then for all 0� p�� and all stopping times �, we have

bp
−1��log�1 + J���p � � sup

0�t��
�a�t�Xt��p � �2bp��log�1 + J���p, �2.8�

where bp=3�e+ep��1+p�/p, in particular, for 0� p�2 we have

2 − p

4 − p
E�logp/2�1 + J��� � E� sup

0�t��
�a�t�Xt�p� � 2p/24 − p

2 − p
E�logp/2�1 + J��� .

Proof: Let a and h be given by �2.1� and �2.2�, respectively, and let F�t ,x�=h�a�t�x� for t

0, x�R. Noting that h is even, we get by the Itô formula and Eq. �2.3�,

h��a�t�Xt�� = h�a�t�Xt� = F�t,Xt� = 

0

t �

�s
F�s,Xs�ds + 


0

t

f�s�
�

�x
F�s,Xs�dBs − 


0

t

g�s�Xs
�

�x
F�s,Xs�ds

+
1

2



0

t

f2�s�
�2

�x2F�s,Xs�ds = 

0

t

f�s�
�

�x
F�s,Xs�dBs + 


0

t

a2�s�f2�s�ds .

It follows that for all bounded stopping times �

E�F��,X��� = E�J�� . �2.9�

Now, for these processes D= �F�t ,Xt� ; t
0� and A= �Jt ; t
0�, by using Lemma 2.1 and
Lemma 2.2, we get

E� sup
0�t��

�a�t�Xt�� = E� sup
0�t��

Hp�F�t,Xt��� � E�H̃p�J��� �
4 − p

2 − p
E�Hp�J���

� 2p/24 − p

2 − p
E�logp/2�1 + J���

for all stopping times � and 0� p�2. On the other hand, we see that �2.9� implies

E�J�� � E� sup
0�t��

F�t,Xt��

for all bounded stopping times �. Consequently, by using Lemma 2.1 and Lemma 2.2 to these
processes D= �Jt ; t
0� and A= �sup0�s�tF�s ,Xs� ; t
0�, we get

E�Hp�J��� � E�H̃p� sup
0�t��

F�t,Xt��� �
4 − p

2 − p
E�Hp� sup

0�t��
F�t,Xt��� =

4 − p

2 − p
E� sup

0�t��
�a�t�Xt�p�

for all stopping times � and all 0� p�2. Thus, we obtain the following inequalities:

2 − p

4 − p
E�logp/2�1 + J��� � E� sup

0�t��
�a�t�Xt�p� � 2p/24 − p

2 − p
E�logp/2�1 + J��� �2.10�

for all stopping times � and all 0� p�2.
Next, we extend �2.10� to all 0� p�� by using Lemma 2.3. Consider any couple �S ,T� of

stopping times S , T with S�T. Then, from the left inequality in �2.10� with p=1 and the inequal-
ity

log�1 + x� − log�1 + y� � log�1 + x − y� �x 
 y 
 0� ,

we find
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E��log�1 + JT� − �log�1 + JS�� � E��log�1 + JT − JS�� � E��log�1 + JT1�T�S�
��

� 3E� sup
0�t�T1�T�S�

�a�t�Xt�� � �3 sup
0�t�T

�a�t�Xt���P�T � S� ,

where 1A stands for the indicate function of set A, which shows for all stopping times T and all
0� p��,

��log�1 + JT��p � 3�e + ep��1+p�/p� sup
0�t�T

�a�t�Xt��p

by Lemma 2.3 with �=�=1.
To prove the right inequality in �2.8�, for any couple �S ,T� of stopping times S , T with S

�T, we have by the right inequality in �2.10� with p=1,

E� sup
0�t�T

�a�t�Xt� − sup
0�t�S

�a�t�Xt�� � E� sup
S�t�T

�a�t�Xt� − �a�S�XS�1�S�T��

� E� sup
0�t��T−S�1�T�S�

�a�t + S�Xt+S��

� 3�2E��log�1 + JT�1�T�S�� � �3�2�log�1 + JT���P�S � T� ,

which shows for all stopping times T and all 0� p��,

� sup
0�t�T

�a�t�Xt��p � 3�2�e + ep��1+p�/p��log�1 + JT��p

by Lemma 2.3 with �=�=1. This completes the proof. �

We now consider some very interesting examples. Let t�K�t� be a differentiable function on
R+ with K�t��0 for all t
0 and let Xt=Bt /K�t� , t
0, where B is a standard Brownian motion
starting at zero. Then we have by Itô’s formula

dXt =
1

K�t�
dBt −

K��t�
K�t�

Xt dt

with X0=0. On the other hand, from �2.1� we have for all t
0,

a�t�−2 = e−2�0
t g�s�ds	2


0

t

f2�s�e2�0
sg�z�dz ds + 1� =

1

K�t�2 �2t + K�0�� ,

since f�t�=1/K�t� and g�t�=K��t� /K�t�.
Without loss of generality, one may assume K�0�=2. It follows that

Jt = 

0

t

a2�s�f2�s�ds =
1

2
log�1 + t�

for all t
0. Thus, the following corollary follows from Theorem 2.1.
Corollary 2.1 (Ref. 9): Let B be a standard Brownian motion starting at zero. Then we have

cp�log1/2�1 + log�1 + ����p �  sup
0�t��

�Bt�
�1 + t


p

� Cp�log1/2�1 + log�1 + ����p

for all 0� p�� and all stopping times � of B, where cp and Cp are some positive constants
depending only on p.

From the above we can conjecture that the following inequalities hold:
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cp��log�1 + Lm+1�����p � � sup
0�t��

�Bt�

�
i=0

m

�1 + Li�t��1/2�
p

� Cp��log�1 + Lm+1�����p

for all stopping times � of B, where cp and Cp are some positive constants depending only on p,
and the function t�Lm+1�t� inductively by

Lm+1�t� = log�1 + Lm�t�� �m = 0,1,2,…�

with L0�t�= t.
At the end of this paper, we consider the equation

dXt = 2f�t��Xt dBt + 	g�t�dt, X0 = x0 
 0, �2.11�

where 	�0 and f , g two positive, bounded continuous functions defined on R+. Then we have the
following.

Theorem 2.2: Let X be a process given by �2.16� with x0=0. Then the inequalities

	

Cp



0

�

g�t�dt
p

� � sup
0�t��

Xt�p � 	Cp

0

�

g�t�dt
p

�2.12�

hold with 0� p�� for all stopping times �, where Cp=9�e+2ep��1+2p�/p.
It is easy to see that Eq. �2.11� admits a unique solution and the solution is strong, and

furthermore the solution Xt
0 for all x0
0. If f �1 and g�1, then the solution is called the

squares of a Bessel process of dimension 	�0 starting at �x0 �see Refs. 6, 7, and 18 for Bessel
processes�. Thus, the theorem above extends the inequalities with 	
1 obtained by Graversen and
Peskir8 �see also DeBlassie,5 Dubins et al.,6 Rosenkrantz and Sawyer21�.

Proof of Theorem 2.2: Let X be a process given by �2.16� with x0=0. It follows that for all
bounded stopping times �,

E�X�� = 	E�

0

�

g�t�dt� . �2.13�

Consequently, from Lemma 2.2 we get for all stopping times �,

E�� sup
0�t��

Xt�p� � 	 p2 − p

1 − p
E�	


0

�

g�t�dt�p� �2.14�

by assuming Hp�x�=xp for x
0 and 0� p�1. On the other hand, we see that �2.13� implies

	E�

0

�

g�t�dt� � E� sup
0�t��

Xt�

for all bounded stopping times �. From Lemma 2.2 with Hp�x�=xp�0� p�1� it follows that

	 pE�	

0

�

g�t�dt�p� �
2 − p

1 − p
E�� sup

0�t��
Xt�p� �2.15�

for all stopping times �. Thus, we obtain the following inequalities:

	 p1 − p

2 − p
E�	


0

t

g�t�dt�p� � E�� sup
0�t�T

Xt�p� � 	 p2 − p

1 − p
E�	


0

�

g�t�dt�p� �2.16�

for all stopping times � and all 0� p�1.
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Now, it is not difficult to extend �2.16� to all 0� p�� by using Lemma 2.3. Indeed, for any
couple �S ,T� of stopping times S , T with S�T we have from �2.16� with p= 1

2 ,

E��

0

T

g�t�dt −�

0

S

g�t�dt� � E��

0

T1�T�S�

g�t�dt� �
3
�	

E�� sup
0�t�T1�T�S�

Xt�

�
3
�	

E�� sup
0�t�T

Xt1�T�S�� � 9

	
XT

*
�

1/2

P�T � S�

and

E�� sup
0�t�T

Xt − � sup
0�t�T

Xs� � E�� sup
S�t�T

�Xt − XS�1�S�T�� = E�� sup
0�t��T−S�1�S�T�

�Xt+S − XS��

� 3�	E��

0

T1�T�S�

g�t�dt� � 9	

0

T

g�t�dt
�

1/2

P�S � T� .

Combining these with Lemma 2.3, we obtain the inequalities �2.12�.
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For a transformation F on a measure space �X ,��, we show that the Perron-
Frobenius operator of F can be written by a representation �L2�X ,�� ,�� of the
Cuntz-Krieger algebra OA associated with F when F satisfies some assumption.
Especially, when OA is the Cuntz algebra ON and �L2�X ,�� ,�� in the above is
some irreducible representation of ON, then there is an F-invariant measure on X
which is absolutely continuous with respect to �. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2000209�

I. INTRODUCTION

The representation theory of groups is an important tool for modern physics. For a family of
invertible transformations, such method is useful. On the other hand, transformations in dynamical
systems are not always invertible. We show a relation between the theory of dynamical systems
and the representation theory of operator algebras by the Perron-Frobenius operator. Invariant
measures �especially, Haar measures� play an important role in the representation theory of Lie
groups and harmonic analysis. On the other hand, invariant measures of noninvertible transforma-
tions are studied in Refs. 7–9 by the Perron-Frobenius operators of dynamical systems. By using
the Perron-Frobenius operators, the characterization of a given dynamical system and the con-
struction of invariant measure are obtained. We show their roles in representation theory of
operator algebras in this paper.

Let Lp�X ,�� be the set of all complex-valued measurable functions � on a measure space
�X ,�� satisfying ���Lp

�� and let Lp�X ,� ;R� be the subset of all real-valued functions in
Lp�X ,�� for p=1,2 ,�. For a nonsingular transformation F on X, that is, ��F−1�A��=0 if ��A�
=0 for A�X, PF is the Perron-Frobenius operator of F if PF is the operator on L1�X ,�� which
satisfies

�
A

�PF���x�d��x� = �
F−1�A�

��x�d��x� �∀� � L1�X,��� �1.1�

for each measurable subset A of X.7 By �1.1�, PF� is uniquely determined as an element in
L1�X ,�� for each ��L1�X ,��. For ��L1�X ,�� and ��L��X ,��, we obtain
�X��F�x����x�d��x�=�X��x��PF���x�d��x�. From this, PF is a bounded linear operator on
L1�X ,�� and �PF��L1

� ���L1
for each ��L1�X ,� ;R�. Further, a positive function 	�L1�X ,��

satisfies PF	=	 if and only if 	 is the density of an F-invariant measure, that is, the following
holds for any ��L1�X ,��:

�
X

��F�x��	�x�d��x� = �
X

��x�	�x�d��x� . �1.2�
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In order to describe both the Perron-Frobenius operators and representations of the Cuntz-
Krieger algebras simultaneously, we introduce branching function systems on a measure space
�X ,��. A family f = �f i	i=1

N of maps on X is a semibranching function system if there is a finite
family �Di	i=1

N of measurable subsets of X such that f i is a measurable map from Di to Ri


 f i�Di�, ��X \R1� ¯ �RN�=0, ��Ri�Rj�=0 when i� j and there is the Radon-Nikodým de-
rivative 
 f i

of � � f i with respect to � and 
 f i
�0 almost everywhere in Di for i=1, . . . ,N. A map

F on X is called the coding map of a semibranching function system f = �f i	i=1
N if F � f i= idDi

for
i=1, . . . ,N.

For a semibranching function system f = �f i	i=1
N with the coding map F, define a family

�S�f i�	i=1
N of operators on L2�X ,�� by

�S�f i����x� 
 �Ri
�x� · �
F�x�	1/2 · ��F�x�� �� � L2�X,��� , �1.3�

where �Ri
is the characteristic function of Ri. Then S�f i� is a partial isometry and S�f i�S�f j�

=S�f i � f j� when Dj �Ri. For N2, let A be an N�N matrix which consists of elements 0 or 1 and
any column and row are not 0. A semibranching function system f = �f i	i=1

N is an A-branching
function system if ��Di \� j;aij=1Rj�=0 for each i=1, . . . ,N. For an A-branching function system
f = �f i	i=1

N ,

� f�si� 
 S�f i� �i = 1, . . . ,N� , �1.4�

defines a representation �L2�X ,�� ,� f� of the Cuntz-Krieger algebra OA.5

Mori computed eigenvalues of the Perron-Frobenius operator by algebraic method for a con-
crete example in Ref. 10. On the other hand, we were interested in construction of representations
of the Cuntz algebra by using interval dynamical systems in order to find new examples.4,5 He
pointed out the similarity among his study and ours. Hence we obtain Theorem 1.1 and Theorem
1.2.

Theorem 1.1: For an A-branching function system f = �f i	i=1
N with the coding map F, the

following holds:

�PF���x� = ��� f�s1
*�����x�	2 + ¯ + ��� f�sN

* �����x�	2

for any positive function ��L1�X ,�� where ���x�
���x�.
Theorem 1.2: Assume that F is the coding map of an A-branching function system f

= �f i	i=1
N on a measure space �X ,�� and bi

 f i

is constant for i=1, . . . ,N and ��X���. Then the
following holds:

�i� Define a subspace V
Lin���R1
, . . . ,�RN

	 of L2�X ,��. Then PFV�V where Ri is the image
of f i.

�ii� For a diagonal matrix B
diag�b1 , . . . ,bN��MN�R�, the following identity of matrices
holds:

PF�V = BA ,

where PF�V is the matrix representation over the basis �R1
, . . . ,�RN

of V and the rhs is the
product of matrices.

In Theorem 1.2 �ii�, the eigenvalues of the Perron-Frobenius operator associated with F depend on
not only A but also B. In this sense, eigenvalues of the Perron-Frobenius operator have the
information of a representation of the Cuntz-Krieger algebra.

It is an important problem to construct the invariant measure for a given dynamical system.
For example, Lasota-York theorem shows a construction of invariant measure by using the Perron-
Frobenius operator of a dynamical system.8 We show the condition of existence of invariant
measure from the viewpoint of representation theory of the Cuntz algebra.

f = �f i	i=1
N is a branching function system if f = �f i	i=1

N is an A-branching function system for a
matrix A= �aij�, aij =1 for each i , j=1, . . . ,N. In this case, �L2�X ,�� ,� f� is a representation of the
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Cuntz algebra ON. For z= �zi�i=1
N �SN−1
�y�RN : �y�=1	, �H ,�� is GP�z� of ON �Ref. 6� if there

is a unit cyclic vector ��H such that

��z1s1 + ¯ + zNsN�� = � . �1.5�

We call � by the GP vector of �H ,��. In this case, there is g�O�N��U�N� such that
�� ��g��s1��=� where � is the canonical action of U�N� on ON. This implies that �H ,� ��g� is
an irreducible permutative representation of ON.1 Hence GP�z� of ON exists uniquely up to unitary
equivalence and it is irreducible. Further we see that GP�z��GP�y� if and only if z=y where
� means the unitary equivalence.

Theorem 1.3: Let F be the coding map of a branching function system f on a measure space
�X ,��. If there is z�SN−1 such that �L2�X ,�� ,� f� is GP�z� with the GP vector ��L2�X ,� ;R�,
then there is a probabilistic F-invariant measure � on X which is absolutely continuous with
respect to � and it is given as follows:

d��x� 
 ���x�	2d��x� �x � X� .

In Sec. II, we show the main theorems. It is explained that �1.5� implies the eigenequation of
the Perron-Frobenius operator. In Sec. III, we show concrete examples.

II. PROOFS OF THE MAIN THEOREMS

For N2, let MN��0,1	� be the set of all N�N matrices such that each element is 0 or 1 and
any row and column is not 0. For A= �aij��MN��0,1	�, OA is the Cuntz-Krieger algebra by A if
OA is a C*-algebra which is universally generated by partial isometries s1 , . . . ,sN and they satisfy
si

*si=� j=1
N aijsjsj

* for i=1, . . . ,N and �i=1
N sisi

*= I.3 Especially, when aij =1 for each i , j=1, . . . ,N, OA

is the Cuntz algebra ON.2 In this paper, any representation is unital and �-preserving.
Proof of Theorem 1.1: By �1.3�, the adjoint operator S�f i�* of S�f i� on L2�X ,�� is as follows:

�S�f i�*���x� = �Di
�x� · �
 f i

�x�	1/2 · ��f i�x�� �� � L2�X,��� . �2.1�

For the coding map F of a semibranching function system f = �f i	i=1
N , we have

�PF���x� = �
i=1

N

�Di
�x� · 
 f i

�x� · ��f i�x�� �� � L1�X,��� . �2.2�

�2.2� is obtained by �1.1�.7 By �2.1�, �2.2�, and �1.4�, the statement holds. �

Proof of Theorem 1.2: Define vi
�Ri
for i=1, . . . ,N. By �2.1�, S�f i�*v j =�k=1

N bi
−1/2cik

�j�vk for i
=1, . . . ,N where cik

�j�=�ijbiaik. This implies that �S�f i�*�V= �bi
−1/2cjk

�i�� as a matrix with respect to
v1 , . . . ,vN and S�f i�*V�V. By �2.2�, PF=b1

1/2S�f1�*+ ¯ +bN
1/2S�fN�*. Hence the statements hold.�

Corollary 2.1: Let X be a bounded closed interval of R and A�MN��0,1	�. Assume that f
= �f i	i=1

N is an A-branching function system on X and bi

 f i
is constant for each i=1, . . . ,N. Then

the eigenvalue of BA becomes that of PF for the coding map F of f where B
diag�b1 , . . . ,bN�.
Proof of Theorem 1.3: Assume that ��L2�X ,� ;R� satisfies � f�z1s1+ ¯ +zNsN��=�. Define

	�x�
���x�	2 for x�X. By Theorem 1.1 and � f�si�*�=zi�, we have PF	=	. Hence the state-
ment holds. �

Corollary 2.2: Let X be a measurable subset of R. Assume that a piecewise C1-class map F on
X is the coding map of a branching function system �f i	i=1

N on the measure space �X ,dx� where dx
is the Lebesgue measure. If �0�L2�X ,dx ;R� satisfies that

��F��x���0�F�x�� = �N�0�x� �a . e . x � X� , �2.3�

then d��x�
��0�x�	2dx is an invariant measure on X with respect to F.
Proof: By �1.3� and �1.4�, we see that �� f�s1+ ¯ +sN����x�=��F��x����F�x�� for each �

�L2�X ,dx�. From this and �2.3�, N−1/2� f�s1+ ¯ +sN��0=�0. By Theorem 1.3 for z
= �N−1/2 , . . . ,N−1/2��SN−1, the statement holds. �

083514-3 Perron-Frobenius operators, Cuntz-Krieger algebras J. Math. Phys. 46, 083514 �2005�

                                                                                                                                    



In Sec. 6.5 of Ref. 7, it is explained that intertwiners among dynamical systems bring new
invariant measures from known ones. We show its unitary version as follows:

Proposition 2.3: Let F be the coding map of a branching function system f = �f i	i=1
N on a

measure space �X ,��. Assume that �L2�X ,�� ,� f� is GP�z� for z�SN−1 with the GP vector �

�L2�X ,� ;R�. If � is a measure space isomorphism from �X ,�� to other �Y ,�� and G
� �F
��−1, then 	
�S����	2 is the density of a probabilistic G-invariant measure on Y which is abso-
lutely continuous with respect to � where S��� is a unitary operator from L2�X ,�� to L2�Y ,��
defined by �S������y�
�
�−1�y�	1/2���−1�y��.

Proof: Define g= �gi	i=1
N by gi
� � f i ��−1. Then G is the coding map of g. We see that

S���� f�·�S���*=�g�·� and �g�z1s1+ ¯ +zNsN���=�� for ��
S�����L2�Y ,� ;R�. Hence
�L2�Y ,�� ,�g� is GP�z� with the GP vector ��. By Theorem 1.3, we have the statement. �

III. EXAMPLES

Example 3.1: Let 0�a�1 and X
�0,1�. Define a map F on X by F�x�
x /a on R1


�0,a� and F�x�
−�x−1� / �1−a� on R2
�a ,1�.

Then F is the coding map of a branching function system f 
�f1 , f2	 defined by f i
��F�Ri
�−1 for

i=1,2. Then �� f�s1����x�=a−1/2�R1
�x���x /a�, �� f�s2����x�= �1−a�−1/2�R2

�x���−�x−1� / �1−a��
for ��L2�X ,dx�.

�PF���x� = a��ax� + �1 − a���− �1 − a�x + 1� �� � L1�X,dx�� .

We see that Theorem 1.1 holds. The Lebesgue measure dx is the probabilistic invariant measure of
X with respect to F. �L2�X ,dx� ,� f� is GP��a ,�1−a� of O2 with the GP vector 1. The invariant
measure is independent in the parameter a.

Example 3.2: For a ,b�R, a�0, define F�x�
�x−b�2 /a+b−2a on X
�−2�a�+b ,2�a�+b�.
Define a branching function system f = �f1 , f2	 on X by f i
��F�Ri

�−1, i=1,2 for R1
�−2�a�
+b ,b� and R2
�b ,2�a�+b�. Then � f�s1+s2��=�2� for ��x�
�−1/2�4a2− �x−b�2	−1/4. We see
that �L2�X� ,� f� is GP�2−1/2 ,2−1/2� of O2 with the GP vector �.4 By Theorem 1.3,

p�x� 

1

�

1
�4a2 − �x − b�2

is the density of a probabilistic invariant measure on X with respect to F. When a=−1/4 and b
=1/2, we have F�x�=4x�1−x� and 	�x�=1/ ���x�1−x��. This was first obtained by Ulam and von
Neumann.11
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Example 3.3: For 0�a�1, define a map F : �0,1�→ �0,1� as follows:

Define R1
�0,a�, R2
�a ,1�, D1
�0,1�, D2
�0,a�. Then F is the coding map of the following
A= � 1

1
1
0

�-branching function system on X= �0,1�: f i :Di→Ri, f1�x�=ax for x� �0,1� and f2�x�
= �1−a�x /a+a for x� �0,a�. Define v1
��0,a�, v2
��a,1�, V
Lin��v1 ,v2	. By Theorem 1.2, the
matrix representation of PF with respect to v1, v2 is given as follows:

PF�V = �a �1 − a�/a
a 0

� .

Hence its eigenvalues are a−1 and 1. Their normalized eigenvectors are given as follows:

w1 =�1 − a

a
��0,a� −� a

1 − a
��a,1�, w2 =

1
�a�1 + a − a2�

���0,a� + a��a,1�� .

Especially �w2�2 is the density of the invariant measure on �0,1� with respect to F.
Example 3.4: Let F be a map defined by the following graph:

Define

A 
 �1 1 1

0 1 1

1 0 0
� ,

B
diag�1/3 ,1 /2 ,1�, R1
�0,1 /3�, R2
�1/3 ,2 /3�, R3
�2/3 ,1�, D1
�0,1�, D2
�1/3 ,1�, D3


�0,1 /3�. The A-branching function system f = �f1 , f2 , f3	, f i :Di→Ri, i=1,2 ,3, with the coding
map F is given by f1�x�=x /3, f2�x�=−�x−1� /2+1/3, f3�x�=−x+1. From this and Theorem 1.2
�ii�, �PF�W=BA where W
Lin���R1

,�R2
,�R3

	. We see that 0, −1/6, 1 are eigenvalues of �PF�W.
Hence they are eigenvalues of PF.

Example 3.5: For A�MN��0,1	� and an A-branching function system f = �f i	i=1
N on a measure
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space �X ,��, ��X���, assume that bi

 f i
is constant for each i=1, . . . ,N. Then bi

=ri / �� j=1
N aijrj� where ri
��Ri�. When

A 
 �0 1 1

1 0 1

1 1 1
� ,

we have

B = �b1,b2,b3� = diag� r1

r2 + r3
,

r2

r1 + r3
,

r3

r1 + r2 + r3
� .

For 0�a�b�1, consider the case F on X= �0,1� which graph is given as follows:

F is the coding map of an A-branching function system given as follows: f i :Di→Ri, i=1,2 ,3,

�
f1�x� =

a

1 − a
�x − a� �x � D1� ,

f2�x� = �−
b − a

1 − b + a
x + b , �x � R1� ,

−
b − a

1 − b + a
�x − 1� + a �x � R3� ,�

f3�x� = �1 − b�x + b �x � �0,1�� ,

�
where R1
�0,a�, R2
�a ,b�, R3
�b ,1�, D1
�a ,1�, D2
�0,a�� �b ,1�, D3
�0,1�. From these,
we have B=diag�a / �1−a� , �b−a� / �1−b+a� ,1−b�.
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Darboux transformations in one variable form the basis for the factorization
methods and have numerous applications to geometry, nonlinear equations and
SUSY quantum mechanics. In spite of this wide range of applications the theory of
Darboux transformations in two variables and its elegant relationship to analytic
complex functions has not been recognized in the literature. To close this gap we
develop in this paper the theory of Darboux transformation in the context of
Schrödinger equations in two variables. This yields a constructive algorithm to
determine the relationship between potential functions which are related by
Darboux transformations. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2000727�

I. INTRODUCTION

For over half a century Darboux transformations in one independent variable have found
numerous application in various field of mathematics and physics.1–4 �References 1 and 2 contain
an extensive list of references.� In particular the factorization method5,6 and its generalizations7–11

which have been instrumental in many physical applications �including SUSY quantum mechanics
�QM�12� has its roots based on these transformations. Recently however these transformations
were generalized and applied to systems of nonlinear equations such as the KdV hierarchy and
others.13 In addition various applications of this method in geometry were worked out and form an
important ongoing research area.2 Extensions of the method to multidimensional oriented Rie-
mann manifolds,14 time dependent potentials15 and shape invariant potentials16 have appeared in
the literature.

It is surprising that in spite of this extensive research effort the theory of these transformations
in two variables and its elegant relationship to complex analytic function theory has not been
worked out �as far as we could ascertain�. An exception is the recent paper by Demircioglu et al.17

which considered these transformations under some additional constraints using real variables and
polar coordinates. However under these additional constraints only partial results were obtained
and the relationship between these transformations and analytic complex functions was lost.

We now give a short overview of Darboux transformations for Schrödinger equation in one
variable.

We say that the solutions of two Schrödinger equations with different potentials u�x�, v�x�,
i.e.,

�� = �u�x� + ��� , �1.1�

�� = �v�x� + ��� , �1.2�

are related by a Darboux transformation if there exist A�x�, B�x� so that
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� = �A�x� + B�x�
�

�x
���x� . �1.3�

Letting B�x�=1 one can easily show that in order for Eqs �1.1� and �1.2� to be related by the
transformation �1.3� A�x�, u�x�, v�x� must satisfy

A� + u� + A�u − v� = 0, �1.4�

2A� + u − v = 0. �1.5�

Eliminating �u−v� between these equations and integration yields

A� − A2 + u = − � , �1.6�

where � is an integration constant. Equation �1.6� is a Riccati equation which can be linearized by
the transformation A=−�� /� which leads to

�� = �u�x� + ��� . �1.7�

Thus � is an eigenfunction of the original Eq. �1.2� with �=�. From �1.5� we now infer that

v = u − 2�ln ���, �1.8�

i.e., a Darboux transformation changes the potential function u�x� by �u=−2�ln ��� where � is an
arbitrary eigenfunction of �1.1�.

Our objective in this paper is to generalize these transformations to Schrödinger equations in
two independent variables and determine the relationship between their potentials. From a broader
point of view the goal of this project is to derive for two dimensional nonseparable potentials
results similar to those that followed from the application of Darboux transformations and the
factorization method in one dimension. That is an enumeration of physically important potentials
which can be treated and solved by these transformations. This program includes the exploration
of the Lie algebraic structure underlying these potentials and may lead to the definition of generic
families of “special functions” in two variables. �That is, functions which cannot be expressed as
a finite sum of products of functions in one variable.� The present paper represents the first step
towards achieving these objectives.

The plan of the paper is as follows: In Sec. II we derive the basic equations that constrain
Darboux transformations in two variables and their solutions. In Secs. III and IV we construct
explicitly some Darboux transformations and their related potentials. In Sec. V we consider po-
tential cascades whose functional form is preserved under these transformations. We end up in Sec
VI with summary and conclusions.

II. DARBOUX TRANSFORMATIONS IN TWO VARIABLES

We shall say that two Schrödinger equations in two independent variables

�2� = u�x,y,��� , �2.1�

�2� = v�x,y,��� , �2.2�

are related by a Darboux transformation if there exist �smooth functions� A�x ,y�, B�x ,y�, C�x ,y�
so that their solutions satisfy

��x,y� = �A�x,y� + B�x,y�
�

�x
+ C�x,y�

�

�y
���x,y� . �2.3�

For brevity we drop in the following the dependence of the various functions on the indepen-
dent variables.
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Using Eq. �2.3� to substitute for � in Eq. �2.2� and eliminating the higher order derivatives of
� and �2� /�y2 using Eq. �2.1� we obtain

�− 2
�C

�y
+ 2

�B

�x
� �2�

�x2 + �2
�B

�y
+ 2

�C

�x
� �2�

�x � y
+ ��2C + 2

�A

�y
+ C�u − v�� ��

�y

+ ��2B + 2
�A

�x
+ B�u − v�� ��

�x
+ ��2A + 2

�C

�y
u + A�u − v� + B

�u

�x
+ C

�u

�y
�� = 0.

�2.4�

To satisfy this equation we treat � and its derivatives as independent variables and let their
coefficients be zero. This leads then to the following system of equations:

�B

�x
−

�C

�y
= 0, �2.5�

�B

�y
+

�C

�x
= 0, �2.6�

�2B + 2
�A

�x
+ B�u − v� = 0, �2.7�

�2C + 2
�A

�y
+ C�u − v� = 0, �2.8�

�2A + A�u − v� + 2
�C

�y
u + B

�u

�x
+ C

�u

�y
= 0. �2.9�

We observe that Eq. �2.9� can be rewritten in a symmetric form in B, C in view of Eq. �2.5�.
Equations �2.5� and �2.6� are Cauchy-Riemann equations for B, C. Hence these functions must

be harmonic conjugates and

� = B + iC �2.10�

is analytic. In view of this fact �2C=�2B=0 and Eqs. �2.7� and �2.8� simplify to

2
�A

�x
+ B�u − v� = 0, 2

�A

�y
+ C�u − v� = 0. �2.11�

By eliminating u−v we then get the following equation for A:

C
�A

�x
− B

�A

�y
= 0. �2.12�

This leads us to consider the following equation:

B dx + C dy = 0. �2.13�

Although this equation is not exact an integrating factor is given by 1/ �B2+C2�. �This fact follows
from Cauchy-Riemann equations for B, C.� The general solution of this equation can be expressed
therefore by the standard formula
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w�x,y� =	
x0

x B�x,y�
B�x,y�2 + C�x,y�2dx + 	

y0

y C�x0,y�
B�x0,y�2 + C�x0,y�2dy . �2.14�

It follows then that the general solution for A is of the form A= f�w� where f is any smooth
function of w.

To treat Eq. �2.9� we use Eq. �2.7� to eliminate u−v . This leads to

B
�u

�x
+ C

�u

�y
+ 2

�C

�y
u = − �2A +

2A
�A

�x

B
. �2.15�

This equation can be used now to determine u for a proper choice of the function f�w�. To proceed
we now note that �using Eq. �2.14��

− �2A +

2A
�A

�x

B
=

1

B2 + C2 �− f� + f2��. �2.16�

Hence we set

�− f� + f2�� = g��w� , �2.17�

where g�w� is some smooth function. As a result we are led to the following equation for f�w�:

f� − f2 + g�w� = 0. �2.18�

�We are not adding a constant of integration since g�w� is arbitrary.� This is a Riccati equation
which can be linearized by the transformation f =−q� /q and this leads to

q� − g�w�q = 0. �2.19�

Since we want to consider only analytic solutions to this equation which can be expressed in terms
of known functions the function g�w� must be chosen appropriately. In particular g�w� can be
chosen so that Eq. �2.19� is factorizable.5 Here we consider only three possible choices for g�w�,

�1� g�w�=constant=c. If c is negative c=−�2 then q=D cos��w+	� where D, 	 are constants.
Hence f =� tan��w+	�. If on the other hand c=0 then q=Dw+E �E is a constant� and hence
f =−D / �Dw+E�. Finally if c is positive c=�2 then q=D cosh��w+	� and f =−� tanh��w
+	�.

�2� g�w�=w2− �2n+1�, n=0, 1,… . �This is the kernel of the differential equation for the har-
monic oscillator.� For n=0 this leads to f =w while for n
0 we obtain f =w
− �2nHn−1�w� /Hn�w��, where Hn�w� are Hermite functions.

�3� g�w�=n�n−1� /w2, n=2, 3,… . In this case Eq. �2.19� is a Euler equation and q=wn or q
=w−�n−1�. In either case this leads to f 
1/w.

We observe that different choices of g�w� can lead to the same f�w�.
Having made a choice for g�w� Eq. �2.15� becomes

B
�u

�x
+ C

�u

�y
+ 2

�C

�y
u =

g�

B2 + C2 . �2.20�

To find the general solution to this equation we must find two independent solutions to the system,
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dx

B
=

dy

C
=

− du

2u
�C

�y
−

g�

B2 + C2

. �2.21�

The first equality in this equation leads to

C dx − B dy = 0. �2.22�

Once again this equation is not exact but an integrating factor is given by 1/ �B2+C2� and the
solution of the equation w1�x ,y� can be expressed then by a standard formula similar to Eq. �2.14�.
Using w1 we can eliminate x or y from the second equation in �2.21� and find a solution w2�u ,y�.
The function u is given then implicitly by any smooth function F�w1 ,w2�=0. Once u has been
determined v can be computed from Eq. �2.7� or �2.8�.

To summarize the procedure, one starts by choosing an analytic function �=B+ iC then
computes w using Eq. �2.14�. For a proper choice of g�w� one computes A= f�w� from Eq. �2.19�.
The determination of u �and hence v� requires then the solution of Eqs. �2.20� and �2.21�. We note
however that instead of choosing the function g one can choose u so that the left-hand side of Eq.
�2.20� multiplied by B2+C2 is a function of w only. This will determine g� and hence A from
Eq. �2.18�.

In the following section we work out this procedure for the �complex� functions �=zn and
�= izn.

III. DARBOUX TRANSFORMATIONS WITH �=zn

A. nÅ1

In this case B=rn cos�n�� and C=rn sin�n�� hence it is expedient to work in polar coordinates.
Equation �2.12� becomes

�C cos � − B sin ��
�A

�r
−

1

r
�C sin � + B cos ��

�A

��
= 0. �3.1�

For the present choice of B, C this yields

sin��n − 1���
�A

�r
−

1

r
cos��n − 1���

�A

��
= 0. �3.2�

From Eq. �2.14� we then find that

w = −
cos��n − 1���
�n − 1�r�n−1� . �3.3�

Choosing g�w�=0 in Eq. �2.17� we find that A= f�w�=−D / �Dw+E�. �In the following we let D
=1, E=0.� Equation �2.20� for u becomes

r
�u

�r
+ tan��n − 1���

�u

��
+ 2nu = 0. �3.4�

The general solution of this equation is given implicitly by

F�r2nu,
r�n−1�

sin��n − 1���� = 0

where F is a smooth function. For example, if F�w1 ,w2�=w1−w2 then
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u =
1

r�n+1� sin��n − 1���
. �3.5�

Using Eq. �2.7� to compute u−v=−2f��w� / �B2+C2� we find for the present choice of f ,

u − v = −
2�n − 1�2

r2 cos2��n − 1���
. �3.6�

B. n=1

In this case B=x and C=y . Hence from Eq. �2.14� we deduce that w=ln r and A= f�w�. �Since
f is arbitrary we could have written this relation as A= f�r� but this will change the expression for
�2A in Eq. �2.15��. Equation �2.15� with the left-hand side reexpressed in polar coordinates
becomes

r
�u

�r
+ 2u =

g��w�
r2 . �3.7�

We conclude then that in this case u is given by

u =
G���

r2 +
1

r2 	 g��w�
r

dr , �3.8�

where G��� is a smooth function and u−v=−2�f��w� /r2�.

IV. DARBOUX TRANSFORMATIONS WITH �= izn

A. nÅ1

For this choice of � we have B=−rn sin�n��, C=rn cos�n�� and the roles of B, C have been
�essentially� exchanged. In this case w is given by

w =
sin��n − 1���
�n − 1�r�n−1� �4.1�

and A= f�w�. The equation for u with g��w�=0 becomes

r
�u

�r
− cot��n − 1���

�u

��
+ 2nu = 0 �4.2�

whose general solution is of the form

F�r2nu,
r�n−1�

cos��n − 1���� = 0, �4.3�

where F�w1 ,w2� is a smooth function. If we let f�w�=−1/w then

u − v = −
2�n − 1�2

r2 sin2��n − 1���
. �4.4�

B. n=1

In this case B=−y and C=x. Hence w=�, A= f��� and the equation for u in polar coordinate
is
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�u

��
=

g��w�
r2 . �4.5�

Hence

u =
g���
r2 + G�r� �4.6�

and u−v=−2f���� /r2.

V. CASCADES

One of the important �and interesting� features of the factorization method in one independent
variable is that the application of the ladder operator �or equivalently a Darboux transformation�
on a potential u�x� leads to potentials with the same dependence on x but with different param-
eters. As a result one can apply these operators on “essentially the same potential” a finite or
infinite number of times creating a cascade of potentials whose solutions are interrelated by
Darboux transformations.

To explore the existence of such cascades in two independent variables we shall assume that
��u−v�=u. Using this relation to substitute in Eq. �2.7� we obtain

u = −

2�
�A

�x

B
. �5.1�

Substituting this expression for u in Eq. �2.9� and using Eqs. �2.5� and �2.12� to simplify we infer
that A must satisfy

�2� − 1��2A +

2A
�A

�x

B
= 0 �5.2�

and therefore �since A= f�w��

��2� − 1�f��w� + f2�w��� = 0. �5.3�

Hence

�2� − 1�f��w� + f2�w� = c , �5.4�

where c is a constant. We deduce then �following the discussion in Sec. II of a similar equation�
that f�w� can take any of the following forms:

�1� c=0 then f�w�= �2�−1� / �w+c1�,
�2� c=2 then f�w�= tanh��w+c2� / �2�−1��,
�3� c=−2 then f�w�=− tan��w+c3� / �2�−1��.

�We assumed that 2��1 since otherwise f�w�=constant.� Here c1, c2, c3 are arbitrary con-
stants and the corresponding potential u can be computed from Eq. �5.1�.

For c=c1=0 and �=zn�n�1� this leads to

u =
2��2� − 1��n − 1�2

r2 cos2��n − 1���
. �5.5�

Similarly for �= izn it follows that

083515-7 Darboux transformations in two variables J. Math. Phys. 46, 083515 �2005�

                                                                                                                                    



u =
2��2� − 1��n − 1�2

r2 sin2��n − 1���
. �5.6�

Similar but more complicated expressions can be obtained for the other choices of c.
For n=1 we infer from Eqs. �3.8� and �4.6� that cascades exist but the corresponding poten-

tials are essentially in one variable. In particular for �= iz Eq. �4.6� implies that a cascade exists
when G�r�=0 and

g��� = − 2�f���� . �5.7�

Substituting this relation in eq. �2.18� it follows that

�1 − 2��f���� − f2��� = 0 �5.8�

and therefore f���=−��1−2�� / ��+c4�� where c4 is a constant.

VI. SUMMARY AND CONCLUSIONS

In this paper we showed that Darboux transformations in two independent variables have
strong affinity to the theory of analytic complex functions. This relationship enabled us to analyze
these transformations in full. It allowed us also to give a constructive algorithm for the application
of these transformations. This algorithm was used to make a partial classification of Darboux
transformations for two classes of analytic functions and their related potentials. Further �exhaus-
tive� enumeration of other potential functions especially those that related to the factorization
method through Eq. �2.19� �by the choice of the function g�w�� is needed. Moreover it will be
important to identify classes of physically interesting nonseparable potentials in two variables and
find out if they are amenable to treatment by Darboux transformations through the application of
Eq. �2.20�. We discussed also the existence of potential cascades whose form is preserved under
these transformations. However there are other possible definitions of this property, e.g., u−v
=constant. The differential equations that correspond to these cascades are the exact analogs of
factorizable equations in one dimension and their algebraic structure from group theoretical point
of view remains an important open question.
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Consistent tensor products on auxiliary spaces, hereafter denoted “fusion proce-
dures,” and commuting transfer matrices are defined for general quadratic algebras,
nondynamical and dynamical, inspired by results on reflection algebras. Applica-
tions of these procedures then yield integer-indexed families of commuting
Hamiltonians. © 2005 American Institute of Physics. �DOI: 10.1063/1.2007587�

I. INTRODUCTION

A procedure to construct commuting quantum traces for a particular form of quadratic
exchange algebras, known as reflection algebra,1 was recently developed in Ref. 2, building on the
pioneering work in Ref. 3. We recall that it entails three different steps, construction of the
quadratic exchange algebra itself, and its so-called “dual” �this notion will be clarified soon�;
construction of realizations of the exchange algebra and its dual on consistent tensor products of
the initial auxiliary space �which we will denote here as “fusion” procedure� while keeping a
single “quantum” Hilbert space on which all operators are assumed to act; combination of these
realizations into traces over the tensorized auxiliary spaces, yielding commuting operators acting
on the original quantum space, labeled by the integer set of tensorial powers of the auxiliary space.

We immediately insist that this procedure is distinct of, and in a sense complements, the
familiar construction of transfer matrices by tensoring over distinct quantum spaces �using an
appropriate comodule structure of the quantum algebra� while keeping a single common auxiliary
space; the trace is then taken over the auxiliary space to yield a generating functional of commut-
ing operators.4 In the case when there exists a universal formulation of the algebra as a bialgebra
with a coproduct structure, both constructions stem from two separate applications of this coprod-
uct. However, the resulting operators are quite distinct, the trace of the monodromy matrix yields
commuting operators acting on a tensor product of Hilbert spaces �as in, e.g., the case of spin
chains�; the trace of the fused auxiliary matrix yields operators acting on one single Hilbert space.
These can be shown in some particular cases to realize the quantum analog of the classical
Poisson-commuting traces of powers of the classical Lax-matrix Tr�Ln� �see Refs. 2, 5, and 6�.
This is the reason for our phrasing of “quantum traces” actually borrowed from Ref. 7. In addition
it must be emphasized that the procedure itself, combining a construction of a “dual” algebra and
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b�Electronic mail: avan@ptm.u-cergy.fr
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the establishing of exact fusion formulas, yields very interesting results on the quadratic exchange
algebra itself, and its possible identification as a coalgebra �e.g., Hopf or quasi-Hopf�. As we will
later comment, it also plays a central role in the �similarly named� Mezincescu-Nepomechie fusion
constructions for spin chains.8,9

A word of caution is in order. Throughout the paper, we use the term “fusion” in a restrictive
sense, insofar as we only consider the possibility of acting on auxiliary spaces. The general fusion
procedure itself has been applied also to the quantum spaces, yielding, e.g., higher spin
interactions10 or multiparticle bound states S matrices.

Our purpose here is to fully describe the quantum trace procedure for three types of general
quadratic algebras. The first one is the quantum nondynamical quadratic exchange algebra intro-
duced in Ref. 3. The second one was formulated in Ref. 11 as a dynamical version of the quadratic
exchange algebras in Ref. 3 with particular zero-weight conditions. It will be denoted “semidy-
namical” here, for reasons to be explained later. The third one �similarly denoted here as “fully
dynamical”� was first built in Ref. 12 for the sl�2� case, and extended to the sln case in Ref. 13,
albeit with particular restrictions on the coefficient matrices. The zero-weight conditions are dif-
ferent; the algebra structure itself mimicks the reflection algebra introduced by Cherednik and
Sklyanin in Ref. 1; a comodule structure was identified and a universal structure was proposed in
Ref. 14. We will here briefly comment on the differences between the quantum traces built in both
dynamical cases.

II. NONDYNAMICAL QUADRATIC ALGEBRAS

These algebras were recognized1,7 as generalizations of the usual R-matrix and quantum group
structure, leading to non skewsymmetrical r-matrices in the quasiclassical limit.

They are characterized by the following exchange relations:

A12T1B12T2 = T2C12T1D12, �1�

where, as usual, the quantum generators sit in the matrix entries of T. Let us recall some examples
of this structure.

�i� The Yangian and quantum group structures where A=D, B=C=1.
�ii� Donin-Kulish-Mudrov �DKM� reflection algebra without spectral parameters.15 A=C, B

=D=A�, where � �� denotes the permutation of auxiliary spaces, �A��12=A21.
�iii� Kulish-Sklyanin-type reflection algebra containing spectral parameters,2,16 A=R12

− , B=R21
+ ,

C=R12
+ , D=R21

− �� signs refer to the relative signs of spectral parameters in the R-matrix�.

In Refs. 3 and 17 consistency relations involving the structure matrices were derived and it
was found that they had the form of cubic relations on the matrices A ,B ,C ,D,

A12A13A23 = A23A13A12, �2�

A12C13C23 = C23C13A12, �3�

D12D13D23 = D23D13D12, �4�

D12B13B23 = B23B13D12. �5�

We can see that A and D obey the usual YB equations whereas C and B are their respective
representations.

Furthermore, generalized unitarity conditions can be derived from self-consistency of �1�
under exchange of spaces 1 and 2 which imposes
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A12 = �A21
−1, D12 = �D21

−1, B12 = �C21 ��,�,� � C� . �6�

The constants of proportionality must obey an additional constraint, ��=��−1. In the sequel, we
will restrict ourselves to the simplest choice of �=�=�=1.

Let us also note that although B12=C21, for aesthetical and mnemotechnical reasons we con-
tinue to use C whenever it allows for the more familiar and significant �12, 13, 23� display of
indices.

In Ref. 3 the authors had already introduced an algebra which they called “dual” to �1�. This
“dual” structure is characterized by the following exchange relation,

�A12
−1�t1t2K1��B12

t1 �−1�t2K2 = K2��C12
t2 �−1�t1K1�D12

t1t2�−1. �7�

Two respective representations of �1� and �7� �assumed to act on different quantum spaces� can be
combined by means of a trace3,8,16 on the common auxiliary space to generate commuting quan-
tum operators. It is with respect to this trace that Eq. �7� can be characterized as the dual of Eq.
�1�. We formulate the conjecture that this is the trace of a �-algebra structure on some underlying
universal algebra. Some freedom remains as to the actual form of the trace and in the sequel we
will stick to the choice of H as TrV�KtT�. Here the superscript t stands for any antimorphism on the
auxiliary space V, which satisfies also the trace invariance property Tr�KT�=Tr�KtTt�, for all
matrices K and T. The actual antimorphism may differ from the usual transposition �e.g., by
additional conjugation, crossing operation� since the proof of commutation uses only �see theo-
rems 5, 6, and 14� the antimorphism and trace invariance properties �see, e.g., the supertranspo-
sition in superalgebras, or the crossing operation in R-matrices�. Let us also remark here that it is
possible to choose a trace formula where the antimorphism acts on the quantum space, as it is the
case in Ref. 2, but we prefer not to do so here. Our particular choice is motivated by the fact that
transposition on the auxiliary space is always defined whereas on the quantum space it is not
necessarily straightforward and could require a supplementary hypothesis on this quantum repre-
sentation which may not be easily implemented.

The quantum trace formulation for such a nondynamical algebra stems from the results in
Refs. 2 and 3; it is however interesting to give a rather detailed derivation of it in the general case,
since both dynamical algebras will present similar features, albeit with crucial modifications in the
fusion and trace formulas induced by the dynamical dependence.

We will describe two fusions �consistent tensor product of auxiliary spaces� of Eq. �1�, re-
spectively, inspired by Refs. 2 �itself relying on Ref. 1� and 15. While the fusion of the structure
matrices is uniquely defined in each case, the solutions of the fused exchange relations are not. In
particular, they can be dressed, i.e., multiplied by suitable “coupling” factors. This dressing pro-
cedure turns out to be crucial, indeed, when the simplest solutions of the fused exchange relation
are combined in a quantum trace, they decouple, giving rise to products of lower order Hamilto-
nians. To obtain nontrivial commuting quantities these fused T-matrices must be dressed.

We will finally show that the two fusion procedures identified in Refs. 2 and 15 are related by
a coupling matrix LM and that they generate the same commuting quantities.

A. First fusion procedure

Let us first start by introducing some convenient notations �see Ref. 2� for fused matrices,

AMN� = �
i�M

→

�
j�N�

→

Aij = A11�A12� ¯ A1n� � A21�A22� ¯ A2n� ¯ � Am1� ¯ Amn�, �8�

where M = �1,2 , . . . ,m� and N�= �1� ,2� , . . . ,n�� are ordered sets of labels. The same sets with

reversed ordering are denoted by M̄ and N̄�. A set M deprived of its lowest �highest� element is
denoted by M0�M0�.

Remark: In many explicit examples we would have to deal only with one single exchange
formula �1� with two isomorphic auxiliary spaces. However our derivation also applies to a
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situation where more general coupled sets of exchange relations would occur as AijTiBijTj

=TjCijTiDij with �i , j	� �1, . . . ,m0��	 and generically Vi
” Vj. Such situations will occur when-
ever a universal structure is identifiable and the auxiliary spaces Vi carry different representations
of the algebra, as in, e.g., Ref. 15. It is therefore crucial that the order in the index set be stipulated.

Similar notations are used for the fusion of the other structure matrices. The next lemma states
that the structure matrices in �1� can be fused in a way that respects the YB equations �2�–�5�.

Lemma 1: Let A ,B ,C ,D be solutions of the Yang-Baxter equations (2)–(5).
Then the following fused Yang-Baxter equations hold:

AMN̄�AML̄�AN�L̄� = AN�L̄�AML̄�AMN̄�, �9�

AMN̄�CML�CN�L� = CN�L�CML�AMN̄�, �10�

DMN̄�DML̄�DN�L̄� = DN�L̄�DML̄�DMN̄�, �11�

DMN̄�BML�BN�L� = BN�L�BML�DMN̄�. �12�

Proof: Simple induction on #M + #N�. �

We now describe a fusion procedure for the algebra characterized by �1�, generalizing the one
introduced in Ref. 2.

Theorem 1: If T is a solution of

A12T1B12T2 = T2C12T1D12 �13�

then

TM = �
i�M

→ �Ti� �
i�j
j�M

→

Bij�� �14�

verifies the following fused equation:

AMN̄�TMBMN�TN� = TN�CMN�TMDMN̄�. �15�

Proof: Induction on the cardinality n of the index sets, n= #M + #N� which repeats and
generalizes the steps in Ref. 2. �

The solution TM obtained above can be dressed, i.e., can be multiplied from the left and the
right by suitable factors.

Proposition 1: Let TM be a solution of the fused exchange relation. Then QMTMSM is also a
solution of the fused exchange relation provided QM and SM verify

�QM,AMN̄�� = �QN�,AMN̄�� = �QN�,BMN�� = �QM,CMN�� = 0,

�16�
�SM,DMN̄�� = �SN�,DMN̄�� = �SN�,CMN�� = �SM,BMN�� = 0.

A particular solution of these constraints is provided by

QM = Ǎ12Ǎ23 . . . Ǎm−1,m,

�17�
SM = Ď12Ď23 . . . Ďm−1,m,

where Ǎ12= P12A12, . . . P12 being the permutation exchanging two auxiliary spaces.
Proof: Again by induction on the cardinality of the index sets. In the induction step we use the

decomposition QN�BMN�= Ǎ12¯ Ǎn�−1,n�BM,N�00BM,n�−1BM,n�, for example. �
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The fusion procedure can be repeated for the dual exchange relation as follows.
Theorem 2: If K is a solution of the dual exchange relation,

�A12
−1�t1t2K1��B12

t1 �−1�t2K2 = K2��C12
t2 �−1�t1K1�D12

t1t2�−1 �18�

then

KM = �
i�M

→ �Ki� �
i�j
j�M

→

��Bij
t1�−1�t2�� �19�

is a solution of the dual fused equation

�A
MN̄�

−1 �tMtN�KM��BMN�
tM �−1�tN�KN� = KN���CMN�

tN� �−1�tMKM�D
MN̄�

tMtN��−1. �20�

Proof: Similar to that of Theorem 1. Note that the dual structure matrices obey a set of
appropriate YB equations, isomorphic to �9�–�12�, for instance,

�A
MN̄�

−1 �tMtN��A
ML̄�

−1 �tMtL��A
NL̄�

−1 �tNtL� = �A
NL̄�

−1 �tNtL��A
ML̄�

−1 �tMtL��A
MN̄�

−1 �tMtN�. �21�

�

A similar dual dressing procedure exists: Any dressing of a solution of �18� should obey the
commutativity constraints

�QM� ,�A
MN̄�

−1 �tMtN�� = �QN�
� ,�A

MN̄�

−1 �tMtN�� = �QN�
� ,��BMN�

tM �−1�� = �QM� ,��C
MN�

tN� �−1�� = �SM� ,�D
MN̄�

tMtN��−1�

= �SN�
� ,�D

MN̄�

tMtN��−1� = �SN�
� ,��C

MN�

tN� �−1�� = �SM� ,��BMN�
tM �−1�� = 0 �22�

involving fused dual structure matrices. It is easy to check that if QM and SM dress solutions of
�15� then QM� =QM

tM and SM� =SM
tM dress solutions of �18�.

B. Second fusion procedure

Results in Ref. 15 hint that relation �1� admits another fusion procedure. We will explicitely
link the fusion described in the preceding section to the one inspired by Ref. 15.

The DKM type fusion is characterized by the following fused exchange relation for fused

matrices T̃ to be described in the following:

AM̄N�T̃MBMN̄�T̃N� = T̃N�CM̄N�T̃MDMN̄�. �23�

This equation can actually be obtained from a multiplication of the KS exchange relation �15� by
suitable factors reversing the ordering of indices where it is needed. The next lemma specifies this
statement.

Lemma 2: Let TM be a solution of the fused exchange relation (15). If LM verifies the following
commutation rules:

LMAMN̄� = AM̄N̄�LM, LN�AMN̄� = AMN�LN�,

�24�
LN�BMN� = BMN̄�LN�, LMCMN� = CM̄N�LM

then T̃M =LMTM is a solution of the exchange relation

AM̄N�T̃MBMN̄�T̃N� = T̃N�CM̄N�T̃MDMN̄�. �25�

An example of such an LM is given by
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LM = A12 ¯ A1mA23 ¯ A2m ¯ Am−1,m = �
1	i�j	m

¹

Aij . �26�

Proof: The first part is straightforward. Example �26� is verified by induction using LM

=A1M0
LM0

. For instance, the first relation of �24� is proved as

LMAMN̄� = A1M0
LM0

A1N̄�AM0N̄� = A1M0
A1N̄�LM0

AM0N̄� = A1M0
A1N̄�AM̄0N̄�LM0

= AM̄0N̄�A1N̄�A1M0

= AM̄N̄�LM ,

where fused YB equations are used. �

Combined with Theorem 1, this lemma leads to the following.

Theorem 3: If T̃ is a solution of

A12T̃1B12T̃2 = T̃2C12T̃1D12 �27�

then

T̃M = �
i�M

→ � �
j
i

j�M

→

AijT̃i �
j
i

j�M

←

Bij� �28�

is a solution of

AM̄N�T̃MBMN̄�T̃N� = T̃N�CM̄N�T̃MDMN̄�. �29�

Proof: The only property left to check is that the solution T̃M in �28� is obtained from TM in

�14� by a multiplication by LM in �26�. It is enough to show that T̃M =A1M0
T̃1B1M̄0

T̃M0
. We only

develop the induction step,

LMTM = A1M0
LM0

T1B1M0
TM0

= A1M0
T1LM0

B1M0
TM0

= A1M0
T1B1M̄0

LM0
TM0

= A1M0
T̃1B1M̄0

T̃M0
.

�30�

�

The next proposition describes the dressing of the solutions.

Proposition 2: Let T̃M be a solution of the DKM-type fused exchange relations. Then Q̃MT̃MS̃M

is also a solution provided Q̃M and S̃M verify

�Q̃M,AM̄N�� = �Q̃N�,AM̄N�� = �Q̃N�,BMN̄�� = �Q̃M,CM̄N�� = 0,

�31�
�S̃M,DMN̄�� = �S̃N�,DMN̄�� = �S̃N�,CM̄N�� = �S̃M,BMN̄�� = 0.

These equations are solved by

Q̃M = LMQMLM
−1, S̃M = SM ,

where QM and SM dress the solutions of the fused exchange relation (15) and LM is a solution of
(24).

Proof: Straightforward. �

We saw that TM and T̃M were linked by a factor LM. The question arises whether there is a
similar relation between the corresponding dual exchange algebras and their solutions. The rela-
tion is established in the following.

Theorem 4: Let KM be a solution of the first fused exchange relation (15) and LM be a

solution of (24). Then K̃M = �LM
tM�−1KM is a solution of the KDM-type dual fused exchange relation:
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�A
M̄N�

−1 �tMtN�K̃M��B
MN̄�

tM �−1�tN�K̃N� = K̃N���CM̄N�

tN� �−1�tMK̃M�D
MN̄�

tMtN��−1. �32�

Proof: We first see that �32� is indeed the dual exchange relation associated with �25�. The
next step is to check that �LM

tM�−1 obeys the appropriate commutation relations that enable it to
transform the fused dual AD type algebra �18� into the fused dual DKM-type one �32�. It is
obvious since these equations are the inverse transpose of �24�. �

Dressings of these dual fused solutions are obtained from dressings of �25� by the same
operation as for the AD type fusion, i.e., by transposing.

C. Commuting traces

In the preceding sections we have derived two distinct fusion procedures both of which allow
for building commuting quantities. In this section we will describe this construction, and show the
two different quantum traces are identified once the dressing is used.

We first establish the following.
Theorem 5: Let TM be a solution of the fused AD-type exchange relation (15). TM acts on the

tensor product of the auxiliary spaces labeled by M and on the quantum space Vq.
Let KM be a solution of the dual fused AD-type exchange relation (18). KM acts on the tensor

product of the auxiliary spaces labeled by M and on the quantum space Vq�.
The following operators,

HM = TrM�KM
tMTM� , �33�

constitute a family of mutually commuting quantum operators acting on Vq � Vq�:

�HM,HN�� = 0. �34�

Proof: It repeats the steps of Refs. 2 and 16.
�

The proof is independent of the particular fusion procedure so it remains valid for the DKM
case too. Thus we have the following.

Theorem 6: Let T̃M be a solution of the fused DKM-type exchange relation (25). T̃M acts on
the tensor product of the auxiliary spaces labeled by M and on the quantum space Vq.

Let K̃M be a solution of the dual fused DKM-type exchange relation (32). K̃M acts on the
tensor product of the auxiliary spaces labeled by M and on the quantum space Vq�.

The following operators:

H̃M = TrM�K̃M
tMT̃M� �35�

constitute a family of mutually commuting quantum operators acting on Vq � Vq�:

�H̃M,H̃N�� = 0. �36�

So far we have two seemingly different sets of commuting quantities obtained from the same
defining relations �1� via two distinct fusion procedures. However we will show that the operation
consisting in dressing and taking the trace smears out this difference and one is left with only one
set of commuting Hamiltonians. This is summarized in.

Proposition 3: The quantum commuting Hamiltonians obtained from any set of solutions
TM ,KM of (15) and (20) are identified with the quantum commuting Hamiltonians obtained from

a suitable set of solutions T̃M , K̃M of (25) and (32). This identification is implemented by a
coupling matrix LM.

Proof: Let TM be the solution �14� and KM the corresponding dual solution �19�. The results

of the multiplication by LM and �LM
tM�−1 are denoted by T̃M and K̃M. We calculate the tilded

Hamiltonians after dressing and we find that they are equal to the dressed untilded ones,
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TrM�K̃M
tMQ̃MT̃MS̃M� = TrM�KM

tMLM
−1LMQMLM

−1LMTMSM� = TrM�KM
tMQMTMSM� . �37�

�

The following proposition justifies the technical relevance of dressings.
Proposition 4: Operators built from the solution (14) decouple as HN=TrN�KN

tNTN�
=Tr�KtT�#N.

Proof: By induction using the property TN=T1B1N0
TN0

. Let us detail the induction step,

HN = TrN�KN
tNTN� = Tr��K1�B1N0

t1 �−1tN0KN0
�tNT1B1N0

TN0
� = Tr��K1�B1N0

t1 �−1tN0KN0
�tN0�T1B1N0

TN0
�t1�

= Tr�K1KN0

tN0�B1N0

t1 �−1B1N0

t1 T1
t1TN0

� = Tr�K1T1
t1�Tr�KN0

tN0TN0
� .

�

Note that the result in Proposition 3 implies that the same goes for the operators built using
the second fusion. Three important remarks are in order here.

The use of dressed quantum traces: Dressed quantum traces yield a priori independent op-
erators. Indeed, the classical limit of a quantum trace computed with the particular dressing �17� in
Proposition 1 will yield Tr Tn instead of �Tr T�n �since A ,B ,C ,D→1 � 1 but P12→P12 !�. Quan-
tum traces are directly, in this particular case, �as was already known in the context of quantum
group structures6� quantum analogs of the classical Poisson-commuting power traces Tr Tn.

The use of undressed quantum traces: It must on the other hand, be emphasized that the
decoupling of the undressed fused quantities plays an essential role in the formulation of the
analytical Bethe ansatz solution of sl�n� spin chains �as is seen in Ref. 9� and more generally in
the formulation of a generalized Mezincescu-Nepomechie procedure for fusion of transfer
matrices,8 in that it gives a natural construction of products of monodromy matrices such as are
required by this formulation.

Explicit computation of the dressings: From a more theoretical point of view, it must be
noticed that Eq. �24�, as already discussed for the particular example treated in Ref. 2, would
appear as a condition obeyed by coproducts of the central elements of a �hypothetical� universal
algebra, thereby promoting the dressing matrices Q and S from “technical auxiliaries” to get
nontrivial traces, to representations of Casimir elements of the algebra itself �this was pointed out
to us by Arnaudon�.

A second more technical remark is required here regarding the actual computation of the
quantum traces with the particular explicit dressing determined in Proposition 1. Difficulties in
applying �35� with the explicit dressings �17� may occur when the auxiliary space V is a loop
space V�n� � C�z� �n=finite dimension of the vector space�. Indeed, the permutation of spectral
parameters required in formula �17� is only achieved at a formal level by the singular distribution
��zi /zj� �see Ref. 2 for discussions�. Hence the actual explicit computations of such quantum
traces may entail delicate regularization procedures. However, if one only focuses on the practical
purpose of the quantum trace procedure, which is to build a set of commuting operators, use of
higher-power fused objects as in �14� and �19� is mostly required when no spectral parameter is
present in the represented exchange algebra �1�. Otherwise one needs to consider only the first

order trace Tr1 K̃1�z1�T1�z1� and expand it in formal series in z1. If no spectral parameter is
available, one can then use �14�, �19�, �17�, and �35� to build explicitly without difficulties a priori
independent commuting quantum operators. �For an application to a different algebraic structure
see Ref. 5.�

D. Further example, “soliton nonpreserving” boundary conditions: Twisted Yangians

We have mentioned in the Introduction several examples of nondynamical quadratic exchange
algebras. Another interesting example to which we plan to apply this scheme is related to the
so-called “soliton nonpreserving” boundary conditions in integrable lattice models �see Ref. 18�.
To characterize it we will focus on the su�n� invariant R-matrix given by
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R12��� = �I + iP12, �38�

where P is the permutation operator on the tensor product V1 � V2. The R matrix is a solution of
the Yang-Baxter equation19–22 and also satisfies the following.

�i� Unitarity,

R12���R21�− �� = ��� , �39�

where R21���=P12R12���P12=R12
t12��� and P is the permutation operator.

�ii� Crossing unitarity,

R12
t1 ���M1R12

t2 �− � − 2i��M1
−1 = ��� + i�� , �40�

M =VtV �M =1 for the su�n� case�, �=n /2 and also

�M1M2,R12���� = 0, �41�

��� = �� + i��− � + i�, ���� = �− � + i���� + i�� . �42�

It is interpreted as the scattering matrix23,22,24 describing the interaction between two
solitons—objects that correspond to the fundamental representation of su�n�.

One may also derive the scattering matrix that describes the interaction between a soliton and
an antisoliton, which corresponds to the conjugate representation of su�n�. It reads

R1̄2��� = R12̄��� = R̄12��� = U1R12
t2 �− � − i��U1, �43�

and it can also be written as

R̄12��� = �− � − i��I + iQ , �44�

where Q is a projector onto a one-dimensional space, and where U is a matrix of square 1. Note
that for the su�2� case

R̄12��� = R12��� , �45�

which is expected because su�2� is self-conjugate. The R̄-matrix also satisfies the Yang-Baxter
equation and

�i� Unitarity,

R̄12���R̄21�− �� = ���� . �46�

�ii� Crossing unitarity

R̄12
t1 ���M1R̄12

t2 �− � − 2i��M1
−1 = ��� . �47�

The reflection equation: The usual reflection equation1 describes physically the reflection of a
soliton �fundamental representation of su�n�� as a soliton. The associated quadratic algebra was
considered, e.g., in Ref. 2,

R12��1 − �2�T1��1�R21��1 + �2�T2��2� = T2��2�R12��1 + �2�T1��1�R21��1 − �2� . �48�

Considering now the reflection of a soliton as antisoliton one is similarly lead to the formulation
of another quadratic algebra,
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R12��1 − �2�T1��1�R̄21��1 + �2�T2��2� = T2��2�R̄12��1 + �2�T1��1�R21��1 − �2� . �49�

More specifically Eq. �49� is the definition of the so-called twisted Yangian. Its dual reflection
equation is obtained essentially by taking its formal transposition

R12�− �1 + �2�K1
t1��1�M1

−1R̄21�− �1 − �2 − 2i��M1K2
t2��2�

= K2
t2��2�M1R̄12�− �1 − �2 − 2i��M1

−1K1
t1��1�R21�− �1 + �2� . �50�

This indeed realizes the general quadratic exchange relation �1� and �7�, with the following
identifications �using unitarity and crossing symmetries of the R-matrix�:

A12 = R12��1 − �2�, B12 = R̄21��1 + �2�, C12 = R̄12��1 + �2�, D12 = R21��1 − �2� ,

�A12
−1�t1t2 = R12�− �1 + �2�, ��B12

t1 �−1�t2 = M1R̄12�− �1 − �2 − 2i��M1
−1,

��C12
t2 �−1�t1 = M1

−1R̄21�− �1 − �2 − 2i��M1, �D12
−1�t1t2 = R21�− �1 + �2� .

Explicit application of the quantum trace procedure to this particular algebra will be left for
further studies.

III. QUANTUM TRACES FOR SEMIDYNAMICAL QUADRATIC ALGEBRAS

The second type of quadratic exchange relations considered here consists of the dynamical
quadratic algebras generically described and studied in Ref. 11 which were first exemplified in the
context of scalar Ruijsenaars-Schneider models in Ref. 26. Fusion procedures and commuting
traces can be built up for these dynamical quadratic algebras following the same overall procedure
as in the nondynamical case, albeit with crucial, nontrivial differences.

A. The semidynamical quadratic algebra

Let us recall here the basic definitions. Our starting point is the dynamical quadratic exchange
relation

A12���T1���B12���T2�� + �h1� = T2���C12���T1�� + �h2�D12. �51�

This describes an algebra generated by the matrix entries of T. A ,B ,C ,D are matrices in End�V
� V� depending on ��h* where h is a commutative Lie algebra, of dimension n, making V a
diagonalizable h-module. Introducing coordinates �i on h* and the dual base hi on h the shift �
+�h can be defined in the following way. For any differentiable function f���= f���i	�,

f�� + �h� = e�Df���e−�D, �52�

where

D = 
i

hi��i
. �53�

In the forthcoming calculations � is set to 1 for simplification. Zero weight conditions are imposed
on the first space of B and the second one of C; D is of total weight zero,

�B12,h � 1� = �C12,1 � h� = �D12,h � 1 + 1 � h� = 0 �h � h� . �54�

These particular conditions, together with the absence of dynamical shift in two out of four T
matrices in �51�, lead us to denote this structure as “semidynamical.” We will restrict ourselves
from now on to the case where V is of dimension n, the basis of V and the generators of h, can
then be chosen so that one identifies hi=Eii �diagonal basis elements of gl�n�, see, e.g., Ref. 25 for
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introduction of this condition�. These conditions mean in particular that B and C are diagonal on
the corresponding spaces, respectively, V1 and V2. In addition, D has components on basis ele-
ments Eij � Ekl of gl�n� � gl�n� only when the sets �i ,k	 and �j , l	 are equal �property ZW�. In other
words nonzero elements have identical unordered multiplets of line and column indices.

For the consistency of the exchange relations the following set of coupled “dynamical” YB
equations is imposed,

A12A13A23 = A23A13A12, �55�

D12�� + �h3�D13D23�� + �h1� = D23D13�� + �h2�D12, �56�

D12B13B23�� + �h1� = B23B13�� + �h2�D12, �57�

A12C13C23 = C23C13A12�� + �h3� . �58�

The simplest example of this algebra is related to the elliptic scalar gl�n� Ruijsenaars-
Schneider model and was first written in Ref. 26. We only write down its rational limit here,

A��� = 1 + 
i�j

�

�ij
�Eii − Eij� � �Ejj − Eji� , �59�

B��� = C���� = 1 + 
i�j

�

�ij − �
Ejj � �Eii − Eij� , �60�

D��� = 1 − 
i�j

�

�ij
Eii � Ejj + 

i�j

�

�ij
Eij � Eji, �61�

where Eij is the elementary matrix whose entries are �Eij�kl=�ik� jl and �ij =�i−� j. These matrices
verify the consistency conditions �55�–�58�. A scalar representation of the exchange algebra de-
fined with these structure matrices is then provided by

T��� = 
ij

�a�i
��aj + �̃�

�a�j
�aj

Eij � 1 . �62�

The word “scalar” is used here in the sense that T��� acts on a one-dimensional �trivial�
quantum space. The exchange relation �51� is just a c-number equality. Representation of �51� on
nontrivial quantum spaces is provided in this context by the comodule structure in Ref. 11.

Let us note here that the condition AB=CD found in Ref. 26 means in this context that the
identity matrix is also a solution of �51�. This is not a trivial statement; in fact it does not hold in
general, and is not preserved by fusion procedures.

B. Fusion procedures and the “dual” algebra

Let A ,B ,C ,D be solutions of the dynamical exchange relation. We will define their fusion by
induction as follows. We omit the dependence on � and simplify the notations of the shifts as
�h�¯��; otherwise we use the notations introduced in Sec. II A, defining the multiple-index matri-
ces by induction as

AMN̄� = A1N̄�AM0N̄� = AMn�AMN̄�0
,

BMN� = BM1�BMN0�
= B1N��BM0N��h1�� ,
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CMN� = C1N�CM0N� = CM1��CMN0�
�h1��� ,

DMN̄� = D1N̄��DM0N̄��h1�� = �DMn��h�1�,n�−1���DMN̄�0
.

It is clear that there is no change in the fusion of A, cf. Eq. �8�. As for the three other matrices,
their fusion is written in a more explicit form as

BMN� = B11�B12� ¯ B1n� � B21��h1�B22��h1� ¯ B2n��h1� ¯ � Bm1��h1 + ¯ + hm−1� ¯

�Bmn��h1 + ¯ + hm−1� , �63�

CMN� = C11�C12��h1�� ¯ C1n��h�1�,n�−1�� � C21�C22��h1�� ¯ C2n��h�1�,n�−1�� ¯

� Cm1�Cm2��h1�� ¯ Cmn��h�1�,n�−1�� , �64�

DMN̄� = D1n��h�1�,n�−1��D1,n�−1�h�1�,n�−2�� ¯ D11� � D2n��h1 + h�1�,n�−1��D2,n�−1�h1 + h�1�,n�−2�� ¯

�D21��h1� ¯ � Dmn��h�1,m−1� + h�1�,n�−1�Dm,n�−1�h�1,m−1� + h�1�,n�−2�� ¯ Dm1��h�1,m−1�� ,

�65�

where h�i,j�ªk=i
j hk. These fused structure matrices verify the fused dynamical YB equations

which are gathered together in the next proposition.
Proposition 5. Let A ,B ,C ,D be solutions of the dynamical Yang-Baxter equations (55)–(58).

Then the following fused dynamical Yang-Baxter equations hold

AMN̄�AML̄�AN�L̄� = AN�L̄�AML̄�AMN̄�,

AMN̄�CML�CN�L� = CN�L�CML�AMN̄��hL�� ,

DMN̄��hL��DML̄�DN�L̄��hM� = DN�L̄�DML̄��hN��DMN̄�,

DMN̄�BML�BN�L��hM� = BN�L�BML��hN��DMN̄�.

Proof: By induction, using at crucial stages the zero weight properties. The fusion procedure
respects the property ZW for D and the diagonality of B. It is also clear from the fusion procedure
that the fused shift matrix hM is identified with h�1,m�. �

Theorem 7: Let T be a solution of the dynamical quadratic exchange relation,

A12T1B12T2�h1� = T2C12T1�h2�D12, �66�

then

TM = �
i�M

→ �Ti� 
k�i

k�M

hk�� �
j
i

j�M

→

Bij�� �67�

verifies the fused dynamical exchange relation

AMN̄�TMBMN�TN��hM� = TN�CMN�TM�hN��DMN̄�. �68�

Proof: Similar to that of Theorem 1 but the induction step uses the fact that TM

=T1B1M0
TM0

�h1� and uses the fused dynamical YB equations. �

The dual exchange relation and an associated fusion procedure are described in the next
theorem.
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Theorem 8: Let K be a solution of the dynamical quadratic exchange relation,

�A12
−1�t1t2K1�B12

t2 �−1K2�h1� = K2�C12
t1 �−1K1�h2��D12

−1�t1t2 �69�

then

KM = �
i�M

→ �Ki� 
k�i

k�M

hk�� �
j
i

j�M

→

�Bij
tj�−1�� �70�

verifies the fused dynamical exchange relation

�A
MN̄�

−1 �tMtNKM�B
MN�

tN� �−1KN��hM� = KN��CMN�
tM �−1KM�hN���DMN̄�

−1 �tMtN�. �71�

Proof: Similar to the nondynamical case. �

Note that the structure matrices of this dual relation are related to original ones in the same
way as in the nondynamical case once we take into account the partial zero weight property of B
and C which implies diagonality on the corresponding spaces, respectively, V1 and V2.

C. Second fusion

As in the nondynamical case, one can define another KDM-type fusion with the appropriate
shifts. This fusion is characterized by the following exchange relation:

AM̄N�TMBMN̄�TN��hM� = TN�CM̄N�TM�hN��DMN̄�. �72�

The analogy with the nondynamical case can be pushed further, i.e., there exists an object LM

linking the fusions in Theorems 7 and 9. This allows us to use directly the proofs of Theorems 3
and 4.

Lemma 3: Let TM be a solution of the fused equation (68). If LM verifies the following
commutation rules:

LMAMN̄� = AM̄N̄�LM ,

LN�AMN̄� = AMN�LN�,

�73�
LN�BMN� = BMN̄�LN��hM� ,

LMCMN� = CM̄N�LM�hN��

then LMTM is a solution of the exchange relation

AM̄N�TMBM̄N�TN��hM� = TN�CMN̄�TM�hN��DMN̄�. �74�

An example of such an LM is given by

LM = A12 ¯ A1mA23 ¯ A2m ¯ Am−1,m = �
1	i�j	m

¹

Aij . �75�

Proof: Straightforward, using the dynamical YB equations �55�–�57�. �

Now we state the dynamical versions of Theorems 3 and 4.
Theorem 9: Let T be a solution of the dynamical quadratic exchange relation

A12T1B12T2�h1� = T2C12T1�h2�D12 �76�

then
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TM = �
i�M

→ � �
j
i

j�M

→

AijTi� 
k�i

k�M

hk� �
j
i

j�M

�

Bij� �77�

verifies the fused dynamical exchange relation

AM̄N�TMBMN̄�TN��hM� = TN�CM̄N�TM�hN��DMN̄�. �78�

Proof: Reproduces the proof of Theorem 3, with suitable dynamical shifts.
�

The dual exchange relation and an associated fusion procedure are described in the next
theorem.

Theorem 10: Let KM be a solution of the first fused exchange relation (69) and LM be a

solution of (73). Then K̃M = �LM
tM�−1KM is a solution of the KDM-type dual fused exchange relation

�A
M̄N�

−1 �tMtN�K̃M��B
MN̄�

tM �−1�tN�K̃N��hM� = K̃N���CM̄N�

tN� �−1�tMK̃M�hN���DMN̄�

tMtN��−1. �79�

Proof: Reproduces the proof of Theorem 4, with suitable dynamical shifts.
�

D. Dressing

Solutions TM of the fused dynamical exchange relations also admit dressing procedures.
However, because of the dynamical nature of the exchange relations some of the equations that the
dressings QM and SM obey exhibit shifts, too. Specifically we have the following.

Proposition 6: Let TM be a solution of the fused dynamical exchange relation. Then QMTMSM

is also a solution of the fused exchange relation provided QM and SM verify

�QM,AMN̄�� = �QN�,AMN̄�� = 0, �80�

QN�BMN� = BMN�QN��hM�, QMCMN� = CMN�QM�hN�� ,

�SN�,CMN�� = �SM,BMN�� = 0, �81�

SM�hN��DMN̄� = DMN̄�SM, SN�DMN̄� = DMN̄�SN��hM� .

A particular solution of these constraints is given by

QM = Ǎ12Ǎ23 ¯ Ǎm−1,m,

SM = Ď12Ď23�h1� ¯ Ďm−1,m�h�1,m−2�� .

Proof: By induction, similar to the nondynamical dressings. �

An interesting comparison can be drawn between this formula for SM and the formula used in
Ref. 5 to dress the quantum traces for dynamical quantum groups. The formula for SM is exactly

the “mirror image” of the formula SM
ABB= Ř12�h�3,m��¯ Řm,m−1.

E. Three lemmas: dynamical and cyclic properties of D

Three easy technical lemmas are required to proceed with the construction.
Lemma 4 (dynamical transposition): Let R�q� and S�q� be two matrices with mutually com-

muting entries depending on a set of commuting coordinates �qk	k=1
n . We then have

�R�q�eDS�q��t = �SSL�q��teD�RSC�q��t, �82�
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where SSL�q�ij =e�iS�q�ije
−�i =Sij��q1 , . . . ,q�i	+1, . . . ,qn�� (shift on line index) and RSC�q�ij

=e−�jR�q�ije
�j (shift on column index).

Proof: We compare the ijth entry on both sides using the fact that entries of SSL and RSC do not
contain explicit shift quantities e� and therefore commute with each other. If �in the case of
k-tensor products� “i” denotes a k-uple of indices �i1 , . . . , ik�, the notation q�i	+1 must be inter-
preted as qi1

+1 , . . . ,qik
+1. �

Remark: Later we will use this lemma in the special case when R�q� is diagonal. This implies
RSC�q�=e−DR�q�eD.

Lemma 5 (matrix dynamical shift): Let D�q� be a matrix obeying the zero weight condition

�D12,h � 1 + 1 � h� = 0 �h � h� . �83�

Then the exponentials can be “pushed through” D, that is we have

e−D1−D2D12 = D̄12e
−D1−D2, �84�

where D̄12=D12
−SL12.

Proof: What this lemma means is that one can write e−D1−D2D12e
D1+D2 in a matrix form where

the exponentials of derivatives cancel out. The proof is straightforward because the zero weight
condition implies the identification of incoming and outgoing indices of D. One then verifies
easily the equality of the two sides. �

Lemma 6: Let D�q� be a matrix obeying the zero weight condition:

�D12,h � 1 + 1 � h� = 0 �h � h� . �85�

Then D is cyclic with respect to the trace operation over V1 � V2 as follows:

Tr12�D12X12D12
−1eD1eD2� = Tr12�X12e

D1eD2� , �86�

where X is an arbitrary matrix the entries of which commute with the entries of D.
Proof: Consequence of the ZW property of D, which allows to reinterpret the matrix indices

of eD1+D2 as line instead of column indices of D12
−1, allowing then to independently sum over the

now decoupled column indices of D12
−1 with line indices of D12 to altogether eliminate the matrix

D from the trace. Labels 1 and 2 formally denote here tensored auxiliary spaces. �

F. Commuting Hamiltonians

We can now state the fundamental result of this section.
Theorem 11: Let TM be a solution of the fused dynamical exchange relations (68). TM acts on

the tensor product of the auxiliary spaces labeled by M and on the quantum space Vq.
Let KM be a solution of the dual fused dynamical exchange relation (71). KM acts on the

tensor product of the auxiliary spaces labeled by M and on the quantum space Vq�.
The following operators,

HM = TrM�TMeDM�KM
SC�tM� , �87�

constitute a family of mutually commuting quantum operators acting on Vq � Vq�,

�HM,HN�� = 0. �88�

Proof: Similar to the preceding one, but extra care must be taken because of the shift operators
that enter the expression. Using the dynamical transposition lemma for KN� one has

HMHN� = Tr�TMeDM�KM
SC�tMTN�e

DN��KN�
SC�tN�� = Tr�TMeDM�KM

SC�tMT
N�

tN�KN�e
DN�� , �89�

since the invariance of the trace with respect to transposition is preserved in the dynamical case.
One then writes
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Tr�TMT
N�

tN��hM�eDM�KM
SC�tMKN�e

DN�� = Tr�TMT
N�

tN��hM�B
MN�

tN� �B
MN�

tN� �−1eDM�KM
SC�tMKN�e

DN��

= Tr��TMBMN�TN��hM��tMtN���B
MN�

tN� �−1eDM�KM
SC�tM�tMKN�e

DN�� .

In the last equality the identification T
N�
tN��hM�B

MN�
tN� = �BMN�TN��hM��tN� uses the zero-weight condi-

tion �BMN� ,hM�=0. Using once again the dynamical transposition lemma and the zero-weight
condition on B which guarantees eDM��B

MN�
tN� �−1�SCtM = �B

MN�
tN� �−1eDM as commented above, one gets

Tr��TMBMN�TN��hM��tMtN�A
MN�

tMtN��A
MN�

tMtN��−1KM�B
MN�

tN� �−1eDMKN�e
DN��

= Tr��AMN�TMBMN�TN��hM��tMtN��A
MN�

tMtN��−1KM�B
MN�

tN� �−1KN��hM�eDMeDN�� .

One here identifies the direct and dual exchange relation, to yield

Tr��TN�CMN�TM�hN��DMN��
tMtN�KN��CMN�

tM �−1KM�hN���DMN�

tMtN��−1eDMeDN��

= Tr�D
MN�

tMtN��TN�CMN�TM�hN���
tMtN�KN��CMN�

tM �−1KM�hN���DMN�

tMtN��−1eDMeDN�� .

Here Lemma 6 is at work,

Tr��TN�CMN�TM�hN���
tMtN�KN��CMN�

tM �−1KM�hN��e
DMeDN��

= Tr�TN��CMN�TM�hN���
tM�KN��CMN�

tM �−1eDN��tN�KMeDM�

= Tr�TN�TM
tM�hN��CMN�

tM �CMN�
tM �−1eDN�K

N�

SCtN�KMeDM� .

Once again we have used the dynamical transposition lemma and the partial weight zero property
of CMN�,

Tr�TN�TM
tM�hN��e

DN��KN�
SC�tN�KMeDM� = Tr�TN�e

DN��KN�
SC�tN�TM

tMKMeDM�

= Tr�TN�e
DN�KN�TMeDM�KM

SC�tM� .

�

Without the dressing described by Proposition 6 the traces constructed in �67� decouple just as
in the nondynamical case. Indeed we have the following.

Proposition 7: Operators built from the solution (67) decouple as

TrM�TMeDM�KM
SC� tM��� = Tr�TeD�KSC�t�#M .

Proof: We will prove the proposition for M with two elements. The statement remains valid
for higher powers by induction. We also need to set the trace under a more amenable form. In fact,
Tr�TMeDM�KM

SC�tM�=Tr�TM
tMKMeDM�. By virtue of Lemma 4,

Tr��T1B12T2�h1��t1t2K1�B12
t2 �−1K2�h1�eD1+D2� = Tr�T1�B12T2�h1��t2�K1eD1��B12

t2 �−1�SC1�t1K2eD2� ,

where � �SC1 means � �SC operation applied on the first space,

Tr�T1T2
t2�h1�B12

t2 �B12
t2 �−1eD1K1

SCt1K2eD2� = Tr�T1eD1T2
t2K1

SCt1K2eD2� = Tr�T1eD1K1
SCt1T2

t2K2eD2�

= Tr�TeDKSCt�2.

�

Of course, the three comments made after Proposition 4 in the nondynamical case remain
valid, although we do not know yet of explicit examples for Mezincescu-Nepomechie procedure in
a dynamical context.
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IV. THE FULLY DYNAMICAL ALGEBRA

The third type of quadratic algebra considered here is the extension to general structure
matrices A ,B ,C ,D of the “boundary dynamical algebra” �BDA� considered in Refs. 13 and 27.
Fusion and trace formulas were defined in Ref. 13 for the particular case of BDA where A=D
=R�u1−u2�, B=C=R�u1+u2�, R being the IRF Zn R-matrix. The most general “fully dynamical”
�denomination to be justified presently� exchange algebra reads

A12���T1�� + �h2�B12���T2�� + �h1� = T2�� + �h1�C12���T1�� + �h2�D12��� . �90�

Once again we assume dim h=dim V.25 The following conditions are imposed on the structure
matrices �R=A, B, C or D� unitarity;

R12�u1,u2;��R21�u2,u1;�� = 1 . �91�

Zero weight property,

�h � 1 + 1 � h,R12�u1,u2;��� = 0 �h � h� . �92�

R then verifies the same ZW property as in the semidynamical case. By contrast with the
previous case all four matrices in �90� exhibit a dynamical shift and all four structure matrices
have �1+2� zero weight, hence the denomination “fully dynamical.” In some specific
examples27,28 the structure matrices also obey the dynamical zero weight property,

�D � 1 + 1 � D,R12�u1,u2;��� = 0. �93�

Structure matrices all obey Gervais-Neveu-Felder-type equations,

A12���A13�� + �h2�A23��� = A23�� + �h1�A13���A12�� + �h3� ,

A12���C13�� + �h2�C23��� = C23�� + �h1�C13���A12�� + �h3� ,

�94�
D12�� + �h3�D13���D23�� + �h1� = D23���D13�� + �h2�D12��� ,

D12�� + �h3�B13���B23�� + �h1� = B23���B13�� + �h2�D12��� .

If the dynamical zero weight property is verified then all equations can be rewritten under the
more familiar alternating shift form,

R12�� − �h3�R13�� + �h2�R23�� − �h1� = R23�� + �h1�R13�� − �h2�R12�� + �h3� .

As in the previous situation, these equations ensure the compatibility of the algebra in the
following sense. Let us take the left-hand side of exchange relation �90�, embed it in a triple tensor
product and shift it on the third space. Then let us multiply it with B13�u1 ,u3 ;��B23�u2 ,u3 ;�
+�h1�T3�u3 ;�+�h1+�h2�. One can reverse the order of the T’s in two different ways which yield
the same result if Eqs. �94� are obeyed.

A. Fusion procedure and the “dual” algebra

The fusion of the structure matrices is again defined by induction as follows:

AMN̄� = A1N̄��h�2,m��AM0N̄� = AMn�AMN̄0�
�hn�� ,

BMN� = B1N�BM0N��h1� = BM1��h�2�,n���BMN0�
,

CMN� = C1N��h�2,m��CM0N� = CM1�CMN0�
�h1� ,
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DMN̄� = D1N̄�DM0N̄��h1� = DMn��h�1�,n�−1��DMN̄0�
.

A and C are fused in the same way which is written more explicitly as

AMN̄� = A1n��h�2,m��A1,n�−1�hn� + h�2,m�� ¯ A11��h�2�,n�� + h�2,m��A2n��h�3,m��A2,n�−1�hn� + h�3,m�� ¯

�A21��h�2�,n�� + h�3,m�� ¯ � Amn�Am,n�−1�hn�� ¯ Am1��h�2�,n��� . �95�

B and D are otherwise fused in the same way as in Eq. �65�.
These fused matrices verify the corresponding fused YB equations and the ZW property.
Proposition 8: Let A ,B ,C ,D be solutions of the dynamical Yang-Baxter equations (94). Then

the following fused dynamical Yang-Baxter equations hold:

AMN̄�AML̄��hN��AN�L̄� = AN�L̄��hM�AML̄�AMN̄��hL�� ,

AMN̄�CML��hN��CN�L� = CN�L��hM�CML�AMN̄��hL�� ,

DMN̄��hL��DML̄�DN�L̄��hM� = DN�L̄�DML̄��hN��DMN̄�,

DMN̄��hL��BML�BN�L��hM� = BN�L�BML��hN��DMN̄�.

Proof. Straightforward by induction.
�

Note that the dynamical zero weight property does not survive fusion, but algebraic zero
weight does. In this sense this dynamical zero weight property is not relevant for the construction
of commuting traces, and is not �generically� a feature of the universal algebra. We will from now
on disregard it. In addition, we will concentrate here on the most relevant features of quantum
trace building, ignoring for instance the possibility of a “second fusion.”

Theorem 12: Let T be a solution of the dynamical quadratic exchange relation

A12T1�h2�B12T2�h1� = T2C12T1�h2�D12, �96�

then

TM = �
i�M

→

�Ti� 
k�i

k�M

hk�� �
j
i

j�M

→

Bij� 
k�i

k�M

hk + 
k
j

k�M

hk��� �97�

verifies the fused dynamical exchange relation

AMN̄�TM�hN��BMN�TN��hM� = TN��hM�CMN�TM�hN��DMN̄�. �98�

Proof: Similar to that of Theorem 1 but the induction step uses the fact that TM

=T1�hM0
�B1M0

TM0
�h1� and uses the fused dynamical YB equations. �

The dual exchange relation and the associated fusion procedure are described in the next
theorem.

Theorem 13: Let K be a solution of the dynamical quadratic exchange relation

A12
d ���K1��� + �h2�B12

d ����K2�� + �h1� = K2�� + �h1�C12
d ���K1�� + �h2�D12

d ��� ,

where

A12
d = ��A12

−SL12�−1�−SC12t12 B12
d = ���B12

−SL12�−SC2t2�−1�SL1t1,

C12
d = ���C12

−SL12�−SC1t1�−1�SL2t2 D12
d = ��D12

−SL12�−1�SL12t12,
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then

KM = �
i�M

→ �Ki� 
k�i

k�M

hk�� �
j
i

j�M

→

Bij
d� 

k�i
k�M

hk + 
k
j

k�M

hk��� �99�

verifies the fused dynamical exchange relation

A
MN̄�

d
KM�hN��BMN�

d KN��hM� = KN��hM�CMN�
d KM�hN��DMN̄�

d
. �100�

Proof: Straightforward once one has established that the fused dual structure matrix is equal to
the dual of the fused structure matrix and that the YB equations obeyed by the dual structure
matrices derive from the equations �94�. �

B. Dressing

Proposition 9: Let TM be a solution of the fused fully dynamical exchange relation. Then
QMTMSM is also a solution of the fused exchange relation provided QM and SM verify

QMAMN̄� = AMN̄�QM�hN��, QN��hM�AMN̄� = AMN̄�QN�,

�101�
QN�BMN� = BMN�QN��hM�, QMCMN� = CMN�QM�hN�� ,

SN��hM�CMN� = CMN�SN�, SM�hN��BMN� = BMN�SM ,

�102�
SM�hN��DMN̄� = DMN̄�SM, SN�DMN̄� = DMN̄�SN��hM� .

A particular solution of these constraints is given by

QM = Ǎ12�h�3,m��Ǎ23�h�4,m�� ¯ Ǎm−1,m,

SM = Ď12Ď23�h1� ¯ Ďm−1,m�h�1,m−2�� .

Proof: By induction. �

C. Commuting traces

We use the following properties inferred from Lemma 5:

e−D1−D2A12 = A12
−SL12e−D1−D2 = Ā12e

−D1−D2,

e−D2A12e
D1 = eD1Ā12e

−D2,

and their transposed variants

eD1�Ā12
−SC2t2�−1eD2 = eD2�A12

−SL2t2�−1eD1 �103�

and so on. Since these relations are immediately derived from the ZW property on the structure
matrices, they remain valid for fused structure matrices, too, since the fusion respects the zero
weight property as opposed to the dynamical zero weight property �cf. remark above�. In this case
labels 1 and 2 formally denote tensored auxiliary spaces.

Theorem 14: Let TM be a solution of the fused dynamical exchange relations (68). TM acts on
the tensor product of the auxiliary spaces labeled by M and on the quantum space Vq.

Let KM be a solution of the dual fused dynamical exchange relation (72). KM acts on the
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tensor product of the auxiliary spaces labeled by M and on the quantum space Vq�.
The following operators:

HM = TrMe−DMTMeDMKM
SCtM �104�

constitute a family of commuting operators acting on Vq � Vq�

�HM,HN�� = 0. �105�

Proof: It is worth to give a detailed description of the proof as in Theorem 11 since the
occurence of derivative objects �eDM considerably modifies it in comparison to the standard
Sklyanin-type proof for nondynamical algebras. Once again the dynamical transposition lemma
plays an essential role,

HMHN� = Tr e−DMTMeDMKM
SCMtMe−DN�TN�e

DN�K
N�

SCN�tN�

= Tr e−DMTMeDMKM
SCMtM�e−DN�TN��

tN��eDN�K
N�

SCN�tN��tN�

= Tr e−DMTMeDMKM
SCMtMT

N�

−SLN�tN�e−DN�KN�e
DN�

= Tr e−DMTMeDMT
N�

−SLN�tN�KM
SCMtMe−DN�KN�e

DN�

= Tr e−DM�e−DN�AMN�
−1 TN��hM�CMN�TM�hN��DMN�e

DM�tN�

� �B̄
MN�

−SCN�tN��−1eDN�KM
SCMtMe−DN�KN�e

DN�

= Tr�e−DM−DN�AMN�
−1 TN��hM�CMN�TM�hN��DMN��

tMN�

� �eDM�B̄
MN�

−SCN�tN��−1eDN�KM
SCMtM�tMe−DN�KN�e

DN�.

Pushing exponentials through B,

Tr�e−DM−DN�AMN�
−1 TN��hM�CMN�TM�hN��DMN��

tMN�eDN���B
MN�

−SLN�tN��−1eDMKM
SCMtM�tMe−DN�KN�e

DN�

= Tr�ĀMN�
−1 e−DM−DN�TN��hM�CMN�TM�hN��DMN��

tMN�eDN�KMeDM��B
MN�

−SLN�tN��−1�SCMtMe−DN�KN�e
DN�.

Using zero weight of A and B transposed,

Tr�TN��hM�CMN�TM�hN��DMN��
−SLMN�tMN�

�e−DM−DN��ĀMN�
−1 �−SCMN�tMN�eDN�KMe−DN���B̄

MN�

−SCN�tN��−1�SL1tMeDMKN�e
−DMeDM+DN�

= Tr�TN��hM�CMN�TM�hN��DMN��
−SLMN�tMN�

�e−DM−DN���ĀMN�
−1 �−SCMN�tMN�KM�hN����BMN�

−SCN�tN��−1�SL1tMKN��hM�	eDM+DN�

= Tr�TN��hM�CMN�TM�hN��DMN��
−SLMN�tMN�e−DM−DN�KN��hM���C̄MN�

−SCMtM�−1�SLN�tN�

�KM�hN���D̄MN�
−1 �SLMN�tMN�eDM+DN�

= Tr�e−DM−DN�TN��hM�CMN�TM�hN��DMN���KN��hM���C̄MN�
−SCMtM�−1�SLN�tN�

�KM�hN��e
DM+DN��DMN�

−1 �SCMN�tMN��tMN�

= Tr e−DM−DN�TN��hM�CMN�TM�hN��DMN�DMN�
−1 eDM+DN�

��KN��hM���C̄MN�
−SCMtM�−1�SLN�tN�KM�hN���

SLMN�tMN�
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= Tr e−DN�TN��e
−DMCMN�e

DN�TM�tMeDM−DN�

��KN�e
−DM��C̄MN�

−SCMtM�−1�SLN�tN�eDN��tN�KMeDM

= Tr e−DN�TN�e
DN��C̄MN�e

−DMTM�tMeDM−DN��KN�e
DN���CMN�

−SL1tM�−1�SCN�tN��tN�e−DMKMeDM

= Tr e−DN�TN�e
DN�TM

−SL1tMe−DMC̄MN�
−SCMtMeDM−DN��CMN�

−SL1tM�−1eDN�K
N�

SCN�tN�e−DMKMeDM .

Using zero weight of C,

Tr e−DN�TN�e
DN�TM

−SL1tMe−DN�CMN�
−SL1tM�CMN�

−SL1tM�−1eDN�K
N�

SCN�tN�e−DMKMeDM

= Tr e−DN�TN�e
DN�TM

−SL1tMK
N�

SCN�tN�e−DMKMeDM

= Tr e−DN�TN�e
DN�K

N�

SCN�tN�TM
−SL1tMe−DMKMeDM

= Tr e−DN�TN�e
DN�K

N�

SCN�tN��TM
−SL1tMe−DM�tM�KMeDM�tM

= Tr e−DN�TN�e
DN�yK

N�

SCN�tN�e−DMTMeDMKM
SCMtM = HN�HM .

�

V. CONCLUSION

We have now defined fusion and trace procedures in view of obtaining commuting Hamilto-
nians of “quantum trace type,” for the nondynamical general quadratic algebra �1�, for the semi-
dynamical quadratic algebra �51� and for the fully dynamical quadratic algebra �90�. Our imme-
diate interest is now to apply this procedure to some particularly interesting examples of such
quadratic algebras, the most relevant being at this time the scalar Ruijsenaars-Schneider quantum
Lax formulation �semidynamical type�.29

Note in this respect that previous application of an order-one trace formulation �i.e., without
auxiliary space tensor products� to the specific case of “boundary dynamical sl�2� algebras”
considered in Ref. 12 yielded models described in Ref. 27 as generalizations of the Gaudin
models. Positions of the sites were associated with values of the spectral parameters �in a spin-
chain-type construction�, not with the dynamical variable itself whose interpretation is unclear.

As already emphasized, our elucidation of tensor product structure for quadratic algebras is
also very important in formulating generalizations of the Mezincescu-Nepomechie fusion proce-
dure in general open spin chains.9

Our constructions moreover also shed light on some characteristic properties of the quadratic
algebra. The building of commuting traces requires first of all the introduction of a dual exchange
relation. It seems possible that this notion reflects the existence of antiautomorphisms of the
underlying hypothetical algebra structure, of which the transposition and crossing relations used in
the nondynamical cases �see Ref. 2� would be realizations.

The explicit formulation of consistent fusion relations should also help in understanding the
meaning of quantum algebra �QA� structures and characterizing in particular their coalgebra
properties. As pointed out, the DKM-type fusions do stem in at least one case from a universal
structure,15 and so does the fusion for boundary dynamical algebra �case when A ,B ,C ,D stem
from one single dynamical R-matrix14�. Regarding the semidynamical QA it was already known11

that one could extend the quantum space on which entries of T act, by auxiliary spaces of A and
B or C and D matrices, thereby obtaining spin-chain-type construction of a monodromy matrix
�comodule structure�. We have now defined the complementary procedure, extending the auxiliary
space by a “fusion” procedure. This yields the full “coproduct” or rather comodule structure of the
DQA �51�.
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The quasigeostrophic model is a simplified geophysical fluid model at asymptoti-
cally high rotation rate or at small Rossby number. We consider the quasigeo-
strophic equation with no dissipation term which was obtained as an asymptotic
model from the Euler equations with free surface under a quasigeostrophic velocity
field assumption. It is called the Hasegawa-Mima-Charney-Obukhov equation,
which also arises from plasmas theory. We use a priori estimates to get the global
existence of strong solutions for an Hasegawa-Mima-Charney-Obukhov
equation. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008208�

I. INTRODUCTION

This paper is devoted to study of the Cauchy problem on R2 and to the existence of strong
solutions for a general class of equations arising in plasma theory and geophysics. The quasigeo-
strophic equations describe large scale motion in the atmosphere and oceans at middle latitudes.
Being considerably simper than the primitive equations, they have been widely used for modeling
atmospheric and oceanic circulation, and for studies of stability, frontogenesis, and turbulence. A
number of assertions have been made about these equations. Charney4 and Obukhov16 have
derived a shallow water model from the Euler equation with free surface under a quasigeostrophic
velocity field assumption. The reader could find some additional details on the formal derivation
in Ref. 18. As in Ref. 17, by an asymptotic multiscale development with respect to � �Aspect ratio�
and � �Rossby number� and using the �-plane approximation, the following quasigeostrophic
equation was obtained:

���0 − F�0�t + J��0,��0� + J��0,�B + �y� = 0,

where �0 is the amplitude of the surface perturbation at the lowest order in �, �B�x ,y� is the
equation of the bottom and J is the Poisson bracket J�u ,v�=uxvy −uyvx, F is Froude number. In
this context, �0 is a wave function of the velocity field. Moreover, for sake of simplicity we
consider a flat bottom that is �B is taken to be zero:

���0 − F�0�t + J��0,��0� + ��0x
= 0. �1.1�

In plasma theory, these models describe drift waves in a nonuniform, �-low plasma in
magnetic field and Eq. �1.1� was first derived in this setting by Hasegawa and Mima �see Refs.
8 and 9�.

In Ref. 1, based on the results of Refs. 10 and 11, the authors obtained an existence and
uniqueness theorem for a simplified quasigeostrophic equation in a bounded open annular cylin-
der. In Ref. 2, a coupled system of a second-order elliptic equation for a stream function, first-
order hyperbolic equations for relative potential vorticity, and surface potential temperatures on a
three-dimensional domain which is periodic in both horizontal spatial coordinates had been stud-
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ied. The authors of Ref. 2 used Schauder estimates and a Schauder fixed-point theorem to prove
the existence and uniqueness of strong solution of the model in a finite interval of time, which is
inversely proportional to the sum of the norms for the initial vorticity and surface temperatures.

In Refs. 5, 6, 15, and 19, the authors considered the initial value problem for two-dimensional
critical dissipative quasigeostrophic equation:

�t� + u · � � + ��− ���� = f , x � 	, t 
 0, �1.2�

where �
0, �� �0,1�, � is a scalar function of x and t, and u= �u1 ,u2� is the velocity field
determined from � by a stream function � via the auxiliary relations:

u = �u1,u2� = �−
��

�x2
,
��

�x1
� and �− ��1/2� = − � .

The authors have obtained many results for �1.2�.
Let us remark that, �1.1� with F=�=0 could be treated as the two-dimensional Euler equation

by setting u= �−�0y
,�0x

�. About the Euler equations for incompressible fluid motion in Rn for n
�2, it is proved by Kato and Lai,12 Kato and Ponce13 that there exists a Ws,p�s
n /p+1� solution
on the interval �0,T�. The time interval T of existence of the solution depends only on initial value
in Ws,p-norm. It is an interesting question whether the solution is global one.

In this paper, for the simplicity, letting F=1, then we could rewrite the Cauchy problem for
�1.1� as

�� − I�ut + ux + J�u,�u� = 0, u�0,x,y� = u0�x,y� � H2�R2� . �1.3�

The existence and uniqueness of local strong solution for �1.3� was obtained in Ref. 17. In this
paper, our major goal is to get a global strong solution with H4 initial data for �1.3�. So, our result
gives a partial answer in R2. First, let us recall the results from Ref. 17.

Theorem 1.1: Let u0 in Hs�R2� for an integer s�4, then there exist T*=T*��u0�s� and a unique
u=u�t ,x ,y� satisfying

u � L��0,T*�,Hs�R2�� � C0��0,T*�,H1�R2�� ,

ut � L��0,T*�,Hs−1�R2�� � C0��0,T*�,L2�R2��

and

�� − I�ut + ux + J�u,�u� = 0, u�0,x,y� = u0�x,y�

with

J�u,�u� � L��0,T*�,Hs−3�R2�� .

The proof of this theorem can be found in Ref. 17. In Sec. II, we will use a priori estimates
to prove the existence and uniqueness of global strong solution of �1.3�.

II. GLOBAL THEORY IN H4
„R2

…

Hereafter C will denote possibly different constants. Let � · �Hs and � · �L2 denote the norm in the
standard Sobolev space Hs �s is an integer� and L2, respectively. And 	R2u denote 	R2udxdy.

Lemma 2.1: For any solution u from Theorem 1.1, we have

d

dt
�� � u�L2

2 + �u�L2
2 � = 0, �2.1�

d

dt
���u�L2

2 + � � u�L2
2 � = 0. �2.2�
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Proof: Multiplying �1.3� by u and �u, respectively, and integrating over R2, we will obtain
�2.1� and �2.2� immediately.

Lemma 2.2: For any solution u from Theorem 1.1, we have

d

dt
���3u�L2

2 + ��u�L2
2 � � C�1 + log�1 + �u�H4���u�H4

2 . �2.3�

Proof: Multiplying �1.3� by �2u and integrating over R2, we obtain

−
1

2

d

dt
���3u�L2

2 + ��u�L2
2 � + 


R2
ux�

2u + 

R2

J�u,�u��2u = 0.

Since 	R2ux�
2u=0, we get

−
1

2

d

dt
���3u�L2

2 + ��u�L2
2 � + 


R2
J�u,�u��2u = 0. �2.4�

Furthermore, we have

�

R2

J�u,�u��2u� = �

R2

�ux�uy�
2u − uy�ux�

2u�� � �

R2

ux�uy�
2u� + �


R2
uy�ux�

2u�
� �ux�L


R2
��uy���2u� + �uy�L


R2
��ux���2u� � �ux�L��uy�L2��2u�L2

+ �uy�L��ux�L2��2u�L2 � C�1 + log�1 + �u�H3����u�H3�u�H4 + �u�H3�u�H4�

� C�1 + log�1 + �u�H3���u�H4
2

� C�1 + log�1 + �u�H4���u�H4
2 , �2.5�

where the Brezis-Gallouet’s inequality3 has been used. Combining �2.4� and �2.5�, the proof of
Lemma 2.2 is completed.

Lemma 2.3: For any solution u from Theorem 1.1, we have

d

dt
���2u�L2

2 + ��3u�L2
2 � � C�1 + log�1 + �u�H4���u�H4

2 . �2.6�

Proof: Multiplying Eq. �1.3� by �3u, and integrating over R2, we get

1

2

d

dt
���2u�L2

2 + ��3u�L2
2 � + 


R2
ux�

3u + 

R2

J�u,�u��3u = 0.

Since 	R2ux�
3u=0, we obtain,

1

2

d

dt
���2u�L2

2 + ��3u�L2
2 � + 


R2
J�u,�u��3u = 0. �2.7�

Since,

�

R2

J�u,�u��3u� = �

R2

ux�uy�
3u − 


R2
uy�ux�

3u� = �

R2

��ux�uy��2u − 

R2

��uy�ux��2u�
= �


R2
div��ux�uy + ux � �uy��2u − 


R2
div��uy�ux + uy � �ux��2u�

= �

R2

��ux�uy + � ux � �uy + � ux � �uy + ux�
2uy��2u − 


R2
��uy�ux

083517-3 Hasegawa-Mima-Charney-Obukhov equation J. Math. Phys. 46, 083517 �2005�

                                                                                                                                    



+ � uy � �ux + � uy � �ux + uy�
2ux��2u� = �2


R2
��ux � �uy�

2u

− � uy � �ux�
2u� + 


R2
��ux�

2uy�
2u − uy�

2ux��2u��
= �2


R2
��ux � �uy�

2u − � uy � �ux�
2u� + 


R2
J�u,�2u��2u�

= �2

R2

��ux � �uy�
2u − � uy � �ux�

2u�� � 2� � ux�L� � �uy�L2��2u�L2

+ 2� � uy�L� � �ux�L2��2u�L2 � C�1 + log�1 + �u�H4����u�H4�u�H4 + �u�H4�u�H4�

= C�1 + log�1 + �u�H4���u�H4
2 , �2.8�

where we have used the property 	R2J�u ,�2u��2u=0 �which we obtain by integrating by parts�
and Brezis-Gallouet’s inequality. Combining �2.7� and �2.8�, the proof of Lemma 2.3 is completed.

Lemma 2.4: There exist constant C, C� and constant C���u0�H4� such that, for every T
0:

�u�H4 � C�e1/2eCT+C���u0�H4�
.

Proof: From �2.1�, �2.3�, and �2.6�, we deduce

d

dt
���2u�L2

2 + ��3u�L2
2 + ��3u�L2

2 + ��u�L2
2 + � � u�L2

2 + �u�L2
2 � � C�1 + log�1 + �u�H4���u�H4

2 .

Let

��2u�L2
2 + 2��3u�L2

2 + ��u�L2
2 + � � u�L2

2 + �u�L2
2 = �u�H4

2 .

It is well known that the norm � · �Hs is equivalent to

� 
����s

����L2

�s is an integer�, so � · �H4 and �·�H4 are equivalent norms,14 and there exists one constant C1, such
that, �u�H4 �C1�u�H4, and

d

dt
�u�H4

2
� C�1 + log�1 + C1�u�H4���u�H4

2
� C�1 + log�1 + �u�H4

2 ���u�H4
2 ,

where the Cauchy’s inequality has been used. Then, we can choose one suitable constant N�C ,C1�,
if �u�H4 �N�C ,C1�, for every T
0, the conclusion will be obtained. Otherwise, for suitable C, we
have

d

dt
�u�H4

2
� C�u�H4

2 log�u�H4
2 .

So, for every T
0, we have

log log�u�H4
2

� CT + log log�u�H4
2 �0� � CT + C���u0�H4� ,

�u�H4
2

� eeCT+C���u0�H4�
,
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�u�H4 � e�1/2�eCT+C���u0�H4�
,

so, by the equivalence of � · �H4 and �·�H4, we have

�u�H4 � C�e�1/2�eCT+C���u0�H4�
.

Theorem 2.1: Let u0�H4, then problem �1.3� has a global unique solution in H4.
Proof: From Theorem 1.1, we know problem �1.3� has a unique local strong solution

u�t ,x ,y��L��0,T*� ,H4�R2���C0��0,T*� ,H1�R2��, where T* depends on �u0�H4. By Lemma 2.4,
for any given T
0, �u�H4 is bounded. We have global existence for �1.3� using the standard
discussion �for example, Ref. 7�.

Remark 2.1: Results of Theorem 2.1 remain true in Hs�s�4� for any u0�Hs. To prove this,
we multiply �1.3� by �su and integrate by parts over R2, and then we use the property1

�

R2

�s/2−1�ux�uy − uy�ux��s/2u� = �

R2


����s−2,����s

C�,���u��u�s/2u�
� C 

����s−2,����s

���u�L���u�L2��s/2u�L2

� C�1 + log�1 + �u�Hs���u�Hs
2

and the equivalence of the norms �similar to lemma 2.4�.
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Analytical solution of the time evolution of an entangled
electron spin pair in a double quantum dot
nanostructure
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Using master equations, we present an analytical solution of the time evolution of
an entangled electron spin pair which can occupy 36 different quantum states in a
double quantum dot nanostructure. This solution is exact, given a few realistic
assumptions, and takes into account relaxation and decoherence rates of the elec-
tron spins as phenomenological parameters. Our systematic method of solving a
large set of coupled differential equations is straightforward and can be used to
obtain analytical predictions of the quantum evolution of a large class of complex
quantum systems, for which until now commonly numerical solutions have been
sought. © 2005 American Institute of Physics. �DOI: 10.1063/1.2007629�

I. INTRODUCTION

Master equations are used to describe the quantum evolution of a physical system interacting
with some “reservoir,”1 and have been applied to a wide variety of physical systems, ranging from
two-level atoms in the presence of light fields2 to solid-state nanostructures such as quantum dots
and Josephson junction devices.3 For simple systems, such as a two-level atom damped by a
reservoir consisting of simple harmonic oscillators4 or an electron in a single or double quantum
dot coupled to external leads,5 the set of master equations that describes the quantum dynamics of
the system is small and its solution can be obtained analytically in a straightforward way. If the
system is more involved, however, due to the presence of quite a few atomic levels or because the
nanostructure is composed of various coherent parts, its quantum state space consists of a large
number of quantum states with various coherent and incoherent couplings between them, and the
analytical solution of the corresponding large set of coupled master equations does not spring to
the eye. Hence, often a numerical solution is sought.6 Understanding the quantum evolution of
such “complex” quantum systems—where complex refers to a system which is described by a
large number of coupled quantum states—has recently become increasingly important, in particu-
lar in fundamental research aimed at investigating the dynamic behavior of qubits, the basic
building blocks for quantum computation.7 A large theoretical and experimental effort in various
fields, e.g., quantum optics, atomic physics, and condensed-matter physics, is presently directed
toward investigating possibilities to use two-level systems such as polarized photons, cold atoms,
electron spins, and superconducting circuits as qubits, and finding ways to couple these qubits
together. In the latter three systems, one of the major questions involved is how the desired
coherent evolution of the system will be affected by coupling to the environment, which is
necessary to manipulate and measure the states of the qubits but invariably introduces undesired
decoherence of their quantum states. A master equation model of the quantum evolution of one or
more qubits interacting with their environment allows one to construct transparent general formu-
las and is therefore very suitable to give both qualitative and quantitative insight into the dynamics
of these complex quantum systems.

In this paper we present an analytical solution of a large set of coupled master equations that
describes the quantum evolution of a particular condensed-matter system, namely the time evolu-
tion of an entangled electron spin pair in a double quantum dot nanostructure. Even though our
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model applies to this specific quantum system, the presented method of solving the master equa-
tions is general and can be applied to study the dynamics of many other complex quantum
systems. The time evolution of the electron spins is governed by several coherent and incoherent
processes, each of which depends on time in a simple way as either oscillatory �cosine� or
exponential functions. The solution we obtain shows how these simple ingredients combine to
describe the evolution of the entangled spins in a complex nanostructure which consists of several
coherent parts. It can be used to predict the occupation probability of all quantum states at any
given time and to provide analytical estimates of the important time scales in the problem, such as
the time at which decoherence of the entangled pair becomes substantial.8

The paper is organized as follows. In Sec. II the quantum nanostructure and the assumptions
made are described. Section III contains the master equations and their solution, with technical
details given in Appendixes A and B. A summary of the results and their range of applicability is
presented in Sec. IV.

II. THE DOUBLE QUANTUM DOT NANOSTRUCTURE

The system we consider consists of a double quantum dot nanostructure, which is occupied by
two entangled electron spins and operated as a turnstile. We studied this system in an earlier paper
as a suitable setup for the detection of entanglement between electron spins.9 Here, we focus on
the dynamic evolution of the electron pair in the system, which is depicted in Fig. 1.

In detail, the structure consists of two adjacent quantum dots in a parallel magnetic field Bzẑ,
which are connected to two quantum point contacts �QPCs� via empty quantum channels. A
quantum dot is a small metallic or semiconducting island, confined by gates and connected to
electron reservoirs �leads� through quantum point contacts. If the gates are nearly closed and form
tunnel barriers, the dot is occupied by a finite and controllable number of electrons which occupy
discrete quantum levels, similar to atomic orbitals in atoms.10 In our system, the gate between the
two dots is assumed to be initially open and the dots are occupied by two electrons11 �Fig. 1�a�� in
their lowest energy state, the singlet state.12 The gate between the two dots is then adiabatically
closed, so that the electrons become separated and one dot is occupied by an electron with spin-up
and the other by one with spin-down. The two spins do not interact anymore and are indepen-
dently rotated by electron spin resonance �ESR� fields �Fig. 1�b��. The latter are oscillating mag-
netic fields which, if the frequency of oscillation matches the energy difference between the two
spin-split single-electron energy levels, cause coherent rotations of a spin between these levels,
analogous to Rabi oscillations in a two-level atom. After spin rotation, the electrons are emitted
into empty quantum channels by opening gates L and R �Fig. 1�c�� and scattered at quantum point
contacts QPC 1 and QPC 2. In a parallel magnetic field and for conductances GQPC1�QPC2�
�e2 /h these QPCs are spin selective,13 transmitting electrons with spin-up and reflecting those
with spin-down �Fig. 1�d��. The transmitted and reflected electrons are separately detected in the
four exits.

In the next section we analyze the dynamics of the two spins from the moment they are
separated and each occupies one of the two dots, until both have been detected in one of the four

FIG. 1. Schematic top view of the double quantum dot nanostructure as discussed in Sec. II.
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exits. We use a master equation approach in which the effects of relaxation and decoherence are
included as phenomenological decay rates.1 The solution presented is exact under three assump-
tions:

�i� The time evolution during ESR in the dots is decoupled from the time evolution in the
channels and exits. Physically, this means that the gates between the dots and channels are
closed during the ESR rotations, so no tunneling occurs out of the dots during that time.

�ii� Once the electrons are in a channel they cannot tunnel back into the dots, i.e., backreflec-
tion of the electrons to the dots during their journey to the detectors is neglected. This
corresponds to ballistic transport through the channels.

�iii� Once the electrons are in one of the exits they cannot return to the channels, i.e., the
electrons are immediately detected and absorbed into the detectors.

III. THE MASTER EQUATIONS AND THEIR SOLUTION

In the setup as depicted in Fig. 1, each electron is assumed to be either in a dot, in a channel,
or detected. This leads to a set of 36 possible quantum states represented by a 36�36 density
matrix ��t�. This set consists of all possible combinations A�B��, with A� �D ,C ,X� and �
� �↑ , ↓ � indicating, respectively, the position �D=dot, C=channel, and X=exit� and the spin
direction along ẑ of the electron which started out in the left dot, and B� �D ,C ,X� and ��
� �↑ , ↓ � representing the position and spin direction of the electron which started out in the right
dot. The set is given by

�D↑D↑,D↑D↓,D↓D↑,D↓D↓,C↑D↑,C↑D↓,C↓D↑,C↓D↓,D↑C↑,D↑C↓,D↓C↑,D↓C↓,C↑C↑,

C↑C↓,C↓C↑,C↓C↓,X↑D↑,X↑D↓,X↓D↑,X↓D↓,D↑X↑,D↑X↓,D↓X↑,D↓X↓,X↑C↑,X↑C↓,

X↓C↑,X↓C↓,C↑X↑,C↑X↓,C↓X↑,C↓X↓,X↑X↑,X↑X↓,X↓X↑,X↓X↓� . �1�

We number the states in set �1� by the numbers 1 to 36, so 1=D↑D↑, 2=D↑D↓, etc. The states
labeled by C and X do not refer to individual quantum states in the channels and detectors, since
in a channel many longitudinal modes exist and the detectors consist of many quantum states
which together form a macroscopic state. What is meant by the states C and X is the set of all
channel modes, respectively, all quantum states in the detectors. These states thus describe the
probability of an electron to occupy any one of these channel modes or detector states. We come
back to why this definition is useful and appropriate in the paragraph below Eq. �9�. For long
times, the only states that are occupied are 33–36, in which both electrons have entered into an
exit and the channels and dots are empty.

The time evolution of the density matrix elements �nm�t� is given by the master equations1

�̇n�t� = −
i

�
�H�t�,��t��nn + �

m�n

�Wnm�m�t� − Wmn�n�t�� , �2a�

�̇n,m�t� = −
i

�
�H�t�,��t��nm − Vnm�n,m�t� n � m , �2b�

for n ,m� �1, . . . ,36�. The Hamiltonian H�t� describes the coherent evolution of the spins in the
quantum dots due to the ESR fields and is given by, for two oscillating magnetic fields
BxL cos��t�x̂ and BxR cos��t�x̂ applied to the left and right dots, respectively,

H�t� = H0 − 1
2g*�B cos��t� �

M,N��L,R�
M�N

�BxM + �BxN��̄xM . �3�

Here, H0 is a diagonal matrix containing the energies En�n=1, . . . ,36� of each state, g* the
electron g factor, �B the Bohr magneton, and �̄xL�R� a 36�36 matrix with elements ��̄xL�R��ij =1
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for each pair of states �i , j� that is coupled by the oscillating field BxL�R� and zero otherwise. For
g*	0 the 4�4 upper-left corner Hdots�t� of H�t� is then given explicitly as

Hdots�t� =�
E1 �
RL cos��t� �
LR cos��t� 0

�
RL cos��t� E2 0 �
LR cos��t�
�
LR cos��t� 0 E3 �
RL cos��t�

0 �
LR cos��t� �
RL cos��t� E4

	 ,

with E1=2E↑+EC, E2=E3=E↑+E↓+EC, and E4=2E↓+EC in terms of the single-particle energies
E↑ and E↓ and the charging energy EC=e2 /C, where C is the total capacitance of the quantum dot
�assumed to be equal for both dots�, 
RL

R+�L and 
LR

L+�R, with 
R�L�

��g*��BBxR�L�� /2� and �R�L�
���g*��BBxR�L�� /2�. The parameter �, with 0��	1, represents the
relative reduction of the field which is applied to one dot at the position of the spin in the other
dot.9 The remaining 32�32 part of the matrix H�t� is diagonal and equal to H0, since the ESR
fields are applied when both electrons are located in a dot and the quantum channels do not
contain any electrons whose spin might otherwise also be rotated by these fields.

Turning to the transition rates Wnm �from state m to n� in Eq. �2a�, we distinguish between two
kinds of transitions: �1� spin-flip transitions between two quantum states that differ by the direc-
tion of one spin only and �2� tunneling �without spin-flip� between quantum states that involve
adjacent parts of the system, i.e., from dot to channel and from channel to exit. The latter are
externally controlled by opening and closing the gates between the dots and channels. The former
are modeled by the phenomenological rate 1 /T1,�
W�↑↓+W�↓↑, with �� �D ,C� for spin flips in
a dot or channel. Here, the W ’ s depend on the Zeeman energy 
EZ
�g*��BBz and temperature T
via detailed balance W�↑↓ /W�↓↑=e
EZ/kBT, so that

W�↑↓�↓↑� =
1

T1,�

1

1 + e−�+�
EZ/kBT , � � �D,C� . �4�

The spin decoherence rates Vnm in Eqs. �2b� for states n and m with n ,m� �1, . . . ,4�, i.e., the
decoherence rate between states in which both electrons are located in a quantum dot, is given by

Vnm =
1

T2,D
+

1

2 �
j�n,m

�Wjn + Wjm� n,m � �1, . . . ,4� , �5�

where the W’s refer to tunnel rates out of a dot. The coherence between state n and m thus not only
depends on the intrinsic spin decoherence time T2,D which is caused by, e.g., spin-orbit or hyper-
fine interactions in the dots,14 but is also reduced by the �incoherent� tunneling processes from dot
to channel.15 Similarly, Vnm for all other states n and m is given by

Vnm = � 1

T2,C
+

1

2 �
j�n,m

�Wjn + Wjm� n,m � �1, . . . ,16�, but not both n,m � �1, . . . ,4�

 n � �17, . . . ,36� and/or m � �17, . . . ,36� ,
 �6�

with the W’s tunnel rates from a channel to an exit. Note that energy relaxation processes between
different modes in the channels, i.e., between modes that contribute to the same set of channel
states C, do not affect the transition rates Wnm and decoherence rates Vnm for the states where
either n or m or both refer to a channel state. The reason for this is that these rates refer to,
respectively, spin flip and spin decoherence processes, which are not affected by orbital �energy�
relaxation and decoherence.16 Hence, our definition of the channel states as sets of all modes with
the same spin does not interfere with the definition of spin relaxation and decoherence of the
quantum states.

With the above ingredients, the coupled equations �2� can be solved analytically. We proceed
in three steps: ESR applied to the left dot, ESR applied to the right dot, and the time evolution
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after the gates to the quantum channels have been opened. During each step only part of the
quantum states are evolving in time, while the others remain unchanged. This simplifies the
procedure to obtain an analytical solution.

A. Step 1: ESR applied to the left dot

Initially, at time t=0, both spins are assumed to be in the singlet state in the quantum dots, so

�2�0� = �3�0� = 1/2; � j�0� = 0 ∀ j � �1,4,5, . . . ,36� , �7a�

�2,3�0� = �3,2�0� = − 1/2; �i,j�0� = 0 otherwise. �7b�

During ESR applied to the left dot, quantum states �5�t�−�36�t� remain unchanged, since the
gates between the dots and channels are closed. The coherent evolution of �1�t�–�4�t� is then
governed by the Hamiltonian

HESR�t� =�
E1 ��L cos��t� �
L cos��t� 0

��L cos��t� E2 0 �
L cos��t�
�
L cos��t� 0 E2 ��L cos��t�

0 �
L cos��t� ��L cos��t� E4

	 .

Including spin-flip rates WD↑↓ and WD↓↑ and the decoherence rate �
1/T2,D for both dots,17 we
then obtain from Eqs. �2� the master equations

�̇1 = − �L Im �̃1,2 − 
L Im �̃1,3 − 2WD↓↑�1 + WD↑↓��2 + �3� , �8a�

�̇2 = �L Im �̃1,2 − 
L Im �̃2,4 + WD↑↓ + �WD↓↑ − WD↑↓��1 − �2WD↑↓ + WD↓↑��2 − WD↑↓�3,

�8b�

�̇3 = − �L Im �̃3,4 + 
L Im �̃1,3 + WD↑↓ + �WD↓↑ − WD↑↓��1 − WD↑↓�2 − �2WD↑↓ + WD↓↑��3,

�8c�

Im �̇̃1,2 = −
�L

2
��2 − �1� +


L

2
�Re �̃1,4 − Re �̃2,3� − � Im �̃1,2, �8d�

Im �̇̃1,3 = −

L

2
��3 − �1� +

�L

2
�Re �̃1,4 − Re �̃2,3� − � Im �̃1,3, �8e�

Im �̇̃2,4 = −

L

2
��4 − �2� −

�L

2
�Re �̃1,4 − Re �̃2,3� − � Im �̃2,4, �8f�

Im �̇̃3,4 = −
�L

2
��4 − �3� −


L

2
�Re �̃1,4 − Re �̃2,3� − � Im �̃3,4, �8g�

Re �̇̃1,4 = −
�L

2
�Im �̃1,3 − Im �̃2,4� −


L

2
�Im �̃1,2 − Im �̃3,4� − � Re �̃1,4, �8h�

Re �̇̃2,3 =
�L

2
�Im �̃1,3 − Im �̃2,4� +


L

2
�Im �̃1,2 − Im �̃3,4� − � Re �̃2,3, �8i�
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Re �̇̃1,2 = −

L

2
�Im �̃1,4 + Im �̃2,3� − � Re �̃1,2, �8j�

Re �̇̃1,3 = −
�L

2
�Im �̃1,4 − Im �̃2,3� − � Re �̃1,3 �8k�

Re �̇̃2,4 =
�L

2
�Im �̃1,4 − Im �̃2,3� − � Re �̃2,4, �8l�

Re �̇̃3,4 =

L

2
�Im �̃1,4 + Im �̃2,3� − � Re �̃3,4, �8m�

Im �̇̃1,4 =
�L

2
�Re �̃1,3 − Re �̃2,4� +


L

2
�Re �̃1,2 − Re �̃3,4� − � Im �̃1,4, �8n�

Im �̇̃2,3 = −
�L

2
�Re �̃1,3 − Re �̃2,4� +


L

2
�Re �̃1,2 − Re �̇̃3,4� − � Im �̃2,3, �8o�

with �̃i,j�t�
�i,j�t�e−i�t for �ij�� ��12�, �13�, �24�, �34��, �̃1,4�t�
�1,4�t�e−2i�t and �̃2,3�t�
�2,3�t�.
Equations �8� are valid on resonance, so ��
E2−E1=E4−E2=
EZ and within the rotating wave
approximation �RWA�.18 Here, �4�t� is given by �4�t�=1−�1�t�−�2�t�−�3�t�.

Equations �8� can be split into two sets of coupled equations: Eqs. �8a�–�8i� and Eqs.
�8j�–�8o�. The solution of the second set is straightforwardly obtained and given by

Re �̃1,2�t� = 1
2 �Re��̃1,2�0� − �̃3,4�0��cos�
Lt� − Im��̃1,4�0� + �̃2,3�0��sin�
Lt�

+ Re��̃1,2�0� + �̃3,4�0���e−�t, �9a�

Re �̃1,3�t� = 1
2 �Re��̃1,3�0� − �̃2,4�0��cos��Lt� − Im��̃1,4�0� − �̃2,3�0��sin��Lt�

+ Re��̃1,3�0� + �̃2,4�0���e−�t, �9b�

Re �̃2,4�t� = 1
2 �− Re��̃1,3�0� − �̃2,4�0��cos��Lt� + Im��̃1,4�0� − �̃2,3�0��sin��Lt�

+ Re��̃1,3�0� + �̃2,4�0���e−�t, �9c�

Re �̃3,4�t� = 1
2 �− Re��̃1,2�0� − �̃3,4�0��cos�
Lt� + Im��̃1,4�0� + �̃2,3�0��sin�
Lt�

+ Re��̃1,2�0� + �̃3,4�0���e−�t, �9d�

Im �̃1,4�t� = 1
2 �Im��̃1,4�0� + �̃2,3�0��cos�
Lt� + Im��̃1,4�0� − �̃2,3�0��cos��Lt�

+ Re��̃1,2�0� − �̃3,4�0��sin�
Lt� + Re��̃1,3�0� − �̃2,4�0��sin��Lt��e−�t, �9e�

Im �̃2,3�t� = 1
2 �Im��̃1,4�0� + �̃2,3�0��cos�
Lt� − Im��̃1,4�0� − �̃2,3�0��cos��Lt�

+ Re��̃1,2�0� − �̃3,4�0��sin�
Lt� − Re��̃1,3�0� − �̃2,4�0��sin��Lt��e−�t. �9f�

In order to solve the set of equations �8a�–�8i� we express �1–�3, Im �̃1,2, Im �̃1,3, Im �̃2,4,
Im �̃3,4, Re �̃1,4, and Re �̃2,3 in terms of new variables x1–x8 as follows:

�1�t� = 1
2 �x1�t� + x2�t� − x3�t��e−�t,
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�2�t� = 1
2 �x1�t� − x2�t� + x3�t��e−�t,

�3�t� = 1
2 �− x1�t� + x2�t� + x3�t��e−�t,

Im �̃1,2�t� = 1
2 �x4�t� + x6�t��e−�t,

Im �̃1,3�t� = 1
2 �x5�t� + x7�t��e−�t,

Im �̃2,4�t� = 1
2 �x5�t� − x7�t��e−�t,

Im �̃3,4�t� = 1
2 �x4�t� − x6�t��e−�t,

Re �̃1,4�t� = x8�t�e−�t,

Re �̃2,3�t� = �− x8�t� + Z�e−�t, �10�

with Z
Re��̃1,4�0�+ �̃2,3�0��. The transformation �10� originates from pairwise adding and sub-
tracting those equations among �8d�–�8i� which share a common term on the right-hand side, e.g.,

the equations for Im �̇̃1,2 and Im �̇̃3,4. The definition of x1–x8 then naturally arises. Physically, the
new variables x1, x2, and x3 can be interpreted as x1�2� = the probability for the spin in the left
�right� dot to be up, and x3 = the probability for the two spins to be antiparallel, each modulated by
the exponential dependence on the decoherence rate �. Using �10�, Eqs. �8a�–�8i� are rewritten in
terms of x1�t�–x8�t�, which leads to three sets of coupled equations. These equations and their
solution are given in Appendix A. Equations �10� at time t= t1, where t1 is the time during which
the ESR field is switched on, thus represent the density matrix elements for the double-dot states
after the ESR rotation applied to the left dot.

B. Step 2: ESR applied to the right dot

Equations �10� can also be used directly to obtain the solution after the second ESR rotation
applied to the right dot, by substituting 
L→�R and �L→
R in Eqs. �9� and �A2�, and by
exchanging x6↔x7 in Eqs. �A4�, using �1�t1� instead of �1�0�, etc., as initial conditions. In order
to illustrate this solution, let us consider the initial condition of a singlet in the double dot �Eq.
�7��, and let t2 be the duration of the second ESR rotation. In the case of no dissipation �all
W ’ s=0� and no influence of ESR applied to one dot on the spin in the other dot, we then obtain
from Eqs. �10�, �A2�, and �A4�, e.g., the occupation probability �2�t1+ t2� the expression

�2�t1 + t2� =
1

4�1 + ��cos��̃
t1� +
�

2�̃


sin��̃
t1���cos��̃
t2� +
�

2�̃


sin��̃
t2��
+




�̃


sin�
 t1�sin��̃
t2�e−��/2�t1�e−��/2��t1+t2�� , �11�

with �̃

 1
2
�4
2−�2 and 


L=
R. In the absence of decoherence ��=0� the expressions for

�2�t1+ t2� and the other density matrix elements simplify to

�1�t1 + t2� = �4�t1 + t2� = 1
4 �1 − cos �1 cos �2 − sin �1 sin �2� , �12a�

�2�t1 + t2� = �3�t1 + t2� = 1
4 �1 + cos �1 cos �2 + sin �1 sin �2� , �12b�

083518-7 Evolution of 2 spins in a double dot nanostructure J. Math. Phys. 46, 083518 �2005�

                                                                                                                                    



�1,2�t1 + t2� = �2,4�t1 + t2� = −
i

4
�cos �1 sin �2 − sin �1 cos �2� , �12c�

�1,3�t1 + t2� = �3,4�t1 + t2� =
i

4
�cos �1 sin �2 − sin �1 cos �2� , �12d�

�1,4�t1 + t2� = − 1
4 �1 − cos �1 cos �2 − sin �1 sin �2� , �12e�

�2,3�t1 + t2� = − 1
4 �1 + cos �1 cos �2 + sin �1 sin �2� , �12f�

with �1
�̃
t1 and �2
�̃
t2. Equation �11� is plotted in Fig. 2 as a function of the amount of
decoherence �.

Already for moderate amounts of decoherence ��t1+ t2�=0.001, the occupation probability has
become 0.01% less than its value in the absence of decoherence �2

�=0�t1+ t2�=0.481, for the set of
parameters chosen in Fig. 2. This increases to 0.1% for ��t1+ t2�=0.01.

C. Step 3: Time evolution after the gates to the channels have been opened

We now turn to the next step in the evolution of the entangled pair in Fig. 1, namely the time
evolution of the density matrix elements after the ESR rotations are completed and the gates to the
quantum channels are opened; see Fig. 1�c�. From this moment onward the coherent evolution due
to the first term on the right-hand side of Eqs. �2� stops and the time evolution of the matrix
elements is solely determined by decay and decoherence rates represented by the second terms on
the right-hand side of Eqs. �2�. The off-diagonal elements �i,j�t� then rotate with �Ei−Ej� /� and
decay with rate Vij

�i,j�t� = �i,j�tESR�ei�Ei−Ej��t−tESR�/�e−Vij�t−tESR� for t � tESR, �13�

where tESR
 t1+ t2 and Vij is given by Eq. �5� for i , j� �1, . . . ,4� and Eq. �6� otherwise. The initial
values �i,j�tESR� for i , j� �1, . . . ,16� are given by �m,n�tESR� for m ,n� �1, . . . ,4� �Eqs. �10�� with
the correspondence in indices

i�j� � �1,5,9,13� ↔ m�n� = 1,

i�j� � �2,6,10,14� ↔ m�n� = 2,

i�j� � �3,7,11,15� ↔ m�n� = 3,

FIG. 2. The occupation probability �2�t1+ t2� �Eq. �11�� of the quantum state D↑D↓ as a function of the amount of
decoherence �in units of 1 / �t1+ t2��. For �=0 �2 is given by Eq. �12b�. Parameters used are 
 t1=� /4, 
 t2=� /8, and all
W’s=0.
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i�j� � �4,8,12,16� ↔ m�n� = 4.

In this way the coherence at time tESR between any pair of states i , j� �1, . . . ,16� is given by the
coherence at tESR between those dot states m ,n� �1, . . . ,4� which can �eventually� coherently
evolve into i and j, i.e., the dot states m and n which have the same spin states as i and j,
respectively. So, for example, �C↑C↑,D↓C↓�tESR�=�D↑D↑,D↓D↓�tESR�
�1,4�tESR�. Note that �i,j�t�=0
for those states in which at least one electron has reached a detector �i� �17, . . . ,36� and/or j
� �17, . . . ,36��, since for those states Vij =. This corresponds to the assumption of immediate
detection.

In the remaining part of this paper we focus on the evolution of the populations �1�t�–�36�t�
for times t� tESR under the following conditions:

�i� We neglect the possibility of spin flips in the dots, i.e., we set WD↑↓=WD↓↑=0. This is based
on the fact that T1,D is known to be much longer �0.85 ms at magnetic fields Bz=8T� �Ref.
19� than the time required to travel through the channels to the exits. This assumption is not
essential to obtain an analytical solution; it only simplifies the resulting equations.

�ii� We assume that the tunnel rate WT out of the dots into the channels is equal for spin-up and
spin-down electrons, i.e., the two electrons tunnel out of the singlet state with a negligible
time delay tdelay in between, and that spin is conserved during this tunneling process.
Typically20 tdelay�10−13 s, which is much less than the travel time through a channel,
�10−10 s.

�iii� The tunnel rate WE through the QPCs is taken to be constant and equal for spin-up and
spin-down electrons, i.e., the setup is assumed to be constructed in such a way that the
detection time for spin-up and spin-down electrons once they have reached the QPCs is the
same.

�iv� Spin flips in the exits are neglected, i.e., detection is assumed to be faster �with typical
times �10−11 s� �Ref. 21� than the spin-flip rate ��10−11 s� �Ref. 9� in the detectors.

The evolution equations for �1�t�–�36�t� for times t� tESR are then given by the master
equations

�̇i = − 2WT�i for i � �1, . . . ,4� . �14�

�̇i = WT�i−4 + WC↑↓�i+2 − �WE + WT + WC↓↑��i, i � �5,6� , �15a�

�̇i = WT�i−4 + WC↓↑�i−2 − �WE + WT + WC↑↓��i, i � �7,8� , �15b�

�̇i = WT�i−8 + WC↑↓�i+1 − �WE + WT + WC↓↑��i, i � �9,11� , �15c�

�̇i = WT�i−8 + WC↓↑�i−1 − �WE + WT + WC↑↓��i, i � �10,12� . �15d�

�̇13 = WT��5 + �9� + WC↑↓��14 + �15� − 2�WE + WC↓↑��13, �16a�

�̇14 = WT��6 + �10� + WC↓↑�13 + WC↑↓�16 − �2WE + WC↑↓ + WC↓↑��14, �16b�

�̇15 = WT��7 + �11� + WC↓↑�13 + WC↑↓�16 − �2WE + WC↑↓ + WC↓↑��15, �16c�

�̇16 = WT��8 + �12� + WC↓↑��14 + �15� − 2�WE + WC↑↓��16. �16d�

�̇i�t� = WE�i−12�t − ttravel + tESR� − WT�i�t�, i � �17, . . . ,24� . �17�
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�̇i�t� = WT�i−8�t� + WE�i−12�t − ttravel + tESR� + WC↑↓�i+1�t� − �WE + WC↓↑��i�t� for i � �25,27� ,

�18a�

�̇i�t� = WT�i−8�t� + WE�i−12�t − ttravel + tESR� + WC↓↑�i−1�t� − �WE + WC↑↓��i�t� for i � �26,28� ,

�18b�

�̇i�t� = WT�i−8�t� + WE�i−16�t − ttravel + tESR� + WC↑↓�i+2�t� − �WE + WC↓↑��i�t� for i � �29,30� ,

�18c�

�̇i�t� = WT�i−8�t� + WE�i−16�t − ttravel + tESR� + WC↓↑�i−2�t� − �WE + WC↑↓��i�t� for i � �31,32� .

�18d�

�̇i = WE��i−8 + �i−4� i � �33, . . . ,36� . �19�

Here, ttravel� tESR denotes the earliest time at which an electron has traveled through the channels
and reached an exit. For times t� ttravel, �1�t�–�36�t� is thus given by Eqs. �14�–�19� for WE=0,
since at those times no electron can have arrived at a detector yet. The above sets of coupled
equations can be solved one by one: first those for �1�t�–�4�t�, then once the latter are known
those for �5�t�–�12�t� �in the pairs �5,7�, �6,8�, �9,10�, and �11,12��, then �13�t�–�16�t� and
�17�t�–�24�t�, subsequently �25�t�–�32�t� �in the pairs �25,26�, �27,28�, �29,31�, and �30,32�� and
finally �33�t�–�36�t�. Proceeding in this order and using initial conditions

�i�tESR� = �Eqs. �10� for i = 1, . . . ,4,

0 for i = 5, . . . ,36,
� �20�

we obtain for �1�t�–�4�t�, the states in which both electrons are located in a dot,

�i�t� = �i�tESR�e−2WT�t−tESR� i � �1, . . . ,4�, t � tESR. �21�

Next, we find for �5�t�–�12�t�, which correspond to the quantum states in which one electron is
located in a dot and the other in a channel, from Eqs. �15�

�5�t� = A5,7,1,3e−WETC�t−tESR� + B5,7,1,3e−�WE+WT��t−tESR� + C1,3e−2WT�t−tESR�, �22a�

�6�t� = A6,8,2,4e−WETC�t−tESR� + B6,8,2,4e−�WE+WT��t−tESR� + C2,4e−2WT�t−tESR�, �22b�

�7�t� = − A5,7,1,3e−WETC�t−tESR� +
WC↓↑
WC↑↓

B5,7,1,3e−�WE+WT��t−tESR� + D1,3e−2WT�t−tESR�, �22c�

�8�t� = − A6,8,2,4e−WETC�t−tESR� +
WC↓↑
WC↑↓

B6,8,2,4e−�WE+WT��t−tESR� + D2,4e−2WT�t−tESR�, �22d�

�9�t� = A9,10,1,2e−WETC�t−tESR� + B9,10,1,2e−�WE+WT��t−tESR� + C1,2e−2WT�t−tESR�, �22e�

�10�t� = − A9,10,1,2e−WETC�t−tESR� +
WC↓↑
WC↑↓

B9,10,1,2e−�WE+WT��t−tESR� + D1,2e−2WT�t−tESR�, �22f�

�11�t� = A11,12,3,4e−WETC�t−tESR� + B11,12,3,4e−�WE+WT��t−tESR� + C3,4e−2WT�t−tESR�, �22g�
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�12�t� = − A11,12,3,4e−WETC�t−tESR� +
WC↓↑
WC↑↓

B11,12,3,4e−�WE+WT��t−tESR� + D3,4e−2WT�t−tESR�, �22h�

where

WETC 
 WE + WT + WC↑↓ + WC↓↑, �23a�

Ai,j,k,l 

WC↓↑�i�tESR� − WC↑↓� j�tESR�

WC↑↓ + WC↓↑
+

WT�− WC↓↑�k�tESR� + WC↑↓�l�tESR��
�WC↑↓ + WC↓↑��WE − WT + WC↑↓ + WC↓↑�

, �23b�

Bi,j,k,l 

WC↑↓

WC↑↓ + WC↓↑
��i�tESR� + � j�tESR� −

WT

WE − WT
��k�tESR� + �l�tESR��� , �23c�

Ci,j =
WT

WE − WT

�WE − WT + WC↑↓��i�tESR� + WC↑↓� j�tESR�
WE − WT + WC↑↓ + WC↓↑

, �23d�

Di,j =
WT

WE − WT

WC↓↑�i�tESR� + �WE − WT + WC↓↑�� j�tESR�
WE − WT + WC↑↓ + WC↓↑

. �23e�

For times t� ttravel, the evolution of �5�t�–�12�t� is given by Eqs. �22� with WE=0. For times t
� ttravel, these populations are given by Eqs. �22� with tESR→ ttravel.

In order to obtain the solution for �13�t�–�16�t�, which corrresponds to the situation in which
both electrons are located in a channel, we rewrite the equations for �13–�16 as

�̇13 = WT��5 + �9� + WC↑↓��14 + �15� − 2�WE + WC↓↑��13, �24a�

�̇14 + �̇15 = WT��6 + �7 + �10 + �11� + 2WC↓↑�13 − �2WE + WC↑↓ + WC↓↑���14 + �15� + 2WC↑↓�16,

�24b�

�̇16 = WT��8 + �12� + WC↓↑��14 + �15� − 2�WE + WC↑↓��16, �24c�

�̇14 − �̇15 = WT��6 − �7 + �10 − �11� − �2WE + WC↑↓ + WC↓↑���14 − �15� . �24d�

Equations �24� consist of three coupled equations �24a�–�24c� and a separate one, Eq. �24d�. We
first solve the latter and then the first three. In each case the solution is a combination of a
homogeneous and a particular solution. Taking from now on WC↑↓=WC↓↑
WC,22 we obtain

�13�t� = − Ee−2�WE+WC��t−tESR� + 1
2Fe−2WE�t−tESR� − 1

2 F̃e−2�WE+2WC��t−tESR� + H13e
−�WE+WT+2WC��t−tESR�

+ K13e
−�WE+WT��t−tESR� + L13e

−2WT�t−tESR�, �25a�

�14�t� = Ẽe−2�WE+WC��t−tESR� + 1
2Fe−2WE�t−tESR� + 1

2 F̃e−2�WE+2WC��t−tESR� + H14e
−�WE+WT+2WC��t−tESR�

+ K14e
−�WE+WT��t−tESR� + L14e

−2WT�t−tESR�, �25b�

�15�t� = − Ẽe−2�WE+WC��t−tESR� + 1
2Fe−2WE�t−tESR� + 1

2 F̃e−2�WE+2WC��t−tESR� + H15e
−�WE+WT+2WC��t−tESR�

+ K15e
−�WE+WT��t−tESR� + L15e

−2WT�t−tESR�, �25c�
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�16�t� = Ee−2�WE+WC��t−tESR� + 1
2Fe−2WE�t−tESR� − 1

2 F̃e−2�WE+2WC��t−tESR� + H16e
−�WE+WT+2WC��t−tESR�

+ K16e
−�WE+WT��t−tESR� + L16e

−2WT�t−tESR�. �25d�

The coefficients in Eqs. �25� are given in Appendix B. Also here, �13�t�–�16�t� for times t
� ttravel are given by Eqs. �25� with WE=0, and for times t� ttravel these populations are given by
Eqs. �25� with tESR→ ttravel.

The solution of the next set, �17�t�–�24�t�, corresponding to the states in which one electron is
located in a dot while the other has reached a detector, is given by

�i�t� = Aie
−�WE+WT+2WC��t−ttravel� − Bie

−�WE+WT��t−ttravel� − Cie
−2WT�t−ttravel�

+ ��i�ttravel� − Ai + Bi + Ci�e−WT�t−ttravel� for i � �17, . . . ,24�, t � ttravel, �26�

and �i�t�=0 for t� ttravel. The coefficients Ai, Bi, and Ci in Eqs. �26� are given in Table I. Next, we
solve for �25�t�–�32�t�, the states in which one spin has reached a detector, while the other is still
in a channel, in the pairs �i�t�&� j�t�� ��25�t�&�26�t� ,�27�t�&�28�t� ,�29�t�&�31�t� ,
and �30�t�&�32�t��; see Eqs. �18�. For each pair the solution is given by, for times t� ttravel

�i�t� = Pi,je
−WE�t−ttravel� + Qi,je

−�WE+2WC��t−ttravel� + Mi,1e−2�WE+WC��t−ttravel� + Mi,2e−2WE�t−ttravel�

+ Mi,3e−2�WE+2WC��t−ttravel� + Mi,4e−�WE+WT+2WC��t−ttravel� + Mi,5e−�WE+WT��t−ttravel�

+ Mi,6e−2WT�t−ttravel� + Mi,7e−WT�t−ttravel�, �27a�

� j�t� = Pj,ie
−WE�t−ttravel� + Qj,ie

−�WE+2WC��t−ttravel� + Mj,1e−2�WE+WC��t−ttravel� + Mj,2e−2WE�t−ttravel�

+ Mj,3e−2�WE+2WC��t−ttravel� + Mj,4e−�WE+WT+2WC��t−ttravel� + Mj,5e−�WE+WT��t−ttravel�

+ Mj,6e−2WT�t−ttravel� + Mj,7e−WT�t−ttravel�, �27b�

and �i�t�=� j�t�=0 for t� ttravel. The coefficients Pi,j, Qi,j, and Mi,1 , . . . ,Mi,7 for i , j� �25, . . . ,32�
are given in Appendix B.

Finally, we obtain the time evolution of the states �33�t�–�36�t� in which both electrons have
reached an exit. This is given by, for times t� ttravel

� j�t� = − WE�Pm,p + Pn,q

WE
e−WE�t−ttravel� +

Qm,p + Qn,q

WE + 2WC
e−�WE+2WC��t−ttravel�

+
Mm,1 + Mn,1

2�WE + WC�
e−2�WE+WC��t−ttravel� +

Mm,2 + Mn,2

2WE
e−2WE�t−ttravel�

+
Mm,3 + Mn,3

2�WE + 2WC�
e−2�WE+2WC��t−ttravel� +

Mm,4 + Mn,4

WE + WT + 2WC
e−�WE+WT+2WC��t−ttravel�

TABLE I. Coefficients Ai, Bi, and Ci in Eqs. �26�.

i Ai Bi Ci

17 −WE A5,7,1,3� �WE+2WC� B5,7,1,3 WE �WTC1,3

18 −WE A6,8,2,4� �WE+2WC� B6,8,2,4 WE �WTC2,4

19 WE A5,7,1,3� �WE+2WC� B5,7,1,3 WE �WTD1,3

20 WE A6,8,2,4� �WE+2WC� B6,8,2,4 WE �WTD2,4

21 −WE A9,10,1,2� �WE+2WC� B9,10,1,2 WE �WTC1,2

22 WE A9,10,1,2� �WE+2WC� B9,10,1,2 WE �WTD1,2

23 −WE A11,12,3,4� �WE+2WC� B11,12,3,4 WE �WTC3,4

24 WE A11,12,3,4� �WE+2WC� B11,12,3,4 WE �WTD3,4
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+
Mm,5 + Mn,5

WE + WT
e−�WE+WT��t−ttravel� +

Mm,6 + Mn,6

2WT
e−2WT�t−ttravel� +

Mm,7 + Mn,7

WT
e−WT�t−ttravel��

+ WE�sum of all previous coefficients, so
Pm,p + Pn,q

WE
+

Qm,p + Qn,q

WE + 2WC
+ ¯ � , �28�

for

�j,m,n,p,q� � ��33,25,29,26,31�,�34,26,30,25,32�,�35,27,31,28,29�,�36,28,32,27,30�� .

Special case. In order to illustrate the solution �28�, we now derive explicit expressions for �33�t�
and �34�t�, the probabilities that a spin-up is detected in the left detector and, respectively, a
spin-up or a spin-down in the right detector, for the special case of �=0 �no decoherence in the
dots� and WC↑↓=WC↓↑=0 �no relaxation in the channel�. This corresponds to the situation in which
the time evolution occurs in the absence of any decoherence and dissipation mechanisms in the
dots and channels and only depends on WT, the tunnel rate from dot to channel, and WE, the tunnel
rate from channel to exit.

We are interested in finding �33�t� and �34�t� for times t� ttravel �since �33�t�=�34�t�=0 ∀t
� ttravel�. To that end, we first calculate � j�ttravel� for j�16 from Eqs. �21�, �22�, and �25� and then
all coefficients entering the expressions for �33�t� and �34�t� in Eqs. �28�. For �1�ttravel�
-�16�ttravel� we then obtain

�1�ttravel� = �4�ttravel� = �1�tESR�e−2WT�ttravel−tESR�, �29a�

�2�ttravel� = �3�ttravel� = �2�tESR�e−2WT�ttravel−tESR�, �29b�

�i�ttravel� = �1�tESR�e−WT�ttravel−tESR��1 − e−WT�ttravel−tESR��, i � �5,8,9,12� , �29c�

�i�ttravel� = �2�tESR�e−WT�ttravel−tESR��1 − e−WT�ttravel−tESR��, i � �6,7,10,11� , �29d�

�13�ttravel� = �16�ttravel� = �1�tESR��1 − e−WT�ttravel−tESR��2, �29e�

�14�ttravel� = �15�ttravel� = �2�tESR��1 − e−WT�ttravel−tESR��2. �29f�

Equation �29� form the initial conditions that appear in the expressions for �33�t�–�36�t� �Eqs.
�28��. We then find ∀t� ttravel

�33�t� = ��13�ttravel� −
2WT

WE − WT
�5�ttravel� +

WT
2

�WE − WT�2�1�ttravel��e−2WE�t−ttravel� + �− 2�13�ttravel�

−
2�WE − 2WT�

WE − WT
�5�ttravel� +

2WT

WE − WT
�1�ttravel��e−WE�t−ttravel� +

2WE

WE − WT
��5�ttravel�

−
WT

WE − WT
�1�ttravel��e−�WE+WT��t−ttravel� −

2WE

WE − WT
��5�ttravel� + �1�ttravel��e−WT�t−ttravel�

+
WE

2

�WE − WT�2�1�ttravel�e−2WT�t−ttravel� + �13�ttravel� + 2�5�ttravel� + �1�ttravel� , �30a�
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�34�t� = ��14�ttravel� −
2WT

WE − WT
�6�ttravel� +

WT
2

�WE − WT�2�2�ttravel��e−2WE�t−ttravel� + �− 2�14�ttravel�

−
2�WE − 2WT�

WE − WT
�6�ttravel� +

2WT

WE − WT
�2�ttravel��e−WE�t−ttravel� +

2WE

WE − WT
��6�ttravel�

−
WT

WE − WT
�2�ttravel��e−�WE+WT��t−ttravel� −

2WE

WE − WT
��6�ttravel� + �2�ttravel��e−WT�t−ttravel�

+
WE

2

�WE − WT�2�2�ttravel�e−2WT�t−ttravel� + �14�ttravel� + 2�6�ttravel� + �2�ttravel� . �30b�

One can see directly from Eqs. �30� that the time dependence of �33 and �34 is determined by five
exponential functions, whose relative magnitude depends on the ratio between WE and WT. This is
illustrated in Fig. 3, which shows Eqs. �30� as a function of t− ttravel for various rates WE and WT.
For WT�WE the time needed to reach the stationary state �the average detection time� is domi-
nated by the term �e−WT�t−ttravel�, whereas for WT�WE the terms �e−2WE�t−ttravel�, e−�WE+WT��t−ttravel�,
and e−2WT�t−ttravel� dominate.

IV. CONCLUSION

In summary, we have presented an analytical solution of a set of coupled master equations that
describes the time evolution of an entangled electron spin pair which can occupy 36 different
quantum states in a double quantum dot nanostructure. Our method of solving these equations is
based on separating the time evolution in three parts, namely two coherent rotations of the electron
spins in the isolated quantum dots and the subsequent travel of the electrons through two quantum
channels. As a result of this separation, the total number of master equations is split into various
closed subsets of coupled equations. Our analytical solution is the first of its kind for a large set of
coupled master equations, and the same method can be used to study and predict the quantum
evolution of other quantum systems which are described by a large set of quantum states. This
type of analysis complements numerical approaches to study the dynamic evolution of complex
quantum systems and allows one to obtain qualitative insight in the competition between time
scales in these systems.
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FIG. 3. The probabilities �33 to measure two spin-up electrons and �34 to measure a spin-up and a spin-down electron in
the left and right exits, respectively, for times t� ttravel. Parameters used are �1=� /2, �2=� /8 �so that �1�tESR�=0.154 and
�2�tESR�=0.346�, ttravel− tESR=0.1 ns, WE=1010 s−1 and WT=109 s−1 �9.9�109 s−1� for the solid �dashed� curves.
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APPENDIX A: SOLUTION OF EQS. „8a…–„8i…

Using the substitution Eqs. �10�, Eqs. �8a�–�8i� transform into

ẋ1 = − �WD↓↑ + WD↑↓ − ��x1 − 
Lx5 + WD↑↓e
�t, �A1a�

ẋ5 = 
Lx1 −

L

2
e�t, �A1b�

ẋ2 = − �WD↓↑ + WD↑↓ − ��x2 − �Lx4 + WD↑↓e
�t, �A1c�

ẋ4 = �Lx2 −
�L

2
e�t, �A1d�

ẋ3 = − �2WD↓↑ + 2WD↑↓ − ��x3 + �Lx6 + 
Lx7 + 2WD↑↓e
�t + �WD↓↑ − WD↑↓��x1 + x2� ,

�A1e�

ẋ6 = − �Lx3 + 2
Lx8 +
�L

2
e�t − 
LZ , �A1f�

ẋ7 = − 
Lx3 + 2�Lx8 +

L

2
e�t − �LZ , �A1g�

ẋ8 = −

L

2
x6 −

�L

2
x7, �A1h�

with Z
Re��̃1,4�0�+ �̃2,3�0��. In deriving Eqs. �A1�, we have used that

�4 = 1 − �1 − �2 − �3,

Re �̃2,3 = − Re �̃1,4 + Ze−�t.

Equations �A1� consist of three sets of coupled equations: �A1a�–�A1b�, �A1c�–�A1d�, and
�A1e�–�A1h�. The solution of the first two sets is given by

x1�t� = �− � �WD↑↓ + WD↓↑ − ���x1�0� − A1� + 2
L�x5�0� − A2�
2�


�sin �
t

+ �x1�0� − A1�cos �
t�e−�1/2��WD↑↓+WD↓↑−��t + A1e�t, �A2a�

x5�t� = ��2
L�x1�0� − A1� + �WD↑↓ + WD↓↑ − ���x5�0� − A2�
2�


�sin �
t

+ �x5�0� − A2�cos �
t�e−�1/2��WD↑↓+WD↓↑−��t + A2e�t, �A2b�
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x2�t� = �− � �WD↑↓ + WD↓↑ − ���x2�0� − A3� + 2�L�x4�0� − A4�
2��

�sin ��t

+ �x2�0� − A3�cos ��t�e−�1/2��WD↑↓+WD↓↑−��t + A3e�t, �A2c�

x4�t� = ��2�L�x2�0� − A3� + �WD↑↓ + WD↓↑ − ���x4�0� − A4�
2��

�sin ��t

+ �x4�0� − A4�cos ��t�e−�1/2��WD↑↓+WD↓↑−��t + A4e�t, �A2d�

with

�
 =
1

2
�4
L

2 − �WD↑↓ + WD↓↑ − ��2, �A3a�

�� =
1

2
�4�L

2 − �WD↑↓ + WD↓↑ − ��2, �A3b�

A1 =

L

2 + 2�WD↑↓

2�
L
2 + ��WD↑↓ + WD↓↑��

, �A3c�

A2 =

L�WD↑↓ − WD↓↑�

2�
L
2 + ��WD↑↓ + WD↓↑��

, �A3d�

A3 =
�L

2 + 2�WD↑↓

2��L
2 + ��WD↑↓ + WD↓↑��

, �A3e�

A4 =
�L�WD↑↓ − WD↓↑�

2��L
2 + ��WD↑↓ + WD↓↑��

. �A3f�

So far no approximations have been made, apart from assuming the decoherence rate � to be equal
for all off-diagonal terms of the density matrix � �Eqs. �8��. In order to obtain the solution of the
remaining equations �A1e�–�A1h�, we assume �L=0 �no influence of the ESR field on the spin in
the right dot� and WD↑↓=WD↓↑=0,23 and find24

x3�t� = ���x3�0� −
1

2
� + 2
Lx7�0�

2�̃


sin �̃
t + �x3�0� −
1

2
�cos �̃
t�e��/2�t +

1

2
e�t, �A4a�

x6�t� = x6�0�cos 
Lt + �2x8�0� − Z�sin 
Lt , �A4b�

x7�t� = �− 2
L�x3�0� −
1

2
� − �x7�0�

2�̃


sin �̃
t + x7�0�cos �̃
t�e��/2�t, �A4c�
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x8�t� = 1
2 �− x6�0�sin 
Lt + �2x8�0� − Z�cos 
Lt + Z� , �A4d�

with �̃
= 1
2
�4
L

2 −�2.

APPENDIX B: COEFFICIENTS OF EQS. „25… and „27…

The coefficients in Eqs. �25� are given by

E =
− �13�tESR� + �16�tESR� + H13 − H16 + K13 − K16 + L13 − L16

2
,

Ẽ =
�14�tESR� − �15�tESR� − H14 + H15 − K14 + K15 − L14 + L15

2
,

F =
�13�tESR� + �14�tESR� + �15�tESR� + �16�tESR� − 2�K14 + K15� − L13 − L14 − L15 − L16

2
,

F̃ =
− �13�tESR� + �14�tESR� + �15�tESR� − �16�tESR� − 2�H14 + H15� + L13 − L14 − L15 + L16

2
,

H13 =
WT��WE − WT + WC��A5,7,1,3 + A9,10,1,2� + WC�A6,8,2,4 + A11,12,3,4��

�WE − WT��WE − WT + 2WC�
,

H14 =
WT�WC�A5,7,1,3 − A11,12,3,4� + �WE − WT + WC��A6,8,2,4 − A9,10,1,2��

�WE − WT��WE − WT + 2WC�
,

H15 = − H14��5,7,1,3� ↔ �6,8,2,4�,�9,10,1,2� ↔ �11,12,3,4�� ,

H16 = − H13��5,7,1,3� ↔ �6,8,2,4�,�9,10,1,2� ↔ �11,12,3,4�� ,

K13 = H13�A → B� ,

K14 =
WT�WC�B5,7,1,3 + B11,12,3,4� + �WE − WT + WC��B6,8,2,4 + B9,10,1,2��

�WE − WT��WE − WT + 2WC�
,

K15 = K14��5,7,1,3� ↔ �6,8,2,4�,�9,10,1,2� ↔ �11,12,3,4�� ,

K16 = H16�A → − B� ,

L13 = WT��2�WE − WT + WC�2 − WC
2 ��C1,2 + C1,3� + WC

2 �D2,4 + D3,4� + WC�WE − WT + WC�

��C2,4 + C3,4 + D1,2 + D1,3��/�4�WE − WT��WE − WT + 2WC��WE − WT + WC�� ,

L14 = WT�WC�WE − WT + WC��C1,2 + C1,3 + D2,4 + D3,4� + 2�WE − WT + WC�2�C2,4 + D1,2�

+ WC
2 �C3,4 − C2,4 − D1,2 + D1,3��/�4�WE − WT��WE − WT + 2WC��WE − WT + WC�� ,

L15 = L14�C2,4 ↔ C3,4,D1,2 ↔ D1,3� ,
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L16 = L13�C1,2 ↔ D2,4,C1,3 ↔ D3,4� . �B1�

For �i , j�= �25,26� the coefficients in Eqs. �27� are given by

P25,26 = P26,25 = −
1

2�
k=1

7

�M25,k + M26,k� ,

Q25,26 = − Q26,25 = −
1

2�
k=1

7

�M25,k − M26,k� ,

M25,1 =
�WE + WC�E + WCẼ

WE + 2WC
,

M26,1 = M25,1�E ↔ − Ẽ� ,

M25,2 = M26,2 = −
1

2
F ,

M25,3 = − M26,3 =
WE

2�WE + 2WC�
F̃ ,

M25,4 =
WE�− �WT + WC���WE + 2WC�H13 − WTA5,7,1,3� + WC��WE + 2WC�H14 − WTA6,8,2,4��

WT�WE + 2WC��WT + 2WC�
,

M26,4 = M25,4�H13 ↔ H14,A5,7,1,3 ↔ A6,8,2,4� ,

M25,5 =
�WC − WT��WEK13 − WTB5,7,1,3� + WC�WEK14 − WTB6,8,2,4�

WT�WT − 2WC�
,

M26,5 = M25,5�K13 ↔ K14,B5,7,1,3 ↔ B6,8,2,4� ,

M25,6 =
WE��WE − 2WT + WC��L13 − C1,3� + WC�L14 − C2,4��

�WE − 2WT + 2WC��WE − 2WT�
,

M26,6 = M25,6�L13 ↔ L14,C1,3 ↔ C2,4� ,

M25,7 = WT��WE − WT + WC��− A17 + B17 + C17� + WC�− A18 + B18 + C18��/��WE − WT + 2WC�

��WE − WT�� ,

M26,7 = M25,7�17 ↔ 18� . �B2�
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The coefficients in Eqs. �27� for �i , j�= �27,28�, �29,31�, and �30,32� are obtained from Eqs.
�B2� by replacing indices as given in Table II.

1 See, e.g., K. Blum, Density Matrix Theory and Applications �Plenum, New York, 1996�, and references therein.
2 P. Meystre and M. Sargent, Elements of Quantum Optics �Springer, New York, 1999�.
3 Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 �2001�.
4 Reference 2, Chap. 14.
5 H.-A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 �2001�; Phys. Rev. B 65, 195321 �2002�; S. A. Gurvitz, L.
Fedichkin, D. Mozyrsky, and J. P. Berman, Phys. Rev. Lett. 91, 066801 �2003�, and references therein.

6 See, e.g., D. Saraga and D. Loss, Phys. Rev. Lett. 90, 166803 �2003�.
7 See, e.g., J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 �2001�.
8 Condensed-matter systems such as the one considered here are particularly strongly affected by decoherence due to the
strong interaction between the system and its environment. But, decoherence and dissipation are also relevant for other
quantum systems which may serve as qubits, such as cold atoms �see, e.g., C. F. Roos, G. P. T. Lancaster, M. Riebe, H.
Häffner, W. Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler, and R. Blatt, Phys. Rev. Lett. 92, 220402
�2004��.

9 M. Blaauboer and D. P. DiVincenzo, cond-mat/0502060.
10 For a review on quantum dots, see L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and

N. S. Wingreen, in Proceedings of the Advanced Study Institute on Mesoscopic Electron Transport, edited by L. P.
Kouwenhoven, G. Schön, and L. L. Sohn �Kluwer, Dordrecht, 1997�.

11 Controlling the number of electrons in a lateral quantum dot down to one or zero has recently been achieved; see M.
Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B 61,
R16315 �2000�; J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K.
Vandersypen, S. Tarucha, and L. P. Kouwenhoven, ibid. 67, 161308 �2003�; R. M. Potok, J. A. Folk, C. M. Marcus, V.
Umansky, M. Hanson, and A. C. Gossard, Phys. Rev. Lett. 91, 016802 �2003�.

12 Up to parallel magnetic fields of at least 12 T the singlet state is the ground state of a doubly occupied quantum dot; see
R. Hanson, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, I. T. Vink, and L. P. Kouwenhoven,
Phys. Rev. B 70, 241304 �2004�.

13 R. M. Potok, J. A. Folk, C. M. Marcus, and V. Umansky, Phys. Rev. Lett. 89, 266602 �2002�.
14 V. N. Golovach, A. E. Khaetskii, and D. Loss, Phys. Rev. B 69, 245327 �2004�, and references therein.
15 See Sec. II C in H. A. Engel and D. Loss, Phys. Rev. B 65, 195321 �2002�.
16 For the same reason tunneling of an electron from dot to channel—which is an incoherent process and may involve

inelastic scattering from one orbital to another—does not affect the spin coherence of the entangled pair.
17 Assuming the same decoherence rate � for both dots is not a crucial assumption and Eqs. �8� can straightforwardly be

solved for different decoherence rates in the left and right dot. The resulting solution is qualitatively of the same form as
Eqs. �9� and �10�, only with more lengthy expressions.

18 The RWA approximation �Ref. 2� is not essential and one can solve Eqs. �8� without it, which results in a solution that
is qualitatively similar. Since �t1�1 in our system �Ref. 9�, where t1 is the time required to rotate one spin, the RWA is
an excellent approximation in practice.

19 J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven,
Nature �London� 430, 431 �2004�.

TABLE II. Required substitution of indices and coefficients in Eqs. �27� in
order to obtain the corresponding coefficients for �i�t�&� j�t� with �i , j�
� ��27,28� , �29,31� , �30,32��.

�27,28� �29,31� �30,32�

25→28 25→29 25→32
26→27 26→31 26→30
13→16 13→16
14→15 14→15
17→20 17→21 17→24
18→19 18→23 18→22
E↔−E E↔−E

Ẽ↔−Ẽ Ẽ↔−Ẽ
A5,7,1,3↔−A6,8,2,4 �5,7 ,1 ,3�→ �9,10,1 ,2� A5,7,1,3→−A11,12,3,4

B5,7,1,3↔B6,8,2,4 B5,7,1,3→B11,12,3,4

�6,8 ,2 ,4�→ �11,12,3 ,4� A6,8,2,4→−A9,10,1,2

B6,8,2,4→B9,10,1,2

C1,3→D2,4 C1,3→C1,2 C1,3→D3,4

C2,4→D1,3 C2,4→C3,4 C2,4→D1,2
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20 V. Cerletti, O. Gywat, and D. Loss, cond-mat/0411235.
21 R. Deblock, E. Onac, L. Gurevich, and L. P. Kouwenhoven, Science 301, 203 �2003�.
22 See the calculation of WC↑↓ and WC↓↑ in Ref. 9.
23 For the general case the expressions are rather lengthy, but not qualitatively different.
24 The solutions for x6�t� and x8�t� given here are valid for �L=0, i.e., assuming the W’s to be zero is not necessary.
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The major purpose of this paper is to construct a weak Hopf algebra with grading
from a family of Hopf algebras, and then to gain a related quantum G-double with
regular R-matrix. First, over a field k, we introduce a so-called semilattice graded
weak Hopf algebra H= ���YH�. Then the quantum G-double D��H� of H is ob-
tained in case that H is commutative. Moreover, it is shown that D��H� is semi-
simple �respectively, von Neumann regular� if and only if H is a semisimple �re-
spectively, von Neumann regular� Hopf algebra. At last, a nontrivial example of
semilattice graded weak Hopf algebras is obtained. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2000687�

I. INTRODUCTION

Because of the important role of Hopf algebra in the theory of quantum group and related
mathematical physics, along with the deepening of researches, the meaning of some weaker
concepts of Hopf algebra is understood and is paid close attention more and more. A well-known
example is weak Hopf algebra, which is introduced in Ref. 6 for studying the noninvertible
solution of the Yang-Baxter equation based on this class of bialgebras �in Refs. 6 and 12�. Due to
the importance of the Yang-Baxter equation in theoretical physics, its solution is the keystone in
research. The theory of singular solutions extends largely the scope of the research field. On the
other aspect, there is a tight relation between weak Hopf algebra and regular monoid, for example,
a semigroup algebra is a weak Hopf algebra if and only if the semigroup is a regular monoid.
Obviously, it is necessary to find more nontrivial weak Hopf algebras in order to study these two
aspects deeply. In this paper, we construct a so-called semilattice graded weak Hopf algebra from
a family of Hopf algebras. An example of semilattice graded weak Hopf algebra is just Clifford
moniod algebra. And, based on Ref. 13, a regular solution of the Yang-Baxter equation and its
decomposition can be obtained. Moreover, similar to the corresponding results in Ref. 10, we will
finish the decomposition and semisimplicity of G-quantum doubles of semilattice graded weak
Hopf algebras under the condition of commutativity.

First, we introduce some useful concepts.
H is called an almost bialgebra if H is an algebra and also a coalgebra and the comultiplica-

tion of H is an algebra morphism.
A bialgebra H over k is called a weak Hopf algebra6 if there exists T�Homk�H ,H� �the

convolution algebra� satisfying id�T� id=id and T� id�T=T, where T is called a weak antipode of
H. A weak Hopf algebra H is called �1� a perfect weak Hopf algebra7 if its weak antipode T is an
antibialgebra morphism satisfying �id�T��H��C�H� �the center of H�; �2� a coperfect weak Hopf
algebra9 if its weak antipode is an antibialgebra morphism satisfying ��x�x�T�x�� � x�
=��x�x�T�x�� � x� for any x�H; �3� a biperfect weak Hopf algebra if it is perfect and also
coperfect.

a�Electronic mail: fangli@zju.edu.cn
b�Electronic mail: hjcao99@163.com
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Since the concept of weak Hopf algebra was introduced in Ref. 6, and more early, in an
unpublished report,11 one has only two ways to give examples, that is, through semigroup algebras
of regular monoids �in particular, Clifford monoids� and the weak quantum algebras wslq�2� and
vslq�2� �see Ref. 12�.

The same name “weak Hopf algebra” was also used as another kind of generalization of Hopf
algebra in Refs. 2, 20, and 16 which comultiplication is no longer required to preserve the unit
�equivalently, the counit is not required to be an algebra homomorphism�. We must point out that
these two kinds of weak Hopf algebra are completely different generalizations of each other in
various directions, since the only common subclass just consists of Hopf algebras �see Ref. 8�. The
initial motivation of the latter was its connection with the theory of algebra extension.

In this paper, we always assume H denotes a weak Hopf algebra under Li’s meaning over a
field k and G�H� the monoid of all grouplike elements in H. A semigroup with identity is called a
monoid.

A semigroup S is called a Clifford semigroup17 if it is a regular semigroup and all of its
idempotents lie in its center C�S�. An equivalent definition is that a Clifford semigroup S is a
semilattice of groups, which means the set of maximal subgroups �G� :��Y� of S can be indexed
by elements of a semilattice �i.e., a commutative semigroup of idempotents� Y such that S
=���YG� and G�G��G�� for each �, ��Y. For each �, ��Y with ��=� there exists a
homomorphism ��,� :G�→G�. The homomorphisms are such that ��,� is the identity map on G�,
and if ��=�, ��=�, then ��,���,�=��,�. For any �, ��Y and a�G�, b�G�, the multiplication
in S is given by ab=��,���a���,���b�. In a semilattice Y, a partial order � is defined satisfying
��� if ��=� for �, ��Y, which is called the natural partial order in Y.

It is easy to see for every Clifford monoid S, the semigroup algebra kS is a weak Hopf algebra
and kS= ���YkG� is a semilattice grading sum. As its natural generalization, we will define the
following concept, which provides a way to obtain a class of weak Hopf algebras through some
given Hopf algebras.

Definition I.1: A weak Hopf algebra H with weak antipode T is called a semilattice graded
weak Hopf algebra if H= ���YH� is a semilattice grading sum where H� is a weak sub-Hopf
algebras of H which is a Hopf algebra with antipodes �T�H�

for each ��Y and there homomor-
phisms of Hopf algebras ��,� from H� to H� if ��=�, such that for a�H� and b�H�, the
multiplication a�b in H can be given by a�b=��,���a���,���b�.

Thus the set of grouplike elements of H is the Clifford monoid G�H�= �Y ;G�H�� ,��,��.
In Sec. II, for a semilattice graded weak Hopf algebra H= ���YH�, we define a kind of

product, the quantum G-double D��H�=Hop*��H which give a nontrivial solution for the Yang-
Baxter equation in case H is commutative. In Sec. III, we discuss the structure of D��H� depending
upon D��H�����Y� and then obtain the structure theorem Theorem III.4. Moreover, in Sec. IV, by
using this structure theorem, we will verify that the quantum G-double D��H� of H cannot be
semisimple unless H is a Hopf algebra. In the special case for a commutative Clifford monoid, our
result in Sec. IV is similar to that in Ref. 10. At last, we will construct an example of this kind of
weak Hopf algebras through Ore extension as the construction producing pointed Hopf algebras
from a group algebra in Ref. 1.

II. QUANTUM G-DOUBLE OF A COMMUTATIVE WEAK HOPF ALGEBRA

In this section, we suppose a semilattice graded weak Hopf algebra H= ���YH� is commu-
tative with finite dimension.

Let B� be a basis of H� for every ��Y, then B=���YB� is a basis of H. For any a�B�, let
�a be the dual morphism of a in H�

* , that is,

�a�x� = 	1 if a = x � H�,

0 if a � x � H�.

Then, ��a �a�B�� is a basis of H�
* for any ��Y.
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At k-linear spaces, we have H* � H=H* � ����YH��. Moreover, H*= ����YH��*

=
��Y�H��*. Y is finite since H is finite dimensional. As is known, the direct product and the
direct sum are equivalent for a finite number of linear spaces. So, 
��Y�H��*= ���Y�H��*.

Since for any f �H*= ���YH�
* , it can be decomposed to f =���Y f� with f��H�

* . So we can
introduce a kind of product as follows.

Definition II.1: For a semilattice graded weak Hopf algebra H= ���YH�, we define a product
D��H�=Hop*��H from H which can be constructed by

�f��a��g��b� = fg�1H�
?���ab

for f �H�1

op*, g�H�2

op*, a�H�1
, b�H�2

, where fg�1H�
?� means the morphism,

x���x�f�x��g�1H�
x�� for x�H�1

. We call D��H� the quantum G-double of H. (Note that all “?”
in this paper are under the same meaning.)

Thus, we get D��H�= ��,��Y�H�
*

� H�� as linear spaces. Denote D��H� ,H��=H�
op*

� H� and
QH�H��=H�

op*
� H= ���YD��H� ,H��. Then, as linear spaces,

D��H� = �
��Y

QH�H�� = �
�,��Y

D��H�,H�� . �2.1�

Theorem II.2: For a commutative semilattice graded weak Hopf algebra H= ���YH�, the
quantum G-double D��H� defined above is a noncommutative and noncocommutative almost
bialgebra with regular R-matrix R=���Y�a��B�

��H�
��a�� � ��a�

��1H�
�, but it is usually not

quasitriangular although �	 � idH��R�=R13R23 and �idH � 	��R�=R13R12 hold.
Proof: �1� First we can prove that D��H� is an almost bialgebra.
For any �1, �2, �1, �2�Y, x�B�1

, y�B�2
, a�B�1

and its duality �a in H�1

op*, b�B�2
and its

duality �b in H�2

op*, we have

��a��x���b��y� = ��a��x���b��y� = �a�b�1H�1
?���xy ,

where

�a�b�1H�1
?� = 	0 if �1�1 � �2,

�a�b�1H�
?� if �1�1 = �2.

Then, for any x�B�1
, y�B�2

, z�B�3
, a�B�1

and its duality �a in H�1

op*, b�B�2
and its

duality �b in H�2

op*, c�B�3
and its duality �c in H�3

op*, we have

���a��x���b��y����c��z� = ��a�b�1H�1
?���xy���c��z�

= 	0 if �1�1 � �2

��a�b�1H�1
?���xy���c��z� if �1�1 = �2

= 	0 if �1�1 � �2 or �1�1�2 � �3

�a�b�1H�1
?��c�1H�1�2

���xyz if �1�1 = �2 and �1�1�2 = �3,

��a��x����b��y���c��z�� = ��a��x���b�c�1H�2
?���yz�

= 	0 if �2�2 � �3

���a��x���b�c�1H�2
?���yz� if �2�2 = �3

= 	0 if �2�2 � �3 or �1�1 � �2

�a��b�c�1H�2
?��1H�1

?����xyz if �2�2 = �3 and �1�1 = �2.
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If �1�1=�2 and �1�1�2=�3, then �2�2=�2�1�1=�1�1�2=�3; conversely, if �1�1=�2 and
�2�2=�3, then �1�1�2=�2�2=�3. Hence, �1�1=�2 and �1�1�2=�3⇔�1�1=�2 and �2�2=�3.
So, for some d�H�1

and u�H*, then

��a�b�1H�1
?��c�1H�1�2

?���xyz��d � u� = �
�d�

�a�d���b�1H�1
d���c�1H�1�2

d��u�xyz� ,

��a��b�c�1H�2
?���1H�1

?���xyz��d � u� = �
�d�

�a�d���b�c�1H�2
?��1H�1

d��u�xyz�

= �
�d�

�a�d���b��1H�1
d�����c�1H�2

�1H�1
d����u�xyz�

= �
�d�

�a�d���b�1H�1
d���c�1H�2

1H�1
d��u�xyz�

= �
�d�

�a�d���b�1H�1
d���c�1H�1�2

d��u�xyz� .

That is ���a��x���b��y����c��z�= ��a��x����b��y���c��z��.
Moreover, 1D�H�=�H��1H=���Y�H�

��1H is the identity of D��H�. Since for any �a�H�
* ,

x�H�,

��H��1H���a��x� = �H�a�1H?���1Hx = �H�
�a��x ,

��a��x���H��1H� = �a�H�1H�
?���x1H = �a�H�1H�

��H�?���x = �a�H��x ,

and for any z�H�, �a�H�z�=��z��a�z���H�z��=��z��a�z���H�
�z��=�a�x�, that is ��H��1H�


��a��x�= ��a��x���H��1H�=�a�x�.
Therefore D��H� is an algebra.
The comultiplication 	 in D��H� is trivial, that is, for f �Hop* and x�B,

	�f��x� = �
�f��x�

�f���x�� � �f���x�� ,

where 	�f�=��f�f� � f� according to the comultiplication in Hop*.
The counit � of D��H� is given as ���a��x�=�H

�
op*��a��H�

�x� for a�B�, x�B�. But,
�H

�
op*��a�=�H

�
*��a��1k�=�a�H�

�1k�=�a�1H�
�=�a,1H�

. Therefore, we get

���a��x� = �a,1H��H�
�x� .

Obviously, �	 � 1�	= �1 � 	�	.
For any f �H�

* , x�H�, �� � 1�	�f��x�= �� � 1���f�,�x��f���x�� � �f���x��=��f�,�x���f���x��

�f���x��=��f�,�x��H

�
op*�f���H�

�x��f���x�=��f�,�x��H
�
op*�f��f����H�

�x��x�= f��x. Similarly, �1
� ��	�f��x�= f��x. Hence, �� � 1�	= �1 � ��	=id. Therefore, D��H� becomes a coalgebra on 	
and �.

For any a�B�1
, b�B�2

, x�B�1
, y�B�2

,

�a� 	 is an algebra homomorphism,

	���a��x���b��y�� = 	��a�b�1H�1
?���xy� =	0 if �1�1 � �2

	��a�b�1H�1
?���xy� if �1�1 = �2

=	0 if �1�1 � �2

� ���a�b�1H�1
?�����x�y�� � ���a�b�1H�1

?�����x�y�� if �1�1 = �2,

083519-4 F. Li and H. Cao J. Math. Phys. 46, 083519 �2005�

                                                                                                                                    



	��a��x�	��b��y� = � �
��a�,�x�

��a���x�� � ��a���x���� �
��b�,�y�

��b���y�� � ��b���y���
= �

��a�,��b�,�x�,�y�
��a���x����b���y�� � ��a���x����b���y��

= �
��a�,��b�,�x�,�y�

��a��b��1H�1
?���x�y�� � ��a��b��1H�1

?���x�y��

=	0 if �1�1 � �2

�
��a�,��b�,�x�,�y�

��a��b��1H�1
?���x�y�� � ��a��b��1H�1

?���x�y�� if �1�1 = �2.

For any u, v�H*, s, t�B�1
,

	���a��x���b��y���s � u � t � v�

=	0 if �1�1 � �2

� ��a�b�1H�1
?����s�u�x�y����a�b�1H�1

?����t�v�x�y�� if �1�1 = �2

=	0 if �1�1 � �2

� ��a�b�1H�1
?���st�u�x�y��v�x�y�� if �1�1 = �2

=	0 if �1�1 � �2

�
�st�

�a�s�t���b�1H�1
s�t��u�x�y��v�x�y�� if �1�1 = �2,

	��a��x�	��b��y��s � u � t � v�

=	0 if �1�1 � �2

�
�s�,�t�

�a��s���b��1H�1
s��u�x�y���a��t���b��1H�1

t��v�x�y�� if �1�1 = �2

=	0 if �1�1 � �2

�
�s�,�t�

�a�s�t���b�1H�1
s�1H�1

t��u�x�y��v�x�y�� if �1�1 = �2

=	0 if �1�1 � �2

�
�s�,�t�

�a�s�t���b�1H�1
s�t��u�x�y��v�x�y�� if �1�1 = �2.

Thus, we have 	���a��x���b��y���s � u � t � v�=	��a��x�	��b��y��s � u � t � v� for any
u, v�H*, s, t�B�1

. It implies

	���a��x���b��y�� = 	��a��x�	��b��y� .

�b� � is not an algebra homomorphism,

����a��x���b��y�� = ���a�b�1H�1
?���xy�

=	0 if �1�1 � �2

�H
�1

* ��a��H
�1

* ��b�1H�1
?���H�1�2

�xy� if �1�1 = �2

=	0 if �1�1 � �2

�a�1H�1
��b�1H�1

1H�1
��H�1�2

�xy� if �1�1 = �2
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=	0 if �1�1 � �2

�a,1H�1

�b,1H�2

�H�1�2
�xy� if �1�1 = �2,

���a��x����b��y� = �H
�1

* ��a��H�1
�x��H

�2

* ��b��H�2
�y� = �a,1H�1

�b,1H�2

�H�1
�x��H�2

�y� .

So, in the usual, ����a��x���b��y������a��x����b��y�, hence the counit � is not an algebra
homomorphism.

It implies, in general, D��H� is only an almost bialgebra but not a bialgebra.
�2� Next, we can find a regular R-matrix R=���Y�a��B�

��H�
��a�� � ��a�

��1H�
� �i.e., there

exists a R̄ such that R̄RR̄= R̄ and RR̄R=R� which is a nontrival solution of the Yang-Baxter
equation �i.e., not the identity of �Hop*��H� � �Hop*��H��. This is the reason we say D��H�
directly as the so-called quantum G-double.

Since

R12 = �
��Y

�
a��B�

��H�
��a�� � ��a�

��1H�
� � ��H��1H� ,

R13 = �
��Y

�
a��B�

��H�
��a�� � ��H��1H� � ��a�

��1H�
� ,

R23 = �
��Y

�
a��B�

��H��1H� � ��H�
��a�� � ��a�

��1H�
� ,

and

R12R13 = � �
��Y

�
a��B�

��H�
��a�� � ��a�

��1H�
� � ��H��1H��� �

��Y
�

a��B�

��H�
��a��

� ��H��1H� � ��a�
��1H�

��
= �

�,��Y
�

a��B�,b��B�

��H�
��a����H�

��b�� � ��a�
��1H�

���H��1H� � ��H��1H���b�
��1H�

�

= �
�,��Y

�
a��B�,b��B�

��H�
�H�

�1H�
?���a�b��

� ��a�
��1H�

� � ��b�
��1H�

� .

From the definition we know that �H�
�H�

�1H�
?�=0 if ���, hence

�H�
�H�

�1H�
?���a�b� = 	0 if � � � ,

�H�
��a�b� if � = � .

Then

R12R13 = �
��Y

�
a�,b��B�

��H�
��a�b�� � ��a�

��1H�
� � ��b�

��1H�
� ,
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R12R13R23 = � �
��Y

�
a�,b��B�

��H�
��a�b�� � ��a�

��1H�
� � ��b�

��1H�
��� �

��Y
�

c��B�

��H��1H�

� ��H�
��c�� � ��c�

��1H�
��

= �
�,��Y

�
a�,b��B�,c��B�

��H�
��a�b����H��1H� � ��a�

��1H�
���H�

��c��

� ��b�
��1H�

���c�
��1H�

�

= �
�,��Y

�
a�,b��B�,c��B�

��H�
��a�b�� � ��a�

�H�
�1H�

?���c��

� ��b�
�c�

�1H�
?���1H�

1H�
�

= �
��Y

�
a�,b�,c��B�

��H�
��a�b�� � ��a�

��c�� � ��b�
�c�

��1H�
� .

Similarly, we can get

R23R13R12 = �
��Y

�
c�,b�,a��B�

��H�
��b�a�� � ��a�

��c�� � ��c�
�b�

��1H�
� .

Since H is commutative and the random choosing of a�, b�, c�, we can conclude that
R12R13R23=R23R13R12. This shows that R is a nontrivial solution of Yang-Baxter equation.

It can be proved that R is regular with the regular inverse R̄=���Y�a��B�
��H�

��a�� � ���a�

�T� � 1H�
�. In fact, since

RR̄ = � �
��Y

�
a��B�

��H�
��a�� � ��a�

��1H�
��� �

��Y
�

a��B�

��H�
��a�� � ���a�

� T���1H�
��

= �
�,��Y

�
a��B�,b��B�

��H�
��a����H�

��b�� � ��a�
��1H�

����b�
� T���1H�

�

= �
�,��Y

�
a��B�,b��B�

��H�
�H�

�1H�
?���a�b�� � ��a�

��b�
� T��1H�

?���1H�
1H�

�

= �
��Y

�
a�,b��B�

��H�
��a�b�� � ��a�

��b�
� T���1H�

� .

Consider an element =b � u � c � v with b, c�H and u, v�H*. Since �H�
�H��=0 if ���, we

can suppose that b, c�H� for some ��Y. So,

RR̄,� = �
��Y

�
a�,b��B�

��H�
��a�b�� � ��a�

��b�
� T���1H�

��b � u � c � v�

= �
��Y

�
a�,b��B�

�H�
�b�u�a�b���

�c�
�a�

�c����b�
� T��c��v�1H�

�

= �H�
�b�v�1H�

� �
��Y

�
a�,b��B�

�
�c�

u�a�b���a�
�c���b�

�T�c���

= �H�
�b�v�1H�

��
�c�

u� �
a��B�

�a�
�c��a��u� �

b��B�

�b�
�T�c���b��� �

a��B�

�a�
�x�a� = x�

= �H�
�b�v�1H�

��
�c�

u�c��u�T�c��� = �H�
�b�v�1H�

�u�c�T�c��� = �H�
�b�v�1H�

�u��H�
�c�1H�

�

= �H�
�b�v�1H�

��H�
�c�u�1H�

� = ���H�
��1H�

� � ��H�
��1H�

���b � u � c � v� .

From random of choice of �, we can get RR̄=���Y��H�
��1H�

� � ��H�
��1H�

�. Hence,
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RR̄R = � �
��Y

��H�
��1H�

� � ��H�
��1H�

��� �
��Y

�
a��B�

��H�
��a�� � ��a�

��1H�
��

= �
�,��Y

�
a��B�

��H�
��1H�

���H�
� a�� � ��H�

��1H�
���a�

��1H�
�

= �
�,��Y

�
a��B�

��H�
�H�

�1H�
?���1H�

a�� � ��H�
�a�

�1H�
?���1H�

1H�
�

= �
��Y

�
a��B�

��H�
��a������H�

�a�
��1H�

� = �
��Y

�
a��B�

��H�
��a�� � ��a�

��1H�
� = R .

Similarly, we can prove that R̄RR̄= R̄. So R̄ is a regular inverse of R.
It can be proved that R satisfies �	 � idH��R�=R13R23 and �idH � 	��R�=R13R12 as follows:

�	 � idH��R� = �	 � idH�� �
��Y

�
a��B�

��H�
��a�� � ��a�

��1H�
��

= �
��Y

�
a��B�

�
�a��

��H�
��a��� � ��H�

��a��� � ��a�
��1H�

� ,

R13R23 = � �
��Y

�
a��B�

��H�
��a�� � ��H��1H� � ��a�

��1H�
��


� �
��Y

�
a��B�

��H��1H� � ��H�
��a�� � ��a�

��1H�
��

= �
�,��Y

�
a��B�,b��B�

��H�
��a����H��1H� � ��H��1H���H�

��b�� � ��a�
�1H�

���b�
��1H�

�

= �
�,��Y

�
a��B�,b��B�

��H�
��a�� � ��H�

��b�� � ��a�
�b�

�1H�
?���1H�

1H�
�

= �
��Y

�
a�,b��B�

��H�
��a�� � ��H�

��b�� � ��a�
�b�

��1H�
�

since �a�
�b�

�1H�
?�=0 if ���.

For some a � t � b � u � c � v=�, if a�H�, then �H�
�a�=0, similarly discussed we can sup-

pose that there exists a a�Y such that a, b, c�H�, and t, u, v�H*. Then

�	 � idH��R�,�� = �
a��B�

�
�a��

�H�
�a��H�

�b��a�
�c�t�a���u�a���v�1H�

�

= �H�
�a��H�

�b�v�1H�
� �

a��B�

�
�a��

�a�
�c�t�a���u�a���

�since a = �
a��B�

�a�
�a�a�, 	�a� = �

�a�
a� � a� = �

a��B�

�a�
�a�a�� � a���

= �H�
�a��H�

�b�v�1H�
��

�c�
t�c��u�c�� = �H�

�a��H�
�b�v�1H�

�uv�c� ,

R13R23,�� = �
a�,b��B�

�H�
�a��H�

�b�v�1H�
�t�a��ub�

�a�
�b�

�c�

= �H�
�a��H�

�b�v�1H�
��

�c�
t� �

a��B�

�a�
�c��a��u� �

b��B�

�b�
�c��b��

= �H�
�a��H�

�b�v�1H�
��

�c�
t�c��u�c�� = �H�

�a��H�
�b�v�1H�

�uv�c� .
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From the random choice of �, we can conclude that �	 � idH��R�=R13R23. Similarly, we can prove
that �idH � 	�R��=R13R12.

Now, we explain that R usually does not satisfy 	op�h�R=R	�h� for any h�D��H�, that is,
D��H� is not almost cocommutative in general.

For any a�B�, x�B�, we have

	op��a��x�R = � �
��a�,�x�

��a���x�� � ��a��x���� �
��Y

�
a��B�

��H�
��a�� � ��a�

��1H�
��

= �
��Y

�
a��B�

�
��a�,�x�

��a���x����H�
��a�� � ��a���x����a�

��1H�
�

= �
��Y

�
a��B�

�
��a�,�x�

��a��H�
�1H�

?���x�a�� � ��a��a�
�1H�

?���x�1H�
�

= �
a��B�

�
��a�,�x�

��a��H�
�1H�

?���x�a�� � ��a��a�
�1H�

?���x�1H�
� �when � = ��� ,

R	��a��x� = � �
��Y

�
a��B�

��H�
��a�� � ��a�

��1H�
��� �

��a�,�x�
��a���x�� � ��a��x���

= �
��Y

�
a��B�

�
��a�,�x�

��H�
��a����a���x�� � ��a�

��1H�
���a���x��

= �
��Y

�
a��B�

�
��a�,�x�

��H�
�a��1H�

?���a�x�� � ��a�
�a��1H�

?���1H�
x��

= �
a��B�

�
��a�,�x�

��a���a�x�� � ��a�
�a���1H�

x�� �when � = �� .

Then, for some =b � u � c � v, with b, c�H� and u, v�H*, we can get

	op��a��x�R,� = �
a��B�

�
��a�,�x�

�
�b�,�c�

�a��b���H�
�1H�

b��u�x�a���a��c���a�
�c��v�x�1H�

�

= �
a��B�

�
�x�

�
�b�,�c�

�a�b�c���H�
�b���,�1H�

��,��u�x�a���a�
�1H�

c��v�x�1H�
�

= �
a��B�

�
�x�

�
�b�,�c�

�a�b�c���H�
�b���H�

�1H�
�u�x�a���a�

�1H�
c��v�x�1H�

�

= �
�x�

�
�b�,�c�

�a�b��H�
�b��c��u�x� �

a��B�

�a�
�1H�

c��a��v�x�1H�
�

= �
�x�

�
�c�

�a�bc��u�x�1H�
c��v�x�1H�

� = �
�x�

�
�c�

�a�bc��u�x�c��v�x�1H�
� ,

R	��a��x�,� = �
a��B�

�
��a�,�x�

�
�c�

�a��b�u�a�x���a�
�c���a��c��v�x�1H�

�

= �
�x�

�
�c�

�a�bc��u� �
a��B�

�a�
�c��a�x��v�x�1H�

� = �
�x�

�
�c�

�a�bc��u�c�x��v�x�1H�
� .

From the above equation, we can see that in general 	op��a��x�R�R	��a��x� unless H is
cocommutative.

Remark: The R-matrix can be decomposed as R=���Y�a��B�
��H�

��a�� � ��a�
��1H�

�
=���YR�, where R�=�a��B�

��H�
��a�� � ��a�

��1H�
� is the R-matrix for the classical quantum

double D�H�� for every ��Y. Moreover, for any �, ��Y,
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R�R� = � �
a��B�

��H�
��a�� � ��a�

��1H�
��� �

a��B�

��H�
��a�� � ��a�

��1H�
��

= �
a��B�,b��B�

���H�
��a����H�

��b��� � ���a�
��1H�

���b�
��1H�

��

= �
a��B�,b��B�

��H�
�H�

�1H�
?���a�b�� � ��a�

�b�
�1H�

?���1H�
1H�

�

=	0 if � � � ,

�
a�,b��B�

��H�
��a�b�� � ��a�

�b�
��1H�

� if � = � ,

which usually is not equal to R��.
This implies that R=���YR� does not have the graded structure.

III. STRUCTURE OF QUANTUM G-DOUBLE

In this section, we discuss the structure of D��H� depending upon D��H�����Y� and then
obtain the structure theorem.

First, for �1, �2, �1, �2�Y, we consider the multiplication between D��H�1
,H�1

� and
D��H�2

,H�2
�. For x�B�1

, y�B�2
, a�B�1

and its duality �a in H�1

op*, b�B�2
and its duality �b in

H�2

op*, from definition we have

��a�x���b�y� = �a�b�1H�1
?��xy = 	0 if �1�1 � �2,

�a�b�1H�1
?� if �1�1 = �2,

hence, �a�b�1HB1
?� is always in H�1

op*. And, xy�H�1�2
. Therefore, ��a��x�


��b��y��H�1

op*��H�1�2
. Since ��a :a�B�1

� and ��b :b�B�2
� are, respectively, a basis of H�1

op*

and H�2

op*, we get that

�H�1

op*��H�1
��H�2

op*��H�2
� � H�1

op*��H�1�2
,

that is,

D��H�1
,H�1

�D��H�2
,H�2

� � D��H�1
,H�1�2

�; �3.1�

and, if and only if �2��1 or �2��1, the following holds:

D��H�1
,H�1

�D��H�2
,H�2

� = 0, �3.2�

since in this case, 1H�1
a�H�2

; then always 1H�1
a�b.

In �3.1�, let �1=�2=�, then

D��H�,H�1
�D��H�,H�2

� � D��H�,H�1�2
� . �3.3�

We call D��H� ,H�� the bicrossed G-product of two subweak Hopf algebras H� and H� which
are included in H= ���YH�; QH�H�� the bicrossed G-product of H and its subweak Hopf algebra
H�. Denote D��H� ,H��=H�

op*��H�; QH�H��=H�
op*��H.

First, we need the following lemmas on D��H� ,H�� and QH�H��.
Lemma III.1: For all �, ��Y, D��H� ,H�� are coalgebras and subrings of D��H�. For any

���, D��H� ,H�� is a null subring. For any ���, D��H� ,H�� is a bialgebra under the same
multiplication.

Proof: For f �H�
op* and x�H�,

�i� define 	, D��H� ,H��→D��H� ,H�� � D��H� ,H�� satisfying 	�f��x�=��f��x��f���x��
� �f���x��, where 	�f�=��f�f� � f� according to the comultiplication of H�

op*.
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�ii� Define �, D��H� ,H��→k satisfying ��f��x�=�H
�
op*�f��H�

�x�.

From the discussion of Theorem II.2 we know D��H� ,H�� becomes a coalgebra on 	 and �.
The multiplication of D��H� ,H�� is given as that of D��H�, that is, for �, ��Y, a, b�B�, and

x, y�B�,

��a��x���b��y� = �a�b�1H�
?���xy = 	0 if �� � � ,

�a�b�1H�
?���xy if �� = � .

In �3.3�, let �1=�2=�, then D��H� ,H��D��H� ,H���D��H� ,H�� since ��=�. Then, every
D��H� ,H�� is a subring of D��H�.

By �3.2�, when and only when ���, D��H� ,H��D��H� ,H��=0. Hence, in this case,
D��H� ,H�� is a null subring.

Now, suppose that ���. D��H� ,H�� possesses the identity �H�
��1H�

since for any a�B�,
x�B�, ��a��x���H�

��1H�
�=�a�H�

�1H�
?���x1H�

=�a�H�
�1H�

?���x, and ��H�
��1H�

���a��x�
=�H�

�a�1H�
?���x since ���, that is ��=�, hence, for any b�H�, u�H*, we have

���a��x���H�
��1H�

���b � u� = �
�b�

�a�b���H�
�1H�

b��u�x� = �
�b�

�a�b���H�
���,��1H�

���,��b���u�x�

= �
�b�

�a�b���H�
��,��1H�

��H�
�b��u�x�

= �
�b�

�a�b��H�
�b����H�

�1H�
�u�x� = �a�b�u�x� = ��a��x��b � u�

and

���H�
��1H�

���a��x���b � u� = �
�b�

�H�
�b���a�1H�

b��u�x� = �
�b�

�a�1H�
�H�

�b��b��u�x�

= �a�1H�
b�u�x� = �a���,��1H�

���,��b��u�x� = �a�1H�
b�u�x�

= �a�b�u�x� = ��a��x��b � u� .

That is ��a��x���H�
��1H�

�= ��H�
��1H�

���a��x�=�a��x.
Therefore D��H� ,H�� itself is an algebra.
For any a, b�B�, x, y�B�, as discussed in Theorem II.2, in the case of �1=�2, �1=�2, we

can have

	���a��x���b��y�� = 	��a��x�	��b��y� .

Obviously,

	�1D��H�,H��� = 	��H�
��1H�

� = ��H�
��1H�

� � ��H�
��1H�

� = 1D��H�,H�� � 1D��H�,H��.

Since ���, then from Theorem II.2, in the case of �1=�2, �1=�2 we have ����a��x�

��b��y��=���a��x����b��y�. And, ��1D��H�,H���=���H�

��1H�
�=�H

�
op*��H�

��H�
�1H�

�
=�H�

�1H�
�1=1. Therefore, � is an algebra morphism.

From the discussion above, we know that D��H� ,H�� becomes a bialgebra.
Lemma III.2: For any ��Y, QH�H�� is a right ideal of D��H� and itself is a coalgebra with

comultiplication 	 satisfying 	���a��x���b��y��=	��a��x�	��b��y� for any x, y�B and a,
b�B�. Moreover, QH�H��=NH�H�� � BH�H�� where NH�H��=���Y,���D��H� ,H�� is a null right
ideal of D��H� and is a subcoalgebra and ideal of QH�H��, BH�H��=���Y,���D��H� ,H�� is a
sub-bialgebra of QH�H�� with NH�H��BH�H��=0 and BH�H��NH�H���NH�H��.

Proof: From �3.1� and �3.3�, we get QH�H��D��H��QH�H�� for any ��Y, which means that
QH�H�� is a right ideal of D��H�, and thus D��H� can be decomposed into a direct sum of these
ideals.
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For f �H�
op* and x�B,

�1� Define QH�H��→QH�H�� � QH�H�� satisfying 	�f��x�=��f�,�x��f���x�� � �f���x��, where
	�f�=��f�f� � f� according to the comultiplication of H�

op*.
�2� Define �, QH�H��→k satisfying ��f��x�=�H

�
op*�f��H�x�.

As for D��H� ,H�� in Lemma III.1, QH�H�� is a coalgebra on 	 and �. And as discussed in
Theorem II.2, in the case of �1=�2. That is, for any a, b�B�, x�B�1

�B, y�B�2
�B, we have

	���a��x���b��y�� = 	��a��x�	��b��y� .

By the definition of 	, NH�H�� and BH�H�� are both subcoalgebras of QH�H��.
Let ��� and ��Y. From �3.3�, D��H� ,H��D��H� ,H��=0. It means that NH�H��QH�H��

=0. Specially for NH�H��NH�H��=0 �i.e., NH�H�� is null� and NH�H��BH�H��=0.
For any D��H� ,H� in D��H�, D��H� ,H��D��H� ,H��D��H� ,H��. But, ���. So, ���.

Then, D��H� ,H���NH�H��. Thus, NH�H�� is a right ideal of D��H�.
If ���, then ���� since ���, thus D��H� ,H��D��H� ,H���D��H� ,H����NH�H��. It

follows that BH�H��NH�H���NH�H�� and NH�H�� is an ideal of QH�H��.
It is easy to see that BH�H�� possesses the identity 1BH�H��=�H�

��1H and
BH�H��BH�H���BH�H��. So, BH�H�� is an algebra and a subring of QH�H��. Since BH�H�� is a
subcoalgebra of QH�H��, 	���a��x���b��y��=	��a��x�	��b��y� for any a, b�B�, x, y�B�,
where ���. As like in Lemma III.1, we also have ����a��x���b��y��=���a��x����b��y�,
��1BH�H���=1. Therefore, we know that BH�H�� is a bialgebra.

Note that the comultiplication, the unit and the counit of D��H� are not correspondent with
those of D��H� ,H�� and BH�H��. And, let �=� in D��H� ,H��, then D��H� ,H��=H�

op*��H�.
Since the multiplication is given by ��a��x���b��y�=�a�b�1H�

?���xy, which is the same as the
quantum double D��H�� of H� the condition commutative and H satisfies ��a�T�a��a� � a�
=��a�T�a��a� � a� for any a�H. Since for x�B�1

, y�B�2
, a�B�1

and its duality �a in H�1

op*,
b�B�2

and its duality �b in H�2

op*, we have

��a�x���b�y� = �
�x�

�a�b�T−1�x��?x���x�y = �
�x�

�a�b�T−1�x��x�?��x�y

= �
�x�

�a�b�T−1�x��x�?��x�y = �
�x�

�a�b���1
�x��1H�1

?��x�y

= �
�x�

�a�b�1H�1
?����1

�x��x�y = �a�b�1H�1
?��xy .

Hence D��H� ,H�� is iust D��H��, as a sub-bialgebra of D��H�.
Definition III.3 (Ref. 21):

�1� A ring R is a semilattice sum of subrings R�, ���, if � is a semilattice, R=����R� and
R�R��R��.

�2� A ring R is a supplementary semilattice sum of subrings R�, ���, if R is a semilattice sum
of subrings Ra, ���, and if for every ���, R������R�= �0�; i.e., if the sum is direct.

By �3.3� and Definition III.3, every QH�H�� is a supplementary semilattice sum of D��H� ,H��
for ��Y.

From the discussion above, we get the following main result.
Theorem III.4 (structure theorem): For a finite dimensional commutative semilattice graded

weak Hopf algebra H= ���YH� with weak antipode T, where Y is a semilattice and H� a subweak
Hopf algebra of H which is a Hopf algebra with antipode �T�H�

for each ��Y, suppose there
exists a basis B� of H� for every ��Y, such that B=���YB� a basis of H. Then the quantum
G-double D��H� is a direct sum of right ideals QH�H��, ��Y, where
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�1� every QH�H�� is a supplementary semilattice sum of subrings D��H� ,H�� for ��Y and is a
coalgebra with comultiplication 	 satisfying 	���a��x���b��y��=	��a��x�	��b��y� for
any x, y�B and a, b�B�;

�2� QH�H��=NH�H�� � BH�H�� where NH�H��=���Y,���D��H� ,H�� is a null right ideal of
D��H� and is a subcoalgebra and ideal of QH�H��, BH�H��=���Y,���D��H� ,H�� is a sub-
bialgebra of QH�H�� with NH�H��BH�H��=0 and BH�H��NH�H���NH�H��;

�3� D��H� ,H�� are subcoalgebras of QH�H��. If ���, D��H� ,H�� is a null subring. If ���,
D��H� ,H�� is a bialgebra. If �=�, then D��H� ,H��=D��H��, which means that every quan-
tum G-double D��H�� is a direct sum component of D��H�.

In fact, Theorem III.4 is similar to the main conclusion in Ref. 10 for noncommutative
Clifford monoid algebras.

IV. SEMISIMPLICITY OF QUANTUM G-DOUBLE

In this section, as an application to Theorem III.4, we discuss the semisimplicity of quantum
G-doubles.

In Ref. 22, it is shown that for a finite group G, the quantum double D�G� is semisimple as an
algebra if and only if the characteristic p of k does not divide the order �G� of G. Here, we will
consider the similar question for a semilattice grading weak Hopf algebra as above, i.e., under
what conditions, the quantum G-double D��H� is semisimple as an algebra.

On the other hand, we know3 that an algebra is semisimple if and only if it is regular and
Noetherian. But, for a finite-dimensional weak Hopf algebra H, D��H� is finite dimensional, then
it is Noetherian. Hence, in fact, D��H� is regular if and only if it is semisimple. So, in the sequel,
we will only study the regularity of D��H�.

Suppose D��H� is a semisimple algebra for H is commutative. A k-algebra is semisimple if it
is a semisimple right module over itself, and any submodule of a semisimple module is semi-
simple. Then, D��H� is semisimple as a right D��H� module. From Theorem III.4, every QH�H��
is a right ideal of D��H�, then is a right D��H� submodule of the right D��H� module D��H�.
Hence QH�H�� must be semisimple as a right D��H� module.

Suppose NH�H���0 for an arbitrary fixed ��Y. Then there exists ��Y such that ���.
From the semisimplicity of QH�H��, we know that NS�H�� is also semisimple as right D��H�
module since it is a right submodule of QH�H��. Then, NH�H�� can be decomposed as a direct sum
of some simple right D��H� submodules.

Let �=
��Y�. Then ��� for all ��Y and ��� �otherwise, NH�H��=0�. Thus,
D��H� ,H���NH�H��. It is easy to see that D��H� ,H�� is a right D��H� submodule of NH�H��.

We will make our discussion through two steps.
Lemma IV.1: NH�H��=D��H� ,H��.
Proof: Assume M is a simple right D��H� submodule of NH�H��. Let 0�z�M. Then

zD��H�=M. Write z=�i=1
m ki��ai

��xi� where 0�ki�k, ai�B�, xi�B�i
����i� and �ai

��xi

��aj
��xj for i� j, i.e., xi�xj or ai�aj.

Set b�B�1� ��H� since ���1� and x�B�. Consider

z��b��x� = �
i=1

m

ki��ai
�b�1H�i

?���xix� . �4.1�

Since b�B�1� we get �a1
�b�1H�1

?��0 and �a1
�b�1H�1

?��H�
* . In other terms for i=1, if xi=x1

then ai�a1 thus �ai
�b�1H�i

?���xix=�ai
�b�1H�1

?��0 since �1=�i; if xi�x1, then

�ai
�b�1H�i

?���xix=0 since ���i.

Hence on the right-hand side of �4.1�, every term is 0 or �ai
�b�1H�1

?���xix. Note the these

nonzero terms are all in QH�H�� and at least one of them �i.e., �a1
�b�1H�1

?���x1x� is not equal to

0. It implies this sum is not equal to 0. Then z��b��x��0.
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And, xix�H�i�
=H�. So, every nonzero term �a1

�b�1H�1
?���xix�D��H� ,H��. Thus,

z��b��x��D��H� ,H��. It follows that 0�z��b��x��M �D��H� ,H��. Then, we get a nonzero
right D��H� submodule M �D��H� ,H�� of M. But M is simple, it means M �D��H� ,H��=M.
Thus, M �D��H� ,H��. Since M is an arbitrary simple submodule in the semisimple module
NH�H��. Therefore, it must get NH�H���D��H� ,H��. Finally, we have NH�H��=D��H� ,H��.

Lemma IV.2: QH�H��=NH�H��.
Proof: Assume W is a simple right D��H� submodule of QH�H��. Let 0�w�W. Then

wD��H�=W. Write w=u+v where u�NH�H�� and v�BH�H��. NH�H�� is null, so uNH�H��=0.
By Theorem III.4, vNH�H���NH�H��.

Write v=�i=1
m ki���i

��xi� where 0�ki�k, ai�B�, xi�B�i
��i���, and �ai

��xi��aj
��xj for

i� j, i.e., xi�xj or ai�aj.
Set b�B�1�

��B� since ���1� and x�B�. Consider z��b��x�=�i=1
m ki��ai

�b�1H�i
? ���xix�.

By the similar method in �i�, we can get v��b��x��0.
And, xix�H�i�

=H�. So, every nonzero term �ai
�b�1H�i

? ���xix�D��H�,H��. Thus,

v��b��x��D��H�,H��=NH�H��. It follows that 0�v��b��x��W�NH�H��. Then, we get a non-
zero right D��H� submodule W�NH�H�� of M. But W is simple, it means W�NH�H��=W. Thus,
W�NH�H�� where W is an arbitrary simple submodule in the semisimple module QH�H��.

From this, we get QH�H���NH�H��. Thus, QH�H��=NH�H��.
From Lemma IV.2, we get BH�H��=0. But it is impossible in fact, since 0

�D��H���BH�H�� by Theorem III.4. From this contradiction, we know that the supposition
NH�H���0 is not true. Therefore NH�H��=0. It means ��� for any ��Y, i.e., �=�. Note that
� is arbitrary in Y. Hence, we know � is the unique element of Y, i.e., H=H� is a Hopf algebra,
whose quantum G-double is semisimple if and only if H� is semisimple by Ref. 15.

So, we get the following.
Theorem IV.3: For a finite-dimensional commutative weak Hopf algebra H satisfying the

same conditions in Theorem III.4, its quantum G-double D��H� over a field k is semisimple
(respectively, regular) if and only if H is a semisimple Hopf algebra (respectively, regular).

The similar result of this theorem for classical quantum groups holds in the case of H=kS with
S a noncommutative Clifford monoid �see Ref. 10�.

V. EXAMPLES

The concept of semilattice graded weak Hopf algebra, introduced in this paper, is important
for our research. Of course, Clifford monoid algebras are examples for this concept. However, we
hope to give more nontrivial examples.

In Ref. 1, there is a general construction producing pointed Hopf algebras through Ore exten-
sion from a group algebra. This gives an idea to construct semilattice graded weak Hopf algebras
through the Ore extension.

First, we need some preparation works.
Recall, that for a k-algebra A, an algebra endomorphism � of A, and a � derivation � of A �i.e.,

a linear map � : A→A such that ��ab�=��a�b+��a���b� for all a, b�A�, the Ore extension
A�X ,� ,�� is A�X� as an Abelian group, with multiplication induced by Xa=��a�+��a�X for all
a�A.

The following is an obvious extension of the universal property for polynomial rings.
Lemma V.1 (Ref. 1): Let A�X ,� ,�� be an Ore extension of A and i : A→A�X ,� ,�� the

inclusion morphism. Then for any algebra B, any algebra morphism f : A→B and every element
b�B such that bf�a�= f���a��+ f���a��b for all a�A, there exists a unique algebra morphism

f̄ : A�X ,� ,��→B such that f̄�X�=b and f̄i= f .
Let S be a finite semigroup, an element a of a semigroup is called regular if there exists x�S

such that axa=a. The semigroup S is called regular if all its elements are regular. We write aJb
if there exist x, y, u, v in S1=S� �1� for which xay=b and ubv=a. Obviously, J is an equivalent
relation on S. This equivalent relation is one of the important five kinds of equivalent relations on
a semigroup S. A J class of some element x�S is the set �y�S �xJy�, i.e., the equivalent class
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including x under the relation J. A J class is called regular J class if all its elements are regular
�see Ref. 17�.

If � :S→Hom�A ,A� is a representation of S, by linear transformations of a finite-dimensional
vector space A over the complex field C, then the character �� of � is the function S→C defined
by

���x� = Tr ��x� for each x � S ,

where Tr ��x� denotes the sum of the diagonal entries in any matrix expression of ��x�. Let a�S
and let ā=ae, where e is the unique idempotent in the cyclic subsemigroup a� generated by a, we

shall say that two elements a, b�S, are conjugate if and only if b̄=x�āx, ā=xb̄x� for some regular
element x with inverse x�, i.e., xx�x=x, x�xx�=x�. Then a function S→C is called a class function
if it is constant on each conjugacy class of S, and all the class functions form an algebra over C
under pointwise addition and multiplication, we denote this algebra by cfS. The character ring of
S, which is denoted by chS, is a subring of the class function algebra which is spanned by the
irreducible characters of S �see Ref. 14�.

Lemma V.2 (Ref. 14): Let S be a finite semigroup, let J1 ,… ,Jr, be the regular J classes of S,
and let H1 ,… ,Hr be the maximal subgroups of J1 ,… ,Jr, respectively. Then, chS�chH1
¯


chHr.
For a Clifford semigroup S, we can see that Ji, i=1,2 ,… ,r are the maximal subgroups G�,

��Y of S. Hence, chS����YchG�.
Second, we will construct a pointed weak Hopf algebra by starting with the coradical, forming

Ore extensions.
Let A=kS= ���YkG� be the algebra of a finite commutative Clifford monoid S

= �Y ;G� ,��,�� �the method for constructing some concrete Clifford monoids can be seen in Ref.
13.� Let G�

* be the character group of G� for each ��Y, then the character semigroup of S is

��YG�

* . Since S is a monoid, we can assume that the maximal subgroup which contains 1 is Gi,
where i is the identity element in Y.

Let c�Gi and c*�Gi
*. According to Lemma V.2, for each ��Y, chG� is embeded into chS

such that for any c*�chGi is mapped to �= �c* ,1 ,… ,1��chS�
��YchG�.
Let � be an algebra automorphism of A defined by ��x�= � ,x�x for all x�S, then it is clear

that if x�Gi, then � ,x�= c* ,x�; if x�G� with �� i, then � ,x�= 1,x�=1. Consider the Ore
extension A1=A�X ,� ,��=A�X ,� ,0�, where �=0. Apply Lemma V.I first with B=A1 � A1, f = �i
� i� ·	A, b=c � X+X � 1 and then with B=k, f =�A, b=0, to define algebra homomorphism
	 :A1→A1 � A1 and � :A1→k by

	�X� = c � X + X � 1 and ��X� = 0.

It is easily checked that 	 and � defined a bialgebra structure on A1. The weak antipode T of A
extends to a weak antipode on A1 by T�X�=−c−1X and T�Xe��=−�ce��−1X=−c−1e�X.

If we let A1
�=kG��Xe� ,�� ,���=kG��Xe� ,�� ,0�, where ��=0 and ���g��= ���chG�

,g��g�.
Then A1

� is a subweak Hopf algebra of A1 which is a Hopf algebra for each ��Y under the defined
	, � and antipode T. We have

Xe�g� = Xg� = �,g��g� = g�X ,

	�Xe�� = �c � X + X � 1��e� � e�� = ce� � Xe� + Xe� � 1e� = ce� � Xe� + Xe� � e�

�i.e., Xe� is �e� ,ce��-primitive�, and

��Xe�� = ��X���e�� = 0.

At the same time, m�id�T�	�Xe��=ce�S�Xe��+Xe�S�e��=ce��−c−1�e�X+Xe�e�=−1e�X+Xe�

=−Xe�+Xe�=0=��Xe��.
Thus, we can get the following proposition.
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Proposition V.3: The Ore extension A1=A�X ,� ,0�= ���YA1
� and A1

�=kG��Xe� ,�� ,0� as de-
fined above is a subweak Hopf algebra of A1 which is a Hopf algebra for each ��Y. Define a
Hopf algebra homomorphism ��,� from A1

� to A1
� if ��=� satisfying ��,��a��=��,��a�� for any

a��G� and ��,��Xe��=Xe�. Then A1 is a semilattice graded weak Hopf algebra.
Proof: The above construction shows that A1 has a basis �gXn �g�S ,n�N� and A1

� has a basis
B�= �g��Xe��n �g��G� ,n�N� for each ��Y.

We have known that Xe�=e�X for any ��Y and Xg�=g�X for any g��G� with �� i,
therefore for any g��Xe��n1 �B�, g��Xe��n2 �B�, it follows that

g��Xe��n1g��Xe��n2 = g�Xn1e�g�Xn2e�

= g�Xn1��,���e����,���g��Xn2e�

= g�Xn1e����,���g��Xn2e� = g�Xn1��,���g��e�Xn2

= �,��,���g���n1g���,���g��e�Xn1Xn2

= �,��,���g���n1��,���g����,���g����,���e��Xn1+n2

= �,��,���g���n1�g�g���e��Xn1+n2

= �,��,���g���n1�g�g���Xe���n1+n2 � A1
��.

It means A1
�A1

��A1
�� for any �, ��Y. And,

��,���g��Xe��n1���,���g��Xe��n2� = ��,���g�����,���Xe��n1���,���g�����,���Xe��n2�

= ��,���g�����,���Xe���n1��,���g�����,���Xe���n2

= ��,���g���Xe���n1��,���g���Xe���n2

= ��,���g���Xn1e�����,���g���Xn2e���

= �,��,���g���n1��,���g����,���g��Xn1Xn2e��

= �,��,���g���n1�g�g���Xe���n1+n2.

So, g��Xe��n1g��Xe��n2 = �g��Xe��n1���,���g��Xe��n2���,��. Hence, A1 is a semilattice graded
weak Hopf algebra. �See also Refs. 4, 5, 18, and 19.�

If we choose c*�1�Gi
*, Xg�= � ,g��g�X�g�X for �= i, hence A1 is noncommutative and

noncocommutative. Otherwise, let c*=1�Gi
*, �= �1,… ,1�, Xg�= � ,g��g�X=g�X for any ��Y,

hence A1 is commutative. In this case, by Proposition V.3, one can see that A1 is a nontrivial
example satisfying the condition in Theorem III.4.
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We give a simple parametrization of the G2 group, which is consistent with the
structure of G2 as a SU�3� fibration. We also explicitly compute the �bi�invariant
measure, which turns out to have a simple expression. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2009627�

I. INTRODUCTION

Group theory plays an important role in physics. When a group describes a symmetry of the
system, invariant quantities are often obtained by integrating over the group. For example, to have
an unbroken symmetry in a path-integral formulation of gauge field theory, the integration mea-
sure must be invariant under the group action.

Every semisimple group has a unique invariant measure �up to normalization constants�,
obtained by pulling back the Killing form on its Lie algebra via the group left action. However, it
is generally difficult to find an explicit parametrization of the group elements by which the
invariant measure acquires a reasonably simple expression while also allowing for a full specifi-
cation of the range of parameters. This is indeed what is needed in performing practical compu-
tations.

In Ref. 1, a solution of this problem was found for the group G2. The group parametrization
given there, emphasizes the structure of G2 as a fibration over the base space H of quaternionic
linear subalgebras of octonions and fiber SO�4�. Here we give another parametrization of the same
group based on the well-known fact that G2 can be seen as an SU�3� fibration over the six sphere
S6. �See, for example, Ref. 2.� The resulting measure turns out to have a very simple expression,
with all the parameters varying in a 14-dimensional hypercube.

The motivation for G2 comes from nonperturbative gauge theory used to test confinement in
lattice chromodynamics. It is believed that confinement should be due to excitation modes belong-
ing to the center of the gauge group so that a group with no center, preventing the existence of
these modes, should not produce confinement. So if one observes no confinement in a toy model
gauge theory with group G2 which is center free, this belief is proved to be consistent. Having a
global explicit parametrization of the group renders nonperturbative computations easier to work
out and implement.

II. THE REPRESENTATION ALGEBRA AND THE GROUP ANSATZ

For the algebra, we choose the fundamental representation �7� as done in Ref. 1. All the
notations employed here will agree with those used in that reference. Since from that paper, we
will only use the commutators matrix BIJª �CI ,CJ� we have transcribed it and set it in Appendix
C. Now note that the �Ci�i=1

8 generates an su�3� algebra. Thus we want to use this fact to produce
a parametrization for the G2 elements capable of highlighting the SU�3� subgroup.

With this purpose, let us note that the C9 commutator with su�3� suffices to reproduce all the
remaining generators of the g2 algebra. Then we can hope to find a parametrization of the group
resembling the Euler parametrization for SU�n�. Let us write the generic element of G2 as

a�Electronic mail: sergio.cacciatori@mi.infn.it

JOURNAL OF MATHEMATICAL PHYSICS 46, 083520 �2005�

46, 083520-10022-2488/2005/46�8�/083520/6/$22.50 © 2005 American Institute of Physics

                                                                                                                                    

http://dx.doi.org/10.1063/1.2009627


g = SU�3���1,…,�8�e�C9 SU�3���1,…,�8� , �2.1�

where SU�3���1 ,… ,�8� is the general Euler parametrization of SU�3� shown in Appendix A. Note
that here we have three redundant parameters, the dimension of G2 being 14. We can easily cancel
them out as follows. In �2.1� the left-hand side SU�3� term has the expansion

SU�3���1,…,�8� = h��1,…,�5�e�6C3e�7C2e�8C3. �2.2�

But C1 ,C2 ,C3 commute with C9 so that �1 ,�2 ,�3 can be reabsorbed in the right-hand side SU�3�
in �2.1�. Thus, it seems clear we should make the ansatz

g��1,…,�6;�1,…,�8� = ���1,…,�6�SU�3���1,…,�8� �2.3�

with

���1,…,�6� = e�1C3e�2C2e�3C3e��3/2��4C8e�5C5e��3/2��6C9. �2.4�

To prove that this ansatz is the right one, we show that it allows to fix the range of parameters so
as to cover �up to a a subset of vanishing measure� all of G2 only once.

A. Fibration and computation of the metric

We have said that the quotient of G2 by its SU�3� subgroup is a sphere S6. We will use this
information to compute the range of parameters. For brevity we will call SªSU�3���1 ,… ,�8�.
The group metric can be deduced from the left-hand side invariant currents

Jg = g−1 dg = �
I=1

14

JgICI �2.5�

via

dsG2

2 = − 1
4Trace�Jg � Jg� . �2.6�

�The factor − 1
4 is due to the normalization Trace�CICJ�=−4�IJ. Choosing a metric �CI	CJ�=�IJ on

the algebra is equivalent to fixing normalizations such that long and short roots of g2 have length
2 and 2/�3, respectively.1�

If we now write

J� = �−1 d� = �
I=1

14

J�
I CI, �2.7�

JS = dS S = �
I=1

8

JS
I CI, �2.8�

it is straightforward to show that

dsG2

2 = �
I=1

8

�JS
I + J�

I �2 + �
I=9

14

�J�
I �2. �2.9�

Now � parametrizes the quotient space between G2 and the SU�3� orbits generated by S. Fixing
the base point � we recover the SU�3� invariant metric as
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dsSU�3�
2 = �

I=1

8

�JS
I �2. �2.10�

To find the induced metric on the base one should compute the current �−1 d� and project out the
components that are tangent to the su�3� directions. Doing so we find

dsBASE
2 = �

I=9

14

�J�
I �2. �2.11�

This term should represent the metric of a six sphere. We now show that this is exactly the case.
Using the results obtained in Appendix B for the currents, one finds

4

3
dsBASE

2 = d�6
2 + sin2�6�d�5

2 + cos2 �5 d�4
2 + sin2 �5�s1

2 + s2
2 + �s3 + 1

2d�4�2�� , �2.12�

where

s1 = − sin�2�2�cos�2�3�d�1 + sin�2�3�d�2,

s2 = sin�2�2�sin�2�3�d�1 + cos�2�3�d�2,

s3 = cos�2�2�d�1 + d�3. �2.13�

We can now recognize the metric of a six sphere S6 with coordinates ��6 ,X� �, where �6 is the

azimuthal coordinate, �6� �0,��, and X� covers a five sphere. We can look at this sphere as
immersed in C3 via

X� = �z1,z2,z3� = �cos �5e
i�4,sin �5 cos �2e

i��1+�3+��4/2��,sin �5 sin �2e
i��1−�3−��4/2��� ,

�1 � �0,��, �2 � 
0,
�

2
�, �3 � �0,2��, �4 � �0,2��, �5 � 
0,

�

2
� .

Computing the metric dsS5
2 = 	dz1	2+ 	dz2	2+ 	dz3	2 in these coordinates we find

4
3dsBASE

2 = d�6
2 + sin2�6�dsS5

2 � . �2.14�

which completes our identification.

III. CONCLUSIONS

We have shown that the elements of the group G2 can be parametrized as

g = e�1C3e�2C2e�3C3e��3/2��4C8e�5C5e��3/2��6C9SU�3���1,…,�8� �3.1�

with

�1 � �0,��, �2 � 
0,
�

2
�, �3 � �0,2��, �4 � �0,2��, �5 � 
0,

�

2
�, �6 � �0,�� ,

�3.2�

�1 � �0,2��, �2 � 
0,
�

2
�, �3 � �0,��, �4 � 
0,

�

2
�, �5 � �0,2��, �6 � �0,�� ,

�7 � 
0,
�

2
�, �8 � �0,�� .

From �2.9� one could easily find the �bi�invariant metric. The corresponding invariant measure is
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d�G2
= 27

32sin5�6 cos �5 sin3�5 sin�2�2�d�SU�3�d�6 d�5 d�4 d�3 d�2 d�1. �3.3�

d�SU�3� being the invariant measure over SU�3� as given in Appendix A.
This is a quite simple parametrization for G2, which evidences the SU�3� subgroup, as a fiber

over S6. It should be useful for implementing analytical or numerical computations in lattice gauge
theory and in random matrix models.

The approach employed here to determine the range of parameters, is mainly a geometrical
one. The same results could also be obtained by means of topological arguments of the type
developed in Ref. 1.
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APPENDIX A: EULER PARAMETRIZATION FOR SU„3…

The Euler parametrization for SU�3� can be easily obtained as �again the ranges could be
found using the topological method, however we simply rearranged the results shown in Appendix
B of Ref. 3 to our case�

SU�3���1,…,�8� = e�1C3e�2C2e�3C3e�4C5e�3�5C8e�6C3e�7C2e�8C3, �A1�

with range

�1 � �0,2��, �2 � 
0,
�

2
�, �3 � �0,��, �4 � 
0,

�

2
� , �A2�

�5 � �0,2��, �6 � �0,��, �7 � 
0,
�

2
�, �8 � �0,�� .

In this way �1 ,�2 ,�3 cover an SU�2� subgroup, the �5 covers an U �1� and �6 ,�7 ,�8 cover SO �3�.
The resulting invariant measure is

d�SU�3� = �3 sin�2�2�sin3 �4 cos �4 sin�2�7��
i=1

8

d�i. �A3�

APPENDIX B: Jh CURRENTS

Here we give the currents Jh used to generate the metric on the base manifold. The required
relations follow from the commutators matrix given in Appendix C and are given by

e−xC3C2e
xC3 = cos�2x�C2 + sin�2x�C1,

e−xC3C1e
xC3 = cos�2x�C1 − sin�2x�C2,

e−xC2C3e
xC2 = cos�2x�C3 + sin�2x�C1,

e−xC5C1e
xC5 = cos xC1 + sin xC6,
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e−xC5C2e
xC5 = cos xC2 + sin xC7,

e−xC5C3e
xC5 =

1

4
�3 + cos�2x��C3 −

1

2
sin�2x�C4 −

�3

2
sin2 xC8,

e−xC5C8e
xC5 =

1

4
�1 + 3 cos�2x��C3 −

�3

2
sin�2x�C4 −

�3

2
sin2 xC3,

e−�3xC9C4e
�3xC9 = cos3 xC4 − sin3 xC7 + �3 cos x sin2 xC11 − �3 sin x cos2 xC14,

e−�3xC9C5e
�3xC9 = cos3 xC5 + sin3 xC6 + �3 cos x sin2 xC12 + �3 sin x cos2 xC13,

e−�3xC9C6e
�3xC9 = cos3 xC6 − sin3 xC5 + �3 cos x sin2 xC13 − �3 sin x cos2 xC12,

e−�3xC9C7e
�3xC9 = cos3 xC7 + sin3 xC4 + �3 cos x sin2 xC14 + �3 sin x cos2 xC11,

e−�3xC9C8e
�3xC9 = cos�2x�C8 + sin�2x�C10, �B1�

along with the fact that C9 commutes with C1 ,C2, and C3.
If we set

s1 = − sin�2�2�cos�2�3�d�1 + sin�2�3�d�2,

s2 = sin�2�2�sin�2�3�d�1 + cos�2�3�d�2,

s3 = cos�2�2�d�1 + d�3, �B2�

the resulting currents are shown to be

Jh
1 = cos �5s1,

Jh
2 = cos �5s2,

Jh
3 = 1

4 �3 + cos�2�5��s3 − 3
4sin2 �5 d�4,

Jh
4 = −

1

2
sin�2�5�cos3�6

2

s3 +

3

2
d�4� + sin a5 sin3�6

2
s2,

Jh
5 = − sin �5 sin3�6

2
s1 + cos3�6

2
d�5,

Jh
6 = cos �5 sin3�6

2
s1 + sin3�6

2
d�5,

Jh
7 =

1

2
sin�2�5�sin3�6

2

s3 +

3

2
d�4� + sin �5 cos3�6

2
s2,

Jh
8 = cos �6
1

4
�1 + 3 cos�2�5�� −

�3

2
sin2 �5s3� ,
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Jh
9 =

�3

2
d�6,

Jh
10 =

�3

2
sin �6
1

4
�1 + 3 cos�2�5��d�4 − sin2 �5s3� ,

Jh
11 = −

�3

2
sin�2�5�cos

�6

2
sin2�6

2

s3 +

3

2
d�4� + �3 sin �5 sin

�6

2
cos2�6

2
s2,

Jh
12 = − �3 sin �5 sin

�6

2
cos2�6

2
s1 + �3 cos

�6

2
sin2�6

2
d�5,

Jh
13 = �3 sin �5 cos

�6

2
sin2�6

2
s1 + �3 sin

�6

2
cos2�6

2
d�5,

Jh
14 =

�3

2
sin�2�5�sin

�6

2
cos2�6

2

s3 +

3

2
d�4� + �3 sin �5 cos

�6

2
sin2�6

2
s2. �B3�

These currents, together with the SU�3� currents �as given in Ref. 3 can be used in �2.9� to
compute the full �bi-�invariant metric of G2.

APPENDIX C: THE COMMUTATORS MATRIX

We find

B =

⎝
⎜
⎜
⎜
⎛0 2C3 − 2C2 C7 C6 − C5 − C4 0 0 0 C14 C13 − C12 − C11

* 0 2C1 − C6 C7 C4 − C5 0 0 0 − C13 C14 C11 − C12

* * 0 C5 − C4 C7 − C6 0 0 0 C12 − C11 C14 − C13

* * * 0 C3 + �3C8 − C2 C1 − �3C5 − C14 − C13 0 0 C10 C9

* * * * 0 C1 C2
�3C4 C13 − C14 0 0 − C9 C10

* * * * * 0 C3 − �3C8
�3C7 − C12 C11 − C10 C9 0 0

* * * * * * 0 − �3C6 C11 C12 − C9 − C10 0 0

* * * * * * * 0
2
�3

C10 −
2
�3

C9 −
1
�3

C12
1
�3

C11
1
�3

C14 −
1
�3

C13

* * * * * * * * 0
2
�3

C8 C7 −
2
�3

C14
2
�3

C13 − C6 C5 −
2
�3

C12
2
�3

C11 − C4

* * * * * * * * * 0
2
�3

C13 + C6
2
�3

C14 + C7 −
2
�3

C11 − C4 −
2
�3

C12 + C5

* * * * * * * * * * 0 −
1
�3

C8 + C3
2
�3

C10 − C2 −
2
�3

C9 + C1

* * * * * * * * * * * 0
2
�3

C9 + C1
2
�3

C10 + C2

* * * * * * * * * * * * 0
1
�3

C8 + C3

* * * * * * * * * * * * * 0
⎠
⎟
⎟
⎟
⎞

.
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Discretizations of vakonomic mechanics are developed by using the methodology
of variational integrators. The resulting algorithms are symplectic �in some sense
that we will explain� and preserve the momentum map associated with a Lie group
of symmetries. A specific example illustrating the theory is tested numerically. ©
2005 American Institute of Physics. �DOI: 10.1063/1.2008214�

I. INTRODUCTION

This paper is devoted to the so-called vakonomic mechanics, a terminology coined by Arnold
and Kozlov �see Ref. 1�. Vakonomic mechanics are obtained from a Lagrangian function subject
to nonholonomic constraints, but instead of using Lagrange-d’Alembert principle as in nonholo-
nomic mechanical systems, one uses a variational principle, that is, one looks for extremals of the
integral functional determined by the Lagrangian among all the curves satisfying the constraints
�see Refs. 3, 7, and 19�. As we will briefly discuss, vakonomic mechanics describe interesting and
applied problems such as optimal control theory, mathematical economics �for instance, economic
growth theory�, sub-Riemannian geometry, motion of microorganisms, etc.

In this paper, we will develop variational integrators for this kind of problem. Variational
integrators are symplectic integrators,26 preserving momentum and they are known to have near-
energy preservation behavior. These integrators have their roots in the optimal control literature in
the 1960s and 1970s �see Ref. 4� and recently, they were studied by many authors from a more
geometrical point of view �Refs. 13, 20, 8, 9, and 29, and references therein�.

Throughtout the paper, Einstein convention will be used without explicit mention.

A. Vakonomic mechanics

Vakonomic mechanics were introduced by V. V. Kozlov in Ref. 16, see also Ref. 1. Such
systems are defined by a regular Lagrangian L :TQ→R on the tangent bundle TQ of the configu-
ration space Q subject to nonholonomic constraints ���q , q̇�=0, 1���m, determining a 2n−m
dimensional submanifold M of TQ. We will take fibered coordinates �qA , q̇A� in TQ.

These systems are usually described by the extended Lagrangian L=L+����, which includes
the Lagrange multipliers �� as new extra variables. The equations of motion for the vakonomic
problem are the Euler-Lagrange equations for L; that is

� d

dt
� �L

�q̇
� −

�L

�q
= − �̇�

���

�q̇
− ��� d

dt
� ���

�q̇
� −

���

�q
	 ,

���q, q̇� = 0,1 � � � m ,

 �1�

Observe that the Lagrangian L :T�Q�Rm�→R is degenerate, since the extra velocities �̇� do
not appear. Therefore, it is necessary to apply the Dirac-Bergmann-Gotay-Nester constraint pro-
cedure developed in Ref. 12 in order to find, if it exists, a final constraint submanifold where the
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dynamics of the vakonomic problem are well defined �see Refs. 21 and 5�. Thus, Eq. �1� has
solution on the final constraint submanifold �see Ref. 21 for more details�.

Moreover, solutions to Eq. �1� are exactly the same as the solutions obtained extremizing the
functional J=�0

1L�ċ�t��dt, among the curves satisfying the constraints. Precisely, for this type of
system it was coined the name vakonomic �mechanics of variational axiomatic kind� in Ref. 1.

An interesting remark is that Eq. �1� is expressed in terms of the ambient Lagrangian L :TQ

→R, but, from the above description, these equations only depend on L̃=L�M� :M→R, the restric-
tion of L to M �see Ref. 6, and references therein�.

Recently, the second author and collaborators6 proposed an intrinsic version of vakonomic
mechanics. First, they consider the Whitney sum of T*Q and TQ :T*Q � TQ and its submanifold
W0=T*Q�QM. Let �1 :T*Q�QM→T*Q and �2 :T*Q�QM→M be the canonical projections.
Define in T*Q�QM the presymplectic two-form �=�1

*�Q, where �Q is the canonical symplectic

form in T*Q, and the Hamiltonian function H= �1 ,�2�−�2
*L̃ where L̃ :M→R is the restriction of

L to M. Therefore, vakonomic dynamics are intrinsically described by the equation iX�=dH of the
presymplectic system �T*Q�QM ,� ,H�.

B. Vakonomic mechanics: Applications

The main goal of the following is to illustrate from different points of view the importance of
developing geometric integrators, showing different applications of vakonomic mechanics.

1. Optimal control theory

It is well known that the dynamics of a large class of engineering and economic systems can
be expressed as a set of differential equations

q̇A = �A�q�t�,u�t��, 1 � A � n , �2�

where t is the time, qA, 1�A�n, denote the state variables, and ua, 1�a�m, the control inputs
to the system that must be specified. Given an initial condition of the state variables and given
control inputs, we completely know the trajectory of the state variables q�t� �all the functions are
assumed to be at least C2�.

With a fixed initial condition, usually q0=q�t0�, our aim is to find a C2-piecewise smooth
curve 	�t�= �q�t� ,u�t��, satisfying the control equations �2� and minimizing the functional

J�	� = �
t0

T

L�q�t�,u�t��dt , �3�

for some fixed and given final time T�R+. The integral �t0
T L�q�t� ,u�t��dt depends on the time

history �from t0 to T� of the state variables and the control inputs.
A necessary condition for the solutions of such problem is provided by Pontryaguin’s maxi-

mum principle. If we construct the pseudo-Hamiltonian function:

H�q,p,u� = pA�A�q,u� − L�q,u� �4�

where pA, 1�A�n, are now considered as Lagrange’s multipliers, then a curve 	 : �t0 ,T�→C,
	�t�= �q�t� ,u�t��, is an optimal trajectory if there exist functions pA�t�, 1�A�n, such that
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�
q̇A�t� =

�H

�pA
�q�t�,p�t�,u�t�� ,

ṗA�t� = −
�H

�qA �q�t�,p�t�,u�t�� ,

0 =
�H

�ua


 �5�

jointly with transversality conditions: q�t0�=q0 and p�T�=0.
In a global description, one assumes a fiber bundle structure � :C→Q, where Q is the con-

figuration manifold with local coordinates �qA� and C is the bundle of controls, with coordinates
�qA ,ua�, 1�A�n, 1�a�m.

The ordinary differential equations �2� on Q depending on the parameters u can be seen as a
vector field � along the projection map �, that is, � is a smooth map � :C→TQ such that the
diagram

is commutative, where 
Q :TQ→R is the canonical projection. This vector field is locally written
as �=�A�q ,u��� /�qA�.

Next, we will show that optimal control problems, under adequate regularity assumptions, can
be reformulated in terms of vakonomic dynamics �see Ref. 21 for an alternative approach�.

Proposition 1.1: Suppose that � :C→TQ is an embedding, then if we denote by G :��C�
→C the diffeomorphism such that � �G=idC, we have that the solutions of the optimal control
problem

extremize�
t0

T

L�q�t�,u�t��dt

subject to q̇=��q ,u� are solutions of the vakonomic problem determined by the function

L̄ :��C�→R, where L̄=L �G, and the constraint submanifold ��C�.
Conversely, if we have a vakonomic problem given by (i) a submanifold M of TQ, verifying

that 
Q :M→Q is a surjective submersion, (ii) the Lagrangian L :TQ→R; then the solutions of the
vakonomic problem are the solutions of the optimal control problem determined by C=M and L
=L�M�.

Proof: Using Pontryaguin’s maximum principle, an optimal trajectory �q�t� ,u�t�� of the opti-
mal control problem satisfies

�
q̇A = �A�q,u� ,

ṗA =
�L

�qA − pB
��B

�qA ,

0 = −
�L

�ua + pB
��B

�ua .
 �6�

Since � is an embedding we can consider local coordinates �q̃A , ũa� such that

�:�q̃A, ũa� → �q̃A, ũa,���q̃, ũ��, 1 � A � N, 1 � a � m, 1 � � � n − m .

Observe that q̇̃a= ũa and q̇̃�=���q̃A , ũa�.
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Rewriting Eq. �6� in terms of these coordinates:

�
q̇̃� = ���q̃, ũ� ,

q̇̃a = ũa,

ṗA =
�L̄

�q̃A − p�

���

�q̃A ,

0 = −
�L̄

�q̇̃a
+ pa + p�

���

�q̇̃a
,

 �7�

which are the vakonomic equations obtained in Ref. 6 �see also Ref. 14�. The converse is trivial.�
Example 1.2 Optimal control and a particle in a magnetic field: �See Ref. 2, p. 353 for a

detailed exposition�
Consider the optimal control problem

min � �u2 + v2�dt

subject to equations ẋ=u, ẏ=v, ż=A1�x ,y�u+A2�x ,y�v. Obviously it is equivalent to the vako-
nomic problem given by L= 1

2 �ẋ2+ ẏ2� and the nonholonomic constraint ż=A1�x ,y�ẋ+A2�x ,y�ẏ.

2. SubRiemannian geometry

A subRiemannian structure on a manifold is a generalization of a Riemannian structure where
the metric is only defined on a vector subbundle of the tangent bundle to the manifold. In such
case, the notion of length is only assigned to a subclass of curves, namely curves with tangent
vectors belonging to the vector subbundle for each point.18,23,28 More precisely, consider an
n-dimensional manifold equipped with a smooth distribution D of constant rank n−m. A subRi-
emannian metric on D consists of giving a positive definite quadratic form gq on Dq smoothly
varying in q. We will say that a piecewise smooth curve 	 in Q is admissible if 	̇�t��D	�t� for all
t. Using g, it is possible to define the length

length�	� = �
0

h
�g�	̇�t�,	̇�t��dt

for admissible curves 	 : �0,h�→Q. From this definition, we define the distance between two
points x ,y�Q as

d�x,y� = inf	�length�	�� ,

if there exists admissible curves 	 connecting x and y; in other case, the distance is considered
infinite. A curve which realizes the distance between two points is called a minimizing sub-
Riemannian geodesic. Let �1 , . . . ,�m be a basis of one-forms for the annihilator Do. Then, an
admissible path must verify the nonholonomic constraints

�i�	̇� = 0, 1 � i � m . �8�

Therefore, it is clear that the problem of finding minimizing subRiemannian geodesics is

exactly the same as the vakonomic problem determined by the restricted Lagrangian L̃= 1
2g and the

nonholonomic constraints �8�.
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3. Economic growth theory

Optimization is a crucial topic in dynamic economic analysis. Therefore, variational calculus
�free or constrained� and optimal control theory play an important role as fundamental tools.15,27 A
typical optimization problem in modern economics deals with extremizing the functional

�
0

T

�t�U�f�t,k, k̇��dt

subject or not to constraints. Here, �t� is a discount rate factor, U an utility function, f a con-
sumption function, and k the capital-labor ratio.

For instance, a classical example is the closed von Neumann system,25 given by a transfor-

mation function F�K1 , . . . ,Kn , K̇1 , . . . , K̇n� which relates n capital goods K1 ,K2 , . . . ,Kn and the net

capital formations K̇1 , K̇2 , . . . , K̇n. The von Neumann problem consists of maximizing the func-

tional �0
TK̇ndt subject to F�K1 , . . . ,Kn , K̇1 , . . . , K̇n�=0.

C. Discrete variational calculus

Now, we will briefly describe discrete variational calculus, following the approach in Refs. 29
and 20. A discrete Lagrangian is a map Ld :Q�Q→R �this discrete Lagrangian may be considered
as an approximation of the continuous Lagrangian L :TQ→R�. Define the action sum Sd :QN+1

→R corresponding to the Lagrangian Ld by

Sd = �
k=1

N

Ld�qk−1,qk� ,

where qk�Q for 0�k�N.
Observe that for any covector ��T�x1,x2�

* �Q�Q�, we have the decomposition �=�1+�2

where �i�Txi

* Q, thus,

dLd�q0,q1� = D1Ld�q0,q1� + D2Ld�q0,q1� .

The discrete variational principle states that the solutions of the discrete system determined by
Ld must extremize the action sum given fixed points q0 and qN. Extremizing Sd over qk, we obtain
the following system of difference equations:

D1Ld�qk,qk+1� + D2Ld�qk−1,qk� = 0, 1 � k � N − 1. �9�

These equations are usually called the Discrete Euler-Lagrange equations. Under some regularity
hypothesis �the matrix �D12Ld�qk ,qk+1�� is regular�, it is possible to define a discrete flow � :Q
�Q→Q�Q, by ��qk−1 ,qk�= �qk ,qk+1� from Eq. �9�.

Define the discrete Legendre transformation associated with Ld by

FLd:Q � Q → T*Q

�q0,q1� � �q0,− D1Ld�q0,q1�� ,

and the two-form �d=FLd
*�Q, where �Q is the canonical symplectic form on T*Q. The discrete

algorithm determined by � preserves the symplectic form �d, i.e., �*�d=�d. Moreover, if the
discrete Lagrangian is invariant under the diagonal action of a Lie group G, then the discrete
momentum map Jd :Q�Q→g* defined by Jd�qk ,qk+1� ,��= D2Ld�qk ,qk+1� ,�Q�qk+1�� is preserved
by the discrete flow. Therefore, these integrators are symplectic-momentum preserving. Here, �Q is
the fundamental vector field determined by ��g, the Lie algebra of G.
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II. A GEOMETRIC APPROACH TO VAKONOMIC MECHANICS

In this section we obtain the equations of motion for vakonomic mechanics from a different
point of view which, in Sec. III, will be useful in the construction of variational integrators.

Let Q be the configuration manifold of dimension n and TQ its tangent bundle with L the
Lagrangian function L :TQ→R. Consider the constraints �� :TQ→R, 1���m, and the aug-
mented Lagrangian

L̃:TQ � Rm → R

�vq,�� � �L + ������vq�

where summation over the repeated indexes � is understood.
Consider also the fiber derivative:

FL̃:TQ � Rm → T*Q

�vq,�� � d��L̃�TqQ������vq�

which in local coordinates is

FL̃�qA, q̇A,��� = �qA,
�L̃

�q̇A �qA, q̇A,���� . �10�

Now, we can define a two-form � in TQ�Rm by pulling back by FL̃ the canonical symplectic

two-form �Q on T*Q; that is, �=FL̃*��Q�. In local coordinates we have

� = FL̃*�dqA ∧ dpA� = dqA ∧ d� �L̃

�q̇A� =
�2L̃

�q̇A�qBdqA ∧ dqB +
�2L̃

�q̇A�q̇BdqA ∧ dq̇B +
�2L̃

����q̇AdqA ∧ d��.

The energy function associated with the augmented Lagrangian L̃ is: EL̃=�L̃− L̃ where � stands

for the Liouville vector field on TQ. Locally, �= q̇A�� /�q̇A� and EL̃= q̇A��L̃ /�q̇A�− L̃.
Next, we will see how the dynamics of the vakonomic system determined by �L ,��� is

determined by the solutions of

iX� = dEL̃. �11�

Observe that the system �TQ�Rm ,� ,EL̃� is a presymplectic system �see Ref. 12�.
In what follows, we will assume that

W̃ = � �2L̃

�q̇A�q̇B� = � �2L

�q̇A�q̇B + ��

�2��

�q̇A�q̇B�
is regular �see Ref. 1�.

First, note that

dEL̃ = q̇A
�2L̃

�q̇A�qBdqB + q̇A
�2L̃

�q̇A�q̇Bdq̇B + q̇A���

�q̇A d�� −
�L̃

�qAdqA −
�L̃

���

d��.

Now let
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� = XA �

�qA + YA �

�q̇A + Z�

�

���

be a generic vector field on TQ�Rm, a direct computation shows that i��=dEL̃ if and only if XA,
YA, and Z� satisfy the following conditions:

�
XA = q̇A,

�L̃

���

= 0,

�L̃

�qA = XB
�2L̃

�q̇A�qB + YB
�2L̃

�q̇A�q̇B + Z�

�2L̃

����q̇A .



The first of these conditions implies the SODE character of the equations on q’s, the second one
is just the statement ��=0 �the constraint conditions�. Therefore, M1= ��vq ,���TQ
�Rm /���vq�=0� is the first constraint submanifold after applying the Dirac-Bergmann-Gotay-
Nester algorithm11,12 to the presymplectic system �TQ�Rm ,� ,EL̃�.

If we suppose that 	�t�= �q�t� , q̇�t� ,��t�� is an integral curve for �, the following equations
must hold along 	:

� �L̃

�qA = q̇B
�2L̃

�q̇A�qB + q̈B
�2L̃

�q̇A�q̇B + �̇�

�2L̃

����q̇A ,

�� = 0.



Since

d

dt
� �L̃

�q̇A� = q̇B
�2L̃

�q̇A�qB + q̈B
�2L̃

�q̇A�q̇B + �̇�

�2L̃

����q̇A ,

if we expand L̃=L+���� then we obtain �1�, which are exactly the vakonomic equations of
motion for the constrained system given by �L ,���, �=1, . . . ,m.

The solutions on M1 may not be tangent to M1. In such case, we have to restrict M1 to the
submanifold M2 where there exists a solution tangent to M1. Proceeding further, we obtain a
sequence of submanifolds �assuming that all the subsets generated by the algorithm are submani-
folds, in other case see Ref. 17�

¯ � Mk � ¯ � M2 � M1 � M0 = TQ � Rm.

If this constraint algorithm stabilizes, i.e., if there exists a positive integer k�N such that Mk+1

=Mk and dim Mk�0, then we would have a final constraint submanifold Mf =Mk on which a
vector field X exists such that

�iX� = dEL̃��Mf �
.

An interesting case is when the final constraint submanifold is just M1, say Mf =M1. Addi-
tionally, observe that dim M1=2n. Denote by �M1

the restriction of the presymplectic two-form �

to W1 and by C̃2= �C̃A�� the n�m matrix with entries C̃A�=��� /�q̇A.
Proposition 2.1: �M1 ,�M1

� is a symplectic manifold if and only if, for any choice of coordi-
nates �qA , q̇A ,��� on TQ�Rm and every point in M1,

�W̃ C̃2

C̃2
T 0m�m

�
is invertible.
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Proof: It is proved following the same arguments as in Theorem 4.2. �

Observe that if �M1 ,�M1
� is a symplectic manifold then �FL̃�1=FL̃ � iM1

:M1→T*Q is a sym-
plectomorphism �see Ref. 1, p. 34, for more details�, where iM1

:M1�TQ�Rm is the canonical
inclusion.

III. A DISCRETE ALGORITHM FOR VARIATIONAL CONSTRAINED OPTIMIZATION

In this section, inspired by our last geometric approach to vakonomic mechanics, we develop
a numerical integrator that preserves, as we shall discuss later, certain structures naturally associ-
ated with this system.

Given an n-dimensional configuration space Q, a Lagrangian function L :TQ→R, and con-
straints �� :TQ→R, 1���m, let Ld :Q�Q→R and �d

� :Q�Q→R be discrete versions of these
Lagrangian and constraints, respectively.29

Thus we can consider the following problem of static constrained optimization which will be
called the discrete version of constrained variational calculus �or discrete vakonomic mechanics�:

�min S�q0,q1, . . . ,qN� with fixed q0 and qN

subject to �d
��qk,qk+1� = 0, 1 � � � m, 0 � k � N − 1,

� �12�

where S�q0 ,q1 , . . . ,qN�=�k=0
N−1Ld�qk ,qk+1� stands for the discrete action. Observe that the system is

subjected to N ·m constraint functions.
Considering �12� as a typical constrained optimization problem, we define a discrete aug-

mented Lagrangian L̃d�x ,y ,��=Ld�x ,y�+���d
��x ,y� on Q�Q�Rm and the associated uncon-

strained discrete variational problem:

� min S̃�q0,q1, . . . ,qN,�0,�1, . . . ,�N−1� with fixed q0 and qN

qk � Q, �k � Rm k = 0, . . . ,N − 1, qN � Q ,
� �13�

where S̃�q0 ,q1 , . . . ,qN ,�0 ,�1 , . . . ,�N−1�=�k=0
N−1L̃d�qk ,qk+1 ,�k�=�k=0

N−1�Ld�qk ,qk+1�+��
k �d

��qk ,qk+1��
where �k is an m-vector with components ��

k ,1���m.

The critical points of problem �13�, will be those annihilating �S̃ /�qk, k=1, . . . ,N−1 �q0 and

qN are fixed� and the constraints equations ��S̃ /��k=0,k=0, . . . ,N−1�. Thus, the discrete vako-
nomic equations are:

�D1Ld�qk,qk+1� + D2Ld�qk−1,qk� + ��
k D1�d

��qk,qk+1� + ��
k−1D2�d

��qk−1,qk� = 0, 1 � k � N − 1,

�d
��qk,qk+1� = 0, 1 � � � m, 0 � k � N − 1

� .

�14�

In the sequel, we will use the notation D12F to denote the n�n matrix ��2F /�xA�yB� for any
C2-function F :Q�Q→R. Now, if the matrix

�D12Ld + ��D12�d
� ��d

�

�x

� ��d
�

�y
�T

0m�m
� � M�n+m���n+m��R�

is invertible, then there exists a local discrete map:

�:Q � Q � Rm → Q � Q � Rm

�x,y,�� � �y,v,��

such that along solutions �q0 ,q1 , . . . ,qN ,�0 ,�1 , . . . ,�N−1� of Eq. �14� we have that
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��qk−1,qk,�
k−1� = �qk,qk+1,�k� ,

which is our integrator for the vakonomic problem.
Remark 3.1: In the case where the constraints are holonomic �i.e., �� :Q→R�, we can choose

�between many others� the discretization:

�d
�:Q � Q → R

�q0,q1� � ���q0�

and then our procedure leads to the same equations as those proposed in Ref. 20 just for the
holonomic case.

IV. SYMPLECTIC-MOMENTUM INTEGRATOR

In Sec. III, we have constructed a variational integrator for vakonomic mechanics. In what
follows, we want to study the symplectic and momentum preserving character of this algorithm.
First, it is necessary to make precise the sense in which � is symplectic and also to define a
suitable discrete momentum map related obviously to the original continuous case.

A. Symplectic behavior

Consider the discrete fiber derivative

Fd:Q � Q � Rm → T*Q

�x,y,�� � − D1L̃d�x,y,�� = − D1Ld�x,y� − ��D1�d
��x,y� � Tx

*Q .

Following the lines developed in Sec. II, we now define the two-form �d on Q�Q�Rm by
pulling back the canonical symplectic two-form �Q=dqA∧dpA=−d�pAdqA� on T*Q via Fd; that is

�d = Fd
*��Q� = d�D1Ld + ��D1�d

�� . �15�

Thus, the coordinate expression for �d is

�d�x,y,�� = − � �2Ld

�xA�yB �x,y� + ��

�2�d
�

�xA�yB �x,y�	dxA ∧ dyB +
��d

�

�xA �x,y�d�� ∧ dxA. �16�

Next, consider the constraint submanifold M̃d�Q�Q determined by the vanishing of the

constraints �d
�=0, 1���m, with canonical inclusion j :M̃d�Rm

�Q�Q�Rm, and the two-

form �M̃d
= j*�d. From the definition of � it is obvious that it applies M̃d�Rm onto itself. Our aim

now is to prove that ���M̃d��Rm�*�M̃d
=�M̃d

.
Lemma 4.1:

�d = d�D1Ld + ��D1�d
�� = − d�D2Ld + ��D2�d

�� − d�d
� ∧ d��

Proof:

0 = d�dLd + d����d
��� = d�D1Ld + D2Ld + ��D1�d

� + ��D2�d
� + �d

�d���

= d�D1Ld + ��D1�d
�� + d�D2Ld + ��D2�d

�� + d�d
� ∧ d��

�

Now, properties of the pull-back, Eq. �14�, and the above lemma imply that
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�*�d = �*�d�D1Ld + ��D1�d
��� = d��*�D1Ld + ��D1�d

��� = d�− �D2Ld + ��D2�d
���

= d��D1Ld + ��D1�d
��� + d�d

� ∧ d�� = �d + d�d
� ∧ d��

and then ����M̃d�Rm�*�M̃d
=�M̃d

since d�d
� vanishes on tangent vectors to M̃d.

Observe now that M̃d�Rm is a 2n-dimensional manifold. Therefore, it is a natural question to
ask about conditions that ensure the symplectic character of the two-form �M̃d

.
Theorem 4.2: Suppose that the n�n matrix A= �D12Ld+��D12�d

�� is invertible. Then �M̃d
is

symplectic if and only if the matrix

��D12Ld + ��D12�d
�� C1

C2
T 0m�m

�
is invertible. Here, C1 and C2 denote the n�m matrices:

C1 = ��C1�A�� = � ��d
�

�xA � and C2 = ��C2�A�� = � ��d
�

�yA � .

Proof: Let C be the �2n+m��m matrix defined by

C = �C1

C2

0m�m
� .

Moreover, B is the �2n+m�� �2n+m� matrix defined by

B = � 0 − A − C1

AT 0n�n 0n�m

C1
T 0m�n 0m�m

� .

The matrix B represents the two-form �d �see Eq. �16�� and then, the two-form �M̃d
is symplectic

if and only if the following system of equations admits as unique solution �XA ,YA ,C��
=01��2n+m�:

��X̃A,ỸA,C̃�� · B · �XA,YA,C��T = 0

�XA,YA,C�� · C = 01�m
� for all �X̃A,ỸA,C̃�� verifying �X̃A,ỸA,C̃�� · C = 01�m.

This problem is equivalent to the regularity of the �2n+2m�� �2n+2m� matrix:

D =�
0 − A − C1 − C1

AT 0n�n 0n�m − C2

C1
T 0m�n 0m�m 0m�m

C1
T C2

T 0m�m 0m�m

� .

Since the n�n matrix A is invertible, then so is the matrix in the upper left quarter part of D and,
taking its Schur complement in D �see Ref. 24�, the regularity of D is equivalent to
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0 � ��C1
T 0m�n

C1
T C2

T � · � 0n�n �AT�−1

�− A�−1 0n�n
� · � − C1 − C1

0n�m − C2
�� = � 0m�m − C1

T�AT�−1C2

C2
TA−1C1 C2

TA−1C1 − C1
T�AT�−1C2

�
= � 0m�m − �C2

TA−1C1�T

C2
TA−1C1 0m�m

� ,

which is equivalent to the regularity of the matrix C2
TA−1C1, the Schur complement of A in the

matrix:

�A C1

C2
T 0m�m

�
Therefore, this last matrix is invertible if and only �M̃d

is symplectic. �

In the conditions of Theorem 4.2, the variational algorithm is symplectic.
Remark 4.3: The classical approach to constrained variational calculus is developed by using

the extended Lagrangian L :T�Q�Rm�→R defined by L=L+���d
�. A natural discretization of

this extended Lagrangian is

Ld = Ld + ���d
�,

where Ld :Q�Rm�Q�Rm→R. The action sum is

S̃ = �
k=0

N−1

Ld�qk,�
k,qk+1,�k+1� = �

k=0

N−1

�Ld�qk,qk+1� + ��
k �d

��qk,qk+1�� ,

where qk�Q and �k= ���
k ��Rm.

The discrete Euler-Lagrange equations �DEL� are

D1Ld�qk,�
k,qk+1,�k+1� + D2Ld�qk−1,�k−1,qk,�

k� = 0, 1 � k � N − 1, �17�

which are equivalent to

�D1Ld�qk,qk+1� + ��
k D1�d

��qk,qk+1� + D2Ld�qk−1,qk� + ��
k−1D2�d

��qk−1,qk� = 0,

�d
��qk,qk+1� = 0.

�
Now, �17� are exactly �14�. Observe that our procedure is more direct and, moreover, the analysis
of the geometric properties is easier with the approach that we follow. For instance, observe that
using the extended approach the final constraint submanifold,

M̄d = ��d
� = 0� � Q � Rm � Q � Rm,

is presymplectic instead of symplectic.

B. Momentum preservation

Let Ld be the discrete Lagrangian and �d
�, 1���m the discrete constraints. Suppose that Ld

and �d
� are invariant under the diagonal action of a Lie group G on Q. Therefore, for any ��g

�where g is the Lie algebra of G� we have:

Ld�exp�s��qk,exp�s��qk+1� = Ld�qk,qk+1� , �18�

�d
��exp�s��qk,exp�s��qk+1� = �d

��qk,qk+1�, 1 � � � m �19�

Consider the discrete momentum map

Jd:Q � Q � Rm → g*

083521-11 Discrete vakonomic mechanics J. Math. Phys. 46, 083521 �2005�

                                                                                                                                    



�x,y,�� � Jd�x,y,��:g → R

� � D2Ld�x,y� + ��D2�d
��x,y�,�Q�y�� ,

where �Q is the infinitesimal generator of �.
Proposition 4.4: The flow � :Q�Q�Rm→Q�Q�Rm preserves the momentum map.
Proof: Differentiating Eqs. �18� and �19� and taking s=0 we obtain the following two equa-

tions:

D1Ld�qk,qk+1��Q�qk� + D2Ld�qk,qk+1��Q�qk+1� = 0,

D1�d
��qk,qk+1��Q�qk� + D2�d

��qk,qk+1��Q�qk+1� = 0.

Multiplying the latter equation by ��
k , adding then the former equation, and using Eq. �14� then we

have

D2Ld�qk,qk+1��Q�qk+1� + ��
k D2�d

��qk,qk+1��Q�qk+1�

= D2Ld�qk−1,qk��Q�qk� + ��
k−1D2�d

��qk−1,qk��Q�qk�

or

Jd���qk−1,qk,�
k−1�� = Jd�qk−1,qk,�

k−1� .

�

Remark 4.5: Observe that, more generally, we may impose the condition of invariance of

L̃d=Ld+���d
� instead of the stronger condition of invariance of Ld and �d

�, independently.

V. EXAMPLE: THE HEISENBERG SYSTEM

Define the differential one-form � in Q=R3 by

� = dz − ydx + xdy

and its associated distribution:

H�x,y,z� = ���x,y,z��0 = ��v1,v2,v3� � R3:v3 − yv1 + xv2 = 0� ,

which can be alternatively expressed as

H�x,y,z� = Span��1,0,y�,�0,− 1,x�� .

We can then compute the Lie bracket of both generators: ��1,0 ,y� , �0,−1,x��= �0,0 ,2�, which is
not in H��x,y,z��, therefore the distribution is not integrable. In fact,

R3 = Span��1,0,y�,�0,− 1,x�,�0,0,2��

and, considered as a Lie algebra, it is just the Heisenberg algebra that one meets in quantum
mechanics: �1,0 ,y� and �0,−1,x� corresponding to position and momentum operators and �0,0,2�
to a multiple of the identity. Anyway, we have chosen the Heisenberg system just as an example
of vakonomic dynamics2,23 when we take the kinematic Lagrangian: L= 1

2 �ẋ2+ ẏ2+ ż2� and force
the velocity vectors of admissible curves to lie in the distribution H; that is, we require that the
solutions satisfy the nonholonomic constraint: �= ż−yẋ+xẏ =0. The equations for this vakonomic
problem turn out to be
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�
ẍ = 2�ẏ + �̇y ,

ÿ = − 2�ẋ − �̇x ,

z̈ = �̇ ,

ż = yẋ − xẏ�the constraint� ,

 �20�

supplied with initial conditions in positions and velocities or, alternatively, initial and final con-
ditions in positions.

Let us now consider the action of the group

G = S1 = �ei�,� � �0,2��� = ��
cos � − sin � 0 0

sin � cos � 0 0

0 0 1 0

0 0 0 1
�:� � �0,2��


over R3�R:

�Q:G � R3 � R → R3 � R

�ei�,�x,y,z,��� � �x cos � − y sin �,x sin � + y cos �,z,�� ,

which induces an action of G over T�R3�R��R3�R�R3�R:

�TQ�ei�,�x,y,z,��,�v1,v2,v3,v4�� = ��Q�ei�,�x,y,z,���,�v1 cos � − v2 sin �,v1 sin �

+ v2 cos �,v3,v4��

and, due to the fact that G leaves invariant the augmented Lagrangian L̃, the momentum map JL̃

provide us a conserved quantity:

JL̃��x,y,z,��,�v1,v2,v3,v4��:g → R

� � �xv2 − v1y + ��x2 + y2���

Therefore, along solution curves, the function:

f:T�R3 � R� → R

�x,y,z,�, ẋ, ẏ, ż,�̇� � xẏ − ẋy + ��x2 + y2�

remains constant.
Vakonomic integrator. We turn now to our discrete scheme. First, we select the usual discreti-

zation of variables when we are on vector spaces �as is the case�: x= �x0+x1� /2; ẋ= �x1−x0� /h; and
the analogue for y , ẏ ,z , ż. Then the discretization of the Lagrangian and constraint function results
on

L =
1

2
�ẋ2 + ẏ2 + ż2�, Ld =

1

2h2 ��x1 − x0�2 + �y1 − y0�2 + �z1 − z0�2� ,

� = ż − yẋ + xẏ, �d =
1

h
�z1 − z0 + x0y1 − x1y0� .

After some computing, we find that
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��D12Ld + ��D12�d
�� D1�d

�

�D2�d
��T 0

�
��x0,y0,z0,x1,y1,z1,�0��

=
1

h2�
− 1 − �0h 0 hy1

�0h − 1 0 − hx1

0 0 − 1 − h

− hy0 hx0 h 0
�

whose determinant is equal to �1+ ��0�2h2��1+y1y0+x1x0�=1+O�h2�. We can run our method for
h enough small such that the discrete vakonomic equations become

�
0 = − x2 + 2x1 − x0 + h��1y2 − �0y0� ,

0 = − y2 + 2y1 − y0 + h��0x0 − �1x2� ,

0 = − z2 + 2z1 − z0 + h��0 − �1� ,

0 = z2 − z1 + x1y2 − x2y1,



which are a discrete version of the continuous equations at the end of the last paragraph and can
be solved with initial conditions �x0 ,y0 ,z0 ,�0� and �x1 ,y1 ,z1� or initial and final conditions
�x0 ,y0 ,z0 ,�0� and �xN ,yN ,zN�, all them satisfying the constraint �d=0. In the first case, resolution
of the vakonomic equations gives us �x2 ,y2 ,z2 ,�1�, and from it and �x1 ,y1 ,z1� we obtain
�x3 ,y3 ,z3 ,�2� and so on. To compare our method with the classical four-order Runge-Kutta
method �RK4�, we write Eq. �20� as follows:

FIG. 1. Vakonomic integrator and Runge-Kutta.
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�
ẋ = u ,

ẏ = v ,

ż = yu − xv ,

�̇ =
− 2��xu + yv�

1 + x2 + y2 ,

u̇ = 2�v + y�− 2��xu + yv�
1 + x2 + y2 � ,

v̇ = − 2�u − x�− 2��xu + yv�
1 + x2 + y2 � .


 �21�

Then, we apply RK4 to Eq. �21� with h=0.35, N=4000 and initial conditions: x0=y0=z0=0;
u0=0.1; v0=0.3; �0=1. We also use these initial conditions, together with the �x1 ,y1 ,z1� calculated
by RK4, to start the vakonomic integrator �Fig. 1�. Results and comparison of energies are shown
in Fig. 2 �left�. They show that the variational integrator behavior is much better in the long time
running.

Observe that �Q induces an action on R3�R3:

FIG. 2. Energy behavior and preservation of the discrete momentum map.
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�d:G � R3 � R3 → R3 � R3

and, being �d and Ld invariants under the action of G, the discrete momentum map Jd:

Jd�x0,y0,z0,x1,y1,z1,��:g → R

� � �y1x0 − x1y0 + �h�x0x1 + y0y1���

gives us the following conserved quantity:

fd = y1x0 − x1y0 + �0h�x0x1 + y0y1� .

FIG. 3. Initial and final conditions.
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Figure 2 �on the right� shows the behavior of fd for the variational integrator and RK4,
respectively. Initial conditions are the same as those for Fig. 1 while the step has been reduced to
h=0.01 and the number of steps has been reduced to N=2000. It is shown that RK4 does not
preserve fd even in better conditions for its implementation.

In the case, where initial and final conditions �x0 ,y0 ,z0� and �xN ,yN ,zN� are given, we set a
system of 4�N−1� equations taking h=T /N where T is the time in which the final position is
reached. Then, we solve that system by using Newton’s method. Figure 3 �on the left� shows the
result for the problem of connecting the origin with the point �0,0,1� with N=50, T=10. In Fig. 3
�on the right� we show some solutions after rotation using the symmetry of the problem �Refs. 10
and 22�.
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The Ginzburg–Landau model has met with phenomenal success in capturing the behavior of
uperconductors in a wide variety of settings. In particular, it has been used for many years to
nterpret experiments and to predict new results related to phase transitions, vortex creation and
ynamics, Josephson junctions, etc. The papers in this volume cover a wide spectrum of topics of
urrent interest in research on the Ginzburg–Landau model.

• The volume contains one review paper by Du on the numerical approximation of the
Ginzburg–Landau model. In addition to finding special explicit solutions and asymptotic
limits for the equations, it is useful to have solutions in general domains with general pa-
rameters. Additionally, efficient and accurate computations on the model allow one to con-
duct extensive numerical experimentation. Du reviews several numerical methods including
finite elements, finite differences, and finite volumes.
The rest of the volume consists of ten research papers covering a wide range of current topics
in Ginzburg–Landau research.

• Alama and Bronsard study the effect of impurities on vortex formation and location for
samples with large Ginzburg–Landau parameters. The impurities are modeled through a
pinning term in the quartic potential appearing in the energy.

• It is well known that vortices exhibit a lattice structure in bulk samples. On the other hand,
in finite samples, superconductivity concentrates near the boundary for magnetic fields just
below the critical value Hc3. Almog’s paper bridges the gap between these two regimes.

• Two of the papers in the volume deal with the time-dependent Ginzburg–Landau system.
Baumann et al. close an important gap in the existence, uniqueness, and regularity theory for
the three-dimensional time-dependent Ginzburg–Landau system by considering the interior
problem coupled to the Maxwell equations on the exterior. Another intriguing problem in
modeling the time-dependent problem is the nature of the boundary condition on the sample’s
surface. Most authors assume the supercurrent has only a tangential component at the bound-
ary. However, a more appropriate condition seems to be that the total current �super plus
normal� would have no normal component at the boundary. Berger examines this issue and
derives conditions under which the supercurrent itself is indeed tangential to the boundary.

• There is considerable recent activity, both theoretical and experimental on mesoscopic super-
conducting samples. Because the domain size is of the same scale as the coherence length,
the shape of the boundary plays a major role in the observed patterns and dynamics. One
important topic is the formation and motion of vortices in such samples. Berdiyorov et al.
study this problem in the London limit. Chibotaru et al. consider the phase transition curve
T�H� in small samples. It is known that singularites on the boundary, such as vertices in
polygons, affect this curve. The authors numerically compute these phase transition curves in
triangles, rectangles, and discs, and compare their results to their experimental observations.

• The Ginzburg–Landau model serves as a prototypical energy functional in several physical
disciplines, in particular in liquid crystals. Berlyand and Khruslov study a variant of the
Ginzburg–Landau model that incorporates small inclusions with very strong anchoring con-

ditions. They find a canonical scaling for the model and homogenize it. Kim et al. exploit the
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analogy between nematic liquid crystals and superconductors to predict the existence of
topologically driven patterns in nematic liquid crystals. These patterns are reminiscent of
persistent currents in superconductivity.

• The richness of the Ginzburg–Landau model is evidenced by an elaborate bifurcation picture
controlled by several parameters in the problem. Kosugi et al. consider bifurcation diagrams
for a one-dimensional Ginzburg–Landau model on a circle. This model serves as a paradigm
for Little-Parks oscillations. The existence of a stable bifurcating branch from the normal
state means that the phase transition is second order, i.e., smooth. Physically, a strong Meiss-
ner effect destabilizes the bifurcation branch and favors first-order phase transitions. Ma and
Wang study the stability question and derive a general formula to determine whether or not

the bifurcating branch is stable.
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We study a Ginzburg–Landau model for an inhomogeneous superconductor in the
singular limit as the Ginzburg–Landau parameter �=1/�→�. The inhomogeneity
is represented by a potential term V���= 1

4 �a�x�− ���2�2, with a given smooth func-
tion a�x� which is assumed to become negative in finitely many smooth subdo-
mains, the “normally included” regions. For bounded applied fields �independent of
the Ginzburg–Landau parameter �=1/�→�� we show that the normal regions act
as “giant vortices,” acquiring large vorticity for large �fixed� applied field hex. For
hex=O��ln ��� we show that this pinning effect eventually breaks down, and free
vortices begin to appear in the superconducting region where a�x��0, at a point set
which is determined by solving an elliptic boundary-value problem. The associated
operators are strictly but not uniformly elliptic, leading to some regularity questions
to be resolved near the boundaries of the normal regions. © 2005 American Insti-
tute of Physics. �DOI: 10.1063/1.2010354�

. INTRODUCTION

In this article we study a two-dimensional Ginzburg–Landau model for an inhomogeneous
uperconductor with finitely many “normal” regions in the interior. Inhomogeneous Ginzburg–
andau models have been introduced in order to understand vortex pinning �see, e.g., Ref. 8�.
ypically, the inhomogeneity is introduced via a potential term

V��� = 1
4 �a�x� − ���2�2,

ith real-valued function a�x�. Since a�x���Tc−T�, its spatial variation indicates that the critical
emperature may vary within the sample. One expects that vortices will be drawn to the least
trongly superconducting regions, at local minima of a�x�, and this phenomenon is called pinning.
n most studies of pinning the coefficient a�x� is assumed to be strictly positive in the sample �see,
.g., Refs. 5, 2, and 11�, but a recent article by André et al.4 considers the interesting case where
�x�=0 at finitely many isolated points. These pinning points represent defects where the material
ssumes normal conductivity. In this paper we consider the case where a�x��0 in the pinning
ites, and thus model “normal inclusions,” open regions of normally conducting material in the
nterior of the superconducting sample.

Let D�R2 be a smooth simply connected domain, ��H1�D ;C� the complex-valued order
arameter, A�H1�D ;R2� the vector potential, h=curl A=�xAy −�yAx, and hex a constant applied
eld. We define the energy:

�Electronic mail: alama@mcmaster.ca
�
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E���,A� ª �
D
�1

2
���− iA���2 +

1

4�2 �����2 − a�x��2 − �a−�2� +
1

2
�h − hex�2	dx . �1.1�

ote that subtracting �a−�2 alters the usual inhomogeneous Ginzburg–Landau energy by a con-
tant, which would give the highest order term O��−2� as �→0. Note that the energy density is still
onnegative everywhere in the sample D. We assume the following conditions on a�x�;

�H1� a�x� � C2�D� .

�H2� 
x � D̄:a�x�� 0� = � j=1
n � j, with finitely many smooth, simply connected domains

� j � � D .

�H3� � a�x� � 0 for all x � �� j, j = 1,…,n .

e define

	 = D \ 
x:a�x�� 0� = D \ �� j=1
n � j� .

ote that it follows from the above-mentioned hypotheses that a�x� is bounded away from zero on
he exterior boundary �D. In addition, we do not allow any isolated pinning points a�x0�=0: unlike
he case studied in Ref. 4, we admit only normal inclusions with nonempty interior.

It is intuitively clear that �as long as the energy of minimizers remains small compared with
/�2,� in the limit the order parameter’s modulus ��� will tend to �a+�x� in the bulk of the sample.

n other words, the sets on which a�x��0 strongly penalize superconducting order and essentially
ct as holes punched in the domain. Thus the situation closely resembles the problem studied in
ur previous article,3 in which a uniform superconductor �i.e., a�x�1� occupied a multiply
onnected domain 	=D \� j=1

n � j, with finitely many holes � j. In Ref. 3 we present two results for
ifferent regimes of the applied field hex. First, we show that when the applied field is fixed
independent of �� there are no interior vortices in 	 but the holes � j act as “giant vortices,” with
onzero winding of the phase of � for large enough hex. There is an associated limiting problem
hich governs the distribution of vorticity among the holes, and these degrees are directly calcu-

able from hex.
Next we pose the question: for which hex do vortices first appear in the bulk 	, and at which

ocations? We show that interior vortices appear at hex=O��ln ���. The appearance of interior
ortices for the Ginzburg–Landau model in simply connected domains for fields of order �ln �� is
ell-known to physicists, and the mathematics of this phenomenon has been thoroughly and

legantly studied in works by Serfaty,18,19 Sandier and Serfaty.15,17 In our setting �as in the mul-
iply connected case3� these ”free” vortices coexist with giant vortices of high degree in each hole,
nd the location of the free vortices is precisely determined by maximizing an auxilliary function
epending only on the geometry of the multiply connected domain 	. We show that the vortices
o not cluster near the holes � j, but choose to accumulate on one of a finite number of points or
losed curves strictly contained within the bulk 	.

Another related problem, arising in the context of Bose–Einstein condensates �BEC� is pre-
ented in Ref. 1. In the BEC problem, the condensate is assumed to be subjected to a uniform
otation � which plays the role of the applied field in �1.1�, but the vector potential A
=��−x2 ,x1� is predetermined. In Ref. 1 the domain D is a disk, and a�x� is chosen to be radial

ith a positive in a symmetric circular annulus 	 and negative in the hole. The negativity of a
orces the order parameter to zero in the hole, and the situation is qualitatively very similar to
aving a doubly connected domain. The results of Ref. 1 are parallel to those in Ref. 3: one
oncerning pinning for bounded rotations, and one concerning the breakdown of pinning when the
otation �=O��ln ���. In the second result, the vortices again appear far from the hole, and accu-

ulate along a finite number of concentric circles with radii explicitly determined by the function
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�x�. Some care must be taken due to the vanishing of a�x� near the boundary of the hole, and in
ef. 1 the radial symmetry of the domain was used to circumvent some technical points and focus
n the qualitative nature of the results.

Our results in this article combine many aspects of both papers. The general scheme to find
nterior vortices will be along the same lines as in the multiply connected case,3 and the vanishing
and negativity� of a�x� will play a role much as in the BEC setting.1 However, in Ref. 1 radial
ymmetry was used in an essential way to deal with many difficult technical problems arising due
o the vanishing of a�x� near the hole. In the general nonsymmetric setting many of these argu-
ents rely on sharp estimates for solutions to boundary-value problems for elliptic operators
hich are strictly elliptic, but lose uniform ellipticity at each �� j. �See, e.g., �1.4� in Sec. I A�. In

he radial case of �Ref. 1� these are obtained explicitly by integration; here we provide some
egularity results near the boundary of the holes �see Sec. III�. Even with these estimates the
onsymmetric setting requires substantial refinement of the analysis of vortices near the holes
rom Refs. 1 and 3, and so we provide full details of this analysis in Sec. V.

Our results can also be applied to the BEC context, and we make some remarks on this
onnection at the end of the Introduction.

We now give some more detailed description of the content of the paper. As mentioned above,
he presence of the inhomogeneity a�x� creates problems near the boundaries of the pinning sites.
or starters, under our hypotheses, �a+�x��H1�	�, and this results in a singular boundary layer as
→0. Fortunately, a remarkable identity �see Lassoued and Mironescu12� allows us to split this
ingular part from the rest of the energy. Define a functional,

J��
� ª �
D
�1

2
��
�2 +

1

4�2 ��
2 − a�x��2 − �a−�2�	dx ,

nd let 
��H1�D ;R� be the �unique� minimizer. With u=� /
� we have

E���,A� = J��
�� + �
D
�
�2

2
��Au�2 +


�
4

4�2 ��u�2 − 1�2 +
1

2
�h − hex�2	dx ¬ J��
�� + F��u,A� ,

nd the object of interest becomes the reduced energy F�. We now consider various aspects of the
roblem separately.

. A limiting energy

The most important consequence of the presence of holes is that there is a rich class of
vortexless” configurations. These are obtained as critical points of the limiting energy:

F��u,A� ª
1

2
�
	

a�x���Au�2dx +
1

2
�

D
�h − hex�2,

or

u � Ha
1�	;S1� ª �u � W1�	;S1�:�u�Ha

1
2

ª �
	

a�x���u�2dx��	 , �1.2�

nd A�H1�D ;R2�. Although these configurations cannot have any vortices in the sense of zeros
f u in 	, nevertheless they do exhibit vorticity around the holes � j due to the nontrivial topology
f 	. In Sec. III we study this minimization problem as a function of the applied field hex. We
how that minimizers of the limit problem are completely characterized by the magnetic field
=curl A, much in the same way that the harmonic conjugate function is used by Bethuel et al.6

1
o solve the S -harmonic map problem. We have:
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Theorem 1.1: There exists a constant E0 (independent of hex) such that

min
�u,A��H�

F��u,A� = hex
2 E0 + g�D*;hex� , �1.3�

here D*= �D1 ,… ,Dn��Zn minimizes

g�D;hex� ª ��D� · CD� − 2hexX� · D� � = ��
i,k=1

n

ci,kDiDk − 2�hex�
i=1

n

c0,iDi,

or a uniquely determined constant matrix C= �Ci,k� and constant vector X� = �c0,1 ,… ,c0,n�. The
inimizers �u* ,A*� of F� satisfy �u*�=1 almost everywhere in 	, and deg�u* ;�� j�=Dj for each

j=1,… ,n.

The constants C= �ci,j� and X� are explicitly calculated from solutions to elliptic boundary-
alue problems in D �see Eq. �3.14��.

The optimal magnetic field h*=curl A* is given approximately by h*�x��hex�1−��x��, where
�x� solves

− �� 1

a�x�
� �� + � = 1 in 	 ,

� = 0 on �	 . �1.4�

Lemma 3.4 gives precise statement of this fact.� An analogous function was used in Ref. 3, and
as been instrumental in the study, by Serfaty,18 of vortices in simply connected domains, where
t describes the vortexless Meissner phase. In a multiply connected domain there are many such
hases, and � chooses the one which minimizes the energy of the limit problem. In particular, we
ill show in Sec. III that the degrees of the holes � j will be determined by hex and the boundary
alue of �� /� on each � j, giving an explicit formula for each degree.

. Vortex pinning in bounded fields

When hex is independent of � we prove the convergence result below for minimizers of E�.
ince our functionals E� , F� are gauge invariant we must choose spaces H , H� �respectively�
hich fix a gauge. These are defined in Sec. II.

Theorem 1.2: Let hex be fixed, D� * as in Theorem 1.1, and let ��� ,A�� be minimizers of E� in
.

i� E���� ,A��−J��
��→minH�
F�=hex

2 E0+g�D* ;hex� as �→0.
ii� ��� /
� ,A��→ �u* ,A*� strongly in Hloc

1 �	��H1�D ;R2�, with �u* ,A*� minimizers of F�.

According to Theorem 1.2 we can expect minimizers to have nontrivial winding for suffi-
iently large but bounded �in �� fields hex. This is in contrast to the simply connected case where
he solution exhibits no winding until the appearance of the first vortex, at applied fields of order
ln ��. In our model, the minimizers undergo a sequence of transitions to higher and higher winding
umber as hex increases, although the ratios of the degrees among the holes � j remains fixed,
odulo the discontinuous constraint that the degrees must be integers. The limit functional F�

ompletely describes the system for � small, and minimization of F� itself is completely charac-
erized by the finite dimensional function g.

We note that Ginzburg–Landau solutions with nontrivial winding numbers in nonsimply con-
ected domains have been studied by several authors; see for instance Refs. 10 and 13. In these
ases there was no applied field, and the solutions obtained were local minimizers of the energy
ithin a fixed homotopy class, representing the phenomenon of “permanent currents.” Here our

olutions will be the global minimizers, and the applied field and the topology of the domain work

ogether to choose the homotopy class of the minimizers.
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. The breakdown of pinning in stronger fields

When the applied field attains O��ln ��� the pinning effect breaks down, and vortices are
ucleated in 	, at a field strength and location determined by �. For this part of the paper, we
mpose an additional condition on a�x�:

�H4� a�x� is real analytic in D .

nder �H4�, the function � is real-analytic in 	, and hence also � /a, and consequently � /a attains
ts maximum on a set � with finitely many connected components. Those components could
onsist of isolated points inside 	 together with closed curves which may wind around one or
ore of the pinning sites � j. We will show that the vortices of any minimizer must be localized to

he set � as �→0. We distinguish two possibilities:
Case A: � is a finite point set.
Case B: � contains at least one closed curve�.

The nature of minimizers will be different in the two cases. In Case A, the situation is
nalogous to that of Ref. 17, in which it is shown that if vortices can only accumulate at a finite
umber of points in 	 then the total degree of all vortices is uniformly bounded in �. In Case B,
e have shown for a similar problem in the circular annulus1 that the number of vortices accu-
ulating on a circle diverges as ln�ln ��. In both cases, there is coexistence of large vorticity in the

inning sites with point vortices along � inside 	. We expect to see similar phenomena in our
etting.

As in Refs. 1 and 3, we express our minimizers ��� ,A�� as perturbations of the minimizers
u* ,A*� of the limit energy F� �with the given, �-dependent applied field hex.� There is a technical
roblem to overcome, as minimization of the limit energy defines u* in 	, while �� is defined in
he entire bulk D. This difficulty affects mostly the upper bound on the energy; for the lower
ound we merely neglect the condensation energy in each pinning site, which is expected to be
ery small. The ansatz ��=
�u*v� in 	 , A�=A*+Av then leads to a further splitting of the energy,
iving a new functional for �v� ,Av� which measures the internal energy of vortices in 	 and their
nteraction with the pinning sites �see Lemma 5.1�.

Let us explain here what we mean by “vortices” in this paper. We locate the vortices by means
f energy concentration, using the method of “vortex balls” of Sandier and Serfaty16 to derive
harp lower bounds on the energy. Using the result of Ref. 16 we show �see Proposition 5.2� that
inimizers have �u��1 except in a finite number of balls Bi=Bsi

�pi� with vanishingly small total
adii, �si� �ln ��−12. We associate a degree di=deg�u / �u� ;�Bi�=deg�� / ��� ;�Bi� to each ball. We
ay that � has an essential vortex at pi�A� if there is a vortex ball Bi centered at pi with degree

i�0.
As in Ref. 1, the vanishing of a near �� j blurs the distinction between vortices close to the

inning sites and the pinning sites themselves. The energy cost and benefit of having vortices very
lose to a pinning site � j is very small, and may be too small to capture with our methods.
herefore, we excise a vanishingly small neighborhood of each � j, and speak only of vortices
hich lie outside that slightly enlarged hole. Let �� be chosen with �ln�ln ���2 / �ln ��1/2����1, and

	��
ª 
x �	:dist�x,� j=1

n � � j�� ��� .

e then prove the following results for global minimizers:
Theorem 1.3: Assume hypotheses (H1)–(H4), and hex=��ln ��+� ln�ln ��. Let ��� ,A�� be

inimizers of E�. Then:

i� if either ���* or both �=�* and ���*, then for all � sufficiently small �� has no
essential vortices in 	��

:D�ª�pi�	��
�di�=0.

ii� if �=�* and ���* then for all � sufficiently small, any essential vortex in 	��
has positive

degree and is localized on the set � in the following sense: there exists an M �N such that

if pi are the centers of the vortex balls Bi,
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�
di�0

pi�	��

�di� + �
dist�pi,C��

�ln ��−1/4M

pi�	��

�di� = 0

for all � sufficiently small. Moreover, the total degree in 	,

D� = �
pi�	��

�di� = �
dist�pi,C��

�ln ��−1/4M

pi�	��

di � �C in Case A ,

C ln�ln �� in Case B .
	

for C=C��� independent of �.
iii� in Case B, there exists �#�0 so that whenever ���# and �=�*, then D��c ln�ln �� for c

independent of �.
iv� if � is any simple closed curve in 	, homotopic to �� j for some j� 
1,… ,n�, which

does not wind around any subset of �, then for all � sufficiently small
deg�� / ��� ;��=Dj +O�ln�ln ���, where Dj is as in Theorem 1.1.

We emphasize that, as in Ref. 1, these vortices will not cluster around the holes, but rather
hoose fixed optimal locations strictly inside the superconducting bulk 	. This is why we call this
henomenon the “breakdown of pinning.” The key to proving this property is a boundary estimate
n the function � at each pinning site: in a neighborhood of each � j, we prove 0���x�
C�2�x�ln�ln ��x�� where ��x�ªminjdist�x ,�� j�. Since �by �H3�� a�x� is linear near each �� j, the
aximum of 2� /a must therefore occur away from � j.

. Bose–Einstein condensates

As was mentioned previously, we may also apply our analysis to study Bose–Einstein con-
ensates with anharmonic traps which favor multiply connected regions. The variational problem
akes the form

H��u� = �
D
�1

2
��u�2 − �x� · Im �ū � u� +

1

4�2 ���u�2 − a�x��2 − �a−�x��2�	dx , �1.5�

or a complex-valued wave function u�H0
1�D�, where ��0 and � represents an imposed angular

peed of rotation. A discussion of the origins of this model is presented in Ref. 1. The function
�x� now represents the trapping potential, modeling the laser confinement of BEC in laboratory
onditions. In early experiments on BEC the trapping was assumed to be harmonic, giving an
llipsoidal form to the condensate domain, 
x :a�x��0�. In more recent experiments other con-
nement geometries have been considered, including the annular shape studied in Ref. 1. If we

mpose hypotheses on a�x�,

�H1�� a�x� � C��D�, and a�x� = 0 on � D;

�H2�� 
x � D:a�x�� 0�

= � j=1
n � j, with finitely many smooth, simply connected domains � j � � D;
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�H3�� � a�x� � 0 for all x � �� j, j = 1,…,n and for all x � �D;

�H4�� �
D

a+�x�dx = 1;

e may obtain results for H� which are analogous to those above, but with the imposed rotation �
laying the role of the applied field hex. Aside from the difference in boundary condition on �D,
he major difference is that the magnetic field is replaced by the fixed vector field, � x� which

odels the rotation. The consequence of this is that the limiting problem is slightly different,
lthough it is still of a similar type and susceptible to the same solution method. �See the end of
ec. III.� The results for BEC will be the same as those of superconductivity, but with the presence
f an additional boundary layer near the exterior boundary �D, where we also lose control of the
umber and location of individual vortices due to the vanishing of a�x�.

I. PRELIMINARIES

In this section, we present some preliminary results which we will require throughout the
aper.

. Spaces, gauges, and equations

We define here the appropriate spaces and write down the Euler–Lagrange equations for
inimizers.

The energy functional E� is gauge-invariant: if ��H2�D ;R� is any scalar potential, then

��� exp�i�� ,A+���=E��� ,A�. As usual we restrict our spaces to eliminate this degeneracy by
xing the Coulomb gauge. We say �� ,A��H if ��H1�D ;C� and A�H1�D ;R2� with

div A = 0 in D, A ·  = 0 on � D . �2.1�

his choice is made with no loss of generality, as to any arbitrary configuration
� ,A��H1�	 ;C��H1�D ;R2� we may find a function � so that the gauge-equivalent configura-
ion �� exp�i�� ,A+����H with the same energy. Indeed, we can choose � to be a solution
unique up to an additive constant� of

�� = − div A in D, � ��

�
�

�D
= A · ��D.

e also recall that the magnetic field h�x��L2�D� uniquely determines its vector potential A in
he Coulomb gauge. To see this, we solve the Dirichlet problem,

�b = h in D, b��D = 0, �2.2�

nd then A=��b= �−�yb ,�xb� gives the desired potential. We obtain from this the main analytical
dvantage of the Coulomb gauge, control of the potential by the L2 norm of its field: there exists
constant CD �depending only on D� such that

�A�H1�D� � CD�h�L2�D�. �2.3�

he estimate �2.3� follows from the regularity theory for the Dirichlet problem mentioned previ-
usly.

Minimizers of E� satisfy the Ginzburg–Landau system in 	,

− �A
2� +

1

�2 ����2 − a�x��� = 0 in D , �2.4�

� � ¯
− � h = j ª Im
���− iA��� in D , �2.5�
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h = hex on � D . �2.6�

ere we denote �A�ª��− iA�. There is also a boundary condition �A� ·=0 on �D. From
emma 1.1 of �4� we have the basic estimate

���x��� sup
D

�a+�x�, ∀ x �	 , �2.7�

here a+�x�=max
a�x� ,0�. This is a consequence of the maximum principle applied to the equa-
ion for ���2.

. Decoupling the density profile

As �→0 we expect that the potential term in the energy E� will force ���2→a+�x�. The
ypotheses on a�x� do not allow �a+�H1�D�, and so this creates a singular boundary layer near
he zero set of a. Here we study this boundary layer, so that it can be effectively removed from our
nergy calculations in the following sections.

Define a functional,

J��
� ª �
D
�1

2
��
�2 +

1

4�2 ��
2 − a�x��2 − �a−�2�	dx , �2.8�

or real-valued functions 
�H1�D ;R�. Critical points of J� solve the boundary-value problem

− �
 +
1

�2 �
2 − a�x��
 = 0, in D,
�


�
= 0, on � D . �2.9�

Proposition 2.1: Problem �2.9� admits a unique positive solution 
�, which is the unique
inimizer of J� in H0

1�D� up to a complex multiplier of modulus one. In addition,

i� 0�
��x��maxDa, and ��
���C /�;
ii� J��
���C�ln �� and 
� is bounded in L��	�;
iii� There exists a constant C independent of � so that

�
��x� − �a+�x��� C�1/3�a+�x� for every x �	 with dist�x,�	�� �1/3; �2.10�

iv� For every j=1,… ,n and x�� j with dist�x ,�� j���1/3,

0� 
��x�� C�1/6exp�− dist�x,�� j�/�2/3� , �2.11�

here C�0 is a constant independent of �.

In particular, �iv� implies that 
�→0 locally uniformly in the holes � j. The assertion �iv�
mplies that �
�

2�x�−a+�x�� is small with respect to a+�x� itself provided we remain at a small
istance ��1/3� from the boundary of each �� j.

The proof of Proposition 2.1 is identical to that of Proposition 2.1 of Ref. 1. In addition we
ave the result of Proposition 2.3 of Ref. 1 which implies that the negativity of a�x� in the normal
egions � j acts more or less like an imposed Dirichlet condition:

Proposition 2.2: Assume hex�C0�ln �� for some constant C0�0. Then, for any minimizer
� ,A� of E� in H,

�
	

����2 − a�2 + �
��j

���4 � C1�
2�ln ��2, �2.12�
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ith constant C1 depending on C0. Moreover, ���x��→0 locally uniformly in � j� j and

���x��� C�1/6exp�− dist�x,�� j�/�2/3� �2.13�

or all x�� j with dist�x ,�� j���1/3 and j=1,… ,n.
Again the proof is identical to that in Ref. 1 and is omitted.
We now apply the remarkable observation �see Ref. 12� that the energy of the profile 
� and

he remaining complex order parameter v=u /
� decouple exactly into two independent pieces.

Lemma 2.3: Let �� ,A��H. Then, u=� /
� is well defined, belongs to H


�
2

1 (defined in (1.2),)

nd

E���,A� = J��
�� + F��u,A� �2.14�

here

F��u,A� = �
D
�
�2

2
��Au�2 +


�
4

4�2 ��u�2 − 1�2 +
1

2
�h − hex�2	dx . �2.15�

Proof: Note that v is well defined in D, since 
��0. The decomposition and the fact that v
H
�

1 �D� follow exactly as in Serfaty.20
�

II. THE LIMIT PROBLEM

In this section we consider a limiting energy F�, which represents in a formal sense the limit
f F� as �→0. Indeed, heuristically we expect that in this limit, �u�→1 in 	, but 
�→0 expo-
entially fast in each � j �by Lemma 2.2�, and thus the contribution of the order parameter to the
nergy from the pinning sites is negligible. Thus, we define:

F��u,A� ª
1

2
�
	

a�x���Au�2dx +
1

2
�

D
�h − hex�2, �3.1�

or

u � Ha
1�	;S1� ª �u � W1�	;S1�:�u�Ha

1
2

ª �
	

a�x���u�2dx��	 ,

nd A�H1�D ;R2�. As in the previous part, we refine our space to fix a gauge, and denote by H�

he subspace of Ha
1�	 ;S1��H1�D ;R2� such that A satisfies �2.1�. The same remarks concerning

he gauges and spaces as above then apply, since the gauge changes affect only the complex phase
f u and not its magnitude.

Note the essential differences with the original problem: now the order parameter is only
efined in the region 	=D \ 
x :a�x��0�, although the magnetic field is calculated everywhere in
. Thus the limit problem strongly resembles the problem in multiply connected domains studied

n Ref. 3, although we must now deal with some delicate regularity issues near �� j, where a�x�
anishes.

The Euler–Langrange equations for the limit problem are

− �A · �a�x��Au� = ��Au�2u, in 	; �3.2�

− ��h = j� ª a�x�Im
ū�Au� in 	; �3.3�
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h = Hj �constant� in each � j, j = 1,…,n; �3.4�

h = hex on � D . �3.5�

here is also a boundary condition, a�x��Au ·=0, on the exterior boundary �D. Note that the
onstants Hj =h��j

are not prescribed, but are determined by the solution h itself.
Since �u�=1 we may then write locally u=ei� for real phase �, and it is then easy to derive

rom �3.3� the following London equation for h=curl A,

− div� 1

a�x�
� h� + h = 0 in 	 . �3.6�

his equation is then supplemented by the boundary conditions �3.4� and �3.5�. There is an
mportant additional condition on each �� j, obtained from integrating equation �3.3� around each
� j separately:

�
��j

1

a

�h

�
ds = �

��j

1

a
��h · � ds = − �

��j

Im
ū � u� · � ds + �
��j

A · � ds

= − 2� deg�u,�� j� + �
�j

h dx = − 2� deg�u,�� j� + Hj�� j� . �3.7�

ecause �u�=1 we may express ��Au�2= ���−A�2= �j��2 and thus the limiting energy of a minimizer
u ,A� may be expressed entirely in terms of the field h=curl A,

min F��u,A� =
1

2
�
	

1

a�x�
��h�2dx +

1

2
�

D
�h − hex�2dx ¬ E*�h� . �3.8�

his characterization of the minimum energy will be especially useful, as it will allow us later on
o evaluate the energy explicitly in terms of the degrees around each pinning site.

Our analysis of the limit problem follows3 in the large. The main difference is that the
quations here involve the operator,

Lh = − div� 1

a�x�
� h� + h ,

hich is strictly, but not uniformly, elliptic, due to the vanishing of a�x� at the boundary of each
inning site � j. As in Ref. 3, we may decompose the magnetic field in order to calculate the
ontribution from each giant vortex in each pinning site, as well as the contribution to h from the
xternal field. Let �i�x� , i=0,… ,n solve

L�i = �i,0 in 	 ,

�i = 0 on � D ,

�i = ci,j on � j, j = 1,…,n ,

�
��j

1

a

��i

�
= − 2��i,j + ci,j�� j�, j = 1,…,n . �3.9�

ere, ci,j , i=0,… ,n , j=1,… ,n are constants determined by the solutions �i�x�, and we empha-
ize that �i,j denotes the Kronecker �and not the Dirac� delta. Then the desired field h is given in

erms of these via:
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h = hex�1 − �0� + �
i=1

n

Di�i, �3.10�

here Di=deg�u ,��i� for the order parameter u associated to h via �3.3�. The existence and
niqueness of the components �i follows from a variational problem as in Ref. 6. The regularity is
omplicated by the fact that uniform ellipticity is lost at the inner boundaries �� j, but the neces-
ary estimates follow by constructing barriers, blowing up near the boundary, and a modification
f the method of Trudinger.21

Lemma 3.1: There exist unique constants 
ci,j�i=0,…,n

j=1,…,n
, and unique weak solutions �0 ,… ,�n to

3.9�. Moreover,

i� each �i�C��D \� j� j��C1�D \� j� j� , i=1,… ,n;
ii� each �i�x��0 for all x�	 , i=0,… ,n;
iii� for all i=0,… ,n there exists constants C�0, �0�0 so that for every j=1,… ,n and for all

x with ��x�ªdist�x ,� j�� j���0,

��i�x� − ci,j�� C���x��2ln�ln ��x�� �3.11�

���i�x��� C��x�ln�ln ��x�� . �3.12�

ote in particular that �ii� implies that the constant values ci,j =�i��j
�0. To maintain continuity of

resentation we defer the proof of Lemma 3.1 to the end of this section.
As in Lemma 2.2 of Ref. 3, the minimum energy is then expressed in terms of the degrees Dj

t each pinning site � j and the external field �see also Theorem 3.4 of Ref. 4�:

Lemma 3.2: Let �u* ,A*� minimize F� in H and h*=curl A*. Then,

min F� = E*�h*� = hex
2 �0 + ��

i,k=1

n

ci,kDiDk − 2�hex�
i=1

n

c0,iDi, �3.13�

here

�0 ª
1

2
�
	

1

a
���0�2 +

1

2
�

D
�0

2.

Proof: The proof is identical to that of Ref. 3, but we sketch it for completeness. We write

*−hex=−hex�0+�i=1
n Di�i and expand the squares. The constants are obtained by integration by

arts, together with �3.9�:

�
	

1

a
� �i · ��k + �

D
�i�k = − �

j=1

n �
��j

1

a

��i

�
�kds + �

�j�j

�i�k = 2�ci,k. �3.14�

�

As in Lemma 2.4 of Ref. 3 �see also Lemma 3.3 of Ref. 4�, we have the following.

Lemma 3.3: The matrix C= �ci,k�i,k=1,…,n is positive definite. In particular, it is invertible and
ts inverse C−1 is a symmetric positive definite matrix.

The proof is identical to that of Lemma 2.4 of Ref. 3 and is omitted.
The importance of the preceding analysis is that it enables us to write down explicitly the map

rom the applied field hex to the degrees D� of minimizers, just by solving a finite dimensional
inimization problem for the quadratic expression given in Lemma 3.2. Indeed, the critical point

�
quation for D is easily calculated,
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D� = hexC
−1X ,

where X = �c0,1,…,c0,n� . �3.15�

Here �as in Ref. 3� we raise a subtle point: in order to represent the magnetic field of actual
inimizers of F� it is necessary that the degrees Dj be integers. Therefore we must restrict our

inimization of the quadratic expression in Lemma 3.2 to D� �Zn, and then the minimizer is given
y

Di = �hex�
k=1

n

ci,k
−1c0,k� , �3.16�

he nearest integer to what would normally be the minimizing vector. Here we denote
−1= �ci,k

−1�.
We now present the proof of Theorem 1.1. Let D� be chosen as in �3.16�, to minimize �3.13�.

y the representation �3.10� we then recover a magnetic field h*, which satisfies �3.7� at each
oundary component. We then obtain A* from h* with the usual Coulomb gauge by solving the
irichlet problem �2.2� described in Sec. II. To recover the order parameter u*, we use the
axwell equation, �3.3�. Since the vector field A*− �1/a���h* is irrotational in 	 by �3.6�, we
ay define locally a real phase �* via

��* = A* −
1

a
��h*. �3.17�

n fact, u*=exp�i�*� is a well-defined, single-valued function in 	, since �3.7� implies:

�
��j

� �* · � ds = �
��j

�A* · � −
1

a
� h* · �ds = 2�Dj � Z .

e thus obtain a configuration �u* ,A*��H� with F��u* ,A*�=E*�h*�=minD� �Zng�D� ;hex�. By
emma 3.2, this identifies the minimizer of F�, and Theorem 1.1 is proven. �

Despite the above-mentioned remarks concerning the degrees, it will nevertheless be conve-
ient in the following analysis to permit the optimal degrees to be real valued, that is to use �3.15�
o define a real vector T� �Rn, and to replace D� →T� in �3.10�. In this case, the minimizer scales

xactly linearly with hex, and so we define T� = �t1 ,… , tn� with

ti = �
k=1

n

ci,k
−1c0,k = �C−1X�i,

hich exactly solves the minimization problem of Lemma 3.2 for T� �Rn, when hex=1. The
ssociated applied field h1�x�=1−��x�, with � defined by

��x� = �0�x� − �
i=1

n

ti�i�x� .

sing the equations for �i and for T� mentioned previously, we observe that ��x� solves:

L� = 1 in 	 ,
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� = 0 on � D � �� j� j� ,

�
��j

1

a

��

�
= 2�tj − �� j� . �3.18�

f course, the first two conditions of �3.18� suffice to determine � exactly, and so the third line can
e seen as an equivalent definition of the coefficients tj.

In the case that the solution of the vector equation CD� =X happens to be a vector of integers
an unlikely coincidence�, then the energy minimizing field h*=hexh1=hex�1−�� exactly. Generi-
ally, the two do not differ by much:

Lemma 3.4: There exists a constant C1 independent of hex such that if h* is the magnetic field
ssociated to the minimizers �u* ,A*� of F� with h=hex, then

max
D̄

�h* − hex�1 − ���� C1.

Proof:

�h* − hex�1 − ��� = ��
i=1

n

�Di − hexti��i� ��
i=1

N

�Di − hexti��i,

hich is uniformly bounded �independent of hex� since Di= �hexti� implies �Di−hexti��1, and the �i

re uniformly bounded. �

Remark 3.5: Notice that the result of Lemma 3.4 could have been stated in any “reasonable”
orm, that is in any norm for which each �i is bounded.

Proof of Lemma 3.1: First we define an appropriate space of functions which take constant
alues on each � j. Adapting the definition in Ref. 21 to our setting, we define H to be the closure
n the norm

�f�H
2
ª �

	

1

a�x�
��f �2,

f the linear subspace of C0
��D� consisting of all functions which are constant in a neighborhood

f � j for each j=1,… ,n. Since 1/a�x� is locally integrable in 	, this definition is well-defined
nd H defines a Hilbert Space. As a�x� is bounded above in 	, the H-norm dominates the usual

0
1-norm on D, and so the Poincaré, trace, and Sobolev inequalities hold for functions in H.

To obtain the desired solutions we minimize the energy

Fi��� =
1

2
�
	
�1

a
����2 − �i0�� +

1

2
�

D
�2 − 2��1 − �i0����i

,

=0 ,… ,n, for ��H. By the Poincaré inequality and the trace inequalities, Fi is bounded below
n H, and by convexity it attains a unique minimizer �i. A simple computation shows that mini-

izers give weak solutions to the boundary-value problem �3.9�. Indeed, the first variation yields,
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0 = DFi��i�u = �
	
�1

a
� �i · �u − �i0u� + �

D
�iu − 2��1 − �i0�u��i

= �
	
�1

a
� �i · �u + �iu − �i0u� + �

j=1

n

��� j��i��j
− 2��ij�u��j

, �3.19�

or all u�H. The equation and boundary conditions then follow from choosing u with values
ither zero or one in the appropriate domains � j. Since the coeffient 1 /a is smooth away from

j� j we have each �i smooth in the interior by standard regularity theory.
As in Ref. 21, the weak maximum principle holds for this equation, since it is nevertheless

trictly elliptic in 	. Taking u�x�=�i
−�x�=min
0,�i�x���0, we have u�H and inserting in �3.19�

e obtain ��i
−�H=0, that is �i�0.

Finally, for the global and boundary regularity we require some results from Ref. 21. By Case
of Theorem 4.1 of Ref. 21 the solutions are uniformly bounded. To obtain the boundary behavior

3.11� and �3.12� near �� j, we construct barriers. Let ��x�=a�x�2ln�ln a�x��. We calculate:

L� = � 2

�ln a�x��
+

1

�ln a�x��2� ��a�2

a
− �2 ln�ln a� +

1

ln a
��a + a�x�2ln�ln a�x�� .

y hypothesis �H3�, a�x���0��x� for x in a neighborhood of �� j, for each j=1,… ,n. In particu-
ar, ��a� is bounded away from zero in a neighborhood of each �� j, and hence the first term on the
ight-hand side is dominant and tends to +� as ��x�→0. Therefore, there exists �0�0 such that
��1 for all x with ��x���0.

Now let �̄i,j�x�ªci,j +bi,ja�x�2ln�ln a�x��, with positive constants bi,j�1. Then

�̄i,j�x��ci,j +bi,j��i,j for ��x���0, and so �̄i,j is a supersolution in each connected component of

�0
ª 
x�	 :��x���0�. Note that �̄i,j���j

=ci,j =�i���j
. Since each �i�x� is uniformly bounded in 	,

e can choose the constants bi,j large enough such that �̄i,j��i on �N�0
�	. Applying the weak

aximum principle in each component of N�0
we conclude that �i�x���̄i,j�x� in each component

f N�0
. The complementary lower bound may be obtained using the subsolution

i,j =ci,j − b̃i,ja�x�2ln�ln a�x�� for constants b̃i,j appropriately large. This proves �3.11�.
To prove �3.12�, we use a blow-up argument. Let x0�	, and ��0 with dist �x0 ,�� j�=2� for

ome j=1,… ,n. We then blow up the disk B��x0� : let x=x0+�y with y�B1�0�, and define

v�y� = �i�x� − ci,j = �i�x0 + �y� − ci,j, y � B1�0� .

y rotating the y plane if necessary, we may assume that the shortest segment joining x0 to �� j is
apped to the y1 axis, and hence the image �̃ j = �1/���� j − 
x0�� of the hole � j lies in the half plane

y1�−2 and the distance �̃�y�ªdist�y ,��̃ j��y1+2�1 for y�B1�0�.
Since ��x� /a�x� is smooth and nonzero in a neighborhood of �� j in 	, there exists b�x�,

mooth and b�x��0 in a neighborhood of �� j with

1

a�x�
=

b�x�
��x�

.

y homogeneity, ��x�=��̃�y�, and hence

1

a�x�
=

1

�
�b�x0 + �y�

�̃�y�
�¬ 1

�
��,x0

�y� .
herefore, the equation for �i implies,
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− �y · ���,x0
�y��yv� = �3�v + �i,0 + ci,j� ¬ F�,x0

�y� .

y the above-mentioned remarks, the coefficient ��,x0
is smooth in B1�0�, and there exist constants

��1��2 , C�0 �independent of � ,x0� so that

�1 � ��,x0
�y�� �2, ����,x0

�y��� C ,

or all y�B1�0�. Hence Theorem 9.11 of Ref. 9 holds, uniformly in � ,x0, and for every p�2 there
xists a constant �independent of � ,x0� K�0 with

�v�W2,p�B1/2�0� � K��v�Lp�B1�0�� + �F̃�,x0
�Lp�B1�0���� K���v�L��B1�0�� + �3� f̃�L��B1�0���� K��2ln�ln �� ,

sing the estimate �3.11� in the last line. By the Sobolev embedding, taking p�2 we conclude that
is uniformly bounded in C1,��B1/2�0��, and in particular ��v�0���C�2ln�ln �� with constant C

ndependent of x0 , �. Rescaling, we obtain ���i�x0���C� ln�ln ���C���x0�ln�ln ��x0��, which is
he desired conclusion �3.12�. �

Remark 3.6: We note that in case �a�x��0 on �� j we would be able to use ��x�=a�x�2 as a
upersolution in the above calculation and obtain a slightly better estimate ��i�x�−ci,j��C���x��2

and similarly for ���i��, on the boundary behavior of solutions. We also remark that in case D is
disk and a�x� radially symmetric, then the functions �i are radial and the sharper estimate

i−ci,j =O���x�2� holds in this case as well.
Finally, the following estimates follow easily from Lemma 3.1, but are stated in a form which

ill be useful in studying the breakdown of pinning:

Lemma 3.7: For any ��0, let 	�ª 
x�	 :dist�x ,� j��� , for some j� 
1,… ,n��. Then,
here exists a constant C�0 so that

sup
x�	�

��h*

a
� � Chexln�ln �� , �3.20�

�
	\	�

1

a
��h*�2dx� Chex

2 �2�ln�ln ���2. �3.21�

Bose–Einstein Condensates: For the problem of a Bose–Einstein condensate described by the
unctional H� of Sec. I, after the reduction via Ref. 12 and formal passage to the �→0 limit, we
rrive at a similar limit problem,

I��v� = �
	
�a

2
��v�2 − a�x��x� · Im�v̄ � v�	dx ,

or v�Ha
1�	 ;S1� with �v�=1. There is no associated magnetic field, but minimizers satisfy the

onservation of momentum, div j�=div�a�x��Im
v̄�v�−�x���=0, and hence there is a conjugate
unction �in the sense of harmonic maps6�, h�H1/a

1 �	� with

��h = − j�.

t is easy to verify that h satisfies

− div� 1

a�x�
� h� = 2� in 	 ,

ith h=Hj constant on each � j, and we may choose h=0 on �D. By following the same calcu-

ations as �3.7� we obtain the flux conditions,
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�
��j

1

a

�h

�
ds = − 2� deg�v,�� j� + 2�� j�, j = 1,…,n .

ecomposing h=��0−�dj� j as before, we must solve for

− div� 1

a�x�
� �i� = 2�i,0 in 	 ,

�i = 0 on � D ,

�i = ci,j on � j, j = 1,…,n ,

�
��j

1

a
��i = − 2��i,j + 2�� j��i,0, j = 1,…,n .

hese may be found by minimizing the functionals

Ii��� =
1

2
�
	

����2dx − �i,0�
D

2� dx − ��1 − �i,0����i
,

ver the space H defined previously, with �=constant on each � j. The existence and boundary
egularity �including now the exterior boundary �D� of these solutions follow exactly as in Lemma
.1, and the expression of the limiting energy in terms of the degrees Dj at each of the holes � j is
lso the same. We leave the details to the interested reader.

V. PINNING IN BOUNDED FIELDS

In this section we prove Theorem 1.2, with hex fixed, independent of �→0. We begin with an
pper bound on the energy, stated in a form which will be useful also in our analysis of the
reakdown of pinning for larger hex. For each given value of hex, we first take the minimizer
u* ,A*� of the limiting energy F�, as described in the previous section. The degrees
�

*= �D1 ,… ,Dn�= �hexC
−1X� determined by minimizing �3.13�, and the limit energy is given as in

emma 3.2,

F��u*,A*� = hex
2 �0 + g�D;hex� , �4.1�

here we denote

g�D;hex� ª ��D� · CD� − 2hexX� · D� � = ��
i,k=1

n

ci,kDiDk − 2�hex�
i=1

n

c0,iDi.

ote that this energy is of the order hex
2 . We would like to use �u* ,A*� as a test function in the

nergy, but u* is only defined in 	 and hence we must extend it to the entire domain D. We obtain
he following:

Proposition 4.1: Assume hex�C�ln ��. Then,

inf E��u,A�� J��
�� + F��u*,A*� + o�1� = J��
�� + hex
2 �0 + g�D*;hex� + o�1� , �4.2�

here �u* ,A*�, g�D* ;hex� and D* are as mentioned above.

Proof: Let ��x�ªdist�x ,� j�� j� denote signed distance, with positive values in 	 and nega-
ive values in each � j. Define a one-sided neighborhood of the holes,

1/6

��ª 
x�	 :0���x��2� �. By the estimate �3.21� we have

                                                                                                            



W

a

F
�

U

f

W

W

f
N

I

w
t
e

095102-17 Ginzburg–Landau model with normal inclusions J. Math. Phys. 46, 095102 �2005�

                        
�
���

a��A*
u*�2 = �

���

1

a
��h*�2 � C�1/3�ln�ln �1/6��2�ln ��2 = o�1� . �4.3�

e may therefore excise a portion of the neighborhood ��� with negligible energy cost.
By the energy estimate and Hölder’s inequality,

�
���

a�x�A�
2 � �A*�L4

2 ��
���

a�x�2�1/2

� �1/4�ln ��2 = o�1� , �4.4�

nd hence �4.3� implies that

�
���

a��u*�2 � C�1/6�ln�ln �1/6��2�ln ��2.

rom the previous estimate and Fubini’s theorem, there exists a constant C� and

�� ��1/6 ,2�1/6� such that

�

��x�=���

a�x���u*�2 � C��ln�ln �1/6��2�ln ��2.

sing hypothesis �H3� we then have

�

��x�=���

��u*�2 � C��−1/6�ln�ln �1/6��2�ln ��2, �4.5�

or appropriate constant C�.
Define the two-sided neighborhood,

N�ª 
x � D:− �� � ��x�� ��� .

e claim the following:

Lemma 4.2: There exists a constant C�0, independent of �, so that


�
2�x�� C�� for x � N�. �4.6�

e defer the proof of Lemma 4.2 until the end.
We now extend the order parameter u* as û*=exp�i�̂*� to N� by extending the real phase

unction �̂* from 
x :��x�=��� to N� as a constant along the normal lines to each �� j. Note that in

� , �û*�=1 and

��û*�x�� = ���̂*�x�� = ����̂*�x��� C����*����x�=��
. �4.7�

n particular, integrating along curves equidistant to �� j, we then have

�
N�


�
2��A*

û*�2 � 2�
N�


�
2���̂*�2 + 2�

N�


�
2A�

2 � C�
−��

�� �
��x�=t


�
2���̂*�2dstdt + o�1�

� C��
2�−1/6�ln�ln �1/6��2�ln ��2 = o�1� , �4.8�

here we have used �4.4�, �4.5�, and �4.7�, and the estimate �4.6�. In summary, we have shown that
here exists an extension û* of u* to N�, a small distance into the pinning sites � j, with small
nergy in this neighborhood.
To conclude, we introduce a smooth cut-off, ���x� with 0����x��1,
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���x� = �1 if ��x�� −
��
2

,

0 if ��x�� − ��,
�

nd �����x���C /��. Our test function for the energy F� is then u=��û* , A=A*, and we have

�
D

�

2��A*
u�2 � �

	\N�


�
2��A*

u*�2 + 2�
N�


�
2�����2 + 2�

N�


�
2��A*

û*�2

= �
	

a�x���A*
u*�2 +

C

��
2�


−�����−��/2�

�

2 + o�1� = �
	

a�x���A*
u*�2 + o�1� ,

here we have used �2.10�, �2.11�, �4.3�, and �4.8� in the second line. Finally, by �iv� of Propo-
ition 2.1 we have

�
D


�
4

4�2 ����û*�2 − 1�2 � ��−�����x��−
��
2
	

�

4

4�2 � C
exp�− 4�−1/2�

�4/3 = o�1� .

n conclusion, we have the upper bound:

inf E� � J��
�� + F����û*,A*�� J��
�� + F��u*,A*� + o�1� ,

hich concludes the proof of Proposition 4.1. �

Proof of Lemma 4.2: By the choice of �� and �2.10� we have 
�
2�x��2a�x� on

= 
x�	 :��x�=���. Let D�ª 
x�D :��x�����, with boundary � �including the pinning sites,
ince we define � as the signed distance�. Set

ū = �2max
x��

a�x�� C���,

ith constant C�0 independent of �. Then ū is a supersolution for the Dirichlet problem,

− �u +
1

�2 �u2 − a�x��u = 0, x � D�,

u�x� = 
��x�, x � � . �4.9�

ince u=0 is a subsolution, we obtain a solution 0�u�x�� ū in D�. By the result of Brezis and
swald,7 the Dirichlet problem �4.9� admits a unique solution for any given boundary condition.
ince 
� also solves �4.9� we conclude that the estimate holds for 
�. �

The proof of Theorem 1.2 then follows the same lines as that of Theorem 1.1 of Ref. 1. We
ketch the steps here.

Let hex be fixed, and ��� ,A�� minimizers of E�. From Lemma 2.3 we then have

F��u�,A��� F��u*,A*� + o�1� ,

ith u�=�� /
�. It immediately follows that �h��L2�D� and �
��A�
u��L2�D� are uniformly bounded,

nd


�
2��u��2 − 1� → 0 strongly in L2�D� . �4.10�

2 1
xtracting a subsequence, h�⇀h0 in L �D� and A�⇀A0 in H �D�, with
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lim inf
�→0

�
D

�h� − hex�2 � �
D

�h0 − hex�2.

hen 
��u� is also bounded in L2�D�, and hence there exists w0 with 
��u�⇀w0 in L2�D�.
Fix ��0 and consider 	�= 
x�	 :��x����. Then

�
	�

��u��2 �
C

�
�
	�

a��u��2 �
2C

�
�
	�


���u��2 � C .

y a diagonal argument we may extract a further subsequence and u0�Hloc
1 �	� such that u�⇀u0

n H1�	�� for each ��0. By lower semicontinuity,

lim inf
�→0

�
	


�
2��u��2 � lim inf

�→0
�
	�


�
2��u��2 � �

	�

a��u0�2.

gain, this is true for all ��0, and hence we have �	a��u0�2�C, so u0�Ha
1�	�. By �4.10� we

onclude that �u0�=1 almost everywhere in 	. In addition, we identify the limit w0=�a�u0, that
s 
��u�⇀�a�u0 in L2�	�. By the weak H1 convergence and uniform convergence 
�

2→a in 	�,
e also have 
�A�u�→�aA0u0 in L2�	��, and hence 
��A�

u�⇀�a�A0
u0 in L2�	��. Then, by

emicontinuity,

lim inf
�→0

�
	�


�
2��A�

u��2 � �
	�

a��A0
u0�2.

he left-hand side is bounded, independent of � and so we have

F��u0,A0� = �
	

a

2
��A0

u0�2 +
1

2
�

D
�h0 − hex�2 � F��u*,A*� .

n other words, �u0 ,A0� is a minimizer of E�, and hence the inequalities above are actually
qualities. In particular, we conclude 
��u�→�a�u0 strongly in L2�	�, and hence u�→u0

trongly in Hloc
1 �	�. Note that in the �generic� case that D� is the unique minimizer in Lemma 3.2,

he limit exists without subsequences.
This concludes the proof of Theorem 1.2.

. THE BREAKDOWN OF PINNING

In this section we consider external fields of the order �ln ��, where we expect vortices to
ucleate in the superconducting bulk. We assume throughout that the dependence of hex on � is
iven by

hex = ��ln �� + � ln�ln �� , �5.1�

or � ,� constants independent of �.

. Decoupling the pinning sites

We refine our decomposition of Lemma 2.3 to incorporate the effect of the pinning sites � j. It
ill be necessary to excise not only the pinning sites � j, but also a very small neighborhood of

ach, since the accounting of the energy of vortices near these “holes” is too delicate for our
ethods. To this end, we define

��ª
1

�ln ��2
,

nd

                                                                                                            



W

w
s

�

w

b

S

a

W

W

095102-20 S. Alama and L. Bronsard J. Math. Phys. 46, 095102 �2005�

                        
	��
ª 
x �	:dist�x,�� j�� ��, ∀ j = 1,…,n� .

e then define �v ,Av� via:

� = 
�u*v, for x �	, A = A* + Av, for x � D , �5.2�

here as usual �u* ,A*� denote the minimizers of F� with hex as given, described in the previous
ection. The energy then decomposes as follows:

Lemma 5.1: Let �� ,A� be minimizers of E�, and �v ,Av� be defined as in �5.2�. Then, v
Ha

1�	��
;C� , Av�H1�D ;R2�, and

E���,A�� J��
�� + E*�h*� + G��v,Av� − �
	��

��h* · Im
v̄ � v�dx − o�1� , �5.3�

here E*�h*�=min F� (as in Lemma 3.2) and

G��v,Av� ª �
	��

�a

2
���− iAv�v�2 +

a2

4�2 ��v�2 − 1�2	dx +
1

2
�

D
�curl Av�2dx .

Proof: As in Lemma 2.3 we write �=
�u. Since �u*�=1 we have �v�= �u�. From the upper
ound �4.2� and the expansion of Lemma 2.3 we have:

C�ln ��2 � F��u*v,A* + Av�� �
	��

�
�2
2

��Au�2 +

�

4

4�2 ��v�2 − 1�2	dx +
1

2
�

D
�h* − hex + curl Av�2.

�5.4�

ince �u*�=1 we have ��u�2−1�2= ��v�2−1�2. We immediately conclude that

�
	��

�a�x��2��v�2 − 1�2 � C�2�ln ��2, �5.5�

nd that

�Av�H1�D;R2�
2

� C�
D

�curl Av�2dx� C�ln ��2. �5.6�

e also require a basic estimate on v. Using v= ū*u,

�
	��

a��v�2 � 2�
	��

a���u�2 + �v�2��u*�2�

= 2�
	��

�
�
2��u�2 + �a − 
�

2���u�2 + a��u*�2 + ��v�2 − 1�a��u*�2� . �5.7�
e now estimate each term separately. From the energy estimate we estimate the first term by:
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�
	��


�
2��u�2 � 2�

	��


�
2�v�2�Av�2dx + C�ln ��2 = 2�

	��


�
2���v�2 − 1��Av�2 + �Av�2� + C�ln ��2

� C��
	��


�
4��v�2 − 1�2�

	��

�Av�4�1/2

+ �Av�H1
2 + C�ln ��2 � C�ln ��2.

sing �2.10�, the second term of �5.7� is small compared to the first. The third term of �5.7� is of
rder �ln ��2 by the choice of degrees in the previous section. For the last term, we again use �2.10�
o replace a�x� by 
�

2�x�, making an error small compared to the integral itself. Thus,

��
	��

��v�2 − 1�a��u*�2� � ��
	��

2
�
2��v�2 − 1�2� 1

a2 ��h*�2 + �A*�2��
� C� sup

x�	��

� ��h*�
a

�2

+ �A*�H1
2 	��

	��


�
4��v�2 − 1�2�1/2

� C��ln�ln ����2�ln ��3 = o�1� ,

sing �3.21� and the same argument as in the previous calculation. Substituting into �5.7�, we
btain

�
	��

a�x���v�2 � C�ln ��2. �5.8�

We now expand the gradient term in �5.4�:


�
2���− iA�u�2 = 
�

2��v�2���− iA*�u*�2 + ���− iAv�v�2 + 2 Re
�u*�u* + iA*��v̄ � v − iAv�v�2���

�5.9�

=
�
2��v�2

1

a2 ��h*�2 + ���− iAv�v�2 − 2
1

a
��h* · Im
v̄ � v� + 2Av�v�2 ·

1

a
��h*� , �5.10�

sing the definition �3.17� of u*=ei�* in terms of the field h*. We simplify each term in turn. First,

��
	��


�
2

a2 �v�2��h*�2 − �
	��

1

a
��h*�2� � ��

	��


�
2��v�2 − 1�

1

a2 ��h*�2� + ��
	��

�
�
2 − a�

1

a2 ��h*�2�
� Csup

	��

��h*

a
�2


�
�
2��v�2 − 1��L2�	��

� + �
�
2 − a�L2�	��

��

� C�ln�ln ����2�ln ��3� = o�1� . �5.11�

y �3.21� we have

�
	\	��

1

a
��h*�2 � C��

2�ln�ln ����2�ln ��2 = o�1� .

herefore, the first term of �5.10� may be expressed as

�
	��


�
2

a2 �v�2��h*�2 = �
	

1

a
��h*�2 + o�1� . �5.12�
For the second term, we use �2.10�, �5.6�, and �5.8� to obtain,
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�
	��


�
2���− iAv�v�2 = �

	��

a���− iAv�v�2 + �
	��

�
�
2 − a����− iAv�v�2

= �
	��

a���− iAv�v�2�1 + O��1/3�� = �
	��

a���− iAv�v�2 + o�1� .

�5.13�

The third term may be treated as follows:

��
	��

2

�

2

a
��h* · Im
v̄ � v� − �

	��

2��h* · Im
v̄ � v�� �5.14�

�sup
	��

�
�2
a

− 1���
	��

2��h* · Im 
v̄ � v��
� C�1/3sup

	��

��h*

a
��

	��

a�x����v�2 − 1� + 1 + ��v�2�

� C�1/3ln�ln ����ln ��3 = o�1� , �5.15�

sing �5.5� and �5.8�.
For the last term in �5.10�, we proceed in two steps. First, using �2.10�, �3.21�, and �5.6�,

��
	��


�
2Av�v�2 ·

1

a
��h* − �

	��

Av · ��h*�
� �

	��

�Av�
�
2��v�2 − 1�

1

a
��h*� + �

	��

�Av���h*��
�2
a

− 1�
� sup

	��

��h*

a
��
�

2��v�2 − 1��L2�Av�L2�	��
� + C�Av�L2��h*�L��	��

�sup
	��

�
�2
a

− 1�
� C� ln�ln ����ln ��2 + C�1/3�ln ��2 = o�1� .

ext, we compare with the value in all of 	:

��
	\	��

Av · ��h*� � �Av�L2��
	\	��

��h*�2�1/2

� C�ln ��2��3/2ln�ln ��� = o�1� . �5.16�

utting these estimates together and using �3.21�, we obtain:

�
	��


�
2���− iA�u�2 = �

	��


a�x����− iAv�v�2 − 2��h* · Im
v̄ � v�� + �
	
�1

a
��h*�2 + 2Av · ��h*	

+ o�1� . �5.17�

hat’s more, we may integrate the last term in �5.17� by parts, recalling that h* is constant in each

inning site � j,
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�
	

2Av · ��h* = 2�
	

Av · ���h* − hex� = 2�
�	

�h* − hex�Av · � − 2�
	

�h* − hex��� · Av

= − 2��
j=1

n

�h* − hex� ��j�
�j

curl Av + �
	

�h* − hex�curl Av�
= − 2�

D
�h* − hex�curl Av.

n the other hand, we have

�
D

�h − hex�2 = �
D

�h* − hex�2 + �
D

�curl Av�2 + �
D

2�h* − hex�curl Av,

nd so the last term from �5.17� in fact cancels leaving us with the desired conclusion. �

We now define

E��v,Av� = G��v,Av� − �
	��

��h* · Im
v̄ � v�dx

= �
	��

�a

2
���− iAv�v�2 +

a2

4�2 ��v�2 − 1�2 − ��h* · Im
v̄ � v�	dx +
1

2
�

D
�curl Av�2dx .

he upper bound �4.2� then implies that for global minimizers, the associated �v ,Av� satisfy the
pper bound,

E��v,Av�� o�1� . �5.18�

. Vortex balls

Now in 	��
, we may isolate the vortices using the method of Sandier14 and Sandier and

erfaty.16 We have the following result.

Proposition 5.2: Assume hex�C�ln ��. For any C�0 there exist positive constants �0 , C0 so
hat for any �v ,Av� satisfying �5.18� there exists a finite collection 
Bi=B�pi ,si��i=1,…,m of disjoint
alls such that:


x �	��
:�v�� 1 − �ln ��−4� � �i=1

m Bi; �5.19�

�
i=1

m

si � �ln ��−12; �5.20�

deg�Bi
� v

�v��ª di for all i; �5.21�

�
Bi

�a

2
���− iAv�v�2 + �curl Av�2���a�pi��di���ln �� − C0 ln�ln ��� for all i . �5.22�

Sketch of Proof: We sketch the proof, as the details are minor modifications of the analogous
esults in Refs. 15 and 16. First, from �5.5�, �5.6�, and �5.8� we have G��v ,Av��C�ln ��2. Since

�x��C�� for x�	��

, setting fª �v� we have
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��
2�

	��

�1

2
��f �2 +

1

4�2 �f2 − 1�2�� C�ln ��2,

nd hence

�
	��

�1

2
��f �2 +

1

4�2 �f2 − 1�2�� C�ln ��6.

Let U��,t
ª 
x�	��

: f�x��1− t�, and �t=�U��,t
. Using the co-area formula as in Ref. 16, there

xists t0� �0, �ln ��−4� and a finite set of balls B1 ,… ,Bk with radii s1 ,… ,sk which cover �t0
,

atisfying �isi�C��ln ��8. In 	��
\U��,t0

we have f = �v��1− t, and we may write v= fei� for a
possibly multivalued� Hloc

1 function ��x�.
We then let the balls grow continuously, using the process described in Refs. 14 and 16, to

btain a lower bound in the expanding balls,

�
Bi\U��,t0

�a

2
��� − Av�2 + �curl Av�2����min a

Bi

��di��ln � − C̄0ln�ln ��� ,

ith constant C̄0 independent of �. Note that the minimum of a�x� over Bi is nonincreasing as the
adii increase and as balls are merged �when they touch in the expansion process�. We terminate
he process when the sum of the radii of the balls equals �ln ��−12. By continuity of a�x� we may
hen replace the minimum of a on each ball by the value at its center pi, making an error which is
mall compared to a�pi� itself. This error can then be absorbed into the coefficient of ln�ln ��.

Finally,

�
Bi

�a

2
���− iAv�v�2 + �curl Av�2�� �

Bj\U���,t0

�a

2
�1 + f2 − 1���� − Av�2 + �curl Av�2�

� �1 − C�ln ��−4��
Bj\U��,t0

a

2
���� − Av�2 + �curl Av�2�

� �1 − C�ln ��−4���a�pi��di���ln �� − C̄0ln�ln ����

��a�pi��di���ln �� − C0ln�ln ��� ,

or constant C0 independent of �, which completes the sketch of the proof of the proposition. �

We recall from Sec. I the following definition: We say � has an essential vortex at pi�	��
if

here is a vortex ball Bi centered at pi with degree di�0. Note that � / ���=u / �u�=v / �v� in 	��
, and

o each has the same essential vortices.

. A lower bound

To prove Theorem 1.3 we match the upper bound �5.18� with a sharp lower bound for the
nergy in terms of the vortex balls. We define � j�x�ªdist�x ,�� j� , j=1,… ,n, and sets

�t,j ª 
x �	:� j�x� = t�, �t = � j=1
n �t,j .

e now choose

�� � � �ln�ln ���1/4

�ln ��
,2

�ln�ln ���1/4

�ln �� � , �5.23�
ith the property that ���� ��iBi�=�. This is possible by �5.20�. We may then define degrees,
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� j ª deg� v
�v�

;���,j�, j = 1,…,n ,

ssociated to each interior boundary curve of the domain

	��
ª 
x �	:��x�� ��� .

hen, we prove the following lower bound in 	��
:

Lemma 5.3: There exist bounded constants, ��,j , j=1,… ,n, such that:

E��v,Av��� �
��pi����

a�pi��di���ln �� − C0ln�ln ��� + 2� �
��pi����

�h*�pi� − hex�di + 2��
j=1

n

��,j� j

+ �
	��

\�Bi

�a

2
���− iAv�v�2 + �curl Av�2	 + O��ln�ln ���1/2� .

Proof:
Step 1: The first step is to modify ��. We claim that there exists ���� ��� ,2��� and a constant

�0 �independent of �� so that

�v�� 1 − �ln ��−5 for all x � ����, �5.24�

�
����

��v�2ds� C
�ln ��2

��
2 . �5.25�

ndeed, let

I� = 
t � ���,2���:�t � ��iBi� = �� .

y �5.20�, the measure �I���
1
2��, and for all t� I� and x��t , �u�x���1− �ln ��−5. Define

N2��
ª 
x �	:��x�� 2��� .

ince

�
N2��

��v�2 � ��
−1�

N2��

a��v�2 � ��
−1�ln ��2,

e have

��
−1�ln ��2 � C�

��

2���
�t

��v�2dstdt� C�
I�

�
�t

��v�2dstdt ,

here dst denotes arclength measure on �t. Therefore, there exists C�0 and ���� I� such that

�
����

��v�2ds�
C�ln ��2

�I����
�

2C�ln ��2

��
2 .

his proves �5.24� and �5.25�.

Step 2: Next, we claim that replacing 	��
with 	�

��
in the definition of E� results in an error

hich is very small.

Indeed, we estimate as in the proof of Lemma 5.1:

                                                                                                            



T

u

F
e

w
L
d

w

R
i

095102-26 S. Alama and L. Bronsard J. Math. Phys. 46, 095102 �2005�

                        
��
	���

\	��

��h* · Im
v̄ � v�� � �
	���

\	��

��h*��v���Av
v� + ��h*��Av��v�2

� �
	���

\	��

�1

2
��Av

v�2 +
1

2
�v�2��h*�2 + ��v�2 − 1���h*��Av� + ��h*��Av�� .

�5.26�

he first term on the right-hand side appears in the integrand in E�. The second term estimates as:

�
	���

\	��

�v�2��h*�2 = �
	���

\	��

��h*�2���v�2 − 1� + 1�

� C max
x�	���

��h*�2

a2 �	�
��

\	��
�1/2��

	���
\	��

a2��v�2 − 1�2�1/2

+ �
	���

\	��

��h*�2

�
C ln ln�ln ��

�ln ��4
,

sing �3.21�. The third term is done in a similar way,

�
	���

\	��

��v�2 − 1���h*�2�Av�� max
	���

\	��

��h*�
a�x� ��	���\	�� a2��v�2 − 1�2�1/2��

	���
\	��

Av
2�1/2

� C ���ln ln ���ln ��3.

inally, the last term in �5.26� is estimated already in �5.16�, so we conclude that the difference in
nergies in �5.26� is vanishingly small, which completes the claim.

Step 3: Integration by parts:

�
	���

��h* · Im
v̄ � v� = − 2��
i=1

m

�h*�pi� − hex�di − �
����

�h* − hex�Im
w̄ � w� · � ds

+ o�1��1 + �
i=1

m

a�pi��di�� , �5.27�

here w=v / �v� and � is the unit tangent vector to each ��
��,j. This step follows exactly as in

emma II.3 of Ref. 15, with some attention payed to relating the error to the weighted sum of the
egrees. We leave the details to the interested reader.

Step 4: We claim

�
����

�h* − hex�Im
w̄ � w� · � ds = 2��
j=1

n

��,j deg�w;��
��,j� + O�ln�ln�ln ���� , �5.28�

ith constants

��,j ª �h*�x� − hex��x��j
. �5.29�

ecall from the previous section that h*�x� is constant in each � j, and ��,j are uniformly bounded,
ndependent of � by Lemma 3.4 and �3.18�.
To prove Step 4 we recall the boundary estimate �3.11�: when applied to h* we have
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�h*�x� − hex − ��,j�� C�����
2ln�ln �����ln ��, x � ��

��,j, j = 1,…,n , �5.30�

ith constant C independent of �. Hence,

��
����

�h* − hex − ��,j�Im
w̄ � w� · � ds� � C�����
2ln�ln �����ln ����

����,j

��w�2ds�1/2

� 2C�����
2ln�ln �����ln ����

����,j

��v�2ds�1/2

� C����ln�ln �����ln ��2 � C�ln�ln�ln ��� ,

sing �5.24� to replace ��w�2= ��v�2 / �v�2�2��v�2, and �5.25� for the next-to-last line above. Then,
e calculate,

�
����

�h* − hex�Im
w̄ � w� · � ds = �
����

��,jIm
w̄ � w� · � ds + �
����

�h* − hex − ��,j�Im
w̄ � w� · � ds

= 2���,jdeg�w;��
��,j� + O�ln�ln�ln ���� ,

hich establishes Step 4.

Step 5: Conclusion. By �5.30� and the linear growth of a �hypothesis �H3�� if � j�pi�
dist�pi ,�� j�� ���� ,���, �with �� as in �5.23��,

�h*�pi� − hex − ��,j�� C�� j�pi��2ln�ln ��pi���ln ��� C� j�pi���ln�ln ����ln ��� Ca�pi��ln�ln ���1/2.

ombining Steps 2, 3, and 4, we have,

�
	���

��h* · Im
v̄ � v� = − 2� �
��pi����

�h*�pi� − hex�di − 2��
j=1

n

��,jdeg�w;��
��,j�

− 2��
j=1

n

� �
�����j�pi����

��,jdi� + O��ln�ln ���1/2��1 + �
�j�pi�����

a�pi��di�� .

ince

deg�w;���,j� = deg�w;��
��,j� + �

�����j�pi����

di,

e obtain

�
	���

��h* · Im
v̄ � v� = − 2� �
��pi����

�h*�pi� − hex�di − 2��
j=1

n

��,jdeg�w;���,j�

+ O��ln�ln ���1/2��1 + �
��pi�����

a�pi��di�� .

his last error term may be absorbed into the first term in the lower bound expansion in the balls,
5.22�, by adjusting the constant C0. The conclusion of the Lemma then follows by combining the

bove with �5.22� in the definition of E�. �
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. Analysis of vortices

We now proceed to the proof of Theorem 1.3 using the lower bound established in Lemma
.3. From the upper bound �5.18� and Lemma 5.3 we have the estimate,

O��ln�ln ���1/2��� �
��pi����

a�pi��di���ln �� − C0ln�ln ��� + 2� �
��pi����

�h*�pi� − hex�di + 2��
j=1

n

��,j� j

+ �
	��

\�Bi

�a

2
���− iAv�v�2 +

a2

4�2 ��v�2 − 1�2 + �curl Av�2	 , �5.31�

n terms of the vortex balls defined in Proposition 5.2. If we consider only the net contribution of
nterior vortices to �5.31�, we see that adding vortex at location pi becomes economical when
�hex−h*�pi���2hex��pi� exceeds a�pi��ln ��. This rough observation leads us to choose a candi-
ate for a critical value �*, defined by

1

�*
ª max

x�	

2��x�
a�x�

. �5.32�

e note that the boundary estimate �3.11�, when applied to �, shows that

0� ��x�/a�x�� C��x�ln�ln ��x��

or x near each �� j, and hence the maximum is attained on a set

�ª 
x �	:2�*��x� = a�x��

hich lies strictly inside 	. We note as in the Introduction, the optimal set � can be of two
ifferent forms:

Case A: � is a finite point set.
Case B: � contains at least one closed curve �. In either case we have the following.

Lemma 5.4: There exist constants K1�0 and M�1 such that

2��x�
a�x�

�
1

�*
−

K1

��ln ��
�5.33�

henever dist�x ,��� �ln ��−1/4M.
The proof, based on the real analyticity of � and a, is exactly as in Ref. 3, and is omitted.
We now proceed as in Refs. 1 and 3 and treat the vortices in different cases, depending on

hether they lie close to the optimal set � or the boundaries of � j. Let ��0 to be chosen so that

��x�
a�x�

�
1

8�*
for all x �	 with ��x�� � . �5.34�

hen we define index sets,

Z�ª 
i:�� � dist�pi,� j=1
n � � j�� �� ,

Z* ª 
i:dist�pi,��� �ln ��−1/2M and di � 0� ,

Z− ª 
i:dist�pi,��� �ln ��−1/2M and di � 0� ,

Z0 ª �Z* � Z− � Z��C,
nd set
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Nx ª �
Zx

a�pi��di�, x = �, � ,− ,0; N� = � a�pi��di� = N* + N� + N− + N0.

he estimate of the interaction term in �5.31� is then different depending on which category the
ortex ball belongs to.

Consider first vortex balls with i�Z�. For such vortex balls, a�pi��ln ���C���ln ��
C�ln�ln ���1/4. Therefore, using Lemma 3.4 we have:

�hex − h*�pi��� hex��pi� + �hex�1 − ��pi�� − h*�pi���
1

8�*
a�pi�hex + C

�
1

8�*
a�pi�hex +

C�

�ln�ln ���1/4a�pi��ln ���
1

6�*
a�pi�hex.

herefore, recalling that hex=��ln ��+� ln�ln ��, we estimate the first two terms in �5.31� corre-
ponding to vortex balls counted by Z� by

��
Z�

a�pi��di���ln �� − C0ln�ln ��� + 2��
Z�

�h*�pi� − hex�di

��N���1 −
�

3�*
��ln �� − �C0 +

�

3�*
�ln�ln �����N��1 −

�

2�*
��ln �� . �5.35�

When dist�pi ,�� j���, we use Lemma 3.4 to obtain:

�h*�pi� − hex + hex��pi��� C�
C

a0
a�pi� ,

here a0=min
a�x� :dist�x ,� j�� j����. Hence,

� �
i�Z*�Z−�Z0


a�pi��di���ln �� − C0ln�ln ��� + 2�h*�pi� − hex�di�

�� �
i�Z*�Z−�Z0


a�pi��di���ln �� − C0�ln�ln ��� − 2hex��pi�di� ,

ith constant C0��C0, absorbing the O�1� term above. For vortices counted by Z* and by Z− we
re content to estimate 0���pi� /a�pi��1/2�*. For Z*, this results in a lower bound,

��
Z*

a�pi��di���ln �� − C0�ln�ln ��� − 2�hex�
Z*

��pi�di ��N*��1 −
�

�*
��ln �� − �C0� +

�

�*
�ln�ln ��� .

�5.36�

or vortices counted by Z− we note in addition that the contribution to the energy is positive.
ence, the first two terms in �5.31� coming from these vortex balls may be estimated by

��
Z−

a�pi��di���ln �� − C0�ln�ln ��� − 2�hex�
Z−

��pi�di �
�

2
N−�ln �� . �5.37�
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inally, when the vortices are counted by Z0 we use �5.33�. This leads to the lower bound,

��
Z0

a�pi��di���ln �� − C0�ln�ln ��� − 2�hex�
Z0

��pi�di

�� N0��1 −
�

�*
+

K1

��ln ��
��ln �� − �C0� +

�

�*
�ln�ln �� + o�1��

�� N0�1 −
�

�*
+

K2

��ln ��
��ln �� . �5.38�

Substituting �5.35�–�5.38� into �5.31� we obtain:

O��ln�ln ���1/2���N��1 −
�

2�*
��ln �� +

1

2
�N−�ln �� + �N*��1 −

�

�*
��ln �� − �C0� +

�

�*
�ln�ln ���

+ �N0�1 −
�

�*
+

K2

��ln ��
��ln �� + 2��

j=1

n

��,j� j

+ �
	��

\�Bi

�a

2
���− iAv�v�2 + �curl Av�2	 . �5.39�

One difficulty in dealing with this lower bound expansion is the presence of the boundary
erms coming from each �� j, since we have no a priori bound on the degrees � j around each
urve � j,��

surrounding the pinning sites. As in Refs. 1 and 3 we must consider two cases sepa-
ately.

Case I: maxj=1,…,n�� j��2�i=1
m �di�.

Since each ��,j is uniformly bounded �independent of ��,

���,j� j�� C�
i=1

m

�di�� � C

�ln�ln ���1/4�
Z�

a�pi��di��ln �� +
C

a�
�

Z*�Z0�Z−

a�pi��di��
�
�

8
N��ln �� + C��N* + N0 + N−� ,

ith a�=min
a�x� :��x����. In particular, we may absorb these terms into �5.39� without affect-
ng the sign of each term for ���*:

O��ln�ln ���1/2���N��3

4
−
�

2�*
��ln �� + �N−�1

4
+
�

�*
��ln �� + �N*��1 −

�

�*
��ln ��

− �C0� +
�

�*
�ln�ln ��� + �N0�1 −

�

�*
+

K3

��ln ��
��ln ��

+ �
	��

\�Bi

�a

2
���− iAv�v�2 + �curl Av�2	 , �5.40�

ith C0� , K3 constant.
Consider first the subcritical case ���* in �5.1�. Then all coefficients of �ln �� are positive,
nd we have
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N� = N* + N− + N0 + N� � O� �ln�ln ���1/2

�ln �� � .

ecause of the vanishing of a�x� near each �� j, we cannot directly conclude that there are no
ortex balls in 	��

; however, we can restrict our attention to a smaller set to obtain the desired
onclusion. Let ��� be chosen with

�ln�ln ���1/2

�ln ��
� ���� 1.

hen for any such choice, by the linearity of a�x� near �� j, we have

�
	���

�di��
1

���
�
	���

a�pi��di� = o�1� ,

nd hence there are no essential vortices in 	�
��

for ���*.
Now consider the critical case, �=�*. Now there is cancellation of the terms multiplying

ln ��, and �5.40� implies:

O��ln�ln ���1/2��
�

4
N��ln �� + �N−�ln �� + CN0

��ln �� − �N*�C0� +
�

�*
�ln�ln ��

+ G��v,Av;	� \ � Bi� , �5.41�

here we define for U�	,

G��v,Av;U� ª �
U
�a

2
��Av

v�2 +
a2

4�2 ��v�2 − 1�2 +
1

2
�curl Av�2	 . �5.42�

hen ��−C0��* all terms on the right-hand side have positive coefficients, and so we conclude
hat:

�
���dist�pi,��j�����

�di�� o��ln ���ln�ln ���−1/2��
Z�

a�pi��di� = o�1� ,

�
Z*

�di�� CN* = O��ln�ln ���−1/2� = o�1� ,

�
Z−

�di�� CN− = O��ln�ln ���1/2�ln ��−1� = o�1� ,

�
Z0

�di�� CN0 = O��ln�ln ���1/2�ln ��−1/2� = o�1� .

ach of these being integer valued, we conclude that there are no essential vortices in 	�
��

for
mall � when �=�* but ���*. This proves part �i� of Theorem 1.3, in Case I.

If the applied field is larger at the scale ln�ln �� , ���*=−C0��*, we may rearrange the terms
f �5.41� and divide by ��ln �� to arrive at an inequality,

N� + N0 + N− � CN*
ln�ln ��
��ln ��

+ O� �ln�ln ���1/2

��ln ��
� , �5.43�

ith C independent of �. Already this implies that a negligable fraction of the essential vortices are

utside of a vanishingly small neighborhood of � or have negative degrees. We will use the
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emaining term �the energy of �v ,Av� outside the balls� to bound N* and eliminate these undesir-
ble vortices �counted by N� ,N− ,N0� completely. We follow the argument of Ref. 3.

By hypothesis, each of the �n+1� boundary curves �one for each �� j, and the exterior bound-
ry �D� is smooth, and hence the distance functions

� j�x� = �dist�x,�� j� for j = 1,…,n;

dist�x,�D� for j = 0,
	

re smooth in some neighborhood of each boundary curve. Let z0�0 be chosen small enough that

ach � j is smooth in the set 	̃z0
= 
x�	 :dist�x ,�	��z0�. Then for all 0�z�z0 , ��� j�=1 and �	̃z

onsists of exactly �n+1� smooth curves � j,z , j=0,… ,n, each homotopic to a component of �	.

enote also 	̃ j,z the component of 	̃z bounded by � j,z and 	̃ j,z1,z2
=	̃ j,z2

\	̃ j,z1
, an annular domain

or each j=0,… ,n.
Define I0ª �0,z0� and

Jj,�ª 
z � �0,z0�:� j,z � � Bsi
�pi� = �� .

n other words, z�Jj,� if the curve � j,z intersects none of the vortex balls. By Proposition 5.2 the
et Jj,� is a finite union of intervals whose complement ��0,z0� \Jj,��� �ln ��−12 has very small
easure. For each z�J�, it follows that �v��1− �ln ��−4 and hence we may define

� j�z� ª deg� v
�v�

,� j,z�, j = 0,…,n .

For j� 
0,… ,n� fixed, choose 0�z1�z2�z0 so that both z1 ,z2�Jj,�. Let

a0 ª min
a�x�:x � � j=0
n 	̃ j,z1,z2�� 0.

sing �5.43�, we have

�� j�z1� − � j�z2�� = � �
pi�	j,z1,z2

di� � 1

a0
�

pi�	j,z1,z2

a�pi��di�� N0 � o�1�N*. �5.44�

ow, �0,z2
encloses all the inner curves � j,z2

, j=1,… ,n, as well as the optimal set �, and therefore

��0�z2� − �
j=1

n

� j�z2�� = � �
dist�pi,�	��z2

di� � �
dist�pi,�	��z2

di�0

di − �
dist�pi�	��z2

di�0

di

�
1

a0
�N* − �N− + N0 + N����

1

a0
N*�1 − o�1�� .

n particular, it follows that there exists at least one j0� 
0,… ,n� such that

�� j0
�z2���

1

a0�n + 1�
N*.

y �5.44� we have

�� j0
�z���

1

2a0�n + 1�
N* for every z � �z1,z2� . �5.45�

i�
riting v= �v�e we estimate the remaining term in the energy using the coarea formula,
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�
	̃j0,z1,z2

\�Bi

a���− iAv�v�2dx� a0�
	̃j0,z1,z2

\�Bi

���− iAv�v�2

��� j0
�

��� j0
�dx

� a0�
Jj0,�

�
�j0,z

���− iAv�v�2dH1dz

= a0�
Jj0,�

�
�j0,z

�v�2��� − Av�2dH1dz

�
a0

2
�

Jj0,�

�
�j0,z

��� − Av�2dH1dz , �5.46�

ince �v�x���1− �ln ��−4 for z�Jj0,�.
To estimate the last term in �5.46� we use the definition of the degrees and Stokes’ Theorem:

or z�Jj0,�,

2�� j0
�z� − �

	̃j0,z

curl Avdx = �
�j0,z

��� − Av� · � dH1 � �H1�� j0,z��
�j0,z

��� − Av�2�1/2

,

y Cauchy–Schwartz. Rearranging and squaring,

4�2�� j0
�z��2 � 2H1�� j0,z��

�j0,z

��� − Av�2 + 2��
	̃j0,z\�Bi

curl Avdx + �
	̃j0,z���Bi�

curl Avdx�2

� C��
�j0,z

��� − Av�2 + �
	̃j0,z\�Bi

�curl Av�2dx� + o�1� . �5.47�

e now integrate for z� �z1 ,z2�, use �5.45� and �5.46�, and substitute into G��v ,Av ;	̃ j0,z1,z2
\ �Bi�:

G��v,Av;	̃ j0,z1,z2
\ � Bi�� C�

Jj0,�

�� j0
�z��2dz� CL�Jj0,��N�

2�1 − o�1��� C1N�
2. �5.48�

Returning to the estimate �5.41� we see

O��ln�ln ���1/2�� C1N�
2 − C2N*ln�ln �� ,

ith constants C1 , C2 independent of �. We conclude that

N* � C ln�ln �� . �5.49�

ince a�x� is bounded below in a neighborhood of the optimal set �, we also conclude that the
otal degree of interior vortices,

�
dist�pi,�����ln ���−1/4M

�di�� C ln�ln �� .

ith �5.43� and �5.49� we have

max
N�,N−,N0�� C
�ln�ln ���2

�ln ��1/2 − o�1� .

gain we are faced with the problem that a�x� vanishes at each pinning site, and so we again need
o further restrict the domain to reach a conclusion concerning the nonexistence of interior vorti-

es. Choose any �� with
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�ln�ln ���2

�ln ��1/2 � �� � 1.

hen, hypothesis �H3� again implies that

�
i�Z��Z0�Z−

dist�pi,��j����

�di� = o�1� .

ince the degrees are integers, this implies that they are all zero for � sufficiently small, and hence
ll vortices which lie at least a distance �� from the pinning sites must have nonnegative degree
nd lie nearby �. This, together with �5.49�, proves the first part of �ii� of Theorem 1.3 in Case I.

o verify �iv� in Case I, we return to the estimate �5.48�: choose z1 , z2 so that each 	̃ j,z1,z2
lies

trictly between the set � and the boundary components � j , j=1,… ,n. Recall that we have

lready shown that there are no essential vortex balls �that is, balls with di�0� inside 	̃ j,z1,z2
, so

j�z�=� j�z1� is constant in each of these regions. We then re-do estimate �5.48� to obtain a lower
ound in terms of � j�z1�, for each j=1,… ,n:

G��v,Av;	̃ j0,z1,z2
\ � Bi�� C�

Jj,�

�� j�z��2dz� CL�Jj,���� j�z1�2�� C�� j�z1��2.

ubstituting all we know into �5.41� we then have

C�
j=1

n

�� j�z1��2 � G��v,Av;	̃ j,z1,z2
�� N*ln�ln �� + O��ln�ln ���1/2�� C�ln�ln ���2.

ence we conclude �� j�z1��= �deg�v / �v��z1,j���C ln�ln ��. Since there are no essential vortices
etween a neighborhood of � and a neighborhood of � j� j, for any fixed simple closed curve �
omotopic to �� j �for some j� which does not wind around any subset of � we obtain

deg�v / �v� ;����C ln�ln ��, proving �iv� in Case I.
It remains to prove the upper bound on the total degree stated in parts �ii� and �iii�. First we

onsider Case A, when � is a set of isolated points. We return to �5.41� and estimate from below

he term G��v ,Av ;	̃�� as in Step 3 of Ref. 17. For any isolated point P�� there exists R�0 so
hat BR�P� remains disjoint from all other points of � and from �	. Let aP=minx�BR�P�a�x��0.
efine ��ª �ln ��−1/4M, and

DP = �
dist�pi,P����

di.

y the analysis above, deg�v / �v� ;�Br�P��=DP is constant for all r� �� ,R�, since we have shown
lready that there are no vortex balls with nonzero degree in the annular region surrounding P.
tep 3 of Ref. 17 then applies without modification to obtain the lower bound,

1

2
�

BR�P�\B���P�
�a�x����− iAv�v�2 +

a2�x�
2�2 ��v�2 − 1�2� +

1

2
�

BR�P�
�curl A�2

�min
aP,1�
1

2
�

BR�P�\B���P�
����− iAv�v�2 +

1

2�2 ��v�2 − 1�2� +
1

2
�

BR�P�
�curl A�2

� CDP
2 ln�ln �� + o�1� ,

ith constant C independent of �. Since the facts N0=N−=0 imply N*=�P��a�P�DP we have the

ower bound
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G��v,Av;�P���BR�P� \ B���P���� C�N�
2ln�ln �� + o�1� ,

ith constant C� independent of �. Replacing this estimate in �5.41� we have

O��ln�ln ���� C�N�
2ln�ln �� − �N*�C0� +

�

�*
�ln�ln �� ,

nd hence N* is uniformly bounded.
The upper bound on N* for Case B requires a sharper energy estimate; we will present this

roof in the final section. This concludes the analysis for Case I.
Case II: �� j��2���pi����

�di� for at least one j� 
1,… ,n�.
Let �� j0

�=max�� j�. Let z0 , 	̃ j,z , 	̃ j,z1,z2
, � j�r� , J� be as in the previous case. By hypothesis,

�� j0
�z�� = �� j0

+ �
pi�	j0,z

di� � 1

2
�� j0

� for all z � Jj0,�.

e then estimate as in �5.46� and �5.47� to obtain:

G��v,Av;	̃ j0,z2
\ � Bi�� C�

Jj0,�

�� j0
�z��2dz� C

1

4
L�Jj0,��� j0

2 � C1� j0
2 . �5.50�

he boundary terms are estimated simply, as �� j� are uniformly bounded,

�2��
j=1

n

� j� j� � C2�� j0
� .

he lower bound �5.31� then gives,

O��ln�ln ���� C1� j0
2 − C2�� j0

� + � �
��pi����

a�pi��di���ln �� − C0ln�ln ��� + 2� �
��pi����

di�h*�pi� − hex�

+ G��v,Av;	 \ �	̃ j0,z2
� ��Bi��� .

e may now repeat the same steps as in Case I to derive �as in �5.40��,

O��ln�ln ���� C1� j0
2 − C2�� j0

� + �N��3

4
−
�

2�*
��ln �� + ��N* + N0��ln ���1 −

�

�*
�

+ �N−�ln ���1

4
+
�

�*
��1 + o�1�� − �N*�C0� +

�

�*
�ln�ln �� + CN0

��ln �� .

�5.51�

ince C1� j0
2 −C2�� j0

��−C2 /2C1 is uniformly bounded below, we may repeat the arguments from
ase I to conclude that N�=0 for ���* or for �=�* and ��−C0�*. In case �=�* and �
�−C0�* we obtain �5.43� exactly as in Case I. Using the hypothesis of Case II we obtain from
5.51� that,

O��ln�ln ���� C1� j0
2 − C2�� j0

� − C3N*ln�ln ��� C1� j0
2 − C4�1 + ln�ln ����� j0

� .

rom this we obtain �� j0
��C ln�ln �� for constant C independent of �, and by the Case II hypoth-

sis then N*�
1
2 �� j0

��C ln�ln ��, and the remaining conclusions follow as in Case I.

This completes the proof of parts �i� and �ii� of Theorem 1.3.
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. Case B: � contains a closed curve

Now we consider the case that the optimal set � contains one or more closed curves �, in
hich case Theorem 1.3 asserts that the total degree inside 	 is at least of the order O�ln�ln ���.
his part is very similar to the analogous parts of Refs. 1 and 3, and we only provide a sketch here

or completeness. The main idea is to derive a stronger upper bound on the energy, with n� simple
ortices regularly placed along �. The construction uses a modified Green’s function to construct
trial configuraton, which we expect well approximates the actual minimizer.

To avoid some technical difficulties associated with the vanishing of a at �	 we fix t with
� t�maxx��a�x�, and consider the truncation

at�x� ª max
a�x�,t� .

ollowing Refs. 16, 20, and 2 we use a Green’s function to construct our trial function.

Lemma 5.5: For every fixed y�	 there exist G�x ,y� and constants gj =gj�y� , j=1,… ,n, such
hat

− divx� 1

at
�xG�x,y�� + G�x,y� = �y�x� in D��D� , �5.52�

G�x,y��x��D = 0, �5.53�

G�x,y��x���j
= gj , �5.54�

�
��j

1

at

�G

�x
= gj��� . �5.55�

oreover:

i� G�x ,y��0 in x�	̄ \ 
y� for each y�	.
ii� For any compact set K� �	 there exists a constant CK such that

�G�x,y� +
at�x�
2�

ln�x − y�� � C�K� �5.56�

or all y�K and x�	̄.

he proof is a combination of the analogous results in Refs. 1 and 3, and is omitted.
To construct the upper bound, we adapt a construction from Ref. 16. �See also Refs. 20 and 2.�

hoose n� points 
pi�i=1,…,n�
which are equidistributed on �. In particular, we have �pi− pj�

C /n� for some C�0. Define

f�
i �x� =

2

�2�B��pi�
,

he characteristic function of the ball B��pi�, normalized to have total integral 2�. Let

f��x� =
1

n�
�
i=1

n�

f�
i �x� .

he f� converge weak-� in the sense of measures, f�⇀�*= �2� /per	������, the arclength measure
n � normalized to have mass 2�.
We define the trial function via its magnetic field,
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h��x� = n��
	

G�x,y�f��y�dy, x �	 .

hen h� solves the boundary-value problem,

− � · � 1

at
� h�� + h� = n�f� in 	 ,

h��D = 0,

h���j
= n� �

	

gj�y�f��y�dy ª H�,j�constant� ,

�
��j

1

at

�h�
�

= H�,j�� j�, j = 1,…,n .

e then extend h��x� to all of D by defining h� to be constant h��x�=H�,j in each � j. Finally, we
efine A� to be the associated vector potential in the Coulomb gauge, defined as in �2.3�.

Next, we define an order parameter V associated to h�. Since

curl� 1

at
��h� − A�� = � · � 1

at
� h�� − h� = n�f�

as support in �B��pi�, we may define a phase � locally in 	 \�iB��pi� by

���x� = −
1

at
��h��x� + A��x�, x �	 \ � B��pi� .

e now show that � is single-valued modulo 2�. Let � be any Jordan curve in 	 \ �B��pi� which
ncloses a region  �D. The region  could enclose some collection 
� j� j�J of the holes. Then,

�
�

� � · � ds = − �
�

1

at
� h� ·  ds + �

�

A� · � ds

= − �
 \�j�J�j

� ·
1

at
� h�dx − �

j�J
�

��j

1

at

�h�
�

+ �
 

h�dx

= �
 \�j�J�j

�− � ·
1

at
� h� + h��dx + �

j�J
�− H�,j�� j� + �

�j

h��
= �

 \�j�J�j

n�f�dx = 2�z�,

or some integer z��Z, by the quantization of f�. Therefore exp�i��x�� is well-defined in
\ �B��pi�.

To complete the definition of V for x�	, take a smooth function �0�x� such that 0��0�x�
1, �0�x�1 in �x��2, and �0�x�0 when �x��1. Define

��x� = ���x� = ��0� x − pi

�
� when x � B2��pi�, i = 1,…,n�,

1 when x �	 \ � B2��pi� .
�

hen define
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V�x� ª ��x�ei��x�,

here we interpret this to mean that V�x�0 in �B��pi�. Finally, we extend V to the pinning sites

j by the same procedure as in Proposition 4.1.
Following the calculations of Refs. 1 and 3, we then expand the energy: after some compu-

ation we obtain the upper bound,

E��V,A���
1

2
n�

2A* − �
�

�*
n�ln�ln �� + O�n� ln n�� ,

ith constant

A* =� �
	�	

G�x,y�d�*�x�d�*�y� .

e now choose n�= �ln�ln ���, and hence

E��V�� �Ā��� + o�1���ln�ln ���2,

ith Ā���= 1
2A*−�� /�*. Returning to �5.41�, and inserting N� ,N0 ,N−=0 �which we know from

ur previous analysis�, we have

inf E� � N*�A��� − o�1��ln�ln �� ,

ith A���=�C0−�� /�*. When �1 is large enough both A , Ā�0, and so we have

�− A + o�1��N* � �− Ā − o�1��ln�ln �� ,

nd hence we have N*�C ln�ln ��. Since a is bounded above we obtain the lower bound for  di

laimed in �iii� of Theorem 1.3. This completes the proof of Theorem 1.3 �
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mergence of the triangular lattice near a flat wall
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The bifurcation of periodic solutions near a flat wall for applied magnetic fields
which are slightly weaker than HC2

is considered for a reduced Ginzburg–Landau
model obtained in the large � limit. We formally demonstrate that following the
bifurcation of the first mode, when the applied magnetic field is further decreased,
there is a second bifurcation, after which the solution develops continuously into
the well-known triangular lattice. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2013087�

. INTRODUCTION

Consider a planar superconducting body at a sufficiently low temperature �below the critical
ne� under the action of an applied magnetic field. Its energy is given by the Ginzburg–Landau
nergy functional which can be represented in the dimensionless form1

E = �
�

�− ���2 +
���4

2
+ �h − hex�2 + � i

�
� � + A��2	dx1dx2, �1.1�

n which � is the �complex� superconducting order parameter, such that ��� varies from ���=0
when the material is at a normal state� to ���=1 �for the purely superconducting state�. The
agnetic vector potential is denoted by A �the magnetic field is thus h=��A�, hex is the constant

pplied magnetic field, and � denotes the Ginzburg–Landau parameter which is a material prop-
rty. The superconductor lies in �, which is a connected domain. Its Gibbs free energy is given by
, which is invariant under the gauge transformation

� → ei���; A → A + �� . �1.2�

herein � is any smooth function.
For sufficiently large magnetic fields it is well known, from both experimental observations2

nd theoretical predictions,3 that superconductivity is destroyed and the material must be at the
ormal state. If the applied magnetic field is then decreased there exists a critical field where the
aterial enters the superconducting phase. This field is called “the onset field” and is denoted by

C3
.
It is well-known that at the bifurcation from the normal state, superconductivity is concen-

rated near the boundary. Alternatively we can say that � decays exponentially fast away from the
oundaries as either � or the size of � tend to infinity, which is why the phenomenon has been
ermed surface superconductivity. This result has first been established for a half-plane,4 then for
isks,5 and for general smooth bounded domains in R2.6–9 It has later been extended to weakly
onlinear cases in the large � limit.10

In the absence of boundaries the critical field at which superconductivity nucleates is denoted
y HC2

and is smaller than HC3
�HC3


1.7� whereas HC2
=��. Further, the bifurcating modes are

eriodic Abrikosov lattices11–13 which have been observed experimentally.14 Rubinstein15 has

�
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herefore conjectured that superconductivity remains concentrated near the boundary for

C2
�hex�HC3

; when hex
HC2
�either for � large or for large domains� Abrikosov’s lattices

ifurcate away from the wall.
Recently, it has been proved both in the large � limit,16,17 and in the large domain limit18 that

s long as HC2
�hex�HC3

superconductivity remains concentrated near the boundaries. Further,
an16 proved that when ��1, the solution near the boundary is close to the solution of the
roblem

�i � + x1î2�2� = 	��1 − ���2� in R+
2 , �1.3a�

� ��

�x1
�

x1=0
= 0, �1.3b�

here 	=� /hex. In addition, it is conjectured in Ref. 16, that the unique bounded solution when
�1 is essentially one-dimensional, i.e.,

� = f�x1,	�ei
0x2, �1.4�

or some 
0�R and f�x1 ,	� which satisfies

− f� + �x − 
0�2f = 	f�1 − f2�; f��0� = 0.

ontrivial positive solutions exist for all 	���
0�, where

��z� = inf
�H1�z,��

�
z

�

���2 + x2��2

�
z

�

��2
. �1.5�

urther, f �1, and16

f�x� � x−�1−	�/2e−�1/2�x2
as x → � , �1.6�

cf. Ref. 19 for the definition of ��. In a previous contribution,20 we studied �1.3�, after applying
he transformation

x1 → x1 − 
0,

n the space

PL

0 = � � Hmag

1 ��− 
0,�� � R���x1,x2 + L� = �x1,x2� . �1.7�

n this setting the solutions of �1.3a� a may be treated as critical points of the functional

E��� = �
0

� �
0

2�/


��i � + x1î2���2 + 	�1

2
���4 − ���2	dx2dx1. �1.8�

e proved in Ref. 20 that �1.4� must undergo a bifurcation for 	 slightly greater than unity, i.e.,
e proved the existence of a sequence of critical values �	nn=1

� such that 	n→1 as n→� where
bifurcation from �1.4� can take place. Further, we proved that near the bifurcation, the bifurcat-

ng branch is given in the form

	 � 	n + �2� 
 	3/2

+ O��3� �1.9a�

2�
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� � ei
0x2�f�x1,	� + ��n�x1�ein
x2 + −n�x1�e−in
x2� + O��2� , �1.9b�

here ��1, 
=2� /L, and ±n satisfy a system of ordinary differential equations which is de-
cribed in the next section. Finally, we proved that near the bifurcation, the energy of the bifur-
ating branch is lower than the energy of �1.4�. Hence, for 	�1 �1.4� must lose its stability.

While the results in Ref. 20 prove the bifurcation of a single Fourier mode, they do not
ddress the behavior of the bifurcating branch with increasing 	. It was expected in Ref. 20 that
ith growing 	 the solution tends to become periodic in the x1 direction as well. In other words,

he solution should approach an Abrikosov lattice.12,13 The manner by which �1.9� develops into a
eriodic solution is not clear: it may either result from a sequence of bifurcations, or it may evolve
ontinuously, or else undergo some combination of the above.

The present contribution focuses on the evolution of �1.9� with increasing 	. We assume that
he first bifurcation takes place at 	=	N, where N�1 �we discuss this choice in Sec. V�. Then, by
sing a combination of formal and rigorous arguments, we find

1� The value of 	 at which the next bifurcation �hereafter referred to as the “second” bifurca-
tion� should take place.

2� The bifurcating mode.
3� The behavior of the solution with increasing 	 following the second bifurcation. We find that

if no other bifurcation occurs after the second bifurcation, then, as N→�, for 	�	N−l where
1� l�N, the solution tends pointwise to the triangular lattice21 for

�N −
5

8
l	
 � x1 � �N −

3

8
l	
 .

e note that there are many indications, both theoretical12,13,21 and experimental,14 that the mini-
izer of �1.1� is indeed the triangular lattice. It is thus plausible that the transition from �1.9� to a

eriodic solution in the x1 direction is indeed described by the results in this work, despite a
umber of gaps that must be addressed in order to prove these results rigorously.

The rest of this contribution is arranged as follows: In the next section we prove the exact
symptotic behavior of 	n and ±n as n→� and conjecture that 	n�1 for all n. In Sec. III we
ake use of the asymptotic formulas and the above-mentioned conjecture to analyze the second

ifurcation. In Sec. IV we formally analyze the behaviour of the solution with increasing 	 after
he second bifurcation. Finally, in Sec. V, we briefly summarize the main results of this work,
mphasize some additional key points, and list the gaps that must be bridged in order to rigorously
rove the main results.

I. PRELIMINARIES

Consider the problem

�i � + x1î2�2� = 	��1 − ���2� in R+
2 , �2.1a�

� ��

�x1
�

x1=0
= 0 ��x1,x2 + L� = ei���x1,x2� , �2.1b�

here � is constant. Pan16 conjectured that for 	�1 the unique solution of �2.1� is given by �1.4�.
n Ref. 20 we prove that there exists a sequence of critical values �	nn=n0

� where solutions of �2.1�
an bifurcate from �1.4� such that 	n↓1. Further, near the bifurcation,

� 
 f�x1�ei
0x2 + C�	��n�x1�ein
x2 + −n�x1�e−in
x2� ,

here upon applying the transformation x→x−
0, n , −n satisfy

− � + ��x1 − n
�2 − 	�n + 	f2�2n + −n� = 0 x1 � − 
0, �2.2a�
n
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− −n� + ��x1 + n
�2 − 	�−n + 	f2�2−n + n� = 0 x1 � − 
0, �2.2b�

n��− 
0� = −n� �− 
0� = 0, �2.2c�

nd C�	��O��	−	n�1/2�. The asymptotic behavior of 	n has been studied as well. In particular, it
s proved in Ref. 20, that

1 + C1e−�1/2��n
 + 
0�2
� 	n � 1 + C2e−�1/2��n
 + 
0�2

. �2.3�

e now prove the exact asymptotic behavior of 	n.
Lemma 2.1: Let 	n be the lowest critical value of �2.2�. Then

	n � 1 + 2a2e−�n
 + 
0�2/2 + O�e−2�n
 + 
0�2/3� as n → � , �2.4a�

here

a = lim
x→�

ex2/2f�x,1� . �2.4b�

urther, let n ,−n be the corresponding eigenmodes. Then, for sufficiently large n we have

�n − e−�x − n
�2/2�2
2 + �−n�2

2 � e−2�n
 + 
0�2/3, �2.5�

here � · �2 denotes the L2 norm on �−
0 ,��.
Proof: Let

H = � � H2�− 
0,���x � L2�− 
0,��;��− 
0� = 0 ,

nd Pn :H�H→L2�L2 denote the operator

Pn = �−
d2

dx1
2 + �x1 − n
�2 0

0 −
d2

dx1
2 + �x1 + n
�2� + 	nf2�x1,	n��2 1

1 2
� .

learly,

�Pn − 	n�� n

̄−n
� = 0.

We now choose the quasimode

vn = Cn���x + 
0�e�− x − n
�2/2

0
� ,

here Cn is chosen such that "vn"2=1 and � is a smooth cutoff function satisfying

��x� = �0 x �
1

2
,

1 x � 1.
�

et

�n = 1 + 2	n� f2�x,	n��vn�2.
hen
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��vn,�Pn − �n�vn�� �� �− �� + 2�x − n
����e−�x − n
�2
� Ce−�n
 + 
0�2

. �2.6�

We now represent the quasimode vn as

vn = an�n + ṽn,

here

�n = � n

−n
� ,

nd

an = �vn,�n� .

rom �2.6� we have

an
2�	n − �n� � ��vn,�Pn − �n�vn�� + ��ṽn,�Pn − �n�ṽn�� � �ṽn�2��Pn − �n�vn�2 + Ce−�n
 + 
0�2

.

�2.7�

Let

�n = inf
u�H̃n

�u�2=1

�Pnu,u� ,

here H̃n is the orthogonal complement of span ��n in H�H.
Then,

�ṽn�2
2 �

��Pn − �n�ṽn�2
2

��n − �n�2
�

��Pn − �n�vn�2
2

��n − �n�2
. �2.8�

e claim that

lim inf
n→�

�n − �n = 2. �2.9�

o prove �2.9� we define the operator

Qn = �−
d2

dx1
2 + �x1 − n
�2 0

0 −
d2

dx1
2 + �x1 + n
�2� . �2.10�

learly,

�n = inf
u�H̃n

�u�2=1

�Qnu,u� � �n. �2.11�

e now prove that

lim inf
n→�

�n � 3. �2.12�
enote by Un the minimizer of �Qnu ,u� in H�H. For sufficiently large n we have
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Un = �un

0
� ,

here un satisfies

− un� + �x − n
�2un = �nun, un��− 
0� = 0,

n which �n=��−n
−
0� is given by �1.5� and �un�2=1. Let w denote a unit vector in H̃n. Then,

�w,Un� = �w,− �n + ��n,Un�Un� + �1 − ��n,Un���w,Un� .

We seek to estimate the norm of �n− ��n ,Un�Un. To this end we apply to it first Qn−�n and
hen estimate the norm of the outcome. We have

� ��Qn − �n���n − ��n,Un�Un��2 � �	n − �n�2 + 4	n
2� f2��n�2 + �−n�2� .

o estimate the second term on the right-hand-side, we recall from20 that

	n� f2��n�2 + �−n�2 + �n + ̄−n�2� = −� ��n��
2 + �−n� �2 + �x − n
�2�n�2 + �x + n
�2�−n�2� + 	n

� �	n − �n� .

rom Refs. 7 and 22 we know that

�n � 1 − O�e−�n
 + 
0�2
� .

ence, in view of �2.3� we obtain

� ��Qn − �n���n − ��n,Un�Un��2 � Ce−�n
 + 
0�2/2. �2.13�

Since �n− ��n ,Un�Un is orthogonal to Un we have

� ��Qn − �n���n − ��n,Un�Un��2 � ��n − �n�2��n − ��n,Un�Un�2
2,

here

�n = inf
u�span�Un�

�u�2=1

�Qnu,u� .

emi-classical analysis22,23 shows that

�n ——→
n→�

3. �2.14�

ombining the above with �2.13� yields

��n − ��n,Un�Un�2
2 � Ce−�n
 + 
0�2/2,

nd consequently

!�w,Un�! � Ce−�n
 + 
0�2/4, �2.15�

here C is independent of w and n.

We now present w in the form
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w = �w,Un�Un + wn.

learly, wn�Un, and hence

�Qnw,w� = �n�w,Un�2 + �Qnwn,wn� � �n�wn�2
2 � �n�1 − e−�n
 + 
0�2/2� ,

hich proves �2.12�. In view of �2.11�, we have proved �2.9� too.
We now substitute �2.9� into �2.8� and then into �2.7� to obtain

an
2�	n − �n� � ��Pn − �n�vn�2

2 + Ce−�n
 + 
0�2
,

r, equivalently

an
2�	n − �n� � 2��n − 1�2 + 5� f4�vn�2 + Ce−�n
 + 
0�2

� Ce−2�n
 + 
0�2/3.

urther,

an
2 = 1 − �vn�2

2 � 1 − ��Pn − �n�vn�2
2 � 1 − Ce−2�n
 + 
0�2/3.

ence,

	n � 1 + 2	n� f2�x,	n��vn�2 + O�e−2�n
 + 
0�2/3� as n → � . �2.16�

n Ref. 20 we proved that ��f /�	��C for all x in some neighborhood of 	=1. Utilizing this result
ogether with �2.3� we obtain

	n � 1 + 2� f2�x,1�e−�x − n
�2
+ O�e−2�n
 + 
0�2/3� as n → � ,

rom which �2.4� readily follows. Similarly, from �2.8� we obtain �2.5�. �

We conclude this section by stating the following conjecture, and by making a simple obser-
ation.

Conjecture 1: Let

�n�	� = inf
��n,�−n��H�H

��n�2
2+��−n�2

2=1

Jn��n,�−n� , �2.17a�

here

Jn��n,�−n� ª �
−
0

�

��n��
2 + �x − n
�2��n�2 + ��−n� �2 + �x + n
�2��−n�2

− 	���n�2 + ��−n�2 − f2���n�2 + ��n + �̄−n�2 + ��−n�2�� . �2.17b�

hen,

∀n � N, ∃ �n � 0: 	 � 1 + �n ⇒ �n�	� � 0. �2.18�

ote that by �2.4� the above-mentioned conjecture is correct for sufficiently large n, since

n�	��0 for all 	�	n. For n which is not necessarily large, it is still expected that �2.18� remains
alid since otherwise the surface superconductivity solution �1.4� would lose its stability for 	
1 for some n�N. This would contradict the physical intuition suggesting that �1.4� must be

table for 	�1.
Finally, we prove the leading asymptotic behavior for �n�	� as n→�.

Lemma 2.2: Let 	�2. Then,
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�n�	� � �	n − 	��1 + Ce−�1/3��n
 + 
0�2
� . �2.19�

Proof: It is easy to show that

− n� + ��x1 − n
�2 − 	 − �n�n + 	f2�2n + −n� = 0, x1 � − 
0

− −n� + ��x1 + n
�2 − 	 − �n�−n + 	f2�2−n + n� = 0, x1 � − 
0

n��− 
0� = −n� �− 
0� = 0.

onsequently, in the same manner used to derive �2.16� we can obtain that

�n�	� � 1 + 2	� f2�x,	��vn�2 + O�e−2�n
 + 
0�2/3� − 	 as n → � .

tilizing �2.16� we have

�n�	� � �	n − 	��1 + 2� f2�x,	n��vn�2	 + 2	� �f2�x,	� − f2�x,	n���vn�2

nd since ��f /�	��C �cf. Ref. 20� we readily obtain �2.19�.

II. THE SECOND BIFURCATION

In the preceding section we have considered the bifurcation from the one-dimensional solution
1.4�. In this section we study the linear bifurcation from the bifurcating branch, i.e., the second
ifurcation. Let then

� = �0 + u �3.1�

here �0�	� denotes the solution which bifurcates from �1.4� at 	=	N for N�1. It is convenient
o present �0 using the parametric form

�0 � f0 + �V0 + O��2,e−�N
 + 
0�2/2� , �3.2a�

	 � 	N + �2	N
�2� + O��2� , �3.2b�

n which

Vn = n+N�x1�ei�n+N�
x2 + −n−N�x1�e−i�n+N�
x2, �3.2c�

f0�x1� = f�x1,1� , �3.2d�

	N
�2� � � 


2�
	3/2

+ O�e−�
N + 
0�2/2� . �3.2e�

e shall consider in the sequel positive � values which are of O�e−��N − N0�
 + 
0�2/4� for N0�N. In
iew of �3.2c� we have

�i � + x1î2�2vn − 	N+n��vn − f2�	=	N+n
�2vn + v̄n�� = 0. �3.3�
                                                                                                            



C

c
f

w
r

w
c
i

t

t

i

w
t

T

e

a

095103-9 Emergence of the triangular lattice J. Math. Phys. 46, 095103 �2005�

                        
onsider now the bifurcation from the branch which bifurcated at 	=	Ñ from the surface super-

onductivity solution �1.4� for Ñ�N which is still much greater than 1. In this case we obtain
rom �2.5� that apart from an exponentially small error

��̃0 − f0��x1,x2� � ��̃0 − f0��x1+
�Ñ−N�,x2�,

here �̃0 is the mode bifurcating from f at 	=	Ñ. Thus, the choice of N has little impact on the
esults obtained in this section. We shall return to this problem in the last section.

Substituting �3.1� into �2.1� while keeping in mind that �0 is a solution of �2.1�, we obtain

�i � + x1î2�2u − 	�u − �2��0�2u + �0
2ū + 2�u�2�0 + u2�̄0 + �u�2u�� = 0 x � R
0

2 , �3.4a�

ux1
�− 
0,x2� = 0; �3.4b�

u�x1,x2 + L� = u�x1,x2� , �3.4c�

here L=2� /
, and R
0

2 = ��x1 ,x2� �−
0�x1 ,x2�R. We look for solutions in PL

0 which bifur-

ate from u�0. We thus assume that such a bifurcation takes place at 	=� and linearize �3.4� by
ntroducing the expansion

	 � � + ���1� + �2��2� + O��3� , �3.5a�

u � �u�0� + �2u�1� + �3u�2� + O��4� , �3.5b�

o obtain

�i � + x1î2�2u�0� − ��u�0� − �2��0�2u�0� + �0
2ū�0��� = 0, �3.6�

ogether with �3.4b� and �3.4c�.
We shall now obtain a necessary condition for the existence of nontrivial solutions of �3.6�

nvolving Vn with N+n�1.
Lemma 3.1: Let

� = 	N + �2	N
�2�,

here 	N
�2� is given by (3.2e). Let further �0 be given by (3.2) and u�0� satisfy (3.6). Denote by ûn

he Fourier coefficient

ûn = �
0

2�/


e−i
nx2dx2.

hen, if there exist ��exp�− 1
4 ��N− l�
+
0�2 (where l�N) such that a nontrivial u�0� satisfying

�
−
0

�

�ûN+n�2 + �ûN−n�2dx1 �
1

2
�3.7�

xists for some 0�n� l, we must have

�2 � �−n
2 1 − 2qn2

�1 − 2qn2
�2 − q4n2 �3.8a�
nd
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�3/2u�0� �

1 − 2qn2

��1 − 2qn2
�2 + q4n2

exp�−
1

2
�x1 − �N − n�
�2 + i
�N − n�x2�

+
q2n2

��1 − 2qn2
�2 + q4n2

exp�−
1

2
�x1 − �N + n�
�2 + i
�N + n�x2� , �3.8b�

here

�n
2 = �2�



	3/2

�	N − 	N+n�; �−n
2 = �2�



	3/2

�	N − 	N+n� , �3.8c�

nd

q = e−w2/2. �3.8d�

Proof: Multiplying �3.6� by V̄n and integrating by parts over D= �−
0 ,��� �0,L� we obtain

�� − 	N+n� � u�0�V̄n = �� − 	N+n� � V̄n�2��0�2u�0� + �0
2ū�0�� + 	N+n� f2�u�0�V̄n − ū�0�Vn�

+ 	N+n� V̄n�2���0�2 − f2�u�0� + ��0
2 − f2�ū�0�� . �3.9�

e need first an estimate for the first two integrals on the right-hand side of �3.9�. Without loss of
enerality we assume that �u�0��L2�D�=1 �which may always be achieved through appropriately
djusting ��. By �3.6� we also have

� ��i � + x1î2�u�0��2 � C� �u�0��2 � C . �3.10�

For the first integral on the right-hand side of �3.9� we obtain by using �3.2�

� V̄n��0�2u�0� � � V̄nf0
2u�0� + 2�� V̄nf0R�V0�u�0� + O��2� .

hen, utilizing �2.5� we have

�� V̄nf0
2u�0��2

�� f0
4�Vn�2 � Ce−2��N + n�
 + 
0�2/3,

�� V̄nf0V0u�0��2

�� f0
2�Vn�2�V0�2 � Ce−2��N + n/2�
 + 
0�2/3.

To estimate the second integral on the right-hand side of �3.9� we multiply �3.6� once by
−i�N+n�x2 and once by ei�N+n�x2 and integrate by parts to obtain the system

− ûN+n� + ��x − n
�2 − ��ûN+n + �f2�2ûN+n + û−N−n�

= − �
0

2�/


����0�2 − f2�2u�0� + ��0
2 − f2�ū�0��e−i
�N+n�x2dx2 �3.11a�

− û−N−n� + ��x + n
�2 − ��û−N−n + �f2�2û−N−n + ûN+n�

= − �2�/


����0�2 − f2�2u�0� + ��0
2 − f2�ū�0��ei
�N+n�x2dx2 �3.11b�
0
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ûN+n� �− 
0� = û−N−n� �− 
0� = 0. �3.11c�

ultiplying �3.11a� by ū̂N+n and �3.11b� by ū̂−N−n, summing the resulting equations, and integrat-
ng with respect to x1 we obtain

JN+n�ûN+n, û−N−n,�� =� �e−i
�N+n�x2ûN+n + ei
�N+n�x2û−N−n� · ����0�2 − f2�2u�0� + ��0
2 − f2�ū�0�� ,

here J is defined in �2.17�. Since ûnei
nx2 is the projection of u�0� on the subspace of the n’th
ourier harmonic, it is easy to show that its Hmag

1 norm is uniformly bounded for all N and n.
onsequently,

�u�0��L4 � C; �ûnei
nx2�L4 � C .

herefore, it is not difficult to show that for sufficiently large N+n

� �û−N−n�2 + f2�ûN+n�2 − ��� − ��z=
�N+n�+
0
� � JN+n�ûN+n, û−N−n,�� � C�� + e−�N
 + 
0�2/4�2.

�3.12�

here ��z� is defined in �1.5�. It is thus easy to show from �3.12� that

� �û−N−n�2 + f2�ûN+n�2 � C�� + e−�N
 + 
0�2/4�2.

et Un be the minimizer of �Qnu ,u� in H�H where Qn is defined in �2.10�. Let further

ûN+n = �ûN+n,UN+n�UN+n + ũN+n. �3.13�

hen, by �3.12� and �2.14� we also have

� �ũN+n�2 � C�� + e−�N
 + 
0�2/4�2. �3.14�

We now return to the second integral on the right-hand side of �3.9�. Obviously,

� f2ū�0�V̄n = �
−
0

�

f2�̄N+nū̂−N−n + ̄−N−nū̂N+n�dx1. �3.15�

rom �3.12� and �2.5� and �2.4a� and �2.4b� we obtain

��
−
0

�

f2̄N+nū̂−N−n�2

� �
−
0

�

f4�N+n�2�
−
0

�

�û−N−n�2 � C�� + e−�
�N + n� + 
0�2/4�2e−2�
�N + n� + 
0�2/3,

�3.16�

nd

��
−
0

�

f2̄−N−nū̂N+n�2

� �
−
0

�

f4�ûN+n�2�
−
0

�

�−N−n�2 � C�� + e−�
�N + n� + 
0�2/4�2e−2�
�N + n� + 
0�2/3.

�3.17�
onsequently,
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�� − 	N+n� � u�0�V̄n = 	N+n� V̄n�2���0�2 − f2�u�0� + ��0
2 − f2�ū�0�� + �̃ , �3.18a�

here

��̃� � C��2�� + e−�
�N + n� + 
0�2/3�2 + �� + e−�
�N + n� + 
0�2/4�2e−�
�N + n� + 
0�2/3 . �3.18b�

We now estimate the remaining terms on the right-hand side of �3.9�. Evidently,

� V̄n���0�2 − f2�u�0� � � V̄n�f0
2 − f2�u�0� + 2�� f0R�V0u�0�V̄n + �2� �V0�2u�0�V̄n + O��3� .

�3.19�

or the first term on the right-hand side we have

�� V̄n�f0
2 − f2�u�0��2

� � �f

�	
�

L��−
0,��

2

�	n − 1�2� �f0 + f�2�Vn�2.

n view of �2.4� and since �f /�	 is uniformly bounded,20 we have

�� V̄n�f0
2 − f2�u�0��2

� Ce−3�
�N + n� + 
0�2/2. �3.20�

For the second term on the right-hand side of �3.19� we have

�� f0R�V0u�0�V̄n�2

�� f0
2�V0Vn�2 � Ce−2�
�N + n� + 
0�2/3. �3.21�

ombining �3.19�–�3.21� we obtain

� V̄n���0�2 − f2�u�0� � �2� �V0�2u�0�V̄n + O��2e−�
�N + n� + 
0�2/12� .

n a similar manner we can obtain a similar estimate for the second term on the right-hand side of
3.18a�. Thus,

�� − 	N+n� � u�0�V̄n = �2� V̄n�2�V0�2u�0� + V0
2ū�0�� + �2�̃n, �3.22a�

here

��̃n� � e−�
�N + n� + 
0�2/12. �3.22b�

Let

d̃n =� u�0�V̄n.

hen, we can write �3.22� in the form

��2 + �n
2�d̃n = �2qn2

�2d̃n + d̃
¯

−nqn2
� + C�2�̃n, �3.23a�

��2 − �−n
2 �d̃−n = �2qn2

�2d̃−n + d̃
¯

nqn2
� + C�2�̃−n. �3.23b�

T �0�
et �dn ,d−n� denote a nontrivial solution and �n be a critical value of
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��2 − �−n
2 �d−n = �2qn2

�2d−n + d̄nqn2
� �3.24a�

��2 − �−n
2 �d−n = �2qn2

�2d−n + d̄nqn2
� . �3.24b�

et further �N−n denote a critical value of � for which a nontrivial solution of �3.6� satisfying �3.7�
xists. Let �n be given by

�n
2 =

�N−n − 	N

	N
�2� .

y �3.7� we have to look for a solution of �3.23� which satisfies

�d̃n�2 + �d̃−n�2 �
1

2
.

t is not difficult to show that

��n − �n
�0�� + �d̃n − dn� + �d̃−n − d−n� � C�̃n, �3.25�

here C is independent of n and N. Further, one can easily show that whenever 1�k�2l and
�n, the solutions of �3.23� with �=�k must satisfy

�d̃n� + �d̃−n� � C�̃n. �3.26�

To solve �3.24� we multiply �3.24a� by d̄−n and �3.24b� by d̄n to obtain

��2�1 − 2qn2
� − �−n

2 ��d−n�2 = �2q2n2
d̄nd̄−n, �3.27a�

��2�1 − 2qn2
� + �n

2��dn�2 = �2q2n2
d̄nd̄−n. �3.27b�

e confine the subsequent discussion to the case q�1/2, �and later also to q��2−1�. This is
one because most of the analysis in the next section will be devoted to the limit q→0. Further,
he periodic solution with the minimal energy in R2 is the triangular lattice11–13 for which q is
ither e−��3 or e−�/�3 which are both smaller than 1/2.

For q�1/2 we must have by �3.27b�

d̄nd̄−n = �dn��d−n� .

ence,

det���n
�0��2�1 − 2qn2

� − �−n
2 − ��n

�0��2q2n2

− ��n
�0��2q2n2

��n
�0��2�1 − 2qn2

� + �n
2� = 0.

e now observe that by �2.4�

�n
2

�−n
2 � Ce−
nN.

ence, we can approximate �n
�0� by

��n
�0��2 � �−n

2 1 − 2qn2

�1 − 2qn2
�2 − q4n2 .
sing �3.2b� the critical values of 	 are accordingly
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�N−n = 	N +
1 − 2qn2

�1 − 2qn2
�2 − q4n2 �	N−n − 	N� .

s long as q��2−1 we have

	N−n � �N−n � 	N−n−1,

nd

�N−n − 	N−n

	N−n−1 − 	N−n
� Ce−
N.

onsequently, we can assert that the next bifurcation takes place at 	=�N−1 where

�N−1 � 	N +
1 − 2q

�1 − 2q�2 − q4 �	N−1 − 	N� . �3.28�

he corresponding eigenmode is

2



�3/2�d−1

d1
� =

1
��1 − 2q�2 + q4�1 − 2q

q2 � . �3.29�

ombining �3.13�, �3.14�, �3.25�, and �3.26� we obtain

2



�3/2u�0� �

1 − 2q
��1 − 2q�2 + q4

exp�−
1

2
�x1 − �N − 1�
�2 + i
�N − 1�x2�

+
q2

��1 − 2q�2 + q4
exp�−

1

2
�x1 − �N + 1�
�2 + i
�N + 1�x2� + ṽl, �3.30�

here ṽl satisfies

�
0

2�/


e−i
nx2ṽldx2 = 0, ∀ x1 � �− 
0,��, N − 2l � �n� � N + 2l .

e first consider the case �n��N− l−1. By �3.12� and �2.17� we have

�n�����ûn�2
2 + �û−n�2

2� � C�� + e−�N
 + 
0�2/4�2.

y �2.19� and �2.18� there exists n0 such that

n � n0 ⇒ �n��� �
1
2 �	n − �� .

et first n0�n�N− l−1. Then

�ûn�2
2 + �û−n�2

2 � C
�2

	n − �
� C

� − 	N

	n − �
� C

� − 	N

	n − �
� C

	N−l − 	N

	N−2l − 	N−l
� Ce−�1/2�lN
.

onsider now the case n�n0. Let

�̃ = min
1�n�n0

1���	N−l

�n��� .

y �2.18� �̃ must be positive for sufficiently large N. Consequently,

�ûn�2
2 + �û−n�2

2 � C
�2

˜
.

�

                                                                                                            



w

H

w

T

m
t

e
t
I
a

W
s

I
b
o

w

095103-15 Emergence of the triangular lattice J. Math. Phys. 46, 095103 �2005�

                        
Finally, we consider the case n�N+2l+1. In this case we can write instead of �3.23a�

��2 + �n
2�d̃n = 2�2qn2

d̃n + C�2�̃n,

herein

�̃n � e−�1/4�lN
.

ence, d̃n�C�̃n. Since �3.14� is still valid we have

�ṽl� � Ce−�1/4�lN
,

hich completes the proof of �3.8�. �

Note that as q→0

� → 	N−1; �d−1

d1
� → �1

0
� .

his is the limit of weak interaction between the modes: As q→0, 
 tends to � and hence, since

n�exp�−�x−n
�2 /2, we obtain exponentially small interaction between the V0 and its adjacent
odes V1 and V−1. Consequently, as q→0, the next bifurcation is almost identical in nature with

he first bifurcation: It takes place at, �=	N−1 and the bifurcating mode is VN−1.
The fact that by �3.30� u�0� depends only on a finite number of modes is surprising: One

xpects that the bifurcating branch would include infinitely many modes since the term ���2� on
he right-hand side of �2.1� does not allow us to separate a finite number of modes from the others.
t is thus expected that if we consider additional terms in the expansion �3.5�, we shall obtain
dditional modes, so that u, the solution of �3.4� would consist of an infinite number of modes.

Upon multiplying �3.4� by V̄n and integrating by parts we obtain

�	 − 	N+n� � uV̄n = �	 − 	N+n� � V̄n�2��0�2u + �0
2ū� + 	N+n� f2�uV̄n − ūVn� + 	N+n

�� V̄n�2���0�2 − f2�u + ��0
2 − f2�ū� + 	� V̄n�2�u�2�0 + u2�̄0� + 	� V̄n�u�2u .

e now substitute �3.5� into the above and obtain for the O��2� balance for n= ±1, making the
ame approximations as before

� 


2�
	3/2

��1
2 ± �±1

2 � � u�0�V̄n + �N−1
�1� � u�0�V̄n = �1

2� V̄n�2�V0�2u�1� + V0
2ū�1�� + �1� V̄n�2�u�0��2V0

+ V0�u�0��2� + �N−1
�1� �2�



	3/2� V̄n�2�V0�2u�0�

+ V0
2ū�0�� + �1

2�̂n. �3.31�

t is possible to show that �̂n is exponentially small as N→�, since it results from interactions
etween “distant” modes, e.g., f0 and Vn. We skip the details here and proceed by formally
btaining the next-order term.

To find �N−1
�1� we write the equations for n= ±1 neglecting the exponentially small terms

��1
2 − �−1

2 �d−1
�1� = �1

2q�2d−1
�1� + d�1�

1q� + �N−1
�1� ��1 − 2q�2 − q4� , �3.32�

��1
2 + �1

2�d1
�1� = �1

2q�2d1
�1� + d�1�

−1q� , �3.33�
here
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dn
�1� =� u�1�V̄n. �3.34�

t is easy to show that �3.32� can have solutions only if

�N−1
�1� = 0. �3.35�

n this case the solutions are proportional to �3.29� and are therefore of no interest. For n=0 we
ave

d0
�1� = 2d0

�1� + d̄0
�1� +

2q

�1
��1 − 2q�2 + q3 − q4� .

ence,

d0
�1� = −

q

�1
��1 − 2q�2 + q3 − q4� + iC , �3.36�

here the last term can be eliminated using the gauge transformation �1.2�. For n= ±2 we obtain

��1
2 − �−2

2 �d−2
�1� = �1

2q4�2d−2
�1� + d�1�

2q4� + �1q2�1 − 2q��2q5 + 1 − 2q� ,

��1
2 + �2

2�d2
�1� = �1

2q4�2d2
�1� + d�1�

−2q4� + �1q6�2q�1 − 2q� + 1� .

ince �1
2 /�−2

2 �O�e−
N�, we obtain

�d−2
�1�� � O�e−
N� .

ne can then obtain

d2
�1� �

q6

�1
�2q�1 − 2q� + 1� + �e−
N� .

or n�3 it is easy to show that d±n
�1�=0.

We can proceed in the same manner to obtain the next order term in the expansion �3.5�.
owever, this solution will not provide any significant information except for the fact that

��2� � � 


2�
	3/2

��1�4d−1
�0�d0

�1�q + 2d1
�0�d0

�1�q2 + 2d1
�0�d2

�1�q5� + ��d−1
�0��2 + 2q4�d1

�0��2�d−1
�0��

1 + O�e−
N�
�1 − 2q�2 − q4

� 1 − 2q + O�q2,e−
N� as q → 0. �3.37�

We see that while u�0� contains the modes V1 and V−1, u�1� contains V2 and V−2 as well. It can
e shown that u�n−1� contains Vn and V−n and hence by �3.5� u contains infinitely many modes.
owever, the coefficients of V−n for n�2 are exponentially small.

If we increase � in �3.5� such that ���1, then the series �3.5� does not seem to converge: It is
ossible to show from �3.31� that u�n��O�qn /�1

n�. Therefore, convergence of �3.5� can be guaran-
eed only when ���1 /q. We are interested, however, in the behavior of the bifurcating branch
hen ���1 as well and therefore need to apply a different approach to obtain this behavior, which

s what we do in the next section.
To this end we discuss here the behavior of u near the bifurcation in the limit q→0. Let then,

an = lim
q→0

� uV̄n.
ormally, we have
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an = �
k=1

�

an
�k��k,

here

an
�k� = lim

q→0
� u�k−1�V̄n.

y �3.8b� we have

an
�1� = �1 n = − 1,

0 n � − 1.
�

urther, since

u�n� � O�qn� as q → 0,

e must have an
�k�=0 for all n and k�2. Consequently,

� � f0 + �V0 + �V−1 + O�q� as q → 0. �3.38�

V. POSTBIFURCATION BEHAVIOR

Consider again �2.1�. We multiply the equation by V̄n and integrate by parts to obtain

	� ��1 − ���2�V̄n = 	N+n� ��V̄n − f2�2V̄n + Vn�� ,

r

�	 − 	N+n� � �V̄n = �	 − 	N+n� � ����2V̄n + 	N+n� ��� − f �2V̄n − 	N+n� f2���̄ − f�V̄n − �� − f�Vn� .

�4.1�

e look for solutions of �2.1� for

0 � 	 − �N−1 � 1,

hich are close to �1.4�, i.e.,

	 = 	N + � 


2�
	3/2

�2 �4.2a�

nd

� � f0 + ���1� + �2��2�, �4.2b�

here

��1� = �
n=−N+1

CnVn, �4.2c�

1���1, and ���2�� is bounded as �→�1 and N→�. �Note that �4.2� is an extrapolation of the
esults in the preceding section.�
We now estimate the various terms on the right-hand side of �4.1�. For the first term we have
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� ����2V̄n = �� f2�2��1� + �̄�1��V̄n + �2� f2�2��2� + �̄�2��V̄n + �2� f�2���1��2 + ���1��2�V̄n,

n which we have the estimates

�� f2�2��1� + �̄�1��V̄n�2

� C� f4�Vn�2� ���1��2 � Ce−2��N + n�
 + 
0�2/3,

�� f�2���1��2 + ���1��2�V̄n�2

� e−��N + n�
 + 
0�2/2.

ence,

��	 − 	N+n� � ����2V̄n� � C�	 − 	N+n���e−��N + n�
 + 
0�2/3 + �2e−��N + n�
 + 
0�2/4 + �3� . �4.3�

For the last term on the right-hand side of �4.1� we have

� f2���̄ − f�V̄n − �� − f�Vn� = �� f2��̄�1�V̄n − ��1�Vn� + �2� f2���2�V̄n − ��2�Vn� ,

n which we have the estimates

�� f2��̄�1�V̄n − ��1�Vn�� � C��
−
0

�

f2n−ndx1� � Ce−2��N + n�
 + 
0�2/3,

�� f2��2�Vn� � Ce−��N + n�
 + 
0�2/3.

For the second term on the right-hand side of �4.1� we have

� ��� − f �2V̄n = �2� f ���1��2V̄n + 2�3� fR��̄�1���2�V̄n + �3� ��1����1��2V̄n + O��4� ,

n which

�� f ���1��2V̄n� � C sup
k�n
�� fVkVn−k−NV̄n� � Ce−��N + n�
 + 
0�2/2,

nd

�� fR��̄�1���2�V̄n� � Ce−��N + n�
 + 
0�2/4.

Combining the above estimates and �4.1� we obtain

�	 − 	N+n� � ��1�V̄n = �2� ��1����1��2V̄n + �2�̃n, �4.4�

here �̃n satisfies �3.22b�.

Substituting �4.2� into �4.4� and neglecting the exponentially small terms yields
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�
r,m=n−N+1

�

Cn+rC̄n+r+mCn+mqm2+r2
− �nCn = 0, �4.5a�

here

�n
2 =

	 − 	N+n

	 − 	N
�4.5b�

hich is formally valid only when �N+n��1. Let l�N and

1
2 �	N−l+1 + 	N−l� � 	 �

1
2 �	N−l + 	N−l−1� .

hen, by �2.4�, we have

�n � �1 + O�e−
N� , n � − l + 1,

− O�e
N� , n � − l − 1.
� �4.6�

or n=−l the above ratio varies from a negative O�e
N� value for 	= �	N−l+1+	N−l� /2 to a value
lose to unity for 	= 1

2 �	N−l+	N−l−1�. An immediate consequence of �4.6� is that

Cn � O�e−
N�, ∀ n � − l − 1. �4.7�

Equation �4.5� possesses infinitely many solutions. We first consider solutions which are
nalytic functions of q, i.e.,

Cn = �
k=0

�

ankq
k. �4.8�

e first look at 	�q� such that �−l is independent of q. Note that by �4.6� �n remains too indepen-
ent of q except for an O�e−
N� term, which is negligible for 
�N. For q=0 �4.5� has the form

an0 = �an0�2an0, − l + 1 � n , �4.9a�

�−la−l,0 = �a−l,0�2a−l,0. �4.9b�

ote that the real roots of �4.9� are all simple provided that 	�	N−l. Consequently, all real
olutions of �4.5� are holomorphic in q in some neighborhood of q=0 for 	�	N−l. We later show
hat the converse statement is also true, i.e., every solution of the form �4.8� is essentially real.

Consider first the case l=−1. We shall assume that �3.5� and �4.2� should match ��o��1�. If
e continue �3.5� into the region where ���1 �where �3.5� does not necessarily converge�, we
btain via the superposition �=�0+u a solution in the form �4.2�. Near the bifurcation we have by
3.38�

an0 = 0, ∀ n � 0,− 1. �4.10�

y �3.38� we have

a00 = 1; a−1,0 = lim
q→0

�−1=const.

�

�
, �4.11�

r, equivalently, that near the bifurcation

�a−1,0�2 = �−1,

hich is in accordance with �4.9�.

We now make the following claim
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Lemma 4.1: Let �Cnn=−N+1
� satisfy (4.5) and (4.8). Then,

Cn = ei��0�q�+n�1�q��Cn�, �4.12�

here Cn��R for all n�−N+1, and �0�q� and �1�q� are holomorphic in q in some neighborhood
f q=0. Further, let �an0n=−N+1

� be real solutions of �4.9�. Then, there exists a unique solution of
4.5� which satisfies �4.8� in some neighborhood of q=0.

We bring the proof in the Appendix.
In view of �4.12� we can replace �Cnn=−N+1

� by �Cn�n=−N+1
� by applying the transformation

� → ei�0�q���x1,x2 + �1�q�/
� .

e may thus assume that the Cn’s are all real �all other solutions will be gauge equivalent by
4.12��.

Consequently, using �4.12�, we can set

a−1,0 = ��−1�1/2.

hen 	−	N−1�	N−1−1 we obtain a−1,0=1.
We now set l=−2 to examine the behavior of C−2 with increasing 	. As stated earlier C−2 is

xponentially small when 	−1�	N−2−1. However, we expect C−2 to become O�1� for 	�	N−2.
Substituting �4.8� into �4.5� we obtain for the O�q� balance

�nan1 = 3an0
2 an1 + 2�an+1,0

2 + an−1,0
2 �an0. �4.13�

or n�0, −1 we have an1=0. For n=0, −1 we have

a01 = − �−1; a−1,1 = −
1

�−1
1/2 .

The O�q2� balance is

�nan2 = 3an0
2 an2 + 3an1

2 an0 + 4�an+1,0an+1,1 + an−1,0an−1,1�an0 + 2�an+1,0
2 + an−1,0

2 �an1

+ �an+1,0
2 an+2,0 + 2an+1,0an0an−1,0 + an−1,0

2 an−2,0� . �4.14�

ince we are interested in the behavior of C−2 with increasing 	 we solve �4.14� for n=−2

�−2a−2,2 = a−1,0
2 a00.

onsequently,

C−2 �
�−1

�−2
q2. �4.15�

As was expected in �4.7�, C−2 is exponentially small provided that 	−1�	N−2−1. If, how-
ver, 	↑	N+2, then a−2,2→−� and �4.15� ceases to be valid. To obtain the leading behaviour of

−2 in the limit q→0 when �−2�1 we consider first the case where �−2�O�q�. Let then

�−2 = �q .

ubstituting into �4.9�, �4.13�, and �4.14� �recalling that �−1�1 up to an exponentially small error�
e obtain

a−2,0 = 0,

�a−2,1 = 2.
onsequently,
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C−2 �
1

� − 2
q . �4.16�

t is not difficult to show that in the overlap range where �−2�O�q�� for 0���1 �4.15� and
4.16� match. We thus formally conclude that �4.15� develops into �4.16�, which is valid as long as
�2.

When �↑2, a−2,1→−� and hence we must consider separately the case ��−2��1. We thus
onsider �−2 values satisfying

�−2 = 2q + �q4/3.

n this case �4.8� is no longer valid. We therefore use the more general ansatz

Cn = �
k=0

�

bnkq
k/3.

ubstituting in �4.5� and applying an appropriate gauge transformation we obtain

b00 = 1; b−1,0 = 1; b−2,0 = 0,

b−2,1 = 0,

nd

��b−2,2�2 − ��b−2,2 = − b−1,0
2 b00 = − 1. �4.17�

Since our goal is to follow C−2 with increasing 	 we look for the solution of �4.17� which
atches �4.16� as �→−�. Consequently, we must have

b−2,2 �
1

�
as � → − � .

sing the theory of cubic equations, it is easy to show that �4.17� has only one solution for

� � �c =
3

2�3 2
,

ince �4.17� admits only real solutions. We now follow this solution with increasing value of � in
rder to find its behaviour as �→�.

When �=�c, �4.17� possesses two distinct solutions

b−2,2 =
1
�3 2

with double multiplicity �4.18a�

nd

b−2,2 = �3 4 with single multiplicity. �4.18b�

he former solution does not exist for ���c, and therefore, the latter solution is the one we follow.
ince �b−2,2��c��2��c, we must have �b−2,2����2�� for all ���c. Consequently, as �→�,

C−2 � − �1/2q2/3C−1
2 C0 � − �1/2q2/3. �4.19�
Consider now the case �−2=�q when ��2. In this case we use the ansatz
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Cn = �
k=0

�

Bnkq
k/2.

ubstituting into �4.5� yields, upon applying an appropriate gauge transformation,

B00 = 1; B−1,0 = 1; B−2,0 = 0,

�B−2,1� = �� − 2. �4.20a�

o find the phase of B−2,1 we match �4.20� with �4.19� to obtain

C−2 � − �� − 2q1/2C−1
2 C0 � − �� − 2q1/2. �4.21�

Finally, we consider positive �−2�O�1�. Here we assume �4.8� once again. By �4.9� we have

�a−2,0� = ��−2.

he sign of a−2,0 is determined from matching with �4.21�. We obtain

C−2 � − �−2
1/2C−1

2 C0 � − �−2
1/2. �4.22�

f 	 further increases so that 	N−2−1�	−1�	N−3−1, then �−2�1 and C−2�−1.
To summarize: we have followed the C−2�	� and found that it varies from a small negative

alue when 	−1�	N−2−1 to approximately −1 for 	−1�	N−2−1. This procedure can be applied
ecursively to obtain

C−l � − C−l+1
2 Cl+2, �4.23�

rom which we obtain

Cn � ��− 1���n+1�/2�, − l � n � 0

0 otherwise
� + O�q� , �4.24�

herein �·� denotes the integer value.
We have thus formally obtained the behavior of the Cn’s in the limit q→0. We now claim that

or l�1 and N− l�1, when substituting �4.24� into �4.2c�, � becomes close to the well-known
riangular lattice.11–13,21 The following lemma proves a stronger result: If an0 satisfy �4.24�, then
ny solution of the form �4.8� is close to the triangular lattice, for all q where �4.8� converges and
ot only when q→0. We should, however, emphasize that the foregoing discussion demonstrates
4.24� only formally and in the limit q→0. No such result has been proved for an0.

Lemma 4.2: Let

 = �D�q� �
n=−�

�

�− 1���n+1�/2� exp�−
1

2
�x1 − n
�2 + in
x2� , �4.25a�

here

1

D2 = �
�m,r��Z2

�− 1�mrqm2+r2
. �4.25b�

et � be given by �4.2� and �Cnn=−N+1
� satisfy �4.5�. Then,

� − ��� � C��ql2/64 + �1/2 + eCl2−
Nl/4� , �4.26a�

here

· = · � . �4.26b�
� �� � �L ���N−5l/8�
,�N−3l/8�
���0,2�/
�

                                                                                                            



w

w

s

W

f
o

w
s
�

w

A

w

095103-23 Emergence of the triangular lattice J. Math. Phys. 46, 095103 �2005�

                        
Proof: Let

�̃ = � �
n=−�

�

en exp�−
1

2
�x1 − n
�2 + in
x2� , �4.27�

here �enn=−�
� denotes the solution of

�
�r,m��Z2

erēm−n+remq�r − n�2+�m − n�2
− en = 0, �4.28�

hich is holomorphic in q, or

en = �
k=0

�

enkq
k,

uch that

en0 = ��− 1���n+1�/2�, − l � n � 0

0 otherwise
� . �4.29�

e first prove that there exists A�0 which is independent of k, l, 
, q, and N such that

�enk − ank� � Ake−
Nl/4, �4.30�

or all 0�k� l2 /16 and −3l /4�n�−l /4. This can be done by using the recurrence relation
btained by substituting �4.8� into �4.5�:

�nank = �
r2+s2�k

�
m,j�0

m+j�M

a�n+r�ja�n+r+s��M−m−j�a�n+s�m, �4.31�

here M�r ,s�=k−r2−s2. Note that the Cn’s were assumed all real in view of �4.12�. By �4.28�, enk

atisfy the same recurrence relation with �n=1. We can thus proceed by induction: We assume
4.30� for 0�k�K−1. Substituting in �4.31� we obtain

�nanK = �
r2+s2�K

�
m,j�0

m+j�M�K�

e�n+r�je�n+r+s��M−m−j�e�n+s�m + �nK,

here

�nK � �
j=1

K

3AK−j j2e−
Nl/4.

ny A�0 satisfying

�
n=1

�

A−nn2 �
1

3

ould then satisfy �4.30�.
Using �4.27� and �4.2� we now have

�� − �̃�� � �f0�� + � �
n=−�

�

�Cn − en��e−�1/2��x1 − n
�2
��.
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or the first term we have, since l�N,

�f0�� � C exp�−
1

2
�N −

5

8
l	2


2� � C exp�−
3

8
N2
2� � C�3/2.

or the second term we have the bound

� �
n=−�

�

�Cn − en��e−1/2�x1 − n
�2
�� � � �

n=−3l/4

−l/4

�Cn − en� + Ce−l2
2/128 � �
l

2 �
k=0

l2/64

�Aq�ke−
Nl/4 + Cql2/64,

rom which we obtain

�� − �̃�� � C��ql2/64 + �1/2 + eCl2−
Nl/4� . �4.32�

To complete the proof we need to obtain a similar estimate for �− �̃��. By �4.25� we can
rite

 = � �
n=−�

�

gn exp�−
1

2
�x1 − n
�2 + in
x2� ,

here �gnn=−�
� satisfies �4.28� and

gn = �
k=0

�

gnkq
k,

ut in contrast with �enn=−�
�

gn0 = �− 1���n+1�/2�.

ubstituting the above into �4.28� yields

gnk = enk

or all 0�k� l2 /16 and −3l /4�n�−l /4. The proof of the lemma then easily follows. �

. CONCLUDING REMARKS

In Sec. II we prove the exact asymptotic behaviour of the critical values �	nn=1
� of �2.2� and

heir corresponding modes. We proved that

	n � 1 + 2a2e−�n
 + 
0�2/2 + O�e−2�n
 + 
0�2/3� as n → � ,

here

a = lim
x→�

ex2/2f�x,1� ,

nd that

�n − e−�x1 − n
�2/2�2
2 + �−n�2

2 � e−2�n
 + 
0�2/3.

onsequently, immediately after the first bifurcation we have

	 � 	n + �2� 
 	3/2

,

2�
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� � ei
0x2�f�x1,	� + �e−�x1 − n
�2/2ein
x2 + O�e−�n
 + 
0�2/3� ,

here f is given in �1.4�.
At the conclusion of Sec. II we conjecture that 	n�1 for all n�N. This appears plausible

ince we expect that �1.4� would serve as the global minimizer of �1.8� in PL

0 when 	�1. In

ef. 20 it was shown that any bifurcating branch has lower energy than �1.4� independently of n
nd 	. Thus, no bifurcation should take place for 	�1 if �1.4� is indeed the global minimizer.

In Sec. III we consider the second bifurcation, while assuming that the first bifurcation takes
lace at 	=	N. We can explain this choice by considering �1.3a� not in R2

+ but in �0,d��R in the
imit d→�. In this case we have to add to �2.2� the boundary conditions

n��d − 
0� = −n� �d − 
0� = 0.

s a result of the introduction of the additional boundary we have

	n�d� � n2
2 when n
 � d . �5.1�

owever, because of continuity,24 one expects that

	n�d� ——→
d→�

	n��� .

lthough the above convergence is clearly not uniform in n, it still implies that for sufficiently
arge d there is a large number of critical values 	n�d� which can be approximated by �2.4�. Let
hen,

	N = min
n�N

	n�d� .

n view of �5.1� such a minimum must exist. Further, if �2.18� is correct then 	N must be very
lose to 1. Since with increasing 	 the first bifurcation from �1.4� must take place at 	=	N we see
hat the assumption that the bifurcation takes place at 	=	N is in accordance in principle with the
ituation in finite domains.

We show in Sec. III that, if the second bifurcation exists and if �2.18� is correct, then the
econd bifurcation must take place at

�N−1 � 	N +
1 − 2q

�1 − 2q�2 − q4 �	N−1 − 	N� ,

here q=e−
2/2, and the bifurcating mode must have the form

2



�3/2u�0� �

1 − 2q
��1 − 2q�2 + q4

exp�−
1

2
�x1 − �N − n�
�2 + i
�N − n�x2�

+
q2

��1 − 2q�2 + q4
exp�−

1

2
�x1 − �N + n�
�2 + i
�N + n�x2� .

y formally evaluating the next order terms in �3.5� we obtain that each term provides two
dditional Fourier modes to �. Thus, u�1� adds the modes V−2 and V2, etc. However, the coeffi-
ients of V−k have been shown to be exponentially small for all k�2.

In Sec. IV we extrapolate the behaviour of � near the bifurcation into the region where

	 − �N−1 � O�	 − 	N� .
o this end we assume that
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� � f + � �
n=−N+1

�

CnVn, �5.2�

nd

	 � 	N + �2� 


2�
	3/2

.

ased upon this assumption we find that as N→� the Cn’s must satisfy the system

�
r,m=n−N+1

�

Cn+rC̄n+r+mCn+mqm2+r2
− �n

2Cn = 0,

here

�n
2 =

	 − 	N+n

	 − 	N
.

his system of polynomial equations is very similar to the one obtained by Abrikosov1 in the
bsence of boundaries where

�
r,m=−�

�

Cn+rC̄n+r+mCn+mqm2+r2
− �Cn = 0,

n which � is proportional to 	−1.
To investigate the solution of the above-mentioned system with increasing 	 we first match

5.2� with the solution obtained in Sec. III. We obtain that near 	=�N−1 as q→0 with fixed �−1 we
ave

C0 � 1 C−1 � ��−1.

y following the leading order of C−2 as q→0 �with fixed �−2� with increasing 	, we obtain that
hen �−2�1

C−2 � − C0
2C−1 = − 1.

ince the same procedure can be applied again to derive the behavior of C−n when �−n�1, we
btain that

Cn � ��− 1���n+1�/2�, − l � n � 0

0 otherwise.
� + O�q�

Finally, we show that if Cn is holomorphic in q for all n, then the above-mentioned asymptotic
elation implies that �5.2� is closed to the triangular lattice, which is given by

 = �D�q� �
n=−�

�

�− 1���n+1�/2� exp�−
1

2
�x1 − n
�2 + in
x2� ,

here

1

D2 = �
�m,r��Z2

�− 1�mrqm2+r2
.

e prove that
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� − ��� � C��ql2/64 + �1/2 + eCl2−
Nl/4� ,

here 1� l�N and

� · �� = � · �L����N−5l/8�
,�N−3l/8�
���0,2�/
�.

We conclude this section by listing the main gaps which need to be addressed in order to
stablish a rigorous proof of the main result of this work

1� Proof of �2.18�.
2� Existence proof of the second bifurcation.
3� Proving that �5.2� is indeed a continuation of �3.1�.
4� Proving that Cn must be holomorphic in q when �n�1 for

n�−l and �n�−O�e
N� for n�−l−1 �here l is any integer smaller than N /2�.
5� Proof that either no other bifurcation exists after the second one or, if another bifurcation

does exist, then �5.2� has lower energy than the supposed bifurcating branch.

PPENDIX: PROOF OF LEMMA 4.1

We prove here an equivalent statement to �4.12�, i.e., that

Cn−1C̄n
2Cn+1 � R . �A1�

e prove �A1� by invoking inductive arguments. We first prove that

I�Cn−1C̄n
2Cn+1� � O�q�, ∀ n , �A2�

nd then that

I�Cn−1C̄n
2Cn+1� � O�qk� ⇒ I�Cn−1C̄n

2Cn+1� � O�qk+1�, ∀ n . �A3�

Substituting �4.8� into �4.5� we obtain from the O�q2� balance that13

I�ā�n+2�0a�n+1�0
2 ān0 + 2a�n+1�0�ān0�2a�n−1�0 + ā�n−2�0a�n−1�0

2 ān0 = 0, ∀ n .

rom this we easily conclude that

I�a�n+1�0�ān0�2a�n−1�0 = 0, ∀ n ,

hich is exactly �A2�.
To prove �A3� we assume by induction that

I�Cn−1C̄n
2Cn+1� � O�qk� .

quivalently we may assume the existence of �0, �1, holomorphic in q, such that

I�Cnei��0�q�+n�1�q�� � O�qk� .

et

Cn� = ei��0�q�+n�1�q��Cn.

hen,

cn� = �
j=0

�

anj� qj ,
here
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anj� � R, ∀ 0 � j � k − 1.

et further

ank� = �an� + bn
k�an0� , − l � n � 0.

t is easy to show that when an0� =0, then ank� �R. Thus, it remains necessary to show that bn
k =0 for

ll −l�n�0. The recurrence relation �4.31� for complex anj becomes

�nanj� = �
r2+s2�j

�
m,j�0

m+j�M

a�n+r�j� ā�n+r+s��M−m−j�� a�n+s�m� , �A4�

here M�r ,s�= j−r2−s2. It is easy to show that �A4� is satisfied for j=k and j=k+1 independently
f the values of the bn

k’s. For j=k+2 we obtain after a tedious calculation that �A4� is solvable if
nd only if

Pb = 0 �A5a�

here b is the vector

b = � b0k

�
b−l,k

� , �A5b�

nd p is the matrix

P = �
− p−l+1 2p−l+1 − p−l+1 0 . . . 0

2p−l+1 − 4p−l+1 − p−l+2 2�p−l+1 + p−l+2� − p−l+2 0 . . .

− p−l+1 2�p−l+1 + p−l+2� − p−l+1 − 4p−l+2 − p−l+3 2�p−l+2 + p−l+3� − p−l+3 ¯

� � ¯ ¯ ¯ �
0 ¯ 0 − p−1 2p−1 − p−1

� ,

�A5c�

n which,

pn = an−1,0� �an0� �2an+1,0� . �A5d�

The matrix P can conveniently be decomposed into the product

P = P�1�P�2�, �A6a�

here

P�1� = �
0 − p−l+1 0 0 ¯ 0 0

0 2p−l+1 − p−l+2 0 ¯ 0 0

0 − p−l+1 2p−l+2 − p−l+3 ¯ 0 0

� �
0 0 0 0 ¯ − p−1 0

� , �A6b�
                                                                                                            



a

T

O
k

a

w

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

095103-29 Emergence of the triangular lattice J. Math. Phys. 46, 095103 �2005�

                        
nd

P�2� = �
− 2 1 0 ¯ 0 1

1 − 2 1 0 ¯ 0

� �
0 ¯ 0 1 − 2 1

� . �A6c�

he matrix P�2� is circulant. Its kernel is spanned by �1, . . . ,1�T. For P�1� we have

ker P�1� = span��
1

0

�
0
� ;�

0

�
0

1
�� .

bviously �1, . . . ,1�T�ker P. Further, any vector b�Rl+1 for which P�2�b�ker P�1� belongs to
er P as well. Consequently, r�P�=2 and

ker P = span��
1

1

�
1
� ;�

0

1

�
l
�� .

nd hence

bn
k = bk + nb̃k,

hich proves �A3�. �
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The initial value problem for the time dependent Ginzburg–Landau equations used
to model the electrodynamics of a superconducting body surrounded by a vacuum
in R3 is studied. We prove existence, uniqueness, and regularity results for solutions
in the Coulomb, Lorentz, and temporal gauges. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2012107�

. INTRODUCTION

In this article we study an initial value problem for the time dependent Ginzburg–Landau
TDGL� equations used to model the electrodynamics of a nonmagnetic superconducting body

�R3 placed in a vacuum.11 We prove existence, uniqueness, and regularity results for solutions
� ,A ,�� where ��· , t� :�→C is the Ginzburg–Landau order parameter, A�· , t� :R3→R3 is the
agnetic vector potential, and ��· , t� :R3→R is the scalar electric potential. We use the notation

a ,b�=Re�a*b�= �a*b+ab*� /2 for a ,b�C to denote the real inner product on C�C, �A=�−iA
or the covariant derivative, DT=�� �0,T�, and ET=R3� �0,T�. The TDGL equations, also
nown as the Gorkov-Eliashberg equations5 are

�t� + i�� − �A
2 � + �2����2 − 1�� = 0 in DT, �1.1�

�����tA + ��� + curl2 A = ���i�,�A�� in ET. �1.2�

he term ���2 represents the density of superconducting electron pairs in �, and js= �i� ,�A��
enotes the supercurrent density in the body. The quantity E=−�tA−�� is the electric field. The
ormal current density is characterized by Ohm’s law, jn=�E in �. The constants � and � are
ositive and fixed determined by the material, � is the Ginzburg–Landau constant and � is the
ormal conductivity. Writing the total current density as j= js+ jn we see that �1.2� can be written
s

curl2 A = ���js + jn� = ��j . �1.3�

his is the quasistatic approximation to Ampere’s law for a nonmagnetic, conducting body sur-
ounded by a vacuum.

The domain � is an open bounded connected set in R3 where �� will be as smooth as needed
3+�
at least C �. We assume that

46, 095104-1022-2488/2005/46�9�/095104/25/$22.50 © 2005 American Institute of Physics
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�A� · � = 0 on �� , �1.4�

here � is the exterior normal to the boundary. Since R3 \�̄ is a vacuum neither super or normal
urrent crosses ��. To see that this property is implied by the system note from �1.4� that

0 = �i�,�A�� · � = js · � on �� .

urther, from �1.3�, assuming that j is sufficiently regular, we have

0 = div���j� = �� div j + j · �dH���
2 in D��R3� .

hus 0= j ·� on ��, and it follows that jn ·�=−js ·�=0 on �� as well.
The electrodynamics are driven by a constant applied magnetic field H=he3 and initial values.

hese are reflected in the conditions

�curl A − he3� � L2�R3� for 0 	 t 
 T ,

��x,0� = �0�x� in �

ith ��0�	1,

A�x,0� = A0�x� in R3,

here curl2 A0=0 in D��R3 \�̄�. The last condition is to be expected since by �1.3� we have

url2 A=0 in R3 \�̄ for t�0.
A specific magnetic potential for the applied field is ha�x�= �0,hx1 ,0�, and in this article we

iew A as a perturbation of this field, A= Ã+ha. We consider Ã�Ȟ�R3� where Ȟ is the Hilbert

pace defined on the closure of Cc
��R3 ;R3� in the norm �Ã�Ȟ= ��R3��Ã�2dx�1/2. Thus �� , Ã ,�� is

solution to the system,

�t� + i�� − ��Ã+ha�
2

� + �2����2 − 1�� = 0 in DT, �1.5�

�����tÃ + ��� + curl2 Ã = �� · �i�,��Ã+ha��� in ET, �1.6�

��Ã+ha�� · � = 0 on ��̄ � �0,T� , �1.7�

Ã � Ȟ�R3� for 0 	 t 
 T , �1.8�

�
�

�dx = 0 for 0 	 t 
 T , �1.9�

� = �0, Ã = A0 − ha at t = 0. �1.10�

For p� �1,�� and integer m1, Wp
m��� is the space of functions having all weak derivatives

f order up to m in Lp���, for p� �1,��, W̊p
m��� denotes the closure of Cc

���� in the Wp
m��� norm,

nd Wp
2,1�DT� is the space of functions where weak derivatives uxi

=�xi
u, uxixj

=�xi
�xj

u, �tu belong to

p���. Furthermore if W denotes a space of real valued functions then we use W for the corre-

ponding space of vector valued functions, and W if the functions are complex valued.
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. The spaces Ȟ„R3
… and Ǧ„R3

…

Elements B�Ȟ�R3� satisfy

�B�L6�R3� 	 C��B�L2�R3�, �1.11�

�
R3

��B�2dx = �
R3

��div B�2 + �curl B�2�dx . �1.12�

hese are proved first for B�Cc
��R3 ;R3� and then follow by density. Inequality �1.11� is a

obolev inequality where C is a universal constant. Equation �1.12� follows from the identity,

�B=−��div B�+curl2 B and integration by parts. The space Ȟ�R3� can be written as the direct

um of orthogonal subspaces, Ȟ�R3�=V1 � V2, where

V1 = 	B � Ȟ�R3�:curl B = 0
 = 	B � Ȟ�R3�:B = �f for some f � W2,loc
2 �R3�
 ,

V2 = 	B � Ȟ�R3�:div B = 0
 .

ee the appendix.

Let �� , Ã ,�� be a solution to �1.5�–�1.10�. For each t we decompose Ã�· , t� uniquely as Ã
�f +g where �f �V1 and g�V2. The equations �1.5� and �1.6� only require that �f and � be

pecified on �. As such we adopt the convention of giving particular extensions of these functions

o R3 \�. Recall ���C3+�, fix R�0 such that �̄�BR�0�. Let E :W2
3���→W̊2

3�BR� be the bounded
xtension operator given in Ref. 6 �p. 170�. For 0	k	2,E�·� has a unique continuous extension

E:W2
k��� → W̊2

k�BR� ,

o that for 0	k	3 there is a constant C for which

�E�u��W̊2
k�BR� 	 C�u�W2

k���

or all u�W2
k���.

The space Ǧ�R3� is defined as the subspace of Ȟ�R3� given by

Ǧ�R3� = 	B � Ȟ�R3�:B = �E�f� + g


or some f �W2
2��� with ��fdx=0 and 	g�V2
.

In this article Ã�· , t� will be constructed so that Ã�Ǧ�R3� and � will be understood equaling
���=E�����.

. Gauge invariance

The evolution problem �1.5�–�1.10� has multiple solutions, even with the extension conven-
ion given above. Indeed, the TDGL equations are gauge invariant with respect to the transfor-

ation Tq�� ,A ,��= �� ,B ,�� defined by:

� = �eiq, B = A + �q, � = � − �tq �1.13�

or some function q. By this, it is meant that �� ,B ,�� is a solution to �1.5�–�1.7� if �� ,A ,�� is one
s well, provided q is sufficiently regular. The two solutions are called gauge equivalent. Some
uantities that are invariant under a change of gauge are the density ���2, the currents js

�i� ,�A�� and jn=���tA+���, and the magnetic intensity curl A. The function q can be chosen
o that �� ,B ,�� satisfies prescribed conditions for the equations, boundary, or initial values. The

auge choices used here are listed below:
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i� The Coulomb gauge,

div B = 0 in ET,

here q is chosen to satisfy �q=−div A in ET, and ��qdx=0 for each t.
ii� The temporal gauge,

� = 0 in ET,

where q is chosen so that �tq=� in ET, and q�x ,0� is such that div�����q�x ,0�+A0�x��
=0� in R3. In this case it will follow that we also have

B · � = 0 on �� � �0,T� , �1.14�

and

div���B�x,0�� = 0 in R3. �1.15�

iii� The Lorentz gauge,

div B + �� = 0 in DT,

here q is defined on ET so that

��tq − �q = div A + �� in DT,

��q = − A · � on �� � �0,T� ,

− �q�x,0� = div A�x,0� on � ,

and q=E�q�. Moreover B satisfies �1.14� and �1.15� as well.

. Results

The TDGL equations are a gradient flow in the �=0 gauge, �ii�. Using this feature, in Sec. II
e prove that the initial value problem has a unique solution. The hypotheses for initial values,

�0 ,A0� in this gauge are as follows:

H: �0�W2
1��� such that ��0�	1, �A0−ha��Ǧ�R3� such that curl2 A0=0 in R3 \�̄, and

iv���A0�=0 in R3.
Define the admissible class,

A = 	��,A�:��t��, ��tA� � L2�DT�, � � L���0,T�;W2
1����,

�A − ha� � L���0,T�;Ǧ
˙ �R3��, ��0� = �0, A�0� = A0 in �
 .

sing �ii� the problem becomes

�t� − �A
2 � + �2����2 − 1�� = 0 in DT, �1.16�

����tA + curl2 A = ���i�,�A�� in ET, �1.17�

�A − ha� � Ǧ�R3� for 0 	 t 
 T , �1.18�

��� = 0, A · � = 0 on �� � �0,T� , �1.19�

3
��x,0� = �0�x� in �, A�x,0� = A0�x� in R . �1.20�

                                                                                                            



�

i

h

e
�

f

a

I

S
T
m
j

t

(

m

095104-5 Superconductivity and the Ginzburg–Landau model J. Math. Phys. 46, 095104 �2005�

                        
We say that �� ,A��A is a weak solution to �1.16�–�1.20� if �� ,A−ha� satisfies �2.12� and
2.13�.

Theorem 1: Let ��0 ,A0� satisfy H. Then there exists a unique weak solution to (1.16)–(1.20)
n A. Moreover �� ,A� satisfies

���t�,A�t� − ha� → ��0,A0 − ha� as t↓0 in W2
1��� � Ǧ�R3� . �1.21�

In Sec. III, this solution is transformed to the div A=−�� gauge, �iii� where the equations
ave a parabolic structure in DT,

�t� −
i

�
�div A�� − �A

2 � + �2����2 − 1�� = 0 in DT �1.22�

�����tA −
1

�
� �div A�� + curl2 A = ���i�,�A�� in ET, �1.23�

�A�t� − ha� � Ǧ�R3� for 0 	 t 
 T , �1.24�

��� = 0, A · � = 0 on �� � �0,T� , �1.25�

��x,0� = �0�x� in �, A�x,0� = A0�x� in R3. �1.26�

Theorem 2: Assume ���Ck+� where k is an integer, k3. If ��0 ,A0� satisfies H then there
xists a unique solution to (1.22)–(1.26) among functions satisfying �� ,A��A and ��div A�
L2�DT�. The solution is such that

� � C���0,T�;Ck+���̄�� , �1.27�

or any r�0 and 0
�
1

�A − ha� � C���0,T�;C1+��B̄r�� ,

nd writing A=�f +g where ��fdx=0, with �f �V1 and g= �g1 ,g2 ,g3��V2, it holds that

f ,gj � C���0,T�;Ck+���̄�� � C���0,T�;Ck+��B̄r \ ��� . �1.28�

n addition �� ,A� satisfies (1.21).
Note, it follows that

A � C���0,T�;Ck−1+���̄�� � C���0,T�;Ck−1+��B̄r \ ��� .

olutions that are regular up to the boundary in the sense of �1.27� and �1.28� are called classical.
hus the solution found in Theorem 2 is classical for t�0 and the transmission condition at the
aterial-vacuum boundary, jn ·�= js ·�=0 holds pointwise. Further, the gauge invariant terms ���2,

s, jn, and curl A are regular up to �� as well.
In Sec. IV, we describe the solution in the �=0 gauge in more detail and discuss the case of

he div A=0 gauge. We prove
Theorem 3: Let �� ,A� be the solution from Theorem 1. Then there is a classical solution to

1.16)–(1.19), �� ,B� and a function q�W̊2
2�BR� so that �� ,A�= ��eiq ,B+�q�.

Thus solutions in the �=0 gauge are classical for t�0 up to a steady state gauge transfor-
ation. For the div A=0 gauge, we have

1
Theorem 4: Let �0�W2���, ��0�	1, and �A0−ha��V2 such that

                                                                                                            



A
a
t

D

m
r
m
s
=
c

h
�

f

T
e
t

I

T
t

a
e

S

095104-6 Bauman, Jadallah, and Phillips J. Math. Phys. 46, 095104 �2005�

                        
curl2 A0 = 0 in R3 \ �̄ .

ssume ���Ck+� for some integer k3. Then there is a unique solution �� ,A ,�� to (1.5)–(1.10)
mong functions that are classical for t�0, for which div A=0 in ET, �=E��� in R3 \�, and such
hat

���t�,A�t� − ha� → ��0,A0 − ha� in W2
1��� � V2 as t↓0.

. Earlier work

Prior work proving existence, uniqueness, and regularity results for the TDGL equations,
odeling a superconducting body in a vacuum, has been done in two dimensions. In this case �

epresents the cross section of an infinitely long cylinder with its generator parallel to the applied
agnetic field he3. The equations reduce to an evolution problem on the domain � with pre-

cribed boundary conditions. See Refs. 1–4 and 9. The main difference between dimensions d
2 and 3 is that for d=2 the magnetic field is constant in the vacuum. Indeed, the interface
ondition at �� implied by Maxwell’s equation �1.3� is the transmission condition

�curl A� ∧ � = 0, �1.29�

ere �f� : = fvac− f�. For d=2 one has curl A=he3 in R2 \� and furthermore �1.29� reduces to
curl A�=0. Thus for two dimensions �1.29� is equivalent to the prescribed boundary condition

curl A = he3 on �� . �1.30�

In Refs. 1, 4, and 9 the same methods are applied to a problem for d=3 where �1.29� is
ormally replaced with the boundary condition

curl A ∧ � = he3 ∧ � on �� . �1.31�

his can be viewed as a combined approximation to �1.29� and �1.30�, and leads to a well posed
volution problem for the TDGL equations on � with prescribed boundary conditions. We treat
he full problem here and this is the main contribution of the article.

I. THE TEMPORAL GAUGE

We begin by constructing a discrete �in t� version of �1.1� and �1.2� for the �=0 gauge, �i�.
his is known as Rothe’s method �see Ref. 8� and is used in Ref. 3 to prove existence of solutions

o discrete TDGL equations in two dimensions. Here however the problem is defined on all space

nd requires a different proof. Fix ��0, �̂�W2
1��� such that ��̂�	1, Ŝ�Ȟ�R2� and consider the

nergy

I��,S�: = I��,S; �̂,Ŝ� =
1

�
�

�

��� − �̂�2 + ��S − Ŝ�2�dx + �
�

����S+ha���2 +
�2

2
����2 − 1�2�dx

+ �
R3

�curl S�2dx .

et B=W2
1����Ȟ�R3�.

Proposition 1: The energy I has a minimizer �� ,S��B such that ���	1 and S�Ǧ�R3�.

Proof: Let 	��n ,Sn�
�B be a minimizing sequence for I. Set
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�̄n = �n if ��n� 	 1

�n/��n� if ��n� � 1
� .

hen I��̄n ,Sn�	 I��n ,Sn� with a strict inequality if �	x�� : ��n�x���1
��0. Indeed, fix x0�� and
ssume without loss of generality that �n�x0��R. Writing �̂�x0�= �̂1+ i�̂2 then

��n�x0� − �̂�x0��2 = ��n�x0� − �̂1�2 + ��̂2�2.

sing ��̂�	1 it follows directly that

��̄n�x0� − �̂1�2 	 ��n�x0� − �̂1�2

ith equality if and only if ��n�x0��	1. The other terms in the integrand for I are nonincreasing
hen � is replaced by �̄n as well. To see this for the first term we write �n= ��n��n� then

���Sn+ha��n�2 = ����n��2 + ��n�2���n� − A�2

nd it follows that ���Sn+han��̄n�2	 ���Sn+ha��n�2. Thus we may assume that ��n�	1 in �.
We next write Sn=�fn+gn where gn�V2 and �fn�V1 with ��fndx=0. Passing to a subse-

uence, we can assume that �n⇀�0 in W2
1���, fn⇀ f0 in W2

1���, and gn⇀g0�Ȟ�R3�. Since
�n�	1 it follows that ��Sn+ha��n⇀��S0+ha��0 in L2���. Note that the energy I�� ,�f +g� is well
efined for ��W2

1����L����, f �W2
1���, and g�V2. We have by weak lower semi-continuity

hat

I��0,�f0 + g0� 	 lim
n→�

I��n,Sn� = inf
��,S��B

I��,S� .

e in fact have

I��0,�f0 + g0� 	 I��0,��f0 + k� + g0� �2.1�

nd

I��0,�f0 + g0� 	 I��0eik,�f0 + g0� �2.2�

or any k�x��C2��̄�. To prove �2.1�, we assume that it is false for some k. Then since the
ntegrand is a polynomial, we expand it to write

I��,��f + k� + g� = I��,�f + g� + I��,�f ,g,k� ,

here lim
n→�

I��n ,�fn ,gn ,k�=I��0 ,�f0 ,g0 ,k�. Our assumption is that I��0 ,�f0 ,g0 ,k�=�
0, so for

sufficiently large we have I��n ,�fn ,gn ,k�	� /2. This implies that

I��n,�E�fn + k� + gn� 	 I��n,�fn + gn� +
�

2
,

nd contradicts the assumption that 	��n ,Sn�
 is a minimizing sequence. The inequality �2.2� is
roved in the same way.

We will show that f0�W2
2���. The proof will then be complete since this implies that

I��0,�E�f0� + g0� = I��0,�f0 + g0� 	 inf
��,S��B

I��,S�

ith �E�f0�+g0�Ǧ�R3�.
From �2.1� and �2.2� we have

0 = ���I��0,�f0 + � � k + g0���=0,
nd
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0 = ���I��0ei�k,�f0 + g0���=0.

hese lead to

�

�
��f0 − div Ŝ� = div�i�0,��0 − i��f0 + g0��0� =

1

�
�i�0,�0 − �̂� in � ,

��f0 − �Ŝ − g0� · � = �i�0,��0 − i��f0 + g0��0� · � = 0 on �� .

ince �i�0 ,�0− �̂��L2��� and Ŝ ,g0�W2
1��� it follows from elliptic estimates that f0�W2

2���.�
Let ��0 ,S0+ha� satisfy H. Fix an integer M and set �=T /M. For 1	m	M we let

��m ,Sm�
�W2
1����Ǧ�R3� be a family of minimizers for

Im��,S� = I��,S;�m−1,Sm−1� .

e write

���m�x� =
�m − �m−1

�

nd a similar definition for ��Sm. Next we derive

0 =
1

2
��Im���m + ��,Sm���=0 = �

�

����m + �2�m���m�2 − 1�,��dx + �
�

���Sm+ha��m,��Sm+ha���dx

�2.3�

0 =
1

2
��Im���m,Sm + �B���=0 = �

�

���Sm · Bdx + �
R3

curl Sm · curl Bdx − �
�

�i�m,��Sm+ha��m� · Bdx

�2.4�

or ��W2
1���, B�Ȟ�R3�, and 1	m	M.

Thus we have weak solutions to the iterative system:

���m − ��Sm+ha�
2 �m + �2�m���m�2 − 1� = 0 in � �2.5�

�����Sm + curl2 Sm = ��Jm in R3, �2.6�

��Sm+ha��m · � = 0 on �� , �2.7�

Sm � Ǧ�R3� , �2.8�

here Jm= �i�m ,��Sm+ha��m�.
We set

G��,S� = �
�
����S+ha���2 +

�2

2
����2 − 1�2�dx + �

R3
�curl S�2dx �2.9�
here G is the Ginzburg–Landau free energy. Thus
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Im��,S� =
1

�
�

�

��� − �m−1�2 + ��S − Sm−1�2�dx + G��,S� .

he next lemma characterizes energy dissipation along the sequence of minimizers.
Lemma 1: For 1	m	M

�
n=1

m

�	����n�L2���
2 + ����Sn�L2���

2 
 + G��m,Sm� 	 G��0,S0� . �2.10�

Proof: Since ��m ,Sm� is a minimizer for Im we find

G��m,Sm� 	 Im��m,Sm� 	 Im��m−1,Sm−1� = G��m−1Sm−1� .

ext we add the �m−1�st difference quotient to the second and fourth terms mentioned above. We
ave

�
n=m−1

m

�	����n�L2���
2 + ����Sn�L2���

2 
 + G��m,Sm� 	 �	����m−1�L2���
2 + ����Sm−1�L2���

2 
 + G��m−1,Sm−1�

= Im−1��m−1,Sm−1� .

ur assertion follows after repeating this argument m−2 times. �

Corollary 1:

max
1	m	M

	�Sm�L2���
2 + ���m�L2���

2 + �curl Sm�L2�R3�
2 
 	 C �2.11�

here C depends on �S0�
Ȟ�R3�
2

, ���0�L2���
2 , h, and T.

Proof: For 1	m	M

�Sm�L2���
2 − �S0�L2���

2 = �
n=1

m

��
�

���Sn�2dx 	 �
n=1

m

���Sn + Sn−1� · ��Sn�L1���

	
1

2
max

1	n	m
�Sn�L2���

2 + 4T�
n=1

m

����Sn�L2���
2 .

e take the maximum of the left side over 1	m	M and use �2.10�.
Next note that

1

2
���m�L2���

2 + �curl Sm�L2�R3�
2

	 G��m,Sm� + 2�Sm�L2���
2 + h2C

or some constant C���. The assertion follows from these estimates and Lemma 1. �

Lemma 2:

max
1	m	M

�Sm�
Ȟ�R3�
2

	 C

here C depends on �S0�
Ȟ�R3�
2

, ���0�L2���
2 , h, and T.

Proof: From �1.12� we have

�Sm�
Ȟ�R3�
2

= �div Sm�L2�R3�
2 + �curl Sm�L2�R3�

2

nd from �2.11� we see that it suffices to bound �div Sm�
L2�R3�
2 . Since Sm�Ǧ�R3�, we have Sm

˚ 2
�fm+gm where gm�V2 and fm=E�fm����W2�BR�. Thus
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�div Sm�L2�R3�
2 = ��fm�L2�R3�

2
	 C�fm�W2

2���
2 .

o estimate the right-hand side we use �= i�mk, with k�C2��̄�, as a test function in �2.3�. We get

���i�m,���m� = div���Jm� in D��R3� .

aking the divergence of �2.6� then gives

� div�����Sm� = div���Jm� in D��R3� .

omparing these equalities we see

�div���Sm��L2���
2 	 �−2����m�L2���

2

nd

��Sm · � = 0 on �� .

ow Sm=�n=1
m ���Sn+S0. Since S0+ha satisfies H we find

��fm�L2���
2 = �div Sm�L2���

2 	
T

�2 �
n=1

m

�����n�L2���
2 ,

nd

��fm = − gm · � + S0 · � on �� .

ince fm has mean zero it follows from elliptic estimates that

�fm�W2
2���

2
	 ����fm�L2���

2 + �gm�W2
1���

2 + �S0�W2
1���

2 � .

sing �2.10� and the fact that �gm�W2
1���

2
	C�gm�

Ȟ�R3�
2

we see that �fm�W2
2���

2
	C where C depends

n �S0�Ȟ�R3�, ���0�L2���, h and T. �

We now consider a limit as �→0 and pass to the continuous problem. Set

���x,t� =
�t − �m − 1���

�
�m�x� +

�m� − t�
�

�m−1�x�

or t� ��m−1�� ,m��, and a corresponding interpolate S�. We have ��m�	1, uniform bounds on
��
 in L���0,T� ;W2

1�����W2
0,1�DT�. Thus a subsequence 	��j


 converges weakly to �
W2

1,1�DT�. Similarly 	S�
 is uniformly bounded in

L���0,T�;Ǧ�R3�� � W2
0,1�DT� and for a

urther a subsequence S�j
⇀S�L2��0,T� ;Ǧ�R3���W2

1,1�DT�.
We now pass to the limit as � j→0 in the variational forms �2.3� and �2.4�, assuming initially

hat the test functions are smooth, multiplying each equation by � j, summing over m, and estimat-
ng the difference between the functions that are piecewise constant in t and the interpolates.

We find in weak form, �� ,S� is a solution to

�
D

���t�,�� + ���S+ha��,��S+ha��� + �2������2 − 1�,���dxdt = 0, �2.12�

T
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�
DT

���tS · B − js · B�dxdt + �
ET

curl S · curl B dxdt = 0 �2.13�

or every ��L2��0,T� ;W2
1���� and B�L2��0,T� ;Ȟ�R3��, such that S�x ,0�=S0�x� and ��x ,0�

�0�x� in �. The estimates from Lemmas 1 and 2 extend to the limit �� ,S�. We have

��� 	 1 in DT,

sup
0	t	T

	����L2��� + �S�Ȟ�R3�
 	 C , �2.14�

nd

���t��L2�DT�
2 + ���tS�L2�DT�

2 � + sup
0	t	T

G���t�,S�t�� 	 G��0,S0� , �2.15�

here C depends on ���0�L2���, �S0�Ȟ�R3�, h, and T.
We next analyze div S.
Lemma 3: div S�W2

0,1�DT� with

�div��tS��L2�DT� 	 C

here C depends on ���0�L2����, �S0�Ȟ�R3�, T, and h. Moreover �S+ha� ·�=0 on �� for 0	 t
T.

Proof: Let k�Cc
2�ĒT�. Take �= i�k and B=�k in �2.12� and �2.13�, respectively. We obtain

����t�,i�� = div���js� = � div����tS� in D��ĒT� .

sing �2.15� we see

���t�,i���L2�DT� 	 C

nd it follows that div �tS�L2�DT� with �div �tS�L2�DT�	C depending on the initial data, T and h.
inally letting k=k�x� and integrating over Et for 0
 t
T we find

div����S�t� − S�0��� � L2�R3� .

his implies that �S�t�−S�0�� ·�=0 on ��. Thus �S�t�+ha� ·�= �S�0�+ha� ·�=0 on ��. �

From �2.12� we obtain the boundary condition �1.4�. Combining these results gives

��� = 0 on �� for 0 
 t 
 T .

We next examine S�· , t� in R3 \�̄. We have that curl2 S�· , t�=0 in R3 \�̄ for almost every t. We
ext show that this extension from � is done in a unique way.

Lemma 4: Let B�W2
1�� ;R3�. Then there is a unique B̄�Ǧ�R3� so that B̄=B in � and

url2 B̄=0 in R3 \�.

Proof: Set C�K�=�R3�curl K�2dx for K� 	F�Ȟ�R3� :F=B in �
 and let 	Kn
 be a minimiz-
ng sequence. We write Kn=�fn+gn with �fn�V1 such that ��fndx=0, and gn�V2. We can
eplace fn by E�fn����W2

2�BR� and not change the value of C�Kn�. Thus it is without loss of

enerality to assume that 	Kn
�Ǧ�R3�. Using Mazur’s theorem we can assume that gn→g in V2

s n→�. Since Kn=B in � we see that 	�fn
 is a Cauchy sequence in W2
1��� and by the

onstruction of Ǧ�R3� it follows that there is an f so that fn→ f in W̊2
2�BR� as n→�. Thus K0

�f +g�Ǧ�R3� and minimizes C�·�.
Clearly curl2 K0=0 in R3 \�̄, so we can set B̄=K0.

ˇ 3 2 3 ¯
If there is another extension of B, K1�G�R � such that curl K1=0 in R \� then
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�
R3

�curl�K1 − K0��2dx = �
R3\�̄

curl K1 · curl�K1 − K0�dx − �
R3\�̄

curl K0 · curl�K1 − K0�dx .

ince K0=K1 in � and curl2 K1=curl2 K0=0 in R3 \�̄ we see that both integrals on the right-hand
ide vanish. Thus curl K1=curl K0. Writing K0=�f +g and K1=�f1+g1 we have g1=g. This

mplies that �f1=�f in �. By the construction of Ǧ this implies that f1= f in R3 and thus K1

K0. �

We have S�t��C��0,T� ;L2�����L���0,T� ;Ǧ�R3��. The lemma above implies that the con-

ition curl2 S�t�=0 in R3 \�̄ uniquely determines S�t� in R3 \�̄. With this we can give a more
pecific description of the trace of �� ,S� as t↓0.

Lemma 5:

���t�,S�t�� → ��0,S0� in W2
1��� � Ǧ�R3� as t↓0. �2.16�

Proof: From our construction of �� ,S� and the previous lemma we have ���t� ,S�t��⇀ ��0 ,S0�
s t↓0 in W2

1����Ǧ�R3�. Expanding the integrand of the Ginzburg–Landau energy �2.9� we have

G���t�,S�t�� = �
�

����t��2dx + �
R3

�curl S�t��2dx + G���t�,S�t��

here lim
t→0

G���t� ,S�t��=G��0 ,S0�. From �2.15� we have lim sup
t→0

G���t� ,S�t��	G��0 ,S0�, and from

eak lower semicontinuity we have

G��0,S0� 	 lim inf
t→0

G���t�,S�t�� .

hus

lim
t→0
�

�

����t��2dx + �
R3

�curl S�t��2dx� = �
�

���0�2dx + �
R3

�curl S0�2dx .

riting S�t�=� f̃�t�+g�t� with f̃�t��W̊2
2�BR� and g�t��V2 we have

���t�,g�t�� → ��0,g0� in W2
1��� � V2 as t↓0.

e write

�f�t� = div S�t� in � ,

��f�t� = − g�t� · � − ha · � on �� .

rom Lemma 3 we have div S�t�→div S0=0 in L2��� and from the preceding argument g�t�
g0 in W2

1��� as t→0. Thus from elliptic estimates we have f�t�→ f0 in W2
2��� as t→0. From

he definition of Ǧ�R3� we then have f�t�→ f0 in W̊2
2�BR�.

Thus

���t�,S�t�� → ��0,S0� in W2
1��� � Ǧ�R3� as t↓0.

�

We have �� ,S+ha��A with ���	1, satisfying �2.12� and �2.13�, and such that �2.16� holds at
=0. It follows that �� ,S� is a weak solution to

2 2 2
�t� − �� = − 2i � � · �S + ha� − i� div S − �S + ha� � − � ����� − 1� in DT, �2.17�
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����tS + curl2 S = ��js in ET, �2.18�

�S + ha� · � = 0 and ��� = 0 on �� � �0,T� , �2.19�

��x,0� = �0�x� in �, S�x,0� = S0�x� in R3. �2.20�

Lemma 6: Let �� ,S+ha��A be a weak solution to (2.12) and (2.13), then ��W2
2,1�DT�.

Proof: Weak solutions to �1.16� with ��0�	1 satisfy �� � 	1. See Ref. 2. Furthermore we have
�W2

1,1�DT�, and thus �2.17� can be written as

�
DT

���,���dxdt = − �
��

�2i � � · S,��dxdt + �
��

�f ,��dxdt

or ��L2��0,T� ;W2
1���� where f �L2�DT�. We have using �2.14� and �1.11� that

�
DT

��� · S�3/2dxdt 	 �
DT

�����2 + �S�6�dxdt 
 � .

etting f�=−2i�� ·S+ f we have f��L3/2�DT�. It follows from elliptic estimates then that ��t�
W3/2

2 ��� for almost every 0
 t
T, and satisfies

− �� = f� in � ,

��� = 0 on �� . �2.21�

rom elliptic estimates then we have

���t��W3/2
2 ��� 	 C��f��t��L3/2��� + 1� .

t follows that

���W3/2
2,0�DT� 	 C��f��L3/2�DT� + 1� .

or almost every 0
 t
T we apply the Gagliardo-Nirenberg inequality,10

����L3���
3 	 C���W3/2

2 ���
3/2 · ���L����

3/2 .

ince ���	1 this implies that ���L3�DT�. From �1.11� we have S�L6�DT� and it follows that
�� ·S��L2�DT�. Returning to �2.21� then we see ��W2

2,1�DT�. �

We next prove that weak solutions are unique.
Lemma 7: Let ��0 ,S0+ha� satisfy H. Then there is at most one �� ,S+ha��A that is a weak

olution to �2.12� and �2.13� with ���0� ,S�0��= ��0 ,S0�.
Proof: Let ��1 ,S1� and ��2 ,S2� be two solutions to �2.12� and �2.13� and set ��d ,Sd� to be their

ifference. Equations �2.12� and �2.13� imply the existence of weak equations for almost every

 t
T. For each such t we take the differences evaluated at the two solutions and use �d�t� and

d�t� as test functions. We can then estimate

�
�

��t��d�2 + �t�Sd�2 + ���d�2�dx + �
R3

�curl Sd�2dx .
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his is bounded above by the following sum, where we have integrated by parts in the terms
ontaining div Sd, div�S1+ha�, or div�S2+ha� and used �2.19�,

C1�
m=1

2 ��
�

���d��Sm���d�dx + �
�

���m��Sd���d�dx + �
�

�Sd����d�dx + �
�

�Sm��Sd���d�dx

+ �
�

�Sm�2��d�2dx + �
�

���d���d�dx + �
�

���m���d�2dx� + �
�

�Sd�2dx + �
�

��d�2dx� .

e label the first integrals I , . . . ,VII and estimate each. We repeatedly use that �Sm�t��L6���	C
niformly in t, the Gagliardo-Nirenberg inequality,

���L3��� 	 C���W2
1���

1/2 ���L2���
1/2 , �2.22�

nd from Lemma 6 that both �1, �2�W2
2,1�DT�. We have

I 	 �Sm�L6������d�L2�����d�L3��� 	 C��d�W2
1���

3/2 ��d�L2���
1/2 	 ����d�L2���

2 + C��d�L2���
2 .

II 	 �Sd�L2������m�L6�����d�L3��� 	 �Sd�L2�����m�W2
2�����d�L3��� 	 �Sd�L2���

2 ��m�W2
2���

2 + ����d�L2���
2

+ C��d�L2���
2 .

III 	 ����d�L2���
2 + C�Sd�L2���

2 .

IV 	 �Sm�L6����Sd�L2�����d�L3��� 	 �Sd�L2���
2 + ����d�L2���

2 + C��d�L2���
2 .

V 	 �Sm�L6���
2 ��d�L3���

2 	 ����d�L2���
2 + C��d�L2���

2 .

VI 	 ����d�L2���
2 + C��d�L2���

2 .

VII 	 ���m�L3�����d�L3���
2 	 C�1 + ��m�W2

2���
2 ���d�L2�a�

2 + ����d�L2���
2 .

et r�t�=Mt+�0
t ���1����W2

2���
2 + ��2����W2

2���
2 �d�. From Lemma 6 we see that r�t� is bounded. Then

or � small and M large, depending on C and C1 we have

C1�I + ¯ + IX� 	
dr

dt
���d�L2���

2 + �Sd�L2���
2 � +

1

2
���d�L2���

2 .

hus

d

dt
�e−r�t����d�L2���

2 + �Sd�L2���
2 �� + e−r�t��curl Sd�L2�R3�

2
	 0.

his leads to

e−r�t����d�t��L2���
2 + �Sd�t��L2���

2 � + �
0

t

e−r����curl Sd����L2�R3�
2 d� 	 ��d�0��L2���

2 + �Sd�0��L2���
2 = 0.

hus �1=�2, S1=S2 in DT, and curl S1=curl S2 in ET. From Lemma 4 we see that this implies

1=S2 in ET as well. �
Proof of Theorem 1: Since ��0 ,A0� satisfies H we see that �� ,S+ha�= �� ,A� is a solution to
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2.17�–�2.20�. Using Lemmas 5 and 7 we see that �� ,A� is the unique weak solution and that it
onverges strongly to the initial trace as t↓0. �

Weak solutions in the �=0 gauge are not classical for t�0 in general. The gauge invariant
uantities such as js, jn, curl A, and ��� are classical however. We prove this by transforming
� ,S+ha ,0� to the div A+��=0 gauge where we show that weak solutions are regular for t

0.

II. THE LORENTZ GAUGE

We begin by preforming a gauge transformation to �� ,S+ha ,0�. Let q solve

��tq − �q = div S in DT,

��q = 0 on �� � �0,T� ,

q�x,0� = 0 in � . �3.1�

ince div S�W2
1��0,T� ;L2���� and div S�x ,0�=0 in � we have that q, �tq�W2

2,1�DT�, q
L��DT�, and �tq�x ,0�=0. Furthermore since ��div S�t�dx=0 we have ��q�t�dx=����tq�t�dx

0. As such we can extend q and �tq to R3 \�� �0,T� by E�q� and E��tq�=�tE�q� where these are

n W2
2,1�ET� with support in B̄R� �0,T�. We use the gauge transformation Tq�� ,S+ha ,0�= �� ,Q

ha , p�. Where Q=S+�q and p=−�tq satisfy

div Q = − �p in � .

he regularity of q and �� ,S� imply that

� � L���0,T�;W2
1���� � W2

1,2�DT� � L��DT� ,

Q � L���0,T�;Ǧ�R3�� � W2
1,1�DT� ,

nd p�W2
2,1�ET�.

The system �2.17�–�2.20� becomes

�t� − �� = − 2i�Q + ha� · �� + i� 1

�
− 1�� div Q − �Q + ha�2� − �2����2 − 1�� in DT,

�3.2�

�����tQ −
1

�
� div Q� + curl2 Q = ��js in ET �3.3�

��� = 0 on �� � �0,T� , �3.4�

�Q + ha� · � = 0 on �� � �0,T� , �3.5�

��x,0� = �0�x� in � , �3.6�

Q�x,0� = Q0�x� in R3, �3.7�

here since q�x ,0�=0 we have ��0 ,Q0�= ��0 ,S0�. The estimates and uniqueness results in the
=0 gauge carry over to corresponding statements in the present gauge.
Lemma 8: The function �� ,Q+ha� is the unique solution to �3.2�–�3.7� among functions

                                                                                                            



s

w

f

F

w

�

T

w

L

w

a

095104-16 Bauman, Jadallah, and Phillips J. Math. Phys. 46, 095104 �2005�

                        
atisfying �� ,Q+ha��A and ��div Q��L2�DT�. Moreover it is such that

��� 	 1,

��t��L2�DT� + ��tQ�L2�DT� + sup
0	t	T

	����t��L2��� + �Q�t��Ȟ�R3�
 	 C �3.8�

here C depends on h, T, ���0�L2���, and �Q0�Ȟ�R3�,

G���t�,Q�t�� 	 G��0,Q0� �3.9�

or 0	 t	T.
Lemma 9: The function div Q�W2

2,1�DT� and satisfies

��t div Q − � div Q = div js in DT,

�� div Q = 0 on �� � �0,T� ,

div Q�x,0� = 0 in � . �3.10�

urthermore

sup
0	t	T

�div Q�t��W2
1��� 	 C , �3.11�

here C depends on �0, Q0, � and h.
Proof: Since div Q=��tq in � we see that �3.10� follows from �3.3�. From �3.10� we have

� div Q�t�ds=0 and

sup
0
t
T

�� div Q�t��L2��� 	 C1�div js�L2�DT�.

hus

sup
0
t
T

�div Q�t��W2
1��� 	 C2 sup

0	t	T
�div js�L2�DT� 	 C3��t��L2�DT� 	 C4,

here C4 depends on ��0 ,S0�= ��0 ,Q0�, h, and T. �

We now develop higher regularity properties of solutions for 0
 t0
 t
T.
Define

Dt0,T = � � �t0,T� and Et0,T = R3 � �t0,T� .

et k�t��C��R� be a cut off function such that k�t�=0 for t	 t0 /2 and k�t�=1 for t0	 t.
Lemma 10: ��t��L2�Dt0,T� for each t0�0 and

sup
t0
t
T

��t��t��L2�Dt0,T� + ���t��L2�Dt0,T� 	 C ,

here C depends on ��0�W2
1���, �Q0�Ȟ�R3�, h, t0, and T.

Proof: Set

D���x,t� =
��x,t + �� − ��x,t�

�
for � � 0,
nd �=kD��. Using �3.2� we write
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�t� − �� = − 2i�Q�t� + ha� · �� + i� 1

�
− 1�div Q�t�� − �Q�t� + ha�2� − 2i � ��t + ��kD�Q

+ i� 1

�
− 1���t + ��kD��div Q� + ��t + ��k�t�D��Q + ah�2 + f1� + f2 in DT,

��� = 0 on �� � �0,T� ,

��x,0� = 0 in � , �3.12�

here �f1�L��DT�+ �f2�L2�DT�	C�t0� uniformly in �, 0
�
1. We take the inner product of �3.12�
ith � and integrate over �. We further integrate by parts in the fourth term on the right side,
sing �3.5�. The left-hand side becomes

1

2

d

dt���

���2dx + �
�

����2dx� . �3.13�

his is bounded by

C��
�

�div Q�t�����2dx + �
�

�Q�t��2���2dx + �
�

�D� div Q����dx + �
�

�D�Q�����dx + �
�

��Q�t��

+ �Q�t + �����D�Q����dx�
�

���2dx + 1� +
1

2
�

�

����2dx . �3.14�

e label the first five integrals I , . . . ,V and estimate each.

I 	 �div Q�t��L3������L3���
2 	 �����L2���

2 + C���L2���
2

or any ��0 and C��� independent of t. Here we used �2.22� and �3.11�.

II 	 �Q�t��L6���
2 ���L3���

2 	 �����L2���
2 + C���L2���

2 ,

here we use �1.11�. Next we estimate

III 	 �div D�Q�t��L2���
2 + ���L2���

2 ,

IV 	 �����L2���
2 + C�D�Q�t��L2���

2

nd

V 	 � sup
0	t	T+1

�Q�t��L6�������L3����D�Q�t��L2��� 	 �����L2���
2 + C1���L2���

2 + C2�D�Q�t��L2���
2 .

ombining these estimates with �3.13� and �3.14� we find

sup
t0	t	T

�D���t��L2���
2 + ��D���L2�Dt0,T�

2 	 C ,

here C depends on the initial data, h, t0, and T but independent of � ,0
�
1. Letting �↓0 we
ave our assertion. �

Lemma 11: ��W3
2,1�Dt0,T�.

Proof: Set �=k�. Then ��W2
1,2�DT�, ���	1, and from �3.2�
�t� − �� = F · �� + f in DT,
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��� = 0 on �� � �0,T� ,

��x,0� = 0 in � ,

here F=−2i�Q+ha��L���0,T� ;L6���� and f �L3�DT�. Set s=sup	m	3:��Wm
2,1�DT�
. We

ave the Gagliardo–Nirenberg inequality

����L2m��� 	 C���Wm
2 ���

1/2 ���L����
1/2 , �3.15�

here C is uniformly bounded for 2	m	3. From parabolic estimates we have

���Wm
2,1�DT� 	 ���F�L2m�DT�

2 + �f�L3�DT� + 1�

here � is independent of m for 2	m	3. It follows that

���Wm
2,1�DT� 	 ���F�L6�DT�

2 + �f�L3�DT� + 1�

or all m
s. This implies ���Ws
2,1�DT� is finite and satisfies the same bound.

We claim that s=3. If this is not the case let s
s�	3. Then

�F · ���Ls��DT� 	 �F�L6�DT�����L6s�/�6−s���DT� 	 C���W
3s�/�6−s��
2,0 �DT�

1/2
. �3.16�

ote 3s / �6−s�
s if s
3. Thus if s
s�, with s�−s sufficiently small we have 3s� / �6−s��
s and
t follows from �3.16�, and parabolic estimates that ���W

s�
2,1�DT�
�. This contradicts the definition

f s. �

We can now estimate �tjs.
Lemma 12: �tjs�L2�Dt0,T�.
Proof: We can estimate

�D�js�L2�Dt0,T�
2 	 ��D���L2�Dt0,T�

2 + �����D���L2�Dt0,T�
2 + ��D���Q�L2�Dt,T�

2 + �D�Q�L2�Dt,T�
2 .

ach term on the right-hand side is bounded by a constant depending only on the data, t0, and T.
ndeed this holds for the first term by Lemma 10. The second term is estimated by

�����D���L2�Dt0,T�
2 	 ����L6�Dt0,T�

2 �D���L3�Dt0,T�
2 	 C���W3

2,1�Dt0,T+1�
3 ,

nd this is bounded using Lemma 11. The third term is bounded using Lemma 11 and �3.8�, and
he fourth term is estimated using �3.8�. �

We can now differentiate �3.3� to get further estimates on Q. We use the notation ��t��f
f ���.

Lemma 13: Q�t��W2
2��� for t�0 and �Q�W2

2���	C for t0	 t
T where C depends on the
ata, t0, and T.

Proof: Set V=k�t�D�Q. Then we have

����tV − �� � div V + curl2 V = ���kD�js + ��tkD�Q�

otting this equation with V, integrating over ET, and letting �→0 we get Q�1�

L2�t0 ,T ;Ǧ�R3�� for any t0�0. Next dotting the equation with �tV, integrating on ET, and letting

→0 we find that Q�1��W2
1,1�Dt0,T��L���t0 ,T� ;Ǧ�R3�� and satisfies the estimate

�Q�2��L2�Dt0,T�
2 + sup

t0	t	T
�Q�1��t��

Ǧ�R3�
2

	 C �3.17�

here C depends on the data, t0, and T. The only step in the preceding argument that needs

omment is the inequality
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�V�
Ȟ�R3�
2

	 C��div V�L2���
2 + �curl V�L2�R3�

2 � .

o see this recall that V ·�=0 on ��,

�V�
Ȟ�R�
2

= �div V�L2�R3�
2 + �curl V�L2�R3�

2 ,

nd by the construction of Ǧ�R3� that

�div V�L2�R3�
2

	 C��div V�L2���
2 + �curl V�L2�R3�

2 + �V · ��W2
1/2����

2 � .

From �3.11� and �3.17�, and Lemma 12, we have,

�Q�1��t��L2��� + �� div Q�t��L2��� + �js�t��L2��� 	 C �3.18�

or t0	 t	T. It follows from �3.3� that curl Q�t��Ȟ�R3� and

�curl Q�t��Ȟ�R3� = �curl2 Q�t��L2�R3� 	 C �3.19�

or t0	 t	T. We now apply Theorem 3.4 from Ref. 1, which is valid since �Q+ha� ·�=0 on ��,
o obtain the estimate

�Q�t��W2
2��� 	 C��curl Q�t��W2

1��� + �Q�t��L2��� + ��Q�t��L2��� + h� .

sing �3.18� and �3.19� we see

sup
t0	t	T

�Q�t��W2
2��� 	 C .

�

Note, it follows that

�Q�t��L���� 	 C �3.20�

niformly for t0	 t	T.
We return to �3.2� and �3.4� which we write as

�t� − �� = f in DT,

��� = 0 on �� � �0,T� .

sing Lemma 11, �3.11�, �3.15�, and �3.20� we obtain f �L6�Dt0,T� for any 0
 t0
T. As such
�W6

2,1�Dt0,T�. It then follows that

div js = �i�,�t� −
i

�
� div Q� � L6�Dt0,T� ,

nd then from �3.10� that div Q�W6
2,1�Dt0,T� where the W6

2,1 estimates depend only on the initial
ata, h, t0, and T. These estimates establish the initial step to the induction argument for the next
emma where higher regularity properties for ��j� and Q�j� are proved. The idea behind their proof
s to carry enough information forward from the jth step so that ��j+1� and Q�j+1� will be weak
olutions to equations with bounded coefficients and thereby easy to analyze.

Lemma 14: ��C���0,T� ;W6
2���� and Q�C���0,T� ;W2

2�����C���0,T� ;Ǧ�R3��.
Proof: It suffices to prove that ��j��W6

2,1�Dt0,T� and

Q�j� � L���t0,T�; W2
2���� � L���t0,T�; Ǧ�R3��
or each integer j0 and T� t0�0.
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We will prove:
If ��k��W6

2,1�Dt0,T�, div Q�k��W6
2,1�Dt0,T�, Q�k��L2�Dt0,T�, and Q�m�

L���t0 ,T� ;W2
2�����L���t0 ,T� ;Ǧ�R3�� where 0	k	 j and m	max�0, j−1� for each 0
 t0

T then ��j+1��W6
2,1�Dt0,T�, div Q�j+1��W6

2,1�Dt0,T�, Q�j+1��L2�Dt0,T�, and Q�j�

L���t0 ,T� ;W2
2�����L���t0 ,T� ;Ǧ�R3�� for each 0
 t0
T.

The induction hypotheses for j=0 have been established previously. Assuming these for j, we

hen have from standard embedding theorems that ��k�, div Q�k��C1+1/6,7/12�D̄t0,T�, Q�k�

L2�Dt0,T�, and Q�m��L��Dt0,T� for k	 j and m	max�0, j−1�. It follows that js
�j��L2�Dt0,T�.

hen as in the proof of Lemma 13 we have Q�j+1��L2�Dt0,T� and Q�j��L���t0 ,T� ;Ǧ�R3��.
We next prove that ��j+1��W2

2,1�Dt0,T�. From the hypotheses we can differentiate �3.2� with
espect to t , j times. We then form an equation for �=k�t�D��

�j� for ��0, in DT. For j=0 this is
3.12�; we see that � satisfies

�t� − �� = a1 · �� + a2� + a3 in DT,

��� = 0 on �� � �0,T� ,

��x,0� = 0 in � ,

here from the hypotheses and �3.17� we have a1, a2�L��DT� and a3�L6�DT�. Thus ��1�

W2
2,1�D�.

For j1 the equation for � is more complex. We write

L���: = �t� − �� + 2i�Q + ha� · �� + i� 1

�
− 1�� div Q + �Q + ha�2� + �2����2 − 1�� + �2����*

+ �*�� = a1Q
�j� + a2D�Q

�j−1� + a3D�Q
�j� + a4D��div Q�j�� + a5Q

�1�D�Q + a6Q
�1��t + ��D�Q

+ a7

here the ai are bounded for 1	 i	6 and a7�L6�DT�. Note that the coefficients of L�·� are
ounded in Dt�,T for each 0
 t�. The first four terms on the right are in L2�DT� and the fifth and
ixth terms are the product of functions in L6�DT�. It follows that ��W2

2,1�DT� uniformly in
,0
�
1. Thus

��j+1� � W2
2,1�Dt0,T� . �3.21�

It follows that js
�j+1��L2�Dt0,T�, and using �3.3� as before

Q�j+1� � L���t0,T�; Ǧ�R3�� � W2
0,1�Dt0,T� . �3.22�

hence js
�j� ,Q�j+1��L���t0 ,T� ;L2����. Using the identity

div js = �i�,�t� −
i

�
� div Q� , �3.23�

ogether with �3.10� and the hypotheses it follows that � div Q�j��L��t0 ,T ;L2���� as well.
From �3.3� then we have curl2 Q�j��L���t0 ,T� ;L2�R3��. Since curl Q�j��t��L2�R3� we have

url Q�j��t��Ȟ�R3� and as such

curl Q�j� � L���t0,T�;W2
1���� .

rguing as in Lemma 13, we apply Ref. 1, Theorem 3.4 to obtain

Q�j� � L���t0,T�;W2���� .
2
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It remains to prove ��j+1��W6
2,1�Dt0,T� and div Q�j+1��W6

2,1�Dt0,T�. From �3.21�–�3.23� we
ave that div js

�j+1��L2�Dt0,T�. Thus from �3.10� we obtain

div Q�j+1� � W2
2,1�Dt0,T� � L���t0,T�;L6���� . �3.24�

t follows from this and �3.22� that L���j+1���L6�Dt�,T� for any 0
 t�
T, implying that ��j+1�

W6
2,1�Dt0,T�. Using this, �3.23� and �3.24� we have div js

�j+1��L6�Dt�,T� for 0
 t�
T. It follows
rom �3.10� that div Q�j+1��W6

2,1�Dt0,T�. �

Lemma 15: ��C���0,T� ;C3+���̄��, div Q�C���0,T� ;C3+���̄�� and Q
C���0,T� ;C1+��K�� for any compact K�R3 and 0
�
1.

Proof: We have Q�j�=�f �j�+g�j� where g�j��V2 and f �j��W̊2
2�BR�. Furthermore, from Lemma

4 we have

js
�j� + � div Q�j� − Q�j+1� � L���t0,T�;L6���� .

hus �g�j�=−curl2 g�j��L���t0 ,T� ;L6�R3��. Since g�j��L���t0 ,T� ;L6�R3�� and supp �g�j���̄ it
ollows that g�j��L���t0 ,T� ;W6

2�R3�� for any t0�0, implying that

g � C���0,T�;W6
2�R3�� . �3.25�

e now analyze �f �j�. We have

�f �j� = div Q�j� in � ,

��f �j� = − g�j� · � − ha�j� · � on �� . �3.26�

ince ���C3+� and ��f �j�dx=0 we have from elliptic estimates that

�f �j��W6
3��� 	 C��div Q�j��W6

1��� + �g�j��W6
2��� + 1� .

t follows that f �C���0,T� ;W6
3����. From the definition of E�f� we have f =E�f�

C���0,T� ;W̊6
3�BR��. With this and �3.25� we see that

Q � C���0,T�;C1+1/2�K�� �3.27�

or any compact set K�R3. We next write

���t� = F�t� in � ,

����t� = 0 on �� �3.28�

here F is a polynomial in the components of �, ��, �t�, Q, and div Q. Using �3.27� and the
stimates from Lemma 14, together with elliptic estimates applied to �3.28� we find that �

C���0,T� ;C3+���̄�� where �=min�� , 1
2

�. We get the corresponding result for div Q using �3.10�.
Our next step is to write Q=�f +g with g�V2 for each t where g satisfies

�g = �����tQ − ��div Q� − js� � ��� . �3.29�

e have ��C���0,T� ;C1+���̄�� and it follows that g�C���0,T� ;Wp
2�R3�� for any 3
 p
�. We

an now argue as above, using �3.26�, to get f �C���0,T� ;W̊p
3�BR��. As a result we get

Q � C���0,T�;C1+��K��

or any 0
�
1 and compact K�R3.

We return to �3.28� and are now able to assert that F�C���0,T� ;C1+���̄��. It follows that
� 3+� ¯ � 3+� ¯
�C ��0,T� ;C ���� and a similar argument proves that div Q�C ��0,T� ;C ���� as well.�
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We view equation �3.29� as a diffraction problem. Let k be an integer k2. The classical

egularity result for a solution g�W2,loc
2 �R3�, provided ��Ck+�−2��̄� and ���Ck+� is that g

C1�R3��Ck+���̄��Ck+��R3 \��, satisfying

�g�Ck+���̄� + �g�Ck+��BR\�� 	 �����Ck+�−2��̄� + �g�C0�B̄2R�� �3.30�

or any BR such that �̄�BR. This is given in Ref. 7 �p. 198�, for the case k=2. To prove it for
ntegers k�2 one can locally flatten �� and establish an estimate analogous to �3.30� with k=2,
nd g and � replaced by derivatives tangent to the flattened interface. Estimates for the remaining
erivatives of g, on either side of the interface, are found in terms of the tangential derivatives
sing the equation’s ellipticity.

We use �3.30� to prove higher regularity properties for � and Q.

Lemma 16: Assume that ���Ck+� where k is an integer with k3, and �̄�BR. Then writing
=�f +g we have

gj, f � C���0,T�;Ck+���̄�� � C���0,T�;Ck+��B̄R \ ��� , �3.31�

div Q � C���0,T�;Ck+���̄�� , �3.32�

nd

� � C���0,T�;Ck+���̄�� . �3.33�

Proof: We begin with the case k=3. From the proof of Lemma 15, we find that �

C��t0 ,T ;C1+���̄��. Then using �3.30� for the equations �g�j�=����j� we see that �3.31� holds for
. It remains to establish �3.31� for f . Using �3.26� and Lemma 15 we have �f

C���0,T� ;C3+���̄��. Using �3.31� for g with k=3, we have ��f �C���0,T� ;C2+������. It fol-

ows from elliptic estimates applied to �3.26� that f �C���0,T� ;C3+���̄��.
We next assume that 3
k and that �3.31�–�3.33� hold for 3	m
k. These imply that ��, Q,

�C���0,T� ;Cm−1+���̄��. Then using �3.10�, �3.23�, and �3.28� we get �, div Q
C���0,T� ;Cm+1+���̄�� and using �3.30� we get

g � C���0,T�;Cm+1+���̄�� � C���0,T�;Cm+1+��B̄R \ ��� .

e have �f �C���0,T� ;Cm+1+���̄��, ��f �C���0,T� ;Cm+������, and ���Cm+1+� �since m+1

k�. It follows that f �C���0,T� ;Cm+1+���̄��. By the construction of the extension E�f�, if f

Cm+1+���̄� then

E�f��BR\� � Cc
m+1+��BR \ ��

nd there is a constant C so that

�E�f��Cm+1+��B̄R\�� 	 C�f�Cm+1+���̄�.

hus we see that f �C���0,T� ;Cm+1+��B̄R \��� as well. This proves �3.31�–�3.33�. �

Proof of Theorem 2: Let ��0 ,A0� satisfy H. Then �� ,A�= �� ,Q+ha� is a solution to
3.2�–�3.7�, with the required regularity for t�0, and such that ���t� ,A�t��⇀ ��0 ,A0� in W2

1���
W2

1��� as t↓0. Furthermore, since �3.9� holds it follows that the proof of Lemma 5 carries over

n this gauge. Thus ���t� ,A�t�� converges strongly to ��0 ,A0� in W2
1����Ǧ�R3� as t↓0. Finally
he proof of uniqueness from Lemma 7 carries over as well. �
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V. THE COULOMB GAUGE

We next transform �� ,Q� to other gauges and examine solutions there. We first consider the
=0 gauge.

Proof of Theorem 3: Let q�x , t� satisfy

�tq =
1

�
div Q in DT,

q�x,
T

2
� = 0 for x � � ,

q = E�q� in ET.

rom Sec. III that we have

E�div Q� � C���0,T�;Cc
2+��BR�� � W2

2,1�ET�

nd �� div Q=0 on ��� �0,T�. Moreover if ���Ck+� for k3 then

E�div Q� � C���0,T�;Ck+���̄�� � C���0,T�;Cc
k+��BR \ ��� .

It follows that

��,B� � ��,S + ha� � ��e−iq,Q − �q + ha�

s a solution to �2.17�–�2.19� in A, that is classical for t�0 with ���x ,0� ,B�x ,0��
��0e−iq�x,0� ,A0−�q�x ,0��. Thus the weak solution �� ,A� to �2.17�–�2.20� is represented as

��,A� = ��eiq�x,0�,B + �q�x,0�� . �4.1�

�

We next solve the initial value problem in the div A=0 gauge.

Proof of Theorem 4: Given ��0 ,A0� we write A0= Ã0+ha with Ã0�V2. Let f0 satisfy

�f0 = 0 in � ,

��f0 = − A0 · � on �� , �4.2�

uch that ��f0dx=0 and f0=E�f0� in R3. Then f0�W̊2
2�BR� and ��0�x�eif0�x� ,�f0�x�+A0��H. Let

� ,Q+ha� be the solution from Theorem 2 with ���x ,0� ,Q�x ,0��= ��0eif0 ,�f0+ Ã0�. We decom-

ose Q=�f +g with �f �V1, and g�V2. Set q=−f , �� , Ã�= ��e−if ,Q−�f�, and �
E��−�1/��div Q����+�t f . From the properties for f established in the proof of Theorem 2 we

ave that ��1 ,A1 ,�1���� , Ã+ha ,�� is a classical solution to �1.1� and �1.2� for t�0 such that

�1�t� ,A1�t�−ha�→ ��0 , Ã0� in W2
1����V2 as t↓0.

Suppose that there is a second solution ��2 ,A2 ,�2�. Since it is classical as well for t�0 we
an take the inner product of �1.1� with �t�m+ i�m�m, the dot product of �1.2� with �tAm+��m for
=1,2, and integrate over R3� �t0 ,T� for 0
 t0
T. To get

2�
t0

T

���t�m + i�m�m�L2���
2 + ���tAm + ��m�L2���

2 �dt + G��m,Am��T� = G��m,A0��t0� .

�4.3�

ince ��m�t� ,Am�t��→ ��0 ,A0� as t↓0 for m=1,2 we can let t0↓0 and conclude that �4.3� is valid

ith t0=0 such that all terms are finite.
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Next we set um,n�x , t�=�1/n
t �m�x ,��d� for m=1,2 and n�N. Then we have

��um,n = �
1/n

t

div js,md� in � ,

��um,n = �Am�x,1/n� − Am�x,t�� · � on ��

or each t�0. It follows from this, that lim
n→�

um,n=�0
t �md� exists in C��0,T� ;W2

2����. We set qm

�0
t �md�+ f0 where f0 satisfies �4.2�. Using this and �4.3� it follows that

��m,Sm� � ��meiqm,Am + �qm� � A

or each m with the same initial data at t=0 on �. Moreover both are solutions to �2.12� and
2.13�. It follows from Lemma 7 that ��1 ,S1�= ��2 ,S2�. This implies, by gauge invariance that
url A1=curl A2. Since div A1=div A2=0 we have A1=A2. Furthermore j1,s= j2,s. Since �m satisfy

��m = � div jm,s in � ,

���m = − �tAm · � on �� ,

nd ���mdx=0 for each t�0 we have �1=�2. This implies that

�1 = �1e−iq1 = �2e−iq2 = �2.

hus the solution is unique. �
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PPENDIX

Lemma A.1: Let k�L2�R3�. Then there exists a function f �W2,loc
2 �R3� such that �f

Ȟ�R3�, ��fdx=0, and �f =k in R3.
Proof: Let 	k�
�Cc

��R3� such that k�→k in L2�R3� as �→0. Set w�=��k��C��R3� where �
s the fundamental solution for � ,��x�=C / �x�. Then �w�=0��x�−2� and �2w�=O��x�−3� as �x�

�. For r large we have

�
Br

��2w��2dx = �
Br

��w��2dx − �
�Br

�w���w�dH2 + �
�Br

�xi
w�����xi

w��dH2

hus

�
Br

��2w��2dx = �
Br

��w��2dx + O�r−3� ,

mplying

�
R3

��2w��dx = �
R3

�k��2dx .

ext we let �m be a C� cut off function such that �m=1 on Bm and �m=0 on Bm+1
c . Set Zm

� 3 3
�m�w��Cc �R ;R �. We see for n ,mn0 and ��0 fixed that
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�Zn − Zm�Ȟ�R3� = O�n0
−2� .

his implies that 	Zm
 is a Cauchy sequence in Ȟ�R3� such that Zm→�w� pointwise.

It follows that �w�Ȟ�R3� for each ��0.
Let d� be a constant so that ���d�+w��dx=0 and set f�=d�+w�. Let R be such that �� �BR.

hen there exists constants mj�R�, j=1,2 so that

�f��L2�BR� 	 m1��f��L2�BR� 	 m2��f��L6�R3� 	 Cm2��f��Ȟ�R3� = Cm2�k��L2�R3�

here C is from �1.11�.
Since k�→k in L2�R3� as �→0 we see there exists f �W2,loc

2 �R3� with ��fdx=0 so that f�

f in W2
2�BR� for each R
�, �f�→�f in Ȟ�R3�, and �f =k. �

Proposition A.1. V̌�R3�=V1 � V2 where

V1 = 	V � Ȟ�R3�:curl V = 0
 ,

V2 = 	W � Ȟ�R3�:div W = 0
 ,

nd V1�V2.

Proof: Let Z�Ȟ�R3� and take f as in Lemma A.1 so that �f =div Z and �f �Ȟ�R3�. Then

f �V1. Set W=Z−�f �Ȟ�R3�, then div W=0 so that W�V2. The decomposition is unique,
ince if not there would exist U�0 such that U�V1�V2. We see from �1.12� that this is impos-
ible.

Finally since we have

�Z�
Ȟ�R3�
2

= �
R3

��div Z�2 + �curl Z�2�dx

e see the inner product on Ȟ�R3� can be represented as

�Z,U� = �
R3

�div Z div U + curl Z · curl U�dx .

rom this it is clear that V1�V2. �
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urface barrier for flux entry and exit in mesoscopic
uperconducting systems
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The energy barrier which has to be overcome for a single vortex to enter or exit the
sample is studied for thin superconducting disks, rings, and squares using the non-
linear Ginzburg–Landau theory. The shape and the height of the nucleation barrier
is investigated for different sample radii and thicknesses and for different values of
the Ginzburg–Landau parameter �. It is shown that the London theory considerably
overestimates �underestimates� the energy barrier for vortex expulsion
�penetration�. © 2005 American Institute of Physics. �DOI: 10.1063/1.2010351�

. INTRODUCTION

Vortex matter in superconducting samples with sizes on the scale of the coherence and pen-
tration lengths has attracted much attention in recent years.1,2 In such small confined systems the
nteraction between the vortices and the sample surface, which tries to impose the symmetry of the
ample boundary on the vortex configurations, becomes important. This interaction of vortices
ith the surface manifests itself through the existence of hysteresis behavior and different phase

ransitions.1,3–8 The hysteresis effect is a consequence of the presence of an energy barrier between
he states with vorticity L and L+1, known as the Bean-Livingston energy barrier,9 �see also Ref.
0� which increases the first-vortex entry field Hs beyond the first critical field Hc1. According to
his model the surface barrier appears due to a competition between the vortex attraction to the
ample walls by its mirror image and its repulsion by screening currents. This model was further
eveloped for cylindrical samples,11–13 thin disks,14–16 rings,17–20 and strips.21–25 Most of these
arrier models are based on the London theory and do not account for the process of vortex
ormation �vortices are treated as point particles� and describe only the vortex motion far from the
ample boundary. In this limit it is possible to find an analytical expression for the energy and
orces for an arbitrary arrangement of vortices inside the superconductor.

The origin of barriers for flux penetration and expulsion has been considered recently through
numerical study of the Ginzburg–Landau �GL� equations.26–30 Within the GL theory vortices are

xtended objects where the superconducting condensate vanishes over a length scale �, which is
ery different from the London theory where vortices are point particles, i.e., �→0. The allowed
ortex configurations correspond to different minima of the free energy in configurational space
nd the lowest barrier between those two minima is a saddle point which corresponds to the flux
enetration and expulsion state. Schweigert and Peeters27,28 presented an approach for finding the
addle point states in thin disks and calculated numerically the heights of the free energy barriers
eparating the stable states with a different number of vortices. Their approach was later extended
o the case of superconducting rings.29

In this article we study the surface barrier in mesoscopic disks, rings, and squares for different
alues of the GL parameter � though a numerical solution of the GL equations using analytical
xpressions for the phase of the order parameter as obtained from the London approach. Previous

�Present address: Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil.
�
Electronic mail: francois.peeters@ua.ac.be
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tudies were limited to the London theory or assumed the limit of very thin disks such that only
he first GL equation had to be solved. In our approach, both GL equations are solved self-
onsistently and by fixing the phase of the order parameter locally we are able to move the vortex
hrough the sample. We compare our results with those obtained from the London theory.

The article is organized as follows. The theoretical formulation of the problem is given in Sec.
I. The Bean-Livingston barrier for a single vortex entry/exit in a small radius disk is studied in
ec. III for different thickness of the disk and for different values of the GL parameter. In Sec. IV
e compare our calculations with the results obtained from the London theory. The L=2 giant
ortex state in a superconducting disk is considered in Sec. V, and the break up into a multivortex
tate is investigated. The surface barrier for vortices in a superconducting ring and in a square
ample is investigated in Secs. VI and VII, respectively. The results of the present paper are
ummarized in Sec. VIII.

I. THEORETICAL FORMALISM

. Ginzburg–Landau theory

We consider a thin superconducting disk or ring with thickness d�� ,� immersed in an
nsulating medium in the presence of a perpendicular uniform magnetic field H0. Measuring the

istance in units of the coherence length �, the vector potential A� in c� /2e�, the magnetic field in

c2=c� /2e�2=��2Hc, and the order parameter � in �−� /� with � ,� being the GL coefficients,
he system of GL equations can be written in the following form:5

�− i�� 2D − A� �2� = ��1 − ���2� , �1a�

− 	3DA� =
d

�2
�z�j�2D, �1b�

j�2D =
1

2i
��*�� 2D� − ��� 2D�*� − ���2A� , �1c�

here the indices 2D, 3D refer to two- and three-dimensional operators, respectively, and j�2D is
he density of the superconducting current. The boundary conditions to Eqs. �1a� and �1b� corre-
pond to zero superconducting current at the sample boundaries and an uniform external magnetic

eld far from the sample A� �r��→�= 1
2 �r��H� 0�, respectively. To solve the coupled set of nonlinear

qs. �1a� and �1b� we follow the numerical approach of Schweigert and Peeters.4,5

The Gibbs free energy, in units of F0=Hc
2V /8, for the given vortex states is calculated from

F = V−1�
V

�2�A� − A� 0� · j�2D − ���4�dr� , �2�

here integration is performed over the sample volume V, and A� 0 is the vector potential of the
niform magnetic field. For Al disks with 1.3 �m �0.2 �m� radius and 0.13 �m �0.01 �m� thick-
ess the unit F0 is of the order �103 eV �2 eV� �see, e.g., Ref. 1�. The dimensionless magnetiza-
ion is defined as

M =
	H
 − H0

4
, �3�

here 	H
 is the magnetic field averaged over the sample.

. London approach and phase of the order parameter

In thin films, within the limits S�� �where S are the transverse dimensions of the film� and
�Hc2 , ���2 is practically constant throughout the specimen, except at distances �� from the
ortex cores or the interface. These conditions are satisfied in the London limit, and one may
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onsider ���2=const. with singularities in the phase of � at the vortex core positions. Considering
he magnetic field pointing in the z direction, the second G-L equation reduces to the London
quation,

Hz +
4�

c
�� � J��z = �0�

k=1

L


�r� − r�k� , �4�

here J� =�0
dj�dz j�d, �=�2 /d, and r�k is the position of vortex k , d is the film thickness.

In order to solve the London equation one may consider taking J� =�� ẑg, where g�r�� is the
treamline function.31 This function has the property that g�=constant, where g� represents the
alue of g�r�� at the specimen edges. For samples without holes, one may consider g�=0. Other-
ise, g�r�� may take different constant values at each hole and at the edges.20,32 In addition, in thin
lms where ��S, demagnetization effects can be disregarded, and HzH0 in Eq. �4�. This makes

he London equation of the Poisson type

−
4�

c
�2g = �0�

k=1

L


�r� − r�k� − H0, �5�

hich can be solved by standard techniques. Analytical solutions, for example, of the problem of
vortex in a thin disk14,15 or in a ring,20 have been found. Such analytical expressions—from
hich the energy of the system can be calculated—are suitable for simulations of systems con-

aining a large number of vortices.16

As pointed out by Fetter14 gv, which is the streamline function for a vortex inside the meso-
copic superconductor with zero external magnetic field, and � �in two-dimensional systems� are
elated by the real and imaginary parts of a complex function, ��z�, since both gv and � satisfy
aplace equation �except at the vortex core positions�. This allows one to obtain analytic expres-
ions for the phase of the order parameter, �. For a disk, the phase of the order parameter is given
y the imaginary part of14,16 �see also Ref. 33�

� = �
j=1

L

ln�� z − �R/zj�2zj

z − zj
� rj

R
� , �6�

here z=r exp�i��=x+ iy , zj=rj exp�i� j� is the position of vortex j, and R is the disk radius. For
he case of rings with inner �outer� radius a�b� , �–for one vortex at �x ,0�–is the imaginary part of

� = ln�A�z,x��
B�x� � − �N +

ln�b/x�
ln�b/a��ln�z/a� ,

A�z,x� =
cn�2� ln�x/a�,m�
sn�2� ln�x/a�,m�

−
cn�� ln�x/z�,m�
sn�� ln�x/z�,m�

,

B�x� =
cn�2� ln�x/a�,m�
sn�2� ln�x/a�,m�

−
cn�� ln�x/a�,m�
sn�� ln�x/a�,m�

, �7�

here N is the number of vortices inside the hole, �a�x�b ,0� is the vortex position, cn and sn
re the Jacobi elliptic functions, �=K�m� / ln�b /a� , K�m� is the complete elliptic integral and the
arameter m is determined by the relation K�1−m�ln�b /a�=K�m� according to Ref. 20.

For a rectangle with dimensions 0�x�a and 0�y�b, the complex function which is a

olution of Eq. �5� �for H0=0� is given by
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� = �
j=1

L

ln� sn2�K�m�z/a,m� − sn2�K�m�zj
*/a,m�

sn2�K�m�z/a,m� − sn2�K�m�zj/a,m� � , �8�

hich is the same as for the problem of an electric charge inside a rectangle held at zero potential
see Ref. 34�. The value of m is now chosen to satisfy K�1−m�= �b /a�K�m� and zj

�

=rj exp�−i� j� is the conjugate of the position of vortex j.

II. A SUPERCONDUCTING DISK WITH A SINGLE VORTEX

In earlier works �see, e.g., Refs. 3–5� which were devoted to the study of the properties of
uperconducting disks, vortex configurations were obtained through a minimization of the energy.
n this work we investigate the energy and magnetization of a superconducting disk, by fixing
ortices in an arbitrary position for different applied magnetic field. In general, such vortex
onfigurations are not stable. In experiments this can be realized, e.g., by pinning vortices through
pinning potential. First, we consider in Fig. 1 a superconducting disk with radius R=4.0� and

ifferent thickness d and GL parameter �=1.0. For the given parameters of the disk, the L=1 state
s stable in the magnetic field range H0 /Hc2=0.125−0.71.35 As for the bulk case,9 an energy
arrier to flux penetration and expulsion in the disk exists in some magnetic field range. Below
his magnetic field range the function F��v�, where �v is the radial position of the vortex, has only
ne extremum which is a maximum at �v=0, i.e., the vortex will leave the sample. At low fields
ortices are unstable inside the sample and there is an energy cost associated with vortex entrance.

IG. 1. �a� The free energy and �b� the magnetization of the L=1 state as a function of the radial position of the vortex for
ifferent values of the applied magnetic field. The radius of the disk is R=4.0�, the thickness is d=0.1� �solid curves� and
=0.5� �dashed curves referred to the right axis�. The Ginzburg–Landau parameter is �=1.0.
or higher fields it is energetically favorable for the vortex to sit inside the sample and F��v� is a
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unction with a single minimum at �v=0. The increase of the disk thickness does not change the
ualitative behavior of the free energy but shifts the free energy to lower energy. For small fields
he magnetization curves show paramagnetic response �i.e., M �0� when the vortex is located
lose to the center and −M increases with shifting the vortex from the center of the sample. This
aramagnetic behavior for the total magnetization results from the existence of the energy barrier.
ncreasing the disk thickness leads to more flux expulsion from the sample.

IG. 2. Energy barrier for the vortex penetration �thick curves� and escape �thin curves� as a function of the applied field
or a disk with R=4.0� , d=0.1� �solid black curves�, and d=0.5� �solid gray curves� and for �=1.0. The inset shows the
osition of the barrier maximum �m as a function of the applied field. The results of the London theory are given by the
ashed curves for two different values of the cutoff parameter 	.

IG. 3. Contour plots of the Cooper pair density distribution in the disk with radius R=4.0�, thickness d=0.1� , �=1.0 at

0 /Hc2=0.2 for different values of the vortex position: �a� �=0�, �b� �=0.5�, �c� �=1.0�, �d� �=2.0�, �e� �=3.0�, and �f�

=3.85�.
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Figure 2 presents the energy barrier for vortex penetration �thick curves�, 	Fpenetration=Fmax

F�v=R, and expulsion �thin curves�, 	Fexpulsion=Fmax−F�v=0, as a function of the applied field for
=0.1� �solid black curves� and d=0.5� �solid gray curves�. As seen from this figure, the barrier

or flux escape disappears at low fields, whereas the barrier for vortex entry increases. Increasing
he external field leads to an increase of the barrier for vortex expulsion and to a decrease of the
arrier for vortex penetration. The first critical field Hc1 is the field at which the energy for a
ortex inside the superconductor is the same as the energy of the vortex at the sample edge, i.e.,
Fpenetration=	Fexpulsion. Therefore, the crossing point of the two barriers determines the first criti-
al field Hc1. This barrier is influenced by the sample thickness: the expulsion barrier decreases
nd the penetration barrier and critical field Hc1 increases by increasing the thickness. The latter
ndicates the larger repulsion of the vortex from the surface of the sample with larger thickness.
he London theory �dashed curves in Fig. 2� predicts a much larger energy barrier for vortex
xpulsion �near Hc1 it is almost a factor of 2 larger�. Because the London theory fails close to the
ample boundary �i.e., F→−� when r→R�, we need to introduce a cutoff distance 	 in order to
nd finite value for 	Fpenetration. Therefore, within the London theory, we defined 	Fpenetration

Fmax−F�v=R−	. The results for two different choices, i.e., 	=� �dotted curve� and 	=0.5�
dashed curve�, are shown in Fig. 2. For both choices we find that the penetration barrier and the

IG. 4. The free energy as a function of the radial position of the vortex �v for different values of the GL parameter � and
or the applied fields �a� H0 /Hc2=0.15, �b� H0 /Hc2=0.2, and �c� H0 /Hc2=0.3. The radius of the disk is R=4.0� and the
hickness is d=0.1�.
agnetic field range over which this barrier exists, is much smaller within the London approach as
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ompared to the one in the GL theory. These results show clearly the limited applicability of the
urface barrier when obtained from the London theory in case of finite values of the GL-parameter.

hen calculating the saddle point states, Schweigert and Peeters27 found a better agreement with
he London theory, and a small difference was found only beyond Hc1. The position of the barrier

aximum �m �see the inset of Fig. 2� is shifted from the center of the sample to the sample
oundary with increasing applied field. For small fields �m calculated from the London theory is
arger compared to the one obtained from the GL theory and for larger fields the reverse is found.

We found that there is no energy barrier when we place an antivortex inside the disk for any
adius of the sample and any positive applied field. The energy minimum is at the edge of the disk
nd consequently the antivortex will leave the sample.

The spatial distribution of the Cooper-pair density ���2 calculated for different vortex posi-
ions �v is plotted in Fig. 3 for H0 /Hc2=0.2 and for disk thickness d=0.1�. Notice the noncircular
hape of the contour lines, when the vortex is close to the sample boundary.

The dependence of the surface barrier on the GL parameter � is shown in Fig. 4. This figure
ives the free energy of the disk with radius R=4.0� and thickness d=0.1�, as a function of the
ortex position �v for different values of �, at �a� H0 /Hc2=0.15, �b� H0 /Hc2=0.2, and �c�
0 /Hc2=0.3. Note that the free energy strongly depends on �: with increasing GL parameter from

* 2 *

IG. 5. �a� Energy barrier for flux penetration �thick curves� and escape �thin curves� and �b� the position of the barrier
aximum �m as a function of the GL parameter � for the applied fields H0 /Hc2=0.15 �solid lines�, H0 /Hc2=0.2 �dashed

ines�, and H0 /Hc2=0.3 �dotted lines�, with a break at �=1.1.
=0.1 �corresponding to an effective GL parameter � =� � /d=0.1� to �=1.0 �� =10.0� �dashed
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ine� the free energy increases considerably, which is due to the larger penetration of the field
nside the sample; further increase of � �thick solid line� leads only to a minor increase of the free
nergy. We found that the results for �=10 ��*=1000� is identical to the results for ��100.

Figures 5�a� and 5�b� show the height of the barrier for vortex penetration �thick curves� and
xpulsion �thin curves� and the position of the barrier maximum as a function of �. At low fields
solid line� the maximum in the expulsion barrier �thin curves� is found for small values of � and
he barrier decreases with further increase of �. For higher fields �dashed and dotted curves� the
xpulsion barrier increases with increasing � and we see the crossing of the curves for penetration
nd expulsion barrier. At small fields the position of the barrier maximum �Fig. 5�b�� decreases
ith increasing � and for higher fields a minimum appears in the plot of the barrier position.

V. COMPARISON WITH LONDON THEORY FOR LARGE DISKS

The London theory fails close to the sample boundaries at distances of order � and for small
nter-vortex distances. As a consequence the applicability of the London theory for very small

esoscopic samples is questionable. Therefore, we will consider larger disks and compare the
esults of the London theory with our GL calculations. In this case the London approach, in which
he superconducting density is assumed to be a constant, gives rather accurate results. This model
as extended to arbitrary radius of the disk by taking into account the spatial nonuniformity of the
odulus of the order parameter in Refs. 16 and 27. This improved version of the London theory
as shown to be in good agreement with the GL theory below the nucleation field H=Hn and
reaks down for higher fields.

IG. 6. The free energy of the disk with radius R=8.0� and thickness d=0.1� as a function of the radial position of the
ortex �v for different values of the applied magnetic field. The results from the London theory are given by dashed curves
nd the results of the GL theory are given by solid curves for �a� �=10 and �b� �=0.1.
Figure 6 shows the free energy of the superconducting disk with radius R=8.0� as a function
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f the vortex position �v, calculated from the London theory �dashed curves� and the GL theory
solid curves� for �a� �=10 and �b� �=0.1 at different applied fields. The disk thickness is d
0.1� whose value is less important in the GL theory �see Eq. �1b�� for larger �. The free energy

hows a similar qualitative behavior in both cases: the appearance of the energy barrier at high
elds and its disappearance at lower fields. But the value of the free energy is not the same: at low
elds the free energy from the London theory is lower than the free energy of the GL theory which

s opposite at higher fields. For small � the free energy calculated within the GL theory is lower
han in the corresponding case of �=10, which is the reason why the results of the London theory
re not shown in Fig. 6�b�.

The height of the energy barrier for the vortex penetration �thick curves� and expulsion �thin
urves� is given in Fig. 7 as a function of the applied field. It is seen from this figure that for larger
alue of � �a� and at small fields �H0�Hc1� our results for the expulsion barrier show good
greement with the one from the London approach. At higher fields the London theory gives a
arger expulsion barrier. The penetration barrier within the London limit is calculated for two
ifferent values of the cutoff parameter 	=0.5� �tick dotted curve� and 	=� �thick dashed curve�.
or 	=� a reasonable good agreement with the GL-approach is found for H0�Hc1. For small �

IG. 7. Energy barrier for vortex penetration �thick curves� and escape �thin curves� as a function of the applied magnetic
eld for the disk of Fig. 6. Dashed curves are the results of the London theory and solid curves are the one of the GL theory
or �a� �=10 and �b� �=0.1. The insets show the position of the barrier maximum �m as a function of the applied field.
Fig. 7�b�� a surface barrier is found over a larger range of magnetic field, whereas the barrier itself
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s smaller than for the larger � case. If we compare these results with the one for a smaller disk
adius �Fig. 2� we see that the barrier height and the magnetic field range, where this barrier exists,
ecreases with increasing R for fixed �.

. THE L=2 STATE IN A DISK

. Giant vortex versus multivortex state

For larger disk radius �i.e., R�3.0��, several vortices can enter the sample at once �see for
xample Ref. 28�, indicating that at the entrance field the energy barriers separating the different
ortex states become very small. In such samples many different superconducting states can exist
t a given magnetic field. Our approach allows us to study the transitions between these states and
alculate the energy barrier as a function of the vortex position for any number of vortices L.

We start with the most simple case—the L=2 state, which was studied in Ref. 28 within the
odified London approach. Figure 8�a� shows the free energy for a disk with R=4.0� and d
0.1� as a function of the inter-vortex distance a for different applied fields. It is seen that, at

arger magnetic fields �dotted curve, H0=0.55Hc2�, the free energy has a minimum when both
ortices are located in the center implying that the giant vortex state is preferred. With decreasing
agnetic field �dashed curve, H0=0.35Hc2� the free energy has a minimum when the vortices are

IG. 8. �a� The free energy of the multivortex �L=2� state as a function of the inter-vortex distance a, and �b� the free
nergy of the giant vortex �L=2� state as a function of the radial position of the giant vortex �v for different magnetic
elds. The inset shows the height of the energy barrier for the transition from the multivortex L=2 state to the giant vortex
=2 state �solid curve� and for the transition from multivortex L=2 state to the L=0 state �dashed curve, referred to the

ight axis� as a function of the applied field. The radius of the disk is R=4.0�, the thickness is d=0.1�, and �=1.0.
eparated at a distance a=3.22� and has a maximum for a=5.7�, which shows that at this mag-
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etic field the multivortex state is energetically favorable. The inset of Fig. 8 shows the height of
he energy barrier for the transition from this multivortex state to the giant vortex state �solid
urve� and for the transition from the multivortex state to the L=0 state �dashed curve, referred to
he right axis�. Further decreasing the field �solid line, H0=0.2Hc2� there is no energy barrier for
ortex expulsion and vortices leave the sample. To compare with the multi-vortex state, we plotted
n Fig. 8�b� the free energy of the giant vortex state with L=2 as a function of the radial position
f the giant vortex. It is seen from this figure that the giant vortex behaves similar to what we
ound for a single vortex: at small fields there is a barrier for the giant vortex to enter the sample
hich disappears with increasing applied field. The distribution of the Cooper-pair density for
ifferent values of a, which are indicated by open circles in Fig. 8, is shown in Fig. 9.

. Entrance and exit of the second vortex

Contrary to macroscopic samples, where vortices can be located far from the edge of the
ample, in mesoscopic samples vortices are confined by the potential well generated by the sample
urface, and even a vortex fixed in the center of the sample is still influenced by the edge,
enerating a contribution to the barrier for the next vortex entry and exit. Now, we fix the first
ortex at a given point and change the position of the second vortex. Although the presence of a
econd vortex influences the first vortex position, a pinning center can fix the first vortex position,
.e., one can study the energy landscape for the second vortex when the first is pinned at �0.

Figures 10�a�–10�c� show the free energy of the superconducting disk for R=4.0� and d
0.1� as a function of the second vortex position �v, when the first vortex is fixed in the same

adial line with the second one �see Fig. 11� at �0=0 �solid curve�, �0=R /2 �dashed curve�, and

0=R �dotted curve�. At H0 /Hc2=0.2 �a� and �0=0 the second vortex prefers to leave the sample,
ecause there is no barrier for the exit of this vortex �solid line�. The barrier for the second vortex
xit appears when we shift the first vortex to the sample boundary �dotted line�. Notice that for this
alue of the applied field a single vortex feels a largest energy barrier �compare with Fig. 2�. For
igher fields �Figs. 10�b� and 10�c�� a giant vortex state in the center of the sample becomes
nergetically favorable. Figure 11 shows the contour plot for the Cooper pair density for different

IG. 9. Contour-plot of the Cooper pair density for a disk with R=4.0� , d=0.1� , �=1.0� at H0 /Hc2=0.35 and the distance
etween vortices is: �a� a /2=0�, �b� a /2=0.87�, �c� a /2=1.61�, �d� a /2=2.36�, �e� a /2=2.85�, and �f� a /2=3.85�.
ositions of the first and second vortex at H0 /Hc2=0.35.
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I. SUPERCONDUCTING RING

Although the problem of flux quantization in large superconducting rings was shown experi-
entally a long time ago,36 recently there was renewed interest for fluxoid dynamics in such a

eometry �see, e.g., Ref. 19�, where jumps in the magnetization curve corresponding to changes of
he vorticity larger than unity17 were observed. These jumps appear due to the presence of several
etastable states with different vorticity L at a given field and strongly depends on the stability

ondition for those metastable states.18 Transitions between these states were investigated within
he GL theory in Ref. 29 through the saddle point, i.e., the lowest barrier between two different
nergy minima. The time for flux penetration and expulsion is determined by the height of the
nergy barrier. In this section we consider superconducting rings with different inner and outer
adii and calculate the energy barrier for flux penetration/exit. This problem was recently consid-
red in Ref. 20 in the London limit.

As an example, we consider a superconducting ring with outer radius R=15�, inner radius

i=5�, thickness d=0.1�, and �=1.0. Figures 12�a�–12�c� show the free energy of the ring as a
unction of the radial position of the vortex �v for different values of the applied field. At low
elds �a� and when there is no vortex trapped inside the ring �L0=0� the maximum of the barrier

IG. 10. The free energy of the L=2 state as a function of the second vortex position �v, when the first vortex is fixed at

0=0 �solid curve�, �0=R /2 �dashed curve�, and �0=R �dotted curve�, at different magnetic fields �a� H0=0.2Hc2, �b�
0=0.35Hc2, and �c� H0=0.5Hc2. The radius is R=4.0�, thickness is d=0.1� and �=1.0.
s in the center of the superconducting region of the ring and the free energy is lowest at the outer
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ing edge indicating that it costs energy to add an additional vortex inside the ring. When increas-
ng the field the barrier maximum shifts to the outer boundary of the sample �Figs. 12�b� and
2�c��. The inset of Fig. 12 shows the height of the energy barrier for flux penetration �thick curve�
nd escape �thin curve� as a function of the applied field. It is seen from this figure that even for
ero applied field there is a barrier for vortex expulsion and we have to apply negative field to
ransit to the L=0 state. If there are one or more vortices inside the ring the energy barrier shifts
o the inner boundary of the sample and the vortex prefers to leave the sample. For some critical
alue of the applied field and for a given number of vortices inside the ring the energy has a local
inimum in the superconducting region of the ring �dotted and thick solid curves in Fig. 12�c��

ndicating that a vortex can be trapped in a metastable state in the superconducting region of the
ing. This is more pronounced when there are more vortices inside the ring and the field is higher
thick solid curve in Fig. 12�c��. For H0 /Hc2=0.05 it is clear from Fig. 12�c� that energetically it
s more favorable to add one extra vortex inside the sample when L0�3. Figure 13 shows contour
lots of the phase of the order parameter �left column� and Cooper pair density �right column� for

0=1 and different position of the vortex. Notice that a closed path within ��rhov, we correctly
ave a change in the phase of 2 �i.e., one flux is trapped inside the ring�. If, otherwise, we choose
closed path including the vortex position, �v, the phase changes by 4. The contour lines of the
ooper pair density are nearly circular close to the vortex core, but are distorted farther away due

o the geometry of the sample.

II. SQUARE SAMPLE

The energy barrier for flux penetration and exit in mesoscopic superconductors is partly due to
geometric barrier, which depends on the shape of the sample, and is even more pronounced for

IG. 11. The Cooper pair density of the L=2 state in the disk with R=4.0� and d=0.1� at H0 /Hc2=0.35. The first vortex
s fixed at �0=0 �first column�, �0=R /2 �second column�, and �0=R �third column�. From top to bottom figures we
ositioned the second vortex at �1=0 �first row�, �1=1.0� �second row�, �1=2.0� �third row�, and �1=4.0� �fourth row�.
uperconductors with rectangular cross section. In such samples the edge barrier is caused by a
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elayed penetration of flux lines at the four corners and exhibits hysteretic behavior even if the
ample is free of pinning centers.22–24 Therefore, in this section we consider a square supercon-
ucting sample to study the influence of its edges to the surface barrier. Superconducting cylinders
ith rectangular cross section were recently considered in Ref. 37 within the London theory in the
resence of an axial magnetic field. Calculations show that the energy barrier is higher in the
orners and the first vortex tends to enter the sample through the middle of the edges.38

Figure 14 shows the contour plot of the free energy of the square superconductor with size
=8.0�, thickness d=0.1�, and �=1.0 for four different values of the applied field, where dark
ray regions correspond to higher energy. At small fields �a� the energy is maximum when the
ortex is at the center of the sample and decreases when the vortex approaches to the boundary.
he plot of the cross sections �right column� shows that the energy is lower in the corners. An

ncrease of the magnetic field leads to the appearance of an energy barrier �b,c� which is higher
ear the corners of the sample. By further increasing the applied field �d� the position of the barrier
hifts to the sample boundary. It is seen from the plot of the cross sections of the barrier energy
hat the barrier disappears first near the edges of the sample, which means that the vortex pen-

IG. 12. The free energy of the superconducting ring with outer radius R=15�, inner radius Ri=5�, thickness d=0.1�, and
=1.0 as a function of the radial position of the vortex �v for three values of the applied field �a� H0=0.01Hc2, �b� H0

0.025Hc2, and �c� H0=0.05Hc2. The number of vortices inside the hole is L0=0 �solid curves�, L0=1 �dashed curves�, and

0=2 �dotted curves�. Thick solid curve �c� corresponds to L0=3 and H0=0.075Hc2. The inset in �b� shows the height of
he energy barrier for flux penetration �thick curve� and expulsion �thin curve� for L0=0 as a function of the applied field.
trates the sample through the center of the edges and not through the corners of the sample.
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igure 15 shows the energy barrier for vortex penetration �thick curves� and expulsion �thin
urves� along the diagonal �dashed curves� and side �solid curves� of the square. It is seen from
his figure that the vortex feels the largest barrier along the diagonal of the sample. This also

eans that a vortex placed in the square center has more freedom to wander laterally towards the
dges than along the diagonals of the square.

III. CONCLUSIONS

We have presented an approach to calculate the energy barrier when a single vortex enters or
xits superconducting mesoscopic finite size sample. Our approach is based on a numerical solu-
ion of the coupled nonlinear GL equations using analytical expressions for the phase of the order
arameter obtained from the London theory.

First we calculated the energy barrier in superconducting disks with small radius and for
ifferent values of the disk thickness and GL parameter �. These results for the energy barrier
how clearly the limitations of the London theory which considerably overestimates �underesti-
ates� the barrier for vortex expulsion �penetration�. The discrepancy between the results from the

IG. 13. Contour plots of the phase of the order parameter �left column� and Cooper pair density �right column� at

0 /Hc2=0.01 for L0=1 for the ring of Fig. 12. Phases near zero are given by white regions and phases near 2 by gray
egions. The position of the vortex is �a� �v=6.0�, �b� �v=8.0�, �c� �v=10.0�, �d� �v=12.0�, and �e� �v=14.0�.
L approach and the one from the London theory decreases with increasing size of the disk. The
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IG. 14. Contour plots of the dependence of the free energy �left column� on the position of the vortex and cross sections
right column� for y=0 �solid curves� and for x=y �dashed curves� in a square sample with side a=8.0� and thickness
=0.1� and �=1.0 for four values of the applied field: �a� H0 /Hc2=0.05, �b� H0 /Hc2=0.15, �c� H0 /Hc2=0.2, and �d�

0 /Hc2=0.3.
IG. 15. The energy barrier for vortex penetration �thick curves� and expulsion �thin curves� along the side �solid curves�

nd diagonal �dashed curves� of the sample as a function of the external field for the sample of Fig. 14.
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nergy barrier strongly depends on the GL parameter �: the magnetic field range over which the
arrier exists is larger �consequently, the first critical field Hc1� for small values of �, for which the
ample behaves like a type-I superconductor.

We also studied the L=2 state in the disk and found for some values of the field an energy
arrier between the multivortex and the giant vortex state. We also considered a superconducting
ing and a square disk. For a superconducting ring we found a minimum in the free energy in the
uperconducting region of the sample for some range of magnetic field values when there are a
umber of vortices inside the hole, indicating that a vortex can be trapped in a metastable state in
his region. For a superconducting square the vortex feels a larger barrier along the diagonal of the
ample, while the lowest barrier is found along the middle of the sides of the square. The results
or the square confirm the vortex entry laterally, through the sample edge.
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We build a discrete form for the Ginzburg–Landau thermodynamic potential for an
infinite film and find how the TDGL equations are related to it. We discuss why the
usual superconductor-insulator boundary condition, which prohibits the passage of
superconducting current, should be questioned in dynamic problems; nevertheless,
we conclude that this condition remains valid. The formalism we develop enables
us to deal with situations in which surface charge is present at the boundaries.
These situations include the Hall configuration when the influence of the normal
electrons is not negligible and the case of an electromagnetic wave parallel to the
film. In the case of the electromagnetic wave, we evaluate the electromagnetic field
inside the superconductor and follow the motion of the vortices. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2010352�

. INTRODUCTION

A widely used system of equations for the evolution of physical quantities in a superconductor
s a simplified version of the time-dependent Ginzburg–Landau equations:1

�t� = −
1

�
��− i � − A�2� + �1 − T�����2 − 1��� + f̃ , �1�

�tA = �1 − T�Re��̄�− i � − A��� − �2 � Ã � Ã A . �2�

ere � is the order parameter, t is time, A is the electromagnetic vector potential, � is the ratio
etween the relaxation times of � and A , � is the Ginzburg-Landau parameter, T is the tempera-

ure and f̃ a random “force” that simulates thermal fluctuations. � has been normalized so that in
he absence of electromagnetic field its absolute value would be 1, the unit of time is
��2�2�0�� /c2, where ��0� is the coherence length at zero temperature and � is the conductivity,
he unit of length is ��0�, the unit of temperature is the critical temperature, and the the unit of A
s �0 /2���0�, where �0=hc /2e is the quantum of flux. We have chosen a gauge such that the
calar potential is zero.

We will regard � as a material-dependent parameter, although for given microscopic models
ts value is prescribed by the model. As a general policy for this article, the parameter values that
e will consider are not necessarily those of typical materials, but rather those that easily exhibit

he effects that I would like to present.
When the exterior of the sample is insulating, these equations are usually supplemented by the

oundary conditions

�
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�̂ · �− i � − A�� = 0, �3�

here �̂ is a vector perpendicular to the interface, and

� Ã A = � Ã Ae, �4�

here Ae is the vector potential at the external part of the interface and in general is obtained by
olving Maxwell’s equations in the exterior. The main purpose of this article is the revision of
hese boundary conditions.

This set of equations is usually integrated by a finite-differences method. As a few examples,
ee Refs. 2–5.

In this study we will limit ourselves to a very simple geometry: an infinite superconducting
lm with boundaries at the planes y=0 and y=d, with magnetic field in the z direction. We will
ssume that the quantities in the problem do not depend on z. In this situation, A can be taken
erpendicular to the z axis.

I. USEFUL EQUALITIES

. Gauge factor

We define the unitary fields

Ux�x,y,t� = exp�− i�
0

x

Ax�x�,y,t�dx�� , �5�

nd similarly we define Uy. We follow a notation in which Ax denotes the component of A in the
direction. An inherent problem when using Ax is that it grows indefinitely with time if the

verage electric field in the x direction does not vanish; use of Ux avoids this problem.
By direct derivation and using the notation Jx=�x�Ux�� we obtain

ŪxJx = Ūx�x�Ux�� = ��x − iAx�� �6�

nd

Ūx�xJx = Ūx�xx
2 �Ux�� = ��x − iAx�2� , �7�

here the bar denotes complex conjugation.

. Discretization

Having in view a numeric treatment of the problem by means of a finite difference technique,
e introduce a rectangular grid for the coordinates of the position in the sample. Figure 1 shows
miscellaneous portion of the grid. It contains Ny rectangular cells in the y direction. Since we

onsider an infinite sample, we shall take a reasonably large number Nx of cells in the x direction,
hat cover a length L, and assume periodic boundary conditions in that direction, with periodicity
. Our discretization scheme will take ��x ,y� as constant in rectangles centered at the vertices of

he grid, as the rectangle “I.” The value of ��x ,y� in the rectangle will be denoted by �i,j, where
i , j� are the integer coordinates of the vertex at which the rectangle is centered. The sides of the
ectangle are ax=L /Nx and ay =d /Ny. On the other hand, �x��x ,y� and Ax�x ,y� will be taken as
onstant in rectangles such as II, which have their vertical sides centered at neighboring vertices.
he size of these rectangles is also ax	ay.

Special care is required when dealing with quantities at the boundaries y=0 and y=d, which
re marked as thick lines in Fig. 1. �5,0 is the value of � in rectangle III, and the subscript �3,Ny�
ill be used for �x� and Ax in rectangle IV. Both these rectangles have size ax	ay /2. On the other
and �y� and Ay will have a constant value in rectangles like V, which have size ax	ay, even if

hey touch the boundary.
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We define now the link variable Ui,j
x =exp�−iAxax� �respectively, Ui,j

y =exp�−iAyay�� where Ax

s taken at the rectangle between the vertices �i , j� and �i+1, j� �respectively, between �i , j� and
i , j+1��. In the discrete approximation we have

Ux�xi,yj� = 	
k=0

i−1

Uk,j
x , �8�

here xi= iax and yj= jay, and similarly for Uy. Using Eqs. �7� and �8� and discretizing the second
erivative we obtain

��x − iAx�2��xi,yj
= �Ui,j

x �i+1,j − 2�i,j + Ūi−1,j
x �i−1,j�/ax

2 �9�

o that the discrete approximation for Eq. �1�, excluding the noise, can be written as

��t�i,j =
Ui,j

x �i+1,j − 2�i,j + Ūi−1,j
x �i−1,j

ax
2 +

Ui,j
y �i,j+1 − 2�i,j + Ūi,j−1

y �i,j−1

ay
2 − �1 − T����i,j�2 − 1��i,j .

�10�

We build now a discrete free energy. The Ginzburg–Landau free energy can be written as

G = Gv + Gx + Gy + GA �11�

here Gv is the contribution of the vertices, Gx is the contribution of the links in the x direction
nd Gy in the y direction, and GA does not depend on �. Explicitly,

Gv = �1 − T� � ����4/2 − ���2�dx dy , �12�

Gx =� ��− i�x − Ax���2dx dy =� ��x�Ux���2dx dy �13�

nd similarly for Gy. The integrals are over the volume of a period.
v

IG. 1. The dashed rectangles enclose areas over which the fields of the model are approximated by constants. The thick
ines are the boundaries of the superconductor.
We now replace the integrals over volume by sums over rectangles. For G we obtain
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Gv = �1 − T� 
 ���̄i,j�i,j�2/2 − �̄i,j�i,j�Vi,j
v , �14�

here Vi,j
v is the volume of a rectangle of the type I or III in Fig. 1, which is appropriate for the

ertex at �i , j�. The sum is over a set of rectangles that cover a period. For Gx we discretize the
erivative, make use of Eq. �8� and obtain

Gx =
1

ax
2 
 �Ūi,j

x �̄i+1,j − �̄i,j��Ui,j
x �i+1,j − �i,j�Vi,j

x , �15�

here Vi,j
x is the volume of the appropriate rectangle between the vertices at �i , j� and at �i

1, j�. For Gy we have a similar expression, but this time the rectangles are between the vertices
t �i , j� and at �i , j+1�.

For a vertex �i , j� in the interior of the sample, all the four neighbors �i±1, j� and �i , j±1� are
present in the sums and Vi,j

v =Vi,j
x =Vi,j

y =axay, so that

−
1

Vi,j
v

�G

��̄i,j

= − �1 − T����i,j�2 − 1��i,j +
Ui,j

x �i+1,j − 2�i,j + Ūi−1,j
x �i−1,j

ax
2

+
Ui,j

y �i,j+1 − 2�i,j + Ūi,j−1
y �i,j−1

ay
2 �16�

nd comparison with Eq. �10� gives

��t�i,j = −
1

Vi,j
v

�G

��̄i,j

�17�

or every vertex in the interior of the sample.

II. BOUNDARY CONDITION FOR THE MAGNETIC FIELD

Assuming that the superconductor and the insulator are not magnetic �i.e., have the same
ermeability as in vacuum�, which is the usual situation in superconductivity, there is no need to
istinguish between the magnetic field and the magnetic induction �except for a possible universal
actor that depends on the units� and this field is given by �ÃA. Since the divergence of �ÃA
anishes identically and since its rotor is proportional to the current density, that is finite, �ÃA is
ontinuous everywhere and Eq. �4� follows.

In some articles it is claimed that only some of the components of �ÃA are continuous at the
nterface. This would be the case if the permeability were discontinuous, but in practically any
ituation this is an unnecessary complication.

In most articles that deal with numeric solutions, the implementation of Eq. �4� is not shown
xplicitly. Perhaps the only exception is Ref. 4. In Ref. 4 Eq. �4� is not enforced at the boundary
tself, but rather at the cells that touch the boundary. Although both requirements become equiva-
ent in the limit of a dense grid, Eq. �4� can be substituted by a condition at the boundary itself by
equiring an adapted form of Eq. �2�:

�t�Ax�i,0 =
1 − T

ax
Im��̄i,0Ui,0

x �i+1,0� +
2�2

axay
2 Im�exp�iaxayHe�Ui,0

x Ui+1,0
y Ūi,1

x Ūi,0
y � , �18�

here He=�ÃAe · ẑ, and similarly for �t�Ax�i,Ny
. The left-hand side of this equality stands for

inus the normal current density, the first term at the right-hand side for the supercurrent density
nd the last term for minus the total current density. The terms at the right are worked out in Ref.
. The first term is based on Eq. �6� and the last term approximates the argument of the product of
nitary numbers by its imaginary part. The factor 2 in the last term comes from the fact that the

agnetic field changes from its value at the rectangle ��i ,0� , �i+1,0� , �i+1,1� , �i ,1�� to He over a
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ength ay /2. Since the usual computational variable is Ux rather than Ax, one can replace

t�Ax�i,0= iŪi,0
x �tUi,0

x /ax.
Although Eq. �18� is equivalent to Eq. �4� in the appropriate limit, one might say that it has a

ifferent “numerical philosophy,” in the sense that Eq. �4� has the form of a constraint, whereas
q. �18� has the form of an evolution equation.

V. BOUNDARY CONDITION FOR THE ORDER PARAMETER

. A “natural” condition

The mathematical inclination toward condition �3� in static problems is that it is a “natural”

oundary condition, i.e., when we solve the variational problem 
G /
�̄=0 without requirements

t the boundary, Eq. �3� is automatically obtained. In other words, Eq. �3� causes 
G /
�̄=0 to
ave the same form at the boundary as in the interior of the superconductor.

The physical justification for Eq. �3� in static problems is that charge cannot leak into the
nsulating material. Therefore, the component of the current in the � direction has to vanish and

his is proportional to the real part of the product of expression �3� times �̄. In order to eliminate
he imaginary part too, the De Gennes criterion6 has to be invoked.

In a dynamic situation, none of these arguments is valid. 
G /
�̄�0, the De Gennes criterion
s not intended to be valid, and it is only the total current that has to be tangential to the interface.

priori, there is no physical restriction to the possibility of a supercurrent bringing electrons from
he interior to the boundary, and a normal current bringing the electrons back to the interior.

oreover, if the supercurrent is indeed tangential, then the normal current and thus the electric
eld have to be tangential too. Since there are several problems in which the electric field does
ave a component perpendicular to the interface, the requirement that this component vanish at the
oundary seems quite artificial. Examples in which a perpendicular component of the electric field
s expected to exist include the Hall effect,7,8 anisotropic superconductors9 and cases in which an
lectric field is externally applied.10 We should therefore refrain from accepting condition �3� for
ime-dependent situations, unless we can extend the justification for it.

We suggest that the natural boundary condition for a time-dependent problem be such that it
esults in an evolution equation of the same form at the boundary and in the interior. In our case,
e will require Eq. �1� to remain valid at the boundaries. But Eq. �1� �without noise� can be

ritten as ��t�=−
G /
�̄. Therefore, since it is Eq. �3� that renders 
G /
�̄ insensitive to the
resence of the boundary, Eq. �3� should remain the natural boundary condition for the time-
ependent problem. As a matter of taste, I find it more convincing to show this feature for the
iscretized problem: we will require that the same evolution equation �17� be obeyed at the
ertices located at the boundary. Explicitly, let us consider the vertex �i ,0�. In this case Vi,0

v

axay /2 and there are four rectangles that contribute a term to the free energy that includes �̄i,0.
he sum of these terms is

Gi,0 =
axay

2
��1 − T�� ��̄i,0�i,0�2

2
− �̄i,0�i,0� +

�Ūi,0
x �̄i+1,0 − �̄i,0��Ui,0

x �i+1,0 − �i,0�
ax

2

+
�Ūi−1,0

x �̄i,0 − �̄i−1,0��Ui−1,0
x �i,0 − �i−1,0�

ax
2 � + axay

�Ūi,0
y �̄i,1 − �̄i,0��Ui,0

y �i,1 − �i,0�
ay

2 �19�
nd Eq. �17� gives
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��t�i,0 = − �1 − T����i,0�2 − 1��i,0 +
2�Ui,0

y �i,1 − �i,0�
ay

2 +
Ui,0

x �i+1,0 − 2�i,0 + Ūi−1,0
x �i−1,0

ax
2 �20�

nd a similar expression is obtained for the evolution of �i,Ny
. This equation was also suggested in

ef. 4, using a different line of argument. As in the case of Eq. �18�, Eq. �20� replaces a constraint
y an evolution equation.

We will now see that in the limit of a dense grid Eq. �20� is equivalent to Eq. �3�. We define

Fi,j = Ui,j
y ���t�i,j + �1 − T����i,j�2 − 1��i,j −

Ui,j
x �i+1,j − 2�i,j + Ūi−1,j

x �i−1,j

ax
2 � �21�

nd note that Fi,j remains finite in the limit of a dense grid. From Eq. �20� and discretization of
y =�y�Uy�� we have

Jy�xi,ay/2 = ayFi,0/2 + O�ay
2�; �22�

ikewise, from Eq. �10�,

�yJy�xi,ay
= Fi,1 + O�ay� �23�

o that

Jy�xi,0
= ay�Fi,0 − Fi,1�/2 + O�ay

2� = 0 + O�ay
2� . �24�

ut due to Eq. �6�, this is the same as condition �3�.
The outcome of this subsection is thus that, instead of finding an alternative to Eq. �3�, we

ave found a justification for it.

. An alternative implementation

If we accept that the boundary condition is Eq. �3�, it follows from identity �6� that Jy�x,0

0 and therefore U y�x ,2ay���x ,2ay�−U y�x ,0���x ,0��4�U y�x ,ay���x ,ay�−U y�x ,0���x ,0��.
rom here we can isolate the order parameter at the boundary and obtain

�i,0 = 1
3Ui,0

y �4�i,1 − Ui,1
y �i,2� + O�ay

3� . �25�

ince that Ui,1
y �i,2−�i,1 is of order O�ay

2�, we can also write �i,0=Ui,0
y �i,1+O�ay

2�. Similarly, at the

ther boundary, �i,Ny
= �1/3�Ūi,Ny−1

y �4�i,Ny−1− Ūi,Ny−2
y �i,Ny−2�+O�ay

3�.

. Example

We consider a situation in which external sources create a constant magnetic field 0.5ẑ �in
nits �0 /2��2�0��, while a current I along the film induces an additional field. In appropriate
nits, the magnetic field will be �0.5− I�ẑ for y�0 and �0.5+ I�ẑ for y�d. The reason for studying
his situation is that we know8 that for appropriate parameters the transverse electric field does not
anish.

Figure 2 shows the volume average of the component of the electric field in the y-direction, as
function of the current. The same quantity was once evaluated using Eq. �20� for the order

arameter at the boundaries, and also using Eq. �25� without the O�ay
2�-correction term. There is

ractically full agreement between these two methods. When the entire Eq. �25� is used, the
valuation algorithm seems to be unstable for the chosen parameters.

As reported in Ref. 8, this example exhibits chaotic behavior: minute changes in the initial
alues of � and A can reverse the sign of Ey. For the purpose of comparison, all the results in Fig.

are presented with the same sign.
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. INTRODUCTION OF A SURFACE CHARGE

The robustness of Eq. �3� when dealing with the Hall effect is somehow surprising, since in
he case of a classical normal conductor the Hall field is generated by charges that accumulate at
he surface of the conductor, and this field is uniform. However, a model based on Eq. �2� is
nable to create a surface charge. Equation �2� can be written as

� Ã � Ã A  jT, �26�

here jT is the total �superconducting plus normal� current density. From here it follows that
· jT=0 and therefore there cannot be any charge redistribution.

In order to enable the creation of volume and surface charges, we introduce the displacement
urrent and replace Eq. �2� by the entire Maxwell equation:

�2 � Ã � Ã A + ��tt
2A + �tA = �1 − T�Re��̄�− i � − A��� , �27�

here �= �� /c�2 or, dividing the denominator by the unit of velocity, �= �c /4�����0��2. This
educes to Eq. �2� if we set �=0. As in the case of �, we will assume that � depends on the
aterial and can take a wide range of values.

Since Eq. �27� contains a second derivative with respect to t, Euler integration requires two
teps. We define

Ei,j
y = − ay�tAy�xi,�j+1/2�ay

= − iŪi,j
y �tUi,j

y , �28�

nd similarly for the x direction. The y-component of the electric field is Ei,j
y /cay. From Eq. �27�,

i,j
y obeys

Ei,j
y �t + �t� − Ei,j

y �t�
�t

=
C − Ei,j

y �t�
�

, �29�

IG. 2. Volume average of the transverse electric field as a function of the current. There are two solid lines that coalesce
ithin the scale of this graph; these were obtained using Eq. �20� and the O�ay

2� approximation for Eq. �25�. The dotted line
as obtained using the entire Eq. �25� and the dashed line was obtained using the method developed in Sec. V, which
ermits accumulation of volume and surface charge. The unit of current is c�0 / �2���0��2 per cm of length in the z
irection; the electric field unit is c�0 / �8�2�2��3�0��. Parameters used: �=0.03, �=2, d=8, dI /dt=3.3	10−4 �see Ref. 8
or further details�.
here �t is the time step and we have used as shorthand
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C = ay��2�� 	 � 	 A�y − �1 − T�Re��̄�− i�y − Ay�����xi,�j+1/2�ay
=

−
�2

ax
2 Im�Ūi,j

x Ūi+1,j
y Ui,j+1

x �Ui,j
y �2Ui−1,j

x Ūi−1,j+1
x Ūi−1,j

y � − �1 − T�Im��̄i,jUi,j
y �i,j+1� . �30�

The algorithm �29� may lead to numerical difficulties for small �. Therefore, keeping the same
rder in �t, we substitute Ei,j

y �t� by Ei,j
y �t+�t� at the right-hand side of Eq. �29� and isolate Ei,j

y �t
�t�. This gives

Ei,j
y �t + �t� =

�Ei,j
y �t� + �tC
� + �t

. �31�

fter Ei,j
y �t+�t� is evaluated, Ui,j

y �t+�t� is evaluated using Eq. �28�, i.e.,

Ui,j
y �t + �t� = Ui,j

y �t��1 + i�tEi,j
y �t + �t�� . �32�

he same procedure is followed for Ui,j
x �t+�t�.

The volume density of charge �per unit length in the z-direction� at an internal vertex �i , j� is
iven by Gauss law:

�i,j =
1

4�c
�Ei,j

x − Ei−1,j
x

ax
2 +

Ei,j
y − Ei,j−1

y

ay
2 �; �33�

or a vertex at the boundary y=0

�i,0 =
1

4�c
�Ei,0

x − Ei−1,0
x

ax
2 +

2�Ei,0
y + ay�tAy�xi,0�

ay
2 � , �34�

nd similarly for y=d.

. The Hall field

The same problem treated in Sec. IV C was considered again, using Eq. �27� with ��0. The
agnetic field is independent of time outside the superconducting film �assuming that the current

aries slowly�, implying that the electric field has to be uniform in the exterior regions. The easiest
ay to achieve this condition is by requiring that the electric field vanish outside the film. The

esult for the average value of the transverse field for �=100 is shown in Fig. 2. The curve is
ounded, suggesting a sort of capacitive behavior, but the average transverse field is not always
maller than in the case �=0.

Figure 3 shows the profile of the transverse field �averaged over t and x only� across the film,
or a current close to the maximum in Fig. 2. From the slope of the curve we see that �on the
verage� there is volume charge in the region between y=0 and y�5.5; the sign of the charge
hanges roughly in the middle of this range. At the boundaries, we obtain Ey�0+�=Ey�d−�=0. In
ig. 4 we investigate whether Ey�0+� vanishes for the entire range of currents. For this purpose we
lot Ey in the closest and next to closest links to the boundary, which correspond to the positions

y=1/2 and y=3/2. If Ey�0+�=0, then in the linear approximation we should have Ey�1/2�
Ey�3/2� /3 and Fig. 4 indicates that this is indeed the case.

As a conclusion of this subsection we might state that the behavior of the Hall effect for a
uperconductor is opposite to that for a classical normal conductor: volume charges are present
nd surface charges are absent. The absence of surface charge is not surprising if we note that we
ave entirely neglected the influence of the normal electrons; this influence will be added in the

ollowing subsection.
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. Influence of the magnetic force

The last term in the left-hand side of Eq. �27� stands for the normal current density. On doing
his identification, we are assuming that the normal current density is proportional to the electric
eld E. This assumption is inaccurate; the normal current density is actually proportional to the
orce exerted on every charge carrier, which equals the charge times E+v	B /c, where v is the
elocity of the carrier and B=�ÃA is the magnetic field. This means that Eq. �27� becomes

�2 � Ã � Ã A + ��tt
2A + �tA − v Ã �� Ã A� = �1 − T�Re��̄�− i � − A��� , �35�

here v is the drift velocity of the normal electrons.
Translated into the variables we are using, substitution of E by E+vÃB /c amounts to the

eplacement of Ei,j at the right-hand side of Eq. �29�:

Ei,j
x → Ei,j

x +
vy

2ay
Im�Ūi,j−1

x Ūi+1,j−1
y Ūi+1,j

y Ui,j−1
y Ui,j

y Ui,j+1
x � , �36�

IG. 3. Transverse component of the electric field as a function of position for I=0.85 and �=100. The superconducting
lm occupies the region 0�y�8. Minute changes in the initial fields may reverse the sign of the contribution of the
uperconducting electrons to Ey;

8 both cases are presented. Thick lines: �=0 �Sec. V A�; thin lines: �=−5	10−4 and n
2 �Sec. V B�.

IG. 4. Transverse component of the electric field at the links close to the boundary at y=0. The thick line stands for links
entered at y=3ay /2, the thin line for y=ay /2, and the dashed line was obtained by dividing Ey�3ay /2� by 3. The feature

t I�0.25 corresponds to a short range of currents where Ey is chaotic.
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Ei,j
y → Ei,j

y +
vx

2ax
Im�Ūi−1,j

y Ūi−1,j+1
x Ūi,j+1

x Ui−1,j
x Ui,j

x Ui+1,j
y � . �37�

f j=0 or j=Ny, the term added to Ei,j
x in Eq. �36� should be substituted by axvyHe, where He is the

agnetic field at the appropriate boundary �and in the present example is affected by the current
long the film�.

Let us now adopt a model for the drift velocity. Denoting by −e the charge of an electron and
y n the total density of electrons relative to the maximal density of condensed electrons, then, in
ppropriate units, the normal current density is −e�n− ���2�v. By Ohm’s law, this current density
quals ��E+vÃB /c�, but assuming that the magnetic force is much smaller than the electric force
t can be approximated by �E. The conductivity � might depend on ���, but since it is conven-
ionally absorbed within the time unit, we will stick to the assumption that � is constant. These
ssumptions lead to the form

v =
�E

n − ���2
, �38�

here � and n are “material constants.” Operationally, ���2 is conveniently approximated by taking
he geometric average of ��i,j�2 at both extremes of the appropriate link.

A comparison between this model and the case in which the magnetic force is disregarded is
resented in Fig. 3. For the present model Ey is discontinuous at the boundaries, showing that there
s indeed a surface charge. Ey has opposite signs at both boundaries; this is due to the fact that in
he considered situation the total magnetic field has opposite signs at both boundaries. Also, the
ize of the magnetic field at y=8 is almost four times larger than that at y=0, and this has an
nfluence on the respective sizes of Ey. The curves for �=−5	10−4 are above the curves for �
0 for y below �1.5 and then the situation is reversed; we have verified that this is where the
verage magnetic field changes sign.

. Effect of a parallel electromagnetic wave

Let us finally consider a situation in which a time dependent transverse electric field is
pplied. We consider the case in which outside the superconducting film there is a plane mono-
hromatic electromagnetic wave moving in the x direction, with electric field in the y direction. In
rder to fit the periodicity that was imposed in the previous sections, we take a wavelength L�
39.5. �L� is a bit shorter than L, since a row of links has to overlap in order to implement
eriodicity.� Let us take �=2 and �=1, implying that c=2. In order to have a concrete problem let
s take, outside the film, an electromagnetic potential in the y-direction with

Ay = 0.5x − 0.1
L�

2�
cos�2�

L�
�x − 2t�� + C , �39�

here C is a constant that might be different for y�d and y�0. This potential satisfies the
axwell equation outside the film �Eq. �27� without the right hand side and without the term �tA�

nd is therefore an acceptable external condition. Equation �39� describes the total external elec-
romagnetic potential; we will not analyze what its sources are. On the average, this potential
escribes an external magnetic field 0.5ẑ, as in the previous problem. Superimposed to this static
eld, there is an electromagnetic wave that produces an electric field

−
1

c
�tA = 0.1 sin�2�

L�
�x − 2t��ŷ �40�

utside the film. This time we assume that no net current flows along the film. We will also neglect

he magnetic force considered in Sec. V B.
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Introducing the appropriate expression for the external field He into the program, we can find
he fields inside the sample. After a transient stage, the electric field, the charge distribution, and
he magnetic field take the form of a wave that moves together with the external wave and may be
pproximated by

Ex�x, jay,t� � 0.1

m=1

�

pj,m
x sin�2m�

L�
�x − 2t� + � j,m

x � ,

Ey�x,�j + 1/2�ay,t� � 0.1

m=1

�

pj,m
y sin�2m�

L�
�x − 2t� + � j,m

y � ,

��x, jay,t� � 0.1

m=1

�

pj,m
� sin�2m�

L�
�x − 2t� + � j,m

� � ,

IG. 5. Size of the first harmonic of the components of the electric field, pj,1
x and pj,1

y . The line that refers to pj,1
x

respectively, pj,1
y � is marked with the letter “x” �respectively, “y”�. The absissa y is related to the discrete index j through

y= jay �resp. y= �j+1/2�ay�. The dashed lines were evaluated using surface charge only.

IG. 6. Phase lag of the first harmonic of the components of the electric field inside the superconducting film. The

onventions are the same as in Fig. 5.
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Bz�x,�j + 1/2�ay,t� − 0.5 � 0.1

m=1

�

pj,m
B sin�2m�

L�
�x − 2t� + � j,m

B � , �41�

here the pj,m and � j,m sets are constants that can be found by performing a Fourier analysis. The
actor 0.1 has been kept for the purpose of comparison with the external field. The main results of
his analysis are shown in Figs. 5–7. The coefficients pj,m decrease by an order of magnitude for
very unit added to m, and we present the first harmonic only.

We see from Figs. 5 and 6 that the electric field is not continuous at the boundaries, i.e., pj,1
y

oes not tend to 1 and pj,1
x and � j,1

y do not tend to 0. This discontinuity requires a surface charge.
ndeed, evaluation of pj,1

� shows that the values of p0,1
� and pNy,1

� are more than 600 times larger
han the average value of pj,1

� in the interior, so that these may be regarded as surface charges. We
lso checked what happens if only these surface charges are considered and the volume charges
re neglected, i.e., we used Eq. �27� only for the links that touch the boundaries and Eq. �2� for the
nterior links. The results are shown by dashed lines in Figs. 5 and 6 and differ just slightly from
hose obtained when Eq. �27� is used everywhere.

Figure 7 shows �in agreement with Eq. �4�� that the magnetic field is continuous at the
oundaries, implying that there is no surface current. This result may seem surprising, since there

FIG. 8. Positions of several vortices as functions of the number of elapsed periods. T=L� /2.

IG. 7. y dependence of the main contributions to the magnetic field. The thick line �“p”� stands for the size of the first
armonic, pj,1

B ; the dashed line �“5PL”� stands for the phase lag and equals 5� j,1
B /�; the thin line �“−500M”� is the

ontribution that can be related to the vortex pattern and equals −500M, where the magnetization Mẑ is the time average
f �Ã �A−Ae� /4�. The absissa y is related to the discrete index j through y= �j+1/2�ay.
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re surface charges and the charge distribution advances together with the wave; in order to
reserve the continuity of the magnetic field, the motion of these charges has to be compensated
y Maxwell’s displacement current.

Besides the electromagnetic field, the position of the vortices is usually of interest. We evalu-
te these positions as follows. We first locate a vertex �i0 , j0� where the absolute value of the order
arameter �i,j has a discrete local minimum; we then obtain a fit of � as a linear function of x and

y in the region that contains nine vertices with corners at �i0±1 , j0±1�, and finally solve for the
osition at which ��x ,y�=0. For the particular example we are considering, when only the static
agnetic field is applied and the wave is absent, there is a line of vortices along y=d /2. When the
ave is applied, we find that the vortices scarcely move in the y direction; the x values for the
ortices along a region of half a wavelength are shown in Fig. 8.

We see that the positions of the vortices oscillate in response to the wave, but they are also
ragged with a velocity 1.24	10−2c. Due to this drag, the period of the oscillatory part of a vortex
otion is not the same as that of the wave, but is slightly Doppler-shifted.

Since the vortices are arranged in a nearly periodic pattern, with a periodicity and drag
elocity that differ from those of the wave, we might also expect contributions to the electromag-
etic field that exhibit this periodicity. However, for the parameters chosen in this example, this

IG. 9. Contour plots of the magnetic field at time t=230. �a� Direct evaluation and �b� approximaton that takes the first
armonic in Eq. �41� and the time average of the magnetization. The plots cover the region 0.25�x�39.25, 0.25�y
7.75.
ontribution is smaller by three orders of magnitude than that of the first harmonic that follows the
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ave. What happens is that the distance between consecutive vortices is of the order of the
agnetic penetration depth and the line of vortices behaves approximately as a continuum. As a

onsequence, their contribution is approximately independent of x and may be fairly described by
he average magnetization M�y�. Figure 9 describes the magnetic field for a given instant and
ompares it to the approximation Bz�x , �j+1/2�ay�=0.5+0.1pj,1

B sin� 2�

L�
�x−2t�+� j,1

B �+4�M�y�.

I. DISCUSSION

For a time-independent situation there are good reasons to assume that the supercurrent has to
e tangential to the superconductor-insulator boundaries. For time-dependent situations these rea-
ons are no longer valid, but we find new reasons to preserve this assumption. Since the total
urrent cannot cross the boundary, it follows that the normal current has to be tangential too.

Taking into account the displacement current enables the accumulation of charge at the bound-
ry and the total current is not necessarily tangential. However, for a stationary situation, the
mount of charge at the boundary achieves a final value and from then on the total and the normal
urrents become tangential. In the case of a superconducting film in the Hall configuration, when
he magnetic force on the normal electrons is not neglected, the electric field is not tangential. This
oes not imply that the normal current is not tangential, since in this case the normal current is not
roportional to the electric force on the electrons.

In the presence of an oscillating electric field perpendicular to the boundary, as may be
ncountered when a polarized grazing electromagnetic wave propagates parallel to a film, the
urface charge also oscillates and does not attain a final value. Accordingly, the total and the
ormal currents are not tangential.

This work has been supported in part by the Israel Science Foundation. I would like to
cknowledge the IMA at the University of Minnesota for the hospitality during part of the time
evoted to this study. I wish to thank Gustavo Buscaglia for sending me the program used in
ef. 3.
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We consider a Ginzburg–Landau three-dimensional functional with a surface
energy term to model a nematic liquid crystal with inclusions. The locations and
radii of the inclusions are randomly distributed and described by a set of finite
dimensional distribution functions. We show that the presence of inclusions can be
accounted for by an effective potential. Our main objectives are �a� to derive the
sufficient conditions on the distribution functions such that the solutions converge
in probability to a solution of a homogenized deterministic problem and �b� to
compute the effective potential. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2013127�

. INTRODUCTION

Intermediate between ordered solids and amorphous liquids, liquid crystals possess both spe-
ial structure and unique optical properties. The simplest kind of a liquid crystal, known as a
ematic, is composed of rodlike molecules exhibiting local orientational order. That is, the mol-
cules locally orient themselves along some preferred direction, while maintaining the ability to
ove around freely. The preferred direction can vary from point to point and coincides locally
ith the direction of the optic axis. As for any heterogeneous, optically uniaxial medium, the
verall optical properties of a nematic material are determined by the spatial distribution of the
irection of the optic axis.

Because positions of their molecules are not constrained, nematic liquid crystals can flow like
iquids. At the same time, spatially nonuniform orientational order can produce elastic interactions
hat lead to complex nematic structures with elaborate patterns and topological defects. These
tructures can be subsequently manipulated by influencing molecular orientations with external
lectromagnetic forces. The corresponding changes in optical characteristics drive most of the
urrent practical uses of liquid crystal materials.

Although in their “pure” form liquid crystals have been widely used in a variety of important
pplications, most notably liquid crystal displays, a significant research effort has been concen-
rated recently on liquid crystal-based composites. These materials are of considerable interest for
isplay technologies based upon changing the light scattering properties of composite systems via
xternal fields. Such systems can have distorted or multiply connected random geometries,14 such
s those produced by the polymer-dispersed liquid crystals �PDLC�,13 or dispersions of agglom-
rations of silica spheres in a nematic host.17

A structure of a liquid crystal-based composite depends strongly on whether or not a liquid
rystal is used as its host material. For example, in a direct nematic emulsion14 a nematic dispersed

�Electronic mail: berlyand@math.psu.edu
�
Electronic mail: khruslov@ilt.kharkov.ua

46, 095107-1022-2488/2005/46�9�/095107/15/$22.50 © 2005 American Institute of Physics
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n water separates into distinct, nearly spherical drops. The drops have simple structures dependent
n the boundary conditions at the nematic-water interface. For this reason, direct liquid crystal
mulsions have been used as a model medium to study topological defects.14

An inverse nematic emulsion19 differs from a direct emulsion in that isotropic water droplets
re dispersed in a nematic host. Structures of inverse emulsions are significantly more complex
han direct emulsions. In inverse nematic emulsions and, more generally, in colloid suspensions in
ematic liquid crystals, the interactions between foreign inclusions in a nematic host lead to
ormation of a variety of ordered and disordered structures. A defining impact on formation of
tructures is made by both anchoring conditions on the surfaces of inclusions and the global
eometry of a liquid crystalline matrix.

The rheological effects in liquid crystals with inclusions depend crucially on the volume
raction of inclusions �see, e.g., Ref. 26�. For example, a soft solid with a significant storage
odulus was obtained in Ref. 20 by mixing model colloidal particles with a thermotropic nematic

iquid crystal. The suspended particles with very small radii, behaving as nearly perfect hard
pheres, constituted up to 20% of the mixture. The colloid-liquid-crystal composite described in
ef. 20 is a switchable electro-optical solid material, giving it significant advantages in handling
nd processing over the conventional, free-flowing liquid crystals.

In this paper we consider a mathematical model for a class of nematic liquid crystal compos-
tes with low volume fraction of small randomly distributed inclusions. Within this model, a
ematic liquid crystal is described by the Ginzburg–Landau functional �2.2� with a �positive or
egative� surface energy term. We assume that both the surface energy density and sizes of
nclusions are controlled by the same small parameter �. Randomness in the particle’s sizes and
ocations is the main issue of our consideration and the main two objectives of this work are �a� to
erive the conditions on the distribution functions such that the solutions converge in probability
easure to a solution of a homogenized deterministic problem and �b� to compute the effective

otential.
A similar problem for a deterministic geometry characterized by a small volume fraction of

nclusions was considered in Refs. 4 and 6 �see also Refs. 16 and 25 for physical problems�. It was
hown that the presence of inclusions can be accounted for by an effective potential that was
omputed explicitly as a function of material parameters and geometric characteristics of inclu-
ions. Two main control parameters were introduced—the average size of inclusions and the
nverse intensity of the surface energy. The asymptotic limits when both parameters tend to zero
ere considered and all possible relationships between these two parameters that lead to nontrivial
omogenization limits were identified and studied. We emphasize that these relationships were not
educed from a specific physical problem—on the contrary, they arose in the course of the
omogenization analysis of the model. The relevance of these relationships to liquid crystal
omposites is an interesting open question suggested by our analysis. In the present paper we show
hat in the random setting the same scaling relationships lead to a nontrivial deterministic limit.

In Ref. 6, the effective potential was represented as a sum of two terms responsible for the
urface and the bulk energy of a thin boundary layer around inclusions, respectively. The analytic
ormulas for the effective potential that were obtained in Ref. 6 do not require the solution of a cell
roblem. �Cell problems for linear elliptic problems are defined in Ref. 3.� An additional geomet-
ic condition under which the homogenization procedure was carried out in Refs. 4 and 6 was that
he inclusions cannot form clusters.

The presence of the surface energy term in a variational formulation of our problem implies
hat the minimizer �which solves the nonlinear Ginzburg–Landau equation� is subject to Robin
oundary conditions on surfaces of inclusions. For linear scalar problems �Laplace operator� a
omogenization problem for perforated domains with Robin boundary condition on boundaries of
oles has been studied by several authors. In Refs. 8 and 9 the case of large holes, where the
omogenized operator becomes anisotropic, has been considered by using the method of meso-
haracteristics. In Refs. 11 and 12 several possible relations between a parameter in Robin bound-

ry condition and sizes of periodically arranged holes have been thoroughly studied and classified.

                                                                                                            



I
a

a
d
a
p

R
o
F
h
d
o

p
e

I

l

t

c
t

b
v

a

f

H
i
a

o
�
c
i
o

c

095107-3 Ginzburg–Landau model of a liquid crystal J. Math. Phys. 46, 095107 �2005�

                        
n the same work, a version of the two-scale approach �Refs. 1, 3, 15, and 21� suitable for the
nalysis of the Robin boundary condition on surfaces of holes, has been developed.

The case of deterministic inclusion that remains sufficiently far apart �the ratio of the size of
n inclusion to the distance between it and other inclusions is bounded� was treated in Ref. 5. The
omains were not required to have periodic geometry, and the surface energy term in �2.2� was not
ssumed to be negative. The main consequence of the lack of non-negativity is that there is no a
riori lower bound on the energy, and this bound must be established independently.

Under these assumptions on the functional and the geometry of the domain, it was shown in
ef. 5 that one can account for inclusions by an anisotropy of the homogenized differential
perator and an effective potential. The potential can be viewed as an effective external field.
urthermore, it was established that a “cross-term” of the form cikj��uk /�xj�ui is not present in the
omogenized energy. However, such a cross term may appear for more general domains, where
istances between inclusions can be much smaller than their sizes. At present this is an interesting
pen question.

Finally we note that in recent works22,2 homogenization problems for liquid crystals with a
eriodic array of polymeric inclusions in the presence of an applied magnetic field were consid-
red.

I. FORMULATION OF THE PROBLEM AND THE MAIN RESULT

An idealized mathematical model for a liquid crystal with spherical inclusions can be formu-
ated as follows.

Let G be a bounded domain in R3 with a piecewise smooth boundary �G and B�
i =B�x�

i ,ai�� be
he balls of small radii ai� centered at the points x�

i �i=1,… ,N��.
The small parameter � is of order of the average distance between the nearest balls and also

haracterizes the sizes of the balls B�
i . We assume that N���−3 and ai�=O����. Here ��2, that is

he balls are small with respect to the average distance to the nearest neighbor.
Let

G� = G \ �
i=1

N�

B�
i

e the perforated domain occupied by a liquid crystal. We introduce the class HU
1 �G���H1�G�� of

ector functions u :G�→R3 with the trace u=U on �G, where U :G→R3. For simplicity we

ssume that U�C1�Ḡ�.
Consider the variational problem

E��u� → min, u � HU
1 �G�� �2.1�

or the Ginzburg–Landau functional with a surface energy contribution on S�
i ,

E��u� � k�
G�

��u�2 + �
G�

��u�2 − 1�2 + q	
i
�

S�
i
�1 + ����,u�2� . �2.2�

ere S�
i =�B�

i and � is the unit normal vector to S�
i �for the sake of definiteness we assume that �

s directed into the domain G��. The quantity �� ,u�=	i=1
3 �iui is the scalar product in R3 and k, q,

nd �� are given parameters.
It follows from standard analysis18 that there exists at least one global minimizer u��HU

1 �G��
f the problem �2.1� and �2.2�. One can show that under certain conditions on the parameters k, q,

�, the sizes of the domain G, and the balls B�
i , the minimizer is unique. However, generally, there

ould be more than one minimizer. Further, the minimizers of problem �2.1� and �2.2� exist even
f the balls intersect, i.e., when the surface term in �2.2� is not defined at the points of intersection
f the spheres S�

i �the surface measure of the set of such points is zero�.
The minimizers of the problem �2.1� and �2.2� describe the equilibrium state of a liquid
rystalline medium occupying the domain G�.
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The direction of the vector-valued minimizer u� determines the average direction of the liquid
rystal molecules in the neighborhood of the point x and its magnitude determines, roughly
peaking, the fraction of the molecules in a neighborhood of a point x oriented along the preferred
irection of u �the orientational rate�. The parameters k, q, �� characterize the materials properties
f the liquid crystal and interfacial effects between the liquid crystal and the inclusions. These
arameters satisfy the following conditions: 0�k��, 0�q��, and −1�����.

In this paper we study the asymptotic behavior of the minimizers of problem �2.1� and �2.2�
s �→0, when the number of the balls N� tends to infinity, their radii tend to zero, and the
ocations of the balls in G and their radii are random.

More precisely we assume that the centers x�
i of the balls B�

i and their radii ai� are defined by
he set of s-partial distribution functions

fs
��x1,…,xs;a1,…,as�: �G�s 	 �0,��s → �0,�� �s = 1,2,…,N�� .

he probability of finding the location of the centers and the radii of a group of s balls in �xi ,xi

dxi�, �ai ,ai+dai�, where i=1,… ,s is

fs
��x1,…,xs;a1,…,as�dx1

¯dxs da1¯das.

hese functions satisfy the conditions of symmetry, normalization, and concordance which follow
rom their probabilistic interpertation �see, e.g., Ref. 10�

fs
��x1,…,xk,…,xl,…,xs;a1,…,ak,…,al,…,as� = fs

��x1,…,xl,…,xk,…,xs;a1,…,al,…,ak,…,as� ,

�
G
�

0

�

¯�
G
�

0

�

fs
��x1,¯,xs;a1,¯,as�da1 dx1

¯das dxs = 1, s = 1,…,N�,

�
G
�

0

�

fs
��x1,…,xs;a1,…,as�das dxs = fs−1

� �x1,…,xs−1;a1,…,as−1�, s = 2,…,N�.

he distribution functions generate the probability measure P� in the probability space 
�. The
oints �� of this space are in one-to-one correspondence with the random sets B����=�iB�

i in G.23

or any realization of the set B���� there exists at least one minimizer u��x ,��� of problem �2.1�
nd �2.2� in the domain G����=G \B����. Let us denote by M���� the set of the minimizers which
orrespond to ���
� and consider in the space 
� the random variable

����� = max
M����

�
G����

�u��x,��� − u�x��x,����2 dx , �2.3�

here u is a vector-valued function u�H1�G� and �x ,��� is the characterisic function of the
ubdomain G�����G.

We will show that under some conditions on the distribution functions f1
��x ;a� and

f2
��x1 ,x2 ;a1 ,a2� and with the appropriate choice of the vector function u the random variable �2.3�
onverges to zero in probability P� as �→0, i.e.,

lim
�→0

P�
�� � 
�:����� � �� = 1 �2.4�

or any ��0.
We now introduce the limiting �homogenized� vector function u and the conditions on the

ne-point and two-point distribution functions f1
� and f2

� for which the convergence takes place.
First, we assume that these functions have the form

� −� −�
1� f1�x ;a�=� f�x ;� a�,
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2� f2
��x1 ,x2 ;a1 ,a2�= f1

��x1 ;a1�f1
��x2 ;a2�,

where f�x ;r��L��G	 �0,��� is some non-negative function normalized by 1 in L��G
	 �0,��� with a compact support G�	 �a0 ,A0� in G	 �0,�� �G��G ,0�a0�A0���.
We also assume that the parameter �� which characterizes the properties of the surfaces S�

i of
the balls B�

i has the form
3� ��=�0��, where �0� �−�� ,��, �� �−� ,��. We set g�=q���g��, then g� �−� ,��. More-

over, if g�0 we assume that

A0 � k�g�−1, �2.5�

where A0 is a number which defines the diameter of the support of the function f�x ;r� �see
condition �1��, k and g=q�0 are the parameters of the functional �2.2�.

This choice of scaling �3� and the condition �2.5� were introduced in Ref. 6 for a deterministic
odel �see the introduction�.

Next we define the limiting vector function u, which appears in the definition �2.3�.
We set

p�x� =�
0

�

p���a�f�x;a�da , �2.6�

here f�x ;a� is the function from the condition �1� and the functions p���a� are defined as
ollows:

p���a� =�
4�

3
ga2 for 2 � � � 3, � = 3 − 2� ,

12��22g2a3 + 45k2ga2�
5�9k + 5ga�2 for � = 3, � = − 3,

264

125
�ka for � = 3, � � − 3,

0 for �, � � �g.

�2.7�

he sets �g in �2.7� are defined as follows:

�g = 
2 � � � 3,� � 3 − 2�� � 
� � 3,− � � � � ��

f g�0,

�g = 
2 � � � 3,� � 3 − 2�� � 
� � 3,� � − ��

f g�0.
Also the potential p�x� satisfies the following condition:

p�x� � min1,
1

�0
− k� , �2.8�

here �0=�0�G� is the minimal eigenvalue of the operator −� in G with the homogeneous
oundary condition on �G. Both conditions �2.7� and �2.8� were introduced in an analogous
eterministic problem in Ref. 7 and we refer the reader to Ref. 7 for further details.

Consider a variational problem

Ep�u� → min, u � HU
1 �G� �2.9�
or the functional
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Ep�u� � k�
G

��u�2 dx + �
G

��u�2 − 1�2 + �
G

p�x��u�2 dx , �2.10�

here the function p�x� is defined by �2.6� and �2.7� and satisfies the inequality �2.8�.
As it had been pointed out previously, there exists the unique global minimizer u of the

roblem �2.9� and �2.10�. The function u enters into the definition of the random variable �2.3�.
The main result of the paper is the following.
Theorem 2.1: Let the conditions (1)–(3), and the inequalities (2.5) (for g�0) and (2.8) hold.
Then the random variable ����� defined in (2.3) using the minimizers u��x ,��� and u�x� of

roblems (2.1), (2.2), (2.9), and (2.10), respectively, converges to zero in probability [i.e., in the
ense of (2.4)] as �→0.

Remark 2.1: Theorem 2.1 states the conditions under which all random minimizers of a
tochastic problem (2.1) and (2.2) converge in probability in the space L2�G�� to a nonrandom
ector function u�x� and this function is the unique minimizer of a deterministic problem (2.9) and
2.10).

Remark 2.2: Condition (1) (scaling) defines the characteristic dimensions of the balls (inclu-
ions) B�

i ���� in the probabilistic sense. The assumption that the function f�x ;r� has a compact
upport G�	 �a0 ,A0� in G	 �0,�� is made for the sake of simplicity only. It can be dropped, but
hen the proof of Theorem 2.1 becomes much more technical.

Condition (2) means that the balls B�
i ���� are “pairwise independent.” While this condition

dmits a possibility of their intersection, i.e., B�
i �����B�

j������ (which is not physical), it
ollows from Lemma 4.1 that the probability of realizations with intersections tends to zero as �

0. This condition can be relaxed to a weaker condition of “pairwise almost independence.”
Condition (3) defines the character and the strength of the orientation of liquid crystal mol-

cules on the surfaces of the inclusions. They “prefer” to be orientated along the normal vector
hen g�0 and along the tangent vector when g�0.

Finally, the inequality (2.8) guarantees the uniqueness of the solution of the problem (2.9) and
2.10) (see Ref. 6).

The proof of Theorem 2.1 is based on the main theorem from Ref. 6, where an analogous
eterministic problem was considered. The theorem from Ref. 6 is proved under deterministic
onditions on the distribution of the balls B�

i and their radii. These conditions are presented below
see Theorem 3.1 in Sec. II�. In Sec. III we show that if the distribution functions satisfy the
onditions stated above, then the conditions of Theorem 3.1 hold “in probabilistic sense” �and for
�2�. In Sec. IV we use this fact and Theorem 3.1 to prove Theorem 2.1.

II. DETERMINISTIC DISTRIBUTION OF THE BALLS

For convenience of the reader we now present an outline of the results of the paper6 which
ill be used below. Let us consider problem �2.1� and �2.2� in a deterministic domain G�

G \�i=1
N� B�

i , where B�
i �i=1,… ,N�� are the balls centered at given points x�

i �i=1,… ,N�� of radii

i�. We assume that the following dependences of the parameters of the problem on � hold:

�a1� g� = q�� � g��, where �,g � �− �,�� .

�a2� a0�� � ai� � A0��, � � 1,0 � a0 � A0 � �, also, if g � 0 then A0 � k�g�−1.

Next, we introduce the following notations:

Ri� = dist�x�
i , �

j�i
x�

j � �G� = min
min
j�i

�x�
j − x�

i �,dist�x�
i ,�G�� �3.1�

nd

bi� = bi���,�� = �g��ai�
2 for 1 � � � 3, � � 3 − 2� and � � 3, � � − � ,

�3.2�

ai� for � � 3, � � − � .
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We assume that the balls B�
i are located in the domain G and cannot form clusters so that the

ollowing conditions hold:

�a3� Ri� � ai�
� for some � �2/� � � � 1� ,

�a4� for some � �3/2 � � � 2�, we have

	
i=1

N� bi�
�

Ri�
3��−1� � C�,

here C� is a constant independent of �.
Introduce a generalized function

p��x� = 	
i=1

N�

�psi
� + pvi

� ���x − x�
i � , �3.3�

here psi
� and pvi

� are the specific surface and boundary layer energies, respectively, for the ith ball,
efined as follows:

psi
� =�

4�

3
g�ai�

2 for 1 � � � 3, � = 3 − 2� ,

4�

3
g�ai�

2 �9k�2

�9k + 5g�ai��2 for � = 3, � = − 3,

0 for ��,�� � �+ \ �1 � � � 3,� = 3 − 2�� ,

�3.4�

nd

pvi
� =�

264�

5�9k + 5g�ai��2k�g�ai��2ai� for � = 3, � = − 3,

264

125
�kai� for � = 3, � � − 3,

0 for ��,�� � �+ \ �� = 3,� � − 3� ,

�3.5�

here

�+ = 
1 � � � 3,� � 3 − 2�� � 
� � 3,− � � � � �� .

uppose that there exists a limit in a weak topology D��G�,

�b� w − lim�→0 p��x� = p�x�, where p � L��G� satisfies inequality �2.8�.

he following theorem is proved in Ref. 6.
Theorem 3.1: If the conditions �a1�–�a4�, �b� and (2.8) hold, then all minimizers of the

roblem (2.1) and (2.2) (u��x��M�) converge to the unique minimizer u�x� of the problem (2.9)
nd (2.10) in the following sense;

max
u��x��M�

�
G�

�u��x� − u�x���x��2 dx → 0,

s �→0, where the function p�x� is defined in the condition �b�. This convergence takes place in
he following range of parameters �, and � :

+
� = 
1 � � � 3, � � 3 − 2�� � 
� � 3, − � � � � ��
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hen g��0 and

�− = 
1 � � � 3, � � 3 − 2�� � 
� � 3, � � − ��

hen g��0.
The domains �+ and �− are presented �shaded� in Figs. 1 and 2. Notice that the function

p�x��0 only on the bold lines. Also, note that we are able to prove a probabilistic analog of this
heorem only for the subdomains located in �± to the right of the vertical line passing through the
oint �=2.

V. PROBABILISTIC ANALOG OF THE CONDITIONS OF THEOREM 3.1

First, note that the conditions �a1� and �a2� are satisfied with probability �1� �this follows from
onditions �1� and �3� of Sec. II�.

We now show that condition �a3� holds “in probability.” Let � be a number such that 2 /�
��1 and let Tr�

i be the balls centered at the points x�
i and of radii r�=���. It is clear that

�
i �Tr�

i . Since the support G� of the function f�x ;a� with respect to x is a compact set in G, then
for a sufficiently small ��, the balls Tr�

i do not intersect the boundary �G. Consider the event A�
�

rom 
� such that the balls Tr�

i do not have pairwise intersection, i.e.,

A�
� = 
�� � 
� : Tr�

i � Tr�

j = �,i, j = 1,…,N�,i � j� .

Lemma 4.1: If the conditions (1) and (2) of Theorem 2.1 hold, then

lim
�→0

P�
A�
�� = 1.

FIG. 1. g�0.
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Proof: Let Ā�
�=
� \A�

� be the event that at least one pair of balls Tr�

i and Tr�

j intersect, i.e., Ā�
�

s a complement to A�
�. Then

P�
A�
�� = 1 − P�
Ā�

�� �4.1�

nd

P�
Ā�
�� = 	

j,i=1
j�i

N� �
G
�

0

� �
T2r�

i
�

0

�

f2
��xi,xj;ai,aj�daj dxj dai dxi

=
N��N� − 1�

2
�

G
�

0

� �
T2r�

1
�

0

�

f2
��x1,x2;a1,a2�da2 dx2 da1 dx1.

ince N�=�−3 and meas �T2r�

1 �= �32� /3��3��, from conditions �2�, �1� and this equality we get

P�
Ā�
�� �

�−6

2
�

G
�

0

� �
T2r�

1
�

0

�

f1
��x1;a1�f1

��x2;a2�da2 dx2 da1 dx1

�
�−6

2
�

G
�

0

�

f��x1;a1���
T2r�

1
�

0

�

f��x2;a2�da2 dx2�da1 dx1 � C�3��−6.

ince ���2, the statement of the lemma follows from �4.1�. �

Corollary 4.2: It follows from Lemma 4.1 that, if we choose � in condition �a3� such that
/������1, then for any i (i=1,… ,N�) the inequalities Ri��ai�

� hold in probability, i.e.,

lim
�→0

P�
�� � 
�:Ri� � ai�
� ,i = 1,…,N�� = 1.

FIG. 2. g�0.
Let us consider now the condition �a4�. To this end we introduce a random variable
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��
� ���� = 	

i=1

N� bi�
�

Ri�
3��−1� ,

here bi�=bi����� and Ri�=Ri����� are random variables defined by �3.2� and �3.1�.
Lemma 4.3: If 3/2���2, then

lim
�→0

P�
�� � 
�:��
� ���� � N� � 1 −

C���
N

or any N�0, where C��� is independent of N.
Proof: It follows from the definition of Ri� that

��
� ���� � �1�

� ���� + �2�
� ���� ,

here �1�
� ���� and �2�

� ���� are random variables, which are defined as follows:

�1�
� ���� = 	

i=1

N�

bi�
� max

j�i

1

�x�
j − x�

i �3��−1� ,

�2�
� ���� = 	

i=1

N� bi�
�

���x�
i ,�G��3��−1� .

herefore, it follows from the Chebyshev’s inequality that

P�
�� � 
�:��
� ���� � N� � P��� � 
�:	

i=1

2

�i�
� ���� � N� � 1 −

M�	
i=1

2

�i�
� �

N

= 1 −
M��1�

� �
N

−
M��2�

� �
N

�4.2�

or any N�0. Here M�·� is the expectation and in the second inequality it is taken into account
hat the random variable 	i=1

2 �i�
� ���� is positive.

It follows from the properties of the distribution functions �see conditions of Theorem 2.1�
hat

M��2�
� ����� = N��

G
�

0

� b�
��a�f1

��x;a�
���x,�G��3��−1�da dx � Cb�

�����N��
G�

dx

���x,�G��3��−1� , �4.3�

here G� is the support of the function f�x ;a� with respect to the variable x�G and the functions

��a� are defined as follows:

b��a� = �g��a2 � �g���a2 for 2 � � � 3,� � 3 − 2� and � � 3,� � − � ,

a for � � 3,� � − � .

otice that b������C�� for any �, ���+. Since G��G, then ��x ,�G���0�0 for x�G�.
herefore, it follows from �4.3� that

M��2�
� � � C���−3,

here C is a constant independent of �.
Since ��3/2 and ��2, from this inequality we have

lim M��2�
� � = 0. �4.4�
�→0
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Next we estimate the expectation of the random variable �1�
� ����. It is clear that

max
j�i

1

�xj − xi�3��−1� � L�
3��−1� + 	

j�i

L�
��xj − xi��

�xj − xi�3��−1�

or any L��0. Here L�
�t� is the indicator of the segment �0,L�

−1�. Therefore, it follows from the
roperties of the distribution functions �see the conditions of Theorem 2.1� that

M��1�
� � = �

0

� �
G

¯�
0

� �
G
	
i=1

N�

b�
��ai�max

j�i

1

�xj − xi�3��−1�

	 fN�

� �x1,…,xN�;a1,…,aN�
�dx1 da1¯dxN� daN�

� C1L�
3��−1�N�b�

�����

+ 	
i=1

N�

	
j�i
�

0

� �
G

¯�
0

� �
G

b�
��ai�L�

��xj − xi��

�xj − xi�3��−1�

	 fN�

� �x1,…,xN�;a1,…,aN�
�dx1 da1¯dxN� daN�

� C1L�
3��−1��−3b�

����� + N��N�

− 1��
G
�

0

� �
G
�

0

� b�
��a1�L�

��x2 − x1��

�x2 − x1�3��−1� f1
��x1;a1�f1

��x2;a2�da1 dx1 da2 dx2

� C1L�
3��−1����−3 + C2���−6�

0

L−1 r2 dr

r3��−1� � C1����L�
3��−1����−3 + L�

3�−6���−6� , �4.5�

here C1��� is a constant independent of � and �=��� ,�� is defined as follows:

���,�� = � + 2� for 2 � � � 3,� � 3 − 2� and � � 3,� � − � ,

� for � � 3,� � − � .

otice, that when we calculated the integral with respect to r from 0 to L�
−1 we used the condition

�2 for the first time.
Now we choose L� as follows :

L� =  �−1 for 2 � � � 3,

�−�/3 for 3 � � � � .

ince ��� ,���3 for 2���3 and ��� ,���� for 3����, it follows from �4.5� that

lim
�→0

M��1�
� � � 2C1��� . �4.6�

he statement of the lemma follows now from �4.2�, �4.4�, and �4.6�. �

We next show that condition �b� also holds in probability.

Let ��x� be an arbitrary function from C�Ḡ�. Consider a random variable

��
� ���� = �

G

p���x,�����x�dx ,

here p���x ,��� is defined by �3.3�–�3.5�.
Lemma 4.4: Suppose that the conditions (1)–(3) of Theorem 2.1 hold, then

lim
�→0

P��� � 
�:���
� ���� − �

G

p�x���x�dx� � �� = 1,

here p�x� is the function defined by (2.6) and (2.7).
23
Proof: It follows from the Chebyshev’s inquality that
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P�
�� � 
�:���
� ���� − M���

� �� � �� � 1 −
D���

� �
�2 , �4.7�

here M���
� � and D���

� � are the expectation and the variance of the random variable ��
� , respec-

ively.
Using �3.3� we can represent ��

� as follows :

��
� ���� = 	

i=1

N�

pi
���x�

i � ,

here x�
i =x�

i ���� are the random centers of the balls B�
i and pi

�= psi
� ����+ pvi

� ���� are the random
ariables which are defined by �3.4� and �3.5�. Using this representation, the properties of the
istribution functions, and condition �1� we have

M���
� � = �

0

� �
G

¯�
0

� �
G
	
i=1

N�

p��ai���xi�fN�

� �x1,…,xN�;a1,…,aN�
�dx1 da1¯dxN� daN�

= N��
G
�

0

�

p��a���x�f1
��x;a�dx da = N��

G
�

0

�

p��a���x��−�f�x;�−�a�dx da ,

here p��a�= ps
��a�+ pv

��a� and ps
��a�, pv

��a� are defined by �3.4� and �3.5� with a instead of ai�.
Since N�=�−3, from this equality, condition �3� and �3.4� and �3.5�, we get

M���
� � = �

G

��x��
0

�

p���a�f�x;a�da dx = �
G

p�x���x�dx � p�, �4.8�

here p���x� is defined by �2.7� and p�x� is defined by �2.6�.
Similarly, taking into account �4.8� and condition �2�, we estimate the variance

D���
� � = M����

� − M���
� ��2� = �

0

� �
G

¯�
0

� �
G
�	

i=1

N�

p��ai���xi� − p��2

	 fN�

� �x1,…,xN�;a1,…,aN�
�dx1 da1¯dxN� daN�

= �6�
0

� �
G

¯�
0

� �
G
	
i=1

N�

��−3p��ai���xi�

− p��2fN�

� �x1,…,xN�;a1,…,aN�
�dx1 da1¯dxN� daN�

+ �6�
0

� �
G

¯�
0

� �
G

	
i,j=1
i�j

N�

��−3p��ai���xi� − p����−3p��aj���xj� − p��

	 fN�

� �x1,…,xN�;a1,…,aN�
�dx1 da1¯dxN� daN�

= N��
6�

0

� �
G

��−3p��a���x�

− p��2f1
��x;a�dx da + N��N� − 1��6�

0

� �
G
�

0

� �
G

��−3p��a1���x1� − p����−3p��a2���x2�

− p��f1
��x1;a1�f1

��x2;a2�dx1 da1 dx2 da2 = �3�
0

� �
G

�p���a���x� − p��2f�x;a�dx da

+ �1 − �3��
0

� �
G
�

0

� �
G

�p���a1���x1� − p���p���a2���x2�

1 2 1 2
− p��f�x ;a1�f�x ;a2�dx da1 dx da2.
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t follows from �4.8� that the second term on the right-hand side of the last equality is equal to
ero. Therefore, we get

D���
� � � C�3. �4.9�

he statement of the lemma follows now from �4.7�–�4.9�. �

. END OF THE PROOF OF THEOREM 2.1

Consider the following events in probability space 
�:

A1� = 
�� � 
�:a0�� � ai����� � A0��;�� � 2�,i = 1,…,N�� ,

A2� = 
�� � 
�:Ri� � ai�
� ,�2/� � � � 1�,i = 1,…,N�� ,

A3��N� = �� � 
�:	
i=1

N� bi�
�

Ri�
3��−1� � N,�3/2 � � � 2�� ,

A4��j,m� = �� � 
�:��
G

p��x,���� j�x�dx − �
G

p�x�� j�x�dx� �
1

m� ,

A5���� = 
�� � 
�:����� � �� ,

here � j�x� �j=1,2 ,…� is a sequence of functions which is dense C�Ḡ�, ����� is a random value
efined by �2.3�, ��0, and m�N.

It follows from condition �1� of Theorem 2.1 that

P�
A1�� = 1 �5.1�

or any ��0.
Assume that the conclusion of Theorem 2.1 does not hold. Then there exist ��0, ��0, and

sequence 
�k→0,k=1,2 ,…� such that

lim
�=�k→0

P�
A5����� � � . �5.2�

On the other hand, it follows from the Corollary 4.2 and Lemma 4.3 and 4.4 that for any j,
�N and N�0 there exist C��� and �̂= �̂�� ,N , j ,m� such that

P�
A2�� � 1 −
�

4
,

P�
A3��N�� � 1 −
C���

N
,

P�
A4��j,m�� � 1 −
�

2 j+m+2 , �5.3�

or any ���̂.

Set N=4C��� /� and consider the event
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A�k
= A1�k

� A2�k
� A3�k

�N� � � �
m=1

mk

�
j=1

jk
A4�k

�j,m�� � A5�k
��� , �5.4�

here we choose the numbers mk and jk to be such that the inequalities �5.3� hold for �=�k and
�mk, j� jk, N=4C��� /�. Since �k→0 as k→�, the numbers mk and jk tend to infinity as k
�.

Now we show that there is no k for which the event A�k
�
�k

is not empty. It follows from our
hoice of N and inequalities �5.3� that

P�kĀ2�k
� Ā3�k

�N� � � �
m=1

mk

�
j=1

jk
Ā4�k

�j,m��� �
�

4
+

�

4
+ � 	

j,m=1

�
1

2 j+m+2 =
3

4
� .

herefore,

P�kA2�k
� A3�k

�N� � � �
m=1

mk

�
j=1

jk
A4�k

�j,m��� � 1 −
3

4
� . �5.5�

ere the bar denotes the complementary event.
It follows from �5.4�, �5.1�, �5.2�, and �5.5� that the events A�k

�k=1,2 ,…� are not empty. For
ny A�k

we choose a point ���k�=�k from this set and consider the corresponding realization of
he balls B�k

i ��k� �i=1,… ,N�k
� in G and the values ���k� constructed by using the minimizers

�k
�x ,�k��M��k� of problem �2.1� and �2.2� in the domain G�k

��k�=G \�iB�k

i ��k�.
It follows from the definition of A�k

that all the conditions of Theorem 3.1 are satisfied as �
0 but ���k� does not tend to zero. This contradiction proves Theorem 2.1. �Also see Ref. 24.�
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An approach to the Ginzburg–Landau problem for superconducting regular poly-
gons is developed making use of an analytical gauge transformation for the vector
potential A which gives An=0 for the normal component along the boundary line of
different symmetric polygons. As a result the corresponding linearized Ginzburg–
Landau equation reduces to an eigenvalue problem in the basis set of functions
obeying Neumann boundary condition. Such basis sets are found analytically for
several symmetric structures. The proposed approach allows for accurate calcula-
tions of the order parameter distributions at low calculational cost �small basis sets�
for moderate applied magnetic fields. This is illustrated by considering the nucle-
ation of superconductivity in squares, equilateral triangles and rectangles, where
vortex patterns containing antivortices are obtained on the Tc–H phase boundary.
The calculated phase boundaries are compared with the experimental Tc�H� curves
measured for squares, triangles, disks, rectangles, and loops. The stability of the
symmetry consistent solutions against small deviations from the phase boundary
line deep into the superconducting state is investigated by considering the full
Ginzburg–Landau functional. It is shown that below the nucleation temperature
symmetry-switching or symmetry-breaking phase transitions can take place. The
symmetry-breaking phase transition has the same structure as the pseudo-Jahn-
Teller instability of high symmetry nuclear configurations in molecules. The exis-
tence of these transitions is predicted to be strongly dependent on the size of the
samples. © 2005 American Institute of Physics. �DOI: 10.1063/1.2013107�

. INTRODUCTION

“Confinement” and “quantization” are two closely related definitions: if a particle is “con-
ned” then its energy is “quantized,” and vice versa. According to the dictionary, to “confine”
eans to “restrict within limits,” to “enclose,” and even to “imprison.” A typical example, illus-

rating the relation between confinement and quantization, is the restriction of the motion of a
article by enclosing it within an infinite potential well of size LA.

Recent impressive progress in nanofabrication has made it possible to realize the whole range
f confinement lengths LA, from 1 �m �photo- and e-beam lithography�, via 1 nm to 1 Å �single
tom manipulation� and, through that, to control the confinement energy �temperature� from a few
K higher up to far above room temperature.

This progress has stimulated dramatically the experimental and theoretical studies of different

�On leave from Laboratorio de Baixas Temperaturas e Superconductividade, Departamento de Física da Materia Conden-

sada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
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anostructured materials and individual nanostructures. The interest towards such structures arises
rom the remarkable principle of “quantum design,” when quantum mechanics can be efficiently
sed to tailor the physical properties of nanostructured materials.

Modifying the sample topology in nanostructured materials creates a unique possibility to
mpose the desired boundary conditions, and through that to change the properties of the sample.

Fermi liquid or a superconducting condensate confined within such materials will be subjected
o severe constraints and, as a result, the properties of these materials will be strongly affected by
he boundary conditions.1

While a normal metallic system should be considered quantum mechanically by solving the
chrödinger equation:

1

2m
�− ı��� − eA� �2� + U� = E� , �1�

superconducting system is described by the two coupled Ginzburg–Landau �GL� equations,2

1

2m� �− i��� − e�A� �2�s + ���s�2�s = − ��s, �2�

j� = �� � h� =
e�

2m� ��s
��− ı��� − e�A� ��s + �s�ı��� − e�A� ��s

�� , �3�

ith A� the vector potential which corresponds to the microscopic field h� =rot A� /�0 , U the poten-
ial energy, E the total energy, � a temperature dependent parameter changing sign from ��0 to
�0 as T is decreased through Tc , � a positive temperature independent constant, m� the effec-

ive mass which can be chosen arbitrarily and is generally taken as twice the free electron mass m.
Note that the first GL equation �Eq. �2��, with the nonlinear term ���s�2�s neglected, is the

nalogue of the Schrödinger equation �Eq. �1�� with U=0, when making a few substitutions,

s↔�, e�↔e, −�↔E, and m�↔m. The superconducting order parameter �s corresponds to the
ave function � in Eq. �1�. The effective charge e� in the GL equations is 2e, i.e., the charge of
Cooper pair, while the temperature dependent GL parameter �,

− � =
�2

2m�	2�T�
, �4�

lays the role of E in the Schrödinger equation. Here 	�T� is the temperature dependent coherence
ength,

	�T� =
	�0�

�1 −
T

Tc0

. �5�

The boundary conditions for interfaces normal metal vacuum and superconductor vacuum are,
owever, different,3

����b = 0, �6�

�− ı��� − e�A� ��s��,b = 0, �7�

.e., for normal metallic systems the density is zero at the boundary �Dirichlet boundary condition�,
hile for superconducting systems, the current density has no component perpendicular to the
oundary. As a consequence, the supercurrent cannot flow through the boundary. The nucleation of

he superconducting condensate is favored at the superconductor/vacuum interfaces, thus leading
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o the appearance of superconductivity, at the third critical field Hc3�T�, in a surface sheet with a
hickness 	�T�.

For bulk superconductors the surface-to-volume ratio is negligible and therefore superconduc-
ivity in the bulk is not affected by a thin superconducting surface layer. For nanostructured
uperconductors with antidot arrays, however, the boundary conditions �Eq. �7�� and the surface
uperconductivity introduced through them become very important if LA
	�T�. The advantage of
uperconducting materials in this case is that it is not even necessary to go to nm scale �like for
ormal metals�, since for LA of the order of 0.1–1.0 �m the temperature range where LA
	�T�,
preads over 0.01–0.1 K below Tc due to the divergence of 	�T� at T→Tc0 �Eq. �5��.

In principle, the mesoscopic regime LA
	�T� �and LA
��T�, with � the magnetic penetration
epth� can eventually be reached even in bulk superconducting samples with LA�1 cm−1 m, since
�T� �and ��T� as well� diverges at T→Tc0. However, the temperature window where LA
	�T� is
o narrow, not more than �1 nK below Tc0, that one needs ideal sample homogeneity and perfect
emperature stability.

In the mesoscopic regime LA
	�T�, which is quite easily realized in nanostructured materials,
he surface superconductivity can cover the whole available space occupied by the material, thus
preading superconductivity all over the sample. It is then evident that in this case the surface
ffects play the role of bulk effects.

Using the similarity between the linearized GL equation �Eq. �2�� and the Schrödinger equa-
ion �Eq. �1��, the approach to determine Tc�H� can be formalized as follows: since the parameter
� �Eqs. �2� and �4�� plays the role of energy E �Eq. �1��, then the highest possible temperature

c�H� for the nucleation of the superconducting state in presence of the magnetic field H always
orresponds to the lowest Landau level ELLL�H� found by solving the Schrödinger equation �Eq.
1�� with “superconducting” boundary conditions �Eq. �7��.

Figure 1 illustrates the application of this basic rule to the calculation of the upper critical field

c2�T�, indeed, if the well-known classical Landau solution for the lowest level in a bulk sample

LLL�H�=�� /2, where �=e��0H /m� is the cyclotron frequency, is taken, then, from −�
ELLL�H�, we have

� �2

2m�	2�T�
=

��

2
�

H=Hc2

�8�

ith the help of Eq. �4�. We obtain

�0Hc2�T� =
0

2�	2�T�
, �9�

�

IG. 1. Landau level scheme in the bulk. From the lowest Landau level ELLL�H�=�� /2 �panel �a�� the second critical field

c2�T� �panel �b�� is derived.
ith 0=h /e =h /2e the superconducting flux quantum.
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In nanostructured superconductors, where the boundary conditions �Eq. �7�� strongly influence
he Landau level scheme, ELLL�H� must be calculated for each specific confinement geometry. By

easuring the shift of the critical temperature Tc�H� in a magnetic field, one can compare the
xperimental phase boundary Tc�H� with the calculated level ELLL�H� and thus check the effect of
he confinement topology on the superconducting phase boundary for a series of nanostructured
uperconducting samples. The transition between normal and superconducting states is usually
ery sharp and therefore the lowest Landau level can be easily traced as a function of applied
agnetic field. The midpoint of the resistive transition from the superconducting to the normal

tate is usually taken as the criterion to determine Tc�H�.
This defines the main strategy of our paper to use systematically the GL approach to calculate

he condensate density and the energy levels �including ELLL�H� for superconducting samples of
ifferent geometries and topologies and to compare the calculated lowest level ELLL�H�� with the
easured Tc�H� phase boundary.

The presence of the vector potential in the boundary condition, Eq. �4�, seriously complicates
he solution of the Ginzburg–Landau equations for samples of arbitrary geometry. Existing treat-

ents use numerical methods like the method of finite differences. This way proved to be suc-
essful for the description of superconductivity in mesoscopic structures4,5 although it is usually
chieved at the expense of high computational costs. The problem, however, simplifies very much

f one can find a gauge for the vector potential �Ã� giving zero normal component on the boundary
ine

Ã�n = 0. �10�

n these cases the superconducting boundary condition in Eq. �7� reduces to the Neumann bound-
ry condition,

���n = 0, �11�

hich is much easier to satisfy. Such gauges have been found in the past for infinite slabs,6

emiplanes with a wedge,7,8 and disks.9–12

The major difference between the above approaches is the extent to which they fulfill the
uperconducting boundary condition. As Fig. 2 shows, the method of finite differences satisfies
q. �7� only on a finite set of points along the boundary line, while by using an appropriate gauge

IG. 2. Domains �bold dots and lines� of the boundary line where the condition in Eq. �7� is satisfied exactly for the case
f finite grid �a� and appropriate vector potential gauge �b� methods.
or the vector potential �10� we are able to satisfy the boundary condition everywhere on the
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oundary. Since Eq. �7� is nothing but a sort of quantization condition for our problem, we can
onclude that finite grid methods always imply an approximate solution of Eq. �7�, while the
ethods using the appropriate gauge for the vector potential treat it exactly. This is crucial for the

roper description of the order parameter in the cases when the boundary becomes important, i.e.,
or low values of the applied flux.

In this paper we review the development of this second type of approach to the Ginzburg–
andau problem for symmetric superconducting polygons in external magnetic field. In Secs. II
nd III we present the derivation of vector potential gauge and the basis set for several symmetric
tructures. The application of this approach to the description of the nucleation of superconduc-
ivity in different polygons is given in Sec. IV. Here the evolution of the vortex patterns as a
unction of applied magnetic field is investigated in detail. We also compare the calculated
uperconducting/normal phase boundary lines with the experimental ones. The evolution from a
isk to thin loops is discussed in Sec. V. In Sec. VI we study the stability of the LGL solutions
orresponding to nucleated phases and the conditions for the arising of different phase transitions
hen the temperature is lowered from the nucleation point. Finally Sec. VII gives some conclu-

ions and the perspective for the future work.

I. VECTOR POTENTIAL GAUGE FOR SYMMETRIC POLYGONS

Consider a regular polygon with N edges. It has a symmetry axis of order N, corresponding to
otations by angles which are multiples of 2� /N. An external homogeneous magnetic field applied
long this axis can be described by a vector potential

A = 1
2H � r , �12�

here the radius vector lies in the xy plane �Fig. 3� and H 	z. Equation �12� defines the cylindrical
auge for A. It is often preferred over many other possible choices13 due to the high symmetry
hich allows to preserve the rotational symmetry of the system without field. The direction of A

s tangential to concentric circumferences, A 	e�, which are also equipotential lines for the vector
otential.

As one can see from Fig. 3, the vector potential in Eq. �12� is not tangential to the boundary
ine �i.e., the edges� of a polygon. On the edge shown in Fig. 3 it contains a normal component

IG. 3. Piece of a regular polygon containing one edge �thick line�. The origin of the coordinate system is chosen in the
enter of the polygon. n is the unit vector normal to the edge. er and e� are unit vectors of the cylindrical coordinate
ystem. The z axis coincides with the N fold rotational axis of the polygon.
An��� = − C tan � ,
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C = 1
4H a , �13�

here � is the polar angle and a is the diameter of the circumference inscribed in the regular
olygon. Our purpose is to find a new vector potential which would be tangential to the edges.
his can be done by the following gauge transformation:13

Ã = A + �S , �14�

here A is the old and Ã is the new vector potential and S is an arbitrary scalar function. This

unction is found from the condition Ãn=0 on the boundary line. This is equivalent to the equation

An = − �nS , �15�

hich must be obeyed on each edge. In order to keep the rotational symmetry of the regular

olygon Ã and S should be periodic functions of � with the period � �Fig. 3�. Because Ã is real,
his suggests the following general form for S �in polar coordinates�:

S�r,�� = 

m

�Rm
s �r�sin�Nm�� + Rm

c �r�cos�Nm��� , �16�

here m are non-negative integers. Due to the rotational periodicity of the function S it is enough
o satisfy Eq. �15� on one single edge. The form in Eq. �16� is further simplified due to the

ymmetry requirement that Ã is purely tangential on the radial lines defined by �= ±� /2 and �
0 �Fig. 3�. The latter requirement means that �S is purely tangential on the radial line �=0
hich can only be the case if one takes Rm

c �r�=0 in Eq. �16�.
Next we simplify the remaining part of the form �16� by confining ourselves to one single

erm in the summation. Obviously this cannot be the term m=0 because �S should be dependent
n � as it is easily seen from Eqs. �13� and �15�. Therefore the simplest possible term is m=1
hich leads to the ansatz,

SN�r,�� = RN�r�sin�N�� . �17�

ubstituting Eqs. �13� and �17� into �15�, after eliminating the r variable on the edge line,

r =
a

2 cos �
,

�

�r
=

2

a

cos2 �

sin �

�

��
, �18�

ne obtains the following equation in �:

R̃N� sin�N��cos2 � − R̃N sin�N���sin2 � = tan2 � , �19�

here the prime in the superscript means the first derivative after � and the following notation was
ntroduced:

R̃N��� =
2

aC
RN� a

2 cos �
� . �20�

ringing Eq. �19� to the form

R̃N� + 	���R̃N = ���� , �21�

here

2
	��� = − N cot�N��tan � ,
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���� = csc�N��tan2 �/cos2 � , �22�

llows us to write down the general solution14

R̃N��� =
1

����
� ��������d� + C1� ,

���� = exp� 	���d�� . �23�

he solution �23� describes the radial function in Eq. �17� only for values of r which are radius
ectors of the points on the edge’s line. One can extend this solution over the whole range of r by
he inverse transformation to �18�, a /2 cos �→r. Then using again Eqs. �14�, �17�, and �20� we

an express the polar components of the gauge transformed vector potential Ã,

Ãr =
�RN�r�

�r
sin�N�� ,

Ã� =
1

2
Hr +

N

r
RN�r�cos�N�� , �24�

hrough the solution �23�. The constant C1 contained in that solution should be chosen in such a
ay as to provide nondivergent components of the vector potential �24�. In contrast to A in Eq.

12�, the vector potential defined by Eqs. �24� does not obey the Coulomb gauge, � ·A=0. Hence
he term � ·A plays the role of a scalar potential in a Hamiltonian and should be nondivergent
ither. Fortunately both requirements are met within the area of the polygon under the simple
ondition C1=0.

Analytical expressions of Eqs. �23� for some regular polygons are given in Ref. 15.
In the case of equilateral triangle the solutions �24� have the form

Ãr = 27
2 Ha�9r�8 − 7r�6 + 5

3r�4�sin 3� ,

Ã� = 1
2Hr + 81

2 Ha�r�8 − r�6 + 1
3r�4�cos 3� ,

r� = r/�3a , �25�

here a is the side length of the triangle. Figure 4 shows how the gauge transformed vector
otential looks for the equilateral triangle. We can see that it gradually changes from the cylin-
rical gauge in the central region to a triangular pattern close to the edges. According to this gauge
ransformation one should add to Eq. �4� the following divergency term:

� · Ã = H
9�3

2
�72r�7 − 40r�5 +

16

3
r�3�sin 3� . �26�

n the case of a square the solutions of Eqs. �23� and �24� yield the following gauge transformed
ector potential �Fig. 5�:

Ãr = −
1

4�2
Ha�1 + u�3/2�− 1 + u + �1 + 2u − u2�e−uEi�u��sin 4� ,

Ã� =
1

Hr +
1

Ha�1 + u�3/2�1 − ue−uEi�u��cos 4� ,

2 2�2
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u = 2�r/a�2 − 1, �27�

here Ei�u� is the exponential integral function16 and a is the side length of the square. In full
nalogy with the previous case �Fig. 4�, this vector potential coincides with the cylindrical gauge
n the central region and smoothly changes into a square symmetry pattern when approaching the
oundaries. The corresponding divergency term is obtained as follows:

� · Ã = H
�1 + u�2

2u
�− 1 − 5u + u2 − u�3 − 6u + u2�e−uEi�u��sin 4� . �28�

The results for the square are easily extended over arbitrary rectangles, described by the aspect

IG. 4. Vector potential for the equilateral triangle �arbitrary units� after the gauge transformation, described by Eqs. �25�.
FIG. 5. Vector potential for the square �arbitrary units� after the gauge transformation, described by Eqs. �27�.
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atios �=a /b, where a and b are the lengths of the two sides. Directing the Cartesian axes x and
y along the sides a and b, respectively, we find the following relation for the scalar function S
ntering the gauge transformed vector potential �14� for the rectangle:

Srect�x,y� = Ssq� 1
��

x,��y� , �29�

here Ssq is the scalar function for the square with the side length a /��=��b. After substitution of
q. �29� into �14�, written in polar coordinates, we can make direct use of Eqs. �27�. The resulting
auge transformed vector potential is shown in Fig. 6. The divergency term to be inserted into Eq.
4� is just �Srect.

Another extension of the above approach concerns symmetric nonhomogeneous applied mag-
etic fields. These can be induced, for instance, by setting a cylindrical quantum dot uniformly
agnetized along its axis on the top of a superconducting sample.17,18 This magnetic field together
ith an independent homogeneous component corresponds to a vector potential of cylindrical

ymmetry19

A��r� =
1

2
Hr + 4M�R

r


0

l ��1 −
k2

2
�K�k� − E�k��

k
dz ,

k2 =
4rR

�r + R�2 + z2 , �30�

here R, l, and M are the radius, the height, and the density of magnetization of the cylindrical

IG. 6. Vector potential for the rectangle �arbitrary units� with aspect ratio two �top� and four �bottom� after the gauge
ransformation, described by Eqs. �14�, �27�, and �29�.
ot, respectively; K and E are elliptic integrals of first and second kind, respectively, and H is the
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ntensity of the homogeneous magnetic field as before. Repeating all derivations with the new
pplied vector potential �30� instead of the cylindrical one �12� we obtain similar results as in Eqs.
22�, �23�, and �24�, where the second equation from �22� should be replaced by

���� = csc�N��
tan2 �

cos �
A�� a

2 cos �
� , �31�

nd A� should replace Hr /2 in the second equation of �24�. However now we can no longer find
he primitive in the first equation of �23� in analytical form. This complication can be avoided if
e approximate the function A��r� by polynomials. This can be done for arbitrary parameters of

he dot, which allows to obtain the explicit expressions for the components of the gauge trans-
ormed vector potential.20 Figure 7 shows the gauge transformed vector potential for a square with

cylindrical magnetic dot on top of it. We can see that the behavior of Ã as function of r is similar
o the previous cases.

II. BASIS SET FOR THE GL PROBLEM OF SYMMETRIC POLYGONS

Having found a gauge for the vector potential �Ã� satisfying the condition �10� on the bound-
ry line, it follows immediately from Eq. �7� that the order parameter can be expanded into a set
f functions, ��m�,

� = 

m

cm�m, �32�

IG. 7. Vector potential for a square with cylindrical uniformly magnetized quantum dot �a� in an external homogeneous
agnetic field producing one flux quantum in the sample, �b� in zero external field. The dot has a radius 0.2 times and a

eight 0.032 times the sample size a and the magnetization produces one flux quantum in the sample. �c� Schematic
rawing of the superconducting square with the magnetic dot �gray� and the corresponding field profile.
beying the Neumann boundary condition,
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��m�n = 0. �33�

or calculational convenience the functions �m are supposed to form an orthonormal set. Further-
ore, in order to reduce the dimension of the basis set these functions should be as close as

ossible to the expected solutions of Eq. �4�. Since we are interested in solutions for moderate
alues of applied magnetic fluxes both requirements are met for sets of low-lying eigenfunctions
f the zero-field �i.e., particle in the polygonal box� eigenvalue problem,

−
�2

2m*��m = �m�m, �34�

beying the boundary condition �33�.
Consider a regular polygon shaped sample of a constant width in a homogeneous magnetic

eld applied along the direction perpendicular to the polygonal surface �H 	z�. Then the associated
ector potential A is directed in the xy plane �see Fig. 3�. Since Az=0 and the other two compo-
ents depend on x and y only, the solution of Eq. �34� factorizes as ��x ,y��z�. The z-dependent
omponent of the solution satisfying the boundary condition d /dz=0, z= ±d /2, and correspond-
ng to the lowest value of −� in Eq. �4� has the form =const. This means that the superconduc-
ivity nucleates homogeneously across the width of the sample and the solution of the LGL
quation reduces to a two-dimensional �2D� problem.

The transformation �14� and �17� keeps the symmetry of the vector potential �and of Eqs. �4��
qual to the rotational symmetry of the sample, described by the point group CN. Since the LGL
quation is a linear eigenvalue problem its solutions, according to Wigner’s theorem,21 are char-
cterized by irreducible representations �irreps� of the corresponding symmetry group. The point
roup CN is Abelian and therefore contains N different one-dimensional irreps which transform as

�n��� � exp�in�� ,

n = 0,1,…,N − 1, �35�

nder rotations around the z axis by symmetry angles, the smallest of which coincides with the
ngle � in Fig. 3. The symmetry analysis provides a set of N labels to assign eigenfunctions and
plits the matrix eigenvalue equation into diagonal blocks corresponding to different irreps21

hich simplifies the calculations.

. Square and rectangle

In these geometries the boundary conditions allow the separation of variables in the eigen-

FIG. 8. Coordinate systems used in the derivation of the basis set for a square �a� and an equilateral triangle �b�.
alue problem �34� if one chooses the coordinate axes parallel to corresponding edges �Fig. 8�a��.
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long each coordinate the problem reduces to a particle in the box with infinite potential walls.21

he corresponding solution for the boundary conditions �33� has the form �l is the dimension of
he box�

�k
1�x� =�2

l
cos kx, k =

2n�

l
,

�k
2�x� =�2

l
sin kx, k =

�2n + 1��
l

,

n = 0,1,2,… . �36�

he full solutions in a rectangular box are just the products �kx
�x��ky

�y� and correspond to the
nergy,

Ekxky
=

�2�kx
2 + ky

2�
2m* . �37�

hese solutions however do not correspond to any definite symmetry. Therefore they should be
ymmetrized if we want to take advantage of the symmetry of the samples as discussed above.

A square in homogeneous magnetic field has the symmetry described by the rotational point
roup C4, which contains the irreps A, B, E+, and E− with the corresponding numbers n=0, 2, 1,
nd −1 �or 3� in Eq. �35�. Using the conventional symmetry projection technique21 the symme-
rized basis set is easily constructed from the solutions in Eq. �37�. Thus we obtain the following
ypes of solutions, for the irrep A:

�A
1 =

�2

a
�cos k1x cos k2y + cos k2x cos k1y� ,

k1 � k2 � 0, ki =
2ni�

a
,

�A
2 =

2

a
cos kx cos ky, k =

2n�

a
� 0,

�A
3 =

�2

a
�sin k1x sin k2y − sin k2x sin k1y� ,

k1 � k2 � 0, ki =
�2ni + 1��

a
, �38�

or the irrep B,

�B
1 =

�2

a
�cos k1x cos k2y − cos k2x cos k1y� ,

k1 � k2 � 0, ki =
2ni� ,
a
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�B
2 =

2

a
sin kx sin ky, k =

�2n + 1��
a

� 0,

�B
3 =

�2

a
�sin k1x sin k2y + sin k2x sin k1y� ,

k1 � k2 � 0, ki =
�2ni + 1��

a
�39�

nd for the irrep E,

�E+,−
=

�2

a
�cos k1x sin k2y ± i cos k1y sin k2x� ,

k1 =
2n1�

a
� 0, k2 =

�2n2 + 1��
a

� 0, �40�

here ni are integers. Figure 9 shows graphically some of these symmetrized functions.

IG. 9. �Color online� Symmetrized basis functions for a square. The highest density is shown in darker shades and the
owest ���2 values are lighter shades. The numbers in parentheses stand for n1 and n2, respectively.
In a rectangle the symmetry in homogeneous magnetic field is described by the point group
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2 containing only two irreps, A and B. The reduction of symmetry with respect to the square
nduces the following reduction of the irreps of C4 :A ,B→A , E+ ,E−→B. The basis function
esulting from this reduction have the following form, for irrep A:

�A
1 =

2
�ab

cos k1x cos k2y ,

k1 =
2n1�

a
, k2 =

2n2�

b
,

�A
2 =

2
�ab

sin k1x sin k2y ,

k1 =
�2n1 + 1��

a
, k2 =

�2n2 + 1��
b

, �41�

nd for the irrep B,

�B
1 =

2
�ab

cos k1x sin k2y ,

k1 =
2n1�

a
, k2 =

2�n2 + 1��
b

,

�B
2 =

2
�ab

sin k1x cos k2y ,

k1 =
�2n1 + 1��

a
, k2 =

2n2�

b
�42�

here ni are integers.

. Equilateral triangle

This case is more involved since the geometry of the boundary does not allow the separation
f variables in the eigenvalue problem �34�. Nevertheless it is still possible to express the solutions
s a linear combination of a small number �
6� of plane waves as shown below.

The equilateral triangle in a homogeneous magnetic field has a symmetry corresponding to the
otational point group C3, which contains the irreps A, E+, and E− matching the numbers n=0, 1,
nd −1 �or 2� in Eq. �35�, respectively. We make use of this symmetry in the next section when we
nalyze the solutions of the corresponding LGL equation. The particle in the box problem, how-
ver, is characterized by a higher symmetry group C3v, containing in addition three vertical
eflection planes, which are absent when the magnetic field is applied. It is convenient to use this
igher symmetry group in further derivation. The method used here follows closely the one
mployed by Li and Blinder for a triangular box with Dirichlet boundary conditions.22 For an
quilateral triangle located with respect to Cartesian axes as shown in Fig. 8�b� we introduce three
ariables �h is the height of the triangle�,

u =
2�

y ,

h
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v =
2�

h
�−

1

2
y +

�3

2
x� ,

w =
2�

h
�−

1

2
y −

�3

2
x� + 2� , �43�

hich are obviously linearly dependent. These variables are transformed into each other under
ymmetry operations of the C3v group and obey simple relations on the boundaries of the triangle.
or instance, on the edge y=0 �Fig. 8�b�� we have

u = 0, v = 2� − w . �44�

quation �34� is satisfied for a harmonic function with arbitrary linear combination of x and y in
he argument. It is convenient to take this function in the form f�pu−qv�,22 where u and v are
ariables introduced in Eq. �43�, corresponding to the energy �in units of �2 /2m*�,

Epq = 4
�2

h2 �p2 + pq + q2� . �45�

tarting from the function f , we construct wave functions of definite symmetry by using the
ethod of symmetry projection.21 The projected functions are linear combinations of functions f

f different arguments, all of which obviously correspond to the same energy �45�. Due to this
ymmetrization it is enough to satisfy the boundary condition �33� on a single edge, e.g., y=0 �Fig.
�b��. Equation �44� shows that on that boundary the wave function depends on a single variable
. The boundary condition is then satisfied by choosing appropriate values of the constants p and
which, at their turn, define the allowed values of the energy �45�.

Irrep A1: The boundary condition at the edge y=0 is obtained in the form

� ��A1

�u
�

u=0
= �2p + q��fu��− qv� + fu��qv − 2�q�� + �− p + q��fu��− �p + q�v + 2�p�

+ fu���p + q�v − 2�q�� − �p + 2q��fu��− pv + 2�p� + fu��pv�� = 0. �46�

ince f is a harmonic function with the period 2�, the above equation is only satisfied for integer
alues of p and q and f =cos. Furthermore, the function �A1

is invariant under the following
eplacements of the two constants: p ,q→q , p, p ,q→−p ,−q and p+q ,−p→p ,q. This restricts p

and q to positive values. Rewriting this function in x and y variables we obtain �without normal-
ization�

�pq
A1�x,y� = cos

�

h
�2p + q�y cos

�

h
�3qx + cos

�

h
�− p + q�y cos

�

h
�3�p + q�x

+ cos
�

h
�p + 2q�y cos

�

h
�3px ,

p � q = 0,1,2,… . �47�

Irrep A2: The boundary conditions for �A2
lead to an equation similar to �46� with the only

ifference that now differences of derivatives fu� enter in each of the square brackets instead of
heir sum. This means that the only choice for the harmonic function is f =sin. The constants p and

are again integers and obey the same symmetry relations as in the previous case. Therefore, we

btain for the irrep A2 the following unnormalized eigenfunctions:
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�pq
A2�x,y� = − sin

�

h
�3qx cos

�

h
�2p + q�y + sin

�

h
�3�p + q�x cos

�

h
�− p + q�y

− sin
�

h
�3px cos

�

h
�p + 2q�y ,

p � q = 1,2,… . �48�

ote that in the presence of homogeneous magnetic field both �A1
and �A2

reduce to the same
rrep A of the group C3.

Irrep E: Because this irrep is twofold degenerate the corresponding two eigenfunctions are
efined up to an arbitrary linear combination. It is convenient to choose these functions as com-
lex conjugate to each other because then they belong automatically to the irreps E+ and E− of the
roup C3, respectively. This requirement leaves us the only choice for the harmonic function,
xp�i�pu−qv��. After similar derivations as in previous cases we obtain for the unnormalized
igenfunctions ��E− = ��E+�*�

�pq
E−�x,y� = exp��i

h
��2p + q�y − �3qx�� + exp��i

h
��p + 2q�y − �3px��

+ exp��i

h
��− p + q�y + �3�p + q�x� − 2�qi ±

2�

3
i�

+ exp��i

h
�− �p + 2q�y − �3px� + 2�pi �

2�

3
i�

+ exp��i

h
��p − q�y + �3�p + q�x� − 2�pi ±

2�

3
i�

+ exp��i

h
�− �2p + q�y − �3qx� + 2�qi �

2�

3
i� , �49�

here the two signs correspond to the following quantum numbers:

q = n + 1/3, p = q,q + 1,q + 2,…, upper sign,

q = n + 2/3, p = q,q + 1,q + 2,…, lower sign,

n = 0,1,2,… . �50�

Note that these eigenfunctions are characterized by fractional quantum numbers p and q.
Figure 10 shows the graphics of some of the solutions �47�, �48�, and �49� for low values of

�p ,q�. Note that these solutions are very similar for the solutions or the Schrödinger equation for
a particle in an equilateral triangle.22

The above approach cannot be extended straightforwardly to other geometries. The reason for
his is a theorem stating that only in the cases of square and triangular boxes the eigenfunctions
an be expanded in a finite set of plane waves.23 On the other hand, if the boundary line does not
eviate strongly from a circumference �as, e.g., in higher polygons�, we can again construct a finite
asis set by making a radial rescaling of the eigenfunctions for a disk with equal area.24

V. NUCLEATION OF SUPERCONDUCTIVITY IN BASIC POLYGONS

Using the developments of the preceding sections we can solve now the LGL equation �34�
ith the boundary condition �7� for several symmetric structures. An important feature of vector

otential gauge approach is its ability to provide accurate description of the order parameter
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lready for quite limited sizes of the basis sets at moderate applied fields. An accurate calculation
f � is often crucial for a correct description of vortex patterns in mesoscopic samples. In this
onnection we mention that reflections in vertical planes, if they are contained in the symmetry
roup of the sample, act as time inversion operators, �v�=�*. Therefore �*� is invariant under
hese reflections and the density distribution of the order parameter is described by the full
ymmetry of the sample.

. The triangle and square

As shown above it is possible to classify the solutions for a square and a triangle according to
he irreducible representations �irreps� of the symmetry groups C3 and C4. This classification will
nclude different order parameter patterns, since the solutions are contained in different subclasses
haracterized by a certain irrep. As can be seen in Figs. 11 and 12 the eigenvalues of the LGL
quation belonging to the different irreps will form the complete spectrum of eigenvalues.25,26

owever, eigenvalues belonging to the same irrep will never cross. Moreover the lowest eigen-
alues form separated bands existing out of an eigenvalue for each irrep, which are crossing in a
egular pattern. In this way the H–T phase boundary Tc�H�, which is the lowest eigenvalue

LLL�H�, shows an oscillatory cusplike behavior as a function of flux and with every cusp the
olution corresponds to a different irrep. The sequence of the Tc�H� oscillations is always A, E+,
, and E− in the case of a square, and A, E+, and E− in the case of a triangle. The vorticity

ncreases by one when passing a cusp along the H–T phase boundary with increasing field �cf. the
ittle-Parks experiment� and consequently to the next irrep.

Even as the symmetry of the structure gives rise to a cusplike H–T phase boundary, it still
hows a predominantly linear dependence between the magnetic field and the temperature. This is
ot surprising since a linear H–T phase boundary is the solution for the bulk problem. However,

IG. 10. �Color online� Symmetrized basis functions for an equilateral triangle. The highest density is shown in darker
hades and the lowest ���2 values are lighter shades. The numbers in parentheses stand for p and q, respectively.
he slope has changed compared to the bulk case, as can be seen in Fig. 13. When comparing the
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onsidered shapes with equal surface, it is evident that superconductivity nucleates with decreas-
ng magnetic field H and temperature T, first in the triangle, then the square, the disk12,28–35 and
nally in the bulk material. This can be understood from the results obtained on the nucleation of
uperconductivity in an infinite wedge7,8,36–39 where the nucleation field Hc3

� increases with reduc-
ng angle � of the infinite wedge. Consequently we should observe the largest Hc3

� for the triangle,
ince the triangle has the smallest angles in the corners. That is precisely what we observe.

Furthermore, the phase boundary for the square has been calculated by other groups, like
adallah et al.27 and Schweigert et al.37,40,41 When comparing for instance the positions of the
usps at the phase boundary we see a good agreement between the different calculations at lower
elds. However, at higher fields we see a slight deviation between our results and the results of
adallah et al.27 �see Table I�.

Additionally, there is a good agreement between the amplitudes of the oscillations found in
ur work26 and Schweigert et al.41 and for certain values of magnetic field and temperature we
lso find the same vortex patterns. However we also find some large differences in the vortex
atterns, specifically vortex-antivortex patterns compared to a giant vortex.

IG. 11. �Color online� Lower eigenvalues of the LGL equation for the mesoscopic triangle, as a function of the magnetic
ux  /0, with superconductor-vacuum boundary conditions. The different lines correspond to the three irreducible
epresentations �irreps� A �full black line�, E+ �dashed red line� and E− �dashed-dotted-dotted green line�. Since the problem
as a discrete C3 symmetry there is a ’repulsion’ of the levels, giving a regular pattern of avoided crossing between levels
elonging to the same irrep. The flux is defined as =�0HS, with S the surface of the triangle, �0H the applied magnetic
eld and 0=h /2e the superconducting flux quantum. The lowest sequence of the cusp-like pieces from different irreps
orms the lowest eigenvalue ELLL�H�, directly corresponding to the Tc�H� line. For detailed comparison with the experi-
ent see Fig. 19. Along the vertical axis, the critical temperature Tc is linearly decreasing with increasing S /	 2�T�.
Since the rotational axis in the triangle is of finite order we do not expect the giant vortex state
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o be always a ground state solution. Actually there are no vortices in the first state �L=0�, there
s one 0 vortex in the cental position in the second state �L=1�, and there is one −0 antivortex
n the center and three 0 vortices at the diagonal positions in the third state �L=−1+3=2�. This
equence is periodically repeated when going to higher applied fluxes. For instance, the fourth
tate �L=3� will contain three 0 vortices dispatched along the diagonals of the triangle. Figure 14
hows the distribution of the order parameter in the above states. The total winding number is a
um of the vorticity numbers of the central and diagonal vortices as follows:

L = n + 3m ,

n = 0,1,− 1, �51�

here m=0, 1, … is the number of vortex triades. The number n in this equation matches the
orresponding irrep via Eq. �35�.

The seven insets in Fig. 12 show schematically the distribution of vortices in the square,

IG. 12. Lower eigenvalues of the LGL equation for the mesoscopic square, as a function of the magnetic flux  /0, with
uperconductor-vacuum boundary conditions. The different lines correspond to the four irreducible representations �irreps�

�full black line�, B �dashed-dotted line�, E+ �dashed line�, and E− �dashed-dotted-dotted line�. Since the problem has a
iscrete C4 symmetry there is a ’repulsion’ of the levels, giving a regular pattern of avoided crossing between levels
elonging to the same irrep. The flux is defined as =�0HS, with S the surface of the square, �0H the applied magnetic
eld and 0=h /2e the superconducting flux quantum. The lowest sequence of the cusp-like pieces from different irreps
orms the lowest eigenvalue ELLL�H�, directly corresponding to the Tc�H� line. For detailed comparison with the experi-
ent see Fig. 20. Along the vertical axis, the critical temperature Tc is linearly decreasing with increasing S /	 2�T�.
hich are clearly different from the giant vortex states.
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In the case of small L’s, vortices can occupy one central and four diagonal positions. In
ontrast to the diagonal vortices which always enclose a single quantum 0, the central vortex can
ave different winding numbers in order to conserve the total vorticity of a given state. The
ontribution of the two kinds of vortices �central+four diagonal� to the total winding number of
he states shown in Fig. 12 is given by

L = n + 4m ,

n = 0,1,2,− 1, �52�

here m=0, 1. Note that the four numbers in the second equation match the n numbers in the
xpressions for the basis functions of the corresponding irreps, Eq. �35�. This is not surprising
ince these resemble the eigenfunctions of a 2D rotator with momentum n.

As a result the nature of the central vortex changes, whenever vorticity is changed by one.
hus the central vortex is absent in the first state, it is a 0 vortex in the second state, it is a giant
ortex in the third state and it is an antivortex �the winding number is negative!� in the fourth state

IG. 13. The calculated H–T phase boundary for a disk, square, and triangle. The dotted straight line is the surface critical
eld for a semi-infinite slab with a straight superconductor/vacuum border Hc3=1.69 Hc2.

TABLE I. Calculated cusps positions in Tc�� for the triangle, the square,
and the disk at particular values of the normalized flux  /0. The different
calculated values for the square deviate slightly at high winding number L.

L→L+1 Triangle Square Square Disk
After Ref. 25 26 27 28

0→1 2.24 2.04 2.0 1.92
1→2 3.88 3.58 3.6 3.39
2→3 5.32 4.98 5.0 4.75
3→4 6.69 6.32 6.3 6.05
4→5 8.01 7.61 7.6 7.31
5→6 9.30 8.87 8.9 8.54
6→7 10.57 10.12 10.1 9.76
7→8 11.82 11.34 11.4 10.96
8→9 13.05 12.54 12.7 12.15
9→10 14.27 13.74 13.9 13.33
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see Fig. 12�. The sequence of winding numbers of the central vortex �−1, 0, 1, 2� is periodically
epeated when going to the right of the phase diagram.

Because the kinetic energy of a vortex is proportional to L2, the system prefers to split the
iant vortex into a sum of smaller vortices42 if there are no special symmetry restrictions. Another
nergy based reason is that vortices get attracted to the corners as it was shown for the case of a
emi-infinite plane with a wedge.39 This explains why the four dispatched vortices prefer to stay
n the diagonal positions in the ground states. The combination of these two arguments explains
hy only four numbers mentioned above appear as winding numbers for the central vortex. On the
ther hand, the formation of antivortices is dictated completely by the discrete symmetry. Indeed,
n the state with L=3, one cannot distribute three 0 vortices on the square keeping the symmetry.
he dilemma is solved by having four diagonal 0 vortices and adding one antivortex in the
enter.

Figure 15�a� shows the distribution of the order parameter corresponding to the antivortex
olution. The central antivortex is separated from vortices on the square diagonals by about 2% of
he edge length. The maximal value of the order parameter on the line connecting the antivortex
ith one vortex does not exceed one-thousandth of its value in the corners of the square. Note that

his solution is obtained within the present approach by using a moderate basis set. To reproduce
hese features by finite grid methods a very large basis set corresponding to at least a 400�400
rid should be involved in the calculations.43

At higher values of applied field the additional vortices will continue to occupy the diagonal
ositions as shown in Fig. 16 for states of symmetry A.

On the whole, the nucleation of superconductivity in squares has similar features with the
quilateral triangles. We expect most of these features to be general for higher order regular

IG. 14. Gradients of phase of the order parameter at the middle of the lowest four cusps in the Tc�H� phase diagram in
ig. 11. Large arrows rotating clockwise encircle the vortices and those rotating in the anticlockwise direction display the
ntivortex. The panel for the E− state, zoomed 16 times, shows the presence of an 0 antivortex in the center.
olygons too since they are based on symmetry grounds. For instance, the avoided crossing
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atterns of levels belonging to the same irrep is a common feature. One can see that it is more
ronounced in the triangle �Fig. 11� than in the square �Fig. 12� and will generally diminish with
ncreasing order of the polygon, disappearing completely in the case of disk �N→��. The same
or the vortex patterns; they are expected to shrink with increasing N and merge into giant vortex
tates in the limit of the disk. The asymptotic behavior of the ground state solutions in the limit of
igh applied field corresponds to the N-fold degenerate ground Landau level, the components of
hich belong to N different irreps of the corresponding polygon. This becomes infinitely degen-

rate in the case of disk, containing all different rotational �vorticity� states as components.11

. Experimental phase boundary

To check the theoretical prediction for the lowest Landau level ELLL�H� for different geom-
tries �triangle, square, disk�, superconducting Al samples have been made to measure the Tc�H�

IG. 15. Order parameter plots corresponding to the ground state of the square in an applied magnetic flux =5.50. The
ontour plot �a� shows �in logarithmic scale� the vortex pattern in the central region of the square zoomed in eight times
fter convergence with respect to the basis set size was achieved. The panel �b� displays the cross section in the diagonal
irection �=0 is the center of the square� for different sizes of basis sets used in the calculations.
ine.
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. Sample characteristics

Figure 17 shows AFM and SEM micrographs of the triangle, the square and the disk. Wedge
haped current and voltage leads with an opening angle of �=15° and with a narrow width of the
nterface between the structure and the current leads were used in order to minimize their influence
n the superconducting properties of the structure.44,45 The square and the disk were evaporated in
he same run. A thickness �=39 nm was obtained from x-ray and AFM measurements. The radius
f the disk, measured with AFM and SEM, was 1 �m. For the square, lateral dimensions of 2
2 �m2 were obtained. The samples have a coherence length, determined from a coevaporated

eference sample, of 	�0�=156 nm and a critical temperature of Tc=1.32 and 1.33 K for the square
nd the disk, respectively. The equilateral triangle has a thickness �=43 nm, a basis of 2.33 �m.

coherence length of 	�0�=130 nm and critical temperature of Tc=1.34 K were found for this
ample.

The Tc�H� phase boundary is measured by four-point resistance measurements using a lock-in
mplifier. An ac transport current of 0.1 �A is sent through the two current leads �horizontal

IG. 16. Three vortex patterns corresponding to the symmetry A of the order parameter and the total vorticity L=4 �a�,
=8 �b�, and L=12 �c�. In all cases the vortices are arranged symmetrically along the diagonals of the square. The panel

n the left bottom corner shows the zoomed in central region of the plot c.

IG. 17. AFM and SEM micrograph of an Al triangle �a� with basis of 2 .33 �m, of a square �b� with a lateral dimension

f 2 �m and of a disk �c� with a radius of 1 �m.
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ontacts in Fig. 28�. In order to construct the H–T phase diagram a set of R�H� magnetoresistance
urves are measured at various temperatures. The phase line is in a next step extracted from the
ata using a certain resistance criterion Rc.

. Triangle

Figure 18 shows the resistive transitions of a mesoscopic triangle with wedge shaped contacts.
he R�T� curves are composed of two parts with different slopes. The upper part of this double

ransition shows a slowly decaying resistance while a steeper drop is seen in the lower part. This
ffect becomes more pronounced with increasing magnetic field. The appearance of the two
istinct parts in the transition curves arises from the different field dependence of the nucleation
emperature in the triangle and in the wedge shaped contacts.45 The upper part of the R�T� curves
orresponds to the nucleation in the contacts followed by the nucleation in the triangle for lower
emperatures at the lower part. The square and the disk show very similar resistive transitions.

The result of a continuous Tc�H� measurement of a mesoscopic triangle is given in Fig. 19.
he Tc�H� phase boundary, measured for the triangle, is shown as open circles in Fig. 19 with the
oherence length 	�0�=130 nm determined from a coevaporated reference film and the surface
=2.36 �m2 found from AFM and SEM investigations. The open squares represent the measured
hase boundary with the best fitting parameters, the best value for the coherence length is 	�0�
118 nm and the effective area of the sample S=2.25 �m2. This leads to a difference of 10%
etween the measured and the fitted coherence length and a difference of 5% between the mea-
ured and the fitted sample areas S. After this small correction an excellent agreement between the
xperiment and the theory is observed. The amplitude of the oscillations and the position of the
usps are in perfect accordance.

From the AFM and SEM measurements, features that could be attributed to resist at the
oundaries of the structures were observed. Since the area written by e-beam lithography was S
2.25 �m2, we believe that the exact surface of the Al triangle is slightly lower than the measured
ne �S=2.36 �m2�. Another explanation for the different obtained values of the fitting parameter
or the area of the triangle and the measured area could be the error margin on the measured value.

possible reason for the deviation between measured and the fitted coherence length might be the

IG. 18. Resistive transitions R�T� for the triangle in different magnetic fields. From �0H=0 mT �open squares� to 8 mT
open stars�. The dashed line shows the resistance criterion used to determine the Tc�H� phase boundary.
resence of the wedge contacts. The wedge-shaped contacts will probably not change the value of
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he coherence length, but shift the phase boundary of the triangle in the direction of the phase
oundary for a wedge with opening angle �=15°. Another possibility for this small discrepancy
ould be a difference between the coherence length of the coevaporated reference film and the
oherence length of the mesoscopic triangle that cannot be measured directly. A potential origin of
he discrepancy between the two coherence lengths could be a slight contamination of Al by the
esist used in the preparation of the mesoscopic structures, that would decrease the elastic mean
ree path �el and consequently also 	. A lower resistance criterion �smaller than the 50% of Rn

riterion used� for the determination of the phase boundary, will give a small reduction of the
ivergence, but cannot remove completely the difference between the two coherence length val-
es. Another reason for this small discrepancy could arise from the not perfectly shaped triangles.
ince the opening angle of the corners plays the major role in the determination of the slope of the

c�H� curve, we could expect that not perfectly sharp corners would decrease the critical field. In
ur experiment, the measured phase boundaries are shifted to the opposite direction, so that it
annot be attributed to the rounded corners of the triangles.

The open triangles in Fig. 19 show the critical temperature of the triangle for a chosen
esistive criterion equal to 99% of the normal state resistance from the R�T� curves. A perfect
greement between the theoretical phase boundary of the contacts and the point on the R�T� curve
here the resistance starts to drop is observed. The double resistance transition observed in the
easurements �see Fig. 18� is therefore due to two different superconducting/normal transitions.
rom this observation, it is clear that the resistance criterion for the determination of the phase
oundary of the structure must be chosen in the low resistance region of the R�T� transition. If the
esistance chosen for this criterion is too high, the nonlocal effect of the contacts on the triangle
ill be probed.

. Square

The experimental phase boundary of a square is displayed in Fig. 20 and is compared with the
heoretical calculations. While previous measurements2,46 showed a strongly oscillating Tc�H�

IG. 19. Experimental Tc�H� phase boundary of an equilateral triangle with wedge-shaped contacts. The open circles
epresent the data obtained using the measured sample size S=2.36 �m2 and the coherence length 	�0�=130 nm. The best
greement between the measured and the theoretical phase boundary was found using the parameters S=2.25 �m2 	�0�
110 nm, see the open squares in the figure. The full line represents the theoretical curve �Ref. 32�. The open triangles are

aken from the resistance transition R�T� for a resistance criterion of 99% Rn. The dashed line is the theoretical phase
oundary of the wedge-shaped contacts with opening angle �=15°.
ependence superimposed with a pronounced quadratic background, our results are in very good
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greement with the theoretical predictions. Only a smaller coherence length 	�0�=135 nm was
sed. The second parameter S used to compare the experimental and the theoretical data was found
o be in the error margin of the determined area from SEM and AFM measurements. The main
ifference between the presented experimental phase boundary and previous reports is the shape
nd the size of the current and voltage contacts that can be extremely invasive in mesoscopic
uperconductors.

. Disk

The Tc�H� phase boundary of the disk is shown in Fig. 21 using a resistance criterion of

IG. 20. Experimental Tc�H� phase boundary of a square. The open squares represent the measured value using the
easured sample size S=4 �m2 and the coherence length 	�0�=135 nm. The full line is the theoretical curve ELLL�H�.26

IG. 21. Experimental Tc�H� phase boundary of a disk determined for a resistance criterion of 2/3 Rn. The open squares
epresent the measured value using the radius r=1 �m and the coherence length 	�0�=130 nm. The full line is the

heoretical curve ELLL�H�.
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/3 Rn. Already in 1965, Saint-James calculated the phase boundary of a singly connected

ylinder9 with the gauge chosen as A� = ��0Hr /2�e��. With this particular choice, the superconduct-
ng boundary condition is imposed only on the gradient of the order parameter ��� along the radial
xis. Since under these conditions ��� has no z-dependence, the phase boundary of a disk or an
nfinitely long cylinder will be the same. The solution of the linearized GL equation for a disk is
Kummer function of the first kind.28,29 The nucleation temperature at a fixed magnetic field value

an be found by taking the vorticity L that minimizes the eigenvalue giving rise to a cusplike
hase boundary as shown by the full line in Fig. 21.

In order to fit the theoretical curve, the measured value of the radius r=1 �m and a slightly
ifferent coherence length of 130 nm, instead of the value of 154 nm determined from the
eference sample, were used. After this small correction a good agreement is found between the
heoretical and the experimental phase boundary for the position of the cusps. However, as in the

easurements of Buisson et al.,47 where a substantially larger disk was measured, the amplitude of
he oscillation in the experimental curve is stronger than for the theoretical predictions. In our
xperiment, an excellent agreement between the theory and the experiment was found �see Fig.
1� by using a resistance criterion of 2 /3 Rn. The positions of the cusps as well as the amplitude
f the oscillations in the experimental curve match the theoretical phase boundary.

. From square to rectangle

When crossing over from a square ��=1� to a rectangle, we should go from a fourfold to a
wofold rotational symmetry. The lowest Landau level in a superconducting square follows a
usplike profile corresponding to successive crossings of the solutions corresponding to four
ifferent representations. This is reproduced in the rectangle with aspect ratio one by a pair of
rossing irreducible representations �irreps�. However to obtain the full spectrum of eigenvalues
ormed by the four lowest crossing solutions in a square, two pairs of crossing irreps are needed,
ot only the lowest solutions but also the first excited ones of the A and B symmetry �see Fig.
2�.48 Departure from aspect ratio one leads to a splitting between the lowest and first excited
olutions. Small deviations from the square have no noticeable effect on the lowest Landau level.
ll aspect ratios close to one have a lowest Landau level showing an oscillatory behavior with a
redominantly linear background dependence on the field.

At a field of 5 up to 6.3  /0 we find that the lowest Landau level corresponds to a solution
ith vorticity three. Although the energy levels and vorticity of all rectangles with an aspect ratio

IG. 22. In the case of the square �panel �a�� the lowest Landau level is constructed by the four lowest eigenvalues,
orresponding to different irreps. However, the lowest Landau level ELLL�H� in the rectangle with aspect ratio one �panel
b�� is obtained from just the lowest two eigenvalues, and the same spectrum of eigenvalues is formed with the two lowest
airs of eigenvalues. Deviations from aspect ratio one for the rectangle will lead to a gap between these two pairs of
igenvalues.
ery close to one are the same, the vortex pattern can nevertheless be very different �Fig. 23�. In
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square vorticity three is formed by four vortices on the diagonals and one antivortex in the
enter. At an aspect ratio 1.02 vorticity three already corresponds to three vortices on a row along
he longest axis. However when we consider an aspect ratio 1.01, which lies between these two
alues, the pattern is more complex. The vortex pattern is now built up from four vortices on the
iagonals, one vortex in the center and two antivortices located on the left and right from the
entral vortex along the long axis. This suggests the following evolution from aspect ratio 1 to
spect ratio 1.02. By varying the aspect ratio from one the antivortex in the center splits into two
ntivortices plus one vortex in the center. These antivortices move away from the center along the
ong axis, where each antivortex merges with the pair of vortices, respectively, at the left and right
f the antivortex, leaving as a result three vortices on the longest axis. We must point out that the
ortex pattern observed at aspect ratio 1.01 with a central vortex and two neighboring antivortices
s in itself embedded into a region where the order parameter is already suppressed by orders of

agnitude, which implies that we can also consider this structure as one elongated antivortex with
nontrivial �−1+1−1� core structure.

. Larger aspect ratios

It is surprising to see that the H–T phase boundary �Fig. 24�a�� remains almost the same for
he aspect ratio between 1 and 1.333. However, the amplitude of the oscillations within the same
rrep is reduced without substantial change in the lowest Landau level. Only when the aspect ratio
ecomes two or larger, a noticeable shift in the lowest Landau level is seen. Except for the first
usp the lowest Landau level still shows an oscillatory behavior on top of a linear dependence on
he field, though with a reduced slope. At an aspect ratio of four we can hardly observe the
rossing of the different irreps as they almost completely merge together, only the first cusp
emains clearly visible. For fields higher than the first crossing of solutions, the field dependence
ecomes again linear. The same pattern persists for even higher aspect ratios. However, the field,
t which the solutions for the first time cross, increases with the aspect ratio �Fig. 25�. This
rossing of the two irreps corresponds to the appearance of the first vortex in the rectangle,
ecause the irrep B describes solutions that have a vortex in the center, while the irrep A solutions
re without a vortex in the center. As a consequence every crossing of the solutions corresponding
o the two irreps, will change the vorticity by one. The H–T phase boundaries for the different
spect ratios not only show the same behavior, they additionally can be scaled on one universal
urve, apart from the oscillations �Fig. 24�b��. The scaling is performed by dividing S /	2�T� and

IG. 23. �Color online� The figures show the density of the order parameter ���2 of the central �a /10�� �b /10� region in
he rectangle in a log scale, where a is the long side and b is the short side. The highest density is shown in darker shades
nd the lowest ���2 values are in lighter shades, indicating the position of vortices and antivortices. Every shade corre-
ponds to roughly half an order of magnitude. At a field of 5.5  /0 the rectangles with, respectively, aspect ratio 1, 1.01,
nd 1.02 have very different vortex patterns. For aspect ratio one we observe the known configuration with one antivortex
n the center and four vortices on the diagonals. However, at aspect ratio 1.01 we see four vortices on the diagonals, one
n the center and two antivortices next to the central vortex. Finally at aspect ratio 1.02 we find that there are three vortices
ositioned on the long axis of the rectangle.
/0 by the aspect ratio �,
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	2�T��
=

b2

	2�T�
,



0�
=

ab�0H

0�
=

b2�0H

0
. �53�

Therefore we can conclude that the length b of the shortest side of the rectangle controls to a
arge part the behavior of the superconducting mesoscopic rectangle, such as the entry of the first
ortex and the slope of the phase boundaries.

Since the curves can be scaled on a universal curve neglecting the cusps, it is also possible to
escribe the H–T phase boundary with a single function with the same dependence on the aspect
atio as the scaling,

S

	2�T�
=

3

�
� 

0
�2 � 

0
� 0.535�� , �54�

S

	2�T�
= 6� 

0
� − 3�0.535�2� � 

0
� 0.535�� . �55�

IG. 24. �Color online� �a� Calculated superconducting H–T phase boundary for rectangles with different aspect ratios. The
uperconducting phase is located above �lower T� and the normal phase below the H–T phase boundary. For every aspect
atio the lowest two eigenvalues of the LGL equation for the mesoscopic rectangles with superconductor-vacuum boundary
onditions as a function of magnetic flux  /0 are shown, with the lowest eigenvalue ELLL�H� corresponding to the phase
oundary. The different shades correspond to different aspect ratios, as indicated in the figure, however with the same
urface S. The lowest graph at zero field for the same shade is the solution for irrep A and the highest graph is the solution
or irrep B. The flux is defined as =�0HS with S the surface of the rectangle, �0H the applied magnetic field. �b�
ifferent H–T phase boundaries show fundamentally the same behavior in a different field and temperature range, by

caling the different curves with the aspect ratio � onto the same universal curve, apart from the oscillations.
owever, this fit only works well at aspect ratio ��4 where the cusps are negligible.
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In the case of aspect ratio 1.333 the vortices are situated in the central region on the longest
xis of the rectangle. However, when the vorticity equals four, the vortices are sitting very close
ogether. As a consequence the vortices move away from the axis and instead are placed on the
isectors, which go from the corners to the long axis of the rectangle �see also Fig. 27�. The
ubsequent vortices appear again on the longest axis until the vorticity becomes 12. At this point
nother four vortices move away from the axis towards the corners along the bisectors. This of
ourse is in contrast to the square where all the vortices are always on the diagonals at the H–T
hase boundary in the considered field range.

The preference for positioning the vortices on the bisectors originates from the observed
eissner currents �Fig. 26� which make a hard bend there up to the longest axis �very weak

creening�, therefore the kinetic energy of the supercurrents is lower when a vortex is present on
hese bisectors compared to when a vortex is positioned away from the bisectors and from the

IG. 25. The circles show the flux at which the first vortex enters the rectangle. The open triangles are the first points on
he Tc–H phase boundary where vortices are located on the bisectors for the different aspect ratios. The numbers next to
he squares indicate the corresponding number of vortices present in the rectangle at these fields.

IG. 26. The graph shows the supercurrents in arbitrary units in a rectangle with aspect ratio two just before the entrance

f the first vortex at a magnetic field giving rise to magnetic flux of =2.20.
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entral region of the longest axis. A similar pattern of Meissner currents leads to a discontinuity
long the bisectors in the problem of the entry of flux lines in a rectangle away from the H–T
hase boundary observed by magneto-optical techniques.49–51

The same scheme repeats itself for aspect ratio two. However we must wait until there are
even vortices in the rectangle before four vortices start to be located on the bisectors. For the
spect ratio four it takes 15 vortices to initiate the vortex redistribution from the axis to the
isectors. So it is clear that with growing aspect ratio the field at which the vortices start to take
ositions on the bisectors increases. From Fig. 25 we can see that the lowest field at which vortices
ppear first at the bisectors increases linearly with the aspect ratio for at least the lowest aspect
atios. For aspect ratios beyond four we cannot go high enough in field with a basis set of 1764
asis functions to see vortices on the bisectors. For the largest aspect ratios even the entrance of
he first vortex in the rectangle is beyond the field range accessible for a limited number of basis
unctions in the set.

In summary it has been shown that the vortex pattern in a rectangle is composed of a central
ow of vortices along the longest axis and the vortices that are situated on the bisectors. These
isectors span the left and right b /2 region, where b is the short side of the rectangle. The vortices
orming a row parallel to the longest axis only move into these two outer regions when they are
eady to reposition themselves onto the bisectors, as shown in Fig. 27. When following the same
rrep with increasing field �Fig. 27�, we can observe the vortices enter in pairs through the centers
f the long edges. When more vortices accumulate on the central line, migration starts to the outer
/2 regions. In this region on the longest axis two pairs of vortices will merge at the two points
here the bisectors cross and form two giant vortices with vorticity two. These giant vortices split

gain into separate vortices which move along the bisectors now.

. Lines

When increasing the aspect ratio to large values, the rectangle eventually resembles a line. The
–T phase boundary for a line with a width smaller than the coherence length 	�T� in a perpen-
icular magnetic field is well known for the London limit since it coincides with the problem of a

1,52

IG. 27. �Color online� The figures show the evolution of the vortex pattern in the rectangle with aspect ratio two while
ollowing a single solution corresponding to irrep B with increasing field. The same shade conventions as in Fig. 23 were
sed. The numbers indicate the flux in the rectangle in units of the flux quantum 0. The black lines are constructed by
ividing the long axis with length a in three regions. Both outer regions have a length of b /2. If we would remove the
entral region, a square would remain with the black lines forming its diagonals.
hin �thickness �	�T�� superconducting plane in a parallel magnetic field. We have
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1

	2�T�
=

�2w2�0
2H2

30
2 . �56�

e can get an approximation for the rectangle with large aspect ratio when we substitute the width
2 with b2=ab /� where � is the aspect ratio, a is the long side, and b is the short side of the

ectangle,

ab

	2�T�
=

�0
2�2

3�
� 

0
�2

. �57�

This solution, which is obtained by minimizing the GL free energy in the London limit, is only
alid when ��� is approximately spatially constant. Consequently the valid field region will in-
rease with aspect ratio, since the field of the first entrance of a vortex increases with increasing
spect ratio. For instance, we determined that within the shown field region this approximation
lready coincides perfectly with our calculations for a rectangle with aspect ratio 64.

. Experimental phase boundary

To investigate experimentally the crossover square-rectangle, four rectangles with different
spect ratio ��=1, 4 /3, 2, and 4� were studied. They were all evaporated in the same run. The four
tructures have the same area of S=4 �m2. A SEM micrograph of the studied samples is shown in

2

IG. 28. SEM micrograph �a� of an Al square with lateral dimensions 2�2 �m2 ��=1� and of a rectangle with lateral
imensions of �b� 1.73�2.31 �m2 ��=4/3�, �c� 1.41�2.83 �m2 ��=2�, and �d� 1�4 �m2 ��=4�.
ig. 28. The rectangles with aspect ratio �=1, 4 /3, 2, and 4 have dimensions of 2�2 �m ,
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.73�2.31 �m2, 1.41�2.83 �m2, and 1�4 �m2. The thickness � is 39 nm and the coherence
ength of the coevaporated reference sample is 156 nm.

The experimental Tc�H� curve of the different rectangles is presented in Figs. 29, 30, and 31.
he critical temperature of the rectangles with �=4/3 �Fig. 29� and 2 �Fig. 30� shows small
scillations superimposed with a linear dependence of the magnetic field. They have an almost
dentical phase boundary as the square �see Fig. 20�. Only very small changes in the position of
he cusps are observed. The magnetic field value where the vorticity changes from L to L+1 is
lightly delayed when changing the value of � from one. No significant change in the slope and the
mplitude of the oscillations could be observed.

IG. 29. Experimental Tc�H� phase boundary of a rectangle with �=4/3. The open squares represent the measured value
sing the measured sample size S=4 �m2 and the coherence length 	�0�=132 nm. The full line is the theoretical curve

LLL�H�.

IG. 30. Experimental Tc�H� phase boundary of a rectangle with �=2. The open squares represent the measured value
sing the measured sample size S=4 �m2 and the coherence length 	�0�=125 nm. The full line is the theoretical curve
LLL�H�.
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A very good agreement between the experimental and the theoretical curves, as well as for the
osition of the cusp as for the amplitude of the oscillations, is obtained for these two rectangles.
ven a large deformation of the square ��=2� gives only minor changes in the phase boundary.

For a rectangle with aspect ratio �=4, the phase boundary �Fig. 31� is strongly transformed
ompared to the case of the square. The oscillations are hardly seen and the position of the first
ortex entry is delayed to  /0�3.7 �left dotted line in Fig. 31� instead of the value of  /0

2 found for a square. A good agreement between the experimental and the theoretical curves is
btained for a resistance criterion of 40% of Rn.

. SUPERCONDUCTING RINGS

. Theoretical formalism

Bruyndoncx et al.53 solved the linear GL equation for a loop of finite width by neglecting the
nduced magnetic fields. These two assumptions are valid near the phase boundary where �

0. Using polar coordinates, with the gauge chosen as A� = ��0Hr /2�e�
� so that the vector potential

as no radial component, the boundary conditions reduce to the simple case of the Neumann
oundary conditions,

� � ���r��
�r

�
r=ro,r=ri

= 0. �58�

The solution for � in cylindrical coordinates takes the following form:11,28,29,54,55

��,�� = e−ıL�� 

0
�L/2

exp�−


20
� � �c1M�− n,L + 1,



0
� + c2U�− n,L + 1,



0
�� ,

�59�

here the number n determines the energy eigenvalue and M and U are Kummer functions of the
rst and second kind, respectively.

IG. 31. Experimental Tc�H� phase boundary of a rectangle with �=4. The open squares represent the measured value
sing the measured sample size S=4 �m2 and the coherence length 	�0�=140 nm for a resistance criterion of 40% of Rn.
he full line is the theoretical curve ELLL�H�.
The eigenenergies of Eq. �4� are
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�− �� = �
2e�0H

m� �n +
1

2
� = ���n +

1

2
� . �60�

t is worth emphasizing that the parameter n depends on L but is not necessarily an integer
umber. This can be rewritten as

ro
2

	2�Tc�
=

ro
2

	2�0�
�1 −

Tc�H�
Tc0

� = 4�n +
1

2
� 

0
= ��Hc3

* �


0
. �61�

The Landau levels in a bulk superconductor are recovered by substituting n=0,1,2,… in Eqs.
60� and �61�, meaning that the lowest level n=0 corresponds to the upper critical field. It is
mportant to note that the lowest Landau level �n=0� for a bulk superconductor is degenerate in
he phase winding number L, and therefore the eigenfunction can be expanded as �=�cL�L.

Using dM�a ,c ,y� /dy= �a /c�M�a+1,c+1,y� and dU�a ,c ,y� /dy=−aU�a+1,c+1,y� for the
derivatives of the first and second type of Kummer functions, respectively,16 and inserting Eq. �59�
nto Eq. �58� gives

�c1��L −


0
�M�− n,L + 1,/0� −

2n

L + 1



0
M�− n + 1,L + 2,/0��

+ c2��L −


0
�U�− n,L + 1,/0� + 2n



0
U�− n + 1,L + 2,/0���

b

= 0, �62�

hich must be solved numerically for each integer value of L, resulting in a set of values n�L ,�,
ith =�0H�ro

2.
For a disk geometry,9,11,47 we must take c2=0 in Eqs. �59� and �62� in order to avoid the

ivergency of U�a ,c ,y→0�=� at the origin. Following the lowest Landau level at each value ,
ne ends up with a cusplike Tc�H� phase boundary,9 which is composed of values n�0 in Eq.
60�, thus leading to Hc3

* �T��Hc2�T�. A similar calculation was performed for a single circular
icrohole in a plane film by Bezryadin et al.,54,55 where c1=0 in Eqs. �59� and �62�, since

M�a ,c ,y→��=�. Here as well, the lowest Landau level consists of solutions with n�0. At each
usp in Tc��, the system makes a transition L↔L+1, i.e., a vortex penetrates or is expelled from
he sample.

The loops of finite width discussed in this section have two superconducting/vacuum inter-
aces, one at the outer radius ro, and one at the inner radius ri. Consequently, the boundary
ondition �Eq. �62�� must be fulfilled at both ro and ri. As a result, we have a system of two
quations and two variables n and c2 �c1=1 is chosen�, which were solved for different values of
=ri /ro. Note that in this case n is a positive or a negative number, just found from these two
quations, it is not necessarily a positive integer number.

. Sample properties

A SEM micrograph of the different studied samples prepared with e-beam lithography is
iven in Fig. 32. All the structures consist of disks with external radii of ro=1 �m. The radii of the
oles, determined from SEM micrograph, were ri=0 �m �a�, ri=0.1 �m �b�, ri=0.3 �m �c�, ri

0.5 �m �d�, and ri=0.7 �m �e�. All the samples were evaporated in the same run, except for the
hinnest loop. A different evaporation will only slightly alter the superconducting properties like
he coherence length and the critical temperature. Wedge shaped contacts with opening angle �
15° are used in order to minimize the influence of the contacts on the superconducting properties
f the structures.44,45 The coherence length determined from a macroscopic coevaporated sample
as found to be 	�0�=156 nm for the disk and the three loops with a small opening. The thickness
as �=39 nm. For the sample presented in Fig. 32�e�, a coherence length of 	�0�=120 nm was
etermined in the same way as for the other structures. A thickness of �=54 nm was found from

ow angle x-ray diffraction on a coevaporated film and from AFM for the loop with ri=0.7 �m.
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. Resistance transitions

The superconducting/normal resistance transitions for the disk and the rings with an inner to
uter radius ratio x=ri /ro=0.7 are shown in Fig. 33. The five different samples have a very similar
emperature dependence of the resistance at different magnetic field as the samples with wedge
haped contacts with opening angle �=15° presented above. They are characterized by a slowly
ecreasing resistance at high temperatures arising from the nucleation of superconductivity in the
edge contacts, followed by a sharp drop of the resistance once superconductivity nucleates in the

ing.56 The samples with x=0.3, x=0.5, and x=0.7 show a different behavior at low magnetic

IG. 32. SEM micrograph of �a� an Al disk with outer radius ro=1 �m and of a loop with outer radius ro=1 �m and inner
adius �b� ri=0.1 �m, �c� ri=0.3 �m, �d� ri=0.5 �m, and �e� ri=0.7 �m.

IG. 33. Resistive transitions R�T� for a loop with inner to outer radius ratio x=0.7 in different magnetic fields. The dashed

nd dotted lines show the resistance criteria used to determine the Tc�H� phase boundary.
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elds. There, the situation is reversed. A sharp transition is first observed, followed by a broad
ransition at low resistance. We will show below that the broad transition also corresponds to the
ucleation in the wedges. This effect is observed in a broader magnetic field range when the ratio
increases.

. Tc„H… phase boundaries

The experimental phase boundary of the disk has already been presented in Fig. 21. The data
or the ring with x=0.1 are shown in Fig. 34�a�. The flux  on the field axis denotes the flux

=�0H�ro
2 through the ring and the hole. The H–T diagram of the ring with the smallest hole

esembles strongly the Tc�H� line of the disk displayed in Fig. 21. The phase boundary has a linear
ackground superimposed with oscillations. A very good agreement between the measured and the
alculated curves is found.

Figure 34�b� shows the H–T diagram of the ring with x=0.3. Here, the linear dependence is
nly seen for vorticity L�4. At lower magnetic field, a parabolic background suppression of Tc is
bserved. The crossover from the linear to the parabolic regime occurs at �ro

2 /	2�T��20. This
orresponds to a value ro−ri�1.8 	�T�, which is in a good agreement with the thickness �
1.84 	�T� for a crossover from a one-dimensional �1D� to a 2D regime for a thin film in a parallel
agnetic field.57,58

A good agreement with the position of the cusps in the theoretical curve has been found. The
mplitude of the oscillations in the experimental curve deviates slightly from the calculated one.
t L=1, between the first and the second Tc�H� cusps, the experimental oscillation is less pro-
ounced. For higher vorticity, the opposite situation is seen where the amplitude of the experi-
ental oscillations is larger than in the theoretical curve.

The penetration of the first vortex in the ring occurs at a lower magnetic field value than for
he ring with the smallest hole �see Fig. 34�a��, while the transitions L=1↔2 to L=5↔6 occur at
higher magnetic field. That the transitions take place at lower magnetic field value for a ring with

hinner lines is expected since the transition between L and L+1 occurs at  /0=L+1/2 for an
53

IG. 34. The Tc�H� phase boundary of a loop with inner to outer radius ratio �a� x=0.1, �b� x=0.3, �c� x=0.5, and �d�
=0.7. The open squares �and the open circles in �d�� represent the measured data. The solid lines are the calculated

LLL�H�. The experimental Tc�H� phase boundaries of the different structures are compared in �e�.
nfinitely thin loop or cylinder. At higher magnetic fields, a giant vortex state is formed and the
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isk with a small hole in the center behaves like the disk without hole. This, however, cannot fully
xplain why the change in vorticity is delayed at high magnetic fields by introducing a small hole
n a disk.

The measured Tc�H� phase boundary of the ring with ratio x=0.5 is shown in Fig. 34�c�. In the
emperature range accessible with our experimental setup, only a parabolic background depen-
ence of the critical temperature on the magnetic field has been measured. By comparing the
xperimental results with the calculations, a similar behavior as for the ring with x=0.3 is seen.
he position of the cusps in the experimental curve matches with the calculated transitions.
owever, no good agreement is found for the amplitude of the oscillations. For the vorticities L
1 and 2, the amplitude is lower in the experimental curve, while for L�3, the amplitude is

arger. At low L, the transition between states with different vorticities occurs at a lower magnetic
eld than for the disk, while the transitions L=3↔4, L=4↔5 and L=5↔6 take place at a higher
agnetic field, similar to what was observed for the ring with x=0.3.

The H–T diagram of the ring with the thinnest line �x=0.7� is shown in Fig. 34�d�. Two
xperimental curves are presented, one for Rc=0.5Rn �open squares� and the second for Rc

0.8Rn �open circles�. It can be seen that at a higher resistance criterion the parabolic dependence
witches to a linear regime at high magnetic field. For the curve calculated with the low resistance
riterion, a quasiparabolic background suppression of Tc�H� is observed over the whole measured
ange. The amplitude of the Tc�H� oscillations is larger than in the samples with smaller x and the
ransition between states with different vorticities is almost periodic in field. A good agreement
etween the theoretical curve and the experimental curve with Rc=0.5Rn is seen at high magnetic
elds. At lower magnetic fields, a good agreement is found when using a higher resistance crite-
ion.

The phase boundaries of the four different loops are compared with the critical temperature of
he disk in Fig. 34�e�. All the curves overlap with each other for L=0. It is interesting to note that
n opening in the disk does not affect the phase boundary as long as no vortex is trapped inside
he superconductor. Only the magnetic field range over which the state with L=0 exists at the
hase boundary is lowered by introducing a hole in the disk. The Tc�H� line of the disk with the
mallest hole in the middle does not deviate substantially from the phase boundary of the disk
ithout any opening. Only small changes in the position of the cusps is observed at low vorticity.
or larger holes, the crossover from 2D to 1D regime is clearly seen. The samples with the

hinnest lines do not show the 2D regime in the studied temperature interval and only the parabolic
ependence is seen.

In order to reveal the origin of this different behavior at low and high magnetic field, a contour
lot of the resistance R�H ,T� is presented in Fig. 35. Two different parts are clearly distinguished.
elow 10 mT, the low resistance is linear, while the high resistance exhibits a parabolic back-
round superimposed with oscillations. Above 10 mT, the opposite situation occurs, where the low
esistance has a parabolic decay with small oscillations while the high resistance decreases mo-
otonously. The parabolic part coincides with the nucleation of superconductivity in the loop
hown as a full line. The linear part arises from the nucleation in the wedge contacts.

By fitting the theoretical critical temperature of a wedge with opening angle �=15° to the
inear part of the contour plot �dashed line�, a coherence length 	�0�=140 nm is obtained. This
iffers from the coherence length 	�0�=110 nm that was used to find a good agreement between
he experiment and the theoretical curve of a loop. A possible origin of this discrepancy could be

width of the loop that has been evaluated to be smaller than the real size. An estimate of the
hickness that would satisfy the coherence length used for the calculation of the wedge contacts
an be obtained from the analysis of the nucleation field of a thin wire of a film in a parallel
agnetic field. From the calculation of the nucleation field of a thin film in a parallel field,52 a

alue for the width of the loop of 0.38 �m is obtained instead of 0.3 �m found from SEM
easurements. This difference is too large to be explained only by an error in the characterization

f the sample. The opening angle of the contacts can be determined with a high accuracy so that
divergence arising from a wrong determination of � could be excluded. It means that either the
ucleation of superconductivity is delayed in the wedges due to the presence of the loop or that the
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ucleation in the loop is enhanced by the contacts. It is also possible that the coherence length in
he loop is slightly different from that in the wedge. The sample geometry can indeed affect the
uperconducting parameters � and 	 in a structure of mesoscopic size similar to the case of a thin
lm where the effective penetration depth increases as ��=�2 /�, taking into account the demag-
etization effects. The renormalization of � and 	 should therefore be calculated in a self-
onsistent way from the sample geometry.

The shape of the resistive curves in Fig. 33 can be easily understood from Fig. 35. It was
learly seen that in low magnetic fields the nucleation first occurs in the ring and is then followed
y the nucleation in the contacts. Due to the different field dependence of the Tc�H� of the ring and
he contacts, the opposite occurs in higher magnetic fields. Two different shapes are therefore
istinguished in the resistive curves depending on the part where superconductivity starts to
ucleate. The same happens in the rings with x=0.3 and x=0.5 since Tc also has a parabolic field
ependence for low fields. The normal parts of the sample can however partially become super-
onducting by the proximity effect with the neighboring superconducting part.

I. STABILITY OF THE LGL SOLUTIONS AND THE PHASE TRANSITIONS BELOW
HE NUCLEATION TEMPERATURE

The lowest level ELLL of the LGL equation, describing the nucleation of superconductivity in
pplied magnetic field, Tc�H�, is always nondegenerate for finite size samples.59 Therefore the
orresponding solution is fully consistent with the symmetry of the sample in applied field as we
ave seen in the preceding section. This is opposite to the case of bulk type-II superconductors
ithout boundaries, where ELLL�H� is an infinitely degenerate Landau level while the nucleating
rder parameter is a combination of its degenerate components,42 always of broken symmetry
BS� type. Besides the symmetry, the discreteness of the spectrum of the LGL equation in meso-
copic superconductors implies the stability of the shape of the nucleated order parameter in a
ange of temperatures close to the Tc�H� line. Such stability of a symmetric order parameter has
een found for mesoscopic cylinders,30,34,40,60,61 squares and triangles.62–66 Remarkably, a similar
henomenon is encountered in molecular physics where it is known as the pseudo-Jahn-Teller

67

IG. 35. Contour plot of the resistance R�H ,T� of a loop with x=0.7. The full line represents the calculated phase
oundary of a loop with ri=0.7 �m and ro=1 �m, using a coherence length of 110 nm. The dashed line is the theoretical
ritical temperature of a wedge with opening angle �=15° with 	=140 nm.
ffect.
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In this section we investigate the mechanisms of phase transitions from a nucleated order
arameter of a mesoscopic superconductor to another symmetry or broken symmetry phase when
emperature is lowered.68 We find that in the case of BS phase transitions most often only one
ingle LGL solution of different symmetry effectively admixes to the nucleated phase. In this case
he description of the phase transition is equivalent to the description of vibronic instability in a
imple �two-level� pseudo-Jahn-Teller problem. Such analogy is specific to mesoscopic supercon-
uctors, which have discrete LGL spectrum, and gives a “molecular” view on the mechanism of
S phase transitions in mesoscopic samples. We also investigate the existence of different phases
s a function of the samples size and find that the region on the phase diagram corresponding to
he nucleated order parameter of S solution increases with reducing the size. The critical sizes,
orresponding to the disappearence of BS phase transitions �when the nucleated S phases persist
own to T=0� are predicted to be in the range of micrometers for conventional superconductors,
.e., within the reach of current experimental techniques. This opens possibilities for the experi-
ental verification of different transitions predicted here on the basis of the similarities with

seudo-Jahn-Teller mechanism.
As before we consider a superconducting polygon of size a �a2 is the surface of the sample�

nd thickness d in a perpendicular uniform magnetic field H. For small �a�	, the coherence
ength� and thin �d�	� samples one can neglect the variation of the order parameter across
hickness30,40 and the distortion of the magnetic field induced by screening and vortex currents.
he order parameter � is found from the minimization of the two-dimensional GL functional,

�F = �����2 +
1

2
����4 +

1

2m*��− i� � −
2e

c
A���2�dS , �63�

ith the boundary condition �7�. Minimizing �63� without the term ����4 results in the linear
igenvalue equation �4� with the solutions which we further denote by �i , �i. The lowest solution

1 describes the nucleation phase boundary via the equation �1=−�. The eigenvalues �i, measured
n units of �2 /2m*a2��i��, depend only on the applied magnetic flux =Ha2, presented in units of
he superconducting flux quantum 0. The eigenstates of �34�, normalized to unity within the
urface of the sample, are used further as the basis set for the order parameter,

� = 

i=1

N

ci�i, �64�

here N is the dimension of the basis set. Substitution of �64� into �63� yields �F as a function of
he expansion coefficients

�F = 

i

�i�ci�2 +
�

2a2

ijkl

Aij
klci

*cj
*ckcl,

�i � � + �i, �65�

here the parameters

Aij
kl = a2 �i

*� j
*�k�l dS �66�

epend only on the geometry but not on the size of the sample. Aii
ii is precisely the Abrikosov

arameter �A
69 for the state �i, which is a measure of its “flatness.”

The actual parameters defining the relative free energy in Eq. �65� can be found as follows. If
e use coefficients ci→a�−�1 /�ci and measure the free energy in units of a2�1

2 /� ��1 corre-

ponds to the lowest LGL eigenvalue �1� then the right-hand side of Eq. �65� will depend �besides
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ij
kl� only on the ratios �i /�1= �a2 /	2+�i�� / �a2 /	2+�1��. Hence the GL functional for a given sample

measured in units of a2�1
2 /�� and the emerging phase diagram are only dependent on �a /	�T��2

nd  /0.
As we have already seen �Figs. 11 and 12�, the spectrum of eigenvalues of the LGL equation

s strongly influenced by the symmetry of the problem. If the sample has a rotational symmetry
xis Cn, the Landau levels are split in groups of n levels belonging to different irreps, because only
hese can intersect each other. In addition, the Cn symmetry imposes the selection rules on inte-
rals in Eq. �66�, mk+ml−mi−mj =0, similar to the case of cylindrical symmetry.34,60

Because the fourth order terms in �65� are overall positive, it is generally expected that only
he states �i with �i�0 will effectively contribute to the order parameter. In the close vicinity to
he nucleation phase boundary only �1 is negative, therefore ��c1�1, with c1=a�−�1 /�A11

11

��a /	�2−�1� and the free energy �F1=−��1
2 /2�A11

11�a2. The only allowed admixtures in this
hase are from the excited LGL states of the same irrep, �1�, described by the coefficients c1�,

c1�

c1
� −

A11�
11 c1

2

�1�/� + �2A11�
11� + �A11�

11 �cos��1�1�
11 − 2�11�

11 ��c1
2

, �67�

here �ij
kl=arg Aij

kl. In the temperature region where �1��0 the coefficients c1� in �67� show
mooth behavior, with continuous derivatives with respect to temperature. The symmetry-
reserving phase transitions can therefore occur only when some of �1� become negative. How-
ver in symmetric samples the �i states which are close to �1 are always of different symmetry
lower panel in Fig. 36� so that many of the corresponding parameters �i will become negative
efore �1�. We can conclude that the nucleated order parameter will undergo a phase transition
odifying its symmetry when temperature is lowered.

Even if there are many LGL states with �i�0 at a given temperature, only a few of them
ctually contribute to the order parameter. This is due to the fact that while the terms �Aii

ii and
j j

IG. 36. �Color online� Lower panel, LGL solutions �i� for a square with superconductor-vacuum boundary condition,
haracterized by irreps A �m=0�, B �m=2�, E+ �m=1�, and E− �m=−1�. Upper panel, the corresponding phase diagram
btained by Monte Carlo calculations. For each phase, the vortex structure is shown schematically and the involved irreps
re indicated. The number at each boundary line denotes the type of transition �Table II�. In the color online version: the
olors stand for the winding number of the central vortex: 0 �yellow�, 1 �green�, 2 �blue�, and −1 �red�.
Aii give net contributions to “repulsion,” the other terms, which could become negative, partially
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ancel out when N is increased. One can check indeed that already for N�3 there are less
vailable phases of complex ci coefficients than Aij

kl terms to be optimized. The mutual reduction
f these terms increases with the number of mixed LGL states which means that at a certain value
f N further admixture will become unfavorable. It is expected therefore that only a few different
rreps will effectively admix at the transition point.

Next we adopt a general description of the phase transitions from a nucleated order parameter,
hich is achieved by the following consideration. Given the small number of different irreps

mong the states �i which admix at the transition point, we can always divide the corresponding
ci� in two groups so as to bring the functional �65� to the following basic form:

�F = �̃1c1�
2 + �̃2c2�

2 +
�

2a2 �A11c1�
4 + A22c2�

4 + 2A12c1�
2c2�

2� , �68�

here c1� and c2� are the norms of the coefficients in the first and the second group, respectively,
hile the parameters �̃1, �̃2��0� and A11, A22, A12��0� are functions of associated angular vari-

bles to be specified below. The two groups contain different irreps, in numbers n1 and n2,
orrespondingly ��1 belongs to the first group�. Minimization with respect to c1� and c2� for fixed
alues of the five parameters in �68� results in three �meta�stable phases,

�F1 = −
�̃1

2

2�A11
a2, �F2 = −

�̃2
2

2�A22
a2,

�F12

�F1
=

����F2/�F1 − 1�2

� − 1
+ 1, �69�

here

� =
A11A22

A12
2 . �70�

he first two are pure phases, with c2�=0 and c1�=0, respectively, while �F12 is the mixed one
c1� ,c2��0�. Figure 37 shows the diagram of the thermodynamically stable phases. The vertical
ine �=1 divides the diagram in two regions. On the left-hand side we have a switch between pure
hases �first-order transition�. On the right-hand side the two phase boundary lines correspond to
he second order transitions. At temperatures close to the lower phase boundary, T=TBS−�T , 	

� �

IG. 37. Diagram of thermodynamically stable phases �solid lines� for the effective two-state model �68� as a function of
he parameters from Eqs. �69� and �70�. 1, 2 are pure phases and 1+2 is the mixed one.
	BS−�	, the BS phase will grow as c2�� �T , �	.
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Now the free energy expressions �69� are minimized with respect to the remaining variables
rom �̃i and Aij resulting in the lowest energy phase for a given temperature. Since we are looking
or phase transitions from the nucleated S-order parameter, the pure phase 1 in Fig. 37 always
orresponds to �1 with possible small admixtures of the same symmetry, Eq. �67�. Depending on
he symmetries of other LGL states which admix through the transition we can have several types
f phase transitions which are investigated below. As in the case of �1, the contributions from
tates of other symmetries are mainly represented by one LGL state. Therefore to simplify further
nalysis we will consider that only one state per irrep contributes.

In the case of a single admixed state ��2� one should substitute c1=c1� and c2=c2� in Eq. �68�
nd �̃i=�i, Aii=Aii

ii and A12=2A12
12− �A11

22� into �69� and �70�. When the interaction between these

tates, A12, is larger than �A11
11A22

22, the order parameter corresponds either to �1 or �2 �left-hand
ide of the diagram in Fig. 37�. The transition from �1 to �2 takes place when

�2

�1
��A22

22

A11
11 . �71�

he left-hand side of this equation increases with lowering the temperature, being always �1.
herefore the transition between symmetric states can only occur if A22

22�A11
11. When the interac-

ion is weaker, ��1, the transition from �1 to a BS order parameter �right-hand side of the phase
iagram� can arise under the condition

�2

�1
�

A12

A11
11 . �72�

When two states of different symmetry mix with �1, two situations can occur.
�1� If the involved irreps obey the inequalities m1+m3−2m2�0, ±n , m1+m2−2m3�0, ±n,

hen one has c1=c1� , c2=c2� cos � , c3=c2� sin �, and

�̃1 = �1,

�̃2 = �2 cos2 � + �3 sin2 � ,

A11 = A11
11,

A22 = A22
22 cos4 � + A33

33 sin4 � + �A23
23 − �A22

33�/2�sin2 2� ,

A12 = 2A12
12 cos2 � + 2A13

13 sin2 � − �A11
23�sin 2� , �73�

ubstituting �73� into Eqs. �69� and minimizing with respect to � we obtain again three thermo-
ynamically stable phases of Fig. 37 for corresponding equilibrium values of �. The difference is
hat now the left-hand side of the diagram describes the switch between the symmetric ��1� and
he broken-symmetry ��2+�3� phases, while the BS phase on the right-hand side of the diagram
orresponds to �1+�2+�3.

�2� If the first or the second relation for irreps becomes equality then c1=c1� cos � , c2

c2� , c3=c1� sin �, or c1=c1� cos � , c2=c1� sin � , c3=c2�, respectively. Therefore for ��1 we can
nly have a symmetry-changing transition from �1 to �2 �or �3�. However for ��1, at �
orresponding to thermodynamically stable BS phase �1+�2+�3, the lowest boundary line in Fig.
7 separates this phase from the metastable one �1+�3 �or �1+�2�. Therefore the phase transition
rom �1 will take place along the line which lies somewhere higher �dashed line in Fig. 37�, i.e.,
t is of the first order. This type of transition is associated with a small jump of c1, hence it is close

o second order.
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Considering higher numbers of mixing irreps will not result in qualitatively new phase tran-
itions which are thus of four types �Table II�.

The diagram of the lowest transitions from symmetric phases in a thin square was evaluated
ithin the above approach, which compares well with an accurate Monte Carlo calculation70

hown in the upper panel of Fig. 36. The critical values of 	 calculated by the two approaches
iffer by only several percents. One finds indeed that only a few states effectively admix to the
rder parameter. The described region in the phase diagram becomes relatively large with decreas-
ng a. For small enough samples some phase boundary lines pass above �a /	�0��2 and the nucle-
ted symmetric phases remain thermodynamically stable down to T=0. Thus the transition from
he phase with an antivortex in the center � /0=5.5↔6.5� to a BS phase with the same vorticity
ut without antivortex is suppressed for a� �7↔8�	�0� ��1 �m for Al�.

It follows from Fig. 36 that the phase boundary lines separating the areas with different
orticity have positive slopes and correspond to transitions of type 1 �Table II� in the lower part of
he diagram.71 The reason is the increase of Abrikosov parameters �A in the lowest group of LGL
tates �Fig. 36� when passing through the corresponding avoided crossings towards increased
elds. Indeed, it was shown24 that the lowest Landau level of each irrep maps into cylindrical
tates with rotational numbers L to the left and L+n to the right of the avoided crossing, respec-
ively. Therefore for two lowest LGL states the Abrikosov parameter is smaller for the ground state
o the left and for the excited one to the right of their intersection, so that the condition �71� can
nly be obeyed in the latter case.

On the other hand, the obtained transitions to broken-symmetry phases are always of the
econd order and go mostly via a two-state mixing scenario �in the phases E−+A+B in Fig. 36 the
dmixture of B states is relatively small�. The direct analogy for this in molecular physics is the
seudo-Jahn-Teller �PJT� instability of symmetric geometry of a molecule with respect to a low
ymmetry nuclear distortion �q�. Usually such an instability results from a strong interaction of the
round electronic state ��1� with an excited state ��2�, induced by q, which is described by the
amiltonian,67

HPJT =
1

2
Kq2 + �− � Vq

Vq �
� , �74�

here 2� is the energy gap between the ground and the excited states in the symmetric nuclear
onfiguration, V is the vibronic constant, and K is the force constant. The instability occurs when
2/K�� and it results in an equilibrium distortion q�0� �Fig. 38� and a broken-symmetry elec-

ronic ground state.
The PJT instability can be described by considering a functional depending on electronic

ariables only.72 To obtain such a functional, we average HPJT over �=c1�1+c2�2, find the

TABLE II. Possible transitions from a symmetric vortex phase.

Typea � n1 n2 nf
b Order �symmetry�

1 �1 1 1 1 I �S�
2 �1 1 �1 n2+1 II �BS�
3 �1 1 �1 n2 I �BS�
4 �1 �1 �1 n2+n1 I �BS�

aNumbers used in Fig. 36.
bNumber of irreps in the final state.
quilibrium value of q as function of c1 and c2 and substitute it back into the average,
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���HPJT���0 = −
2V2

K
c1

2c2
2 + ��− c1

2 + c2
2� . �75�

ext we introduce polar coordinates, c1=c cos � , c2=c sin � for the PJT functional �75� and c1

A11
−1/4c cos � , c2=A22

−1/4c sin � for the functional �68�, where � plays now the role of the order
arameter for the BS state. The �-dependent part of both functionals has now the following
ommon form:

�E��� = − Ac4 sin2 2� − Bc2 cos2 � , �76�

here A=V2 /2K , B=� for the PJT problem and A= �� /4a2��1−�−1/2� , B= ��2A22
−1/2−�1A11

−1/2� /2
or the case of superconductor. The main difference between them is that c=1 in the former and
�1 in the second case. Therefore the correspondence between PJT and GL parameters is the
ollowing:

V2/K →
��1�

2�A11
�1 −

1
��

� ,

2� →
�2

�A22

−
�1

�A11

. �77�

Lower panel in Fig. 38 shows how the broken symmetry phase appears for vortex molecules.
e can see that the evolution of the order parameter with temperature is reproduced by the

seudo-Jahn-Teller effect. In the case N=2, only the ground B and the first excited A LGL states
re taken into account. The accurate calculation involving N=24 LGL states shifts the transition
oint obtained in the N=2 calculation only by �2%. This shift mainly arises due to the renor-

IG. 38. Upper panel, adiabatic potential for two nondegenerate electronic terms of a square molecule in the case of weak
dashed lines� and strong �solid lines� pseudo-Jahn-Teller effect. Lower panel, temperature dependence of the normalized
oefficient of admixture of the excited �A� state close to the B→B+A transition at =4.50 �Fig. 36� evaluated by Monte
arlo calculations and the pseudo-Jahn-Teller effect using the correspondence relations �77�. The numbers in the inset
enote the dimension of the basis set in the Monte Carlo calculations.
alization of the effective parameters in Eq. �68� when more LGL states are taken into account.
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s a result of this renormalization the nucleated phase becomes optimized so that the transition
akes place at a lower temperature compared to the two-state approximation.

As the analysis shows the specific structural similarity between the pseudo-Jahn-Teller and
L symmetry breaking mechanisms is due to the presence of a quartic dependence on the expan-

ion coefficients. A different mechanism of symmetry breaking was described by Berger for the
ase of the Schrödinger equation for a cylinder.73 In this case breaking of axial symmetry was
btained through the induced magnetic field and the quadratic term in the GL potential was not
onsidered.

The symmetric order parameters are found to be remarkably stable below the nucleation
emperature, which is a pure mesoscopic effect. Besides, the mesoscopic samples show a rich
ariety of vortex phases compared to bulk type II superconductors where only the Abrikosov
ortex lattice occurs. By using an effective two-state model the nature of the transition to these
hases has been revealed and four distinct types of transitions have been found. The symmetry-
reaking phase transition has the same structure as the pseudo-Jahn-Teller instability of high
ymmetry nuclear configurations in molecules. This analogy provides an interesting connection
etween real and vortex molecules.

The existence of phases can be experimentally verified by using various local probe tech-
iques such as Hall probe microscopy, STM and AFM. The phase diagram is found to be strongly
ependent on the samples size. In particular, the region on the phase diagram corresponding to the
ucleated �symmetric� order parameter enlarges with reducing the size of the sample. The critical
ize corresponding to the complete disappearance of the BS phase �the nucleated S-phase persists
ntil T=0� is predicted to be of the order of micrometers for conventional superconductors, such
s Al, Pb. These predictions can be checked experimentally on different mesoscopic supercon-
ucting systems.

II. CONCLUSIONS

An analytical gauge transformation for the vector potential is derived with a vanishing normal
omponent at the boundary line of any regular polygon. With this vector potential gauge, the
inearized Ginzburg–Landau problem reduces to an eigenvalue equation in a basis set of functions
beying Neumann boundary conditions, which can be found for different regular polygons. The
roposed approach allows for accurate evaluations of the order parameter distributions and proves
o be especially efficient at moderate values of applied magnetic fields. For low values of applied
agnetic fluxes the order parameter for superconducting square and equilateral triangle contains

n antivortex in the center. These solutions are found to be stable with respect to small deviations
rom the phase boundary line and can be probed by techniques which are sensible to the superfluid
ensity, for example, by using scanning tunnelling microscopy. The calculated lowest energy
evels ELLL�H� show a very good agreement with the measured phase boundaries Tc�H� for a
ariety of different geometries �triangles, squares, disks, rectangles, loops�. By using full GL
quations symmetry-breaking transitions deeper in the superconducting state have been studied. A
emarkable similarity of these transitions for vortex molecules with pseudo-Jahn-Teller effect for
eal molecules has been revealed.
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In this paper, we review various methods for the numerical approximations of the
Ginzburg–Landau models of superconductivity. Particular attention is given to the
different treatment of gauge invariance in both the finite element, finite difference,
and finite volume settings. Representative theoretical results, typical numerical
simulations, and computational challenges are presented. Generalizations to other
relevant models are also discussed. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2012127�

. INTRODUCTION

The macroscopic model of Ginzburg and Landau43,91 has been widely used to study both
ow-temperature and high-temperature superconductors. Due to its highly nonlinear nature, the
omplex energy landscape and the exotic dynamic responses of its solution to external conditions,
ts numerical simulations have become valuable tools in order to better understand the properties
f the Ginzburg–Landau �GL� models and to provide further theoretical insight into the intriguing
uperconductivity phenomena.

The development of approximation methods of the Ginzburg–Landau model goes back to the
950s shortly after the inception of the model.58 Particularly notable works include the seminal
aper by Abrikosov2 on the vortex state in type-II superconductors based on the linearization of
L equations near the upper critical field. The systematic studies of the GL models from the
umerical analysis point of view, to our knowledge, have not been seriously developed until the
ublication of Ref. 43. In Ref. 43, both rigorous mathematical theory on the well-posedness of the
quilibrium GL models and their physical background were presented, along with the systematic
evelopment of finite element approximation methods. The work in Ref. 43 was partly motivated
y Refs. 3 and 29 of casting the equilibrium models into a variational framework. Extensions to
he dynamic models, i.e., the time-dependent Ginzburg–Landau �TDGL� equations were subse-
uently made.32,31 Since then, many other works have appeared in the literature, including the
evelopment of different types of numerical approximations of Ginzburg–Landau-type models,
heir rigorous theoretical analysis as well as extensive simulations. By now, almost all aspects of
odern numerical analysis have been utilized by people working on the numerical solutions of the
L models, ranging from the design and applications of various discretization methods and fast

lgorithms, domain decomposition and parallelization techniques, and adaptive computation strat-
gies. In this paper, we briefly review some of the works concerning the numerical approximations
f the Ginzburg–Landau models. In terms of spatial discretization methods, we consider, in par-
icular, the finite difference methods, finite element methods and finite volume methods. We also
iscuss various time-stepping schemes for time dependent models. As there have been a large
mount of works on the numerical simulations of the GL models in the last few decades, we make
o attempt to provide a comprehensive survey on all existing works on the subject due to limited

�
Electronic mail: qdu@math.psu.edu

46, 095109-1022-2488/2005/46�9�/095109/22/$22.50 © 2005 American Institute of Physics
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pace. In particular, our review of the vast physics literature is very much limited to those that
ave also received much attention in the numerical analysis community or have been examined
ore rigorously in the mathematics literature.

The rest of the paper is organized as follows: in Sec. II, we briefly recall the GL models and
heir basic features. In Sec. III, various numerical schemes are discussed, and in Sec. IV, some
ample simulation results are presented and some concluding remarks are given in Sec. V.

We end the introduction by stating that much of the research works discussed in the paper are
imed at the development and refinement of mezoscale and macroscale models for superconduc-
ivity so to enlarge the range of physical problems for which such models are valid; the analysis
f these models in order to gain further understanding of their properties and of their solutions,
nd for the most part of the paper, the development, analysis, and the implementation of algo-
ithms for the numerical simulation of the superconductivity models.

I. GINZBURG–LANDAU MODELS

Let ��Rd �d=2, 3� be the region occupied by the superconducting sample. The primary
ariables used in the GL models are the complex scalar-valued order parameter �, the real

ector-valued magnetic potential A, and the real scalar-valued electric potential �̄. In a nondi-
ensional form, these variables are related to the physical variables by

density of superconducting charge carriers, ���2,

induced magnetic field, curl A ,

current, J = curl curl A ,

electric field,
�

�t
A + ��̄ .

. Ginzburg–Landau free energy

Given a constant applied magnetic field H, the conventional Ginzburg–Landau free energy,
elow the critical transition temperature, is

G��,A� = �
�

�1

2
�� i

�
� + A	��2

+
1

4
�1 − ���2�2 +

1

2
�curl A − H�2	d� ,

here �, the Ginzburg–Landau parameter, is a material constant representing the ratio of the
enetration depth and the coherence length.

Note that for the general three-dimensional �3D� problems, the interactions between the fields
nside the superconducting sample and the external field are important. Various measurement of
ritical fields are also affected by the geometrical shape of the sample.72,69,78,85 To apply the
inzburg–Landau theory in such situations, a coupled system of equations must be solved in both

he sample and its exterior. Energetically speaking, in the case where � is a bounded domain in
D, it may be necessary to reformulate the free energy as follows:

G��,A� = �
�

�1

2
�� i

�
� + A	��2

+
1

4
�1 − ���2�2	d� +

1

2
�

R3
�curl A − H�2 dR3.

The minimizers of the GL energy functional satisfy the Euler-Lagrange equations, also called

he GL equations, of the form
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� i

�
� + A	2

� − � + ���2� = 0, �2.1�

curl curl A +
i

2�
��* � � − � � �*� + ���2A = 0. �2.2�

ere, �* is the complex conjugate of �. With the present nondimensionalization, ���=1 and ���
0 correspond to the perfectly superconducting state and the normal state.

This set of nonlinear Ginzburg–Landau equations in the �bounded� interior of � is coupled

ith the linear Maxwell equations in the �unbounded� exterior �e=R3 \�̄ with far field conditions
t infinity and interface conditions on �=��. If we only consider the interior problem �typically
alid for a two-dimensional cross section of a long 3D cylinder with the applied magnetic field
erpendicular to the cross section�, then on �, it is customary to use the natural boundary condi-
ions

� i

�
� � + A�	 · n = 0, �2.3�

curl A = H . �2.4�

ore general boundary conditions have also been studied. For instance, to study the proximity
ffect, one may use

� i

�
� � + A�	 · n = − i�� .

e refer to Refs. 14, 43, and 91 for more discussions.

. Time-dependent Ginzburg–Landau equations

Let �1 and �2 be given relaxation parameters, the conventional time-dependent Ginzburg–
andau �TDGL� model is given by

�1� ��

�t
+ i��̄�	 + � i

�
� + A	2

� − � + ���2� = 0, �2.5�

�2� �A

�t
+ ��̄	 + curl curl A +

i

2�
��* � � − � � �*� + ���2A = 0, �2.6�

ith boundary conditions

� i

�
� � + A�	 · n = 0, �2.7�

curl A = H , �2.8�

�2� �A

�t
+ ��̄	 · n = Ja · n , �2.9�
here Ja is an applied current. The initial conditions are
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��x,0� = �0�x� and A�x,0� = A0�x� in � .

ote that we only focus on the interior problem for now and we assume that �1 and �2 are both
ositive real numbers �dynamics with complex valued �1 have been studied30�.

First, it is convenient to introduce an auxiliary variable �a�x , t�= �Ja ·x� /�2 and define �

�̄−�a. The triple �� ,A ,�� is often used as the primary variables for the TDGL equations which
re related to the energy functional by

�1� ��

�t
+ i��̄�	 = −

�G
��

��,A� , �2.10�

�2� �A

�t
+ ��	 = −

�G
�A

��,A� . �2.11�

. Gauge invariance

Both the GL and the TDGL equations enjoy the gauge invariance property, see Refs. 32 and
2 for more detailed discussions.

Numerical minimization of the free energy functional is made difficult due to the gauge
nvariance. However, a nice remedy has been developed to avoid such pitfalls.43 Define

F��,A� = G��,A� + �
�

�div A�2 dx . �2.12�

y choosing proper gauge transformation, the following can be shown.
Theorem 2.1: The following minimization problems are equivalent:

Min G��,A� Min G��,A� Min F��,A�

s.t . � � H1��� , ⇔ s.t . � � H1��� , ⇔ s.t . � � H1��� ,

A � H1��� A � Hn
1�div,�� A � Hn

1��� .

here Hn
1��� is a subspace of H1��� with vanishing normal component on the boundary while

n
1�div,�� is a subspace of divergence free vector valued functions in Hn

1���.
With the equivalent formulation, one can simply enforce the Coulomb gauge implicitly by

olving for the variational problems with respect to F in H1����Hn
1���. The penalty term

div A
2 serves as a null Lagrangian which vanishes at the energy minimizer.
The TDGL equations �2.10� and �2.11� may be viewed as the gauge invariant gradient flow of

he free energy. By examining the various choices of the gauge, the well posedness of the system
as first reported in 1992 at the first world congress of nonlinear analysts.33,32 Sharper results
ased on some better energy estimates and the long time solution behavior have later been studied,
or instance, in Refs. 72, 90, and 56.

II. NUMERICAL APPROXIMATIONS

Due to the complexity stemming from the full nonlinearity of the GL models, analytical
tudies have been limited to special cases. Numerical approximations, on the other hand, have
rovided researchers useful tools to understand the models and to simulate the physical properties
f the superconductors. The systematic study of the GL models from the numerical analysis point
f view was first made in Ref. 43. Later, many works on the numerical approximations of
inzburg–Landau type models and their rigorous theoretical analysis have appeared. Here, we
riefly discuss the finite difference,3,21,26,29,35,55,57,59,61 finite element,4,17,20,18,40,43–45,62,93,95 and fi-
ite volume methods46–48 for spatial discretizations. We also discuss various time-stepping

31,79,80
chemes for time-dependent models and some parallel and adaptive algorithms.
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. Finite element approximations

The basic theory of conforming finite element approximations for the steady state GL equa-
ions in a bounded domain has been presented in Ref. 43. Let us choose a pair of conforming finite
lement spaces Vk

h�Vk
h�H1����Hn

1��� where h being a mesh parameter, and assume that they
atisfy the approximation properties

inf
gh�Vk

h

� − gh
1 	 chr
�
r+1,

inf
Bh�Vk

h

A − Bh
1 	 chr
A
r+1

or functions � and A of sufficient regularity.
Then, the discrete Galerkin finite element approximation can be formulated as follows:43

Min F��h,Ah� ,

s.t . ��h,Ah� � Vk
h � Vk

h.

It has been shown that the above problems generate a sequence of convergent approximate
olutions as h→0 under the minimal regularity condition. Moreover, optimal order of error esti-
ates of the following type have been derived for nonsingular solution branches:


� − �h
1 + 
A − Ah
1 	 chk�
�
k+1 + 
A
k+1� .

It is worthwhile to note that no inf-sup condition is required for the finite element spaces. The
auge condition is not strictly imposed for finite mesh parameter h, but it is shown to be valid in
he limit as h→0.

The finite element methods have later been generalized to other related models, such as the
-wave GL equations,93 optimal control of GL models60 and the Lawrence-Doniach models for
ayered superconductors.41,62 In Refs. 44 and 45, various numerical simulations have been con-
ucted based on the finite element approximations.

The application of finite element method to TDGL has been considered in Ref. 31. Besides the
asic convergence results for semidiscrete scheme, both first order and second in time discretiza-
ion schemes have also been presented. Let 
tn be the step size and ��n

h ,An
h� the numerical solution

t time tn. When the applied current is absent, the first order backward Euler scheme can be given
variational form, find ��n+1

h ,An+1
h � such that it solves the problem

Min G
tn
��,A� = G��,A� +

1


tn
�

�

��1�� − �n
h�2 + �2�A − An

h�2�d� .

t turns out that a second order in time scheme can also be similarly formulated, first find ���
h ,A�

h�
hat minimizes

G��,A� +
1

2
tn
�

�

��1�� − �n
h�2 + �2�A − An

h�2�d� ,

hen we let ��n+1
h ,An+1

h �=2���
h ,A�

h�− ��n
h ,An

h�. We note that the derivation of error estimates of the
ully discrete scheme was, however, not rigorously provided there. By using a mixed formulation,
ef. 17 has presented a more complete theory for the approximation of the TDGL along with
ptimal order error estimates in two space dimension. Later, Ref. 20 considered approximations to
related optimal control problem. Generalizations to the time-dependent Lawrence-Doniach

odel have been presented in Ref. 62.
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. Finite difference approximations

Same as in the approximations of many other physical problems, the finite difference approxi-
ations of the GL models have been the most widely used approach. Though conventional dif-

erence schemes have been studied in Refs. 55 and 67, much of the focus has been on the gauge
nvariant difference approximation. The motivation has come from the fact that the underlying
hysical model enjoys the gauge invariance property. In Ref. 3, a gauge invariant finite difference
cheme was proposed for the steady-state GL equations on a uniform rectangular grid, in the spirit
f discrete gauge field theory. Many subsequent works have followed up on such an approach via
n introduction of the so-called link and bond variables, and various extensions have also been
ade.21,22,55,57,59,61,66,68 For the approximation of the magnetic vector potential, such an approach

s naturally related to the idea of staggered grid �marker-and-cell� used in computational electro-
agnetics and fluid dynamics.

For simplicity, let us consider the two-dimensional setting with a uniform rectangular mesh of
rid size h. Following the notation in Ref. 35, the discrete gauge invariant energy functional is
iven by

Gh��� ,A� � =
1

2
jk

1

�2 ��k exp�− i�ajkh� − � j�2 + 
j

h2

4
�1 − �� j�2�2 +

1

2 
jklm

�ajk + akl + alm + amj − Hh�2,

�3.1�

here the first sum is over all neighboring edges, the second over all vertices and the third over all

quare cells. �� = �� j� are the approximations of the order parameter at the cell vertices and A�

�ajk� are the approximations of the signed tangential component of the magnetic vector potential
t the midpoint of the cell edges.

The gauge invariant backward Euler scheme is given by35

�1
� j

n − � j
n−1 exp�− i��̄ j

n
t�

t

= −
1

h2

�Gh

�� j
n ��� n,A� n�

nd

�2�ajk
n − ajk

n−1


t
+

�k
n − � j

n

h
	 = −

1

h2

�Gh

�ajk
n ��� n,A� n�

or n=1,2 ,… ,N=T /
t. Here, ��̄j
n� are the approximations of the scalar electric potential. Note

hat the equations at the nodes on the boundary may require slight modifications. A complete and
igorous analysis for such a discretization has been provided in Ref. 35, including the proof of the
iscrete maximum principle, discrete energy law, and optimal order error estimates.

It remains to be seen if a higher order in time fully discrete gauge invariant scheme can be
eveloped for the TDGL equations.

We note here also that, in practical numerical simulations, explicit or semi-implicit in time
ifference schemes have been mostly employed. In general, these schemes are only conditionally
table at best.

. Finite volume approximations

As more and more attention is being paid to the study of the effect of the sample geometry and
opology on the superconductivity phenomena, methods based on unstructured grids become more
ompetitive in such cases. Besides the finite element methods we have discussed, finite volume
ethods have also been developed which have the combined advantage of being able to work with

48,46,47
n unstructured grid while preserving the discrete gauge invariance.
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A standard extension to the staggered grid used in the gauge invariant difference approxima-
ion is the Voronoi-Delaunay pair. Given a set of distinct points �xj� j=1

n �R2, we can define for each
oint xj , j=1,… ,n, the corresponding Voronoi region Vj , j=1,… ,n, by

Vj = �y � R2��xj − y� � �xk − y� for 1 	 k 	 n and k � j� .

e refer to �Vj� j=1
n as the Voronoi tessellation corresponding to the generators �xj� j=1

n . The dual
essellation to a Voronoi tessellation consisting of triangles is referred to as a Delaunay triangu-

ation. Given a discrete vector field A� tangentially defined at the midpoints of the triangle edges of
Delaunay triangulation, it is easily seen that such vectors are normal to the edges of the Voronoi

egions. Thus, discrete calculus can be defined for the curl operator on the Delaunay triangles and
or the div operator on the Voronoi cells.

Then, the central idea for finding a suitable discretization of the GL energy functional is to
onstruct a gauge invariant approximation to ���− i�A��. It was noticed in Ref. 48 that one may
rst project the vector v=��− i�A� into the tangential components along the triangle edges and
btain the following simple identity

��ijk��v�2 =  cot i�v · �xj − xk��2,

here the sum is over all three edges and i is the opposite angle. Notice that if we let i1 and i2

e the two opposing angles corresponding to the same edge xjxk, then

cot i1 + cot i2 =
�� jk�

�xj − xk�
,

here � jk is the common edge between the two adjacent Voronoi regions Vi1 and Vi2. Now,
v · �xj−xk�� can be approximated by ��k exp�−i�ajk�xj−xk��−� j�.

Thus, the Ginzburg–Landau functional is discretized as follows:48

Fh��� h,A� h� = 
j=1

n
1

4�Vj�
�1 − �� j�2�2 + 

j=1

n � 
k��j

�� jk�
2�2�xj − xk�

��k exp�− i�ajk�xj − xk�� − � j�2�
+ 

�jkl

1

2� jkl
�ajkhjk + aklhkl + aljhlj − H� jkl�2, �3.2�

here for any j, the index set � j denotes the indices of all vertices which are adjacent to the vertex

j. The discrete gauge invariance is understood in the sense that

Gh��� h,A� h� = Gh�T�
h ��� h,A� h�� ,

here the transformation Th is defined by the map

� j → � je
i��j, ajk → ajk +

�k − � j

�xj − xk�
,

orresponding to any scale field �� h.
The gauge invariant difference approximation on a rectangular grid discussed earlier is in fact

special case of the above finite volume scheme. This can be seen by making the equivalence of
he rectangular cells with the Voronoi cells and the equivalence of the dual cells with pairs of right
elaunay triangles sharing a common edge opposing the right angles.

Similar to the technique introduced in Ref. 43 and in the finite difference setting, a modified
unctional can be defined to enforce the gauge choice implicitly. Let us define

Fh��� h,A� h� = Gh��� h,A� h� +  1

�Vj� �  akj��kj�	2
.

j k��j
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Then, it is easy to show that the minimizer of Fh is also a minimizer of Gh and it is also
ivergence free in the discrete sense:


k��j

akj��kj� = 0, ∀ j .

Moreover, it has been shown that the minimizer of Fh satisfies the discrete maximum prin-
iple, �� j�	1 for all j. This, coupled with suitable energy estimates, leads to the convergence of
he discrete approximations as the mesh size goes to zero.48

In Refs. 46 and 47, such finite volume scheme was extended to solve a reduced set of TDGL
odels defined on a thin spherical shell. In addition to the basic convergence properties, a feature

f the discussions in Refs. 46 and 47 is the consideration of a special Voronoi-Delaunay pair,
amely, the spherical centroidal Voronoi tessellations and the corresponding Delaunay
riangulations,42 see Fig 1. The SCVTs are natural extensions of the centroidal Voronoi tessella-
ions in Euclidean spaces.39 It has been shown that by using the SCVTs, the discrete approxima-
ions exhibit a higher order convergence comparing with the conventional Voronoi-Delaunay pair.

Detailed numerical simulations have also been performed in Refs. 46 and 47 using the SCVT
ased gauge invariant finite volume scheme. Both static vortex configurations and vortex dynam-
cs under applied current have been studied.

. Artificial boundary conditions

For a full three-dimensional simulation of the GL model, taking into account the effect of the
nduced magnetic field of the superconducting sample on the field exterior to the sample, the
umerical solution of the Ginzburg–Landau equations in the superconducting sample needs to be

FIG. 1. �Color online� A planar Voronoi-Delaunay pair, a CVT in a square and two SCVTs of different resolution.
olved in conjunction with the solution of the Maxwell equations in the exterior.
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To overcome the unboundedness of the exterior domain, approximations must be introduced
r alternative formulations must be considered. The crudest but often very effective approximation
s simply to ignore the effect in the exterior completely. Such approximations are particularly valid
or high-kappa materials �in such cases, some reduced GL models have been proposed and used in
umerical simulations of vortex lines.15,25,40

As an alternative, a rigorous theory based on artificial boundary conditions has been presented
n Ref. 51 to transform the computation domain to a finite ball enclosing the superconducting
ample.

The key step is to note that the magnetic energy 
curl A

L2�R3�
2 , coupled with the null-

agrangian term 
div A

L2�R3�
2 used to enforce the Coulomb gauge, is equivalent to 
�A


L2�R3�
2

hich can be decomposed as 
�A
L2�Br�
2 + 
�A


L2�Br
e�

2
. Here Br denotes a ball of radius r and Br

e

R3 \Br denotes its exterior.
For A’s that are harmonic in Br

e, we have


�A
Br
e

2 = �
Sr

A
�A

�n
dS = �

Sr

AJ�A�dS ,

here Sr denotes the sphere of radius r ,J is the Stekelov-Poincaré operator �or the Dirichlet to
eumann map�. Since J can be explicitly expressed with the help of Legendre functions, various
rders of approximations can be constructed.

Briefly, let the Legendre polynomial and Legendre function be given by

Pn
0�t� = Pn�t� =

1

2nn!

dn�t2 − 1�n

dtn
, Pn

m�t� = �1 − t2�m/2 dm

dtm
Pn�t� ,

nd let

G��� = −
1

4�R3 − 
n=1

�
�n + 1��2n + 1�

4�R3 Pn�cos �� ,

or � defined by cos �=cos  cos �+sin  sin � cos��−��� for a pair of points x= �r , ,�� and
y= �r ,� ,���. Then, with A0 satisfying curl A0=H, we have the following equivalent form of the
nergy functional51

F��,A� = �
�

1

4
�1 − ���2�2 d� +

1

2
�

�

�� i

�
� + A + A0	��2

d� +
1

2
�

Br

��A�2 dx

+ �
Sr

�
Sr

A�x� · G���I · A�y�dx dy .

n a nut-shell, the exterior energy is now effectively transformed into an energy defined on the
oundary of the ball.

Various approximations of the boundary energy can be made, for instance, using a finite
lement discretization in the interior of Br, the following discrete problem has been considered in
ef. 51:

F��h,Ah� =
1

2
�

�

�� i

�
� + Ah + A0	�h�2

d� + �
�

1

4
�1 − ��h�2�2 d� +

1

2
�

Br

��Ah�2 dx

+ 
N

�n + 1��2n + 1�
4�r3 � � Ah�x�Pn�cos ��Ah�y�dx dy .
n=1 Sr Sr
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Let r1=diam���, under the approximation assumptions on the finite element spaces made
arlier, the following has been proved.

Theorem 3.1: For a smooth exact solution on a nonsingular solution branch, the approximate
olutions satisfy the following error estimates: for h small and r�r1,


� − �h
1,� + 
A − Ah
1,Br
	 c1h

k�
�
k+1,� + 
A
k+1,Br
� + c2��,r��r1/r�N
A
1,Br

,

or some constants c1 and c2=c2�� ,r� independent of h and N.
It has been seen in numerical computation that in practice with N=6, it is sufficient to choose

he computational domain with r no more than twice the diameter of � in order to obtain good
ccuracy of the approximation in the exterior domain.51

. More on time discretization

For TDGL models, while most of the rigorous mathematical analysis have been focused on
he fully implicit in time discretizations, explicit marching schemes and semi-implicit marching
chemes94 have also been frequently used in numerical simulations due to their simplicity in
mplementation.

Theoretically, to make the time-marching more efficient, other useful ideas have also been
onsidered in the literature. For example, a linearized crank-Nicolson scheme has been considered
n Ref. 79, similar to the semi-implicit approach. Analytical studies of an alternating marching
cheme have also been made in Ref. 80 where for the order parameter and magnetic potential are
olved in alternating steps and thus reducing the size of the implicit nonlinear system by half.

To effectively solve the nonlinear and linear systems employed in the implicit schemes,
onstructions of suitable preconditioners can be very helpful. In this regard, the Sobolev gradient
ethods studied in Refs. 82 and 83 fit into such a framework. Essentially, the gradient flows in the
−1 space considered there are equivalent to employing the inverse of Laplace operator 
−1 as the
reconditioner for the standard gradient flow in the L2 space.

For high values of �, the Ginzburg–Landau parameter, the original GL models can often be
implified. A particular simplification corresponding to high applied magnetic field has been con-
idered in Refs. 15 and 40. The reduced equations are very much similar to the so-called Gross-
itaevskii equations used to model the BEC superfluid.5 In Ref. 9, a class of efficient splitting
chemes for computing the ground state solutions of the BEC condensate based on the normalized
radient flow has been studied which may be readily applied to the solution of the reduced GL
odels.

. Multilevel, adaptive and parallel algorithms

The numerical simulations of the vortex state in type-II superconductors based on the GL
odels become computationally challenging when there is a need to resolve a large number of

ortices. More efficient implementations of the numerical schemes thus become necessary. There
ave been a lot of interesting attempts made along this direction. For example, multilevel finite
lement methods have been analyzed in Ref. 63 for a d-wave GL model, following earlier works
f Refs. 36 and 93. Posterior error estimates and adaptive finite element methods have been
tudied in Refs. 18 and 64 with both rigorous analysis and numerical examples.

Parallelization is naturally another important avenue for greater computational efficiency. In
ef. 59, parallelized MPI-based implementation of the explicit finite difference discretization

chemes has been presented along with many large scale simulations. Using a natural domain
ecomposition strategy, a number of parallel algorithms for the simulation of layered supercon-
uctors based on the Lawrence Doniach model have been studied in Ref. 41. The implementation
as been made first using PVM, with an MPI version developed subsequently. Numerical results
ndicated significant speed-ups and good scalability. Moreover, interesting numerical simulations
f three-dimensional vortex tubes, their dynamics and pinning effect have been made there as

ell.
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V. NUMERICAL SIMULATIONS AND OTHER COMPUTATIONAL ISSUES

We now briefly describe some results of numerical simulations conducted throughout the last
ecade. These are based on either the finite element codes or the finite volume codes discussed
arlier. We refer to Refs. 4, 23–25, 38, 46, and 47 for additional simulations.

. Vortex solutions

A well-known feature of superconductivity is the phenomena of quantized vortices. For
ype-II superconductors, the study of Abrikosov on the vortex lattices based on the GL models has
ecome a seminal work that exhibits the great predictive power of the GL theory.

In Fig. 2, we present a few typical plots for the numerical solutions of the steady state GL
quations which include a surface plot of the magnitude of the order parameter, a surface plot of
he induced magnetic field given by curl A and a vector plot of the superconducting current. The
olution corresponds to one with a single vortex at the center of a rectangular superconducting
ample.4

More systematic analysis and simulations of the phase transitions, vortex nucleation, and
ritical fields can be found in, for instance, Refs. 4, 7, 8, 11, 12, 65, 72, 85, 89, and 88, and the
eferences cited therein.

. Pinning of vortices in superconducting sample

One of the more intriguing features of superconductivity is the effect of vortex pinning which
reserves the superconducting properties in a superconductor despite the penetration of the applied
agnetic field.

The GL models have been used to study the pinning effect from many different angles, for
13,27,28,72

FIG. 2. �Color online� Magnitude of the order parameter, induced field and supercurrent in a 2D rectangular domain.
nstance, pinning due to variable thickness in thin films, spatial inhomogeneities and
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ormal inclusions and anisotropy.14,25,49,50 In Fig. 3, three-dimensional vortex tubes pinned by
ormal inclusions are shown which were computed via the Lawrence-Doniach variant of the GL
odel in Ref. 41. Due to the collective pinning force, the vortex tubes are no longer strictly

ligned in the direction of the applied magnetic field.

. Vortex state in a thin superconducting spherical shell

The geometry of spherical shell is not only used in superconductivity applications, but also
rovides an ideal setting for one to examine the vortex state.

With increasing values of the applied magnetic field, some of the energy minimizing super-
onducting and vortex solutions are given in Fig. 4. We refer to Ref. 46 for more detailed
escriptions of the corresponding parameter values.

In Fig. 5, minimum energy values G�H� corresponding to different external magnetic field
trengths H are plotted, along with the magnetization curve given by the derivatives of minimum
nergy G�H�.

The spatially homogeneous applied magnetic field naturally produces vortices of opposite
igns on the two hemispherical shells, thus providing a window for us to see the details of vortex
ucleation and vortex annihilation �see Ref. 10 for some analysis in a simpler setting�. In Fig. 6,
ith the applied magnetic field aligned along the poles, the density plots of order parameter show

hat a pair of vortices of opposite signs first nucleate near the equator, then later split and move
nto the interior of the hemispheres.46

Other simulations on vortex annihilation can be found in Ref. 40 in the planar domain, aided
y an applied current.

. Vortex motion driven by an applied current

An applied current J generally exerts a Lorentz force F=J�B on each vortex core such that

FIG. 3. �Color online� Isosurface plot of vortex tubes pinned in a 3D sample.
he motion of vortices would induce an electric field, and thus produces electrical resistance. Thus,
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n superconductivity, it is important to understand the interaction of the vortices with the applied
urrent and study the critical values of the applied current which will dislodge the vortices from
heir equilibrium positions.

FIG. 4. �Color online� Energy minimizing vortex configurations on the upper hemisphere.
In Fig. 7, contour plots of the order parameter are given, corresponding to solution of the
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DGL in a two-dimensional square with a constant applied current imposed along the vertical
irection. A single vortex starts to move from the left to the right due to the Lorentz force.

. Effect of thermal fluctuation

The effect of thermal fluctuations play a central role on the pinning of vortices in type-II
uperconductors. In Refs. 23 and 24, such effects have been examined through stochastic variants
f a time-dependent Ginzburg–Landau model valid for high values of the Ginzburg–Landau pa-
ameter. Both additive and multiplicative noise variants have been considered. Many numerical
omputations have been presented that illustrate the effects that noise has on the dynamics of
ortex nucleation and vortex motion. In Fig. 8, isosurface plots of vortex tubes are presented
orresponding to different values of variance of the additive noise term using for the simulation of
angevin dynamics. The snapshots are taken at the same time instant and the vortex lattice melting

FIG. 5. �Color online� Minimum energy values with its polynomial fitting and the magnetization curve.
ffect can be observed in the process.
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. Variants of Ginzburg–Landau models

The great success of the Ginzburg–Landau models for low Tc superconductivity generated
remendous interests in extending them to other settings including layered materials and high Tc

uperconductors. For example, in Ref. 36, simulations of a d-wave GL model have been carried
ut, the vortex solutions there typically display a fourfold symmetry. In certain parameter regimes,
he basic stability properties of single and multiple vortices deviated significantly from the single
omponent counterpart, see Fig. 9 for an illustration of a stable double vortex profile.

More analytical and numerical studies of d-wave GL models can be found in Refs. 73, 86, and
3. Numerical studies of other extensions of the GL models have also been performed, for in-
tance, see Ref. 6 for simulations based on the SO�5� model.

Related to the vortex state in superconductors, the 1995 experimental confirmation of Bose-
instein condensation �BEC� in alkali-metal gases provides another avenue to study the phenom-
na of quantized vortices. In recent BEC experiments, vortices have been nucleated with the help
f laser stirring and rotating magnetic traps. Remarkably, many of the phenomenological proper-
ies of quantized vortices have been well captured by mathematical models such as the Gross-
itaevskii �GP� equations. In the case of rotating magnetic traps, the mathematical form of the GP

FIG. 6. �Color online� The nucleation and the splitting of vortex pairs near the equator.
FIG. 7. Motion of vortices in the presence of an applied current.
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quations have close resemblance with the high-kappa Ginzburg–Landau �GL� model.40 Utilizing
he mathematical theory and the numerical codes developed for the GL,5 presented a similar

athematical framework for rigorously characterizing the critical velocities for the vortex nucle-
tion in a BEC cloud subject to a rotating magnetic trap. A class of splitting schemes for com-

FIG. 8. �Color online� Snapshots of the vortex tubes in a cubic sample with increasing additive noises.
FIG. 9. �Color online� Surface plots of the s and d wave density for a double vortex profile in a GL s+d model.
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uting the ground state solutions of the BEC condensate based on the normalized gradient flow
as also been presented.9 In Fig. 10, we provide a particular comparison of experimental pictures
nd the result of numerical simulations of the vortex solution with parameters taken from the
xperimental values based on the code developed in Ref. 5.

. Computational challenges

The interests of the vortex state not only lie in the study of the vortex structures for a few
solated vortices, but also in the study of the collective effect of a large number of vortices and
ortex lattices and their interactions with material structure and defects as well as the impact of
ample topology and geometry. Simulations of GL models have been performed recently on
tructures like buckyballs and for MgB2 thin films. �See Fig. 11.�

In practice, numerical simulations of exceedingly large numbers of vortices based on the GL
odels remain computationally challenging, partly due to the intriguing properties associated with

he vortex quantization effect. More specifically, for a square sample with n vortices in the interior,
he phase angle of the complex order parameter will endure a change of 2n� around the boundary
f the sample. If m points are needed to resolve a single period of phase winding, then mn /4
oints will roughly be needed on each edge of the square. Thus, a uniform mesh will require up to
2n2 /16 grid points. For large n and even moderate values of m, this can become very demanding

omputationally even for two-dimensional problems, not to mention the more challenging three-
imensional cases.

Naturally, adaptive schemes may save the computational cost significant, but with densely
acked vortices, refinement may be required almost everywhere, and their efficiency are thus

FIG. 10. Vortices in BEC: our numerical simulation �left� vs the MIT experiment �right � �Ref. 1�.
educed. In particular, we note that it is not sufficient to only refine near the vortex cores as the
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orrect resolution of the highly oscillatory phase change is also very important, see Fig. 12 for an
nteresting illustration on how the real and imaginary parts of the order parameter behave in
omparison with the magnitude for a solution with 22 pairs of vortices in a spherical shell
imulation.47 Resolving the highly oscillatory phase for the Ginzburg–Landau simulation is a
hallenge that can be compared with resolving the solution of the Hemholtz equation with high
requency. In addition, it is easy to see that the variation in the phase variable starts to become
ncreasingly dramatic when getting closer to the boundary �equator�. How to effectively tackle
uch solution behavior remains to be investigated.

On the other hand, for high-Tc superconductors, codes for mezoscale GL models cannot hope
o be of direct use in the design of devices due to the presence of a large number of vortices.

henever computational or analytical results are used in such an environment, they are based on
imple homogenized or macroscopic models.

FIG. 11. �Color online� A buckyball and the atomic structure of MgB2.
FIG. 12. �Color online� The absolute value of the real �left� and imaginary �center� parts of � and the magnitude ���.
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Recently, mean field models have been derived to describe the vortex state using a vortex
ensity �. These models are closely related to the GL models as one normally first derives a
iscrete set of motion laws for individual vortices based on the GL dynamics and a vortex density
odel is then derived when the number of vortices becomes large.16,53,71,81,87 Let u denote the

veraged magnetic field, a simplest two-dimensional version of such a model is given by

u − �2
u = � in � � �0,T� ,

�t − � · �� � u� = 0 in � � �0,T� ,

ith suitable initial and boundary conditions. There have been a lot of studies made both from
nalytical and computational aspects19,37,38,52,54,74 in recent years. It is perceivable that more effi-
ient simulation schemes on the vortex state can be developed with a multiscale approach that
ombines GL model or vortex dynamic laws and the mean field models together. �Also see Refs.
4, 70, 75–77, 84, and 92.�

. CONCLUSION

Superconductivity is one of the grand challenges identified as being crucial to future economic
rosperity and scientific leadership. In this paper, various methods for the numerical approxima-
ions of the Ginzburg–Landau models of superconductivity are discussed, with an emphasis on the
pplication to the study of vortex dynamics.

From a practical point of view, large-scale numerical simulations of the magnetic vortices
omplement physical experiments due to the complex three-dimensional, time-dependent, stochas-
ic and multiscale nature of the phenomena. Thus, the development and analysis of efficient and
eliable numerical algorithms remain important tasks. These algorithms and codes may ultimately
rove to be useful to physicists and engineers in their study of superconducting phenomena and
ther related problems such as the BEC superfluidity.
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The analogy between certain liquid crystals and superconductivity has been recog-
nized and explored by a number of scientists. In particular, mathematical tech-
niques first developed within the Ginzburg–Landau theory of superconductivity
have proven useful when adapted to the setting of liquid crystals. Here we pursue
nontrivial stable liquid crystal configurations, motivated by an approach used by
the authors in the setting of Ginzburg–Landau to produce persistent currents in
topologically nontrivial domains. Our starting point is the Oseen-Frank energy for
a nematic, but we add to the standard model a term that penalizes deviation of the
director from a given plane. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2013128�

. INTRODUCTION

The analogy between certain liquid crystals and superconductivity has been recognized and
xplored by a number of scientists. In particular, mathematical techniques first developed within
he Ginzburg–Landau theory of superconductivity have proved useful when adapted to the setting
f liquid crystals �see e.g., Ref. 1�. Here we pursue nontrivial stable liquid crystal configurations,
otivated by the approach in the paper2 where the authors use the Ginzburg–Landau model to

roduce persistent currents in topologically nontrivial domains. Our starting point is the Oseen-
rank energy for a nematic.3,4 We add to the standard model a term that penalizes deviation of the
irector from a given plane. Therefore, the energy takes the form

F��n� = �
�

�k1�div n�2 + k2�n · curl n�2 + k3�n Ã curl n�2 + �k2 + k4��tr��n�2 − �div n�2�

+ ��n · e3�2�dx .

Here ��R3 is a bounded, smooth domain occupied by the liquid crystal sample, n is a Frank
irector n :�→S2, the factors ki are material constants, and e3 is the standard unit vector in the z
irection in R3. The constants �ki�i=1

4 are generally assumed to satisfy

k1,k2,k3 � 0, k2 � �k4�, 2k1 � k2 + k4. �1�

We have included the last term with positive � to describe the interaction with an external
lectric or magnetic field.3,5 The fact that � is positive means that the model is only relevant to
ertain materials.3,5 We take the field to be uniform in the e3 direction, and in the case of an
lectric field we neglect the dipole contribution of the director. In this article we will explore the
symptotic regime ��1 so that alignment of the director perpendicular to e3 is heavily favored,
hence we are led to consider the functional

�Electronic mail: yunhkim@indiana.edu
�Electronic mail: jrubinst@indiana.edu
�
Electronic mail: sternber@indiana.edu
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F��n� ª �
�

�k1�div n�2 + k2�n · curl n�2 + k3�n Ã curl n�2� + �k2 + k4��tr��n�2 − �div n�2�dx .

One should view F� as arising formally in the limit �→� where the extreme cost of out-of-
lane alignment for the director leads to consideration of this functional over directors n taking
alues on the unit circle S1 in the xy plane rather than on S2.

Our main result is the assertion that, under certain conditions on �, there exist nontrivial local
inimizers of the energy F� for � sufficiently large. We wish to emphasize that these stable

ritical points locally minimize the energy among all nearby competitors in a suitable topology,
ithout the imposition of Dirichlet boundary conditions as is often the case in the literature. As

uch, wherever these solutions are smooth, they will satisfy the so-called “natural boundary con-
itions” for the problem associated with setting the first variation of energy to zero and integrating
y parts.

The technique, which we borrow from Ref. 2, involves looking for local minimizers for F�

ear local minimizers of F�. The fact that one can find nontrivial local minimizers of F� is not
bvious given that one is not forcing the director into a non-constant configuration through a
irichlet condition. It relies crucially on the assumption that the sample � occupies a region of
ontrivial topology. We now make this hypothesis explicit:
enceforth we assume that � has the topology of a one-holed torus in R3.

We should note that more exotic local minimizers can be found by the same methods if one
akes � to be a many-holed torus but we will not pursue that here. The effect of this topological
ssumption is to allow us to introduce a notion of winding number for S1-valued functions defined
n �. We will make this notion precise in the next section. We can then minimize F� among
1-valued competitors of a given winding number m to obtain interesting solutions. Through a
erturbative variational calculus, for each m we will then find local minimizers of the full energy

� for large values of � near these local minimizers of F�.
In the final section we include some further observations about the limiting energy F� in the

ase where ��R2 is an annulus and the director n :�→S1.

I. EXISTENCE OF LOCAL MINIMIZERS

We begin by recalling the notion of winding number appropriate to our setting, namely the
-homotopy type of an S1-valued map. For smooth functions mapping � into S1, one can simply
onsider the restriction of such a map to any oriented simple closed loop encircling the hole in �
nd measure the classical winding number. By a standard continuity argument, this number will
ot depend on the particular loop chosen. However, the natural space of competitors for both F�

nd more crucially for F� is not smooth maps but rather maps whose first derivatives are all square
ntegrable, namely the Sobolev spaces H1�� ;S2� and H1�� ;S1� respectively, cf. Ref. 6.

Let us then recall the definition of the H1-norm of a function n :�→Rk, k�1:

	n	H1��;Rm�
2 = 


j=1

k

	n�j�	L2���
2 + 


j=1

k

	�n�j�	L2���
2 = 


j=1

k ��
�

�n�j��2dx + �
�

��n�j��2dx�
here n�j� denotes the jth component of the vector-valued function n.

It is well-known that H1 functions defined on a set ��R3 need not be continuous so some
are must be taken to define the 1-homotopy type of such a Sobolev map. This difficulty was
vercome in Ref. 7, where the author studies the harmonic map problem for functions of a given
-homotopy type. A key tool is the following lemma.

Lemma 1: �Ref. 7� For each K�0 there is an ��0 such that if f1 and f2 are Lipschitz
ontinuous mappings from � into S1 satisfying the conditions

	f1 − f2	L2��� � 	, 	�f i	L2��� 
 K for i = 1,2, �2�
hen f1 and f2 have the same 1-homotopy type.
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Armed with this information one can for instance appeal to the density of smooth maps taking
into S1 �see, e.g., Ref. 8� to partition the space H1�� ;S1� according to 1-homotopy type by

efining for each integer m the set Hm
1 �� ;S1��H1�� ;S1� as the closure under the H1-norm of

mooth maps of 1-homotopy type m. Equally important from the standpoint of invoking the direct
ethod in the calculus of variations, one has the following consequence of Lemma 1 and the weak

ompactness of bounded sets in H1 �cf. Ref. 6�: Suppose a sequence �n j��Hm
1 �� ;S1� satisfies the

niform bound

	n j	 
 M

or some positive constant M. Then there exists a subsequence �n jk� and a function n
Hm

1 �� ;S1� such that

n jk
⇀ n in H1 as k → � .

n particular, the set Hm
1 �� ;S1� is closed under weak H1 convergence.

With these preliminaries in hand, we now establish the existence of minimizers for the lim-
ting functional F� within each 1-homotopy class. To this end, for each integer m we introduce the
otation

�m ª inf
n�Hm

1 ��;S1�
F��n� �3�

nd

Am ª �n � Hm
1 ��;S1�:F��n� = �m� �4�

nd establish:
Proposition 1: For every integer m, the set of minimizers Am is nonempty.
Proof: Existence will follow from the direct method. Indeed, if �n j� denotes a minimizing

equence for the problem �3�, then the identity

��n�2 = tr��n�2 + �curl n�2 �5�

cf. Ref. 4, Lemma 3.3� and our assumptions �1� readily imply the bound

k̄�
�

��n j�2dx 
 2�m, �6�

here k̄ªmin�k2 ,k3 ,k2+k4��0. Hence by Lemma 1 and the discussion following it, there exists
subsequence �n jk� and a function n�Hm

1 �� ;S1� such that

n jk
⇀ n in H1, n jk

→ n in L2 as k → � . �7�

earranging the terms in F� as

F��n jk
� = �

�

��k1 − k2 − k4��div n jk
�2 + k2�n jk

· curl n jk
�2 + k3�n jk

Ã curl n jk
�2 + �k2 + k4�tr��n jk

�2�dx ,

e observe that the integrand is a convex function of the partial derivatives of n jk and so �7�
mplies that the energy is lower-semi-continuous �cf. Ref. 9�:

lim inf
k→�

F��n jk
� � F��n� .

ence n�Am. �
1 1
Remark: We leave open the question as to whether the minimizer of F� in Hm�� ;S � is
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nique. Resolving this does not seem to be easy but in any event, it will not be needed for the main
esult.

Before proceeding to the main result we require a few simple consequences of Lemma 1. For
hese we introduce notation for the H1 distance to the set Am:

d�n,Am� ª inf
ñ�Am

	n − ñ	H1. �8�

irst we note some compactness properties of the set Am:
Lemma 2: Let m be any integer.

i) For any sequence �ñ j��Am there exists a subsequence �ñ jk� and a function ñ�Am such
that ñ jk→ ñ strongly in H1.

ii) For any n�H1�� ;S2� and any positive constant C, the condition d�n ,Am�
C implies that
there exists a function ñ�Am such that

	n − ñ	H1��;R3� 
 C .

Proof: To prove �i�, we apply the bound �6� to the sequence �ñ j� to obtain a weak H1-limit ñ
f a subsequence �ñ jk�. As was noted in the proof of Proposition 1, the energy F� is lower-semi-
ontinuous under weak H1 convergence so with the aid of Lemma 1 we immediately conclude that
�Am. However, using that in fact each term in F� is weakly-lower-semicontinuous we can

urther assert that

lim
k→�

�
�

�ñ jk
· curl ñ jk

�2dx = �
�

�ñ · curl ñ�2dx ,

lim
k→�

�
�

�ñ jk
Ã curl ñ jk

�2dx = �
�

�ñ Ã curl ñ�2dx ,

nd

lim
k→�

�
�

tr��ñ jk
�2dx = �

�

tr��ñ�2dx ,

or otherwise F��ñ���m, a contradiction. Hence, via �5� we see that 	�ñjk	L2→ 	�ñ	L2 and the
onvergence of the subsequence is indeed strong in H1.

The proof of �ii� follows immediately from the definition �8� and property �i�. �

The next lemma says that functions H1 close to the set Am must lie in Hm
1 �� ;S1�.

Lemma 3: For each m there is a positive number �m such that if n�H1�� ;S1� satisfies
�n ,Am���m, then n belongs to Hm

1 �� ;S1�.
Proof: First note that if ñ�Am then using �6� we have

�
�

��ñ�2 

2�m

k̄
.

ow let K=4�m / k̄+1 and let 	=	�K� be the value guaranteed by Lemma 1. Set �m

min�1/2, �1/2�	�.
Then suppose

d�n,Am� � �m, �9�

˜ ˜
nd pick an element n in Am such that 	n−n	H1��;R3���m. It follows that
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	�n	L2��;S1�
2


 2�	�ñ	L2��;S1�
2 + �m

2 � � K .

imilarly, �9� implies that 	n− ñ	L2��;S1��	 /4. Taking smooth sequences �f j� and � f̃ j� in H1�� ;S1�
atisfying f j→n and f̃ j→ ñ in H1, we see from Lemma 1 that both sequences lie in Hm

1 �� ;S1� for
j large. Hence n does as well. �

We can now state our main result:
Theorem 1: For each m there exists a positive number �m such that for all ���m, the

unctional F� possesses an H1-local minimizer n�
m. Further, d��n�

m� ,Am�→0 as �→�.
Remark: By an H1-local minimizer we mean a function n�

m�H1�� ;R3� such that

F��n�
m� 
 F��n� whenever 	n�

m − n	H1��;S2� � 

or some �0. Such a function will in particular be a critical point of the functional F� and so will
eakly satisfy the associated Euler-Lagrange equation and natural boundary conditions. The regu-

arity theory for F� originally developed in11 for Dirichlet boundary conditions says that minimiz-
rs with be smooth off of a set of finite zero-dimensional Hausdorff measure. We have not checked
ut we suspect that such a theory would apply to this present setting of natural boundary condi-
ions as well. The technical issue would be handling the last �null-Lagragian� term carrying
oefficient k2+k4 which in this non-Dirichlet setting cannot be equated to a constant.

Remark: In modeling a nematic liquid crystal, the “head” and “tail” of the director are indis-
inguishable. One way to capture this is to pose the minimization of F� over unit vectors taking
alues in P2, two-dimensional projective space where antipodal points on S2 are associated. The
revious theorem can readily be phrased with P2 replacing S2. In fact, if one takes this tack, then
ocal minimizers can be found corresponding to all of the half-integer winding numbers as well.
he proof below is unchanged by the substitution of P2 for S2 and the consideration of the limiting
nergy F� for mappings n :�→P1.

Proof: Fix an integer m and consider the variational problem

inf
�n�H1��;S2�:d�n,Am�
�1/2��m�

F��n� , �10�

here �m is the value from Lemma 3. Exploiting the convexity of the various terms in F� as well
s the uniform H1-bound valid for any minimizing sequence �n j�, the direct method succeeds here
n a manner similar to that used in solving �3�. The only new issue is that one must invoke Lemma

and the lower-semi-continuity of the H1-norm under weak convergence to assure that the weak
imit n�

m of a subsequence �n jk
� will satisfy the admissibility condition d�n�

m ,Am�

1
2�m. We would

ike to argue that the minimizer n�
m to the constrained problem �10� is in fact an H1-local mini-

izer of F�. This would follow if one could show that the constraint is not exhausted, that is, if
ne could demonstrate that d�n�

m ,Am��
1
2�m. We will achieve this for � sufficiently large by in

act arguing that

d�n�
m,Am� → 0 as � → � . �11�

e proceed by contradiction and suppose that for some subsequence �� j�→� there exists a
ositive number � such that

d�n�j

m ,Am� � � for all j . �12�

ote that necessarily, �

1
2�m.

Since all elements of Am are uniformly bounded in H1 by some constant depending on m, the
ondition d�n�

m ,Am�

1
2�m implies an H1 bound on the sequence �n�

m� that is independent of �.
ence, after passing to another subsequence �whose notation we suppress�, we can conclude that

1 2
here exists a function ��H �� ;S � satisfying
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n�j

m
⇀ � in H1��;S2� as � j → � . �13�

ow observe that for any element ñ�Am one has

F�j
�n�j

m � 
 F�j
�ñ� = F��ñ� = �m,

o that

�
�

�n�j

m · e3�2dx 

1

� j
�m → 0 as � j → � .

ence, ���� · e3�2dx=0 and ��H1�� ;S1�.
Next we apply Lemma 2 �ii� and note that for each j there exists an element ñ j �Am such that

n�j

m − ñ j	H1��;R3�

1
2�m. Then by Lemma 2 �i�, there exists a strong limit ñ�Am of a subsequence

f �ñ j� and the lower-semi-continuity of the H1-norm under weak convergence implies that 	�
ñ	H1��;R3�


1
2�m as well. Applying Lemma 3, we conclude that ��Hm

1 �� ;S1�.
Finally, we once again exploit the convexity of the integrand of F� and �13� to see that for any

lement ñ�Am one has

F���� 
 lim inf
�j→�

F��n�j

m � 
 lim sup
�j→�

F��n�j

m � 
 lim sup
�j→�

F�j
�n�j

m � 
 lim sup
�j→�

F�j
�ñ� = F��ñ� = �m.

�14�

onsequently, F����=�m since � is admissible in �3� so that ��Am and all of the inequalities
n �14� are in fact equalities. In particular, we have

lim
�j→�

F��n�j

m � = F����

nd the lower-semi-continuity of each term of F� separately under the convergence �13�, along
ith the identity �5� implies that n�j

m →� strongly in H1. Hence, d�� ,Am��� by �12�, which is
mpossible since ��Am. �

II. REMARKS ON THE TWO-DIMENSIONAL CASE

The entire analysis above is valid also for the case where � is an annulus in R2, or any other
mooth planar domain with nontrivial topology. In this section we discuss aspects of the limiting
roblem of minimizing F� in this 2D setting. When � is planar, the limit functional F� takes a
ather simple form

F��n� = �
�

�k1�div n�2 + k3�curl n�2�dx �15�

or n :�→S1. In particular, a calculation shows that the null-Lagrangian term involving ��n�2

�div n�2 integrates to zero in this setting. We note that F� in the form �15� has also arisen in the
iterature10 as a simplification of the Oseen-Frank energy even without an external field under the
pecial geometric assumption that � lies in R2 and the assumption that the director has zero third
omponent.

One immediate conclusion is that in the one-constant case, i.e., when k1=k3, the phase � of
ny critical point is a harmonic function. Moreover, the second variation is positive there and one
an show that such a critical point is an isolated local minimizer �up to a constant phase shift�. Of
ourse, this is not surprising, since in such a special case the functional F� is proportional to

���n�2dx, which was considered in Refs. 2 and 7. The only novelty in the liquid crystal problem
s the existence of extra solutions since n actually takes values in one-dimensional projective

1
pace, P �see the second Remark following Theorem 1�. We point out though that unlike the
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ne-constant case, in the general case k1�k3, the energy is not invariant to a constant shift of the
hase.

Returning to the general case k1�k3, we ask whether particular solutions can be found in the
pecial geometry where � is a symmetric annulus �i.e. a domain bounded by concentric circles�.
sing polar coordinates �r ,��, we claim:

Proposition 2: Assume that � is a symmetric annulus. Then the minimizer of (15) in the class
f homotopy type m=1 is n= �cos � , sin �� if k3�k1, or n= �−sin � , cos �� if k1�k3.

Proof: Assume that k3�k1. Then for every n

F��n� = �
�

k1��n�2dx + �k3 − k1��
�

�curl n�2dx .

t is well known that n= �cos � , sin �� minimizes ��k1��n�2dx in the class of homotopy class 1. It
lso follows from a simple calculation that curl �cos � , sin ��=0. This establishes the proposition
or k3�k1, and the other case follows similarly. �

The success in finding a simple solution for the case m=1, motivates the search for solutions
f the form n=n��� for other homotopy types as well. Indeed Landau and Lifshitz �Ref. 10, Chap.
I� propose such a solution in the entire plane. They introduce the notation � to denote the angle
etween the director n with the radius vector to the point �cos � , sin ��. Assuming an ansatz �
����, they look for a minimizer n of F� in the restricted family

n = �cos�� + �����,sin�� + ������ . �16�

nder this restriction, the functional F� can be written as

1

4
�k1 + k3� � �1 − � cos 2���1 + ����2�

1

r
d� dr , �17�

here �= �k3−k1� / �k3+k1�, and primes mean differentiation with respect to �. The problem of
inimizing the functional �0

2��1−� cos 2���1+ ����2�d� leads to the Euler Lagrange equation

�1 − � cos 2���� = � sin 2��1 − ����2� . �18�

ince the special case m=1 was already previously established, one can assume m�1. A short
alculation shows that the Euler-Lagrange equation �18� can be integrated in the form

� = �
0

�

q� 1 − � cos 2�

1 − �q2 cos 2�
�1/2

d� , �19�

here the integration constant q is determined by the condition

�m − 1�q�
0

� � 1 − � cos 2�

1 − �q2 cos 2�
�1/2

d� = � . �20�

However, if the solution of Ref. 10 is considered over the infinite plane, as proposed by the
uthors, the energy density has a nonintegrable singularity at the origin. Landau and Lishitz
ropose to remedy the problem by introducing a small cutoff radius. Instead of using an artificial
utoff radius, one may ask whether the symmetric solution can be used in an annulus, where the
rigin is kept well outside the domain. Unfortunately, it turns out that the case m=1 is special–it
s the only homotopy class in which a minimizer can have the symmetry n=n��� when k1�k3.
ne can see this by calculating the natural boundary conditions for the functional �15�. A short
omputation gives
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k1 � n · � + �k1 − k3��� Ã n� Ã � = �n , �21�

here � is the unit normal to the boundary and � is a proportionality constant. Substituting the
nsatz �16�, and using the symmetry of the annulus, the condition �21� becomes

�k1 − k3��1 + ���sin����sin �,− cos �� = ��cos�� + ��,sin�� + ��� .

learly, the only solutions to the previous equation are �=0, �=0 and �=� /2, �=k3−k1. Both
olutions correspond to a degree 1 director field.

Finally, we make some observations regarding the functional F� of �15� for a general two-
imensional domain having the topology of an annulus. For this purpose we express the director
as n= �cos � , sin �� for some phase function ��x ,y�. The functional can be written explicitly in

erms of � in the form

F���� =� L��,��� =� k1��y cos � − �x sin ��2 + k3��x cos � + �y sin ��2

arying the phase � by a function ��x ,y��H1���, one can compute the first and second varia-
ions:

F� =� �k3 − k1�����y
2 − �x

2�
sin 2�

2
+ �x�y cos 2�� + �k1 cos �2 + k3 sin �2��y�y

+ �k3 − k1��y�x sin � cos � + �k3 − k1��x�y sin � cos � + �k1 sin �2 + k3 cos �2��x�x,

nd

2F� =� k1��x sin � − �y cos ��2 + k3��x cos � + �y sin ��2 + 2�k3 − k1�

��x���y cos 2� − �x sin 2�� + 2�k3 − k1��y���x cos 2� + �y sin 2��

+ �k3 − k1��2���y
2 − �x

2�cos 2� − 2�x�y sin 2�� .

onsider the special case where the variation � is constant. Since the second variation must be
onnegative at a minimum, we conclude that

�k3 − k1��
�

���y
2 − �x

2�cos 2� − 2�x�y sin 2�� = �k3 − k1��
�

��div n�2 − �curl n�2�dx � 0.

�22�

ix now a positive k, and set k3=k+, k1=k−, for some ���k. For each  define E��
min F� in the homotopy class m �we suppress the m dependency of E�.

Proposition 3: The function E is even, i.e. E=E����, and moreover, E decreases as a function
f ��.

Proof: To prove the evenness of E, observe that a shift of � /2 in the phase � swaps �up to a
ign� the div and curl of a director n. Hence, if n= �cos � , sin �� is a minimizer achieving E��
nd we let n

�= �−sin � , cos �� then we have

E�� = F�
 �n� = F�

−�n
�� � E�− �

nd the reverse inequality follows by similar reasoning.
To see the monotonicity of E, we introduce the notation ni for a minimizer of F� when 

i �we fix k and m�. Assume without loss of generality that 1�0. Then, the inequality �22�
2 2
mplies ����div n1� − �curl n1� �dx�0. Thus, for 2�1:
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F�
2�n1� = E�1� − �2 − 1��

�

��div n1�2 − �curl n1�2�dx .

herefore E�2�
F�
2�n1�
E�1�. �

Finally, inspecting the first variation for the case of constant variation �, we observe that at a
inimizer n the quantities curl n and div n are orthogonal:

�
�

div n curl n dx = 0.

e hope to study the minimization of F� over a given 1-homotopy type further since much
emains to be understood. In particular, the limiting cases where either k1 or k2 vanish look
ntriguing and we suspect that for m�1, the infimum may not even be attained.

V. SUMMARY

We proved that liquid crystal samples that occupy a topologically nontrivial domain can
xhibit nontrivial local minimizers when they are subjected to a strong external field penalizing
eviation from a given plane. These patterns are the liquid crystal analogue of the well-known
ersistent current phenomenon in superconductivity.

There are several differences between the homotopy solutions derived here and the persistent
urrent solutions in superconductivity. First, the set of homotopy types in the liquid crystal prob-
em is twice as large as the corresponding set in superconductivity, since the director is a headless
ector. Another difference is in the way in which the local minimizers are generated. To generate
persistent current, one subjects the superconducting toroidal sample to a large magnetic field.
fter a supercurrent circulates in the sample, the external field is abruptly shut down trapping the

upercurrent. In the liquid crystal setup, a way to generate the local minimizers is to apply
oundary conditions that force a director distribution with a given degree, and then to eliminate
bruptly these boundary conditions. A third difference is that the limit problem �where the director
in liquid crystals, or the wave function in superconductivity, are confined to the unit circle S1�

s more general and more difficult in the liquid crystal setup. In fact, we are able to say very little
n this limit problem. Finally, we point out that while the phenomenon of persistent currents has
een extensively observed experimentally, we are not aware of an experimental demonstration of
he patterns we predict here in the liquid crystal problem.
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lobal bifurcation structure of a one-dimensional
inzburg–Landau model
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We consider an equation of a simplified Ginzburg–Landau model of superconduc-
tivity in a one-dimensional ring. The equation for a complex order parameter � has
two real parameters � and � related to the magnitude of an applied magnetic field
and the Ginzburg–Landau parameter, respectively. The purpose of this paper is to
reveal a global bifurcation structure for the equation in the parameter space �� ,��.
In particular we show that there exist modulating amplitude solutions which bifur-
cate from constant amplitude solutions, and how the bifurcation branches of such
solutions continue or disappear as � varies. We also determine the minimizer of the
energy functional. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2012087�

. INTRODUCTION

There are many studies on the Ginzburg–Landau equation in phase transition problems of
ydrodynamics, chemical reactions, and superconductivity. In the theory of superconductivity the
inzburg–Landau equation is a model describing a macroscopic superconducting state �Refs. 4

nd 11� and it is widely accepted as an established model describing various superconducting
henomena near the critical temperature. In the last two decades the Ginzburg–Landau equation
as been extensively studied by mathematicians. We still have many interesting and unsolved
athematical problems in relevance to the superconductivity.

In this paper we are dealing with a simplified model of the superconductivity in a thin uniform
uperconducting ring. The energy functional in a one-dimensional form of such a model is given
y

E��;�,h� ª �
0

2� 1

2
�Dh��2 +

�

4
�1 − ���2�2dx, Dh ª

d

dx
− ih�x� , �1.1�

here � is a complex-valued order parameter ����2 expresses the density of superconducting
lectrons�, � is a positive parameter, and h�x� is a periodic C1 function. Note that h�x� is the
rojection of magnetic potential of an applied magnetic field to the tangent direction of a param-
trized ring �see Ref. 10 for the derivation of the above model�. We consider this functional on the
pace of 2�-periodic functions in Hloc

1 �R�. Then the Euler-Lagrange equation of this functional is
iven by

Dh
2� + ��1 − ���2�� = 0, x � R ,

�1.2�
��x + 2�� = ��x�, x � R ,

hich is the Ginzburg–Landau equation of this model. One feature of �1.2� is that �1.2� is trans-

ormed into the equation

46, 095111-1022-2488/2005/46�9�/095111/24/$22.50 © 2005 American Institute of Physics
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uxx + ��1 − �u�2�u = 0, x � R ,

�1.3�
u�x + 2��exp�2��i� = u�x�, x � R ,

y the change of variable

� = u exp�i�
0

x

h�s�ds� , �1.4�

here

� ª

1

2�
�

0

2�

h�s�ds . �1.5�

t is clear that �1.3� with �1.5� is equivalent to �1.2�.
We give a remark on �1.3�. For each �̃�R, let �̃0 be a constant such that �̃0� �−1/2 ,1 /2�

nd �̃− �̃0�Z. Since exp�2��̃0i�=exp�2��̃i�, a solution to �1.3� for �= �̃0 gives a solution to
1.3� for �= �̃ and vice versa. Thus it suffices to solve �1.3� for �� �−1/2 ,1 /2�. However we
ssume ��R throughout the paper for a simple expression of each solution to �1.2�, which is
iven by �1.4�. We also note that if u�x� is a solution of �1.3�, the symmetry of the equation allows
olutions u�x�eic and u�x+c� for any constant c�R. However we will not mention this fact
xplicitly unless we need to state it clearly.

In Refs. 2 and 12 primary bifurcations from the trivial solution �=0 �or u=0� are shown
ogether with secondary bifurcations around higher degenerate bifurcation points. Since their
nalysis on the secondary bifurcations only works in neighborhoods of the singular points, we are
nterested in a global structure of the secondary bifurcating solutions. Moreover our goal is to
olve �1.3� for every ��R and ��0 completely and to show how the configuration of the
olutions changes as the parameters vary. As for a specific case ��Z, we have already obtained
complete global bifurcation diagram for � in Ref. 7. We will extend that study to the present case

see also Refs. 5 and 8�. However the bifurcation structure exhibits more complex pattern for
��Z. In fact the symmetry with respect to the reflection x→−x is lost if 2��Z. Nonetheless
he approach developed in Ref. 7 fortunately works in the present situation so that a modification
f the argument can provide an explicit expression of every solution. With some additional inves-
igation we can observe how the secondary bifurcating solution deforms as � varies until it
isappears through other bifurcation.

To obtain every solution, we first classify all the solutions to �1.3� �or �1.2�� except for the
rivial solution u=0 into three types �according to their configuration� as follows:

�I� Solutions with zero.
�IIa� Solutions with constant amplitude.
�IIb� Solutions with modulating but nonvanishing amplitude.
The idea of this classification is quite simple but crucial for our argument. We here made a

ittle modification of the classification found in Ref. 7 for convenience of dealing with the present
roblem.

Before going to our result, we will explain some known results for these solutions in brief.
very type �I� solution is written in the form

u�x� = exp�ic���x� ,

here c is a constant of R and � is a real-valued function �see Sec. II�. Moreover a type �I�
olution with n zeros exists if and only if ��n2 /4 and �−n /2�Z. In fact, for such a fixed �, the
ype �I� solution bifurcates from the trivial solution u=0 at �=n2 /4 as � increases. We denote the
ype �I� solution with n zeros by u�,n

s �x�.

As for type �IIa� solutions of �1.3� it is easy to obtain
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u�,�,m
c

ª
	1 − �m − ��2/� exp �i�m − ��x� , �1.6�

or each m�Z. This solution exists if and only if �� ,�� satisfies

� � ��,m ª �m − ��2.

hen a type �IIa� solution of �1.2� is given by

� = u�,�,m
c �x�exp�i�

0

x

h�s�ds� ,

hich has the winding number m in the complex plane around the origin.
Next consider type �IIb� solutions. They do not bifurcate from the trivial solution as � in-

reases. Along the branch of u�,�,m
c , we can find bifurcation points

� = ��,m,n ª 3�m − ��2 − n2/2 �n � N,��,m,n � ��,m� , �1.7�

y investigating the linearized stability of the solution u�,�,m
c . This suggests that a type �IIb�

olution bifurcates from the type �IIa� solution at �=��,m,n. As a matter of fact there is an
ntersection point

��,�� = ��m1 + m2�/2,�m1 − m2�2/4� , �1.8�

f two bifurcation curves �=��,m1
and �=��,m2

of type �IIa� solutions. A standard local bifurca-
ion analysis around this critical point does work to reveal that a type �IIb� solution certainly
ifurcates in a neighborhood of u=0 around the above critical values of �� ,�� �Ref. 12, see also
efs. 2 and 9 for bifurcations under small perturbation due to nonuniform thickness of the ring�.

Besides the local bifurcation structure, as mentioned before, we are interested in a global one
f �1.3�, consequently �1.2�. Moreover we desire to see how the configuration of the secondary
ifurcating solution changes as the parameter � varies.

Now we are going to our results. We notice that a type �IIb� solution is written as u
w�x�exp�i��x�� where w�x� is 2�-periodic and ��x� satisfies ��x+2��−��x�=2�m−��� for an

nteger m. We let n be the number of local minima of w�x� in the interval �0,2��. Since w�x� is not
onstant, n is a positive integer. We call n the number of modulations for the solution. We denote
he solution with such numbers m and n by u�,�,m,n

o �x� and let

Dm,n
−

ª 
��,��:� � m − n/2,� � ��,m,n� , �1.9�

Dm,n
+

ª 
��,��:� � m + n/2,� � ��,m,n� . �1.10�

hen we can prove that there exists a solution u�,�,m,n
o �x� if and only if �� ,���Dm,n

− �Dm,n
+ . This

olution is unique up to rotation and translation. Moreover this solution bifurcates from the type
IIa� solution u�,�,m

c as �� ,�� pass through the part of �Dm,n
±


��,��:� � m − n/2,m + n/2 � �,� = ��,m,n�

see Proposition 3.1 in Sec. III�. We note that w�x� can be expressed by the Jacobi elliptic function.
We are now in a position to propose the main theorem of this paper.
Theorem 1.1: Let ��0. Given 2�-periodic C1-function h, define � by (1.5). Then any

ontrivial solution to (1.2) is one of the following:

I� ��,�,n,	
s �x�eic=u�,n

s �x+	�exp�i�0
xh�s�ds+ ic� for n�N satisfying n2 /4�� ,�−n /2�Z,

IIa� ��,�,m
c �x�eic=u�,�,m

c �x�exp�i�0
xh�s�ds+ ic� for m�Z satisfying ��,m��,

IIb� ��,�,m,n,	
o �x�eic=u�,�,m,n

o �x+	�exp�i�0
xh�s�ds+ ic� for �m ,n��Z
N satisfying n2 /4

���,m,n��,
here c and 	 are real numbers. Moreover if h�x� is given as
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h�x� = �he�x�,
1

2�
�

0

2�

he�x�dx = 1, �1.11�

nd if m�Z ,n�N, and ��n2 /4 are fixed, then the set 
��· ;�� :��,m,n
− �����,m−n,n

+ � which is
efined as

��x;�� ª ��,�,m,n,	
o �x�, ��,m,n

− � � � m − n/2,

i��,�,n,	
s �x�, � = m − n/2,

− ��,�,m−n,n,	
o �x�, m − n/2 � /� � /��,m−n,n

+ � �1.12�

s a continuous curve in C�R ;C�, where

��,m,n
±

ª m ± 	�/3 + n2/6. �1.13�

e note that any sectorial region Dm,n
− is adjacent to Dm−n,n

+ . The last assertion implies that a
olution in one of these adjacent regions is continuously deformed up to a solution in the other
egion in the way of the statement. Since the two solutions are topologically different, the branch
ontains a solution with zeros at �=m−n /2. Then the number of modulations turns to be the
umber of zeros at this critical value of � �for the configuration of solutions see figures in Sec.
V�.

We next give a remark on the stability of solutions. As seen in Ref. 12, it is known that a type
IIa� solution ��,�,m

c is stable �or unstable� if ����,m,1 �or ����,m,1�. On the other hand, the
tability �or instability� region for a type �IIb� solution is not clear. Our result tells the following:
s � increases, a type �IIb� solution ��,�,m,n,	

o bifurcates from the type �IIa� solution ��,�,m
c that is

nstable up to �=��,m,1���,m,n�n�1�, and no bifurcation takes places from ��,�,m,n,	
o . We

hereby infer that every type �IIb� solution is unstable globally. To prove it rigorously, we need
ome stability analysis for ��,�,m,n,	

o , which would be a future work.
Nonetheless by explicit computations of the energy �1.1� for the solutions, we obtain the

inimizer for given ��0 and ��R as follows.
Theorem 1.2: Assume ��0 and h�x� satisfy (1.11). Given m�Z, let

Dm ª 
��,��:m − 1/2 � � � m + 1/2, �� − m�2 � �� . �1.14�

hen the type (IIa) solution ��,�,m
c is a minimizer of (1.1) if �� ,���Dm, while the trivial solution

=0 is a minimizer if �� ,��� ��m=1
� Dm�. Moreover for �� ,��� Int Dm ,��,�,m

c is a unique mini-
izer up to the rotation.

We note that for �=m−1/2 �or m+1/2� both ��,�,m
c and ��,�,m−1

c �or ��,�,m+1
c � are the mini-

izer if ��1/4.
In the next section we derive type �I� solutions. Though the result is known �for instance, see

ef. 2�, we give a proof for the reader’s convenience. In fact the argument of the proof would be
elpful when we consider a more difficult case of type �IIb� solutions. In Sec. III we are dealing
ith type �IIb� solutions and provide a proposition which guarantees the existence of the solution.
he proof of the proposition will be postponed until Sec. V, where some lemma is only stated
ecause it is essentially proved in Ref. 7. In Sec. IV we give various figures for existence regions
f solutions in �� ,�� space, bifurcation diagrams and configurations of type �IIb� solutions. In Sec.
I we will prove Theorem 1.2 and give a remark in the final section on the computations arising

n Sec. VI.

I. TYPE „I… SOLUTIONS

In this section we treat type �I� solutions to �1.3�. We will show that, given n�N, there exists

solution to �1.3� which has n zero points on �0,2�� if and only if
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� � n2/4, � = m + n/2 �∀m � Z� , �2.1�

nd each solution is written in the form

u = u�,n
s �x + 	� exp �ic�, u�,n

s
ª k	2/�1 + k2�sn�nK�k�x/�,k� ,

here c and 	 are arbitrary constants of R ,k� �0,1� is a unique solution to

	1 + k2K�k� = �	�/n , �2.2�

n�x ,k� is the Jacobi elliptic function whose inverse is given by

sn−1�u,k� = �
0

u 1
	1 − 2	1 − k22

d ,

nd K�k� is a complete elliptic integral

K�k� ª �
0

1 1
	1 − 2	1 − k22

d .

ecall that sn�x ,k� is extended to R with period 4K�k� and it is not difficult to show �=u�,n
s is a

olution to the real-valued equation

�xx + ��1 − �2�� = 0. �2.3�

To achieve the above result, we first show that if a nontrivial solution to �1.3� has a zero point,
hen 2� is an integer and the solution is a real-valued function multiplied by a complex constant.
he argument below is essentially due to Ref. 3. Consider a nontrivial solution u�x� which
anishes at x=x0. Denote u�x�=u1�x�+ iu2�x�. Then �1.3� allows the expression

�u1�xx + Q�x�u1 = 0, x � R ,

�u2�xx + Q�x�u2 = 0, x � R ,
Q�x� ª ��1 − �u�x��2� .

ince uj�x0�=uj�x0+2��=0�j=1,2�, each uj is an eigenfunction of the operator

L ª

d2

dx2 + Q�x�, D�L� = 
u � H2�x0,x0 + 2��:u�x0� = u�x0 + 2�� = 0�

orresponding to zero eigenvalue if uj �0. It thus follows that c1u1=c2u2 for some constants

1 ,c2�R��c1,c2�� �0,0�� from the Sturm-Liouville theorem, which tells that the dimension of
ach eigenspace is one. Set �ª

	1+c1
2 /c2

2u1 �or 	1+c2
2 /c1

2u2�. Then the solution u is written in

u�x� = ��x�exp�ic�

or a constant c�R. Thus the second condition of �1.3� implies

��x + 2��exp�2��i� = ��x� . �2.4�

ince ��x� is real valued, 2� must be an integer.
We next verify that any solution � of �2.3� with �2.4� is written in the form �=u�,n

s up to
ranslation and �2.1� is a necessary and sufficient condition of existence. As seen below, it follows
rom an elementary argument of ordinary differential equations.

Let � be a nontrivial solution having zeros to �2.3� with �2.4�. Without loss of generality we
ay assume ��0�=��2��=0 and �x�0��0. Thus there exists a point x1� �0,2�� such that

�x�x1� = 0, �x�x� � 0 ∀ x � �0,x1� .
et �=��x1�. Then the equation �2.3� implies
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d�

dx
= 	���2 − �2���2 − �2�/2 ∀ x � �0,x1� , �2.5�

here

�2 + �2 = 2, 0 � � � � . �2.6�

hanging variable ��x�ª��x� /�, we have

x =
	2

�	�
�

0

��x�/� 1
	�1 − �2��1 − ��/��2�2�

d�, ∀ x � �0,x1�

nd hence

x1 = 	2K�k�/�	�, k ª �/� . �2.7�

s a consequence � is written in the form

��x� = � sn�K�k�x/x1,k� �2.8�

nd this equality is satisfied on the whole R. By the condition �2.4� and

sn�x + 2K�k�n,k� = �− 1�n sn�x,k�, x � R, n � N ,

here exist n�N and m�Z such that

x1 = �/n, � = m + n/2. �2.9�

n the other hand, with the aid of �2.6� and the definition of k we obtain

� = k	2/�1 + k2�, � = 	2/�1 + k2� . �2.10�

hus �2.8� and �2.7� yield the expression of u�,n
s and

x1 = 	1 + k2K�k�/	� , �2.11�

espectively. By �2.9� and �2.11�, k must satisfy �2.2�.
Consequently the equation �2.3� with �2.4� has a nontrivial solution with n zeros in �0,2��

hich is uniquely given by u�,n
s �up to translation� with k� �0,1� satisfying �2.2� and �=m

n /2�m�Z�.
Now let us consider �2.2�. Since

K�0� =
�

2
,

dK

dk
� 0, lim

k→1
K�k� = � , �2.12�

2.2� has a unique solution if and only if n2�4�. In conclusion we can assert that any type �I�
olution � of �2.3� with �2.4� is written in the form �=u�,n

s and the solution exists if and only if
2.1� is satisfied.

II. TYPE „IIb… SOLUTIONS: SECONDARY BIFURCATING SOLUTIONS

In this section we consider a solution with modulating amplitude but nonvanishing every-
here. It is not so simple to obtain globally in the parameters � and �, since the solution
ifurcates from not a trivial solution but a type �IIa� solution. Namely this solution is a secondary
ifurcating solution from the zero solution. Fortunately the method developed in the previous
aper7 still works in this present two-parameters case.

Since �u�x���0, we can write u=w�x� exp �i��x�� where w�x��0. Setting it into Eq. �1.3�

ields
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wxx − �x
2w + ��1 − w2�w = 0 �x � R�, �w2�x�x = 0 �x � R� . �3.1�

hen the periodic condition in �1.3� is reduced to w�x+2��=w�x� and

��x + 2�� + 2�� = ��x� + 2m� , �3.2�

or an integer m. Integrating the equation �w2�x�x=0, we have that

�x = b/w2 �3.3�

or a constant b�R. Integrating this equality again and using �3.2�, we obtain

2�m − ��� = b�
0

2� 1

w�x�2dx .

hus the equation �3.1� is reduced to

wxx − b2/w3 + ��1 − w2�w = 0, x � R ,

b = 2�m − ���/�
0

2� dx

w�x�2 ,

�3.4�
w�x + 2�� = w�x�, x � R ,

w�x� � 0, x � R .

hen a solution � of �1.2� is obtained by solving the above equation and it is written in the form

� = w�x� exp�2�m − ���i�
0

x 1

w�s�2ds��
0

2� 1

w�s�2ds + i�
0

x

h�s�ds� .

e note that �3.4� has a constant solution

w = 	1 − �m − ��2/�

f �� �m−��2. This gives a type �IIa� solution. Since w stands for the amplitude of a solution �,
e exclude this constant solution. To find all the solutions of �3.4�, we also give attention to a

olution with n modulating amplitude, that is, a 2� /n-periodic solution of �3.4� for n�N.
Consequently all type �IIb� solutions are obtained by solving the following system of equa-

ions for w�x� and b:

wxx − b2/w3 + ��1 − w2�w = 0, x � R ,

w�x� � 0, x � R , �3.5�

Tw = 2�/n ,

nd

b = 2�m − �����
0

2� 1

w�x�2dx , �3.6�

or each m�Z ,n�N ,��R, and ��0, where Tw denotes the fundamental period of w�x�.

We here introduce some notations which will be used in our argument. Define
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���,k� ª �
0

1 1

�1 + �2�	1 − 2	1 − k22
d , �3.7�

��k� ª 2/3 − 2n2K�k�2�k2 + 1�/3��2, �3.8�

��k� ª 2/3 − 2n2K�k�2�1 − 2k2�/3��2, �3.9�

��k� ª 2/3 − 2n2K�k�2�k2 − 2�/3��2. �3.10�

he following result establishes not only the existence but also the configuration of every second-
ry bifurcating solution.

Proposition 3.1: Given m�Z and n�N, let Dm,n
± be as in (1.9) and (1.10). For �� ,��

Dm,n
+ �Dm,n

− , there exists a solution

u�,�,m,n
o

ª w�x� exp �i��x�� ,

w�x� ª	2

3
+

2n2K�k�2

��2 �k2 sn2�nK�k�
�

x,k� −
k2 + 1

3
� , �3.11�

��x� ª 2�m − �����
0

2� dy

w�y�2�−1�
0

x dy

w�y�2 ,

here k� �0,1� is a unique solution of

2�m − ��2K�k�2 − ���k�����k�/��k� − 1,k�2��k�/��k� = 0, ��k� � 0.

f �� ,���Dm,n
+ �Dm,n

− , there is no solution written as (3.11). Moreover for �� ,���Dm,n
+ �Dm,n

− ,
he solution u�,�,m,n

o satisfies

u�,�,m,n
o − u�,�,m

c → 0 uniformly on R as � → ��,m,n, �3.12�

FIG. 1. Bifurcation curves and existence regions of types �I� and �IIa� solutions.
FIG. 2. Existence regions of type �IIb� solutions with m=0.
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u�,�,m,n
o − u�,�,m

c → 0 uniformly on R as � → m ± 	�/3 + n2/6, �3.13�

u�,�,m,n
o ± iu�,n

s → 0 uniformly on R as � → m ± n/2. �3.14�

roposition 3.1 implies that the secondary bifurcations take place on

�m�Z,n�N
��,��:� � m − n/2,m + n/2 � �,� = ��,m,n� .

oreover we easily see that any sectorial region Dm,n
− is adjacent to Dm−n,n

+ . Thus we obtain the
ollowing corollary.

Corollary 3.1: Let ��n2 /4 and fix it. Define

u�x;�� ª u�,�,m,n
o �x�, ��,m,n

− � � � m − n/2,

iu�,n
s �x�, � = m − n/2,

− u�,�,m−n,n
o �x�, m − n/2 � � � ��,m−n,n

+ .
�

hen 
u�· ;�� :��,m,n
− �����,m−n,n

+ � is a continuous curve in C�R ;C�.

V. BIFURCATION DIAGRAMS

In this section we observe bifurcation diagrams for the solutions of Theorem 1.1. These
ifurcation diagrams are drawn by using the explicit form of the solutions obtained in Proposition
.1. We can also exhibit the configuration of type �IIb� solutions for various values of �.

From Figs. 1–3 we fix the parameter space �� ,���R
R+. Figure 1 shows three bifurcation
urves of type �IIa� for m=−1, 0, 1 and the straight lines on which type �I� solutions exist.

We see in Fig. 2 existence regions of type �IIb� solutions for �m ,n�= �0,1�, �0,2� and in Fig.
existence regions for �m ,n�= �−2,1� , �−2,2� , �−1,1� , �−1,2�, �0,1�, �0,2�, �1,1�, �1,2�, �2,1�, and

�2,2�.
In Fig. 4 a bifurcation diagram of solutions as � increases for fixed �=1/4 is shown. We can

bserve four branches of type �IIa� solutions and branches of type �IIb� bifurcating from the type

FIG. 3. Existence regions of types �I�, �IIa�, and �IIb� solutions with m=−1, 0, 1.

2
FIG. 4. Bifurcation diagram for � at �=1/4. Vertical axis stands for L amplitude.
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IIa� solutions. On the other hand, Fig. 5 shows a bifurcation diagram as � varies for fixed �
1.4. Three branches of type �IIa� and 10 branches of type �IIb�. Small circles separating two
ranches of type �IIb� indicate type �I� solutions.

Figures 6 and 7 show bifurcation sheets. In Fig. 6 we can observe the bifurcation sheets of
ypes �IIa� and �IIb� solutions on �� ,�� plane. The vertical axis stands for L� amplitude. In Fig. 7
e also provide bifurcation sheets having cross sections on �=0.20, 0.60, 0.85, and 1.40, respec-

ively. The vertical axis stands for L2 amplitude.
We display the change of configuration in the complex plane of type �IIb� solutions to �1.2� as

increases. We set h=constant �i.e., �=h� in Figs. 8–10. In Figs. 8 and 9 we fix �=1.4 �as in Fig.
� and plot the solutions on the curves defined by �1.12� for �m ,n�= �0,1�− �−1,1� and �m ,n�
�1,2�− �−1,2� respectively. We chose six values of � in the intervals �−0.795 822,
0.204 178� and �−0.064 5813, 0.064 5813� for Figs. 8 and 9 respectively. Note that the fourth
hot �in the left of the second column� of each figure shows type �I� solution. The first shot and the
ast shot are type �IIa� solutions. We see in Fig. 8 that a solution with �m ,n�= �0,1� in the second
hot �the winding number 0 and 1 modulation of amplitude� is changed into a solution with

FIG. 5. Bifurcation diagram for � at �=1.4. Vertical axis stands for L2 amplitude.

�
FIG. 6. Bifurcation sheets for �� ,��. Vertical axis stands for L amplitude.
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m ,n�= �−1,1� in the fifth shot. On the other hand, we do not see the change of the winding
umber of the solutions in Fig. 9, since we are not able to distinguish the sign of the winding
umber in this figure.

In Fig. 10 for fixed �=25/2 we plot the solutions for � in the interval �2−5/	3,−3+5/	3�.
solution with �m ,n�= �2,5� of the first shot is changed into a solution with �m ,n�

�−3,5� in the sixth shot. The fifth shot shows the type �I� solution for �=−1/2.

. PROOF OF THEOREM 1.1

We will give the proof of Theorem 1.1. It suffices to prove Proposition 3.1 by �1.4� and
orollary 3.1. Except for the argument related to the continuity of the branch of type �IIa� up to a

ype �I� solution as �→m±n /2, the proof is substantially owing to Ref. 7. Therefore we will
void repeating lengthy arguments in this paper, for example, the proof of Lemma 5.1 below. For
he complete proof, the readers can refer to Ref. 7 complementarily.

We first solve �3.5� �without considering �3.6��. Since w is a nonconstant periodic function in
2, there exist x1 ,x2�R such that x1�x2 and

wx�x1� = wx�x2� = 0, wx�x� � 0 �∀x � �x1,x2�� . �5.1�

FIG. 7. Bifurcation sheets for �� ,��. Vertical axis stands for L2 amplitude.
ultiplying 2wx to the equation in �3.5�, we have
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d

dx
��wx�2 +

b2

w2 +
�

2
�2w2 − w4�� = 0.

hus

wx�x�2 =
�
w�x�2 − w�x1�2�

2w�x�2w�x1�2 �
w�x�2 + w�x1�2 − 2�w�x�2w�x1�2 +
2b2

�
� . �5.2�

et x=x2 in �5.2� and

� = w�x1�2, � = w�x2�2.

2

FIG. 8. Type �IIb� ��m ,n�= �0,1� , �−1,1�� and type �I� solutions in C.
hen we obtain ��+�−2���+2b /�=0, which implies
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2b2/� = ���, � ª 2 − � − � . �5.3�

ntroducing the variable

v�x� ª w�x�2,

nd substituting �5.3� into �5.2�, we can easily verify

�vx�x��2 = 2��v�x� − ���v�x� − ���v�x� − ��, ∀ x � R .

ince

0 � � � v�x� � �, vx�x� � 0 �∀x � �x1,x2�� ,

FIG. 9. Type �IIb� ��m ,n�= �1,2� , �−1,2�� and type �I� solutions in C.
he ordering ��� holds. In the sequel

                                                                                                            



N

C

w

A

T

095111-14 Kosugi, Morita, and Yotsutani J. Math. Phys. 46, 095111 �2005�

                        
vx�x� = 	2��v�x� − ���v�x� − ���v�x� − ��, ∀ x � �x1,x2� ,

�5.4�
0 � � � � � �, � + � + � = 2.

ext we solve �5.4�. By integration of �5.4�,

x − x1 =
1

	2�
�

�

v�x� dy
	�y − ���y − ���y − ��

, ∀ x � �x1,x2� . �5.5�

hanging the variable y=�+ ��−��2 in �5.5� and setting

k ª 	�� − ��/�� − �� , �5.6�

e see

dy
	�y − ���y − ���y − ��

=
2 d

	�� − ���1 − 2��1 − k22�
.

pplying this to �5.5� yields

x − x1 =	 2

��� − ��
sn−1�	v�x� − �

� − �
,k�, ∀ x � �x1,x2� . �5.7�

FIG. 10. Type �IIb� ��m ,n�= �2,5� , �−3,5�� and type �I� solutions in C.
hus on the interval �x1 ,x2� we obtain
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w�x� = 	v�x� =	� + �� − ��sn2�	��� − ��
2

�x − x1�,k� . �5.8�

ince this w�x� is defined over R and periodic with period 2K�k�	2/���−�� �sn2�x ,k� has a
eriod 2K�k��, Tw=2� /n implies

2K�k�	2/��� − �� = 2�/n . �5.9�

ombining �5.3�, �5.6�, and �5.9�, we obtain the expressions �3.8�, �3.9�, and �3.10�. In the sequel
e obtained solutions of �3.5�. In fact let n�N and ��0. Then �w�x� ,� ,b� satisfies �3.5� if and
nly if there exist x1�R and k� �0,1� such that �=��k��0 and

w�x + x1� =	� + �� − ��sn2�nK�k�
�

x,k� ,

�5.10�

b2 =
����

2
.

Now we take the condition �3.6� into account. Since Tw=2� /n and a symmetry,

�
0

2� dx

w�x�2 = �
0

2� dx

w�x + x1�2 = 2n�
0

�/n dx

w�x + x1�2 .

he similar argument used in the derivation of �5.5� and �5.7� leads us to

�
0

�/n dx

w�x + x1�2 =
1

	2�
�

�

� dy

y	�y − ���y − ���y − ��
=	2

�

���/� − 1,k�
�	� − �

, �5.11�

here � is the complete elliptic integral defined by �3.7�. Since ��0 and �−�=2n2K�k�2 /��2,
he equation �3.6� is written as

b = �m − ���K�k�/���/� − 1,k� .

ubstituting this into the second equation in �5.10�, we can reduce our problem to solving the
quation

2�m − ��2K�k�2 − �����/� − 1,k�2�/� = 0 �5.12�

nder the constraint ��0. To simplify the notation in the rest of this paper, we denote the
eft-hand side of Eq. �5.12� by ��k ,� ,�� for each n�N and m�Z, that is, we set

��k,�,�� ª 2�m − ��2K�k�2 − �����/� − 1,k�2�/� . �5.13�

Summarizing the above argument, we can assert that for each given n�N ,m�Z ,��R ,�
0, and x1�R, every nonconstant solution of �3.5� with �3.6� is written as

w�x + x1� =	� + �� − ��sn2�nK�k�
�

x,k�, b = sgn�m − ��	����

2
, �5.14�

f �k ,���� is a solution of ��k ,� ,��=0, where

� ª 
�k,�� � �0,1� 
 R+:��k� � 0� . �5.15�

The following proposition guarantees the unique existence of a solution to �=0.
Proposition 5.1: Let n�N ,m�Z and let Dm,n

± be the ones defined in (1.9) and (1.10).
i� The equation (5.12) has a solution �k ,��= �k�� ,�� ,���� if
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��,�� � Dm,n
− � Dm,n

+ , �5.16�

where � is defined by (5.15). Moreover k�� ,�� is unique for each �� ,���Dm,n
− �Dm,n

+ .
ii� Let �� ,���Dm,n

− �Dm,n
+ . Then

k��,�� → 0 as � → 3�� − m�2 − n2/2, �5.17�

k��,�� → 0 as � → m ± 	�/3 + n2/6, �5.18�

��k��,��� → 0 as � → m ± n/2. �5.19�

iii� There is no solution to (5.12) in � if

��,�� � �
m�Z,n�N

�Dm,n
− � Dm,n

+ � .

Proof of Proposition 5.1 (i): Let k=k����� �0,1� satisfy ��k�=0. It is easy to verify that k
k���� is uniquely determined for each ��n2 /4 and � is written in the form

� = 
�k,��:0 � k � k����,� � n2/4� .

e here remark that �=� if ��n2 /4. Using the same computation as in the proof of Proposition
.1 �i� of Ref. 7, we can see

��0,�,�� =
�2

6
�6�m − ��2 − n2

2
− �� �5.20�

nd

lim
k↑k����

��k,�,�� = �4�m − ��2 − n2�
K�k�����2

2
. �5.21�

ndeed the latter limit is obtained by verifying

	�/����/� − 1,k� → �/2 �k↑k����� . �5.22�

hus the function ��· , · ,�� is extended as a continuous function on �̄ \ 
�=n2 /4�. Consequently
�0,� ,����k���� ,� ,���0 is satisfied if and only if

6�m − ��2 − n2

2
� �, 0 � 4�m − ��2 − n2, �5.23�

ecause the inequality ��n2 /4 implies

6�m − ��2 − n2

2
− � �

3�4�m − ��2 − n2�
4

.

herefore it follows from the continuity of ��k ,� ,�� that �5.12� has a solution k=k�� ,�� if �� ,��
atisfies �5.16� for each n�N and m�Z.

The following lemma implies that a solution k=k�� ,�� to �5.12� is unique for each �� ,�� if
t exists in �0,k�����. By this lemma we can conclude the proof of Proposition 5.1 �i�. �

Lemma 5.1: If k� �0,k����� satisfies ��k ,� ,��=0, then

��

�k
�k,�,�� � 0.

he proof of Lemma 5.1 is performed literally in the same way as in Ref. 7; we omit it �see the

roof of Lemma 3.5 in Ref. 7�.
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Proof of Proposition 5.1 (ii): We first show �5.17�. It is clear that, for fixed � which satisfies
�−m�2�n2 /4, both ��0,� ,�� and ��k���� ,� ,�� are strictly positive if �� �n2 /4 ,��,m,n�. From
emma 5.1, it follows that

��k,�,�� � 0, ∀ k � �0,k�����, ∀ � � �n2/4,��,m,n� �5.24�

nd hence

��k,��,m,n,�� = lim
�↑��,m,n

��k,�,�� � 0, ∀ k � �0,k����,m,n�� .

sing, �5.20� and �5.21�, and Lemma 5.1 again, we can assert that

��k,��,m,n,�� � 0, ∀ k � �0,k����,m,n�� ,

�5.25�
��0,��,m,n,�� = 0.

et 
��� be any sequence satisfying ��↓��,m,n as �→�. Since k�� ,�� is bounded and � is
ontinuous, there exists a subsequence 
����� 
��̇� such that a limit k* of k���� ,�� as ��→�
xists in �0,k����,m,n�� and ��k* ,��,m,n ,��=0. Thus the limit k* must be 0 by �5.25�. This con-
ludes the proof of �5.17�.

As for the proof of �5.18�, we can prove it similarly as right above, so omit it.
Now we prove �5.19�, that is,

lim
�→m±n/2

k��,�� = k���� �5.26�

or �� ,���Dm,n
+ �Dm,n

− . Let ��n2 /4 be fixed. Both ��0,� ,�� and ��k���� ,� ,�� are strictly
egative if � satisfies

m − n/2 � � � m + n/2.

emma 5.1 implies

��k,�,�� � 0, ∀ k � �0,k�����, ∀ � � �m − n/2,m + n/2� . �5.27�

hus

��k,�,m ± n/2� � 0, ∀ k � �0,k����� . �5.28�

ombining �5.20�, �5.21�, and �5.28�, and Lemma 5.1, we obtain

��k,�,m ± n/2� � 0, ∀ k � �0,k����� ,

�5.29�
��k����,�,m ± n/2� = 0.

herefore it follows that k�� ,��→k���� as �→m±n /2 from the similar argument in the proof of
5.17�. �

Proof of Proposition 5.1 (iii): Let m�Z and n�N be fixed. As mentioned in the proof of �i�,
=� if ��n2 /4. Thus it suffices to prove ��k ,� ,���0 for ∀k� �0,k����� if �� ,��

�� ,�� :��n2 /4� \ �Dm,n

+ �Dm,n
− �. By virtue of �5.24� and �5.25�, it is clear that ��k ,� ,���0 for

k� �0,k����� if n2 /4�����,m,n. On the other hand, it follows from �5.27� and �5.29� that
�k ,� ,���0 for ∀k� �0,k����� if m−n /2���m+n /2 and ��n2 /4. Therefore �iii� was
roved. �

Using Proposition 5.1, we will complete the proof of Proposition 3.1, thus Theorem 1.1.
Proof of Proposition 3.1: As observed above, we proved that the type �IIa� solution is written

n the form �5.14�. On the other hand, Proposition 5.1 directly leads to existence and nonexistence
onditions of the type �IIb� solutions which are stated in Proposition 3.1. Substituting �3.8� and

3.9� into �5.14� with x1=0, we obtain �3.11�. Thus the former part of the proposition was proved.
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For the proof of the latter part of Proposition 3.1 it suffices to prove, �3.12�, �3.13�, and �3.14�.
n the rest of the proof, w=w�x� denotes �5.14� with x1=0 for simplicity of notation.

We first prove �3.12�. It follows from �5.17� that if �� ,���Dm,n
− �Dm,n

+ and �→��,m,n, then
�� ,��→0. Thus

� → 2/3 − n2/6��,m,n = 1 − �� − m�2/��,m,n as � → ��,m,n, �5.30�

� − � → 0 as � → ��,m,n. �5.31�

or each ��Z, if x� �2�� ,2���+1�� then

��x� − �m − ��x = �m − ���2��
0

x 1

w�y�2dy��
0

2� 1

w�y�2dy − x�
= �m − ���2��

0

x−2�� 1

w�y�2dy��
0

2� 1

w�y�2dy + 2�� − x� .

ince

	��k��,��� � w�x� � 	��k��,��� ,

simple calculation yields

� − �

�
�x − 2��� � 2��

0

x−2�� 1

w�y�2dy��
0

2� 1

w�y�2dy + 2�� − x �
� − �

�
�x − 2���

nd hence we obtain

sup
x��2��,2���+1��

���x� − �m − ��x� �
2��m − ���� − ��

�
, ∀ � � Z .

t is clear that

�u�,�,m,n
o �x� − u�,�,m

c �x�� = �w�x� exp �i��x� − i�m − ��x� − 	1 − �m − ��2/�� � �w�x��� exp �i��x�

− i�m − ��x� − 1� + �w�x� − 	1 − �m − ��2/�� ,
nd

sup
x�R

�w�x� − 	1 − �m − ��2/�� → 0 as � → ��,m,n

n terms of �5.30� and �5.31�. It is also clear that

� exp �i��x� − i�m − ��x� − 1�2 = 
cos ���x� − �m − ��x� − 1�2 + sin2���x� − �m − ��x�

� 4 sin4���m − ���� − ��/�� + sin2�2��m − ���� − ��/��

nd hence

sup
x�R

�exp �i��x� − i�m − ��x� − 1� → 0 as � → ��,m,n,

y �5.31�. Therefore �3.12� follows.
Similarly, �3.13� follows from �5.18�.
Next we prove �3.14�. We only consider �→m−n /2 because the other case is easily done

ith a little modification of the argument. Let �� ,���Dm,n
− and � be fixed. We first consider the

imit of w=w�x� as �→m−n /2. Since ��k�����=0 holds and �5.19� implies k�� ,��→k���� as

→m−n /2, we obtain
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� − � → 2k����2/�k����2 + 1� �� → m − n/2� .

ence

w�x� → k����	2/�k����2 + 1��sn�nK�k�����x/�,k������ , �5.32�

niformly for x as �→m−n /2. On the other hand, noticing that k=k���� satisfies �2.2�, we can
rite u�,n

s as

u�,n
s �x� = k����	2/�1 + k����2�sn�nK�k�����x/�,k����� .

e thereby obtain the following: For any ��0, there exists �1=�1����0 such that

sup
x�R

�w�x� − �u�,n
s �x��� � � �5.33�

or ∀�� �m−n /2−�1 ,m−n /2�. We here remark that u�,n
s �x� is defined independently of �, al-

hough it is not a solution to �1.3� if 2��Z. Since u�,n
s �x� vanishes at x=2�� /n���Z�, we can

erify that, for any ��0, there exists d1=d1��� such that

max
��Z

sup
�x−2��/n��d1

�u�,n
s �x�� � � �5.34�

hus

max
��Z

sup
�x−2��/n��d1

�w�x�� � 2� , �5.35�

or ∀�� �m−n /2−�1 ,m−n /2�.
We next deal with �. Combining �3.8�, �3.10�, and �5.11�, we have

�
0

2� 1

w�x�2dx =
2����/� − 1,k�

�K�k�
.

rbitrarily given ��Z, if x� �2�� /n ,2���+1� /n�, then

�
0

x 1

w�s�2ds =
�2� + 1�����/� − 1,k�

n�K�k�
+ �

�2�+1��/n

x 1

w�s�2ds ,

hile

�
0

2��/n 1

w�s�2ds =
2�����/� − 1,k�

n�K�k�
,

here �2�+1�� /n is the middle point of the interval �2�� /n ,2���+1� /n�. Thus

��x� =
�m − ���2� + 1��

n
+

�m − ���K�k�
���/� − 1,k� ��2�+1��/n

x 1

w�s�2ds

if x � �2��/n,2��� + 1�/n� �� � Z� ,

2�m − ����

n
if x = 2��/n �� � Z� .

� �5.36�

he limit of � as �→m−n /2 is achieved as follows. Recalling �5.22�, we see

�/���/� − 1,k� → 0 ��↑m − n/2� . �5.37�
t is also clear that
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��
�2�+1��/n

x 1

w�s�2ds� �
�

n

1

w�d1�2 , ∀ x � �2��/n + d1,2��� + 1�/n − d1� ,

here d1=d1��� is as in �5.34� and �5.35�. Thus it follows from �5.32�, �5.36�, and �5.37�, and the
bove inequality that for any ��0 there exists �2=�2�� ,d1�����0 such that

sup
x��2��/n+d1,2���+1�/n−d1�

���x� − �2� + 1��/2� � �, ∀ � � �m − n/2 − �2,m − n/2� . �5.38�

ow we estimate

�u�,�,m,n
o �x� − iu�,n

s �x��2 = w�x�2 cos2 ��x� + 
w�x�sin ��x� − u�,n
s �x��2. �5.39�

or ��0, set

� = ���� ª min
�1���,�2��,d1����� . �5.40�

hen it is clear that, if �� �m−n /2−� ,m−n /2�,

sup
x�R

w�x�2 cos2 ��x� � max
��Z

sup
�x−2��/n��d1

w�x�2 cos2 ��x� + max
��Z

sup
x��2��/n+d1,2���+1�/n−d1�

w�x�2cos2 ��x�

� 4�2 + max
��Z

cos2��2� + 1��/2 + �� � 4�2 + sin2 � , �5.41�

here we used 0�w�x��1. We estimate the second term on the right-hand side of �5.39�. Since
5.35� and �5.34�, we have an estimate in the neighborhoods of zero points of u�,n

s as

max
��Z

sup
�x−2��/n��d1


w�x�sin ��x� − u�,n
s �x��2 � 9�2

or �� �m−n /2−� ,m−n /2�. In the complement to the neighborhoods of the zero points of u�,n
s ,

he second term of the right-hand side of �5.39� is estimated as follows: Let �� �m−n /2−� ,m
n /2� and x� �2�� /n+d1 ,2���+1� /n−d1�. Then

�w�x�sin ��x� − u�,n
s �x�� = �w�x�sin ��x� − �u�,n

s �x���− 1���

� �w�x� − �u�,n
s �x����sin ��x�� + �u�,n

s �x���sin ��x� − �− 1��� � �

+ k����	2/�1 + k����2��sin ��x� − �− 1��� � � + 	2�sin ��x� − �− 1��� .

sing �5.38� and

�sin ��x� − �− 1��� = ��− 1��
cos���x� − �2� + 1��/2� − 1��

= 2 sin2
���x� − �2� + 1��/2�/2� � 2 sin2��/2� ,

e obtain

sup
x��2��/n+d1,2���+1�/n−d1�

�w�x�sin ��x� − u�,n
s �x�� � � + 2	2 sin2��/2� . �5.42�

n consequence, combining �5.41� and �5.42�, we obtain that there exists C�0 such that for any
�0,

sup
x�R

�u�,�,m,n
o �x� − iu�,n

s �x�� � C�, ∀ � � �m − n/2 − �,m − n/2� .
herefore it completes the proof of �3.14�. In conclusion we obtained Proposition 3.1. �
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I. PROOF OF THEOREM 1.2

It is clear that for �� �0,1 /4� the assertion of the theorem is true. Throughout the section we
ssume ��1/4. Recall the assumption of Theorem 1.2. We denote the energies for the solutions
s

E�,n
s ��� ª E���,�,n

s ;�,�he� ,

E�,m
c ��� ª E���,�,m

c ;�,�he� ,

E�,m,n
o ��� ª E���,�,m,n

o ;�,�he� .

or simplicity of notation we drop 	 in the expression of the solutions in the statement of the
heorem.

Fix arbitrary m�Z. We let ��0 ,��� Int Dm. For the proof of the theorem it suffices to show
he following facts:

i� Given �� ,���Dm, it holds that

�� − m��dE�,m
c ���/d�� � 0,

�6.1�
E�,m

c ��0� � E�,m
c �m ± 1/2� � E�,�

c �m ± 1/2� � E�,�
c ���, � � m .

ii� Given ��Z and �� ,���D�,n
− �D�,n

+ , it holds that

E�,�,n
o ��� � E�,n

s �� ± n/2� . �6.2�

iii� Given ��Z ,n ,n��N, and ��n2 /4, it holds that

E�,n
s �� ± n/2� = �E�,n

s �m ± 1/2� if n is odd,

E�,n
s �m ± 1� if n is even,

� �6.3�

E�,n
s �� ± n/2� � E�,n�

s �� ± n�/2�, �n � n�� . �6.4�

iv� Given a pair �m ,n��Z
N ,��,m±n/2,n
s is unstable.

Indeed from �ii� and �iii� it follows that if ��m and �� ,���Dm� �D�,n
− �D�,n

+ �,

E�,�,n
o ��� � E�,n

s �� ± n/2� � E�,1
s �m ± 1/2� .

hus any type �IIb� solution cannot be a minimizer at �=m±1/2. �Note that ��,�,m,n
o does not exist

f �� ,���Dm.� The assertion of �iv� assures that the minimizer at �=m±1/2 must be the type
IIa� solution with the least energy. Thus from �i� it follows that

E�,�,n
o ��� � E�,m

c ��� �� � m,��,�� � Dm � �D�,n
− � D�,n

+ �� ,

hich implies ��,�,m
c is the minimizer.

Now we prove �i�–�iv�. From

E�,m
c ��� = ��m − ��2
1 − �m − ��2/2��, � � �m − ��2,

e can see the conclusion of �i�. Since the verification is simple, we omit the proof of �i�.
The inequality of �ii� immediately follows from Proposition 5.1 and the next lemma.
Lemma 6.1: Let k=k�� ,�� be the unique solution of ��k ,� ,��=0 in (5.12). Then E�,m,n

o ��� is
ritten as

Eo ��� = I�k��,��� ,
�,m,n
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I�k� ª − 2n4�1 − k2 + k4�K�k�4/9��3 + 4n2�− 2 + k2�K�k�2/9� + 4n2E�k�K�k�/3� + 5��/18,

�6.5�

here E�k� is an elliptic integral

E�k� ª�
0

1
	�1 − k2�2�/�1 − �2�d� .

n the parameter region D�,n
− �or D�,n

+ � the inequality

d

d�
E�,m,n

o ��� � 0 �or � 0� �6.6�

olds.
rom this lemma and Theorem 1.1 it follows that

E�,�,n
o ��� � lim

�→�±n/2
E�,�,n

o ��� = E�,n
s �� ± n/2�, ��,�� � D�,n

− � D�,n
+ .

he proof of Lemma 6.1 will be done in the last part of this section.
Next consider �iii�. We can verify the following.
Lemma 6.2: Let k=ks�n ,�� be the unique solution to (2.2). Then E�,n

s ��� is written as

E�,n
s ��� = Is�ks�n,��� ,

Is�k� ª ���k2 − 1��3k2 + 5�/6�k2 + 1�2 + 4��E�k�/3�k2 + 1�K�k� ,

nd it holds that

dIs

dk
�k� � 0. �6.7�

y this lemma we can prove �iii� as follows: For fixed n�N ,E�,n
s ��� is defined if ��n2 /4 and

−n /2�Z. Since �2.2� and Is�k� are independent of � ,E�,n
s ���=E�,n

s ��±1� if �−n /2�Z. Hence
6.3� follows. On the other hand, �6.4� holds by �6.7�, because �2.12� implies ks�n ,���ks�n� ,�� if
�n�.

The proof of Lemma 6.2 will be done in the similar way to that of Lemma 6.1. We leave it to
he readers because it is a straightforward computation and simpler than that of Lemma 6.1.

The proof of �iv� can be carried out by applying the arguments in Ref. 1 and Sec. 3.3 of Ref.
in the following way: Since the equation has the invariance under the rotation, the linearized

perator at ��,�,n
s has zero eigenvalue with the corresponding eigenfunction i��,�,n

s . By virtue of
he special form of the solution we can show that this eigenvalue problem is reduced to decoupled
eal-valued scalar equations of the Sturm-Liouville type. One of those scalar eigenvalue problems
llows the zero eigenvalue coming from the invariance under the rotation. Since the corresponding
igenfunction has a vanishing point, Sturm-Liouville theorem tells it cannot be that of the least
igenvalue. As a consequence the solution is unstable �see Ref. 1 for the detail of the argument�.

Now we present a proof of Lemma 6.1.
Proof of Lemma 6.1: The key computation is to verify �6.5�. Once we establish, �6.5� we have

dE�,m,n
o

d�
��� = −

dI

dk

��

��
� ��

�k
.

y virtue of the formulas
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dK

dk
�k� =

E�k�
�1 − k2�k

−
K�k�

k
,

dE

dk
�k� =

E�k�
k

−
K�k�

k
,

direct computation leads us to

dI

dk
�k� =

4n4K�k�3
�2 − k2��1 − k2�K�k� − 2�1 − k2 + k4�E�k��
9��3k�1 − k2�

+
4n2
K�k�2�1 − k2� + 2�k2 − 2�E�k�K�k� + 3E�k�2�

9k��1 − k2�
.

y Lemma 5.1 and a simple computation �see Lemma 3.6 and the proof of Lemma 3.5 in Ref. 7�
e obtain

dI

dk
�k� � 0,

��

��
= − 4�m − ��K�k�2,

��

�k
� 0.

his implies �6.6�.
Now we show �6.5�. Let u�,�,m,n

o =w�x� exp �i��x�� ,v�x�=w�x�2, and let k be the unique solu-
ion of �5.12�. In the next computation � ,�, and � are the parameters defined in, �3.8�, �3.9�, and
3.10�, respectively. It is obvious from, �3.3�, �5.3�, and �5.4� that

E�,m,n
o ��� =

1

2
�

0

2�

�wx�2 + w2��x�2 +
�

2
�1 − w2�2 dx

=
1

2
�

0

2� ��v − ���v − ���v − ��
2v

+
����

2v
+

�

2
�1 − v�2 dx

= n��
0

�/n

�v2 − 2v�dx +
��

2
��� + �� + �� + 1� . �6.8�

sing �5.4� and the change of variable v= ��−��2+�, we have

n��
0

�/n

�v2 − 2v�dx = n	�

2
�

�

� v2 − 2v
	�v − ���v − ���v − ��

dv

=
n	2�

	� − �
�

0

1 �� − ��24 + 2�� − 1��� − ��2 + �� − 2��
	�1 − 2��1 − k22�

d . �6.9�

otice that from

d

d
�	�1 − 2��1 − k22�� =

3k24 − 2�k2 + 1�2 + 1
	�1 − 2��1 − k22�

,

t follows

�
0

1 4

	�1 − 2��1 − k22�
d = �

0

1 2�k2 + 1�2 − 1

3k2	�1 − 2��1 − k22�
d .

hus by

�
0

1 2

	�1 − 2��1 − k22�
d =

1

k2 �K�k� − E�k�� , �6.10�
e have the formula
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�
0

1 4

	�1 − 2��1 − k22�
d =

1

3k4 
�k2 + 2�K�k� − 2�k2 + 1�E�k�� . �6.11�

ubstituting �3.8�, �3.9�, �3.10�, �6.10�, and �6.11� into �6.8� and �6.9�, we obtain the desired
quality �6.5�. �

II. A CONCLUDING REMARK

As pointed out in the Introduction, we do not have the rigorous instability result for the
olutions with modulating amplitude. If we could verify it, the proof of Theorem 1.2 would be
reatly simplified. However, the computations in Sec. VI help us to see how the energy of the
olution can be expressed. In addition to the result in Sec. VI we can prove

E�,m
c ��� � E�,n

s ��� �� = m ± n/2,� � n2/4� ,

hough we need a lengthy computation. By using this inequality, instead of �iv� in Sec. VI, we can
lso obtain the same conclusion of Theorem 1.2.
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In this article, we present a bifurcation and stability analysis on time-dependent
Ginzburg–Landau model of superconductivity. It is proved in particular that there
are two different phase transitions from the normal state to superconducting states
or vice versa: one is continuous, and the other is jump. These two transitions are
precisely determined by a simple nondimensional parameter, which links the su-
perconducting behavior with the geometry of the material, the applied field and the
physical parameters. The rigorous analysis is conducted using a bifurcation theory
newly developed by the authors, and provides some interesting physical
predictions. © 2005 American Institute of Physics. �DOI: 10.1063/1.2012128�

. INTRODUCTION

The main objective of this article is to study the nature of the phase transition from normal to
uperconducting states, which occurs when the temperature of a sample decreases. The rigorous
nalysis is conducted using a new bifurcation theory developed recently by the authors.

Superconductivity was first discovered in 1911 by H. Kamerlingh Onnes, who found that
ercury had zero electric resistance when the temperature decreases below some critical value Tc.

ince then, one has found that large number of metals and alloys possess the superconducting
roperty. In the superconducting state once a current is set up in a metal ring, it is expected that no
hange in this current occurs in times more that 1010 years �see Ref. 1�. In 1933, the other
mportant superconducting property, called the diamagnetism or the Meissner effect, was discov-
red by W. Meissner and R. Ochsenfield. They found that not only a magnetic field is excluded
rom entering a superconductor, but also that a field in an originally normal sample is expelled as
t is cooled below Tc.

One central problem in the theory of superconductivity is the nature of the phase transition
etween a normal state, characterized by an order parameter that vanishes identically, and a
uperconducting state, characterized by the order parameter that is not identically zero. In this
rticle, we address this problem by conducting rigorous bifurcation and stability analysis for the
ime dependent Ginzburg–Landau �TDGL� model of superconductivity.

The TDGL model of superconductivity involves an order parameter �, and the magnetic
otential A. The problem is forced by an applied field Ha �see �2.1�–�2.3��. The associated
inzburg–Landau free energy is given by �see Ref. 1�

�
Dedicated to Professor Louis Nirenberg on the occasion of his eightieth birthday with great affection and admiration.
�
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f = fn0 + a���2 +
b

2
���4 +

1

2ms
��h

i
� −

es

c
A���2

+
h2

8�
, �1.1�

here h is the Planck constant, c the speed of light, es and ms the charge and mass of a Cooper
air, and the parameters a=a�T� and b=b�T� are coefficients satisfying the following conditions
see, among others, Ref. 2�:

a = a�T�	�0 for T � Tc

�0 for T � Tc,



b = b�T� � 0.

ere T the temperature of the sample, and Tc the critical temperature where incipient supercon-
uctivity property can be observed.

With proper scaling, a nondimensional parameter � plays a key role in the phase transition �or
ifurcation�, which is given in terms of dimensional quantities by

� = ��T� = −
2a�bmsD

es
3h

=
2�bmsDN0

es
3h

Tc − T

Tc
, �1.2�

here D is the diffusion coefficient, and the last equality was derived using �2.4� based on the
ardeen-Cooper-Schrieffer �BCS� theory.

The main objectives of this article is to establish a nonlinear bifurcation and stability theory
or the Ginzburg–Landau equations. It is clear that such a nonlinear bifurcation and stability
heory should at least include

1� a bifurcation theorem when the parameter � crosses some critical numbers for all physically
sound boundary conditions and geometry of the domain,

2� asymptotic stability of bifurcated solutions, and
3� the vortex structure and its stability and transitions in the physical space.

This bifurcation and stability analysis uses a new bifurcation theory for partial differential
quations �PDEs� developed recently by the authors. This bifurcation theory is based on a new
otion of bifurcation, called attractor bifurcation, and its corresponding theory introduced in Refs.
and 4. With the bifurcation theory, many bifurcation problems in science and engineering are

ecoming more accessible. In particular, applications are made for variety of PDEs from science
nd engineering, including, in particular, the Kuramoto-Sivashinshy equation, the Cahn-Hillard
quation, the complex Ginzburg–Landau equation, Reaction-diffusion equations in biology and
hemistry, the Rayleigh-Bénard convection problem, and the Taylor problem.

We now address different aspects of such a nonlinear bifurcation and stability theory for the
DGL model of superconductivity obtained in this article.

First, we proceed with the reduction of the infinite dimensional dynamical system governed
y the TDGL equations to a finite dimensional system defined on the center manifold. One
mportant ingredient of the analysis is the approximation of the center manifold function, which is
art of the new bifurcation theory. With this reduction in our disposal, a general bifurcation
heorem follows from the general strategy of attractor bifurcations, as required in part �1� men-
ioned previously. We prove in particular that there are two different phase transitions from the
ormal state to superconducting states or vice versa: one is continuous shown schematically in
ig. 1, and the other is jump shown in Figs. 2 and 3. These two transitions are precisely deter-
ined by a simple parameter R defined by �4.22� for transitions near a complex simple eigenvalue

f the linearized problem �respectively, by two parameters R1 and R2 defined by �4.44� for tran-
itions near an eigenvalues with higher multiplicity�. The parameter R links the superconducting
ehavior with the geometry of the material, the applied field and the physical parameters.

Second, as an attractor, the bifurcated attractor has asymptotic stability in the sense that it

ttracts all solutions with initial data in the phase space outside of the stable manifold of the trivial
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olution. Therefore bifurcation analysis for steady state problems provides in general only partial
nswers to the problem, and is not enough for solving the stability problem. Hence it appears that
he right notion of asymptotic stability after the first bifurcation should be best described by the
ttractor near, but excluding, the trivial state. It is one of our main motivation for introducing
ttractor bifurcation.

Consider the TDGL model for the case where the first eigenvalue of the linearized problem is
omplex simple �i.e., has real multiplicity 2�. When R�0, we obtain a continuous transition from
he normal state to superconducting states. In particular, we prove in Theorem 4.1 that �a� the
ifurcated attractor is a circle S1, consisting of only steady states, �b� the solutions in the bifurcated
ttractor are in superconducting states, and �c� the bifurcated attractor attracts bounded open sets
\� in the phase space, where � is the stable manifold of the trivial solution. Consequently we

rove in particular that under a fluctuation deviating both the normal and superconducting states,
he sample will soon be restored to the superconducting states.

When R�0, we obtain a jump transition from the normal state to superconducting states or
ice versa. In particular, from Theorems 4.2 and 4.3, as shown in Figs. 2 and 3, there are two

IG. 1. For each ���1, the normal state is stable. For ���1, the normal state is unstable, the TDGL bifurcates to an S1

ttractor, representing stable superconducting state.

IG. 2. For each �� ��0 ,�1�, ��
1 is a repeller, containing unstable superconducting states. For each �0��, ��

2 is an

ttractor, containing stable superconductivity states.
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ritical temperatures Tc
0 and Tc

1 �Tc
0�Tc

1� such that when Tc
1�T �or ���1�, physically observable

tates consists of the normal state, and the superconducting states in ��
2 , and when Tc

1�T �or �
�1�, physically observable states are in ��

2 . In addition, the transitions at Tc
1 and Tc

0 are jump
ransitions.

Third, one important aspect of studies in superconductivity is the existence �appearance� and
tructure of vortices of the supercurrent. The associated mathematical question is to link the
olutions of the PDEs �the TDGL model in this article� to the structure of the solutions in the
physical space.” In fluid mechanics context, this corresponds to linking the kinematics to dynam-
cs, and an attempt by the authors is summarized in Ref. 5. For the TDGL model, the existence of
ortices and the structure of the supercurrent is analyzed using this philosophy.

Fourth, it is noteworthy to mention that although we used the steady state equations to derive
he existence of one of the steady state bifurcation branches, the dynamic properties �the basin
ttraction, stability, introduction of the parameters R, R1 and R2, etc� and the branch ��

2 are of a
ruly dynamical nature.

There have been extensive studies on bifurcation and stability analysis for superconductivity;
ee among others.6–10 In particular, we point out recent work by Berger and Rubinstein11 and
hapman,12 where similar questions on different phase transitions of the Ginzburg–Landau model
ere addressed. In Ref. 11, the study is based on evaluating the second variation of the Ginzburg–
andau functional, whereas in Ref. 12, an asymptotic method traced back to Ref. 13 is used.

This article is organized as follows. Section II introduces the TDGL model. In Sec. III, after
brief introduction of the attractor bifurcation theory and center manifold functions, we prove a

pecial case of the attractor bifurcation called S1 attractor bifurcation. Section IV states and proves
he main theorems on stability and bifurcation of the TGDL equations. Conclusions and physical
emarks are given in Sec. V.

I. TDGL MODEL

. The equations

Let 	�Rn �n=2 or 3� be a bounded open set. We consider the attractor bifurcation of the

IG. 3. Phase diagrams on the center manifold for various �: �a� case ���0, �b� case �=�0, �c� case �0����1, and �d�
ase �1��
DGL equations of superconductivity defined on 	. The following three unknown functions are
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nvolved in the mathematical formulation: a complex valued function � :	→C for the order
arameter, a vector valued function A :	→R3 for the magnetic potential and a scalar function
:	→R1 for the electric potential. The TDGL model reads

h2

2msD
� �

�t
+

ies

h

�� + a� + b���2� +

1

2ms
�hi � +

es

c
A�2

� = 0, �2.1�

J = − ��1

c
At + �
� −

es
2

msc
���2A −

eshi

2ms
��* � � − � � �*� , �2.2�

4�

c
J = curl2 A − curl Ha, �2.3�

here � the conductivity of the normal phase, J the supercurrent, and �* the complex conjugate
f �. In the BCS theory, the parameters a=a�T� and b=b�T� are given �see Ref. 2� by

a�T� = N�0�
T − Tc

Tc
,

�2.4�

b�T� = 0.098
N�0�

�kbTc�2 .

Equations �2.1� and �2.2� are the TDGL equations generalized by P. L. Gor’kov and G. M.
liashberg,1,14 and �2.3� is the classical Maxwell equation. The order parameter � describes the

ocal density ns of superconducting electrons: ���2=ns. In addition, � is proportional to the energy
ap parameter � near Tc, which appears in the BCS theory.

. Scaling

From both the mathematical and physical points of view, we introduce here two nondimen-
ional forms of the TDGL equations: one of which is used often in the literature, and the other is
ore suitable for the bifurcation and stability analysis presented in this article.

For convenience, we start with the dimensions of various physical quantities. Let m be the
ass, L the typical length scale, t the time, and E the energy. Then we have

E:L2m/t, h:Et, D:L2/t, es
2:EL ,

�:1/t, c:L/t, a:E, b:EL3,

�:1/L3/2, A:�E/L�1/2, H:�E/L3�1/2.

hen we introduce some physical parameters:

��0�2 = �a�/b ,

Hc = �4��a�2/b�1/2,

 = �T� = �msc
2b/4�es

2�a��1/2,

� = ��T� = h/�2ms�a��1/2,
� = /� ,
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� = 4��D/c2,

� = 2/D .

Physically, ��0�2 stands for the equilibrium density, Hc for the thermodynamic critical field,
=�T� for the penetration depth, ��T� for the coherence length, and � for the relaxation time. The

atio of the two characteristic lengths �= /� is called the Ginzburg–Landau parameter of the
ubstance. When 0���1/�2, the material is of the first type, and when ��1/�2, the material is
f the second type.

We now introduce the nondimensional variables �those with a prime�:

x = x�, t = �t�, � = �0��,

A =
�2Hc

�
A�, 
 =

D�2Hc

�

�, Ha =

�2Hc

�
Ha�.

Then we have the following traditional nondimensional TDGL equations �we henceforth drop
he primes�

�t + i�
� + �2����2 − 1�� + �i � + A�2� = 0,

��At + �
� +
i

2
��* � � − � � �*� + ���2A + curl2 A − curl Ha = 0,

or the case where a�0, or equivalently T�Tc.
As mentioned before, we need to introduce another non-dimensional form for the stability and

ifurcation study. To this end, we set

l =
�b

es
, �0 =

hl

es
2 , 
0 =

es
2

�b
,

A0 = � eshc2

D�b
�1/2

, � = −
2a�bmsD

es
3h

, � =
hD
�bes

,

� =
2msD

h
, � =

4��les
2

c2h
, � =

4�es
2

msc
2l

,

nd

x = lx�, t = �0t�, � = l−3/2��,

A = A0A�, 
 = 
0
�, Ha = l−1A0Ha�.

hen we have the second type of non-dimensional TDGL equations �we drop the primes also�:

�t + i
� = − �i� � + A�2� + �� − ����2� ,

�2.5�

��At + � � 
� = − curl2 A + curl Ha − ����2A −
��i

2
��* � � − � � �*� .

We shall see in later discussions that the parameter � plays a key role in the phase transition

or bifurcation�, which is given in terms of dimensional quantities by
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� = ��T� =
2�bmsDN0

es
3h

Tc − T

Tc
.

. Boundary conditions

A physically sound boundary condition for the order parameter is given by

C1�ih � +
es

c
A�� · n = − C2ih� on � 	 , �2.6�

hich means that no current passes through the boundary, where n is the unit outward normal
ector at �	, and C1,C2�0 are constants depending on the material to which the contact is made.
hysically, they satisfy1,2

C2 = 0, C1 � 0 for an insulator on � 	 ,

C1 = 0, C2 � 0 for a magnetic material, �2.7�

0 � C2/C1 � � for a normal metal.

e note that Eqs. �2.1�–�2.3� with �2.6� is invariant under the following gauge transformation

��,A,
� → ��ei�,A −
hc

es
� �,
 −

h

es
�t� ,

here � is an arbitrary function. If we take � such that

hc

es
�� = div A in 	 ,

hc

es

��

�n
= A · n on � 	 ,

hen we obtain an additional equation and a boundary condition; see also Refs. 2 and 15:

div A = 0, �2.8�

An = A · n = 0 on � 	 . �2.9�

nother boundary condition often imposed for A is as follows:

curl A � n = Ha � n on � 	 . �2.10�

. Nondimensional TDGL model

In summary, with the gauge taken such that �2.8� and �2.9� hold true, the nondimensional
DGL equations are

�t + i
� = − �i� � + A�2� + �� − ����2� ,

��At + � � 
� = − curl2 A + curl Ha − ����2A −
��i

��* � � − � � �*� , �2.11�

2

                                                                                                            



T

T

c
p

I

A

a

c

w
p
i

I
p
H

o
s

095112-8 T. Ma and S. Wang J. Math. Phys. 46, 095112 �2005�

                        
div A = 0.

he initial conditions are given by

��0� = �0, A�0� = A0. �2.12�

he boundary conditions are one of the following:
Neumann boundary condition: For the case where 	 is enclosed by an insulator:

��

�n
= 0, An = 0, curl A � n = Ha � n on � 	 . �2.13�

Dirichlet boundary condition: For the case where 	 is enclosed by a magnetic material:

� = 0, An = 0, curl A � n = Ha � n on � 	 . �2.14�

Robin boundary condition: For the case where 	 is enclosed by a normal metal:

��

�n
+ C� = 0, An = 0, curl A � n = Ha � n on � 	 . �2.15�

Remark 2.1: If the material is a loop, or a plate 	=	̃� �0,h� with the height h being small in

omparison to the diameter of 	̃, then it is reasonable to consider the boundary condition with
eriodicity either in x direction or in �x ,y� directions.

II. DYNAMIC BIFURCATION THEORY

. Attractor bifurcation

We recall in this section a general theory on attractor bifurcation developed by the
uthors.3,4,16

Let H and H1 be two Hilbert spaces, and H1�H be a dense and compact inclusion. We
onsider the following nonlinear evolution equations:

du

dt
= Lu + G�u,� ,

�3.1�
u�0� = u0,

here u : �0,��→H is the unknown function, �R is the system parameter, and L :H1→H are
arameterized linear completely continuous fields depending continuously on �R1, which sat-
sfy

L = − A + B a sectorial operator,

A:H1 → H a linear homeomorphism, �3.2�

B:H1 → H parameterized linear compact operators.

t is easy to see17 that L generates an analytic semigroup �e−tLt�0. Then we can define fractional
ower operators L

� for any 0���1 with domain H�=D�L
�� such that H�1

�H�2
if �1��2, and

0=H.
Further, we assume that the nonlinear terms G�· ,� :H�→H for some 0���1 are a family

f parameterized Cr bounded operators �r�1� depending continuously on the parameter �R1,
uch that

G�u,� = o��u�H �, ∀  � R1. �3.3�

�
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In this paper, we are interested in the sectorial operator L=−A+B such that there exist an
igenvalue sequence ��k�C1 and an eigenvector sequence �ek ,hk�H1 of A:

Azk = �kzk, zk = ek + ihk,

Re �k → ��k → �� , �3.4�

�Im �k/�Re �k�� � C ,

or some C�0, and such that �ek ,hk is a basis of H.
Condition �3.4� implies that A is a sectorial operator. For the operator B :H1→H, we also

ssume that there is a constant 0���1 such that

B:H� → H bounded, ∀  � R1. �3.5�

nder conditions �3.4� and �3.5�, the operator L=−A+B is a sectorial operator.
Let �S�t�t�0 be an operator semi-group generated by Eq. �3.1�, then the solution of �3.1� can

e expressed as

u�t� = S�t�u0, t � 0.

Definition 3.1: A set ��H is called an invariant set of �3.1� if S�t��=� for any t�0. An
nvariant set ��H of �3.1� is said to be an attractor if � is compact, and there exists a neigh-
orhood U�H of � such that for any ��U we have

lim
t→�

distH�u�t,��,�� = 0.

he set U is called a basin of attraction of �.
Definition 3.2: �1� We say that Eq. (3.1) bifurcates from �u ,�= �0,0� an invariant set 	, if

here exists a sequence of invariant sets �	n
 of �3.1� such that 0�	n

, and

lim
n→�

n = 0,

lim
n→�

max
x�	n

�x� = 0.

2� If the invariant sets 	 are attractors of �3.1�, then the bifurcation is called attractor bifur-
ation.

A complex number �=�1+ i�2�C is called an eigenvalue of L if there are x ,y�H1 such that

Lx = �1x − �2y ,

Ly = �2x + �1y .

Now let the eigenvalues �counting the multiplicity� of L be given by

�1��,�2��,…, �k�� � C ,

here C is the complex space. Suppose that

Re�i����0 if  � 0,

=0 if  = 0, ∀ 1 � i � m , � �3.6�

�0 if  � 0,
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Re� j�0� � 0 ∀ m + 1 � j . �3.7�

et the eigenspace of L at 0 be

E0 = �
k�N

�
1�i�m

�u,v � H1��L0
− �i�0��kw = 0,w = u + iv .

t is known that dim E0=m.
Theorem 3.3: �attractor bifurcation�.3,4 Assume that the conditions �3.3�–�3.7� hold true, and

=0 is a locally asymptotically stable equilibrium point of �3.1� at =0. Then the following
ssertions hold true.

1� �3.1� bifurcates from �u ,�= �0,0� to an attractor A for �0, with m−1�dim A�m,
which is connected when m�1;

2� The attractor A is a limit of a sequence of m-dimensional annulus Mk with Mk+1�Mk;
especially if A is a finite simplicial complex, then A has the homotopy type of Sm−1;

3� For any u�A, u can be expressed as

u = v + o��v�H1
�, v � E0;

4� There is an open set U�H with 0�U such that the attractor A bifurcated from �0,0�
attracts U \� in H, where � is the stable manifold of u=0 with co-dimension m.

. Center manifold functions

In this section, we introduce a method to derive the first order approximation of the central
anifold functions, which was used in Ref. 4. For convenience, we first introduce the center
anifold theorem in infinite dimensional spaces.

Let H1 and H be decomposed into

H1 = E1


� E2
,

�3.8�
H = Ẽ1


� Ẽ2

,

or  near 0�R1, where E1
, E2

 are invariant subspaces of L, such that

dim E1
 � � ,

Ẽ1
 = E1

,

Ẽ2
 = closure of E2

 in H .

n addition, L can be decomposed into L=L1


� L2
 such that for any  near 0,

L1
 = LE1

:E1
 → Ẽ1

,

�3.9�
L2

 = LE2
:E2

 → Ẽ2
,

here the eigenvalues of L2
 possess negative real parts, and the eigenvalues of L1

 possess
onnegative real parts at =0.
Thus, for  near 0, Eq. �3.1� can be written as
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dx

dt
= L1

x + G1�x,y,� ,

�3.10�
dy

dt
= L2

y + G2�x,y,� ,

here u=x+y�H1, x�E1
, y�E2

, Gi�x ,y ,�= PiG�u ,�, and Pi :H→ Ẽi
 are canonical projec-

ions. Further, let

E2
��� = closure of E2

 in H�,

ith ��1 given in �3.3�.
The following center manifold theorem is classical.17

Theorem 3.4: Assume �3.2�, �3.3�, �3.8�, and �3.9�. Then there exists a neighborhood of 0

iven by �−0��� for some ��0, a neighborhood U�E1
 of x=0, and a C1 function

�· ,� :U→E2
��� depending continuously on , such that

1� ��0,�=0, �x��0,�=0,
2� the set

M = ��x,y� � H�x � U,y = ��x,� � E2
��� ,

called the center manifolds, are locally invariant for �3.1�, i.e., for each u0�M

u�t,u0� � M, ∀ 0 � t � t�u0�

for some t�u0��0, where u�t ,u0� is the solution of �3.1�;
3� if �x�t� ,y�t�� is a solution of �3.10�, then there is a ��0 and k�0 with k depending on

�x�0� ,y�0�� such that

�y�t� − ��x�t�,��H � ke−�t.

ow we give a formula to calculate the center manifold function. Let the nonlinear operator G be
iven by

G�u,� = Gk�u,� + o��u�k� , �3.11�

or k�2, where Gk�u ,� is a k-multilinear operator:

Gk:H1 � ¯ � H1 → H ,

Gk�u,� = Gk�u,…,u,� .

The following theorem gives an approximation of the center manifold function; see Ref. 4.
Theorem 3.5: Under the conditions of Theorem 3.4, the center manifold function ��x ,� can

e expressed as

��x,� = �− L2
�−1P2Gk�x,� + O��Re ���� · �x�k� + o��x�k� , �3.12�

here L2
 is given by �3.9�, P2 :H→ Ẽ2 the canonical projection, x�E1

, and ���
��1�� ,… ,�m��� the eigenvalues of L1

.

. S1 attractor bifurcation

In this section, we prove that the bifurcated attractor 	 of �3.1� from an eigenvalue with
ultiplicity two is homeomorphic to a circle S1.

r
Let v be a two-dimensional C �r�1� vector field given by
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v�x� = x − G�x,� , �3.13�

or x�R2. Here

G�x,� = Gk�x,� + o��x�k� ,

here Gk is a k-multilinear field, which satisfies that

C1�x�k+1 � �Gk�x,�,x� � C2�x�k+1, �3.14�

or some constants C2�C1�0, k=2m+1, and m�1.
Theorem 3.6: Under condition �3.14�, vector field (3.13) bifurcates from �x ,�= �0,0� on 

0 to an attractor 	, which is homeomorphic to S1. Moreover, one and only one of the following
s true.

1� 	 is a periodic orbit,
2� 	 consists of only singular points, or
3� 	 contains at most 2�k+1�=4�m+1� singular points, and has 4N+n�N+n�1� singular

points, 2N of which are saddle points, 2N of which are stable node points (possibly degen-
erate), and n of which have index zero, as shown in Fig. 4 for N=1 and n=2.

Proof: We proceed in the following five steps.
�1� Obviously �3.14� implies that x=0 is asymptotically stable for �3.13� at =0. Hence, by

Theorem 3.3, the vector field v bifurcates from �x ,�= �0,0� to an attractor 	 on �0, which
as the homology type of a circle S1.

�2� Let 	 have no singular points. Then, 	 must contain at least a periodic orbit. We need
o show that 	 contains only one periodic orbit.

Take the polar coordinate system �x1 ,x2�= �r cos � ,r sin ��. Then the vector field v becomes

dr

d�
= r

cos �v1 + sin �v2

cos �v2 − sin �v1
. �3.15�

IG. 4. 	 has 4N+n �N=1 and n=2 shown here� singular points, where p1,p4 are saddles, p3,p6 are nodes, and p2,p5 are
ingular points with index zero.
e see that
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cos �v1 = r cos2 � − cos �g1�r cos �,r sin �,� ,

sin �v2 = r sin2 � − sin �g2�r cos �,r sin �,� ,

cos �v2 = r cos � sin � − cos � g2�r cos �,r sin �,� ,

sin �v1 = r sin � cos � − sin � g1�r cos �,r sin �,� ,

here G�x ,�= �g1�x ,� ,g2�x ,��. Let

gi�x,� = gki�x,� + o��x�k�, i = 1,2.

y �3.14� and �3.15� is rewritten as

dr

d�
=

 − r2m�cos � gk1 + sin � gk2� + o�r2m�
r2m−1�sin � gk1 − cos � gk2 + O�r��

. �3.16�

ased on �3.14�, we have

C1 � cos � gk1�cos �,sin �,� + sin � gk2�cos �,sin �,� � C2. �3.17�

n the other hand, by assumption, 	 contains a periodic orbit for any �0 sufficiently small.
ence

0 � C � sin � gk1�cos �,sin �,� − cos � gk2�cos �,sin �,� + O�r� , �3.18�

or any 0���2� and some constant C�0. Condition �3.18� amounts to saying that the orbits of

 are circular around x=0.
Let r�� ,r0� be the solution of �3.16� with initial value r�0,r0�=r0. Then we have the following

aylor expansion:

r2m��,r0� = r0
2m + R��� · o��r0�2m�, R�0� = 0. �3.19�

t follows from �3.16� and �3.19� that

1

2m
�r2m�2�,r0� − r2m�0,r0�� = �

0

2�  − r2m���� + o�r2m�
���� + O�r�

d� = 2��a − br0
2m� + o�r0

2m� ,

�3.20�

here

a = �
0

2� 1

���� + O�r�
d� ,

b = �
0

2� ����
���� + O�r�

d� ,

���� = cos � gk1 + sin � gk2,

���� = sin � gk1 − cos � gk2.

From �3.20� we see that the periodic solutions of v near x=0 correspond to positive solutions

f
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2��a − br0
2m� + o�r0

2m� = 0. �3.21�

y �3.17� and �3.18�, a�0 and b�0. Therefore, �3.21� has a unique positive solution near r=0:

r0 = �a

b
�1/2m

+ o�1/2m� ,

or any �0 sufficiently small. Thus, 	 has a unique periodic orbit.
�3� We claim that if 	 contains either finite number of singular points or a cycle of singular

oints, and if it contains finite number of singular points, then there are at most 2�k+1� of them
ear x=0.

In fact, if

g1�x,�
g2�x,�

=
x1

x2
,

hen 	 has a cycle of singular points. Otherwise, by �3.14�, the number of singular points of v

s finite. The maximal number of singular points for v is determined by the following equation

x − Gk�x,� = 0. �3.22�

ince Gk is a k-multilinear vector field, the singular points of �3.22� must be on the straight lines

2=zx1, where z satisfies

z =
gk2�x1,x2,�
gk1�x1,x2,�

=
gk2�1,z,�
gk1�1,z,�

. �3.23�

he number of solutions of �3.23� is at most k+1. Since k=odd, the number of solutions of �3.22�
s at most 2�k+1�.

�4� Let 	 contain a circle S1 of singular points, then we shall see that 	=S1.
Under the polar coordinate system, we have

vr��,r� = �vx,x� = r2 − rk+1���� + o�rk+1� ,

here ���� is defined by �3.20�. By �3.17�,

0 � C1 � ���� � C2, ∀ 0 � � � 2� .

t is clear that for each � �0���2��, vr has a unique zero point r����0 near r=0. Hence the set

	̃ = ���,r�����vr��,r���� = 0, 0 � � � 2�

s homeomorphic to a cycle S1, and all singular points of v near x=0 are on 	̃. It implies that
˜

�	. Let

gkl = �
i+j=k

�ij
l x1

i x2
j , l = 1,2. �3.24�

y Step 3, we know that x2gk1=x1gk2. Then we infer from �3.14� that

0 � �k0
1 = �k−11

2 . �3.25�

or the singular point �x̃1 ,0��	̃ of v, we have

div v�x̃1,0� = 2 − k�k0
1 x̃1

k−1 − �k−11
2 x̃1

k−1 + o�x̃1
k−1�

= �by �k0
1 x̃1

k−1 =  and �3.25�� = − �k − 1� + o�� � 0,
or any �0 sufficiently small.
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In the same fashion, for any point x̃�	̃, we take an orthogonal system transformation such
hat x̃ is on the x̃1 axis, then we can prove that

div v�x� � 0, ∀ x � 	̃,

hich implies that 	=	̃=S1.
�5� 	 contains finite number of singular points. We show that 	=S1.
By the Brouwer degree theory, it follows from �3.14� that

deg�v,	,0� = 1, �� � 0 sufficiently small,

n some neighborhood 	�R2 of x=0. It is known that

ind�v,0� = 1, �� � 0.

ence we have

�
zi�	

ind�v,zi� = 0. �3.26�

Let z�	 be a singular point of v. Without loss of generality, we take the orthogonal
oordinate system such that z= �x1 ,0�. Then by �3.14� and �3.24�, the Jacobian matrix of v at z is
iven by

Dv�z� = �− �k − 1� + o�� *

0 �1 − �k−11
2 /�k0

1 �
� , �3.27�

here �k0
1 �0. Obviously, Dv�z� has an eigenvalue �=−�k−1�+o���0. Hence for any singu-

ar point z�	 of v, the index of v at z can only be either 1, −1 or 0. It is easy to see that if the
ndex is 1, then z is a stable node point.

Let the index of v at z be −1:

index�v,z� = − 1. �3.28�

hen �k−11
2 ��k0

1 , z is nondegenerate. Therefore, v has a unique unstable manifold at z. When

k−11
2 =�k0

1 ,

div u�z� = − �k − 1� + o�� � 0. �3.29�

f the unstable manifold of v at z is not unique, then the local structure of v at z is topologically
quivalent to that as shown in Fig. 5.

On the other hand, �3.29� means that there is a neighborhood O�R2 of x=0, such that

div u�x� � 0, ∀ x � O ,

hich implies that for any open set Õ�O,

�Õ� � �Õt�, 0 � t � t0, �3.30�

here t0�0 depends on Õ, Õt=S�t�Õ and S�t� is the flow semigroup generated by v.

However, it is clear that for any open set Õ�O in domain P as shown in Fig. 5, the property
3.30� is not true. Therefore, the unstable manifold of v at z must be unique.

We can prove in the same fashion that if the index of v at z is 0, then the unstable manifold
f v at z is also unique.

By the Poincaré-Bendixson theorem, all unstable manifolds of the singular points of v at z

ith index −1 and 0 are connected to the singular points with index 1 and 0, as shown in Fig. 4.

                                                                                                            



T
0

I

A

L

w

095112-16 T. Ma and S. Wang J. Math. Phys. 46, 095112 �2005�

                        
hus by the uniqueness of unstable manifolds for each singular point with either index −1 or index
, the set of all singular points and unstable manifolds is a circle S1, and 	=S1.

The proof is complete. �

V. ATTRACTOR BIFURCATION FOR TDGL EQUATIONS

. Mathematical setting

It is known that for a given applied field Ha with div Ha=0, there exists a field Aa such that

curl Aa = Ha in 	 ,

div Aa = 0 in 	 , �4.1�

Aa · n = 0 on � 	 .

et A=A+Aa. Then �2.11� are rewritten as

�t + i
� = − �i� � + Aa�2� + �� − 2Aa · A� − 2i�A · �� − �A�2� − ����2� ,

��At + � � 
� = − curl2 A − �Aa���2 − �A���2 −
��i

2
��* � � − � � �*� , �4.2�

div A = 0,

ith the following initial and boundary conditions

FIG. 5. Schematic illustrating the proof of Theorem 3.6.
��0� = �0, A�0� = A0, �4.3�

                                                                                                            



t

a

W

L

b
c

w
o

B

t

095112-17 Bifurcation and Stability of Superconductivity J. Math. Phys. 46, 095112 �2005�

                        
An = 0, curl A � n = 0 on � 	 , �4.4�

ogether with one of the following three boundary conditions for �:
Neumann boundary condition:

��

�n
= 0 on � 	 , �4.5�

Dirichlet boundary condition:

� = 0 on � 	 , �4.6�

Robin boundary condition:

��

�n
+ C� = 0 on � 	 . �4.7�

Hereafter we use Hk�	 ,C� for the Sobolev spaces of complex valued functions defined on 	,
nd Hk�	 ,R3� for the Sobolev spaces of vector valued functions. Let

HB
2�	,C� = �� � H2�	,C��� satisfy one of �4.5� - �4.7� ,

D2�	,R3� = �A � H2�	,R3��div A = 0, A satisfy �4.4� ,

L2�	,R3� = �A � L2�	,R3��div A = 0, An��	 = 0  .

e set

H = L2�	,C� � L2�	,R3� ,

H1 = HB
2�	,C� � D2�	,R3� .

et

P:L2�	,R3� → L2�	,R3�

e the Leray projection. Then it is known that the function 
 in �4.2� is determined uniquely up to
onstants by

�� � 
 = �I − P����

2
i�� � �* − �* � �� − ����2�A + Aa�� , �4.8�

here I is the identity on L2�	 ,R3�. Namely, for every u= �� ,A��H1, there is a unique solution
f �4.8� up to constants. Therefore, we define a nonlinear operator � :H1→L2�	� by

��u� = 
 = the solution of �4.8� with�
	


dx = 0. �4.9�

. Eigenvalue problems

In order to describe the dynamic bifurcation of the Ginzburg–Landau equations, it is necessary
o consider the eigenvalue problems of the linearized equations.
Let �1 be the first eigenvalue of the following equation
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�i� � + Aa�2� = ��, ∀ x � 	 , �4.10�

ith one of the boundary conditions �4.5�–�4.7�. It is clear that �4.10� can be equivalently ex-
ressed as

− �2��1 + �Aa�2�1 − 2�Aa · ��2 = ��1,

�4.11�
− �2��2 + �Aa�2�2 + 2�Aa · ��1 = ��2,

here �=�1+ i�2.
It is not difficult to check that �4.11� with one of the boundary conditions �4.5�–�4.7� are

ymmetric. Therefore, there are an infinite real eigenvalue sequence of �4.10�:

�1 � �2 � ¯ ,

�4.12�
lim
k→�

�k = � ,

nd an eigenvector sequence

�en � HB
2�	,C��n = 1,2,… , �4.13�

hich is an orthogonal basis of L2�	 ,C�.
The eigenvalues of �4.10� always have even multiplicity, i.e. if � is an eigenvector of �4.10�,

hen ei�����R1� are also eigenvectors corresponding to the same eigenvalue. Let the first eigen-
alue �1 have multiplicity 2m�m�1� with eigenvectors

e2k−1 = �k1 + i�k2, e2k = − �k2 + i�k1, 1 � k � m . �4.14�

We know that �1 enjoys the following properties:

�1 = �1�Aa� depends continuously on Aa,

�1�Aa� � 0 for Aa � 0,

�4.15�
�1�0� = 0 for the boundary condition �4.5�,

�1�0� � 0 for either �4.6� or �4.7�.

Now, we consider another eigenvalue problem, which is also crucial for the attractor bifurca-
ion of �4.2�. The problem reads

curl2 A + �
 = �A ,

div A = 0, �4.16�

An��	 = 0, curl A � n��	 = 0.

We remark that the boundary condition in �4.16�, i.e., �4.4�, is the free boundary condition,
hich can be expressed as

An��	 = 0, � �A�

�n
�

�	

= 0, �4.17�
here � is the tangent vector on �	.
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To see this, for a given point x0��	, we take ��1 ,�2 ,n� as an orthogonal coordinate system,
here �1, �2 are unit tangent vectors and n the outward unit vector at x0��	. We infer then from

he condition An��	=0 that

curl A�x0� = −
�A�2

�n
�1 +

�A�1

�n
�2 +�� �A�2

��1
−

�A�1

��2
�n�

x=x0

.

ence we have

curl A�x0� � n = � �A�1

�n
�1 +

�A�2

�n
�2�

x=x0

,

hich implies that �4.4� is equivalent to �4.17�.
It is known that there are a real eigenvalue sequence

0 � �1 � �2 � ¯ ,

�4.18�
lim
k→�

�k = � ,

nd an eigenvector sequence

�ak � D2�	,R3��k = 1,2,… , �4.19�

hich constitutes an orthogonal basis of L2�	 ,R3�.

. Main theorems

In superconductivity, the parameter � cannot exceed a maximal value ��T����0�. Hence, we
ave to impose a basic hypothesis:

�1 � ��0� =
2�bmsDN0

es
3h

, �4.20�

here �1 is the first eigenvalue of �4.10�, and N0 the density of states at the Fermi level.
In this subsection, we consider the case where the first eigenvalue �1 of �4.10� has multiplicity

wo. We start with the introduction of a physical parameter, which determines completely the
ynamic properties of the bifurcation behavior of the TDGL equations.

Let e�H2�	 ,C� be a first eigenvector of �4.10�. Then there is a unique solution for

curl2 A0 + �
 = �e�2Aa +
�

2
i�e* � e − e � e*� ,

div A0 = 0, �4.21�

A0 · n��	 = 0, curl A0 � n��	 = 0.

We define a physical parameter R as follows

R = −
�

�
+

2�
	

�curl A0�2dx

� �e�4dx

. �4.22�
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It is clear that the parameter R is independent of the choice of the first eigenvectors of �4.10�.
ince the first eigenvector e of �4.10� and h0=curl A0 given by �4.21� depend on the applied
agnetic potential Aa and the geometric properties of 	, the parameter R is essentially a function

f Aa,	 and physical parameters �,�, �.
The parameter R defined by �4.22� can be equivalently expressed as follows

R = −
�

�
+

2�
k=1

�
1

�k
��

	

��e�2Aa + 2�e2 � e1� · ak�2

�
	

�e�4dx

, �4.23�

here e=e1+ ie2,�k are the eigenvalue of �4.16� given by �4.18�, and �ak are the normalized
igenvectors given by �4.19�.

The main results in this section are the following theorems. Here, we always assume that the
rst eigenvalue �1 of �4.10� with one of the boundary conditions �4.5�–�4.7� is complex simple,
nd the condition �4.20� holds true.

Theorem 4.1: If the number R defined by �4.22� satisfies R�0, then for the problem
4.2�–�4.4� with one of �4.5�–�4.7�, the following assertions hold true.

1� If ���1, the steady state �� ,A�=0 is locally asymptotically stable for the problem.
2� The equations bifurcate from ��� ,A� ,��= �0,�1� to an attractor �� for ���1, which is

homeomorphic to S1, and consists of steady state solutions of the problem.
3� There is a neighborhood U�H of �� ,A�=0 such that the attractor �� attracts U \� in H,

where � is the stable manifold of �� ,A�=0 with co-dimension two in H.
4� Each �� ,A���� can be expressed as

� = �� − �1

R1
�1/2

e + o��� − �1

R1
�1/2� ,

curl2A = − ��� − �1

R1
� · ��e�2Aa + � Im�e � e*�� + o�� − �1

R1
� , �4.24�

R1 =

�R�
	

�e�4dx

�
	

�e�2dx

,

where e is the first eigenvector of �4.10�.

Theorem 4.2: If R�0, then for the problem �4.2�–�4.4� with one of �4.5�–�4.7�, we have the
ollowing assertions:

1� The steady state �� ,A�=0 is locally asymptotically stable at ���1, and unstable at �
��1.

2� The equations bifurcate from ��� ,A� ,��= �0,�1� to an invariant set �� on ���1, and have
no bifurcation on ���1.

3� ��=S1 is a circle consisting of steady states, and has a two-dimensional unstable manifold.

Theorems 4.1 and 4.2 show that the two cases with R�0 and R�0 have completely different
uperconducting transition characteristics; see Sec. V for further discussion.

It is easy to check that if �=0, �� ,A�=0 is globally asymptotically stable for �4.2�–�4.4� with
ne of �4.5�–�4.7�; see Ref. 15. The following theorem is a direct consequence of the existence of

lobal attractor for the TDGL model and Theorem 4.2.
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Theorem 4.3: For the case where R�0, there exists a saddle-node bifurcation point �0�0
�0��1� for the TDGL equations, such that the following statements hold true, which are

escribed schematically by Figures 2 and 3:

1� At �=�0, there is an invariant set �0=��0
with 0��0.

2� For ���0, there is no invariant set near �0.
3� For �0����1, there are two connected branches of invariant sets ��

1 and ��
2 , and ��

2

extends to ���1 and near �1 as well.
4� For each ���0,

�a� ��
2 is an attractor with dist���

2 ,0��0 at �=�1,
�b� ��

2 consists of steady state solutions and orbits connecting them, and
�c� ��

2 contains at least one cycle of steady states.

5� For �0����1,

�a� ��
1 is a repeller with 0���

1 ,
�b� ��

1 consists of steady state solutions and orbits connecting them,
�c� ��

1 contains at least one cycle of steady states, and
�d� when � is near �1, ��

1 is exactly the ��=S1 given in Theorem 4.2, consisting exactly of
steady states.

. Proof of Theorems 4.1 and 4.2

We proceed in several steps as follows.
�1� We set the mappings L�=−K+B� and G :H1→H by

Ku = ��i� � + Aa�2�

�−1curl2 A � ,

B�u = ���

0
� ,

G�u� = � i���u� + 2Aa · A� + 2i�A · �� + �A�2� + ����2�

P���−1Aa���2 + ��−1A���2 +
��i

2�
��* � � − � � �*�� � ,

here u= �� ,A�, ��u� is defined by �4.9�, and P the Leray projection. Thus, the problem
4.2�–�4.4� with one of the boundary conditions �4.5�–�4.7� can be rewritten in the following
perator form

du

dt
= L�u + G�u�, u = ��,A� � H1,

�4.25�
u�0� = u0.

We see that L� :H1→H is a sectorial operator, and the eigenvalues of L� satisfy that

�1��� = �2��� = � − �1��0 if � � �1

=0 if � = �1

�0 if � � �1,
� �4.26�
nd for j�3,
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� j��1� = �1 − �k or − �−1�l,

�4.27�
� j��1� � 0,

or some k�1, l�1.
It is clear that the operator � :H1→L2�	 ,C� defined by �4.9� is C�, and by the estimates

roved in Ref. 15 for �, we have

�
	

���u���2dx � ��
	

���u��3dx�2/3��
	

���6dx�1/3

� C��u�H1/2

2 + �u�H1/2
���L4

2 �2���L6
2 ,

here H1/2 is the closure of H1 for the H−1-norm. Hence, it is not difficult to check that there is a
umber 1/2���1 such that G :H�→H is C�.

�2� It is known that the dynamic bifurcation of �4.25� is determined by its reduced equation to
he center manifold.

Let

�0 � E1 = �ze�z � C and e the first eigenvector of �4.10� .

Then the reduced equation of �4.25� is given by

d�0

dt
= �1����0 − P1G��0 + �̃��0�,Ã��0�� , �4.28�

here P1 :H→E1 is the canonical projection, and �̃��0�= ��̃��0�, Ã��0���H1 the center manifold
unction.

The k multilinear operators �k=2,3� in G are given by

G2�u� = − � 2Aa · A� + 2i�A · ��

�−1�Aa���2 +
��

2�
i��* � � − � � �*� � ,

G3�u� = − �i��2�u� + �A�2� + ����2�

��−1A���2 � ,

here �2�u� is the bilinear operator in ��u�.
By the first approximation of the center manifold reduction, the center manifold function �̃

��̃��0� ,Ã��0�� satisfies that

curl2 Ã + � � 
 = − �Aa��0�2 −
��

2
i��0

* � �0 − �0 � �0
*� + o���0�2, ��1���� · ��0�� , �4.29�

�̃��0� = O��Ã��0�� · ��0�� = O���0�3� . �4.30�

Based on �4.28� and �4.30�, �4.28�can be expressed as

d�0

dt
= �1����0 − g3��0� + o���0�3� + O���0�3��1����� , �4.31�

here

2 ˜ ˜
g3��0� = P1����0� �0 + 2Aa · A2�0 + 2i�A2 · ��0 + i�2�0� , �4.32�
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curl2 Ã2 + �
 = − �Aa��0�2 −
��

2
i��0

* � �0 − �0 � �0
*� ,

div Ã2 = 0,

Ã2 · n��	 = 0, curl Ã2 � n��	 = 0. �4.33�

Equations �4.31� and �4.32� are the third-order expression of the reduction of �4.27� to the
enter manifold.

�3� From �4.32�, we obtain

�g3��0�,�0� = Re�
	

g3��0��0
*dx = �

	

����0�4 + 2��0�2Aa · Ã2 + 2�Ã2 · ��2
0 � �1

0 − �1
0 � �2

0��dx

= �
	

����0�4 + 2��0�2Aa · Ã2 + 4��2
0Ã2 · ��1

0�dx , �4.34�

here �0=�1
0+ i�2

0.

Let Ã2 have the Fourier expansion for the basis �4.19� of L2�	 ,R3� as follows:

Ã2 = �
k=1

�

ykak.

Then, for �4.33� we can derive the solution yk:

yk = −
�

�k
�

	

���0�2Aa · ak + 2��2
0ak · ��1

0�dx . �4.35�

Inserting �4.35� into �4.34� we find

�g3��0�,�0� = ��
	

��0�4dx − 2��
k=1

�
1

�k
���

	

��0�2Aa · akdx�2

+ 4���
	

��0�2Aa · akdx�
���

	

�2
0ak · ��1

0dx� + 4�2��
	

�2
0ak · ��1

0dx�2� . �4.36�

Let �0=x1e1+x2e2, where �x1 ,x2��R2, and e1 and e2 are as in �4.14�. Then we have

�0 = �1
0 + i�2

0,

�1
0 = x1�11 − x2�12,

�2
0 = x1�12 + x2�11.

Thus, we see that

�
	

��0�4dx = �
	

���1
0�2 + ��2

0�2�2dx = �x1
2 + x2

2��
	

�e1�4dx , �4.37�

� ��0�2Aa · akdx = �x1
2 + x2

2�� �e1�2Aa · akdx , �4.38�
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�
	

�2
0ak · ��1

0dx = �x1
2 + x2

2��
	

�12ak · ��11dx . �4.39�

Here, in �4.39� we use the following equality:

�
	

�ak · ��dx = −
1

2
�

	

�2 div ak dx = 0,

or any real function �.
Putting �4.37�–�4.39� into �4.36� we find

�g3��0�,�0� = − �R�x1
2 + x2

2�2�
	

�e1�4dx , �4.40�

here R is as in �4.23�. It is easy to see that both numbers in �4.22� and �4.23� are the same.
�4� We shall prove that the Ginzburg–Landau equations bifurcate from ��� ,A� ,��= �0,�1� to

t least one steady state solution.
Formally, there are two steady state Ginzburg–Landau systems, i.e. the stationary equations

btained directly from �4.2� which read

�i� + Aa�2� + i�� = �� − 2Aa · A� − 2i�A · �� − A2� − ����2� ,

�4.41�

curl2 A + �� � � = − ��A + Aa����2 −
��

2
i��* � � − � � �*� ,

nd the other one given by

�i� � + Aa�2 = � − 2Aa · A� − 2i�A � � − A2� − ����2� ,

�4.42�

curl2 A = − ��A + Aa����2 −
��i

2
��* � � − � � �*� .

The form �4.42� was derived by Ginzburg and Landau in 1950 as the Euler-Lagrange equa-
ions of the free energy. In Ref. 15, it is proved that if u= �� ,A��H1 and ��H1�	� is a solution
f �4.41� with �4.4� and �4.5�, then we have that �=0. It is easy to prove in the same fashion that
his assertion also holds true for the boundary conditions �4.6� and �4.7�. Therefore, both steady
tate equations �4.41� and �4.42� are exactly the same.

The Ginzburg–Landau energy for Eq. �4.42� read

E =
1

2
�

	
���i� � + A + Aa���2 +

�

2
���4 − ����2 + �−1�curlA�2�

�dx�+
1

2
�2c�

�	

���2ds for boundary condition �4.7�� .

Therefore, by the classical bifurcation theorem for potential operators �see Refs. 18–20�, the
teady state equations �4.42� with �4.4� and one of the boundary conditions �4.5�–�4.7� must
ifurcate to at least one solution from ��� ,A� ,��= �0,�1�.

�5� Proof of Theorem 4.1: When R�0, by �4.31� and �4.40�, we can obtain assertion �1�, and
e infer from Theorem 3.6 that the Ginzburg–Landau equations bifurcate from ��� ,A� ,��
�0,�1� a cycle �� of attractor for ���1. By Step 4, the attractor �� contains a singular point.

ecause of the invariance of the Ginzburg–Landau equations for the gauge transformation

                                                                                                            



t
a

�

�

b

s
�

E

c

c

t
o
	
m

o

w

T

095112-25 Bifurcation and Stability of Superconductivity J. Math. Phys. 46, 095112 �2005�

                        
� → �ei�, � � R1,

he steady state solutions of the Ginzburg–Landau equations appear as a circle S1. Hence the
ttractor ��=S1 consists of steady state solutions. Assertion �2� is proved.

Assertion �3� follows from Theorem 3.3, and Assertion �4� can be directly derived from Eqs.
4.31� and �4.40�. Thus, Theorem 4.1 is proved.

�6� Proof of Theorem 4.2: When R�0, the the time-reversed semigroup S��−t� generated by
4.31� has the same dynamic properties as the following equation

d�0

dt
= ��1 − ���0 + g3��0� + o���0�3, �� − �1���0�2� . �4.43�

In the same fashion as used in Step 5, from �4.40� we infer that the semi-group S̃��t� generated
y �4.43� bifurcates from ��0 ,��= �0,�1� to an S1 attractor �� for ���1, which consists of

ingular points of �4.43�. Hence, for the semi-group S�t��=S̃�−t�� generated by �4.31� with R
0, the Assertions �1�–�3� hold true.

Thus, Theorem 4.2 is proved.

. Bifurcation from general eigenvalues

Although the bifurcation from general eigenvalues of �4.10� has less physical interest, we
onsider this problem partially for the mathematical completeness.

Before our discussion, we remark that one can prove21 that the first eigenvalue 1 with
omplex simplicity is generic. Namely, if we set

H1 = �A � H1�	,R3��A · n��	 = 0, div A = 0  ,

hen, there is an open and dense set U�H1 such that for any Aa�U, the first eigenvalue 1�Aa�
f �4.10� is complex simple. However, we cannot exclude the existence of a bounded domain
�R3 and a vector Aa�H1 such that the first eigenvalue 1�	 ,Aa� of �4.10� has higher complex
ultiplicity.

Let �k be an eigenvalue of �4.10� with complex multiplicity m�1, and Ek be the eigenspace
f �k, i.e.

Ek = �� � HB
2�	,C���i� � + Aa�2� = �k� .

It is clear that dim Ek=2 dimC Ek=2m.
Let F be function defined on Ek:

F��� = 2�
n=1

�
1

�n
��

	

����2Aa + 2��2 � �1�andx�2

,

here �=�1+ i�2�Ek, and �n,an are as in �4.18� and �4.19�.
Set

R1 = sup
��Ek,��0

F���

�
	

���4dx

,

�4.44�

R2 = inf
��Ek,��0

F���

�
	

���4dx

.

hen, we have the following theorem.
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Theorem 4.4: For the problem �4.2�–�4.4� with one of �4.5�–�4.7�, we have the following
ssertions.

1� If the physical parameter � /��R1, then this problem bifurcates from ��� ,A� ,��= �0,�k� to
an invariant set �� for ���k.

2� If � /��R2, then this problem bifurcates from ��� ,A� ,��= �0,�k� to an invariant set �� for
���k.

3� The invariant set �� is a �2m−1�-dimensional homological sphere, i.e. 2m−1�dim ��

�2m, and �� has the same homology as a �2m−1�-dimensional sphere.
4� �� contains at least a circle of singular points of the equations.
5� When m=1, �� is a circle S1.
6� When �k=�1 and � /��R1, �� is an attractor, which attracts an open set U \�, where U�H

is a neighborhood of �� ,A�=0, and � is the stable manifold of �� ,A�=0 with co-dimension
2m in H.

Remark 4.5: We conjecture that the bifurcated invariant set �� in Theorem 4.4 is homeomor-
hic to a �2m−1�-dimensional sphere S2m−1, and �� contains at least m circles consisting of
ingular points.

When m=1, these two numbers R1 and R2 are the same: R1=R2, and R=R1−� /� is as in
4.22�.

The proof of Theorem 4.4 is the same as that of Theorems 4.1 and 4.2; we omit the details.

. CONCLUSIONS AND REMARKS

. General remarks

The permanent current, called supercurrent, is expressed in the Ginzburg–Landau equations
y �2.2�. In the steady state case, the supercurrent in the second type of nondimensional form is
ritten as

Js = Js��,A� = − ��Aa + A����2 −
��

2
i��* � � − � � �*� . �5.1�

To take the Meissner effect into account in the Ginzburg–Landau equation. Mathematically
peaking, in the normal state, the magnetic field H in a sample should be H=Ha+H, Ha

curl Aa is the applied field and H=curl A the nonequilibrium fluctuation, and in the supercon-
ucting state H=curl A. In the both cases, A satisfy the Ginzburg–Landau equation �4.2� and
oundary condition �4.4�. Namely, we can express the magnetic field H in a sample 	 in the
ollowing form

H = curl A, ∀ x � 	 ,

�5.2�

A = 	Aa + A in the normal state,

A in the superconducting state,



nd the supercurrent Js in the nondimensional form also is given by

Js = curl2 A . �5.3�

ere A satisfies �4.2� and �4.4�.
An equilibrium state ��̃ ,Ã� of the TDGL equations �4.2� is called in the normal state if �̃

0, and ��̃ ,Ã� is called in the superconducting state if �̃�0. A solution �� ,A� of �4.2� is said in
he normal state if �� ,A� is in a domain of attraction of a normal equilibrium state, otherwise
� ,A� is said in the superconducting state.

We consider the simplest case where the applied field vanishes Aa=0. In this case, the eigen-

alue equation �4.10� becomes
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− ��� = �� . �5.4�

The first eigenvalue �1 of �5.4� with one of the boundary conditions �4.5�–�4.7� is simple, and
he eigenvector is real. Therefore, the parameter R defined by �4.22� reads

R = −
�

�
� 0.

By Theorem 4.1, when the parameter ��T���1 the solutions �� ,A� of �4.2� is in the normal
tate, and when ��T���1, �� ,A� with the initial ��0 ,A0� in U \� is in the superconducting states.

When Aa=0, the steady state solutions ��̃ ,Ã� of �4.2� are real, i.e. �̃=ei��, Im�=0. Hence

�̃* � �̃ − � � �* = 0,

hich implies that Ã=0. Thus, the supercurrent �5.3� �or �5.1�� vanishes

Js = 0.

his shows that with zero applied field Ha=0, there is no current in a superconductor.
Implications of (4.20): For the Neumann boundary condition �4.5�, i.e. the sample is enclosed

y an insulator, the first eigenvalue �1=0 for �5.4�, which is independent of 	, the geometry of
ample. Therefore, the condition �4.20� always holds true.

However, for the Dirichlet and the Robin boundary conditions �4.6� and �4.7�, the situation is
ifferent. It is known that the first eigenvalue �1 of �5.4� depends on 	. In particular,

�1 = �1�	� → � if�	� → 0

The condition �4.20� implies that for the cases where the samples are enclosed by a magnetic
aterial or a normal metal, the volume of a sample must be greater than some critical value

	��Vc�0. Otherwise no superconducting state occurs at any temperature. This property also
olds true for the case where there is an applied magnetic field Ha present. Of course, in this case,
he critical volume Vc depends on Ha as well.

. Transitions in the case with R<0

As mentioned earlier, there are two transitions determined by a simple parameter R defined by
4.22� for transitions near a complex simple eigenvalue of the linearized problem �respectively by
wo parameters R1 and R2 defined by �4.44� for transitions near an eigenvalues with higher

ultiplicity�. The parameter R links the superconducting behavior with the geometry of the ma-
erial, the applied field and the physical parameters. For simplicity, we address here only the case
ear a complex simple eigenvalue of the linearized problem, and physical conclusions can be
erived in the same fashion.

Let a magnetic field Ha=curl Aa be applied. By the bifurcation theorems, the critical tempera-
ure Tc

1 of superconducting transition satisfies then Tc
1�Tc, where Tc is given in �2.4� and Tc

1

atisfies that

��Tc
1� = �1 � 0, �5.5�

here �1=�1�Aa� is the first eigenvalue of �4.10�. It is known that

�1�Aa� → � if �Aa� → � .

t implies that the applied magnetic field Ha can not be very strong for superconductivity as
equired by the condition �4.20�.

From Theorems 4.1 and 4.2, we see that the number R defined by �4.22� is an important
arameter to distinguish two different types of superconducting transitions. We first examine the

ase where R�0.
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By Theorem 4.1, when ���1, Eq. �4.2� bifurcate from ��� ,A ,��= �0,�1� to a steady state
olution ��� ,A�� which is an attractor attracting an open set U \��H. Physically speaking, this
heorem leads to the following properties of superconducting transitions in the case where R�0;
ee Fig. 1.

Theorem 5.1: Let R�0 and m=1 as in Theorem 4.1, and Tc
1 be given by �5.5�. Then the

ollowing physical properties hold true

1� When the control temperature decreases (resp. increases) and crosses the critical tempera-
ture Tc

1, there will be a phase transition of the sample from the normal to superconducting
states (respectively from superconducting to normal state).

2� �Stability� When the control temperature T�Tc
1, under a fluctuation deviating the normal

state, the sample will soon be restored to the normal state. In addition, when T�Tc
1, under

a fluctuation deviating both the normal and superconducting states, the sample will soon be
restored to the superconducting states.

3� In general, the supercurrent given by

Js��� = − ��Aa + A������2 −
��

2
i���

* � �� − �� � ��
*�

is nonzero, i.e., Js�0 for �1���T�Tc
1�.

4� �Continuity� The order parameter �� and supercurrent Js��� depend continuously on the
parameter � (or the control temperature T), namely

�� → 0, Js��� → 0, if � → �1 + 0 �or,T → Tc
1 − 0� . �5.6�

5� The superconducting state of the system is dominated by the lowest-energy eigenfunction of
�4.10� in the sense given by �4.24�.

. Transitions with R>0

Transitions in this case are precisely described by Theorems 4.2 and 4.3, as shown in Figs. 2
nd 3. In particular, we have the following theorem, which recapitulates some phase transition
roperties obtained in Theorems 4.2 and 4.3 in physical terms.

Theorem 5.2: Consider a material described by the TDGL with R�0. There are two critical
emperatures Tc

0 and Tc
1 �Tc

0�Tc
1� such that

��Tc
i � = �i �i = 0,1� ,

nd the following phase transition properties hold true:

1� When the control temperature T decreases and crosses Tc
1, or equivalently � increases and

crosses �1, the stability of the normal state changes from stable to unstable.
2� When Tc

1�T (or ���1), physically observable states consists of the normal state, and the
superconducting states in ��

2 . When Tc
1�T (or ���1), physically observable states are in

��
2 .

3� �Instability� When the control temperature T is in the interval: Tc
1�T�Tc

0 (or �0����1),
the superconducting states given ��

1 are unstable, i.e., with a fluctuation deviating a super-
conducting state in ��

1 , transition to either the normal state or a superconducting state in ��
2

will occur.
4� �Discontinuity� At the critical temperature Tc

0 (respectively at Tc
1) of the phase transitions,

there is a jump from the superconducting states to the normal state (respectively from the
normal state to superconducting states).

5� The other lower-energy eigenfunctions possibly have a stronger influence for the supercon-
ducting states.

It is noteworthy to remark that the phase transitions in the case where R�0 is very different

rom the transitions for the case where R�0 as described.
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Physical significance of R: We note that the parameter � /� can be characterized by the
inzburg–Landau parameter � and the parameter �:

�

�
= �2�2, �2 =

ms
2c2

2�es
2h2b, �2 =

h

es

D
�b

. �5.7�

In the Ginzburg–Landau energy, the term

E0 = �
	

�e�4dx �5.8�

epresents the nonlinear part of the energy of the superconducting electrons in the lowest-energy
tate, and the term

Em = �
	

H0
2dx, h0 satisfies �4.21�, �5.9�

s the energy contributed by the magnetic field associated with the supercurrent

curl h0 = �e�2Aa +
�

2
i�e* � e − e � e*� ,

hich is generated by the applied magnetic potential A0 and the superconducting electrons in the
owest-energy states.

By �4.2� and �4.22�, we obtain from �5.7�–�5.9� that

R = − �2�2 +
2Em

E0
. �5.10�

ence, the type of superconducting phase transitions among the two described above for a given
aterial depends on the “competition” between the two energies E0 and Em:

R��0 if and only if
�2

2
E0 �

1

�2Em,

�0 if and only if
�2

2
E0 �

1

�2Em.� �5.11�

ccording to the Abrikosov theory, the materials with �2�2 and �2�2 are of types I and II,
espectively. From �5.11�, we infer that for given geometrical shape of sample and applied mag-
etic field, a type I material favors more to the jumped phase transition �i.e., the case �R�0��, and
type II material favors the continuous phase transition �i.e the case �R�0��.

. Topological structure of supercurrents

In 1957, Abrikosov predicted that in the mixed state of type II superconductors, there is a
quare array of vortices of supercurrents, and this vortex array was confirmed by experiments later.

In the two-dimensional case, by Theorems 4.1 and 4.2, the bifurcated attractor contains su-
erconducting states �� ,A� such that the supercurrent Js=Js�� ,A� given by �5.1� is in general not
dentically zero and

div Js = 0, Js · n��	 = 0. �5.12�

Thanks to �5.12�, the geometric theory for two-dimensional incompressible flows developed
ecently by the authors5 can be applied to study the structure of the supercurrent Js in the physical
pace. For this purpose, we first recall briefly some basic results and concepts directly related to

he study of the structure of Js.
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Structure of 2D Incompressible flows: First, let Cr�	 ,R2� be the space of all Cr vector fields
n 	, and

Dr�	� = �v � Cr�	,R2��v · n��	 = 0, div v = 0  .

Let v�Dr�	�. A point p�	 is called a singular point of v if v�p�=0; a singular point p of v
s called nondegenerate if the Jacobian matrix Dv�p� is invertible; v is called regular if all singular
oints of v are non-degenerate. An interior nondegenerate singular point of v can be either a center
r a saddle, and a nondegenerate boundary singularity must be a saddle. Saddles of v must be
onnected to saddles. An interior saddle p�	 is called self-connected if p is connected only to
tself, i.e., p occurs in a graph whose topological form is that of the number 8.

Second, let v�Dr�	� be regular, and 	 be a connected domain with k holes. Let C be the
umber of centers of v, S the number of interior saddles, and B the number of boundary saddles.
hen5,22

C − S −
B

2
= 1 − k . �5.13�

Third, again, let v�Dr�	�, and p�M be a center. Then there is an open neighborhood C of
p, such that for any x�C�x�p�, the orbit ���x , t�t�R is closed. The largest such neighborhood C
f p is called a circle cell of v. Let B�M be an open set, such that for any x�B, the orbit
��x , t�t�R is closed, and each connected component � of �B is not a single point. Then B is
alled a circle band of v.

Then it is proved that5,23 for a regular divergence-free vector field v�Dr�	��r�1�, the
opological structure of v consists of finite number of circle cells, circle bands, and saddle con-
ections.

Fourth, two vector fields u ,v�Dr�	 ,R2� are called topologically equivalent if there exists a
omeomorphism of � :	→	, which takes the orbits of u to orbits of v and preserves their
rientation. A vector field v�Dr�	 ,R2� is called structurally stable in Dr�	 ,R2� if there exists a
eighborhood U�Dr�	 ,R2� of v such that for any u�U, u and v are topologically equivalent.

Then it is proved that v�Dr�	 ,R2��r�1� is structurally stable in Dr�	 ,R2� if and only if a�
is regular, b� all interior saddles of v are self-connected, and c� each boundary saddle point is

onnected to boundary saddle points on the same connected component of the boundary. More-
ver, the set of all structurally stable vector fields is open and dense in Dr�	 ,R2�.

Structure of Js: Now we are in position to study the structure of the supercurrent Js in the
hysical space. First observe that in the context of superconductivity, the centers of the supercur-
ent correspond to vortices. Hence the following is a direct consequence of �5.13�, which predicts
he existence of vortices.

Theorem 5.3. Let the domain be simply connected. If the supercurrent Js for a given super-
onducting state is regular, then there is at least one vortex for this superconducting state.

When R�0, the superconducting states in the bifurcated attractor is dictated by the first
igenfunction e of �4.10�. By Theorem 4.1 and the structural stability theorem mentioned above,
he structure of the supercurrent Js for the superconducting states in the bifurcated attractor is
etermined by the structure of the following vector field:

J0 = − Aa�e�2 −
�

2
i�e* � e − e � e*� + �
 , �5.14�

hich satisfies that div J0=0 and J0 ·n��	=0. Then it is easy to obtain the following result.
Theorem 5.4: Assume that the vector field J0 given by �5.14� is structurally stable in

r�	 ,R2��r�1�. Then there are an ��0 and a time t0�0 such that if �1����1+� and t� t0,
hen for any initial data ��0 ,A0��U \� where U \��H is the open set given in Theorem 4.1, the

upercurrent
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Js���,A�� = − ��Aa + A������2 −
��

2
i��*���� − �� � ��

*� ,

orresponding to the solution ��� ,A�� is structurally stable, and is topologically equivalent to J0.
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We derive inequalities for n-partite states under the assumption that the hidden-
variable theoretical joint probability distribution for any pair of commuting observ-
ables is equal to the quantum mechanical one. Fine showed that this assumption is
connected to the no-hidden-variables theorem of Kochen and Specker �KS theo-
rem�. These inequalities give a way to experimentally test the KS theorem. The
fidelity to the Bell states which is larger than 1/2 is sufficient for the experimental
confirmation of the KS theorem. Hence, the Werner state is enough to test experi-
mentally the KS theorem. Furthermore, it is possible to test the KS theorem
experimentally using uncorrelated states. An n-partite uncorrelated state violates
the n-partite inequality derived here by an amount that grows exponentially with
n. © 2005 American Institute of Physics. �DOI: 10.1063/1.2081115�

. INTRODUCTION

From the incompleteness argument of the EPR paper,1 hidden-variable interpretation of quan-
um mechanics �QM� has been an attractive topic of research.2,3 There are two main approaches to
tudy this conceptual foundation of QM. One is the Bell-EPR theorem.4 This theorem says that the
tatistical prediction of QM violates the inequality following from the EPR-locality principle. The
PR-locality principle tells that a result of measurement pertaining to one system is independent
f any measurement performed simultaneously at a distance on another system.

The other is the no-hidden-variables theorem of Kochen and Specker �KS theorem�.5 The
riginal KS theorem says the nonexistence of a real-valued function which is multiplicative and
inear on commuting operators so that QM cannot be imbedded into the KS type of hidden-
ariable theory. The proof of the KS theorem relies on intricate geometric argument. Fine
onnected6,7 the KS theorem to the assumption, to be called Fine’s assumption, that the hidden-
ariable theoretical joint probability distribution for any commuting pair of observables is equal to
quantum mechanical one. Greenberger, Horne, and Zeilinger discovered8 the so-called GHZ

heorem for four-partite GHZ states and the KS theorem has taken very simple form since then
see also Refs. 9–12�.

In 1990, Mermin considered the Bell-EPR theorem of multipartite systems and derived mul-
ipartite Bell’s inequality.13 It has shown that the n-partite GHZ state violates the Bell-Mermin
nequality by an amount that grows exponentially with n. After this work, several multipartite
ell’s inequalities have been derived.14,15 They also exhibit that QM violates local hidden-variable

heory by a similar way.
As for the KS theorem, most researches are related to “all versus nothing” demolition of the

S type of hidden-variable theory.16 �Of course, Bell’s inequalities are available for a test of the
S theorem.� Recently, it has begun to research the KS theorem using inequalities �see Refs. 17�.
o find such inequalities to test the KS theorem is particularly useful for experimental

nvestigation.18 Since the KS theorem was purely related to the algebraic structure of quantum
perators and was independent of states, it might be possible to find an inequality that is violated
y QM when the system is in an uncorrelated state.19 If so, we ask what an amount of a violation

s like.

46, 102101-1022-2488/2005/46�10�/102101/20/$22.50 © 2005 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2081115
http://dx.doi.org/10.1063/1.2081115
http://dx.doi.org/10.1063/1.2081115


F
t
d
K

a
i
B
g
b
a

h
f
o
l
h

a
i
f
a
t
V
n
a

I

o
±
H
b

v
a
s
o
a
�
t

T
t

s

102101-2 Koji Nagata J. Math. Phys. 46, 102101 �2005�

                        
In this paper, we shall derive two inequalities following from the assumption pointed out6,7 by
ine as a test for the KS theorem for n spin-1 /2 states. A violation of Fine’s assumption implies

hat there exists a pair of commuting observables such that the hidden-variable theoretical joint
istribution of them does not agree with QM, or hidden-variables cannot exist in the sense that the
S theorem holds.

One of the inequalities says that the fidelity to the Bell states, which is larger than 1/2, allows
proof of the KS theorem. This says the Werner state19 which admits local hidden-variable theory

s enough to test experimentally the KS theorem. And we reveal possible modification of the
ell-Mermin inequality on combining Mermin’s geometric idea13 and a commutative operator
roup presented by Nagata et al.20 We show that when n exceeds 2, not only n-partite GHZ states
ut also n-partite uncorrelated states violate the modified inequality derived here. The amount of
violation grows exponentially with n, which is a factor of O�2n/2� at the macroscopic level.

Our result says that QM exhibits an exponentially stronger refutation of the KS type of
idden-variable theory, as the number of parties constituting the state increases linearly. The
eature is independent of the requirement that the system be prepared in an entangled state. In
ther words, we can say that the KS theorem is more serious in high-dimensional settings than in
ow-dimensional ones. Further, we can see the local hidden-variable theory violates the KS type of
idden-variable theory.

This paper is organized as follows. In Sec. II, we fix several notations and prepare for
rguments of this paper. In Sec. III, we review the statistical KS theorem and mention that its
nequality version is necessary for an experimental test. In Sec. IV, we present an inequality which
ollows from Fine’s assumption for two-spin-1 /2 states and derive a sufficient condition to allow
proof of the KS theorem, which states that the fidelity to the Bell states is larger than 1/2. Since

he fidelity to the Bell states is 5 /8, the two-spin-1 /2 Werner state violates the inequality. In Sec.
, we modify the Bell-Mermin inequality. It follows from Fine’s assumption. And we show that
ot only n-partite GHZ states but also n-partite uncorrelated states violate the inequality by an
mount that grows exponentially with n. Section VI summarizes this paper.

I. NOTATION AND PREPARATIONS

Throughout this paper, we assume von Neumann’s projective measurements and we confine
urselves to the finite-dimensional and the discrete spectrum case. Let R denote the reals where
��R. We assume every eigenvalue in this paper lies in R. Further, we assume that every
ermitian operator is associated with a unique observable because we do not need to distinguish
etween them in this paper.

We assume the validity of QM and we would like to investigate if the KS type of hidden-
ariable interpretation of QM is possible. Let O be the space of Hermitian operators described in
finite-dimensional Hilbert space, and T be the space of density operators described in the Hilbert

pace. Namely, T= �� ���O∧��0∧Tr���=1�. Now we define the notation � which represents
ne result of quantum measurement. Suppose that the measurement of a Hermitian operator A for
system in the state � yields a value ��A��R. We assume that the following two propositions

BSF and QDJ� hold. Here, ���x� , �x�R� represents the characteristic function. � is any subset of
he reals R.

Proposition: BSF �the Born statistical formula�,

Prob�����A�
� = Tr�����A�� . �2.1�

he whole symbol �����A�
� is used to denote the proposition that ��A� lies in � if the system is in

he state �. And Prob denotes the probability that the proposition holds.
Proposition: QDJ �the quantum-mechanical joint probability distribution for commuting ob-
ervables�,
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Prob��,�����A�,��B�
� = Tr�����A�����B�� �2.2�

or every commuting pair A ,B in O. The notation on the LHS of �2.2� is a generalization of the
ymbol �����A�

� to express the proposition that ��A� and ��B� lie in � and in ��, respectively, if the
ystem is in the state �.

Let us consider a classical probability space �� ,� ,	��, where � is a nonempty sample space,
is a 
-algebra of subsets of �, and 	� is a 
-additive normalized measure on � such that

����=1. The subscript � expresses that the probability measure is determined uniquely when the
tate � is specified.

Let us introduce measurable functions �classical random variables� onto ��f :��R�, which
s written as fA��� for an operator A�O. Here ��� is a hidden variable. We introduce appro-
riate notation. P����Q��� means P���=Q��� holds almost everywhere with respect to 	� in
. One may assume the probability measure 	� is chosen such that the following relation is valid:

Tr��A� = 	
���

	��d��fA��� �2.3�

or every Hermitian operator A in O. Please notice the assumption for the probability measure 	�

oes not disturb the KS theorem. See the lemma �B1� in Appendix B.
Proposition: HV �the deterministic hidden-variable interpretation of QM�.
Measurable function fA��� exists for every Hermitian operator A in O.
Proposition: D �the probability distribution rule�,

	��fA
−1���� = Prob�����A�

� . �2.4�

Proposition: JD �the joint probability distribution rule�,

	��fA
−1��� � fB

−1����� = Prob��,�����A�,��B�
� �2.5�

or every commuting pair A ,B in O.
Proposition: FUNC A.E. �the functional rule holding almost everywhere�,

fg�A���� � g�fA���� �2.6�

or every function g :R�R.
Proposition: PROD A.E. �the product rule holding almost everywhere�.
If Hermitian operators A and B commute, then

fAB��� � fA��� · fB��� . �2.7�

Theorem:6

HV ∧ JD ⇒ HV ∧ D ∧ FUNC A.E. �2.8�

Proof: See �B6� in Appendix B.
Theorem:6

HV ∧ FUNC A.E. ⇒ HV ∧ PROD A.E. �2.9�

Proof: See �B14� in Appendix B.

II. THE STATISTICAL KOCHEN-SPECKER THEOREM

In this section, we want to review the statistical KS theorem �see also Ref. 17�. In what
ollows, we assume HV and JD hold. This implies that we can use D, FUNC A.E., and PROD
.E.. We follow the statistical version of the KS theorem proposed by Peres11 and refined by

12
ermin for two-spin-1 /2 states. One then can see that
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X��� ª f
x
1
x

2���f
y
1
y

2���f
z
1
z

2��� � f
x
1
x

2
y
1
y

2
z
1
z

2��� = f−I���

⇒ 	
���

	��d��X��� = Tr���− I�� = − 1, �3.1�

here I represents the identity operator for the four-dimensional space. By the way we can
actorize two of the terms as f
x

1
x
2 � f
x

1f
x
2 and f
y

1
y
2 � f
y

1f
y
2. Further, we have f
x

1
y
2 � f
x

1f
y
2 and

f
y
1
x

2 � f
y
1f
x

2. Hence we get f
x
1
x

2f
y
1
y

2 � f
x
1
y

2f
y
1
x

2 and

X��� � f
x
1
y

2���f
y
1
x

2���f
z
1
z

2��� � f
x
1
y

2
y
1
x

2
z
1
z

2��� = f I��� ⇒ 	
���

	��d��X��� = Tr��I� = 1

�3.2�

n contradiction to �3.1�. Thereby, we see that HV does not hold if we accept JD.
We follow the statistical version of the KS theorem proposed in Refs. 9 and 12 for three-spin-

/2 states. Then, one can see that

Y��� ª f
x
1
y

2
y
3���f
y

1
x
2
y

3���f
y
1
y

2
x
3���f
x

1
x
2
x

3��� � f
x
1
y

2
y
3
y

1
x
2
y

3
y
1
y

2
x
3
x

1
x
2
x

3���

= f−I��� ⇒ 	
���

	��d��Y��� = Tr���− I�� = − 1, �3.3�

here I represents the identity operator for the eight-dimensional space. By the way, we can
actorize each of the four terms as

f
x
1
y

2
y
3��� � f
x

1���f
y
2���f
y

3��� �3.4�

nd so on to get

Y��� � �f
x
1����2�f
y

1����2�f
x
2����2�f
y

2����2�f
x
3����2�f
y

3����2 � f I���f I���f I���f I���f I���f I���

� f I��� ⇒ 	
���

	��d��Y��� = Tr��I� = 1 �3.5�

n contradiction to �3.3�.
These two examples provide the statistical KS theorem, which says demolition of HV or of

D. We have the following result.
Theorem: �The statistical Kochen-Specker theorem.�
For every quantum state described in a Hilbert space H1 � H2 or H1 � H2 � H3, �Dim�H j�

2, �j=1,2 ,3��,

HV ∧ JD ⇒ �. �3.6�

hat is, these two propositions do not hold at the same time.
These examples are sufficient to show that HV cannot be possible in any state if we accept JD.

owever, they are not of suitable form to test experimentally the KS theorem. Because, in a real
xperiment, we cannot claim a sharp value as an expectation with arbitrary precision. Therefore,
ts inequality version is necessary for an experimental test of the KS theorem.

V. INEQUALITY FOR TWO-PARTITE STATES

In this section, we shall derive the inequality version statistical KS theorem for two-spin-1 /2
tates. Then, we show that the two-spin-1 /2 Werner state19 violates the inequality. Since the

erner state satisfies all Bell’s inequalities, the inequality derived in this section does not belong
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o the category of Bell’s inequalities. The inequality is just the inequality concerned with the KS
heorem. In the following, we assume that HV and JD hold. Let x ,y be real numbers with x ,y

�−1, +1�, then we have

�1 + x + y − xy� = ± 2. �4.1�

Theorem:21 For every state � described in a Hilbert space H1 � H2, �Dim�H j�=2, �j=1,2��,

HV ∧ JD�∧
x
1
y

2
y
1
x

2 = 
z
1
z

2� ⇒ 1 + Tr��
x
1
x

2� + Tr��
y
1
y

2� − Tr��
z
1
z

2� � 2. �4.2�

Proof: From PROD A.E., we have

�f
k
1
k

2����2 � f I��� � + 1 ⇔ f
k
1
k

2��� � ± 1,�k = x,y� . �4.3�

ence, the �4.1� says

U��� ª 1 + f
x
1
x

2��� + f
y
1
y

2��� − f
x
1
x

2���f
y
1
y

2��� ⇒ U��� � ± 2 �4.4�

nd

	
���

	��d��U��� � 2. �4.5�

n using f
x
1
x

2f
y
1
y

2 � f
x
1
y

2f
y
1
x

2 � f
z
1
z

2 we get

	
���

	��d��f
x
1
x

2���f
y
1
y

2��� = 	
���

	��d��f
x
1
y

2���f
y
1
x

2��� = 	
���

	��d��f
z
1
z

2��� ,

�4.6�

here we have used the quantum mechanical rule 
x
1
y

2
y
1
x

2=
z
1
z

2. Hence we conclude

	
���

	��d��U��� � 2 ⇔ 1 + Tr��
x
1
x

2� + Tr��
y
1
y

2� − Tr��
z
1
z

2� � 2. �4.7�

QED
A violation of the inequality �4.7� implies demolition of HV or of JD in the state �. Note the

ollowing quantum mechanical relation:

1 + Tr��
x
1
x

2� + Tr��
y
1
y

2� − Tr��
z
1
z

2� � 2 ⇔ Tr���
��� � 1/2, �4.8�

here

�
 ª
�+1;−2
 + �−1;+2


�2
. �4.9�

herefore the statistical KS theorem holds if the fidelity to the Bell state �
 is larger than 1/2.
ote the fidelity to the Bell states of the two-spin-1 /2 Werner state19 is 5 /8��1/2�. The Werner

tate W is

W = �1/2��
�� + �1/8�I , �4.10�

here I is the identity operator on the four-dimensional space. Hence, this quantum state which
dmits local hidden-variable theory allows a proof of the KS theorem.

. INEQUALITY FOR MULTIPARTITE STATES

In what follows, we shall modify the Bell-Mermin inequality.13 We derive an n-partite in-

quality which is satisfied if both HV and JD hold. We show n-partite uncorrelated states violate
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he inequality when n�3, by an amount that grows exponentially with n. Please note that any
ncorrelated states satisfy all Bell’s inequalities.19 Hence, the modified inequality does not belong
o the category of Bell’s inequalities. In this section, we assume n�2. Let us denote �1,2 , . . . ,n�
y Nn.

Definition: �commutative group (�n) of Hermitian operators�
Op

n�p� �0,1 , . . . ,2n−1� ,n�2� are Hermitian operators defined by

Op
n
ª 

j=1

n

�
z
j�bj�
x

j�b0 = �
z
1�b1�
z

2�b2�
z
3�b3�
z

4�b4
¯ �
z

n−1�bn−1�
z
n�bn

� �
x
1�b0�
x

2�b0�
x
3�b0

¯ �
x
n−1�b0�
x

n�b0, �5.1�

here the superscript j of the Pauli operators denotes the party j and the n-bit sequence

0b1¯bn−1 is the binary representation of p, and bn� �0,1�∧bn�� j=1
n−1bj�mod 2�. Thus, the parity

f b1b2¯bn is even. �Here, 
k
1 means 
k

1
� j=2

n Ij and so on. Omitting the identity operator, we
bbreviate those as above.�

The operator O0
n is the identity operator on the 2n-dimensional space, and the other operators

1
n , . . . ,O2n−1

n have two eigenvalues, ±1. In the following, there are the cases where we abbreviate

0
n as I.

Example: If p� �0,1 , . . . ,2n−1−1�, then b0=0 and �
x
j�b0 = �k=1

n Ik=O0
n for all j. That is, the

inary representation of p takes, for example, the following form:

�5.2�

here B1 represents the sum of the number of 1. Then, bn� �0,1�∧bn�B1�mod 2� holds. Suppose

n=1 holds, then �
z
n�bn =
z

n. Then, the corresponding Hermitian operator Op1

n is as follows:

Op1

n = 
z
1I2I3
z

4
¯ In−2
z

n−1
z
n � I1I2I3I4

¯ In−1In = �
z
1I1�I2I3�
z

4I4� ¯ In−2�
z
n−1In−1��
z

nIn�

= 
z
1I2I3
z

4
¯ In−2
z

n−1
z
n, �5.3�

here the number of �
zI�=
z is even because of the definition of bn.
Example: If p� �2n−1 ,2n−1+1, . . . ,2n−1�, then b0=1 and �
x

j�b0 =
x
j for all j. That is, the

inary representation of p takes, for example, the following form:

�5.4�

here B2 represents the sum of the number of 1. Then, bn� �0,1�∧bn�B2�mod 2� holds. Suppose

n=0 holds, then �
z
n�bn =O0

n. Then the corresponding Hermitian operator Op2

n is as follows:

Op2

n = 
z
1I2I3
z

4
¯ In−2
z

n−1In � 
x
1
x

2
x
3
¯ 
x

n−1
x
n = �
z

1
x
1�
x

2
x
3�
z

4
x
4� ¯ 
x

n−2�
z
n−1
x

n−1�
x
n

= �i
y
1�
x

2
x
3�i
y

4� ¯ 
x
n−2�i
y

n−1�
x
n, �5.5�

here the number of �
z
x�= i
y is even.
Example: The binary representation of 2n−1 takes the following form:

�5.6�

hen the corresponding Hermitian operator O2n−1
n is as follows:

O2n−1
n = I1I2I3I4

¯ In−1In � 
x
1
x

2
x
3
¯ 
x

n−1
x
n = 
x

1
x
2
x

3
¯ 
x

n−1
x
n. �5.7�

n n
Lemma: If Op ,Oq��n, then
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Op
nOq

n = Op�q
n ���n� , �5.8�

here p � q is the bitwise XOR �exclusive OR� of p and q.
Proof: See �A1� in Appendix A.
From the lemma �5.8�, the set of 2n operators �Op

n� forms a commutative group isomorphic to
Z2�n. We have denoted this commutative group as �n. Let us define another set of operators.

Definition: Rp
n�p� �0,1 , . . . ,2n−1� ,n�2� are operators defined by

Rp
n
ª 

j=1

n

�
z
j�ej�
x

j�e0, �5.9�

here the superscript j of the Pauli operators denotes the party j and the n-bit sequence

0e1¯en−1 is the binary representation of p, and en� �0,1�∧en�� j=1
n−1ej +1�mod 2�. Thus, unlike

p
n, the parity of e1e2¯en is odd.

Example: If p� �0,1 , . . . ,2n−1−1�, then e0=0 and �
x
j�e0 = �k=1

n Ik=O0
n for all j. That is, the

inary representation of p takes, for example, the following form:

�5.10�

here B3 represents the sum of the number of 1. Then, en� �0,1�∧en�B3+1�mod 2� holds.
uppose en=1 holds, then �
z

n�en =
z
n. Then, the corresponding Hermitian operator Rp3

n is as fol-
ows:

Rp3

n = 
z
1I2I3
z

4
¯ In−2
z

n−1
z
n � I1I2I3I4

¯ In−1In = �
z
1I1�I2I3�
z

4I4� ¯ In−2�
z
n−1In−1��
z

nIn�

= 
z
1I2I3
z

4
¯ In−2
z

n−1
z
n, �5.11�

here the number of �
zI�=
z is odd because of the definition of en.
Example: If p� �2n−1 ,2n−1+1, . . . ,2n−1�, then e0=1 and �
x

j�e0 =
x
j for all j. That is, the

inary representation of p takes, for example, the following form:

�5.12�

here B4 represents the sum of the number of 1. Then, en� �0,1�∧en�B4+1�mod 2� holds.
uppose en=0 holds, then �
z

n�en =O0
n. Then the corresponding non-Hermitian operator Rp4

n is as
ollows:

Rp4

n = 
z
1I2I3
z

4
¯ In−2
z

n−2In � 
x
1
x

2
x
3
¯ 
x

n−1
x
n = �
z

1
x
1�
x

2
x
3�
z

4
x
4� ¯ 
x

n−2�
z
n−1
x

n−1�
x
n

= �i
y
1�
x

2
x
3�i
y

4� ¯ 
x
n−2�i
y

n−1�
x
n, �5.13�

here the number of �
z
x�= i
y is odd. Rp
n / i and iRp

n are Hermitian operators if p� �2n−1 ,2n−1

1 , . . . ,2n−1�.
Lemma:

1

2
�

j=1

n

�Ij + 
z
j� + 

j=1

n

�Ij − 
z
j�� = �

p=0

2n−1−1

Op
n ,

1

2
�

n

�Ij + 
z
j� − 

n

�Ij − 
z
j�� = �

2n−1−1

Rp
n ,
j=1 j=1 p=0
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1

2
�

j=1

n

�
x
j + i
y

j � + 
j=1

n

�
x
j − i
y

j �� = �
p=2n−1

2n−1

Op
n ,

1

2
�

j=1

n

�
x
j + i
y

j � − 
j=1

n

�
x
j − i
y

j �� = �
p=2n−1

2n−1

Rp
n . �5.14�

Proof: See �A7� and �A14� in Appendix A.
Lemma:

HV ∧ FUNC A.E. ⇒ Re�
j=1

n

�f
x
j��� + if
y

j����� � �
p=2n−1

2n−1

fOp
n��� ,

Im�
j=1

n

�f
x
j��� + if
y

j����� � �
p=2n−1

2n−1

fRp
n/i��� . �5.15�

Proof: See �A21� in Appendix A.
Theorem:21 For every state � described in a Hilbert space � j=1

n H j, �Dim�H j�=2, �j�Nn ,n
2��,

HV ∧ JD�∧�i
y
i ��i
y

j �
x
i 
x

j = 
z
i
z

j� ⇒ �
p=0

2n−1−1

Tr��Op
n� � � 2n/2 n = even,

2�n−1�/2 n = odd.
� �5.16�

Proof: From PROD A.E., we have

�f
k
j����2 � fO0

n��� � + 1 ⇔ f
k
j��� � ± 1, �j � Nn,k = x,y� . �5.17�

ow, we define F� by

F�
ª 	

���

	��d��G��� , �5.18�

here G��� is defined by

G��� ª Re�
j=1

n

�f
x
j��� + if
y

j�����
j=1

n

f
x
j��� . �5.19�

rom the geometric argument by Mermin in Ref. 13 and �5.17�, we have

G��� � � 2n/2 n = even

2�n−1�/2 n = odd
� �	� − a.e.� . �5.20�

n more detail, almost everywhere with respect to 	� in �, the maximum of G��� is equal to the
eal part of a product of complex numbers each of which has magnitude of �2 and a phase of
 /4 or ±3 /4 since absolute value of � j=1

n f
x
j��� is unity almost everywhere with respect to 	�.

hen n is even the product can lie along the real axis and can attain a maximum value of 2n/2,
hen n is odd the product must lie along an axis at 45° to the real axis and its real part can only

ttain the maximum value 2�n−1�/2. Therefore, the value G��� is bounded as �5.20� almost every-
�
here in �, and hence F is bounded as
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F� � � 2n/2 n = even,

2�n−1�/2 n = odd.
� �5.21�

rom �5.7�, it is easy to see that


j=1

n

f
x
j��� � fO

2n−1
n ��� . �5.22�

herefore, from �5.19� and the lemma �5.15�, we have

G��� � � �
p=2n−1

2n−1

fOp
n���� fO

2n−1
n ��� . �5.23�

oting �Op
n ,Oq

n�=0 , ∀Op
n ,Oq

n��n �see the lemma �5.8��, PROD A.E. tells the following relations:

fOp
n���fOq

n��� � fOp�q
n ���, �∀Op

n,Oq
n � �n� . �5.24�

t is easy to see that

�Op
nO2n−1

n �p � �2n−1,2n−1 + 1, . . . ,2n − 1�� = �Op
n�p � �0,1, . . . ,2n−1 − 1�� . �5.25�

ere, we have used the quantum mechanical rule �i
y
i ��i
y

j �
x
i 
x

j =
z
i
z

j�i , j�Nn , i� j�. �Equation
5.25� is also obvious from the expression �5.1� and �5.7��. Therefore, we get

G��� � �
p=0

2n−1−1

fOp
n��� . �5.26�

hus from �5.18� we conclude

F� = 	
���

	��d��� �
p=0

2n−1−1

fOp
n���� = �

p=0

2n−1−1

Tr��Op
n� . �5.27�

QED
Now, it follows from the lemma �5.14� that

�+1;+2; ¯ ;+n
�+1;+2; ¯ ;+n� + �−1;−2; ¯ ;−n
�−1;−2; ¯ ;−n� =
1

2n�
j=1

n

�Ij + 
z
j� + 

j=1

n

�Ij − 
z
j��

=
1

2n−1� �
p=0

2n−1−1

Op
n� , �5.28�

here Op
n =� j=1

n �
x
j�b0�
z

j�bj and 
z
j�± j
= ± �± j
. Hence we have

F� = �
p=0

2n−1−1

Tr��Op
n� = Tr��Hn� , �5.29�

here �see �5.28��

Hn ª 2n−1��+1;+2; ¯ ;+n
�+1;+2; ¯ ;+n� + �−1;−2; ¯ ;−n
�−1;−2; ¯ ;−n�� . �5.30�
Now, let � be ��
��� where
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��
 ª ��+1;+2; ¯ ;+n
 + ��−1;−2; ¯ ;−n
,����2 + ���2 = 1� . �5.31�

his state ��
 is an n-partite uncorrelated state if � or � is zero and ��
 is an n-partite GHZ state
f �=�=1/�2.

The quantum theoretical prediction says the expectation value Tr���
���Hn� should take a
alue of 2n−1 for the state ��
 in spite of any value of � and of �, and we get

F��
 = 2n−1. �5.32�

hen n exceeds 2, this value F��
 is larger than the bound �5.21�, which exceeds �5.21� by the
xponentially larger factor of 2�n−2�/2 �for n even� or 2�n−1�/2 �for n odd�. This implies demolition of
V or of JD in the state ��
. Thus, we have derived the exponentially stronger violation of
V∧JD, irrespective of quantum entanglement effects.

I. SUMMARY

In summary, we showed that the fidelity to the Bell states which is larger than 1/2 is sufficient
o allow a proof of the KS theorem. Thus, the Werner state is enough to test experimentally the KS
heorem. We also have derived an n-partite inequality following from HV∧JD. We have shown
hat an n-partite uncorrelated state violates the inequality by a factor of O�2n/2� at the macroscopic
evel. Hence, it turns out that QM exhibits an exponentially stronger violation of HV∧JD, as the
umber of parties constituting the state increases, irrespective of entanglement effects.
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PPENDIX A

Lemma: If Op
n ,Oq

n��n, then

Op
nOq

n = Op�q
n ���n� , �A1�

here p � q is the bitwise XOR �exclusive OR� of p and q.
Proof: Suppose that the binary representations of p and q are b0b1¯bn−1 and c0c1¯cn−1,

espectively. Suppose that bn� �0,1�∧bn�� j=1
n−1bj�mod 2� and cn� �0,1�∧cn�� j=1

n−1cj�mod 2�
old. This means that

cj � �0,1� ∀ j ∧ �
j=1

n

cj � 0�mod 2� . �A2�

his yields �b0� �1,0��

�
j=1

n

�
x
j�b0,

j=1

n

�
z
j�cj� = 0 . �A3�
hen from �5.1� we have
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Op
n = 

j=1

n

�
z
j�bj�
x

j�b0, Oq
n = 

j=1

n

�
z
j�cj�
x

j�c0 ⇒ Op
nOq

n = 
j=1

n

�
z
j�bj�
x

j�b0�
z
j�cj�
x

j�c0

= 
j=1

n

�
z
j�bj�
z

j�cj�
x
j�b0�
x

j�c0 = 
j=1

n

�
z
j�dj�
x

j�d0 = Op�q
n , �A4�

here

dj � �0,1� ∧ dj � bj + cj�mod 2� . �A5�

ere,

dn � �
j=1

n−1

bj + �
j=1

n−1

cj�mod 2� � �
j=1

n−1

�bj + cj��mod 2� � �
j=1

n−1

dj�mod 2� . �A6�

ence, dn can be assumed such that dn� �0,1� and dn�� j=1
n−1dj�mod 2� hold. QED

Lemma:

1

2
�

j=1

n

�Ij + 
z
j� + 

j=1

n

�Ij − 
z
j�� = �

p=0

2n−1−1

Op
n ,

�A7�

1

2
�

j=1

n

�Ij + 
z
j� − 

j=1

n

�Ij − 
z
j�� = �

p=0

2n−1−1

Rp
n .

Proof: If the following relations hold for all m , �2�m�n�,

1

2
�

j=1

m

�Ij + 
z
j� + 

j=1

m

�Ij − 
z
j�� = �

p=0

2m−1−1

Op
m, �A8�

1

2
�

j=1

m

�Ij + 
z
j� − 

j=1

m

�Ij − 
z
j�� = �

p=0

2m−1−1

Rp
m, �A9�

hen the theorem holds. Here, Op
m means Op

m
� j=m+1

n Ij and so on. Omitting the identity operator, we
bbreviate those as above. Remember, 
k

1 means 
k
1

� j=2
n Ij and so on.

In the case where m=2: The left-hand side �LHS� of �A8� is �I1I2+
z
1
z

2�� j=3
n Ij and right-hand

ide �RHS� of �A8� is also �I1I2+
z
1
z

2�� j=3
n Ij. LHS of �A9� is �I1
z

2+
z
1I2�� j=3

n Ij and RHS of �A9�
s also �I1
z

2+
z
1I2�� j=3

n Ij. Therefore �A8� and �A9� hold when m=2. In the following, if possible,
e omit the identity operator.

Suppose that �A8� and �A9� hold for m=k−1. Then we have


j=1

k−1

�Ij + 
z
j� = �

p=0

2k−2−1

Op
k−1 + �

p=0

2k−2−1

Rp
k−1,

�A10�


j=1

k−1

�Ij − 
z
j� = �

p=0

2k−2−1

Op
k−1 − �

p=0

2k−2−1

Rp
k−1,
n the other hand, we have
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�Ik + 
z
k�� �

p=0

2k−2−1

Op
k−1 + �

p=0

2k−2−1

Rp
k−1�

= � �
p=0

2k−2−1

Op
k−1Ik + �

p=0

2k−2−1

Rp
k−1
z

k� + � �
p=0

2k−2−1

Op
k−1
z

k + �
p=0

2k−2−1

Rp
k−1Ik�

= �
p=0

2k−1−1

Op
k + �

p=0

2k−1−1

Rp
k �A11�

nd

�Ik − 
z
k�� �

p=0

2k−2−1

Op
k−1 − �

p=0

2k−2−1

Rp
k−1�

= � �
p=0

2k−2−1

Op
k−1Ik + �

p=0

2k−2−1

Rp
k−1
z

k� − � �
p=0

2k−2−1

Op
k−1
z

k + �
p=0

2k−2−1

Rp
k−1Ik�

= �
p=0

2k−1−1

Op
k − �

p=0

2k−1−1

Rp
k . �A12�

herefore we have


j=1

k

�Ij + 
z
j� = �

p=0

2k−1−1

Op
k + �

p=0

2k−1−1

Rp
k ,

�A13�


j=1

k

�Ij − 
z
j� = �

p=0

2k−1−1

Op
k − �

p=0

2k−1−1

Rp
k .

his implies that �A8� and �A9� hold for m=k. QED
Lemma:

1

2
�

j=1

n

�
x
j + i
y

j � + 
j=1

n

�
x
j − i
y

j �� = �
p=2n−1

2n−1

Op
n ,

�A14�

1

2
�

j=1

n

�
x
j + i
y

j � − 
j=1

n

�
x
j − i
y

j �� = �
p=2n−1

2n−1

Rp
n .

Proof: If the following relations hold for all m , �2�m�n�,

1

2
�

j=1

m

�
x
j + i
y

j � + 
j=1

m

�
x
j − i
y

j �� = �
p=2m−1

2m−1

Op
m, �A15�

1

2
�

j=1

m

�
x
j + i
y

j � − 
j=1

m

�
x
j − i
y

j �� = �
p=2m−1

2m−1

Rp
m, �A16�
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hen the theorem holds. Here, Op
m means Op

m
� j=m+1

n Ij and so on.
In the case where m=2: LHS of �A15� is �
x

1
x
2+ i
y

1i
y
2�� j=3

n Ij and RHS of �A15� is also

x

1
x
2+ i
y

1i
y
2�� j=3

n Ij. LHS of �A16� is �
x
1i
y

2+ i
y
1
x

2�� j=3
n Ij and RHS of �A16� is also �
x

1i
y
2

i
y
1
x

2�� j=3
n Ij. Therefore �A15� and �A16� hold when m=2. In the following, if possible, we omit

he identity operator.
Suppose that �A15� and �A16� hold for m=k−1. Then we have


j=1

k−1

�
x
j + i
y

j � = �
p=2k−2

2k−1−1

Op
k−1 + �

p=2k−2

2k−1−1

Rp
k−1,

�A17�


j=1

k−1

�
x
j − i
y

j � = �
p=2k−2

2k−1−1

Op
k−1 − �

p=2k−2

2k−1−1

Rp
k−1.

n the other hand, we have

�
x
k + i
y

k�� �
p=2k−2

2k−1−1

Op
k−1 + �

p=2k−2

2k−1−1

Rp
k−1�

= � �
p=2k−2

2k−1−1

Op
k−1
x

k + �
p=2k−2

2k−1−1

Rp
k−1i
y

k� + � �
p=2k−2

2k−1−1

Op
k−1i
y

k + �
p=2k−2

2k−1−1

Rp
k−1
x

k�
= �

p=2k−1

2k−1

Op
k + �

p=2k−1

2k−1

Rp
k �A18�

nd

�
x
k − i
y

k�� �
p=2k−2

2k−1−1

Op
k−1 − �

p=2k−2

2k−1−1

Rp
k−1�

= � �
p=2k−2

2k−1−1

Op
k−1
x

k + �
p=2k−2

2k−1−1

Rp
k−1i
y

k� − � �
p=2k−2

2k−1−1

Op
k−1i
y

k + �
p=2k−2

2k−1−1

Rp
k−1
x

k�
= �

p=2k−1

2k−1

Op
k − �

p=2k−1

2k−1

Rp
k . �A19�

herefore we have


j=1

k

�
x
j + i
y

j � = �
p=2k−1

2k−1

Op
k + �

p=2k−1

2k−1

Rp
k ,

�A20�


j=1

k

�
x
j − i
y

j � = �
p=2k−1

2k−1

Op
k − �

p=2k−1

2k−1

Rp
k .

his implies that �A15� and �A16� hold for m=k. QED

Lemma:

                                                                                                            



t

R

w

=

F

P

a

102101-14 Koji Nagata J. Math. Phys. 46, 102101 �2005�

                        
HV ∧ FUNC A.E. ⇒ Re�
j=1

n

�f
x
j��� + if
y

j����� � �
p=2n−1

2n−1

fOp
n��� ,

�A21�

Im�
j=1

n

�f
x
j��� + if
y

j����� � �
p=2n−1

2n−1

fRp
n/i��� .

Proof: If the following relations hold for all m , �2�m�n�,

Re�
j=1

m

�f
x
j��� + if
y

j����� � �
p=2m−1

2m−1

fOp
m��� , �A22�

Im�
j=1

m

�f
x
j��� + if
y

j����� � �
p=2m−1

2m−1

fRp
m/i��� , �A23�

hen the theorem holds. Here, fOp
m means fOp

m
� j=m+1

n Ij and so on.

In the case where m=2: LHS of �A22� is f �
x
1
x

2�� j=3
n Ij + f �i
y

1i
y
2�� j=3

n Ij almost everywhere and

HS of �A22� is f �
x
1
x

2�� j=3
n Ij + f �i
y

1i
y
2�� j=3

n Ij. LHS of �A23� is f �
x
1
y

2�� j=3
n Ij + f �
y

1
x
2�� j=3

n Ij almost every-

here and RHS of �A23� is f �
x
1
y

2�� j=3
n Ij + f �
y

1
x
2�� j=3

n Ij. Therefore �A22� and �A23� hold when m

2. Here, we have used PROD A.E.. In the following, if possible, we omit the identity operator.
Suppose that �A22� and �A23� hold for m=k−1. Then we have


j=1

k−1

�f
x
j + if
y

j� � �
p=2k−2

2k−1−1

fOp
k−1 + �

p=2k−2

2k−1−1

ifRp
k−1/i,

�A24�


j=1

k−1

�f
x
j − if
y

j� � �
p=2k−2

2k−1−1

fOp
k−1 − �

p=2k−2

2k−1−1

ifRp
k−1/i.

UNC A.E. says

�− 1�fA��� � f �−1�A��� . �A25�

ROD A.E. says

fOp
k−1f
x

k � fOp
k−1
x

k �A26�

nd so on. Hence, we have
                                                                                                            



a

T

T

A

t

102101-15 Inequalities for experimental tests J. Math. Phys. 46, 102101 �2005�

                        
�f
x
k + if
y

k�� �
p=2k−2

2k−1−1

fOp
k−1 + �

p=2k−2

2k−1−1

ifRp
k−1/i�

= � �
p=2k−2

2k−1−1

fOp
k−1f
x

k + �
p=2k−2

2k−1−1

ifRp
k−1/ii f
y

k� + � �
p=2k−2

2k−1−1

fOp
k−1if
y

k + �
p=2k−2

2k−1−1

ifRp
k−1/i f
x

k�
�� �

p=2k−2

2k−1−1

fOp
k−1
x

k + �
p=2k−2

2k−1−1

fRp
k−1i
y

k� + � �
p=2k−2

2k−1−1

ifOp
k−1i
y

k/i + �
p=2k−2

2k−1−1

ifRp
k−1
x

k/i�
= �

p=2k−1

2k−1

fOp
k + �

p=2k−1

2k−1

ifRp
k/i �A27�

nd

�f
x
k − if
y

k�� �
p=2k−2

2k−1−1

fOp
k−1 − �

p=2k−2

2k−1−1

ifRp
k−1/i�

= � �
p=2k−2

2k−1−1

fOp
k−1f
x

k + �
p=2k−2

2k−1−1

ifRp
k−1/ii f
y

k� − � �
p=2k−2

2k−1−1

fOp
k−1if
y

k + �
p=2k−2

2k−1−1

ifRp
k−1/i f
x

k�
� � �

p=2k−2

2k−1−1

fOp
k−1
x

k + �
p=2k−2

2k−1−1

fRp
k−1i
y

k�− � �
p=2k−2

2k−1−1

ifOp
k−1i
y

k/i + �
p=2k−2

2k−1−1

ifRp
k−1
x

k/i�
= �

p=2k−1

2k−1

fOp
k − �

p=2k−1

2k−1

ifRp
k/i. �A28�

herefore we have


j=1

k

�f
x
j + if
y

j� � �
p=2k−1

2k−1

fOp
k + �

p=2k−1

2k−1

ifRp
k/i,

�A29�


j=1

k

�f
x
j − if
y

j� � �
p=2k−1

2k−1

fOp
k − �

p=2k−1

2k−1

ifRp
k/i.

his implies that �A22� and �A23� hold for m=k. QED

PPENDIX B

Lemma: Let SA stand for the spectrum of the Hermitian operator A. If

Tr��A� = �
y�SA

Prob��y����A�
� y ,

E��A� ª 	
���

	��d��fA��� ,
hen
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HV ∧ D ⇒ Tr��A� = E��A� . �B1�

Proof: Note

� � fA
−1��y�� ⇔ fA��� � �y� ⇔ y = fA��� ,

	
��fA

−1��y��

	��d��
	��fA

−1��y���
= 1,

y � y� ⇒ fA
−1��y�� � fA

−1��y��� = � . �B2�

ence we have

Tr��A� = �
y�SA

Prob��y����A�
� y = �

y�R
Prob��y����A�

� y = �
y�R

	��fA
−1��y���y

= �
y�R

	��fA
−1��y���y	

��fA
−1��y��

	��d��
	��fA

−1��y���

= �
y�R

	
��fA

−1��y��
	��fA

−1��y���
	��d��

	��fA
−1��y���

fA��� = 	
���

	��d��fA��� = E��A� .

�B3�

QED
Lemma:

���g�x�� = �g−1����x�,�x � R�

nd

Prob�����g�A��
� = Tr�����g�A��� = Tr���g−1����A�� = Prob�g−1������A�

� . �B4�

Proof: Obvious.
Lemma:

QJD ⇒ BSF,

HV ∧ JD ⇒ HV ∧ D �B5�

Proof: Obvious.
Theorem:6

HV ∧ JD ⇒ HV ∧ D ∧ FUNC A.E. �B6�

Proof: Suppose JD holds. Let y be any real number, and let Sª �� � fg�A����=y� and T

�� �g�fA����=y�. We want 	��S̄�T�=	��S� T̄�=0. This is valid if we have 	��S�=	��T�
	��S�T� since

	��S � T̄� + 	��S � T� = 	��S� ,

�B7�
	��S̄ � T� + 	��S � T� = 	��T� .
ote
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� � fg�A�
−1 ��y�� ⇔ fg�A���� � �y� ⇔ y = fg�A���� �B8�

nd

� � fA
−1�g−1��y��� ⇔ fA��� � g−1��y�� ⇔ g�fA���� � �y� ⇔ y = g�fA���� . �B9�

he lemma �B5� says that JD yields D. Then, from the lemma �B4�, we have

	��T� = 	������ � fA
−1�g−1��y�����

= Prob�g−1��y�����A�
� = Prob��y����g�A��

� = 	������ � fg�A�
−1 ��y���� = 	��S� . �B10�

sing the spectral representation of A, it follows that ���A��g����g�A��=���A� for any set �,
here g���= �g�x� �x���. Because, ���z�=1⇔z��⇒g�z��g���⇔�g����g�z��=1 holds �z
R�. Hence,

Prob��,g������A�,��g�A��
� = Tr�����A��g����g�A��� = Tr�����A�� = Prob�����A�

� . �B11�

n the other hand, we have g�g−1����=� because g�g−1����= �g�x� �x�g−1����= �g�x� �g�x�
��=�. Therefore, on substituting g−1��y�� into �, we have

Prob�g−1��y��,�y����A�,��g�A��
� = Prob�g−1��y�����A�

� = 	��T� . �B12�

ut, from JD we have

Prob�g−1��y��,�y����A�,��g�A��
� = 	��fA

−1�g−1��y��� � fg�A�
−1 ��y��� = 	��T � S� . �B13�

QED
Theorem:6

HV ∧ FUNC A.E. ⇒ HV ∧ PROD A.E. �B14�

Proof: Suppose that A and B are two commuting Hermitian operators. This means that there
xists a basis �Pi� by which we can expand A=�iaiPi, and such that B can also be expanded in the
orm B=�ibiPi. Now construct a Hermitian operator Oª�ioiPi with real numbers oi. None of
hem is equal. Namely, O is assumed to be nondegenerate by construction. Let us define functions
j and k by j�oi�ªai and k�oi�ªbi, respectively. Then we can see that if A and B commute, there
xists a nondegenerate Hermitian operator O such that A= j�O� and B=k�O�. Therefore, we can
ntroduce a function h such that AB=h�O� where hª j ·k. So we have the following:

fAB��� = fh�O���� � h�fO���� = j�fO���� · k�fO���� � f j�O���� · fk�O���� = fA��� · fB��� ,

�B15�

here FUNC A.E. has been used. QED
Lemma:7 If

	��S̄ � S�� = 	��S� � S� = 	��T̄ � T�� = 	��T� � T� = 0,

hen

	��S � T� = 	��S� � T�� . �B16�

Proof: Note

	��S̄ � S� � T� + 	��S � S� � T� = 	��S� � T� ,

�B17�
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	��S� � S � T� + 	��S � S� � T� = 	��S � T� .

f the following relation holds

	��S̄ � S�� = 	��S� � S� = 0, �B18�

hen

	��S̄ � S� � T� = 	��S� � S � T� = 0. �B19�

herefore, from �B17�, we have

	��S � S� � T� = 	��S� � T� = 	��S � T� . �B20�

imilar to the argument by changing S to T, S� to T�, and T to S�, we get

	��T � T� � S�� = 	��T� � S�� = 	��T � S�� . �B21�

rom the relations �B20� and �B21�, we conclude

	��T � S� = 	��T� � S�� . �B22�

QED
Lemma:

HV ∧ PROD A.E. ⇒ f���A���� � �0,1�, �	� − a.e.� . �B23�

Proof: Obvious.
Theorem:7

HV ∧ D ∧ PROD A.E. ⇒ HV ∧ JD �B24�

Proof: Suppose �A ,B�=0 holds. It follows from QJD, BSF, and D that

Prob��,�����A�,��B�
� = Tr�����A�����B�� = Tr����1�����A�����B��� = Prob��1�������A�����B��

�

= 	��f���A�����B�
−1 ��1��� . �B25�

ROD A.E. and the lemma �B23� say that

�B25� = 	������ � f���A�����B�
−1 ��1���� = 	�����f���A�����B���� = 1�� = 	�����f���A���� · f����B����

= 1�� = 	�����f���A���� = f����B���� = 1�� = 	��f���A�
−1 ��1�� � f����B�

−1 ��1��� . �B26�

n the other hand, we have

	��f���A�
−1 ��1�� � fA

−1���� = 	�����f���A���� = 1 ∧ fA��� � ��� = 	�����f���A���� · fA��� � ���

= 	�����f���A�·A��� � ��� = 	��f���A�·A
−1 ���� = Prob��������A�·A�

�

= Tr��������A� · A�� = Tr�����A�� . �B27�

e also obtain

	��f���A�
−1 ��1��� = Tr����1�����A��� = Tr�����A�� = 	��fA

−1���� . �B28�

ote �see �B7��

	��S � T� = 	��S� = 	��T� ⇔ 	��S � T̄� = 	��S̄ � T� = 0. �B29�
herefore, from Eq. �B27� and Eq. �B28�, we have
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	��f���A�
−1 ��1�� � fA

−1���� = 	��f���A�
−1 ��1�� � fA

−1���� = 0. �B30�

imilarly we can get

	��f����B�
−1 ��1�� � fB

−1����� = Tr������B��, 	��f����B�
−1 ��1��� = 	��fB

−1����� = Tr������B�� ,

�B31�

nd we have

	��f����B�
−1 ��1�� � fB

−1����� = 	��f����B�
−1 ��1�� � fB

−1����� = 0. �B32�

ence, from the lemma �B16�, we have

	��f���A�
−1 ��1�� � f����B�

−1 ��1��� = 	��fA
−1��� � fB

−1����� . �B33�

herefore, from �B26�, we conclude

Prob��,�����A�,��B�
� = 	��fA

−1��� � fB
−1����� , �B34�

hich is JD. QED
Theorem:6

HV ∧ D ∧ FUNC A.E. ⇒ HV ∧ JD �B35�

Proof: Suppose �A ,B�=0 holds. It follows from BSF, QJD, D, FUNC A.E., and PROD A.E.
hat

Prob��,�����A�,��B�
� = Tr�����A�����B�� = Tr����1�����A�����B��� = Prob��1�������A�����B��

�

= 	��f���A�����B�
−1 ��1��� = 	������ � f���A����

−1 ��1���� = 	�����f���A�����B����

= 1�� = 	�����f���A���� · f����B���� = 1�� = 	��������fA���� · ����fB���� = 1��

= 	��������fA���� = ����fB���� = 1�� = 	�����fA��� � � ∧ fB��� � ����

= 	��fA
−1��� � fB

−1����� . �B36�

QED
Now we summarize the inclusion relation as follows:

HV ∧ JD ⇔ HV ∧ D ∧ FUNC A.E. ⇔ HV ∧ D ∧ PROD A.E. �B37�
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x

1
x
2
y

1
y
2
z

1
z
2=−I in the proof of the theorem �3.6�. But, we have not used the quantum mechanical rule

in the proof of the theorem �4.2�. Likewise, a quantum mechanical rule 
x
i 
y

j
y
i 
x

j
z
i
z

j = I, �i , j�Nn , i� j� is needless to
prove the theorem �5.16�, while we have used the quantum mechanical rule in the proof of the theorem �3.6�. Obviously,

x

i 
y
j
y

k
y
i 
x

j
y
k
y

i 
y
j
x

k
x
i 
x

j
x
k=−I, �i , j ,k�Nn , i� j�k� i� is needless to prove the theorem �5.16�. Of course, Gleason’s

theorem is needless. Therefore, we can derive these inequalities �4.2� and �5.16� from more precise and weaker presup-
position which should not be necessarily false.
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The semiclassical approximation to the coherent state propagator requires complex
classical trajectories in order to satisfy the associated boundary conditions, but
finding these trajectories in practice is a difficult task that may compromise
the applicability of the approximation. In this work several approximations to the
coherent state propagator are derived that make use only of real trajectories, which
are easier to handle and have a more direct physical interpretation. It is verified in
a particular example that these real trajectories approximations may have excellent
accuracy. © 2005 American Institute of Physics. �DOI: 10.1063/1.2038608�

. INTRODUCTION

The path integral representation of the coherent state propagator K�z1 ,z2 ,T�= �z2�e−iHT/��z1�,
here the �zi� are the usual harmonic oscillator coherent states, appeared in the works of Klauder

nd collaborators1,2 and of Weissman.3 A semiclassical, or stationary phase, approximation leads to
lassical trajectories satisfying Hamilton equations of motion but subject to special boundary
onditions that can only be satisfied in a complex phase space. Aguiar and Baranger also consid-
red this problem4 and discovered an extra term, which they called I, in the semiclassical ap-
roximation that had been overlooked in previous studies and that turns out to be essential for a
orrect theory5 �the semiclassical spin propagator has a similar term,6 known as the Solari-
ochetov correction�. Numerical calculations involving complex trajectories in the semiclassical

oherent state propagator have been done for a variety of systems: Adachi considered a one-
imensional �1D� and time-dependent problem with chaotic dynamics;7 Rubin and Klauder,2 as
ell as Xavier and Aguiar,8 have treated 1D bound systems; 1D tunneling was considered in Ref.
and also in Ref. 10; Van Voorhis and Heller presented calculations for one and two dimensions11

nd for the N-dimensional Henon-Heiles potential;12 Ribeiro et al. have worked with the two-
imensional chaotic Nelson potential13 �numerical applications involving the spin coherent states
ave also appeared14�. Semiclassical approximations based on complex trajectories for the coor-
inate wave function, i.e., for the mixed representation K�x ,z ,T�= �x�e−iHT/��z�, were also devel-
ped, initially for the one-dimensional case15–17 and then generalized to many dimensions.18 The
ctual calculation of complex trajectories involves two difficulties: first, the effective dimension-
lity of the phase space is doubled, since both real and imaginary parts of position and momentum
ust be computed; second, the boundary conditions are defined part at initial time and part at final

ime, and finding the appropriate classical trajectory becomes a difficult problem known as “root
earch.” Therefore approximations that make use only of real trajectories are certainly desirable.

Since the propagator K�z1 ,z2 ,T� is a function of time, any complex trajectory that satisfies the
oundary conditions at time T must belong to a whole “branch” of trajectories, parametrized by T.
n general, for a given system and for fixed values of z1 and z2 there are several such branches. In
ractice, once a solution is found for a particular value of T, one may obtain all elements of the
ame branch by making small steps forward or backward in time and using appropriate iteractive

�
Electronic mail: mnovaes@ifi.unicamp.br
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rocedures. It may happen that for a certain value of time a relevant complex trajectory has a small
or even null� imaginary part, and in that case its branch was called “nearly real” by Van Voorhis
nd Heller.11,12 It is possible that more than one “nearly real” branch contribute to the semiclas-
ical propagator for a given time, and thus one may consider only these branches and still accu-
ately reproduce interference effects.

A similar analysis can be made for the mixed propagator K�x ,z ,T�, but in this case one
sually holds T fixed and considers x as a parameter. Varying x thus produces a “family” of
rajectories, and again there may exist several such families. However, there is always a value of
for which the involved trajectory is real, and its family was called the “main family” by Aguiar

t al.16 Using the main contribution alone is sometimes a very good approximation, but it cannot
eproduce interference because only one trajectory enters the calculation at a time. On the other
and, as already noted, finding all the necessary complex trajectories �i.e., performing the “root
earch”� is usually a difficult problem, especially in more than one dimension. Therefore the
ossibility was considered16,18 of employing only real trajectories in the semiclassical approxima-
ion to K�x ,z ,T�. This was done by approximating the complex trajectories by real ones, that are
ompatible with the quantum uncertainties and satisfy less restrictive boundary conditions. The
nal real trajectories approximations are in principle less accurate than the original complex one,
ut they are much simpler and sometimes have practically the same accuracy.16,18

The purpose of the present work is to present semiclassical approximations to K�z1 ,z2 ,T� that
re based only on real classical trajectories, thus making the calculation much more tractable. One
ethod that accomplishes exactly this is the “cellular dynamics,” initially developed by Heller19

see also Ref. 20� and later generalized and applied to the stadium billiard with great success.21

his technique has shown to be accurate even for long times,21,22 and it is actually very close in
pirit to the present work, in the sense that the contribution of a complex classical trajectory is
xpanded to second order in the vicinity of a real one. However, Heller’s starting point is the
an-Vleck-Gutzwiller formula for the semiclassical propagator,23 while we start from the formu-

ation of Baranger et al.,5 and our results are slightly different from those of Heller. We also
onsider a variety of boundary conditions that the real trajectories may satisfy, something not
iscussed at length in Ref. 21.

Another approach to the semiclassical coherent state propagator that is based on real trajec-
ories is the so-called initial value representations, such as that of Herman and Kluk.24 Recent
eviews of this method can be found in Ref. 25. Initial value methods are usually easy to apply and
easonably accurate for long times, but they require a numerical integration over all possible initial
onditions. Since the present method requires only a few trajectories, at least for short times, it
rovides a much clearer physical picture.

This article is divided as follows. In the next section we give a brief account of the semiclas-
ical approximation to the coherent state propagator K�z1 ,z2 ,T� and the complex trajectories. In
ec. III we present the approximations that are based on the real trajectories defined by z1 or by z2.
eal trajectories that satisfy mixed boundary conditions are investigated in Sec. IV. We present an
pplication to a nonlinear oscillator in Secs. V and VI and we conclude in Sec. VII.

I. THE SEMICLASSICAL COHERENT STATE PROPAGATOR

The coherent states of a harmonic oscillator of mass m and angular frequency � are defined by

�z� = exp�za† − z*a	�0� , �2.1�

here �0� is the oscillator ground state. The operators a† and a are, respectively, creation and
nnihilation operators, related to position Q and momentum P by

a =
1

2

�Q

b
+ i

P

c
�, a† =

1

2

�Q

b
− i

P

c
� . �2.2�

he parameters b and c define natural scales of the problem, and are such that bc=� and c /b

m�. It is easy to see that if we write
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z =
1

2

�q

b
+ i

p

c
� �2.3�

hen q and p are average values,

�z�Q�z� = q, �z�P�z� = p . �2.4�

he parameters b and c are related to quantum uncertainties,

�Q =
b

2

, �P =
c

2

, �2.5�

nd we see that coherent states are minimum uncertainty states.
These coherent states are never orthogonal,

�z2�z1� = exp�− 1
2 �z1�2 − 1

2 �z2�2 + z1z2
*	 , �2.6�

nd in the position representation they are Gaussians,

�x�z� = �−1/4b−1/2 exp−
�x − q�2

2b2 +
i

�
p�x − q�� . �2.7�

n terms of the usual basis of number states �n�, defined such that a†a�n�=n�n�, the coherent states
ay be written as

�z� = e−�z�2/2�
n=0

�
zn


n!
�n� . �2.8�

t is easy to see that they are eigenstates of the annihilation operator, a�z�=z�z�.
In order to write the semiclassical approximation to the quantum coherent state propagator

K�z1,z2,T� = �z2�e−iHT/��z1� , �2.9�

e must consider a complex version of the phase space, i.e., we must make use of a coordinate
�t� and a momentum p�t� that are complex numbers. Following the approach of Ref. 5 we define

u�t� =
1

2

�q�t�
b

+ i
p�t�

c
�, v�t� =

1

2

�q�t�
b

− i
p�t�

c
� . �2.10�

t is of fundamental importance to realize that v�t� is not the complex conjugate of u�t�. In terms
f these variables the boundary conditions become

u�0� = u� = z1, v�T� = v� = z2
*. �2.11�

here is nothing special about the values u�T�=u� and v�0�=v�, they are to be determined dy-
amically. We use hereafter a prime �double prime� to denote initial �final� values, in order to
implify the formulas and stay close to the notation of Ref. 5.

The canonical semiclassical coherent state propagator is

Ksc�z1,z2,T� = N�
c.t.


 i

�

�2S

�u� � v�
exp i

�
�S + I�� , �2.12�

here N=exp�− 1
2 �z1�2− 1

2 �z2�2	 is a normalization factor, the summation is over all classical tra-

ectories satisfying the boundary conditions, and the complex action is given by
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S�u�,v�,T� = �
0

T

dt� i�

2
�u̇v − v̇u� − H� −

i�

2
�u�v� − u�v�� . �2.13�

his is related to the usual Hamilton action

SH = �
0

T

�pq̇ − H�dt �2.14�

y

S = SH −
q�p� − q�p�

2
−

i�

2
�u�v� − u�v�� . �2.15�

he Hamiltonian that governs the classical movement according to the usual Hamilton equations

q̇ =
�H
�p

, ṗ = −
�H
�q

, �2.16�

s the average value of the quantum Hamiltonian in coherent states,

H = �z�H�z� , �2.17�

hich is sometimes called the smoothed Hamiltonian. The quantity I is related to its second
erivative,

I =
1

2
�

0

T �2H
�u � v

dt . �2.18�

The prefactor in �2.12� can be written only in terms of the complex tangent matrix. The
lassical tangent matrix of a certain trajectory is the linear application that relates initial and final
isplacements about it. We take into account the quantum uncertainties to define it as follows:

��q�/b

�p�/c
� = �mqq mqp

mpq mpp
���q�/b

�p�/c
� . �2.19�

he complex tangent matrix, on the other hand, is defined as

��u�

�v�
� = �Muu Muv

Mvu Mvv
���u�

�v�
� . �2.20�

he relation between the matrix elements of these different representations is as follows:

2Muu = mqq + mpp + impq − imqp, �2.21�

2Muv = mqq − mpp + impq + imqp, �2.22�

2Mvu = mqq − mpp − impq − imqp, �2.23�

2Mvv = mqq + mpp − impq + imqp. �2.24�

t is possible to show that the second derivative of the complex action is given by

i

�

�2S

�u� � v�
=

1

Mvv
, �2.25�
nd therefore the semiclassical coherent state propagator becomes
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Ksc�z1,z2,T� = �
c.t.

N

Mvv

exp i

�
�I + S�� . �2.26�

Upon fixing z1 and z2, the squared modulus of this propagator may be interpreted as a time
ependent transition probability. On the other hand, if we fix z1 and T and consider z2 as a variable
hen �K�z1 ,z2 ,T��2 is a phase space representation, a Husimi function, of the evolved state
−iHT/��z1�.

If it happens that Mvv tends to zero for a certain combination of �z1 ,z2 ,T�, then we see that the
emiclassical approximation �2.26� diverges. This is called a phase space caustic2,7,12,16 and the
uadratic approximation used in the derivation of �2.26� is not valid in its vicinity. In order to
btain an uniform approximation that remains valid at caustics it is necessary to employ a conju-
ate application of the Bargmann representation, as discussed in Ref. 26. We shall not be con-
erned with caustics in this work.

II. THE “LEAVING” AND THE “ARRIVING” TRAJECTORIES

We have seen that the classical trajectories entering the semiclassical propagator are deter-
ined by mixed boundary conditions. The initial position and momentum q� and p� are not the

eal numbers q1 and p1, but rather some complex numbers such that u�=z1. Conversely, the final
alues q� , p� are not q2 , p2 but are such that v�=z2

*. It is in general not an easy task to find such
rajectories in practice, even for simple systems. However, it may happen that the complex tra-
ectory is close enough to a real one so that we may still obtain a reasonable result by expanding
he propagator to second order in the vicinity of this real trajectory.16,18 We investigate this
roblem with some detail in the next sections.

. Leaving

Let us suppose a certain complex classical trajectory that is to be used in the calculation of the
emiclassical propagator, and let us assume it is not very different from the real trajectory that
tarts at the point �q1 , p1�. We call this the “leaving” trajectory because it leaves the phase space
oint corresponding to the initial coherent state. After a time T the position and the momentum
ill be some real numbers �qf , pf�, generally different from the pair �q2 , p2�. We will expand the

omplex action up to second order around this trajectory. If q� is the initial complex position and
p� is the initial complex momentum, we may write

q� = q1 + �q1, p� = p1 + �p1, �3.1�

here �q1 and �p1 are assumed to be small �complex� quantities. Moreover, if q� is the final
omplex position and p� is the final complex momentum, we may write in a similar way

q� = qf + �qf, p� = pf + �pf . �3.2�

Therefore we have the approximation

S�u�,v�,T� � S�z1,vr,T� + � �S

�q�
�

r

�q1 + � �S

�p�
�

r

�p1 +
1

2
� �2S

�q�2�
r

�q1
2 + � �2S

�q� � p�
�

r

�q1�p1

+
1

2
� �2S

�p�2�
r

�p1
2, �3.3�

here the subscript r means that the quantity must be evaluated at the real trajectory �therefore

r�=b−1q1− ic−1p1 and ur�=b−1qf + ic−1pf�. In order to obtain the derivatives of the action, we resort

o Eqs. �2.10� and �2.15�. Noticing that
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� �SH

�q�
�

r

= − pi +
�SH

�q�

�q�

�q�
, � �SH

�p�
�

r

=
�SH

�q�

�q�

�p�
, �3.4�

ne can obtain the derivatives of the total action, which are given by

� �S

�q�
�

r

= −
ic

2

�vr� + �mqq − impq�ur��, � �S

�p�
�

r

=
b

2

�vr� − �mpp + imqp�ur�� . �3.5�

From the definition of the tangent matrix we have

�q�

�q�
= mqq,

�q�

�p�
=

b

c
mqp,

�p�

�q�
=

c

b
mpq,

�p�

�p�
= mpp, �3.6�

hich determines, to first order, the final differences in terms of the initial ones:

�q2 = mqq�q1 +
b

c
mqp�p1, �p2 =

c

b
mpq�q1 + mpp�p1. �3.7�

n the other hand, the boundary conditions

q�

b
+ i

p�

c
=

q1

b
+ i

p1

c
,

q�

b
− i

p�

c
=

q2

b
− i

p2

c
, �3.8�

rovide the secondary relations

b−1��q2 + �qf − q2�� = ic−1��p2 + �pf − p2��, b−1�q1 = − ic−1�p1. �3.9�

olving for �q1 and �p1 in terms of �qf −q2� and �pf − p2� we have

�q1 = − Mvv
−1��qf − q2� − ib�pf − p2�/c�, �p1 = ic�q1/b . �3.10�

ubstituting this in �3.3� one can see that the first-order terms give

� �S

�q�
�

r

�q1 + � �S

�p�
�

r

�p1 = −
i�

2

ur��qf − q2

b
− i

pf − p2

c
� = − i�ur��vr� − z2

*� . �3.11�

It is easy to take derivatives of Eq. �3.5� in order to calculate the quadratic terms. In so doing
e neglect derivatives of the tangent matrix elements, because this would be a higher order

orrection. Adding up all quadratic terms and making the proper identifications, we see that it can
e related to the difference �vr�−z2

*� as

quadratic terms = −
i�

2
MuvMvv

−1�vr� − z2
*�2. �3.12�

herefore the final result is the following:

Kq1p1
�z1,z2,T� =

N

�Mvv�r

exp i

�
�Ir + Sr� + ur��vr� − z2

*� +
1

2

Muv

Mvv
�vr� − z2

*�2� . �3.13�

he subscript in Kq1p1
denotes that this formula was obtained using the “leaving” trajectory. Notice

hat the prefactor and the extra term were not expanded but simply evaluated at the real trajectory,
hich is consistent with the original quadratic derivation of the semiclassical approximation. It is

lso important to remember that even though the action Sr is evaluated at a real trajectory, it
ontinues to be a complex number.

The expression �3.13� depends quadratically on the difference between the final value of the

ariable v along the real trajectory and the value that it would have in the complex trajectory. If by
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ome reason the situation is such that vr� and z2
* coincide, then this formula and the original one

2.12� will give the same result. One may argue that it is possible to obtain the same expression by
xpanding the action as

S � Sr + � �S

�v�
�

r

�vr� − z2
*� +

1

2
� �2S

�v�2�
r

�vr� − z2
*�2. �3.14�

his is certainly true and actually an easy calculation. We have chosen the long way of using the
osition/momentum variables because this will be the only possibility in the next section.

. Arriving

What we call the “arriving” trajectory is the real trajectory that starts in a certain initial point
qi , pi� and after a time T arrives at the point �q2 , p2�. We can use this trajectory to approximate the
emiclassical propagator in the very same way that we did with the “leaving” trajectory. Similar to
he previous arguments, we write

q� = qi + �q1, p� = pi + �p1, q� = q2 + �q2, p� = p2 + �p2. �3.15�

nverting Eq. �2.19� we see that

�q�

�q�
= mpp,

�q�

�p�
= −

b

c
mqp,

�p�

�q�
= −

c

b
mpq,

�p�

�p�
= mqq. �3.16�

sing these relations we can write the initial differences in terms of the final ones, analogous to
hat we did in �3.7�. Using the boundary conditions it is possible to show that

�q2 = − Mvv
−1��qi − q1� + ib�pi − p1�/c�, �p2 = − ic�q2/b . �3.17�

he first derivatives of the action are in this case given by

� �S

�q�
�

r

= −
ic

2

�ur� + �mpp − impq�vr��, � �S

�p�
�

r

= −
b

2

�ur� − �mqq + imqp�vr�� . �3.18�

We now expand the complex action to second order around this real trajectory. After simpli-
cations, we obtain

Kq2p2
�z1,z2,T� =

N

�Mvv�r

exp i

�
�Ir + Sr� + vr��ur� − z1� +

1

2

Mvu

Mvv
�ur� − z1�2� , �3.19�

here the meaning of the subscript is evident. This time the expression depends on the difference
etween the initial value of the variable u in the real trajectory and the value that it would have in
he complex one. Its interpretation is quite close to that of �3.13�.

V. OTHER POSSIBLE REAL TRAJECTORIES

In the previous section we saw that we may expand the semiclassical propagator in the
icinity of the real trajectories determined by the initial or by the final labels, �q1 , p1� and �q2 , p2�,
hich we called the “leaving” and the “arriving” trajectories, respectively. Although these are
robably the most natural real trajectories approximations, we can devise four more possibilities
hat are also interesting. Of course one may use any real trajectory to build an approximation—in
act, in principle it should be possible to find the “best” choice by a variational approach, but this
eems to be a highly nontrivial problem—but the idea here is to obtain explicit formulas for the
ost natural cases. These are the four trajectories that are determined by pairwise combination of
he coherent state labels.
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We shall present a detailed calculation for the case when the trajectories determined by the
air �q1 ,q2� are used. All other cases can be treated in a very similar way, and for them we shall
e less explicit.

. From q1 to q2

Let us consider a trajectory which satisfies the following boundary conditions: it leaves q1 at
ime zero and arrives at q2 at time T. Its initial and final momenta, pi and pf, remain unknown, but
re real numbers. Different from the previous section, now there may be more than one trajectory
atisfying these requirements. We write

q� = q1 + �q1, q� = q2 + �q2, p� = pi + �pi, p� = pf + �pf . �4.1�

he initial and final momenta are regarded as functions of the initial and final positions. Therefore
e may write

�pi = � �p�

�q�
�

r

�q1 + ��p�

�q�
�

r

�q2, �pf = ��p�

�q�
�

r

�q1 + ��p�

�q�
�

r

�q2, �4.2�

here again the subscript r means that the quantity must be evaluated at the real trajectory. On the
ther hand the boundary conditions u�=z1 and v�=z2

* imply that

�pi =
ic

b
�q1 − �pi − p1�, �pf = −

ic

b
�q2 − �pf − p2� . �4.3�

Since we are considering q� and q� as independent variables, the partial derivatives in �4.2�
re given by

�p�

�q�
= −

c

b

mqq

mqp
,

�p�

�q�
=

c

b

1

mqp
,

�p�

�q�
= −

c

b

1

mqp
,

�p�

�q�
=

c

b

mpp

mqp
, �4.4�

here we have used that mqqmpp−mqpmpq=1. Substituting this in �4.2� and using �4.3� we have

�q1

b
=

mqp

c

��pf − p2� − M2�pi − p1��
1 − M1M2

,
�q2

b
=

mqp

c

�M1�pf − p2� − �pi − p1��
1 − M1M2

, �4.5�

here we have defined the complex numbers

M1 = mqq + imqp, M2 = mpp + imqp. �4.6�

We now expand the complex action around this real trajectory up to second order,

S � Sr + � �S

�q�
�

r

�q1 + � �S

�q�
�

r

�q2 +
1

2
� �2S

�q�2�
r

�q1
2 + � �2S

�q� � q�
�

r

�q1�q2 +
1

2
� �2S

�q�2�
r

�q2
2.

�4.7�

oticing that

� �SH

�q�
�

r

= − pi, � �SH

�q�
�

r

= pf , �4.8�

e can obtain the derivatives of the total action,

� �S

�q�
�

r

=
c


2mqp

�ur� − vr��mqq + imqp��, � �S

�q�
�

r

=
c


2mqp

�vr� − ur��mpp + imqp�� . �4.9�
fter simplifications, the linear terms can be written as
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linear terms = −
b

2

�v��pi − p1� − u��pf − p2�� . �4.10�

We now calculate the second derivatives and substitute �4.5� in �4.7�. After many simplifica-
ions, the final result can be shown to be

Kq1q2
�z1,z2,T� = �

c.t

N

�Mvv�r

exp i

�
�Ir + Sr� +

iz2


2c
�pf − p2� −

iz1
*


2c
�pi − p1��

� exp−
A1

2c2 �pi − p1�2 −
A2

2c2 �pf − p2�2 −
A12

2c2 �pi − p1��pf − p2�� , �4.11�

here

A1 = 1 −
1

2
�1 − M1

*M2

1 − M1M2
�, A2 = 1 −

1

2
�1 − M2

*M1

1 − M1M2
�, A12 =

2imqp

1 − M1M2
. �4.12�

This expression is more complicated than the ones we obtained in Sec. III. This is so because
he classical trajectories involved are determined by mixed boundary conditions, i.e., their initial
nd final positions. Its structure is nevertheless still the same: it depends on differences between
he values of the variables in the real trajectories and the corresponding coherent state labels. The

ost important property of this formula is that the initial momentum pi is not known a priori. It
ust be determined as a function of the given parameters, and in fact there may be more than one

ossible value for it. Notice that since pi and also pf depend nontrivially on z1 , z2 and T this
ormula is not a simple Gaussian as it may seem at first. Once again, even though the function Sr

s evaluated at a real classical trajectory, it will in general be a complex number.
Notice that the differences pi− p1 and pf − p2 are always divided by the momentum uncertainty

. Therefore only classical trajectories whose initial momentum is within a distance c from p1 may
e important for the semiclassical propagator. The same reasoning applies to the final momentum.
e see that the real trajectories to be used in this formalism must be compatible with the quantum

ncertainty principle.
As a simple illustration of this formula, let us consider a harmonic oscillator of unit mass and

ngular frequency �=c /b. An initial condition �q� , p�� leads, after a time T, to the final values

q� = q� cos��T� +
p�

�
sin��T�, p� = − �q� sin��T� + p� cos��T� . �4.13�

f we impose that the trajectory must start in q1 and end in q2 then it is easy to see that there is
nly one possibility that satisfies these boundary conditions, for which

pi =
��q2 − q1 cos��T��

sin��T�
, pf =

��q2 cos��T� − q1�
sin��T�

. �4.14�

n this case we have mqp=sin��T� and M1=M2=ei�T, which leads to A1=A2=1 and A12=−e−i�T.
he eiIr/� term cancels the prefactor. Finally, using that Sr=e−i�T�q1 /b+ ipi /c��q2 /b− ipf /c� /2i we
btain

Kq1q2
�z1,z2,T� = exp�− 1

2 ��z1�2 + �z2�2� + e−i�Tz1z2
*	 , �4.15�

hich is precisely the exact result. This comes as no surprise since the exact action in this case is
f second order to begin with and thus all semiclassical approximations we consider in this work

ill be exact.
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. From q1 to p2

We now consider the real trajectory that starts in q�=q1 with a certain momentum p�= pi and,
fter a time T, is in a final point q�=qf with the momentum p�= p2. We therefore treat q� and p�
s independent variables, in which case we have the following partial derivatives:

�p�

�q�
= −

c

b

mpq

mpp
,

�p�

�p�
=

�q�

�q�
=

1

mpp
,

�q�

�p�
=

b

c

mqp

mpp
. �4.16�

e may calculate the action’s first derivatives,

� �S

�q�
�

r

= −
ic


2mpp

�ur� + vr��mpp − impq��, � �S

�p�
�

r

=
b


2mpp

�vr� − ur��mpp + imqp�� ,

�4.17�

nd after writing

q� = q1 + �q1, q� = qf + �qf, p� = pi + �pi, p� = p2 + �p2, �4.18�

e may also obtain, using an expansion analogous to �4.2� and the boundary conditions, the
elations

�q1

b
= −

impp

c

�M2�pi − p1� − ic�qf − q2�/b�
1 + M2M3

* , �4.19�

�p2

c
= −

impp

b

�M3�qf − q2� − ib/c�pi − p1��
1 + M2M3

* , �4.20�

here M2 has already been defined and M3=mpp+ impq.
After calculating the action’s second derivatives, the final result is

Kq1p2
�z1,z2,T� = �

c.t

N

�Mvv�r

exp i

�
�Ir + Sr� −

z2


2b
�qf − q2� −

iz1
*


2c
�pi − p1��

� exp−
B1

2c2 �pi − p1�2 −
B2

2b2 �qf − q2�2 +
B12

�
�pi − p1��qf − q2�� , �4.21�

here the coefficients are given by

B1 = 1 −
1

2
�1 − M2M3

1 + M2M3
*�, B2 = 1 −

1

2
�1 − M2

*M3
*

1 + M2M3
*�, B12 =

impp

1 + M2M3
* . �4.22�

e see that the semiclassical propagator obtained is quite similar in structure to the one presented
n Sec. IV A. Only this time we have position and momentum in a more equal footing. As pi

p1 is always divided by c and qf −q2 is always divided by b, we see that again the quantum
ncertainties play a fundamental role in selecting the relevant classical trajectories.

. From p1 to q2

It is also possible to fix the initial momentum as p1 and then search for an initial position qi

uch that the final position is q2. In that case the final momentum will be some pf. Proceeding in
omplete analogy with the previous cases, we take p� and q� to be independent variables and
alculate derivatives of q� , p� and S with respect to them. After obtaining the values of �p1 and
q2 in terms of �qi−q1� and �pf − p2� and expanding the action to second order, the final result will

e
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Kp1q2
�z1,z2,T� = �

c.t

N

�Mvv�r

exp i

�
�Ir + Sr� +

iz2


2c
�pf − p2� −

z1
*


2b
�qi − q1��

� exp−
C1

2b2 �qi − q1�2 −
C2

2c2 �pf − p2�2 −
C12

�
�qi − q1��pf − p2�� , �4.23�

here the coefficients are given by

C1 = 1 −
1

2
�1 − M1

*M4
*

1 + M1M4
*�, C2 = 1 −

1

2
�1 − M1M4

1 + M1M4
*�, C12 =

imqq

1 + M1M4
* , �4.24�

ith M4=mqq+ impq.

. From p1 to p2

Finally, we consider the trajectory determined by the pair �p1 , p2�. This has initial and final
ositions qi and qf, respectively. The procedure to obtain the semiclassical approximation is
ertainly clear by now, so it will not be repeated in any detail. The final result in this case will be

Kp1p2
�z1,z2,T� = �

c.t

N

�Mvv�r

exp i

�
�Ir + Sr� −

z1
*


2b
�qi − q1� −

z2


2b
�qf − q2��

� exp−
D1

2b2 �qi − q1�2 −
D2

2b2 �qf − q2�2 −
D12

b2 �qi − q1��qf − q2�� , �4.25�

here the coefficients are given by

D1 = 1 −
1

2
�1 − M3M4

*

1 − M3
*M4

*�, D2 = 1 −
1

2
�1 − M3

*M4

1 − M3
*M4

*�, D12 =
impq

1 − M3
*M4

* . �4.26�

. Summary of Sec. IV

In this section we have obtained four different semiclassical approximations to the quantum
oherent state propagator that are based only on real trajectories. The trajectories considered share
he property that they are not determined by initial or final values, but satisfy mixed boundary
onditions. Therefore finding them in practice is not trivial, but is certainly easier than finding the
riginal complex ones. All the semiclassical propagators obtained are in principle able to repro-
uce quantum effects such as interference, since there may be more than one classical trajectory
nvolved. They will be affected by caustics just like the original formula �2.26�, but the location of
uch caustics will change because �Mvv�r is different for each one of them.

Which one of the several formulas obtained here and in Sec. III is more accurate will depend
n the particular problem at hand. We have considered only initial and final coherent states with
he same value of the parameter b, but a generalization of the semiclassical propagator was
resented27 for more general b’s, and the calculations presented here may be adapted to that case
ith no essential difficulty. Let us suppose for a moment that the initial coherent state �z1� has a
osition uncertainty b1 while �z2� has a position uncertainty b2. If these numbers are small that
eans the states are very narrow in the position representation, while having a large uncertainty in
omentum. In that case we conjecture that an approximation in the spirit of Kq1q2

would be the
ost effective one. If b1 is small but b2 is large, than Kq1p2

would be a better candidate, and so on.
f course for the free particle and the harmonic oscillator they are all exact, regardless of the
alues of b1 and b2.

In Sec. V, we present an application of the formalism just presented to a nonlinear system. The

urpose is not to attempt an exhaustive investigation of the several possibilities, but rather to
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llustrate the method in a simple case. We have chosen a system for which many analytical results
re possible so that the main properties of the theory do not disappear under numerical calcula-
ions.

. APPLICATION TO A NONLINEAR OSCILLATOR: SHORT TIME

We consider the nonlinear Hamiltonian

H = ���a†a�2 =
1

��

�p2 + �2q2 − ���2

4
, �5.1�

hich is diagonal in the usual number basis,

H�n� = En�n� = ��n2�n� . �5.2�

he quantum propagator in this case is quite simple:

K�z1,z2,T� = �z2�e−iHT/��z1� = N�
n=0

� �z1z2
*�n

n!
e−in2�T. �5.3�

e shall be interested, for simplicity, only in the diagonal case

K�z1,z1,T� = e−�z1�2�
n=0

� �z1�2n

n!
e−in2�T, �5.4�

hose squared modulus is the return probability,

P�z1,T� = �K�z1,z1,T��2. �5.5�

his function is periodic with period Tr=2� /�. In the semiclassical limit the term that is respon-
ible for the largest contribution to the sum in �5.4� is n0��z1�2. If we linearize the exponent in the
icinity of this term we have

P�z1,T� � e−2�z1�2� �
n�n0

�z1�2n

n!
e2in0n�T�2

. �5.6�

otice that expression �5.6� has a distinct time scale,

Tc =
�

n0�
. �5.7�

he quantities Tr and Tc are usually called revival time and classical time.28

For short times, we can approximate �K�z1 ,T��2�1− ��H2�− �H�2�T2 /�2, where �·� denotes an
verage value in the state �z1�. For the system in question, this gives

P�z1,T� � 1 − �4�z1�6 + 6�z1�4 + �z1�2��2T2. �5.8�

et us write z1= �q+ ip� /
2 and take for simplicity the value q=0. Since the movement in phase
pace has circular symmetry, this choice is of no fundamental importance. The short-time expan-
ion �5.8� becomes simply

P�z1,T� � 1 − 1
2 �p6 + 3p4 + p2�T2. �5.9�

Let us now turn to the semiclassical approximation. From now on we set �=�=1, which

mplies b=c=1. The smoothed Hamiltonian associated with �5.1� is
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H =
�p2 + q2��p2 + q2 + 2�

4
= uv�uv + 1� , �5.10�

nd the corresponding Hamilton equations are

q̇ =
�H
�p

= �p, ṗ = −
�H
�q

= − �q , �5.11�

here we have defined �= p2+q2+1. If we note that �� ,H	=0, and thus that � is a constant of the
otion, then it is clear that

q� = q�cos��t� + p�sin��t�, p� = p�cos��t� − q�sin��t� . �5.12�

e see that the classical trajectories have a period of motion that is energy-dependent and given
y 2� /�. If we remember that n0+1/2= �q2+ p2� /2 we see that in the semiclassical limit this time
cale becomes precisely Tc.

The tangent matrix that is associated with the classical trajectory that starts in �q� , p�� can be
btained by simply differentiating the equations of motion. We must remember that the angular
requency � is not uniform. The result is

�mqq mqp

mpq mpp
� = � cos��t� sin��t�

− sin��t� cos��t�
��1 + 2q�p�t 2p�2t

− 2q�2t 1 − 2q�p�t
� . �5.13�

he action of such a trajectory is easily seen to be

S =
�� − 1�2T

4
− i

�� − 1�
2

, �5.14�

hile the extra term is

I = �� − 1/2�T . �5.15�

he result of this semiclassical approximation based on complex trajectories will be given in Sec.
I.

. The “leaving” and the “arriving” trajectories

The first possibility we consider is to approximate the return probability by using only the real
rajectory that leaves the position q=0 with momentum p. The tangent matrix for that trajectory is

�mqq mqp

mpq mpp
� = � cos��t� sin��t�

− sin��t� cos��t�
��1 2p2T

0 1
� , �5.16�

hich gives the values

Muv = − ip2Te−i�T, Mvv = �1 + ip2T�ei�T. �5.17�

he angular frequency is �= p2+1 and the final points in phase space are qf = p sin��T� and pf

p cos��T�. This corresponds to

ur� = �vr��
* =

ip

2

e−i�T. �5.18�
Inserting all this information, together with �5.14� and �5.15�, into the formula �3.13� we have
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Kq1p1
�z1,T� =

1

1 + ip2T

exp iT

4
�p4 + 2p2� − ip2e−i�T/2 sin��T/2��

� exp ip4T

�1 + ip2T�
e−i�T sin2��T/2�� . �5.19�

he first thing we note is that for p=0 we obtain the exact result K=1. Moreover, in the short time
egime we can expand �5.19� and obtain

�Kq1p1
�z1,T��2 � 1 −

1

2
�p6 + 3p4 + p2�T2 �short times� , �5.20�

hich again reproduces the exact calculation. For later times we should not expect exact agree-
ent.

Let us now turn to the “arriving” trajectory, the one that starts in qi , pi and arrives at the
osition q=0 with momentum p after a time T. The tangent matrix is less trivial than in the
revious case, but in the end we get

Mvu = − ip2Te−i�T, Mvv = �1 + ip2T�ei�T. �5.21�

ince q2+ p2 is a conserved quantity, we have �=qi
2+ pi

2+1= p2+1. After the whole calculation is
one, we find out that Kq2p2

=Kq1p1
. This indicates that perhaps these two approximations will

lways have the same content of information, something that is not completely unexpected be-
ause of the dual role of �z1� and �z2� in the quantum propagator.

. The q1\q2 possibility

In that case the trajectories that enter the approximation have initial momentum given by

pi sin��pi
2 + 1�T� = 0. �5.22�

f course one solution to this equation is

pi�=pf� = 0, �5.23�

n which case the particle simply stays still and �=1. It is easy to see that for this trajectory the
angent matrix is very simple,

�mqq mqp

mpq mpp
� = � cos�T� sin�T�

− sin�T� cos�T�
� , �5.24�

nd therefore M1=M2=Mvv=eiT. The contribution of this trajectory to the propagator is

K0 = exp�− ip2 sin�T/2�e−iT/2	 , �5.25�

here we have used Sr+Ir=T /2. Notice that for p=0 we again have the exact result K0=1. We
lso note that the function �K0�2 has a period of 2�, which of course corresponds to the quantum
evival time.

We now turn to the other solutions of Eq. �5.22�. They are of the form

pi
2�n� =

2n�

T
− 1, �5.26�

here n is an integer, which leads to �n=2n� /T. In this case we have less trivial trajectories, for

hich the tangent matrix is given by
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�mqq mqp

mpq mpp
� = �1 2pi

2T

0 1
� , �5.27�

nd we see that the prefactor is Mvv= �1+ ipi
2T�, while M1=M2=−4pi

4T2. The action and the extra
erm are given by Sr= �pi

4T−2ipi
2� /4 and Ir= �pi

2+1/2�T. The coefficients in �4.11� are

A1 = A2 = 1 +
ipi

2T

2�1 + ipi
2T�

, A12 = −
1

1 + ipi
2T

. �5.28�

fter many simplifications, we obtain

Kq1q2
= �

n=0

�

Kn, �5.29�

here the contribution of the trajectory with label n �different from zero� is given by

Kn =
1


1 + ipi
2T

exp−
ipi

2T

1 + ipi
2T

�pi − p�2 +
iT

4
�pi

4 + 4pi
2 + 2�� . �5.30�

Note that for short times pi�n� is very large, so Kn becomes negligible and K0 gives the
nly contribution. However, it predicts the initial decay �K0�2�1−2p2T2, which is very slow
ompared to the exact calculation �5.9�. The two results agree only for very small values of the
omentum p.

Concerning the contributions Kn, we see that for a given instant of time the value of n that will
ontribute the most is that for which pi�n� is as close as possible to p, because of the Gaussian
ecay in �5.30�. If we impose pi

2�n�� p2 we have T�2n� / �p2+1�, which means that the return
robability has a maximum at the classical period, in agreement with the exact result.

. The q1\p2 possibility

If we impose that the classical trajectory starts in q=0 with momentum pi and ends at qf with
omentum p, we have

qf = pi sin��T�, p = pi cos��T�, � = pi
2 + 1. �5.31�

hese transcendental equations have no explicit solution. If we confine ourselves to the short time
egime, then we can write pi� p and qf � p�p2+1�T. The tangent matrix is given by

�mqq mqp

mpq mpp
� = � cos��t� sin��t�

− sin��t� cos��t�
��1 2pi

2T

0 1
� , �5.32�

nd we obtain M2=ei�T�1+2ipi
2T� and M3=e−i�T−2pi

2T. Substituting this in �4.21�, we obtain

�Kq1p2
�2 � 1 − �p6 +

5

2
p4 + p2�T2 �short times� , �5.33�

hich decays faster than the exact result but is a better approximation than the one obtained using
he q1→q2 trajectory. We see that the different approximations may lead to very different results.

. The p1\q2 possibility

The equations of motion in this case are

0 = qi cos��T� + p sin��T�, pf = − qi sin��T� + p cos��T�, � = qi
2 + p2 + 1, �5.34�
hile the tangent matrix is
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�mqq mqp

mpq mpp
� = � cos��t� sin��t�

− sin��t� cos��t�
��1 + 2qipT 2p2T

− 2qi
2T 1 − 2qipT

� . �5.35�

The situation here regarding solubility of the equations is even worse than in the previous
ase. Once again we restrict the analysis to the short time regime. Then it is possible to write the
rst equation as qi�−p�T /2 and find

qi � −
1

2pT
�1 − 
1 − 4p2T2�p2 + 1�� , �5.36�

hich we substitute in the first equation to find pf. Carrying out the whole calculation will give in
he end

�Kp1q2
�2 � 1 −

1

2
�p6 + 3p4 + p2�T2 �short times� , �5.37�

hich agress with the exact result.

. The p1\p2 possibility

Finally, in the last possibility we have

qf = qi cos��T� + p sin��T�, p = − qi sin��T� + p cos��T�, � = qi
2 + p2 + 1. �5.38�

n the short time limit we have again

qi � −
1

2pT
�1 − 
1 − 4p2T2�p2 + 1�� , �5.39�

nd the final result is

�Kp1p2
�2 � 1 −

p4

2
T2 �short times� . �5.40�

his is kind of intermediate between the result we found in Sec. V B and that of Secs. V C and
D.

I. APPLICATION TO A NONLINEAR OSCILLATOR: NUMERICAL RESULTS

Before we consider the semiclassical approximations based on real trajectories for longer
imes, let us see how well the original one �2.26� compares to the exact result. This has been
onsidered in detail in Ref. 29, so we just present the result. Given the initial condition u�=z1, for
ach time T we must find a value for v� such that v�=z2

*=z1
*. This problem usually has more than

ne solution, and we must add their contributions coherently. In Fig. 1 we see the return prob-
bility as a function of time �in units of Tc� for the case p=10, which we have chosen to ensure
hat we are in the semiclassical limit. The corresponding classical period is Tc�0.062. The exact
nd the semiclassical results are indistinguishable in this scale.

In Sec. V we saw how the different approximations based on real trajectories performed in the
hort time regime. The exact result was reproduced only by the “leaving” and the “arriving”
ormulas and by Kp1q2

. We now turn to the less simple case of arbitrary T, when the classical
rajectories and the associated propagators must be computed numerically.

Let us start with the propagator Kq1p1
, which is based on a real periodic orbit. Its initial decay

s exact, and we can see how well it does for later times in Fig. 2. It is able to reproduce the height
f the peaks with great accuracy, but not their widths. Since there is never more than one contri-
ution for each time, it never displays any interference effects.

This is not the case for Kq1q2
. We see from �5.29� and �5.30� that it consists in the sum of many
ontributions. We focus on the values n=1, 2, 3. Their individual contributions are depicted in Fig.

                                                                                                            



3
g
b

o
t
F
	

a
s
c

o
a
m

F
t

F
s

102102-17 Real trajectories in the semiclassical propagator J. Math. Phys. 46, 102102 �2005�

                        
. Notice that the second and third peaks overlap. When we calculate the total propagator, this
ives rise to interference. The final result is indistinguishable from the exact one �for T	Tc /2,
ecause we have ignored K0 which gives a bad initial decay�.

So far the propagators could be obtained analytically. Since the calculation of Kq1p2
depends

n the solution of the transcendental equation �5.31�, we must resort to numerical routines. Let us
ry to find solutions to the second equation in �5.31� in the vicinity of the first period, T�Tc. In
ig. 4�a� we see that there are two solutions �solid lines� for T
Tc and no solution at all for T
Tc. This is because the cosine function with a real argument is always less than unity, and thus

pi must always be greater than p. The complex solutions do not have this obstruction, as we can
lso see in Fig. 4�a� �dashed line�, where we plot the real part of the complex momentum that
atisfies the boundary conditions �2.11�. Therefore the semiclassical approximation based on the
omplex trajectory can reproduce the whole peak, while Kq1p2

is discontinuous.
In Fig. 4�b� we see the squared modulus of the exact propagator and the values of �Kq1p2

�2

btained using the two available real trajectories. Note that one should not add these results. They
re independent and we may choose any of them, because both real trajectories are good approxi-
ations to the actual complex one �the real trajectories do not come from a saddle point approxi-

IG. 1. Squared modulus of the exact propagator for q=0 and p=10. The semiclassical approximation based on complex
rajectories is indistinguishable from it in this scale. Time is in units of the classical period.

IG. 2. The function �Kq1p1
�2 as a function of time. It reproduces well the height of the peaks, but not their widths, and
hows no interference.
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IG. 3. The individual contributions �Kn�2 for the approximation Kq1q2
. We show the cases n=1, 2, and 3. When they are

dded there is interference, and the exact result of Fig. 1 is reproduced with extraordinary accuracy for T	Tc /2 �we have

ot included K0 in the calculation�.
IG. 4. Top panel: real solutions to the equation p= pi cos��pi
2+1�T� in the vicinity of the classical period �dashed lines�.

e also show the real part of the momentum for the complex trajectory �solid line�. Bottom panel: approximation �Kq1p2
�2

dashed lines� compared to the exact result �solid line�. Since there are no real trajectories for T	Tc, the propagator

ecomes truncated. For T
Tc there are two possibilities.
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ation�. As observed in Refs. 16 and 18, the mixed propagator �x�e−iHT/��z� can also be discon-
inuous when calculated using real trajectories. But in that case there are caustics involved, while
ere we have an algebraic obstruction.

The discussion of the approximation Kp1q2
is quite similar to the above. The solutions to the

rst equation in �5.34� are shown in Fig. 5�a�, where we also show the real part of the complex
osition that satisfies the boundary conditions �2.11�. Again there is no solution for T	Tc and the
emiclassical propagator is discontinuous, as we appreciate in Fig. 5�b�. The results are practically
he same as in Fig. 4�b�.

Finally, the propagator Kp1p2
. This time we solve numerically the conditions �5.38� and find

hat there is a single real trajectory for T
Tc and no one for T	Tc. The final result is in Fig. 6.

II. CONCLUSIONS

Several approximations to the semiclassical coherent state propagator �z2�e−iHT/��z1� were pre-
ented that are based solely on real classical trajectories. Two of these approximations do not
nvolve mixed boundary conditions and thus are not hindered by the associated “root search”
roblem. The remaining four possibilities are based on trajectories that are determined by initial
nd final data, but since they are real for all times they are simpler to determine than the original

IG. 5. Top panel: real solutions to the equation 0=qi cos��T�+ p cos��T�, where �=qi
2+ p2+1, in the vicinity of the

lassical period �dashed lines�. We also show the real part of the position for the complex trajectory �solid line�. Bottom
anel: approximation �Kp1q2

�2 �dashed lines� compared to the exact result �solid line�. The situation is analogous to Fig. 4.
omplex ones.
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As a testing ground we have used the nonlinear system H= �a†a�2. Only one of the approxi-
ations, namely Kq1q2

, reproduced the exact result to the fine details. This is certainly due to the
articular initial coherent state that was chosen, one corresponding to q=0 and p=10. Had we
hosen for example q=10 and p=0 and then Kp1p2

would give excellent results. We could also
onsider a nondiagonal propagator, and in that case we would expect Kq1p2

, for example, to
mprove its performance.

Straightforward extensions of this work include the already mentioned case of different posi-
ion uncertainties �squeezed states� and also higher dimensional systems. It is also possible to fix
he time T and the initial state �z1� and to regard �K�z1 ,z2 ,T��2 as a Husimi function defined in the

2 plane. This is technically more difficult than what we have presented here, because it involves
nding classical trajectories—usually more than one—parametrized by points in the plane.

Similar results can be obtained for the semiclassical SU�2�, or spin, coherent state propagator,
ven though the introduction of position and momentum variables in that case is not as natural.
he associated phase space is also two-dimensional, but since it has curvature the calculations
ay be a little more involved. The same may be said about the semiclassical SU�1,1� coherent

tate propagator. Since these groups have wide applications, it would be interesting to also have
he corresponding approximations based on real trajectories.
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The success of quantum mechanics is due to the discovery that nature is described
in infinite dimension Hilbert spaces, so that it is desirable to demonstrate the quan-
tum teleportation process in a certain infinite dimensional Hilbert space. We
describe the teleportation process in an infinite dimensional Hilbert space by giving
simple examples. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2044647�

. INTRODUCTION

In quantum communication theory, we code information by quantum states and send it
hrough a quantum device that is properly designed. If one can send any quantum state from an
nput system to an output system as it is, that is, if one can find such a method sending an input
tate without changing it, then it will be an ultimate way for information transmission. It is in
uantum teleportation that we can discuss such an ultimate communication system.

The problem of quantum teleportation is whether there exists a physical device and a key �or
set of keys� by which a quantum state attached to a sender �Alice� is completely transmitted and
receiver �Bob� can reconstruct the state sent. Bennett et al.1 showed that such teleportation is

ossible through a device �channel� made from proper �EPR� entangled states of Bell basis. The
asic idea behind their discussion is to divide the information encoded in the state into two parts,
lassical and quantum, and send them through different channels, a classical channel and an EPR
hannel. The classical channel is nothing but a simple correspondence between sender and re-
eiver, and the EPR channel is constructed by using a certain entangled state. However the EPR
hannel is not so stable due to quick decoherence. Fichtner and Ohya2,3 studied the quantum
eleportation by means of general beam splitting processes in Bose Fock space so that it contains
he EPR channel as a special case, and they constructed a stable teleportation process with coher-
nt entangled states.

However, all these discussions have been based on finite dimensionality of the Hilbert spaces,
ttached to Alice and Bob. As is well known, success of quantum mechanics is due to the
iscovery that nature is described in infinite dimension Hilbert spaces, so that it is desirable to
emonstrate the quantum teleportation process in a certain infinite dimensional Hilbert space. This
aper is a trial to describe the teleportation process in an infinite dimensional Hilbert space by

�Electronic mail: fichtner@mathematik.uni-jena.de
�Electronic mail: freudenberg@math.tu-cottbus.de
�
Electronic mail: ohya@is.noda.tus.ac.jp
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iving simple examples. In Sec. II, we fix the notations based on Fock space discussion of the
eries of papers.2–4 In Sec. III, the channel expression of the teleportation is reviewed and the
ntanglement between Alice and Bob is constructed by an isometry operator, on which an operator
xpression of the teleportation channel is given, and some extreme cases of the teleportation are
onsidered. To be closer to usual teleportation schemes and to get simple and explicit results we
onsider in Sec. IV the case of product states. In Sec. V, the existence of unitary keys is discussed.

I. BASIC NOTIONS AND NOTATIONS

We consider three complex Hilbert spaces H1, H2, and H3. To Alice there are attached the
ilbert spaces H1 and H2. Alice wants to teleportate a state � on H1 to Bob to whom there is

ttached the Hilbert space H3. Usually it is assumed that all three Hilbert spaces are finite-
imensional ones. This is also necessary for obtaining perfect teleportation. In the present article
e will consider the case of Hilbert spaces being separable but not necessarily finite dimensional.
e assume that all three spaces are either infinite-dimensional separable Hilbert spaces or finite-

imensional ones with same finite dimension. The paper continues and generalizes results ob-
ained in Refs. 2–4.

Let us be given orthonormal bases,

��k
1�k�G, ��k

2�k�G, ��k
3�k�G, �1�

n H1, H2, and H3 where the at most countable index set G is an abelian �additive� group with
peration �. An important case is that G is the set of integers Z where the group operation � will
e usual addition. Since we need the structure of a group it is more convenient for our purposes to
hoose only orthonormal bases consisting of two-sided infinite sequences. To include usual tele-
ortation models �with finite index space G� we consider also the case G= �1, . . . ,N� with N
elonging to the set N of natural numbers. In this case the operation � :G�G→G is defined by
� lª �k+ l�mod N. The operation inverse to � we denote by �. In the latter case k � l=k− l if
� l and k � l=k− l+N if k� l.

The algebra of all bounded linear operators on a Hilbert space H we will denote by B�H�.
hroughout this article we will assume that all states on a Hilbert space H are normal states �on
�H��. The set of all normal states we denote by S�H�.

Let V�B�H2� be an arbitrary unitary operator. Consequently, the sequence ��n�n�G with

nªV�n
2 ,n�G is a second orthonormal basis in H2. Thus there exists a sequence �bkl�k,l�G such

hat

�k = �
l�G

bkl�l
2 �k � G� . �2�

bviously, the sequence �bkl�k,l�G has to fulfill

�
l�G

bklbml = �k,m �k,m � G� , �3�

here �k,m denotes the Kronecker symbol. Observe that for all m ,k�G it holds ��m ,�k
2	=bmk.

onsequently, we obtain

�k
2 = �

m�G

bmk�m �k � G� . �4�

ince V* is again unitary and �n
2=V*�n we also have

�
l�G

blkblm = �k,m �k,m � G� . �5�

Remark: To simplify notations only if there appear ambiguities we will separate multiple

ndices by “commas,” i.e., usually we write bkl instead of bk,l.
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Further, we consider a sequence �Um�m�G of unitary operators on H2 acting as shift operators
n the elements of the �original� basis:

Um�k
2 = �k�m

2 �m,k � G� . �6�

he Hilbert space H2 is connected by simple isometries S1 to H1 and S3 to H3:

S1:H2 → H1 � H2, S1��k
2� = �k

1
� �k

2 �k � G� , �7�

S3:H2 → H2 � H3, S3��k
2� = �k

2
� �k

3 �k � G� . �8�

inally, we construct a new basis in H1 � H2 by setting

�km = �1 � Um�S1�k = �1 � Um�S1V�k
2 �k,m � G� , �9�

here 1 denotes the identical operator �from the context it always will be clear on which space 1
perates�. Observe that for k ,m�G

�km = �1 � Um��
l�G

bkl��l
1

� �l
2� = �

l�G

bkl��l
1

� �l�m
2 � . �10�

Proposition 1: The sequence ��km�k,m�G is an orthonormal basis in H1 � H2.
Proof: For n ,m ,r ,s�G we get using �10� and �3�

��nm,�rs	 = �
k,l�G

bnkbrl��k
1

� �k�m
2 ,�l

1
� �l�s

2 	 = �
k,l�G

bnkbrl��k
1,�l

1	��k�m
2 ,�l�s

2 	

= �
k�G

bnkbrk��k�m
2 ,�k�s

2 	 = �n,r · �m,s.

hus ��km�k,m�G is an orthonormal system in H1 � H2.
To prove completeness we check whether the Parseval equality


�
2 = �
n,m�G

���,�nm	�2

olds for all ��H1 � H2. Let

� = �
r,s�G

	rs�r
1

� �s
2. �11�

hen

��,�nm	 = �
r,s,k�G

	rsbnk��r
1

� �s
2,�k

1
� �k�m

2 	 = �
r,s�G

	rsbnr��s
2,�r�m

2 	 = �
r�G

	r,r�mbnr.

sing �5� this implies

�
n,m�G

���,�nm	�2 = �
n,m,r,s�G

	s,s�m	r,r�mbnrbns = �
m,r,s�G

	s,s�m	r,r�m �
n�G

bnrbns

= �
m,r,s�G

	s,s�m	r,r�m�r,s = �
m,r�G

�	r,r�m�2 = �
m,r�G

�	r,m�2 = 
�
2.

his ends the proof. �

We denote by Fnm�B�H1 � H2� the projection onto �nm, i.e.,

Fnm ª ��nm	��nm� = ��nm, · 	�nm �n,m � G� . �12�
Remark: We will use as well the “scalar product” notation as also the “bra and ket” symbols.
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owever, using the symbol ��	 let us make the convention that the symbol has to denote the
ormalization of the vector �, i.e.,

��	 ª
�


�

. �13�

Observe that for ��H1 � H2 given by �11� and for all n ,m�G one obtains

Fnm� = ��nm,�	�nm = �
k�G

bnk��k
1

� �k�m
2 ,�	�nm = �

k,r,s�G

bnk	rs��k
1

� �k�m
2 ,�r

1
� �s

2	�nm

= � �
k�G

bnk	k,k�m�nm. �14�

specially,

Fnm��r
1

� �s
2� = �s,r�m · bnr�nm. �15�

n the subsequent sections we investigate concrete teleportation channels. For this we need an
xplicit expression for �Fnm � 1��1 � S3� which maps H1 � H2 into H1 � H2 � H3.

Proposition 2: Let ��H1 � H2 be given by (11). For all n ,m�G it holds

�Fnm � 1��1 � S3�� = �nm � �
r�G

bnr	r,r�m�r�m
3 . �16�

Proof: Using definition �8� of the imbedding operator S3 and �15� we obtain for all n ,m
G

�Fnm � 1��1 � S3�� = �
r,s�G

	rs�Fnm � 1��1 � S3��r
1

� �s
2 = �

r,s�G

	rs�Fnm � 1��r
1

� �s
2

� �s
3

= �
r,s�G

	rsbnr�nm � �s
3 · �s,r�m = �

r�G

	r,r�mbnr�nm � �r�m
3 .

his proves �16�. �

Corollary 3: Let ��H1 � H2 be given by (11) and assume 
�
=1. For all n ,m�G it holds

�Fnm � 1��1 � S3���	����1 � S3
*��Fnm � 1� = Fnm � �
nm, · 	
nm �17�

ith


nm = �
r�G

bnr	r,r�m�r�m
3 . �18�

Proof: Immediately from Proposition 2 we obtain

�Fnm � 1��1 � S3���	����1 � S3
*��Fnm � 1� = ��

r�G

	r,r�mbnr�nm � �r�m
3 , · ��

s�G

	s,s�mbns�nm

� �s�m
3 = ��nm	��nm�

� ��
r�G

	r,r�mbnr�r�m
3 , · ��

s�G

	s,s�mbns�s�m
3 .

his proves �17�. �

Corollary 3 allows us to get explicit formulas for

�Fnm � 1��1 � S3���1 � S3
*��Fnm � 1� ,

here � is a normal state on B�H1 � H2�.

Let � be given in the form
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� = �
u,v�G

�uv��uv	��uv� �19�

ith ��uv�u,v�G being an orthonormal sequence in H1 � H2,

�uv = �
r,s�G

	uvrs�r
1

� �s
2 �20�

nd ��uv�u,v�G fulfilling

�
u,v�G

�uv = 1, �uv  0. �21�

f course, we have for all u , ũ ,v , ṽ�G

�
r,s�G

	uvrs	ũṽrs = �u,ũ · �v,ṽ. �22�

s an immediate consequence of Corollary 3 we obtain the following result.
Proposition 4: Let � be given by (19). For all n ,m�G it holds

�Fnm � 1��1 � S3���1 � S3
*��Fnm � 1� = Fnm � �

u,v�G

�uv�
uvnm, · 	
uvnm

= Fnm � �
u,v�G

�uv

uvnm
2 · �
uvnm	�
uvnm� �23�

ith


uvnm = �
r�G

bnr	uvr,r�m�r�m
3 . �24�

Remark: Observe that the vectors 
uvnm usually are not normalized. Further, in general the
equence �
uvnm�u,v�G is not an orthogonal one.

II. THE TELEPORTATION CHANNEL

. The measurement

Now we apply the model which was used in several papers2,3,5 for the description of a
eleportation scheme. The measurement will be done with the operator

F = �
n,m�G

znmFnm, �25�

here �znm�n,m�G is a sequence of real numbers and �Fnm�n,m�G is the family of orthogonal
rojections on H1 � H2 introduced in Sec. II �cf. �12� and �10��. In the above-mentioned articles
ne considers the case of a given state � on H1 �that has to be teleportated to Bob� and an
ntangled state � on H2 � H3. Thus the whole system is prepared in the state � � �. Alice makes
measurement �restricted to H1 � H2� with the operator F given by �25�, i.e., the operator F � 1 is

pplied to the system being in the state � � �. As the result of the measurement Alice obtains a
alue znm for some n ,m�G. Consequently, after the measurement the whole system will be in the
tate �nm on H1 � H2 � H3 given by

�nm ª

�Fnm � 1�� � ��Fnm � 1�
tr��Fnm � 1�� � ��Fnm � 1��

, �26�

here tr denotes the full trace with respect to H1 � H2 � H3. Bob who is informed about the result

f the measurement controls the state �̃nm��� on H3 being the partial trace of �nm with respect to
1 � H2:
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�̃nm��� ª tr12��nm� =
tr12��Fnm � 1�� � ��Fnm � 1��
tr��Fnm � 1�� � ��Fnm � 1��

, �27�

here tr12 denotes the partial trace on H1 � H2. Of course we have to assume that the denominator
n �26�, respectively, in �27� is nonzero. Otherwise, the left-hand side has to be set equal to zero.

he mapping �̃nm :S�H1�→S�H3� is called a teleportation channel.

The teleportation works perfectly if Bob is able to reconstruct the initial state � from �̃nm���.
e will return to this question in the subsequent sections. Teleportation channels �̃nm of the

bove-mentioned type might be useful also for modeling other transformations of states. For
nstance in Ref. 4 we proposed an extremely simplified model of certain recognition processes
ased on a teleportation channel. In this model the spaces H1, H2, and H3 represent the processing
art �brain�, the memory before and after recognition.

. The entanglement

Instead of the state � � � on H1 � H2 � H3 we will consider now states of the form

�1 � S3���1 � S3
*� �28�

ith � being a state on H1 � H2 and S3 isometry �8� coupling H1 to H3. The simple entanglement
etween H2 and H3 is achieved just by applying S3. Especially, if � has the form �=�1 � �2 with
j being a state on H j, j=1,2 then using the above cited notations from Refs. 2 and 3 we get �
�1 and �=S3�2S3

*. This case of � being a product state we will discuss in Sec. IV.
We will consider now the channel �nm :S�H1 � H2�→S�H3� given by

�nm��� =
tr1,2��Fnm � 1��1 � S3���1 � S3

*��Fnm � 1��
tr��Fnm � 1��1 � S3���1 � S3

*��Fnm � 1��
, �29�

here as in �27� tr12 denotes the partial trace with respect to H1 � H2 and tr the full trace on

1 � H2 � H3. Again we have to assume that the denominator in �29� is greater than zero. Oth-

rwise we set �nm���=0. Observe that for product states �=� � � one has the relation �̃nm���
�nm�� � ��.

Remark: Since tr1,2��Fnm � 1��1 � S3���1 � S3
*��Fnm � 1�� is a positive linear functional on H3

he denominator in �29� can be equal to zero only if this functional is zero. In other words, in this
ase no information about the measured value znm can be transmitted to Bob �in a brain model this
ould mean that no information about the input signal will be stored in the memory�. The

ollowing result is an immediate consequence of Proposition 4.
Theorem 5: Let � be a state on H1 � H2 given by (19)–(21). Then for all n ,m�G

�nm��� =
�u,v�G

�uv�
uvnm, · 	
uvnm

tr3��u,v�G
�uv�
uvnm, · 	
uvnm�

�30�

here 
uvnm�H3 is given by (24), and �nm��� has to be set equal to zero if the denominator in
30) is equal to zero (tr3 denotes the trace in H3).

Sometimes it is more convenient �cf. the second remark in this article� to write �30� in the
orm

�nm��� =
�u,v�G

�uv

uvnm
2�
uvnm	�
uvnm�

tr��u,v�G
�uv

uvnm
2�
uvnm	�
uvnm��

. �31�

f course, mixed states are not necessarily transformed into mixed ones—possibly there is only
ne pair u ,v such that 

uvnm
�0. However, immediately from �30� we may conclude the fol-

owing proposition.
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Proposition 6: If � is a pure state on H1 � H2 then �nm��� is a pure state on H3 or equal to
ero.

. Examples

Example 1: Let �= ��	��� be a pure state on H1 � H2, 
�
=1, �=�r,s�G	rs�r
1

� �s
2. Then we

btain

�nm��� =
1



nm
2 �
nm, · 	
nm = �
nm	�
nm�

ith


nm = �
r�G

bnr	r,r�m�r�m
3 ,

rovided 

nm
�0. Especially, for �= ��	��� with �=�r
1

� �s
2 we get

�nm��� = ��r�m
3 	��r�m

3 �

rovided bn,s�m�0.
Let us discuss this result. Measuring the value znm means that there was made the projection

nto �nm=�r�Gbnr��r
1

� �r�m
2 �. Observe that �r�G�bnr�2�	r,r�m�2= 

nm
2�0 if and only if there

xists at least one r�G such that bnr�0 and 	r,r�m�0. Obviously, there exists r�G such that

nr�0. The number 	r,r�m is the coefficient of the basis element �r
1

� �r�m
2 in the expansion of

= ��	���. So only if � is receptive for the signal �r
1

� �r�m
2 for at least one admissible r there will

e an output transmitted to Bob.
Example 2: We consider the case G=Z and fix an N�N. Let the state � be a finite mixture of

asis elements with equal weights:

� = �
u,v=−N

N
1

�2N + 1�2 ��u
1

� �v
2	��u

1
� �v

2� . �32�

ince in this case 	uvrs=�u,r ·�v,s we get from (24)


uvnm = ��v,u+m · bnu�u+m
3 , u,v � �− N, . . . ,N�

0 elsewhere.
�

specially,



uvnm
2 = ��bnu�2, u,v � �− N, . . . ,N�,v − u = m

0 elsewhere.
�

he conditions u ,v� �−N , . . . ,N� and v−u=m imply m�2N. So we finally get for n�G and m
2N

�nm��� =
1

C
�

u=−N

N−m

�bnu�2��u+m
3 	��u+m

3 �

rovided

C = �
u=−N

N−m

�bnu�2 � 0.

or m�2N the numerator in (30) is equal to zero. That means that measuring the value znm with

�2N it is not possible to send any information to Bob.
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In further investigations one should consider more refined measurements than simple projec-
ions onto one-dimensional subspaces which are obtained just by a change of the basis and a
hifting procedure. The next examples elucidates that the whole procedure becomes trivial if we
ven do not change the basis.

Example 3: Let us consider the (extreme) case that the second basis in H2 is the old one, i.e.,

n=�n
2 for all n�G. This implies bnk=�n,k, and the projection operator Fnm is the projection onto

nm=�n
1

� �n�m
2 . Let � be an arbitrary normal state on H1 � H2 given in the forms (19)–(21). If

u,v�uv�	uvn,n�m�2=0 there will be no output, i.e., �nm���=0. If �u,v�uv�	uvn,n�m�2�0 we obtain

nm���= ��n�m
3 	��n�m

3 �. Only if the vector �n
1

� �n�m
3 appears in at least one nonzero component �uv

f the state � some information will be transmitted and the final state �nm��� will be the pure state
�n�m

3 	��n�m
3 �.

V. TRANSFORMATION OF PRODUCT STATES

To be closer to usual teleportation schemes and to get simple and explicit results we want to
onsider in the sequel the case that the state � on H1 � H2 is a product state:

� = �1
� �2 �33�

here �1�S�H1� and �2�S�H2�. Assume ��u
1�u�G, ��u

2�u�G are orthonormal sequences in H1,
espectively, H2 such that

� j = �
u�G

�u
j ��u

j 	��u
j � �j = 1,2� �34�

ith

�
u�G

�u
j = 1, �v

j  0 �j = 1,2,v � G� �35�

nd �u
j having the representation

�u
j = �

r�G

	ur
j �r

j �j = 1,2,u � G� . �36�

sing the notations from �19�–�21� we thus get in that case

�uv = �u
1 · �v

2, 	uvrs = 	ur
1 · 	vs

2 �u,v,r,s � G� .

bviously, we have

�
r�G

	̄ur
j 	vr

j = �u,v �j = 1,2,u,v � G� .

rom �24� we conclude


uvnm = �
r�G

bnr	ur
1 · 	v,r�m

2 �r�m
3 �u,v,n,m � G� �37�

nd Theorem 5 can be written in the following form.
Theorem 7: Let �=�1 � �2 be a state on H1 � H2 given by �34�–�36�. Then for all n ,m�G

�nm��1
� �2� =

�u,v�G
�u

1 · �v
2�
uvnm, · 	
uvnm

tr3��u,v�G
�u

1 · �v
2�
uvnm, · 	
uvnm�

�38�

here 
uvnm�H3 is given by �37� and where we have to assume that the denominator in �30� is

reater than zero �tr3 again denotes the trace in H3�.
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We want to express the channel �nm acting from S�H1 � H2� to S�H3� by a consecutive
pplication of single channels having an intuitive meaning.

First for each h�H2 we introduce an operator Ah :H3→H3 by

Ahf = �
r�G

��r
2,h	��r

3, f	�r
3 �f � H3� . �39�

specially, for all r�G we have

Ah�r
3 = ��r

2,h	�r
3 �40�

nd

A�r
2 = ��r

3	��r
3� . �41�

bviously,


Ahf
2 = �
r�G

���r
2,h	��r

3, f	�2 � 
h
2
f
2,

o, for each h�H2 it holds Ah�B�H3�.
For each h�H2 the adjoint of Ah is given by

Ah
*f = �

r�G

��r
2,h	��r

3, f	�r
3 �f � H3� . �42�

n H3 we define for all m�G �in the same way as on H2—cf. �6�� the shift operator Vm :H3

H3 characterized by

Vm�r
3 = �r�m

3 �r � G� �43�

eing a unitary operator on H3.
Finally, let J1 :H1→H3 and J2 :H2→H3 be the isomorphisms exchanging the corresponding

asis elements, i.e.,

J1�r
1 = �r

3, J2�r
2 = �r

3 �r � G� . �44�

Lemma 8: For all u ,v ,n ,m�G it holds


uvnm = A�v
2�VmA�̄n

�J1�u
1�� , �45�

here 
uvnm�H3 is given by �37�, the vectors �v
j by �36� and �̄n by

�n = �
l�G

bnl�l
2 �46�

cf. definition �2� of �n�.
Proof: From

J1�u
1 = �

r�G

	ur
1 �r

3

e conclude
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VmA�̄n
�J1�u

1� = Vm��
r�G

	ur
1 ��r

2,�̄n	�r
3 = Vm��

r�G

	ur
1 bnr�r

3 = �
r�G

	ur
1 bnr�r�m

3

A�v
2VmA�̄n

�J1�u
1� = �

r�G

	ur
1 bnrA�v

2�r�m
3 = �

r�G

	ur
1 bnr	v,r�m

2 �r�m
3

hat proves because of �37� Lemma 8. �

Observe that for all h�H2, f �H3 and r�G

��r
2,h	��r

3, f	 = ��r
2,J2

*f	��r
3,J2h	 .

rom definition �39� of the operator Ah we thus immediately conclude
Lemma 9: For all h�H2, f �H3

Ahf = AJ2
*f�J2h� . �47�

he following property of the operators Ah will be basic for our description of the channel �nm.
Lemma 10: Let � be a positive trace-class operator on H2 (possibly also the operator being

dentically zero) and let us be given two different representations of �

� = �
k�G

�k
1�hk

1	�hk
1� = �

k�G

�k
2�hk

2	�hk
2� �48�

ith �k
j 0 and �hk

j�k�G, j=1,2 being orthonormal bases in H2. Then for each positive trace-class
perator 	 on H3 we have

�
k�G

�k
1Ahk

1	Ahk
1

* = �
k�G

�k
2Ahk

2	Ahk
2

* . �49�

Proof: It is sufficient to consider the case

	 = �f	�f � �f � H3,
f
 = 1� .

sing Lemma 9 we get for all g�H3 and j=1,2

�
k�G

�k
jAhk

j �f	�f �Ahk
j

* g = �
k�G

�k
jAhk

j f�Ahk
j f ,g	 = �

k�G

�k
jAJ2

*fJ2hk
j�AJ2

*fhk
j ,g	 = �

k�G

�k
jAJ2

*fJ2�hk
j	�hk

j �J2
*AJ2

*f
* g

= AJ2
*fJ2 �

k�G

�k
j �hk

j	�hk
j �J2

*AJ2
*f

* g = AJ2
*fJ2�J2

*AJ2
*f

* g .

onsequently, left- and right-hand sides of �49� coincide—the expression in �49� does not depend
n the special representation of � in some basis in H2.

�

Let us remark that � may be a finite rank operator since we did not exclude �k
j =0.

Denote by T j the set of all positive trace-class operators on H j, j=1,2 ,3. For each ��T2 we
efine a mapping K� :T3→T3 by the ansatz

K��	� = �
k�G

�kAhk
	Ahk

* �	 � T3� , �50�

here

� = �
k�G

�k�hk	�hk� �j = 1,2� �51�

ith �k0 and �hk�k�G being an orthonormal basis in H2. Lemma 10 guarantees that the mapping

� is well defined, i.e., the definition �50� does not depend on the special representation of � in

ome basis of H2.
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In the sequel let us make the convention to denote the normalization of a positive trace-class
perator � by �̂, i.e.,

�̂ =
�

tr�
�52�

rovided tr ��0.
Now, we are able to express the channel �nm��� as a consecutive application of single chan-

els. This explicit construction will be done only for product states �=�1 � �2. Besides the channel

� defined by �50� we still need two other channels—one lifting the state from H1 to H3 by the
somorphism J1 given by �44� and one shifting the states on H3 with the shift operator Vm defined
y �43�. We define K :T1→T3 by

K�	� = J1	J1
* �	 � T1� �53�

nd for m�G the mapping Km :T3→T3 by

Km�	� = Vm	Vm
* �	 � T3� . �54�

Theorem 11: For all �1�S�H1�, �2�S�H2� and n ,m�G it holds

�nm��1
� �2� = K̂�2 � Km � K��n	��n� � K��1� �55�

rovided tr K�2 �Km �K��n	��n� �K��1��0. Hereby, �n is given by �46�.
Proof: Let �1 � �2 be given by �34�–�36�.
Using �38� in Theorem 7 and the representation �45� of 
uvnm we obtain for all u ,v ,n ,m

G

�
u,v�G

�u
1 · �v

2�
uvnm, · 	
uvnm = �
u,v�G

�u
1 · �v

2A�v
2VmA�̄n

J1��u
1	��u

1�J1
*A�̄n

* Vm
* A

�v
2

*

= �
v�G

�v
2A�v

2VmA�̄n
J1��1�J1

*A�̄n

* Vm
* A

�v
2

*

= �
v�G

�v
2A�v

2VmA�̄n
K��1�A�̄n

* Vm
* A

�v
2

*

= �
v�G

�v
2A�v

2Vm�K��n	��n� � K��1��Vm
* A

�v
2

*

= �
v�G

�v
2A�v

2�Km � K��n	��n� � K��1��A
�v

2
*

= K�2 � Km � K��n	��n� � K��1� .

ince �nm��1 � �2� is just the normalization of the previous expression using the notation �52� we
nally obtain �55�. �

The aim of teleportation models is to find methods of transmission of states on H1 to states on

3 in such a way that Bob is able to reconstruct perfectly or in a nearly perfect way the emitted
tate—having only knowledge about the result of a certain measurement. In Sec. III we already
ave some examples illustrating the model. For the states considered in these examples it will be
mpossible to reconstruct all original states. However, one is not interested only in perfect tele-
ortations but also in the deformation of the state, the degree of destruction of the input signal, etc.
n Ref. 4 we considered the special case of all spaces being equal and finite dimensional. For
xamples in this case we refer to this article. Further, one can ask for subsets of S�H1� for which
erfect teleportation can be achieved. We continue to illustrate the channels and operations pre-
iously introduced by simple examples connected with product states. The aim of the examples

elow is just to illustrate the mechanism of the procedure.
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In what follows, summands for which 

uvnm
=0 just have to be cancelled. If it is equal to
ero no information about the input signal �the measurement of the value znm� will pass to Bob.
uch cases of non-perfect teleportation were considered in Ref. 3.

Example 4: Let us consider the extreme case that �1= ��k
1	��k

1� for some k�G. Then K��1�
��k

3	��k
3�, which implies

K��n	��n� � K��1� = �bnk�2��k
3	��k

3� .

onsequently,

Km � K��n	��n� � K��1� = �bnk�2��k�m
3 	��k�m

3 � .

rom �40� we know that for each h�H2 it holds

Ah��k�m
3 	��k�m

3 �Ah
* = ���k�m

2 ,h	�2��k�m
3 	��k�m

3 � .

or arbitrary state �2 on H2 this leads to

K�2 � Km � K��n	��n� � K��1� = �bnk�2tr2��2��k�m
2 	��k�m

2 �� · ��k�m
3 	��k�m

3 � .

inally, if �bnk�2tr2��2��k�m
2 	��k�m

2 ���0 we obtain

�nm��1
� �2� = ��k�m

3 	��k�m
3 � .

�

We try to give again a possible interpretation of the result. Measuring znm we made a projec-
ion onto �nm=�r�Gbnr��r

1
� �r�m

2 �. At least one of the coefficients bnr ,r�G has to be different
rom zero. The state Alice wants to teleportate consists only of the elementary signal �k

1 since
1= ��k

1	��k
1�. This implies that only the signal �k

1
� �k�m

2 is able to pass. So it is necessary that

nk�0. The information about the index n is not contained in the elementary signal �k
1

� �k�m
2 and

ill not be contained in the output sent to Bob. However, bnk�0 is necessary to get an output at
ll. Further, for the state �2 given by �34�–�36� one easily checks

tr2��2��k�m
2 	��k�m

2 �� = �
u�G

�u
2�	u,k�m

2 �2.

onsequently, to obtain the output ��k�m
3 	��k�m

3 � at least for one �u
2 with �u

2�0 it must hold

u,k�m
2 �0. If Bob would know that only states of the form �1= ��k

1	��k
1� for some k�G are sent by

lice he obviously has unitary keys to reconstruct the original state. This of course requires that
ll bnk�0 and that the state �2 is such that for all k�G there exists at least one u�G such that

u
2�0 and 	uk

2 �0.
Example 5: Now we consider the other extreme case that �2 is just an elementary signal, i.e.,

here exists an k�G such that �2= ��k
2	��k

2�. Analogous calculation as in Example 4 shows that

�nm��1
� �2� = ��k

3	��k
3� ,

here we have to assume that tr1��1��k�m
1 	��k�m

1 ���0. We already observed in the example above
hat �2 should contain as much information as possible. In the case �2= ��k

2	��k
2� Bob obtains no

nformation at all abut the state �1. Independently of the result znm of the measurement performed
y Alice either �nm��1 � �2�=0 or equal to ��k

3	��k
3�. So we have the most extreme case of loss of

nformation.

. EXISTENCE OF UNITARY KEYS

We will consider again the case of product states �=�1 � �2 on H1 � H2 where �1�S�H1� and
2�S�H2�. That means that the entangled state � considered in Refs. 2 and 3 has the form �

2 * 2 ˜
S3� S3. For fixed state � on H2 we consider the channel �nm :S�H1�→S�H3� given by
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�̃nm ª �nm�· � �2� ,

.e., �cf. �27� and �29��

�̃nm��1� =
tr1,2��Fnm � 1��1 � S3��1

� ��1 � S3
*��Fnm � 1��

tr��Fnm � 1��1 � S3��1
� ��1 � S3

*��Fnm � 1��
. �56�

et G�S�H1� be a fixed set of states on H1.
Definition 12: We say that the teleportation scheme is perfect if for each n ,m�G there exists

unitary operator Vnm :H1→H3 such that

�̃nm��1� = Vnm�1Vnm
* ��1 � G� �57�

nd

�
n,m�G

tr��Fnm � 1��1 � S3��1
� �2�1 � S3

*��Fnm � 1�� = 1 ��1 � G� . �58�

he unitary operators Vnm are called unitary keys.
Usually, perfect teleportation means that the above-mentioned conditions hold for all �1

S�H1� �cf. Refs. 2, 3, and 5�. The restriction of the set of states that have to be teleportated
nlarges the possibilities for perfect or “nearly” perfect models. Condition �57� means that Bob
an reconstruct the original state �1 from the knowledge of the result znm of the measurement and

f the received state �̃nm��1� where it is assumed that Bob possesses for each n ,m�G the

ppropriate key Vnm. This follows obviously form �1=Vnm
* �̃nm��1�Vnm. Finally, �58� means that

ith probability one Bob will find the proper key, i.e., with certainty there will be a result znm of
easurement for which he has unitary keys.

Let us have a closer look to formula �55�. The channel Km is built with the help of the unitary

m. The same is true for K since J1J1
*=J1

*J1=1. The channel K��n	��n� destroys any hope for unitary
eys. An easy calculation shows that for each f �H3 it holds

A�n

* A�n
f = A�n

A�n

* f = �
r�G

�bnr�2��r
3, f	�r

3. �59�

e see that only if G is finite and all �bnk� are equal A will be unitary �up to a constant that
anishes after normalization�. This is in accordance with �and another proof of� the fact that
erfect teleportation requires finite dimensional spaces and maximal entanglement.

I. CONCLUDING REMARKS

The aim of this article is to touch the problem of teleportation schemes in infinite-dimensional
paces. The previous results still have to be supplemented by calculations of fidelity and other
haracteristics. Just to achieve simple explicit expressions we illustrated the model on the most
imple sequence of elementary signals ��k

j�. To obtain more interesting models one has to refine
he above-mentioned models:

1� consider more complex measurements than simple one-dimensional projections Fnm,
2� if the Hilbert space is a symmetric Fock space take truncated coherent vectors �exponential

vectors with “removed” vacuum part� as basis and beam splittings for the entanglement,
3� replace the isomorphisms J1, J2 and the trivial isometries S1, S3 by more complex ones.6–11
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ontinuity bounds on the quantum relative entropy
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The quantum relative entropy is frequently used as a distance, or distinguishability
measure between two quantum states. In this article we study the relation between
this measure and a number of other measures used for that purpose, including the
trace norm distance. More specifically, we derive lower and upper bounds on the
relative entropy in terms of various distance measures for the difference of the
states based on unitarily invariant norms. The upper bounds can be considered as
statements of continuity of the relative entropy distance in the sense of Fannes. We
employ methods from optimisation theory to obtain bounds that are as sharp as
possible. © 2005 American Institute of Physics. �DOI: 10.1063/1.2044667�

. INTRODUCTION

The relative entropy of states of quantum systems is a measure of how well one quantum state
an be operationally distinguished from another. Defined as

S����� = Tr���log � − log ���

or states � and �, it quantifies the extent to which one hypothesis � differs from an alternative
ypothesis � in the sense of quantum hypothesis testing.1–5 Dating back to work by Umegaki,6 the
elative entropy is a quantum generalization of the Kullback–Leibler relative entropy for probabil-
ty distributions in mathematical statistics.7 The quantum relative entropy plays an important role
n quantum statistical mechanics5 and in quantum information theory, where it appears as a central
otion in the study of capacities of quantum channels8–11 and in entanglement theory.11–13

In finite-dimensional Hilbert spaces, the relative entropy functional is manifestly continuous.5

or states on infinite-dimensional Hilbert spaces the relative entropy functional is not trace norm
ontinuous any more, but-as the von-Neumann entropy—lower semi-continuous. That is, for
equences of states ��n�n and ��n�n converging in trace norm to states � and �, i.e., limn→���n

��1=0 and limn→���n−��1=0, we merely have S�� ���� lim infn→�S��n ��n�. However, for sys-
ems for which the Gibbs state exists, these discontinuities can be tamed5 when considering
ompact subsets of state space with finite mean energy. In a similar manner, entropic measures of
ntanglement can become trace norm continuous on subsets with bounded energy.14 For consid-
rations of the continuity of the relative entropy in classical contexts, see Ref. 15. In particular, if
�n�n is a sequence of states of fixed finite dimension satisfying

lim
n→�

��n − ��1 = lim
n→�

Tr��n − �� = 0 �1�

or a given state �, then

�Electronic address: k.audenaert@imperial.ac.uk
�
Electronic address: jense@imperial.ac.uk
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lim
n→�

S��n��� = 0.

n practical contexts, however, more precise estimates can be necessary, in particular in an
symptotic setting. Consider a state � on a Hilbert space H, and a sequence ��n�n, where �n is a
tate on H�n, the n-fold tensor product of H. The sequence is said to asymptotically approximate
if �n tends to ��n for n→�. More precisely, one typically requires that

lim
n→�

��n − ��n�1 = 0. �2�

ow, as an alternative to the trace norm distance, one can consider the use of the Bures distance.
he Bures distance D is defined as

D��1,�2� = 2�1 − F��1,�2��1/2,

n terms of the Uhlmann fidelity

F��1,�2� = Tr��1
1/2�2�1

1/2�1/2.

ecause of the inequalities16

1 − F��1,�2� � Tr��1 − �2� � �1 − F2��1,�2��1/2, �3�

he trace norm distance tends to zero if and only if the Bures distance tends to zero, which shows
hat, for the purpose of state discrimination, both distances are essentially equivalent and one can
se whichever is most convenient.

A natural question that now immediately arises is whether the same statement is true for the
elative entropy. To find an answer to that one would need inequalities like �3� connecting the
uantum relative entropy, used as a distance measure, to the trace norm distance, or similar
istance measures.

In this article, we do just that: we find upper bounds on the relative entropy functional in terms
f various norm differences of the two states. As such, the presented bounds are very much in the
ame spirit as Fannes’ inequality, sharpening the notion of continuity for the von Neumann
ntropy.17 It has already to be noted here that one of the main stumbling blocks in this undertaking
s the well-known fact that the relative entropy is not a very good distance measure, as it gives
nfinite distance between nonidentical pure states. However, we will present a satisfactory solu-
ion, based on using the minimal eigenvalue of the state that is the second argument of the relative
ntropy. Apart from the topic of upper bounds, we also study lower bounds on the relative entropy,
iving a complete picture of the relation between norm based distances and relative entropy.

We start in Sec. II with presenting a short motivation of how this article came about. Section
II contains the relevant notations, definitions, and basic results that will be used in the rest of the
aper. In Sec. IV we discuss some properties of unitarily invariant �UI� norms that will allow us
o consider all UI norms in one go. The first upper bounds on the relative entropy S�� ��� are
resented in Sec. V, one bound being quadratic in the trace norm distance of � and � and the other
ogarithmic in the minimal eigenvalue of �. Both bounds separately capture an essential behavior
f the relative entropy, and it is argued that finding a single bound that captures both behaviors at
nce is not a trivial undertaking. Nevertheless, we will succeed in doing this in Sec. VII by
onstructing upper bounds that are as sharp as possible for given trace norm distance and minimal
igenvalue of �. In Sec. VI we use similar techniques to derive lower bounds that are as sharp as
ossible. Finally, in Sec. IX, we come back to the issue of state discrimination mentioned at the
eginning.

I. BACKGROUND

In Ref. 18 �Example 6.2.31, p. 279� we find the following upper bound on the relative entropy,

alid for all � and for nonsingular �:
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S����� �
�� − ���

�min���
. �4�

his bound is linear in the operator norm distance between � and � and has a 1/x dependence on

min���. For several purposes, such a bound is not necessarily sharp enough. The impetus for the
resent article was given by the observation that sharper upper bounds on the relative entropy
hould be possible than �4�. Specifically, there should exist bounds that are

. quadratic in �−�, and/or

. depend on �min��� in a logarithmic way.

simple argument shows that a logarithmic dependence on �min��� can be achieved instead of an
/x dependence. Note that 0� log ��1 · log �min���. Thus,

S����� = Tr���log � − log ��� � − S��� − log �min��� � − log �min��� . �5�

oncerning the quadratic dependence on �−�, we can put �=�+��, with Tr���=0, and calculate
he derivative

lim
�→0

S�� + �����/�

nd find that this turns out to be zero for any nonsingular �. Indeed, the gradient of the relative
ntropy S�� ��� with respect to � is, 1+log �−log � �see Lemma 1�. Hence, for �=� and Tr���
0,

lim
�→0

S�� + �����/� = Tr���1 + log � − log ��� = 0.

his seems to imply that for small �, S��+�� ��� must at least be quadratic in �, and, therefore,
pper bounds might exist that indeed are quadratic in �. Further, Ref. 4 contains the following
uadratic lower bound �Theorem 1.15�

S����� �
1
2 �� − ��1

2. �6�

he rest of the article will be devoted to finding firm evidence for these intuitions, by exploring the
elation between relative entropy and norm based distances, culminating in a number of bounds
hat are the sharpest possible.

II. NOTATION

In this article, we will use the following notations. We will use the standard vector and matrix
ases: ei is the vector with the ith element equal to 1, and all other elements being equal to 0. ei,j

s the matrix with i , j element equal to 1 and all other elements 0. For any diagonal matrix A, we
rite Ai as a shorthand for Ai,i, and Diag�a1 ,a2 , . . . � is the diagonal matrix with ai as diagonal

lements. We reserve two symbols for the following special matrices:

E ª Diag�1,0, . . . ,0� = e1,1, �7�

nd

F ª Diag�1,− 1,0, . . . ,0� = e1,1 − e2,2. �8�

he positive semidefinite order is denoted using the � sign: A�B iff A−B�0 �positive semidefi-
ite�.

The �quantum� relative entropy is denoted as S�� ���=Tr���log �−log ���. All logarithms in
his article are natural logarithms. When � and � are both diagonal �i.e., when we encounter the
ommutative, classical case� we use the shorthand
S��r1,r2, . . . ���s1,s2, . . . �� ª S�Diag�r1,r2, . . . ��Diag�s1,s2, . . . �� .
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Lemma 1: The gradient of the relative entropy S�� ��� with respect to its first argument �,
eing nonsingular, is given by 1+log �−log �.

Proof: The calculation of this derivative is straightforward. Since the classical entropy func-
ion x�h�x�ª−x log x is continuously differentiable on �0,1�, and therefore,

	 �

��
	

�=0
S�� + ��� = Tr��h����� ,

e can write

lim
�→0

S�� + �����/� = Tr���1 + log � − log ��� .

�

Finally, we recall a number of series expansions related to the logarithm, which are valid for
1	y	1,

log�1 − y� = − 

k=1

�
yk

k
,

log�1 + y� + log�1 − y� = − 

k=1

�
y2k

k
,

log�1 + y� − log�1 − y� = 2

k=0

�
y2k+1

2k + 1
.

hese expansions will be made extensive use of.

V. UNITARILY INVARIANT NORMS

In this section we collect the main definitions and known results about unitarily invariant
orms along with a number of refinements that will prove to be very useful for the rest of the
rticle.

A unitarily invariant norm �UI norm�, denoted with ��.��, is a norm on square matrices that
atisfies the property

��UAV�� = ��A�� �9�

or all A and for unitary U, V ��1�, Sec. IV B�. Perhaps the most important property of UI norms
s that they only depend on the singular values of the matrix A. If A is positive semidefinite, then
�A�� depends only on the eigenvalues of A.

A very important class of UI norms are the Ky Fan norms � . ��k�, which are defined as follows:
or any given square n
n matrix A, with singular values sj

↓�A� �sorted in nonincreasing order� and
�k�n, the k-Ky Fan norm is the sum of the k largest singular values of A:

�A��k� = 

j=1

k

sj
↓�A� .

wo special Ky Fan norms are the operator norm and the trace norm,

�A�� = �A��1�, �A�Tr = �A�1 = �A��n�. �10�

he importance of the Ky Fan norms derives from their leading role in Ky Fan’s Dominance
heorem �Ref. 19, Theorem IV.2.2�:
Theorem 1 (Ky Fan Dominance): Let A and B be any two n
n matrices. If B majorizes A
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n all the Ky Fan norms,

�A��k� � �B��k�,

or all k=1,2 , . . ., then it does so in all other UI norms as well,

��A�� � ��B�� .

rom Ky Fan’s Dominance Theorem follows the following well-known norm dominance state-
ent.

Lemma 2: For any matrix A, and any unitarily invariant norm ��.��,

�A�� �
��A��
��E��

� �A�1.

Proof: We need to show that, for every A,

����A���E�� � ��A�� � ����A�1�E�� ,

olds for every unitarily invariant norm. By Ky Fan’s dominance theorem, we only need to show
his for the Ky Fan norms. All the Ky Fan norms of E are 1, and

�A�� = �A��1� � �A��k� � �A��d� = �A�1

ollows from the definition of the Ky Fan norms. �

The main mathematical object featuring in this article is not the state, but rather the difference
of two states, �ª�−�, and for that object a stronger dominance result obtains. We first show

hat the largest norm difference between two states occurs for orthogonal pure states. Indeed, by
onvexity of norms, ���−��� is maximal in pure � and �. A simple calculation then reveals that, for
ny unitarily invariant norm,

�� ������ − ������ �� = �1 − �������2�1/2��F�� .

his achieves its maximal value ��F�� for � orthogonal to �, showing that it makes sense to
ormalise a norm distance ���−��� by division by ��F��. We will call this a rescaled norm. We now
ave the following dominance result for rescaled norms of differences of states:

Lemma 3: For any Hermitian A, with Tr�A�=0,

�A��

�F��

�
��A��
��F��

�
�A�1

�F�1
.

ote that equality can be obtained for any value of ��A��, by setting A=cF.
Proof: We need to show, for all traceless Hermitian A, that

����A���F�� � ��A�� � ����A�1/2�F�� �11�

olds for every unitarily invariant norm. Again by Ky Fan’s dominance theorem, we only need to
o this for the Ky Fan norms � . ��k�. Since

�F��k� = 1, k = 1

2, k  1,
�

nd

�X�� = �X��1� � �X��k� � �X��d� = �X�1,

he inequalities �11� follow trivially for k1. The case k=1 is covered by Lemma 4. �
Lemma 4: For any Hermitian A, with Tr�A�=0,
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�A�1 � 2�A��.

roof: Let the Jordan decomposition of A be

A = A+ − A−, �12�

ith A+ ,A−�0. Since Tr�A�=0, clearly Tr�A+�=Tr�A−� holds. Thus, �A�1=Tr�A�=Tr�A+�
Tr�A−�=2Tr�A+�. Also,

�A�� = max��A+��,�A−��� . �13�

ence, �A���max��A+�1 , �A−�1�=Tr�A+�= �A�1 /2. �

In this article, we will also be dealing with �=�−� under the constraint ���1. Obviously we
ave

� � 1/d .

e now show that under this constraint, any rescaled norm of � is upper bounded by 1−�.
Lemma 5: For any state �, and states � such that ���1,

T ª ��� − ���/��F�� � 1 − � . �14�

Proof: We proceed by maximizing T under the constraint ���1. Convexity of norms yields
hat T is maximal when � and � are extremal,20 hence in � being a pure state ������ and � being
f the form

� = �1 + �1 − �d������� . �15�

ixing �=e1, we need to maximize

��e1,1 − �1 − �1 − �d���������

ver all �. Put �= �cos � , sin � ,0 , . . . ,0�T, then the eigenvalues of the matrix are

�± = ��d − 2�� ± ���d�2 + 4�1 − �d�sin2 ��1/2�/2

nd −� �with multiplicity d−2�. One finds that, for d2,�+ , ��−���, for any value of �, and both

+ and ��−� are maximal for �=� /2, as would be expected. The maximal Ky Fan norms of this
atrix are therefore

� . ��1� = �+ = 1 − � ,

� . ��k� = �+ + ��−� + �k − 2�� = �2 − �d� + �k − 2�� ,

or k1. Hence, for every Ky Fan norm, the maximum norm value is obtained for orthogonal �
nd �. By the Ky Fan dominance theorem, this must then hold for any UI norm. In case of the
race norm, as well as of the operator norm, the rescaled value of the maximum is 1−�. By
emma 3, this must then be the maximal value for any rescaled norm. �

Remark: For the Schatten q-norm, ��F��=21/q. The largest value of ��F�� is 2, obtained for the
race norm, and the smallest value is 1, for the operator norm.

. SOME SIMPLE UPPER BOUNDS

In this section we present our first attempts at finding upper bounds that capture the essential
eatures of relative entropy. In Sec. III A we present a bound that is indeed quadratic in the trace
orm distance, the existence of which was already hinted at in Sec. II. Likewise, in Sec. III B, we
nd a bound that is logarithmic in the minimal eigenvalue of �, again in accordance with previous
ntuition. Combining the two bounds into one that has both of these features turns out to be not so
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asy. In fact, in Sec. III C a number of arguments are given that initially hinted at the impossibility
f realising sich a combined bound. Nevertheless, we will succeed in finding a combined bound
ater on in the article, by using techniques from optimisation theory.20

. A quadratic upper bound

Lemma 6: For any positive definite matrix A and Hermitian � such that A+� is positive
efinite,

log�A + �� − log�A� ��
0

�

dx�A + x�−1��A + x�−1.

Proof: Since the logarithm is strictly matrix concave,21 for all t� �0,1�:

log��1 − t�A + tB� � �1 − t�log�A� + t log�B� .

etting B=A+� and rearranging terms then gives

log�A + t�� − log�A�
t

� log�A + �� − log�A� ,

or all t� �0,1�. A fortiori, this holds in the limit for t going to zero, and then the left-hand side is
ust the Fréchet derivative of log at A in the direction �. �

This Lemma allows us to give a simple upper bound on S��+� ���. Note that if A�B then
r�CA��Tr�CB� for any C�0. Therefore, we arrive at

S����� = Tr��� + ���log�� + �� − log����� � �
0

�

dx Tr��� + ���� + x�−1��� + x�−1�

= �
0

�

dx Tr��� + x�−1��� + x�−1�� + �
0

�

dx Tr���� + x�−1��� + x�−1� .

he first integral evaluates to Tr���, because

�
0

�

dx
s

�s + x�2 = 1

or any s0, and therefore gives the value 0. The second integral can be evaluated most easily in
basis in which � is diagonal. Denoting by si the eigenvalues of �, we get

�
0

�

dx Tr���� + x�−1��� + x�−1� = 

i,j

�i,j� j,i�
0

�

dx�si + x�−1�sj + x�−1

= 

i�j

�i,j� j,i
log si − log sj

si − sj
+ 


i

��i,i�2 1

si
. �16�

he coefficients of �i,j� j,i are easily seen to be always positive, and furthermore, bounded from
bove by 1/�min���. Hence we get the upper bound

�
0

�

dx Tr���� + x�−1��� + x�−1� �
Tr��2�
�min���

,

ielding an upper bound on the relative entropy which is, indeed, quadratic in �:

Theorem 2: For states � and � with �=�−�, T= ���2 and �=�min���,
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S����� �
T2

�
. �17�

. An upper bound that is logarithmic in the minimum eigenvalue of �

We have already found a sharper bound than �4� concerning its dependence on �min���.
owever, the bound �5� is not sharp at all concerning its dependence on �−�. A slight modifica-

ion can greatly improve this. First note

�Tr�� log ��� � ���1 · �log ��� = Tr��� · �log �min���� .

his inequality can be sharpened, since Tr���=0 and � is a state. Let �=�+−�− be the Jordan
ecomposition of �, then

�Tr�� log ��� � ��+�1 · �log �min���� , �18�

nd hence

�Tr�� log ��� � Tr���/2 · �log �min���� .

urther, we have Fannes’ continuity of the von Neumann entropy,15

�S�� + �� − S���� � T log d + min�− T log T,
1

e
� ,

here d is the dimension of the underlying Hilbert space and TªTr���. Combining all this with

S�� + ���� = − �S�� + �� − S���� − Tr�� log ��

ives rise to the subsequent upper bound, logarithmic in the smallest eigenvalue of �.
Theorem 3: For all states � and � on a d-dimensional Hilbert space, with T= ��−��1 and

=�min���,

S����� � T log d + min�− T log T,
1

e
� −

T log �

2
. �19�

. A combination of two bounds?

The following question comes to mind almost automatically: can we combine the two bounds
17� and �19� into a single bound that is both quadratic in � and logarithmic in �min���? This
ould certainly be a very desirable feature for a good upper bound. For instance, could it be true

hat

S����� � C · Tr��� − ��2� · �log �min���� ,

or some constant C0? Unfortunately, the answer to this first attempt is negative. In fact, the
roposed inequality is violated no matter how large the value of C.

Proposition 1: For any r0 there exist states � and � such that

S�����  r · Tr��� − ��2� · �log �min���� . �20�

roof: It suffices to consider the case that � ,� are states acting on the Hilbert space C2, and that
and � commute. Hence, the statement must only be shown for two probability distributions

P = �p,1 − p�, Q = �q,1 − q� .

ithout loss of generality we can require q to be in �0,1 /2�. Then, one has to show that for any
�
0 there exist p ,q such that the C function f , defined as
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f�p,q,r� = r��p − q�2 + �2 − p − q�2��log�q�� − �p log�p/q� + �1 − p�log��1 − p�/�1 − q��� ,

ssumes a negative value. Now, for any r1, fix a q� �0,1 /2� such that −4r�q log q�	1. Clearly,

f�q,q,r� = 0, 	 �

�p
	

p=q
f�p,q,r� = 0.

hen

	 �2

�p2	
p=q

f�p,q,r� = −
1

1 − q
−

1

q
− 4r log�q� 	 −

1

q
− 4r log�q� 	 0.

his means that there exists an �0 such that f�p ,q ,r�	0 for p� �q ,q+��, which in turn proves
he validity of �20�. �

The underlying reason for this failure is that the two bounds �19� and �17� are incompatible,
in the sense that there are two different regimes where either one or the other dominates. To see
when the logarithmic dependence dominates, let us again take the basis where � is diagonal, with

i being the main diagonal elements. When keeping �=�−� fixed and s1=�min��� tends to zero,
hen

lim
s1→0

S�� + ����/�log s1� = �1,1 	 � .

ence, in the regime where �min��� tends to zero and �−� is fixed, the bound �19� is the
ppropriate one.

The other regime is the one where � is fixed and �−� tends to zero. This can be intuitively
een by considering the case where the states � and � commute �the classical case�. Let pi and qi

e the diagonal elements of � and �, respectively, in a diagonalizing basis, and ri= pi−qi. Then

S����� = 

i

�qi + ri�log�1 + ri/qi� .

e can develop S�� ��� as a Taylor series in the ri, giving

S����� = 

i

ri
2

2qi
+ O�ri

3� .

ence, in the regime where �−� tends to zero and � is otherwise fixed, the relative entropy
xhibits the behaviour of bound �17�.

In terms of the matrix derivatives, this notion can be made more precise as follows. Denote
he bound �19� as

g����� =
Tr��� − ��2�

�min���

or states � ,�, then clearly

lim
�→0

g�� + �����/� = 0.

n using the integral representation of the second Fréchet derivative of the matrix logarithm,4

	 �2

��2	
�=0

log�� + ��� = − 2�
0

�

dx�� + x�−1��� + x�−1��� + x�−1,
ne obtains
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	 �2

��2	
�=0

S�� + ����� = − 2 Tr���
0

�

dx�� + x�−1��� + x�−1��� + x�−1�
+ 2 Tr���

0

�

dx�� + x�−1��� + x�−1� .

he right-hand side is bounded from above by

	 �2

��2	
�=0

S�� + ����� � �
0

�

dx Tr���� + x�−1��� + x�−1� ,

ee Refs. 4 and 22. This bound can be written as in Eq. �16�. Therefore, one can conclude that

	 �2

��2	
�=0

S�� + ����� = 	 �2

��2	
�=0

g�� + �����

olds for all � satisfying Tr���=0 if and only if �=1 /d, where d is the dimension of the under-
ying Hilbert space. These considerations seem to spell doom for any attempt at “unifying” the two
inds of upper bounds. However, below we will see how a certain change of perspective will
llow us to get out of the dilemma.

I. A SHARP LOWER BOUND IN TERMS OF NORM DISTANCE

We define Smin�T� with respect to a norm to be the smallest relative entropy between two
tates that have a distance of exactly T in that norm, that is

Smin�T� = min
�,�

�S�����:��� − ��� = T� . �21�

hen one agrees to assign S�� ���= +� for nonpositive �, the definition of Smin can be rephrased
s

Smin�T� = min
�,�

�S�� + ����:����� = T,Tr��� = 0� . �22�

ntuitively one would guess that Smin is monotonously increasing with T. The following lemma
hows that this is true, but some care is required in proving it.

Lemma 7: For T1�T2, Smin�T1��Smin�T2�.
Proof: Keep � fixed and define

f��T� = min
�

�S�� + ����:����� = T,Tr��� = 0� ,

o that Smin�T�=min� f��T�. Considering S��+� ��� as a function of �, it is convex and minimal
n the origin �=0. Further, for the norm balls

B�T� ª ��:����� � T,Tr��� = 0� �23�

e have

�0� = B�0� � B�T1� � B�T2� . �24�

his is sufficient to prove that 0= f��0�� f��T1�� f��T2�. Now, since this holds for any �, it also
olds when minimising over �, and that is just the statement of the lemma. �

As a direct consequence, a third equivalent definition of Smin�T� is

Smin�T� = min
�,�

�S�� + ����:����� � T,Tr��� = 0� . �25�
e now show that one can restrict oneself to the commutative case.
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Lemma 8: The minimum in Eq. (22) is obtained for � and � commuting.
Proof: Fix � and consider a basis in which � is diagonal. Let ��Diag��� be the completely

ositive trace-preserving map which, in that basis, sets all off-diagonal elements of � equal to zero.
hus Diag���=�. By monotonicity of the relative entropy,

S�� + ���� � S�Diag��� + ��Diag���� .

inimizing over all states � then gives

min
�

S�� + ���� � min
�

S�Diag��� + ��Diag���� = min
�

�S�� + ����:��,�� = 0� .

n the other hand, the states � that commute with � are included in the domain of minimization
f the left-hand side, hence equality holds. �

For later reference we define the auxiliary function

s�x� ª min
0	r	1−x

S��r + x,1 − r − x���r,1 − r�� , �26�

or 0�x	1. An equivalent expression for this function is given by

s�x� ª min
x	r	1

S��r − x,1 − r + x���r,1 − r�� . �27�

he first three nonzero terms in its series expansion around x=0 are given by

s�x� = 2x2 +
4

9
x4 +

32

135
x6 + O�x8� �28�

obtained using a computer algebra package�. Further calculations reveal that some of the higher-
rder coefficients are negative, the first one being the coefficient of x62. One can easily prove23 that
he lowest order expansion 2x2 is actually a lower bound. It is, therefore, the sharpest quadratic
ower bound. For values of x up to 1/2, the error incurred by considering only the lowest order
erm in �28� is at most 6.5%. For larger values of x, the error increases rapidly. In fact, when x
ends to its maximal value of 1, s�x� tends to infinity, as can easily be seen from the minimisation
xpression �r tends to 0�; accordingly, the series expansion diverges. For values of x4/5, s�x� is
ell approximated by its upper bound

s�x� � lim
r→1−x

S��r + x,1 − r − x���r,1 − r�� = − log�1 − x� .

his is illustrated in Fig. 1.
Let us now come back to Eq. �22�, with � and � diagonal, and ��.�� any unitarily invariant

orm. Let � and � have diagonal elements �k and �k, respectively. Fixing �, we minimize first
ver �. This is a convex problem and any local minimum is automatically a global minimum.20

he corresponding Lagrangian is

L = 

k

�k�1 + �k/�k�log�1 + �k/�k� − ��

k

�k − 1� . �29�

he derivative of the Lagrangian with respect to �k is

�L
��k

= log�1 + �k/�k� − �k/�k − � . �30�
his must vanish in a critical point, giving the expression

                                                                                                            



N
o
p

w
=

w

t

S

w

T

F
b

102104-12 K. M. R. Audenaert and J. Eisert J. Math. Phys. 46, 102104 �2005�

                        
log�1 + �k/�k� = �k/�k + � . �31�

ow note that the equation log�1+x�−x=b, for b	0 has only two real solutions, one positive and
ne negative, and none for b0. Therefore, for any k�k /�k can assume only one of these two
ossible values. Let K be an integer between 1 and d−1. Without loss of generality we can set

�k/�k = cp, 1 � k � K

− cm, K 	 k � d ,
� �32�

here cp and cm are positive numbers, to be determined along with K. The requirement 
k�k

0 imposes

cp

k=1

K

�k − cm 

k=K+1

d

�k = 0,

hich upon defining

r ª 

k=1

K

�k, �33�

urns into

cpr = cm�1 − r� ¬ c . �34�

ubstituting Eqs. �32� and �33�, the function to be minimized becomes

r�1 + cp�log�1 + cp� + �1 − r��1 − cm�log�1 − cm� ,

hich, given Eq. �34�, can be rewritten as

S��r + c,1 − r − c���r,1 − r�� .

he one remaining constraint �����=T likewise becomes

���cp�1, . . . ,cp�K,− cm�K+1, . . . ,− cm�d��� = T .

IG. 1. �Color online� Function s defined in Eq. �26� �middle curve�, the lower bound 2x2 �lower curve�, and the upper
ound −log�1−x� �upper curve�.
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efining

�� ª ��1, . . . ,�K�/r ,

�� ª ��K+1, . . . ,�d�/�1 − r� ,

his turns into

T = ���cpr��;− cm�1 − r������ = c�����;����� ,

here we have exploited the homogeneity of a norm. Note that by their definition, �� and �� are
ectors consisting of positive numbers adding up to 1.

The minimization itself thus turns into

Smin�T� = min
r,��,��

S��r + c,1 − r − c���r,1 − r�� ,

here cªT / ����� ;�����. Quite obviously, the minimum over c is obtained for the smallest possible
, hence

Smin�T� = min
r

S��r + T/�,1 − r − T/����r,1 − r�� = s�T/�� ,

ith

� = max
��,��

�����;����� .

y convexity of a norm, this maximum is obtained in an extreme point, so

� = ��F�� .

ncidentally, by Lemma 5, this value is also the maximum

max
�,�

��� − ��� ,

ver all possible states � and �, i.e., � is the largest possible value of T for the given norm. We
ave thus proven

Theorem 4: For any unitarily invariant norm ��.��, we have the sharp lower bound

S����� � s���� − ���/��F��� . �35�

few remarks are in order at this point:

1� Within the setting of finite-dimensional systems, this theorem generalizes a result of Refs. 4
and 24 for the trace norm to all unitarily invariant norms. This article also uses the technique
of getting lower bounds by projecting on an abelian subalgebra and then exploiting the case
of a two-dimensional support as the worst case scenario.

2� If we take the results of Refs. 4 and 24 for granted and combine it with Lemma 3, we
immediately get

S����� � s��� − ��1/�F�1� � s���� − ���/��F��� .

3� The divergence of s at x=1 is easily understood. The largest norm difference between two
states occurs for orthogonal pure states, in which case their relative entropy is infinite.
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II. SHARP UPPER BOUNDS IN TERMS OF NORM DISTANCE

Let now Smax�T ,�� be the largest relative entropy between � and � that have a normalized
istance of exactly T and �min���=�, so let

Smax�T,�� ª max
�,�
S������:

��� − ���
��F��

= T,�min��� = �� . �36�

he need for the extra parameter � arises because for �=0, Smax is infinite, as can be seen by
aking different pure states for � and �. We can rephrase this definition as

Smax�T,�� = max
�,�

S�� + ����:
�����
��F��

= T,Tr��� = 0,� + � � 0,�min��� = �� . �37�

ecause � commutes with the identity matrix, there is a unique common least upper bound on �1
nd −�, which we will denote by max��1 ,−��. In the eigenbasis of �, this is a diagonal matrix
ith diagonal elements max�� ,−�i�. The constraints ��� and �+��0 can therefore be com-
ined into the single constraint

� � max��1,− �� . �38�

he extremal � obeying this constraint are

� = max��1,− �� + ������� , �39�

here � is any state vector, and

� ª 1 − Tr�max��1,− ��� . �40�

herefore, the constrained maximisation over � can be replaced by an unconstrained maximisation
ver all pure states of the function

S�� + max��1,− �� + ������� �max��1,− �� + �������� . �41�

f course, all of this puts constraints on � as well. Indeed, in order that states � obeying �38�
xist, max��1 ,−�� must obey the condition

Tr�max��1,− ��� � 1. �42�

e now have to distinguish between two cases: the case d=2, and the case d2.

. The case d=2

For the d=2 case, the maximization over � is trivial. In its eigenbasis, � is a multiple of
iag�1,−1�=F. Hence, fixing the eigenbasis of � �which we can do because of unitary invariance
f the relative entropy�, and fixing

�����/��F�� = T , �43�

ctually leaves just one possibility for �, namely �=TF. The term max��1 ,−�� leads to two
ases: T�� and T�.

The condition T�� implies, by Lemma 3, that ������ and, hence,

max��1,− �� = Diag��,�� ,

� = 1 − 2� .
he remaining maximization of �41� is therefore given by
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max
�

S�Diag�� + T,� − T� + �1 − 2�������� �Diag��,�� + �1 − 2��������� . �44�

ositivity of � requires ��1/2. By unitary invariance of the relative entropy, and invariance of
iagonal states under diagonal unitaries �phase factors�, we can restrict ourselves to vectors � of
he form �= �cos � , sin ��T.

Lemma 9: For a state vector �= �cos � , sin ��T, the function to be maximized in (44) is convex
n cos�2��.

Proof: Let D1 be the determinant of the first argument. It is linear in tªcos�2��:

D1 = �2 − T2 + �1 − 2���� − Tt� .

fter some basic algebra involving eigensystem decompositions of the states, the function to be
aximized in �44� is found to be given by

f�x� ª ��1 − x�log�1 − x� + �1 + x�log�1 + x��/2 + �− 1 + 2� − 2Tt��log�1 − �� − log ��/2

− �log�4 − 4�� + log ��/2,

here x= �1−4D1�1/2. We will now show that this function is convex in t. Since the second and
hird terms are linear in t, we only need to show convexity for the first term. The series expansion
f the first term is

��1 − x�log�1 − x� + �1 + x�log�1 + x��/2 = 

k=1

�
x2k

2k�2k − 1�
.

very term in the expansion is a positive power of x2 with positive coefficient and is therefore
onvex in x2, which itself is linear in t.The sum is therefore also convex in t. �

By the previous lemma, the maximum of the maximization over � is obtained for extremal
alues of t, that is: either �= �1,0�T or �= �0,1�T. Evaluation of the maximum is now straightfor-
ard and it can be checked that the choice �= �1,0�T always yields the largest value of the relative

ntropy.
We will now more specifically look at the case where T�. In this case, we get

max��1,− �� = Diag��,T� ,

� = 1 − � − T ,

nd the remaining maximization of �41� is given by

max
�

S�Diag�� + T,0� + �1 − � − T������� �Diag��,T� + �1 − � − T�������� . �45�

ositivity of � requires ��1/2 and T�1−�. Again, we can restrict ourselves to states �
�cos � , sin ��T. We also have the equivalent of Lemma 9, which needs more work in this case.

Lemma 10: For a state vector �= �cos � , sin ��T, the function to be maximised in (45) is
onvex in cos�2��.

Proof: Let D1 and D2 be the determinant of the first and second argument, respectively. Both
re linear in tªcos�2��:

D1 = �1 − � − T��� + T��1 − t�/2,

D2 = ��� + T − �2 − T2� + �1 − � − T��T − ��t�/2.
n the �D1 ,D2� plane, this describes a line segment with gradient
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K ª −
T − �

T + �
,

hich lies in the interval �−1,0�.
Again, after some basic algebra, the function to be maximized in �45� is identified to be

f��1−4D1�1/2 , �1−4D2�1/2�, where

f�x,y� ª ��1 − x�log�1 − x� + �1 + x�log�1 + x��/2 + ��x2 + y2 − 2y − 4T2�log�1 − y�

− �x2 + y2 + 2y − 4T2�log�1 + y��/4y .

e will now show that f��1−4D1�1/2 , �1−4D2�1/2� is convex in t. First, note that

f�x,y� = f0�x,y� + T2f1�y� .

he term f1�y� is itself convex in t: its series expansion is

f1�y� = �log�1 + y� − log�1 − y��/y = 2

k=0

�
y2k

2k + 1
,

hich by the positivity of all its coefficients is convex in y2, and y2 is linear in t.
The other term, f0�x ,y� is given by a sum of three terms

f0�x,y� =
1

2
��1 − x�log�1 − x� + �1 + x�log�1 + x�� +

1

4
��y − 2�log�1 − y� − �y + 2�log�1 + y��

−
x2

4
�log�1 + y� − log�1 − y��/y .

eplacing each of the three terms by its series expansion yields

f0�x,y� = 

k=1

�
x2k

2k�2k − 1�
+ 


k=1

�

�k − 1�
y2k

2k�2k − 1�
−

x2

2 

k=0

�
y2k

2k + 1
.

o show that this function is convex in t, we will evaluate it along the curve

x2 = u + p ,

y2 = v + Kp ,

ith gradient K between 0 and −1, and u and v lying in the interval �0, 1�, and check positivity of
ts second derivative with respect to p at p=0:

	 �2

�p2	
p=0

f0�x,y� = 

k=2

�
k − 1

2k − 1
uk−2 + �k − 1��K

�k − 1�K − 2

2k − 1
− K2 k

2k + 1
u�vk−2.

he coefficient of uk−2 is clearly positive, hence the derivative is positive if the coefficient of vk−2

s positive for all allowed values of u and K. The worst case occurs for u=1, yielding a coefficient

K
�k − 1�K − 2

2k − 1
− K2 k

2k + 1
=

− K�2 + 4k + K�
�2k − 1��2k + 1�

.

or values of K between 0 and −1, this is indeed positive. �

By the previous lemma, the maximum of the maximization over � is obtained for extremal
alues of t, that is: either �= �1,0�T or �= �0,1�T. Evaluation of the maximum is again straight-
orward, and calculations show that sometimes �= �1,0�T yields the larger value, and sometimes

T
= �0,1� . In this way we have obtained the upper bounds.
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Theorem 5: Let �=�−�, T= ���� � / ��F�� and �=�min���. For d=2, and T��,

S����� � �T + 1 − ��log
T + 1 − �

1 − �
+ �� − T�log�1 − T/�� . �46�

or d=2, and T�,

S����� � max�− log�1 − T�� ,

�� + T�log�1 + T/�� + ��1 − � − T�log�1 − T/�1 − ���� . �47�

It is interesting to study the behavior of the bound in the case of large �. More specifically, an
pproximation for bound �46�, valid for T��, is

S����� � 

k=2

�
Tk

k�k − 1�� 1

�k −
�− 1�k

�1 − ��k� �
T2

2��1 − ��
, �48�

igure 2 illustrates the combined upper bounds of Theorem 5 �d=2� for various values of �.

. The case d>2

In case d is larger than 2, it is not clear how to proceed in the most general setting, for general
I norms, as the maximization over � must explicitly be performed. In the following, we will

estrict ourselves to using the trace norm, which is in some sense the most important one anyway.
hat is, the requirements on � are

IG. 2. Upper bounds of Theorem 5 on S=S�� ��� vs. the rescaled norm distance T= ���−�� � / ��F��, for d=2, and for
alues of smallest eigenvalue of � �a� �=0.1, �b� 0.2, �c� 0.3, and �d� 0.5. The two regimes T�� and ��T�1−� can be
learly identified. For ease of comparison, each curve is shown superimposed on the curves for �=0.1, 0.2, 0.3, 0.4, and
.5 shaded line.
���1 = 2T , �49�
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Tr��� = 0, �50�

Tr�max��1,− ��� � 1. �51�

he following very simple lemma will prove to be a powerful tool.
Lemma 11: For all A, B, and C, positive semidefinite operators,

S�A + C�B + C� � S�A�B� .

Proof: First note that for any a0,

S�aA�aB� = Tr�aA�log�aA� − log�aB��� = aS�A�B� .

This, together with joint convexity of the relative entropy in its arguments �which need not be
normalized to trace 1�, leads to

S�A + C�B + C� = 2S�A + C

2
�
B + C

2
� � S�A�B� + S�C�C� = S�A�B� .

�

The Lemma immediately yields an upper bound on �41�: letting

� ª max��1,− �� + ������� ,

uch that we obtain

S�� + ���� � S�� + max��1,− ���max��1,− ��� = S��� + �1�+��1 + �� + �1�−� . �52�

o continue, we consider two cases.
Case 1: When T��, requirement �51� is automatically satisfied, and max��1 ,−��=�1. Let

+ and �− be the positive and negative part of �, respectively. That is, �=�+−�−, with �+ and �−

onnegative and orthogonal. Because we are using the trace norm we can rewrite the conditions on
as

���1 = Tr��+� + Tr��−� = 2T ,

Tr��� = Tr��+� − Tr��−� = 0,

ence

Tr��+� = Tr��−� = T .

y Lemma 11, �41� is upper bounded by S��+�1 ��1�. By convexity, its maximum over �+,

−�0, with Tr��+�=Tr��−�=T, is obtained in �+ and �− of rank 1, giving as upper bound

S�� + ���� � �� + T�log
� + T

�
+ �� − T�log

� − T

�
.

he upper bound can be achieved in dimensions d�3 for all values of T�� by setting �=TF and
=e3.

Case 2: In the other case, when T�, we have to deal with condition �51�. To do that we split
into three nonnegative parts,

� = �+ − �0 − �−, �53�

ith �+, �0 and �−, operating on orthogonal subspaces V+, V0 and V−, respectively, with
�+ � 0,
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0 � − �0 � − �10,

− �1− � − �−.

e denote the projectors on these subspaces by 1+, 10, and 1−. Then

�� + ��+ = �+ − �0 + �1+0,

here 1+0ª1++10. The conditions on �, Tr���=0 and Tr�����=2T translate to

Tr��+� = Tr��0� + Tr��−� = T .

ue to the orthogonality of positive and negative part, �52� can be simplified to S���
�1�+ ��1+0�. After subtracting �10−�0 from both arguments, we get

S��+ + �1+ � �1+ + �0� ,

hich is an upper bound on �52�, by Lemma 11. Ignoring condition �51� on �, we get

Smax � max
�+�0

Tr��+�=T

S��+ + �1+ � �1+� .

y convexity, the maximum is obtained for �+ rank 1, giving the upper bound

Smax � �T + ��log��T + ��/�� .

To see that this bound is sharp for �almost� any value of T, consider the two states

� = Diag�T + �,0,0
J,�
K,� + �� ,

� = Diag��,T − J�,�
J,�
K,� + �� ,

� ª 1 − T − �d − 1 − J�� .

ere, J is an integer between 0 and d−3 and k=d−3−J. Conditions on J are J��T �so that �
0� and T�1− �d−1−J�� �so that ��0�. This choice of states can thus be obtained for ��T
1−2�. It can be seen that ��−��1=2T and

S����� = �T + ��log��T + ��/�� . �54�

he result of the foregoing can be subsumed into the following theorem.
Theorem 6: Let �=�−�, T= ���1 /2 and �=�min���. If T�� then

S����� � �� + T�log
� + T

�
+ �� − T�log

� − T

�
, �55�

nd this upper bound is sharp when d2. If ��T�1−� then

S����� � �� + T�log
� + T

�
. �56�

hen d2, this bound is sharp for (at least) ��T�1−2�.
Figure 3 illustrates these bounds and shows their superiority to the previously obtained bound

19�.
Again, it is interesting to look at the bound for large �. An approximation for bound �55�,
alid for T��, is given by
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S����� � 

k=1

�
T2k

k�2k − 1��2k−1 �
T2

�
. �57�

III. APPLICATION TO STATE APPROXIMATION

In the following paragraph we will give an application of our bounds to state approximation.
onsider a state � on a Hilbert space H, and a sequence ��n�n where �n is a state on H�n. As
efore, the sequence is said to asymptotically approximate � if for n tending to infinity, ��n

��n�1=Tr��n−��n� tends to zero. Let us define Tn as

Tn ª Tr���n − �n�/2.

Because of the lower bound �6�, we get

Sn ª S���n � �n� � 2Tn
2,

nd this bound is sharp. Hence, Tn goes to zero if Sn does.
On the other hand, Tn going to zero does not necessarily imply Sn going to zero. Indeed, Sn

an be infinite for any finite value of n when ��n is not restricted to the range of �n. In particular,
he relative entropy distance between two pure states is infinite unless the states are identical. At
rst sight, this seems to render the relative entropy useless as a distance measure. Nevertheless,
ense can be made of it by imposing an additional requirement that the range of �n must contain
he range of ��n. Let us then restrict �n to the range of ��n, as the relative entropy only depends
n that part of �n. Letting d be the rank of �, the dimension of the range of ��n is dn. Let �n be
he smallest nonzero eigenvalue of �n on that range; �n is at most 1 /dn.

The behavior of the relative entropy then very much depends on the relation between �n and

n. Since �n decreases at least exponentially, we only need to consider the case Tn��n, and use
he bound �56�

Sn � ��n + Tn�log�1 +
Tn

�n
� .

IG. 3. �Color online� Comparison between upper bounds �19�, �55�, and �56� on S=S�� ��� vs. the trace norm distance
= ��−��1 /2, for various values of �, the smallest eigenvalue of �. The upper set of dashed curves depict bound �19� �with
=3� for �=0.1 �lower curve�, 0.2, 0.3, 0.4, and 0.5 �upper curve�. The lower set of full line curves depict bounds �55� and

56� for �=0.1 �upper curve�, 0.2, 0.3, 0.4, and 0.5 �lower curve�. The two regimes T�� and ��T�1−� can be clearly
een.
n the worst-case behavior of Tn �Tn /�n tending to infinity� the bound can be approximated by
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Sn � Tn log
Tn

�n
= Tn�log Tn − log �n� � Tn�log �n� .

o guarantee convergence of Sn we therefore need Tn to converge to 0 at least as fast as 1 / �log �n�,
hich in the best case goes as 1/n. Note that bound �19� yields the same requirement, but as this
ound is not a sharp one it could have been too strong a requirement. This gives us the subsequent
heorem.

Theorem 7: Consider a state � on a finite-dimensional Hilbert space H and a sequence ��n�n

f states �n on H�n. The sequence ��n�n asymptotically approximates � in the trace norm, if

lim
n→�

S���n � �n� = 0. �58�

onversely, if the range of �n includes the range of ��n and ���n−�n�1 converges to zero faster
han 1/ �log �n�, where �n is the minimal eigenvalue of �n restricted to the range of ��n, then
imn→� S���n ��n�=0.

X. SUMMARY

In this article, we have discussed several lower and upper bounds on the relative entropy
unctional, thereby sharpening the notion of continuity of the relative entropy for states which are
lose to each other in the trace norm sense.

The main results are the sharp lower bound from Theorem 4, and the sharp upper bounds of
heorems 5 �d=2� and 6 �d2�. Theorems 4 and 5 give the relation between relative entropy and
orm distances based on any unitarily invariant norm, while Theorem 6 holds only for the trace
orm distance. These results have been obtained employing methods from optimization theory.
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he frequency spectrum of the Casimir effect
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The frequency spectrum of the Casimir effect between parallel plates is studied.
Calculations are performed for both the massless scalar field and the electromag-
netic field cases, first using a spectral weight function, and then via the Fourier
transform of the renormalized expectation of the Casimir energy-momentum opera-
tor. The Casimir force is calculated using the spectrum for two plates which are
perfectly transparent in a frequency band. The result of this calculation suggests a
way to detect the frequency spectrum of the Casimir effect. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2046529�

. INTRODUCTION

The Casimir effect1 is a force between two physical objects, classically a pair of perfectly
onducting parallel plates, resulting from quantum vacuum fluctuations of the electromagnetic
eld between them. In recent years, this relatively small effect has been detected in the laboratory.2

t has also been extensively studied, see Bordag et al.3 for a comprehensive review, and Milton4

or a more recent one.
Between two perfectly conducting parallel plates, the Casimir effect can be calculated by

ubtracting the infinite regularized vacuum zero-point energy per unit area of the electromagnetic
eld

Ev�l� = �c lim
�→�

3l

�2�4, �1�

rom the again infinite regularized zero-point energy per unit area for the electromagnetic field
etween the two plates

Ep�l� = �c lim
�→�

� 3l

�2�4 −
1

720

�2

l3 + O� 1

�
�� , �2�

o obtain a renormalized energy between the two plates of

E�l� = �c lim
�→�

�−
1

720

�2

l3 + O� 1

�
�� = −

�2�c

720l3 . �3�

ven though the zero-point energies given by �1� and �2� are infinite, for which as yet there is no
omplete understanding, most physics only involves differences in energies. So by renormalizing,
aking the limit only after we have performed the subtraction, we obtain a finite negative energy
etween the plates. It is this renormalized energy that results in an attractive Casimir force
etween the two plates of

�
Electronic mail: alang@oru.edu

46, 102105-1022-2488/2005/46�10�/102105/13/$22.50 © 2005 American Institute of Physics
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F�l� = −
�E

�l
= −

�2�c

240l4 . �4�

ee Ref. 5 for further details. The method used previously for calculating the vacuum energy,
hough rather elegant, does not show the immense cancelation between the frequency modes
hich renders the renormalized energy finite. To make this cancelation more explicit, a spectral

unction ���� can be introduced.
Work begun by Ford6 for the scalar fields case, followed by Hacyan et al.7 for the electro-

agnetic field case, shows that such a spectral function can be defined in at least two ways. Ford6

ntroduces a spectral weight function which samples the frequency spectrum, and Hacyan et al.7

ake the Fourier transform of the renormalized expectation of the Casimir energy-momentum
perator. The spectral weight function method is used to assign a frequency spectrum for the
nergy density between the two plates, whose integral over all frequencies gives the net energy per
nit area �3�, whereas the Fourier transform method defines a spectrum for the Casimir force,
hose integral over all frequencies gives the net force per unit area �4�.

This article reviews and extends previous work in this area and proposes an experimental test
or the validity of assigning frequency spectra by using frequency band-gap materials.

I. ASSIGNING A FREQUENCY SPECTRUM USING A SPECTRAL WEIGHT FUNCTION

Following Ford,6 we may use the Plana summation formula

�
n=1

�

f�n� +
1

2
f�0� = �

0

�

f�x�dx + i�
0

� f�it� − f�− it�
exp�2�t� − 1

dt , �5�

nstead of the standard regularization and renormalization technique outlined previously, to rewrite
he zero-point energy between the plates as an integral

Ep�l� = �
n=0

�

���n = �
0

�

���n�dn + i��
0

� ��it� − ��− it�
exp�2�t� − 1

dt , �6�

here the prime indicates a factor of 1
2 should be introduced when n=0, and the particular form of

he frequency modes �n depends on the type of field between the plates and the number of spatial
imensions. Subtracting from �6� the zero-point energy of the vacuum

Ev�l� = �
0

�

���n�dn , �7�

e obtain the convergent integral for the renormalized energy

E�l� = i��
0

� ��it� − ��− it�
exp�2�t� − 1

dt . �8�

o measure the contribution that each mode, �0 say, gives to the total energy, we introduce a
pectral weight function

Wm��� = �2m

�0
�2m+1 �2m

�2m�!
e−m�/�0, �9�

hich has the following properties:

��

W���d� = 1, �10�

0
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�
0

�

W���d�0 = 1, �11�

lim
m→�

W��� = ��� − �0� . �12�

or m�1, the spectral weight function �9� is sharply peaked about �0, so by substituting it into the
quation for the energy density �8�, we reproduce Ford’s expression for the contribution that �0

ives to the total vacuum energy between the plates6

���0� = i��
0

� ��it�W�it� − ��− it�W�− it�
exp�2�t� − 1

dt . �13�

y integrating this expression over all frequencies we recover the energy density, i.e.,

E�l� =�
0

�

����d� . �14�

hus ���� is a spectrum for the Casimir energy.

. Energy spectrum for the massless scalar field

The massless scalar field in two dimensions with periodic boundary conditions S1	R gives
ise to normal modes6

�n =
2n�c

l
, n = 0, ± 1, ± 2, . . . . �15�

hese modes give a rise to a formally divergent vacuum energy

Ep�l� = �
n=0

�

�
2n��c

l2 �16�

hich has a renormalized value

E�l� = −
��c

6l2 . �17�

ubstituting the normal modes �15� into �13� and integrating gives

���0� = �− 1�m+1 �2m + 1��c

�2m+1l2 � m

�0
�2m+1	
�2m + 2,1 −

im

��0
� + 
�2m + 2,1 +

im

��0
�
 , �18�

here 
�s ,a� is the Hurwitz zeta function defined by


�s,a� = �
k=0

�
1

�k + a�s . �19�

lotting the energy spectrum for the massless scalar field in S1	R we see that it is an oscillatory
unction of decaying amplitude with maxima at integer values of �0, see Fig. 1. It is easy to verify

hat for all m, the integral over all frequencies is, as required, the energy density, i.e.,
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E�l� = �
0

�

����d� = −
��c

6l2 . �20�

hus ����, given by �18�, is the energy spectrum for the massless scalar field in S1	R. Compar-
ng the energy spectrum �18� with Ford’s6 equations ��2.13�–�2.15��, it can be shown that �18� is
quivalent to Ford’s expression for ����.

The energy spectrum for the four-dimensional massless scalar field can be calculated simi-
arly. The massless scalar field in four-dimensions with periodic boundary conditions S1	R3 gives
ise to normal modes6

�n = c�k2 + �2n�

l
�2

, n = 0, ± 1, ± 2, . . . . �21�

hese modes give a rise to a formally divergent vacuum energy

Ep�l� =
�c

2�l
�

0

�

�
n=0

�

�k�k2 + �2n�

l
�2

dk . �22�

sing the change of variables x2=k2+4n2�2 / l2 and regularizing, by introducing the convergence
actor e−�x yields

Ep�l� = lim
�→0

�c

2�l
�
n=0

�

��
2n�/l

�

x2e−�xdk .

= lim
�→0

�c

2�l
�
n=0

�

�� 2

�3 +
4n�

�2l
+

4n2�2

�l2 �e−2n��/l. �23�

s mentioned in Sec. I, we can renormalize this expression by subtracting the zero-point energy of
he vacuum to obtain the energy between the plates. Instead we proceed here to derive an expres-
ion for the energy spectrum. Substituting

��n� =
c

2�l
� 2

�3 +
4n�

�2l
+

4n2�2

�l2 �e−2n��/l �24�

FIG. 1. Energy spectrum ���0� for the massless scalar field in S1	R plotted using m=1000, �=c= l=1.
nto �13�, where Wm��� is as before, we obtain �after some algebra�
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���0� =
i�c

��0l
3�3

�− 1�m�2m�2m+1

�2m�! �
0

�

dt� t

�0
�2m

�coth��t� − 1�

	 	�l2 − 2�2�2t2�sin	2t���

l
+

m

�0
�
 − 2�l�t cos	2t���

l
+

m

�0
�

 . �25�

ntegrating and taking the limit as �→0 gives

���0� = �− 1�m+1 �2m + 1��2m + 2��2m + 3��c

6�2m+2l4 � m

�0
�2m+1

	 	
�2m + 4,1 −
im

��0
� + 
�2m + 4,1 +

im

��0
�
 . �26�

lotting the energy spectrum for the massless scalar field in S1	R3 we see a slightly different
haped oscillatory function than before, the amplitude initially increasing before it decays to zero.
gain, the maxima are at integer values of �0, see Fig. 2. It is again easy to verify that for all m,

he integral over all frequencies is, as required, the energy density, i.e.,

E�l� =�
0

�

����d� = −
�2�c

90l4 . �27�

hus ����, given by �26�, is the energy spectrum for the massless scalar field in S1	R3. Com-
aring the energy spectrum �26� with Ford’s6 equation �3.18� it can be shown that �26� is equiva-
ent to Ford’s expression for ���� but is given here in a more compact form.

. Energy spectrum for the electromagnetic field

For two perfectly conducting parallel plates, the frequency modes for the electromagnetic field
re given by5

�n = c�kx
2 + ky

2 + �n2�2

l2 �2

, n = 0, ± 1, ± 2, . . . . �28�

hese modes give rise to a formally divergent vacuum energy

Ep�l� =
�c

4�2 �
n=0

�

��
0

� �
0

�

�kx
2 + ky

2 + �n2�2/l2�2dkxdky =
�c

4�2 �
n=0

�

��
0

�

2�k�k2 + �n2�2/l2�2dkx.

�29�

sing the change of variables x2=k2+n2�2 / l2 and regularizing, by introducing the convergence
−�x

FIG. 2. Energy spectrum ���0� for the massless scalar field in S1	R3 plotted using m=1000, �=c= l=1.
actor e , yields
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Ep�l� = lim
�→0

�c

2�
�
n=0

�

��
n�/l

�

x2e−�xdx = lim
�→0

�c

2�
�
n=0

�

�� 1

��3 +
n

l�2 +
n2�

2l2�
�e−n��/l. �30�

e can renormalize this expression by subtracting the zero-point energy of the vacuum to obtain
he energy between the plates �3�. Instead we proceed here to derive an expression for the energy
pectrum. Substituting

��n� =
c

2�
� 1

��3 +
n

l�2 +
n2�

2l2�
�e−n��/l �31�

nto �13�, where Wm��� is as before, we obtain �after some algebra�

���0� =
i�c

2��0l
2�3

�− 1�mm

�2m�! �0

� �2mt

�0
�2m

�coth��t� − 1�

	 	exp	it�2m

�0
+

��

l
�
��i + 1�l + �t����i − 1�l + �t�� − c.c.
dt . �32�

ntegrating and taking the limit as �→0 gives

���0� = �− 1�m �2m + 1��2m + 2��2m + 3��c

48�2m+2l3 � m

�0
�2m+1

	 	
�2m + 4,1 −
im

��0
� + 
�2m + 4,1 +

im

��0
�
 . �33�

lotting the energy spectrum for the electromagnetic field, see Fig. 3, we see that it is, up to
caling, identical to the plot of energy spectrum for the massless scalar field in S1	R3, see Fig. 2.
his is not surprising as the equations for � are nearly identical, see Eq. �26�. As before, the
mplitude initially increases before it decays to zero and the maxima are at integer values of �0.
ntegrating over all frequencies for any m gives, as required, the energy density, i.e.,

E�l� = �
0

�

����d� = −
�2�c

720l3 . �34�

hus ����, given by �33�, is the energy spectrum for the electromagnetic field between two

IG. 3. Energy spectrum ���0� for the electromagnetic field in between parallel plates plotted using m=1000, �=c= l
1.
erfectly conducting parallel plates in vacuum.
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II. ASSIGNING A FREQUENCY SPECTRUM USING FOURIER TRANSFORMS

An alternative definition of a frequency spectrum for the Casimir effect has been proposed by
acyan et al.7 They define the spectrum as the Fourier transform of the renormalized expectation
alue of the energy-momentum stress operator for a quantized field, i.e.,

���� =
1

�
�

−�

�

�T zz��Re−i�d , �35�

here z is the direction normal to the plates. Integrating this expression over all frequencies we
ecover, not the energy density, but the Casimir force itself. That is

F�l� = �
0

�

����d� . �36�

hus ���� given by �35� is a spectrum for the Casimir force.
The renormalized stress tensor for the electromagnetic field between two perfectly conducting

arallel plates in vacuum in given by7

�T zz��R =
2�c

�2 �
n=1

�
2 + 3�2ln�2

�2 − �2ln�2�3 . �37�

ubstituting this expression into �35� gives the spectrum

���� =
�c

�2l3 �
n=1

� � l�

2n2 cos�2ln�� +
2l2�2n2 − 1

4n3 sin�2ln��� . �38�

y introducing a convergence term e−��, and integrating over all frequencies, we recover the
asimir force as follows:

F�l� = lim
�→0

�c

�2l3 �
n=1

� �
0

� � l�

2n2 cos�2ln�� +
2l2�2n2 − 1

4n3 sin�2ln���e−��d�

= lim
�→0

�c

�2 �
n=1

�
− 24l2n2 + 2�2

�4l2n2 + �2�3 = lim
�→0

�c

�2��3 coth���/2l�csch2���/2l�
8l3�

−
1

�4�
= lim

�→0
�c� − �2

240l4 +
�2�2

3024l6 + O���3� = −
�2�c

240l4 . �39�

hus ����, given by �38�, is the force spectrum for the electromagnetic field between two perfectly
onducting parallel plates in vacuum. Ford8 has shown that this force spectrum may also be
erived directly from Lifshitz theory.9

The force spectrum �38� may be expressed in the following form, useful for evaluating and
lotting

���� =
�c

�2� i�2

4l
�ln�1 − e2il�� − ln�1 − e−2il��� +

�

4l2 �Li2�e2il�� − Li2�e−2il��� +
i

8l3 �Li3�e2il��

− Li3�e−2il���� , �40�

here Li2�z� and Li3�z� are the dilogarithm and trilogarithm functions, respectively, defined in

eneral by
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Lin�z� = �
k=1

�
zk

kn . �41�

lotting the force spectrum for fixed l, see Fig. 4, we see that it has a different form than the
nergy spectra. First, the location of the extrema depends explicitly on l, the separation between
he plates. Specifically, the extrema occur for �=n� / l; n=1,2 , . . . instead of integer values of �
s we saw for the energy spectra. Second, the amplitude of the force spectrum does not decay to
ero as �→0, as it does for the energy spectra, but instead it increases without bound. Since
ntegrating the force spectrum over all � gives the Casimir force, we clearly see here the almost
otal cancelation that must occur between all the modes to render the Casimir force finite. These
wo properties suggest that for certain physical materials �and by varying l�, the frequency mode
ancelation may be disturbed to produce designer Casimir forces of almost any magnitude, both
ttractive and repulsive.

V. CASIMIR FORCE BETWEEN IDEAL FREQUENCY BAND AND FREQUENCY BAND-
AP MATERIALS

In this section, the term frequency band material is used to mean a physical material that is
erfectly reflecting in a narrow frequency interval and perfectly transparent outside of that inter-
al. Similarly, the term frequency band-gap material is used to mean a physical material that is
erfectly reflecting for all frequencies except for a narrow frequency interval, for which it is
erfectly transparent. Such ideal materials, of course, do not exist. In fact, a spatially homoge-
eous dielectric material is restricted by the Kramers–Kronig relations from having the type of
iscontinuous response I assume10 and the results of Lifshitz9 restrict the Casimir force between
wo homogeneous dielectric half-spaces to be always attractive and no greater than the Casimir

FIG. 4. Force spectrum ���� for the electromagnetic field plotted using �=c= l=1.

IG. 5. Casimir force for a frequency band material with fixed �0 and varying band width � plotted using �=c= l=1 and
0=5.
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orce between two perfectly reflecting parallel plates. It is possible however to do better with
nhomogeneous materials such as photonic crystals which are regular arrays of materials with
ifferent refractive indices.11 Photonic crystals have been made which are essentially perfectly
eflecting over a finite frequency band, and partially reflecting �having rather complicated trans-
ission spectra� outside this band.12–14

In the preceeding section, we explicitly saw the cancelation, alluded to in Sec. I, between the
requency modes which gives a finite Casimir force. It was Ford and Sopova8,15,16 who first
peculated that “one might be able to upset this cancelation in some way,” and alter the magnitude
nd even direction of the Casimir force. For frequency band material plates, which are perfectly
eflecting in the interval ��0 ,�0+�� say, the Casimir force is given by8

F��l,�0� = �
�0

�0+�

����d� . �42�

imilarly, for frequency band-gap material plates, which are perfectly reflecting everywhere ex-
ept in the interval ��0 ,�0+�� say, the Casimir force is given by

F��l,�0� = F�l� − F��l,�0� . �43�

ubstituting the force spectrum �40� into �42�, we obtain

IG. 6. Casimir force for a frequency band-gap material with fixed �0 and varying band-gap width � plotted using �
c= l=1 and �0=5.

IG. 7. Casimir force for a frequency band material with fixed � and varying band width �0 plotted using �=c= l=1 and

=5.
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F��l,�0� = −
�c

16�2l4 �2l2��0 + ��2�Li2�e2il��0+��� + Li2�e−2il��0+���� − 2l2�0
2�Li2�e2il�0�

+ Li2�e−2il�0�� + 4il��Li3�e2il��0+��� + Li3�e−2il��0+���� − 4il��Li3�e2il�0� + Li3�e−2il�0��

− 3�Li4�e2il��0+��� + Li4�e−2il��0+���� + 3�Li4�e2il�0� + Li4�e−2il�0��� . �44�

Plotting the Casimir band force and the Casimir band-gap force for constant �0 and l, we see
hat the force oscillates with the amplitude increasing as the frequency band �or band gap� in-
reases, see Figs. 5 and 6. Also we have an infinite number of equilibria points where the force
etween the plates equals zero. Since l is constant here, the two plots are reflections of each other
bout the line F=F�l� /2.

Plotting the Casimir band force and the Casimir band-gap force for constant �, � and l, we see
hat the force again oscillates with the amplitude increasing as the frequency �0 increases, see
igs. 7 and 8. We again have an infinite number of equilibria points where the force between the
lates equals zero, and since l is constant, the graphs are reflections of each other about the line
=F�l� /2. One thing to note here is that as �→0+, the graph of F��l ,�0� tends to the graph of

���. Thus one way to test the theoretical frequency spectra is to use a narrow frequency band
aterial to sample the contribution that each frequency mode contributes to the total force. This

an also be done using a narrow frequency band-gap materials via Eq. �43�. Ideally one would like
o have a material in which you could control where the frequency band �or band-gap� began and
ts width. Plotting the Casimir band force and the Casimir band-gap force for constant �, �, and

0 and for varying l, we see that the force again oscillates but this time the amplitude decreases as
he separation l increases, see Figs. 9 and 10. This is clearly what we would expect from physical
rinciples. We have an infinite number of equilibria points where the force between the plates
quals zero. These equilibria points alternate between being unstable F��0 and stable F��0 for

IG. 8. Casimir force for a frequency band-gap material with fixed � and varying band-gap width �0 plotted using �
c= l=1 and �=5.
FIG. 9. Casimir force for a frequency band material with fixed � and �0 with varying l plotted using �=c=�=�0=1.
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oth the band and band-gap cases. Unlike the previous two sets of plots, the Casimir force F�l� is
ot constant, this is why the two plots are not merely reflections of each other about the line F
F�l� /2. We have here another possible experimental test for the force spectrum. By taking a

requency band �or band-gap� material and measuring the Casimir force at varying distances, we
hould be able to detect the oscillation in the force that comes from the spectrum. If at all possible,
are should be taken to produce a material where the width of the band �or band gap� corresponds
o an �0, for which the magnitude of the force is a maximum. This occurs when

� =
n�

l
− �0. �45�

lotting the Casimir band-gap force in two dimensions for constant �, see Fig. 11, with lighter
ray levels corresponding to repulsive forces and darker levels corresponding to attractive forces,
nd with the zero force equilibria indicated with the black curves. We see that oscillations die out
s l increases for all �0, even though the amplitude increases as �0 increases. Plotting the Casimir
and-gap force in two dimensions for constant l, see Fig. 12, again with lighter gray levels
orresponding to repulsive forces and darker gray levels corresponding to attractive forces, and
ith the zero force equilibria indicated with the black curves. We see the amplitude of the force
scillations increases as both �0 and � increase.

IG. 10. Casimir force for a frequency band-gap material with fixed � and �0 with varying l plotted using �=c=�=�0

1.
FIG. 11. Casimir force for a frequency band-gap material with fixed � plotted using �=c=1 and �=5.
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. DISCUSSION AND CONCLUSION

In the previous sections, we have reviewed the two main ways of assigning a frequency
pectrum for the Casimir effect. First by using a spectral weight function to assign an energy
pectrum and second by using the Fourier transform of the energy density to assign a force
pectrum. Calculations were performed for both the massless scalar field and the electromagnetic
eld. New exact forms for the various spectra were presented in all cases.

There is some doubt to the validity of assigning a spectrum to the Casimir effect, as a
heoretical understanding of how exactly the individual modes contribute to the total force will not
e complete until the individual infinite zero-point energies are themselves better understood.
ossible experiments were proposed to test the validity of the models. Such experimental tests
ay be done using either frequency band or frequency band-gap materials. Some limitations to

his are the physical restrictions of any plasma frequency of the material and also the smoothness
f the interface, where we would like to keep the variations in l small compared to 1/�0.6 Also, as
lready mentioned, there may be restrictions imposed by causality and passivity considerations.10

nother possible way to detect such a frequency spectrum is via a Casimir-Polder spectrum,
hereby an experiment to detect the force between a dielectric wall and small metal sphere is

onducted.15,16

For possible future work, the Casimir force between photonic band gap materials with a more
ealistic band gap structure needs to be calculated. Also, other geometries need to be considered,
specially the cases of a sphere and a cylinder. Assigning a spectrum to these geometries now
eems accessible via a generalized Plana summation formula.17
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inimum orbit dimension for local unitary action on
-qubit pure states
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The group of local unitary transformations partitions the space of n-qubit quantum
states into orbits, each of which is a differentiable manifold of some dimension. We
prove that all orbits of the n-qubit quantum state space have dimension greater than
or equal to 3n /2 for n even and greater than or equal to �3n+1� /2 for n odd. This
lower bound on orbit dimension is sharp, since n-qubit states composed of products
of singlets achieve these lowest orbit dimensions. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2048327�

. INTRODUCTION

Quantum entanglement theory can be regarded as the branch of nonrelativistic quantum me-
hanics that seeks to understand the states and dynamics of composite quantum systems with a
xed number of subsystems. Composite quantum systems can exhibit correlations among sub-
ystems in ways that classically describable composite systems cannot. A �pure� state of a com-
osite quantum system is called entangled if it cannot be described by specifying �pure� states for
ach of the subsystems.

Quantum entanglement plays a particularly important role in quantum information, where the
ubsystems are quantum bits or qubits �a spin-1 /2 particle is a physical realization of a qubit�. An
-qubit system is the quantum analog of an n-bit computer or communications channel. Because
uantum computing algorithms and quantum communications protocols utilize entanglement as an
ssential resource, potential applications of quantum information theory provide motivation for a
ore complete description of entanglement �see Refs. 1 and 2 for surveys of a broad range of

opics in this area�.
A fundamental problem in the theory of quantum entanglement is to describe the types of

ntanglement that are achievable for a composite quantum system. We regard two states of a
omposite quantum system as having the same type of entanglement if unitary operations on the
ubsystems, called local unitary or LU transformations, can transform one quantum state into the
ther. Local unitary transformations form a Lie group which acts on the manifold of quantum
tates, partitioning it into orbits. Each orbit is a differentiable manifold that represents a type of
uantum entanglement. The orbit space—the set of orbits made into a topological space by the
uotient topology—is the collection of entanglement types.

A theory of quantum entanglement based on local unitary transformations seeks to describe
he orbit spaces and the orbits themselves for composite quantum systems. Much of the progress
oward understanding the orbit spaces of quantum systems comes from invariant theory—the
tudy of functions which are constant along orbits.3–12 One hopes to use these invariants, which
re usually polynomial functions of state vector coefficients, to distinguish and classify orbits.
ains3 and Grassl et al.4 laid the groundwork for a systematic approach using this philosophy. The

�Electronic mail: lyons@lvc.edu
�
Electronic mail: walck@lvc.edu

46, 102106-1022-2488/2005/46�10�/102106/14/$22.50 © 2005 American Institute of Physics
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uccess in choosing particular, finite sets of invariants to label points in the orbit space has so far
een limited to small numbers of qubits. Makhlin6 gave a set of 18 polynomial invariants that
eparate orbits for two-qubit mixed states. Sudbery5 gave a set of six polynomial invariants that
eparate orbits for 3-qubit pure states. Acín et al.13,14 gave a convenient set of nonpolynomial
nvariants and a classification of 3-qubit pure states based on it.

In this paper we pursue a strategy inspired by Linden and Popescu,15,16 who approached
ntanglement properties of quantum states working on the Lie algebra level to study the orbits
hemselves. We develop a general technique for calculating the orbit dimension of a state and use
his to prove a lower bound on orbit dimension. We have also used our methods to provide a
roof17 of the authors’ claim in Refs. 15 and 16 that almost all states have orbit dimension 3n �we
ake the manifold of pure n-qubit states to be the projective space P��C2��n� and the group of local
nitary transformations to be G=SU�2�n�.

Most of the progress in understanding orbits and orbit dimensions has been for systems of
nly two or three qubits. Carteret and Sudbery18 described the nongeneric orbits �including orbit
imensions� for pure 3-qubit states. Życzkowski et al.19,20 analyze orbits for bipartite states. Few
eneral results are known about those orbits which are the most interesting from the quantum
nformation point of view, namely the nongeneric or exceptional orbits of n-qubit states �basic
xamples are the singlet state of two qubits and the GHZ state of three qubits�. The main result in
he present paper is at least a small step towards the larger goal of orbit classification for
eneral n.

. Physical significance of the result

In this paper, we identify the minimum orbit dimension of n-qubit quantum states. States that
ave the minimum orbit dimension are, in some sense, the “rarest” quantum states. Until now, it
as been known that singlet states have minimum orbit dimension for two qubits, and one could
onjecture that some n-qubit generalization of the singlet state would have minimum orbit dimen-
ion for n qubits, but it was not clear how the singlet should be generalized to maintain the
inimum orbit dimension as n increases. For example, one generalization of the singlet is the

o-called n-cat state, 1 /�2�00¯00�+1/�2�11¯11�, of which the GHZ state is an example for
hree qubits. But the n-cat generalization of the singlet does not maintain the minimum orbit
imension for higher qubit numbers. As we show in this paper, it is the product of singlet states
for even qubit numbers� or the product of singlets and one unentangled qubit �for odd qubit
umbers� that is the generalization of singlets that achieves minimum orbit dimension. This
uggests a special role for the 2-qubit singlet state in the theory of n-qubit quantum entanglement.

. Proof strategy and outline

To establish the minimum orbit dimension, we show that the orbit dimension of a given state
s �one less than� the rank of a real matrix M associated to that state. The matrix M arises naturally
ia consideration of the action of the local unitary group on an infinitesimal level, that is, the
ction of the Lie algebra of the local unitary group. The column vectors of M can be identified
ith complex vectors. We then establish lower bounds on the rank of M by showing that a

ufficient number of real dot products of columns of M can be arranged, possibly after local
nitary operations, to vanish. Instead of working directly with real dot products, it is convenient to
alculate complex inner products; the vanishing of the real part of a complex inner product
uarantees that the real dot product is zero �see �15� below�.

In Sec. III we introduce the matrix M. To establish the necessary cancellations among terms
f complex inner products of columns of M requires careful bookkeeping and a technical lemma;
e present this machinery in Sec. IV. Next we establish orthogonality among columns of M in

ec. V and Sec. VI. We then use these results to prove minimum orbit dimension in Sec. VII.
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I. CONVENTIONS AND NOTATION

. Hilbert space, state space and the local unitary group

Let H= �C2��n denote the Hilbert space of pure states of a system of n qubits and let P�H�
enote the projectivization of H which is the state space of the system. We take the local unitary
roup to be G=SU�2�n. These definitions constitute a minor departure, made for the sake of clarity
nd compactness of exposition, from the widespread practice of taking state space to be the set of
ormalized state vectors and resolving phase ambiguity by including an extra U�1� factor in the
ocal unitary group.

. Multi-index notation for Hilbert space basis vectors

Let �0� , �1� denote the standard basis for C2 and write �i1i2¯ in� for �i1� � �i2� � ¯ � �in� in
C2��n. For a multi-index I= �i1i2¯ in� with ik=0, 1 for 1�k�n, we will write �I� to denote
i1i2¯ in�. Let ik

c denote the bit complement

ik
c = �0 if ik = 1,

1 if ik = 0,
	

nd let Ik denote the multi-index

Ik ª �i1i2 ¯ ik−1ik
cik+1 ¯ in�

btained from I by taking the complement of the kth bit for 1�k�n. Similarly, let Ikl denote the
ulti-index

Ikl ª �i1i2 ¯ ik−1ik
cik+1 ¯ il−1il

cil+1 ¯ in�

btained from I by taking the complement of the kth and lth bits for 1�k� l�n.

. Standard identification of CN with R2N

We identify the complex vectors in CN with real vectors in R2N via

CN ↔ R2N,

�z1,z2,…,zN� ↔ �a1,b1,a2,b2,…,aN,bN� , �1�

here zj =aj + ibj for 1� j�N.

II. LIE ALGEBRA ACTION

The Lie algebra su�2� of SU�2� is the set of traceless skew Hermitian matrices,

su�2� = �
 it u

− ū − it
�:t � R,u � C	

nd the Lie algebra LG= �su�2��n of the local unitary group G= �SU�2��n is the set of n-tuples of
atrices of this form.

A local unitary operator g= �g1 ,g2 ,… ,gn� in G acts on a product state vector �v�= �v1�
� �v2� � · � �vn� in Hilbert space H= �C2��n by

g · �v� = g1�v1� � g2�v2� � ¯ � gn�vn� . �2�
he induced action on �v� by X= �X1 ,X2 ,… ,Xn� in LG is given by
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X · �v� = �
i=1

n

�v1� � ¯ � �vi−1� � Xi�vi� � �vi+1� � ¯ � �vn� . �3�

his action extends linearly to all of Hilbert space as follows. Let ���=�IcI�I� be an element in
ilbert space H, and let X= �X1 ,X2 ,… ,Xn� be an element of LG with

Xk = 
 itk uk

− uk − itk
� for 1 � k � n .

straightforward calculation shows that the action of X on ��� is given by

X · ��� = �
I
�

k=1

n

�− 1�ik�cIitk + cIk
conjik�uk����I� , �4�

here conj1�z�= z̄ and conj0�z�=z. Let aI ,bI denote the real and imaginary parts of the coefficient

I in the expression for ���, and let rk ,sk denote the real and imaginary parts of the entry uk in Xk.
he real and imaginary parts of the Ith coefficient on the right-hand side of Eq. �4� are the

ollowing:

Re�I�X��� = �
k=1

n

��− 1�ik�− bItk� + �− 1�ikaIk
rk − bIk

sk� , �5�

Im�I�X��� = �
k=1

n

��− 1�ik�aItk� + �− 1�ikbIk
rk + aIk

sk� . �6�

Given a state x in P�H�, the isotropy Lie subalgebra LIx of the isotropy subgroup Ix is
etermined by the following condition.

Proposition 3.1: Isotropy Lie algebra condition: Let x�P�H� be a state and let ��� be a
ilbert space representative for x. The element X�LG is in the Lie algebra LIx of the isotropy

ubgroup Ix of x if and only if

X · ��� = i����

or some real �.
Together with �5� and �6�, Proposition 3.1 implies the following.
Corollary 3.2: Let X ,x and ��� be as above. Suppose that X is in LIx. Then for each multi-

ndex I, we have the following pair of equations:

�
k=1

n

��− 1�ik�− bItk� + �− 1�ikaIk
rk − bIk

sk� = − bI� , �7�

�
k=1

n

��− 1�ik�aItk� + �− 1�ikbIk
rk + aIk

sk� = aI� , �8�

or some real number �.
By adding bI�, respectively aI�, to both sides of Eq. �7�, respectively �8�, the corollary shows

hat calculating the Lie algebra LIx is a matter of solving a homogeneous real linear system of 2n+1

quations �two for each of the 2n multi-indices� in the 3n+1 unknowns tk ,rk ,sk ,�. Let

M�t1,r1,s1,t2,r2,s2,…,tn,rn,sn,�� = 0 �9�

enote the linear system of 2n+1 equations given by �7� and �8�, so that the 2n+1� �3n+1� matrix

or M has all entries of the form ±aI , ±bI.
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Here is the fundamental observation which reduces the problem of orbit dimension to finding
he rank of M.

Proposition 3.3: Orbit dimension as rank of M: Let x be a state, let ��� be a Hilbert space
epresentative for x, and let M be the associated matrix constructed from the coordinates of ��� as
escribed above. Then we have

rank M = dim Ox + 1.

Proof: We can think of M as the matrix of a linear map M :LG�R→R2n+1
via the identifi-

ation

R3n ↔ LG ,

�t1,r1,s1,t2,r2,s2,…,tn,rn,sn� ↔ �X1,X2,…,Xn� ,

here

Xk = 
 itk rk + isk

− rk + isk − itk
� .

onsider a solution �X ,�� of M�X ,��=0. Proposition 3.1 says that ��� is an eigenvector for X with
igenvalue i�, so � is determined by X. Since X�LIx if and only if M�X ,��=0 for some �, it
ollows that dim LIx=dim ker M. From this we have

dim LIx = dim ker M = number of columns of M − rank M = 3n + 1 − rank M .

hus we have dim Ox=dim G−dim LIx=3n− �3n+1−rank M�=rank M −1. �

Next we introduce three operators on H whose purpose is to simplify calculations �specifi-
ally, inner products of column vectors� to establish the rank of M,

Let A = 
 i 0

0 − i
�, B = 
 0 1

− 1 0
�, and C = 
0 i

i 0
�

enote the standard basis for su�2�, so that the element

X = 
 it r + is

− r + is − it
�

s written X= tA+rB+sC with respect to this basis.
�This basis is standard in the sense that A ,B ,C correspond to the truly standard basis vectors

= �0,1 ,0 ,0�, j= �0,0 ,1 ,0�, k= �0,0 ,0 ,1� of the pure quaternions, under the natural identification
a b

−b̄ ā �↔a+bj. In terms of the Pauli spin matrices, we have A= i�z, B= i�y, and C= i�x where

x= �0 1

1 0 �, �y = �0 −i

i 0 �, and �z= �1 0

0 −1 �.�
Define elements Ak ,Bk ,Ck of LG for 1�k�n to have A ,B ,C, respectively, in the kth coor-

inate and zero elsewhere.

Ak = 0,…,0,
 i 0

0 − i
�,0,…,0� ,

Bk = 0,…,0,
 0 1 �,0,…,0� ,

− 1 0
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Ck = 0,…,0,
0 i

i 0
�,0,…,0� .

pplying �4�, we have the following:

Ak��� = �
I

i�− 1�ikcI�I� , �10�

Bk��� = �
I

�− 1�ikcIk
�I� , �11�

Ck��� = �
I

icIk
�I� . �12�

imple checking shows that the complex vectors on the right-hand sides of the above three
quations identify with columns of M via the standard identification �1�. The rightmost column of

M identifies with −i���. Thus we may view M as the �3n+1�-tuple of complex vectors,

M = �A1���,B1���,C1���,…,An���,Bn���,Cn���,− i���� . �13�

t is convenient to gather the columns of M into 3-tuples. We define the triple Tk to be the set of
ectors

Tk = �Ak���,Bk���,Ck���� �14�

or 1�k�n. We view the vectors both as real and also as complex via �1�.

V. TECHNICAL LEMMAS

In this section we present combinatorial machinery that will be used to establish orthogonality
mong columns of the matrix M described in the preceding section.

Lemma 4.1: Let L= �ijk� be an ��m matrix with entries in Z2= �0,1�, and let E= ��−1�ijk�. We
iew L as the matrix of a Z2-linear map Z2

m→Z2
� and we view E as the matrix of an R-linear map.

uppose that E has a nontrivial kernel. Then either L has a nontrivial kernel or there is some v
Z2

m such that Lv= �1,1 ,… ,1�.
Proof: Assume the hypotheses of the lemma. Let N be the ��m matrix whose entries are all

nes. As matrices over R, observe that E=N−2L.
Since E has integer coefficients, there is a nonzero kernel vector v with integer coordinates.

ividing by a power of 2, if necessary, we may rescale v so that the integer coordinates are not all
ven. We have 0=Ev= �N−2L�v, so Lv= �N /2�v= �s /2�c, where c is the column vector of all ones
nd s is the sum of the entries in v. Since Lv is a vector with integer entries, Lv= �s /2�c implies
is even. Now we can read the equation Lv= �s /2�c mod 2. If s /2=0 mod 2, then v mod 2 is a

onzero kernel vector for L since not all coordinates of v are even. If s /2=1 mod 2, then c
�1,1 ,… ,1� is in the image of L. �

Corollary 4.2: Let �1 ,�2 ,… ,�m be real numbers, not necessarily distinct, and not all of which
re zero. Let Dm be the 2m�2m diagonal matrix whose r ,r entry is

�
i=1

m

�− 1�ri�i,

here r= �rmrm−1¯r2r1� is the binary expansion of the integer r in the range 0�r�2m−1.
uppose that Dm has at least one zero eigenvalue. Let r1 ,r2 ,… ,r� be the row numbers of the zero
igenvalues of Dm. Then there is a nonempty set K= �k1 ,k2 ,… ,km�� with 1�k1�k2� ¯ �km�

m and m� even so that
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�
k�K

rk
1 = �

k�K
rk

2 = ¯ = �
k�K

rk
�,

here the sums are taken mod 2.

Proof: Let L= �rj
i� and let E= ��−1�rj

i
�. Since E kills the nonzero vector ��1 ,�2 ,… ,�m�, Lemma

.1 applies. If L is not injective, let v= �v1 ,v2 ,… ,vm� be a nonzero kernel vector and let

1 ,k2 ,… ,km� be the indices i in the range from 1 to m inclusive for which vi=1. Then the mod 2
quation Lv=0 yields

0 = �
k�K

rk
1 = �

k�K
rk

2 = ¯ = �
k�K

rk
�.

f there is a v= �v1 ,v2 ,… ,vm� such that Lv= �1,1 ,… ,1�, then setting k1 ,k2 ,… ,km� to be the
ndices i for which vi=1, then we have

1 = �
k�K

rk
1 = �

k�K
rk

2 = ¯ = �
k�K

rk
�.

o see that m� must be even, note that if

0 = �
i=1

m

�− 1�ri�i

hen we also have

0 = − �
i=1

m

�− 1�ri�i = �
i=1

m

�− 1�ri
c
�i.

o if r1=r is a row number for a zero entry in Dm, so is r2=rc, where rc is the binary string
btained from r by complementing each bit. Since these two rows have opposite parity in each bit,
� cannot be odd. This completes the proof. �

Definition 4.3: For the set K= �k1 ,k2 ,… ,km�� arising from zero entries in Dm in row numbers
1 ,r2 ,… ,rl as in 4.2 above, we define the parity of K to be the common value in Z2 of the sums

�
k�K

rk
1 = �

k�K
rk

2 = ¯ = �
k�K

rk
�.

Now we are ready to establish lower bounds on the rank of M by showing that inner products
f certain pairs of columns can be arranged �via local unitary equivalence operations� to vanish.

. ORTHOGONALITY RESULTS

Throughout this section, let ���=�IcI�I��H be a Hilbert space vector, and let M be the
ssociated matrix as defined in Sec. III.

We make repeated use of the following elementary observation about the relationship between
omplex and real inner products. Let u ,v be vectors in CN and let u� ,v� be the corresponding
ectors in R2N given by the standard identification �1�. The complex inner product �u�v� and the
eal dot product u� ·v� are related by

Re��u�v� = u� · v�. �15�

e shall consider complex inner products given in Table I among the column vectors of M given
n �13�. For the sake of compactness we have omitted a factor of −i in the inner products �A�, �E�,
nd �I�. With or without the factor −i, their vanishing guarantees the orthogonality of the rightmost
olumn vector −i��� of M to Ak��� ,Bk���, and Ck���.

Our first proposition is that each triple spans three real dimensions.

Proposition 5.1: Triples span three dimensions: Let Tk= �Ak��� ,Bk��� ,Ck���� be a triple of
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olumns of M. The three vectors in the triple are orthogonal when viewed as real vectors.
Proof: To prove the proposition, we show that inner products �F�, �J�, and �K� in Table I are

ure imaginary for the case j=k. First, for �F�, the Ith summand is

− i�− 1�ik+ikcIcIk
= − icIcIk

nd the Ikth summand is

− i�− 1�ik+1+ik+1cIk
cI = − icIk

cI.

he sum of the Ith and the Ikth summands is therefore −2i Re�cIcIk
�. By pairing the summands in

his way, we see that ���Ak
†Bk��� is pure imaginary. Thus it follows from �15� that Ak��� ,Bk��� are

rthogonal as real vectors.
Next we consider �J� with j=k. The Ith summand is �−1�ikcIcIk

, while the Ikth summand is
−1�ik+1cIk

cI. Thus the sum of the Ith and Ikth summands is �−1�ik2i Im�cIcIk
�, which is pure

maginary, so Ak��� ,Ck��� are orthogonal as real vectors.
Finally we check �K� for j=k. In this case the Ith summand is i�−1�ik�cIk

�2 so the inner product
s pure imaginary. Therefore Bk��� ,Ck��� are orthogonal as real vectors. This establishes the
roposition. �

Next we show that a nontrivial linear dependence among the columns Ak��� as real vectors
uarantees that certain columns among the Bk��� ,Ck��� are orthogonal to spans of certain sets of
riples.

Proposition 5.2: Main orthogonality proposition: Suppose that

�
k=1

m

�kAjk
��� = 0

or some 1� j1� j2� ¯ � jm�n, � j real and not all zero. Then there is a nonempty subset
� �j1 , j2 ,… , jm� containing an even number of elements such that Bk��� and Ck��� are orthogo-

al to −i��� and to Aj��� ,Bj��� ,Cj��� for all k�K, j�K.
Proof: Let Dm be the matrix constructed from �1 ,… ,�m as described in the technical lemmas

ection. Let cI be a nonzero state vector coefficient. By �10�, the Ith coordinate of �k=1
m �kAjk

��� is
cI�k�−1�ijk�k, so the hypothesis �k=1

m �kAjk
���=0 guarantees that Dm has at least one zero eigen-

alue, namely �k�−1�ijk�k where I is any multi-index for which cI�0. Therefore �1 ,�2 ,… ,�m and

TABLE I. Inner products of pairs of columns of M.

���Ak���=�Ii�−1�ik�cI�2 �A�

���Aj
†Ak���=�I�−1�ij+ik�cI�2 �B�

���Bj
†Ak���=�Ii�−1�ij+ikcIj

cI �C�

���Cj
†Ak���=�I�−1�ikcIj

cI �D�

���Bk���=�I�−1�ikcIcIk
�E�

���Aj
†Bk���=�I− i�−1�ij+ikcIcIk

�F�

���Bj
†Bk���=�I�−1�ij+ikcIj

cIk
�G�

���Cj
†Bk���=�I− i�−1�ijcIj

cIk
�H�

���Ck���=�IicIcIk
�I�

���Aj
†Ck���=�I�−1�ijcIcIk

�J�
���Bj

†Ck���=�Ii�−1�ijcIj
cIk

�K�
���Cj

†Ck���=�IcIj
cIk

�L�
m meet the hypothesis of corollary 4.2.
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Let K= �k1 ,k2 ,… ,km�� be the subset of �1,2 ,… ,m� whose existence is guaranteed by 4.2 with
orresponding parity b as defined in 4.3, and let K= �jk1

, jk2
,… , jkm�

�. The set of multi-indices of

tate basis vectors �I� is partitioned by K into two equal-sized equivalence classes by the following
quivalence relation.

�i1,i2,…,in� � �i�1,i�2,…,i�n� ⇔ �
k�K

ik = �
k�K

ik� mod 2 �16�

n words, I� I� if the parity of the sum of bits in columns in K is the same for I and I�. Let P be
he set of multi-indices of parity class b and let P� be the opposite parity class.

We claim that all complex inner products of the form �E�–�L� in Table I vanish for k�K and
j�K. From this it follows from �15� that the corresponding real dot products also vanish. Observe
hat for any I for which cI�0 we have �k�−1�ijk�k=0, so I is in parity class P. So if I ,J are
ulti-indices in opposite parity classes, at least one of cI ,cJ must be zero. If k�K and j�K then
ulti-indices I , Ik are in opposite parity classes, and also Ij , Ik are in opposite parity classes. Since

very summand in each of the inner products �E�–�L� has a factor either of the form cIcIk
or of the

orm cIj
cIk

with k�K and j�K, all of the inner products vanish.
This completes the proof. �

Proposition 5.3: Suppose that for some 1� l� l��n we have Al���=Al���� and Cl���
Cl����. Then Ak��� ,Bk���, and Ck��� are each orthogonal to −i��� and to Aj��� ,Bj��� ,Cj��� for
ll k� �l , l��, j� �l , l��.

Proof: We claim that all of the complex �and hence also real, by �15�� inner products �A�–�L�
anish for k� �l , l�� and j� �l , l��. We begin by applying Proposition 5.2 to the hypothesis Al���
Al����. In the notation of 5.2 we have m=2 and therefore also m�=2 since m� is an even number

n the range 0�m��m, so K= �l , l��. Thus we have from 5.2 that Bk��� and Ck��� are orthogonal
o −i��� and to Aj��� ,Bj��� ,Cj��� for all k� �l , l��, j� �l , l��.

It remains to be shown that Al��� ,Al���� are also orthogonal to −i��� and to Aj��� ,Bj��� ,Cj���
or all j� �l , l��.

The hypothesis Cl���=Cl���� implies that cIl
=cIl�

, or equivalently, that cI=cIll�
for all I. This

mplies that summands of the inner products �A�–�D� cancel in pairs for k� �l , l��, j� �l , l��, as
ollows. The Ith summand of �A� is i�−1�ik�cI�2 and the Ill�th summand is i�−1�ik+1�cI�2. The Ith
ummand of �B� is �−1�ij+ik�cI�2 and the Ill�th summand is �−1�ij+ik+1�cI�2. The Ith summand of �C�
s i�−1�ij+ikcIj

cI and the Ill�th summand is i�−1�ij+ik+1cIj
cI. The Ith summand of �D� is �−1�ikcIj

cI and
he Ill�th summand is �−1�ik+1cIj

cI.
This completes the proof. �

I. LOCAL UNITARY ADJUSTMENT

In this section we adapt the orthogonality results of the preceding section to hypotheses
nvolving more general linear dependencies.

Let us write �Ti1
,Ti2

,… ,Tir
� to denote the subspace of the �real� column space of M spanned

y the vectors in the triples Ti1
,… ,Tir

viewed as real vectors.
Proposition 6.1: Main orthogonality proposition generalized: Suppose that

dim�Tj1
,Tj2

,…,Tjm
� � 3m

or some 1� j1� j2� ¯ � jm�n. Then there is a nonempty subset K� �j1 , j2 ,… , jm� containing
n even number of elements such that there are two orthogonal vectors ��k� , �	k� in �Tk�, both of
hich are orthogonal to −i��� ,Aj��� ,Bj��� and to Cj��� for all k�K, j�K.
Proof: Let us write the linear dependency as a relation
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�
i=1

m

�i�
i� = 0,

here �i is real, �
i� lies in �Tji
�, �
i�
i�= ����� for 1� i�m, and not all the �i are zero. Write each


i� as a linear combination

�
i� = �iAji
��� + �iBji

��� + iCji
���

ith �i , �i, and i real. Let Ri�SO�su�2�� be such that

Ri�A� = �iA + �iB + iC .

ince the adjoint representation Ad:SU�2�→SO�su�2�� is surjective, we can choose Uji
�SU�2�

uch that Ad�Uji
†�=Ri, that is, Uji

†XUji
=RiX for all X�su�2�. For j� �j1 , j2 ,… , jm�, set Uj equal to

he identity. Finally, let U�G=SU�2�n be U=�i=1
n Ui.

Now observe that

�
i=1

m

�i�U†Aji
U���� = �

i=1

m

�i�
i� = 0.

pplying U to both sides, we get

�
i=1

m

�iAji
�U���� = 0.

et M� be the matrix for the state vector U���. Applying the main orthogonality proposition 5.2 to
M�, we get that Bk�U���� ,Ck�U���� are orthogonal to U��� and to AjU��� ,BjU��� ,CjU��� for k

K, j�K. Now set

��k� = U†BkU��� ,

�	k� = U†CkU���

or k�K. Since U is unitary, we have that ��k� , �	k� are orthogonal to U†U���= ��� and to
†AjU��� ,U†BjU��� ,U†CjU��� for k�K, j�K. Since the three vectors
†AjU��� ,U†BjU��� ,U†CjU��� have the same span as Aj��� ,Bj��� ,Cj��� for all j, the proposition

s established. �

Proposition 6.2: Generalization of 5.3: Suppose that dim�Tl ,Tl���4 for some 1� l� l��n.
hen Ak��� ,Bk���, and Ck��� are each orthogonal to −i��� and to Aj��� ,Bj��� ,Cj��� for all k
�l , l��, j� �l , l��.

Proof: The proof is very similar to the proof of 6.1.
Since dim�Tl ,Tl���4, the dimension of the intersection �Tl�� �Tl�� is at least two. Choose

rthogonal vectors �
� , �
�� in �Tl�� �Tl�� with �
�
�= �
��
��= �����. Write linear combinations,

�
� = �kAk��� + �kBk��� + kCk��� ,

�
�� = ��kAk��� + ��kBk��� + �kCk��� ,

nd let Rk�SO�su�2�� be such that

Rk�A� = �kA + �kB + kC ,

Rk�C� = ��kA + ��kB + �kC ,
or k� �l , l��.
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Since the adjoint representation Ad:SU�2�→SO�su�2�� is surjective, we can choose Uk

SU�2� such that Ad�Uk
†�=Rk, that is, Uk

†XUk=RkX for all X�su�2�. For j� �l , l��, set Uj equal
o the identity. Finally, let U�G=SU�2�n be U=�i=1

n Ui.
Now observe that

U†AlU��� = �
� = U†Al�U��� ,

U†ClU��� = �
�� = U†Cl�U��� .

pplying U to both sides, we get

AlU��� = Al�U��� ,

ClU��� = Cl�U��� .

Let M� be the matrix for the state vector U���. Applying 5.3 M�, we get that

k�U���� ,Bk�U���� ,Ck�U���� are orthogonal to U��� and to AjU��� ,BjU��� ,CjU��� for k
�l , l��, j� �l , l��. Since U is unitary, we have that U†AkU��� ,U†BkU��� ,U†CkU��� are orthogo-

al to U†U���= ��� and to U†AjU��� ,U†BjU��� ,U†CjU��� for k� �l , l��, j� �l , l��. Since the three
ectors U†AjU��� ,U†BjU��� ,U†CjU��� have the same span as Aj��� ,Bj��� ,Cj��� for all j, the
roposition is established. �

II. MINIMUM ORBIT THEOREM

Theorem 7.1: Minimum orbit dimension: For the local unitary group action on state space
or n qubits, the smallest orbit dimension is

min�dim Ox:x � P�H�� = � 3n
2 , n even,

3n+1
2 , n odd.

	
We begin the proof by exhibiting a state for which the claimed minimum dimension is

ealized.

Let �s�= �01�− �10� be a Hilbert space representative of the singlet state, let X= � it u

−ū −it � be an

lement of su�2�. We have

�X,X� · �s� = 0

o �X ,X� is in the isotropy Lie algebra of the state represented by �s�.
From this it follows that �X1 ,X1 ,X2 ,X2 ,… ,Xk ,Xk� stabilizes the 2k-qubit state x represented

y

or all X1 ,X2 ,… ,Xk in su�2�. Therefore LIx has dimension at least 3k=3n /2 for n=2k, and
herefore dim Ox�3n−3n /2=3n /2 for n even.

Observe that �X1 ,X1 ,X2 ,X2 ,… ,Xk ,Xk , �it 0

0 −it �� stabilizes the �2k+1�-qubit state x represented

y �s� � �s� � ¯ � �s� � �0� �by a phase factor�, so the dimension of LIx is at least 3k+1= �3n

1� /2 for n=2k+1, and therefore dim Ox�3n− �3n−1� /2= �3n+1� /2 for n odd.
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These calculations establish that

min�dim Ox:x � P�H�� � � 3n
2 , n even,

3n+1
2 , n odd.

	 �17�

Next we show that this bound on orbit dimension is sharp by establishing a lower bound for
he rank of M. From 3.3 the desired lower bound for the minimum orbit dimension follows
mmediately from 7.2 below.

Proposition 7.2: Minimum rank of M: Let x be a state for a system of n qubits, let ��� be a
ilbert space representative for x, and let M be the real matrix associated to ��� as defined in Sec.

II. We have

rank M � � 3n
2 + 1, n even,

3n+1
2 + 1, n odd.

	
Proof: Let C= �A1��� ,B1��� ,C1��� ,… ,An��� ,Bn��� ,Cn��� ,−i���� denote the set of columns of

M. For a subset S�C, let �S� denote the real span of the column vectors contained in S. Let S0

e a subset of C which is the union of some number p of triples, and is maximal with respect to
he property that �S0� contains a subspace W for which

i�

dim W � � 3p
2 , p even,

3p+1
2 , p odd,

	
ii�

W � �C \ S0� .

We separate the argument into cases. We show that in every case, either 7.2 holds or we can
erive a contradiction by constructing a superset S1 of S0 which is the union of some number

p�� p of triples and which contains a subspace W� satisfying properties �i� and �ii� with p� in
lace of p. The construction of S1 violates the maximality of S0 and therefore rules out the case
n question.

Case 1: Suppose that p=n, so that C \S0= �−i����. Then property �ii� guarantees that rank M
dim W+1, so property �i� guarantees that 7.2 holds.

Case 2: Suppose that p�n and that the remaining triples Tj1
,Tj2

,… ,Tjn−p
in C \S0 have the

aximum possible span, that is,

dim�Tj1
,Tj2

,…,Tjn−p
� = 3�n − p� .

roperties �i� and �ii� imply that

rank M � dim W + dim�C \ S0� �
3p

2
+ 3�n − p� =

6n − 3p

2

�
6n − �3n − 3�

2
�since p � n − 1� =

3n + 3

2
=

3n + 1

2
+ 1

nd so 7.2 holds. Note that if p=n−1, the hypothesis of full span is met by 5.1. Therefore in the
emaining cases we need only consider p�n−2.

Case 3: Suppose p�n−2 and that there is a pair of triples Tl ,Tl� in C \S0 with 1� l� l��n
uch that dim�Tl ,Tl���4. Let S1=S0�Tl�Tl�, let p�= p+2, and let W�=W � �Tl�Tl��, where “

�” denotes the orthogonal direct sum. That the sum is orthogonal is guaranteed by property �ii� for
. Proposition 6.2 implies that property �ii� also holds for the pair �S1 ,W�� and that dim W�

dim W+3. It follows that if p is even, so is p� and we have
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dim W� �
3p

2
+ 3 =

3p + 6

2
=

3�p + 2�
2

=
3p�

2

nd similarly if p and p� are odd we have

dim W� �
3p + 1

2
+ 3 =

3p� + 1

2

o �S1 ,W�� satisfies property �i�. Thus S1 violates the maximality of S0, so we conclude that the
ypothesis of case 3 is impossible.

Case 4: Suppose p�n−2 and that there is a pair of triples Tl ,Tl� in C \S0 with 1� l� l��n
uch that dim�Tl ,Tl��=5. Applying 6.1 we have four vectors

��l�, �	l� � �Tl�, ��l��, �	l�� � �Tl��

hich must span at least three dimensions, so once again S1=S0�Tl�Tl� with the subspace

W� = W � ���l�, �	l�, ��l��, �	l���

iolates the maximality of S0. We conclude that the hypothesis of case 4 is impossible.
Case 5: The only remaining possibility is that p�n−3. Let T= �Tj1

,Tj2
,… ,Tjm

� be a set of
riples in C \S0 with m�3 minimal with respect to the property

dim�Tj1
,Tj2

,…,Tjm
� � 3m .

pplying 6.1 we have two vectors

��k�, �	k� � �Tk�

or each of the m��2 elements k�K. Let

S1 = S0 � � �
k�K

Tk� ,

et p�= p+m�, and let

W� = W � ����k�, �	k��k�K� .

ote that property �ii� holds for �S1 ,W��. If m��m, then the 2m� vectors in ���k� , �	k��k�K are
ndependent by the minimality of T, so we have

dim W� � dim W + 2m� �
3p

2
+ 2m� =

3p� + m�

2
�

3p� + 1

2

o property �i� holds for �S1 ,W��, but this contradicts the maximality of S0. Finally, if m�=m, then
�4 �since m� is even� and at least 2�m−1� of the vectors in ���k� , �	k��k�K must be independent,

gain by the minimality of T. If p is even, then p�= p+m is also even and we have

dim W� � dim W + 2�m − 1� �
3p

2
+ 2�m − 1� =

3p� + m − 4

2
�

3p�

2
.

f p is odd, then p�= p+m is odd and we have

dim W� � dim W + 2�m − 1� �
3p + 1

2
+ 2�m − 1� =

3p� + m − 3

2
�

3p� + 1

2
.

hus S1 with the subspace W� violates the maximality of S0. We conclude that the hypothesis of

ase 5 is impossible.
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Having exhausted all possible cases, this completes the proof of 7.2, and hence of
heorem 7.1. �
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n a non-Fock representation
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We consider a model of a particle coupled to a massless scalar field �the massless
Nelson model� in a non-Fock representation. We prove the existence of a ground
state of the system, applying the method of Griesemer, Lieb, and Loss. © 2005
American Institute of Physics. �DOI: 10.1063/1.2050507�

. INTRODUCTION

The Nelson model is a quantum mechanical model which describes an interaction between
ome quantum mechanical particles and a Bose field.8 In this article, we present a criterion for a
elson model to have a ground state.

We consider one particle under the influence of an external potential V and coupled to a scalar
ose field. The Hilbert space of the system is given by

F ª L2�R3� � Fb�L2�R3�� , �1�

here Fb�L2�R3�� is the Boson Fock space over L2�R3�. The standard Nelson Hamiltonian is of the
orm

Hm
V
ª �− � + V� � 1 + 1 � Hf�m� + ����v�, on F ,

here 1 denotes identity, � is the generalized Laplacian on L2�R3�, ��R is a coupling constant,
nd Hf�m� and ���v� are defined by

Hf�m� ª �
R3

�m�k�a�k�*a�k�dk ,

���v� ª
1
�2
�

R3
�v�x,k� � a�k�* + v�x,k�*

� a�k��dk ,

ith

�m�k� ª �k2 + m2, v�x,k� ª
1

��2��3

�̂�k�
�k�1/2e−ikx,

here �k�−1/2�̂�Dom��m
−1/2� and a�k�* ,a�k� are the distribution kernels of the creation and anni-

ilation operators on Fb�L2�R3�� �Dom�A� means the domain of operator A�. The problem on the
round state of Hm

V can be classified as follows:

�i� the massive case: m � 0

�
Electronic mail: i-sasaki@math.sci.hokudai.ac.jp
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�ii� the massless case: m = 0 ��k�−1/2�̂ � Dom��0
−1�: infrared regular

�k�−1/2�̂ � Dom��0
−1�: infrared singular.

	
n almost all cases, to prove existence of a ground state for the massive case is easy. The first result
n the ground state problem, to our knowledge, is due to Spohn.12 In Ref. 12 he proved existence
f a ground state in the case where the infrared regular �I.R.� condition holds and �−�+V+ i�−1 is
ompact. If �−�+V+ i�−1 is not compact, this theorem shows that a ground state exists if the I.R.
ondition holds and the coupling constant � is small enough. After the work of Spohn,12 C. Gérard
roved existence of a ground state of an extended model of the Nelson model in the case where an
bstract particle Hamiltonian K �which corresponds to −�+V in the previous context� has compact
esolvent and an I.R. like condition holds.3 On the other hand, Lörinczi et al.7 showed that H0

V has
o ground state if the infrared singular �I.S.� condition holds in spite of the condition V�x�
C�x���C ,��0� �also refer to Ref. 2 about the absence of ground states�. Recently, Hirokawa et

l.5 proved existence of a ground state for the renormalized Nelson model.
In the case where the I.S. condition holds, H0

V may not have a ground state,7 but Arai1 showed
hat a massless Nelson model in a non-Fock representation has a ground state.

We work with the non-Fock representation introduced in Ref. 1. In this representation the
assless Nelson model we consider is of the form:

H̃V
ª �− � + V� � 1 + 1 � Hf�0� + ����G� − �2V�x̂� � 1 + �2W1 ,

here V�x̂� is the multiplication operator by V�x�ªRe
�k�−1/2v�0� , �k�−1/2v�x��, Wª ��k�−1/2v�0��2

s a constant, and G�x ,k�ªv�x ,k�−v�0,k�. If m=0 and the I.R. condition holds, H̃V is unitarily

quivalent to H0
V �Proposition 2.1�. But if the I.S. condition holds, H̃V may not be unitarily

quivalent to H0
V. If the I.S. condition holds, to consider H̃V means to choose a non-Fock repre-

entation of the canonical commutation relations of a ,a* �see Ref. 1�. Note that, in the massless

ase m=0, the Hamiltonian we consider is H̃V, not H0
V.

For the non-Fock Hamiltonian H̃V, we present a criterion for H̃V to have a ground state. The
riterion is essentially the same condition as in Ref. 4, and we prove existence of a ground state
ithout assuming the I.R. condition. Our strategy is the same as that of Ref. 4. We, however,

mproved the proof of the photon derivative bound. In the proof of photon derivative bound in Ref.
, it is difficult to prove that the integer-valued k-dependent sequence hl�k� is measurable. In our
ew proof of the photon derivative bound, such uncertain sequence does not appear.

This article is organized as follows. In Sec. II we describe rigorous definitions of our system
nd state main results. In Sec. III, we prove the main theorem. In the Appendix, we establish a
ormula which expresses a second quantization operator by the annihilation operators.

I. NOTATION AND MAIN RESULTS

We consider a model of one particle interacting with a scalar Bose field, and in an external
otential V :Rx

3→R satisfying V�Lloc
1 �Rx

3�. The Hilbert space for the model is given by F
L2�Rx

3� � Fb�L2�Rk
3��, where Fb�L2�Rk

3�� is the Boson Fock space over L2�Rk
3� �see Ref. 9�. For

	0 we define a function �m :Rk
3→R by �m�k�ª�k2+m2. The multiplication operator by �m is

enoted by the same symbol. The free Hamiltonian of the scalar Bose field is the second quanti-
ation of �m �Ref. 9�:

Hf�m� ª d
b��m� . �2�

e set V±�x�ªmax0, ±V�x��. Throughout this article, we assume that the potential V has the
ollowing properties:
�N.1� There exist constants a�1 and b�R such that
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�V−
1/2��2  a��− ����2 + b���2, � � C0

��Rx
3� .

he particle Hamiltonian Hp is a self-adjoint operator defined by

Hp ª − �+̇ V, on L2�Rx
3� ,

here +̇ means the form sum. For f �L2�Rk
3� we denote by a�f�*, a�f�, the creation and annihila-

ion operators respectively, by �S�f�ª �a�f�+a�f�*� /�2 the Segal field operators �“�” means
losure�. It is well known that �S�f� is a self-adjoint operator on Fb�L2�Rk

3�� �see Ref. 10�. For
�Rx

3 and �̂�L2�Rk
3��Dom��k�−1/2� we define v�x��L2�Rk

3� by

v�x��k� ª v�x,k� ª
1

�2��3/2

�̂�k�
�k�1/2e−ikx, k � Rk

3.

he Hilbert space F can be identified with the fibre direct integral of Fb�L2�Rk
3�� �see Ref. 11�:

F = �
Rx

3

�

Fb�L2�Rk
3��dx .

n this identification the operator

���v� ª �
Rx

3

�

�S�v�x��dx

ives a self-adjoint operator on F.11

The Hamiltonian of the standard Nelson model is defined by

Hm
V
ª Hp � 1 + 1 � Hf�m� + ����v� .

ere ��R is a coupling constant. We set

H0 ª Hp � 1 + 1 � Hf�m� ,

he free Hamiltonian of the Nelson model. By �N.1�, Hp is bounded below. Therefore H0 is
elf-adjoint on D�H0�=D�Hp � 1��D�1 � Hf�m�� and bounded below.

The following fact is well known:
Proposition 2.1: Assume �k�−1/2�̂�Dom��m

1/2� and (N.1). Then Hm
V is self-adjoint on Dom�H0�

nd bounded below. Moreover Hm
V is essentially self-adjoint on each core for H0.

Under the assumption of Proposition 2.1, we set

EV�m� ª inf ��Hm
V� ,

he ground state energy of Hm
V . Where ��Hm

V� means the spectrum of Hm
V . If EV�m� is an eigenvalue

f Hm
V , we say that Hm

V has a ground state and a eigenvector �m�ker�Hm
V −EV�m�� \ 0� is called a

round state of Hm
V .

Let ��C0
��Rx

3�, �̃�C��Rx
3� be functions which satisfy the following properties �i�, �ii�:

�i� 0  ��x�, �̃�x�  1, ��x�2 + �̃�x�2 = 1, �x � Rx
3� .

�ii� ��x� = �1, �x�  1

0, �x� 	 2.
	

˜
or R�0 we define particle cutoff functions �R ,�R as follows:
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�R�x� ª ��x/R�, �̃R�x� ª �̃�x/R� .

e abbreviate �R � 1 , �̃R � 1 to �R , �̃R, respectively if there is no danger of confusion. For a
elf-adjoint operator T, we denote by Q�T� the form domain of T, and for � ,��Q�T�, we write
imply 
� ,T��=�R�d
� ,ET�����, where ET means the spectral measure of T.

We define a quantity which physically means the minimal energy in the states where the
article is separated more than R away from the origin:

Definition 2.2:

E��R,m� ª inf
��Q�Hm

V �

��̃R���0


�̃R�,Hm
V �̃R��


�, �̃R
2��

.

Remark: For all R�0, it is easy to see that EV�m�−E��R ,m�0.
The following condition is based on Ref. 4.
Hypothesis I (binding condition for m�0):

EV�m� � lim sup
R→�

E��R,m� .

Theorem 2.3: (Existence of ground state (m�0)). Let m�0. Assume [N.1] and Hypothesis I.
hen Hm

V has a ground state.
Proof: This is done in the same method as in the proof of �Ref. 4, Theorem 4.1�. Therefore we

mit the proof. �

In the case m=0, we need more assumptions:
�N.2� �̂ / �k��L2�Rk

3�.
Under conditions �N.1� and �N.2�, the Hamiltonian of the massless Nelson model we consider

s:

H̃V
ª Hp � 1 + 1 � Hf�0� + ����G� − �2V�x̂� � 1 + �2W1 ,

here Wª ��0
−1/2v�0��2 is a constant and V�x̂� is the multiplication operator by the function

�x�ªRe
�0
−1/2v�0� ,�0

−1/2v�x��.
By �N.2�, V�x� is uniformly continuous and lim�x�→0V�x�=0. The relation between H̃V and H0

V

s given by the following proposition.

Proposition 2.4: Suppose that the infrared regular condition �̂ / �k�3/2�L2�Rk
3� holds. Then H̃V

s unitarily equivalent to H0
V.

Proof: By the assumption, the operator Tªexp�−i�1 � �S�i�k�−1v�0��� is a unitary operator on

and Hm
V is unitarily equivalent to H̃V=THm

VT*. �

If the infrared singular condition �̂ / �k�3/2�L2�Rk
3� holds, this Hamiltonian H̃V gives a Nelson

amiltonian in a non-Fock representation �see Ref. 1�.
For the existence of ground states of H̃V, we impose some conditions on �̂:

�N.3� There exists an open set S�R3, such that supp �̂= S̄. Moreover, for all n�N

Sn ª k � S��k� � n�

as the cone-property �see Ref. 6�.
�N.4� There exists a function ��H1�Rk

3�, such that �̂=�S�, where �S is the characteristic
unction of S.

�N.5� �̂ is continuously differentiable in S \ 0�.
�N.6� �k�−3/2�̂ , �k�−1/2���̂��Lp�S� for all p ,1� p�2.

Under the condition �N.1� and �N.2�, it is easy to see that EV�0�=inf ��H̃V�. One of the most
˜ V
mportant conditions for the existence of ground states of H is
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Hypothesis II (binding condition for m=0):

EV�0� � lim sup
R→�

E��R,0� . �3�

Now we state the main result of this article.
Theorem 2.5. (Existence of ground state �m=0�): Assume [N.1]–[N.6] and Hypothesis II.

hen the massless Nelson Hamiltonian H̃V has a ground state.
Remark: In the case lim�x�→�V�x�=�, it is easy to see that limR→�E��R ,m�=�. Therefore

ypothesis II holds. On the other hand, if lim�x�→�V�x�→0 and the particle Hamiltonian Hp has
egative energy ground states, then Hypotheses I and II hold �see Ref. 4 Theorem 3.1�.

Remark: Let ��0. Then �̂=�� �the characteristic function of the region �k���� satisfies the
bove conditions �N.2�–�N.6�. Note that the function �̂=�� is infrared singular, because �k�−3/2�̂ is
ot in L2�R3�.

II. PROOF OF THEOREM 2.5

Throughout this section we assume �N.1�–�N.6� and Hypothesis II. In this section, we set �
1, because Theorem 2.5 does not depend on � explicitly �to restore �, it is enough to replace �̂
y ��̂�.

For m�0,Tmªexp�−i1 � �S�iv�0/�m��� is a unitary operator on F, and we have

H̃m
V
ª TmHm

VTm
* = Hp � 1 + 1 � Hf�m� + ���G� − Vm�x̂� � 1 + Wm1 ,

here Vm�x̂� is the multiplication operator by the function Vm�x�ªRe
�m
−1v�0� ,v�x�� and Wm

��m
−1/2v�0��2 is a constant. In Fig. 1, we show the relation to the original model.

The ground state energy EV�m� is monotone increasing in m	0, and limm→0EV�m�=EV�0�
see Ref. 4, Sec. 5�. Therefore, by Hypothesis II, for all sufficiently small m	0 we have EV�m�

lim supR→�E��R ,0�. Since E��R ,m� is monotone increasing in m	0, there exists a constant m
uch that

EV�m� � lim sup
R→�

E��R,m� �0  m � m� .

n what follows, we consider only the case 0�m�m. Hence, by Theorem 2.3, Hm
V has a ground

tate �m. We set �̃mªTm�m a ground state of H̃m
V .

Lemma 3.1. (Exponential decay): Let ��0 be a constant such that

�2 � lim sup
R→�

E��R,m� − EV�m� �0 � m � m� .

hen, for all large R�0,

�exp���x���̃m�2  C�1 +
1

E��R,m� − EV�m� − �2 + o�1/R0����̃m�2,

3 4�R

FIG. 1. Author—please provide caption.
here the constant C�0 does not depend on m with C 2e .
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Proof: See Ref. 4. �

Let f �Dom��m�. Since Dom�H̃m
V�=Dom�Hp � 1��Dom�1 � Hf�m��, a�f��̃m�Q�H̃m

V�.
ence, for all ��Dom�Hm

V�, we have


�H̃m
V − EV�m���,a�f��̃m� = − 
�,a��mf��̃m� −

1
�2


�,
f ,G�x̂���̃m� .

ere we use the canonical commutation relations of a, a*, and 
f ,G�x̂�� is the multiplication

perator by the function 
f ,G�x��. Since ��Dom�H̃m
V� is arbitrary, a�f��̃m�Dom�H̃m

V�, and
ence,


a�f��̃m,a��mf��̃m� +
1
�2


a�f��̃m,
f ,G�x̂���̃m�  0. �4�

Lemma 3.2 (Photon number bound): For all 0�m�m, we have

�a�k��̃m�2 
1

2�2��3

�k�
�m�k�2 ��̂�k��2��x��̃m�2, a.e. k � R3. �5�

Proof: Let q�k� be a bounded real-valued measurable function. We choose some complete
rthonormal system f i�i=1

� �Dom��m�. By �4�, we have

�
i=1

�


a��m
−1/2qfi��̃m,a��m

1/2qfi��̃m� +
1
�2

�
i=1

�


a�
�m
−1/2qfi,G�x̂���m

−1/2qfi��̃m,�̃m�  0.

y Lemma A.1 in the Appendix, we have


�̃m,d
�q2��̃m�  −
1
�2


a��m
−1q2G�x̂���̃m,�̃m� 

1
�2
�

R3
dk

q�k�2

�m�k�
�
G�x̂,k�*a�k��̃m,�̃m�� .

ote that q is arbitrary. Hence, we obtain

�a�k��̃m�2 
1
�2

1

�m�k�
�a�k��̃m� �G�x̂;k��̃m�, a.e. k .

y the definition of G, we have �G�x ,k��2 ��̂�k��2�k��x�2 / �2��3. Therefore, �5� holds.
�

We write �̃m= ��̃m
�n��n=0

� with �̃m
�n��L2�Rx

3� � �� s
nL2�Rk

3��, n	0, where � s
nL2�Rk

3� is the n-fold
ymmetric tensor product of L2�Rk

3�.
Lemma 3.3 (Photon derivative bound): Let 0�m�m. Then, for all �̃m

�n� is in the Sobolev

pace H1�Rx
3�S3n�, and F-valued function a�k��̃m is strongly differentiable in k�S \ 0� for all

irections with

� ja�k��̃m = �� j�̃m
�1��k�,�2� j�̃m

�2��k, · �, . . . ,�n� j�̃m
�n��k, · �, . . . �, j = 1,2,3,

��ka�k��̃m�2 
1

�2��3

1

�m�k�2�3
��̂�k��2

�k�
+ �k����̂�k��2���x̂��̃m�2,

here � j and �k means the differential operator for j-th component of k and the nabla operator for
he coordinate k.

3
Proof: For h�R and a function f�k�, we define
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��hf��k� ª f�k + h� − f�k� .

e consider �4� with f replaced by �−h�m
−1/2qfi. Here q and f i are the same function as in the proof

f the above Lemma. By Lemma A.1, we have

�
i=1

�


a��−h�m
−1/2qfi��̃m,a��m�−h�m

−1/2qfi��̃m� = 
�̃m,d
��−h�m
−1q2�h�m��̃m� . �6�

e introduce an operator �Thf��k�ª f�k+h�. It is easy to see that �h�m= ��h�m�Th+�m�h. There-
ore, we have

�6� = 
�̃m,d
��−hq2�h��̃m� + 
�̃m,d
��−hq2�m
−1��h�m�Th��̃m� .

n the other hand,

�
i=1

�


a��−h�m
−1/2qfi��̃m,
�−h�m

−1/2qfi,G�x̂���̃m� = 
a��−h�m
−1q2�hG�x̂���̃m,�̃m� .

herefore, we obtain


�̃m,d
��−hq2�h��̃m�  − 
�̃m,d
��−hq2�m
−1��h�m�T−h��̃m� −

1
�2


a��−h�m
−1q2�hG�x̂���̃m,�̃m� .

�7�

y the Schwarz inequality, we have

�
a��−h�m
−1q2�hG�x̂���̃m,�̃m�� = 
�,d
��−hq2�h���1/2��

R3
dk

q�k�2

�m�k�2 ���hG�x̂���k��̃m�2�1/2

.

y using the general inequality �
� ,d
�S*T���� 
� ,d
�S*S���1/2
� ,d
�T*T���1/2, we have

�
�̃m,d
��−hq2�m
−1��h�m�Th��̃m��  
�̃m,d
���−hq���−hq�*��̃m�1/2

� 
�̃m,d
�T−h��h�m�q2�m
−2��h�m�Th��̃m�1/2.

ence, we obtain


�̃m,d
��−hq2�h��̃m�  �
R3

dk
q�k�2

�m�k�2 ���hG�x̂���k��̃m�2

+ 2
�̃m,d
�T−h��h�m�q2�m
−2��h�m�Th��̃m�

= �
R3

dk
q�k�2

�m�k�2 ���hG�x̂���k��̃m�2 + 2

� �
R3

dk
q�k − h�2

�m�k − h�2 ���h�m��k − h��2�a�k��̃m�2.

y �5�, this is dominated by

�
R3

dk
q�k�2

�m�k�2 ���hG�x̂���k��̃m�2 +
1

�2��3�
R3

dk
q�k�2

�m�k�2 ���h�m��k��2
�k + h��̂�k + h�2

�m�k + h�2 ��x��̃m�2.
ince the function q is arbitrary, we have
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��ha�k��̃m�2 
���hG�x̂���k��̃m�2

�m�k�2 +
�k + h��̂�k + h�2���h�m��k��2

�2��3�m�k + h�2�m�k�2 ��x��̃m�2,

or a.e. k�R3. By using the definition of G�x ,k�, we have

��2��3��hG�x,k�� 
�h��k + h��x�
�k + h�1/2�k�

��̂�k + h�� +
�h��x�
�k�1/2 ��̂�k + h�� + �k�1/2�x���̂�k + h� − �̂�k�� ,

nd it is easy to see that ���h�m��k�� �h�. Therefore we obtain

��ha�k��̃m�2 
1

�2��3

1

�m�k�2�3
�h�2

�k�2
�k + h���̂�k + h��2 + 3

�h�2

�k�
��̂�k + h��2 + 3�k���̂�k + h� − �̂�k��2

+
�k + h���̂�k + h��2�h�2

�m�k + h�2 ���x��̃m�2. �8�

y this inequality with �N.5�, we see that F-valued function a�k��̃m is strongly continuous in k

S \ 0�. Next, we show that a�k��̃m is strongly differentiable. For this purpose, we introduce the
perator �h,� by

��h,�f��k� =
f�k + h� − f�k�

�h�
−

f�k + �� − f�k�
���

, k,� � R3.

e define �h,�
*
ª�−h,−�. Returning to �4� with f replaced by �h,�

* �m
−1/2qfi and summing over i

1, . . . ,� we have


�̃m,d
��h,�
* q2�m

−1�h,��m��̃m� +
1
�2


a��h,�
* �m

−1q2�h,�G�x̂���̃m,�̃m�  0.

t is easy to see that �h,��m=�m�h,�+Fh−F�, where Fhª��h�m��h�−1Th. Hence, we have


�̃m,d
��h,�
* q2�h,���̃m�  −

1
�2


a��h,�
* �m

−1q2�h,�G�x̂���̃m,�̃m� �9�

+ 
�̃m,d
��h,�
* q2�m

−1Fh��̃m� + 
�̃m,d
��h,�
* q2�m

−1F���̃m� . �10�

y the Schwarz inequality, we have

�r.h.s. of �9��  
�̃m,d
��h,�
* q2�h,���̃m�1/2��

R3
dk

q�k�2

�m�k�2 ���h,�G�x̂���k��̃m�2�1/2

,

��10��  �
�̃m,d
��h,�
* q2�m

−1��h,�
* �m�Th��̃m�� �11�

+ ���̃m,d
��h,�
* q2�m

−1���

���
�m��Th − T����̃m�� . �12�

oreover,

r.h.s. of �11�  
�̃m,d
��h,�
* q2�h,���̃m�1/2
�̃m,d
�T−hq2�m

−2��h,�
* �m�2Th��̃m�1/2

= 
�̃m,d
��h,�
* q2�h,���̃m�1/2��

R3
dkq�k�2�m

−2�k���h,�
* �m�2�k��a�k + h��̃m�2�1/2

,

nd
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r.h.s. of �12�  
�̃m,d
��h,�
* q2�h,���̃m�1/2��̃m,d
��T−h − T−�����

���
�m�2

q2�m
−2�Th − T����1/2

 
�̃m,d
��h,�
* q2�h,���̃m�1/2��

R3
dkq�k�2�m�k�−2�a�k + h��̃m − a�k + ���̃m�2�1/2

.

his inequality yields


�̃m,d
��h,�
* q2�h,���̃m� 

3

2
�

R3
dk

q�k�2

�m�k�2 ���h,�G�x̂���k��̃m�2

+ 3�
R3

dk
q�k�2

�m�k�2 ��h,�
* �m�2�k��a�k + h��̃m�2

+ 3�
R3

dk
q�k�2

�m�k�2 �a�k + h��̃m − a�k + ���̃m�2.

ince the function q is arbitrary, we have

��h,�a�k��̃m�2 
3

�m�k�2�1

2
���h,�G�x̂���k��̃m�2 + ��h,�

* �m�2�k��a�k + h��̃m�2

+ �a�k + h��̃m − a�k + ���2�, a.e. k � R3. �13�

emembering the condition �N.5� and that a�k��̃m is continuous, we get,

lim
h,�→�

���h�e,���ea�k��̃m�2 = 0, a.e. k � S \ 0� ,

or all e�R3. Therefore the F-valued function ��h�ea�k��̃m / �h� is a Cauchy sequence in �h� as

h�→0. Namely, for all directions, a�k��̃m is strongly differentiable in k�S \ 0�. Let ej�j
1,2 ,3� be the unit vectors of the jth direction, and let

v j�k� ª s-lim�h�→0
1

�h�
��h�ej

a�k��̃m, a.e. k � S .

ext, we show that �̃m
�n��H1�Rx

3�S3n� for all n�N. Let ��C0
��Rx

3��S3n. Then, we have

�
R3�n+1�

�� j���x,k,K��̃m
�n��x,k,K�dxdkdK

= lim
h→0

1

�h��R3�n+1�
���x,k,K� − ��x,k,− �h�ej,K���̃m

�n��x,k,K�dxdkdK

= − lim
h→0

1

�h��R3
dk��

R3�n+1�
��x,k,K���̃m

�n��x,k + �h�ej,K� − �̃m
�n��x,k,K��dxdK� ,

3�n−1�
here K= �k1 ,k2 , . . . ,kn−1��R . On the other hand,
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��
R3

dk��
R3n

dxdK��x,k,K�� 1

�h�
��̃m

�n��x,k + �h�ej,K� + �̃m
�n��x,k,K�� − v j

�n��x,k,K�	��
 �

R3
dk���k, · ��L2�R3n�� 1

�h�
���h�ej

a�k��̃m��n� − v j
�n��k��

 �
R3

dk���k, · ��L2�R3n�� 1

�h�
��h�ej

a�k��̃m − v j�k�� . �14�

eturning to �13� with h→ �h�ej, �→ ���ej and lim���→0, we have

� 1

�h�
�ha�k��̃m − v j�k��2


3

�m�k�2�1

2
��1

h
��hej

G��x̂,k� − � jG�x̂,k���̃m�2

+
2�h�

�m�k�
�a�k + h��̃m�2

+ �a�k + h��̃m − a�k��̃m�2�, a.e. k � R3,

here we use the elementary inequality ��1/h��hej
�m�k�−� j�m�k��2�h� /�m�k�. Since the set

�ªsupp���k , · �� is a subset of S, k+h�S for all h and k�S� with �h��distS� ,S�. Using this
act and �8�, we obtain

lim
�h�→0

�
R3

dk���k, · ��L2�R3n���h�
�a�k + h��̃m�

�m�k�2 +
�a�k + h��̃m − a�k��̃m�

�m�k�
� = 0.

y condition �N.4� and the dominated convergence theorem, we have

��S�
�h�−1�h�̂ − � j�̂�2  ��h�−1�h� − � j��L2�R3�

2
 �

Ry
3
� e−i�h�yj − 1

�h�yj
+ i�2

yj
2��F���y��2dy → 0,��h� → 0� ,

here F means Fourier transformation. By this formula and simple but tedious estimates, we can
how that

lim
�h�→0

�
R3

dk���k, · ��L2�R3n� ·
1

�m
��1

h
��hej

G��x̂,k� − � jG�x̂,k���̃m� = 0.

hese facts mean that

lim
h→0

�14� = 0.

herefore, �̃m
�n��H1�Rx

3�S3n�. �

Pick a sequence m1�m2�¯ tending to zero and we set

�̃ j ª �̃mj
, j = 1,2, . . . .

ince �̃ j’s are normalized, a subsequence of �̃ j� j has a weak limit �̃ �the subsequence denoted
y the same symbol�.

Lemma 3.4: �̃�Dom�H̃V� and,

H̃V�̃ = EV�0��̃ . �15�

Proof: First, we show that �̃�Q�H̃V�=Dom�Hf�0�1/2��Q�Hp�. For all ��Dom�Hf�0�1/2�,

e have
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�
�̃,Hf�0�1/2��� = lim
j→�

�
Hf�0�1/2�̃ j,��� = lim sup
j→�

�Hf�0�1/2�̃ j� ��� .

ince Hp is bounded below, we have

�Hf�0�1/2�̃ j�2  const.
�̃ j,�H̃V�mj� − EV�mj� + 1��̃ j�  const.,

here const. is a constant independent of j. Hence �̃�Dom�Hf�0�1/2�. Similarly we have �̃
Q�Hp�. Since EV�mj�→EV�0��j→��, we have

��H̃V − EV�0��1/2�̃ j�2  ��H̃V�mj� − EV�0��1/2�̃ j�2  �EV�mj� − EV�0����̃ j�2 → 0,

s j→�. Therefore �H̃V−EV�0��1/2�̃=0. This means �̃�Dom�H̃V� and H̃V�̃=EV�0��̃. �

By this lemma, if �̃�0 then �̃ is a ground state of H̃V. This proof is essentially same as �Ref.
and 7 Proof of Theorem 2.1�, so we omit it �notice that the condition �N.3� and �N.6� were used

here�.
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PPENDIX: PARSEVAL’s EQUALITY FOR THE ANNIHILATION OPERATORS

Let K be a complex separable Hilbert space, and let Fb�K� be the Boson Fock space over K.
e denote by Nb the number operator on Fb�K�. Let S and T be densely defined closed linear

perators on K, such that Dom�S��Dom�T� is dense.
Lemma A.1 (Parseval’s equality for the annihilation operators): Assume that, for vectors

,��Dom�Nb
1/2�, there exist constants � ,���+�=1,� ,�	0� such that,

Nb
�−1� � Dom�d
�T*��, Nb

�−1� � Dom�d
�S*�� .

hen, for all complete orthonormal basis f j� j=1
� �Dom�S��Dom�T�, the following equality

olds:

�
j=1

�


a�Sf j��,a�Tf j��� = �
n=1

�

n
S*
� 1n−1��n�,T*

� 1n−1��n���nK. �A1�

n particular, if ��Dom�d
�ST*��, then

�
j=1

�


a�Sf j��,a�Tf j��� = 
�,d
�ST*��� . �A2�

Proof: It is enough to show in the case that K is L2-space on a measurable space. For
implicity, we prove �A1� only in the case K=L2�R3�. Using the definition of a�f�, we have


a�Sf j��,a�Tf j��� =� dk� dk��Sf j��k��Tf j�*�k��
a�k��,a�k����

=� dk� dk��
n=1

�

n� dK�Sf j��k��Tf j�*�k����n��k,K�*��n��k�,K� ,

here K= �k2 , . . . ,kn�, dK=dk2¯dkn. In the above equation, the integral and the summation

ommute, because
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� dk� dk��
n=1

�

n� dK��Sf j��k��Tf j�*�k����n��k,K�*��n��k�,K��

� dkdk���Sf j��k��Tf j��k�����
n=1

�

n� dK���n��k,K��2�1/2��
n=1

�

n� dK���n��k�,K��2�1/2

=� dkdk���Sf j��k�� · ��Tf j��k��� · �a�k��� �a�k����

 �Sf j� �Tf j��� dk�a�k���2�1/2�� dk�a�k����2�1/2

= �Sf j� �Tf j� �Nb
1/2�� �Nb

1/2�� � � ,

nd hence one can apply Fubini’s theorem. Hence,

�
j=1

�


a�Sf j��,a�Tf j��� = �
j=1

�

�
n=0

�

n� dK
�T*
� 1��n���· ,K�, f j�·��
f j�·�,�S*

� 1��n���· ,K�� .

sing Bessel’s inequality, we have

��
j=1

N


�T*
� 1��n���· ,K�, f j�·��
f j�·�,�S*

� 1��n���· ,K���  ��T*
� 1��n���· ,K�� ��S*

� 1��n���· ,K��


1

2n
n2���T*

� 1��n���· ,K��2 + n2���S*
� 1��n���· ,K��2�, a.e. K � R3�n−1�. �A3�

y assumption for �, �, we have

�
n=1

�

n� dK�r.h.s. of �A3�� =
1

2�
n=1

�

�n�T*
� 1��n��2 +

1

2�
n=1

�

�n�S*
� 1��n��2 � � .

ence, by applying the dominated convergence theorem and the standard parseval equality, we
btain �A1�. �
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We extend the application of the techniques developed within the framework of the
pseudo-Hermitian quantum mechanics to study a unitary quantum system described
by an imaginary PT-symmetric potential v�x� having a continuous real spectrum.
For this potential that has recently been used, in the context of optical potentials,
for modeling the propagation of electromagnetic waves traveling in a waveguide
half and half filled with gain and absorbing media, we give a perturbative construc-
tion of the physical Hilbert space, observables, localized states, and the equivalent
Hermitian Hamiltonian. Ignoring terms of order three or higher in the non-
Hermiticity parameter �, we show that the equivalent Hermitian Hamiltonian has
the form p2 /2m+ ��2 /2��n=0

� ��n�x� ,p2n� with �n�x� vanishing outside an interval
that is three times larger than the support of v�x�, i.e., in 2 /3 of the physical
interaction region the potential v�x� vanishes identically. We provide a physical
interpretation for this unusual behavior and comment on the classical limit of the
system. © 2005 American Institute of Physics. �DOI: 10.1063/1.2063168�

. INTRODUCTION

During the past seven years there have appeared over 200 research papers on PT-symmetric
uantum systems. This was initially triggered by the surprising observation of Bessis and Zinn-
ustin and its subsequent numerical verification by Bender and his co-workers1 that certain non-
ermitian but PT-symmetric Hamiltonians, such as

H = p2 + x2 + i�x3 with � � R+, �1�

ave a purely real spectrum. This observation suggested the possibility to use these Hamiltonians
n the description of certain quantum systems. Since the PT-symmetry of a non-Hermitian Hamil-
onian H, i.e., the condition �H ,PT �=0, did not ensure the reality of its spectrum, a crucial task
as to seek the necessary and sufficient conditions for the reality of the spectrum of a given
on-Hermitian Hamiltonian H. This was achieved in Ref. 2 where it was shown, under the
ssumptions of the diagonalizability of H and discreteness of its spectrum, that the reality of the
pectrum was equivalent to the existence of a positive-definite inner product �· , · 	+ that rendered
he Hamiltonian self-adjoint, i.e., for any pair �� ,�� of state vectors �� ,H�	+= �H� ,�	+.

Another condition that is equivalent to the reality of the spectrum of H is that it can be
apped to a Hermitian Hamiltonian h via a similarity transformation;2,3 there is an invertible
ermitian operator � such that

H = �−1h� . �2�

he positive-definite inner product �· , · 	+ and the operator � entering �2� are determined by a
ositive-definite operator �+ according to2,3

�
Electronic mail: amostafazadeh@ku.edu.tr
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�· , · 	+ ª �· 
�+ · 	 , �3�

� = ��+, �4�

nd the Hamiltonian satisfies the �+-pseudo-Hermiticity condition:4

H† = �+H�+
−1. �5�

ere �·
·	 stands for the standard �L2� inner product that determines the �reference� Hilbert space H
s well as the adjoint H† of H.5 �The adjoint A† of an operator A is the unique operator satisfying,
or all � ,��H, �� 
A†�	= �A� 
�	. A is called Hermitian if A†=A.�

It is this, so-called metric operator, �+ that determines the kinematic structure �the physical
ilbert space and the observables� of the desired quantum system. Note however that �+ is not
nique6–8 �it is only unique up to symmetries of the Hamiltonian7�. In Ref. 2 we have not only
stablished the existence of a positive definite metric operator �+ and the corresponding positive-
efinite inner product �· , · 	+ for a diagonalizable Hamiltonian with a discrete real spectrum, but we
ave also explained the role of antilinear symmetries such as PT and offered a method for
omputing the most general �+. �For a treatment of nondiagonalizable pseudo-Hermitian Hamil-
onians see Refs. 9–11. Note that diagonalizability of the Hamiltonian is a necessary condition for
pplicability of the standard quantum measurement theory.5 It is also necessary for the unitarity of
he time-evolution, for a nondiagonalizable Hamiltonian is never Hermitian �its evolution operator
s never unitary11� with respect to a positive-definite inner product.9,10� An alternative approach
hat yields a positive-definite inner product for a class of PT-symmetric models is that of Ref. 12.
s shown in Refs. 7 and 13, the CPT-inner product proposed in Ref. 12 is identical to the inner
roduct �· , · 	+= �·
�+ · 	 for a particular choice of �+.

Under the above-mentioned conditions every Hamiltonian having a real spectrum determines
set UH+ of positive-definite metric operators. To formulate a consistent unitary quantum theory

aving H as its Hamiltonian, one needs to choose an element �+ of UH+. �Alternatively one may
hoose sufficiently many operators with real spectrum to construct a so-called irreducible set of
bservables which subsequently fixes a metric operator �+.14� Each choice fixes a positive-definite
nner product �· , · 	+ and defines the physical Hilbert space Hphys and the observables. The latter
re by definition15 the operators O that are self-adjoint with respect to �· , · 	+, alternatively they are

+-pseudo-Hermitian. These can be constructed from Hermitian operators o acting in H according
o5

O = �−1o� . �6�

n particular, one can define �+-pseudo-Hermitian position X and momentum P operators,5,15

xpress H as a function of X and P, and determine the underlying classical Hamiltonian for the
ystem by letting 	→0 in the latter expression.5,16 Alternatively, one may calculate the equivalent
ermitian Hamiltonian h and obtain its classical limit �again by letting 	→0�.

Another application of the �+-pseudo-Hermitian position operator X is in the construction of
he physical localized states:



�x�	 ª �−1
x	 . �7�

hese in turn define the physical position wave function, ��x�ª �
�x� ,�	+= �x
�
�	, and the in-
ariant probability density,

��x� ª

��x�
2

�
−�

�


��x�
2dx

=

�x
�
�	
2

��,�	+
, �8�

5,16
or a given state vector 
�	.
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The above-mentioned prescription for treating PT-symmetric and more generally pseudo-
ermitian Hamiltonians with a real spectrum has been successfully applied in the study of the
T-symmetric square well in Ref. 5 and the cubic anharmonic oscillator �1� in Ref. 16—See also
ef. 17. Both these systems have a discrete nondegenerate energy spectrum, and the results of
efs. 4 and 2 are known to apply to them. The aim of the present paper is to seek whether these

esults �in particular the construction method for �+� may be used for treating a system with a
ontinuous spectrum. �The question whether the theory of pseudo-Hermitian operators as outlined
n Refs. 4 and 2 is capable of treating a system having scattering states was posed to the author by
afar Ahmed during the second International Workshop on Pseudo-Hermitian Hamiltonians in
uantum Physics, held in Prague, 14–16 June, 2004.� This question is motivated by the desire to
nderstand field-theoretical analogues of PT-symmetric systems which should admit an S-matrix
ormulation. Furthermore, there are some basic questions related to the nonlocal nature of the
ermitian Hamiltonian h and the pseudo-Hermitian observables such as X and P especially for
T-symmetric potentials with a compact support �i.e., potentials vanishing outside a compact

egion�.
To achieve this aim we will focus our attention on a simple toy model recently considered as

n effective model arising in the treatment of the electromagnetic waves traveling in a planar slab
aveguide that is half and half filled with gain and absorbing media.18 This model has a standard
amiltonian,

H =
p2

2m
+ v�x� , �9�

nd a PT-symmetric imaginary potential,

v�x� ª i���x +
L

2
� + ��x −

L

2
� − 2��x�� =�

0 for 
x
 
L

2
or x = 0

i� for x � �−
L

2
,0�

− i� for x � �0,
L

2
� ,
� �10�

here L� �0,�� is a length scale, �� �0,�� determines the degree of non-Hermiticity of the
ystem, and � is the step function:

��x� ª �
0 for x � 0

1

2
for x = 0

1 for x � 0.
� �11�

he Hamiltonian �9� differs from a free particle Hamiltonian only within �−L /2 ,L /2� where it
oincides with the Hamiltonian for the PT-symmetric square well.5,19

It is important to note that unlike in Ref. 18 we will consider the potential �10� as defining a
undamental �noneffective� quantum system having a unitary time-evolution �and S-matrix�.
herefore our approach will be completely different from that pursued in Ref. 18 and the earlier
tudies of effective �optical� non-Hermitian Hamiltonians.20

Among the main reasons for our consideration of the potential �10� is that its eigenvalue
roblem can be solved exactly and analytically. However, the computation of the metric operator
nd consequently that of physical observables, localized states, associated Hermitian Hamiltonian,
tc., are extremely involved, and we could only carry them out using first-order perturbation
heory.

To the best of the author’s knowledge, the only other non-Hermitian Hamiltonian with a

ontinuous �and doubly degenerate� spectrum that is shown to admit a similar treatment is the one
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rising in the two-component formulation of the free Klein-Gordon equation.21,22 Compared to �9�,
his Hamiltonian defines a technically much simpler system to handle, because it is essentially a
ensor product of an ordinary Hermitian Hamiltonian and a 2�2 matrix pseudo-Hermitian Hamil-
onian.

I. METRIC OPERATOR

The essential ingredient of our approach is the metric operator �+. For a diagonalizable
amiltonian with a discrete spectrum it can be expressed as

�+ = �
n

�
a=1

da


�n,a	��n,a
 , �12�

here n, a, and dn are a spectral label, a degeneracy label, and the multiplicity �degree of
egeneracy� for the eigenvalue En of H, respectively, and �
�n ,a	� is a complete set of eigenvec-
ors of H† that together with the eigenvectors 
�n ,a	 of H form a biorthonormal system.4,2

Now, consider a diagonalizable Hamiltonian with a purely continuous doubly degenerate real
pectrum �Ek�, where k� �0,��. We will extend the application of �12� to this Hamiltonian by
hanging �n¯ to �dk¯. This yields

�+ = �
0

�

dk�
�k, + 	��k, + 
 + 
�k,− 	��k,− 
� , �13�

here we have used � as the values of the degeneracy label a.22 The biorthonormal system

�k ,a	 , 
�k ,a	� satisfies

H
�k,a	 = Ek
�k,a	, H†
�k,a	 = Ek
�k,a	 , �14�

��k,a
��,b	 = �ab��k − ��, �
0

�

�
�k, + 	��k, + 
 + 
�k,− 	��k,− 
�dk = 1, �15�

here �ab and ��k� stand for the Kronecker and Dirac delta functions, respectively, k� �0,��, and
,b� �−, + �,

We define the eigenvalue problem for the Hamiltonian �9� using the oscillating �plane wave�
oundary conditions at x= ±� similar to the free particle case which corresponds to �=0. To
implify the calculation of the eigenvectors we first introduce the following dimensionless quan-
ities:

x ª � 2

L
�x, p ª � L

2	
�p, Z ª �mL2

2	2 ��, H ª �mL2

2	2 �H = p2 + v�x� , �16�

v�x� ª iZ���x + 1� + ��x − 1� − 2��x�� = � 0 for 
x
  1 or x = 0

iZ for x � �− 1,0�
− iZ for x � �0,1� .

� �17�

The eigenvalue problem for the scaled Hamiltonian H corresponds to the solution of the
ifferential equation

−
d2

dx2 + v�x� − Ek���x� = 0, �18�

hat is subject to the condition that � is a differentiable function at the discontinuities x
−1,0 ,1 of v. Introducing �1 : �−� ,−1�→C, �− : �−1,0�→C, �+ : �0,1�→C, and �2 : �1,��→C

ccording to
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��x� ¬ �
�1�x� for x � �− �,− 1�
�−�x� for x � �− 1,0�
�+�x� for x � �0,1�
�2�x� for x � �1,�� ,

� �19�

e have

�1�− 1� = �−�− 1�, �1��− 1� = �−��− 1� , �20�

�−�0� = �+�0�, �−��0� = �+��0� , �21�

�+�1� = �2�1�, �+��1� = �2��1� . �22�

ow, imposing the plane-wave boundary condition at x= ±� and demanding that the eigenfunc-
ions � be PT-invariant, which implies

�−�0� = �+�0�*, �−��0� = − �+��0�*, �23�

e find Ek=k2, i.e., the spectrum is real positive and continuous, and

�1�x� = A1e
ikx + B1e

−ikx, �2�x� = A2e
ikx + B2e

−ikx, �±�x� = A±eik±x + B±e−ik±x, �24�

here

k± ª
�k2 ± iZ , �25�

A1 = A2
* =

eik

�2�
�L−�k�u + K−�k�v�, B1 = B2

* =
e−ik

�2�
�L−�− k�u + K−�− k�v� , �26�

L−�k� ª
1

2
�cos k− −

ik− sin k−

k
�, K−�k� ª

1

2
�k+

k−
� k− cos k−

k
− i sin k−� , �27�

A± =
1

�8�
u + � k+

k−
��1/2

v�, B± =
1

�8�
u − � k+

k−
��1/2

v� , �28�

nd u ,v�R are arbitrary constants �possibly depending on k and/or Z and not both vanishing�.
The presence of the free parameters u and v is an indication of a double degeneracy of the

igenvalues Ek=k2. We will select u and v in such a way as to ensure that in the limit Z→0 we
ecover the plane-wave solutions of the free particle Hamiltonian, i.e., we demand limZ→0 ��x�
e±ikx /�2�. This condition is satisfied if we set

u = 1, v = ± 1. �29�

n the following we use the superscript � to identify the value of a quantity obtained by setting
=1 and v= ±1. In this way we introduce A1

±, B1
±, A2

±, B2
±, A±

±, B±
±, and �±. The latter define the

asis �generalized23� eigenvectors 
�k , ± 	 by �x 
�k , ± 	ª�±�x�.
The next step is to obtain 
�k , ± 	. In view of the identity H†= 
H
Z→−Z, we can easily obtain

†
he expression for the eigenfunctions � of H . Introducing
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��x� ¬ �
�1�x� for x � �− �,− 1�
�−�x� for x � �− 1,0�
�+�x� for x � �0,1�
�2�x� for x � �1,�� ,

� �30�

e have

�1�x� = C1e
ikx + D1e

−ikx, �2�x� = C2e
ikx + D2e

−ikx, �±�x� = C±eik�x + D±e−ik�x, �31�

here

C1 = C2
* =

eik

�2�
�L+�k�r + K+�k�s�, D1 = D2

* =
e−ik

�2�
�L+�− k�r + K+�− k�s� , �32�

L+�k� ª L−�− k�*, K+�k� ª − K−�− k�*, �33�

C± =
1

�8�
r + � k+

k−
�±1/2

s�, D± =
1

�8�
r − � k+

k−
�±1/2

s� , �34�

nd r ,s�R are �possibly k- and/or Z-dependent� parameters that are to be fixed by imposing the
iorthonormality condition �15�. The latter is equivalent to a set of four �complex� equations
corresponding to the four possible choices for the pair of indices �a ,b� in the first equation in
15�� which are to be solved for the two real unknowns r and s. This together with the presence of
he delta function in two of these equations make the existence of a solution quite nontrivial.

We checked these equations by expanding all the quantities in powers of the non-Hermiticity
arameter Z up to �but not including� terms of order two and found after a long and tedious
alculation �partly done using MATHEMATICA� that indeed all four of these equations are satisfied,
f we set r=u=1 and s=v= ±1. Again we will refer to this choice using superscript �. In par-
icular, we have �±= 
�±
Z→−Z and �x 
�k , ± 	ª�±�x�.

Having obtained 
�k , ± 	 we are in a position to calculate the metric operator �13�. We carried
ut this calculation using first-order perturbation theory in Z. It involved expanding the �1

±�x�,
2
±�x�, and �±

±�x� in powers of Z, substituting the result in

�x
�+
y	 = �
0

�

��+�y�*�+�x� + �−�y�*�−�x��dk �35�

hich follows from �13�, and using the identities:

�
−�

�

eiakdk = 2���a�, �
−�

� eiak

k
dk = i� sign�a�, �

−�

� eiak − eibk

k2 dk = ��
b
 − 
a
� �36�

where a ,b�R and sign�a�ª��a�−��−a�� to perform the integral over k for all 16 possibilities
or the range of values of the pair of independent variables �x,y� in �35�. This is an extremely
engthy calculation whose detail we will not include here. It is absolutely remarkable that the
xpressions for �x
�+
y	 that we obtain for these 16 possibilities may be combined to yield a single
ormula that is valid for all x ,y�R, namely

�x
�+
y	 = ��x − y� +
i

8
�4 + 2
x + y
 − 
x + y + 2
 − 
x + y − 2
�sign�x − y�Z + O�Z2� , �37�

here O�Z2� stands for terms of order two and higher in powers of Z. Note that �x
�+
y	*
�y
�+
x	, which is consistent with the Hermiticity of �+.
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II. PHYSICAL OBSERVABLES AND LOCALIZED STATES

The physical observables of the system described by the Hamiltonian �9� are obtained from
he Hermitian operators acting in H=L2�R� by the similarity transformation �6�. This equation
nvolves the positive square root � of �+ which takes the form16

�±1 = e�Q/2, �38�

f we express � in the exponential form

�+ = e−Q. �39�

n view of �38� and the Backer-Campbell-Hausdorff identity,

e−ABeA = B + �B,A� +
1

2!
��B,A�,A� + . . . �40�

where A and B are linear operators�, physical observables �6� satisfy16

O = o − 1
2 �o,Q� + 1

8 ��o,Q�,Q� + . . . . �41�

If we expand �+ and Q in powers of Z,

�+ = 1 + �
�=1

�

�+�
Z�, Q = �

�=1

�

Q�Z
�, �42�

here �+�
and Q� are Z-independent Hermitian operators, we find using �39� that

Q1 = − �+1
, Q2 = − �+2

+ 1
2�+1

2 . �43�

ombining this relation with �41�, we have

O = o − 1
2 �o,Q1�Z + 1

8 �− 4�o,Q2� + ��o,Q1�,Q1��Z2 + O�Z3� . �44�

In the following we calculate the �+-pseudo-Hermitian position �X� and momentum �P�
perators,16 up to �but not including� terms of order Z2. This is because so far we have only
alculated �+1

which in view of �37� satisfies

�x
�+1

y	 = i

8 �4 + 2
x + y
 − 
x + y + 2
 − 
x + y − 2
�sign�x − y�, ∀ x,y � R . �45�

ubstituting the scaled position �x� and momentum �p� operator for o in �44�, using �45�, and
oing the necessary algebra, we find

�x
X
y	 = x��x − y� +
i

16
�4 + 2
x + y
 − 
x + y + 2
 − 
x + y − 2
�
x − y
Z + O�Z2� , �46�

�x
P
y	 = − i�x��x − y� + 1
8 �2 sign�x + y� − sign�x + y + 2� − sign�x + y − 2��sign�x − x�Z + O�Z2� ,

�47�

here Xª2X /L and PªLP / �2	� are dimensionless �+-pseudo-Hermitian position and momen-
um operators, respectively.

As seen from �46�, both X and P are manifestly nonlocal and non-Hermitian �but pseudo-
ermitian� operators. If we scale back the relevant quantities in �46� and �47� according to �16�,
e find

�x
X
y	 = x��x − y� +
im

2 �2L + 2
x + y
 − 
x + y + L
 − 
x + y − L
�
x − y
� + O��2� , �48�

4	
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�x
P
y	 = − i	�x��x − y� +
m

4	
�2 sign�x + y� − sign�x + y + L� − sign�x + y − L��sign�x − y�� + O��2� .

�49�

ote that the contributions of order � to P vanish, if both x and y take values outside
−L /2 ,L /2�.

Next, we compute the localized states 
�x� of the system. The corresponding state vectors are
efined by �7�. Using this equation as well as �38�, �42�, �43�, �45�, and �16� we have the following
xpression for the x-representation of a localized state 
�y� centered at y�R:

�x

�y�	 = ��x − y� −
im�

8	2 �2L + 2
x + y
− 
x + y + L
− 
x + y − 1
�sign�x − y� + O��2� . �50�

ecause the linear term in � is imaginary, the presence of a weak non-Hermiticity only modifies
he usual �Hermitian� localized states by making them complex �nonreal� while keeping their real
art intact. Note however that for a fixed y the imaginary part of �x 

�y�	 does not tend to zero as
x−y
→�. This observation which seems to be in conflict with the usual notion of localizability
as a simple explanation. Because the usual x operator is no longer an observable, it does not
escribe the position of the particle. This is done by the pseudo-Hermitian position operator X; it
s the physical position wave function ��x�ª �
�x� ,�	+ that defines the probability density of
ocalization in space �8�. The physical position wave function for the localized state 
�y� is given
y �
�x� ,
�y�	+= �x 
y	=��x−y� which is the expected result.

V. EQUIVALENT HERMITIAN HAMILTONIAN AND CLASSICAL LIMIT

The calculation of the equivalent Hermitian Hamiltonian h for the Hamiltonian �9� is similar
o that of the physical observables. In view of �2�, �38�, �40�, and �42�, and the last equation in �16�
hich we express as

H = p2 + i��x�Z with ��x� ª ��x + 1� + ��x − 1� − 2��x� , �51�

e have

h = p2 + h1Z + h2Z
2 + O�Z3� , �52�

h1 ª i��x� + 1
2 �p2,Q1� , �53�

h2 ª
1
8 �4�p2,Q2� + 4i���x�,Q1� + ��p2,Q1�,Q1�� . �54�

here

h ª �H�−1 = mL2h/�2	2� �55�

s the dimensionless Hermitian Hamiltonian associated with H.
Next, we substitute �43� and �45� in the identity �x
�p2 ,Q1�
v	= ��y

2−�x
2��x
Q1
y	, and perform

he necessary algebra. We then find �x
�p2 ,Q1�
v	=−2i��x���x−y�. Therefore,

�p2,Q1� = − 2i��x� , �56�

nd in view of �53�

h1 = 0. �57�

his was actually to be expected, for both the operators appearing on the right-hand side of �53�
re anti-Hermitian, while its left-hand side is Hermitian. The fact that an explicit calculation of the

ight-hand side of �53� yields the desired result, namely �57�, is an important check on the validity
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f our calculation of �+1
. It may also be viewed as an indication of the consistency and general

pplicability of our method, that was initially formulated for systems with a discrete spectrum.5,16

According to �57�,

h = p2 + h2Z
2 + O�Z3� . �58�

ence, in order to obtain a better understanding of the nature of the system described by the
amiltonian H, we need to calculate h2. As we will next show, the knowledge of �x
�+1


y	 turns
ut to be sufficient for the calculation of h2. To see this we first employ �56� to express h2 in the
orm

h2 = 1
4 �2�p2,Q2� + i���x�,Q1�� . �59�

ow, we recall that p2, Q2, ��x�, and Q1 are all Hermitian operators. Therefore �p2 ,Q2� and
���x� ,Q1� are, respectively, anti-Hermitian and Hermitian. In view of �59� and the Hermiticity of

2, this implies that

�p2,Q2� = 0. �60�

ence,

h2 =
i

4
���x�,Q1� =

i

4
��+1,��x�� , �61�

here we have also made use of the first equation in �43�. We should also mention that the
dentities �56� and �60� can be directly obtained from the pseudo-Hermiticity condition �5� by
ubstituting �39� in �5� and using �40� and �42�.

We can easily use �45� and �61� to yield the expression for the integral kernel of h2, namely

�x
h2
y	 = 1
32�4 + 2
x + y
− 
x + y + 2
− 
x + y − 2
�sign�x − y����x� − ��y��, ∀ x,y � R .

�62�

s seen from this equation, �x
h2
y	=0, if x� �−1,1� and y� �−1,1�.
We can express h2 as a function of x and p by performing a Fourier transformation on the y

ariable appearing in �62�, i.e., computing

�x
h2
p	 ª �2��−1/2�
−�

�

�x
h2
y	eipydy. �63�

his yields h2 as a function of x and p, if we order the factors by placing x’s to the left of p’s. We
an easily do this by expanding �x
h2
p	 in powers of p. Denoting the x-dependent coefficients by

n, we then have

h2 = �
n=0

�

�n�x�pn, �64�

here we have made the implicit assumption that �x
h2
p	 is a real-analytic function of p.
The Fourier transform of �x
h2
y	 can be performed explicitly. �One way of doing this is to use

he integral representations of the absolute value and sign function, as given in �36�, to perform the
-integrations in �63� and use the identities

�� eiaudu

u�u − k�
=

i�

k
�eiak − 1�sign�a� ,
−�
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�
−�

� eiaudu

u�u − k�2 =
i�

k2 �1 + �iak − 1�eiak�sign�a�, ∀ a,k � R ,

o evaluate the remaining two integrals. The resulting expression is too lengthy and complicated to
e presented here.� We have instead used MATHEMATICA to calculate �x
h2
p	 and found the
oefficients �n for n�5. It turns out that indeed �x
h2
p	 does not have a singularity at p=0, and
hat �0 ,�2 ,�4 are real and vanish outside �−3,3� while �1 ,�3 ,�5 are imaginary and proportional
o ��x�−1/2 outside �−3,3�. As we will explain momentarily these properties are necessary to
nsure the Hermiticity of h.

Figures 1, 2, and 3 show the plots of real part of �n for n=0,2 ,4 and the imaginary part of �n

FIG. 1. Graph of the real part of �0 �dashed curve� and �2 �full curve�.
FIG. 2. Graph of the imaginary part of �1 �dashed curve� and �3 �full curve�.
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or n=1,3 ,5. As seen from these figures �the absolute value of� �n sharply decreases with n,
hich suggests that a truncation of �64� yields a good approximation for the action of h2 on the
ave functions with bounded and sufficiently small x-derivatives.

If we use �p
h2
x	= �x
h2
p	* to determine the form of h2 and suppose that �2n�x� are real and

2n+1�x� are imaginary for all n=0,1 ,2 ,3 , . . ., we find

h2 = �
n=0

�

pn�n�x�* = �
n=0

�

�p2n�2n�x� − p2n+1�2n+1�x�� .

dding both sides of this relation to those of �64� and diving by two, we obtain

h2 =
1

2�
n=0

�

�an�x�,p2n�, an�x� ª �2n�x� + i�2n+1� �x� , �65�

here �·,·� stands for the anticommutator, a prime denotes a derivative, and we have made use of
he identity: �f�x� ,pm�= �if��x� ,pm−1�. It is important to note that because �2n�x� are real and

2n+1�x� are imaginary, an�x� are real. Moreover, outside �−3,3�, �2n�x�, �2n+1� �x�, and conse-
uently an vanish. Therefore, we can express h2 in the manifestly Hermitian form �65� with all the
-dependent coefficient functions vanishing outside �−3,3�. Figure 4 shows the plots of an for
=0,1 ,2. They are all even functions of x with an amplitude of variations that decreases rapidly
s n increases.

Next, we scale back the relevant quantities and use �16�, �55�, �58�, and �65� to obtain

h =
p2

2m
+

�2

2 �
n=0

�

��n�x�,p2n� + O��3�, �n�x� ª 2m� L

2	
�2�n+1�

an�2x

L
� . �66�

n view of the fact that an and �n are real-valued even functions, h is a manifestly Hermitian P-

FIG. 3. Graph of the real part of �4 �dashed curve� and the imaginary part of �5 �full curve�.
nd T-symmetric Hamiltonian. We can also express it in the form
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h =
1

4
�meff

−1�x�,p2� + w�x� +
�2

2 �
n=2

�

��n�x�,p2n� + O��3� , �67�

here

meff�x� ª
m

1 + 2m�2�1�x�
, w�x� ª �2�0�x� .

herefore, for low energy particles where one may neglect terms involving fourth and higher
owers of p, the Hamiltonian h and consequently H describe motion of a particle with an effective

FIG. 4. Graph of a0, a1, and a2.
osition dependent mass meff�x� that interacts with the potential w�x�. Figure 5 shows a graph of
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eff�x� for m=1/2, 	=1, L=2, and �=1/3. For the same values of these parameters, w�x�
a0�x� /9. See Fig. 4 for a graph of a0.

If we replace �x ,p� of �66� and �67� with their classical counterparts �xc ,pc�, we obtain the
classical” Hamiltonian:

H̃c =
pc

2

2m
+

�2

2 �
n=0

�

�n�xc�pc
2n + O��3� =

pc
2

2meff�xc�
+ w�xc� +

�2

2 �
n=2

�

�n�xc�pc
2n + O��3� , �68�

hich coincides with the free particle Hamiltonian outside the physical interaction region, i.e.,
−3L /2 ,3L /2�. The fact that this region is three times larger than the support �−L /2 ,L /2� of the

otential v�x� is quite surprising. Note also that H̃c is an even function of both the position xc and
omentum pc variables.

Figure 6 shows the phase space trajectories associated with the Hamiltonian H̃c for L=2, 	
1, m=1/2, �=Z=1/3. For large values of the momentum the trajectories are open curves de-

cribing the scattering of a particle due to an interaction that takes place within the physical
nteraction region, �−3,3�. For sufficiently small values of the momentum closed trajectories are

FIG. 5. Graph of the effective mass meff �full curve� for m= 1
2 , 	=1, L=2, and �= 1

3 . The dashed curve represents m= 1
2 .

IG. 6. Phase space trajectories of the Hamiltonian H̃c�xc ,pc� for m= 1
2 , 	=1, L=2, and �= 1

3 . The horizontal and vertical

xes are, respectively, those of xc and pc.
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enerated. These describe a particle that is trapped inside the physical interaction region. This is

onsistent with the fact that for small pc, H̃c is dominated by the potential term w�xc� which in
iew of its relation to a0�x� and Fig. 4 can trap the particle.

We wish to emphasize that because we have not yet taken the 	→0 limit of H̃c, we cannot
dentify it with the the true classical Hamiltonian Hc for the quantum Hamiltonian h and conse-

uently H. Given the limitations of our perturbative calculation of H̃c, we are unable to determine
his limit. �This is in contrast with both the PT-symmetric square well and the PT-symmetric
ubic anharmonic oscillator studied in Refs. 5 and 16, respectively. In the former system the
resence of an exceptional spectral point imposes the condition that � must be of order 	2 or
igher and consequently the classical system is the same as that of the Hermitian infinite square
ell.5 In the latter system, the 	→0 limit of the associated Hermitian Hamiltonian can be easily

valuated and classical Hamiltonian obtained.16� Therefore, we cannot view the presence of closed

hase space trajectories for H̃c as evidence for the existence of bound states of h and H. This is
specially because these trajectories are associated with very low momentum values where the
uantum effects are expected to be dominant.

. CONCLUSION

In this paper we explored for the first time the utility of the methods of pseudo-Hermitian
uantum mechanics in dealing with a non-Hermitian PT-symmetric potential v�x� that has a
ontinuous spectrum. We were able to solve the eigenvalue problem for this potential exactly and
btain the explicit form of the metric operator, the pseudo-Hermitian position and momentum
perators, the localized states, and the equivalent Hermitian Hamiltonian perturbatively.

Our analysis revealed the surprising fact that the physical interaction region for this model is
hree times larger than the support of the potential, i.e., there is a region of the configuration space
n which v�x� vanishes but the interaction does not seize.

A simple interpretation for this peculiar property is that the argument x of the potential v�x� is
ot a physical observable and the support �−L /2 ,L /2� of v�x� being a range of eigenvalues of x
oes not have a direct physical meaning. This observation underlines the importance of the
ermitian representation of non-Hermitian �inparticular PT-symmetric� Hamiltonians having a

eal spectrum.
The Hermitian representation involves a nonlocal Hamiltonian that is not suitable for the

omputation of the energy spectrum or the S-matrix of the theory. Yet it provides invaluable
nsight in the physical meaning and potential applications of pseudo-Hermitian and PT-symmetric
amiltonians and is indispensable for the determination of the other observables of the corre-

ponding quantum systems.
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A way of utilizing Lax-Phillips type semigroups for the description of time evolu-
tion of resonances for scattering problems involving Hamiltonians with a semi-
bounded spectrum was recently introduced by Strauss. In the proposed framework
the evolution is decomposed into a background term and an exponentially decaying
resonance term evolving according to a semigroup law given by a Lax-Phillips-type
semigroup; this is called the semigroup decomposition. However, the proposed
framework assumes that the S-matrix in the energy representation is the boundary
value on the positive real axis of a bounded analytic function in the upper half-
plane. This condition puts strong restrictions on possible applications of this for-
malism. In this paper it is shown that there is a simple way of weakening the
assumptions on the S-matrix analyticity while still obtaining the semigroup decom-
position of the evolution of a resonance. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2070067�

. INTRODUCTION

There has been a recent effort to adapt the formalism of the scattering theory developed by
ax and Phillips1 into the framework of quantum mechanics. An initial effort in this direction2–4

as followed by the introduction of a more general formalism by Strauss, Eisenberg, and Horwitz5

hich was subsequently applied to certain Lee-Friedrichs-type models in relativistic quantum field
heory6,7 and, more recently, to the analysis of the Stark effect.8 In a parallel work Baumgartel9 has
sed a modification of the Lax-Phillips scattering theory in order to deal with quantum mechanical
esonances. In particular, he has shown the relevancy of this modified structure for the construc-
ion of appropriate Gamow vectors for resonances of certain scattering problems.

It is readily observed that the class of problems which can be analyzed within the framework
ntroduced in Ref. 5 is limited by the very fact that it essentially maintains the original structure of
he Lax-Phillips theory. In this formalism the generator of evolution is required to have an un-
ounded spectrum from below as well as from above, thus a large class of quantum mechanical
cattering problems is excluded from its range of applicability. A way of overcoming this diffi-
ulty, when dealing with scattering problems for which the generator of evolution has a semi-
ounded absolutely continuous spectrum, was recently proposed in Ref. 10.

The basic setting analyzed in Ref. 10 is a scattering problem involving a “free” unperturbed
amiltonian H0 and a perturbed Hamiltonian H defined on a Hilbert space H where we assume

hat the absolutely continuous spectrum of both H0 and H satisfies ess Supp �ac�H0�
ess Supp �ac�H�=R+ and that the Møller wave operators �±�H0 ,H� exist and are complete. In
rder to obtain the desired result, described below, it is assumed further that the S-matrix in the

nergy representation, denoted by S̃, is a boundary value on R+ of an H���� function where,
enoting by � the upper half of the complex plane, H���� is the class of functions which are
ounded analytic in �.

�
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Suppose that under the assumptions mentioned above S̃, as an analytic function in �, has a
imple zero in the upper half-plane at a point �̄ with Im ��0 and Re ��0. It is then easy to

how that there exists an analytic continuation of S̃ across the positive real axis and that this
nalytic continuation has a simple pole below the real axis at the point z=� which is considered
o be associated with a scattering resonance �this is usually referred to as a second sheet pole of the
-matrix�. Denote by U�t� the unitary evolution generated by the full scattering Hamiltonian H
nd by Hac the subspace of H corresponding to the ac spectrum of H. It is shown in Ref. 10 that

he pole of S̃ at z=� �or rather the zero at �̄� induces a decomposition of any matrix element
g ,U�t�f�Hac

, for t�0 and f and g belonging to a certain dense set in Hac, into a term evolving
ccording to a semigroup law and a background term. In a sense to be made precise in the next
ection the semigroup term is of Lax-Phillips type and the eigenvalue of the generator of the

emigroup is exactly �, i.e., the location of the pole of the S-matrix S̃. One may say that the
emigroup part of the evolution is driven by the pole of the S-matrix. The identification of the
igenvalue of the generator of the semigroup with the location of the S-matrix pole is made
hrough a mechanism originating from the Sz.-Nagy–Foias theory of contractions on Hilbert
pace.11 The decomposition of the matrix element �g ,U�t�f�Hac

in the form

�g,U�t�f�Hac
= Rsg�g, f ;t� + 	�g, f�e−i�t, t � 0 �1�

nduced via the Sz.-Nagy–Foias mechanism by a pole of the scattering matrix S̃ at z=� will be
alled the semigroup decomposition of the time evolution of a resonance. The second term in Eq.
1� is the semigroup contribution and the first term is the background term.

One important drawback of the framework developed in Ref. 10 is the strong assumption

ade on the analyticity properties of the S-matrix. While the assumption that S̃ is the boundary
alue of an H���� function allows for the application of the proposed framework in certain
ituations including, for example, certain Friedrichs-type models or compactly supported pertur-
ations of the Laplacian, it excludes large classes of quantum mechanical scattering problems for
hich the scattering matrix does not have the necessary analyticity properties. The main focus of

he present paper is on an attempt to overcome this obstacle.
The paper is organized as follows: A short summary of the framework for the description of

he time evolution of resonances developed in Ref. 10 is given in Sec. II. As mentioned above this
ramework assumes certain strong analyticity properties for the S-matrix in the upper half-plane.
he weakening of these strong assumptions is dealt with in Sec. III. Section IV contains a few
omments which are included in order to elucidate some important points in the formalism intro-
uced in the preceding two sections. Final remarks are made in Sec. V.

I. THE SEMIGROUP DECOMPOSITION FOR RESONANCE EVOLUTION

This section provides a short summary of the formalism introduced in Ref. 10. As mentioned

n Sec. I, the result, Eq. �1�, is obtained under the assumption that S̃, the S-matrix in the energy
epresentation, is the boundary value on R+ of a function in H����. In the next section it is shown
hat it is possible to obtain the same results with a weaker assumption on the analyticity of the
-matrix.

We start the discussion in this section with the definition of a Lax-Phillips-type semigroup.
onsider a Hilbert space H and an evolution group of unitary operators �U�t��t�R on H. The

tarting point for the Lax-Phillips scattering theory is the assumption that there exist in H two
istinguished subspaces D− and D+ with the properties

D− � D+,
U�t�D− � D−, t 
 0,
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U�t�D+ � D+, t � 0,

�tU�t�D± = �0� ,

�tU�t�D± = H . �2�

he subspaces D− and D+ are called, respectively, the incoming subspace and outgoing subspace
or the evolution U�t�. The main object investigated in the Lax-Phillips theory is the Lax-Phillips
emigroup which is defined to be the family �Z�t��t�0 of operators on H given by

Z�t� = P+U�t�P−, t � 0. �3�

Here P− is the orthogonal projection of H onto the orthogonal complement of D− and P+ is the
rthogonal projection of H onto the orthogonal complement of D+. The family �Z�t��t�0 forms a
trongly continuous contractive semigroup on K=H��D− � D+� with s−limt→� Z�t�x=0 for ev-
ry x�K.

Under the assumptions in Eq. �2� Lax and Phillips prove the existence of two translation
epresentations for H. In the incoming translation representation H is mapped onto the Hilbert
pace LN

2 �R� of functions taking their values in a Hilbert space N �called auxiliary space�, D− is
apped onto LN

2 �R−� and the evolution U�t� is represented as translation to the right by t units.
nalogously, in the outgoing translation representation H is mapped onto LN

2 �R�, D+ is mapped
nto LN

2 �R+� and the evolution U�t� is again represented by translation to the right. The mapping
LP of the incoming translation representation onto the outgoing translation representation is the
ax-Phillips S-matrix. One usually does not work with the translation representations but rather
ith their Fourier transforms called, respectively, the incoming spectral representation and out-
oing spectral representation. According to the Paley-Wiener theorem12 in the incoming spectral
epresentation D− is represented by HN

+ �R� where HN
+ �R� is the space of boundary values on R of

unctions in HN
2 ���, the space of �vector valued� Hardy class functions on the upper half-plane.

y the same theorem D+ is represented in the outgoing spectral representation by the function

pace HN
− �R� containing boundary values of functions in HN

2 ��̄� where �̄ is the lower half-plane.
he Lax-Phillips S-matrix in the spectral representation, i.e., the Fourier transform of the Lax-
hillips S-matrix, will be denoted by SLP. The operator SLP:LN

2 �R��LN
2 �R� is realized as a

ultiplicative, operator valued function ��·�, such that ���� maps N onto N for each ��R. The
perator valued function ��·� is characterized by its action on HN

+ �R� as being as inner
unction13–15 �the notation in this paper does not distinguish between an operator defined on the
pace HN

2 ��� and the corresponding operator defined on the space of boundary value functions

N
+ �R�; since the two spaces are isomorphic the same notation is being used for both�.

As mentioned above the main object of interest in the Lax-Phillips theory is the Lax-Phillips
emigroup. In the outgoing spectral representation an element Z�t� :K�K of the Lax-Phillips

emigroup is represented by Ẑ�t�, K̂�K̂ defined by

Ẑ�t� = Tu�t��K̂, t � 0, �4�

here

K̂ = LN
2 �R� � �HN

− �R� � SLPHN
+ �R�� = LN

2 �R� � �HN
− �R� � ��·�HN

+ �R�� �5�

nd where Tu�t� :HN
+ �R��HN

+ �R� is a Toeplitz operator13,16,17 with symbol u�t� define by

�u�t�f���� = e−i�t f���, f � LN
2 �R�, � � R . �6�

The structure of the semigroup Ẑ�t�, representing Z�t� in the outgoing spectral representation,
an be understood in the context of the construction of functional models for continuous contrac-

ive semigroups on Hilbert space, a part of the Sz.-Nagy–Foias theory of contraction operators on
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ilbert space.11 We call an operator a model operator for a class of operators if every operator in
hat class is similar to a multiple of a part of it �a part of an operator is defined to be the restriction
f the operator to one of its invariant subspaces�. By a functional model we mean that the model
perator is defined on suitable function spaces. In fact, Eq. �4� provides a functional model for a
ax-Phillips type semigroup. From this point of view the semigroup is a fundamental object, the
ax-Phillips Hilbert space and incoming and outgoing subspaces are obtained in the process of a
nitary dilation of the semigroup and there always exits a similarity, in fact a unitary, transfor-

ation of Z�t� into its functional model representation in terms of Ẑ�t�.
We notice that Eq. �5� can be written in the form

K̂ = HN
+ �R� � ��·�HN

+ �R� . �7�

n fact, Eq. �4� together with Eq. �7� are considered to be the canonical functional model for a
ax-Phillips-type semigroup. Here we consider an isometric dilation of the semigroup and we end
p with a functional model defined on the Hardy space HN

+ �R�.10,11 We are interested in this
anonical functional model for the Lax-Phillips semigroup and accordingly, for ��·� an inner
unction, we call a semigroup of the form

Ẑ�t� = Tu�t���HN
+ �R� � ��·�HN

+ �R��, t � 0 �8�

semigroup of Lax-Phillips type �in the mathematical literature a functional model for Z�t� in the
orm of Eq. �8� follows from the observation that the contractive semigroup �Z*�t��t�0 belongs to
he class C0�.

A semigroup of the form given in Eq. �8� is one ingredient entering into the formalism
eveloped in Ref. 10. Another important ingredient is the notion of Hilbert space nesting intro-
uced into the study of quantum mechanical resonances by Grossman.18 A nesting map of a
ilbert space H1 into a Hilbert space H0 is a linear mapping � :H1→H0 such that

1� the domain of � is H1 and � is continuous on H1,
2� the range �H1�H0 is dense in H0,
3� � is injective.

A map with the properties �1�–�3� is also known as a quasi affine map �for interesting prop-
rties of such maps see, for example, Ref. 11�. The adjoint of a nesting map �, defined by

�f ,�g�H0
= ��*f ,g�H1

,

s a nesting of H0 into H1. A slightly more extended version of the following theorem was proved
n Ref. 10.

Theorem 1 (outgoing\incoming contractive nesting): Let H0 and H be self-adjoint opera-
ors on a Hilbert space H. Let �U�t��t�R be the unitary evolution group on H generated by H �i.e.,
�t�=exp�−iHt��. Denote by Hac

0 and Hac, respectively, the absolutely continuous subspaces of H0

nd H. Assume that the absolutely continuous spectrum of H0 and H has multiplicity one and that
ss Supp �ac�H0�=ess Supp �ac�H�=R+. Assume furthermore that the Møller wave operators

±�H0 ,H� :Hac
0 �Hac exist and are complete. Then there are mappings �̂± :Hac�H+�R� such

hat

i� �Hac ,H+�R� ,�̂±� are contractive Hilbert space nestings of Hac into H+�R�,
ii� for every t�0 and every f �Hac we have

�̂±U�t�f = Tu�t��̂±f , �9�

where Tu�t� is the Toeplitz operator with symbol u�t�. �

+ ˆ
The nesting �Hac ,H �R� ,�−� is called below the incoming contractive nesting of Hac and we
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enote f in=�̂−f . Similarly �Hac ,H+�R� ,�̂+� is called the outgoing contractive nesting and we

enote fout=�̂+f . The natural definition of the nested S-matrix is then Snest��̂+�̂−
−1 and we have

fout = �̂+�̂−
−1f in = Snestf in.

Let U :Hac
0 �L2�R+� be the unitary transformation of Hac

0 into the spectral representation for

0 �the energy representation�. If S= ��−�*�+ is the scattering operator associated with H0 and H
hen S̃ :L2�R+��L2�R+� defined by

S̃ � USU*

s the energy representation of the S-matrix. Define a map � :H+�R��L2�R+� by taking, for each
unction f �H2��� the restriction on R+ of the boundary value of f on R. Then, by a theorem of
an Winter,19 � is a nesting of H+�R� into L2�R+�. The map �* :L2�R+��H+�R� is well defined
nd is a nesting of L2�R+� into H+�R�. It is shown in Ref. 10 that

Snest = �*S̃��*�−1 �10�

in fact Eq. �10� is taken in Ref. 10 to be the definition of Snest�.
In Sec. III we will need an explicit form for the map �*. The following Lemma provides the

eeded expression.10

Lemma 1: Define the inclusion map I :L2�R+��L2�R� by

�If���� = 	 f���, � � 0,

0, � � 0.

 �11�

et P+ be the orthogonal projection of L2�R� onto H+�R�. Then for any f �L2�R+� we have

�*f = P+If . �12�

�

We are now able to state the semigroup decomposition result following from the H����
ssumption on the S-matrix mentioned in Sec. I. Assume therefore that S̃, the S-matrix in the
nergy representation, is the boundary value on R+ of an H���� function which will be denoted
y S. If S has only a simple zero in the upper half-plane then, according to the canonical
actorization theorems for Hp functions,14,15 we can write S in the form

S�z� = B��z�G�z� , �13�

here B� is a simple Blaschke factor of the form �for the definition of Blaschke products see, for
xample, Refs. 14 and 15�

B��z� =
z − �̄

z − �
�14�

nd G�H���� has no zeros in �. Under the above assumptions we have the following result on
he semigroup decomposition for the H� case.10

Proposition 1 (H� case): Assume that the S-matrix S̃ :L2�R+��L2�R+� is the boundary value
n R+ of some function S�H����. Suppose, furthermore that S has a single, simple zero at the

oint z= �̄, Im ��0 in �. For any f �Hac let f in=�̂−f and fout=�̂+f . We have

fout = Snestf in = B��*G̃��*�−1f in − i2 Im ��P−Gf in
− ����x�, �15�

here P− is the orthogonal projection of L2�R� on H−�R�, f in
− �H−�R� is such that PR−�f in+ f in

− �
˜ + �
0, G is the boundary value on R of a function G�H ��� and G has no zeros in �. The vector
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��H+�R� is given by x����= ��−��−1 ��P−Gf in
− ���� is the value of the function �P−Gf in

− �
H−�R� at ���̄�. �

Define

K̂� � H+�R� � B�H+�R� , �16�

hen K̂� is a one-dimensional subspace of H+�R� and x��K̂�. Since B� is an inner function for
+�R� we can define the Lax-Phillips type semigroup �Ẑ�t��t�0 by

Ẑ�t� � Tu�t��K̂�, t � 0. �17�

hen x� is an eigenvector of the generator of �Ẑ�t��t�0 and

Ẑ�t�x� = e−i�tx�, t � 0.

hus, for any f �Hac we find that

�̂+U�t�f = Tu�t�fout = Tu�t�B��*G̃��*�−1f in − i�2 Im ��P−Gf in
− �����Ẑ�t�x�

= Tu�t�B��*G̃��*�−1f in − i�2 Im ��P−Gf in
− �����e−i�tx�, t � 0. �18�

efine

�̂+
= �̂+

*�̂+Hac. �19�

he linear space �̂+
�Hac is dense in Hac. By the injective property of both �̂+ and �̂+

*, for any

lement g��̂+
we can find a unique hg�Hac such that g=�̂+

*�̂+hg. For any g��̂+
, f �Hac

nd for t�0 we have

�g,U�t�f�Hac
= ��̂+

*�̂+hg,U�t�f�Hac
= ��̂+hg,�̂+U�t�f�H+�R� = �hg,out,Tu�t�fout�H+�R�

= �hg,out,u�t�B��*G̃��*�−1f in�H+�R� − i�2 Im ��P−Gf in
− �����e−i�t�hg,out,x��H+�R�.

�20�

quation �20� is of the form given in Eq. �1� and its rhs provides �for t�0� the semigroup
ecomposition of the matrix element �g ,U�t�f�Hac

. The zero of the S-matrix at z= �̄ in � is related,
ia the Sz.-Nagy–Foias mechanism described in Ref. 10, to the Lax-Phillips-type semigroup
tructure leading to the exponential decay of the second term on the rhs of Eq. �20�.

As discussed in detail in Ref. 10, Eq. �20� is a direct result of the assumption on the analyticity
roperties of the S-matrix. In particular, this result is a consequence of the fact that the H�

ssumption imply the canonical factorization in Eq. �13�. As mentioned in Sec. I above, the

ssumption that the S-matrix S̃ is a boundary value of a bounded analytic function in the upper
alf-plane is stronger than what one would consider as desirable. Large classes of models for
uantum mechanical scattering phenomena do not possess the assumed analyticity properties and
ence cannot be analyzed within the framework developed in Ref. 10. A way of resolving this
ifficulty is suggested in the next section.

II. MODIFIED ASSUMPTIONS ON S-MATRIX ANALYTICITY

In this section it is shown that weaker assumptions on the analyticity of the S-matrix lead to
result very similar to the semigroup decomposition of Eq. �20�. Thus, we assume that the
-matrix is analytic in a certain region above the real axis, that it can be analytically continued
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cross R+ and that the resulting function is meromorphic in an open region � containing R+ with
single, simple pole at z=�, Im ��0 inside � as depicted in Fig. 1. We have the following

heorem.
Theorem 2: Under the assumptions of Theorem 1, let S be the scattering operator associated

ith H0 and H and let S̃ :L2�R+��L2�R+� be the S-matrix in the energy representation (i.e., S̃
USU* as above). Assume that S̃ has an extension to a meromorphic function S defined in the

egion � with a single, simple, pole at z=�, Im ��0, and no other pole in �̄, the closure of �,
s in Fig. 1.

For any f �Hac use the nesting maps �̂± to define fout=�̂+f and f in=�̂−f . Then there exists
unique element ���Hac, such that

fout = Snestf in = B��*G̃��*�−1f in + i2 Im ����, f�Hac
x�, �21�

here �* is the map given in Lemma 1, x��H+�R� is given by x����= ��−��−1, B� is the

laschke factor defined in Eq. (14) and the complex valued function G̃ is defined on R+ and is the

estriction to R+ of a function G holomorphic in � and having no zeros on �̄. �

Proof: Let S̃ be the S-matrix in the energy representation and assume that it has a meromor-
hic extension S in � with a simple pole at �. Then S has in � the representation

S�z� = �z − ��−1G��z� , �22�

here G� is analytic in � and has no zero at z=�. Now, if S is expressed by Eq. �22� below the

eal axis then, by the unitarity of S̃, the restriction of S to R+, we find that in the region ��� we
an write S in the form

S�z� = �S̄�z̄��−1 = �z − �̄��G��z̄��−1, Im z � 0.

ince G� has no zero at z=� then �G��z̄��−1 does not have a pole at z= �̄ and we conclude that S
as a representation in � expressed by

S�z� =
z − �̄

z − �
G�z� = B��z�G�z�, z � � , �23�

here G�z� has no zero or pole in �. We see that S has in � a representation similar to Eq. �13�
ith the difference being in the fact that this representation is limited to the region �.

The S-matrix S̃ is given by the restriction of S in Eq. �23� to R+, i.e., S̃���=B����G̃���, �
R+. Plugging this form of the S-matrix into the expression of the nested S-matrix Snest in Eq.

10�, we cannot use the methods of Ref. 10 to obtain the desired results since we no longer assume
�

IG. 1. S-matrix analyticity properties. We assume that S̃ has a meromorphic extension to the region � with a simple pole
t z=�.
hat S is an H ��� function. However, we can avoid the need for this assumption by writing
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fout = Snestf in = �*S̃��*�−1f in = �*B�G̃��*�−1f in = P+IB�G̃��*�−1f in

= P+B��P+ + P−�IG̃��*�−1f in = B��*G̃��*�−1f in + P+B�P−�̄*G̃��*�−1f in, �24�

here �̄*= P−I. We see that the first term on the rhs of Eq. �24� is identical in form to the first term
n the rhs of Eq. �15�. In the second term on the rhs of Eq. �24� the operator

P+B�P− :H−�R��H+�R� is a Hankel operator with a one-dimensional range. In fact, for any g
H+�R� and f �H−�R� we have

�B�g,P+B�P−f�H+�R� = �B�g,B�f�L2�R� = 0.

ence Ran �P+B�P−�=K̂�, where K̂� is given in Eq. �16�. Define the subspace K̂�̄�H−�R� by

K̂�̄ � H−�R��B�̄H−�R� .

ith B�̄�z�= �z−�� / �z− �̄� �B�̄ is an inner function for H−�R�� and denote by PK̂�̄
the orthogonal

rojection on this subspace. Then we also have P+B�P−= P+B�P−PK̂�̄
since

P+B�P−�B�̄H−�R�� = 0.

e conclude that

P+B�P− = PK̂�
P+B�P−PK̂�̄

. �25�

sing Eq. �25� in Eq. �24� we obtain

fout = B��*G̃��*�−1f in + PK̂�
P+B�P−PK̂�̄

�̄*G̃��*�−1f in. �26�

ccording to Eq. �16� and Eq. �26� we expect that the second term on the rhs of Eq. �26� is
roportional to the vector x��H+�R�. Indeed this is verified by explicit calculation. For the
rojection operators P± we have the standard expressions

�P±f����� =
1

2�i
�

R

1

�� ± i� − �
f���d�, f � L2�R� .

ence, for f �H−�R� we have

�P+B�P−f���� = �P+B�f���� =
1

2�i
�

R

1

� + i� − ��

�� − �̄

�� − �
f���� =

1

� − �
i2 Im �f��� . �27�

f the S-matrix S̃ has a meromorphic extension S in � with a simple pole at z=� then the
olomorphic factor of S in � can be found from Eq. �23� and is given by G=B�̄S. Hence we have

��̄*G��*�−1f in���� = �P−IB�̄S̃��*�−1f in����

=
1

2�i
�

R+

1

� − �
�B�̄S̃��*�−1f in����

=
1

2�i
�

R+

1

� − �̄
�S̃��*�−1f in���� = ��*S̃��*�−1f in���̄� = fout��̄� . �28�

urthermore, it was shown in Ref. 10 that the nesting maps �̂± are given by �̂±=�*U����*

where, as above, U :Hac
0 �L2�R+� is the mapping onto the H0 spectral representation� so that, for
very f �Hac, we have
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fout��̄� =
1

2�i
�

R+

1

� − �̄
�U��−�*f���� = ���, f�Hac

, �29�

here we define ��=�−U*�̃� with �̃��L2�R+�, �̃����= �2�i�−1��−��−1. Combining Eqs.
26�–�29� we obtain the result Eq. �21�. �

In order to see how Theorem 2 is used we go back to Eq. �20�. From this equation, together
ith Eq. �26� and Eq. �21� we find, for any f �Hac and any g��̂+

,

�g,U�t�f�Hac
= �hg,out,Tu�t�fout�H+�R� = �hg,out,u�t�B��*G̃��*�−1f in�H+�R�

+ �hg,out,Ẑ�t�PK̂�
P+B�P−PK̂�̄

�̄*G̃��*�−1f in�H+�R�

= �hg,out,u�t�B��*G̃��*�−1f in�H+�R� + e−i�t�hg,out,x��H+�R����, f�Hac
. �30�

quation �30� has the general form of Eq. �1� and provides the semigroup decomposition in the

ase that the S-matrix S̃ has a meromorphic extension to the region � in Fig. 1. It can be easily

hown that Eq. �30� reduces to Eq. �20� if S̃ is in fact the boundary value on R+ of a function
elonging to H����.

We observe that if in Eq. �30� the state f �Hac is chosen to be orthogonal to �� then the
xponentially decaying term on the rhs of Eq. �30�, originating from the Lax-Phillips-type semi-
roup evolution associated with the pole of the S-matrix, does not appear. This enables us to make
direct correspondence between the state �� and the resonance contribution to the time evolution.
ince, as is seen in Sec. IV below, no state in Hac can be mapped into an exact resonance state in

he Hardy space H+�R� and there always exists some nonzero background contribution, the vector

��Hac will be called an approximate resonance state. Using Dirac’s notation, let us denote by
�E−��E�R+ the set of outgoing scattering states, i.e., outgoing solutions of the Lipmann-Schwinger
quation. It is then easy to see that for f �Hac we have

�U��−�*f��E� = E−�f�, E � R+

nd the definition of the state �� �see Eq. �29�� implies that it is given by the simple expression

���� =
1

2�i
�

R+
dE

1

E − �
�E−� . �31�

V. COMMENTS

This section contains some comments on the framework described in Sec. II and further
xtended in Sec. III. The discussion below is presented in a slightly more general form than is
trictly necessary in order to relate it to the formalism of Secs. II and III. The more general form
f the statements made below places the remarks at the end of the present section, on the Bohm-
adella rigged Hardy space formalism for the resonance problem,20 into their natural context.

Let S denote the Schwartz class of rapidly decreasing functions in C��R�. Let S� denote the
pace of tempered distributions on S. We shall need the following definition.21

Definition 1 �the space Hp�C \R��: For any fixed p� �0,�� let Hp�C \R� denote the space of
nalytic functions on C \R for which

�f� = sup
y�0
	�

R
�f�x + iy��p dx
1/p

� � .

t can be shown21 that every function F�Hp�C \R� is associated with a unique tempered distri-

ution �F�S� defined by
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�F��� = lim
y→0+

� �F�x + iy� − F�x − iy����x�dx, � � S . �32�

enote the set of all distributions arising in this way by Hp�R�. Then, conversly, for any p
�0,�� and for any distribution ��Hp�R�, one can find the unique function F��Hp�C \R� that

efines the distribution � through Eq. �32� via the formula21

F��z� =
1

2�i
�� 1

·− z
� . �33�

quation �33� can be thought of as a generalization of the Cauchy integral formula for the
ecovery of an Hp function from its boundary value on R.

Even though Eq. �32� and Eq. �33� are valid for any p� �0,��, for p� �1,�� we have the
urther identification of the space Hp�R� with the space Lp�R� in the sense that any function f

Lp�R� defines a tempered distribution on S by

� f��� = �
R

f�x���x�dx, � � S �34�

nd that for any f �Lp�R� there exists a unique Ff �Hp�C \R� such that �Ff
=� f, i.e., Eqs. �32� and

34� define the same tempered distribution on S.
Finally, we will also need the following result.21

Proposition 2: A distribution ��Hp�R� has support which omits an open interval I�R if and
nly if the corresponding function F��Hp�C \R� given by Eq. (33) has an analytic continuation
cross the interval I.

Consider now the map �* :L2�R+��H+�R� and its inverse ��*�−1 :�*L2�R+��L2�R+�. An ex-
licit expression for �* is given in Eq. �12�. Breaking the action of �* into two steps we first have,
or any f �L2�R+�,

If = P+If + P−If = �*f + �̄*f = f+ + f−, f+ � H+�R�, f− � H−�R� , �35�

here f+= P+If , f−= P−If . In the second step we take the H+�R� piece, i.e.,

�*f = P+If = f+.

n the other hand, the discussion preceding Proposition 2 implies that if we apply the inclusion
ap I :L2�R+��L2�R� then, for any element f �L2�R+�, the element If �L2�R� is associated with
unique function Ff �H2�C \R� such that

�If���� = lim
�→0+

�Ff�� + i�� − Ff�� − i��� . �36�

n fact, the function Ff �H2�C \R� is easily found from Eq. �35�. We first use the isomorphism of
+�R� and H2��� to extend the map �* to a mapping ��

* :L2�R+��H2���. Subsequently we
imply define

Ff�z� = 	 f+�z� = ���
* f��z� , Im z � 0,

− f−�z� = − ��̄�
* f��z� , Im z � 0.


 �37�

oreover, Proposition 2 shows that Ff defined in Eq. �37� is in fact analytic on C \R+. Denoting
he subspace of H2�C \R� of functions analytic on R− by H2�C \R+� we conclude that there exists

2 + 2 + 2 + 2 +
surjective map A :L �R ��H �C \R � with Af =Ff for f �L �R �, Ff �H �C \R �. Note that
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�Af��z� = Ff�z� = ���
* f��z�, Im z � 0. �38�

n addition, we note that Eqs. �36�–�38� provide us with a procedure for the construction of the
ap ��*�−1. Given f+��*L2�R+��H+�R� we use the Cauchy integral formula to obtain the func-

ion f+�H2���. We know from Eq. �38� and Eq. �37� that there is a unique function f �L2�R+�
uch that f+�H2��� is the restriction to � of a function Ff =Af �H2�C \R+�. Hence we can
nalytically continue f+ across R− into the lower half-plane and obtain the full function Ff. The
econstruction of the corresponding function f �L2�R+� is then obtained by using Eq. �36�. The
rocess of analytically continuing f+ across R− is done in Ref. 10 essentially by using the Van
inter theorem and explicit integral expressions for the map ��*�−1 are obtained.

Next we turn to a discussion of the resonance states. Let

Rs � �x��x� � H+�R�, x���� = �� − ��−1, � � R, Im � � 0� . �39�

bviously, it is not possible to analytically continue any element x��Rs across R− in order to
btain a function in H2�C \R+�. By Eq. �38� we obtain the following.

Lemma 2: Define the set Rs�H+�R� according to Eq. (39). Then Rs�H+�R� \�̂±Hac.

Now, for any given S-matrix S̃ the eigenvector of the Lax-Phillips-type semigroup in the
econd term on the rhs of Eq. �30� is proportional to some x��Rs. Identifying the Hardy space
tate x��H+�R� as a pure, exponentially decaying, resonance state, Lemma 2 provides a formal
erification for the impossibility of the association of any unique state in the original Hilbert space

ac with a pure resonance. For this reason the time evolution �e.g., the survival amplitude� of any
tate in Hac always contains some background contribution and is never purely exponentially
ecaying.

The final remark in this section is concerned with the Bohm-Gadella rigged Hilbert space
ormalism for the problem of resonances.20 The main tool in this formalism is a Gelfand triplet

+�H+�R���+
* constructed by a rigging of the Hardy space H+�R�. The smaller sector �+ of the

elfand triple is taken to be �+�H+�R��S where S again denotes the Schwartz space. The
arger sector �+

* contains all the continuous linear functionals on �+. One then uses a pullback
rocedure in order to obtain a rigged Hilbert space ��L2�R+���* centered around the Hilbert
pace L2�R+�. The procedure of pull back uses the map �. We first define ����+ and then the
ull back procedure is used in order to define the set �* of functionals on �. Denoting the
valuation of the functional F on a test function f in the rigged Hilbert spaces ��L2�R+���* or

+�H+�R���+
* by f ,F�L2 and f ,F�H+, respectively, the pull back of a functional F��+

* is
efined to be

f ,��−1�*̂F�L2 � �−1f ,F�H+, f � �, F � �+
* . �40�

he map ��−1�*̂ :�+
* ��* on the lhs of Eq. �40� is an extension to �+

* of the map ��−1�*. But on its
omain of definition in H+�R� we have ��−1�*= ��*�−1. Hence Eq. �40� can serve just as well to
efine an extension of the map ��*�−1, i.e., we have

f ,��*�−1̂F�L2 � �−1f ,F�H+, f � �, F � �+
* . �41�

or any function F��*L2�R+��H+�R���+
* we have �f , ��*�−1̂F�L2 = �f , ��*�−1F�L2�R+� and ��*�−1̂F

s then identified with a function in L2�R+� by the procedure for the construction of ��*�−1 de-
cribed above. Here F��*L2�R+� is a function in H2�C \R+�. However, the map ��*�−1̂, defined on

+
*, is certainly well defined for the whole Hardy space H+�R� and, in particular, it is well defined

n the distributional sense for any resonance state x��Rs�H+�R�. Indeed, a resonance in the
ohm-Gadella theory has the form ��*�−1̂x� for some x��Rs. Moreover, since the elements of Rs

2 + * * 2 +
annot be analytically continued into functions in H �C \R �, they belong to �+ \� L �R �.
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. CONCLUSIONS

A way of utilizing Lax-Phillips-type semigroups for the description of the time evolution of
uantum mechanical resonances was suggested in Ref. 10. The present paper addresses the main
ifficulty with the framework introduced in Ref. 10 and described in Sec. II above, i.e., the
ssumption that the S-matrix is the boundary value on R+ of a function in H����. Such a require-
ent is not satisfied by large classes of quantum mechanical scattering problems. It is shown in
ec. III above that this condition can be weakened to the assumption that the given S-matrix is
nalytic in a region � as in Fig. 1. In addition, it is shown in Sec. IV that, if we regard a resonance
s a quantum object and we look for a Hilbert space state describing it, our expectation that no
uch state can be found in the Hilbert space H for the scattering problem is valid. In fact a
esonance, identified as an eigenvector of the Lax-Phillips-type semigroup responsible for the
xponential decay of the second term on the rhs of the semigroup decomposition in Eq. �30�, exists
s an element of the Hilbert space H+�R�, but cannot be associated with any element in Hac in the

ense that it is outside of the range of the nesting map �̂+. This implies that the background term,
.e., the first term on the rhs of Eq. �30�, exists for any choice of the vectors g , f �Hac and is never
ero. However, the formalism developed above does provide a clear identification of a well-
efined approximate resonance state ���Hac associated with the resonance contribution to the
ime evolution �i.e., the semigroup term�.
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A notion of effective gauge fields which does not involve a background metric is
introduced. The role of scale is played by cellular decompositions of the base
manifold. Once a cellular decomposition is chosen, the corresponding space of
effective gauge fields is the space of flat connections with singularities on

its codimension two skeleton, AC-flat / ḠM,��ĀM / ḠM,�. If cellular decomposition
C2 is finer than cellular decomposition C1, there is a coarse graining

map �C2→C1
:AC2-flat / ḠM,�→AC1-flat / ḠM,�. We prove that the triple

�AC2-flat / ḠM,� ,�C2→C1
,AC1-flat / ḠM,�� is a principal fiber bundle with a preferred

global section given by the natural inclusion map iC1→C2
:AC1-flat / ḠM,�

→AC2-flat / ḠM,�. Since the spaces AC-flat / ḠM,� are partially ordered �by inclusion�
and this order is directed in the direction of refinement, we can define a continuum

limit, C→M. We prove that, in an appropriate sense, limC→M AC-flat / ḠM,�

=ĀM / ḠM,�. We also define a construction of measures in ĀM / ḠM,� as the con-
tinuum limit �not a projective limit� of effective measures. © 2005 American In-
stitute of Physics. �DOI: 10.1063/1.2037527�

. MOTIVATION

The Wilsonian renormalization group is fundamental in standard constructions of quantum
eld theories. The notions of effective theories at given scales, coarse graining and the ultraviolet/
ontinuum limit are essential for that scheme.

There are important physical systems for which there is no natural concept of scale which can
e used to describe an effective theory as needed by standard renormalization group ideas. Any
ystem that includes gravitational phenomena is in this category of systems because a scale is
efined through a metric which in these cases is a dynamical variable. Thus, a definition of
ffective theories and coarse graining calls for an “extension of the concept of scale.”

It is of course possible to introduce a fiducial metric and use its induced notion of scale to
efine effective theories and coarse graining. In fact this alternative has been developed in recent
ears.1

We will study a proposal of effective theories and coarse graining for gauge theories which
mulates structures from lattice gauge theory to situations that are free of a background metric. In
tandard lattice gauge theory one works with a family of effective theories �labeled by increasingly
ner lattices� describing the same system. The key ingredient that fine-tunes all these theories with
bservation and with each other is a renormalization procedure.

General relativity can be formulated as a gauge theory, but if one wishes to represent the
iffeomorphism symmetry it is impossible to use a single embedded lattice to host the theory. A

�Electronic mail: yorch@matmor.unam.mx
�Electronic mail: claudio@matmor.unam.mx
�
Electronic mail: zapata@math.unam.mx
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olution to this problem is given by the kinematics of loop quantization “which is a lattice gauge
heory for a lattice that is infinitely refined” �for a precise statement see Ref. 2�. Since there was
single lattice—even if infinitely refined—there was no sequence of effective theories that let one

mplement Wilson’s renormalization group and that in a continuum limit selected a dynamics for
he loop quantized theory.

A goal of our research program2 is to provide a family of effective theories connected to each
ther by coarse graining maps that average away fluctuations and whose infinite refinement limit
akes us to a loop quantized theory. The dynamics of the continuum limit will be defined only after
ne-tuning all the effective theories by a renormalization procedure. The proposal is simple and
atural in the context of loop quantization. However, there is no claim of uniqueness; we know
ther families of effective theories with similar structure. Physical applications are still being
eveloped. The most illustrative result at the moment is that when the same ideas are applied to
he Ising model one recovers the standard renormalization by blocking. In addition, an extension
o irregular lattices of the the blocking and bond-moving procedure of Migdal and Kadanoff is
atural in our framework.3

A regularization procedure is included in our framework because the configuration spaces of

he effective theories lie inside the space of generalized connections, A“scale”�ĀM. Thus any
bservable in the continuum �cylindrical function� is automatically regularized to an observable of
he effective theory. This same feature lets us define the continuum limit of the effective theories.
or example, the vacuum expectation value of a cylindrical function in the continuum �f�M is
efined as the continuum limit of the vacuum expectation value of the same function evaluated in
he effective theory defined at a given “scale,” “�f�M =lim“scale”→0��f �A“scale”

�“scale”.” Our structure
hould be compared with others using the restriction of the space of connections to a fixed graph
embedded lattice� A� as the home for an effective theory. In that case one would have to provide

separate regularization of observables from ĀM to act on each of the spaces A� contained in the
equence used to define the continuum limit. Moreover, this family of regularization procedures
ould have to satisfy compatibility conditions to define a continuum theory.

The specific goal of this paper is to present a geometrical study of a family of configuration
paces of effective theories and of the coarse graining maps that relate them to each other and to
he space of generalized connections of loop quantization. The aim is to provide a solid ground for
mplementing a Wilsonian renormalization in a framework that is independent of a background

etric. Eventually, this will serve to define the dynamics �physical measure� of loop quantized
heories as the continuum limit of the dynamics of our effective theories.

This paper has the following organization. The next section introduces C-flat connections as
ffective gauge fields. It also studies the geometry of a C-flat connection and of the space of C-flat
onnections, as well defines the continuum limit C→M. Section III defines coarse graining maps,
tudies the resulting geometry, and writes an “exact renormalization prescription” that links dif-
erent effective measures. Section IV is about the action of diffeomorphisms on the spaces of
-flat connections; it also defines a space of diffeomorphism invariant effective configurations.
inally, the Appendix contains detailed definitions of some preliminary material.

I. A MODEL OF EFFECTIVE GAUGE FIELDS

The access to only finitely many measurement devices implies that only partial knowledge of
he system is available. In order to have a presumed state of the system in the continuum for each
et of measurements, one complements this partial knowledge with regularity assumptions. A set
f measuring devices and complementary regularity assumptions “turn on” some degrees of free-
om at a given “measuring scale.” This intuitive idea of “measuring scale” is behind all our
efinitions.

In this paper, the role of scale is played by cellular decompositions of the base manifold. Once
cellular decomposition is chosen, there are regularity assumptions tailored to it. The idea is that

nside each cell of the cellular decomposition the connection will be as regular as possible.

ronically these regularity assumptions take us to distributional configurations, configurations that
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re not smooth connections but generalized connections. The particular kind of generalized con-
ections �see the Appendix for a definition� that we work with are flat everywhere except for the
odimension two cells of the cellular decomposition. The available observables at this “measuring
cale” are holonomies along the links of a lattice constructed from the cellular decomposition.

Definition 1 (C-flat connections): A generalized connection is considered to be C-flat, A

AC-flat�ĀM, if and only if its restriction to each cell of C is flat.
Notice first that the cells of a cellular decomposition are disjoint, c��c�=� if ���. Thus,

here are many nonflat connections which are C-flat.
Also notice that in the context of generalized connections the concept of flatness is phrased in

erms of the path independence of parallel transport. With this in mind our definition may be clear
s it stands, but the following characterization in terms of the holonomy maps induced by C-flat
onnections is most useful in the rest of the paper.

The presence of a cellular decomposition C induces a natural equivalence relation among
irected paths. Two oriented paths �1 ,�2 are defined to be C-equivalent, �1�C�2, if the two
equences of cells �of any dimension� induced by traversing the curves coincide.

Lemma 1: AC-flat / ḠM,� can be characterized as the subset of generalized connections modulo

auge transformations, ĀM / ḠM,�, whose elements are those and only those which satisfy

�A���1� = �A���2�

or any two closed oriented paths based at ��M which are C-equivalent,

�1�C�2.

he proof of this lemma is a simple application of the reconstruction theorems4 to our context.
In the rest of this section we will talk about three different subjects in the corresponding

ections. In the first section we will describe the geometry of single flat connections; in the second
e will elaborate on the space AC-flat, and in the third we will present configuration spaces that are

elevant for the continuum limit in our framework.

. Geometry of a C-flat connection

A good starting point for studying the geometry of C-flat connections is the previous lemma;
y using it, it is easy to see that the “regularity” assumptions yield generalized connections that
ay not even be continuous. Consider, for example, a smooth deformation of a given closed

urve. According to our lemma, once a C-flat connection is chosen, the holonomy of the curve
ould be independent of the deformation unless its C-equivalence class changes. At that point of

he deformation process the holonomy may experience a drastic change.

Moreover, since ḠM,��AC-flat�=AC-flat and ḠM,� includes discontinuous gauge transformations,
e see that even the gauge equivalence class of an everywhere flat connection has representatives
hich are not continuous.

However, the distributional nature of our connections modulo gauge is of a very tame type.
ssentially they are the familiar spaces of flat connections with “conical” singularities along the
odimension two skeleton of C. To see that this is the case consider a small loop contained in a
ingle cell of maximum dimension and deform it continuously until it crosses one codimension
ne cell. The holonomy along the loop before the deformation was the identity and after the
eformation it is still the identity because the loop is C-equivalent to another loop constructed as
=c−1 �c �where c is an open curve starting in one maximal dimension cell, crossing a codimension
ne cell, and ending at another maximal dimension cell�. Then the codimension one cells cannot
ost curvature singularities. However, drastic changes in the holonomy during continuous defor-
ations may result from crossing �or hitting� cells of codimension greater or equal to two. �In our

ramework also the holonomies along curves that pass through singularities are defined. In some
ontexts these nongeneric curves may be regarded as not important.� This observation is formally

4
tated as a direct corollary of Lemma 1 and the reconstruction theorems.
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Corollary 1: For any �A��AC-flat / ḠM,� there is a unique (up to fiber bundle equivalence)
mooth bundle � over M −C�n−2� and a representative A� �A� such that

�A�M−C�n−2� � AM−C�n−2�,�
� .

oreover, in this domain its curvature is defined and vanishes.
One can expect that the topological charges that characterize the topology and geometry of

uch singularities will play an important role when investigating the dynamical properties of
ertain types of fields. Within our framework it would be natural to choose stronger regularity
ssumptions to make the space of effective configurations at scale C the space of C-flat connec-
ions with a restricted type of topological charges at the singularities.

. Geometry of the space of C-flat connections

The space AC-flat is infinite dimensional, but we can expect AC-flat / ḠM,� to be finite dimen-
ional because flat connections modulo gauge do not have any local degrees of freedom. We will
how that this is indeed the case by conveniently characterizing gauge equivalence classes of
-flat connections in terms of lattice gauge theory connections.

The starting point is again Lemma 1. Observe that the lattice dual to C contains representa-
ives of the C-equivalence classes of “most” curves, but not all. Hence the space of connections on

lattice dual to C has almost all the holonomy information in AC-flat / ḠM,�, but some is missing.
hen we complete the dual lattice to include curves C-equivalent to curves passing through cells
f codimension bigger than one; call the resulting lattice L�C�. By definition oriented paths in
�C� label C-equivalence classes of oriented paths in M. In the case of simplicial cellular decom-
ositions L�C� is the one skeleton of their barycentric subdivision, L�C�=Sd�C��1� �see the Ap-
endix for a definition�. In Fig. 1 we present another simple example.

An embedding EmbL�C� :L�C�→M can be used to define a fiber bundle with �one-
imensional� base L�C� starting from the fiber bundle �E ,� ,M�. The total space would be
−1�EmbL�C��L�C���, and projection ���EmbL�C��L�C��. Apart from pulling back the bundle, EmbL�C�

ulls back connections from ĀM to the space of connections on the bundle, EmbL�C�
� :ĀM

AL�C�.
Clearly not all embeddings are of our interest. To maintain the meaning of directed paths in

�C� as representatives of C-equivalence classes of directed paths in M we restrict ourselves to
epresentative embeddings. These are embeddings EmbL�C� :L�C�→M such that the inverse image
f any oriented path � in M is a path in L�C� which labels the C-equivalence class of �.

We denote the group of �-based oriented loops on M by PM,�; we also denote the induced
roup of C-equivalent classes of loops by PC,� and by PL�C�,b�EmbL�C��b�=�� the analogous object

FIG. 1. Construction of L�C�.
n L�C�.
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Note that for any representative embedding

EmbL�C�:PL�C�,b → PC,�

s an isomorphism independent of the choice of representative embedding �with EmbL�C��b�=��.
hus we also have the natural isomorphism

EmbL�C�
� :Hom�PC,�,G� → Hom�PL�C�,b,G� ,

here Hom�PC,� ,G� is naturally embedded in Hom�PM,� ,G�.
Using the reconstruction theorems4 this can be stated in a more familiar language as follows:

here is a natural isomorphism

EmbL�C�
� :AC-flat/ḠM,� → AL�C�/GL�C�,b

hich is independent of the choice of representative embedding EmbL�C� :L�C�→M �with
mbL�C��b�=��.

It is important to remark that simplicity appears only at the gauge invariant level; for example,
ince the space AC-flat is infinite dimensional it is not isomorphic to a lattice gauge theory con-
guration space. Working on infinite dimensional quotient spaces is difficult, but we know that the
omplications must be inessential. This motivates us to study the same spaces in a partially gauge
xed context. It can be thought of as a strengthening of our previous regularity assumptions with
xtra gauge fixing conditions.

Once a local trivialization is chosen, we can assign group elements to holonomy mappings of
pen paths. Using this fact, a partially gauge fixed version of the space of C-flat connections is
asily characterized as follows: we say that A�AC-flat,A0

if and only if the generalized connection

�ĀM is such that the holonomies along any �possibly open� oriented paths are equal, A��1�
A��2��G, whenever �1�C�2. The space AC-flat,A0

depends on the local trivialization. It is more
onvenient to say that it depends on an auxiliary flat connection A0 �the one induced by the local
rivialization�. Using this notation it is clear that generic gauge transformations do not leave it
nvariant, but g�AC-flat,A0

�=AC-flat,g�A0�. The gauge transformations that do leave it invariant form a

nite dimensional subgroup of the group of gauge transformations denoted by GC,A0,�� ḠM,�. We
an also define this space of residual gauge transformations in terms of the local trivialization as
omposed by gauge transformations such that g�p�=g�q��G whenever p and q are in the same
ell.

It is clear that, after the partial gauge fixing PA0
:AL�C�→AL�C�,A0

, these spaces of connections
an be parametrized by the assignment of group elements to C-equivalence classes of paths, or
ore conveniently to paths in L�C�. Then the local trivialization induces isomorphisms AL�C�,A0
GN1 and GL�C�,A0

�GN0−1 where N1 and N0 are, respectively, the number of edges and vertices in
�C�. In this way a local trivialization sets AC-flat /GM,� in correspondence with GN1 /GN0−1, where
N0−1 acts by the relevant adjoint action as in the gauge transformations of lattice gauge theory.

We remark that in principle our parametrizations of AC-flat,A0
and GC,A0,� hold only inside the

pen set U where A0 is defined. We can choose an open cover of M in which each open set is a
nion of cells in C, and proceed as above for each open set. Then we paste all the local param-
trizations with the aid of some transition functions. This strategy leads to definitions of partial
auge fixing of AC-flat and GC,� that hold in all of M. For any choice of transition functions we
ave a true partial gauge fixing; in the sense that the resulting space contains elements of all the
auge equivalence classes. Thus all the choices of transition functions are equivalent. This radical

ifference with the theory of smooth bundles is due to working with ḠM,�. Since this fact makes
ll the topological considerations almost trivial we will not be concerned about them in the rest of
his paper.

Let us summarize the results stated above in the form of a lemma.

Lemma 2: The following spaces are naturally isomorphic:
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AC-flat

ḠM,�

�
AC-flat,A0

GC,A0,�
and

AL�C�

GL�C�,b
�

AL�C�,A0

GL�C�,A0,b
.

dditionally

EmbL�C�
� :

AC-flat

ḠM,�

→
AL�C�

GL�C�,b
and EmbL�C�

� :AC-flat,A0
→ AL�C�,A0

re natural isomorphisms which are independent of the choice of representative embedding
mbL�C� :L�C�→M �with EmbL�C��b�=��.

Thus,

AC-flat/ḠM,� � GN1�L�C��/GN0�L�C��−1.

ur intuition about the lack of local degrees of freedom in C-flat connections is realized in the
orm of an identification between the space of C-flat connections modulo gauge transformations
nd a finite dimensional quotient space.

Within the partially gauge fixed construction both gauge invariance and diffeomorphism in-
ariance are broken by the regularity assumptions. However, note that the original construction
oes not break gauge invariance, but still breaks diffeomorphism invariance. In a separate presen-
ation we will construct an “extended” space of effective configurations which admits a nontrivial
ction of the diffeomorphism group, and that after a partial gauge fixation yields our space AC-flat.

5

. Configuration spaces relevant for the continuum limit

A most important element in renormalization is the change to a coarser or finer scale, and a
imit in which the scale is the smallest possible �the continuum limit�. Thus, in any extended
otion of scale used to formulate effective theories there must be a relation that lets us know if a
easuring “scale” is finer than another one, and the limit of the smallest “scale” must make sense.

Recall that the set of cellular decompositions of a manifold admits a partial order relation that
ells us if a cellular decomposition C2 is finer than cellular decomposition C1�C1�C2�, and that
his partial order is directed in the direction of refinement towards “the finest cellular decompo-
ition” �C→M�. �We remark that the directionality of the set of cellular decompositions holds in
he piecewise linear and piecewise analytic categories, but not in the smooth category.� This partial
rder is preserved by our assignment of effective theories to cellular decompositions in the sense

f “being contained in” as subsets of ĀM or subsets of ĀM / ḠM,�. �Later on we will use the

otation iC :AC-flat→ĀM and iC :AC1-flat / ḠM,�→ĀM / ḠM,� for the inclusion maps.�
Lemma 3: Our assignment of effective gauge fields to cellular decompositions respects the

artial order relation. Namely, C1�C2 implies

AC1-flat � AC2-flat, AC1-flat,A0
� AC2-flat,A0

,

AC1-flat/ḠM,� � AC2-flat/ḠM,�,

nd iC1→C2
will denote all the respective refining maps.

�The injective map EmbL�C2�
� � iC1→C2

� �EmbL�C1�
� �AC1-flat,A0

�−1 :AL�C1�,A0
→AL�C2�,A0

, which is
ot really an inclusion, will also be denoted by iC1→C2

. Similarly, at the partially gauge fixed level
e will use the same notation for the maps induced by the refining. The ambiguity should be

esolved by the context.�
Now let us introduce some configuration spaces that will be the kinematical basis of the

ontinuum limit. First we present the space of connections that are eventually C-flat �given the
irected partial order of the cellular decompositions�. This space can also be seen as the space of

onnections that are C-flat according to some cellular decomposition.
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Definition 2:

ÃM = �CAC-flat.

here are smaller configuration spaces labeled by a given triangulation 	 of M that are also
elevant for the continuum limit. These are constructed iterating the refining operation called
arycentric subdivision �see the Appendix�.

Definition 3:

ÃM,	 = �nASdn�	�-flat.

e will see in the next section that ÃM,	 can also be constructed as a projective limit, while ÃM

annot.
The interesting property is that while each AC-flat captures very little of the information stored

n ĀM, both ÃM and ÃM,	 can be used to approximate any generalized connection arbitrarily well.
Theorem 1:

lim
C→M

AC-flat = lim
n→�

ASdn�	�-flat = ĀM

n the sense that the subset of generalized connections composed by elements that are eventually

n AC-flat �ASdn�	�-flat� is ÃM �ÃM,	� which is dense in ĀM.
Proof: While the restriction of two distinct cylindrical functions f ,g�Cyl�AM� to some

C-flat may agree, it is a clear fact that if �f �ÃM,	
= �g�ÃM,	

then f =g. In particular, if �f �ÃM,	
=0 then

f is the zero of the algebra Cyl�AM�.
Now suppose that ÃM is not dense in ĀM. Then there is A�ĀM and a whole neighborhood of

t NA such that NA�ĀM −ÃM. Thus, there is a nonzero continuous function f �Cyl�AM� such that
�f �ĀM−NA

=0. In particular our assumption implies that there is a f �Cyl�AM� which �f �ÃM
=0

hile it is not the zero of Cyl�AM�. The contradiction implies that ÃM is indeed dense in ĀM.�

Although ÃM and its subset ÃM,	 are both dense inside ĀM, in the measure theoretical sense

hey are both small subsets of ĀM. The formal statement at the gauge invariant level is the
ollowing.

Theorem 2: As subsets of the space ĀM / ḠM,� equipped with the measure 
AL, ÃM,	 / ḠM,� and
˜

M / ḠM,� are thin sets.
Proof: The proof is a simple adaptation of a theorem by Mourao, Thiemann, and Velhinho on

he support of the Ashtekar-Lewandowski measure6 �Theorem I.212�.
We will construct a map

hs:ĀM/ḠM,� → G�0,1�

hat will let us study “a piece of ĀM.” To make this possible we consider G�0,1� equipped with a
ifferent topology and measure theoretical structure than the usual ones. For the moment consider
�0,1� as a set; its structure will be defined below to be compatible with the structure of ĀM

hrough the map hs.
Consider a one parameter family of loops based at ��M, s�t��P�, t� �0,1�, such that

�0�=id� and s�1� is a holonomicaly nontrivial loop. Generalized connections assign group ele-
ents to loops, A�s�t���G. The latter can be seen as a function from �0, 1� to G, or equivalently

n element of G�0,1�. Thus, a one parameter family of loops s�t� induces a map from ĀM to G�0,1�.

his is our map hs :ĀM →G�0,1�.
Given a choice of finitely many points ti� �0,1� consider it as an assignment from G�0,1� to

ome Gn. Thus continuous functions from f :Gn→C induce cylindrical functions f 	ti

:G�0,1�→C.

s ¯ �0,1�
learly the pull back of these functions by h are cylindrical functions of AM. We endow G
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ith the weakest topology that makes cylindrical functions continuous and also consider these
ylinder functions the basis of its measure theoretical structure. Additionally, the push forward of
he Ashtekar-Lewandowski measure is the natural homogeneous measure on G�0,1� endowed with
his structure.

Consider the subset D�G�0,1� defined by those functions h : �0,1�→G that are nowhere con-
inuous according to the usual topologies of �0, 1� and G.

Thiemann proves that G�0,1�−D is contained in a measure zero set of G�0,1� with respect to the
omogeneous measure.6

Our result follows from the fact that hs�ÃM,	 / ḠM,���G�0,1�−D and hs�ÃM / ḠM,���G�0,1�

D. �

Given that our spaces of effective configurations are nested in the sense of Lemma 3, each

C-flat can be used to regularize �approximate� any cylindrical function from the continuum or
rom a finer cellular decomposition. This regularization is naturally performed by the pull back of

he inclusion maps iC :AC1-flat / ḠM,�→ĀM / ḠM,� or iC1→C2
:AC1-flat / ḠM,�→AC2-flat / ḠM,�.

Now we will define measures in ĀM as the continuum limit of effective measures.
Definition 4 (continuum limit of effective theories): Consider a collection of measures 	
C
 �or


n
�, one measure in each of the spaces of effective configurations 	AC-flat
 �or 	ASdn�	�-flat
�.
When the measures converge, the continuum limit measure 
M, will be a measure in ĀM

efined by its action on cylindrical functions as follows:


M�f� � lim
C→M


C�iC
� f�

r


M�f� � lim
n→�


n�iC
� f�

or any cylindrical function f �Cyl�AM�.
Clearly the continuum limit of effective measures as C→M is a much stronger condition than

he limit using a sequence of refinements of a given triangulation. The limit C→M needs that an
ffective measure be defined for any C and that different refinement sequences of effective mea-
ures have the same limit. If our objective is to define measures in the continuum, we should use
he limit n→� because it is more economical, but the limit C→M has the advantage of being

anifestly independent of any choice of “discretization” �refining sequence�.
The measures in finer and coarser effective theories should be related if they describe the same

hysical system. In Sec. III C we will show how a finer measure is coarse grained to produce a
easure for a coarser effective theory. If in a given refining sequence the measures at coarser

cales are constructed by coarse graining finer measures, we say that the measures are projectively
ompatible. In all these cases the limit n→� of our previous definition exists, but it is trivial in the
ense that starting from a high enough n0 for any n�n0
n�iC

� f� is independent of n. The known
xamples of measures that can be constructed in this way include the Ashtekar-Lewandowski
easure �the homogeneous measure� and distributional measures peaked on flat connections.

Our objective is to emulate the lattice gauge theory procedure to find a theory in the con-
inuum, which is much more powerful. There are many examples of collections 	
n
 which are not
rojectively compatible, but as n increases they become more and more compatible in the sense of
he definition given above. It is easy to exhibit examples of nontrivial convergence for sigma

odels, and one can also construct them for gauge fields.
When the continuum limit exist, the measure 
M can be coarse grained to define measures in

ll the spaces ASdn�	�-flat. Clearly this sequence of measures will be projectively compatible. These
easures should be considered as “completely renormalized.” In general they differ from the

riginal effective measure used to construct the continuum limit measure, but in the sense of the
imit defined above they differ less and less as we approach the continuum limit.
In a restricted version of our framework where we consider only regular cellular decomposi-
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ions we can simply declare that the effective measures are the ones used in lattice gauge theory
by a renormalization group procedure�. From this point of view there is a whole body of evidence
upporting the existence of nontrivial physically interesting measures. A more detailed study of the
elation between our framework and standard lattice gauge theory is needed.

The question arises of which measures on ĀM can be constructed as a continuum limit. This
uestion and many others are outside of the scope of this paper. A detailed measure theoretical
tudy of this continuum limit is certainly needed.

II. COARSE GRAINING AND FIBER BUNDLE STRUCTURE

Consider a situation in which we have two effective theories, one of which is based on finer
nowledge of the system. The coarser and the finer effective theories should be related by a
enormalization procedure which adjusts the coupling constants to account for the bulk effect of
veraging out the degrees of freedom of the finer theory which are considered as fluctuations over
he degrees of freedom relevant for the coarser theory.

In the preceding section we defined spaces of effective connections. The space of connections
elated to a finer theory contains that of a coarser theory. Physically this will let us treat the
egrees of freedom used to describe coarser configurations as background degrees of freedom.

In this section we define a coarse graining procedure based on a choice of fibration which
rganizes the remaining degrees of freedom of the finer theory as fluctuations over each of the
oarser �background� configurations. This fibration and Fubini’s theorem tell us how to integrate
ut the fluctuations; a measure for the coarser theory is induced by coarse graining the measure for
he finer theory.

Definition 5 (coarse graining maps): A natural coarse graining in our setting is induced by a
hoice of representative embedding EmbL�C� :L�C�→M,

�C � ��EmbL�C�
� �AC-flat/ḠM,�

�−1 � EmbL�C�
� :ĀM/ḠM,� → AC-flat/ḠM,�,

here EmbL�C�
� :AC-flat / ḠM,�→AL�C� /GL�C�,b is an isomorphism,

�C � ��EmbL�C�
� �AC-flat,A0

�−1 � PA0
� EmbL�C�

� :ĀM → AC-flat,A0
,

here PA0
:AL�C�→AL�C�,A0

is the partial gauge fixing and EmbL�C�
� :AC-flat,A0

→AL�C�,A0
is an

somorphism. Given C1�C2,

�C2→C1
� ��C1

�AC2-flat/ḠM,�
:AC2-flat/ḠM,� → AC1-flat/ḠM,�,

�C2→C1
� ��C1

�AC2-flat,A0
:AC2-flat,A0

→ AC1-flat,A0
.

When working on the spaces AL�Ci�
the relevant coarse graining map is �C2→C1

=Emb1,2
� , where

mb1,2 :L�C1�→L�C2� represents a C2-equivalence class of representative embeddings EmbL�C1�.
ote that this map is not a projection. The ambiguity in our notation should be resolved by the

ontext.�
In the rest of this section we will treat three different subjects in corresponding sections. In the

rst section we will give a minimal example of our spaces of effective configurations and coarse
raining maps; in addition we use the example to motivate the general result of the following
ection. In the second section we present a theorem describing the fiber bundle structure induced
y our coarse graining maps. In the final section we then study the effect of coarse graining on
easures; in particular we treat the issue of renormalization prescriptions, conditions that relate
he measures on different effective theories “asking them to describe the same physical system.”
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. A minimal example

Here we present a minimal example and use it to begin our exploration of the general prop-
rties of the coarse graining map. For concreteness we present it at the partially gauge fixed level.

Consider a closed disc �a two-dimensional closed ball� with the cellular decompositions C1,

2 described in Fig. 2. These cellular decompositions induce the auxiliary lattices L�C1�, L�C2�
lso depicted in the figure. In the parametrizations described in the preceding section we can write

A � AL�C1�,A0
as A = �g1,g2,g3,g4� � G4,

g � GL�C1�,A0
as g = �ga,gb,gc� � G3,

A� � AL�C2�,A0
as A� = �g1�,g2�,g3�,g4�,g5�,g6�,g7�,g8�� � G8,

nd

g� � GL�C2�,A0
as g� = �ga�,gb�,gc�,gd�,ge�� � G5.

e will also use the subgroup of gauge transformations that are the identity at a vertex, our
otation will be

g � GL�C1�,A0,b as g = �ga,gc� � G2

nd

g� � GL�C2�,A0,b as g� = �ga�,gc�,gd�,ge�� � G4.

FIG. 2. Two cellular decompositions of the disc, C1�C2.
he corresponding connections modulo gauge can be written as
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�A� � AL�C1�,A0
/GL�C1�,A0,b as A = �gl1,gl2� � G2

nd

�A�� � AL�C2�,A0
/GL�C2�,A0,b as �A�� = �gl�1

� ,gl�2
� ,gl�3

� ,gl�4
� � � G4,

here l1=2−1 �3−1 �1 and l2=1−1 �4 �2 are loops in L�C1� based at b, and l�1=2−1 �5−1 �1, l�2
3−1 �6 �2, l�3=4−1 �7−1 �3 and l�4=1−1 �8 �4 are loops in L�C2� based at b.

The maps induced by refining �the inclusion of C-flat connections� on connections

C1→C2
:AL�C1�,A0

→AL�C2�,A0
and gauge transformations iC1→C2

:GL�C1�,A0
→GL�C2�,A0

are

iC1→C2
�A� = �g1,g2,g2,g2,g3,id,id,g4� ,

iC1→C2
�g� = �ga,gb,gc,gc,gc� .

n addition, the three different coarse graining maps depending on the choice of embedding
mb1,2 :L�C1�→L�C2� are

�1�A�� = �g1�,g2�,g5�,g8��g7��
−1g6�� ,

�1�g�� = �ga�,gb�,gd�� ,

�2�A�� = �g1�,g3�,g5��g6��
−1,g8��g7��

−1� ,

�2�g�� = �ga�,gb�,gc�� ,

�3�A�� = �g1�,g4�,g5��g6��
−1g7�,g8�� ,

�3�g�� = �ga�,gb�,ge�� .

t is easy to verify that the maps iC1→C2
and �i descend to the quotient by gauge transformations

ince iC1→C2
�g�A��= iC1→C2

�g��iC1→C2
�A�� and �i�g��A���=�i�g����i�A���.

We will work out the example using the projection �1. The other projections �i yield the same
tructures. Our study will show that in this example �AL�C2�,A0

,�1 ,AL�C1�,A0
� and

AL�C2�,A0
/GL�C2�,A0,b ,�1 ,AL�C1�,A0

/GL�C2�,A0,b� are principal fiber bundles with structure group G4

nd G2, respectively. In addition, they have a preferred global section induced by the refining maps
inclusion of C-flat connections�.

On the other hand, �AL�C2�,A0
/GL�C2�,A0

,�1 ,AL�C1�,A0
/GL�C2�,A0

� has the structure of a bundle
here neither the total space nor the base are manifolds and where most fibers are homeomorphic

o G2, the only exceptions being the fibers over nongeneric connections modulo gauge, which are
ot typical. For example, the fiber over the flat connection is the quotient space generated by two
opies of the gauge group modulo the adjoint action, G2 /Ad G. We will not study this space
irectly; the most illuminating fact about it is that it is the quotient of the principal fiber bundle,
AL�C2�,A0

/GL�C2�,A0,b ,�1 ,AL�C1�,A0
/AL�C2�,A0,b� by G, that is a finite-dimensional Lie group.

Now we start with the study of the typical fiber of

�AL�C2�,A0
,�1,AL�C1�,A0

� .

iven any A0= �g1
� ,g2

� ,g3
� ,g4

� ��AL�C1�,A0
the fiber over it can be parametrized as

�1
−1�A0� = 	�g1

� ,g2
� ,g3,g4,g3

� ,g7�g8�−1g4
� ,g7,g8�
 .

4
Then all the fibers of �AL�C2�,A0
,�1 ,AL�C1�,A0

� are homeomorphic to G .
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A bit of graphical thinking will let us understand this example and generalize the result. At the
ongauge invariant level G4 appears because we have eight unknowns �the number of edges in
�C2�� and four restrictions �the number of edges in L�C1��. Once we have found one solution to

he conditions, we can generate more solutions in two ways, �i� modifying only holonomies along
dges in the graph L�C2�−Emb1,2�L�C1��, �ii� modifying holonomies along edges of L�C2� cov-
red by Emb1,2�L�C1�� without modifying the induced holonomies in the edges of L�C1�.

In our example �i� corresponds to modifying the components of A� assigned to edges 3,4 of
�C2�. Whereas �ii� must be achieved by modifications that involve the components of A� assigned

o edges 6,7,8 of L�C2� without modifying the holonomy along the image by Emb1,2 of edge 4 of
�C1�. Of course, these modifications can be of the form of “gauge transformations” acting on
ertices c, e of L�C2�. Moreover, these transformations of the “gauge transformation” style to-
ether with type �i� transformations generate all the possible modifications of solutions to the
estrictions.

Then, consider the following G2�G2 left action on AL�C2�,A0
,

F3,4;c,e
�g1

� , . . . ,g8
� � = �g1

� ,g2
� ,cg3

� 3
−1,eg4

� 4
−1,g5

� ,cg6
� ,cg7

� e
−1,g8

� e
−1� .

n our notation type �i� transformations are parametrized by �3 ,4��G2 and type �ii� transfor-
ations are parametrized by �c ,e��G2.

Our argument in the preceding paragraph implies that the map F preserves fibers, �1�A0��
�1�F�A0���. Furthermore, it gives a bijection between each fiber and G4. Then
AL�C2�,A0

,�1 ,AL�C2�,A0
� is a G4 principal fiber bundle.

Now we would like to describe the typical fiber of

�AL�C2�,A0
/GL�C2�,A0,b,�1,AL�C1�,A0

/GL�C1�,A0,b�;

he procedure will follow our previous analysis closely. Given any �A0�= �gl1
� ,gl2

� �
AL�C1�,A0

/GL�C1�,A0,b the fiber over it can be parametrized as

�1
−1��A0�� = 	�gl1

� ,gl�2
� ,gl�3

� ,g2
� g�l�3

−1 g�l�2
−1 �
 .

hen all the fibers of �AL�C2�,A0
/GL�C2�,A0,b ,�1 ,AL�C1�,A0

/GL�C1�,A0,b� are homeomorphic to G2.
Consider the following G2 left action on AL�C2�,A0

/GL�C2�,A0,b:

F̃1,2
�gl�1

� ,gl�2
� ,gl�3

� ,gl�4
� � �1�

=�gl�1
� ,1gl�2

� ,2gl�3
� 1

−1,gl�4
� 2

−1� .

ote that it is the action induced by F at the gauge invariant level.

Clearly the map F̃ preserves fibers, �1��A0���=�1�F̃��A0����. Furthermore, it gives a bijection
etween each fiber and G2. Then �AL�C2�,A0

/GL�C2�,A0,b ,�1 ,AL�C1�,A0
/GL�C1�,A0,b� is a G2 principal

ber bundle.

. Fiber bundle structure

Theorem 3: Given a cellular decomposition and a refinement of it, C1�C2, the triples
AC2-flat /GC2,� ,�C2→C1

,AC1-flat /GC1,�� and �AC2-flat,A0
,�C2→C1

,AC1-flat,A0
� are principal fiber

undles with a preferred global section induced by the refining maps (inclusion of C-flat connec-
ions).

Proof: The proof of the general case is entirely analogous to our treatment of the example.
ere we present it only at the gauge invariant level.

N1�L�C2��−�N0�L�C2��−1�
AC2-flat /GC2,�—or equivalently, AL�C2� /GL�C2�,b—is parametrized by G .

                                                                                                            



G
−

t
t

G

r
v
a

l

H

i

a

C

m
c
c
c
i

T

=

m
m

m
l

a
=

102301-13 Effective connections and coarse graining J. Math. Phys. 46, 102301 �2005�

                        
Once the base space point is fixed in the parametrization of AC1-flat /GC1,� as
N1�L�C1��−�N0�L�C1��−1�, the locus of the fiber over it is found by solving N1�L�C1��− �N0�L�C1��
1� conditions on the variables GN1�L�C2��−�N0�L�C2��−1�.

When a solution has been found for these equations, one can find all the other solutions

hrough a G�N1�L�C2��−�N0�L�C2��−1��−�N1�L�C1��−�N0�L�C1��−1�� action, F̃, of the “gauge transformation
ype” �1�.

Clearly the map F̃ preserves fibers and gives a bijection between each fiber and
�N1�L�C2��−�N0�L�C2��−1��−�N1�L�C1��−�N0�L�C1��−1��. �

Since the C-effective theory is isomorphic to a lattice gauge theory, it is clear that configu-
ation observables correspond to holonomies and momentum observables correspond to left in-
ariant vector fields. The set of these observables is an algebra under a Poisson bracket product
nd is called the holonomy flux algebra, H-F�C�.

The pull back of the coarse graining map takes holonomies from H-F�C1� to H-F�C2� and the
eft invariant push forward of the refining map can be used to bring fluxes from H-F�C1� to

-F�C2�. We call this map �C2→C1

�̂ . It turns out that
Corollary 2: If C1�C2,

�C2→C1

�̂ :H-F�C1� → H-F�C2�

s a �-algebra embedding.
The proof of this statement, a detailed study of coarse graining within the algebraic approach

nd phase space effective theories will be treated elsewhere.

. Coarse graining effective measures

In Sec. III C we defined a construction of measures in ĀM as a continuum limit of effective
easures on the spaces AC-flat. If C1�C2, the effective measures 
C1

and 
C2
must be related by

oarse graining �at least approximately� because they define effective theories for the same physi-
al system. Assume that we have chosen a projection map �C2→C1

, which amounts to having
hosen certain degrees of freedom on AC2-flat as fluctuations over the background configurations

C1→C2
AC1-flat.

Definition 6 (exact renormalization prescription):

��C2→C1
��
C2

= 
C1
.

he definition means that for any cylindrical function f of AC1-flat we have �AC1-flat
f d
C1

�AC2-flat
�C2→C1

� f d
C2
. Its physical interpretation is that any scale C1 observable can either be

easured by 
C1
on the space AC1-flat or be “observed at scale C2” as a rather coarse function and

easured by 
C2
on the space AC2-flat producing exactly the same results.

Given any refining sequence C1�C2� ¯ �Cn�¯ there are choices of projections that
ake the corresponding exact renormalization prescriptions compatible. This is because the fol-

owing lemma holds.
Lemma 4: Given any three cellular decompositions related by refinement C1�C2�C3 there

re choices of embeddings Embi,j :L�Ci�→L�Cj� which induce projections �Cj→Ci
�
Embi,j :AL�Cj�

→AL�Ci�
that make the following triangle diagram commute:
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Proof: Fix Emb1,2 :L�C1�→L�C2� and Emb2,3 :L�C2�→L�C3�. Clearly Emb2,3 �Emb1,2 :L�C1�
L�C3� sends holonomicaly independent paths into holonomicaly independent paths, and it also

epresents a C3-equivalence class of embeddings EmbL�C1� :L�C1�→M as required. �

In particular one can choose compatible exact renormalization prescriptions for the refining
equence 	�Sd�	�� ¯ �Sdn�	��¯. In this case a solution of such chain of conditions would
ield a sequence of projectively compatible measures 	
n
. Thus, the continuum limit of definition

4� would exist and define a measure 
M on ĀM.
It is important to remark that a collection of compatible embeddings that makes the exact

enormalization prescriptions compatible can also be used to define the projective limit more
ommonly used in loop quantization and that the results are compatible in the following sense.

Theorem 4: Given a family of compatible projections 	�n+1→n :ASdn+1�	�-flat→ASdn�	�-flat
 the

rojective limit of the spaces ASdn�	�-flat is ÃM,	.
In addition, the collection of projectively compatible measures 	
n
 defines a measure 
̃M on

˜
M,	 which is compatible with our continuum limit measure in the sense that

i�
̃M = 
M ,

here i :ÃM,	→ĀM is the inclusion map.
The proof of this theorem is a simple corollary of definitions. Of course the continuum limit

n these cases is trivial in the sense that starting from a high enough n0 for any n�n0
n�iC
� f� is

ndependent of n.
Our continuum limit of measures significantly extends the projective limit and this extension

s of interest for physical applications. We say that because there are many examples of collections

n
 which are not projectively compatible, but as n increases they become more and more
ompatible in a way that makes the continuum limit exist. More significantly, the construction of
easures by standard lattice gauge theory can be imported to a restricted version of our frame-
ork where we consider only regular cellular decompositions. From this point of view there is a
hole body of evidence supporting the existence of nontrivial physically interesting measures.

In standard lattice gauge theory the used renormalization prescriptions are much weaker than
ur exact renormalization prescription: they ask only that some correlation functions chosen by
heir physical importance be preserved by coarse graining. Also, the allowed measures in LGT are
f a very constrained type; only a few coupling constants completely specify their measures. With
smaller space of allowed measures and weaker renormalization prescriptions they are able to

enerate a flow in the space of coupling constants, which flows in the direction of refinement. We
ave followed and implemented their ideas in a few examples of our framework.3

What about compatible renormalization prescriptions relating the effective theories assigned
o all the cellular decompositions? Consider two refining sequences that share a cellular decom-
osition C. A choice of compatible projections for a refining sequence completely determines the
mbedding map EmbL�C� :L�C�→M. Thus, if one chooses independently the two families of
ompatible projections, it could happen that the induced embedding EmbL�C� :L�C�→M may be

ifferent for the two sequences. This would mean that the projection from ĀM to AC-flat would
epend on the coarse graining route. If the coarse graining between two effective theories depends
n the coarse graining route, there would be one exact renormalization prescription per path and
hey would not be compatible with each other.
Again we stress that the lattice gauge theory experience tells us that nonexact renormalization
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rescriptions are more interesting than exact ones. Then, the more relevant question would be
bout compatibility of �nonexact� renormalization prescriptions. In this context it is known that
oarse graining does depend on the coarse graining route. A familiar example is performing
igdal-Kadanoff blocking in two dimensions first in the x direction and then in the y direction, or

eversing the order of the blocking.

V. ACTION OF “DIFFEOMORPHISMS”

Clearly general fiber bundle maps do not leave the spaces of C-flat connections invariant, but
heir action is very simple.

Theorem 5: AC-flat�ĀM is not left invariant by the pull back of fiber bundle automorphisms.
nstead

f��AC-flat� = A f̃−1C-flat,

here f̃ is the map induced by f in the base space.
We leave the simple proof of this theorem to the reader.
In this work the relevant fiber bundle maps are the ones that preserve the space of cellular

ecompositions of the base space that we are considering. Thus, we should focus either on
iecewise analytic �also called stratified analytic� or on piecewise linear maps. However, we
oosely refer to them as “diffeomorphisms.”

For convenience we write AC-flat / ḠM,� as �A /G�C.
If the theory under study has diffeomorphism symmetry our construction of spaces of effec-

ive configurations breaks that symmetry. However, we can define a space of “diffeomorphism”

nvariant configurations by injecting �A /G�C into ĀM / ḠM,� and using the notion of “diffeomor-
hism” equivalence there.

Definition 7: Two connections modulo gauge �A1� , �A2�� �A /G�C are said to be “diffeomor-
hism” equivalent,

�A1��d�A2� ,

f and only if there is a “diffeomorphism” f̃ of M (that has ��M as a fixed point and) such that

f��A1�= �A2�. (We are considering the action f̃� defined by f� :ĀM / ḠM,�→ĀM / ḠM,� for any bundle

ap f that induces f̃ on the base space and whose restriction to the fiber over ��M is the
dentity.�

Consider two cellular decompositions C1 and C2= f̃�C1� �with f̃���=��. Clearly the quotient

paces �A /G�C1
/�d and �A /G�C2

/�d are identified by f̃�. Moreover, the identification would be
he same for any other “diffeomorphism” which relates the two cellular decompositions and has
�M as a fixed point.

Thus, we define the space of “diffeomorphism” invariant effective configurations at scale �C�
s

� A
G � D

�C�
�

�A
G C

�d
,

or any C in the “diffeomorphism” equivalence class �C� �relative to the subgroup of “diffeomor-
hisms” that fixes ��M�.

It is important to remark that the equivalence relation �d is not induced by the space of
utomorphisms of the abstract cellular complex underlying C. Even for a regular cellular decom-
osition whose automorphism group is large, �d is larger than the equivalence relation induced by

utomorphisms of C.
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There is a construction of effective configurations—AK-flat�ĀM �where K is an abstract
ellular complex�—which does not break the “diffeomorphism” symmetry. One can take quotient
y the “diffeomorphism” group of AK-flat to find a space of “diffeomorphism” invariant configu-
ations finding the same space that we just defined.5

From the point of view of the framework mentioned above, the framework presented in this
aper is partially gauge fixed with respect to the “diffeomorphism” group. The complex nature of
he equivalence relation �d in �A /G�C as compared to the transparent action of the “diffeomor-

hism” group in ĀM means that this partial gauge fixation would not help if we want to analyze
he “diffeomorphism” symmetry. However, many other aspects �including those presented in this
aper� are much simpler to study in the gauge fixed framework.
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PPENDIX

For the convenience of the reader we give a minimal recollection of definitions and properties
eeded in the main body of the paper. The subjects covered are

1� generalized connections,
2� cellular decompositions of a manifold and the limit C→M.

eneralized connections

Generalized connections lie at the core of loop quantized theories.
Consider a G-principal fiber bundle �E ,� ,M�. In the physics literature it is customary to

enote the space of smooth G-connections on that fiber bundle simply by AM. However, topo-
ogically different G-bundles over M lead to different spaces of smooth connections.

A generalized connection A�ĀM is an assignment �a semigroup morphism� of holonomies to
riented paths in M,

A���:�−1�s���� → �−1�t���� ,

here s��� and t��� denote the source and target points of �. A holonomy must be compatible with
he right G-action on the fiber bundle, A����xg�=A����x�g for any g�G and any x��−1�s����.
olonomies can be composed when the corresponding paths can. Asking that the assignment be a
orphism means that A��2 ��1�=A��2� �A��1�. We remark that paths of the form c−1 �c are re-

arded as equivalent to the path that stays at the single point s�c�; thus A�c−1�=A�c�−1.
It is important to emphasize that there are no requirements of smoothness or even continuity

or the holonomy assignments with respect to deformations of the path. Analogously the group of
auge transformations acts on holonomy assignments without any continuity restrictions. If one
mposes restrictions of this type on the space of connections and the space of gauge transforma-
ions, one can recover the space of smooth connections modulo gauge.

At the gauge invariant level the focus changes to group homomorphisms from the group of
�M-based oriented loops �modulo an equivalence relation that prevents holonomical triviality�,
M,�, to G. The space of such homomorphisms is the space of gauge equivalence classes of

eneralized connections
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ĀM/ḠM,� = Hom�PM,�,G� .

gain no continuity restrictions are imposed. If one imposes this type of conditions one can
econstruct the space of smooth connections modulo gauge. In fact, it is in exactly these terms
hese the reconstruction theorems are enounced and proven.4

Instead of placing continuity restrictions from classical considerations, one defines a different

opology for ĀM / ḠM,�. By definition this is the weakest topology for which cylindrical functions,

yl�ĀM / ḠM,��, are continuous. Cylindrical functions are functions on ĀM / ḠM,� induced by con-
inuous functions on finitely many copies of G by the choice of a based loop for each copy of G.

ith respect to this topology, the space ĀM / ḠM,� is independent of the topology of the total space

f the fiber bundle. This finishes with our definition of ĀM / ḠM,�.

ellular decompositions and the limit C\M

A typical example of a cellular decomposition is a triangulation of the sphere whose cells are
our triangles, six edges, and four vertices.

A cellular decomposition C of a manifold M is a presentation of it as a union of disjoint cells,

M = �c��C
c�,

c� � c� = � if � � � .

ach cell c� is the image of an open convex polyhedron in Rn��� with n��� between zero and
im M. Then, we can specify a cell by a pair consisting of an open convex polyhedron in Rn and
map that takes the polyhedron to M,

c� = �p�,��� .

o be precise we must identify the types of maps we consider. In this work we consider maps

� :Rn���→M which are either piecewise analytic or piecewise linear.
The n-skeleton of a cellular decomposition C�n� is the collection of cells of dimension smaller

r equal to n. For example, C�dim M� is C and C�0� is the set of vertices of C. In our work we use
he one-dimensional complex C�1� because it is a lattice.

Notice that the set of cellular decompositions of a manifold admits a partial order relation that
ells us if a cellular decomposition C2 is finer than another one C1. We write

C1 � C2

f any cell in the coarser decomposition is a finite union of cells of the finer decomposition.
Triangulations �or simplicial decompositions� are particular examples of cellular decomposi-

ions where the polyhedra used are only simplices. In this category of cellular decompositions one
an easily define the barycentric subdivision operation that produces a finer cellular decomposi-
ion, 	�Sd�	�. The triangulation Sd�	� is easily constructed inductively.

1� To each simplicial cell ���	 one assigns a zero-dimensional cell in Sd�	� called the
barycenter of ��. �For zero-dimensional cells the barycenter coincides with the original cell.�

2� For one-dimensional simplicial cells the cone over their boundary with vertex in their bary-
center is a simplicial subdivision of ��. We call it the barycentric subdivision of ��, Sd����.

3� The barycentric subdivision of the union of cells is by definition the union of the barycentric
subdivision of the cells, Sd�������=Sd�����Sd����.

4� Assume that Sd is defined for cells of dimension n−1.
5� The boundary of an n-dimensional simplicial cell ����� is the union of �n−1�-dimensional

simplicial cells. The cone over Sd������� with vertex in the barycenter of �� is defined as

Sd����.
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The partial order of cellular decompositions is directed in the direction of refinement. This
eans that given any two cellular decompositions C1, C2 there is third one such that C1�C3 and

2�C3. With this property in mind, we restrict to piecewise analytic or piecewise linear cellular
ecompositions; the directionality property would not hold if we allowed any smooth map.

The directionality property is the one that will let us talk about the continuum limit as a limit
owards “the finest cellular decomposition.” For example, if there is any physically meaningful
umber calculated in an effective theory associated to a cellular decomposition N�C�, we would
ike it to have a finite limit when we remove the cutoff. Our notation is N�M�=limC→M N�C�,
here the directionality property of the partial order gives a meaning to the limit “in terms of

psilons and deltas as in ordinary calculus.” When one is talking about objects different than
umbers one must specify the meaning of limC→M; here we simply remark that the directionality
f the partial order makes it possible to define a variety of such limits.
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Starting from the temporal gauge Hamiltonian for classical pure Yang–Mills theory
with the gauge group SU�2� a canonical transformation is initiated by parametrizing
the Gauss law generators with three new canonical variables. The construction of
the remaining variables of the new set proceeds through a number of intermediate
variables in several steps, which are suggested by the Poisson bracket relations and
the gauge transformation properties of these variables. The unconstrained Hamil-
tonian is obtained from the original one by expressing it in the new variables and
then setting the Gauss law generators to zero. This Hamiltonian turns out to be
local and it decomposes into a finite Laurent series in powers of the coupling
constant. © 2005 American Institute of Physics. �DOI: 10.1063/1.2040327�

. INTRODUCTION

An important and still open problem of quantum chromodynamics is to work out analytical
redictions for the low-energy states of the theory. In order to make these predictions we need a
roper quantum Yang–Mills theory which is valid in the low-energy regime. However, for many
easons it has turned out to be a difficult task to construct a useful physical Hamiltonian. One of
he problems encountered is the implementation of Gauss’s law in the Hamiltonian formalism. Up
o this date, several methods have been developed to tackle it,1–13 and this paper aims to provide

method, which is motivated by Lie’s theory of function groups and their canonical representa-
ions.

Usually one starts with an extended quantum Hamiltonian where the physical subspace con-
ists of states that are annihilated by the Gauss law generators. In this paper, by contrast, the order
f quantization and constraining is reversed and Gauss’s law is incorporated into the Hamiltonian
ormalism already at the classical level with the help of a suitable canonical transformation.

henever one performs canonical transformations in a classical Hamiltonian gauge theory, one
ust choose the new variables in a way that makes their fundamental Poisson bracket relations

ompatible with the gauge algebra satisfied by the Gauss law generators. This is often done by the
ethod of Abelianization, where the Gauss law generators are multiplied by suitable matrices that

ransform them into mutually involutive canonical momenta. In this paper, however, the opposite
trategy is followed and the generator algebra is taken as given. The generators are then param-
trized with the minimum number of canonical variables in such a way that the gauge algebra is
atisfied as a consequence of the fundamental Poisson brackets of the new variables. The remain-
ng variables of the new set are finally constructed by following the logical steps implied by this
arametrization. The procedure is carried through for pure SU�2� Yang–Mills theory, but a gen-
ralization to other Lie groups is discussed in the end.

The actual construction of the canonical transformation is done in several steps in Sec. II. The
rocedure is a bit lengthy, but it may be worthwhile to give a presentation where the underlying
ogic is made clear and where possibilities for modifications and generalizations are also offered.

�
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he final transformation is then used in the third section, where the unconstrained Hamiltonian is
erived and expanded in a finite series involving both positive and negative powers of the cou-
ling constant. The last section is devoted to conclusions. Throughout the paper Einstein’s sum-
ation convention will be used with spatial and Lie algebra metrics normalized to positive unity.
he generators of the SU�2� algebra are, as usual, taken to be Ta= 1

2�a, where the �a’s stand for the
auli matrices.

I. CONSTRUCTION OF THE CANONICAL TRANSFORMATION

. Parametrization of the Gauss law generators

We start with the temporal gauge �A0
a=0� Hamiltonian

H =� �1

2
�ka�ka +

1

4
Fkl

a Fa
kl�d3x , �1�

here the field tensor Fkl
a is defined by

Fkl
a = �lAk

a − �kAl
a + g�bc

aAk
bAl

c.

he variables Ak
a�x� and �ka�x� are canonically conjugate, i.e., they satisfy the fundamental Pois-

on bracket relations

�Ak
a�x�,�lb�y�	 = �kl�

a
b��x − y� .

rom these relations it follows that the Gauss law generators

Ga = �k�ka − g�b
c
aAkb�kc �2�

bey the SU�2� algebra

�Ga�x�,Gb�y�	 = − g�ab
cGc�y���x − y� . �3�

hey also generate time-independent gauge transformations of the canonical variables as follows:

�Ga�x�,Ak
b�y�	 = − �a

b�k
�x���x − y� − g�ca

bAk
c�y���x − y� ,

�4�
�Ga�x�,�kb�y�	 = − g�c

ab�kc�y���x − y� .

he canonical equations of motion

Ȧk
a�x� =

�H

��a
k�x�

, �̇ka�x� = −
�H

�Aka�x�
�5�

eproduce the dynamical Yang–Mills equations

Äk
a�x� − ��a

c�
l − g�bc

aAlb�x��Fkl
c �x� = 0,

ut not Gauss’s law

Ga�x� = 0.

owever, the Gauss law generators are constants of motion, i.e.,

Ġa�x� = 0

n the dynamics described by the equations �5�. This property ensures that the implementation of
auss’s law can be done consistently with the Hamiltonian equations of motion. Unfortunately we
annot just use �2� to eliminate redundant coordinates in the limit Ga→0, because we do not know
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hich coordinates to eliminate or how to deal with the canonical conjugates of these redundant
ariables.

The first stage in the function group approach consists of replacing the Gauss law generators
ith such canonical variables that will vanish in the limit when Gauss’s law is put into force. At

his point we recall that in Lie’s work a function group is defined as a set of variables equipped
ith Poisson brackets that close on the set.14 According to Lie, every function group can be

ransformed into a form where every variable either has a canonically conjugate counterpart in the
et or its Poisson brackets with the remaining variables vanish. Applying this idea to the function
roup formed by the Ga’s, we parametrize it with three canonical variables p1, p2, and q2 as
ollows:

G1 = 
p1
2 − p2

2 cos�gq2� ,

�6�
G2 = − 
p1

2 − p2
2 sin�gq2� ,

G3 = p2.

t is easy to check that the SU�2� algebra relations �3� are satisfied if the Poisson brackets of the
ew variables are canonical, i.e., if

�q2�x�,p2�y�	 = ��x − y�

nd all the other brackets vanish. Conversely, we can invert this transformation and check that the
ariables

p1 = 
G1
2 + G2

2 + G3
2,

p2 = G3, �7�

q2 = −
2

g
arctan�
G1

2 + G2
2 − G1

G2
�

atisfy the fundamental Poisson bracket relations by virtue of the algebra �3�.
The parametrization �6� is by no means the only possibility of defining a canonical represen-

ation, but it is one of the simplest with respect to the properties of the SU�2� algebra. Namely, Eq.
3� allows us to identify the Ga’s with the basis vectors of the SU�2� algebra and the Poisson
racket with the commutator. We can now make use of the fact that for all semisimple Lie groups
he Casimir operators together with the basis of the Cartan subalgebra span an Abelian subspace of
he enveloping algebra. With higher-dimensional Lie groups this Abelian subspace can be aug-

ented by Casimir operators of some lower-dimensional subalgebras. Since all canonical mo-
enta must have vanishing Poisson brackets with each other, we see that the maximal set of
omenta can be obtained from the maximal Abelian subspace of the enveloping algebra. This is

he idea behind the transformation �7�, where we now recognize p1
2 as the Casimir operator of

U�2� and p2 as the usual basis vector for the Cartan subalgebra. Once this choice has been made,
he form of q2 follows from the consistency of the canonical Poisson brackets with the algebra �3�.
owever, the fundamental Poisson bracket relations do not determine the canonical conjugate of

p1 uniquely and we can thus leave the specific form of q1 open at this stage. The next step is to
xtend the transformation �7� to the remaining variables.

. Gauge-invariant variables

Let �i stand for any new canonical variable not equal to those already fixed. By the require-
ent that the Poisson brackets between �i and the members of the set �q1 , p1 ,q2 , p2	 vanish and

ith the help of the parametrization �6� we see that
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�Ga�x�,�i�y�	 = 0, a = 1,2,3, �8a�

��i�y�
�p1�x�

= 0. �8b�

n particular, Eq. �8a� means that all the remaining variables must be invariant under topologically
rivial gauge transformations. Since we have already defined three non-gauge-invariant variables
q1 ,q2 , p2�, they completely fix the gauge angles �modulo constant gauge transformations� in the
ew set of variables. The gauge-invariant fields must therefore be constructed by transforming the
ld variables into a gauge where q1, q2, and p2 are absent. Note that the term “gauge” does not
mply neglecting any dynamical degrees of freedom at this stage, it only describes the way that the
auge-invariant variables of the new set are formed. In other words, the new variables consist of
oth gauge-dependent and gauge-invariant degrees of freedom. Although it may sound a little
aradoxical, the gauge-invariant variables also satisfy a gauge condition due to the fact that, by
onstruction, the gauge-dependent degrees of freedom have been transformed away. �This proce-
ure is discussed in a more general context in Ref. 4.�

Let us begin with the elimination of q2 and p2. When these variables tend to zero, Eq. �6�
hows that the components Ga tend to �a1p1. The intermediate variables Âk

a and �̂ka are then
etermined by the requirement that this property holds exactly, i.e.,

Âk
a = �O1�a

bAk
b −

1

2g
�bc

a�O1�kO1
T�cb,

�9�
�̂ka = �O1�a

b�kb,

here the orthogonal matrix O1 satisfies the relation

Ĝa = �O1�a
bGb = �a1p1. �10�

his is clearly fulfilled if we take

O1 =�
1 − � p2

p1
�2

cos�gq2� −
1 − � p2

p1
�2

sin�gq2�
p2

p1

p2

p1
cos�gq2� −

p2

p1
sin�gq2� −
1 − � p2

p1
�2

sin�gq2� cos�gq2� 0
� �11a�

=�
G1


G1
2 + G2

2 + G3
2

G2


G1
2 + G2

2 + G3
2

G3


G1
2 + G2

2 + G3
2

G1G3


G1
2 + G2

2
G1
2 + G2

2 + G3
2

G2G3


G1
2 + G2

2
G1
2 + G2

2 + G3
2 −


G1
2 + G2

2


G1
2 + G2

2 + G3
2

−
G2


G1
2 + G2

2

G1


G1
2 + G2

2 0
� . �11b�

t is interesting to note that the condition �10� falls in the category of Abelian gauges,15 where the
auge is partially fixed by diagonalizing some homogeneously transforming object. In our case
his object is the Gauss law generator G=GaTa, which is transformed into the direction of T1. The
esidual U�1� gauge transformations are generated by T1, and Eq. �10� then suggests that q1 and p1

re associated with this gauge freedom. More precisely, using the inverse formula �7� together

ith the properties �4� we can calculate the brackets
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�p1�x�,Âk
a�y�	 = − �a

1�k
�x���x − y� − g�b1

aÂk
b�y���x − y� ,

�12�
�p1�x�,�̂ka�y�	 = − g�b

1a�̂kb�y���x − y� ,

hich prove that p1 indeed generates U�1� rotations in the direction of T1. On the other hand,

�p1�x�,Âk
a�y�	 = −

�Âk
a�y�

�q1�x�
, �p1�x�,�̂ka�y�	 = −

��̂ka�y�
�q1�x�

,

nd combining these equations with the brackets �12� we get the following functional differential

quations for the fields Âk
a and �̂ka:

�Âk
a�y�

�q1�x�
= �a

1�k
�x���x − y� + g�b1

aÂk
b�y���x − y�,

��̂ka�y�
�q1�x�

= g�b
1a�̂kb�y���x − y� .

iven that these equations hold, it is then easy to see that new fields Ak
a and �ka defined by

Ak
a = �O2�a

bÂk
b −

1

2g
�bc

a�O2�kO2
T�cb,

�13�
�ka = �O2�a

b�̂kb,

O2 = �1 0 0

0 cos�gq1� − sin�gq1�
0 sin�gq1� cos�gq1�

� �14�

re independent of q1, i.e.,

�Ak
a�y�

�q1�x�
= 0,

��ka�y�
�q1�x�

= 0. �15�

Combining the transformations �9� and �13� we can express the new variables in terms of the
riginal fields Ak

a, �ka and the variables �q1 , p1 ,q2 , p2	. Employing formulas �4� and �6� together
ith the identity

�Ga�x�,q1�y�	 = −
�Ga�x�
�p1�y�

t is then a straightforward albeit rather lengthy exercise to check that the new variables are really
auge invariant,

�Ga�x�,Ak
b�y�	 = 0, �Ga�x�,�kb�y�	 = 0.

he requirement �8a� is thus satisfied, but this is not yet sufficient to make Ak
a and �ka independent

f p1. Moreover, the new fields are redundant in number, because they satisfy the relation

Ga = �k�ka − g�b
c
aAkb�kc = �a1p1, �16�

hich is actually more like a functional identity rather than a constraint, because it follows
a
mmediately from the transformations �9� and �13�. Finally, Ak and �ka are not canonical variables
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ue to the fact that the gauge transformation matrices �11� and �14� depend on the original fields.
mploying the fundamental Poisson brackets of the original variables and the gauge transforma-

ion properties �4� it is relatively straightforward to work out the brackets of Ak
a and �ka, but the

alculations are lengthy. In fact, it becomes almost inevitable to use computer software capable of
ymbolic manipulations to perform these extensive calculations. Eventually we obtain the follow-
ng result:

�Ak
a�x�,�lb�y�	 =

1

p1�y�
��a

b�l1�y� − �b1�l
a�y���k

�x���x − y�

+  g

2p1�y�
��a

1�bc
d + �b1�a

c
d + �d

1�a
bc + �c1�a

b
d�Ak

c�y��ld�y� + �kl�
a

b���x − y�

+ ��a
1�k

�x� − g�c1
aAk

c�x����lb�y�
�p1�x�

+ g�c
1b�lc�y�

�Ak
a�x�

�p1�y�
, �17a�

�Ak
a�x�,Al

b�y�	 =
1

g
�1

ab�l
�y� 1

p1�y�
�k

�x���x − y�� +
1

p1�y�
��abAl1�y� − �b

1Al
a�y���k

�x���x − y�

− �l
�y� 1

p1�y�
��abAk1�y� − �a

1Ak
b�y����x − y��

+
g

2p1�y�
��a

1�b
cd + �b

1�a
cd + �d1�ab

c + �c1�ab
d�Ak

c�y�Al
d�y���x − y�

+ ��a
1�k

�x� − g�c1
aAk

c�x��
�Al

b�y�
�p1�x�

− ��b
1�l

�y� − g�c1
bAl

c�y��
�Ak

a�x�
�p1�y�

, �17b�

��ka�x�,�lb�y�	 =
g

2p1�y�
��a1�b

cd + �b1�a
cd + �d

1�ab
c + �c

1�ab
d��kc�y��ld�y���x − y�

− g�c
1a�kc�x�

��lb�y�
�p1�x�

+ g�c
1b�lc�y�

��ka�x�
�p1�y�

. �17c�

s there are redundant coordinates in this set of variables, we should verify that these brackets are
ompatible with �16�. Indeed, starting from the brackets �17� it is possible to derive the result

�Ga�x�,Ak
b�y�	 = 0, �Ga�x�,�kb�y�	 = 0,

hich is consistent with �15� and �16�. Our next task is to parametrize Ak
a and �ka with new

anonical variables in such a way that the relations �16� and �17� are satisfied.

. Canonical variables

The elimination of the residual U�1� gauge degree of freedom with the transformation �13�
as rather symbolic by nature, because the form of q1 was not specified. The advantage of doing

o is the fact that the Poisson brackets �17� now hold for all possible U�1� gauges and we can thus
xperiment with different gauge choices. Once a choice is made, its consistency with the brackets
17� then yields equations that determine the p1 dependence of Ak

a and �ka. The ingredients for
hoosing the gauge can be read off from the transformation formula �13�. It is seen that the

vailable objects fall in three categories, where the pairs �Âk
2 , Âk

3� and ��̂k2 ,�̂k3� form SO�2�
oublets, the components �̂k1 are invariant and Âk

1 transforms as a photon. Although every gauge
s possible from the physical point of view, yet in practice some gauges are not manifestly
ompatible with the brackets �17�. For example, in the Coulomb gauge we should choose q1 in

k 1
uch a way that the equation � Ak =0 would hold as a functional identity, as indicated by �15�.
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herefore the Poisson brackets ��kAk
1�x� ,�lAl

1�y�	 should also vanish identically, but according to
he relations �17b� this is not the case. Probably this contradiction stems from the canonical
tructure of the variables already fixed, and the problem could possibly be circumvented by
djusting q1 and the definitions �7� suitably.

In the following calculations the unitary gauge

�12�x� = 0

ill be employed. Its consistency with the resulting identity ��12�x� ,�12�y�	=0 is obvious and it
orresponds to defining q1 by

q1 =
2

g
arctan�
�̂12

2 + �̂13
2 − �̂13

�̂12

� . �18�

sing formulas �4�, �7�, and �11b� it is a straightforward but lengthy calculation to verify that the
undamental Poisson bracket relations between q1 and the variables �p1 ,q2 , p2	 indeed hold. Now
he functional identities

�Ak
a�x�,�12�y�	 = 0, ��ka�x�,�12�y�	 = 0

ombined with the brackets �17� give the following equations:

�Ak
a�x�

�p1�y�
= −

1

gp1�y�
�11�y�
�13�y�

�a
2�k

�x���x − y�

+
1

�13�y�
��11�y�

p1�y�
�b2

aAk
b�y� −

1

g
�k1�a

2���x − y� ,

��ka�x�
�p1�y�

=
1

p1�y�
�11�y�
�13�y�

�b
2a�kb�y���x − y� .

t first sight these equations look a bit frightening, but they turn out to be solvable with a
easonable effort. The solution can be written as a gauge transformation in the direction of T2,

Ak
a = �O3�a

b�Qk
b −

1

g
�k1�b

2
p1

P11
cos �� −

1

2g
�bc

a�O3�kO3
T�cb,

�19�
�ka = �O3�a

bPkb,

ith

O3 = � sin � 0 − cos �

0 − 1 0

− cos � 0 − sin �
� ,

�20�

sin � =
�

p1
,

here Qk
a, Pka, and � are constants of integration, i.e.,

�Qk
a�x�

�p1�y�
= 0,

�Pka�x�
�p1�y�

= 0,
���x�
�p1�y�

= 0,
nd
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P12�x� = P13�x� = 0. �21�

hese constant fields fulfill both of the requirements �8�, and therefore they should be adopted as
ew variables. The transformation formula is the inverse of �19�, that is,

Qk
a = �O3�a

b�Ak
b +

1

g
�k1�b

2p1
�13

�11
2 + �13

2 � −
1

2g
�bc

a�O3�kO3
T�cb,

�22�
Pka = �O3�a

b�kb,

here we now write the gauge angle as

sin � =
�11


�11
2 + �13

2
, cos � = −

�13


�11
2 + �13

2
. �23�

ote that the matrix O3 is both orthogonal and symmetric.
In order to proceed towards our final canonical transformation we must now find out whether

he newest set of variables can be made canonical in accordance with the relation �16�. Using �19�
t is easy to see that the corresponding relation in the new variables reads

�kPka − g�b
c
aQkbPkc = �a1� . �24�

he Poisson brackets are evaluated by inserting expressions �22� into the relations �17�. Again this
s a formidable calculation which requires extensive use of computer software. Here is the result,

�Qk
a�x�,Plb�y�	 = �kl�

a
b��x − y�, k � 1,

�Q1
a�x�,P11�y�	 = �a

1��x − y�,

�Q1
a�x�,Plb�y�	 = −

1

P11�y�
��a

bPl1�y� − �b1Pl
a�y����x − y�, l � 1,

�Qk
a�x�,Ql

b�y�	 = 0, k � 1, l � 1,

�Qk
a�x�,Q1

b�y�	 = −
1

g
�1

ab 1

P11�y�
�k

�x���x − y� +
1

P11�y�
��abQk1�y� − �a

1Qk
b�y����x − y�, k � 1,

�25�

�Q1
a�x�,Q1

b�y�	 = −
1

P11�y��a
1Q1

b�y� − �b
1Q1

a�y� +
1

g
�1

ab
��y� − �1

�y�P11�y�
P11�y� ���x − y�,

�Pka�x�,Plb�y�	 = 0,

���x�,Qk
a�y�	 = − �a

1�k
�x���x − y� − g�b1

aQk
b�y���x − y�,

���x�,Pka�y�	 = − g�1 − �k1��b
1aPkb�y���x − y� .

emember that P12=P13=0 in these relations. It is now easy to construct the desired canonical

elds. The brackets �25� suggest that we choose the pairs
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�Q1
1,P11�, �Qk

a,Pka�, k � 1 �26�

s canonically conjugate variables. If we then solve the remaining variables from Eq. �24�,

� = �1P11 + �
k=2

3

��kPk1 − g�b
c
1Qk

bPkc� , �27a�

Q1
2 = −

1

gP11
�
k=2

3

��kPk3 − g�b
c
3Qk

bPkc� , �27b�

Q1
3 =

1

gP11
�
k=2

3

��kPk2 − g�b
c
2Qk

bPkc� , �27c�

t turns out that all the Poisson brackets in the set �25� involving these variables follow from the
undamental brackets of the pairs �26�. Unfortunately the variables �26�, although gauge-invariant
nd canonical, are still not useful for implementing the Gauss law. The reason is Eq. �20�, which
hows that � tends to zero in the limit when p1 vanishes. Looking at expression �27a�, we see that
t would be difficult to implement the requirement �→0 using the variables �26�. A suitable
anonical transformation is needed.

. Canonical U„1… transformation

Passing to the variables �26�, we have replaced the original SU�2� fields with a set of gauge-
nvariant canonical fields. However, the Poisson brackets �25� show that these variables have an
nner U�1� symmetry, which is generated by �. Note that this symmetry has nothing to do with the
riginal SU�2� symmetry since all the variables �26� and the generator �, defined by Eq. �27a�, are
auge invariant with respect to the generators Ga. Even so, we can apply the procedures of Secs.
I A–II C also to this U�1� symmetry and choose � as a new canonical momentum variable, i.e.,

p3 = �1P11 + �
k=2

3

��kPk1 − g�b
c
1Qk

bPkc� . �28�

he canonical conjugate of p3 then determines the gauge angle associated with transformations
enerated by p3, but again we leave the specific form of q3 open at this stage. Since both q3 and

p3 must have vanishing Poisson brackets with the remaining variables of the final canonical set,
e conclude that the remaining variables must be functionally independent of q3 and p3. The

limination of q3 can be done, as before, with a gauge transformation in the T1 direction,

Q̂k
a = �O4�a

bQk
b −

1

2g
�bc

a�O4�kO4
T�cb,

�29�
P̂ka = �O4�a

bPkb,

here

O4 = �1 0 0

0 cos�gq3� − sin�gq3�
0 sin�gq3� cos�gq3�

� .
he Poisson brackets of the new variables follow from the algebra �25�, the result being
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�Q̂k
a�x�, P̂lb�y�	 = �kl�

a
b��x − y� + ��a

1�k
�x� − g�c1

aQ̂k
c�x���P̂lb�y�

�p3�x�
+ g�c

1bP̂lc�y�
�Q̂k

a�x�
�p3�y�

,

�Q̂k
a�x�,Q̂l

b�y�	 = ��a
1�k

�x� − g�c1
aQ̂k

c�x���Q̂l
b�y�

�p3�x�
− ��b

1�l
�y� − g�c1

bQ̂l
c�y���Q̂k

a�x�
�p3�y�

, �30�

�P̂ka�x�, P̂lb�y�	 = − g�c
1aP̂kc�x�

�P̂lb�y�
�p3�x�

+ g�c
1bP̂lc�y�

�P̂ka�x�
�p3�y�

.

or the sake of clarity only those brackets have been written down that hold for the actual
ariables

�Q̂1
1, P̂11�, �Q̂k

a, P̂ka�, k � 1.

In order to define variables independent of p3 we must now specify the U�1� gauge by fixing

3. In the following we choose

q3 =
2

g
arctan�
P22

2 + P23
2 − P23

P22
� , �31�

hich corresponds to the identity

P̂22�x� = 0. �32�

aking use of the brackets �25� it is possible to verify that q3 and p3 indeed satisfy

�q3�x�,p3�y�	 = ��x − y� ,

hile their brackets with the variables �q1 , p1 ,q2 , p2	 vanish due to the fact that both Qk
a and Pka

eet the requirements �8�. As before, the functional identities

�Q̂k
a�x�, P̂22�y�	 = 0, �P̂ka�x�, P̂22�y�	 = 0

ead to the equations

�Q̂k
a�x�

�p3�y�
= −

1

gP̂23�y�
�k2�a

2��x − y� ,

�P̂ka�x�
�p3�y�

= 0,

hose solutions read

Q̂k
a = Qk

a −
1

g
�k2�a

2
p3

P23
,

�33�
P̂ka = Pka,

a
here Qk and Pka are constants of integration, i.e.,
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�Qk
a�x�

�p3�y�
= 0,

�Pka�x�
�p3�y�

= 0.

ow we choose these constants as new variables. Equation �28� then leads to the relation

�1P11 + �
k=2

3

��kPk1 − g�b
c
1Qk

bPkc� = 0, �34�

hich holds as a functional identity, implying that the new variables contain one redundant
oordinate. The Poisson brackets of Qk

a and Pka are easily evaluated with the help of the relations
30�. The result reads

�Qk
a�x�,Plb�y�	 = �kl�

a
b��x − y� − �k2�a

2�c
1b

1

P23�y�
Plc�y���x − y�,

�Qk
a�x�,Ql

b�y�	 = 0, �k,a� � �2,2�, �l,b� � �2,2�,

�Qk
a�x�,Q2

2�y�	 = −
1

gP23�y�
��a

1�k
�x� − g�c1

aQk
c�x����x − y�, �k,a� � �2,2� , �35�

�Q2
2�x�,Q2

2�y�	 = 0,

�Pka�x�,Plb�y�	 = 0,

howing that the pairs

�Q1
1,P11�, �Q2

a,P2a�, a = 1,3, �Q3
a,P3a�, a = 1,2,3

re the most natural choice for final canonical variables. Solving �34� for the redundant coordinate,

Q2
2 =

1

gP23
��kPk1 − g�b

c
1Q3

bP3c� , �36�

t is easy to see that all of the Poisson bracket relations �35� hold true. Our search for suitable
anonical variables is now over.

. Results

Starting from the original canonical fields �Ak
a ,�ka� and passing through four sets of interme-

iate variables we have found the final canonical pairs

�qi,pi�, i = 1,2,3,

�Q1
1,P11� ,

�37�
�Q2

a,P2a�, a = 1,3,

�Q3
a,P3a�, a = 1,2,3.

quation �7� relates p1, q2, and p2 to the original variables, and a formula for q1 is obtained by
ombining Eqs. �18�, �9�, and �11b�. The momentum p3 is most easily calculated by combining
qs. �20�, �23�, �13�, and �9�, while it takes successive applications of Eqs. �31�, �22�, �13�, and �9�

o work out a formula for q3. The remaining variables of the set �37� are then obtained by

erforming the transformations �33�, �29�, �22�, �13�, and �9� one after the other. Again the
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anipulations are so lengthy that computer assistance is required. Introducing the notation

�X� ª 
XaXa

or the Lie algebra norm, the results can be written as follows:

q1 =
2

g
arctan�
�̂12

2 + �̂13
2 − �̂13

�̂12

� , �38a�

�̂12 =
1

�G� G3


G1
2 + G2

2
�G1�11 + G2�12� − 
G1

2 + G2
2�13� ,

�̂13 =
1


G1
2 + G2

2
�− G2�11 + G1�12� ,

q2 = −
2

g
arctan�
G1

2 + G2
2 − G1

G2
� , �38b�

q3 =
2

g
arctan�
P22

2 + P23
2 − P23

P22
� , �38c�

P22 =
1

�N�
�abcGa�1b�2c,

P23 =
1

�N�
1

��1�
��ad�bc − �ab�cd�Ga�1b�1c�2d,

Na = �a
bcGb�1c,

p1 = �G� , �38d�

p2 = G3, �38e�

p3 =
Ga�1a

��1�
, �38f�

Qk
a = 	a

bAk
b −

1

2g
�bc

a�	�k	
T�cb, �38g�

Pka = 	a
b�kb, �38h�

where

b b
	a = �O4O3O2O1�a
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=�a1
1

��1�
�1

b + �a2
1

�N�
�bcd�2c�1d

�39�

+ �a3
1

��1�
1

�N�
��be�cd − �bc�de��1c�1d�2e,

Na = �a
bc�1b�2c.

his transformation is singular when ���1 � � or ��N � � vanishes, corresponding to points where the
auge angles �23� and �38c� become ambiguous. These singularities are Gribov ambiguities16

eculiar to unitary gauges, and it is well known that such ambiguities appear in almost every
auge.17

When inverting the transformation �38�, it should be noted that formula �38g� holds for
ariables of the set �37� only. The general expression reads

Qk
a +

1

g
�k1�O4�a

2
p1

P11

1 − � p3

p1
�2

−
1

g
�k2�a

2
p3

P23

=	a
bAk

b −
1

2g
�bc

a�	�k	
T�cb.

his equation determines the original gauge potential Ak
a as a function of the variables �37�,

rovided that we use Eqs. �27�, �36�, �29�, and �33� to define those components Qk
a that are not

egarded as free variables. In the same way we can invert the momentum transformation equation
38h�, taking into account the definitions �21� and �32�. The result is

Ak
a = �	T�a

b�Qk
b +

1

g
�k1�O4�b

2
p1

P11

1 − � p3

p1
�2

−
1

g
�k2�b

2
p3

P23
� −

1

2g
�bc

a�	T�k	�cb,

�40a�

�ka = �	T�a
bPkb, �40b�

here

Q1
2 = −

1

gP11
�
k=2

3

��kPk3 − g�b
c
3Qk

bPkc� +
1

g
p3

P21

P11P23
,

Q1
3 =

1

gP11
��3P32 − �

k=2

3

g�b
c
2Qk

bPkc� ,

�41�

Q2
2 =

1

gP23
��kPk1 − g�b

c
1Q3

bP3c� ,

P12 = P13 = P22 = 0,

T
nd 	 is expressed in the variables �qi , pi�, i.e.,
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	T =�

1 − � p2

p1

�2

cos�gq2�
p2

p1

cos�gq2� sin�gq2�

−
1 − � p2

p1

�2

sin�gq2� −
p2

p1

sin�gq2� cos�gq2�

p2

p1

−
1 − � p2

p1

�2

0
��1 0 0

0 cos�gq1� sin�gq1�
0 − sin�gq1� cos�gq1�

�


�
p3

p1

0 
1 − � p3

p1

�2

0 − 1 0


1 − � p3

p1

�2

0 −
p3

p1

��1 0 0

0 cos�gq3� sin�gq3�
0 − sin�gq3� cos�gq3�

� .

The transformation equations can also be obtained from a generating functional of the form

F�p1,q2,p3,�Qk
a�	,��ka	� =� F�x�d3x , �42�

here

F =
2

g
�p1 arctan� 
1 − � p3

p1
�2

��1� − ��11 sin�gq2� + �12 cos�gq2��


�13
2 − � p3

p1
�2

��1�2 + ��11 cos�gq2� − �12 sin�gq2��2�
+

2

g
p3 arctan� ��1��N1 sin�gq2� + N2 cos�gq2��
1 − �p3/p1�2

+ ��N��13
2 − � p3

p1
�2

��1�2+ ��11 cos�gq2� − �12 sin�gq2��2�1/2�

�
1 − �p3/p1�2K1 −

p3

p1
�N��11�sin�gq2�

 + �
1 − �p3/p1�2K2 −
p3

p1
�N��12�cos�gq2���− �K1

2 + K2
2� + � p3

p1
�2

��1�2N3
2

+ �K1 cos�gq2� − K2 sin�gq2��2�+ � p3

p1
�2

��1�2�N1 cos�gq2� − N2 sin�gq2��2��
− Qka�	a�

b�kb +
1

2g
�bc

a�	T�3	�cb�3a −
1

2g
�11N1�2� 1

�12
2 + �13

2 �
+

1

g

�21��13�2�12 − �12�2�13� + �11��13�1�12 − �12�1�13�
�12

2 + �13
2

−
1

g
�1��1� + �2���1�

�12�22 + �13�23

�2 + �2 ��arctan� K1

��1�N1
�

12 13
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+
1

2g
�2� �11N1

�12
2 + �13

2 ��ln� �N�2

M8 �
nd

Ka = �a
bc�1bNc = ��a

c�bd − �a
d�bc��1b�1c�2d.

he components Na are those defined in �39� and M denotes a constant with the dimension of
nergy. There is also a real phase � which can take the values ±1. Expression �39� is used for the
atrix 	, and the primed index a� stands as a reminder of the fact that only independent com-

onents Qk
a�, i.e., those included in the list �37� should be summed over. Now the transformation

quations read

q1�x� =
�F

�p1�x�
, �43a�

p2�x� = −
�F

�q2�x�
, �43b�

q3�x� =
�F

�p3�x�
, �43c�

Pka��x� = −
�F

�Qka��x�
, �43d�

Ak
a�x� = −

�F

��a
k�x�

. �43e�

quations �43a�–�43c� reproduce Eqs. �38a�, �38e�, and �38c� in a form where the components Ga

re expressed in the variables �p1 ,q2 , p3 ,�1a	 by inverting Eqs. �38d�, �38b�, and �38f�, i.e.,

G1 = � p3

p1
��1���11 cos�gq2� − �12 sin�gq2��

− ��13
�13
2 − � p3

p1
�2

��1�2 + ��11 cos�gq2� − �12 sin�gq2��2�



p1 cos�gq2�
�13

2 + ��11 cos�gq2� − �12 sin�gq2��2 ,

G2 = − � p3

p1
��1���11 cos�gq2� − �12 sin�gq2��

− ��13
�13
2 − � p3

p1
�2

��1�2 + ��11 cos�gq2� − �12 sin�gq2��2�



p1 sin�gq2�
�13

2 + ��11 cos�gq2� − �12 sin�gq2��2 , �44�

G3 = � p3

p1
��1��13 + ���11 cos�gq2� − �12 sin�gq2��



�13
2 − � p3

p1
�2

��1�2 + ��11 cos�gq2� − �12 sin�gq2��2�



p1

�13
2 + ��11 cos�gq2� − �12 sin�gq2��2 ,
here the sign � must be chosen so that
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� p3

p1
��1���11 cos�gq2� − �12 sin�gq2��

� − ��13
�13
2 − � p3

p1
�2

��1�2 + ��11 cos�gq2� − �12 sin�gq2��2� � 0.

quations �43d� and �38h� are equivalent, and with the help of Eqs. �38c�, �38h�, and �44� it is also
ossible to see the equivalence of Eqs. �43e� and �40a�. Although the generating functional looks
ather complicated, its mere existence is sufficient to confirm that the transformation �38� is
anonical. We have now all the necessary tools at hand for constructing the physical Hamiltonian.

II. PHYSICAL VARIABLES

The greatest advantage in passing to the new variables �37� is the fact that their behavior in the
imit Ga→0 is relatively simple to analyze. Of course, if we were to be exact, we would have to
pecify this limit precisely by starting from Eq. �2� and then defining suitable norms and function
paces for the fields Ak

a and �ka. Instead of doing so let us adopt a physicist’s point of view and
ssume that it does not matter much which particular function spaces we use if our fields are
ufficiently smooth and vanish rapidly enough at infinity. Looking at Eqs. �38d�–�38f� we see then
hat Gauss’s law is implemented in the new variables by setting

p1 = p2 = p3 = 0. �45�

hat these constraints are preserved in time in the dynamics described by the Hamiltonian �1� is

vident because p1 and p2 are constants of motion and p3̇ is proportional to the Gauss law
enerators. Equations �38a�–�38c� reveal similarly that the angles q1, q2, and q3 become ambigu-
us when Ga→0 and therefore we must discard these variables as nonphysical. The physical

ariables are then the pairs �Qk
a� , Pka��, as their defining equations �38g� and �38h� are independent

f Ga. Since the generating functional �42� does not contain explicit time dependence, the dynam-

cs of Qk
a� and Pka� is governed by the Hamiltonian �1� under the constraint �45�, i.e.,

Hphys = H�p1=p2=p3=0.

formula for the Hamiltonian �1� in the variables �37� is most easily obtained with the help of Eq.
40�. Since the Hamiltonian is invariant under gauge transformations of this form, we immediately
et the result

H =� �1

2
PkaPka +

1

4
̃kl

a ̃a
kl�d3x ,

here

̃kl
a = �lQ̃k

a − �kQ̃l
a + g�bc

aQ̃k
bQ̃l

c,

Q̃k
a = Qk

a +
1

g
�k1�O4�a

2
p1

P11

1 − � p3

p1
�2

−
1

g
�k2�a

2
p3

P23
,
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nd the definitions �41� are implied. Imposing the constraint �45�, it is then easy to see that

Hphys =� �1

2
PkaPka +

1

4
kl

a a
kl�d3x , �46�

here

kl
a = �lQk

a − �kQl
a + g�bc

aQk
bQl

c

nd

Q1
2 = −

1

gP11
�
k=2

3

��kPk3 − g�b
c
3Qk

bPkc� ,

Q1
3 =

1

gP11
��3P32 − �

k=2

3

g�b
c
2Qk

bPkc� ,

�47�

Q2
2 =

1

gP23
��kPk1 − g�b

c
1Q3

bP3c� ,

P12 = P13 = P22 = 0.

quations �38h� and �39� also show that

P11 � 0, P23 � 0.

t may be a little surprising that the Hamiltonian �46� is local, because one would expect the Gauss
aw to produce nonlocal terms. However, the locality of Hphys becomes easy to understand if we
ook at the definitions �47�. Our gauge choices have annihilated three momentum components, and
hen we solve Gauss’s law for the coordinates conjugate to these momenta, the result is local.
ne should also note that the Hamiltonian density is singular at points where P11 or P23 vanishes.
hese are exactly the same points where the gauge transformation matrix �39� becomes ambigu-
us.

Now we would like to examine what the Hamiltonian �46� looks like at small and large values
f the coupling constant g. For that purpose we note that every component Qk

a consists of terms
roportional to g−1 and terms independent of g. Therefore the field tensor components kl

a range
rom g−1 to g1 and as a result, the Hamiltonian density takes the form

Hphys =
1

2g2H
�0� +

1

g
H�1� + H�2� + gH�3� +

g2

2
H�4�. �48�
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t small values of g the dominant term is H�0�, and it is rather straightforward to work out that

H�0� = − �2� 1

P11
�
k=2

3

�kPk3 +
P21

P11P23
�
k=1

3

�kPk1� − �1� 1

P23
�
k=1

3

�kPk1��2

+ − �3� 1

P11
�
k=2

3

�kPk3 +
P21

P11P23
�
k=1

3

�kPk1��2

+ �2� �3P32

P11
��2

+ �3� �3P32

P11
��2

+ −
�3P32

P11P23
�
k=1

3

�kPk1�2

+ �3� 1

P23
�
k=1

3

�kPk1��2

. �49�

his expression looks a bit complicated, but it is noteworthy that H�0� does not depend on the
oordinates Qk

a. At large values of g we similarly find the dominant term to be

H�4� = ���P33Q3
1 − P31Q3

3��P33Q3
2 − P32Q3

3� + P23Q3
2�P33Q2

1 − P31Q2
3� + P23P32�Q2

3Q3
1 − Q2

1Q3
3��2

+ P23
2 �− P11Q1

1Q2
3 + Q2

1�P23Q2
1 − P21Q2

3 + P33Q3
1 − P31Q3

3��2 + �P23Q2
1�− P32Q3

1 + P31Q3
2�

− �P11Q1
1 + P21Q2

1��P33Q3
2 − P32Q3

3��2 + �− P23Q3
2�P23Q2

1 − P21Q2
3 + P33Q3

1� + Q3
3�P23P32Q3

1

+ P21P33Q3
2� − P21P32�Q3

3�2�2 + P23
2 �Q3

1�P23Q2
1 − P21Q2

3 + P33Q3
1� − Q3

3�P11Q1
1 + P31Q3

1��2

+ �− P23P32�Q3
1�2 + P23Q3

2�P11Q1
1 + P31Q3

1� + P21Q3
1�− P33Q3

2 + P32Q3
3��2 + P11

2 �− P23Q2
3Q3

2

− Q3
3�P33Q3

2 − P32Q3
3��2 + �P11P23�2�Q2

3Q3
1 − Q2

1Q3
3�2 + P11

2 �P23Q2
1Q3

2 + Q3
1�P33Q3

2

− P32Q3
3��2	/�P11P23�2. �50�

his is also a rather complicated expression, being fourth order in the coordinates Qk
a and frac-

ional in the momenta Pka. Finally we should note that the form of the decomposition �48� is
ctually a matter of choice, since it is always possible to scale the variables by

�Qk
a,Pka� → �g�kaQk

a,g−�kaPka� ,

here the �ka’s are arbitrary constants. However, scalings like this would alter the g dependence
f the field tensor kl

a and the covariant derivative. As a result, the interpretation of g would also
hange. In the present form g is defined so that the limit g→0 corresponds to an Abelian theory.
he singular behavior of Hphys in this limit then stems from an obvious qualitative difference
etween Abelian and non-Abelian theories in the function group method. Namely, the algebra �3�
hows that for a non-Abelian theory �g�0� the Gauss law generators must be parametrized with
ariables that contain one canonically conjugate pair, whereas in the Abelian case �g=0� this
arametrization cannot contain canonical pairs at all. Also the solution of Gauss’s law given in
47� is genuinely non-Abelian and impossible to extend to the Abelian case.

When quantizing the Hamiltonian �46�, we could try to quantize one of the limiting cases �49�
r �50� first and then develop a perturbation expansion in appropriate powers of g. At least the
eak coupling Hamiltonian �49�, despite its complicated appearance, looks easy to quantize as its

igenstates would consist of common eigenstates of the momentum operators. The strong coupling
amiltonian �50� is considerably more difficult to quantize in the canonical approach because we
ould have to solve problems connected with the ordering of operators and with the regularization
f higher order functional derivatives defined at the same point in space. Moreover, it is not clear
hether large values of the bare coupling constant are physically relevant. As a general feature of
uantization one should also take into account that two classical systems connected by a canonical
ransformation do not necessarily yield unitarily equivalent quantum systems. For example, in
uantum mechanics it is often difficult to find a unitary transformation corresponding to action-
ngle variables in classical mechanics.18 The fact that the transformation �38� is nonlinear might
hus have an effect on the quantization of the Hamiltonian �46�. Finding a suitable quantization

rocedure remains a problem to study.
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V. CONCLUSIONS

The unconstrained Hamiltonian �46� lies at the end of a long journey which started from the
emporal gauge Hamiltonian �1� and passed through the transformation �38�, making it finally
ossible to implement Gauss’s law in the new variables �37�. The canonical pairs �qi , pi� turned out
o be nonphysical, which led to the conclusion that the physical degrees of freedom are described

y the gauge-invariant fields �Qk
a� , Pka��. Equation �47� then defined those components that are not

ree variables. The actual construction of the variables �37� relied on the parametrization �6� and
he complementary choices �18�, �28�, and �31�. One could also easily experiment with different
hoices and derive alternative Hamiltonians corresponding to them by applying the general prin-
iples stated in Sec. II. In particular, the Poisson bracket relations �17� allow for a large variety of
ossible U�1� gauges, given only that the initial choice �7� is made.

An extension of this construction to more general Lie groups is relatively straightforward to
utline. One should begin by deriving a parametrization of the Gauss law generators similar to �6�.
dentifying the Ga’s with elements of the corresponding Lie algebra, one should select the maxi-
um number of new canonical momenta from the maximal Abelian subspace of the enveloping

lgebra. The remaining variables needed for the parametrization should then be chosen so that the
ie algebra relations

�Ga�x�,Gb�y�	 = − gfab
cGc�y���x − y�

ould hold as a consequence of the canonical Poisson brackets. After identifying which variables
re gauge-dependent one should define gauge-invariant variables by transforming the gauge-
ependent degrees of freedom away. The details of the construction would then depend on the
oisson brackets of the gauge-invariant variables and the way of defining those gauge degrees of
reedom that are not fixed by the parametrization of the Gauss law generators. No doubt that the
alculations would be much more complicated than in the SU�2� case. In addition to generalizing
he Lie group, one could also extend the method by adding matter fields, in particular fermions,
nto the theory. However, it seems that the question of quantization deserves the most attention in
he future because it is crucial for the physical applicability of the Hamiltonian �46�.
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note on BRST quantization of SU„2… Yang-Mills
echanics
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The quantization of SU�2� Yang-Mills theory reduced to 0+1 space-time dimen-
sions is performed in the BRST framework. We show that in the unitary gauge
A0=0 the BRST procedure has difficulties which can be solved by introduction of

additional singlet ghost variables. In the Lorenz gauge Ȧ0=0 one has additional
unphysical degrees of freedom, but the BRST quantization is free of the problems
of the unitary gauge. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2040348�

. SU„2… YANG-MILLS MECHANICS

We consider SU�2� Yang-Mills mechanics obtained by the reduction of SU�2� Yang-Mills field
heory in �D+1�-dimensional space-time to a finite-dimensional quantum system, by taking the
ynamical variables to depend on the time coordinate t only. The Lagrangian of such a theory is

LYMQM = 1
2 �F0i

a �2 − 1
4 �Fij

a �2, �1�

here i , j= �1,… ,D�, and

F0i
a = Ȧi

a − g�abcA0
bAi

c, Fij
a = − g�abcAi

bAj
c. �2�

uch a system has been widely studied in the context of nonperturbative aspects of �super�
ang-Mills theories,1,2 and as a first step in the regularized dynamics of membrane theory.3–5

The Lagrangian is invariant under time-dependent gauge transformations with parameters
a�t�, taking the infinitesimal form

�A0
a = �̇a − g�abcA0

b�c, �Ai
a = − g�abcAi

b�c. �3�

his invariance allows us to impose a gauge condition leaving the physical dynamics unchanged.
he simplest choice is

A0
a = 0. �4�

ith this condition the effective Lagrangian for the remaining D-dimensional vector potentials Aa

ecomes �we do not distinguish between upper and lower adjoint indices �a ,b ,c ,…� for SU�2��

Leff = 1
2Ȧa

2 − V�A� , �5�

ith the potential

�Electronic mail: fuster@nikhef.nl
�
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V�A� =
g2

4
�Aa

2Ab
2 − �Aa · Ab�2� . �6�

n addition, we must impose a set of �first-class� constraints corresponding to the previous equa-
ions of motion for A0

a,

Ga � g �abcAi
bF0i

c � g �abcAb · Ȧc = 0. �7�

hus, the physical trajectories in configuration space in the gauge �4� are the solutions of the
uler-Lagrange equations derived from �5� subject to the additional constraints �7�.

In addition to the pure Yang-Mills theory described by the action �1�, one can also construct
arious supersymmetric extensions, based on the reduction of supersymmetric Yang-Mills field
heory in D=1, 3, 5, 9. The spectra of these theories differ in certain aspects,1,6,3,4,7–9 but for the
roblem addressed in this paper those differences are not relevant.

To keep track of the constraints, especially in the context of the Yang-Mills quantum theory,
e follow the BRST procedure. �For reviews, see Refs. 10 and 11.� Thus we introduce anticom-
uting ghost degrees of freedom �ba ,ca� as well as commuting auxiliary scalars Na in such a way,

hat the total gauge-fixed action becomes invariant under a set of special ghost-dependent gauge
ransformations, the rigid BRST invariance. The anticommuting BRST differentials �� are defined
efore gauge fixing as follows:

��A0
a = �D0c�a = ċa − g�abcA0

bcc, ��Ai
a = �Dic�a = − g�abcAi

bcc,

�8�

��ca =
g

2
�abccbcc,

��ba = iNa, ��Na = 0.

he gauge invariance of the classical action �1� implies its invariance under the BRST transfor-
ations by construction. The BRST differential has the standard property that ��

2 =0. The imple-
entation of the BRST construction for the gauge A0=0 is, to impose this gauge condition using

he Nakanishi-Lautrup fields Na as Lagrange multipliers, and complete the effective Lagrangian so
s to make it fully BRST invariant. For the case at hand this results in the effective Lagrangian,

Leff = LYMQM + NaA0
a + iba�ċa − g�abcA0

bcc� . �9�

e can use the gauge condition implied by the Nakanishi-Lautrup fields to eliminate A0
a and Na

imultaneously; in a path-integral formulation, this implies integrating out a �-functional ��A0�.
he result is

Leff = 1
2Ȧa

2 − 1
4 �Fij

a �2 + ibaċa. �10�

ote that for D=3 we can construct a magnetic field by 1/2 �ijkFjk
a =Bi

a, but this does not hold for
eneral D. The effective Lagrangian �10� is invariant under the reduced form of the BRST varia-
ions �8� obtained by taking A0

a=0, and using the equation of motion for Na,

�ba = iNa � ig�abc�Ai
bF0i

c − icbbc� . �11�

he BRST invariance of the effective Lagrangian implies an anticommuting conserved charge by
oether’s theorem. The BRST charge takes the form

� = caGa −
ig

2
�abccacbbc. �12�

he first-class constraints of the classical theory are summarized effectively by the statement that

=0; more precisely, in the phase-space formulation, all brackets of physical quantities with �
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ust vanish, physical quantities must be BRST invariant; this is discussed in more detail in the
ext section.

I. QUANTUM THEORY

In the quantum theory the dynamical variables Ai
a and their conjugate momenta Pi

a= Ȧi
a, as

ell as the Faddeev-Popov ghosts are operators satisfying �anti-�commutation relations

�Ai
a,Pj

b� = i �ab�ij, �ca,bb�+ = �ab. �13�

he Hamiltonian is given by

Heff = 1
2Pa

2 + 1
4Fij

a 2, �14�

s for pure Yang-Mills theory, in fact. The Hamiltonian determines the time evolution of any
uantity X constructed from the Yang-Mills or ghost operators by the Schrödinger equation

Ẋ = i�H,X� . �15�

auge transformations on �Aa ,Pa� are generated by the SU�2� charges

Ga = g �abcAb · Pc, �16�

uch that

�aX = i�Ga,X�, �aGb = i�Ga,Gb� = − g �abcGc, �17�

hile more generally the BRST transformations are given by

��X = i��,X�±, �18�

here the sign depends on the fermionic parity of the quantity X ,+ �anticommutator� for fermionic
and − �commutator� for bosonic X. In particular, the commutation relation �17� for the gauge

harges together with the ghost anticommutator �13� implies the nilpotency of the BRST charge,

�2 = 0. �19�

o complete the theory we must define an inner product on the extended state space, such that
ero-norm states decouple and physical states have positive norm. For this to happen, it is neces-
ary that the BRST operator is self-adjoint with respect to this inner product. In the coordinate
epresentation, with states being represented by wave functions ��A ,c�, such an inner product is
efined by the integral12

��,�� = i� dc1dc2dc3� �
i,a

dAi
a�†�A,c���A,c� . �20�

t is easily seen that with this definition the ghost operators �b ,c� are self-adjoint themselves. It
ollows directly that, indeed,

���,�� = ��,��� . �21�

II. PHYSICAL STATES

The physical states of Yang-Mills quantum mechanics are constructed by solving for the
igenstates and eigenvalues of the Hamiltonian �14� subject to the constraint of BRST invariance.

One useful way to construct states is by the Fock-space approach,7 in which one starts with an

scillator basis for the dynamical degrees of freedom defined by
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aa =
1
	2

�Aa + iPa�, aa
† =

1
	2

�Aa − iPa� . �22�

hese creation and annihilation operators satisfy the standard commutation relations

�aa,ab
†� = �ab1D, �23�

here 1D is the D-dimensional unit matrix. As implied by Eq. �13� the ghost operators already
ehave like fermionic ladder operators. One is free to consider either ca or ba as creation operator;
e choose ca. Fock states are now constructed as polynomials in aa

† and ca acting on an empty
tate �0 defined by

aa�0 = ba�0 = 0. �24�

uch a construction differs from the standard �bosonic or fermionic� creation and annihilation
perators in that ca and ba are self-adjoint with respect to the inner product �20� rather than adjoint
o each other. A similar treatment of ghost ladder operators can be found in Ref. 13.

The Hamiltonian can be represented as a matrix in a basis of Fock states. Subsequent diago-
alization would give the spectrum of the theory. �Note one can only construct a basis of finite
imension and therefore any results would be approximate �see Ref. 7�.�

In the context of the coordinate representation this construction is realized by taking

aa =
1
	2


Aa +
�

�Aa
�, ba =

�

�ca , �25�

nd

�0 = Ne− 1
2

Aa·Aa, �26�

ith N a normalization factor. In this representation the gauge generators are of the form

Ga = − ig �abcab
† · ac. �27�

e analyze next the restrictions imposed by the BRST symmetry on states in order to be physical.
n the BRST formalism physical states are identified with the cohomology classes of the nilpotent
RST charge �,

Hphys �
Ker �

Im �
. �28�

his implies that physical states � are BRST invariant,

�� = 0, ��,�� = 1, �29�

nd state vectors differing by a BRST-exact state are identified,

� � �� = � + �� . �30�

herefore matrix elements of physical operators between physical states must be invariant under
he BRST transformations �30�:

��,X�� = ��,X���, if ��,X�± = 0. �31�

hese properties are guaranteed if BRST-exact states of the form �� decouple from the physical

tate space and have zero norm,
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��,��� = ���,�� = 0, ���,��� = ��,�2�� = 0. �32�

bserve that it is crucial for these results that the BRST charge is self-adjoint with respect to the
hysical inner product.

To do any practical calculation one needs an explicit expression for the physical state vectors;
his can be achieved by selecting one element from each equivalence class, using the nilpotent
o-BRST operator

*� = Gaba −
ig

2
�abccabbbc, *�2 = 0. �33�

ndeed, the co-BRST condition

*�� = 0, �34�

cts as a gauge fixing condition for the BRST transformations �30�, reducing the state space as
equired.12 States satisfying both ��= *��=0 are called BRST harmonic. Physical states are
efined as BRST harmonic states of finite norm. We build first Fock states which are BRST
armonic.

Define the �total� ghost number as the operator

Ng = caba. �35�

plitting the Fock space in four sectors corresponding to the eigenvalues ng of Ng, 0,…,3, we
onstruct states in each ghost sector as follows:

��0��M� = M�a†��0,

�a
�1��M� = caM�a†��0,

�̃a
�2��M� = 1

2�abcc
acbM�a†��0,

�̃�3��M� =
1

3!
�abcc

acbccM�a†��0.

ere M�a†� is some gauge-invariant polynomial in the operators a†,

M�a†� = 
n

�a1¯an
aa1

†
¯ aan

† , �36�

nd the coefficients �a1¯an
are invariant SU�2� tensors.

The complete set of solutions consists of two distinct classes, the states at ghost number ng

0, �M
�0�, and those at ghost number ng=3, �̃�3��M�. We discuss next the possibility for these

tates to have finite norm �see also Refs. 14 and 15�. The spectrum of the Hamiltonian in such a
asis would be guaranteed to be physical.

V. INNER PRODUCT AND GHOST VACUUM

The existence of two classes of BRST-harmonic states at different ghost number is of crucial
mportance for the construction of a nontrivial physical inner product.11,14 Indeed, if we would
nly have the states at ng=0 it is quite obvious from the definition �20� that the vacuum state �0

ould have zero norm,

��0,�0� = 0, �37�
hile the BRST-invariant 3-ghost operator has a nonzero vacuum expectation value,
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i

3!
�abc�cacbcc� =

i

3!
��0,�abccacbcc�0� = 1. �38�

he problem clearly is in the definition of the ghost vacuum, in combination with the fact that the
hosts are self-conjugate. Therefore the ghost creation operators ca do not act as annihilation
perators on the conjugate �bra� vectors; if they would, the BRST charge would not be self-
djoint. In particular, it is not an option to replace the space of bra states by the BRST-dual states

�̃†�M� =
i

3!
�†�M��abccacbcc, �39�

s proposed in Refs. 14 and 16, which is equivalent to the replacement of the inner product �20�
y

��,�� → ��,�� =
i

3!
�abc��,cacbcc�� . �40�

n fact, it is clear that the ghost variables have vanishing matrix elements between any of the states
physical or unphysical�:

��,ca�� = 0, ∀ �,� , �41�

.e., the ghosts would effectively vanish as operators, and the same is true for the BRST charge �.
Part of the solution of this problem, also along the lines suggested in Ref. 16, is to use the

xistence of the second set of solutions of the BRST and co-BRST constraints with ng=3 to
hange the definition of the ghost vacuum. If we define a new vacuum state,

�+ =
1
	2


1 +
i

3!
�abccacbcc��0, �42�

ith corresponding physical excited states �+�M�=M�a†��+, the ghost operators remain self-
djoint and the vacuum is normalizable,

��+,�+� = 1. �43�

drawback is, that the vacuum �+ has no well-defined ghost number, and not even a well-defined
rassmann parity, being a sum of an even and odd ghost number state. Moreover, the vacuum

xpectation value of the ghosts �38� is changed, but still nonvanishing; actually we now have

i

3!
�abc�cacbcc�+ =

i

3!
��+,�abccacbcc�+� =

1

2
, �44�

nd similarly

i

3!
�abc�babbbc�+ =

1

2
. �45�

lthough these expectation values are BRST invariant, they carry a nonzero ghost number, a
anifestation of the noninvariance of both the vacuum and the inner product itself under ghost

escaling.
Both problems can be solved by introducing a fourth ghost �, with conjugate antighost 	,

��,	�+ = 1. �46�

he new ghost � is taken to be a BRST singlet and has ghost number ng���=−3; thus it has the
ame quantum numbers as the invariant antighost operator, while 	 has the quantum numbers of

he corresponding ghost operator,
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� �
i

3!
�abcbabbbc, 	 �

i

3!
�abccacbcc. �47�

e then define the physical vacuum state

�0 =
1
	2


1 +
1

3!
� �abccacbcc��0, �48�

nd the physical excited states

��M� = M�a†��0. �49�

hese physical states have a well-defined ghost number ng��M�=0 and Grassmann parity �even�.
his is especially important in the supersymmetric extensions of the theory, as the action of the
augino operators would otherwise cause problems with sign changes for odd ghost number terms.

Simultaneously we also redefine the inner product �20� in the coordinate representation the
ull state space to

��,�� =� d�� dc1dc2dc3� �
i,a

dAi
a�†�A,c���A,c� . �50�

ith respect to this inner product, all ghosts, including the new singlet ghost, are self-adjoint, and
o is the BRST charge �. Observe that the ghost integration measure now has vanishing ghost
umber as well. Finally, the 3-ghost operator vacuum expectation value vanishes trivially,

i

3!
�abc�cacbcc�� =

i

3!
��0,�abccacbcc�0� = 0. �51�

f course, there arise new vacuum expectation values

1

3!
�� �abccacbcc�� =

1

3!
�	 �abcbabbbc�� =

1

2
, �52�

ut these expectation values are both BRST invariant and have vanishing ghost number.
In passing, let us point out a further result of some interest, it is possible to define new

ntighost operators 
a and � by


a = ba + 1
2�abc�cbcc, � = 	 −

1

3!
�abccacbcc. �53�

hese redefinitions preserve the ghost number. Moreover, one easily establishes the anticommu-
ation relations

�ca,
b�+ = �ab, ��,��+ = 1, ��,
a�+ = ��,ca�+ = 0, �54�

ith all other anticommutators vanishing as well. In addition


a�0 = � �0 = 0, �55�

uggesting that �0 is the actual Fock vacuum for the new antighosts �� ,
a�. Unfortunately, it is to
e noted that these antighosts are no longer self-adjoint with respect to the inner product �50�,


a
† = ba − 1

2�abc�cbcc, �† = 	 +
1

3!
�abccacbcc. �56�
ence these operators do not annihilate the conjugate vacuum, for a general state vector �,
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��0,
a�� = �
a
†�0,�� � 0. �57�

oreover, the conjugate ghosts have nontrivial anticommutation relations with the original anti-
hosts, e.g.,

�
a
†,��+ = − �abccbcc, �
a

†,
b�+ = − �abc�cc. �58�

herefore the ghost variables �
a ,�� are not of much use in the construction of states. Neverthe-
ess, they do provide a good way to characterize the ghost dependence of the physical states by the
onditions �55�.

. LORENZ GAUGE

We will now show, that the problems with the definition of physical states and inner products
ketched in Sec. IV do not exist in the Lorenz gauge quantization. The starting point for our
nalysis is again the classical theory defined in Eqs. �1�–�3�, and the representation of the nilpotent
RST algebra defined in Eq. �8�. In the �0+1�-dimensional reduction of the Yang-Mills theory, the
orenz gauge takes the form

Ȧ0 = 0. �59�

convenient BRST-invariant extension of the classical Lagrangian for this gauge is

LLorenz = LYMQM + NaȦ0
a − 1

2Na
2 − iḃa�D0c�a � 1

2 �D0A
a�2 + 1

2 �Ȧ0
a�2 − 1

4 �Fij
a �2 − iḃa�D0c�a,

�60�

here the last line results from elimination of the auxiliary fields Na. The corresponding Hamil-
onian is

HLorenz =
1

2
�Pa + g�abcA0

bAc�2 +
1

2
�P0

a�2 +
1

4
�Fij

a �2 −
g2

2
��abcA0

bAc�2 + i�ua − ig�abcA0
bcc�va,

�61�

here the canonical momenta are defined by

Pa = �D0A�a, P0
a = Ȧ0

a,

ua = − �D0c�a, va = ḃa. �62�

he conserved BRST charge takes the form

� = Gaca −
ig

2
�abccacbvc + P0

aua, �63�

ith the gauge charges Ga as in Eq. �16�. As neither of the expressions �61� and �63� suffer from
rdering ambiguities, they can be interpreted directly as quantum operators, with the fundamental
ommutation relations given by

�Aa,Pb� = i�ab1D, �A0
a,P0

b� = i�ab,

�64�
�ca,vb�+ = �ab, �ba,ub�+ = �ab.

he quantum equations of motion and the BRST transformations then again take the form �15� and
18�. In the coordinate representation, the BRST-invariant inner product of two wave functions in

he full ghost-extended Hilbert space now takes the form
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��,�� = i� �
a

dbadca� �
a

dA0
a� �

i,a
dAi

a�†�A,A0,c,b���A,A0,c,b� . �65�

o fix the BRST gauge, we introduce the co-BRST operator

*� = Gava +
ig

2
�abccavbvc + P0

aba. �66�

equiring states to be simultaneously BRST and co-BRST invariant leads to the conditions

Ga� = 0, �a� = 0, P0
a� = 0, �67�

here

�a = ig�abccbvc, �68�

s the generator of the rigid SU�2� transformations, which is still an invariance of the theory, on the
onjugate ghosts variables �ca ,va�. In contrast to the unitary gauge A0

a=0, in the Lorenz gauge the
RST conditions do not fix the physical states complelety. We can still impose a further constraint
xing the dependence of physical states on the antighost variables �ba ,ua�, by requiring states to
e rigid SU�2� singlets with respect to all variables,

�̃a� = 0, �̃a = ig�abcbbuc. �69�

ndeed, it is easily checked that �̃a is a BRST and co-BRST invariant operator; therefore the
onstraint can be imposed consistently on all physical states.

The full set of solutions of conditions �67� and �69� are wave functions which are SU�2�
inglets �i.e., gauge invariant�, which do not depend on A0

a, and whose ghost dependence is a
onstraint to the form

�phys�A,c,b� = �1�A� +
i

3!
�abccacbcc�2�A� +

i

3!
�abcbabbbc�3�A� +

i

�3 ! �2 ��abccacbcc�

��defbdbebf��4�A� . �70�

ith the standard assignment of the ghost number +1 for ca and −1 for ba, requiring the states to
ave vanishing ghost number and definite Grassmann parity imposes the further constraint

�2�A� = �3�A� = 0. �71�

inally, requiring the inner product �65� to be positive definite in the subspace of physical states,
e must fix the space of physical states to be represented by factorized wave functions,

�phys =
1
	2
�1 +

i

�3 ! �2 ��abccacbcc���defbdbebf���M =
1
	2
1 − i�

a

�caba���M , �72�

here �M can be taken as a physical Fock state of the form �36�. Observe that the operator
i /3 ! ��abcbabbbc plays the same role here as the extra ghost � in our construction of the states in
he unitary gauge. Obviously, as in the unitary gauge, we can define a ghost operator with nonzero
acuum expectation value

i

�3 ! �2��
a

�caba�� =
1

2
, �73�

ut like �52� it is BRST invariant and has vanishing ghost number. Finally, defining the vacuum

tate of the physical subspace as
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�0 =
1
	2
1 − i�

a

�caba���0, �74�

here �0 is the Fock vacuum of the Yang-Mills system, one can again define ghost operators
nihilating �0 by taking

�a = ca +
i

2 · 3!
�abcvbvc�defududuf, 
a = ba −

i

2 · 3!
�abcubuc�defvdvdv f . �75�

s might be expected from our previous analysis, these operators are not self-adjoint and do not
efine a good basis for a complete Fock-space construction in the ghost sector. Nevertheless, the
onditions

�a�0 = 
a�0 = 0 �76�

rovide a convenient way to characterize the physical ghost vacuum.
Finally we should remark, that in the physical subspace the integration over A0

a is of course
ivergent in the absence of damping, as the physical wave functions are A0 independent. This
ivergence can be absorbed in a wave-function renormalization factor

N =
1

	��adA0
a

. �77�

nowing this, we can remove the A0
a from the physical inner product and effectively set N=1; we

bserve, that N is BRST invariant, and the procedure does not jeopardize the BRST invariance of
he integration measure.

I. DISCUSSION

In this paper we have shown, that although the physical content of the �0+1�-dimensional
ang-Mills theory is clearest in the unitary gauge A0

a=0, the BRST quantization works in a more

traightforward way in the Lorenz gauge Ȧ0
a=0. An important part of the discussion and analysis

as based on the construction of a BRST-invariant inner product with respect to which the BRST
harge � is self-adjoint.

To get a little more algebraic and geometric insight into the constructions, consider again the
nitary gauge, in which a general state is represented by a wave function

��c� = � + ca�a +
i

2!
cacb�ab +

i

3!
cacbcc�abc. �78�

efining the dual wave function

�̃�c� = �̃ + ca�̃a +
i

2!
cacb�̃ab +

i

3!
cacbcc�̃abc �79�

ith components

�̃ =
1

3!
�abc�abc, �̃a =

1

2!
�abc�bc,

�80�
�̃ab = �abc�c, �̃abc = �abc� ,

e recognize that the physical states �42� are characterized as the self-dual states �̃=�, such that

he inner product �20� becomes
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i� dc1dc2dc3�†� =
1

3!
�abc��abc

† � + �†�abc + 3�a
†�bc + 3�ab

† �c� = 2�†� + 2�a
†�a. �81�

n particular, with �̃=�=	2�M and �a= �̃a=0, this reduces to

i� dc1dc2dc3�†�M���M� = �M
† �M . �82�

ence this inner product is positive definite for physical states. Of course, one can also consider

he anti-self-dual states �̃=−�, which than have a negative definite norm. This should not sur-
rise us, as the existence of a self-adjoint nilpotent BRST operator �2=0 is possible only in a
pace with indefinite norm. The important point is, that the space of physical states should have
ositive norm, and that is realized in the subspace of self-dual states.

Generalization of this discussion to the Lorenz gauge is simple. Each component in the
ave-function expansion �78� now is a function of the additional ghost variables ba, and we can

gain distinguish between components which are self-dual or anti-self-dual with respect to the
xpansion in ba. In this formulation the physical states are then identified with the wave functions
or which the components of zero ghost number are completely self-dual, i.e., self-dual both with
espect to the c-ghost duality and with respect to the b-ghost duality.

We have discussed in particular the case of SU�2� Yang-Mills theory. The generalization to
U�N� is straightforward; with r=N2−1 generators, and the same number of ghost and antighost
ariables, the self-dual physical states in the unitary gauge are of the form

��c� =
1
	2


1 +
i�r/2�

r!
�a1¯arca1

¯ car��M . �83�

or odd r �even N�, both ghost number and Grassmann parity of the wave functions are ill defined;
or even r �odd N�, it is only the ghost number which is violated. In both cases, introduction of a
inglet ghost � with ghost number ng���=−r solves the problems. On the other hand, in the Lorenz
auge this is taken care of automatically by the antighost variables, as the operator

i�r/2�

r!
�a1¯arba1

¯ bar �84�

as the same quantum numbers and plays the same role.
Finally we note, that as we have constructed precisely one BRST-invariant wave function for

ach physical state, in the supersymmetric extension the computation of the Witten index17,9 is not
ffected by including the ghost degrees of freedom in the appropriate way �also see Refs. 18–20�.
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Coset methods are used to construct the action describing the dynamics of the
�massive� Nambu-Goldstone scalar degree of freedom associated with the sponta-
neous breaking of the isometry group of AdSd+1 space to that of an AdSd subspace.
The resulting action is an SO�2,d� invariant AdS generalization of the Nambu-
Goto action. The vector field theory equivalent action is also determined. © 2005
American Institute of Physics. �DOI: 10.1063/1.2048307�

. INTRODUCTION

The AdS/CFT correspondence originally proposed by Maldecena1 has sparked an enormous
mount of theoretical investigation and speculation.2 The nature of this connection has been
ecently considered3,4 for the case of an AdSd defect �brane� embedded in an underlying AdSd+1

pace so that the SO�2,d� isometry group of the AdSd+1 metric is spontaneously broken to the
O�2,d−1� isometry group of the AdSd space. It turns out that this case also provides a surprising
xample of a localized D=4 gravity in which the metric differs drastically from the Minkowski
etric only far from the brane.3 Moreover, when a CFT is coupled to AdS gravity, it has been

hown that the AdS graviton obtains a mass by means of the AdS Higgs mechanism with the
raviton absorbing a massive AdS vector5 Nambu-Goldstone field.3,6,7

As a consequence of the embedding of the AdSd brane in AdSd+1 space, it follows that �d
1� of the pseudotranslations and Lorentz transformations of the AdSd+1 space are spontaneously
roken. As is typical of spontaneous space-time symmetry breaking,8 however, not all of the
roken symmetries give rise to independent Nambu-Goldstone degrees of freedom. In fact, there
s only a single Nambu-Goldstone boson, denoted ��x�, associated with a broken pseudotransla-
ion generator which is independent. Here x�, �=0,1 ,… ,d−1, are coordinates parametrizing the
dSd space. In this paper, we construct the action governing the dynamics of this Nambu-
oldstone boson. This mode has a natural interpretation as describing the coordinate oscillations
f the brane into the target space covolume. As such we obtain the AdS space generalization of the
ambu-Goto action.

AdSd+1 space can be simply described as the SO�2,d� invariant hyperboloidal hypersurface

�Electronic mail: clark@physics.purdue.edu
�Electronic mail: love@physics.purdue.edu
�Electronic mail: nitta@th.phys.titech.ac.jp
�
Electronic mail: terveldhuis@macalester.edu
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1

m2 = X0
2 − X1

2 − X2
2 − ¯ − Xd

2 + Xd+1
2 = XM�̂MNXN, �1.1�

mbedded in a �d+2�-dimensional pseudo-Euclidean space defined with invariant interval

ds2 = dXM�̂MNdXN �1.2�

haracterized by the metric tensor �̂MN of signature �+1,−1,−1,… ,−1 , +1�, where M ,N
0,1 ,… ,d ,d+1. Here XM are the pseudo-Euclidean space homogeneous coordinates and m is a
onstant inverse length scale characterizing the AdSd+1 space.

AdSd+1 space containing an AdSd brane, which is a d-dimensional world volume with an AdS
etric embedded as a Xd=0 hypersurface, can be described by the coordinates XM

�X� ,Xd ,Xd+1� with

X� = a�x2�x� cosh�mr�, � = 0,1,…,d − 1,

Xd =
1

m
sinh�mr� , �1.3�

Xd+1 =
1

m
b�x2�cosh�mr� .

ere x� are the intrinsic coordinates of the AdSd world volume and −��r�� is the covolume
oordinate. To satisfy Eq. �1.1� of the AdSd+1 hyperbola, a�x2� and b�x2� are related as

1 = m2x2a2�x2� + b2�x2� . �1.4�

ence the SO�2,d� invariant interval, Eq. �1.2�, becomes

ds2 = e2A�r�ds̄2 − dr2, �1.5�

here the warp factor is A�r�=ln cosh�mr� and ds̄ 2=dx�ḡ���x�dx� is the AdSd invariant interval
ith ḡ�� the AdSd metric tensor.

The AdSd subspace has the isotropic coordinates x� of an SO�2,d−1� invariant hyperboloid,
/m2=X0

2−X1
2− ¯−Xd−1

2 +Xd+1
2 , embedded at r=0=Xd. This subsurface maintains the coordinate

elation Eq. �1.4�. This in turn leads to a form for the AdSd metric tensor given by

ḡ���x� = a2�x2�PT���x� + ��a�x2� + 2x2da�x2�
dx2 �2

+ 4
x2

m2�db�x2�
dx2 �2�PL���x�

= a2�x2�PT���x� +
�a�x2� + 2x2da�x2�

dx2 �2

�1 − m2x2a2�x2�� PL��. �1.6�

ere the transverse and longitudinal projectors for x� are defined as

PT���x� = ��� −
x�x�

x2 ,

PL���x� =
x�x�

x2 , �1.7�

nd ��� is the metric tensor for d-dimensional Minkowski space having signature �+1,−1,… ,

1�. Throughout this paper, indices are raised, lowered, and contracted using ��� so that,
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or instance x2	x����x
�. Any use of a curved metric will be noted explicitly. Further discussion

f AdS coordinates and some specfic choices for a�x2� and b�x2� are found in Appendix A.
Since the embedding of the AdSd brane breaks the AdSd+1 space-time symmetries to those of

dSd, the associated Nambu-Goldstone bosons act as coordinates of the coset manifold corre-
ponding to the SO�2,d�→SO�2,d−1� breakdown. In this paper, we show, using coset
ethods,9–11 that the SO�2,d� invariant action governing the dynamics of the Nambu-Goldstone

oson degree of freedom takes the form

� = − �
 ddx det ē�x�coshd�m��x���1 −
D���x���nDn��x�

cosh2�m��x��
. �1.8�

ere Dn= ē n
−1��x��� is the SO�2,d−1� covariant derivative with n=0,1 ,… ,d−1. The AdSd viel-

ein, ē�
n, corresponding to the metric tensor ḡ��= ē�

���nē�
n is given by

ē�
n�x� = a�x2�PT�

n�x� +���a�x2� + 2x2da�x2�
dx2 �2

+ 4
x2

m2�db�x2�
dx2 �2�PL�

n�x�

= a2�x2�PT�
n�x� +

a�x2� + 2x2da�x2�
dx2

�1 − m2x2a2�x2�
PL�

n. �1.9�

he overall positive constant � �brane tension� carries mass dimension d. Note that the overall
ign of the action is fixed so that the � kinetic energy term is positive. Equation �1.8� is the AdS
eneralization of the Nambu-Goto action for an AdSd brane embedded in AdSd+1 space. We see
hat the Nambu-Goldtone mode is massive and has nonderivative self-interactions.

The outline of the paper is as follows. The coset method construction is presented in Sec. II
long with the explicit form of the nonlinear realizations of the SO�2,d� transformations of the
ambu-Goldstone fields. The action building blocks secured from the Maurer-Cartan one-form

lso appear in this section. Section III includes the transformation properties of the Maurer-Cartan
ne form along with the construction of the SO�2,d� invariant AdSd action. In addition, this
ection contains the general AdSd coordinate transformations. The form of the AdSd action is
hown to remain invariant under these coordinate transformations. Finally in Sec. III, the vector
eld theory equivalent of this action is also secured. In this construction, it is the longitudnal
omponent of the vector field which plays the role of the massive Nambu-Goldstone degree of
reedom. In the Poincaré limit, m→0, the usual equivalence of this action to a tensor gauge
heory12 action is obtained.13 There are two appendixes. Appendix A contains a discussion of the
arious AdS coordinate systems used in the paper, while the AdS isometry charge algebra is
eviewed in Appendix B.

I. THE COSET CONSTRUCTION

The isometry group of the AdSd+1 hyperboloid �cf. Eq. �1.1�� is SO�2,d� while that of the
dSd subspace is SO�2,d−1�. The action governing the dynamics of the Nambu-Goldstone modes

ssociated with the symmetry breakdown SO�2,d�→SO�2,d−1� can be constructed by means of
he coset method. This technique begins by introducing the coset element 	�SO�2,d� /SO�1,d
1� where SO�1,d−1� corresponds to the Lorentz �stability� group of transformations in AdSd.
he AdSd=SO�2,d−1� /SO�1,d−1� coordinates, y�, act as parameters for pseudotranslations in

he world volume and are part of the coset so that

	�y� = eiy�P�ei��y�Zeiv��y�K�. �2.1�

ere the symmetry generators P� , Z, and K�, as well as the Lorentz transformations generators
M��, are defined in Appendix B. The coset so defined corresponds to a particular choice of
oordinates, specifically denoted as y�, for the AdSd world volume. The fields are also defined as

� �
unctions of y . Other coordinate choices, generically denoted by x , can and will be used. In
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rder to transform to these coordinates, the y� will be defined as a function of the x� coordinates,
y�=y��x�. Likewise in this case, the fields will also be relabeled as functions of x�. That is,

�y�=��y�x��→��x� and vm�y�=vm�y�x��→vm�x�. Hence the coset element has the same opera-
or structure as in Eq. �2.1� but now the fields and y are functions of x so that 	�y�=	�y�x��

	�x�=eiy��x�P�ei��x�Zeiv��x�K�. For the present, we use the y� coordinates and the fields are
onsidered functions of y�. The Nambu-Goldstone field ��y� along with v��y� act as the remain-
ng coordinates needed to parametrize the coset manifold SO�2,d� /SO�2,d−1�.

Left multiplication of the coset elements 	 by an SO�2,d� group element

g = ei
�P�eizZeib�K�e�i/2����M��, �2.2�

hich is specified by the �space-time independent� infinitesimal parameters 
� ,z ,b� ,���, results
n transformations of the space-time coordinates and the Nambu-Goldstone fields according to the
eneral form9

g	 = 	�h . �2.3�

he transformed coset element, 	�, is a function of the transformed world volume coordinates and
he total variations of the fields,

	� = eiy��P�ei���y��Zeiv���y��K�, �2.4�

hile h is a field dependent element of the stability group SO�1,d−1�,

h = e�i/2�����y�M��. �2.5�

xploiting the algebra of the SO�2,d� charges displayed in Appendix B, along with extensive use
f the Baker-Campbell-Hausdorf formulas, the AdS transformations are obtained as

y�� = �1 − z�m2tanh�m2�2sin�m2y2

�m2y2 �y� − ���y� + �PL
���y� + �m2y2cot�m2y2PT

���y��
�

+
tanh�m2�2

�m2 �cos�m2y2PL
���y� +

�m2y2

sin�m2y2
PT

���y��b�,

���y�� = ��y� + z cos�m2y2 + b� y�sin�m2y2

�m2y2
,

v���y�� = v��y� − ���v� −
m2

2

tan�m2y2/4
�m2y2/4

�
�y� − 
�y��v�

− z
m2

cosh�m2�2

sin�m2y2

�m2y2
�PL

���v� + �v2coth�v2PT
���v��y�

+ �m2/4
tan�m2y2/4
�m2y2/4

tanh�m2�2�b�y� − b�y��v�

+
1
� 2 2

�PL
���v� + �v2coth�v2PT

���v���cos�m2y2PL��y� + PT��y��b,

cosh m �
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����y� = ��� +
m2

2

tan�m2y2/4
�m2y2/4

�
�y� − 
�y�� − z
m2

cosh�m2�2

sin�m2y2

�m2y2
�v�y� − v�y��

tanh�v2/2
�v2

− �m2/4
tan�m2y2/4
�m2y2/4

tanh�m2�2�b�y� − b�y�� −
1

cosh�m2�2

tanh�v2/2
�v2

� �cos�m2y2PL
��y�bv

� + PT
��y�bv

� − �� ↔ ��� . �2.6�

The nonlinearly realized SO�2,d� transformations induce a field dependent general coordinate
ransformation of the world volume space-time coordinates. Using the y� coordinate transforma-
ion given above, the AdSd+1 general coordinate transformation for the world volume space-time
oordinate differentials is given by

dy�� = dy�Ḡ�
�, �2.7�

ith Ḡ�
�=�y�� /�y�. The SO�2,d� invariant interval can be formed using the metric tensor g���y�

o that ds2=dy�g���y�dy�=ds�2=dy��g����y��dy�� where the metric tensor transforms as

g����y�� = Ḡ�
−1g��y�Ḡ�

−1�. �2.8�

The form of the vielbein �and hence the metric tensor� as well as the SO�2,d� covariant
erivatives of the Nambu-Goldstone boson fields and the spin connection can be extracted from
he Maurer-Cartan one-form, 	−1d	, which can be expanded in terms of the generators as

	−1d	 = i��mPm + �ZZ + �K
mKm + 1

2�M
mnMmn� . �2.9�

talic indices m ,n=0,1 ,… ,d−1, are used to distinguish tangent space �italic indices� transforma-
ion properties from world volume �greek indices� transformation properties. Recall all contracted
ndices �italic or greek� are summed using the d-dimensional Minkowski metric tensor. Applying
he Feynman formula for the variation of an exponential operator in conjunction with the Baker-
ampell-Hausdorff formulas, the individual world volume one-forms appearing in the above
ecomposition of the Maurer-Cartan one-form are secured as

�m = −
sinh�v2

�v2
vmd� + cosh�m2�2�PT

mn�v� + cosh�v2PL
mn�v���̄n,

�Z = cosh�v2�d� − cosh�m2�2�̄mvm tanh�v2

�v2 � ,

�K
m = dvm − � sinh�v2

�v2
− 1� �vmvndvn − v2dvm�

v2 − �̄M
mnvn

sinh�v2

�v2

+ �m2sinh�m2�2�PL
mn�v� + cosh�v2PT

mn�v���̄n,

�M
mn = �̄M

mn + �cosh�v2 − 1�
vmdvn − vndvm

v2 − �cosh�v2 − 1��PLr
m �v��̄M

nr − PLr
n �v��̄M

mr�

+ �m2sinh�m2�2sinh�v2

�v2
�̄r�vmPT

rn�v� − vnPT
rm�v�� . �2.10�

In these expressions, the AdSd covariant coordinate differential, �̄m, and spin connection, �̄M
mn,

−iymPm iynPn �¯ m 1¯ mn �
re obtained from the AdSd coordinate one-form �e �d�e �= i � Pm+ 2�M Mmn as
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�̄m =
sin�m2y2

�m2y2
PT

mn�y�dyn + PL
mn�y�dyn,

�2.11�

�̄M
mn = �cos�m2y2 − 1�

�ymdyn − yndym�
y2 .

he differential �̄m is related to the y� world volume coordinate differential via the vielbein ē�
m�y�

s

�̄m = dy�ē�
m�y� . �2.12�

sing Eq. �2.11� along with d=dy�� �
y , this vielbein is obtained as

ē�
m�y� =

sin�m2y2

�m2y2
PT�

m�y� + PL�
m�y� . �2.13�

hus it is seen that the y coordinates correspond to the choice of embedding coordinates �cf. Eq.
1.3��

a�y2� =
sin�m2y2

�m2y2
,

�2.14�
b�y2� = cos��m2y2� .

The two sets of bases for coordinate differentials, dy� and the AdSd+1 covariant one-form �m,
re related to each other through the vielbein e�

m�y�,

�m�y� = dy�e�
m�y� . �2.15�

gain using that d=dy�� �
y , it follows from the first equality in Eq. �2.10� that the vielbein e�

m can
e factorized as

e�
m�y� = ē�

n�y�Nn
m�y� , �2.16�

here the Nambu-Goto vielbein, Nn
m�y�, is

Nn
m�y� = − vmsinh�v2

�v2
Dn� + cosh�m2�2�PTn

m �v� + cosh�v2PLn
m �v�� , �2.17�

nd the AdSd covariant derivative is defined as Dn= ē n
−1��y�� �

y .

II. THE INVARIANT ACTION

To construct an SO�2,d� invariant action, we begin by using �cf. Eqs. �2.3� and �2.5��

	��y�� = g	�y�e−�i/2�� mn�y�Mmn �3.1�

nd isolating the coefficient of Pm in the decomposition of �	−1d	���y�� giving

��m�y��Pm = �m�y�e�i/2�� lr�y�MlrPme−�i/2�� st�y�Mst. �3.2�

ext, from the SO�2,d� algebra �see Appendix B� it follows that

e�i/2�� lrMlrPme−�i/2�� stMst = �m
n���Pn, �3.3�

here �m
n��� is an AdSd �local� Lorentz transformation with parameter � rs�y� so that det �=1.
Thus
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��m�y�� = dy��e��
m�y�� = �n�y��n

m = dye
n�y��n

m, �3.4�

here dy��=dyḠ
�, Eq. �2.7�. Consequently the vielbeins are related as

e
n�y��n

m = Ḡ
�e��

m�y�� . �3.5�

aking the determinant �using det �=1� then yields det e�= �det Ḡ�−1det e. Since the Jacobian of
he y�→y�� transformation is simply

ddy� = ddy det Ḡ , �3.6�

t follows that ddy�det e��y��=ddy det e�y�. Thus an SO�2,d� invariant action is constructed as

� = − �
 ddy det e�y� , �3.7�

ith the vacuum energy denoted by �. Note that the action is simply the negative of the brane
ension integrated over the invariant AdS volume.

An additional general coordinate transformation can be made taking the y� coordinates to the
� coordinates, y�=y��x�, so that the SO�2,d� invariant interval will assume the form ds2

dx�g���x�dx� with the metric tensor given by

g���x� =
�y�x�
�x� g��y�x��

�y��x�
�x� = a�

�x�g��y�x��a�
��x� . �3.8�

he transformation matrix associated with this change of variables is defined to be a�
�x�

�y�x� /�x�. Consequently the SO�2,d� transformations similarly induce a field dependent gen-
ral coordinate transformation of these new world volume coordinates

x�� = x� + a�
−1��x��y��x� , �3.9�

here the corresponding SO�2,d� variation of y� is given in Eq. �2.6�, �y�=y��−y�. From Eq.
3.9�, the new coordinate differentials transform as

dx�� = dx�G�
�, �3.10�

ith G�
�=�x�� /�x�. Relating the coordinate differentials through the transformation matrix, dy�

dx���y� /�x��=dx�a�
� and likewise for the SO�2,d� transformed coordinates, dy��

dx����y�� /�x���=dx��a��
�, the variation of the transformation matrix is obtained,

a��
� =

�y��

�x�� =
�y��

�y�

�y�

�x

�x

�x�� = G�
−1a

�Ḡ�
�. �3.11�

ence the invariance of the interval in terms of the new x� coordinates is secured since
����x��=G�

−1g��x�G�
−1�.

The covariant coordinate differential one-forms are related to the new coordinate differentials
x� through the vielbein e�

m�x� as

�m�x� = dx�e�
m�x� . �3.12�

hus the y� and the x� coordinate vielbein are related by the transformation matrix

e�
m�x� = a�

�e�
m�y� . �3.13�

n a similar fashion, the �̄m one-form can also be expanded in terms of dx� as �̄m=dx� ē�
m�x�

� ¯ m
dy e� �y� thus giving
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ē�
m�x� = a�

�ē�
m�y� . �3.14�

he AdSd covariant derivative has the same form in either coordinate system,

Dm = ē m
−1��y���

y = ē m
−1��y�a�

−1���
x = ē m

−1��x���
x �3.15�

s does the Nambu-Goto vielbein Nn
m. Thus Eq. �2.17�, after making the replacements ��y�

��y�x��→��x� and vm�y�=vm�y�x��→vm�x�, reads

Nn
m�x� = − vmsinh��v2�

�v2
Dn� + cosh�m2�2�PTn

m �v� + cosh��v2�PLn
m �v�� . �3.16�

t follows that the x coordinate vielbein also has the factorized form

e�
m�x� = a�

�e�
m�y� = a�

�ē�
n�y�Nn

m�y� = ē�
n�x�Nn

m�x� . �3.17�

sing Eq. �3.13�, the SO�2,d� invariant action in the x coordinate system then becomes

� = − �
 ddy det e�y� = − �
 ddx det a det a−1det e�x�

= − �
 ddx det e�x� = − �
 ddx det ē�x�det N�x� . �3.18�

inally, the determinant of the Nambu-Goto vielbein is evaluated as

det N = coshd�m��cosh��v2��1 − �vn tanh��v2�
�v2 �� Dn�

cosh�m��
�� , �3.19�

o that the action �3.18� reads

� = − �
 ddx det ē�x�coshd�m��cosh��v2��1 − �vn tanh��v2�
�v2 �� Dn�

cosh�m��
�� . �3.20�

Note that the vn field is not an independent dynamical degree of freedom since it enters the
ction with no derivative. Hence it can be expressed in terms of the Nambu-Goldstone boson �
hrough its field equation as

vn
tanh�v2

�v2
=

Dn�

cosh�m2�2
. �3.21�

his relation is identical to that obtained by setting to zero the SO�2,d� invariant second equality
n Eq. �2.10� from the expansion of the Maurer-Cartan one-form, �Z=0. This is referred to as the
inverse Higgs mechanism.”8 Exploiting this relation, the final form of the Nambu-Goto action for
n AdSd brane embedded in AdSd+1 target space is secured,

� = − �
 ddx det e = − �
 ddx det ē coshd�m���1 −
D����nDn�

cosh2�m��
. �3.22�

his is the AdS space generalization of the Nambu-Goto action for the Nambu-Goldstone mode.

xpanding the action through terms bilinear in � gives
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� = − �
 ddx det ē�1 +
1

2
�d m2��2 −

1

2
���ḡ����� + ¯ . �3.23�

t is seen that the Nambu-Goldstone boson carries the �E ,s�= �d ,0� representation5 of SO�2,d
1�. That is, it has mass squared equal to d m2 and hence energy d in units of m while being spin
ero.

Note that the form of the action, Eq. �3.22�, also follows from the invariant interval of the
dSd+1 space, Eq. �1.5�, provided one identifies the covolume coordinate r with the Nambu-
oldstone field ��x� ,r→��x�. Using this identification, the interval can be written as ds2

dx�g���x�dx�, with

g���x� = ḡ���x�cosh2�m�� − ������ . �3.24�

he SO�2,d� invariant AdSd brane action, �, can then be constructed from g�� as

� = − �
 ddx�− �− 1�ddet g��. �3.25�

ntroducing the AdSd vielbein, ē�
m�x�, via ḡ��= ē�

m�mnē�
n, as in Eq. �1.9�, and likewise the

dSd+1 vielbein, e�
m�x� as g��=e�

m�mne�
n, it then follows that e�

m has the factorized form

e�
n�x� = ē�

��x�N�
n�x� , �3.26�

here the Nambu-Goto vielbein, Nn
m is given by

N�
n�x� = ��

ncosh�m��x�� + ���cosh2�m��x�� − Dr��x��rsDs��x�� − cosh�m��x���
D���x�Dn��x�

�D��2�x�
.

�3.27�

he action can then be expressed in terms of the vielbein as

� = − �
 ddx det e�x� = − �
 ddx det ē�x�det N�x�

= − �
 ddx det ē�x�coshd�m��x���1 −
D���x���nDn��x�

cosh2�m��x��
, �3.28�

hich is precisely Eq. �3.22�.
Next reconsider the action with both Nambu-Goldstone fields � and vm present and indepen-

ent as given in Eq. �3.20�,

� = − �
 ddx det ē�coshd��m2�2�cosh��v2� − coshd−1��m2�2�
sinh��v2�

�v2
vmDm�� .

�3.29�

efining the �� independent� vector density field F� as

F� 	 det ē
sinh��v2�

�v2
vnē n

−1�, �3.30�

he vn dependent terms can be expressed as F� and

det ē cosh��v2� = ��det ē�2 + F�ḡ��F
� = �− �− 1�ddet ḡ�� + F�ḡ��F

� = �− �− 1�ddet�ḡ�� + F�F�� ,

�3.31�
here the covariant vector field is
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F� =
1

det ē
ḡ��F

�. �3.32�

he action can then be written as

� = − �
 ddx��− �− 1�ddet�ḡ�� + F�F��coshd�m�� − F���� coshd−1�m��� . �3.33�

xpressing the second term on the right-hand side as

��� coshd−1�m�� = ��f��� �3.34�

o that df /d�=coshd−1�m��, the action, after integrating the second term by parts, can be written
s

� = − �
 ddx��− �− 1�ddet�ḡ�� + F�F��coshd�m�� + f�����F�� . �3.35�

Note that in the Poincaré limit, m→0, the action reduces to �→−��ddx��1+F2+���F��. In
hat case, the � field equation, �� /��=0=��F�, is just the Bianchi identity for F�. That is, the
ual of F� is closed. Hence F� can be �locally� expressed as F�=
������B��, where the
d−2�-form B�� is a tensor gauge potential. Eliminating the � term from the action by integration
y parts, the tensor gauge theory action dual to the bosonic Poincaré brane Nambu-Goto action is
btained.13 The situation for m�0 is quite different.

Now the � field equation

��

��
= 0 = − �

df���
d�

���F� + d m sinh�m��det ē cosh��v2�� �3.36�

an be used to eliminate it from the action. Introducing a Lagrange multiplier field L to enforce
his equality, the action becomes

� = − �
 ddx��− �− 1�ddet�ḡ�� + F�F���T��� + L d m sinh�m��� + L��F�� , �3.37�

here

T��� = coshd�m�� − d m f���sinh�m�� . �3.38�

fter employing Eq. �3.36� to eliminate the � and L fields, the action takes the form

� = − �
 ddx��− 1�d−1det�ḡ�� + F�F��T�F� . �3.39�

ere T���=T���F��→T�F� where the implicit dependence of � on F� is given by

sinh m� = −
��F�

d m�− �− 1�ddet�ḡ�� + F�F��
, �3.40�

hich follows from the equation of motion �3.36�.
Expanding T through terms bilinear in the field gives

T�F� = 1 −
1

2
d m2�2 + O��3� = 1 − � 1

d m2det2ē
����F��2 + ¯ . �3.41�

ubstituting this into Eq. �3.39� and expanding the square root, the bilinear in the field F� form of

he action becomes
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� = − �
 ddx det ē�1 + � 1

m2d det2ē
��1

2
�m2d�F�ḡ��F

� −
1

2
��F���F

� + ¯� . �3.42�

he ellipses refer to the F� field self-interactions.
The F� field equation then gives

det ē ḡ����� 1

det ē
��F�� − d m2F� = J�, �3.43�

here J� contains the F field self-interactions contained in the ellipses. Taking the divergence of
q. �3.43�, it follows that the longitudnal projection FL	�1/det ē���F� satisfies the equation

�ḡ������ − d m2 +
1

det ē
���det ē ḡ������FL =

1

det ē
��J�. �3.44�

he differential operator on the left-hand side acting on FL is identical to the differential operator
cting on � which appears in the � field equation resulting from the AdS Nambu-Goto action.
hus the longitudinal mode FL describes a propagating scalar degree of freedom with mass d m2

nd Eq. �3.39� is the vector field action equivalent to the Nambu-Goto action in AdS space. On the
ther hand, using the field equation �3.43�, the transverse component of F is constrained to satisfy

d m2
�1�2¯�d��1� 1

det ē
ḡ�2�F

�� = − 
�1�2¯�d��1� 1

det ē
ḡ�2�J

�� . �3.45�

Indeed this equivalence can be run in reverse. Starting with Eq. �3.39�, the Lagrange multi-
lier field L can be reintroduced to give Eq. �3.37� �recall that T���=coshd�m��
d m g���sinh�m���. The fields � , F�, and L are all independent. Hence the � field equation,
� /��=0 implies that L=g���. Substituting this into the action along with the definition of F� in
erms of vn, Eq. �3.30�, and integrating by parts, the Nambu-Goto action equation �3.29� is once
gain obtained.
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PPENDIX A: AdS COORDINATES

An AdSd brane embedded as a r=0 hypersurface in an AdSd+1 target space has intrinsic
oordinates x� with the pseudo-Euclidean �d+2�-dimensional homogeneous coordinates given as
n Eq. �1.3�,

X� = a�x2�x�cosh�mr� ,

Xd =
1

m
sinh�mr� , �A1�

Xd+1 =
1

m
b�x2�cosh�mr� .

he AdSd+1 target space and the embedded AdSd brane hyperbolic equations require the coordi-
2 2 2 2
ate relation 1=m x a +b . This leads to a form of the AdSd metric tensor, Eq. �1.6�,
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ḡ���x� = a2�x2�PT���x� + ��a�x2� + 2x2da�x2�
dx2 �2

+ 4
x2

m2�db�x2�
dx2 �2�PL���x�

= a2�x2�PT���x� +
�a�x2� + 2x2 da�x2�

dx2 �2

1 − m2x2a2�x2�
PL�� �A2�

nd the AdSd vielbein, Eq. �1.9�,

ē�
m�x� = a�x2�PT�

m�x� +���a�x2� + 2x2da�x2�
dx2 �2

+ 4
x2

m2�db�x2�
dx2 �2�PL�

m�x�

= a�x2�PT�
m�x� +

�a�x2� + 2x2 da�x2�
dx2 �

�1 − m2x2a2�x2�
PL�

m�x� . �A3�

nly the case where a and b are functions of x2 are considered.
The coset construction setup naturally led to a specific choice of intrinsic coordinates denoted

y y� for which the functions a and b were given by Eq. �2.14�,

a�y2� =
sin��m2y2�

�m2y2
,

�A4�
b�y2� = cos�m2y2.

ence the embedding relations for these homogeneous coordinates are

X� = y�sin��m2y2�
�m2y2

cosh�mr� ,

Xd =
1

m
sinh�mr� , �A5�

Xd+1 =
1

m
cos��m2y2�cosh�mr� .

he metric on the AdSd brane was then given by the vielbein, Eq. �2.13�,

ē�
n�y� =

sin��m2y2�
�m2y2

PT�
n�y� + PL�

n�y� . �A6�

A different choice of intrinsic coordinates x� that leaves the AdSd vielbein ē�
n diagonal is

iven by

a�x2� =
4

4 + m2x2 ,

�A7�

b�x2� = �4 − m2x2

4 + m2x2� ,
ence the embedding relations for the homogeneous coordinates become
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X� = a�x2�x�cosh�mr� ,

Xd =
1

m
sinh�mr� , �A8�

Xd+1 = a�x2�
1

m
�4 − m2x2

4
�cosh�mr� .

he metric on the AdSd brane is then given by the vielbein,

ē�
n�x� = a�x2���

n = � 4

4 + m2x2���
m. �A9�

ote that in the Poincaré limit, m→0, this reduces to the Minkowski metric and vielbein.
The transformation between the x and y coordinates is found by substituting the transforma-

ion y�=x�f�x2� into the expression for �̄m in Eq. �2.11� and requiring a diagonal vielbein. In the
rocess, the function a�x2� is also determined. The resulting differential equation for f ,

2x2f��x2� = − f�x2��1 −
sin�m2x2f�x2�
�m2x2f�x2�

� , �A10�

as the solution

f�x2� =
2 tan−1�m2x2/4

�m2x2
. �A11�

ence the coordinate transformation is given by

y� = x� tan−1�m2x2/4
�m2x2/4

, �A12�

hile the inverse relation is

x� = y� tan�m2y2/4
�m2y2/4

. �A13�

n the Poincaré limit, the x and y coordinates are identical, y�=x�. In AdS space the transforma-
ion matrix between these coordinates is

a�
��x� = ��

x y��x� =
tan−1�m2x2/4

�m2x2/4
PT�

��x� + a�x2�PL�
��x� . �A14�

This choice of coordinates has the advantage of simplifying the variations of the fields as well
s the transformations of the coordinates themselves. Transforming Eq. �2.6� from y to x coordi-
ates yields

x�� = x� +
1

4
�4 − m2x2�
� +

m2

2
�
�x

��x� − ���x� − zx��m2tanh�m2�2

+
1

4

tanh�m2�2

�m2
��4 − m2x2�PL

���x� + �4 + m2x2�PT
���x��b�,

���x�� = ��x� + z�4 − m2x2

2 2� + a�x2�x�b�,

4 + m x
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v���x�� = v��x� − ���v� −
m2

2
�
�x� − 
�x��v� − za�x2�

m2

cosh�m2�2
�PL

���v� + �v2coth�v2PT
���v��x�

+
�m2

2
tanh�m2�2�b�x� − b�x��v� +

1

cosh�m2�2
�PL

���v� + �v2coth�v2PT
���v��

� �PT��x� + �4 − m2x2

4 + m2x2�PL��x��b,

��� = ��� +
m2

2
�
�x� − 
�x�� − za�x2�

m2

cosh�m2�2

tanh�v2/2
�v2

�v�x� − v�x��

−
�m2

2
tanh�m2�2�b�x� − b�x�� −

1

cosh�m2�2

tanh�v2/2
�v2

� �PT
��x�bv

� + �4 − m2x2

4 + m2x2�PL
��x�bv

� + − �� ↔ ��� . �A15�

PPENDIX B: AdS SYMMETRY CHARGE ALGEBRA

AdSd+1 space can be viewed as a hyperboloid embedded in a �d+2�-dimensional pseudo-
uclidean space. The equation of such a hypersurface is given in Eq. �1.1�,

1

m2 = X0
2 − X1

2 − X2
2 − ¯ − Xd

2 + Xd+1
2 = XM�̂MNXN. �B1�

ere the pseudo-Euclidean metric tensor �̂�� has signature �+1,−1,−1, ¯ ,−1 , +1� and M ,N
0,1 , ¯ ,d ,d+1. It follows that the isometry group of this AdSd+1 space is SO�2,d�. Denoting

he symmetry generators as MMN, they obey the algebra

�MMN,MRS� = − i��̂MRMNS − �̂MSMNR + �̂NSMMR − �̂NRMMS� . �B2�

he SO�1,d� subgroup of Lorentz transformations in AdSd+1 space is generated by the charges
MMN, where M ,N=0,1 ,… ,d. The remaining SO�2,d� generators are the pseudotranslations in

dSd+1 space and are given by the Lorentz group vectors PM =mMd+1,M. In terms of PM and MMN,
he SO�2,d� algebra �B2� reads

�MMN,MRS� = − i��MRMNS − �MSMNR + �NSMMR − �NRMMS� ,

�MMN,PL� = i�PM�NL − PN�ML� , �B3�

�PM,PN� = − im2MMN,

here the �d+1�-dimensional Minkowski metric �MN= �+1,−1,−1,… ,−1�.
An AdSd brane embedded in the AdSd+1 space as a Xd=0 hypersurface is described by the

yperboloidal hypersurface

1

m2 = X0
2 − X1

2 − ¯ − Xd−1
2 + Xd+1

2 . �B4�

he brane spontaneously breaks the isometry group of the AdSd+1 space from SO�2,d� to
O�2,d−1�, which is the isometry group of the AdSd space. The SO�2,d� generators can be
xpressed in terms of the unbroken SO�1,d−1� Lorentz subgroup representation content of the

O�2,d−1� symmetry group of the brane. The unbroken SO�2,d−1� symmetry group is generated
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y the subgroup Lorentz transformation generators M��, where � ,�=0,1 ,2 ,… ,d−1 and the
seudotranslations in AdSd space with charges P�. The remaining charges are the generating
lements of the SO�2,d� /SO�2,d−1� coset. They are the broken SO�2,d� symmetry transforma-
ion charges. Z= Pd generates the broken SO�2,d� pseudotranslations in the Xd direction, while

�=Md� generates the broken AdSd+1 Lorentz transformations. Thus the SO�2,d� algebra, Eqs.
B2� and �B3�, can be written in terms of the P� ,M�� ,Z, and K� charges as

�M��,M�� = − i���M�� − ���M� + ���M� − ��M��� ,

�M��,P�� = i�P���� − P����� ,

�M��,K�� = i�K���� − K����� ,

�M��,Z� = 0,

�P�,P�� = − im2M��, �B5�

�K�,K�� = iM��,

�P�,K�� = i���Z ,

�P�,Z� = − im2K�,

�Z,K�� = iP�.
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The present paper is devoted to the detailed study of quantization and evolution of
the point limit of the Pauli-Fierz model for a charged oscillator interacting with the
electromagnetic field in dipole approximation. In particular, a well defined dynam-
ics is constructed for the classical model, which is subsequently quantized accord-
ing to the Segal scheme. To this end, the classical model in the point limit, already
obtained by Noja and Posilicano �Ann. I.H.P. Phys. Theor. 71, 425 �1999��, is
reformulated as a second order abstract wave equation, and a consistent quantum
evolution is given. This allows a study of the behavior of the survival and transition
amplitudes for the process of decay of the excited states of the charged particle, and
the emission of photons in the decay process. In particular, for the survival ampli-
tude the exact time behavior is found. This is completely determined by the reso-
nances of the systems plus a tail term prevailing in the asymptotic, long time
regime. Moreover, the survival amplitude exhibits in a fairly clear way the Lamb
shift correction to the unperturbed frequencies of the oscillator. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2009607�

. INTRODUCTION

In recent years a considerable effort was tributed by the mathematical physics community to
he problem of a rigorous formulation of the dynamics of the main models in nonrelativistic
uantum field theory. In particular, a comprehensive study of the Pauli-Fierz model, the model
hich describes the low energy interaction of nonrelativistic matter and electromagnetic radiation,
as undertaken by various authors, both in its full form, or making resort to different approxima-

ions, such as rotating wave approximation, dipole approximation, or others. Correspondingly, a
ealth of results concerning various aspects of the model have been obtained, concerning self-

djointness of the Hamiltonian, existence, multiplicity or also nonexistence of the ground state and
elated infrared behavior, and detailed study of the spectral properties of the model and of its
esonances. In the present paper we give a comprehensive analysis of some of the previous
roblems in the special case of a point charged oscillator interacting with the electromagnetic field
n dipole approximation. While this model is unrealistically simple compared to the case, to give
n example, of the hydrogen atom interacting with the full �not dipole� radiation field, �about
hich a lot is known thanks to the work of Lieb et al.10,14 and Frölich et al.,3,4 the original

�Electronic mail: bertini@mat.unimi.it
�Electronic mail: noja@matapp.unimib.it
�
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ontribution of the present work resides in the fact that we are able to cope with the point limit of
he model. The removal of the ultraviolet cutoff in the interaction between matter and radiation is
n its generality, a difficult and unsolved problem, and in particular one not faced off in the quoted
igorous literature. In some previous papers of the last two authors �Refs. 16 and 17 and references
herein� the renormalized dynamics of the classical Pauli-Fierz model in dipole approximation
Ref. 18� and for fairly general external potentials, was rigorously constructed and analyzed. In
articular, it was shown that the evolution of the Pauli-Fierz model in the point limit is given by
n abstract wave equation generated by a family of operators related to the so-called point inter-
ctions �see Ref. 1 and references therein�. Given the classical model in the ultraviolet limit, a
econd step would be to construct the quantized model. The harmonic potential has the unique
eature of giving rise to linear equations of motion, so that the classical equations for the system
ake the form of an abstract linear wave equation. This allows a plain quantization à la Segal of
he model, which seems otherwise quite problematic �in contrast with the case of the regularized
auli-Fierz model, where canonical quantization works; a detailed study of the canonically quan-

ized regularized dipole Pauli-Fierz model with an external harmonic potential was given by Arai
n Ref. 2�. So we confine ourself to this case, about which we give in the next section a self-
ontained treatment independent and different in spirit from Ref. 17, to clarify some of the themes
iscussed above. We outline briefly our main results. The classical evolution of the system is given
y the abstract wave equation

��tt
2 + Le�� = 0

or the couple �= �A , p� where A is the vector potential of the electromagnetic field in Coulomb
auge and p is the particle momentum variable �see Sec. II for the explanation of this choice�.
ere Le is a self-adjoint operator in L*

2�R3� � R3 �� stands for “divergenceless”� such that its
esolvent can be explicitly calculated �see Lemma 2.2 and Theorem 2.3�.

The operator Le has a single negative eigenvalue and the rest of its spectrum is purely
bsolutely continuous and coincides with �0, +��. Thus, to quantize the abstract wave equation
bove according to the Segal method, one must take Le

+, i.e., Le projected onto the spectral
ubspace corresponding to �ac�Le�. The �first� quantized dynamics of the system is defined through

he Schrödinger-type equation i�̇= �Le
+�1/2�, defined on the complex Hilbert space L*

2�R3 ;C3�
� C3 and the Hamiltonian of the quantized system of particle and field is given by the second
uantization d���Le

+�1/2�, on the Fock space over L*
2�R3 ;C3� � C3.

A preliminary but essential step in the description of the properties of the system is to write
he first quantized evolution in terms of the resolvent of the original classical operator Le

+. By
tone formula, spectral theorem and after some work, one gets �see Lemma 2.5� a representation

perhaps new or at least not known to us� for the transition amplitudes ��1 ,e−it�Le
+�1/2
�2� between

ne particle states in terms of the resolvent of Le. Correspondingly, one has an expression for the
urvival and transition amplitudes for the second quantized model on the Fock space, just using
unctoriality of �. Our main concern here is in the calculation of two relevant characteristics of the
volution. The first is the survival amplitude S�t� of the unperturbed first excited bound state of the
scillator. The second is the amplitude transition A�t� between states with the photon field in the
acuum state and the oscillator in the first excited state, and states with one photon and the
scillator in the ground state. The survival and transition amplitudes relative to more general states
actorize in a sum of product of these two simpler types. The survival amplitude S�t� has a
articularly neat form �see Theorem 3.3�,

S�t� = c1e−�e�t� + c2e−�e�t�e−i�et + c3e−�e�t�Ei��e�t�� .

n this formula, the complex numbers

zk ª �− 1�k�e − i�e, k = 1,2

oincide with the complex poles of the analytically continued resolvent of Le
+; −�e

2 is the unique

egative eigenvalue of Le, and by Ei we mean the exponential integral function. The complex
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umbers c1, c2, and c3 depend on the physical parameters. So, in the time evolution of the survival
mplitude for the bound states of the oscillator it is possible to distinguish three different time
ehaviors. The first term, depends on a resonance on the imaginary axis originated from the
rojection onto the positive spectral subspace; it is a pure exponentially decaying term �for posi-
ive times� and the characteristic time of the decay, for realistic values of mass and charge of the
lectron, has an order of 10−23 s, an exceedingly small time. The second term is an exponentially
amped oscillation described in terms of the complex resonance poles. In particular, the imaginary
art of the resonance �e gives as usual a measure of the lifetime of the excited unperturbed states,
r, equivalently, the breadth of the spectral lines of the spontaneous decay of the excited states
according to the Breit-Wigner law, see Ref. 7�; while the real part gives the position of the
aximum in the emission of the spectral line. In terms of given physical parameters of the

ystems, the behavior of these quantities is the following:

�e = �0 +
28�0

3

3m2c6e4 + O�e5�, �e =
2�0

2

3mc3e2 + O�e5�

ere the symbols m, c, and e denote the �renormalized� phenomenological mass, the velocity of
ight and the electric charge, respectively. The noteworthy fact is the Lamb shift in the expression
f �e. The maximum in the emission does not appear in correspondence of the unperturbed
requency of the oscillator, but at a displaced frequency. The last term, taking into account the
symptotic behavior of the exponential integral, is of the order 1 / t for t	1. The appearance of a
lowly decaying tail implies a departure from the purely exponential decay given by the Breit-

igner law, and is well known both in theoretical models and experimental studies. See Lemma
.5 and the following remarks for an interpretation of its origin.

The transition amplitudes A�t� have a form very similar to the one for S�t� �see Theorem 3.5�,
nd to them apply the same remarks and comments concerning their time behavior.

I. AN EXACTLY SOLUBLE MODEL IN CLASSICAL AND QUANTUM ELECTRODYNAMICS

. Classical theory

The classical Pauli-Fierz model for a particle with charge e, charge density e
r and bare mass

r interacting with the electromagnetic field in dipole approximation and subjected to a restoring
armonic force, is described by the Hamiltonian

H = 2�c2�E,E� +
1

8�
�A,�A� +

1

2mr
�p −

e

c
�
r,A��2

+
1

2
�q�2,

here E= Ȧ / �4�c2� is the canonical variable conjugated to A and p is the canonical momentum
onjugated to the particle position q. The model is written in the Coulomb gauge, so the fields are
ivergenceless. A suitable phase space for this dynamical system is H*

1�R3� � L*
2�R3� � R3 � R3

here H*
1�R3� denotes the space of divergenceless locally square integrable vector fields with

quare integrable first derivatives. A point electron should have a Dirac measure as charge distri-
ution, and the regular form factor 
r is introduced to give meaning to the equations of motion. So
must be interpreted as a measure of the particle radius. In the point limit, as r↓0, the charge

istribution 
r weakly converges to �0, and the Hamilton equations corresponding to the Pauli-
ierz Hamiltonian lose their original meaning. A well-defined dynamical system is recovered only
t the expense of renormalizing the bare mass mr. This procedure is analyzed in detail in Ref. 16
nd we content ourself to say here that the correct prescription is given by the well-known relation

etween the bare, electromagnetic �mem� and renormalized �m� masses,
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m = mr + mem = mr +
8�

3

e2

c2 ��− ��−1
r,
r� .

eeping m fixed to the physical value, this is the only choice for the bare mass which allows to
btain a nontrivial limit for the Pauli-Fierz model. From now on, with the symbol mr we mean
recisely the function mr�e ,m� given by the above relation.

The rigorous deduction of the limit dynamics is carried out in Ref. 17 for a general external
otential; specializing the result to the case of the harmonic potential one obtains the equations

Ȧ = 4�c2E ,

Ė = −
1

4�
Hm

p A ,

q̇ = QA,

ṗ = − q .

he p-dependent operator Hm
p is an affine deformation of a linear self-adjoint operator in the class

f point interactions �see Ref. 1 and references therein for the use of point interactions in quantum
echanics�, Hm

p is linear if and only if p=0 and Hm
0 is the vector-valued version of one of such

inear operators; QA is a certain linear functional which in some sense extract the singular part of
he vector potential.

While obtaining a well-defined dynamics in the point limit it is an interesting and not obvious
esult, it remains unclear how to quantize such a system. So, according to the point of view we
dopt in this paper, and in view of the Segal quantization of the system, we would like to work
ith �abstract� second order wave equations of the form

�̈�t� = − L��t� ,

ith a suitable self-adjoint operator L. This is not the case of the previous system of equation, due
o the presence of a tight relation between the dynamical variables contained in the definition of
he operator Hm

p . Going back to the regularized system, the second order equations corresponding
o the Hamiltonian given above are not better from this point of view; they are

1

c2 Ä = �A +
4�e

c
Mq̇
 ,

mrq̈ = −
e

c
�
r,Ȧ� − q ,

nd the presence of q̇ and Ȧ on the right-hand side make them not of the desired form. So we
refer to give a construction of the limit dynamics independent of the one given in Ref. 17. In fact,
aking resort to the Hamiltonian regularized equations above, it is simple to overcome this

roblem. Deriving with respect to time the equation which gives ṗ and using the other equations,
ne obtains that the couple �= �A , p� satisfies the abstract second-order wave equation

�̈ = − Le
r� ,

r
here the operator Le is given by
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Le
r �A,p� = 	− c2�A −

4�ec

mr
M	p −

e

c
�
r,A�

r,



mr
	p −

e

c
�
r,A�

 .

he analogous result is obtained by means of the canonical transformation which exchanges the
article position and momentum �see also Ref. 22�,

q = − P, p = Q .

he change of dynamical variable from q to p in the second order �or Lagrangian� formalism is
ot particularly relevant to the analysis of the problems we are interested in, and the interpretation
f the results we get. For example, the time behavior of the classical position q, which is important
n the calculation of the survival amplitude of the bound states of the oscillator, is quite simply
elated to the time behavior of the variable p, up to a constant, the derivative of the momentum
ives the position, and this relation is preserved in the limit dynamics.

Another important point to note, is that the operator Le
r is a finite rank perturbation of the

oninteracting operator L0= �−c2� ,0�. This simple structure suggests the possibility that the op-
rator Le

r has a limit for r↓0, and being an unbounded operator such a limit, if existing, should be
ought in the resolvent sense. The calculation of the resolvent of the operator Le

r is lenghty but
lementary. We omit the proof and give the result in the following.

Lemma 2.1: For every z�C±, the resolvent of Le
r is given by

�Le
r − z2�−1�A,p� = �Gz

± � A,0� − �r�z�Re
r �z��A,p� ,

here

�r�z� =
− 1

mrk1
rk2

r , Gz
±�x� =

1

c2

e±iz�x�/c

4��x�
, ± Im z� 0,

Re
r �z��A,p� = �Re

1r�z��A,p�,Re
2r�z��A,p�� ,

Re
1r�z��A,p� =

4�e

c
M		z2ce��− c2� − z2�−1A,
r� + c2mrk1

r


�z2 + k2

r�p
�− c2� − z2�−1
r
 ,

Re
2r�z��A,p� = 

e

c
��− c2� − z2�−1A,
r� + mrk1

r p ,

k1
r = 1 + 8

3�e2��− c2� − z2�−1
r,
r� ,

k2
r =


mr
− z2 −

8

3

�e2

mr
2k1

r ��− c2� − z2�−1
r,
r� .

The next step is the point limit r↓0. The result is analogous to the corresponding result given
n Ref. 16 for the case of a free particle, and the proof is modelled on one of the well known ways
f defining point interactions �see Ref. 1�. We give only an outline of the proof.

Lemma 2.2: Let 
r→�0 weakly as r↓0. For every fixed z�C±, �Le
r −z2�−1 converges as r↓0 in

he norm resolvent sense to the operator

�Gz
± � A,0� − �±�z�Re

±�z��A,p� ,

here, setting �0
2
ª /m,

Re
±�z��A,p� = 	4�e

M�z2ce�Gz*
�,A� + c2p�Gz

±,m�0
2e

�Gz*
�,A� + 	m ± i

2e2

3 z
p
 ,

c c 3c

                                                                                                            



S
c

f

C
f

i

a

w

M

w

i

102305-6 Bertini, Noja, and Posilicano J. Math. Phys. 46, 102305 �2005�

                        
�±�z� =
1

±i
2e2

3c3 z3 − m��0
2 − z2�

.

uch an operator is the resolvent of a self-adjoint operator Le on L*
2�R3� � R3 when on the

omponent R3 one considers the scalar product �p1 , p2�ª�0p1 · p2, with �0ª4�c2 /m�0
2.

Proof: The proof of the convergence of the regularized resolvent is a direct consequence of the
ollowing limiting relations:

lim
r↓0

�− c2� − z2�−1
r = Gz
±,

lim
r↓0

k1
r = 0, lim

r↓0
k1

rmr = m ± i
2e2

3c3 z ,

lim
r↓0

k2
r = −

±i
2e2

3c3 z3 − m��0
2 − z2�

m ± i
2e2

3c3 z

.

hecking that the limit operator is the resolvent of a self-adjoint operator is routine. See Ref. 16
or a similar verification. �

By the resolvent just constructed it is straightforward to derive the actions of Le itself and of
ts spectral properties.

Theorem 2.3: The action and domain of the self-adjoint operator

Le:D�Le� � L*
2�R3� � R3 → L*

2�R3� � R3

re given by

Le�A,p� = 	− c2�A0,�0
2	p −

e

c
A0�0�

 ,

D�Le� = ��A,p� � L*
2�R3� � R3:A = A0 +

4�e

c
MvG,�− �A0,�A0 � L*

2�R3�,v � R3,mv = p

−
e

c
A0�0� ,

here

G�x� =
1

4��x�
.

oreover,

�p�Le� = �− �e
2�, �ess�Le� = �ac�Le� = �0, + ��, �sc�Le� = � ,

here

�e =
3mc3

2e2 + O�e2�
s the unique real (and positive) solution of the third order equation
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2e2

3c3�
3 − m��0

2 + �2� = 0.

We emphasize that, due to the fact that the operator Le has been constructed as a norm
esolvent limit of the operator Le

r , the flow generated by the limit operator coincides with the limit
f the regularized flow, in the relevant norms of the phase space and uniformly in time. This
llows to consider Le as the generator of the limit dynamics. As a second remark, note that the
lgebraic equation �±�z�−1=0 is nothing but the characteristic equation of the Abraham-Lorentz
AL� equation �see, e.g., Ref. 15� in the particular case of an harmonic external force, i.e.,

− �0q� + q̈ + �0q = 0, �0 =
2e2

3mc3 ,

he equation which classically describes the behavior of the particle position in the nonrelativistic
egime �the classical relativistic equation was obtained by Dirac in Ref. 9�. In particular, the
egative eigenvalue of Le corresponds to the so-called runaway solution of the AL equation. In the
raditional approaches, this solution is discarded due to its unphysical character. From the present
oint of view, we give up the �important� interpretative problem related to the presence of these
nstabilities, and take the attitude according to which the suppression of runaway behavior corre-
ponds to reduction of the dynamics on the stable subspace, or equivalently, restriction to the
bsolutely continuous component of the spectrum. This should correspond, in ordinary scattering
heory for Schrödinger operators, to the elimination of bound states. The procedure to obtain this
eduction can be explicitly performed as follows. Let us consider, from now on, Le as acting on the
omplex Hilbert space L*

2�R3 ;C3� � C3. It is self-adjoint when on the component C3 one considers
he scalar product ��1 ,�2�ª�0�1

* ·�2.
Given �1,�2,�3, an orthonormal base in C3, and defining

G�e
�x� ª

1

c2

e−�e�x�/c

4��x�
, �ª 	2�e2�0

3

m2�0
4c

+ �0
1/2

, �1 ª
e

c
�e

2�0,

et

�i
0 =

1

�
�− �1M�iG�e

,�i�, i = 1,2,3

e the normalized eigenvectors corresponding to the eigenvalue −�e
2. Then the projection Pe onto

he absolutely continuous subspace of the operator Le is given by

Pe�� �+ = � − �
i=1,2,3

��,�i
0��i

0.

n particular

Pe�0,�� =
�2

�2	12�c4

e
M�G�e

,�e�
, �2 ª
4�e2�e

2

m2�0
4c

.

e define the positive self-adjoint operator Le
+ by Le

+
ªPeLe, and from now on we consider this

educed operator as the generator of the physical limit dynamics.

. Quantum theory

The operator Le
+ generates the classical evolution, whereas, according to the results summa-

ized in the appendix, the corresponding quantum evolution is given in terms of its square root
Le

+�1/2. More explicitly, denoting by F�L*
2�R3 ;C3� � C3� the bosonic Fock space over L*

2�R3 ;C3�
3
� C , i.e.,
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F�L*
2�R3;C3� � C3� ª �

n�0
Sn�L*

2�R3;C3� � C3��n,

here Sn denotes the symmetrization operator on the nth sector, the quantum Hamiltonian on
�L*

2�R3 ;C3� � C3� corresponding to the second quantization of the classical wave equation

��tt
2 + Le

+��A,p� = 0

s given by

He ª � d���Le
+�1/2� .

ote that the noninteracting Hamiltonian

H0 ª � d��L0
1/2� � � d���− � � �0�

s unitarily equivalent to

� d���− �� � 1 + 1 � � d���0� ,

efined on the Hilbert space

F�L*
2�R3;C3�� � F�C3� ª �

n�0
SnL*

2�R3;C3��n
� �

n�0
Sn�C3��n.

he unitary operator

U:F�L*
2�R3;C3� � C3� → F�L*

2�R3;C3�� � F�C3� �1�

iving the stated equivalence is defined by

U�ª� � �, UC���U−1 = C��� � 1 + 1 � C��� ,

here � denotes the vacuum, �= �� ,�� and C is the usual creation operator. Moreover � d���0�
s unitarily equivalent to the usual harmonic oscillator Hamiltonian on L2�R3 ;C� given by the
elf-adjoint operator

−
�2

2m
� +

m�0
2

2
q2.

oncerning the interacting Hamiltonian He, the present one is its first explicit construction in the
ltraviolet limit and the problem arises if other representations more directly confrontable with
sual canonical formulation could be given. We emphasize the fact that in our description, already
t the classical level, the point limit produces an intimate interlacing between field singularities
nd particle variables, through the definition of the domain of the operator Le itself, and this fact
ntroduces essential difficulties in tracing the relation with the canonical formalism based on the
sual regularized Pauli-Fierz Hamiltonian, where this constraint disappears. Nevertheless, in the
uoted Arai paper �Ref. 2�, a reconstruction theorem based on the limit of the Wightman functions
f the regularized model is outlined. It could be interesting to analyze the relations between two
pproaches.

Since the resolvent of Le is quite explicit, making use of the Birman-Kato invariance principle
o deal with the group generated by the square root, and of the Birman-Kuroda completeness
heorem �see Ref. 6� which is applicable because �Le+z�−1− �L0+z�−1 is a finite rank operator, one
mmediately obtains the following.

Theorem 2.4: Let P0 and Pe be the orthogonal projections onto the absolutely continuous
ubspaces of L0 and Le, respectively. Then the Möller wave operators exist, they are complete and,

�±�He,H0� ª s- lim e−itHe/�e−itH0/���P0� = ���±�Le,L0�� ,

t→±�
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�±�H0,He� ª s- lim
t→±�

e−itH0/�e−itHe/���Pe� = ���±�L0,Le�� .

final result of this paragraph is a formula for the evaluation of transition amplitudes of the

chrödinger-type propagator e−it�Le
+�1/2

, that is the scalar product of the type ��1 ,e−it�Le
+�1/2
�2�, in

erms of boundary values of the resolvent of the classical operator Le. In the formula the special
orm of the operator Le plays no rule, and it holds true for a positive generator A whatsoever. By
inearity it will be sufficient to suppose that �1 and �2 are real valued. Since �see the Appendix for
he definition of WLe

+�

��iWLe
+ − z�−1���,0� = �z�Le

+ − z2�−1�,− i� − iz2�Le
+ − z2�−1�� ,

y Lemma A.2 and Lemma A.3 one obtains

��1,e−it�Le
+�1/2
�2� = lim

a↑�
lim
�↓0

1

2�i
�

−a

a

d� e−it����1,��� + i���Le − �� + i��2�−1

− �� − i���Le − �� − i��2�−1��2
+��

+ lim
a↑�

lim
�↓0

1

2�i
�

−a

a

d� e−it����1,��� + i��2�Le − �� + i��2�−1

− �� − i��2�Le − �� − i��2�−1��Le
+�−1/2�2

+�� .

oreover, using first resolvent identity and

�Le
+�−1/2 =

1

�
�

R
ds�Le

+ + s2�−1

t turns that

��1,�Le − z2�−1�Le
+�−1/2�2

+� =
1

�
�

R

ds

s2 + z2 ��1,�Le − z2�−1�2
+� −

1

�
�

R

ds

s2 + z2 ��1,�Le + s2�−1�2
+� .

hus for any couple �1 ,�2 for which the limits

��1,�Le − �±
2�−1�2

+� ª lim
�↓0

��1,�Le − �� ± i��2�−1�2
+�

xist, one obtains the following.
Lemma 2.5:

��1,e−it�Le
+�1/2
�2� = lim

a↑�

1

2�i
�

−a

a

d� e−it�����1,��Le − �+
2�−1 − �Le − �−

2�−1��2
+��

+
1

�
�

R

ds

2�i
�

R
d�

e−it��2

s2 + �2 ��1,��Le − �+
2�−1 − �Le − �−

2�−1��2
+� .

Note that the second contribution in the previous formula comes from the nonlocal relation
etween the real phase space classical variables and the complexified ones, described in Lemma
.3. Performing however the s integral one obtains, under the same condition of the previous
esult, the following alternative representation:
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��1,e−it�Le
+�1/2
�2� = lim

a↑�

1

2�i
�

0

a

d� e−it�����1,��Le − �+
2�−1 − �Le − �−

2�−1��2
+�� .

his last representation has a more direct meaning, in that it is an integral extended over the
pectrum of the operator �Le

+�1/2. Moreover, it presents the evolution generated by �Le
+�1/2 as a

ourier transform of a function �for every fixed couple of states �1 and �2� supported on a
alf-line. As a consequence of the Paley-Wiener theorem, the evolution of the amplitude transition
annot have a leading large time contribution of exponential type, but a slower one should appear
see Refs. 11 and 12 for an early application of this remark to the time decay of amplitude
ransition�. The exact time behavior cannot be precised without the knowledge of further details
bout the generator. To this end it more practical to use the formula given in Lemma 2.5, as we see
n the following section.

II. RADIATION THEORY

. Generalities

In this section we want to give some details of the quantum dynamics of the model we are
tudying. In particular, we want to estimate, under the dynamics generated by He, the survival
mplitudes of the bound states of H0 and the probability amplitudes of the transitions between two
f such states with emission of photons. We begin with some preliminaries on the general structure
f the amplitude transitions in our model.

In the space F�L*
2�R3 ;C3�� � F�C3� a bound state �n level� for the Hamiltonian operator H0 is

epresented by a vector of the kind

� � Sn��1 � ¯ � �n� .

ccording to �1� this state is represented in F�L*
2�R3 ;C3� � C3� by the vector

Sn��0,�1� � ¯ � �0,�n�� .

y �1� again, a more general state with m photons, of the kind

Sm��1 � ¯ � �m� � Sn��1 � ¯ � �n� ,

s represented in F�L*
2�R3 ;C3� � C3� by the vector

Sm+n���1,0� � ¯ � ��m,0� � �0,�1� � ¯ � �0,�n�� .

ote that, being He=� d���Le
+�1/2�, any sector in F�L*

2�R3 ;C3� � C3� is preserved under e−itHe.
hus only the transitions from a n level to a m level with the emission of n–m photons are
llowed.

On the other hand, as we shall see, asymptotically the particle part of the wave function of the
tate relaxes to the ground state, and this yelds to the asymptotic conservation of the photon
umber in the scattering process. This property was devised by Arai in Ref. 2 for the regularized
auli-Fierz model with quadratic potential, as a consequence of the factorization properties of the
cattering matrix, and we find it again in the point model.

Since

e−itHe/�Sn��1 � ¯ � �n� = ��e−it�Le
+�1/2

�Sn��1 � ¯ � �n�

=
1

n!�� e−it�Le
+�1/2
��1

� ¯ � e−it�Le
+�1/2
��n

,

he survival amplitude of the bound state �� Sn��1 � ¯ � �n� is given by
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1

n!�� �
j=1

n

��0,��j
�,e−it�Le

+�1/2
�0,� j�� ,

hereas the the probability amplitude of the transition

� � Sn��1 � ¯ � �n� ↔ Sm��1 � ¯ � �m� � Sn−m��m+1 � ¯ � �n−m�

s given by

1

n!�� �
�j�m

����j
,0�,e−it�Le

+�1/2
�0,� j�� �

�k�m

��0,��k
�,e−it�Le

+�1/2
�0,�k�� .

. Survival amplitudes

After these general remarks, we evaluate the survival amplitudes for the bound states of the
nperturbed dynamics along the perturbed evolution. To simplify the exposition we break the
nalysis in a number of lemmata.

Lemma 3.1: For any �1 ,�2�C3 one has

��0,�1�,e−it�Le
+�1/2

�0,�2�� = S�t��1
* · �2,

here

S�t� = −
2�0�2

�2 I�t�

nd, with ±t�0,

I�t� = � e��eti�e
p�− i�e�
q�− i�e�

± e��et e
−i�et2z±

z± + i�e

p�z±�
q��z±�

+ J1�t� + J2�t� ,

J1�t� =
1

�
�

R
ds

e��s�t�s�
2��s� + �e�

p�i�s��
q�i�s��

,

J2�t� =
1

�
�

R
ds	 e��s�t�s�

2��s� − �e�
p�− i�s��
q�− i�s��

−
e��et�e

2

s2 − �e
2

p�− i�e�
q�− i�e�
 ,

p�z� =
e2�e

3c3 z + i
m

�e
	�0

2 +
�e

2

2

 ,

q�z� =
2e2

3c3 z2 + i
m�0

2

�e
2 �z + i�e� ,

here

z± ª ± �e − i�e,

�e = �0 +
28�0

3

3m2c6e4 + O�e5�, �e =
2�0

2

3mc3e2 + O�e5�

re the two roots of q�z�.

Proof: Let z�C±. Taking in account the algebraic equation satisfied by �e and the identity
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�Gz*
�,G�e

� =
1

4�c3

1

�e� iz

e have, for the projected resolvent,

��0,�1�,�Le − z2�−1�0,�2�+� = − �0
�2

�2�±�z�	m�0
28�c3�Gz*

�,G�e
� + 	m ± i

2e2

3c3 z
�e
�1
* · �2

=
− 2�0�2

�2�±iz − �e�

	±i
e2�e

3c3 z −
m

�e
	�0

2 +
�e

2

2


�±iz + �e�

	2e2

3c3 z2 +
m�0

2

�e
2 �±iz − �e�
�±iz + �e�

�1
* · �2.

hus using the representation formula given in Lemma 2.5, we get

��0,�1�,e−it�Le
+�1/2

�0,�2�� = −
2�0�2

�2 	I1�t� +
1

�
�

R
ds I2�t,s�
�1

* · �2,

here

I1�t� ª
1

2�i
lim
a↑�
�

−a

a

d� e−it���f��� − f�− ��� ,

I2�t,s� ª
1

2�i
�

R
d� e−it��2 f��� − f�− ��

s2 + �2 ,

f��� ª
1

� + i�e

e2�e

3c3 � + i
m

�e
	�0

2 +
�e

2

2



2e2

3c3�
2 + i

m�0
2

�e
2 �� + i�e�

�
1

� + i�e

p���
q���

.

hen, by residue theorem and Jordan’s lemma, when ±t�0, one obtains

I1�t� = � e��eti�e
p�− i�e�
q�− i�e�

± e��et �
k=1,2

e��− 1�ki�etzk

zk + i�e

p�zk�
q��zk�

,

here zkª �−1�k�e−�e, and

I2�t,s� = −
e��et�e

2

s2 − �e
2

p�− i�e�
q�− i�e�

+ e�t�e �
k=1,2

zk

s2 + zk
2

e��− 1�ki�etzk

zk + i�e

p�zk�
q��zk�

+ e��s�t �s�
2
	 1

�s�� �e

p��i�s��
q��i�s��

+
1

�s� ± �e

p�±i�s��
q�±i�s��
 .

ince

1

�
�

R
ds

zk

s2 + zk
2 = �− 1�k,
ne has
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I1�t� +
1

�
�

R
ds I2�t,s� = � e��eti�e

p�− i�e�
q�− i�e�

± e��et e
−i�et2zk

zk + i�e

p�zk�
q��zk�

+
1

�
�

R
ds	 e��s�t�s�

2��s� − �e�
p�− i�s��
q�− i�s��

−
e��et�e

2

s2 − �e
2

p�− i�e�
q�− i�e�
 +

1

�
�

R
ds

e��s�t�s�
2��s� + �e�

p�i�s��
q�i�s��

,

here k=2 if t�0 and k=1 if t�0. �

We distinguish three contributions in the previous formula for I�t�. The one on the first line is
ue to the resonances of the system. In particular, we have a purely exponential term with lifetime

e, coming from the projection on the stable subspace of the system, which dies out very quickly;
nd terms exponentially damped, due to the complex resonances. These last resonances are typical
f the Breit-Wigner distribution, and they are the only terms which survive to the usual single pole
pproximation for the resolvent. They give both the breadth of emission lines in the spectrum �or
quivalently the lifetime of the process� and the Lamb shift, as recalled in the introduction. The
ther contributions to the survival amplitude need more direct analysis. To simplify the exposition
e confine to the case of t�0, the case t�0 being completely analogous. The term J1�t� is
othing more than the Laplace transform �which we denote by the symbol L�, a rational function.
t is a tedious but standard calculation to verify that such a Laplace transform is in fact the sum of
pure exponential and a damped oscillation with the same characteristic exponents as the ones

oming from the first group of terms. So, the term J1�t� corresponds to a further resonance
ontribution.

Concerning J2�t� the following result holds true.
Lemma 3.2: There exist complex constants c1 ,c2 ,c3 such that, for t�0,

J2�t� =
1

�
L	 c1s + c2

��s − �e�2 + �e
2
 +

c3

�
PV�

0

� e−st

s − �e
ds .

Proof: Introducing a parameter � to isolate the singularity in �e, one can write

J2�t� =
2

�
�

0

+�

ds	 e−�s�t�s�
2��s� − �e�

p�− i�s��
q�− i�s��

−
e−�et�e

2

s2 − �e
2

p�− i�e�
q�− i�e�


= lim
�↓0
	 2

�
	�

0

�e−�

ds
e−�s�t�s�

2��s� − �e�
p�− i�s��
q�− i�s��

+ �
�e+�

+�

ds
e−�s�t�s�

2��s� − �e�
p�− i�s��
q�− i�s��


−
2

�
	�

0

�e−�

ds
e−�et�e

2

s2 − �e
2

p�− i�e�
q�− i�e�

+ �
�e+�

+� e−�et�e
2

s2 − �e
2

p�− i�e�
q�− i�e�

ds

 ,

nd the integrals in the second braces is vanishing for every �. So, one remains with

J2�t� =
2

�
PV�

0

� e−sts

2�s − �e�
p�− is�
q�− is�

.

inally, the rational function in the above integral can be decomposed in a singular �not integrable�
art and an integrable one, obtaining

J2�t� =
1

�
L	 c1s + c2

��s − �e�2 + �e
2�
 +

c3

�
PV�

0

� e−st

s − �e
ds ,

here c1, c2, and c3 are constants depending on the parameters. �

The first integral has the time behavior of the other already studied contributions, and the last

ne is related to the exponential integral function
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c3

�
PV�

0

� e−st

s − �e
ds = −

c3

�
e−�etEi��et� .

rom the well-known asymptotic behavior for large arguments of the exponential integral func-
ion, one can deduce that the leading contribution for large times to the survival amplitude is of the
rder 1 / t when t	1. In summary, collecting the previous calculations, we end with the following
esult.

Theorem 3.3: There exist complex constants c1 ,c2 ,c3 depending on the physical parameters
,m ,c ,�0 such that the survival amplitude is given by

S�t� = c1e−�e�t� + c2e−�e�t�e−i�et + c3e−�e�t� Ei��e�t�� .

. Transition amplitudes

Now we turn to the evaluation of the transition amplitudes. As we see in the previous theorem,
he unperturbed excited states of the oscillator decay. The transition to a lower energy state takes
lace with the emission of electromagnetic radiation, photons in the Fock space. To give a quan-
itative estimate of the probability of emission of photons one must decide which functions de-
cribe the one particle states of the electromagnetic field one is interested in. We choose to
alculate the transition amplitudes in the case of a regularized plane wave of �approximatively�
iven momentum.

Classically, a natural choice for the functions � representing the photons of energy �� should
e the divergence-free plane waves of the kind

��x� ª k ∧ �e−i�k·x/c, �k� = 1.

f course such functions are not square integrable and so we consider the divergence-free regu-
arization defined by

���x� ª 	k −
i�

�

x

�x�
 ∧ �e−ik·x/c−��x�/c, � � 0, � � 0, �k� = 1.

e choose this one as the one-particle wave functions describing photons. Eventually, we are
nterested in removing the cutoff � from the amplitude transitions.

We anticipate the definitions of some quantities appearing in the statement and proof of the
ollowing result. To evaluate the resolvent between states relevant to the transitions, one needs the
calar product ��� ,Gz

±�. Assuming that k is along the z axis and � is along the y axis, by elementary
alculations one obtains

���±z� ª ���,Gz
±� � k ∧ �* 1


	2 − ��� � iz�
2 + �� � iz�2 −

i�

22 ln
 + i� ± z

 − i� � z

 � �k ∧ �*���r

��±z� + �l
��±z�� .

e have written the function ���±z� just defined, as the sum �r
��±z�+�l

��±z� with two summands,
rational one and a logarithmic one. The first, �r

��±z� has poles at the points ±± i�, and at the
ame points the logaritmic part �l

��±z� has branching points. Due to this fact, some cautions are
eeded in the use of the residue theorem to evaluate transition amplitudes. Note, moreover, that
hese branching points of � are to be thought of as artificial byproducts of the regularization of the
lane wave, and that the poles of the function �r correspond to the frequencies of the plane wave.
hese poles depend on the particular wave function representing the photon, at variance with the
oles of the function 1/q�z�, which are determined by the physical parameters of the system. We
ndicate with C the logarithmic cut in the complex plane, and we distinguish the components of the
ut with real part of a fixed sign ���, with C±. With these premises, we state the following.

Lemma 3.4: For any �1,�2�C3 one has

� −it�Le
+�1/2 � *
���1,0�,e �0,�2�� = A �t�k · ��1 ∧ �2� ,
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here

A��t� = −
4�e

c

�2

�2 I��t�

nd, with ±t�0,

I��t� = � e��et�e
2��− i�e�

q�− i�e�
± e��et e

−i�et2z±

z± + i�e

2z± + i�e

q��z±�
��z±�

± e��t
e�i�t2�±� − i��
±� + i��e − ��

2� + i��e − 2��
q�±� − i��

�� − i�

2�

+
i

�
�

R
ds	 e��et�e

3

s2 − �e
2

��− i�e�
q�− i�e�

+
e��s�t�s��− 2�s� + �e�

2��s� − �e�
��− i�s��
q�− i�s��

,

+

i

�
�

R
ds

e��s�t�s��2�s� + �e�
2��s� + �e�

��i�s��
q�i�s��

+
�

�3�
C

dz e−itz2z + i�e

z + i�e

1

q�z�

+ �
�

�3	�
C+

dz e−itz2z + i�e

z + i�e

z

q�z�
− �

C−
dz e−itz2z + i�e

z + i�e

z

q�z�
 ,

Proof: One has, proceeding as in the proof of Lemma 3.1,

���1
�,0�,�Le − z2�−1�0,�2�+� =

4�ce�2

�2��iz + �e�
�±2iz − �e��±iz + �e�

	2e2

3c3 z2 −
m�0

2

�e
2 ��iz + �e�
�±iz + �e�

���±z��k ∧ �1
*� · �2.

herefore,

���1
�,0�,e−it�Le

+�1/2
�0,�2�� = −

4�e

c

�2

�2	I1�t� +
1

�
�

R
ds I2�t,s�
�k ∧ �1

*� · �2,

here �we omit the dependence on ��

I1�t� ª
1

2�i
lim
a↑�

�
−a

a

d� e−it���g��� − g�− ��� ,

I2�t,s� ª
1

2�i
�

R
d� e−it��2g��� − g�− ��

s2 + �2 ,

g��� ª
2� + i�e

� + i�e

����
q���

.

ow, let us choose a path in the complex lower half-plane which has the real axis as the upper
ide, avoids the cuts of the function �l �say, the straight half lines parametrized as z= ±�+u− i�,
u�0�, and close itself at � along a great circle, as in the previous lemma. There will be
ontributions due to the residues of the function 1/q�z�, the residues of the function �r�z�, and to
he discontinuity of the logarithmic part of �l�z� along the cut. In the end, one obtains, when ±t
0,
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I1�t� = � e��et�e
2��− i�e�

q�− i�e�
± e��et �

k=1,2

e��− 1�ki�etzk

zk + i�e

2zk + i�e

q��zk�
��zk� ± e��t �

k=1,2

e�i�twk

wk + i�e

2wk + i�e

q�wk�
rk

+ �
C

2z + i�e

z + i�e

e−itz

q�z�
,

here z± are the poles of q, wkª �−1�k�− i� are the two poles of �r�z� and rk the residues of �r,
nd finally C is the path along the cut of the logarithmic term.

Moreover, we have

I2�t,s� = i
e��et�e

3

s2 − �e
2

��− i�e�
q�− i�e�

+ e��et �
k=1,2

zk

s2 + zk
2

e��− 1�ki�etzk

zk + i�e

2zk + i�e

q��zk�
��zk�

+ e��t �
k=1,2

wk

s2 + wk
2

e�i�twk

wk + i�e

2wk + i�e

q�wk�
rk + ie��s�t �s�

2
	�2�s� + �e

�s�� �e

���i�s��
q��i�s��

+
±2�s� + �e

�s� ± �e

��±i�s��
q�±i�s�� 
 + �

C
e−itz2z + i�e

z + i�e

z2

q�z�
1

s2 + z2 .

herefore one obtains

I1�t� +
1

�
�

R
ds I2�t,s� = � e��et�e

2��− i�e�
q�− i�e�

± e��et e
−i�et2zk

zk + i�e

2zk + i�e

q��zk�
��zk�

± e��t
e�i�t2wk

wk + i�e

2wk + i�e

q�wk�
rk

+
i

�
�

R
ds	 e��et�e

3

s2 − �e
2

��− i�e�
q�− i�e�

+
e��s�t�s��− 2�s� + �e�

2��s� − �e�
��− i�s��
q�− i�s�� 


+
i

�
�

R
ds

e��s�t�s��2�s� + �e�
2��s� + �e�

��i�s��
q�i�s��

+
�

�3�
C

dz e−itz2z + i�e

z + i�e

1

q�z�

+ �
�

�3	�
C+

dz e−itz2z + i�e

z + i�e

z

q�z�
− �

C−
dz e−itz2z + i�e

z + i�e

z

q�z�
 ,

here k=2 if t�0 and k=1 if t�0 and C± are the components of C with ±Sign�Re�z���0,
espectively.

�

Now we can give the time behavior of the various terms, as in the previous theorem. A first
roup of terms is composed by the resonant contributions. One can distinguish natural resonances,
epending on the structural parameters only �the physical constants e,m,c�, and the resonance due
o the incident photon. For �↓0 this last contribution reduces to a strictly oscillating term, as
xpected. A second group of terms is given by the s integrals. We give their behavior for vanishing
only. The calculation is similar to the one already given for the survival amplitude, and one has

n the end Laplace transforms of rational functions with poles at the resonances, producing other
xponentials of the type already seen, and an exponential integral function. So the leading behav-
or of the type t−1 survives to the �↓0 limit.

The last group of terms are the contour complex integrals. These could be analyzed asymp-
otically as Fourier integrals of rational functions, but they vanish as �↓0. Summarizing we can
tate the following.

Theorem 3.5: There exist complex constants C1,C2,C3 depending on the physical parameters

, e, c, �0, �, and a function R�t� such that
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lim
�↓0

A��t� = C1e−�e�t� + C2e−�e�t�e−i�et + C3e−i�t + R�t�

ith

R�t� = O�1/t�, �t�	 1.

PPENDIX: QUANTIZATION OF ABSTRACT WAVE EQUATIONS

In this appendix we give a brief and self-contained introduction to the quantization of second
rder abstract wave equations, along the lines traced by Segal in the 1950s and 1960s and with an
mphasis on the aspects of direct concern with our work. We refer for details and different
pproaches to Refs. 23 and 13 as regards abstract wave equations and to Refs. 21 and 5 as regards
uantization.

Let B :D�B��H→H be an injective self-adjoint operator on the real Hilbert space �H , �· , · ��.
e denote by H1, the Hilbert space given by the domain of B with the scalar product �· , · �1

eading to the graph norm, i.e.,

��1,�2�1 ª �B�1,B�2� + ��1,�2� .

We then define the Hilbert space H̄1 by completing the pre-Hilbert space D�B� endowed with
he scalar product

��1,�2�1 ª �B�1,B�2� .

e extend the self-adjoint operator B to H̄1 by considering B̄ :H̄1→H, the closed bounded
xtension of the densely defined linear operator

B:H1 � H̄1 → H .

ince B is self-adjoint one has Ran�B��=Ker�B�, so that, being B injective, Ran�B� is dense in H.

herefore we can define B̄−1 :H→H̄1 as the closed bounded extension of the densely defined
inear operator

B−1:Ran�B� � H → H1.

ne can then verify that B̄ is boundedly invertible with inverse given by B̄−1.

Given B̄ we can now introduce the space H̄2 defined by

H̄2
ª ��� H̄1:B̄�� H1� .

n the Hilbert space H̄1 � H with scalar product

����1,�̇1�,��2,�̇2��� ª �B̄�1,B̄�2� + ��̇1,�̇2�

e define the linear operator

WB:H̄2 � H1 � H̄2
� H → H̄1

� H, WB��,�̇� ª ��̇,− BB̄�� .

Theorem A.1: The linear operator WB is skew-adjoint.
Being WB skew-adjoint, by the Stone theorem it generates the strongly continuous one-

arameter group of isometric operators etWB. By defining ���t� , �̇�t��ªetWB�� , �̇�, one has that, in

he case ��H̄2, �̇�H1, ��t� is the unique strong solution of the Cauchy problem

¨ ¯
��t� = − BB��t� ,
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��0� = �, �̇�0� = �̇ .

iven an arbitrary real Hilbert space �K , �· , · �K� we will denote by �Kc , �· , · �c� its standard com-
lexification, i.e., Kc=K � K, the multiplication by the complex unity being defined by i�ªJ�,
��1 ,�2�ª �−�2 ,�1�, and

��1,�2�c ª ��1,�2�K�K − i��1,J�2�K�K.

iven any linear operator A :D�A��K→K on K, we define Ac :D�Ac��Kc→Kc by D�Ac�
D�A� D�A�, Ac��1 ,�2�ª �A�1 ,A�2�. Conversely, given any linear operator L :D�L��Kc

Kc, L��1 ,�2���L1��1 ,�2� ,L2��1 ,�2��, we define Lr :D�Lr��K→K by D�Lr�ª ��
K : �� ,0��D�L��, LrªL1�� ,0�.

By the above definitions Bc is self-adjoint and �WB�c=WBc
, where

WBc
:H̄c

2
� Hc

1 � H̄c
2

� Hc → H̄c
1

� Hc, WBc
��,�̇� ª ��̇,− BcB̄c�� .

y the Stone formula one has the following.
Lemma A.2:

etWB = lim
a↑�

lim
�↓0

1

2�i
�

−a

a

d� e−it���iWBc
− �� + i���−1 − �iWBc

− �� − i���−1�r.

he following lemma translates the wave flow in a Schrödinger-type one.
Lemma A.3: The map

CB:H̄1
� H → Hc, CB��,�̇� ª �B̄�,�̇�

s unitary once one makes H̄1 � H a complex Hilbert space by introducing the complex structure

B�� , �̇�ª �−B̄−1�̇ , B̄�� and by defining i�� , �̇�ªJB�� , �̇� and the scalar product

����1,�̇1�,��2,�̇2���B ª ����1,�̇1�,��2,�̇2��� − i����1,�̇1�,JB��2,�̇2��� .

oreover

etWB = CB
*e−itBcCB.

nce we have transformed the abstract wave equation �̈�t�=−BB̄��t�, defined on the real Hilbert

pace H̄1 � H, into the Schrödinger equation i�̇=Bc�, defined on the complex Hilbert space Hc,
e can then �second� quantize it in the standard way. Let us define K to be the bosonic Fock space
ver Hc �see Ref. 19, Sec. II.4, for the definition�. For any ��H we define the self-adjoint
perator on K given by the Segal field S���ª �1/�2��C���+C*����, were C and C* denote the
sual creation and destruction operators �see Ref. 20, Sec. X.7, for the definition�. Given the Segal
eld S we can then define the Weyl system W���ªeiS�, so that

W��1 + �2� = e�i/2���1,�2�cW��1�W��2� .

he unitary strongly continuous one-parameter group of evolution on K defined by U�t�ª��e−itBc�
atisfies the relations

W�e−itBc�� = U�t�W���U�t�*

nd we denote by d��Bc� the self-adjoint operator on K which generates U�t� �we refer to Ref. 20,
ec. II.4, and Ref. 8 for the definitions of � and d��. The quantum Hamiltonian corresponding to

he �second� quantization of the abstract wave equation �̈�t�=−BB̄��t� is defined by Hª� d��Bc�.
uppose now that we start with a self-adjoint operator A on the real Hilbert space K. Denoting by
+ +
the positive part of A and by K the projection of K onto the positive spectral subspace. Then
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e can apply the previous construction to Bª�A+�1/2, considered as an injective self-adjoint
perator on HªK+. However, since

��1,e−it�A+�c
1/2
�2� = ��1

+,e−it�A+�c
1/2
�2

+� ,

here �+ denotes the projection of � on K+, we will work with d���A+�c
1/2� on the bosonic Fock

pace over K.
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We consider classical static solutions of the pure massive SU�N� Yang–Mills field
equations in �3+1�-dimensional space–time. By applying harmonic map ansatz,
constructed from the harmonic maps S2→CPN−1, we construct some bounded
spherically symmetric solutions having finite energies for N=2, 3, and 4 cases.
© 2005 American Institute of Physics. �DOI: 10.1063/1.1857063�

. INTRODUCTION

It is well known that the pure massless �3+1�-dimensional SU�N� Yang–Mills theories do not
dmit static classical finite-energy solutions.1,2 This fact is related to the conformal invariance of
he action which implies that the corresponding stress-energy tensor is traceless. As mass terms in
he action break this conformal invariance, this raises the expectation that finite-energy solutions

ight exist in the pure massive SU�N� Yang–Mills theories. This expectation is our main concern
n this paper.

The pure massive case is of course pathological, as its action is nongauge invariant. In order
o get rid of this nongauge invariance, in Sec. II we consider a Stückelberg-type gauge invariant

ormalism,3 where SU�N� chiral currents Ũ−1��Ũ with Ũ�SU�N� are added to render the massive

erms gauge invariant. The pure massive case now corresponds to choosing the special gauge Ũ
I. We then observe that if, within this special gauge, we choose the massive gauge potential to be
f almost pure gauge form, we recover the SU�N� Skyrme models action,4 which adds strong
upport to our previous expectation.

Armed with this observation, in Sec. III we turn to consider a static magnetic type case where
e show that the corresponding energy satisfies a Hobart–Derrick-type stability condition5,6 for

he existence of finite energy solutions. By performing a Bogomolnyi-type analysis to the energy,
e found that the energy has a lower bound that is proportional to a metric independent integral
e call B-integral, which is analogous to the topological charge of the SU�N� Skyrme models.4

To construct these solutions, in Sec. IV we consider the spherically symmetric case where we
pply harmonic map ansatz for the gauge potentials that were introduced by Ioannidou and Sut-
liffe in their study of non-Bogomolnyi BPS monopoles.7 The ansatz is constructed by using �N
1� rank-1 projectors of the harmonic maps S2→CPN−1 as formulated in Ref. 8. Here, the

wo-dimensional �2D� harmonic map construction, which is a generalization of geodesic concept
n differential geometry,9 is used to describe the angular dependence of the field configurations.
his has the advantage of reducing the complicated matrix field equations into simpler sets of
onlinear ordinary differential equations �ODEs� for the profile functions gl�r� , l=0,1 ,… ,
N−1�, i.e., the radial dependence part of the fields.

In Sec. V, we study spherically symmetric solutions of the equations �numerically� for lower
cases �2, 3, and 4�, where we found that by letting the profile functions gl�r� vanish at r→� and

ppropriately choosing the boundary conditions to be imposed at the origin r=0, some bounded

olutions with finite energies can be constructed.

46, 102306-1022-2488/2005/46�10�/102306/14/$22.50 © 2005 American Institute of Physics
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I. MASSIVE SU„N… YANG–MILLS THEORIES AND SKYRME MODELS

Let Ũ�x� be an SU�N� group valued function of space–time coordinates. Then a Stückelberg-
ype formalism of massive SU�N� Yang–Mills theories is given by the action3

S =� d4x Tr�− 1
2F��F�� + M2�A� − L̃���A� − L̃��� , �1�

here Tr is for trace and where

F�� = ��A� − ��A� + i�A�,A�� , �2�

L̃� = − iŨ−1��Ũ , �3�

ith M as a mass parameter and where we have chosen arbitrarily the gauge coupling e=1. The

auge potential A� and the left chiral current L̃� have values in the Lie algebra Su�N� and here we

ave chosen them to be Hermitian, i.e., A�
† =A� and L̃�

† = L̃�, respectively.
We note that the action �1� is invariant under the gauge transformations,

A�� = �−1A�� − i�−1��� , �4�

Ũ� = Ũ� , �5�

here ��SU�N�. On the other hand, as under the scale transformation x�→�x�, the gauge

otential and the chiral current scale as �A���x� and �L̃���x�, respectively, we see that the mass
erm breaks the scale invariancy of the action �1�.

The corresponding Euler–Lagrange equations are

D�F�� − M2�A� − L̃�� = 0, �6�

��A� − D�L̃� = 0, �7�

here for any G�Su�N�,

D�G � ��G + i�A�,G� . �8�

Taking �= Ũ−1 in �4� and �5�, Ũ becomes the unit element I and the action �1� reduces to

S =� d4x Tr�− 1
2F��F�� + M2A�A�� , �9�

.e., it is the pure massive SU�N� Yang–Mills action. The field equations �6� and �7� then reduce to

D�F�� − M2A� = 0, �10�

��A� = 0, �11�

espectively.
Equation �11� means that the gauge potential A� satisfies the Lorentz condition. Thus, we may

nterpret the action �9� as a gauge fixed version of the gauge invariant action �1�. As the field
quations �10� and �11� imply 3 degrees of freedom �polarization states� for each vector field A�

a

here a is the Lie algebra index, we call the gauge Ũ= I the physical or unitary gauge. In the
ollowing, by massive SU�N� Yang–Mills theories we mean the pure case �9�.
Now, let us make the following observation by choosing the gauge potential A� in the action
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9� to be of almost pure-gauge form, i.e.,

A� = iqU−1��U , �12�

here U takes value in the group SU�N�, and q is a space–time independent free parameter. In
erms of U, the gauge field strength F��, according to �2�, becomes

F�� = − iq�1 + q��L�,L�� , �13�

here

L� = U−1��U . �14�

hus we see that, if we choose q=−1 then F��=0 and so the corresponding gauge potential A� is
pure gauge.

Setting �12� and �13� into the action �9� yields a new action

S =� d4x Tr� 1
2q2�1 + q�2�L�,L���L�,L�� − q2M2L�L�� , �15�

hich coincides with the SU�N� Skyrme models action,4 with the parameters identification,

F = 4qM, a =
1

4q�1 + q�
, �16�

here F is the pion decay constant, and a the Skyrme models dimensionless constant.
As the SU�N� Skyrme models have finite �or solitonic� solutions called skyrmions, this coin-

idence gives us a strong basis to expect that massive SU�N� Yang–Mills theories might admit
nite energy solutions as well. To check this further, in the following sections, III–V, we choose to
tudy the static magnetic type case.

II. STATIC MAGNETIC TYPE ENERGY AND B-INTEGRAL

As we are interested in the static magnetic type case, we exclude the electric type fields by
mposing

A0 = 0, �0Aa = 0, �17�

rom which it follows that

F0a = 0, �18�

here a=1, 2, 3. Then, from the action �9�, the static magnetic type energy of the massive SU�N�
ang–Mills fields is

E =� d3x Tr� 1
2Fab

2 + M2Aa
2� . �19�

In Ref. 10, Sheng had shown that the static magnetic type massive SU�N� Yang–Mills fields
n �n+1�−D space–time with n�3 do not allow for the existence of finite-energy static solutions.
hus, the n=3 case that we are considering here evades Sheng nonexistence theorems which was

eft as an open problem in Ref. 10.
To examine this n=3 case explicitly, let us study the scale stability of the energy integral �19�

nder the scale transformation, x�→�x�. As the gauge potentials A� scale as

A��x�� → �A���x�� , �20�
rom which

                                                                                                            



t

w
m
S

t
b
fi

t

T
e
S
l

F

a

w
�

A

c
	

102306-4 H. J. Wospakrik J. Math. Phys. 46, 102306 �2005�

                        
F���x�� → �2F����x�� , �21�

he energy integral �19� scales as

E → E��� =� d3��x�
�3 Tr� 1

2�4Fab��x��2 + M2�2Aa��x��2�

= �EF +
1

�
EM , �22�

here EF and EM are the F-term and the massive term, respectively. Thus we see that the pure
assive SU�N� Yang–Mills static energy �19� scales in the same fashion as the static energy of the
U�N� Skyrme models.4 As

�dE���
d�

�
�=1

= EF − EM , �23�

�d2E���
d�2 �

�=1
= 2EM , �24�

he extremum condition guarantees that EM =EF. Thus we see that the Hobart–Derrick-type sta-
ility condition5,6 could be satisfied, and so we conclude that static massive SU�N� Yang–Mills
eld theories admit the existence of finite-energy solutions as we expected.

Next, we note that the energy integral �19� can be expressed in the form of a perfect square
erm plus “something” as follows:

E =� d3x Tr�� 1
2�abcFab − MAc�2 + M�abcFabAc� . �25�

he second term in �25� has structure which is independent of the metric tensor, which raises the
xpectation that it is a topological quantity. As it is proportional to the baryon number B of the
U�N� Skyrme models if A� is of almost pure gauge form, so for convenience we keep the same

etter B for it, and define

B =
1

16�
� d3x Tr��abcFabAc� . �26�

or later reference, we call it by the name B-integral. From �25� it is obvious that, for finite B,

E � 16�MB , �27�

nd so the lower bound of the energy would be saturated if

�abcFab − 2MAc = 0, �28�

hich is analogous to Bogomolnyi’s bound in Yang–Mills–Higgs monopole theories.7 Note that
28� is consistent with the Lorentz condition �11� in this static magnetic type case.

In terms of the spherical polar coordinates �r ,	 ,
�, the energy �19� becomes

E =� dr�sin 	 d	 d
�Tr�Fr	
2 +

1

sin2 	
Fr


2 +
1

r2 sin2 	
F	


2 + M2r2Ar
2 + M2A	

2 +
M2

sin2 	
A


2	 .

�29�

s we are going to apply the harmonic maps S2→CPN−1 to this problem, in the following we

hoose to use the stereographic �holomorphic� coordinates �� , �̄� for S2 where � is related to the
i�
, �, via �=tan�	 /2�e . The angular derivatives �	 and �
 then read
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�	 =
�1 + 
�
2�

2
�

���� + �̄��̄� , �30�

�
 = i���� − �̄��̄� , �31�

espectively, where 
�
=�
�
2, whereas for the volume element,

d3x = r2 dr�sin 	 d	 d
� = r2 dr� 2i d�̄ d�

�1 + 
�
2�2	 . �32�

The transformation relations between the angular components of the gauge potential and field
trength in the spherical polar and holomorphic coordinates are

A	 =
�1 + 
�
2�

2
�

��A� + �̄A�̄� , �33�

A
 = i��A� − �̄A�̄� , �34�

Fr	 =
�1 + 
�
2�

2
�

��Fr� + �̄Fr�̄� , �35�

Fr
 = i��Fr� − �̄Fr�̄� , �36�

F	
 = i
�
�1 + 
�
2�F�̄�. �37�

n terms of the complex quantities on the right-hand side of �33�–�37�, the energy �29� in the

pherical holomorphic coordinates �r ,� , �̄� is

E = 2i� dr d� d�̄ Tr�Fr�̄Fr� −
�1 + 
�
2�2

4r2 F�̄�F�̄� +
M2r2

�1 + 
�
2�2ArAr + M2A�̄A�	 , �38�

nd the field equations �10� become

D�̄F�r + D�F�̄r −
2Mr2

�1 + 
�
2�2Ar = 0, �39�

DrFr�̄ − D�̄� �1 + 
�
2�2

2r2 F�̄�	 − M2A�̄ = 0, �40�

hile the Lorentz condition �11� becomes

�r�r2Ar� +
�1 + 
�
2�2

2
���A�̄ + ��̄A�� = 0. �41�

V. SU„N… HARMONIC MAP ANSATZ

In this section, we solve the massive SU�N� Yang–Mills field equations �39� and �40� together
ith the constraint �41�, numerically, by using harmonic maps S2→CPN−1. Our harmonic map

7
nsatz for the gauge potentials, following Ioannidou and Sutcliffe, are given by
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Ar = 0, A� = i�
k=0

N−2

gk�Pk,��Pk� , �42�

here Pk= Pk�� , �̄� are rank-1 projector fields of the CPN−1 model,8 and where gk, the profile
unctions, are dependent on the radial coordinate r only.

Following the construction in Ref. 8, the projectors Pk are given by

Pk = Mk
Mk
−2Mk
† �k = 0,1,…,N − 1� , �43�

here Mk are a set of N mutually orthogonal N-component vector fields that are constructed by the
ram–Schmidt procedure from the holomorphic vector fields, M0 , ��M0 ,… ,��

�N−1�M0.
Note that, in �43� and the rest of our discussion, summation convention on repeated indices

re no longer held. Notice also that the upper sum in �42� is �N−2� as the projectors Pk satisfy the
ompleteness relation, P0+ P1+ ¯ + PN−1= IN where IN is the �N�N� unit matrix.

As M0 is holomorphic, i.e., ��̄M0=0, the following properties of the constructed matrices Mk

n �43� hold:8

��̄Mk = − Mk−1
Mk−1
−2
Mk
2, �44�

���Mk
Mk
−2� = Mk+1
Mk
−2. �45�

Now, from the construction �43� we see that A�̄= �A��† and that, as the projectors Pk satisfy the
PN−1 model equation,8 �Pk ,��̄�Pk�=0, it follows from the ansatz �42� that the gauge potentials

� and A�̄ satisfy the identity

��A�̄ + ��̄A� = 0, �46�

nd so �41� is solved by this ansatz automatically.
Furthermore, we find that with the ansatz �42�, Eq. �39� is also satisfied identically. Thus, the

nly nontrivial equation left is �40�. To derive the explicit equations for the profile functions gk

rom �40�, we need to extract out the angular dependence in a consistent way. To carry out this
anipulation directly is a formidable task due to the complexities in evaluating the derivatives of

he projectors. In order to get rid of it, we reduce the dependencies on the holomorphic coordinates

� , �̄� by multiplying �40� from the right by the mutually orthogonal vector fields Ml�l
0,… , �N−1��, i.e.,

DrFr�̄ − D�̄� �1 + 
�
2�2

2r2 F�̄�	 − M2A�̄�Ml = 0, �47�

nd then use the following properties of the projector operators Pk=Mk
Mk
−2Mk
† and its deriva-

ives applied to Ml:

PkMl = �klMl, �48�

���Pk�Ml = ��kl − �k,l+1�Ml+1, �49�

���̄Pk�Ml = �l−1��k,l−1 − �kl�Ml−1, �50�

here

�l = 
Ml
−2
Ml+1
2. �51�

n deriving the above results we have taken M0 to be holomorphic and we have used the derivative
roperties of Ml as given by Eqs. �44� and �45�. Note that, by definition, �−1=0. For example, in

eriving �50� we first write
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���̄Pk�Ml = ��̄�PkMl� − Pk��̄Ml. �52�

hen, using �44� and �48�, i.e., ��̄Ml=−�l−1Ml−1, gives �50�.
Hence, the action of the gauge potential, as given by the ansatz �42�, on the vectors Ml are

A�Ml = − iGlMl+1, �53�

A�̄Ml = iGl−1�l−1Ml−1, �54�

here

Gl = �gl + gl+1� , �55�

rom which we derive that

Fr�Ml = − iĠlMl+1, �56�

Fr�̄Ml = iĠl−1�l−1Ml−1, �57�

F�̄�Ml = i�Q̃l�l − Q̃l−1�l−1�Ml, �58�

here

Q̃l = Gl�2 − Gl� . �59�

ote that, by definition, gl=0 if l� �0,1 ,… , �N−2��.
Let us now return to Eq. �47�. We observe that, in order to have a compatible set of equations

or the profile functions gl, we must choose the vectors Ml in such a way that each factor
1+ 
�
2�2�l is equal to a constant, i.e.,

�l =
Kl

�1 + 
�
2�2 , �60�

here Kl are some constants depending on the index l. In fact, we found that the condition �60� is
atisfied if we choose the initial vector M0 to be given by the Veronese map,11

M0 = �1,�C1
N−1�,…,�Ck

N−1�k,…,�N−1�T, �61�

here Ck
N−1 are binomial coefficients.

With this choice then from the construction of the vectors Ml we obtain4

Kl = �l + 1��N − l − 1� = Nl. �62�

sing �53�–�57� and �60� for �l then for the first two terms of Eq. �40�, we obtain

DrFr�̄ − D�̄� �1 + 
�
2�2

2r2 F�̄�	�Ml

= iG̈l−1 +
1

2r2 �NlQ̃l − 2Nl−1Q̃l−1 + Nl−2Q̃l−2��1 − Gl−1���l−1Ml−1. �63�

Substituting �54� and �63� in Eq. �40�, and noticing that Ml are independent vector fields, we
nd that the profile functions gl satisfy the following second order nonlinear ordinary differential

quations:
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G̈l +
1

2r2 �Nl+1Q̃l+1 − 2NlQ̃l + Nl−1Q̃l−1��1 − Gl� − M2Gl = 0. �64�

hus we see that the harmonic map ansatz �42� with the initial vector M0 given by the Veronese
ap �61� is an exact spherically symmetric solution of the massive Yang–Mills field equations

39�–�41�.
Next, we want to express the static magnetic type energy �19� in terms of the profile functions

l. To simplify the evaluation of the traces in �19�, we choose to use the formula

Tr�R� = �
k=0

N−1
1


Mk
2
Mk

†�R�Mk, �65�

here R is a �N�N� nonsingular complex matrix which is diagonal in each basis vector Mk�k
0,1 ,… ,N−1�. Note that the upper sum in �65� is �N−1�, instead of �N−2�, because here we
ust sum over the whole complete set of basis vectors Mk in CN.

Using �53�–�57� and �60� we obtain

Tr�Fr�̄Fr�� =
1

�1 + 
�
2�2 �
k=0

N−2

NlĠl
2, �66�

Tr�F�̄�F�̄�� = −
1

�1 + 
�
2�4 �
k=0

N−1

�NlQ̃l − Nl−1Q̃l−1�2, �67�

Tr�A�̄A�� =
1

�1 + 
�
2�2 �
k=0

N−2

NlGl
2, �68�

here, by definition, GN−1=0 and N−1=0.
With the above results for the traces, the static energy �38�, written in a symmetrical form,

ecomes

E = 4��
0

�

dr�
l=0

N−1 �NlĠl
2 +

1

4r2 �NlQ̃l − Nl−1Q̃l−1�2 + M2NlGl
2	 . �69�

e note that equations for the critical points of the energy �69� coincide with the equations for the
rofile functions gl in �64� as we expected. From this expression we see that the energy is finite
rovided the profile functions Gl, for all l=0,1… , �N−2�, are bounded and that they approach
ero at infinity as re−Mr and at the origin the boundary conditions, Gl=0 or 2, are imposed.

The B-integral in this coordinate system is

B = −
2i

16�
� dr d� d�̄ Tr�Fr�A�̄ + F�̄rA�� , �70�

nd so using the formula �65� to express the traces, we obtain

B = −
1

2 �
l=0

N−2

Nl�
0

�

dr�ĠlGl� = −
1

4 �
l=0

N−2

Nl�Gl
2�r��r=0

� , �71�

here Nl is given by �62�. Thus, by taking the boundary conditions Gl���=0, we see that the

-integral is determined solely by the boundary conditions at the origin.
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. SPHERICALLY SYMMETRIC SOLUTIONS

In this section, we have a look at the numerical solutions of the profile equations �64� for some
ifferent values of the mass M by imposing the boundary conditions, Gl���=0 and Gl�0�=0 or 2,
s required for having finite-energy solutions. In fact, we only consider the cases N=2, 3, and 4.

. SU„2…

Here we have only one profile function G0, with N0=1, so the profile equations �64� reduce
o a single equation,

G̈0 −
1

r2Q̃0�1 − G0� − M2G0 = 0. �72�

olving �72� for some different values of the mass M with the boundary condition G0�0�=2 at the
rigin, we have found that each solution G0 is bounded. In Fig. 1 we show the solution for M
1.

We have also computed the corresponding energy from �69�, i.e.,

E = 4��
0

�

dr�Ġ0
2 +

1

2r2Q̃0
2 + M2G0

2	 , �73�

nd the results for four different mass parameters, i.e., M =1, 5, 10, and 50, are summarized in
able I.

FIG. 1. Profile function of the massive SU�2� YM field for M =1.

TABLE I. Energies of the massive SU�2� YM fields.

G0�0� B EM=1 /4� EM=5 /4� EM=10/4� EM=50/4�

2 1 4.946 29e+00 2.473 20e+01 4.946 70e+01 2.477 55e+02
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In Fig. 2 we show the radial energy density for M =1 and we see that it looks like a trough
all.

These solutions has B-integral equal to 1 and so, according to �27�, the lower bound of the
nergy is E / �4��=4M. We see that each energy is about 25% higher than the corresponding lower
ound value.

FIG. 2. Energy density of the massive SU�2� YM field for M =1.
FIG. 3. Profile functions of the massive SU�3� YM fields for M =1, G0�0�=2, and G1�0�=0.
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For the boundary condition G0�0�=0, we have found that Eq. �72� has trivial solution G0�r�
0.

. SU„3…

For N=3, we have two profile functions G0 and G1 which satisfy

G̈0 −
1

r2 �2Q̃0 − Q̃1��1 − G0� − M2G0 = 0, �74�

G̈1 −
1

r2 �− Q̃0 + 2Q̃1��1 − G1� − M2G1 = 0, �75�

s N0=N1=2.
We have solved these equations for each of the following two different choices of boundary

onditions imposing at the origin �G0�0� ,G1�0��= �2,0� and �2, 2�, and we have also found that the
orresponding solutions are bounded. In Fig. 3, we show the graphs of these solutions for M =1,
nd the corresponding radial energy distribution is presented in Fig. 4. In Table II we have
ummarized the result of energies computed from �69�, i.e.,

FIG. 4. Energy density of the massive SU�3� YM fields for M =1, G0�0�=2, and G1�0�=0.

TABLE II. Energies of the massive SU�3� YM fields.

G0�0� G1�0� B EM=1 /4� EM=5 /4� EM=10/4� EM=50/4�

2 0 2 1.190 80e+01 5.954 09e+01 1.190 87e+02 5.962 17e+02

2 2 4 2.164 98e+01 1.082 51e+02 2.165 16e+02 1.084 40e+03
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E = 4��2��
0

�

drĠ0
2 + Ġ1

2 +
1

r2 �Q̃0
2 − Q̃0Q̃1 + Q̃1

2� + M2G0
2 + M2G1

2� , �76�

or different values of mass M.
We notice that Eqs. �74� and �75� are symmetric with respect to the interchange G0↔G1. This

llows us to set G0=G1 which reduces the system to a single SU�2� profile equation �72�. This
onfiguration has B=4 �taking G0�0�=2� and having energy 4 times the energy of a SU�2� con-
guration.

. SU„4…

Here we have three profile functions G0 , G1, and G2, with N0=N2=3 and N1=4, so the
rofile equations �64� reduce to

G̈0 −
1

r2 �3Q̃0 − 2Q̃1��1 − G0� − M2G0 = 0, �77�

G̈1 −
1

2r2 �− 3Q̃0 + 8Q̃1 − 3Q̃2��1 − G1� − M2G1 = 0, �78�

G̈2 −
1

r2 �− 2Q̃1 + 3Q̃2��1 − G2� − M2G2 = 0, �79�

The corresponding energy �69� is

E = 4��
0

�

dr3Ġ0
2 + 4Ġ1

2 + 3Ġ2
2 +

1

2r2 �9Q̃0
2 − 12Q̃0Q̃1 + 16Q̃1

2 − 12Q̃1Q̃2 + 9Q̃2
2�

+ 3M2G0
2 + 4M2G1

2 + 3M2G2
2� . �80�

We observe that the system �77�–�79� has symmetry G0↔G2, which allows us to set G0

G2=G by keeping G1 arbitrary. The energies for this configuration are summarized in Table III.
In addition, letting G0=G1=G2=G, the above system of equations reduces to the SU�2�

rofile equation �72�. This configuration has B=10 �taking G�0�=2� and has energy 10 times the
nergy of one SU�2� configuration.

TABLE III. Energies of the massive SU�4� YM fields �reduced case�.

G�0� G1�0� B EM=1 /4� EM=5 /4� EM=10/4� EM=50/4�

0 2 4 2.690 92e+01 1.345 50e+02 2.691 20e+02 1.348 17e+03

2 0 6 3.665 47e+01 1.832 76e+02 3.665 67e+02 1.834 96e+03

TABLE IV. Energies of the massive SU�4� YM fields.

G0�0� G1�0� G2�0� B EM=1 /4� EM=5 /4� EM=10/4� EM=50/4�

0 0 2 3 1.917 95e+01 9.589 85e+01 1.918 04e+02 9.601 04e+02

0 2 0 4 2.777 12e+01 1.388 60e+02 2.777 48e+02 1.393 03e+03

2 0 2 6 3.665 40e+01 1.832 73e+02 3.665 68e+02 1.835 97e+03

0 2 2 7 4.136 43e+01 2.068 26e+02 4.136 80e+02 2.072 68e+03
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In Table IV, we have summarized the values of energies for general configurations G0�G1

G2 for four different combinations of boundary conditions at the origin. In Fig. 5, we show the
raphs of the solutions for M =1, G0�0�=0, G1�0�=2, and G2�0�=2. The corresponding radial
nergy distribution is presented in Fig. 6.

FIG. 5. Profile functions of the massive SU�4� YM fields for M =1, G0�0�=0, G1�0�=2, and G2�0�=2.
FIG. 6. Energy density of the massive SU�4� YM fields for M =1, G0�0�=0, G1�0�=2, and G2�0�=2.
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I. CONCLUSIONS

In this paper we considered the pure massive SU�N� Yang–Mills theories where we first
howed that for the case when the gauge potential is chosen to be of almost pure gauge form, the
heories reduce to the SU�N� Skyrme models. When we studied the static magnetic type case we
ound that the energy is bounded from below by a topological chargelike quantity that we called
y the name B-integral.

To solve the corresponding static equations, we used Ioannidou–Sutcliffe harmonic map an-
atz that they introduced in their study of non-Bogomolnyi BPS monopoles.7 This ansatz enabled
s to construct some bounded solutions having finite energies for N=2, 3, and 4 cases. These
olutions are very special in the sense that they depend very much on the chosen boundary
onditions to be imposed on the profile functions gk, i.e., gk=−2, 0 or 2 at the origin and zero at
nfinity. We also showed that each solution is classified by the B-integral which is an integer
umber.

CKNOWLEDGMENTS

The author is very grateful to Professor W. J. Zakrzewski for his guidance, encouragement,
nd valuable discussions during the course of this research. The author also thanks Professor R. S.
ard, Dr. T. A. Ioannidou, and Dr. B. Piette for useful suggestions and their interest on this work.

he author acknowledges the grant from the QUE Project at the Department of Physics, Institute
f Technology, Bandung, Indonesia.

1 S. Deser, Phys. Lett. 64B, 463 �1976�.
2 S. Coleman, Commun. Math. Phys. 55, 113 �1977�.
3 T. Kunimasa and T. Goto, Prog. Theor. Phys. 37, 452 �1967�.
4 T. A. Ioannidou, B. Piette, and W. J. Zakrzewski, J. Math. Phys. 40, 6223 �1999�.
5 R. H. Hobbart, Proc. R. Soc. London 82, 201 �1963�.
6 G. H. Derrick, J. Math. Phys. 5, 1252 �1964�.
7 T. A. Ioannidou and P. M. Sutcliffe, Phys. Rev. D 60, 105009 �1999�.
8 W. J. Zakrzewski, Low Dimensional Sigma Models �IOP, Bristol, 1989�.
9 J. Eels and L. Lemaire, Bull. London Math. Soc. 10, 1 �1978�.
0 H. H. Sheng, Lecture Notes in Physics 212 �Springer-Verlag, Berlin, 1984�, p. 212.
1 J. Bolton, G. R. Jensen, M. Rigoli, and L. M. Woodward, Math. Ann. 279, 599 �1988�.
                                                                                                            



G
q

I

p
m
h
t
s

w

i
o
a
g

L
H
ª

w
c
�
t

a

JOURNAL OF MATHEMATICAL PHYSICS 46, 102307 �2005�

0

                        
round state energy of the polaron in the relativistic
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We consider the polaron model in the relativistic quantum electrodynamics. We
prove that the ground state energy of the model is finite for all values of the
fine-structure constant and the ultraviolet cutoff �. Moreover we give an upper
bound and a lower bound of the ground state energy. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2084749�

. INTRODUCTION AND MAIN RESULTS

We consider the relativistic quantum electrodynamics �QED� for a fixed total momentum—the
olaron model of the relativistic QED. The Hamiltonian, which describes a Dirac particle mini-
ally coupled to the quantized radiation field, commutes with the total momentum operator, and

as a direct integral decomposition with respect to the total momentum operator.1,2 Each fiber in
his direct integral decomposition is just the Hamiltonian of the polaron we consider. The Hilbert
pace of the polaron model is defined by

F ª C4
� Fb�L2�R3 � �1,2��� , �1�

here

Fb�L2�R3 � �1,2��� ª �
n=0

� ��
s

n

�L2�R3 � �1,2���� �2�

s the photon Fock space �� s
n denotes n-fold symmetric tensor product�. For a closable operator T

n L2�R3� �1,2�� we denote by d�b�T�, the second quantization operator of T �see Ref. 3�. Let
�f�, f �L2�R3� �1,2�� be the annihilation operator on the photon Fock space. For a function

j �L2�R3� �1,2��, j=1,2 ,3, we set

Aj ª a�gj� + a�gj�*, j = 1,2,3. �3�

et ��1 ,�2 ,�3 ,�� be the 4�4-Dirac matrices, i.e., ��i ,� j�=2�i,j, ��i ,��=0, �2=1, i , j=1,2 ,3.
ere �A ,B�ªAB+BA. For three objects a1 ,a2 ,a3 we set a= �a1 ,a2 ,a3�, and write a·b
	 j=1

3 ajbj, provided that ajbj and 	 j=1
3 ajbj are defined.

The Hamiltonian of the polaron model we consider is

H�p� ª � · p + M� + d�b��� − � · d�b�k� − q� · A , �4�

here p�R3 is the fixed total momentum, M 	0 is the mass of the Dirac particle, q�R is a
onstant proportional to the fine-structure constant, and �= 
k
 is the one-photon Hamiltonian �k
R3�. Note that we omit the symbol � between the Hilbert space for the Dirac matrices C4 and

he photon Fock space Fb�L2�R3� �1,2���. The most important example of �gj� j=1
3 is of the form

�
Electronic mail: i-sasaki@math.sci.hokudai.ac.jp
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f j�k,r� ª

��k�

k
1/2 ej

�r��k� , �5�

here the measurable functions e�1��k� ,e�2��k� are the polarization vectors:

k · e�r��k� = 0, e�r��k� · e�s��k� = �r,s, a.e.k � R3, r,s = 1,2, �6�

nd 
��k� is the characteristic function of the ball �
k�R3

k
���, ��0.
We define

E0�p� ª inf
�Dom�H�p��

��=1

�,H�p� �7�

he ground state energy of H�p�, where “Dom” means operator domain. We assume the following.
Hypothesis I: gj �Dom��−1/2��Dom���, �gj ,g��R, j ,�=1,2 ,3.
It should be noted that it is highly nontrivial whether or not E0�p� is finite, because H�p�

ontains the term −� ·d�b�k�. This is the main problem discussed in the present paper.
We prove that the ground state energy E0�p� is finite under suitable conditions:
Theorem 1.1: Assume Hypothesis I, and

G�g� ª sup
k�R3\�0�

1


k
 	
r=1,2

�
R3


k · g�k�,r�
2


k

k�
 − k · k�
dk� � � . �8�

hen, the ground state energy E0�p� is finite:

E0�p� � − � . �9�

n particular, if gj = f j, j=1,2 ,3, the ground state energy E0�p� is finite.
For a vector u�C4, we set ajª �u ,� juC4, and

E��1,u� ª p · a + M�u,�u + 4��q21 − 
a
2


a

log�1 + 
a


1 − 
a
� − 4��q2.

In the physical case �i.e., the function gj’s are given by �5��, the lower bound of E0�p�
�
p
2+M2 are proportional to �.

Theorem 1.2: Let gj = f j, j=1,2 ,3. Then

C1� − �
p
2 + M2 � E0�p� , �10�

E0�p� � C2��� , �11�

here

C1 ª inf
�,���0

��
q
 + 16�q2 + ��� +
1

��
�4�q2,�4�
q


3�
+ �1 +

1

��
�4�q2� , �12�

C2��� ª inf
u�C4

�u�C4=1

E��,u� . �13�

I. PROOF OF THEOREM 1.1 AND 1.2

Lemma 2.1: Let A be a positive self-adjoint operator on a Hilbert space H. Let B be a
ymmetric operator with Dom�A��Dom�B� and
�B� � �A�,  � Dom�A� . �14�
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hen, for all �D�A�, � , �A+B�	0.
Proof: By the Kato–Rellich theorem,4 for all �� �−1,1�, A+�B is self-adjoint and A+�B

0. Therefore � , �A+B�	0 for all �Dom�A�. �

By this lemma, it suffices to show that there exists a constant E	0 such that

��d�b��� + E��2 	 �� · �d�b�k� + qA��2,  � Dom�d�b���� . �15�

e use the following representation for � matrices:

� j = �� j 0

0 − � j
�, j = 1,2,3,

ith ��1 ,�2 ,�3� being the Pauli matrices. Using the anticommutation relation of �1, �2, and �3,
e have

�� · �d�b�k� + qA��2 = 	
j=1

3

��d�b�kj� + qAj��2 − q�,S · �a�ik � g� + a�ik � g�*� ,

�16�

here Sj =� j � � j, j=1,2 ,3. The Hilbert space C4 � �� s
nL2�R3� �1,2��� is naturally embedded in

2�R3� �1,2� ;C4 � �� s
�n−1�L2�R3� �1,2����. For a vector �C4 � �� s

nL2�R3� �1,2���, we denote
ts value at point �k ,r��R3� �1,2� by �k ,r , · �.

For = ��n��n=0
� �Dom�d�b����, we define

a�r��k� ª ��1��k,r�,�2�2��k,r, · �, . . . ,�n�n��k,r, · �, . . . � � F, k � R3, r = 1,2,

�17�

Fock space valued function. This operator a�r��k� is the distributional kernel of the annihilation
perator.

Lemma 2.2: For all �Dom�d�b���� and ��0, the following inequality holds:


q�,S · �a�ik � g� + a�ik � g�*�
 � 
q
��,d�b��� +

q

�

�g,�g��2, �18�

here �g ,�gª	 j=1
3 �gj ,�gj.

Proof:

left-hand side of �18� = 2
q
�Re�	R3�,− iS · �k � g�k,r��a�r��k�dk�
� 2
q
�	R3�S · �k � g�k,r��� �a�r��k��dk

= 2
q
�	R3
k
1/2
g�k,r�
 · � 
k
1/2a�r��k�� · ��dk � 2
q


��g,�g1/2��	R3� 
k
1/2a�r��k��2�1/2

��

� 
q
��,d�b��� +

q

�

�g,�g��2,

here Xª	r=1,2�. �
Lemma 2.3: For all �Dom�d�b���� and ��0, the following inequality holds:
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�,A2 � �2 + � +
1

�
���−1/2g,�−1/2g�,d�b��� + �1 +

1

�
��g,g��2. �19�

Proof:

�,A2 � 	
j=1

3 ��1 + ���a�gj��2 + �1 +
1

�
��a�gj�*�2�

� 	
j=1

3 ��1 + ��� 
k
−1/2gj�2 · �d�b���1/2�2 + �1 +
1

�
��
k
−1/2gj�2 · �d�b���1/2�2

+ �1 +
1

�
��gj�2 · ��2� .

�

The following Lemma is the most important fact in the proof of Theorem 1.1.
Lemma 2.4: For all �Dom�d�b����, the following inequality holds:

�d�b����2 − 	
j=1

3

�d�b�kj��2 − q�d�b�k�,A − q�A,d�b�k�

	 − 4q2G�g��,d�b��� − q�,�a�k · g�* + a�k · g�� . �20�

Proof: We define

F ª

k · g�k�,��

k
 · 
k
 − k · k�

. �21�

or all �Dom�d�b����, we have

left-hand side of�20� =�	R3dk�	R3� dk��
k
 · 
k�
 − k · k����b − 2qF�a�2 − q�,�a�k · g�

+ a�k · g�*� − 4q2�	R3dk��	R3� dk��
k
 · 
k�
 − k · k��−1
k · g�k�,��
2�
��a�2,

here aªa�r��k�, bªa����k��, and X�ª	�=1,2�. Since 
k
 · 
k�
−k·k�	0, inequality �20�
olds. �

Proof of Theorem 1.1: Using Lemmas 2.2–2.4, we get

�d�b��� + E�2 − 	
j=1

3

�d�b�kj� + qAj�2 − qS · �a�ik � g� + a�ik � g�*� 	 2Ed�b��� + E2

− 4q2G�g�d�b��� − q�a�k · g�* + a�k · g�� − 
q
d���� − 
q
�g,�g − 4��−1/2g,�−1/2gd�b���

− 2�g,g ,

n the sense of quadratic form on Dom�d�b����. Since a�k·g�+a�k·g�* is d�b���1/2 bounded, for
large E�0 we have

�d�b��� + E�2 − 	
j=1

3

�d�b�kj� + qAj�2 − qS · �a�ik � g� + a�ik � g�� 	 0.
y Lemma 2.1, for a large E	0, we obtain

                                                                                                            



i

e

B
2

I
o
�

F

N

S

w

102307-5 Ground state energy of the polaron J. Math. Phys. 46, 102307 �2005�

                        
d�b��� − � · d�b�k� − q� · A 	 − E , �22�

n the sense of quadratic form on Dom�d�b����. This inequality implies that E0�p� is finite.
Next we show that G�f��� if gj = f j�j=1,2 ,3�. By the definitions of e�r��k�, the vectors k / 
k
,

�1��k�, e�2��k� are the orthonormal basis of C3. Therefore

G�f� = sup
k�R3\�0�

1


k
�R3


��k��dk�


k

k�
 − k · k�
·

1


k�
�
k
2 −
�k · k��2


k�
2 � = �
R3


��k��

k�
2

dk� = 4�� .

�

Proof of Theorem 1.2: First we show �10�. We set gj = f j�j=1,2 ,3�. It is easy to see that

H�p� 	 − �
p
2 + M2 + d�b��� − � · d�b�k� − q� · A . �23�

y the definition of e�r��k�, we have k·f�k ,r�=0�k�R3 ,r=1,2�. Therefore, using Lemmas 2.2–
.4, we have

�d�b��� + C1��2 − �d�b�k� + qA�2 − qS · �a�ik � f� + a�ik � f�*�

	 �2C1� − 2
q
�� − 4q2G�f� − �2 + �� +
1

��
���−1/2f,�−1/2f�d�b���

+ C1
2�2 −


q

2��

�f,�f − �1 +
1

��
�q2�f,f, �,�� � 0. �24�

t is easy to see that ��−1/2f ,�−1/2f=8��, �f ,�f=8��3 /3, �f , f=4��2. Hence, by the definition
f C1, the left-hand side of �24� is positive for suitable � ,���0. Thus, using Lemma 2.1 �and
16��, we have

H�p� 	 − �
p
2 + M2 − C1� . �25�

or normalized vectors u�C4, ��Dom�d�b���� we define

aj ª �u,� ju, h�a� ª d�b�� − a · k� − qa · A ,

 ª u � � � F .

ote that �−a·k	0 and �−a·k is injective as a multiplication operator. We have

�,H�p� = a · p + M�u,�u + ��,h�a�� . �26�

ince h�a� is a van Hove type Hamiltonian, we have

inf ��h�a�� = − q2��
k
 − a · k�−1/2a · f�2 = − 4��q2 + q2�1 − 
a
2��
R3

dk

��k�


k
2 − �a · k�2

= − 4��q2 + 2��q2�1 − 
a
2�
1


a

log�1 − 
a


1 + 
a
� ,

here � means the spectrum �e.g., Ref. 3�. Thus we have

E0�p� � inf
u�C4;�u�=1

inf
��Dom�d�b����

�,H�p� = inf
u�C4;�u�=1

E�u� .
�
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nduced matter: Curved N-manifolds encapsulated in
iemann-flat N+1 dimensional space
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Liko and Wesson have recently introduced a new five-dimensional induced matter
solution of the Einstein equations, a negative curvature Robertson-Walker space
embedded in a Riemann-flat five-dimensional manifold. We show that this solution
is a special case of a more general theorem prescribing the structure of certain N
+1 dimensional Riemann-flat spaces which are all solutions of the Einstein equa-
tions. These solutions encapsulate N-dimensional curved manifolds. Such spaces
are said to “induce matter” in the submanifolds by virtue of their geometric struc-
ture alone. We prove that the N-manifold can be any maximally symmetric
space. © 2005 American Institute of Physics. �DOI: 10.1063/1.2042968�

The concept of “induced matter,” was originally introduced by Wesson.1,2 While investigating
ve-dimensional �5D� Kaluza-Klein theory, he recognized that a curved 4-space could be embed-
ed in a Ricci-flat �RAB=0; A ,B , . . . � �0,1 ,2 ,3 ,4�� 5-space. This is a reflection of the Campbell-
agaard theorem3 which, applied to 5D, states that it is always possible to embed a curved

our-dimensional �4D� manifold in a 5D Ricci-flat space. Seahra and Wesson4 provide an overview
nd rigorous proof of the Campbell-Magaard theorem with applications to higher dimensions.
esson takes “induced matter” to mean that the left-hand geometric side extra terms of the flat 5D
icci-tensor provide the source terms in the 4D curved Ricci-tensor of the embedded space. A
weak” version of this concept utilizing an embedding of the Friedmann-Roberston-Walker
FRW� 4-space in a Minkowski 5-space has been used to visualize the big bang sectionally.5 Here,
he 5-space is Riemann-flat �RABCD=0� since it is Minkowski. There is no physics in the 4D
ubspace, except with reference to the original FRW coordinates. This simply provides a Euclid-
an embedding diagram.

More recently, Liko and Wesson have introduced a new 5D, Riemann-flat solution6 which
hey found could “encapsulate” a 4D curved FRW space. We use the term “encapsulate” as distinct
rom embed since in this 5-space, the coordinates are not Minkowski. The 4D subspace is itself
urved in the same 5D coordinates. It is true that a flattening transformation can be found to a 5D
inkowski space. However, this would simply produce another embedding diagram. The physics

eems to lie in the encapsulating 5D metric. We shall use the term “induced matter” to include a
iemann-flat 5D manifold encapsulating a curved 4D subspace. The Liko-Wesson induced matter

olution goes on to describe an apparently inflationary universe as a negative curvature FRW space
mbedded in a special 5D universe. The RW space undergoes accelerated expansion subject to a
epulsive “dark energy” �P=−��. We will show in this paper that the Liko-Wesson solution is a
pecial case of a more general class of maximally symmetric submanifolds embedded in Riemann-

�
Author to whom correspondence should be addressed. Electronic mail: lawrence.mead@usm.edu
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at space. A detailed discussion of maximally symmetric submanifolds based on Poincarè metrics
nd their consequences can be found in Ref. 7. For convenience, we repeat some critical defini-
ions and calculations.

Consider the Riemann manifold defined by

dS2 = g̃ij dxi dxj . �1�

his space is said to be maximally symmetric if and only if it has constant sectional curvature
=��i , j�, for any 1� i� j�N. In the plane spanned by the basis vectors �êi , êj� the sectional
urvature is defined by

��i, j� = g̃iiRiji
j �i, j not summed� . �2�

or a maximally symmetric space Riji
j =�g̃ii, j� i. For such a space,

Rii = − ��N − 1�g̃ii. �3�

Theorem: Let g̃ij represent a maximally symmetric space of sectional curvature �. The metric

dS2 = d�2 − D�2g̃ij dxi dxj, i, j . . . , � �1,2, . . . ,N� , �4�

s Riemann-flat whenever D=−�.
Proof: Consider the metric

dS2 = d�2 − f���2g̃ij dxi dxj , �5�

here g̃ij denotes a maximally symmetric space. We compute the independent components of the
urvature tensor �the overtilde denotes differentiation in ��:

R0j0
i = −

f �

f
� j

i,

Ri0j
0 = − f f �g̃ij,

Rikj
k = R̃ij − �N − 1�f�2g̃ij = − ��N − 1�g̃ij − �N − 1�f�2g̃ij = − �N − 1��f�2 + ��g̃ij , �6�

here we have made use of the result �3�. It is evident from �6� that the space will be Riemann-flat
f and only if f �=0 and f�2+�=0. Let f���=�D�. Then f �=0 and f�2−D=0. It follows that

=−� and the proof is complete.
Liko and Wesson6 introduce the line element �with overall sign of dS2 reversed from ours�,

dS2 = d�2 −
�2

L2�dt2 − L2 sinh2	 t

L

d�3

2� , �7�

here

d�3
2 = 	1 +

kr2

4

−2

�dr2 + r2 d�2 + r2 sin2 � d�2� , �8�

s the Robertson-Walker 3-space with k=−1.
Define coordinates xA= �� ,r ,� ,� , t�, A� �0,1 ,2 ,3 ,4�.

We can then identify in �4�,
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g̃ii = �− f ,− fr2,− fr2 sin2 �,1�, f = L2 sinh2�t/L�	1 +
kr2

4

−2

, �9�

nd D=1/L2. Equation �7� is thus of the form �4� and will satisfy the theorem provided that the
ectional curvature of the 4-space is �=−1/L2. Direct evaluation of the sectional curvature for two
ypical cases �by symmetry, the remaining cases are identical� results in

��1,2� = g̃11R121
2 = −

1

L2 ,

��4,2� = g̃ 44R424
2 = −

1

L2

hich show that the conditions �6� are met. That is, the 4-space has constant sectional curvature
hich then results in a Riemann-flat 5-space. We have thus shown that the new metric solution,

7�, introduced by Liko and Wesson is a special case of our more general theorem �4� which
llows the N-space to be any maximally symmetric manifold.

1 P. S. Wesson, Gen. Relativ. Gravit. 22, 707 �1990�.
2 P. S. Wesson, Astrophys. J. 394, 19 �1992�.
3 J. Campbell, A Course on Differential Geometry �Claredon, Oxford, 1926�.
4 S. S. Seahra and P. Wesson, Class. Quantum Grav. 20, 1321 �2003�.
5 S. S. Seahra and P. Wesson, Class. Quantum Grav. 19, 1139 �2002�.
6 T. Liko and P. S. Wesson, J. Math. Phys. 46, 062504-1 �2005�.
7 L. R. Mead, H. I. Ringermacher, and S. Lee �unpublished�.
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A new tetrad is introduced within the framework of geometrodynamics for non-null
electromagnetic fields. This tetrad diagonalizes the electromagnetic stress-energy
tensor and allows for maximum simplification of the expression of the electromag-
netic field. The Einstein-Maxwell equations will also be simplified. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2049167�

. INTRODUCTION

The theory of geometrodynamics1 tried to account for the classical problem of the charged
article. It is a point of view where there is nothing except curved spacetime. Electromagnetism is
nly a manifestation of the curvature. The electric charge was described as the flux of lines of
orce that emerges from the mouth of a small wormhole in a multiply connected space. An
bserver with poor resolving power would see the emerging flux as coming from an elementary
lectric charge.1 Therefore, it was concluded that if elementary charge can be associated with a
eometrical property of the multiply connected spacetime, there should not be a source term in
axwell’s equations. Geometrodynamics is not in agreement with the idea that particles and fields

ive in a geometrical background as imported entities. However, it presented difficulties, since it
as not possible to find a variational principle for this theory. If F�� is the electromagnetic field

nd f��= �G1/2 /c2�F�� is the geometrized electromagnetic field, then the Einstein-Maxwell equa-
ions can be written,

f��
;� = 0, �1�

� f��
;� = 0, �2�

R�� = f��f�
� + � f�� � f�

�, �3�

here �f��= 1
2�����f�� is the dual tensor of f�� �Appendix A�. The symbol “;” stands for covariant

erivative with respect to the metric tensor g��. The quadratic right-hand side in Eq. �3� is solved
n terms of the left-hand side. Then the “square root of the left-hand side” written in terms of the

etric tensor is replaced in Eqs. �1� and �2� and two sets of equations have to be satisfied by the
etric tensor. On the one hand, the Bianchi identities. They are identically satisfied by the metric

ensor, so they were not a problem. On the other hand, a set of integrability conditions that could
ot be derived from a variational principle. In this work, it is not our goal to solve the problem of
he variational principle in geometrodynamics. It is our purpose to introduce a new tetrad, spe-
ifically adapted to the geometry of electromagnetic fields in geometrodynamics. This new tetrad
ould simplify the understanding of the geometry associated with non-null electromagnetic fields.

tetrad is a set of four linearly independent vectors V�j�
� that could be defined at every point in a

pacetime.2,3 The index j is the tetrad index and runs from one to four, naming the vectors. It is

�
Electronic mail: garat@fisica.edu.uy
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ossible then, to write at every point in a spacetime, the components of a tensor in terms of the
etrad vectors,

Z��. . .
��. . . = Zrs. . .

pq. . .V�r�
� V�s�

� V�
�p�V�

�q� . . . , �4�

here the quantities Zrs. . .
pq. . . are the tetrad components of the tensor. Our purpose is to find a

etrad in geometrodynamics that diagonalizes the stress-energy tensor and simplifies the expres-
ion of the electromagnetic field. We need to understand first the concept of duality rotations. A
uality rotation of the electromagnetic field is defined as1

e��f�� = f�� cos � + � f�� sin � , �5�

here � is a scalar called the complexion. At every point in spacetime there is a duality rotation
y an angle −� that transforms a non-null electromagnetic field into an extremal field,

	�� = e−��f��. �6�

Extremal fields are essentially electric fields and they satisfy,

	�� � 	�� = 0. �7�

The tetrad that diagonalizes the stress-energy tensor will be written in terms of the extremal
eld 	��, and two other vector fields X� and Y�. It will be proved that these two extra vector fields
re available freedom that we have in the construction of a general tetrad for non-null electro-
agnetic fields. The fact that in geometrodynamics Maxwell’s equations �1� and �2� have zero

ource terms, introduces the existence of two potential vector fields, A� and �A�, natural candi-
ates for a particular and explicit choice or example of X� and Y�. In this particular example, an
nexpected question will arise at this point. If our tetrad involves in its construction the potential
ectors A� and �A�, how is the tetrad going to be affected by electromagnetic gauge transforma-
ions? The geometry of electromagnetic fields defines at every point in spacetime two planes
elated to the symmetries of the stress-energy tensor.4 Gauge transformations A�→A�+
,�, with

a scalar function, that leave invariant the electromagnetic field, will generate proper and im-
roper Lorentz transformations on one of the planes. Gauge transformations �A�→ �A�+ �
,�,
ith �
 a scalar function, that leave invariant the dual of the electromagnetic field will generate

patial rotations on the other plane. The possibility of introducing null tetrads in geometrodynam-
cs will also be explored. Finally, the general tetrad will be studied for non-null electromagnetic
elds where X� and Y� are considered as generic fields, and the Einstein-Maxwell equations in this
eneral tetrad will be discussed. The explicit example introduced and all its properties will be
seful in understanding the general case. The remainder of this paper will be organized as follows.
he tetrad that diagonalizes the stress-energy tensor will be introduced in Sec. II. The available

reedom that we have in building this tetrad will be analyzed in Sec. III. The geometrical impli-
ations of gauge transformations will be discussed in Sec. IV. An isomorphism between the local
auge group and local Lorentz transformations on blades one and two will be included in Sec. V.
he normalized tetrad will be studied in Sec. VI. In this last section a new null tetrad will also be

ntroduced. The general case and the Einstein-Maxwell equations written in terms of the general
etrad will be discussed in Sec. VII. Throughout the paper we use the conventions of Ref. 1. In
articular we use a metric with sign conventions ����. The only difference in notation with
ef. 1 will be that we will call our geometrized electromagnetic potential A�, where f��=A�;�

A�;� is the geometrized electromagnetic field f��= �G1/2 /c2�F��.

I. DIAGONALIZATION OF THE STRESS-ENERGY TENSOR
The stress-energy tensor according to Eq. �14a� in Ref. 1, can be written as
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T�� = f��f�
� + � f�� � f�

�, �8�

here �f��= 1
2�����f�� is the dual tensor of f��. The tensor ����� is studied in Appendix A. The

uality rotation given by Eq. �59� in Ref. 1,

f�� = 	�� cos � + � 	�� sin � , �9�

llows us to express the stress-energy tensor in terms of the extremal field,

T�� = 	��	�
� + � 	�� � 	�

�. �10�

The extremal field 	�� and the scalar complexion � are defined through Eqs. �22�–�25� in Ref.
. It is our purpose to find a tetrad in which the stress-energy tensor is diagonal. This tetrad would
implify the analysis of the geometrical properties of the electromagnetic field. There are four
etrad vectors that at every point in spacetime diagonalize the stress-energy tensor in geometro-
ynamics,

V�1�
� = 	��	�X, �11�

V�2�
� = �− Q/2	��X�, �12�

V�3�
� = �− Q/2 � 	��Y�, �13�

V�4�
� = � 	�� � 	�Y, �14�

here Q=	��	��=−�T��T�� according to Eq. �39� in Ref. 1. Q is assumed not to be zero, because
e are dealing with non-null electromagnetic fields. We are free to choose the vector fields X� and
�, as long as the four vector fields �11�–�14� are not trivial. Two identities in the extremal field
re going to be used extensively in this work, in particular, to prove that tetrads �11�–�14� diago-
alizes the stress-energy tensor. The first identity is given by Eq. �64� in Ref. 1,

	�� � 	�� = 0. �15�

n order to find the second identity we need Eq. �15� in Ref. 1,

f��f�� − � f�� � f�� = 1
2��

�f��f��. �16�

When we replace �9� in �16� and make use of �15�, the second identity is found,

	��	�� − � 	�� � 	�� = 1
2��

�Q . �17�

When we make iterative use of �15� and �17� we find,

V�1�
� T�

� =
Q

2
V�1�

� , �18�

V�2�
� T�

� =
Q

2
V�2�

� , �19�

V�3�
� T�

� = −
Q

2
V�3�

� , �20�

V�4�
� T�

� = −
Q

V�4�
� . �21�
2
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In Ref. 1 the stress-energy tensor was diagonalized through the use of a Minkowskian frame
n which the equation for this tensor was given in �34� and �38�. In this work, we give the explicit
xpression for the tetrad in which the stress-energy tensor is diagonal. The freedom we have to
hoose the vector fields X� and Y� represents available freedom that we have to choose the tetrad.
f we make use of Eqs. �15� and �17�, it is straightforward to prove that �11�–�14� is a set of
rthogonal vectors.

II. ELECTROMAGNETIC POTENTIALS IN GEOMETRODYNAMICS

Our goal is to simplify as much as we can the expression of the electromagnetic field through
he use of an orthonormal tetrad, so its geometrical properties can be understood in an easier way.
s was mentioned earlier we would like to show this simplification through an explicit example
y making a convenient and particular choice of the vector fields X� and Y�. In geometrodynam-
cs, the Maxwell equations,

f��
;� = 0,

� f��
;� = 0, �22�

re telling us that two potential vector fields exist,

f�� = A�;� − A�;�,

� f�� = � A�;� − � A�;�. �23�

For instance, in the Reissner-Nordstrom geometry the only nonzero electromagnetic tensor
omponent is f tr=Ar;t−At;r and its dual �f��= �A�;�− �A�;�. The vector fields A� and �A� repre-
ent a possible choice in geometrodynamics for the vectors X� and Y�. It is not meant that the two
ector fields have independence from each other, it is just a convenient choice for a particular
xample. This choice allows us to write the new tetrad as

V�1�
� = 	��	�A, �24�

V�2�
� = �− Q/2	��A�, �25�

V�3�
� = �− Q/2 � 	�� � A�, �26�

V�4�
� = � 	�� � 	� � A. �27�

A further justification for the choice X�=A� and Y�= �A� could be illustrated through the
eissner-Nordstrom geometry. In this particular geometry, f tr=	tr and �f��= �	��, therefore, A�

0 and A�=0. Then, for the last two tetrad vectors �26� and �27�, the choice Y�= �A� becomes
eaningful under the light of this particular extreme case, when basically there is no magnetic
eld. However, we have to be careful about the choice we made for X� and Y�. The normalization
f the tetrad vectors �24�–�27� requires one to know the values of the invariant quantities,

V�1�
� V�1�� = �Q/2�A�	��	��A�, �28�

V�2�
� V�2�� = �− Q/2�A�	��	��A�, �29�

V� V�3�� = �− Q/2� � A� � 	�� � 	�� � A� �30�
�3�
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V�4�
� V�4�� = �− Q/2� � A� � 	�� � 	�� � A�. �31�

Then, it is convenient to calculate the invariants �28�–�31� in the Minkowski reference frame
iven by Eqs. �38� and �39� in Ref. 1,

V�1�
� V�1�� = �	01�4�A0A0 + A1A1� , �32�

V�2�
� V�2�� = − �	01�4�A0A0 + A1A1� , �33�

V�3�
� V�3�� = �	01�4��A2 � A2 + � A3 � A3� , �34�

V�4�
� V�4�� = �	01�4��A2 � A2 + � A3 � A3� . �35�

Several cases arise. Since 	01�0 because the electromagnetic field is non-null �Q�0�, the
wo vector components A0 and A1 cannot be simultaneously zero. If in a region of spacetime or in
he whole spacetime A0A0+A1A1�0, it would be necessary to switch the first two tetrad vectors,

�1�
� =�−Q /2	��A� and V�2�

� =	��	�A. If A0A0+A1A1=0, then we have V�1�
� T�

�V�1��=0 and

�2�
� T�

�V�2��=0. We are not dealing with this kind of situation in this work. Another choice of X�

ould be necessary at the points where A0A0+A1A1=0. It is clear that if A0A0+A1A1�0, the
ollowing equations hold:

− V�1�
� V�1�� = V�2�

� V�2�� � 0, �36�

V�3�
� V�3�� = V�4�

� V�4�� � 0. �37�

The treatment of the problem of building tetrad vectors in geometrodynamics, studying their
auge transformation properties and building null tetrads would be analogous for the two cases
hen A0A0+A1A1�0 or A0A0+A1A1�0. The treatment of just one of the these two possible cases
ould automatically provide the framework and the ideas to solve the other one. That is why we

hoose to analyze in detail A0A0+A1A1�0.

V. GAUGE GEOMETRY

Once we make the choice X�=A� and Y�= �A� the question about the geometrical implica-
ions of electromagnetic gauge transformations arises. When we make the transformation,

A� → A� + 
,�, �38�

f�� remains invariant, and the transformation,

�A� → � A� + � 
,�, �39�

eaves �f�� invariant, as long as the functions 
 and �
 are scalars. It is valid to ask how the
etrad vectors �24� and �25� are going to transform under �38�, �26�, and �27� under �39�. Schouten
efined what he called a two-bladed structure in a spacetime.4 These blades are the planes deter-
ined by the pairs �V�1�

� ,V�2�
� � and �V�3�

� ,V�4�
� �. For simplicity we will study first what we call gauge

ransformations associated with blade one, the blade generated by the pair �V�1�
� ,V�2�

� �. Later we
ill study similar transformations on blade two, the blade generated by �V�3�

� ,V�4�
� �.

. Gauge transformations on blade one

In order to simplify the notation we are going to write 
,�=
�. First we study the change in

24� and �25� under �38�,
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Ṽ�1�
� = V�1�

� + 	��	�
, �40�

Ṽ�2�
� = V�2�

� + �− Q/2	��
�, �41�

The second term on the right-hand side of �40� has the orthogonality properties,

	��	�
V�3�� = 	��	�
V�4�� = 0. �42�

The second term on the right-hand side of �41� has similar orthogonality properties,

�− Q/2	��
�V�3�� = �− Q/2	��
�V�4�� = 0. �43�

Since the four vectors �24�–�27� are independent and orthogonal, Eqs. �42� and �43� imply that
he second terms on the right-hand sides of �40� and �41� must be a linear combination of the
ectors �24� and �25�. We proceed then to write Eqs. �40� and �41� as

Ṽ�1�
� = V�1�

� + CV�1�
� + DV�2�

� , �44�

Ṽ�2�
� = V�2�

� + EV�1�
� + FV�2�

� . �45�

From Eqs. �40� and �44� we know that

	��	�
 = CV�1�
� + DV�2�

� , �46�

nd from Eqs. �41� and �45� we have

�− Q/2	��
� = EV�1�
� + FV�2�

� . �47�

Making use of identities �15�–�17� it can be proved that

	��V�1�
� = �− Q/2V�2��, �48�

	��V�2�
� = �− Q/2V�1��. �49�

If we contract Eq. �46� with 	�� and make use of identities �15�–�17� and Eqs. �48� and �49�
e get

�− Q/2	��
� = CV�2�� + DV�1��. �50�

This last equation means that

Ṽ�2�
� = V�2�

� + CV�2�
� + DV�1�

� . �51�

Then, from �45� and �51� we have the following relations between coefficients:

E = D , �52�

F = C . �53�

Contracting Eq. �50� with V�1�
� and V�2�

� it can be found that

C = �− Q/2�V�1��
�/�V�2��V�2�
� � , �54�

D = �− Q/2�V�2��
�/�V�1��V� � . �55�
�1�
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We would like to calculate the norm of the transformed vectors Ṽ�1�
� and Ṽ�2�

� ,

Ṽ�1�
� Ṽ�1�� = ��1 + C�2 − D2�V�1�

� V�1��, �56�

Ṽ�2�
� Ṽ�2�� = ��1 + C�2 − D2�V�2�

� V�2��, �57�

here the relation V�1�
� V�1��=−V�2�

� V�2�� has been used. In order for these transformations to keep
he timelike or spacelike character of V�1�

� and V�2�
� the condition ��1+C�2−D2��0 must be satis-

ed. If this condition is fulfilled, then we can normalize the transformed vectors Ṽ�1�
� and Ṽ�2�

� as
ollows:

Ṽ�1�
�

�− Ṽ�1�
� Ṽ�1��

=
�1 + C�

��1 + C�2 − D2

V�1�
�

�− V�1�
� V�1��

+
D

��1 + C�2 − D2

V�2�
�

�V�2�
� V�2��

, �58�

Ṽ�2�
�

�Ṽ�2�
� Ṽ�2��

=
D

��1 + C�2 − D2

V�1�
�

�− V�1�
� V�1��

+
�1 + C�

��1 + C�2 − D2

V�2�
�

�V�2�
� V�2��

. �59�

The condition ��1+C�2−D2��0 allows for two possible situations, 1+C�0 or 1+C�0. For
he particular case when 1+C�0, the transformations �58� and �59� are telling us that an electro-

agnetic gauge transformation on the vector field A�, that leaves invariant the electromagnetic
eld f��, generates a boost transformation on the normalized tetrad vector fields

� V�1�
�

�− V�1�
� V�1��

,
V�2�

�

�V�2�
� V�2��

� .

or the case 1+C�0, Eqs. �58� and �59� can be rewritten,

Ṽ�1�
�

�− Ṽ�1�
� Ṽ�1��

=
�− �1 + C��

��1 + C�2 − D2

�− V�1�
� �

�− V�1�
� V�1��

+
�− D�

��1 + C�2 − D2

�− V�2�
� �

�V�2�
� V�2��

, �60�

Ṽ�2�
�

�Ṽ�2�
� Ṽ�2��

=
�− D�

��1 + C�2 − D2

�− V�1�
� �

�− V�1�
� V�1��

+
�− �1 + C��

��1 + C�2 − D2

�− V�2�
� �

�V�2�
� V�2��

. �61�

Equations �60� and �61� represent the composition of two transformations—an inversion of
he normalized tetrad vector fields

� V�1�
�

�− V�1�
� V�1��

,
V�2�

�

�V�2�
� V�2��

� ,

nd a boost. If the case is that ��1+C�2−D2��0, the vectors V�1�
� and V�2�

� are going to change their
imelike or spacelike character,

Ṽ�1�
� Ṽ�1�� = �− �1 + C�2 + D2��− V�1�

� V�1��� , �62�

�− Ṽ� Ṽ�2��� = �− �1 + C�2 + D2�V� V�2��. �63�
�2� �2�
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These are improper transformations on blade one. The normalized tetrad vectors V�1�
� and V�2�

�

ransform as

Ṽ�1�
�

�Ṽ�1�
� Ṽ�1��

=
�1 + C�

�− �1 + C�2 + D2

V�1�
�

�− V�1�
� V�1��

+
D

�− �1 + C�2 + D2

V�2�
�

�V�2�
� V�2��

, �64�

Ṽ�2�
�

�− Ṽ�2�
� Ṽ�2��

=
D

�− �1 + C�2 + D2

V�1�
�

�− V�1�
� V�1��

+
�1 + C�

�− �1 + C�2 + D2

V�2�
�

�V�2�
� V�2��

. �65�

For D�0 and 1+C�0 these transformations �64� and �65� represent improper space inver-
ions on blade one. If D�0 and 1+C�0, Eqs. �64� and �65� are improper time reversal trans-
ormations on blade one.5 If the case is that D�0, we can proceed to analyze in analogy to �60�
nd �61�. Then, the normalized tetrad vectors transform as

Ṽ�1�
�

�Ṽ�1�
� Ṽ�1��

=
�− �1 + C��

�− �1 + C�2 + D2

�− V�1�
� �

�− V�1�
� V�1��

+
�− D�

�− �1 + C�2 + D2

�− V�2�
� �

�V�2�
� V�2��

, �66�

Ṽ�2�
�

�− Ṽ�2�
� Ṽ�2��

=
�− D�

�− �1 + C�2 + D2

�− V�1�
� �

�− V�1�
� V�1��

+
�− �1 + C��

�− �1 + C�2 + D2

�− V�2�
� �

�V�2�
� V�2��

. �67�

For D�0 and 1+C�0 these transformations �66� and �67� represent the composition of
nversions, and improper space inversions on blade one. If D�0 and 1+C�0, Eqs. �66� and �67�
re inversions composed with improper time reversal transformations on blade one.5 For
=1+C we can see using Eqs. �44� and �51� that

Ṽ�1�
� = �1 + C�V�1�

� + �1 + C�V�2�
� , �68�

Ṽ�2�
� = �1 + C�V�2�

� + �1 + C�V�1�
� . �69�

Equations �68� and �69� show that any vector on blade one transforms as

AV�1�
� + BV�2�

� → AṼ�1�
� + BṼ�2�

� = �1 + C��A + B��V�1�
� + V�2�

� � . �70�

This is clearly a noninjective transformation. At the same time we know that there is an
nverse transformation,

V5 �1�
� = Ṽ�1�

� − 	��	�
 = V�1�
� , �71�

V5 �2�
� = Ṽ�2�

� − �− Q/2	��
� = V�2�
� . �72�

Then, the conclusion must be that there could not exist a scalar function that satisfies the
nitial assumption D=1+C. Analogous for D=−�1+C�.

. Gauge transformations on blade two

The change in notation �
,�= �
� is going to be adopted. In this section we are interested in
he study of the change in �26� and �27� under �39�,

Ṽ� = V� + �− Q/2 � 	��
�, �73�
�3� �3�
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Ṽ�4�
� = V�4�

� + � 	�� � 	� � 
. �74�

The second term on the right-hand side of �73� has the orthogonality properties,

�− Q/2 � 	�� � 
�V�1�� = �− Q/2 � 	�� � 
�V�2�� = 0. �75�

The second term on the right-hand side of �74� has similar orthogonality properties,

�	�� � 	� � 
V�1�� = � 	�� � 	� � 
V�2�� = 0. �76�

Since the four vectors �24�–�27� are independent and orthogonal, Eqs. �75� and �76� imply that
he second terms on the right-hand sides of �73� and �74� must be a linear combination of the
ectors �26� and �27�. We proceed then to write equations �73� and �74� as

Ṽ�3�
� = V�3�

� + KV�3�
� + LV�4�

� , �77�

Ṽ�4�
� = V�4�

� + MV�3�
� + NV�4�

� . �78�

From Eqs. �73� and �77� we know that

�− Q/2 � 	�� � 
� = KV�3�
� + LV�4�

� , �79�

nd from Eqs. �74� and �78� we have

�	�� � 	� � 
 = MV�3�
� + NV�4�

� . �80�

Making use of identities �15�–�17� it can be proved that

�	��V�3�
� = �− Q/2V�4��, �81�

�	��V�4�
� = − �− Q/2V�3��. �82�

If we contract Eq. �80� with �	�� and make use of identities �15�–�17� and Eqs. �81� and �82�
e get

− �− Q/2 � 	�� � 
� = MV�4�� − NV�3��. �83�

This last equation means that

Ṽ�3�
� = V�3�

� + NV�3�
� − MV�4�

� . �84�

Then, from �77� and �84� we have the following relations between coefficients:

K = N , �85�

L = − M . �86�

Contracting Eq. �83� with V�3�
� and V�4�

� it can be found that

M = �− Q/2�V�3�� � 
�/�V�4��V�4�
� � , �87�

N = �− Q/2�V�4�� � 
�/�V�3��V�3�
� � . �88�

˜ � ˜ �
We would like to calculate the norm of the transformed vectors V�3� and V�4�,
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Ṽ�3�
� Ṽ�3�� = ��1 + N�2 + M2�V�3�

� V�3��, �89�

Ṽ�4�
� Ṽ�4�� = ��1 + N�2 + M2�V�4�

� V�4��, �90�

here the relation V�3�
� V�3��=V�4�

� V�4�� has been used. Now, we see that the gauge transformations
f the invariants given by �89� and �90� cannot change the spacelike character of vectors V�3�

� and

�4�
� , unless 1+N=M =0. Apart from that exception, the factor ��1+N�2+M2� is always positive, so

e would have no problems normalizing the transformed vectors Ṽ�3�
� and Ṽ�4�

� ,

Ṽ�3�
�

�Ṽ�3�
� Ṽ�3��

=
�1 + N�

��1 + N�2 + M2

V�3�
�

�V�3�
� V�3��

−
M

��1 + N�2 + M2

V�4�
�

�V�4�
� V�4��

, �91�

Ṽ�4�
�

�Ṽ�4�
� Ṽ�4��

=
M

��1 + N�2 + M2

V�3�
�

�V�3�
� V�3��

+
�1 + N�

��1 + N�2 + M2

V�4�
�

�V�4�
� V�4��

. �92�

As long as ��1+N�2+M2��0 the transformations �91� and �92� are telling us that an electro-
agnetic gauge transformation on the vector field �A� that leaves invariant the dual electromag-

etic field �f��, generates a rotation on the normalized tetrad vector fields

� V�3�
�

�V�3�
� V�3��

,
V�4�

�

�V�4�
� V�4��

� .

. GROUP ISOMORPHISM

In Secs. IV A and IV B the gauge transformation properties of the tetrad vectors were ana-
yzed. But we can take advantage of the expressions we found for both the transformations on
lade one and blade two to prove an important result involving the mappings between the local
auge group and the local Lorentz transformations on both blades. We are going to name LB1 the
roup of Lorentz transformations on blade one. Analogously we name the group of rotations on
lade two, LB2. Making use of expressions �58� and �59�, �60� and �61�, �64� and �65�, �66� and
67�, and �91� and �92� we can prove the transformation properties of the local gauge group. We
roceed first to study the transformation properties of the elements of the local gauge group on
lade one.

. Isomorphism on blade one

We can readily verify that the identity is given by 
=0 or any other constant. Since all the
auge transformations only involve gradients of scalar functions, then the results we are going to
nd are going to be true, except for additional constants that have no physical or geometrical
eaning. If the scalar function 
 generates a Lorentz transformation, then �−
� generates the

nverse Lorentz transformation. It is necessary at this point to understand several details about
nverse transformations. Following the notation of the proceeding sections we can introduce on
lade one, for instance, the inverse of the direct transformation as

V5 �1�
� = Ṽ�1�

� − 	��	�
 = V�1�
� , �93�

V5 � = V� − �− Q/2	��
� = V� , �94�
�2� �2� �2�
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C̃ = �− Q/2�Ṽ�1���− 
��/�Ṽ�2��Ṽ�2�
� � , �95�

D̃ = �− Q/2�Ṽ�2���− 
��/�Ṽ�1��V�1�
� � . �96�

We can see that in expressions �95� and �96� the change in sign of the scalar function 
 is not
he only change. Therefore, we can also notice that for transformations �58� and �59�,

�1 + C�
��1 + C�2 − D2

=
�1 + C̃�

��1 + C̃�2 − D̃2
, �97�

D
��1 + C�2 − D2

= −
D̃

��1 + C̃�2 − D̃2
, �98�

hile for transformations �64� and �65�,

�1 + C�
�− �1 + C�2 + D2

= −
�1 + C̃�

�− �1 + C̃�2 + D̃2
, �99�

D
�− �1 + C�2 + D2

=
D̃

�− �1 + C̃�2 + D̃2
. �100�

In order to get a better geometrical insight into the results that follow, we are introducing the
ngle �. For proper transformations on blade one,

cosh � =
�1 + C�

��1 + C�2 − D2
, �101�

hile for improper transformations,

cosh � =
�D�

�− �1 + C�2 + D2
. �102�

For instance, if the scalar function 
1 generates a boost �1, and the scalar function 
2

enerates a boost �2, then it is straightforward to see that the subsequent transformation, first by

1 and then by 
2 generates a boost �1+�2. In general, if the scalar function 
1 generates a
orentz transformation on blade one, and the scalar function 
2 generates another Lorentz trans-

ormation on blade one, then it is straightforward to see that the subsequent transformation, first by

1 and then by 
2, generates the composition of the two Lorentz transformations.
Therefore, we proved that the transformations �58� and �59�, �60� and �61�, �64� and �65�, and

66� and �67�, represent a mapping between the local gauge group and the group LB1. Both groups
re Abelian and have the same dimension. If in addition we manage to prove that this mapping is
njective, and the image is not a subgroup of LB1, then the mapping would be an isomorphism. To
his end, using equations �54� and �55�, �87� and �88� we can write

�− Q/2�
� = − CV�1�
� − DV�2�

� + MV�3�
� + NV�4�

� , �103�

uch that

D = �1 + C� tanh � for proper transformations, �104�
D = �1 + C�/tanh � for improper transformations. �105�
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It is simple to check that Eq. �104� is valid for 1+C�0 or 1+C�0, and Eq. �105� is also
alid for D�0 or D�0. Once we are given a �, the functions C, M, and N should be found
hrough the use of the integrability conditions 
�;�=
�;�. We know that if �1��2, then
anh �1� tanh �2 and tanh �1�1/ tanh �2. Then, accordingly, the corresponding scalar functions

1 and 
2 are not going to be the same. Conversely, we can ask if it is possible to map two
ifferent scalar functions 
1 and 
2 into the same Lorentz transformation. If this is possible, then
e can first generate a Lorentz transformation by 
1 and then another one by −
2. The result

hould be the identity, because −
2 generates the inverse Lorentz transformation of 
1. Therefore

1−
2 must be a constant. Summarizing, the injectivity remains proved. The last point to make
lear is related to the image of this mapping. The question to answer is if the image of this
apping is a subgroup of LB1. Let us suppose that there is a certain local gauge transformation 
,

uch that 1+C�0, with −1�C�0. Then, there is always the transformation n
 with n a natural
umber, Cn=nC. 1+Cn=1+nC=1−n�C�. For n sufficiently large 1+Cn is going to become nega-
ive. If C�0, there is the transformation −n
 with n a natural number, Cn=−nC. 1+Cn=1−nC
1−n�C�. Once more for n sufficiently large 1+Cn is going to become negative. Following similar

deas, but now if 1+C�D�0 we can prove for instance, that if −1�C�0, for n sufficiently
arge, Dn�0�1+Cn, and analogous for C�0. Then, the mapping image obviously cannot be a
ubgroup of LB1. Therefore the mapping is surjective.

Theorem 1: The mapping between the local gauge group of transformations is isomorphic to
he group LB1 defined above.

. Isomorphism on blade two

The proof for the mapping between the local gauge group and the rotations on blade two is
nalogous to the previous one. For rotations all the considerations about inverse transformations
nd composition of transformations apply in a similar fashion as for the ones on blade one. The
recisions we have to make on blade two regard fundamentally the injectivity. We can introduce
he angle � as

cos � =
�1 + N�

��1 + N�2 + M2
. �106�

Then, we can use again Eq. �103�, along with

M = �1 + N�tan � . �107�

Once we are given a �, the functions C, D, and N should be found through the use of the
ntegrability conditions 
�;�=
�;�. For rotations, we know that tan���=tan��−��, but simulta-
eously we have that sg�M��=−sg�M��−��� and sg�1+N��=−sg�1+N��−���. The last sign equali-
ies arise from the fact that under a change �→�−�, the sine and cosine change their signs. All
hese results put together mean that given a pair of different angles �1 and �2, the corresponding
calar functions 
1 and 
2 are not going to be the same. Conversely, we can ask if it is possible
o transform two different scalar functions 
1 and 
2 into the same �. If this is possible, then we
an proceed exactly as for the blade one case, we can first generate a rotation transformation by 
1

nd then another one by −
2. The result should be the identity, because −
2 generates a rotation
ransformation by −�. Therefore 
1−
2 must be a constant, and the injectivity remains proved.

Theorem 2: The mapping between the local gauge group of transformations is isomorphic to

he group LB2 defined above.
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I. TETRADS

. Orthonormal tetrad

It was found in Sec. III that for an electromagnetic vector potential A�, with A0A0+A1A1

0 in the Minkowski reference frame given by Eqs. �38� and �39� in Ref. 1, it was possible to
ormalize the tetrad vectors fields �24�–�27�. Then, at the points in spacetime where the set of four
ectors �24�–�27� is not trivial, we can proceed to normalize,

U� = 	��	�A/��− Q/2�A�	��	��A�� , �108�

V� = 	��A�/��A�	��	��A�� , �109�

Z� = � 	�� � A�/���A� � 	�� � 	�� � A�� , �110�

W� = � 	�� � 	� � A/��− Q/2��A� � 	�� � 	�� � A�� . �111�

The notation we are using to name the four tetrad vectors �108�–�111� is the same notation
sed in Ref. 2, even though the geometrical meaning is different. The four vectors �108�–�111�
ave the following algebraic properties:

− U�U� = V�V� = Z�Z� = W�W� = 1. �112�

Any other scalar product is zero. It is possible to find expressions for the metric tensor and the
tress-energy tensor in the new tetrad �108�–�111�. The new expression for the metric tensor is

g�� = − U�U� + V�V� + Z�Z� + W�W�. �113�

The stress-energy tensor can be written,

T�� = �Q/2��− U�U� + V�V� − Z�Z� − W�W�� . �114�

In order to find the expression for the electromagnetic field in terms of the tetrad �108�–�111�,
t is necessary to find some previous results. Using Eqs. �15� and �17� it is possible to prove that

U�	�� = �− Q/2V�, �115�

V�	�� = �− Q/2U�, �116�

Z� � 	�� = �− Q/2W�, �117�

W� � 	�� = − �− Q/2Z�. �118�

Equations �112� and �115�–�118� allow us to find the expressions for the extremal field in
erms of the new tetrad,

U�	��V� = �− Q/2, �119�

Z� � 	��W� = �− Q/2. �120�

he extremal field tensor and its dual can then be written,

	�� = − 2�− Q/2U���V���, �121�

�	 = 2�− Q/2Z W . �122�
�� ��� ���
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Equations �121� and �122� are providing the necessary information to express the electromag-
etic field in terms of the new tetrad,

f�� = − 2�− Q/2 cos �U���V��� + 2�− Q/2 sin �Z���W���. �123�

. Null tetrad

We are ready now to introduce a new null tetrad. It will be defined as

K� =
1
�2

�U� + V�� , �124�

L� =
1
�2

�U� − V�� , �125�

T� =
1
�2

�Z� + �W�� , �126�

T̄� =
1
�2

�Z� − �W�� , �127�

here � is the imaginary complex unit, �2=−1. The notation we are using to name the null tetrad
ectors �124�–�127� is the same as in Ref. 2. Again it should be noticed that even though the null
etrad notation is the same as in Ref. 2, the geometrical meaning is not the same. This new null
etrad �124�–�127� satisfies the following algebraic relations;

K�K� = K�T� = L�L� = L�T� = T�T� = 0, �128�

nd

K�L� = − 1, �129�

T�T̄� = 1. �130�

It can also be proved in the Minkowskian reference frame given by Eqs. �38� and �39� in Ref.
, and through the use of the results found in Appendices A and B that the identity,

�����K�L�T�T̄� = − � , �131�

s satisfied. Then, the metric tensor can be written in terms of the new null tetrad,

g�� = T�T̄� + T̄�T� − K�L� − K�L�. �132�

Using �124�–�127� it is straightforward to prove that �132� is equivalent to �113�. In terms of
he new null tetrad the stress-energy tensor can be expressed,

T�� = �− Q/2��K�L� + K�L� + T�T̄� + T�T̄�� . �133�

It is not difficult to prove that �133� and �114� are equivalent. We would like to find the
xpression for the electromagnetic field in terms of the new null tetrad. It is necessary to find first
he components of the external tensor and its dual in terms of the new null tetrad. Making use of
119� and �120� we find,

� �
K 	��L = − �− Q/2, �134�
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T� � 	��T̄� = − ��− Q/2. �135�

Now, we have the expressions for the extremal field tensor and its dual in terms of the new
ull tetrad,

	�� = 2�− Q/2K���L���, �136�

�	�� = 2��− Q/2T���T̄���. �137�

quations �136� and �137� allow us to find the electromagnetic field expressed in terms of the new
ull tetrad,

f�� = 2�− Q/2 cos �K���L��� + 2��− Q/2 sin �T���T̄���. �138�

. Bivectors

It is possible to express any antisymmetric second-rank tensor, as a linear combination of the
ollowing bivectors:

U�� = T̄�L� − T̄�L�, �139�

V�� = K�T� − K�Ta, �140�

W�� = T�T̄� − T�T̄� − K�L� + K�L�. �141�

These bivectors are combinations of the null tetrad vectors �124�–�127�, and making use of
131� it can be proved that they are also self-dual,

Ũ�� = 1
2�����U�� = − �U��, �142�

V̄�� = − �V��, �143�

W̃�� = − �W��. �144�

One more time, the notation for �139�–�141� is analogous to the one in Ref. 2 but the geo-
etrical meaning is different. The self-dual bivectors �139�–�141� have the following associated

calar products:

W��V�� = W��U�� = V��V�� = U��U�� = 0, �145�

W��W�� = − 4, �146�

U��V�� = 2. �147�

It was our purpose since the beginning of this work to find the simplest possible expression for
he electromagnetic field through the use of null tetrads in geometrodynamics. Now, we would like
o see what is the expression in the new bivectors �139�–�141� for the self-dual electromagnetic
ivector,

��� = f�� + � � f��. �148�
Making use of expressions �136�, �137�, and �141� it is possible to write
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��� = − �− Q/2e�−���W��. �149�

The standard way of expressing the bivector �148� is through an expansion in the three
tandard bivectors given by Eq. �18.9� in Ref. 2, which in turn are built in terms of the familiar NP
etrads.3 The new null tetrad �124�–�127� has the advantage that in the particular problem of
eometrodynamics the expression of the bivector �148� given by �149� is the simplest possible
ne, since we can write it only in terms of one of the three independent new bivectors, expression
141�. The two scalar functions associated with the electromagnetic field are included in the
omplex factor −�−Q /2e�−���. This example shows the simplifying power of the new tetrad built
pecifically for the problem of geometrodynamics.

II. GENERAL TETRAD

In Sec. III a particular example of an explicit choice of the vector fields X� and Y� was
ntroduced �X�=A� and Y�= �A�� within the framework of geometrodynamics. Through this
xample several properties of these new tetrads were discussed. The transformation properties
nduced by usual gauge transformations A�→A�+
�� and �A�→ �A�+ �
�� were analyzed in
ec. IV. Let us assume that it is possible to normalize the general tetrad �11�–�14�. For generic
elds X� and Y�, we can proceed to study the transformation properties of the normalized version
f �11� and �12� under the transformation X�→X�+V�, where V� is any well-behaved vector field
n spacetime. The necessary steps to study these tetrad transformations are a replica of the ones
aken in Sec. IV A. The conclusions are analogous. In a similar way, the normalized version of
13� and �14� can be transformed under Y�→Y�+W�, where W� is any well-behaved vector field.
gain, the steps and conclusions involved in the study of these tetrad transformations are a replica
f the ones taken in Sec. IV B. Once we introduced these new tetrad transformations for the
eneral case, we can easily prove that X�→X�+V� and Y�→Y�+W� leave invariant two tensors,

�� and f��. The fact that these tetrad transformations leave invariant the metric tensor means that
hey are symmetries of the geometry. They also leave invariant the electromagnetic tensor, which
eans that they represent symmetries of the electromagnetic geometry. But the important issue is

hat they do not alter the tensors that carry the physical information. The new tetrads �11�–�14�
hen normalized can be used to simplify the Einstein-Maxwell equations in the Newman-Penrose

etrad formalism. It is worth noticing the substantial simplification that the new tetrads would
ntroduce in the Einstein-Maxwell equations. As an example, the vacuum Maxwell equations using
he notation given in Ref. 7 are given by

D�1 = 2�1, �150�

��1 = − 2��1, �151�

�̄�1 = − 2��1, �152�

��1 = − 2��1. �153�

It is important to notice that the tetrads will be independent variables. For a non-null solution
o the set of Einstein-Maxwell equations we can find the scalars � and Q from �1

=−�−Q /2e�−���. Expression �136� will provide the relation between the extremal field and the new
etrads. The electromagnetic field will be available through expression �138� and the metric tensor
ill be given by �132� once a tetrad is known for a particular solution. The overall effect of the
ew tetrads is to reallocate or reorganize algebraic information in the Einstein-Maxwell equations

aking it easier to find new possible solutions.
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III. CONCLUSIONS

A new tetrad that diagonalizes the electromagnetic stress-energy tensor for non-null electro-
agnetic fields was introduced. However, this tetrad has an inherent freedom in the choice of two

ector fields. Geometrodynamics is an arena in which an explicit example or choice can be given
or these two vector fields, because Maxwell’s equations are providing two vector potentials. The
implicity of the expression for the electromagnetic field in this new tetrad and the associated null
etrad becomes evident. It was also proved that the local gauge group is related to the group LB1,
nd also to the group LB2 through an isomorphism. In the last section the tetrad is also considered
ithout making any specific choice for these two vector fields. It is found that there are transfor-
ations that leave invariant the metric and electromagnetic tensors simultaneously. It was also

roved that when written in terms of the new tetrad, the Einstein-Maxwell equations are substan-
ially simplified.
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PPENDIX A

The Levi-Civita pseudotensor can be transformed into a tensor through the use of factors �−g,
here g is the determinant of the metric tensor. We use the notation e����= ������ for the

ovariant components of the Levi-Civita pseudotensor in the Minkowskian frame given in Ref. 1,

e���� = 	1 if ���� is an even permutation of 0123

− 1 if ���� is an odd permutation of 0123

0 if ���� are not all different.



It can be noticed that the signs in e���� are going to be opposite to the standard notation.5 The
eason for this is that we want to keep the compatibility with Ref. 1 where the definition e0123

�0123�=1 was adopted. With these definitions we see that in a spacetime with a metric g��,

e���� =
e����

�− g
= −

������
�− g

�A1�

re the components of a contravariant tensor.5–7 The covariant components of �A1� are

����� = e����
�− g = �������− g , �A2�

here

g��g�g��g��e��� = − ge���� �A3�

s satisfied.

PPENDIX B

The tetrad vectors �U� ,V� ,Z� ,W�� have the following expressions in the Minkowski refer-
nce frame given by Eqs. �38� and �39� in Ref. 1,

U0 = − A0/�− �A0A0 + A1A1� , �B1�

U1 = − A1/�− �A0A0 + A1A1� , �B2�

0 1 � 0 1
V = − 	01A /��	01� − �A A0 + A A1�� , �B3�
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V1 = − 	01A
0/��	01��− �A0A0 + A1A1�� , �B4�

Z2 = − 	01 � A3/��	01���A2 � A2 + � A3 � A3� , �B5�

Z3 = 	01 � A2/��	01���A2 � A2 + � A3 � A3� , �B6�

W2 = � A2/��A2 � A2 + � A3 � A3, �B7�

W3 = � A3/��A2 � A2 + � A3 � A3, �B8�

here �	01�=��	01�2.
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Exact outer boundary conditions for gravitational perturbations of the Schwarzs-
child metric feature integral convolution between a time-domain boundary kernel
and each radiative mode of the perturbation. For both axial �Regge–Wheeler� and
polar �Zerilli� perturbations, we study the Laplace transform of such kernels as an
analytic function of �dimensionless� Laplace frequency. We present numerical evi-
dence indicating that each such frequency-domain boundary kernel admits a “sum-
of-poles” representation. Our work has been inspired by Alpert, Greengard, and
Hagstrom’s analysis of nonreflecting boundary conditions for the ordinary scalar
wave equation. © 2005 American Institute of Physics. �DOI: 10.1063/1.2073287�

. INTRODUCTION

Now 50 years old, the perturbation theory of Schwarzschild blackholes remains a timely
ubject with fundamental applications. The covariant d’Alembertian �or wave equation� associated
ith the Schwarzschild line-element describes scalar “perturbations.” Classical Schwarzschild
lackholes are spherically symmetric and static in time, and these symmetries allow for combined
ultipole and Fourier �or Laplace� decompositions. As a result, perturbations may be described

ia a denumerable collection of ODE rather than the d’Alembertian PDE. Similar ODE describe
lectromagnetic “perturbations”1 and gravitational perturbations �small genuine fluctuations in the
ackground geometry�,2,3 although their derivation is more complicated since the multipole de-
omposition involves either vector or tensor spherical harmonics. Remarkably, via the technique
f “despinning” based on the eth operator,4 such ODEs can be related to scalar wave equations.

Wheeler considered the case of electromagnetic perturbations in 1955,1 showing for a given
ultipole that each of the two electromagnetic polarization states are described by a copy of a

ingle ODE. Regge and Wheeler then derived a similar ODE describing odd-parity �or axial�
ravitational perturbations in 1957,2 and Zerilli introduced an ODE describing even-parity �or
olar� gravitational perturbations in 1970.3 In the 1970s Chandrasekhar and Detweiler demon-
trated that the Zerilli equation can be derived from the Regge–Wheeler equation, although the
erivation involves differential operations �see Ref. 5, and references therein�. In their treatment6

f intertwining operators, Anderson and Price clarified the relationship between solutions to the
egge–Wheeler and Zerilli ODEs. Application of a first-order differential operator transforms

mooth solutions of one equation into solutions of the other.
Schwarzschild perturbation theory has played a central role in several modern areas of clas-

ical and quantum gravity. Although the following is by no means an exhaustive list, we mention
our salient applications: the “close-limit” approximation for blackhole collisions, a time-domain
pproach to the radiation reaction problem, the asymptotic form of high frequency quasinormal
odes, and quantum uncertainty in blackhole horizons. Price and Pullin, assuming that the col-

iding blackholes are initially cloaked in a common horizon, have used first-order perturbation

�Present address: Department of Mathematics and Statistics, MSC03 2150, 1 University of New Mexico, Albuquerque,

New Mexico 87131-0001; electronic mail: srlau@math.unm.edu
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heory and the Zerilli equation to compute the energy radiated away by gravitational waves.7 They
nitially applied their close-limit approximation to time-symmetric initial data. More general data
ere subsequently considered,8 and the accuracy of the approximation studied via second-order
erturbation theory.9,10 Lousto has studied the binary radiation reaction problem in the extreme
ass ratio limit via time-domain calculations.11 His approach relies on numerical simulation of
chwarzschild perturbations, and he has developed a fourth-order convergent algorithm for such
imulations.12 Interest in the quasinormal mode spectrum of classical Schwarzschild blackholes
as been renewed by possible connections with the Barbero-Immirzi parameter in loop quantum
ravity.13–15 While these issues are beyond us, we note that they have focused attention on the
symptotic form of high frequency quasinormal modes16,17 �a purely classical issue�. Most re-
ently, York and Schmekel have considered a truncated superspace of blackhole fluctuations, using
ath integral quantization to derive a Schrödinger equation and estimate the quantum uncertainty
n the horizon.18 York and Schmekel’s analysis constitutes an improved derivation of results
lready found by York via semiclassical arguments.19

This paper addresses the mathematical issue of exact radiation outer boundary conditions
ROBC� for Schwarzschild blackhole perturbations. Our work is based on an approach20 devel-
ped by Alpert, Greengard, and Hagstrom �AGH� for nonreflecting boundary conditions and
ime-domain wave propagation on flat spacetime. Beyond being of theoretical interest, such
oundary conditions are relevant for numerical simulations. Indeed, long-time simulations require
ome form of domain reduction, that is specification of appropriate boundary conditions at the
edge” of the computational domain. Exact outer boundary conditions for gravitational perturba-
ions of Schwarzschild blackholes feature integral convolution between a time-domain boundary
ernel and each angular mode of the perturbation. For both axial �Regge–Wheeler� and polar
Zerilli� perturbations, we study the Laplace transform of the such kernels as an analytic function
f �dimensionless� Laplace frequency �. We present numerical evidence indicating that each such
ravitational boundary kernel admits a “sum-of-poles” representation. These representations are
imilar to those considered by AGH for wave propagation on flat 3+1 and 2+1 spacetimes. We
ope to interest analysts in our conjectured sum-of-poles representation and the theorems we
elieve are lurking behind it.

We have considered such boundary conditions in detail before21,22 �hereafter referred to as
apers I and II�. However, this paper goes beyond these references in the following ways. First,
e consider the Zerilli equation, not considered at all in Papers I and II. Second, we focus here on

he analytic structure of gravitational kernels �both Regge–Wheeler and Zerilli cases�, whereas
aper I almost exclusively considered kernels for scalar wave propagation. Although the theory
nd methods in Papers I and II were also spelled out for the gravitational �spin 2� Regge–Wheeler
quation, we consider these results in more detail here. We also discuss the asymptotic agreement
etween Schwarzschild ROBC and flatspace nonreflecting boundary conditions, remarking on
ome fine points unmentioned in our earlier work. Part of this paper roughly parallels Sec. III from
aper I, which documented several numerical tests of the sum-of-poles representation for scalar
spin 0� kernels. Here we run through those same tests for the gravitational kernels, and also carry
ut another test based on the Argument principle. A longer paper on numerical implementation of
hese ideas, complete with extensive numerical tables, is forthcoming,23 and in part this paper is

eant to lay more groundwork for that longer work.

I. PRELIMINARIES

. Wave equations for gravitational perturbations

In terms of dimensionless time � and radius ��1, the standard Schwarzschild line-element
eads

ds2 = − Fd�2 + F−1d�2 + �2�d�2 + sin2 �d�2� , �1�

here F���=1−�−1. With M the mass parameter of the solution, standard physical coordinates are

hen t=2M� and r=2M�. We also consider a dimensionless Laplace frequency � related to the
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hysical frequency s via �=2Ms. As is well known �see, for example, Ref. 24�, radiative pertur-
ations of the Schwarzschild metric are ultimately described by wave equations for angular modes
−1��m�� ,��. From now on, we drop the “azimuthal” index m and write ���� ,��, since all
quations depend only on the “orbital” index �. In terms of the Regge–Wheeler tortoise coordinate

*=�+log��−1�, the perturbation �� obeys the wave equation

�2��

��2 −
�2��

��*
2 + V����� = 0. �2�

or axial perturbations V��� is the Regge–Wheeler potential

VRW��� = �1 −
1

�
����� + 1�

�2 +
1 − j2

�3 � , �3�

here j=2. Scalar and electromagnetic perturbations correspond to j=0 and 1, respectively.
Equation �2� also describes polar perturbations, although in this case V��� is the Zerilli po-

ential

VZ��� = �1 −
1

�
��8n2�n + 1��3 + 12n2�2 + 18n� + 9

�3�2n� + 3�2 � , �4�

here n= 1
2 ��−1���+2�. Throughout this paper we consider the same objects for the Regge–

heeler and Zerilli cases, and we shall make use of the following convention. An object without
superscript letter, say V���, will refer to the generic object, and could correspond to either of the

wo cases �actually four cases, since the Regge–Wheeler scenario is three cases in itself�. Super-
cript letters will denote the specific cases. For example, we have VRW��� and VZ��� as above. We
ill also sometimes use a superscript F to denote corresponding flatspace objects, for example

VF��� =
��� + 1�

�2 �5�

s the flatspace potential.
Formal Laplace transformation of the Regge–Wheeler wave equation �2� yields a second-

rder ODE

LRW�̂� = 0, LRW =
d2

d�*
2 − VRW��� − �2, �6�

here � is Laplace frequency. This equation is—apart from a transformation on the dependent
ariable—a special case of the confluent Heun equation.25,26 Therefore, implementation of ROBC
or the Regge–Wheeler equation involves confluent Heun functions, whereas the flatspace imple-
entation of AGH20 involves Bessel functions �closely related to confluent hypergeometric func-

ions�.
Likewise, we may consider formal Laplace transformation of the Zerilli wave equation �2�,

LZ�̂� = 0, LZ =
d2

d�*
2 − VZ��� − �2. �7�

olutions of �6� with j=2 are related to solutions of �7� and vice versa by the intertwining
elations6

D+LRW = LZD+, D−LZ = LRWD−, �8�
ith
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D± =
d

d�*
± �2

3
n�n + 1� +

3�� − 1�
�2�3 + 2n��� . �9�

e have mentioned that Papers I and II examined the exact ROBC for the Regge–Wheeler
quation, although mostly focusing on the j=0 case. A natural question then is whether or not
hese boundary conditions can be easily carried over to the Zerilli case via use of intertwining
elations. It would seem the answer is “no,” and we have been unable to make direct use of our
revious work on ROBC via the intertwining relations. Although we believe the issue may merit
urther study, in this paper we develop and describe Zerilli ROBC from scratch.

. Radiation outer boundary conditions

Let us assume initial data of compact support, and that the radial location �B of the outer
oundary B lies beyond the support of the data. Then the exact nonlocal ROBC is the following
ifferential-integral identity:21

	� ���

��
+

���

��*
�	

�=�B

=
F��B�

�B



0

�

���� − ��;�B������,�B�d��. �10�

he ROBC equates an outgoing characteristic derivative of the field with an integral convolution
f the field history. Although the conditions �10� are equally valid for the Regge–Wheeler and
erilli cases, we must consider two separate kernels: ��

RW�� ;�B� and ��
Z�� ;�B�. As a function of

omplex Laplace frequency �, Paper I has considered the Laplace transform �̂�
RW�� ;�B� of the

ntegral kernel ��
RW�� ;�B�, in particular arguing that it admits a “sum-of-poles” representation

uite similar to the representation of frequency-domain kernels for flatspace wave propagation in
+1 dimensions. Such representations involve both a finite pole sum as well as a continuous
ector.20 The analysis in Paper I mostly concentrated on the �̂�

RW�� ;�B� relevant for scalar wave
ropagation �that is for j=0�, and did not consider the Zerilli equation at all. In the following we
onsider the analytic structure of both �̂�

RW�� ;�B� for j=2 and �̂�
Z�� ;�B� in some detail.

Paper I has developed numerical methods for evaluating �̂��� ;�B� along the axis of imaginary
aplace frequency, precisely the contour over which the inverse Laplace transform is taken to
btain the time-domain kernel. We further touch upon these methods in the following, but mention
ere that they rely on stable numerical integration over various paths in both the complex � and
omplex z=�� planes. All of our work in this paper is based upon these methods, and we have
sed them to plot in Fig. 1 the j=2 Regge–Wheeler profiles Re �̂2

RW�iy ;15� and Im �̂2
RW�iy ;15� for

eal y. Although different, the corresponding Zerilli profiles would be indistinguishable to the eye,
ere they also plotted in Fig. 1.

. Kernel compression

With the ability to generate such numerical profiles for exact frequency-domain kernels, we
ave employed the technique of kernel compression in order to construct highly accurate numeri-
al kernels which allow for efficient evaluation of the convolution appearing in �10�. Introduced
y AGH20 and described further in both Ref. 27 and Paper II, compression is vital both for high-
kernels as well as low-� kernels which are dominated by costly continuous sectors �such sectors

re further described in the following�. The technique produces a rational function,

	̂���;�B� = �
k=1

d

�,k��B�

� − ��,k��B�
, �11�

hich approximates �̂��� ;�B� and is in fact a sum of d simple poles. The pole locations ��,k��B�
nd strengths 
�,k��B�—output from the compression algorithm—lie in the left-half plane. The

pproximation is rigged to satisfy
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supy�R

�	̂��iy ;�B� − �̂��iy ;�B��
��̂��iy ;�B��

�  , �12�

here  is a chosen numerical tolerance. Theoretically, this bound on the relative supremum error
n the frequency domain ensures a long-time bound on the relative convolution error associated
ith �10�, as discussed in Ref. 20 and Paper II. This convolution error arises when using the

pproximate time-domain kernel

	���;�B� = �
k=1

d


�,k��B�exp���,k��B��� �13�

n place of the true kernel ���� ;�B�. Since 	��� ;�B� is a sum of exponentials, due to recursive
dentities an approximation of the convolution �10� based on 	��� ;�B� is not memory intensive. We
ist representative compressed kernels for Regge–Wheeler and Zerilli kernels in Tables I and II.
he two kernels are strikingly similar, although they differ by a relative supremum error of about
.03�10−2, well below their stated =10−10 tolerances. Extensive numerical tables of compressed
ernels are being prepared and will appear in Ref. 23.

. Quasinormal ringing and decay tail

Providing little detail, we now carry out a simple experiment meant only to indicate that the
escribed ROBC work well for long-time simulations. More careful experiments were considered
n Paper II �for Regge–Wheeler cases only� and will be considered in Ref. 23. In terms of retarded
ime �=�−�* and the pulse function

g��� = ���� + 4��4/256 for − 4 � � � 0

0 otherwise,
� �14�

e construct the �=2 wave packet

�2�0,�� = g�− �*� �15�

s initial data for the Zerilli equation. The initial packet is then of unit height and compactly

IG. 1. �Color online� Re �̂2
RW�iy ;15� and Im �̂2

RW�iy ;15� profiles for the j=2 frequency domain kernel �̂2
RW�iy ;15�. As

ndicated, �=2 and �B=15.
upported on 0��*�4. To complete the data, we assume that
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TABLE I. Compressed j=2 Regge–Wheeler kernel for �=2, �B=15, 

=10−10. There are d=10 poles and strengths, and complex conjugation of the
ninth entries gives the tenth entries. Zeros correspond to outputs from the
compression algorithm which are less than 10−30 in absolute value.

k Re �2,k
RW�15� Im �2,k

RW�15�

1 −3.756 161 769 22E−01 0
2 −2.522 858 979 20E−01 0
3 −1.714 587 811 91E−01 0
4 −1.165 624 902 43E−01 0
5 −7.643 319 902 76E−02 0
6 −4.680 910 579 81E−02 0
7 −2.637 301 379 27E−02 0
8 −1.256 529 945 67E−02 0
9 −9.477 951 789 47E−02 5.993 120 249 47E−02

k Re 
2,k
RW�15� Im 
2,k

RW�15�

1 −9.428 154 407 64E−06 0
2 −3.660 463 100 52E−04 0
3 −3.740 273 835 89E−03 0
4 −8.727 342 659 27E−03 0
5 −1.471 891 363 42E−03 0
6 −5.013 569 886 68E−05 0
7 −9.734 236 210 68E−07 0
8 −7.288 070 250 58E−09 0
9 −8.948 361 729 91E−02 6.206 435 489 37E−02
TABLE II. Compressed Zerilli kernel for �=2, �B=15, =10−10. There are
d=10 poles and strengths, and complex conjugation of the ninth entries
gives the tenth entries. Zeros correspond to outputs from the compression
algorithm which are less than 10−30 in absolute value.

k Re �2,k
Z �15� Im �2,k

Z �15�

1 −3.708 271 031 77E−01 0
2 −2.489 162 785 32E−01 0
3 −1.690 979 832 83E−01 0
4 −1.148 943 408 03E−01 0
5 −7.531 695 951 30E−02 0
6 −4.612 526 333 39E−02 0
7 −2.598 806 812 76E−02 0
8 −1.238 195 997 59E−02 0
9 −9.340 658 398 50E−02 5.898 027 899 71E−02

k Re 
2,k
Z �15� Im 
2,k

Z �15�

1 −8.949 811 305 35E−06 0
2 −3.479 035 876 70E−04 0
3 −3.560 015 286 14E−03 0
4 −8.350 117 682 48E−03 0
5 −1.413 065 450 24E−03 0
6 −4.817 773 441 34E−05 0
7 −9.356 938 500 95E−07 0
8 −7.006 520 225 51E−09 0
9 −8.701 548 441 97E−02 6.018 039 999 46E−02
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	� ��2

��
+

��2

��*
�	

�=0
= 0, �16�

o that the pulse starts as essentially outgoing. We place the inner boundary at �*=−175, and adopt
10� as the boundary condition at �=�B=15, with an approximation of the exact ROBC based on
he compressed kernel listed in Table II.

We evolve the data until �=300, using the MacCormack predictor-corrector algorithm. �A
cheme in consistent conservation form28 when applied to a hyperbolic conservation law.�
hroughout the evolution, we record the value �2�� ,3.25� of the field, that is to say, we record the
istory of the field in time at the fixed location �=3.25 �actually at the grid point nearest this
ocation�. Notice that the total run time is not long enough for the history �2�� ,3.25� to be
nfluenced by reflection off of the inner boundary. The absolute value of the history is depicted as

linear-log plot in Fig. 2. It exhibits quasinormal ringing24 until about �=150, and afterward a
rice tail with the field decaying as t−�2�+3�= t−7.24 This late-time behavior stems from backscatter
f the outgoing packet off of the long-range potential VZ���. The dashed curve 3000t−7 has been
yeballed to fit the late-time decay tail.

II. SUM-OF-POLES REPRESENTATION

. Flatspace frequency-domain nonreflecting kernel and outgoing solution

AGH have considered nonreflecting boundary conditions �NRBC� for both 3+1 and 2+1
atspace wave propagation, thoroughly treating both theoretical description and numerical ap-
roximation of NRBC for both scenarios.20 For later comparison with the two gravitational sce-
arios, let us briefly recall the principal theoretical aspects of their work for the 3+1 scenario. To
acilitate the comparison, we will use the same letters �, �, and � used for our dimensionless
chwarzschild coordinates, although for the flatspace case r, t, and s would be more standard
otations. Their boundary condition for a flatspace order-� multipole �−1�� is

	� ���

��
+

���

��
�	

�=�B

=
1

�B



0

�

��
F�� − ��;�B������,�B�d��, �17�

omparable with �10�. The exact TDRK ��
F�� ;�B� appearing in �17� is now also a time-domain

onreflecting kernel �TDNK�, and it is the inverse Laplace transform of an exact frequency-
20

FIG. 2. �Color online� Quasinormal ringing and decay tail.
omain nonreflecting kernel �FDNK� admitting the following representation:
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�̂�
F��;�B� = �

k=1

�
b�,k/�B

� − b�,k/�B
, �18�

here the b�,k are the zeros of the classical MacDonald function K�+1/2�z�, a modified cylindrical
essel function. Here the Bessel order is a half-integer, since we are considering the radial wave
quation stemming from ordinary wave propagation on 3+1 flat spacetime, and these functions
ave the form29

K1/2�z� =� �

2z
e−z,

K3/2�z� =� �

2z
e−z�1 +

1

z
� ,

K5/2�z� =� �

2z
e−z�1 +

3

z
+

3

z2� ,

�19�

K7/2�z� =� �

2z
e−z�1 +

6

z
+

15

z2 +
15

z3 � ,

]

K�+1/2�z� =��z

2
�− 1��z��1

z

d

dz
��e−z

z
.

The function K�+1/2�z� has � simple zeros �b�,k :k=1, . . . ,��. When scaled by order, these zeros
�+1/2�−1b�,k are known to accumulate on a fixed transcendental curve C in the left-half plane20,30

the numerical methods developed in Paper I take advantage of this fact�. Although this accumu-
ation is asymptotic with large order �+1/2→�, Fig. 3 shows that the agreement holds even for
he lowest �, at least to the eye. The curve C shown in Fig. 3 has parametric form30,27

z��� = − ��2 − � tanh � ± i�� coth � − �2, �20�

or � in the domain �0,�0� with �0�1.1997 such that tanh �0=1/�0. In terms of the “normalized-
t-infinity” outgoing solution �in the introduction of Paper II, the correspondence between W��z�
nd K�+1/2�z� is off by a factor of � /2�

W��z� =�2z

�
exp�z�K�+1/2�z� , �21�

e have

�̂�
F��;�B� = ��B

W�����B�
W����B�

�22�

s another expression for the flatspace frequency-domain kernel.20 In passing, we remark that
lthough the exact FDNK �18� is already a rational function, the technique of kernel compression
till proves useful for high-� FDNK, since for a given tolerance  compression of �18� yields a

20
umerical kernel with far fewer poles.
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. Gravitational FDRK and outgoing solution

Let us first consider the relationship between a gravitational FDRK �̂��� ;�B� described earlier
nd solutions to the formal Laplace transform

d2�̂�

d�*
2 − V����̂� = �2�̂� �23�

f the generic equation �2�. Here we mostly just collect relevant formulas. These formulas are
erived in the first section of Paper I, and the derivation presented there goes through for Regge–
heeler case �j=0,1 ,2 considered there� as well as the Zerilli case �not considered there�.
hence the formulas we consider now are valid for all cases.

We “peel off” the exponential behavior of the field by setting �̂�=exp�−��*��̂�, whereupon
nding

d2�̂�

d�2 + �− 2� −
1

�
+

1 − 2�

� − 1
�d�̂�

d�
−

�2V���
�� − 1�2�̂� = 0 �24�

s the ODE satisfied by �̂�. When numerically integrating �24� in various contexts, we have found
t useful to work instead with z=��, re-expressing the equation as follows:

d2�̂�

dz2 + �− 2 −
1

z
+

1 − 2�

z − �
�d�̂�

dz
−

z2V�z/��
�2�z − ��2�̂� = 0. �25�

30

IG. 3. �Color online� Scaled zeros of MacDonald functions. Here we plot scaled zeros ��+1/2�−1b�,k for �=1,2 ,3 ,4. The
ross is the scaled zero of K1/2�z�, the diamonds are the scaled zeros of K3/2�z�, the circles are the scaled zeros of K5/2�z�,
nd the stars are the scaled zeros of K7/2�z�.
et W��z ;�� denote the outgoing solution to �25�. This solution obeys
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W��z;�� � �
k=0

�

dk���z−k �26�

s z→�, and we describe it as “normalized at infinity.” Appendix B considers the recursion
elations defining the dk

RW��� and dk
Z���. As described in Paper I, the flatspace solution W��z� in

21� is formally W��z�=W�
RW�z ;0� in terms of the Regge–Wheeler case W�

RW�z ;��.
In our notation W���� ;�� is the outgoing solution to �24�, and Paper I expresses the FDRK in

erms of it as

�̂���;�B� = ��B

W�����B;��
W����B;��

, �27�

here the prime denotes differentiation in the first slot of W��z ;��. Since we have peeled off the
xponential factor exp�−��*� earlier and now work with an outgoing solution W���� ,�� which is
ormalized at infinity, the FDRK �27� is more apt to have a well-defined inverse Laplace trans-
orm.

Paper I has described a collection of numerical methods which allow us to �i� evaluate

����B ;�� for � in the left-half plane and �ii� evaluate �̂��iy ;�B� for real y. We remark that
eaver has analytically represented a solution, say the outgoing one W�

RW���B ;��exp�−��*�, to
he frequency-domain Regge–Wheeler equation as an infinite series in Coulomb wave functions,
here the expansion coefficients obey a three-term recursion relation. In fact, such series expan-

ions hold more generally for the generalized spheroidal wave equation �essentially the confluent
eun equation�.31 The methods described in Paper I are not based on the appropriate Leaver

eries, rather they rely on direct integration of �25�. As such they can and have now been carried
ver to the Zerilli case. We note that the Zerilli equation is not directly related to the confluent
eun equation; whence it is not immediately evident how to evaluate W�

Z���B ;�� via a Leaver
eries.

Roughly, our method for evaluating W����B ;�� is as follows. For a fixed frequency �, initial
ata at a large radius are obtained for �25� using the asymptotic expansion �26�. Then �25� is
ntegrated over a suitable path in the complex z=�� plane to a terminal point zB=��B. To convey
he basic idea behind our numerical evaluation of the FDRK �̂��iy ;�B� itself, we introduce

w��z;�� = z
W���z;��
W��z;��

. �28�

hen the FDRK is �̂��� ;�B�=w����B ;��, and we have from �25� that w��z ;�� obeys the first-
rder nonlinear equation

dw�

dz
+

w�
2

z
+ �− 2 −

2

z
+

1 − 2�

z − �
�w� −

z3V�z/��
�2�z − ��2 = 0. �29�

e calculate values �̂��iy ;�B�=w��iy�B ; iy� via direct numerical integration of �29�. To achieve
tability and high accuracy, the methods associated with both �i� and �ii� evaluations require
ntegration over nontrivial paths in the z plane. Moreover, for technical reasons the integration
mployed for kernel evaluation �ii� is sometimes carried out in the complex � plane rather than
omplex z plane. Finally, we remark that to produce the origin value �̂��0;�B� of the kernel, we do
ot integrate �29�. Rather, we make use of an exact series expression, one given for the Regge–
heeler cases in Paper I and for the Zerilli case in Appendix A.

. Gravitational sum-of-poles representation

For the case of j=0 scalar perturbations Paper I has documented compelling numerical evi-

ence indicating that the FDRK �27� admits an explicit “sum-of-poles” representation,
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�̂���;�B� = �
k=1

N� ��,k��B�
� − ��,k��B�

−
1

�



0

� f���;�B�
� + �

d� , �30�

n terms of complex frequency �. When we discussed compressed kernels before, we introduced
pproximate pole locations ��,k��B� and strengths 
�,k��B�. We now consider N� �an integer�
hysical pole locations ��,k��B� and physical pole strengths ��,k��B�, all of which lie in the
eft-half plane. Also appearing in �30� is a cut profile f��� ;�B�, and like the pole locations and
trengths it depends on the value of �B. �It may or may not be the case that an approximate
ocation ��,k��B�, for example, approximates a physical one ��,k��B�. It is the compressed kernel
ˆ

��iy ;�B� in whole which approximates the physical FDRK �̂��iy ;�B� uniformly in y�R.� In
rinciple the integer N� also depends on �B, but turns out to be constant over sizable regions of the
elevant parameter space �more comments on this point to follow�. The kth pole strength and cut
rofile are given, respectively, by

��,k��B� = − �B��,k� ��B�, f���;�B� = Im �̂���ei�;�B� , �31�

ith ��0 and the prime here standing for � /��B differentiation.
We will argue that the representation �30� is also valid for both j=2 Regge–Wheeler and

erilli gravitational cases, and this conjecture is the main result of our paper. Note that �30� is not
eally a “sum of poles.” Indeed, recall that in the sense of complex analysis a pole is an isolated
ingularity. Strictly speaking then, the cut integral in �30� does not correspond to a “continuous
istribution of poles” �an oxymoron�. Nevertheless, we shall continue to describe the representa-
ion �30� as a “sum of poles.”

We stress that �30� is a representation for a boundary integral kernel. Its inverse Laplace
ransform, the TDRK ���� ;�B�, lives on the history of the spatial boundary B. Indeed, �10� makes
o reference to the details of the initial data and is certainly not a spatial convolution over initial
ata. Moreover, the pole locations ��,k��B� are not quasinormal modes. An infinite number of
uasinormal modes belong to each � value, and these characteristic frequencies do not depend on
ny particular choice of outer boundary radius �B. Quasinormal modes are associated with a

oundary value problem specifying that �̂� is downgoing at the horizon and outgoing at infinity.
he locations ��,k��B� are finite in number, and they do depend on �B. They can be associated with

boundary value problem specifying that �̂� is outgoing at infinity and vanishes at �B. �As such,
he locations ��,k��B� are analogous to the “flatspace quasinormal modes” considered in Ref. 32,

misleading terminology for our paper.� Likewise, the cut integral appearing in �30� is not the
ranch-cut contribution to the usual Green’s function studied in the quasinormal mode problem.33

V. NUMERICAL STUDY

In this section we both provide further qualitative description of the key representation �30�
nd justify it numerically. To argue that the representation �30� is valid for both j=2 Regge–

heeler and Zerilli gravitational cases, we offer nearly the same evidence as that offered in Paper
for the case of scalar perturbations. However, here we also consider one extra numerical experi-
ent based on the Argument principle. Our main numerical justification is to compare values

ˆ ��iy ;�B� of the kernel obtained via two independent approaches. These are the following:

1� Direct integration of �29� as alluded to earlier �a process which makes no use whatsoever of
the conjecture representation �30��.

2� Approximation of the sum-of-poles representation itself �by this we do not mean kernel
compression�.
In the second approach, we “build” the kernel as
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�̂��iy ;�B� � �
k=1

N� ��,k��B� + ���,k��B�
iy − ��,k��B� − ���,k��B�

−
1

�



�min

�max f���;�B� + �f���;�B�
iy + �

d� , �32�

here the � terms represent numerical errors and the integral over the chosen window ��min,�max�
ust be handled via numerical quadrature. We have used Simpson’s rule, respectively, with 2048,

048, 1024, 2048, 1024, 2048, 1024, 2048, 512 subintervals for �=2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 �odd �
equires more subintervals�. We stress that this latter approach to evaluation, quite unlike the first
pproach, requires that we numerically compute all pole locations and strengths and well as the cut
rofile. To locate poles, zeros in � of W����B ;��, we have used the secant algorithm. The � /��B

erivatives of the ��,k��B� needed to compute the strengths ��,k��B� are obtained by first building
high-order interpolating polynomial T�,k�1/�B� for each ��,k��B� based on Chebyshev nodes in
/�B. Derivatives are then found via differentiation of the Chebyshev polynomial. This procedure

s described in more detail in Paper I where it was used for the j=0 Regge–Wheeler case.
We remark that this direct approximation �32� to the sum-of-poles representation �30� is

ertainly not a compressed kernel. Indeed, as mentioned, this brute-force approximation of �30�
ypically requires thousands of poles �stemming from the numerical quadrature of the cut integral�
o achieve the same error tolerance achieved by a compressed kernel comprised of ten or so poles.

Besides making the comparison outlined in the last paragraph, we also wish to provide further
ualitative description of the sum-of-poles representation �30�. We describe both the poles and the
ut profile in more detail, and also compare the representation to the strikingly similar represen-
ation �18� of the FDNK �̂�

F�� ;�B� for a flatspace order-� multipole. We have found that both
ravitational kernels, �̂�

RW�� ;�B� and �̂�
Z�� ;�B�, indeed agree with �̂�

F�� ;�B� in the �B→� limit,
lthough here we will focus on the Zerilli case. One certainly expects such agreement, since the
chwarzschild solution is asymptotically flat. However, the nature of this asymptotic agreement is
ather interesting, and we point out some subtleties not mentioned in Paper I.

. Pole locations and strengths

For the most part, here we give what amounts to a qualitative description. Using our method
or evaluating the outgoing solution W����B ;��, we may plot the modulus �W����B ;��� in order
o suggest rough values for zeros �that is, roots� of the function. Provided such a zero is simple, it
ill correspond to a pole appearing in the representation �30�. Over the parameter space �B�15

nd �=2,3 , . . . ,10, and for both Zerilli and j=2 Regge–Wheeler cases, we have found that the
umber N� of zeros ��,k��B� is as follows: N2=2, N3=4=N4, N5=6=N6, N7=8=N8, N9=10
N10. For a fixed choice of � and �B, these zeros form a crescent pattern in the left-half � plane.

For example, Fig. 4 depicts the modulus �W3
Z��15;��� in the indicated region of the left-half

plane. Four zeros appear to be evident in the figure, and in order to further explore whether or
ot they are indeed zeros, we appeal to the Argument principle. We focus on the two upper
ocations shown closer up in Fig. 5. Let h���=W3

Z��15;�� represent our numerically computed
unction. �Due to small errors in the asymptotic expansion �26� used to generate initial data for an
valuation based on integrating �25�, h��� will actually represent the product of W3

Z��15;�� and
n analytic function of � which slowly varies over the region of interest. However, Paper I showed
hat the choice of integration path in the z=�� plane results in exponential suppression of the
econd solution to �25�, and absolute differences in the zero locations of h��� and those of

3
Z��15;�� are of size 10−13 in modulus.� We numerically compute

1

2�i
�

square

h����
h���

d� � 1.999 732 − i4.185 506 � 10−5 �33�

ver the square �running in the counterclockwise sense� shown in Fig. 5. On each side of the
quare we have introduced 1024 subintervals, and used the trapezoid rule. Since we are unable to
umerically evaluate h���� directly, we approximate this derivative using difference quotients �this
equires two extra function evaluations beyond the corners�. Using a sequence of discretizations,

e have confirmed that the integral convergences to 2 at a second-order rate, suggesting that the
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quare indeed encloses two simple zeros. As a second example, consider the modulus �W8
Z��25;���

lotted in Fig. 6 over the indicated region �four other zeros, conjugate to those shown, are located
n the third quadrant�. For the analogous line integral over the square shown �and using 2048 cells
n each side for the trapezoidal integration�, we find a value of 3.999 975−i5.169 761�10−5,
uggesting four simple zeros.

As with the scalar case, we find for the Zerilli and j=2 Regge–Wheeler cases that the zeros

�,k��B� in frequency of W����B ;�� behave asymptotically as

IG. 4. �Color online� Zeros ��3,k
Z �15� :1�k�4� in frequency of W3

Z��15;��. The contour lines are of log10�W3
Z��15;���,

ith the logarithm distributing contour lines more evenly.

Z
FIG. 5. �Color online� Zeros in frequency of W3��15;��. The plot here is a blow-up of the one shown in Fig. 4.
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��,k��B� � b�,k/�B �34�

n the �B→� limit. However, let us offer several important observations in order to sharpen the
recise nature of this asymptotic agreement. First, in the opposite limit as �B→1+, we do not
elieve N� remains constant. Indeed, we expect the phenomenon of “zero pair creation” in this
imit, as described in Paper I for the scalar j=0 Regge–Wheeler FDRK. Although we believe that
he sum-of-poles representation remains valid for �B close �but not equal� to unity, description of
he FDRK and implementation of ROBC both become more difficult in this limit. For these
easons, we have required �B�15. Second, for odd � there is an “extra” zero. That is to say, for
dd � the number N�=�+1 of zeros ��,k��B� is greater by one than the number � of MacDonald
eros �provided �B is large enough, otherwise N� could be a larger integer still�. We will argue that
his curious feature is not at odds with the asymptotic result �34�. Let us focus on the Zerilli case,
ith the understanding that similar statements apply to the j=2 Regge–Wheeler case.

For even �=2,4 ,6 ,8 ,10 and �B�15, the number of zeros ��,k
Z ��B� is N�=�, the same as the

umber of b�,k /�B. As an illustration, Fig. 7 depicts the six zeros �6,k
Z ��B� of W6

Z���B ;�� as
iamonds for �B=15,16, . . . ,30. We also plot the corresponding MacDonald–Bessel zeros b6,k /�B

s crosses. The collection �6,k
Z �15� of zeros is the outermost crescent of diamonds, while the

ollection �6,k
Z �30� is the innermost �and similarly for the crescents of Bessel crosses�. The plot is

learly not at odds with the asymptotic formula �34� above.
As mentioned, for odd �=1,3 ,5 ,7 ,9 and �B�15, the number of zeros ��,k

Z ��B� is N�=�+1,
hat is one more than the corresponding number of MacDonald–Bessel zeros. For odd � there is a
ingle MacDonald–Bessel zero which lies on the negative real axis. As with the j=0 Regge–

heeler case, we find for odd � that two zeros of W�
Z���B ;�� correspond to this single real

acDonald–Bessel zero. Moreover, as �B gets large each of these two zeros is asymptotic to the
ingle MacDonald–Bessel zero. This phenomenon is evident in Fig. 8, and corresponding plots for
ther odd � are similar. The existence of an “extra” zero is at first sight troubling in light of the
xpected asymptotic agreement between �̂�

Z�iy ;�B� and �̂�
F�iy ;�B�. However, we argue in the

ollowing that the pole and cut contributions to the gravitational FDRK in tandem do yield the
orrect asymptotic agreement.

So far we have only considered locations ��,k
Z ��B� associated with Zerilli kernels. To the eye,

RW

IG. 6. �Color online� Zeros in frequency of W8
Z��25;��. The contour lines are of log10�W8

Z��25;���, with the logarithm
istributing contour lines more evenly.
oth Figs. 7 and 8 would be the same had we instead plotted the corresponding locations ��,k ��B�
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ssociated with j=2 Regge–Wheeler kernels. For the examples we have considered, ���,k
Z ��B�

��,k
RW��B�� is typically on the order of 10−5 to 10−3. However, from Paper I results we know that

his difference is seven to ten orders of magnitude larger than our knowledge of these locations. As
n example, we list the two conjugate locations �2,k�15� for j=0 Regge–Wheeler, j=2 Regge–

heeler, and Zerilli cases. Respectively, these are

IG. 7. �Color online� Zeros ��6,k
Z ��B� :1�k�6� in frequency of W6

Z���B ;��. Diamonds represent the zeros �6,k��B�, while
he crosses represent the b6,k /�B. All zeros for �B=15,16, . . . ,30 are shown. The outermost crescent of locations corre-
ponds to �B=15 and the innermost to �B=30.

IG. 8. �Color online� Zeros ��5,k
Z ��B� :1�k�6� in frequency of W5

Z���B ;��. Diamonds represent the zeros �5,k
Z ��B�, while

he crosses represent b5,k /�B. All zeros for �B=15,16, . . . ,30 are shown. The outermost crescent of locations corresponds
o �B=15 and the innermost to �B=30. For each �B two diamonds correspond to the single cross lying on the negative real

xis.
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− 0.096 885 391 711 329 ± i0.061 245 961 499 841.

− 0.094 779 501 145 744 ± i0.059 927 941 363 806,

− 0.093 406 539 086 840 ± i0.058 977 077 340 679.

hese locations are all quite similar, and they may be compared to the roots b2,k /15:
�3/2±i�3/2� /15=−0.1±i0.057 735 026 918 96. In this short list the last location, say, clearly
orresponds in some sense to the ninth pole location in the compressed kernel in Table II, but note
hat the absolute difference between the value here and the table value is more than the stated 
10−10 tolerance for the compressed kernel. See the information in square brackets just after Eq.

30�.

. Cut profile

Using the type �i� numerical method from Paper I described earlier �which also returns de-
ivative information for W�����B ;���, we have generated Zerilli cut profiles f�

Z�� ;�B� for various �
nd �B. Figure 9 depicts profiles for even �. To the eye the cut profiles shown match j=2
egge–Wheeler profiles f�

RW�� ;�B� corresponding to the same parameter choices. However, the
erilli and Regge–Wheeler even profiles are indeed different, as is shown by an example plot in
ig. 11. Near the peak of this plotted difference, the accuracy to which we know the Zerilli and
egge–Wheeler profiles is some ten orders of magnitude greater than the difference. Notice that

hese even cut profiles weaken as �B gets larger, and we believe that the cut contribution to an
ven-� gravitational FDRK “dies out” as �B gets large. Based on our earlier claim that for an even-
gravitational FDRK we have the same number N�=� of zeros ��,k��B� as Bessel zeros b�,k /�B,

nd that these zeros lock on to the latter as �B gets large, we conjecture that the even-� kernels
ˆ �

Z�iy ;�B� and �̂�
RW�iy ;�B� both approach �̂�

F�iy ;�B� uniformly in y as �B→�.
We plot odd-� Zerilli cut profiles in Fig. 10. Like before with the even-� profiles, to the eye

hese could be either Zerilli or j=2 Regge–Wheeler profiles. However, as is evident in the bottom
lot shown in Fig. 11, these cases are different. Notice that for odd � the cut profiles strengthen as

B increases. We believe that such a strengthening profile in tandem with the two zeros closest to
he real axis as a whole combine to asymptotically agree with the single MacDonald–Bessel zero

IG. 9. �Color online� Scaled even cut profiles for Zerilli kernels. In each plot the leftmost profile is f2
Z�� ;�B� /2.5 and the

ightmost f10
Z �� ;�B� /10.5.
�,0 /�B located on the negative real axis. �For notational simplicity we have now labeled this zero
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y k=0. Before it would have corresponded to k= 1
2 ��+1� for odd �, if k=1, . . . ,� for the zeros

�,k of K�+1/2�z�.� In other words, for odd � the cut profile in effect cancels one of the zeros

�,k
Z ��B�, so that again we have agreement between the gravitational FDRK �̂�

Z�iy ;�B� and
atspace FDNK �̂�

F�iy ;�B� uniformly in y as �B→�. While we cannot precisely describe how this
ancellation of the extra zero occurs, we believe that it stems from the following two conjectures,
laimed to hold as �B→�. First, the cut profile becomes sharply concentrated for � near −b�,0 /�B.
econd,

−
1

�



0

�

f�
Z��;�B�d� � − b�,0/�B. �35�

reliminary numerical investigations indicate that both claims are in fact valid, but the issue
eserves further study �preferably theoretical�. All statements made in this paragraph also pertain
o �̂�

RW�iy ;�B�.

IG. 10. �Color online� Scaled odd cut profiles for Zerilli kernels. In each plot the leftmost profile is f3
Z�� ;�B� /3.5 and the

ightmost f9
Z�� ;�B� /9.5.

IG. 11. �Color online� Difference between Regge–Wheeler and Zerilli cut profiles. Here we plot example differences with
RW Z
he notation �f��� ;15�= f� �� ;15�− f��� ;15�.
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. Numerical validation of the sum-of-pole representation

Up to this point we have mainly given a qualitative description of what we believe are the
ain features of the sum-of-poles representation �30�. In order to quantitatively test our represen-

ation �30�, we compare the two numerical approaches for evaluating either �̂�
Z�iy ;�B� or

ˆ �
RW�iy ;�B� outlined at the beginning of this section. Figure 12 depicts such a comparison for the
erilli case with �=2 and �B=15. To make the plots in the figure, we have used a y grid with 5
daptive levels, each with 32 grid points. The adaptive grid provides more resolution near the
rigin where we expect the largest errors. We have then generated two separate numerical arrays
f values �̂2

Z�iy ;15� on the y grid, the first obtained by integrating the ODE �29� and the second
ia the direct construction �32�. Both arrays of numerical values are obtained in double precision
rithmetic. Over the y grid, the plots depict the absolute error ���̂2

Z�iy ;15�� and relative error
��̂2

Z�iy ;15�� / ��̂2
Z�iy ;15��, and they indicate striking agreement between the two methods. We note

hat the maximum value of the absolute error in the top plot is 1.49�10−12, and the maximum
alue of the relative error in the bottom plot is 7.35�10−13. We can now perform the same
xperiment over a range of �B values, say �B=15,16, . . . ,30. For each choice of �B we compute
aximum values of absolute and relative error over the y grid. It turns out that the same values

bove corresponding to �B=15 are the largest errors encountered.
We now perform the same experiment for each ��10 and for both j=2 Regge–Wheeler and

erilli cases. That is to say, for each � we compute the maximum absolute error ���̂��iy ;�B�� and
aximum relative error ���̂��iy ;�B�� / ��̂��iy ;�B�� uniformly over the described y grid and all �B

15,16, . . . ,30. For the Zerilli case we list these errors in the Table III. Errors for the j=2
egge–Wheeler case are comparable.

. CONCLUSION

For both flatspace 3+1 and flatspace 2+1 wave propagation and nonreflecting boundary
onditions, AGH proved several theorems related to both the exact sum-of-poles representation for
FDNK �also a FDRK, but we have used FDNK for the special flatspace case� and its numerical

pproximation.20 In particular, they proved that a FDNK admits a rational approximation as a
ompressed kernel, and for a given large Bessel order � �for the 3+1 case �=�+1/2� and choice
f  tolerance they estimated the required number d of poles appearing in the compressed kernel.

IG. 12. �Color online� Relative and absolute numerical errors. Here we plot numerical errors corresponding to
��̂2

Z�iy ;15�� and ���̂2
Z�iy ;15�� / ��̂2

Z�iy ;15�� for the Zerilli case with �=2 and �B=15.
n addition to some techniques stemming from the fast multipole method, their proofs rely heavily
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n the well-understood theory of Bessel functions. In particular, AGH made extensive use of
ntegral representations, order recursion relations, and detailed understanding of the scaling be-
avior for both the poles and �for the 2+1 case� the cut profile. �The 2+1 case, associated with
nteger-order Bessel functions, is analytically richer than the 3+1 case, as for the 2+1 case there
s a continuous sector associated with the sum-of-poles representation for the FDNK. This sector
s at least qualitatively similar to the one in �30�.�

While the numerical evidence amassed here is extremely convincing, it does not constitute a
athematical proof that a gravitational FDRK admits the representation �30�, and we hope that our

umerical investigation spurs the interest of analysts capable of theoretically investigating our
onjectured representation. Were �30� established theoretically, we believe approximation
heorems—similar to those proved by AGH but pertaining to our gravitational ROBC—would
ollow. One might prove that a gravitational FDRK also admits a rational approximation as a
ompressed kernel, and determine the asymptotic growth of the number d of approximating poles
s �→� ,→0+. Since numerically constructed compressed kernels have performed spectacularly
n implementations of ROBC �see Paper II�, we have good reason to believe that approximation
heorems must hold. Such theorems are bound to involve the details of the underlying special
unctions. Unfortunately, relative to Bessel functions, significantly less is known about the special
unctions considered here, confluent Heun functions for the Regge–Wheeler cases and seemingly
ore exotic functions for the Zerilli case. Indeed, we are unaware of useful integral representa-

ions, and while appropriate Leaver series are certainly of formal interest, they would not seem a
ood platform for carrying out the requisite asymptotic analysis. While our own knowledge of
odern analysis would seem not up to such theoretical investigation, we believe our results offer

ertile new ground for more capable analysts.
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PPENDIX A: ORIGIN VALUE OF THE FDRK

For the j=0,1 ,2 Regge–Wheeler cases Paper I has expressed the origin value �̂�
RW�0;�B� of

he FDRK in terms of an infinite series in �B
−1, where the expansion coefficients obey a two-term

ecursion relation �see Sec. 3.2.3 of that reference�. All expansion coefficients are positive, and the
alue �̂�

RW�0;�B� can be accurately approximated in terms of two partial sums. This series was
sed numerically to evaluate the kernel at the origin �=0, a frequency value for which direct
ntegration of �29� proved problematic.

To express �̂�
Z�0;�B� for the Zerilli case of polar perturbations, we have used a similar series

xpression, although now the series coefficients obey a four-term rather than two-term recursion
elation. We have obtained this series via the following recipe. First, we set �=0 in �24� and use

TABLE III. Zerilli errors.

� Max relative error Max absolute error

2 7.35�10−13 1.49�10−12

3 3.63�10−12 9.50�10−12

4 8.63�10−13 2.47�10−12

5 1.27�10−12 4.68�10−12

6 6.17�10−13 2.15�10−12

7 6.93�10−13 4.69�10−12

8 3.03�10−13 1.51�10−12

9 5.10�10−13 3.51�10−12

10 9.71�10−14 8.92�10−13
4�, thereby reaching
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d2�̂�

d�2 + �−
1

�
+

1

� − 1
�d�̂�

d�
− �8n2�n + 1��3 + 12n2 + 18n� + 9

�2�� − 1��2n� + 3�2 ��̂� = 0. �A1�

ext, plugging the expansion

�̂� = �
k=0

�

ak�
−��+k� �A2�

nto �A1�, assuming a0=1, and balancing terms, we find the recursion relation

�kak+3 + 
kak+2 + �kak+1 + �kak = 0, �A3�

here

�k = 4n2��� + k + 3��� + k + 4� − 2�n + 1�� ,


k = 4n�� + k + 2���3 − n��� + k + 3� − n� − 12n2,

�A4�
�k = �� + k + 1���9 − 12n��� + k + 2� − 12n� − 18n ,

�k = − 9�� + k + 1�2.

gain n= 1
2 ��−1���+2�, and in the start-up, �−2=0=�−2, and �−1=0. The origin value of the

DRK is

�̂�
Z�0;�B� = − �

k=0

�

�� + k�ak�B
−��+k���

k=0

�

ak�B
−��+k�. �A5�

espite the four-term recursion relation used to generate the series and its � derivative, in using
A5� we have encountered no numerical instabilities.

PPENDIX B: ASYMPTOTIC EXPANSION FOR OUTGOING SOLUTION

To generate initial data for our numerical methods based on path integration in the complex z
lane �or sometimes the complex � plane�, we use the asymptotic expansion �26� about the
rregular singular point at infinity. Paper I describes this expansion for all the Regge–Wheeler
ases, showing that the dk

RW��� obey a three-term recursion relation. For the Zerilli case, we write
he expansion coefficients as dk

Z���=gk����k, then finding that the gk��� obey the five-term recur-
ion relation

Akgk+4 + Bkgk+3 + Ckgk+2 + Dkgk+1 + Ekgk = 0, �B1�

here

Ak = 8�n2�k + 4� ,

Bk = 4n�k + 3��6� + n�k + 4�� − 8n2�n + 1� ,

Ck = �k + 2��18� − 4n2 + �12n − 4n2��k + 3�� − 12n2, �B2�
Dk = �k + 1���9 − 12n��k + 2� − 12n� − 18n ,
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Ek = − 9�k + 1�2.

ere again n= 1
2 ��−1���+2�, and in the start-up C−3=D−3=E−3=0, D−2=E−2=0, and E−1=0.

ypically, we have used fewer than ten terms in the expansion �26� to generate initial data for
umerical integration, and have encountered no problems in using this expansion �despite poten-
ially tricky issues associated with high-order recursions�. We have used dimensionless coordi-
ates and Laplace rather than Fourier transform. Adjusting for these choices, �B1� and �B2� agree
ith an expansion given by Chandrasekhar and Detweiler in Ref. 34.
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This paper deals thoroughly with the scalar and electromagnetic fields of uniformly
accelerated charges in de Sitter space–time. It gives details and makes various
extensions of our Physical Review Letter from 2002. The basic properties of the
classical Born solutions representing two uniformly accelerated charges in flat
space–time are first summarized. The worldlines of uniformly accelerated particles
in de Sitter universe are defined and described in a number of coordinate frames,
some of them being of cosmological significance, the others are tied naturally to the
particles. The scalar and electromagnetic fields due to the accelerated charges are
constructed by using conformal relations between Minkowski and de Sitter space.
The properties of the generalized “cosmological” Born solutions are analyzed and
elucidated in various coordinate systems. In particular, a limiting procedure is
demonstrated which brings the cosmological Born fields in de Sitter space back to
the classical Born solutions in Minkowski space. In an extensive Appendix, which
can be used independently of the main text, nine families of coordinate systems in
de Sitter space–time are described analytically and illustrated graphically in a num-
ber of conformal diagrams. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2009647�

. INTRODUCTION

In 1969, on the 60th anniversary of Max Born’s1 first analysis of the field of a uniformly
ccelerated charge, Ginzburg, Nobelist in 2003, reanalyzed2–4 this—what he called—“perpetual
roblem of classical physics,” with the conclusion that the problem “is already clear enough not to
e regarded as perpetual.” Ginzburg confirmed the presence of radiation and emphasized that the
anishing of the radiation reaction force during the uniformly accelerated motion of the charge “is
n no way paradoxical, in spite of the presence of radiation,” since “a nonzero total energy flux
hrough a surface surrounding a charge at a zero radiation force is exactly equal to the decrease of
he field energy in the volume enclosed by this surface.” Despite Ginzburg’s view, however, the
roblem does not seem to lose its “perpetuity.” A number of distinguished physicists who dealt
ith it before Ginzburg like Sommerfeld, Schott, von Laue, Pauli and others have, after Ginzburg,
een followed by such authors as, for example, Bondi,5 Boulware,6 Peierls,7 Thirring8 and
thers.9–12

The fields and radiation patterns from uniformly accelerated general multipole particles were
lso studied.13 The December 2000 issue of Annals of Physics contains three papers by Eriksen
nd Grøn14–16 with numerous references on “electrodynamics of hyperbolically accelerated
harges.” �Yet, except for Refs. 1 and 6, the explicit citations above are not contained in Refs.
4–16.�

Space–times describing “uniformly accelerated particles or black holes” play fundamental role
n general relativity. They are the only explicit solutions of Einstein’s field equations known which

�Electronic mail: bicak@mbox.troja.mff.cuni.cz
�
Electronic mail: pavel.krtous@mff.cuni.cz

46, 102504-1022-2488/2005/46�10�/102504/60/$22.50 © 2005 American Institute of Physics
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re radiative and represent the fields of finite sources. Born fields in electrodynamics are produced
y two charges moving along an “axis of symmetry” in opposite directions with uniform accel-
rations of the same magnitude. They have two symmetries: they are axially symmetric and
ymmetric with respect to the boosts along the axis of symmetry. Their general-relativistic coun-
erparts, the boost-rotation symmetric space–times, are unique because of a theorem which
oughly states that in axially symmetric, locally asymptotically flat space–times the only additional
ymmetry that does not exclude radiation is the boost symmetry. The boost-rotation symmetric
pace–times have been used in gravitational radiation theory, quantum gravity, and as test beds in
umerical relativity; their general structure is described in Ref. 17, their applications and new
eferences are given in the reviews.18–20 One of the best known examples, the so-called C-metric,
escribing uniformly accelerated black holes, is the only boost-rotation symmetric solution known
lso for a nonvanishing cosmological constant �. Asymptotically this “generalized” C-metric
pproaches de Sitter space–time if ��0. It is well known from the classical work of Penrose21 on
he asymptotic properties of fields and space–times that, in contrast to asymptotically

inkowskian space–times with null �lightlike� conformal infinities I ±, asymptotically de Sitter
acuum space–times have two disjoint conformal infinities, past and future, which are both space-
ike. When ��0, as in anti-de Sitter space, the conformal infinity is timelike, and it is not disjoint.
In the analytically extended C-metrics, there is an infinite number of such infinities which can be
eached by going “through” black holes like with a Reissner-Nordtröm black hole, but this is not
ertinent to the present work.�

The importance of de Sitter space–time in the history of modern cosmology seems to grow
teadily. The “flat” de Sitter universe became the standard cosmological model in steady state
heory, more recently, as the “first approximation” of inflationary models, and today, with indica-
ions that ��0 in our Universe, it is an asymptote of all indefinitely expanding Friedmann-
obertson-Walker models with ��0. In fact much more general cosmological models with
�0 approach de Sitter model asymptotically in time. This manifestation of the validity of the

cosmic no-hair conjecture,”22,23 will also be noticed in the properties of the fields analyzed in this
ork.

Motivated by the role of the Born solution in classical electrodynamics, by the importance of
he boost-rotation symmetric space–times in general relativity, and by the relevance of de Sitter
pace in contemporary cosmology, we have recently generalized the Born solution for scalar and
lectromagnetic fields to the case of two charges uniformly accelerated in de Sitter universe.24 In
he present paper we give calculations and detailed proofs of the results and statements briefly
ketched in our paper.25 In addition, we investigate the character of the field in a number of
arious coordinate systems which are relevant either in a general-relativistic context or from a
osmological perspective.

The appropriate coordinates and corresponding tetrad fields were important in finding our
ecent results on a general asymptotic behavior of fields in the neighborhood of future infinity I +

n asymptotically de Sitter space–times.26 In obtaining these results we were inspired by the
nspection of the electromagnetic fields from uniformly accelerated charges in de Sitter universe.

It was known from the work of Penrose since late 1960s that the radiation field is “less
nvariantly” defined when I + is spacelike—that it depends on the direction in which I + is
pproached. However, no explicit models were available. The investigation of the test fields of
ccelerated charges in de Sitter universe has served as a useful example; it was then generalized
lso to the study of asymptotic and radiative properties of the C-metric with ��0 �Ref. 27�, as
ell as to the case of the C-metric with ��0 when infinity is timelike.28 �For other recent works
n the “cosmological” C-metric, see, e.g., Refs. 29 and 30.� These studies led to a more general
onclusion26 that the directional pattern of gravitational and electromagnetic radiation near de
itter-like conformal infinity has a universal character, determined by the algebraic �Petrov� type
f a solution of the Maxwell/Einstein equations considered. In particular, the radiation field van-
shes along directions opposite to principal null directions. Very recently analogous conclusions
ave been obtained for space–times with anti-de Sitter asymptotics.31
Since past and future infinities are spacelike in de Sitter space–time, there exist particle and
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vent horizons. Under the presence of the horizons, purely retarded fields �appropriately defined�
ecome singular or even cannot be constructed at the “creation light cones,” i.e., at future light
ones of the “points” at I − at which the sources “enter” the universe. In Ref. 24 we analyzed this
henomenon in detail and constructed smooth �outside the sources� fields involving both retarded
nd advanced effects. As demonstrated in Ref. 24, to be “born in de Sitter” is quite a different
atter than to be “born in Minkowski.” This reveals the double meaning of the second—perhaps

omewhat enigmatic—part of the title of this paper.
Its plan is as follows. In order to gain an understanding of the generalized Born solution in de

itter space it is advantageous to be familiar with some details of the classical Born solution in
inkowski space. Hence, its properties most relevant for our purpose are summarized in Sec. II.
ere we also discuss why in Minkowski space problems with purely retarded fields of uniformly

ccelerated particles do not arise.
There exists vast literature on de Sitter space in which various types of coordinates are

mployed. We shall construct fields in de Sitter space by using its conformal relations to
inkowski space. For our aim coordinate systems on conformally compactified spaces and their

roperties will be particularly useful. These, together with several “cosmological” and “static”
oordinate systems, will be described and graphically illustrated in conformal diagrams in Sec. III.

hat is meant by “uniformly accelerated particles in de Sitter space” is defined and the properties
f the corresponding worldlines are studied in Sec. IV. For technical reasons it is more advanta-
eous to consider particles which asymptotically start and end at the poles of coordinates covering
e Sitter space, i.e., particles “born at the poles” �Sec. IV A�. In order to find a direct relation
etween the standard form of the Born solution produced by two charges at each time located
ymmetrically with respect to the origin of Minkowski space and the generalized Born solution in
e Sitter space, it is necessary to construct also worldlines of uniformly accelerated particles
hich are “born at the equator” �Sec. IV B�.

With the worldlines of accelerated particles available, it is advantageous to consider coordi-
ates in de Sitter space which are centered on these worldlines. These “accelerated coordinates”
nd “Robinson-Trautman coordinates” are obtained, in a constructive manner, in Sec. V.

Section VI is devoted to the fields from particles “born at the poles.” Here we also study in
etail their properties in various coordinate systems introduced before. The fields of particles
born at the equator” are found in Sec. VII by a simple rotation. Starting from these fields we
emonstrate by means of which limiting procedure the standard Born field in Minkowski space
an be regained. Finally, we conclude by few remarks in Sec. VIII.

The paper contains a rather extensive Appendix in which nine families of coordinate systems
mployed in the main text are described in detail, illustrated graphically, their relations are given,
nd corresponding metric forms as well as orthonormal tetrads are presented. We believe the
ppendix can be used as a general-purpose catalogue in other studies of physics in de Sitter

pace–time.

I. BORN IN MINKOWSKI

It was Einstein in 1908, inspired by a letter from Planck, who first defined a uniformly
ccelerated motion in special relativity.32,33 A particle is in uniformly accelerated motion if its
cceleration has a fixed constant value in instantaneous rest frames of the particle. This can be
tated in a covariant form �see, e.g., Ref. 34� as

P�
�ȧ� = ȧ� − �a�a��u� = 0, �2.1�

� being four-velocity, ·�u��� covariant derivative with respect to proper time, a�=u̇� four-
cceleration, and P�

� =��
� +u�u� is the projection tensor into the hypersurface orthogonal to u�.

quation �2.1� implies ȧ�a�=0 so that the condition of uniform acceleration guarantees that the

agnitude of the four-acceleration is constant,
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aM = �a�a� = constant, �2.2�

lthough ȧ��0. Integrating Eq. �2.1� in Minkowski space–time, one finds that the worldline of a
niformly accelerated particle is a hyperbola.35,36 One can then choose an inertial frame, in which
he initial three-velocity and three-acceleration are parallel; in such frames the motion is spatially
ne-dimensional. It can be produced by placing a test charged particle into a homogeneous electric
eld with initial velocity aligned with the field. The motion along the z axis is illustrated in
ig. 1. There, in fact, two particles uniformly accelerated in opposite directions are shown, the one
oving along the positive ��= +1 for particle w� in the figure� and the second one along the

IG. 1. A pair of uniformly accelerated charges in Minkowski space–time �with the conformal diagram below�. The boost
illing vector is timelike in regions L and R; it is spacelike in F and P. The charges are causally disconnected by null
ypersurfaces �“the roof”� −t2+z2=0. These hypersurfaces represent the acceleration horizon for uniformly accelerated
bservers with respect to which the charges are at rest.
egative z axis ��=−1 for particle w��; their worldlines parametrized by proper time �M are
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z = �bo cosh
�M

bo
, t = bo sinh

�M

bo
, x = y = 0, �2.3�

r

z = ��t2 + bo
2. �2.4�

ere we have chosen the particles to be at rest at z=�bo at t=0. Then their three-acceleration at
nitial moment t=0 is aM= �d2z /dt2�=1/bo. As t→	, the three-velocity vM= �dz /dt�= t /�t2+bo

2

pproaches the velocity of light. This is the well-known hyperbolic motion.
The worldlines of the particles coincide with the orbits of the boost Killing vector in the t–z

lane,


boost = z
�

�t
+ t

�

�z
. �2.5�

hese orbits, given by −t2+z2=constant, x ,y=constant, are timelike at −t2+z2�0, but they are
pacelike at −t2+z2�0. The fields �scalar, electromagnetic, higher-spin� produced by charged
articles in the hyperbolic motion will have boost-rotational symmetry. They are thus static in the
egion −t2+z2�0—“below the roof” as introduced in Ref. 17, however, we can expect them to be
adiative in the region −t2+z2�0—“above the roof.”

Consider a massless scalar field � with the scalar charge source S satisfying, in a general
our-dimensional space–time, the wave equation

�� − 1
6R�� = S , �2.6�

n which ��g������ is the curved-space d’Alambertian, and R is the scalar curvature �of course,
n Minkowski space R=0�. We are interested in a field due to two monopole particles with the
ame constant scalar charge of magnitude s moving along hyperbolae �2.3�. The source at a
pace–time point x is thus given by

S = S� + S�, S� = s� ��x − w���M��d�M, �2.7�

here w���M� denotes the worldlines of the particles. The resulting fields may be written as

� = �� + �� , �2.8�

here �� is produced by S�. The retarded and advanced fields of these sources are constructed and
nalyzed in detail in Ref. 17. It can be demonstrated that the retarded and advanced fields due to
he particle w� or w� are all given by exactly identical expression

�BM =
s

4

1

R , �2.9�

hich, however, occurs in different regions of space–time. Namely,

�ret/adv � =
s

4

1

R� ��z ± t� , �2.10�

being the step function and upper/lower sign is valid for retarded/advanced case. The quantity R

n the denominator is given by
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R =
1

2bo
��bo

2 + t2 − r2�2 + 4bo
2r2 sin2 ��1/2. �2.11�

t has the meaning of a retarded or advanced distance—it is a spatial distance of the “observation”
field� point from the position of the source at retarded or advanced time. Here, as usual,
=r sin � cos � , y=r sin � sin � , z=r cos �. The fields �2.9�, as well as �2.10�, are, at first glance,
xially �rotationally� symmetric. They are also unchanged under the boost along the z axis.

The field �BM can, in fact, be viewed as the field due to both accelerated particles, i.e., as the
eld corresponding to the source �2.7�. Inspecting regions at which the retarded and advanced
elds �2.10� are nonvanishing we discover that �BM admits the interpretation as arising from
-parametric combination of retarded and advanced effects from both particles,

�BM = 
 �ret� + �1 − 
� �adv� + �1 − 
� �ret� + 
 �adv� , �2.12�

here 
�R is an arbitrary constant parameter. In particular, choosing 
= 1
2 , the field �BM arises

rom 1
2 ��ret+�adv� from both particles. With 
=1, the field can be interpreted as being caused by

urely retarded effects from particle w� in region z+ t�0, and by purely advanced effects from
article w� in region z+ t�0.

The case of electrodynamics is very similar. The solution corresponding to the scalar field
2.9� was found by Born in 1909.1 It is customarily given in cylindrical coordinates �see, e.g.,
efs. 34, 37, and 14�, however, in order to compare it with its generalization to de Sitter universe,

t is more convenient to write it down in spherical coordinates,

FBM = −
e

4

1

2bo

1

R3 �− �bo
2 + t2 − r2�cos � dt ∧ dr + �bo

2 + t2 + r2�r sin � dt ∧ d� .

�2.13�
− 2tr2 sin � dr ∧ d�

he field can be obtained from the Liénard-Wiechert retarded and advanced potentials of two
harged particles moving along hyperbolae �2.3�, however, in contrast to the scalar case when
harges are exactly the same, the electric charges have opposite signs. Similarly to the scalar case,
he field is smooth everywhere, except for the places where the particles occur. FBM can be
nterpreted in the precisely same way as the scalar field �2.9�, i.e., as the 1-parametric combination
f retarded and advanced effects from both charges, analogously to Eq. �2.12�. However, in the
lectromagnetic case an exact form of retarded and advanced fields from a single particle is a more
ubtle issue. Considering that the field in the region z+ t�0 may be interpreted as the retarded
ffect emitted from the charge which moves along z�0, it is natural to try to exclude advanced
ffects of the other particle by requiring the field to vanish in the region z+ t�0 �cf. Fig. 1�. The
eld is then not smooth at the null hypersurface z=−t. In the scalar case such a field does represent

he pure retarded field of the single particle, cf. Eq. �2.10�. However, in the electromagnetic case
he field FBM� �z+ t� corresponds to sources consisting not only of the particle but also of a
charged wall” moving along hypersurface z+ t=0 with velocity of light.38,5 Nevertheless, it is
ossible to obtain6,39,40 a pure retarded field of the only single particle by modifying the field with
delta function valued term localized on z+ t=0.

In de Sitter space such a modification is not feasible because the advanced fields cannot be
xcluded. The underlying cause is the null character of the past conformal infinity in Minkowski
pace–time, whereas in de Sitter space–time both future and past conformal infinities are space-
ike. As a consequence, the Gauss constraint restricts the data at the spacelike past infinity, and it
an be shown that a purely retarded field of a pointlike charge cannot satisfy this constraint.24 The
bsence of purely retarded fields is also related to a different character of the past horizon of a
article. Since the worldline of a particle “enters” the universe through the past spacelike infinity,
here exists the past particle horizon, called also the creation light cone. In de Sitter space a purely
etarded electromagnetic field of a pointlike charge cannot be constructed on the whole cone. In
inkowski space–time the creation light cone of a particle moving asymptotically in the past
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reely, coincides with the whole past null infinity, and thus it does not belong to the physical
pace–time. Eternally accelerated particles can “enter” the Minkowski space–time at a point of the
ast null infinity—as, for example, uniformly accelerated particles do. Like in de Sitter case, in
onformal space–time the past horizon of such particles forms the null cone but, in contrast to de
itter space, it has one generator in common with the null infinity. In physical space–time this
orizon thus corresponds to a null hyperplane—for the particle w� it is just the hyperplane
+ t=0 �cf. Fig. 1�—and so its spatial sections are not compact. Thanks to this noncompactness the
bad” behavior of the retarded field on the horizon can be “pushed out of sight” to the infinity. We
nalyzed this issue in detail in Ref. 24.

II. MANY FACES OF DE SITTER

The fields due to various types of uniformly accelerated sources in de Sitter space–time found
n Ref. 24, as well as those described briefly in Ref. 25, were constructed by employing the
onformal relation between Minkowski and de Sitter space–times. When analyzing the worldlines
f the sources in de Sitter space–time and their relation to the corresponding worldlines in
inkowski space–time we need to introduce appropriate coordinate systems. Suitable coordinates
ill later be used to exhibit various properties of the fields. An extensive literature exists on
arious types of coordinates in de Sitter space �e.g., Refs. 41 and 42�; we will survey some of them
n this section. In particular, we relate them to the corresponding coordinates on conformally
elated Minkowski spaces since this does not appear to be given elsewhere. In the next section,
fter identifying the worldlines of uniformly accelerated particles in de Sitter space, we shall
onstruct coordinate systems tied to such particles, such as Rindler-type “accelerated” coordinates,
r Robinson-Trautman-type coordinates in which the null cones emanating from the particles have
specially simple forms. These coordinate systems will turn out to be very useful in analyzing the
elds. Here, in the main text, however, only a brief description of relevant coordinates will be
iven. More details, including both formulas and illustrations, are relegated to the Appendix.

As it is well known from textbooks on general relativity �for a recent pedagogical exposition,
ee Ref. 43�, de Sitter space–time, which is the solution of Einstein vacuum equations with a
osmological term ��0, is best visualized as the four-dimensional hyperboloid imbedded in flat
ve-dimensional Minkowski space. It is the homogeneous space of constant curvature equal to
�. Hereafter, we use the quantity

�� =� 3

�
�3.1�

with the dimension of length� to parametrize the radius of the curvature.
The entire de Sitter space–time can be covered by a single coordinate system—which we call

tandard coordinates—��R , �� �0,� , �� �0,� , �� �− ,� in which the metric reads

gdS = − d�2 + ��
2 cosh2 �

��

�d�2 + sin2 � d�2� , �3.2�

d�2 = d�2 + sin2 � d�2. �3.3�

learly, we can imagine the space–time as the time evolution of a 3-sphere which shrinks from
nfinite extension at �→−	 to a radius ��, and then expands again in a time-symmetric way.
ence, we also call � ,� the spherical cosmological coordinates. The coordinate lines are shown in

he conformal diagram, Fig. 2.
In cosmology the most popular “flat” de Sitter universe is obtained by considering only a half

f de Sitter hyperboloid foliated by flat three-dimensional spacelike hypersurfaces labeled by
imelike coordinate �̌�R, cf. Fig. 3. Together with appropriate radial coordinate ř�R+, the

oordinates, which we call flat cosmological coordinates, are given in terms of � ,� by
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�̌ = �� log	sinh
�

��

+ cosh
�

��

cos �
, ř = ��

sin �

cos � + tanh��/���
, �3.4�

mplying the well-known “inflationary” metric

IG. 2. The spherical cosmological coordinates and a pair of uniformly accelerated particles w� and w� in de Sitter
niverse: the conformal diagram �above� and projection on the spacelike cut �=constant in the standard cosmological
pherical coordinates �angle � suppressed�. The whole de Sitter space–time could be represented by just the “right half” of
he conformal diagram. For convenience, we admit negative values of radial coordinates and identify r̃=�=− and
=�= �see the text below Eq. �3.12� and the Appendix�.

IG. 3. The flat cosmological coordinates and particles w� ,w� in de Sitter space and in conformally related Minkowski
pace. The flat cosmological coordinates cover shaded region. Its boundary, ř= ±	, represents the horizon for observers at

est in these coordinates.
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gdS = − d�̌2 + exp
2�̌

��

�dř2 + ř2 d�2� . �3.5�

hese coordinates cover only “one-half” of de Sitter space as indicated by shading in Fig. 3.
de Sitter introduced his model in what we call hyperbolic cosmological coordinates

�R , ��R+ �see Fig. 4� related to � ,� by

cosh
�

��

= cosh
�

��

cos �, tanh
�

��

= coth
�

��

sin � . �3.6�

he metric

gdS = − d�2 + sinh2 �

��
	d�2 + ��

2 sinh2 �

��

d�2
 �3.7�

hows that the time slices �=constant have the geometry of constant negative curvature, i.e., as
he standard time slices in an open FRW universe.

The last commonly used coordinates in de Sitter space–time are static coordinates T�R,
��0,���,

T =
��

2
log� cos � + tanh��/���

cos � − tanh��/���
�, R = �� cosh

�

��

sin � , �3.8�

overing also only a part of the universe. The metric in these coordinates reads

gdS = − 	1 −
R2

��
2 
dT2 + 	1 −

R2

��
2 
−1

dR2 + R2 d�2, �3.9�

evealing that � /�T is a timelike Killing vector in the region 0�R���.
Among the coordinates introduced until now only the standard coordinates � ,� ,� ,� cover the

hole de Sitter space–time globally. One can easily extend flat cosmological coordinates to cover
though not smoothly� the whole de Sitter hyperboloid, which will be useful in discussion of the
onformally related Minkowski space–time, cf. Eq. �3.13�. We shall also use extensions of the
tatic coordinates into the whole space–time, using definitions �3.8�, but allowing R�R+. In
egions where R��� coordinates T and R interchange their character, � /�T becomes a spacelike
illing vector �analogously to � /�t inside a Schwarzschild black hole�. However, the static coor-
inates T ,R are not globally smooth and uniquely valued. Namely, T→	 at the cosmological
orizons R=��. The static coordinates, extended to the whole de Sitter space, are illustrated in
ig. 5. Here we also indicate the regions in which � /�T is spacelike by bold F �“future”� and P
“past”�, whereas the regions in which it is timelike are denoted by N �containing the “north pole”

IG. 4. The hyperbolic cosmological coordinates. They cover only the shaded region and, therefore, only a part of the
orldline w�. The horizon Hhyp arises for the observers who are at rest in the hyperbolic cosmological coordinates.
=0� and S �containing the “south pole” �=�. Hereafter, this notation will be used repeatedly.
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The conformal structure of Minkowski and de Sitter space–times, their conformal relation,
nd their conformal relation to various regions of the Einstein static universe have been discussed
xtensively in literature �see, e.g., Refs. 44–47�. The complete compactified picture of these
pace–times, in particular the three-dimensional diagram of the compactified Minkowski and de
itter spaces M# as parts of the Einstein universe represented by a solid cylinder can be found in
ef. 24. We refer the reader especially to Sec. III of Ref. 24 where we explain and illustrate the
ompactification in detail. In the present paper we shall confine ourselves to the two-dimensional
enrose diagrams.

The basic standard rescaled coordinates covering globally de Sitter space–time including the
onformal infinity are simply related to the standard coordinates as follows:

tan
t̃

2
= exp

�

��

, r̃ = � , �3.10�

� �0,� , r̃� �0,�. The metric �3.2� becomes

gdS = ��
2 sin−2 t̃ �− dt̃ 2 + d r̃2 + sin2 r̃ d�2� , �3.11�

emonstrating explicitly the conformal relations of de Sitter space–time to the Einstein universe,

gE = �dS
2 gdS, �dS = sin t̃ . �3.12�

herefore, we also call coordinates t̃ , r̃ the conformally Einstein coordinates. The conformal dia-
ram of de Sitter space–time is illustrated in Fig. 2. The past and future infinities, t̃=0 and t̃= are
pacelike, the worldlines of the north and south poles �given by the choice of the origin of the
oordinates� are described by r̃=�=0 and r̃=�=.

The whole de Sitter space–time could be represented by just the “right half” of Fig. 2. Indeed,
t is customary to draw this half only and to consider any point in the figure as a 2-sphere, except
or the poles r̃=0,. As we shall see, the formulas relating coordinates on the conformally related
e Sitter and Minkowski space–times have simpler forms if we admit negative values of the radial
oordinate r̃� �− ,0� covering the left half of the diagram. We shall thus consider the two-
imensional diagrams as in Fig. 2 to represent the cuts of de Sitter space–time along the axis going
hrough the origins �through north and south poles—analogously to the cuts along the z axis in

3�. The axis, i.e., the main circle of the spatial spherical section of de Sitter space–time, is
ypically chosen as �=0,. Thus, in the diagram the point with r̃=−r̃o�0, �=�o , �=�o is
dentical to that with r̃= r̃o, �=−�o, and �=�o+. We use the same convention also for other

IG. 5. The static coordinates and the worldlines of particles w� and w�. These coordinates can be defined in the whole
pace–time, however several coordinate patches, in diagram indicated by shaded and nonshaded regions, have to be used
cf. sections 5 and 6 of the Appendix�. These regions are separated by the cosmological horizons at R=��, where T
±	. The vector � /�T is a Killing vector of de Sitter space–time. It is timelike in the domains N and S �shaded regions�

nd spacelike in the domains F and P. The histories of both particles w� and w� belong to the domains N and S.
adial coordinates appearing later, as explicitly stated in the Appendix �cf. also Appendix in
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ef. 24�. We admit negative radial coordinates only when describing various relations between the
oordinate systems. In the expressions for the fields in the following sections only positive radial
oordinates are considered.

As mentioned above, in Ref. 24 we constructed fields on de Sitter space–time by conformally
ransforming the fields from Minkowski space–time. Now “different Minkowski spaces” can be
sed in the conformal relation to de Sitter space, depending on which region of a Minkowski space
s mapped onto which region of de Sitter space. Consider, for example, Minkowski space with

etric gM given in spherical coordinates ť , ř ,� ,�. Identify it with de Sitter space by relations

ť =
�� sin t̃

cos t̃ − cos r̃
, ř =

�� sin r̃

cos r̃ − cos t̃
, �3.13�

he inverse relation �A11� is given in the Appendix. In the coordinates ť , ř , � , � the de Sitter
etric �3.11� becomes

gdS =
��

2

ť2
�− dť2 + dř2 + ř2 d�2� , �3.14�

o that

gdS = �
M̌

2
gM̌, �M̌ =

��

ť
. �3.15�

he coordinates ť , ř , � , � can, of course, be used in both de Sitter and Minkowski spaces.
igure 3 illustrates the coordinate lines. It also shows how four regions I, II, III, and IV of
inkowski space are mapped onto four regions of de Sitter space by relations �3.13�. We call ť , ř

escaled flat cosmological coordinates since their radial coordinate ř coincides with that of the flat
osmological coordinates �3.4� and the time coordinate is simply related to �̌ as

ť = − �� exp�− �̌/��� . �3.16�

he caron or the check �still better “háček”� “∨” formed by cosmological horizon at ť= ±	 in de
itter space �cf. Fig. 3� inspired our notation of these coordinates. It is possible to introduce
nalogously the coordinates t̂ , r̂ given in the Appendix, Eqs. �A39� and �A40�, that cover nicely
he past conformal infinity but are not smooth at the cosmological horizon t̂= ±	; in this case they
orm the hat “∧” in the conformal diagram �see Fig. 16 in the Appendix�.

From relations �3.13� it is explicitly seen why, when writing down mappings between de Sitter
nd Minkowski spaces and drawing the corresponding two-dimensional conformal diagrams, it is
dvantageous to admit negative radial coordinates. If we would restrict all radial coordinates to be
on-negative, we would have to consider the second relation in Eq. �3.13� with different signs for
egions III and II in de Sitter space: in III ř=�� sin r̃ / �cos r̃−cos t̃�, but in III we would have

ˇ =−�� sin r̃ / �cos r̃−cos t̃�.
Another mapping of Minkowski on de Sitter space will be used to advantage in the explicit

anifestation that the generalized Born solution in de Sitter space goes over to the classical
olution �2.13�. Instead of the mapping �3.13�, consider the relations

t = −
�� cos t̃

cos r̃ + sin t̃
, r =

�� sin r̃

cos r̃ + sin t̃
�3.17�
see Eq. �A17� for the inverse mapping�, which turn the metric �3.11� into
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gdS = 	 2��
2

��
2 − t2 + r2
2

�− dt2 + dr2 + r2 d�2� . �3.18�

e again obtain the de Sitter metric in the form explicitly conformal to the Minkowski metric
ith, however, a different conformal factor from that in Eq. �3.15�,

gdS = �M
2 gM, �M =

2��
2

��
2 − t2 + r2 . �3.19�

For the use of the de Sitter metric in “atypical” form �3.18� in the work on the domain wall
pace–times, see Ref. 48�. The relation of Minkowski space to de Sitter space based on the
apping �3.17� is illustrated in Fig. 6. Clearly, the Minkowski space in this figure is shifted

downwards” by  /2 in t̃ coordinate, as compared with Minkowski space in Fig. 3. Indeed,
eplacing t̃ by t̃+ /2 in Eq. �3.13�, we get ť= t , ř=r with t , r given by Eq. �3.17�. Since coordi-
ates t , r , � , � are not connected directly with any cosmological model and correspond to
inkowski space “centered” on de Sitter space �Fig. 6�, we just call them conformally Minkowski

oordinates.
In Ref. 24 still another Minkowski space is related to de Sitter space—one which is shifted

downward” in t̃ coordinate by another  /2. As mentioned below Eq. �3.16�, the cosmological
orizon forms hat “∧” in this case and the corresponding coordinates are accordingly denoted as
, r̂. They are given explicitly in section 3 of the Appendix and Fig. 16.

The three sets of coordinates ť, ř, t, r, and t̂ , r̂ �with the same � , �� relating naturally “three”
inkowski spaces to de Sitter space are suitable for different purposes. The third set describes

onveniently the past infinity of de Sitter space—that is why it was used extensively in Ref. 24
here we were interested in how the sources enter �are “born in”� de Sitter universe. The second

et will be needed in Sec. VII for exhibiting the flat-space limit of the generalized Born solution.
he first set describes nicely the future infinity and will be employed when analyzing radiative
roperties of the fields.

With all the coordinates discussed above, corresponding double null coordinates can be asso-
iated; some of them will also be used in the following. Their more detailed description and

IG. 6. The conformally Minkowski coordinates. They cover the whole conformally related Minkowski space but only a
art of corresponding de Sitter space. This Minkowski space is related to that in Fig. 3 by a shift “downwards” by  /2 in
he direction of the conformally Einstein coordinate t̃.
llustration is presented in section 10 of the Appendix.

                                                                                                            



c
r
s
i
a
v

a
�

I

A

f
i
S
s

s

M

S

o

w

H
�
l

s
d

102504-13 Fields of accelerated sources: Born in de Sitter J. Math. Phys. 46, 102504 �2005�

                        
Before concluding this section let us notice that the observers which are at rest in cosmologi-
al coordinate systems �, �, �̌, ř, and � , � move along the geodesics with proper time �, �̌, and �
espectively. These geodesics are also the orbits of the conformal Killing vectors. Indeed, the
ymmetries of Minkowski space–time and of the Einstein universe become conformal symmetries
n conformally related de Sitter space–time. In particular, we shall employ the fact that since � /�ť
nd � /�t are timelike Killing vectors in Minkowski space–time and � /�t̃ is a timelike Killing
ector in the Einstein universe, the vectors

�

� t̃
,

�

� ť
, and

�

�t
�3.20�

re timelike conformal Killing vectors in de Sitter space–time. As mentioned below Eq. �3.9�,
/�T is a Killing vector which is timelike for �R����.

V. UNIFORMLY ACCELERATED PARTICLES IN DE SITTER

. Particles born at the poles

In Sec. II we defined uniformly accelerated motion in Minkowski space–time. However, the
ormulas given there, being in covariant forms, remain valid in de Sitter space–time. As explained
n Ref. 24 in detail, a simple way of obtaining a worldline of a uniformly accelerated particle in de
itter space–time is to consider a suitable particle moving with a uniform velocity in Minkowski
pace–time and use the conformal relation between the spaces.

Consider a particle moving with a constant velocity of magnitude

vM̌ = tanh �o = constant, �4.1�

uch that for �o�0 it moves in a negative direction along the ž axis of the inertial frame in

inkowski space M̌ with coordinates ť , ř , � , � and passes through ř=0 at ť=0,

ť = �M̌ cosh �o, ř = − �M̌ sinh �o, � = 0. �4.2�

ubstituting into transformation �A11�, we find

t̃ = arctan	− 2��

�M̌ cosh �o

�
M̌

2
− ��

2 
, r̃ = arctan	− 2��

�M̌ sinh �o

�
M̌

2
+ ��

2 
 , �4.3�

r expressing Minkowski proper time �M̌ in terms of the proper time of de Sitter space–time,

�M̌ = � �� exp���cosh �o��dS/��� , �4.4�

e obtain

t̃ = arccot	−
sinh��cosh �o��dS/���

cosh �o

, r̃ = arccot	±

cosh��cosh �o��dS/���
sinh �o


, � = 0.

�4.5�

ere �dS�R, arccot takes values such that t̃� �0,� and r̃� �0,� for �o�0, or r̃� �− ,0� for

o�0. Upper sign is valid for the particle starting and ending with r̃=0 �particle w� in Fig. 7�,
ower sign for the particle starting and ending at r̃= �particle w� in Fig. 7�.

One can make sure by direct calculations of the four-acceleration �for its simplest form in the
tatic coordinates, see below� that these worldlines describe the uniformly accelerated motion as

efined in Sec. II, the magnitude of the acceleration being
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adS = �a�a� = ���
−1 sinh �o� . �4.6�

ince de Sitter universe represents the asymptotic state of all three types of indefinitely expanding
RW models with ��0, it is of interest to find out the form of these worldlines in the three types
f cosmological frames—spherical, flat, and hyperbolic—introduced in Sec. II.

In terms of cosmological spherical coordinates the worldlines are given by

� = �� arcsinh	 sinh��cosh �o��dS/���
cosh �o


, � = arccot	±
cosh��cosh �o��dS/���

sinh �o

, � = 0.

�4.7�

n flat cosmological coordinates, which cover only half of de Sitter space, we obtain just particle

� described by the worldline

�̌ = �dS cosh �o − �� log cosh �o, ř = �� sinh �o exp�− �cosh �o��dS/��� . �4.8�

inally, in hyperbolic cosmological coordinates, which are also not global, we obtain again one
article’s worldline only given in terms of its proper time as

� = �� arccosh
cosh��cosh �o��dS/���

cosh �o
, � = �� arccoth

sinh��cosh �o��dS/���
sinh �o

. �4.9�

hese formulas have no meaning for ��dS/�� cosh �o�� ��o� where the inverse hyperbolic func-
ions are not defined. This corresponds to the fact that for such �dS the particle occurs in the region
here the hyperbolic cosmological coordinates are not defined �cf. Fig. 4�. Excluding the proper

ime we find the worldlines to be given by remarkably simple formulas in the three systems of the
osmological coordinates,

a� spherical,

sin � = ± tanh �o � cosh
�

��

; �4.10�

b� flat,

ř

��

= tanh �o � exp
�̌

��

; �4.11�

IG. 7. The worldlines of uniformly accelerated charges. The particles w� and w�� start and end at the “north pole,” w� ,w
�
�

tart and end at the south pole. Particles w�� ,w
�
� have a higher magnitude of acceleration adS than particles w� ,w�. They

re characterized by a negative parameter �o, whereas particles w� ,w� have a positive �o.
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c� hyperbolic,

sinh
�

��

= tanh �o � sinh
�

��

. �4.12�

It is of interest to see what are the physical radial velocities which will be observed by three
ypes of the fundamental cosmological observers, i.e., those with fixed �, ř, and �, respectively,
hose proper times are �, �̌, and �, respectively. Such velocities can be defined by the covariant

xpression

vobs = u� e1
� d�dS

d�obs
, �4.13�

here u� is the particle’s four-velocity, �dS its proper time, e1
� is the unit spacelike vector in the

irection of the radial coordinate x1=�, ř, and �, respectively, i.e., in directions � /��, � /�ř, and
/��, and �obs is the proper time of an observer, i.e., � , �̌, or �, respectively. Since all three
osmological metrics are diagonal the expression �4.13� takes on the form

vobs = �gdS11
dx1

d�obs
. �4.14�

he results are of interest,

vobs��� = �
sign � sinh �o

�sinh2 �o + coth2��/���
, �4.15�

vobs�ř� = − tanh �o, �4.16�

vobs��� = −
sinh �o

�sinh2 �o + tanh2��/���
. �4.17�

Consider first the picture in spherical cosmological coordinates, Eqs. �4.7� and �4.10�. Only in
his frame both particles are present. They start asymptotically at antipodes of the spatial section
f de Sitter space at I−��→−	� and move one towards the other until �=0, the moment of
aximal contraction of de Sitter space �“the neck” of de Sitter hyperboloid�, when they stop,

obs���=0. Then they move, in a time-symmetric manner, apart from each other until they reach
uture infinity asymptotically at the antipodes from which they started. In contrast to the flat space
ase, the particles do not approach the velocity of light in this global spherical cosmological
oordinate system, the asymptotical magnitude of their velocity being equal to �tanh �o� �cf. Eq.
4.15��. Hence, curiously enough, the particles approach the antipodes asymptotically with a finite
onvanishing velocity �for an intuitive insight into this effect, see below�.

Although the particles w� and w� do not approach infinities with velocity of light, they are
ausally disconnected as the analogous pair of particles in Minkowski space �cf. Fig. 1 and Fig. 7�.
o retarded or advanced effects from the particle w� can reach the particle w� and vice versa.

Next, consider flat and hyperbolic observers. As seen from Eq. �4.16�, with respect to the flat
osmological coordinates the particle w� moves with the same velocity �tanh �o� all the time. And
he same velocity is asymptotically, at �→	, reached by this particle in the hyperbolic cosmo-
ogical coordinates. The magnitude of the asymptotic values of the velocity at I+ is, in fact, equal
o the velocity �4.1� of the particle in Minkowski space from which we constructed uniformly
ccelerated worldlines by a conformal transformation. The identity of all these velocities is un-
erstandable, the magnitude of the velocity with respect to an observer can be determined by
rojecting the particle’s four-velocity on the observer’s four-velocity, i.e., by the angle between
hese directions. In de Sitter space all three types of cosmological observers reach I+ with the

+
ame four-velocity; moreover, this four-velocity is at I identical to the four-velocity of observers
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t rest in conformally related Minkowski space. But a conformal transformation preserves the
ngles and thus, the velocities with respect to the three types of cosmological observers in de Sitter
pace and the velocity in the conformally related Minkowski space must all be equal—given by
he “Lorentzian” angle �o.

It is worth noticing yet what is the initial velocity of the particle w� in hyperbolic cosmo-
ogical coordinates. Regarding Fig. 4 we have �→−	 , �→0 at the “starting point” of the particle
t I−. From Eq. �4.17� we get vobs���→−tanh �o which in the magnitude is the same as in spherical
osmological coordinates but has opposite sign since the particle moves in the direction of in-
reasing negative �. More interesting is how the particle enters the upper region of the hyperbolic
oordinates. Figure 4 suggests that its velocity must approach the velocity of light since at this
oundary the fundamental observers of the hyperbolic cosmological frame themselves approach
he velocity of light. Indeed, at this boundary �=0,�=	, and the expression �4.17� implies

obs���→−1.
By far the simplest description of the particles is obtained in the static coordinates T ,R. Using,

or example, the relation R=�� sin r̃ / sin t̃ �cf. Eqs. �A64� and �A77��, and substituting from Eq.
4.5�, we find that the worldlines of both particles w� and w� are given by remarkably lucid forms

T = �dS cosh �o =
�dS

�1 − Ro
2/��

2
, R = �� tanh �o � Ro. �4.18�

hese expressions imply that the four-acceleration a�=u���u� is simply

a = −
Ro

��
2

�

�R
= −

1

��

tanh �o
�

�R
= aoeR, �4.19�

here eR is a unit spatial vector in the direction � /�R of the static radial coordinate R, and we
ntroduced constant

ao = − ��
−1 sinh �o = −

Ro/��
2

�1 − Ro
2/��

2
�4.20�

hich represents the “oriented” value of the acceleration of the particles.
We thus find the uniformly accelerated particles in de Sitter space–time to be at rest in the

tatic coordinates at fixed values R=Ro of the radial coordinate. Two charges moving along the
rbits of the boost Killing vector �2.5� in Minkowski space are at rest in the Rindler coordinate
ystem and have a constant distance from the space–time origin, as measured along the slices
rthogonal to the Killing vector. Similarly, we see that the worldlines w� and w� are the orbits of
he static Killing vector � /�T of de Sitter space. The particle w� �respectively, w�� has, as
easured at fixed T, a constant proper distance from the origin t̃= /2 ��=0� , r̃=�=0 �respec-

ively, r̃=�=�. As with Rindler coordinates in Minkowski space, the static coordinates cover
nly a “half” of de Sitter space. In the other half the Killing vector becomes spacelike. Owing to
cosmic repulsion” caused by the presence of �, fundamental cosmological observes moving
long geodesics � ,� ,� constant are “repelled” one from the others. Their initial implosion starting
t �→−	 is stopped at �=0 and changes into expansion. Clearly, a particle with constant
=Ro—hence a constant proper distance from the particle at R=0=�—must be accelerated to-
ards that “central” particle.

In Eq. �4.20� we have denoted the radial tetrad component of the acceleration in the static
oordinates by ao; notice that, in contrast to the magnitude of the acceleration adS= �ao� �cf. Eq.
4.6��, ao can be negative as, in fact, it is the case with both particles w� and w�, assuming that
he static radial coordinate of the particles is positive, R=Ro�0. Geometrically, the four-vectors
f the acceleration of the particles point in opposite directions—towards �=0, the other towards
=. Since, however, one needs two sets of the static coordinates to cover both particles, and the

adial coordinate R increases from both �=0 and �= worldlines �cf. Fig. 5�, the accelerations of

oth particles point in the direction of decreasing R’s and is thus negative. All the particles we are
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onsidering perform one-dimensional motion only, hence we use for the description of their
orldlines the same convention as for the two-dimensional diagrams with time and radial

oordinates—we allow the radial coordinate to take negative values. Thus, for example, consider
particle with worldline w�� which is a “reflection” of the worldline w� with respect to r̃=�=0

see Fig. 7�. The particle w�� moves in the region of negative r̃, respectively R, it has an accel-
ration positive, ao=−��

−1 sinh �o�0 �i.e., �o�0�, and its four-acceleration vector is pointing in
he direction of increasing R. With our convention, the particle w�� is just that which moves from
=0 along the �= direction. This convention will be particularly useful when we shall construct
orldlines of uniformly accelerated particles which start and end at the equator. Those which
ove in the region �� /2 will have negative ao, those moving with �� /2 will have positive

o—see Sec. IV B.
An intuitive geometrical understanding of the worldlines of uniformly accelerated particles in

e Sitter space–time can be gained by considering de Sitter space as a four-dimensional hyperbo-
oid −Z0

2+Z1
2+Z2

2+Z3
2+Z4

2=��
2 in five-dimensional Minkowski space. The spherical cosmological

oordinates � ,� ,� ,� are then identical to the hyperspherical coordinates on this hyperboloid. The
orldlines of the north and south poles, �=0,, can be obtained by cutting the hyperboloid by a

imelike 2-plane T2, given by Z2=Z3=Z4=0. The worldlines of our uniformly accelerated particles

� and w� then arise when the hyperboloid is cut by a timelike 2-plane T2
* parallel to T2 at a

istance Ro=�� tanh��o /��� from the origin.43 T2
* is thus given by Z2=Ro , Z3=Z4=0. From

he definition of the hyperspherical coordinates it follows �=0, and

2=�� cosh�� /��� sin � cos �=Ro, i.e., sin �= ±tanh �o /cosh�� /���, which is just Eq. �4.10� de-
cribing w� and w�.

From this construction, the curious result mentioned above—that w� and w� approach an-
ipodes �=0 and �= asymptotically with a fixed speed �tanh �o� in spherical cosmological
oordinates—is not so surprising: thanks to the expansion of de Sitter space–time fundamental
osmological observers with arbitrarily small �=constant�0 will, in the limit �→	, eventually
ross the plane T2

*, and thus the particle w�; however at any finite but arbitrarily large � there will
e observers with �=constant which are still moving towards the particle w�. The same, of
ourse, is true with the symmetrically located particle w� and corresponding observers close to
=.

. Particles born at the equator

In the classical Born solutions both charges are, at all times, located symmetrically with
espect to the origin of the Minkowski coordinates �see Fig. 1�. In order to demonstrate explicitly
hat a limiting procedure exists in which our generalized Born’s solution goes over to its classical
ounterpart, we shall now construct the pair of uniformly accelerated particles which are, at all
imes, symmetrically located with respect to the origin of the standard spherical coordinates in de
itter space, i.e., with respect to the “north pole” at �=0. Asymptotically at �→−	 these two
articles both start �“are born”� with the same speed at the equator, �= /2, at the antipodal points
=0 and �=. As the universe contracts, they both move symmetrically along the axis �=0,,

each some limiting value �o at the moment of time symmetry, and accelerate back towards the
quator, reaching the initial positions asymptotically at �→ +	. These two particles are illustrated
n Fig. 8, with their worldlines denoted by w� and w�. In Fig. 9, a snapshot at �=constant is
epicted. Comparing Fig. 8 with Fig. 7, it is evident that the particles w� and w� are located with
espect to the point �= /2 , �=0 in exactly the same manner as the particles w� and w� are
ocated with respect to the pole �=0 �or, rather, as the particles w�� , w

�
� , since we chose w� , w�

o have positive ao in Fig. 8�.
Owing to the global homogeneity of de Sitter space and the spherical geometry of its slices

=constant, the worldlines of the particles w� and w� can be constructed by a suitable rotation of

he worldlines of the particles w� and w�. In Sec. VII the same rotation will be applied to obtain
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he fields of these particles “born at the equator.” We rotate the coordinates � , � , � into coordi-

ates �̄ , �̄ , �̄ which, as a pole, have the point �= /2 , �=0 �see Fig. 9�. The relations between
hese coordinates follow from the spherical geometry:

cos �̄ = sin � cos �, tan �̄ = − tan � sin �, �̄ = � . �4.21�

he new worldlines, w� and w�, will then be given by Eqs. �4.7� in which � , � , � are replaced

y rotated coordinates �̄ , �̄ , �̄. Substituting for these by using relations �4.21�, we find the
orldlines w� , w� in the original coordinates to be described by the expressions

� = �� arcsinh	 sinh��cosh �o��dS/���
cosh �o


, � = ± arctan	−
cosh��cosh �o��dS/���

sinh �o

, � = 0,

�4.22�

ith the values of arctan from �0,� and upper �lower� sign corresponding to the particle starting
t the positive �negative� value of �, i.e., to the particle w� �or w�, respectively�.

Excluding the proper time �dS, we arrive at simple result �cf. Eq. �4.10��

cos � = −
tanh �o

cosh��/���
. �4.23�

s �→ ±	, then indeed ���→ /2; at �=0, ���=arccos�−tanh �o�=arccos�−Ro /���, in agreement
ith the “deviation” of the “original” particles w� , w� from �=0 at �=0. In the spherical rescaled

oordinates, Eqs. �4.22� read

IG. 8. The worldlines of uniformly accelerated charges located symmetrically with respect to the origin �north pole� of
he standard spherical coordinates in de Sitter space. The particles “start” and “end” at the equator. They are causally
isconnected as a corresponding pair in Minkowski space �cf. Fig. 1�. The “oriented” value ao of the acceleration of these
articles is positive �cf. the “rotated” version of Eq. �4.20��.

IG. 9. The rotated spherical coordinates �̄ , �̄ on 3-sphere �the cut �=constant�. The relation between the coordinates is

iven in Eq. �4.21�.
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t̃ = arccot	−
sinh��cosh �o��dS/���

cosh �o

 ,

r̃ = ± arccot	−
cosh��cosh �o��dS/���

sinh �o

 , �4.24�

� = 0,

gain with the values of arctan and arccot from �0,�. Equation �4.23� becomes

cos r̃ = − tanh �o sin t̃ . �4.25�

Although the flat �rescaled� cosmological coordinates cover only parts of the worldlines

� , w� �see Figs. 8 and 3�, we transcribe the equations above also into these frames in which the
articles “emerge” at �̌ , ť→−	 at the cosmological horizon at ř= ±	. We find

�̌

��

= − log	 − cosh �o

− sinh��cosh �o��dS/��� + sinh �o

 ,

ť

��

=
cosh �o

− sinh��cosh �o��dS/��� + sinh �o
, �4.26�

ř

��

= �
cosh��cosh �o��dS/���

− sinh��cosh �o��dS/��� + sinh �o
,

o that Eq. �4.25� translates into the relations

ř = ± ���
2 + ť2 − 2��ť tanh �o,

�4.27�
ř = ± ��

�1 + 2 tanh �o exp�− �̌/��� + exp�− 2�̌/��� .

s �̌→ +	, we have ř→ ±��, as it corresponds to �→ ± /2; at �̌→−	, we get ř→ ±	—here
he particles enter flat cosmological frame at the horizon �cf. Fig. 8�.

The worldlines w� , w� are situated outside the regions covered by our choice of the hyper-
olic cosmological coordinates. Similarly, we get only finite parts of w� , w� in our static coor-
inates. Of course, we could rotate the static coordinates to cover both particles but then we arrive
t exactly the same picture as with the particles w� , w� considered above.

Our primary reason to discuss the pair w� , w� is to demonstrate explicitly how our fields go
ver into the classical Born solution in the limit of vanishing �. For this purpose, it will be
mportant to have available also the description of the worldlines w� , w� in the Minkowski
oordinates introduced in Eqs. �3.17�. As it is obvious from Fig. 6, these coordinates cover both
orldlines w� and w� completely. Using the relations inverse to Eqs. �3.17� given in the Appen-
ix, Eq. �A17�, we find Eqs. �4.24� to imply

t = bo sinh
�M

bo
, r = ± bo cosh

�M

bo
, � = 0, �4.28�
here
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bo

��

= exp �o = �1 + ao
2��

−2 − ao�� =��� + Ro

�� − Ro
, �4.29�

nd �M is the proper time measured in Minkowski space M related to de Sitter space by conformal
apping �3.18� and �3.19�,

�M = exp �o cosh �o �dS. �4.30�

onsequently,

r = ± �t2 + bo
2, � = 0, �4.31�

hich is the simplest form of the hyperbolic motion with the uniform acceleration 1/bo as mea-
ured in Minkowski space �cf. Eqs. �2.3��.

. FRAMES CENTERED ON ACCELERATED PARTICLES

For the investigation of the radiative properties and other physical aspects of the fields, the use
f �physically equivalent� particles w� ,w�, i.e., those “born at the poles” of spherical coordinates
s technically more advantageous. We shall now return back and construct frames with the origins
ocated directly on these particles. In such frames, various properties of the fields will become

ore transparent than in the coordinates introduced so far.
As we have seen in the preceding section, the uniformly accelerated particles w� and w� are

t rest in static coordinates T ,R at given R=Ro=−ao��
2 /�1+ao

2��
2 , where �ao� is the magnitude of

he acceleration. In order to investigate the properties of the fields, in particular, in order to see
hat is the structure of the field along the null cones with vertices at the particle’s position, i.e.,
hat is the field “emitted” by the particle at a given time, it is useful to construct coordinate

rames centered on the accelerated particles. Such systems of coordinates are used to describe
ccelerating black holes in general relativity �like C-metrics, known also for ��0, cf. Refs. 27
nd 28�, so that their properties on de Sitter background may indicate what is their meaning in
ore general cases—in situations when they are centered on gravitating objects rather than on test

articles.
We shall now describe three coordinate systems of this type: the accelerated coordinates, the

-metric-like coordinates, and the Robinson-Trautman coordinates, all centered on the worldlines

� and w�. Instead of writing down just the transformation formulas, we wish to indicate some
teps how these coordinates can be obtained naturally. We list only the main transformation
elations here, many other formulas and forms of the metrics can be found in the Appendix. Let us
lso note that in this section we assume Ro ,�o�0, i.e., ao�0, and we use only static radial
oordinate with positive values, i.e., R�0.

. Accelerated coordinates

We begin with the construction of accelerated coordinates T� ,R� ,�� ,�. This type of coordi-
ates was recently introduced49 by another method in the context of the C-metric with ��0. In
he preceding section we obtained the worldlines w� ,w� of uniformly accelerated particles in
e Sitter space by starting from a particle moving with a uniform velocity vM̌ =tanh �o in a

egative direction of the ž axis in the inertial frame ť , ř ,� ,� in Minkowski space M̌ which passes
hrough ř=0 at ť=0 �see Eqs. �4.1� and �4.2��; and we used then the conformal relation between

inkowski and de Sitter spaces to find w� ,w�. Therefore, let us first construct a frame centered

n the uniformly moving particle in M̌. Using spherical coordinates again, this boosted frame
enoted by primes is related to the original one simply by

ť� = ť cosh �o + ř cos � sinh �o,

ˇ ˇ ˇ
r� cos �� = t sinh �o + r cos � cosh �o, �5.1�
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ř� sin �� = r sin � ,

he �-coordinate does not change and will be suppressed in the following. From here

− ť�2 + ř�2 = − ť2 + ř2,

�5.2�

tan �� =
sin �

�ť/ř�sinh �o + cos � cosh �o

.

he original frame ť , ř ,� in Minkowski space M̌ is related to the static coordinates T ,R ,� in de
itter space by �cf. Eqs. �A67� and �A80��

T = −
��

2
log� ť2 − ř2

��
2 �, R = − ��

ř

ť
, � = � . �5.3�

he metrics of the two spaces are related by gdS= ���
2 / ť2�gM̌ , gdS being given by Eq. �3.9�—cf. Eq.

3.14�. Now, let us introduce coordinates T� ,R� ,�� given in terms of ť� , ř� ,�� by exactly the same
ormulas as coordinates T ,R ,� are given in terms of ť , ř ,� in Eq. �5.3�. In this way we obtain

dS�= ���
2 / ť�2�gM̌. Combining the last relation with gdS= ���

2 / ť2�gM̌, we find the metric of the
riginal de Sitter space in the new coordinates T� ,R� ,�� in the form

gdS =
ť�2

ť2
gdS�, �5.4�

dS� is given by the “primed” version of Eq. �3.9�. Expressing then the factor �ť� / ť�2 by using Eqs.
5.1� and �5.2�, and “primed” relations �5.3�, we arrive at the de Sitter metric in the accelerated
oordinates in the form

gdS =
1 − Ro

2/��
2

�1 + �R�Ro/��
2 �cos ���2	− 	1 −

R�2

��
2 
dT�2 + 	1 −

R�2

��
2 
−1

dR�2 + R�2�d��2 + sin2 �� d�2�
 .

�5.5�

ere the accelerated coordinates T� ,R� ,�� ,� are given in terms of static coordinates by the
elation obtained by the procedure described above as follows:

R� = ���1 −
�1 − R2/��

2 ��1 − Ro
2/��

2 �
�1 − �RRo/��

2 �cos ��2 ,

�5.6�

T� = T, tan �� =
�1 − Ro

2/��
2 R sin �

R cos � − Ro
.

Notice that the time coordinate of static and accelerated frames coincide. Technically, this is
asy to see from the first relation in Eqs. �5.2� and �5.3�. Intuitively, this is evident since the
niformly accelerated particles are at rest in the static coordinates, as well as in the accelerated
oordinates, the only difference being that they are located at the origin of the accelerated frame.
etting Ro=0 in Eq. �5.6�, we get R�=R , ��=�, as expected. The static coordinates are centered
n the poles �=0,, hence, on the unaccelerated worldlines. The name accelerated coordinates is
hus inspired by the fact that their origin is accelerated, and the value of this acceleration enters the
orm of the metric �5.5� explicitly through the quantity Ro.

The two-dimensional conformal diagram of de Sitter space with coordinate lines
�=constant, R�=constant of the accelerated frame is given in Fig. 10. For details, see the figure

2 2
aption. Here let us just notice that the cosmological horizons are still described by R� =��.
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nfinite values of R� can, however, be encountered “before” the conformal infinities I± are
eached. This depends on the angle ��. Indeed, R�=	 corresponds to ť�=0, whereas I ± is given
y ť=0, i.e.,

R� = −
��

2

Ro

1

cos ��
, �5.7�

cf. metric �5.5��. Relation of these two surfaces is best viewed in Minkowski space M̌. We see
hat for � ,��� /2, the conformal infinity I + �I −� lies “above” �“below”� the surface R�= ±	.
hus the infinity R�= ±	 is just a coordinate singularity, which can be removed using, for ex-

IG. 10. The two-dimensional conformal diagrams of de Sitter space based on the static, nonaccelerated coordinates
upper diagram�, and on the accelerated coordinates �lower diagram�. Starting from static coordinates T ,R ,� ,�, one can
raw the conformal diagram of the axis �=0, in which the conformal past and future infinities, I ± �R= ±	�, are
orizontal �double� lines. In addition to static coordinates T ,R, also accelerated coordinates T� ,R� are indicated in both
iagrams. These have a coordinate singularity for R�=	 �drawn as a dashed line�. The origins of the accelerated coordi-
ates, R�=0 �thick lines�, are worldlines of uniformly accelerated particles. In the conformal diagram of the axis
�=0, based on accelerated coordinates, the origins R�=0 and the coordinate singularity R�=	 of the accelerated frame
re straight lines; the true infinities I ± have a “bulge” upwards or “downwards,” depending on the angle ��. The
ypersurface R�=	 corresponds to the boosted hyperplane ť�=0, whereas the conformal infinity corresponds to ť=0 �the

elation of both hyperplanes can be well understood in the diagram of the conformally related Minkowski space M̌�. The
iagrams in which the conformal infinities I ± are not straight naturally arise in the studies of the C-metric with ��0 �de
itter space being a special case of this class of the metrics �Ref. 27��. In general, outside the axis �=��=0,, the

ransformations between the static and accelerated coordinates mix radial and angular coordinates R, � and R� ,��, as is
een also in the following Fig. 11. The sections ��=constant �for some general ��� are also shown in Fig. 21 in the
ppendix.
mple, the C-metric-like coordinate v introduced below.
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Figure 11�a� shows the cut T=T�=constant located in the region of de Sitter space where the
illing vector � /�T=� /�T� is timelike �R ,R�����; �-direction is suppressed. The cut is a space-

ike sphere S3 with homogeneous spherical metric. The coordinate lines R�=constant and
�=constant are plotted, with two origins R�=0 indicated, here the accelerated particles occur.
he coordinate R� grows from R�=0 at the origins to the equator where R�=��. In Fig. 11�b� the
ut T=T�=constant located in the regions where � /�T=� /�T� is spacelike �R ,R����� is illus-
rated, again with �-direction suppressed. Here the cut is timelike with the geometry of three-
imensional de Sitter space. The coordinate lines R�=constant and ��=constant are also shown.

As we have just seen, the points with R�=	 can be “nice” points in de Sitter manifold. It may
hus be convenient to introduce the inverse of R� as a new coordinate. Also, we consider −cos ��
s a coordinate, and make the time coordinate dimensionless. We thus arrive at the C-metric-like
oordinates � ,v ,
 ,�,

� =
T�

��

, v =
��

R�
, 
 = − cos ��. �5.8�

he metric �5.5� becomes

gdS = r2	− �v2 − 1�d�2 +
1

v2 − 1
dv2 +

1

1 − 
2d
2 + �1 − 
2�d�2
 , �5.9�

ith the conformal factor r given by

r =
��

v cosh �o − 
 sinh �o
. �5.10�

his is de Sitter space–time in the “C-metric form:” setting the mass and charge parameters, m and
, equal to zero in the the C-metric with a positive cosmological constant �written in the form �2.8�
f Ref. 27�, and choosing the acceleration parameter equal to A=��

−1�sinh �o�= �ao�, we obtain the

IG. 11. The accelerated coordinates R� ,�� on the sections T�=constant of de Sitter space �coordinate � suppressed�. In
he region where � /�T� is timelike �0�R�����, the cut T�=constant is a spacelike sphere �diagram �a��. In the region
here � /�T� is spacelike ����R� and R��0�, it is a timelike hyperboloid �diagram �b��. The diagrams are not in the same

cale—the radius of the sphere and of the neck of the hyperboloid should be the same. The axis ��=0, corresponds to
he lines T�=constant of Fig. 10. The coordinate singularity R�= ±	 is also indicated. For more details see the text.
etric �5.9�.
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. Robinson-Trautman coordinates

In order to arrive naturally to the Robinson-Trautman form of the metric, notice that the
oefficients in the metric �5.9� become singular at v→ ±1, similarly as they do on the horizon of
he Schwarzschild space–time in the standard Schwarzschild coordinates. Analogously to that
ase, we choose a “tortoise-type” coordinate v� by

v� =
1

2
log�1 − v

1 + v
� . �5.11�

imilarly to the Schwarzschild case again, we introduce a suitable null coordinate u in terms of the
adial and time coordinates � and v� as follows:

u = ��� tanh �o��� + v�� . �5.12�

ogether with the conformal factor r defined in Eq. �5.10�, we arrive at the de Sitter metric in
oordinates u ,r ,
 ,� �cf. Eq. �A109�� which is very near to being in the Robinson-Trautman form.
owever, there is a nonvanishing mixed metric coefficient at du∨d
 which is absent in the
obinson-Trautman metric. Such a term can be made to vanish by introducing a new angular
oordinate � by

� = arctanh 
 +
u

��

sinh �o. �5.13�

he de Sitter metric then becomes

gdS = − H du2 − du ∨ dr +
r2

P2 �d�2 + d�2� , �5.14�

here

H = −
r2

��
2 + 2

r

��

sinh �o tanh	� −
u

��

sinh �o
 + 1,

�5.15�

P = cosh	� −
u

��

sinh �o
 .

his is precisely the form of the Robinson-Trautman metric—see, e.g., Ref. 50. Tracking back the
ransformations leading to the metric �5.14�, the connection between the Robinson-Trautman
oordinates and the static coordinates T ,R ,� ,� turns out to be not as complicated as our proce-
ure might have indicated, in particular, for the radial coordinate. We find a nice formula for r,

r =
��

�1 −
Ro

2

��
2

		1 −
RRo

��
2 cos �
2

− 	1 −
R2

��
2 
	1 −

Ro
2

��
2 

1/2

, �5.16�

hereas the other two coordinates are simply expressed only in terms of accelerated coordinates
�=T ,R� ,�� ,�,

u =�1 −
Ro

2

��
2 	T� +

��

2
log�R� − ��

R� + ��

�
, � =
Ro

��
	 T�

��

+
1

2
log�R� − ��

R� + ��

�
 + log�tan
��

2
� .

�5.17�

oordinates R� ,�� can then be obtained in terms of the original static coordinates by using Eqs.

5.6�.
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The Robinson-Trautman coordinates with metric �5.14� are centered on the accelerated par-
icles. As with static or accelerated frames, we need two sets of such coordinates to cover both w�

nd w�. The relations to the static coordinates become, of course, much simpler if the particles are
ot accelerated, Ro=0, and when both the Robinson-Trautman and static coordinates are centered
n the pole �=0,

r = R, � = log tan
�

2
, u = T +

��

2
log�R − ��

R + ��

� . �5.18�

owever, even “accelerated” Robinson-Trautman coordinates possess some very convenient fea-
ures. The radial coordinate r is an affine parameter along null rays u ,� ,�=constants, normalized
t the particle’s worldline by the condition

��

�r
gdS��u� = − 1, �5.19�

here u is the particle’s four-velocity. These null rays form a diverging but nonshearing and
onrotating congruence of geodesics. The null vector � /�r, tangent to the rays, is parallelly
ropagated along them. Its divergence is given by ����� /�r�=2/r so that r is both the affine
arameter and the luminosity distance �see, e.g., Ref. 51�. With Robinson-Trautman coordinates,
ne can also associate a null tetrad �explicitly written down in the Appendix, Eq. �A114�� which
s parallelly transported along the null rays from the particle �r=0� up to infinity �r=	�.

Owing to the boost symmetry of both the worldlines and de Sitter space, an interesting feature
rises, which is analogous to the situation in Minkowski space. Consider a point B in region N
Fig. 12�. There are two generators of the null cone with the origin at B which cross the worldline

� at two points, Bret and Badv. Then the affine parameter distance BBret is the same as BBadv. �In
rder to go towards the past from Badv to B, the “advanced” Robinson-Trautman coordinates built
n the past null cones with origins on w� can easily be introduced.� This is evident because B lies
n one orbit of the boost Killing vector � /�T and a boost can be applied which leaves the
orldline w� invariant but moves B into event B� on the slice of time symmetry, �=0 �also
=T�=0�, where the particle is at rest. Then Badv and Bret move to the new points Badv� ,Bret� , which
re located symmetrically with respect to �=0. The equality of the affine parameter distances then
ollows from the symmetry immediately. Similarly, for an event A in region F one can show that
he affine parameter distance AA� is equal to the distance AA� �see Fig. 12�. The point A lies on
boost orbit �which now has a spatial character� along which it can be brought, by an appropriate
oost, to the point located symmetrically between the worldlines w� and w� �lying so on the
quator, �= /2�. The same consideration can, of course, be applied to an event in the “past”
egion P—showing that the affine distances along future-oriented null rays from an event to the

IG. 12. The field at an event A can be interpreted as 1/2 of the sum of the retarded fields produced by particle w� at A�

nd particle w� at A�. The field at B can be interpreted as 1/2 of the sum of the retarded and advanced effects from particle

�. The affine parameter distances BBret and BBadv are equal, the same being true for the distances AA� and AA�.
articles are equal.
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Although the symmetries just described are common to the worldlines of uniformly acceler-
ted particles in Minkowski and de Sitter space–times, an important difference exists. In
inkowski space, the affine parameter distance along the null ray from an event on particle’s
orldline, such as A�, to an “observation” point A is equal to the proper distance between A� and

� where A� is the orthogonal projection of A onto the spacelike slice T=T�A��. This is not the
ase in de Sitter space if, as it appears natural, under an orthogonal projection we understand the
rojection of the observation point A onto the spacelike slice T=constant containing A� performed
long a timelike geodesic orthogonal to such a slice. Nevertheless, the proper distance s between

� and A� is still related to the affine parameter distance r by a simple expression

r

��

= tan
s

��

. �5.20�

his relation can be derived as follows. Consider, without loss of generality, A� located at the
urning point of the particle w� at T=0. The condition that the events A and A� are connected by
null ray implies that the distance s between A� and A� is the same as the time interval between

� and A as measured by the metric �3.12� of the conformally related static Einstein universe.
ince A occurs at some time t̃ whereas A� and A� at t̃= /2 �i.e., at static time T=0�, this time

nterval is equal to ���t̃− /2�, cf. Eq. �3.11�. The static radial coordinate R of A thus reads �cf.
qs. �A64� and �A77��

R =
sin r̃

sin t̃
=

sin r̃

cos�s/���
. �5.21�

he slice T=0 has a geometry of the 3-sphere of radius ��. Using the standard law of cosines in
pherical trigonometry for the sides of the triangle spanned by A� ,A�, and the north pole, we can
liminate r̃. Finally, employing Eq. �5.16�, we obtain the result �5.20�. Clearly, near the particle w�

e have s���, and Eq. �5.20� then gives r�s, as in Minkowski space.
In the following section we shall explore the character of the fields of the particles w� and w�.

e shall see that the affine parameter distance r will play most important role, simplifying their
escription enormously. Namely, as we will see in Sec. VI B, Eq. �6.28�, the affine parameter r is
dentical to the factor Q which will be introduced in the following and will appear in all expres-
ions for the fields.

I. FIELDS OF UNIFORMLY ACCELERATED SOURCES AND THEIR MANY FACES

In this section we wish to construct the scalar and electromagnetic fields of uniformly accel-
rated �scalar and electric� charges in de Sitter universe. A general procedure, suitable in case of
ny—not necessarily uniform—acceleration would be to seek for appropriate Green’s functions.
lternatively, in particular for sources moving along uniformly accelerated worldlines, we can
ake use of the conformal relations between Minkowski and de Sitter spaces, and of the proper-

ies of scalar and electromagnetic fields under conformal mappings. This method is advantageous
ot only for finding the fields in de Sitter space–time, but also for understanding their relationships
o the known fields of corresponding sources in special relativity. The only delicate issue is the fact
hat there are no conformal mappings between Minkowski and de Sitter space which are globally
mooth. We discussed, in Sec. III, how various regions of one space can be mapped onto the
egions of the other space. In Ref. 24 we carefully treated the fields at the hypersurfaces where the
onformal transformation fails to be regular. In order to obtain well-behaved fields, one must
ontinue analytically across such a hypersurface the field obtained in one region into the whole de
itter space. In Sec. II in Ref. 24, we also analyzed in detail the behavior of the scalar field wave
quation with sources and of Maxwell’s equations with sources under �general� conformal trans-
ormations.

In Ref. 24 we primarily concentrated on the absence of purely retarded fields at the past
− −
nfinity I of de Sitter space–time—in fact, in any space–time in which I is spacelike. In order
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o analyze this problem we also considered, in addition to monopole charges, more complicated
ources like rigid and geodesic dipoles; and we constructed some retarded solutions to show their
atological features. However, we confined ourselves to the sources the worldlines of which start
nd end at the poles; we did not employ coordinates best suited for exhibiting the properties of the
elds at future infinity I +, and the frames corresponding to cosmological models like flat �k=0� or
yperbolic �k=−1� cosmological coordinates; and we did not give the physical components of the
elds. In the following we shall find the fields and discuss their properties in various physically

mportant coordinate systems, in particular those significant at I + or in a cosmological context. In
he next section, we also obtain the fields due to the uniformly accelerated scalar and electric
harges starting at I − at �= /2 �“born at the equator”�. This, among others, will be important
hen we wish to regain the classical Born fields in the limit �→0.

We start by using the analysis of the conformal behavior of the fields and sources given in
ec. II in Ref. 24, and we also take over from Ref. 24 the resulting forms of the fields due to the
ources starting and ending at the poles of de Sitter space, as described in standard coordinates.

. Fields in coordinates centered on the poles

Consider two uniformly accelerated point sources starting at I − �i.e., at �→−	 , t̃→0� at the
oles �= r̃=0 and �= r̃= �Fig. 7�. Their worldlines w� ,w� are given by Eqs. �4.7� �or �4.24�� in
hese standard �rescaled� coordinates, by Eqs. �4.8� and �4.9� in the flat and hyperbolic cosmo-
ogical coordinates, and by Eqs. �4.18� in the static coordinates. Their simplest description is, of
ourse, given by R�=0 and r=0 in the accelerated and Robinson-Trautman coordinates since these
rames are centered exactly on their worldlines. In Sec. IV we discussed physical velocities and
ther properties of these particles.

Now, as noticed at the beginning of Sec. IV, these two worldlines can be obtained by confor-
ally mapping the worldline of one uniformly moving particle in Minkowski space into de Sitter

pace. The fields of uniformly moving sources in Minkowski space are just boosted Coulomb
elds. Under a conformal rescaling of the metric, g��→ ĝ��=�2g��, the fields behave as follows:

→�̂=�−1� , F��→ F̂��=F�� �see Ref. 24, Sec. II, where the behavior of the source terms is
lso analyzed�. Hence, the fields due to two uniformly accelerated sources in de Sitter space–time
an be obtained by conformally transforming the boosted Coulomb fields in Minkowski space–
ime. Employing the conformal mapping �3.13�–�3.15�, we arrive at the following results.52 The
calar field is given by the expression

� =
s

4

1

Q , �6.1�

here

Q = ��	�1 + ao
2��

2 + ao�� cosh
�

��

sin � cos �
2

− 	1 − cosh2 �

��

sin2 �
�1/2

, �6.2�

r, written in the standard rescaled coordinates,

Q = ��	�1 + ao
2��

2 + ao��

sin r̃

sin t̃
cos �
2

− 1 +
sin2 r̃

sin2 t̃
�1/2

. �6.3�

his field is produced by two identical charges of magnitude s moving along worldlines w� and

�. It is smooth everywhere outside the charges and it can be written as a symmetric combination
f retarded and advanced effects from both charges �cf. Eq. �6.6� in Ref. 24�.

Similarly to the scalar-field case, by using conformal technique the electromagnetic field
roduced by two uniformly accelerated charges moving along w� and w� can be obtained in the

orm
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F =
e

4

��
2

Q3 cosh
�

��
ao�� sin � cos � sin � d� ∧ d�

− 	�1 + ao
2��

2 cosh
�

��

sin � + ao�� cos �
d� ∧ d�

+ ao��
2 sinh

�

��

cosh
�

��

sin2 � sin � d� ∧ d� �6.4�

here Q is again given by Eq. �6.2�. As in the scalar-field case, the field is smooth, nonvanishing
n the whole de Sitter space–time and involving thus both retarded and advanced effects �cf.
ec. VII A in Ref. 24�. However, an important difference between the scalar and electromagnetic
ase exists: the magnitude of the scalar charges is the same, whereas the electromagnetic charges
roducing the fields �6.4� have opposite signs. This is analogous to the situation in Minkowski
pace–time described in Sec. II �see the discussion below Eq. �2.13��. At the root of this fact
ppears to be CPT theorem—cf. Ref. 53 for the analogous gravitational case where the masses of
he particles uniformly accelerated in the opposite direction are the same. In de Sitter space–time,
s in any space–time with compact spacelike sections, a simpler argument exists: the total charge
n a compact space must vanish as a consequence of the Gauss theorem.24

To gain a better physical insight into the electromagnetic fields, we shall introduce the ortho-
ormal tetrad �e�� and the dual tetrad �e�� tied to each coordinate frame used, and we shall
ecompose the electromagnetic field F into the electric and magnetic parts. Such a decomposition,
f course, depends on the choice of the tetrad. For example, in the standard spherical coordinates
, � , � , � the electromagnetic field �2-form� F can be written as

F = E�e� ∧ e� + E�e� ∧ e� + E�e� ∧ e� + B�e� ∧ e� + B�e� ∧ e� + B�e� ∧ e�, �6.5�

nd the electric and magnetic field spatial vectors are given in terms of their frame components as
ollows:

E = E�e� + E�e� + E�e�,

�6.6�
B = B�e� + B�e� + B�e�.

n the present case of the standard spherical coordinates, using the explicit forms of the tetrad
iven in Appendix �Eqs. �A10��, we find

Esph =
e

4

��

Q3− ao�� cos � sin � e� + 	�1 + ao
2��

2 cosh
�

��

sin � + ao�� cos �
e�� ,

�6.7�

Bsph =
e

4

ao��
2

Q3 sinh
�

��

sin � sin � e�.

In Appendix the orthonormal tetrads tied to the coordinate systems considered in this paper
re all listed explicitly. The only exception is the Robinson-Trautman coordinate system with one
oordinate null and thus with a nondiagonal metric; in this case the null tetrad is given in which
he Newman-Penrose-type components are more telling.

The tetrad components of the electric intensity and the magnetic induction vectors are physi-
ally meaningful objects, they can be measured by observers who move with the four-velocities
iven by the timelike vector of the tetrad �as, e.g., e� for spherical cosmological observers�, and
re equipped with an orthonormal triad of the spacelike vectors �e.g., e� , e� , e��.

We first list the resulting electromagnetic field tensor and its electric and magnetic parts in the

oordinate systems centered on the poles �=0,. The scalar field is always given by expression
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6.1�, the explicit form of the scalar factor Q changes according to the coordinates used. Since this
actor enters all the electromagnetic quantities as well, we always give Q first and then write the
lectromagnetic field quantities.

In the flat cosmological coordinates �see Eqs. �3.4� and �3.5�� we find

Q = ��	cosh �o − sinh �o
ř

��

exp
�̌

��

cos �
2

− 	1 −
ř2

��
2 exp	2

�̌

��


�1/2

, �6.8�

F = −
e

4

1

Q3 exp
�̌

��
��ř sinh �o sin � d�̌ ∧ d� + 	ř cosh �o exp

�̌

��

− �� sinh �o cos �
d�̌ ∧ dř

+ ř2 sinh �o exp	2
�̌

��

sin � dř ∧ d�� , �6.9�

Eflat =
e

4

��

Q3sinh �o sin � e� − 	cosh �o
ř

��

exp
�̌

��

− sinh �o cos �
eř� ,

�6.10�

Bflat = −
e

4

�� sinh �o

Q3

ř

��

exp
�̌

��

sin � e�.

n the hyperbolic cosmological coordinates �see Eqs. �3.6� and �3.7��, the results are slightly
engthier,

Q = ��	cosh �o − sinh �o sinh
�

��

sinh
�

��

cos �
2

− 	1 − sinh2 �

��

sinh2 �

��

�1/2

,

�6.11�

F = −
e

4

��

Q3sinh
�

��
	cosh �o sinh

�

��

sinh
�

��

− sinh �o cos �
d� ∧ d�

+ sinh �o sinh
�

��

sinh
�

��

cosh
�

��

sin � ��d� ∧ d�

+ sinh �o sinh2 �

��

cosh
�

��

sinh2 �

��

sin � �� d� ∧ d� �6.12�

Ehyp =
e

4

��

Q3sinh �o cosh
�

��

sin � e� + 	cosh �o sinh
�

��

sinh
�

��

− sinh �o cos �
e�� ,

�6.13�

Bhyp = −
e

4

��

Q3 sinh �o cosh
�

��

sinh
�

��

sin � e�.

uch simpler expressions for the fields arise in the static coordinates �see Eqs. �3.8� and �3.9��.
e obtain

Q2 =
���

2 − RRo cos ��2

���
2 − Ro

2�
− ���

2 − R2� , �6.14�
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F = −
e

4

��

���
2 − Ro

2

1

Q3�R − Ro cos �� dT ∧ dR + 	1 −
R2

��
2 
RRo sin � dT ∧ d�� , �6.15�

Estat =
e

4

1

Q3���R − Ro cos ��
���

2 − Ro
2

eR + Ro sin � e��, Bstat = 0. �6.16�

Since for practical calculations and for an understanding of the conformal relations between
inkowski and de Sitter spaces the rescaled coordinates are very useful, we also give the fields in

hese coordinates. The rescaled coordinates are tied with the same orthonormal tetrad as nonres-
aled ones, and they define the same splitting into electric and magnetic parts �E and B are the
ame spatial vectors�; the functional dependence on the coordinates, however, is different. In the
tandard rescaled �conformally Einstein� coordinates �see Eqs. �3.10�–�3.12��, which cover the
hole de Sitter space–time including its conformal infinities globally, we get Eq. �6.3� for Q and

F = −
e

4

1

Q3

��
3

sin3 t̃
�ao�� cos t̃ sin2 r̃ sin � dr̃ ∧ d� + ��1 + ao

2��
2 sin r̃ + ao�� sin t̃ cos ��dt̃ ∧ dr̃

− ao�� sin t̃ cos r̃ sin r̃ sin � dt̃ ∧ d�� , �6.17�

Esph =
e

4

��

Q3− ao�� cos r̃ sin � e� + 	�1 + ao
2��

2 sin r̃

sin t̃
+ ao�� cos �
e�� ,

�6.18�

Bsph = −
e

4

ao��
2

Q3 cot t̃ sin r̃ sin � e�,

hereas in the flat rescaled cosmological coordinates �3.13�–�3.15�, which cover globally the
onformally related Minkowski space �see also Fig. 3�, we arrive at

Q = ��	cosh �o + sinh �o
ř

ť
cos �
2

− 	1 −
ř2

ť2
�1/2

, �6.19�

F =
e

4

1

Q3

��
3

ť3
�sinh �o ř2 sin � dř ∧ d� + �cosh �o ř + sinh �o ť cos ��dť ∧ dř

− sinh �o ťř sin � dť ∧ d�� , �6.20�

Eflat =
e

4

��

Q3sinh �o sin � e� − 	cosh �o
ř

ť
+ sinh �o cos �
eř� ,

�6.21�

Bflat =
e

4

�� sinh �o

Q3

ř

ť
sin � e�.

In various contexts the electromagnetic field four-potential form A, implying the field
=dA, may be needed. In the standard rescaled �conformally Einstein� coordinates the potential
eads
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A = −
e

4

1

Q
��

sin t̃

�1 + ao
2��

2 sin t̃ + ao�� sin r̃ cos �

sin2 t̃ − sin2 r̃
�sin t̃ cos r̃ dt̃ − cos t̃ sin r̃ dr̃� .

�6.22�

rom this expression the frame components can easily be obtained and the four-potential form can
e transformed directly to any coordinate system of interest. The four-potential acquires a particu-
arly simple form in static coordinates,

A = −
e

4

1

Q
��

2 − RRo cos �

��
���

2 − Ro
2

dT . �6.23�

Inspecting now the expressions �6.4�–�6.21�, we first notice few basic features of the fields. As
consequence of the axisymmetry, the azimuthal � component of the electric field vanishes. On

he other hand, only the azimuthal � component of the magnetic field is nonzero. At the axis of
ymmetry, �=0,, the latitudinal � component of the electric field and magnetic field vanish as
sin �. The electric field points along the axis.

In the classical Born solution in Minkowski space, both charges are, at any time, located
ymmetrically with respect to the equatorial plane �= /2. Consequently, the radial part of the
lectric field vanishes for �= /2 �cf. Eq. �2.13��. In de Sitter space–time the charges outgoing
rom the poles are, at all times, symmetrically located with respect to the sphere �= /2 �illus-
rated as the circle in Fig. 2�. We thus expect the � component of the electric field to vanish for
= /2. This, indeed, follows from Eq. �6.7�. This symmetry can be seen only in the standard

pherical coordinates since the sphere �= /2 is not covered by the hyperbolic cosmological
oordinates and in the flat cosmological coordinates only one particle occurs.

Another typical feature of the Born solution in Minkowski space is its time symmetry. As a
onsequence, the magnetic field vanishes at t=0 �cf. Eq. �2.13��. In the past, it was this fact which
ed some investigators, Pauli54 among them, to the conclusion that there is “no formation of a
ave zone nor any corresponding radiation” since B=0 at t=0. However, it is not at a spacelike
ypersurface t=constant but at I +, which is reached by taking u= t−r constant, t ,r→	, where the
orn field has typical radiative features, i.e., �E�= �B��r−1 �see Refs. 37, 53, and 25�. In our
eneralized Born solution, the time symmetry of the fields is clearly demonstrated in the global
tandard coordinates, under inversion �→−� the electric field in Eq. �6.7� is invariant, whereas the
agnetic field changes the sign; B�=0 at �=0. The field also exhibits radiative character when we

pproach I + in an appropriate way, as it is briefly indicated in Ref. 25. A detailed analysis of the
adiative properties of the generalized Born field will be given elsewhere.

The fields take the simplest form in the static coordinates, Eq. �6.15�. In these coordinates the
articles are at rest, and they both have a constant distance from the poles; their world lines are the
rbits of the “static” Killing vector � /�T of de Sitter space. The electric field is time independent,
he magnetic field vanishes. This is fully analogous to the Born field in Minkowski space–time, it
s static, and purely electric in the Rindler coordinates, the time coordinate of which is aligned
long the orbit of the boost Killing vectors �see, e.g., Ref. 6�. However, as we discussed in Sec. III,
he static coordinates cover only a “half” of de Sitter space. In the other half, the Killing vector
/�T becomes spacelike. It is in this nonstatic domain �regions F and P in Fig. 12� where we
xpect, in analogy with the results in Minkowski space–time, to find fields which have radiative
roperties. � /�T is the Killing vector also in the nonstatic regions, however, it is spacelike here, as
t is typical for a boost Killing vector in Minkowski space. The fields of uniformly accelerated
harges in de Sitter space–time are invariant under the boosts along � /�T everywhere. They are
hus boost-rotation symmetric as the Born fields in Minkowski space–time.

In the cosmological coordinates, respectively, in their rescaled versions, the fields are, of
ourse, time dependent. Here we expect the effects of the expansion/contraction of de Sitter
niverse to be manifested. Indeed, considering in any of the cosmological frames the spatial
oordinates fixed, and examining the fields along the timelike geodesics, we discover that the

+
elds exponentially decay at large times, i.e., as I is approached. More specifically, with the
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pherical coordinates � ,� ,� fixed, the factor Q behaves as exp�� /��� at large times �, and hence,
e obtain Esph�c1 exp�−2� /���e�+c2 exp�−3� /���e� , Bsph�b1 exp�−2� /���e� ,c1 ,c2 ,b1 being

onstants. The electric field thus becomes radial at large �. Similarly, in flat cosmological coordi-
ates we find Eflat�c1 exp�−2�̌ /���eř , Bflat�b1 exp�−2�̌ /���e�. In the hyperbolic cosmological
oordinates the proper time � appears instead of �̌. The rapid decay of the fields along timelike
orldlines at large times is caused by the exponential expansion �at large times� of the spatial

lices �=constant �respectively, �̌ ,�=constant�. Although our fields are just test fields, their ex-
onential decay is another manifestation of the “cosmic no-hair phenomenon:” geodesic observers
n space–times with ��0 see at large times these space–times to approach the de Sitter universe
xponentially fast—the universe becomes “bald” �see, e.g., Refs. 22 and 23�. Clearly, as one
pproaches past infinity I− ��→−	�, the fields also decay exponentially.

It is interesting to notice the character of the field as it would be seen by the observers at rest
ith respect to the hyperbolic cosmological coordinates in the limit at which the particles “enter”

he region covered by these observers across the horizon t̃= r̃ �cf. Fig. 4�, given in the hyperbolic
oordinates by �→0, �→	. As discussed in Sec. IV, the observed velocity �4.17� of the charges
t this boundary is �in the limit� equal to the velocity of light. Employing the transformation
ormulas �A86�, it is easy to see that at this boundary �sinh�� /���sinh�� /����→1. Hence, the
actor Q is finite here �as it is evident from its scalar character and its finiteness in the global
tandard coordinates�. Also, the radial part of the electric field remains finite. However, E� di-
erges as exp�� /��� here, indicating that the field has a character of an impulse, in fact, rather of
n impulsive wave—indeed, Eq. �6.10� implies �E��= �B��. The situation appears to be analogous
o the field of a static charge viewed from an inertial frame boosted to the velocity of light in

inkowski space–time �see, e.g., Ref. 55�.

. Fields in coordinates centered on the particles

As expected, a remarkable simplification occurs when the fields are evaluated in the coordi-
ates at the origin of which the charges are situated at all times. Since the accelerated coordinates
� , R� , �� and the C-metric-like coordinates are simply related by Eqs. �5.8�, the discussion of the
eld properties is the same in both these frames. Namely, notice that both coordinate systems are

ied with the same orthonormal tetrad, and they thus define the same splitting of the field into the
lectric and magnetic parts. In these coordinates, we find the factor Q to read

Q = cosh �o
1

R�
+ sinh �o

1

��

cos �� =
1

��

�v cosh �o − 
 sinh �o� . �6.24�

he scalar field is again given by �= �s /4�Q−1, and the electromagnetic field also acquires now
n extremely simple form,

F =
e

4

1

R�2dR� ∧ dT� =
e

4
d� ∧ dv , �6.25�

Eacc =
e

4

1

Q2eR�, Bacc = 0. �6.26�

he magnetic field vanishes in the frame tied to the accelerated and C-metric coordinates, the
lectric field has precisely the Coulomb form, with the factor Q playing the role of a distance.

As signalized above already, the factor Q turns out to be the Robinson-Trautman radial
oordinate �see Eq. �6.28� below�, i.e., the affine parameter distance along null geodesics. The
eometrical role of Q was elucidated in Sec. V B. Considering a fixed point in de Sitter universe
nd a light cone emanating from this point, three typical situations can arise as illustrated in Fig.
2. For a point B from the regions N or S, there are two null geodesics, one past-pointing, the
ther future-pointing, each of which crosses the worldline of the same particle, say w� �in case of

from N�, at points Bret and Badv �see Fig. 12�. Since Q is equal to the �specific� affine parameter
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istance which is the same from Bret as from Badv �see Sec. V B�, we can interpret the field �6.26�
s arising from purely retarded, respectively, advanced effects from Bret, respectively Badv; or,
quivalently, as a combination of retarded and advanced effects from these points. In the second
ituation, when the fixed point, say A, is located “above the roof” �in the region F�, there are two
ast-oriented null geodesics emanating from it which cross now both particles w� and w� at
oints A� and A� �see Fig. 12�. The field can be interpreted as arising from retarded effects only,
ither as a combination from both particles w� and w�, or as the retarded field from just one of
hem. Finally, for a point from the region P the field can analogously be interpreted in terms of
dvanced effects.

As we discussed in Sec. V A and illustrate in detail in Appendix, the accelerated coordinates
similarly as the static coordinates to which they go over for a vanishing acceleration� are static,
.e., the vector � /�T� tangent to the orbits of the Killing vector is timelike, only in the regions N
nd S �cf. Figs. 10 and 12�. Observers following the orbits of the Killing vector are thus confined
o the regions N and S, and they cannot detect the fields in the region F �respectively, P�.
evertheless, notice that although the time coordinate T� diverges at the horizon R=��, the radial

oordinate R� is perfectly finite there, R�=�� �cf. Eq. �5.6� with R=���, and the field �6.25� is
eaningful in the region F �or P� as well. Since here the roles of the coordinates R� and T� are

nterchanged, R� becoming a time coordinate, the field becomes time dependent. As mentioned
bove, we do not expect to find radiative properties in the regions N and S. Indeed, in accelerated
oordinates the field �6.26� is static Coulomb field, with Q playing the role of a distance. How-
ver, the radiative properties of the whole field in the wave zone in the region F are not evident
rom the time-dependent, purely electric field in the accelerated coordinates with R� as a time
oordinate.

It is worthwhile to recall that with finite sources in Minkowski space–time the field at any
vent is of a general algebraic type; only asymptotically, at large distances, its features approach
hose of a null field �E2−B2=0, E·B=0�, if there is a radiation �see, e.g., Refs. 56 and 45�. In case
f a non-null field, one can always introduce a frame in which the electric and magnetic fields are
ollinear, or, in the language of the Newman-Penrose formalism, to choose such a null tetrad
, l , m, m̄, corresponding to the orthonormal tetrad, that the only nonvanishing null-tetrad com-
onent is �1=1/ �2�2� �E− iB� · �k−1� �see Eqs. �A114� for the explicit expressions of the null
etrad and Eqs. �A4� for the null-tetrad components of the electromagnetic field�. Such a situation
rises precisely for the null tetrad associated with the accelerated coordinates: the null-tetrad
omponents are simply

�1
acc = −

1

2

e

4

1

Q2 , �0
acc = �2

acc = 0. �6.27�

he vanishing of the other two null-tetrad components, �0
acc and �2

acc, has a deeper algebraic
xplanation: the null tetrad tied to the accelerated coordinates is special in the sense that it contains
oth principal null directions of the electromagnetic field. Inspecting the form of the null tetrad
onstructed from the orthonormal tetrad �A95�, we observe that both these principal null directions
re tangent to the “radial” surfaces �� , �=constant in the accelerated coordinates.

The radiative properties are well exhibited in the Robinson-Trautman coordinates. As we
iscussed in Sec. V B, these coordinates are tied to the future null cones centered on the worldline
f a particle. We consider the null cones with vertices on the particle w�. Let us recall that the
adial coordinate r is the affine parameter along the generators of the null cones, each of which is
iven by u , � , � fixed. Now, as mentioned above, it turns out that the factor Q is precisely equal
o this affine parameter r,

Q = r . �6.28�
he scalar field is then simply given by
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� =
s

4

1

r
. �6.29�

remarkably nice form also acquires the electromagnetic field,

F =
e

4
	 1

r2du ∧ dr + ao sin2 ��du ∧ d��
=
e

4
	 1

r2du ∧ dr + ao sin2 ��du ∧ d�
 . �6.30�

he Newman-Penrose scalars are defined in terms of the null tetrad �A114�, which is parallelly
ropagated from the source to the “observation point” along the rays u , � , �=constant. They look
s follows:

�0
RT = 0, �1

RT = −
1

2

e

4

1

r2 , �2
RT =

1
�2

e

4

1

r
ao sin ��. �6.31�

ow the radiative character of the field is transparent: the first term entering the peeling behavior,
he scalar �2, decays indeed as r−1, and it is nonvanishing for a nonzero acceleration ao. In the
xpressions �6.30� and �6.31�, the de Sitter background is completely “hidden.” The same form of
he fields are obtained in case of uniformly accelerated charges in Minkowski space if the coor-
inates built on the null cones emanating from the particles are employed. A difference between
oth cases reveals itself only in the explicit dependence of the affine parameter r on the coordi-
ates of space–time points.

II. BORN IN DE SITTER

Finally, we turn to the fields from the particles symmetrically located with respect to the origin
=0 �the “north pole”� of the standard spherical coordinates. The particles are thus “born”
symptotically at the equator, �= /2, at �→−	, and return back at �→	 with the opposite
peeds �Fig. 8�. Their fields, of course, are intrinsically the same as those considered in the
receding section but only now they represent the direct generalization of the classical Born
olutions due to uniformly accelerated charges symmetrically located with respect to the origin of
inkowski space.

We shall find the generalized Born fields easily by using the transformation �4.21� which we
pplied to obtain the worldlines of the particles born at the equator from those born at the poles.
he scalar field due to two equal scalar charges s moving along the worldlines w� and w� reads

� =
s

4
�M

−1 1

R
, �7.1�

here the factor R is determined by

R =
��

1 + cosh
�

��

cos �

cosh2 �

��

sin2 � sin2 � + 	�1 + ao
2��

2 cosh
�

��

cos � − ao��
2�1/2

,

�7.2�

nd the conformal factor �M is given by �cf. Eq. �3.19��

�M = 1 + cosh
�

��

cos � . �7.3�

his factor is left in the explicit form here, in contrast to the preceding section, since it explicitly
xhibits conformal relation of the scalar field under conformal mappings �3.19� between de Sitter
pace and Minkowski space M. This relation will be used in the following to perform the limit

rom the Born field in de Sitter to the Born field in Minkowski space–time.
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The electromagnetic field produced by charge e moving along the worldline w� and by
ymmetrically located charge −e moving along w� has the following form:

FBdS =
e

4

��
2

R3

cosh
�

��

sin �

	1 + cosh
�

��

cos �
3ao��
2 sinh

�

��

cosh
�

��

sin2 � d� ∧ d�

+ 	�1 + ao
2��

2 cosh
�

��

cos � − ao��
cot � d� ∧ d� �7.4�

 − 	�1 + ao
2��

2 cosh
�

��

− ao�� cos �
sin � d� ∧ d�� .

ith factor R given by �7.2�. In the tetrad tied to the standard spherical coordinates the electric
nd magnetic fields become

Esph
BdS = −

e

4

��

R3

1

	1 + cosh
�

��

cos �
3	�1 + ao
2��

2 cosh
�

��

cos � − ao��
cot � e�

− 	�1 + ao
2��

2 cosh
�

��

− ao�� cos �
sin � e�� ,

�7.5�

Bsph
BdS =

e

4

ao��
2

R3

sinh
�

��

sin � sin �

	1 + cosh
�

��

cos �
3 e�.

In the standard rescaled �conformally Einstein� coordinates the expressions �7.4� and �7.5�
lightly simplify

R
��

=
��ao�� sin t̃ − �1 + ao

2��
2 cos r̃�2

+ sin2 r̃ sin2 ��1/2

sin t̃ + cos r̃
, �7.6�

�M =
cos r̃ + sin t̃

sin t̃
, �7.7�

FBdS = −
e

4

��
3

R3

sin �

�sin t̃ + cos r̃�3
�ao�� sin2 r̃ cos t̃ dr̃ ∧ d�

− ��1 + ao
2��

2 cos r̃ − ao�� sin t̃ � cot � dt̃ ∧ dr̃ �7.8�

+ ��1 + ao
2��

2 − ao�� cos r̃ sin t̃ �sin r̃ dt̃ ∧ d�
                                                                                                            



w
s

c
e
�

s
e
v
w
a
f

102504-36 J. Bičák and P. Krtouš J. Math. Phys. 46, 102504 �2005�

                        
ECE
BdS =

e

4

�� sin2 t̃

R3�sin t̃ + cos r̃�3�− ��1 + ao
2��

2 cos r̃ − ao�� sin t̃ �cos � er̃

+ ��1 + ao
2��

2 − ao�� sin t̃ cos r̃�sin � e�� , �7.9�

BCE
BdS = −

e

4

ao��
2 sin2 t̃

R3�sin t̃ + cos r̃�3
cos t̃ sin r̃ sin � e�.

The character of these fields was discussed in the preceding section for the particles w� and

�. One must only rotate all the structures by  /2 in the � direction; hence, for example, the
phere of symmetry changes from �= /2 to �= /2.

There is some interest in having the fields available also in the hyperbolic cosmological
oordinates. They cover only those regions of the fields in which we assume the radiative prop-
rties will be manifested. The sources producing the fields are not covered by these coordinates
cf. Fig. 8�. The fields in the hyperbolic cosmological coordinates look as follows:

R =
1

2bo
	bo

2 + ��
2 tanh2 �

2��

2

+ 4bo
2 tanh2 �

2��

sinh2 �

��

sin2 ��1/2

, �7.10�

�M = 1 + cosh
�

��

= 2 cosh2 �

2��

, �7.11�

FBdS =
e

4

��
3

R3

1

2bo�M
2

� 	 bo
2

��
2 + tanh2 �

2��

sinh

�

��
	 1

��

cos � d� ∧ d� − sinh
�

��

cosh
�

��

sin � d� ∧ d�

− 	 bo

2

��
2 − tanh2 �

2��

sinh2 �

��

sinh2 �

��

sin � d� ∧ d�� , �7.12�

Ehyp
BdS =

e

4

��
2

R3

1

2bo�M
2 	 bo

2

��
2 + tanh2 �

2��

	− cos � e� + cosh

�

��

sin � e�
 ,

�7.13�

Bhyp
BdS = −

e

4

��
2

R3

sinh
�

��

2bo�M
2 	 bo

2

��
2 − tanh2 �

2��

sin � e�.

Finally, we wish to describe the limiting procedure which leads from the generalized Born
olutions directly to their counterparts in Minkowski space–time. For this purpose it is natural to
mploy the conformally Minkowski coordinates t ,r ,� ,� introduced in Eq. �3.17�, with the in-
erse transformation given in Appendix, Eq. �A17�. Transforming the fields of the particles

� , w� from the conformally Einstein coordinates to the conformally Minkowski coordinates, we
rrive at the following intriguing forms. The scalar field is given by Eq. �7.1� where now the
actors R and �M are determined by

R =
1 ��bo

2 + t2 − r2�2 + 4bo
2r2 sin2 � , �7.14�
2bo
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�M =
2��

2

��
2 − t2 + r2 . �7.15�

otice that factor R coincides with the expression �2.11� in Minkowski space. The electromag-
etic field reads

FBdS = −
e

4

1

2bo

1

R3 �− 2tr2 sin � dr ∧ d� − �bo
2 + t2 − r2�cos � dt ∧ dr

+ r�bo
2 + t2 + r2�sin � dt ∧ d�� , �7.16�

nd the electric and magnetic parts of the field turn out to be

ECM
BdS =

e

4

1

R3

1

2bo�M
2 ��bo

2 + t2 − r2�cos � er − �bo
2 + t2 + r2�sin � e�� ,

�7.17�

BCM
BdS =

e

4

1

R3

1

bo�M
2 tr sin � e�.

To connect these fields with their counterparts in flat space, note first that they are conformally
elated by the conformal transformation �3.19�. Under the conformal mapping, the field �BdS must
e multiplied by factor �M, which gives �M= �s /4�R−1, and FBdS in �7.16� remains unchanged.
he transformed fields then coincide with the classical Born fields �2.9�, �2.11�, and �2.13�.

In order to see the limit for �→0, we parametrize the sequence of de Sitter spaces by �, and
dentify them in terms of coordinates t ,r ,� ,�. As �=3/��

2 →0, Eq. �3.19� implies
�M��→2, �gdS��→4gM. After the trivial rescaling of t ,r by factor 2, the standard Minkowski
etric is obtained. The limit of the scalar and electromagnetic fields �7.1� and �7.16�, in which bo

s kept constant �with ao= �1−bo
2��

−2� / �2bo�—cf. Eq. �4.29��, leads precisely to the scalar and
lectromagnetic Born fields �2.9� and �2.13� in flat space. Because of the rescaling of the coordi-
ates by factor 2, we get the physical acceleration equal to 1/bo=2ao, and the scalar field rescaled
y 1/2. The explicit limiting procedure carrying the generalized Born fields in de Sitter universe
ack into the classical Born solution in Minkowski space has thus been demonstrated.

III. CONCLUDING REMARKS

Since 1998 the observations of high-redshift supernovae indicate, with an increasing evidence,
hat we live in an accelerating universe with a positive cosmological constant �for most recent
bservations see, e.g., Ref. 57�. Vacuum energy seems to dominate in the universe and it is thus of
nterest to understand fundamental physics in the vacuum dominated de Sitter space–time.

In the present work, we constructed the fields of uniformly accelerated charges in this uni-
erse. They go over to the classical Born fields in Minkowski space in the limit of a vanishing
osmological constant. Aside from some similarities found, the generalized fields provide the
odels showing how a positive cosmological constant implies essential differences from physics

n flat space–time. For example, advanced effects occur inevitably due to the spacelike character
f the past infinity I− and its consequence—the existence of the past particles’ horizons, respec-
ively, of the “creation light cones” of the particles’ worldlines.

Since de Sitter space–time, according to our present understanding, appears to be not only an
ppropriate basic model for studying future cosmological epochs, but it is commonly used also for
xploring the inflationary era, various physical processes have been investigated in de Sitter space
rom the perspective of the early universe, among them, the effects of quantum field theory. Also
n quantum contexts, however, problems arise from combining the causal structure of the full de
itter space–time with the constraint equations �see Ref. 58 for a recent review�. These problems
re associated with the “insufficiency of purely retarded fields” in space–times with a spacelike I−.
e analyzed this issue in detail for the classical electromagnetic and scalar fields with sources in

ef. 24.
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Another intriguing implication of the rapid expansion of de Sitter universe due to a positive
osmological constant is manifested in the exponential decay of the fields at large times. We
oticed this “cosmic no-hair phenomenon” explicitly on the late-time behavior of the fields due to
ccelerated charges.

In the present paper we wished to give all details on the construction of the fields and on
oordinate frames useful in understanding their various aspects, including their relation to their
ounterparts in flat space–time. We did not here analyze the radiative characteristics of the fields.
n the Introduction we indicated that radiative properties depend on the way in which a given point
f infinity is approached. This is briefly described at the end of our paper.25

In de Sitter space–time it is not a priori clear, as it is in special relativity, how to define global
hysical quantities like energy or energy flux. Such issues connected with the question of radiation
rom “Born in de Sitter” will be considered in a future presentation.
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PPENDIX A: THE PALETTE OF COORDINATE SYSTEMS IN DE SITTER SPACE–TIME

Nine families of coordinate systems are here introduced, described analytically and illustrated
raphically. The corresponding forms of de Sitter metric, orthonormal tetrads and interrelations
etween the systems are given. All these systems are suitable for exhibiting various features of de
itter space; two families are directly associated with uniformly accelerated particles. Although

he majority �though not all� of these coordinate systems undoubtedly appeared in literature in
ome form already, they are scattered and, as far as we know, not summarized as comprehensively
s in the following. In the main text we refer frequently to this Appendix, but the Appendix can be
ead independently. We hope it can serve as a catalogue useful for analyzing various aspects of
hysics in de Sitter universe.

By a family of coordinate systems we mean the systems with the same coordinate lines; e.g.,
x�� and �y�� where x1=x1�y1� , x2=x2�y2�, etc. Seven of our families have the same spherical
ngular coordinates � ,�, accelerated and Robinson-Trautman coordinates mix three coordinates,
nly azimuthal coordinate � remains unchanged.

The homogeneous normalized metric on two-spheres �the metric “in angular direction”� is
enoted by

d�2 = d�2 + sin2 � d�2. �A1�

The radial coordinates label directions pointing out from the pole and acquire only positive
alues. However, transformations among coordinates take simpler forms if we allow radial coor-
inates to take on negative values as well. This causes no problems if, denoting by t and r the
rototypes of time and radial coordinates, we adopt the convention that the following two values
f coordinates describe the same point:

�t,r,�,�� ↔ �t,− r, − �,� + � . �A2�

ence, intuitively we may consider a point with −r�0 and � ,� fixed to lie on diametrically
pposite side of the pole r=0 with respect to the point r�0,� ,�.

The orthonormal tetrad et , er , e� , e� associated with a coordinate system is tangent to the
oordinate lines and oriented �with few exceptions� in the directions of growing coordinates. It is

t r � �
hosen in such a way that the external product e ∧e ∧e ∧e of 1-forms of the dual tetrad has
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lways the same orientation. Since all forms of the metric contain the term �A1� the only compo-
ent �e��� of the tetrad vector e� in coordinate frame �� /�x�� is related to the �-component of e�

s

�e��� =
1

sin �
�e���, �A3�

nd we thus omit e� henceforth.
In the standard Newman-Penrose null complex tetrad k , l , m, m̄ with only nonvanishing

nner products k · l=−1, m·m̄=1, the electromagnetic field F is represented by three complex
omponents:

�0 = F�� k�m�, �2 = F�� m̄�l�, �1 = 1
2 F�� �k�l� − m�m̄�� . �A4�

he null tetrad can be specified directly �as it will be done in the case of Robinson-Trautman
oordinates in Eq. �A114��, or it can be associated with any orthonormal tetrad, say t , q , r , s, by
elations

k =
1
�2

�t + q�, l =
1
�2

�t − q�, m =
1
�2

�r − i s�, m̄ =
1
�2

�r + i s� . �A5�

ere, t and q are timelike and spacelike unit vectors, respectively, typically in a direction of “time”
nd “radial” coordinate, and r , s are spacelike unit vectors in angular directions, r=e� , s=e�.

For each coordinate family we give the diagram illustrating section � , �=constant with the
adial coordinate taking on both positive and negative values. The diagrams thus represent the
istory of the entire main circle of the spatial spherical section of de Sitter universe. The left and
ight edges of the diagrams represent the south pole and should be considered as identified; the
entral vertical line describes the history of the north pole. Recalling the meaning of the negative
adial coordinate we could eliminate the left half of each of the diagrams by transforming it into
he right one by replacements �� ,��→ �−� ,�+�. However, it is instructive to keep both
alves for better understanding of the spatial topology of the sections. All diagrams are
ompactified—they are adapted to the standard rescaled coordinates t̃ , r̃ �see below�. The past and
uture conformal infinites are drawn as double lines. The ranges of time and radial coordinates are
hown, the orientation of coordinate labels indicates the directions of the growth of corresponding
oordinates.

We will also introduce several sign factors. The values of these factors in different domains of
pace–time are indicated in Fig. 13.

1. The spherical cosmological family:
The first family consists of the standard or spherical cosmological coordinates � , � , � , �, and

f the standard rescaled or conformally Einstein coordinates t̃ , r̃ , � , � �where r̃���. These
oordinates cover de Sitter space–time globally. They are associated with cosmological observers
ith homogeneous spatial sections of positive spatial curvature. The coordinates are adjusted to

he spherical symmetry of the spatial sections, �, �, and � are standard angular coordinates. The
oordinate � is a proper time along the worldlines of the cosmological observers given by
, � , �=constant. The vector � /�� is a conformal Killing vector which is everywhere timelike.
he rescaled coordinates t̃ , r̃ , � , � can also be viewed as the standard coordinates of the confor-
ally related Einstein universe; they cover smoothly both conformal infinities I ± of de Sitter

pace–time. �See Fig. 14.�
Metric and relation between coordinates

g = − d�2 + ��
2 cosh2��/����d�2 + sin2 � d�2� , �A6�

g = �2 sin−2 t̃ �− dt̃ 2 + dr̃ 2 + sin2 r̃ d�2� , �A7�
�
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tan
t̃

2
= exp

�

��

, cot t̃ = − sinh
�

��

, sin t̃ = cosh−1 �

��

, cos t̃ = − tanh
�

��

, �A8a�

r̃ = � . �A8b�

he ranges of coordinates are

� � R, � � �− ,�, t̃ � �0,�, r̃ � �− ,� , �A9�

ith negative values of radial coordinates � , r̃ interpreted in accordance with Eq. �A2�.
Orthonormal tetrad,

e� =
�

��
=

1

��

sin t̃
�

� t̃
,

e� =
1

��

cosh−1 �

��

�

��

=
1

��

sin t̃
�

� r̃
, �A10�

IG. 13. The values of the factors sI, sNS, s�, š, ŝ, su, and sv in various regions of de Sitter space. The factors are defined
n Eqs. �A21�, �A36�, �A61�, �A73�, �A74�, and �A128�, respectively. The factor s� is used only in the expressions for static
oordinates in the region where the Killing vector is spacelike. Therefore, we indicated the values of s� only in those
egions, although Eq. �A74� defines s� everywhere. The factors s�, su, and sv are defined only for any given section
=constant, but not as unique functions on the whole space–time �they are not symmetric with respect to the pole�. This

s related to our convention using negative radial coordinates, cf. the text below Eq. �A1�.
FIG. 14. The spherical cosmological family of coordinates.
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e� =
1

��

1

cosh��/���sin �

�

��
=

1

��

sin t̃

sin r̃

�

��
.

Relation to flat cosmological family,

tan t̃ =
2��t̂

��
2 − t̂2 + r̂2

=
2��ť

��
2 − ť2 + ř2

, tan r̃ =
2��r̂

��
2 + t̂2 − r̂2

=
2��ř

��
2 + ť2 − ř2

. �A11�

Relation to hyperbolic cosmological coordinates,

cot t̃ = − sinh
�

��

cosh
�

��

, tan r̃ = tanh
�

��

sinh
�

��

. �A12�

Relation to static family in timelike domains N , S,

tan t̃ = − sNS
��

���
2 − R2

sinh−1 T

��

, tan r̃ = sNS
R

���
2 − R2

cosh−1 T

��

, �A13�

tan t̃ = − sNS

cosh
r̄

��

sinh
t̄

��

, tan r̃ = sNS

sinh
r̄

��

cosh
t̄

��

, �A14�

here sNS= +1�−1� in domain N �S�, cf. Eq. �A61�.
Relation to static family in spacelike domains F , P,

tan t̃ =
− sI��

�R2 − ��
2

cosh−1 T

��

, tan r̃ =
sIR

�R2 − ��
2

sinh−1 T

��

, �A15�

tan t̃ = s�

sinh
r̄

��

cosh
t̄

��

, tan r̃ = s�

cosh
r̄

��

sinh
t̄

��

, �A16�

here sI=−sign cos t̃ and s�=−sI sign r̃, cf. Eqs. �A73� and �A74�.
Relation to conformally Minkowski coordinates,

cot t̃ =
2��t

t2 − r2 − ��
2 , tan r̃ =

2��r

t2 − r2 + ��
2 . �A17�

2. The flat cosmological family, type “∨”:
The first flat cosmological coordinate family �Fig. 15� consists of the flat cosmological coor-

inates �̌ , ř , � , � and of the rescaled flat cosmological coordinates ť , ř , � , �. Hypersurfaces �̌
constant are homogeneous flat spaces and coordinate lines ř , � , �=constant are worldlines of
osmological observers orthogonal to these hypersurfaces. They are geodesic with proper time �̌,
he vector � /��̌ is a conformal Killing vector. The coordinates cover de Sitter space–time
moothly, except for the past cosmological horizon, r̃= t̃, of the north pole where ř , ť→ ±	. The
oordinates thus split into two coordinate patches—“above” and “below” the horizon. The domain
bove the horizon has a cosmological interpretation of an exponentially expanding flat three-
pace. The rescaled coordinates can be viewed as inertial coordinates in the conformally related

inkowski space M̌, cf. Fig. 3; the domain above the horizon corresponds to the “lower half,”
ˇ ˇ
�0, of M, the domain below corresponds to the “upper half,” t�0.
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Metric and relation between coordinates,

g =
��

2

ť2
�− dť2 + dř2 + ř2 d�2� , �A18�

g = − d�̌2 + exp�− š2�̌/����dř2 + ř2 d�2� . �A19�

ť = š �� exp	š
�̌

��

 , �A20�

š = sign ť . �A21�

he ranges of coordinates are

�̌ � R, ť � R−, ř � R above the horizon,

�A22�
�̌ � R, ť � R+, ř � R below the horizon,

ith negative values of radial coordinate ř interpreted as described in Eq. �A2�.
Orthonormal tetrad,

eť =
�

� �̌
=

šť

��

�

� ť
, eř = exp

š�̌

��

�

� ř
=

šť

��

�

� ř
,

�A23�

e� = −
š

ř
exp

š�̌

��

�

��
= −

1

��

ť

ř

�

��
.

Relation to spherical cosmological family,

ť =
− �� cosh−1��/���
cos � + tanh��/���

, ř =
�� cosh−1��/���

cos � + tanh��/���
, �A24�

ť =
�� sin t̃

cos t̃ − cos r̃
, ř =

�� sin r̃

cos r̃ − cos t̃
. �A25�

FIG. 15. The flat cosmological family, type “∨.”
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Relation to flat cosmological family, type “∧”,

ť = −
t̂��

2

t̂2 − r̂2
, ř =

r̂��
2

t̂2 − r̂2
, �A26�

ťr̂ + t̂ř = 0 , t̂ť + r̂ř = − ��
2 ,

�A27�
�− t̂2 + r̂2��− ť2 + ř2� = ��

4 , �t̂ + r̂��ť + ř� = �t̂ − r̂��ť − ř� = − ��
2 .

Relation to static family in timelike domains N ,S,

ť

��

= − sNS
��

���
2 − R2

exp	−
T

��

,

ř

��

= sNS
R

���
2 − R2

exp	−
T

��

 , �A28�

ť = − sNS�� exp	−
t̄

��


cosh
r̄

��

, ř = sNS�� exp	−
t̄

��


sinh
r̄

��

, �A29�

here sNS= +1�−1� in domain N�S�, cf. Eq. �A61�.
Relation to static family in spacelike domains F ,P,

ť

��

= s�

��

�R2 − ��
2

exp	−
T

��

,

ř

��

= − s�

R

�R2 − ��
2

exp	−
T

��

 , �A30�

ť = s��� exp	−
t̄

��


sinh
r̄

��

, ř = − s��� exp	−
t̄

��


cosh
r̄

��

, �A31�

here s�=sign r̃ sign cos t̃, cf. Eqs. �A73� and �A74�.
Relation to conformally Minkowski coordinates,

ť

��

= −
��

2 − t2 + r2

��� + t�2 − r2 ,
ř

��

=
2��r

��� + t�2 − r2 . �A32�

3. The flat cosmological family, type “∧”:
The second flat cosmological coordinate family �Fig. 16� consists of the flat cosmological

oordinates �̂ , r̂ ,� ,� and of the rescaled flat cosmological coordinates t̂ , r̂ ,� ,�. They can be built
nalogously to the flat coordinates introduced above, with north and south poles interchanged
nly. They thus have similar properties. Hypersurfaces t̂=constant are homogeneous flat three-
paces, coordinate lines r̂ ,� ,�=constant are geodesics with proper time �̂, and � /��̂ is a confor-

FIG. 16. The flat cosmological family, type “∧.”
al Killing vector. The coordinates cover de Sitter space–time everywhere except the future
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osmological horizon, r̃=− t̃, of the north pole �i.e., the past horizon of the south pole�, and the
escaled coordinates can be viewed as inertial coordinates in the conformally related Minkowski

pace M̂.
Metric and relation between coordinates,

g =
��

2

t̂2
�− dt̂2 + dr̂2 + r̂2 d�2� , �A33�

g = − d�̂2 + exp�− ŝ2�̂/����dr̂2 + r̂2 d�2� , �A34�

t̂ = ŝ�� exp	ŝ
�̂

��

 , �A35�

here

ŝ = sign t̂ . �A36�

he ranges of coordinates are

�̂ � R, t̂ � R−, r̂ � R above the horizon,

�A37�
�̂ � R, t̂ � R+, r̂ � R below the horizon,

ith negative values of radial coordinate r̂ interpreted as described in Eq. �A2�.
Orthonormal tetrad,

et̂ =
�

� �̂
=

ŝt̂

��

�

� t̂
, er̂ = exp

ŝ�̂

��

�

� r̂
=

ŝt̂

��

�

� r̂
,

�A38�

e� =
ŝ

r̂
exp

ŝ�̂

��

�

��
=

1

��

t̂

r̂

�

��
.

Relation to spherical cosmological family,

t̂ =
�� cosh−1��/���

cos � − tanh��/���
, r̂ =

�� cosh−1��/���
cos � − tanh��/���

, �A39�

t̂ =
�� sin t̃

cos t̃ + cos r̃
, r̂ =

�� sin r̃

cos r̃ + cos t̃
. �A40�

Relation to flat cosmological family, type “∧”,

t̂ = −
ť��

2

ť2 − ř2
, r̂ =

ř��
2

ť2 − ř2
, �A41�

ťr̂ + t̂ř = 0, t̂ť + r̂ř = − ��
2 ,

�A42�
�− t̂2 + r̂2��− ť2 + ř2� = ��

4 , �t̂ + r̂��ť + ř� = �t̂ − r̂��ť − ř� = − ��
2 .
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Relation to static family in timelike domains N , S,

t̂

��

= sNS
��

���
2 − R2

exp
T

��

,
r̂

��

= sNS
R

���
2 − R2

exp
T

��

, �A43�

t̂ = sNS�� exp
t̄

��

cosh
r̄

��

, r̂ = sNS�� exp
t̄

��

sinh
r̄

��

, �A44�

here sNS= +1�−1� in domain N �S�, cf. Eq. �A61�.
Relation to static family in spacelike domains F , P,

t̂

��

= s�

��

�R2 − ��
2

exp
T

��

,
r̂

��

= s�

R

�R2 − ��
2

exp
T

��

, �A45�

t̂ = s��� exp
t̄

��

sinh
r̄

��

, r̂ = s��� exp
t̄

��

cosh
r̄

��

, �A46�

here s�=sign r̃ sign cos t̃, cf. Eqs. �A73� and �A74�.
Relation to conformally Minkowski coordinates,

t̂

��

=
��

2 − t2 + r2

��� − t�2 − r2 ,
r̂

��

=
2��r

��� − t�2 − r2 . �A47�

4. The conformally Minkowski family:
The conformally Minkowski coordinates t ,r ,� ,� can be understood as spherical coordinates

n the conformally related Minkowski space M. The coordinates do not cover de Sitter space–time
lobally—they cover only a region around north pole, see Fig. 17. The boundary of this region is
iven by the conformal infinity of the Minkowski space–time. These coordinates are useful for
tudying the limit �→0.

The metric,

g = 	 2��
2

��
2 − t2 + r2
2

�− dt2 + dr2 + r2 d�2� , �A48�

he ranges of coordinates

t � R, r � R, such that t2 − r2 � ��
2 , �A49�

FIG. 17. The conformally Minkowski family of coordinates.
ith negative values of radial coordinate r interpreted as described in Eq. �A2�.
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Orthonormal tetrad,

et =
��

2 − t2 + r2

2��
2

�

�t
, er =

��
2 − t2 + r2

2��
2

�

�r
, e� =

��
2 − t2 + r2

2��
2

1

r

�

�t
. �A50�

Relation to spherical cosmological family,

t = −
�� cos t̃

cos r̃ + sin t̃
, r =

�� sin r̃

cos r̃ + sin t̃
. �A51�

Relation to flat cosmological family,

t

��

= −
��

2 − t̂2 + r̂2

��� + t̂�2 − r̂2
=

��
2 − ť2 + ř2

��� − ť�2 − ř2
,

�A52�
r

��

=
2��r̂

��� + t̂�2 − r̂2
=

2��ř

��� − ť�2 − ř2
.

Relation to hyperbolic cosmological coordinates,

t

��

= tanh
�

2��

cosh
�

��

,
r

��

= tanh
�

2��

sinh
�

��

. �A53�

Relation to static family in timelike domains N , S,

t

��

=

sinh
t̄

��

cosh
t̄

��

+ sNS cosh
r̄

��

,
r

��

=

sinh
r̄

��

cosh
r̄

��

+ sNS cosh
t̄

��

, �A54�

t

��

=

���
2 − R2 sinh

T

��

sNS�� + ���
2 − R2 cosh

T

��

,
r

��

=
R

�� + sNS
���

2 − R2 cosh
T

��

, �A55�

here sNS= +1�−1� in domain N �S�, cf. Eq. �A61�.
Relation to static family in spacelike domains F , P,

t

��

=

cosh
t̄

��

sinh
t̄

��

− s� sinh
r̄

��

,
r

��

=

cosh
r̄

��

sinh
r̄

��

− s� cosh
t̄

��

, �A56�

t

��

=

�R2 − ��
2 cosh

T

��

− s��� + �R2 − ��
2 sinh

T

��

,
r

��

=
R

�� − s�
�R2 − ��

2 sinh
T

��

, �A57�

ith s�=sign r̃ sign cos t̃, cf. Eqs. �A73� and �A74�.
5. The static family in timelike domains N and S: This family consists of the static coordi-

ates T , R , � , � and the “tortoise” static coordinates t̄ , r̄ , � , �. The metric does not depend on
¯
ime coordinate T= t—the coordinates are associated with a Killing vector. Since the Killing vector

                                                                                                            



c
s
o
p
c
3
S
s

T

w

102504-47 Fields of accelerated sources: Born in de Sitter J. Math. Phys. 46, 102504 �2005�

                        
hanges its character, the coordinates do not cover the space–time smoothly. We first describe the
tatic coordinates in domains N and S, where the Killing vector is timelike. In domain N the orbits
f the Killing vector �corresponding to the worldlines of static observers� start and end at the north
ole, in domain S—at the south pole. They are orthogonal to slices T=constant, each of which
onsists of two hemispheres �one in domain N, the other in S� with homogeneous spherical
-metric. The distances between static observers �measured within these slices� do not change.
ince the static observers must overcome first the cosmological contraction and then the expan-
ion, they move with a �uniform� acceleration. �See Fig. 18.�

Metric and relation between coordinates,

g = cosh−2 r̄

��
	− dt̄ 2 + dr̄2 + ��

2 sinh2 r̄

��

d�2
 , �A58�

g = − 	1 −
R2

��
2 
dT2 + 	1 −

R2

��
2 
−1

dR2 + R2 d�2, �A59�

T = t̄ , �A60a�

exp
r̄

��

=��� + R

�� − R
, sinh

r̄

��

=
R

���
2 − R2

,

�A60b�

tanh
r̄

��

=
R

��

, cosh
r̄

��

=
��

���
2 − R2

,

sNS = �+ 1 in domain N ,

− 1 in domain S .
� �A61�

he ranges of coordinates are

T � R, R � �− ��,���, t̄ � R, r̄ � R , �A62�

ith negative values of coordinates R and r̄ interpreted as described in Eq. �A2�.
Orthonormal tetrad,

eT = 	1 −
R2

��
2 
−1/2 �

�T
= cosh

r̄

��

�

� t̄
, eR = 	1 −

R2

��
2 
1/2 �

�R
= cosh−1 r̄

��

�

� r̄
,

�A63�

FIG. 18. The static family of coordinates, timelike domains.
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e� =
1

R

�

��
=

1

��

coth
r̄

��

�

��
.

Relation to spherical cosmological family,

T =
��

2
log

cos r̃ − cos t̃

cos r̃ + cos t̃
, R = ��

sin r̃

sin t̃
, �A64�

t̄ =
��

2
log	tan

t̃ + r̃

2
tan

t̃ − r̃

2

, r̄ =

��

2
log	tan

t̃ + r̃

2
cot

t̃ − r̃

2

 ,

exp
t̄

��

=�cos r̃ − cos t̃

cos r̃ + cos t̃
, sinh

t̄

��

=
− sNS cos t̃

�cos2 r̃ − cos2 t̃
,

tanh
t̄

��

= −
cos t̃

cos r̃
, cosh

t̄

��

=
sNS cos r̃

�cos2 r̃ − cos2 t̃
, �A65�

exp
r̄

��

=�sin t̃ + sin r̃

sin t̃ − sin r̃
, sinh

r̄

��

=
sin r̃

�sin2 t̃ − sin2 r̃
,

tanh
r̄

��

=
sin r̃

sin t̃
, cosh

r̄

��

=
sin t̃

�sin2 t̃ − sin2 r̃
.

Relation to flat cosmological family,

t̄ =
��

2
log

t̂2 − r̂2

��
2 = −

��

2
log

ť2 − ř2

��
2 , r̄ =

��

2
log

t̂ + r̂

t̂ − r̂
=

��

2
log

ť − ř

ť + ř
, �A66�

T

��

=
1

2
log

t̂2 − r̂2

��
2 = −

1

2
log

ť2 − ř2

��
2 ,

R

��

=
r̂

t̂
= −

ř

ť
. �A67�

Relation to conformally Minkowski coordinates,

tanh
T

��

=
2��t

��
2 + t2 − r2 ,

R

��

=
2��r

��
2 + r2 − t2 , �A68�

t̄ =
��

2
log

��� + t�2 − r2

��� − t�2 − r2 , r̄ =
��

2
log

��� + r�2 − t2

��� − r�2 − t2 . �A69�

6. The static family in spacelike domains F and P:
Here we describe the static coordinates T ,R ,� ,� and the “tortoise” static coordinates t̄ , r̄ ,� ,�

rom the preceding section in domains F and S where the Killing vector is spacelike. These
nonstatic” domains extend up to infinity, namely, domain F up to I+, domain P up to I−. The
rbits of the Killing vector start at the south pole and end at the north pole in F, and they point in
pposite direction in P. The motion along them could thus be characterized as a “translation” from
ne pole to the other. The Lorentzian hypersurfaces T=constant are homogeneous spaces with

ositive curvature, i.e., three-dimensional de Sitter space–times. �See Fig. 19.�
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Metric and relation between coordinates,

g = sinh−2 r̄

��
	− dr̄2 + dt̄2 + ��

2 cosh2 r̄

��

d�2
 , �A70�

g = − 	1 −
R2

��
2 
dT2 + 	1 −

R2

��
2 
−1

dR2 + R2 d�2, �A71�

T = t̄ , �A72a�

exp
r̄

��

=�R + ��

R − ��

, �sinh
r̄

��

� =
��

�R2 − ��
2

,

�A72b�

tanh
r̄

��

=
��

R
, cosh

r̄

��

=
�R�

�R2 − ��
2

.

he signature factors sI and s� are defined as

sI = �+ 1 in domain F ,

− 1 in domain P ,
� �A73�

s� = − sI sign r̃ . �A74�

he coordinates ranges are

T � R, �R� � ���,	�, t̄ � R, r̄ � R , �A75�

ith negative values of coordinates R and r̄ interpreted as described in Eq. �A2�.
Orthonormal tetrad,

eT = 	R2

��
2 − 1
−1/2 �

�T
= �sinh

r̄

��

� �

� t̄
,

�A76�

eR = 	R2

��
2 − 1
1/2 �

�R
= − �sinh−1 r̄

��

� �

� r̄
, e� =

1

R

�

��
=

1

��

�tanh
r̄

��

� �

��
.

FIG. 19. The static family of coordinates, spacelike domains.
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Relation to spherical cosmological family,

T =
��

2
log

cos t̃ − cos r̃

cos t̃ + cos r̃
, R = ��

sin r̃

sin t̃
, �A77�

t̄ =
��

2
log	− tan

t̃ + r̃

2
tan

t̃ − r̃

2

, r̄ =

��

2
log	− tan

t̃ + r̃

2
cot

t̃ − r̃

2

 ,

exp
t̄

��

=�cos t̃ − cos r̃

cos t̃ + cos r̃
, sinh

t̄

��

=
sI cos r̃

�cos2 t̃ − cos2 r̃
,

tanh
t̄

��

= −
cos r̃

cos t̃
, cosh

t̄

��

=
− sI cos t̃

�cos2 t̃ − cos2 r̃
, �A78�

exp
r̄

��

=�sin r̃ + sin t̃

sin r̃ − sin t̃
, �sinh

r̄

��

� =
sin t̃

�sin2 r̃ − sin2 t̃
,

tanh
r̄

��

=
sin t̃

sin r̃
, cosh

r̄

��

=
�sin r̃�

�sin2 r̃ − sin2 t̃
.

Relation to flat cosmological family,

t̄ =
��

2
log

− t̂2 + r̂2

��
2 = −

��

2
log

− ť2 + ř2

��
2 , r̄ =

��

2
log

r̂ + t̂

r̂ − t̂
=

��

2
log

ř − ť

ř + ť
, �A79�

T

��

=
1

2
log

− t̂2 + r̂2

��
2 = −

1

2
log

− ť2 + ř2

��
2 ,

R

��

=
r̂

t̂
= −

ř

ť
. �A80�

Relation to conformally Minkowski coordinates,

coth
T

��

=
2��t

��
2 + t2 − r2 ,

R

��

=
2��r

��
2 + r2 − t2 , �A81�

t̄ =
��

2
log	−

��� + t�2 − r2

��� − t�2 − r2
, r̄ =
��

2
log	−

��� + r�2 − t2

��� − r�2 − t2
 . �A82�

7. The hyperbolic cosmological family:
The third type of cosmological coordinates are the hyperbolic cosmological coordinates

, � , � , �. The hypersurfaces �=constant are homogeneous spaces with negative curvature,
oordinate lines � ,� ,�=constant correspond to the worldlines of cosmological observers orthogo-
al to these slices, and the vector � /�� is a timelike conformal Killing vector. The coordinates
over space–time only partially—they can be introduced in two disconnected domains near the
orth pole, namely, in the past of the event t̃= /2 , r̃=0 �where ��0�, and in the future of this
vent �where ��0�. �see. Fig. 20.�
The metric,

                                                                                                            



T

w

d
c
t
a

d
R
R
t
t

l
v

102504-51 Fields of accelerated sources: Born in de Sitter J. Math. Phys. 46, 102504 �2005�

                        
g = − d�2 + sinh2 �

��
	d�2 + ��

2 sinh2 �

��

d�2
 . �A83�

he ranges of coordinates and the signature factor sI are

� � R+, � � R, sI = + 1 in the future patch,

�A84�
� � R−, � � R, sI = − 1 in the past patch,

ith negative values of radial coordinate � interpreted as described in Eq. �A2�.
Orthonormal tetrad,

e� =
�

��
, e� = sinh−1 �

��

�

��
, e� = sinh−1 �

��

sinh−1 �

��

�

��
. �A85�

Relation to spherical cosmological family,

tanh
�

2��

= sI�cos r̃ − sin t̃

cos r̃ + sin t̃
, tanh

�

��

= −
sin r̃

cos t̃
. �A86�

Relation to conformally Minkowski coordinates,

tanh
�

2��

= sI
�t2 − r2

��

, tanh
�

��

=
r

t
. �A87�

8. The accelerated coordinate family:
This family consists of the accelerated coordinates T� ,R� ,�� ,�, and the C-metric-like coor-

inates � ,v ,
 ,� �� being different from � of the standard coordinates�. Contrary to the previous
ases the accelerated coordinates are centered on uniformly accelerated origins, R�=0 corresponds
o two worldlines with acceleration �ao�. The transformation relations to the systems introduced
bove mix these three coordinates in general.

The accelerated coordinates are closely related to the static system. Their time coor-
inates coincide, T�=T, and coordinate lines R� ,�� ,�=constant are the same as those with
,� ,�=constant. Both coordinate systems are identical for ao=0. Sections T ,T� ,�=constant with
,R���� have geometry of 2-sphere with parallels and meridians given by the coordinate lines of

he static coordinates R ,�. The lines of coordinates R� ,�� are the deformed version of static ones,
heir poles are shifted along meridian �=0 towards each other, cf. Fig. 11.

Two conformal diagrams of sections �� ,�=constant ���� /2 on the right, ��� /2 on the
eft�, adapted to the accelerated coordinates, are depicted in Fig. 21. The shape of the diagram
aries with different values of ��; indeed, the position of infinity is given by R�

2 −1

FIG. 20. The hyperbolic cosmological family of coordinates.
=−�� /Ro cos ��. See also Fig. 10 for sections ��=0,.
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The C-metric-like coordinates rescale only the values of the accelerated coordinates and
egularize the coordinate singularity R�= ±	. de Sitter metric in these coordinates is a zero-mass
imit of the C-metric �the metric describing accelerated black holes; see, e.g., Refs. 28 and 29, cf.
lso Ref. 59�.

Finally, we use four parameters ao ,�o ,Ro ,bo to parametrize the acceleration. They are related
s follows:

sinh �o =
Ro

���
2 − Ro

2
=

bo
2 − ��

2

2��bo
= − ao��,

cosh �o =
��

���
2 − Ro

2
=

bo
2 + ��

2

2��bo
= �1 + ao

2��
2 ,

�A88�

tanh �o =
Ro

��

=
bo

2 − ��
2

bo
2 + ��

2 = −
ao��

�1 + ao
2��

2
,

exp �o =��� + Ro

�� − Ro
=

bo

��

= �1 + ao
2��

2 − ao��.

Metric and relation between coordinates,

g = �2− 	1 −
R�2

��
2 
dT�2 + 	1 −

R�2

��
2 
−1

dR�2 + R�2 d�2�� , �A89�

g = r2− �v2 − 1�d�2 +
1

v2 − 1
dv2 +

1

1 − 
2d
2 + �1 − 
2�d�2� , �A90�

here

d�2� = �d��2 + sin2 �� d�2� , �A91�

� =
�1 − Ro

2/��
2

1 + �R�Ro/��
2 �cos ��

=
r

R�
=

rv
��

, �A92�

r =
�� = �R� = �

�� , �A93�

FIG. 21. The accelerated family of coordinates.
v cosh �o − 
 sinh �o v
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� =
T�

��

, v =
��

R�
, 
 = − cos ��, �A94�

Orthonormal tetrad:

eT� = ���−1	1 −
R�2

��
2 
−1/2 �

�T�
=

1

r�v2 − 1

�

�T�
,

eR� = ���−1	1 −
R�2

��
2 
1/2 �

�R�
=

1

r
�v2 − 1

�

�R�
, �A95�

e�� =
1

�R�

�

���
=

1

r

�

���
.

Relation to static coordinates,

T = T�,

R cos � =
R�cos �� + Ro

1 + �R�Ro/��
2 �cos ��

, R sin � =

R� sin ���1 −
Ro

2

��
2

1 + �R�Ro/��
2 �cos ��

,

�A96�

R2

��
2 = 1 −

�1 − R�2/��
2 ��1 − Ro

2/��
2 �

�1 + �R�Ro/��
2 �cos ���2 , tan � =

R� sin ���1 −
Ro

2

��
2

R� cos �� + Ro
.

he inverse relations have the same form with T, R, � and T� , R� , �� interchanged only and �o

eplaced by −�o,

� =
�1 − Ro

2/��
2

1 + �R�Ro/��
2 �cos ��

=
1 − �RRo/��

2 �cos �

�1 − Ro
2/��

2
, �A97�

	1 +
R�Ro

��
2 cos ��
	1 −

RRo

��
2 cos �
 = 1 −

Ro
2

��
2 , �A98�

1 − R�2/��
2

1 + �R�Ro/��
2 �cos ��

=
1 − R2/��

2

1 − �RRo/��
2 �cos �

. �A99�

Relation to Robinson-Trautman coordinates,

T� = u cosh �o −
��

2
log��� − r�sinh �o cos �� + cosh �o�

�� − r�sinh �o cos �� − cosh �o�
� ,

�A100�

R� =
r cosh �o

1 − �r/���sinh �o cos ��
, �tan

��

2
� = exp	� −

u

��

sinh �o
 ,

� =
u

��

cosh �o −
1

2
log��� − r�sinh �o cos �� + cosh �o�

�� − r�sinh �o cos �� − cosh �o�
� ,

�A101�
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� =
��

r cosh �o
− tanh �o cos ��, 
 = tanh	� −

u

��

sinh �o
 ,

here cos ��=−
 is given in terms of the Robinson-Trautman coordinates by the last equation.
Relation to flat cosmological family: If we introduce the spherical coordinates ť� , ř� , �� , �

oosted with respect to the flat cosmological coordinates ť , ř , � , � by a boost �o �in the sense of

inkowski space M̌�, we find that the accelerated coordinates T� , R� are related to t̂� , r̂� in
xactly the same way as the static coordinates T , R are related to the coordinates ť , ř. The boost
�= ť cosh �o+ ž sinh �o , x̌�= x̌ , y̌�= y̌ , ž�= ť sinh �o+ ž cosh �o, rewritten in the spherical coordi-
ates ř� cos ��= ž� , ř� sin ��=�x̌�2+ y̌�2, reads

ť� = ť cosh �o + ř cos � sinh �o,

ř� cos �� = ť sinh �o + ř cos � cosh �o,

�A102�
ř� sin �� = ř sin � ,

nd relations analogous to Eqs. �A67� and �A80� are

T� = −
��

2
log� ť�2 − ř�2

��
2 �, R� = − ��

ř�

ť�
. �A103�

Similarly, the formulas relating the accelerated coordinates to the coordinates t̂ , r̂ , � are

t̂� = t̂ cosh �o − r̂ cos � sinh �o,

r̂� cos �� = − t̂ sinh �o + r̂ cos � cosh �o, �A104�

r̂� sin �� = r̂ sin � ,

T� =
��

2
log� t̂�2 − r̂�2

��
2 �, R� = ��

r̂�

t̂�
. �A105�

The conformal factor takes the form

� =
ť�

ť
=

t̂�

t̂
= cosh �o −

R

��

sinh �o cos � . �A106�

9. The Robinson-Trautman coordinates:
In the Robinson-Trautman coordinates u ,r ,� ,� �or in their complex version u ,r ,� , �̄�, de

itter metric takes the standard Robinson-Trautman form �see Fig. 22�.50 The coordinate u is null,
he “radial” coordinate r is an affine parameter along coordinate lines u ,� ,�=constant. These
ines are null geodesics generating light cones with vertices at the origin r=0. The coordinates

,� �or � , �̄� are angular coordinates, however, they are not functions of the accelerated angular
oordinates �� ,� only �cf. Eq. �A112��. Because �� ,� have a clearer geometrical meaning, we list
ome formulas also in the mixed coordinate system u ,r ,�� ,�.

The origin r=0 of the Robinson-Trautman coordinates is centered on the worldline of the
niformly accelerated observer moving with the acceleration �ao�= ���

−1 sinh �o�. The coordinates
re thus closely related to the accelerated coordinates.

The coordinates u ,r ,� ,� do not cover the whole space–time smoothly. They can be intro-
uced smoothly in the future of the north pole, or in the past of the south pole. At the boundary of

hese two domains, u→ ±	.
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Metric and relation between coordinates,

g = − H du2 − du ∨ dr +
r2

P2 �d�2 + d�2� , �A107�

g = − H du2 − du ∨ dr +
r2

P2d� ∨ d�̄ , �A108�

g = − cosh2 �o
r2

��
2 �v2 − 1�du2 − du ∨ dr + cosh �o

r2

��

sin �� du ∨ d�� + r2�d��2 + sin2 �� d�2� ,

�A109�

H = −
r2

��
2 + 2

r

��

sinh �o tanh	� −
u

��

sinh �o
 + 1 = −
r2

��
2 − 2

r

��

sinh �o cos �� + 1,

�A110�

P = cosh	� −
u

��

sinh �o
 =
1

sin ��
, �A111�

� =
u

��

sinh �o + log�tan
��

2
� ,

�A112�

�tan
��

2
� = exp	� −

u

��

sinh �o
 ,

� =
1
�2

�� − i��, � =
1
�2

�� + �̄� ,

�A113�

�̄ =
1
�2

�� + i��, � =
i

�2
�� − �̄� .

Null tetrad: Since the Robinson-Trautman coordinates are closely related to the congruence of
ull geodesics, it is convenient to introduce the null tetrad which is parallelly transported along

FIG. 22. The Robinson-Trautman coordinates.
hese geodesics u ,� ,�=constant,
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kRT =
1
�2

�

�r
, lRT = −

1
�2

H
�

�r
+ �2

�

�u
,

�A114�

mRT =
1
�2

P

r
	 �

��
− i

�

��

, m̄RT =

1
�2

P

r
	 �

��
+ i

�

��

 .

Relation to accelerated coordinate family,

r =
R��1 − Ro

2/��
2

1 + �R�Ro/��
2 �cos ��

,

u =�1 −
Ro

2

��
2 	T� +

��

2
log�R� − ��

R� + ��

�
 , �A115�

� =
Ro

��
	 T�

��

+
1

2
log�R� − ��

R� + ��

�
 + log�tan
��

2
� ,

r =
��

v cosh �o − 
 sinh �o
,

u =
��

cosh �o
	� +

1

2
log�1 − v

1 + v
�
 , �A116�

� = tanh �o	� +
1

2
log�1 − v

1 + v
�
 +

1

2
log�1 + 


1 − 

� .

Relation to static family,

r =
��

�1 − Ro
2/��

2 	1 −
RRo

��
2 cos �
2

− 	1 −
R2

��
2 
	1 −

Ro
2

��
2 
�1/2

, �A117�

r sin �� = R sin �, r cos �� =
R cos � − Ro

�1 − Ro
2/��

2
, �A118�

R sin � = r sin ��, R cos � = r cos ���1 − Ro
2/��

2 + Ro. �A119�

10. The null family:
Finally, we return back to the coordinate systems which employ standard coordinates � , �.

ime and radial coordinates can be transformed into two null coordinates. Such null coordinates
an be associated with most coordinate families introduced above. Coordinates ũ , ṽ are related to
he standard coordinates; ǔ, v̌ and û , v̂ to the flat cosmological coordinates; u , v to the confor-

ally Minkowski; and ū , v̄ to the static coordinates. Coordinate vectors
� /�ũ ,� /�ṽ� , �� /�ǔ ,� /�v̌�, etc., are the pairs of independent null vectors in the radial 2-slices
, �=constant. We do not allow the radial coordinate to be negative in the definitions of null

oordinates because this would interchange the meaning of u and v. The null coordinates are thus

rawn in the right half of Fig. 23 only.
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Metric and relation to other coordinates,

g =
��

2

1 − cos�ũ + ṽ�
�− dũ ∨ dṽ + �1 − cos�ũ − ṽ��d�2� , �A120�

g =
��

2

�û + v̂�2 �− 2 dû ∨ dv̂ + �û − v̂�2 d�2� , �A121�

g =
��

2

�ǔ + v̌�2 �− 2 dǔ ∨ dv̌ + �ǔ − v̌�2 d�2� , �A122�

g = 	 ��
2

��
2 − uv


2

�− 2 du ∨ dv + �u − v�2 d�2� , �A123�

g = 	exp
ū

��

+ exp
v̄

��

−2	− 2 exp

ū + v̄
��

dū ∨ dv̄ + ��
2 	exp

ū

��

− exp
v̄

��

2

d�2
 .

�A124�

�A125�

Relation between null coordinates: The coordinates û, v̂, u, v, and ǔ , v̌ can be viewed as null

oordinates in the conformally related Minkowski spaces M̂, M, and M̌; these are shifted with
espect to each other by  /2 in the direction of the conformally Einstein time coordinate t̃, or
ssociated null coordinates,

û
= tan

ũ
,

v̂
= tan

ṽ
,

FIG. 23. The null family of coordinates
�� 2 �� 2
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u

��

= tan	 ũ

2
−



4

,

v
��

= tan	 ṽ
2

−


4

 , �A126�

ǔ

��

= tan	 ũ

2
−



2

,

v̌
��

= tan	 ṽ
2

−


2

 .

he remaining coordinates ū , v̄ are related to the conformally Einstein null coordinates ũ , ṽ by
he “compactification transformation,”

tan
ũ

2
= su exp

ū

��

, tan
ṽ
2

= sv exp
v̄

��

. �A127�

ere the sign factors su and sv are given by

su = sign tan
ũ

2
, sv = sign tan

ṽ
2

. �A128�

elations �A126� and �A127� between null coordinates can also be rewritten as follows:

tan
ũ

2
= su exp

ū

��

=
û

��

= −
��

ǔ
=

�� + u

�� − u
,

tan ũ = − su sinh−1 ū

��

=
2û��

��
2 − û2 =

2ǔ��

��
2 − ǔ2 =

u2 − ��
2

2u��

,

�A129�

sin ũ = su cosh−1 ū

��

=
2û��

��
2 + û2 =

− 2ǔ��

��
2 + ǔ2 =

��
2 − u2

��
2 + u2 ,

cos ũ = − tanh
ū

��

=
��

2 − û2

��
2 + û2 =

û2 − ��
2

û2 + ��
2 =

− 2u��

��
2 + u2 ,

û

��

= tan
ũ

2
= su exp

ū

��

= −
��

ǔ
=

�� + u

�� − u
, �A130�

−
ǔ

��

= cot
ũ

2
= su exp	−

ū

��

 =

��

û
=

�� − u

�� + u
, �A131�

u

��

= −
1 − sin ũ

cos ũ
= −

cos ũ

1 + sin ũ
= 	tanh

ū

2��

su

=
û − ��

û + ��

=
�� + ǔ

�� − ǔ
, �A132�

ū

��

= log�tan
ũ

2
� = log� û

��

� = log���

ǔ
� = log��� + u

�� − u
� = 2 arctanh	 u

��

su

, �A133�

ûǔ = − ��
2 ,

û

��

+
��

ǔ
= 0. �A134�

he same relations hold for coordinates v , ṽ , v̂ , v̌ and v̄.
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sl2 Gaudin model with jordanian twist is studied. This system can be obtained as
the semiclassical limit of the XXX spin chain deformed by the jordanian twist. The
appropriate creation operators that yield the Bethe states of the Gaudin model and
consequently its spectrum are defined. Their commutation relations with the gen-
erators of the corresponding loop algebra as well as with the generating function of
integrals of motion are given. The inner products and norms of Bethe states and the
relation to the solutions of the Knizhnik-Zamolodchikov equations are
discussed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2036932�

. INTRODUCTION

The quantum inverse scattering method �QISM� was largely created by Faddeev and his
chool at St. Petersburg as a quantum counterpart of the classical inverse scattering method.1–4

lassifying quantum solvable systems with respect to the underlying dynamical symmetry alge-
ras, one could say that the Gaudin models5,6 can be seen as the simplest ones being based on loop
lgebras. Their Hamiltonians are related to classical r-matrices,

H�a� = �
b�a

N

rab�za − zb� . �1.1�

he condition of their commutativity �H�a� ,H�b��=0 is nothing else but the classical Yang-Baxter
quation

�rab�za − zb�,rac�za − zc� + rbc�zb − zc�� + �rac�za − zc�,rbc�zb − zc�� = 0, �1.2�

here r is antisymmetric and belongs to the tensor product g � g of a Lie algebra g, or its
epresentations and the indices fix the corresponding factors in the N-fold tensor product of this
lgebra. The Gaudin models based on the classical r-matrices of simple Lie algebras attracted a lot
f attention.7–11 Their spectrum and corresponding eigenfunctions were obtained using different
ethods such as coordinate and algebraic Bethe ansatz, separated variables, etc. The correlation

unctions of the sl2 Gaudin system were calculated by means of the Gauss factorization.8 A
onnection between the Bethe vectors of the Gaudin models for simple Lie algebras to the solu-
ions of the Knizhnik-Zamolodchikov equation was established in Refs. 9–11. An explanation of
his connection based on Wakimoto modules at critical level of the underlying affine algebra was
iven in Ref. 10.

The algebraic Bethe Ansatz for the Gaudin model based on the sl2 invariant classical r-matrix
eformed by the constant jordanian r-matrix was postulated in Ref. 12. Following the ideas used

�Electronic mail: nantonio@math.ist.utl.pt
�
Electronic mail: nmanoj@ualg.pt
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n the case of the osp�1 �2� trigonometric Gaudin model,13 Kulish noticed that the similarity
ransformation by exp��X+� � exp��X+� on the sl2 trigonometrical classical r-matrix,

rtrig��� =
e−�

sinh���
r�+� +

e�

sinh���
r�−� =

e−�

sinh���
�1

2
h � h + 2X+

� X−�
+

e�

sinh���
�1

2
h � h + 2X−

� X+� ,

etting �→��, �→� /2� and after the scaling limit

lim
�→0

�rtrig���� =
1

�
�h � h + 2�X+

� X− + X−
� X+�� + ��h � X+ − X+

� h� ,

ields the sl2-invariant classical r-matrix deformed by the jordanian r-matrix. Moreover the high-
st weight vector of the corresponding Gaudin model is preserved. Based on these arguments
ulish postulated the Bethe vectors, the spectrum, and the Bethe equations of the system.

Alternatively, the jordanian twist14–16

FJ = eh�� = exp�h �
1
2 ln�1 + 2�X+�� �1.3�

an be applied to the sl2-invariant spin system based on the Yang quantum R-matrix,

R��;�� = I +
�

�
P , �1.4�

here P is the permutation matrix in the tensor product C2 � C2, to obtain the twisted sl2 spin
ystem.14,17 The semiclassical limit �→0 of this system yields the same Gaudin model discussed
y Kulish.12 The twisted XXX spin chain related to the quantum R-matrix,

R��;�;�� = RJ��� +
�

�
P , �1.5�

here RJ���=F21
J �F12

J �−1 is the sl2 jordanian quantum R-matrix studied in Refs. 18–20, whose
omogeneous case was analyzed in Ref. 14, will be discussed elsewhere,17 here will only be
resented the aspects relevant to the study of the corresponding Gaudin model.

The L-operator of the quantum spin system on a one-dimensional lattice with N sites coin-
ides with R-matrix acting on a tensor product V0 � Va of auxiliary space V0=C2 and the space of
tates at site a=1,2 , . . . ,N,

L0a�� − za� = �e−�a �hae�a

0 e�a
� +

�

� − za	
ha

2
Xa

−

Xa
+ −

ha

2

 , �1.6�

here za is a parameter of inhomogeneity �site dependence�. Corresponding monodromy matrix T

s an ordered product of the L operators,

T��;�za�1
N� = L0N�� − zN� ¯ L01�� − z1� = 

a=1

←

N

L0a�� − za� = �A��� B���
C��� D���

� . �1.7�
he commutation relations of the T-matrix entries follow form the FRT relation
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R12�� − �;�;��T1���T2��� = T2���T1���R12�� − �;�;�� . �1.8�

ultiplying �1.8� by R12
−1 and taking the trace over C2 � C2, one gets commutativity of the transfer

atrix

t��� = tr T��� = A��� + D��� �1.9�

or different values of the spectral parameter t���t���= t���t���.
It is of interest to choose different spins la at different sites of the lattice, hence the following

pace of states:

H = �
a=1

N

Va
�la�,

ith the highest spin vector 	+= �a=1
N 
a. It is straightforward to show that

C���	+ = 0, �1.10�

nd

A���	+ = a���	+ = 
a=1

N �� − za + �a�/2

� − za
�	+, �1.11�

D���	+ = d���	+ = 
a=1

N �� − za − �a�/2

� − za
�	+. �1.12�

s the first step in the application of the algebraic Bethe Ansatz to the twisted XXX spin chain one
an confirm that the highest spin vector 	+ is an eigenvector of the transfer matrix �1.9�,

t���	+ = �0���	+, �1.13�

ith �0���=a���+d���. The next step is to show that �1���=B���	+ is also an eigenvector of
he transfer matrix

t����1��� = t���B���	+ = �1��,���1��� +
�

� − �
�a��� − d�����1���

− ��a��� − d�����a��� − d����	+, �1.14�

here the eigenvalue �1�� ,�� and the Bethe equations are given by

�1��,�� = �0��� −
�

� − �
�a��� − d���� , �1.15�

a��� − d��� = 0. �1.16�

he following steps of the algebraic Bethe Ansatz are analogous having the same eigenvalues and
ethe equations as in the invariant case,14 the details will be presented elsewhere.17

The corresponding Gaudin model can be obtained from the spin system via the semiclassical
imit7,21 by setting �=−�� /2�� and using the expansion in powers of � of the monodromy matrix

T��� = I +
�

2
L��� + O��2� , �1.17�
here
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L��� = � h��� 2X−���
2X+��� − h���

� �1.18�

nd

h��� = �
a=1

N � ha

� − za
+ �Xa

+�, X−��� = �
a=1

N � Xa
−

� − za
−

�

2
ha�, X+��� = �

a=1

N
Xa

+

� − za
. �1.19�

ubstituting the expansion of the monodromy matrix �1.17� and

�R��;�;����=−��/2�� = I +
�

2
r���� + O��2� , �1.20�

ith

r���� =	
1

�
� − � 0

0 −
1

�

2

�
�

0
2

�
−

1

�
− �

0 0 0
1

�


 , �1.21�

nto the FRT relations �1.8�, the first nontrivial term, the coeficient of �2, is the so-called Sklyanin
racket7

�L1���,L2���� = − �r��� − ��,L1��� + L2���� . �1.22�

oreover the central element ���,2 of the algebra �1.8�, admits the expansion in � such that the
econd order term of t���−��� is the generating function of the integrals of motion of the
orresponding Gaudin model,7

t��� = 1
2Tr L2��� . �1.23�

The first step in the application of the algebraic Bethe Ansatz, to the Gaudin models, is to
efine appropriate creation operators that yield the Bethe states and consequently the spectrum of
he generating function t���. The creation operators used in the sl2-invariant Gaudin model coin-
ide with one of the L-matrix entry.5,7 However, in the present case these operators are not
omogeneous polynomials of the generator X−��� and can be defined by the recursive relation as
roposed by Kulish.12 It is convenient to define BM

�k���1 , . . . ,�M�, a more general set of operators,
n order to simplify the calculation of the commutators between the creation operators and the
enerating function of the integrals of motion t���. These operators are symmetric functions of
heir arguments and they satisfy certain recursive relations. Their commutation relations with the
enerators of the loop algebra are straightforward to calculate and they are essential in the main
tep of the algebraic Bethe Ansatz. The creation operators of the sl2 Gaudin model with jordanian
wist are the particular case BM��1 , . . . ,�M�=BM

�0���1 , . . . ,�M�. Thus the commutation relations
etween the creation operators and t��� are easily calculated. Therefore the corresponding Bethe
ectors can be defined by the action of the creation operators on the highest spin vector 	+ and
hus the spectrum of the system is determined. In this way the algebraic Bethe Ansatz is fully
mplemented confirming the result of Kulish12 that the spectrum of the system coincides with the
ne of the sl2-invariant model and consequently the twisted Gaudin Hamiltonians have the same
pectrum as in the sl2-invariant case, although the Bethe vectors of the two systems are different.

owever the Bethe vectors, in this case, are not eigenstates of the global Cartan generator hgl.
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Besides the problem of determining the spectrum of the system, via algebraic Bethe Ansatz,
ome properties of the creation operators are fundamental in calculating the inner products and the
orms of the Bethe states. In particular, it turns out that the relation between the creation operators
f the system and the ones in the untwisted case is essential in determining the inner products of
he Bethe vectors. In addition, it is necessary to consider the dual creation operators

M
* ��1 , . . . ,�M� obtained by using the dual Gaudin model based on the following classical
-matrix:

r*��� =
1

�
�h � h + 2�X+

� X− + X−
� X+�� + ��h � X− − X−

� h� . �1.24�

s opposed to the sl2-invariant case, the Bethe vectors �M��1 , . . . ,�M� are not orthogonal for
ifferent M’s. It should also be mentioned that, due to the jordanian twist, the dual generating
unction of integrals of motion t*��� is not equal to t���, the generating function of integrals of
otion of the original model, contrary to the sl2-invariant case, thus these operators are not
ermitian.

A connection between the Bethe vectors, when the Bethe equations are not imposed on their
arameters, of the twisted Gaudin model to the solutions of the corresponding Knizhnik-
amolodchikov equation, similarly to the sl2-invariant model, is based on some analytical prop-
rties of the creation operators BM��1 , . . . ,�M�.

The paper is organized as follows. In Sec. II we discuss the Gaudin model based on the sl2
nvariant r-matrix with jordanian twist emphasizing the creation operators BM. Using the previ-
usly established properties of the creation operators BM, in Sec. III the spectrum and the Bethe
ectors of the system are given. The dual creation operators are used to obtain the expressions for
nner products and norms of Bethe states. In conclusion a relation between the Bethe vectors and
he solutions to the Knizhnik-Zamolodchikov equation are discussed. In the appendix the proofs of
he lemmas are given.

I. sl2 TWISTED GAUDIN MODEL

The sl2-invariant classical r-matrix with jordanian twist22,18,19 is the following element of
l2�sl2:

r���� =
c2

�

�
+ �rJ =

1

�
�h � h + 2�X+

� X− + X−
� X+�� + ��h � X+ − X+

� h� . �2.1�

he matrix form of r���� in the fundamental representation of sl2 follows from �2.1� by replacing
he appropriate matrices for the generators of sl2 given explicitly by

r���� =	
1

�
� − � 0

0 −
1

�

2

�
�

0
2

�
−

1

�
− �

0 0 0
1

�


 , �2.2�

ere ��C is the spectral and ��C is the twisting parameter. Definition of the Gaudin model

equires not only the classical r-matrix but also the L operator
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L��� = � h��� 2X−���
2X+��� − h���

� , �2.3�

hose entries �h��� ,X±���� are generators of the loop algebra L��sl2� defined by the Sklyanin
inear bracket

�L1���,L2���� = − �r12�� − ��,L1��� + L2���� . �2.4�

he corresponding commutation relations between the generators are explicitly given by

�h���,h���� = 2��X+��� − X+���� ,

�X−���,X−���� = − ��X−��� − X−���� ,

�X+���,X−���� = −
h��� − h���

� − �
+ �X+��� ,

�2.5�
�X+���,X+���� = 0,

�h���,X−���� = 2
X−��� − X−���

� − �
+ �h��� ,

�h���,X+���� = − 2
X+��� − X+���

� − �
.

he usual sl2 loop algebra is recovered be setting �=0.
In order to define a dynamical system besides the algebra of observables L��sl2� a Hamil-

onian should be specified. Due to the Sklyanin linear bracket �2.4� the elements

t��� = 1
2Tr L2��� = h2��� + 2�X+���X−��� + X−���X+���� = h2��� − 2h���� + 2�2X−��� + ��X+���

�2.6�

enerate an Abelian subalgebra

t���t��� = t���t��� . �2.7�

ne way to show �2.7� is to notice that the commutation relation between t��� and L��� can be
ritten in the form

�t���,L���� = �M��,��,L���� , �2.8�

sing �2.4�–�2.6� it is straightforward to calculate M�� ,��,

M��,�� = − Tr1�r12�� − ��L1���� −
1

2
Tr1�r12

2 �� − ���

=	− 2
h���
� − �

+ 2�X+��� − 4
X−���
� − �

− 2�h���

− 4
X+���
� − �

2
h���
� − �

− 2�X+��� 
 −
3

�� − ��2 I2. �2.9�

hus the commutators between the generating function t��� and the generators of the loop algebra

ollow from �2.8� and �2.9�:
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�t���,X+���� = 4
X+���h��� − X+���h���

� − �
− 4�X+���X+��� , �2.10�

�t���,h���� = 8
X−���X+��� − X−���X+���

� − �
− 4�h���X+��� , �2.11�

�t���,X−���� = 4
X−���h��� − X−���h���

� − �
+ 2�h���h��� + 4�X−���X+��� + 2�2X+��� .

�2.12�

Preserving some generality, the representation space H of the Sklyanin algebra �2.4� and �2.5�
an be a highest spin ���� representation with the highest spin vector 	+,

X+���	+ = 0, h���	+ = ����	+. �2.13�

he spectrum and the eigenstates of t��� can be studied in this general setting. However to have
physical interpretation a local realization

H = V1 � ¯ � VN �2.14�

s tensor product of sl2-modules is needed. Then the L operator is given by

L��� = �
a=1

N � 1

� − za
� ha 2Xa

−

2Xa
+ − ha

� + ��Xa
+ − ha

0 − Xa
+ �� , �2.15�

here Ya= �ha ,Xa
±��End�Va� are sl2 generators in representation Va, associated with each site a.

or convenience, the generators Y���= �h��� ,X±���� are written down explicitly,

h��� = �
a=1

N � ha

� − za
+ �Xa

+�, X−��� = �
a=1

N � Xa
−

� − za
−

�

2
ha�, X+��� = �

a=1

N
Xa

+

� − za
. �2.16�

n this realization it is useful to consider the expressions of the generators of the global sl2 Lie
lgebra in terms of the local ones,

Ygl = �
a=1

N

Ya, �2.17�

here Y = �h ,X±�. Also, the following notation is useful:

Y���0 = �Y�����=0, �2.18�

hen h���=h���0+�Xgl
+ .

A representation of the model with the above Gaudin realization is obtained by considering at
ach site a an irreducible representation Va

��a� of sl2 with highest weight �a corresponding to a
ingular vector 
a�Va

��a� such that Xa
+
a=0 and ha
a=�a
a. Thus the space of states is

H = V1
��1�

� ¯ � VN
��N�, �2.19�

ith the highest spin vector �2.13�,

	+ = 
1 � ¯ � 
N �2.20�
nd the corresponding highest spin
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���� = �
a=1

N
�a

� − za
. �2.21�

The Gaudin Hamiltonians,

H�a� = �
b�a

N

rab�za − zb� = �
b�a

N � c2
��a,b�
za − zb

+ ��haXb
+ − Xa

+hb�� , �2.22�

here c2
��a ,b�=ha�hb+2�Xa

+
�Xb

−+Xa
−

�Xb
+�, can be obtained as the residues of the generating

unction t��� at the points �=za, a=1, . . . ,N using the expansion

t��� = �
a=1

N � c2�a�
�� − za�2 +

2H�a�

� − za
� + �2 �

a,b=1

N

Xa
+Xb

+, �2.23�

ere c2�a�=ha
2+2ha+4Xa

−Xa
+ is the sl2 Casimir at site a. As opposed to the sl2-invariant case, the

enerating function �2.23� commutes only with the generator Xgl
+ .

The first step in the algebraic Bethe Ansatz is to define appropriate creation operators that
ield the Bethe states and consequently the spectrum of the generating function t���. The creation
perators used in the sl2-invariant Gaudin model coincide with one of the L-matrix entries.5,7

owever, in the present case these operators are not homogeneous polynomials of the generator
−���. It is convenient to define a more general set of operators in order to simplify the presen-

ation.
Definition 2.1: Given two integers M and k�0 consider the operators

BM
�k���1, . . . ,�M� = �X−��1� + k���X−��2� + �k + 1��� ¯ �X−��M� + �M + k − 1���

= 
n=k

→

M+k−1

�X−��n−k+1� + n�� , �2.24�

ith B0
�k�=1 and BM

�k�=0 for M �0.
The following lemma describes some properties of the BM

�k���1 , . . . ,�M� operators which will
e used later on.

Lemma 2.1: Some useful properties of BM
�k���1 , . . . ,�M� operators are the following:

i� The operators BM
�k���1 , . . . ,�M� are symmetric functions of their arguments.

ii� BM
�k���1 , . . . ,�M�=BM−1

�k� ��1 , . . . ,�M−1��B1
�0���M�+ �M +k−1���.

iii� BM
�k����=BM

�k−1����+��i=1
M BM−1

�k� ���i��, here � is a set of M = ��� complex scalars with a
particular ordering �= ��1 , . . . ,�M� assumed for convenience and the notation

��i1,. . .,ik� = � \ ��i1
, . . . ,�ik

�

for any distinct i1 , . . . , ik� �1, . . . ,M�.
iv� BM

�k����=B1
�k���1�BM−1

�k+1����1��.

Implementation of the algebraic Bethe Ansatz requires the commutation relations between the
enerators of the loop algebra L��sl2� and the BM

�k���1 , . . . ,�M� operators. To this end we first
ntroduce the notation for the Bethe operators

�̂M��;�� = h��� + �
���

2

� − �
, �2.25�

here �= ��1 , . . . ,�M−1� and ��C \�. In the particular case M =1, �̂1�� ; � �=h��� and will be
ˆ
enoted by �1���. The required commutators are given in the following lemma.
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Lemma 2.2: The commutation relation between the generators h���, X±���, and the

M
�k���1 , . . . ,�M� operators are given by

h���BM
�k���� = BM

�k����h��� + 2�
i=1

M
BM

�k��� � ��i�� − BM
�k����

� − �i
+ ��

i=1

M

BM−1
�k+1����i���̂M��i;�

�i�� ,

�2.26�

X+���BM
�k���� = BM

�k����X+��� − �
i=1

M

BM−1
�k+1����i��

�̂M��;��i�� − �̂M��i;�
�i��

� − �i
− 2 �

i,j=1

i�j

M
BM−1

�k+1����� � ��i,j��
�� − �i��� − � j�

+ ��
i=1

M

BM−1
�k+1����i��X+��� , �2.27�

X−���BM
�k���� = BM

�k�����X−��� + M�� − ��
i=1

M

BM
�k��� � ��i�� = BM+1

�k� �� � �� − ��
i=1

M

BM
�k��� � ��i�� .

�2.28�

The B operators that define the Bethe states of the system were proposed by Kulish.12

hese operators are the particular case k=0 of �2.24� and will be denoted by

M��1 , . . . ,�M�=BM
�0���1 , . . . ,�M�. A recursive relation of the B operators follows from �ii� of

emma 2.1,

BM��� = BM−1���M���X−��M� + �M − 1��� . �2.29�

t may be useful to write down explicitly the first few B operators,

B0 = 1, B1��� = X−���, B2��1,�2� = X−��1�X−��2� + �X−��1� ,

B3��1,�2,�3� = X−��1�X−��2�X−��3� + 2�X−��1�X−��2� + �X−��1�X−��3� + 2�2X−��1� .

s a particular case of Lemma 2.2 the commutation relation between loop algebra generators h���,
±��� and the B operators are given by setting k=0 in �2.26�–�2.28�,

h���BM��� = BM���h��� + �
i=1

M �2
BM�� � ��i�� − BM���

� − �i
+ �BM−1

�1� ���i���̂M��i;�
�i��� ,

�2.30�

X+���BM��� = BM���X+��� − �
i=1

M

BM−1
�1� ���i��� �̂M��;��i�� − �̂M��i;�

�i��
� − �i

− �X+����
− 2 �

i,j=1

i�j

M
BM−1

�1� ���� � ��i,j��
�� − �i��� − � j�

, �2.31�

X−���BM��� = BM����X−��� + M�� − ��
M

BM�� � ��i�� . �2.32�

i=1
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The crucial step in the algebraic Bethe Ansatz is to determine the commutation relations
etween the creation operators, in this case the B operators, and the generating function t���. The
ain lemma, based on the results established previously in this section, will given a complete

xpression for the required commutator.
Lemma 2.3: The generating function t��� has the following commutation relation with the B

perators:

t���BM��� = BM����t��� − �
i=1

M
4h���
� − �i

+ �
i�j

M
8

�� − �i��� − � j�
� + 4�

i=1

M
BM�� � ��i��

� − �i
�̂M��i;�

�i��

+ 2��
i=1

M

BM−1
�1� ���i��h����̂M��i;�

�i�� + 4� �
i,j=1

i�j

M
BM−1

�1� �� � ��i,j�� − BM−1
�1� ���i��

� − � j
�̂M��i;�

�i��

+ �2 �
i,j=1

i�j

M

BM−2
�2� ���i,j���̂M−1�� j;�

�i,j���̂M��i;�
�i�� + 4M�BM���X+���

+ 2�2�
i=1

M

BM−1
�1� ���i��X+��i� . �2.33�

Proof: The case M =1 can be obtained directly from the M matrix �2.9� and is given by �2.12�.
or M �1 the commutator between the operator t��� and the corresponding B operator is to be
alculated directly using expression �2.6�,

�t���,BM���� = �h���,�h���,BM����� + 2�h���,BM����h��� − 2
d

d�
�h���,BM����

+ 2�2X−��� + ���X+���,BM���� + 4�X−���,BM����X+��� .

he terms in the preceding expression only involve the commutators between the generators of the
oop algebra and the B operators. Each term in the above equation will be calculated separately.
sing the commutators �2.26� and �2.30�–�2.32� the first term is given by

�h���,�h���,BM����� = BM����
i�j

M
8

�� − �i��� − � j�

− 4�
i=1

M 	BM���� � ��i�� − BM���
�� − �i�2 −

d

d�
BM���� � ��i��

� − �i



+ 8�
i�j

M
X−���BM−1

�1� ���� � ��i,j��
�� − �i��� − � j�

− 4�
i=1

M
BM���� � ��i��

� − �i
�
j�i

M
2

� − � j

+ 4��
i�j

M
BM−1

�1� ���� � ��i,j��
�� − �i��� − � j�

+ 2��
i=1

M

BM−1
�1� ���i��

�̂M��;��i�� − �̂M��i�
�i��

� − �i

+ ��
i�j

M �4
BM−1

�1� �� � ��i,j�� − BM−1
�1� ���i��

� − � j
+ �BM−2

�2� ���i,j���̂M−1�� j;�
�i,j���

� �̂M��i;�
�i�� + 2�2�

M

BM−1
�1� ���i���X+��� − X+��i�� .
i=1
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he commutator between the generator h��� and BM��� is also used to determine the next two
erms

2�h���,BM����h��� = BM����
i=1

M
− 4h���
� − �i

+ 4�
i=1

M
BM���� � ��i��

� − �i
h��� + 2��

i=1

M

BM−1
�1�

����i��h����̂M��i;�
�i�� − 4�2�

i=1

M

BM−1
�1� ���i���X+��� − X+��i�� ,

nd after differentiating �2.30�,

− 2
d

d�
�h���,BM���� = 4�

i=1

M
BM���� � ��i�� − BM���

�� − �i�2 −

d

d�
BM���� � ��i��

� − �i
.

he next term follows directly from �2.31�,

2�2X−��� + ���X+���,BM���� = − 4�
i=1

M

BM���� � ��i��
�̂M��;��i�� − �̂M��i;�

�i��
� − �i

− 8�
i�j

M
X−���BM−1

�1� ���� � ��i,j��
�� − �i��� − � j�

− 2��
i=1

M

BM−1
�1�

����i��
�̂M��;��i�� − �̂M��i;�

�i��
� − �i

− 4��
i�j

M
BM−1

�1� ���� � ��i,j��
�� − �i��� − � j�

+ 4��
i=1

M

BM���� � ��i��X+��� + 2�2�
i=1

M

BM−1
�1� ���i��X+��� .

he last term is obtained from �2.32�,

4�X−���,BM����X+��� = 4M�BM���X+��� − 4��
i=1

M

BM���� � ��i��X+��� .

hen all terms in �t��� ,BM���� are put together it is straightforward to obtain the formula
2.33� �

Besides the problem of determining the spectrum of the system, via algebraic Bethe Ansatz,
ome properties of the B operators are fundamental in calculating the inner products and the norms
f the Bethe states. To this end the relation between the B operators and the untwisted ones is
stablished using the Gaudin realization �2.16�,

BM��� = �
k=0

M−1

�k �
j1�¯�jM−k

M

BM−k�� j1
, . . . ,� jM−k

�0p̂k
�M−k� + �Mp̂M , �2.34�

here

BM−k�� j1
, . . . ,� jM−k

�0 = �BM−k�� j1
, . . . ,� jM−k

���=0

nd also

p̂i
�j� = �−

hgl

2
+ j�¯ �−

hgl

2
+ i + j − 1� with p̂i = p̂i

�0� �2.35�
re operators defined for any integers i and j.
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Moreover, some analytical properties of the B operators are important when solving the
orresponding Knizhnik-Zamolodchikov equation.

Lemma 2.4: The B operators satisfy the following identity:

�

�za
BM��� = − �

i=1

M
�

��i
�Xa

−��i�BM−1
�1� ���i��� , �2.36�

here Xa
−��i�= �Xa

− / ��i−za��− �� /2�ha for site a=1, . . . ,N.
Using the relevant properties of the B operators established in this section, the fundamental

escription of the sl2 Gaudin model with jordanian twist can be obtained.

II. SPECTRUM AND BETHE VECTORS OF THE TWISTED sl2 GAUDIN MODEL

In this section the spectrum and the Bethe vectors of the twisted sl2 Gaudin model as well as
heir inner products and norms will be determined by applying the algebraic Bethe Ansatz. The
rst step is to define the Bethe vectors �M���=BM���	+ by the action of the B operators on the
ighest spin vector 	+. Then the key observation is that highest spin vector 	+ is an eigenvector
f the generating function of integrals of motion t���. Finally the spectrum of the system is
btained as a consequence of the commutation relations between t��� and BM��� Lemma 2.3
2.33�. The unwanted terms coming from the commutator are annihilated by the Bethe equations
n the parameters �= ��1 , . . . ,�M� as well as by the condition X+���	+=0. Hence the algebraic
ethe Ansatz can be resumed in the following theorem.

Theorem 3.1: The highest weight vector 	+ is an eigenvector of t���,

t���	+ = �0���	+ �3.1�

ith the corresponding eigenvalue,

�0��� = �2��� − 2����� = �
a=1

N
2

� − za
��

b�a

N
�a�b

za − zb
� + �

a=1

N
�a��a + 2�
�� − za�2 . �3.2�

urthermore, the action of the B operators on the highest spin vector 	+ yields the Bethe vectors,

�M��� = BM���	+, �3.3�

uch that

t����M��� = �M��;���M��� , �3.4�

ith the eigenvalues

�M��;�� = �M
2 ��;�� − 2

��M

��
��;�� and �M��;�� = ���� − �

i=1

M
2

� − �i
, �3.5�

rovided that the Bethe equations are imposed on the parameters �= ��1 , . . . ,�M�,

�
a=1

N
�a

�i − za
− �

j�i

M
2

�i − � j
= 0, i = 1, . . . ,M . �3.6�

Proof: A consequence of �2.6�, �2.13�, �2.20�, and �2.21� is

t���	+ = �h2��� − 2h�����	+ = ��2��� − 2������	+ = �0���	+.
he action of t��� on the Bethe vectors �M��� �3.3� is evident from Lemma 2.3,
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t����M��� = t���BM���	+ = �0����M��� + �t���,BM����	+

= ��0��� − �
i=1

M
4����
� − �i

+ �
i�j

M
8

�� − �i��� − � j�
��M���

+ 4�
i=1

M
�M�� � ��i��

� − �i
�M��i;�

�i�� + 2��
i=1

M ������M−1
�1� ���i��

+ 2�
i�j

M
�M−1

�1� �� � ��i,j�� − �M−1
�1� ���i��

� − � j
��M��i;�

�i��

+ �2�
i=1

M ��
j�i

M

�M−1�� j;�
�i,j���M−2

�2� ���i,j����M��i;�
�i�� , �3.7�

here �M
�k����=BM

�k����	+ and X+���	+=0. When the Bethe equations are imposed on the param-
ters �= ��1 , . . . ,�M�,

�M��i;�
�i�� = �

a=1

N
�a

�i − za
− �

j�i

M
2

�i − � j
= 0, i = 1, . . . ,M , �3.8�

he unwanted terms in �3.7� vanish and hence t����M���=�M�� ;���M��� with

�M��;�� = �0��� − �
i=1

M
4����
� − �i

+ �
i�j

M
8

�� − �i��� − � j�
= �M

2 ��;�� − 2
��M

��
��;�� . �3.9�

�

Due to the pole expansion �2.23� of t��� the previous theorem yields the spectrum of the
audin Hamiltonians.

Corollary 3.1: The Bethe vectors �M��� are eigenvectors of the Gaudin Hamiltonians (2.22),

H�a��M��� = EM
�a��M��� �3.10�

ith the eigenvalues

EM
�a� = �

b�a

N
�a�b

za − zb
− �

i=1

M
2�a

za − �i
. �3.11�

Remark 3.1: The fact that the spectrum of the sl2-invariant Gaudin model remains is not
ffected by the jordanian twist can also be deduced from the following expression:

t��� = t���0 + 2��h���0Xgl
+ + 2p̂1

�1�X+���� + �2�Xgl
+ �2. �3.12�

Remark 3.2: From the Gaudin realization (2.16) follows that �Xgl
+ = lim�→� h��� and together

ith (2.30) is straightforward to obtain the action of the global generator Xgl
+ on the Bethe vectors

Xgl
+ �M��� = �

i=1

M

�M��i;�
�i���M−1

�1� ���i�� . �3.13�

hus the Bethe vectors are annihilated by the global generator Xgl
+ ,

Xgl
+ �M��� = 0 �3.14�

nce the Bethe equations (3.5) are imposed.
Remark 3.3: Analogously from (2.16) follows that −�� /2�hgl= lim�→� X−��� and with (2.32)
nd (ii) of Lemma 2.1 shows that Bethe vectors are not eigenstates of the global generator hgl,
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hgl�M��� = − 2p1
�M��M��� + 2�p1

�M−1��
i=1

M

�M−1���i�� , �3.15�

here p=− 1
2�a=1

N �a and pl
�k�= �p+k�l= �p+k�¯ �p+ l+k−1� is the Pochhammer symbol.

As it was shown already, the jordanian twist of the sl2-invariant Gaudin model preserves its
pectrum but the Bethe vectors are different, thus their inner products and norms are changed also.
n order to determine the inner products and norms of the Bethe vectors it is of interest to consider
he dual B operators, obtained by using the dual

�X−�*��� = �
a=1

N � Xa
+

� − za
−

�

2
ha� , �3.16�

xplicitly given by

BM
* ��1, . . . ,�M� = 

k=1
←

M

��X−�*��k� + �k − 1��� . �3.17�

s opposed to the sl2-invariant case here evidently the dual B operators do not annihilate the
ighest spin vector 	+,

BM
* ���	+ = �MpM	+. �3.18�

oreover the Bethe vectors are not orthogonal and their norms depend on the twist parameter.
Lemma 3.1: Consider integers M1 ,M2�0, M =min�M1 ,M2� and complex numbers �

��1 , . . . ,�M1
� and �= ��1 , . . . ,�M2

� such that ���=�. Then the inner products between Bethe
ectors is given by

��M1
�����M2

���� = pM1
pM2

�M1+M2 + �
k=1

M

pM1−k
�k� pM2−k

�k� �M1+M2−2k

� �
i1�¯�ik

M1

�
j1�¯�jk

M2

��k��i1
, . . . ,�ik

���k�� j1
, . . . ,� jk

��0, �3.19�

here �·� · �0= ��·� · ���=0 denotes the corresponding inner product of the sl2-invariant Gaudin
odel.8

Proof: The Bethe vectors are obtained from the action of the B operators �2.34� on 	+,

�M��� = BM���	+ = pM�M	+ + �
k=0

M−1

pk
�M−k��k �

j1�¯�jM−k

M

�M−k�� j1
, . . . ,� jM−k

�0,

here �M���0= �BM�����=0	+ are the corresponding Bethe vectors of the sl2-invariant Gaudin
odel. Then the inner product of the Bethe vectors of the twisted model are

��M1
�����M2

���� = pM1
pM2

�M1+M2 + �
k=0

M1−1

�
l=0

M2−1

pk
�M1−k�pl

�M2−l��k+l

� �
i1�¯�iM1−k

M1

�
j1�¯�jM2−l

M2

��M1−k��i1
, . . . ,�iM1−k

���M2−l�� j1
, . . . ,� jM2−l

��0

= pM1
pM2

�M1+M2 + �
M−1

pM1−n
�n� pM1−n

�n� �M1+M2−2n
n=1
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� �
i1�¯�in

M1

�
j1�¯�jn

M2

��n��i1
, . . . ,�in

���n�� j1
, . . . ,� jn

��0.

�

The norms of the Bethe vector follow from the previous lemma.
Corollary 3.2: The norms of Bethe vectors �M��� are given by

��M����2 = �
k=0

M

�pM−k
�k� �2�2�M−k� �

i1�¯�ik
j1�¯�jk

M

��k��i1
, . . . ,�ik

���k�� j1
, . . . ,� jk

��0. �3.20�

V. CONCLUSION

The Gaudin model based on the sl2 classical r-matrix with jordanian twist is studied. This
ystem can be obtained as the semiclassical limit of the XXX spin chain deformed by the jordanian
wist. Alternatively, applying a certain similarity transformation on the XXZ Gaudin model and
sing the scaling limit, Kulish12 was able to postulate the spectrum and the Bethe states of the
ystem.

The result of Kulish12 that the spectrum of the system coincides with the one of the
l2-invariant model is demonstrated by full implementation of the algebraic Bethe Ansatz. In order
o construct the Bethe vectors it is necessary to consider the creation operators which are not
omogeneous polynomials of one of the generators of the corresponding loop algebra. However,
t was convenient to consider a more general set of operators BM

�k���1 , . . . ,�M�, in order to simplify
he calculation of the commutators between the creation operators and the generating function of
he integrals of motion t���. These operators are symmetric functions of their arguments and they
atisfy certain recursive relations. Their commutation relations with the generators of the loop
lgebra are given and they are essential in the main step of the algebraic Bethe Ansatz. The
reation operators are the particular case BM��1 , . . . ,�M�=BM

�0���1 , . . . ,�M�. Thus the commuta-
ion relations between the creation operators and t��� are easily calculated. The corresponding
ethe vectors are defined by the action of the creation operators on the highest spin vector 	+ and

he spectrum of the system is determined. However, the Bethe vectors in this case, are not
igenstates of the global Cartan generator hgl.

Some properties of the creation operators are fundamental in calculating the inner products
nd the norms of the Bethe states. It is necessary to consider the dual creation operators

M
* ��1 , . . . ,�M� obtained by using the dual Gaudin model. The Bethe vectors �M��1 , . . . ,�M� are
ot orthogonal for different M’s. Moreover, contrary to the sl2-invariant case, the generating
unction of integrals of motion is not Hermitian.

The well known relation9,10 between the off-shell Bethe vectors of the Gaudin models related
o simple Lie algebras and the solutions of Knizhnik-Zamolodchikov equation23

�
�

�za
��z1, . . . ,zN� = H�a���z1, . . . ,zN� , �4.1�

here H�a� are the Gaudin Hamiltonians �1.1�, also holds for the KZ equation related to the sl2
lassical r-matrix with the jordanian twist. This relation is obtained by considering a Bethe vector
��� �z��, where the corresponding Bethe equations are not imposed, and the integral representation

f solutions to the Knizhnik-Zamolodchikov equation,

��z1, . . . ,zN� = � ¯ � ���� �z������ �z��d�� , �4.2�

� �
here ��� �z� is a scalar function
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���� �z�� = 
i�j

M

��i − � j�4/� 
a�b

N

�za − zb��a�b/�
a=1

N


k=1

M

�za − �k�−2�a/�. �4.3�

he partial derivatives of the scalar factor �4.3� are simply written

��za
��� = EM

�a�� and ���i
��� = − 2�M��i;�

�i��� . �4.4�

t is a simple matter to check that � given by �4.2� satisfies �4.1�. Due to the Leibniz rule

za
����=�za

����+��za
��� and the residue of �3.7� at �=za,

H�a����� = EM
�a����� − 2�

i=1

M

�M
�i,a�����M��i;�

�i�� , �4.5�

here �M
�i,a����=Xa

−��i�BM−1
�1� ���i��	+ and Xa

−��i�= �Xa
− / ��i−za��− �� /2�ha, we have

��za
���� = H�a����� + 2��

i=1

M

�M
�i,a�����M��i;�

�i�� + ���za
��� = H�a����� − ��

i=1

M

��i
���M

�i,a�� .

�4.6�

o obtain the final formula we have used the Lemma 2.4 and formulas �4.4�. Moreover, a closed
ontour integration of �� with respect to �1 , . . . ,�M will cancel the contribution from the sum
nd therefore ��z1 , . . . ,zN� given by �4.2� will satisfy Knizhnik-Zamolodchikov equation.
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PPENDIX: PROOFS OF LEMMAS

Proof of Lemma 2.1: The recurrence relations in �ii� and �iv� are evident from Definition 2.1.
�i� Given a fixed integer k, induction on M is used. Consider M =2 in definition �2.24�,

B2
�k���1,�2� = X−��1�X−��2� + �k + 1��X−��1� + k�X−��2� + k�k + 1��2, �A1�

hen using �2.5� it is straightforward to check that B2
�k���1 ,�2�=B2

�k���2 ,�1�.
Assume BN

�k���1 , . . . ,�N� is symmetric for M −1�N. For 1� i� j�M it is clear from �ii� that

BM
�k���1, . . . ,�i, . . . ,� j, . . . ,�M� = BM

�k���1, . . . ,� j, . . . ,�i, . . . ,�M� .

he symmetry of BM
�k���1 , . . . ,�M� with respect to �M−1 and �M must be shown. To this end the

ecurrence relation in �ii� is to be iterated twice and the appropriate terms combined

BM
�k���1, . . . ,�M� = BM−2

�k� ��1, . . . ,�M−2��X−��M−1� + �M + k − 2����X−��M� + �M + k − 1��� = BM−1
�k�

���1, . . . ,�M−2,�M��X−��M−1� + �M + k − 2���

+ BM−2
�k� ��1, . . . ,�M−2���X−��M−1�,X−��M�� + ��X−��M−1� + �M + k − 2����

= BM−1
�k� ��1, . . . ,�M−2,�M��X−��M−1� + �M + k − 2��� + �BM−1

�k� ��1, . . . ,�M−2,�M�

= BM
�k���1, . . . ,�M−2,�M,�M−1� .

�iii� Applying the induction on M, for a fixed integer k. Set M =2, it is a direct consequence

f �A1� that
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B2
�k���1,�2� = B2

�k−1���1,�2� + ��B1
�k���1� + B1

�k���2�� .

ssume �iii� is true for M −1 then

BM
�k���� = �BM−1

�k−1����M�� + � �
i=1

M−1

BM−2
�k� ���i,M����X−��M� + �M + k − 1���

= BM
�k−1���� + �BM−1

�k−1����M�� + � �
i=1

M−1

�BM−1
�k� ���i�� + �BM−2

�k� ���i,M���

= BM
�k−1���� + � �

i=1

M−1

BM−1
�k� ���i�� + �BM−1

�k� ���M�� = BM
�k−1���� + ��

i=1

M

BM−1
�k� ���i�� .

�

Proof of Lemma 2.2: From Definition 2.1 B1
�k����=X−���+k�, and commutators �2.5� it is

lear that M =1 in �2.26� and �2.28� is given by

�h���,B1
�k����� = �h���,X−���� = 2

B1
�k���� − B1

�k����
� − �

+ ��̂1��� ,

�X+���,B1
�k����� = �X+���,X−���� = −

�̂1��� − �̂1���
� − �

+ �X+��� ,

�X−���,B1
�k����� = �X−���,X−���� = �B1

�k���� − �B1
�k���� .

he induction method is used to demonstrate Lemma 2.2. Assume that �2.26�–�2.28� hold for

N
�k���� ,M −1�N�1 then, to show that these formulas are valid for M, the recurrence relation �ii�

n Lemma 2.1 is used,

�h���,BM
�k����� = �h���,BM−1

�k� ���M����B1��M� + �M + k − 1��� + BM−1
�k� ���M���h���,X−��M��

= �
i=1

M−1 �2
BM

�k����� � ��i�� − BM
�k����

� − �i
+ �BM−1

�k+1����i���̂M−1��i;�
�i,M���

+ � �
i=1

M−1

BM−2
�k+1����i,M���h��i�,X−��M�� + BM−1

�k� ���M���2
B1��� − B1��M�

� − �M
+ �h��M��

= 2�
i=1

M
BM

�k����� � ��i�� − BM
�k����

� − �i
+ � �

i=1

M−1

BM−1
�k+1����i����̂M−1��i;�

�i,M�� +
2

�M − �i
�

+ �BM−1
�k+1����M�� �

i=1

M−1
2

�i − �M
+ ��BM−1

�k� ���M�� + � �
i=1

M−1

BM−2
�k+1����i,M���h��M�

= �
i=1

M �2
BM

�k��� � ��i�� − BM
�k����

� − �i
+ �BM−1

�k+1����i���̂M��i;�
�i��� ,

ere we used, where appropriate, the induction hypothesis, the commutators �h��� ,X−����, and

roperties �ii� and �iv� in Lemma 2.1. Thus �2.26� is proved,
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�X+���,BM
�k����� = �X+���,BM−1

�k� ���M����B1��M� + �M + k − 1��� + BM−1
�k� ���M���X+���,X−��M��

= − �
i=1

M−1

BM−1
�k+1����i��

�̂M−1��;��i,M�� − �̂M−1��i;�
�i,M��

� − �i
− 2 �

i�j

M−1
BM−1

�k+1����� � ��i,j��
�� − �i��� − � j�

+ � �
i=1

M−1

BM−1
�k+1����i��X+��� + �BM−1

�k� ���M�� + � �
i=1

M−1

BM−2
�k+1����i,M���

� �−
h��� − h��M�

� − �M
+ �X+���� − �

i=1

M−1

BM−2
�k+1�

����i,M��
�h���,X−��M�� − �h��i�,X−��M��

� − �i

= − �
i=1

M−1

BM−1
�k+1����i��

�̂M��;��i�� − �̂M��i;�
�i��

� − �i
− 2 �

i�j

M−1
BM−1

�k+1����� � ��i,j��
�� − �i��� − � j�

+ ��
i=1

M

BM−1
�k+1����i��X+��� − BM−1

�k+1����M��
�̂M��;��M�� − �̂M��M ;��M��

� − �M

− 2 �
i=1

M−1
BM−1

�k+1����� � ��i,M��
�� − �i��� − �M�

= − �
i=1

M

BM−1
�k+1����i��

�̂M��;��i�� − �̂M��i;�
�i��

� − �i
− 2�

i�j

M
BM−1

�k+1����� � ��i,j��
�� − �i��� − � j�

+ ��
i=1

M

BM−1
�k+1����i��X+��� ,

ere we used, where appropriate, the commutators �h��� ,X−���� and �X+��� ,X−����. Thus �2.27�
s proved,

�X−���,BM
�k����� = �X−���,BM−1

�k� ���M����B1��M� + �M + k − 1��� + BM−1
�k� ���M���X−���,B1��M��

= ��M − 1��BM−1
�k� ���M�� − � �

i=1

M−1

BM−1
�k� ���� � ��i,M����B1��M� + �M + k − 1���

+ �BM−1
�k� ���M���B1��M� − B1���� = M�BM

�k���� − ��
i=1

M

BM
�k����� � ��i�� ,

ere we used, where appropriate, the commutators �X−��� ,X−����. �

Proof of Lemma 2.4: In the case for M =1 the proof is straightforward,

�

�za
B1��� =

Xa
−

�� − za�2 = −
�

��
� Xa

−

�i − za
−

�

2
ha� = −

�

��
Xa

−��i� .

ssume �2.36� is true for any set � with ����M complex numbers. Use formula �2.29� and the

nduction hypothesis together with �1� of Lemma 2.1 we can write
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�

�za
BM��� =

�

�za
�BM−1���M���B1��M� + �M − 1����

= − �
i=1

M−1
�

��i
�Xa

−��i�BM−1
�1� ���i��� −

�

��M
BM−1���M��Xa

−��M�

= − �
i=1

M−1
�

��i
�Xa

−��i�BM−1
�1� ���i��� −

�

��M
�Xa

−��M�BM−1���M�� +
�BM−1���M��,Xa

−�
�M − za

�
= − �

i=1

M
�

��i
�Xa

−��i�BM−1
�1� ���i��� .

�
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In a previous paper of one of us �Europhys. Lett. 59, 330–336 �2002�� the validity
of Greene’s method for determining the critical constant of the standard map �SM�
was questioned on the basis of some numerical findings. Here we come back to that
analysis and we provide an interpretation of the numerical results, by showing that
the conclusions of that paper were wrong as they relied on a plausible but untrue
assumption. Hence no contradiction exists with respect to Greene’s method. We
show that the previous results, based on the expansion in Lindstedt series, do
correspond to the critical constant but for a different map: the semi-standard map
�SSM�. For such a map no Greene’s method analog is at disposal, so that methods
based on Lindstedt series are essentially the only possible ones. Moreover, we
study the expansion for two simplified models obtained from the SM and SSM by
suppressing the small divisors. We call them the simplified SM and simplified
SSM, respectively; the first case turns out to be related to Kepler’s equation after a
proper transformation of variables. In both cases we give an analytical solution for
the radius of convergence, that represents the singularity in the complex plane
closest to the origin. Also here, the radius of convergence of the simplified SM
turns out to be lower than that of the simplified SSM. However, despite the absence
of small divisors these two radii are lower than those of the true maps �i.e., of the
maps with small divisors� when the winding number equals the golden mean.
Finally, we study the analyticity domain and, in particular, the critical constant for
the two maps without small divisors. The analyticity domain turns out to be a
perfect circle for the simplified SSM �as for the SSM itself�, while it is stretched
along the real axis for the simplified SM, yielding a critical constant which is larger
than its radius of convergence. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2036933�

. INTRODUCTION

The Taylor-Chirikov map12,23 or standard map �SM� is one of the best known nonlinear
odels showing the onset of chaos in Hamiltonian systems. It describes with some level of

pproximation many physical systems. Among these there are numerous applications to plasma
hysics, the field in which it was originally introduced. The SM is also exactly related to the time
volution of the “kicked rotor” and the equilibrium condition for a chain of masses superposi-
ioned on a periodic potential. The latter model is known as the Frenkel-Kontorova �FK� model.
his model is of equal importance for solid state physics as the SM is for plasma physics. It has,
.g., been applied to Josephson junctions arrays, charge density waves and surface friction.19 More
mportantly, due to their simplicity and, yet, the complex behavior they show, these minimalistic

�Electronic mail: gentile@mat.uniroma3.it
�
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odels have had an enormous impact for the understanding in complex phenomena such as
onlinearity, chaos, quasi-periodicity, and commensurate-incommensurate transitions. Although
ow part of any textbook in nonlinear physics and studied extensively over many years, the SM
nd FK still bear many unsolved problems. The most intriguing one of these is the sudden
ransition from smooth to chaotic orbits in the SM when the coupling parameter K is increased
bove a critical value Kc. In the FK model this transition is connected to change from a sliding to
pinned state and bears the name of Aubry transition �or analyticity breaking transition�.

The theoretical framework that characterizes this transition originates from the Kolmogorov-
rnol’d-Moser �KAM� theorem,2 that deals with the problem of small divisors that can occur in

ny perturbation expansion for quasi-integrable systems. In fact, the KAM theorem can be used to
rove the non-chaotic behavior of the SM for very small coupling K and sufficiently irrational
inding number �. Other arguments can then be applied to prove that a chaotic regime exists for
alues of K large enough giving an upper bound to Kc. For � equal to the golden mean there exists
n analytical bound by Mather, Kc�4/3,34 and the computer assisted proof of MacKay and
ercival Kc�63/64�0.9844.33 Moreover, another computer assisted analysis of Jungreis ex-
luded the value K=0.9718 for possible occurrence of invariant circles �smooth orbits�.27

There exist several methods to calculate Kc precisely, among which Greene’s method23 has
hown to be one of the most effective giving the estimate Kc=0.971 635. This method is based on
he assumption that the dissolution of invariant curves can be associated with the sudden change
rom stability to instability of nearby closed orbits. The renormalization technique of MacKay �cf.
ef. 32, Sec. 4.4.1� is a further refinement of this method and has established the same value �cf.
. 199 of the quoted reference� with higher digit precision with respect to the original Greene’s
esult. Yet, Greene’s hypothesis has only been partly proven. A result by Falcolini and de la
lave16 and, independently, by MacKay31 yields that the critical constants for symplectic maps can
ever be higher than the ones obtained by Greene’s method. Recently, the result has been extended
o nontwist maps by Delshams and de la Llave.14 Hence, Kc�0.971 635 for the SM with the
olden mean as winding number. We mention that MacKay also showed that Greene’s method
oes not apply to every map.31 However, in the case of the SM, the situations for which no
igorous result can be given are considered unlikely; cf. the discussion in Refs. 16 and 31.

Another way to calculate �or, at least, to estimate� Kc is through the Lindstedt series expan-
ion. Any smooth invariant curve in the SM can be described, for complex K small enough, say
K���, where � will depend on the winding number of the curve, by an analytic function which
onjugates the dynamics to the unperturbed one. Of course � provides a lower bound for Kc, which
s essentially the maximum real value of K for which there is an analytic invariant curve with the
xed winding number �more precise definitions will be given below�. By writing down the Taylor
xpansion and equating the Taylor orders in the functional equation satisfied by this conjugation
unction, the Fourier-Taylor coefficients can, in principle, be derived from the ones of lower order.
n Ref. 42 an evaluation of this expansion, always in the case of the golden mean, to high orders
ed the authors to infer a convergence to a value Kc�0.979 78, which is higher than Greene’s
esult. �Note that the fact that � and Kc are different cannot be invoked to explain the discrepancy
ecause of the direction of the inequality between the two quantities. One could also wonder what
nformation about Kc can be inferred from � other than a lower bound. In general none, but one
as strong numerical evidence that �=Kc for the golden mean.� In this paper, we revisit that
nalysis and show that an apparent plausible assumption made in Ref. 42 is falsified beyond
aylor order n�200. As a result, the Lindstedt expansion does not contradict Greene’s result. The
alue Kc�0.979 78, however, does correspond to the critical value for a different map, the semi-
tandard map �SSM�; cf. also Ref. 24. We come back to this in Sec. III; though, we note straight
way that this method is fundamental for the SSM, where no analog of Greene’s method exists
see also the comments at the end of Sec. II�.

Aubry3 proposed another method, which is probably not very effective for high precision
valuation in a computer algorithm, but still interesting. It is based on an eigenvalue calculation of
he dynamical matrix for the FK chain close to the critical point. Although this, in principle,

equires the diagonalization of an infinite matrix, one can use the fact that the eigenvector of the
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owest mode tends to localize.43 The instability of the FK chain can then be determined in
uccessive approximants by calculating the determinants of finite matrices of increasing size.

Another effective method is the frequency analysis method proposed by Laskar, which has
een applied to the standard map in Ref. 30, giving for the golden mean a critical value Kc

0.9718, which is close to Greene’s value. In Ref. 11 it has been used to study numerically the
ependence of the critical constant on the winding number.

Finally we mention the use of Padé approximants to study numerically the entire analyticity
omain. �The �L ,M�-Padé approximant for a function f�x� is given by the ratio of two polynomi-
ls, f�x�� PL�x� /QM�x�, with PL=p0+p1x+ ¯ +pLxL and QM =1+q1x+ ¯ +qMxM. Hence, the
imple Taylor expansion of order n can be considered as a special case of Padé approximant with
=n and M =0.� This is a powerful numerical tool even if it is less precise than other methods for
etecting the critical constant Kc and not completely under control from a rigorous point of view.
t has, for instance, been employed in Ref. 4 and, very recently, in Ref. 5, where the existence of
natural boundary for the analyticity domain of the SM has been checked numerically. Always
ith the aim of studying the analyticity domain Falcolini and de la Llave17 developed a variant of
reene’s method working for complex values of the parameter K that gives an alternative to the
adé approximants approach. An implementation of Padé approximants is given in Sec. IV, though
or a case in which the analytical solution is known.

Eventually, these approaches are assumed to converge to the same value. However, the proof
f this is highly non trivial. The ultimate goal, of course, would be to gain an analytical expression
or Kc. This is still far beyond our capabilities. Inspired by the desire to investigate further the
nfluence of the small divisors in the Lindstedt series expansion, we introduce two simplified
odels by setting rigorously all the divisors equal to 1 both for the SSM and the SM. In the latter

ase, this is a very well-known model, Kepler’s equation,50 which turns out to have a very similar
ransition and can be solved analytically. The radii of convergence are found to be lower than
hose determined with the methods described above for the SM and SSM, respectively, in the case
f golden mean winding numbers.

This paper is organized as follows. In Sec. II we recall the definition of the SM and SSM. In
ec. III we come back to the analysis of Ref. 42 showing that, contrary to what was asserted in

hat paper, the Lindstedt expansion does not violate Greene’s method, and we make the compari-
on between the SM and SSM. In our opinion the analysis in Sec. III gives some insight onto the
echanism of break up of the invariant curves, and leaves some open problems: this will be

iscussed to more extent in Sec. V. In Sec. IV we present a model in which we suppress the small
ivisors and give an analytical expression both for the radius of convergence and the critical
onstant. Moreover, the analysis in Sec. IV has some consequence on the cases with small divisors
n relation with the appearance of a natural boundary in the analyticity domain; this is further
iscussed in Sec. V. Finally we end up with the conclusions in Sec. V.

I. THE „SEMI-… STANDARD MAP

The SM and SSM can be written as

�xi+1

xi
	 = T� xi

xi−1
	 = �2xi + V��xi� − xi−1

xi
	 , �1�

ith 
xi� defined mod 1, and

V��x� = �
K

2�
sin�2�x� for the SM,

K

4�i
exp�i2�x� for the SSM. �2�

he resulting sequence 
xi mod 1�, for i=2,…�, originating from a starting point �x1 ,x0� corre-

ponds to a discrete trajectory on an invariant curve, when the latter exists. Such a trajectory for
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he SM can be related to the equilibrium positions of an infinite FK chain where particles with
armonic nearest neighbor coupling are placed on a periodic potential V�x�=K�2��−2�1
cos�2�x��. The SSM has not a similar counterpart, but is much simpler in its mathematics, and

his is basically the reason why it was considered by Greene and Percival.24 By definition, in terms
f the lift of the map, the winding number or rotation number of an orbit is given by

� � �xi+1 − xi� � lim
n→�

�
i=0

n
xi+1 − xi

n
= lim

n→�

xn − x0

n
, �3�

hen the limit exists. For low coupling K and � incommensurate to the periodicity of V�, there
xists a continuous function g�x ;K ,�� such that the positions 
xi mod 1� can be expressed as xi

g�i�+� ;K ,��, where � is an arbitrary phase. This function is often called the conjugating
unction or, in context with the FK model, the modulation or hull function. Its shape depends on
he winding number � and on the coupling parameter K.

The conjugating function satisfies the functional equation

2g�x;K,�� − g�x + �;K,�� − g�x − �;K,�� = − V��x + g�x;K,��� . �4�

or K large enough the function g�x ;K ,�� becomes discontinuous. For the SM this implies that
he orbits become chaotic and for the FK that the chain of particles gets pinned together with the
ppearance of a phonon gap.

There are several quantities of interest which one can introduce in order to study the transition
rom regular to chaotic dynamics. As the function g�x ;K ,�� is analytic for K close to the origin
ne can consider its series expansion in powers of K,

g�x;K,�� = �
n=1

�

Kng�n��x;�� , �5�

nd define the radius of convergence ���� as

���� = inf
x��0,1��lim sup

n→�
�g�n��x;���1/n�−1. �6�

ote that the infimum appears in the definition of the radius of convergence because, as a result of
he incommensurate winding number �, each invariant curve is filled densely by any trajectory
ying on it. Hence, existence of the invariant curve itself requires the latter to be defined for all
� �0,1�.

The critical constant is defined as the �positive� real value Kc��� such that for K�Kc��� the
onjugating function is not analytic any more. �The reason why one usually does not consider the
egative critical constant, that is the negative value Kc���� such that for K�Kc���� there is no
onger an analytic invariant curve, is that Kc����=−Kc��� for the SM.� It is believed that the
nalyticity domain of the conjugating function has a natural boundary,4,5,24 this means that
�x ;K ,�� has a set of singularities in terms of K that form a closed curve around the origin in the
omplex plane. Hence, the radius of convergence ���� corresponds to the singularity closest to the
rigin, while the critical constant Kc��� corresponds to the intersection of this curve with the
positive� real axis. By definition one has Kc���	����, so that by estimating the radius of
onvergence one finds a lower bound for the critical constant. Furthermore, it is generally accepted
hat Kc�
�=��
� for the golden mean �the golden mean is sometimes in other literature defined as
he inverse of this value, ��5+1� /2=
−1�1.618 034 
= ��5−1� /2�0.618 034�, whereas there is
trong numerical evidence that Kc��� can be much larger than ���� for winding numbers which
ave very large partial quotients in their continued fraction expansion.9,11 �For an introduction of
he continued fraction theory and a discussion of the basic properties we refer to the classical
extbook by Hardy and Wright.26 In the continued fraction expansion of a number �

�a0 ,a1 ,a2 ,…�=a0+1/ �a1+1/ �a2+1/ �¯���, the numbers aj are called the partial quotients,
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hile the rational numbers qj /pj= �a0 ,a1 ,a2 ,… ,aj� are called the best approximants for �.� It is
lso commonly believed �on the basis of numerical simulations and heuristic arguments� that

c��� has the highest value for the golden mean �=
.
So far, the most accurate method to calculate Kc is based on Greene’s method �also known as

esidue criterion�. In this method the infinite trajectory 
xi mod 1� with irrational winding number
is approached by successive approximants which are periodic trajectories with rational winding

umbers � j=pj /qj tending to �, and xi+qj
mod 1=xi. Hence, pj and qj are at each level j two

nteger values whose ratio gives a better estimate of � for each increment in j and �
limj→� � j. These numbers can, for instance, be obtained using the best approximants in the
ontinued fraction expansion of �. For �=
 this results in the ratios of subsequent Fibonacci
umbers �
�Fj−1 /Fj with F0=F1=1 and Fj=Fj−1+Fj−2 for j�1�. Conclusively, Greene’s method
ells how to construct the periodic orbits and to measure their stability by means of a suitable
uantity, called the residue, which does not tend to zero any more for K�Kc.

Besides being only partly proven, Greene’s method has also some other limitations. For
nstance, this method does not work for other interesting models, as the SSM and Siegel’s
roblem,39 where the construction of periodic orbits fails. One can also easily check the non-
xistence of smooth periodic orbit by a first orders perturbation theory. The best general alternative
s the Lindstedt series expansion. This method is more generally applicable �it also works for the
SM and for any Hamiltonian systems close to an integrable one�, but, in view of a numerical

mplementation, is less accurate than Greene’s method for the SM and, in general, is more suitable
or studying the radius of convergence rather than the critical constant.

II. THE LINDSTEDT SERIES EXPANSION

. Standard map

A way to study the transition is by means of the Lindstedt series, which in this case means the
xpansion of the function g�x ;K ,�� both in Fourier and in Taylor series. Such expansions were
riginally introduced by Lindstedt and Newcomb to study problems in celestial mechanics.37 By
efining the Fourier transform as

g�x;K,�� = �
k=−�

+�

ĝk�K,��e2�ikx with inverse,

�7�

ĝk�K,�� = �
0

1

dx g�x;K,��e−2�ikx,

nd expanding

ĝk�K,�� = Kĝk
�1���� + K2ĝk

�2���� + K3ĝk
�3���� + ¯ , �8�

e end up with Fourier-Taylor coefficients ĝk
�n����, where n is the Taylor index and k is the Fourier

ndex. Of course, ĝk
�n���� depends on �, but henceforth we withdraw such a dependence in order

ot to overwhelm the notation, whenever no ambiguity can arise.
Now, using Eq. �4� we can relate the Fourier-Taylor coefficients of order n by the ones with

ower Taylor index by42

Dk
2ĝk

�n� =
i

4�

�1,k − �−1,k��1,n +

i

4�
�
m=1

�
�i2��m

m! �
n1+n2+¯+nm=n−1

� �
k1+k2+…+km=k−1

ĝk1

�n1�ĝk2

�n2�
¯ ĝkm

�nm�

− �− 1�m �
k1+k2+¯+km=k+1

ĝk1

�n1�ĝk2

�n2�
¯ ĝkm

�nm�� , �9�
ith
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Dk
2 �

1

ĝk�K,��
�

0

1

dx�2g�x;K,�� − g�x + �;K,�� − g�x − �;K,���e−2�ikx

= 2�1 − cos�2�k��� = �2 sin��k���2, �10�

nd where �n1+n2+¯+nm=n±1 implies a summation of all possible integers n1 ,n2 ,… ,nm with the
onstraint that �i=1

m ni=n±1. There are ways to reduce the number of summations in Eq. �9�. One
ossible way was proposed in Ref. 42 to construct an extended matrix P�n ,k ,m� defined as

P�n,k,m� =
�2�i�m

m! �
n1+n2+¯+nm=n

�
k1+k2+¯+km=k

ĝk1

�n1�ĝk2

�n2�
¯ ĝkm

�nm�. �11�

ne can show that P�n ,k ,m�=0 if �k��n or m�n. This gives rise to the following recursive
elations:42

P�1, ± 1,1� =
�1

2D1
2 ,

P�n,k,1� = −
1

2
Dk

−2�
m=1

n−1

�P�n − 1,k − 1,m� − �− 1�mP�n − 1,k + 1,m�� ,

P�n,k,m� =
1

m
�
n�=1

n−m+1

�
k�=max
−n�,k−n+n��

min
n�,k+n−n��

P�n�,k�,1�P�n − n�,k − k�,m − 1�, 1 � m � n , �12�

rom which we can distract the Fourier-Taylor coefficients by

ĝk
�n� =

P�n,k,1�
2�i

. �13�

he entries of P are all real and obey the symmetry relation P�n ,k ,m�= �−1�mP�n ,−k ,m�. More-
ver, besides being zero for �k��n and m�n , P�n ,k ,m� has zero values whenever k+n is odd.
ence, k=n ,n−2,… ,−n are the only non-zero entries of P.

The relations of Eqs. �12� are very efficient to evaluate ĝk
�n�, and they were used in Ref. 42 to

each a Taylor order of approximately n=200. To go beyond this limit, sufficient computer power
nd time is needed as both the computation time and the number of non-zero matrix entries
ncrease with �n3. Hence, memory can become a severe problem as the number of entries that
ust be stored can easily go beyond the maximum allowed allocation limit of the computing

ystem. Also the precision must be high enough in order to minimize numerical errors, but this
roblem is easily solved without requiring a precision as high as in the case of winding numbers
lose to rational numbers, as in Ref. 5, where the small divisors could become really small and up
o 480 digits were needed. In this work, we reached the level n=700 �see Fig. 1� and we believe
hat going beyond this order is not very profitable for obtaining a more accurate evaluation of Kc.

e come back to these results after addressing the small divisor problem that arises from Eq. �12�.
From Eq. �10� and the second line in Eq. �12� one sees that even for irrational values of �, the

erms Dk
−2 can become arbitrarily high for some k. This effect is a typical example of the small

ivisor problem �or small denominator problem�, that can strongly prevent the convergence of any
erturbation series. In fact, in general it requires a stronger condition than irrationality, such as a
iophantine condition.2 �The usual Diophantine condition requires ��q−p��1/C0�q� for all

p ,q��Z2 with q�0 and for suitable positive constants C0 and . But one can require also the
ryuno condition, which is a condition stronger than irrationality but weaker than the usual
iophantine condition; cf. for instance Refs. 8 and 21 in the case of the SM.� Among all the
rrational numbers, the golden mean 
 suffers the least from the small divisor problem and has
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herefore the highest convergence radius Kc�
�. The golden mean is “relatively difficult” to ap-
roximate by rational numbers as those arising, for instance, from the continued fraction expan-
ion �one can say that it is the “most irrational number”�. �A more formal statement is that 
 allows
he smallest values of C0 and  in the Diophantine condition. Hence, it is the number that is the

ost distant from all rational numbers.� As addressed above, the best approximants for the golden
ean are given by the ratios Fj /Fj+1, where 
Fj� is the sequence of the Fibonacci numbers.
herefore, the small divisors will be largest for k=Fj. From the exact relation Fj−1−Fj


= �−
� j+1, one can show that for j→�,

DFj

−2 �
1

4�2� 1


2	 j+1

� �2.618� j+1. �14�

owever, we would like to stress that the small divisor problem is not the only mechanism causing
he breakdown of the perturbative approach. This becomes evident in Sec. IV where we introduce
he model that arises when we rigorously set Dk

−2=1 for all k in the series of Eq. �12�. Clearly, this
implified expansion cannot be affected by the small divisors. However, it still has a radius of
onvergence and a critical constant, as shown by the analytical solution. As the radius of conver-
ence � of this simplified model is found to be lower than ��
�=Kc�
� for the SM, it proves that
he golden mean winding number is remarkably resistant to the problem of small divisors. The full
nalysis of this model is given in Sec. IV.

Coming back to the results of Fig. 1, we see that indeed the evolution of P�n ,k ,1� makes

IG. 1. �P�n ,kmax,1�� as a function of n. This is defined as the maximum value of �P�n ,k ,1�� of all k; hence, kmax

kmax�n� is defined as the k value where �P�n ,k ,1�� has this maximum. The inset in the lower corner shows kmax as a
unction of n. The inset in the left upper corner is an enlargement of the first 200 terms together with �P�n ,n ,1�� �dashed
ine�. From these figures, one can clearly detect sudden boosts in the function �P�n ,kmax,1�� where kmax=n at the Fibonacci
alues �dashed vertical lines�. However, whereas for n�200 the character is sharply peaked at these values, its behavior
hanges for higher orders. Still kmax=n for n a Fibonacci number, but the intersecting line described by �1�1

n does no longer
ominate the complete evolution of all the �P�n ,k ,1�� terms. �1=1.0186 is determined by the line through �n ,k�
�F13 ,F13�= �377,377� and �n ,k�= �F14 ,F14�= �610,610�. �2=1.0248 is set by the line through �n ,k�= �383,377� and

n ,k�= �622,610� where �P�n ,kmax�n� ,1��1/n shows local maxima in n. The inversed values, �1
−1�0.9817 and �2

−1

0.9758 are assumed to converge for higher n to Kc for the SSM and SM, respectively.
udden jumps at the Fibonacci numbers as expected from Eq. �14�. Besides, deceptively the values
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=k=Fj seem to determine the whole power law behavior of ĝk
�n�, which is true until Taylor order

�200. This assumption made in Ref. 42 allows for a further simplification of Eq. �12� by
efining the reduced matrix Q�n ,m�� P�n ,n ,m� obeying the relations

Q�1,1� =
− 1

2D1
2 ,

Q�n,1� = −
1

2
Dn

−2�
m=1

n−1

Q�n − 1,m� , �15�

Q�n,m� =
1

m
�
n�=1

n−m+1

Q�n�,1�Q�n − n�,m − 1�, 1 � m � n .

his set of equations make high order ��n=F20=10 946� evaluations accessible for computer
alculations. At this order the value of the radius of convergence seems to stabilize near �
0.979 78 , but this is still higher than the one obtained by Greene’s method. As a consequence,
alidity of Greene’s method was questioned in Ref. 42.

The more elaborated calculations in this work show that the assumption made in Ref. 42 was
ctually wrong as shown by the high order behavior in Fig. 1. Still, we find that k=n gives the
aximum for �P�n ,k ,1�� whenever n is a Fibonacci number. However, the character of the evo-

ution changes from being peaked to more smooth oscillations. Clearly, the line connecting the
oints �Fj , �P�Fj ,Fj ,1��� does no longer dominate the increment of the entries of P for n�200. As
P�n ,kmax�n� ,1��1/n shows local maxima for �n ,kmax�= �383,377� and �n ,kmax�= �622,610� just
fter F13 and F14, we fitted the line �2�2

n through the corresponding points. From this fit, �2

1.0248, the estimate for Kc��2
−1=0.9758 is obtained. Although still higher than Greene’s value,

t is already considerably lower than �=0.979 78 obtained from Eqs. �15� for n=F20=10 946. Note
hat the latter approach of Ref. 42 for this lower approximant n=F14=610, as obtained from the
ine �1

n �see Fig. 1�, would result in ��1/�1=0.9817, still approximately 0.002 higher than the
early converged value of �=0.979 78. Hence, a decay of 0.004 from 0.9758 at n=622 to 0.9716
t n→� is not unlikely. As a consequence, contrary to the results of the restricted series �15�, there
s no evidence at all that the full Lindstedt series �12� violates Greene’s hypothesis. This also
hows that a further simplification of Eqs. �12� is not easily obtained and that an accurate evalu-
tion of Kc based on the Lindstedt perturbation is severely demanding.

. Semi-standard map

When evaluating Eq. �1� for the SSM �2�, the factors �−1,k and −�−1�m�¯ are not present in
q. �9�. It is then straightforward to show that the only non zero entries of P�n ,k ,m� in �11� are

hose with n=k. Hence, the assumption made in Ref. 42 that gave rise to Eqs. �15� does not
orrespond to the critical constant of the SM, but still gives the correct value for SSM. A result by
avie13 shows that, for maps including the ones we are considering, the radius of convergence �6�

s equal to

���� = � lim sup max
n→� �k��n

�ĝk
�n�����1/n	−1. �16�

herefore, the radius of convergence for the SM cannot be larger than the radius of convergence
f the SSM, but of course it implies only a lower bound on the critical constant. Numerically by
sing Padé approximants in Ref. 5 it has been found that for certain values of the winding number
, the radius of convergence of the SM is strictly smaller than the radius for the SSM. For the
olden mean it is hard to improve upon simple power series using Padé, but for other numbers

loser to resonant values it is possible and the phenomenon becomes much more evident.
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The fact that the radius of convergence for these numbers is lower for the SM than for the
SM implies, by �16�, that dominant contributions arise from terms with Taylor orders n for which

ĝkmax

�n� �� �ĝn
�n��, where kmax=kmax�n� is defined as the value of k maximizing �P�n ,k ,1�� at fixed n.

his is exactly what emerges from the numerics as noted above and shown in Fig. 1 for n
200. Clearly, this is not the case for the SSM where one can limit to k=n. Hence, in Ref. 42

c�
�=��
� was actually determined for the SSM to be 0.979 78 at Taylor order n=F20=10 946. In
he calculations of this work, we went to order n=F24=75 025, that gave the value 0.979 37. As
he root criterion saturates very slowly, the numerical results provide essentially only an �accurate�
pper bound for the radius of convergence.

To summarize, we found that, also for the golden mean, the radius of convergence for the SM
s strictly less than the radius of convergence for the SSM. Therefore, as a general comment we
an remark that for the SM the presence of all harmonics in the Fourier expansion of the Taylor
oefficients, that is g�n��x ;��=�k�Zĝk

�n����e2�ix, has a double effect. On the one hand, the radius of
onvergence becomes smaller with respect to that of the SSM. On the other hand, the critical
onstant Kc��� can be larger than its radius of convergence ����. For the golden mean the two
alues are equal as emerges numerically,17 but for other values they can be appreciably different.
ne can imagine that the first phenomenon is due to the presence of contributions ĝk

�n���� larger
in modulus� than ĝn

�n����, while the second one is a consequence of deep cancellations between
he harmonics of given perturbative order. These two effects are, in general, much more dominant
or winding numbers � close to rational values �see for instance Refs. 5, 6, and 8–10�.

V. SETTING SMALL DIVISORS TO UNITY

. Introduction of the simplified maps

An interesting study appears if we set rigorously all possible small divisors equal to unity,

k=1 for all k in Eqs. �12� and �15�. Although the inspiration of this model was simply the study
f the perturbation expansion when the small divisors have no effect, we can retrace from this
eries back to a functional relation as the one in Eq. �4� for a function h�x ;K�,

h�x;K� +
K

4�i
exp �i2��x + h�x;K��� = 0 for the SSM and,

�17�

h�x;K� +
K

4�
sin�2��x + h�x;K��� = 0 for the SM,

here � has vanished. Hence, the divergence of the simplified series corresponds to values K
here the functional equations �17� have no analytical solution any more. A logical next step
ould be to relate Eqs. �17� to the iteration of a map similar to Eq. �1�. As the relation �17� no

onger contains the arguments x±� this is not so evident. However, one can relate the function
�x ;K� to the hull function of a FK-type system. It can be shown that this corresponds to a
ne-dimensional Einstein solid that is interacting with an external incommensurate potential. �The
instein model is a well-known approximation in solid physics where the vibrations of a lattice of
atoms is treated as a set of 3N independent harmonic oscillators in one dimension.29� Due to the

ack of neighbor interaction, which makes each particle independent, it is highly unusual to
escribe for such a system the equilibrium coordinates by a collective hull function. Still, there are
o restrictions not to do so and one can even give such a function a physical meaning. As known
rom the FK model, the continuous shape of the hull function is directly associated with the
xistence of a sliding mode where the FK chain can slide over the periodic potential without cost
f energy.19,43 In this case, the complete phonon spectrum is given by the sum of oscillations of the
ndividual particles that are not zero in general. The sliding mode appears when we add an extra
egree of freedom to the system as shown in Fig. 2.

Here, all particles have no interaction with their neighbors, but are connected to an upper rod.

hen the rod has an infinite mass compared to the particle masses, the system is basically an
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instein solid. However, if we assume that the position of the rod may vary according to a
oordinate � an extra phonon mode exist that is zero for K�Kc in this system. Hence, the
reakdown of the Lindstedt expansion �12� with Dk=1 for all k can be also related to a real
hysical sliding-pinning transition. The model as illustrated in Fig. 2 is also equal to a special case
f the Frenkel-Kontorova-Tomlinson �FKT� model where each particle is connected to a rod by a
pring with spring constant cr and additionally to its neighbors with a coupling cn. �The simple
omlinson model41 is not the system in Fig. 2 as this usually consists of only one single oscillator
particle�. This ancient model is now often applied to simulate the “stick-slip” motion of an atomic
orce microscope �AFM� tip over a sample surface.� The FKT model has been proposed to study
ore realistically the frictional behavior between atomic surfaces.25,45,46 The model that is de-

cribed by Eq. �17� simply corresponds to the FKT system with cr=1 and cn=0. The nice thing is
hat the perturbation series of Eqs. �17� can be solved exactly. To show this, we will start with the

ore simple SSM case.

. Radii of convergence for simplified maps

. Simplified SSM

It can be convenient to use the following normalization:

R�n,m� = n ! �− 2�nQ�n,m� , �18�

ith matrix entries that are integer and positive and with R�n ,n�=1. From Eqs. �12� and �18� with

n
−2=1 we derive

R�n,1� = n�
m=1

n−1

R�n − 1,m� ,

�19�

R�n,m� =
1

m
�
n�=1

n−m+1 � n

n�
	R�n�,1�R�n − n�,m − 1�, 1 � m � n .

ote that the recursive relations in Eq. �19� for m�1 coincide with those satisfied by the Stirling
umbers of the first and second kind, Sn

�m� and Sn
�m�, respectively. �The Stirling numbers of the first

ind Sn
�m� are defined by the requirement that �−1�n−mSm

�n� is the number of permutations of n
ymbols which have exactly m cycles. The Stirling number of the second kind Sn

�m� is equal to the
ay of partioning a set of n elements into m non-empty subsets. See Ref. 1, p. 824, Secs. 24.1.3

IG. 2. Illustration of the FK model �top� and the system that obeys Eq. �17� �bottom�. The latter corresponds also to the
KT model without neighbor interaction. All particles are connected to the upper rod whose position is given by �. A
liding mode exists when � can be varied without cost of energy.
nd 24.1.4, with r=m−1.� Of course what is different is the relation for m=1.
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From relations �19� with R�1,1�=1 the following exact equality can be proven:

R�n,m� = nn−m� n − 1

m − 1
	 . �20�

he proof of this equation is given in the appendixes in two ways. In Appendix A we derive this
roof using the argument of induction. In Appendix B we give a proof based on the tree formalism
hat was first introduced in Refs. 15 and 36, then extended and formalized in Ref. 20. The first
roof is quite elementary, but a little elongated. The second is short, but less self-contained as it
equires some knowledge of the previous publications about the tree formalism �but of course it
ecomes very simple for any reader acquainted with such a technique�. Furthermore, the latter is
ost practical for the more complicated proof for the simplified SM in Eq. �17�. Now, from Eqs.

18� and �20� we deduce that

Q�n,1� = �− 1�n nn−1

2nn!
, �21�

hich shows a power law behavior �a�n for large n giving the radius of convergence as �
1/�. Hence,

ln�Q�n,1�� � �n − 1�ln�n� − n ln�2� − ln�n ! � . �22�

hen by using �this is a refinement of the well-known Stirling’s formula ln n ! �n ln n−n�47

ln�n ! � � �n + 1
2�ln n − n + 1

2 ln�2�� , �23�

e get

ln�Q�n,1�� = n�1 − ln�2�� − 3
2 ln�n� − 1

2 ln�2�� ⇒ �Q�n,1�� �
1

�2�n3�1

2
e	n

, �24�

ielding a radius of convergence �=2/e�0.735 759. This value is less than the SSM value or SM
alue. This can be a bit contraintuitive, as one could have expected that the possible occurrence of
mall divisors would give a lower �. Apparently, this does not happen for the golden mean. This
an be understood by the following reasoning. Although the small divisor factors Dk

−2 can become
rbitrarily large for some k giving a boost to the series �12� and �15�, at most values of k they will
e considerable smaller than 1 resulting in an opposite effect. Hence, for the golden mean as
inding number the latter effect seems to be more dominant yielding an even higher value for �

han the case where all Dk
−2 terms are equal to 1. We can say that, in fact, for the golden mean the

mall divisors “are not so bad,” whereas they become really small for winding numbers much
loser to rational values �that is with very large partial quotients in their continued fraction
xpansion�.

. Simplified SM

The simplified SM considered in Eq. �17� is well known in celestial mechanics50 after apply-
ng the following variable transformation. Write K /2=−e and 2�x=M where e is the eccentricity
nd M is the mean anomaly. Then the eccentric anomaly E=2��x+h�x ;K�� is related to M

hrough Kepler’s equation M=E−e sin E, which is exactly the second equation in Eq. �17�.
−2
The recursive relations �12� with Dk =1 have also an exact solution that we write here,
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P�n,k,1� = � �− 1�n+�n−k�/2

2n

kn−1

��n − k�/2� ! ��n + k�/2�!
, for �k� � n and k + n is even

0 otherwise,


�25�

hich can be obtained by the Lagrange inversion theorem.48,50 We present a derivation of this
elation based on the tree formalism in Appendix B.

Then, by using Eq. �16� we see that we must compute the maximum over k of �P�n ,k ,1��. It
s immediate to realize that the maximum is reached for some k�n /2; by assuming that the

aximum is reached for some k which is not too close to n �an assumption that we shall verify a
osteriori�, we can approximate the factorial appearing in Eq. �25� with Stirling’s formula �23�.
his gives rise to

�P�n,k,1�� �
1

2n

kn−1en

� 1
2 �n − k��

1
2

�n−k�� 1
2 �n + k��

1
2

�n+k�

1

� 1
4 �n2 − k2��

1
2

�
2en

n2

1

��1 − �2�
1
2
� �

�1 − ��
1
2

�1−���1 + ��
1
2

�1+��	n

, �26�

here we have defined �=k /n� �−1,1�. Hence, we must compute the maximum of the function

E��� = � exp�−
1 − �

2
ln�1 − �� −

1 + �

2
ln�1 + ��	 . �27�

y taking the derivative �E��� /��=0, we find that the maximum is reached at a value �max that
atisfies the following relation:

2 + �max ln�1 − �max� − �max ln�1 + �max� = 0, �28�

ielding �max�0.833 557. Hence, kmax=�maxn�0.833 557n. Using Eq. �28�, E��max� simplifies to
��max�= �1/e���max/ ��1−�max

2 ��. Inserting this relation into Eq. �26� gives

�P�n,kmax,1�� �
2

n2�max
2 �n+1, �29�

ith �= ��max/ ��1−�max
2 ��. This yields a radius of convergence �=�−1�0.662 743, which is

nown as the Laplace limit.18 This value is again smaller than the radius of convergence of the true
M �recall that for the golden mean the radius of convergence ��
� equals Kc�
��. Moreover,
imilar to the true maps, this SM-analog transition value � is lower than the one of the SSM.

. The critical constant and the analyticity domain

The argument above gives only information about the location of the singularities closest to
he origin. The solution of the functional equations �17� could still exist for real values of K larger
han the radius �. This would correspond to the situation where h�x ;K� is still analytic for K

� real, but at which the power series �5� and �8� are no longer defined. In particular, there could
e no singularity at all on the real axis so that an analytical form of h�x ;K� could still exist for
→�. To analyze the extent of the analyticity domain and the critical constants, we need to

evaluate” the summations of Eqs. �5� and �8�. This means that we need to find the functional form
�x ;K� that corresponds to the power series, but, contrary to the summation itself, can still be
erfectly defined for �K���.

In the following analysis, we will show that the analyticity domains for the simplified maps
re, like those for the true maps, also constrained by a closed boundary. More precisely, we find
hat for fixed x there are only a few singularities, but the union over all x� �0,1� of such

ingularities reconstruct a closed curve surrounding the origin. Hence, outside this natural bound-
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ry there is no function h�x ;K� that can be obtained by an analytic continuation of the power series
round K=0. Although very unlikely, this does not completely exclude the existence of a very

ifferent function, say h̃�x ;K�, that is defined outside this domain and obeys Eq. �17� and may
ven persist for K→�. Recurrence phenomena, such as appearance and disappearance of an
nvariant curve with given winding number when varying the parameter K, are known to occur for
ertain maps,49 but, for instance, this is not the case of the SM.

. Simplified SSM

As for this model one has ĥk�K�= ĥk
�k�Kk, we can directly write down the summation of Eq. �5�

or the function h�x ;K�,

h�x;K� = �
k=1

�

ĥk
�k�Kke2�ikx. �30�

nserting the expression �21� gives

h�x;K� =
1

2�i
�
k=1

�

�− 1�k kk−1

2kk!
Kke2�ikx =

1

2�i
�
k=1

�

�Q�k,1��Kke�ik�2x+1�. �31�

o find the full analyticity domain of h�x ;K�, one basically must fix a certain value for x, say x
x�, and search for the singularities in K of the function h�x� ;K� by, e.g., using the Padé approxi-
ants method. Then, one must repeat, in principle, this procedure for all possible values of x and

ollect the set of all singularities to construct the full analyticity domain. Finally, the radius of
onvergence � is then the complex singularity closest to the origin, while Kc is the smallest
positive� real singularity, if any.

Vice versa, we could also fix the argument � of the complex value K, such that K= �K�ei�. The
ummation �31� will then be maximized for x=−��� /2��+ 1

2
�, where each term in the sum turns

nto a positive value. For these values of K and x, by using the inclusion argument and the root
riterion on the delimiting series, one can show that the radius of convergence is given by 2/e.
ence, for each x there is one singularity at K=−�2/e�e−i2�x, and the complete set over all x forms
closed curve that is a circle around the origin.

Note that this is very different from the true maps with the small divisors. Although not
roven, numerical studies �for instance Ref. 5 and references quoted therein� suggest that for the
rue SM and SSM the function g�x ;K ,�� has for each value of x, independently of its value, an
nfinite set of singularities forming the same �for each x� natural boundary. Numerical analysis5

hows that the natural boundary of the true SSM, at fixed x, is a circle just as in this simplified
odel when the union on all x is taken. �It is easy to prove that the analyticity domain in K, that

s by taking the union over all values of x� �0,1�, is a circle for the true SSM, as first pointed out
n Ref. 35. However, to our knowledge, there is no analytical proof that it is a circle for a fixed
alue of x.� This property appears to be true irrespective to the choice of � as long as it fulfills a
iophantine condition,2 or even a Bryuno condition. For the SM with golden mean as winding
umber this curve resembles close to a circle, but not very smooth and slightly elongated �about
%� along the imaginary axis.17

. Simplified SM

Taking the power series �8� for ĥk�K� for the simplified SM using Eq. �25� we have

ĥk�K� = �
n=1

�
1

2�i
P�n,k,1�Kn =

1

2�i
�

n=�k�,�k�+2,…

�

Kn �− 1�n+�n−k�/2

2n

kn−1

��n − k�/2� ! ��n + k�/2�!
. �32�
hanging variables to j= �n− �k�� /2 gives
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ĥk�K� =
�− 1�k

2�ik
�
j=0

�
�− 1� j

22j+�k�j ! �j + �k��!
��k�K�2j+�k� =

�− 1�k

2�ik
J�k��K�k�� , �33�

ith Jv�z� the Bessel function of the first kind22,44 defined �for integers v� as

Jv�z� � �
j=0

�
�− 1� j

22j+vj ! �j + v�!
z2j+v. �34�

s these Bessel functions Jv�z� have no singularities in z, neither has ĥk�K� in K. Therefore, the
ourier coefficients do not give direct information about Kc. On the other hand, one can conclude

rom Eqs. �33� and �34� that �ĥk�K�� is maximized for pure imaginary K, so that the singularity
losest to the origin is lying on the imaginary axis, on a distance � from the origin. Here, the
ndividual terms in Eq. �34� can not cancel as �−1� j is then neutralized by z2j�K2j= �−1� j�K�2j.

We can now try to evaluate the Fourier series �7� for h�x ;K�,

h�x;K� = �
k=−�

+�
�− 1�k

2�ik
J�k���k�K� exp �2�ikx� = �

k=1

�
�− 1�k

�k
Jk�kK� sin �2�kx� . �35�

urther simplification is achieved by taking the derivative with respect to x and searching the
ingularities in

h��x;K� = �
k=1

�

2�− 1�kJk�kK� cos�2�kx� �36�

nstead of h�x ;K�; this is allowed as the two problems are equivalent.
From the series �36� we can guess for which values of x the singularities will be Kc and �

espectively. As Jk�kK� is positive for real values 0�K�1 �see p. 534 in Ref. 44�, we need to
ompensate the �−1�k term by cos �2�kx�. This is achieved for x= 1

2 that reduces Eq. �36� to

h��1/2;K� = 2�
k=1

�

Jk�kK� , �37�

hich has the exact solution �see formula �1� on p. 615 in Ref. 44�

2�
k=1

�

Jk�kK� =
K

1 − K
. �38�

ence, h��1/2 ;K� has a singularity at K=1, yielding the critical constant Kc=1, a well known
esult in celestial mechanics.50

The complete analyticity domain can be found in Ref. 50, p. 219. In Fig. 3 we represent what
an be obtained by using Padé approximants for some values of x. What emerges is that the
unction h�x ;K� has for each value of x a pair of complex singularities closest to the origin
ymmetric with respect to the real axis. For x going from 0 to 1/2 such singularities move
ontinuously from −1 to 1 along two �symmetric� curves which pass through the points ±i� at
=1/4 �see Fig. 3�. Hence the entire set of singularities closest to the origin lies on a curve which

s smooth except at K= ±1, where it has a discontinuity in its first derivative �cf. again Ref. 50, p.
19�.

An important feature is, however, that, as already noted in a similar context by Simon,40 a
atural boundary in K for fixed x seems to appear only in the presence of small divisors. In fact,
he latter give rise to the occurrence of sudden peaks yielding a pattern similar to lacunary series,28

or which natural boundaries can be proved to arise. Hence, these peaks seem to be responsible for

he formation of the natural boundary as suggested by Prange �cf. again Ref. 40�.
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. CONCLUSIONS

We showed by a numerical evaluation of the Lindstedt series up to order n=700 that a
reviously assumed violation of Greene’s criterion42 was ungrounded. The assumption that al-
owed the restricted series �15� was falsified for orders n�200. The resulting critical constant did
ot correspond to the SM, but is still the true one for the SSM. From our numerics, we conclude
hat, for the golden mean, the SSM critical constant is strictly higher than the SM. This seems to
e generally true for all winding numbers, but it is specifically difficult to prove for the golden
ean where both constants are very close. Still, the numerics up to order n=700 do not give a

omplete convergence. An evaluation that would compare to the accuracy of Greene’s method
ould rely on a prohibitive computational effort.

Note that our analysis leaves some open problems. As we have seen, the small divisors
ntroduce some sudden jumps in the coefficients ĝk

�n���� whenever k is a Fibonacci number, or
ore generally �for ��
� the denominator of a best approximant for the winding number �, and

ne has �k��n for the SM, hence one could think, as done in Ref. 42, that the most dominant terms
n the Taylor expansion of g�x ;K ,�� are those with n the denominator of a best approximant and
=n. In principle this conjecture could seem very plausible, but in fact, as the analysis above
hows, it is wrong, even if it appears as numerically supported up to rather high Taylor orders n
up to n�200�. If one bears in mind Davie’s result �16�, the only possibility left is that there are
aylor orders n such that �P�n ,k ,1�� is maximized for k=kmax�n��n. It would be interesting to
tudy the dependence of kmax�n� on n. An interesting problem would be also to understand which
re the values of n at which the peaks of �P�n ,kmax,1�� appear. They are very likely related to the
est approximants, but the exact nature of such a relationship deserves further investigation. An
lready remarked consequence of our analysis is that also for the golden mean the SM has a radius
f convergence lower than that of the SSM. Even if such a property has been numerically checked
or other winding numbers,10 it is not a priori obvious that it must hold for the golden mean. �To
ake an analogy, also the equality ����=Kc��� is certainly false for most of �, but still it holds

or �=
.� Our result suggests that the radius of convergence for the SM is always less than that of
he SSM for all winding numbers, but we leave such a property as a conjecture.

In addition to the analysis performed in Sec. III, we have proposed a simplified model that
ppears when the small divisors in the SM and SSM are suppressed. We show that this model
aintains many features of the SM and SSM. It has an analytical solution in both cases, and it

orresponds to Kepler’s equation in case of the SM. Also here, the analog of the SM has a lower
alue of � than that of the SSM. Moreover, surprisingly, the radii of convergence are lower than
he true models for golden mean winding numbers. This proves that the golden mean winding

IG. 3. Singularities in K of the function h�x ;K� for the SM without small divisors for x varying in �0,1�. The radius of
onvergence � corresponds to the value x=1/4, while the critical constant Kc=1 corresponds to x=1/2. The curve is
ymmetric with respect to both the real and the imaginary axes.
umber is remarkably resistant to the small divisor effect and falsifies a common misconception
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hat the small divisor problem is the dominant and only mechanism for the analyticity breaking
ransition. The fact, that the simplified model still has a transition with a value even lower than the
rue maps for the golden mean, shows that this is not the case.

Finally, we studied the full analyticity domain for the two models �the case of the SM was
ell known in literature, as it correspond to the celebrated Kepler’s equation�. Also here, there are

triking differences between the simplified and the true maps. Similar to the true maps, the set of
ingularities form a natural boundary. However, whereas the SM and SSM all the singularities in

for the function g�x ;K ,�� are present for any value of x �that is there is a natural boundary at
xed x�, the situation is quite different for the simplified maps. The simplified SSM has only one
ingularity in the complex K plane for the function h�x ;K� at each value of x. The simplified SM
as for each value of x two singularities symmetric with respect to the real axis, except for the
ingularities on the real axis for x=0 and x=1/2 which are single. The closed natural boundary is
etained after gathering all singularities for all x.

This natural boundary is a perfect circle in case of the simplified SSM �such as it is for the true
SM�, while it is a more stretched curve for the simplified SM with a discontinuity in the first
erivative on the real axis at K= ±1. This shows that the radius of convergence of the simplified
SM equals its critical constant, as it was found for the true SSM. In contrast, the simplified SM
as a critical constant of Kc=1 that is higher than its radius of convergence. In that respect, the
implified SM resembles more the true SM with winding numbers close to rational values. Also
his is a bit of a surprise, as one would expect the contrary, but it is consistent with the trend

entioned above. It is almost as if the model, in which all small divisors were eliminated, still
uffers more from this effect than the true SM with the golden mean, somehow the small divisors
or the golden mean introduce sort of a rotational symmetry for the analyticity domain.

Therefore, we believe that the study of these kinds of simplified analytical models are a
orthy prerequisite for the understanding of the SM, SSM, and FK models and, in particular, the

nfluence of the small divisors. For instance, our results about the simplified SSM give further
upport that the existence of a natural boundary at a single fixed x is created by the presence of
mall divisors, in agreement with the general remarks at the end of Sec. IV. In particular, this
hows that the circular shape of the analyticity domain of the SSM is not simply due to the fact
hat the corresponding conjugating function depends on K and x through the variable �=K e2�ix

see Appendix B�. On the contrary, there is some deeper reason for this to occur as the above
rgument cannot explain the existence of the natural boundary, neither its circular shape, for a
ingle fixed value of x.
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PPENDIX A: INDUCTION PROOF

Proof of Eq. (20): Assuming that relation �20� is true up to some Taylor order n−1, then the
rst relation of Eq. �19� for n yields

R�n,1� = n�
m=1

n−1
�n − 1�n−1−m

�m − 1�!
�n − 2�!

�n − 1 − m�!

= n�
m=0

n−2
�n − 1�m

�n − 2 − m�!
�n − 2�!

m!
= n�

m=0

n−2

�n − 1�m�n − 2

m
	 = n��n − 1� + 1�n−2 = nn−1.

�A1�
he second relation of Eq. �19� is slightly more difficult. One can write
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R�n,m� =
1

m
�
n�=1

n−m+1 � n

n�
	�n − n� − 1

m − 2
	n��n�−1��n − n���n−n�−m+1�

=
1

m
�
n�=1

n−m+1
n!

n� ! �n − n��!
�n − n� − 1�!

�m − 2� ! �n − n� − m + 1�!
n��n�−1��n − n���n−n�−m+1�

=
1

m
�
n�=1

n−m+1
n!

n� ! �m − 2� ! �n − n� − m + 1�!
n��n�−1��n − n���n−n�−m�

=
1

m
�
n�=1

n−m+1
n!

�m − 2� ! �n − m + 1�!
�n − m + 1

n�
	n��n�−1�

�n − n���n−n�−m�

=
m − 1

m
�
n�=1

n−m+1 � n

m − 1
	�n − m + 1

n�
	n��n�−1��n − n���n−n�−m�

=
m − 1

m
� n

m − 1
	 �

n�=0

n−m �n − m + 1

n� + 1
	�n� + 1�n��n − n� − 1��n−n�−1−m�

=
�m − 1��n − m + 1�

m
� n

m − 1
	 �

n�=0

n−m �n − m

n�
	�n� + 1�n�−1�n − n� − 1��n−n�−1−m�. �A2�

sing Abel’s identity38

�x + y��x + y − añ�ñ−1 = �
k=0

ñ �ñ

k
	xy�x − ak�k−1�y − a�ñ − k��ñ−k−1, �A3�

ith k=n� , ñ=n−m ,a=−1,x=1,y=m−1 yields

mnn−m−1 = �
n�=0

n−m �n − m

n�
	�m − 1��1 + n��n�−1�n − n� − 1�n−m−n�−1, �A4�

ence

R�n,m� =
�m − 1��n − m + 1�

m
� n

m − 1
	 �

n�=0

n−m �n − m

n�
	�n� + 1�n�−1�n − n� − 1��n−n�−1−m�

= �n − m + 1�� n

m − 1
	nn−m−1 =

n − m + 1

n

n!

�m − 1� ! �n − m + 1�!
nn−m

=
�n − 1�!

�m − 1� ! �n − m�!
nn−m = � n − 1

m − 1
	nn−m, �A5�

hich concludes the proof as the case n=1 is trivial.

PPENDIX B: TREE FORMALISM

Proof of Eq. (20) for m=1: First of all, by defining �=2�x and u���=2�g�x ;K ,�� �of course,
esides � ,u also depends on K and �� one can write the functional relation that the function u���
ust satisfy as u���+ �K /2i�exp�i�+ iu����=0 for the SSM and u���+K sin��+u����=0 for the
M. Note that in the case of the SSM the function u, which in principle depends on two param-
ters K and � �for a given ��, is in fact a function of the only parameter ��Kei�.
In terms of the function u��� the functional equation �4� becomes, for the SM,
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2u��� − u�� + 2��� − u�� − 2��� = − K sin�� + u���� , �B1�

n which we recognize Eq. �1.4� of Ref. 6, with �=K. For the SSM we have the same equation
ith the sine function replaced with �2i�−1 exp�i�+ iu����. Then we can envisage the same tree

xpansion as in Ref. 6; see formula �2.2�, where, to make a relation with the notations we are using
ow, k and � are what we are denoting with n and k, respectively. �In fact we need only p. 162 of
he quoted reference, where the tree formalism is introduced.� Moreover ���v

�=−D��v
, hence it is

1 in our case, and one has �v=1 for the SSM and �u� 
±1� for the SM. At the end we find

ĥk
�n� =

1

2�i

�− 1�n

2n �
��Tn,k

Val���, Val��� = �
u��

1

mu!
�u

mu+1, �B2�

here the trees �, the branching numbers mu and the set of trees Tn,k of order n �that is with n
odes� and with momentum k flowing through the root line �that is such that �u���u=k� are
efined as in Ref. 6. Extensions of notations to more general maps are easily obtained; see for
nstance Ref. 7.

In the case of the SSM, Eq. �B2� reduces to

ĥn
�n� =

1

2�i

�− 1�n

2n �
��Tn,n

Val���, Val��� = �
u��

1

mu!
, �B3�

s �u�1, and the sum over trees of order n can be written as a sum over all possible configura-
ions of branching numbers 
mu�u�� with the constraint �u��mu=n−1, indeed they are the only
abels of the trees, and their values uniquely determine the elements of Tn,n. Therefore we can

ewrite ĥn
�n� as

ĥn
�n� =

1

2�i

�− 1�n

2n �
m1+¯+mn=n−1

1

m1 ! ¯ mn!
=

1

2�i

�− 1�n

2n

nn−1

n!
, �B4�

here we have used the multinomial theorem

�
m1+¯+mn=p

n!

m1 ! …mn!
x1

m1
¯ xn

mn = �x1 + ¯ + xn�p, �B5�

hich extends the binomial theorem to n�2; see Ref. 1, Sec 24.1.3.
Proof of Eq. (25): In the case of the SM, without small divisors, we can still use formula �B2�,

ut now one can have �u= ±1.
As k=�u���u we see that, first, k can assume only the values −n ,−n+2,−n+4,… ,n−4,n

2,n �so that, in particular, �n±k� /2 is even�, and, second, in order to have a contribution to ĥk
�n�

e must set �n−k� /2 mode labels �u equal to −1 and the remaining �n+k� /2 mode labels equal to
. Moreover for any tree ��Tn,k we can write

�
u��

�u
mu+1 = � �

u��

�u	� �
u��

�u
mu	 = �− 1��n−k�/2 �

u��

�u
mu, �B6�

hich inserted into Eq. �B2� gives, by using again the multinomial theorem,

ĥk
�n� =

1

2�i

�− 1�n+�n−k�/2

2n � n

�n − k�/2
	 �

m1+¯+mn=n−1

�1
m1

¯ �n
mn

m1 ! ¯ mn!

=
1

2�i

�− 1�n+�n−k�/2

2n

kn−1

��n − k�/2� ! ��n + k�/2�!
, �B7�
hich yields Eq. �25�.
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The most general Jacobi brackets in R3 are constructed after solving the equations
imposed by the Jacobi identity. Two classes of Jacobi brackets were identified,
according to the rank of the Jacobi structures. The associated Hamiltonian vector
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. INTRODUCTION

Jacobi brackets have all properties of Poisson brackets, except from the fact that they are not
ecessarily derivations. A manifold endowed with a Jacobi bracket is called a Jacobi manifold. In
his context, Jacobi manifolds are natural generalizations of Poisson, contact and locally conformal
ymplectic manifolds. Jacobi manifolds were introduced by Lichnerowicz1 and, in a local Lie
lgebra setting, by Kirillov.2 The general properties of Jacobi manifolds are discussed, for in-
tance, in Refs. 3 and 4. Some recent advances on the study of Jacobi manifolds can be found in
efs. 5–16.

The present work is devoted to the explicit construction of Jacobi structures. Although contact
nd locally conformal symplectic manifolds are general concrete examples of Jacobi manifolds,
here is a lack of knowledge of other possible classes of Jacobi brackets even for low dimensional
anifolds. An exception in this regard is given by linear Jacobi structures on vector bundles.17

his is to be compared with the Poisson manifolds case, where, in recent years, there has been
uch work for the explicit construction of Poisson structures, generalizing the well-known case of
ie-Poisson structures.18–22 In particular, there have been intensive efforts in the derivation of new
lasses of three-dimensional Poisson structures, with application to three-dimensional dynamical
ystems.23–31 More recently, Ay et al.32 have found the general solution of the determining equa-
ion for Poisson structures in R3. The purpose of the present work is to extend this result, obtaining
he general form of Jacobi structures in R3. Our approach is not applicable to generic three-
imensional manifolds.

The paper is organized as follows. In Sec. II, we briefly review the basic definitions about
acobi manifolds. In Sec. III, we consider the specific case of Jacobi structures in R3. The deter-
ining equations for Jacobi brackets in R3 are obtained and solved. In Sec. IV, the associated
amiltonian vector fields are discussed. Section V is reserved to our conclusions.

I. JACOBI MANIFOLDS

Here we review the essential results about Jacobi manifolds. More detailed accounts on the
ubject can be found in Refs. 1–4. By definition, a Jacobi structure on a manifold M is a 2-vector

and a vector field E on M such that

��,�� = 2E ∧ �, �E,�� = 0, �1�

here �,� is the Schouten-Nijenhuis bracket.33 Let C��M ,R� be the algebra of C� real-valued
unctions on M. If �M ,� ,E� is a Jacobi structure, then the space C��M ,R� endowed with a

�
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apping �,� :C��M ,R��C��M ,R�→C��M ,R� becomes a local Lie algebra in the sense of
irillov.2 This so-called Jacobi bracket �,� is defined by

�f ,g� = ��df ,dg� + fE�g� − gE�f� , �2�

or all f ,g�C��M ,R�. The Jacobi bracket is R bilinear, skew-symmetric, and satisfies the Jacobi
dentity. In other words,

�c1f + c2g,h� = c1�f ,h� + c2�g,h� ,

�f ,g� = − �g, f� ,

��f ,g�,h� + ��g,h�, f� + ��h, f�,g� = 0, �3�

or all f ,g ,h�C��M ,R� and c1 ,c2�R. The local Lie algebra character of C��M ,R� is assured by

support�f ,g� � support f � support g , �4�

or all f ,g�C��M ,R�.
In addition, the Jacobi bracket is a first-order differential operator in each of its arguments

sing ordinary multiplication of functions,

�fg,h� = f�g,h� + �f ,h�g − fg�1,h� , �5�

or all f ,g ,h�C��M ,R�. As apparent from �5�, the Jacobi bracket is not a derivation unless the
onstant unit function has a vanishing Jacobi bracket with all functions in C��M ,R�. It happens if
nd only if the vector field E vanish, E�0. If E�0, then �M ,�� is a Poisson manifold. In this
ense, Jacobi manifolds are generalizations of Poisson manifolds. Examples of manifolds with
acobi but not Poisson structures are contact and locally conformal symplectic manifolds.

As shown by Lichnerowicz,1 any Jacobi structure �M ,� ,E� can be associated to a higher-
imensional Poisson structure �� ,M �R�, defined by

��x,t� = exp�− t����x� +
�

�t
∧ E	 , �6�

here �x , t� are local coordinates in �� ,M �R�. While Eq. �6� provides a simple recipe to obtain
Poisson structure from a Jacobi structure in a lower-dimensional manifold, it is not trivial to

onstruct a Jacobi structure in the manifold M itself. Hence the importance of deriving concrete
xamples of Jacobi structures in manifolds like R3, for instance.

In a local coordinate chart xi, for i=1, . . . ,n with n=dim M, we have the following expres-
ions for the tensor field �, the vector field E, and the Jacobi bracket of two functions f and g,

� = 1
2�ij�i ∧ � j, E = Ei�i,

�f ,g� = �ij�i f� jg + fEi�ig − gEi�i f . �7�

he summation convention was used, as well as the notation �i=� /�xi. In addition, the Schouten-
ijenhuis bracket conditions �1� traduces into

�im�m� jk + � jm�m�ki + �km�m�ij + �ijEk + � jkEi + �kiEj = 0, �8�

Ek�k�
ij − �ik�kE

j + � jk�kE
i = 0. �9�

s can be verified, Eqs. �8� and �9� are completely equivalent to the Jacobi identity for the Jacobi
racket �2�. In this context, we call �8� and �9� the Jacobi equations. The general solution for the

n
acobi equations yields the general form of the Jacobi structures in R . Ay et al. have solved the
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acobi equations for n=3 and E=0, that is, the Poisson case in R3. In the next section we allow for
onvanishing vector fields E, looking for the general class of Jacobi structures in R3.

II. JACOBI STRUCTURES IN R3

Consider the R3 case, introducing a vector field A=Ai�i according to

�ij = �ijkA
k, �10�

sing the Levi-Civita symbol �ijk. In other words, A= ��23,�31,�12�. In terms of this vector field
, the Jacobi equations �8� and �9� are rewritten as

A · �� � A − E� = 0, �11�

E � �� � A� + A � · E = ��A · E� , �12�

using standard symbols of vector calculus in R3.
Using �11� and �12� we can proceed to construct Jacobi structures using the well-known

anguage of vector calculus in R3. Before we do that, it is interesting to interpret geometrically
quation �11�. Consider �M ,� ,E� a given Jacobi structure and let �� :T*M→TM be the vector
undle map associated with �. In other words, for all p�M ,� ,��Tp

*M,

���,�� = 
�,������ , �13�

here 
,� denotes the natural pairing. In terms of the vector field A, the last equation shows that
he image of the vector bundle map �� is the plane orthogonal to A. Taking into account �11�,
ritten as A ·E=A ·��A, we conclude that the condition A ·��A�0 would imply that the
ector E does not belong to the image of ��, or, in other words, that the rank of the Jacobi
tructure is everywhere 3. On the other hand, the condition A ·��A�0 would imply that the
ector E takes its values in the image of ��. Together with A�0, that means that the rank of the
acobi structure would be everywhere 2.

Now consider the calculation of Jacobi structures. For A�0, Eqs. �11� and �12� are identically
atisfied for arbitrary E, but this will not produce very interesting Jacobi structures. Disregarding
he too trivial case A�0, we conclude that Eq. �11� is equivalent to

E = � � A − g � A , �14�

for some vector field g in R3, to be determined. The Poisson case E=0 is obtained for

� � A = g � A . �15�

s shown by Ay and co-workers in a different notation,32 the general solution for �15� is given by

A = � � � , �16�

or � ,��C��R3 ,R�. The solution �16� has shown to be valid32 also in the neighborhood of some
lasses of irregular points, where A=0. The corresponding vector field g is given by

g =
��

�
. �17�

Returning to the not necessarily Poisson case and substituting the form �14� into �12�, we get
he following condition:

��A · � � A� = g�A · � � A� − A�A · � � g� . �18�

In the remaining part of the section we examine the general solution for �18�, thus determining
the possible classes of Jacobi structures in R3. We consider two cases, according to the rank of the

acobi structure.
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. Rank 3 Jacobi structures

Suppose

A · � � A � 0. �19�

n this situation, �R3 ,�� is certainly not a Poisson structure, with 2-vector � specified by �10�.
owever, we can construct Jacobi structures defining a vector field h such that

g = �	 + h , �20�

or

	 = ln�A · � � A� . �21�

f course the function 	 is not well defined unless A ·��A is not identically vanishing. Inserting
20� into �18�, the result is

h�A · � � A� − A�A · � � h� = 0. �22�

The cross product of �22� with A gives

A � h = 0 → h = 
A , �23�

or an arbitrary real-valued function 
 on R3. We can take 
�0 without loss of generality, since,
ccording to �14� and �20�, this function will add nothing to the vector field E. Hence, in the rank
case the determining equation �18� is solved for any vector field A satisfying A ·��A�0,

aking g=�	 with 	 given by �21�. The corresponding vector field E follows from �14�. After
sing some vector identities, the result is

E = e	 � � �e−	A� . �24�

Using �2� and �10� and the above solution E, we get the Jacobi bracket between any functions
f ,g�C��R3 ,R�,

�f ,g� = A · �f � �g + e	�f � g − g � f� · � � �e−	A� . �25�

t takes a simpler form for 	=constant, in which case

�f ,g� = A · �f � �g + �f � g − g � f� · � � A . �26�

In conclusion, the Jacobi bracket �25� has three free ingredients, namely the three components of
the vector field A, as long as A ·��A is not identically null. For simplicity, we do not consider
the behavior of the solution in the neighborhood of points into domains ��R3 where A ·��A

0.
On R3, rank 3 Jacobi structures are in one-to-one correspondence with contact 1-forms.

pecifically, giving a contact 1-form � on R3 such that �∧d��0, there is a Jacobi structure
R3 ,� ,E� satisfying �∧E�0 and i����=0, iE���=1. In the case of the rank 3 Jacobi structures
f this section, using Cartesian coordinates we can show that

� ∧ E = A · E
�

�x
∧

�

�y
∧

�

�z
= A · � � A

�

�x
∧

�

�y
∧

�

�z
� 0. �27�

ince �∧E is nowhere zero, there is a contact 1-form � associated to this Jacobi structure. It can
e shown that

� = e−	Ai dxi �28�

atisfies

−	
i���� = − e �A � A� · � = 0, �29�
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iE��� = e−	A · �� � A − �	 � A� = e−	A · � � A = 1, �30�

he last equality following from the definition of 	. Moreover,

� ∧ d� = e−	 dx ∧ dy ∧ dz , �31�

hich never vanishes. Therefore, the 1-form � given by �28� qualifies as the contact 1-form
ssociated to rank 3 Jacobi structures in R3. As a corollary, we conclude that

d� = e−	��iA
j − Aj�i	�dxi ∧ dxj �32�

s a symplectic structure on the vector bundle ker �→R3 defined as the set of vector fields
rthogonal to A at every point.

Another way to interpret the above construction is in terms of the characteristic distribution2,3

f the Jacobi structure �R3 ,� ,E�, defined as the subbundle D of T�R3� spanned by the set of all
amiltonian vector fields. In other words, Dp=Span�������p� ,E�p� , ∀��T*�R3�� is the fiber at a
oint p�R3. The characteristic distribution of a Jacobi structure is completely integrable, defining
foliation whose leaves are contact manifolds or locally conformal symplectic manifolds. The

eaves of the foliation can be represented as the level sets of a function f�x ,y ,z�. In terms of the
ector fields A and E, the determining equations of the foliation are given by

A � �f = 0, �33�

E · �f = 0. �34�

or the rank 3 Jacobi structures of this section, inserting �24� into �34� and considering equation
33� gives

� � A · �f = 0, �35�

hich is redundant since ��A ·�f =� · �A��f�=0 in virtue of �33�. Hence, for rank 3 Jacobi
structures in R3 the vector field A is always normal to the leaves of the foliation, as stated in �33�.

. Rank 2 Jacobi structures

For

A · � � A � 0, �36�

he determining equation �18� simplifies to

A · � � g = 0, �37�

xcluding the trivial case A=E=0. As shown by Ay and co-workers,32 the general solution for �36�
s given in terms of two scalar functions � and �, as in Eq. �16�. Using �16�, the Eq. �37� traduces
nto

�� · � � g = � · �g � ��� = 0, �38�

howing that the vector field g��� is solenoidal. Hence, there are real smooth functions 1 and

2 on R3 such that

g � �� = �1 � �2 �39�

n a neighborhood U of every regular point of g���. We exclude the trivial case ��=0.

Inversion of �39� gives
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g =
�� � ��1 � �2�

����2
+ 
 � � , �40�

here 
 is an arbitrary real-valued smooth function on R3 and

�� · �1 � �2 = 0 �41�

or consistency with �39�. Equation �41� implies a functional dependence between �, 1, and 2,

� = ��1,2� . �42�

Since we have solved the determining equation �18�, we can construct the vector field E, using
qs. �14�, �16�, and �40�. This procedure gives

E = �� � �� − � � 1 � �2. �43�

he corresponding Jacobi bracket reads

�f ,g� = � � � · �f � �g + �f � g − g � f� · ��� � �� − � � 1 � �2� . �44�

otice that the real function 
 in �40� does not appear in the final form of the Jacobi bracket.
herefore, the Jacobi structure described by �44� has only four ingredients, namely �, 1, 2, and
�1 ,2�.

The presence of the function � in the Jacobi bracket can be eliminated by a conformal

ransformation. Indeed,15 if �M ,� ,E� is a Jacobi structure in a manifold M, then �M ,�̃ , Ẽ� is also

Jacobi structure in M, where �̃ and Ẽ are obtained from the conformal change

�̃ = ��, Ẽ = �E + ���d�� , �45�

or any ��C��R3 ,R�. Applying such a conformal transformation to everywhere rank 2 Jacobi
tructures in R3 using �=1/� gives

�̃ij = �ijk�k�, Ẽ = − �1 � �2, �46�

ith no presence of the arbitrary function �. However, this does not mean that � is to be taken as
rrelevant in applications for dynamical systems, for instance.

A Jacobi structure everywhere of rank 2 on R3 determines a foliation of R3 whose leaves are
ocally conformal symplectic surfaces.2,3 Perhaps the simplest way to describe such a foliation is
n terms of the characteristic distribution of the Jacobi structure, as follows from �33� and �34�.
epresenting, as before, the leaves of the foliation as the level sets of a function f�x ,y ,z� and
sing �16� and �43� in �34�, we get

E · �f = − � � 1 � �2 · �f � 0, �47�

howing that f = f�1 ,2�. When we insert this result into �33� with A given by �16�, we conclude
hat

��

�1

�f

�2
−

��

�2

�f

�1
= 0, �48�

howing that f and � are functionally dependent. In conclusion, for rank 2 Jacobi structures in R3

here exists a locally conformal symplectic foliation whose leaves can be represented by the level
ets of the function ��x ,y ,z� entering the Jacobi bracket.

The degenerate character of rank 2 Jacobi structures in R3 allows to search for Casimir
unctions associated to the Jacobi bracket. These Casimir functions can be defined in analogy with

he Casimir functions of degenerate Poisson manifolds. In other words, we define Casimir func-
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ions as the nonconstant functions having a vanishing Jacobi bracket with any other function on
3. Let a Casimir function be denoted by C=C�x ,y ,z�. In terms of the vector fields A and E, we
ave

�f ,C� = ��C � A − CE� · �f + fE�C� � 0 �49�

for an arbitrary smooth function f �C��R3 ,R�. Since f is arbitrary, Eq. �49� is decomposed in two
arts,

�C � A = CE , �50�

E�C� = 0. �51�

bserve that the Casimirs are preserved by the flow of the vector field E. In addition, notice that,
or C�0, Eq. �51� follows from �50� taking the scalar product with �C. Therefore, �50� is
ufficient for the construction of the Casimirs.

For C�0, scalar product of �50� with A implies

A · E = 0, �52�

incidentally the condition for rank 2 Jacobi structures in R3. Therefore, nontrivial Casimirs can
xist only in the case of rank 2 Jacobi structures, as expected. As will be explicitly shown in what
ollows, the condition �50� is not only necessary but also sufficient for the existence of nontrivial
asimirs.

Equation �50�, written in terms of A as given in �16� and E as given in �43�, reads, after some
imple algebra considering ��0,

�� � �� = − �1 � �2, �53�

here

� = ln�C

�
	 . �54�

fter solving �53� for �, the Casimirs follows trivially from �54�.
Scalar product of �53� with �� gives

�� · �1 � �2 = 0, �55�

howing that

� = ��1,2� . �56�

nserting this information on the functional dependence of � in �50�, we get

� ��

�1

��

�2
−

��

�2

��

�1
+ 1	 � 1 � �2 = 0. �57�

ince this equation holds for arbitrary 1, 2, we conclude that

��

�1

��

�2
−

��

�2

��

�1
= − 1. �58�

quation �58� can be solved by the method of characteristics. The characteristic equations can be

ritten as
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d1

��/�2
= −

d2

��/�1
= − d� . �59�

ne of the characteristics is readily identified as ��1 ,2�. Without loss of generality, suppose
� /�1�0 in some neighborhood. Then, the inverse function theorem allows to consider 1

1�2 ;��, written locally as a function of 2 and �. This allows writing the general solution for
58� according to

� = 
1=1�2;��

d2

��/�1
+ �̄��� , �60�

here �̄ is an arbitrary function of the indicated argument.
Equation �60�, together with �54�, provides a recipe to compute the Casimirs of a given rank

Jacobi structure in R3. Perhaps it would be interesting to provide a concrete example of the
rocedure. Consider a rank 2 Jacobi structure in R3 defined by

1 = x, 2 = y, � = x2 + y2, � = 1. �61�

ith �60� and then �54�, we obtain the Casimirs in the form

C = C̄�r2�e�/2, �62�

sing cylindrical coordinates and defining

C̄��� = e�̄���. �63�

n addition, we observe that in this case the leaves of the foliation of R3 in locally conformal
ymplectic surfaces are given by the cylinders defined by �=x2+y2=constant.

In the next section, we discuss the Hamiltonian vector fields associated to the two types of
acobi structures derived.

V. HAMILTONIAN VECTOR FIELDS ASSOCIATED TO JACOBI STRUCTURES IN R3

For a function H�C��M ,R�, the Hamiltonian vector field vH associated with H is defined by1

vH = ���dH� + HE . �64�

n this context, the function H is said to be the Hamiltonian for the vector field vH. In particular,

v1 = E , �65�

hat is, the unit function H=1 is a Hamiltonian associated to any vector field E. In this sense, any
ynamical system in a manifold M can be viewed as a Hamiltonian system with Jacobi structure
iven by Hamiltonian function H=1, vector field E being the dynamical vector field itself and
ensor field ��0. In addition,

v�f ,g� = �v f,vg� , �66�

or any f ,g�C��M ,R�, so that the mapping which associates a function with the corresponding
amiltonian vector field is a Lie algebra homomorphism. Finally, notice that the Hamiltonian is
ot always a constant of motion, even if time independent. In fact, for a time-independent Hamil-
onian function,

dH

dt
= HE�H� . �67�

ence, H is a constant of motion if and only if it is preserved by the flow associated to the vector

eld E.
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In a local coordinate chart xi, for i=1, . . . ,n with n=dim M, the Hamiltonian vector field at
64� and the corresponding Hamilton equations in M are then

ẋi = vH
i = �ij� jH + HEi, �68�

here vH=vH
i �i. For R3 and in terms of the vector field A, the result is

ṙ = �H � A + HE , �69�

here r= �x ,y ,z�. The expression �69� can be used to compute the Hamiltonian vector fields
ssociated to the Jacobi structures of Sec. III. The two classes of Jacobi structures are treated
eparately.

. Hamiltonian vector fields associated to rank 3 Jacobi structures

The class of Jacobi structures described in Sec. III A yields the following Hamilton equations,
aking E as in �24�:

ṙ = � � �HA� + HA � �	 , �70�

ith Hamiltonian H and 	 as in �21�.
At first sight, it appears that a simple rescaling A→ Ā=HA would be sufficient to incorporate

into the new vector field Ā, eliminating one irrelevant function. However, the dependence of 	

n A prevents this possibility. Indeed, consider Ā and 	̄ given by

Ā = HA, 	̄ = ln�Ā · � � Ā� . �71�

ith these definitions, �70� reads

ṙ = � � Ā + Ā � �	̄ + 2
�H

H
� Ā . �72�

he last term in �72� is H dependent. Therefore, we are left with a dynamical system �70�
etermined by four functions, namely the three components of A and the Hamiltonian function H.

Among the whole class �70�, an interesting subclass is provided by the choices

� � A = �A, H = 1, �73�

here ��C��R3 ,R� is an arbitrary smooth function. With the choice �73�, we get

ṙ = �A + A � �	 , �74�

o that the Hamiltonian vector field is immediately decomposed into a parallel and a perpendicular
art to the vector field A.

As seen in �73�, A is in the class of the force free vector fields.34 For instance, a force free
eld is given by the Arnold-Beltrami-Childress �ABC� vector field,

A = �a sin z + c cos y,b sin x + a cos z,c sin y + b cos x� , �75�

for a ,b ,c real nonnegative parameters. In this case, �=1. The ABC flow is known to be generi-
cally nonintegrable. For instance, for a=b=c there is even an analytic proof of nonintegrability.35

nserting �75� into �74�, we would obtain a perturbed ABC flow endowed with a Jacobi bracket
tructure. It would be interesting to investigate the integrability properties of such a system.

To conclude, notice that the dynamical vector field vH associated to �70� is not necessarily
olenoidal, because

� · vH = �	 · � � �HA� , �76�
n expression which may be nonvanishing.
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. Hamiltonian vector fields associated to rank 2 Jacobi structures

The class of Jacobi structures described in Sec. III B yields the following Hamilton equations:

ṙ = ���H� � �� − �H � 1 � �2. �77�

ithout any loss of generality, for this class of dynamical systems we can set H=1, thanks to the
escaling �→�H. Hence, we adopt the choice H=1 in the following. The dynamical system �77�
ontains four free functions, namely �, 1, 2, and ��1 ,2�.

Notice that � is a constant of motion if time independent, because

d�

dt
= − � � � · �1 � �2 = 0. �78�

herefore, to obtain a Hamiltonian description of a dynamical system in R3 using a Jacobi struc-
ure of the extended Poisson type, one must know a first integral. This is a most restrictive
ondition, in comparison with the case of the preceding section.

Using �50� and �51� and taking H=1, one can show that the Casimirs of the rank 2 Jacobi
tructures in R3 are preserved by the flow of the associated Hamiltonian vector field,

vH�C� = 0, �79�

here C is any Casimir function. Since one can readily derive all Casimirs from the recipe
escribed by Eqs. �54� and �60�, we conclude that a constant of motion � plus a rank 2 Jacobi
tructure amounts to complete integrability, with the corresponding time-independent constants of
otion being � and C.

To conclude, we observe that the Hamiltonian vector field vH associated to �77� �with H=1� is
ot necessarily solenoidal,

� · vH = − �� · �1 � �2, �80�

hich may be nonvanishing.

. CONCLUSION

The two admissible classes of Jacobi structures in R3 were constructed. For simplicity, neigh-
orhood of points into domains ��R3 where the vector field A vanish were not considered. In
his sense the results of the work are not completely general.

One of the reasons why Poisson structures are so ubiquitous rests in their applications for
ynamical systems.18–32 Certainly Jacobi structures have not been already applied at the same
evel in connection with dynamical systems. The results of Sec. IV shows the possible classes of
amiltonian vector fields endowed with Jacobi structures in R3. This is a first step towards a more
etailed examination of the possibilities opened by Jacobi structures for dynamical systems. For
nstance, one can ask about the existence of some kind of energy Casimir method for Hamiltonian
ystems on Jacobi manifolds. In addition, notice that the inverse problem of the construction of a
ontrivial Jacobi bracket associated to a given dynamical system was not considered here. This
eems to be a difficult task. For instance, due to the dependence of the 	 function on A, the
quation �70� is a nonlinear equation for A for a given dynamical vector field. However, the class
f Hamiltonian equations in Sec. IV A is possibly more interesting for applications, since one does
ot need to obtain a first integral for it. In contrast, the Hamiltonian description in Sec. IV B must
e constructed in terms of a function � which was shown to be a first integral for the dynamical
ystem, if �� /�t=0. Therefore, it is more difficult to derive Jacobi structures of the type in Sec.
V B, considering nonintegrable dynamical systems in R3.

Recently, there has been interest on Leibniz manifolds,36 that is, manifolds endowed with
rackets satisfying the derivation property but not necessarily the Jacobi identity. These Leibniz
anifolds provide another possible alternative to generalize Poisson manifolds. It would be inter-

3
sting to extend the results of the present work to Leibniz structures in R .
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igner-Moyal description of free variable mass Klein-
ordon fields
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A system of coupled kinetic transport equations for the Wigner distributions of a
free variable mass Klein-Gordon field is derived. This set of equations is formally
equivalent to the full wave equation for electromagnetic waves in nonlinear disper-
sive media, thus allowing for the description of broadband radiation-matter inter-
actions and the associated instabilities. The standard results for the classical wave
action are recovered in the short wavelength limit of the generalized Wigner-Moyal
formalism for the wave equation. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2049169�

. INTRODUCTION

The Wigner-Moyal formalism provides an alternative formulation for nonrelativistic Quantum
echanics, where the wave function is replaced by a quasiparticle distribution function, the
igner distribution, in phase space, which evolves in time according to a transport equation for

he Wigner-Moyal distribution.1 One of the main advantages of the Wigner-Moyal formalism is
he possibility to describe quantum fields with nontrivial statistical properties.2

Since the evolution of electromagnetic waves can be described, in the paraxial approximation,
y a Schrödinger-like equation it is not surprising that the Wigner-Moyal formalism has been used
o describe waves propagating in an inhomogeneous, dispersive, anisotropic and slowly varying in
ime medium.3 However, the propagation of electromagnetic waves is, in general, a two mode
roblem as clearly stated by the second-order time derivative in the wave equation for electro-
agnetic waves in any medium.4 Previous works5 have only dealt with the single mode problem,

ormally equivalent to propagating a nonlinear Schrödinger-like field, but this approach clearly
reaks down when backscattering of the field is an important ingredient for the full dynamics of
he system, as it usually occurs in laser/radiation-matter interactions at high intensities.

In this paper, we build an alternative description for the propagation of electromagnetic waves
n dispersive and nonlinear media, capable of capturing both forward and backscattering dynamics
f the electromagnetic waves, by generalizing the work developed by Javanainen et al.6 to a
ariable mass problem. In the short wavelength approximation the results regarding the classical
ave action �e.g., Ref. 7� are recovered.

We first construct a 2�2 Wigner matrix6 on the basis of the Hamiltonian form of the Klein-
ordon equation of a charged scalar particle field, introduced by Feshbach and Villars.8 The
iagonal elements describe forward and backward photon densities and off-diagonal elements
orrespond to cross-densities in phase space. In the corresponding quantum problem, the mass is
ssumed to be fixed;6 here a further generalization is performed in order to study the variable mass
roblem, since the response of the medium �in our case, a cold plasma� exhibits spatial and
emporal dependencies. The motivation of this approach is to develop the relativistic phase-space
escription of the dynamics of Klein-Gordon particles analogously to the Hamiltonian description
sed earlier by Bialynichi-Birula, Górnicki, and Rafelski for the Dirac particles.9 The advantage of

�
Electronic mail: luis.silva@ist.utl.pt
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his method, compared with the manifestly covariant descriptions of Ref. 10, is that a single time
arameter is used to describe the dynamics; as a result, the phase space is a genuine dynamical
ystem with its fully prescribed dynamics, and its conservation laws.

In order for the discussion to be self-contained, a brief outline of the Feshbach and Villars
amiltonian formulation for the Klein-Gordon equation is given in Sec. II, along with the defi-
ition of the 2�2 Wigner matrix. In Sec. III, we present the derivation of the generalized
oltzmann-Vlasov equation of motion for the Wigner matrix, and the set of coupled equations for

he four real phase-space densities, which are related to the diagonal and cross-densities of the
lein-Gordon particles and their antiparticles, are derived. A physical interpretation of the phase-

pace densities is provided. In Sec. IV the short wavelength approximation of the Boltzmann-
lasov equation of motion for the Wigner matrix is performed, and the well-known results of the

lassical wave action �e.g., Ref. 7 and references therein� are recovered. Finally, in Sec. V, we state
ur conclusions.

I. THE FESHBACK-VILLARS FORMALISM FOR ELECTROMAGNETIC WAVES AND THE
IGNER MATRIX

The propagation of an electromagnetic wave in a dispersive medium is described by the
lein-Gordon equation:4

�2�t
2� − �2c2�� r

2� + �p
2�r,t�� = 0. �1�

ere, � stands for one of the spatial components of the vector potential, in the Coulomb gauge,
nd c is the speed of light in vacuum. The CGS system of units is assumed throughout the paper,
xcept where explicitly noted. We observe that �p plays the role of the mass of the Klein-Gordon
eld. For a cold plasma �p�r , t� is the electron plasma frequency, a function of time and space,
iven by �p�r , t�= �4�e2ne /me��1/2 where e is the electron charge, me is the electron mass,

e���r , t� ,r , t� is the electron density in the plasma, and ����r , t� ,r , t� is the relativistic Lorentz
actor of the plasma electrons. The electron plasma frequency can be an arbitrary function of both
ime and space, and it may be a source of nonlinearity.11 Equivalently, Eq. �1� is also the starting
oint for nonlinear optics,12 which traditionally uses the index of refraction instead of �p to
escribe the properties of the media.

A distinguishing feature of this problem is the presence of a positive dimensionless parameter
. This parameter can be taken inversely proportional to the scale size of the spatial inhomoge-
eities, being small, but finite, for a slowing varying medium. We stress that our discussion is
alid for �=1, which corresponds to the usual wave equation. The inclusion of this small param-
ter will allow us to easily perform the analysis in the short-wavelength limit in Sec. IV.

To find the Hamiltonian form of Eq. �1�, we follow the Feshbach-Villars8 description, defining

�,� =
1

2
�� ±

i�

�p0
�t�� , �2�

here �p0
2 is the background electron plasma frequency, independent of time and space, such that

p
2�r , t�=�p0

2 + �̃p
2�r , t�. Equation �1� can then be written as

i��t� = −
�2c2

2�p0
�� r

2�� + �� +
�̃p

2

2�p0
�� + �� + �p0� , �3a�

i��t� =
�2c2

2�p0
�� r

2�� + �� −
�̃p

2

2�p0
�� + �� − �p0� . �3b�

There are several ways of separating Eq. �1� in two coupled equations, respecting definitions
2�. Equation �3� denotes the correct expansion for the scalar potential, �̃p

2, and guarantees, unlike
he prescription proposed in Ref. 6, that the short wavelength limit leads to the standard classical
ave action conservation, as shown in Sec. IV.
If we now introduce 	, the two-component vector potential, as
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	 = ��

�
� , �4�

q. �3� can be rewritten as

i��t	 =
�
3 + i
2�

2�p0
�− �2c2�� r

2 + �̃p
2�	 + �p0
3	 = Hm	 , �5�

here Hm is the Hamiltonian matrix. In Eq. �5�, and henceforth, the notation


0 = �1 0

0 1
�, 
1 = �0 1

1 0
� ,


2 = �0 − i

i 0
�, 
3 = �1 0

0 − 1
� �6�

s used to represent the Pauli matrices.
Equation �5� is a Schrödinger-like equation. Thus, the usual Wigner formalism can be applied

o a 2�2 igner matrix, instead of using the Wigner formalism on a scalar function. Defining the
�2 Wigner matrix using the Feshbach-Villars representation:6

W�k,r,t� 	 � 1

2��
�3


R3
dyei�k·y�/�	�r−,t�	̄�r+,t� , �7�

here 	̄=	†
3 denotes the Feshbach-Villars adjoint of the vector potential 	, r±=r±y /2, and R3

he usual three-dimensional Cartesian space. By construction, W is an Hermitian matrix in the

eshbach-Villars sense, namely W̄	
3W
†
3=W, and its explicit form can be expressed in terms of

he field components � and �, yielding

W = �W�� − W��
*

W�� − W��
� , �8�

here

W�� = � 1

2��
�3


R3
dyei�k·y�/��*�r+,t���r−,t� , �9a�

W�� = � 1

2��
�3


R3
dyei�k·y�/��*�r+,t���r−,t� , �9b�

W�� = � 1

2��
�3


R3
dyei�k·y�/��*�r+,t���r−,t� . �9c�

It is useful to calculate the equation governing the time evolution of 	̄. Taking the conjugate
ranspose of Eq. �5�, and multiplying on the right by 
3, we obtain

i��t	̄ = − 	̄
�
3 + i
2�

2�p0
�− �2c2�� r

2 + �̃p
2� − 	̄
3�p0 = − 	̄Hm, �10�

here we used 
i
†=
i , i� �0,1 ,2 ,3� and �
i ,
 j�=2
0�ij, i , j� �1,2 ,3�. Equation �10� demonstrates

hat the Hamiltonian matrix is not Hermitian. As a consequence the transport equation for the

igner matrix will have to include both commutators and anticommutators.
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II. GENERALIZED BOLTZMANN-VLASOV EQUATION OF MOTION

The equation of motion for the Wigner matrix �7�, can be derived from the Schrödinger-type

quations �5� and �10� for, respectively, 	�r− , t� and 	̄�r+ , t�, following a standard procedure.13

From Eqs. �5�, �7�, and �10� we obtain

�tW�k,r,t� = R1 + R2 −
i

�
�p0�
3,W� , �11�

here

�tW�k,r,t� = � 1

2��
�3


R3
dyei�k·y�/���t	�r−,t�	̄�r+,t� + 	�r−,t��t	̄�r+,t�� , �12a�

R1 =
i�c2

�p0
� 1

2��
�3


R3
dyei�k·y�/��
3 + i
2���� r

2

2
	�r−,t��	̄�r+,t�

− 	�r−,t���� r
2

2
	̄�r+,t���
3 + i
2�� , �12b�

R2 =
i

2��p0
� 1

2��
�3


R3
dyei�k·y�/��	�r−,t�	̄�r+,t��
3 + i
2��̃p+

2 − �
3 + i
2��̃p−

2 	�r−,t�	̄�r+,t�� ,

�12c�

here �̃p±

2 = �̃p
2�r± , t�. Note that �A ,B� represents the usual commutator between operator A and B,

nd that we also used the following identities:

�� r±
g�r±,t� = �� rg�r±,t� = ± 2�� yg�r±,t� , �13�

here g�r , t� stands for a first-order differentiable function of r, and an arbitrary function of t.
The first term on the right-hand side of Eq. �11�, R1, is the kinetic contribution for the

quation of motion, and it is always present, independently of the potential �̃p
2�r , t�, whereas the

econd term, R2, accounts for the potential contribution. After some lengthy calculations R1 can
lso be written as

R1 = −
c2k · �� r

2�p0
�
3 + i
2,W� −

i

�
�H0�k��
3 + i
2�,W� + Q , �14�

here

H0�k� =
c2

�p0
k2, �15a�

Q = − 2
i�c2

�p0
� 1

2��
�3


R3
dyei�k·y�/���
3 + i
2��� y	�r−,t� · �� y	̄�r+,t�

− �� y	�r−,t� · �� y	̄�r+,t��
3 + i
2�� �15b�

nd �A ,B� represents the usual anticommutator. Consequently, the equation of motion already
enotes the effects of the non-Hermiticity of the Hamiltonian Hm, as previously noted.

The form of Eq. �15b� suggests that a second-order derivative in space, and a commutator

ust be involved; in fact, Q can be rewritten as
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Q =
i�c2

�p0
��
3 + i
2�

�� r
2

8
,W� +

i

�
�1

2
H0�k̂��
3 + i
2�,W� �16�

eading to

R1 = −
c2k · �� r

2�p0
�
3 + i
2,W� −

i

�
�1

2
H0�k̂��
3 + i
2�,W� �17�

ith the generalized wave number k̂2=k2−�2�� r
2 /4

To calculate R2, we observe first that the inverse Fourier transform of the Wigner matrix �7�
ields the vector potential matrix 	�r+ , t�	̄�r− , t�, viz.:

	�r+,t�	̄�r−,t� = 

R3

dk�e−i�k�·y�/�W�k�,r,t� . �18�

ombining Eq. �18� and Eq. �12c� leads to

R2 =
i

2��p0
� 1

2��
�3


R3
dk�


R3
dyei��k−k��·y�/��W�k�,r,t��
3 + i
2��̃p+

2 − �
3 + i
2�W�k�,r,t��̃p−

2 � .

�19�

ince �̃p±

2 =e±iy/2i·�� r�̃p
2�r , t�, and in the case of a sufficient regular function g:13



−�

+�

eiyk�g�iy�F�k��dk� = 

−�

+�

eiyk�g�−
�

�k�
�F�k��dk�. �20�

hus, R2 can be expressed as

R2 =
i�̃p

2�r,t�
2��p0

cos��

2
�� r · �� k��W,�
3 + i
2�� +

�̃p
2�r,t�

2��p0
sin��

2
�� r · �� k��W,�
3 + i
2�� . �21�

Combining Eqs. �17� and �21� in Eq. �11�, the generalized Boltzmann-Vlasov equation of
otion for the Wigner matrix is

�tW�k,r,t� + �D̂ − Ŝ� 1
2 �
3 + i
2,W�k,r,t�� +

i

�
�H0�k̂� + Ĉ�

1

2
��
3 + i
2�,W�k,r,t��

+
i�p0

�
�
3,W�k,r,t�� = 0, �22�

here

D̂ =
c2

�p0
k · �� r, Ŝ =

�̃p
2�r,t�
��p0

sin��

2
�� r · �� k�, Ĉ =

�̃p
2�r,t�
�p0

cos��

2
�� r · �� k� . �23�

n the argument of the trigonometric functions, the operator �� r acts on the electron plasma

requency, and the operator �� k acts on the components of the Wigner matrix W�k ,r , t�. The matrix

perator H0�k̂� reduces, in the short wavelength approximation, to the free particle Hamiltonian

0�k�. Both Ĉ and Ŝ can be expanded in a power series, containing only even powers of � and,

herefore, Ŝ and Ĉ in Eqs. �23� have regular limits when �→0.
The operators �23� can also be cast in an integral form, which is more useful for numerical
mplementations:
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Ĉ, Ŝ f�k,r,t� =

R3

dk�K±�k − k�,r,t�f�k�,r,t� , �24�

here

K±�k,r,t� =
i

2��p0
� 1

2��
�3


R3
dyei�k·y�/���̃p+

2 − �̃p−

2 � . �25�

Equation �22� describes the equation of motion for the Wigner matrix, and therefore it de-
cribes the transport of W in phase space. Even though it is formally equivalent to the wave
quation �1�, it is more useful to represent our field in terms of real Wigner distributions. Since the
auli matrices form a basis for the 2�2 complex matrix space, W admits the expansion

W = 1
2 �
0W0 + i
1W1 − i
2W2 + 
3W3� , �26�

here all the Wi , i� �0,1 ,2 ,3� are real distributions. Since W is not Hermitian, an expansion in
he form W=�i=0

3 Wi
i, where all the Wi , i� �0,1 ,2 ,3�, are real functions, is not possible. Never-
heless, W is Hermitian in the Feshbach-Villars sense and the natural expansion with real coeffi-
ients is given by Eq. �26�. It is easily seen that W0=W��−W��, W1=2 Im�W���, W2

2 Re�W���, and W3=W��+W��. The physical meaning of W2�k ,r , t�+W3�k ,r , t� is of interest,
ecause it is related to the Wigner function of the vector potential �. In fact, with

W���k,r,t� = � 1

2��
�3


R3
dyei�k·y�/��*�r+,t���r−,t� , �27�

here �*�r , t� stands for the complex conjugate of ��r , t�, then

W�� = W2�k,r,t� + W3�k,r,t� = W�� + W�� + 2 Re�W��� . �28�

he vector potential is completely characterized by the distribution function W��, which can be
alculated for different electromagnetic field configurations. Furthermore, there is a one-to-one
orrespondence between the distribution W��, and the vector potential �, apart from a constant
hase shift �0. Defining the inverse Fourier transform of W��, as

Fk,y
−1 �y,r,t� =


R3
dke−i�k·y�/��W2�k,r,t� + W3�k,r,t�� , �29�

�r , t� is determined by

��r,t� =

Fk,r
−1 �r,

r

2
,t�

�Fk,r
−1 �0,0,t�

ei�0. �30�

n Eq. �30� �0 is determined from the initial conditions, and the inverse Fourier transform of the
igner function is assumed to be different from 0 at t=0.

The imaginary part of the cross-density W�� ,W1, is the classical equivalent of the quantum
Zitterbewegung,”6 and it represents the interference between forward and backward photons. For
igner matrices of a free forward plane wave or a free backward plane wave, of momentum

0,W1 is zero.
As a simple illustration, let us consider a vector potential described by the superposition of

wo plane waves ��r , t�=�0 exp�i�k0 · r−�0t��+�1 exp�i�k1 · r−�1t��, propagating in an uniform
˜ 2
edium with �p�r , t�=0. For this field:
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��r,t� =
�0

2
��p0 + �0

�p0
�ei�k0·r−�0t� +

�1

2
��p0 + �1

�p0
�ei�k1·r−�1t�, �31a�

��r,t� =
�0

2
��p0 − �0

�p0
�ei�k0·r−�0t� +

�1

2
��p0 − �1

�p0
�ei�k1·r−�1t�. �31b�

The corresponding components of the Wigner matrix are

W���k,r,t� =
��0 + �p0�2

4�p0
2 �0

2��k − k0� +
��1 + �p0�2

4�p0
2 �1

2��k − k1�

+
��p0 + �0���p0 + �1�

2�p0
2 �0�1 cos����k −

k0 + k1

2
� , �32a�

W���k,r,t� = −
k0

2c2

4�p0
2 �0

2��k − k0� −
k1

2c2

4�p0
2 �1

2��k − k1� +
�0�1

2

� �1 −
�0�1

�p0
2 �cos�� + i

�0 − �1

�p0
sin�����k −

k0 + k1

2
� , �32b�

W���k,r,t� =
��0 − �p0�2

4�p0
2 �0

2��k − k0� +
��1 − �p0�2

4�p0
2 �1

2��k − k1�

+
��p0 − �0���p0 − �1�

2�p0
2 �0�1 cos����k −

k0 + k1

2
� , �32c�

here =�k ·r−��t, �k=k1−k0, ��=�1−�0, ��k� represents the Dirac delta distribution and

0,1=�k0,1
2 c2+�p0

2 . The presence of two photon beams associated with the two plane waves is
asily seen. Furthermore there is a “third wave” which results from the interference between the
wo plane waves. In this case, W1 is different from zero, since it accounts for the interference
etween forward and backward photons. W0 is associated with the effective photon density, i.e., it
s positive when the forward photon density is bigger than the backward photon density.

Using the decomposition W=Re�W�+ i Im�W� in Eq. �22�, one can derive a set of two coupled
eal equations:

�t2 Re�W� + �D̂ − Ŝ�
1

2
�
3 + i
2,2 Re�W�� −

1

�
�H0�k̂� + Ĉ�

1

2
��
3 + i
2�,
1�W1 −

�p0

�
�
3,
1�W1 = 0,

�33a�

�t�
1W1� +
1

�
�H0�k̂� + Ĉ�

1

2
��
3 + i
2�,2 Re�W�� +

�p0

�
�
3,2 Re�W�� = 0, �33b�

here we have used �
i ,
 j�=2
0�ij, i , j� �1,2 ,3� and 2 Im�W�=
1W1. From expansion �26� it is
asily seen that 2 Re�W�=
0W0− i
2W2+
3W3 and, therefore, the four real phase-space densities
bey the set of transport equations:

�tW0 + �D̂ − Ŝ��W2 + W3� = 0, �34a�

�tW1 −
1

�H0�k̂� + Ĉ��W2 + W3� −
2

�p0W2 = 0, �34b�

� �
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�tW2 − �D̂ − Ŝ�W0 +
1

�
�H0�k̂� + Ĉ�W1 +

2

�
�p0W1 = 0, �34c�

�tW3 + �D̂ − Ŝ�W0 −
1

�
�H0�k̂� + Ĉ�W1 = 0. �34d�

The set of equations �34� is the main result of this paper. With the appropriate definitions for

i, the set of equations �34� is formally equivalent to Eq. �1�, and therefore opens the way to an
ppropriate description of the propagation of electromagnetic waves with arbitrary spectral content
n nonlinear dispersive media.14

V. THE SHORT WAVELENGTH LIMIT

We now examine the short wavelength limit of the Boltzmann-Vlasov equation of motion �22�
y examining the limit �→0. In order to consider the short wavelength limit of �22� we first
bserve that

lim
�→0

Ŝ =
�� r�̃p

2�r,t�
2�p0

· �� k, lim
�→0

Ĉ =
�̃p

2�r,t�
�p0

, lim
�→0

k̂ = k . �35�

Let the superscript �0� represent any function in the short wavelength limit. In the limit �
0, the set of equations �33� converges to a meaningful limit only if W1→0 faster than �→0;

ence W�0� must be real, i.e., W1
�0�=0. The same conclusions can also be obtained using the

oarse-graining technique introduced by Shin and Rafelski.15 Using the results in �35� and the
revious considerations, Eq. �33� can be written, in the �→0 limit, as

�tW
�0� + � c2

�p0
k · �� r −

1

2

�� r�̃p
2�r,t�

�p0
· �� k�1

2
��
3 + i
2�,W�0�� = 0, �36a�

��c2k2 + �̃p
2�r,t��

�
3 + i
2�
2�p0

+ �p0
3,W�0�� = 0. �36b�

Our first goal now is to find a matrix operator that transforms Eq. �36b� into a necessary
ondition for W�=U−1W�0�U to be diagonal. This will significantly reduce the amount of calcula-
ions needed to identify the form of the classical wave action, since the system will be reduced to
wo degrees of freedom. The matrix operator that performs this task is

U��� = e−
1�, �37�

here

� =
1

2
log���k,r,t�

�p0
� ,

nd with ��k ,r , t�=�k2c2+�p0
2 + �̃p

2�r , t�. On performing the similarity transformation induced by
in Eq. �36b�, we obtain

��k,r,t��
3,W�� = 0, �38�

here

U−1�
3 + i
2�U =
�p0 �
3 + i
2� . �39�
��k,r,t�
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From Eq. �38� we can see that W� must be a linear combination of 
0 and 
3, since all the other
auli matrices do not commute with 
3. One can choose this linear combination to be parametrized
y two real functions f and g, such that

W� =
f − g

2

0 +

f + g

2

3. �40�

erforming the transformation �37� in Eq. �36a�, with W� given by Eq. �40�, the diagonal part
eads to

�t f�k,r,t� +
c2k

��k,r,t�
· �� rf�k,r,t� −

1

2

�� r�̃p
2�r,t�

�p0
· �� kf�k,r,t� = 0, �41a�

�tg�k,r,t� −
c2k

��k,r,t�
· �� rg�k,r,t� +

1

2

�� r�̃p
2�r,t�

�p0
· �� kg�k,r,t� = 0. �41b�

Equations �41a� and �41b� clearly resemble the classical wave action conservation for forward
nd backward radiation, respectively.7 However to confirm this fact, the relation between f , g, and

��
�0� needs to be established. On one hand, we know that Re�W� is 1 /2�
0W0− i
2W2+
3W3�. On

he other hand, in the short wavelength limit, Re�W� is W�0�. Thus, we conclude that

W�0� = 1
2 �
0W0

�0� − i
2W2
�0� + 
3W3

�0�� . �42�

erforming the transformation induced by U in Eq. �42� we obtain

2W� = �f − g�
0 + �f + g�
3 = U−1�
0W0
�0� − i
2W2

�0� + 
3W3
�0��U , �43�

hich after some manipulation can be reduced to the set of algebraic equations:

f − g = W0
�0�, �44a�

f + g =
R2 + 1

2R
W3

�0� +
R2 − 1

2R
W2

�0�, �44b�

0 =
R2 + 1

2R
W2

�0� +
R2 − 1

2R
W3

�0�, �44c�

here we have defined R=��k ,r , t� /�p0. From Eq. �44�, one infers

f + g =
��k,r,t�

�p0
W��

�0� =
c2

2�p0
J�k,r,t� , �45�

here J�k ,r , t� represents the classical wave action, as defined in Ref. 7. Thus, in the short
avelength limit, Eqs. �41a� and �41b� state that the classical wave action, J�k ,r , t�, is conserved

long the geometrical optics ray, independent of the adiabaticity condition.16

To conclude the discussion of the short wavelength limit, we observe that when �→0 in Eq.
3� � is negligible, since reflected waves are exponentially small.17 Dropping the small component

in Eq. �3� and eliminating the �p0 term by setting ��r , t�= �̃�r , t�exp�−i�p0t /��, yields the
araxial wave equation:18

2i�p0��t�̃ = − �2c2�� r
2�̃ + �̃p

2�̃ . �46�

his equation is formally equivalent to the Schrödinger equation, and the Wigner-Moyal formal-

sm can be followed in a straightforward way. This is the approach followed by Besieris and
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appert.2,3 As expected, this path also leads to classical wave action conservation in the same limit
e have explored here, but fails to capture the dynamics of the backscattered component of the

adiation field.

. CONCLUSIONS

In order to establish a description of the propagation of electromagnetic waves in nonlinear
ispersive media, including the two modes described by the wave equation, we have employed the
eshbach-Villars description of the Klein-Gordon field with a variable mass term, and the corre-
ponding 2�2 Wigner matrix. The equations of motion for the Wigner matrix lead to a set of four
oupled equations for four real phase-space densities, whose physical meanings are clearly iden-
ified. The general Boltzmann-Vlasov equations of motion account for the backscattered waves,
nd for the interference between forward and backward radiation. These equations replace the
tandard Wigner-Moyal description of classical fields,3 generalizing it to the two mode problem
ith variable mass terms, and are formally equivalent to the full wave equation.

The short wavelength limit of the Boltzmann-Vlasov equations of motion was considered, and
t was shown they reduce to uncoupled equations for the forward and backward radiation phase-
pace densities. In this limit, the standard results regarding wave action conservation,7 are recov-
red.

The formalism introduced here provides a complete description for the electromagnetic field
n nonlinear dispersive media, and opens the way to the description of broadband radiation driven
arametric instabilities in nonlinear media. Applications of this formalism will be presented else-
here.

1 E. Wigner, Phys. Rev. 40, 749 �1932�; J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 �1949�.
2 I. M. Besieris, W. B. Stasiak, and F. D. Tappert, J. Math. Phys. 19, 359 �1973�.
3 I. M. Besieris and F. D. Tappert, J. Math. Phys. 44, 2119 �1973�; 14, 704 �1973�; 14, 1829 �1973�.
4 J. D. Jackson, Classical Electrodynamics, 2nd ed. �Wiley, New York, 1998�, p. 222.
5 R. Bingham, J. T. Mendonca, and J. M. Dawson, Phys. Rev. Lett. 78, 247 �1997�; J. T. Mendonca and N. L. Tsintsadze,
Phys. Plasmas 5, 3609 �1998�; B. Hall et al., Phys. Lett. A 321, 255 �2004�; Phys. Rev. E 62, 4276 �2000�; 65, 035602
�2002�; J. T. Mendonca, R. Bingham, and P. K. Shukla, ibid. 68, 016406 �2003�; D. Anderson et al., ibid. 69, 025601
�2004�; 70, 026603 �2004�.

6 O. T. Serimaa, J. Javanainen, and S. Varró, Phys. Rev. A 33, 2913 �1986�.
7 S. W. McDonald, Phys. Rep. 158, 337 �1988�.
8 H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 �1958�.
9 I. Bialynicki-Birula, P. Górnicki, and J. Rafelski, Phys. Rev. D 44, 1825 �1991�.
0 D. Vasak, M. Gyulassy, and H.-Th. Elze, Ann. Phys. �N.Y.� 44, 462 �1987�.
1 W. L. Kruer, The Physics of Laser Plasma Interactions, 1st ed. �Addison-Wesley, New York, 1988�.
2 Y. R. Shen, The Principles of Nonlinear Optics, 1st ed. �Wiley, New York, 1984�.
3 R. L. Liboff, Kinetic Theory, 2nd ed. �Wiley, New York, 1998�, p. 345.
4 J. P. Santos, R. Bingham, and L. O. Silva �unpublished�.
5 G. R. Shin and J. Rafelski, Phys. Rev. A 48, 1869 �1993�.
6 U. Bellotti and M. Bornatici, Phys. Rev. E 57, 6088 �1997�.
7 J. J. Mahony, Q. Appl. Math. 25, 313 �1967�.
8 P. W. Milonni and J. H. Eberbly, Lasers �Wiley, New York, 1988�, p. 483.
                                                                                                            



R

I

f
t
a
b
p
t
i
e

r
N
m
m
p
s
p
b
b
s
a
c
i

f
t
u

a

JOURNAL OF MATHEMATICAL PHYSICS 46, 102902 �2005�

0

                        
igid body mechanics in Galilean spacetimes
Ajit Bhanda� and Andrew D. Lewis
Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L3N6,
Canada

�Received 13 May 2005; accepted 19 August 2005; published online 20 October 2005�

An observer-independent formulation of rigid body dynamics is provided in the
general setting of a Galilean spacetime. The equations governing the motion of a
rigid body undergoing a rigid motion in a Galilean spacetime are derived on the
basis of the principle of conservation of spatial momentum. The formulation of
rigid body dynamics is then studied in the presence of an observer. It is seen that an
observer defines a connection such that there exist rigid motions that are horizontal
with respect to this connection that give the same physical motion of the rigid body,
and for which the general equations of motion are exactly the usual Euler equations
for a rigid body undergoing rigid motion. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2060547�

. INTRODUCTION

The main aim of this paper is to understand the dynamics of a rigid body in the general
ramework of a Galilean spacetime. We study how the physical motion of a rigid body is related
o “rigid motions”—the set of mappings belonging to the group of Galilean transformations from

Galilean spacetime to itself, called the Galilean group. We present a new formulation of rigid
ody dynamics that is independent of an observer. Note that the momentum associated with a
article undergoing motion in a Galilean spacetime is thought of as observer-dependent quantity in
he literature �see, for example, Ref. 1�. In this paper we take the view that momentum is an
ntrinsic property of a rigid body in motion, and that it is possible to define it without using any
xternal structure. An observer merely affects the way the momentum is measured.

The problem of deriving equations of motion for a rigid body in a Newtonian setting has a
ich history. Galileo �1564–1642� carried out the first systematic study of rigid bodies in motion.
ewton �1643–1727� built on the foundations laid by Galileo, and came up with equations of
otion for a particle in an inertial frame. Later on, Euler �1703–1783� derived the equations of
otion for a rigid body fixed at a point in R3. A modern treatment of this subject, from a general

oint of view of mechanics on Lie groups, can be found in Refs. 2 and 3. The role of the Galilean
tructure of the Newtonian spacetime has been understood in the case of the dynamics of a
article.1,3 A Galilean covariant formulation of the classical mechanics of a single particle has
een studied in Ref. 4, and, of course, the dynamics of a rigid body in a fixed Galilean frame has
een investigated quite thoroughly.3,5 However, to our knowledge, the role played by the Galilean
tructure has not been explained for rigid body mechanics. Unlike a particle or a rigid body fixed
t a point in R3, in the general setting of a Galilean spacetime, there does not exist an exact
orrespondence between rigid motions and physical motions of a rigid body. We address this issue
n detail and derive the “Galilean-Euler equations” for a rigid body.

We also show that an observer in a Galilean spacetime, apart from providing a reference frame
or observing Newton’s laws, also provides an isomorphism from the “abstract” Galilean group to
he “standard” or “canonical” Galilean group which consists of rotations, spatial translations,
niform velocity boosts, and time translations. Furthermore, an observer defines a connection such

�
Electronic mail: ajit@mast.queensu.ca
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hat, for any given rigid motion, there exists a rigid motion that is horizontal with respect to this
onnection that gives the same physical motion of the body as the given rigid motion, and for
hich the generalized equations of motion reduce to the usual Euler equations for a rigid body.

It should be noted that notions of Galilean spacetimes more general than ours have also been
tudied in the literature. For example, the full machinery of affine differential geometry has been
sed in Ref. 6 �see also Ref. 7� while a notion of “inertial relations” has been used in Refs. 8–10
o characterize more general Galilean spacetimes.

It is also worth noting that Souriau’s approach11 is different from ours. In particular, he
onsiders a symplectic formulation and his definition of momentum is based on the “Lagrange
wo-form.” Souriau also works with the canonical Galilean group, so obscuring the role of the
bserver.

This paper is organized as follows. In Sec. II, we present the mathematical preliminaries
elevant to our investigation. Several important concepts like affine spaces and subspaces, observ-
rs, Galilean spacetimes, and the Galilean group are introduced and their various properties are
escribed. The notion of a rigid body, along with its attendant features, is introduced in Sec. III. In
articular, the inertia tensor of a rigid body is defined and its properties are thoroughly explained.
n Sec. IV, the structure of the canonical, as well as the abstract, Galilean group is investigated in
etail. It is shown that an observer induces an isomorphism between the Galilean group and the
anonical group. Next, “canonical velocities” are defined. These are curves in the Lie algebra of
he Galilean group. With this background, we first look at rigid motions in Sec. V. Various
uantities associated with a rigid motion, such as the body and spatial linear and angular veloci-
ies, are defined. Throughout this section, the treatment is observer-independent. The discussion
hen focuses on angular and spatial momenta, and finally the generalized equations of motion
called the Galilean-Euler equations� for a rigid body are derived. In Sec. VI, the formulation
resented in Sec. V is studied in the presence of an observer. It is shown that, in such a case, we
ecover the familiar quantities associated with the classical treatment of rigid body mechanics. The
alilean-Euler equations are also studied in the presence of an observer, and the connection

nduced by the observer �called the Galilean connection� is defined. It is shown that, for each
onstant velocity boost, we recover the classical Euler equations for a rigid body.

I. GALILEAN SPACETIME

In this section, we present the mathematical background and introduce the notation to be used
n the following sections. In Sec. II A, we define affine spaces and subspaces; the principle objects
f interest in this paper. In Sec. II B, we introduce the notion of a Galilean spacetime and describe
he affine spaces naturally associated with it. We also introduce the set of Galilean velocities.
ext, we define observers in a Galilean spacetime and discuss their properties. Finally, in Sec.

I E, we define the Galilean group of a Galilean spacetime and introduce the fundamental maps
ssociated with a Galilean mapping.

. Affine spaces

In this section, we define affine spaces and subspaces, and record some of their properties. We
efer to Ref. 12 for more details.

Definition 2.1: Let V be an R-vector space. An affine space modeled on V is a pair �A ,��
here A is a set and � :V�A→A is a map with the following properties:

i� for every x ,y�A, there exists v�V such that y=��v ,x�;
ii� ��v ,x�=x for every x�A implies that v=0;
iii� ��0,x�=x, for each x�A;
iv� ��u+v ,x�=��u ,��v ,x��.

We shall now cease to use the map � and instead use the more suggestive notation ��v ,x�

v+x. By definition, if x ,y�A, there exists a unique v�V such that y=v+x. In this case we shall
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enote v=y−x. By a slight abuse of notation, we shall denote an affine space �A ,�� simply by A.
f A is an affine space modeled on V and we fix a point x�A, then A is isomorphic to the vector
pace V. We denote this vector space by Ax.

Definition 2.2: Let A and B be affine spaces. A map f :A→B is an affine map if, for each
�A, the map f is an R-linear map between the vector spaces Ax and B f�x�.

A subset B of an affine space modeled on V is an affine subspace if there is a subspace U of
with the property that y−x�U for every x ,y�B. In this case, B is itself an affine space

odeled on U. It can be shown that if B is an affine subspace of A, then there exists a subspace
of V such that, for any fixed x�B, we have B= �u+x �u�U�.

. Time and distance

We begin by giving the basic definition of a Galilean spacetime and by providing meaning to
he intuitive notions of time and distance.

Definition 2.3: A Galilean spacetime is a quadruple G= �E ,V ,g ,�� where

i� V is a four-dimensional R-vector space,
ii� � :V→R is a surjective linear map called the time map,
iii� g is an inner product on ker���, and
iv� E is an affine space modeled on V.

Points in E are called events—thus E is a model for the spatiotemporal world of Newtonian
echanics. With the time map, we may measure the time between two events x1 ,x2�E as ��x2

x1�. Events x1 ,x2�E are called simultaneous if ��x2−x1�=0; that is, if x2−x1�ker���.
We may define the distance between simultaneous events x1 ,x2�E to be equal to

g�x2−x1 ,x2−x1�. Note that this method for defining distance does not allow us to measure
istances between events that are not simultaneous. In particular, it does not make sense to talk
bout two nonsimultaneous events as occurring in the same place.

Simultaneity is an equivalence relation on E and the quotient we denote by IG=E /	, with �
enoting the relation of simultaneity. IG is simply the collection of equivalence classes of simul-
aneous events. We call it the set of instants. We denote by �G :E→ IG the canonical projection.

For s� IG, we denote by E�s� the collection of events x�E with the property that �G�x�=s.
hus events in E�s� are simultaneous. We next denote by VG the vectors v�V for which ��v�
1. We call vectors in VG Galilean velocities. The following result is easy to prove.

Proposition 2.4: The following statements hold:

i) for each s� IG, E�s� is a three-dimensional affine space modeled on ker���;
ii) IG is a one-dimensional affine space modeled on R;
iii) VG is an affine space modeled on ker���.

. Observers

An observer is to be thought of intuitively as someone who is present at each instant. Such an
bserver should be moving at a “uniform velocity.” Note that, in a Galilean spacetime, the notion
f “stationarity” makes no sense. We now provide our definition of an observer.

Definition 2.5: An observer in a Galilean spacetime G= �E ,V ,g ,�� is a one-dimensional affine
ubspace O of E with the property that �G �O is surjective.

The definition thus requires that O not be comprised entirely of simultaneous events. As a
onsequence of the definition, we have the following result.

Proposition 2.6: If O is an observer in a Galilean spacetime G= �E ,V ,g ,��, then, for each

0� IG, there exists a unique point x0�O�E�s0�.
Proof: Given s0� IG, there exists x0�O such that �G�x0�=s0. Since O is a one-dimensional

ffine space with the property that �G �O is surjective, there exists a one-dimensional subspace

�V such that
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O = �w + x0�w � W� ,

here W is not contained in ker���. By construction, x0�E�s0��O. This means that, for each

0� IG, the intersection E�s0��O is nonempty. Next, let y0�E�s0��O. Now, y0�E�s0� implies
hat y0−x0�ker���. On the other hand, y0�O implies that y0−x0�W. This means that y0=x0

hich proves the uniqueness of x0. �

This means that an observer does exactly what it should: it resides in exactly one place at each
nstant. By requiring that O be an affine subspace, we ensure that it has a “uniform velocity” and
o is an appropriate reference for observing Newton’s laws. We shall denote by Os the unique
oint in the intersection O�E�s�.

Since an observer O is a one-dimensional affine subspace, there is a unique one-dimensional
ubspace U of V upon which O is modeled. Therefore, there exists a unique vector vO�U�VG
ith the property that ��vO�=1. Conversely, given v�VG and x�E, there exists a unique observer
such that x�O and v=vO. We call vO the Galilean velocity of the observer O. It provides a

eference velocity with which we can measure other velocities. Indeed, given an observer O, we
ay define an associated map PO :V→ker��� by PO�v�=v− ���v��vO. In particular, if v�VG, we

ote that v=vO+ PO�v�. Thus PO can be thought of as giving the velocity of v relative to the
bserver’s Galilean velocity vO. Note that such velocities always live in the three-dimensional
ector space ker��� that is to be thought of as the space of velocities that are familiar in mechanics.
uch velocities are, however, only defined relative to an observer.

. World lines

Intuitively, a world line is to be thought of as being the spatiotemporal history of something
oving in the spacetime. We make the following definition.

Definition 2.7: Let G= �E ,V ,g ,�� be a Galilean spacetime. A world line in G is a section of

G :E→ IG.
A world line c : IG→E is differentiable at s0� IG if the limit

c��s0� ª lim
t→0

c�t + s0� − c�s0�
t

xists. Since c is a section of �G, we have ��c�t+s0�−c�s0��= t and so c��s0��VG, provided it
xists. Similarly, for a differentiable world line, if the limit

lim
t→0

c��t + s0� − c��s0�
t

xists, we denote it by c��s0�, the acceleration of the world line at the instant s0. Since

��c��s0�� = lim
t→0

��c��t + s0� − c��s0��
t

= lim
t→0

1 − 1

t
= 0,

e have c��s0��ker���.

. Galilean mappings

If Gi= �Ei ,Vi ,gi ,�i�, i=1,2, are two Galilean space-times, a Galilean mapping from G1 to G2 is
map � :E1→E2 with the following properties:

i� � is an affine map;
ii� �2���x1�−��x2��=�1�x1−x2� for x1 ,x2�E1;
iii� g2���x1�−��x2� ,��x1�−��x2��=g1�x1−x2 ,x1−x2� for simultaneous events x1 ,x2�E1.

he set of Galilean mappings from a Galilean spacetime G to itself is a Lie group �under compo-

ition of Galilean mappings�, and we call it the Galilean group of the Galilean spacetime G. We
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hall denote this group by Gal�G� and its Lie algebra by gal�G�. If ��Gal�G�, then there are
nduced natural mappings of V, IG, and R as follows.

Lemma 2.8: Let G= �E ,V ,g ,�� be a Galilean spacetime with ��Gal�G�. The following map-
ings are well defined:

i) the mapping �V :V→V defined by �V�v�=��v+x0�−��x0�, where x0�E;
ii) the mapping �IG

: IG→ IG defined by �IG
�s�=�G���x��, where x�E�s�;

iii) the mapping �� :R→R defined by ���t�= t+�IG
�s�−s, for s� IG. Furthermore,

iv) �V�v�=��x1�−��x2�, where x1−x2=v, and
v) there exists t��R such that �IG

�s�=s+ t� and ���t�= t+ t�.

Proof: �i� Let x0 , x̄0�E. We have

��v + x0� − ��x0� = ���v + �x0 − x̃0�� + x̃0� − ���x0 − x̃0� + x̃0� = ���x0 − x̃0� + x̃0� + ��v + x̃0� − ��x̃0�

− ���x0 − x̃0� + x̃0� = ��v + x̃0� − ��x̃0� ,

here we have used the property

���v1 + v2� + x� = ���v1 + x� + ��v2 + x�� − ��x� ,

ince � is an affine map. This property is readily verified using the definition of an affine map. We
ill now show that ker��� is an invariant subspace for �V. We let x , x̃�E have the property that
− x̃=u�ker���. Then

���V�u�� = ����x� − ��x̃�� = ��u� = 0,

here we have used property �ii� of Galilean mappings.
�ii� Let x , x̃�E�s�. There exists u�ker��� such that x̃=u+x. Now we compute

�G���x̃�� − �G���x�� = ����x̃� − ��x�� = ���V�x̃ − x�� = ���V�u�� = 0,

sing the fact that ker��� is an invariant subspace for �V.
�iii� We must show that the definition is independent of the choice of s� IG. For s̃� IG, we

ompute

t + �IG
�s̃� − s̃ = t + �IG

�s + �s̃ − s�� − s + �s − s̃� = t + �IG
�s + �s̃ − s�� − �IG

�s� + �IG
�s� − s + �s − s̃�

= t + �IG
�s� − s .

�iv� We have

��x1� − ��x2� = ���x1 − x2� + x2� − ��x2� = �V�x1 − x2� ,

s desired.
�v� Let x0�E and let t�=����x0�−x0�. For s� IG, let x�E�s�. We then have

�IG
�s� − s = �IG

�s� − �G�x� = �G���x�� − �G�x� = ����x� − ��x0�� + ����x0� − x0� + ��x0 − x�

= ����x0� − x0� = t�,

here we have used the property �ii� of Galilean mappings. This shows that the definition of t� is
ndependent of x0, and that �IG

�s�= t�+s, as desired. From �iii� it also follows that ���t�= t�+ t.
�

Remarks 2.9: �1� In the proof of the lemma we showed that, given ��Gal�G� ,�V leaves
er��� invariant. We shall see in the next section that ��V�ker��� has a mechanical interpretation.

�2� Using the definition of a Galilean mapping, it is easy to see that VG is also invariant under
V.
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Given a Galilean spacetime G, we let O�ker���� denote the g-orthogonal linear mappings of
er���. The Lie algebra of O�ker���� we denote by o�ker����, recalling that it is the collection of
-skew symmetric linear mappings of ker���. We identify ker��� with o�ker���� by the “hat” map
see Ref. 5� given by �� �̂. This is a generalization of the map from R3 to o�3� defined by


�1

�2

�3
� � 
 0 − �3 �2

�3 0 − �1

− �2 �1 0
� ,

nd may be explicitly defined by choosing an orthonormal basis for ker��� and then applying this
ransformation to the components in this basis. Since the vector product in R3 commutes with
rthogonal transformations, this definition is independent of the choice of orthonormal basis. In
ike manner, one can define u1�u2 for any u1 ,u2�ker��� as the generalization of the R3 vector
roduct.

II. RIGID BODIES

In order to talk about momenta, we need the notion of a rigid body. In this section we provide
ur definition for a rigid body and provide some implications of this definition. We begin by
roving, in our Galilean setting, some of the basic properties of the inertia tensor of a rigid body.

. Definitions

Let G= �E ,V ,g ,�� be a Galilean spacetime. A rigid body is a pair �B ,��, where B�E�s0� is a
ompact subset of simultaneous events, and � is a mass-distribution on E�s0� with support equal
o B. Our definition thus allows such degenerate rigid bodies as point masses, and bodies whose

ass distribution is contained in a line in E�s0�. We denote

��B� = �
B

d�

s the mass of the body.
The center of mass of the body �B ,�� is the point

xc =
1

��B��B
�x − x0�d� + x0.

ote that the integrand is in ker��� and so too will be the integral. The following lemma gives
ome of the basic properties of this definition. If S�A is a subset of an affine space A, we let
onv�S� denote the convex hull of S and aff�S� denote the affine hull of S. If X is a topological
pace with subsets T�S�X, intS�T� denotes the interior of T relative to the induced topology on
.

Lemma 3.1: Let �B ,�� be a rigid body in a Galilean spacetime with B�E�s0�. The following
tatements hold:

i) the expression

xc =
1

��B��B
�x − x0�d� + x0

is independent of the choice of x0�E�s0�;
ii) xc is the unique point in E�s0� with the property that B�x−xc�d�=0;
iii) xc� intaff�B��conv�B��.

Proof: �i� To check that the definition of xc is independent of x0�E�s0�, we let x̃0�E�s0� and

ompute
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1

��B��B
�x − x̃0�d� + x̃0 =

1

��B��B
�x − x0�d� +

1

��B��B
�x0 − x̃0�d�

+ �x̃0 − x0� + x0 =
1

��B��B
�x − x0�d� + x0.

�ii� By definition of xc and by part �i�, we have

xc =
1

��B��B
�x − xc�d� + xc,

rom which it follows that

�
B

�x − xc�d� = ��B��xc − xc� = 0.

ow suppose that x̃c�E�s0� is an arbitrary point with the property that

�
B

�x − x̃c�d� = 0.

hen, by �i�,

xc =
1

��B��B
�x − x̃c�d� + x̃c,

rom which we conclude that x̃c=xc.
�iii� If xc is on the relative boundary of conv�B� or not in B at all, then there exists a

yperplane P in E�s0� passing through xc such that there are points in B which lie on one side of
P, but there are no points in B on the opposite side. In other words, there exists ��ker���� such
hat the set

�x � B���x − xc� 	 0�

s nonempty, but the set

�x � B���x − xc� 
 0�

s empty. But this would imply that

�
B

��x − xc�d� 	 0,

ontradicting �ii�. �

. The inertia tensor

The properties of a rigid body are characterized by three things: �1� its mass, �2� its center of
ass, and �3� its inertia tensor. We now define the latter. The inertia tensor about x0�E�s0� of a

igid body �B ,�� is defined to be the linear map Ix0
:ker���→ker��� given by

Ix0
�u� = �

B
�x − x0� � �u � �x − x0��d� .

e denote the inertia tensor about the center of mass of �B ,�� by Ic. Next, we record some basic

roperties of the inertia tensor.
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Proposition 3.2: The inertia tensor Ix0
of a rigid body �B ,�� is symmetric with respect to the

nner product g.
Proof: Using the vector identity g�u ,v�w�=g�w ,u�v�, we compute

g�Ix0
�u1�,u2� = �

B
g��x − x0� � �u1 � �x − x0��,u2�d� = �

B
g�u1 � �x − x0��,�u2 � �x − x0��d�

= �
B

g�u1,�x − x0� � �u2 � �x − x0���d� = g�u1,Ix0
�u2�� ,

hich is what we wished to show. �

. Eigenvalues of the inertia tensor

Since Ix0
is symmetric, its eigenvalues are real. Furthermore, they are non-negative. The

ollowing result demonstrates this, as well as other eigenvalue related assertions.
Proposition 3.3: Let �B ,�� be a rigid body with B�E�s0� and let x0�E�s0�. Let Ix0

denote the
nertia tensor of �B ,�� about x0. The following statements hold:

i) the eigenvalues of the inertia tensor Ix0
of the rigid body are real and non-negative;

ii) if Ix0
has a zero eigenvalue, then the other two eigenvalues are equal;

iii) if Ix0
has two zero eigenvalues, then Ix0

=0.

Proof: �i� Since Ix0
is symmetric, its eigenvalues will be non-negative if and only if the

uadratic form u�g�Ix0
�u� ,u� is positive-semidefinite. For u�ker���, we compute

g�Ix0
�u�,u� = �

B
g�u,�x − x0� � �u � �x − x0���d� = �

B
g�u � �x − x0�,u � �x − x0��d� .

ince the integrand is non-negative, so too will be the integral.
�ii� Let I1 be the zero eigenvalue with v1 a unit eigenvector. We claim that the support of the

ass distribution � must be contained in the line

�v1
= �sv1 + x0�s � R� .

o see that this must be so, suppose that the support of � is not contained in �v1
. Then there exists

Borel set S�E�s0� \�v1
such that ��S�	0. This would imply that

g�Ix0
�v1�,v1� = �

B
g�v1 � �x − x0�,v1 � �x − x0��d� � �

S

g�v1 � �x − x0�,v1 � �x − x0��d� .

ince S��v1
=�, it follows that, for all points x�S, the vector x−x0 is not collinear with v1.

herefore

g�v1 � �x − x0�,v1 � �x − x0�� 	 0

or all x�S, and this would imply that g�Ix0
�v1� ,v1�	0. But this contradicts v1 being an eigen-

ector with zero eigenvalue, and so the support of B must be contained in the line �v1
.

To see that this implies that the remaining two eigenvectors are equal, we shall show that any
ector that is g-orthogonal to v1 is an eigenvector for Ix0

. First write

x − x0 = f1�x�v1 + f2�x�v2 + f3�x�v3

i
or functions f :E�s0�→R, i=1,2 ,3. Since the support of � is contained in the line �v1
, we have
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�
B

�x − x0� � �u � �x − x0��d� = v1 � �u � v1��
B

�f1�x��2d�

or all u�ker���. Now recall the property of the cross product that v1� �u�v1�=u, provided that
is orthogonal to v1 and that v1 has unit length. Therefore, we see that for any u that is orthogonal

o v1, we have

Ix0
�u� = ��

B
�f1�x��2d��u ,

eaning that all such vectors u are eigenvectors with the same eigenvalue, which is what we
ished to show.

�iii� It follows from the above arguments that, if two eigenvalues I1 and I2 are zero, then the
upport of � must lie in the intersection of the lines �v1

and �v2
�here vi is an eigenvector for Ii,

=1 ,2�, and this intersection is a single point that must therefore be x0. From this and the defini-
ion of Ix0

, it follows that Ix0
=0. �

Note that, in proving the result, we have proved the following corollary.
Corollary 3.4: Let �B ,�� be a rigid body with inertia tensor Ix0

. The following statements are
rue:

i) Ix0
has a zero eigenvalue if and only if B is contained in a line through x0;

ii) if Ix0
has two zero eigenvalues, then B= �x0�, i.e., B is a particle located at x0;

iii) if there is no line through x0 that contains the support of �, then the inertia tensor is an
isomorphism.

In coming to an understanding of the “appearance” of a rigid body, it is most convenient to
efer to its inertia tensor Ic about its center of mass. Let �I1 , I2 , I3� be the eigenvalues of Ic that we
all the principal inertias of �B ,��. If �v1 ,v2 ,v3� are orthonormal eigenvectors associated with
hese eigenvalues, we call these the principal axes of �B ,��. Related to these is the inertial
llipsoid which is the ellipsoid in ker��� given by

E�B� = �x1v1 + x2v2 + x3v3 � ker����I1�x1�2 + I2�x2�2 + I3�x3�2 = 1� ,

rovided that none of the eigenvalues of Ix0
are zero. If one of the eigenvalues does vanish, then

y Proposition 3.3, the other two eigenvalues are equal. If we suppose that I1=0 and that I2= I3

I, then in the case of a single zero eigenvalue, the inertial ellipsoid is

E�B� = �x1v1 + x2v2 + x3v3 � ker����x2 = x3 = 0,x1 � �−
1
�I

,
1
�I
�� .

n the most degenerate case, when all eigenvalues are zero, we define E�B�= �0�. These latter two
nertial ellipsoids correspond to cases �i� and �ii� in Corollary 3.4.

To relate these properties of the eigenvalues of Ic with the inertial ellipsoid E�B�, it is helpful
o introduce the notion of an axis of symmetry for a rigid body. We let Ic be the inertia tensor about
he center of mass, and denote by �I1 , I2 , I3� its eigenvalues and �v1 ,v2 ,v3� its orthogonal eigen-
ectors. A vector v�ker��� \ �0� is an axis of symmetry for �B ,�� if, for every R�O�ker���� which
xes v, we have R�E�B��=E�B�. The following result gives the relationship between axes of
ymmetry and the eigenvalues of Ic.

Proposition 3.5: Let �B ,�� be a rigid body with inertia tensor Ic about its center of mass. Let
I1 , I2 , I3� be the eigenvalues of Ic with orthonormal eigenvectors �v1 ,v2 ,v3�. If I1= I2, then v3 is
n axis of symmetry for �B ,��.

Conversely, if v�ker��� is an axis of symmetry, then v is an eigenvector of Ic. If I is the
igenvalue for which v is an eigenvector, then the other two eigenvalues of Ic are equal.
Proof: Write I1= I2= I. We then see that any vector v�spanR�v1 ,v2� will have the property
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hat Ic�v�= Iv. Now, let R�O�ker���� fix the vector v3. Because R is orthogonal, if we have v
spanR�v1 ,v2�, then R�v��spanR�v1 ,v2�. Also, if v=a1v1+a2v2, then,

R�v� = �cos �a1 + sin �a2�v1 + �− sin �a1 + cos �a2�v2 �1�

or some ��R, since R is simply a rotation in the plane spanned by v1 ,v2. Now let u�E�B�. We
hen write u=x1v1+x2v2+x3v3 and note that

I�x1�2 + I�x2�2 + I3�x3�2 = 1.

t is now a straightforward calculation to verify that R�u��E�B� using �1� and the fact that R fixes

3. This shows that R�E�B��=E�B�, and so v3 is an axis of symmetry for �B ,��.
For the second part of the proposition, let v be an axis of symmetry for �B ,��. Denote the set

f orthogonal mappings that fix v by O�v�. That is, let

O�v� = �R � O�ker�����R�v� = v� .

ow R�O�v� has the property that R�E�B��=E�B�, and thus maps principal axes of �B ,�� to
rincipal axes. Since �v1 ,v2 ,v3� form an orthonormal basis for ker���, it is clear that, for every
�O�v�, the set �R�v1� ,R�v2� ,R�v3�� is also an orthonormal basis. It can be seen that every
ector orthogonal to v is a principal axis and thus, without loss of generality, we can take
/ �v�=v3. It is now clear that Ic acts on v� by scalars, and thus v is an eigenvector of Ic. The result
ow follows. �

V. THE STRUCTURE OF THE GALILEAN GROUP

As defined previously, the Galilean group of a Galilean spacetime G= �E ,V ,g ,�� is the set of
ffine maps from E to itself that preserve simultaneity of events and the distance between simul-
aneous events. In this section, we shall examine the Galilean group and describe its properties. In
ec. IV A we study the canonical Galilean group and show that it consists of rotations, transla-

ions, velocity boosts, and temporal origin shifts. We also look at its subgroups and describe the
arious fundamental objects associated with it. In Sec. IV B, we study the abstract Galilean group
al�G�. We show that, in the presence of an observer, the Galilean group is isomorphic to the

anonical Galilean group. Finally, in Sec. VI A, we introduce canonical velocities and describe
heir images under the isomorphism of the Lie algebras induced by the Lie group isomorphism
onstructed previously.

. The canonical Galilean group

In this section, we study the Galilean group of a canonical Galilean spacetime, which is a
eneralization of the “standard” Galilean spacetime R3�R. To be precise, given a Galilean space-
ime G= �E ,V ,g ,��, the canonical spacetime of G is the Galilean spacetime Gcanª �Ecanªker���

� R ,V=ker��� � R ,g ,��. We now investigate the structure of the canonical Galilean group
al�Gcan�. The next proposition shows that Gal�Gcan� decomposes into rotations, spatial transla-

ions, Galilean velocity boosts, and temporal translations.
Proposition 4.1: The Galilean group Gal�Gcan� of the canonical spacetime Gcan is isomorphic

o �O�ker����›ker����› �ker����R�, where › denotes semidirect product of groups. The group
peration on O�ker����› �ker����› �ker����R� is given by

�R1,r1,u1,t1� · �R2,r2,u2,t2� = �R1 � R2,r1 + R1�r2� + t2u1,u1 + R1�u2�,t1 + t2� ,

here �Ri ,ri ,ui , ti��O�ker����› �ker����› �ker�����R, i=1,2.
Proof: We first find the form of a Galilean transformation � :Ecan→Ecan. Recall that, since �

s an affine map, it has the form ��x , t�=A�x , t�+ �r ,� where A :ker��� � R→ker��� � R is
-linear and where �r ,��ker��� � R. Given vector spaces U and V, we denote the set of linear
aps from U to V by L�U ,V�. Let us write A�x , t�= �A11x+A12t ,A21x+A22t� where A11
L�ker��� ,ker����, A12�L�R ,ker����, A21�L�ker��� ,R�, and A22�L�R ,R�. By property �iii� of

                                                                                                            



G
p

T
s

w
i

t

w

T

G
G

b

�

�

�

T
t
c
o
b
s

102902-11 Rigid body mechanics in Galilean spacetimes J. Math. Phys. 46, 102902 �2005�

                        
alilean mappings, A11 is a g-orthogonal transformation of ker���. Property �ii� of Galilean map-
ings implies that

A22�t2 − t1� + A21�x2 − x1� = t2 − t1, t1,t2 � R,x1x2 � ker��� .

hus, taking x1=x2, we see that A22=1. This in turn implies that A21=0. Gathering this information
hows that a Galilean transformation has the form

�:�x

t
� � �R u

0 1
��x

t
� + � r


� ,

here R�O�ker����, �R, and r ,u�ker���. This proves the first part of the proposition. Now, it
s easy to see that, if �i, i=1,2, are Galilean transformations given by

�i:�x

t
� � �Ri ui

0 1
��x

t
� + � ri

i
�, i = 1,2,

hen

�1 � �2:�x

t
� � �R1 � R2 u1 + R1�u2�

0 1
��x

t
� + �r1 + R1�r2� + 2u1

1 + 2
� .

hich gives us the desired group operation. �

Remarks 4.2: �1� It is clear from this proposition that Gal�Gcan� is a ten-dimensional group.
his is not altogether obvious from the definition.

�2� The meaning of the appearance of two semi-direct products in the decomposition of
al�Gcan� should be understood correctly. They arise because ker����R is a normal subgroup of
al�Gcan� and the quotient group itself is a semi-direct product of O�ker���� and ker���.

�3� A canonical Galilean transformation may now be written as a composition of one of three
asic classes of transformations.

i� A spatiotemporal shift of origin:

�x

t
� � �x

t
� + � r


� ,

for r�ker���, �R.
ii� A “rotation” of reference frame:

�x

t
� � �R 0

0 1
��x

t
� ,

for R�O�ker����.
iii� A (Galilean) velocity boost:

�x

t
� � �idker��� u

0 1
��x

t
� ,

for u�ker���.

he names we have given these fundamental transformations are suggestive. A shift of the spa-
iotemporal origin should be thought of as moving the origin to a new position, and resetting the
lock, but maintaining the same orientation in space. A rotation of reference frame means the
rigin stays in the same place, and uses the same clock but rotates the “point of view.” The final
asic transformation, a velocity boost, means that the origin maintains its orientation and uses the

ame clock, but now moves with a certain velocity with respect to the previous origin.
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. The structure of the abstract Galilean group

In the usual presentation of Galilean invariant mechanics �e.g., Ref. 11�, one considers a
pacetime R3�R and Galilean invariance is imposed by asking that the system admit the Galilean
roup as a symmetry group. In this case, the Galilean group naturally breaks down into rotations,
ranslations, Galilean boosts �constant velocity shifts�, and temporal origin shifts. In our abstract
etting, the Galilean group Gal�G� does not admit such a decomposition. Note that this is similar
o what one sees in an affine Euclidean space where a decomposition of an isometry into rotation
nd translation is not possible until one chooses an origin about which to measure rotations.
owever, the presence of an observer in a Galilean spacetime defines, for each instant, an iso-
orphism from the abstract Galilean group Gal�G� into the canonical group Gal�Gcan�.

Proposition 4.3: Let G= �E ,V ,g ,�� be a Galilean spacetime with O an observer. The following
tatements hold.

i) The mapping from V to ker��� � R defined by v� �PO�v� ,��v�� is an isomorphism.
ii) For each s0� IG, the observer at s0, Os0

, induces a natural isomorphism �Os0
from Gal�G� to

the group Gal�Gcan�. Explicitly, if ��Gal�G� with t� as defined in Lemma 2.8, and if R�

�O�ker���� and r�,O�ker��� satisfy

��x� = �R��x − Os0
� + r�,O� + Ot�+s0

, x � E�s0� ,

then

�Os
��� = �R�,r�,O,u�,O,t�� ,

where u�,O= PO��V�vO��.

Proof: �i� It suffices to show that the mapping v� �PO�v� ,��v�� is injective. If ��v�=0, then
�ker���. Now, if we also have

PO�v� = v − ���v��vO = 0,

e must have v=0, thus the mapping is injective as desired.
�ii� We first assign to each �R ,r ,u , t��Gal�Gcan� a Galilean mapping �, and show that the

onstruction implies that �R ,r ,u , t�= �R� ,r�,O ,u�,O , t��, thus showing that �Os0
is invertible. Now,

iven �R ,r ,u , t��Galcan�G�, we define a map � :E→E by

��x� = tvO + �R�x − O�G�x�� + ��G�x� − s0�u + r� + O�G�x�. �2�

e now show that this mapping is Galilean. First we show that it is affine. For v�V, we compute

��v + Os0
� − ��Os0

� = tvO + �R�v + Os0
− O��v�+s0

� + ����v� + s0� − s0�u + r�

+ O��v�+s − �tvO + r + Os0
�

= R�v + Os0
− ���v�vO + Os0

�� + ��v��u + vO�

= R�v − ��v�vO� + ��v��u + vO�

= R�PO�v�� + ��v��u + vO� . �3�

hus the map v���v+Os0
�−��Os0

� is linear, so � is affine. Similarly, we calculate

����x1� − ��x2�� = ��tvO + O�G�x1�� − ��tvO + O�G�x2�� = t + �G�x1� − �t + �G�x2�� = ��x1 − x2� .

o property �ii� of Galilean mappings is satisfied. Next, for s0� IG, consider y1 ,y2�E�s0�. We

ompute
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��y1� − ��y2� = tvO + R�y1 + Os0
� + �s0 − s0�u + r + Os0

− �tvO + R�y2 − Os0
� + �s0 − s0�u + r + Os0

�

= R�y1 − y2� .

hus � satisfies property �iii� of Galilean mappings. Next we show that �R ,r ,u , t�
�R� ,r�,O ,u�,O , t��. By restricting � to E�s0� we get

���E�s0���x� = tvO + �R�x − Os0
� + r� + Os0

= �R�x − Os0
� + r� + Ot+s0

.

owever, the definition of R� and r�,O gives

R�x − Os0
� + r = R��x − Os0

� + r�,O,

or each x�E�s0�. Taking x=Os0
gives r=r�,O, from which it follows that R=R�. Also, for x

E�s0�, we have

�IG
�s0� = �G���x�� = t + s0.

rom Lemma 2.8, it follows that t= t�. From �3� we also have

PO��V�vO�� = R�PO�vO�� + ��vO�u = u ,

sing the fact that PO�vO�=0. This shows that u=u�,O. We have now shown that, for every
R ,r ,u , t��Gal�Gcan�, there is a Galilean mapping � such that �Os0

���= �R ,r ,u , t�. Thus we have

hown that �Os0
is surjective. Next we show that it is injective. For this, let �̃�Gal�G� be such that,

or x�E,

�̃�x� = tvO + �R�x − Os0
� + ��G�x� − s0�u + r� + O�G�x�.

hat is, suppose that

�Os0
��̃� = �R,r,u,t� = �Os0

��� .

e shall show that �̃=�. Since �̃�Os0
�=��Os0

�, using �3� this will follow if we can show that

V=�V. As in �i�, we note that V�ker��� � R and the preimage of �u , t� under this isomorphism is
+ tvO. We also write

�V�u + tvO� = A11�u� + A12�t� + �A21�u� + A22�t��vO,

or linear mappings A11:ker���→ker���, A12:R→ker���, A21:ker���→R, and A22:R→R. The
roperty �ii� of Galilean mappings implies that �V has ker��� as an invariant subspace. Thus

21=0. We next calculate

���V�tvO�� = ����tvO + Os0
�� − ����Os0

�� = ��tvO + Os0
� − ��Os0

� = t .

his gives A22�t�= t. With t=0, property �iii� of Galilean mappings implies that A11�O�ker����.
hus we have

�V�u + tvO� = R̃�u� + t�ũ + vO� , �4�

or some R̃�O�ker���� and ũ�ker���. Since ��E�s�= �̃�E�s� we have

�V�u� = �̃�u + Os0
� − �̃�Os0

� = R��u� ,

˜
iving R=R. From �3� we also have
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PO��V�vO�� = ũ ,

rom which we get u= ũ. This shows that �V= �̃V, thus showing that, if �1 ,�2�Gal�G� satisfy

Os0
��1�= �Os0

��2�, then �1=�2. Therefore, �Os0
is injective.

Finally we show that �Os0
is a homomorphism. We let �1 ,�2�Gal�G� and denote �Os0

��i�
�Ri ,ri ,ui , ti�, i=1,2. We also let �Os0

��1 ��2�= �R12,r12,u12, t12�. First, we compute

��1 � �2�V�v� = ��1 � �2��v + Os0
� − ��1 � �2��Os0

� = �1��2�v + Os0
�� − �1��2�Os0

��

= �1�tvO + R2�v + Os0
− O��v�+s0

� + ��v�u2 + r2 + O��v�+s0
� − �1�tvO + r + Os0

�

= �1��tvO + r� + R2�PO�v�� + ��v��u2 + vO� + Os0
� − �1�tvO + r2 + Os0

�

= �1,V�R2�PO�v�� + ��v��u2 + vO�� = �1,V��2,V�v�� .

rom this we deduce that

R12�u� + t�u12 + vO� = R1 � R2�u� + t�u1 + R1�u2� + vO� ,

or each �u , t��ker��� � R. Thus we have

R12 = R1 � R2, u12 = u1 + R1�u2� .

ext we have

�1 � �2�Os0
� = r12 + Ot12+s0

. �5�

lso,

�2�Os0
� = r2 + Ot2+s0

.

herefore

�1 � �2�Os0
� = �1�r2 + Ot2+s0

� = R1�r2 + Ot2+s0
− Ot2+s0

� + t2u1 + r1 + Os0+t2+t1

= R1r2 + t2u1 + r1 + Os0+t1+t2
.

omparing this to �5� we get

r12 = R1r2 + t2u1 + r1, t12 = t1 + t2.

hus we have shown that the group action defined on Gal�Gcan� agrees with that on Gal�G� under
he bijection �Os0

. �

We end this section by listing some of the subgroups of Gal�G� that we shall have occasion to
se in the sequel. The following result is easy to prove.

Proposition 4.4: The following statements hold:

i) the following are subgroups of Gal�G�:

(a) Gal0�G�ª ���Gal�G� :�IG
=idIG

�;
(b) Nª ���Gal�G� : ��V�ker���=idker����;
(c) N0ªN�Gal0�G�.
ii) the set Lin�G�ª ��V ���Gal�G�� is a Lie group.
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. OBSERVER-INDEPENDENT FORMULATION OF RIGID BODY MECHANICS

In this section we formulate rigid mechanics in an observer independent manner. All of the
lassical concepts in Eulerian rigid body mechanics—motions, body and spatial velocities, body
nd spatial momenta, and the equations of motion—are given definitions independent of an ob-
erver.

. Rigid motions

A rigid motion in a Galilean spacetime G= �E ,V ,g ,�� is a smooth mapping � :R→Gal�G�
ith the property that ���t��IG

�s�=s+ t, for each t�R �see Sec. II E�. In other words, if we denote

tª��t�, then a rigid motion � has the property that �t�x��E�t+�G�x�� for each x�E�s�. Thus
rigid motion maps points in E�s� to E�s� at t=0, and for t�0, the points get shifted by the affine

ction of R on IG. Let us give some of the basic properties of rigid motions. The following result
s immediate.

Lemma 5.1: Given a rigid motion �, for each x�E the map IG�s��s−�G�x��x��E is a
orld line.

The next result shows how we can extract the “rotational component” of a rigid motion for
ach t�R.

Proposition 5.2: Let � be a rigid motion in a Galilean specetime G= �E ,V ,g ,��. Then, for
ach t�R, we have ��t,V�ker����O�ker����.

Proof: From Lemma 2.8, it is clear that �t,V maps ker��� to itself. Next for simultaneous
vents x1 and x2, we compute

g���t,V�ker�r��x1 − x2�, ��t,V�ker����x1 − x2�� = g��t,V�x1 − x2�,�t,V�x1 − x2��

= g��t�x1� − �t�x2�,��x1� − �t�x2��

= g�x1 − x2,x1 − x2� ,

here we have used the properties of the rigid motion and Lemma 2.8. This shows that
��t,V�ker����O�ker���� as desired. �

This proposition shows that, given a rigid motion � in a Galilean spacetime, we can associate
o this rigid motion a unique map from R→O�ker����. We denote this map by R�.

. Spatial and body velocities

In this section we define the concepts of spatial and body velocities corresponding to a rigid
otion �. Intuitively, the configuration of a rigid body is given by its “orientation” and “position”

with respect to an initial orientation and position�. To make this precise, let us denote Q
O�ker�����E. If we choose a reference configuration, say q0= �R0 ,x0��Q, it is easy to see that
Galilean mapping ��Gal�G� maps q0 to another point in Q as follows:

Gal�G� � Q → Q ,

��,�R0,x0�� � �R�R0,��x0��, � � Gal�G� .

his defines an action of Gal�G� on Q which we represent by �. In other words, we have
�� , �R0 ,x0��= �R�R0 ,��x0��. For each q�Q and g�Gal�G�, we define the maps �q :Gal�G�
Q and �g :Q→Q by �q�g�ª��g ,q�¬�q�g�. The action � also defines an action of Gal�G� on

�ker���� and E, respectively. The latter action is denoted by �E. Given ��gal�G�, denote the
nfinitesimal generator corresponding to � at �R0 ,x0��Q by �Q�R0 ,x0�. It is easy to see that
Q�R0 ,x0� can be written as
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�Q�R0,x0� = ��O�ker�����R0�,�E�x0�� ,

here �O�ker�����R0� is the infinitesimal generator at R0�O�ker���� corresponding to � of the action
f Gal�G� on O�ker����, and �E�x0� is the infinitesimal generator at x0�E corresponding to � of the
ction of Gal�G� on E.

Now, given a rigid motion �, define curves ���t� and ���t��gal�G� as follows:

���t� = �t
−1�̇t, ���t� = �̇t�t

−1.

otice that ���t�=Ad�t
���t�. These curves ���t� and ���t� are called “spatial velocity” and

body velocity,” respectively, in the literature �see, for example, Ref. 5� and the interpretation for
efining them in this way is somewhat unintuitive. In the sequel, given a rigid motion �, we think
f velocities at a point q0= �R0 ,x0��Q as tangent vectors defined by the infinitesimal generators
orresponding to the curves ���t� and ���t�, respectively, at q0. The idea is that a rigid motion
enerates a curve in Q �starting at q0� given by �t�q0�ª �R��t�R0 ,�t�x0��, and the tangent vector
o this curve at a point corresponds to the velocity at that point. We now give our definitions for
patial and body velocities, respectively. First, given a rigid motion �, we define maps � ,� :R

o�ker���� by �̂��t�ªR�
−1�t�Ṙ��t� and �̂��t�ª Ṙ��t�R�

−1�t�, respectively. We also represent by

ang:TQ→T�O�ker����� and �lin :TQ→TE the respective projections. Denote by

ang:T�O�ker�����→O�ker�����o�ker���� the right-trivialization of T�O�ker�����. Thus �ang�vg�
�g ,TgRg−1vg� for vg�Tg�O�ker����� and g�O�ker����. Similarly, denote by �lin :TE→E�V the
atural trivialization of TE. Let us denote by pr2 the projection onto the second components of
�ker�����o�ker���� and E�V, respectively. With an abuse of notation, we represent the maps
r2 ��ang and pr2 ��lin by �ang and �lin, respectively.

Definition 5.3: Let � be a rigid motion in a Galilean spacetime G.

i� The body velocity is the map V�
b :Q�R→TQ given by

V�
b �R,x,t� = ����t��Q�R,x� .

The maps V�,ang
b

ª�ang��ang�V�
b and V�,lin

b
ª�lin��lin�V�

b are called body angular veloc-
ity and body linear velocity, respectively.

ii� The spatial velocity is the map V�
s :Q�R→TQ defined by

V�
s �R,x,t� = ����t��Q�R,x� .

The maps V�,ang
s

ª�ang��ang�V�
s and V�,lin

s
ª�lin��lin�V�

s are called spatial angular ve-
locity and spatial linear velocity, respectively.

Let us make a few comments about these definitions.
Remarks 5.4: �1� We identify the TQ-valued velocities with the corresponding Q

�o�ker�����V�-valued trivialization. Let us provide some intuition for these definitions. Notice
hat, for q�Q, we have

d

dt
��t�q�� = Tq��t

����t�−1�̇��t��Q�q� = Tq��t
�V�

b �q,t�� .

herefore, V�
b �q , t�=Tq��t

−1��d/dt���t�q���. The body velocity can therefore be thought of as the
elocity of the curve �t�q� at t�R as seen in the “frame” fixed at q.

�2� The definition of spatial velocity is less intuitive. It will become clearer once we prove
roposition 5.6.

�3� It is not clear at this stage how our definitions are consistent with the existing ones. We
hall see, in Sec. VI B, that in the presence of an observer, the body and spatial velocities
orrespond to “canonical” velocities.

The definitions lead to the following relationship between body and spatial velocities, which

e shall have occasion to use.
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Lemma 5.5: V�
s �R��t�R ,�t�x� , t�=T�R,x���t

V�
b �R ,x , t�.

Proof: Given an action � :G�Q→Q of a Lie group G on a manifold Q, we have, for �
g and g�G , �Adg��Q�g ·q�=Tq�g�Q�q�. The result follows directly from this equality. �

Next, we write down the expressions for linear and angular velocities.
Proposition 5.6: Let � be a motion in a Galilean spacetime G. Then

i) V�,ang
b �R ,x , t�=�̂��t�,

ii) V�,lin
b �R ,x , t�=�t,V

−1�d/dt�t�x��,
iii) V�,ang

s �R ,x , t�= �̂��t�, and
iv) V�,lin

s �R ,x , t�=−�t,V�d/dt�t
−1�x��.

Proof: �i� The projection �ang�V�,ang
b �R ,x , t�� is actually the infinitesimal generator correspond-

ng to ��t,V�ker���
−1 �̇t,V�ker����=�̂��t�. We compute

V�,ang
b �R,x,t� = � d

ds
exp�s�̂��t��R�

s=0
= �̂��t�R .

hus V�,ang
b �R ,x , t�=�̂��t�.

�ii� The body linear velocity V�,lin
b �R ,x , t� is the infinitesimal generator corresponding to ���t�

t x�E of the action of Gal�G� on E. We compute

V�,lin
b �R,x,t� = Te�x

E�T�t
L�t

−1�̇t� = T�t
���t

−1�x
E���̇t�

= � d

ds
��t

−1�x
E

� ��t+s��
s=0

= � d

ds
��t

−1��t+s�x���
s=0

= T�t�x���t
−1

d

dt
��t�x�� = �t,V

−1 d

dt
��t�x�� .

his is what we wanted to prove.
�iii� This is identical to the proof of part �i�.
�iv� The spatial linear velocity V�,lin

s �R ,x , t� is the infinitesimal generator corresponding to

��t� at x�E of the action of Gal�G� on E. Notice that, by differentiating �t�t
−1=idE, we get

T�t
R�t

−1�̇t = − T�t
−1L�t

�̇t
−1.

e compute

V�,lin
s �R,x,t� = Te�x

E�T�t
R�t

−1�̇t� = − Te�x
E�T�t

L�t
�̇t

−1�

= � −
d

ds
��t

�x
E��t+s

−1 ��
s=0

= − � d

ds
��t

��t+s
−1 �x���

s=0

= − T�t
−1�x���t

d

dt
��t

−1�x�� = − �t,V
d

dt
��t

−1�x�� ,

s desired. �

Thus, the spatial velocity at �q0 , t��Q�R is obtained by taking the tangent vector to the
urve �t

−1�q0�, and then “pushing” this vector by the map �−T�t
−1�x���t

�. In other words, V�
s �q0 , t�

an be thought of as the velocity of a point in Q traveling through q0 at time t. This is exactly the

nterpretation of spatial velocity given in Ref. 5
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. Spatial and body momenta

In this section we define the spatial and body momenta for a rigid body. We identify o�ker����
ith ker��� by the inverse of the map defined earlier and denote the angular velocities thought of

s taking values in ker��� by V�,ang
b and V�,ang

s . Given a rigid body �B ,��, a rigid motion �, and
curve u :R→ker���, we define the instantaneous inertia tensor Ic�t� :ker���→ker��� by

Ic�t��u�t�� = �
B�t�

��t�x� − �t�xc�� � �u�t� � ��t�x� − �t�xc���d��t� ,

here B�t�=�t�B� and u�t��ker���. Notice that, since the integrand is in ker���, so too will be the
ntegral. The following result shows what the spatial angular momentum looks like in terms of the
nertia tensor of the body about its center of mass.

Lemma 5.7: Ic�t�����t��=R��t�Ic�R�
−1�t����t��.

Proof: We represent by B�t� the rigid body after it has undergone the transformation �t and
he corresponding mass distribution by d��t�. We compute

Ic�t�����t�� = �
B�t�

��t�x� − �t�xc�� � ����t� � ��t�x� − �t�xc���d��t�

= �
B�t�

��t,V�x − xc�� � ����t� � ��t,V�x − xc���d��t�

= �
B�t�

�R��t��x − xc�� � ����t� � �R��t��x − xc���d��t�

= R��t��
B

�x − xc� � �R�
−1�t����t� � �x − xc��d� = R��t�Ic�R�

−1�t����t�� ,

here we have used the fact that x−xc�ker���, and therefore �t,V�x−xc�=R��t��x−xc�. �

We can now define spatial and body momenta.
Definition 5.8: Let �B ,�� be a rigid body in a Galilean spacetime G and let � be a rigid

otion.

i) The spatial momentum is a map p�,B :R→ker����V given by

p�,B�t� = �Ic�t�V�,ang
s ,��B�V�,lin

s ��R��t�,�t�xc�,t� .

ii) The body momentum is the map P�,B :R→ker����V given by

P�,B�t� = �Ic�t�V�,ang
b ,��B�V�,lin

b ��idker���,xc,t� .

he following result can be readily proved using Lemma 5.5.
Proposition 5.9: Let �B ,�� be a rigid body in a Galilean spacetime G and let � be a rigid

otion. Then

i� p�,B�t�= �Ic�t����t� ,��B�d/dt�t�xc��,
ii� P�,B�t�= �R��t�−1Ic�t����t� ,��B��t,V

−1d /dt�t�xc��.

Given a rigid body �B ,��, define an equivalence class of Galilean mappings as follows. Two
appings � and ��Gal�G� are called B-equivalent if ��B�=��B�. It is easy to see that this is an

quivalence relation. In such a case, we denote the equivalence class containing � by ���B. In
ther words, any two mappings in the equivalence class ���B map the rigid body B to the same set
f points in E. The following result is readily verified.

Proposition 5.10: �� ���B if and only if ��xc�=��xc� and R�=R�.

Proof: If �� ���B then, for each x�B, we have ��x�=��x�. Since B is a subset of E�s0�
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which is an affine space modeled on ker����, we can write x�B as x=xc+w for some w
ker���. We thus have

��xc + w� = ��xc + w� ,

hich implies that

��xc + w� − ��xc� = ��xc + w� − ��xc� .

e thus have �V�w�=�V�w� and thus R�w=R�w. Conversely, assume that � is such that R�

R� and ��xc�=��xc�. By reversing the argument above, it is easy to show that ��x�=��x� for all
�B. �

Given a rigid body �B ,�� and a rigid motion �, a rigid motion �̃ is B-equivalent to � if
˜

t� ��t�B for each t�R. The following result is immediate.
Lemma 5.11: Let �B ,�� be a rigid body in a Galilean spacetime and let � be a motion. If a

igid motion �̃ is B-equivalent to �, then p�̃,B= p�,B.

. Galilean–Euler equations

In this section we derive the equations of motion for a rigid body in our general framework.
s remarked in Sec. I, the problem of finding the equations of motion for rigid bodies has a rich
istory. The key observation of Newton and Euler is that the free motion of a rigid body is
ompletely determined by imposing conservation of spatial linear and angular momenta. The
bservation that this approach generalizes to other physical settings such as hydrodynamics was
rst made by Arnol’d13 �see also Ref. 2�. Using his method, the Euler equations for an incom-
ressible fluid can be written as geodesic equations on a certain infinite-dimensional Lie group.
e note that the Galilean group Gal�G� of a Galilean spacetime G does not have a natural invariant
etric, and thus we cannot use Arnol’d’s method in this setup. Intuitively speaking, Gal�G� is “too

ig” to uniquely determine the physical motion of the body. We shall have more to say on this
atter in Sec. VI E. We use the principle of conservation of spatial momentum to derive differ-

ntial equations in terms of “spatial” as well as “body” quantities that describe the physical motion
f the body. We also show that, if a rigid motion � satisfies these equations for the body �B ,��,
hen every rigid motion B-equivalent to � also satisfies the equations. From the definitions given
n the previous section, it can be seen that p�,B�t�= ���,B�t� ,m�,B�t��
�R��t�L�,B�t� ,�t,VM�,B�t��.

Proposition 5.12 (Galilean-Euler equations): Let �B ,�� be a rigid body in a Galilean space-
ime and let � be a rigid motion. The following statements are equivalent:

i) the spatial momentum p�,B is conserved;
ii) the motion of the body satisfies the spatial Galilean–Euler equations

Ic��̇��t�� = Ic����t�� � ���t�

ẍc�t� = 0,

where ẍc�t�= �d2/dt2���t�xc��;
iii) the motion of the body satisfies the body Galilean–Euler equations

L̇�,B�t� = L�,B�t� � ���t� ,

Ṁ�,B�t� = − ��V�t��V�M�,B�t�� ,

−1 ˙
where ��V�t��V�M�,B�t�� is the infinitesimal generator corresponding to �V�t�=�t,V�t,V of
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the action of Lin�G� on V.

Furthermore,

iv) if �̃ is a rigid motion B-equivalent to �, then � can be replaced with �̃ in the above
statements.

Proof: Conservation of spatial momentum implies that ṗ�,B�t�=0. The equation ẍc�t�=0 im-
ediately follows. To derive the first equation, we note that

Ic�t����t� = R��t�Ic�R�
−1���t�� .

herefore,

d

dt
R��t�Ic�R�

−1���t�� = Ṙ��t�Ic�R�
−1���t�� + R��t�Ic�R�

−1�̇��t��

= �̂��t�R��t�Ic�R�
−1���t�� + R��t�Ic�R�

−1�̇��t��

= �̂��t�Ic����t�� + Ic�t��̇��t� = 0,

y conservation of spatial momentum. Therefore

Ic��̇��t�� = − �̂��t�Ic����t�� = Ic���� �����t�� .

ext, we write spatial momentum in terms of the body momentum. That is,

p�,B�t� = �R��t�L�,B,�t,VM�,B�t�� .

onservation of spatial momentum implies that

d

dt
�R��t�L�,B�t�� = 0 and

d

dt
��t,VM�,B�t�� = 0.

he first equation gives

0 = �Ṙ��t�L�,B�t�� + �R��t�L̇�,B�t�� = R��t��̃��t�L�,B�t� + R��t�L̇�,B�t� .

e therefore get

L̇�,B�t� = − �̂��t�L�,B�t� = L�,B�t� � ���t� .

ext, consider the second equation. Written appropriately in terms of the action �V of Lin�G� on
, the equation becomes

d

dt
��t,V

V �M�,B�t�� = 0.

e compute

d

dt
��t,V

V �M�,B�t�� = TM�,B�t���t,V

V Ṁ�,B�t� + TM�,B
��t,V

V ��V�t��V��M�� = 0,

hich gives us the requisite equation. The final part of the proposition follows directly from
emma 5.11. �

Remarks 5.13: �1� Proposition 5.12 shows that if a motion � satisfies the Galilean–Euler
quations for a rigid body so does every motion B-equivalent to �. In other words, the Galilean–

uler equations hold for an equivalence class of motions specified by the rigid body.
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�2� The Galilean–Euler equations are very general because they have been derived in the
etting of an abstract Galilean spacetime without requiring an observer. However, the generality of
he treatment makes certain things less obvious. In particular, it is not clear how the classical Euler
quations fit into this setup and, if they do, whether or not there is a geometrical explanation for
t. We shall see, in the next section, that the presence of an observer allows us to answer these
uestions.

I. DYNAMICS OF RIGID BODIES IN THE PRESENCE OF AN OBSERVER

In Sec. V we formulated rigid body dynamics in an observer-independent way. In this section,
e shall explore the effect of introducing an observer in this formulation. In Sec. VI A we

ntroduce canonical velocities associated with a rigid motion in the presence of an observer. In
ec. VI B we show that in the presence of an observer, the body and spatial velocities defined in
ec. V project to the corresponding canonical velocities. In the next section, we show that the
omenta also project to the well-known quantities in the presence of the observer. Finally, in Sec.
I D, we illustrate how an observer enables us to recover the classical Euler equations for a rigid
ody.

. Canonical velocities

Consider a rigid motion � in a Galilean spacetime G= �E ,V ,g ,��. In Sec. V B, we introduced
he curves ���t� and ���t��gal�G� corresponding to �. The following result provides a decom-
osition of these curves in the presence of an observer.

Proposition 6.1: Let G= �E ,V ,g ,�� be a Galilean spacetime with O an observer and � a rigid
otion. For s0� IG, let

�Os0
��t� = �R��t�,r�,O�t�,u�,O�t�,t� .

hen, the following statements hold:

i� the image of ���t��gal�G� under the isomorphism of the Lie algebras induced by �Os0
is

��̂��t�,V�,O�t� − R�
−1�t�u�,O�t�,R�

−1�t�u̇�,O�t�,1� � gal�Gcan�;

ii� the image of ���t��gal�G� under the isomorphism of Lie algebra induced by �Os0
is

��̂��t�,v�,O�t� − t�u̇�,O�t� + u�,O�t� � ���t��, u̇�,O�t� + u�,O�t� � ���t�,1� � gal�Gcan� ,

where V�,O�t�=R�
−1�t�ṙ�,O�t�, and v�,O�t�= ṙ�,O�t�+r�,O�t�����t�.

Proof: We start by faithfully representing Gal�Gcan� in a vector space. We let W=ker��� � R
� R and, for g= �R ,r ,u , t��Gal�Gcan�, define an isomorphism �g of W by

��,,�� � �R��� + u + �r, + �t,�� .

ne readily verifies that the map � :Gal�Gcan�→GL�W� defined by ��g�=�g is a homomorphism.
o see that the representation is faithful, suppose that

��,,�� � �R��� + u + �r, + �t,�� = ��,,��

or all �� , ,���W. Then we must have +�t=0, for all  ,��R, implying that t=0. Similarly,
���+u+�r=� for all �� , ,���W implies that r=0, u=0, and R=idker���. Thus the represen-
ation is faithful. In block matrix form, the representation of �R ,r ,u , t� on W is
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R u r

0 1 t

0 0 1
� � GL�W� .

e then compute


R u r

0 1 t

0 0 1
�

−1

= 
R−1 − R−1u R−1�tu − r�
0 1 − t

0 0 1
� .

ith this expression, both parts follow from direct computation. �

We call the first two components in �i� respectively, the canonical body angular velocity, and
he canonical body linear velocity, and denote them by ��

can and V�,O
can , respectively. Similarly, we

all the first two components in �ii� respectively, the canonical spatial angular velocity and the
anonical spatial linear velocity, and represent them by ��

can and v�,O
can , respectively.

. Linear and angular velocities

Recall that, given a rigid motion � in a Galilean spacetime, the body linear velocity is the
ap V�,lin

b :Q�R→V given by

V�,lin
b �R,x,t� = �t,V

−1� d

dt
��t�x��� ,

nd the spatial linear velocity is the map V�,lin
s :Q�R→VG given by

V�,lin
s �R,x,t� = − �t,V� d

dt
��t

−1�x��� .

et us see what these velocities look like in the presence of an observer. We look at body linear
elocity first.

Proposition 6.2: Let � be a rigid motion in a Galilean spacetime G= �E ,V ,g ,�� and let O be
n observer. Then PO�V�,lin

b �R ,x , t��=V�,O
can �t�.

Proof: We know that, for each instant s0� IG, there exists an isomorphism �Os0
such that, for

motion �, we have

�Os0
��t� = �R��t�,r�,O�t�,u�,O�t�,t� .

lso,

�t�x� = R��t��x − O�G�x�� + ��G�x� − s0�u�,O�t� + r�,O�t� + O�G�x�+t.

ow, for x�O, we have

�t�x� = r�,O�t� + O�G�x�+t,

o we have

d

dt
��t�x�� = ṙ�,O�t� + vO.
ext,
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�t,V
−1� d

dt
��t�x��� = �t,V

−1�ṙ�,O�t� + vO� = �t
−1�ṙ�,O�t� + vO + Os0

� − �t
−1�Os0

�

= R�
−1�t��ṙ�,O�t� + vO + Os0

− O1+s0
� − R�

−1�t�u�,O�t�

+ R�
−1�t��tu�,O�t� − r�,O�t�� + �1 − t�vO + Os0

− R�
−1�t��tu�,O�t�

− r�,O�t�� + tvO − Os0

= R�
−1�t�ṙ�,O�t� − R�

−1�t�u�,O�t� + vO.

rom this, the result follows. �

Let us look at the spatial linear velocity now.
Proposition 6.3: Let � be a motion in a Galilean spacetime G= �E ,V ,g ,�� and let O be an

bserver. Then PO�V�,lin
s �R ,x , t��=v�,O

can �t�.
Proof: For x�O, we compute,

�t
−1�x� = R�

−1�t��tu�,O�t� − r�,O�t�� − tvO + Os0
.

herefore,

d

dt
��t

−1�x�� = R�
−1�t��u�,O�t� + tu̇�,O�t� − ṙ�,O�t�� + �− R�

−1�t�Ṙ��t�R�
−1�t���tu�,O�t� − r�,O��t��� − vO

= R�
−1�t��u�,O�t� + tu̇�,O�t� − ṙ�,O�t�� − R�

−1�t��̂��t��tu�,O�t� − r�,O�t�� − vO

= R�
−1�t�u�,O�t� + R�

−1�t��t�u̇�,O�t� + u��t� � ���t���

− R�
−1�t��ṙ�,O�t� + r�,O�t� � ���t�� − vO

= R�
−1�t�u��t� − R�

−1�t��v�,O�t� − t�u̇�,O�t� + u�,O�t� � ���t��� − vO.

et us call the last expression �̇t
−1�x�. Now, we compute

− �t,V� d

dt
��t

−1�x��� = �t�− �̇t
−1�x� + Os0

� − �t�Os0
�

= R��t��− �̇t
−1�x� + Os0

− O1+s0
� + u�,O�t� + r�,O�t� + tvO + O1+s0

− r�,O�t� − tvO − Os0

= R��t��− �̇t
−1�x� − vO� + u�,O�t� + vO

= R��t��R�
−1�t��v�,O�t� − t�u̇�,O�t� + u�,O�t� � ���t���� − u�,O�t� + u�,O�t�

+ vO = v�,O�t� − t�u̇�,O�t� + u�,O�t� � ���t�� + vO.

rom this the result follows. �

We notice that, in the presence of an observer, the spatial linear and body linear velocities
roject onto the canonical spatial linear and canonical body linear velocities, respectively.

. Spatial and body momenta

We let G= �E ,V ,g ,�� be a Galilean spacetime with � a rigid motion, O an observer, and
B ,�� a rigid body with B�E�s0�. We next see how our definitions of spatial and body momenta
ook when we have an observer O. In such a case, we have the following result.

Proposition 6.4: Let G= �E ,V ,g ,�� be a Galilean spacetime with � a rigid motion, O an
bserver, and �B ,�� a rigid body with B�E�s0�, and let m�,B, ��,B, M�,B, and L�,B be as defined

n Sec. V C. For s0� IG, let
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�Os0
��t� = �R��t�,r�,O�t�,u�,O�t�,t� .

hen the following statements hold:

i) PO�m�,B�t��=��B�ṙ�,O�t�;
ii) PO���,B�t��=R��t�Ic�R�

−1�t����t��;
iii) PO�M�,B�t��=��B�V�,O

can �t�;
iv) PO�L�,B�t��= Ic�R�

−1�t����t��.

Proof: �i� We compute

PO�m�,B�t�� = ��B�PO� d

dt
��t�xc��� = ��B�PO�ṙ�,O�t� + vO� = ��B�ṙ�,O�t� ,

here we have used the computations carried out in Proposition 6.2.
Parts �ii� and �iv� are easily seen to be true since both ��,B and L�,B take their values in ker���

nd the projection PO is the identity map on ker���.
To obtain �iii�, we compute

PO�M�,B�t�� = ��B�PO��t,V
−1�� d

dt
��t�xc��� = ��B�PO��t,V

−1�ṙ�,O�t� + vO��

= ��B�PO�R�
−1�t�ṙ�,O�t� − R�

−1�t�u�,O�t� + vO� = ��B�V�,O
can �t� ,

s desired. �

It is worth pointing out that the classical definition of spatial angular momentum requires an
bserver, and is different from ours. Given an observer O and a rigid motion �, the classical
patial angular momentum ��,B

cl for a rigid body �B ,�� about its center of mass xc is defined as

��,B
cl �t� = �

B
PO��t�x� − xc� � PO� d

dt
��t�x� − xc��d� .

ne can motivate this definition of spatial angular momentum by recalling how it might be defined
or a particle of mass m �see, for example, Ref. 3�. If a particle is moving in R3 following a curve
�x�t�, then we would define the spatial angular momentum at time t to be mx�t�� ẋ�t�. This is
xactly the intuition behind the definition of ��,O

cl . Our definition of body angular momentum
grees with the classical one, and therefore we do not need to consider it separately. We shall see
n the next section that the equations of motion derived on the basis of the conservation of
lassical spatial angular momentum are equivalent to the general spatial Euler equations. We have
he following result.

Proposition 6.5: Let �B ,�� be a rigid body in a Galilean spacetime G undergoing a rigid
otion �, and let O be an observer with the property that xc�O. Then ��,B

cl �t�
R��t�Ic�R��t�−1���t��+��B�r�,O�t�� ṙ�,O�t�.

Proof: We let s0=�G�xc�, and use the isomorphism �Os0
between Gal�G� and Gal�Gcan� to get

�t�x� = R��t��x − O�G�x�� + r�,O�t� + tvO + O�G�x�, x � B ,

hich implies that �t�x�−xc=R��t��x−xc�+r�,O�t�. The result is readily verified by using part �ii�
f Lemma 3.1 in the computation of the integral. �

. Euler equations of a rigid body

In this section we look at the Galilean–Euler equations, as derived in Sec. V D in the presence
f an observer. Since we consider the abstract Galilean group in our analysis, derivatives of
elocity boosts also appear in the equations. We first write down the general Galilean–Euler

quations in the presence of an observer.
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Proposition 6.6: Let �B ,�� be a rigid body, � a rigid motion, and let O be an observer. For

0� IG, let

�Os0
��t� = �R��t�,r�,O�t�,u�,O�t�,t�

or each t�R. The following statements hold:

i) the spatial Galilean–Euler equations for � are equivalent to

Ic��̇��t�� = Ic����t�� � ���t�

r̈�,O�t� = − R̈��t��xc − O�G�xc�� − ��G�xc� − s0�ü�,O�t�;

ii) the body Galilean–Euler equations for � are equivalent to

L̇�,B�t� = L�,B�t� � ���t� ,

Ṁ�,B�t� = PO�M�,B�t�� � ���t� − R�
−1�t�u̇�,O�t� .

Proof: �i� The first spatial Galilean–Euler equation evolves on ker��� and thus remains the
ame under the projection PO. For the second equation, we compute

0 = ẍc�t� =
d

dt
�Ṙ��t��xc − O�G

�xc�� + ��G�xc� − s0�u̇�,O�t� + ṙ�,O�t� + vO�

= R̈��t��xc − O�G
�xc�� + r̈�,O�t� + ��G�xc� − s0�ü�,O�t� ,

rom which we get the required equation.
�ii� Similarly, the first body Galilean–Euler equation remains unchanged under the projection

nto ker���. To get the second equation we use the definition of M�,O and the relation �V�v�
R�PO�v�+��v��u�,O+vO�, and compute

0 =
d

dt
m�,B�t� =

d

dt
�t,V�M�,O�t�� =

d

dt
�R��t�PO�M�,O�t��� + ���M�,O�t���u�,O�t� + vO��

= Ṙ��t�PO�M�,O�t�� + R��t�
d

dt
�PO�M�,O�t��� + u̇�,O�t�

= R��t��̂PO�M�,O�t�� + �R��t��Ṁ�,O�t��� + u̇�,O�t� ,

ince M�,O�t��VG and thus Ṁ�,O�t�= �d /dt�PO�M�,O�t��. The result now follows. �

Let us now show that we get the same equations of motion if we use the classical spatial
ngular momentum ��,B

cl instead of ��,B. Let us write p�,B
cl = ���,B

cl ,m�,B� to denote the classical
patial momentum. We also call the equations of motion derived on the basis of the conservation
f classical spatial momentum the classical spatial Euler equations. We have the following result.

Proposition 6.7: Let �B ,�� be a rigid body undergoing a rigid motion � in a Galilean
pacetime G. Let O be an observer with the property that xc�O. The following statements are
quivalent:

i) the classical spatial momentum p�,B
cl is conserved;

ii) the motion of the body satisfies the classical spatial Euler equations

Ic��̇��t�� = Ic����t�� � ���t� ,

¨
r�,O�t� = 0.
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Proof: As before, we let s0=�G�xc� and consider the isomorphism �Os0
, using which, it is easy

o see that the conservation of spatial linear momentum m�,B implies that r̈�,O�t�=0. It is a simple
omputation to show that this also implies that

d

dt
���,B

cl �t�� =
d

dt
�R��t�Ic�R��t�−1���t��� =

d

dt
�l�,B�t�� .

he result now follows. �

. The Galilean connection

In Proposition 6.6, we wrote down the general form of the Galilean–Euler equations in the
resence of an observer. Since we have considered the abstract Galilean group in our analysis, we
ave imposed no restrictions on the velocity boost �the “u�,O” component� corresponding to a
igid motion. This is the reason why the derivatives of these velocity boosts appear in the equa-
ions given in Proposition 6.6. Recall that the classical Euler equations for a rigid body do not
nclude these derivative terms because the velocity boosts are assumed to be “uniform.” In this
ection, we explain how, in our general setting, an observer allows us to recover the classical
quations of motion for a rigid body by defining a special geometric structure �namely a principal
onnection� on Gal�G�. We refer to Ref. 14 for the definitions and properties of principal connec-
ions.

Let Q=O�ker�����E and �B ,�� be a rigid body. For the center of mass xc�E of the rigid
ody, consider the map

�c:Gal�G� → Q

� � �R�,��xc�� .

n observer O defines a map �c,O :Gal�G�→O�ker�����ker����R given by

� � �R�,PO���xc� − xc�,����xc� − xc�� .

e also know that, for s0� IG, there is an isomorphism �Os0
from Gal�G� to O�ker�����ker���

ker����R given by

� � �R�,r�,O,u�,O,t�� .

or xc�O, we can write

��xc� = R��xc − xc� + ��G − s0�u�,O + r�,O + t�vO + xc,

nd thus we have

PO���xc� − xc� = ��G�xc� − s0�u�,O + r�,O.

lso, ����xc�−xc�= t�, so the map �c,O induces a map

�c,O
can :Gal�Gcan� → O�ker���� � ker��� � R = Gal�Gcan�/ker���

�R�,r�,O,u�,O,t�� � �R���G − s0�u�,O + r�,O,t�� ,

here the quotient Gal�Gcan� /ker��� corresponds to the following action of ker��� on Gal�Gcan�:
ker��� � Gal�Gcan� → Gal�Gcan�
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��,�R,r,u,s�� � �R,r − ��G�xc� − s0��,u + �,s� .

hus, ker��� acts on Gal�Gcan� by appropriately changing the r�,O and u�,O components of a given
�Gal�G� such that the resulting mapping gives the same physical motion of the body as �, that

s, it lies in ���B. We also write �ª�c,O
can � �Os0

:Gal�G�→Gal�Gcan� /ker���. It is clear that, given

�Gal�G�, a Galilean mapping �� ���B if and only if ����=����. We have the following result.
Proposition 6.8: Let �B ,�� be a rigid body in a Galilean spacetime and O be an observer. For

xed s0� IG, the map �can:TGal�Gcan�→ker��� given by

�can�XR,Xr,Xu,Xt� = Xu, �XR,Xr,Xu,Xt� � T�R,r,u,t�Gal�Gcan� ,

s a principal connection one-form in the bundle

�c,O
can :Gal�Gcan� → Gal�Gcan�/ker��� .

Proof: Given X= �XR ,Xr ,Xu ,Xt��T�R,r,u,t�Gal�Gcan�, it is easy to see that

T�c,O
can �XR,XR,Xu,Xt� = �XR,Xr + ��G�xc� − s0�Xu,Xt� .

he observer O allows us to decompose X into its vertical and horizontal components as follows.
e write

X = hor�X� + ver�X� , �6�

here

hor�X� = �XR,Xr + ��G�xc� − s0�Xu,0,Xt� ,

ver�X� = �0,− ��G�xc� − s0�Xu,Xu,0� .

t can be seen that T�c,O
can �ver�X��=0, and �can�hor�X��=0. Thus �6� defines an Ehresmann con-

ection in �c,O
can :Gal�Gcan�→O�ker�����ker����R. Next, the infinitesimal generator �Gal�G� corre-

ponding to ��ker��� for the action of ker��� on Gal�Gcan� is given by

�Gal�G��R,r,u,s� = � d

dt
�

t=0
�R,r − ��G�xc� − s0�exp��t�,u + exp��t�,s� = �0,− ��G�xc� − s0��,�,0� ,

nd thus, by definition,

�can��Gal�G��R,r,u,s�� = � .

ext, given h�ker��� and X= �XR ,Xr ,Xu ,Xt��T�R,r,u,t�Gal�Gcan�, it is easy to see that

can�T�R,r,u,t��hX�=adh ·�can�X�, where �h :Gal�Gcan�→Gal�Gcan� is the action of ker��� on
al�Gcan� and adh :gal�Gcan�→gal�Gcan� is defined by adh���=TeLhRh−1���, ��gal�Gcan�. So �can

s indeed a connection one-form. �

Now, it is easy to see that ker��� also acts on Gal�G� as follows:

ker��� � Gal�G� → Gal�G�

��,�� � �� � � ,

here �� is such that �Os0
����= �idO�ker���� ,−��G�xc�−s0�� ,� ,0��Gal�Gcan�. In other words,

er��� acts on Gal�G� as a subgroup of N0 that fixes xc. It can be seen that, for any x�E, we have

��x�=x+ ��G�x�−�G�xc���. As a direct consequence of Proposition 6.8, we have the following
orollary.

*
Corollary 6.9: The ker���-valued one-form on Gal�G� defined by �O= ��Os0
� �can is a connec-
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ion one-form in the bundle Gal�G�→Gal�G� /ker���. We call �O the Galilean connection induced
y O.

Thus, the Galilean connection �O induced by O is the pull-back of �can to Gal�G� by �Os0
. It

llows us to recover the classical Euler equations for a rigid body. It may be recalled that these
quations do not contain derivatives of velocity boosts �that is, the “u̇�,O” terms� corresponding to
he given rigid motion. The next proposition shows that, given a rigid motion, the Galilean
onnection allows us to choose a rigid motion that gives the same physical motion of the rigid
ody as the given rigid motion, and such that the corresponding Galilean–Euler equations do not
ontain the “u̇�,O” terms. This is made precise in the following proposition.

Proposition 6.10: Let �B ,�� be a rigid body in a Galilean spacetime, O be an observer such
hat xc�O, and s0� IG. Then, for every rigid motion �, there exists a rigid motion � with the
ollowing properties:

i) � is B-equivalent to �;
ii) �t is horizontal with respect to �O;
iii) The Galilean-Euler equations for � are equivalent to

Ic�t���̇��t�� = Ic�t�����t�� � ���t� ,

r̈�,O�t� = 0,

L̇�,B�t� = L�,B�t� � ���t� ,

Ṁ�,B�t� = PO�M�,B�t�� � ���t� .

Moreover, given C0�ker���, the rigid motion � can be uniquely chosen such that
u�,O�t�=C0 for every t�R. In particular, if x�t�=���t�= �R��t� ,a�,O�t� , t�, then, �t is the
horizontal lift of x�t� passing through �Os0

−1 �R��t0� ,a�,O�t0�− ��G�xc�−s0�C0 ,C0 , t0� for some

(and therefore every) t0�R.

Proof: For x�t�=���t�= �R��t� ,a�,O�t� , t��O�ker�����ker����R, we have, for each t�R,

��c,O
can �−1�R��t�,a�,O�t�,t� = ��R��t�,a�,O�t� − ��G�xc� − s0�ũ�t�, ũ�t�,t� � Gal�Gcan��ũ�t� � ker���� .

hus, all rigid motions � for which �Os0
��t�� ��c,O

can �−1�R��t� ,a�,O�t� , t� for each t�R, have the

roperty that ���t�=���t� , t�R, and map the rigid body �B ,�� to the same set of points.
herefore, every such � is B-equivalent to �. Now, given C0�ker���, define a motion � by

�t = �Os0

−1 �R��t�,a�,O�t� − ��G�xc� − s0�C0,C0,�t�� .

learly, �t is horizontal and �t� ��c,O
can �−1�R��t� ,a�,O�t� , t�, for each t�R. It can be directly

erified that the curve �t passes through the point �Os0

−1 �R��t0� ,a�,O�t0�− ��G�xc�−s0�C0 ,C0 , t0� at

= t0, for each t0�R, and thus corresponds to the unique rigid motion � with the property that

�,O�t�=C0, for all t�R. From Proposition 6.6 we can see that, for xc�O, the Galilean–Euler
quations for the rigid motion � are equivalent to

Ic�t���̇��t�� = Ic�t�����t�� � ���t� ,

r̈�,O�t� = 0,

˙
L�,B�t� = L�,B�t� � ���t� ,
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Ṁ�,B�t� = PO�M�,B�t�� � ���t� .

he result now follows. �

1 R. E. Artz, Found. Phys. 11, 679 �1981�.
2 R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed., revised and enlarged, with the assistance of T. Raţiu
and R. Cushman �Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, MA, 1978�.

3 V. I. Arnol’d, “Mathematical Methods of Classical Mechanics,” Graduate Texts in Mathematics Vol. 60, 2nd ed.
�Springer, New York, 1989�. Translated from Russian by K. Vogtmann and A. Weinstein.

4 A. Horzela, E. Kapuścik, and J. Kempczyński, Hadronic J. 17, 169 �1994�.
5 R. M. Murray, Z. Xiang Li, and S. Shankar Sastry, A Mathematical Introduction to Robotic Manipulation �CRC Press,
Boca Raton, FL, 1994�.

6 W. A. Rodrigues, Jr., Q. A. G. de Souza, and Y. Bozhkov, Found. Phys. 25, 871 �1995�.
7 A. Chamorro and F. J. Chinea, Nuovo Cimento Soc. Ital. Fis., B 49, 68 �1979�.
8 D. P. L. Castrigiano and G. Süssmann, Gen. Relativ. Gravit. 16, 867 �1984�.
9 D. P. L. Castrigiano and G. Süssmann, Gen. Relativ. Gravit. 16, 893 �1984�.
0 D. P. L. Castrigiano, Gen. Relativ. Gravit. 16, 901 �1984�.
1 J.-M. Souriau, Structure of Dynamical Systems, Progress in Mathematics, Vol. 149 �Birkhäuser, Boston, 1997�. A
symplectic view of physics, translated from French by C. H. Cushman-de Vries, translation edited and with a preface by
R. H. Cushman and G. M. Tuynman.

2 M. Berger, Geometry. I. Universitext �Springer, Berlin, 1987�. Translated from French by M. Cole and S. Levy.
3 V. Igorevich Arnol’d, Ann. Inst. Fourier 16, 319 �1966�.
4 S. Kobayashi and K. Nomizu, Foundations of Differential Geometry �Interscience, New York, 1963�, Vol. I.
                                                                                                            



A
o

I

e
i

w

a

a

b

c

JOURNAL OF MATHEMATICAL PHYSICS 46, 103301 �2005�

0

                        
symptotic corrections to the eigenvalue density
f the GUE and LUE

T. M. Garonia�

Institute for Mathematics and its Applications, University of Minnesota, 400 Lind Hall,
207 Church Street S.E., Minneapolis, Minnesota 55455-0436

P. J. Forresterb�

Department of Mathematics and Statistics, University of Melbourne, Parkville,
Victoria 3010, Australia

N. E. Frankelc�

School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia

�Received 16 April 2005; accepted 13 July 2005; published online 7 October 2005�

We obtain correction terms to the large N asymptotic expansions of the eigenvalue
density for the Gaussian unitary and Laguerre unitary ensembles of random N
�N matrices, both in the bulk of the spectrum and near the spectral edge. This is
achieved by using the well known orthogonal polynomial expression for the kernel
to construct a double contour integral representation for the density, to which we
apply the saddle point method. The main correction to the bulk density is oscilla-
tory in N and depends on the distribution function of the limiting density, while the
corrections to the Airy kernel at the soft edge are again expressed in terms of the
Airy function and its first derivative. We demonstrate numerically that these expan-
sions are very accurate. A matching is exhibited between the asymptotic expansion
of the bulk density, expanded about the edge, and the asymptotic expansion of the
edge density, expanded into the bulk. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2035028�

. INTRODUCTION

We consider in this article two classical ensembles of random matrices, the Gaussian unitary
nsemble �GUE�, and the Laguerre unitary ensemble �LUE�. These ensembles can be character-
zed by their joint eigenvalue probability density functions

PN�x1,…,xN� � �
l=1

N

�N�xl� �
1�j�k�N

�xk − xj�2, xl � � , �1�

ith

�N�x� = �exp�− 2Nx2�, GUE

x� exp�− 4Nx�, LUE,
� �2�

nd
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� = �R, GUE

�0,��, LUE.
� �3�

he GUE consists of N�N Hermitian matrices with independent normally distributed entries on
nd above the diagonal. It is the cornerstone of random matrix theory.1–3 The LUE has fundamen-
al applications in mathematical statistics and quantum field theory since it includes Wishart

atrices and the Chiral GUE as special cases �the latter after a straightforward change of vari-
bles�; see, e.g., Ref. 1.

We are interested in the large N behavior of the marginal eigenvalue probability density 	N�x�,
hich we hereafter refer to simply as “the density,” and which is defined by

	N�x� ª �
�N−1

PN�x,x2,…,xN�dx2 ¯ dxN. �4�

he function N 	N�x� can be interpreted as the number density of eigenvalues near the point x. We
lso remark that for the GUE, N 	N�x� is equal to the number density of a harmonically trapped
ystem of either non-interacting fermions or impenetrable bosons.4 There is a similar interpretation
or the LUE in terms of a Calogero-Sutherland type model.5 For recent advances in asymptotic
uestions related to these interpretations, complementary to the present study, see Refs. 6–8.

As background to the present study we note that aspects of the large N form of 	N�x� first
rose in studies of field theories related to Hermitian matrix models.9 There, for the GUE the large

asymptotic expansion of the moments

mN�p� ª �
�

xp	N�x�dx �p = 1,2,…�

as sort. By a graphical expansion of the matrix integral, involving cataloging the corresponding
aps according to their genus, it was predicted that for certain coefficients a2j�p�,

mN
GUE�p� = 	

j=0

p/2
a2j�p�

N2j �p = 2,4,…� , �5�

the odd moments of course vanish�. Analogous considerations in the case of the LUE10 show that

mN
LUE�p� = 	

j=0

��p+1�/2�−1
ã2j�p,��

N2j �p = 1,2,…� , �6�

or certain coefficients ã2j�p ,��. Observe in particular that both �5� and �6� contain only even
nverse powers of N.

The graphical methods allow a0�p� in �5� and ã0�p ,�� in �6� to be computed in terms of
inomial coefficients for all p=0,1 ,…. This knowledge in turn can be used �see, e.g., Ref. 1� to
rove that in the limit N→� with x fixed

	�x� ª lim
N→�

	N�x� = 

2


�1 − x2, x � �− 1,1�, GUE

2


�1

x − 1, x � �0,1�, LUE,

0 otherwise.
� �7�

he first functional form in �7� is referred to as the Wigner semicircle law, whereas the second is
ometimes named after Marčenko-Pastur. See, e.g., Refs. 1–3.

The expansions �5� and �6� provide a motivation to undertake a study of the asymptotic form
f �4�. In the case of the GUE such a result has been given by Kalish and Braak.11 It states that for
x�1 and fixed
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	N�x� = 	�x� −
2 cos�2 N 
 P�x��


3	2�x�
1

N
+ O� 1

N2� , �8�

here

P�x� = 1 +
x

2
	�x� −

1



Arccos�x� .

hus, one sees that unlike the situation with the moments �5�, the leading correction term is
�1/N�. Of course, this term is oscillatory so one might anticipate that after integration it con-

ributes at a higher order. However inspection of �8� reveals that the situation is more complex: the
scillatory term is not integrable at the endpoints of the support, x=1. Indeed, it is well known
hat with the boundary of the eigenvalue support taken as the origin, a scaling regime distinct from
hat of the bulk becomes relevant. Explicitly, with Ai�x� denoting the Airy function, it has been
roved that12

lim
N→�

N1/3

2
	N

GUE�1 +
�

2N2/3� = lim
N→�

�2N�1/3

2
	N

LUE�1 +
�

�2N�2/3� = �Ai�����2 − � �Ai����2, �9�

here � is fixed. In view of the breakdown of �8� in the vicinity of the spectrum edge, �referred to
s the soft edge, since although it defines the edge of the support of 	�x�, for any finite N there is
nonzero probability of finding eigenvalues lying beyond it�, we are thus led to also investigate

he large N asymptotic expansion extending the limit law �9�.
At a technical level, the main achievement of this paper is the derivation of the first correction

erms to the limit laws �7� and �9�. We do this by utilizing the well known orthogonal polynomial
xpression for 	N�x� to obtain a double integral representation which is amenable to the saddle
oint method. In the bulk, i.e., in the interior of the support of 	�x�, we show that the asymptotic
eries progresses in powers of 1 /N, and we obtain the explicit form of the 1/N correction. We find
or the LUE that the coefficient of the 1/N term consists of a component which is oscillatory in N
s well a component which is nonoscillatory in N, whereas for the GUE it consists of only an
scillatory component, as shown in �8�. For the soft edge we will see that the asymptotic series
rogresses in powers of N−1/3, and we obtain explicit expressions for the coefficients of the N−1/3

nd N−2/3 terms, which again involve Airy functions.
Due to the similarity in the structure of 	N�x� for the GUE and LUE, it is convenient to

onsider both cases simultaneously to avoid unnecessary repetition, and so at each step of our
resentation we discuss the GUE and LUE in parallel. In Section II we discuss the double contour
ntegral expression for 	N�x� to which we shall apply the saddle point method. Section III contains
ur discussion of the asymptotics of 	N�x� in the bulk whereas Sec. IV discusses the soft edge. In
ec. V we discuss the extent to which our expansions in the bulk match up with those for the soft
dge.

Problems relating to the present study, but which remain to be investigated, are discussed in
ec. VI.

I. CONTOUR INTEGRAL EXPRESSION FOR �N„x…

For the unitary ensembles there is a well known and very neat expression for 	N�x� in terms
f orthogonal polynomials, valid for any N and x��. If we let �
 j�x�� j=0

� denote the monic
olynomials orthogonal with respect to �N�x� on �, then

	N�x� =
�N�x�

N�
N−1�2 �
�N�x�
N−1�x� − 
�N−1�x�
N�x�� . �10�

he norm in the denominator of �10� is just the L2 norm associated with �N�x� and �. For a

erivation of �10� the reader is referred to Refs. 1–3. We remark at this point that there is no
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niversally agreed scale by which the GUE and LUE are defined. To match our choice of scale and
otation in �2� to that employed in Ref. 1 for instance, we observe that

	N�x� = ��2N−1/2PN��2Nx,�2Nx�, GUE

4 PN�4Nx,4Nx�, LUE,
�

here PN�x ,y� �not to be confused with our definition �1� mentioned previously� is the kernel
efined in Chap. 4 of Ref. 1 �the kernel is often also denoted KN�x ,y� in the literature�.

To investigate the large N behavior of 	N�x� it is obviously advantageous to start with the
xpression �10� rather than with the �N−1�-fold integral �4�. The 
N+j−1�x� can be expressed in
erms of the standard Hermite and Laguerre polynomials found in Szegö’s classic book13 as
ollows


N+j−1�x� = �2−3�N+j−1�/2N−�N+j−1�/2HN+j−1��2Nx�, GUE

�− 1�N+j−1�N + j − 1� ! �4N�−N−j+1LN+j−1
��� �4Nx�, LUE.

� �11�

he required asymptotic expansions of the scaled Hermite and Laguerre polynomials appearing in
11� are known to any order both in the bulk and near the soft edge,14,15 and such asymptotic
xpansions of scaled orthogonal polynomials are now generically said to be of Plancherel-Rotach
ype �Plancherel and Rotach were the first to compute such asymptotics for the Hermite polyno-

ials�. It is reasonable to assume that the most straightforward procedure to obtain the desired
symptotic corrections for 	N�x� in each region of interest is to simply insert the corresponding
symptotic expansion for 
N+j−1�x� into �10�. While this is certainly legitimate in principle, and
oes indeed recover the leading term fairly easily, to derive the correction terms it turns out that
uch a procedure is rather tedious, and provides little if any insight into the resulting expressions.
he source of the complication is that the asymptotic expansions for 
N+j−1�x� contain a large
mount of superfluous information which is canceled when the expansions are substituted into
10�. To avoid this, we shall pursue a related, but more direct route.

The Plancherel-Rotach asymptotics for the Hermite and Laguerre polynomials were originally
erived by first expressing the polynomials in terms of contour integrals, and then applying the
addle point method. By suitably massaging the standard results in Szegö’s book13 one finds that


N+j−1�x� =
cj�N� � dz

2
i
e2N z xe−Nz2/2

zN+j , GUE

�− 1�N+j−1cj�N� � dz

2
i

e−2N z x

zN+1 �1 +
z

2
�N+��1

z
+

1

2
� j−1

, LUE,� �12�

cj�N� ª
�N + j − 1�!
�2N�N+j−1 . �13�

n both cases the contour of integration is a closed positively oriented contour which encircles the
rigin; in the Laguerre case we further demand that it not contain the point z=−2.

Instead of applying the saddle point method to �12� and then substituting the expansions into
10�, we shall first insert the contour integrals �12� into �10� to obtain a double integral expression
or 	N�x�, and then perform the saddle point method on this double integral. To highlight the
imilarity between the GUE and LUE it is convenient in the GUE case to substitute the contour
ntegral for 
N+j−1�−x� into �10� rather than that for 
N+j−1�x�; since Hj�−x�= �−1� jHj�x� this ruse
s perfectly harmless. This results in

	N�x� = 2
c0�N�c1�N�

�
N−1�2 �N�x�JN�x� , �14�
here
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JN�x� ª � dz1

2
i
� dz2

2
i
eNS�z1,x�+NS�z2,x�G�z1,z2� �15�

nd

S�z,x� ª �− 2z x − log�z� − z2/2, GUE

− 2z x − log�z� + log�1 + z/2�, LUE,
� �16�

G�z1,z2� ª u�z1�u�z2��1 −
z1

z2
� , �17�

u�z� ª �1, GUE

�1 + z/2��−1, LUE.
� �18�

he remainder of this paper will involve a careful asymptotic analysis of the double integral �15�.
Before proceeding we note that it is straightforward to show, using standard results in the

rthogonal polynomial literature,13 that

�
N−1�−2 = 

22N−3/2

�


NN+1/2

N!
, GUE

�4N�2N+�−1

��N���N + ��
, LUE,� �19�

nd hence the asymptotics of the prefactors in �14� is

2
c0�N�c1�N�

�
N−1�2 = 
�
2



N

3
2

−N��N�, GUE

4N+�N���1 + N�
��N + ��

, LUE,� �20�

=
2Ne−N�1 +
1

12 N
+ O� 1

N2��, GUE

4N+�N�1 −
�� − 1��

2 N
+ O� 1

N2��, LUE.� �21�

Saddle points: Before applying the saddle point method to �15� we need to identify and
lassify the saddle points of �16�. The functions S�z ,x� in general have two saddle points at z
z± where

z± ª �− x ± i �x� , GUE

− 1 ± i �x� , LUE,
� �22�

nd

�x� ª ��1 − x2, GUE

�1
x − 1, LUE.

� �23�
e note that for both the GUE and LUE we have

                                                                                                            



w
d

t
t
d
q
i

I

�
S

b
D
a

f

t

f
c
d

�

w

103301-6 Garoni, Forrester, and Frankel J. Math. Phys. 46, 103301 �2005�

                        
�x� =



2
	�x� for x � 1, �24�

ith 	�x� as defined in �7�. �Recall that, as defined in �3�, when considering the LUE we always
emand that x�0, so that �22� is indeed well defined�.

Since for x�1 we have

S��z±,x�
2

= ��x�e±i�
−Arcsin�x��, GUE

2x2�x�e±i
/2, LUE,
� �25�

he saddle points z=z± are both simple when x�1, i.e., S��z± ,x��0. However, when x=1 the
wo simple saddle points given in �22� coalesce to z±=−1 and S��z± ,1� vanishes, so we obtain one
ouble saddle point in this case. Thus we already see why the regions x�1 and x�1 have
ualitatively distinct asymptotic behavior. Simple saddle points generically produce Gaussian
ntegrals whereas double saddle points generically produce Airy functions �see e.g., Ref. 16�.

II. BULK ASYMPTOTICS FOR THE GUE AND LUE

In the bulk of the spectrum, i.e., for x�1, we hold x fixed and investigate the asymptotics of
15� as N becomes large. From �22� we see that there are two distinct simple saddle points of
�z ,x�, which form a complex conjugate pair in this case. Let us define S±ªS�z± ,x�. Then since

Re�S+� = Re�S−� , �26�

oth saddle points contribute to the same order and we deform our contour through both of them.
enoting by �± a contour passing through z± along a path of steepest descent, the standard

rguments of the saddle point method �see for e.g., Ref. 16� yield

JN�x� = ��
�+

dz1

2
i
+ �

�−

dz1

2
i����+

dz2

2
i
+ �

�−

dz2

2
i�eN S�z1,x�+N S�z2,x�G�z1,z2� + O�e2N Re�S+�−N �� ,

�27�

=− 	
���− , + �2

�
��1

dz1

2

�

��2

dz2

2

eN S�z1,x�+N S�z2,x�G�z1,z2� + O�e2N Re�S+�−N �� , �28�

or suitably small ��0.
We now need to parameterize the contours �±. From �25� we see that if we set

� = �Arcsin�x�/2, GUE


/4, LUE,
� �29�

hen a suitable parameterization of �± is

z = z± + e±i�t, t � �− �,�� , �30�

or sufficiently small ��0. In �29� the function Arcsin: �−1,1�→ �−
 /2 ,
 /2� denotes the prin-
iple branch of arcsine. With the parameterization �30� the contour �+ is traversed in the negative
irection, so we need to compensate for this with an explicit minus sign.

By choosing � sufficiently small S�z ,x� is analytic on �± and so using the parameterization
30� we see that

S�z,x� = S± − a t2 − a t2�±�t�, z � �±, �31�
here
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a ª ��x�, GUE

2x2�x�, LUE,
� �32�

nd

�±�t� ª 	
k=3

�
S�k��z±,x�
S�2��z±,x�

2

k!
e±i�k−2��tk−2. �33�

e note that �−�t�=�+
*�t�, where * denotes complex conjugation.

It is a straightforward exercise to show that S−=S+
*, and that

Re�S+� = � 1
2 + x2, GUE

2x − log�2�, LUE,
� �34�

Im�S+� = − 
 P�x� , �35�

here

P�x� ª�
x0

x

	�t�dt , �36�

=�1 + x
2	�x� − 1


Arccos�x�, GUE

1 + x 	�x� − 2

Arccos��x�, LUE.

� �37�

ere x0 is the left edge of the support of 	�x� given in �7�, i.e., x0=−1, 0, for the GUE and LUE
espectively. We note that P�x� is the probability distribution function corresponding to 	�x�. The
imiting distribution function P�x� will play a significant role in the bulk asymptotic expansion of

N�x�.
With the results �31� and �35� for S�z ,x�, and the definitions

G��t� ª G�z1,z2�z1→z�1
+ei�1�t1

z2→z�2
+ei�2�t2

, �38�

Ei
�B�

ª �
−�

� e−aNti
2

2

dti, �39�

here Ei
�B� is an integral operator acting to the right, we can make the change of variables �30� in

28� to obtain

JN�x� = e2N Re�S+�E1
�B�E2

�B� 	
���− 1, + 1�2

− �1�2ei��1+�2���−N 
 P�x��e−aNt1
2��1

�t1�−aNt2
2��2

�t2�G��t�

+ O�e2N Re�S+�−� N� . �40�

small amount of massaging shows that the �−1, +1� term in �40� is the complex conjugate of the
+1,−1� term, and likewise the �−1,−1� term is conjugate to the �+1, +1� term. Suppose now that
e define the function F��� , t� by

F���,t� ª e�1��1
�t1�e�2��2

�t2�G��t� , �41�
hen
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JN�x� = 2 e2N Re�S+�Re E1
�B�E2

�B��F+,−��,t��i=−aNti
2 − e2i��−N 
 P�x��F+,+��,t��i=−aNti

2� + O�e2N Re�S+�−�N� .

�42�

e shall discuss the purpose of the parameters �i shortly. Note that the two terms in �42� are
ualitatively distinct—the second term is oscillatory in N whereas the first is not.

It is convenient to pause for a moment and multiply �42� by the the explicit forms for the
refactors required in �14� using �21� and �34� to obtain the corresponding expression for 	N�x�
ince

2c0�N�c1�N�
�
N−1�2 �N�x�e2N Re�S+� = h0N�1 +

h1

N
+ O� 1

N2�� �43�

ith

h0 = �2, GUE

4�x�, LUE,
� �44�

h1 = � 1
12 , GUE

−
���−1�

2 , LUE,
� �45�

e have

	N�x� = h0�1 +
h1

N
+ O� 1

N2��
� 2 Re N E1

�B�E2
�B��F+,−��,t��i=−aNti

2 − e2i��−N 
 P�x��F+,+��,t��i=−aNti
2� + O�e−�N� .

�46�

The introduction of the auxiliary variables �1 ,�2 in �41� is a common ruse applied in the
addle point method �see e.g., Ref. 16� which we now discuss. Suppose that we construct the
aclaurin expansion in t1 , t2 of F��� , t� with � considered as a fixed parameter

F���,t� = 	
j=0

p

	
k=0

j
t1
kt2

j−k

k ! �j − k�!�� �k

�s1
k

� j−k

�s2
j−kF���,s1,s2���

s1,s2=0

+ O�t1
p1t2

p2�p1+p2=p+1. �47�

f we now set �i=−aNti
2 in �47� and perform the integrations required in �46� then we find that

ach term corresponding to a given value of j in �47� has the same resulting N dependence. This
hen gives a systematic way of obtaining the corrections out to any given order in N. To see why
his occurs, first note that we need only consider the terms in �47� for which both j and k are even
ince any odd monomials are annihilated by �39�, and then further note that with �i=−aNti

2 we
ave

N E1
�B�E2

�B�t1
2m1t2

2m2�1
l1�2

l2 = �− 1�l1+l2
��m1 + l1 + 1/2���m2 + l2 + 1/2�

4 
2am1+m2+1 N−�m1+m2� + O�e−a�2N� ,

�48�

or any l1 , l2�N. Hence, despite the fact that various powers of �1 and �2 arise when F��� , t� is
ifferentiated, for a given value of j all terms end up with the same N dependence after setting

i=−aNti
2 and performing the integrations.

Hence, substituting �47� into �46� one can construct the asymptotic series for 	N�x� out to any

esired order. We shall explicitly construct this series out to order 1 /N but the generalization to
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igher orders is obvious. However, as we shall see the resulting asymptotic expansions obtained
y keeping only the 1/N correction are already extremely good, and it appears that numerically
ptimal truncation occurs at this order.

Let us denote by cm
����x� the coefficient of 1 /Nm in the 1/N expansion generated by acting with

E1
�B�E2

�B� on �47�, with �i set to −aNti
2. Then since the only terms which contribute are those for

hich j and k are even we have

cm
����x�
Nm = 	

k=0

m
1

�2k� ! �2�m − k��!
N E1

�B�E2
�B�t1

2kt2
2�m−k���� �2k

�s1
2k

�2�m−k�

�s2
2�m−k�F���,s��

si=0
��

�i=−aNti
2

.

�49�

e can re-express 	N�x� from �46� in terms of the cm
����x� as follows:

	N�x� = 2 h0Re�c0
�1,−1��x�� − 2 h0Re�e2i��−N 
 P�x��c0

�1,1��x�� − 2 h0Re�e2i��−N 
 P�x���c1
�1,1��x�

+ h1c0
�1,1��x���

1

N
+ 2h0Re�c1

�1,−1��x� + h1c0
�1,−1��x��

1

N
+ O� 1

N2� . �50�

It is not hard to show that the term 2 h0Re�c0
�1,−1��x�� is equal to the limiting density 	�x� from

7� when x�1, as required, and also that c0
�1,1��x� vanishes identically �this is actually obvious

rom �17� and �38��. The explicit construction of the remaining cm
����x� required in �50� is straight-

orward and we finally obtain the following.
Proposition 1: Let 	N�x� be as defined in �4�, and let x be fixed, with x�1 for the GUE and

� �0,1� for the LUE. Then as N→� we have the following:
For the GUE

	N�x� = 	�x� −
2 cos�2 N 
 P�x��


3	2�x�
1

N
+ O� 1

N2� , �51�

hereas for the LUE

	N�x� = 	�x� − � cos�2 N 
 P�x� − � 
�1 + x 	�x� − P�x���

3x2	2�x�

−
�


2x 	�x�
� 1

N
+ O� 1

N2�,

= 	�x� − � cos�2 N 
 P�x� − 2 � Arccos��x��

3x2	2�x�

−
�


2x 	�x�
� 1

N
+ O� 1

N2� , �52�

here 	�x� is given in �7� and P�x� is the corresponding probability distribution function, given
xplicitly in �37�.

As remarked in Sec. I, the result �51� was obtained previously in11 again by steepest descent,
ut starting from an integral representation derived by super-symmetric arguments rather than
rthogonal polynomials.

It is interesting to note that it is the distribution function P�x� of the limiting density 	�x�
hich controls the large N oscillations in the 1/N correction to 	N�x�. Note also that while the
on-oscillatory correction vanishes at order 1 /N for the GUE leaving only an oscillatory correc-
ion at this order, the LUE has both an oscillatory and a non-oscillatory component to its 1 /N
orrection.

To demonstrate to the reader just how accurate the expansions given by Proposition 1 are we
rovide in Figs. 1 and 2 a numerical comparison of the asymptotic expansions with the exact
esults computed using the expression �10� in terms of orthogonal polynomials.

V. SOFT EDGE ASYMPTOTICS FOR THE GUE AND LUE

The appropriate scaling to elucidate the behavior of 	N�x� near the soft edge is to set x=1
2/3
� /N for fixed �, as appears in �9�. Substituting such a scaling into �16� we find
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N S�z,1 +
b1/3

2

�

N2/3� = − �b1/3N1/3z + N S�z� , �53�

here we have introduced the shorthand S�z�ªS�z ,1�. Here b�0 is a free parameter that we can
x later as convenient. Defining

J̃N��� ª JN�1 +
b1/3

2

�

N2/3� , �54�

e see that �53� leads to

IG. 1. Comparison of the asymptotic expansion �51�, shown as the dashed line, and the exact result �10�, shown as the
olid line, for the eigenvalue density of the GUE with N=10.

IG. 2. Comparison of the asymptotic expansion �52�, shown as the dashed line, and the exact result �10�, shown as the

olid line, for the eigenvalue density of the LUE with �=1/2 and N=10.
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J̃N��� = � dz1

2
i
exp�N S�z1� − b1/3N1/3z1�� � dz2

2
i
exp�N S�z2� − b1/3N1/3z2��G�z1,z2� .

�55�

he reader might be concerned by the slightly unorthodox term in the exponent proportional to
1/3, however it is subdominant to the N S�z� term and its presence does not affect any of the usual
rguments of the saddle point method; the asymptotic behavior of �55� is determined by S�z�.
rom �22�, �23�, and �25� we see for both the GUE and LUE that S�z� has one double saddle point,

ocated at z=−1. We can deform the contour of integration to a new contour which passes through
=−1 along paths of steepest descent. Note that although in �12� the integrals must be positively
riented, since we have two integrals in �55� we are free to orient the integrals in the negative
irection since the consequent minus signs cancel. Let us denote by C the contour consisting of the
nion of two rays of unit length, the first starting at z=e−i
/3−1 and ending at z=−1 and the
econd starting at z=−1 and ending at z=ei
/3−1. If we then denote by A any suitable arc such
hat C�A is a simple closed curve enclosing the origin we can write

J̃N��� = ��
C

+ �
A
� dz1

2
i
exp�N S�z1� − b1/3N1/3z1��

� ��
C

+ �
A
� dz2

2
i
exp�N S�z2� − b1/3N1/3z2��G�z1,z2� , �56�

=�
C

dz1

2
i
exp�N S�z1� − b1/3N1/3z1���

C

dz2

2
i
exp�N S�z2� − b1/3N1/3z2��G�z1,z2�

+ o�e2N S�−1�N−p� . �57�

he error bound in �57� holds for all p�N, and so in what follows we consider p as arbitrarily
arge. The equality between �56� and �57� can be obtained by noting that we can choose A to
onsist of two rays lying along the path of steepest descent away from the endpoints of C, which
xtend as far as we like into the right half plane, together with an arc to close the contour which
e can choose to be as far into the right half plane as desired. With such a choice for A one can
btain the required bounds by a straightforward generalization of the usual argument used in the
addle point method. For a careful discussion of the saddle point method, suitable for this purpose,
ee, e.g., Sec. 2.5 of Ref. 16. We note that Ref. 16 refers to the saddle point method as Perron’s
ethod.

Now let us change variables in �57� according to t=z+1, so that the vertex of our contour is
ow at the origin. We shall denote the image of C under this change of variables by B. Further,
ince S�z� is analytic on C we have

S�t − 1� = S�− 1� + b
t3

3
+ b

t3

3
��t� , �58�

here

��t� ª 	
k=4

�
S�k��− 1�
S�3��− 1�

3!

k!
tk−3, �59�
nd we have now chosen
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b =
S�3��− 1�

2
, �60�

=�1, GUE

2, LUE.
� �61�

e also note that by setting x=1 in �34� and �35� we have

S�− 1� = � 3
2 − i
, GUE

2 − log�2� − i
, LUE.
� �62�

inally, defining

F��,t� ª G�t1 − 1,t2 − 1�e�1��t1�+�2��t2�, �63�

nd the integral operator

Ei
�S�

ª �
B

exp�bN
ti
3

3
− �b1/3N1/3ti� dti

2
i
�64�

e have

J̃N��� = e2N Re�S�−1��+2b1/3N1/3��E1
�S�E2

�S�F��,t��i=bNti
3/3 + o�N−p�� . �65�

f we now multiply �65� by the prefactors required in �14� using �21� we obtain

�bN�1/3

2
	N�1 +

b1/3

2

�

N2/3� = �g0��� +
g1���
N1/3 +

g2���
N2/3 + O� 1

N
��

��N4/3E1
�S�E2

�S�F��,t��i=bNti
3/3 + o�N−p�� , �66�

here gm��� is the coefficient of N−m/3 in the large N fixed � expansion of

e−�2/2N1/3
, GUE

22�−2/3�1 +
�

�2N�2/3��

, LUE.
�67�

n �66� we have presented only terms O�1/N� in the first factor since this will be sufficient for our
urposes in what follows. Higher order terms are easily retained if desired.

Our work is now essentially done. One expands F�� , t� around t=0 for fixed � as in �47� and
hen sets �i=bNti

3 /3, analogous to the bulk case. Again, after integration, each value of j in the
aclaurin expansion �47� contributes to the same order in N. To see this explicitly we can use the

ollowing lemma.
Lemma 1. Let B be the contour consisting of the union of a ray starting at e−i
/3 and ending

t the origin, and a ray starting at the origin and ending at ei
/3. For any b�0 and 0��
1/3 we have for large N that

�
B

zm exp�bN
z3

3
− �b1/3N1/3z� dz

2
i
= �− 1�mb−�m+1�/3N−�m+1�/3�Ai�m���� + O�e−�bN�� ,

here Ai�m���� is the mth derivative of the Airy function Ai���.
Proof: This follows from the standard entire contour integral expression for Ai��� �see e.g.,

ef. 17� by simply changing variables z�b−1/3N−1/3z, and noting that the rays defining the
ontour B can be extended to infinity at the cost of introducing exponentially subdominant

orrections.
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An immediate consequence of Lemma 1 is that with �i=bNti
3 /3 we have

N4/3E1
�S�E2

�S�t1
k1t2

k2�1
l1�2

l2 =
�− 1�l1+l2+k1+k2

3l1+l2b�k1+k2+2�/3Ai�k1+3l1����Ai�k2+3l2����� 1

N1/3�k1+k2−2

+ O�e−�bN� .

�68�

ence, if we construct the Maclaurin expansion of F�� , t� with � fixed as in �47�, and set �i

bNti
3 /3 and integrate using �68�, we obtain an expansion for

N4/3E1
�S�E2

�S�F��,t��i=bNti
3/3 �69�

n powers of N−1/3. Denoting the coefficient of N−m/3 in this expansion by cm��� we have explicitly
hat

cm���
Nm/3 = 	

k=0

m+2
1

k ! �m + 2 − k�!
N4/3E1

�S�E2
�S�t1

kt2
m+2−k��� �k

�s1
k

�m+2−k

�s2
m+2−kF��,s1,s2��

s1,s2=0
��

�i=bNti
3/3

.

�70�

he reader might be concerned that according to �68� the k1+k2=1 and k1+k2=0 terms grow with
; however it is not hard to show from �70� that the coefficients c−2��� and c−1��� vanish identi-
ally.

We can now express �66� in terms of the coefficients cm��� as

�bN�1/3

2
	N�1 +

b1/3

2

�

N2/3� = g0���c0��� + �g1���c0��� + g0���c1����
1

N1/3

+ �g2���c0��� + g1���c1��� + g0���c2����
1

N2/3 + O� 1

N
� . �71�

e have explicitly displayed terms o�1/N� here, but it is straightforward to retain as many terms
s desired. The expansion constructed from terms o�1/N� however is extremely accurate, as we
emonstrate in Figs. 3 and 4, and it appears to be the numerically optimal order at which to

IG. 3. Comparison of the asymptotic expansion �72�, shown as the dashed line, and the exact result �10�, shown as the
olid line, for the eigenvalue density near the soft edge at x=1, for the GUE with N=10.
runcate the expansions.
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The explicit forms for the coefficients cm��� can be constructed from �70� and substituted into
71�. We can also further simplify the Airy derivatives appearing in �68� using the Airy differential
quation Ai����=� Ai��� so that only Ai��� and its first derivative appear. We finally obtain the
ollowing.

Proposition 2: Let 	N�x� be as defined in �4�. Then with � fixed, as N→� we have the
ollowing:

For the GUE

N1/3

2
	N�1 +

�

2N2/3� = �Ai�����2 − ��Ai����2

−
1

20
�3�2�Ai����2 − 2��Ai�����2 − 3 Ai���Ai�����

1

N2/3

+ O� 1

N
� , �72�

hereas for the LUE

�2N�1/3

2
	N�1 +

�

�2N�2/3� = �Ai�����2 − ��Ai����2 +
�

21/3 �Ai����2 1

N1/3

+
21/3

10
�3�2�Ai����2 − 2��Ai�����2 + �2 − 5�2�Ai���Ai�����

1

N2/3

+ O� 1

N
� . �73�

Figures 3 and 4 provide a numerical comparison of the asymptotic expansions given in
roposition 2 with the exact results computed using the expression �10� in terms of orthogonal
olynomials.

Note that it appears that the GUE converges much faster than the LUE, since while the two

IG. 4. Comparison of the asymptotic expansion �73�, shown as the dashed line, and the exact result �10�, shown as the
olid line, for the eigenvalue density near the soft edge at x=1, for the LUE with �=1/2 and N=20. Also shown is the limit
s N→� given by the Airy kernel �9�, shown as the dotted line lying below the other two curves.
urves in �3� are almost indistinguishable at N=10 for the GUE, the asymptotic expansion for the
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UE begins to diverge from the exact result in �4� already by ��2, and both curves are rather
ifferent from the limiting Airy kernel expression �9�. We investigated the affects of retaining
ore terms in the expansion for the LUE case; keeping terms O�1/N� did not noticeably change

he plots, while keeping terms higher than 1/N caused significant divergence of the asymptotic
xpansion from the exact result. The explanation for this is most likely that, as made precise in the
ext section, the edge expansions match onto the bulk expansions, and these in turn become more
ivergent near the edge at each order in 1/N.

. MATCHING OF THE BULK AND EDGE EXPANSIONS

In Figs. 1–4 plots of the bulk and edge asymptotic expansions have separately been compared
gainst the exact density for I finite N. Although the scale of the independent variable is different,
e can see from Figs. 3 and 4 that the edge asymptotic expansions are accurate approximations to

he exact density at least up to the neighborhood of the first local maximum �relative to the edge
=0�, and thus the edge asymptotic expansions should be used instead of the bulk asymptotic
xpansions in this region.

At a quantitative level, it is possible to exhibit a matching between the various asymptotic
xpansions. Suppose in �51� we set x=1+� /2N2/3, and in �52� we set x=1+� / �2N�2/3, and take
�0 and fixed. Expanding the right hand sides as an asymptotic series in N gives

N1/3	N
GUE�1 + �/2N2/3��̇�2��



−

cos�4�3/2/3�
2
�

� − � �3/2

4

+

cos�4�3/2/3�
8


+
�3/2sin�4�3/2/3�

20

� 1

N2/3 + O� 1

N4/3� , �74�

�2N�1/3	N
LUE�1 + �/�2N�2/3��̇�2��



−

cos�4�3/2/3�
2
�

� +
��1 + sin�4�3/2/3��


��
1

�2N�1/3 + O� 1

N2/3� ,

�75�

here the symbol �̇ denotes that the asymptotic series have been expanded as specified. An
mportant feature is that this procedure mixes the terms which are at different orders in N in �51�
nd �52�.

Let us now compute the �→−� asymptotic expansions of the right hand sides of the first two
erms in each of �72� and �73�, multiplied by 2. Using the fact that for x→� �see e.g., Ref. 17�

Ai�− x� =
1

�
x1/4
cos�


4
−

2

3
x3/2� −

5

48�
x7/4
cos�


4
+

2

3
x3/2� + O� 1

x13/4� ,

e obtain expansions which reproduce the N-independent terms in �74� and �75�, giving further-
ore, terms of higher order in 1/ �. In �75� the term proportional to 1 / �2N�1/3 is reproduced, and

his too is accompanied by terms of higher order in 1/ �. In �74� the term −�3/2 /4
N2/3 is
eproduced, as is the term proportional to �3/2sin�4�3/2 /3� /N2/3, whereas the term proportional to
os�4�3/2 /3� /N2/3 is out by a rational factor. The explanation for the missing higher order terms
n 1/ �, and incorrect rational factors is most likely due to the fact that terms of all orders in 1/N
n �51� and �52� contribute to each distinct order in the expansions �74� and �75�. Specifically, from
he results exhibited above, it would seem that expanding the complete large N asymptotic series
or 	N

GUE�x� and 	N
LUE�x� as in �74� and �75� would give precisely the large �→−� expansion of

72� and �73�, extended to all orders in N.

I. DISCUSSION AND QUESTIONS FOR FUTURE STUDIES

From the viewpoint of obtaining accurate numerical approximations to the density, it appears

o be optimal to retain only the order 1 /N corrections in the bulk. However, as remarked at the end
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f the previous section, knowledge of higher order terms would allow us to exhibit higher order
atching relating the bulk and edge expansions. Higher order non-oscillatory corrections in the

ulk are also of interest because they relate to earlier work.18,19 In particular, in Ref. 18 �Eqs. �2.6�,
3.15�, �3.24�, �3.25��, the nonoscillatory order 1 /N2 correction to 	N�x� for the GUE is calculated
y way of the corresponding resolvent to equal

1

16
�1 − x2�5/2

1

N2 .

n the other hand, using the method of Sec. III to extend �51� gives the order 1 /N2 correction as

� 1

16
�1 − x2�5/2 +
x�15 + 2x2�sin�2N
P�x��

48
�1 − x2�5/2 � 1

N2 ,

xhibiting precise agreement with the earlier study.
A result of Ref. 18 as it relates to the GUE, and of Ref. 19 as it relates to the LUE in the case

=0, is that all corrections to the bulk density which are proportional to odd powers of 1 /N
ontain only oscillatory terms. Indeed, the expansions of Proposition 1 are consistent with this
esult, although its truth in general does not appear to be an easy corollary of the working of Sec.
II.

For the LUE, in addition to the bulk and soft edge regimes, there is a distinct regime in the
eighborhood of x=0 referred to as the hard edge.12 The bulk expansion �52� diverges for x→0,
nd we are faced with the same matching issue as that between the bulk and soft edge expansions.
o leading order this matching can be seen by comparing the x→� behavior of the hard edge
ensity known from Ref. 12, with the x→0 form of the Marčenko-Pastur law in �7�. At higher
rder, correction terms to the hard edge density must be computed. This we hope to address in a
uture study.

The studies of Refs. 18 and 19 tell us the bulk asymptotic expansion of the smoothed form of
ot just the density, but the two-point Green function as well. From this the bulk asymptotic
xpansion of the smoothed two-point correlation can be read off. On the other hand, this latter
uantity, and in fact the general k-point correlations, are determined by a single quantity known as
he Christoffel-Darboux kernel, generalizing �10�. It would thus be of interest to apply the methods
f the present study to compute the asymptotic expansion of this kernel for the GUE and LUE,
oth in the bulk and at the soft edge.
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field theoretic derivation of the Max Born hypothesis
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It is shown in this article that the statistical character of the nonrelativistic, one
particle quantum probabilities can be inferred from the function which results from

the Wigner transformation on the field operator �̂†�x� � which, in turn, must be
expressed in the occupation number representation. The function which results
from the Wigner transformation is shown to be the state function of a single particle
which is defined in the conventional quantum mechanics. The integral of the norm
squared of that function is proven to be unity which is the step that proves the Max
Born hypothesis. The compatibility of the expression for the field amplitude, ob-
tained here, with the measurability of the Bosonic and the Fermionic fields is
explained. © 2005 American Institute of Physics. �DOI: 10.1063/1.2044668�

. INTRODUCTION

The relation between quantum expectation values and statistical averages is a subject that has
een studied very extensively. Early attempts to explore that relation includes the Bohr and the
on Neumann reasonings, both of which rule out the possibility of interpreting quantum expecta-
ion values in terms of averaging over uniquely determined processes because, as was discussed
y Groenewold,1 these processes may not be well defined either on physical or mathematical
rounds. On the other hand, Wigner functions2 proved to be the main objects through which
hase-space c-number density functions may be defined.3 These functions have been studied very
xtensively, for example, Curtright and Zachos,3,4 Bohun et al.,5 and Lesche.6 A Wigner function
s the Wigner transform of the quantum density operator,7,8 and it can be used to calculate averages
f a phase space function which will give the statistical average of that particular phase space
unction and not the quantum expectation value. In spite of the fact that the Wigner function leaves
he interpretation of the expectation value as an axiom of quantum mechanics it remains to be the
uperior function which bridges quantum density operators to statistical averages.

Another way to relate quantum operators to statistical averages is to identify expectation
alues with statistical averages through an equation which directly relates the quantum probability
ensity to the statistical probability. The purpose of this article is to show that using quantum field
heory one can connect the single particle, nonrelativistic, quantum probability density to the
tatistical probability which is a step that will give the Max Born hypothesis a mathematical proof.
his connection is important because it presents a nonaxiomatic approach to the statistical inter-
retation of the state function’s norm square.9 Consequently, one will be able to study, as will be
hown in a future work, the conditions under which the norm square of a one particle state
unction may fail to represent the probability density. To relate the quantum probability to the

tatistical probability one needs to apply the Wigner transformation to the field operator �̂†�x� �, an
perator which is introduced in the second quantization and which represents the creation of a

article at the position x�. The matrix element of �̂†�x� � should be given in the coordinate repre-

entation of N particles. The function �w
* �x , p ,x� �, which denotes the Wigner transform of �̂†�x� �,

ill have an N-coordinate dependence, an N-momentum dependence, and an x� dependence. To
liminate the N coordinates and momenta dependencies an integration over the coordinates fol-

�
Electronic mail: aliamh@hotmail.com

46, 103302-1022-2488/2005/46�10�/103302/12/$22.50 © 2005 American Institute of Physics
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owed by an ensemble averaging is performed. The resulting function �̄w
* �x� � is proven to obey the

chrödinger equation, and thus is proven to be the state function defined in quantum mechanics.

urther, the integral over the spatial coordinates of the norm square of the function �̄w
* �x� � is shown

o be unity.
It is worth mentioning that the equation derived here for the field amplitude have a direct

roportionality to the average occupation number per state. A consequence of that direct propor-
ionality is the fact that Bosons will have a much stronger field amplitude than Fermions. Fermions
re allowed to have an occupation number of either 1 or 0 per state. Bosons, on the other hand, can
ave up to the total number of particles in the system occupying a single state. With the direct
roportionality between the particle field amplitude and the average occupation number per state,
or a certain projection, the above-mentioned statistics will lead to a much stronger field amplitude
or Bosons than for Fermions. This is consistent with the classical measurability of a field; if a
eld is to be measurable then the field amplitude must be strong enough to be detected on a
lassical scale10 which means that particles having Bose–Einstein statistics have a physically
easurable field, for example, the classical electromagnetic fields, and particles obeying the
ermi–Dirac statistics have a field amplitude which, in comparison to the Bosons, is too weak.

I. THE TRANSFORMATION FOR FERMIONS

For any operator Â the Wigner transformation is defined by5,7

Aw�x,p� = �
R3N

d3Nzei�p·z�/��x −
z

2
�Â�x +

z

2
� �1�

here x ,z , p�R3N, R is the real axis, N is the total number of particles, �p ·z�=	�=1
3N p�z�, � is

lank’s constant, d3Nz=��=1
N dz��, z���R3, and Aw�x , p� is the classical function corresponding to

he quantum operator Â, which may have a position dependence. The interest here is in the spatial

ntegral of the Wigner transformation of the field operator �̂†�x� �=	 j=1
� b̂j

†� j
*�x� �.10 The Wigner

ransform of �̂†�x� � is denoted by �w
* �x , p ,x� �, the sum in the expansion of �̂†�x� � runs over single

article states, the � j�x� � is a single particle state function which corresponds to the N+1st particle,
nd x� is the position vector of that particle. In particular, the function of interest is

�w
* �p,x� � =� d3Nx�w

* �x,p,x� � =� d3Nxd3Nzei�p·z�/��x −
z

2
��̂†�x� ��x +

z

2
� , �2�

here d3Nx=��=1
N dx��. The general plan is to insert the unit operator11

1S,A =
1

N!	
nk�
�n1,n2, . . . S,A S,A�n1,n2, . . . �

n the matrix element in the integrand, multiply terms, and then integrate. The superscripts indi-
ate, respectively, the symmetric �Bosonic� and the antisymmetric �Fermionic� state vectors.7 The
atrix element in the integrand will be

�x −
z

2
��†�x� ��x +

z

2
� = S,A�x −

z

2
�1S,A�	

j

b̂j
†� j

*�x� ��1S,A�x +
z

2
�S,A

= S,A�x −
z

2
�

�� 1

N!	
nk�
�n1,n2, . . . S,A S,A�n1,n2, . . . � �	

j

b̂j
†� j

*�x� �

�� 1

N! 	

n��

�n1�,n2�, . . . S,A S,A�n1�,n2�, . . . � ��x +
z

2
�S,A
k
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= 	

nk�

	

nk��

� 1

N!
�2

S,A�x −
z

2
�n1,n2, . . . �S,A

S,A�n1,n2, . . . ��	
j

b̂j
†� j

*�x� ��
� �n1�,n2�, . . . S,AS,A�n1�,n2�, . . . �x +

z

2
�S,A

. �3�

The last term in Eq. �3� is the N-particle state function and it will be written as12

S,A�n1�,n2�, . . . �x +
z

2
�S,A

= S,A�n1�,n2�, . . . �x�1 +
z�1

2
, . . . ,x�N +

z�N

2
�S,A

= ��n1�n2�¯�
* �x�1 +

z�1

2
, . . . ,x�N +

z�N

2
�S,A

. �4�

According to quantum mechanics12 the square of the amplitude of the � function in Eq. �4�
ill give the simultaneous probability of finding a particle at x�1, a particle at x�2 , . . ., and a particle

t x�N with the knowledge that the “first” state is occupied by n1 particles, the second state by n2

articles, the third state by n3 particles, and so forth. With Eq. �4� the matrix elements of the field

perator �̂†�x� � is

�x −
z

2
��̂†�x� ��x +

z

2
� = 	

j
	

nk��

	

nk�

� 1

N!
�2

��n1n2. . .��x�1 −
z�1

2
, . . . ,x�N −

z�N

2
�S,A

� S,A�n1,n2, . . . �b̂j
†�n1�,n2�, . . . S,A��n1�n2�¯�

* �x�1 +
z�1

2
, . . . ,x�N +

z�N

2
�S,A

� j
*�x� � .

�5�

The value of the matrix S,A�n1 ,n2 , . . . �b̂j
†�n1� ,n2� , . . . S,A will depend on the type of particles

eing considered. For Bosons and Fermions it is respectively given by10

S�n1,n2, . . . ,nj, . . . �b̂j
†�n1�,n2�, . . . ,nj�, . . . S = �nj� + 1	n1,n1�

¯ 	nj,nj�+1 ¯ , �6�

A�n1,n2, . . . ,nj, . . . �b̂j
†�n1�,n2�, . . . ,nj�, . . . A = �− 1�Rj�1 − nj�	n1,n1�

¯ 	nj,1−nj�
¯ . �7�

The prefactor �−1�Rj with Rj =	
=1
nj−1n
 is ±1 depending on the number of occupied states

etween n1 and nj−1.10 When doing the calculations for Fermions the matrix element of the field

perator �̂†�x� � will be

x −
z

2
��̂†�x� ��x +

z

2
� = 	

j
	

nk��

	

nk�

� 1

N!
�2

��n1n2¯��x�1 −
z�1

2
, . . . ,x�N −

z�N

2
�A

� �− 1�Rj�1 − nj�	n1,n1�
¯ 	nj,1−nj�

¯ ��n1�n2�¯�
* �x�1 +

z�1

2
, . . . ,x�N +

z�N

2
�A

� � j
*�x�� = 	

j
	

nk�

� 1

N!
�2

��n1n2¯��x�1 −
z�1

2
, . . . ,x�N −

z�N

2
�A

� �− 1�Rj�nj��n1n2¯�
* �x�1 +

z�1

2
, . . . ,x�N +

z�N

2
�A

� j
*�x� �

= 	� 1

N!
�2� 	 �k1,. . .,kN

�x�1 −
z�1

2
, . . . ,x�N −

z�N

2
�A
j k1,k2,. . .,kN

                                                                                                            



w

w
k
b

w
s

f

p
r

a

T

t

103302-4 Abdulmuhsen H. Ali J. Math. Phys. 46, 103302 �2005�

                        
� �k1,. . .,kN

* �x�1 +
z�1

2
, . . . ,x�N +

z�N

2
�A��− 1��j−1��nj� j

*�x� � , �8�

here the state function has been rewritten as

��n1n2¯��x�1 −
z�1

2
, . . . ,x�N −

z�N

2
�S,A

� �k1,. . .,kN
�x�1 −

z�1

2
, . . . ,x�N −

z�N

2
�S,A

�9�

hich makes the statement that this is an N-particle state function with particles in the levels

1 , . . . ,kN. The symmetric and the antisymmetric N-particle state function are, respectively, given
y13

�k1,. . .,kN
�x�1 −

z�1

2
, . . . ,x�N −

z�N

2
�S

=
1

�N!n1!n2!¯
	

p�SN

�kp�1�
�x�1 −

z�1

2
�¯ �kp�N��x�N −

z�N

2
� ,

�10�

�k1,. . .,kN
�x�1 −

z�1

2
, . . . ,x�N −

z�N

2
�A

=
1

�N!
	

p�SN

sgn�p��kp�1�
�x�1 −

z�1

2
�¯ �kp�N��x�N −

z�N

2
� ,

�11�

here sgn�p�= +1 for even permutations, sgn�p�=−1 for odd permutations, and where SN is the
et of all permutations of the N particles. The permutation of N elements is denoted by13

p�1,2, . . . ,N� = �p�1�,p�2�, . . . ,p�N�� .

The ��x� �k’s in Eqs. �10� and �11� are single particle solutions to the Schrödinger equation and
orm a complete basis in Hilbert space.13

The expanded form of the antisymmetric state functions should now be inserted in Eq. �8�:

�x −
z

2
��̂†�x� ��x +

z

2
� = 	

j
� 1

N!
�� 	

k1,. . .,kN

� 1

N!
�2

� 	
p��SN

sgn�p�� 	
p�SN

sgn�p��kp�1�
�x�1 −

z�1

2
�¯ �kp�N��x�N −

z�N

2
�

� �kp��1�

* �x�1 +
z�1

2
�¯ �kp��N�

* �x�N +
z�N

2
��− 1��j−1��nj�� j

*�x� � . �12�

Now one must substitute �12� into �2� but Eq. �12� is complicated and the calculations at this
oint will be done for N=3 and j=3 so that by induction one may obtain the general N particles
esult. The results below will hold only under the imposition of the ansatz

�kj�x� j −
z� j

2
� = �kj

�x� j��kj�−
z� j

2
�

nd

�kj

* �x� j +
z� j

2
� = �kj

* �x� j��kj

* � z� j

2
� .

hus, according to Eq. �12� for three particles and three quantum states the Wigner transform of
ˆ † �
he field operator � �x � will be
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�w
* �x,p,x� � = � 1

3!
�3� d3z1d3z2d3z3ei�p·z�/�	

j=1

3

	
k1,k2,k3

�− 1��j−1��nj� j
*�x� �� 	

p�S3

�

=1

3

�kp�
�
�x�
�

� �kp�
�

* �x�
��kp�
��−
z�


2
��kp�
�

* � z�


2
� − 	

p�S2

	
m,�,j,r =1

3

��kj
�r��kj

* �r��kp�r�
����kp���

* ����kp���
�m�

� �kp�r�

* �m� −
1

2 	
p�S2

	
j,r =1

3

��kr
�r��kr

* �r��kp�j�
����kp���

* ����kp���
�j��kp�j�

* �j�

+ 	
p��S2

	
p�S2

�kp��1�
�1��kp��2�

* �1��kp��2�
�p�2���k3

* �p�2���k3
�p�3���kp��1�

* �p�3��

+ 	
p��S2

	
p�S2

�kp��1�
�1��kp��3�

* �1��k2
�p�2���kp��1�

* �p�2���kp��3�
�p�3���k2

* �p�3��

+ 	
p��S2

	
p�S2

�kp��2�
�1��kp��3�

* �1��kp��1�
�p�2���kp��2�

* �p�2���kp��3�
�p�3���kp��1�

* �p�3��� ,

�13�

here the prime on the summation indicates a restricted sum which means that in taking the sum
ne should consider terms in which a subscript kj occurs only twice, and in the last three terms the
ermutations are p�m�= j , p�j�=m. Specifically, in the last term the permutations are p�m�
j , p�j�=m per x��, �=1,2 ,3. The total number of terms in Eq. �13� are 36. The first term in Eq.

13� accounts for 6 of the 36 terms, the second term in equation �13� gives 12 terms out of the 36
erms, the third term in Eq. �13� will give 6 terms out of the 36 terms, and the last three will give
2 terms out of the 36 terms. Also, in Eq. �13� the coordinate dependence of the state functions
ave been suppressed such that �k�

�j���k�
�x� j −z� j /2�, and �k�

* �j���k�

* �x� j +z� j /2�. Applying the
bove-mentioned Ansatz and the orthonormal property of the complete set 
� j�x� �� will make the
ast five terms in Eq. �13� vanish when the integrations over the x� j’s are performed. Given this fact
nd Eqs. �2� and �13� one can write

�w
* �p,x� � =� d3Nx�w

* �x,p,x� � = � 1

3!
�3�

R9
d9x�

R9
d9zei�p·z�/�	

j=1

3

	
k1,k2,k3

�− 1��j−1��nj� j
*�x� �

� 	
p�S3

�

=1

3

�kp�
�
�x�
��kp�
�

* �x�
��kp�
��−
z�


2
��kp�
�

* � z�


2
� . �14�

The orthonormal property of the complete set 
�kj
�x� �� will make all the integrals with respect

o the x� j’s be equal to unity

�w
* �p,x� � = � 1

3!
�3�

R9
d9zei�p·z�/�	

j=1

3

	
k1,k2,k3

�− 1��j−1��nj� j
*�x� � 	

p�S3

�

=1

3

�kp�
��−
z�


2
��kp�
�

* � z�


2
� .

�15�

In Eq. �15� employ the closure relation 	k�
�k�

�z�m /2��k�

* �−z�m /2�=	�z�m�, ∀j=1,2 ,3� j��,
nd m=1,2 ,3. Now integrate over the z coordinate and the function �w

* �p ,x� � will reduce to

�w
* �p,x� � = � 1

3!
�3

�2�	
j=1

3 �	
kj

�− 1��j−1��nj	
�=1

3 � d3z�ei�p·z���/��kj
�−

z��

2
��kj

* � z��

2
��� j

*�x� � .

�16�
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The dependence on p is eliminated by taking the average �̄w
* �x� �=	
nk��w

* �p ,x� �P
nk�, where

P
nk� =
g
nk�e−�	k=1

� nk��k−�

	
nk� g
nk�e−�	k=1
� nk��k−�

s the probability of finding the set of occupation numbers 
n1 ,n2 , . . . �= 
nk�k=1
� in the grand

anonical ensemble,7 g
nk� is the statistical weight of the set 
nk�k=1
� , �k is the energy of the single

article state k,  is the chemical potential, �=1/kBT, kB is the Boltzmann constant, and T is the
bsolute temperature. The statistical weight g
nk� equals to unity for both Fermions and Bosons.

he Fermionic function �̄w
* �x� � will be obtained by virtue of the function P
nk�

�̄w
* �x� � = 	


nk�
�w

* �p,x� �P
nk� = � 1

3!
�3

�2�	
j=1

3 �	
kj

�− 1��j−1���r =1

3 	nr
e−�nr��r−��nj

�r =1

3 	nr
e−�nr��r−� �

� 	
�=1

3 � d3z�ei�p·z���/��kj
�−

z��

2
��kj

* � z��

2
��� j

*�x� � .

he fraction in the parentheses will simplify to the average of �nj denoted as ��nj

��r =1

3 	nr
e−�nr��r−��nj

�r =1

3 	nj
e−�nr��r−� � =

	nj
�nje

−�nj��j−��r =1

r�j

3−1 	nr
e−�nr��r−�

	nj
e−�nj��j−��r =1

r�j

3−1 	nr
e−�nr��r−�

=
	nj

�nje
−�nj��j−�

	nj
e−�nj��j−�

= 	
nj

�njpj�nj� = ��nj ,

here

pj�nj� =
e−�nj��j−�

	nj
e−�nj��j−�

s the probability of finding nj particles in the subsystem j which has the energy � j.
7 This last result

ill simplify the function �̄*�x� � significantly

�̄w
* �x� � = � 1

3!
�3

�2�	
j=1

3 �	
kj

	
�=1

3 � d3z�ei�p·z���/��kj
�−

z��

2
��kj

* � z��

2
���− 1��j−1���nj� j

*�x� �

= � 1

3!
�3

�2�	
j=1

3 �	
�=1

3 � d3z�ei�p·z���/�	
kj

�kj
�−

z��

2
��kj

* � z��

2
���− 1��j−1���nj� j

*�x� �

further simplification is reached by using the closure relation

�̄w
* �x� � = � 1

3!
�3

�2�	
j=1

3 �	
�=1

3 � d3z�ei�p·z���/�	�z�����− 1��j−1���nj� j
*�x� � = � 1

3!
�3

�2�	
j=1

3

�3��− 1��j−1�

���nj� j
*�x� � = � 1

3!
�3

�3!�	
j=1

3

�− 1��j−1���nj� j
*�x� �
r
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�̄w
* �x� � = � 1

3!�� 1

�3 − 1�!�3
�	

j=1

3

�− 1��j−1�
��nj

�3
� j

*�x� � . �17�

By induction the general equation for the average number of particles,7 N=	 j�nj, and a
enumerable set of states is

�w
* �x� � � �̄w

* �x� ��N!���N − 1�!�N� = 	
j=1

�

�− 1��j−1�
��nj

�N
� j

*�x� � . �18�

The following approximation10 is valid only in the limit of a very large average number of
articles N:

ln�N1/2N!�N − 1�!� = �1/2�ln N + ln N! + ln�N − 1�! � �1/2�ln N + N ln N − N + �N − 1�ln�N − 1�

− �N − 1� = 2N ln N − �1/2�ln N − 2N � 2N ln N , �19�

where N�1 leads to N±1�N. Raising both sides in Eq. �19� to the exponent will give the
approximate equality, N1/2N!�N−1�!��N�2N. Under the large N approximation and the assumption
f negligible occupation number fluctuations7 Eq. �18� is

�w
* �x� � � �̄w

* �x� ��N�2N = 	
j

�− 1��j−1�� �nj

N
�1/2

� j
*�x� � , �20�

here the negligible fluctuations of the occupation number leads to ��nj���nj. The function

w
* �x�� changes sign according to the way the factor �−1��j−1� contributes to the sum. With the
omplex conjugate of Eq. �20�

�w�x� � = 	
j

�− 1��j−1�� �nj

N
�1/2

� j�x� � �21�

nd the integration of the product between Eqs. �20� and �21�, an insight may be given into the
hysical meaning of the function �w�x��

� d3x�w
* �x� ��w�x� � =� d3x	

j
	

k

�− 1��j+k−2�� �nj

N
�1/2� �nk

N
�1/2

� j
*�x� ��k�x� � . �22�

By the orthonormal property of the complete set of the basis states, �d3x� j
*�x� ��k�x� �=	 jk, the

bove-mentioned equation simplifies to

� d3x�w
* �x� ��w�x� � = 	

j
� �nj

N
�1/2� �nj

N
�1/2

= 	
j
� �nj

N
� = 1, �23�

here �−1� j+k−2=1 when j=k, and N=	 j�nj. This result makes it clear that, in relation to the
tatistical average, the product �w

* �x� ��w�x� � may be identified with the probability density known
n quantum mechanics. Given that, one can find a general explicit expression for the expansion
oefficients of the series expansion of �w�x� �,

�w�x� � = 	
j

bj� j�x� � = 	
j

�− 1� j−1� �nj

N
�1/2

� j�x� � , �24�

j−1 1/2
his equality will, by linear independence, lead to bj = �−1� ��nj /N� .
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II. THE TRANSFORMATION FOR BOSONS

The transformation for Bosons is not too different from the Fermions. In fact the steps are all
imilar except that in the calculations one needs to exclude the phase factor �−1��j−1�, and include
he fact that more than one Boson may occupy the same quantum state. The matrix element for the

eld operator �̂†�x� � in the case of Bosons is

�x −
z

2
��̂†�x� ��x +

z

2
� = 	

j
� 1

N!
�2� 	

k1,. . .,kN

�k1,. . .,kN
�x�1 −

z�1

2
, . . . ,x�N −

z�N

2
�S

� �k1,. . .,kN

* �x�1 +
z�1

2
, . . . ,x�N +

z�N

2
�S��nj� j

*�x� � . �25�

The numbers n1 ,n2 , . . . are not simply either 1 or 0, because of the Bosons statistics they are
llowed to vary from 0 to N. Equation �12� should be written for Bosons

�x −
z

2
��̂†�x� ��x +

z

2
� = 	

j
� 1

N!n1!n2!¯
�� 	

k1,. . .,kN

� 1

N!
�2

	
p��SN

	
p�SN

�kp�1�
�x�1 −

z�1

2
�¯ �kp�N�

� �x�N −
z�N

2
��kp��1�

* �x�1 +
z�1

2
�¯ �kp��N�

* �x�N +
z�N

2
��nj�� j

*�x� � . �26�

Next apply the same ansatz as with Fermions and integrate with respect to x. All the terms
ith product of the form �k�

�j��km

* �j�, ���m, will vanish. Now one can write Eq. �15� for N
osons

�w
* �p,x� � = � 1

N!
�2 1

N!n1!n2!¯
�

R3N
d3Nzei�p·z�/�	

j=1

�

	
k1,. . .,kN

�nj� j
*�x� � 	

p�SN

�

=1

N

�kp�
��−
z�


2
��kp�
�

* � z�


2
� ,

�27�

hich when integrated over the z coordinate will give

�w
* �p,x� � = � 1

N!
�2 1

N!n1!n2!¯
�N − 1�!	

j=1

� �	
kj

�nj	
�=1

N � d3z�ei�p·z���/��kj
�−

z��

2
��kj

* � z��

2
��� j

*�x� � .

�28�

The Bosonic �w
* �p ,x� � will make it possible to calculate the function �̄w

* �x� � for Bosons

�̄w
* �x� � = 	


nk�
�w

* �p,x� �P
nk� = � 1

N!
�2 1

N!n1!n2!¯
�N − 1�!	

j=1

� �	
�=1

N � d3z�ei�p·z���/�

� 	
kj

�kj
�−

z��

2
��kj

* � z��

2
����nj� j

*�x� � �29�
nd using the closure relation
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�̄w
* �x� � = � 1

N!
�2 1

N!n1!n2!¯
�N − 1�!	

j=1

� �	
�=1

N � d3z�ei�p·z���/�	�z������nj� j
*�x� �

= � 1

N!
�2 1

N!n1!n2!¯
�N − 1�!	

j=1

�

�N���nj� j
*�x� � = � 1

N!
� 1

N!n1!n2!¯	
j=1

�

��nj� j
*�x� �

= � 1

N!
� 1

�N − 1�!�Nn1!n2!¯
	
j=1

� ��nj

�N
� j

*�x� � . �30�

The Bosonic �w
* �x� � is

�w
* �x� � � �̄w

* �x� ��N!��N − 1�!�N�n1!n2! ¯ � = 	
j=1

� ��nj

�N
� j

*�x� � . �31�

As in the Fermionic case �w
* �x� � will be written for the N�1 and the approximation in Eq. �19�

ill be applied

ln�N1/2N!�N − 1�!�n1!n2! ¯ �� = �1/2�ln N + ln N! + ln�N − 1�! + 	
j=1

�

ln nj! � �1/2�ln N + N ln N

− N + �N − 1�ln�N − 1� − �N − 1� + 	
j=1

�

�nj ln nj − nj� � 2N ln N

+ 	
j=1

�

nj ln nj = 	
j=1

�

�2N ln N + nj ln nj� � 	
j=1

�

2N ln N = �N�2N ln N

= 2N2 ln N ,

here nj �N , ∀ j. Therefore, for N�1 one have

�w
* �x� � � �̄w

* �x� ��N�2N2
= 	

j
� �nj

N
�1/2

� j
*�x� � , �32�

here the negligible fluctuation approximation has been applied. The rest of the argument follow-
ng Eq. �32� will be similar to the fermionic case. Thus, for Bosons, the product �w

* �x� ��w�x� � may
e identified with the probability density as well.

V. THE INCLUSION OF TIME

The time dimension may be added simply by solving the Heisenberg equation12 for the

perator b̂j

i�b̂
˙

j�t� = �b̂j�t�,Ĥ�t�� �33�

nd this will allow the definition of the time-dependent expansion coefficient

bj�t� = �− 1��j−1�� �nj

N
�1/2

e−i�jt/�, �34�

here � j is the energy of the jth eigenstate. The transformed function in Eq. �24� may now be

ritten as a field with a position, and a time dependence
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�w
* �x�,t� = 	

j

�− 1��j−1�� �nj

N
�1/2

e+i�jt/�� j
*�x� � �35�

hich, in turn, will allow the Wigner transformation with the time dimension

�w
* �x�,t� = N�̄w

* �x�,t� = N	

nk�

�w
* �p,x�,t�P
nk� = N	


nk�
� d3Nx�w

* �x,p,x�,t�P
nk�

= N	

nk�
�

R3N
d3Nxd3Nzei�p·z�/��x −

z

2
��̂†�x�,t��x +

z

2
�P
nk� . �36�

. IN RELATION TO THE SCHRÖDINGER EQUATION

Unless one can show a relation between �w
* �x� , t� and a function which is defined in quantum

echanics, the function �w
* �x� , t� remains to be only the function resulting from the Wigner

ransform of the operator �̂†�x� , t�. To this end one applies the energy operators Ê= i�� /�t, and
ˆ =−��2 /2m��2+V�x� � separately to the complex conjugate of the function �w

* �x� , t�

i�
�

�t
�w�x�,t� = N	


nk�
�

R3N
d3Nxd3Nze−i�p·z�/��x +

z

2
�i�

�

�t
�̂�x�,t��x −

z

2
�P
nk� , �37�

Ĥ�w�x�,t� = N	

nk�
�

R3N
d3Nxd3Nze−i�p·z�/��x +

z

2
�Ĥ�̂�x�,t��x −

z

2
�P
nk� , �38�

hich by subtraction leads to

Ĥ�w�x�,t� − i�
�

�t
�w�x�,t� = N	


nk�
�

R3N
d3Nxd3Nze−i�p·z�/��x +

z

2
�Ĥ�̂�x�,t�

− i�
�

�t
�̂�x�,t��x −

z

2
�P
nk� . �39�

owever, the field equation12

−
�2

2m
�2�̂�x�,t� + V�x� ��̂�x�,t� = i�

�

�t
�̂�x�,t� �40�

olds for both Fermions and Bosons, which along with Eq. �39� will give

−
�2

2m
�2�w�x�,t� + V�x� ��w�x�,t� = i�

�

�t
�w�x�,t� . �41�

Equation �41� leads to the fact that the function �w�x� , t� is the solution to the Schrödinger
quation, thereby proving that the functions �w

* �x� � appearing in Eqs. �20� and �32� are the quantum
echanical wave functions from which the probability density may be calculated by taking the

quare of the norm for each function. With the understanding that the Fermionic wave function is

N�2N times the Fermionic �̄w
* �x� � and that the Bosonic wave function is �N�2N2

times the Bosonic

w
* �x� �, the quantum mechanical wave function �w�x� , t����x� , t� can now be written for the both
ypes of particles
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��x�,t� = 	
j

� j� �nj

N
�1/2

e−i�jt/�� j�x� � , �42�

here

� j = ��− 1��j−1� for Fermions

1 for Bosons.
�

According to Eq. �42� projections of the Bosonic field amplitude can be much stronger than
he same projections of the Fermionic field amplitude. This is due to the fact that both fields are
irectly proportional to the average occupation number. If x����k−� then x→0 leads to �nj

� for Bosons and �nj→1 for Fermions �Ref. 7, p. 306�. Also, for Bosons the � j factor is
ositive for all the terms in Eq. �42�, but for Fermions it changes sign which means that some
erms will be subtracted from the total sum. Thus, one can conclude that a certain projection of the
osonic field amplitude can be much stronger than a similar projection of the Fermionic field
mplitude for that limit. This is consistent with physical observations.10
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PPENDIX: PRODUCT RESULTS OF ANTISYMMETRIZED „SYMMETRIZED… STATE
UNCTIONS

For a two state system 
k1 ,k2� the product of the anti-symmetrized sums in Eq. �12� is

I2 = 	
k1,k2

	
p�,p

sgn�p��sgn�p��kp1
�x�1 −

z�1

2
��kp2

�x�2 −
z�2

2
��kp1

* �x�1 +
z�1

2
��kp2

* �x�2 +
z�2

2
�

= 	
k1

�k1
�x�1 −

z�1

2
��k1

* �x�1 +
z�1

2
�	

k2

�k2
�x�2 −

z�2

2
��k2

* �x�2 +
z�2

2
� − 	

k1

�k1
�x�1 −

z�1

2
��k1

* �x�2 +
z�2

2
�

� 	
k2

�k2
�x�2 −

z�2

2
��k2

* �x�1 +
z�1

2
� − 	

k1

�k1
�x�2 −

z�2

2
��k1

* �x�1 +
z�1

2
�	

k2

�k2
�x�1 −

z�1

2
��k2

* �x�2 +
z�2

2
�

+ 	
k1

�k1
�x�2 −

z�2

2
��k1

* �x�2 +
z�2

2
�	

k2

�k2
�x�1 −

z�1

2
��k2

* �x�1 +
z�1

2
� = 	�z�1�	�z�2� − 	

k1,k2

�k1
�x�1 −

z�1

2
�

� �k1

* �x�2 +
z�2

2
��k2

�x�2 −
z�2

2
��k2

* �x�1 +
z�1

2
� − 	

k1,k2

�k1
�x�2 −

z�2

2
��k1

* �x�1 +
z�1

2
�

� �k2
�x�1 −

z�1

2
��k2

* �x�2 +
z�2

2
� + 	�z�2�	�z�1� = 2!	�z�1�	�z�2� + other terms = 2!�

�=1

2

	�z���

+ other terms. �A1�

or a three state system the product of the anti-symmetrized sums in �12� is

I3 = �k1
�1��k2

�2��k3
�3��k1

* �1��k2

* �2��k3

* �3� − �k1
�1��k2

�2��k3
�3��k2

* �1��k1

* �2��k3

* �3�

+ �k1
�1��k2

�2��k3
�3��k2

* �1��k3

* �2��k1

* �3� − �k1
�1��k2

�2��k3
�3��k3

* �1��k2

* �2��k1

* �3�

+ �k1
�1��k2

�2��k3
�3��k3

* �1��k1

* �2��k2

* �3� − �k1
�1��k2

�2��k3
�3��k1

* �1��k3

* �2��k2

* �3�

− �k2
�1��k1

�2��k3
�3��k

* �1��k
* �2��k

* �3� + �k2
�1��k1

�2��k3
�3��k

* �1��k
* �2��k

* �3�

1 2 3 2 1 3
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− �k2
�1��k1

�2��k3
�3��k2

* �1��k3

* �2��k1

* �3� + �k2
�1��k1

�2��k3
�3��k3

* �1��k2

* �2��k1

* �3�

− �k2
�1��k1

�2��k3
�3��k3

* �1��k1

* �2��k2

* �3� + �k2
�1��k1

�2��k3
�3��k1

* �1��k3

* �2��k2

* �3�

+ �k2
�1��k3

�2��k1
�3��k1

* �1��k2

* �2��k3

* �3� − �k2
�1��k3

�2��k1
�3��k2

* �1��k1

* �2��k3

* �3�

+ �k2
�1��k3

�2��k1
�3��k2

* �1��k3

* �2��k1

* �3� − �k2
�1��k3

�2��k1
�3��k3

* �1��k2

* �2��k1

* �3�

+ �k2
�1��k3

�2��k1
�3��k3

* �1��k1

* �2��k2

* �3� − �k2
�1��k3

�2��k1
�3��k1

* �1��k3

* �2��k2

* �3�

− �k3
�1��k2

�2��k1
�3��k1

* �1��k2

* �2��k3

* �3� + �k3
�1��k2

�2��k1
�3��k2

* �1��k1

* �2��k3

* �3�

− �k3
�1��k2

�2��k1
�3��k2

* �1��k3

* �2��k1

* �3� + �k3
�1��k2

�2��k1
�3��k3

* �1��k2

* �2��k1

* �3�

− �k3
�1��k2

�2��k1
�3��k3

* �1��k1

* �2��k2

* �3� + �k3
�1��k2

�2��k1
�3��k1

* �1��k3

* �2��k2

* �3�

+ �k3
�1��k1

�2��k2
�3��k1

* �1��k2

* �2��k3

* �3� − �k3
�1��k1

�2��k2
�3��k2

* �1��k1

* �2��k3

* �3�

+ �k3
�1��k1

�2��k2
�3��k2

* �1��k3

* �2��k1

* �3� − �k3
�1��k1

�2��k2
�3��k3

* �1��k2

* �2��k1

* �3�

+ �k3
�1��k1

�2��k2
�3��k3

* �1��k1

* �2��k2

* �3� − �k3
�1��k1

�2��k2
�3��k1

* �1��k3

* �2��k2

* �3�

− �k1
�1��k3

�2��k2
�3��k1

* �1��k2

* �2��k3

* �3� + �k1
�1��k3

�2��k2
�3��k2

* �1��k1

* �2��k3

* �3�

− �k1
�1��k3

�2��k2
�3��k2

* �1��k3

* �2��k1

* �3� + �k1
�1��k3

�2��k2
�3��k3

* �1��k2

* �2��k1

* �3�

− �k1
�1��k3

�2��k2
�3��k3

* �1��k1

* �2��k2

* �3� + �k1
�1��k3

�2��k2
�3��k1

* �1��k3

* �2��k2

* �3�

= 6	�z�1�	�z�2�	�z�3� + other terms = 3!�
�=1

3

	�z��� + other terms. �A2�

or a symmetrized I2 and I3 the sgn�p�� and sgn�p� need not be included.
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We construct conditional entropy four-currents for the general relativistic Ornstein-
Uhlenbeck process and we prove that the four-divergences of these currents are
always non-negative. This H-theorem is then discussed in detail. In particular, the
theorem is valid in any Lorentzian space-time, even those presenting well-known
chronological violations. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2038627�

NOTATIONS
In this article, c denotes the speed of light, and the signature of the space-time metric is

+ ,− ,− ,−�. Indices running from 0 to 3 are indicated by Greek letters. Latin letter indices run
nstead from 1 to 3. We also introduce the abbreviation �p

�=� /�p� for the partial derivative with
espect to an arbitrary component of the momentum p. This notation underlines the fact that this
perator transforms as a contravariant vector. Similarly we will often write ��=� /�x�, but the
atter operator naturally does not transform as a tensor. Finally, det g stands for the determinant of
he coordinate basis components of the metric tensor g.

. INTRODUCTION

In Galilean physics, the most common way to quantify the irreversibility of a phenomenon is
o introduce an entropy, i.e., a functional of the time-dependent thermodynamical state of the
ystem which never decreases with time. In usual Galilean continuous media theories, the total
ntropy S can be written as the integral of an entropy density s over the volume occupied by the
ystem.24 One also introduces an entropy current js and, since entropy is by definition not gener-
lly conserved, the relation �ts+� · js�0 holds for every evolution of the system.

Traditional relativistic hydrodynamics and kinetic theory deal with the problem in a com-
letely similar manner. An entropy four-current S is associated to the local thermodynamical state
f the system;5,21,14 the total entropy S�t0� of the system at time-coordinate t= t0 can be obtained
y integrating S over the three-dimensional space-like submanifold t= t0 and the entropy fluxes are
btained by integrating S over two-dimensional submanifolds of space-time. Since entropy is not
enerally conserved, the simple relation � ·S=��S��0 holds for any evolution of the system.

Actually, given a system and its dynamics, any four-vector field S of non-negative divergence
hich depends on the local thermodynamical state of the system can be considered as an entropy

urrent. In particular, nothing precludes the possibility of associating more than one entropy
urrent to a single local state of a system.

Let us illustrate this remark by considering two special cases of great physical and mathemati-
al interest. Historically speaking, the first statistical theory of out-of-equilibrium systems is Bolt-
mann’s model of dilute Galilean gases.4,24,13 The local state of the system is encoded in the
o-called one particle distribution function f , which obeys the traditional Boltzmann equation. A

�On leave from ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
�
Author to whom correspondence should be addressed; electronic mail: fabrice.debbasch@wanadoo.fr
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irect consequence of this equation is that a certain functional of the distribution function never
ecreases with time. Boltzmann denoted this functional by H and the result is therefore known as
oltzmann’s H-theorem. To this day, H is the only-known functional of f that never decreases in

ime. This H-theorem has later on been extended to the relativistic generalization of Boltzmann’s
odel of dilute gases.14 Thus, the relativistic Boltzmann gas also admits an entropy �and an

ntropy current� and it seems that this entropy is unique.
The situation is drastically different for stochastic processes. Indeed, a theorem due to

oigt26,22 states that, under very general conditions, a stochastic process admits an infinity of
ntropies: Let X be the variable whose time-evolution is governed by the stochastic process and let
X be a measure in X-space X �typically, dX is the Lebesgue measure if X�Rn�. Now let f and
be any two probability distribution functions solutions of the transport equation associated to the

tochastic process. Then, the quantity

S f �g�t� = − �
X

f�t,X�ln� f�t,X�
g�t,X��dX �1�

s a never decreasing function of time and is called the conditional entropy of f with respect to g.
hus, to any given f�t , · � representing the state of the system at time t, one can associate as many
ntropies as there are different solutions g of the transport equation so, typically, an infinity.
aturally, if the function g0 defined by g0�t ,X�=1 for all t and X is a solution of the transport

quation, the conditional entropy S f �g0
of any distribution f with respect to g0 coincides with the

oltzmann entropy of f .
The notion of conditional entropy corresponds to what is sometimes called the Kullback

nformation and we refer the reader to Refs. 19, 18, and 3 for extensive discussions of this
oncept.

The application of Voigt’s theorem to Galilean stochastic processes is of course straightfor-
ard and rather well known, but its application to relativistic stochastic processes demands dis-

ussion. To be definite, we will now particularize our treatment to the ROUP, which is the first
elativistic process to have been introduced in the literature.7,8,2,1,6

Given a reference frame �chart� R, the ROUP transcribes as a set of stochastic equations
overning the evolution of the position and momentum of a diffusing particle as functions of the
ime coordinate t in R. This set of equations is a stochastic process in the usual sense of the word,
nd Voigt’s theorem ensures this process admits an infinity of conditional entropies. But, by
onstruction, these entropies a priori depend on the reference frame R and the general theorem
oes not furnish any information about their tensorial status.

This question has been partly answered for the special relativistic Ornstein-Uhlenbeck
rocess.1 In flat space-time, the ROUP admits as invariant measure in p-space a Jüttner distribu-
ion J;16 this distribution simply describes a special relativistic equilibrium at the temperature of
he fluid surrounding the diffusing particle. It has been shown in Ref. 1 that this Jütnner distribu-
ion can be used to construct a four-vector field of non-negative four-divergence which can be
nterpreted as the conditional entropy current of f with respect to J.

The aim of the present article is to prove the existence of conditional entropy currents for the
OUP in curved space-time. The matter is organized as follows. Section II reviews some basic

esults pertaining to the ROUP in curved space-time with particular emphasis on the Kolmogorov
quation associated to the process. It is also recalled here that, in a generic space-time, this
quation does not admit any equilibrium stationary solution.6 In particular, a general relativistic
ütnner distribution is not, generically, a solution of the Kolmogorov equation and, therefore,
annot be used to construct an entropy current in curved space-time. We therefore consider two
rbitrary solutions f and g of the Kolmogorov equation and introduce in Sec. III A a candidate for
he conditional entropy current of f with respect to g. We then prove in Sec. III B that the
our-divergence of this current is always non-negative. This is our main result and it constitutes an
-theorem for the ROUP in curved space-time. Note that the flat space-time version of this

1
-theorem is itself a new result because our previous work only proved the existence of a single
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ntropy current for the ROUP in flat space-time, i.e., the conditional entropy current of an arbitrary
istribution f with respect to the Jüttner equilibrium distribution J. Finally, the new H-theorem and
ome of its possible extensions are discussed at length in Sec. IV. The Appendix recalls and, if
ecessary, proves some simple but important purely geometrical relations useful in deriving the
-theorem.

I. BASICS ON THE ROUP IN CURVED SPACE-TIME

. Kolmogorov equation

The general relativistic Ornstein-Uhlenbeck process can be viewed as a toy model for the
iffusion of a point particle of nonvanishing mass m interacting with both a fluid and a gravita-
ional field. This process is best presented by its Kolmogorov equation in manifestly covariant
orm.6 The extended phase-space is the eight-dimensional bundle cotangent to the space-time
anifold with local coordinates, say �x� , p��, �� ,��� 	0,1 ,2 ,3
2. At each point in space-time, the

our-dimensional �4D� momentum space P is equipped with the 4D volume measure:

D4p = ��p0���p2 − m2c2�
1

�− det g
d4p , �2�

ith d4p=dp0∧dp1∧dp2∧dp3. This measure behaves as a scalar with respect to arbitrary coordi-
ate changes. Note that integrals over P defined by using �multiples of� D4p as a measure are de
acto restricted to the �generally position-dependent� mass-shell.

Let f be the probability distribution function in the extended phase-space of a particle diffus-
ng in a surrounding fluid with normalized four-velocity U. As shown in Ref. 6, f obeys a
anifestly covariant Kolmogorov equation which can be written in the following compact form:

���p�f� = − �p
�	�̃�f + K��f�
 . �3�

he coefficients �̃�, which do not constitute a tensor, are defined by

�̃� = ���
� g��p�p� �4�

nd

K��f� = I�f − �p
��J��f� �5�

ith

I� = − DK	
�



��p

�� p	p


p · U
� + mcF�, �6�

J�� = − DK	
�



�

p	p


p · U
. �7�

he tensor K is independent of p. It depends on U and on the metric g, but only through the
rojector � on the orthogonal to U, which reads:

��� = g�� − U�U�. �8�

he explicit expression of K in terms of U and � is

K	�
� = U	U
��� + U�U��	
 − U	U���
 − U�U
�	�. �9�

inally, F represents the deterministic part of the force exerted by the fluid on the diffusing

article; its expression as a function of p and U reads
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F� = − ���p� p2

m2c2 + �	


p	p


m2c2 p�, �10�

ith

��� =
	�mc�2

�p · U�2���, �11�

�0 being the friction coefficient �see Ref. 7�. Note that F is by construction orthogonal to p.
It has been shown in Ref. 6 that �3� does not generically admit stationary solutions. In

articular, a general relativistic Jüttner distribution cannot be used to construct in curved space-
ime a preferred conditional entropy current for the ROUP.

II. H-THEOREM FOR THE ROUP IN CURVED SPACE-TIME

. Definition of the conditional entropy currents

Given any two probability distribution functions f and g defined over the extended phase-
pace, a natural definition for the conditional entropy current of f with respect to g is

Sf �g�x� = − �
P

pf�x,p�ln� f�x,p�
g�x,p��D4p . �12�

his definition is clearly the simplest generalization of Eq. �37� in Ref. 1 to both an arbitrary
eference distribution g and a possibly curved space-time background.

We will now prove that for all f and g solutions of the Kolmogorov equation �3�, the four-
ivergence of Sf �g is non-negative.

. Proof of the H-theorem

The proof of the H-theorem for the general relativistic Ornstein-Uhlenbeck process will be
arried out in two steps.

. Computation of the four-divergence of the entropy current

Theorem 1: For any f and g solutions of Kolmogorov equation

� · Sf �g�x� = �
P

J���x,p�D�� f/g�D�� f/g�D4p , �13�

here J is defined by �7� and the functional D is given by

D�� f/g� = �p
� ln�f/g� . �14�

Proof: The main idea behind the proof is to use Kolmogorov equation �3� to convert all the
patial derivatives into derivatives with respect to momentum components. To do this we will deal
ith various integrals over P by integrating most of them by parts. This procedure generally leads

o the appearance of so-called “border terms.” Some of them trivially vanish if we suppose, as is
ustomary in statistical physics, that phase-space distribution functions tend to zero sufficiently
apidly at infinity �in 4D p-space�. One is then left with border terms that are to be evaluated on
he hyperplane p ·U=0. These also vanish for the following reason. Let us choose, at each point in
pace-time, an orthornormal basis �tetrad� �ea�, a=0,1 ,2 ,3 in the tangent space. Introducing the

a 2
omponents pa and U of p and U in this base, the normalization condition U =1 reads:
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U0 =�1 + �
i=1

3

�Ui�2 �15�

o that

U0 ���
i=1

3

�Ui�2. �16�

he condition p ·U=0 becomes p0U0+�i=1
3 piU

i=0; since U0�0, this translates into

p0 = −
�i=1

3
piU

i

U0 . �17�

t follows easily from �16� and �17� that �p0�2�i=1
3 �pi�2 on the hyperplane p ·U=0. The Dirac �

istribution which enforces the on mass-shell restriction p2=m2c2 therefore vanishes on the hy-
erplane p ·U=0, ensuring that the corresponding border terms disappear.

Let us now proceed with the proof of Theorem 1. Direct derivation of Eq. �12� leads to

�18�

Using Kolmogorov equation �3�, integrating by parts, and inserting the definition of K��f� Eq.
5� we obtain for A1:

A1 = �
P

�p
�	�̃�f + K��f�
ln� f

g
�D4p = − �

P
	�̃�f + �I�f − �p

��J��f��
�p
� ln� f

g
�D4p

− �
P

	�̃�f + K��f�
ln� f

g
��p

��D4p� . �19�

et us now consider the term A2:

�20�

sing again Kolmogorov equation �3� and integrating by parts, we obtain for the term B1:

B1 = �
P

�p
�	�̃�f + K��f�
D4p = − �

P
	�̃�f + K��f�
�p

��D4p� , �21�
nd for the term B2:
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B2 = − �
P

�p
�	�̃�g + K��g�
 f

g
D4p = �

P
�̃�f + K��g�

f

g
��p

� ln� f

g
�D4p

+ �
P
�̃�f + K��g�

f

g
��p

��D4p� . �22�

umming �21� and �22� and inserting the definition of K��g� Eq. �5� we obtain:

A2 = �
P
�̃�f + �I�f − �p

��J��g�
f

g
���p

� ln� f

g
�D4p + �

P
K��g�

f

g
− K��f���p

��D4p� .

�23�

utting �19� and �23� together we get:

A1 + A2 = �
P
�p

��J��f� − �p
��J��g�

f

g
��p

� ln� f

g
�D4p − �

P
�̃�f ln� f

g
��p

��D4p�

+ �
P
K��g�

f

g
− K��f��1 + ln� f

g
����p

��D4p� . �24�

he third integral on the right-hand side of �24� contains two contributions and they both involve
he contraction of the operator K with �p

��D4p�. By Eq. �A9�, this contraction is proportional to the
ontraction of K with p. By definitions �5�–�7�, the action of this latter contraction on an arbitrary
unction h reads:

p�K��h� = p�	I�h − �p
��J��h�
 = DK	

�



�p� p	p


p · U
��p

�h� + mcp�F�h . �25�

he tensor K	�
� is antisymmetric upon exchange of the indices � and 	, entailing that
	�
�p	p�p
=0; moreover, the deterministic four-force F is orthogonal to the momentum p, i.e.,

p�F�=0. Equation �25� therefore simply reduces to

p�K��h� = 0. �26�

he last integral in �24� therefore disappears, and we can write:

�27�

here we used definition �14� of D��·� and definition �4� of �̃�.
Let us now address the A3 contribution to Eq. �18�. Inserting the expression �A10� for

��D4p�, we have

A3 = − �
P

p�f ln� f

g
����D4p� = ���

� �
P

p�p� f ln� f

g
��p

��D4p� + �	�
	 �

P
p�f ln� f

g
�D4p .

�28�
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nserting Eqs. �28� and �27� in �18�, we obtain the wanted simple expression:

��Sf �g
� = �

P
J��D�� f/g�D�� f/g�D4p . �29�

�

. The four-divergence of the entropy current is non-negative

We now state a second theorem, which, together with the previous one, will prove the
-theorem.

Theorem 2: For any two arbitrary distributions f and g, the integrand in Eq. �13� of Theorem
is non-negative, that is:

J��D�� f/g�D�� f/g� � 0. �30�

Proof: Let us fix an arbitrary point x in space-time and choose as local reference frame �R� at
the proper rest frame at x of the fluid surrounding the diffusing particle. By definition, in this

eference frame, the components of the four-velocity U�x� of the fluid at x are simply U�

�1/�g00��1,0 ,0 ,0�. Inserting these components into the definition �7� for J, we get

J00 = −
D

�g00p0

gijpipj , �31�

J0i = − D� 1

g00
�p0�2g0i −

1

g00
p0gi	p	��g00

p0
=

D
�g00p0

gijp0pj , �32�

Jij = − D� 1

g00
�p0�2gij��g00

p0
= −

D
�g00p0

gij�p0�2. �33�

e thus find:

�34�

y Lemma 1 presented in the Appendix, the right-hand side of this equation is non-negative,
hich proves Theorem 2. �

V. DISCUSSION

This article has been focused on the general relativistic Ornstein-Uhlenbeck process intro-
uced in Ref. 6; we have constructed a conditional entropy four-current associated to any two
rbitrary distributions solutions of Kolmogorov equation for the ROUP, and we have proven that
he four-divergence of this current is always non-negative; this constitutes an H-theorem for the
OUP in curved space-time. It is a twofold generalization of the theorem introduced in Ref. 1.
irst, the H-theorem proved in Ref. 1 concerns flat space-time only. Second, Ref. 1 does not deal
ith a conditional entropy four-current associated to two arbitrary distributions, but only with the
onditional entropy four-current of one arbitrary distribution with respect to the equilibrium dis-
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ribution �invariant measure� of the ROUP in flat space-time. Let us note in this context that the
OUP does not generally admit an equilibrium distribution in curved space-time.6

We would like now to comment on this new H-theorem. Let us first remark that the theorem
s valid in any Lorentzian space-time and for any time-like field U representing the velocity of the
uid in which the particles diffuse. In particular, the theorem is even valid in space-times with
losed time-like curves, as the Gödel universe or the extended Kerr black hole,12 and even if U is
angent to one of these closed time-like curves. The irreversibility measured by the local increase
f the conditional entropy currents is entirely due to the Markovian character25,11,23 of the ROUP
nd the remarkably general validity of the H-theorem proves that this irreversibility is in some
ense stronger than all possible general relativistic chronological violations.

It should nevertheless be remarked that, as the Boltzmann-Gibbs entropy current associated to
he relativistic Boltzmann equation, the conditional entropy four-currents introduced in Sec. III A
re not necessarily time-like. And, even when they are time-like, their time-orientation in an
rientable space-time generally depends on the point at which they are evaluated. Let us elaborate
n this by first recalling the definition of the Boltzmann-Gibbs entropy current SBG�f� associated
o a distribution f �see Ref. 14�:

SBG�f��x� = − �
P

pf ln fD4p . �35�

he normalization of f reads:

1 = �
T�

fd3xD4p , �36�

here � is an arbitrary space-like hypersurface of the space-time M and where T��T*�M� is
efined by

T� = 	�x,p� � T*�M�,x � �
 . �37�

s a probability distribution, f is certainly non-negative; but f may take values both superior and
nferior to unity. Therefore, nothing can be said on the sign of the function f ln f against which the
ime-like vector p is integrated in �35�. This entails that SBG�f��x� may be either time-like or
pace-like. Also note that the sign of the zeroth component of SBG�f��x� cannot be ascertained
ither; thus, even when time-like, the Boltzmann-Gibbs entropy current may be past as well as
uture oriented �in a time-orientable space-time�.

Similarly, the sign of the function f�x , p�ln�f�x , p� /g�x , p�� appearing in definition �12� of the
onditional entropy current Sf �g�x� generally depends on p �and x� and Sf �g�x� may therefore not be
ime-like. For the same reason, the sign of the zeroth component of Sf �g�x� also generally depends
n the point in space-time so that the conditional entropy currents, even when time-like, may not
ave a definite time-orientation �in a time-orientable space-time�.

The Galilean limit deserves a particular discussion. The very notions of time-like and space-
ike vector-fields do not exist in this limit and only the time-orientation of the conditional entropy
urrents should be addressed. In the Galilean limit, the zeroth component of Sf �g�x� reads

sf �g�t,x� = − �
R3

f�t,x,p�ln� f�t,x,p�
g�t,x,p��d3p; �38�

ote that this expression coincides with the conditional entropy density of the usual, non relativ-
stic Ornstein-Uhlenbeck process.22 A reasoning similar to the one presented in the preceding
aragraph shows that this density may take positive as well as negative values. The time-
rientation of the conditional entropy currents is therefore generally position-dependent, even in

he Galilean regime.
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However, in the Galilean limit, it surely makes sense to integrate sf �g�t ,x� over the whole
hree-dimensional �3D� space to obtain the total �time-dependent� conditional entropy S�t� of f
ith respect to g and this quantity can be proven to be non-positive. The proof22,3 is based on the

o-called Gibbs-Klein inequality25

F ln F � F − 1, �39�

alid for any positive real number F and applied to F�t ,x ,p�= f�t ,x ,p� /g�t ,x ,p� �with the hy-
pothesis that g does not vanish anywhere in R3�. One has indeed:

�
V

sf �g�t,x�d3x = − �
V�R3

f�t,x,p�ln� f�t,x,p�
g�t,x,p��d3x d3p � �

V�R3
� f�t,x,p� − g�t,x,p��d3x d3p � 0.

�40�

This calculation can be extended formally to the special and general relativistic situations, but,
ince conditional entropy four-currents are then not necessarily time-like, their integrals on space-
ike 3D submanifolds may take positive or negative values. It is therefore far from clear that the
oncept of total conditional entropy makes sense in the relativistic regime. In particular, the
elativistic H-theorem proved in this article should be primarily considered as a purely local result.

Thus, the conceptual status of the entropy currents introduced in Sec. III A is in a certain sense
imilar to the status of the general relativistic black hole entropies.28,29,17,15 Indeed, we have shown
n this article that stochastic processes theory proves the existence of conditional entropy currents
n curved space-time and permits their computation, exactly as quantum field theory and string
heory both prove the existence of black-holes entropies and furnish the tools necessary for their
omputations. But the standard statistical interpretation of conditional entropy currents via their
uxes through 3D space-like submanifolds is certainly not straightforward in curved space-time,
s the usual interpretation of entropy and temperature via Gibbs canonical ensembles does not
eem to extend smoothly to black hole thermodynamics.29

It is our opinion that progress in interpreting the notion of entropy in curved space-time can
est be achieved by studying specific examples in particular circumstances where most results can
e obtained by explicit or semi-explicit calculations. The ROUP is obviously an interesting tool
or such computations and diffusion in space-times exhibiting naked or unnaked singularities
hould certainly be studied in detail.

Finally, it would naturally be most interesting to determine if H-theorems can also be proved
or the two “new” relativistic stochastic processes recently proposed as alternative models of
elativistic diffusion in Refs. 10 and 9.

PPENDIX

eneral relations

A basic assumption of general relativity is that the connection � used in space-time is the
evi-Civita connection of the space-time metric g.27 Given a coordinate basis, this translates into

he following relation between the metric components g�� and the connection coefficients ���
	 :

��g�� = ���
	 g	� + ���

	 g�	. �A1�

nother equivalent form of �A1� is

��g�� = − ��	
� g	� − ��	

� g�	. �A2�

direct consequence of �A2� is that, for any vector p:

���g���p�p� = − ��	
� p	p� − ��	

� p	p� = − 2���
� p�p�. �A3�

20
nother useful relation reads:
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�� det g = �det g�g����g��. �A4�

sing �A1�, this translates into

�� det g = �det g�g��2���
	 g	� = 2�det g���	

	 . �A5�

useful lemma

Lemma 1: Let ���� be a �local� coordinate basis of a Lorentzian space-time �with time-like

0�. Then, at any point x of space-time, the set of the six spatial components gij�x� of the inverse
etric tensor define a non-positive quadratic form. More precisely,

gij�x�viv j � 0 for all �v1,v2,v3� � R3.1 �A6�

Proof: Let x be a point in space-time and suppose there exists a set of three real numbers
v1 ,v2 ,v3� such that gij�x�viv j �0. Define V, cotangent to the space-time manifold at x, by its
omponents V0=0, V1=v1, V2=v2, V3=v3. The vector V is both time-like and orthogonal to �0.
he space cotangent to the space-time manifold at x therefore admits a time-like subspace of
imension at least two, which is impossible for a Lorentzian space-time. This proves the lemma.�

erivatives of the volume measure in momentum-space

Let us now evaluate the partial derivatives of the volume measure D4p with respect to both
pace-time coordinates and momentum components. The measure D4p is defined by an expression
hich involves the product of a Heaviside function and a Dirac distribution. Direct derivation of

his expression would lead to a product of Dirac distributions, which is not a well-defined math-
matical object. To avoid this �at least formal� problem, we introduce a class of regular functions

�, which uniformly converge towards � as � tends to zero and write:

�p
�	��p0���p2 − m2c2�
 = lim

�→0
�p

�	��p0�h��g	
p	p
 − m2c2�


= lim
�→0

	��p0��0
�h��g	
p	p
 − m2c2� + ��p0��p

��h��g	
p	p
 − m2c2��


= lim
�→0

	��p0��0
�h��gijpipj − m2c2� + ��p0�2g��p�h���g

	
p	p
 − m2c2�
 . �A7�

y Lemma 1 �Eq. �A6��, gijpipj �0. The argument of h� in the last line of �A7� is therefore always
trictly negative. The term involving h� thus disappears for �→0 and we are left with the result:

�p
�	��p0���p2 − m2c2�
 = 2p���p0����p2 − m2c2� . �A8�

This equation leads directly to the following expression for the partial derivatives of D4p with
espect to momentum components:

�p
��D4p� = �p

���p0���p2 − m2c2�
1

�− det g
�d4p = 2p���p0����p2 − m2c2�

1
�− det g

d4p .

�A9�
See for example Sec. 84 of Ref. 20.
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Let us now focus on the derivatives of D4p with respect to space-time coordinates. Using Eqs.
A3�, �A5�, and �A9�, we obtain

���D4p� = ����p0���g��p�p� − m2c2�
1

�− det g
�d4p = ��p0����g���p�p����p2 − m2c2�

1
�− det g

d4p

+ ��p0���p2 − m2c2���� 1
�− det g

�d4p = − 2���
� p�p���p0����p2 − m2c2�

1
�− det g

d4p

− ��p0���p2 − m2c2�
1

�− det g

�� det g

2 det g
d4p = − ���

� p��p
��D4p� − ��	

	 D4p . �A10�
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The modified intermediate long wave �MILW� equation is a �1+1�-dimensional
nonlinear singular integro-differential equation that possesses soliton solutions. In
an appropriate limit the MILW equation reduces to the well-known modified
Korteweg-de Vries equation. In this paper we solve the initial value problem for the
MILW equation through a suitable implementation of the inverse scattering trans-
form and use of the Miura-type transformation that maps solutions of the MILW
equation into solutions of a complexified version of the standard intermediate long
wave �ILW� equation. The initial value used for the MILW equation is assumed to
be real valued, sufficiently smooth, and decaying to zero as the absolute value of
the spatial variable approaches large values. An interesting feature of the procedure
we develop is that soliton solutions for the ILW and MILW equations can be
derived by appropriate specializations of a master set of equations. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.1996830�

. INTRODUCTION AND PRELIMINARY

In a remarkable and seminal paper1 that appeared in 1967, Gardner, Greene, Kruskal, and
iura �GGKM� derived an exact reduction to a linear problem for the initial value problem

ssociated with the nonlinear evolution equation,

ut + 6uux + uxxx = 0, �1.1�

here u �=u�x , t�� is a real-valued function of x and t over the domain −��x�� and t�0, and

x denotes �u /�x, etc. Equation �1.1� is known as the “KdV equation,” and derives its name from
ork by Korteweg and de Vries2 that models weakly nonlinear long waves propagating on the

urface of a rectangular canal. However, it was Boussinesq3 who first derived Eq. �1.1� as a model
n a hydrodynamical context.

GGKM1 solved Eq. �1.1� by leveraging results derived by Gel’fand and Levitan4 for the
olution of the inverse problem associated with the one-dimensional time-independent
chrödinger equation,

�xx = − �u + ��� , �1.2�

here �=��x , t�, � is the spectral parameter, and u is the potential. Their ingenious method
dentified the potential in Eq. �1.2� with the desired solution of Eq. �1.1�, and eventually arrived at

closed system of linear integral equations from which one can construct the physical variable
�x , t�.

The modified Korteweg-de Vries �MKdV� equation,

�
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�t + 6�2�x + �xxx = 0, �1.3�

here �=��x , t�, was pivotal5,6 in the development of the procedure used by GGKM to solve the
nitial value problem for Eq. �1.1�. Equation �1.3� has important physical applications,7 but we will
ocus our attention on a certain transformation that connects Eq. �1.3� to Eq. �1.1�. Miura8 has
erived the explicit nonlinear transformation,

u = �2 + i�x, �1.4�

hich maps a real-valued solution of Eq. �1.3� into a complex-valued solution of Eq. �1.1�. �The
hrase “complex-valued” will be used throughout this paper to designate a complex-valued func-
ion of the two real variables x and t.� The appearance of the imaginary unit i in Eq. �1.4�, which
an obviously be removed by a complex scaling �→ i�, can be attributed to our selection of
ositive coefficients throughout Eq. �1.3�. Ablowitz et al.9 have shown that Eq. �1.4� maps
parsely onto the set of KdV solutions. Equation �1.4� is the x part of a pair of equations forming
Bäcklund transformation �BT�,10 and it was this particular BT that led GGKM5 to consider the

nverse problem for Eq. �1.2�.
The method used by GGKM to solve the initial value problem for the KdV equation has

ourished into a systematic mathematical technique known as the “inverse scattering transform”
IST�.11 Initial value problems for numerous nonlinear wave equations have been solved analyti-
ally by suitable implementations of the IST.12–17

The versatility of the IST is exemplified in its application to nonlinear singular integro-
ifferential equations. The prototype equation of this type that is solvable by an application of the
ST is the intermediate long wave �ILW� equation,18–20

Ut +
1

�
Ux + 2UUx + T�Uxx� = 0, �1.5�

here U=U�x , t� �or, more precisely, U�x , t ;���, � is a positive parameter, and the operator T is
efined by the Cauchy principal-value integral,

�Tf��x� ª
1

2�
�P��

−�

�

coth� �

2�
�	 − x�� f�	�d	 . �1.6�

or convenience, we will use the notation T�f�x�� interchangeably with �Tf��x�. Equation �1.5�
odels one-dimensional propagation of weakly nonlinear long internal gravity waves in a density-

tratified fluid of finite total depth.21,22

Throughout this paper we assume that any argument of T satisfies all the conditions necessary
o guarantee the validity of our computations. In particular, a necessary condition for the existence
f �Tf��x� is the convergence of the improper Riemann integral �−�

� f�x�dx. For later purposes, we
equire that the convergence be absolute. We also assume that U�x , t� and its first few derivatives
ith respect to x vanish in the limit x→ ±�. In Appendix A of this paper the reader will find a
seful summary of some relevant mathematical properties of the operator T. An essential property
hat we use frequently is the fact that T commutes with differentiation so that, for example,
�Uxx�=�2T�U� /�x2. Appendix B contains a selection of useful T transforms.

Despite the obvious differences in the mathematical structure of the KdV and ILW equations,
hese two equations are connected by virtue of the physical systems they describe. Several
esearchers18,22,23 have observed that Eq. �1.5� contracts in the shallow-water limit ��→0+� to the
dV equation �1.1�. To carry out the reduction, let

U = 1
4�u + O��2�, x = 2x�, t = 24�−1t�. �1.7�

hen, with the help of Eqs. �A3� and �A5� from Appendix A to compute the shallow-water

xpansion of T�Uxx�, the left-hand side of Eq. �1.5� becomes
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96
�ut� + 6uux� + ux�x�x�� + O��3� .

In the deep-water limit ��→��, Eq. �1.5� becomes the Benjamin-Ono �BO� equation,24

qt + 2qqx + H�qxx� = 0, �1.8�

here q=q�x , t� and H �the Hilbert transform� is defined by the integral operator,

�Hf��x� ª
1

�
�P��

−�

� f�	�
	 − x

d	 . �1.9�

ransition from Eq. �1.5� to Eq. �1.8� is a direct consequence of the limit given by Eq. �A2� and
he mild restriction that U�x , t�=q�x , t�+O�1/�� as �→�. Equation �1.8� was first derived by
enjamin24 to model the propagation of unidirectional internal waves with finite amplitude in

table heterogeneous fluid systems of infinite total depth. Fokas and Ablowitz25 have solved the
nitial value problem for Eq. �1.8� by using an implementation of the IST that is conceptually
imilar to the IST for nonlinear evolution equations that involve three independent variables �two
patial variables and one temporal variable�.

A natural extrapolation from Eqs. �1.5� and �1.8� is to construct modified versions �in the sense
f the MKdV equation� of the ILW and BO equations. The nomenclature that we will use to refer
o the two modified-type nonlinear singular integro-differential equations is modified intermediate
ong wave �MILW� equation for the modified version of the ILW equation, and modified
enjamin-Ono �MBO� for the modified version of the BO equation. Desirable attributes of the
ILW and MBO equations are that �i� MILW→MKdV in the shallow-water limit �→0+, �ii�
ILW→MBO in the deep-water limit �→�, and �iii� a Miura transformation maps MILW to

LW such that its deep-water limit maps MBO to BO and its shallow-water limit is the classical
iura transformation mapping MKdV to KdV.

The two candidates to represent the MILW and MBO equations are the following nonlinear
ingular integro-differential equations:26–29

MILW, Vt + 
Vx�eV − 1� +
1

�
Vx + VxT�Vx� + T�Vxx� = 0, �1.10�

MBO, Qt + �Qx�eQ − 1� + QxH�Qx� + H�Qxx� = 0, �1.11�

here V=V�x , t�, Q=Q�x , t�, T is defined by Eq. �1.6�, H is defined by Eq. �1.9�, and � and 
 are
eal parameters. Both the MILW and MBO equations are integrable soliton equations. The MILW
quation in particular possesses an infinite number of conservation laws,27 a linear scattering
roblem,27 a BT,27,28 and multisoliton solutions.28

Despite the important extension that the MILW equation provides to the mathematical theory
or the KdV-MKdV pairing and the possible physical applications of the MILW equation �whose
ispersion law is the same as the ILW equation�, the initial value problem for the MILW equation
as not been solved.30 The corresponding initial value problem for the MBO equation was recently
olved by Scoufis and Cosgrove.31 The main purpose of this paper is to use the IST to derive the
olution of the initial value problem for the MILW equation Eq. �1.10�. The initial value V�x ,0�
or the MILW equation is real-valued, sufficiently smooth, decays to zero as 	x	→�, and is such
hat �−�

� V�x ,0�dx converges absolutely, but is otherwise arbitrary.
We now close this section with an outline of how the remainder of this paper is arranged.

ection II is devoted to the derivation of the MILW equation and its Miura transformation to the
omplex-valued ILW equation. In Sec. III we present the linear scattering problem for the MILW
quation. Suitable Jost functions are defined in this section, and we also derive equations that
haracterize the scattering data forming the continuous spectrum. Section IV examines the bound

tates and extends the previous results to identify the scattering data forming the discrete spec-
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rum. The temporal evolution of the scattering data is presented in Sec. V. Section VI carries out
he solution of the inverse problem that emerges from our efforts in Sec. III to identify the
nalytical properties of the scattering data. Soliton solutions for the complex-valued ILW and
eal-valued MILW equations are derived in Sec. VII by recourse to the results contained in the
receding sections.

I. MATHEMATICAL ORIGIN OF THE MILW EQUATION

Our primary objective in this section is to elucidate the mathematical origin of the MILW
quation. The standard ILW equation provides the catalyst for our work in this section. The
ependent variable transformation,

W�x,t� ª �
−�

x

U�	,t�d	 ,

ccompanied by the boundary conditions U�x , t�→0 �uniformly in t� as 	x	→�, facilitates the
onversion of Eq. �1.5� into the equation,

Wt +
1

�
Wx + �Wx�2 + T�Wxx� = 0. �2.1�

et W and W� denote two local complex-valued solutions of Eq. �2.1� that are connected by the
uto-Bäcklund transformation,23

�W� + W�x = � + iT�Wx� − Wx� + 
ei�W�−W�, �2.2�

�W� − W�t = − �� + �−1��W� − W�x + i�W� + W�xx − i�W� − W�xT�Wx� − Wx� , �2.3�

here � and 
 denote two arbitrary real nonzero constants. The proof that elimination of W�
roduces �the x derivative of� Eq. �2.1�, and vice versa, makes use of properties of the T operator
iven in Appendix A, especially Eq. �A7�.

Next, define the single dependent variable V through the equation,

V ª i�W� − W� . �2.4�

liminating the �W�+W� terms between Eqs. �2.2� and �2.3�, and then using Eq. �2.4�, we obtain
he nonlinear evolution equation,

Vt + �� +
1

�
�Vx + 
Vxe

V + VxT�Vx� + T�Vxx� = 0, �2.5�

here V=V�x , t�. This is gauge equivalent to the MILW equation. The parameter � is not essential
ecause it can be varied by a gauge transformation x→x+kt. To get the standard form of the
ILW equation, we invoke the boundary conditions U�x , t�→0 and V�x , t�→0 as x→ ±� and

pply the limit expressed by Eq. �A4� to Eq. �2.2�. These conditions force the constraint �=−
.
hus the standard form of the MILW equation is

Vt +
1

�
Vx + 
Vx�eV − 1� + VxT�Vx� + T�Vxx� = 0. �2.6�

In the region 0���1, Eq. �2.6� contracts to Eq. �1.3�, the latter being the self-focusing form
f the MKdV equation. The transition from Eq. �2.6� to Eq. �1.3� requires

V = �� + O��2�, 
 = �−1 + O���, x = 2x�, t = 24�−1t�. �2.7�
hen, with the assistance of Eq. �A3�, the left-hand side of Eq. �2.6� reduces to
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24
��t� + 6�2�x� + �x�x�x�� + O��3� .

Alternative forms of the MILW equation appear in the literature. Nakamura,28 for example,
sed the auto–BT of the ILW equation to derive a version of the MILW equation in the form,

Vt + �u0 −  + �−1�Vx + 
Vxe
V + VxT�Vx� + T�Vxx� = 0. �2.8�

his is Eq. �2.5� with the parameter � renamed. Satsuma et al.27 derived the equation,

1
3�Vt + �−1Vxe

V + VxT�Vx� + T�Vxx� = 0, �2.9�

s their representative of the MILW equation. Gibbons and Kupershmidt26 derived the equation,

Vt = �−2Vx�e2i�V − 1 − 2i�V� + 2iVxT̂�Vx� + �−1T̂�Vxx� , �2.10�

here T̂ is the operator defined by Eq. �A9�, and we replaced their pure imaginary � with i� and
djusted a factor of 2 in the second to last term. All these equations are equivalent to the MILW
quation Eq. �2.6� under gauge transformations of the form, x�= ±x+kt, t�= lt, V�= pV+q. On the
ther hand, Degasperis and co-workers32,33 derived a qualitatively different nonlinear singular
ntegro-differential equation whose shallow-water limit is the MKdV equation, and so we can
onclude that the MILW equation is not the only possible candidate for an intermediate version of
he MKdV equation. We have selected Eq. �2.6� as our representative of the MILW equation
ecause it is endowed with a transparent deep-water limit as well as a shallow-water limit that
eads directly to the MKdV equation after a simple scaling.

Equation �2.2� contains an explicit relationship between solutions of the ILW and MILW
quations. Setting W�=W− iV, Wx=U, and �=−
, we get

U = 1
2 
T�Vx� + 
�eV − 1� + iVx� . �2.11�

quation �2.11� is the Miura-type transformation that maps real-valued solutions V of Eq. �2.6�
nto complex-valued solutions U of Eq. �1.5�. If we substitute this U into the left-hand side of the
LW equation �1.5�, we will obtain an expression that vanishes on account of Eq. �A7�. Substi-
uting Eqs. �1.7� and �2.7� into Eq. �2.11�, and then using Eq. �A3� to obtain the shallow-water
imit of the T operator, we will arrive at the classical Miura transformation Eq. �1.4�.

In the context of this paper, Eq. �2.11� is essential to the scheme we develop to solve the initial
alue problem for the MILW equation; we now outline this scheme and provide necessary details
n Secs. III–VII. Let V�x ,0� denote the known or given initial value of V�x , t� in the MILW
quation. We will assume that V�x ,0� is a sufficiently smooth real-valued function of x and that
�x ,0� and its first few derivatives tend to zero as x→ ±� and �−�

� V�x ,0�dx converges absolutely.
quation �2.11� maps V�x ,0� into the complex-valued function U�x ,0�, where

U�x,0� ª 1
2 
T�Vx�x,0�� + 
�eV�x,0� − 1� + iVx�x,0�� . �2.12�

his function U�x ,0�, which will be the initial value of U�x , t� in the complex-valued ILW
quation, can be considered known because V�x ,0� has been specified. As a consequence of Eq.
A4� and the boundary conditions on V�x ,0�, we have U�x ,0�→0 as 	x	→� and �−�

� U�x ,0�dx is
bsolutely convergent. Equating imaginary parts on each side of Eq. �2.11�, we obtain the impor-
ant equation,

Vx�x,t� = 2 Im
U�x,t�� , �2.13�

or t�0.
We can solve the initial value problem for U�x , t� by appropriately extending the IST for the

eal-valued ILW equation derived by Kodama, Ablowitz, and Satsuma �KAS�19 to take account of

he initial value given by Eq. �2.12�. As soon as U�x , t� is known, we then proceed to determine

                                                                                                            



V
f
c

t
f
e

I
t
o

m
m

w

T

I
e
t

=
�

w

l

w

n
t
e
s

103501-6 G. Scoufis and C. M. Cosgrove J. Math. Phys. 46, 103501 �2005�

                        
x�x , t� from Eq. �2.13�, and thence V�x , t� itself by a quadrature with respect to x. An arbitrary
unction of integration that remains in the formula for V�x , t� will be determined by the boundary
onditions on V�x , t�. The last stage of our solution scheme for Eq. �2.6� uses the equation,

Re
U�x,t�� = 1
2 
T�Vx� + 
�eV − 1�� , �2.14�

o connect all parameters that originate from the IST �for the complex-valued ILW equation� to the
undamental parameter 
 in Eq. �2.6�. Equation �2.14� is formed when we equate real parts on
ach side of Eq. �2.11�.

The simplest conserved quantity for the ILW equation is

L ª

1

2�
�

−�

�

U�x,t�dx . �2.15�

t is independent of time t on account of Eq. �1.5� and its boundary condition. But when U�x , t� is
he complex-valued function on the left-hand side of Eq. �2.11�, the constant L is real on account
f the boundary condition on V�x , t�.

Multisoliton solutions of Eq. �2.8� have been derived by Nakamura28 by the use of Hirota’s
ethod.34,35 These, of course, translate across to our version of the MILW equation �2.6�. Suitable
odifications of results contained in Refs. 28 and 36 lead to the one-soliton solution,

V�x,t� = log� cosh���x − �t − x0�� + cos��� − ��
cosh���x − �t − x0�� + cos��� + ��� , �2.16�

here �, x0, and � are arbitrary real parameters with 0���� /� and

� = �−1 − � cot���� . �2.17�

he parameter 
 in the MILW equation is


 =
� sin��� + ��
sin �� sin �

. �2.18�

n Sec. VII, we will derive this result from the IST and substitute it directly into the MILW
quation with the aid of the T transform formulas in Appendix B. We will also construct the
wo-soliton and two-breather solutions from the IST.

The shallow-water limit of the one-soliton solution can be obtained from Eq. �2.7�. With �
O�1� as �→0+, we get �=�2� /3+O��3�. The limiting form of 
 given by Eq. �2.7� requires that
= ±� /2+O���. Then with �=�� /2 and x0=2x0�, the shallow-water limit of Eq. �2.16� becomes

��x�,t�� = ±
��

cosh ���x� − ��2t� − x0��
, �2.19�

hich is the one-soliton solution of the MKdV equation Eq. �1.3�.
To get the deep-water limit �→� of Eq. �2.16�, let �=� /�−� / ���2� and �=�y0 /�. The

imiting solution is

Q�x,t� = log��2�x − �t − x0�2 + �1 + �y0�2

�2�x − �t − x0�2 + �1 − �y0�2� , �2.20�

hich is the one-soliton solution of the MBO equation Eq. �1.11� with �=y0
−1−�.

We would like to close this section by noting that the technique whereby one solves a
onlinear evolution equation by first solving an auxiliary complexified equation, and then using
his solution to invert an appropriate Miura-type transformation is not new. The method was first
mployed by Wadati37 to solve the Gardner equation.8 A more traditional approach would be to

olve the direct and inverse problems for a suitable set of linear scattering equations for the MILW

                                                                                                            



e
H
s
I

I

d
p

w
U
U
w

e
d
w

b

d
f

t
r

r

w
c
d

a
z
s

w

103501-7 An application of the inverse scattering transform J. Math. Phys. 46, 103501 �2005�

                        
quation itself. The only such set that we are aware of are those given by Satsuma et al.27

owever, they can be seen by inspection to be gauge equivalent to the scattering equations that we
tudy in the following sections, and so they are really scattering equations for the complexified
LW equation rather than the MILW equation.

II. JOST FUNCTIONS AND THE DIRECT PROBLEM

The initial value problem for the real-valued ILW equation has been solved by the IST
eveloped by KAS.18,19 A feature of this particular IST is that the solution of the associated inverse
roblem does not immediately produce a formula for U�x , t�, but the auxiliary function,

U+�x,t� ª 1
2 �I − iT�U�x,t� , �3.1�

here I denotes the identity operator. In fact, both their left and right scattering problems lead to
+�x , t�. But because KAS were working in the domain of real variables, they could recover
�x , t� just by taking real parts. With a star � *� denoting complex conjugation, the result can be
ritten,

U�x,t� = U+�x,t� + 
U+�x,t��*.

As we mentioned in Sec. II, our U�x , t� is an intrinsically complex-valued function because it
volves from Eq. �2.12�. Therefore, we cannot retrieve the physical variable by such a simple
evice as taking real parts. Instead, we must construct separate formulas for U+�x , t� and U−�x , t�,
here

U±�x,t� ª 1
2 �±I − iT�U�x,t� , �3.2�

efore we can build U�x , t� according to

U�x,t� = U+�x,t� − U−�x,t� . �3.3�

Separate equations that each express U+�x , t� and U−�x , t� in terms of appropriate scattering
ata can be derived through the suitable inclusion of an indicator in the linear scattering problem
or the real-valued ILW equation. We will use the symbol �, whose permissible values are

� = ± 1,

o denote the necessary indicator. Except for this indicator we will attempt to keep the notation
easonably close to the original papers of KAS �Refs. 18 and 19� and Santini et al.38

The correct inclusion of � into the linear scattering problem associated with the ILW equation
esults in the overdetermined system,

�x
+� = �i�U − ��+� − �i� �−�, �3.4�

�t
±� = �i�xx

±� − 2� +
1

2�
��x

±� + 
±Ux − �iT�Ux� + ���±�, �3.5�

here �=��x , t�, U is the complex-valued function defined by Eq. �2.11�, and , �, and � are
onstants to be made more precise later. Equation �1.5� is produced from the compatibility con-
ition, �xt

+�=�tx
+�.

The functions �±� denote continuous boundary values on the real axis of functions that are
nalytic in the horizontal strips between Im�z�=0 and Im�z�= ±2�� in the complex z plane, where
=x+ iy defines the complex extension of x. The functions �±��x� �with the argument t temporarily
uppressed in this section and Secs. IV and VI� are connected by the periodicity condition,18

�−��x� = �+��x + 2�i�� , �3.6�
hich prompts the definition,

                                                                                                            



f
n
fi
a

s
c

w
a
i

a
f

a

a
f

�

�

�

m

A

w
�

103501-8 G. Scoufis and C. M. Cosgrove J. Math. Phys. 46, 103501 �2005�

                        
���x� ª �±��x ± �i�� , �3.7�

or an appropriate function ���x�. The reader is warned of a possible source of confusion in this
otation. The symbol �+�, for example, has two separate and independent indicators attached, the
rst indicator being inherited from the notation of KAS.19 Alternative symbols that we could use
re �+,� or �+� ;��. If we were to change the sign of �, �+� would become �+,−�, not �−�.

We now begin our analysis of the direct problem for Eq. �3.4�. Let � denote the necessary
pectral parameter, which will start off as a real nonzero parameter but will be extended into the
omplex domain at a later stage. It appears through the boundary conditions,

���x;�� � exp�± 1
2�i�x� as x → ± � , �3.8�

here Eq. �3.7� contains the relation connecting ���x� and the eigenfunctions �±��x�. The bound-
ry conditions given by Eq. �3.8� induce the following parametrizations for the quantities  and �
n Eq. �3.4�:

 = ��� = − 1
2� coth���� , �3.9�

� = ���� = 1
2� cosech���� . �3.10�

Let m+��x ;�� and m̄+��x ;�� denote the left-hand Jost functions for Eq. �3.4�, and let n+��x ;��
nd n̄+��x ;�� denote the right-hand Jost functions. The Jost functions satisfy Eq. �3.4�, are �+��
unctions in x, and possess the large x asymptotics,

m+��x;�� � exp
− 1
2�i��x − �i���, m̄+��x;�� � exp
 1

2�i��x − �i��� , �3.11�

s x→−�, and

n+��x;�� � exp
 1
2�i��x − �i���, n̄+��x;�� � exp
− 1

2�i��x − �i��� , �3.12�

s x→ +�. The same asymptotics apply in the strips of analyticity adjacent to the real x axis. The
ollowing remarks will clarify several issues about these Jost functions:

i� The bars on m and n do not denote complex conjugation. Thus m+ and m̄+, for example,
denote distinct functions. Complex conjugation will be denoted by a star � *�.

ii� The Jost functions m+� and m−� have two separate indicators attached, as outlined in the text
after Eq. �3.7�. They are related to each other by the vertical periodicity property Eq. �3.6�.

iii� The phrase “�+�� function in x” �respectively, −�� refers to a function of the real variable x
that can be analytically continued into the horizontal strip between Im�z�=0 and Im�z�
=2�� �respectively, −2��� in the complex z plane, where z=x+ iy, with the function being
continuous onto both edges of the strip.

Our analysis of the direct problem for Eq. �3.4� will proceed efficiently if we work with the
odified eigenfunctions �±��x ;��, where

�±��x;�� ª �±��x;��exp
 1
2�i��x � �i��� . �3.13�

n important property of the modified eigenfunctions is the vertical periodicity condition,

�−��x;�� = �+��x + 2�i�;�� , �3.14�

hich has the same shape as Eq. �3.6�. Appropriate use of Eq. �3.13� to express Eqs. �3.4� and
3.5� in terms of �±��x ;�� leads to the system,

�i�x
+� + ��+��� +

1 ���+� − �−�� = − U�+�, �3.15�

2�
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�t
±� = �i�xx

±� + 2�+����x
±� + 
±Ux − �iT�Ux� + ���±�, �3.16�

here �ª�+�i�
 1
4�−�+���� and �+��� is defined by

�+��� ª
1

2
��1 + coth ��� −

1

2�
=

�e��

2 sinh ��
−

1

2�
. �3.17�

ater, we will also need the notation �−���, both cases being contained in the definition,

����� ª
1

2
��1 + � coth ��� −

�

2�
=

��e���

2 sinh ��
−

�

2�
. �3.18�

t will be convenient to have the following elementary identities on hand:

����� + �−���� = � ,

���− �� = − �−���� ,

������ +
�

2�
�e−2��� =

�

2�
− �−���� ,

�̇���� = �e��� cosech�����−���� .

As a consequence of the transition to modified eigenfunctions, our spectral parameter � can be
eplaced by �+ª�+���. In the real domain, this will be straightforward because �+��� is a strictly
ncreasing function of � with range �−1/ �2�� , +��. But because �+��� has a somewhat compli-
ated inverse in the complex domain, which is discussed below, we will need to keep using both
and �+ according to convenience.

The asymptotics of the modified Jost functions are

M+��x;�� � 1, M̄+��x;�� � exp
�i��x − �i��� , �3.19�

s x→−� and

N+��x;�� � exp
�i��x − �i���, N̄+��x;�� � 1, �3.20�

s x→ +�, where

M+��x;�� ª m+��x;��exp
 1
2�i��x − �i��� ,

nd similarly for the other three Jost functions. Each of the modified �uppercase� Jost functions is
�+�� function in x and satisfies the system of Eqs. �3.15� and �3.16�. Thereafter, the �−�� version
f each modified Jost function can be constructed using Eq. �3.14�.

The analytic properties of the �modified� Jost functions as functions of � or �+ are essential to
ur analysis of the direct problem for Eq. �3.15�. Unless stated otherwise, in the remainder of this
ection, any reference to analyticity will be with respect to either � or �+ in domains to be
pecified later. The integral equation,

�+��x;�� = �0
+��x;�� + �

−�

�

G��x,�;��U����+���;��d� , �3.21�

s the key to the analytic character of the Jost functions. The function �0
+��x ;�� denotes a homo-

eneous solution of Eq. �3.15�, namely, a solution of Eq. �3.15� when U0, and the Green’s
unction G��x ,� ;�� is a �+�� function in x that satisfies the periodicity condition �3.14� and the

ifferential equation,
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�iGx
� + ��+��� +

1

2�
��G� − G−�� = − ��x − �� , �3.22�

here G�=G��x ,� ;��, G−�=G��x+2�i� ,� ;��, and �� � denotes the Dirac delta function.
A Fourier integral representation of the Green’s function G��x ,� ;�� is

G��x,�;�� =
1

2�
�

C

ĝ�r;��ei�x−��r dr , �3.23�

here C denotes a suitable infinite horizontal line in the complex r plane and

ĝ�r;�� ª
1 + � coth �r

2�����r� − �+����
. �3.24�

The function ĝ�r ;�� has a straightforward pole structure in the complex r plane when the
arameter � is real. The symmetries,


ĝ�r;���* = ĝ�r*;��, ĝ�− r;�,− �� = ĝ�r;�,�� ,

llow us to focus on those poles of ĝ�r ;�� for which Im�r��0. Let r=rn�� ;��, where Im�rn�
0 and n=1,2 ,3 , . . ., be a solution of the equation,

����r� − �+��� = 0. �3.25�

quation �3.25� has a countable infinity of solutions because of the multivalued inverse of ���r�. A
traightforward application of the argument principle to the denominator of Eq. �3.24� localizes
he simple pole rn to the horizontal strip,

�n

�
� Im�rn� �

��2n + 1�
2�

, �3.26�

or all n�1. For large n, the asymptotic location of the nth pole is

rn =
�4n + 1�i�

4�
−

�

2�
�log��n

�
� − log��+��� +

1

2�
�� + O� log n

n
� .

In the strip −� /�� Im�r��� /�, there are exactly two poles of ĝ�r ;��, counting multiplicity.
hese are both real and are located at

r0 = ��, r−1 = 0,

n the notation of KAS.19 If �=0, these two poles coincide to form a double pole. There are also
countable infinity of complex values of �, namely, the roots of �−���=0, such that ĝ�r ;�� has a

ouble pole in r.
This is an appropriate time to discuss the conformal mapping �→�+��� between the complex

ariables � and �+. This conformal mapping maps the complex � plane to a multisheeted covering
f the complex �+ plane. The principal �+ sheet is the one where the real interval −1/ �2����+

+� is the image of the real � axis. The point �+=−1/ �2�� is a logarithmic branch point of the
nverse function �−1��+�. Hence, the principal sheet has a branch cut along the real interval −�
�+�−1/ �2��. The inverse function also has quadratic branch points at the complex zeros of
�+ /d�=�e���−��� / sinh����. On the principal sheet, these occur at �+=�0

±, where

�0
�
ª �−1�1.044 421 5078 + �i3.730 744 6428� ,

o 10 decimal places. The corresponding points in the complex � plane are exactly the same
ecause �+��0

��=�0
� −�−��0

��=�0
�. Let the branch cuts in the complex �+ plane run horizontally to the

± ±
ight from �0 to +�+�0. The inverse image of the principal sheet is a region in the complex �
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lane that is symmetrically placed about the real axis. �This is the region denoted A in Fig. 1 of
ef. 19.� Its upper boundary consists of three curved pieces joined end to end. The first piece runs

rom �=−�+ i� / �2�� to the pole at i� /� and is the inverse image of the upper edge of the branch
ut running from �+=−1/ �2�� to −�. The second piece runs from �= i� /� to �0

+ and is the inverse
mage of the upper edge of the branch cut running from �+= +�+�0

+ to �0
+. The third piece runs

rom �=�0
+ to +�+�0

+ and is the inverse image of the lower edge of the same branch cut running
n the opposite sense. Denote the region of the complex � plane between the real axis and the
pper boundary D+ and the corresponding region in the lower half-plane D−, and let the curved
oundaries be included to the right-hand side of the points ±i� /�.

A function of � or �+ whose domain covers the region D� will be denoted a �+�� function in
ither � or �+ if it is analytic throughout the �+�� half of the complex �+ plane, which is the
alf-plane Im���+��0, and continuous onto the real interval −1/ �2����+� +�. The important
oint is that such a function cannot have a quadratic branch point at �+=�0

�. Generic entire or
eromorphic functions of � will fail this analyticity test, examples being � itself, e±i�x, sinh����,

nd �−���. A necessary, but far from sufficient, condition for f��� to be a �+�� function in � is
f���0

��=0.
If ��x, the integral in Eq. �3.23� can be evaluated by summing residues in an appropriate half

f the complex r plane �according to Jordan’s lemma applied to a semicircular contour of large
adius passing between consecutive poles of the integrand�. The correct half-plane is the upper
alf-plane when ��x and the lower half-plane when ��x. The integral diverges logarithmically
hen �=x, but this will become an integrable singularity when the Green’s function later appears

nside an integral with respect to �. It is worth noting that the rn �which depend on � and �� are
bove D+ and the rn

* are below D− whenever � resides anywhere in D± or the real axis.
An important issue in relation to Eq. �3.23� concerns the choice of the contour C. Poles on the

eal axis at r−1=0 and r0=�� �or a double pole when �=0� dictate two distinct choices for C, and
o we will obtain two distinct Green’s functions. Use the notation C± for the horizontal line
unning from −�± i0+ to +�± i0+. The choice C=C+ in Eq. �3.23� leads to the Green’s function,

G−�
� �x,�;�� =

�i

2�
��� − x�� 1

�+���
−

e�i�x−���

�−���
− ��

n=1

�
ei�x−��rn

*

rn
* − ��+���� +

i

2�
��x − ���

n=1

�
ei�x−��rn

rn − ��+���
,

�3.27�

�x, where, for x�0, ��x� is the Heaviside step function,

��x� = �1, x � 0,

0, x � 0.
�

he alternative contour C=C− gives the Green’s function,

G�
��x,�;�� = G−�

� �x,�;�� +
�i

2�
� e�i�x−���

�−���
−

1

�+���
� . �3.28�

In the remainder of this paper, superscripts attached to the Green’s and Jost functions will
ontinue to indicate analytic character with respect to x as above, whereas subscripts attached to
hese functions will designate analytic character with respect to � or �+, in cases when x and � can
e extended into the complex domain. The subscript � denotes a �+�� function in � or �+ as
iscussed above, and such functions must be free of the quadratic branch point at �+=�0

� when
ritten as functions of �+. The analytic character of the Green’s functions with respect to �+ can be

een from the integral formulas,

G�
��x,�;�� =

1

4�
�

C

1 + coth �r

�+�r� − �+���
e�i�x−��r dr , �3.29�
−�
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G−�
� �x,�;�� =

1

4�
�

C�

1 + coth �r

�+�r� − �+���
e�i�x−��r dr , �3.30�

hich can be obtained from Eq. �3.23� by the substitution r→�r. In the case of real �, the
eplacement �→−� followed by the substitution r→r−� in the integrals gives the useful reflec-
ion formulas,

G�
��x,�;− �� = e−�i��x−��G�

��x,�;�� , �3.31�

G−�
� �x,�;− �� = e−�i��x−��G−�

� �x,�;�� . �3.32�

The boundary conditions given by Eqs. �3.19� and �3.20� provide a means by which we can
ssign G±�

� �x ,� ;�� to the kernel of Eq. �3.21�. Preservation of Eqs. �3.19� and �3.20� leads to the
ollowing inhomogeneous Fredholm integral equations of the second kind,

�M+��x;��

M̄+��x;��
� = � 1

exp��i��x − �i���
� + �

−�

�

G�
��x,�;��U����M+���;��

M̄+���;��
�d� , �3.33�

�N+��x;��

N̄+��x;��
� = �exp��i��x − �i���

1
� + �

−�

�

G−�
� �x,�;��U����N+���;��

N̄+���;��
�d� . �3.34�

redholm’s second theorem,39 when applied to Eqs. �3.33� and �3.34�, allows us to conclude that
M+��x ;��, as a function of �+, can be analytically continued to the half-plane Im���+��0 and
¯ +��x ;�� can be continued to the half-plane Im���+��0. Hence, our conventions allow us to
xpand the notation as follows:

M+��x;�� = M�
+��x;��, N̄+��x;�� = N̄−�

+��x;�� .

he corresponding analytic character of the other two Jost functions is discussed in the next
aragraph.

The reflection formulas Eqs. �3.31� and �3.32� for the Green’s functions have immediate
onsequences for the Jost functions. The functions,

M�
+��x;− ��, e−�i��x−�i��M̄+��x;�� ,

atisfy the same Fredholm equation. We take as a working hypothesis that the solutions of these
redholm equations are unique, or, equivalently, that the corresponding homogeneous equations
ave no nontrivial solutions. Hence we obtain the connection formula,

M�
+��x;− �� = M̄+��x;��e−�i��x−�i��. �3.35�

n identical argument produces the connection formula,

N̄−�
+��x;− �� = N+��x;��e−�i��x−�i��. �3.36�

hese play a vital role in Sec. VI. We derived them for real � but they obviously analytically
ontinue off the real axis. For example, N+��x ;�� analytically continues into the �+�� half of the
omplex �+ plane but fails the analyticity test at �+=�0

�, having a quadratic branch point there. A

imilar comment applies to M̄+��x ;�� in the opposite half-plane.

Linear independence of N+� and N̄−�
+� for real ��0 leads to the identity,

M�
+��x;�� = A���N̄−�

+��x;�� + B���N+��x;�� , �3.37�
here A��� and B��� are defined through the functionals,
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A��� = 1 −
�i

2��+����−�

�

U���M�
+���;��d� , �3.38�

B��� =
�i

2��−����−�

�

U���M�
+���;��e−�i���−�i�� d� . �3.39�

quation �3.37� provides asymptotics for M�
+��x ;�� as x→ +�, which supplements the limit

M�
+��x ;��→1 as x→−� given by Eq. �3.19�.

To prove Eqs. �3.37�–�3.39�, substitute Eq. �3.28� into Eq. �3.33�, and then integrate term by
erm to obtain the equation

M�
+��x;�� = 1 +�

−�

�

M̃��;���G−�
� �x,�;�� −

�

2��+���
+
�ie�i��x−��

2��−��� �d� , �3.40�

here M̃�� ;��ªU���M�
+��� ;��. Using Eq. �3.34� to replace N̄−�

+��x ;�� and N+��x ;�� in Eq. �3.37�,
e obtain

M�
+��x;�� = A��� + B���e�i��x−�i�� + �

−�

�

G−�
� �x,�;��M̃��;��d� . �3.41�

quating �3.40� and �3.41� and then matching the coefficients of exp��i�x� on each side of the
esultant identity, we arrive at Eqs. �3.38� and �3.39�.

The functions A��� and B���, which depend on �, are members of the continuous spectrum,
nd therefore we must ascertain their analytic character. From Eq. �3.38�, we deduce that A��� is
�+�� function in �, except for a possible simple pole at �=0, but we will omit the subscript

mplied by this property except when we need to call attention to it. Analytic continuation of B���
ay be possible, but B��� only plays a role in the inverse scattering when � is real and for certain

solated nonreal values of � for which the integral in Eq. �3.39� converges. The latter have
elevance to the bound states below. In general, the integral in Eq. �3.39� diverges when � is
onreal. If A��� has a simple pole at �=0, then the combinations A���+B���, B��� /A���, and

A���A�−��−B���B�−�� are nonsingular at �=0 whenever �−�
� xU�x�dx converges absolutely.

In a similar fashion, linear independence of M�
+� and M̄+� when � is real and nonzero gives

N̄−�
+��x;�� = G���M�

+��x;�� + H���M̄+��x;�� , �3.42�

here

G��� = 1 +
�i

2��+����−�

�

U���N̄−�
+���;��d� . �3.43�

H��� = −
�i

2��−����−�

�

U���N̄−�
+���;��e−�i���−�i�� d� . �3.44�

quation �3.42� provides asymptotics for N̄−�
+��x ;�� as x→−�. We now have enough information

o construct the leading-term asymptotics as Re x→ ±� of all four Jost functions in their strips of
nalyticity in x. The function G��� is a �−�� function in � except for a possible simple pole at
=0, whereas H��� will only be needed for real � and a finite number of isolated nonreal values.
n the inverse scattering transform, the ratios,
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R��� ª
B���
A���

, S��� ª
H���
G���

, �3.45�

lay an important role and are known as reflection coefficients.
The four functions A���, B���, G���, and H��� of the real variable � satisfy several identities.

irst, identities for argument −� can be deduced from the connection formulas �3.35� and �3.36�.
he results are

A�− �� = −
B���G���

H���
, B�− �� =

1 − A���G���
H���

, �3.46�

G�− �� = −
A���H���

B���
, H�− �� =

1 − A���G���
B���

. �3.47�

Additional identities involving the indicator −� can be deduced from the differential equations
3.4� or �3.15�. Let us work with lowercase Jost functions m+� and n̄+�, which satisfy Eq. �3.4�. The
elation to the corresponding uppercase functions is given by Eq. �3.14�. Asymptotics for large
ositive and negative x can be deduced from Eqs. �3.11�–�3.13�, �3.19�, �3.20�, �3.37�, and �3.42�.

Suppose �1
+��x ;�1� is one of these Jost functions and �2

+,−��x ;�2� is one with the sign of the
ndicator � changed. Then Eqs. �3.4� and �3.6� imply

�1x
+��x;�1� = �i
U�x� − ��1���1

+��x;�1� − �i���1��1
+��x + 2�i�;�1� , �3.48�

�2x
+,−��x;�2� = − �i
U�x� − ��2���2

+,−��x;�2� + �i���2��2
+,−��x − 2�i�;�2� . �3.49�

hence,

�i
�

�x

�1

+��x;�1��2
+,−��x;�2�� = 
��1� − ��2���1

+��x;�1��2
+,−��x;�2�

+ ���1��1
+��x + 2�i�;�1��2

+,−��x;�2�

− ���2��1
+��x;�1��2

+,−��x − 2�i�;�2� .

ntegrate both sides with respect to x from −R1 to R2 where R1 and R2 are large positive numbers.
he second to last and last terms on the right-hand side are, respectively, a �−�� function in x and
�+�� function in x, and so we can replace the definite integrals with contour integrals following

hree sides of a rectangle in their respective strips of analyticity as follows:

�
−R1

R2

= �
−R1

−R1−�i�

+ �
−R1−�i�

R2−�i�

+ �
R2−�i�

R2

, �
−R1

R2

= �
−R1

−R1+�i�

+ �
−R1+�i�

R2+�i�

+ �
R2+�i�

R2

.

hereafter, the results simplify with the help of Eq. �3.7�. We obtain the result,

�i�� �1
+��x;�1��2

+,−��x;�2��
−R1

R2

= 
��1� − ��2���
−R1

R2

�1
+��x;�1��2

+,−��x;�2�dx

+ 
���1� − ���2���
−R1

R2

�1
��x;�1��2

�−���x;�2�dx

− ����2��
−R1−�i�

−R1

+ ���1��
−R1

−R1+�i�

− ���2��
R2−�i�

R2

− ���1��
R2

R2+�i� �
�1

��z;�1��2
�−���z;�2�dz . �3.50�
ote that in all terms containing ���1� and ���2�, the � functions appearing are of the type on the
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eft-hand side of Eq. �3.7�. Because ��� and ���� are even functions of �, a substantial simpli-
cation occurs in the two cases �2= ±�1. Then the last identity reduces to

�� �1
+��x;���2

+,−��x; ± ���
−R1

R2

= �i������
−R1−�i�

−R1+�i�

− �
R2−�i�

R2+�i� ��1
��z;���2

�−���z; ± ��dz ,

�3.51�

hich can be evaluated using asymptotic results alone.
With +� as the second argument of �2

+,−� and using the appropriate asymptotic formulas for
+� and n̄+�, we get the following four identities:

�+���
A���A−���� − 1� = e2���−���B���B−���� , �3.52�

�+���
G���G−���� − 1� = e2���−���H���H−���� , �3.53�

G−���� = A��� , �3.54�

A−���� = G��� . �3.55�

ere, A−���� is the result of replacing � with −� throughout the right-hand side of Eq. �3.38�, and
imilarly for the other functions with indicator −� attached. Both sides of Eq. �3.54� are �+��
unctions in � and both sides of Eq. �3.55� are �−�� functions in �. These analytic continuations are
elevant to the bound states below.

With −� as the second argument of �2
+,−�, we get

�+���A���B−��− �� = e2���−���B���A−��− �� , �3.56�

�+���G���H−��− �� = e2���−���H���G−��− �� , �3.57�

�+���H−��− �� = − e2���−���B��� , �3.58�

�+���B−��− �� = − e2���−���H��� . �3.59�

These identities allow 12 functions of the real variable � to be written in terms of four others.
hey include the identities �3.46� and �3.47� above. In particular, we find


A���A�− �� − B���B�− ���
A−����A−��− �� − B−����B−��− ��� = 1,

hich implies that A���A�−��−B���B�−�� cannot have any zeros on the real line �including �
0, which requires separate treatment�. A further consequence is that B��� and H��� have the

ame real zeros, if any. Pure soliton solutions are characterized by B��� vanishing identically on
he real line. In that case, the above identities imply that H���, B−����, and H−���� also vanish
dentically, which is of importance in the construction of MILW solitons.

Corresponding identities can be constructed in which the functions with indicator −� are
eplaced by complex conjugates. These are less elegant because they contain the imaginary part of
�x� inside definite integrals. The most interesting is the identity corresponding to Eq. �3.54� in
hich all functions appearing analytically extend to the �+�� half of the complex �+ plane. This
dentity is
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2��+���
�G��*��* − A���� = − ��
−�

�

VxM�
+��x;���N̄−�

+��x;�*��* dx , �3.60�

here the factor Vx comes from Eq. �2.11�. In the case of pure multisoliton solutions, we can
alculate A��� and G��� explicitly �see Sec. VII�, in which case we will see by inspection that the
eft-hand side of Eq. �3.60� vanishes.

V. THE DISCRETE SPECTRUM

Our calculations have up to this point dealt exclusively with the continuous spectrum for Eq.
3.4�. Discrete �complex� eigenvalues for Eq. �3.4� are also possible, leading to a finite number of
ound states. While Eqs. �3.37� and �3.42� are not valid off the real � axis, they survive as
eading-term asymptotics in appropriate half-planes.

For the bound states, it is more natural to work with lowercase Jost functions. For Im����
0, m+��x ;�� is locally analytic and has the asymptotic behavior,

m+��x;�� � e−�i��x−�i��/2 as x → − � , �4.1�

m+��x;�� � A���e−�i��x−�i��/2 as x → + � . �4.2�

hus, in general, m+� decays as x→−� and grows exponentially as x→ +�. The exceptional
alues of � are the zeros of A���, if any. Suppose there are q zeros of A��� in the region D� of the
omplex � plane, namely,

�1,�2, . . . ,�q,

nd let �+jª�+�� j�. The � j are the discrete eigenvalues of Eq. �3.4� in the region D� and the �+j are
he corresponding discrete eigenvalues of Eq. �3.15� in the �+�� half of the complex �+ plane. The
symptotics of m+��x ;�� as x→ +� can be deduced from Eq. �3.28�. By using the same argument
hat led to Eq. �3.37�, we get the exact formula,

m+��x;� j� = B�� j�n+��x;� j� , �4.3�

here B�� j� is defined by Eq. �3.39� with � replaced by � j and N+��x ;� j� �the uppercase Jost
unction corresponding to n+��x ;� j�� satisfies the Fredholm equation �3.22� for N+��x ;�� with � j

eplacing �. Note that B�� j� is not, in general, the value that B��� would take if it could be
nalytically continued off the real axis to � j. For example, B��� can vanish identically for real �,
ut the B�� j� can never vanish. The asymptotics for m+��x ;� j� can now be written,

m+��x;� j� � � e−�i�j�x−�i��/2 as x → − � ,

B�� j�e�i�j�x−�i��/2 as x → + � .
� �4.4�

Bound states corresponding to discrete eigenvalues in the region D−� are constructed similarly.
et � j

−� denote the result of changing the sign of the indicator � in � j. According to Eq. �3.55�,
hich is applicable to D−�, the � j

−� are the zeros of G��� in D−�. Then the functions n̄+��x ;� j
−��,

j=1,2 , . . . ,q, are bound states with

n̄+��x;� j
−�� = H�� j

−��m̄+��x;� j
−�� , �4.5�

here H�� j
−�� is defined by the integral Eq. �3.44� with � j

−� replacing �.
We need to know the precise relationship between the � j and the � j

−�. The integral formula Eq.
3.51� is valid for any real or complex value of � for which the eigenfunctions �1

+� and �2
+,−� are

efined. Let us apply it to the case �1
+�=m+��x ;� j� and �2

+,−�=m+,−��x ;−� j�. Suppose that −� j is not
discrete eigenvalue in D−� for the case of indicator −�. In that case, we must use the asymptotic
ormula Eq. �4.2� with the sign of � changed. Equation �3.51� can be simplified to
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�+�− � j�B�� j�A−��− � j� = 0.

ow B�� j� can never vanish and �+ can only vanish at the origin of its own complex plane, which
s on the real axis. It follows that the hypothesis that −� j was not a discrete eigenvalue in D−� has
ed to a contradiction, namely, that it is indeed a discrete eigenvalue. For this case, the alternative
symptotics given by Eq. �4.4� with the sign of � changed guarantee that Eq. �3.51� is identically
atisfied. The same conclusion would result if we applied Eq. �3.51� to the case �1

+�= n̄+��x ;−� j�
nd �2

+,−� as before. Hence, we have proved that

A−��− � j� = 0 = G�− � j�, A�− � j
−�� = 0, �4.6�

or j=1,2 , . . . ,q. Equation �4.6� shows that the � j
−� are the negatives of the � j in some order, and

e are free to label these eigenvalues so that

� j
−� = − � j �4.7�

nd

� j ¬ �i� j, Re�� j� � 0, �4.8�

j=1,2 , . . . ,q, with the � j being independent of �. This result allows us to write Eq. �4.5� in terms
f quantities with the same indicator, namely,

n̄+��x;− � j� = H�− � j�m̄+��x;− � j� . �4.9�

In view of Eq. �4.8�, we can obtain more identities. First, by suitably combining Eqs. �3.28�,
3.31�, and �3.32�, we can get a reflection formula for the Green’s functions that extends off the
eal � axis. Then it will be found that the connection formula Eq. �3.35� holds for �=−� j and Eq.
3.36� holds for �=� j. This means that N+��x ;� j� is precisely the result that would be obtained by
nalytic continuation of N+��x ;�� from the real � axis to the point �=� j in D�, which is not

bvious from the definition of N+��x ;� j�, and similarly for M̄+��x ;−� j�. As already remarked,
imilar statements are false for B�� j� and H�−� j�. The large x asymptotics of the connection
ormulas now give

H�− � j� =
1

B�� j�
. �4.10�

his can also be proved by substituting �=−� j into Eq. �3.44� and rearranging.
The relationship between � j and � j

* is less easy to determine in the case of the complex-valued
LW equation. Calculations similar to the proof of Eq. �4.6� give

2�e��j�−�� j�B�� j��A�− � j
*��* = − ��

−�

�

Vxm
+��x;� j��m+��x;− � j

*��* dx , �4.11�

hich can also be deduced from Eq. �3.60� by setting �=−� j
*. In the case of the real-valued ILW

quation, the right-hand sides of Eqs. �3.60� and �4.11� are zero because Vx is proportional to the
maginary part of U�x�. Hence A�−� j

*�=0, which implies that the � j are either pure-imaginary or
re distributed symmetrically about the imaginary axis of the complex � plane. Equivalently, the

j are either real or are distributed in complex conjugate pairs. The real � j which do not have the
ame real part as any other � j give rise to solitons �solitary waves� that travel from left to right
ith a steady amplitude. When two or more of the � j have the same real part, the corresponding

olitary waves travel together as a packet known as a breather because the combined wave
ulsates. KAS �Ref. 19� concluded that all the � j were pure imaginary from a different integral
dentity. In view of the existence of breathers, their conclusion cannot be upheld.

The discrete eigenvalues are also either pure imaginary or are distributed in symmetric pairs
cross the imaginary axis of the complex � plane in the case of the particular complex-valued ILW

quation derived from the real-valued MILW equation via the Miura transformation Eq. �2.11�.
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ur argument is indirect because we have not found a direct way to prove that the integral on the
ight-hand side of Eq. �4.11� vanishes identically. In Sec. VII, we prove that the eigenvalues are so
istributed for pure soliton solutions. But that implies that they are so distributed for all solutions
ecause the solitary waves or breathers become widely separated from each other and from the
ackground generated by the nonsoliton part at late times. If the eigenvalues were not distributed
s stated, the function V�x , t� constructed from Eq. �2.13� would fail the consistency condition Eq.
2.14�. We could also employ the same indirect argument to prove that the discrete eigenvalues are
imple zeros of A��� and G��� for the class of complex-valued ILW equations relevant to the

ILW equation, but we shall omit that proof.
One final set of identities involves � derivatives of A��� at �=�j and of G��� at �=−� j.

efine the normalizing coefficients,

Cj ª − �i
�̇+�� j�B�� j�

Ȧ�� j�
, �4.12�

Fj ª �i
�̇+�− � j�H�− � j�

Ġ�− � j�
, �4.13�

here the dot denotes differentiation with respect to �. Start again with Eqs. �3.48� and �3.49�, but
ake a derivative of the first equation with respect to �1. The steps which led to Eq. �3.51� give the
ntegral identity,

�� �1�
+��x;���2

+,−��x; ± ���
−R1

R2

= �i������
−R1−�i�

−R1+�i�

− �
R2−�i�

R2+�i� ��1�
� �z;���2

�−���z; ± ��dz

+ �i�̇�����
−R1

−R1+�i�

− �
R2

R2+�i� ��1
��z;���2

�−���z; ± ��dz

− �i̇����
−R1

R2

�1
+��x;���2

+,−��x; ± ��dx

− �i�̇����
−R1

R2

�1
��x;���2

�−���x; ± ��dx . �4.14�

his identity is applicable to the case �= ±� j provided the eigenfunctions appearing are defined
or such �. With �1

+�=m+��x ;� j� and �2
+,−�=m+,−��x ;−� j�, Eq. �4.14� yields

Cj = −
1

2Ȧ�� j�Ȧ−��− � j�
� ̇�� j�

sinh �� j
�

−�

�

m+��x;� j�m+,−��x;− � j�dx

+
�̇�� j�

sinh �� j
�

−�

�

m��x;� j�m�−���x;− � j�dx� . �4.15�

imilarly,

Fj = −
1

2Ġ�− � j�Ġ−��� j�
� ̇�� j�

sinh �� j
�

−�

�

n̄+��x;− � j�n̄+,−��x;� j�dx

+
�̇�� j�

sinh �� j
�

−�

�

n̄��x;− � j�n̄�−���x;� j�dx� . �4.16�
rom these two formulas, we can read off the important identities,
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Cj
−� = Cj, Fj

−� = Fj . �4.17�

n other words, Cj and Fj, like � j, are independent of the indicator �. Now we can swap � with −�
n either Eq. �4.12� or Eq. �4.13� and get the simple relationship,

Fj

Cj
= H�− � j�H−��� j� =

1

B�� j�B−��− � j�
, �4.18�

here we used Eq. �4.10�. When a particular � j is purely imaginary, the coefficients
˙ �� j� / sinh �� j and �̇�� j� / sinh �� j are real and negative. If, in addition, the function U�x� is real,
hen Cj and Fj are themselves real and positive, as shown by KAS.19 But for U�x� derived from
q. �2.11�, the Cj and Fj are, in general, complex numbers. MILW solitons have a direct relation-
hip to the imaginary parts of the Cj and Fj.

This completes our analysis of the direct problem for the complex-valued ILW equation. The
cattering data consists of the functions,

A���, B���, G���, H��� , �4.19�

f the real variable � which comprise the continuous spectrum, with A��� and G��� having
nalytic extensions to half-planes of the complex variable �+ as shown above, and the complex
onstants,

� j = �i� j, B�� j�, H�− � j�, Cj, Fj , �4.20�

hich form the discrete spectrum. We have derived several identities involving these quantities
nd the corresponding quantities obtained by changing the sign of the indicator �.

. TEMPORAL EVOLUTION OF THE SCATTERING DATA

The scattering data derived in the preceding section will evolve in a simple way with respect
o time t. This is the standard way that the IST is used to solve an initial value problem. One
alculates the scattering data for the initial value V�x ,0� at t=0 and then evolves the scattering
ata forward in time according to simple expressions. Finally, when the inverse problem is for-
ulated and solved, one inputs the scattering data at time t and outputs the required potential
�x , t�. The solution of the inverse problem for the complex-valued ILW equation and real-valued
ILW equation will be given in the next section.

Introduce the argument t into the notation for the scattering data,

A��;t�, B��;t�, G��;t�, H��;t� ,

�j�t�, B�� j;t�, H�− � j;t�, Cj�t�, Fj�t� ,

j=1,2 , . . . ,q. Now the four Jost functions, M�
+��x , t ;��, M̄+��x , t ;��, N+��x , t ;��, and N̄−�

+��x , t ;��,
atisfy Eq. �3.16� for �+��x , t�. The boundary conditions given by Eqs. �3.19� and �3.20� force the
arameter � in this equation to be

� =� 0 when �+� = M�
+� or N̄−�

+�,

− ���� when �+� = M̄+� or N+�,
�

here

���� ª �i��� coth���� − �−1� . �5.1�

With all terms appearing in Eqs. �3.37� and �3.42� depending on t, differentiation and appli-

ation of Eq. �3.16� produces the simple differential identities,
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At��;t�N̄−�
+��x,t;�� + 
Bt��;t� + �B��;t��N+��x,t;�� = 0,

Gt��;t�M�
+��x,t;�� + 
Ht��;t� + �H��;t��M̄+��x,t;�� = 0,

here the second value of � is applicable. Thus,

A��;t� = A��;0� , �5.2�

B��;t� = B��;0�e����t, �5.3�

G��;t� = G��;0� , �5.4�

H��;t� = H��,0�e����t. �5.5�

ecause A�� ; t� and G�� ; t� are time independent, so also are their zeros. Hence, for j
1,2 , . . . ,q,

�j�t� = � j�0� , �5.6�

B�� j;t� = B�� j;0�e���j�t, �5.7�

H�− � j;t� = H�− � j;0�e−���j�t, �5.8�

Cj�t� = Cj�0�e���j�t, �5.9�

Fj�t� = Fj�0�e−���j�t. �5.10�

ote that ��� j� is independent of the indicator �.
The scattering data at t=0 will be regarded as known because they have been constructed out

f the initial value U�x ,0� of the complex-valued ILW equation, which in turn has been con-
tructed out of the initial value V�x ,0� of the MILW equation according to Eq. �2.12�. Thus the
cattering data are now known for all t.

I. THE INVERSE PROBLEM AND ITS SOLUTION

In this section, we will formulate and solve the inverse problem for the complex-valued ILW
quation. The natural setting is the complex plane of the scattering variable �+ obtained by the
onformal mapping �+=�+���, and we intend to use the notation A��+� interchangeably with A���,
nd similarly with all the other functions of � or of the � j. The scattering data are now understood
o be the scattering data at time t,

A��+�, B��+;t�, G��+�, H��+;t� ,

�+j ª �+�� j�, �−j ª �−�� j� = − �+�− � j� ,

B��+j;t�, H�− �−j;t�, Cj�t�, Fj�t� ,
erived in the preceding section. Our aim is to produce an expression for the auxiliary variable,
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U��x,t� ª 1
2 
�U�x,t� − i�TU��x,t�� , �6.1�

n terms of the scattering data, and thence the solution U�x , t� of the complex-valued ILW equation
nd the solution V�x , t� of the real-valued MILW equation. For convenience, we again suppress the
dependence in the arguments of our functions.

The solution of our inverse problem relies on the interpretation of Eqs. �3.37� and �3.42� as
iemann-Hilbert problems40 in the complex �+ plane. With the indicator � temporarily attached to
, B, G, and H and the subscript identifying the half-plane of analyticity attached to A and G,

hese Riemann-Hilbert problems read

M�
+��x;�+� = A�

���+�N̄−�
+��x;�+� + B���+�N+��x;�+� , �6.2�

N̄−�
+��x;�+� = G−�

� ��+�M�
+��x;�+� + H���+�M̄+��x;�+� , �6.3�

or real �+�−1/ �2��.
In Sec. III, we took care to identify those functions, denoted �+�� functions and having the

ubscript �, that are analytic in �+ throughout the half-plane Im���+��0, and similarly for �−��
unctions. In particular, we proved that

i� M�
+��x ;�+� and A��+� are �+�� functions in �+,

ii� N̄−�
+��x ;�+� and G��+� are �−�� functions in �+,

iii� N+� and M̄+� also have analytic extensions into the half-planes Im���+��0 and Im���+�
�0, respectively, but they do not extend to the complete half-planes, having quadratic
branch points at �0

� and �0
−�, respectively.

iv� A��+� has simple zeros at �+j and G��+� has corresponding simple zeros at −�−j, j
=1,2 , . . . ,q.

v� B��+� is defined for real �+�−1/ �2�� and for the �+j; H��+� is defined for real �+�
−1/ �2�� and for the −�−j.

Equation �6.2� can be written,

M�
+��x;�+�
A��+�

= N̄−�
+��x;�+� + R��+�N+��x;�+� , �6.4�

or real �+�−1/ �2��, where

R��+� ª
B��+�
A��+�

. �6.5�

The ratio M�
+��x ;�+� /A��+� is meromorphic in the �+�� half of the complex �+ plane. From

qs. �3.27�, �3.28�, �3.33�, and �3.38�, this ratio tends to 1+O�1/�+� as �+→�. Hence, we can
rite the partial fraction expansion,

M�
+��x;�+�
A��+�

= 1 + �
j=1

q
Dj

��x�
�+ − �+j

+ ��
��x;�+� , �6.6�

here ��
��x ;�+� is a �+�� function in x and �+ such that ��

��x ;�+�→0 as �+→�, and

Dj
��x� = lim

�+→�+j

��+ − �+j�
M�

+��x;�+�
A��+�

. �6.7�

xamining the leading terms in Eq. �6.2� in the neighborhood of the �+j, we arrive at the identi-

cation,
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Dj
��x� = �iCjN

+��x;�+j� , �6.8�

here Cj is defined by Eq. �4.12�. With the dot denoting differentiation with respect to �+, the
xpressions for Cj and Fj simplify to

Cj = − �i
B��+j�

Ȧ��+j�
, Fj = �i

H�− �−j�

Ġ�− �−j�
.

ubstituting Eq. �6.6� into Eq. �6.2�, we find

N̄−�
+��x;�+� + R��+�N+��x;�+� = 1 + �i�

j=1

q

Cj
N+��x;�+j�
�+ − �+j

+ ��
��x;�+� . �6.9�

he function R��+�N+��x ;�+� is only defined for real �+�−1/ �2��, but we can employ the Plemelj
ormulas,40

R̂±��x;�+� ª
1

2�i
�

−1/�2��

� R��̃�N+��x; �̃�

�̃ − ��+ ± �i0+�
d�̃ , �6.10�

o create the decomposition,

R��+�N+��x;�+� = �
R̂��x;�+� − R̂−��x;�+�� . �6.11�

hus, up to sign, R̂±��x ;�+� is the �±�� part of R��+�N+��x ;�+�. Substituting Eqs. �6.10� and �6.11�
nto Eq. �6.9� and equating the �−�� parts in a manner that respects the asymptotic condition
¯

−�
+��x ;�+�→1 as �+→� gives

N̄−�
+��x;�+� = 1 + �i�

j=1

q

Cj
N+��x;�+j�
�+ − �+j

+
�

2�i
�

−1/�2��

� R��̃�N+��x; �̃�

�̃ − ��+ − �i0+�
d�̃ . �6.12�

quation �6.12� solves the Riemann-Hilbert problem given by Eq. �6.2�. It expresses N̄−�
+� in terms

f N+� and the scattering data. Both sides analytically extend to the half-plane Im���+��0.

With the aid of the connection formula Eq. �3.36�, we can eliminate N̄−�
+� from Eq. �6.12� and

et a system of coupled Fredholm equations for N+��x ;�+� and N+��x ;�+j�, j=1,2 , . . . ,q. The
onnection formula gives

e�i��x−�i��N+��x;�+�− ��� = ��x;− �+���� +
�

2�i
�

−1/�2��

� R��̃�N+��x; �̃�

�̃ − �+��� + �i0+
d�̃ , �6.13�

here the auxiliary function � is defined by

��x;�� ª 1 − �i�
k=1

q

Ck
N+��x;�+k�
� + �+k

. �6.14�

he involution �→−� together with the identity �+�−��=−�−��� transforms Eq. �6.13� into the
redholm equation,

N+��x;�+� =���x;�−� +
�

2�i
�

−1/�2��

� R��̃�N+��x; �̃�

�̃ + �− + �i0+
d�̃�e�i��x−�i��. �6.15�
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n this equation �− is understood to be the function of the real variable �+ formed by composition
f the increasing functions �−=�−��� and �=�+

−1��+�. Passage to the limit �→−� j throughout Eq.
6.13� yields the set of Fredholm equations,

N+��x;�+j� =���x;�−j� +
�

2�i
�

−1/�2��

� R��̃�N+��x; �̃�

�̃ + �−j

d�̃�e�i�j�x−�i��, �6.16�

j=1,2 , . . . ,q, where �−jª�−�� j�. Equations �6.15� and �6.16� form a closed system of q+1 Fred-
olm equations for the q+1 unknown functions N+��x ;�+� and N+��x ;�+j�. The kernels are built
ut of the scattering data �±j, Cj, and R��+�. The other three Jost functions can be calculated in
erms of N+��x ;�+� by Eqs. �6.12�, �6.2�, and �6.3�.

Large �+ asymptotics for N̄−�
+��x ;�+� can be obtained from Eq. �6.12� by standard methods, the

xpansion to first order being

N̄−�
+��x;�+� = 1 +

1

�+
��i�

j=1

q

CjN
+��x;�+j� −

�

2�i
�

−1/�2��

�

R��̃�N+��x; �̃�d�̃� + O�1/�+
2� ,

�6.17�

s �+→�. Equation �3.34� can furnish us with a different expression for the large �+ asymptotics

f N̄−�
+��x ;�+�. First, from the formula Eq. �3.30� for the Green’s function, we get

G−�
� �x,�;�+� =

�i

4��+
�1 + coth� �

2�
�� − x − �i0+��� + O�1/�+

2� , �6.18�

s �+→�. Substituting Eq. �6.18� into Eq. �3.34� gives

N̄−�
+��x;�+� = 1 −

�

�+
�U��x� −

1

2
iL� + O�1/�+

2� , �6.19�

here

U��x� = −
i

4�
�

−�

�

coth� �

2�
�� − x − �i0+��U���d� =

1

2
�U�x� −

1

2
iT�U�x�� �6.20�

nd L is the real conserved quantity,

L ª

1

2�
�

−�

�

U�	�d	 .

atching the 1/�+ terms in the asymptotic expansions Eqs. �6.17� and �6.19�, we obtain

U��x� =
1

2
iL − i�

j=1

q

CjN
+��x;�+j� +

1

2�i
�

−1/�2��

�

R��̃�N+��x; �̃�d�̃ . �6.21�

A corresponding set of Fredholm equations for the Jost function M̄+��x ;�+� can be derived
rom the Riemann-Hilbert problem Eq. �6.3�. These provide alternative expressions for the four
ost functions that are better adapted to asymptotics as x→−�. The solution of this Riemann-
ilbert problem is

M�
+��x;�+� = 1 − �i�

j=1

q

Fj
M̄+��x;− �−j�

�+ + �−j
−

�

2�i
�

−1/�2��

� S��̃�M̄+��x; �̃�

�̃ − ��+ + �i0+�
d�̃ . �6.22�
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he Fredholm equations analogous to Eqs. �6.15� and �6.16� are

M̄+��x;�+� =��2�x;�−� −
�

2�i
�

−1/�2��

� S��̃�M̄+��x; �̃�

�̃ + �− − �i0+
d�̃�e�i��x−�i��, �6.23�

M̄+��x;− �−j� =��2�x;− �+j� −
�

2�i
�

−1/�2��

� S��̃�M̄+��x; �̃�

�̃ − �+j

d�̃�e−�i�j�x−�i��, �6.24�

here

S��+� ª
H��+�
G��+�

,

�2�x,�� ª 1 + �i�
k=1

q
FkM̄

+��x;− �−k�
� − �−k

.

inally, large �+ asymptotics for M�
+� give

U��x� = −
1

2
iL + i�

j=1

q

FjM̄
+��x;− �−j� −

1

2�i
�

−1/�2��

�

S��̃�M̄+��x; �̃�d�̃ . �6.25�

We have arrived at two equivalent expressions for U��x , t�. To get U−��x , t�, we need to solve
he direct and inverse problems with the opposite indicator. This does not necessarily mean
tarting afresh from the beginning because formulas for the scattering data with the opposite
ndicator were given in Secs. III and IV. In particular, the � j, Cj�t�, and Fj�t� are independent of �.

hen U��x , t� and U−��x , t� have both been constructed, we can read off

U�x,t� = �
U��x,t� − U−��x,t�� , �6.26�

�TU��x,t� = i
U��x,t� + U−��x,t�� . �6.27�

To calculate V�x , t�, the solution of the MILW equation from the given initial value V�x ,0�,
rst calculate

W�x,t� =�
−�

x

U�	,t�d	 . �6.28�

hen

V�x,t� = 2 Im
W�x,t�� . �6.29�

ecause the operator T commutes with differentiation, Eq. �2.11� gives us a choice of two for-
ulas for T�Vx�,

T�Vx� = 2 Im
TU� = 2 Re
U� − 
�eV − 1� , �6.30�

hich, of course, must be consistent with each other. �Consistency is guaranteed when one is
olving an initial value problem, starting with a given V�x ,0�, but becomes an issue when the
tarting point is somewhere else, as in the case of the multisoliton solutions in the next section.�
ne more quadrature will then give TV.

The shallow-water limit of the full IST for the ILW and MILW equations is reasonably
traightforward. The functions U�x , t� and V�x , t� require the simple scaling given by Eqs. �1.7�

nd �2.7�, but the Jost functions and the scattering data do not require scaling, as shown by
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atsuma et al.23 On the other hand, the deep-water limit of the IST is more subtle since the ISTs
or the ILW and BO equations have features that do not correspond in an obvious way. We refer
he reader to Santini et al.38 for the handling of this limit.

II. SOLITON SOLUTIONS FOR THE ILW AND MILW EQUATIONS

Pure soliton solutions for the real-valued and complex-valued ILW equations occur when the
eflection coefficient R�� ; t�, also written R��+ ; t�, vanishes. According to Eqs. �5.3� and �5.5� and
dentities in Sec. III, whenever the initial value B�� ;0� vanishes for real �, all of the functions,

B��;t�, H��;t�, B−���;t�, H−���;t� ,

R��;t�, S��;t�, R−���;t�, S−���;t� ,

anish together for all real � and t�0.
So the integral terms in Eqs. �6.12�, �6.15�, �6.16�, and �6.21�–�6.25� disappear, and the

nverse problem reduces to a system of q linear algebraic equations for the case of the q-soliton
olution. This will allow us to calculate the physical variables U�x , t�, V�x , t�, their T transforms,
nd all the Jost functions and other auxiliary functions explicitly in terms of determinants. General
ormulas for the ILW multisoliton solution have been given by KAS �Ref. 19� and general for-
ulas for the MILW multisoliton solution have been given by Nakamura,28 the latter demonstrat-

ng the power of Hirota’s bilinear method.34,35 However, for the questions that we want to examine
egarding MILW solitons, it will be more instructive to look at large x asymptotics of the q-soliton
olution and explicit expressions for just the one- and two-soliton solutions of the ILW and MILW
quations.

With the help of the time-evolution results in Sec. V, we can write the system of equations for
+��x , t ;� j�, j=1,2 , . . . ,q, in the form,

N+��x,t;� j� = �1 − �i�
k=1

q
�kN

+��x,t;�k�
�+k + �−j

e�kt−�k�e−�j�x−�i��, �7.1�

here

� j = �i� j = �+j + �−j , �7.2�

� j ª ��� j� = � j��−1 − � j cot �� j� , �7.3�

� j ª log
� j/Cj�0�� . �7.4�

he � j are real and positive when the corresponding � j are real, and similarly for complex
onjugate pairs. It will be convenient to define the following auxiliary functions:

Ej�x,t� ª exp
� jx − � jt + � j� , �7.5�

Ej
��x,t� ª exp
� j�x − �i�� − � jt + � j� . �7.6�

Having obtained N+��x , t ;� j�, the values of U�x , t� and V�x , t� can be deduced from

U��x,t� =
1

2
iL − i�

k=1

q

�kN
+��x,t;�k�e�kt−�k, �7.7�

here L is the real constant defined by Eq. �2.15�, by following the steps at the end of the
receding section. An equivalent formula is given by Eq. �6.25� without the integral term. How-
ver, because we have disconnected the analysis from the initial value, we no longer know the

arameter 
 in advance, but must calculate it in terms of the other parameters appearing in the
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oliton solutions, and also determine any other constraints on the parameters needed to guarantee
hat V�x , t� is actually a solution of the MILW equation. We also need to determine the relation
etween the discrete eigenvalues and their complex conjugates.

The asymptotics of N+��x , t ;� j� for large positive x are easy to calculate from Eq. �7.1�. For
arge negative x, we get simple determinants that can be evaluated explicitly. The results are

N+��x,t;� j� � e−�j�x−�i��, �7.8�

s x→ +�, and

N+��x,t;� j� �
1

B�� j;t�
�1 − �i�

k=1

q
�ke

−2�kEk
��x,t�

��+j + �−k�B��k;0�B−��− �k;0�� , �7.9�

s x→−�, where

B�� j;t� = e�jt−�j�
k�j

�+j − �+k

�+j + �−k
. �7.10�

B−��− � j;t� = e�jt−�j�
k�j

�−j − �−k

�−j + �+k
. �7.11�

his B�� j ; t�, also written B��+j ; t�, is identifiable with the B�� j� appearing on the right-hand side
f Eq. �4.3�. �In these truncated asymptotic expansions, the next terms involving squares and
roducts of the decaying exponential functions appearing are not necessarily smaller than all of
hose exponential functions, but they are disjoint from the terms that we have kept.�

From Eq. �6.12�, we get the asymptotic expansion,

N̄−�
+��x,t;�� �

1

A����1 − �i�
k=1

q
�ke

−2�kEk
��x,t�

��+��� + �−k�B��k;0�B−��− �k;0�� , �7.12�

s x→−�, where

A��� = �
k=1

q
�+��� − �+k

�+��� + �−k
. �7.13�

his A��� is identifiable with the A��� appearing in Eq. �3.37�.
Further calculations along these lines will confirm all the identities among the scattering data

iven in Secs. III and IV restricted to the case of pure solitons. In particular,

G��� =
1

A���
, H�− � j;t� =

1

B�� j;t�
. �7.14�

f we start again with the alternative system Eqs. �6.22�–�6.24�, we would arrive at the same
symptotics for the Jost functions with the coefficients Fj�t� given by

Fj�t� =
� je

−�jt−�j

B�� j;0�B−��− � j;0�
, �7.15�

n agreement with Eq. �4.18�. This result permits a simplification of Eqs. �7.9� and �7.12�.
The corresponding asymptotics for U��x , t� can be calculated from Eq. �7.7� or the correspond-
ng formula deduced from Eq. �6.25�. Equation �7.7� yields
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U��x,t� �
1

2
iL − i�

j=1

q

� jEj
��x,t�−1, �7.16�

s x→ +�. Similarly, Eq. �6.25� gives

U��x,t� � −
1

2
iL + i�

j=1

q

Fj�t�e�j�x−�i��, �7.17�

s x→−�. Equation �7.7� also gives the same asymptotics as x→−� except that the constant term
ppears to differ. Equating the constant terms gives the useful identity,

�1 + �2 + ¯ + �q = L . �7.18�

hus U� tends to opposite limits at opposite ends of the real axis, in agreement with Eq. �A4� and
he boundary condition on U.

The asymptotics for U, TU, W, V, and TV as x→ ±� can now be calculated from Eqs.
7.16�–�7.18� and �6.26�–�6.30�. Our purpose here is to find the constraints, if any, on the real and
maginary parts of the � j and � j so that we get a consistent q-soliton solution of the MILW
quation. For the case x→ +�, we get

U�x,t� � �
j=1

q

2� j sin �� jEj�x,t�−1, �7.19�

TU�x,t� � − L + �
j=1

q

2� j cos �� jEj�x,t�−1, �7.20�

W�x,t� � 2�L − �
j=1

q

2 sin �� jEj�x,t�−1. �7.21�

efore taking the imaginary part of W, let

� j =  j + i� j, � j = � j + i j , �7.22�

j�0. Then

� j =
 j

�
−

� j
2 − � j

2�sin 2� j + 2 j� j sinh 2�� j

cosh 2�� j − cos 2� j

+ i�� j

�
+

� j
2 − � j

2�sinh 2�� j − 2 j� j sin 2� j

cosh 2�� j − cos 2� j
�¬ � jR + i� jI.

hen Eq. �6.29� and the first part of Eq. �6.30� give

V�x,t� � 4�
j=1

q

e−jx+�jRt−�j
cosh �� j sin � j sin�� jx − � jIt +  j�
− sinh �� j cos � j cos�� jx − � jIt +  j�� , �7.23�
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TV�x,t� � 4�
j=1

q

e−jx+�jRt−�j
cosh �� j cos � j sin�� jx − � jIt +  j�

− sinh �� j sin � j cos�� jx − � jIt +  j�� + const, �7.24�

s x→ +�.
An important issue that we did not settle in Sec. IV concerns how the discrete eigenvalues are

istributed in the complex plane when the initial value U�x ,0� is complex according to Eq. �2.12�.
e shall now prove that the � j are either real or are distributed in complex conjugate pairs, just

ike the case of the real-valued ILW equation. We will deduce this from the asymptotics of the
ure q-soliton solution of the MILW equation. However, the result must hold for all solutions of
he complex-valued ILW equation deduced from the real-valued MILW equation because at late
imes the solitary waves or packets of solitary waves traveling together at the same velocity
eparate from each other and from the nonsoliton background. If the � j were not distributed as
tated, the function V�x , t� constructed from Eq. �6.29� would fail the consistency condition given
y the second part of Eq. �6.30�.

Let us now examine this consistency condition for large 	x	. At the order at which we are
orking, eV−1 has the same asymptotics as V itself. Thus Eqs. �6.30�, �7.19�, �7.23�, and �7.24�
ive the constraint,


�
j=1

q

e−jx+�jRt−�j
cosh �� j sin � j sin�� jx − � jIt +  j� − sinh �� j cos � j cos�� jx − � jIt +  j��

= �
j=1

q

e−jx+�jRt−�j+��j
� j cos � j + � j sin � j�sin�� jx − � jIt +  j�

+ � j sin � j − � j cos � j�cos�� jx − � jIt +  j�� .

ecause 
 is a constant, this equation gives as many distinct equations for 
 as there are linearly
ndependent functions of x and t appearing.

Suppose that a particular � j is not real and that its complex conjugate is not found among the
ther � j. Then the functions of x and t appearing in the jth term are linearly independent of the
unctions of x and t in the other terms and we can immediately separate out two distinct equations
or 
,


 cosh �� j sin � j = e��j� j cos � j + � j sin � j� ,


 sinh �� j cos � j = e��j�� j cos � j −  j sin � j� .

he same method works for the asymptotics as x→−�. The equations analogous to the last two
re found to be


 cosh �� j sin � j = e−��j� j cos � j − � j sin � j� ,


 sinh �� j cos � j = e−��j�� j cos � j +  j sin � j� .

hese four equations admit only the trivial solution  j =0=� j, which is out of range. Conse-
uently, we must drop the hypothesis that one of the � j is not real while its complex conjugate is
ot found among the other � j. This completes the proof that the � j are either real or are distributed
n complex conjugate pairs. Since � j =�i� j, the eigenvalues � j, which live in the region D�, are
herefore either pure imaginary or are distributed symmetrically about the imaginary axis of the
omplex � plane. Because the curved boundaries of the regions D± are not symmetric about the

maginary axis, we get the slightly improved inequalities,
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0 � Re�� j� ��/�, 0 � Im��� j� ��/� . �7.25�

We now know that A�−� j
*�=0=G�� j

*�. Hence, we have proved indirectly that the integral on
he right-hand side of Eq. �4.11� vanishes identically. Similarly, for the pure soliton solutions at
east, Eqs. �7.13� and �7.14� show that A��� and G��*� are complex conjugates of each other when
e�����0 and so the integral on the right-hand side of Eq. �3.60� must vanish in these circum-

tances.
In the case where all or some of the � j are real, the asymptotics of the MILW q-soliton

olution give the set of constraints,


 = � j�cot �� j + cot  j� , �7.26�

or each j for which � j is real. These express the corresponding  j in terms of 
 and � j, there being
o loss of generality in restricting  j to the interval �−� ,��, with  j�0, which allows two values
f  j for given 
 and � j.

Consider the case where �1=1+ i�1 and �2=1− i�1, with corresponding �-parameters, �1

nd �2, which are independent complex numbers �not necessarily complex conjugates�. The two
orresponding equations for 
 can be arranged into the form


 = �1
cot ��1 + cot�i��2�* − i�1�� ,


 = �2
cot ��2 + cot�i��1�* − i�2�� ,

hich have the same shape as Eq. �7.26�. Soliton pairs formed in this fashion are known as
reathers. Physically, they are pulsating solitary waves. Mathematically, the exponential functions
ppearing will be multiplied by trigonometric functions. More complicated breathers occur when
hree of more of the � j have the same real part.

We have a choice of two ways to construct breathers, both giving the same class of solutions
ut with different parametrizations. One is to continue with two or more of the � j being complex
onjugate pairs and use Eq. �2.13� to calculate the real-valued function V�x , t�. But a more efficient
ay is to deduce the breather solutions from the q-soliton solution of the MILW equation having
ll real � j by complexifying all the parameters �� j, � j, and  j� after applying Eq. �2.13� and taking
eal slices. Thus, for example, when �1 and �2 are complex conjugates, take the corresponding
arameters �1 and �2 to be complex conjugates, and similarly for  1 and  2. Then the complex  j

btained in this way will also be constrained by Eq. �7.26�.
Let us conclude this section with complete calculations of the one- and two-soliton solutions

f the MILW equation and the corresponding Jost functions. For the case q=1, Eq. �7.1� gives

N+��x;�1� =
e−�1t+�1

1 + E1
��x,t�

, �7.27�

here �1 and E1
��x , t� are defined by Eqs. �7.3� and �7.6�, respectively. Then Eq. �7.7� gives

U��x,t� =
1

2
i�1

E1
��x,t� − 1

E1
��x,t� + 1

. �7.28�

rom this we can read off

U�x,t� =
�1 sin ��1 , �7.29�
cosh��1x − �1t + �1� + cos ��1
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�TU��x,t� = −
�1 sinh��1x − �1t + �1�

cosh��1x − �1t + �1� + cos ��1
. �7.30�

his is the one-soliton solution of the complex-valued ILW equation. In Appendix B, we give a
irect proof that TU is the T transform of U according to the definition Eq. �1.6�. An easy
alculation shows that U�x , t� satisfies the ILW equation.

The four Jost functions for the one-soliton solution are

M�
+��x,t;�� = 1 −

�i�1E1
��x,t�

��+��� + �−1��E1
��x,t� + 1�

, �7.31�

M̄+��x,t;�� = e�i��x−�i���1 +
�i�1E1

��x,t�
��−��� − �−1��E1

��x,t� + 1�� , �7.32�

N+��x,t;�� = e�i��x−�i���1 −
�i�1

��−��� + �+1��E1
��x,t� + 1�� , �7.33�

N̄−�
+��x,t;�� = 1 +

�i�1

��+��� − �+1��E1
��x,t� + 1�

. �7.34�

hese can be shown directly to satisfy Eqs. �3.15� and �3.16�. The formulas also give the values of

M�
+� and N+� at �=�1 and of M̄+� and N̄−�

+� at �=−�1. We already know from the general q-soliton
esults above that

A��� =
�+��� − �+1

�+��� + �−1
, G��� =

1

A���
,

B��;t� = H��;t� = 0, B��1;t� = e�1t−�1, H�− �1;t� = e−�1t+�1,

ut we can also confirm these results by evaluating the original integrals �3.38�, �3.39�, �3.43�, and
3.44�, the integrals for B�� ; t� and H�� ; t� requiring the rectangular contour with corners at �
±R and ±R+2�i /�1.

To get the corresponding one-soliton solution of the MILW equation, follow the steps at the
nd of Sec. VI. Integrating U gives

W�x,t� = 2 tan−1� E1�x,t�sin ��1

1 + E1�x,t�cos ��1
� , �7.35�

here E1�x , t� is defined by Eq. �7.5�. The only parameter that is allowed to be complex is �1. Let

1=�1+ i 1. Then

V�x,t� = log� cosh��1x − �1t + �1� + cos���1 −  1�
cosh��1x − �1t + �1� + cos���1 +  1�� , �7.36�

�TV��x,t� = − 2 tan−1� sin  1 sinh��1x − �1t + �1�
cos  1 cosh��1x − �1t + �1� + cos ��1

� . �7.37�

ppendix B also contains a direct proof that TV is the T transform of V. This V�x , t� satisfies the

ILW equation with
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 = �1�cot ��1 + cot  1� . �7.38�

t is now an easy matter to evaluate the integrals on the right-hand sides of Eqs. �3.60� and �4.11�
or the case of the one-soliton solution of the MILW equation. The result in both cases is zero
ecause the integrands are odd functions of �1x−�1t+�1.

For the two-soliton solution, we begin the calculation with

N+��x,t;�1� =
N1

D1
, N+��x,t;�2� =

N2

D1
, �7.39�

here

N1 = f3e−�1t+�1
f4E2
��x,t� + f2� , �7.40�

N2 = f4e−�2t+�2
f3E1
��x,t� − f2� , �7.41�

D1 = f3f4
E1
��x,t�E2

��x,t� + E1
��x,t� + E2

��x,t�� + f1f2, �7.42�

nd the auxiliary constants f1, f2, f3, and f4 are defined by

f1 ª �+1 − �+2, f2 ª �−1 − �−2,

f3 ª �+1 + �−2, f4 ª �−1 + �+2.

he four Jost functions can be calculated from Eqs. �6.12�, �6.15�, �6.22�, and �6.23�. Equation
6.22� gives

M�
+��x,t;�� =

N3

��+��� + �−1���+��� + �−2�D1
, �7.43�

here

N3 = f3f4
��+��� − �+1���+��� − �+2�E1
��x,t�E2

��x,t�

+ ��+��� − �+1���+��� + �−2�E1
��x,t�

+ ��+��� + �−1���+��� − �+2�E2
��x,t�� + f1f2��+��� + �−1���+��� + �−2� . �7.44�

hen N̄−�
+�=M�

+� /A���, and the other two Jost functions can be deduced from the connection
ormulas.

According to Eqs. �6.21� and �6.25�,

U��x,t� =
iN4

2D1
, �7.45�

here

N4 = f3f4
��1 + �2�E1
��x,t�E2

��x,t� + ��1 − �2��E1
��x,t� − E2

��x,t��� − f1f2��1 + �2� . �7.46�

hen the two-soliton solution of the complex-valued ILW equation is given by

U�x,t� =
N5

D5
, �TU��x,t� =

N6

D5
, �7.47�
here
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N5 = 2f3f4
f3f4��2 sin ��2E1�x,t� + �1 sin ��1E2�x,t� + ��1 − �2�sin ���1 − �2��E1�x,t�E2�x,t�

+ f1f2���1 + �2�sin ���1 + �2�E1�x,t�E2�x,t� + �1 sin ��1E1�x,t� + �2 sin ��2E2�x,t��� ,

�7.48�

N6 = − f3
2f4

2
��1 + �2�E1
2�x,t�E2

2�x,t� + 2��1 cos ��2E1�x,t� + �2 cos ��1E2�x,t��E1�x,t�E2�x,t�

+ ��1 − �2��E1
2�x,t� − E2

2�x,t��� + 2f1f2f3f4
�2 cos ��1E1�x,t� + �1 cos ��2E2�x,t��

+ f1
2f2

2��1 + �2� , �7.49�

D5 = f3
2f4

2
E1
2�x,t�E2

2�x,t� + 2�cos ��2E1�x,t� + cos ��1E2�x,t��E1�x,t�E2�x,t� + E1
2�x,t�

+ 2 cos ���1 − �2�E1�x,t�E2�x,t� + E2
2�x,t�� + 2f1f2f3f4

!
cos ���1 + �2�E1�x,t�E2�x,t� + cos ��1E1�x,t� + cos ��2E2�x,t�� + f1
2f2

2. �7.50�

To construct the two-soliton solution of the MILW equation, first integrate U to get the
otential,

W�x,t� = 2 tan−1�N7

D7
� , �7.51�

here

N7 = f3f4
sin ���1 + �2�E1�x,t�E2�x,t� + sin ��1E1�x,t� + sin ��2E2�x,t�� , �7.52�

D7 = f3f4
cos ���1 + �2�E1�x,t�E2�x,t� + cos ��1E1�x,t� + cos ��2E2�x,t�� + f1f2. �7.53�

here are two ways to arrange the complex parameters to arrive at a real MILW solution using Eq.
6.29�, namely, the usual two-soliton consisting of two solitary waves and the two-breather. For
he case of two solitary waves, let �1 and �2 be real with 0��1��2�� /� and, for j=1,2, let

j =� j + i j and define the auxiliary functions,

Ẽj�x,t� ª exp�� jx − � jt + � j� . �7.54�

quations �6.29� and �6.30� give

V�x,t� = log�N8

D8
�, �TV��x,t� = − 2 tan−1�N9

D9
� , �7.55�

here

N8 = f3
2f4

2
Ẽ1
2�x,t�Ẽ2

2�x,t� + 2�cos���2 −  2�Ẽ1�x,t� + cos���1 −  1�Ẽ2�x,t��Ẽ1�x,t�Ẽ2�x,t�

+ Ẽ1
2�x,t� + Ẽ2

2�x,t� + 2 cos���1 − ��2 −  1 +  2�Ẽ1�x,t�Ẽ2�x,t��

+ 2f1f2f3f4
cos���1 + ��2 −  1 −  2�Ẽ1�x,t�Ẽ2�x,t� + cos���1 −  1�Ẽ1�x,t�

+ cos���2 −  2�Ẽ2�x,t�� + f1
2f2

2, �7.56�

D8 = f3
2f4

2
Ẽ1
2�x,t�Ẽ2

2�x,t� + 2�cos���2 +  2�Ẽ1�x,t� + cos���1 +  1�Ẽ2�x,t��Ẽ1�x,t�Ẽ2�x,t�

+ Ẽ1
2�x,t� + Ẽ2

2�x,t� + 2 cos���1 − ��2 +  1 −  2�Ẽ1�x,t�Ẽ2�x,t��

˜ ˜ ˜
+ 2f1f2f3f4
cos���1 + ��2 +  1 +  2�E1�x,t�E2�x,t� + cos���1 +  1�E1�x,t�
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+ cos���2 +  2�Ẽ2�x,t�� + f1
2f2

2, �7.57�

N9 = f3
2f4

2
sin� 1 +  2�Ẽ1
2�x,t�Ẽ2

2�x,t� + 2�cos ��2 sin  1Ẽ1�x,t� + cos ��1 sin  2Ẽ2�x,t��Ẽ1�x,t�Ẽ2�x,t�

+ sin� 1 −  2��Ẽ1
2�x,t� − Ẽ2

2�x,t��� − 2f1f2f3f4
cos ��1 sin  2Ẽ1�x,t� + cos ��2 sin  1Ẽ2�x,t��

− f1
2f2

2 sin� 1 +  2� , �7.58�

D9 = f3
2f4

2
cos� 1 +  2�Ẽ1
2�x,t�Ẽ2

2�x,t� + 2�cos ��2 cos  1Ẽ1�x,t�

+ cos ��1 cos  2Ẽ2�x,t��Ẽ1�x,t�Ẽ2�x,t� + cos� 1 −  2��Ẽ1
2�x,t� + Ẽ2

2�x,t��

+ 2 cos ���1 − �2�Ẽ1�x,t�Ẽ2�x,t�� + 2f1f2f3f4

!
cos ���1 + �2�Ẽ1�x,t�Ẽ2�x,t� + cos ��1 cos  2Ẽ1�x,t� + cos ��2 cos  1Ẽ2�x,t��

+ f1
2f2

2 cos� 1 +  2� . �7.59�

his V�x , t� satisfies the MILW equation with


 = �1�cot ��1 + cot  1� = �2�cot ��2 + cot  2� . �7.60�

his two-soliton solution describes two solitary waves traveling from left to right at different
peeds, with the taller and thinner wave catching up to the shorter and thicker wave and overtaking
t. After the interaction, both waves end up identical in shape to the original waves except for a
hase shift, in accordance with the classic profile.

As already mentioned, the best way to construct the two-breather is to complexify the six real
arameters in the two-soliton solution just constructed and take the real slice with �2= ��1�*, �2

��1�*, and  2= � 1�*. The functions N8 and D8 in Eq. �7.55� are real and positive definite for both
he two-soliton and two-breather solutions.

To obtain the shallow-water limit of the multisoliton solutions, apply the scalings given by Eq.
2.7� and let all parameters be O�1� as �→0+ except

 j = ± 1
2� + � ̃ j + O��2� .

o take the deep-water limit �→�, let

� j =
�

�
−

�

�2�̃ j

, � j =
��̃ j

�
,  j =

� ̃ j

�
.

hen the constraints given by Eq. �7.26� reduce to  ̃ j =1/ �
+ �̃ j�.
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PPENDIX A: PROPERTIES OF THE OPERATOR T

The singular integral operator T, defined by

�Tf��x� ª
1

2�
�P��

−�

�

coth� �

2�
�	 − x�� f�	�d	 = T�f�x�� , �A1�

here �P� indicates that the integral is in the Cauchy principal-value sense, appears in the ILW

nd MILW equations. In this appendix we collate several useful mathematical properties of this
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perator. Most of these results are easily proved directly from the definition �some require contour
ntegration�, and so we omit these proofs. However, we supply a proof of Eq. �A3� below because
f its importance for the shallow-water limit.

The deep-water limit to the BO and MBO equations involves the Hilbert transform operator H
efined by

�Hf��x� ª
1

�
�P��

−�

� f�	�
	 − x

d	 = H�f�x�� .

ithout any additional hypotheses on f�x� apart from the absolute convergence of �−�
� f�x�dx, we

et

�Tf��x� = �Hf��x� + O�1/�� , �A2�

s �→�, uniformly for all real x. The O bound can be improved to O�1/�2� uniformly for x on
nite intervals if �−�

� xf�x�dx converges absolutely.
The corresponding shallow-water limit is given by

�Tf��x� = −
1

�
�

−�

x

f�	�d	 + Lf +
�

3
f��x� +

�3

45
f��x� + O��5� , �A3�

s �→0+, where

Lf ª
1

2�
�

−�

�

f�	�d	 .

his is a truncated version of a more general result derived below.
The operator T also possesses the following additional properties:26,27,35,41

lim
x→±�

�Tf��x� = � Lf , �A4�

d

dx

�Tf��x�� = �Tf���x� = T�f��x�� , �A5�

�
−�

�

f�x��Tg��x�dx = −�
−�

�

g�x��Tf��x�dx , �A6�

T�fTg + gTf��x� = �Tf��x��Tg��x� − f�x�g�x� − LfLg, �A7�

T�log
h�x + i��
h�x − i��� = − i log
h�x + i��h�x − i��� . �A8�

n all cases, it is understood that f�x� and g�x� are sufficiently smooth and decay at a sufficient rate
o guarantee existence of the relevant derivatives and integrals and allow interchange of limit
perations. In Eq. �A8�, h�z� denotes a function of a complex variable z that is analytic in the open
trip −�� Im z��, is continuous and nonzero on the closure of that strip, and tends to 1 uniformly
s Re z→ ±� in the closed strip.

A proof of Eq. �A3� is given by Satsuma et al.23 It calls upon a result of Gibbons and
upershmidt.26 We believe that the reader would be interested in seeing a proof that proceeds

irectly from the definition of the T operator.
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To assist in the derivation, we prefer to use the auxiliary operator,21

�T̂f��x� ª
1

2�
�P��

−�

� �coth� �

2�
�	 − x�� − sgn�	 − x�� f�	�d	 , �A9�

hich converges more rapidly than the integral for �Tf��x� �although, of course, it is not suited to

ontour integration�. The two operators T and T̂ are related by the identity,

�Tf��x� = �T̂f��x� +
1

2�
�

x

�

f�	�d	 −
1

2�
�

−�

x

f�	�d	 . �A10�

irst, observe that the change of variable y= �	−x� /� maps Eq. �A9� into

�T̂f��x� =
1

2
�P��

−�

� �coth��y

2
� − sgn�y�� f�x + �y�dy . �A11�

Focus now on the shallow-water region, 0���1. Assume that f�x� possesses at least three
erivatives. The Taylor series �with remainder� for the function f�x+�y� in ascending powers of �
r y is

f�x + �y� = �
m=0

2N
�mym

m!
f �m��x� +

�2N+1y2N+1

�2N + 1�!
f �2N+1��x + ��y� , �A12�

here 0��=��x ,y ,� ,N��1. Substituting Eq. �A12� into Eq. �A11� and interchanging the order
f summation and integration, we obtain

�T̂f��x� =
1

2 �
m=0

2N
�m

m!
f �m��x��P��

−�

� �coth��y

2
� − sgn�y��ym dy + RN, �A13�

here the remainder term RN will be given a suitable bound below.
The integral in Eq. �A13� is a principal-value integral only for m=0 and, in this case, it

anishes because the integrand is odd. For all other m, the integrals are just convergent improper
iemann integrals. Again, when m is even, they all vanish because the integrands are odd. Hence,

he series Eq. �A13� simplifies to

�T̂f��x� = �
k=1

N
�2k−1

�2k − 1�!
f �2k−1��x�Ik + RN, �A14�

here

Ik ª �
0

� �coth��y

2
� − 1�y2k−1 dy . �A15�

The integrals Ik can be evaluated in terms of zeta-function values or Bernoulli numbers as
ollows:

Ik =
2

�2k�
0

� z2k−1

ez − 1
dz =

2

�2k �2k − 1�!��2k� =
22k−1

k
	B2k	 . �A16�

To distinguish between various conventions for the Bernoulli numbers, we state here that B0=1,
1=−1/2, B2=1/6, B3=0, and B4=−1/30.�
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The remainder term can be written,

RN =
�2N+1

2�2N + 1�!�0

� �coth��y

2
� − 1�y2N+1
f �2N+1��x + ��y� + f �2N+1��x − ��1y��dy ,

�A17�

here �1ª��x ,−y ,� ,N�. A straightforward bound can be obtained if we just assume that the
erivatives of f�x� are bounded, that is,

	f �k��x�	 � Mk, − �� x �� , �A18�

t least in the case k=2N+1. �Of course, this might not be sharp enough for some applications.�
hen the triangle inequality for integrals gives

	RN	 �
M2N+1IN+1�

2N+1

�2N + 1�!
=

22N+2�2N+1

�2N + 2�!
	B2N+2	M2N+1. �A19�

Substituting Eq. �A16� into Eq. �A14�, we obtain

�T̂f��x� = �
k=1

N
22k�2k−1

�2k�!
	B2k	f �2k−1��x� + RN, �A20�

hich is the �truncated� shallow-water expansion of the operator T̂ in terms of known quantities.
ccording to Eq. �A10�, the corresponding expansion for T is

�Tf��x� =
1

2�
�

x

�

f�	�d	 −
1

2�
�

−�

x

f�	�d	 + �
k=1

N
22k�2k−1

�2k�!
	B2k	f �2k−1��x� + RN. �A21�

f f�x� were real-analytic or differentiable to all orders, we would obtain an infinite series in
scending powers of �. Depending on the remainder, it could be either convergent or valid as an
symptotic series for small positive �. If f�x� is differentiable five times, with a bounded fifth
erivative, we get the truncated formula Eq. �A3�.

PPENDIX B: SELECTED T TRANSFORMS

In this appendix, we give direct evaluations of �Tf��x� for a useful class of functions that
ncludes the one-soliton solutions of the ILW and MILW equations �with the time dependence and
hase shift suppressed as these can be trivially reinstated later�. These results are used in Sec. VII
o confirm that the one-soliton solutions do indeed satisfy their respective equations and also to
valuate the parameter 
 in the one-soliton solution of the MILW equation.

Begin with the two-parameter family of functions,

f�x� =
1

cosh �x + cos �0
, �B1�

here � and �0 are real with ��0 and −���0��. In general, the T transform of f�x� does not
ave a simple explicit formula, but there are simple formulas in cases where one parameter is
rbitrary and the other is suitably restricted. For example, in the case where �0 is arbitrary and �
s a rational multiple of � /�, the integral defining �Tf��x� can be evaluated by summing residues
nside a suitable indented rectangular contour. However, the rectangular contour cannot work in
he case relevant to the one-soliton solution of the ILW equation, where � is arbitrary and �0

��. Several of the more elementary integrals appearing below without proof can be reduced to

inear combinations of the following integrals:
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�
−�

� sinh �

sinh 

d =

�



tan���

2

� , �B2�

real, � complex, −
�Re ��
,

�
−R

R sinh �

sinh 

d =

�



tan���

2

� +

2

� − 

e��−
�R + O�e−�3
−Re ��R� , �B3�

s R→�, 
�Re ��3
, ��
, and

�
−�

� cosh ��x

cosh �x + cos �0
dx =

2� sin ��0

� sin �0 sin ��
, �B4�

1�Re ��1.
Take a Fourier transform of f�x� and rearrange to give the formula,

1

cosh �x + cos �0
=

1

sin �0
�

−�

� sinh �0

sinh �
ei�x d . �B5�

pply the T̂ operator and interchange the order of integration. A straightforward application of a
ectangular contour with corners at 	= ±R and ±R+2i� and indents at 	=x and x+2i� gives

T̂�ei�x� = i�coth �� −
1

��
�ei�x.

hence

T̂� 1

cosh �x + cos �0
� = −

1

sin �0
�

−�

� sinh �0 sin �x

sinh �
�coth �� −

1

��
�d . �B6�

arameter differentiation and a rectangular contour give the result,

�
−�

� sinh �0 sin �x

 sinh �
d = 2 tan−1�tan

1

2
�0 tanh

1

2
�x� . �B7�

hence Eq. �A10� gives our main formula,

T� 1

cosh �x + cos �0
� = −

1

sin �0
�

−�

� sinh �0 sin �x

sinh �
coth �� d , �B8�

alid for ��0 and −���0��. Validity extends to �=0 if the T operator is understood to be a
rincipal value integral in two senses, the second being �P��−�

� =limR→��P��−R
R .

It is immediately clear from Eq. �B8� that the case �0=�� can be reduced to two applications
f Eq. �B2�. The result is

T� 1

cosh �x + cos ��
� = −

1

sin ��

sinh �x

cosh �x + cos ��
, �B9�

alid for −� /����� /�. This integral �with an appropriate shift in x� confirms Eq. �7.30� for the
ne-soliton solution of the ILW equation.

The integral on the right-hand side of Eq. �B8� also simplifies when �0 is a nonzero integer

ultiple of �� or differs from such a value by �. Examples are
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T� 1

cosh �x − cos ��
� =

1

sin ��
� sinh �x

cosh �x − cos ��
−

�

��
tanh

�x

2�
� , �B10�

alid for 0���2� /�,

T� 1

cosh �x + cos 2��
� = −

1

sin 2��
� sinh �x

cosh �x + cos 2��
+ tanh

�x

2
� , �B11�

alid for −� / �2������ / �2��, and

T� 1

cosh �x − cos 2��
� =

1

sin 2��
� sinh �x

cosh �x − cos 2��
+ coth

�x

2
−

�

��
coth

�x

2�
� , �B12�

alid for 0���� /�.
The small � limits of Eqs. �B10� and �B12� give

T� 1

x2 + �2� =
x

��x2 + �2�
−

�

2�2 tanh
�x

2�
, �B13�

T� 1

x2 + 4�2� =
1

2�x
+

x

2��x2 + 4�2�
−

�

4�2 coth
�x

2�
, �B14�

hich can be proved directly by summing residues in the upper-half 	 plane. More generally,

T� 1

x2 + n2�2� =
x

n�
�
k=1

n � 1

x2 + �2k − n�2�2� −
�

2n�2 coth��x

2�
+

n�i

2
� . �B15�

The aforementioned elementary case where � is a rational multiple of � /� is best handled by
pplying the rectangular contour to the right-hand side of Eq. �B8�. The simplest examples are

T� 1

cosh��x/�� + cos �0
� = −

��0 sinh��x/�� + �x sin �0

�� sin �0
cosh��x/�� + cos �0�
, �B16�

T� 1

cosh��x/�2��� + cos �0
� = −

2��0 sinh��x/�� − �x sin 2�0

�� sin �0
cosh��x/�� − cos 2�0�
. �B17�

ore generally,

T� 1

cosh�m�x/�n��� + cos �0
� = −

1

m� sin �0
cosh�m�x/�� − �− 1�n cos n�0�

! �n�0 sinh
m�x

�
− �− 1�nm�x

�
sin n�0

+ 2m��
k=1

n−1

�− 1�k cot
km�

n
sin k�0 sinh

�n − k�m�x

n�

+ 2n��
h=1

m−1

cosec
hn�

m
sin

hn�0

m
sinh

�m − h��x

� � . �B18�

Additional consequences of Eq. �B8� can be deduced by parameter differentiation or integra-

ion. Multiply both sides by sin �0 and integrate with respect to �0. We get
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T�log
cosh �x + cos �2

cosh �x + cos �1
� = �

−�

� �cosh �2 − cosh �1�sin �x

 sinh �
coth �� d , �B19�

alid for −��� j��, j=1,2. A cancellation occurs when �2+�1=2��. The result is

T�log
cosh �x + cos��� + ��
cosh �x + cos��� − ��� = 2�

−�

� sinh � cosh �� sin �x

 sinh �
d

= 2 tan−1� sin � sinh �x

cos � cosh �x + cos ��
� . �B20�

part from a shift in x, this is the T transform of the one-soliton solution of the MILW equation,
onfirming Eq. �7.37�.
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We present the formulas for twist quantization of g2, corresponding to the solution
of a classical YB equation with support in the eight-dimensional Borel subalgebra
of g2. The considered chain of twists consists of the four factors describing the four
steps of quantization: Jordanian twist, the two twist factors extending Jordanian
twist and the deformed Jordanian or in a second variant additional Abelian twist.
The first two steps describe as well the sl�3� quantization. The coproducts are
calculated for each step in explicit form, and for that purpose we present new
formulas for the calculation of similarity transformations on the tensor product. We
introduce new basic generators in universal enveloping algebra U�g2� that provide
nonlinearities in the algebraic sector maximally simplifying the deformed
coproducts. © 2005 American Institute of Physics. �DOI: 10.1063/1.2041849�

. INTRODUCTION

In this paper we shall consider the basic nonstandard quantum deformations of complex
xceptional Lie algebra g2. There are four complex semisimple Lie algebras of rank 2, given by

2�sl�3�, D2�o�4�=o�3� � o�3�, B2�C2�o�5��sp�4� and g2, with 8, 6, 10, and 14 generators,
espectively. The eight-dimensional carrier of classical r matrices that describe our deformations is
qual to the Borel subalgebra b+�g2� of g2.

There are two natural embeddings related with the group G2.
�i� G2�O�7�. The fundamental matrix representation of G2 is seven dimensional. The 7�7

rthogonal matrices �Lab��O�7� �a ,b=1,2 , . . . ,7� belong to the group G2 if the following cubic
onstraint is satisfied:1,2

fa1a2a3
= fb1b2b3

La1b1
La2b2

La3b3
, �1.1�

here the totally antisymmetric cubic tensor fabc describes the multiplication table for imaginary
ctonions ta,

tatb = fabctc, �1.2�

nd the values of fabc are determined by the following choice �we list only nonvanishing values�:

f127 = f157 = f163 = f264 = f245 = f374 = f576 = 1. �1.3�

herefore there are only seven independent equations �1.1� reducing 21 parameters of O�7� to 14
arameters of the group G2.

We see that the fundamental seven-dimensional representation �7� of Lie algebra g2 inherits
asic properties of the fundamental o�7� representation: reality and its dimensionality. The gen-
rators �Ek

l ,Ak ,Bl� �k , l=1,2 ,3� of g2 satisfy the following relations �Refs. 1–5�:

�On leave of absence from Sankt-Petersburg University, Ulianovskaya 1, Petrodvoretz, 198904 Sankt Petersburg, Russia
�
On leave of absence from Institute of Nuclear Physics, Moscow State University, 119 992 Moscow, Russia
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�Ek
l,Em

n� = �m
lEk

n − �k
nEm

l, �1.4a�

�Ek
l,Am� = �m

lAk −
1

3
�k

lAm, �1.4b�

�Ek
l,Bn� = − �k

nBl +
1

3
�k

lBn, �1.4c�

�Am,Bn� = Em
n, �1.4d�

�Am,An� = −
4

3
�mnlB

l, �1.4e�

�Bm,Bn� = �mnlAl, �1.4f�

here

Ek
k = 0, �1.4g�

nd we employ the su�3� tensorial basis.
�ii� sl�3��g2 or su�3��g2 �real form�. The generators Ek

l forming the subalgebra �1.4a�
escribe sl�3� �if g2 is a complex Lie algebra� or su�3� �if we introduce in g2 the suitable real
tructure�. The Lie algebra generators of g2 belong to a 14-dimensional adjoint representation �14� �
hat decomposes under sl�3� �or su�3�� as follows:

�14� � = �8� � + �3� � + �3̄� � . �1.5�

n the realization ��1.4a�, �1.4b�, �1.4c�, �1.4d�, �1.4e�, and �1.4f�� of the Lie algebra g2, the
enerators Am �Bm� transform as fundamental triplet �antitriplet� representations of sl�3� or su�3�.
hese properties can also be seen from the root diagram of g2 �see Sec. II�.

The relations �1.4a�, �1.4b�, �1.4c�, �1.4d�, �1.4e�, �1.4f�, and �1.4g� show that the coset space
6=G2 /SU�3� is a nonsymmetric Riemannian space, with torsion described by the nonvanishing
hs of relations �1.4e� and �1.4f�. One of our aims in this paper is to provide an algebraic ground
or new quantum deformation of the sphere S6 with torsion.

The embedding of a three-dimensional fundamental representation of su�3� described by
ell-Mann fundamental matrices �k �k=1, . . . ,8� into a seven-dimensional fundamental represen-

ation of g2 looks as follows:

�k =
1
�2	�k 0 0

0 − �k
* 0

0 0 0

 , �1.6�

here we use the standard normalization

Tr �k�l = Tr �k�l = 2�kl. �1.7�

e identify two Cartan generators of g2 with the su�3� generators �3 and �8.
Our plan for this paper is the following:
In Sec. II we shall consider the Lie algebra g2 in the Cartan-Weyl basis �see, e.g., Ref. 6�,

hich is directly linked with the generators �Ek
l ,Ak ,Bl� satisfying the algebra �1.4a�, �1.4b�, �1.4c�,

1.4d�, �1.4e�, �1.4f�, and �1.4g�. We present the important class of triangular r matrices for g2,
atisfying the classical Yang–Baxter equation �CYBE�. It appears that the two-parameter families

f such r matrices have as its carrier algebra the whole eight-dimensional Borel subalgebra
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+�g2��g2. We show that the parameters of the considered classical r matrices can achieve fixed
onzero values by means of inner automorphism maps inside g2 algebra. In Sec. III we shall recall
he general formulas that describe the twist quantization method,7–12 and we shall introduce the
eneral twisting function, describing the twist quantization procedure for g2 with the eight-
imensional carrier space for its r matrix. In Sec. IV we obtain first the explicit formulas describ-
ng the twist quantization of g2 generated by the sl�3� classical r matrix. It appears that these
uantization formulas for g2 describe the extension of known relations describing the twist quan-
ization of sl�3�.12 In particular, following general techniques presented in Ref. 13, we shall
ntroduce a suitable nonlinear basis in the deformed Hopf algebras. In Sec. V we consider the most
eneral g2 quantizations containing two additional twists, depending on the g2 generators from the
oset G2 /sl�3�. In Sec. VI we present a general discussion and some conclusions. We remark that
n Secs. IV and V we shall use new algebraic formulas for calculating twisted coproducts pre-
ented in Sec. III D and shall introduce a new basis of U�g2�, which will simplify the twisted
oproduct formulas.

The motivation for our work is mainly to present a new mathematical result—an interesting
lass of quantum deformations for an important Lie algebra. On the other side, it should be
tressed that g2 algebra recently has attracted attention of physicists in the domain of elementary
article physics and fundamental interactions theory. In particular, we recall the following.

�i� In 11-dimensional M theory, there were proposed the internal manifolds with g2 holonomy
s a base for the grand unification describing an extension of the standard model in particle
hysics �see, e.g., Refs. 14–17�. The algebra g2 implies seven-dimensional internal symmetry
pace as the privileged one, in obvious connection with the relation 11=4+7.

�ii� In the reduction of supersymmetric theories from D=11 to D=4, the g2 internal symmetry
mplies a phenomenologically interesting case of D=4 models with N=1 supersymmetry.5 In
articular, there were also considered standard and supersymmetric extensions of D=4 chromo-
ynamics to G2 gauge theories5 with an interesting exceptional quark confinement mechanism.

�iii� There are four Hurwitz algebras �real numbers R, complex numbers C, quaternions H, and
ctonions O�; G2 acts on seven imaginary octonionic units and describes the automorphism group
f the octonion algebra. All applications of exceptional and octonions groups to the description of
ymmetries in elementary particle physics �see, e.g., Ref. 18� is therefore strongly linked with the
ppearance of G2 symmetry.

In this paper we consider only the quantum deformations of universal enveloping algebra
�g2�; it is an interesting problem to supplement the considerations with deformations of dual
opf algebra describing matrix quantum G2 group and, further, describe, e.g., the quantum defor-
ations of S6=G2 /SL�3�. In such a way one can obtain an example of the six-dimensional

ounterpart of a two-dimensional Podleś sphere,19 provided by the deformed coset SU�2� /U�1�.

I. CARTAN–WEYL BASIS OF g2 AND JORDANIAN TYPE CLASSICAL r MATRICES

. Cartan–Weyl basis of g2

In order to describe a Cartan–Weyl basis of g2, let us introduce the Dynkin diagram for its
imple roots �= ��1 ,�2� �see Fig. 1�:

The corresponding standard A= �aij� �i , j=1,2� and symmetric Asym= �aij
sym�i,j Cartan matrices

FIG. 1. Dynkin diagram of the Lie algebra g2.
re given by
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A = � 2 − 1

− 3 2
�, Asym = � 6 − 3

− 3 2
� . �2.1�

he Lie algebra g2 is generated by the six Chevalley elements e�i
, e−�i

, h�i
�i=1,2� with the

efining relations �see, e.g., Ref. 6�

�h�i
,h�j

� = 0,

�h�i
,e±�j

� = ± aij
syme±�j

,

�e�i
,e−�j

� = �ijh�i
,

†e±�1
,�e±�1

,e±�2
�‡ = 0,

†��†e±�1
,e±�2

�,e±�2
‡,e±�2

�,e±�2
‡ = 0. �2.2�

The positive �+�g2� and total ��g2�=�+�g2�� (−�+�g2�) root systems of g2 are presented in
erms of an orthonormalized basis ��1 ,�2� of a two-dimensional Euclidian space as follows:

�+�g2� = �3�1,�2,
�3

2
�1 ±

1

2
�2,

�3

2
�1 ±

3

2
�2� , �2.3�

��g2� = ±�3�1, ± �2, ±
�3

2
�1 ±

1

2
�2, ±

�3

2
�1 ±

3

2
�2� , �2.4�

here the simple roots are given by �1= ��3/2��1− 3
2�2 and �2=�2. It is convenient to present the

otal root system by the root diagram presented in Fig. 2.
For a construction of the composite root vectors e	 �	� ±�1 , ±�2�, we fix the following

ormal ordering of the positive root system �+�g2� �see Ref. 6�:

�1,�1 + �2,2�1 + 3�2,�1 + 2�2,�1 + 3�2,�2, �2.5�

hich corresponds to “clockwise” ordering for positive roots in Fig. 2 if we start from the root �1

FIG. 2. The root diagram for g2.
o the root �2. For convenience we introduce the short notations,
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ek,l ª ek�1+l�2
, hk,l ª kh�1

+ lh�2
, �2.6�

or k , l=0, ±1, . . . . According to the ordering �2.5�, we set the composite roots generators with
uitably chosen numerical coefficients as follows:

e1,1 = �e1,0,e0,1�, e−1,−1 = − �e−1,0,e0,−1� ,

e1,2 = �e1,1,e0,1�, e−1,−2 = −
3

4
�e0,−1,e−1,−1� ,

e1,3 = �e1,2,e0,1�, e−1,−3 = −
3

4
�e0,−1,e−1,−2� ,

e2,3 = �e1,3,e1,0�, e−2,−3 = −
3

4
�e−1,0,e−1,−3� . �2.7�

The complete set of relations for the Cartan–Weyl basis of g2 can be read off from the
ormulas �1.4a�, �1.4b�, �1.4c�, �1.4d�, �1.4e�, and �1.4f� after the identification

h1,0 � h1 = E2
2 − E3

3, h0,1 � h2 =
1

6
�E1

1 − 2E2
2 + E3

3� , �2.8a�

nd

e1,0 = E2
3, e−1,0 = E3

2,

e0,1 = B2, e0,−1 = A2,

e1,1 = − B3, e−1,−1 = − A3,

e1,2 = A1, e−1,−2 = B1,

e1,3 = E1
2, e−1,−3 = E2

1,

e2,3 = E1
3, e−2,−3 = E3

1. �2.8b�

. Jordanian-type classical r matrices for g2

First, we introduce some definitions concerning classical r matrices. Let g be any simple Lie
lgebra; then g=n− � h � n+, where n± are maximal nilpotent subalgebras and h is a Cartan sub-
lgebra. The subalgebra n+ �n−� is generated by the positive �negative� root vectors e
 �e−
� for all
��+�g�. The symbol b+ will denote the Borel subalgebra of g, b+ªh � n+. Let the elements

��h and e��n+ satisfy the relation

�h�,e�� = e�. �2.9�

two-tensor rJ�����b+ � b+ of the form

r����� = ��h� ∧ e� ª ���h� � e� − e� � h�� �2.10�

atisfies CYBE and it is called the Jordanian classical r matrix. The symbol ���C is a deformation
arameter. Moreover, let elements e	±i, indexed by the symbols i and −i, i� I= �1,2 , . . . ,N�,

atisfy the relations
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�h�,e	i
� = �1 − t	i

�e	i
, �h�,e	−i

� = t	i
e	−i

, �2.11a�

�e	i
,e−	j

� = �ije	0
, �e	±i,e	±j� = 0, �2.11b�

�e	±i,e	0
� = 0. �2.11c�

It is not difficult to check �see also Ref. 8� that the element

r�;N���� = ���h� ∧ e� + �
i=1

N

e	i
∧ e	−i� �2.12�

atisfies CYBE, and it will be called the extended Jordanian r matrix of N order. Let N be of
aximal order, i.e., there do not exist other elements e	±j�n+, jN that satisfy the relations

2.11c�; then the element �2.12� will be called the extended Jordanian r matrix of maximal order.20

t is evident that the extended Jordanian r matrix of maximal order is defined by the elements

��h, e��n+ and the Borel subalgebra b+. Here we shall consider a special �“canonical”� case
hen e� and e	±i �i=1,2 , . . . ,N� are weight elements with respect to the Cartan subalgebra h,

�h,e�� = �h,��e�, �h,e	±i� = �h,	±i�e	±i �2.13�

or any h�h and for all i=1,2 , . . . ,N. Analyzing the structure of the positive root systems of the
omplex simple Lie algebras, we see that if e	±j�n+, the maximal order N of the extended
ordanian r matrix is associated with the maximal root, i.e., the root � is maximal.

Let us pass now to the Lie algebra g=g2. The maximal root generator e� is e2,3=e2�1+3�2
and

he extended Jordanian matrix of maximal order is provided by formula �2.12� with N=2. It takes
he form

r2,3;2��� = ��h2,3 ∧ e2,3 + e1,1 ∧ e1,2 + e1,3 ∧ e1,0� . �2.14�

In order to obtain the generalizations of the r matrix �2.14�, one can use the theorem by
elavin and Drinfeld, which states that the sum of two r matrices r1 ,r2 is again a classical r
atrix21 if r2 has a carrier L�g2 �r2�L � L� that cocommutes with r1 �i.e., it is a kernel of the

ialgebra cobracket�.
The maximal subalgebra in g2, which is a kernel of the Lie bialgebra cobracket determined by

he r matrix �2.14� has the following linear basis:

L = �h0,1,e0,1,e0,−1,e2,3� , �2.15�

.e., �r2,3;2��� , l � 1+1 � l�=0�l�L�. From the generators of the subalgebra L, one can construct
he following five classical r matrices: �a� h0,1∧e0,1, �b� h0,1∧e2,3, �c� e0,1∧e2,3, �d� h0,1∧e0,−1, �e�
0,−1∧e2,3.

The r matrices that we shall consider below are obtained as the linear combination of �2.14�
nd the r matrices �a� and �b�. One can show that the results of the addition of the r matrix �2.14�
nd the r matrices �c�–�e� can be obtained from the previous two cases by suitable automorphisms
f the algebra g2.

It follows that we can consider two r matrices as basic ones, or, more explicitly,

r1 = �h0,1 ∧ e0,1 + ��h2,3 ∧ e2,3 + e1,1 ∧ e1,2 + e1,3 ∧ e1,0� , �2.16a�

r2 = 
h0,1 ∧ e2,3 + ��h2,3 ∧ e2,3 + e1,1 ∧ e1,2 + e1,3 ∧ e1,0� , �2.16b�

here � , � , 
 are arbitrary.
One can raise the question of whether the classical r matrices �2.16a� and �2.16b� can be

xtended to carrier space containing also the generators belonging to b−. Unfortunately, such an

xtension, which cannot be eliminated by the inner automorphism of g2, is not possible for a
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urely algebraic reason. One can show that there does not exist an even dimensional subalgebra of

2, with dimension ten �two extra generators from b−�, which extends the full Borel subalgebra b+.
n fact, the consideration of classical r matrices with the carrier in both Borel subalgebras of g2

hat, however, are not simultaneously the classical r matrices for a sl�3� subalgebra is an interest-
ng problem to study, going beyond the scope of the present paper.

Below we shall consider the quantization of g2 in the four steps, corresponding to the quan-
ization of the following sequence of r matrices.

i� Jordanian twist quantization,

rJ = �h2,3 ∧ e2,3. �2.17�

ii� Two extended Jordanian twist quantizations,

rEJ = ��h2,3 ∧ e2,3 + e1,1 ∧ e1,2� , �2.18a�

rE�EJ = ��h2,3 ∧ e2,3 + e1,1 ∧ e1,2 + e1,3 ∧ e1,0� . �2.18b�

The r matrix rEJ describes the extended Jordanian twist quantization of the sl�3� subalge-
bra.

iii� Full twist quantization with additional twist factors describing the deformed Jordanian twist
�classical r matrix �2.16a�� and the Abelian twist �classical r matrix �2.16b��.

It should be observed that the parameters �, 
, and � occurring in the classical r matrices
2.16a� and �2.16b� can be rescaled by inner automorphisms of g2 algebra as well as by the overall
caling of the r matrices. In particular, performing the two-parameter rescaling by Cartan genera-
ors �we use the notation �ad�a�A � B��a ,A� � B+A � �a ,B��:

exp�ad��c1h1,0 + c2h0,1��r1 = e�1/2�c1r1,

exp�ad��c1h1,0 + c2h0,1��r2 = e�−�1/2�c1+�1/3�c2�
h0,1 ∧ e0,1 + e�1/2�c1rE�EJ, �2.19�

e see that while the parameter � remains unchanged, the parameters 
 and � can be rescaled,
.g., to unity. In order to modify the parameter � we can employ the overall scaling of the r
atrix. We see therefore, that similarly like in the case of Jordanian deformation of sl�2� or �

eformation of Poincaré algebra, the deformations with different values of the parameters �, 
,
nd � are mathematically equivalent �provided ��0, 
�0, ��0� but distinguishable if applied to
hysical models.

II. TWIST QUANTIZATION METHOD AND THE GENERAL TWIST FUNCTIONS FOR g2

. Quantum deformations by twisting coproducts of universal enveloping
lgebras

Consider the universal enveloping algebra U�g� of a Lie algebra g as a Hopf algebra with the
omultiplication ��0� generated by the primitive coproduct in g. The parametric invertible solution
���=�f i

�1�
� f i

�2��U�g� � U�g� of the twist equations,8

F12���0�
� 1��F� = F23�1 � ��0���F� , �3.1�

�� � id��F� = �id � ���F� = 1 � 1, �3.2�

efines the deformed �twisted� Hopf algebra UF�g� with the unchanged multiplication, unit and
ounit �as in U�g��, the twisted comultiplication and antipode defined by the relations

�0� −1
�F�u� = F� �u�F , u � U�g� , �3.3a�
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SF�u� = vS�0��u�v−1, v = � f i
�1�S�0��f i

�2�� . �3.3b�

The twisted algebra UF�g� is triangular, with the universal R matrix,

RF = F21F−1, �3.4�

hich belongs to some extension of U�g� � U�g�. When F is a smooth function of � and
im�→0 F=1 � 1 then in the neighborhood of the origin the R-matrix can be presented as

RF = 1 � 1 + �rF + o��� , �3.5�

here rF is the skew-symmetric classical r matrix corresponding to the twist F. Let us write
xplicitly the r matrix as follows:

rF = aijIi ∧ Ij . �3.6�

hen we obtain

F = 1 � 1 + �ãijIi � Ij + O��� , �3.7�

here aij= 1
2 �ãij− ãji�.

By a nonlinear change of basis in U�g�, one can modify the twisted coproducts and locate part
f the deformation in the algebraic sector.

. Twist deformations for U„g2… Hopf algebra

Our aim is to construct explicitly such a sequence of the twist deformations UF�g2� of the
lgebra U�g2� that will lead to the largest possible carrier subalgebra for the corresponding clas-
ical r matrices. The final element of the corresponding twists will be the full chain of extended
wists whose carrier coincides with the Borel subalgebra of g2. The peculiarity of the chain twist
eformation is that the deformed algebra can be twisted step by step by the consecutive twisting
actors with their specific properties. One of the important aims will also be the construction of
roper nonlinear basis in U�g2�. Indeed, on each step we shall construct the nonlinear basis in
hich the costructure of the Hopf algebra UF�g2� becomes more transparent.

In Sec. II we have presented the sequence of classical r matrices for U�g2� �see �2.17�, �2.18a�,
2.18b�, �2.16a�, and �2.16b��. The quantization of these classical r-matrices is performed as
ollows.

a� First, we introduce the standard Jordanian twist quantizing the classical r matrix �2.17�,
corresponding to the long root 2�1+3�2 in g2. We have the following twisting element:22

FJ = eh2,3��2,3 = eH��, �3.8�

where

H = h2,3 = 2h1,0 + 3h0,1, � = ln�1 + e2,3� . �3.9�

b� There are four types of the extension twisting factors that can be applied to UJ�g2�:12

FE+
= ee1,1�e1,2e−�1/2��

FE−
= e−e1,2�e1,1e−�1/2��

F̃E = ee1,3�e1,0e−�1/2��
+
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F̃E−
= e−e1,0�e1,3e−�1/2��

. �3.10�

They can be composed to provide the following four types of the two-element extensions of
�3.8�:

FE++
= ee1,3�e1,0e−�1/2��

ee1,1�e1,2e−�1/2��
,

FE+−
= ee1,3�e1,0e−�1/2��

e−e1,2�e1,1e−�1/2��
,

FE−+
= e−e1,0�e1,3e−�1/2��

ee1,1�e1,2e−�1/2��
,

FE−−
= e−e1,0�e1,3e−�1/2��

e−e1,2�e1,1e−�1/2��
. �3.11�

One can note that exponential factors in the twists �3.11� commute with each other, and do
not describe themselves as the solutions of twist equations �3.1� and �3.2� with primitive
coproduct ��0�. The four twists �3.11� lead to the equivalent Hopf algebras, however, their
coalgebra relations differ considerably. The most elegant result is obtained when the exten-
sion is chosen as follows:

FE ª FE−+
= FE−

FE+
= e−e1,2�e1,1e−�1/2��

ee1,3�e1,0e−�1/2��
, �3.12�

with the extended twist

FEJ ª e−e1,2�e1,1e�−1/2��
ee1,3�e1,0e�−1/2��

eH��. �3.13�

It should be added that the products of twists FE±
FJ describe the twist quantization of sl�3�

subalgebra.
c� The additional Abelian twist factor �h�3h0,1�,

FA = eh��, �3.14�

that produces a kind of a “rotation” in the root space of g2, can enlarge the extended twist
�3.13�:

FAEJ ª eh��e−e1,2�e1,1e�−1/2��
ee1,3�e1,0e�−1/2��

eH��. �3.15�

In such a way we obtain the quantization of the classical r matrix �2.16b�.
d� We can construct the chain of twists �see, e.g., Refs. 9 and 10� for g2 by additionally

deforming the twisted UEJ�g2� by the second link of the chain, which is the Jordanian factor:

FJ� = eh��, �3.16�

with

� = ln�1 + e0,1 +
1

2
�e1,2�2� . �3.17�

This gives the quantization with the largest carrier

FJ�EJ ª eh��e−e1,2�e1,1e�−1/2��
ee1,3�e1,0e�−1/2��

eH��. �3.18�

The twist function �3.18� describes the quantization of the classical r matrix �2.16a�. The twist
3.15� can also form the chain with FJ�=eh��� �see Sec. V C�. But the Abelian twist factors FA

nd this new Jordanian factor are related by the formula FJ�FA=FJ�. This means that for any

rotated” extended twist FAEJ we get the unique chain �3.18�.
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In Secs. IV and V we shall present the deformed Hopf algebras UF�g2� with more details,
iscuss their properties, and introduce the suitable bases of U�g2�. In such a way we obtain the
wist quantizations for g2 with the largest carrier, which can be described by the chain of twists.

The following paragraph Sec. III C will be devoted to the description of the mathematical
ramework, which permits us to choose the basis in U�g2� with simplified coproduct formulas.
ubsequently, in Sec. III D we shall derive some new mathematical formulas simplifying the
alculation of coproducts in Secs. IV and V.

. Dual bases and simplification of coalgebra structure

Let �g ,g#� be a coboundary Lie bialgebra. The dual Lie algebra g# is determined by the r
atrix and can be written explicitly in the form of Lie coalgebra with the cocommutators ��a�
�a � 1+1 � a ,r�, �a�g�. Let G# denote the dual group for �g ,g#�—the universal covering Lie
roup with the Lie algebra g#. According to the quantum duality principle,13 the Hopf algebra

F�g� naturally treated as quantum algebra with respect to U�g� can be also considered as a
uantum group with respect to Fun �G#� : UF�g��Fun� �G#�. The coproducts in UF�g� describe
he deformed group multiplication law of the dual group G#. These multiplications are deformed
ue to the fact that generators in Fun� �G#� are subject to the relations of U�g�. The undeformed
oproducts for Fun �G#� can be obtained by constructing the second classical limit Fun� �G#�

Fun �G#� for the Hopf algebra UF�g�.26 Among other important consequences, the quantum
uality prescribes the existence of two preferred bases for the Hopf algebra UF�g�:25 the natural
et of generators for g �usually they form the Cartan–Weil basis in g� and the basis natural for G#.
he latter may be the exponential basis, generated by the Cartan–Weil basis in g#. Evidently, the
ostructure of UF�g� becomes transparent only in terms of the group G# that is in the dual group
asis or �keeping in mind the exponential map� in a g# basis. For algebras of rank�g�=1 one can
se the g coordinates for the multiplications as well as for the comultiplications. Starting with
ank�g�=2 �see, for example, UF�sl�3��� in Ref. 12 some of the coproducts written in a classical
basis �natural g coordinates� are complicated, and it is difficult to study their properties. To pass

rom g to g# basis, it is necessary to compare the generators in UF�g� induced by the undeformed
�g� with those corresponding to Fun �G#� or to its canonical dual �Fun �G#��*�U�g#�. The
eneral description of the corresponding algorithm and, in particular, the transformation of the
ie-algebra bases �i.e., the change of coordinates g↔g#�, was presented in Ref. 13. In Sec. IV for

he obtained quantum algebras UF�g�, we shall use both g and g# bases and demonstrate their role
n the description of algebraic and coalgebraic properties of twist deformations.

. New algebraic formulas for the similarity transformation of tensor products

Calculations of deformed coproducts rely on the successive application of the following
ersion of the Baker-Campbell-Hausdorff �BCH� formula �the adjoint action in terms of the
xponential map�:

eXAe−X = exp�adX�A � �
k=0

�
1

k!
adX

k A = �
k=0

�
1

k!
�X,�. . .�X,A� . . . �� . �3.19�

ore exactly, since one works in the tensor product of two algebras U � U, the BCH formula we
eed is as follows:

eX�Y�A � B�e−X�Y = exp�adX�Y��A � B�

= exp�adX � Y��A � 1�exp�X � adY��1 � B�

= �
k=0

�
1

k!
adX

k A � Yk�
m=0

�
1

m!
Xm

� adY
mB . �3.20�
he above expression is a product of two infinite series. Fortunately, in most applications impor-
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ant for our study here, both series truncate and become finite due to the fact that one acts in the
nveloping algebra U=Ug of some finite-dimensional simple Lie algebra g and adjoint actions of
on-Cartan elements are nilpotent. The other case that can be handled well occurs when one of the
lements, say X, belongs to Cartan subalgebra. Then adX A��X ,A�=aA and adX

k A=akA, with a
C. In this case the first factor shrinks into the following simple expression:

�
k=0

�
1

k!
adX

k A � Yk = A � eaY . �3.21�

e see that the complexity of calculations heavily depends on the degree of nilpotency. We should
lso notice that in applications, one of the factors, say Y = f�E�, might have a functional form in
erms of some generator E, e.g., corresponding to the maximal root vector. We are particularly
nterested when f�E�=ln�1+E� or f�E�=eE.

When the degree of nilpotency is lower than two, i.e. adE
2 B� [E , �E ,B�]=0, one can use the

ollowing obvious expression �f�E� ,B�= �E ,B�f��E� �where f� denotes the derivative of f�. This
eads to

�
m=0

�
1

m!
Xm

� adf�E�
m B = 1 � B + X � �E,B�f��E� . �3.22�

Dealing with these simple techniques permits us to calculate almost all deformed coproducts
xcept the one described by the last twist factor FC �see Eq. �5.22��. In order to complete calcu-
ations one needs more general and more sophisticated methods. For this purpose we have found
wo combinatorial expressions, which turned out to be very useful.

If X and Y are two commuting elements and, in addition, �X ,B�=0, then

YXBY−X � eX ln YBe−X ln Y = �
k=0

�

Xk� adY
k B

k!
Y−k, �3.23�

here the sequence

xk� �
��x + 1�

��x − k + 1�
= x�x − 1� . . . �x − k + 1� = �

m=1

k

s�k,m�xm �3.24�

tands for the so-called lower �or falling� factorial polynomials and s�n ,k� are the Stirling numbers
f the first kind.

Notice that if �Y ,B�=0 and �Y ,X�=0, one gets

YXBY−X � eX ln YBe−X ln Y = �
k=0

�
1

k!
�ln Y�kadX

k B . �3.25�

nother useful combinatorial formula is

eYeE
Be−YeE

= �
k=0

adE
k B

k!
qk�YeE� = �

m=0
��

k=m

adE
k B

k!
S�k,m��YmemE, �3.26�

henever E and B commute with Y. Here the sequence

qk�x� = �
m=0

k

S�k,m�xm �3.27�

s given by the so-called Bell polynomials and S�n ,k� are Stirling numbers of the second kind. It
k�
hould be also remarked that both families of polynomials, x and qk�x�, belong to the wide class
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f so-called convolution polynomials known also as polynomial sequences of binomial type since,
.g.,

qk�x + y� = �
m=0

k � k

m
�qm�x�xk−m�y� . �3.28�

uch polynomials are extensively discussed in combinatorial analysis and umbral calculus �see
efs. 23 and 24�. Here we have found operator analogs of some fundamental formulas involving
olynomial sequences of binomial type. All of the above formulas can be checked by direct
alculation in any order of the power expansion, the nonperturbative proof will be presented
lsewhere.

Both formulas �3.23� and �3.26� can be adjusted to the particular situation for nonstandard
Jordanian� and extended twists. For example, adapting to the case of Jordanian twist FJ=eH��

ith H being a Cartan element: �H ,A�=aA ,�=ln�1+E�, one gets

FJA � BFJ
−1 = �

k=0

�

Hk�
�

adE
k B

k!
e−k��A � ea�� = �

k=0

�

Hk�A �
adE

k B

k!
e�a−k��. �3.29�

Similarly, the counterpart of �3.29� for extended twist �double exponential� FE=eX�Yef�E�
takes

he form

FE�A � B�FE
−1 = �

m=0

�
1

m!
Xm

� adf�E�
m Bqm�Yef�E���

k=0

�
1

k!
adX

k A � Ykekf�E�

= �
k,m�0

1

m!k!
Xm adX

k A � adf�E�
m B�

i=0

m

S�m,i�Yk+ie�k+i�f�E�, �3.30�

rovided that �Y ,B�= �Y ,E�=0.
In Secs. IV and V, these last formulas shall be particularly useful.

V. TWIST QUANTIZATIONS OF g2 GENERATED BY THE sl„3… TWISTS

We start by considering the two twist factors F corresponding to the classical r matrix �2.18a�
ith the carrier subalgebras inside the Borel subalgebra of sl�3��g2. This choice will permit us to

onstruct the first two steps of the twist deformation corresponding to the r matrices �2.16a� and
2.16b�. Performing such twisting, one can compare deformed Hopf algebras UF�g2� with the
nown deformation UF�sl�3��.8,12

. The first Jordanian twist

The Jordanian twist FJ can be based on any two-dimensional Borel subalgebra b+(sl�2�)�g2.
n our case this subalgebra is generated by �H�h2,3 ,e2,3�. The Jordanian r matrix is given by
2.17�, and the corresponding twisting element is FJ=eH�� �see Eq. �3.8��.

The costructure of the deformed algebra UJ�g2� is obtained by applying the similarity map
3.3a� to the primitive coproducts in U�g2�. In the carrier subalgebra b+(sl�2�), we obtain

�J�e2,3� = e2,3 � e� + 1 � e2,3, or �J��� = � � 1 + 1 � � , �4.1�

�J�H� = H � e−� + 1 � H . �4.2�

he generators of the long root sequences ±��1+k�2� �k=0,1 ,2 ,3� have the coproducts

1/2�
�J�e1,k� = e1,k � e + 1 � e1,k, �4.3�
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�J�e−1,−k� = e−1,−k � e−1/2� + 1 � e−1,−k + �− 1�kH � e1,�3−k�e
−�, �4.4�

escribing one- and two-dimensional subrepresentations of the Borel subalgebra b+(sl�2�). The
enerators with the roots “orthogonal” to 2�1+3�2 remain primitive:

�J�h� = h � 1 + 1 � h , �4.5�

�J�e0,±1� = e0,±1 � 1 + 1 � e0,±1. �4.6�

nd describe two-dimensional subrepresentations of b+(sl�2�). One can check that in g# \b+(sl�2�),
he generator H induces a shift adH :e1,�3−k�→e−1,−k, and this is exactly what indicates the last
erms of the above coproducts �J�e−1,−k�.

The coproduct for the lowest root generator e−2,−3,

�J�e−2,−3� = e−2,−3 � e−� + 1 � e−2,−3 + �H − H2� � �e−� − e−2�� + 2H � He−�, �4.7�

lso refers to a one-dimensional subrepresentation. This can be seen when we pass to the g# basis.
he following generator should be redefined here:

e−2,−3
˜

ª e−2,−3 − H2. �4.8�

he coproduct �J�e−2,−3
˜ � is quasiprimitive and similar to �J�H�:

�J�e−2,−3
˜ � = e−2,−3

˜ � e−� + 1 � e−2,−3
˜ . �4.9�

or the case of twisted UJ(sl�2�) the nonlinear transformation �4.8� was first indicated in Ref. 22.

. The first extended Jordanian twist

The peculiarity of the chain twist deformation is that the deformed algebra can be twisted
urther by other twisting factors. The quantization goes step by step and on each level you get the
eformed symmetry with its specific properties.

For the carrier gc�sl�3��g2, the extension factor should be

FE+
= ee1,3�e1,0e−�1/2��

. �4.10�

We remind the reader that sl�3� subalgebra is generated by the following eight elements:
H ,h ,e±2,±3 ,e±1,0 ,e±1,±3�.

The twist �4.10� is a solution of the twist equations �3.1� and �3.2� for UJ�g2� and the adjoint
perator exp(ad�e1,3 � e1,0e

−�1/2���) applied to the coproducts in UJ�g2� will perform the deforma-
ion FE+

:UJ�g2�→UE+J�g2�. The same result can be obtained directly by applying the twist

E+J= �FE+
FJ� :U�g2�→UE+J�g2�.

In the costructure of UE+J�g2�, we see the group multiplication of the solvable four-
imensional Lie group �see Ref. 12� with the Lie algebra equivalent to the carrier subalgebra gE+J

c

f the twist FE+J:

�E+J�e2,3� = e2,3 � e� + 1 � e2,3,

�E+J�H� = H � e−� + 1 � H − e1,3 � e1,0e
−�3/2��,

�E+J�e1,0� = e1,0 � e�1/2�� + e�
� e1,0,

�E+J�e1,3� = e1,3 � e−�1/2�� + 1 � e1,3. �4.11�
he other generators of the subalgebra sl�3� form the four-dimensional representation of L:
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�E+J�h� = h � 1 + 1 � h ,

�E+J�e−1,−3� = e−1,−3 � e−�1/2�� + 1 � e−1,−3 + h � e1,0e
−�,

�E+J�e−1,0� = + e−1,0 � e−�1/2�� + 1 � e−1,0 + H � e1,3e
−� − e1,3 � e1,0e1,3e

−�3/2��

+ e1,3 � �H − h�e−�1/2�� − �e1,3�2
� e1,0e

−2� − He1,3 � �e� − 1�e−�3/2��,

�E+J�e−2,−3
˜ � = + e−2,−3

˜ � e−� + 1 � e−2,−3
˜ − e−1,0 � e1,0e

−�3/2��

+ He1,3 � e1,0e
−�3/2�� + e1,3 � e−1,−3e

−�1/2��. �4.12�

Finally on the remaining six-dimensional space we also observed the adjoint action of the
arrier subalgebra gE+J

c �k=1,2�,

�E+J�e1,k� = e1,k � e�1/2�� + 1 � e1,k,

�E+J�e0,±1� = e0,±1 � 1 + 1 � e0,±1 + e1,�5+1�/2 � e1,�1±1�/2e
−�1/2��,

�E+J�e−1,−k� = e−1,−k � e−�1/2�� + 1 � e−1,−k + �− 1�kH � e1,�3−k�e
−� − e�2−k�,�5−2k� � e�k−1�,�k−2�e

−�

− e1,3 � e1,0e1,�3−k�e
−�3/2��. �4.13�

First of all, notice that sl�3� generates the well-known twisted algebra UEJ(sl�3�) �8� which
ere is a Hopf subalgebra UEJ(sl�3�)�UE+J�g2�. Thus, we obtain the intermediate UF(sl�3�) twist
uantization inside UF�f2�.

The nonprimitive terms in �E+J�e0,±1� are in agreement with the structure of g#. They describe
he action of the dual carrier group Gc

# in the two-dimensional indecomposable representations.
he third term in �E+J�H� �see Eq. �4.11�� is just due to the Heisenberg subgroup in Gc

*.
The essential nonlinearities in the costructure are present in the last terms in �E+J�e−1,−k� as

ell as in �E+J�e−2,−3
˜ � and �E+J�e−1,0�. It should be noticed that the generator e−2,−3

˜ =e−2,−3−H2 is
ot modified. This is a common property of all the generators with roots opposite the Jordanian
arrier.

Let us return to the nontrivial terms in the costructure �E+J. Comparing �E+J�e−1,0�,
E+J�e−1,−k� and �E+J�e0,±1� with the canonical multiplication in U�g#�, we find the following g#

asis:

e−1,0̃ = e−1,0 − He1,3,

e0,−1̃ = e0,−1 − e1,0e1,2e
−�,

e0,1̃ = e0,1 − e1,3e1,1,

e−1,−2
˜ = e−1,−2 − He1,1. �4.14�

n these terms the action of Gc on the six-dimensional space becomes transparent:

�E J�e0,1̃� = e0,1̃ � 1 + 1 � e0,1̃ − e1,1 � e1,3e
�1/2��,
+
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�E+J�e0,−1̃� = e0,−1̃ � 1 + 1 � e0,−1̃ − e1,0e
−�

� e1,2e
−�1/2��,

�E+J�e−1,−1� = e−1,−1 � e−�1/2�� + 1 � e−1,−1 − H � e1,2e
−� − e1,3 � e0,−1̃e

−�1/2��,

�E+J�e−1,−2
˜ � = e−1,−2

˜ � e−�1/2�� + 1 � e−1,−2
˜ − e1,1 � He�1/2�� − e0,1̃ � e1,0e

−�,

�E+J�e−1,0̃� = e−1,0̃ � e−�1/2�� + 1 � e−1,0̃ − e1,3 � he−�1/2��,

�E+J�e−2,−3
˜ � = e−2,−3

˜ � e−� + 1 � e−2,−3
˜ − e−1,0̃ � e1,0e

−�3/2�� + e1,3 � e−1,−3e
−�1/2��. �4.15�

. TWIST DEFORMATIONS SPECIFIC TO g2

. The full extended twist

The Jordanian twist FJ �4.1� can be enlarged by the second extension factor FE−
. Such an

xtension is the special property of the g2 root system. It does not exist for any other rank 2 simple
ie algebra. The following element is the solution of the twist equations for the Hopf algebra

E+J�g2�:

FE−
= e−e1,2�e1,1e−�1/2��

. �5.1�

ogether with the previously studied twist FE+J we obtain the full extended twist,

FEJ = e−e1,2�e1,1e−�1/2��
ee1,3�e1,0e−�1/2��

eH��. �5.2�

he carrier subalgebra gEJ
c �gEJ

c# is six-dimensional, it contains two Heisenberg subalgebras with
ommon central element e2,3 and the Cartan generator H. Applying the twist �5.2� to U�g2� or the
econd extension �5.1� to the Hopf algebra UE+J�g2� �constructed in the previous section� we
btain the new deformed costructure �E−+J. The coproducts �EJª�E−+J for the generators of gEJ

c

escribe the group multiplication in GEJ
c# , which is defined by the following relations:

�EJ�e2,3� = e2,3 � e� + 1 � e2,3,

�EJ�H� = H � e−� + 1 � H − e1,3 � e1,0e
−�3/2�� + e1,2 � e1,1e

−�3/2��. �5.3�

�EJ�e1,l� = e1,l � e�1/2�� + e�
� e1,l, l = 0,1.

�EJ�e1,2+l� = e1,2+l � e−�1/2�� + 1 � e1,2+l, �5.4�

hese six coproducts are typical for the extended Jordanian twists:8 each extension adds a sum-
and in �E−+J�H�, the constituent roots generators remain quasiprimitive, and the generator �

eformed by the extension factors.
On the plane “orthogonal” to the initial root �0=2�+3
, we find only one primitive generator,

�EJ�h� = h � 1 + 1 � h . �5.5�

ther two coproducts are deformed:

�E−+J�e0,1� = e0,1 � 1 + 1 � e0,1 − e1,2 � e1,2e
−�1/2�� +

1
�e1,2�2

� �1 − e−�� ,

2
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�E−+J�e0,−1� = e0,−1 � 1 + 1 � e0,−1 −
4

3
e1,1 � e1,1e

−�1/2�� −
2

3
�e� − 1� � �e1,1�2e−�. �5.6�

The generators in the negative sector have quite complicated coproducts in UEJ�g2�. For
xample,

�EJ�e−2,−3
˜ � = e−2,−3

˜ � e−� + 1 � e−2,−3
˜ − �e−1,0 − He1,3� � e1,0e

−�3/2�� + e1,3 � e−1,−3e
−�1/2��

− �e−1,−1 −
1

4
e1,2 + He1,2� � e1,1e

−�3/2�� − �2

3
e0,1 +

1

4
�e1,2�2� � �e1,1�2e−2�

+ e1,2 � �e−1,−2 −
1

4
e1,1e

−��e−�1/2�� +
1

2
�e1,2�2

� �1

2
�e1,1�2e−� + e0,−1�e−�

+
2

9
e1,3 � �e1,1�3e−�5/2�� −

1

6
�e1,2�3

� e1,0e
−�3/2��. �5.7�

otice that in this expression we use the generators e−2,−3
˜ , i.e., we suppose that e−2,−3

˜ will be
ppropriate for the deformed costructure, not only in UE+J�g2� but also in UEJ�g2�.

The coproducts for the elements �h ,e0,±1 ,e−1,−k ,e−2,−3 ;k=0, . . . ,3� describe the action of the
arrier group GEJ

c# in the eight-dimensional subrepresentation.
To make this adjoint action transparent, we perform the coordinate transformation g⇒g# �see

ec. III C�. According to the algorithm presented in Ref. 12, the new basic elements are intro-
uced:

e0,1
� = e0,1 +

1

2
�e1,2�2,

e0,−1
� = e0,−1 +

2

3
�e1,1�2e−�,

e−1,−3
� = e−1,−3 +

2

9
�e1,1�3e−2�,

e−1,−2
� = e−1,−2,

e−1,−1
� = e−1,−1 + He1,2,

e−1,0
� = e−1,0 − He1,3 +

1

6
�e1,2�3,

e−2,−3
� = e−2,−3

˜ . �5.8�

e see that the element e−1,−2 belongs to the g# basis for the group GEJ
# while the generator e−2,−3

˜
emains unchanged, however, we recall that on the previous step of quantization �in UE+J�g2�� it
as nontrivially deformed. The coproducts of generators �5.8� are the following:

�EJ�e0,1
�� = e0,1

� � 1 + 1 � e0,1
� ,

� � �
�EJ�e0,−1� = e0,−1 � 1 + 1 � e0,−1,
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�EJ�h� = h � 1 + 1 � h

�EJ�e−1,−3
�� = �e−1,−3

�� � e−�1/2�� + 1 � �e−1,−3
�� + 3h0,1 � e1,0e

−� + e0,−1
� � e1,1e

−�,

�EJ�e−1,−2� = e−1,−2 � e−�1/2�� + 1 � e−1,−2 − h0,1 � e1,1e
−� − e0,1

� � e1,0e
−� + e1,2 � e0,−1

�e−�1/2��,

�EJ�e−1,−1
�� = e−1,−1

� � e−�1/2�� + 1 � e−1,−1
� + e1,2 � h0,1e

−�1/2�� − e1,3 � �e0,−1
��e−�1/2��

+
4

3
�e0,1
�� � e1,1e

−�,

�EJ�e−1,0
�� = e−1,0

� � e−�1/2�� + 1 � e−1,0
� − e1,3 � 3h0,1e

−�1/2�� + e1,2 � e0,1
�e−�1/2��,

�EJ�e−2,−3
�� = e−2,−3

� � e−� + 1 � e−2,−3
� − e−1,0

� � e1,0e
−�3/2�� + e1,3 � e−1,−3

�e−�1/2�� − e−1,−1
�

� e1,1e
−�3/2�� −

2

3
e0,1
� � �e1,1�2e−2� + e1,2 � e−1,−2e

−�1/2�� +
1

2
�e1,2�2

� e0,−1
�e−�.

�5.9�

These coproducts correspond to the adjoint action of the algebra GEJ
c# on the eight-dimensional

pace G2 \gEJ
c . One can notice two subrepresentations on the subspaces spanned by �e0,±1

� ,h� and

e−1,−k
� ,e−2,−3

��. On the subspace with the generators �e0,±1
� ,h�, we have the trivial factor represen-

ation. This property means that on the plane orthogonal to the initial root we have the sl�2�
ubalgebra with primitive generators �e0,±1

� ,h�. Such an effect was first described in Ref. 9.
In the deformation U�g2�→UEJ�g2� the costructure �5.3� and �5.4� on the carrier subalgebra is

he extended Jordanian twist with two extension factors �as can be seen, for example, in

EJ(sl�4�)�. The specific properties of g2 become important in the negative sector �relations �5.9��,
here the pecularities of the root system induce additional terms. For example, the coproducts

EJ�e−1,−1
�� and �EJ�e−1,−2

�� contain the last two terms depending on the generators e0,1
� and e0,−1

�.
Comparing the generators e5k,l in �5.8� with ẽk,l �see �4.9� and �4.15�� one can see that most of

hem have different expressions in terms of the initial g basis. The reason is that the twisting �5.2�
ot only deforms the group GE+J

# but also changes its realization in terms of the initial g2 genera-
ors.

. The full chain of twists for G2: Adding the second Jordanian twist

The existence of the subalgebra U(sl�2�)�UEJ�g2� with primitive generators �e0,±1
� ,h� shows

hat the Hopf algebra UEJ�g2� can be additionally deformed by the second Jordanian twist. In other
ords, the twist equations �3.1� and �3.2� with ��0� replaced by �EJ have the solution FJ�=eh��,
here � is given by �3.17�, i.e., one can perform the transformation FJ� :UEJ�g2�→UJ�EJ�g2�
UC�g2�. The same result can be achieved by the chain of twists �3.18�:

FC = FJ�EJ = eh��e−e1,2�e1,1e−�1/2��
ee1,3�e1,0e−�1/2��

eH��, �5.10�

pplied to the initial U�g2�.
The carrier subalgebra gC

c is the Borel subalgebra b+�g2�. Applying the twist �5.10� to U�g2�,
e obtain the deformed costructure �J�EJª�C corresponding to the maximal carrier subalgebra in

2. In the Hopf algebra UC�g2� we have two �-like generators,
�C��� = � � 1 + 1 � � ,
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�C��� = � � 1 + 1 � � , �5.11�

nd the ordinary form of the coproduct for the Cartan generator of b sl�2� twisted by FJ�=eh��:

�C�h� = h � e−� + 1 � h .

In the coproducts for the elements corresponding to the positive long sequence �1+k�2 �k
0,1 ,2 ,3�, one can trace the adjoint action of the algebra gC

# :

�C�e1,3� = e1,3 � e−�1/2��+�3/2�� + 1 � e1,3,

�C�e1,2� = e1,2 � e−�1/2��+�1/2�� + 1 � e1,2 − h � e1,3e
−�,

�C�e1,1� = e1,1 � e�1/2��−�1/2�� + e�
� e1,1 − he�

� �e1,2e
−� +

1

2
e1,3e

−2�� +
1

2
h2e�

� e1,3e
−2�,

�5.12�

�C�e1,0� = e1,0 � e�1/2���3/2�� + e�
� e1,0 − he�

� �e1,1e
−� +

1

12
e1,3e

−3� +
1

2
e1,2e

−2��
+

1

2
h2e�

� �e1,2e
−2� + e1,3e

−3�� −
1

6
h3e�

� e1,3e
−3�. �5.13�

he terms corresponding to the powers of ad �Xh� of the short root operator dual to h �such as
1
6h3e� � e1,3e

−3w in the last row� are accompanied by the additional summands that will disappear
hen we pass �via the second classical limit� to the group costructure for GC

# . This is especially
vident when �C�H� is considered:

�C�H� = ead h��� H � e−� + 1 � H

− e1,3 � e1,0e
−�3/2�� + e1,2 � e1,1e

−�3/2�� �
= H � e−� + 1 � H + h � �−

1

2
�e1,2�2e−� −

1

2
e1,2e1,3e

−2� −
1

3
�e1,3�2e−3��

+
1

2
h2

� „e1,3e1,2e
−2� + �e1,3�2e−3�

… +
1

6
h3

� „− �e1,3�2e−3�
… − e1,3 � e1,0e

−�3/2���−��

− he1,3 � �− e1,1e
−�5/2��+�3/2�� −

1

12
e1,3e

−�9/2��+�3/2�� −
1

2
e1,2e

−�7/2��+�3/2���
−

1

2
h2e1,3 � �e1,2e

−�7/2��+�3/2�� + e1,3e
−�9/2��+�3/2���

+
1

6
h3e1,3 � e1,3e

−�9/2�+��3/2�� + e1,2 � e1,1e
−�3/2��+�1/2�� − he1,2 � e1,2e

−�3/2��−�1/2��

−
1

2
he1,2 � e1,3e

−�3/2��−�3/2�� +
1

2
h2e1,2 � e1,3e

−�3/2��−�3/2��. �5.14�

One can show that in the second classical limit the large number of terms in �5.14� will
isappear.

Let us turn now to the determination of the gC
# basis in UC�g2�.
M
In the negative root sector n−, the element e0,−1 must be evidently changed:
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e0,−1̂ = e0,−1
� −

1

3
h2. �5.15�

his is due to the fact that on the subspace generated by e0,1
�, e0,−1

�, and h the twist deformation
erformed by FJ� is an ordinary Jordanian deformation for the algebra sl�2�. The coproduct for

0,−1 is quasiprimitive:

�C�e0,−1̂� = e0,−1̂ � e−� + 1 � e0,−1̂. �5.16�

The other coproducts for negative sector generators are quite complicated, despite the fact that
hey are obtained in the improved �dual group GEJ

# � basis �x5�. The factor FJ� changes the dual
roup,

FJ�:GEJ
# → GC

# , �5.17�

nd the corresponding Lie algebra generators must be redefined. Using the technique demonstrated
n Sec. III D we get the set of new generators:

e0,1̂ = e0,1
� = e0,1 +

1

2
�e1,2�2 = e� − 1; �5.18a�

e0,−1̂ = e0,−1
� −

1

3
h2 = e0,−1 +

2

3
�e1,1�2e−� −

1

3
h2; �5.18b�

e−1,0̂ = e−1,0
� + e1,2 + he1,3 = e−1,0 + �h − H�e1,3 +

1

6
�e1,2�3 + e1,2; �5.18c�

e−1,−1̂ = e−1,−1
� −

4

3
e1,1e

−�+� −
1

3
he1,2 +

1

3
h2e1,3 = e−1,−1 + �H −

1

3
h�e1,2 −

4

3
e1,1e

−�+� +
1

3
h2e1,3;

�5.18d�

e−1,−2̂ = e−1,−2
� + e1,0e

−�+� −
1

3
h2e1,2 = e−1,−2 + e1,0e

−�+� −
1

3
h2e1,2; �5.18e�

e−1,−3̂ = e−1,−3
� = e−1,−3 +

2

9
�e1,1�3e−2�; �5.18f�

e−2,−3̂ = e−2,−3
� +

2

3
�e1,1�2e−2�+� −

1

6
h2�e1,2�2 −

2

3
h = e−2,−3 − H2 +

2

3
�e1,1�2e−2�+� −

1

6
h2�e1,2�2 −

2

3
h .

�5.18g�

In the new basis we find fewer nonzero costructure constants. One of the new generators
orresponds to the boundary of n− and thus is quasiprimitive,

�C�e−1,0̂� = e−1,0̂ � e−�1/2��+�3/2�� + 1 � e−1,0̂ �5.19�

notice that the other boundary element is e0,−1̂ with the coproduct �5.16��.
The number of independent terms in the coproducts corresponds to the number of different

ecompositions of the vector 
��n−
in terms of the gC

c# roots. This explains why in the sequence
−�1−k�2
�k=0,1 ,2 ,3� the number of terms rapidly increases with k:
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�C�e−1,−1̂� = e−1,−1̂ � e−�1/2��+�1/2�� + 1 � e−1,−1̂ + h � �e−1,0̂ + e1,3�e−� − e1,3 � e0,−1̂e
−�1/2��+�3/2��;

�5.20a�

�C�e−1,−2̂� = e−1,−2̂ � e−�1/2��−�1/2�� + 1 � e−1,−2̂ + h � e−1,−1̂e
−� +

1

2
h2

� e−1,0̂e
−2� + e1,2

� e0,−1̂e
−�1/2��+�1/2�� −

1

2
h � e−1,0̂e

−2� −
1

3
h � e1,2e

−� −
2

3
�h − h2� � e1,3e

−2�;

�5.20b�

�C�e−1,−3̂� = e−1,−3̂ � e−�1/2��−�3/2�� + 1 � e−1,−3̂

+ h � 	e−1,−2̂e
−� +

1

3
e−1,0̂e

−3� − e0,−1̂e1,2e
−� −

4

3
e1,1e

−�−�

−
1

2
e−1,−1̂e

−2� −
1

2
e1,2e

−2� −
1

2
e0,−1̂e1,3e

−2�+ 

+ h2

� 	
1

2
e−1,−1̂e

−2� +
1

2
e0,−1̂e1,3e

−2�+

+
1

6
e1,2e

−2� −
1

3
e1,3e

−3� −
1

2
e−1,0̂e

−3�
 + h3
� �1

6
e−1,0̂e

−3� +
1

3
e1,3e

−3��

+ he0,−1̂ � �− e1,2e
−2� −

1

2
e1,3e

−3�� + e0,−1̂ � e1,1e
−�−� +

1

2
h2e0,−1̂ � e1,3e

−3�.

�5.20c�

In the twisted algebra UC�g2� the group multiplication of GC
# is nontrivially deformed. In

articular, the remaining coproduct �C�e−2,−3̂� is the largest one: it has 23 terms that correspond to
he adjoint action of the dual carrier group GC

c# on the space of its six-dimensional subrepresen-
ation, and the other 28 terms do appear only due to the noncommutativity of the coordinates:

�C�e−2,−3̂� = e−2,−3̂ � e−� + 1 � e−2,−3̂ − e−1,0̂ � e1,0e
−�3/2��+�3/2�� − e−1,−1̂ � e1,1e

−�3/2��+�1/2��

+ e1,2 � e−1,−2̂e
−�1/2��+�1/2�� + e1,3 � e−1,−3

�e−�1/2��+�3/2�� +
1

2
�e1,2�2

� e0,−1̂e
−�+�

+ h � e−1,−1̂e1,2e
−� −

1

2
h2

� e−1,−1̂e1,3e
−2� + he1,2 � e−1,−1̂e

−�1/2��−�1/2�� + he−1,−1̂

� e1,2e
−�1/2��−�1/2�� +

1

2
h2e1,3 � e−1,−1̂e

−�1/2��−�1/2�� −
1

2
h2e−1,−1̂ � e1,3e

−�1/2��−�3/2��

+
1

2
h2

� e−1,0̂e1,2e
−2� +

1

2
h2e1,3 � e0,−1̂e1,3e

−�1/2��−�1/2�� −
1

3
h3

� e−1,0̂e1,3e
−3�

+ he−1,0̂ � e1,1e
−�3/2��+�1/2�� −

1

2
h2e−1,0̂ � e1,2e

−�1/2��+�1/2�� +
1

2
h2e1,2

� e−1,0̂e
−�1/2��−�3/2�� +

1

6
h3e1,3 � e−1,0̂e

−�1/2��−�3/2�� +
1

6
h3e−1,0̂ � e1,3e

−�1/2��−�3/2��

ˆ −�1/2��+�1/2�� ˆ −�1/2��+�1/2��
+ he1,3 � e−1,−2e − he1,3 � e0,−1e1,2e
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− h � 	
4

3
e1,1e1,3e

−�−� +
3

2
e1,2e1,3e

−2� +
1

3
�e1,2�2e−�

+
4

3
�e1,3�2e−3� +

1

2
e−1,0̂e1,2e

−2�

+
2

3
e−1,0̂e1,3e

−3� −
1

2
e−1,−1̂e1,3e

−2�



− he1,2 � �2

3
e1,2e

−�1/2��−�1/2�� +
5

12
e1,3e

−�1/2��−�3/2���

− he1,3 � 	
4

3
e1,1e

−�3/2��+�1/2�� +
1

2
e1,2e

−�1/2��−�1/2��

−
1

3
e−1,0̂e

−�1/2��−�3/2�� +
1

2
e0,−1̂e1,3e

−�1/2��−�1/2��

+
1

2
e−1,−1̂e

−�1/2��−�1/2�� 

+ h2

� �1

2
e1,2e1,3e

−2� + 2�e1,3�2e−3� + e−1,0̂e1,3e
−3��

+ h2e1,2 � �1

2
e1,3e

−�1/2��−�3/2�� +
1

2
e−1,0̂e

−�1/2��−�3/2���
+ h2e1,3 � �1

6
e1,2e

−�1/2��−�1/2�� −
1

3
e1,3e

−�1/2��−�3/2�� −
1

2
e−1,0̂e

−�1/2��−�3/2���
−

1

2
h3

� �e1,3�2e−3� +
1

3
h3e1,3 � e1,3e

−�1/2��−�3/2��

+ he−1,0̂ � �1

3
e1,3e

−�1/2��−�3/2�� +
1

2
e1,2e

−�1/2��−�1/2���
+

1

2
he−1,−1̂ � e1,3e

−�1/2��−�3/2�� −
1

2
h2e−1,0̂ � e1,3e

−�1/2��−�3/2��. �5.21�

Comparing these results with those for other simple Lie algebras �deformed by the full chains
f twists� we see that contrary, e.g., to the sl�n� case in the twisted algebra UC�G2�, the dual

enerator e−2,−3̂ differs considerably from the “Jordanian” e−2,−3
�=e−2,−3−H2 and as well most of

he coproducts in the negative sector are strongly deformed. In this situation the appropriate basis
or the presentation of the costructure plays a very essential role. In the initial g basis, the
ecomposition of the coproduct �C�e−2,−3� contains more than 400 terms. Using the gEJ

# basis �x5�,
e can reduce this number to 109 and, finally, in the gC

# basis, we get the expression �5.21� with
1 terms. The effective technique is needed to perform the corresponding calculations and this is
here the modified BCH formulas �3.29� and �3.30� presented in Sec. III D are very useful. The

xpressions �5.20a�, �5.20b�, �5.20c�, and �5.21� were obtained with their help.
The full chain of twists �5.10� can be parametrized as follows:

FC = FJ�FEFJ = eh����,��e−�e1,2�e1,1e−�1/2�����
e�e1,3�e1,0e−�1/2�����

eH�����, �5.22�

ith
���� = ln�1 + �e2,3� ,
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���,�� = ln�1 + �e0,1 +
1

2
���e1,2�2� . �5.23�

hus, the full chain leads to the two-parameter set of Hopf algebras UC�G2 ;� ,��. In particular,
his parametrization provides the possibility to study the second classical limit for UC�G2�. The
atter is obtained by scaling the generators x→ �1/��x and by going to the limit � ,� ,�→0, with
nite values of � /�=�, � /�=�. In such a limit we get the composition law of the dual group GC

# :

�C
# �H� = H � e−���� + 1 � H − �e1,3 � e1,0e

−�3/2�„����−���,��… + �e1,2 � e1,1e
−�3/2�����+�1/2����,��

−
1

2
��h � �e1,2�2e−���,�� − ��he1,2 � e1,2e

−�3/2�����−�1/2����,��

+ ��he1,3 � e1,1e
−�5/2�����+�3/2����,�� +

1

2
��2h2e1,2 � e1,3e

−�3/2�����−�3/2����,��

+
1

2
��2h2

� e1,3e1,2e
−2���,�� −

1

2
��2h2e1,3 � e1,2e

−�7/2�����+�3/2����,��

−
1

6
��3h3

� �e1,3�2e−3���,�� +
1

6
��3h3e1,3 � e1,3e

−�9/2������3/2����,��, �5.24a�

�C
# �h� = h � e−���,�� + 1 � h , �5.24b�

�C
# �e1,0� = e1,0 � e−�1/2�����−�3/2����,�� + e����

� e1,0 − �he����
� e1,1e

−���,��

+
1

2
�2h2e����

� e1,2e
����−2���,�� −

1

6
�3h3e����

� e1,3e
����−3���,��, �5.24c�

�C
# �e1,1� = e1,1 � e�1/2�����−�1/2����,�� + e����

� e1,1 − �he����
� e1,2e

����−���,��

+
1

2
�2h2e����

� e1,3e
����−2���,��, �5.24d�

�C
# �e1,2� = e1,2 � e−�1/2�����+�1/2����,�� + 1 � e1,2 − �h � e1,3e

−���,��, �5.24e�

�C
# �e1,3� = e1,3 � e−�1/2�����+�3/2����,�� + 1 � e1,3, �5.24f�

�C
# �e2,3� = e2,3 � e���� + 1 � e2,3, �5.24g�

�C
#
„���,��… = ���,�� � 1 + 1 � ���,�� , �5.24h�

�C
# �e0,−1̂� = e0,−1̂ � e−���,�� + 1 � e0,−1̂, �5.24i�

�C
# �e−1,0̂� = e−1,0̂ � e−�1/2�����+�3/2����,�� + 1 � e−1,0̂ , �5.24j�

�C
# �e−1,−1̂� = e−1,−1̂ � e−�1/2�����+�1/2����,�� + 1 � e−1,−1̂

ˆ −���,�� ˆ −�1/2�����+�3/2����,��
+ �h � e−1,0e − �e1,3 � e0,−1e , �5.24k�
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�C
# �e−1,−2̂� = e−1,−2̂ � e−�1/2�����−�1/2����,�� + 1 � e−1,−2̂ + �h � e−1,−1̂e

−���,�� +
1

2
�2h2

� e−1,0̂e
−2���,��

+ �e1,2 � e0,−1̂e
−�1/2�����+�1/2����,��, �5.24l�

�C
# �e−1,−3̂� = e−1,−3̂ � e−�1/2�����−�3/2����,�� + 1 � e−1,−3̂ + h � ��e−1,−2̂e

−���,�� − ��e0,−1̂e1,2e
−���,���

+ h2
� �1

2
�2e−1,−1̂e

−2���,�� +
1

2
��2e0,−1̂e1,3e

−2���,��� +
1

6
�3h3

� e−1,0̂e
−3���,��

− ��he0,−1̂ � e1,2e
−2���,�� + �e0,−1̂ � e1,1e

−����−���,�� +
1

2
��2h2e0,−1̂ � e1,3e

−3���,��,

�5.24m�

�C
# �e−2,−3̂� = e−2,−3̂ � e−���� + 1 � e−2,−3̂ − �e−1,0̂ � e1,0e

−�3/2�����+�3/2����,��

+ �e1,3 � e−1,−3̂e
−�1/2�����+�3/2����,�� − �e−1,−1̂ � e1,1e

−�3/2�����+�1/2����,��

+ �e1,2 � e−1,−2̂e
−�1/2�����+�1/2����,�� + h � ��e−1,−1̂e1,2e

−���,�� −
1

2
h2

� ��2e−1,−1̂e1,3e
−2���,�� + ��he1,2 � e−1,−1

ˆ e−�1/2�����−�1/2����,�� + ��he−1,−1̂

� e1,2e
−�1/2�����−�1/2����,�� +

1

2
��2h2e1,3 � e−1,−1̂e

−�1/2�����−�1/2����,�� −
1

2
��2h2e−1,−1̂

� e1,3e
−�1/2�����−�3/2����,�� +

1

2
h2

� ��2e−1,0̂e1,2e
−2���,�� +

1

2
�2�2h2e1,3

� e0,−1̂e1,3e
−�1/2�����−�1/2����,��

−
1

3
h3

� ��3e−1,0̂e1,3e
−3���,�� + he−1,0̂ � ��e1,1e

−�3/2�����+�1/2����,��

−
1

2
��2h2e−1,0̂ � e1,2e

−�1/2�����+�1/2����,�� +
1

2
��2h2e1,2 � e−1,0̂e

−�1/2�����−�3/2����,��

+
1

6
��3h3e1,3 � e−1,0̂e

−�1/2�����−�3/2����,�� +
1

6
��3h3e−1,0̂ � e1,3e

−�1/2�����−�3/2����,��

+ ��he1,3 � e−1,−2̂e
−�1/2�����+�1/2����,�� − �2�he1,3 � e0,−1̂e1,2e

−�1/2�����+�1/2����,��

+
1

2
�2�e1,2�2

� e0,−1̂e
−����+���,��. �5.24n�

We have finished the construction of the universal enveloping algebra UC�g2� twisted by the
ull chain of extended twists. The sequence of factors �5.10� cannot be essentially enlarged due to
he absence of the Lie-Frobenius subalgebras in g2 that nontrivially contain b+�g2� �see the dis-
ussion in Sec. II�. It is certainly possible to perform the additional Abelian twist FA�=e���, but
n such a case the carrier gC

# is not changed. It appears that adding the twist FA� leads to the
ifferent realization of the same gC

# in terms of the generators of UC�g2�.
When such a change of the realization of the carrier happens in the intermediate steps of the
uantization this can lead to interesting results. We shall study this possibility in the next section.
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. General form of extended twist for g2: Additional Abelian twist

Let us construct the quantization for the r matrix �2.16b�. As it was indicated in Sec. III, this
an be performed by the twisting element

FAE��� = e�h��e−e1,2�e1,1e−�1/2��
ee1,3�e1,0e−�1/2��

eH��. �5.25�

ere the parameter � is written explicitly because of its specific role. Notice that for any fixed �
he element FAE depends on the deformation parameter � �due to the �-dependence of � �see Eq.
5.22��. Studying the parametrized set �FAE�� ,��� we are dealing with the family of twists indexed
y the parameter �. We shall demonstrate that, contrary to the case of the deformation parameter
where we get equivalent deformed algebras UFAE��,��

�UFAE���,��
, there are nonzero values of � for

hich the twisted algebras are inequivalent, UFAE��,��
�” UFAE��,���

.

In order to construct the twisted Hopf algebra UFAE���
�g2�, we use the coproducts �EJ �5.18�–

5.21� of the full extended twisting �5.3� obtained in Sec. V A and apply the transformation
�adh�� corresponding to the Abelian twist factor FA=e�h��. Each nontrivial twisting factor in-
uces the transformation of the dual group and the new dual coordinates are to be constructed.
mitting the intermediate steps we present the results in terms of the new dual gAE

# basis:

H̄ = H + �h ,

e−2,−3 = e−2,−3
� + �2h2,

e−1,0 = e−1,0
� − �he1,3,

e−1,−1 = e−1,−1
� + �he1,2 �5.26�

the other gE
# coordinates x5 remain unchanged�.

According to the properties of the twist FA the costructure on its carrier is conserved:

�AE�h� = h � 1 + 1 � h ,

�AE�e2,3� = e2,3 � e� + 1 � e2,3. �5.27�

he changes in �AE�H̄� and in the long sequence �AE�e1,l� �l=0,1 ,2 ,3� are correlated with the
oot structure of the extensions:

�AE�H̄� = �H̄� � e−� + 1 � �H̄� − e1,3 � e1,0e
„���+3
��h�−3/2…� + e1,2 � e1,1e

„���+2
��h�−3/2…�

= �H̄� � e−� + 1 � �H̄� − e1,3 � e1,0e
�3/2���−1�� + e1,2 � e1,1e

�1/2���−3��.

�AE�e1,k� = e1,0 � e„1/2+���+k
��h�…� + e�
� e1,0, k = 0,1,

�AE�e1,m� = e1,0 � e„−1/2+���+m
��h�…� + 1 � e1,0, m = 2,3. �5.28�

n the plane orthogonal to the highest root, we find the quasiprimitive costructure:

�AE�e0,1
�� = e0,1

� � e�� + 1 � e0,1
� ,

� � −�� �
�AE�e0,−1� = e0,−1 � e + 1 � e0,−1. �5.29�
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In the coproducts for the other basic elements �belonging to n−� the additional terms propor-
ional to � do appear,

�AE�e−1,−3
�� = e−1,−3

� � e−�1/2��1+3��� + 1 � e−1,−3
� + �1 − ��h � e1,0e

−� + e0,−1
� � e1,1e

−�1+���,

�5.30a�

�AE�e−1,−2� = e−1,−2 � e−�1/2��1+��� + 1 � e−1,−2 + �� −
1

3
�h � e1,1e

−� − e0,1
� � e1,0e

��−1��

+ e1,2 � e0,−1
�e−�1/2���1−��, �5.30b�

�AE�e−1,−1� = e−1,−1 � e�1/2���−1�� + 1 � e−1,−1 + �1

3
+ ��e1,2 � he�1/2���−1��

− e1,3 � e0,−1
�e�1/2��3�−1�� +

4

3
e0,1
� � e1,1e

��−1��, �5.30c�

�AE�e−1,0� = e−1,0 � e�1/2��3�−1�� + 1 � e−1,0 + e1,2 � e0,1
�e−�1/2���1−�� − �� + 1�e1,3 � he�1/2��3�−1��,

�5.30d�

�AE�e−2,−3� = e−2,−3 � e−� + 1 � e−2,−3 + 2�h � H̄ − e−1,0 � e1,0e
�3/2���−1�� − e−1,−1 � e1,1e

�1/2���−3��

+ e1,2 � e−1,−2e
�1/2���−1�� + e1,3 � e−1,−3

�e�1/2��3�−1�� −
2

3
e0,1
� � �e1,1�2e��−2��

+
1

2
�e1,2�2

� e0,−1
�e��−1�� + 2�he1,2 � e1,1e

�1/2���−3��. �5.30e�

In the last expression the additional terms signify that the root vector H̄* is no longer orthogo-

al to h* and the adjoint operator ad�H̄*� transforms h* into e−2,−3.
In comparison with �E�x5�, the changes of the form of the coproducts �AE are small but

ssential. We immediately see five singular points �=0, ±1, ± 1
3 . In each of them one of the

oproducts loses some terms and becomes closer to a quasiprimitive. For example, in the cases

AE+
�e−1,−3
�� and �AE+

�e−1,0� if we use only the sl�3� extension F+=ee1,3�e1,0e�−1/2��
then for �

±1 these coproducts become quasiprimitive, and we obtain the possibility to perform additional
wistings with the carrier algebra nontrivially intersecting with n−. In the costructure �AE the
orresponding enlargement of the carrier cannot be achieved, nevertheless, the singular points are
lso important. In particular, we see that the standard case �EJ corresponds to the singular point
=0 while in the general situation the coproduct �AE����e−2,−3� has additional components, and we
rrive at different dual algebra gAE

# �gE
# . Notice that in all the singular points the corresponding r

atrices differ only by the value of the numerical parameter � but the results of the quantizations
re different and refer to Lie–Poisson structures.

We have already seen that the coproducts �AE�e0,±1
�� are now quasiprimitive. Consequently,

here still exists the possibility to perform further twisting with the Jordanian factor similar to FJ�,

FJ� = eh���, �5.31�

� −�� −��
ith ��=ln�e0,1e +e �. The twisting element,

                                                                                                            



i
t
�

T
T
U

g
f

h
s
I
n
s
p
r

V

t
d
p
t
p
a
w
w
d

n
f

w
U
c
e
U
t

A

0
A

103502-26 Borowiec et al. J. Math. Phys. 46, 103502 �2005�

                        
FJ�AE = eh���e�h��e−e1,2�e1,1e−�1/2��
ee1,3�e1,0e−�1/2��

eH��, �5.32�

s the solution of the twist equation. Here, contrary to the situation with the full chain of extended
wists, we do not obtain a parametrized family of chain deformations. It can be easily checked that
see also Eq. �5.10��

FJ�AE = FC = eh��e−e1,2�e1,1e−�1/2��
ee1,3�e1,0e−�1/2��

eH��. �5.33�

he dependence on � cancels and we are again with the full chain studied above in Sec. V B.
hus, we have obtained the following result: there is the � family of quantum algebras

AE����g2�, but the full chain quantization UC�g2� is unique.
To complete the analysis of the set of twist deformations for U�g2�, let us consider the

enerators that can become quasiprimitive �in general, nonsimultaneously� after the action of the
ull chain of twists FC. The number qC

− of such generators is equal to the rank of g. In our case we

ave qC
−�g2�=2, and the corresponding generators are e0,−1̂ and e−1,0̂. Both are quasiprimitive

imultaneously but cannot enlarge the space of gc
C up to a �quasi-� Frobenius subalgebra in U�g2�.

n the Borel subalgebra UC(b+�g2�) the number qC
+ of quasiprimitive generators is equal to the

umber of simultaneously primitive. For the full chains we have qC
+ =r and in our case �as we have

een above� these primitive generators are � and �. This certainly provides the possibility to
erform the additional Abelian twist but the corresponding deformation will be equivalent to the
edefinition of the Cartan elements in the Jordanian twisting factors.

I. DISCUSSION AND OUTLOOK

We have described the set �UJ ,UE+J ,UEJ ,UJ�EJ ,UA���EJ� of quantized Lie–Poisson structures
hat were constructed on the space U�g2� by chains of twist deformations. The dual group coor-
inates �g# basis� obtained through the second classical limit procedure provide us with the
ossibility of writing down the explicit form of these Lie–Poisson structures. We have presented in
his paper the algebraic and coalgebraic formulas determined by the exceptional Lie algebra g2, in
articular, we get the additional �in comparison with the situation in U(sl�3�) and U(so�5�)� Hopf
lgebra UEJ; the carrier space for the second Jordanian twist FJ� is deformed �the analogous result
as found for UE+J(so�5�) �Refs. 11 and 12��; the Hopf algebras �UE+J ,UJ�EJ ,UAEJ� in comparison
ith the analogous quantizations of U(sl�3�) and U(so�5�) have a more complicated constructure
etermined by the root system of g2.

We have also found the peripheric twisted algebras in the set of Hopf algebras �UA���EJ�. The
umber sC of inequivalent algebras in this set depends on the number lC

n of extended Jordanian
actors in the chain FC. We conjecture the following relation;

sC = �
i=1

lC
n

„dim�gc
�i�� − 1… , �6.1�

here gc
�i� is the carrier subalgebra of the link F�i��FC. This gives three inequivalent subsets for

A���EJ(sl�3�) as well as UA���EJ(so�5�) and five for UA���EJ�g2�. One of the algebras, UA�0�EJ�g2�,
orresponds to the canonical extended twist and four others are the analogs of the peripheric
xtended deformations12 in UEJ(sl�N�). At the same time we do not have peripheric chains in

F�g2�. As we have already stressed above, the full chain deformation UF�g2� is invariant under
he rotation generated by an additional Abelian twist.
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n the continuous spectral component of the Floquet
perator for a periodically kicked quantum system

James McCawa� and B. H. J. McKellarb�

School of Physics, Research Centre for High Energy Physics,
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By a straightforward generalization, we extend the work of Combescure �J. Stat.
Phys. 59, 679 �1990�� from rank-1 to rank-N perturbations. The requirement for the
Floquet operator to be pure point is established and compared to that in Combes-
cure. The result matches that in McCaw and McKeller �J. Math. Phys. 46, 032108
�2005��. The method here is an alternative to that work. We show that if the
condition for the Floquet operator to be pure point is relaxed, then in the case of the
�-kicked Harmonic oscillator, a singularly continuous component of the Floquet
operator spectrum exists. We also provide an in-depth discussion of the conjecture
presented in the work of Combescure of the case where the unperturbed Hamil-
tonian is more general. We link the physics conjecture directly to a number-
theoretic conjecture of Vinogradov �The Method of Trigonometrical Sums in the
Theory of Numbers �Interscience, London, 1954�� and show that a solution of
Vinogradov’s conjecture solves the physics conjecture. The result is extended to the
rank-N case. The relationship between our work and the work of Bourget �J. Math.
Anal. Appl. 276, 28 �2002�; 301, 65 �2005��, on the physics conjecture is
discussed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2035027�

. INTRODUCTION

The spectral analysis of the Floquet operator �the unitary time-evolution operator over a single
ick period� is of great interest for periodically perturbed Hamiltonian systems. There are general
rguments1–5 which indicate that an understanding or classification of the spectrum of the time-
volution operator can provide information on the dynamics of the system. In particular, the
xistence of a singularly continuous spectrum of the Floquet operator allows for a slow diffusive
nergy growth over time, typical of a chaotic system. Thus, this work has significance in the broad
eld of quantum chaos. For a more detailed discussion of the links among spectral analysis,
ynamics, and chaos, see the introductory sections of Ref. 1 and references therein.

The work in Ref. 1 established a nonperturbative stability result on the spectral nature of the
loquet operator for simple systems with a rank-N perturbation periodic in time. The conditions
nder which the Floquet spectrum remains pure point were established. Here, we will first show
he same result, but in a very different manner, before proceeding to determine when a continuous
pectrum may arise. This result sheds further light on the array of possible dynamics that periodi-
ally perturbed systems may experience.

We consider Hamiltonians of the form

�Electronic mail: j.mccaw@physics.unimelb.edu.au
�
Electronic mail: b.mckellar@physics.unimelb.edu.au
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H�t� = H0 + ��
k=1

N

�k��k�	�k�
�
n=0

�

��t − nT� , �1�

here �k�R and each vector ��k� is a linear combination of the H0 basis states, ��n�,

��k� = �
n=0

�

�ak�n��n� .

he states ��k� are orthogonal

	�k��l� = �kl.

he Floquet operator is

V � U�T� = e−iH0T/�e−i��k�k��k�	�k��/�.

�Our Floquet operator differs from that in Combescure6 and Bourget.7,8 An erronous T was
ntroduced in Ref. 6 and it has been carried through in the literature. Note that the theorems proved
herein are not invalidated in any way by this error.� The basic result, as established in Ref. 1 is
hat if every ��k� is in l1�H0�, the spectrum will remain pure point for almost every perturbation
trength.

If this condition is dropped for any one of the ��k�, then we no longer have V�1,. . .,�N
pure

oint. In fact, on the subspace Hk defined by that space for which ��k� is a cyclic vector for
perator U, the spectrum is purely continuous. At this point, we note that Milek and Seba5 have
ncorrectly concluded from Combescure’s work that the existence of a � such that � is in the
ontinuous subspace of H implies that the whole of H is continuous for the operator V. This
tatement would require the assumption that � is a cyclic vector for U, which is simply impossible
or ���	�� as an arbitrary projection.

For Milek and Seba’s work to be properly justified, we show that a sufficient condition is that
inogradov’s number-theoretic conjecture, stated over 50 years ago, is true. �The reference is to

he 1954 English translation of Vinogradov’s original work, published in 1947. The work in
inogradov’s 1947 monograph incorporates results from a series of papers and a first monograph

rom 1937. It is unknown to us when the conjecture referred to was first presented, but it was at
east 50 years ago.� This observation is linked to the conjecture put forward by Combescure6 and
artially addressed by Bourget.7 After the completion of this work, we became aware of a recent
aper by Bourget8 which successfully resolves the issues with Milek and Seba’s work by building
n the earlier work in Ref. 7. Bourget’s new work in no way invalidates the arguments presented
ere—the two approaches are complimentary.

In Sec. II we extend Combescure’s rank-1 theorem on the pure point spectral nature of V to
he rank-N case. In Sec. III we then show the existence of a continuous spectrum for the case
here H0 is the harmonic oscillator and the perturbation is rank-N. In Sec. IV we investigate
ombescure’s conjecture, the answer provided by Bourget and the link to number theory and
inogradov’s conjecture. Finally, in Sec. V, we extend Milek and Seba’s work to the rank-N case,
orrecting a number of subtle errors. We emphasize that their work has only recently been fully
ustified �by Bourget in Ref. 8�. We provide a complimentary justification, linked to the number-
heoretic investigations and Vinogradov’s conjecture just mentioned.

I. RANK-N GENERALIZATION OF COMBESCURE’S FIRST THEOREM

We consider the measures

mk,�k
= 	�k�E�k

�S���k� .

ach ��k� admits a cyclic subspace of H, Hk. As argued in the later part of the proof of Theorem
N
.3 in Ref. 1, on the space H���k=1Hk�, the perturbation
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�
k=1

N

�k��k�	�k�

s null and thus V=U is trivially pure point. Henceforth, we may safely restrict our proof to the
ubspace �k=1

N Hk for which the vectors ��k� form a cyclic set.
Directly following Combescure, the measure for a point x� �0,2�� for the operator V acting

n the state ��k� is given by

mk,�k
��x� =

− 4�1 + �k�
�k

2 Bk�x� , �2�

here

�k = ei�k/� − 1

nd

Bk�x� = ��
0

2�

dmk,�k=0�	��sin2��x − 	�/2��−1�−1

.

This result is the essence of Lemma 1 in Ref. 6. When H0 is pure point, it is a trivial
alculation to show that

Bk
−1�x� = �

n=0

� ��ak�n�2

sin2��x − 	n�/2�
. �3�

orollary 2 in Ref. 6 is replaced with the following.
Theorem II.1: Assume H0 is pure point, with ��nn�N and �
nn�N as eigenstates and eigen-

alues. Let each

�k = �
n=0

�

�ak�n�n

e cyclic for H0 (hence, cyclic for U and V) on Hk and 	�k ��l�=�kl. Then eix belongs to the point
pectrum of V�1,. . .,�N

if and only if

�
k=1

N

Bk
−1�x� � � ,

here

	n = 2��
n/2�� ,

z being the fractional part of z.
Proof II.1: The proof follows that in Ref. 6. By the cyclicity of each ��k� on Hk and the

rgument in Theorem 4.3 of Ref. 1, eix is an eigenvalue of V�1,. . .,�N
if and only if every

k,�k
��	��0 at 	=x. As already mentioned, using

dmk,�k=0 = �
n=0

�

��ak�n�2��	 − 	n�d	
e obtain, for each k,
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Bk
−1�x� = �

n=0

� ��ak�n�2

sin2��x − 	n�/2�
.

e now consider the eigenvalue eix. If it were to be that for some k, mk,�k
��x�=0, then we would

ave found a vector, namely ��k�, such that V��k� was continuous. We have in fact found that the
hole subspace Hk is continuous. Thus, for V to be pure point, we require every mk,�k

��	��0.
hus, we are lead to consider the requirement

�
k=1

N

Bk
−1�x� � � .

�

As in Ref. 6, the relationship

�
n=0

�

��ak�n�2cotg� x − 	n

2

 = cotg

�k

2�
�4�

lso holds for each k. To show �4�, we consider each k separately. The proof is the same as for the
ank-1 case. See Ref. 6. Points to consider are that each projection operator in the rank-N projec-
ion is normalized and hence for every k we have

�
n=0

N

��ak�n�2 = 1.

�

In order to complete the generalization of Combescure’s first theorem, we require, just as in
ef. 6, two additional Lemmas.

Lemma II.2: If �n=0
� ��ak�n���, then Bk

−1�x��� for almost every x�R.
For each k�1, . . . ,N, the proof is identical to that in Ref. 6.
Lemma II.3: The following two statements are equivalent.

a� For almost every ��1 , . . . ,�N�, V�1,. . .,�N
has only a point spectrum.

b� For every k� �1, . . . ,N and for almost every x, Bk�x��0.

The proof is again virtually identical to Combescure’s proof. For each k, the continuous part
f the spectrum is supported outside the set Ek= �x� �0,2�� :Bk�x��0 and, for �k�0, the point
art of dmk,�k

is supported by the set Ek. Thus, for V�1,. . .,�N
to be pure point for almost every

1 , . . . ,�N and for every k, we require

mk,�k
��0,2�� \ Ek� = 0.

his in turn implies that for every k

�
0

2�

d�k�h��k��mk,�k
��0,2�� \ Ek� = 0,

here �k�=�k /� and

h��� = 2R
1

1 − cei�

or some �c��1.
Lemma 5 in Ref. 6 trivially applies for each k. Thus, we have generalized Combescure’s work

o obtain the result that the Floquet operator for the rank-N perturbed Hamiltonian has a pure point

pectrum. The result matches that in Ref. 1.
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II. RANK-N GENERALIZATION OF COMBESCURE’S SECOND THEOREM

Having shown that the Floquet operator remains pure point for perturbations constructed from
he vectors ��k�� l1�H0�, Combescure relaxes this condition to allow for the emergence of a
ontinuous spectral component of the Floquet operator. This result is easily generalized to the
ank-N case. The key point is that the technique in Ref. 6 applies independently for each k. We do
ot discuss the details of the rank-1 proof here at all, delaying an analysis to Sec. IV where we will
ave the opportunity to generalize the result still further. Here, we simply provide the argument for
hy each k may be treated independently. Before proceeding, some subtleties of what Combescure

ctually shows are highlighted. They are seemingly overlooked by some in the literature �e.g.,
ef. 5�.

The cyclicity requirement was essential in the proof that the Floquet operator spectrum was
ure point. Here, we can happily ignore the cyclicity conditions, as our only goal is to establish the
xistence of a state in the continuous subspace Hcont. We need not try and ensure the result
btained by considering 	��E�S���� is applicable to all other vectors in H—the very idea is
ll-formed as the perturbation is null on a subset of H and thus there is always part of H where V
as a discrete spectrum. Milek and Seba seem to have missed this point, restating Theorem 1 in
ef. 6 in a way that implies that all � are in Hcont.

If

	�k�E��x���k� = 0

hen Hac contains at least the state ��k�. The point to be mindful of is that this does not allow one
o conclude that the Hilbert space for the operator V has Hpp=0” , as implied by Milek and Seba.5

o draw that conclusion would require an argument to show that a cyclic vector does in fact exist
or V. This does not seem possible in the general context we have here.

Combescure’s proof �Lemma 6 in Ref. 6� that �cont�V��0” is based on showing that B−1�x�
� �Eq. �3��. As the spectral measure of a single point x is proportional to B�x� �Eq. �2��, if

−1�x�→�, then the contribution of the single point is zero. That is, eix is in the continuous
pectrum of the Floquet operator. Combescure argues �see Sec. IV for details� that

B−1�x�  #S�x� ,

here #S�x� is the number of element of a particular set S. She then shows �the bulk of the proof�
hat #S�x�→� and thus B−1�x�→�. We generalize the result in a straightforward manner.

Theorem III.1: Assume 
n=n�� with � irrational. If ��k�� l1�H0� for at least one k
1, . . . ,N, then �cont�V��0” .

Proof III.1: Following the same argument as for the rank-1 case, we take

��ak�n� = n−�2�

or the state ��k�, in such a way that the condition 	�k ��l�=�kl is preserved.
With this construction, the proof that the number of elements in S�x� is infinite6 applies to

ach subsequence Sk�x�. The number of elements, #Sk�x�, in each subsequence for which
psik�� l1�H0�, is infinite. The Floquet operator for the rank-N perturbed harmonic oscillator
btains a continuous spectral component. �

Discussion. It must be noted that the proof of Lemma 6 in Ref. 6 is only valid for the
igenvalue spectrum,


n = n�� ,

f the harmonic oscillator. Combescure does however conjecture that the argument will be valid

or more general eigenvalue spectra, including the rotor
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n � n2.

or Milek and Seba’s numerical work �using the rotor� to be based on valid mathematical argu-
ents, a proof of this conjecture is required. It was only very recently that a proof was developed,8

ome 15 years after the numerical results of Milek and Seba were published. As already men-
ioned, the work presented here, aiming to justify Milek and Seba’s numerical work, was devel-
ped independently and is complimentary to Bourget’s approach.

In Sec. IV we show that if a conjecture from number theory on the estimation of exponential
ums is true, then Milek and Seba’s work can be justified. The rank-N generalization is straight-
orward. Considering the number theory conjecture has stood for some 50 years, it seems we may
ave to wait quite some time for a proof. �Of course, now that Bourget has provided a direct proof
or the rotor, the numerical simulations are on safe ground.�

For more general eigenvalue spectra �loosely 
n�nj� the situation is similar. For j3
ourget7 made significant progress. He has now covered the j=2 case.8 A continuous component
f the Floquet operator exists for certain constructions of ���. The conditions, for all j2, are
omplicated and more restrictive than the ���� l1�H0� condition for the harmonic oscillator. The
esult is easily extended to the rank-N case due to the independence of each k as already discussed.
ere, by utilizing a number-theoretic conjecture, we will provide improvements to the work of
ourget �both the j3 and j=2 cases�. See Sec. IV.

Returning to the harmonic oscillator case, by applying Theorem III.1 we may conclude that
or each ��k�� l1�H0�, Hk is purely continuous. Thus, by dropping the l1 condition for all ��k�, we
ave shown that V is purely continuous on the subspace of H where the perturbation is nonzero.
n the subspace of H where the perturbation is zero, V=U trivially and thus that portion of the
ilbert space remains pure point.

V. DISCUSSION OF COMBESCURE’S CONJECTURE

Combescure6 makes a remark �Remark c.� that she believes Theorem III.1 �Lemma 6, Ref. 6�
s generalizable to include systems other than the harmonic oscillator. Explicitly, she conjectures
hat Hamiltonians, H0, with eigenvalues, 
n, of the form


n = ��
j=0

p

� jn
j �5�

ith � jT /2� Diophantine for some j :1� j� p will have the vector � in the continuous spectral
ubspace of V�.

At an intuitive level, one would expect this to be true. The precise nature of the eigenvalue
pectra �proportional to n or a polynomial in n� should not make a significant difference. Milek9

rgues that Combescure’s work can be used in the n2 case based on evidence from some numerical
ork that shows that the sequences obtained are “almost random”—however, the argument is not

ntirely convincing to us. The cited numerical work of Casati et al.10 discusses the existence of
orrelations in the energy levels, rather than the lack of correlations. While the deviations from a
oisson distribution look small to the naked eye, Casati et al.10 find deviations from the expected
oisson distribution of up to 17 standard deviations. The energy levels are correlated—it is argu-
ble that they are not characterizable as “almost random” as Milek asserts.

In late 2002, Bourget7 produced a proof of a slightly modified conjecture for all but the p
2 case in �5�. The techniques used by Bourget are similar to those followed in this work. We will
nalyze Bourget’s work, and highlight the key breakthrough made. We also provide a modified
rgument to obtain the proof which is, we believe, significantly easier to follow. Importantly, it
lso covers the p=2 case, unresolved by Bourget �until very recently� due to technical difficulties.
owever, it comes at the expense of relying upon a conjecture. Our result plays a complementary

ole in understanding, or perhaps appreciating, Bourget’s proof. The reliance on the conjecture
emoves the need for much of the technical wizardry in Bourget’s proof, and also strengthens the

ork. Our analysis also indicates, or highlights, that Combescure’s conjecture is solved by a
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umber-theoretic conjecture that has stood for over 50 years. What seems a perfectly reasonable
onjecture on physical grounds is shown to be directly related to an abstract mathematical con-
ecture.

In what follows, we rely heavily upon the lemmas and theorems in Chapter 2 of Ref. 11. We
lso use some results on Weyl sums from Ref. 12. Of key importance is an understanding of the
roof of Lemma 6 in Ref. 6 on the emergence of a continuous spectrum for the kicked harmonic
scillator. This will be discussed at the appropriate time in this section.

. Number theory

To discuss the conjecture, we require two concepts from number theory—the classification of
rrational numbers and the discrepancy of a sequence. We first introduce the concepts and define
he relevant ideas. We then proceed to analyze the conjecture and the proof provided by Bourget.
s the discussion progresses, the new work that we have done will be presented.

For any number �, we define

1� ���, the integer part of �,
2� ��, the fractional part of �, and
3� 	��=min��� ,1− ���.

�� is simply the “distance to the nearest integer.” Definition IV.1 is taken directly from Kuipers
nd Niederreiter �Definition 3.4, p. 121, Ref. 11�.

Definition IV.1: � Let be a positive real number or infinity. The irrational � of type � if � is
he supremum of all � for which

lim�
n→�

q�	q�� = 0, �6�

here q runs through the positive integers.
The idea behind this definition can be seen by considering rational �= p /q� for some p and

�. Run through the positive integers q. At q=q�, 	q��=0, so there is no supremum � for � in �6�.
n effect, �→�. For irrational �, 	q�� is never equal to zero but will approach zero. If the
pproach is very slow, then a small � is enough to prevent �6� from approaching zero. 	q��
pproaching zero slowly is, in a sense, indicative of � being badly approximated by rational
umbers. Even for very large q�, p /q� remains a poor approximation to �. Thus, the smaller �, the
tronger the irrationality of �. This is reasonable in the sense that rational �’s act like numbers
ith �→�. As stated in Ref. 11, all numbers � have type �1.

We now define the discrepancy of a sequence—a measure of the nonuniformity of the se-
uence. We consider a sequence of numbers xn in �0, 1�

� = �xn�n�N with xn � �0,1� .

Equivalently, consider any sequence xn and consider the discrepancy of the sequence modulo 1.�
or 0�a�b�1 and positive integer N, A��a ,b� ,N� counts the number of terms of the sequence
up to xN� contained in the interval �a ,b�,

A��a,b�,N� = # �n � N:xn � �a,b� .

Definition IV.2: The discrepancy DN of the sequence � is

DN��� = sup
0�a�b�1

�A��a,b�,N�
N

− �b − a�� . �7�

If the sequence � is uniformly distributed in �0, 1� then DN→0 as N→�. In this case, every

nterval �a ,b� in �0, 1� gets its “fair share” of terms from the sequence �.
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Estimating the discrepancy of a sequence will turn out to be vital in the analysis of Combes-
ure’s work. The sequence of interest is basically the eigenvalue sequence for H0, but we will
iscuss this in greater detail later.

The starting point for the estimations that we require is Eq. �2.42�, Chap. 2, Ref. 11. This is a
amous result obtained by Erdös and Turán. It states that

DN � C� 1

m
+ �

h=1

m
1

h
� 1

N
�
n=1

N

e2�ihxn�
 �8�

or any real numbers x1 . . .xN and any positive integer m. The sum

S = �
n=1

N

e2�ihxn

s an example of a class of exponential sums known as Weyl sums, reflecting the pioneering work
f Weyl on providing estimations for them. Vinogradov12 improved on some of the estimations of
eyl. Weyl and Vinogradov’s results concern the modulus of the sum, �S�, and characterize it as

�S� � �N ,

here N is the number of terms in the sum and � tends to zero as N→�. The subtle behavior of
is linked to the rational/irrational nature of the terms in the sequence.

We will use some basic results from the introductory chapter of Ref. 12. In general, we write

S = �
n=1

N

exp�2�iF�n��

or some function F�n�. The application here is when

F�n� = �nj .

or � rational �not the case we will be interested in� Hau proved that �S� was of order

N1−�1/j�+�

p. 3, Ref. 12� and that this estimate could not be much improved. Here, we are interested in the
ase where � is irrational. Estimations are much more difficult, and form the major aspect of the
ork by Vinogradov. The estimations depend upon making a rational approximation to � and are

omplicated functions of N and j. Very loosely, he obtains results like

�S� = O�N1−��� ,

here

�� =
1

3�j − 1�2 log 12j�j − 1�
. �9�

inogradov states

It is a plausible conjecture that the estimate in �9� holds with �� replaced be 1/ j−�. . .. A
proof or disproof of this conjecture would be very desirable.

As the conjecture plays a central role in what follows, we state it formally.
Conjecture IV.3: Consider the sum

S = �
N

exp 2�inj� j .

n=1
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or all N greater than some critical value, we have

�S� � cN1−�1/j�+�

or all ��0 and some constant c�R.
We do not attempt to prove Conjecture IV.3. Given the lengths gone to by Vinogradov to

btain the results presented above, it seems rather unlikely that a proof or disproof will be found
ny time soon. �Incremental improvements on the estimations presented by Vinogradov in Ref. 12
ave been made over time. While Bourget7,8 makes use of these improved results, the conjecture
tself remains unproven which is the only result of any consequence in this discussion.�

. Upper and lower bounds on discrepancy

Armed with the estimations on Weyl sums, we now proceed to derive both upper and lower
ounds on the discrepancy for sequences of the type

� j = �nj��

or � of any type �1. It must be remembered that the upper bound obtained is contingent upon
onjecture IV.3. The lower bound obtained is not dependent upon any unproved conjectures. The

esult obtained highlights the “best possible” nature of the conjectured upper bound.
First, �Lemma 3.2, p. 122, Ref. 11� is generalized to arbitrary j.
Lemma IV.4: The discrepancy DN�� j� of � j = �nj�� satisfies

DN�� j� � C� 1

m
+ N1−�1/j�+�c��

h=1

m
1

h	h��

or any positive integer m and ��0, where C and c� are absolute constants.

Proof (IV.4): Consider �8�. It is applicable to the first N terms of the sequence � j. We have

DN�� j� � C� 1

m
+

1

N
�
h=1

m
1

h
��

n=1

N

e2�ihnj��
 �10�

or any positive integer m. Consider the sum over n,

��
n=1

N

e2�ihnj�� .

onjecture IV.3 allows this sum to be bounded by

cN1−�1/j�+�.

e are free to write

c =
c�

�sin �h��

s sin �h� is just some positive real number. Substituting this result into �10�, we obtain

DN�� j� � C� 1

m
+ N−�1/j�+�c��

h=1

m
1

h

1

�sin �h��
 .

ow following the argument at the end of �Lemma 3.2, Ref. 11� the desired result is obtained.

�
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We now give the generalization of �Theorem 3.2, Ref. 11�. It provides the “best” upper bound
ne could hope for when estimating the discrepancy of the sequence � j = �nj��. Again, remember
hat the proof relies on Conjecture IV.3.

Theorem IV.5: Assume Conjecture IV.3 is true. Let � be of finite type �. Let j be a positive
nteger j1. Then, for every ��0, the discrepancy DN�� j� of � j = �nj�� satisfies

DN�� j� = O�N−1/��j�+�� .

roof (IV.5): Let ��0 be fixed. By �Lemma 3.1 and Lemma 3.3, p. 121-3, Ref. 11�,

�
h=1

m
1

h	h��
= O�m�−1+���

or a fixed ���0. Combining this with Lemma IV.4, gives

DN�� j� � C� 1

m
+ N−�1/j�+��m�−1+��


or all m1. Now choose m= �N1/��j��. We obtain

DN�� j� � C�N−1/��j� + N−�1/j�+��+�1/j�−1/��j�+��/��j�� = O�N−1/��j�+�� ,

here �=��+�� / ��j�. �

Theorem IV.5 is, in a sense, optimal. For functions f ,g, define f =��g� if f /gy0.
Theorem IV.6: Let � be of finite type �. Let j be a positive integer j1. Then, for every �

0, the discrepancy DN�� j� of � j = �nj�� satisfies

DN�� j� = ��N−1/��j�−�� .

Proof (IV.6): Let ��0 be fixed. For any given ���0, there exists 0���� with 1/ ��−��
�1/��+��. By �Definition 3.4, p. 121, Ref. 11�, we have limq→�q�−��/2�	q�− j�=0 and thus

	q� j� � q−�+��/2�

or an infinite number of positive integers q. There are infinitely many positive integers q and p
uch that

�� − p/q� � q−1−�+��/2�.

hat is, by choosing q large enough, we can always find a p such that �q�− p�= 	q��. As q
ncreases p /q is a better approximation to the irrational �. For 	 some irrational with �	��1, we
ave

� = p/q + 	q−1−�+��/2�.

ick a q such that the above relations are valid. Set

N = �qj��−��� .

hen for 1�nj �N1/j,

nj� = nj�p/q� + 	n,

ith

�	n� = �nj	q−1−�+��/2�� � njq−1−�+��/2� � q�j�� − ���1/j−1−�+��/2� = q−1−��/2�.

hus, none of the fractional parts �� , �2 j� , . . . , ��N1/j�� lie in the interval J= �q−1−��/2� ,q−1

−1−��/2�
q �, so
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DN�� j�  �A�J,N�
N

− ��J�� = ��J�

here ��J�, is simply the “size” of the set J. For large enough q we have ��J�1/2q. But from
he definition of N it is clear that

N � qj��−�� � N + 1 � 2N ,

o

q−1  cN−�j�� − ���−1
.

ombining these inequalities, we obtain

DN�� j�  c�N−�j�� − ���−1
= c�N−�1/j��1/��−��� = c�N−�1/j���1/��+��� = c�N−1/��j�−�,

here �=�� / j. That is, we have shown, for all ��0, that

DN�� j� = ��N−1/��j�−�� .

�

. Combescure’s conjecture, Bourget’s work, and new results

Before discussing the conjecture, we must clearly understand Combescure’s proof for the
armonic oscillator case. As stated in Sec. III, the aim is to show that

B−1�x� = �
n=0

�

�an�2� 2

sin�x − 	n�

2

→ � .

We define the set S�x�,

S�x� = �n:�x − 	n� � �an� = n−�2� . �11�

ach n is an element of S�x� if x is “close to 	n.” Note that 	n=2��
n /2��, where �. is the
ractional part, not “set” and 
n are the eigenvalues of the base Hamiltonian H0.

Given that sin x�x for all x0, a lower bound for B−1�x� is obtained,

B−1�x�  �
n=0

�

�an�2� 2

x − 	n

2

 �
n�S�x�

4�an�2

�x − 	n�2  4 # S�x� . �12�

ach n�S�x� gives a contribution to the sum of greater than one as �an� / �x−	n�1. By only
onsidering #S�x�, we simply count a “1” each time.

The results on discrepancy of sequences are now used, with the sequence �HO= �	n /2��. Note
hat each element of the sequence �HO is in �0, 1�.

Consider the interval, defined for every x� �0,2�� and centered around x /2�,

JN�x� = � x

2�
− N−�,

x

2�
+ N−�� . �13�

or large enough N ,JN�x�� �0,1�. The size of the interval is 2N−�. Using this particular subset and
oting that the definition of discrepancy �7� involves taking the supremum over all subsets of
0, 1�, Combescure obtains

�N−1A�JN�x�,N� − 2N−�� � DN��HO� .
ultiplying through by N gives
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�A�JN�x�,N� − 2N1−�� � NDN��HO� . �14�

s ���� l1�H0�

� �an� → �

nd thus

1/2 � � � 1

rom simple convergence arguments. Therefore, N1−� grows at a rate less than N1/2. �Interestingly,
t can in fact not grow at all ��=1� which is a subtle point seemingly missed by Combescure and
thers. The rank-1 projection operator from the vector ��� constructed with �=1 is not shown to
ead to the emergence of a continuous spectrum. Therefore, the statement that ���� l1�H0� implies
���Hcont is not in fact proved to be true. There are vectors not in l1�H0� that may not be in the
ontinuous spectrum. In practice �numerical, experimental work� this should not cause any
rouble. It is clearly easy to avoid �=1.� At this stage, Combescure utilizes the theorems discussed
bove on the discrepancy of sequences. For the eigenvalue sequence, 
n=n��, of the harmonic
scillator the j=1 case of Theorem IV.5 applies which is exactly �Theorem 3.2, Ref. 11�. �Do not
onfuse �, the harmonic oscillator frequency, with �HO, the label for the sequence in �0, 1�, the
iscrepancy of which is being bounded.� Combescure obtains the result

DN��HO� = O�N−1�/��+�� .

This is not based on a conjecture as for j=1 a direct proof is possible, bypassing Conjecture IV.3.
ee. Ref. 11.� For the sequence �HO,�=� /2�. If � is an irrational of constant type ��=1�, the
trongest type of irrational, then

NDN��HO� = O�N�� .

s the right-hand side of �14� can be made to grow arbitrarily slowly, we conclude that the
eft-hand side must grow slowly too. Thus, to cancel out the growth of 2N1−�, A�JN�x� ,N� must
row at a rate arbitrarily close to that of 2N1−�. We see that

A�JN�x�,N� → �

s N→�. It is now a simple observation6 that this implies that #S�x�→� and thus B−1�x�→�.
hus, eix is in the continuous spectral subspace of the Floquet operator V.

The importance of the eigenvalue sequence is seen in that if we cannot limit the right-hand
ide of �14�, then we cannot place a lower limit on A�JN�x� ,N� and thus we cannot conclude that
−1�x�→�. Two barriers to limiting the right-hand side of this equation exist—j and �. If, still in

he harmonic oscillator case, we wished for �=� /2� to only be of a weaker type, say �=2, we
ould no longer be able to conclude that B−1→�. The right-hand side would grow like N�1/2�+�,
hich is always faster than 2N1−� for 1 /2���1 which grows at a rate of N�1/2�−�. Thus, no

uitable lower limit for A�JN�x� ,N� can be found. Similarly, if the eigenvalue sequence is gener-
lized �Combescure’s conjecture� then we run into trouble. For j=2, the lowest possible growth
ate for the right-hand side we can obtain, taking Conjecture IV.3 as true, applying Theorem 5 and
oting Theorem IV.6 which says we cannot do any better, is, once again, N�1/2�+�. For larger j, the
ituation only gets worse.

Given these seemingly significant problems, the natural question to ask is: “How does one get
round this problem?” The answer is provided in the work of Bourget.7 Bourget proves a weaker
heorem than Combescure’s conjecture. Where the same requirement on ��� is kept in Ref. 6, that
t be in l1�H0�, Bourget has a j dependent requirement. Essentially, for increasing j the an terms
sed to construct ��� must decrease more slowly with n. See Bourget’s work for the exact require-
ent, which depends on the best estimates available for Weyl sums discussed earlier and thus is a
ontrivial function of j.
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The key insight in obtaining the proof is to modify the set S�x� �Eq. �11�� and the correspond-
ng interval JN�x� �Eq. �13�� that we consider. Importantly, they become j dependent. Bourget
educes the shrinking rate of the set JN�x� as a function of N just enough so as to allow the weaker
imits on the discrepancy to be good enough to force the right-hand side of the equivalent to �14�
o be less than the left-hand side, while keeping strong enough control on terms in the new set S�x�
o still argue that B−1→�.

Using the best available estimations on Weyl sums and plugging these into the upper bound
ormulas for discrepancy �as discussed earlier when introducing the work by Vinogradov�, Bourget
anages to provide a rigorous proof of the existence of a continuous spectral component of the
loquet operator �the essence of Combescure’s conjecture� for j37 and j=2.8 The proof is,
nfortunately, unavoidably clouded by the “messy” estimates available for Weyl sums and thus,
he essence of the proof is difficult to see. Here, we will revisit the proof, but �utilizing Conjecture
V.3� apply Theorem IV.5 which says �using 2�, rather than � for technical reasons�, for all �

0,

DN��� = O�N−1/��j�+2�� .

ith this very clean estimate, it is far easier to see how Bourget’s work provides a proof that a
ontinuous spectral component of the Floquet operator exists. It covers all j2. We highlight the
act that a solution to Vinogradov’s conjecture provides an elegant solution to Combescure’s
hysics conjecture. The j-dependence of the an’s used to construct ��� is straightforward.

Theorem IV.7: Assume Conjecture IV.3 is true and thus Theorem IV.5 follows. Assume � is
rrational and of type �. Then for all positive integers, j, the Floquet operator, V, has �cont�V�

0” if 1/2���1/2+1/ �2�j�.
Proof (IV.7): The proof relies upon the techniques utilized by Bourget. In essence, we simply

ncrease the size of the interval �Eq. �13�� from 2N−� to 2N2��1/2�−���log N�−1/2. The important
hange is the first factor. The log N term is essential for technical reasons, but has a negligibly
mall effect on the shrinkage rate of the interval for large N. As log N /N4�→0 as N→� for all
�0, for N large enough we have

2N2��1/2�−���log N�−1/2 � 2N2��1/2�−�−��.

sing this underestimate for the size of the interval, we easily obtain the equivalent of �14�,

�A�JN�x�,N� − 2N2�1−�−��� � NDN�� j� ,

or the sequence � j = �nj��. Now, using Theorem IV.5, it is evident that to ensure A�JN�x� ,N�
�, we must have

2�1 − � − �� � 1 − 1/��j� + 2� ,

r

� � 1/2 + 1/�2�j� − � − � .

he condition

1/2 � � � 1/2 + 1/�2�j� , �15�

here the “�” sign has absorbed the arbitrarily small numbers � and �, must be satisfied to force
�JN�x� ,N�→�.

Finally, we must show that B−1�x�→� when this larger interval is used. Corresponding to the
ew interval JN�x�, we introduce the new set S�x�,

S�x� = �n:�x − 	n� � 2�N2��1/2�−�� log N−1/2 .

he estimate �12� is the same, except with the new set S�x�, which no longer has all terms greater

han unity. Thus, it is not enough to simply count the number of terms in S�x�. A more subtle

                                                                                                            



e
n

w
R

F
c
f
t

r
l
w

D

d
g
d
s
V
i

t
C

V

a
t

t
s

F

w

p
o

103503-14 J. McCaw and B. H. J. McKellar J. Math. Phys. 46, 103503 �2005�

                        
stimate is required. Replacing the numerator, �an�, with something smaller, N−�, and the denomi-
ator, �x−	n�, with something larger, 2�N2��1/2�−�� log N−1/2, we obtain

B−1�x� 
1

�2 �
n�S�x�

log N

N2�1−�� ,

hich is essentially the estimate Bourget obtains. The estimate contained therein �Lemma 3.5 in
ef. 7� then shows that B−1�x�→� and the argument is complete. �

Examining �15� we note that for j=1 �for �=1� we recover the simple result of Combescure.
or all j2, we have a stronger �j-dependent� condition on ��� than simply ���� l1�H0�. This
omplication is the main weakening of Combescure’s conjecture that Bourget and we have been
orced to make. Note that the restriction on � takes into account the end point subtleties referred
o in the preceding discussions.

We have replaced the requirement that ���� l1�H0� �i.e., 1 /2���1� with the j dependent
equirement 1 /2���1/2+1/ �2j�. In Bourget’s work, the requirement is stronger—directly re-
ated to the replacement of the known limits on Weyl sums �in terms of � in the earlier sections�
ith the “best possible” estimate from our Conjecture IV.3 of �1/ j�−�.

. Summary

Reliance on Conjecture IV.3 and the result of Theorem IV.5 derived from it has allowed us to
iscuss Bourget’s proof without the complications of the messy estimations on Weyl sums. Bour-
et’s proof is also n-dependent �m in his work� while ours is n-independent. This simplified
iscussion highlights the key aspects of Bourget’s proof, both for j37 and j=2.8 It has also
hown that the emergence of a continuous spectral component of the Floquet operator is solved by
inogradov’s conjecture. A proof of Vinogradov’s conjecture is no longer just of mathematical

nterest. It has a direct mathematical physics consequence.
Finally, note that the rank-N equivalent of this work follows in the same way as presented for

he harmonic oscillator case in Sec. III, providing a complete rank-N generalization of the work of
ombescure.6

. GENERALIZING THE RESULTS OF MILEK AND SEBA

Having established that the continuous subspace of H, Hcont is not empty, we wish to char-
cterize it—by identifying the singular and absolutely continuous components. Here, we extend
he result of Milek and Seba to rank-N perturbations.

Theorem V.1: Assume H�t� is given by �1� and that �2� applies. Assume that Bk
−1�x�→� and

hus Hcont�0” . Then Hac=0” and thus Hsc is not-empty. The Floquet operator, V, has a nonempty
ingular continuous spectrum.

Proof (V.1): As shown in the proof of Theorem II.4a, �Ref. 1� and easily calculated, the
loquet operator can be written in the form

V = U + �
k=1

N

Rk,

here

Rk = �ei�k/� − 1���k�	�k�U . �16�

We can now use either �Theorem 5, Ref. 13� or �Theorem 1, Ref. 14�. The theorem from the
aper of Birman and Krein is more direct, so we use it here. It states that if we have two unitary

perators, U and V, that differ by a trace class operator, then the wave operators
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�± = s − lim
�→±�

V�U−�Pac�U�

xist and their range is the absolutely continuous subspace of V,

R��±� = Hac�V� . �17�

We must show that the difference V−U is finite. With the notation in Ref. 1, where the
erturbation W is given by A*A and

A = ���	�� ,

ith

��� = �
n

an�n,

e obtain

Tr A*A = Tr A = �
l

	�l�A��l� = �
l,m,n

	�l�an��n�	�m�am
* ��l� = �

l,m,n
anam

* �ln�ml = �
l

�al�2 = 1

s ���� l2�H0� and is normalized. The perturbation to the Hamiltonian is trace class. The differ-
nce in unitary operators, U and V, is also trace class. By the triangle inequality for norms,

�Rk�Tr � ��ei�k/� − 1�� � ��k�	�k��Tr�U�Tr.

s �U�Tr=1,

Tr��
k=1

N

Rk
 � �
k

��ei�k/� − 1�� �
l,m,n

	�l��ak�n��n�	�m��ak�m
* ��l� = �

k

�ei�k� − 1� = �
k

�2�1 − cos �k/�� .

rmed with a trace-class perturbation, we conclude that the wave operators exist. The existence of
he operators �± means that they are defined for all vectors in the Hilbert Space H. Note �Eq.
17�� that the subspace Hac�V� is equal to the range of these operators. However, Pac�U� gives zero
hen acting on any state in H because U is pure point. Thus, Hac�V� is empty. As Hcont is not

mpty, Hsc must be nonempty, and we have proved that a singular continuous subspace of the
loquet operator V exists. �

The key assumption in Theorem V.1 is that Bk
−1�x�→�. This is certainly true for j=1 if

�k�� l1�H0�. For j2, Bourget7,8 showed that one can construct vectors ��k� for which Bk
−1�x�

�. The results were discussed in detail in Sec. IV. We have shown, in Conjecture IV.7, that if
onjecture IV.3 is true then this result may be improved—the requirements on the states ��k� are

ess restrictive. The result was also extended to rank-N perturbations.
Discussion. Milek and Seba make a number of incorrect statements in obtaining this result for

he rank-1 case. First, they state that the operator R= �exp�i� /��−1����	��U is rank-1 which it is
ot—the presence of the unitary operator U stops R from being rank-1. �As we are dealing with
he rank-1 case, the subscript k may be dropped from �16�.� This is not, however, important. The
pplicability of the theorems in Refs. 13 and 14 does not rely upon the rank of the operator R, but
pon it being of trace-class. Second, they claim that the existence of the wave operators implies
hat

�ac�V� � �ac�U� . �18�

his is, again, not true. Given that �ac�U� is empty, it is indeed possible to conclude that �ac�V� is
mpty, as discussed earlier, but the relation �18� does not follow. Consider the situation where

cont�U� is not empty. Then there is a set of vectors in H which are continuous for U. These
ectors form the domain for the operator V� in the wave operators. The action with V� does not

�
owever keep us in the subspace Hcont�U� as the space we get to �the range for V � is only
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nvariant for Hcont�V�, not Hcont�U�. Thus, we may obtain a vector, necessarily in Hcont�V� due to
nvariance, but possibly in Hs�U�, and thus, we cannot conclude that �ac�V���ac�U�. These two
oints discussed do not make the final results of Milek and Seba wrong, but “only” the proofs.

Of greatest concern is the use of Lemma 6 in Ref. 6 without justification. Milek and Seba have
ssumed that Combescure’s conjecture is true. It has taken 15 years, and a significant amount of
ork by Bourget, for that to be shown to be the case. We have shown that the conjecture is directly

inked to a long-standing number-theoretic conjecture. The work has also been extended to cover
ank-N perturbations.

I. SUMMARY

We have generalized the work of both Combescure6 and Milek and Seba5 from rank-1 to rank-
. We have also discussed in detail Combescure’s conjecture, our work on estimations of discrep-
ncy and the demonstration by Bourget7 that a continuous spectral component of the Floquet
perator does exist for certain constructions of ���. This covers the essential aim of Combescure’s
onjecture on the existence of a continuous spectral component. A clear view of the essence of
ourget’s proof has been provided by taking a reasonable number-theoretic conjecture to be true.
ith this clear view, the work of Bourget becomes more accessible. A resolution to Vinogradov’s

onjecture would have direct implications in mathematical physics.
An in-depth critical analysis of the work of Milek and Seba was also undertaken; we high-

ighted a number of misconceptions in the work. A proof of Vinogradov’s conjecture, allowing our
ork to provide an elegant solution to Combescure’s conjecture, remains desirable.
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We realize the exceptional N=6 superconformal algebra, spanned by 32 fields,
inside the Lie superalgebra of pseudodifferential symbols on the supercircle S1�3.
Correspondingly, we obtain two nonisomorphic one-parameter families of irreduc-
ible representations of this superconformal algebra in a superspace spanned by 8
fields. © 2005 American Institute of Physics. �DOI: 10.1063/1.2035029�

. INTRODUCTION

A superconformal algebra is a simple complex Lie superalgebra g spanned by the coefficients
f a finite family of pairwise local fields a�z�=�n�Za�n�z

−n−1; one of the members of this family is
he Virasoro field L�z�.1–4 Superconformal algebras play an important rôle in the string theory and
onformal field theory.

The Lie superalgebra K�N� of contact vector fields with Laurent polynomials as coefficients
with N odd variables� is a superconformal algebra which is characterized by its action on a
ontact 1-form.1,2,5,6 These Lie superalgebras are also known to physicists as the SO�N� supercon-
ormal algebras.7 Note that K�N� is spanned by 2N fields. It is simple if N�4, if N=4, then the
erived Lie superalgebra K��4� is simple. The nontrivial central extensions of K�1�, K�2�, and
��4� are well known: they are isomorphic to the Neveu-Schwarz superalgebra, and the so-called
N=2,” and “big N=4” superconformal algebra, respectively.7

The superalgebra K�6� contains a simple subsuperalgebra spanned by 32 fields. This new
xceptional superconformal algebra was constructed in Ref. 1 �and denoted by CK6� and in Ref. 8
and denoted by kas�; see also Refs. 5 and 9–13. It was proven in Refs. 1 and 5 that CK6 has no
ontrivial central extensions. It was also pointed out that CK6 appears to be the only new super-
onformal algebra, which completes their list; see Refs. 2–6.

Martinez and Zelmanov14,15 obtained CK6 using their construction of superalgebras CK�R ,d�,
here R is an associative commutative superalgebra with an even derivation d.

In this work we realize CK6 inside the Poisson superalgebra P�6� of pseudodifferential sym-
ols on the supercircle S1�3 and inside its deformation Ph�6�.

It is known that a Lie algebra of contact vector fields can be realized as a subalgebra of
oisson algebra.16 In particular, the Lie algebra Vect�S1� of complex polynomial vector fields on

he circle has a natural embedding into the Poisson algebra P�0� of formal Laurent series on the
ylinder T*S1 \S1. One can consider a family of Lie algebras Ph, h� �0,1�, having the same vector
pace, which contracts to P�0�.17–20 Analogously, K�2N� is embedded into the Poisson superalge-
ra P�2N� of pseudodifferential symbols on the supercircle S1�N, and there is a family of Lie
uperalgebras Ph�2N�, which contracts to P�2N�; see Ref. 21.

A natural question is whether there exists an embedding

K�2N� � Ph�2N� . �1.1�

ecall that the answer is “yes” if N=2, more precisely, there exists an embedding

�
Electronic mail: elena@math.ucr.edu
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K̂��4� � Ph�4� , �1.2�

here K��4�= �K�4� ,K�4�� is a simple ideal of K�4� of codimension one, and K̂��4� is one of three
ndependent central extensions of K��4�. Associated with the embedding �1.2�, there is a one-

arameter family of irreducible representations of this central extension K̂��4� realized on 4
elds.21

Note that embedding �1.1� does not hold if N�2.22 However, it is remarkable that it is
ossible to embed CK6, which is “one half” of K�6�, into Ph�6�. We construct two such embed-
ings, and obtain the corresponding one-parameter families of irreducible representations of CK6

ealized on 8 fields. In particular, we obtain representations of CK6 in 8 fields, which preserve an
dd nondegenerate supersymmetric or superskew-symmetric bilinear form. We also show how the
uperalgebra CK6 is generated inside Ph�6�.

I. CONTACT SUPERCONFORMAL ALGEBRA K„2N…

Let ��2N� be the Grassmann algebra in 2N variables �1 , . . . ,�N, �1 , . . . ,�N, and let
�1,2N�=C�t , t−1� � ��2N� be the associative superalgebra with natural multiplication and with

he following parity of generators: p�t�=0̄, p��i�=p��i�=1̄ for i=1, . . . ,N. Let W�2N� be the Lie
uperalgebra of all derivations of ��1,2N�. Let �t, ��i

, and ��i
stand for � /�t,� /��i, and � /��i,

espectively. By definition,

K�2N� = �D � W�2N� � D� = f� for some f � ��1,2N�� , �2.1�

here �=dt+�i=1
N ��i d�i+�i d�i� is a differential 1-form, which is called a contact form; see Refs.

, 2, 5, 6, 8, and 11–13, and 23. Let the Euler operator be defined by

E = �
i=1

N

��i��i
+ �i��i

� . �2.2�

et also:

� = 2 − E, Hf = �− 1�p�f�+1�
i=1

N

���i
f��i

+ ��i
f��i

� , �2.3�

or any f ���1,2N�.
There is a one-to-one correspondence between the differential operators D�K�2N� and the

unctions f ���1,2N�. The correspondence f ↔Df is given by

Df = ��f�
�

�t
+

� f

�t
E − Hf . �2.4�

he contact bracket on ��1,2N� is

�f ,g�K = ��f��tg − �t f��g� − �f ,g�P.b, �2.5�

here

�f ,g�P.b = �− 1�p�f�+1�
i=1

N

���i
f��i

g + ��i
f��i

g� �2.6�

s the Poisson bracket. Thus �Df ,Dg�=D�f ,g�K
.

Let �=�1�2�3�1�2�3.
Proposition 2.1: �See Refs. 1,5, and 8.� The superalgebra K�6� contains an exceptional N=6
uperconformal algebra CK6. It is spanned by the following 32 fields:

                                                                                                            



w

I

s
P

T
t

T

u

L

L
A

T
n
d
i
W
o

103504-3 On the exceptional N=6 superconformal algebra J. Math. Phys. 46, 103504 �2005�

                        
Ln = tn+1 − ��t�3tn+1� ,

Gn
i = tn+1�i + ��t�2tn+1��i

�, G̃n
i = tn�i + ��t�2tn��i

�, i = 1,2,3,

Tn
ij = tn�i� j − ��t�tn��i

��j
�, i � j, Tn

i = tn�i�i − ��t�tn��i
��i

�, i = 1,2,3,

�2.7�
Sn

i = tn�i�� j� j + �k�k�, S̃n
i = tn−1�i�� j� j − �k�k�, i = 1,2,3,

In
i = tn−1�i� j�k, i = 1,2,3, In = tn+1�1�2�3,

Jn
ij = tn+1�i� j − ��t�tn+1��i

��j
�, J̃n

ij = tn−1�i� j − ��t�tn−1��i
��j

�, i � j ,

here n�Z; �i , j ,k� is the cycle �1,2 ,3� in the formulas for Sn
i , S̃n

i and In
i .

II. POISSON SUPERALGEBRA P„2N… OF PSEUDODIFFERENTIAL SYMBOLS ON S1/N

The Poisson algebra P�0� of pseudodifferential symbols on the circle is formed by the formal
eries A�t ,	�=�−


n ai�t�	i, where ai�t��C�t , t−1�, and the even variable 	 corresponds to �t. The
oisson bracket is defined as follows:

�A�t,	�,B�t,	�� = �	A�t,	��tB�t,	� − �tA�t,	��	B�t,	� . �3.1�

he Poisson algebra P�0� has a deformation Ph, where h� �0,1�. The associative multiplication in
he vector space P is determined as follows:

A�t,	��hB�t,	� = �
n�0

hn

n!
�	

nA�t,	��t
nB�t,	� . �3.2�

he Lie algebra structure on Ph is given by �A ,B�h=A�hB−B�hA, so that the family Ph contracts to
P�0�. The Lie algebra Ph is called the Lie algebra of pseudodifferential symbols on the circle.17–20

The Poisson superalgebra P�2N� of pseudodifferential symbols on the supercircle S1�N has the
nderlying vector space P � ��2N�. The Poisson bracket is defined as follows:

�A,B� = �	A�tB − �tA�	B + �A,B�P.b. �3.3�

et �h�2N� be an associative superalgebra with generators �1 , . . . ,�N, �1 , . . . ,�N and relations:

�i� j = − � j�i,�i� j = − � j�i,�i� j = h�i,j − � j�i. �3.4�

et Ph�2N�= Ph � �h�2N� be a superalgebra with the product of A=A1 � X and B=B1 � Y, where

1 ,B1� Ph, and X ,Y ��h�2N�, given by

AB =
1

h
�A1�hB1� � �XY� . �3.5�

he Lie bracket in Ph�2N� is �A ,B�h=AB− �−1�p�A�p�B�BA, and limh→0�A ,B�h= �A ,B�. There exist
atural embeddings: W�N�� P�2N� and W�N�� Ph�2N�, where W�N� is the Lie superalgebra of all
erivations of C�t , t−1� � ���1 , . . . ,�N� ���i

is identified with �i�, so that the commutation relations
n P�2N� and in Ph�2N�, when restricted to W�N�, coincide with the commutation relations in

�N�. The Lie superalgebra Ph�2N� is called the Lie superalgebra of pseudodifferential symbols
1�N
n S �see Ref. 21�.
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V. REALIZATION OF CK6 INSIDE THE POISSON SUPERALGEBRA

Theorem 4.1: The superalgebra CK6 is spanned by the following 32 fields inside P�6�:

Ln,0 = tn+1	 ,

Gn,0
i = tn+1	�i, G̃n,0

i = tn�i − ntn−1	−1� j�i� j, i = 1,2,3,

Tn,0
ij = tn�i� j − ntn−1	−1�k�i�k� j, i � j � k ,

Tn,0
i = − tn�� j� j + �k�k� + ntn−1	−1� j�k� j�k, i = 1,2,3,

�4.1�
Sn,0

i = − tn�i�� j� j + �k�k� + ntn−1	−1�i� j�k� j�k, i = 1,2,3,

S̃n,0
i = tn−1	−1�� j� j − �k�k��i, i = 1,2,3,

In,0
i = tn−1	−1�i� j�k, i = 1,2,3, In,0 = tn+1	�1�2�3,

Jn,0
ij = tn+1	�i� j, J̃n,0

ij = tn−1	−1�i� j, i � j ,

here n�Z; �i , j ,k� is the cycle �1,2 ,3� in the formulas for G̃n,0
i , Tn,0

i , Sn,0
i , S̃n,0

i , and In,0
i .

Proof: Note that there exists an embedding

K�2N� � P�2N�, N � 0, �4.2�

see Ref. 21�. Consider a Z grading of the associative superalgebra

P�2N� = � i�ZP�i��2N� �4.3�

efined by degLief =deg f −1, where deg is defined as follows:

deg t = deg �i = 0 for i = 1, . . . ,N ,

�4.4�
deg 	 = deg �i = 1 for i = 1, . . . ,N .

ith respect to the Poisson bracket,

�P�i��2N�,P�j��2N�� � P�i+j��2N� . �4.5�

hus P�0��2N� is a subsuperalgebra of P�2N�, and we will show that P�0��2N�	K�2N�. Equiva-
ently, P�0��2N� is singled out as the set of all �Hamiltonian� functions A�t ,	 ,�i ,�i�� P�2N� such
hat the corresponding vector fields supercommute with the semi-Euler operator:


HA,	�	 + �
i=1

N

�i��i� = 0, �4.6�

here

A�t,	,�i,�i� → HA = �	A�t − �tA�	 − �− 1�p�A��
i=1

N

���i
A��i

+ ��i
A��i

� . �4.7�

To describe an isomorphism of K�2N� with P�0��2N�, we change the variable t in


N
�1 �2N� : t→2t−�i=1�i�i. Then we have the following contact bracket on ��1 �2N�:
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�f ,g�K̃ = �̃�f��tg − �t f�̃�g� − �f ,g�P.b, �4.8�

here �̃=1− Ẽ and Ẽ=�i=1
N �i��i

. Note that the corresponding contact form is �̃=dt+�i=1
N �id�i.

efine a map � :��1 �2N�→P�0��2N� as follows:

f→
�

Af = �− 1�s	1−sf , �4.9�

here s is a scalar given by Ẽ�f�=sf . Then

�Af,Ag� = A�f ,g�K̃
. �4.10�

pplying the isomorphism �=� � to the fields �2.7�, we obtain the following fields:

��Ln� = 2n+1Ln,0 − 2n−1�n + 1��Tn,0
1 + Tn,0

2 + Tn,0
3 � ,

��Gn
i � = 2n+1Gn,0

i − 2n�n + 1�Sn,0
i , ��G̃n

i � = − 2nG̃n,0
i + 2n−1nS̃n,0

i ,

��Tn
ij� = − 2nTn,0

ij , ��Tn
i � = 2n−1�− Tn,0

i + Tn,0
j + Tn,0

k � ,

�4.11�
��Sn

i � = 2nSn,0
i , ��S̃n

i � = 2n−1S̃n,0
i ,

��In
i � = 2n−1In,0

i , ��In� = 2n+1In,0,

��Jn
ij� = 2n+1Jn,0

ij , ��J̃n
ij� = 2n−1J̃n,0

ij ,

here �i , j ,k� is the cycle �1,2 ,3� in the formulas for ��Tn
i �. �

. REALIZATION OF CK6 INSIDE THE LIE SUPERALGEBRA OF PSEUDODIFFERENTIAL
YMBOLS

Given the embedding �4.2� it is natural to ask whether there exists an embedding

K�2N� � Ph�2N� . �5.1�

ecall that K��4�= �K�4� ,K�4�� is a simple ideal in K�4� of codimension one defined from the
xact sequence

0 → K��4� → K�4� → CDt−1�1�2�1�2
→ 0. �5.2�

ecall also �see Ref. 21� that the superalgebra K��4�� P�4� is spanned by the 16 fields: By the 12
elds:

f��1,�2,t�	, f��1,�2,t��i �i = 1,2� , �5.3�

hich form a subsuperalgebra isomorphic to W�2�, and 4 more fields Fn
i , where 0� i�3 and n

Z:

Fn
0 = tn−1	−1�1�2,

Fn
i = tn−1	−1�i�1�2, i = 1,2,

F3 = tn−1	−1�1�2�1�2, n � 0. �5.4�
n
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Proposition 5.1: �See Ref. 21.� The superalgebra K̂��4�� Ph�4� is spanned by the 12 fields
iven in �5.3� and 4 more fields Fn,h

i :

Fn,h
0 = 	−1�ht

n−1�1�2,

Fn,h
i = 	−1�ht

n−1�1�2�i, i = 1,2, �5.5�

Fn,h
3 = 	−1�ht

n−1�1�2�1�2 +
h

n
tn, n � 0,

nd the central element h� Ph�4�, so that limh→0K̂��4�=K��4�� P�4�.
Note that we cannot obtain the embedding �5.1� if N�2.22 However, the following theorem

olds.
Theorem 5.2: There exists an embedding ih :CK6→Ph�6� for each h� �0,1� such that

imh→0ih�CK6�=CK6� P�6�.
Proof: ih�CK6� is spanned by the following fields inside Ph�6�:

Ln,h = tn+1	 ,

Gn,h
i = tn+1	�i, G̃n,h

i = tn�i − n	−1�ht
n−1�i� j� j, i = 1,2,3,

Tn,h
ij = tn�i� j − n	−1�ht

n−1�k� j�k�i, i � j � k ,

Tn,h
i = − tn�� j� j + �k�k� + n	−1�ht

n−1� j�k� j�k + htn, i = 1,2,3,

�5.6�
Sn,h

i = − tn�i�� j� j + �k�k� + n	−1�ht
n−1� j�k�i� j�k + htn�i, i = 1,2,3,

S̃n,h
i = 	−1�ht

n−1�� j�i� j − �k�i�k�, i = 1,2,3,

In,h
i = 	−1�ht

n−1� j�k�i, i = 1,2,3, In,h = tn+1	�1�2�3,

Jn,h
ij = tn+1	�i� j, J̃n,h

ij = 	−1�ht
n−1�i� j, i � j ,

here n�Z; �i , j ,k� is the cycle �1,2 ,3� in the formulas for G̃n,h
i , Tn,h

i , Sn,h
i , S̃n,h

i , and In,h
i . Let h

�0,1�. Set Jn,h
ij =−Jn,h

ji and J̃n,h
ij =−J̃n,h

ji for i� j. Given h� �0,1�, set

Ln ª Ln,h, . . . , J̃n
ij
ª J̃n,h

ij . �5.7�

ecall that if h=0, then �5.7� gives elements �4.1�. The nonvanishing commutation relations
etween the elements �5.7� are as follows: let i� j�k, then

�Ln,Lm� = �m − n�Ln+m,

�Ln,Gm
i � = �m − n�Gn+m

i , �Ln,G̃m
i � = mG̃n+m

i ,

�Ln,Tm
ij� = mTn+m

ij , �Ln,Tm
i � = mTn+m

i ,

�Ln,Si � = mSi , �Ln, S̃i � = �m + n�S̃i ,
m n+m m n+m
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�Ln,Im
i � = �m + n�In+m

i , �Ln,Im� = �m − n�In+m,

�Ln,Jm
ij� = �m − n�Jn+m

ij , �Ln, J̃m
ij� = �m + n�J̃n+m

ij ,

�Gn
i ,Gm

j � = �m − n�Jn+m
ij , �Gn

i ,G̃m
j � = mTn+m

ij ,

�Gn
i ,Tm

ji� = − Gn+m
j + mSn+m

j , �Gn
i ,Tm

i � = mSn+m
i ,

�Gn
i ,Tm

j � = Gn+m
i , �Gn

i ,Sm
j � = Jn+m

ij ,

�Gn
i , S̃m

j � = Tn+m
ij , �G̃n

i ,G̃m
j � = �m − n�J̃n+m

ij ,

�G̃n
i ,Sm

i � = Tn+m
i , �G̃n

i ,Sm
j � = Tn+m

ji ,

�G̃n
i , S̃m

j � = − J̃n+m
ij , �G̃n

i ,Jm
ij� = Gn+m

j ,

�Tn
ij,Tm

ji� = Tn+m
i − Tn+m

j , �Tn
ij,Tm

jk� = Tn+m
ik ,

�Tn
ij,Tm

ki� = − Tn+m
kj , �Tn

ij,Tm
i � = − Tn+m

ij ,

�Tn
ij,Tm

j � = Tn+m
ij , �Tn

ij,Sm
j � = Sn+m

i ,

�Tn
ij, S̃m

i � = S̃n+m
j , �Tn

ij, S̃m
k � = − 2In+m

i ,

�Tn
ij,Im

j � = − S̃n+m
k , �Tn

ij,Jm
jk� = Jn+m

ik ,

�Tn
ij, J̃m

ik� = − J̃n+m
jk , �Tn

j ,Sm
i � = − Sn+m

i ,

�Tn
j , S̃m

i � = S̃n+m
i , �Tn

i ,Im
i � = 2In+m

i ,

�Tn
i ,Im� = − 2In+m, �Tn

i ,Jm
ij� = �Tn

j ,Jm
ij� = − Jn+m

ij ,

�Tn
k,Jm

ij� = − 2Jn+m
ij , �Tn

i , J̃m
ij� = �Tn

j , J̃m
ij� = J̃n+m

ij ,

�Tn
k, J̃m

ij� = 2J̃n+m
ij , �Jn

ij, J̃m
ij� = Tn+m

k ,

�Jn
ij, J̃m

ik� = − Tn+m
jk , �Jn

ij, J̃m
jk� = Tn+m

ik . �5.8�

et �i , j ,k� be the cycle �1,2 ,3�, then

�Gn
i ,G̃m

i � = Ln+m − mTn+m
k , �Gn

i , S̃m
i � = Tn+m

j − Tn+m
k ,

�Gi ,Ij � = Tjk , �Gi ,Ik � = − Tkj ,
n m n+m n m n+m
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�Gn
i ,Jm

jk� = �m − n�In+m, �Gn
i , J̃m

jk� = �m + n�In+m
i ,

�Gn
i , J̃m

ij� = G̃n+m
j − �n + m�S̃n+m

j , �Gn
i , J̃m

ik� = G̃n+m
k ,

�G̃n
i ,Tm

ij� = G̃n+m
j − nS̃n+m

j , �G̃n
i ,Tm

ik� = G̃n+m
k − �n + m�S̃n+m

k ,

�G̃n
i ,Tm

jk� = �m + n�In+m
j , �G̃n

i ,Tm
kj� = �n − m�In+m

k ,

�G̃n
i ,Tm

j � = − G̃n+m
i + mS̃n+m

i , �G̃n
i ,Tm

k � = − G̃n+m
i ,

�G̃n
i ,Im

i � = J̃n+m
jk , �G̃n

i ,Im� = Jn+m
jk ,

�Sn
i ,Jm

jk� = − 2In+m, �Sn
i , J̃m

ij� = − S̃n+m
j ,

�Sn
i , J̃m

ik� = S̃n+m
k , �Sn

i , J̃m
jk� = 2In+m

i ,

�S̃n
i ,Jm

ij� = Sn+m
j , �S̃n

i ,Jm
ik� = − Sn+m

k ,

�In
i ,Jm

jk� = − Sn+m
i , �In, J̃m

ij� = Sn+m
k . �5.9�

�

I. REPRESENTATION OF CK6 ASSOCIATED WITH ITS EMBEDDING INTO Ph=1„6…

Recall that the embedding �1.2� for h=1 allows us to define a one-parameter family of
pinor-like representations of K��4� in the superspace spanned by 2 even and 2 odd fields, where
he central element 1� P1�4� acts by the identity operator.21

Theorem 6.1: There exists a one-parameter family of irreducible representations of CK6,
epending on parameter ��C, in a superspace spanned by 4 even fields and 4 odd fields.

Proof: Let V�= t�C�t , t−1� � ��3�, where ��3�=���1 ,�2 ,�3� is the Grassmann algebra, and
�C \Z. Let �vm

i , v̂m
i �, where m�Z and 1� i�4, be the following basis in V�:

vm
i =

tm+�

m + �
�i, v̂m

i = tm+�� j�k, 1 � i � 3, vm
4 =

tm+�

m + �
, v̂m

4 = − tm+��1�2�3, �6.1�

here �i , j ,k� is the cycle �1,2 ,3� in the formulas for v̂m
i . We define a representation of CK6 in V�

ccording to the formulas �5.6�, where h=1. Namely, �i is the operator of multiplication in ��3�,
i is identified with ��i

, and 	−1 is identified with the antiderivative:

	−1g�t� =� g�t�dt, g � t�C�t,t−1� . �6.2�

otice that
�	−1�h=1f��g� = 	−1�fg� �6.3�

−1 � −1
or any f �C�t , t � and g� t C�t , t �. Observe that
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	−1�h=1f = �
n=0




�− 1�n�	nf�	−n−1. �6.4�

hus the formula �6.3� is simply the formula of integration by parts:

f � g dt − f�� � g dt2 + f�� � � g dt3 − ¯ =� fg dt . �6.5�

he superalgebra CK6 acts on V�=Span�vm
i , v̂m

i � 1� i�4,m�Z� as follows �see �5.7� for nota-
ions�:

Ln�vm
i � = �m + n + ��vm+n

i , Ln�v̂m
i � = �m + ��v̂m+n

i ,

Gn
i �vm

4 � = �m + n + ��vm+n
i , Gn

i �v̂m
i � = − �m + ��v̂m+n

4 ,

Gn
i �vm

j � = v̂m+n
k , Gn

i �vm
k � = − v̂m+n

j ,

G̃n
i �vm

i � = vm+n
4 , G̃n

i �v̂m
4 � = − v̂m+n

i ,

G̃n
i �v̂m

j � = − �m + ��vm+n
k , G̃n

i �v̂m
k � = �m + n + ��vm+n

j ,

Tn
ij�vm

j � = vm+n
i , Tn

ij�v̂m
i � = − v̂m+n

j ,

Tn
i �vm

i � = vm+n
i , Tn

i �vm
4 � = vm+n

4 , �6.6�

Tn
i �v̂m

i � = − v̂m+n
i , Tn

i �v̂m
4 � = − v̂m+n

4 ,

Sn
i �vm

4 � = vm+n
i , Sn

i �v̂m
i � = v̂m+n

4 ,

S̃n
i �v̂m

j � = vm+n
k , S̃n

i �v̂m
k � = vm+n

j ,

In
i �v̂m

i � = − vm+n
i , In�vm

4 � = − v̂m+n
4 ,

Jn
ij�vm

4 � = v̂m+n
k , Jn

ij�vm
k � = − v̂m+n

4 ,

J̃n
ij�v̂m

k � = − vm+n
4 , J̃n

ij�v̂m
4 � = vm+n

k ,

here �i , j ,k� is the cycle �1,2 ,3� in the formulas for G̃n
i , S̃n

i , Jn
ij, and J̃n

ij. �

Remark 6.2: We have posed the condition ��C \Z in the definition of V�. However, formulas
6.6� actually define a representation of CK6 in a superspace spanned by vm

i , v̂m
i for an arbitrary

�C. �See also Sec. VIII.�

II. SECOND FAMILY OF REPRESENTATIONS OF CK6

Note that the embedding of infinite-dimensional Lie superalgebras

CK6 � K�6� , �7.1�

onsidered in this work, is naturally related to the embedding of finite-dimensional Lie superal-

ebras
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P̂�4� � P�0�6� . �7.2�

ecall that P�0 �6� is the Poisson superalgebra with 6 odd generators: �1 ,�2 ,�3 ,�1 ,�2 ,�3, and the
oisson bracket is given by �2.6�. The simple Lie superalgebra P�n� is defined as follows. Let

˜ �n� be the Lie superalgebra, which preserves the odd nondegenerate supersymmetric bilinear
orm antidiag �1n ,1n� on the �n �n�-dimensional superspace. Thus

P̃�n� = ��A B

C − At ��A � gl�n�, Bt = B, Ct = − C� . �7.3�

�n� is a subsuperalgebra of P̃�n� such that A�sl�n�.24 A. Sergeev has proved that P�n� has a

ontrivial central extension if and only if N=4; see Refs. 5, 8, 12, and 13. Note that dim P̂�4�
�16 �16�. It was pointed out in Refs. 5, 8, 9, 12, and 13 that P̂�4� has a family spin� of

4 �4�-dimensional irreducible representations. In fact, there exist two non-isomorphic families:

hey correspond to two families of embeddings of P̂�4� into P�0 �6�.
For every ��0 we can realize P̂�4� inside P�0 �6� as follows:

P̂�4� = Span�L,Gi,G̃i,Tij,Ti,Si, S̃i,Ii,I,Jij, J̃ij� , �7.4�

here

L = �, Gi = ��i, G̃i = �i,

Tij = �i� j, i � j, Ti = − � j� j − �k�k,

Si = − �i�� j� j + �k�k�, S̃i =
1

�
�� j� j − �k�k��i, �7.5�

Ii =
1

�
�i� j�k, I = ��1�2�3,

Jij = ��i� j, J̃ij =
1

�
�i� j, i � j ,

o that L is its central element; �i , j ,k� is the cycle �1,2 ,3� in the formulas for Ti, Si, Ji, and Ii.

orrespondingly, there is an embedding jh : P̂�4�→Ph�0 �6� given by

Lh = �, Gh
i = ��i, G̃h

i = �i,

Th
ij = �i� j, Th

i = − � j� j − �k�k + h ,

Sh
i = − �i�� j� j + �k�k� + h�i, S̃h

i =
1

�
�� j�i� j − �k�i�k� ,

Ih
i =

1
� j�k�i, Ih = ��1�2�3,
�
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Jh
ij = ��i� j, J̃h

ij =
1

�
�i� j , �7.6�

nd limh→0jh�P̂�4��= P̂�4�� P�0 �6�. The nonvanishing commutation relations between the ele-
ents �7.5� and between the elements �7.6� are as in �5.8� and �5.9�, where the indices m=n=0.

Associated to this embedding �for h=1� there is a family spin�
1 of representations of P̂�4� in

he superspace ���1 ,�2 ,�3�. We choose the basis

vi = �i, v̂i =
1

�
� j�k, 1 � i � 3, v4 = 1, v̂4 = −

1

�
�1�2�3, �7.7�

here �i , j ,k� is the cycle �1,2 ,3� in the formulas for v̂i. Explicitly,

spin�
1:�A B

C − At � + CL → �A B − �C̃

C − At � + C� · 14�4, �7.8�

here 14�4 is the identity matrix, and if Cij=Eij−Eji, then C̃ij=Ckl, so that the permutation
1 ,2 ,3 ,4�� �i , j ,k , l� is even; cf. Refs. 5,8,9,12, and 13. Formula �7.8� also gives the standard
epresentation spin0

1.

The second family of embeddings of P̂�4� into P�0 �6� and into Ph�0 �6� is given by �7.4�–
7.6�, where �i is interchanged with �i for all i in all the formulas. There is a family spin�

2 of

epresentations of P̂�4� associated to this embedding �for h=1� in the superspace ���1 ,�2 ,�3�, so

hat ��spin�
2�	spin�

1, as P̂�4� modules, for all �.
�� denotes the change of parity�. Theorem 6.1 has the following corollary.

Corollary 7.1: Under the restriction of the representation of CK6 in V� to P̂�4�, V� decom-
oses into a direct sum of irreducible �4 �4�-dimensional submodules of the family spin�

2.
Proof: Naturally, there are embeddings:

P̂�4� � CK6, P�0�6� � K�6� . �7.9�

he first embedding is given as follows:

P̂�4� = �x � CK6 � �L0,x� = 0� . �7.10�

ence P̂�4� is spanned by the elements �5.7�, where n=0, and L0 is its central element. The

ontrivial 2-cocycle on P�4� is �G0
i , G̃0

j �=�i,jL0. It follows from �6.6� that V� is a direct sum of

4 �4�-dimensional P̂�4� submodules:

V� = �m�ZVm
�, Vm

� = Span�vm
i , v̂m

i � 1 � i � 4� , �7.11�

here Vm
� 	spinm+�

2 . �

It is possible to define another embedding of CK6 into P�6� �respectively, into Ph�6�� by
nterchanging �i with �i in all the formulas �4.1� �respectively, in �5.6��, and then obtain a one-
arameter family of representations of CK6 in V� by repeating the previous construction. Thus the
ollowing theorem holds.

Theorem 7.2: Consider the following basis in V�:

vm
i = tm+��i, v̂m

i =
tm+�

m + �
� j�k, 1 � i � 3, vm

4 = tm+�, v̂m
4 = −

tm+�

m + �
�1�2�3, �7.12�

here �i , j ,k� is the cycle �1,2 ,3� in the formulas for v̂m
i . Then the action of CK6 on V� is defined

s follows

Ln�vi � = �m + ��vi , Ln�v̂i � = �m + n + ��v̂i ,
m m+n m m+n
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Gn
i �vm

i � = �m + ��vm+n
4 , Gn

i �v̂m
4 � = − �m + n + ��v̂m+n

i ,

Gn
i �v̂m

k � = vm+n
j , Gn

i �v̂m
j � = − vm+n

k ,

G̃n
i �vm

4 � = vm+n
i , G̃n

i �v̂m
i � = − v̂m+n

4 ,

G̃n
i �vm

k � = − �m + n + ��v̂m+n
j , G̃n

i �vm
j � = �m + ��v̂m+n

k ,

Tn
ij�vm

i � = − vm+n
j , Tn

ij�v̂m
j � = v̂m+n

i ,

Tn
i �vm

i � = − vm+n
i , Tn

i �vm
4 � = − vm+n

4 , �7.13�

Tn
i �v̂m

i � = v̂m+n
i , Tn

i �v̂m
4 � = v̂m+n

4 ,

Sn
i �vm

i � = − vm+n
4 , Sn

i �v̂m
4 � = − v̂m+n

i ,

S̃n
i �vm

k � = − v̂m+n
j , S̃n

i �vm
j � = − v̂m+n

k ,

In
i �vm

i � = v̂m+n
i , In�v̂m

4 � = vm+n
4 ,

Jn
ij�v̂m

k � = − vm+n
4 , Jn

ij�v̂m
4 � = vm+n

k ,

J̃n
ij�vm

4 � = v̂m+n
k , J̃n

ij�vm
k � = − v̂m+n

4 ,

here �i , j ,k� is the cycle �1,2 ,3� in the formulas for G̃n
i , S̃n

i , Jn
ij, and J̃n

ij. Thus V� is a direct sum

f �4 �4�-dimensional P̂�4� submodules, see �7.11�, where Vm
� 	spinm+�

1 .

III. FINAL REMARKS

Theorem 8.1: CK6� Ph�6� is generated by tn	���1 ,�2 ,�3� and 	−1�ht
n�i� j, where n�Z.

Proof: It follows from �5.7�–�5.9� that Ln,h, Gn,h
i , Jn,h

ij , In,h, and J̃n,h
ij generate CK6. �

We fix h=1. Let �� �0,1�. In each V� we defined a basis by �6.1�. We will denote it now by
vm

i ��� , v̂m
i ����. Let V=Span�vm

i , v̂m
i � 1� i�4,m�Z�, be a superspace such that p�v̂m

i �=p�vm
4 �

0̄, p�vm
i �=p�v̂m

4 �=1̄. Let v�V and let v����V� be the vector with the same coordinates as v
ith respect to the basis �6.1�. Consider the odd nondegenerate superskew-symmetric bilinear

orm on each V� given by

�vm
i ���, v̂l

i���� = − �v̂l
i���,vm

i ���� = − �vm
4 ���, v̂l

4���� = �v̂l
4���,vm

4 ���� = �m+l,0, �8.1�

here 1� i�3. The odd nondegenerate superskew-symmetric bilinear form on V is given by

�vm
i , v̂l

i� = − �v̂l
i,vm

i � = − �vm
4 , v̂l

4� = �v̂l
4,vm

4 � = �m+l,0. �8.2�

Theorem 8.2: Let X�CK6. Then

lim
�→0

��Xv���,w���� + �− 1�p�X�p�v�����v���,Xw����� = 0 for all v,w � V . �8.3�

here is a representation of CK6 in V given by �6.6�, where �=0, and this action preserves the

orm �8.2�.
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Remark 8.3: There is a representation of CK6 in V given by �7.13�, where �=0, and this action
reserves the odd nondegenerate supersymmetric bilinear form on V:

�vm
i , v̂l

i� = �v̂l
i,vm

i � = �m+l,0, 1 � i � 4. �8.4�

Remark 8.4: Each of the representations of CK6 in V given by �6.6� and �7.13�, where �=0,

ecomposes into a direct sum of irreducible P̂�4� modules:

V = �m�ZVm, Vm = Span�vm
i , v̂m

i � 1 � i � 4� , �8.5�

here Vm	spinm
2 for the representation �6.6�, and Vm	spinm

1 for the representation �7.13�.
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uantum trigonometric Calogero-Sutherland model,
rreducible characters and Clebsch-Gordan series
or the exceptional algebra E7
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We reexpress the quantum Calogero-Sutherland model for the Lie algebra E7 and
the particular value of the coupling constant �=1 by using the fundamental irre-
ducible characters of the algebra as dynamical variables. For that, we need to
develop a systematic procedure to obtain all the Clebsch-Gordan series required to
perform the change of variables. We describe how the resulting quantum Hamil-
tonian operator can be used to compute more characters and Clebsch-Gordan series
for this exceptional algebra. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2036947�

. INTRODUCTION

Integrable systems are important because they can be considered as 0th order perturbative
pproximations to nonintegrable systems. By integrability we mean here integrability in the sense
f Liouville, that is, the existence of a complete set of mutually commuting integrals of motion.
uring the three last decades of the past century, a plethora of highly nontrivial �classical and
uantum� mechanical integrable systems were discovered, see Refs. 1 and 2 for comprehensive
eviews. Among these, the Calogero-Sutherland models form a distinguished class. The first analy-
is of a system of this kind was performed by Calogero3 who studied, from the quantum stand-
oint, the dynamics on the infinite line of a set of particles interacting pairwise by rational plus
uadratic potentials, and found that the problem was exactly solvable. Soon afterwards,
utherland4 arrived to similar results for the quantum problem on the circle, this time with trigo-
ometric interaction; and later Moser5 proved, in terms of Lax pairs, that the classical counterparts
f these models also enjoyed integrability.

The identification of the general scope of these discoveries came with the work of Olsha-
etsky and Perelomov,6–8 who realized that it is possible to associate models of this kind to all the
oot systems of the simple Lie algebras, and that all these models are integrable, both in the
lassical and the quantum framework,9,10 for interactions of the type rational �or inverse-square�,
−2; rational+quadratic, q−2+�2q2; trigonometric, sin−2 q; hyperbolic, sinh−2 q. For the most gen-
ral case, given by the Weierstrass elliptic function P�q�, see Refs. 2 and 10. Nowadays, there is
widespread interest in this kind of integrable systems, and many mathematical and physical

pplications for them have been found, see for instance Ref. 11. In Physics, we mention, among
thers, the remarkable connection established12,13 between the different Calogero-Sutherland mod-
ls and the properties of the equations describing the physics of disordered wires �the DMPK
quation�; the results are in good agreement with the experimental observations.

�On leave of absence from the Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia. Electronic

mail: perelomo@mpim-bonn.mpg.de
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The study of the form and properties of the Schrödinger eigenfunctions for the quantum
ersion of these models constitutes by itself an interesting line of research. In fact, these eigen-
unctions have very rich mathematical properties. In particular, for the trigonometric case, if we
une the coupling constants to some special values, the wave functions correspond to the charac-
ers of the simple Lie algebras, while if we select a different tuning, we can make them to coincide
ith zonal spherical functions. Thus, the Calogero-Sutherland theories provide us with a new tool

or computing these quantities. In this spirit, we will describe in the present paper how to use the
rigonometric Calogero-Sutherland model to obtain both particular characters and Clebsch-Gordan
eries for the exceptional Lie algebra E7. The main point of our approach is to express the
amiltonian in a suitable set of independent variables, indeed the fundamental characters of E7.
he use of such types of variables has been quite useful to solve the Schrödinger equation for the
odels associated to some algebras.6,14–21

The organization of the paper is as follows. Section II is a reminder of the properties of E7

elevant for the contents of the paper. Section III describes the main properties of the Calogero-
utherland models associated to root systems and explains how to find the Hamiltonian in the
ariables mentioned above. Section IV gives some account of the computation of the Clebsch-
ordan series of E7 needed to pass to the new variables. In Sec. V we present the Hamiltonian in

hese variables and describe its use for computing new characters and to reduce tensor products of
epresentations. Some conclusions are given in Sec. VI, and finally, the appendixes show some
xplicit results for characters and Clebsch-Gordan series of E7.

I. SUMMARY OF RESULTS ON THE LIE ALGEBRA E7

In this section, we review some standard facts about the root and weight systems of the Lie
lgebra E7, with the aim of fixing the notation and help the reader to follow the rest of the paper.
ore extensive and sound treatments of these topics can be found in many excellent textbooks,

ee for instance Refs. 22 and 23.
The complex Lie algebra E7 has dimension 133 and rank 7, as the name suggests. From the

eometrical point of view, it admits �with some subtleties, see Ref. 24� an interpretation which
xtends the standard-one for the classical algebras: in the same way that these correspond to the
sometries of projective spaces over the first three normed division algebras—SO�n+1�

Isom�RPn�, SU�n+1�� Isom�CPn�, Sp�n+1�� Isom�HPn�—F4, E6, E7, and E8 are the Lie
lgebras of the projective planes over extensions of the octonions, giving rise to the so-called
magic square,” F4� Isom�OP2�, E6� Isom��C � O�P2�, E7� Isom��H � O�P2�, E8� Isom��O

� O�P2�.
The Dynkin diagram of E7, see Fig. 1, encodes the Euclidean relations Aij= ��i ,� j� among the

imple roots, which are

��i,�i� = 2, i = 1, . . . ,7,

��i,�i+2� = − 1, i = 1,2,

FIG. 1. The Dynkin diagram for the Lie algebra E7.
��i,�i+1� = − 1, i = 3, . . . ,6,
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��i,� j� = 0, in all other cases. �1�

herefore, the Cartan matrix A= �Aij� and its inverse A−1= �Aij
−1� read

A =�
2 0 − 1 0 0 0 0

0 2 0 − 1 0 0 0

− 1 0 2 − 1 0 0 0

0 − 1 − 1 2 − 1 0 0

0 0 0 − 1 2 − 1 0

0 0 0 0 − 1 2 − 1

0 0 0 0 0 − 1 2

�, A−1 =
1

2�
4 4 6 8 6 4 2

4 7 8 12 9 6 3

6 8 12 16 12 8 4

8 12 16 24 18 12 6

6 9 12 18 15 10 5

4 6 8 12 10 8 4

2 3 4 6 5 4 3

� . �2�

Throughout this paper we will use a realization of this root system in terms of a system of
ectors �vi	i=1,. . .,8 of R8 �endowed with the standard Euclidean product �,�� satisfying the relations
vi ,v j�=− 1

8 +�ij.
22 With reference to this system, E7 is the root system in the hyperplane V�R8 of

quation 
ivi=0 given by R= �vi−v j ,vi+v j+vk+vl � i� j�k� l	, the positive ones being those in
he subset R+= �vi−v j ,v8−vi ,vi+v j+vk+v8 � i� j�k�8	. There are 63 positive roots, which can
e classified by heights as indicated in Table I. The seven simple roots are

�1 = v1 − v2, �2 = v4 + v5 + v6 + v7,

�3 = v2 − v3, �4 = v3 − v4,

�5 = v4 − v5, �6 = v5 − v6,

�7 = v6 − v7, �3�

hich clearly satisfy the relations �1�.
The hyperplane V can be viewed as R7, and the basis made with the vectors v1 , . . . ,v7 is

elated to the canonical basis �ek	k=1,. . .,7 by vk=ek− 1
7 �1+ �1/�8��
 j=1

7 ej; thus, the simple roots �i

re given by

�1 = e1 − e2,

�2 =
1

73 −
2
�2

�

j=4

7

ej −
4

71 +
1
�8

�

j=1

3

ej ,

�k = ek−1 − ek, k = 3, . . . ,7. �4�

The fundamental weights �i=
 j=1
7 Aji

−1� j are

�1 = v1 − v8,

�2 = − 2v8,

�3 = v1 + v2 − 2v8,

�4 = v1 + v2 + v3 + 3v − 3v8,
�5 = v1 + v2 + v3 + v4 − 2v8,
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�6 = v1 + v2 + v3 + v4 + v5 − v8,

�7 = v1 + v2 + v3 + v4 + v5 + v6,

s it follows from �2� and �3�. As E7 is simply laced, the geometry of the weight system is
ummarized by the relations ��i ,� j�=Aij

−1. The Weyl vector is

� =
1

2 

��R+

� = 

i=1

7

�i =
1

2
�34�1 + 49�2 + 66�3 + 96�4 + 75�5 + 52�6 + 27�7� ,

nd has length ���=�798/2. The Weyl formula for dimensions applied to the irreducible represen-
7

TABLE I. Heights of positive roots of E7.

ht Positive roots

1 �1, �2, �3, �4, �5, �6, �7

2 �1+�3, �3+�4, �4+�5, �5+�6, �2+�4, �6+�7

3 �1+�3+�4, �3+�4+�5, �4+�5+�6, �2+�3+�4, �2+�4

+�5, �5+�6+�7

4 �1+�3+�4+�5, �3+�4+�5+�6, �1+�2+�3+�4, �2+�3

+�4+�5,
�2+�4+�5+�6, �4+�5+�6+�7

5 �1+�3+�4+�5+�6, �1+�2+�3+�4+�5, �2+�3+2�4

+�5,
�2+�3+�4+�5+�6, �2+�4+�5+�6+�7, �3+�4+�5+�6

+�7

6 �1+�2+�3+2�4+�5, �1+�2+�3+�4+�5+�6, �2+�3

+2�4+�5+�6,
�1+�3+�4+�5+�6+�7, �2+�3+�4+�5+�6+�7

7 �1+�2+2�3+2�4+�5, �2+�3+2�4+2�5+�6, �1+�2

+�3+2�4+�5+�6,
�1+�2+�3+�4+�5+�6+�7, �2+�3+2�4+�5+�6+�7

8 �1+�2+2�3+2�4+�5+�6, �1+�2+�3+2�4+2�5+�6,
�1+�2+�3+2�4+�5+�6+�7, �2+�3+2�4+2�5+�6+�7

9 �1+�2+2�3+2�4+2�5+�6, �1+�2+�3+2�4+2�5+�6

+�7,
�1+�2+2�3+2�4+�5+�6+�7, �2+�3+2�4+2�5+2�6

+�7

10 �1+�2+�3+2�4+2�5+2�6+�7, �1+�2+2�3+2�4+2�5

+�6+�7,
�1+�2+2�3+3�4+2�5+�6

11 �1+2�2+2�3+3�4+2�5+�6, �1+�2+2�3+2�4+2�5

+2�6+�7,
�1+�2+2�3+3�4+2�5+�6+�7

12 �1+�2+2�3+3�4+2�5+2�6+�7, �1+2�2+2�3+3�4

+2�5+�6+�7

13 �1+�2+2�3+3�4+3�5+2�6+�7, �1+2�2+2�3+3�4

+2�5+2�6+�7

14 �1+2�2+2�3+3�4+3�5+2�6+�7

15 �1+2�2+2�3+4�4+3�5+2�6+�7

16 �1+2�2+3�3+4�4+3�5+2�6+�7

17 2�1+2�2+3�3+4�4+3�5+2�6+�7
ation associated to the integral dominant weight �=
i=1mi�i gives
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dim R� = �
��R+

��,� + ��
��,��

=
P

26 · 36 · 46 · 56 · 65 · 75 · 84 · 94 · 103 · 113 · 122 · 132 · 14 · 15 · 16 · 17
,

here P is a product extended to the set of positive roots in which the root �=
i=1
7 ai�i contributes

ith a factor ht���+
i=1
7 aimi, where ht��� is the height of �. In particular, for the basic represen-

ations R�k
, one finds

dim R�1
= 133, dim R�2

= 912,

dim R�3
= 8645, dim R�4

= 365 750,

dim R�5
= 27 664, dim R�6

= 1539,

dim R�7
= 56.

ll the irreducible representations are self-adjoint; R�1
is the adjoint representation and R�7

, the
undamental one.

II. THE TRIGONOMETRIC CALOGERO-SUTHERLAND MODEL ASSOCIATED TO A
OOT SYSTEM

First of all, we review briefly the general theory of the quantum trigonometric Calogero-
utherland model related to a root system R associated to a simple Lie algebra L of rank r, and

ater study explicity the E7 case. For Calogero-Sutherland systems other than trigonometric see
ef. 10; see also Ref. 25.

The trigonometric Calogero-Sutherland model related to the root system R of rank r is the
uantum system in a Euclidean space Rr defined by the standard Hamiltonian operator

H =
1

2

j=1

r

pj
2 + 


��R+

����� − 1�sin−2��,q� , �5�

here q= �qj� is a Cartesian coordinate system and pj=−i�qj
; R+ is the set of the positive roots of

, and the coupling constants �� are such that ��=�	 if ���= �	�. We will restrict ourselves to the
ase of simply laced root systems �as the E series is�, for which the Calogero-Sutherland model
epends only on one coupling constant �.

Although the Hamiltonian �5� is defined in all Rr, the configuration space is confined by the
ingularities �infinite walls� �� ,q�=0. If the q coordinates are assumed to take values in the �0,
�
nterval, H can be interpreted as describing the dynamics of a system of r unit mass particles
oving on the circle with interaction V�q�=���−1�
� sin−2�� ,q�, but notice that there is not

ranslational invariance. The wave functions must be 
 periodic.
The main problem is to find the stationary states, i.e., to solve the Schrödinger eigenvalue

roblem H�=E�. The following important facts about this family of quantum mechanical sys-
ems were well established in Refs. 6 and 10.

�a� They are integrable, and moreover they are exactly solvable. The configuration space is
onfined to the Weyl alcove �W= �q�Rr �0� �� ,q��
	.
�b� The ground state energy and �non-normalized� wave function are
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E0��� = 2�2�2,

�0
��q� = �

��R+

sin���,q� ,

hile the excited states are indexed by the highest weights �=
mi�i� P+ �P+ is the cone of
ominant weights� of the irreducible representations of L, that is, by the r-tuple of non-negative
ntegers m= �m1 , . . . ,mr� �the quantum numbers�, and the wave functions satisfy

H�m
� = Em����m

� ,

�6�
Em��� = 2�� + ��,� + ��� .

�c� It is natural to look for the solutions �m
� in the form

�m
� �q� = �0

��q�m
� �q� , �7�

nd consequently we are led to the eigenvalue problem

��m
� = �m���m

� , �8�

here �� is the linear differential operator

�� = −
1

2

j=1

r

�qj

2 − � 

��R+

cot��,q���,�q� , �9�

nd the eigenvalues �m��� are the energies over the ground level, i.e.,

�m��� = Em��� − E0��� = 2��,� + 2��� . �10�

aking into account that �� j ,�k�=Ajk
−1, it is possible to give a more explicit expression for the

igenvalues �m���,

�m��� = 2 

j,k=1

r

Ajk
−1mjmk + 4� 


j,k=1

r

Ajk
−1mj . �11�

e will write � j��� for the fundamental weight � j, i.e., for the quantum numbers
0 , . . . ,1�j� , . . . ,0�.

�d� In the case �=0 the wave functions �8� are �proportional to� the monomial symmetric
unctions

M��q� = 

w�W

e2i�w·�,q�, � � P+, �12�

being the Weyl group of L. And the wave functions in the case �=1 are �proportional to� the
haracters of the irreducible representations

���q� =

w�W

�det w�e2i�w·��+��,q�


w�W
�det w�e2i�w·�,q�

, � � P+. �13�

oth M� and �� are sums over the orbit of � under W, and consequently, W invariant; as wave
unctions, they represent superpositions of plane waves whose momenta are consistent with the

equired 
 periodicity.
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�d� Due to the Weyl symmetry of the Hamiltonian, the wave functions m
� �q� are W invariant,

nd the best way to solve the eigenvalue problem �8� is to use the set of independent W-invariant
ariables zk=��k

�q�, in terms of which the wave functions m
� are polynomials.

Unfortunately, the expression of these characters zk in terms of the q variables is complicated
nd makes the direct change of variables z=z�q� very cumbersome. We are thus forced to follow
much more convenient, indirect route, which has proven to be useful for other root systems.20,21

To this goal, the starting point is to write the operator �� in the z variables,

�� = 

j,k

ajk�z��zj
�zk

+ 

j

�bj
0�z� + �bj

1�z���zj
, �14�

ith ajk=akj. Now, if we take into account the fact that, as pointed above, bj
0�z�+bj

1�z�=�1zj

� j�1�zj, the full expression for the coefficients bj�q�=bj
0�z�+bj

1�z� appearing in �1 is completely
etermined by the Cartan matrix of the algebra; explicitly,

bj�z� = 2Ajj
−1 + 2


k

Akj
−1�zj, j = 1, . . . ,r . �15�

On the other hand, in order to find the coefficients ajk we will rely on the quadratic Clebsh-
ordan series

R�j
� R�k

= 

��Qjk

N�;jkR�, �16�

here Qjk� P+ is the set of dominant weights in the irreducible representation of highest weight

j+�k, and N�;jk is the multiplicity of the irreducible representation R� in that series; in particular,

�j+�k;jk=1. In these expressions we will write m or �m1 , . . . ,mr� instead of �=
imi�i. The
lebsh-Gordan series �16� yield the formulas

zjzk = 

m�Qjk

Nm;jk�m�z� �17�

or the products of fundamental characters zjzk, and consequently we obtain the coefficients ajk by
pplying the operator �1 to the two members of �17�,

2ajk�z� = 

m�Qjk

Nm;jk�m�1��m�z� − bj�z�zk − bk�z�zj, j,k = 1, . . . ,r . �18�

Therefore, to accomplish the task of fixing the form of the coefficents ajk we need the list of
ll the quadratic Clebsh-Gordan series, the explicit expressions of the characters entering in them,
nd the coefficients bj. Although there are some results for E7 already available in the
iterature,22,26 most of the required Clebsch-Gordan series and characters remain, to our knowl-
dge, to be calculated.

The remaining step to achieve the complete expression of �� is to look for the coefficients

j
0�z�. These can be found if we know enough monomial symmetric functions M� in terms of the
variables. Suppose that the relations Mk=Mk�z� are known, where Mk=M�k

, k=1, . . . ,r; then,
rom the eigenvalue equation �0Mk=�k�0�Mk we obtain the following linear system for the b0’s:



i,j

aij�z�
�2Mk

�zi�zj
+ 


j

bj
0�z�

�Mk

�zj
= 2�k

2Mk�z� . �19�

his system has a unique solution �bj
0� because each of the sets of characters and monomial

ymmetric functions constitutes a basis of W-invariant functions.
Recently27 we have found how to find the functions Mk�z� in the E6 case. In the present paper

e will study only the case �=1 and consequently we do not need to calculate the b0 coefficients

ow.
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V. THE QUADRATIC CLEBSH-GORDAN SERIES FOR E7

We have developed a systematic strategy, entirely based on a few elementary facts, to obtain
ll quantities needed for application of the formula �18�. This strategy, which is essentially the
ame as that used in the previous paper21 for the case of E6, was described there in full detail, so
e will confine ourselves here to mention some very general but important points. First of all, the

eries should be computed starting from those involving the most external dots of the Dynkin
iagram, and going gradually towards the center of it. This is the order that allows the most
fficient use of the orthogonality relations. Second, the orthogonality relations should be used not
nly to fix the multiplicity of some of the weights of lower height, but also to determine linear
quations among the multiplicities of several weights of intermediate height. While for E6 this is
ot of great importance, for the more complicated case of E7 an extensive use of such linear
onstraints is required. These constraints, along with the bounds on multiplicities established in
ef. 28, make it posible to write a system of diophantine equations with unique solution for these
ultiplicities. Finally, once all the series are found, the inversion of them to obtain the second-

rder characters appearing in �18� requires the computation of many other characters of third,
ourth, and fifth order. The best way to perform these computations is as follows. Starting from the
uter region of the Dynkin diagram, we build in each step the part of the �1 operator which only
equires the characters that we already know. Then, we can use one of the procedures described in
ec. V below to compute the characters needed to obtain the next coefficient through �18�, and so
n. This is possible because �18� gives each coefficient aij�z� in terms of characters associated to
eights whose height is lower or equal than �i+� j.

By means of these techniques, one finally arrives at the following list of Clebsch-Gordan
eries:

R�1
� R�1

= R2�1
� R�6

� R�3
� R�1

� 1,

R�1
� R�2

= R�1+�2
� R�7

� R�2
� R�1+�7

� R�5
,

R�1
� R�3

= R�1+�3
� R�4

� R�1
� R�6

� R�3
� R2�1

� R�1+�6
� R�2+�7

,

R�1
� R�4

= R�1+�4
� R�2+�5

� R�3+�6
� R�1+�2+�7

� R�5+�7
� R2�2

� R�1+�3
� R�4

� R�1+�6

� R�2+�7
� R�3

,

R�1
� R�5

= R�1+�5
� R�2+�6

� R�2
� R�5

� R�1+�2
� R�1+�7

� R�3+�7
� R�6+�7

,

R�1
� R�6

= R�1+�6
� R�2+�7

� R�3
� R�6

� R2�7
� R�1

,

R�1
� R�7

= R�1+�7
� R�2

� R�7
,

R�2
� R�2

= R2�2
� R�1

� R2�7
� R�6

� R2�1
� R�3

� R�2+�7
� R�1+�6

� R�4
� 1,

R�2
� R�3

= R�2+�3
� R�1+�5

� R�2
� R�5

� R�7
� R�2+�6

� R�3+�7
� R�6+�7

� 2R�1+�7
� 2R�1+�2

� R2� +� ,

1 7
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R�2
� R�4

= R�2+�4
� R�3+�5

� R�1+�2+�6
� R2�2+�7

� R�1+�3+�7
� R�5+�6

� R�4+�7
� R�1+�6+�7

� R2�1+�2
� 2R�2+�3

� R�2+2�7
� 2R�1+�5

� R2�1+�7
� 2R�2+�6

� 2R�3+�7
� 2R�1+�2

� R�6+�7
� R�5

� R�1+�7
� R�2

,

R�2
� R�5

= R�2+�5
� R�3+�6

� R2�6
� R�1+�2+�7

� R2�2
� R�1+�3

� R�5+�7
� R�4

� R�1+2�7

� 2R�1+�6
� 2R�2+�7

� R2�7
� R2�1

� R�3
� R�6

� R�1
,

R�2
� R�6

= R�7
� R�2

� 2R�1+�7
� R�5

� R�6+�7
� R�1+�2

� R�3+�7
� R�2+�6

,

R�2
� R�7

= R�2+�7
� R�1

� R�3
� R�6

,

R�3
� R�3

= R2�3
� R�1+�4

� R�2+�5
� R2�1+�6

� R�3+�6
� 2R�1+�2+�7

� R2�6
� R�5+�7

� R3�1

� R2�2
� 2R�1+�3

� R�1+2�7
� 2R�4

� 3R�1+�6
� 2R2�1

� 2R�2+�7
� R2�7

� 2R�3

� 2R�6
� R�1

� 1,

R�3
� R�4

= R�3+�4
� R�1+�2+�5

� R2�2+�6
� R�1+�3+�6

� R2�5
� R�4+�6

� R2�1+�2+�7
� R�1+2�6

� 2R�2+�3+�7
� 2R�1+�5+�7

� R2�1+�3
� R2�1+2�7

� 2R�1+2�2
� R2�3

� 3R�1+�4

� 2R�2+�6+�7
� 2R2�1+�6

� 3R�2+�5
� R�3+2�7

� 4R�3+�6
� R�6+2�7

� 5R�1+�2+�7
� R2�6

� 2R2�2
� 3R�5+�7

� R3�1
� 3R�1+�3

� 2R�1+2�7
� 3R�4

� 4R�1+�6
� R2�1

� 3R�2+�7

� R2�7
� 2R�3

� R�6
� R�1

,

R�3
� R�5

= R�3+�5
� R�1+�2+�6

� R2�2+�7
� R�1+�3+�7

� R�5+�6
� R�4+�7

� 2R�1+�6+�7
� R2�1+�2

� R�2+2�7
� 2R�2+�3

� 2R�1+�5
� R3�7

� 2R2�1+�7
� 3R�2+�6

� 3R�3+�7
� 3R�1+�2

� 2R�6+�7
� 2R�5

� 3R�1+�7
� R�2

� R�7
,

R�3
� R�6

= R�3+�6
� R�1+�2+�7

� R2�2
� R�1+�3

� R�5+�7
� R�4

� R�1+2�7
� 2R�1+�6

� 2R�2+�7

� R2�1
� R2�7

� 2R�3
� R�6

� R�1
,

R�3
� R�7

= R�3+�7
� R�1+�7

� R�1+�2
� R�2

� R�5
,

R�4
� R�4

= R2�4
� R�2+�3+�5

� R2�3+�6
� R�1+2�5

� R�1+2�2+�6
� R3�2+�7

� R�1+�4+�6

� 2R�1+�2+�3+�7
� 2R�2+�5+�6

� 2R�2+�4+�7
� R2�1+2�6

� R2�1+2�2
� R�3+2�6

� R2�1+�5+�7
� 3R�3+�5+�7

� R�1+2�3
� 2R2�1+�4

� 4R�1+�2+�6+�7
� R3�6

� 3R2�2+�3

� R3�1+2�7
� 2R�5+�6+�7

� 2R2�2+2�7
� 2R�1+�3+2�7

� 3R�3+�4
� 6R�1+�2+�5

� 4R2�2+�6

� 2R�4+2�7
� 3R�1+�6+2�7

� R3�1+�6
� 2R2�5

� 6R�1+�3+�6
� 6R2�1+�2+�7

� 7R�4+�6

� R4� � R� +3� � 4R� +2� � 9R� +� +� � 9R� +� +� � 3R2� +� � 6R� +2�
1 2 7 1 6 2 3 7 1 5 7 1 3 1 2

                                                                                                            



103505-10 Fernández-Núñez, García-Fuertes, and Perelomov J. Math. Phys. 46, 103505 �2005�

                        
� 4R2�1+2�7
� 4R2�3

� 8R�2+�6+�7
� 6R�3+2�7

� 8R�1+�4
� 8R�2+�5

� 8R2�1+�6
� R4�7

� 3R�6+2�7
� 2R3�1

� 9R�3+�6
� 4R2�6

� 12R�1+�2+�7
� 6R�1+�3

� 3R2�2
� 7R�5+�7

� 7R�4
� 6R�1+2�7

� 7R�1+�6
� 5R�2+�7

� 2R2�7
� 3R2�1

� 3R�3
� 3R�6

� R�1
� 1,

R�4
� R�5

= R�4+�5
� R�2+�3+�6

� R�1+�5+�6
� R2�3+�7

� R�1+2�2+�7
� R�1+�4+�7

� R�2+2�6

� 2R�2+�5+�7
� 2R�1+�2+�3

� R2�1+�6+�7
� R3�2

� 2R�3+�6+�7
� 2R�2+�4

� R2�1+�5

� 3R�3+�5
� 2R�1+�2+2�7

� 5R�1+�2+�6
� R2�6+�7

� R�5+2�7
� R3�1+�7

� 4R�1+�3+�7

� 3R�5+�6
� 3R2�2+�7

� 5R�4+�7
� 3R2�1+�2

� 5R�2+�3
� R�1+3�7

� 5R�1+�6+�7

� 5R�1+�5
� 3R�2+2�7

� 5R�2+�6
� 4R2�1+�7

� 5R�3+�7
� 4R�1+�2

� R3�7
� 3R�6+�7

� 3R�5
� 3R�1+�7

� R�2
� R�7

,

R�4
� R�6

= R�4+�6
� R�2+�3+�7

� R2�3
� R�1+�5+�7

� R�2+�6+�7
� R�1+2�2

� R�1+�4
� R�3+2�7

� 2R�2+�5
� R2�1+�6

� 2R�3+�6
� 3R�1+�2+�7

� R2�6
� 2R�5+�7

� R2�2
� R�1+2�7

� 2R�1+�3
� 3R�4

� 2R�1+�6
� 2R�2+�7

� R2�1
� R�3

� R�6
,

R�4
� R�7

= R�4+�7
� R�2+�3

� R�1+�5
� R�2+�6

� R�3+�7
� R�1+�2

� R�5
,

R�5
� R�5

= R2�5
� R�4+�6

� R�2+�3+�7
� R�1+2�6

� R2�3
� R�1+�5+�7

� 2R�2+�6+�7
� R�1+2�2

� R2�1+2�7
� R�1+�4

� R�3+2�7
� 2R�2+�5

� R2�1+�6
� 3R�3+�6

� 4R�1+�2+�7
� R�6+2�7

� R3�1
� 2R2�6

� 3R�5+�7
� 2R2�2

� 3R�1+2�7
� 2R�1+�3

� 3R�4
� 4R�1+�6

� 3R�2+�7

� 2R2�7
� 2R2�1

� 2R�3
� 2R�6

� R�1
� 1,

R�5
� R�6

= R�5+�6
� R�4+�7

� R�1+�6+�7
� R�2+�3

� R�2+2�7
� R�1+�5

� 2R�2+�6
� R2�1+�7

� 2R�3+�7
� 2R�1+�2

� 2R�6+�7
� 2R�5

� 2R�1+�7
� R�2

� R�7

R�5
� R�7

= R�5+�7
� R�4

� R�6
� R�3

� R�1+�6
� R�2+�7

,

R�6
� R�6

= R2�6
� R�5+�7

� R�1
� R�3

� R�4
� 2R�6

� R2�1
� R2�7

� R�1+�6
� 2R�2+�7

� R�1+2�7

� 1,

R�6
� R�7

= R�6+�7
� R�5

� R�1+�7
� R�2

� R�7
,

R�7
� R�7

= R2�7
� R�1

� R�6
� 1.

We present also a list of second order characters,

�2000000 = z1
2 − z3 − z6 − z1 − 1,
�1100000 = z1z2 − z5 − z1z7,
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�1010000 = z1z3 − z4 − z1z6 − z1
2 + z7

2 + z3,

�1001000 = z1z4 − z2z5 + z6
2 − z5z7 + z1z6 − z2z7 − z7

2 + z6 + z1,

�1000100 = z1z5 − z2z6 + z1z7 − z2,

�1000010 = z1z6 − z2z7 − z7
2 + z6 + z1 + 1,

�1000001 = z1z7 − z2 − z7,

�0200000 = z2
2 − z4 − z1z6 − z1

2 + z3 + z6 + z1,

�0110000 = z2z3 − z1z5 − z1
2z7 + z3z7 + z6z7 + z1z7,

�0101000 = z2z4 − z3z5 + z1z6z7 − z2z7
2 − z1z5 + z2z6 − z6z7 + z5 + z2,

�0100100 = z2z5 − z3z6 − z6
2 + z5z7 + z1z7

2 − z1z6 − z6 − z1,

�0100010 = z2z6 − z3z7 − z6z7 + z5 + z2,

�0100001 = z2z7 − z3 − z6 − z1,

�0020000 = z3
2 − z1z4 − z1

2z6 + z3z6 + z5z7 − z1
3 + 2z1z3 + z1z7

2 − z4 + z3 + z1,

�0011000 = z3z4 − z1z2z5 + z4z6 + z1z6
2 + z1

2z6 − z3z6 − z6z7
2 − z1z2z7 + z2

2 + z5z7 − z4 − z1z6 + z7
2 + z3 − 1,

�0010100 = z3z5 − z1z2z6 + z4z7 + z1z6z7 + z2z7
2 − z7

3 + z1
2z7 − z2z6 − z3z7 − z1z2 + z6z7 − z5 − z1z7 − z2

+ z7,

�0010010 = z3z6 − z1z2z7 + z4 + z1z6 + z2z7 + z1
2 − z3 − z1,

�0010001 = z3z7 − z1z2 + z7,

�0002000 = z4
2 − z2z3z5 + z1z4z6 + z3z6

2 + z1
2z5z7 − 2z3z5z7 − 2z4z7

2 − z1z6z7
2 − z5

2 + 2z4z6 + z1z6
2 − z1z5z7

+ z2z5 + z7
4 − 2z6z7

2 + z6
2 + 2z4 + z1z6 − 2z7

2 + 2z6 + 1,

�0001100 = z4z5 − z2z3z6 + z1z4z7 + z1
2z6z7 − z3z5 − z5z6 − z1z7

3 − z4z7 − z1z5 + z7
3 − z6z7 + z1z7 − z7,

�0001010 = z4z6 − z2z3z7 + z1
2z7

2 + z1z4 − z3z7
2 + z3z6 − z5z7 − 2z1z7

2 + z4 + z1z6 − z7
2 + z6 + z1 + 1,

�0001001 = z4z7 − z2z3 + z1
2z7 − z3z7 − z5 − z1z7 − z7,

�0000200 = z2 − z4z6 − z1z
2 + z1z5z7 + z3z

2 − z3z6 + z6z
2 − z2 − z4 − z1z6 + z2 − z3 − 2z6 − 1,
5 6 7 7 6 7
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�0000110 = z5z6 − z4z7 − z1z6z7 + z1z5 + z7
3 + z3z7 − z6z7 + z5 − z7,

�0000101 = z5z7 − z4 − z1z6 + z7
2 − z6 − 1,

�0000020 = z6
2 − z5z7 − z1z7

2 + z1z6 + z3 + z6 + z1,

�0000011 = z6z7 − z5 − z1z7,

�0000002 = z7
2 − z6 − z1 − 1.

. THE CALOGERO-SUTHERLAND HAMILTONIAN �1 IN E7: SOME APPLICATIONS

The coefficients bj�z� in the expression of �1 are easily obtained from �15� and �2�,

b1�z� = 72z1, b2�z� = 105z2, b3�z� = 144z1, b4�z� = 216z4,

b5�z� = 165z5, b6�z� = 112z5, b7�z� = 57z7.

After having computed in Sec. IV the necessary series and characters, we can now follow the
ines indicated in Sec. III to obtain the Hamiltonian operator in the limit �=1. The result for the
oefficients ajk�z� in �14� for �=1 is

a11�z� = 4�− 19 − 10z1 + z1
2 − z3 − 5z6� ,

a12�z� = 2�− 7z2 + 2z1z2 − 5z5 − 19z7 − 13z1z7� ,

a13�z� = 2�10 − 14z1 − 19z1
2 + 13z3 + 3z1z3 − 3z4 − 4z6 − 9z1z6 − 6z2z7 + 9z7

2� ,

a14�z� = 2�− 10 − 2z1 + 18z1
2 − 7z2

2 − 24z3 − 6z1z3 + 14z4 + 4z1z4 − 4z2z5 + 8z6 + 12z1z6 − 4z3z6 + 4z6
2

− 14z2z7 − 5z1z2z7 − 9z5z7 − 9z7
2 + 9z1z7

2� ,

a15�z� = 2�− 12z2 − 6z1z2 + 8z5 + 3z1z5 − 5z2z6 + 19z7 + 5z1z7 − 5z3z7 − 13z6z7� ,

a16�z� = 4�9 − 3z1 − 3z3 + 2z6 + z1z6 − 3z2z7 − 9z7
2� ,

a17�z� = 2�− 7z2 − 19z7 + z1z7� ,

a22�z� = − 40 + 24z1 − 36z1
2 + 7z2

2 + 24z3 − 4z4 + 44z6 − 16z1z6 − 12z2z7 − 36z7
2,

a23�z� = 2�9z2 − 14z1z2 + 4z2z3 + 16z5 − 4z1z5 − 5z2z6 + 4z1z7 − 12z1
2z7 + 7z3z7 − z6z7� ,

a24�z� = 2�− 7z2 − 4z1z2 − 6z1
2z2 − z2z3 + 6z2z4 + 20z5 − 6z1z5 − 3z3z5 + 14z2z6 − 4z1z2z6 − 5z5z6

− 10z1z7 + 22z1
2z7 − 6z2

2z7 − 12z3z7 − 5z1z3z7 + 12z4z7 − �10z6z7 + 13z1z6z7 − 9z2z7
2� ,

a25�z� = 40 − 24z1 + 12z1
2 − 14z2

2 + 12z3 − 12z1z3 + 28z4 + 9z2z5 + 16z6 − 12z1z6 − 8z3z6 − 24z6
2

+ 12z2z7 − 10z1z2z7 + 14z5z7 − 2z2 − 2z1z
2,
7 7
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a26�z� = 2�17z2 − 6z1z2 + 8z5 + 3z2z6 − 24z1z7 − 5z3z7 − 13z6z7� ,

a27�z� = − 48z1 − 12z3 − 28z6 + 3z2z7,

a33�z� = 4�− 20 + 16z1 − 5z1
2 − 9z1

3 + 8z3 + 12z1z3 + 3z3
2 − 7z4 − z1z4 − 2z2z5 − 9z6 + − 3z1z6 − 4z1

2z6

+ 2z3z6 − 3z6
2 + 6z2z7 − 6z1z2z7 + 8z5z7 + z7

2 + 7z1z7
2� ,

a34�z� = 2�− 20 − 12z1 − 6z1
2 + 6z1

3 + 9z2
2 − 7z1z2

2 + 20z3 + 6z1z3 − 6z1
2z3 + 6z3

2 − 26z4 + 6z1z4 + 8z3z4

+ 2z2z5 − 3z1z2z5 − 5z5
2 − 2z6 − 32z1z6 + 20z1

2z6 − 5z2
2z6 − 24z3z6 − 4z1z3z6 + 10z4z6 + 4z6

2

+ 4z1z6
2 − 3z2z7 − 2z1z2z7 − 5z1

2z2z7 − z2z3z7 + 15z5z7 + 4z2z6z7 + 20z7
2 − 5z1z7

2 + 5z1
2z7

2

+ 9z3z7
2 − 9z6z7

2� ,

a35�z� = 2�− z2 + z1z2 − 6z1
2z2 − z2z3 − 22z5 + 15z1z5 + 6z3z5 − 15z2z6 − 4z1z2z6 − 5z5z6 + 18z7 − 5z1z7

+ 11z1
2z7 − 6z2

2z7 − 6z3z7 − 5z1z3z7 + 12z4z7 + 45z6z7 − 8z1z6z7 + 12z2z7
2 − 18z7

3� ,

a36�z� = 2�20 + 6z1
2 − 7z2

2 − 18z3 − 6z1z3 + 14z4 + 20z6 + 6z1z6 + 4z3z6 + 6z2z7 − 5z1z2z7 − 5z5z7 − z7
2

− 13z1z7
2� ,

a37�z� = 2�− 7z2 − 6z1z2 − 5z5 + 19z7 − 13z1z7 + 2z3z7� ,

a44�z� = 4�− 10 − 16z1 + 8z1
2 − 6z1

4 − 4z2
2 − 16z3 + 24z1

2z3 − 4z2
2z3 − 12z3

2 + 8z4 − 16z1z4 − 4z1
2z4

+ 8z3z4 + 6z4
2 + 11z2z5 + 2z1z2z5 − z2z3z5 − 12z5

2 − 2z1z5
2 + 4z6 − 4z1z6 − 14z1

2z6 + 4z1
3z6

+ 3z2
2z6 − 2z1z2

2z6 − 4z3z6 − 8z1z3z6 − 2z3
2z6 + 6z4z6 + 4z1z4z6 − 3z2z5z6 − 2z6

2 + 4z1z6
2 + 4z3z6

2

− 2z6
3 + z2z7 + z1z2z7 + 9z1

2z2z7 − 3z2
3z7 − 8z2z3z7 − 3z1z2z3z7 + 9z2z4z7 − 21z5z7 + 6z1z5z7

+ 4z1
2z5z7 − 9z3z5z7 − 6z2z6z7 + 7z1z2z6z7 + 9z5z6z7 − 9z7

2 + 17z1z7
2 − 3z1

2z7
2 − 2z1

3z7
2 + 9z1z3z7

2

− 9z4z7
2 + 9z6z7

2 − 9z1z6z7
2� ,

a45�z� = 2�9z2 − 7z1z2 + 13z1
2z2 − 7z2

3 − 12z2z3 − 7z1z2z3 + 21z2z4 − 28z5 − 7z1z5 + 7z1
2z5 − 13z3z5

+ 9z4z5 − 3z2z6 + 7z1z2z6 − 3z2z3z6 − 19z5z6 − 4z1z5z6 − 5z2z6
2 + 21z1z7 − 24z1

2z7 + 6z1
3z7

+ 7z2
2z7 − 5z1z2

2z7 + 14z3z7 − z1z3z7 − 5z3
2z7 − 19z4z7 + 10z1z4z7 − z2z5z7 + 10z1z6z7 + 4z1

2z6z7

+ 5z6
2z7 − 2z2z7

2 + 4z1z2z7
2 + 9z5z7

2 − 9z1z7
3� ,

a46�z� = 2�20 + 12z1 − 18z1
2 + 12z1

3 + 7z2
2 − 6z1z2

2 + 12z3 − 24z1z3 − 6z3
2 + 2z4 + 12z1z4 − z2z5 + 2z6

+ 8z1z6 + 2z1
2z6 + 8z3z6 + 6z4z6 − 4z6

2 − 6z2z7 − z1z2z7 − 4z2z3z7 − 10z5z7 − 4z1z5z7 − 5z2z6z7

− 20z7
2 + 2z1z7

2 + 4z1
2z7

2 − 9z3z7
2 + 9z6z7

2� ,

a47�z� = 2�− 5z2 − 6z1z2 − 5z2z3 − 19z5 − 4z1z5 − 5z2z6 − 19z7 + 11z1z7 + 5z1
2z7 − 10z3z7 + 3z4z7
+ 9z6z7� ,
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a55�z� = − 60 + 48z1 − 12z1
2 − 12z1z2

2 − 24z3 + 24z1z3 − 12z3
2 − 48z4 + 24z1z4 + 12z2z5 + 15z5

2 − 52z6

+ 24z1
2z6 − 48z3z6 − 4z4z6 − 48z6

2 − 16z1z6
2 + 40z2z7 + 8z1z2z7 − 8z2z3z7 + 20z5z7 + 8z1z5z7

− 24z2z6z7 − 16z7
2 + 4z1z7

2 − 12z1
2z7

2 + 32z3z7
2 + 28z6z7

2,

a56�z� = 2�7z2 − z1z2 − 5z2z3 + 8z5 + 5z1z5 − 7z2z6 + 5z5z6 − 28z7 + 19z1z7 − 6z1
2z7 + 11z3z7 − 3z4z7

− 17z6z7 − 9z1z6z7 − 6z2z7
2 + 9z7

3� ,

a57�z� = − 20 + 12z1 − 12z3 − 8z4 − 48z6 − 20z1z6 − 12z2z7 + 5z5z7 + 20z7
2,

a66�z� = 4�− 14 + 12z1 − 6z1
2 + 12z3 − 2z4 + 2z6 + 2z6

2 − 7z2z7 − z5z7 − 5z7
2 − 5z1z7

2� ,

a67�z� = 2�− 7z2 − 3z5 − 19z7 − 11z1z7 + 2z6z7� ,

a77�z� = − 60 − 24z1 − 4z6 + 3z7
2.

With the explicit expression of �1 at our disposal, we can now try to use the Schrödinger
quation as an efficient mean to compute particular characters of E7. Given that all these charac-
ers are polynomials in the z variables, the Schrödinger equation can be solved by applying a
ystematic procedure, which is suitable to be implemented in a computer program able to carry out
ymbolic calculations. We propose two alternative methods to find the Schrödinger eigenfunctions.

�1� Given a weight �=
i=1
7 ni�i� P+, let us denote zn �or z�� the monomial zn=�i=1

7 zi
ni; thus

i=z�i. The operator �1 acting on zn gives

�1zn = 

	��

S	,nzn−	 = �m�1�zm + 

0�	��

S	,nzn−	, �20�

here � only includes integral linear combinations of the simple roots with non-negative coeffi-
ients and, of course, in the exponent of �20� we express 	 in the basis of fundamental weights.
he eigenfunctions �m can be written as

�m = 

��Qm

+

C�zm−� = zm + 

0���Qm

+

C�zm−�,

here again the � in Qm
+ are integral linear combinations of the simple roots with non-negative

oefficients such that they do not give rise to negative powers of the z’s. By substituting in the
chrödinger equation �1�m=�m�1��m we find the iterative formula

C� =
1

�m�1� − �m−��1� 

0�	��

S	,m−��−	�C�−	.

o use this formula in practice, one should take into account the heights of the �’s involved,
ecause each coefficient C� can depend only on some of the C� such that ht����ht���.

�2� The Clebsch-Gordan series for the product �i=1
7 zi

mi reads

z1
m1z2

m2z3
m3z4

m4z5
m5z6

m6z7
m7 = �m + 


	�Qm

D	�m−	.
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ere it is not difficult, in each particular case, to elaborate a list with all the elements in Qm �i.e.,
he integral dominant weights appearing in the series�. Furthermore, the operator �1−�n�1� anni-
ilates the character �n. Taking this into account, we can make use of the simple-looking formula

�m = � �
	�Qm

��1 − �m−	�1���zm

o obtain the eigenfunctions.
Through any of these methods, it is possible to compute the characters rather quickly. As an

llustration, we offer a list of the third order characters in Appendix A.
Once we have a method for the computation of the characters, we can extend it to produce an

lgorithm for calculating the Clebsch-Gordan series. Suppose that we want to obtain the series for

m ·�n. We list the possible dominant weights entering in the series arranged by heights

�m · �n = �m+n + N�1
��1

+ N�2
��2

+ ¯ .

he multiplicity N�1
is simply the difference between the coefficients of z�1 in �m ·�n and in �m+n.

hen, N�2
is the difference between the coefficient of z�2 in �m ·�n and the sum of the corre-

ponding coefficients in �m+n and ��1
, and so on. As an example, we present in Appendix B a list

ith a few cubic Clebsch-Gordan series. The complete list can be found in Ref. 29.
The approach we are describing is also useful to find the general structure of the series for

roducts of some specific types. Let us consider, for instance, series of the type z7�n�7
with

rbitrary integer n�0. The weights of the representation R�7
are given by the linear combinations

�vi+v j�, i� j.22 If we expand these weights in the basis of fundamental weights, we see that there
re only four whose coefficients for all �i with i�7 are non-negative, �7, �6−�7, �1−�7, and −�7.
ence, the form of the series should be

z7�0,0,0,0,0,0,n = �0,0,0,0,0,0,n+1 + a�0,0,0,0,0,1,n−1 + b�1,0,0,0,0,0,n−1 + c�0,0,0,0,0,0,n−1, �21�

here we must fix a, b, and c. Now, by solving the Schrödinger equation by means of the first of
he two methods described above, one finds

�0,0,0,0,0,0,n = z7
n + �1 − n�z6z7

n−2 − z1z7
n−2 + ¯ ,

�0,0,0,0,0,1,n−1 = z6z7
n−1 − z1z7

n−1 + ¯ .

f we substitute this in �21�, we can solve for a and b, obtaining a=b=1. We can now fix c by
djusting dimensions in �21�. This gives c=1.

We list below the series of the form z7�n�k
obtained through the same procedure,

z7�n,0,0,0,0,0,0 = �n,0,0,0,0,0,1 + �n−1,1,0,0,0,0,0 + �n−1,0,0,0,0,0,1,

z7�0,n,0,0,0,0,0 = �0,n,0,0,0,0,1 + �0,n−1,1,0,0,0,0 + �0,n−1,0,0,0,1,0 + �1,n−1,0,0,0,0,0,

z7�0,0,n,0,0,0,0 = �0,0,n,0,0,0,1 + �1,1,n−1,0,0,0,0 + �0,0,n−1,0,1,0,0 + �1,0,n−1,0,0,0,1 + �0,1,n−1,0,0,0,0,

z7�0,0,0,n,0,0,0 = �0,0,0,n,0,0,1 + �0,1,1,n−1,0,0,0 + �1,0,0,n−1,1,0,0 + �0,1,0,n−1,0,1,0 + �0,0,1,n−1,0,0,1

+ �1,1,0,n−1,0,0,0 + �0,0,0,n−1,1,0,0,

z7�0,0,0,0,n,0,0 = �0,0,0,0,n,0,1 + �0,0,0,1,n−1,0,0 + �1,0,0,0,n−1,1,0 + �0,1,0,0,n−1,0,1 + �0,0,1,0,n−1,0,0

+ �0,0,0,0,n−1,1,0,
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z7�0,0,0,0,0,n,0 = �0,0,0,0,0,n,1 + �0,0,0,0,1,n−1,0 + �1,0,0,0,0,n−1,1 + �0,1,0,0,0,n−1,0 + �0,0,0,0,0,n−1,1.

I. CONCLUSIONS

In this paper we have shown how the Calogero-Sutherland Hamiltonian for the Lie algebra E7

an be used to compute both Clebsch-Gordan series and characters of that algebra. The treatment
e have presented can be applied to the cases of other simple algebras. It can be also extended to
eal with the system of orthogonal polynomials based on E7 for general values of the parameter �.
he way in which this should be done is the subject of a research now in progress and will be
resented elsewhere.
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PPENDIX A: LIST OF THE CHARACTERS OF E7 OF THIRD ORDER

�3000000 = z1
3 − 2z1z3 + z4 − z1z6 − z1

2 + z2z7 − z3 − 2z1,

�2100000 = z1
2z2 − z2z3 − z1z5 − z1

2z7 + z6z7 − z5 − z2,

�1200000 = z1z2
2 − z1z4 − z2z5 − z1

2z6 + z3z6 + z6
2 − z1z2z7 − z1

3 + 2z1z3 − z4 + 2z1z6 + z1
2 − z2z7 + z3 + z6

+ z1,

�0300000 = z2
3 − 2z2z4 + z3z5 − 2z1z2z6 + z5z6 + z1z3z7 − z4z7 − 2z1

2z2 + 2z2z3 + z1z5 + z2z6 + z3z7 + z1z2

+ z6z7 + z1z7,

�2010000 = z1
2z3 − z3

2 − z1z4 − z1
2z6 + z2z5 − z3z6 + z1z2z7 − z1

3 + z1z7
2 − z2z7 − z7

2 + z6 + z1 + 1,

�1110000 = z1z2z3 − z2z4 − z1
2z5 + z5z6 − z1

3z7 + z1z3z7 − z4z7 + z1z6z7 + z1z5 − z2z6 + z1
2z7 − z6z7 + z5

+ z1z7,

�0210000 = z2
2z3 − z3z4 − z1z2z5 + z5

2 − z4z6 − z1
2z2z7 + z2z3z7 + z1z5z7 − z1z4 + z2z5 + z1z2z7 − z6

2 + z5z7

+ z1z7
2 − z1z6 + z2z7 − z3 − z6 − z1,

�1020000 = z1z3
2 − z1

2z4 − z3z4 + z1z2z5 − z1
3z6 + z1

2z2z7 − z1
4 − z2z3z7 + z1

2z3 + z1z5z7 + z3
2 + z1

2z7
2 − z2z6z7

− z1z4 + z3z6 − z1z2z7 + 2z1z3 − z5z7 − z1z7
2 + z4 + 2z1z6 + 2z1

2,

�0120000 = z2z3
2 − z1z2z4 − z1z3z5 + z4z5 − z1

2z3z7 + z1z5z6 + z3
2z7 − z2z6

2 + z2z5z7 + z3z6z7 + z1
2z5 − z3z5

− z1z2z6 − z5z6 + z1z3z7 + z2
2z7 + z2z7

2 − z1z5 − 2z2z6 + z3z7 − z1z2 + z6z7 − z5 − z2,

�0030000 = z3
3 − 2z1z3z4 + z4

2 + z1
2z2z5 − z2z3z5 − 2z1

2z3z6 + 2z3
2z6 + z1z4z6 − z2z5z6 + z3z6

2 + z1
3z2z7 − 2z1

3z3

− 2z1z2z3z7 + z2z4z7 + z3z5z7 − z1z2z6z7 + 4z1z3
2 + z1

2z4 − 3z3z4 + z1z3z7
2 − z1z2z5 + z5z6z7

− z2 − z4z
2 + 2z1z3z6 − z2z2z7 + z2z6 − z4z6 − z1z5z7 − z2z2 + z2z3 + 2z2 + z3z

2 − z1z4 − z2z5
5 7 1 2 1 7 1 3 7
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+ 2z3z6 + z6z7
2 − z1z2z7 + 2z1z3 + z1z7

2 + z4 + z1z6 + z1
2 − z3 − z6 − z1,

�2001000 = z1
2z4 − z3z4 − z1z2z5 + z5

2 + z2
2z6 − 2z4z6 − z2z6z7 + z3z7

2 − z1z4 + z2z5 − 2z1z2z7 + z5z7 + z2
2

− z4 + z1z6 + z1
2 + z2z7 + z7

2 − z3 − z6 − z1 − 1,

�1101000 = z1z2z4 − z1z3z5 − z2
2z5 + z2z3z6 + z1z5z6 − z1z4z7 + z2z6

2 − z2z5z7 − z1z2z7
2 − z6

2z7 + z1
2z5 − z3z5

+ z1z2z6 + z1z7
3 + z5z6 − z4z7 − 3z1z6z7 + z7

3 + 2z1z5 + 2z2z6 − z6z7 + z1z2 + z5 − z1z7 − z7,

�0201000 = z2
2z4 − z4

2 − z2z3z5 + z3
2z6 + z1z5

2 − 2z1z4z6 − z1
2z6

2 + z3z6
2 + z1

2z5z7 − z3z5z7 − z1
2z4 + z1z2z6z7

− z2
2z7

2 − z5z6z7 + z3z4 − z1z2z5 − z1z3z7
2 + z5

2 + z2
2z6 + z4z7

2 − z1
3z6 + 2z1z3z6 + z1

2z2z7 + z1z6z7
2

− z1z6
2 − z1z2

2 + z1
2z7

2 + z1z4 + z2z5 − z3z7
2 − z6z7

2 − z1
2z6 + 2z3z6 + z6

2 + z5z7 + z2
2 − z1z7

2 − z4 − z1
2

+ z3 + z6 + z1,

�1011000 = z1z3z4 − z4
2 − z1

2z2z5 + z1z2
2z6 + z1z5

2 − z1z4z6 − z2z4z7 + z1
2z5z7 − 2z1z2z6z7 − z1

2z4 + z3z4

− z5z6z7 + z1z3z7
2 + z1z2z5 − 2z1

2z2z7 + z4z7
2 + z5

2 + z2z7
3 + z1z5z7 + z1

2z7
2 + 2z1z2

2 − z3z7
2 + z1z3

− z4 − z1z6 − z2z7 − z1
2 + z3,

�0111000 = z2z3z4 − z3
2z5 − z1z2

2z5 + z1z2z3z6 + z2z5
2 + z1

2z5z6 − z3z5z6 − z1
2z4z7 − z5z6

2 + z1z2z5z7 − z1
3z6z7

+ z1z3z6z7 + 2z1
3z5 − 4z1z3z5 − z2z3z7

2 + 2z4z5 + z2z3z6 + z1
2z7

3 − 2z1z5z6 + z1z4z7 + 2z2z5z7

− z3z6z7 − z1
2z5 − z3z5 − z5z6 − z1z7

3 + z2z3 + z1z6z7 − 3z1z5 − z1
2z7 + z1z7,

�0021000 = z3
2z4 − z1z4

2 − z1z2z3z5 + z2z4z5 + z1
2z5

2 + z1
2z2

2z6 − z3z5
2 − 2z1

2z4z6 − z2
2z3z6 + 3z3z4z6 − z2

2z6
2

− z1
3z6

2 − z5
2z6 − z1z2z4z7 + 2z1z3z6

2 + z1
3z5z7 + z2

2z5z7 − z1z3z5z7 − 2z1
2z2z6z7 − z1

3z4 + z4z6
2

+ z4z5z7 + z2z3z6z7 + z1z6
3 + 2z1z3z4 − z1z5z6z7 + z1

2z3z7
2 + z1

2z2z5 − z1
4z6 − 2z2z3z5 − z3

2z7
2

+ z2z6
2z7 + z1z4z7

2 + 3z1
2z3z6 + z1

2z6z7
2 − z1z5

2 − z1
3z2z7 − z3

2z6 + z1z4z6 − 2z3z6z7
2 − z6

2z7
2 + z1

2z2
2

− z2z5z6 + 2z1
2z6

2 + z2z4z7 − z1
2z5z7 − z3z6

2 + z1
3z7

2 + z1z2z7
3 + z1

2z4 + z1
3z6 + z1z2z6z7 + z5z6z7

− 3z1z3z7
2 − 2z1z2z5 − 2z1z6z7

2 − z5
2 − z2z7

3 − 2z2
2z6 + z1z6

2 + z2z3z7 + z3
2 − z1z4 + 2z2z6z7 − z1

2z7
2

− 2z2z5 − z1
3 + z3z6 + 2z1z3 − z2

2 + z1z6 + z2z7 + z1
2,

�1002000 = z1z4
2 − z1z2z3z5 − z2z4z5 + z3z5

2 + z1
2z4z6 + z2

2z3z6 − z3z4z6 − z1z2z4z7 + z1
3z5z7 − z1z3z5z7

− z1
2z2z6z7 − z1z5z6z7 + z3

2z7
2 − z1z4z7

2 + z2z3z5 + z2z5z7
2 − z3

2z6 + 2z1z4z6 − z1z2z3z7 + z1
2z6

2

+ z1z2z7
3 − 2z1

2z5z7 + z3z5z7 − z1z2z6z7 + z5z6z7 + z1
2z4 + z2

2z3 − 2z3z4 + 2z1z2z5 + z1
3z6 − z5

2

− 2z1z3z6 − z1z6z7
2 + z1z6

2 − 2z1z5z7 + z1z4 − z1
2z7

2 + 2z3z7
2 + z1

2z6 − 2z3z6 − z1z2z7 + z1z6 + z1
2

− 2z3,

�0102000 = z2z4
2 − z2

2z3z5 − z3z4z5 + z2z3
2z6 + z1z2z5

2 − z4z5z6 − z1z3z4z7 − z1
2z2z6

2 + z4
2z7 + 2z2z3z6

2

+ 2z1
2z2z5z7 − z1z5z6

2 − 3z2z3z5z7 − z1
2z3z6z7 + 2z1z4z6z7 + z1

2z6
2z7 + z3

2z5 − z1z4z5 − 2z2z4z7
2

− z2z
2 − z3z5z

2 + 2z2z4z6 − 3z2z5z6 + 4z3z5z6 + 2z2z4z7 + z5z6z
2 − z3z4z7 + z1z3z

3 − 2z4z
3
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+ 2z1
3z6z7 + z5z6

2 − 2z1z6z7
3 − 2z5

2z7 − 4z1z3z6z7 + 2z4z6z7 − 2z1
3z5 − 2z1z2z4 + 2z1z6

2z7 + z2z7
4

+ 5z1z3z5 + z4z5 − 2z1
2z2z6 + z7

5 + 2z2z3z6 − z1z5z7
2 − 2z2z6z7

2 + 2z1z5z6 + z2z6
2 − 2z1

2z7
3 + z3z7

3

+ 2z1
2z6z7 − 2z6z7

3 − z3z6z7 + 2z2z4 + 2z1z2z7
2 + 2z3z5 − 2z1z2z6 + z6

2z7 − z5z7
2 − z1z3z7 + 2z5z6

+ 2z4z7 + 2z1z6z7 − 2z2z7
2 + z1z5 + 2z1

2z7 − 2z7
3 + 2z2z6 − z3z7 + 2z6z7 − 2z1z2 + z5 + z2 + z7,

�0012000 = z3z4
2 − z2z3

2z5 − z1z2z4z5 + z1z3z5
2 + z2

2z5
2 − z4z5

2 + z1z2
2z3z6 − z2

2z4z6 + 2z4
2z6 − z2z3z5z6

− z1z2
2z6

2 − z1
2z2z4z7 − z1

2z3z6
2 + z3

2z6
2 − z1z5

2z6 + 3z1z4z6
2 + 2z1

2z3z5z7 − 2z3
2z5z7 + z1z2

2z5z7

− z1z4z5z7 − z1
3z2z6z7 − z2z5z6

2 + z1
2z6

3 + z2z5
2z7 + z3z6

3 + z1z4
2 + z2z4z6z7 + z1z3

2z7
2

− z1
2z5z6z7 − 2z3z5z6z7 + z1

2z4z7
2 − z1

2z5
2 − z1z3

2z6 − z2z4z5 − 3z3z4z7
2 + 3z1

2z4z6 + z3z5
2

+ z3z4z6 + z1
3z6z7

2 + z1z2z6
2z7 + z5z6

2z7 + z1z2z5z7
2 + z2

2z6z7
2 − 2z1z3z6z7

2 − 4z4z6z7
2

− 2z1z2z5z6 − z5
2z6 − z1

2z2z3z7 − 3z1z6
2z7

2 + 2z1
3z6

2 − z2
2z6

2 + z1
2z2z7

3 − 2z1
3z5z7 − z1

2z7
4 + 2z4z6

2

+ z1z2z4z7 + z1z6
3 + z1

3z4+ z1z3z5z7 + z1z2
2z3 + 2z4z5z7 − z2z3z6z7 − z2z6z7

3 − z2
2z4

− 2z1z3z4 − z1
2z3z7

2 + 4z1z5z6z7 + z2z6
2z7 + 2z3z7

4 + z3
2z7

2 + 2z2z3z5 + z1
4z6 − 2z1z5

2

− 2z1z4z7
2 + 2z6z7

4 − z1
2z3z6 − z3

2z6 − z1z2
2z6 − 2z1

2z6z7
2 + z1z2z3z7 − 2z2z5z6 − z3z6z7

2

− 2z6
2z7

2 + z1
2z6

2 − z1z2z7
3 − 2z5z7

3 + z2z4z7 − z1
3z7

2 + z3z5z7 + 2z1z2z6z7 − z1
2z4 + 3z1z3z7

2

+ z2
2z7

2 + z3z4 + 3z5z6z7 − z1z2z5 − z5
2 − 2z2

2z6 − 2z1z3z6 + z1z7
4 + 2z4z6 − z2z7

3 − z1
2z2z7

− z2z3z7 + 2z1z5z7 + z1z4 + 2z1
2z7

2 + 2z2z6z7 + z1
2z6 − 2z3z7

2 − z2z5 − z3z6 + z1
3 + z1z2z7

− 2z6z7
2 − z2

2 + 2z5z7 − z1z7
2 − 2z1z3 − z1z6 + z2z7 − z1

2,

�0003000 = z4
3 − 2z2z3z4z5 + z3

2z5
2 + z1z2

2z5
2 + z2

2z3
2z6 − z3

2z4z6 − z1z2
2z4z6 − z1z4z5

2 + 3z1z4
2z6

− z1z2z3z5z6 − z2z4z5z6 − z1
2z2

2z6
2 − z1z3

2z6
2 − z1

2z5
2z6 − z1z2z3z4z7 + z3z5

2z6 + 3z1
2z4z6

2

+ z2
2z3z6

2 + z2z4
2z7 + z1

2z2
2z5z7 + z1z3

2z5z7 − z2
2z3z5z7 − 2z3z4z5z7 − z1z2z5z6

2 − z1
2z2z3z6z7

+ z1
3z6

3 + 2z1z2z4z6z7 + z3
3z7

2 + z5
3z7 − 2z1z3z5z6z7 + z1

2z4
2 − z1

2z2z3z5 − z3z4
2 + 2z2z3

2z5

− z1z2z4z5 − z3
3z6 − 2z1

3z5
2 + 5z1z3z5

2 + z1
2z2z6

2z7 + 3z1
3z4z6 − 3z4

2z7
2 − 4z4z5

2 − 4z1z3z4z6

+ z1z2
2z6z7

2 + z1z5
2z7

2 − z1z2z3
2z7 + z3

2z6z7
2 + 3z4

2z6 − 2z1
2z2z5z6 − 6z1z4z6z7

2 − 3z1
2z6

2z7
2

+ 2z1
4z6

2 + 3z2z3z5z6 − z1z2
2z6

2 + z1
2z2z4z7 − z1z5

2z6 − 3z1
2z3z6

2 + z2z5z6z7
2 − z1

4z5z7 + z1z2z3z7
3

− z3
2z6

2 + 4z1z4z6
2 − 2z2z4z7

3 + z1
2z3z5z7 + 2z3

2z5z7 + 2z3z5z7
3 + z1

2z6
3 − 2z2z5

2z7 − 2z1z2z6z7
3

+ z1
3z2z6z7 + z1

2z3z4 − 3z1z2z3z6z7 − z1
3z3z7

2 + z2
2z3

2 − z1
3z2z5 + 2z1

2z5z6z7 − z1z2
2z4 − 2z3

2z4

− 2z1z4
2 + 4z1z2z3z5 + 2z1z3

2z7
2 + 3z2z4z6z7 − z1

2z2
2z6 − 2z3z5z6z7 − z1

2z5
2 − 2z1

2z4z7
2

+ 2z1
3z3z6 + 3z1z2z6

2z7 + 2z3z4z7
2 − 4z1z3

2z6 − 3z1
3z6z7

2 + 3z4z7
4 − z2z4z5 − z1z2z5z7

2

+ 2z2
2z3z6 + 6z1z3z6z7

2 + 3z1z6z7
4 + z5

2z7
2 + 5z3z5

2 − 2z1
2z4z6 + z1

2z2z3z7 − 2z3z4z6 − z1z2z5z6

− 5z4z6z7
2 − z2z3

2z7 + z1
3z6

2 + z1
3z5z7 − 3z1z6

2z7
2 − 6z1z3z6

2 − z1
2z2z7

3 + z2z7
5 + 2z4z6

2 + 2z4z5z7

− z7
6 + z1

2z2z6z7 − z1z5z7
3 − 2z1z3z4 − z2z3z6z7 + 2z1z5z6z7 + z1z2

2z7
2 + z1

2z7
4 − z1

2z2z5 + 3z4
2

+ 2z3
2z7

2 − 3z2z6z7
3 − z1

2z3z6 + 3z2z3z5 − 2z3z7
4 − 2z1z2

2z6 + 2z6z7
4 − 3z3

2z6 + 3z1z5
2

+ 3z1z4z
2 + 2z2z

2z7 + z2z6z
2 + z2z5z

2 + 4z3z6z
2 − z2z2 − 2z2z2 − 3z1z2z3z7 − 2z3z

2
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+ 3z2z4z7 + 3z1
2z5z7 + z2

2z3 − z5z7
3 − 4z3z5z7 − z1z7

4 + 2z1
2z4 + 3z1z2z6z7 + 3z1

3z6 − 2z3z4

+ 3z1z3z7
2 − 8z1z3z6 + z1

2z2z7 − 5z4z7
2 + 4z4z6 − 3z2z7

3 − 2z1z6
2 + z1

2z3 − z2z3z7 − z1z2
2

+ 2z7
4 + 4z2z6z7 − 2z1

2z7
2 − 2z3

2 + 4z3z7
2 − 4z1z4 − 2z1

2z6 − 2z6z7
2 − 4z3z6 − 2z1z3 + 3z1z7

2

+ 2z4 − 4z1z6 + z1
2 + 2z2z7 − 2z3 − z7

2 − 2z1,

�2000100 = z1
2z5 − z3z5 − z1z2z6 + z2

2z7 − z4z7 − z1z5 + z3z7 − 2z1z2 + z1z7,

�1100100 = z1z2z5 − z2
2z6 − z1z3z6 − z5

2 + z4z6 + z1z6
2 + z2z3z7 − z1z5z7 + z2z6z7 + z1

2z6 − z2z5 − z3z6 − z6z7
2

− z2
2 − z1z7

2 + z2z7 + z7
2,

�0200100 = z2
2z5 − z4z5 − z2z3z6 + z3

2z7 − z2z6
2 − z1z4z7 + z2z5z7 + z3z6z7 − z1

2z5 − z1
3z7 + z1z3z7 + z1

2z2

+ z4z7 − z2z3 + z1z6z7 + z2z7
2 + z1

2z7 − 2z2z6 − z1z2 − z2,

�1010100 = z1z3z5 − z4z5 − z1
2z2z6 + z1z2

2z7 + z2z6
2 + z1

2z6z7 − z2z5z7 − z3z6z7 − z2z4 − z6
2z7 − z1

2z5 + 2z3z5

− z1z2z6 + 2z5z6 + z1z3z7 − z1z7
3 − 2z1

2z2 − z2
2z7 + z1z6z7 + z2z3 + z1z5 + 2z2z6 + z1

2z7 + z7
3

+ z1z2 − z6z7 + z5 + z2 − z7,

�0110100 = z2z3z5 − z3
2z6 − z1z5

2 − z1z2
2z6 + z1z4z6 + z2z5z6 + z1z2z3z7 + 2z1

2z6
2 − 2z3z6

2 − 2z1
2z5z7 + 2z3z5z7

+ z1z2z6z7 − z6
3 + z5z6z7 − z3z4 − z1

3z7
2 + z1z3z7

2 + 2z1
3z6 − 4z1z3z6 − z1z6z7

2 − 2z1z6
2 + 2z1z5z7

+ z2z6z7 + z1
2z7

2 − z1z4 + z3z7
2 − z1

2z6 + 2z6z7
2 − 3z3z6 − 3z6

2 + z1z7
2 − 3z1z6 − z3 − 2z6 − z1,

�0020100 = z3
2z5 − z1z4z5 − z1z2z3z6 + z2z4z6 + z1

2z2
2z7 + z1z2z6

2 − z5z6
2 − z1

2z4z7 − z2
2z3z7 + 2z3z4z7

− z1z2z5z7 + z5
2z7 − z2

2z6z7 − z1z2z4 − z1
3z5 + z2

2z5 − z1
2z2z7

2 + 2z4z6z7 + 3z1z3z5 + z2z3z7
2

− 2z4z5 − z2z3z6 − z1
4z7 + z1z5z7

2 − z1z2
2z7 − z1z5z6 + 4z1

2z3z7 + z2z6
2 − 2z3

2z7 + z2
3 − z1

3z2

+ 2z1
2z6z7 + z1z2z3 − z2z4 + 2z1

3z7 − 3z3z6z7 + z3z5 − z6
2z7 + z1z2z7

2 + z5z7
2 − z2

2z7 − 3z1z3z7

− z5z6 + 2z2z3 + z1z7
3 − 4z1z6z7 + z1z5 + 2z2z6 − z1

2z7 − z3z7 − z6z7 + 2z1z2 − z1z7,

�1001100 = z1z4z5 − z2z5
2 − z1z2z3z6 + z3z5z6 + z1

2z4z7 + z1z2z6
2 + z2

2z3z7 − z3z4z7 + z5z6
2 − z1z2z5z7 − z5

2z7

+ z1
3z6z7 − z1z3z6z7 − z1

2z2z7
2 − z1z2z4 − z4z6z7 + z4z5 − 2z1z6

2z7 + z2z3z7
2 − z2z3z6 + 3z1z5z6

+ z3
2z7 − 2z1z4z7 + z6z7

3 − 2z1
2z6z7 − z1z2z3 + z1

2z5 + 2z3z6z7 + z2z4 + z1z2z7
2 − z3z5 + z1z2z6

− z5z7
2 + z5z6 + z1

2z2 + z4z7 + z1z7
3 − z1z6z7 − z2z3 − z1z2 − z7

3 − z1z7 + z7,

�0101100 = z2z4z5 − z3z5
2 − z2

2z3z6 + z1z2z5z6 + z2z3
2z7 + z1z3z6

2 − z4z6
2 − z1z6

3 − z1z3z5z7 − z1
2z3z7

2 + z2z3z6z7

− z1z3z4 + z4
2 + z1

2z2z5 + z1z5z6z7 − 2z2z3z5 − z2z5z7
2 − z1z5

2 + z1z4z6 − z1
2z6

2 + z6
2z7

2 + z1z2z3z7

+ z3z6
2 + z1z2z6z7 − z2

2z3 + z1
2z4 + z1

3z7
2 − z5z6z7 − z3z4 − z4z7

2 − z2
2z6 − z1z6z7

2 − z1z3z6 − z1
2z2z7

+ z4z6 + z1z6
2 + z2z3z7 − 2z1

2z7
2 + z1

2z6 + z3z7
2 − z3z6 + 2z1z2z7 − z1z3 − z5z7 − z2

2 + z4 + z1z6

+ z2 − z3,
1
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0011100 = z3z4z5 − z1z2z5
2 − z2z3

2z6 + z1z3z5z6 + z2
2z5z6 + z1z2

2z3z7 − z2
2z4z7 + z1

2z2z6
2 − z2z3z6

2 + z4
2z7

− z1
2z2z5z7 − z2z6

3 − z1
2z2z4 + z1

2z3z5 − z1z2
2z6z7 + z1z4z6z7 + z2z5z6z7 + z1z2

2z5 − z1
3z2z7

2 − z1
2z6

2z7

+ z1z2z3z7
2 + z3z6

2z7 − z3
2z5 + z6

3z7 + z1
2z5z7

2 − z1z2z3z6 + z2z4z6 − z3z5z7
2 + z1z2z6z7

2 + z2
2z7

3 + z1
3z7

3

+ z1
2z5z6 + z1z3

2z7 − 2z3z5z6 − z1z3z7
3 + z1

2z4z7 − 2z3z4z7 − z5z6z7
2 − z4z7

3 − z1z6z7
3 − z1z2z5z7

− z5z6
2 + z5

2z7 + z1
2z2z7

2 − z1
2z2z3 − z2

2z6z7 + z4z6z7 + 2z1z6
2z7 + 2z1z2z4 + 2z2

2z5 − z1z3z5 − 2z4z5

− z2z3z7
2 + 2z1

2z2z6 − 2z2z3z6 − z2z6z7
2 − 2z1

2z7
3 + z3z7

3 − z1
2z3z7 − 3z1z5z6 + z3

2z7 − 2z2z6
2 + z1

3z2

− z1z4z7 − 2z1
2z5 + z3z6z7 + z2z4 − z1

3z7 + z3z5 + z6
2z7 + 2z1z3z7 − z5z6 − z2

2z7 + z4z7 + z1z7
3

+ z1z6z7 − z2z7
2 − z1

2z2 + z1z5 + 2z1
2z7 − z3z7 − z1z7 + z2,

�0002100 = z4
2z5 − z2z3z5

2 − z2z3z4z6 + z3
2z5z6 + z1z2

2z5z6 + z2
2z3

2z7 − z3
2z4z7 − z1z2

2z4z7 − z2z4z6
2

+ 2z1z4
2z7 − z1z2z3z5z7 − z1

2z5z6
2 + 2z3z5z6

2 − z1z3
2z6z7 − z1

2z2
2z6z7 + z1

2z5
2z7 − z1z2z6

3

− z1z2z3z4 + z2z4
2 − 2z3z5

2z7 + z2
2z3z6z7 + 3z1

2z4z6z7 + z1z3
2z5 − z3z4z6z7 − z1

2z2z3z7
2

+ z1
2z2

2z5 + z2z3
2z7

2 + z5
2z6z7 − z2

2z3z5 − z1
2z4z5 + z1

3z6
2z7 − z1z3z6

2z7 + z1z2z4z7
2 + z1

3z5z7
2

− 2z1z3z5z7
2 + z4z6

2z7 − z2z3
2z6 − z5

3 + z1z2z4z6 + z3
3z7 − 3z4z5z7

2 − 3z1
3z5z6 + z1

2z2z6z7
2

+ 6z1z3z5z6 + z1z6
3z7 − z4z5z6 + z2z3z6z7

2 + 2z1
3z4z7 + z1z2

2z7
3 + z1

2z3z7
3 − 2z1z5z6z7

2 + z2z6
2z7

2

− 4z1z3z4z7 − 4z1z4z7
3 − z2z3z6

2 − 3z1
2z6z7

3 − z1
2z2z5z7 + z4

2z7 + z1z5z6
2 + z2z3z5z7 + 2z1

4z6z7

− z1z5
2z7 − 6z1

2z3z6z7 − z1z2z3
2 − z1z2

2z6z7 + z1
2z2z4 − 2z1

4z5 − z2z3z4 − z6
2z7

3 − z2z6
3

+ 2z3
2z6z7 + 5z1z4z6z7 + z1z2

2z5 + 5z1
2z3z5 + 3z1

2z6
2z7 + z1

3z2z6 − z1z2z7
4 − z1

2z5z7
2 − 3z1z4z5

+ z6
3z7 − z2z4z7

2 + 2z3z5z7
2 + 2z5z7

4 − 2z1
3z7

3 + z1z2z6z7
2 − 2z1z2z3z6 − z1

3z3z7 − z2z4z6

+ 2z3z5z6 + 2z1z3
2z7 + z2

2z3z7 − 2z1z2z6
2 − 2z1

2z4z7 − z1z2z5z7 + 2z1z7
5 + 3z1z3z7

3 − 2z5z6z7
2

− z4z7
3 + 2z1

2z2z3 − 4z1z6z7
3 + z5

2z7 − 2z2z3
2 − z1

2z2z7
2 − z1z2z4 + 2z4z6z7 + 3z1z6

2z7

+ 2z1z3z5 + 3z2z3z7
2 + z4z5 + 2z1z5z7

2 − 5z2z3z6 + 2z1z5z6 + 2z2z6z7
2 − z1z2

2z7 + 3z1z4z7

− 3z2z6
2 + 2z1

2z7
3 − z3z7

3 − 2z1z2z3 − z6z7
3 + 3z1

2z5 + z3z6z7 + 2z6
2z7 − 2z3z5 + 2z1z2z7

2

− 2z1z2z6 − 2z5z7
2 + 2z1

3z7 − 2z1z3z7 + z4z7 + z1
2z2 − 3z1z7

3 + 3z1z6z7 − 4z2z3 + z2z7
2

− z1z5 − 3z2z6 − 2z1
2z7 + z3z7 − z1z2 + z6z7 + z1z7 − z2,

�1000200 = z1z5
2 − z1z4z6 − z2z5z6 − z1

2z6
2 + z2z4z7 + z3z6

2 + z1
2z5z7 − z3z5z7 + z1z2z6z7 + z6

3 − 2z5z6z7

− z1z2z5 + z4z7
2 + z5

2 − z2z7
3 − z4z6 − z2z3z7 + z1z5z7 + z2z6z7 + z3

2 + z1
2z7

2 − z3z7
2 − 2z1z4 − 2z1

2z6

− z2z5 − z6z7
2 + 2z3z6 − z1

3 + 2z6
2 + 2z1z3 + z5z7 + z1z7

2 − 2z4 − z1z6 + z2z7 + z3 − 1,

�0100200 = z2z5
2 − z2z4z6 − z3z5z6 + z3z4z7 − z5z6

2 + z1z3z6z7 + z5
2z7 − z1

2z2z7
2 + z2z3z7

2 + z1z5z7
2 − z1z3z5

+ z1
2z2z6 − z2z3z6 − z3

2z7 − 2z1z5z6 + z1z4z7 + z2z5z7 − z3z6z7 + z1z2z3 − 2z2z4 + z1z2z7
2 + z5z7

2

− z3z5 + z1z7
3 − 2z5z6 + z1

3z7 − 2z1z3z7 − z4z7 − 3z1z6z7 + z2z7
2 − z1z5 − 2z1

2z7 − z2z6 + z1z2
− z5 − z1z7 − z2,
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�0010200 = z3z5
2 − z3z4z6 − z1z2z5z6 + z2

2z6
2 + z1z2z4z7 − z4z6

2 − z2
2z5z7 + 2z4z5z7 + z1

2z2z6z7 − z2z3z6z7

− z1
2z3z7

2 − z1z2
2z7

2 − z4
2 − z1

2z2z5 + z3
2z7

2 + z2z3z5 + 2z1z4z7
2 − z2z6

2z7 + z1z2
2z6 + z1

2z3z6 − z3
2z6

+ z2z5z7
2 + z1z5

2 − 4z1z4z6 + z3z6z7
2 + z2z5z6 − 2z1

2z6
2 − z2z4z7 + 3z1

2z5z7 + z6
3 + z2

2z3 + z1z3
2

− 2z3z5z7 + 2z1
3z7

2 − 2z1
2z4 − z1z2z6z7 − z3z4 + 2z2

2z6 − z1z3z7
2 − 3z1

3z6 − z5z6z7 + 2z1z3z6

+ z2z7
3 − z1

4 − 2z4z6 + z1z6
2 − z2z3z7 + z1z2

2 − 2z1z5z7 − 2z1
2z7

2 + z1
2z3 + z3

2 − 3z2z6z7 + z3z7
2

− z1z4 + z2z5 + 2z3z6 + 2z6
2 − z5z7 + z2

2 + 2z1z3 + 3z1z6 − 2z2z7 + z1
2 + z6,

�0001200 = z4z5
2 − z4

2z6 − z2z3z5z6 + z3
2z6

2 + z2z3z4z7 − z3
2z5z7 + z1z2

2z6
2 − 2z1z4z6

2 − z1z2
2z5z7

+ 3z1z4z5z7 − z2z4z6z7 − z1
2z2

2z7
2 − z1z4

2 − z1
2z6

3 + z3z6
3 − z1z3

2z7
2 + 2z1

2z5z6z7 − z3z5z6z7

+ z1z3
2z6 + z1

2z4z7
2 − 2z1z2z6

2z7 + z2z4z5 + z2
2z3z7

2 + z3z4z7
2 − z3z5

2 + z1
2z2

2z6 + z5z6
2z7

+ z1z2z5z7
2 − z5

2z7
2 − z2

2z3z6 + z1
3z6z7

2 − z1z3z6z7
2 − 3z1

2z4z6 + z1
2z2z7

3 + z1
2z2z3z7 + 2z1z2z5z6

− z2z3
2z7 + z4z6z7

2 − z5
2z6 − 3z1

3z6
2 + z3

3 + 4z1z3z6
2 + 2z1

3z5z7 + z1z6
2z7

2 − 4z1z3z5z7 − z4z6
2

+ z4z5z7 − z1
2z2z6z7 − 2z1z5z7

3 − z1
3z4 − z1

2z7
4 + z1z6

3 + z1
4z7

2 − z1z5z6z7 − z1
2z3z7

2 + z2z6z7
3

+ z1
2z2z5 − z2z6

2z7 − z3
2z7

2 − z4
2 − 2z1

4z6 + z1z4z7
2 − z2z3z5 + 2z1

2z6z7
2 − z1z5

2 + z1z2
2z6

+ 2z1
2z3z6 + 2z3

2z6 − 2z3z6z7
2 − z1z4z6 − 2z1z2z3z7 − z6

2z7
2 + z1

2z6
2 + 3z3z6

2 + z1
2z2

2 + z6
3

− 2z1
3z3 − 3z1

2z5z7 + 4z1z3
2 − 2z1z2z6z7 − z2

2z3 + z2
2z7

2 − z1
3z7

2 − z1z3z7
2 + z1

2z4 − z3z4 + z4z7
2

+ 6z1z3z6 − z1z6z7
2 − z2

2z6 − z4z6 + z1
2z3 − z2z3z7 + 4z1z6

2 + 2z3
2 − z2z6z7 + z1

2z7
2 + 2z1

2z6

− z3z7
2 − z1

3 − z2z5 − z6z7
2 + 3z3z6 − 2z1z2z7 + 2z6

2 + 4z1z3 − z1z7
2 − z2

2 − z4 + 3z1z6 + z1
2

+ z3 + z6 + z1,

�0000300 = z5
3 − 2z4z5z6 + z4

2z7 + z2z3z6
2 − 2z1z5z6

2 − z2z3z5z7 + z2z6
3 + 2z1z5

2z7 + z1z4z6z7 − 2z2z5z6z7

− z1z2z3z7
2 + z2z4z7

2 − z1z4z5 + z1z2z3z6 + z1
2z5z7

2 + z3z5z7
2 + z2z5

2 − z2z4z6 − z1z2z6z7
2 + z5z6z7

2

− 2z1
2z5z6 + z1

2z4z7 + z1z2z6
2 − 2z3z4z7 + z1z2z5z7 + z1z3z7

3 + z1
3z6z7 + z2z3

2 − z1z2z4 − z4z7
3

− 4z1z3z6z7 − z1
3z5 + z1

2z2z7
2 + z4z6z7 − z1z6

2z7 + 2z1z3z5 − 3z4z5 − z2z3z7
2 − z1

2z2z6 + 3z2z3z6

+ z1z5z7
2 − z1z5z6 − z2z6z7

2 + 3z2z6
2 − 3z1z4z7 − z1

3z2 + 3z1z2z3 + z3z7
3 − 2z1

2z6z7 + z6z7
3

− 2z3z6z7 − 2z6
2z7 − 2z2z4 − z1z2z7

2 − z1
2z5 − z1

3z7 + 2z3z5 + 2z1z2z6 + z5z6 + 2z4z7 + z1z7
3

+ 2z2z3 − z1z6z7 + 2z1z5 + 2z2z6 + 2z1
2z7 − 2z3z7 + 2z1z2 − 2z6z7 − 2z1z7,

�2000010 = z1
2z6 − z3z6 − z1z2z7 + z2

2 − z6
2 + z5z7 − z4 − z1z6 + z2z7 + z7

2 − 2z6 − 1,

�1100010 = z1z2z6 − z2
2z7 − z1z3z7 − z5z6 + z4z7 + z2z3 + z1

2z7 + z2z6 − z3z7 + z1z2 − z6z7 − 2z1z7 + z2,

�0200010 = z2
2z6 − z4z6 − z2z3z7 + z3

2 − z1z6
2 + z1z5z7 − z2z6z7 + z1

2z7
2 − z1z4 + z2z5 − 2z1

2z6 + 2z3z6 − z1z2z7

− z1
3 + z6

2 + z2
2 + 2z1z3 + z1z6 + z3 + z6 + z1,

�1010010 = z1z3z6 − z4z6 − z1z6
2 − z1

2z2z7 + z1z5z7 + z1
2z7

2 + z1z2
2 + z2z6z7 − z1

2z6 − z2z5 − z3z7
2 + z3z6

+ z1z2z7 − z2 − z1z
2,
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�0110010 = z2z3z6 − z1z5z6 − z3
2z7 − z1z2

2z7 + z1z4z7 + z1z2z3 + z2z5z7 + z1
2z6z7 − z3z6z7 + z1z2z7

2 − z1
2z5

+ z3z5 + z1
3z7 − z1z7

3 − 3z1z3z7 + z4z7 + z2z3 − z1z6z7 + z2z7
2 − z1

2z7 − z3z7,

�0020010 = z3
2z6 − z1z4z6 − z1

2z6
2 − z1z2z3z7 + z2z4z7 + z3z6

2 + z1
2z5z7 + z1

2z2
2 − z3z5z7 + z1z2z6z7 − z1

2z4

− z2
2z3 + z1

3z7
2 + 2z3z4 − z1z2z5 − 2z1z3z7

2 + z4z7
2 − 2z1

3z6 − z2
2z6 + 4z1z3z6 − z2z7

3 − z1
4 + z1z6

2

+ 3z1
2z3 − z1z5z7 − z1z2

2 + 2z2z6z7 − z1
2z7

2 − z3
2 + 2z1

2z6 − z2z5 + z1
3 − z2

2 − z4 + z2z7,

�1001010 = z1z4z6 − z2z5z6 − z1z2z3z7 + z3z5z7 + z1
2z4 + z1z2z6z7 + z2

2z3 + z1
3z7

2 + z6
3 − z3z4 − z5z6z7

− z1z3z7
2 − z1z2z5 − 2z1z6z7

2 − z4z6 − z1
2z2z7 + z1z6

2 + z2z3z7 + z1z5z7 − 2z1
2z7

2 − z2z6z7 + z3z7
2

− z1z4 + z3z6 + z6z7
2 + z6

2 + z1z2z7 + z1z7
2 + 2z1z6 + z1

2 − z3 − z6 − z1,

�0101010 = z2z4z6 − z3z5z6 − z2
2z3z7 + z1z2z5z7 + z2z3

2 + z1z3z6z7 − z4z6z7 + z1
2z2z7

2 − z2z3z7
2 − z1z3z5 − z1

2z7
3

− z1
2z2z6 + 2z2z3z6 − z2z6z7

2 − z1
2z3z7 − z1z5z6 + z2z6

2 + z6z7
3 − z2z5z7 + z3z6z7 + z1z2z7

2 + z1z2z3

− z6
2z7 − z1

2z5 + z2z4 − z5z7
2 + z3z5 + 2z5z6 + z1

3z7 + z1z7
3 − z1z3z7 − 2z1

2z2 − z2
2z7 + z4z7 + 2z2z3

+ 2z1z5 − 2z2z7
2 + 3z2z6 + z1z2 − z7

3 + z5 − z1z7 + 2z2 + z7,

�0011010 = z3z4z6 − z1z2z5z6 − z2z3
2z7 + z2

2z5z7 + z1z3z5z7 + z4z6
2 − z4z5z7 + z1

2z2z6z7 + z1z2
2z3 + z1z6

3 − z2
2z4

+ z1
2z3z7

2 − z2z3z6z7 − z1z5z6z7 + z4
2 − z1

2z2z5 − z3
2z7

2 − z1z4z7
2 − z1z2

2z6 − 2z1
2z6z7

2 − z1
2z3z6 + z3

2z6

− z2z6
2z7 + z2z5z7

2 + 2z1z4z6 − z1
3z2z7 + 2z1

2z6
2 + z1z2z3z7 + z1

2z5z7 − z3z5z7 + z2
2z7

2 + z1z7
4 + z3z4

− z1z2z5 + z1
3z6 + z1

2z2z7 + z4z6 − 2z2z3z7 − 2z2z6z7 − 2z3z7
2 − z7

4 + 2z3z6 + z6z7
2 − z5z7 − z1z7

2

+ z4 + z3 + z7
2,

�0002010 = z4
2z6 − z2z3z5z6 − z2z3z4z7 + z3

2z5z7 + z2
2z3

2 + z1z4z6
2 + z1z2

2z5z7 − z1z4z5z7 − z3
2z4 − z2z4z6z7

− z1z2
2z4 + 2z1z4

2 + z3z6
3 − z1z2z3z5 − z3z5z6z7 − z1z3

2z6 − z1z2z6
2z7 − z1

2z2
2z6 + 3z1

2z4z6 + z2
2z3z6

+ z5
2z7

2 − z1
2z2z3z7 − z3z4z6 + z2z3

2z7 − z5
2z6 + z1z2z4z7 − z1z3z6z7

2 + z1
3z6

2 − z4z6z7
2 + z2z3z7

3

+ 2z4z6
2 − z1

3z5z7 + 3z1z3z5z7 − 4z4z5z7 + z2z6z7
3 + z1

2z2z6z7 + 2z1
3z4 − z2z3z6z7 + z1z2

2z7
2 + z1z6

3

− 4z1z3z4 − z1
2z2z5 + z1

2z3z7
2 − 2z1z5z6z7 + 2z1

4z6 − z2z6
2z7 + 2z4

2 − 2z1z4z7
2 + 2z2z3z5 − z2z5z7

2

− z1
2z6z7

2 − z1z2
2z6 − z1z5

2 − 5z1
2z3z6 − z3z6z7

2 + z3
2z6 + 4z1z4z6 − z1z2z3z7 + z1

2z6
2 − z6

2z7
2

+ 2z2z5z6 + z3z6
2 − z1z2z7

3 − z2z4z7 + 2z5z7
3 − z1

2z5z7 + z6
3 − 2z1

3z7
2 + 3z3z5z7 + z2

2z3 − 2z1
2z4

+ 3z1z3z7
2 + z1z2z5 − 2z5z6z7 − 3z4z7

2 − 2z1z3z6 + 5z4z6 − z1z6z7
2 + 2z1z6

2 + z2z3z7 + z2z7
3 + z7

4

+ z1z5z7 − z3
2 − z1z2

2 + 2z1z4 − 2z2z6z7 + 2z2z5 + 2z1
2z7

2 − z1
2z6 + 2z1

3 + z1z2z7 − 3z6z7
2 + 3z6

2

− z5z7 − 4z1z3 + 3z4 + z1z6 − z2z7 − 2z1
2 − 2z7

2 + 3z6 + 1,

�1000110 = z1z5z6 − z2z6
2 − z1z4z7 − z1

2z6z7 + z3z6z7 + z1z2z7
2 + z2z4 + z6

2z7 + z1
2z5 − z5z7

2 − z3z5 − z5z6

+ z4z7 + z1z6z7 − z2z3 − z2z
2 − z2z6 − z1z2 − z3 + 2z6z7 + z1z7 + z7,
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�0100110 = z2z5z6 − z3z6
2 − z2z4z7 − z6

3 + z3z4 + z1z3z7
2 + z5z6z7 − z4z7

2 + z1z6z7
2 + z4z6 − z1z6

2 − z1
2z2z7

+ z2z3z7 − z1z5z7 − 2z1
2z7

2 − z3
2 + 2z1z4 + 2z1

2z6 + z2z5 + z3z7
2 − 2z3z6 + 2z1z2z7 + z6z7

2 − 2z6
2

+ 2z1
3 − 4z1z3 + 2z1z7

2 + z4 − 3z1z6 − z1
2 − z3 − z6 − 2z1,

�0010110 = z3z5z6 − z1z2z6
2 − z3z4z7 + z2

2z6z7 + z1z2z4 + z1
2z2z7

2 + z1z6
2z7 − z2z3z7

2 − z2
2z5 + z4z5 − z1z5z7

2

− z1
2z7

3 − z1
2z3z7 + z3

2z7 − z1z2
2z7 + z1z4z7 + z1

2z6z7 − z6z7
3 − z2z6

2 + z2z5z7 + z3z6z7 − z1z2z7
2

+ 2z6
2z7 + z1

2z5 + z5z7
2 + z1z7

3 − z3z5 − z1z2z6 + z2
2z7 + z1

3z7 + z1z3z7 − 2z5z6 − z4z7 − z2z3 − z1z5

− z1
2z7 − 2z2z6 + z3z7 + z6z7 − z5 − z2,

�0001110 = z4z5z6 − z4
2z7 − z2z3z6

2 + z3
2z6z7 + z2z3z4 − z3

2z5 + z1z2
2z6z7 − z1z4z6z7 − z1z2

2z5 + 2z1z4z5

− z2z4z7
2 + z3z6

2z7 − z1z3
2z7 − z1

2z2
2z7 + z1

2z5z6 − 2z3z5z6 − 2z1z2z6z7
2 + z5z6z7

2 − z5z6
2 + z2

2z3z7

+ 2z3z4z7 + z1
2z2z3 + 2z1z2z5z7 − z1z3z7

3 − z5
2z7 − z2z3

2 + z4z7
3 − z1

3z6z7 + 4z1z3z6z7 + z1
2z2z7

2

− 2z4z6z7 + 2z1
3z5 + z2z7

4 − 5z1z3z5 + z1z6
2z7 + 3z4z5 + z2z3z7

2 − z2z3z6 − z1z5z7
2 − z2z6z7

2 + z1
4z7

+ z1
2z7

3 − 2z1z5z6 − z1
2z3z7 − z3

2z7 + 2z1z4z7 − z3z7
3 + z2z5z7 − 2z1z2z3 + z3z6z7 + z2z4 − z1z2z7

2

− z1
2z5 − 2z1

3z7 − 3z3z5 + z1z2z6 − z5z7
2 + z2

2z7 − z5z6 − z4z7 − 3z1z7
3 + 4z1z6z7 + z1

2z2 − z2z3

− 3z1z5 − z2z7
2 + z3z7 + z6z7 − z1z2 + 3z1z7,

�0000210 = z5
2z6 − z4z6

2 − z4z5z7 + z2z3z6z7 − z1z6
3 + z4

2 + z2z6
2z7 − z2z3z5 + z1z5

2 + z1z4z6 − z2z5z7
2 − z2z5z6

− z1z2z3z7 + z2z4z7 + z3z6z7
2 − z1z2z7

3 + z6
2z7

2 − z3z6
2 + z3z5z7 − z6

3 + z1
2z4 + z1z2z6z7 + z5z6z7

− z3z4 + z1
3z6 − 2z1z3z6 − z4z6 + z1

2z2z7 − 2z1z6
2 + 2z1z5z7 + z1

2z7
2 + z1

2z3 − z3
2 − 3z1z4 + z2z6z7

+ z6z7
2 − 2z1

2z6 − 3z3z6 − 3z6
2 − z1

3 − 2z1z6 + z1
2 − z3 − 2z6 − z1,

�1000020 = z1z6
2 − z1z5z7 − z2z6z7 − z1

2z7
2 + z3z7

2 + z2z5 + z1
2z6 − z3z6 + z1z2z7 + z1z7

2 − z2z7,

�0100020 = z2z6
2 − z2z5z7 − z3z6z7 − z6

2z7 + z3z5 + z1z3z7 + 2z5z6 + z1z7
3 − z4z7 − 2z1z6z7 − z1

2z2 + z2z3

− z2z7
2 + 2z1z5 − z1

2z7 + 2z2z6 + z3z7 + z1z2 + z5 + z1z7 + z2,

�0010020 = z3z6
2 − z3z5z7 − z1z2z6z7 + z2

2z7
2 + z1z2z5 − z4z7

2 − z2
2z6 + 2z4z6 + z1

2z2z7 − z1
2z3 + z1z6

2 − z2z3z7

− z1z2
2 − z1z5z7 − z1

2z7
2 + z3

2 + 2z1z4 + 2z1
2z6 − z1z2z7 − z2

2 + z1
3 + z4,

�0001020 = z4z6
2 − z4z5z7 − z2z3z6z7 + z3

2z7
2 + z2z3z5 + z1z2

2z7
2 − z3

2z6 − 2z1z4z7
2 − z1z2

2z6 + 3z1z4z6 − z2z4z7

− z1z2z7
3 + z1

2z6
2 + z5z7

3 − z1z3
2 − z1

2z5z7 + z3z5z7 − z1
2z2

2 + 2z1
2z4 + z2

2z3 − 2z5z6z7 − 2z1
3z7

2

+ 3z1z3z7
2 + 3z1

3z6 + z5
2 − z4z7

2 − 4z1z3z6 + 3z4z6 + z1
2z2z7 + z2z7

3 + 2z1
2z7

2 + 2z1
4 − z1z2

2 − 4z1
2z3

+ 3z1z4 − z2z6z7 + z3z7
2 + z7

4 + z2z5 − 3z6z7
2 − z1

2z6 − 2z3z6 + z6
2 − z1

3 − 2z1z3 + z2
2 − z1z7

2 − z1z6

− 2z2 − z2z7 − z2 + 2z6 + 2z1,
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�0000120 = z5z6
2 − z5

2z7 − z4z6z7 + z2z3z7
2 + z4z5 − z1z6

2z7 − z2z3z6 − z1z5z7
2 + z2z6z7

2 + 3z1z5z6 − z2z6
2

− z2z5z7 − z1z2z3 + z6z7
3 + z3z6z7 − z6

2z7 + z2z4 + z1
2z5 − z1z2z7

2 − z5z7
2 + 2z5z6 − z1z7

3 + z4z7

+ z1
2z2 − 2z2z3 + 2z1z6z7 + z2z7

2 + z1z5 − 2z2z6 + 2z1
2z7 − z3z7 − z1z2 − z6z7 − z1z7 − z2,

�0000030 = z6
3 − 2z5z6z7 + z4z7

2 + z5
2 − z1z6z7

2 − z4z6 + z2z7
3 + z1z6

2 + z1z5z7 − 2z2z6z7 + z1
2z7

2 − z3z7
2 − z1z4

+ z2z5 − z1
2z6 + 2z3z6 − z6z7

2 − z1z2z7 + 2z6
2 − z1z7

2 − z1
3 + 2z1z3 − z4 + 3z1z6 − z2z7 + z1

2 + z3

+ z6 + z1,

�2000001 = z1
2z7 − z3z7 − z1z2 − z6z7 + z5 − z1z7 + z2,

�1100001 = z1z2z7 − z2
2 − z1z3 − z5z7 + z4 − z1z7

2 + z1z6 + z1
2 − z3,

�0200001 = z2
2z7 − z4z7 − z2z3 − z1z6z7 + z1z5 − z2z6 + z3z7 − z1z2 + z6z7 + z1z7 − z2,

�1010001 = z1z3z7 − z4z7 − z1
2z2 − z1z6z7 + z7

3 + z1z5 + z2z6 − z6z7 + z1z2 + z5 + z2 − z7,

�0110001 = z2z3z7 − z1z5z7 − z3
2 − z1

2z7
2 − z1z2

2 + z3z7
2 + z1z4 + z2z5 + 2z1

2z6 + z6z7
2 − 2z3z6 + z1z2z7 − z6

2

+ 2z1
3 − 4z1z3 + z4 − 2z1z6 − z1

2 + z2z7 − 2z3 − 2z6 − 2z1,

�0020001 = z3
2z7 − z1z4z7 − z1z2z3 − z1

2z6z7 + z3z6z7 + z2z4 + z1
2z5 − z3z5 + z5z7

2 + z1z2z6 − z5z6 + z1z7
3

+ z1
2z2 − z2z3 − z1z6z7 − z1z5 − z2z7

2 − z1
2z7 + z2z6 + z3z7 − z5,

�1001001 = z1z4z7 − z2z5z7 − z1z2z3 + z6
2z7 + z3z5 − z5z7

2 + z1z2z6 + z1
3z7 − z1z3z7 − z1z6z7 − z2z7

2 + z1z5

− 2z1
2z7 + z3z7 + z1z2 − z7

3 + 2z6z7 + z1z7 + z7,

�0101001 = z2z4z7 − z3z5z7 − z2
2z3 + z1z2z5 + z1z3z6 + z1z6z7

2 − z2z7
3 − z4z6 + z1

2z2z7 − z1z6
2 − z2z3z7

− z1z5z7 − z1
2z7

2 + z2z6z7 − z1
2z6 − z2z5 + z3z6 + z1z2z7 − z2

2 + z1z7
2,

�0011001 = z3z4z7 − z1z2z5z7 − z2z3
2 + z1z3z5 + z4z6z7 + z1z6

2z7 + z2
2z5 − z4z5 + z1

2z2z6 − z2z3z6 + z1
2z3z7

− z3
2z7 − z1z5z6 − z1z4z7 − z1

2z6z7 − z2z6
2 − z6z7

3 + z2z5z7 − z3z6z7 + z6
2z7 − z1z2z7

2 + z5z7
2 − z5z6

− z1
3z7 + z1z3z7 + z1z7

3 + z2
2z7 + z1

2z2 + z1z6z7 − z2z3 − z1z5 + z1
2z7 − 2z2z6 + z6z7 − z1z2 − z5

− z1z7,

�0002001 = z4
2z7 − z2z3z5z7 − z2z3z4 + z1z4z6z7 + z3

2z5 + z1z2
2z5 − z1z4z5 + z3z6

2z7 − z2z4z6 + z1
2z5z7

2

− 2z3z5z7
2 − z1

2z5z6 + z3z5z6 − z1z2z6
2 − 2z4z7

3 − z1z6z7
3 − z1z3z6z7 + 3z4z6z7 − 2z1

3z5 + 5z1z3z5

− 3z4z5 + 2z1z6
2z7 + z2z3z7

2 − z1z5z7
2 − z2z3z6 + z2z6z7

2 − z2z6
2 + 2z1z4z7 + 2z1

2z6z7 + z7
5 − z3z6z7

− 3z6z7
3 + 2z6

2z7 + z5z7
2 − 2z2z4 + 3z3z5 − 2z1z2z6 − 2z1z7

3 − z5z6 + 2z4z7 + 3z1z6z7 + 2z2z7
2

− z2z3 + z1z5 − 2z7
3 − 3z2z6 + 3z6z7 − z5 + 2z1z7 − 2z2 + z7,

�1000101 = z1z5z7 − z2z6z7 − z1z4 − z2z6 + z3z6 + z2 + z1z2z7 − z5z7 + z1z
2 − z2z7 − z2 − z2 + z3 + 2z6 + 1,
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�0100101 = z2z5z7 − z3z6z7 − z6
2z7 − z2z4 + z5z7

2 + z1z3z7 + z1z7
3 − z4z7 − z1z6z7 − z1z5 − 2z1

2z7 + z3z7

+ z1z2 − z5 + z7,

�0010101 = z3z5z7 − z1z2z6z7 − z3z4 + z4z7
2 + z1z6z7

2 + z2
2z6 − z4z6 + z2z7

3 + z1
2z2z7 − z7

4 − z2z3z7 − z1z5z7

− 2z2z6z7 − z1z4 − z1
2z6 + z2z5 − z3z7

2 + z3z6 − 2z1z2z7 − z1
3 + z2

2 + z6z7
2 + z6

2 − z5z7 + 2z1z3

+ 2z1z6 + z1
2 − 2z2z7 + z7

2 + z3 + z6 + z1,

�0001101 = z4z5z7 − z2z3z6z7 − z4
2 + z1z4z7

2 + z3
2z6 + z1z2

2z6 − 2z1z4z6 + z1
2z6z7

2 − z2z4z7 − z1
2z6

2 + z3z6
2

− z3z5z7 − 2z1z2z6z7 − z1
2z4 + z3z4 + z1z2z5 − z1z7

4 − z1z3z7
2 − 2z1

3z6 + 4z1z3z6 − z4z6 + z1z6z7
2

+ z2z7
3 + z2z3z7 + z1z6

2 − z1z5z7 + z7
4 − z2z6z7 + 2z1

2z7
2 + 2z1z4 − z3z7

2 − 2z6z7
2 + z1

2z6 + 2z3z6

− z1z2z7 + z6
2 − 2z1z7

2 + 3z1z6 − z1
2 + z3 − 2z7

2 + 2z6 + 2z1 + 1,

�0000201 = z5
2z7 − z4z6z7 − z4z5 − z1z6

2z7 + z2z3z6 + z1z5z7
2 − z1z5z6 + z2z6

2 − z2z5z7 + z3z7
3 + z6z7

3 − z3z6z7

− z6
2z7 − z1

2z5 − z1z2z7
2 + z3z5 + z1z2z6 + z5z6 − z1z3z7 + z2z3 − z1z6z7 + z1z5 + 2z2z6 + z1

2z7

− 2z3z7 + z7
3 + z1z2 − 3z6z7 + z5 − z1z7 + z2 − 2z7,

�1000011 = z1z6z7 − z2z7
2 − z7

3 − z1z5 − z1
2z7 + z3z7 + z1z2 + 2z6z7 − z5 + 2z1z7 + z7,

�0100011 = z2z6z7 − z3z7
2 − z2z5 − z6z7

2 + z1z3 + z5z7 − z4 + z1z7
2 − z1z6 − z1

2 + z3,

�0010011 = z3z6z7 − z1z2z7
2 − z3z5 + z2

2z7 + z1z6z7 + z1
2z2 − z2z3 + z2z7

2 − z1z5 − z2z6 − z3z7 − z1z2 − z1z7

− z2,

�0001011 = z4z6z7 − z2z3z7
2 − z4z5 + z3

2z7 + z1
2z7

3 + z1z2
2z7 − z1z4z7 − z3z7

3 − z1
2z6z7 + 2z3z6z7 − z2z4 − z1z2z7

2

− z1z2z6 − 2z1
3z7 − 2z1z7

3 + 3z1z3z7 + 3z1z6z7 + z2z7
2 − z2z6 + 3z1

2z7 + z3z7 − z1z2 + 2z1z7 − z2,

�0000111 = z5z6z7 − z4z7
2 − z5

2 − z1z6z7
2 + z2z3z7 + z2z6z7 + z7

4 + z3z7
2 − z2z5 − z6z7

2 − z1z2z7 + z5z7 − z1z7
2

− z1z3 + z4 + z1z6 + z2z7 − z7
2 + z1

2 − z3,

�0000021 = z6
2z7 − z5z7

2 − z5z6 + z4z7 − z1z7
3 + z1z6z7 + z2z7

2 − z2z6 + z1
2z7 − z1z2 − z2,

�1000002 = z1z7
2 − z1z6 − z2z7 − z1

2 − z7
2 + z3 + z6 + z1 + 1,

�0100002 = z2z7
2 − z2z6 − z3z7 − z6z7 − z2,

�0010002 = z3z7
2 − z3z6 − z1z2z7 + z2

2 − z4 + z7
2 − 1,

�0001002 = z4z7
2 − z4z6 − z2z3z7 + z3

2 + z1
2z7

2 − z3z7
2 + z1z2

2 − 2z1z4 − z1
2z6 + z3z6 − z1z2z7 − z1z7

2 − 2z1
3

+ 4z1z3 − 2z4 + z1z6 + z1
2 + 2z3 + 2z1,

�0000102 = z5z
2 − z5z6 − z4z7 + z2z3 − z1z6z7 − z1z5 + z3 + z2z6 − z6z7 − z1z7 + z2 − z7,
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�0000012 = z6z7
2 − z6

2 − z5z7 + z4 − z1z7
2 + z2z7 + z1

2 − z3 − z6 − z1,

�0000003 = z7
3 − 2z6z7 + z5 − z1z7 + z2 − z7.

PPENDIX B: SOME CUBIC CLEBSCH-GORDAN SERIES

z1
3 = �3000000 + 2�1010000 + �0001000 + 3�1000010 + 3�2000000 + 2�0100001 + 4�0010000 + �0000002

+ 3�0000010 + 5�1000000 + �0000000,

z2
3 = �0300000 + 2�0101000 + �0010100 + 3�1100010 + 2�0000110 + 2�1010001 + 3�0200001 + 4�0001001

+ 4�2100000 + 4�1000011 + 5�0100002 + �0000003 + 6�0110000 + 8�1000100 + 6�2000001 + 9�0100010

+ 12�0010001 + 12�1100000 + 8�0000011 + 11�0000100 + 12�1000001 + 10�0100000 + 4�0000001,

z3
3 = �0030000 + 2�1011000 + �0002000 + �2100100 + 3�0110100 + 2�1200010 + 3�2010010 + 3�0020010

+ 2�1000200 + 6�1001010 + 3�2000020 + �0300001 + 4�0100110 + 6�0010020 + 2�3100001 + 4�3010000

+ 10�1110001 + 9�2000101 + 8�0101001 + �0000030 + 6�2200000 + 12�0010101 + 9�0210000 + 18�1100011

+ 8�1020000 + 6�0200002 + 4�3000002 + 15�2001000 + 18�0011000 + 14�1010002 + 30�1100100

+ 10�0000111 + 11�0000200 + 14�0001002 + 12�3000010 + 42�1010010 + 42�2100001 + 13�1000012

+ 5�4000000 + 18�0200010 + 36�0001010 + 56�0110001 + 27�1000020 + 34�1200000 + 66�1000101

+ 7�0100003 + 29�2000002 + 33�2010000 + 29�0020000 + 52�0100011 + �0000004 + 45�0010002

+ 72�1001000 + 63�2000010 + 61�0100100 + 90�0010010 + 21�0000012 + 112�1100001 + 21�3000000

+ 29�0000020 + 75�0000101 + 33�0200000 + 74�1010000 + 48�1000002 + 72�0001000 + 88�1000010

+ 66�0100001 + 30�2000000 + 50�0010000 + 17�0000002 + 30�0000010 + 16�1000000 + 2�0000000,

z5
3 = �0000300 + 2�0001110 + �0002001 + �0110020 + 3�1000120 + 3�0110101 + 2�0020011 + 2�0111000

+ 2�0100030 + 3�1000201 + 4�0020100 + 2�1200011 + 6�1001011 + 10�0100111 + 4�1110002 + �0300002

+ 3�2000021 + 8�0101002 + 9�0010021 + 4�1200100 + 6�1001100 + 12�1110010 + 3�0300010 + 6�2000102

+ 12�0010102 + 8�0100200 + 6�1020001 + 18�0101010 + 6�2200001 + 18�1100012 + 4�0000031

+ 6�0200003 + 14�0000112 + �3000003 + 9�2000110 + 27�0010110 + 14�2001001 + 30�1100020

+ 18�0210001 + 30�0011001 + 24�0000120 + 60�1100101 + 10�1010003 + 8�3000011 + 8�1300000

+ 30�0000201 + 9�2110000 + 18�0120000 + 43�1101000 + 42�0200011 + 14�0001003 + 62�1010011

+ 11�3000100 + 42�2100002 + 13�1000013 + 42�0200100 + 7�0100004 + 80�0001011 + 56�1000021

+ 58�1010100 + 65�0001100 + 78�0110002 + 72�2100010 + 134�0110010 + 96�1000102 + 3�4000001

+ 57�2010001 + 138�1000110 + 84�0100012 + 30�2000003 + 105�1200001 + 101�0100020 + �0000005

+ 72�0020001 + 198�1001001 + 28�0300000 + 204�0100101 + 28�3100000 + 134�1110000 + 58�0010003

+ 138�2000011 + 30�0000013 + 239�0010011 + 84�0000021 + 139�0101000 + 216�1100002

+ 132�2000100 + 58�3000001 + 204�0010100 + 324�1100010 + 150�0200001 + 156�0000102

+ 270�1010001 + 198�0000110 + 140�2100000 + 304�0001001 + 77�1000003 + 216�0110000

+ 300�1000011 + 174�0100002 + 270�1000100 + 34�0000003 + 246�0100010 + 144�2000001
+ 246�0010001 + 162�1100000 + 132�0000011 + 128�0000100 + 102�1000001 + 47�0100000
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+ 17�0000001,

z6
3 = �0000030 + 2�0000111 + �0001002 + �0000200 + 3�1000012 + 3�0001010 + 2�0110001 + 2�0100003

+ �0020000 + 3�1000020 + 6�1000101 + 10�0100011 + 3�2000002 + �0000004 + 9�0010002 + �1200000

+ 3�1001000 + 8�0100100 + 6�2000010 + 12�0010010 + 9�0000012 + 18�1100001 + 11�0000020

+ 6�0200000 + 21�0000101 + 18�1000002 + �3000000 + 10�1010000 + 17�0001000 + 25�1000010

+ 25�0100001 + 10�0000002 + 9�2000000 + 16�0010000 + 18�0000010 + 8�1000000 + 2�0000000,

z7
3 = �0000003 + 2�0000011 + �0000100 + 3�1000001 + 2�0100000 + 4�0000001.
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ppenheimer approximation
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We study the spectral properties of polyatomic molecules near a scattering level.
We prove that in the Born-Oppenheimer approximation this study can be reduced to
the one of a family of finite matrices of semiclassical pseudodifferential operators.
More precisely, we show that any resonance of the molecule which is close enough
to the real axis can be obtained from the discrete spectrum of one of these
matrixes. © 2005 American Institute of Physics. �DOI: 10.1063/1.2037547�

. INTRODUCTION

Consider a quantum system of �n+ p+1� particles, among which �n+1� �the nuclei� are as-
umed to be heavy �with a mass of order M �1�, and p other ones �the electrons� are light �with
mass of order 1�. Removing the center of mass motion of this system, and choosing properly the

oordinates, one can describe it with a Hamiltonian of the type

P = − h2�x − �y + V�x,y� on L2�R3�n+p�� ,

here h is a small parameter proportional to M−1/2, and V is the sum of all the interactions
etween the particles. Moreover, we write x= �x1 ,… ,xn��R3n for the Jacobi coordinates of �n
1�-nuclei in the center of mass frame; y= �y1 ,… ,yp��R3p for the postion of p electrons.

Then, one defines the so-called electronic levels to be the discrete eigenvalues �1�x���2�x�
¯ of the operator

Q�x� = − �y + V�x,y� on L2�Ry
3p� .

orn and Oppenheimer in Ref. 2 realize that the study of P can be approximately reduced, when
is small, to the one of the family of operators,

− h2�x + � j�x� on L2�Rx
3n�, j = 1,2,… .

n particular, when, for example, �1�x� admits a nondegenerate point well at some energy level �0,
he eigenvalues of P near �0 admits a complete asymptotic expansion in half-powers of h.

Such a result was proved both for smooth interactions in Refs. 6, 14, 13, 18, 19, and 3 and for
oulomb potentials �Refs. 12, 7, and 17�. As we shall see, the main problem comes from the fact

hat, when one has singular �e.g., Coulomb� interactions, the eigenvalues and the eigenfunctions of
�x� are only C2 with respect to the x variables �Combes-Seiler4�.

Nevertheless, one can overcome this difficulty by introducing some x-dependent changes in
he y variables that will regularize the potential V, the eigenvalues and the eigenfunctions of Q�x�.

�Electronic mail: bmessirdi@univ-oran.dz
�Present address: Université Libre de Bruxelles, Boulevard du Triomphe, Campus Plaine CP 214, B1050 Brussels, Bel-

gium. Electronic mail: asenouss@ulb.ac.be
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ince these changes can only be done locally in x, one then must glue them together, at least in a
ompact region, and to construct a kind of semiclassical pseudodifferential calculus adapted to
hese changes.

This will be enough to construct the complete expansion of the discrete spectrum of P, as in
lein-Martinez-Seiler-Wong.12

However, this technique is not sufficient when one wants to study the continuous spectrum of
P �see Messirdi-Senoussaoui20�, or a fortiori its resonances, the reason for this being that the
lassically allowed region �with respect to x� becomes unbounded.

We assume that any electron can be ionized near the energy level �0, and that the eigenvalues
f � j�x� of the operator Q�x� are not degenerate at infinity �see �2.9� and �2.13� below�. This last
ssumption is essential to obtain a good behavior of the spectral projectors of Q�x� near infinity.
his is because our techniques stand strongly on pseudodifferential calculus, which requires a lot
f regularity.

One must first make a change of variables whose purpose is to localize in a compact region
he x-dependent singularities with respect to y in the interactions. After that the previous ideas can
e adapted to any complex distortion of P �the resonances of P are accessible from the analytic
istortions introduced by Hunziker10 and developed by Messirdi17,19�, and the study of P can be
educed to the one of a matrix of smooth h-pseudodifferential operators on L2�Rx

3n�.
In this paper, we show that one can reduce the problem to a finite matrix of regular

-pseudodifferential operators for polyatomic molecules and a class of potentials which includes
he physically interesting case of Coulombic interactions.

More precisely, we construct a change of type

y = �y1,…,yp� � y� = �Gx
0�y1�,…,Gx

0�yp�� ,

here x is outside the collision set of the molecule, Gx
0�yj�=yj / �x� when �yj�� �x� and Gx

0�yj�
Nyj

�N is fixed large enough� when �yj��2N�x�. In this way the domain in y will not be changed,
he singularities become localized in the ball �y���1 and the distorted operator P� of P is now
egular. Finally, by the Feshbach method we get the reduction result: z is a resonance of P if and
nly if there exists � complex small enough, Im ��0, such that 0��disca�,−+

	 �z�.
a�,−+

	 �z� is a finite matrix of h-pseudodifferential operators analytic on �, and depending on a
unction 	 which regularizes P� in the elliptic region.

I. ANALYTIC DISTORTION, RESONANCES, h-PSEUDODIFFERENTIAL OPERATORS,
YPOTHESIS AND RESULT

. Analytic distortion

We study the operator

P = − h2�x − �y + V�x,y� �2.1�

n L2�Rx
3n
Ry

3p�, when h tends to 0+, with V�x ,y�=V�x1 ,… ,xn ,y1 ,… ,yp� of the form

V�x,y� = �
j,k=1

j�k

n
� jk

�xj − xk�
+ �

1�l�p

1�k�n

� �lk
+

�yl + xk�
+

�lk
−

�yl − xk�
� + �

l,q=1

l�q

p
�lq

�yl − yq�
= W�x� + V1�x,y� ,

�2.2�

here � jk, �lk
± , and �lq are real constants, and � jk�0, ∀ j ,k� 	1,… ,n
. W�x� and V1�x ,y� denote,

espectively, the interaction potentials between the nuclei of the molecule and between the nuclei
lectrons and electrons electrons. The constants �lk

± indicate the charges of the nuclei �in particular,
f �lk

+ =�lk
− , the molecule is symmetric�.

It is well known that P with domain in H2�Rx
3n
Ry

3p� is self-adjoint in L2�Rx
3n
Ry

3p�, and one

an define the resonances of P by analytic distortion introduced by Hunziker in Ref. 10 and
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eveloped afterwards in Refs. 17 and 18. More precisely, let �C��R3 ,R3� be a C�-vector field
atisfying =0 near the collision set C of all the nuclei of the molecule:

C = 	x = �x1,…,xn� � R3n; ∃ i � j,xi = xj
 �2.3�

nd  is the identity far from C, in the following sense:

�xi� = 0 if x = �x1,…xi,…,xn� � v�C�, i � 	1,…,n
 ,

�xi� = xi if x = �x1,…xi,…,xn� � v�C�, �xi� → + �, i � 	1,…,n
 ,

here v�C� denote an adequate small neighborhood of C in the �t ,x�, the variable t take different
ositions from 1 to n. For � real small enough, the analytic distortion U� associated to  is
efined on C0

��R3n
R3p� by

U���x,y� = ��x1 + ��x1�,…,xn + ��xn�,y1 + ��y1�,…,yp + ��yp���J��x,y��1/2,

�2.4�

here J��x ,y�=� j=1
n det�1+�D�xj���l=1

p det�1+�D�yl�� is the Jacobian of the transformation

F�:�x,y� → �x1 + ��x1�,…,xn + ��xn�,y1 + ��y1�,…,yp + ��yp�� . �2.5�

he distorted operator P�=U�PU�
−1 can be extended to small enough complex values of � as an

nalytic family of type A in the sense of Kato.11

. Resonances

We say that a complex number � is a resonance of the operator P if Re �� Inf �ess�P� and
here exists � small enough, Im ��0, such that ���disc�P�� �see Ref. 15�. We denote

��P� = �
Im ��0, � small enough

�disc�P��

he set of the resonances of P.
In particular, ��P� �except limit point at a threshold� is a discrete set, and ��P�� 	z

C ; Im z�0
, we consider here just the resonances of P which are near the real axis.

. h-pseudodifferential operators „see, e.g., Refs. 21, 22, and 16…

A family of unbounded operators A��h� on L2�R3n� ,��C, with fixed domain Hk0�R3n� ,k0

0, is said to be h-pseudodifferential if there exists a sequence �aj�x ,��� j�0 of C� functions on
*R3n satisfying

∀�,� � N3n, ∃ C�� � 0, ��x
���

�aj�x,��� � C���1 + ���2�k0−��� �2.6�

niformly on T*R3n, and such that for any N large enough, A�h� can be written

A�h� = �
j=0

N

hj Op�aj� + hNRN�h� ,

here RN�h��L�L2�R3n��, for h small enough and Op denotes the usual h-quantization of sym-
ols,

Op�aj���x� = �2�h�−3n�
R6n

ei�x−y��/haj�x,����y�dy d� �2.7�

or ��C0
��R3n�. The right-hand side being defined as an oscillatory integral �see, e.g., Ref. 9�.

� j

j=0h aj�x ,�� is called the symbol of A�h� ,a0�x ,�� is its principal symbol.

                                                                                                            



s
z

D

w
�

a

D
a
�

�
w

w

a

T
s
Q

w
p

�
t

103506-4 Messirdi, Senoussaoui, and Djellouli J. Math. Phys. 46, 103506 �2005�

                        
Finally the family A��h� ,� complex small enough, depends analytically on �, if for any h
mall enough it forms an analytic family of type A, when � varies in a complex neighborhood of
ero independent of h.

. Hypothesis and result

For x�R3n \C, we denote

Q�x� = − �y + V�x,y� �2.8�

hich acts on L2�Ry
3p� with domain H2�R3p� and we fix a scattering energy level �0

�ess�P� \ 	thresholds of P
 such that

����∀x � R3n \ C,��Q�x�� � � − �,�0� = �disc�Q�x�� � � − �,�0� �2.9�

nd such that there exists M �0 satisfying

��∀x � R3n \ C, #�disc�Q�x�� � M and #��Q�x�� � � − �,�0� � M . �2.10�

enoting �1�x���2�x�� ¯ ��M�x� the first M eigenvalues of Q�x�, we assume that there exists
gap between them and the rest of the spectrum ��Q�x�� of Q�x�; then there exists a constant
�0, such that for any ����Q�x�� \ 	�1�x� ,… ,�M�x�
, one has

Inf
x�R3n\C

Inf
1�j�M

�� − � j�x�� � � , �2.11�

2.11� assures that the spectral projector ��x� of Q�x� associated to 	�1�x� ,… ,�M�x�
 is C2 regular
ith respect to x �see Ref. 4�.

We also assume the existence of C�0 such that

Sup
x�R3n\C

�̃M�x� � C , �2.12�

here

�̃s�x� = �s�x� − �
j,k=1

j�k

n
� jk

�xj − xk�
, 1 � s � M ,

nd each of the �s’s are nondegenerate at infinity,

Inf
x�R3n\C

�x��c

Inf
j�k

�� j�x� − �k�x�� �
1

C
. �2.13�

he condition �2.12� is automatically satisfied if, e.g., �lk
± �0, but �2.13� excludes the case of

ymmetric molecules, for which �lk
+ =�lk

− , l� 	1,… , p
 , k� 	1,… ,n
, but where the projectors of
�x� depend smoothly on x near infinity �see, e.g., Ref. 5 for p=1�.

Now we fix N�0 large enough so that �xi�=0, on

x = �x1,…,xi,…,xn� � R3n;d�x,C� �
2

N
�, i � 	1,…,n
 ,

here d denotes the Euclidian distance in R3n, and we first regularize P� near C by cancelling the
otential V�x ,y� in this region with a regular function �.

We note VN= 	x�R3n ;d�x ,C��1/2N
, and we remark that VN�S3n−1�� and
R3n \VN��S3n−1��, where S3n−1 is the unit sphere of R3n. Let the function ��C��R3n ,R� such

hat
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� = 1 on �2/N, + �� · �1, + �� · �VN � S3n−1� ,

�2.14�
� = 0 on R3n \ �3/2N, + �� · �1, + �� · �VN � S3n−1� ,

he conic form appearing in �2.14� results from the expression x=d�x ,C���x� /d�x ,C���x / �x�� and the
efinition of the set VN. Here we denote by

AB = 	z = xy ;�x,y� � A 
 B
 .

ixing �0��0, we set

Q�
� �x� = − U��yU�

−1 + ��x�V��x,y� + �1 − ��x���0,

V��x,y� = U�V�x,y�U�
−1 = V�x1 + ��x1�,…,xn + ��xn�,y1 + ��y1�,…,yp + ��yp�� .

e also denote

P�
� �x� = − h2U��xU�

−1 + Q�
� �x�

ith domain H2�R3n
R3p�.
Let us remark that under rather general assumptions, one can show in a similar way as in Ref.

that near �0, ��P�� and ��P�
� � coincide up to exponentially small error terms �see Ref. 17�. This

xplains why we will study P�
� instead of P�.

Our main result is the following.
Theorem 2.1: Under assumptions �2.10� to �2.13�, and for any z complex close enough to �0,

here exists a family of M 
M-matrices E�,−+
� �z�, of h-pseudodifferential operators on R3n, de-

ending analytically on � complex small enough, such that

z � ��P�� ⇔ ∃ � � C,� small enough,Im � � 0,0 � �disc�E�,−+
� �z�� .

he principal symbol of E�,−+
� �z� is of the form

z − ���1 + �D�−1��2IM + M�
� �x�� ,

here IM is the identity of CM and M�
� �x� is a matrix of C�-functions on R3n, with eigenvalues

1�x1+��x1� ,… ,xn+��xn�� ,… ,�M�x1+��x1� ,… ,xn+��xn�� on ��x�=1, and satisfying
e M�

� �x���0+� on ��x��1 for some positive constant �. Finally E�,−+
� �z� depends analytically

n z near �0 and is O�3�-invariant if the function � is also chosen O�3�-invariant, where O�3� is
he orthogonal group of R3.

II. THE DISTORTED FESHBACH METHOD

The Feshbach method is a way to construct an effective Hamiltonian of P which is a nice
-pseudodifferential operator on R3n. To do this we will use a so-called Grushin problem associ-
ted to the distorted operator P� of P and a convenient choice of sections of Ran ��x�.

For x�R3n \C, we denote

Q��x� = U�Q�x + ��x��U�
−1, �3.1�

ere U� is considered as acting on L2�Ry
3p�, and we can easily see that Q��x� extends for small

nough � to an analytic family of type A �see Ref. 19�, and that the singularities of V�x ,y� are not
hanged if  is taken as an odd function.
Denoting also
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Q̃��x� = Q��x� − �
j,k=1

j�k

n
� jk

�xj + ��xj� − xk − ��xk��
,

�3.2�

Q̃�x� = Q̃0�x� = Q�x� − �
j,k=1

j�k

n
� jk

�xj − xk�
.

e first have the following.
Lemma 3.1: ∃C1�0 such that for all x�R3n \C, one has

�
j,k=1

j�k

n
� jk

�xj − xk�
� �1�x� + C1.

Proof: We must prove that �Q̃�x�+��−1�L�L2�R3p�� for ��R+ large enough independently of
.

For ∀x�R3n \C, we have

�Q̃�x� + ���− �y + ��−1 = 1 + Ṽ�x,y��− �y + ��−1, �3.3�

here

Ṽ�x,y� = V�x,y� − �
j,k=1

j�k

n
� jk

�xj − xk�

nd

Ṽ�x,y��− �y + ��−1 = �
1�l�p

1�k�n

� �lk
+

�yl + xk�
+

�lk
−

�yl − xk�
��− �y + ��−1 + �

l,q=1

l�q

p
�lq

�yl − yq�
�− �y + ��−1.

�3.4�

ach term of �3.4� is unitarily equivalent to the operator �1/ �y1���−�y +��−1. But 1 / �y1� is

y1
-compact on L2�R3� and by taking the Fourier transform of �1/ �y1���−�y +��−1 this operator can

e written �1/ �y1���−�y1
+1�−1�−�y1

+1��−�y +��−1 or K�1
���1

2+1� / ��2+��� where the kernel K�1
of

he operator �1/ �y1���−�y1
+��−1 acts in the �1-variable only and is compact on L2�R3�, and ���1

2

1� / ��2+��� tends to 0 as � tends to +�. Consequently �1/ �y1���−�y +��−1 tends to 0 in norm as

tends to +�, and this proves in view of �3.4� that Ṽ�x ,y��−�y +��−1 tend to 0 in norm as � tends
o +� uniformly with respect to x.

Therefore by �3.3�, �Q̃�x�+�� becomes invertible for any x�R3n \C if � is chosen sufficiently
arge enough. �

Now, let ��x� be a continuous family of simple loops of C, enclosing �̃1�x� ,… , �̃M�x� and

aving the rest of ��Q̃�x�� in its exterior. By the gap condition �2.11�, we may also assume that

Min
x�R3n\C

dist���x�,��Q̃�x��� �
�

2
� 0, �3.5�

ist is the distance on C. Moreover, using Lemma 3.1 and condition �2.12�, ��x� can be taken in

fixed compact set of C.
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We deduce also from the proof of Lemma 3.1 and the assumption �3.5� the following result.
Lemma 3.2: For any k� 	1,… ,n
 , l ,q� 	1,… , p
 , l�q ,��N3p , ����2, the operators

1

�yl ± xk�
�Q̃�x� − z�−1,

1

�yl − yq�
�Q̃�x� − z�−1, ���Q̃�x� − z�−1

re uniformly bounded on L2�R3p� as x�R3n \C and z���x�.
We now study the continuity of Q̃��x� with respect to �.
Lemma 3.3: If � is a small enough complex number, then for any x�R3n \C and z���x�, the

perator �Q̃��x�−z�−1 exists and satisfies uniformly

�Q̃��x� − z�−1 − �Q̃�x� − z�−1 = O����� .

Proof: We have

�Q̃��x� − z� = 1 + Q̃��x� − Q̃�x�Q̃�x� − z−1Q̃�x� − z ,

�3.6�
Q̃��x� − Q̃�x� = �

����2

���a�,��y��y
� + Ṽ��x� − Ṽ�x,y� ,

here

Ṽ��x,y� = V��x,y� − �
j,k=1

j�k

n
� jk

�xj + ��xj� − xk − ��xk��
, Ṽ�x,y� = Ṽ0�x,y� ,

nd the a�,�’s are in C��R3p� and uniformly bounded along with all their derivatives as � tends to
in C �see Ref. 19�. Moreover,

Ṽ��x,y� − Ṽ�x,y� = �
1�l�p

1�k�n

�lk
±� 1

�yl + ��yl� ± xk ± ��xk��
−

1

�yl ± xk�
�

+ �
l,q=1

l�q

p

�lq� 1

�yl + ��yl� − yq − ��yq��
−

1

�yl − yq��
nd thus we have from the construction of the vector field ,

�Ṽ��x,y� − Ṽ�x,y�� � C2���� �
1�l�p

1�k�n

1

�yl ± xk�
+ �

l,q=1

l�q

p
1

�yl − yq�� ,

or some constant C2�0. Then, the result follows from �3.6� and Lemma 3.2. �

We can now define for �, a complex small enough for the spectral projector associated to
˜

��x� and the loops ��x�,

���x� =
1

2�i
�

��x�
�z − Q̃��x��−1 dz . �3.7�

his projector is of rank M and it helps us to construct the Grushin problem associated to P�
� .

On the one hand, using the fact that ��x�=�0�x� depends continuously on x�R3n \C �see Ref.
�, we can then find an orthonormal family of M continuous sections 	v1�x� ,… ,vM�x�
 generating

an ��x�. On the other hand, we well know that �1�x� ,… ,�M�x� depend only on �x� and can be
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ndexed in such a way each of them becomes analytic with respect to x�R3n \C. Let
v1,��x� ,… ,vM,��x�
 denote a family of Ran ���x�, depending analytically on � for � small
nough and normalized in L2�R3p� by

�vk,��x�,vl,�̄�x��L2�R3p� = �k,l. �3.8�

e associate the two following operators:

R�
−:�

1

M

L2�R3n� → L2�R3�n+p�� ,

u− = �u1
−,…,uM

− � � R�
−u− = �

k=1

M

uk
−vk,��x� , �3.9�

R�
+ = �R�

−�*:L2�R3�n+p�� → �
1

M

L2�R3n� ,

u � R�
+u = �

1

M

�u,vk,�̄�x��L2�R3p�. �3.10�

e then consider a Grushin problem that will lead to the Feshbach reduction. For z�C, define

A�
� �z� = ��P�

� − z� R�
−

R�
+ 0

� �3.11�

n

H2�R3�n+p�� � ��
1

M

L2�R3n��
o

L2�R3�n+p�� � ��
1

M

H2�R3n�� .

Using Lemma 3.3, and �2.11�, one can easily prove that the operator �̂��x��P�
� −z� is invertible

n 	u�H2�R3�n+p�� ; �̂��x�u=u
, where �̂��x�=1−���x�, and its inverse is bounded and denoted
y P��

�−z−1 for z�C close enough to �0.
It follows that A�

� �z� is invertible for z�C close enough to �0,

�A�
� �z��−1 = � a�

� �z� a�,+
� �z�

a�,−
� �z� a�,−+

� �z�
� �3.12�

ith

a�
� �z� = �P��

� − z�−1�̂��x�, a�,+
� �z� = R�

− − a�
� �z�P�

� R�
− ,

�3.13�
a�,−

� �z� = R�
+ − R�

+ P�
� a�

� �z�, a�,−+
� �z� = zIM − R�

+�P�
� − P�

� a�
� �z�P�

� �R�
− ,

here IM is the identity of CM, and a�,−+
� �z� depends only on x defined from �k=1

M H2�R3n� to
�k=1

M L2�R3n�. Consequently we have the following.
Lemma 3.4: For z�C close enough to �0 , z���P�� if and only if there exists ��C, small

�
nough, Im ��0, such that 0��disc�a�,−+�z��.
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Now, we can prove with a suitable choice of the family 	v1,��x� ,… ,vM,��x�
 that a�,−+
� �z�

ecomes a family of M 
M matrices of h-pseudodifferential operators on R3n, analytic with
espect to � complex small enough. The main idea consists, before localizing the singularities of
he potential, to construct as in Ref. 12 a x-dependent change of the y variables, in such a way the
perators Q��x� become smooth with respect to x.

V. LOCALIZATION OF THE SINGULARITIES

In this section we use the idea of Martinez-Messirdi �see Ref. 17�. By adequate change of
ariables we localize in a compact set of R3n the x-dependent singularities with respect to y
ppearing in the interaction potentials.

Let ��C0
��R+� satisfying 0���1, ���0 and

��s� = 1 if 0 � s � 1,

0 if s � 2.
�

e choose N�1 large enough such that �xi�=0, ∀ i� 	1,… ,n
 on 	d�x ,C��2/N
. Let us define
or r�1/N and t�0, the function

��r,t� =
t

r
�� t

r
� + Nt�1 − �� t

r
�� . �4.1�

e clearly see that

i� �� /�t�0 on �1/N , +��
R+,
ii� ��r , t� is surjective on R+,
iii� ∀k�1, �k� /�tk is uniformly bounded on �1/N , +��
R+.

The function t→��r , t� is a diffeomorphism on R+, we denote by �r its inverse.
By construction, we have �r�t�= t /N if t�2Nr and �r�r�=rt if t�1.
For x�R3, such that d�x ,C��1/N, we define the function

�x:R
3 � s → ��x���s��

s

�s�
.

x has the following properties.
Lemma 4.1: (see Ref. 17)

i� ∀x�R3n , d�x ,C��1/N, the function �x is a diffeomorphism of R3 depending smoothly on
x, and satisfying

ii� ∀��N3n \ 	0
 , �x
��x is uniformly bounded on 	d�x ,C��1/N ,s�R3
.

�x�xi/�x�� = xi, x = �x1,…,xi,…,xn�, ∀ i � 	1,…,n
 ,

�x�s� =
s

N
if �s� � 2N�x� ,

�x�s� = �x�s if �s� � 1.

Denote �̃x=�x
−1 the inverse diffeomorphism of �x on R3. It satisfies �̃x�s�=Ns if �s��2�x� and

x�s�=s / �x� if �s�� �x�.
Let the function R3p�y= �y1 ,… ,yp�→ �̃x�y�= ��̃x�y1� ,… , �̃x�yp��, then �x is a diffeomor-

hism on R3p, moreover the transformed potential V̂��x ,y� of V��x ,y� under the change of vari-

bles y�=�x�y� is given by �denoting I��s�=s+��s��
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V̂��x,y� = �
j,k=1

j�k

n
� jk

�I��xj� − I��xk��
+ �

1�l�p

1�k�n

�lk
±

�I���x�yl��� ± I���x� xk

�x����
+ �

l,q=1

l�q

p
�lk

�I���x�yl��� ± I���x�yq����
. �4.2�

t is then advantageous to study V̂��x ,y� instead of V��x ,y� because their x-dependent singularities
re now localized in the compact set �l,k	yl�= ±xk / �x�
.

. REGULARIZATION OF THE OPERATOR

Since 	x�R3n ,d�x ,C��1/N
�R3n \ �3/2N , +�� · �1, +�� · �VN�S3n−1�, then P� is a nice
-pseudodifferential operator in the region R3n \ �1/2N , +�� · �1, +�� · �VN�S3n−1�, with operator
alued symbol to regularize P� on the region �1/2N , +�� · �1, +�� · �VN�S3n−1�, we use a change
f variables similar to the one used in Refs. 12 and 20 coupled with the one of Sec. IV.

For any x0 fixed in �1/2N , +�� · �1, +�� · �VN�S3n−1� �then d�x0 ,C��1/2N ,x0�C� and for
�R3n \C, with x / �x� close enough to x0 / �x0� �equivalently xj / �x� close enough to xj

0 / �x0� , ∀ j
	1,… ,n
 ,x0= �x1

0 ,… ,xn
0��, we consider the C�-function defined on R3 by

Fx0
�x,s� = s + �

j=1

n � xj

�x�
−

xj
0

�x0�
��f j�s� − f j�− s�� , �5.1�

here f j �C0
��R3 ,R�, f j�xk

0 / �x0��=� jk, and f j�−xk
0 / �x0��=0, ∀ j ,k� 	1,… ,n
.

It is clear that for x / �x� in some small neighborhood x0
of x0 / �x0�, the function Fx0

�x , . � is
�-diffeomorphism of R3, satisfying

Fx0
�x,

xk
0

�x0�
� =

xk

�x�
, Fx0

�x,−
xk

0

�x0�
� = −

xk

�x�
, ∀ k � 	1,…,n
 . �5.2�

��N3n , ∃c��0, ∀x�R+
*x0

, ∀s ,s��R3,

1

C0
�s − s�� � �Fx0

�x,s� − Fx0
�x,s��� � C0�s − s�� ,

��x
�Fx0

�x,s� − �x
�Fx0

�x,s��� � C��s − s�� ,

��x
�Fx0

�x,s�� � C����� � 1� . �5.3�

ith the notations of the preceding section, let us denote for x� �1/N , +�� · �1, +�� ·x0
,

Gx
0:R3p → R3p,

y = �y1,…,yp� � Gx
0�y� = ��x�Fx0

�x,y1��,…,�x�Fx0
�x,yp�� .

sing Lemma 4.1 and the properties �5.3�, we obtain the following.
Lemma 5.1: ∀��N3, there exists a constant C�� �0 such that ∀x� �1/N , +�� · �1,

�� ·x0
, ∀y ,y��R3p, one has

1

C�
�s − s�� � �Gx

0�y� − Gx
0�y��� � C0��1 + �x���y − y�� ,
0
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��x
�Gx

0�y� − �x
�Gx

0�y��� � C�� �y − y�� ���� � 1� , �5.4�

��x
�Gx

0�y�� � C�� ���� � 1� .

Now using the fact that Gx
0 is a diffeomorphism of R3p, with the abuse of notation Gx

0�y�
�Gx

0�y1� ,… ,Gx
0�yp��, we consider the change of variables y�= �Gx

0�−1�y� which transforms the
perator Q�

� into

Q�,x0

� �x� = t�,x0
�x,y�,h�y�,h� + �

j,k=1

j�k

n
� jk��x�

�I��xj� − I��xk��
+ �

1�l�p

1�k�n

�lk
± ��x�

�I��Gx
0�yl��� ± I��Gx

0� x0
k

�x0�
���

+ �
l,q=1

l�q

p
�lk��x�

�I��Gx
0�yl��� ± I��Gx

0�yq����
+ �1 − ��x���0 = t�,x0

�x,y�,hDy�,h� + Vx0

� �x,y�� ,

�5.5�

here t�,x0
�x ,y� ,hDy� ,h� is an elliptic second order differential operator in y�, the coefficients

epending smoothly on x and y� and being uniformly bounded in 	x�R3n ,d�x ,C��1/N
�
R3p.
By Lemma 5.1, we obtain that Vx0

� �x ,y�� is smooth with respect to x as a self-adjoint operator
rom H2�R3p� to L2�R3p�.

We have consequently proved the following result.
Proposition 5.2: For ∀x0�VN�S3n−1, there exists a neighborhood x0

of x0 in VN�S3n−1 and
C� application,

G0:�1/N, + �� · �1, + �� · x0

 R3p → R3p,

�x,y� � G0�x,y� = Gx
0�y� ,

uch that for any x , Gx
0 is a diffeomorphism of R3p. If we denote

U0�x���y� = ��G0�x,y���det��y G0�x,y���1/2, �5.6�

hen the family of operators Q�,x0

� �x�=U0�x�Q�
� �x�U0

−1�x� is in Cb
���1/N , +�� · �1,

�� ·x0
,L�H2�R3p� ,L2�R3p��. (Cb

� denotes the space of C� functions that have their derivatives
niformly bounded for any order.)

Remark 5.3: Under �5.6� the operator P�
� is transformed into the differential operator

P̃�
� = t̃�,x0

�x,y�,hDy�,h� + Q�,x0

� �x� ,

here t̃�,x0
has the same properties as t�,x0

in �5.5�.
By compactness, we can cover VN�S3n−1 with a finite family of open subsets �wj� j=1

j0 , such
hat for any j� 	1,… , j0
 there exists a C� application Gj from �1/N , +�� · �1, +�� ·wj 
R3p to

3p, and for any x� �1/N , +�� · �1, +�� ·wj ,Gj�x , . � is a diffeomorphism of R3p.
If we denote Uj�x���y�=��Gj�x ,y���det��y Gj�x ,y���1/2, then

�Q�,j
� �x� = Uj�x�Q�

� �x�Uj
−1�x� � Cb

�� � 1
, + �� · �1, + �� ·  j,L�H2�R3p�,L2�R3p�� � . �5.7�
N
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I. CHARACTERIZATION OF RESONANCES

Using the idea of Ref. 18 and assumptions �2.10�–�2.13�, we can construct as in Refs. 12 and
7 a L2�Ry

3p�-orthonormalized family �see �3.8�� �k,��x ,y��1�k�M of M continuous functions from
3n to H2�R3p� depending analytically on �, such that

i� �k,��1�k�M form a basis of Ran ���x� in �3/2N , +�� · �1, +�� · �VN�S3n−1�
R3p,
ii� k,��C��R3n \ �1/2N , +�� · �1, +�� · �VN�S3n−1� ,H2�R3p��.
iii� For �x� large enough, k,��x , . � is an eigenfunction of Q��x� associated to �k�x1

+��x1� ,… ,xn+��xn�� , x= �x1 ,… ,xn�,
iv� ∀j� 	1,… , j0
 ,Uj�x�k,��x , . ��Cb

���1/N , +�� · �1, +�� ·wj ,H
2�R3p��.

Now, let for any j� 	1,… , j0
 ,� j �C0
��wj� be such that � j=1

j0 � j
4=1 on VN�S3n−1, and �0

C��R3n� such that �1−�0
4�1/4�C��R3n� and

�0 = 1 in R3n \ �1/N, + �� · �1, + �� · �VN � S3n−1� ,

0 in �3/2N, + �� · �1, + �� · �VN � S3n−1� .
�

or j� 	1,… , j0
, we denote � j�x�= �1−�0
4�x��1/4� j�x / �x��. Thanks to the choice of �0, we have

�
j=0

j0

� j
4 = 1 in R3n

�6.1�
supp � j � �1/N, + �� · �1, + �� · wj, ∀ j � 	1,…, j0
 .

o study the spectrum of P�
� near �0, we consider the Grushin operator

A�
� �z� = ��P�

� − z� R�
−

R�
+ 0

� , �6.2�

here the operators R�
± are defined in �3.9� and �3.10�, but here with k,� , k,�̄ instead of

k,� , vk,�̄.
A�

� �z� is invertible as in �3.12� and �3.13�, we propose now to construct its inverse in the class
f h-pseudodifferential operators.

Denoting U0=1 and extending the action of Uj to functions depending on x and y, we set for
j� 	0,… , j0
,

U j = �Uj 0

0 1
� on L2��1/N, + �� · �1, + �� · wj 
 R3p� � �L2�R3n�M ,

�6.3�
A�,j

� �z� = U j� jA�
� �z�U j

−1� j ,

hich has a meaning thanks to �6.1�.
By �5.7� �which extends to the case j=0� and the properties of the family �k,��1�k�M , A�,j

� �z�
s a h-pseudodifferential operator with a L�H2�R3p� � CM ,L2�R3p� � CM� valued symbol �see Refs.
2 and 20�. Its principal symbol is given by

P�,j
� �x,�;z� = � j

2�x��t���� + Q�,j
� �x� − z R�,j

− �x�
R�,j

+ �x� 0
� = � j

2�x�P̃�,j�x,�;z� , �6.4�

here t���� is the principal symbol of −h2U��xU�
−1, and R�,j

± �x� are defined as R�
± but with

k,��x , . � ,k,�̄�x , . � replaced by Ujk,��x , . � ,Ujk,�̄�x , . � , 1�k�M.
Since t���� is elliptic and using the gap assumption �2.11�, one can see that, for z close enough

* ˜
o �0 and for any �x ,���T �supp � j� , j=0,… , j0 , P�,j�x ,� ;z� is invertible with inverse
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q�,j�x,�,z� = �a�,j
� �x,�;z� R�,j

− �x�
R�,j

+ �x� b��x,�;z�
� . �6.5�

ere a�,j
� �x ,� ;z�= �̂�,j�x���̂�,j�x��t����+Q�,j

� �x�−z��̂�,j�x��−1�̂�,j�x�, �̂�,j�x�=1−��,j�x�, ��,j�x�
Uj�x���x�Uj

−1�x�, and b��x ,� ;z� is the M 
M matrix defined by

b��x,�;z� = z − ��k,��x,y�,�t���� + Q�
� �x��l,�̄�x,y��L2�R3p�� �6.6�

in particular, b��x ,� ;z� does not depend on j, if M =1 and �=0, then t����=�2 and b��x ,� ;z�
z−�2− �1�x ,y� ,Q��x�1�x ,y��L2�R3p��.

We set

B��z� = �
j=0

j0

U j
−1� j

3�x�Op�q�,j�x,�,z��U j� j�x� �6.7�

where Op is the usual quantification of symbols defined in �2.7��. Using the composition theorem
f h-pseudodifferential operators �see, e.g., Refs. 1, 16, and 22� we have

A�
� �z�B��z� = 1 + hR��z� ,

�6.8�

R��z� = �
j=0

j0

U j
−1� j,1R�,j�z�U j� j,1,

here � j,1�Cb
���1/N , +�� · �1, +�� ·wj� is supported in �1/N , +�� · �1, +�� ·wj,1 ,wj,1� �wj for

j�1,�0,1 is chosen as �0, and R�,j�z� is a h-pseudodifferential operator uniformly bounded �with
espect to h� on L2�R3�n+p�� � �H2�R3n��M.

From �6.8�, we deduce

A�
� �z�−1 = B��z��

m=0

�

�− hR��z��m. �6.9�

pplying the calculus of Ref. 12, �6.9� can be written modulo O�h��:

A�
� �z�−1 = �

j=0

j0

U j
−1�̃ jE�,j�z�U j�̃ j , �6.10�

here the E�,j�z�’s are h-pseudodifferential operators depending analytically on � , �̃0 is defined as

0 and �̃ j �Cb
���1/N , +�� · �1, +�� ·wj� is supported in �1/N , +�� · �1, +�� · w̃j , w̃j � �wj , j

	1,… , j0
.
Denoting A�

� �z�−1 as in �3.12�, we obtain in particular from �6.10� that a�,−+
� �z� is a M 
M

atrix of h-pseudodifferential operator on Rx
3n. Moreover, in view of �6.6� and �6.10� and also

orollary 1.4 of Ref. 12, its principal symbol is just b��x ,� ;z�.
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This paper is part of a series that lays the groundwork for a structure and classifi-
cation theory of second-order superintegrable systems, both classical and quantum,
in real or complex conformally flat spaces. Here we consider classical superinte-
grable systems with nondegenerate potentials in three dimensions. We show that
there exists a standard structure for such systems, based on the algebra of 3�3
symmetric matrices, and that the quadratic algebra always closes at order 6. We
show that the spaces of truly second-, third-, fourth-, and sixth-order constants of
the motion are of dimension 6, 4, 21, and 56, respectively, and we construct explicit
bases for the fourth- and sixth order constants in terms of products of the second
order constants. © 2005 American Institute of Physics. �DOI: 10.1063/1.2037567�

. INTRODUCTION AND EXAMPLES

The goal of this series of papers,1,2 is a structure and classification theory of second-order
uperintegrable systems, both classical and quantum, in conformally flat spaces. An n-dimensional
iemannian space is conformally flat if and only if it admits a set of local coordinates x1 ,… ,xn

uch that the contravariant metric tensor takes the form gij =� ij /��x�. In other words, the metric is
s2=��x���i=1

n dxi
2�. A classical superintegrable system H=�ijg

ijpipj +V�x� on the phase space of
his manifold is one that admits 2n−1 functionally independent generalized symmetries �or con-
tants of the motion� Sk ,k=1,… ,2n−1 with S1=H. That is, �H ,Sk�=0 where

�f ,g� = �
j=1

n

��xj
f�pj

g − �pj
f�xj

g�

s the Poisson bracket for functions f�x ,p� ,g�x ,p� on phase space.3–10 Note that 2n−1 is the
aximum possible number of functionally independent symmetries and, locally, such symmetries

lways exist. �In this paper n=3 so we have five functionally independent symmetries.� The main
nterest is in symmetries that are polynomials in the pk and are globally defined, except for lower
imensional singularities such as poles and branch points. Many tools in the theory of Hamiltonian
ystems have been brought to bear on superintegrable perintegrable systems, such as R-matrix
heory, Lax pairs, exact solvability, quasiexact solvability, and the Jacobi metric.11–15 However, the

ost detailed and complete results are obtained from separation of variables methods in those
ases where they are applicable. Standard orthogonal separation of variables techniques are asso-
iated with second-order symmetries, e.g., Refs. 16–21 and multiseparable Hamiltonian systems

rovide numerous examples of superintegrability. In these papers we concentrate on second-order

46, 103507-1022-2488/2005/46�10�/103507/28/$22.50 © 2005 American Institute of Physics
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uperintegrable systems, that is those in which the symmetries take the form S=�aij�x�pipj

W�x�, quadratic in the momenta.
There is an analogous definition for second-order quantum superintegrable systems with

chrödinger operator

H = � + V�x�, � =
1
�g

�
ij

�xi
��ggij��xj

,

he Laplace-Beltrami operator plus a potential function.16 Here there are 2n−1 second-order
ymmetry operators

Sk =
1
�g

�
ij

�xi
��ga�k�

ij ��xj
+ W�k��x�, k = 1,…,2n − 1

ith S1=H and �H ,Sk�	HSk−SkH=0. Again multiseparable systems yield many examples of
uperintegrability, though not all multiseparable systems are superintegrable and not all second-
rder superintegrable systems are multiseparable. There is also a quantization problem in extend-
ng the results for classical systems to operator systems. This problem turns out to be not difficult
o solve for the nondegenerate systems that we study in this paper.

Superintegrable systems can �1� be solved explicitly, and �2� they can be solved in multiple
ays. It is the information gleaned from comparing the distinct solutions and expressing one

olution set in terms of another that is a primary reason for their interest.
We give a few simple three-dimensional �3D� examples to illustrate some of the main features

f superintegrable systems. �To make clearer the connection with quantum theory and Hilbert
pace methods we shall, for these examples alone, adopt standard physical normalizations, such as
sing the factor − 1

2 in front of the free Hamiltonian.� Consider the Schrödinger eigenvalue equa-
ion H�=E� or �q=m=1,x1=x ,x2=y ,x3=z�

H� = −
1

2

 �2

�x2 +
�2

�y2 +
�2

�z2�� + V�x,y,z�� = E� . �1�

he generalized anisotropic oscillator corresponds to the four-parameter potential

V�x,y,z� =
�2

2
�x2 + y2 + 4�z + ��2� +

1

2
� k1

2 − 1
4

x2 +
k2

2 − 1
4

y2  . �2�

This potential is “nondegenerate” in the precise sense that we will explain in Sec. III.� The
orresponding Schrödinger equation has separable solutions in five coordinate systems, Cartesian
oordinates, cylindrical polar coordinates, cylindrical elliptic coordinates, cylindrical parabolic
oordinates, and parabolic coordinates. The energy eigenstates for this equation are degenerate and
mportant special function identities arise by expanding one basis of separable eigenfunctions in
erms of another. A second order symmetry operator for this equation is a second-order linear
ifferential operator S such that �H ,S�=0 where �A ,B�=AB−BA. A basis for these operators is

M1 = �x
2 − �2x2 +

k1
2 − 1

4

x2 , M2 = �y
2 − �2y2 −

k2
2 − 1

4

y2 , �3�

P = �z
2 − 4�2�z + ��2, L = L12

2 − 
k1
2 −

1

4
� y2

x2 − 
k2
2 −

1

4
� x2

y2 −
1

2
, �4�

S1 = −
1

��xL13 + L13�x� + ��x
2 + �z + ��
�2x2 −

k1
1 − 1

4
2 � ,
2 x
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S2 = −
1

2
��yL23 + L23�y� + ��y

2 + �z + ��
�2y2 −
k2

2 − 1
4

y2 � , �5�

here Lij =xi�xj
−xj�xi

. Remarkably, these symmetries generate a “quadratic algebra” that closes at
evel six. Indeed, the nonzero commutators of the above basis are

�M1,L� = �L,M2� = Q, �L,S1� = �S2,L� = B, �Mi,Si� = Ai, �P,Si� = − Ai.

onzero commutators of the basis symmetries with Q �fourth-order symmetries� are expressible in
erms of the second-order symmetries,

�Mi,Q� = �Q,M2� = 4�M1,M2� + 16�2L, �S1,Q� = �Q,S2� = 4�M1,M2� ,

�L,Q� = 4�M1,L� − 4�M2,L� + 16�1 − k1
2�M1 − 16�1 − k2

2�M2.

here are similar expressions for commutators with B and the Ai. Also the squares of Q ,B ,Ai and
roducts such as �Q ,B� �all sixth-order symmetries� are expressible in terms of second-order
ymmetries. For example,

Q2 = 8
3 �L,M1,M2� + 8�2�L,L� − 16�1 − k1

2�M1
2 − 16�1 − k2

2�M2
2 + 64

3 �M1,M2�

− 128
3 �2L − 128�2�1 − k1

2��1 − k2
2� ,

�Q,B� = − 8
3 �M2,L,S1� − 8

3 �M1,L,S2� + 16�1 − k1
2��M2,S2� + 16�1 − k2

2��M1,S1�

− 64
3 �M1,S2� − 64

3 �M2,S1� .

Here �C1 ,… ,Cj� is the completely symmetrized product of operators C1 ,… ,Cj. �For com-
lete details of all the possible products and commutators, see Ref. 22.� The point is that the
lgebra generated by products and commutators of the second order symmetries closes at order 6.

Another example in Euclidean space is given by the Schrödinger equation with three-
arameter extended Kepler-Coulomb potential,


 �2�

�x2 +
�2�

�y2 +
�2�

�z2 � + �2E +
2�

�x2 + y2 + z2
− 
 k1

2 − 1
4

x2 +
k2

2 − 1
4

y2 �� = 0.

his equation admits separable solutions in the four coordinates systems: spherical, sphero coni-
al, prolate spheroidal, and parabolic coordinates. Again the bound states are degenerate and
mportant special function identities arise by expanding one basis of separable eigenfunctions in
erms of another. However, the space of second-order symmetries is only five dimensional and,
lthough there are useful identities among the generators and commutators that enable one to
erive spectral properties algebraically, there is no finite quadratic algebra structure. The key
ifference with our first example is, as we shall show later, that the three-parameter Kepler-
oulomb potential is degenerate and it cannot be extended to a four-parameter potential.

An example on the three-sphere is given by

gij = �ijzi − zizj, 1 	 i, j 	 3.

hen det�gij�=g−1=z1z2z3�1−z� where z=z1+z2+z3 and

gij =
1

1 − z
+

�ij

zi
.

hus ds2=�i,j=1
3 gij dzi dzj. To identify this space we introduce Cartesian coordinates x0 ,x1 ,x2 ,x3 in
our-dimensional Euclidean space and restrict these coordinates by the conditions
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x0
2 = 1 − z, x1

2 = z1, x2
2 = z2, x3

2 = z3.

ote that x0
2+x1

2+x2
2+x3

2=1. Defining a metric ds2 by ds2=�m=0
3 �dxm�2 we find

ds2 =
1

4 �
i,j=1

3 
 1

1 − z
+

�ij

zi
�dzi dzj .

hus the space corresponds to a portion of the three-sphere Sn. The Schrödinger equation is


� + �
i=1

3

i

zi
+


4

1 − z
�� = E� ,

here � is the Laplace-Beltrami operator. This is a nondegenerate potential. The six second-order
perators

Sij = 4zizj��zi
− �zj

�2 + 4�gizj − gjzi���zi
− �zj

� = Sji, 1 	 i � j 	 3,

S0i = 4zi�1 − z��zi

2 + 4�gi�1 − z� − g0zi��zi
= Si0, 1 	 i 	 3,

or gi=1+ 1
2
�1−16
i form a basis for the space of second-order symmetries. In particular

8H = �
i,j=1

n

Sij + 2�
i=1

n

S0i.

his equation separates in six coordinate systems on the three sphere. Further it can be shown that
he quadratic algebra generated by the second-order symmetries closes at order 6.

For our last example we take the space with metric

ds2 = ��A,B,C,D,E,x��dx2 + dy2 + dz2� ,

here

� = A�x + iy� + B
3

4
�x + iy�2 +

z

4
� + C
�x + iy�3 +

1

16
�x − iy� +

3z

4
�x + iy��

+ D
 5

16
�x + iy�4 + z2

16 + 1
16�x2 + y2� + 3z

8 �x + iy�2� + E ,

he nondegenerate potential is V=��� ,� ,
 ,� , ,x� /��A ,B ,C ,D ,E ,x�. If A=B=C=D=0 this is a
superintegrable system on complex Euclidean space. The quadratic algebra always closes, and for
general values of A ,B ,C ,D ,E the space is not of constant curvature. This is an example of a
superintegrable system that is Stäckel equivalent to a system on complex Euclidean space. We will
take up the study of such systems in the next paper in this series.

Observed common features of superintegrable systems �and features that we make precise and
verify in these papers� are that they are usually multiseparable and that the eigenfunctions of one
separable system can be expanded in terms of the eigenfunctions of another. This is the source of
nontrivial special function expansion theorems.23 The symmetry operators are in formal self-
djoint form and suitable for spectral analysis. Also, the quadratic algebra identities allow us to
elate eigenbases and eigenvalues of one symmetry operator to those of another. Indeed the
epresentation theory of the abstract quadratic algebra can be used to derive spectral properties of
he second-order generators in a manner analogous to the use of Lie algebra representation theory
o derive spectral properties of quantum systems that admit Lie symmetry algebras.23–26 �Note
owever that for superintegrable systems with nondegenerate potential, there is no first-order Lie

ymmetry.�
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Another common feature of quantum superintegrable systems is that they can be modified by
gauge transformation so that the Schrödinger and symmetry operators are acting on a space of

olynomials.27 This is closely related to the theory of exactly and quasi exactly solvable
ystems.13,28 The characterization of ODE quasiexactly solvable systems as embedded in PDE
uperintegrable systems provides considerable insight into the nature of these phenomena.

The classical analogs of the above examples are obtained by the replacements �xi
→pxi

. Com-
utators go over to Poisson brackets. The operator symmetries become second-order constants of

he motion. Symmetrized operators become products of functions. The quadratic algebra relations
implify, the highest order terms agree with the operator case but there are fewer nonzero lower
rder terms.

Many examples of 3D superintegrable systems are known, although they have not been
lassified.29–34 Here, rather than focus on particular spaces and systems, we employ a theoretical
ethod based on integrability conditions to derive structure common to all such systems, with a

iew to complete classification, at least for nondegenerate potentials. In this paper we consider
lassical superintegrable systems on a general 3D conformally flat spaces, real or complex, and
ncover their common structure. We show that for systems with nondegenerate potentials there
xists a standard structure based on the algebra of 3�3 symmetric matrices, and that the quadratic
lgebra closes at level 6. For two dimensional �2D� nondegenerate superintegrable systems we can
how that the three functionally independent constants of the motion are �with one exception� also
inearly independent, so at each regular point we can find a unique constant of the motion that

atches a quadratic expression in the momenta at that point. However, for 3D systems we have
nly five functionally independent constants of the motion and the quadratic forms span a six-
imensional space. This is a major problem. However, for nondegenerate potentials we can prove
he “5⇒6 Theorem” to show that the space of second-order constants of the motion is in fact six
imensional, there is a symmetry that is functionally dependent on the symmetries that arise from
uperintegrability, but linearly independent of them. With that result established, the treatment of
he 3D case proceeds in analogy with the nondegenerate 2D case treated in Ref. 1. Though the
etails are quite complicated, we show that the spaces of truly second-, third-, fourth-, and sixth-
rder constants of the motion are of dimension 6, 4, 21, and 56, respectively. Finally we construct
xplicit bases for the fourth- and sixth-order constants in terms of products of the second-order
onstants. These bases are our principal result. They guarantee closure of the quadratic algebra and
rovide a means for analyzing its structure. This paper is a major advance toward one of our goals,
o obtain a demonstrably complete list of 3D superintegrable potentials.

In the next paper in this series we will show that all 3D superintegrable systems with nonde-
enerate potential are multiseparable. We will study the Stäckel transform, or coupling constant
etamorphosis,35,36 for 3D classical superintegrable systems. This is a conformal transformation

f a superintegrable system on one space to a superintegrable system on another space. We will
rove that all nondegenerate 3D superintegrable systems are Stäckel transforms of constant cur-
ature systems. We will also extend our results to the quantum analogs of 2D and 3D classical
ystems.

I. CONFORMALLY FLAT SPACES IN THREE DIMENSIONS

We assume that there is a coordinate system x ,y ,z and a nonzero function ��x ,y ,z�
exp�G�x ,y ,z�� such that the Hamiltonian is

H =
p1

2 + p2
2 + p3

2

�
+ V�x,y,z� . �6�
quadratic constant of the motion �or generalized symmetry�
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S = �
k,j=1

3

akj�x,y,z�pkpj + W�x,y,z� 	 L + W, ajk = akj �7�

ust satisfy �H ,S�=0. The conditions are thus

ai
ii = − G1a1i − G2a2i − G3a3i,

2ai
ij + aj

ii = − G1a1j − G2a2j − G3a3j, i � j ,

ak
ij + aj

ki + ai
jk = 0, i, j,k distinct �8�

nd

Wk = ��
s=1

3

askVs, k = 1,2,3. �9�

Here a subscript j denotes differentiation with respect to xj.� The requirement that �x�
Wj

�xj
W� ,�� j leads from �9� to the second-order Bertrand-Darboux partial differential equations

or the potential,

�
s=1

3

�Vsj�as� − Vs��asj + Vs���as�� j − ��asj���� = 0. �10�

For second-order superintegrabilty in 3D there must be five functionally independent con-
tants of the motion �including the Hamiltonian itself�. Thus the Hamilton-Jacobi equation admits
our additional constants of the motion

Sh = �
j,k=1

3

a�h�
jk pkpj + W�h� = Lh + W�h�, h = 1,…,4. �11�

e assume that the four functions Sh together with H are functionally independent in the six-
imensional phase space, i.e., that the differentials dSh ,dH are linearly independent. �Here the
ossible V will always be assumed to form a vector space and we require functional independence
or each such V and the associated W�h�. This means that we also require that the five quadratic
orms Lh ,H0 are functionally independent.� We say that the functions are weakly functionally
ndependent if dSh ,dH are linearly independent for nonzero potentials, but not necessarily for the
ero potential.

II. FUNCTIONAL LINEAR INDEPENDENCE

We first shed some light on the relationship between functional independence and functional
inear independence for the set �H ,S1 ,… ,S4�

Theorem 1: The functionally independent set �H ,S1 ,… ,S4� is also functionally linearly
ndependent in the sense that if the relation �h=0

4 c�h��x�Lh	0 holds in an open set, then c�h��x�
0 for all h.

Proof: Suppose that the set is functionally linearly dependent. Then we can express one of the

uadratic parts of the constants of the motion L̂0 as a linear combination of a linearly independent
ˆ ˆ
ubset �L1 ,… ,Lr ,1	r	4�,
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L̂0 = �
�=1

r

c����x�L̂�.

aking the Poisson bracket of both sides of this equation with �p1
2+ p2

2+ p3
3� /� and using the fact

hat each of the Ŝh is a constant of the motion, we obtain the identity

�
�=1

r

�
i,j=1

3

��xk
c����a���

ij pipjpk = 0. �12�

t is straightforward to check that this identity can be satisfied if and only if

�
�=1

r

��xk
c����a���

ij = 0, 1 	 i, j,k 	 3.

ince the set �L̂1 ,… , L̂r�, is linearly independent, we have �xk
c���	0 for 1	k	3,1	�	r.

ence the c��� are constants, which means that

L̂0 − �
�=1

r

c���L̂� = c ,

here c is a constant. Thus the set �H0 ,L1 ,… ,L4� is functionally dependent. This is a contradic-
ion. Q.E.D.

Corollary 1: The weakly functionally independent set �H=S0 ,S1 ,… ,S4� is also functionally
inearly independent in the sense that if the relation �h=0

4 c�h��x�Sh	0 holds in an open set, then
�h��x�	0 for all h.

Proof: Suppose that the set is functionally linearly dependent. Then we can express one of the

onstants of the motion Ŝ0� as a linear combination of a linearly independent subset

Ŝ1 ,… , L̂r ,1	r	4�,

Ŝ0 = �
�=1

r

c����x�Ŝ�.

aking the Poisson bracket of both sides of this equation with �p1
2+ p2

2+ p3
3� /�+V and using the

act that each of the Ŝh is a constant of the motion, we obtain the identities

�
�=1

r

��xk
c����a���

ij = 0,�
�=1

r

�xk
c���W���, 1 	 i, j,k 	 3.

ince the set �Ŝ1 ,… , Ŝr�, is functionally linearly independent, we have �xk
c���	0 for 1	k

3,1	�	r. Hence the c��� are constants, which means that

Ŝ0 − �
�=1

r

c���Ŝ� = 0.

hus the set �S0 ,… ,S4� is functionally dependent. This is a contradiction. Q.E.D.
We can write the system of Bertrand-Darboux equations in the matrix form Cv= ṽ�1�V1

˜ �2� ˜ �3�
v V2+v V3, or
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� 0 a12 a11 − a22 a31 − a32

a13 0 − a23 a21 a11 − a33

a32 − a32 − a13 a22 − a33 a12 ��
V33 − V11

V22 − V11

V12

V32

V31

�
=

1

����a12�1 − ��a11�2

��a31�1 − ��a11�3

��a31�2 − ��a21�3
�V1 +

1

����a22�1 − ��a21�2

��a32�1 − ��a12�3

��a32�2 − ��a22�3
�V2 +

1

����a32�1 − ��a31�2

��a33�1 − ��a13�3

��a33�2 − ��a23�3
�V3. �13�

Corollary 2: Suppose the set �H ,S1 ,… ,S4� is functionally independent. Then for general x
he 4�5 matrix

A =�
a�1�

33 − a�1�
11 , a�1�

22 − a�1�
11 , a�1�

12 , a�1�
31 , a�1�

32

a�2�
33 − a�2�

11 , a�2�
22 − a�2�

11 , a�2�
12 , a�2�

31 , a�2�
32

a�3�
33 − a�3�

11 , a�3�
22 − a�3�

11 , a�3�
12 , a�3�

31 , a�3�
32

a�4�
33 − a�4�

11 , a�4�
22 − a�4�

11 , a�4�
12 , a�4�

31 , a�4�
32
�

as rank 4, where the functions a�h�
ij �x� are given by �11�.

There are four sets of equations �13�, one for each of the functionally independent symmetries
in addition to the Hamiltonian�. We can write them as a single matrix equation Bv=b where B is
2�5,b is 12�1 and

v =�
V33 − V11

V22 − V11

V12

V32

V31

� .

Lemma 1: If the set �H ,S1 ,… ,S4� is functionally independent, the matrix B has rank 5.
Proof: In the neighborhood of a general point �x0 ,y0 ,z0� the matrix A of Corollary 2 has rank

. Thus the possible reduced row equivalence forms �RREF� for A at �x0 ,y0 ,z0� are

I �
1, 0, 0, 0, �

0, 1, 0, 0, �

0, 0, 1, 0, 


0, 0, 0, 1, �
� ; II �

1, 0, 0, � , 0

0, 1, 0, � , 0

0, 0, 1, 
 , 0

0, 0, 0, 0, 1
� ; III �

1, 0, � , 0, 0

0, 1, � , 0, 0

0, 0, 0, 1, 0

0, 0, 0, 0, 1
�;

IV �
1, � , 0, 0, 0

0, 0, 1, 0, 0

0, 0, 0, 1, 0

0, 0, 0, 0, 1
� ; V �

0, 1, 0, 0, 0

0, 0, 1, 0, 0

0, 0, 0, 1, 0

0, 0, 0, 0, 1
� .

or each canonical form it is straightforward to check that the associated 12�5 matrix B has rank
. Q.E.D.

By choosing a rank 5 minor of B we can solve for v and obtain a solution of the form

V22 = V11 + A22V1 + B22V2 + C22V3,

33 33 33
V33 = V11 + A V1 + B V2 + C V3,
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V12 = A12V1 + B12V2 + C12V3,

V13 = A13V1 + B13V2 + C13V3,

V23 = A23V1 + B23V2 + C23V3. �14�

f the augmented matrix �B ,b� has rank r��r then there will be r�−r additional conditions of the
orm D�s�

1 V1+D�s�
2 V2+D�s�

3 V3=0 ,s=1, . . . ,r�−r. Here the Aij ,Bij ,Cij ,D�s�
i are functions of x that

an be calculated explicitly. For convenience we take Aij 	Aji ,Bij 	Bji ,Cij 	Cji.
Suppose now that the superintegrable system is such that r�=r so that relations �14� are

quivalent to Bv=b. Further, suppose the integrability conditions for system �14� are satisfied
dentically. In this case we say that the potential is nondegenerate. Otherwise the potential is
egenerate. If V is nondegenerate then at any point x0, where the Aij ,Bij ,Cij are defined and
nalytic, there is a unique solution V�x� arbitrarily prescribed values of

1�x0� ,V2�x0� ,V3�x0� ,V11�x0� �as well as the value of V�x0� itself�. The points x0 are called
egular. The points of singularity for the Aij ,Bij ,Cij form a manifold of dimension �3. Degener-
te potentials depend on fewer parameters. For example, we could have r�=r but the integrability
onditions are not satisfied identically. This occurs for the generalized Kepler-Coulomb potential
here the integrability conditions lead to an additional equation of the form V11=A11V1+B11V2

C11V3 so that V11 cannot be prescribed arbitrarily.
From this point on we assume that V is nondegenerate. Substituting the requirement for a

ondegenerate potential �14� into the Bertrand-Darboux equations �10� we obtain three equations
or the derivatives ai

jk, the first of which is

�a3
11 − a1

31�V1 + �a3
12 − a1

32�V2 + �a3
13 − a1

33�V3 + a12�A23V1 + B23V2 + C23V3� − �a33 − a11�

� �A13V1 + B13V2 + C13V3� − a23�A12V1 + B12V2 + C12V3� + a13�A33V1 + B33V2 + C33V3�

= �− G3a11 + G1a13�V1 + �− G3a12 + G1a23�V2 + �− G3a13 + G1a33�V3, �15�

nd the other two are obtained in a similar fashion.
Since V is nondegenerate we can compute all of the third partial derivatives of V. In fact,

ifferentiating each of the equations �14� with respect to xj , j=1, 2, 3 we obtain 15 equations for
he 10 distinct partial derivatives Vijk. For example,

V123 = �2V13 = A2
13V1 + B2

13V2 + C2
13V3 + A13V12 + B13V22 + C13V23

= �1V23 = A1
23V1 + B1

23V2 + C1
23V3 + A23V11 + B23V12 + C23V13

= �3V12 = A3
12V1 + B3

12V2 + C3
12V3 + A12V13 + B12V23 + C12V33,

V111 = �A2
12 − A1

22�V1 + �B2
12 − B1

22�V2 + �C2
12 − C1

22�V3 − A22V11

+ B12V22 + �A12 − B22�V12 − C22V13 + C12V23

= �A3
13 − A1

33�V1 + �B3
13 − B1

33�V2 + �C3
13 − C1

33�V3 − A33V11

+ C13V33 + �A13 − C33�V13 − B33V12 + B13V23,

V223 = �A1
31 + A3

22�V1 + �B1
31 + B3

22�V2 + �C1
31 + C3

22�V3 + A31V11 + C22V33 + B13V21 + �C31 + A22�V13

+ B22V23 = A23V1 + B23V2 + C23V3 + A23V12 + C23V32 + B23V22,
2 2 2
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V332 = �A1
12 + A2

33�V1 + �B1
12 + B3

33�V2 + �C1
12 + C2

33�V3 + A12V11 + B33V22 + C12V31 + �B12 + A33�V12

+ C33V23 = A3
23V1 + B3

23V2 + C3
23V3 + A23V13 + B23V23 + C23V33, �16�

ith analogous expressions for the other third derivatives. Similarly all higher order derivatives of
can be computed from these. The right-hand side of each of these equations can be expressed as

n explicit linear combination of V1 ,V2 ,V3 ,V11 with analytic functions of x1 ,x2 ,x3 as coefficients.
hus if the potential V belongs to the solution space then V can depend on at most four param-
ters, in addition to a trivial additive constant. We can choose these parameters to be

1�x0 ,y0 ,z0� ,V2�x0 ,y0 ,z0� ,V3�x0 ,y0 ,z0� ,V11�x0 ,y0 ,z0� for any fixed regular point �x0 ,y0 ,z0�. Then
ll higher derivatives can be computed by successive differentiation of relations �14�. Thus our
otential is nondegenerate, i.e., it depends non trivially on these four arbitrary parameters, so that
ll higher-order integrability conditions are satisfied.

Then, equating coefficients of V1 ,V2 ,V3 ,V11 on each side of the conditions �1V23=�2V13

�3V12,�3V23=�2V33, etc., we obtain integrability conditions, the simplest of which include

A23 = B13 = C12, B12 − A22 = C13 − A33,

B23 = A31 + C22, C23 = A12 + B33,

A1
12 + B12A12 + A2

33 + A33A12 + B33A22 + C33A23 = A3
23 + B23A23 + C23A33,

A2
13 + A13A12 + B13A22 + C13A23 = A1

23 + B23A12 + C23A13 = A3
12 + A13A12 + B12A23 + C12A33.

�17�

ll of these conditions, analytic expressions in x ,y ,z, must hold identically in a common domain
o have a nondegenerate system. Note that if r��r then there will be conditions relating the
arameters V1�x0 ,y0 ,z0� ,V2�x0 ,y0 ,z0� ,V3�x0 ,y0 ,z0� ,V11�x0 ,y0 ,z0�, so we cannot have a nondegen-
rate system in that case.

We can further clarify the situation by introducing the dependent variables W�1�=V1 ,W�2�

V2 ,W�3�=V3 ,W�4�=V11, the vector

w =�
W�1�

W�2�

W�3�

W�4�
� , �18�

nd the matrices

A�1� =�
0 0 0 1

A12 B12 C12 0

A13 B13 C13 0

A14 B14 C14 B12 − A22
� , �19�

A�2� =�
A12 B12 C12 0

A22 B22 C22 1

A23 B23 C23 0
24 24 24 12

� , �20�
A B C A
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A�3� =�
A13 B13 C13 0

A23 B23 C23 0

A33 B33 C33 1

A34 B34 C34 A13
� , �21�

here

A14 = A2
12 − A1

22 + B12A22 + A12A12 − B22A12 − C22A13 + C12A23

= A3
13 − A1

33 + B13A23 + A13A13 − B33A12 − C33A13 + C13A33,

B14 = B2
12 − B1

22 + B12B22 + A12B12 − B22B12 − C22B13 + C12B23

= B3
13 − B1

33 + B13B23 + A13B13 − B33B12 − C33B13 + C13B33,

C14 = C2
12 − C1

22 + B12C22 + A12C12 − B22C12 − C22C13 + C12C23

= C3
13 − C1

33 + B13C23 + A13C13 − B23C12 − C33C13 + C13C33,

A24 = A1
12 + B12A12 + C12A13, B24 = B1

12 + B12B12 + C12B13,

C24 = C1
12 + B12C12 + C12C13,

A34 = A1
13 + B13A12 + C13A13, B34 = B1

13 + B13B12 + C13B13,

C34 = C1
13 + B13C12 + C13C13. �22�

hen the conditions �17� must hold as well as the integrability conditions for the system

�xj
w = A�j�w, j = 1,2,3. �23�

he integrability conditions are

Ai
�j� − Aj

�i� = A�i�A�j� − A�j�A�i� 	 �A�i�,A�j�� . �24�

he integrability conditions �17� and �24� are analytic expressions in x1 ,x2 ,x3 and must hold
dentically. Then the system has a solution V depending on four parameters �plus an arbitrary
dditive parameter�. For convenience in the arguments to follow we set

U1 = A2
�3� − A3

�2� − �A�2�,A�3��, U2 = A3
�1� − A1

�3� − �A�3�,A�1�� ,

U3 = A1
�2� − A2

�1� − �A�1�,A�2�� , �25�

o that the identities are

U1 = U2 = U3 = 0. �26�

We have shown that a weakly functionally independent set of five symmetries �or constants of
he motion� is functionally linearly independent. For systems with nondegenerate potentials, the
onverse holds.

Theorem 2: Let

Sh = �
3

a�h�
jk pkpj + W�h�, h = 1,…,5, H = S1
j,k=1
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e functionally linearly independent symmetries for a system with nondegenerate potential V
W�1�. Then these symmetries are weakly functionally independent.

Proof: By assumption, the set �Sh� is functionally linearly independent. Suppose it is also
unctionally dependent. This means that the set of differentials �dSh� is dependent, i.e., that the
�6 matrix

��i
a�1�

i1 pi �i
a�1�

i2 pi �i
a�1�

i3 pi K14 + �i
a�1�

j1 Vj K15 + �i
a�1�

j2 Vj K16 + �i
a�1�

j3 Vj

] ] ] ] ] ]

�i
a�5�

i1 pi �i
a�5�

i2 pi �i
a�5�

i3 pi K54 + �i
a�5�

j1 Vj K55 + �i
a�5�

j2 Vj K56 + �i
a�5�

j3 Vj
� ,

here

K�,3+s = �
ij

a���,s
ij pipj ,

s of rank �5 for all values of pj ,Vj. Thus all 5�5 minors must vanish identically in pj ,Vj. It is
n easy consequence of this that all 5�5 minors of the 5�6 matrix

�a�1�
11 a�1�

12 a�1�
13 a�1�

22 a�1�
23 a�1�

33

] ] ] ] ] ]

a�5�
11 a�5�

12 a�5�
13 a�5�

22 a�5�
23 a�5�

33 �
anish, hence that this matrix have rank �5. Thus �Lh :h=1,…, 5� is functionally linearly depen-
ent. Contradiction. Q.E.D.

Since �as we assume� the potential is nondegenerate, at any regular point x0 the first deriva-
ives V1 ,V2 ,V3 can be chosen arbitrarily. Thus the coefficients of Vj on both sides of equation �13�
ust be equal. From this, we obtain the relations

a3
11 − a1

31 = − a12A23 + �a33 − a11�A13 + a23A12 − a13A33 − G3a11 + G1a13,

a3
12 − a1

32 = − a12B23 + �a33 − a11�B13 + a23B12 − a13B33 − G3a12 + G1a23,

a3
13 − a1

33 = − a12C23 + �a33 − a11�C13 + a23C12 − a13C33 − G3a13 + G1a33,

ith six analogous relations from the other two Bertrand-Darboux equations. Using these nine
elations and Eqs. �8� we can solve for all of the first partial derivatives ai

jk to obtain

a1
11 = − G1a11 − G2a12 − G3a13,

a2
22 = − G1a12 − G2a22 − G3a23,

a3
33 = − G1a13 − G2a23 − G3a33,

3a2
12 = a12A22 − �a22 − a11�A12 − a23A13 + a13A23 + G2a11 − 2G1a12 − G2a22 − G3a23,

3a2
11 = − 2a12A22 + 2�a22 − a11�A12 + 2a23A13 − 2a13A23 − 2G2a11 + G1a12 − G2a22 − G3a23,

3a3
13 = − a12C23 + �a33 − a11�C13 + a23C12 − a13C33 − G1a11 − G2a12 − 2G3a13 + G1a33,

3a33 = 2a12C23 − 2�a33 − a11�C13 − 2a23C12 + 2a13C33 − G1a11 − G2a12 + G3a13 − 2G1a33,
1
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3a2
23 = a23�B33 − B22� − �a33 − a22�B23 − a13B12 + a12B13 − G1a13 − 2G2a23 − G3a33 + G3a22,

3a3
22 = − 2a23�B33 − B22� + 2�a33 − a22�B23 + 2a13B12 − 2a12B13 − G1a13 + G2a23 − G3a33 − 2G3a22,

3a1
13 = − a23A12 + �a11 − a33�A13 + a13A33 + a12A23 − 2G1a13 − G2a23 − G3a33 + G3a11,

3a3
11 = 2a23A12 + 2�a33 − a11�A13 − 2a13A33 − 2a12A23 + G1a13 − G2a23 − G3a33 − 2G3a11,

3a2
33 = − 2a13C12 + 2�a22 − a33�C23 + 2a12C13 − 2a23�C22 − C33� − G1a12 − G2a22 + G3a23 − 2G2a33,

3a3
23 = a13C12 − �a22 − a33�C23 − a12C13 − a23�C33 − C22� − G1a12 − G2a22 − 2G3a23 + G2a33,

3a2
12 = − a13B23 + �a22 − a11�B12 − a12B22 + a23B13 − G1a11 − 2G2a12 − G3a13 + G1a22,

3a1
22 = 2a13B23 − 2�a22 − a11�B12 + 2a12B22 − 2a23B13 − G1a11 + G2a12 − G3a13 − 2G1a22,

3a1
23 = a12�B23 + C22� + a11�B13 + C12� − a22C12 − a33B13 + a13�B33 + C23� − a23�C13 + B12�

− 2G1a23 + G2a13 + G3a12,

3a3
12 = a12�− 2B23 + C22� + a11�C12 − 2B13� − a22C12 + 2a33B13 + a13�− 2B33 + C23�

+ a23�− C13 + 2B12� − 2G3a12 + G2a13 + G1a23,

3a2
13 = a12�B23 − 2C22� + a11�B13 − 2C12� + 2a22C12 − a33B13 + a13�B33 − 2C23� + a23�2C13 − B12�

− 2G2a13 + G1a23 + G3a12, �27�

lus the linear relations

A23 = B13 = C12, B23 − A13 − C22 = 0,

B12 − A22 + A33 − C13 = 0, B33 + A12 − C23 = 0.

sing the linear relations we can express C12,C13,C22,C23, and B13 in terms of the remaining 10
unctions.

Since the above system of first-order partial differential equations is involutive the general
olution for the six functions ajk can depend on at most six parameters, the values ajk�x0� at a fixed
egular point x0. For the integrability conditions we define the vector-valued function

h�x,y,z� =�
a11

a12

a13

a22

a23

a33

�
nd directly compute the 6�6 matrix functions A�j� to get the first-order system

�xj
h = A�j�h, j = 1,2,3. �28�
he integrability conditions for this system are are
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Ai
�j�h − A j

�i�h = A�i�A�j�h − A�j�A�i�h 	 �A�i�,A�j��h . �29�

n terms of the 6�6 matrices

S�1� = A2
�3� − A3

�2� − �A�2�,A�3��, S�2� = A3
�1� − A1

�3� − �A�3�,A�1�� ,

S�3� = A1
�2� − A2

�1� − �A�1�,A�2�� ,

he integrabilty conditions are

S�1�h = S�2�h = S�3�h = 0. �30�

V. THE 5×6 THEOREM

Now assume that the system of equations �27� admits a six-parameter family of solutions ajk.
The requirement of superintegrability appears to guarantee only a five-parameter family of solu-
ions.� Thus at any regular point we can prescribe the values of the ajk arbitrarily. This means that
29� and �30� holds identically in h. Thus S�1�=S�2�=S�3�=0. Using these expressions, we can
erform a tedious but straightforward Maple-assisted computation that yields

1� An expression for each of the first partial derivatives ��Aij ,��Bij ,��Cij, for the 10 indepen-
dent functions as homogeneous polynomials of order at most two in the Ai�j� ,Bi�j� ,Ci�j�.
There are 30=3�10 such expressions in all. An example is

B2
12 = 2

3A12B12 − 1
6B12G2 − 5

6G1A12 − 1
6G1G2 + 1

3B22B12 + 1
3B22G1 + 1

3A23B23 − 7
6G3A23 + 1

2G12.

2� Exactly five quadratic identities for the 10 independent functions,

�a�

− A23B33 − A12A23 + A13B12 + B22A23 + B23A33 + 1
2A22G3 − 1

2A33G3 − 1
2B12G3 − 1

2G1G3

− 1
2A13G1 + 3

2G13 − 1
2A23G2 − A22B23 = 0,

�b�

�A33�2 + B12A33 − A33A22 − B33A12 − C33A13 + B22A12 − B12A22 + A13B23 − �A12�2 + 3
2G22

− 1
2Gy

2 − 3
2G33 + 1

2A13G3 + 1
2B33G2 − 1

2A22G1 + 1
2A33G1 − 1

2B23G3 − 1
2B22G2 + 1

2C33G3

+ 1
2 �G3�2 = 0,

�c�

− �B33�2 − B33A12 + B33B22 + B12A33 + B23C33 − �B23�2 + �B12�2 + 1
2 �G1�2 − 3

2G11 + 3
2G33

− 1
2B33G2 − 1

2A33G1 − 1
2 �G3�2 − 1

2C33G3 = 0, �31�

�d�

− B12A23 − A33A23 + A13B33 + A12B23 + 3
2G23 − 1

2A23G1 − 1
2A12G3 − 1

2B23G2 − 1
2G2G3

− 1
2B33Ga3 = 0,

�e�

A12B12 + C33A23 − A23B23 + B33A22 − B33A33 + 3
2G12 − 1

2G1G2 − 1
2A12G1

− 1 B12G2 − 1 A23G3 = 0,
2 2
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There are no nontrivial conditions in which some derivative of G is involved as a factor in
ach term.

Theorem 3 (5 \ 6): Let V be a nondegenerate potential corresponding to a conformally flat
pace in three dimensions that is superintegrable, i.e., suppose V satisfies the equations (14),
here conditions (17) and (24) hold, and there are five functionally independent constants of the
otion. Then the space of second-order symmetries for the Hamiltonian H= �px

2+ py
2

pz
2� /��x ,y ,z�+V�x ,y ,z� (excluding multiplication by a constant) is of dimension D=6.
Corollary 3: If H+V is a superintegrable conformally flat system with nondegenerate poten-

ial, then the dimension of the space of second-order symmetries

S = �
k,j=1

3

akj�x,y,z�pkpj + W�x,y,z�

s 6. At any regular point �x0 ,y0 ,z0� and given constants �kj =� jk there is exactly one symmetry S
up to an additive constant) such that akj�x0 ,y0 ,z0�=�kj. Given a set of five functionally indepen-
ent second-order symmetries L= �S� :�=1,… ,5� associated with the potential, there is always a
ixth second-order symmetry S6 that is functionally dependent on L, but functionally linearly
ndependent.

Corollary 4: The previous theorem and corollary remain true for five weakly functionally
ndependent second-order symmetries, if the corresponding quadratic forms �k,ja���

kj pkpj ,1	�

5 are functionally linearly independent.
Proof of theorem: The proof takes many steps, most of which must be carried out with

omputer algebra software. We give the logic behind the proof and describe the steps in order.
If there is only a five-parameter family of solutions then �30� holds only for the h that lie in

five-dimensional space. By appropriate Euclidean transformation of coordinates, if necessary, we

se Gauss-Jordan elimination and show that there is a basis for the space of the form h̃ j , j=1,…,5
here

�h̃1,h̃2,h̃3,h̃4,h̃5� =�
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

�1�x,y,z� �2�x,y,z� �3�x,y,z� �4�x,y,z� �5�x,y,z�
� .

ere we mean that if h belongs to the solution space then there are unique differentiable functions

j�x ,y ,z� such that h=� j=1
5 gjh̃

j. It follows that the integrabilty conditions become

Skj
��� + � jSk6

��� = 0, � = 1, . . . ,3, k = 1, . . . ,6, j = 1, . . . ,5. �32�

urther, the conditions �30� must hold. The question that we need to decide is whether the
onditions �30� and �32� imply

S�1� = S�2� = S�3� = 0.

Some of the elements of the matrices S�i� vanish identically. Indeed

S16
�1� = S26

�1� = S46
�1� = S14

�2� = S34
�2� = S64

�2� = S41
�3� = S51

�3� = S61
�3� 	 0.

lso

S16
�2� 	 S15

�1� 	 − S11
�2�, S54

�1� 	 − S23
�1�,

�1� �1� �1� �2� �3� �1�
S25 	 − S31 , S34 	 S26 , 3S11 	 2S11 ,
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S44
�2� 	 − 2

3S22
�2�, S46

�3� 	 − S43
�1�.

his implies that the following conditions must hold no matter what are the values of the � j:

Sij
�1� = 0, i = 1,2,4,6, 1 	 j 	 6, S31

�1� = 0, �33�

S1j
�2� = S4j

�3� = 0, 1 	 j 	 6, S54
�1� = 0, S44

�2� = 0.

e will show that the identities �33�, plus the identities �26� �that must always hold� suffice to
rove that

S�1� = S�2� = S�3� = 0,

ence that the integrabilty conditions are satisfied identically and there is a six-parameter family of
ymmetries. In the first step we compute all of the identities �26� and �33� and use a subset of 17
f the identities �33� and 12 of the identities �26� to solve for each of the 30 independent partial
erivatives

�kA
12, �kA

13, �kA
22, �kA

23, �kA
33, �kB

12, �kB
22, �kB

23, �kB
33, �kC

33, k = 1,2,3,

ave �zC
33 which does not occur in these expressions. In each case we obtain an expression for the

erivative as a polynomial in the 10 variables A12, . . . ,C33 with coefficients in the linear and
ero-order terms that involve derivatives of G. Then we substitute these expressions back into the
emaining conditions �26� and �33�. This yields a set of four independent second-order polynomial
dentities, a subset of the identities �31�. These identities are sufficient to verify that

S36
�1� = S56

�1� = S26
�2� = S36

�2� = S46
�2� = 0.

y conditions �32� this immediately implies S�1�=0, and S jk
�2�=0 for j=2, 3, 4 and 1	k	6.

ubstituting our expressions for the derivatives into these identities we obtain the full set of five
dentities �31�, and can solve for �xC

33. This set is now sufficient to verify that

S56
�2� = S66

�2� = S16
�3� = S26

�3� = S36
�3� = S56

�3� = S66
�3� = 0,

hich implies S�2�=S�3�=0. Q.E.D.

. THIRD-ORDER CONSTANTS OF THE MOTION

Now we investigate the space of third-order constants of the motion, assuming a nondegen-
rate potential. We have

K = �
k,j,i=1

3

akji�x,y,z�pkpjpi + b��x,y,z�p�, �34�

hich must satisfy �H ,K�=0. Here akji is symmetric in the indices k , j , i.
The conditions are

ai
iii = −

3

2�
s

asii�ln ��s,

3ai
jii + aj

iii = − 3�
s

asij�ln ��s, i � j ,

ai
ijj + aj

iij = −
1

2� asjj�ln ��s −
1

2� asii�ln ��s, i � j ,

s s
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2ai
ijk + aj

kii + ak
jii = − �

s

asjk�ln ��s, i, j,k distinct, �35�

bk
j + bj

k = 3��
s

askjVs, j � k, j,k = 1,2,3,

bj
j =

3

2
��

s

asjjVs −
1

2�
s

bs�ln ��s, j = 1,2,3, �36�

nd

�
s

bsVs = 0. �37�

he akji is just a third-order Killing tensor. We will, as usual, require the potential V to be
uperintegrable and non degenerate. Again, as usual, we require that the highest order terms, the
kji in the constant of the motion, be independent of the four independent parameters in V.
owever, the b� must depend on these parameters. We set

b��x,y,z� = �
j=1

3

f�,j�x,y,z�Vj�x,y,z� .

Here we are excluding the purely first-order symmetries. Also, we could add a term
f�,11�x ,y ,z�V11�x ,y ,z� to the preceding expression. However condition �37� implies f�,11	0.�
ubstituting this expression into �37� we see that

f�,j + f j,� = 0, 1 	 �, j 	 3.

urther

bj
i = �

��1
�f j

i,�V� + f i,�Vj�� ,

here the subscript j denotes the partial derivative with respect to xj. Substituting these results and
xpressions �14� into the defining equations �36� and equating coefficients of V1 ,V2 ,V3 ,V11,
espectively, we obtain the following independent conditions �Gs	�ln ��s�:

�a111 =
2

3
�f1,2A12 + f1,3A13� +

1

3�
s=1

3

fs,1Gs,

�a222 =
2

3
�− f1,2B12 + f2,3B23� +

1

3�
s=1

3

fs,2Gs,

�a333 =
2

3
�− f1,3C13 − f2,3C23� +

1

3�
s=1

3

fs,3Gs,

�a112 =
2

9
�f1,2�A22 + B12� + 2f1,3A23 + f2,3A13� +

1

9�
3

fs,2Gs,

s=1
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�a113 =
2

9
�2f1,2A23 + f1,3�A33 + C13� − f2,3A12� +

1

9�
s=1

3

fs,3Gs,

�a122 =
2

9
�f1,2�− A12 + B22� + f1,3B23 + 2f2,3A23� +

1

9�
s=1

3

fs,1Gs,

�a223 =
2

9
�− 2f1,2A23 − f1,3B12 + f2,3�− B22 + B33 + C23�� +

1

9�
s=1

3

fs,3Gs,

�a133 =
2

9
�f1,2C23 + f1,3�− A13 + C33� − 2f2,3A23� +

1

9�
s=1

3

fs,1Gs,

�a233 =
2

9
�− f1,2C13 − 2f1,3A23 + f2,3�− B23 − C22 + C33�� +

1

9�
s=1

3

fs,2Gs,

�a123 =
2

9
�f1,2C22 + f1,3B33 + f2,3�− B12 + C13�� , �38�

f1
1,2 =

1

3
�f1,2�A22 − 2B12� − f1,3A23 + f2,3A13� −

1

3�
s=1

3

fs,2Gs,

f2
1,2 =

1

3
�f1,2�− 2A12 − B22� − f1,3B23 + f2,3A23� +

1

3�
s=1

3

fs,1Gs,

f1
1,3 =

1

3
�− f1,2A23 + f1,3�A33 − 2C13� − f2,3A12� −

1

3�
s=1

3

fs,3Gs,

f3
1,3 =

1

3
�− f1,2C23 + f1,3�− 2A13 − C33� − f2,3A23� +

1

3�
s=1

3

fs,1Gs,

f2
2,3 =

1

3
�f1,2A23 − f1,3B12 + f2,3�− B22 + B33 − 2C23�� −

1

3�
s=1

3

fs,3Gs,

f3
2,3 =

1

3
�f1,2C13 − f1,3A23 + f2,3�− 2B23 + C22 − C33�� +

1

3�
s=1

3

fs,2Gs, �39�

nd

f1
2,3 + f2

1,3 = 1
3 �− f1,2C22 + f1,3�2B33 − 3C23� − f2,3�2B12 + C13�� ,

− f1
2,3 + f3

1,2 = 1 �− f1,2�2A13 + B23� − f1,3B33 + f2,3�B12 + 2C13�� . �40�
3
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We have eight equations for the nine derivatives fk
i,j, and by differentiating these we have 18

ndependent conditions for the 18 second derivatives fk�
i,j. Thus the system closes. A solution is

etermined by 12 parameters fk
i,j�x0� , fk�

i,j�x0� at a regular point, and these parameters are con-
trained by at least eight linearly independent conditions. Thus the solution space, which is obvi-
usly of dimension �3 must be of dimension 	4. We must still apply the conditions that the aijk

re third-order Killing tensors.
Theorem 4: Let K be a third-order constant of the motion for a conformally flat superinte-

rable system with nondegenerate potential V,

K = �
k,j,i=1

3

akji�x,y,z�pkpjpi + �
�=1

3

b��x,y,z�p�.

hen

b��x,y,z� = �
j=1

3

f�,j�x,y,z�Vj�x,y,z�

ith f�,j + f j,�=0,1	� , j	3. The aijk ,b� are uniquely determined by the four numbers

f1,2�x0,y0,z0�, f1,3�x0,y0,z0�, f2,3�x0,y0,z0�, f3
1,2�x0,y0,z0�

t any regular point �x0 ,y0 ,z0� of V.
Let

S1 = � a�1�
kj pkpj + W�1�, S2 = � a�2�

kj pkpj + W�2�

e second-order constants of the motion for a superintegrable system with nondegenerate potential
nd let A�i��x ,y ,z�= �a�i�

kj �x ,y ,z�� , i=1, 2 be 3�3 matrix functions. Then the Poisson bracket of
hese symmetries is given by

�S1,S2� = �
k,j,i=1

3

akji�x,y,z�pkpjpi + b��x,y,z�p�,

here

fk,� = 2��
j

�a�2�
kj a�1�

j� − a�1�
kj a�2�

j� � . �41�

ifferentiating, we find

f i
k,� = 2��

j

��ia�2�
kj a�1�

j� + a�2�
kj �ia�1�

j� − �ia�1�
kj a�2�

j� − a�1�
kj �ia�2�

j� � + Gif
k,�. �42�

Clearly, �S1 ,S2� is uniquely determined by the skew-symmetric matrix �A�2� ,A�1��
A�2�A�1�−A�1�A�2�, hence by the constant matrix �A�2��x0 ,y0 ,z0� ,A�1��x0 ,y0 ,z0�� evaluated at a

egular point, and by the number F�x0 ,y0 ,z0�= f3
1,2�x0 ,y0 ,z0�.

For superintegrable nondegenerate potentials there is a standard structure allowing the iden-
ification of the space of second-order constants of the motion with the space S3 of 3�3 symmet-
ic matrices, as well as identification of the space of third-order constants of the motion with a
ubspace of the space K3�F of 3�3 skew-symmetric matrices K3, crossed with the line F
�F�x0��. Indeed, if x0 is a regular point then there is a linear correspondence between second-
rder symmetries S and their associated symmetric matrices A�x0�. Let �S1 ,S2��= �S2 ,S1� be the

eversed Poisson bracket. Then the map
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�S1,S2�� ⇔ �A�1��x0�,A�2��x0��

s an algebraic homomorphism. Here, S1 ,S2 are in involution if and only if matrices A�1�
�x0� ,A�2��x0� commute and F�x0�=0. If �S1 ,S2��0 then it is a third-order symmetry and can be

niquely associated with the skew-symmetric matrix �A�1��x0� ,A�2��x0�� and the parameter
�x0�. Let Eij be the 3�3 matrix with a 1 in row i, column j and 0 for every other matrix element.
hen the symmetric matrices

A�ij� = 1
2 �Eij + E ji� = A�ji�, i, j = 1,2,3 �43�

orm a basis for the 6-dimensional space of symmetric matrices. Moreover,

�A�ij�,A�k��� = 1
2�� jkB�i�� + � j�B�ik� + �ikB�j�� + �i�B�jk�� , �44�

here

B�ij� = 1
2 �Eij − E ji� = − B�ji�, i, j = 1,2,3.

ere B�ii�=0 and B�12� ,B�23� ,B�31� form a basis for the space of skew-symmetric matrices. To
btain the commutation relations for the second-order symmetries we need to use relations �42� to
ompute the parameter F�x0� associated with each commutator �A�ij� ,A�k���. The results are
traightforward to compute, using relations �27�.

Commutator 3F /�

�A�12� ,A�11��=B�21� −3A13−B23−G3

�A�13� ,A�11��=B�31� A12−B33+G2

�A�22� ,A�11��=0 −4A23

�A�23� ,A�11��=0 2�A22−A33�
�A�33� ,A�11��=0 4A23

�A�13� ,A�12��= 1
2B�32� 1

2 �3B12−A22+3A33−G1�
�A�22� ,A�12��=B�21� −3B23−A13−G3

�A�23� ,A�12��= 1
2B�31� 1

2 �−3B33−3A12+2B22+G2�
�A�33� ,A�12��=0 2�B23−A13�
�A�22� ,A�13��=0 −2B33

�A�23� ,A�13��= 1
2B�21� −C33+ 1

2B23− 1
2A13− 1

2G3

�A�33� ,A�13��=B�31� A12+B33+G2

�A�23� ,A�22��=B�32� A33−A22−B12−G1

�A�33� ,A�22��=0 −4A23

�A�33� ,A�23��=B�32� A22−A33−B12−G1

Suppose the dimension of the space of truly third-order symmetries generated by commutators
f second-order symmetries is 3. This means that whenever the matrices of two second-order
ymmetries commute at a regular point x0 , so that f1,2�x0 ,y0 ,z0�= f1,3�x0 ,y0 ,z0�= f2,3�x0 ,y0 ,z0�
0, then f3

1,2�x0 ,y0 ,z0�=0. From the table above we see that

A23 = 0, A22 = A33, B23 = A13, B33 = 0.

urther, since �A�12� ,A�11��− �A�22� ,A�12��=0, etc., we have

B12 = − 1
2A33, B22 = 2A12, C33 = 2A13.

ubstituting these results into the integrability conditions for the potential and the symmetries, we
nd that there exists a function U�x ,y ,z� such that

A33 = 2�ln U�x, A12 = − �ln U�y, A13 = − �ln U�z,
here
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Uxx = Uyy = Uzz, Uxy = Uyz = Uzx = 0.

ote that U is an instance of the isotropic oscillator potential

U = ��x2 + y2 + z2� + �x + 
y + �z .

Further, the defining second-order symmetries for the isotropic oscillator are only weakly func-
ionally independent.� By analogy with the 2D Stäckel transform studied in Ref. 2 �whose 3D form
ill be studied in our next presentation� it is straightforward to see that the potential of our system

s a Stäckel transform by U of the isotropic oscillator potential. By taking the inverse Stäckel
ransform we can obtain Aij =Bij =Cij 	0 for all i , j. Plugging these values into the integrability
onditions for the symmetries, we find that G1=G2=G3=0 so � is a constant. Thus the Stäckel
ransformed system is just the isotropic harmonic oscillator in flat space.

Corollary 5: Let V be a superintegrable nondegenerate potential on a conformally flat space,
ot a Stäckel transform of the isotropic oscillator. Then the space of truly third-order constants of
he motion is four-dimensional and is spanned by Poisson brackets of the second-order constants
f the motion.

I. THE STANDARD BASIS

To gain a deeper understanding of our standard basis structure, it is useful to reformulate the
roblem of determining the second-order symmetries for a nondegenerate superintegrable poten-
ial. We set

W�x� = f1V1 + f2V2 + f3V3 + f11V11

nd substitute this result into Wi=�� j=1
3 aijVj. Additionally we must impose the Killing tensor

onditions,

ai
ii = − G1a1i − G2a2i − G3a3i,

2ai
ij + aj

ii = − G1a1j − G2a2j − G3a3j, i � j ,

ak
ij + aj

ki + ai
jk = 0, i, j,k distinct.

rom the expressions for Wi we obtain the equations for the aij,

�a11 = f1
1 + f2A12 + f3A13 + f11A14,

�a12 = f2
1 + f1A12 + f2A22 + f3A32 + f11A24,

�a13 = f3
1 + f1A13 + f2A23 + f3A33 + f11A34,

�45�
�a22 = f2

2 + f1B12 + f2B22 + f3B32 + f11B24,

�a23 = f3
2 + f1B13 + f2B23 + f3B33 + f11B34,

�a33 = f3
3 + f1C13 + f2C23 + f3C33 + f11C34,

nd the condition on the first derivatives of the f i,

f2
1 − f1

2 = − f1A12 + f2�B12 − A22� + f3�B13 − A23� + f11�B14 − A24� ,

f1 − f3 = − f1A13 + f2�C12 − A23� + f3�C13 − A33� + f11�C14 − A34� , �46�
3 1
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f3
2 − f2

3 = f1�C12 − B13� + f2�C22 − B23� + f3�C23 − B33� + f11�C24 − B34� .

ote the expressions for f1
11 and f2

11 in terms of f1 , f2 , f11,

f1
11 = − f1 − f11�B12 − A22�, f2

11 = − f2 − f11A12, f3
11 = − f3 − f11A13.

ifferentiating �46� with respect to each of x1 ,x2 ,x3 and substituting �45� into the Killing equa-
ions we see that we can express each of the second derivatives of f1 , f2 , f3 in terms of lower order
erivatives of f1 , f2f3 , f11. Thus the system is in involution at the second derivative level, but not
t the first derivative level because we have only three conditions for the nine derivatives f j

i. We
an uniquely determine a symmetry at a regular point by choosing the 10 parameters

�f1, f2, f3, f11, f1
1, f2

1, f3
1, f2

2, f3
2, f3

3� .

he values of f1 , f2 , f3 , f11 at the regular point are analogous to the four parameters that we can
dd to the potentials in the four parameter family. For our standard basis, we fix
f1 , f2 , f3 , f11�x0

= �0,0 ,0 ,0�. Then from �45� and �46� we have

� f1
1 f2

1 f3
1

f1
2 f2

2 f3
2

f1
3 f2

3 f3
3� = ��a11 a12 a13

a21 a22 a23

a31 a32 a33� .

hus we can define a standard set of basis symmetries S�jk�=�aij�x�pipj +W�ij��x� corresponding to
regular point x0 by

1

�� f1
1 f2

1 f3
1

f1
2 f2

2 f3
2

f1
3 f2

3 f3
3�

x0

= �a11 a12 a13

a21 a22 a23

a31 a32 a33�
x0

= A�jk�, W�jk��x0� = 0.

he condition on W�jk� is actually four conditions since W�jk� depends on four parameters.

II. MAXIMUM DIMENSIONS OF THE SPACES OF POLYNOMIAL CONSTANTS

In order to demonstrate the existence and structure of quadratic algebras for 3D superinte-
rable systems on conformally flat spaces, it is important to compute the dimensions of the spaces
f symmetries of these systems that are of orders 4 and 6. These symmetries are necessarily of a
pecial type. The highest order terms in the momenta are independent of the parameters in the
otential, while the terms of order 2 less in the momenta are linear in these parameters, those of
rder 4 less are quadratic, and those of order 6 less are cubic. We will obtain these dimensions
xactly, but first we need to establish sharp upper bounds.

. Quartic constants

We investigate the space of fourth-order constants of the motion

F = �
�,k,j,i=1

3

a�kji�x,y,z�p�pkpjpi + �
m,q=1

3

bmq�x,y,z�pmpq + W�x,y,z� , �47�

hich must satisfy �H ,F�=0. Here a�kji ,bmq are symmetric in all indices.
The conditions are

ai
iiii = − 2� �s

�
asiii,
s
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4ai
jiii + aj

iiii = − 6�
s

�s

�
asjii, i � j ,

3ai
jjii + 2aj

iiij = − �
s

�s

�
asiii − 3�

s

�s

�
asijj, i � j , �48�

3ai
iijk + aj

kiii + ak
jiii = − 6�

s

�s

�
asijk, i, j,k distinct,

2ai
ijjk + 2aj

jiik + ak
iijj = − �

s

�s

�
�askii + askjj�, i, j,k distinct,

bi
jk + bk

ij + bj
ki = 6��

s

askjiVs, i, j,k distinct,

2bi
ij + bj

ii = 6��
s

asjiiVs − �
s

�s

�
bsi, i � j , �49�

bi
ii = 2��

s=1

3

asiiiVs − �
s

�s

�
bsi,

nd

��
s

bsiVs = Wi. �50�

learly, the a�kji is a fourth-order Killing tensor. We require the potential V to be superintegrable
nd nondegenerate. Also we require that the highest order terms, the a�kji in the constant of the
otion be independent of the four independent parameters in V . However, the bmq must depend

inearly and W quadratically on these parameters.
We set

bjk = �
�=1

4

f jk,�W���, f jk,� = fkj,�,

here W��� is defined by �18�. Then conditions �49� take the form

�xh
f jk,� + �xk

fhj,� + �xj
fkh,� − �a�hjk = ¯ , �51�

here the right-hand side depends only on the f jk,� ,1	 j ,k ,h	3 and we set a4hjk	0. From the
ntegrability conditions �xj

��W /�xi�=�xi
��W /�xj� , i� j for Eq. �50� we obtain the conditions

�xj
f�k,� + �xj

f�k,� − �xk
f�j,� − �xk

f�j,� = ¯ , �52�

here the right-hand side depends only on the f jk,� , j�k ,1	� ,�	4 and we set f4j,�	0.
There are 30 independent equations �51� with ��4 and we use 15 of these to define the 15

omponents aihjk as linear combinations of �xh
f jk,� and f jk,�. We can then eliminate the aihjk from

he remaining 15 equations to obtain 15 conditions relating �xh
f jk,� and f jk,�. There are 18 terms of

he form �xh
f jk,4. Equations �52� with �=�=4 are satisfied identically. There are nine equations

52� with �=4,1	�	3 and 10 equations �51� with �=4. Thus all terms of the form �xh
f jk,4 can

jk,�
e expressed as linear combinations of f . There are a total of 54 distinct terms of the form
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xh
f jk,m ,1	h , j ,k ,m	3. We have seen that there are 15 conditions on these terms remaining from

51�; there are an additional 18 such conditions from �52� with � ,��4. Thus there is a shortfall
f 21 conditions on the first derivatives �xh

f jk,m.
There are a total of 108 distinct terms of the form �xh

�x�
f jk,m with 1	hj ,k ,� ,m	3. Differ-

ntiating with respect to x1 ,x2, and x3 the 15 first-order conditions of �51�, from which the aihjk

ave been eliminated, we obtain 45 independent conditions on these second derivatives. Differ-
ntiating each of our expressions for the aihjk and substituting into equations �48� we find 63
dditional conditions on the second derivatives. This allows us to express each second-order
erivative as a linear combination of lower order derivatives, Thus the system is in involution.
lso, we can differentiate the 18 equations from �52� with � ,��4 to obtain 54 additional con-
itions on the second derivatives �which may or may not be independent of those already found�.

We conclude that any fourth-order symmetry is uniquely determined by the values f jk,��x0�
nd a subset of 21 of the values �xh

f jk,m�x0� at a regular point x0. Note that by adding an appro-
riate linear combination of purely second-order symmetries to the fourth-order symmetry we can
chieve f jk,��x0�=0 for all j ,k ,�, so the maximum possible dimension of the space of purely
ourth-order symmetries for a nondegenerate potential is 21.

. Sixth-order constants

We take the general sixth-order symmetry for a nondegenerate potential to be of the form

L = � ahijkltphpipjpkplpt + � bhijkphpipjpk + � cijpipj + W ,

here the functions ahijklt ,bhijk ,cij are symmetric in all indices. Here ahijklt is independent of the
arameters V� ,�=1, . . . ,4 ,bhijk is a homogeneous quadratic polynomial in the W��� ,cij is homo-
eneous fourth order, and W is homogeneous sixth order in the W���. The Poisson bracket of H
nd L is polynomial in the momenta and the parameters W��� and for it to vanish at a regular point,
ach coefficient of this polynomial must vanish separately. The conditions are �for 1	 i , j ,k	k
nd i , j ,k pairwise distinct and for s=1, 2, 3�

ai
iiiiii = − 3�

s

�s

�
asiiiii,

6ai
jiiiii + aj

iiiiii = − 15�
s

�s

�
asjiiii,

5ai
jjiiii + 2aj

jiiiii = − �
s

�s

�
asiiiii − 10�

s

�s

�
asjjiii,

4ai
jjjiii + 3aj

jjiiii = − 3�
s

�s

�
asjiiii − 12�

s

�s

�
asjjjii,

5ai
jkiiii + ak

jiiiii + aj
kiiiii = − 10�

s

�s

�
asjkiii,

4ai
jjkiii + 2aj

jkiiii + ak
jjiiii = − 6� �s

�
asjjkii − � �s

�
askiiii,
s s
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3ai
jjkkii + 2aj

jkkiii + 2ak
kjjiii = − 90�

s

�s

�
asijjkk − 30�

s

�s

�
askkiii − 30�

s

�s

�
asjjiii, �53�

bi
iiii = 3��

s

asiiiiiW�s� − 2�
s

�s

�
bsiii,

bj
iiii + 4bi

jiii = 15��
s

asjiiiiW�s� − 6�
s

�s

�
bsjii,

2bj
iiij + 3bi

jjii = 15��
s

asjjiiiW�s� − �
s

�s

�
�2bsiii + 6bsjji� , �54�

bj
iiik + bk

iiij + 3bi
iijk = 15��

s

asiiijkW�s� − 6�
s

�s

�
bsijk,

bk
iijj + 2bj

iijk + 2bi
ijjk = 15��

s

asiij jkW�s� − 2�
s

�s

�
�bsiik + bsjjk� ,

ci
ii = 2��

s

bsiiiW�s� − �
s

�s

�
csi,

2ci
ij + cj

ii = 6��
s

bsiijW�s� − �
s

�s

�
csi, �55�

ck
ij + cj

ik + ci
kj = 6��

s

bsijkW�s�,

�
s

�cj
si − ci

sj�W�s� =
1

�
�

s

�csj��W�s��i − csi��W�s�� j� . �56�

e set

cij = �
�,�=1

4

cij,��W���W���, cij,�� = cij,��.

here are 6�10=60 independent terms cij,��. There are 60�3=180 terms ck
ij,�� of which 108 are

f the form ck
ij,st, 54 are of the form ck

ij,4s, and 18 are of the form ck
ij,44. Equations �56� give 30

onditions relating the derivatives ck
ij,��, 18 conditions relating the derivatives ck

ij,4s, and 8 condi-
ions relating the derivatives ck

ij,44. The 100 independent equations �55� allow us to solve for the 15
erms bijk�,4 and the 45 terms bijk�,s where

bijk� = �
�=1

4

bijk�,�W���.

urther, they yield 10 conditions relating the derivatives ck
ij,44, 15 equations relating the derivatives

ij,4s ij,st ij,44

k , and 15 equations relating the derivatives ck . It follows that all 18 terms of the form ck
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an be expressed as linear combinations of the cij,��. There are a total of 78 conditions on the
emaining 162 terms.

There are 360 terms ck�
ij,�� of which we can ignore the 36 terms ck�

ij,44. The 84 equations �54�
llow us to solve for the 28 terms ahijk�m and give 21 conditions for ck�

ij,4s and 35 conditions for

k�
ij,st. Further differentiating our previously obtained 78 conditions on the first derivatives we
btain 78�3=234 conditions, 99 on ck�

ij,st and 135 independent conditions on ck�
ij,st. It follows that

ll 108 terms of the form ck�
ij,4s can be expressed as linear combinations of lower order terms and

here is a total of 35+135=160 independent conditions on the 216 terms ck�
ij,st. Finally, differenti-

ting the previous conditions obtained for the ck�
ij,st and using the 31 equations �53� we obtain at

east 360 independent conditions for the 360 terms ck�m
ij,st . Thus the maximal number of parameters

n a solution of the sixth order symmetry equations is 60+84+56=200, excluding the 35 inde-
endent additive terms W���W���W�
�.

We know that the dimension of the space of second-order symmetries for a superintegrable
ystem with nondegenerate potential is 6. Now let us suppose �as we will prove� the dimension of
he space of quartic symmetries is 21. Then there are exactly 84=21�4 independent sixth-order
ymmetries that are also quartic symmetries, and 6�10=60 independent sixth-order symmetries
hat are also quadratic. Thus the maximal possible dimension of the space of truly sixth-order
ymmetries is 200−84−60=56. We will show that this bound of 56 is actually achieved.

III. BASES FOR THE FOURTH- AND SIXTH-ORDER CONSTANTS OF THE MOTION

It follows from Sec. VII A that, for a superintegrable system with nondegenerate potential, the
imension of the space of truly fourth-order constants of the motion is at most 21. Note from Sec.
I that at any regular point x0, we can define a standard basis of six second-order constants of the
otion S�ij�=A�ij�+W�ij� where the quadratic form A�ij� has matrix A�ij� defined by �43� and W�ij� is

he potential term with W�ij��x0�	0 identically in the parameters W���. By taking homogeneous
olynomials of order two in the standard basis symmetries we can construct fourth order symme-
ries.

Question: Is every fourth-order symmetry a polynomial in the second-order symmetries?
Answer: Yes Also the dimension of the space of fourth-order symmetries is exactly 21.
Theorem 5: The 21 distinct standard monomials S�ij�S�jk�, defined with respect to a regular

oint x0, form a basis for the space of fourth-order symmetries.
Proof: We choose the basis symmetries in the form

�1� �S�ii��2, S�ii�S�ij�, S�ii�S�j j�, S�ii�S�jk�

�2� S�ii�S�j j� − �S�ij��2

�3� S�ij�S�ik� − S�ii�S�jk�

or i , j ,k=1, . . . ,3 i , j ,k pairwise distinct �three possibilities�.
If we evaluate this set at the regular point the first class of symmetries will be

pi
4 , pi

3pjpi
2pj

2 , pi
2pjpk, respectively, whereas the last two classes of symmetries will vanish. Thus the

nly possible linear dependencies are those relating the six symmetries

F�12� = S�11�S�22� − �S�12��2, F�13� = S�11�S�33� − �S�13��2, F�23� = S�22�S�33� − �S�23��2,

G�23� = S�12�S�13� − S�11�S�23�, G�13� = S�12�S�23� − S�22�S�13�, G�12� = S�13�S�23� − S�33�S�12�.

he second-order terms in the symmetry F�ij� are

F�ij� = A�ii�W�j j� + A�j j�W�ii� − 2A�ij�W�ij�.

�ij�
ow F vanishes at the regular point but its derivatives at the point are

                                                                                                            



S

A

S
s

p
t
5
s

f

f

r

�
i
a
T
o
h

a
s
a

1

1

103507-27 3D conformally flat superintegrable systems J. Math. Phys. 46, 103507 �2005�

                        
Fi
�ij� = pj

2Vi − pipjVj, F j
�ij� = pi

2Vj − pjpiVi, Fk
�ij� = 0.

imilarly the second-order terms in the symmetry G�jk� are

G�jk� = A�ij�W�ik� + A�ik�W�ij� − A�ii�W�jk� − A�jk�W�ii�.

gain G�ij� vanishes at the regular point but its derivatives at the point are

Gi
�jk� = 1

2 pipjVk + 1
2 pipkVj − pjpkVi, G j

�jk� = 1
2 pipkVi − 1

2 pi
2Vk, Gk

�jk� = 1
2 pipjVi − 1

2 pi
2Vj .

ince V1 ,V2 ,V3 are arbitrary, it is clear that these six terms are linearly independent. Thus the 21
ymmetries form a basis. Q.E.D.

Now we know that for a superintegrable system with nondegenerate potential the space of
urely fourth-order constants of the motion is exactly 21. Thus from Sec. VII B the dimension of
he space of purely sixth-order constants of the motion is at most 56. Again we shall show that the
6 independent homogeneous third-order polynomials in the symmetries S�ij� form a basis for this
pace.

At the sixth-order level we have the symmetries

�1� �S�ii��3, �S�ii��2S�ij�, �S�ii��2S�j j�, �S�ii��2S�jk�

or i , j ,k=1, . . . ,3 i , j ,k pairwise distinct �18 possibilities�,

�2� S�ii�S�ij�S�j j�, S�ii�S�ij�S�jk�, S�ii�S�j j�S�kk�

�3� S��m��S�ii�S�j j� − �S�ij��2�

�4� S��m��S�ij�S�ik� − S�ii�S�jk��
or i , j ,k=1, . . . ,3 i , j ,k pairwise distinct �18 possibilities�.

Theorem 6: The 56 distinct standard monomials S�hi�S�jk�S��m�, defined with respect to a
egular x0, form a basis for the space of sixth-order symmetries.

Proof: Rather than using the monomials directly we choose the polynomials in the forms
1�–�4� above. Suppose some linear combination C of these 56 polynomials has identically van-
shing sixth-order terms. This implies immediately that the coefficients of the first 28 polynomials
re zero. Thus C must be a linear combination of the six fourth-order symmetries F�ij� ,G�ij� of
heorem 5. Now the first derivatives of the second-order terms in C all vanish at x0 so by the proof
f Theorem 5 the linear combination of fourth-order basis symmetries must vanish. Thus we must
ave C	0. Then evaluating the expressions

�xh
C�x0� = 0, �xhx�

2 C�x0� = 0.

nd making use of the expressions for Fij ,Gij in the proof of Theorem 5 it is straightforward to
how that the coefficients of all 28 terms in C must vanish. The 56 terms are linearly independent
nd all nonzero linear combinations are truly sixth order. Q.E.D.

We conclude that the quadratic algebra closes.
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recursive parametrization of unitary matrices
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A simple recursive scheme for parametrization of n-by-n unitary matrices is
presented. The n-by-n matrix is expressed as a product containing the �n−1�-by-
�n−1� matrix and a unitary matrix that contains the additional parameters needed to
go from n−1 to n. The procedure is repeated to obtain recursion formulas for n-by-
n unitary matrices. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2038607�

. THE PARAMETRIZATION

It has been known for a long time that unitary transformations play a central role in physics.
n excellent example is Wigner’s paper of 1939,1 which has had a great impact on the develop-
ent of physics and is still important.

It is also a known fact that a general n-by-n unitary matrix X�n� may be expressed as a product
f three unitary matrices,

X�n� = ��n���� �V�n���n���� � , �1�

here the matrices � are diagonal unitary matrices,

��n���� � =�
ei�1

ei�2

·

·

ei�n

� . �2�

��� � is defined analogously; the �’s and �’s being real. The matrix X�n� has n2 real parameters. In

he following, for simplicity, the word parameter stands for real parameter. The quantities �� and ��

ake care of 2n−1 parameters of X�n� because only the sums �i+� j enter, where i and j run from
to n. The remaining �n−1�2 parameters reside in the nontrivial matrix V�n�, which is the subject

f this study.
We start by putting V�1�=1, whereby X�1�=ei��1+�1� is the most general one-by-one unitary

matrix.” For n�2, we write the matrix V�n� in the form

V�n� = �V�n−1� + �1 − cn��A�n−1�	
B�n−1�� sn�A�n−1�	
sn
B�n−1�� cn

� . �3�

ere we have introduced an angle denoted by �n and have used the common notation sn=sin �n,

n=cos �n. The complex vectors “A�n−1�” and “B�n−1�” each have n−1 components, i.e.,

�
Electronic mail: cecilia.jarlskog@matfys.lth.se

46, 103508-1022-2488/2005/46�10�/103508/4/$22.50 © 2005 American Institute of Physics
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�A�n−1�	 =�
a1

�n−1�

a2
�n−1�

·

·

an−1
�n−1�
� , �B�n−1�	 =�

b1
�n−1�

b2
�n−1�

·

·

bn−1
�n−1�
� . �4�

urthermore,


B�n−1�� = �b1
�n−1��,b2

�n−1��,…,bn−1
�n−1��� �5�

nd

��A�n−1�	
B�n−1���ij � ai
�n−1�bj

�n−1��. �6�
�n−1� and B�n−1� are not arbitrary but are required to satisfy the conditions


A�n−1��A�n−1� = 1, �B�n−1�	 = − V�n−1�†�A�n−1�	 , �7�

hereby


B�n−1��B�n−1� = 1, �A�n−1�	 = − V�n−1��B�n−1�	 . �8�

We can easily check that if the matrix V�n−1�, in Eq. �3�, is unitary so is V�n�. In order for V�n�

o be the most general n-by-n unitary matrix, modulus the phase matrices �, it must have the
equired number of parameters. The vector A�n−1�, having n−1 complex components, would seem
o represent 2�n−1� parameters. But it has only 2�n−2� because it is normalized and its overall
hase can be absorbed into the matrices �, i.e., the transformation

�A�n−1�	 → ei��A�n−1�	 �9�

ields

�B�n−1�	 → ei��B�n−1�	 �10�

nd

V�n� → ��0,0,…,e−i��V�n���0,0,…,ei�� . �11�

he parameter counting, therefore, goes as follows. On the left-hand side of Eq. �3� we need to
ave �n−1�2 parameters. On the right-hand side, we have �n−2�2 from V�n−1� and 2�n−2� from the
ector A�n−1�. Thus, together with the angle �n, the number of parameters is �n−2�2+2�n−2�+1
hich equals �n−1�2 as required.

We may use the relation �7� between A�n−1� and B�n−1� to rewrite the matrix V�n� in terms of
ither A�n−1� or B�n−1�. In terms of A�n−1�, we have

V�n� = ���1 − �1 − cn���A�n−1�	
A�n−1�� sn�A�n−1�	
− sn
A�n−1�� cn

��V�n−1� 0

0 1
� � An,n−1�V�n−1� 0

0 1
� . �12�

hile writing the matrix in terms of B�n−1� yields

V�n� = �V�n−1� 0

0 1
��1 − ��1 − cn���B�n−1�	
B�n−1�� − sn�B�n−1�	

sn
B�n−1�� cn
� � �V�n−1� 0

0 1
�Bn,n−1. �13�

hese relations allow for a systematic construction of unitary matrices order by order. By repeat-
ng the above noted procedure for the matrix V�n−1� in terms of A�n−2� and B�n−2�, and following

own the chain we find the recursion formulas that we are looking for,
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V�n� = An,n−1An,n−2…An,2An,1, �14�

V�n� = Bn,1Bn,2…Bn,n−2Bn,n−1. �15�

he matrices An,n−1 and Bn,n−1 were previously defined in Eqs. �12� and �13�. For j�n−1 we have

An,j = ���1 − �1 − cj+1���A�j�	
A�j�� sj+1�A�j�	
− sj+1
A�j�� cj+1

� 0

0 In−j−1
� , �16�

Bn,j = ���1 − �1 − cj+1���B�j�	
B�j�� − sj+1�B�j�	
sj+1
B�j�� cj+1

� 0

0 In−j−1
� . �17�

ere In−j−1 is the unit matrix of order n− j−1. The two unitary matrices An,j and Bn,j are related by

An,j = �V�j� 0

0 In−j
�, Bn,j�V�j�† 0

0 In−j
� . �18�

I. SIMPLE EXAMPLES

The simplest case is n=2 for which we take �A�1�	=1 whereby �B�1�	=−1. Using V�1�=1 we
btain, from Eqs. �12� and �13�,

V�2� = A2,1 = B2,1 = � c2 s2

− s2 c2
� . �19�

his is the familiar rotation matrix R2��2� ,�2 being the rotation angle in two dimensions.
The next simplest case is n=3 for which we may either use the “mixed form” or the pure

orms. For the mixed form we have

V�3� = �R2��� + �1 − c3��A�2�	
B�2�� s3�A�2�	
s3
B�2�� c3

� . �20�

ere R2��� is again the rotation matrix in Eq. �19� and we may put

�A�2�	 = �a1

a2
�, �B�2�	 = �b1

b2
� . �21�

rom Eq. �7� it follows that

�A�2�	 = − R2����B�2�	, �B�2�	 = − R2�− ���A�2�	 . �22�

ence these vectors represent two parameters, for example

�A�2�	 = � cos �

sin �ei	 � , �23�

here � and 	 are real. The pure forms are also obtained very simply, for example

V�3� = �1 − �1 − c3��A�2�	
A�2�� s3�A�2�	
− s3
A�2�� c3

��R2��2� 0

0 1
� , �24�

here A�2� is as defined in Eq. �23�. Evidently, depending on the application one has in mind some

hoices may be more convenient than others. This is demonstrated in Refs. 2 and 3 which deal
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ith the so-called quark and lepton mixing matrices. The essential point is that V�3� is described in
rather simple fashion by four parameters as it should be. For the case of n=4 we could, for

xample, take A�3� to be

�A�3�	 = � cos 


sin 
 cos �ei	1

sin 
 sin �ei	2
� , �25�

here 
 , � , 	1, and 	2 are the four parameters needed to define the most general A�3�.
In principle, the above recursive procedure may “easily” be extended to much larger n with

he help of computers.

1 E. P. Wigner, Ann. Math. 40, 149 �1939�; see also E. P. Wigner, “Symmetries and Reflections” �MIT, Cambridge, 1970�.
2 C. Jarlskog, hep-ph/0503199, Phys. Lett. B �to be published�.
3 C. Jarlskog, hep-ph/0504012.
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We give a new nonisospectral generalization of the Volterra lattice equation to 2
+1 dimensions. We use this to construct a new nonisospectral lattice hierarchy in
2+1 dimensions, along with its underlying linear problem. Reductions yield a
variety of new integrable hierarchies, including generalizations of known discrete
Painlevé hierarchies, all along with their corresponding linear problems. This rep-
resents an extension of previously developed techniques to the discrete case. ©
2005 American Institute of Physics. �DOI: 10.1063/1.2041347�

. INTRODUCTION

The representation of a nonlinear system as the compatibility condition of linear equations is
n idea that is central to our understanding of the word “integrability.” This concept dates to the
ntroduction of the inverse scattering transform �IST� as a tool for solving the initial value prob-
em, under certain conditions on initial data, for completely integrable partial differential equations
PDEs�.1–3 Of course, this idea is not only useful within the context of PDEs in 1+1 dimensions:
t has also been succesfully applied to partial differential equations in multidimensions,4,5 to
ifferential-difference �or lattice� equations,6 and to ordinary differential equations,7 as well as to
any other integrable nonlinear systems.

Among our aims in the present paper, we extend ideas related to a particular kind of integrable
onlinear system, namely those having a corresponding nonisospectral scattering problem. The
rst example of a nonlinear equation having such a scattering problem is due to Calogero8 �see
lso Ref. 9�; since then, a great many papers have been published on such systems, both continu-
us, e.g. Refs. 10–14, and discrete, e.g., Refs. 15 and 16. In a series of recent papers17–19 �see also
ef. 20�, two of the current authors have shown how certain nonisospectral extensions of well-
nown integrable equations, to 2+1 dimensions, can be understood as embodying information
bout the entire hierarchy associated to that integrable equation. This involves interpreting the
onisospectral version of the PDE as defining a recursion relation between successive members of
he hierarchy. Thus far, this idea has been used within the context of continuous systems. How-
ver, its application to lattice systems would require seeking an equation of the form

ut
�n� = R�n�u�

�n�, u�n� = u�n,t,�� , �1�

here n is a discrete variable and t and � are continuous variables, and where R�n� is a discrete
ecursion operator—together with an underlying non-isospectral linear problem. To the best of our
nowledge, such equations are unknown. Here we give an example of such an equation, and show
ow it can be used to extend the approach used in Refs. 17–20 to the discrete case. In this way we

�Permanent address: Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of

China.
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btain a new hierarchy of 2+1-dimensional nonisospectral lattice equations.
However, in addition to the role played by equations having nonisospectral scattering prob-

ems in the construction of integrable hierarchies and their associated linear problems, there are
any other reasons why they are of interest, as discussed in Ref. 18. One such is the link between

onisospectral scattering problems for PDEs or lattice equations, and linear problems for ODEs or
iscrete equations, respectively.21 This link, in the case of continuous equations, was exploited,
nd generalized, in Refs. 17–20. Another of our aims in this paper is to extend these results to the
iscrete case, by considering reductions to hierarchies of discrete equations.

In fact, the consideration of reductions for the 2+1-dimensional lattice hierarchy constructed
ere appears to yield richer results than for 2+1-dimensional PDE hierarchies, in the sense that
ot only do we obtain hierarchies of lattice equations and discrete equations �where previously
eductions were to hierarchies of PDEs and ODEs�, but also hierarchies of differential-delay
quations. The consideration of such reductions is a third aim in our paper.

The layout of our paper is as follows. In Sec. II we construct an equation of the form �1�, or,
n fact, a generalization thereof, along with an underlying nonisospectral linear problem. This 2
1-dimensional lattice equation is based on the Volterra equation, but is distinct from the
+1-dimensional Volterra equation considered in Ref. 22. We recall that the Volterra equation

tself arises in plasma physics and population dynamics. In Sec. III we use our 2+1-dimensional
eneralization of the Volterra equation to construct a new 2+1-dimensional lattice hierarchy. In
ec. IV we consider reductions to lattice and differential-delay hierarchies, and in Sec. V to
ierarchies of discrete equations. A variety of new results are obtained, including novel
ifferential-delay hierarchies and a new generalized discrete first Painlevé �dPI� hierarchy. We
ummarize our results in the Conclusions �Sec. VI�.

I. A 2+1 NONISOSPECTRAL VOLTERRA LATTICE EQUATION

We begin by considering a generic nonisospectral discrete linear problem of order p, in 2
1 dimensions �with n a discrete variable, and t and � continuous variables�, of the form

E��n� = F�n���n�, �2�

�t
�n� = ������

�n� + G�n���n�, �3�

here ��n�=��n , t ,�� is a p vector, F�n� and G�n� are p�p matrices, E is the shift operator, i.e.,
z�n�=z�n+1�, and ��t ,�� satisfies a nonisospectral condition,

�t = ������ + �
j=r

s

� j�
j, � j = � j�t,�� , �4�

or some integers r, s. In later sections the notation �x will be used to denote a partial derivative
ith respect to x, and similarly for other independent variables. The compatibility condition of the

ystem �2� and �3� is

Ft
�n� − ����F�

�n� + F�n�G�n� − G�n+1�F�n� = 0, �5�

r equivalently,

Ft
�n� − ����F�

�n� − ��G�n��F�n� + �F�n�,G�n�� = 0, �6�

here �G�n�= �E−1�G�n�=G�n+1�−G�n� is the discrete derivative of G�n�.
We now consider the case p=2, and make a choice of F�n� corresponding to the Volterra

23–25
attice �see also Refs. 21, 26, and 27�,

                                                                                                            



W

w
w

w

a

w
s

T

A

o

w
H

a

o

103509-3 A 2+1 dimensional Volterra hierarchy J. Math. Phys. 46, 103509 �2005�

                        
F�n� = � 1 u�n�

1/� 0
� . �7�

e also assume ����=�, and G�n� to be of the form

G�n� = ��a�n� b�n�

c�n� d�n� � + �e�n� f �n�

g�n� h�n� � , �8�

here all entries are functions of �n , t ,��. We note that if we assume a�n�=b�n�=c�n�=d�n�=0, then
e must have u�

�n�=0, and so are restricted to equations in �n , t� only.
The substitution of �7� and �8� into �5� with ����=� leads us to a nonisospectral condition �4�

ith r=1 and s=2,

�t = ��� + �1� + �2�2, �9�

nd corresponding form of the matrix G�n�,

G�n� = ��ã g�n+1�u�n�

0 ã − �2 − g�n� � + �e�n� 0

g�n� e�n−1� − �1
� , �10�

here �1, �2, and ã are all arbitrary functions of �t ,��. Clearly, without loss of generality, we may
et ã=0. The compatibility condition �5� consists of the three coupled equations,

ut
�n� + u�n��e�n−1� − e�n+1�� − �1u

�n� = 0, �11�

e�n� − e�n+1� + u�n�g�n� − u�n+1�g�n+2� = 0, �12�

− u�
�n� + u�n��g�n+1� − g�n�� − �2u

�n� = 0. �13�

he second of these equations can be used to eliminate e�n� in the first, to give

ut
�n� + u�n��g�n+2�u�n+1� + u�n��g�n+1� − g�n�� − g�n−1�u�n−1�� − �1u

�n� = 0. �14�

lternatively, we may simply solve the second equation to obtain

e�n� = �E − 1�−1�u�n� − u�n+1�E2�g�n�, �15�

r

e�n� = �
j=1

n−1

�u�j� − u�j+1�E2�g�j�, �16�

here, without loss of generality, we have set the arbitrary summation function of �t ,�� to zero.
ere g�n� is given by the third equation of the system �11�–�13�,

g�n+1� − g�n� = �2 +
u�

�n�

u�n� , �17�

s

g�n� = �E − 1�−1��2 +
u�

�n�

u�n�� = g̃ + �n − 1��2 + �E − 1�−1�u�
�n�

u�n�� , �18�
r
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g�n� = g̃ + �n − 1��2 + �
j=1

n−1
u�

�j�

u�j� , �19�

here g̃=g�1� is an arbitrary summation function of �t ,��. We thus obtain that u�n� satisfies a
ifferential-difference equation in 2+1 dimensions,

ut
�n� = R�n�u�

�n� + g̃u�n��u�n−1� − u�n+1�� + �1u
�n� + �2u

�n�
„�n − 2�u�n−1� − u�n� − �n + 1�u�n+1�

… ,

�20�

here R�n� is the recursion operator of the Volterra lattice,

R�n� = u�n��1 + E−1��u�n� − u�n+1�E2��E − 1�−1�u�n��−1. �21�

The fact that nonisospectral scattering problems can be used in order to obtain recursion operators
s an observation due to one of the current authors.28� This last equation represents a nonisospec-
ral generalization of the Volterra lattice to 2+1 dimensions, and is new. We now use this result to
onstruct a hierarchy of nonisospectral differential-difference equations in 2+1 dimensions, along
ith their underlying linear problems. We do this by following the approach used in Refs. 17–20.

II. A 2+1 NONISOSPECTRAL VOLTERRA LATTICE HIERARCHY

First of all, we note that

R�n�u�n� = u�n�
„�n − 2�u�n−1� − u�n� − �n + 1�u�n+1�

… , �22�

nd summarize the results of Sec. II as follows: the differential-difference equation,

ut
�n� = R�n�u�

�n� + g̃K1
�n� + �1u

�n� + �2R�n�u�n�, �23�

here

K1
�n� = u�n��u�n−1� − u�n+1�� , �24�

�n� is as given by �21�, and g̃, �1, and �2 are all arbitrary functions of �t ,��, has the linear
roblem

E��n� = � 1 u�n�

1/� 0
���n�, �25�

�t
�n� = ���

�n� + G�n���n� = ���
�n� + �e�n� �u�n�g�n+1�

g�n� e�n−1� − �g�n� − �1 − ��2
���n�, �26�

here

e�n� = �E − 1�−1�u�n� − u�n+1�E2�g�n�, �27�

g�n� = g̃ + �n − 1��2 + �E − 1�−1�u�
�n�

u�n�� , �28�

nd � satisfies the nonisospectral condition

�t = ��� + �1� + �2�2. �29�

We now consider iterating on the above results, following the approach used in Refs. 17–20.
e first set t= tm, �= tm−1, g̃=�m, �1=	m, and �2=0, in order to obtain the equation we use to
terate between successive members of the hierarchy,
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utm
�n� = R�n�utm−1

�n� + �mK1
�n� + 	mu�n�, m 
 1, �30�

ogether with the equations we use to iterate between successive evolution equations for the
igenfunction ��n�, and between associated nonisospectral conditions,

�tm
�n� = ��tm−1

�n� + Gm
�n���n�, �tm

= ��tm−1
+ 	m�, m 
 1, �31�

here we use the subscript m in Gm
�n� to denote the matrix G�n� in �26� with e�n� and g�n� defined as

n �27� and �28� but with �= tm−1, and, of course, with g̃=�m, �1=	m, and �2=0. We then set t
t1, �=y, g̃=�1, �1=	1, and �2=	0 in order to obtain the base equation of our hierarchy,

ut1
�n� = Q1

�n� = R�n�uy
�n� + �1K1

�n� + 	0R�n�u�n� + 	1u
�n�, �32�

ogether with the corresponding evolution equation for the eigenfunction ��n�, and the associated
onisospectral condition,

�t1
�n� = ��y

�n� + G1
�n���n�, �t1

= ��y + 	1� + 	0�2, �33�

here the subscript 1 in G1
�n� is used to denote G�n� in �26� with e�n� and g�n� as in �27� and �28� but

ith �=y, and, of course, with g̃=�1, �1=	1, and �2=	0.
We now consider a generic member of our 2+1-dimensional hierarchy,

utm
�n� = Qm

�n�, �34�

ogether with the corresponding evolution equation for the eigenfunction ��n�, and associated
onisospectral condition,

�tm
�n� = �m�y

�n� + Hm
�n���n�, �tm

= �m, �35�

hich for m=1 correspond to �32� and �33�. We thus obtain the recursion relations

Qm
�n� = R�n�Qm−1

�n� + �mK1
�n� + 	mu�n�, �36�

�m = ��m−1, �37�

Hm
�n� = �Hm−1

�n� + Gm
�n�, �38�

�m = ��m−1 + 	m� . �39�

teration then yields the 2+1-dimensional hierarchy

utm
�n� = Qm

�n� = �R�n��muy
�n� + �

j=0

m−1

�m−j�R�n�� jK1
�n� + �

j=0

m

	m−j�R�n�� ju�n�, �40�

ogether with the corresponding hierarchy of underlying linear problems,

E��n� = � 1 u�n�

1/� 0
���n�, �41�

�tm
�n� = �m�y

�n� + Hm
�n���n� = �m�y

�n� + ��
j=1

m

�m−jGj
�n����n�, �42�
nd associated nonisospectral condition
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�tm
= �m�y + �

j=0

m

�m+1−j	 j . �43�

ere all �k and 	k are functions of �tm ,y�, any m, and each Gj
�n� is given by

Gj
�n� = �Aj

�n� Bj
�n�

Cj
�n� Dj

�n� � , �44�

here for j
1,

Aj
�n� = �E − 1�−1�u�n� − u�n+1�E2��� j + �E − 1�−1�Qj−1

�n�

u�n� �	 , �45�

Bj
�n� = �u�n��� j + �E − 1�−1�Qj−1

�n+1�

u�n+1� �	 , �46�

Cj
�n� = �� j + �E − 1�−1�Qj−1

�n�

u�n� �	 , �47�

Dj
�n� = �E − 1�−1�u�n−1� − u�n�E2��� j + �E − 1�−1�Qj−1

�n−1�

u�n−1� �	 − ��� j + �E − 1�−1�Qj−1
�n�

u�n� �	 − 	 j ,

�48�

nd

A1
�n� = �E − 1�−1�u�n� − u�n+1�E2���1 + �n − 1�	0 + �E − 1�−1�uy

�n�

u�n��	 , �49�

B1
�n� = �u�n���1 + n	0 + �E − 1�−1�uy

�n+1�

u�n+1��	 , �50�

C1
�n� = ��1 + �n − 1�	0 + �E − 1�−1�uy

�n�

u�n��	 , �51�

D1
�n� = �E − 1�−1�u�n−1� − u�n�E2���1 + �n − 2�	0 + �E − 1�−1�uy

�n−1�

u�n−1��	
− ���1 + �n − 1�	0 + �E − 1�−1�uy

�n�

u�n��	 − 	1 − �	0. �52�

The first term on the right-hand-side of Eq. �40� corresponds to a nonisospectral extension of
he Volterra lattice hierarchy to 2+1 dimensions; the second term consists of a sum of standard
isospectral� Volterra lattice flows. The third term consists of additional 1+1-dimensional non-
sospectral terms, which in the general case are both nonautonomous �depend explicitly on n� and
onlocal.

To the best of our knowledge, the 2+1-dimensional hierarchy �40� is new, although

+1-dimensional nonisospectral modifications of Volterra lattice flows, or indeed such terms
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lone, have been considered before, e.g., in Refs. 21, 26, and 27. We now consider reductions of
ur hierarchy �40�, which yield a variety of new hierarchies, including differential-delay hierar-
hies and generalized discrete Painlevé hierarchies.

V. LATTICE AND DIFFERENTIAL-DELAY HIERARCHIES

We begin by remarking that, of course, instead of the hierarchy �40�, we can always extend
ur results in order to obtain linear problems and associated nonisospectral conditions for 2+1
attice equations of the form

�
j=0

p

aj�R�n�� jut
�n� + �

j=0

q

bj�R�n�� juy
�n� + �

j=0

r

cj�R�n�� jK1
�n� + �

j=0

s

dj�R�n�� ju�n� = 0, �53�

here all ak, bk, ck, and dk are functions of �y , t�. Thus it is also possible to derive more general
esults than those presented in Secs. IV and V here. However, for our present purposes, it is
ufficient to consider reductions of the hierarchy �40�. In this section we give the reduced hierar-
hies and nonisospectral conditions. We also consider explicitly the case m=1, for which we give,
n addition, the corresponding linear problems.

First of all we rewrite our earlier results for the case m=1, in order to simplify the subsequent
resentation of reductions in this particular case. For m=1, Eq. �40� gives our 2+1-dimensional
onisospectral Volterra lattice in u�n�=u�n , t1 ,y�, i.e., Eq. �32�,

ut1
�n� = R�n�uy

�n� + �1K1
�n� + 	0R�n�u�n� + 	1u

�n�, �54�

here �1, 	0, and 	1 are functions of t1 and y. In order to avoid nonlocal terms, we write this
quation using a potential as

ut1
�n� = u�n��u�n�w�n� + u�n−1�w�n−1� − u�n�w�n+1� − u�n+1�w�n+2�� + �1u

�n��u�n−1� − u�n+1��

+ 	0u
�n�
„�n − 2�u�n−1� − u�n� − �n + 1�u�n+1�

… + 	1u
�n�, �55�

here

w�n+1� − w�n� =
uy

�n�

u�n� . �56�

his equation has the linear problem

E��n� = � 1 u�n�

1/� 0
���n�, �57�

�t1
�n� = ��y

�n� + � v�n� �u�n���1 + n	0 + w�n+1��
�1 + �n − 1�	0 + w�n� v�n−1� − 	1 − �	0 − ���1 + �n − 1�	0 + w�n��

���n�

�58�

here

v�n+1� − v�n� = �u�n� − u�n+1�E2�„�1 + �n − 1�	0 + w�n�
… �59�

nd �=��t1 ,y� satisfies the nonisospectral condition

�t1
= ��y + 	1� + 	0�2. �60�
e now turn to our reductions.
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. Reductions to 1+1 lattice hierarchies

We begin by considering the reduction �y =0 of the hierarchy �40�, which yields a hierarchy of
onisospectral extensions of Volterra lattice flows,

utm
�n� = �

j=0

m−1

�m−j�R�n�� jK1
�n� + �

j=0

m

	m−j�R�n�� ju�n�, �61�

here now all �k and 	k are functions of each tm only. The nonisospectral condition satisfied by
=��tm� is

�tm
= �

j=0

m

�m+1−j	 j . �62�

n the case where all 	k=0, we obtain the �isospectral� Volterra lattice hierarchy,

utm
�n� = �

j=0

m−1

�m−j�R�n�� jK1
�n�. �63�

s remarked earlier, all of these equations are known.
Second, we consider the reduction �tm

=�y,  constant, which then gives the nonisospectral
+1-dimensional lattice hierarchy,

�R�n��muy
�n� − uy

�n� + �
j=0

m−1

�m−j�R�n�� jK1
�n� + �

j=0

m

	m−j�R�n�� ju�n� = 0, �64�

here now all �k and 	k are functions of y only, and where �=��y� satisfies the corresponding
onisospectral condition

��m − ��y + �
j=0

m

�m+1−j	 j = 0. �65�

n the case where all 	k=0, we obtain from �64� the isospectral flows

�R�n��muy
�n� − uy

�n� + �
j=0

m−1

�m−j�R�n�� jK1
�n� = 0. �66�

learly in the hierarchies �64� and �66� we can also consider the special case =0.

. Examples: m=1

Our first reduction of �55�, �y =0, gives the equation in u�n�=u�n , t1�,

ut1
�n� = �1u

�n��u�n−1� − u�n+1�� + 	0u
�n�
„�n − 2�u�n−1� − u�n� − �n + 1�u�n+1�

… + 	1u
�n�, �67�

here now �1, 	0, and 	1 are functions of t1 only. This equation has the linear problem

E��n� = � 1 u�n�

1/� 0
���n�, �68�

�t1
�n� = � v�n� �u�n���1 + n	0�

�1 + �n − 1�	0 v�n−1� − 	1 − �	0 − ���1 + �n − 1�	0�
���n�, �69�

�n�
here v =v�n , t1� satisfies the equation
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v�n+1� − v�n� = �u�n� − u�n+1�E2�„�1 + �n − 1�	0… , �70�

nd where �=��t1� satisfies the nonisospectral condition

�t1
= 	1� + 	0�2. �71�

n the case 	0=	1=0, we have an isospectral linear problem.
Our second reduction of �55�, �t1

=�y, gives the equation in u�n�=u�n ,y�,

u�n��u�n�w�n� + u�n−1�w�n−1� − u�n�w�n+1� − u�n+1�w�n+2�� − uy
�n� + �1u

�n��u�n−1� − u�n+1��

+ 	0u
�n�
„�n − 2�u�n−1� − u�n� − �n + 1�u�n+1�

… + 	1u
�n� = 0, �72�

here w�n�=w�n ,y� is related to u�n� as in Eq. �56�, and �1, 	0, and 	1 are now functions of y only.
his equation has the linear problem

E��n� = � 1 u�n�

1/� 0
���n�, �73�

�y
�n� =

1

 − �
� v�n� �u�n���1 + n	0 + w�n+1��

�1 + �n − 1�	0 + w�n� v�n−1� − 	1 − �	0 − ���1 + �n − 1�	0 + w�n��
���n�,

�74�

here v�n�=v�n ,y� satisfies the equation

v�n+1� − v�n� = �u�n� − u�n+1�E2�„�1 + �n − 1�	0 + w�n�
… �75�

nd �=��y� satisfies the nonisospectral condition

�y =
1

 − �
�	1� + 	0�2� . �76�

n the case 	0=	1=0, we have an isospectral linear problem.

. Reductions to 1+1 differential-delay hierarchies

We now give reductions to 1+1 differential-delay hierarchies �in fact, to hierarchies that are
urely differential with respect to one of the independent variables, and differential delay with
espect to the other�. We believe these results to be new.

We begin by considering what may be described—through an abuse of notation—as the
eduction �tm

=��n�
��x�, � constant, so that E now shifts the continuous variable x. We thus
btain from the hierarchy �40� the 1+1 hierarchy,

�ux�x,y� = R̃muy�x,y� + �
j=0

m−1

�m−jR̃ jK̃1 + �
j=0

m

	m−jR̃ ju�x,y� , �77�

here all �k and 	k are now functions of y only, where R̃ is defined as

R̃ = u�x,y��1 + E−1�„u�x,y� − u�x + 1,y�E2
…�E − 1�−1

„u�x,y�…−1, �78�

nd K̃1 as

K̃1 = u�x,y�„u�x − 1,y� − u�x + 1,y�… , �79�
nd where �=��y� satisfies the corresponding nonisospectral condition,

                                                                                                            



C

w

d
a

w

a

a

O

w

1

w

T

103509-10 Gordoa, Pickering, and Zhu J. Math. Phys. 46, 103509 �2005�

                        
�y + �
j=0

m

�1−j	 j = 0. �80�

learly, in the case where all 	k=0, i.e., for the hierarchy

�ux�x,y� = R̃muy�x,y� + �
j=0

m−1

�m−jR̃ jK̃1, �81�

e have an isospectral linear problem.
We now consider an alternative reduction of the hierarchy �40�, a reduction perhaps best

escribed—again through an abuse of notation—as �y =��n�
��x�, � constant, so that E once
gain now shifts the continuous variable x. We thus obtain the 1+1 hierarchy

utm
�x,tm� = �R̄mux�x,tm� + �

j=0

m−1

�m−jR̄ jK̄1 + �
j=0

m

	m−jR̄ ju�x,tm� , �82�

here all �k and 	k are now functions of tm only, where R̄ is defined as

R̄ = u�x,tm��1 + E−1�„u�x,tm� − u�x + 1,tm�E2
…�E − 1�−1

„u�x,tm�…−1 �83�

nd K̄1 as

K̄1 = u�x,tm�„u�x − 1,tm� − u�x + 1,tm�… , �84�

nd where �=��tm� satisfies the corresponding nonisospectral condition

�tm
= �

j=0

m

�m+1−j	 j . �85�

nce again, in the case where all 	k=0,

utm
�x,tm� = �R̄mux�x,tm� + �

j=0

m−1

�m−jR̄ jK̄1, �86�

e have an isospectral linear problem.

. Examples: m=1

Our first reduction of �55�, �t1
=��n�
��x�, gives the equation in u�x ,y�,

�ux�x,y� = u�x,y��u�x,y�w�x,y� + u�x − 1,y�w�x − 1,y� − u�x,y�w�x + 1,y� − u�x + 1,y�w�x + 2,y��

+ �1u�x,y��u�x − 1,y� − u�x + 1,y�� + 	0u�x,y���x − 2�u�x − 1,y� − u�x,y�

− �x + 1�u�x + 1,y�� + 	1u�x,y� , �87�

here now �1, 	0, and 	1 are functions of y only and where

w�x + 1,y� − w�x,y� =
uy�x,y�

u�x,y�
. �88�

his equation has the linear problem

E��x,y� = � 1 u�x,y� ���x,y� , �89�

1/� 0
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��x�x,y� = ��y�x,y�

+ � v�x,y� �u�x,y�„�1 + x	0 + w�x + 1,y�…
�1 + �x − 1�	0 + w�x,y� v�x − 1,y� − 	1 − �	0 − �„�1 + �x − 1�	0 + w�x,y�…

�
� ��x,y� , �90�

here v�x ,y� satisfies the equation

v�x + 1,y� − v�x,y� = „u�x,y� − u�x + 1,y�E2
…„�1 + �x − 1�	0 + w�x,y�… �91�

nd �=��y� satisfies the nonisospectral condition

�y + 	1 + 	0� = 0. �92�

n the case 	0=	1=0 we have an isospectral linear problem.
Our second reduction of �55�, �y =��n�
��x�, gives the equation in u�x , t1�,

ut1
�x,t1� = u�x,t1��u�x,t1�w�x,t1� + u�x − 1,t1�w�x − 1,t1�

− u�x,t1�w�x + 1,t1� − u�x + 1,t1�w�x + 2,t1�� + �1u�x,t1��u�x − 1,t1� − u�x + 1,t1��

+ 	0u�x,t1���x − 2�u�x − 1,t1� − u�x,t1� − �x + 1�u�x + 1,t1�� + 	1u�x,t1� , �93�

here now �1, 	0, and 	1 are functions of t1 only and where

w�x + 1,t1� − w�x,t1� = �
ux�x,t1�
u�x,t1�

. �94�

his equation has the linear problem

E��x,t1� = � 1 u�x,t1�
1/� 0

���x,t1� , �95�

�t1
�x,t1� = ���x�x,t1�

+ � v�x,t1� �u�x,t1�„�1 + x	0 + w�x + 1,t1�…
�1 + �x − 1�	0 + w�x,t1� v�x − 1,t1� − 	1 − �	0 − �„�1 + �x − 1�	0 + w�x,t1�…

�
� ��x,t1� , �96�

here v�x , t1� satisfies the equation

v�x + 1,t1� − v�x,t1� = „u�x,t1� − u�x + 1,t1�E2
…„�1 + �x − 1�	0 + w�x,t1�… �97�

nd �=��t1� satisfies the nonisospectral condition

�t1
= 	1� + 	0�2. �98�

n the case 	0=	1=0, we have an isospectral linear problem.

. Reductions to ordinary differential-delay hierarchies

Setting �y =0 in �77�—or �abusing notation� �tm
=��n�
��x� in �61�—yields the hierarchy of
rdinary differential-delay equations �recall that E shifts x�,
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�ux�x� = �
j=0

m−1

�m−jR̃ jK̃1 + �
j=0

m

	m−jR̃ ju�x� , �99�

here R̃ and K̃1, which are now y independent, are defined as above. We may also consider the
pecial case where all 	k=0; we note that in this special case, the ordinary differential-delay
quation that results for m=2 has been given in Ref. 21.

Setting �tm
=��x in �82�—or �abusing notation� �y =��n�
��x� in �64�—yields the hierarchy

f ordinary differential-delay equations �again, E shifts x�,

�R̄mux�x� − �ux�x� + �
j=0

m−1

�m−jR̄ jK̄1 + �
j=0

m

	m−jR̄ ju�x� = 0, �100�

here R̄ and K̄1, which now depend only on x, are defined as above. In the above hierarchy we
ay also consider the special cases =0 or all 	k=0.

Clearly, both of the above can be included in the single hierarchy

�R̄mux�x� − �ux�x� + �
j=0

m−1

�m−jR̄ jK̄1 + �
j=0

m

	m−jR̄ ju�x� = 0, �101�

here � and � are two arbitrary constants. This hierarchy, which again we believe to be new,
rises as the compatibility condition

��
j=0

m

�m+1−j	 j�F��x� − ��m� − ��Fx�x� + F�x�Hm�x� − Hm�x + 1�F�x� = 0 �102�

f the associated hierarchy of linear systems,

E��x� = F�x���x� , �103�

��
j=0

m

�m+1−j	 j����x� = ��m� − ���x�x� + Hm�x���x� , �104�

here

F�x� = � 1 u�x�
1/� 0

�, Hm�x� = �
j=1

m

�m−jGj�x� , �105�

nd the matrices Gj�x� are obtained from the Gj
�n� of Sec. III in the appropriate way. We remark in

assing the great interest of “delay Painlevé equations.”21

. Example: m=1

In the case m=1, Eq. �101� reads as

u�x��u�x�w�x� + u�x − 1�w�x − 1� − u�x�w�x + 1� − u�x + 1�w�x + 2�� − �ux�x� + �1u�x��u�x − 1�

− u�x + 1�� + 	0u�x���x − 2�u�x − 1� − u�x� − �x + 1�u�x + 1�� + 	1u�x� = 0, �106�

here now �1, 	0, and 	1 are constants and where

w�x + 1� − w�x� = �
ux�x�
u�x�

. �107�
his equation arises as the compatibility condition of the linear system,

                                                                                                            



w

V

h

A
p
a

o

w

a
	

h
c

F

a

103509-13 A 2+1 dimensional Volterra hierarchy J. Math. Phys. 46, 103509 �2005�

                        
E��x� = � 1 u�x�
1/� 0

���x� , �108�

�	0�2 + 	1�����x� = ��� − ���x�x�

+ � v�x� �u�x�„�1 + x	0 + w�x + 1�…
�1 + �x − 1�	0 + w�x� v�x − 1� − 	1 − �	0 − �„�1 + �x − 1�	0 + w�x�…

�
� ��x� , �109�

here v�x� satisfies the equation

v�x + 1� − v�x� = „u�x� − u�x + 1�E2
…„�1 + �x − 1�	0 + w�x�… . �110�

. GENERALIZED DISCRETE PAINLEVÉ HIERARCHIES

If in the 1+1 lattice hierarchy �61� we now take the further reduction �tm
=0, we obtain a

ierarchy of discrete equations:

�
j=0

m−1

�m−j�R�n�� jK1
�n� + �

j=0

m

	m−j�R�n�� ju�n� = 0. �111�

lternatively, we may derive this discrete hierarchy by taking �y =0 in �64�, or by making appro-
riate reductions in the hierarchies �77� and �82�, or by setting �=�=0 in �101�. This hierarchy
rises as the compatibility condition

��
j=0

m

�m+1−j	 j�F�
�n� + F�n�Hm

�n� − Hm
�n+1�F�n� = 0 �112�

f the associated hierarchy of linear problems,

E��n� = F�n���n�, �113�

��
j=0

m

�m+1−j	 j���
�n� = Hm

�n���n�, �114�

here

F�n� = � 1 u�n�

1/� 0
�, Hm

�n� = �
j=1

m

�m−jGj
�n�, �115�

nd the matrices Gj
�n� are obtained from those of Sec. III in the appropriate way. Here all �k and

k are constants.
This hierarchy contains, in the general case, nonlocal terms: although we could consider this

ierarchy in its full generality, by introducing auxiliary potential functions, we prefer here to
onsider the case where 	k=0, k=0,1 , . . . ,m−2, i.e.,

Pm
�n� 


1

u�n���
j=0

m−1

�m−j�R�n�� jK1
�n� + 	m−1R�n�u�n� + 	mu�n�� = 0. �116�

or m=1, �116� gives the linear equation

P1
�n� 
 �1�u�n−1� − u�n+1�� + 	0„�n − 2�u�n−1� − u�n� − �n + 1�u�n+1�

… + 	1 = 0, �117�
nd for m=2, the first of our nonlinear equations,
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P2
�n� 
 �1�u�n+1��u�n� + u�n+1� + u�n+2�� − u�n−1��u�n� + u�n−1� + u�n−2��� + �2�u�n−1� − u�n+1��

+ 	1„�n − 2�u�n−1� − u�n� − �n + 1�u�n+1�
… + 	2 = 0. �118�

his last equation has the linear problem formed by �113�, together with

�	1�2 + 	2����
�n� =�

− �1�u�n� + v�n� �2�1u
�n� + �u�n�

„�2 + n	1�
� − �1�u�n+1� + u�n��…

��1 + �2 + �n − 1�	1 v�n−1� − 	2 − �	1

− �1�u�n� + u�n−1�� − �„�2 + �n − 1�	1�
� − �1�u�n� + u�n−1��…
− �1�u�n−1� − �1�2

���n�, �119�

here v�n� satisfies the equation

v�n+1� − v�n� = �u�n� − u�n+1�E2�„�2 + �n − 1�	1 − �1�u�n� + u�n−1��… . �120�

As we now show, Eq. �118� is a generalization of a well-known discrete first Painlevé �dPI�
quation. Thus, our hierarchy of discrete equations �116� corresponds to a new generalized dPI

ierarchy. First we note that �118� can be written in the form

�E2 − 1���1u
�n−1��u�n� + u�n−1� + u�n−2�� − �2u

�n−1� + �1

2
	2�n	

− 	1�E + 1��u�n−1� + „E − 1���n − 1�u�n−1�
…� = 0, �121�

nd so we can sum to obtain

P̃2
�n� 
 �E − 1���1u

�n−1��u�n� + u�n−1� + u�n−2�� − �2u
�n−1� + �1

2
	2�n	

− 	1�u�n−1� + �E − 1�„�n − 1�u�n−1�
…� − �2�− 1�n = 0, �122�

here �2 �labeled using m� is an arbitrary constant. This third-order discrete equation can be
ummed once again in order to give, for each of the cases 	1=0 and 	1�0, a second-order
quation.

In the case 	1=0, we obtain �after a shift on n� the second-order discrete equation

�1u
�n��u�n+1� + u�n� + u�n−1�� − �2u

�n� + �1

2
	2�n − �2 − �2�− 1�n = 0, �123�

here �2= 1
2�2 and �2 is a second arbitrary constant �again labeled using m�. Equation �123� is the

ersion of dPI containing a parity-dependent term, which includes both the first and second
ainlevé equations among its continuum limits; see Ref. 29, as well as Refs. 21 and 30. In our
ramework this equation corresponds to the special case 	1=0 of our more general integrable
iscrete equation �118� �or �122��. We note that it is straightforward, using our above results, to
ive a linear problem for �123� not involving the potential v�n�, whose compatibility condition is
recisely Eq. �123� rather than the higher-order equivalents �118� or �122� with 	1=0.

In the case 	1�0, we obtain the second-order discrete equation

D34 
 u�n−1���1u
�n� + �1u

�n−1� − 	1n + 2����1u
�n−1� + �1u

�n−2� − 	1�n − 1� + 2��

−
	2

	1
��1u

�n−1� − C −
1

2
	1�n − 1� + ����1u

�n−1� + C −
1

2
	1n + ��

− �2„�1u
�n−1��− 1�n−1 + ��− 1�n−1 + Bn… = 0, �124�
here C is an arbitrary constant,
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� =
1

2
�− �2 + 	1 + �1

	2

	1
� , �125�

nd

Bn = 
1

2
	1n , n even,

−
1

2
	1�n − 1� , n odd. � �126�

ere we have made use of the summing factor ��1u
�n�+�1u

�n−1�−	1n+2��:

��1u
�n� + �1u

�n−1� − 	1n + 2��P̃2
�n� = �E − 1��D34� . �127�

quation �124�, which we will call the dP34 equation, is a generalized version of the known
iscrete 34th Painlevé equation. We note that when summing we have retained the parity-
ependent terms that appear in �122�. In the special case �2=0 this equation yields the discrete
4th Painlevé equation of Ref. 30.

We see from the previous discussion that we have obtained a new generalized dPI hierarchy
116�: the first member of this hierarchy is a generalized dPI equation since, for the choice 	1

0, it sums to a known dPI equation. In addition, we have seen that this first member, for the
hoice 	1�0, sums to a new dP34 equation.

We also give here the case m=3 of �116�, which may be written as

�E2 − 1��− �1u
�n−1��u�n�u�n+1� + u�n�2 + 2u�n−1�u�n� + u�n−2�u�n−3� + u�n−2�2 + 2u�n−1�u�n−2� + u�n−1�2

+ u�n−2�u�n�� + �2u
�n−1��u�n� + u�n−1� + u�n−2�� − �3u

�n−1� + �1

2
	3�n	 − 	2�E + 1��u�n−1�

+ �E − 1���n − 1�u�n−1��� = 0. �128�

he linear problem for this equation may also be given explicitly using the results given earlier,
ut we choose not to do so here. We note that in the special case 	2=0, we can sum this last
quation twice to obtain �again after a shift on n� the fourth-order discrete equation

− �1u
�n��u�n+1�u�n+2� + u�n+1�2 + 2u�n�u�n+1� + u�n−1�u�n−2� + u�n−1�2 + 2u�n�u�n−1� + u�n�2 + u�n−1�u�n+1��

+ �2u
�n��u�n+1� + u�n� + u�n−1�� − �3u

�n� + �1

2
	3�n − �3 − �3�− 1�n = 0, �129�

here �3 and �3 are two arbitrary constants. This last is the fourth-order dPI equation, as given in
ef. 30. We expect, of course, that our hierarchy �116�, in the special case 	m−1=0, is equivalent

o the dPI hierarchy given in Ref. 30. We also expect that our hierarchy �116�, in the case 	m−1

0, sums to give a dP34 hierarchy that generalizes the results of Ref. 30 in the same way as does
ur dP34 equation �124�.

I. CONCLUSIONS

Here we briefly summarize our results.

• We have extended the method used in Refs. 17–20 which allows the construction of hierar-
chies of integrable equations along with their underlying linear problems, from the continu-
ous to the discrete case.
• We have given a new 2+1-dimensional generalization of the Volterra hierarchy.
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• We have obtained reductions to a variety of new hierarchies of integrable equations, along
with their underlying linear problems. These last derive from those given for the
2+1-dimensional case.

• We have obtained a new generalized dPI hierarchy, and also a generalized dP34 hierarchy,
each once again along with their underlying linear problems.
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Using the corepresentation of the quantum supergroup OSpq�1/2� a general method
for constructing noncommutative spaces covariant under its coaction is developed.
In particular, a one-parameter family of covariant algebras, which may be inter-
preted as noncommutative superspheres, is constructed. It is observed that embed-
ding of the supersphere in the OSpq�1/2� algebra is possible. This realization ad-
mits to the infinitesimal characterization by Koornwinder. A covariant oscillator
realization of the supersphere is also presented. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2042969�

. INTRODUCTION

Lie supergroups and superalgebras have been used as basic tools in various fields of theoret-
cal physics. Supersymmetry in quantum field theories and string field theory is the most well-
nown example of application of Lie superalgebras. Other examples are found in exactly solvable
attice models, interacting boson-fermion models in nuclear physics, extended t-J models in con-
ensed matter physics, and so on. On the other hand, importance of noncommutative geometry in
heoretical physics, especially in string theory and quantum gravity, has come into focus recently.1

herefore if these two notions are combined to form a noncommutative geometry of supersym-
etric nature, we can expect that the combination will play important roles in various fields in

hysics. An attempt to introduce a noncommutative superspace was made by Manin2 in the
ontext of quantum supergroup. Then differential calculus on the noncommutative superspace was
eveloped by two different approaches.3,4 The present authors extended the notions of noncom-
utative differential geometry such as connection and curvature to the supersymmetric case and

nvestigated5 the superspace for super-Jordanian deformed OSp�1/2� group.
A supersphere having bosonic and fermionic coordinates is defined as an algebra whose

efining relations are covariant under the coaction of the quantum supergroup OSpq�1/2�. In this
aper, we construct a one-parameter family of superspheres by developing a general procedure
ased on the representation theory of OSpq�1/2� and its dual Uq�osp�1/2��. By this method,
uantum superspaces and superspheres are described in a unified way. Furthermore, the method
an be used to find higher dimensional noncommutative superspaces covariant under OSpq�1/2�.
ur work is motivated for two reasons, �1� in order to investigate noncommutative geometry, it is

mportant to have explicit examples of noncommutative superspaces. Manin’s work is an analogue
f flat space, while here we consider an analogue of curved space. �2� There exist some models of
ntegrable quantum field theories with OSp�m /2n� symmetries where superspheres appear.6 Con-
ideration of quantum group extensions of such models will require quantum superspheres. We
tart with the simplest and the most important group OSpq�1/2� to construct quantum super-
pheres.

Let us briefly recall the studies of noncommutative sphere based on quantum groups, since
upersymmetric counterparts of some of them are considered in this paper. Podleś introduced7 an

lgebra which is covariant under the adjoint corepresentation of quantum group SUq�2�. The

46, 103510-1022-2488/2005/46�10�/103510/25/$22.50 © 2005 American Institute of Physics
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lgebra is interpreted as a noncommutative version of two sphere, and called q-sphere. The
-sphere has one more parameter in addition to its radius and the deformation parameter q. Thus
hat Podleś constructed is a one-parameter family of noncommutative two spheres. The parameter

s specific to q-sphere and does not have a commutative counterpart. Differential calculus on the
-sphere was initiated by Podleś,8 then classification of differential structures on q-sphere was
ade in Refs. 9–11. An interesting relation of q-sphere to q-hypergeometric functions is discussed

n Ref. 12, where orthogonal bases on q-sphere are explicitly determined in terms of big q-Jacobi
olynomials. The q-sphere can be realized by embedding it in SUq�2�. This embedding admits an
legant description13 of q-sphere as an algebra which is invariant under left and right actions of a
wisted primitive element of the quantum algebra Uq�su�2��. Podleś q-sphere has been generalized
n two different directions, higher dimensional and Jordanian SU�2�. Higher dimensional
-spheres, more precisely, noncommutative analogue of �2n+1�-spheres were constructed in a
imilar way by replacing SUq�2� with SUq�n+1�. Furthermore, an invariant integral on quantum
2n+1�-sphere is obtained in Ref. 14. Another family of quantum two-spheres is obtained15 by
sing Jordanian deformation of SL�2�. One of its distinctions from Podleś q-sphere is that the
ordanian quantum sphere requires different twisted primitive elements for left and right invari-
nces.

Throughout this paper, the quantum superalgebra Uq�osp�1/2�� and the quantum supergroup
Spq�1/2� are denoted by U and A, respectively. We assume that q is generic in this paper. The
lan of this paper is as follows. In the first two preliminary sections we fix our notations and
onventions, and list formulas used in subsequent sections. Section II is a summary of definitions
nd representation theory of U. For computational purpose, we give all the defining relations of A
xplicitly in Sec. III. A relation between representations of U and corepresentations of A is given
n Sec. IV. A product law of two corepresentations, which is a quantum supergroup analogue of

igner’s product law in the quantum theory of angular momentum, is also derived in Sec. IV. A
eneral prescription to find an algebra covariant under the coaction of A is given in Sec. V. As a
imple application of the method, the most general form of quantum superspaces is derived. The
ethod is applied to construct a one-parameter family of quantum superspheres in Sec. VI.
roperties of the quantum supersphere are examined and the similarities to those for q-sphere are
ointed out.

I. Uq†osp„1/2…‡ AND ITS REPRESENTATIONS

. Definition and representations

The universal enveloping algebra U=Uq�osp�1/2�� is generated by the two even K±1, and the
wo odd elements v± satisfying the commutation properties16

KK−1 = K−1K = 1, Kv± = q±1/2v±K ,

�v+,v−� = −
K2 − K−2

q4 − q−4 . �2.1�

he Casimir element is given by

C = �q1/2K2 − q−1/2K−2

q4 − q−4 �2

−
qK2 + q−1K−2

�q + q−1��q2 + q−2�
v−v+ − �q1/2 + q−1/2�2v−

2v+
2 . �2.2�

he coproduct ���, the counit ���, and the antipode �S� maps read

��K±1� = K±1
� K±1, ��v±� = v± � K−1 + K � v±, �2.3�

��K±1� = 1, � �v±� = 0, �2.4�

±1 �1 �1/2
S�K � = K , S�v±� = − q v±. �2.5�
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The finite dimensional irreducible representations of the U algebra are said to be of the
rade-star17 type. Each irreducible representation is specified by a non-negative integer � and the
orresponding �2�+1�-dimensional graded vector space V��� that admits a nondegenerate Hermit-
an bilinear form denoted by �,�. The subspaces of V��� having different parities are orthogonal with
espect to the bilinear form. The graded adjoint operation ��� is defined by

�A*f ,g� = �− 1�Â f̂�f ,Ag�, A � U, f ,g � V���, �2.6�

here Â denotes the parity of A. The �-operation is assumed to be an algebra anti-isomorphism
nd coalgebra isomorphism,

�A1A2�* = �− 1�Â1Â2A2
*A1

*, �A1 � A2�* = A1
*

� A2
*. �2.7�

he grade-star representation of U is characterized by

K* = K, v±
* = ± �− 1��v�, � = 0,1, �2.8�

here � refers to the class of the representation.
Let �em

� ��� 	m=� ,�−1, . . . ,−�� be a basis of V���, where each basis vector has a definite parity.
he index �=0,1 specifies the parity of the highest weight vector e�

����. The parity of em
� ���

quals �−m+�, as it is obtained by the application of v−
�−m on e�

����. For the superalgebras the
orm of the representation basis need not be chosen positive definite. In this work, however, we
ssume the positive definiteness of the basis elements,

�em
� ���,em�

�� ���� = �����mm�. �2.9�

t turns out that this convention relates the parity � and the class � as follows:

� = � + 1�mod 2� . �2.10�

ith these settings, the irreducible representations of U are given by

Kem
� ��� = qm/2em

� ��� ,

v+em
� ��� = 
�� − m��� + m + 1��em+1

� ��� ,

v−em
� ��� = �− 1��−m−1
�� + m��� − m + 1��em−1

� ��� , �2.11�

here �n� and � are defined by

�n� =
q−n/2 − �− 1�nqn/2

q−1/2 + q1/2 , � =
q−1/2 + q1/2

q−4 − q4 . �2.12�

ur phase convention for v± agrees with that of Ref. 16, but it differs from that of Ref. 17. For
ater convenience, the representation matrices for �=1,2 cases are given explicitly. The generators
n the �=1 representation read

K = diag�q1/2,1,q−1/2� ,

v+ = 
�2���0 1 0

0 0 1

0 0 0
�, v− = 
�2��� 0 0 0

− 1 0 0

0 1 0
� , �2.13�
nd for the �=2 case they are given by
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K = diag�q,q1/2,1,q−1/2,q−1� ,

v+ =�
0 
�4�� 0 0 0

0 0 
�3�!� 0 0

0 0 0 
�3�!� 0

0 0 0 0 
�4��
0 0 0 0 0

� ,

v− =�
0 0 0 0 0

− 
�4�� 0 0 0 0

0 
�3�!� 0 0 0

0 0 − 
�3�!� 0 0

0 0 0 
�4�� 0
� . �2.14�

he eigenvalue of the Casimir element depends only on the highest weight,

Cem
� ��� = �q�+1/2 − q−�−1/2

q4 − q−4 �2

em
� ��� . �2.15�

The quantity �n�, known16,17 as Kulish symbol, plays a role similar to the q-number. For a
ositive integer n its factorial is defined as �n�!�n��n−1�¯ �1�.

. Tensor product representations

Tensor product of the irreducible representations of U has been discussed in Refs. 16 and 17.
he decomposition of tensor product in the irreducible representations is identical to the classical
ase

V��1�
� V��2� = V��1+�2�

� V��1+�2−1�
� ¯ � V�	�1−�2	�.

he explicit formulas of the Clebsch-Gordan coefficients �CGC� are obtained in Ref. 17. We list
elow the relations which will be used in the later sections.

In spite of our assumption �2.9� of the positivity of the basis states, the norm of the tensor
roduct of the bases is not always positive definite. For instance, the following norm can be
egative for some combinations of �a, ma�a=1,2�, and �:

�em1

�1 ��� � em2

�2 ���,em1

�1 ��� � em2

�2 ���� = �− 1���1−m1+����2−m2+���em1

�1 ���,em1

�1 �����em2

�2 ���,em2

�2 ���� .

�2.16�

he irreducible basis of the tensor product representations is obtained by using the CGC,

em
� ��1,�2,�� = �

m1,m2

Cm1m2m
�1�2� em1

�1 ��� � em2

�2 ��� , �2.17�

here m=m1+m2, and �=�1+�2+� �mod 2� is the parity of the highest weight vector

�
���1 ,�2 ,��. Since our phase convention for representations of v± differs from that of Ref. 17, we

annot use the expression of CGC given therein. The CGC in our convention is explicitly given by
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Cm1m2m
�1�2� = �− 1���1−�+m2���−m+��+��1−�+m2���1−�+m2+1�/2qm2�m+1�/2+��1−�2���1+�2+1�/4−���+1�/4

� ��2� + 1�
��1 + �2 − ��!�� + m�!�� − m�!��1 − m1�!��2 − m2�!

��1 + �2 + � + 1�!��1 − �2 + ��!�− �1 + �2 + ��!��1 + m1�!��2 + m2�!�
1/2

� �
k

�− 1�k�k−1�/2+k��1+�2−m�qk��+m+1�/2 ��1 + � − m2 − k�!��2 + m2 + k�!
�k�!�� − m − k�!��1 − � + m2 + k�!��2 − m2 − k�!

,

�2.18�

here the index k runs over all non-negative integers maintaining the arguments of �x� non-
egative. The derivation of �2.18� is described in Appendix A. All the CGC are, we note, of parity
ero. The basis �2.17� is pseudo-orthogonal,

�em�
�� ��1,�2,��,em

� ��1,�2,��� = �− 1���−m+����1+�2+�+�������m�m. �2.19�

he CGC satisfies two pseudo-orthogonality relations,

�
m1,m2

�− 1���1−m1+����2−m2+��Cm1m2m�
�1�2�� Cm1m2m

�1�2� = �− 1���−m+����1+�2+�+�������mm�, �2.20�

�
�,m

�− 1���−m+����1+�2+�+��C
m1�m2�m

�1�2�
Cm1m2m

�1�2� = �− 1���1−m1+����2−m2+���m1�m1
�m2�m2

. �2.21�

sing �2.21�, the construction �2.17� is readily inverted,

em1

�1 ��� � em2

�2 ��� = �− 1���1−m1���2−m2��
�,m

�− 1���−m���1+�2+��Cm1m2m
�1�2� em

� ��1,�2,�� . �2.22�

II. QUANTUM SUPERGROUP OSpq„1/2…

The quantum supergroup A=OSpq�1/2� is defined as a Hopf dual to the universal enveloping
lgebra U.16 In this section, all defining relations of A will be given explicitly. The universal
-matrix of U is given in Ref. 16. For the defining �=1 representation, it reads

�3.1�

here

	 = q − q−1, � = − q−1/2	, 
 = �1 + q−1�	 , �3.2�

nd the dot is used instead of zero for better readability. Let P be a permutation operator, P�v
v̂ŵ
� w�= �−1� w � v. Standard FRT �Ref. 18� construction is obtained via the matrix R,
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�3.3�

he quantum T-matrix, whose elements generate the algebra A is given by

T = �tij� = �a � b

� e 

c � d
� , �3.4�

here the entries in latin �greek� characters are of even �odd� parity. The parity of the supermatrix

is zero, i.e., t̂i j= î+ ĵ. The RTT-relation describes the exchange properties on the entries of T. The
-orthosymplectic condition reads

T stCT = DC, TC−1T st = DC−1, �3.5�

here

C = � 0 0 − q−1/2

0 1 0

q1/2 0 0
�, C−1 = � 0 0 q−1/2

0 1 0

− q1/2 0 0
� , �3.6�

nd the superdeterminant D is given by

D = ad − qbc − q1/2�� . �3.7�

he T st denotes the supertranspose of T. The supertranspose of an arbitrary matrix is given as

ij
st= �−1�î� ĵ+1�Aji. The RTT relations require D to be central.

The coproduct and counit of T are given as usual

��T� = T�̇ T, ��T� = diag�1,1,1� . �3.8�

he grouplike property of the superdeterminant ��D�=D � D is obtained by taking the coproduct
f both sides of the relation �3.5�. This allows us to set the constraint

D = ad − qbc − q1/2�� = 1. �3.9�

he antipode of T satisfies S�T�T=TS�T�=1, and it explicitly reads

S�T� = C−1T stC = � d q−1/2 − q−1b

− q1/2� e q−1/2�

− qc − q1/2� a
� . �3.10�

The RTT relations reveal that not all the entries of T are independent. We express the elements

, , and � in terms of the rest. Using �2,2� component of the first relation in �3.5�,

                                                                                                            



w

I

r

F

A

103510-7 Quantum spheres for OSpq�1/2� J. Math. Phys. 46, 103510 �2005�

                        
e2 = 1 − 2q−1/2�� + 	bc , �3.11�

e solve for e and its inverse e−1,

e = 1 − q−1/2�� + �q − 1�bc ,

e−1 = �1 + q−1/2�� − �q − 1�bc��1 + q−1�q − 1�2bc�−1. �3.12�

nclusion of the element e−1 allows us to solve for  and �,

 = q−3/2b� − q1/2d�, � = q−1/2a� − q3/2c�, �� = � . �3.13�

In summary, the algebra A is generated by a, b, c, d, �, and �. The generators satisfy the
elations

ab = q2ba, ac = q2ca, �a,d� = − ��� + 
bc ,

a� = q�a, a� = q�a + q	c�, �b,c� = 0,

bd = q2db, b� = q−1�b, b� = q�b ,

cd = q2dc, c� = q−1�c, c� = q�c ,

d� = q−1�d − 	�b, d� = q−1�d, �� = − q�� − q�bc ,

�2 = − q−1�2�ab, �2 = − q−1�2�cd . �3.14�

or later convenience, the commutation relations involving e, , and � are listed below,

�a,e� = 	��, a = qa + q	b�, a� = q�a ,

�b,e� = 0, b = qb, b� = q−1�b ,

�c,e� = 0, c = qc, c� = q−1�c ,

�d,e� = 	�, d = q−1d, d� = q−1�d − 	c ,

�e,�� = − ��b, �e,� = �b�, �e,�� = ��c ,

�e,�� = − �c, ��,� = − 	eb, ��,�� = 0,

� = − q−1� − �bc, �,�� = 0, ��,�� = 	ce ,

2 = − q−1�2�bd, �2 = − q−1�2�ac . �3.15�

dditional relations may also be proved,

e� = q1/2�b� − a�, e = q1/2�b − q−1/2�d ,

e� = q1/2��a − c��, e� = q−1/2�d − q1/2c . �3.16�
The duality between U and A is given by a nondegenerate pairing �,�,
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�K,T� = diag�q1/2,1,q−1/2� ,

�v+,T� = 
�2���0 1 0

0 0 − 1

0 0 0
�, �v−,T� = 
�2���0 0 0

1 0 0

0 1 0
� . �3.17�

he pairing can be extended to tensor product algebras by setting

�X1 � X2,a1 � a2� = �− 1�X̂2â1�X1,a1��X2,a2� . �3.18�

V. COREPRESENTATIONS OF A

A vector space V is called a right A-comodule if there exists a linear mapping �R :V→V
� A satisfying

��R � id� � �R = �id � �� � �R, �id � �� � �R = id. �4.1�

imilarly, the left A-comodule is defined as a vector space V equipped with a linear mapping

L :V→A � V such that

�id � �L� � �L = �� � id� � �L, �� � id� � �L = id. �4.2�

he mapping �R��L� is called a corepresentation, or, equivalently, a right �left� coaction of A on
.

Employing the duality of the algebras U and A, we may follow the standard19 construction of
he action of U on a A-comodule V. Namely, starting from the corepresentations of A, we may
btain representations of U. Reversing the argument, we now obtain the hitherto unknown corep-
esentations of A from the already known irreducible representations of U.

Let an arbitrary element X�U act on the vector space V��� described in Sec. II A. The matrix
epresentation of X on V��� is denoted by D��X ;��,

Xem
� ��� = �

m�

em�
� ���Dm�m

� �X;�� . �4.3�

he parity of the element Tm�m
� ��� of A, defined via the duality relation

Dm�m
� �X;�� = �− 1�X̂��−m�+���X,Tm�m

� ���� , �4.4�

ay be assigned as

T
m�m
�̂ ��� = m� + m�mod 2� . �4.5�

o prove this, we compare the parity of both sides of �4.3�. The resultant equation D
m�m
�̂ �X ;��

X̂+m�+m �mod 2� establishes the relation �4.5�. Though we know, via �2.11�, that all nonvan-
shing entries of the representation matrices are even, we should keep the parity of D��X ;�� in the
resent formulation. Next we obtain the coproduct and counit maps for Tm�m

� ���,

��Tm�m
� ���� = �

m�

Tm�m�
� ��� � Tm�m

� ���, ��Tm�m
� ���� = �m�m. �4.6�

�
he matrix D �X ;��, being a representation of X�U, obeys the rule
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Dm�m
� �XY ;�� = �

m�

Dm�m�
� �X;��Dm�m

� �Y ;�� ∀ X,Y � U . �4.7�

oth sides �left-hand side �lhs� and right-hand side �rhs�� of �4.7� may be rewritten by using �4.4�,

lhs = �− 1�XŶ��−m�+���XY,Tm�m
� ���� = �− 1�XŶ��−m�+���X � Y,��Tm�m

� ����� ,

rhs = �
m�

�− 1�X̂��−m�+��+Ŷ��−m�+���X,Tm�m�
� �����Y,Tm�m

� ���� = �
m�

�− 1��X̂+Ŷ���−m�+���X � Y,Tm�m�
� ���

� Tm�m
� ���� .

he property �4.7� now assumes the form

�X � Y,��Tm�m
� ���� − �

m�

Tm�m�
� ��� � Tm�m

� ���� = 0. �4.8�

ince the relation �4.8� is true for arbitrary X, Y, and the pairing is nondegenerate, we obtain the
oproduct map in �4.6�. To obtain the counit map, we consider

Dm�m
� �1;�� = �1,Tm�m

� ����  ��Tm�m
� ���� , �4.9�

nd use the fact that the unit element of U is always represented by the identity matrix ��m�m�. This
ompletes the proof of �4.6�.

Defining the map �R :V���→V��� � A by

�R�em
� ���� = �

m�

em�
� ��� � Tm�m

� ��� , �4.10�

t is easy to show, via �4.6�, that V��� equipped with �R is a right A-comodule. Thus the quantum
upermatrix T���� provides the �2�+1�-dimensional corepresentation of A on V���. The relation
etween representations and corepresentations is summarized in the same form as the nonsuper
ase,19

Xem
� ��� = �id � X� � �R�em

� ���� , �4.11�

here the action of U on A is defined by the nondegenerate pairing. It is easy to find T���� for
=0,1 from �4.4�,

T00
0 ��� = 1 for � = 0,1, �4.12�

T1�0� = T = �a � b

� e 

c � d
�, T1�1� = � a − � b

− � e − 

c − � d
� , �4.13�

here the indices of rows and columns of T1��� run over 1, 0, and −1.
One of the important properties of the corepresentations T���� is that they satisfy the product

aw which gives a rule to combine two corepresentations to get the third one,

����Tm�m
� ��� = �

m1,m2

m�,m�

�− 1�pC
m1�m2�m�
�1�2�� Cm1m2m

�1�2� T
m1�m1

�1 ���T
m2�m2

�2 ��� ,
1 2
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p = �m1� + m1���2 − m2� + �� + ��1 − m1����2 − m2�� + ��� − m����1 + �2 + ��� . �4.14�

o prove the above product law, we first derive the fusion rule of representation matrices D��X ;��
f U, and then apply the duality argument by the proof of �4.6�.

Denoting the coproduct of X�U as ��X�=�aXa � Xa, we use the projection relation �2.17� to
btain

Xem
� ��1,�2,�� = �

m1,m2,a
�− 1�X̂a��1−m1+��Cm1m2m

�1�2� Xaem1

�1 ��� � Xaem2

�2 ��� . �4.15�

e employ �4.3� to compute both sides of �4.15�,

rhs = �
m1,m2

m1�,m2�

�
a

�− 1�X̂a��1−m1+���− 1��X̂a+m1�+m1���2−m2�+��

� Cm1m2m
�1�2� �e

m1�
�1

� e
m2�
�2 �D

m1�m1

�1 �Xa;��D
m2�m2

�2 �Xa;��

= �
m1,m2

m1�,m2�

�
a,��,m�

�− 1�X̂a��1−m1+��+X̂a��2−m2�+��+p

� C
m1�m2�m�
�1�2�� Cm1m2m

�1�2� em�
�� ��1,�2,���Dm1�m1

�1 �Xa;��D
m2�m2

�2 �Xa;�� ,

here �2.22� is used in the last equality. The lhs of �4.15� follows directly from �4.3�:

lhs = �
m�

em�
� ��1,�2,��Dm�m

� �X;�� ,

ielding the product law of D��X ,��,

����Dm�m
� �X,�� = �

m1,m2

m1�,m2�

�
a

�− 1�X̂a��1−m1+��+X̂a��2−m2�+��+p

� C
m1�m2�m�
�1�2�� Cm1m2m

�1�2� D
m1�m1

�1 �Xa;��D
m2�m2

�2 �Xa;�� . �4.16�

o derive the fusion rule for T����, we consider the dual pairing,

�X,T
m1�m1

�1 ���T
m2�m2

�2 ���� = ���X�,T
m1�m1

�1 ��� � T
m2�m2

�2 ���� = �
a

�− 1�X̂a�m1�+m1�

��− 1�X̂a��1−m1�+��+X̂a��2−m2�+��D
m1�m1

�1 �Xa;��D
m2�m2

�2 �Xa;�� ,

hich, in turn, allows us to evaluate the following sum:

�
m1,m2

m1�,m2�

�− 1�pC
m1�m2�m�
�1�2�� Cm1m2m

�1�2� �X,T
m1�m1

�1 ���T
m2�m2

�2 ����

= �− 1�X̂��−m�+�� �
m1,m2

m1�,m2�

�
a

�− 1�X̂a��1−m1+��+X̂a��2−m2�+��+p

� C
m�m�m�
�1�2�� Cm1m2m

�1�2� D
m�m1

�1 �Xa;��D
m�m2

�2 �Xa;�� = �����− 1�X̂��−m�+��Dm�m
� �X;��
1 2 1 2
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= �X,����Tm�m
� ���� .

he second equality is due to �4.16�. Invoking the arbitrariness of X�U, and the nondegeneracy
f dual pairing �,�, we obtain the fusion rule �4.14�.

. A-COVARIANT ALGEBRAS

. General prescription

In this section, we will give a general prescription to find A-covariant algebras. By
-covariant algebras, we mean algebras whose defining relations are covariant under the right

oaction �R of A defined by �4.10�. Probably, the simplest way to find such an algebra is to
ntroduce an algebraic structure on the representation space V���. Assuming � to be a multiplica-
ion map in V���, i.e., ��f � g�= fg ; f ,g�V���, we specifically construct the following composite
bject:

EM
L ���  ��eM

L ��,�,��� = �
m1,m2

Cm1m2M
� � L em1

� ���em2

� ��� , �5.1�

here �=L�mod 2�. The right coaction on EM
L ��� is shown to be

�R�EM
L ���� = �

M�

EM�
L ��� � TM�M

L ��� . �5.2�

he proof may be done in a straightforward way by inverting the relation �5.1�,

em1

� ���em2

� ��� = �− 1���−m1���−m2��
L,M

�− 1��L−M�LCm1m2M
� � L EM

L ��� , �5.3�

nd subsequently using the product law �4.14�,

�R�EM
L ���� = �

m1,m2

Cm1m2M
� � L �R�em1

� �����R�em2

� ����

= �
m1,m2

m1�,m2�

�− 1��m1�+m1���−m2�+��Cm1m2M
� � L e

m1�
� ���e

m2�
� ��� � T

m1�m1

� ���T
m2�m2

� ���

=
�5.3�

�
m1,m2

m1�,m2�

�
L�,M�

�− 1�p�Cm1m2M
� � L C

m1�m2�M�
� � L� EM�

L� ��� � T
m1�m1

� ���T
m2�m2

� ���

=
�4.14�

�
M�

EM�
L ��� � TM�M

L ��� ,

here p�= �m1�+m1���−m2�+��+ ��−m1����−m2��+ �L�−M��L�.
Employing �5.2� we now extract a set of relations which are covariant under �R. The L=0

elation �R�E0
0�0��=E0

0�0� signifies that E0
0�0� is a scalar under the right coaction. It may be

quated to a constant parameter r,

E0
0�0� = �

m1,m2

Cm1m20
� � 0em1

� ���em2

� ��� = r . �5.4�

f L=� and �=� �mod 2�, then Em
� ��� and em

� ��� have the same parity, and they transform identi-
ally under �R. Therefore Em

� ��� is, in general, proportional to em
� ���. It may be noted that the
ollowing relations are covariant:
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Em
� ��� = �

m1,m2

Cm1m2m
� � � em1

� ���em2

� ��� = �em
� ��� , �5.5�

here the proportionality constant �→0 as q→1. For the case ��� �mod 2�, Em
� ��� has different

arity from em
� ���, even though they transform identically. In this case, the constant � in �5.5� is

egarded as a Grassmann number that also vanish at q=1. For L�0,�, the element Em
� ��� cannot

e proportional to em
� ��� as they transform differently. The relevant covariant relations are, there-

ore, of the form

EM
L ��� = �

m1,m2

Cm1m2M
� � L em1

� ���em2

� ��� = 0. �5.6�

s will be seen in the subsequent sections, the simultaneous use of all relations from �5.4�–�5.6�
ives an inconsistent result, since some of them do not have correct classical limits. In order to
btain a consistent covariant algebra, we must make a choice regarding the relations to be used for
efining the algebra. Then the consistency must be verified. As it is clear from the above discus-
ion, the covariant algebras can have at most two more parameters �r ,�� in addition to the
eformation parameter q. It is emphasized that the origin of the parameters is clearly explained in
he framework of the representation theory.

We have formulated a method to construct A-covariant algebras with respect to the right
oaction. It is possible to repeat the same discussion for the left coaction.

. Quantum superspace „�=1,�=0…

Let us investigate the covariant algebra for the �=1 case, where the relevant tensor product
ecomposition is given by 1 � 1=2 � 1 � 0. We assume that �=0, and denote the basis of V�1� by

m=em
1 �0�. Thus z±1 are parity even and z0 is parity odd. The CGC for the decomposition is given

n Appendix C. For L=0, we obtain from �5.4�,

q1/2z−1z1 + z0
2 − q−1/2z1z−1 = r . �5.7�

or L=1, we have ���, and, therefore, the parameter � is a Grassmann number,

− q1/2z0z1 + q−1/2z1z0 = �z1,

z−1z1 + �q−1/2 + q1/2�z0
2 − z1z−1 = �z0,

q1/2z−1z0 − q−1/2z0z−1 = �z−1. �5.8�

or L=2, we obtain, using �5.6�, unacceptable relations such as

z1
2 = 0, q−1/2z0z1 + q1/2z1z0 = 0.

hus we take �5.7� and �5.8� as defining relations of our covariant algebra. We need to check the
ollowing conditions in order to verify whether or not the algebra is well defined:

a� The constant r commutes with all generators.
b� Product of three generators, say z1z0z−1, has two ways of reversing its ordering,

z1z0z−1 → z1z−1z0

↗ ↘
z0z1z−1 z−1z1z0.

↘ ↗
z0z−1z1 → z−1z0z1
These two ways give the same result.
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It is straightforward to verify that the condition �a� is satisfied. The condition �b�, however,
equires setting �=0.

Therefore, we define our covariant algebra by combining relations �5.7� and �5.8�, while
aintaining �=0,

z1z0 = qz0z1, z0z−1 = qz−1z0,

z1z−1 = q2z−1z1 − q�q−1/2 + q1/2�r ,

z0
2 = − q−1�2�z1z−1 − q−1r . �5.9�

his may be interpreted as the most general form of a quantum superspace. The simplest quantum
uperspace corresponds to the choice of r=0.

. Quantum superspace „�=1,�=1…

In this section, we study another quantum superspace where the parity is opposite to the
revious example. Setting �m=em

1 �1�, we note that �±1 have odd parity, while �0 has even parity.
ollowing �5.4�, we obtain

q1/2�−1�1 − �0
2 − q−1/2�1�−1 = r . �5.10�

he L=1 relations may be obtained from �5.5� except that in this case, as �=� holds, the
arameter � is not a Grassmann number. However, these relations such as

q1/2�0�1 + q−1/2�1�0 = ��1

re unacceptable as they include, in the q→1 limit, anticommutators for the product of even and
dd elements. On the other hand, L=2 relations have proper classical limits,

�±1
2 = 0,

q−1/2�0�1 − q1/2�1�0 = 0,

q−1�−1�1 − �2��0
2 + q�1�−1 = 0,

− q−1/2�−1�0 + q1/2�0�−1 = 0. �5.11�

n interesting observation for this case is that we have two kinds of quantum superspaces. First
e note that the relations �5.11� are enough to define a covariant algebra, since it may be shown

hat the condition �b� of Sec. V B is satisfied. Thus the relations �5.11� define a quantum super-
pace. Alternately, combining �5.11� with �5.10� we obtain another set of covariant relations

�±1
2 = 0, q�1�0 = �0�1, q�0�−1 = �−1�0,

�1�−1 + �−1�1 = −
�2�
�3�

r, �0
2 = − �q−1/2 + q1/2��1�−1 − q1/2 �2�

�3�
r , �5.12�

hich have correct classical limit for an arbitrary value of r. With these relations, it may be
hecked that the conditions �a� and �b� of Sec. V B are satisfied. Thus we define the second
uantum superspace by �5.12�.
The above quantum superspaces are covariant under the coaction,
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�R��m� = �
m�

�m� � Tm�m
1 �1� , �5.13�

here T1�1� is given by �4.13�. Defining a new basis of the quantum superspace by

�0� = �0, �±1� = − �±1, �5.14�

e observe that the �m� are covariant under the same corepresentation matrix as the case of �=0,

�m� = �
m�

�m�
� � Tm�m

1 �0� . �5.15�

I. A-COVARIANT SPHERE

. Construction

In this section, we investigate an algebra covariant under the coaction of T2���, i.e., the adjoint
orepresentation of A. This may be interpreted as a supersymmetric extension of a noncommuta-
ive sphere. The corepresentation matrices T2��� are found from �2.14� and �4.4�, or, alternately, by
oupling the elements of two T1��� matrices via the product law �4.14�. We restrict ourselves to
he case of �=0,

T2�0� =�
a2 �1a� �3ab �1�b b2

�1a� ae + q−1�� �2�a + q−1�b� − � + q−1eb �1b

�3ac �2�a� + c�� ad + q−1�2��� + q−2bc �2��d + �b� �3bd

�1�c �� + q−1ce �2��d + q−1c� ed + q−1� �1d

c2 �1c� �3cd �1�d d2
� , �6.1�

here

�1 =
 �4�
q�2�

, �2 = 
q−1�3�, �3 = �1�2. �6.2�

The basis of V�2� is denoted by Ym=em
2 �0�, where m=0, ±1, ±2. Here Y0 ,Y±2 are even, and

±1 are odd. Following the prescription in Sec. V A, we seek a covariant algebra under the right
oaction of T2�0�. The CGC for �=2 are found in Appendix D. The relation for L=0 is obtained
ia �5.4�,

q−1Y2Y−2 − q−1/2Y1Y−1 − Y0
2 + q1/2Y−1Y1 + qY−2Y2 = r , �6.3�

here r is a constant. Equation �6.3� may be regarded as the radius relation of the quantum
upersphere. Explicit constructions for the L=2 case are obtained from �5.5�,

q−3/2Y2Y0 − � �3�!
�4� �

1/2

Y1
2 − q3/2Y0Y2 = �Y2,

q−1/2� �3�!
�4� �

1/2

Y2Y−1 + q−1/2�21Y1Y0 − q1/2�22Y0Y1 − q1/2� �3�!
�4� �

1/2

Y−1Y2 = �Y1,

q1/2Y2Y−2 − �22Y1Y−1 + �23Y0
2 − �21Y−1Y1 − q−1/2Y−2Y2 = �Y0,

q−1/2� �3�!�1/2

Y1Y−2 + q−1/2�21Y0Y−1 − q1/2�22Y−1Y0 − q1/2� �3�!�1/2

Y−2Y1 = �Y−1,

�4� �4�
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q−3/2Y0Y−2 − � �3�!
�4� �

1/2

Y−1
2 − q3/2Y−2Y0 = �Y−2, �6.4�

here � is a constant vanishing in the classical limit, and

�21 =
�2�
�4�

�q−2 + q3/2�2��, �22 =
�2�
�4�

�q2 − q−3/2�2��, �23 =
�2�2

�4� � �8�
�4�

+ 2
�4�
�2�

+ 1� . �6.5�

he construction �5.6� may be applied to the remaining values of L. The relations for the L=3 case
ead

q−1Y2Y1 − qY1Y2 = 0,

Y2Y0 − �31Y1
2 − Y0Y2 = 0,

qY2Y−1 − �32Y1Y0 + �33Y0Y1 − q−1Y−1Y2 = 0,

− q2Y2Y−2 + q1/2��3� + q2�Y1Y−1 + �3�	Y0
2 + q−1/2��3� + q−2�Y−1Y1 + q−2Y−2Y2 = 0,

qY1Y−2 − �32Y0Y−1 + �33Y−1Y0 − q−1Y−2Y1 = 0,

Y0Y−2 − �31Y−1
2 − Y−2Y0 = 0,

q−1Y−1Y−2 − qY−2Y−1 = 0, �6.6�

here

�31 = −

�4�!
�2�2 	, �32 = � �4�

�3�!�
1/2

�q2 + q−1/2�2��, �33 = � �4�
�3�!�

1/2

�q−2 − q1/2�2�� . �6.7�

e observe that the relations �6.4� together with �6.6� have the correct classical limits. We have
btained a set of 12 relations for five generators. To test whether they consistently define an
lgebra, we need to check for the conditions �a� and �b� mentioned in Sec. V B. It may be proved
y direct computation that the said conditions are, however, not satisfied.

In order to make the algebra well defined, we incorporate the L=1 relations listed below,

q−3/2Y2Y−1 − q−1/2� �3�!
�4� �

1/2

Y1Y0 − q1/2� �3�!
�4� �

1/2

Y0Y1 + q3/2Y−1Y2 = 0,

− q−1/2Y2Y−2 + q−1�11Y1Y−1 + �
�3�!
�4�

Y0
2 − q�12Y−1Y1 − q1/2Y−2Y2 = 0,

− q−3/2Y1Y−2 + q−1/2� �3�!
�4� �

1/2

Y0Y−1 + q1/2� �3�!
�4� �

1/2

Y−1Y0 − q3/2Y−2Y1 = 0, �6.8�

here

� = q1/2 + q−1/2, �11 = q + q−1 �2�
�4�

, �12 = q−1 + q
�2�
�4�

. �6.9�

he remaining L=4 relations cannot be incorporated, because they contain unacceptable equations
2
uch as Y±2=0.
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As all the relations in �6.4�, �6.6�, and �6.8� are covariant by construction, their linear com-
inations are also covariant. Taking linear combination of the 15 relations, 12 “commutation
elations” of generators and three constraints are obtained. The commutation relations read

Y2Y1 = q2Y1Y2, Y−1Y−2 = q2Y−2Y−1,

q−2Y2Y0 = q2Y0Y2 + �
�4��3�

�6�
�Y2,

q−2Y0Y−2 = q2Y−2Y0 + �
�4��3�

�6�
�Y−2,

q−3Y2Y−1 = q3Y−1Y2 + �
�3�
�4�!

�6�
�Y1,

q−3Y1Y−2 = q3Y−2Y1 + �
�3�
�4�!

�6�
�Y−1,

q−1Y1Y0 = qY0Y1 + �
�3�!
�6�

�Y1,

q−1Y0Y−1 = qY−1Y0 + �
�3�!
�6�

�Y−1,

q−1�11Y2Y−2 = q�12Y−2Y2 − F1Y0
2 + F2Y0,

q−1/2Y1Y−1 = − q1/2Y−1Y1 + 	Y0
2 +

�

q + 1 + q−1�Y0,

Y1
2 =

1

�31
�Y2Y0 − Y0Y2�, Y−1

2 =
1

�31
�Y0Y−2 − Y−2Y0� , �6.10�

here

F1 = ��q2 + q + 1 + q−1 + q−2�
�2�2

�4�
,

F2 = ��q2 + 2q + 2q−1 + q−2�
�3�!�2�
�6��4�

� . �6.11�

lassical commutation properties immediately follow from �6.10� in the limit q→1. Three said
onstraints are given by

Y2Y−1 =
q2

�3�� �3�!
�4� �

1/2

Y1Y0 + q1/2 �2�
�6�� �3�!

�4� �
1/2

�Y1,

Y1Y−2 =
q2 � �3�!�1/2

Y0Y−1 + q1/2 �2�� �3�!�1/2

�Y−1,

�3� �4� �6� �4�
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Y0
2 = q−1 �4�

�2�
Y2Y−2 − q−1/2�q + q−1��12Y1Y−1 − q−3/2 �3�!

�6�
�Y0. �6.12�

he classical limit of these constraints are not required in the commutative case. However, we
eed the constraints to satisfy the two important requirements given in Sec. V B. Verification of
hese conditions is straightforward but requires dull lengthy computation. Since the two conditions
re satisfied, we define a one-parameter family of A-covariant quantum superspheres by the radius
elation �6.3�, the commutation relations �6.10�, and the constraints �6.12�. We denote this quan-
um supersphere by Sq,�

0 . The superscript 0 indicates the parity �=0 and � is a free parameter
hich does not have a classical counterpart. The origin of the parameter and the fact that the
uantum superspheres cannot have more parameters clearly follows from the formulation in Sec.
A.

. Properties of Sq,�
0

In this section, three properties of the quantum supersphere Sq,�
0 are investigated. First, we

onsider a realization of Sq,�
0 in terms of elements of A. Then it turns out that this realization

dmits an infinitesimal characterization of Sq,�
0 . A representation of Sq,�

0 in terms of a U-covariant
scillator is also given.

Analogous to the example of Podleś q-sphere, embedding of Sq,�
0 in A may be done by

ealizing its generators in terms of entries of T2�0� matrix. Denoting T2�0� by T, it is straightfor-
ard to verify that the embedding is given by

Y2 = g1T2,2 + g2T0,2 + g3T−2,2,

Y1 = g1T2,1 + g2T0,1 + g3T−2,1,

Y0 = g1T2,0 + g2T0,0 + g3T−2,0,

Y−1 = g1T2,−1 + g2T0,−1 + g3T−2,−1,

Y−2 = g1T2,−2 + g2T0,−2 + g3T−2,−2, �6.13�

here the coefficients g1, g2, and g3 need to satisfy the constraint

g1g3 =
�3�!
�4�

g2
2. �6.14�

n this embedding, the radius r and the parameter � are given as functions of g2,

r = ��2�g2�2, � =
�6�
�3�

g2. �6.15�

his embedding allows us to treat Sq,�
0 as a subalgebra of A. This fact suggests that Sq,�

0 has an
nfinitesimal characterization as shown by Koornwinder.13 To demonstrate this, we extend the left
nd right actions of Uq�su�2�� on SUq�2� defined in Ref. 13 to the supersymmetric case. In the
ollowing we assume u ,v�U ;a ,b�A, and use Sweedler’s notation to denote coproducts, e.g.,
�a�=�a�1� � a�2�. With a slight change of notation from Ref. 13, we now define elements u�a
nd a�u of A by

u�a = �id � u����a�� = �− 1�ûâ�1�a �u,a � , �6.16�
� �1� �2�
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a�u = �− 1�âû�u � id����a�� = � �− 1�âû�u,a�1��a�2�. �6.17�

he coassociativity of A then leads to

�uv��a = u��v�a�, a��uv� = �a�u��v . �6.18�

oreover, we also have

u��ab� = � �− 1�û�2�â�u�1��a��u�2��b� ,

�ab��u = � �− 1�û�1�b̂�a�u�1���b�u�2�� . �6.19�

hus, u�a and a�u define left and right actions of u on a, respectively. The actions of generators
f U on the T�-matrix of A are calculated by using �2.11�. Explicitly, the left actions are given by

K±1�Tm1m2

� ��� = q±m2/2Tm1m2

� ��� ,

v+�Tm1m2

� ��� = �− 1��+m1+�
�� − m2��� + m2 + 1��Tm1m2+1
� ��� ,

v−�Tm1m2

� ��� = �− 1�m1+m2+�+1
�� + m2��� − m2 + 1��Tm1m2−1
� ��� , �6.20�

hile the right actions read

Tm1m2

� ����K±1 = q±m1/2Tm1m2

� ��� ,

Tm1m2

� ����v+ = �− 1��+m2+�
�� − m1 + 1��� + m1��Tm1−1m2

� ��� ,

Tm1m2

� ����v− = �− 1�m1+m2+�
�� + m1 + 1��� − m1��Tm1+1m2

� ��� . �6.21�

An element u�U possessing a coproduct structure ��u�=g � u+u � g−1 with g�U being a
rouplike element, is known as twisted primitive with respect to g. For a twisted primitive element
, it is straightforward to verify that

u�a = 0 and u�b = 0 ⇒ u��ab� = 0, �6.22�

a�u = 0 and b�u = 0 ⇒ �ab��u = 0. �6.23�

hus a set of elements of A annihilated by a twisted primitive element u form a subalgebra of A.
ndeed, the quantum supersphere Sq,�

0 embedded into A is a subalgebra of A that is annihilated by
he twisted primitive element PR,

PR = − 
g3v+ + 
g1v−, �6.24�

Yk�PR = 0, k = ± 2, ± 1,0. �6.25�

he algebra U has three twisted primitive elements, K−K−1, v+, and v−. However, PR consists of
nly odd twisted primitive elements. This is a difference from the q-sphere for SUq�2�. In that
xample, all the twisted primitive elements contribute to the annihilation operator of the q-sphere.

We now turn to an oscillator realization of Sq,�
0 . In Ref. 20, a U-covariant oscillator algebra is

ntroduced. This oscillator algebra is generated by a pair of even creation/annihilation operators
¯
a ,a�, and an odd operator c obeying the relations
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āc = qcā, ac = q−1ca, aā − q−2āa = 1,

c2 = q−1�2�āa + �−1. �6.26�

hese relations are determined by two steps. First, the action of U on the oscillator is defined via
he coproduct of U. Then the commutation properties of the oscillator is fixed by demanding that
he triplet �ā ,c ,−a� transforms under the �=1 representation of U. This suggests that the
-covariant oscillator has a close kinship to the quantum space discussed in Sec. V B. Indeed, the
-covariant oscillator is isomorphic to the quantum plane for a special value of r,

z1 = ā, z0 = c, z−1 = − a, r = − q�−1. �6.27�
mploying the U-covariant oscillator, it is possible to realize Sq,�

0 ,

Y2 = ā2, Y1 = q−1/2� �4�
�2��

1/2

āc ,

Y0 = −

�4�!
q�2�

āa −
q−1/2

�
� �4�

�3�!�
1/2

,

Y−1 = − q−1/2� �4�
�2��

1/2

ca, Y−2 = a2. �6.28�

n this realization, the radius r and the parameter � of Sq,�
0 assume the following values:

r =
q2

�2

�4�
�3�!

, � =
�6�
�3�!

r1/2. �6.29�

n advantage of this realization is that we may represent Sq,�
0 with matrices, since matrix repre-

entation of U-covariant oscillator via that of Biedenharn-Macfarlane q-boson algebra exists.20

II. CONCLUDING REMARKS

We have developed the general prescription for constructing A-covariant algebras. By the
ethod, four A-covariant algebras have been obtained, namely, three quantum superspaces and a

ne-parameter family of quantum superspheres. The special cases of the quantum superspaces
orrespond to the Manin’s quantum superplane and U-covariant oscillator algebra. The quantum
uperspheres are realized by A so that it can be regarded as a subalgebra of A. This subalgebra is
haracterized by the fact that it is annihilated by the right action of a particular combination of the
wisted primitive elements of U. These are the similarities to the q-spheres for SUq�2�. It has also
een shown that the quantum superspheres have U-covariant oscillator realization that allows us to
ave matrix representations of the quantum supersphere.

We believe that the results of this paper are useful for making progress in constructing
upersymmetric versions of noncommutative geometry. For instance, we may consider differential
alculi on the quantum supersphere, then compute its curvature, metric, and so on based on the
ramework of Ref. 5. In connection with the classification of differential calculi, it is interesting to
etermine the dual coalgebra of Sq,�

0 . The corresponding computation for SUq�2� q-sphere was
ade recently and applied to the classification of differential calculi.11 Furthermore, the general
ethod in Sec. V A is applied to construct higher dimensional quantum superspaces by taking
igher values of �.
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It is worth pointing out that, because of the similarity of the representation theory of U to that
f Uq�su�2��, the method developed in Sec. V A is valid for SUq�2�. This procedure allows us to
reat quantum plane, deformed oscillator and Podleś q-sphere in a unified way. The reason for
-spheres being a one-parameter family becomes clear in this framework. It is also possible to
onstruct hitherto unknown higher dimensional SUq�2�-covariant quantum spaces. We will present
hese results elsewhere.
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PPENDIX A: CGC OF U

In this appendix, the general expression of CGC in our conventions is derived. Let us write the
ighest weight vector as

e�
���1,�2,�� = �

m1,m2

Am1m2
em1

�1 ��� � em2

�2 ��� , �A1�

here, for simplicity of notation, the CGC is denoted by Am1m2
. The highest weight condition

�v+�e�
���1 ,�2 ,��=0 gives the recurrence relation for Am1m2

,


��1 − m1���1 + m1 + 1�q−m2/2Am1m2
− �− 1��1−m1+�q�m1+1�/2
��2 + m2���2 − m2 + 1�Am1+1m2−1 = 0.

�A2�

t is easy to find the solution of this relation

Am1m2
= �− 1����1−m1�+��1−m1���1−m1+1�/2q��+1���1−m1�/2

� � ��1 + �2 − ��!��1 + m1�!��2 + m2�!
��2 − �1 + ��!�2�1�!��1 − m1�!��2 − m2�!�

1/2

A�1�−�1
. �A3�

he normalization of the highest weight vector �A1� determines A�1�−�1
as follows:

�e�
���1,�2,��,e�

���1,�2,��� = �
m1,m2

�− 1���1−m1+����2−m2+��Am1m2

2

= �− 1���1+����2+�+�� ��1 + �2 − ��!
��2 − �1 + ��!�2�1�!

A�1�−�1

2

� �
m1

�− 1�m1��1+�2+�+1�q��+1���1−m1� ��1 + m1�!��2 + � − m1�!
��1 − m1�!��2 − � + m�!

.

he summation over m1 is computed by using the formula �B5�. Setting

a = �1 − m1, k = �1 + �2 − �, − n = �1 − �2 + � + 1, − r = − �1 + �2 + � + 1
n �B5�, while noticing that all these quantities are positive integers, we obtain
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�
m1

�− 1���1−m1���1+�2+�+1�q��+1���1−m1� ��1 + m1�!��2 + � − m1�!
��1 − m1�!��2 − � + m�!

= q�−�1+�2+�+1���1+�2−1�/2 ��1 + �2 + � + 1�!��1 − �2 + ��!�− �1 + �2 + ��!
��1 + �2 − ��!�2� + 1�!

.

hus the norm of the highest weight vector reads

�e�
���1,�2,���2 = �− 1����1+�2+�+1�q�−�1+�2+�+1���1+�2−1�/2A�1�−�1

2 ��1 + �2 + � + 1�!��1 − �2 + ��!
�2� + 1�!�2�1�!

.

his leads to

A�1�−�1
= q−�−�1+�2+�+1���1+�2−1�/4� �2� + 1�!�2�1�!

��1 + �2 + � + 1�!��1 − �2 + ��!�
1/2

, �A4�

here the phase is chosen such that the expression coincides with the result in Ref. 17.
To obtain the other vectors in this irreducible representation we need the following results,

hich may be verified by induction:

v−
kem

� ��� = �− 1���−m�k+k�k+1�/2� �� + m�!�� − m + k�!
�� − m�!�� + m − k�!

�k�1/2

em−k
� ��� , �A5�

��v−
n� = �

k=0

n �n

k
��− 1�k�n−k�v−

n−kKk
� v−

kK−n+k. �A6�

sing �A5� we obtain

em
� ��1,�2,�� = �− 1���−m���−m+1�/2� �� + m�!

�2��!�� − m�!��−m�1/2

��v−
�−m�e�

���1,�2,�� . �A7�

he right-hand side is computed by using �A6� and �A1�. After some algebra, we derive

��v−
�−m�em1

�1 ��� � em2

�2 ��� = �
k
�� − m

k
��− 1�k��2−m2+��+��1−m1���−m�+��−m���−m+1�/2qkm1/2+�−�+m+k�m2/2

� � ��1 + m1�!��2 + m2�!��1 + � − m1 − m − k�!��2 − m2 + k�!
��1 − m1�!��2 − m2�!��1 − � + m1 + m + k�!��2 + m2 − k�!

��−m�1/2

� em1−�+m+k
�1 ��� � em2−k

�2 ��� . �A8�

quations �A3� and �A4� allow us to derive

em
� ��1,�2,�� = �

m1,m2

�− 1���1−�+m2���−m+��+��1−�+m2���1−�+m2+1�/2qm2�m+1�/2+��1−�2���1+�2+1�/4−���+1�/4

� ��2� + 1�
��1 + �2 − ��!�� + m�!�� − m�!��1 − m1�!��2 − m2�!

��1 + �2 + � + 1�!��1 − �2 + ��!�− �1 + �2 + ��!��1 + m1�!��2 + m2�!�
1/2

� �
k

�− 1�k�k−1�/2+k��1+�2−m�qk��+m+1�/2

�
��1 + � − m2 − k�!��2 + m2 + k�!

em1

�1 ��� � em2

�2 ��� . �A9�

�k�!�� − m − k�!��1 − � + m2 + k�!��2 − m2 − k�!
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PPENDIX B: SUMMATION FORMULA FOR KULISH SYMBOL

A summation formula for Kulish symbol which is used in the preceding section is derived in
his appendix. Corresponding binomial coefficient is usually defined for y�x�0 as

�y

x
� =

�y�!
�y − x�!�x�!

=
�y��y − 1� ¯ �y − x + 1�

�x�!
. �B1�

e may extend this to y�0 by using the property

�− n� = �− 1�n+1�n�, n � 0, �B2�

nd define the binomial coefficient for negative y by the rightmost formula of �B1�,

�y

x
� =

�− �− y���− �− y + 1�� ¯ �− �− y + x − 1��
�x�!

= �− 1�xy+x�x+1�/2 �− y��− y + 1� ¯ �− y + x − 1�
�x�!

.

hus for y�0 and x�0, the binomial coefficient is given by

�y

x
� = �− 1�xy+x�x+1�/2�x − y − 1

x
� . �B3�

he following formula, proved by induction, is found in Ref. 17:

�n + r

k
� = �

a
� n

k − a
��r

a
��− 1��k−a��r−a�q�r−a��n+r�/2−r�n−k+r�/2, �B4�

here a runs over any positive integers such that the arguments of �x� in the binomial coefficients
re non-negative. We assume n ,r�0, and apply �B3� to this formula,

lhs = �− 1�k�n+r�+k�k+1�/2�k − n − r − 1

k
� ,

rhs = �− 1�k�n+r�+k�k+1�/2qrk/2�
a

�− 1�anq−a�n+r�/2�k − a − n − 1

k − a
��a − r − 1

a
� .

rom this, the following summation formula of Kulish symbols is obtained:

�
a

�− 1�anq−a�n+r�/2 �k − a − n − 1�!�a − r − 1�!
�k − a�!�a�!

= q−rk/2 �k − n − r − 1�!�− n − 1�!�− r − 1�!
�k�!�− n − r − 1�!

.

�B5�

PPENDIX C: CGC FOR 1‹1=2Š1Š0

Tables I–III contain the values of Cm1

1
m−m1

1
m
� for a given �. The columns provide the values of

1, while the rows indicate m. The rightmost column of Table I, titled as “OF,” indicates the
verall factors that are common to all entries in the row. In Table II and III, the overall factors are

ommon for all entries of the tables.

                                                                                                            



A

103510-23 Quantum spheres for OSpq�1/2� J. Math. Phys. 46, 103510 �2005�

                        
PPENDIX D: CGC FOR 2‹2=4Š3Š2Š1Š0

Tables IV–VIII contain the values of Cm1

2
m−m1

2
m
� for a given �. The columns provide the values

TABLE I. �=2.

1 0 −1 OF

2 1 0 0 1

1 �−1��q1/2 q−1/2 0 � �2�

�4� �1/2

0 q �−1���2� q−1 �2�


�4�!
−1 0 q1/2 �−1��q−1/2 � �2�

�4� �1/2

−2 0 0 1 1

TABLE II. �=1, OF= ��2� / �4��1/2.

1 0 −1

1 q−1/2 �−1��+1q1/2 0
0 �−1��+1 q1/2+q−1/2 �−1��

−1 0 �−1��+1q−1/2 q1/2

TABLE III. �=0, OF=1/
�3�.

1 0 −1

0 q−1/2 �−1��+1 −q1/2

TABLE IV. �=4.

2 1 0 −1 −2 OF

4 1 0 0 0 0 1

3 �−1��q q−1 0 0 0 � �4�

�8� �1/2

2 q2

�−1��� �2��4�

�3� �1/2 q−2 0 0 � �3��4�

�7��8� �1/2

1 �−1��q3
�4�! q�4��3� �−1��q−1�4��3� q−3
�4�! 0 � �5�!

�8�! �1/2

0 q4 �−1��q2�4� �4��3� �−1��q−2�4� q−4 �4�!


�8�!
−1 0 q3
�4�! �−1��q�4��3� q−1�4��3� �−1��q−3
�4�! � �5�!

�8�! �1/2

−2 0 0 q2

�−1��� �2��4�

�3� �1/2 q−2 � �3��4�

�7��8� �1/2

−3 0 0 0 q �−1��q−1 � �4�

�8� �1/2

−4 0 0 0 0 1 1
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TABLE V. �=3.

2 1 0 −1 −2 OF

3 q−1 �−1��+1q 0 0 0 � �4�

�8� �1/2

2 �−1��+1 �31 �−1�� 0 0 � �4�!

�6��8� �1/2

1 q �−1��+1�32 �33 �−1��+1q−1 0 � �7��3�

�8�! �1/2

�4�!

0 �−1��+1q2 q1/2��3�+q2� �−1���3�	 q−1/2��3�+q−2� �−1��q−2 � �7�

�8�! �1/2

�4�!

−1 0 �−1��+1q �32 �−1��+1�33 q−1 � �7��3�

�8�! �1/2

�4�!

−2 0 0 �−1��+1 �31 �−1�� � �4�!

�6��8� �1/2

−3 0 0 0 �−1��+1q−1 q � �4�

�8� �1/2

�31=

�4�!

�2�2 	 , �32= � �4�

�3�! �1/2

�q2+q−1/2�2�� , �33= � �4�

�3�! �1/2

�q−2−q1/2�2��
TABLE VI. �=2.

2 1 0 −1 −2 OF

2 q−3/2

�−1��+1� �3�!

�4� �1/2 −q3/2 0 0 � �3��4�

�6��7� �1/2

1
�−1��q−1/2� �3�!

�4� �1/2 q−1/2�21 �−1��+1q1/2�22
−q1/2� �3�!

�4� �1/2 0 � �3��4�

�6��7� �1/2

0 q1/2 �−1��+1�22 �23 �−1��+1�21 −q−1/2 � �3��4�

�6��7� �1/2

−1 0
q−1/2� �3�!

�4� �1/2 �−1��q−1/2�21 −q1/2�22 �−1��+1q1/2� �3�!

�4� �1/2 � �3��4�

�6��7� �1/2

−2 0 0 q−3/2

�−1��+1� �3�!

�4� �1/2 −q3/2 � �3��4�

�6��7� �1/2

�21=
�2�

�4�
�q−2+q3/2�2��, �22=

�2�

�4�
�q2−q−3/2�2��, �23=

�2�2

�4� � �8�

�4�
+2

�4�

�2�
+1�.
TABLE VII. �=1.

2 1 0 −1 −2 OF

1 q−3/2

�−1��+1q−1/2� �3�!

�4� �1/2

−q1/2� �3�!

�4� �1/2 �−1��q3/2 0 � �3�!

�5��6� �1/2

0 �−1��+1q−1/2 q−1�11 �−1��+1
�3�

�4�
	

−q�12 �−1��+1q1/2 � �3��4�

�5��6� �1/2

−1 0 �−1��+1q−3/2

q−1/2� �3�!

�4� �1/2

�−1��q1/2� �3�!

�4� �1/2 −q3/2 � �3�!

�5��6� �1/2

�11=q+q−1
�2�

�4�
, �12=q−1+q

�2�

�4�
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f m1, while the rows indicate m. The rightmost column, titled as “OF,” indicates the overall
actors common to all entries in the row.

1 See, for example, R. J. Szabo, Phys. Rep. 378, 207 �2003�.
2 Yu. I. Manin, Commun. Math. Phys. 123, 163 �1989�.
3 T. Kobayashi and T. Uematsu, Z. Phys. C: Part. Fields 56, 193 �1992�.
4 S. K. Soni, J. Phys. A 24, 619 �1991�.
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6 H. Saleur and B. Wehefritz-Kaufmann, Nucl. Phys. B 628, 407 �2002�; 663, 443 �2003�.
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n optimal Monte Carlo algorithm for multivariate
eynman–Kac path integrals

Marek Kwasa�

Department of Computer Science, Columbia University, New York, New York 10027 and
Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2,
02-097 Warszawa, Poland

�Received 21 December 2004; accepted 8 August 2005; published online 17 October 2005�

We study a Monte Carlo algorithm for approximating multivariate Feynman–Kac
path integrals parameterized by initial value and potential d-variate functions. This
problem suffers from the curse of dimensionality in the worst case deterministic
setting. That is why we study the randomized setting in which the functions are
sampled at randomized points and the algorithm uses a finite number of such
samples. We achieve optimality of the randomized algorithm due to variance re-
duction obtained by Smolyak’s algorithm for approximating tensor product func-
tions. The optimal convergence depends on the smoothness of initial value and
potential functions. When the initial value and potential functions are r times con-
tinuously differentiable we obtain the optimal convergence of order m−1/2−r/d for m
function samples. Thus, if r /d is negligible we do not gain much over the com-
monly used classical Monte Carlo algorithm whose convergence is of order m−1/2.
Hence, the classical Monte Carlo algorithm turns out to be almost optimal if r /d is
small. On the other hand, we can significantly improve the classical Monte Carlo
convergence if r /d is not negligible. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2046528�

. INTRODUCTION

Due to numerous applications, approximation of path integrals with respect to the Wiener
easure attracts attention in many fields, including physics, chemistry, and financial mathematics.

n this article we consider a special case of such integrals, namely, the multivariate Feynman–Kac
ath integral that yields the solution of the initial value problem for the diffusion equation. This
roblem depends on d-variate initial value and potential functions.

We know that deterministic algorithms for the problem of approximating multivariate
eynman–Kac path integrals with the worst case error assurance are highly inefficient for large d,
ee Ref. 1. This is caused by the provable curse of dimensionality of this problem. More precisely,
he convergence of any deterministic algorithm cannot be better than of order m−r/d. Here, r
easures the smoothness of the initial value and potential functions and m is the number of

unction samples. Hence, the convergence decreases exponentially with d. A popular remedy to
anquish the curse of dimensionality is through randomization. For this approach the path integral
s approximated by a multivariate integral, and then this integral is approximately evaluated by a
andomized algorithm, e.g., by the celebrated Monte Carlo algorithm, see e.g., Refs. 2 and 3. This
ields the convergence of order m−1/2 and the dependence on d disappears. It is important to study
hether the convergence m−1/2 can be further improved. We prove that this is indeed possible as

ong as the smoothness r is positive.

�Current affiliation: University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225,

Rzeszów, Poland; Electronic mail: mkwas@wsiz.edu.pl
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http://dx.doi.org/10.1063/1.2046528
http://dx.doi.org/10.1063/1.2046528
http://dx.doi.org/10.1063/1.2046528


i
y
i
v
b
s
M

a

I

d

H
t

H
w
p
i

I

t

t

B
t

�

e

T
u

F

103511-2 Marek Kwas J. Math. Phys. 46, 103511 �2005�

                        
This article uses the technique presented in Ref. 4 which was then generalized and modified
n Ref. 1. This technique utilizes the smoothness of the initial value and potential functions and
ields an algorithm with the optimal convergence roughly of order m−1/2−r/d, see also Ref. 5. This
s proved by using techniques developed by information-based complexity whose extensive over-
iew is presented in Ref. 6, see also Ref. 7. Thus, the classical Monte Carlo algorithm turns out to
e almost optimal when the ratio r /d is negligible. In this case, the algorithm presented here
hows very little advantage. However, when r /d is not negligible the convergence of the classical

onte Carlo algorithm is significantly improved.
We plan to implement and test the algorithm presented here and we will report the results in

follow-up article.

I. MULTIVARIATE FEYNMAN-KAC PATH INTEGRATION

The multivariate Feynman–Kac formula yields the solution of the initial value problem for the
iffusion equation

�z

�t
�u,t� = 1

2�z�u,t� + V�u�z�u,t� for �u,t� � Rd � �0,�� , �1�

z�u,0� = v�u� . �2�

ere v ,V :Rd→R are the initial value and the potential functions, respectively. As usual � denotes
he Laplacian.

The solution z of �1� and �2� is given by the Feynman–Kac formula

z�u,t� =�
C

v�x�t� + u�exp��
0

t

V�x�s� + u�ds�w�dx� . �3�

ere, C is the set of continuous functions x : �0,��→Rd such that x�0�=0. The path integral �3� is
ith respect to the d-dimensional Wiener measure w, see Refs. 8 and 9. In Sec. III we formulate
recisely the assumptions about the initial value v and the potential V which make the path
ntegral �3� well defined and permit feasible numerical approximation.

II. ASSUMPTIONS ON INITIAL VALUE AND POTENTIAL FUNCTIONS

We assume that the initial value v and the potential V belong to the normed space F satisfying
he following assumptions.

�A1� To make the path integral �3� well defined we assume that for every u�Rd, the func-
ional Lu :F→R defined by Luf = f�u� is continuous, and for arbitrary a , t�R+ we have

�
C

�Lx�t��F exp�a�
0

t

�Lx�s��Fds�w�dx� � � . �4�

y Fernique’s theorem, see e.g., Ref. 10, condition �4� holds if there exists �� �0,2� such
hat �Lx�F=O��x��� for �x� approaching infinity, see Ref. 4 for details. Here and elsewhere,

x�=	
i=1
d xi

2 is the Euclidean norm in Rd.
�A2� We assume that F is continuously embedded into L��Rd�. That is, F�L��Rd� and there

xists a positive K such that

�f�L��Rd� � K�f�F, ∀ f � F . �5�

his assumption permits us to relate the multivariate Feynman–Kac path integration problem to
niform approximation. By uniform approximation we mean the approximation of functions from

d ¯ d
in the norm of L��R �, i.e., given, ��0 we want to find a function f �L��R � such that
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�f − f̄�L��Rd� � ��f�F.

�A3� We assume that we can compute a uniform approximation f̄ of the function f from the
lass F by a linear algorithm,

f̄ = 

i=1

nAPP

f�ui�	i, ui � Rd, 	i � L��Rd� , �6�

hat uses nAPP function evaluations and

nAPP = nAPP��,F� = O��−��F�� as � → 0, �7�

or some positive ��F�. The asymptotic constant in �7� may depend on the dimension d. Usually
he exponent ��F� depends on the smoothness and on the number of variables of functions from
, see Sec. VIII. We stress that these assumptions are not essentially restrictive. It is known that
ptimal algorithms for the uniform approximation problem are of the form �6�, see Ref. 11.
oreover the number of function evaluations often depends on � as in �7�, see also Sec. VIII.

�A4� We restrict the norms of the initial value and potential functions. Namely, we assume that
v�F�
 and �V� f �B for given positive 
 ,B. In other words, the pair �v ,V� belong to the class

BF = ��f1, f2� � F � F:�f1�F � B,�f2�F � 
� . �8�

V. RANDOMIZED ALGORITHMS

We are interested in approximating z�u , t�, i.e., the exact value of the path integral �3� at a
ertain point �u , t�� �0,���Rd. We approximate z�u , t� by a randomized algorithm �. This
lgorithm uses the initial value and the potential sampled at randomized points. The error of the
lgorithm � is measured by the maximum with respect to the class BF of the root mean square
rror with respect to the distribution of randomized points,

sup
�v,V��BF

�E�z�u,t� − ��v,V��2�1/2. �9�

. FEYNMAN–KAC FORMULA AS A SERIES OF MULTIVARIATE INTEGRALS

We briefly recall some results from Ref. 1, where the worst case approximation of the mul-
ivariate Feynman–Kac path integrals is analyzed.

Without loss of generality we can assume u=0 in �3�; otherwise we shift the initial value and
he potential appropriately. Then we can express the path integral �3� as a series of multivariate
eighted integrals

z�0,t� = 

k=0

�

Ik�hk� , �10�

here hk�z1 , . . . ,zk+1�=v�zk+1�i=1
k V�zi�, and

Ik�hk� = �
R�k+1�d

hk�z1, . . . ,zk+1�gk+1�z1, . . . ,zk+1�dz1 . . . dzk+1, �11�

ith

gk�z1, . . . ,zk+1� = �
0�t1�¯�tk�t

fk+1�t1, . . . ,tk,t,z1, . . . ,zk+1�dt1 . . . dtk �12�
nd

                                                                                                            



N
w

V

r
a
t
i

A

l

I

a

S
i

T

f

f
t

103511-4 Marek Kwas J. Math. Phys. 46, 103511 �2005�

                        
fk�t1, . . . ,tk,t,z1, . . . ,zk+1� = ��2��k+1t1�t2 − t1� ¯ �t − tk��−d/2

� exp�−
1

2
� �z1�2

t1
+

�z2 − z1�2

t2 − t1
+ ¯ +

�zk+1 − zk�2

t − tk
�� .

ote that the integral �11� depends on the input functions v and V only through the product hk,
hereas the weight functions gk+1 are independent of v and V, and

�gk�L1�R�k+1�d� =
tk

k!
for k  0. �13�

I. APPROXIMATION OF ONE TERM OF THE SERIES

We present algorithms approximating one term �11� of the series �10�. To utilize the power of
andomization we apply the technique known as variance reduction which is achieved by Smoly-
k’s algorithm. This algorithm uses deterministic uniform approximation of the function hk and
akes advantage of the smoothness of the functions v and V. For the reader’s convenience, we
nclude a short overview of Smolyak’s algorithm in the next subsection.

. Smolyak’s algorithm

Smolyak’s algorithm can be used to approximate wide spectrum of the tensor product prob-
ems. We only sketch this algorithm for uniform approximation, for more details see e.g., Ref. 12.

We define Fk as k-fold tensor product of the space F

n this section we assume k�1. Clearly the domain of functions from Fk is Rkd. We want to

pproximate a function fk�Fk uniformly, i.e., we want to find a function f̄ k�L��Rkd� such that

�fk − f̄ k�L��Rkd� � ��f�Fk
. �14�

molyak’s algorithm is based on the sequence of uniform approximation algorithms Ai,
=0 ,1 , . . .,

Ai f = 

j=1

ni

f�u j�	 j, u j � Rd, 	 j � L��Rd� . �15�

hese algorithms approximate functions from the space F as assumed in Secs. III A 2 and III A 3.
We impose three conditions on these algorithms.
�C1� A0�0 is the zero algorithm.
�C2� The error of the algorithm Ai satisfies

�f − Ai f�L��Rd� � C2−i, i = 0,1,2, . . . . �16�

or some constant C�0.
�C3� The number ni of function evaluations used by the algorithm Ai is bounded by

n�Ai� � D�2i��F� − 1�, i = 0,1,2, . . .

or some constant D�0, with ��F� defined Sec. III A 3. Note that C2 and C3 are consistent with
he assumption Sec. III A 3.
We also define
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�i = Ai − Ai−1, i = 1,2,3, . . . ,

nd, finally, for multiindices i= �i1 , . . . , ik��Nk and q�N, we define

Uq = 

1�i,�i��q

�
j=1

k

�ij
. �17�

he sum above is over all multiindices i whose all coordinates are at least 1 and �i�ª
i=1
k ik�q.

e can rewrite �17� as

Uq = 

1�i,q−k+1��i��q

�− 1�q−�i�� k − 1

q − �i� ��
j=1

k

Aij
,

ee Ref. 12 for a more detailed analysis. Thus by �15� we obtain

Uq�fk� = 

1�i,q−k+1��i��q

�− 1�q−�i�� k − 1

q − �i� � 

j�ni

fk�u j1
, . . . ,u jk

�	j, �18�

here the second sum is over all vectors j= �j1 , . . . , jk� whose coordinates are at most the respec-
ive coordinates of the vector ni= �ni1

, . . . ,nik
� and 	j= � j=1

k 	ij
.

Assume, as before, k�1. The bound on the error of the algorithm Uq with q�k follows from
ef. 12 �Lemma 2�,

�fk − Uq�fk��L��Rd� � CHk−1� q

k − 1
�2−q�f�Fk

, �19�

here H=max�2K ,3C�. Using Stirling’s formula we obtain

�fk − Uq�fk�� � CHk−1 1
	2�

	 q

k�q − k�� qe

k − 1
�k−1

2−qe1/6q. �20�

Let Nq be the number of function evaluations used by Uq with q�k. Then, Ref. 12
Lemma 7� yields

Nq � Dk�1 −
1

2��F��k−1

2q��F��q − 1

k − 1
� . �21�

Now, given ��0 and �20�, it is easy to choose q=q�� ,k� as the smallest integer such that

CHk−1 1
	2�

	 q

k�q − k�� qe

k − 1
�k−1

2−qe1/6q � � . �22�

fter straightforward but tedious calculations we obtain the following bound on Nq��,k�, i.e., on the
umber of function evaluations used by Uq��,k�,

Nq��,k� � Dk�log2
1

�
�

+

�k−1����F�+1��1

�
���F�

�23�

ith Dk independent on � and at most exponential in k.

. Variance reduction

We now use Smolyak’s algorithm to reduce the variance of the function hk�Fk+1 defined in

11�. The algorithm Uq applied to the function hk can be written as
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Uq�hk� = 

1�i,q−k��i��q

�− 1�q−�i�� k

q − �i� � 

j�ni

v�u jk+1
�

s=1

k

V�u js
�	j.

n order to get the error bound of the form

�hk − Uq�hk��L��R�k+1�d� � ��v�F�V�F
k , �24�

e need to take q=q�� ,k+1� which was defined in the Sec. VI A. The algorithm Uq��,k� requires
t most

Nq��,k+1� � Dk+1�log2
1

�
�

+

k���F�+1��1

�
���F�

unction evaluations.
The idea underlying variance reduction is as follows. First we compute

h̄k,� = Uq��,k+1��hk�

sing Nq��,k+1� function values. Then we compute

Ik�h̄k,�� = 

1�i,q−k��i��q

�− 1�q−�i�� k

q − �i� � 

j�ni

v�u jk+1
�

s=1

k

V�u js
�Ik�	j�

ith q=q�� ,k+1�. Observe that the functions 	j do not depend on the input functions v and V so
he integrals Ik�	j� can be precomputed.

We stress that h̄k,� and Ik�h̄k,�� are deterministic. We then use the classical Monte Carlo

lgorithm to approximate the multivariate integrals Ik�hk− h̄k,��. The error depends on the variance

f hk− h̄k,� which is bounded by �hk− h̄k,��L��R�k+1�d�. Since this is now small, we obtain variance
eduction.

. Monte Carlo algorithm

We use a randomized algorithm of the form

��,m�v,V� = Ik�h̄k,�� + MCm�hk − h̄k,�� . �25�

ere

MCm�f� =
1

m


j=1

m

f�xj� �26�

enotes the classical Monte Carlo algorithm with m randomized sample points. Randomized
ample points xj�R�k+1�d are chosen with respect to the density gk+1 / �gk+1�L1�R�k+1�d�.

Using the well known error formula for the classical Monte Carlo algorithm and denoting

fk,�=hk− h̄k,�, we conclude that the error of the algorithm ��,m satisfies

�E�Ik�hk� − ��,m�v,V��2�1/2 = �E�Ik� f̄ k,�� − MCm� f̄ k,���2�1/2 =
1

	m
�Var� f̄ k,���1/2,

ith

Var� f̄ k,�� = Ik� f̄ k,�
2 � − �Ik+1� f̄ k,���2.
learly, from �24� and then from �8� and �12� we get
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�Var� f̄ k,���1/2 �
tk

k!
� f̄ k,��L��R�k+1�d� � �

�v�F�V�F
k tk

k!
� �

B
ktk

k!
.

his yields the error estimate

�E�Ik�hk� − ��,m�v,V��2�1/2 �
�

	m

B
ktk

k!
�27�

nd the total number n���,m� of function evaluations is bounded by

n���,m� � Nq��,k+1� + m . �28�

II. THE ALGORITHM

Based on the previous section we are ready to present an algorithm �� which computes an �
pproximation of a multivariate Feynman–Kac path integral, i.e., whose error defined by �9� does
ot exceed �. We assume that the initial value and the potential belong to the class BF. We
pproximate the consecutive terms Ik�hk� of the series z�0 , t�=
k=0

� Ik�hk� by the algorithms ��k,m

ith the accuracy �k being

�k = �2/���F�+2� k!

B
ktk2k+1 , �29�

nd the number of randomized sample points m being

m = ��−2��F�/���F�+2�� . �30�

Since the required error �k goes to infinity super exponentially fast we need to approximate
nly a finite number of the series terms. Thus the final form of the algorithms approximating
�0 , t� is

���v,V� = 

k=0

N�

��k,m

ith the sum limit N� determined in the next section.

. Error analysis

From �27�, �29�, and �30�, it is easy to check that

�E�Ik�hk� − ��k,m�v,V��2�1/2 �
�

2k+1 . �31�

t is also easy to see that we need to approximate only a few terms of the series. Indeed, for k
pproaching infinity, we have �k also tending to infinity. Assume that

k!�1+��F�/��F�+2  B
ktk�2K�k+1,

ith K being the embedding constant in �5�. This implies

�k

m
 Kk+1,

nd by �5� and �27� we see that for such k the deterministic zero algorithm provides sufficient
ccuracy. Thus, we need to use the algorithms ��k,m only for k=O�ln �−1�. Hence, we get N�

O�ln �−1�.

Summing up the bounds �31� over k=1,2 , . . . we obtain an error estimate of the algorithm ��
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�E�z�0,t� − ���v,V��2�1/2 � � . �32�

his means that the algorithm �� computes an �-approximation of the multivariate Feynman–Kac
ath integral.

. Number of function evaluations

In this section we derive estimates on the number of function values n���� of the algorithm

�. By the bounds �23� and �28� we get an obvious estimate

n���� = O�1 + 

k=0

�

Dk+1�log2 �k
−1�+

k���F�+1��B
ktk2k+1

k!
���F���−2��F�/���F�+2�.

e can now use an argument similar to that in the proof of Ref. 4 �Theorem 1� to show that



k=0

�

Dk+1�log2 �k
−1�+

k���F�+1��B
ktk2k+1

k!
���F�

= O��−��

or all ��0. Thus we finally get

n���� = O��−2��F�/���F�+2�−�� for all � � 0. �33�

It is easy to see that both parts of each of the algorithms ��k,m—the variance reduction and the
ntegral approximation—are linear with respect to the functions hk. This means that their total
omputational cost �the number of arithmetic operations and comparisons� is proportional to the
umber of function evaluations. This also holds for the final algorithm ��, thus the estimate �33�
olds also for the total cost of ��.

. Optimality of the algorithm ��

It turns out that the algorithm �� is optimal modulo � in �33�, as long as the exponent ��F�
n �7� is given as the minimal one. The proof of this fact exceeds the scope of this article and
equires a more extensive use of information-based complexity. We refer the reader to the
ollow-up article5 for more details.

III. EXAMPLE

We now consider an example of the class F of initial value and potential functions satisfying
he assumptions from Secs. II and III.

Let F be a class of d variate r times continuously differentiable functions whose supports are
ontained in a cube �a ,b�d�Rd ,a ,b�R. Thus F is a subclass of the Sobolev space W�

r,d��a ,b�d�
ith the norm

�f�W
�
r,d��a,b�d� = 


����r

�f ����L���a,b�d�,

ere �= ��1 , . . . ,�d��Nd and f ���=���� /��1 . . .��d.
Clearly, the assumptions Secs. II A 1 and II A 2 are satisfied. We also know an optimal

niform approximation algorithm that satisfies Sec. II A 3 with the exponent ��F�=d /r, see Refs.
1, 13, and 14. Based on this algorithm and the results from Secs. VI and VII we can construct the
lgorithm �� computing an �-approximation of the multivariate Feynman–Kac path integral �3� in
he sense of �9� with the number of function evaluations being roughly of order O��−2/�1+2r/d��. We
ee that the exponent of �−1 is at most 2 and decreases with the increase of the ratio r /d.
nfortunately, the factor hidden in the big O notation that comes from the use of uniform ap-
roximation and Smolyak’s algorithm depends exponentially on the dimension d. The limiting

alue 2 of the exponent 2 / �1+2r /d� corresponds to the algorithm without variance reduction.
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We present a systematic method to express all su�N� invariant tensors in terms of
forests, i.e., products of tree tensors. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2049168�

. INTRODUCTION

It is a well known fact that in a simple Lie algebra of rank r there are exactly r independent
asimir invariants. This causes a direct restriction on algebra of su�N� tensors since naively one
ould produce an infinite amount of invariants by contracting d , f tensors. The Cayley-Hamilton
heorem, which is the reason why higher Casimir invariants are dependent on the first r ones,
learly gives additional dijk tensor identities. The systematic, computer friendly, approach to obtain
hese formulas was presented by Sudbery.1 One may also define matrices �Fi� jk= f ijk, F=aiFi, ai

C and use Cayley-Hamilton equation to obtain analogous identities for f ijk, which was elabo-
ated in detail in Ref. 2. In this paper we will use a geometrical approach to find formulas on su�N�
oop tensors in term of su�N� tree tensors. In this way we give a recursive method which allows
ne to express any su�N� invariant tensor in terms of basic ones, i.e., forests �products of trees�. In
ec. III we prove several lemmas and eventually the main result. In Sec. IV we present a few
xamples to give insights into the method.

We will use the following conventions:

�i� j =
2

N
�ij1 + dijk�k + if ijk�k, �1�

here �i’s are su�N� generators in fundamental representation and dijk , f ijk are completely
ymmetric/antisymmetric structure tensors. Multiplication law �1� together with Jacobi identities
or �i’s give identities that have been known for a long time.3 We will make special use of

f i1i2kdki3i4
+ f i1i3kdki2i4

+ f i1i4kdki2i3
= 0, �2�

nd

f i1i2k fki3i4
=

2

N
��i1i3

�i2i4
− �i1i4

�i2i3
� + di1i3kdki2i4

− di1i4kdki2i3
. �3�

I. BIRD TRACKS

In order to grasp the variety of all possible invariant tensors it is helpful to introduce the
iagrammatic notation for d and f tensors �Fig. 1�. Each leg corresponds to one index and sum-
ing over any two indices is simply gluing appropriate legs. This notation is very convenient

ecause now any tensor may be represented by a graph.

�
Electronic mail: trzetrzelewski@th.if.uj.edu.pl
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Such a diagrammatic approach was already introduced a long time ago by Cvitanovič. The d , f
ensors are called bird tracks since they look like tracks of a bird. The reader is referred to Ref. 4
here a vast amount of group properties is rediscovered in such diagrammatic language. Since dijk

s totally symmetric the order of the corresponding legs is irrelevant. For f ijk we have to set, e.g.,
ounterclockwise convention. A special group of diagrams are loop and tree diagrams �Fig. 2�.

One may rotate any diagram on the plane without changing the value of the corresponding
ensor. Reflections �or rotations in three dimensions� are allowed as well, however in this case one
as to take care of the sign since f tensor is antisymmetric. If a diagram consists only of d tensors
hen reflections will not affect its value. Several definitions are now in order.

The index that corresponds to the d / f tensor is called the d / f index. A loop L1 is smaller than
oop L2 if the number of f ,d tensors in L2 is smaller than the number of f ,d tensors on L1. Note
hat, in general, trees can be attached to loops. In that case we will call it a tree loop diagram.
imilarly a tree loop L1 is smaller than tree loop L2 if the number of f ,d tensors within loop in L2

s smaller than the number of f ,d tensors within loop in L1.
A loop diagram is called n loop if it consists of n tensors. A loop diagram is called d loop if

t consists of d tensors only. A loop diagram is called 1f /2f loop if it consists of one/two f tensor
nd d tensors.

II. LOOP REDUCTION

This section consists of several lemmas and eventually a theorem which gives a computational
ethod for expressing loops by trees.

Lemma 1: Any loop is a linear combination of d loops and 1f loops.
Proof: Let us rewrite �3� in diagrammatic notation �*�. �Instead of writing i1 , i2 , i3 , i4, etc., we

refer 1, 2, 3, 4 since it causes no misunderstanding and gives a better idea of the structure of
ndices. Take attention of the order of indices 3 and 4. There is no mistake. The whole diagram is
upposed to be read with the counterclockwise convention.� Therefore it is sufficient to consider
oops where f tensor is between d tensors �d1�

FIG. 1. dijk , f ijk diagrams and a typical tensor diagram.
FIG. 2. A tree and a loop diagram.
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�d1�

owever in such case one can use Jacobi identities �2�

�d2�

herefore attaching �the question mark means that there may be f tensor or d tensor�

�d3�

e get

�d4�

he last identity means that we can “move” f tensor along the loop producing a smaller tree loop.
ventually such f tensor will “meet” another f tensor �if there is another one in the loop� and one
an use �*� again to get rid of f tensors. This procedure stops on d loops or 1f loops. �

Lemma 2: Let A be a d loop or 1f loop. Then any permutation of d indices of A does not
hange the value of A up to trees and smaller tree loops.

Proof: Consider identity �*� and attach the tensor

�d5�

here the dashed lines correspond to d tensors only.

The result is
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�d6�

herefore the permutation of indices 3, 4 does not change the d loop up to trees and smaller tree
oops. Since indices 3, 4 are not distinguished we can do any permutation of any two indices and
he d loop will not change the value up to trees and smaller tree loops. Since any permutation is
proper composition of transpositions the Lemma 2 follows for d loops. The proof for 1f loops is

nalogous. �

Lemma 3: Any 1f loop is a linear combination of trees and smaller tree loops.
Proof: Consider the Jacobi identities �**� and attach the tree diagram �consisting of d tensors

nly�

�d7�

he result is

�d8�

rom Lemma 2 it follows that

�d9�

Lemma 4: Any d loop is a linear combination of trees and smaller tree loops.
Proof: Consider Jacobi identity �**� and attach the following tree �consisting of one f tensor

nd n−1 d tensors�

�d10�
he result is
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�d11�

herefore the symmetrization of indices 3, 4 in such 2f loop is equal to smaller tree loop. Now for
he proof of Lemma 4 consider identity �*� and attach the tree tensor �consisting of d tensors only�

�d12�

he result is

�d13�

r simply

�d14�

ccording to �A� the symmetrization over indices 1 and i1 gives

�d15�

ue to Lemma 2, Lemma 4 follows. �

Theorem: Any loop diagram is a linear combination of forests.
Proof: From Lemma 1 it is sufficient to consider d loops and 1f loops. From Lemma 3 and

emma 4 we may recursively reduce 1f loop and d loop to arbitrary small loops and ultimately to
rees. �

Corollary 1: Any diagram is a linear combination of forests.
Proof: Any loop in the diagram may be replaced by a linear combination of trees. This will in

eneral produce more loops however the number of d , f tensors will be smaller after such replace-
ent. Following the induction with respect to the number of d , f tensors we finely reduce all

oops. �

Corollary 2: Any diagram is a linear combination of products of trace tensors Tr��i1
…�in

�
here �i’s are su�N� Gell-Mann matrices.

Proof: According to Corollary 1 it is sufficient to consider tree diagrams. With help of �1� we

ave
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Tr��i1
…�in

� =
1

N
Tr��i1

�i2
�Tr��i3

…�in
� + �di1i2k + if i1i2k�Tr��k�i3

…�in
�

herefore

di1i2kTr��k�i3
…�in

� =
1

2
Tr���i1

��i2��i3
…�in

� −
1

N
Tr��i1

�i2
�Tr��i3

…�in
�

nd

f i1i2kTr��k�i3
…�in

� = 1
2Tr���i1

��i2��i3
…�in

� ,

ence Corollary 2 follows by induction. �

V. EXAMPLES

In the following we give su�N� formulas for the lowest d loops, i.e., triangles, squares, and
entagons. The identities for triangles and squares are already in the literature in Refs. 3 and 5,
espectively. However to the knowledge of the author these identities are missing for pentagons
nd higher loops. The results are

�d16�

nd

�d17�

he last identity in standard notation is

Tr�Di1
Di2

Di3
Di4

Di5
� = �1

2
−

6

N
��di1i2i3

�i4i5
+ di1i2i5

�i4i3
� + −

1

N
�di3i4kdki2ldli1i5

+ di4i5kdki2ldli1i3

+ di1i5kdki4ldli2i3
− di2i5kdki4ldli1i3

� +
1

2
�Tr�Di2

Di1
Fi4

Fk�dki5i3

+ Tr�Di1
Di2

Di5
Dk�dki3i4

+ Tr�Di1
Di2

Di3
Dk�dki5i4

− Tr�Di3
Di4

Di5
Fk�fki1i2

� .

t should be noted that all these identities have been verified in MATHEMATICA with perfect

greement.
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. SUMMARY

The aim of this paper was to give a systematic approach to compute loop tensors. The reason
or doing so lies in the analysis of systems based on su�N� group. In fact the author came across
his problem while studying supersymmetric Yang-Mills quantum mechanics for arbitrary N and
arge N limit.6,7 These issues will be published elsewhere. The method agrees with recent results2

here the problem was solved via characteristic equation for F matrices. Let us note that it is a
aborious task to obtain this equation for arbitrary su�N�, therefore a big loop diagram for large N
s in general difficult to reduce. In a diagrammatic approach this problem does not exist since we

ake no use of characteristic equation. Indeed the lemmas presented here are so simple that one
ould write a computer program for arbitrary loop reduction. What is even more remarkable is that
he derivation of our result is based only on Jacobi identities and multiplication law �1�. We did
ot use the relations derived by Sudbery1 although it is evident that one may contract his formulas
ith, e.g., dijk providing a constraint on a d loop.

The diagrammatic method may be applied to arbitrary Lie algebra. However since the multi-
lication rule �1� is different in other cases than su�N� we expect the conclusions to be different.
ndeed in the g2 case the situation is so different that the simplest triangle d loop is not propor-
ional to dijk tensor.8

Finally let us note that the method2 gives no information about lower degree traces �e.g.,
r�F4� ,Tr�F6� ,Tr�F8� ,Tr�F10� in su�5� cannot be written as polynomials in lower degree traces�.
ne may however apply different arguments5 to derive formulas for fourfold traces. Our results

lso agree with them. Unfortunately these arguments get more complicated while analyzing bigger
oops.
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A generic degenerate Lagrangian system of even and odd fields is examined in
algebraic terms of the Grassmann-graded variational bicomplex. Its Euler–
Lagrange operator obeys Noether identities which need not be independent, but
satisfy first-stage Noether identities, and so on. We show that, if a certain necessary
and sufficient condition holds, one can associate to a degenerate Lagrangian system
the exact Koszul–Tate complex with the boundary operator whose nilpotency con-
dition restarts all its Noether and higher-stage Noether identities. This complex
provides a sufficient analysis of the degeneracy of a Lagrangian system for the
purpose of its BV quantization. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2054647�

. INTRODUCTION

As well-known, quantization of a Lagrangian field system essentially depends on the analysis
f its degeneracy. One says that a Lagrangian system is degenerate if its Euler–Lagrange operator
beys nontrivial Noether identities. They need not be independent, but satisfy the first-stage
oether identities, which in turn are subject to the second-stage ones, and so on. The hierarchy of

educible Noether identities characterizes the degeneracy of a Lagrangian system in full. Noether’s
econd theorem states the relation between the Noether identities and the gauge symmetries of a
agrangian system.1,2 If Noether identities and gauge symmetries are finitely generated, they are
arametrized by the modules of antifields and ghosts, respectively. An original Lagrangian is
xtended to these antifields and ghosts in order to satisfy the so-called master equation. This
xtended Lagrangian is the starting point of the Batalin–Vilkovisky �BV� quantization of a degen-
rate Lagrangian field system.3,4

Let us note that the notion of a reducible Noether identity has come from that of a reducible
onstraint. Their Koszul–Tate complex has been invented by analogy with that of constraints5

nder a rather restrictive regularity condition that field equations as well as Noether identities of
rbitrary stage can be locally separated into the independent and dependent ones.6,7 This condition
lso comes from the case of a constraint locally given by a finite number of functions to which the

�Electronic mail: bashkir@phys.msu.ru
�Electronic mail: giovanni.giachetta@unicam.it
�Electronic mail: luigi.mangiarotti@unicam.it
�
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nverse mapping theorem can be applied. In contrast with constraints, Noether and higher-stage
oether identities are differential operators. They are locally given by a set of functions and their

et prolongations on an infinite order jet manifold. Since the latter is a Fréchet, but not Banach
anifold, the inverse mapping theorem fails to be valid. Here, we follow the general definition of
oether identities of differential operators.8 This definition reproduces that in Refs. 1 and 2 if
oether identities are finitely generated. Their Koszul–Tate complex is constructed iff a certain
omology regularity condition holds.

Our goal is the following. Bearing in mind BV quantization, we address a generic Lagrangian
ystems of even and odd fields on an arbitrary smooth manifold X �dim X=n�. It is algebraically
escribed in terms of a certain bigraded differential algebra �henceforth BGDA� S�

* �F ;Y� which is
plit into the Grassmann-graded variational bicomplex, generalizing the variational bicomplex on
ber bundles �Sec. II�. If a fiber bundle Y →X of even fields is affine, this algebra has been defined
s the product of graded algebras of odd and even fields.2,9 Here, its definition is generalized to an
rbitrary fiber bundle Y →X. In this case, elements of S�

* �F ;Y� are Grassmann-graded differential
orms on the infinite order jet manifold J�Y of sections of Y →X, but not on X. Let L
S�

0,n�F ;Y� be a Lagrangian and �L�S�
1,n�F ;Y� its Euler–Lagrange operator. We associate to �L

he chain complex �13� whose boundaries vanish on-shell, i.e., on Ker �L �Proposition 4�. It is a

omplex of a certain C��X�-module P�
0,n�Ȳ* ;F ;Y ; F̄*� of Grassmann-graded densities on the infi-

ite order jet manifold J�Y. For our purpose, this complex can be replaced with the short zero-

xact complex P�
0,n�Ȳ* ;F ;Y ; F̄*��2 �14�.

Remark 1: If there is no danger of confusion, elements of homology are identified to its
epresentatives. A chain complex is called r-exact if its homology of k�r is trivial.

The Noether identities of the Euler–Lagrange operator �L are defined as nontrivial elements of

he first homology H1��̄� of the complex �14� �Definition 5�. Let this homology be finitely gener-
ted by a projective graded C��X�-module of finite rank. In accordance with the Serre–Swan
heorem generalized to graded manifolds �Theorem 1�, one can introduce the corresponding mod-

le of antifields and extend the complex �14� to the one-exact complex P�
0,n�Ē*Ȳ* ;F ;Y ; F̄*V̄*��3

22� with the boundary operator �0 �21� whose nilpotency conditions are equivalent to the above-
entioned Noether identities �Proposition 6�. First-stage Noether identities are defined as two-

ycles of this complex. They are trivial if two-cycles are boundaries, but the converse need not be
rue. Trivial first-stage Noether identities are boundaries iff a certain homology condition �called
he two-homology regularity condition� holds �Proposition 8�. In this case, the first-stage Noether
dentities are identified to nontrivial elements of the second homology of the complex �22�. If this
omology is finitely generated, the complex �22� is extended to the two-exact complex

�
0,n�Ē1

*Ē*Ȳ* ;F ;Y ; F̄*V̄*V̄1
*��4 �33� with the boundary operator �1 �32� whose nilpotency condi-

ions are equivalent to the Noether and first-stage Noether identities �Proposition 10�. If the third
omology of this complex is not trivial, the second-stage Noether identities exist, and so on.
terating the arguments, we come to the following.

We have the �N+1�-exact complex P�
0,n�N��N+3 �37� such that �i� the nilpotency conditions of

ts boundary operator �N �35� reproduce Noether and k-stage Noether identities for k�N, �ii� the
N+1�-homology regularity condition holds. This condition states that any �k�N−1-cycle �
P�

0,n�k�k+3 is a �k+1-boundary �Definition 11�. Then the �N+1�-stage Noether identities are de-
ned as �N+2�-cycles of this complex. They are trivial if cycles are boundaries, while the con-
erse is true iff the �N+2�-homology regularity condition is satisfied. In this case, �N+1�-stage
oether identities are identified to nontrivial elements of the �N+2�-homology of the complex

37� �item �i� of Theorem 13�. Let this homology be finitely generated. By means of antifields, this
omplex is extended to the �N+2�-exact complex P��N+1��N+4 �45� with the boundary operator

N+1 �44� whose nilpotency restarts all the Noether identities up to stage �N+1� �item �ii� of
heorem 13�.

This iteration procedure results in the exact Koszul–Tate complex of antifields with the bound-
ry operator whose nilpotency conditions reproduce all Noether and higher Noether identities

haracterizing the degeneracy of a differential operator �L.
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In Sec. V, we address the particular variant of topological BF theory with the Lagrangian �47�
or a scalar A and �n−1�-form B as an example of a reducible degenerate Lagrangian system1

here the homology regularity condition is verified �Lemma 14�, Noether and k-stage Noether
dentities are proved to be finitely generated, and its Koszul–Tate complex �62� is constructed.

Remark 2: Throughout the paper, smooth manifolds are assumed to be real, finite-
imensional, Hausdorff, second-countable �consequently, paracompact� and connected. By a
rassmann algebra over a ring K is meant a Z2-graded exterior algebra of some K-module. We

estrict our consideration to graded manifolds �Z ,A� with structure sheaves A of Grassmann
lgebras of finite rank.10,11 The symbols � . � and �.� stand for the form degree and Grassmann parity,
espectively. We denote by �, �, �, 	 the symmetric multi-indices, e.g., �= �
1¯
k�, 
+�
�

1¯
k�. Summation over a multi-index �= �
1¯
k� throughout means separate summation
ver each index 
i.

I. GRASSMANN-GRADED LAGRANGIAN SYSTEMS

Let Y →X be a fiber bundle and JrY be the jet manifolds of its sections. They form the inverse
ystem

X←
�

Y←
�0

1

J1Y ← ¯ Jr−1Y ←
�r−1

r

JrY ← ¯ , �1�

here �r−1
r are affine bundles, and r=0 conventionally stands for Y. Its projective limit

J�Y ;�r
� :J�Y →JrY� is a paracompact Fréchet manifold. A bundle atlas ��UY ;x
 ,yi�� of Y →X

nduces the coordinate atlas

����0
��−1�UY�;x
,y�

i ��, y�
+�
i =

�x�

�x�
d�y��
i, 0 � ��� ,

�2�
d
 = �
 + �

0����
y
+�

i �i
�, d� = d
1

� ¯ � d
k
,

f J�Y, where d
 are total derivatives. We further assume that the cover ���UY�� of X is also the
over of atlases of all fiber bundles over X in question. The inverse system �1� yields the direct
ystem

O*X→
�*

O*Y→
�0

1*

O1
*Y → ¯ Or−1

* Y →
�r−1

r *

Or
*Y → ¯ �3�

f algebras Or
*Y of exterior forms on jet manifolds JrY with respect to the pull-back monomor-

hisms �r−1
r *. Its direct limit is the graded differential algebra �henceforth GDA� O�

* Y of all
xterior forms on finite order jet manifolds modulo the pull-back identification.

Let us extend the GDA O�
* Y to graded forms on graded manifolds whose bodies are jet

anifolds JrY of Y.2,9 Note that there are different approaches to treat odd fields on a smooth
anifold X, but the following variant of the Serre–Swan theorem motivates us to describe them in

erms of graded manifolds whose body is X.
Theorem 1: Let Z be a smooth manifold. A Grassmann algebra A over the ring C��Z� of

mooth real functions on Z is isomorphic to the Grassmann algebra of graded functions on a
raded manifold with a body Z iff it is the exterior algebra of some projective C��Z�-module of
nite rank.

Proof: The proof follows at once from the Batchelor theorem10 and the Serre–Swan theorem
eneralized to an arbitrary smooth manifold.11,12 The Batchelor theorem states that any graded
anifold �Z ,A� with a body Z is isomorphic to the one �Z ,AQ� with the structure sheaf AQ of
erms of sections of the exterior bundle,
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∧Q* = R�
Z

Q*
�
Z

∧
2

Q*
�
Z
¯ ,

here Q* is the dual of some vector bundle Q→Z. Let us call �Z ,AQ� the simple graded manifold
ith the structure vector bundle Q. Its ring AQ of graded functions �sections of AQ� is the

2-graded exterior algebra of the C��Z�-module of sections of Q*→Z. By virtue of the Serre–
wan theorem, a C��Z�-module is isomorphic to the module of sections of a smooth vector bundle
ver Z iff it is a projective module of finite rank.

In field models, Batchelor’s isomorphism is usually fixed from the beginning. Therefore, we
urther consider simple graded manifolds �Z ,AQ�. One associates to �Z ,AQ� the following BGDA
*�Q ;Z�.10 Let dAQ be the sheaf of graded derivations of AQ. Its global sections make up the real
ie superalgebra dAQ of graded derivations of the R-ring AQ. Then the Chevalley–Eilenberg
omplex of dAQ with coefficients in AQ can be constructed.13 Its subcomplex S*�Q ;Z� of

Q-linear morphisms is the Grassmann-graded Chevalley–Eilenberg differential calculus

0 → R → AQ→
d

S1�Q;Z�→
d

¯ Sk�Q;Z�→
d

¯

ver a Z2-graded commutative R-ring AQ. The graded exterior product ∧ and Chevalley–Eilenberg
oboundary operator d �the graded exterior differential� make S*�Q ;Z� into a BGDA whose
lements obey the relations

� ∧ �� = �− 1��������+��������� ∧ �, d�� ∧ ��� = d� ∧ �� + �− 1����� ∧ d��.

iven the GDA O*Z of exterior forms on Z, there are the monomorphism O*Z→S*�Q ;Z� and the
ody epimorphism S*�Q ;Z�→O*Z. The following facts are essential.9,11

�

Lemma 2: The BGDA S*�Q ;Z� is a minimal differential calculus over AQ, i.e., it is generated
y elements df , f �AQ.

Lemma 3: Given a ring R, let K, K� be R-rings and A, A� the Grassmann algebras over K and
�, respectively. Then a homomorphism �respectively, a monomorphism�  :A→A� yields a

omomorphism �respectively, a monomorphism� of the minimal Chevalley–Eilenberg differential
alculus over a Z2-graded R-ring A to that over A� given by the map da�d��a��, a�A.

One can think of elements of the BGDA S*�Q ;Z� as being graded exterior forms on Z as
ollows. Given an open subset U�Z, let AU be the Grassmann algebra of sections of the sheaf AQ

ver U, and let S*�Q ;U� be the Chevalley–Eilenberg differential calculus over AU. Given an open
et U��U, the restriction morphisms AU→AU� yield a homomorphism of BGDAs S*�Q ;U�

S*�Q ;U��. Thus, we obtain the presheaf �U ,S*�Q ;U�� of BGDAs on a manifold Z and the
heaf S*�Q ;Z� of BGDAs of germs of this presheaf. Since �U ,AU� is the canonical presheaf of

Q, the canonical presheaf of S*�Q ;Z� is �U ,S*�Q ;U��. In particular, S*�Q ;Z� is the BGDA of
lobal sections of the sheaf S*�Q ;Z�, and there is the restriction morphism S*�Q ;Z�
S*�Q ;U� for any open U�Z. Due to this morphism, elements of S*�Q ;Z� can be written in the

ollowing local form.
Given bundle coordinates �zA ,qa� on Q and the corresponding fiber basis �ca� for Q*→X, the

uple �zA ,ca� is called a local basis for the graded manifold �Z ,AQ�.9 With respect to this basis,
raded functions read

f = �
k=0

1

k!
fa1¯ak

ca1
¯ cak, f � C��Z� , �4�

here we omit the symbol of the exterior product of elements ca. Due to the canonical vertical
plitting VQ=Q�Q, the fiber basis ��a� for vertical tangent bundle VQ→Q of Q→Z is the dual
f �ca�. Then graded derivations take the local form u=uA�A+ua�a, where uA ,ua are local graded

unctions. They act on graded functions �4� by the rule

                                                                                                            



R
=

T

w
t

T
a
B

b

o
m

I
�

m
t
m
y

A

w
m
m
A
S

t

e
c

m
o

103513-5 The Koszul–Tate complex of Noether identities J. Math. Phys. 46, 103513 �2005�

                        
u�fa¯bca
¯ cb� = uA�A�fa¯b�ca

¯ cb + udfa¯b�d � �ca
¯ cb� . �5�

elative to the dual local bases �dzA� for T*Z and �dcb� for Q*, graded one-forms read �
�A dzA+�a dca. The duality morphism is given by the interior product

u � � = uA�A + �− 1���a�ua�a, u � dAQ, � � S1�Q;Z� .

he graded exterior differential reads

d� = dzA ∧ �A� + dca ∧ �a� ,

here the derivations �A and �a act on coefficients of graded exterior forms by the formula �5�, and
hey are graded commutative with the graded exterior forms dzA and dca.

We define jets of odd fields as simple graded manifolds modelled over jet bundles over X.2,9

his definition differs from the definition of jets of a graded commutative ring11 and that of jets of
graded fiber bundle,14 but reproduces the heuristic notion of jets of odd ghosts in Lagrangian
RST theory.7,15

Given a vector bundle F→X, let us consider the simple graded manifold �JrY ,AFr
� whose

ody is JrY and the structure bundle is the pull-back

Fr = JrY�
X

JrF

nto JrY of the jet bundle JrF→X, which is also a vector bundle. Given the simple graded
anifold �Jr+1Y ,AFr+1

�, there is an epimorphism of graded manifolds

�Jr+1Y,AFr+1
� → �JrY,AFr

� .

t consists of the open surjection �r
r+1 and the sheaf monomorphism �r

r+1*
AFr

→AFr+1
, where

r
r+1*

AFr
is the pull-back onto Jr+1Y of the topological fiber bundle AFr

→JrY. This sheaf mono-

orphism induces the monomorphism of the canonical presheaves ĀFr
→ ĀFr+1

, which associates
o each open subset U�Jr+1Y the ring of sections of AFr

over �r
r+1�U�. Accordingly, there is the

onomorphism of Z2-graded rings AFr
→AFr+1

. By virtue of Lemmas 2and 3, this monomorphism
ields the monomorphism of BGDAs,

S*�Fr;J
rY� → S*�Fr+1;Jr+1Y� . �6�

s a consequence, we have the direct system of BGDAs

S*�Y�
X

F;Y� → S*�F1;J1Y� → ¯ S*�Fr;J
rY� → ¯ , �7�

hose direct limit S�
* �F ;Y� is a BGDA of all graded differential forms ��S*�Fr ;JrY� on jet

anifolds JrY modulo monomorphisms �6�. The monomorphisms Or
*Y →S*�Fr ;JrY� provide the

onomorphism O�
* Y →S�

* �F ;Y� of their direct limits. In particular, S�
* �F ;Y� is an O�

0 Y-algebra.
ccordingly, the body epimorphisms S*�Fr ;JrY�→Or

*Y yield the epimorphism of O�
0 Y-modules

�
* �F ;Y�→O�

* Y.
If Y →X is an affine bundle, we recover the BGDA introduced in Refs. 2 and 9 by restricting

he ring O�
0 Y to its subring P�

0 Y of polynomial functions, but now elements of S�
* �F ;Y� are graded

xterior forms on J�Y. Indeed, let S*�Fr ;JrY� be the sheaf of BGDAs on JrY and S̄*�Fr ;JrY� its
anonical presheaf whose elements are the Chevalley–Eilenberg differential calculus over ele-

ents of the presheaf ĀFr
. Then the presheaf monomorphisms ĀFr

→ ĀFr+1
yield the direct system
f presheaves
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S̄*�Y � F;Y� → S̄*�F1;J1Y� → ¯ S̄*�Fr;J
rY� → ¯ , �8�

hose direct limit S̄�
* �F ;Y� is a presheaf of BGDAs on the infinite order jet manifold J�Y. Let

�
* �F ;Y� be the sheaf of BGDAs of germs of the presheaf S̄�

* �F ;Y�. The structure module
�T�

* �F ;Y�� of sections of T�
* �F ;Y� is a BGDA such that, given an element ����T�

* �F ;Y�� and
point z�J�Y, there exist an open neighborhood U of z and a graded exterior form ��k� on some
nite order jet manifold JkY so that ��U=�k

�*��k��U. In particular, there is the monomorphism

�
* �F ;Y�→��T�

* �F ;Y��.
Due to this monomorphism, one can restrict S�

* �F ;Y� to the coordinate chart �2� and say that

�
* �F ;Y� as an O�

0 Y-algebra is locally generated by the elements

�1,c�
a ,dx
,��

a = dc�
a − c
+�

a dx
,��
i = dy�

i − y
+�
i dx
�, 0 � ��� .

e agree to call �yi ,ca� the local basis for S�
* �F ;Y�. Let the collective symbol sA stand for its

lements. Accordingly, the notation s�
A and ��

A =ds�
A −s
+�

A dx
 is introduced. For the sake of sim-
licity, we further denote �A�= �sA�.

The BGDA S�
* �F ;Y� is decomposed into S�

0 �F ;Y�-modules S�
k,r�F ;Y� of k-contact and

-horizontal graded forms. Accordingly, the graded exterior differential d on S�
* �F ;Y� falls into the

um d=dH+dV of the total and vertical differentials, where

dH��� = dx
 ∧ d
���, d
 = �
 + �
0����

s
+�
A �A

�.

iven the projector

� = �
k�0

1

k
�̄ � hk � hn, �̄��� = �

0����
�− 1�����A ∧ �d���A

� � ���, � � S�
�0,n�F;Y� ,

nd the graded variational operator �=� �d, the BGDA S�
* �F ;Y� is split into the above-mentioned

rassmann-graded variational bicomplex.7,8 We restrict our consideration to its short variational
ubcomplex

0 → R → S�
0 �F;Y�→

dH

S�
0,1�F;Y� ¯ →

dH

S�
0,n�F;Y�→

�

E1, E1 = ��S�
1,n�F;Y�� .

ne can think of its even elements

L = L� � S�
0,n�F;Y�, � = dx1 ∧ ¯ ∧ dxn,

�9�
�L = �A ∧ EA� = �

0����
�− 1�����A ∧ d���A

�L�� � E1

s being a graded Lagrangian and its Euler–Lagrange operator. A pair �S�
* �F ;Y� ,L� is further

alled a graded Lagrangian system.
Let ��dS�

0 �F ;Y� be a graded derivation of the R-ring S�
0 �F ;Y�.2,9 The interior product ���

nd the Lie derivative L��, ��S�
* �F ;Y�, are defined by the formulas

���� = �
�
 + �− 1���A��A�A, � � S�
1 �F;Y� ,

����� ∧ �� = ������ ∧ � + �− 1����+������� ∧ ������, �,� � S�
* �F;Y� ,

L�� =���d� + d�� � ��, L��� ∧ �� = L���� ∧ � + �− 1�������� ∧ L���� .

graded derivation � is said to be contact if the Lie derivative L� preserves the ideal of contact
raded forms of the BGDA S�

* �F ;Y�. With respect to the local basis �sA� for the BGDA S�
* �F ;Y�,
ny contact graded derivation takes the form
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� = �H + �V = �
d
 + 	�A�A + �
0����

d��A�A
�
 ,

here the tuple of graded derivations ��
 ,�A
�� is the dual of the tuple �dx
 ,ds�

A� of generating
lements of the S�

0 �F ;Y�-algebra S�
* �F ;Y�, and �
, �A are local graded functions.

We restrict our consideration to vertical contact graded derivations

� = �
0����

d��A�A
�. �10�

uch a derivation is completely determined by its first summand

� = �A�x
,s�
A��A, 0 � ��� � k , �11�

alled a generalized graded vector field. It is said to be nilpotent if

L��L��� = �
0����,0����

���
B�B

����
A��A

� + �− 1��B���A���
B��

A�B
��A

��� = 0

or any horizontal graded form ��S�
0,*�F ;Y�. One can show that � �10� is nilpotent only if it is

dd and iff all �A obey the equality

���A� = �
0����

��
B�B

���A� = 0. �12�

For the sake of simplicity, the common symbol further stands for a generalized vector field
11�, the contact graded derivation �10� determined by this field and the Lie derivative L�. We
gree to call all these operators the graded derivation of the BGDA S�

* �F ;Y�.

II. NOETHER IDENTITIES IN A GENERAL SETTING

Given a graded Lagrangian system �S�
* �F ;Y� ,L�, let us construct the manifested Koszul–Tate

omplex of its Noether identities.
The main ingredient in this construction is BGDAs of the following type. Given a vector

undle E→X, let us consider the BGDA S�
* �F ;EY�, where EY denotes the pull-back of E onto Y.

here are monomorphisms of O�
0 Y-algebras,

S�
* �F;Y� → S�

* �F;EY�, O�
* E → S�

* �F;EY� ,

hose images contain the common subalgebra O�
* Y. Let us consider �i� the subring P�

0 EY �O�
0 EY

f polynomial functions in fiber coordinates of the vector bundles JrEY →JrY, r�N, �ii� the
orresponding subring P�

0 �F ;EY��S�
0 �F ;EY� of graded functions with polynomial coefficients

elonging to P�
0 EY, �iii� the subalgebra P�

* �F ;Y ;E� of the BGDA S�
* �F ;EY� over the subring

�
0 �F ;EY�. Given vector bundles V ,V� ,E ,E� over X, we further use the notation

P�
* �V�V;F;Y ;EE�� = P�

* �V��
X

V�
X

F;Y ;E�
X

E�� .

y a density-dual of a vector bundle E→X is meant

Ē* = E*
�
X

∧
n

T*X .

For the sake of simplicity, we restrict our consideration to Lagrangian systems where a fiber
undle Y →X of even fields admits the vertical splitting VY =Y �W, where W is a vector bundle
ver X. This is the case of almost all field models. In a general setting, one must require that

ransition functions of fiber bundles over Y under consideration do not vanish on-shell. Let Ȳ*
enote the density-dual of W in the above-mentioned vertical splitting.
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Proposition 4: One can associate to a graded Lagrangian system �S�
* �F ;Y� ,L�, a chain com-

lex whose boundaries vanish on shell �see the complex �13� below�.
Proof: Let us extend the BGDA S�

* �F ;Y� to the BGDA P�
* �Ȳ* ;F ;Y ; F̄*� whose local basis is

sA , s̄A�, where �s̄A�= ��A�+1�mod 2. Following the terminology of Lagrangian BRST theory,2,5 we

all s̄A the antifields of antifield number 1. The BGDA P�
0 �Ȳ* ;F ;Y ; F̄*� is provided with the

ilpotent graded derivation �̄= �
←

AdEA, where EA are the graded variational derivatives �9� and the

uple of graded right derivations � �
←

�A� is the dual of the tuple of contact graded forms ���A�.
ecause of the expression �9� for �L, it is convenient to deal with a graded derivation �̄ acting on
raded functions and forms � on the right by the rule

�̄��� = d���̄ + d����̄�, �̄�� ∧ ��� = �− 1������̄��� ∧ �� + � ∧ �̄���� .

e call �̄ the Koszul–Tate differential. Let us consider the module P�
0,n�Ȳ* ;F ;Y ; F̄*� of graded

ensities. It is split into the chain complex

0 ← S�
0,n�F;Y�←

�̄

P�
0,n�Ȳ*;F;Y ;F̄*�1 ¯ ←

�̄

P�
0,n�Ȳ*;F;Y ;F̄*�k¯ �13�

raded by the antifield number of its elements. It is readily observed that the boundaries of the
omplex �13� vanish on-shell.

Note that the homology groups H*��̄� of the complex �13� are S�
0 �F ;Y�-modules, but these

odules fail to be torsion-free. Indeed, given a cycle ��P�
0,n�Ȳ* ;F ;Y ; F̄*�k and an element f

�̄� of the ring S�
0 �F ;Y��P�

0 �Ȳ* ;F ;Y ; F̄*�, we obtain that f�= �̄���� is a boundary. Therefore,
ne cannot apply the Künneth formula to the homology of this complex, though any term

�
0,n�Ȳ* ;F ;Y ; F̄*�k is isomorphic to the graded commutative k-tensor product of the

�
0 �F ;Y�-module P�

0,n�Ȳ* ;F ;Y ; F̄*�1.

The homology H0��̄� of the complex �13� is not trivial, but this homology and the higher ones

k�2��̄� are not essential for our consideration. Therefore, we replace the complex �13� with the
nite one

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;F;Y ;F̄*�1←

�̄

P�
0,n�Ȳ*;F;Y ;F̄*�2 �14�

f graded densities of antifield number k�2. It is exact at Im �̄, and its first homology coincides
ith that of the complex �13�. Let us consider this homology.

A generic one-chain of the complex �14� takes the form

� = �
0����

�A,�s̄�A�, �A,� � S�
0 �F;Y� , �15�

nd the cycle condition �̄�=0 reads

�
0����

�A,�d�EA� = 0. �16�

ne can think of this equality as being a reduction condition on the graded variational derivatives

A. Conversely, any reduction condition of form �16� comes from some cycle �15�. The reduction
ondition �16� is trivial if a cycle is a boundary, i.e., it takes the form

� = �
0����,���

T�A���B��d�EBs̄�A�, T�A���B�� = − �− 1��A��B�T�B���A��. �17�
�
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Definition 5: A graded Lagrangian system is called degenerate if there exist nontrivial reduc-
ion conditions �16�, called Noether identities.

One can say something more if the S�
0 �F ;Y�-module H1��̄� is finitely generated, i.e., it pos-

esses the following particular structure. There are elements ��H1��̄� making up a Z2-graded
rojective C��X�-module C�0� of finite rank which, by virtue of the Serre–Swan theorem, is iso-

orphic to the module of sections of the product V̄*�
X

Ē* of the density-duals of some vector

undles V→X and E→X. Let ��r� be local bases for this C��X�-module. Every element �

H1��̄� factorizes

� = �
0����

Gr,�d��r�, Gr,� � S�
0 �F;Y� , �18�

�r = �
0����

�r
A,�s̄�A, �r

A,� � S�
0 �F;Y� , �19�

ia elements of C�0�, i.e., any Noether identity �16� is a corollary of Noether identities

�
0����

�r
A,�d�EA = 0. �20�

learly, the factorization �18� is independent of specification of local bases ��r�. We say that the
oether identities �20� are complete, and call ��C�0� the Noether operators. Note that, being

epresentatives of H1��̄�, the graded densities �r �19� are not �̄-exact.

Proposition 6: If the homology H1��̄� of the complex �14� is finitely generated, this complex
an be extended to a one-exact complex with a boundary operator whose nilpotency conditions are
ust complete Noether identities �see the complex �22� below�.

Proof: Let us extend the BGDA P�
* �Ȳ* ;F ;Y ; F̄*� to the BGDA P�

* �Ē*Ȳ* ;F ;Y ; F̄*V̄*� possess-
ng the local basis �sA , s̄A , c̄r�, where �c̄r�= ���r�+1�mod 2 and Ant�c̄�=2. It is provided with the
ilpotent graded derivation

�0 = �̄ + �
←

r�r, �21�

alled the extended Koszul–Tate differential. Its nilpotency conditions �12� are equivalent to the

omplete Noether identities �20�. Then the module P�
0,n�Ē*Ȳ* ;F ;Y ; F̄*V̄*��3 of graded densities of

ntifield number Ant����3 is split into the chain complex

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;F;Y ;F̄*�1←

�0

P�
0,n�Ē*Ȳ*;F;Y ;F̄*V̄*�2

←
�0

P�
0,n�Ē*Ȳ*;F;Y ;F̄*V̄*�3. �22�

et H*��0� denote its homology. We have H0��0�=H0��̄�=0. Furthermore, any one-cycle � up to
boundary takes the form �18� and, therefore, it is a �0-boundary,

� = �
0����

Gr,�d��r� = �0	 �
0����

Gr,�c̄�r�
 .
ence, H1��0�=0, i.e., the complex �22� is one-exact. �
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V. THE KOSZUL–TATE COMPLEX OF NOETHER IDENTITIES

Turn now to the homology H2��0� of the complex �22�. A generic two-chain reads

� = G + H = �
0����

Gr,�c̄�r� + �
0����,���

H�A,���B,��s̄�As̄�B� ,

�23�
Gr,� � S�

0 �F;Y�, H�A,���B,��V � S�
0 �F;Y�, V � OnX .

he cycle condition �0�=0 takes the form

�
0����

Gr,�d��r� + �̄H = 0. �24�

ne can think of this equality as being the reduction condition on the Noether operators �19�.
onversely, let

� = �
0����

Gr,�c̄�r� � P�
0,n�Ē*Ȳ*;F;Y ;F̄*V̄*�2

e a graded density such that the reduction condition �24� holds. Obviously, it is a cycle condition
f the two-chain �23�. The reduction condition �24� is trivial either if a two-cycle � �23� is a
oundary or its summand G vanishes on-shell.

Definition 7: A degenerate graded Lagrangian system in Proposition 6 is said to be one-stage
educible if there exist nontrivial reduction conditions �24�, called the first-stage Noether identi-
ies.

Proposition 8: First-stage Noether identities can be identified to nontrivial elements of the

omology H2��0� iff any �̄-cycle ��P�
0,n�Ȳ* ;F ;Y ; F̄*�2 is a �0-boundary.

Proof: It suffices to show that, if the summand G of a two-cycle � �23� is �̄-exact, then G is

boundary. If G= �̄�, then

� = �0� + ��̄ − �0�� + H . �25�

he cycle condition reads

�0� = �̄���̄ − �0�� + H� = 0.

hen ��̄−�0��+H is �0-exact since any �̄-cycle ��P�
0,n�Ȳ* ;F ;Y ; F̄*�2, by assumption, is a

0-boundary. Consequently, � �25� is �0-exact. Conversely, let ��P�
0,n�Ȳ* ;F ;Y ; F̄*�2 be an arbi-

rary �̄-cycle. The cycle condition reads

�̄� = 2��A,���B,��s̄�A�̄s̄�B� = 2��A,���B,��s̄�Ad�EB� = 0. �26�

t follows that ��A,���B,���̄s̄�B=0 for all indices �A ,��. Omitting a �̄-boundary term, we obtain

��A,���B,��s̄�B = G�A,���r,��d��r.

ence, � takes the form

� = G��A,���r,��d��rs̄�A� . �27�

e can associate to it the three-chain,

� = G��A,���r,��c̄�rs̄�A�
uch that
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�0� = � + � = � + G��A,���r,��d�EAc̄�r� .

wing to the equality �̄�=0, we have �0�=0. Since � is �̄-exact, it by assumption is �0-exact,
.e., �=�0�. Then we obtain that �=�0�−�0�. �

Lemma 9: It is easily justified that a two-cycle ��P�
0,n�Ȳ* ;F ;Y ; F̄*�2 is �0-exact iff � up to

�̄-boundary takes the form

� = �
0����,���

G��r,���r�,��d��rd��r�� . �28�

If the condition of Proposition 8 �called the two-homology regularity condition� is satisfied, let
s assume that the first-stage Noether identities are finitely generated as follows. There are ele-
ents ��1��H2��0� making up a Z2-graded projective C��X�-module C�1� of finite rank which is

somorphic to the module of sections of the product V̄1
*�

X

Ē1
* of the density-duals of some vector

undles V1→X and E1→X. Let ��r1
� be local bases for this C��X�-module. Every element �

H2��0� factorizes

� = �
0����

�r1,�d��r1
�, �r1,� � S�

0 �F;Y� , �29�

�r1
= Gr1

+ hr1
= �

0����
�r1

r,�c̄�r + hr1
, hr1

� � P�
0,n�Ȳ*;F;Y ;F̄*� , �30�

ia elements of C�1�, i.e., any first-stage Noether identity �24� results from the equalities

�
0����

�r1

r,�d��r + �̄hr1
= 0, �31�

alled the complete first-stage Noether identities. Elements of C�1� are called the first-stage Noether

perators. Note that first summands Gr1
of operators �r1

�30� are not �̄-exact.
Proposition 10: Given a reducible degenerate Lagrangian system, let the associated one-exact

omplex �22� obey the two-homology regularity condition and let its homology H2��0� �first-stage
oether identities� be finitely generated. Then this complex is extended to the two-exact one with
boundary operator whose nilpotency conditions are equivalent to complete Noether and first-

tage Noether identities �see the complex �33� below�.
Proof: Let us consider the BGDA P�

* �Ē1
*Ē*Ȳ* ;F ;Y ; F̄*V̄*V̄1

*� with the local basis
sA , s̄A , c̄r , c̄r1

�, where �c̄r1
�= ���r1

�+1�mod 2 and Ant�c̄r1
�=3. It can be provided with the first-

tage Koszul–Tate differential defined as the nilpotent graded derivation,

�1 = �0 + �
←

r1�r1
. �32�

ts nilpotency conditions �12� are equivalent to complete Noether identities �20� and complete

rst-stage Noether identities �31�. Then the module P�
0,n�Ē1

*Ē*Ȳ* ;F ;Y ; F̄*V̄*V̄1
*��4 of graded den-

ities of antifield number Ant����4 is split into the chain complex

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;F;Y ;F̄*�1←

�0

P�
0,n�Ē*Ȳ*;F;Y ;F̄*V̄*�2

←
�1

P�
0,n�Ē1

*Ē*Ȳ*;F;Y ;F̄*V̄*V̄1
*�3←

�1

P�
0,n�Ē1

*Ē*Ȳ*;F;Y ;F̄*V̄*V̄1
*�4. �33�
et H*��1� denote its homology. It is readily observed that
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H0��1� = H0��̄�, H1��1� = H1��0� = 0.

y virtue of the expression �29�, any two-cycle of the complex �33� is a boundary

� = �
0����

�r1,�d��r1
� = �1	 �

0����
�r1,�c̄�r1
� .

t follows that H2��1�=0, i.e., the complex �33� is two-exact.
If the third homology H3��1� of the complex �33� is not trivial, there are reduction conditions

n the first-stage Noether operators, and so on. Iterating the arguments, we come to the following.
Let �S�

* �F ;Y� ,L� be a degenerate graded Lagrangian system whose Noether identities are
nitely generated. In accordance with Proposition 6, we associate to it the one-exact chain com-
lex �22�. Given an integer N�1, let V1 , . . . ,VN ,E1 , . . . ,EN be some vector bundles over X and

P�
* �N� = P�

* �ĒN
*
¯ Ē1

*Ē*Ȳ*;F;Y ;F̄*V̄*V̄1
*
¯ V̄N

* � �34�

BGDA with local bases �sA , s̄A , c̄r , c̄r1
, . . . , c̄rN

� graded by antifield numbers Ant�c̄rk
�=k+2. Let

=−1,0 further stand for s̄A and c̄r, respectively. We assume the following:

�i� the BGDA P�
* �N� �34� is provided with a nilpotent graded derivation

�N = �0 + �
1�k�N

�
←

rk�rk
, �35�

�rk
= Grk

+ hrk
= �

0����
�rk

rk−1,�c̄�rk−1
+ �

0��,0��

�hrk

�A,���rk−2,��s̄�Ac̄�rk−2
+ ¯ � , �36�

of antifield number −1;
�ii� the module P�

0,n�N��N+3 of graded densities of antifield number Ant����N+3 is split
into the �N+1�-exact chain complex

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;F;Y ;F̄*�1←

�0

P�
0,n�0�2←

�1

P�
0,n�1�3 ¯

←
�N−1

P�
0,n�N − 1�N+1←

�N

P�
0,n�N�N+2←

�N

P�
0,n�N�N+3, �37�

which satisfies the �N+1�-homology regularity condition in accordance with the forth-
coming Definition 11. �

Definition 11: One says that the complex �37� obeys the �N+1�-homology regularity condition
f any �k�N−1-cycle ��P�

0,n�k�k+3�P�
0,n�k+1�k+3 is a �k+1-boundary.

Remark 3: The �N+1�-exactness of the complex �37� implies that any �k�N−1-cycle �
P�

0,n�k�k+3, k�N, is a �k+2-boundary, but not necessarily a �k+1 one.
If N=1, the complex P�

0,n�1��4 �37� restarts the complex �33� associated to a first-stage
educible graded Lagrangian system by virtue of Proposition 10. Therefore, we agree to call �N

35� the N-stage Koszul–Tate differential. Its nilpotency implies complete Noether identities �20�,
rst-stage Noether identities �31� and the equalities

�
0����

�rk

rk−1,�d�	 �
0����

�rk−1

rk−2,�c̄�rk−2
 + �̄	 �
0��,0��

hrk

�A,���rk−2,��s̄�Ac̄�rk−2
 = 0, �38�

or k=2, . . . ,N. One can think of the equalities �38� as being complete k-stage Noether identities
ecause of their properties which we will justify in the case of k=N+1. Accordingly, �rk

�36� are
aid to be the k-stage Noether operators.

Let us consider the �N+2�-homology of the complex �37�. A generic �N+2�-chain �
0,n
P� �N�N+2 takes the form
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� = G + H = �
0����

GrN,�c̄�rN
� + �

0��,0��

�H�A,���rN−1,��s̄�Ac̄�rN−1
+ ¯ �� . �39�

et it be a cycle. The cycle condition �N�=0 implies the equality

�
0����

GrN,�d�	 �
0����

�rN

rN−1,�c̄�rN−1
 + �̄	 �
0��,0��

H�A,���rN−1,��s̄�Ac̄�rN−1
 = 0. �40�

ne can think of this equality as being the reduction condition on the N-stage Noether operators
36�. Conversely, let

� = �
0����

GrN,�c̄�rN
� � P�

0,n�N�N+2

e a graded density such that the reduction condition �40� holds. Then this reduction condition can
e extended to a cycle one as follows. It is brought into the form

�N	 �
0����

GrN,�c̄�rN
+ �

0��,0��

H�A,���rN−1,��s̄�Ac̄�rN−1

=− �

0����
GrN,�d�hrN

+ �
0��,0��

H�A,���rN−1,��s̄�Ad��rN−1
.

glance at the expression �36� shows that the term on the right-hand side of this equality belongs
o P�

0,n�N−2�N+1. It is a �N−2-cycle and, consequently, a �N−1-boundary �N−1� in accordance with
he �N+1�-homology regularity condition. Then the reduction condition �40� is a c̄�rN−1

-dependent
art of the cycle condition

�N	 �
0����

GrN,�c̄�rN
+ �

0��,0��

H�A,���rN−1,��s̄�Ac̄�rN−1
− �
 = 0,

ut �N� does not make a contribution to this reduction condition.
Being a cycle condition, the reduction condition �40� is trivial either if a cycle � �39� is a

N-boundary or its summand G is �̄-exact, i.e., it is a boundary, too, as we have stated above. Then
efinition 7 can be generalized as follows.

Definition 12: A degenerate graded Lagrangian system is said to be �N+1�-stage reducible if
here exist nontrivial reduction conditions �40�, called the �N+1�-stage Noether identities.

Theorem 13: �i� The �N+1�-stage Noether identities can be identified to nontrivial elements of
he homology HN+2��N� of the complex �37� iff this homology obeys the �N+2�-homology regu-
arity condition. �ii� If the homology HN+2��N� is finitely generated as defined below, the complex
37� admits an �N+2�-exact extension.

Proof: �i� The �N+2�-homology regularity condition implies that any �N−1-cycle ��P�
0,n�N

1�N+2�P�
0,n�N�N+2 is a �N-boundary. Therefore, if � �39� is a representative of a nontrivial

lement of HN+2��N�, its summand G linear in c̄�rN
does not vanish. Moreover, it is not a

-boundary. Indeed, if �= �̄�, then

� = �N� + ��̄ − �N�� + H . �41�

he cycle condition takes the form

�N� = �N−1���̄ − �N�� + H� = 0.

ence, ��̄−�N��+H is �N-exact since any �N−1-cycle ��P�
0,n�N−1�N+2 is a �N-boundary. Con-

equently, � �41� is a boundary. If the �N+2�-homology regularity condition does not hold, trivial
eduction conditions �40� also come from nontrivial elements of the homology HN+2��N�. �ii� Let

he �N+1�-stage Noether identities be finitely generated. Namely, there exist elements ��N+1�
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HN+2��N� making up a Z2-graded projective C��X�-module C�N+1� of finite rank which is iso-

orphic to the module of sections of the product V̄N+1
* �

X

ĒN+1
* of the density-duals of some vector

undles VN+1→X and EN+1→X. Let ��rN+1
� be local bases for this C��X�-module. Then any

lement ��HN+2��N� factorizes

� = �
0����

�rN+1,�d��rN+1
�, �rN+1,� � S�

0 �F;Y� , �42�

�rN+1
= GrN+1

+ hrN+1
= �

0����
�rN+1

rN,�c̄�rN
+ hrN+1

, �43�

ia elements of C�N+1�. Clearly, this factorization is independent of specification of local bases
�rN+1

�. Let us extend the BGDA P�
* �N� �34� to the BGDA P�

* �N+1� possessing local bases

�sA, s̄A, c̄r, c̄r1
, . . . , c̄rN

, c̄rN+1
�, Ant�c̄rN+1

� = N + 3, �c̄rN+1
� = ���rN+1

� + 1�mod 2.

t is provided with the nilpotent graded derivation

�N+1 = �N + �
←

rN+1�rN+1
�44�

f antifield number −1. With this graded derivation, the module P�
0,n�N+1��N+4 of graded densi-

ies of antifield number Ant����N+4 is split into the chain complex,

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;F;Y ;F̄*�1←

�0

P�
0,n�0�2←

�1

P�
0,n�1�3¯

←
�N−1

P�
0,n�N − 1�N+1←

�N

P�
0,n�N�N+2 ←

�N+1

P�
0,n�N + 1�N+3 ←

�N+1

P�
0,n�N + 1�N+4. �45�

t is readily observed that this complex is �N+2�-exact. In this case, the �N+1�-stage Noether
dentities �40� come from the complete �N+1�-stage Noether identities

�
0����

�rN+1

rN,�d��r� + �̄hrN+1
� = 0,

hich are reproduced as the nilpotency conditions of the graded derivation �44�.
The iteration procedure based on Theorem 13 can be prolonged up to an integer Nmax when

he Nmax-stage Noether identities are irreducible, i.e., the homology HNmax+2��Nmax
� is trivial. This

teration procedure may also be infinite. It results in the manifested exact Koszul–Tate complex
ith the Koszul–Tate boundary operator whose nilpotency conditions reproduce all Noether and
igher Noether identities of an original Lagrangian system. �

. EXAMPLE

Let us consider a fiber bundle

Y = R�
X

∧
n−1

T*X , �46�

oordinated by �x
 ,A ,B�1¯�n−1
�. The corresponding BGDA is S�

* �Y�=O�
* Y. There is the canonical
n−1�-form
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B =
1

�n + 1�!
B�1¯�n−1

dx�1 ∧ ¯ ∧ dx�n−1 � O�
* Y

n Y �46�. A Lagrangian of topological BF theory in question reads

LBF =
1

n
AdH B . �47�

he corresponding Euler–Lagrange operator �9� takes the form

�L = dA ∧ E� + dB�1¯�n−1
∧ E�1¯�n−1� ,

�48�
E = ���1¯�n−1d�B�1¯�n−1

, E�1¯�n−1 = − ���1¯�n−1d�A ,

here � is the Levi–Civita symbol.

Let us extend the BGDA O�
* Y to the BGDA P�

* �Ȳ* ;Y� where

VY = Y�
X

Y, Ȳ* = �R�
X

∧
n−1

TX��
X

∧
n

T*X .

his BGDA possesses the local bases �A ,B�1¯�n−1
, s̄ , s̄�1¯�n−1�, where s̄ , s̄�1¯�n−1 are odd of

ntifield number 1. With the nilpotent Koszul–Tate differential

�̄ =
�
←

� s̄
E +

�
←

� s̄�1¯�n−1
E�1¯�n−1,

e have the complex �14�,

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;Y�1←

�̄

P�
0,n�Ȳ*;Y�2.

generic one-chain reads

� = �
0����

���s̄� + ��1¯�n−1

� s̄�
�1¯�n−1�� ,

nd the cycle condition �̄�=0 takes the form

��E� + ��1¯�n−1

� E�
�1¯�n−1 = 0. �49�

f �� and ��1¯�n−1

� are independent of the variational derivatives �48� �i.e., � is a nontrivial
ycle�, the equality �49� is split into the following:

��E� = 0, �50�

��1¯�n−1

� E�
�1¯�n−1 = 0. �51�

he equality �50� holds iff ��=0, i.e., there is no Noether identities for E. The equality �51� is
atisfied iff

��1¯�n−1


1¯
k ���1¯�n−1 = − ��1¯�n−1

�
2¯
k �
1�1¯�n−1.
t follows that � factorizes as
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� = �
0����

G�2¯�n−1

� d���2¯�n−1�

ia local graded densities

��2¯�n−1 = ��1¯�n−1

�2¯�n−1,
s̄

�1¯�n−1 = ��1


 ��2

�2
¯ ��n−1

�n−1 s̄

�1¯�n−1 = d�1

s̄�1�2¯�n−1, �52�

hich provide the complete Noether identities1

d�1
E�1�2¯�n−1 = 0. �53�

The local graded densities �52� form the bases of a projective C��X�-module of finite rank
hich is isomorphic to the module of sections of the vector bundle

V̄* = ∧
n−2

TX�
X

∧
n

T*X, V = ∧
n−2

T*X .

herefore, let us extend the BGDA P�
* �Ȳ* ;Y� to the BGDA P�

* �0�=P�
* �Ȳ* ;Y ;V� possessing the

ocal bases

�A,B�1¯�n−1
, s̄, s̄�1¯�n−1, c̄�2¯�n−1� ,

here c̄�2¯�n−1 are even of antifield number 2. Let

�0 = �̄ +
�
←

� c̄�2¯�n−1
��2¯�n−1

e its nilpotent graded derivation. Its nilpotency is equivalent to the Noether identities �53�. Then
e have the one-exact complex

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;Y�1←

�0

P�
0,n�0�2←

�0

P�
0,n�0�3,

nd so on. Iterating the arguments we come to the following �N+1�-exact complex �37� for N
n−3.

Let us consider the vector bundles

Vk = ∧
n−k−2

T*X, k = 1, . . . ,N ,

nd the corresponding BGDA

P�
* �N� = P�

* �¯V3V1Ȳ*;Y ;VV2V4 ¯ � ,

ossessing the local bases

�A,B�1¯�n−1
, s̄, s̄�1¯�n−1, c̄�2¯�n−1, . . . , c̄�N+2¯�n−1� ,

�c̄�k+2¯�n−1� = �k + 1�mod 2, Ant�c̄�k+2¯�n−1� = k + 3.
t is provided with the nilpotent graded derivation
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�N = �0 + �
1�k�N

�
←

� c̄�k+2¯�n−1
��k+2¯�n−1,

�54�
��k+2¯�n−1 = d�k+1

c�k+1�k+2¯�n−1,

f antifield number −1. The nilpotency results from the Noether identities �53� and the equalities

d�k+2
��k+2¯�n−1 = 0, k = 0, . . . ,N , �55�

hich are k-stage Noether identities.1 Then the above-mentioned �N+1�-exact complex is

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;Y�1←

�0

P�
0,n�0�2←

�1

P�
0,n�1�3¯

←
�N−1

P�
0,n�N − 1�N+1←

�N

P�
0,n�N�N+2←

�N

P�
0,n�N�N+3. �56�

t obeys the �N+2�-homology regularity condition as follows.
Lemma 14: Any �N+2�-cycle ��P�

0,n�N−1�N+2 up to a �N−1-boundary takes the form

� = �
k1+¯+ki+3i=N+2

�
0���1�,. . .,��i�

G
�k1+2

1
¯�n−1

1 ;¯;�ki+2
i

¯�n−1
i

�1¯�i

d�1
��k1+2

1
¯�n−1

1
¯ d�i

��ki+2
i

¯�n−1
i

�, k = − 1,0,1, . . . ,N , �57�

here k=−1 stands for

c̄�1¯�n−1 = s̄�1¯�n−1, ��1¯�n−1 = E�1¯�n−1.

t follows that � is a �N-boundary.
Proof: Let us choose some basis element c̄�k+2¯�n−1 and denote it simply by c̄. Let � contain

summand �1c̄, linear in c̄. Then the cycle condition reads

�N−1� = �N−1�� − �1c̄� + �− 1��c̄��N−1��1�c̄ + �� = 0, � = �N−1c̄ .

t follows that � contains a summand �� such that

�− 1��c̄�+1�N−1���� + �� = 0.

his equality implies the relation

�1 = �− 1��c̄�+1�N−1��� �58�

ecause the reduction conditions �55� involve total derivatives of �, but not �. Hence,

� = �� + �N−1��c̄� ,

here �� contains no term linear in c̄. Furthermore, let c̄ be even and � has a summand ��rc̄
r

olynomial in c̄. Then the cycle condition leads to the equalities

�r� = − �N−1�r−1, r � 2.

ince �1 �58� is �N−1-exact, then �2=0 and, consequently, �r�2=0. Thus, a cycle � up to a
¯
N−1-boundary contains no term polynomial in c. It reads
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� = �
k1+¯+ki+3i=N+2

�
0���1�,. . .,��i�

G
�k1+2

1
¯�n−1

1 ;¯;�ki+2
i

¯�n−1
i

�1¯�i c̄
�1

�k1+2
1

¯�n−1
1

¯ c̄
�i

�ki+2
i

¯�n−1
i

� . �59�

owever, the terms polynomial in c̄ may appear under general covariant transformations

c̄��k+2¯�n−1 = det	 �x�

�x��
 �x��k+2

�x�k+2
¯

�x��n−1

�x�n−1
c̄�k+2¯�n−1

f a chain � �59�. In particular, � contains the summand

�
k1+¯+ki+3i=N+2

F�k1+2
1

¯�n−1
1 ;¯;�ki+2

i
¯�n−1

i c̄��k1+2
1

¯�n−1
1

¯ c̄��ki+2
i

¯�n−1
i

,

hich must vanish if � is a cycle. This takes place only if � factorizes through the graded
ensities ��k+2¯�n−1 �54� in accordance with the expression �57�.

Following the proof of Lemma 14, one can show that any �N+2�-cycle ��P�
0,n�N�N+2 up to

boundary takes the form

� = �
0����

G�N+2¯�n−1

� ��N+2¯�n−1� , �60�

.e., the homology H2��N� of the complex �56� is finitely generated by the cycles ��N+2¯�n−1. Thus,
he complex �56� admits the �N+2�-exact extension �45�.

The iteration procedure is prolonged until N=n−3. Given the BGDA P*�n−3�, the corre-
ponding �n−2�-exact complex �56� has the following �n−1�-exact extension. Let us consider the
GDA P*�n−2�, where Vn−2=X�R. It possesses the local bases

�A,B�1¯�n−1
, s̄, s̄�1¯�n−1, c̄�2¯�n−1, . . . , c̄�n−1, c̄� ,

here �c̄�= �n−1�mod 2 and Ant�c̄�=n+1. It is provided with the nilpotent graded derivation

�n−2 = �0 + �
1�k�n−3

�
←

� c̄�k+2¯�n−1
��k+2¯�n−1 +

�
←

� c̄
�, � = d�n−1

c̄�n−1. �61�

hen the above-mentioned �n−1�-exact complex is

0 ← Im �̄←
�̄

P�
0,n�Ȳ*;Y�1←

�0

P�
0,n�0�2←

�1

P�
0,n�1�3¯

←
�n−3

P�
0,n�n − 3�n−1 ←

�n−2

P�
0,n�n − 2�n ←

�n−2

P�
0,n�n − 2�n+1. �62�

ollowing the proof of Lemma 14, one can show that the n-homology regularity condition is
atisfied. Therefore, any n-cycle up to a �n−3-boundary takes the form

� = �
0����

G�c̄�.

he cycle condition reads

�n−2� = �
0����

G�d�� = 0.

t follows that G�=0 and, consequently, �=0. Thus, the n-homology of the complex �62� is
rivial, and this complex is exact. It is a desired Koszul–Tate complex of a Lagrangian system in
uestion. The nilpotency conditions of its boundary operator �61� restarts all the Noether identities

f this Lagrangian system. �
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We study the semirelativistic Hamiltonian operator composed of the relativistic
kinetic energy and a static harmonic-oscillator potential in three spatial dimensions
and construct, for bound states with vanishing orbital angular momentum, its eigen-
functions in “compact form,” i.e., as power series, with expansion coefficients
determined by an explicitly given recurrence relation. The corresponding eigenval-
ues are fixed by the requirement of normalizability of the solutions. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2054648�

. INTRODUCTION: RELATIVISTIC HARMONIC-OSCILLATOR PROBLEM

The simplest and perhaps most straightforward generalization of the Schrödinger operators of
tandard nonrelativistic quantum theory towards the inclusion of relativistic kinematics leads to
amiltonians H that involve the relativistic kinetic energy, or relativistically covariant form of the

ree energy, of a particle of mass m and momentum p given by the square-root operator

T�p� � �p2 + m2, p � �p� ,

nd a coordinate-dependent static interaction potential V�x�. In the one-body case, they read

H = �p2 + m2 + V�x� . �1�

he eigenvalue equation of this Hamiltonian is usually called the “spinless Salpeter equation.” It
ay be regarded as a well-defined approximation to the Bethe-Salpeter formalism1 for the de-

cription of bound states within relativistic quantum field theories, obtained when assuming that
ll bound-state constituents interact instantaneously and propagate like free particles.2 Among
thers, it yields semirelativistic descriptions of hadrons as bound states of quarks.3,4

In general, the above semirelativistic Hamiltonian H is, unfortunately, a nonlocal operator,
ither the relativistic kinetic energy, T�p�, in configuration space or, in general, the interaction

�Present address: Institute for Theoretical Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
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�
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otential in momentum space is a nonlocal operator. Because of the nonlocality it is somewhat
ifficult to obtain rigorous analytical statements about the solutions of its eigenvalue equation.
hus sophisticated methods have been developed to extract information about these solutions; for
etails and comparisons of the various approaches, consult, for example, Refs. 5–10.

Analytical or, at least, semianalytical �we regard a bound on some eigenvalue of a given
elf-adjoint operator as semianalytical if it can be derived by the—in general, numerical—
ptimization of an analytically known expression over a single real variable� expressions for both
pper and lower bounds on the eigenvalues of some self-adjoint operator may be found by
ombining the minimum-maximum principle11–13 and appropriate operator inequalities.14–18 The
utcome of this procedure is sometimes called the “spectral comparison theorem.” In Sec. III
elow, we will use this kind of bounds in order to estimate the accuracy of our findings for the
igenvalues of the operator �1�. Accordingly, we recall in the Appendix the proof of the “transla-
ion” of some inequality satisfied by two operators into the corresponding relations between their
iscrete eigenvalues, by briefly sketching all basic assumptions and the line of argument. A very
ystematic path for obtaining such operator inequalities is provided by rather simple geometrical
onsiderations summarized under the notion “envelope theory.”19–24 These envelope techniques
ay be generalized to systems composed of arbitrary numbers of relativistically moving interact-

ng particles.25–27 For particular potentials V, semianalytical lower bounds on the ground-state
nergy eigenvalue of the semirelativistic Hamiltonian �1�, and hence on the entire spectrum of H,
an be found by the appropriate generalization of the local-energy theorem13,28–30 to our case of
elativistic kinematics,23,31 or by applying the optimized �Beckner-Brascamp-Lieb� version of
oung’s inequality for convolutions to some integral formulation of the spinless Salpeter
quation.32

Purely numerical solutions of the spinless Salpeter equation may be computed in numerous
ays. The semirelativistic Hamiltonian H can be approximated by some effective Hamiltonian
hich is of nonrelativistic shape but uses parameters that depend on expectation values of the
omenta.33,34 Upper bounds of, in principle, arbitrarily high precision on the eigenvalues of a

elf-adjoint operator can be found18,35–39 with the help of the Rayleigh-Ritz �variational� technique
s immediate consequence of the minimum-maximum theorem.11–13 The spinless Salpeter equa-
ion may also be converted into an equivalent matrix eigenvalue problem.40–45

A particular role for H is played by the spherically symmetric harmonic-oscillator potential

V�x� = ar2, r � �x�, a � 0,

his potential defines the “relativistic harmonic-oscillator problem,” posed by the Hamiltonian

H = �p2 + m2 + ar2. �2�

he eigenvalue equation of H, for eigenstates ���, H���=E���, involves only one parameter, upon
actorizing off some overall energy scale a1/3 by performing the canonical transformation

r →
r

a1/3 , p → a1/3p

nd rescaling both mass m and eigenvalue E according to m=a1/3� and E=a1/3�, it reads

��p2 + �2 + r2���� = ���� .

n momentum-space representation this eigenvalue equation reduces to a Schrödinger problem,

�− �p + V�p����p� = ���p� , �3�

ith an interaction potential reminiscent of the square root of the relativistic kinetic energy,

2 2
V�p� � �p + � .
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We would like to take advantage of this facet of the relativistic harmonic-oscillator problem in
rder to derive for its bound-state eigenfunctions, in this analysis, a compact expression and to
ove thereby beyond only numerically calculated exact solutions without having to rely on per-

urbation theory, maybe paving the way for the eventual construction of analytic solutions.

I. ANALYTICAL SOLUTIONS FOR BOUND-STATE EIGENFUNCTIONS

We exploit the fact that, in contrast to the general case, for a harmonic-oscillator potential �as,
ith due care, for any potential of the form V�r2n, n=1, 2, 3, …� the eigenvalue equation of the
amiltonian H is an ordinary differential equation, parametrized by � and its eigenvalue �.

Focusing on the ground state or purely radial excitations, let us introduce, for eigenstates with
anishing relative orbital angular momentum �, the reduced radial wave function y�p� by

y�p� � �4�p��p� �� = 0� ,

hich is, of course, subject to the normalization condition

	
0

�

dp�y�p��2 = 1.

n accordance with Eq. �3� the reduced radial wave function satisfies a reduced radial equation,

d2y

dp2 �p� = �V�p� − ��y�p� . �4�

rom its definition, this reduced radial wave function y�p� must vanish at the origin, y�0�=0.
oreover, the analysis of the normalizable solutions of the eigenvalue equation �4� reveals that

y�p� behaves like p for small p, that is, for p	1; hence, its derivative with respect to p at the point
p=0 is a nonvanishing constant, which may be absorbed into the overall normalization,

dy

dp
�0� = 1.

We construct all solutions of Eq. �4� in the form of the Taylor-series expansions by using the
nsatz

y�p� = 

n=0

�

cn
pn

n!

ith the expansion coefficients

cn �
dny

dpn �0�, n = 0,1,2,… .

he solution of the eigenvalue equation �4� is then clearly tantamount to the determination of the
xpansion coefficients cn. The first three of these expansion coefficients are known trivially,

c0 = y�0� = 0,

c1 =
dy

�0� = 1,

dp
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c2 =
d2y

dp2 �0� = ��V − ��y��0� = 0.

For the sake of notational simplicity, we suppress, in accordance with our above remark, in the
ollowing that normalization factor of y�p� which guarantees its unity norm and assume y�p� to be
ormalized such that the value of the first nonvanishing expansion coefficient is one, c1=1.� Upon
nsertion of the eigenvalue equation �4� followed by the application of Leibniz’s theorem, the
ontrivial expansion coefficients cn, n
3, may be shown to satisfy the recurrence relation

cn+2 =
dn+2y

dpn+2 �0� =
dn

dpn� d2y

dp2��0� =
dn��V − ��y�

dpn �0� = 

k=0

n n

k
��dk�V − ��

dpk

dn−ky

dpn−k��0�

= �� − ��cn + 

k=1

n n

k
�dkV

dpk �0�cn−k = �� − ��cn + 

k=1

n n

k
��1−kdkcn−k, n = 1,2,3,… . �5�

ere, for the last step, we abbreviated the kth derivative of the potential V by a coefficient dk,

dk � �k−1dkV

dpk �0� =
dk�x2 + 1

dxk �0�, x �
p

�
, � � 0, k = 0,1,2,… .

n the case �=m=0, the solutions involve Airy’s function Ai�z�; cf., e.g., Refs. 18,23,33 and 34.
ccording to the above definition, we have d0=1. Furthermore, by inspection of the function

f�x�=�x2+1, it is easy to convince oneself that all odd derivatives of f�x� vanish at x=0,

d2k+1 = 0 for all k = 0,1,2,… , �6�

hereas all even derivatives of f�x� at x=0 necessarily satisfy the �simple� recurrence relation

d2k+2 = �1 − 4k2�d2k, k = 0,1,2,… .

y induction, the solution of this recurrence relation for the nonvanishing coefficients d2k reads

d2k = �− 1�k−1�2k − 1�� �2k − 2�!
2k−1�k − 1�!�2

, k = 1,2,3,… . �7�

aking into account the observation �6�, we obtain c3=�−� and, for the coefficients cn, n
4,

cn+2 = �� − ��cn + 

k=1

�n/2�  n

2k
��1−2kd2kcn−2k, n = 2,3,4,… ,

here

�n

2
� � � n

2 for n even, n = 2,4,6,… ,
n−1

2 for n odd, n = 3,5,7,… .
�

hus the recurrence relation �5� for all expansion coefficients cn decomposes into one involving
nly the even coefficients c2n, n=2, 3, 4, … , and one involving only the odd coefficients c2n+1,
=2, 3, 4, … ; recalling c0=0 and c2=0, we conclude that all the even coefficients cn vanish,

c2n = 0 for all n = 0,1,2,… .
ith the result �7�, the recurrence relation for the �nonvanishing� odd coefficients finally reads
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c2n+3 = �� − ��c2n+1 + 

k=1

n 2n + 1

2k
��1−2kd2kc2n−2k+1 = �� − ��c2n+1

+ 

k=1

n 2n + 1

2k
�c2n−2k+1�1−2k�− 1�k−1�2k − 1�� �2k − 2�!

2k−1�k − 1�!�2

, n = 1,2,3,… . �8�

n summary, upon constructing the relevant expansion coefficients according to this recurrence
elation the analytical expressions for all reduced radial wave functions �of �=0 bound states� y�p�
f the relativistic harmonic-oscillator problem �2� are given by the power-series expansion

y�p� = 

n=0

�

c2n+1
p2n+1

�2n + 1�!
. �9�

The various solutions y�p� of the eigenvalue equation �3� are characterized or discriminated
y different sets of expansion coefficients cn. By construction, apart from the first coefficient c1,
ll expansion coefficients for a given solution depend on the corresponding energy eigenvalue �.
valuating the recurrence relation �8� for just the first term, the series �9� explicitly starts with

y�p� = p�1 + �� − ��
p2

3!
+ ��� − ��2 +

3

�
� p4

5!
+ ¯� .

II. EXPLICIT BOUND-STATE EIGENFUNCTIONS AND ENERGY LEVELS

The central result of our present investigation of the “relativistic harmonic-oscillator problem”
efined by the Hamiltonian H of Eq. �2� is an analytical expression for the reduced radial parts

y�p� of all eigenfunctions ��p� of H for vanishing angular momentum in form of a Taylor series

y�p� � �4�p��p� = 

n=0

�

c2n+1
p2n+1

�2n + 1�!
,

here the corresponding expansion coefficients c2n+1, n=0, 1, 2, … , are either fixed to c1=1,

3=�−� or, for c2n+1, n
2, determined by the recurrence relation �8�. For a given solution of this
igenvalue problem these expansion coefficients and thus the resulting reduced radial wave func-
ion y�p� depend on the parameter ��m /a1/3 and the corresponding energy eigenvalue �. Taking
nto account the necessary requirement of normalizability of Hilbert-space eigenstates, the inver-
ion of the latter relation may be exploited to determine the energy eigenvalues � from the
nowledge of the dependence of � on the coefficients cn, as derived in the preceding section. In
rder to fulfill its normalization condition, any solution y�p� must vanish in the limit p→�,

lim
p→�

y�p� = 0. �10�

ixing the energy eigenvalue � of a chosen bound state in this manner and using this particular
alue of the parameter � in the expansion �9� then yields the corresponding wave function y�p�.

Our principal concern is beyond doubt the semianalytical approach developed in Sec. II and
ummarized above. Nevertheless, it might be instructive to construct explicitly a few examples of
olutions in numerical or graphical form. These results can be compared with the outcome of some
traightforward �but merely numerical� integration of the Schrödinger equation �4�. This will
rovide a useful check of the correctness of our solutions and justify the present formalism.

In actual computations, the infinite series �9� must be truncated, for practical purposes, to a

easonably large but definitely finite number N of terms considered in this expansion of y�p�,
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y�p� � 

n=0

N

c2n+1
p2n+1

�2n + 1�!
. �11�

n this case, the wave function y�p� will approach zero, as required by the constraint �10�, not at
nfinity but already for a finite value, say p̂, of the momentum p— before it starts to diverge. This
echnique gives the energy eigenvalues � with a precision determined by one’s choice of N, �
��N�. Likewise, the momentum boundary p̂ will also change with N, p̂= p̂�N�. For a given value
f �, which quantifies the relative importance of particle mass m and harmonic-oscillator coupling
trength a, every wave function resulting from this truncation procedure involves two dimension-
ess parameters, the relevant energy eigenvalue ��N� of the Hamiltonian �2�, and the characteristic
omentum p̂�N�. Their values will be determined simultaneously, in accordance with the above

equirement on y�p� �to approach zero at p̂�N�� by an appropriate fit procedure. In other words, the
alue of p̂�N�, in particular, cannot be varied freely; it is fixed for chosen N.

Let us illustrate this procedure for both ground state and first radial excitation, i.e., for the two
ound states defined by vanishing orbital angular momentum and radial quantum number nr=0, 1,
espectively. Figure 1 shows the corresponding reduced radial wave functions y�p� for �=30 as
btained by inspecting the functional form of y�p� resulting from different choices of � and p̂, if
aking into account 45 terms in their Taylor series �9�, that is, if choosing N=44 in Eq. �11�. Table
summarizes the relevant numerical parameter values emerging from such construction.

The exact results can be easily computed with the aid of a �standard� integration technique
esigned for solving the Schrödinger equation numerically.46 For our two examples the exact wave
unctions y�p� prove to be practically indistinguishable, at least by the eye, from the ones extracted

IG. 1. Radial eigenfunctions in momentum space y�p���4�p��p� of the ground state �a� and the first radial excitation
b� of the relativistic harmonic-oscillator problem, defined by the Hamiltonian H=�p2+�2+r2, with �=30, and for 45
erms in the Taylor expansion of y�p�.
rom the series �11� with N=44. This explains why we refrain from plotting also the former in Fig.
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. For the momentum range depicted in Fig. 1, that is, for 0� p� p̂, the relative differences of the
reas under corresponding curves are �of the order� 10−8; more precisely, they are given by 2
10−8 for nr=0, the ground state, and 3�10−8 for nr=1, the first excited level.

From a straightforward consideration of the “classical turning points” of the corresponding
and well understood� nonrelativistic harmonic-oscillator problem defined by the Hamiltonian

HNR = � +
p2

2�
+ r2,

he maximum “classical” momenta, p̄, are found, in terms of the radial quantum number nr, as

p̄2 = �4nr + 3��2�, nr = 0,1,2,… .

y inspecting Table I we note with satisfaction that for both energy levels under consideration the
umerical values of the suitable p̂ turn out to be far beyond their classical counterparts p̄.

In order to get, at least, some vague idea of the dependence of our findings on the amount of
runcation represented by N�, we inspect the ground-state wave function y�p� constructed again
or �=30 but by truncating the expansion �9� to the rather modest number of 15 terms, which
eans to set N=14 in Eq. �11�. Figure 2 confronts this approximate wave function y�p� with its

xact behavior for the ground state. While for small and intermediate momenta there is still perfect
greement with the exact result,46 we observe a clearly discernible discrepancy between approxi-
ate and exact curve for large momenta. Table I tells us that even for N=14 our crucial momen-

um p̂ is still comfortably above the corresponding classical turning point, p̄. Moreover, comparing

TABLE I. Dimensionless �by scaling� energy eigenvalues ��N� and charac-
teristic momenta p̂�N� of the relativistic harmonic-oscillator problem posed
by the Hamiltonian H=�p2+�2+r2 as well as the classical turning points p̄
of the corresponding nonrelativistic motion for the ground state and the first
radial excitation �identified by their radial quantum number nr=0, 1�, with
mass vs coupling strength parameter �=30, and N=44 or N=14 in our
Taylor series �11�.

N nr ��N�−� p̂�N� p̄

44 0 0.386 27 10 4.82
1 0.898 64 12 7.36

14 0 0.388 54 8.5 4.82

IG. 2. �Color online� Momentum-space wave function y�p� of Fig. 1�a� resulting from consideration of only 15 terms in
ts polynomial approximation �11� �full line�, in comparison with the corresponding exact ground-state wave function of

he relativistic harmonic-oscillator operator �dashed line�.
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he cases N=14 and N=44, we learn that the value of p̂ increases with increasing number N. Of
ourse, the naive expectation would be that p̂ behaves like p̂→� for N→�, that is, when remov-
ng the truncation and restoring the full series expansion for y�p�.

The minimum number of terms to be taken into account in the Taylor-series expansions �9�
equired in order to achieve some given precision of one’s results will depend, of course, on both
he bound state under study and the desired accuracy. From our above remarks we feel entitled to
onclude that a reasonable �and manageable� number N�40 produces satisfactory results.

To our knowledge, at present the best semianalytical upper and lower bounds to the energy
igenvalues of the relativistic harmonic-oscillator problem are provided simultaneously by the
ombination of minimum-maximum principle with operator inequalities18 and the envelope
heory,19,21 at least for the relativistic harmonic oscillator the envelope bounds19,21 may be shown23

o be quantitatively equivalent to the bounds derived in Appendix A of Ref. 18. However, a
iscussion, in full generality, of all implications of such operator inequalities for the eigenvalues of
he operators considered appears clearly off the mainstream of our presentation. Therefore, as
lready promised in the Introduction, the general relationship is demonstrated in the Appendix.
he bounds we need here are derived from this general theorem by specializing to the case of the

elativistic harmonic-oscillator problem posed by the Hamiltonian operator �2�; all operator in-
qualities required by this procedure may be generated by, e.g., envelope theory. For a bound state
f vanishing relative orbital angular momentum �, that is, for a purely radial excitation, identified
y the radial quantum number nr=0, 1, 2, … �identical to the number of nodes of the correspond-
ng wave function�, the bounds on the dimensionless eigenvalue � read

min
r�0

��2 +
PL

2

r2 + r2� � � � min
r�0

��2 +
PU

2

r2 + r2� ,

here, in three spatial dimensions, our envelope-theory upper-bound parameter PU is given by

PU = 2nr + 3
2 , nr = 0,1,2,… ,

hile the lower-bound parameter PL required for our envelope bounds is related to the zeros z0 of
iry’s function Ai�z� �Ref. 47� �−z0=2.338 107, 4.087 949, 5.520 560, 6.786 708, 7.944 134, ...�
y

PL = 2− z0

3
�3/2

, Ai�z0� = 0.

esulting values of PL for the lowest-lying �=0 bound states are listed in Table II.9,19,21–23

Table III compares, for the lowest four �=0 energy levels �identified by their radial quantum
umber nr=0, 1, 2, 3� of our Hamiltonian �2�, the approximate eigenvalues, ��N�, obtained by the
resent approach by a truncation of the power series �11� to N=14 or N=44 terms, with the
orresponding semianalytical upper ��U� and lower ��L� bounds mentioned above as well as with

TABLE II. Numerical values of the parameter PL used by envelope theory
for the lower bounds on the energy levels of the relativistic harmonic-
oscillator problem in three spatial dimensions, for the lowest-lying �=0
bound states identified by their radial quantum number nr=0, 1, 2, … .

nr PL

0 1.376 083 5
1 3.181 312 9
2 4.992 554 3
3 6.805 136 9
4 8.618 226 9
he �numerically exact� eigenvalues �num, computed by a method developed for the purely numeri-
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al solution of �nonrelativistic� Schrödinger equations.46 For N=14, the polynomial in � resulting
rom the suitably adapted boundary condition �10� has only two real roots at all. Moreover, both
f these approximate values are still above our �semianalytical� upper bounds. In contrast to this
ather crude approximation, for N=44 the eigenvalues ��N� of already the three lowest energy
evels fit perfectly to the ranges spanned by the semianalytical bounds. For the ground state, in
articular, ��44� reproduces the exact result at least to five decimal places.

V. SUMMARY AND CONCLUSIONS

Our compact result for the reduced �=0 eigenfunctions of the Hamiltonian �2� is given by the
ower series �9�, with expansion coefficients c1=1, c3=�−�, and c2n+1, n
2, determined by the
ecurrence relation �8�. Both the numerical determination of all energy eigenvalues and the explicit
onstruction of the corresponding eigenfunctions of the relativistic harmonic-oscillator problem is
hen achieved by forcing our solutions to satisfy, in addition, the constraint imposed by the
equirement of normalizability of bound-state wave functions. Comparing these explicit solutions
ith the outcomes of purely numerical integration procedures reveals that at least for the lowest-

ying energy levels our semianalytical approach reproduces, already for a truncation of the Taylor
eries �9� to a moderate number of expansion terms, the exact solutions with high accuracy. Of
ourse, if one is interested only in numerical solutions of the problem under study, their straight-
orward computation with the help of some integration algorithm should produce the desired result
ore easily than their extraction from our Taylor series by means of Eq. �10�.
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PPENDIX: COMBINATION OF MINIMUM-MAXIMUM PRINCIPLE WITH OPERATOR
NEQUALITY: “SPECTRAL COMPARISON THEOREM”

It is a simple exercise to relate discrete eigenvalues of two operators satisfying some inequal-
ty.

Consider for some operator A, with domain D�A�, its eigenvalue equation A��k�=ak��k�, k
0, 1, 2, … , for its set of eigenstates ���k� ,k=0,1 ,2 ,…�, corresponding to its eigenvalues

ak �
��k�A��k�
��k��k�

, k = 0,1,2,… ,

nd likewise for some operator B, with domain D�B�, its eigenvalue equation B��k�=bk��k�, k

TABLE III. “Compact-origin” eigenvalues ��N�, their upper ��U� and lower
��L� bounds, and their exact values �num for the lowest �=0 states of the
Hamiltonian H /a1/3 in Eq. �2�, with �=30.

Radial excitation nr 0 1 2 3

�U−� 0.386 68 0.900 32 1.411 79 1.921 11
�L−� 0.354 78 0.818 62 1.282 22 1.744 40
�num−� 0.386 27 0.898 57 1.407 68 1.913 66
��N=14�−� 0.388 54 0.936 16
��N=44�−� 0.386 27 0.898 64 1.410 32 1.943 19
0, 1, 2, … , for its set of eigenstates ���k� ,k=0,1 ,2 ,…�, corresponding to its eigenvalues
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bk �
��k�B��k�
��k��k�

, k = 0,1,2,… .

ssume that both these operators A and B are self-adjoint, A†=A, B†=B. This implies that all their
igenvalues are real, ak

*=ak, bk
*=bk, k=0, 1, 2, … . Let these eigenvalues be ordered according to

0�a1�a2� ¯ , b0�b1�b2� ¯ . Consider only the discrete eigenvalues ak of A below the
nset of the essential spectrum of the operator A. Assume that the operator A is bounded from
elow. Assume that the operators A and B are related by an operator inequality of the form A
B, which implies that B too is bounded from below. In order to derive, for any k=0, 1, 2,…, the

elationship between ak and bk, focus on some arbitrary �k+1�-dimensional subspace Dk+1 of the
omain D�A� of A, Dk+1�D�A�. Employing the appropriate form of the minimum-maximum
rinciple, the operator inequality A�B translates into an upper bound on the eigenvalue ak of A
hich involves all expectation values of B within this subspace Dk+1,

ak � sup
����Dk+1

���A���
�����

� sup
����Dk+1

���B���
�����

for all k = 0,1,2,… . �A1�

Now, in order to relate the supremum over the expectation values of B to the eigenvalues bk

f B, consider a particular subspace Dk+1, namely, that space that is spanned by the first k+1
igenvectors of the operator B, that is, by precisely those eigenvectors of B that correspond to the
rst k+1 eigenvalues b0 ,b1 ,… ,bk of B, Dk+1�D�B��D�A�. Then, clearly, every ��� in Dk+1 is a

inear combination of the eigenstates ���i� , i=0,1 ,… ,k� of B, with coefficients ci,

��� = 

i=0

k

ci��i� for all ��� � Dk+1.

or any subspace Dk+1, k=0, 1, 2,… , use of this expansion of ��� yields for its norm squared,

����� = 

i=0

k

�ci�2��i��i� for all ��� � Dk+1

nd, with this and bi�bk for all i=0,1 ,… ,k, an upper bound on all expectation values of B,

���B��� = 

i=0

k

�ci�2bi��i��i� � bk

i=0

k

�ci�2��i��i� = bk����� for all ��� � Dk+1,

hich means

���B���
�����

� bk for all ��� � Dk+1,

���B���
�����

= bk for ��� = ��k� � Dk+1.

herefore the supremum of all expectation values of B over Dk+1 is just the eigenvalue bk of B,

sup
����Dk+1

���B���
�����

= bk for all k = 0,1,2,… .

hus, inserting this identity in the chain of inequalities �A1� proves that corresponding discrete
igenvalues ak, bk of semibounded self-adjoint operators A, B that satisfy A�B are related by
ak � bk for all k = 0,1,2,… .
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A novel solvable extension of the goldfish N-body problem is presented. Its New-

tonian equations of motion read �̈n=2a�̇n�n+2�m=1,m�n
N ��̇n−a�n

2���̇m−a�m
2 � /

��n−�m�, n=1, . . . ,N, where a is an arbitrary �nonvanishing� constant and the rest
of the notation is self-evident. The isochronous version of this model is character-
ized by the Newtonian equations of motion z̈n−3i�żn−2�2zn=2a�żn− i�zn�zn

+2�m=1,m�n
N �żn− i�zn−azn

2��żm− i�zm−azm
2 � / �zn−zm�, n=1, . . . ,N, where � is an

arbitrary positive constant and the points zn�t� move now necessarily in the complex
z-plane. The generic solution of this second model is completely periodic with a
period Tk=kT which is an integer multiple k �not larger than N!, indeed generally
much smaller� of the basic period T=2� /� and which is independent of the initial
data �for sufficiently small, but otherwise arbitrary, changes of such data�. These
many-body models have an intriguing variety of equilibrium configurations �genu-
ine: with no two particles sitting at the same place�, but only for small values of N
�N=2,3 ,4 for the first model, N=2,3 ,4 ,5 for the second�. Other versions of these
models are also discussed. The study of the behavior of the second, isochronous
model around its equilibrium configurations yields some amusing diophantine
results. © 2005 American Institute of Physics. �DOI: 10.1063/1.2061547�

. INTRODUCTION

Recently a convenient technique to identify solvable dynamical systems has been introduced
nd used to identify two solvable extensions of the goldfish many-body model, characterized by
he Newtonian equations of motion3

�̈n = 2 �
m=1,m�n

N
�̇n�̇m

�n − �m
+ a�

m=1

N
�̇n�̇m

�m
, �1�

espectively4

�̈n = 2a�̇n�n + 2 �
m=1,m�n

N
�̇n�̇m

�n − �m
. �2�

ere and hereafter, unless otherwise specified, N is an arbitrary positive integer, indices such as
,m run from 1 to N, the dependent variables �n��n�t� are the coordinates of the particles �which
re generally supposed to move in the complex plane; but real solutions also exist if the constant
is real�, and superimposed dots indicate differentiations with respect to the real independent

�Electronic mail: francesco.calogero@roma1.infn.it
�
Electronic mail: saiona@tin.it
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ariable t �“time”�. Of course when the constant a vanishes both these N-body problems reduce to
he standard goldfish model1 �and we refer to Ref. 2 for additional information on this model�. And
sochronous variants of these models have also been investigated.3,4

In this paper we identify and discuss a third solvable extension of the goldfish many-body
roblem, characterized by the Newtonian equations of motion

�̈n = 2a�̇n�n + 2 �
m=1,m�n

N ��̇n − a�n
2���̇m − a�m

2 �
�n − �m

, �3�

s well as its isochronous variant

z̈n − 3i�żn − 2�2zn = 2a�żn − i�zn�zn + 2 �
m=1,m�n

N �żn − i�zn − azn
2��żm − i�zm − azm

2 �
zn − zm

. �4�

n all these models the arbitrary constants a and � could of course be rescaled away, but we prefer
o keep them in evidence. Whenever discussing the isochronous model �4� we assume the constant

to be positive, ��0, and we associate to it the basic period

T =
2�

�
. �5�

f course for �=0 the isochronous model �4� reduces back to the model �3�, but the behavior of
he solutions of these two models is qualitatively different and it is therefore convenient to treat
hem separately. Indeed the generic motions of the isochronous model �4� are completely periodic
ith a period Tk=kT which is an integer multiple k of the basic period T and does not depend on

he initial data, at least for sufficiently small �but otherwise arbitrary� changes of them �hence
aving the full dimensionality in phase space�. This is in contrast to the phenomenology charac-
eristic of model �3�, which features a periodic motion only exceptionally, i.e., only for a special
et of initial data �having lower dimensionality in phase space�. The more interesting phenom-
nology obtains when one considers the �nonvanishing!� constant a, and the dependent variables

n�t�, respectively zn�t�, to be complex, because motions in the �complex� plane allow a much
icher gamut of behaviors than motions on the �real� line; moreover, as we indicate in the follow-
ng, it is possible to reinterpret the motions of the points �n�t� and zn�t� in the complex plane as

otions of real two-vectors in the �real� horizontal plane, allowing thereby a more physical
nterpretation of these models as genuine many-body problems �with covariant, even rotation-
nvariant, Newtonian equations of motion�. Of course in the isochronous case the dependent
ariables zn�t� are necessarily complex, because the equations of motion �4� are themselves com-
lex �the symbol i appearing in them is of course the imaginary unit, i��−1�.

We submit that the phenomenology displayed by these models is sufficiently remarkable to
ustify calling them “novel,” as we did in the title of this paper.

In the following section we report an overview of our main findings, namely the solutions of
he two models, first in the one-body case and then in the many-body case, and their equilibrium
onfigurations �in the many-body case�. These results are proven in Sec. III, which also contains
ome other interesting findings. In Sec. IV other versions of these models are introduced and
iscussed. In Sec. V the behavior is discussed of the isochronous model �4�, and of its version of
ec. IV, in the neighborhood of their equilibrium configurations, and some amusing diophantine
elations are thereby obtained.

Finally, we like to add a few words to clarify the character of the model we study in this paper
nd our justification �admittedly debatable� for referring to it as a “Newtonian many-body prob-
em.” We feel entitled to do so because of the possibility to reformulate the complex equations of

otion �3� and �4�, respectively, describing the motions of N points �n and zn in the complex
-plane and z-plane, as real equations of motions describing the movement of N unit-mass point-
articles the positions of which are identified by N real two-vectors in the �horizontal� plane. And

hese real equations of motion seem rather naturally interpretable as Newtonian equations of
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otion, inasmuch as they correspond to the statement that the acceleration of each particle is
irectly given by the force that acts on it. Moreover these equations of motion can be formulated
n covariant, and even in rotation-invariant, form �although for simplicity this is explicitly done in
he following only in the one-body case, see Sec. II A; the treatment in the many-body case is
nalogous, as described in detail elsewhere, see for instance Chap. 4 of Ref. 2�. And moreover the
orces featured by this model are just one-body and two-body forces. On the other hand these
orces are velocity-dependent, and they do not correspond to any specific physical model; in
articular they have no resemblance to the forces characterizing the gravitational N-body problem,
hich undoubtedly has a much more justified claim than our model to be qualified as “Newton-

an”!

I. MAIN RESULTS

In the following we report our main findings. Those for the one-body case, treated in Sec. II A,
ight be considered trivial, but they provide an illuminating introduction to the results for the
any-body case reported in Sec. II B.

. The one-body case

For N=1 the model �3� reads simply �with �1�t����t��

�̈ = 2a�̇� . �6�

This ODE can be reformulated as a problem in the physical �real� horizontal plane via the
ositions

�� � �Re���,Im���,0�, a� = �Re�a�,− Im�a�,0�; �7�

ote the minus sign in the second equation. The equation of motion �6� takes then the following
ovariant form:

��̈ = 2����a� · ��̇� + ��̇�a� · ��� − a���� · ��̇�� . �8a�

his Newtonian equation of motion is covariant, but not rotation-invariant, because the constant
ector a� identifies a preferred direction in the horizontal plane; but this model can be made
otation-invariant via the following gimmick: consider the vector a� in �8a� as an additional
ependent variable, and then supplement this equation of motion with the additional trivial equa-
ion

a�̇ = 0. �8b�

ote that these two vector equations of motion, �8a� and �8b�, are yielded, in the standard manner,
y the Hamiltonian

H��� ,a� ,q� ;�� ,�� ,�� � = 2��� · ����a� · ��� − ��� · a����� · ��� + �q� · �� � , �9�

here �� , a� respectively �� are the �vector� canonical variables, and �� , �� respectively �� are the
orresponding �vector� canonical momenta: of course the fact that this Hamiltonian does not
epend at all on the canonical momenta �� respectively �� is consistent with �8b� respectively with
he fact that q� is as well constant. Indeed the first Hamiltonian equation, �� =�H /��� , yielded by the
amiltonian �9� identifies this vector q� as the following constant of motion:

q� = ��̇ − 2���a� · ��� + a���� · ��� , �10�

nd the time-derivative of this equation yields just the Newtonian equation of motion �8a�.

Hereafter we work for convenience with the �complex� formulation �6� of the equation of
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otion, although we also provide the more physical real version of some formulas, as entailed by
7�. The solution of the initial-value problem for �6� is

��t� =
��0� + a−1� tan��t�

1 − a��0��−1 tan��t�
, �11a�

�2 = a��̇ − a�2� . �11b�

he right-hand side of �11a� depends clearly on �2 rather than �, and this justifies the way we
rote the second of these formulas; and note that, in the definition of �2, it is unnecessary to

pecify the time at which � and �̇ are evaluated, since clearly �2 is a constant of motion for the
volution equation �6�. The diligent reader will verify that via �7� the solution formula �11a� with
11b� can be written as follows:

���t� =
	�t����0� + 	̂k̂ ∧ ���0� + 
�t�a� + 
̂�t�k̂ ∧ a�

− 1 + �a� · a������0� · ���0����−1 tan��t��2 + 2	�t�
, �12a�

�2 = �a� · q�� + i�k̂ · a� ∧ q�� , �12b�

here the constant of motion vector q� is defined by �10�, k̂��0,0 ,1� is the unit vector orthogonal
o the horizontal plane, the symbol ∧ denotes the standard three-dimensional vector product, and

he four real functions 	�t�, 	̂�t�, 
�t�, 
̂�t� are defined as follows:

	�t� = 1 − �a� · ���0��Re	 tan��t�
�


 + �k̂ · a� ∧ ���0��Im	 tan��t�
�


 , �12c�

	̂�t� = �a� · ���0��Im	 tan��t�
�


 + �k̂ · a� ∧ ���0��Re	 tan��t�
�


 , �12d�


�t� =
	�t�Re�� tan��t�� − 	̂�t�Im�� tan��t��

�a� · a��
, �12e�


̂�t� =
	�t�Im�� tan��t�� + 	̂�t�Re�� tan��t��

�a� · a��
. �12f�

ote that, in writing these formulas, we took good care to distinguish the squared modulus
a� ·a��= �a�2 of the �real� vector a� , see �7�, from the �generally complex� number a2.

Clearly in the real case �with a and � both real� a necessary and sufficient condition to
uarantee that this solution, see �11�, remains nonsingular for all positive time t�0 is validity of
he inequality

a�̇�0� � 0, �13a�

hich entails that � is imaginary. Then

��±�� = 
���
a

. �13b�

In the complex case the solution �11� is clearly periodic with period � /� if �2 is real and
ositive �in which case we assume � to be positive, ��0�, provided the imaginary part of a��0�

� �
oes not vanish, Im�a��0���0 or equivalently a∧��0��0 �to exclude that the solution becomes
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ingular at some finite time t= ts, 0� ts�� /��. The condition on the initial data such that indeed
2 be positive can be read directly from �11b� or �12b�. In the generic case when �2 is not real the

omplex coordinate ��t� tends—both in the remote past and future—to finite limiting values, see
13b�, and the motion is generically nonsingular, although there is a lower-dimensional set of
nitial data yielding singular motions �they are of course those values such that the denominator
−a��0��−1tan��t� vanishes for some positive value of the time t, see �11a��. The diligent reader
ill formulate the analogous results appropriate to the “physical” formulation in the real horizon-

al plane �see �8a� and �12��.
The isochronous version of this model �6� is characterized by the Newtonian equation of

otion

z̈ − 3i�ż − 2�2z = 2a�ż − i�z�z . �14�

learly this equation of motion reduces to the previous one, �6�, for �=0 �entailing z�t�=��t��. As
lready mentioned, whenever we discuss isochronous versions of our models we assume � to be
ositive, ��0.

The solution of the initial-value problem for this equation of motion, �14�, reads

z�t� = exp�i�t�
z�0� + a−1�̃ tan��̃��

1 − az�0��̃−1 tan��̃��
, �15a�

�̃2 = a�ż�0� − i�z�0� − az2�0�� . �15b�

ere and always in the following the complex time-like variable � is related to the �real, “physi-
al”� time variable t by the relation

� � ��t� =
exp�i�t� − 1

i�
, �16�

hich entails that � is a periodic function of t with period T, see �5�. And this in turn entails the
sochronous character of the solution �15a� of �14�, which is clearly as well periodic with period
, z�t+T�=z�t�, for generic initial conditions z�0� and ż�0�: the initial data that yield a singular
olution are indeed nongeneric, being characterized by the requirement that the �generally com-

lex� denominator 1−az�0��−1tan��̃��, see �15a� with �16�, vanishes for some positive value of
he time t= t̃s, with 0� t̃s�T.

The diligent reader will formulate the analogous results appropriate to the “physical” formu-
ation in the real horizontal plane �see �7��.

. The many-body case

The solution of the initial-value problem for the N-body problem �3� is given by
Proposition 1: the coordinates �n�t� of the N moving particles are the N eigenvalues of the

� N matrix

U�t� = �1 − aU�0�t�−1�U�0� + ���t��−1��q�t�U�0� + r�t��P + 	1 − cos��t�

+
sin��t� − �t

�
aU�0�
P�1 − aU�0�t�−1U�0��� , �17a�

here

��t� = �
N 	�n

2

�2�� cos��t� − sin��t�a�n�0�
��1 − a�n�0�t� 
 , �17b�
n=1
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q�t� = �
n=1

N 	�n
2

�2� �1 − cos��t���1 + a�n�0�t� − �t sin��t�
1 − a�n�0�t 
 , �17c�

r�t� = �

a
��

n=1

N 	�n
2

�2�� sin��t� − 2�1 − cos��t��a�n�0�
��1 − a�n�0�t� 
 , �17d�

he diagonal N � N matrix U�0� is given in terms of the initial values of the coordinates �n by the
imple formula

U�0� = diag��n�0�� , �17e�

nd the dyadic N � N matrix P is defined as follows:

Pnm =
�n�m

�2 . �17f�

n these formulas the scalars �n and � are defined in terms of the initial data as follows:

�n = �a��̇n�0� − a�n
2�0���1/2, �17g�

�2 = a�
n=1

N

��̇n − a�n
2� = �

n=1

N

�n
2, �17h�

o that the dyadic N � N matrix P is actually a projector, P2= P.
Several comments on these findings �proven in the following section� are now appropriate. �i�

he formula �17h� defines �2 rather than �, consistent with the fact that the right-hand side of
17a� is indeed a function of �2 rather than �. �ii� In the spirit of the initial value problem the

alues of �̇n and �n
2 to be inserted in the right-hand side of expression �17h� of �2 would be

valuated at the initial time t=0, as implied by its second version, see �17g�; but let us emphasize
hat this quantity, �2 �see the first version of �17h��, is a constant of motion for our system, as is
pparent by summing its equations of motion, �3�, over the index n from 1 to N and then noticing
hat the double sum on the right-hand side vanishes due to the antisymmetry of the summand
nder exchange of the two dummy indices n and m, while the resulting equation clearly entails
hat the time-derivative of �2 vanishes. �iii� In writing formula �17a� we assumed that the constant

does not vanish; but the formula remains valid, via an obvious limiting procedure, even if �
oes vanish.

Let us emphasize the remarkable time dependence exhibited by the solution formula �17a�,
hat features �see also, �17b�–�17d�� a rational dependence both on t and on circular functions of

t �with � generally complex, see �17h��. A terse discussion of this formula is therefore in order.
First let us note that ��0�=1 �see �17b� with �17g� and �17h��, while q�0�=r�0�=0 �see �17c�

nd �17d��. The consistency of the solution formula �17a� at t=0 is thereby apparent.
Second, as t→ ±�, there clearly hold �up to corrections of order 1 / t�, the asymptotic relations

U�t� � �

a
�b tan��t� − 1

tan��t� + b
P if Im��� = 0, �18a�

U�t� � ± sign�Im����
i�

a
P if Im��� � 0, �18b�
ith

                                                                                                            



W
w
c
d
c

�
a

m
�
m
T
m

N

w

t
s

a

103515-7 Novel solvable many-body models J. Math. Phys. 46, 103515 �2005�

                        
b =
a

�
�
n=1

N 	�n�0� −
�̇n�0�

a�n�0�

 . �18c�

e therefore conclude �because the N � N matrix P, being a projector, has a single unit eigenvalue
ith all the other N−1 vanishing� that generically �i.e., excluding nongeneric solutions that be-

ome singular due to the occurrence of a particle collision�, as t→ ±�, all but one of the coor-
inates �n�t� tend to the origin, while one of them, if Im���=0, approaches asymptotically �up to
orrections of order 1 / t� the periodic trajectory

�asy�t� = �

a
�b tan��t� − 1

tan��t� + b
�19a�

provided Im�b��0, so that this asymptotic trajectory is not singular�, and if instead Im����0 it
pproaches asymptotically �again, up to corrections of order 1 / t� the asymptotic value

�̄asy = ± sign�Im����
i�

a
. �19b�

The isochronous variant of the model �3� is characterized by the Newtonian equations of
otion �4�. These equations of motion reduce of course to the previous ones, see �3�, for �=0

entailing zn�t�=�n�t��, but, as already indicated earlier, whenever we refer to this isochronous
odel we assume instead that the constant � is positive and we associate with it the basic period
, see �5�. Note that in this isochronous case the dependent variables zn�zn�t� denote N points that
ove necessarily in the complex z-plane.

The solution of the initial-value problem for this N-body problem, �4�, is given by
Proposition 2: the coordinates zn�t� of the N moving particles are the N eigenvalues of the

� N matrix

Ũ�t� = exp�i�t��1 − aŨ�0���−1�Ũ�0� + ��̃����−1��q̃���Ũ�0� + r̃����P̃ + 	1 − cos��̃��

+
sin��̃�� − �̃�

�̃
aŨ�0�
P̃�1 − aŨ�0���−1Ũ�0��� �20a�

here ����t� is given by �16�,

�̃��� = �
n=1

N 	 �̃n
2

�̃2
� �̃ cos��̃�� − sin��̃��azn�0�

�̃�1 − azn�0���

 , �20b�

q̃��� = �
n=1

N 	 �̃n
2

�̃2
� �1 − cos��̃����1 + azn�0��� − �̃� sin��̃��

1 − azn�0�� 
 , �20c�

r̃��� =  �̃

a
��

n=1

N 	 �̃n
2

�̃2
� �̃ sin��̃�� − 2�1 − cos��̃���azn�0�

�̃�1 − azn�0���

 , �20d�

he diagonal N � N matrix Ũ�0� is given in terms of the initial values of the coordinates zn by the
imple formula

Ũ�0� = diag�zn�0�� , �20e�

˜
nd the dyadic N � N matrix P is defined as follows:
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P̃nm =
�̃n�̃m

�̃2
. �20f�

n these formulas the scalars �̃n and �̃ are defined in terms of the initial data as follows:

�̃n = �a�żn�0� − i�zn�0� − azn
2�0���1/2, �20g�

�̃2 = a�
n=1

N

�żn�0� − i�zn�0� − azn
2�0�� = �

n=1

N

�̃n
2, �20h�

o that the dyadic N � N matrix P̃ is actually a projector, P̃2= P̃.
The validity of Proposition 2 is a simple consequence of Proposition 1, because the equations

f motion �4� of the isochronous model are related to those of the previous model �3� by the
imple relation �the so-called “trick”�

zn�t� = exp�i�t��n��� �21�

ith � related to t via �16�, entailing the following relations among the respective initial data:

�n�0� = zn�0�, �̇n�0� = żn�0� − i�zn�0� . �22�

Since clearly the matrix Ũ�t� is periodic in t with period T,

Ũ�t + T� = Ũ�t� �23a�

see �20a� with �16� and �5��, the set �zn�t�� of its N eigenvalues is as well periodic with the same
eriod; this does not necessarily entail that each of its individual eigenvalues is periodic with this
eriod, since during the time evolution �which now necessarily takes place in the complex z-plane�
n exchange of eigenvalues might occur. But this mechanism can only increase the periodicity of
ach individual eigenvalue by an integer factor not exceeding N! �indeed, generally much
maller5�. Hence we conclude that the generic solution of the isochronous model �4� is �nonsin-
ular and� completely periodic,

zn�t + T̃� = zn�t� , �23b�

ith a period T̃=kT, where k is a positive integer not larger �indeed, generally much smaller5� than
! �k depends of course on the particular solution under consideration, but its value does not
hange for sufficiently small changes of the initial data, hence the set of initial data yielding the
ame period is open, with full dimensionality in phase space�. The only nonperiodic solutions are
he nongeneric ones that obtain for the special set of initial data that cause a “particle collision,”
amely the coincidence at some time tc�T of two or more particle positions zn�t�, or equivalently

f two or more eigenvalues of the matrix Ũ�tc�, see �20�; the surfaces in phase space on which
uch special sets of initial data live separate the sets of initial data yielding different periods.

. Equilibrium configurations in the many-body case

Let us now report our main findings concerning the equilibrium configurations of these mod-
ls, which are of course always defined up to arbitrary permutations of the N equal particles �this
bvious caveat will not be repeated in the following�. But before reporting these findings let us
mphasize that here we only consider “genuine” equilibrium configurations, characterized by the
equirement that no two particles sit at the same location. Let us also note that, for the first model,
3�, clearly any particle sitting initially at the origin with vanishing velocity �i.e., with �n�0�
�̇n�0�=0� always remains there without influencing at all the motion of the other particles; and,
or the isochronous model �4�, this is as well true both for a particle sitting at the origin �i.e., with
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n�0�= żn�0�=0� and for a particle sitting at the point −i� /a �i.e., with zn�0�=−i� /a and żn�0�
0�. In the following we also take account of such particles when discussing the equilibrium
onfigurations, but, consistent with the above-mentioned definition of “genuine” equilibrium con-
gurations, we allow at most one particle to sit in such a position.

The first model, �3�, has no �genuine� equilibrium configurations for N�5. For N=2 there is

nly the trivial configuration �1=0, �2= �̄ with �̄ an arbitrary constant. For N=3 at equilibrium its
hree coordinates �n take three values out of the following four:

�̃k = � exp2�ki

3
�, k = 1,2,3 and �̄4 = 0. �24�

or N=4 at equilibrium the four coordinates �n take these four values. Here and in the following
is an arbitrary �but nonvanishing� constant.

To describe the phenomenology of the �genuine� equilibrium configurations of the second,
sochronous model �4� it is convenient to identify them as follows:

zn�t� =  �

ia
�un, żn�t� = 0, un � um. �25�

or N=2 there are only two equilibrium configurations: u1=0, u2=1, respectively,

u1,2 =
3 ± i�3

2
. �26�

or N=3, a one-parameter set of equilibrium configurations is

uk��� = 1 + � exp2�ik

3
�, k = 1,2,3, �27�

ith � an arbitrary �but nonvanishing, ��0� constant; and there is an additional equilibrium
onfiguration, u1,2= �3± i�3� /2, u3=1. �Note that the configuration with one particle at the origin,
ay u3���=0, is included in �27� with �=−1�. For N=4 there are two one-parameter sets of
quilibrium configurations, uk=uk���, k=1,2 ,3 �see �27�� and u4=0 and u4=1, respectively �and

again arbitrary but nonvanishing, ��0, with, in the first case, the additional restriction
�−exp�−2�ik /3�, k=1,2 ,3, to exclude that any one of the three numbers uk��� vanish�. For
=5 there is only a single one-parameter set of equilibrium configurations, uk=uk���, k=1,2 ,3,

4=0, u5=1, with uk��� defined as above, see �27� �and � again arbitrary except for the two
estrictions ��0 and ��−exp�−2�ik /3�, k=1,2 ,3, to exclude that any one of the three numbers

k��� vanish or be unity�. And for N�5 there are no �genuine� equilibrium configurations.
Let us finally note that the equations of motion �4� for the N complex dependent variables zn�t�

an be reformulated as real and covariant Newtonian equations describing the motion of N equal
nit-mass point particles moving in the horizontal plane, by introducing as dependent variables the

vectors r�n�r�n�t� related to the complex numbers zn�t� by the relations r�n�t�
�Re�zn�t�� , Im�zn�t�� ,0�, and the constant vector a� related to the complex constant a �see �4�� by

he relation a� ��Re�a� ,−Im�a� ,0� �note the minus sign in the second component!�. All these
ectors are formally written as three vectors, but they of course describe motions taking place in
he horizontal plane; the three-dimensional notation is convenient to exhibit the covariance of

hese equations of motion �via the additional introduction of the unit vector k̂��0,0 ,1� orthogonal
o the horizontal plane�. The resulting equations—whose explicit display is left as a trivial if
edious exercise for the diligent reader—are of course not invariant under rotations in the plane,
ince the vector a� identifies a preferred direction there. They can be made rotation-invariant via
he following gimmick �see above�: consider the vector a� in these equations as an additional

hence formally time-dependent� variable, and then complement the Newtonian equations of mo-
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ion for the N dependent variables r�n�t� with the following �also rotation-invariant, if quite trivial�
quation of motion: a�̇ =0.

II. PROOFS, AND SOME OTHER RESULTS

In the following we prove the findings reported in Sec. II, we discuss some of them in more
etail than was done there, and we also provide some additional results.

. Solution of the equations of motion

Let the N � N matrix U�U�t� satisfy the first-order matrix ODE

U̇ = f�U� + C , �28�

here C is a constant N � N matrix and the function f�u� is scalar, namely the matrix f�U� depends
n no other matrix besides U, entailing that, for any invertible N � N matrix R,

Rf�U�R−1 = f�RUR−1� . �29�

Let us assume now that U�t� is diagonalized by the matrix R�t�,

U = RZR−1, Z = diag��n� , �30�

o that the N quantities �n��n�t� are the N eigenvalues of the matrix U�t�. Note that, without
poiling the validity of �30�, the matrix R could be replaced by the matrix

R̃ = RD , �31�

ith D�D�t� an arbitrary diagonal matrix. Let us also introduce the N � N matrix ��t� by setting

C = R�R−1, � = R−1CR . �32�

Clearly the relations �30� and �32� entail

U̇ = R�Ż + �M,Z��R−1, Ċ = R��̇ + �M,���R−1, �33�

here we introduced the N � N matrix M�t� by setting

M = R−1Ṙ . �34�

ote that the replacement, in this definition of M, of R with R̃ �see �31�� entails a corresponding
eplacement of M with

M̃ = R̃−1R̃
˙

= D−1MD + D−1Ḋ . �35�

ence the matrix M is defined up to the addition of the arbitrary diagonal matrix D−1Ḋ, which
mplies that its diagonal elements can be assigned arbitrarily, provided of course the off-diagonal
lements are then properly adjusted, see �35�.

The original matrix ODE �28� entails, via �33� and �30�,

Ż + �M,Z� = � + f�Z� , �36a�

nd the time-independence of the matrix C entails, via �33� and �32�,

�̇ + �M,�� = 0. �36b�

Let us now write out separately, componentwise, the diagonal and off-diagonal parts of these

two matrix equations �36� �also indicating, for notational convenience, with �n and �n, respec-
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ively, the diagonal elements of the matrices � and M, �n��nn, �n�Mnn�:

�̇n = �n + f��n� , �37a�

− Mnm��n − �m� = �nm, n � m , �37b�

�̇n = �
m=1,m�n

N

��nmMmn − �mnMnm� , �37c�

�̇nm = − ��n − �m��nm + ��n − �m�Mnm + �
�=1,��m,n

N

��n�M�m − ��mMn��, n � m . �37d�

The first two of these four equations can be immediately solved for �n and Mnm, respectively,
hereby the last two of these four equations become

�̈ = �̇nf���n� + 2 �
m=1,m�n

N
�nm�mn

�n − �m
, �38a�

�̇nm = − ��n − �m��nm −
���̇n − f��n�� − ��̇m − f��m����nm

�n − �m

+ �
�=1,��m,n

N

��n���m���n − ���−1 + ��m − ���−1��, n � m . �38b�

n �38a� and hereafter the prime appended to a function denotes differentiation with respect to its
rgument, e.g., f�����df��� /d�.

Let us now set

�nm = ���̇n − g��n����̇m − g��m���1/2�nm, �39�

here the quantities �nm��nm�t� are new dependent variables �hence this assignment entails no
oss of generality�, and we reserve the privilege to assign later the function g���. Insertion of this
nsatz in �38a� yields

�̈n = �̇nf���n� + 2 �
m=1,m�n

N
��̇n − g��n����̇m − g��m���nm�mn

�n − �m
, �40a�

nd its insertion in �38b� yields �via �40a��

�̇nm

�nm
+ �n − �m −

f��n� − g��n� − �f��m� − g��m��
�n − �m

+
�̇n�f���n� − g���n��

2��̇n − g��n��
+

�̇m�f���m� − g���m��

2��̇m − g��m��

= �
�=1,��m,n

N ���̇� − g������n���m

�nm
− 1����n − ���−1 + ��m − ���−1��, n � m . �40b�

The system of second-order ODEs �40a� is clearly interpretable as a Newtonian many-body
roblem, but it contains, in addition to the “particle coordinates” �n, the auxiliary variables �nm,
hich themselves evolve according to the system of first-order ODEs �40b�. Since in this paper we

re interested in identifying solvable systems of ODEs interpretable as Newtonian many-body

roblems without additional variables, we now try and see how to get rid of the auxiliary variables
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nm. Clearly a possibility to do so, suggested by the structure of these two systems �40a� and �40b�
f ODEs, is to set

�nm�t� =
�n�t�
�m�t�

. �41�

ia this assignment the auxiliary variables indeed disappear altogether from the first set �40a� of
DEs, which then read

�̈n = �̇nf���n� + 2 �
m=1,m�n

N
��̇n − g��n����̇m − g��m��

�n − �m
, �42a�

hile the second set, �40b�, of ODEs becomes

�̇n

�n
+ �n −  �̇m

�m
+ �m� =

f��n� − g��n� − �f��m� − g��m��
�n − �m

−
�̇n�f���n� − g���n��

2��̇n − g��n��

−
�̇m�f���m� − g���m��

2��̇m − g��m��
, n � m . �42b�

here now remains to see whether this second set, �42b�, of ODEs can be satisfied.
We note first of all that the left-hand sides of these equations, �25�, are antisymmetric under

he exchange of the two indices n and m, while the right-hand sides are symmetrical. Hence they
ust both vanish.

The vanishing of the left-hand side is easily achieved, by setting

�n�t� = −
�̇n�t�
�n�t�

, �43�

n assignment which is permitted since we are free to choose at our convenience the diagonal
lements �n�t� of the matrix M�t�, see the remark made earlier �after �35��.

To achieve the vanishing of the right-hand side of �42b� �which is quite overdetermined,

specially because the functions f and g are required to be independent of the “velocities” �̇� we
an take advantage of our freedom to assign the function g���. This can be conveniently done in
wo quite different manners.

A first assignment is

g��� = 0, �44�

hich has the merit to eliminate altogether from �42b� the presence of the “velocities” �̇n and �̇m.
he requirement that the right-hand sides of �42b� vanish yields then the following �apparently
till overdetermined, but see the following� set of ODEs for the function f�z�:

f��n� − f��m�
�n − �m

=
f���n� + f���m�

2
, n � m . �45a�

t is easily seen that the general solution of this system of ODEs is

f��� = a�2 + b� + c , �45b�

ith a, b, and c three arbitrary constants. The corresponding version of the original matrix
volution equation �28� reads

U̇ = aU2 + bU + c + C . �46a�
ithout significant loss of generality this matrix ODE can be replaced by its simpler version
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U̇ = aU2 + C . �46b�

hich obtains by setting b=c=0 in �46a�, but clearly could as well be obtained from �46a� by
hifting the two N � N matrices U and C by two appropriate constant multiples of the N � N unit
atrix, resulting merely in a shift of all the eigenvalues �n�t� of the N � N matrix U by a common

onstant, and in a redefinition of the matrix C which in any case does not feature in the system of
DEs �42a�. We conclude that the many-body problem yielded by this choice is characterized by

he equations of motion

�̈n = 2a�̇n�n + 2 �
m=1,m�n

N
�̇n�̇m

�n − �m
, �47�

ielded by �42a� with �44� and with �45b� which takes now the simpler form

f��� = a�2. �48�

But this many-body model, �47�, is not new �see �2��: its solvability and properties were
emonstrated and investigated in Ref. 4, by a technique analogous to that described earlier except
hat the starting point in that treatment was the second-order matrix ODE

Ü = a�U̇U + UU̇� , �49�

ather than the matrix ODE �46b�. It is indeed plain that these two matrix ODE, �46b� and �49�, are
quivalent �at least as long as we restrict our consideration to autonomous equations, namely we
onsider the scalar a and the matrix C to be time-independent, as we always did hitherto�.

A second, and in fact more obvious, assignment of the function g��� which also achieves the
anishing of the right-hand side of �42b� is

g��� = f��� . �50�

ence, by inserting this assignment in �42a�, we conclude that the many-body system

�̈n = �̇nf���n� + 2 �
m=1,m�n

N
��̇n − f��n����̇m − f��m��

�n − �m
�51�

s solvable, provided the corresponding N � N matrix evolution ODE �28�, with an arbitrary
onstant N � N matrix C, is itself solvable: indeed our treatment entails that the time evolution of
he N “particle coordinates” �n�t� coincides then with the time evolution of the N eigenvalues of

he N � N matrix U�t� �with an appropriate assignment, in terms of the initial data �n�0�, �̇n�0�, of
he initial value U�0� of the matrix U�t� and of the constant matrix C: see the following�. Let us
lso point out that a more general choice of the function g���, also consistent with the vanishing
f the right-hand side of �42b�, would add an arbitrary constant c to the right-hand side of the
ormula �50�; the alert reader will work out the marginal extension of our results entailed by this
ossibility.

It is remarkable that, to obtain these Newtonian equations of motion, �51�, no restriction has
een required so far on the function f���. However, to the best of our knowledge, the only case in
hich the matrix ODE �28� is solvable is for the assignment �45b� of the function f���, and for the

easons explained earlier no significant loss of generality is then caused by restricting this assign-
ent to the form �48�. The corresponding many-body problem is then �3�. The corresponding

ersion of the matrix ODE is �46b�, and it is easy to verify that the solution to the initial-value
roblem for this matrix ODE is provided by the following formulas:

U�t� = a−1�cos�Ft� − EF−1 sin�Ft��−1�F sin�Ft� + E cos�Ft�� , �52a�
E = aU�0� , �52b�
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F2 = aC . �52c�

ote that the expression on the right-hand side of �52a� depends on the matrix F2 rather than the
atrix F, and this provides a justification for the way we wrote the last of these matrix equations,

52c�. We now note that, via �30� and �32�, the last two equations can be rewritten as follows:

E = aR�0�diag��n�0���R�0��−1, �53a�

F2 = aR�0���0��R�0��−1. �53b�

ote that to write the last equation we took advantage of the time-independence of the matrix C
n order to evaluate it, conveniently, at t=0.

We now note that we are free to assign the initial value R�0� of the diagonalizing matrix R�t�,
ence we make hereafter the convenient choice R�0�=1 �not that these make any substantial
ifference; we are interested in the eigenvalues of the matrix U�t�, see �52a�, and the presence of
he matrix R�0� in �53� amounts merely to a similarity transformation of the matrix U�t�, which
oes not affect its eigenvalues�. Using this choice, as well as �37a� and �39� with �50�, �48�, and
41�, we get

E = a diag��n�0�� , �54�

�F2�nm = �nma��̇n�0� − a�n
2�0�� + �1 − �nm�a���̇n − a�n

2�0����̇m − a�n
2�0���1/2 �n�0�

�m�0�
. �55�

e now note that we are as well free to assign the initial values �n�0� of the quantities �n�t�,
ence we make hereafter the convenient choice �n�0�=1 �again, this makes no substantial differ-
nce, since clearly the presence of these numbers on the right-hand side of �55� only entails a
imilarity transformation for the matrix U�t��.

We thus see that the matrix F2 is proportional to the dyadic matrix P, see �17f�–�17h�:

F2 = �2P . �56�

We now use the following �rather obvious� property of any dyadic matrix W:

Wnm = vnvm �57a�

ntails

��XW� = ��0� +
��x� − ��0�

x
XW �57b�

ith

x = �
n,m=1

N

vnxnmvm. �57c�

ere X is an arbitrary N � N matrix whose matrix elements are denoted as xnm and ��x� is any
calar function for which these formulas make good sense. We actually use in the following only
he special version of these formulas with W= P, see �17f�–�17h�, and with a diagonal matrix X,
amely such that xnm=xn �nm, in which case the definition �57c� takes the simpler form

x = �
n=1

N �n
2

�2�xn. �57d�
                                                                                                            



I
w

T

w

w

N

w

a

w

F

a

103515-15 Novel solvable many-body models J. Math. Phys. 46, 103515 �2005�

                        
n particular for X= t21 and ��x�=cos�x1/2�, ��x�=x−1/2 sin�x1/2�, respectively, ��x�=x1/2 sin�x1/2�
e get from �56� and �60d�, respectively,

cos�Ft� = 1 + �cos��t� − 1�P , �58a�

F−1 sin�Ft� = t +
sin��t� − �t

�
P , �58b�

F sin�Ft� = � sin��t�P . �59�

he insertion in �52a� of these expressions, �58�, and of �52b�, yields the formula

U�t� = �1 + �cos��t� − 1�P − aU�0�	t +
sin��t� − �t

�
P
�−1

· �U�0��1 + �cos��t� − 1�P� +
� sin��t�

a
P� , �60a�

hich can be conveniently rewritten as follows:

U�t� = �1 − X�1��t�P�−1�1 − aU�0�t�−1U�0��1 − X�2��t�P� , �60b�

ith the two diagonal matrices X�1��t� and X�2��t� defined as follows:

X�1��t� = �1 − aU�0�t�−1	1 − cos��t� +
sin��t� − �t

�
aU�0�
 , �60c�

X�2��t� = 1 − cos��t� − � sin��t��aU�0��−1. �60d�

ext we use again the formula �57b� with �57d� entailing

�1 − X�1��t�P�−1 = 1 +
X�1��t�P

1 − x�1��t�
�61a�

ith

x�1��t� = �
n=1

N �n
2

�2���1 − cos��t�� + �sin��t� − �t�a�n�0�
��1 − a�n�0�t�

, �61b�

nd we thereby rewrite �60b� as follows:

U�t� = X�0��t� + X̃�1��t�PX�0��t� − X�0��t�X�2��t�P − X̃�1��t�PX�0��t�X�2��t�P , �61c�

ith the diagonal matrices X�0��t� and X̃�1��t� defined as follows:

X�0��t� = �1 − aU�0�t�−1U�0� , �61d�

X̃�1��t� =
X�1��t�

1 − x�1��t�
. �61e�

inally we note that clearly

PX�0��t�X�2��t�P = �
n=1

N �n
2

�2� �1 − cos��t��a�n�0� − � sin��t�
a�1 − a�n�0�t�

P �62�
nd we thereby get from this formula the solution formula �17�. Proposition 1 is thereby proven.
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s for Proposition 2, the fact that it is a consequence via �21� with �16� of Proposition 1 was
lready explained in the preceding section.

. Equilibrium configurations

Let us discuss first the �genuine� equilibrium configurations of the system of Newtonian

quations of motion �3�, namely the solutions �with �̄n� �̄m if n�m� of the set of N algebraic
quations

�
m=1,m�n

N
��̄m�2

�̄n − �̄m

= 0. �63�

t is obvious that there are no genuine equilibrium configurations for N=2, so we can hereafter
ssume that N�3. Let us then prove first of all that these equations entail

�
n=1

N

�̄n = 0. �64�

ndeed by summing �63� over n from 1 to N we get

0 = �
m,n=1,m�n

N
��̄m�2

�̄n − �̄m

= �
m,n=1,m�n

N
��̄m�2 − ��̄n�2 + ��̄n�2

�̄n − �̄m

= �
m,n=1,m�n

N

��̄m + �̄n� = 2�N − 1��
n=1

N

�̄n,

�65�

hich proves �64�.
Introduce then the polynomial of degree N �assuming that it exists�

���� = �
n=1

N

�� − �̄n� . �66a�

t is then easy to show �or see Eqs. 2.3.3�12� and 2.3.3�15� of Ref. 2� that

������ − N���� = �����
n=1

N

�� − �̄n�−1�̄n, �66b�

�2����� − N�N − 1����� = 2�����
n=1

N

�� − �̄n�−1 �
m=1,m�n

N
��̄n�2

�̄n − �̄m

. �66c�

e now replace on the right-hand side of the last formula the quantity ��̄n�2 with ��̄n�2− ��̄m�2

��̄m�2, ignore the last of these three terms thanks to �63�, and by taking advantage of �64� and
66b� we find that the polynomial ���� must satisfy the linear ODE

�2����� − 2�N − 2������� + N�N − 3����� = 0. �66d�

he general solution of this equation is �up to a multiplicative constant�

���� = �N−3��3 − �3� , �66e�

ith � an arbitrary constant. Clearly this polynomial ���� has the root �̄=0 with multiplicity

−3, and the three roots �̄k=� exp�2�ik /3�. And it is plain that these results entail the findings
eported in the preceding section.
Let us then turn our attention to the second, isochronous system �4�. It is easily seen that
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nsertion of the definition �25� in the equations of motion �4� yields the following set of N
lgebraic equations for the N numbers un:

�un − un
2��1 − �

m=1,m�n

N
um − um

2

un − um
� = 0. �67a�

t is clear from these equations that, if the set �u1 ,u2 , . . . ,uN� of N numbers un provide a solution
o the set of N algebraic equations

�
m=1,m�n

N
um − um

2

un − um
= 1, �67b�

ith none of the numbers un vanishing �un�0, n=1, . . . ,N�, then the set �u1 ,u2 , . . . ,uN ,0� of
+1 numbers un provide a solution to the set of N+1 algebraic equations which obtain from �67a�

y replacing N with N+1 as upper limit of the sum and by letting the index n run from 1 to
+1 rather than from 1 to N. Likewise, if the N numbers un provide a solution to the set of

lgebraic equations �67b� with none of these numbers un being unity �un�1, n=1, . . . ,N�, then the
et �u1 ,u2 , . . . ,uN ,1� of N+1 numbers un provide a solution to the set of N+1 algebraic equations
hich obtain from �67a� by replacing N with N+1 as upper limit of the sum and by letting the

ndex n run from 1 to N+1 rather than from 1 to N. And moreover, if the N numbers un provide
solution to the set of algebraic equations �67b� with none of these numbers un neither vanishing
or being unity �un�0 and un�1, n=1, . . . ,N�, then the set �u1 ,u2 , . . . ,uN ,0 ,1� of N+2 numbers

n provide a solution to the set of N+2 algebraic equations which obtain from �67a� by replacing
with N+2 as upper limit of the sum and by letting the index n run from 1 to N+1 rather than

rom 1 to N. Hence, we can now only focus on the system of algebraic equations �67b�, and then
xtend our conclusions about the equilibrium configurations by taking advantage of these obser-
ations.

To find all the solution of �67b� �with un�um� we note first of all that this system of N
lgebraic equations entails

S � �
n=1

N

un = �
n=1

N

un
2, �68�

s can be easily seen by multiplying �67b� by un−un
2, then summing over the index n from 1 to N

nd noting that thereby the double sum on the left-hand side vanishes due to the antisymmetry of
he summand under the exchange of the two dummy indices m and n.

Next we prove that

S =
N�N + 1�
2�N − 1�

. �69�

o obtain this result we sum �67b� from 1 to N over the index n, and use the identities

�
m,n=1,m�n

N
um

un − um
= −

1

2 �
m,n=1,m�n

N
un − um

un − um
= −

N�N − 1�
2

, �70a�

�
m,n=1,m�n

N
um

2

un − um
= −

1

2 �
m,n=1,m�n

N
un

2 − um
2

un − um
= − �

m,n=1,m�n

N

un = − S�N − 1� . �70b�

Next, we multiply by un the relation �67b�, and again sum from 1 to N over the index n. Now

e use the identities
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�
m,n=1,m�n

N
unum

un − um
= 0, �71a�

�
m,n=1,m�n

N
unum

2

un − um
= −

1

2 �
m,n=1,m�n

N
unum�un − um�

un − um
= −

1

2 �
m,n=1,m�n

N

unum =
S − S2

S
. �71b�

ote that to obtain the second of these identities we used in the end both formulas �68�. In this
anner we obtain the relation

S�S − 3� = 0, �72�

hich implies that S=0 or S=3. The first possibility is clearly incompatible with �69�. So we
onclude that S=3, and, via �69�, we then conclude that the only values of N for which the set of
lgebraic equations �67b� can have solutions are N=2 and N=3. And we can now rewrite the
elations �68� in the more explicit form

�
n=1

N

un = �
n=1

N

un
2 = 3. �73�

Using these two formulas as well as �67b� we easily conclude that for N=2 the only solution
f these equations is �26�.

Likewise, for N=3, from these equations and one of the equations �67b� one easily gets the
olution �27�.

Let us also mention that another, perhaps more elegant, route to get all these results is via the
ame technique used earlier �or see Sec. 2.3.3 of Ref. 2�, implying that the solutions un of �67b�
re the zeros of the polynomial y�u� of degree N �if it exists� that satisfies the ODE

uy� − 2�N − S�y� = u2y� + 2�2 − N�uy� + N�N − 3�y . �74�

n particular, for S=3 and for N=2 this ODE becomes simply

uy� + 2y� = u2y� − 2y , �75a�

nd its polynomial solution is �up to a multiplicative constant�

y�u� = u2 − 3u + 3, �75b�

nd the two zeros of this polynomial are clearly given by �26�. Likewise, for S=3 and for N=3 this
DE, �74�, becomes simply

uy� = u2y� − 2uy�, �76a�

hich clearly has �up to a multiplicative constant� the general solution

y�u� = �u − 1�3 − �3, �76b�

ith � an arbitrary constant, implying that its three zeros are indeed given by �27�.

V. OTHER VERSIONS OF THESE SOLVABLE MODELS

In this section we provide other versions of the solvable model �3� and of its isochronous
ariant �4�.

The idea is to introduce the time-dependent monic polynomial ��� , t�, of degree N in the
ariable �, that has the N zeros �n�t�, and to then consider the time evolution of its N coefficients
m�t�:
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���,t� = �
n=1

N

�� − �n�t�� = �N + �
m=1

N

bm�t�a−m�N−m. �77�

ndeed it is rather easily seen—by using techniques analogous to those used in the preceding
ection �or see again Sec. 2.3.3 of Ref. 2�—that, if the zeros �n�t� evolve according to the
ewtonian system of ODEs �3�, the polynomial ��� , t� evolves according to the second-order PDE

�tt + 2a�2��t + a2�4��� + 2�b1 − �N − 1�a���t + 2a�2�b1 − �N − 2�a����

+ �2b2 − 2�N − 1�ab1� + N�N − 3�a2�2�� = 0. �78�

ere and throughout subscripted variables denote partial differentiations, e.g., ��t

�2��� , t� /���t.
Clearly this PDE entails that the N coefficients bm�t� evolve according to the following system

f N ODEs:

b̈m − 2mḃm+1 + �m + 2��m − 1�bm+2 = − 2b1�ḃm − mbm+1� − 2b2bm, �79a�

upplemented by the boundary conditions

bN+1 = bN+2 = 0. �79b�

et us recall that, according to the above-announced convention, the index m in �79a� runs from
to N �actually �79a� is identically satisfied also for m=0, if one sets b0=1, consistently with

77��.
The solvability of this nonlinear system of ODEs is of course implied by the solvability �see

roposition 1� of the system �3�, since the relation �77� entails that the coefficients bm can be
xpressed in terms of the zeros �n,

b1 = − a�
n=1

N

�n, b2 =
1

2
b1

2 − a2�
n=1

N

�n
2�, . . . . �80�

ence, for instance,

b1�t� = − a trace�U�t��, bN�t� = �− a�N det�U�t�� , �81�

here the N � N matrix U�t� is given by �17�—with the two constant N � N matrices U�0� and C,

s well as the scalar �, expressed of course via the initial values bm�0�, ḃm�0� through the explicit

ormulas that relate the initial values of the N zeros and of their time-derivatives, �n�0� and �̇n�0�,
o these initial values bm�0�, ḃm�0�, see �77� �at t=0� and the following formula �at t=0� that
btains by differentiating �77� and equates two polynomials in � of degree N−1:

�t��,t� = − ���,t��
n=1

N

�� − �n�t��−1�̇n�t� = �
m=1

N

ḃm�t�a−m�N−m. �82�

The fact that the nonlinear system �79� is solvable �namely, that its solution can be in principle
btained by merely algebraic operations� is a nontrivial result �up to the observation that all
orrect mathematical findings are in some sense trivial—after their validity has been proven!�.
ote that the first ODE of this system, namely that corresponding to m=1,

b̈1 − 2ḃ2 = − 2b1ḃ1, �83a�
an be integrated once, yielding
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b2 = 1
2 �ḃ1 + b1

2 + �2� , �83b�

ith �2 an arbitrary constant. But, even for N=2, the next equation �for m=2� of this system,

b̈2 = − 2b1ḃ2 − 2b2
2, �84a�

hich via �83b� becomes the following third-order ODE for the single dependent variable b1�t�
��t�,

�� + 4�̈� + 3�̇2 + 6�2�̇ + �4 + 2�2��̇ + �2� + �4 = 0, �84b�

oes not look trivially integrable �even just once, let alone three times!�. Indeed the fact that this
DE admits the explicit solution

��t� = ���0� +
1

2
��2�0� + �̇�0� + �2�t�cos��t� +

1

2
��2�0� + �̇�0� − �2 + ��̈�0� + 3�̇�0���0� + �3�0�

+ �2��0��t�
sin��t�

�
� · �1 −

1

2�2 ��̈�0� + 3�̇�0���0� + �3�0� + �2��0��t�cos��t�

+
1

2�2 ��̈�0� + 3�̇�0���0� + �3�0� + 3�2��0� + ��2�0� + �̇�0� + �2��2t�
sin��t�

�
�−1

�84c�

s remarkable, as the diligent reader who tries and verifies this fact will note �at least if he or she
ries to do so without any computer assistance�.

An analogous variant of the isochronous system �4� leads to the autonomous system of ODEs

c̈m − i�2m + 1��ċm − 2mċm+1 − �2m�m + 1�cm + 2im�m + 1��cm+1 + �m + 2��m − 1�cm+2

= − 2c1�ċm − im�cm − mcm+1� − 2c2cm, �85a�

ith the boundary conditions

cN+1 = cN+2 = 0, �85b�

hich might just as well be obtained by inserting the ansatz

cm�t� = exp�im�t�bm���, � =
exp�i�t� − 1

i�
, �86�

n �79�. This of course implies that this system of ODEs, �85a�, is just as solvable as the system of
DEs for the coefficients bm�t�, see �79� and, e.g., �81�; moreover all the solutions cm�t� of this

ystem of N coupled ODEs, �85a�, are clearly periodic with period T, see �5�, cm�t+T�=cm�t�.

. BEHAVIOR NEAR THE EQUILIBRIUM CONFIGURATIONS, AND SOME DIOPHANTINE
ELATIONS

In the following we discuss the behavior of the isochronous system �4�, and of its variant �85�,
n the neighborhood of the respective equilibrium configurations, and we thereby derive some
musing diophantine relations.

To get the linearized equations of motion describing the motion of the isochronous system �4�
n the neighborhood of its equilibrium configuration we set

zn�t� =  �

ia
�un + �wn�t� , �87�

here the numbers un characterize the equilibrium configurations, see �25�, and � is a small

arameter. We thereby obtain the following linearized equations of motion:
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ẅ� + i��� �̇� + �2�� w� = 0, �88�

here w� ��w1 . . . ,wN� indicates of course an N-vector and the two N � N matrices �� and �� are
efined as follows:

�nm = �nm	− 3 + 2un + 2 �
�=1,��n

N �u� − u�
2�

un − u�

 + �1 − �nm�

2�un − un
2�

un − um
, �89�

�nm = 2�nm	2un − 1 + �
�=1,��n

N �u� − 2u�un + un
2��u� − 1�u�

�un − u��2 

+ �1 − �nm�

2un�un − 2umun + um
2 ��1 − un�

�un − um�2 . �90�

ere and always in the following �nm��n,m is the usual Kronecker symbol.
The general solution of the linear system of ODEs �88� reads

w� �t� = �
m=1

2N

�m exp�i�m�t�v� �m�, �91�

here the 2N constants �n are arbitrary and the 2N numbers �m respectively the 2N constant
-vectors v� �m� are the eigenvalues respectively the eigenvectors of the following eigenvalue prob-

em:

�− �m
2 1� − �m�� + �� �v� �m� = 0, m = 1, . . . ,2N . �92�

ence the eigenvalues �m are the 2N roots of the following polynomial equation �of degree 2N in
�:

D�N���� � det��21� + ��� − �� � = 0. �93�

ut the exact solution of the isochronous system �4� is completely periodic with period T, see �5�,
ence the same property of isochronicity must be shared by its behavior in the neighborhood of the
quilibrium configurations. We therefore conclude that all the roots of this algebraic equation must
e integers. Later we display the corresponding diophantine equations.

Analogous results obtain by applying the same approach to the version �85� of our isochro-
ous system. To get them we set in �85�

cm�t� = �− i��m�am + ��m�t�� , �94�

here the N constants am satisfy the N algebraic equations

− m�m + 1�am + 2m�m + 1�am+1 − �m + 2��m − 1�am+2 = 2ma1�am − am+1� + 2a2am, �95�

hich obtain �to the zeroth order in �� by inserting �94� in �85�.
Likewise, to the first order in �, we get the following linear system of N equations of motion:

�̈m − i�2m + 1���̇m + 2im��̇m+1 − 2i�a1�̇m − m�m + 1��2�m + 2m�m + 1��2�m+1 − 2m�2a1�m

− �m2 + m − 2��2�m+2 + 2m�2a1�m+1 − 2�2a2�m − 2m�2am�1 + 2m�2am+1�1 − 2�2am�2 = 0,

�96a�

ith the boundary condition

�N+1�t� = �N+2�t� = 0. �96b�
quivalently this system of ODEs reads
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�̈� + i�M� �̇� + �2L� �� = 0 �97�

ith the two N � N matrices M� and L� defined as follows:

Mnm = − �2n + 1��n,m + 2n�n+1,m − 2a1�n,m �98�

Nnm = − n�n + 1��n,m + 2n�n + 1��n+1,m − 2na1�n,m − �n2 + n − 2��n+2,m + 2na1�n+1,m − 2a2�n,m

− 2nan�1,m + 2nan+1�1,m − 2an�2,m. �99�

The general solution of this system reads

�� �t� = �
m=1

2N

�m exp�i�m�t��� �m�, �100�

here the 2N constants �n are arbitrary and the 2N numbers �m respectively the 2N constant
-vectors v� �m� are the eigenvalues respectively the eigenvectors of an eigenvalue problem that
learly entails,

D̃�N���� � det��21� + �M� − L� � = 0. �101�

s indicated by our notation, the eigenvalues �m coincide of course with those defined just above;
herefore, by the same token this polynomial equation of degree 2N in � must have a diophantine
haracter �i.e., integer roots�. The corresponding results are exhibited in the following.

Equilibrium configurations and diophantine relations. In the following formulas the symbols

j
�N� and D̃j

�N� denote the determinants �93� and �101�, respectively with the index j distinguishing
if need be� different equilibrium configuration.

For N=2 to the first equilibrium configuration

u1 = 0, u2 = 1; a1 = − 1, a2 = 0, �102a�

here correspond the diophantine equations

D1
�2���� � det�� − 1��� − 2� 0

0 �� + 1��� − 2�
� = D̃1

�2���� � det�� + 1��� − 2� 2�� − 2�
0 �� − 1��� − 2�

�
= �4 − 4�3 + 3�2 + 4� − 4 = �� − 1��� + 1��� − 2�2. �102b�

nd to the second equilibrium configuration,

u1,2 =
3 ± i�3

2
; a1 = − 3, a2 = 3, �103a�

here corresponds the diophantine equations

D2
�2���� � det�2 + ��i�3 + 2� − 2 − 2�� − i�3 + 1�

− 2��� + i�3 + 1�� �2 + ��− i�3 + 2� − 2
� = D̃2

�2����

� det�� + 5��� − 2� 2�� − 2�
12 �2 + � + 6

� = P4��� . �103b�

ere and in the following

P4��� � �4 + 4�3 − �2 − 16� − 12 = �� − 2��� + 3��� + 2��� + 1� . �104�
For N=3 to the one-parameter set of equilibrium configurations
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uk��� = 1 + � exp2�i

3
k�, k = 1,2,3,

�105a�
a1 = − 3, a2 = 3, a3 = − �3 − 1,

here correspond the following diophantine equations:

D1
�3���� � det�H� � = D̃1

�3���� � det��� + 5��� − 2� 2�� − 2� 0

4��3 + 4� �2 + � + 6 4�

− 6��3 + 1� − 2��3 + 1� ��� − 1�
�

= �6 + 3�5 − 5�4 − 15�3 + 4�2 + 12� = ��� − 1�P4��� . �105b�

ere and in the following

H� ��,�� � � h1��,�� h12��,�� h13��,��
h21��,�� h2��,�� h23��,��
h31��,�� h32��,�� h3��,��

� , �106a�

hk��,�� � �2 + �	1 + 2� exp2i�k

3
�
 +

2

3
	� exp2i�k

3
� + 1
	� exp2i�k

3
� − 2
 ,

�106b�

hjk��,�� � −
2

3
exp isjk�

6
�	� exp2i�j

3
� + 1
 ·

��3� + exp isjk�

6
�	�7� exp	i2�k

3
− sjk��
 + 1
� �106c�

here

exp�i�� =
5

2�7
+

1

2�7
i�3 �106d�

nd sjk=+ if k= j+1 mod�3�, sjk=− if k= j+2 mod�3�. Note the independence of the determinants
rom the value of the arbitrary constant � �this remark will not be repeated in the following, when
his phenomenon will recur�. And to the additional equilibrium configuration,

u1,2 =
3 ± i�3

2
, u3 = 1; a1 = − 4, a2 = 6, a3 = − 3, �107a�

here correspond the following diophantine equations:

D2
�3���� � det��2 + ��i�3 + 2� − 2 − 2�� − i�3 + 1� − �i�3 + 3��� + 1�

− 2�� + i�3 + 1� �2 + ��− i�3 + 2� − 2 �i�3 − 3��� + 1�
0 0 �� + 4��� + 1�

�
= �� + 4��� + 1�D2

�2���� = D̃2
�3���� � det��� + 7��� − 2� 2�� − 2� 0

36 �2 + 3� + 14 4�� + 1�
− 18 − 6 ��� + 1�

�
= �6 + 9�5 + 23�4 − 5�3 − 96�2 − 124� − 48 = �� + 1��� + 4�P4��� . �107b�
For N=4 to the first one-parameter set of equilibrium configurations,
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uk��� = 1 + � exp2�i

3
k�, k = 1,2,3, u4 = 0,

�108a�
a1 = − 3, a2 = 3, a3 = 1 − �3, a4 = 0,

here correspond the following diophantine equations:

D1
�4���� � detH� ��,�� �� T��,��

0 �� − 1��� − 2�
� = D̃1

�4����

� det�
�� + 5��� − 2� 2� − 4 0 0

4��3 + 4� �2 + � + 6 4� 4

− 6��3 + 1� − 2��3 + 1� ��� − 1� 6�� − 1�
0 0 0 �� − 1��� − 2�

�
= �8 − 12�6 + 6�5 + 39�4 − 30�3 − 28�2 + 24� = ��� − 1�2�� − 2�P4���; �108b�

here the three components of the column three-vector �� T�� ,�� are defined as follows:

�k
T = − 2� exp2�i

3
k��� − 1�, k = 1,2,3; �108c�

nd to the second,

uk��� = 1 + � exp2�i

3
k�, k = 1,2,3, u4 = 1,

�109a�
a1 = − 4, a2 = 6, a3 = − 4 − �3, a4 = 1 + �3,

here correspond the following diophantine equations:

D2
�4���� � detH� ��,�� �� T��,��

0 �� + 1��� + 4�
� = D2

�4����

� det�
�� + 7��� − 2� 2�� − 2� 0 0

4��3 + 10� 3� + �2 + 14 4�� + 1� 4

− 6�2�3 + 5� − 2��3 + 4� ��� + 1� 6�

8��3 + 1� 2��3 + 1� 0 ��� − 1�
�

= �8 + 8�7 + 14�6 − 28�5 − 91�4 − 28�3 + 76�2 + 48�

= ��� + 1��� + 4��� − 1�P4��� , �109b�

here the three components of the column three-vector �� T�� ,�� are defined as follows:

�k
T��,�� = − 2	� exp2�i

3
k� + 1
�� + 1�, k = 1,2,3. �109c�

Finally for N=5 to the single equilibrium configuration

uk��� = 1 + � exp2�i

3
k�, k = 1,2,3, u4 = 0, u5 = 1,

a1 = − 4, a2 = 6, a3 = − 4 − �3, a4 = 1 + �3, a5 = 0, �110a�
here correspond the following diophantine equations:
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D�5���� � det�H� ��,�� �� T��,�� �� T��,��
0 �� − 1��� − 2� 0

0 0 �� + 1��� + 4�
� = D̃�5����

� det�
�� + 7��� − 2� 2�� − 2� 0 0 0

4��3 + 10� �2 + 3� + 14 4�� + 1� 4 0

− 6�2�3 + 5� − 2��3 + 4� ��� + 1� 6� 10

8��3 + 1� 2��3 + 1� 0 ��� − 1� 8�� − 1�
0 0 0 0 �� − 1��� − 2�

�
= �10 + 5�9 − 8�8 − 54�7 + 21�6 + 189�5 − 22�4 − 236�3 + 8�2 + 96�

= ��� + 1��� + 4��� − 1�2�� − 2�P4��� . �110b�
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A large class of noncommutative spherical manifolds was obtained recently from
cohomology considerations. A one-parameter family of twisted three-spheres was
discovered by Connes and Landi, and later generalized to a three-parameter family
by Connes and Dubois-Violette. The spheres of Connes and Landi were shown to
be homogeneous spaces for certain compact quantum groups. Here we investigate
whether this property can be extended to the noncommutative three-spheres of
Connes and Dubois-Violette. Upon restricting to quantum groups which are con-
tinuous deformations of Spin�4� and SO�4� with standard coactions, our results
suggest that this is not the case. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2070087�

. INTRODUCTION

The recent interest in noncommutative geometry1 has led to an on-going search for nontrivial
xamples of noncommutative spaces. Noncommutative generalizations of spheres in various di-
ensions are known �for a review see Ref. 2�, but many of these suffer from a drop in dimensions.
ctually, the dimension of a noncommutative space is not uniquely defined. One choice which
ses concepts which are natural in noncommutative geometry is the Hochschild dimension. It
lays an important role for the three-parameter family of deformations of the sphere S3 introduced
y Connes and Dubois-Violette,3 which generalizes the one-parameter family discovered previ-
usly by Connes and Landi.4 The Hochschild dimension of the corresponding algebra remains
onstant �and equal to three� for the deformation. A generalization to higher dimensions is possible
or the one-parameter subset, the so-called twisted spheres. This particular subset has another
mportant characteristic. It has been shown5,6 that the spheres in the one parameter subset carry a
oaction of the multiparametric quantum orthogonal groups SO��n+1�;7 i.e., they are homoge-
eous spaces of quantum groups. The aim of this paper is to investigate the possibility of defining
group coaction for the three-parameter 3-spheres as well.

The algebra of the three-parameter spheres Su
3 �Ref. 3� is generated by Hermitian operators x̂�,

=0 ,1 ,2 ,3, subject to

x̂�x̂� = 1 , �1.1�

here 1 is the unit operator, and quadratic commutation relations

�x̂�, x̂�� = iÊ��,��x̂�x̂�. �1.2�

he constant coefficients Ê��,�� are expressed in terms of four angles ��,

�Electronic mail: fedele.lizzi@na.infn.it
�Also at: Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487,
Electronic mail: astern@bama.ua.edu

�
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Ê��,�� = �����

sin��� − ���
cos��� − ���

, no sum on repeated indices. �1.3�

ˆ
��,�� is antisymmetric in the first two indices and symmetric in the last two indices. These
ommutation relations hold provided no two angles differ by � /2. Because they depend only on
he difference of angles there are three independent deformation parameters, and so one angle, say

0, can be set to zero. The Connes-Landi case has two of the remaining angles equal with the third
ero; e.g., �1=�2=� /2 and �3=0.4

In the search for continuous symmetries, we shall consider linear, as well as spinor, transfor-
ations. When all angles are set to zero we require that the symmetries reduce to SO�4� and
pin�4� transformations, respectively. On the other hand, we cannot get Lie group transformations
hen any of the independent parameters are nonvanishing, since �1.2� would in general not be
reserved. If they exist, such symmetries should correspond to quantum group transformations. As
he Connes–Dubois–Violette three-spheres are three-parameter deformations of the sphere, their
ymmetries should correspond to multiparametric deformations of SO�4� and Spin�4�. Multipara-
etric deformations of orthogonal groups7,8 can be obtained from the standard one-parameter

uantum group by applying a twist F, which depends on additional parameters qab, to the quantum
-matrix. The twist is required to be a specific function in the universal enveloping algebra of the
ie group under consideration. Under these assumptions the quantum deformation becomes at
ost two-parametric in the case of SO�4�. Therefore these kind of q-groups cannot be associated
ith symmetries for the full three-parameter family of noncommutative spheres. Alternatively, it is
ossible that there exist symmetries associated with quantum groups which are not deformable to
ie groups. Here, however, our primary focus will be on continuous deformations of Spin�4� and
O�4�. We are then justified in looking at the limit of small angles where the search for continuous
ymmetries is considerably simplified. This is the commutative limit, where the noncommutative
phere goes to S3, with x̂� going to real commuting coordinates x�, x�x�=1, and the noncommu-
ativity gets replaced by a nontrivial Poisson structure on S3. The commutative limit of the
uantum group associated with a continuous symmetry, if it exists, is a Lie-Poisson group,9 a Lie
roup with a Poisson bracket on the group manifold which is compatible with the group multi-
lication.

The search for Lie-Poisson symmetry in the case of the commutative limit of the Connes and
ubois-Violette spheres is carried in Secs. II and III. The Poisson brackets are recovered from

1.2� in the limit of small angles ��→��

�x�,x�� = E��,��x�x�, �1.4�

here

E��,�� = �������� − ���, no sum on repeated indices. �1.5�

ur approach is to express the Poisson brackets on S3 in terms of a constant matrix, with the
ntention of utilizing it as a classical R-matrix for a Lie-Poisson group. In Sec. III we consider
pin�4� transformations. For this one expresses the coordinates in terms of an SU�2� matrix u, with

he Spin�4�=SU�2�	SU�2� transformation given by

u → u� = guh−1, �1.6�

here g and h are independent elements of SU�2�. The problem is then to find a Poisson structure
n Spin�4� which is compatible with the Poisson algebra on S3. This means that both group
ultiplication and the action on S3 are Poisson maps. The former property defines the Lie-Poisson

roup. Expressing the Poisson brackets on the group in terms of a classical R-matrix, which by
efinition satisfies the classical Yang-Baxter equations, insures that the Jacobi identity is satisfied.
f such a classical R-matrix is found, the group is a Lie-Poisson group, and the space under
onsideration would be a homogeneous space of the Lie-Poisson group. In Sec. II we find a

onsistent classical R-matrix only in the Connes-Landi limit, and thus we only get a Poisson map
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f Spin�4� in this case. In Sec. III we get the same result for SO�4�. We assume the usual linear
O�4� transformations

x� → x�� = M��x�, �1.7�

M�� being SO�4� matrix elements. A candidate for the Poisson brackets of M�� can be written in
erms of a constant 16	16 matrix, but the latter only defines a classical R-matrix, i.e., satisfies the
lassical Yang-Baxter equations, in the Connes-Landi limit.

After ruling out symmetries associated with continuous deformations of Spin�4� and SO�4�,
here still is the possibility of symmetries at certain finite angles ��. This case is more difficult to
nalyze since it involves going to the full noncommutative theory. In Sec. IV we investigate the
ull noncommutative theory and search symmetries associated with spinor-type transformations.

e express the algebra for the twisted three-sphere in terms of a possible quantum R-matrix. The
uantum Yang-Baxter equations should be satisfied for the corresponding quantum group algebra
o be coassociative. This cannot be true for arbitrary continuous deformations of the commutative
phere, since in the limit of small angles we recover the system of Sec. II. In Sec. IV we further
nd no finite values of ��, other than those in the Connes-Landi limit, for which the candidate
-matrix satisfies the quantum Yang-Baxter equations.

In Sec. V we Wick rotate the system of Connes and Dubois-Violette, leading to “noncommu-
ative hyperboloids” in Minkowski space, and repeat some of the previous analysis in search of
uantum deformations of the Lorentz group which have twisted hyperboloids as homogeneous
paces. As before the search is only successful for a one parameter subset of hyperboloids, namely
eing the Wick rotation of Connes-Landi spheres.

In Sec. VI we give concluding remarks and discuss the prospects for a more exhaustive study
f the full noncommutative theory.

I. POISSON ACTION OF Spin„4…

As u appearing in �1.6� is in the defining representation of SU�2� it can be expressed in terms
f the coordinates according to

u = x�
�, �2.1�

here 
0 is the 2	2 identity matrix 
0=12	2 and 
i are i times the Pauli matrices, 
i= i�i, i
1,2 ,3. 
� satisfy

1
2 Tr�
�
�� = ��� = diag�1,− 1,− 1,− 1� �2.2�

has real trace and the traceless part is anti-Hermitian. Hermitian conjugation corresponds to a
arity transformation.

We next show that the Poisson brackets �1.4� can be written in the form

��u
1
,u

2
�� = u

2
ru

1
− u

1
ru

2
, �2.3�

here by u1 and u2 is meant u � 1 and 1 � u, respectively, and r is a 4	4 matrix which we need
o determine. �For a more general starting ansatz see the end of this section.� From

uu† = u†u = 12	2, �2.4�

must be Hermitian. From the antisymmetry of the Poisson bracket r should be invariant under
xchange of the two tensor product spaces; i.e., r=r12=r21. Finally in order to recover the Poisson
rackets �1.4� from �2.3� r should satisfy


�

2
r
�

1
− 
�

1
r
�

2
+ 
�

2
r
�

1
− 
�

1
r
�

2
= 2E��,��
�

1

�

2
. �2.5�

0 0
he solution �up to a term proportional to the identity matrix 14	4=
 	
 � is
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r = �1
1
� 
1 + �2
2

� 
2 + �3
3
� 
3, �2.6�

here �i are given by

�1 = 1
2 �− �0 − �1 + �2 + �3� ,

�2 = 1
2 �− �0 + �1 − �2 + �3� , �2.7�

�3 = 1
2 �− �0 + �1 + �2 − �3� .

The standard action of Spin�4� on S3 is �1.6�, where g and h are independent elements of
U�2� in the defining representation. The Poisson algebra �2.3� is not preserved under this action.
nstead, �2.3� goes to

��u�
1

,u�
2

�� = u�
2

r�
12

u�
1

− u�
1

r�
21

u�
2

, �2.8�

here

r�
12

= g
1
h
2
rh−1

2
g−1

1
. �2.9�

n the other hand, if we can consistently assign the following Poisson structure to Spin�4�,

��g
1
,h

2
�� = − ��r,g

1
h
2
��, ��g

1
,g

2
�� = ��h

1
,h

2
�� = 0, �2.10�

he brackets �2.3� are invariant in the sense that �1.6� is a Poisson map. For these Poisson brackets
o be consistent we need that they are antisymmetric and satisfy the Jacobi identity. This means
hat r should satisfy the classical Yang-Baxter equations,

�� r
12

, r
13

+ r
23

�� + �� r
13

, r
23

�� = I�, �2.11�

here I� is an adjoint invariant for Spin�4�. Note that the classical Yang-Baxter equations did not
ave to be satisfied for �2.3� to be consistent with the Jacobi identity. It is easily seen that the
lassical Yang-Baxter and hence the Jacobi identity for �2.10� are satisfied when all �i but one
anishes. This corresponds to two angles being equal while the third is zero, i.e., the Connes-Landi
ase. Moreover, the Yang-Baxter equations and Jacobi identity are only satisfied in this case, and
hus only then do g and h generate a Lie-Poisson group. In that case we can introduce spinors

= �1

2
� and ̄= �̄1̄2� with Poisson brackets

�a,̄b� = rad,cbc̄d, �2.12�

or which

 → � = g, ̄ → ̄� = ̄h−1 �2.13�

ill be a Poisson map. Then the Poisson algebra for ̄ is identical to that for u in �2.3�.
Concerning �2.3�, we could start with the most general ansatz which is linear in both u1 and

2,

��u
1
,u

2
�� = r�1�u

1
u
2

+ u
1
u
2
r�2� − u

2
r�3�u

1
− u

1
r�4�u

2
, �2.14�

here we have introduced four 4	4 matrices r�A�, A=1,2 ,3 ,4. Now �1.6� is a Poisson map when

2.10� is generalized to
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��g
1
,g

2
�� = ��r�1�,g

1
g
2
�� ,

��h
1
,h

2
�� = ��r�2�,h

1
h
2
�� ,

�2.15�
��g

1
,h

2
�� = ��r�3�,g

1
h
2
�� ,

��h
1
,g

2
�� = ��r�4�,h

1
g
2
�� .

he matrices r�A�, A=1,2 ,3 ,4, are not fully determined from the Poisson brackets �1.4� of the
oordinates. The ambiguity can be fixed once one imposes the requirements that the Poisson
rackets for the matrix elements of g and h be antisymmetric and consistent with det g=det h
1. However, it can be shown, that then the brackets �2.14� and �2.15� collapse to �2.3� and �2.10�,
nd so the previous conclusions apply.

II. POISSON ACTION OF SO„4…

From the Spin�4� transformations �1.6� we can construct the corresponding SO�4� transforma-
ions �1.7�, and since the former defines a Poisson map in the Connes-Landi case so does the latter.
n that case SO�4� matrix elements M�� are expressed as quadratic functions of group elements g
nd h,

M���g,h� = 1
2Tr�
�g
�h−1� , �3.1�

here the indices on 
 are raised and lowered with the Minkowski metric �2.2�. More generally, if
e do not make assumptions like �3.1�, it may be possible to find a Poisson map of a group even
hen no Poisson map is induced by its covering group. However, we find that not to be the case

or SO�4� acting on the noncommutative three-sphere, i.e., like Spin�4�, SO�4� has a Poisson
ction only in the Connes-Landi case.

The Poisson brackets �1.4� are not preserved under the action �1.7� of SO�4�. Rather they are
ransformed to

�x�� ,x��� = E��,��� x��x�� , �3.2�

here

E��,��� = M��M��M��M��E��,��. �3.3�

n the other hand, it may be possible to have Poisson brackets on SO�4� which define a Lie-
oisson group and make �1.7� a Poisson map. The Poisson brackets are required to satisfy

��M��,M��� − E��,��M��M�� + M��M��E��,���x�x� = 0, �3.4�

n addition to antisymmetry and the Jacobi identity. Equation �3.4� is solved by

��M
1

,M
2

�� = ��R,M
1

M
2

�� , �3.5�

here

R��,�� = E��,�� + A��,��, �3.6�

nd A is antisymmetric in the last two indices, A��,��=−A��,��. From the requirement that M is
rthogonal it follows that R should be a symmetric matrix R��,��=R��,��. This then fixes A��,��
E��,��, and hence R becomes
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R��,�� = �������� − �� + �� − ��� . �3.7�

ntisymmetry of the Poisson bracket follows since R is antisymmetric under exchange of the
ensor product spaces. The R can be expressed in terms of tensor products of SO�4� generators Ji

nd Ki , i=1,2 ,3, written in the defining representation,

J1 =
1

2�2�
0 1 0 1

− 1 0 1 0

0 − 1 0 1

− 1 0 − 1 0
	, K1 =

1

2�2�
0 − 1 1 0

1 0 0 1

− 1 0 0 1

0 − 1 − 1 0
	 ,

J2 =
1

2�2�
0 1 0 − 1

− 1 0 − 1 0

0 1 0 1

1 0 − 1 0
	, K2 =

1

2�2�
0 1 1 0

− 1 0 0 1

− 1 0 0 − 1

0 − 1 1 0
	 , �3.8�

J3 =
1

2�
0 0 − 1 0

0 0 0 1

1 0 0 0

0 − 1 0 0
	, K3 =

1

2�
0 0 0 − 1

0 0 1 0

0 − 1 0 0

1 0 0 0
	 .

hey satisfy

�Ji,Jj� = �ijkJk,

�Ki,Kj� = �ijkKk, �3.9�

�Ji,Kj� = 0.

efining J±=�2�J1±J2� and K±=�2�K1±K2�, R can be written

R = 2�1�J− � K3 − K3 � J−� + 2�2�K+ � J3 − J3 � K+� + �3�K− � J+ − J+ � K−� , �3.10�

here �i are again given by �2.7�. Finally we need to check that �3.5� satisfies the Jacobi identity,
r equivalently that R satisfies the classical Yang-Baxter equations,

��R
12

,R
13

+ R
23

�� + ��R
13

,R
23

�� = I , �3.11�

here I is an adjoint invariant for SO�4�. From �Ji ,Kj�=0, it is easily seen that �3.11� is satisfied
hen all �i but one vanishes. Thus the Jacobi identity is satisfied when two angles are equal and

he third is zero. Just as with Spin(4), the Yang-Baxter equations and Jacobi identity are only
atisfied in this case, and �M��� generate a Lie-Poisson group only in this case. It can be checked
hat the results in this case agree with the lowest order commutation relations in Ref. 6.

Above we have argued that we can consistently define a Poisson algebra for SO�4� matrices
nly in the Connes-Landi case. This algebra is obtainable from the Poisson algebra �2.10� on

pin�4� using �3.1�,
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�M��,M����g,h� = 1
4Tr

12

�
1


�
2

��g
1


�

1
h−1

1
,g

2

�

2
h−1

2
��

= 1
4Tr

12

�
1


�
2

��g
1


�

1
��g

2
r h−1

1
− h−1

1
r g

2
��
�

2
h−1

2
+ g

2

�

2
��h−1

2
r g

1
− g

1
r h−1

2
��
�

1
h−1

1
�� ,

�3.12�

here Tr12 means a trace over both tensor product spaces. We then recover the expression �3.5�
ith R given by

R��,�� = 1
4Tr

12
�
� � 
�,
�

� 
��r . �3.13�

fter substituting in the general expression for r given in �2.6� one then gets �3.7�.

V. QUANTUM Spin„4… TRANSFORMATION

Here we generalize to the full noncommutative theory with the goal of searching for symme-
ries of the noncommutative three-sphere occurring at finite angles ��. For simplicity we restrict
o spinor-type transformations thereby generalizing the discussion of Sec. II.

We begin by replacing the 2	2 matrix u by another 2	2matrix û, the latter having noncom-
uting matrix elements. The property of unitarity,

ûû† = û†û = 12	2, �4.1�

an be maintained although û does not have to have unit determinant. For this �2.1� should be
eneralized to

û = x̂�ei��
�. �4.2�

he sum over �=0,1 ,2 ,3 is assumed. The unitarity condition was shown3 to be consistent with
he commutation relations �1.2�. We next show that the commutation relations can be expressed as

û
1

r̂ û
2

= û
2

r̂ û
1

�4.3�

or some 4	4 matrix r̂. These relations are invariant under interchange of the two tensor product
paces provided r̂ is invariant under interchange of the two tensor product spaces; i.e., r̂= r̂12

r̂21. In the limit of small angles ��→��, r̂ should reduce to 14	4+ ir, with r given in �2.6�, for
hen the commutator of û1 with û2 goes to i times the Poisson bracket in �2.3�,

û
1

û
2

− û
2

û
1
→ i û

2
r û

1
− i û

1
r û

2
. �4.4�

o the task is to find r̂ so that the commutation relations �4.3� agree with �1.2�. Substituting �4.2�
nto �4.3�, we get

ei���+�����
�

2
r̂ 
�

1
− 
�

1
r̂ 
�

2
��x̂�x̂� = 0, �4.5�

here the sum over indices is again assumed. We cannot equate coefficients of x̂�x̂� to zero
ecause they are not all independent. Rather from �1.2� they are related by

x̂�x̂� = 1
2 �S��,�� + iÊ��,���x̂�x̂�, �4.6�

here

S��,�� = ������ + ������ �4.7�

nd Ê��,�� is given in �1.3�. Both S��,�� and Ê��,�� are symmetric in the last two indices. Equation
ˆ
4.6� then shows that all quadratic combinations of x� can be expressed in terms of just the
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ymmetric ones. If we substitute into �4.5� we can then equate coefficients of all the symmetric
ombinations of x̂�x̂� to zero. The result is a generalization of �2.5�,


�

2
r̂ 
�

1
− 
�

1
r̂ 
�

2
+ 
�

2
r̂ 
�

1
− 
�

1
r̂ 
�

2
= − iei���+��−��−���Ê��,����
�

2
r̂ 
�

1
− 
�

1
r̂ 
�

2
�� . �4.8�

p to an overall constant factor, it is solved by

r̂ =
1

2�
e2i��0−�2� + e2i��0−�1� 0 0 e2i��0−�2� − e2i��0−�1�

0 e2i��0−�3� + 1 e2i��0−�3� − 1 0

0 e2i��0−�3� − 1 e2i��0−�3� + 1 0

e2i��0−�2� − e2i��0−�1� 0 0 e2i��0−�2� + e2i��0−�1�
	 , �4.9�

r equivalently,

r̂ = 14	4 + i�̂�
�
� 
�, �4.10�

ith a sum over � and

�̂0 =
i

4
�3 − e2i��0−�1� − e2i��0−�2� − e2i��0−�3�� ,

�̂1 = −
i

4
�1 + e2i��0−�1� − e2i��0−�2� − e2i��0−�3�� ,

�4.11�

�̂2 = −
i

4
�1 − e2i��0−�1� + e2i��0−�2� − e2i��0−�3�� ,

�̂3 = −
i

4
�1 − e2i��0−�1� − e2i��0−�2� + e2i��0−�3�� .

he expressions for �̂i , i=1,2 ,3, reduce �i to �2.7� in the limit of small angles ��→��, while �̂0

s arbitrary in the limit.
The relations �4.3� are not invariant under Spin�4�. Alternatively, we can try to define a

eformation of Spin�4�, parametrized by two nonsingular 2	2 matrices ĝ and ĥ with noncom-
uting matrix elements with an involution. The coaction on û is

û → û� = ĝûĥ−1. �4.12�

n order to preserve �4.1� we demand that ĝ and ĥ are unitary. Transformation �4.12� preserves the
ommutation relations �4.3� provided

r̂ ĝ
1

ĥ
2

= ĥ
2

ĝ
1

r̂, ��ĝ
1
, ĝ

2
�� = ��ĥ

1
, ĥ

2
�� = 0. �4.13�

his is easily shown. Under the coaction, the left-hand side of �4.3� transforms to

û�
1

r̂ û�
2

= ĝ
1

û
1

ĥ−1

1
r̂ ĝ

2
û
2

ĥ−1

2
= ĝ

1
û
1

ĝ
2

r̂ ĥ−1

1
û
2

ĥ−1

2
= ĝ

2
ĝ
1

û
1

r̂ û
2

ĥ−1

2
ĥ−1

1
= ĝ

2
ĝ
1

û
2

r̂ û
1

ĥ−1

2
ĥ−1

1

= ĝ
2

û
2

ĝ
1

r̂ ĥ−1

2
û
1

ĥ−1

1
= ĝ

2
û
2

ĥ−1

2
r̂ ĝ

1
û
1

ĥ−1

1
= û�

2
r̂ û�

1
. �4.14�

In order for the algebra generated by ĝ and ĥ to be associative it is necessary for r̂ to satisfy

he quantum Yang-Baxter equations,
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r̂
12

r̂
13

r̂
23

= r̂
23

r̂
13

r̂
12

. �4.15�

n the other hand, the quantum Yang-Baxter equations did not have to be satisfied for the algebra
enerated by û to be associative. Finally substitute �4.10� into �4.15�. As in the infinitesimal cases,
e get an identity only when two angles are equal and the third is zero. Hence the spinor-type

ransformations �4.12� correspond to symmetries only in the Connes-Landi case. For example,
hoose �0=�4=0 and �1=�2=� /2. Then r̂ simplifies to diag�q ,1 ,1 ,q�, where q=e−i�, and the
ondition �1.1� is equivalent to

detq û 
 û11û22 − qû12û21 = 1. �4.16�

his condition is preserved under �4.12� provided det ĝ det ĥ−1=1, after using �4.3� along with the

ommutation relations for matrix elements of ĝ with ĥ−1. It can be checked that both det ĝ and

et ĥ−1 are Casimirs of the algebra and hence can be set to one. From �4.12� one can obtain the left
oaction of the coordinates

x̂� → x̂�� = M̂��x̂�, �4.17�

ith

M̂���ĝ, ĥ� = 1
2ei���−��� Tr�
�ĝ
�ĥ−1� . �4.18�

he commutation relations for M̂�� are then determined from the commutation relations for matrix

lements of ĝ with ĥ−1.

. NONCOMMUTATIVE HYPERBOLOIDS

The sphere of Connes and Dubois-Violette can be Wick rotated to Minkowski space. The
esult is a three-parameter family of “noncommutative hyperboloids.” We can then repeat the
revious analysis and search for quantum deformations of the Lorentz group which have noncom-
utative hyperboloids as homogeneous spaces. For simplicity, we only examine the first order

ystem and write it in spinor notation. The result is that there is a Lie-Poisson action of a
ie-Poisson group acting on a one parameter subgroup of noncommutative hyperboloids, namely

he Wick rotated version Connes-Landi spheres.
The Wick rotation of the Poisson structure �1.4� is

�x�,x�� = E��,��x�x�, �5.1�

here E��,�� are again given in terms of three independent parameters by �1.5� and the indices of
are raised and lowered by the Minkowski metric ���=diag�−1,1 ,1 ,1�. ���x�x� is a Casimir for

he Poisson algebra and so we can restrict to a hyperboloid. In the quantized theory, the time
omponent x0 will be noncommuting for any nontrivial values of the parameters.

The algebra can be reexpressed in terms of a Hermitian matrix x=x���, where �0 is the 2
2 identity matrix and �i , i=1,2 ,3, are the Pauli matrices. The Poisson brackets �5.1� can be
ritten as

��x
1
,x

2
�� = i x

2
r x

1
− i x

1
r x

2
, �5.2�

sing the definition of r in �2.6�. The Casimir is now expressed as det x, the latter being invariant
nder SL�2,C� transformations

x → x� = sxs†, s � SL�2,C� . �5.3�

he Poisson algebra is not preserved under this action, but if we can assign the following Poisson

tructure to SL�2,C�,
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��s
1
,s

2
�� = − i��r,s

1
s
2
��, ��s

1
,s

2
�� = ��s

1
,s

2
�� = 0, �5.4�

here s̄=s†−1
, then the brackets �5.2� are invariant in the sense that �5.3� is a Poisson map. Once

gain for consistency we need to check the Jacobi identity, or equivalently the classical Yang-
axter equations for r. But as before these conditions are only satisfied when all but one �i vanish,
nd so we only get a consistent deformation of SL�2,C� in the Connes-Landi limit. For a classi-
cation of consistent quantum deformations of SL�2,C� see Ref. 10.

I. CONCLUDING REMARKS

Our search for quantum deformations of Spin�4� and SO�4� for which the noncommutative
hree-spheres of Connes and Dubois-Violette are homogeneous spaces, and which have a smooth
ommutative limit in the Lie-Poisson sense, has yielded only the known symmetries of twisted
onnes-Landi spheres. The question arises as to whether a more involved analysis can yield any
ther quantum deformations, possibly without a smooth commutative limit. Other possibilities
hich are currently under investigation would allow for more general Poisson structures on the
roup at the Poisson level, or commutation relations at the quantum level. In this regard, although
he brackets �2.10�, if they could have been consistently defined, would have assured that �1.6� is

Poisson map, other possibilities for the Poisson structure on g and h can be explored. For
xample, one might try dropping the relations �g1 ,g2�= �h1 ,h2�=0. The difficulty is to make this
onsistent with the requirement that �1.6� be a Poisson map. Moreover, at the quantum level, one

an consider generalizing the commutation relations �4.13�, possibly dropping �ĝ1 , ĝ2�= �ĥ1 , ĥ2�
0. The task then would be to find the analog of �4.14�. Finally, throughout this paper we have

nsisted upon writing Poisson brackets and commutations relations in terms of an R-matrix. While
his is an important case, other possibilities should be investigated for an exhaustive study.
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The nonlocal conserved quantities of the N=1 Super KdV are obtained using a
Gardner map. A fermionic substitution semigroup and the resulting Gardner cat-
egory are defined and several propositions concerning their algebraic structure are
obtained. This algebraic framework makes it possible to define general transforma-
tions between different nonlinear SUSY differential equations. A SUSY ring exten-
sion is then introduced to deal with the nonlocal conserved quantities of SKdV. The
algebraic version of the nonlocal conserved quantities is solved in terms of the
exponential function applied to the D−1 of the local conserved quantities of SKdV.
Finally the same formulas are shown to work for rapidly decreasing superfields.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2073289�

. INTRODUCTION

The supersymmetric algebra is the unique extension of the super-Poincaré algebra which is
onsistent with the S-matrix of quantum field theory. The most remarkable SUSY theory explains
ow superstrings and other extended SUSY objects can be consistently tied together in what also
as been called M-theory.

Free �string� superstring theory is a two-dimensional supersymmetric theory whose local
ymmetry group is generated by the �Virasoro� Super-Virasoro algebra.

These algebras may be realized as algebras of the �potential� superpotential of �KdV� SKdV1,2

quations when the second Hamiltonian structure �with the corresponding Poisson structure� is
onsidered.3

It is then reasonable to think that the hierarchy of �KdV� SKdV is related to the loop expan-
ion of �string� superstring theory in terms of the genus of Riemann surfaces.4

The SKdV hierarchy also arises from supersymmetric quantum mechanics. In fact, it was
roven in Refs. 5 and 6 that the entire SKdV hierarchy appears in the asymptotic expansion of the
reen’s function g�t ,x ,� ,y ,��� of the super heat operator, as t→0+ and g�t ,x ,� ,y ,��� is restricted

o the diagonal x=y, �=��. The same result holds for the pure “bosonic” �non-SUSY� KdV
ierarchy arising from the Green’s function of the heat operator with potential, that is, the “Eu-
lidean” Schrödinger operator.7

The KdV equation has an infinite number of discrete conserved quantities �CQs�. The SUSY
xtension of these conserved quantities are also CQs for the SKdV equation; but a remarkable

�Electronic mail: sandrea@usb.ve
�Electronic mail: arestu@usb.ve
�
Electronic mail: sotomayo@fis.usb.ve
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ifference between the two equations is that SKdV has a second sequence of CQs, these being
onlocal and intrinsically supersymmetric in nature. They have been interpreted8 as the Poisson
quare root of the local CQs, in the sense that

�J,J�� = H ,

here J and J� are nonlocal CQs and H is a local CQ of SKdV.
The conservation laws of KdV and SKdV may be obtained from the Lax representations of

hese equations; for a review see Ref. 8. The nonlocal CQs of SKdV were first obtained by
nalyzing the infinite set of symmetries of SKdV, e.g., Ref. 9. Later on they were obtained from
he Lax operator in Ref. 10.

Another way to obtain these conservation laws is through the supersymmetric extension1,11 of
he Gardner transformation.12 It may be interpreted as a one-parameter integrable deformation of
KdV. The deformation is

� = � + �D2� − �2�D� ,

here � is the deformation parameter.
If the superfield � satisfies the S-Gardner equation1 then � satisfies SKdV. Then, using the fact

hat H=�dx d�� is a conserved quantity of the S-Gardner equation, it was shown1 that all the local
onserved quantities of SKdV arise in the formal expansion of H in powers of �.

It was left as an open problem, OP1 in the review of Mathieu,8 to find the nonlocal conserved
uantities of SKdV from some integrable �-deformation.

In the present paper OP1 is solved, by first rephrasing it in a completely algebraic framework.
orking first in the free SUSY derivation ring constructed in Ref. 5, a fermionic substitution

emigroup is introduced. The resulting Gardner category is an algebraic construction modeled on
he possibility of more general Gardner transforms between different nonlinear SUSY differential
quations. In the particular case of SKdV the local conserved quantities are constructed from this
ormalism.

We then introduce SUSY ring extensions in order to deal with the possibility of nonlocal
onserved quantities. The algebraic version of the nonlocal CQ problem is solved, using the
xponential function applied to the D−1 of the local conserved quantities which the ring extensions
rovide.

Finally the same formulas are shown to work for rapidly decreasing superfields, and the
onlocal CQs so obtained are shown to agree with those found in the literature.

I. THE FERMIONIC SUBSTITUTION SEMIGROUP

Let A be the free SUSY derivation ring on a single fermionic generator a1. This ring is
enerated by its fermionic elements a1 ,a3 ,a5 , . . . and bosonic elements a2 ,a4 ,a6 , . . . and its su-
erderivation D :A→A is determinated by Dan=an+1 for n�1.

The ring extension A����A consists of all formal power series h=�n=0
� �nhn with coefficients

n�a1 ,a2 , . . . ��A. Its involution h→ h̄ and superderivation h→Dh are defined componentwise
rom the same operations in A. The supercommutativity equation gh= ±hg holds when ḡ= ±g and

= ±h, a minus sign when ḡ=−g and h̄=−h, and a plus sign in the other three cases.

When f ,g�A��� with f̄ =−f , the substitution of f in g produces another element g � f
A���. It is defined by the formulas

g = �
�

�ngn�a1,a2, . . . � ,

0
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g � f = �
0

�

�ngn�f ,Df , . . . � .

he following propositions may be proven.

Proposition 1: When f ,g ,h�A��� with f̄ =−f one has

�g + h� � f = �g � f� + �h � f� ,

�gh� � f = �g � f��h � f� ,

hich is to say that the operation g→g � f is a ring homomorphism A���→A���, for any fixed

f =−f .

Proposition 2: When f ,g�A��� with f̄ =−f , one has

D�g � f� = �Dg� � f .

Now let A1����A��� be the subset of all fermionic elements. The substitution product gives
� f �A1��� if g , f �A1���.

Proposition 3: The substitution product is associative:

�h � g� � f = h � �g � f� ,

hen g ,h , f are in A1���.
Thus A1��� is made into a semigroup by the substitution construction. Evidently the element

1�A1�A1��� acts as the identity element of this semigroup.
When an element of A1��� has the value a1 when �=0 it is invertible:
Proposition 4: Given f =a1+�f1+�2f2+ ¯ �A1��� there exists g=a1+�g1+�2g2+ ¯

A1��� with g � f =a1.
An easy corollary shows that left and right inverses are the same.
Proposition 5: Given f =a1+�k=1

� �kfk and g=a1+�k=1
� �kgk in A1���. If f �g=a1 then g � f =a1.

Frechet derivative operator. Associated with the ring A and its superderivation D :A→A
here is a ring OpA whose elements are the finite order differential operators L=�k=0

N lkD
k with

k�A. Each L acts linearly in A, and the product of two operators is computed from repeated
pplications of the SUSY product rule D�gh�= �Dg�h+ ḡ�Dh�.

When f̄ =−f �A1���, the substitution of f in L is defined by

L � f = �
k=0

N

�lk � f�Dk.

hus L � f , a formal power series with operator coefficients, is in the ring �OpA���� whose ele-
ents are the sums �m,n�mlm,nDn with lm,n�A and lm,n=0 for n�0, at any given m.

Given L� �OpA���� and h�A���, the element Lh�A��� is well-defined because
��mLm����nhn� is again a power series with coefficients in A. The effect of f-substitution is as to
e expected.

The following proposition may be shown:
Proposition 6: If L� �OpA����, h�A���, and f �A1���, then

�Lh� � f = �L � f��h � f� .

The foregoing constructions come into play when we ask for the first variation of the substi-
� m
ution operation. Given any f =�m=0� fm�a1 ,a2 , . . . � in A1���, its Frechet derivative operator is
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f� = �
m=0

�

�
n=1

�

�m �

�an
fm�a1,a2, . . . �Dn−1 � �OpA���� .

hen for any ��A1��� the substitution by a1+ t��A1��� gives

f � �a1 + t�� = f + tf�� + ¯ ,

he full right side of the equation being a power series in t with A��� coefficients.
A more general formula appears when a1 is replaced by 	�A1��� and

f � �	 + t�� = f � 	 + t�f� � 	�� + ¯ ,

alid when f ,	 ,��A1���.
The chain rule is now immediate.
Proposition 7: When f ,g�A1��� one has

�f � g�� = �f� � g�g�.

II. THE GARDNER CATEGORY

An element f =�m=0
� �mfm�a1 ,a2 , . . . � of A1��� may be taken to represent a nonlinear differen-

ial equation

�

�t

�x,t� = �

m=0

�

�mfm�
�x,t�,D1
�x,t�, . . . � ,

here 
�x , t� is a fermionic superfield �see Sec. V� and the superderivation D1=� /��+��� /�x� is
lso known as the covariant derivative.

A second element g�A1��� represents a second differential equation, for an unknown super-
eld ��x , t�.

Then given a third element r�A1���, one might want the transformation

��x,t� = �
m=0

�

�mrm�
�x,t�,D1
�x,t�, . . . �

o transform solutions of the first equation into solutions of the second. After some computation
ne sees that this happens if

g � r = r�f .

ccordingly, f and g can be called “objects” in the Gardner category, and r a “morphism” from f

o g, written g←
r

f , if the above equality holds in A1���.
Obviously the choice r=a1�A, r�= I�OpA gives the identity automorphism of each object.
But the composition of morphisms must be checked.
Proposition 8: Given f ,g ,h ,r ,s�A1���.

If h←
s

g and g←
r

f then h←
sor

f .
Proof of Proposition 8: From h �s=s�g it follows that

h � s � r = s�g � r = �s� � r��g � r�

fter applying Proposition 6 to s��OpA��� and g�A1���. But g �r=r�f , giving

h � �s � r� = �s� � r�r�f = �s � r��f
y the chain rule, Proposition 7. This completes the proof.
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The possibility of isomorphism classes in the Gardner category leads one to examine the
nvertible elements. One has the following result:

Proposition 9: Given f ,g ,r ,s�A1��� with r �s=s �r=a1.

If g←
r

f

then f←
s

g.
The Gardner transform. The SUSY KdV equation is represented by g=a7+3a1a4+3a2a3, and

he Gardner transform by r=a1+�a3−�2a1a2.
A “modified” KdV equation will be represented by some f �A1���. If f can be chosen so that

g � r = r�f

hen we will have found an algebraic analog of the Gardner transformation’s action on superfield
olutions of the two differential equations.

The choice f =g−3�2� satisfies g �r=r�f , which is to say that g←
r

f in category language.
By Propositions 4 and 5 there exists an inverse Gardner transform

s = a1 − �a3 + ¯ � A���

atisfying r �s=s �r=a1 and hence also, by Proposition 9, f �s=s�g.
However f =Dh for

h = �a6 + 3a2
2 − 3a1a3� + �2�3a1a2a3 − 2a2

3� .

onsequently all the coefficients in the power series s�g are in DA�A.
If sn�a1 ,a2 , . . . � is the coefficient of �n, then this condition implies that �dx d �sn�� ,D1� , . . . �

emains constant while the superfield � evolves in time with the SUSY KdV equation, and D1

� /��+��� /�x�.

V. RING EXTENSIONS AND NONLOCAL CONSERVATION LAWS

In the general situation D :B→B of an oriented supercommutative ring and a superderivation,
n element u�B may or may not have the form u=Dv for some v�B. But for a fermionic

=−ū one can always pass to the extension D̃ : B̃→B̃ where B̃ is the ring of polynomials with B
oefficients in a commuting indeterminate �, and the new superderivation is D̃=D+u�� /���. �If
he extension was unnecessary then D̃v=u will have more than one solution in B̃.�

The natural first example is given by u=a1, the generator of A�a1 ,a2 , . . . �, the free SUSY
erivation ring on a single fermionic generator. The extension just described is A�a0 ,a1 ,a2 , . . . �,
he free SUSY derivation ring on a bosonic generator a0, with Dan=an+1 for n�0.

The ring of formal power series A�a0 ,a1 ,a2 , . . . ���� has the same universal property seen

arlier in the fermionic case. That is, given any D̃ : B̃→B̃ and some formal power series b

�0
��nbn with all bn= b̄n�B, the substitution operation g�g �b takes g=�0

��ngn�a0 ,a1 ,a2 , . . . � to

�b=�0
��mgm�b , D̃b , . . . �.

Then �g�=g �b is a well-defined map of the power series ring extensions

:A�a0,a1,a2, . . . ���� → B̃��� .

n fact  is a ring homomorphism which commutes with the respective involutions and satisfies

D= D̃: The proof is the same as for the Propositions 1 and 2 given earlier.
Ring extensions of the fermionic ring A�a1 ,a2 , . . . � are now constructed so as to incorporate

−1
 of all the local conserved quantities of the SUSY KdV equation. From the formulas
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r = a1 + �a3 − �2a1a2

or the Gardner transform and

s = s0 + �s1 + �2s2 + ¯

or its inverse, which satisfy r �s=s �r=a1, one can compute for example

s0 = a1,

s1 = − a3,

s2 = a5 + a1a2,

s3 = − a7 − 2a1a4 − 2a2a3,

s4 = a9 + �3a1a6 + 3a2a5 + 5a3a4� + 2a1a2a2.

t was shown before that

f � s = s�g

or

g = a7 + 3a1a4 + 3a2a3,

f = g − 3�2�a1a2a4 + a2
2a3� .

owever f =Dh for h= �a6+3a2
2−3a1a3�+�2�3a1a2a3−2a2

3�.
Therefore D�h �s�=s�g.
As pointed out before, this is a proof that s0 ,s1 , . . . are conserved quantities for the SUSY KdV

quation.
For each sn the ring extension is made which incorporates �n=D−1sn. Done successively for

0 ,s1 , . . . this gives B̃=A��0 ,�1 , . . . �, the ring of polynomials in the commuting indeterminates

0 ,�1 , . . ., with coefficients in A�a1 ,a2 , . . . �. The new superderivation D̃ : B̃→B̃ is D̃=D
�n=0

� sn�� /��n�.
Supposing ���0 ,�1 , . . . � to be a polynomial with constant coefficients we ask for the first

ariation with respect to g. When �=�n this is

�̇n = 	 d

dt
	 t=0

D−1�sn � �a1 + tg�� = D−1�sn�g� = �h � s�n � A�a1,a2, . . . � ,

here �h �s�n is the coefficient of �n in the power series h �s.
This shows that ���0 ,�1 , . . . � is a conserved quantity if

�
n=0

�

�h � s�n
��

��n
� D̃�B̃� .

e now work with �=�0
��n�n� B̃���.

Theorem 1: The coefficients of e�� are all nonlocal conserved quantities for the algebraic
ersion of the SUSY KdV equation.

Proof of Theorem 1: With

�� 2
e = 1 + ��1 + � �2 + ¯ ,
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�

��n
e�� = �n+1e��

ne has �� /��n��p=�p−n−1 and �̇p=�n=0
p−1�p−n−1�̇n.

This is the coefficient of �p−1 in the power series e���h �s�.
Evidently e���h �s�� B̃���.
The proof of the theorem is complete when we have shown that

e���h � s� � D̃�B̃���� .

owever the substitution operation �g�=g �� gives a ring homomorphism

:A�a0,a1, . . . ���� → B̃��� .

bviously �e�a0�=e��, while

�a1� = a1 � � = D� = s ,

�an� = Dns for n � 1.

his shows that

�h� = h � s ,

iving

�e�a0h�a1,a2, . . . ,��� = e���h � s� .

he search for antiderivatives can therefore be done in the more accessible ring
�a0 ,a1 , . . . ����. Indeed

e�a0h = Dl

ith l=e�a0�F0+�F1+�2F2� and F0 ,F1 ,F2 certain fermionic elements of A�a1 ,a2 , . . . �. The de-
ired equation reduces to

DF0 = a6 + 3a2a2 − 3a1a3,

DF1 + a1F0 = 0,

DF2 + a1F1 = 3a1a2a3 − 2a2
3,

a1F2 = 0.

hese equations are satisfied by

F0 = a5 + 3a1a2, F1 = a1a4 − a2a3, F2 = − 2a1a2
2.

ecause the ring homomorphism satisfies D= D̃ we conclude that from

�e�a0h� = e���h � s�

e may infer

e���h � s� = D̃�l� .
his completes the proof of the theorem.
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. CONSERVATION LAWS FOR SUPERFIELDS

The algebraic constructions done so far will now be applied to the SUSY KdV equation. This
quation deals with superfields, which may be described as follows.

Suppose � is a finite dimensional Grassmann algebra generated by anticommuting elements
,�1 ,�2 , . . . which satisfy �2=�1

2=�2
2= ¯ =0.

Any element of �, after reorderings and sign changes, may be written uniquely as

� = v��1,�2, . . . � + �u��1,�2, . . . � .

hen the superderivation � /�� :�→� is defined by �� /��=u.
A superfield is any infinitely differentiable function � :R→�, and the ring of all superfields is

enoted by C��R ,��. A superfield is called “bosonic” when �̄=� and fermionic when �̄=−�. To
void confusion with the algebraic case, the superderivation in this ring is written D1=� /��
��� /�x�.

Thus ��x�=v�x�+�u�x� and D1�=u�x�+�v��x�.
Ring homomorphisms from algebra to analysis are given by substitution of elements of

��R ,��. For example if �=−�̄ in C��R ,�� one has the ring homomorphism

A�a1,a2, . . . � → C��R,��

hich sends f�a1 ,a2 , . . . � to f ��= f�� ,D1� , . . . �. This homomorphism interrelates the two super-
erivations, in the sense that

D1�f � �� = �Df� � � .

he associativity equation �g � f� ��=g � �f ��� continues to hold when f =− f̄ in A�a1 ,a2 , . . . � and
=−�̄ in C��R ,��, while g�A�a1 ,a2 , . . . � is arbitrary.

For the convergence of integrals one must work in subrings of C��R ,��.
Let C↓

��R ,�� be the superfields that diminish rapidly at x= ±� together with all derivatives.
hen � satisfies D1��C↓

�, � and all its derivatives are bounded functions, and in particular
� /�����C↓

�. Thus ���C↓
� when ��C↓

� and D1��C↓
�.

The nonlocal extension of C↓
� may be defined to be

CNL
� �R,�� = �� � C��R,��:D1� � C↓

��R,��� .

hen CNL
� is again a derivation ring, and it contains C↓

� as an ideal. The formulas

��x� = v�x� + �u�x� ,

D1
−1��x� = 


−�

x

u�s�ds + �v�x�

ive an explicit mapping D1
−1 :C↓

�→CNL
� , with D1

−1D1�=� as well as D1D1
−1�=� for all ��C↓

�.
When ��x�=V�x�+�U�x��CNL

� one can define the integral of ��x� to be


 � = 

−�

�

U�x�dx .

hus, integration is an additive mapping from CNL
� �R ,�� to the Grassmann algebra �.

� �
And, when ��C↓ �CNL one has
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 D1� = 0.

hese preparations done we turn to the SUSY KdV equation, which is represented by g=a7

3a1a4+3a2a3: if � is a time-dependent superfield then

�

�t
� = �̇ = g � � .

ith s=�0
��nsn�a1 ,a2 , . . . � the inverse Gardner transform, and any �=−�̄�C↓

�, we define

� = D1
−1�s � �� ,

formal power series with CNL
� coefficients.

Then

J��� =
 e��

ill be shown to be a power series whose coefficients are nonlocal conservation laws for the
USY KdV equation.

To compute �̇= �d/dt�t=0���+ t�̇� we recall first that

	 d

dt
	 t=0

s � �a1 + tg� = D�h � s�

n the ring of formal power series A�a1 ,a2 , . . . ����, with h=�0
��nhn�a1 ,a2 , . . . � as computed be-

ore.
The substitution homomorphism given by � then gives ��d/dt��t=0s � ��+ t�̇�=D1�h �s ���.

onsequently

�̇ = 	 d

dt
	 t=0

D1
−1�s � �� + t�̇�� = h � s � � .

ince J̇=��e���̇, the proof will be complete when it has been shown that


 e���h � s � �� = 0.

owever, it was shown earlier that there exists F=�0
��nFn�a1 ,a2 , . . . � satisfying

e�a0h = D�e�a0F�

n the ring A�a0 ,a1 , . . . ���� of formal power series with A�a0 ,a1 , . . . � coefficients. Under the
peration of substitution by � this equation becomes

e���h � s � �� = D1�e���F � s � ���

n the ring CNL
� �R ,�����, because D1�=s �� and h and F do not involve a0.

The coefficients of e�� are in CNL
� while the coefficients of F �s �� are in C↓

�.
Therefore their product is in C↓

�, where ��C↓
� implies �D1�=0.

This completes the proof that J���=�e�� is a conserved quantity for the SUSY KdV equation.
In closing we may compare �e�� with conserved quantities found in the literature. Starting

ith �=−�̄�C↓
�, the first few coefficients of �=�0

��n�n=D−1�s ��� can be found from the
orresponding coefficients of the inverse Gardner transform �0

��nsn�a1 ,a2 , . . . �. After replacing D1
y the shorter notation D=� /��+��� /�x� one finds that
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�0 = D−1� ,

�1 = − D� ,

�2 = D3� + D−1��D�� ,

�3 = − D5� − 2�D��2 + 2��D2�� .

hese elements of CNL
� are all bosonic, and the first few coefficients of e��=1+�n=1

� �n�n are

�1 = �0,

�2 = 1
2�0

2 + �1,

�3 = 1
6�0

3 + �0�1 + �2,

�4 = 1
24�0

4 + 1
2�0

2�1 + �0�2 + 1
2�1

2 + �3.

ecause we are only interested in the integrals of �n���, terms which fall into DC↓
� can be left out

ecause they have identically zero integrals. For example

�0�1 = − �D−1���D�� = − D��D−1���� .

fter rewriting the �n in terms of D−1� ,� , . . . and simplifying in the manner just described we
rrive at

�1 = D−1� ,

�2 = 1
2 �D−1��2,

�3 = 1
6 �D−1��3 + D−1��D�� ,

�4 = 1
24�D−1��4 − 1

2 �D��2 + �D−1��D−1��D�� .

eplacing � by −� in these formulas we obtain constant multiples of the integrands which appear
n the nonlocal conserved quantities J1

2
,J3

2
,J5

2
,J7

2
presented in Ref. 10.

The sign change comes from the ambiguity g= ±a7+3a1a4+3a2a3 in the definition of the
USY KdV equation.

The two versions are interchanged by the transformation T :A�a1 ,a2 , . . . �→A�a1 ,a2 , . . . �
iven by �Tf��a1 ,a2 , . . . �=−f�−a1 ,−a2 , . . . �.

This transformation is not a ring homomorphism but it satisfies DT=TD. In terms of the

ubstitution operation, Tg=−�g � �−a1�� in general, with Tf = �−a1� � f � �−a1� when f̄ =−f .
The associativity and the cancellation �−a1� � �−a1�=a1 then give

T�g � f� = �Tg� � �Tf� .

herefore T also exchanges the respective Gardner transforms and conservation laws.

I. CONCLUSIONS

We introduced the fermionic substitution semigroup and the resulting Gardner category. We
btained several propositions concerning their algebraic structure. This algebraic framework made

t possible to define general Gardner transformations between different nonlinear SUSY differen-
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ial equations. We then introduced a SUSY ring extension which, in the same algebraic setting,
ermitted the construction of all the known nonlocal conserved quantities of N=1 SKdV. All these
onlocal conserved quantities are then obtained from the Super-Gardner equation using a Gardner
ap. They may be expressed in terms of the exponential function applied to the D−1 of the local

onserved quantities of N=1 SKdV. As in the case of the local conserved quantities of N=1 SKdV,
ne conserved quantity of the Super-Gardner equation generates all the known nonlocal conserved
uantities of N=1 SKdV.

An interesting problem to be considered would be to apply the construction we introduced
ere to obtain the conserved quantities of N=2 SKdV.13
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Representations from the supplementary series of unitary, irreducible representa-
tions of the proper, orthochronous Lorentz group are classified according to the
parameter z, 0�z�1. The representations with 0�z�1/2 are qualitatively differ-
ent from those with 1/2�z�1. This is shown in the form of the following theo-
rem: the Casimir operator of the little group of a spacelike vector has for 0�z
�1/2 a single bound state, i.e., a single normalizable eigenstate which disappears
for 1 /2�z�1. To this end the scalar product for the supplementary series is
explicitly calculated in both regions, 0�z�1/2 and 1/2�z�1 in a coordinate
system provided by common eigenfunctions of the Casimir operator of the little
group of a spacelike vector and the commuting generator of a parabolic rotation.
The choice of this coordinate system allows to use the well established properties
of the Kontorovich-Lebedev pair of integral transforms. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2080455�

. INTRODUCTION

The supplementary series of unitary, irreducible representations of the proper, orthochronous
orentz group was discovered simultaneously and independently by Gelfand and Neumark,1

argmann,2 and Harish-Chandra.3 It is described in several textbooks, e.g., in the textbook by
elfand, Graev, and Vilenkin.4 The structure of the supplementary series was investigated by
ukunda,5 and Boyer.6 They calculated the scalar product for the supplementary series in a

anonical coordinate system provided by common eigenfunctions of two commuting observables,
iz. the Casimir operator of the little group of a spacelike vector and the generator of a rotation.
n this way they discovered a bound state of the Casimir operator.

In this paper we shall investigate the structure of the supplementary series in the following
ay. We shall calculate the scalar product for the supplementary series in a special coordinate

ystem provided by common eigenfunctions of two commuting observables, viz. the Casimir
perator of the little group of a spacelike vector and the generator of a parabolic rotation. The
eason for the choice of the generator of the parabolic rotation is that common eigenfunctions are
hen proportional to MacDonald functions of imaginary order. Thus the decomposition of an
rbitrary function can be carried out with the aid of the pair of Kontorovich-Lebedev transforms.
oreover, we shall use the theory of the supplementary series described in Ref. 7. This approach
akes the Lorentz invariance of all calculations manifest at each step. It also reveals the physical

hape of the bound state of the Casimir operator which is completely absent in the papers men-
ioned above. The mathematics which is necessary to see this was first elaborated by
taruszkiewicz.8 He discovered a bound state of the first Casimir operator of the proper, ortho-
hronous Lorentz group in his theory of the quantum Coulomb field.

�
Electronic mail: jakub@th.if.uj.edu.pl
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We use units such that �=1=c. We use the metric tensor g�� such that xx=g��x
�x���x0�2

�x1�2− �x2�2− �x3�2 is the square of the length of the vector x.

I. THE SUPPLEMENTARY SERIES

We present the supplementary series of unitary, irreducible representations of the proper,
rthochronous Lorentz group, following Ref. 7.

The upper light cone �here in the momentum space� is a figure formed by positive frequency
ull vectors kk=0, k0�0. It consists of null directions. A null direction is a set of null vectors
arallel to a given null vector. The set of null directions has the Lorentz invariant volume, which
elfand, Graev, and Vilenkin give on p. 426 of their textbook4 and Staruszkiewicz9 applies to

alculate several useful integrals,

d2k =
k1 dk2 ∧ dk3 + k2 dk3 ∧ dk1 + k3 dk1 ∧ dk2

k0 . �1�

ere ∧ denotes the outer product. The function f�k� defined on the upper light cone is said to be
omogeneous of degree z−2, 0�z�1, if

f��k� = �z−2f�k� for each � � 0. �2�

unctions homogeneous of degree z−2 form a linear space over the field of complex numbers.
ntroducing in this space the manifestly Lorentz invariant nonlocal scalar product

�f �f�z =	 d2k d2l

�kl�z f�k�f�l� �3�

e obtain the Hilbert space appropriate for the supplementary series.

II. THE CASIMIR OPERATOR OF THE LITTLE GROUP OF A SPACELIKE VECTOR AND
HE GENERATOR OF A PARABOLIC ROTATION: THEIR COMMON EIGENFUNCTIONS

Let a and b be two fixed orthogonal spacelike vectors, ab=0, aa=−1, bb=−1. Let q be a fixed
ull vector orthogonal to the vectors a and b, qq=0, aq=0, bq=0.

The set of proper, orthochronous Lorentz transformations which preserve a fixed vector is
alled the little group of this vector. In what follows we consider the spacelike vector a. The
asimir operator of the little group of this vector written in a manifestly Lorentz invariant form is

C = − a�M
�

��a�M
�

��. �4�

ere M
*

��= �1/2������M�� is the dual pseudotensor associated with generators M��=−M�� of the
roper, orthochronous Lorentz group. ����� denotes the Levi-Civita symbol, �0123=1.

There are three kinds of one-parameter subgroups of the proper, orthochronous Lorentz group,
lliptic rotations �rotations�, which preserve a timelike plane, hyperbolic rotations �Lorentz
boosts”�, which preserve a spacelike plane, and parabolic rotations, which preserve a null plane.
n what follows we consider the parabolic rotation which preserves the null plane spanned by the
pacelike vector a and the null vector q. The generator of this parabolic rotation written in a
anifestly Lorentz invariant form is

M = a�q�M
�

�� = − b�q�M��. �5�

Let us choose a basis such that a= �0,0 ,0 ,1�, b= �0,0 ,1 ,0�, q= �1,1 ,0 ,0�. Then

C = M2 + M2 − M2 , �6�
01 02 12
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M = M02 + M12, �7�

hich shows that C and M commute.
Reflection of the null direction k in the timelike hyperplane orthogonal to the spacelike vector

is the null direction k� such that

k� = k + 2�ak�a . �8�

t is seen that this reflection changes the sign of the variable ak. Thus its representation in the
epresentation space appropriate for the supplementary series is simply the parity operator P. P is
nvariant under the little group of a generated by operators a�M��

* . As a consequence we obtain
he following corollary: P commutes with C and M. Hence we can find even and odd common
igenfunctions of C and M, respectively, f	


+ �k� and f	

− �k�, such that

Cf	

± �k� = 
1

4
+ 	2� f	


± �k� ,

Mf	

± �k� = 
f	


± �k� ,

Pf	

± �k� = ± f	


± �k� . �9�

The generators of the proper, orthochronous Lorentz group for the spinless case in the mo-
entum space written in a manifestly Lorentz covariant form are

M�� = i
k�

�

�k� − k�

�

�k�� . �10�

ince M���kk��0, the formally four-dimensional differential operator M�� is in fact an internal
ifferential operator on the light cone kk=0. Then the system of partial differential equations �9�
an be separated in the stereographic variables ak /qk and bk /qk. One finds thus even and odd
ommon eigenfunctions of C and M to be the following:

f	

+ �k� = �ak�z−2�


ak

qk
�1/2

Ki	
�

ak

qk
��exp
i


bk

qk
� ,

f	

− �k� = sign�ak��ak�z−2�


ak

qk
�1/2

Ki	
�

ak

qk
��exp
i


bk

qk
� ,

	 � 0, − � � 
 � � . �11�

i	 is the MacDonald function of imaginary order i	 such that

Ki	��x�� = 	
0

�

dt e−�x�cosh t cos�	t� �12�

nd sign is the signum function.
An arbitrary homogeneous of degree z−2 function f�k� defined on the upper light cone can be

esolved into even and odd parts, respectively, f+�k� and f−�k�,

f�k� = f+�k� + f−�k� . �13�

sing the pair of Kontorovich-Lebedev transforms10 we get the decomposition of functions f+�k�,
−
f �k�,
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f±�k� = 	
0

�

d		
−�

�

d
 g±�	,
�f	

± �k� ,

g±�	,
� =
1

23

	 sinh�	�
�
� 	 d2k�ak�2−2zf±�k�f	


± �k� . �14�

V. THE SCALAR PRODUCT FOR THE SUPPLEMENTARY SERIES

It is easy to show that

�f	

+ �f	�
�

− �z = 0. �15�

o calculate the scalar product for the supplementary series we need besides the following lemma,
hich is proved in Appendix A: there exist functions K+�z ;	�, K−�z ;	� such that

	 d2k

�kl�z f	

± �k� = f	


± �l� · �al�2−2z · K±�z;	� . �16�

he function K+�z ;	� is calculated in Appendix B. It exists for 1 /2�z�1 and can be expressed
y the gamma function �,

K+�z;	� = 2 2z

�2�z�sin�z�

�
 z − 1/2 + i	

2
��
 z − 1/2 − i	

2
�

�
3/2 − z + i	

2
��
3/2 − z − i	

2
� . �17�

he function K−�z ;	� is calculated in Appendix C. It exists for 1 /2�z�1 and can be expressed
y the gamma function � and the generalized hypergeometric function 3F2,

K−�z;	� =
3/2

2

2z

��z�cos


2

z −

1

2
�

1

�
3/2 − z + i	

2
��
3/2 − z − i	

2
�cosh


2
	�

�  1

1 − z

3/2 − z + i	

2
�−1

3F2
1

2
,1,

3/2 − z + i	

2
;2 − z,

7/2 − z + i	

2
;1� + c.c.

 + 2
1/2 + z + i	

2
�−1

3F2
z,1,
1/2 + z + i	

2
;
3

2
,
5/2 + z + i	

2
;1� + c.c.� . �18�

tilizing Eqs. �14� and �16� we have for 1 /2�z�1,

�f	

± �f	�
�

± �z = 23 �
�
	 sinh�	�

K±�z;	���	 − 	����
 − 
�� . �19�

ence the scalar product for the supplementary series valid for 1 /2�z�1 has the form

�f �f�z = 23	
0

�

d		
−�

�

d

�
�

	 sinh�	�
K+�z;	��g+�	,
��2

+ 23	
0

�

d		
−�

�

d

�
�

	 sinh�	�
K−�z;	��g−�	,
��2. �20�

To find the equivalent of Eq. �20� valid for 0�z�1/2 one must notice what follows. For
11
/2�z�1, Eq. �20� can be rewritten as
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�f �f�z =	 d2kd2l�ak�−zf+�k��al�−zf+�l�
1

4
	

0

�

d	 	 tanh�	�P−1/2+i	�u�K+�z;	�

+	 d2k d2l sign�ak��ak�−zf−�k� sign�al��al�−zf−�l�
1

4
	

0

�

d	 	 tanh�	�P−1/2+i	�u�K−�z;	� ,

�21�

here u=sign�ak�sign�al�+kl / ��ak��al��. P−1/2+i	 is the conical function. The original scalar prod-
ct �f � f�z, given by Eq. �3�, is an analytic function of z. Thus the correct expression for the scalar
roduct �f � f�z valid for 0�z�1/2 is the analytic continuation of the functions of z given by the
ntegrals

1

4
	

0

�

d	 	 tanh�	�P−1/2+i	�u�K±�z;	� . �22�

hey can be treated as contour integrals in the complex 	-plane. It is seen then that when z
hanges from 1/2�z�1 to 0�z�1/2, two simple poles of K+�z ;	� cross the contour. Residues
t these poles must be subtracted, since �f � f�z is a given analytic function of z, the same for all z.

The scalar product for the supplementary series valid for 0�z�1/2, calculated in accordance
ith the above mathematical principle, has the form

�f �f�z = 23	
0

�

d		
−�

�

d

�
�

	 sinh�	�
K+�z;	��g+�	,
��2

+ 23	
0

�

d		
−�

�

d

�
�

	 sinh�	�
K−�z;	��g−�	,
��2

+ 165 1

2z
1

2
− z�2

��2z�
�2�z�cos�z�	−�

�

d
�
��g+
i
1

2
− z�,
��2

. �23�

. SPECTRUM OF THE CASIMIR OPERATOR OF THE LITTLE GROUP OF A
PACELIKE VECTOR

From Eqs. �20� and �23� it follows that the Casimir operator C of the little group of the
pacelike vector a, aa=−1, given by Eq. �4�, has for 0�z�1/2 a single normalizable eigenstate,
.e., a single bound state which disappears for 1 /2�z�1. One can show that for 0�z�1/2 the
unction

f

+�k� = �qk�z−2�
ak

qk
�exp
i


bk

qk
� �24�

s an eigenfunction of C with the eigenvalue 0�z�1−z��1/4,

Cf

+�k� = z�1 − z�f


+�k� . �25�

he scalar product of two such functions is11

�f

+�f
�

+ �z = 22 2z�
�2z−1

��2z�cos�z�
��
 − 
�� , �26�

hich means as usual that wave packets obtained by superposing various values of 
 will be
ormalizable. Thus the momentum wave function of the bound state of C is localized in the circle

k=0.
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We summarize our results in the form of the following theorem: the spectrum of the Casimir
perator C of the little group of the unit spacelike vector a consists of only positive numbers
reater than or equal to 1/4 if 1 /2�z�1 and positive numbers greater than or equal to 1/4 and
dditionally the single number 0�z�1−z��1/4 if 0�z�1/2. It reveals that the parameter z
1/2 is critical and separates two different classes of representations from the supplementary

eries.
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PPENDIX A: THE USEFUL LEMMA

Let us notice first that in expressions like M���k��kl� it is necessary to write the argument k of
he differential operator M��. It indicates the variable with respect to which the differentiation is
arried out. Now, applying this convention, we have

	 d2k

�kl�z M��f�k� = −	 d2k M���k��kl�−z · f�k�

=	 d2k M���l��kl�−z · f�k� = M��	 d2k

�kl�z f�k� �A1�

nd

	 d2k

�kl�z M��M��f�k� = M��	 d2k

�kl�z M��f�k� = M��M��	 d2k

�kl�z f�k� . �A2�

s an obvious consequence we obtain

	 d2k

�kl�z Mf�k� = M 	 d2k

�kl�z f�k� �A3�

nd

	 d2k

�kl�zCf�k� = C	 d2k

�kl�z f�k� . �A4�

The integrals

	 d2k

�kl�z f	

± �k� �A5�

re manifestly Lorentz invariant, homogeneous of degree −z in l, and even and odd in a, respec-
ively. On the basis of these facts and Eqs. �A3� and �A4�, we infer that there exist functions

+�z ;	 ,
�, K−�z ;	 ,
� such that

	 d2k

�kl�z f	

± �k� = f	


± �l� · �al�2−2z · K±�z;	,
� . �A6�

n both sides of Eq. �A6� the eigenvalue 
 can be absorbed into the null vector q, which does not
hange the definition of q. Hence the functions K+�z ;	 ,
�, K−�z ;	 ,
� cannot depend on 
 and this
eads directly to Eq. �16�.

PPENDIX B: CALCULATION OF THE FUNCTION K+
„z ;�…

+
All integrals necessary to calculate the function K �z ;	� are given in Ref. 11.
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For the even case in Eq. �16� we substitute 
=1, multiply both sides by �bl�−��ql�−�, z+�
�=2 and integrate over l. In this way we obtain

	 d2k�ak�z−2�ak

qk
�1/2

Ki	
�ak

qk
��exp
i

bk

qk
� 	 d2l�kl�−z�bl�−��ql�−�

= K+�z;	� 	 d2l�bl�−��ql�−��al�−z�al

ql
�1/2

Ki	
�al

ql
��exp
i

bl

ql
� . �B1�

he integral

	 d2l�kl�−z�bl�−��ql�−� �B2�

s manifestly Lorentz invariant, homogeneous of degree −z in k and −� in q, and even in b. On the
asis of these facts, we infer that there exists a function A�z ;�� such that

	 d2l�kl�−z�bl�−��ql�−� = �bk��−z · �qk�−� · A�z;�� . �B3�

t is easy to show that

A�z;�� = 2z	 d� d�

������2 + �� − 1�2�z , �B4�

=al /ql and �=bl /ql being the stereographic variables. The integral over � can be calculated in
simple way. Then the integral over � boils down to the convolution and can be calculated with

he aid of the convolution theorem. It is thus seen that the function A�z ;�� exists for 1 /2�z
1, 2−2z���1 and has the form

A�z;�� =
2z+2

�

��z − 1
2�

��z�
��2 − 2z�cos



2
�2 − 2z���2z + � − 2�

�cos


2
�2z + � − 2���1 − ��cos



2
�1 − �� . �B5�

herefore for 1 /2�z�1, 2−2z���1, Eq. �B1� can be rewritten as

A�z;�� 	 d2k�bk�2−2z−��qk�z+�−2�ak�z−2�ak

qk
�1/2

Ki	
�ak

qk
��exp
i

bk

qk
�

= K+�z;	� 	 d2l�bl�−��ql�z+�−2�al�−z�al

ql
�1/2

Ki	
�al

ql
��exp
i

bl

ql
� . �B6�

oth integrals in Eq. �B6� exist for 1 /2�z�1, 2−2z���1; the integral on the left-hand side
quals

2z−1/2�
 z − 1/2 + i	

2
��
 z − 1/2 − i	

2
���3 − 2z − ��cos



2
�3 − 2z − �� , �B7�

nd the integral on the right-hand side equals

23/2−z�
3/2 − z + i	

2
��
3/2 − z − i	

2
���1 − ��cos



2
�1 − �� . �B8�
his leads directly to Eq. �17�.
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PPENDIX C: CALCULATION OF THE FUNCTION K−
„z ;�…

All integrals necessary to calculate the function K−�z ;	� are also given in Ref. 11.
For the odd case in Eq. �16� we substitute 
=1, multiply both sides by �bl�−��ql�−� sign�al�,

+�+�=2 and integrate over l. In this way we obtain

	 d2k sign�ak��ak�z−2�ak

qk
�1/2

Ki	
�ak

qk
��exp
i

bk

qk
� 	 d2l�kl�−z�bl�−��ql�−� sign�al�

=K−�z;	� 	 d2l�bl�−��ql�−��al�−z�al

ql
�1/2

Ki	
�al

ql
��exp
i

bl

ql
� . �C1�

he integral

	 d2l�kl�−z�bl�−��ql�−� sign�al� �C2�

s manifestly Lorentz invariant, homogeneous of degree −z in k and −� in q, even in b, and odd
n a. Utilizing these facts we calculate that

	 d2l�kl�−z�bl�−��ql�−� sign�al� = �bk��−z · �qk�−� · sign�ak� · A�z;�;k� , �C3�

here

A�z;�;k� = 2z	 d�� d�� sign����

�����
�� − �ak

bk
��2

+ ��� − 1�2�z , �C4�

�=� / �bk /qk� and ��=� / �bk /qk� being the scaled stereographic variables. The integral over ��
an be calculated in a simple way. It is proportional to the associated Legendre function Pz+�−3/2

1/2−z ,
hich for �=3/2−z has the simplest form, i.e., does not contain the hypergeometric function 2F1.
hen the integral over �� can be calculated. Hence we choose �=3/2−z. It is thus seen that the

unction A�z ;3 /2−z ;k��A�z ;k� exists for 1 /2�z�1 and has the form

A�z;k� = 22−z�
��z − 1

2�
��z�  1

1 − z
�1−z�1 + ��−1/2

2F1
1

2
,1;2 − z;

�

1 + �
�

+ 2�1/2�1 + ��−z
2F1
z,1;

3

2
;

�

1 + �
� , �C5�

here �= �1/2���1+ �ak /bk�2−1�. Therefore for 1 /2�z�1, �=3/2−z, Eq. �C1� can be rewritten
s

	 d2k A�z;k��bk�1/2−z�qk�−1/2�ak�z−2�ak

qk
�1/2

Ki	
�ak

qk
��exp
i

bk

qk
�

=K−�z;	� 	 d2l�bl�z−3/2�ql�−1/2�al�−z�al

ql
�1/2

Ki	
�al

ql
��exp
i

bl

ql
� . �C6�
oth integrals in Eq. �C6� exist for 1 /2�z�1; the integral on the left-hand side equals
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�23/2

cosh


2
	�

��z − 1
2�

��z�  1

1 − z

3/2 − z + i	

2
�−1

3F2
1

2
,1,

3/2 − z + i	

2
;2 − z,

7/2 − z + i	

2
;1� + c.c.

 + 2
1/2 + z + i	

2
�−1

3F2
z,1,
1/2 + z + i	

2
;
3

2
,
5/2 + z + i	

2
;1� + c.c.� ,

�C7�

nd the integral on the right-hand side equals

23/2−z�
3/2 − z + i	

2
��
3/2 − z − i	

2
��
z −

1

2
�cos



2

z −

1

2
� . �C8�

his leads directly to Eq. �18�.
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We show how to do gauge theory on the octonions and other nonassociative alge-
bras such as “quasi-R4” models proposed in string theory. We use the theory of
quasialgebras obtained by cochain twist introduced previously. The gauge theory in
this case is twisting–equivalent to the usual gauge theory on the underlying classi-
cal space. We give a general U�1�-Yang–Mills example for any quasialgebra and a
full description of the moduli space of flat connections in this theory for the cube Z2

3

and hence for the octonions. We also obtain further results about the octonions
themselves; an explicit Moyal-product description of them as a nonassociative
quantization of functions on the cube, and a characterization of their cochain twist
as invariant under Fourier transform. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2084747�

. INTRODUCTION

There has been a lot of interest recently in “nonassociative geometry” as a further extension of
he ideas of noncommutative geometry, with now the “coordinate algebra” allowed to be nonas-
ociative. The framework which we use of “quasialgebras” was already established and used to
escribe the octonions as “quasispaces” some years ago.2 These were, moreover, constructed as a
cochain twist” of a classical associative space. Differential geometry on such quasispaces was
ntroduced in Ref. 1 and in this paper we add “gauge theory.”

The need for nonassociative geometry for noncommutative differential forms �even when the
oordinate algebra itself remains associative� was shown in Ref. 5, where it was proven that all
ifferential form algebras on the standard q-deformation quantum groups, if they are to be bico-
ariant and to have classical dimensions, must indeed be nonassociative. Thus the usual assump-
ion in noncommutative geometry, including in Ref. 8, that differential forms should be associa-
ive, appears to be too strong. From a physics point of view also, there are suggestions that the
orld volume algebras on certain string theories are naturally nonassociative9, and this has been

ealized quite concretely in some form in the context of reduced matrix models, see Refs. 19, 12,
nd 20. In the latter is posed the problem of gauge theory on such spaces, with apparently higher
rder differentials being required. We start by making precise what is fairly clear that the simpli-
ed “fuzzy” algebras in Ref. 20 are indeed quasialgebras in our required sense. We then show that

n this case there is a natural formulation of gauge theory on them looking much more like the
lassical case. We describe this theory for any quasialgebra �or algebra in a nonassociative monoi-
al category� at an algebraic level and give a general construction for examples equivalent to
�1�-Yang–Mills in the associative case. The framework allows for non-Abelian gauge theory as
ell. Also, we do not discuss Lagrangians here but all of the necessary data and methods for these

re known in the associative case, see notably Refs. 17 and 18, and apply equivalently to quasial-
ebras obtained by cochain twists.

As well as covering the strings-motivated example, we explore fully the octonions as finite

quasigeometries” par excellence. We show that the cochain F�a� ,b�� in Ref. 2 that modifies the

�
Electronic mail: s.majid@qmul.ac.uk

46, 103519-1022-2488/2005/46�10�/103519/23/$22.50 © 2005 American Institute of Physics
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roup algebra of the cube Z2
3 to the octonion product has the very remarkable feature of being

nvariant under Z2
3-Fourier transform. Using this, we also find an explicit more geometrical

-product description of the octonion as a nonassociative quantization of the coordinate algebra on
he Fourier-dual cube Z2

3 by means of a �finite difference� bidifferential operator. This is in the
pirit of the Moyal-product of functions on Rn, but now nonassociative. The associative quanti-
ation �Clifford algebra� case is also covered.

The paper begins in Sec. II with a brief introduction to the theory of quasialgebras obtained by
ochain twist,2,1 as algebras in a �symmetric� monoidal category. Sections II A and II B, respec-
ively, outline the continuous case deforming Rn and the finite case deforming group algebras. In
ec. III A we recall from Ref. 14 the formulation of gauge theory in such a general monoidal
ategory and the diagrammatic notation for it. Section III B applies this at an algebraic level to
escribe gauge theory on cochain twist quasialgebras in general. Section III C gives a canonical
eneral example where the “gauge group” can be chosen canonically. Although appearing non-
belian �and nonassociative� we show that this particular choice gives a theory equivalent to the
ndeformed U�1�-Yang–Mills theory. Note that in noncommutative geometry even the U�1�
heory has F���=d�+�∧� and we use the phrase Yang–Mills to distinguish this nonlinear theory
rom the Maxwell case where F���=d�.

In Sec. IV we apply the theory of the quasialgebra versions of Rn of interest in Ref. 19 under
eading of a simplified “quasi-Rn.” Section IV A introduces the required nonassociative differen-
ial calculus and Sec. IV B the promised gauge theory. Finally, in Sec. V we apply the theory of
he octonions. Section V A warms up with the new results about the octonions as �-product.
ection V B has the gauge theory worked out for the octonions. In fact the example of deformed
onassociative gauge theory that we finally arrive at here takes the remarkably workable form

F���� = d� + � F����, ������ � ��,

��
� = � F���−1�, ����F����, ������−1 � �� � � + � F���−1�, �����−1 � d� ,

here the sum is over the different graded Fourier components of each object and to this end ��
enotes a second independent copy of �. Such a description also works for the quasi-R4 if one
orks in terms of plane waves and their differentials; this is already the case for the octonions
here the generators have in our picture the interpretation of deformed plane waves on the cube.

n the octonions case F�a� ,b�� has values ±1 but is not simply an exponential bilinear of the vector
egrees �the three-momentum� as its exponent has cubic terms. It is not known if such quasige-
metry of the octonions has a direct physical role, but see for example Ref. 7. We also note the
ink between the octonions and particle physics;10 their geometry might play a role in the context
f the direct product of spacetime by the finite geometry.

Section V C fills a gap in the literature, namely a complete description of the moduli space of
at U�1�-Yang–Mills fields up to gauge transformation on Z2

2 and Z2
3, using the same methods as

or the symmetric group S3 in Ref. 18. The above-mentioned equivalence means that the Z2
3 case

lso classifies flat connections in the nonassociative theory on the octonions. We note that flat
onnections on finite groups are also of interest in pure mathematics in connection with Schubert
alculus on flag varieties, Ref. 16. Going back to physics, the quantum U�1�-Yang–Mills theory on

2
2 is fully worked out in Ref. 17 and is renormalizable and computable. The Z2

3 and octonion cases
ould in principle be similarly computed. This would be one of several directions for further work.

We also note the related paper6 where cochain twists are used to describe associative quanti-
ations in which the differential calculus, however, is nonassociative. It turns out that several
opular associative quantizations in physics fall into this category; the algebra of coordinates is
ssociative but the nonassociative gauge theory described here still plays a role in view of the
ifferential calculus. Examples in this category include U�g� as quantization of the Kirillov–

ostant bracket, now expressed as a cochain twist at least to lower order, see Ref. 6.
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I. QUASIALGEBRAS BY COCHAIN TWIST

The constructions in the paper come out of quantum group theory �i.e., we use the language
f Hopf algebras� but we apply them to classical �not quantum� enveloping algebras and finite
roup algebras. Thus, let H be a Hopf algebra with coproduct � :H→H � H, counit � :H→C and
ntipode S :H→H, see Ref. 15. Let F�H � H be a cochain, i.e., F is invertible and �� � id�F
1= �id � ��F. Associated to F is its non-Abelian cohomology coboundary

� = �F = F23��id � ��F���� � id�F−1�F12
−1,

here F23=1 � F�H�3, etc. By construction �, called the “associator,” is a three-cocycle in the
equired sense. These data go back to V.G. Drinfeld and it is known that HF defined by the same
lgebra as H and with coproduct �F=F�� �F−1 and suitable SF gives a quasi-Hopf algebra.11

Now let A be an H-covariant associative algebra. The cochain-twisted quasialgebra AF is
efined as the same vector space as A but with a new product

a � b = · �F−1��a � b�� ,

here � denotes the action of each copy of H. The new AF is nonassociative but obeys

�a � b� � c = � �id � ��������a � b � c��

or all a ,b ,c, and is covariant under HF.
Moreover, when ��A� is an algebra of differential forms on A that is H-covariant, then

�AF�=��A�F defines for us the wedge product algebra of differential forms on AF, covariant
nder HF and again potentially nonassociative.1 Note that d is not deformed and assumed to
ommute with the action of H, hence

a � db = F−�1��ad�F−�2�b�, da � b = d�F−�1��a�F−�2��b, da � db = �dF−�1��a� ∧ d�F−�2��b�

or the deformed wedge product in terms of the undeformed one, where F−1=F−�1� � F−�2� �sum-
ation understood� is a notation.

The two examples that will be fully computed in this article are of the general types which we
ow describe. Note that we work over C for convenience and because in physical examples there
re further unitarity restrictions �otherwise, the general constructions work over any field, though
ne should avoid certain characteristics in the examples�. Also, we use the H-module version of
he cochain twist theory as mentioned previously because actions are more familiar to physicists;
here is a parallel and in many ways better version of the theory with H coacting on the algebra.

. Quasi-Rn

Let H=U�Rn�, with Hopf algebra structure

��i = �i
� 1 + 1 � �i, ��i = 0, S�i = − �i.

ere Rn acts on Rn by translation and hence on its coordinate algebra A=C�Rn� by differentiation
perators �= ��i� and we think of the latter quite concretely as generating U�Rn�. Let F be a
owhere vanishing function of two vector coordinates �i.e., a function on R2n� with value 1 when
ither argument is zero. We consider F�H � H �or in some completion of this space if F is not a
olynomial� as a cochain. Because H is commutative, HF=H as an algebra and as a coalgebra, but
s still regarded with

���1,�2,�3� =
F��2,�3�F��1,�2 + �3�
F��1 + �2,�3�F��1,�2�

s a quasi-Hopf algebra. Here �1=� � 1 � 1, �2=1 � � � 1, �3=1 � 1 � � in H�3 so � is a function
f these 3n variables.
Then AF has a new product

                                                                                                            



w
c

w
A
i

w

w

h
u
2
r
e
i

w
p
i

w

r

�
u

f
t
i
t

103519-4 S. Majid J. Math. Phys. 46, 103519 �2005�

                        
a � b = · F−1��1,�2�a � b ,

here a�x� ,b�x� are acted upon by �1 ,�2, respectively, and then the result multiplied. Quasiasso-
iativity will take the above-mentioned form, as

�a � b� � c = � �id � �������1,�2,�3��a � b � c� ,

here �1 means � acting on a ,�2 means � acting on b ,�3 means � acting on c, and products are in

F. Recall that � itself is a vector, namely the momentum vector operator generating translations
n Rn.

Of interest in physics seems to be the following special case. Let �=��i � � j�ij =�1 ·�2 taken
ith the Euclidean metric say �or any other fixed tensor � on Rn in place of the dot product�. Let

f be any nowhere vanishing function in one variable and take

F��1,�2� = f���, ���1,�2,�3� =
f��23�f��12 + �13�
f��13 + �23�f��12�

,

here �13=�1 ·�3 is � embedded in the first and third tensor positions, etc.
If f is an exponential then �=1 and AF is associative. For example, if �ij is antisymmetric one

as the usual Moyal product for the Heisenberg–Weyl algebra or so-called noncommutative Rn

sed for example by Seiberg and Witten for the effective description of the ends of open strings on
-branes. At the other extreme would be �ij the Euclidean metric in which case the algebra
emains commutative and associative. In general if F remains symmetric but f is no longer an
xponential then the algebra AF will be commutative but not associative. This covers the example
n Ref. 20 where

F��1,�2� = 	1 +
�

m
� 
−m

hich becomes approximately an exponential exp���� as m→	. Here � is the deformation
arameter which is taken with value m−1 in Ref. 20, but one can also keep these parameters � ,m
ndependent. We have

���1,�2,�3� =�1 +

�2

m2�13��12 − �23�

1 +
�

m
��12 + �13 + �23� +

�2

m2�23��12 + �13��
m

.

Another interesting family of commutative but nonassociative quasi-Rn is with

F��1,�2� = e−��/2��2
, � = e−��13��12−�23� = e−��ij�kl��

i�k
��l

��j−�i
��k

��j�l�

hen we unpack our compact notation �summation convention understood�.
A third variant is with H=U�Rn

’R� where an extra “dilation” generator D is added. Its
elations, coproduct and action on coordinates are

�D,�i� = − �i, �D = D � 1 + 1 � D, D�xi = xi

so that D has action p on a monomial of total degree p�. In this way A=C�Rn� is again covariant
nder this extended H. One can now have more interesting cochains, for example

F = e−��−v�D�D�

or a “potential function” v. If v=0 we have �=1 as explained previously. In general, it is
empting to think of the introduction of nonbilinears in the exponent of F as a way to encode
nteractions as nonassociativity. The passage from the free theory to the interacting theory would

1
hen be a matter of a cochain twist by the interaction. This last example is in that spirit.
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Clearly a great many models along the above lines are equally possible, as any cochain F is
llowed in our framework.

. Quasi-Z2
n

Here we take H=C�G�, the functions on a finite group. This has basis of delta functions �
a�
abeled by a�G and coproduct �
a=�bc=a
b � 
c, counit �
a=
a,e and antipode �S
a=
a−1. Here

is the group identity. We take A=CG the group algebra of G. This has basis �ea� labeled again
y group elements. The product is just the product of G, so eaeb=eab. This is covariant under C�G�
ith action


a�eb = 
a,beb.

A cochain on H is a suitable F�H � H, i.e., a nowhere vanishing 2-argument function F�a ,b�
n the group with value 1 when either argument is the group identity e. Then

��a,b,c� =
F�b,c�F�a,bc�
F�ab,c�F�a,b�

s the usual group-cohomology coboundary of F and is a group 3-cocycle. Then HF is the same
lgebra and coalgebra as H but is viewed as a quasi-Hopf algebra with this �. Finally, the
anonical example of a quasialgebra here is the twisted group algebra AF with the new product

ea � eb = F−1�a,b�eab.

An example is G=Z2
3 which we write additively as 3-vectors a� with entires in Z2. We take

a�T�1 1 1

0 1 1

0 0 1
�b� + a1b2b3 + b1a2b3 + b1b2a3

F�a� ,b�� = �− 1� , ��a� ,b� ,c�� = �− 1�a� ·�b��c��

he new product

ea� � eb� = F�a� ,b��ea�+b�

s that of the octonions O as explained in Ref. 2. If we think of this in the same spirit as the models
bove, we note that � comes from the cubic “interaction term” in the exponent of F. Thus the
ctonions are a cochain quantization of the finite group Z2

3 as a quasialgebra. Without the cubic
nteraction term one has the Clifford algebra in three dimensions. Similarly n=2 gives the quater-
ions or �over C� the algebra of 2�2 matrices.

One can do the same for larger Z2
n. For the same bilinear form as the previous one, one obtains

he Clifford algebra as an associative cochain quantization of Z2
n, whereas further “interaction”

erms give higher Cayley–Dickson and other quasialgebras of interest, see Refs. 2 and 4. Many
ther examples could be of interest, e.g., for G=Zn see Ref. 3.

II. GAUGE THEORY IN MONOIDAL CATEGORIES

With the above-mentioned background the main question we address in this article is that of
auge theory on nonassociative spaces. For the ones in Sec. II A of interest in string theory, a
omewhat complex approach has been proposed in Ref. 20 whereas here we propose a simpler
ne. Briefly, geometry including gauge theory can be done in any monoidal Abelian category
.13,14 We explain this in Sec. III A and give a concrete algebraic setting in Secs. III B and III C,

hich are the new results of the section.
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Before doing this, let us explain the problem at the simplest level. If we have an associative
lgebra with a differential calculus obeying the Leibniz rule, one can write down the simplest
U�1�-Yang–Mills” theory where a connection is a differential 1-form ���1, decreed to trans-
orm as

� � �−1�� + �−1d� �1�

or � any invertible element of the algebra. The fundamental lemma of gauge theory is that then
he curvature F���=d�+�∧� transforms by conjugation to �−1F����. Note that the nonlinear
erm need not vanish in noncommutative geometry even in this simplest case. The moduli space of
at connections up to gauge transformations is highly nontrivial even for the simplest commuta-

ive or noncommutative algebras18 and carries a lot of “homotopy” information. We will describe
t for the functions on the cube Z2

3 in Sec. V C under a further unitarity restriction �in the *-algebra
ase one requires �*=�−1, i.e., unitary�.

Let us try this now when the algebra is nonassociative. The simplest part of the above-
entioned lemma is that �=�−1d� should have zero curvature. Being careful about brackets, we

ave

d��−1d�� + ��−1d����−1d�� = �d�−1�d� + ��−1d����−1d�� = − ���−1d���−1�d� + ��−1d����−1d��

hich is nonzero precisely when �−1d� ,�−1 ,d� fail to associate. The computation of d�−1 here is
rom d��−1��=0 and the Leibniz rule, being careful about brackets. This could work for some � in
he algebra but not for all invertible or unitary elements as in the associative case.

. Diagrammatic gauge theory

A monoidal category C means a collection of objects with a tensor product between any two
bjects and an associator natural isomorphism �V,W,Z : �V � W� � Z→V � �W � Z� for any three
bjects, obeying the usual properties, notably Mac Lane’s pentagon identity. The latter says that
he two routes to rebracket

��U � V� � W� � Z → U � �V � �W � Z��

re the same. In that case the coherence theorem of Mac Lane says that all other bracketting
mbiguities are resolved, i.e., we can and should freely insert associators � in order for expres-
ions to make sense and different ways to do that will give the same result. In that case we can
dopt a diagrammatic notation in which we omit brackets entirely. We also denote � by omission.
e write maps between objects �morphisms� as beads on a string flowing down from one object

o the other. We also require direct sums � to be defined and to be compatible in the usual way
ith �. Now, because brackets are omitted, gauge theory must work at this level because usual

ssociative gauge theory works when expressed by the same diagrams. In the nonassociative case,
owever, the translation of the diagrams back into algebra requires the insertion of the nontrivial
ssociator � for rebrackettings. We recall here only the “basic level” of gauge theory13 in this
iagrammatic form; there is a more geometrical theory with diagrammatic principal bundles etc.13

As an example an associative algebra A in a monoidal category means an object A with a
roduct Y such that the two ways to feed the result of Y into another Y give the same. As a result
e can depict the iterated product as a node with three lines coming in and one coming out �i.e.,

ollapse the two equivalent tree graphs�. We will use such a notation. A coalgebra B is an object
with a coproduct � :B→B � B which we denote by an inverted Y and which “coassociates”

imilarly. The unit axiom for an algebra says that a 1 branching into a product can be “pruned” off.
imilarly a counit � :B→1� �the latter denoted by omission� is a branch emerging from a coproduct
ode and can be pruned. More details of “algebra” in such diagrams are in Ref. 15. A coalgebra B
an “coact” on an object V and we use the inverted Y also to denote the coaction V→V � B.

Similarly, a differential calculus � on A means a graded algebra in the category with A in
egree zero, and d a morphism �hence a node� increasing degree by 1, obeying a graded-Leibniz

2
ule and d =0. All of this translates directly into �sums of� diagrams. One usually assumes that �
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s generated by A and the 1-forms �1 but this is not necessary for the basic level of gauge theory
hat we describe here. We use Y also to denote products in this exterior algebra.

We are now ready to define matter fields as morphisms � :V→A. One can consider that � has
values in V*” �but it is more convenient to view it is a morphism�. Similarly, a gauge field is a
orphism � :B→�1 where B is at least a coalgebra. Typically it might be a Hopf algebra in the

ategory if this is braided, but such an assumption is again not needed for the basic level of gauge
heory. One may think of � as a 1-form with values in the algebra B*, i.e., we do general possibly
on-Abelian gauge theory here, but again it is more convenient to view � as a morphism. Finally,
gauge transformation is a morphism � :B→A with inverse �−1 in the sense

·�� � �−1�� = · ��−1
� ��� = 1 � 

r in diagrams: if we split using the coproduct, apply � ,�−1 and close up with a product Y, this
omposition is the same either way as the counit map � into nothing, followed by the unit map 1
oming from nothing. The action of such gauge transformations is shown in Fig. 1�a�. The basic
ovariant objects of interest namely the curvature and covariant derivative �the former is in a
uitable sense the square of the latter� are shown in Fig. 1�b�.

The fundamental lemmas of gauge theory are then shown in Figs. 1�c� and 1�d�; we check that
����=F���� and that �����= �����. In Fig. 1�c�, we expand d on the “conjugated” � using the
eibniz rule to obtain the first three terms. The next term is d applied to “�−1d�” again using the
eibniz rule, followed by d2=0. The remaining four terms are an expansion of “����2.” Of the
arious terms, the second and fifth �after canceling ��−1 to obtain a unit and counit and “pruning”
hese as explained previously� give the transform of F��� as required. The first �after inserting
�−1� and seventh combine via Leibniz to give zero in view of d�1�=0. The fourth �inserting
�−1� and eighth likewise give zero for the same reason. In �d� we compute � using the trans-
ormed quantities. The second and fourth terms cancel �after canceling ��−1� and we identify the
equired result.

This establishes “local gauge theory” at this diagrammatic level, cf. Ref. 14 �where the focus
as on the universal calculus, not assumed here�. For principal bundles etc at this level see Ref.

IG. 1. Local gauge theory in a monoidal category: �a� gauge transform by � of gauge and matter fields, �b� definition of
urvature and covariant derivative, and �c� and �d� proof of covariance of F ,�.
3. The latter contains explicit �associative� examples.
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. Algebraic construction of nonassociative gauge theory by twisting

The questions arise: how to obtain nonassociative examples of such a diagrammatic gauge
heory and how does it look in explicit calculations? We will address the first in the remainder of
he section, and the second in the remainder of the article.

We do this by extending the cochain twisting theory in Sec. II. Thus let A be an algebra with
alculus covariant under a background symmetry H as in Sec. II. Here A could be functions on a
lassical manifold and H the enveloping algebra of an ordinary Lie algebra, for example. Let now

be an H-covariant coalgebra. It means that there is a coproduct �B :B→B � B which is an
ntertwiner for the action of H. Also a counit �B. Suppose now that

�:B → �1�A�, �:B → A, F���:B → �2�A�, �:V → �1�A� ,

nd � are as in Sec. III A, i.e., a connection, gauge transformation etc. These form a gauge theory
ith the usual tensor product on the associative algebra A as in Sec. III A. This theory can also be
ritten without diagrams by means of the “convolution product” � of maps from a coalgebra to an

lgebra or module. Thus

� � � = ∧ �� � ���B, F = d� + � � �, �� = �−1 � � � � + �−1 � d�

nd so forth. If B=C .1 with �B1=1 � 1, we have the simplest case of gauge theory mentioned in
he preamble above. When B=C�G� the functions on a Lie group one has a general form of usual
on-Abelian gauge theory. One can take here H to be trivial, otherwise one has an equivariant
auge theory.

Now let F�H � H be a cochain and define BF=B as a vector space but with deformed
oproduct

�� = F��B

nd unchanged �B. First, it can be seen that BF is covariant under the twisted HF. Indeed,

h��F��Bb� = F��h�F−1��F��Bb� = F����h���Bb� = F��B�h�b�

s the quasi-Hopf algebra HF acts on tensor products by its twisted coproduct �F as explained in
ec. II. Moreover, BF is a coalgebra but only in the monoidal category of HF-modules, i.e., a
quasicoalgebra” in the sense:

�B,B,B��� � id��� = �id � �����

s may be verified by direct computation. The theory is dual to that of twisting algebras so we
mit the details. Similarly if �V :V→V � B is a coaction covariant under H, we define VF to be the
ame vector space but with deformed coaction �V�=F��V, and can check that it is covariant
nder HF and a coaction of BF in the monoidal category.

We now claim that the same maps viewed as morphisms

�:BF → �1�AF�, �:BF → AF, F���:BF → �2�AF�, �:VF → AF

orm a gauge theory in the monoidal category of HF-covariant objects, i.e., are an example of the
onstructions in Sec. III A and enjoy the same relationships as before twisting. For example, if we
ompute ���� where the subscript means in the deformed nonassociative theory,

���� = � �� � ���� = � �F−1��� � ��F��B� = ∧ �� � ���B = � � �

ecause each � is an intertwiner, i.e., covariant under the action of H. We use � for the deformed
roduct in the exterior algebra including wedge products. Similarly for all other expressions. In
ther words the twisted nonassociative theory is fully equivalent to the original associative one.

his is an important requirement from a deformation-theoretic point of view; if one thinks of the
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wisting as quantization, this is an extension of the correspondence principle from classical gauge
heory to gauge theory on the quantum �possibly nonassociative� space.

On the other hand, computed entirely in the nonassociative deformed category, the gauge
heory appears quite different. Remembering that the products are quasiassociative, we must fix
rackettings when translating the diagrams into algebra and we do so by a convention to bracket
y default to the left, inserting associators � according to Mac Lane’s coherence theorem when-
ver a different bracketting is needed. Thus for example,

��
� = ���� � � ����−1

� �� � ����� � id��� + � ��−1
� ����

s a morphism BF→�1�AF�. Provided one inserts � as specified �and where there is more than
ne way to do it one has the same result for any choice�, the diagrammatic proof in Sec. III A
ecomes an algebraic proof that

F���� = d� + � �� � ����

beys

F����
� � = ���� � � ����−1

� F�� � ����� � id���

.e., the fundamental lemma of �nonassociative� gauge theory. When there are matter fields we
ave similarly

��
� �v� = � �� � ����, ����v� = d��v� − � �� � ����, ��

� ���
� � = ������.

. Canonical example equivalent to U„1…-Yang–Mills

Finally, let us give a canonical example of an equivariant gauge theory and its twisting, that
equires only the data for a cochain quantization as in Sec. II, i.e., there is a canonical choice of
.

Thus, let H be a Hopf algebra and A an algebra with calculus which is H-covariant. We then
et B=H as a coalgebra, �B=� �the coproduct of H, ignoring the algebra structure of H�. This is
utomatically covariant under the action of H on B by left-multiplication:

h��B�b� = �H�h���B�b� = �H�h��H�b� = �H�hb� = �B�h�b� .

On the other hand, since every element of B is obtained by acting by H on 1, and since � ,� ,F
tc. are morphisms, they are fully determined by their values on 1, i.e., by

��1� � �1�A�, ��1� � A, F����1� � �2�A� .

Here ��1� ,��1� etc. are chosen freely and form a usual gauge theory of the simplest
�1�-Yang–Mills type described in the preamble on any algebra. This is because ��1�=1 � 1 so all

he coproducts in Fig. 1 disappear when specialized to acting on 1, so

���1� = �−1�1���1���1� + �−1�1�d��1�, F�1� = d��1� + ��1� ∧ ��1� ,

tc. Our construction “amplifies” this standard U�1�-Yang–Mills gauge theory on an algebra to an
-equivariant one for any H by ��b�=��b�1�=b���1� and ��b�=��b�1�=b���1�.

For matter fields, the requirement that the coaction: V→V � B is a morphism makes V into
ome form of “Hopf module,” i.e. a vector space on which H both acts and coacts in a suitably
ompatible manner, namely here

�V�h�v� = ��h���V�v� .
opf modules are fully determined by their space
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VH = �v � V��V�v� = v � 1�

f elements invariant under the coaction. The Hopf module-lemma ensures that these invariant
lements v�VH generate all of V through the action. Note that this is usually done for action and
oaction in the same side but with care works also in our case where the action is a left one and
he coaction a right one. Indeed, we have

H � VH → V, h � v → h�v, V → H � VH, v � v�2�
�2� � S−1v�2�

�1��v�1�,

here the antipode S of the Hopf algebra is assumed to be invertible and where �V�v�v�1�

� v�2� and �hh�1� � h�2� are standard Hopf algebra notations. It is straightforward to see then that
hese two maps are mutually inverse, so V�H � VH and that the second map indeed lands in H

� VH �this is not obvious but can be checked using routine Hopf algebra methods�. Conversely,
iven any vector space W we can define V=H � W with action and coaction of H

h��g � w� = hg � v, �V�h � w� = �h�1� � w� � h�2�, h,g � H, w � W ,

nd check that W=VH; the previous discussion tells us that any crossed module V is equivalent to
ne of this standard type. In short, the input data for matter fields in the theory boils down to
hoosing a vector space.

Moreover, since � :V→A is assumed to be H-covariant, it is fully determined by its values on
his vector space VH, since ���php�vp�=�php���vp� for any basis �vp� of VH. So the gauge
heory above is equivalent to specifying a map � :VH→A or a multiplet of matter fields ��vp� if
e fix a basis of VH. Thus our theory becomes equivalent to usual U�1�-theory with a multitplet
f matter fields. Indeed, ��vp��A obeys

���vp� = ��vp���1�, �����vp� = d��vp� − ��vp���1�

s would be expected for U�1� fields.
We now are ready simply to twist this theory using the method in Sec. III B. BF now has

deformed coproduct” ��=F�. A gauge field is again determined by ��1� but ���1�=F�H
� H so

F�����1� = d��1� + �������1� = d��1� + � �� � ���F� ,

��
� �1� = ���� � ����−1

� �� � ����� � id�F� + � ��−1
� d���F�

n terms of the deformed bullet product on ��AF�. As previously, our convention is to read the
iagrams with brackets accumulating to the left, with � to be inserted as needed for any other
racketting that may be required. The expressions above will be equal as linear maps to
���1�� ,���1�, etc. as explained in Sec. III B, so the deformed theory is in correspondence with

he original theory before twisting, but is well-formed in its own right.
Finally, if we have matter fields and elements vp that are invariant under the coaction, then the

eformed coaction and hence gauge transform of matter fields is

�V��vp� = F�1��vp � F�2�, ��
� �v� = ��F�1��vp���F�2��, F  F�1�

� F�2�.

ere we see that as with the gauge fields mentioned previously, it is the entire “amplified” theory
hat twists into a nonassociative one. It remains, however, equivalent to the U�1�-gauge theory
ith matter.

V. DIFFERENTIALS AND GAUGE THEORY ON QUASI-Rn

In this section we illustrate the above formalism on the example of quasi-Rn. To be concrete,
e focus calculations on the main example where f = �1+�� /m�−m in Sec. II A, but the same
ethods apply for the other versions of quasi-Rn. We start with the algebra and differentials in

ore detail, and then turn to the gauge theory.
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. Algebra and differentials on quasi-Rn

From Sec. II A, we have

a � b = �
r=0

m 	m

r

	 �

m

r

��i1
¯ �ira���i1

¯ �ir
b� ,

here we use �ij to lower indices. We call this algebra Rm,�
n ; the case in string theory is with �

1/m. For example, with the usual coordinates x� of Rn we have the bullet product

x� � x� = x�x� + �
�,�

hich is a simplified version20 of higher-dimensional so-called “fuzzy spheres” that arise from the
runcated matrix product in certain string matrix models. Here m is a truncation order and the
lgebra becomes associative as m→	.

For our purposes we also need a differential calculus and we use the same F built from f but
ow with the �i acting by Lie derivative on differential forms. Then the usual ��Rn� deforms to a
nonassociative� ��Rm,�

n �. Notice that Lie derivative commutes with exterior d, so the classical
ifferential calculus is indeed covariant as required. Then

a � db = �
r=0

m 	m

r

	 �

m

r

��i1
¯ �ira�d�i1

¯ �ir
b

da � db = �
r=0

m 	m

r

	 �

m

r

d��i1
¯ �ira�d�i1

¯ �ir
b

or functions a, b. For example,

x� � dx� = x�dx�, x� � d�x� � x�� = x� � d�x�x�� = x�d�x�x�� + ��
�,�dx� + 
�,�dx�� ,

dx� � dx� = dx� ∧ dx� = − dx� ∧ dx� = − dx� � dx�,

nd so forth. This deformed ‘quasidifferential calculus’ is the classical one at lowest order but
ifferentials of functions of degree p will be modified by descendants of lower degree. Because
1=0 the relations involving dx� are necessarily unchanged,

da = ���a�dx� = ���a� � dx�, a � dx� = adx� = �dx��a = dx� � a .

. Gauge fields on quasi-Rn

We are now ready to construct gauge theory on the above-mentioned quasi-Rn using the
eneral construction in Sec. III C.

First of all, we recall that here H=U�Rn�=C��1 , . . . ,�n� has coproduct ��i=�i � 1+1 � �i on
he generators. We take for B the same coalgebra, but to avoid confusion we denote this second
opy B=U�Rn�=C�f1 , . . . , fn� with polynomial generators f i. As before, we use a fixed �say Eu-
lidean� �ij to lower indices. A gauge field is a covariant map � :B→�1�Rn� so it is first of all a
ollection of 1-forms ��1�, ��f i�, ��f if j� etc. in �1�Rn�. However, that � is a morphism requires

��f i� = Li���1�� = �i��1��dx�, . . . , ��f i1
¯ f ip� = Lii

¯ Lip
���1�� = �i1

¯ �ip��1��dx�,

here Li denotes the Lie derivative by the vector field �i acting here on 1-forms. This is just action
y �i on the components ��1�� in the coordinate basis. This is how ��b� is determined from

1 n
�1��� �R �. Similarly
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��f i� = �i��1�, . . . , ��f i1
¯ f ip� = �i1

¯ �ip��1�

nd similarly for �−1. This inverse is defined by the “convolution product,” which involves the
oproduct above, so for example

�−1�1���1� = 1, �−1�f i���1� + ��1���f i� = 0,

�−1�f if j���1� + �−1�f i���f j� + �−1�f j���f i� + �−1�1���f if j� = 0,

tc., which agrees with �−1�f i�=�i�−1�1� etc., as required by covariance. Similarly, we know that
��1�=��1���1�=��1�+�−1�1�d��1�. For higher order we compute the convolution product as

���f i� = �−1�f i���1���1� + �−1�1���f i���1� + �−1�1���1���fk� + �−1�f i�d��1� + �−1�1�d��f i�

= ��f i� + �−1�1�d��f i� − �−2�1���f i�d��1� = ��f i� + d��−1�1���f i�� = Li����1��

s it should as all our constructions are covariant under H. Likewise, we know that F����1�
F���1��=d��1�. At next order we have

F����f i� = d��f i� + ��f i� ∧ ��1� + ��1� ∧ ��f i� = d��f i� = Li�F����1��

s it should. Thus the higher ��f i� etc., behave like further auxiliary classical U�1�-gauge fields but
re in fact determined from the ��1� gauge theory. This gives the flavor of the amplified theory
nd its equivalence with usual U�1� theory on Rn.

Next we deform to the coproduct of BF,

��f i = 	1 +
�

m
f j

� f j
−m

�f i
� 1 + 1 � f i� = f i

� 1 + 1 � f i − �f if j
� f j − �f j

� f j f
i + ¯ .

he action of H on B is multiplication by �i= f i.
As explained in Sec. III C a gauge field still means an H-covariant map determined by

�1���1�Rm,�
n �, i.e., some differential form ��1�=���dxµ. Its curvature from Sec. III C is

F�����1� = d��1� + � �� � ���F�

= d��1� + F�1����1� � F�2����1�

= d��1� + �
r=0

	 	m + r − 1

r

	−

�

m

r

��i1
¯ �ir�� � dx�� � ��i1

¯ �ir
�� � dx�� .

e know from the equivalence with the classical gauge theory that this will in fact equal d��1�
ut this is a nontrivial computation from the point of view of the nonassociative theory. Similarly,
e have

�� � id��F� = 	1 +
�

m
��13 + �23�
−m

nd hence

��
� �1� = ���� � �	1 +

�

m
��13 + �23�
−m

��−1�1� � ��1� � ��1�� + �
r=0

	 	m + r − 1

r



�	−
�

m

r

�i1
¯ �ir�−1�1� � d�i1

¯ �ir
��1� ,

here the first term can again be expanded as a powerseries as we have done for the second term.
he action of a �i on � is understood here to be via the Lie derivative. The second term is “pure

−1
auge” and we know by the equivalence with the untwisted theory that it is equal to � �1�d��1�
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nd hence its curvature is zero, as promised. From the point of view of the nonassociative theory,
owever, these are nontrivial powerseries in the � product. Matter fields if present can similarly be
ncluded according to the theory at the end of Sec. III C.

. OCTONIONS AS A FINITE QUASIGEOMETRY AND GAUGE THEORY

Here we illustrate the formalism of Sec. III on the octonions viewed as a nonassociative
oordinate ring obtained by quantizing the classical space Z2

3. The first section makes this point of
iew precise and is a main result of the article. We then consider gauge theory on this space.

. Octonions as quantization and their differentials

The “classical” algebra of functions in the form of the group algebra A=CZ2
3 before deforma-

ion is generated by commuting u, v, w say with u2=v2=w2=1. A general basis element is

ea� = ua1va2wa3.

he deformed product has relations

u � u = v � v = w � w = − 1, u � v = − v � u, u � w = − uw = − w � u, v � w = − wv = − w � v

hich is indeed the usual octonions if one puts i=u, j=v and k=u�v. Here

F�a� ,a�� = �− 1�a1+a2+a3+a1a2+a1a3+a2a3+a1a2a3 = �1 if a� = 0

− 1 else,
�

hich ensures that k2=−1 as it should. Similarly one may check that

k � i = �u � v� � u = − �v � u� � u = − v � �u � u� = v = j

nd so forth. Note from Sec. II B that

ea� � �eb� � ec�� = �ea� � eb�� � ec�

henever a� , b� , and c� are linearly dependent over Z2. This expresses the “alternativity” property of
he octions in our formulation.

Next, the classical differential calculus on A is fixed as follows. By Fourier transform A

C�Ẑ2
3� where Ẑ2

3 is position space if the previous Z2
3 above was momentum space. Each Ẑ2 of

osition space is a finite set of two points and it has only one possible differential calculus, the
niversal one. It is then natural to take the three copies commuting �direct product calculus�,
iving

duu = − udu, duv = vdu, duw = wdu

nd cyclic rotations. The wedge product is then fixed by the graded Leibniz rule as

dudu = 0, dudv = − dvdu, dudw = − dwdv

nd cyclic rotations of this. Notice that the more important objects here are the left-invariant
losed 1-forms

�1 = −
1

2
u−1du, �2 = −

1

2
v−1dv, �3 = −

1

2
w−1dw

nd the geometrical picture is that of a 3-torus with the circle S1 approximated by Ẑ2. Moreover,
he calculus has noncommutative de Rahm cohomology generated by these �i, exactly as for a

lassical 3-torus. These �i anticommute among themselves in the wedge product and
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�iea� = �− 1�aiea��i, dea� = − 2ea�ai�i.

e see that there is only a small amount of noncommutativity in our classical calculus attributable
o the discrete nature of the underlying space.

The geometric picture here is clearer after making the above Fourier transform explicit. Thus,
et

ea��x� = �− 1�aixi, u = �− 1�x1, v = �− 1�x2, w = �− 1�x3

e the plane waves, where x is a point in position space �a Z2-valued vector�. The exterior
erivative here is

df = ��i f��i, �iea� = − 2aiea� ,

here �i is the finite-difference operator in the i-direction. We see that the differentials act by
ultiplication in momentum space.

In general, the Fourier transform of f�x� is a function fa� on momentum space characterized by
f�x�=�a� fa�ea��x�. The inverse is

fa� =
1

8�
x

f�x�ea��x� .

ow, we have given the � deformation of Z2
3 into the octonions in momentum space as multipli-

ation by F�a� ,b��. Let F�x ,y� be the same function before Fourier transform. Then

�f � g��x� = �
a� ,b�

fa�gb�F�a� ,b��ea�+b��x� =
1

64 �
y,z,a� ,b�

f�y�g�z�ea��y�eb��z�ea�+b��x�F�a� ,b��

=
1

64�
y,z

�
y,z,a� ,b�

f�y�g�z�ea��x + y�eb��x + z�F�a� ,b�� =
1

64�
y,z

F�y,z�f�x + y�g�x + z� .

ere

F�y,z� = �
a� ,b�

�− 1�a1�b1+b2+b3�+a2�b2+b3�+a3b3+b1a2a3+a1b2a3+a1a2b3+aiyi+bizi

= 2 �
a2,a3,b2,b3

�− 1��z1+a2a3+a2��b2+b3�+a3b3+�z1+a2a3��b2a3+a2b3�+�z1+a2a3+z1�y1+a2y2+a3y3+b2z2+b2z3

= 22 �
a3,b3

�− 1��z2+�z1+z2�a3�b3+a3b3+�z1+z2+a3z1��z1+a3�b3+y1�z1+a3z2�+y2�z1+z2+a2z1�+y3a3+b3z3,

here we do the b1 summation which gives a constraint a1+a2a3+z1=0 which eliminates a1; then
e do the b2 summation to obtain a constraint a2+z1+z2+a3z1=0 to eliminate a2. We next do the

3 summation to obtain a constraint a3+z1+z2+z1z2+z3=0, giving

yT�1 1 0

0 1 0

1 1 1
�z + y1z2z3 + z1y2z3 + z1z2y3.

F�y,z� = 8�− 1�

e see that the cochain F that defines the octonions has the remarkable property that up to a
elabelling, it is its own Fourier transform, i.e., F�y ,z� has just the same form in position space as

� �
�a ,b� in momentum space after a rotation of the indices 1→2→3→1. Note that the factor 8 in
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�y ,z� is an artifact due to our use of 1 /8 on one side of each Fourier transform rather than a
ymmetrical 1 /�8.

Note also that f�x+y�= �R1
y1R2

y2R3
y3�f�x�, where Ri is translation in the i direction. Since �i

Ri−1, we have f�x+y�= ��1+�1�y1�1+�2�y2�1+�3�y3f��x� which expresses the above-mentioned
esult as a finite “bidifferential” operator

f � g = · 	1

8�
y,z

�− 1�y1�z1+z2�+y2z2+y3�z1+z2+z3�+y1z2z3+z1y2z3+z1z2y3

� �1 + �1�y1�1 + �2�y2�1 + �3�y3 � �1 + �1�z1�1 + �2�z2�1 + �3�z3
�f � g�

= · 	1 � 1 −
1

2
��1

� �1 + �2
� �1 + �3

� �1 + �2
� �2 + �3

� �2 + �3
� �3 + �1�2

� �1 + �1�3

� �1 + �2�3
� �1 + �2�3

� �2 + �2
� �1�2 + �3

� �1�3 + �3
� �2�3 + �1�2�3

� �1 + �2�3
� �1�2�

−
1

4
�− �1

� �2�3 + �2
� �1�3 + �3

� �1�2 − �1
� �1�2�3 + �2

� �1�2�3 + �3
� �1�2�3 + �1�2

� �1�2 + �1�2
� �1�3 − �1�2

� �2�3 + �1�3
� �1�3 + �2�3

� �1�3 + �2�3
� �2�3 + �1�2�3

� �1�2

+ �1�2�3
� �1�3 + �2�3

� �1�2�3� −
1

8
�1�2�3

� �1�2�3
�f � g� .

These results have been obtained with MATHEMATICA. This makes precise the sense in which,

n finite geometry, the octonions are a “quantization” of functions on Ẑ2
3.

For comparison, if we do the same for the cocycle that defines Clifford algebras as a simpler
ssociative quantization of Z2

n, we have

F�a,b� = �− 1�a1�b1+¯+bn�+a2�b2+¯+bn�+¯+anbn,

F�y,z� = 2n�− 1��y1+y2�z1+�y2+y3�z2+¯+�yn−1+yn�zn−1+ynzn.

he derivation of the latter is rather simpler than the above; we compute

F�y,z� = �− 1�a1�b1+¯+bn�+a2�b2+¯+bn�+¯+anbn+�i=1
n aiyi+�i=1

n bizi

= 2�− 1�z1�y1+y2��− 1�a2�b2+¯+bn�+a3�b3+¯+bn�+¯+anbn+�i=2
n aiyi+�i=2

n bizi,

here we do the b1 integral to obtain the constraint a1+z1=0, and change variables a2+z1→a2 in
he result. What we obtain is F�y ,z� for Z2

n−1 in the remaining variables. The result then follows by
nduction. The �-product description of the Clifford algebra in n-dimensions is then given as a
uantization of Z2

n by this F�y ,z� by a similar formula as previously. For example, for n=3 we
ave

f � g = · 	1

8�
y,z

�− 1��y1+y2�z1+�y2+y3�z2+y3z3�1 + �1�y1�1 + �2�y2�1 + �3�y3 � �1 + �1�z1�1 + �2�z2�1 + �3�z3

��f � g� = · 	1 � 1 −

1

2
��1

� �1 + �2
� �2 + �3

� �3 + �3
� �2 + �2�3

� �2 + 1 � �1�2

+ �1
� �1�2 + �2

� �1�2 + �3
� �1�2 + �3

� �2�3 + �2�3
� �1�2� −

1

4
��3

� �1�2�3

1 2 1 2 1 3 1 2 1 3 1 3 2 3 2 3 2 3 1 2 3 1 2 3 1 2
+ � � � � � + � � � � � − � � � � � + � � � � � + � � � � � � + � � � � � � �
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−
1

8
�1�2�3

� �1�2�3
�f � g� .

Finally, we turn to the differential geometry of the octonions. As a cochain twist we have that
he relations involving the left-invariant forms �i are unchanged �because F acts trivially on them�.

Hence

dea� = ��iea���i = ��iea�� � �i, ea� � �i = ea��i = �− 1�ai�iea� = �− 1�ai�i � ea�

n this basis. For a more algebraic picture within the octonions, let us also consider

Ea� = �ua1 � va2� � wa3 = �− 1�a1a2a3ua1 � �va2 � wa3� = �− 1�a1a2+a1a3+a2a3ea�

fter a short computation using F and �. Since the ea� have square 1 with their initial product, and
rom the form of F�a� ,a�� above, we know that Ea� �Ea� �ea��ea�� �1 with the exception of E0=1.
o these are all ‘unit octonions’. Moreover, from the previous,

dEa� = − 2Ea� � ai�i, Ea� � �i = �− 1�ai�i � Ea�

n this basis. We can then deduce

�1 = 1
2u−1 � du, �2 = 1

2v−1 � dv, �3 = 1
2w−1 � dw ,

here inverse is in the octonions or bullet product algebra and eventually that

du � u = − u � du, du � v = − v � du, du � w = − w � du ,

du � du = 0, du � dv = dv � du, du � dw = dw � du

nd cyclic rotations of this. The latter are obtained by applying d and the graded-Leibniz rule
hich still holds. One can also obtain these results by direct computation from the action of F and

he initial calculus on Ẑ2
3 as in Ref. 1.

. Gauge fields on the octonions

We have a basis of H given by the 
-functions �
a� on momentum space, with coalgebra

�
a� = �
b�+c�=a�


b� � 
c� .

Their action on A=CZ2
3=C�Ẑ2

3� is


a��f�x� = fa�ea��x�, 
a���fg� = �
b�+c�=a�

�
b��f��
c��g� ,

.e., it projects out the corresponding term in the Fourier expansion and behaves as shown on
roducts. We use the same coalgebra B with the same basis element 
a� denoted fa� to avoid
onfusion and the same form of coproduct as the above. The action of H is by 
a��fb� =
a� ,b� fb�. A

auge field is then a covariant map � :B→�1�Ẑ2
3�, i.e., a collection of 1-forms

��fa�� = ��
a��1� = 
a����1� = �
a���1�i��i,

here the H acts trivially on the �i as explained in Sec. V A. Thus the collection is fully deter-

ined from ��1�=�a���fa��. Similarly the collection
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��fa�� = 
a����1�, ��1� = �
a�

��fa��

s determined from the point-wise invertible function ��1��x� in C�Ẑ2
3�. The inverse �−1�1�

��1�−1. More generally

�
b�+c�=a�

�−1�fb����fc�� = 
a� ,0

hich is consistent with �−1�fa��=
a���−1�1�. A gauge transform of ��1� is as usual

���1� = ��1���1� = �−1�1���1���1� + �−1�1�d��1�

= ��1�−1�Ri��1����1�i�i + ��1�−1�i��1��i = ��1� + ���1�−1�i��1����1�i�i,

here there is a sum over i and ��1�i=��1�i+1. Note that unlike the quasi-Rn case the initial U�1�
heory already has a nontrivial conjugation because functions do not commute with the �i basic
-forms. The change of variables to � is quite useful �see Sec. V C� and � transforms by conju-
ation. For other components we have

���fa�� = �
b�+c�+d�=a�

�−1�fb����fc����fd�� + �
b�+c�=a�

�−1�fb��d��fc��

= �
i

�
b�+c�+d�=a�

�−1�fb��Ri���fd�����fc��i�i + 
c�,0�−1�fb���i��fd���i

= ��fa�� + �
i

�
b�+c�+d�=a�

��−1�fb���i��fd������fc��i + 
c�,0��i = 
a�����1��

s it should. For the last step we identify 
c�,0=
c��1 as 1=e0�x� and use the action of 
a� on triple
roducts along the lines of its action on a product explained previously. Thus the theory looks like
collection of 1-forms with gauge-like transformation properties but determined consistently from

he single theory for ��1�. Similarly, for the curvature we have

F����1� = F���1�� = d��1� + ��1� ∧ ��1� = �
i,j

��i��1� j + ��1�iRi��1� j��i ∧ � j

= �
ij

��i��1� j + ��1�i�i��1�i + ��1�i��1� j��i ∧ � j = �
ij

��1�i�i��1� j�i ∧ � j ,

here ��1�i��1� j�i∧� j =0 as the �i anticommute. This is a standard form for the U�1�-Yang–Mills
urvature on a discrete space in noncommutative geometry. The other components may similarly
e computed as

F����fa�� = d��fa�� + �
b�+c�=a�

��fb�� ∧ ��fc�� = �
ij

�
b�+c�=a�

��fb��i�i��fc�� j�i ∧ � j = 
a��F���1��

s it should, where 
a� acts on the coefficients of �i∧� j, i.e., the other components have a similar
orm but are determined by F���1��.

The above “amplification” of ��1� to a collection of gauge fields can be made even more
xplicit by a different basis ey �a�ey�a��
a� of H where ey�a��=ea��y�= �−1�yiai. These elements have

ey =ey � ey �this is the isomorphism C�Z2
3��CẐ2

3�. They act on functions by �ey�f��x�= f�x+y�
nd ��ex�� behave more explicitly like ��1�, which is one of the collection via e0=1.
We now turn to the twisted nonassociative theory. The coproduct of BF is
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��fa� = �
b�+c�=a�

F�b� ,c��fb� � fc�, ��Ex =
1

64�
y,z

F�y,z�Ex+y � Ex+z; Ey  �
a�

ey�a��fa� ,

here the cochain and its Fourier transform are �if we want the octonions� as in Sec. V A. As
xplained in Sec. III C a gauge field still means an H-covariant map determined by ��1�
�1�O�, i.e., some differential form ��1�=�i��i= ��i−1���i �sum over i�. The curvature accord-

ng to Sec. III C is

F�����1� = d��1� + � �� � ���F� = d��1� + �
b� ,c�

F�b� ,c���
b����1�� � �
c����1�� .

imilarly, we have

�� � id��F� = �
a� ,b� ,c�

F�a� + b� ,c��
a� � 
b� � 
c� = �
a� ,b� ,c�

F�a� ,c��F�b� ,c��
a� � 
b� � 
c� = F13F23

or the particular form of F for the octonions �which is linear in the exponent with respect to the
rst argument�. Then

��
� �1� = �

a� ,b� ,c�

F�a� ,c��F�b� ,c����
a���−1�1� � 
b����1�� � 
c����1�� + �
b� ,c�

F�b� ,c��
b���−1�1� � d
c����1� .

atter fields can similarly be included from the general theory in Sec. III C
Next, although our view of the octonions as a nonassociative quantization of functions on the

ube is the “geometrical one,” it remains very convenient to work with our original plane-wave
asis �ea�� for calculations. Here f �H acts diagonally as multiplication by f�a�� on an element of
egree a� . Here the degree is multiplicative and d does not change degree, so for example ea�deb� has

egree �ea�deb��=a� +b� . Similarly after deformation with the Ea�. Here for example

a� �dEb� �F(a� ,b�)ea�deb� etc. The hard part from this point of view is to find the inverse in the
nderformed algebra of a general gauge transformation �=�a��a�ea�. The answer is to construct
−1=�a��a�

−1ea by Fourier transform of the inversion operation:

�a�
−1 =

1

8�
x

ea�

��x�
=

1

8�
x

ea�

�b�
�b�eb��x�

,

here we require the ��x� �the sum in the denominator� to be nonzero for each x, i.e., all signed
ums of the �b� coefficients should be non-zero. Otherwise, since the action of 
a� on any expression
n the exterior algebra is to pick out the degree a� part, we have more simply in this basis:

F���� = d� + � F����, ������ � ��,

��
� = � F���−1�, ����F����, ������−1 � �� � � + � F���−1�, �����−1 � d� ,

here the sum is over the different graded components of each object and to this end �� denotes
second independent copy of �. Also, we omit writing that these are the gauge and other fields at
, i.e., ���1� etc. Even though the amplification to the collection of fields is needed for the
iagrammatic picture of Sec. III A, all formulas are by now referred back to their values on 1. If
ne wants to be more explicit and write the homogeneous degree components explicitly, we have

F���� = d� + �
� �

F�a� ,b���a� � �b� ,

a,b
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��
� = � F�a� ,c��F�b� ,c����a�

−1Ea� � �a�� � �c�Ec� + �
a� ,b�

F�a� ,b���a�
−1Ea�d�b�Eb� ,

here �=�a��a� is the decomposition into homogeneous components �this is a slightly different
otation from the Fourier decomposition of � into components �a�Ea��. The quasi-Rn example in
ec. IV B can likewise be computed more simply in this “momentum space” point of view.

Finally, we demonstrate this gauge theory with an example of a completely explicit compu-
ation. Thus, let

� = �u + �v, �−1 =
1

�2 − �2 ��� − �v� ,

here u=e�1,0,0�, v=e�0,1,0� are two of the octonion generators as explained in Sec. V A, and �

±�. These are necessarily also inverse in the convolution-algebra �−1����1 as one may verify
irectly. Similarly, since F��u� , �u��=F��v� , �v��=F��u� , �v��=−1,F��v� , �u��=1, we have

�−1��d� =
1

�2 − �2 �− �2u � du − ���u � dv + v � du� + �2v � dv� .

Let us check that the curvature of this pure gauge part is zero:

d��−1��d�� = −
��

�2 − �2 �du � dv + dv � du� = − 2
��

�2 − �2du � dv

sing the relations in the octonion calculus from Section V A. Meanwhile, when we square
−1��� in the convolution product we must insert the factors F�a� ,b�� when multiplying compo-

ents of degrees a� ,b� as explained above. Here �u�dv�� �v�du�� �1,1,0� while u�du and v�dv
ave degree 0. Hence of the 16 terms only four come in with a negative sign. Moreover, when we
ultiply out the 16 terms we can, in these particular expressions, associate, because the degree

ectors for u ,v ,u�dv,v�du are linearly dependent, so � for them is trivial. This results in all but
our of the terms zero or cancelling pairwise. For example

�u � dv� � �u � dv� = u � ��dv � u� � dv� = − u � �u � �dv � dv�� = 0,

�u � dv� � �v � du� = u � ��dv � v� � du� = − u � �v � �dv � du�� = − �u � v� � �du � dv�

= �v � u� � �du � dv� = − �v � du� � �u � dv�

sing the relations from Sec. V A �the last step is analogous to the first sequence�. What remains
s

��−1��d������−1��d�� =
��

��2 − �2�2 ��2��u � du� � �u � dv� + �u � dv� � �u � du��

− �2��v � dv� � �v � du� + �v � du� � �v � dv��� = 2
��

�2 − �2du � dv

y similar computations

�u � du� � �u � dv� = u � ��du � u� � dv� = − u � ��u � du� � dv� = − �u � u� � �du � dv� = du � dv ,

tc., using the relations of the octonion calculus. Hence the curvature of this pure gauge part is

ero as promised.
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. Moduli of zero-curvature U„1…-Yang–Mills connections on Z2
n and octonions

By construction the above mentioned example of gauge theory on the octonions �not the only
ossible one, depending on the choice of gauge group coalgebra�, is equivalent to that in the
lassical object Z2

3. Maxwell theory on Z2
n �but not Yang–Mills� has been covered in Ref. 17 and

lso quantum Yang–Mills theory on Z2
2 but the analysis for classical U�1�-Yang–Mills and in

articular the moduli space of zero curvature solutions has not to our knowledge been given even
or Z2

2. We fill this gap now. As to be expected on a torus, this moduli space is nontrivial. We work
ith Z2

n as position space.
We use the classical calculus on Z2

n as described in Sec. V A before deformation to the
ctonions when n=3. The exterior algebra is generated by the plane-wave functions ea��x� �now a�
n n-vector� and �i , i=1, . . . ,n as in Sec. V A but now for general n. They anticommute among
hemselves, etc.

A U�1�-Yang–Mills gauge field means �=�i�i��1�Z2
n� where the �i�x� are the component

unctions. The curvature F=d�+�∧� is

F = �
i�j

Fij�i ∧ � j, Fij = �i�i − � j�i + �iRi�
j − � jRj�

i.

We change variables to �i=1+�i or �=�−�, where �=�i�i and �=�i�i is a zero curvature
reference” connection that is closed, not exact and squares to zero. The moduli of flat connections
ontains at least this nonzero gauge-invariant element. Indeed, let � be a pointwise invertible
unction on position space. The gauge transformation of � and the expression for the curvature in
erms of �i are

����i =
�

Ri�
�i, Fij = �i�

j − � j�
i,

here �i�iRi. Finally, to be physical, we fix unitarity conditions. As in Ref. 18 we require the

i to be invariant under a �-operation extending the point-wise complex conjugation operation on
osition space. We then require the � to be Hermitian, which translates in view of the commuta-
ion relations between the �i and functions to

�i = Ri�
i, � = e��, ����i = e−��i��i.

The middle equation is because if the reality of all the �i is preserved one may deduce that
i��̄��=0 so � is without loss of generality pointwise unitary. We then put this into the transfor-
ation of �i.

By a similar argument to the proof for S3 in Ref. 18 we have for all i , j in the case of a
ero-curvature solution:

�i�i�
j = �iRi��iRi�

j� = �i
2� j = �i� j�

i = �iRi�� jRj�
i� = �i�� j�RjRi�

i = � j��i�RiRj�
i = � jRj��i

2� ,

here

�i = �ie
��i, �i

2 = ��i�2 = �iRi�
i

s a polar decomposition. We conclude that at each point Ri�i=�i by the reality and at each point
ither �i=0 or Ri� j =� j by the above-mentioned computation, i.e.,

�i�
i� j = 0, ∀ i, j, �i�i = 0, ∀ i .

hese �i are gauge-invariant and we now use them to analyze the possible solutions.
Case 1: ∃ a point with all �i�0 (constant maximal case). In this case each � j will be

nchanged moving in every direction to an adjacent point. Hence at each adjacent point they will
ll be nonzero. We conclude that all the �i are constant functions.
Moreover, in this case the zero-curvature equations become
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e��ie�Ri�je−�Rj�ie−��j = 1

fter canceling �i� j from both sides. If we think of eı�i�x� to be a factor for parallel transport along
he edge in direction i from x, then this says that the holonomy around the plaquet with bottom left
orner x and edges in the i and j directions is trivial. In this case, from such a solution we
onstruct the following gauge transform:

��0� = 1, ��x� = e��ai�.da,

here we take any path a from 0 to x and multiply the parallel transports on the edges of the path.
s in usual gauge theory, this transforms all the �i→�i, i.e., eliminates all the phases as gauge
egrees. Hence the solutions up to gauge equivalence in this case are of the form

� = �i�i − �, �i � R�0, i = 1, . . . ,n .

Case 2: ∃ a point with exactly one �i=0 (split case). In this case all � j�0 for j� i, at the
oint in question. Therefore moving in all directions other than i, we have the same value for all

j, i.e., a constant maximal solution on the subspace Z2
n−1. We also have the same value of �i

0 throughout this subspace. Moreover, moving in the i direction from any point in the subspace
eeps �i=0 �hence �i0 everywhere� but says nothing about the values of any of the � j , j� i.
ence the solution is two independent copies of n−1-dimensional solutions, in which the first

opy is maximal by assumption and the second copy is unconstrained.
For example, if the second copy is also maximal on the subspace, we have

� = xi� j� j + �1 − xi�� j� j − �, � j,� j � R�0, j � i

nd again any solution in this case is equivalent to something of this form �one may gauge away
he phases in each Z2

n−1 space separately�. The value of �i� between the two copies could produce
gauge phase factor but this is irrelevant as �i0 everywhere.

Case 2�: What arises naturally here is the weaker assumption just that there is some i with

i0 throughout the space. In this case the solution necessarily splits into independent solutions
f one dimension lower, of whatever type. This is therefore covered by induction. Hence it
emains only to classify the remaining cases under the assumption that the solution is not split in
ny direction.

Case 3: ∃ a point with exactly two �i=� j =0 and no splitting. Here as before there is a Z2
n−2

ubset containing the point with �k�0 for all k� i , j, and �i=� j =0 throughout. Moreover, step-
ing in the i direction carries over �i=0 to the entire adjacent quadrant, but none of the other
nformation. Similarly stepping in the j direction carries over � j =0 to that quadrant. We then relate
he quadrants by further analysis; see the following example.

One may proceed in this way to classify the cases with more and more assumed degeneracy.
mong the solutions are those of the same form as the constant maximal case above but allowing

ny of the �i=0. These are multiply-split solutions and include each �i alone as a zero-curvature
at connection, as well as �=−�.

To be concrete we now offer a complete classification for n=2 and n=3 which demonstrates
he method. The n=3 case is in correspondence with solutions on the octonions by twisting as we
ave mentioned.

For n=2 we have two cases: �i� the constant maximal solution is

� = �1�1 + �2�2 − �, �i � R�0.

ii� We have a splitting �10, with �2 unconstrained other than being constant in the 2-direction,
.e.

� = ��2 − �, �2� = 0,

here � is a function just in the x1 variable and up to gauge equivalence can be taken real and

on-negative in its values. Similarly for a splitting �20:
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� = ��1 − �, �1� = 0

or a real and nonnegative function � of x2 alone.
For n=3 we have three cases: �i� the constant maximal solution

� = �1�1 + �2�2 + �3�3 − �, �i � R�0.

ii� We have a splitting �10:

� = x1� + �1 − x1�� − � ,

here � ,� correspond to two independent solutions on the Z2
2 subsets �faces� with x1=0 and x1

1 respectively. Up to gauge transformation they can be taken real and positive, i.e., without
hases. Similarly in the other two directions.

�iii� we suppose that there does not exist a splitting, but there does exist a point with, say,

1=�2=0 and �3=��0. To be concrete let this point be A the origin in the standard cube shown
n Fig. 2. These are also the values at H by the above argument; the equal value of �3 is shown in
ig. 2�a� by labeling the arrowed edge, and such a nonzero edge “transports” the other values from
to H by the previous arguments. We also see that �1=0 at B and G, whereas �2=0 at D and E,

y the reality condition.
Now suppose that �2=��0 at corners B and C �the two must be the same value� as shown by

he arrowed edge in Fig. 2�b�. Then at B we must have �3=0 to avoid a split �to avoid the
xistence of a point with two nonzero �i�. In this case �1=�3=0 also at C. Hence �1=0 at D. We
onclude also that �3=0 at D �and hence all �i=0 at D� for if not, we could deduce the same
alues at E and hence that �1=0 at F, which would be a split with �10. Then �1=��0 at E and
�to avoid a split with �10�. Hence �2=�3=0 at E and F. Hence �2=0 also at G, and since

3=0 at A it must also vanish at G, i.e., all three �i vanish at G. The solution is then fully
etermined by the three nonzero values � ,� ,� and all three �i vanishing at D ,G as shown in Fig.
�b�. We mark only the nonzero edges, which imply those value on their endpoints; all other
alues are zero.

Alternatively, if �2=0 at B and C, then �2=��0 at F and G �the arrowed edge shown in
igure 2 part �c�� to avoid a split with �20. Hence �3=0 at G to avoid a maximal solution, and
ence also at B �so all three �i=0 at B�. Moreover, the values �1=�3=0 are transported to F.
ence �3=0 at C also, and �1=0 at E also. Finally, �1=��0 at C ,D �the final arrowed edge

hown in part �c�� to avoid a split �10. This transports �3=0 also to D and hence to E, therefore
e deduce the mirror image solution to the one above, where the �i=0 now at B ,E as shown in
art �c� of the figure.

The explicit formula in the first case, if A is the origin of a standard cube, is

� = x2x3��1 + x1�1 − x3���2 + �1 − x1��1 − x2���3 − �, �,�,� � R�0.

f course, we can rotate this solution by picking any other origin and initial non-zero edge, and
e also have the mirror image solution. Finally, phases can be removed by gauge transformation

n a similar manner to the above. This exhausts the moduli space for flat connections for the cube

IG. 2. Flat connections of type �iii� in the cube: �a� Initial assumption, �b� solution, and �c� its mirror image as the only
ossible. In �b� and �c� only the nonzero �i are shown.
=3 up to gauge equivalence.
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We illustrate the thesis that if time did not exist, we would have to create it if space
is noncommutative, and extend functions by something like Schrödinger’s equa-
tion. We propose that the phenomenon is a somewhat general mechanism within
noncommutative geometry for “spontaneous time generation.” We show in detail
how this works for the su2 algebra �xi ,xj�=2���ij

kxk as noncommutative space, by
explicitly adjoining the forced time variable. We find the natural induced noncom-
mutative Schrödinger’s equation and show that it has the correct classical limit for
a particle of some mass m�0, which is generated as a second free parameter by the
theory. We show that plane waves exist provided �p� ��� /2�, i.e., we find a Planck-
ian bound on spatial momentum. We also propose dispersion relations ��p0 /�p� �
= �tan���p� ��� /m� for the model and explore some elements of the noncommutative
geometry. The model is complementary to our previous bicrossproduct one. ©
2005 American Institute of Physics. �DOI: 10.1063/1.2084748�

. INTRODUCTION

The origin of a time direction is a fundamental issue in any theory of quantum gravity, as
ikewise is the origin of mass for elementary particles. In this article we point out that previously
nown results on noncommutative differential calculi on quantum algebras can be viewed as
vidence for a general phenomenon which we call “spontaneous time generation” in which both
ime and nonzero mass can be created by even a small amount of noncommutativity in space �or
ore precisely in its geometry�. Put another way, a noncommutative deformation of space by a

arameter � can induce its own canonical evolution, forced by nothing other than the most
inimal assumptions on existence of a differential structure on the space.

It is important that we use here the absolutely minimal and generally accepted notion of
ifferential calculus or “exterior algebra” applicable to a noncommutative algebra A and common
o all main approaches, i.e., we will not put in anything beyond this “by hand.” This is to specify

bimodule of “1-forms” �1 with left and right multiplication by a “function” in A, and a d:A
�1 operation obeying the Leibniz rule

d�ab� = adb + �da�b .

ne also requires that elements of the form adb span �1 and �a connectedness condition� that
a=0 if and only if a is a constant. These are minimal properties that nevertheless suffice to do
asic gauge theory on any algebra.

Next we note that for noncommutative algebras there is typically an element ���1 that
enerates the calculus in the sense

�
Electronic mail: s.majid@qmul.ac.uk
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��,a� = �da

here � is a parameter controlling the noncommutativity of the algebra A. Both sides go to zero
hen �→0 �because classical 1-forms commute with functions�, so this is a purely “quantum”
henomenon. The reason for the quotation marks here is that in our application � is not related to
but is a new parameter in physics controlling a possible noncommutativity in space or space-

ime, or equivalently “cogravity” as curvature in momentum space.18 The element � must exist for
xample in the case of a semisimple Hopf algebra and a translation-covariant calculus, but also
ore generally whenever the geometry of A is fully noncommutative. On the other hand there is

o reason at all to have such an element in the classical case as the equation above is empty.
herefore as we deform the classical algebra and its geometry, the constraints of noncommutative
eometry will force the existence of a generating 1-form � which will have no reason to have any
lassical counterpart. We are going to interpret this element � as a time direction and the phe-
omenon then is that there may or may not be such a direction dt in our classical geometry with
its deformation, but if there is not such a time direction it will have to be adjoined. This is what
e propose here as “spontaneous generation” of time in our quantum groups approach to non-

ommutative geometry. Moreover, the partial derivative �0 associated to this �=dt will generally
ave a classical limit for �0 /� and this will be our induced classical Hamiltonian generated by the
oncommutative geometry. Finally, we are free to change the normalization of � in the previous
iscussion, which appears then as a new parameter induced at the same time.

In this article we will demonstrate this phenomenon in detail for one of the most basic
oncommutative three-dimensional �3D� spaces, namely the angular momentum space

�xi,xj� = 2���ij
kxk �1�

f which the noncommutative geometry was studied in Ref. 5. This is the usual quantization of R3

s the coadjoint space su2
* with its Kirillov–Kostant Poisson bracket, denoted R�

3. The need for an
xtra direction � in the calculus, as well as the link with Schrödinger’s equation was proposed
ere, and in this sequel we develop it in detail. Section II is a reprise of the noncommutative
ifferential geometry on �1� that we need from Ref. 5 except that we leave the normalization � as
free nonzero parameter 	. Section III gives a quick account of quantum group Fourier transform

nd a direct derivation of formulae for the partial derivatives on 3D plane waves, which will also
e needed.

In Section IV we proceed to explicitly adjoin a new variable t, commuting with xi, such that
=dt. In this extended space-time algebra the natural equation

�t
�x,t� = 0 �2�

or that d
 is purely spatial� is now our proposed noncommutative Schrödinger’s equation
NCSE�. We show that in the limit �→0 this reproduces the usual Schrödinger equation for 
 for
particle of mass m with Compton wavelength 	=1/m. We work throughout in units �=c=1. In

act it turns out that as m approaches 1/� we have to the next order a noncommutative version of
he four-dimensional �4D� Euclidean wave equation for e−�mt
�x , t�, suggesting a Euclidean aspect
o the theory. Our construction is, however, very much tied to the nonrelativistic coordinate system
onsisting of xi space and the induced t although it does not preclude the possibility of a Lorentz
r 4D Euclidean �quantum� group action in the deformed theory. There is at least a full spatial
uclidean group of motions preserved in the construction, as the quantum group double
�U�su2��.5 In Sec. V we finally solve the NCSE on plane waves, with solutions e�p� ·xe�p0t of

nergy

p0 = −
1

m�2 ln�cos���p� ��� �3�

rovided �p� ��� /2�. We also find the group velocity computed naively by differentiation of �3�. It
�
s a deformation of �p� /m.
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Our model comes out of noncommutative geometry and is not tied to specific values of � ,m.
ur own view is that the theory could also be applicable in certain circumstances as an effective
escription of position “fuzziness” within quantum mechanics at the Compton wavelength scale of
n ordinary particle, in the spirit of Ref. 21. However, if the theory appeared as a next-to-classical
ffective theory in a theory of quantum gravity, � would be expected to be of the order of the
lanck scale and hence we would have a Planckian spatial momentum cutoff for our particle. In
act it is known that the quantum double D�U�su2�� controls the tensor products of certain states
n 2+1 quantum gravity,3,22 therefore the result5 that this quantum group acts covariantly on R�

3

uggested that the latter should indeed be the effective noncommutative space in the next-to-
lassical approximation of 2+1 Chern–Simons quantum gravity. The algebra R�

3 has also been
roposed in string theory and in the reduction of certain matrix models but more usually in this
ontext projected to a matrix algebra by setting the casmir equal to j�j+1�, which is to say a
fuzzy sphere.”1,4 However, we do not make such a projection here and we do not use the ad-hoc
erivations-based matrix methods previously used for such objects. The noncommutative geom-
try in our case and with time adjoined is actually very rich and explored in Sec. VI where we
how the existence of a closed radial polar coordinate system and some elements of gauge theory.

We note also that a Planckian cutoff is already a feature of the bicrossproduct spacetime20 and
e provide a comparison with this older model in the Appendix. In fact it has been known for

ome time that the zero-mass shell equation in the bicrossproduct model is deformed to

�p� � =
1

�
�1 − e−�p0

� or p0 = −
1

�
ln�1 − ��p� �� ,

ee �A2� in the Appendix, which �obviously� has the bound �p� ��1/�. Recently, some authors have
ubbed models with such a Planckian cutoff as “doubly special” under the claim that the
symptotic feature of special relativity is now “doubled” by this additional asymptotic bound.10

lthough debatable, our own view is that such rebranding of the bicrossproduct model �which
emains the main model in the theory� is unjustified as we also explain in the Appendix: What
ctually happens in our view is that the usual mass-shell hyperboloid is deformed nonlinearly and
hat used to be a 45° cone is now bent into a cylinder with vertical walls, rather than being a new
ound. We also outline a different point of view on the cutoff in line with Ref. 13 �where p was
iewed as position space rather than momentum� as an event-horizon-like coordinate singularity.
n the present model part of the reason for a cutoff is rather more transparent: momentum space is
ompactified to a sphere S3=SU2 according to the quantum group Fourier transform.

Returning to the general phenomenon of spontaneous time creation, we note that for Cq�SU2�
t is again known that the smallest bicovariant calculus is 4D not 3D and that the extra direction

is linked to the Laplace operator, now on the quantum group as a noncommutative S3. It is also
lready known that the local 4D cotangent bundle indeed has a natural q-Minkowski space metric,
ee Ref. 16 for a review and, for example, Ref. 8 for full calculations at q a root of unity �which
s likely to be the physical case if such a deformation arises from quantum gravity in view of the
ell-known role of this quantum group in conformal field theory�. The consistent addition of a

ime variable, however, and an analysis along the lines of the present paper is somewhat technical
nd will be presented elsewhere.

Finally, let us note that our proposal on time has no relation that we are aware of to the
odular group in the theory of von-Neuman algebras; our results are purely algebraic and not

onnected with functional analysis. Briefly, Tomita and Takesaki in the 1970s showed that every
on-Neumann algebra carries with it a 1-parameter automorphism group �t generated by the
ositive part � in the polar decomposition of the �-operation relative to a state. Translation by a
nite imaginary interval in t is used to characterize KMS states in equilibrium quantum statistical
echanics on the algebra. Hence some authors, notably in Ref. 7, have proposed that t here should

e viewed as time canonically associated to the von-Neumann algebra in a suitable setting. Al-
hough such a point of view is interesting, the phenomenon we propose in the “quantum groups
pproach” to noncommutative geometry is a rather more concrete one in which we shall show that

parameter t has to be adjoined and wave functions with respect to it naturally obey Schrödinger’s
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quation for some mass m. Our theory at the present level does not determine m, only that it must
e nonzero, although m=1/� does present some simplifications in the mathematical structure as
oted previously.

According to our analysis this mass and time generation is forced by the axioms of a differ-
ntial calculus. We mention one alternative, which is to change these axioms by giving up asso-
iativity. At the semiclassical level it corresponds to curvature of an underlying Poisson-
ompatible preconnection.6 �If one simply drops the � terms in the calculus one would have such
situation with Poisson curvature and nonassociativity appearing at order �2�. This gives an

lternative idea of the nature of the obstruction involved. In physical terms one could say that the
patial translation group �as expressed in the differentials� is “anomalous” under the process of
eformation quantization, with anomaly controlled by the above-mentioned Poisson curvature and
ullified by adding an extra dimension.

I. REPRISE OF DIFFERENTIAL CALCULUS AND PLANE WAVES ON R�
3

Since the calculus is crucial to our entire analysis, let us briefly reprise the construction in Ref.
. For Lie groups it is well known that the translation-invariant differential structure is unique; for
uantum groups there is a parallel theory for the weaker minimal axioms above that translation-
nvariant �1 are freely generated over their space of invariant 1-forms and this latter space can be
lassified in terms of ideals in the augmentation ideal �the kernel of the counit� of the Hopf
lgebra. See Ref. 19 for a modern review of the theory. In general we refer to Ref. 16 for the
otations and more basic theory of Hopf algebras.

Of course, R�
3 is an additive Hopf algebra �in fact a classical enveloping algebra� with

�xi = xi � 1 + 1 � xi, �xi = 0, Sxi = − xi,

o we may use Hopf algebra or quantum group methods, and we do. The augmentation ideal in our
ase is the subalgebra U�su2�+ generated by the xi but not including 1. So left-invariant calculi
which will automatically be bicovariant in the present context� will be classified by ideals in here.
hese in turn are given by the kernels of matrix representations, more precisely by pairs � ,v�
onsisting of a representation and a ray in the representation space. The kernel of the map
onsisting of applying  to v is the ideal we need, and the left-invariant forms become identified
ith the orbit of v �which is the whole representation space for a cyclic vector�. In our case, one

an compute the differential calculi for the spin 0, 1 /2, and 1 representations, of dimension 1,2,3,
espectively. Especially, the last of these might be expected to be the correct calculus but in all
hese cases one may compute that d has a large kernel so these calculi are not successful. The next
mallest is 1

2 �
1
2 which is to say the Pauli matrix representation on M2�C� where the algebra acts

rom the left and from the right �a 4D representation� by Pauli matrices. The canonical vector v is
he identity matrix. This 4D calculus as shown to fulfill the connectedness property and is as we
ee the smallest such. We refer to Ref. 5 for details. We are assuming that ��0 �otherwise we
ould have the classical calculus�.

The resulting calculus has commutation relations

dxi = ��i, xi� − �xi = �
�2

	
dxi,

�dxi�xj − xjdxi = ���ij
kdxk + �	�ij� ,

here � is a multiple of the 2�2 identity matrix and, together with the Pauli matrices �i,
ompletes the basis of left-invariant 1-forms. In the present paper relative to Ref. 5 we have put in
critical factor of � and scale factor 	�0 in the normalization of � to express explicitly that we

re free to choose this normalization. One might expect 	�� if both are generated by some
eeper theory, or one might consider 	 as second and independent length scale in the theory. The

actor � is justified as follows: to speak about unitarity all our algebras will be �-algebras and
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hinking of the xi as observables in the quantum algebra and real functions in the classical limit,
e require

xi
* = xi,

hich is consistent with � real for the conventions used for R�
3. Next, it is reasonable that

dxi�*=dxi if we want these also to be observables and to be identified with real 1-forms in the
lassical limit. The entire exterior algebra is generated by 1-forms, our case with the usual anti-
ommutative wedge product, and we require this to be a �-algebra with

�d��* = �− 1����d��*�

or a form of degree ���. These conventions are not always adhered to in the literature �there are
ther equivalent ones in other contexts� but at least here, where there is a clear match with the
lassical limit, they are reasonable. For example, one of the main things one does with differential
-forms is gauge theory. If u is unitary then

�u−1du�* = �du�*u = �du−1�u = d�1� − u−1du = − u−1du

s antihermitian. So connection 1-forms � are antihermitian. Then the curvature obeys

F���* = �d� + � ∧ ��* = − d�* + �* ∧ �* = F���

hich is to say behaves homogeneously under �. This justifies our reality conventions for the
alculus. Indeed, a U�1� connection in such a �trivial bundle� gauge theory would be � times a real
-form in classical geometry.

For our purposes we likewise require that �*=�, i.e., a real 1-form in the classical limit, which
etermines the normalization used. An alternative is to require that �*=−� which would be more
uitable for applications in which � has the interpretation of a reference connection. The latter was
he convention and application for � in Ref. 5 for example.

Once one has fixed the differential calculus, the partial derivatives �i as operators on R�
3 are

ompletely determined by

d
�x� = ��i
�dxi + ��0
�� .

hey are not derivations �that would be an older and widely discredited approach to noncommu-
ative geometry�; rather they are braided derivations with respect to a certain solution of the
ang–Baxter equations �induced from the quantum double�.

Finally plane waves take the form of group elements in the enveloping algebra R�
3,


p��x� = e�p� ·x, p� � R3.

he momenta pi are nothing but local coordinates for the corresponding point e��p� ·��SU2 where
� is the representation by Pauli matrices. It is really elements of this curved space SU2 where
omenta live, as evident in the addition law for momenta determined by the plane waves:


p� · 
p�� = 
C�p� ,p���,

here C�p� , p��� is the Campbell–Baker–Hausdorf series. This is the general procedure for any
nveloping algebra of a Lie algebra and the one we use here. Other coordinate systems are also
ossible, for example by Euler angles. We will show next that our plane waves are eigenfunctions
f the �i. The result is in Ref. 5 but the proof now is entirely different and self-contained.

II. QUANTUM GROUP FOURIER TRANSFORM AND ACTION ON PLANE WAVES

The algebra R�
3 =U�su2� has dual C�SU2� and Hopf algebra Fourier transform �after suitable
ompletion� takes one between these spaces. Thus, in one direction
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F�f� = �
SU2

duf�u�u ��
R3

d3pJ�p��f�p��e�p� ·x

or f a function on SU2. We use the Haar measure on SU2. The local result on the right has J the
acobian for the change to the local p� coordinates and f is written in terms of these. Differential
perators on R�

3 are given by the action of elements of C�SU2� and are diagonal on these plane
aves,

f · 
p� = f�p��
p� ,

hich corresponds under Fourier transform simply to pointwise multiplication in C�SU2�. This
uantum group Fourier transform approach to noncommutative geometry whereby it becomes
quivalent to a theory of classical but curved momentum space was introduced by the author in
ef. 17 more than a decade ago. We refer to Ref. 18 for a more recent review. Of course Fourier

ransform by other more conventional methods such as spherical harmonics is also possible but the
uantum groups Fourier transform exactly takes us to noncommutative spaces such as R�

3 which is
hat we need now.

Next, we show that the partial derivatives indeed act diagonally on plane waves as

�i = �
pi

��p� �
sin���p� �� =

�

2�
Tr��i� �� , �4�

�0 =
�	

�2 �cos���p�� − 1� =
�	

2�2 �Tr − 2� . �5�

he second expressions in each case are just the functions in C�SU2� whose evaluation on plane
aves gives the first expression in each case. Thus

Tr 
p� = Tr�e��p� ·��
p� = 2 cos���p��
p�

nd so forth. It remains to prove the first expressions for the �	.
The full action of the �	 are rather complicated but we need them only for functions of

X = �p� · x .

hen from the relations for the calculus, we find the subcalculus

�dX� · X = XdX − ���, �X = X� − ���dX ,

here

� = 	p2, �� =
�2

	
.

e let

dXn = fn�X�dX + gn�X��

nd using the above-mentioned relations and the Leibniz rule we have

dXn = �dXn−1�X + Xn−1dX = fn−1dX · X + Xn−1dX + gn−1�X

= fn−1XdX − ��fn−1� + Xn−1dX + gn−1X� − ���gn−1dX
ence, the recurrence relations
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fn = fn−1X − ���gn−1 + Xn−1, gn = gn−1X − ��fn−1, f1 = 1, g1 = 0.

hese can be easily solved and yield

fn = −
�

2	���
��X + �	����n − �X − �	����n� ,

gn = −
�

��
Xn +

�

2��
��X + �	����n + �X − �	����n� ,

r

dXn =
�

2��p� �

�X − ���p� ��n
	

�
�p� �� + dX� + �X + ���p� ��n
	

�
�p� �� − dX�� −

�	

�2 Xn� .

n particular, we see that

e−XdeX =
�

2��p� �

e−���p� �
	

�
�p� �� + dX� + e���p� �
	

�
�p� �� − dX�� −

�	

�2 �

=
�	

�2 �cos���p� �� − 1�� +
1

��p� �
sin���p� ��dX

hich translates into �	 acting as stated on plane waves. Through quantum group Fourier trans-
orm this allows one to compute them in principle on any 
�x�. We will not need to do this
xplicitly, however.

V. LAPLACIAN AND NONCOMMUTATIVE SCHRÖDINGER’S EQUATION

From the partial derivatives �4� and �5� on plane waves, we compute the 3D Laplacians on
lane waves:

�2 = �i�
i = −

1

�2 sin2���p� ��

hich has the correct classical limit −�p� �2 as �→0. Comparing with the expression in momentum
pace for �0 we deduce that

�0 =
�	

�2 �	1 + �2�2 − 1� �6�

n plane waves and hence in general for modes with �2�−1/�2. Expanding this we find

�0
 = �
	

2
�2
 + O��2� �7�

hich is of the form of Schrödinger’s equation with respect to an auxiliary “time” variable and a
article with Compton wavelength 	 corresponding to mass m,

	 =
1

m
. �8�

ur point of view is that � might be of the order of the Planck scale, so if 	 is also of this scale
hen the effective mass of the particle being described is of the order of the Planck mass. We are
ot tied to such a value for either parameter, however.

We now proceed to develop this point of view. Thus let t be a time variable adjoined to the

heory, commuting with the position generators and such that
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� = dt

hich is consistent with our reality assumptions if t*= t. For consistency with the relations in the
ifferential calculus we need

0 = d��t,xi�� = �xi + tdxi − �dxi�t − xi�

o we require

�t,dxi� = �
�2

	
dxi

hich implies that

�dxi�f�t� = f
t − �
�2

	
�dxi.

n this case for the Jacobi identity

0 = �dxi,�xj,t�� + �xj,�t,dxi�� + �t,�dxi,xj��

e need

�t,�� = �
�2

	
� .

ince �=dt we see that

f
t − �
�2

	
�dt = �dt�f�t�

olds as well, which in turn can be used to show that

df�t� = ��t f�t��dt, �t f�t� �
f�t� − f
t − �

�2

	
�

�
�2

	

s necessarily a finite difference operator. Applying d again gives the usual anticommutation
elations between dt and the dxi �as among themselves�. In summary, we can adjoin a t variable
ut for consistency with the spatial noncommuative calculus we will need its calculus to be a
oncommutative finite difference one.

The differential on functions a�x� just of x is unchanged:

da�x� = �ia�x�dxi + �0a�x�dt .

hen we look in the extended algebra we will have functions generated by products of functions
�x� and f�t� and here we find, using the Leibniz rule,

d�a�x�f�t�� = ��iadxi�f + ��0adt�f + a�t fdt

= ��ia�f
t − �
�2

	
�dxi + 
��0a�f
t − �

�2

	
� + a�t f�dt � �̃i�af�dxi + �̃0�af�dt .

his defines the partial derivatives �̃	 acting on general functions in the calculus. Here �̃0 reduces
o �0 as before acting on a�x� and to �t acting on f�t� alone. The braided Liebniz rule is evident

2
ere on products as the extra shift by −i� /	 and is typical of noncommutative vector fields.
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The calculus is clearly an unusual one in which the �2 is built into �̃0. Because we have
djoined the t the natural formulation of Schrödingers equation is now

�̃0
�x,t� = 0, �9�

.e., functions which are “constant” with respect to the extended differential calculus in the sense
hat d
 is purely spatial. We can write this more explicitly using the above as

�	

�2 

�x,t� − 

x,t − �
�2

	
�� = �0

x,t − �

�2

	
� �10�

xhibiting �t as a finite difference operation in the continuous time variable t. Putting in our
revious expression for �0 this is


�x,t� − 

x,t − �
�2

	
� = �	1 + �2�2 − 1�

x,t − �

�2

	
�

r



x,t + �
�2

	
� = �	1 + �2�2�
�x,t� �11�

fter a change of variable t→ t+ ��2 /	. Writing the left-hand side as the action of e���2/	���/�t� in
erms of usual derivatives, and taking ln of the operators on both sides, we have formally �or not
ormally on plane waves�,

�

�t

 = − �

	

2�2 ln�1 + �2�2� = −
�

2m

�2 −

�2

2
�4 +

�4

3
�6

¯ � �12�

or small �. Thus our equation explicitly deforms the usual Schrödingers equation with higher
erivative terms.

Note that we can also expand the left-hand side of �11� in a Taylor series and the right-hand
ide in a binomial series so

�
�

�t

 −

�2

2	

�2

�t2
 + ¯ =
	

2
�2
 −

�2	

8
�4
 + ¯ .

ow if we choose 	=� and keep terms to O��2� then this reads in terms of m as

�

�t

 = −

�

2m
�2
 −

�

2m

�2

�t2
 + O

 1

m
�3�

hich is the 4D Euclidean wave equation for ��x , t�=e−�mt
�x , t� in terms of 
. Here


 �2

�t2 + �2 + m2�� = − 2�me�mt
̇ + e�mt
̇
˙

+ e�mt�2
 .

n the other hand, � itself is a deformation and at least on plane waves brings its own corrections
o the same order so that the above is a formal observation.

When 	=� we also have a formal Euclidean aspect in the noncommutative wave operator. In
act we are not proposing an SO1,3 or SO4 symmetry in the noncommutative model �in our
onstruction we have preserved spatial rotations only, and induced time from it�. However, it is
nteresting to note that we have the following modified wave operator in the original �spatial�

heory, from �4� and �5�:
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��3� = ��0�2 + �2 =
2

�2 �cos���p�� − 1� =
1

�2 �Tr − 2� �13�

hich again has the usual limit −�p� �2 as �→0. The fact that this has such a nice description via the
ction of Tr�C�SU2� suggests that it is somewhat natural; if one takes instead −��0�2 the result is
imilar but does not have such a simple expression. Here Tr−2 is the Casimir in D�U�su2��
C�SU2�’U�su2� as explained in Ref. 5.

. DISPERSION RELATIONS AND CUT-OFF

We can also immediately solve the NCSE on plane waves, using the results of Sec. III. We let
�x , t�=e�p� ·xf�t�. Then from �11� and the value of �0 on plane waves, we require

f
t + �
�2

	
� = cos���p� ��f�t�

hich is solved by


p��x,t� = e�p� ·x+�p0t, e−��2/	�p0
= cos���p� ��, �p� � �

�

2�
. �14�

otice that the spatial momentum is bounded above for there to be a primary solution, which is a
ypical feature of quantum gravity as discussed in Sec. I. We also have unphysical solutions
� /2� �p� ��3� /2� etc. according to the periodicity of cos, which we consider an artefact of the
ocal coordinate system. Recall that the pi are local coordinates in momentum space which is
ctually here a sphere S3 not flat, and this is also the reason for the cutoff in the first place.

Differentiating the p0 equation immediately gives

e−��2/	�p0�p0

�pi =
	

�
sin���p� ��

pi

�p� �

nd hence our proposed dispersion relation

 �p0

�p�
 =

	

�
�tan���p� ��� =

1

m�
�tan���p� ��� ,

.e., the group velocity is linear for small momentum as expected for a particle of mass m in our
onrelativistic coordinates, but blows up at the cutoff value. Note, however, that a detailed analy-
is of how plane waves in the noncommutative model might be measured experimentally and their
roup velocity is still needed in order to see if such a naive derivation is justified. In the bi-
rossproduct model calculation2 this was somewhat justified by a natural normal-ordering postu-
ate for the identification of noncommutative expressions with their classical counterparts. In the
resent model we can in principle do better; we can look at the plane waves in actual represen-
ations of the noncommutative algebra on the basis that it is such expectation values that are
resumably observed. We propose to use here the coherent states �j ,� ,
� in which the coordinates
ehave with minimal uncertainty5 and with expectation values

�x� � �j,�,
�x��j,�,
� = 2j��sin � cos 
,sin � sin 
,cos ��

or a particle at angle � ,
 and radius 2j� �which we see is quantized�. Explicitly,

�j,�,
� = �
k=0

2j

2−j	
2j

k
��1 + cos ���2j−k�/2�1 − cos ��k/2e�k
�j, j − k�

n terms of usual spin j states and in the present conventions. In such a state our plane waves have

classical “shadow” as waves in polar coordinates. For example,
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� 1

2
,�,
e�p� ·x1

2
,�,
� = cos ��p� � + �

p� · �x�
��p� �

sin ��p� �

hich should be compared with the classical value at this radius of

e���p1 sin � cos 
+p2 sin � sin 
+p3 cos �� = e�p� ·�x�.

he approximation gets better for large spin. This suggests that the noncommutative plane waves
ould appear as something with comparable periodicity in the expectation values, and hence

omparable group velocity to the extent that the expectation values appear wavelike. Note also
hat

��j,�,
�j,��,
���2 = 
1

2
�1 + cos�angle��,
���,
�����2j

,

here the angle is the classical angle between vectors in directions �� ,
� and ��� ,
�� in polar
oordinates. The point of view here is in the spirit of Ref. 21 but rather than a spin network we use
oncommutative geometry. See also Ref. 9 concerning coherent states.

I. POLAR COORDINATES AND GAUGE THEORY

The model with time adjoined has in fact a rich noncommutative geometry. Here we note that
here is a closed algebra among the t and the Casimir c=x� ·x�. These from a commutative subal-
ebra of rotationally invariant functions varying in time, but as we show now with noncommuta-
ive differentials. First of all, we note that

dc = xidxi + �dxi�xi = 2xidxi + 3�	� �15�

nd �c ,xi�=0 implies that

�dci,xi� = − �c,dxi� = − xj�xj,dxi� − �xj,dxi�xj

= ���ijkxjdxk + �	xi� + ���ijk�dxk�xj + �	�xi

= 2���ijkxjdxk − ����2�ijk�kmjdxm + �	�xi� + �xi�

= 2���ijkxjdxk + 2�2dxi + �	
2xi� − �
�2

	
dxi�

= 2���ijkxjdxk + 3�2dxi + 2�	xi�

sing the relations in the calculus. From this and �15� we find that

�dc,c� = �dc,xi�xi + xi�dc,xi�

= − 4�2xidxi + 3�2�dxi�xi + 2�	xi�xi + xi3�2dxi + 2�	c�

= 4�2xidxi + 9�2�	� + 4�	c� = 2�2dc + 4�	
c +
3

4
�2�dt . �16�

Meanwhile, from �t ,c�=0 and �=dt as generator of d, we have

�dc,t� = �dt,c� =
�2

�	
dc, �dt,t� =

�2

�	
dt �17�

o give a closed algebra �16� and �17� among the t, c, dt, and dc. As in Sec. IV we immediately

onclude that
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dt. f�t� = f
t − �
�2

	
�dt, dc. f�t� = f
t − �

�2

	
�dc

or any function f�t�, whereas the commutation relations with some function a�c� has to be
etermined by induction. Likewise df�t�=�t fdt given by a finite difference as in Sec. IV, whereas
a�c� has to be determined by induction.

To this end, let

dcn � fndc + gndt = dcn−1 . c + cn−1dc

= fn−1dc . c + gn−1dt . c + cn−1dc

= 
�c + 2�2�fn−1 + cn−1 − �
�2

	
gn−1�dc + 
cgn−1 + 4�	
c +

3

4
�2� fn−1�dt

hich gives a recursion relation for fn ,gn with f1=1 and g1=0. This can be solved to obtain dcn,
r on any a�c� to compute partial differentials �c and �� �c

t defined by

da�c� � ��ca�dc + ���c
t a�dt .

ere the � �c is to remind us that this is with respect to c and implicit angular coordinates being
eld constant, which is not quite the same as �0 in Sec. IV where the xi were being held constant.
e find

�ca�c� =
a�c + �2 + 2�	c + �2� − a�c + �2 − 2�	2c + �2�

4�	c + �2

��c
t a�c� =

	

��2
a�c� + �2�ca�c� −
a�c + �2 + 2�	c + �2� + a�c + �2 − 2�	c + �2�

2
� .

hese extend to products by a braided derivation rule and by the same computation as in Sec. IV
e find

�c�af� = ��ca�f
t − �
�2

	
�, ��c

t �af� = ���c
t a�f
t − �

�2

	
� + a�t f

or a�c�f�t�. This gives the partial derivatives and d on a general function 
�c , t� in polar coordi-
ates.

As an application, we can write our NCSE in polar form as follows. The equation says that d
s purely in the dxi direction. Writing da�c�= ��ia�dxi+ ��0a�dt as in Sec. IV, we have in view of
15� that

�ia�c� = ��ca�2xi, �0a�c� = ��c
t a + 3�	�ca .

he latter comes out as

�0a�c� =
�	

�2
1

2
1 +
�

	c + �2�a�c + �2 + 2�	c + �2�

+
1

2
1 −
�

	c + �2�a�c + �2 − 2�	c + �2� − a�c�� �18�

sing the above results. This compares with �6� or �5� computed in our previous plane wave basis.
e will not attempt to solve the NCSE here, for one thing one needs to have suitable proposals for

potential term for, say, a hydrogen atom. Suffice it to say that any such calculation is best done
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n polar coordinates and �18� provides the radial part of the effective Laplacian to be used in �10�,
ow on wave functions 
�c , t�. One may compute for example that

�0
 1
	c + �2� = 0

here =	c+�2, makes for a reasonably nice answer and suggests that this is the appropriate
nalog of r in usual polar coordinates. This is the right answer when �→0 �the radial Laplacian
anishes on 1/r�. Similarly one may check that

�0c = 3�	, �0c2 = �	�10c + 9�2�, �0	c + �2 = �	
1

	c + �2

s expected for �	 times 1/2 the radial Laplacian as in �7� if c is understood as r2 in the classical
imit or more precisely  as r.

Another application of polar coordinates is for computations in the associated U�1� gauge
heory. As mentioned in Sec. II at the basic level a gauge field is a connection �=�	dx	 with
uitable reality properties. The curvature in the Maxwell theory is just

FM��� = d� = �	��dx	 ∧ dx�

hich may be computed as usual using the partial derivatives. The theory is sensitive to coho-
ology and a gauge transformation is the addition of an exact differential. In the noncommutative

ase we also have the option of a nonlinear U�1� Yang–Mills-type theory with curvature

FYM��� = d� + � ∧ � = �	��dx	 ∧ dx� + �	dx	 ∧ ��dx�

nd which detects homotopy. This needs also the commutation relations between functions and
ifferentials. We look briefly at the electrostatic Maxwell case.

First, we look at gauge fields of the form

� = a�c�dt ,

here a�c� does not depend on t. This has

FM = �cadc ∧ dt + ��c
t a�dt�2 = �ca2xidxi ∧ dt

n view of �15� and �dt�2=0 in the calculus. We recall that the dx	 anticommute as usual. Thus we
ave an electric field

Ei = �ca�c�2xi

ore or less as usual. For example, a�c�=1/	c+�2 gives

Ei = −
xi

c	c + �2

hich is an inverse square law in the classical limit. Its divergence gives the corresponding charge
ensity.

More surprisingly, we have also a different way of producing an electric field, namely

� = a�c�2xidxi = a�c�dc − 3�	a�c�dt

n view of �15�. We have chosen � here to have purely spatial components in the dx	 basis but we
ave the same conclusion below �with a different coefficient� even if we do not include the second

erm. The curvature is
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FM = �ca�dc�2 + ��c
t adt ∧ dc − 3�	�cadc ∧ dt

hich we compute using

dc ∧ dc = 4xidxi ∧ xjdxj + 6�	xidxi ∧ dt + 6�	dt ∧ xidxi

= 4xidxi ∧ xjdxj = 2�xi,xj�dxi ∧ dxj + 4xi�dxi,xj� ∧ dxj

= 4���ijkxkdxi ∧ dxj + 4��xi�ijkdxk ∧ dxj + 4�	xidt ∧ dxi

= 2�	dt ∧ dc = − 2�	dc ∧ dt

sing �15� and �dt�2=0 in the first line and that �dt ,xi��dxi in the second line which produces
othing as �dxi�2=0 for each i �and that dt ,dxi anticommute as usual�. We then use the commu-
ation relations in the calculus and in the algebra. The same observations imply that dc ,dt anti-
ommute. Hence

FM = − �2�	�ca + �0a�dc ∧ dt = − �5�	�ca + ��c
t a�2xidxi ∧ dt

hich is again a radial electric field. Such a potential in the classical case would be absent as �
ould be pure gauge with zero curvature. There are clearly many other possibilities to be explored
ere including time dependent �such as standing wave� solutions. Also in this preliminary analysis
e do not discuss source terms for the potentials since this would require a study of the suitable

urrents produced by matter fields. Finally, all of these remarks are more complicated for the
ang–Mills version.

PPENDIX: COMPARISON WITH BICROSSPRODUCT MODELS

The model above with noncommuting position and commuting t is complementary to the
icrossproduct model where the spacetime R�

1,3 in Ref. 20 is

�t,xi� = ��xi, �xi,xj� = 0. �A1�

ere the position coordinates commute and t is noncommutative, but we shall note similar features
evertheless. Some authors write �=1/� as a mass scale instead.

This time the relevant Lie algebra in �19� is the solvable one b+ �say� and computations are
ather easier using normal ordering as explained in Ref. 20. Hence we parametrize the plane waves
s


p� ·p0 = e�p� ·xe�p0t, 
p� ,p0
p��,p0� = 
p�+e−�p0
p��,p0+p0�

hich identifies the p	 as the coordinates of a non-Abelian group B+ with Lie algebra b+. The
roup law in these coordinates is read off as usual from the above product of plane waves. The
ight-invariant Haar measure on B+ in these coordinates is the usual d4p so the quantum group
ourier transform17 reduces to the usual one but normal ordered,

F�f� = �
R4

d4pf�p�e�p� ·xe�p0t.

s before, the action of elements of C�B+� define differential operators on R�
1,3 and these act

iagonally on plane waves.
There is also known to be a natural differential calculus with

�dxj�x	 = x	dxj, �dt�x	 − x	dt = ��dx	

hich we see already has a generator with �=dt; so we do not need to adjoin a further t in this
odel. The unitarity or �-structure is xi

*=xi, t*= t and the same for their differentials. The calculus
20
ecovers the partial derivatives
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�i
 ¬

�

�xi

�x,t� ª �pi . 
 ,

�0
 ¬


�x,t + ��� − 
�x,t�
��

ª

�

�
�1 − e−�p0

�


or normal ordered polynomial functions 
 or as shown in terms of the action of the momenta p	.
t was shown in Ref. 2 that by using adjusted derivatives L−1/2�	 where

L
 ¬ 
�x,t + ��� ª e−�p0



he 4D Laplacian �=L−1���0�2−�i��i�2� acts on plane waves as

� = −
2

�2 �cosh��p0� − 1� + p�2e�p0
= e�p0
p�2 −

1

�2 �1 − e−�p0
�2� �A2�

hich is the action of the Casimir of the bicrossproduct quantum group. The first expression
hould be compared with �13� in our previous model, as a hyperbolic version of it.

We recall that this bicrossproduct Poincaré quantum group U�so1,3�YC�B+� in terms of trans-
ation generators p	, rotations Mi and boosts Ni, is20

�p	,p�� = 0, �Mi,Mj� = ��ij
kMk,

�Ni,Nj� = − ��ij
kMk, �Mi,Nj� = ��ij

kNk,

�p0,Mi� = 0, �pi,Mj� = ��i
jkp

k, �p0,Ni� = − �pi,

s usual, and the modified relations and coproduct

�pi,Nj� = −
�

2
� j

i
1 − e−2�p0

�
+ �p�2� + ��pipj ,

�Ni = Ni � 1 + e−�p0
� Ni + ��ijkp

j
� Mk,

�pi = pi
� 1 + e−�p0

� pi

nd the usual linear ones on p0 ,Mi. We raise and lower i , j ,k indices using the Euclidean metric.
t follows from the general theory of bicrossproducts that this Hopf algebra acts on U�b+�=R�

1,3.
Part of the motivation for this model20 consisting of noncommutative spacetime and associ-

ted bicrossproduct quantum group acting covariantly on it was a previous “�-Poincaré” version
f the Hopf algebra alone obtained11 in another context �by contraction of Uq�so2,3��. The bi-
rossproduct model should not be confused with this, however, because its generators and rela-
ions are fundamentally different and have very different physical content; for example the Lorentz
enerators in Ref. 11 do not close among themselves but mix with momentum. Moreover, prior to
ef. 20 there was either no action of �-Poincaré on any spacetime or it was taken to act on
lassical Minkowski space with inconsistent results �there is no such covariant action�.

Also key and fundamentally different in the bicrossproduct model from �-Poincaré is that in
he bicrossproduct case the Lorentz group is actually undeformed; rather the deformation is in a
onlinear but entirely geometrical action of it on the “curved” momentum group B+. This is as part
f the solution of a nonlinear set of “matched pair” equations13 �the other part of the matched pair
s a “backreaction” of B+ on the manifold of the Lorentz group�. Because of this fundamental
ifference it would be a mistake to view the bicrossproduct quantum group as merely a “change of

asis” from �-Poincaré. In particular, because of the classical geometry behind it one can see what
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s going on in terms of the curved momentum space, as shown in Fig. 1, which is a contour plot
f p0 against �p� �. The nonlinear action of the Lorentz group means that Lorentz group orbits in B+

re now deformed hyperboloids. Because neither group here is compact one expects again from
he general theory of bicrossproducts to have limiting accumulation regions and we see that indeed
he p0�0 mass shells are now cups with almost vertical walls, compressed into the vertical tube
p� ���−1. In other words, the 3-momentum is bounded above by the Planck momentum scale �if �
s the Planck time�, but this does not appear as a new “second bound” in addition to Einstein’s
ostulate on the speed of light as sometimes claimed in the literature, but rather a deformation of
t.

Such accumulation regions were already visible in the simplest “Planck-scale Hopf algebra”13

rom the 1980s under a different point of view. Under this point of view pi above are position and
ot momentum coordinates and the quantum group is the algebra of obervables for a quantum
article moving on oribits under �in the present case Lorentz� group action. The flows for this
ction are geodesics on the orbits, which fit together to a natural 4D space that could be called a
pseudo-black hole.” Here the physical region of Fig. 1 is the orbits that come in from spatial
nfinity and remain outside the tapered cylinder of radius 1/�. One such orbit comes in at large
ositions, bends upwards and asymptotically approaches the cylinder from the outside for large t
which points upwards�, much as for an event horizon. Another orbit �dashed� crosses the asymp-
ote and approaches it from the inside. The detailed geometry of this setup will be presented
lsewhere. Such coordinate singularities are a generic feature of the nonlinear “matched pair”
quations behind the model and is the reason that they were proposed in Ref. 13 as a toy version
f Einstein’s equations.

Finally, we point out what does not appear to be well known that the above-mentioned
icrossproduct is part of a family of which the 3D Euclidean bicrossproduct C�B+�ZU�su2� was
lready obtained in the 1980s in Refs. 12, 14, and 15 actually as a Hopf–von-Neuman algebra and
hich has the following algebraic structure. First, B+ is now a 3D version of the same solvable
roup, with Lie algebra

�x3,xi� = ��xi, �xi,xj� = 0 �A3�

or i=1,2. This Lie algebra �with generators denoted �li�� and the required nonlinear solution of
he matched pair equations are in Ref. 14. The original interpretation of C�B+�ZU�su2� was

FIG. 1. Deformed mass-shell orbits in the bicrossproduct curved momentum space for �=1.
ifferent �namely particles moving in orbits in B+ as position space� but there is of course nothing
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topping one considering it as a deformation of the group of motions on R3. The only difference
s to denote the generators of C�B+� by the symbols pi, which we also combine with a cosmetic
hange to a logarithmic coordinate and explication of the deformation parameter, i.e.,

e−�p3 =
1

X3 + 1
, �pi =

Xi

X3 + 1

n terms of the B+ coordinates �Xi� written in lower case in Refs. 16 and 17. We reserve xi instead
or the auxiliary noncommutative space �A3� on which the quantum group necessarily acts. Then
he bicrossproduct has the form

�pi,pj� = 0, �Mi,Mj� = ��ij
kMk,

�M3,pj� = ��3j
kpk, �Mi,p3� = ��i3

kpk

s usual, for i , j=1,2 ,3, and the modified relations

�Mi,pj� =
�

2
�ij

3
1 − e−2�p3

�
− �p�2� + ���ij

3pjpk

or i , j=1,2 and p�2= p1
2+ p2

2. The coproducts are

�Mi = Mi � e−�p3 + �M3 � pi + 1 � Mi,

�pi = pi � e−�p3 + 1 � pi

or i=1,2 and the usual linear ones for p3, M3.
The deformed spherical orbits under the nonlinear rotation in B+ are constant values of the

FIG. 2. Deformed spherical orbits in the 3D bicrossproduct model for �=1.
asimir for the above algebra. This is found in Ref. 14 as
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2

�2 �cosh��p3� − 1� + p�2e�p3

n our present coordinates, which is the Euclidean precursor to �A2�. These deformed orbits are
hown in Fig. 2. The model here is a Euclidean inhomogeneous one. The noncommutative differ-
ntial geometry on �A3� is broadly similar to the 4D case.
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A contour representation in the unit disk based on SU�1,1� coherent states is intro-
duced. The scalar product is given by a contour integral. The regions of conver-
gence of the functions representing ket and bra states are studied. An analytic
representation in the unit disk is also considered, where the scalar product is rep-
resented by an integral over the unit disk, with the Lobachevsky measure. Various
relations which connect these analytic functions with other phase-space quantities
are derived. © 2005 American Institute of Physics. �DOI: 10.1063/1.2098527�

. INTRODUCTION

Analytic representations are a powerful mathematical tool in quantum mechanics. The most
amiliar example is the Bargmann analytic representation in the Euclidean plane.1 This is inti-
ately connected to the Glauber coherent states.

Another analytic representation is the “elliptic analytic representation” in the extended com-
lex plane �which is topologically equivalent to a sphere�.2 This is intimately connected to SU�2�
oherent states.

Another analytic representation is the “hyperbolic analytic representation” in the unit disk �or
alf-plane�.3–11 This is intimately connected to SU�1,1� coherent states.

To each of these analytic representations corresponds a “contour representation.” They repre-
ent the ket states with the same function as the corresponding analytic representation; but they
epresent the bra states with a different function so that the scalar product is given by a contour
ntegral. Dirac12 and later other authors13,14 studied extensively the “Euclidean contour represen-
ation.” The “elliptic contour representation” in the extended complex plane has been presented in
ef. 15. A preliminary work for the “hyperbolic contour representation” in the unit disk has been
resented in Ref. 16 An important problem in this representation is the regions of convergence of
he series that represent the ket and bra states.

The purpose of the present paper is to study analytic and contour representations in the unit
isk, with emphasis on the relationship among them and also on their relationship with other
hase-space quantities like the P, Q, and Wigner functions. In Sec. II we present briefly SU�1,1�
oherent states and we define the notation. In Sec. III we study the analytic representation in the
nit disk. The requirement for convergent scalar products leads to constraints on the growth of
hese functions near the unit circle. In Sec. IV we discuss the contour representation in the unit
isk. We study carefully the regions of convergence of the functions representing ket and bra
tates. In order to express the scalar products as contour integrals, the region of convergence of the
et states should overlap with the region of convergence of the bra states. Although this is not
lways true, we find large subspaces within the full Hilbert space where this is the case. In Sec. V
e derive relations which connect the analytic functions with other phase-space quantities. In Sec.
I we discuss briefly some physical applications. We give a Hamiltonian which is a combination
f SU�1,1� generators and which is used to describe optical amplifiers. The time evolution of
ystems with this Hamiltonian can be studied using the contour representation in the unit disk. We

onclude in Sec. VII with a discussion of our results. In the Appendix we present briefly the

46, 112101-1022-2488/2005/46�11�/112101/12/$22.50 © 2005 American Institute of Physics
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lliptic contour representation in the extended complex plane in connection with the SU�2� group,
o that the reader can compare and contrast the hyperbolic with the elliptic contour representation.

I. SU„1,1… COHERENT STATES

The representations of SU�1,1� have been studied in detail in Ref. 17 �see also Ref. 10�. They
re classified into the continuous series, the discrete series, and the supplementary. In this paper
e are interested in the discrete series.

We consider the SU�1,1� generators K0 ,K+ ,K− which obey the commutation relations

�K0,K±� = ± K±, �K−,K+� = 2K0,

K2 = K0
2 −

1

2
�K+K− + K−K+� . �1�

he operator K2 is a Casimir operator. We also consider the standard basis �k ,n�

K2�k,n� = k�k − 1��k,n� ,

K0�k,n� = �k + n��k,n� ,

K−�k,n� = �n�n + 2k − 1��1/2�k,n − 1� ,

K+�k,n� = ��n + 1��n + 2k��1/2�k,n + 1�, k = 1/2,1,3/2, . . . , n = 0,1,2, . . . , �2�

here k characterizes the representation.
Coherent states in the unit disk D��z��1� �which is related to SU�1,1� /U�1�� are defined as

ollows:

�k,z� = �1 − �z�2�k�
n=0

�

d�k,n�zn�k,n� , �3�

d�k,n� = � ��n + 2k�
��n + 1���2k�	1/2

. �4�

n alternative equivalent definition is

S�k;�,�,���k,0� = exp�i�k��k,z� , �5�

here

S�k;�,�,�� 
 S�k;z,�� 
 exp�−
1

2
�e−i�K+ +

1

2
�ei�K−	exp�i�K0� , �6�

z = − tanh
�

2
e−i��−��. �7�

The overlap between two coherent states is given by

�k,z�k,w� =
�1 − �z�2�k�1 − �w�2�k

�1 − z*w�2k . �8�
he resolution of the identity of these states is given by
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2k − 1

�
�

D

�k,z��k,z�d��z� = 1; d��z� = �1 − �z�2�−2d2z . �9�

An interesting relation that involves the integration of S�k ;z ,0� over the unit disk is

2k

�
�

D

d��z��1 − �z�2�k+1S�k;z,0� = �k,0��k,0� . �10�

II. ANALYTIC REPRESENTATION IN THE UNIT DISK

. Quantum states

We consider an arbitrary normalized state

�f� = �
n=0

�

fn�k,n�; �f � = �
n=0

�

fn
*�k,n�; �

n=0

�

�fn�2 = 1. �11�

his state is represented by the analytic function f�z ;k� defined as

f�z;k� = �
n=0

�

fnd�k,n�zn = �1 − �z�2�−k�k,z*�f� . �12�

he scalar product of two such states is given by

�f �g� = �
N=0

�

fN
* gN =

2k − 1

�
�

D

f*�z;k�g�z;k��1 − �z�2�2kd��z� . �13�

onvergence of this integral puts restrictions on the growth of the analytic functions near the unit
ircle. For an analytic function f in D, we define its hyperbolic exponential type,18

t�f� = lim
�z�→1−

sup
log�f�z��

log
1

1 − �z�

. �14�

n our case t�f�	k−1.
Using Eq. �10�, we prove that

2k

�
�

D

d��z��1 − �z�2�2k+1f�z;k� = f0. �15�

As examples, we easily show that

�k,n� → d�k,n�zn, �16�

�k,w� →
�1 − �w�2�k

�1 − zw�2k . �17�

. SU„1,1… transformations as Möbius mappings

SU�1,1� transformations in the unit disk are implemented through Mobius conformal map-

ings
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w =
az + b

b*z + a* ; �a�2 − �b�2 = 1. �18�

he operators K+ ,K− ,K0 can be represented with the differential operators

K+ = z2�z + 2kz, K0 = z�z + k, K− = �z. �19�

hen, the transformations

�f� → S�k;�,�,���f� , �20�

re implemented as

f�z;k� → f az + b

b*z + a* ;k��b*z + a*�−2k, �21�

here

a = ei� cosh
�

2
, b = ei� sinh

�

2
. �22�

. Parity transformations

We first consider reflections around some point w in the unit disk. A point 
 is transformed to
he point

� =
− �1 + �w�2�
 + 2w

− 2w*
 + �1 + �w�2�
, �23�

hich is also in the unit disk.
The parity operator around the origin U0 is defined as

U0 = �
n

�− 1�n�k,n��k,n� . �24�

he displaced parity operator around a point w, is defined as

U�w� = S�k;�,�,��U0S†�k;�,�,��; w = − tanh
�

2
e−i��−��. �25�

cting on coherent states with it, we get19

U�w��k,
� = �k,�� . �26�

or later use, we prove that

U�w;z1,z2� 
 �k,z1�U�w��k,z2� =
�1 − �z1�2�k�1 − �z2�2�k�1 − �w�2�2k

��w − z2��w* − z1
*� + �1 − w*z2��1 − wz1

*��2k . �27�

Using the displaced parity operator, we can define the Wigner function of an arbitrary operator
as

W��;z� = Tr��U�z�� . �28�

. Operators
An arbitrary operator �
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� = �
m,n=0

�

�mn�k,m��k,n� , �29�

an be represented as follows:

A�z1,z2
*;�� 
 ��1 − �z1�2��1 − �z2�2��−k�k,z1

*���k,z2
*� = �

m,n=0

�

d�k,m�d�k,n��mnz1
mz2

*n, �30�

here A indicates “analytic” representation. The state ��f� is then represented by the function

2k − 1

�
�

D

A�z,w*;��f�w��1 − �w�2�2kd��w� . �31�

onvergence of this integral implies that t�A�	k−1 �where t�A� has been defined in Eq. �14��.
The product �=�1�2 of two operators is given by

A�z1,z2
*;�� =

2k − 1

�
�

D

d��z3��1 − �z3�2�2kA�z1,z3
*;�1�A�z3,z2

*;�2� . �32�

s an axample we consider the unit operator 1, �mn=mn and

A�z1,z2;1� = �1 − z1z2
*�−2k. �33�

We also consider the operators K0 ,K+ ,K− which are represented by the kernels

A�z1,z2
*;K0� =

2k�− �z1z2
*�2 + z1z2

* + 1�
�1 − z1z2

*�2k ,

A�z1,z2
*;K+� = 2kz1�1 − z1z2

*�−�2k−1�,

A�z1,z2
*;K−� = 2kz2

*�1 − z1z2
*�−�2k−1�. �34�

hese integral representations are consistent with the differential representations of Eq. �19�.
ndeed, we can prove

2k − 1

�
�

D

d��w��1 − �w�2�2kA�z,w*;K0�f�w� = �z�z + k�f�z� ,

2k − 1

�
�

D

d��w��1 − �w�2�2kA�z,w*;K+�f�w� = �z2�z + 2kz�f�z� ,

2k − 1

�
�

D

d��w��1 − �w�2�2kA�z,w*;K−�f�w� = �zf�z� . �35�

e first prove these relations for f�w�=d�k ,N�wN; then, summation proves the general result.
The trace of operator � can be expressed as

Tr� =
2k − 1

�
�

D

d��z��1 − �z�2�2kA�z,z*;�� , �36�
nd the trace of product of two operators can be similarly expressed as
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Tr��1�2� =
�2k − 1�2

�2 �
D

d��z��
D

d��z���1 − �z�2�2k�1 − �z��2�2kA�z,z�*;�1�A�z�,z*;�2� .

�37�

V. HYPERBOLIC CONTOUR REPRESENTATION IN THE UNIT DISK

Dirac12 introduced a contour representation in the Euclidean plane in which ket states are
epresented with analytic functions and bra states are represented with functions which are ana-
ytic in some region �z��R �where R depends on the state�. In this representation the scalar
roduct is a contour integral. Several authors13,14 have discussed this method further in the Eu-
lidean plane. The contour representation in the extended complex plane C�� �which is topo-
ogically equivalent to a sphere, and is related to the SU�2� /U�1��, has been discussed in Ref. 15.

In this paper we study this method in the unit disk. We stress that in the unit disk there are
onvergence difficulties, and we need to define very carefully the regions of convergence of the
arious functions. This is the central problem in this paper. In contrast, in the SU�2� case we have
olynomials and there are no convergence difficulties. In the Appendix we present briefly the
ontour representation for the SU�2� case so that the reader can compare and contrast it with the
U�1,1� case.

. Quantum states

We consider the �arbitrary� normalized state of Eq. �11�. In the contour representation it is
epresented as

�f� → fk�z;k� = �
n

fnd�k,n�zn, �38�

�f � → fb�z;k� = �
n

fn
*d�k,n�−1z−n−1, �39�

here the indices k and b refer to ket and bra, respectively. The function fk�z ;k� is identical to that
n Eq. �12�. In order to study the convergence of the series associated with fk�z ;k�, we use the
onvergence criterion of the limit of the ratio of two successive terms. This ratio is

rN =
�fN+1�
�fN� �N + 2k

N + 1
	1/2

�z� . �40�

ince ��fN�2=1, the limit of the ratio �fN+1� / �fN� does not exceed 1. Therefore, the fk�z ;k� always
onverges in the unit disk. We next consider the case

lim
N→�

�fN+1�
�fN�

= 1 − �; 0 � � 	 1. �41�

hen, the fk�z ;k� of the corresponding states also converges in the annulus 1� �z�� �1−��−1

utside the unit disk. We call H� the space

H� = ��f�: lim
N→�

�fN+1�
�fN�

	 1 − �� . �42�

t is easily seen that when ����, then H�� is a subspace of H�.
We next study the covergence of the series associated with fb�z ;k�. In this case the ratio of two
uccessive terms is
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rN =
�fN+1�
�fN� � N + 1

N + 2k
	1/2 1

�z�
. �43�

herefore, the fb�z ;k� always converges in the exterior of the unit disk. For the states which satisfy
q. �42� we easily see that the fb�z ;k� also converges in the annulus 1� �z��1−� within the unit
isk. Therefore, for the states in the space H� both the fk�z ;k� and the fb�z ;k� converge, at least
ithin the annulus

R� = �1 − � � �z� �
1

1 − �
� . �44�

Of course, there are many states for which the limit of the ratio �fN+1� / �fN� is 1 and for which
he fk�z ;k� diverges outside the unit disk; also, the fb�z ;k� diverges within the unit disk. Therefore,
or any positive � the space H� is not dense in the full Hilbert space.

We consider the following example:

�k,n� → fk�z;k� = d�k,n�zn, �45�

�k,n� → fb�z;k� = d�k,n�−1z−n−1. �46�

n this example the fk�z ;k� converges in the whole plane �it has singularity at infinity�, and the
fb�z ;k� converges in the whole plane with a singularity at zero. The same result is true for any
tate which is a superposition of a finite number of �k ;k+N� states.

We also consider the coherent states example

�k,
� → fk�z;k� =
�1 − �
�2�k

�1 − z
�2k ,

�k,
� → fb�z;k� = �1 − �
�2�k�
n=0

�

n

zn+1 =
�1 − �
�2�k

z − 

. �47�

n this example the fk�z ;k� converges in the disk �z�� �
�−1, which is larger than the unit disk �since

 � �1�. The fb�z ;k� converges for �z�� �
�.

We next show that for the states in the space H�

�
c�R�

dw

2�i
fb�w;k��1 − z*w�−2k = �fk�z;k��*, �48�

here c is an anticlockwise contour within the annulus R� which does not enclose the singularity
=1/z*.

The inverse formula is given by

2k − 1

z
�

0

� dt

�1 + t�n+2k� fk t

z* ;k�	*

= fb�z;k�, k �
1

2
. �49�

hese two relations show how we calculate fk�z ;k� if we know fb�z ;k�, and vice versa. In order to
rove these relations we first perform the integrations for the case f�w�=d�k ,N�wN; summation
hen proves the general result.

We next consider two states �f� , �g� in the space H�. The inner product is given by

�f �g� = �
c�R�

dz

2�i
fb�z;k�gk�z;k� = �

N

fN
* gN, �50�
here c is an anticlockwise contour within the annulus R�.
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. Operators

An arbitary operator

� = �
mn

�mn�k,m��k,n� , �51�

s represented as follows:

C�z1,z2;�� = �
mn

�mnd�k,m�z1
m

d�k,n�z2
n+1 , �52�

here C indicates the “contour” representation. This function is useful if the double series con-
erges in some region A1����A2���, where z1 takes values in A1��� and z2 takes values in

2���.
For a state in H�, the ket state ��f� is given by

�
c

d


2�i
C�z,
;��fk�
� , �53�

here c is an anticlockwise contour enclosing the singularities in A2����R�. The bra state �f ��
s given by

�
c

d�w�
2�i

fb�w;k�C�w,z;�� , �54�

here c is an anticlockwise contour enclosing the singularities in R��A1���.
We next show that the product �=�1�2 of two operators is given by

C�z1,z2;�� = �
c

dw

2�i
C�z1,w;�1�C�w,z2;�2� , �55�

here c is an anticlockwise contour enclosing the singularities in A2��1��A1��2�.
For the unit operator 1, �mn=mn and

C�z1,z2;1� =
1

z2 − z1
�z1� � �z2� . �56�

n the case �z1�� �z2� the sum of Eq. �52� diverges. In this example A1�1�= ��z1��R� and A2�1�
��z2��R� for arbitrary R.

Similarly, we calculate the representations of the operators K0 ,K+ ,K−

C�z1,z2;K0� =
kz2 + �1 − k�z1

�z2 − z1�2 �z1� � �z2� , �57�

C�z1,z2;K+� =
�1 − 2k�z1

2 + 2kz2z1

�z2 − z1�2 �z1� � �z2� , �58�

C�z1,z2;K−� =
1

�z2 − z1�2 �z1� � �z2� . �59�

n these examples also A1= ��z1��R� and A2= ��z2��R� for arbitrary R. We note that the operators

0 ,K+ ,K− can also be represented with the differential operators of Eq. �19�; consistency between

he two representations is proved with the following relations:
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�
c

d


2�i
C�z,
;K0�f�
� = �z�z + k�f�z� ,

�
c

d


2�i
C�z,
;K+�f�
� = �z2�z + 2kz�f�z� ,

�
c

d


2�i
C�z,
;K−�f�
� = �zf�z� . �60�

. RELATIONSHIP BETWEEN THE VARIOUS REPRESENTATIONS

The Q and P representations of an arbitrary operator � are defined as follows:

Q��;z� = �k,z���k,z� , �61�

� =
2k − 1

�
� d��z�P��;z��k,z��k,z� . �62�

t is easily seen that the trace of an operator is given by

Tr� =
2k − 1

�
�

D

d��z�Q��;z� , �63�

nd also that the trace of the product of two operators is given by

Tr��1�2� =
2k − 1

�
�

D

d��z�P��1;z�Q��2;z� . �64�

n this section we derive relationships between A�z1 ,z2 ;��, C�z1 ,z2 ;�� and the Q�� ;z� and
P�� ;z�.

We first combine Eqs. �61� and �62� and prove easily that for k�1/2

Q��;z� =
2k − 1

�
�

D

d��w�P��;w�
��1 − �z�2��1 − �w�2��2k

�1 − z*w�4k . �65�

We also combine Eqs. �30�, �62�, and �8�, and prove that for k�1/2

A�z1,z2
*;�� =

2k − 1

�
�

D

d��z�P��;z�
�1 − �z�2�2k

�1 − z1z�2k�1 − z*z2
*�2k . �66�

quations �30� and �61� show easily that

Q��;z� = �1 − �z�2�2kA�z*,z;�� . �67�

We next study the relatioship between the two analytic representations. Equations �48� and
52� show that

�
c

dw

2�i
C�
,w;���1 − z*w�−2k = A�
,z*;�� , �68�

here c is an anticlockwise contour within the annulus A2��� which does not enclose the singu-
*
arity w=1/z . From this, we easily see that
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Q��;z� = �1 − �z�2�2k�
c

dw

2�i
C�z*,w;���1 − z*w�−2k, �69�

The inverse of Eq. �68� is found by using Eqs. �49� and �52� to prove

2k − 1

z
�

0

� dt

�1 + t�n+2kA
,
t

z
;�� = C�
,z;��, k �

1

2
. �70�

The relationship between W�� ;z� and P�� ;w� is found by using Eqs. �28� and �64� to prove

W��;z� =
2k − 1

�
�

D

d��w�P��;w�U�z;w,w� . �71�

sing Eqs. �37� and �30�, we get the Wigner function W�� ;z� in terms of the A�z1 ,z2
* ;��

W��;z� =
�2k − 1�2

�2 �
D

d��z1��
D

d��z2�A�z1,z2
*;��U�z;z2

*,z1
*� . �72�

rom this we easily prove that

W��;z� =
�2k − 1�2

�2 �
c

dz3

2�i
�

D

d��z1��
D

d��z2��1 − z2
*z3�−2k � C�z1,z3;��U�z;z2

*,z1
*� , �73�

here c is an anticlockwise contour within the annulus A2��� which does not enclose the singu-
arity z3=1/z2

*.

I. APPLICATIONS

In many quantum optics problems related to amplifiers, we have two-mode Hamiltonians of
he type

h = �1a1
†a1 + �2a2

†a2 + �a1a2 + �*a1
†a2

†, �74�

here a1
† ,a1, and a2

† ,a2 are creation and annihilation operators. These Hamiltonians can be studied
ith the formalism developed in this paper.

We first point out the connection of the various terms in the Hamiltonian of Eq. �74� to the
U�1,1� generators

K+ = a1
†a2

†; K− = a1a2,

K0 =
1

2
�a1

†a1 + a2
†a2 + 1� ,

K2 =
1

4
KC

2 −
1

4
; KC = a1

†a1 − a2
†a2,

�KC,K0� = �KC,K+� = �KC,K−� = 0. �75�
he Hamiltonian can now be written as
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h = ��1 + �2�K0 −
1

2
� +

1

2
��1 − �2�KC + �K− + �*K+. �76�

U�1,1� techniques have been used extensively in the study of the time evolution of systems with
his Hamiltonian �e.g., Ref. 20�. The contour representation studied in this paper can be used for
he study of these systems.

II. DISCUSSION

We have studied an analytic representation in the unit disk, and the corresponding contour
epresentation. They are both related to the SU�1,1� group and the corresponding coherent states.

The contour representation uses the functions fk�z ;k� of Eq. �38� for ket states, and the
unctions fb�z ;k� of Eq. �39� for bra states. The relationship between fk�z ;k� and fb�z ;k� is given
n Eqs. �48� and �49�. The analytic representation uses the functions f�z ;k� of Eq. �12�, which are
dentical to fk�z ;k�. Therefore, Eqs. �48� and �49� also provide the relationship between the
nalytic representation and the contour representation.

An important task of the paper is to discuss carefully the regions of convergence for these
unctions, and to find annuli where both fk�z ;k� and fb�z ;k� converge, so that we can write the
calar product in the form of Eq. �50�. The operators are represented with analytic functions of two
omplex variables; again, the regions of convergence are very important and have been discussed
xplicitly in Sec. IV B.

The relationship between these two representations and other phase-space quantities like the
isplaced parity operator and the P ,Q ,W functions has been discussed in Sec. V. The application
f hyperbolic contour representation in the study of the time evolution of optical amplifiers with
he Hamiltonian of Eq. �74� has been discussed in Sec. VI.

The work bridges the gap between the many phases space and analytic approaches to SU�1,1�
ystems.

PPENDIX: ELLIPTIC CONTOUR REPRESENTATIONS

In this appendix we discuss briefly the elliptic contour representation in the extended complex
lane C��, which is topologically equivalent to a sphere and is related to the SU�2� /U�1�.15 The
urpose is to compare and contrast the hyperbolic contour representation in the unit disk, which is
he subject of this paper, with the elliptic contour representation in the extended complex plane.

In this case the Hilbert space is 2j+1-dimensional, and we consider an orthonormal basis of
ngular momentum states �j ,n�. SU�2� coherent states are defined as

�z� = �1 + �z�2�−j �
n=−j

j

d�j,n�zj+n�j,n�; d�j,n� = � �2j�!
�j + n�!�j − n�!	1/2

. �A1�

In the elliptic contour representation in the extended complex plane, an arbitrary ket state �f�
s represented by the function

�f� = �
n=−j

j

fn�j,n� → fk�z� = �
n=−j

j

d�j,n�fnzj+n, �A2�

nd the corresponding bra state �f � is represented by the function fb�z�

�f � = �
n=−j

j

fn
*�j,n� → fb�z� = �

n=−j

j
fn

*

d�j,n�zj+n+1 . �A3�

he function fk�z� is a polynomial of z of order 2j and has singularity at � �which is the north
ole�. The function fb�z� is a polynomial of z−1 of order 2j+1 and has singularity at 0 �which is the
outh pole�. We stress that all sums here are finite and there are no difficulties with convergence.
In this analytic representation the scalar product is given by
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�f �g� = �
C

dz

2�i
fb�z�gk�z� = � fn

*gn, �A4�

here C is an anticlockwise contour around the origin, which is the singularity for fb�z�. We stress
hat in the elliptic contour representation both functions fk�z� and fb�z� are well defined for 0

�z���, and we have no difficulty in choosing a contour C. In contrast, in the hyperbolic contour
epresentation there is only the narrow annulus of Eq. �44�, where both functions fk�z� and fb�z�
onverge, and the contour has to be restricted within it.

The following transformations take the bra representation to the ket representation and vice
ersa:15

�
C

dw

2�i
fb�w��1 + z*w�2j = �fk�z��*, �A5�

2j + 1

z
�

0

� dt

�1 + t�2j+2� fk t

z*�	*

= fb�z� . �A6�

hey should be compared and contrasted to Eqs. �48� and �49�.
Relations between P ,Q, and the other representations in the SU�2� case have been studied by
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In this paper, a general method of treating Hamiltonians of deformed nanoscale
systems is proposed. This method is used to derive a second-order approximation
both for the strong and weak formulations of the eigenvalue problem. The weak
formulation is needed in order to allow deformations that have discontinuous first
derivatives at interfaces between different materials. It is shown that, as long as the
deformation is twice differentiable away from interfaces, the weak formulation is
equivalent to the strong formulation with appropriate interface boundary condi-
tions. It is also shown that, because the Jacobian of the deformation appears in the
weak formulation, the approximations of the weak formulation is not equivalent to
the approximations of the strong formulation with interface boundary conditions.
The method is applied to two one-dimensional examples �a sinusoidal and a
quantum-well potential� and one two-dimensional example �a freestanding quantum
wire�, where it is shown that the energy eigenvalues of the second-order approxi-
mations lie within 1% of the exact energy eigenvalues for a linear strain of up to
9.8%, whereas the first-order approximation has an error of less than 1% for a
linear strain of up to 5.5%. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2098531�

. INTRODUCTION

Nanoscale semiconductor devices, such as quantum wells, wires, and dots, usually consist of
aterials with different lattice constants; hence, these structures will be strained. It is known that

train strongly affects the electronic and optical properties. This has for example been used in band
tructure engineering of quantum-well systems; see Ref. 1 for a review including theoretical and
xperimental results. Also, Johnson and Bose2 have shown the necessity of including strain in the
odeling of a system of coupled quantum dots, and it is known that the formation of pyramidal

nAs quantum dots on GaAs substrates �self-assembled structures� is driven by the large lattice
ismatch between the two semiconductors.3 Thus, in order to be able to model these devices it is

mportant to account for strain effects. It is well known how to incorporate homogeneous strain in
lectronic band structure calculations,4 but in nanoscale heterostructures strain is no longer homo-
eneous. Zhang5 and Suzuki6 have proposed two different methods to include linear inhomoge-
eous strain terms in the Hamiltonian under certain assumptions for the strain and the potential. In
his paper, a general method of treating Hamiltonians of deformed nanoscale systems �e.g., an
nhomogeneous strained Hamiltonian� is proposed based on a Taylor series expansion. The advan-

age of this method is that fewer assumptions for the strain and the Hamiltonian are needed

46, 112102-1022-2488/2005/46�11�/112102/20/$22.50 © 2005 American Institute of Physics
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ompared to previous models4–6 and, in addition, it is easily extended to a higher-order approxi-
ation. Finally, because the weak formulation of the problem is used, discontinuities in the

radient of the deformation are handled in an appropriate manner. Higher-order theories for
amiltonian systems have previously been handled in the literature, e.g., in connection with
agrangian systems for classical mechanics and field theory; see Ref. 7 and references therein.

In Sec. II, the problem is presented and the Hamiltonian appropriate for calculating the
uantum-mechanical energy eigenvalues and corresponding eigenstates is specified. In Sec. II A,
he mathematical tools needed to make a Taylor series expansion of the Hamiltonian with respect
o a deformation of the system is presented. Section II B is concerned with the derivation of the
econd-order Taylor series expansion of the Hamiltonian and in Sec. II C the weak formulation of
he problem is given, after which the second-order Taylor series expansion is derived for the weak
ormulation. Finally, in Sec. III, three examples of the application of the method are presented.

I. THEORY

The problem under investigation in this paper is how to model the behavior of an electron in
deformed system in general, and, more specifically, how to model the behavior of an electron in
deformed inhomogeneous crystal structure, based on the Schrödinger equation. Assuming that an
ndeformed domain B�R3, e.g., a crystal volume, is given, a deformation �: B→R3 of the
ndeformed domain B is defined to be a C2 map satisfying certain requirements to be specified in
he next section. Primed � �� coordinates, functions, and operators always refer to the domain B in
he following, while unprimed coordinates, functions, and operators refer to the domain ��B�.

The deformation of a nanoscale system, as well as any material system in general, is found by
inimizing the elastic energy of the system. There are basically two main approaches, an atomic

pproach8 and a continuum approach.9–11 If the deformation has been found using an atomic
pproach, it is necessary to use the information about how the individual atoms are shifted to
onstruct a C2 map, but this is outside the scope of this article, i.e., it will just be assumed that the
eformation has been found using a continuum approach and that this results in a C2 map �the C2

emand will be weakened slightly in Sec. II C�.
Assuming that an electron in a potential deformed by � is subject to the potential Ṽ�, the

amiltonian of the deformed system, referred to as the deformed Hamiltonian, is given by the
chrödinger equation

H̃� = −
�2

2m
� + Ṽ�.

t should be noted that the potential is a function of the deformed domain ��B�, i.e., Ṽ��x�, where
are coordinates on ��B�. The energies E and corresponding wave functions � are found by

olving the eigenvalue equation

H̃�� = E� , �1�

ubject to certain boundary conditions. For an electron in a crystal, the most important potential
ontributions are

Ṽ� = V� + ĤSO = V� − i
�2

2m2c2 ��V� � �� · � ,

here V� is the potential of the deformed crystal without spin, ĤSO is the spin-orbit part, and � are
he Pauli spin matrices. This is the situation considered in this work, but it should be noted that the
rocedure can be used on any potential which is a differential function of � in a sense to be
efined later. In order to incorporate spin, operators on the function space F are extended to F
F by operating on each element of the pair separately, e.g., let f �F�F, i.e., f = � f+

f−
�, where
f+ , f−�F; then
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V�f = V�� f+

f−
� = �V� f+

V� f−
� .

he function f+ corresponds to the spin-up state and f− corresponds to the spin-down state.
The potential of the undeformed domain is usually better known than the potential of the

eformed domain. Assuming that the deformation is known, it is therefore advantageous to ex-
ress the deformed Hamiltonian with respect to the deformation and the undeformed potential.
his can be achieved by making a Taylor series expansion of the deformed Hamiltonian with

espect to the deformation. In order to do so, the deformed Hamiltonian is written with respect to
oordinates on B. This can be done as long as the deformation is invertible with twice differen-
iable inverse. The deformed Hamiltonian is, in that case, given by

H̃� = −
�2

2m
� + V� − i

�2

2m2c2 ��V� � �� · � . �2�

hanging to coordinates on B, the deformed Hamiltonian takes the form

H� = KF + V� � � + H�
SO, �3�

here F=��� and the kinetic and spin-orbit parts �KF and H�
SO, respectively� are given by

KF = −
�2

2m
�F −1���r���� ji

�

�xj�
��F −1���r����ki

�

�xk�
� , �4�

nd

H�
SO = − i

�2

4m2c2 ��F −1���r����T��V����r��� � �F −1���r����T��� · � . �5�

ere and throughout the paper, Einstein’s summation convention is applied, i.e., summation over

epeated indices, e.g., aibi=�i=1
3 a1bi. It should be noted that H̃� in Eq. �2� and H� in Eq. �3� are

elated by a unitary transformation �change of coordinates�. It is possible to use other unitary
ransformations to write the Hamiltonian with respect to coordinates on B, e.g., a transformation
imilar to the one used in Hislop et al.12 in connection with spectral deformation theory, which
ake into account the determinant of the deformation gradient appearing in the probability distri-
ution by solving for �det F��r� instead of ��r�. The Taylor series expansion will of course reflect
he choice of transformation, but the order of the approximation will stay the same.

The idea now is to make a Taylor series expansion of H� �Eq. �3�� with respect to the
eformation �. Hence, it is necessary to set up the mathematical theory required to handle the
bove situation. This will be done in the next section.

. Mathematical tools

The first thing needed in order to use a Taylor series expansion is to define a derivative
pplicable in the given situation. The weakest notion of a derivative is the Gâteaux derivative, and
his will be used in the present work. Let U and V be normed linear spaces, S�U an open set, and

P an operator from S to V. In addition, let u0�S, ��U nonzero, and I= �−� ,��, where ��R is
hosen such that u0+ t��U for all t�I. The Gâteaux differential of P at u0 in the direction � is
hen defined to be

DP�u0� · � 	
d

dt
�P�u0 + t��� = lim

t→0

1

t
�P�u0 + t�� − P�u0�� , �6�

hen the limit exists. An operator P which has a Gâteaux differential at each point in S in any
irection is said to have a Gâteaux differential on S.13 The higher-order differentials are introduced

nductively in the usual manner. It should be noted that when the Gâteaux derivative fulfills certain
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dditional requirements it is equal to the stronger, and more widely used, concept of a derivative
alled Frechet differentiability.14 This concept has, among other things, the advantage of being
inear in �, which is not always the case for the Gâteaux derivative.

The version of Taylor’s theorem that is relevant for this work is given as follows.
Theorem II.1. Let U and V be normed linear spaces. Suppose that the space V is complete

nd that the region S of the space U is convex, and suppose that the function P from S to V has
n nth Gâteaux differential on S. Suppose also that for every u1 ,u2 in S the function of r,
nP�u1+ �u2−u1�r� · �u2−u1�n, is bounded on the interval (0, 1) and its set of discontinuities is of
easure zero. Then, for every u1 ,u2 in S we have

P�u2� = P�u1� + �
i=1

n−1
DiP�u1� · �u2 − u1�i

i!
+ Rn�u1,u2� ,

here

Rn�u1,u2� = 

0

1

DnP�u1 + �u2 − u1�r� · �u2 − u1�n �1 − r�n−1

�n − 1�!
dr .

The statement that a subset of an interval is of measure zero is equivalent to the statement that
he total length of the subset is zero. For a proof of this theorem and a definition of the Riemann
ntegral appearing in the theorem, refer to Ref. 13. In order to see how this theorem can be used
n the situation given above, a more precise definition of a deformation, and of the corresponding
eformed Hamiltonian, is necessary. This will be given in the following.

First, the overall normed linear space that a deformation belongs to is defined. Let f be a once
ifferentiable function from B to R3, and define

�f�C1 = �sup
B
 f1

2 + �
i=1

3 � �f1

�xi
�2

+ f2
2 + �

i=1

3 � �f2

�xi
�2

+ f3
2 + �

i=1

3 � �f3

�xi
�2��1/2

, �7�

here f = �f1 , f2 , f3�. Denote with Ĉ2 the normed linear space consisting of all the twice differen-
iable functions from B to R3 that have a finite norm given by �7�. A deformation �: B→R3 of the

ndeformed domain B is defined to be an injective Ĉ2 map satisfying inf�det������	0. The last
equirement is needed to ensure that the map has a twice differentiable inverse; this is guaranteed
y the inverse function theorem. The existence of the inverse ensures that the deformation does
ot destroy parts of the domain, e.g., by collapsing or tearing parts of the domain. It is assumed
hat B is bounded; this ensures boundedness of considered operators. The space of all deforma-

ions of B is denoted D. It can be shown that the function g: Ĉ2→R given by g���
inf�det������ is continuous, and D is, as a consequence, open in Ĉ2 �it is the inverse image of

he open set �
 ,0��.
Next, the deformed Hamiltonian is shown to be a function from D to a normed linear space.

he domain of the deformed Hamiltonian is, in this article, chosen to be the product of Sobolev
paces: H2���B���H2���B��. This is the largest space for which the deformed Hamiltonian is
efined.15 The deformation has, according to the inverse function theorem, a twice differentiable
nverse. This ensures that H� can be written with respect to coordinates on B, as it was done in Eq.
3�. As a consequence, the deformed Hamiltonian can be viewed as an operator

Ĥ:D → L�H2�B� � H2�B�, L2�B� � L2�B�� ,

iven by ��H�, where L�F ,G� is the space of bounded linear mappings from F to G and L2�B�
s the Lebesgue space. The Lebesgue space is needed here because of the definition of the Sobolev
pace.15 It is also the appropriate space with respect to wave functions, because these give the

robability that an electron is in a certain area, and, as a consequence, they only need to be defined
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lmost everywhere, i.e., up to sets of zero measure. The spaces H2�B��H2�B� and L2�B�
L2�B� are equipped with the L2 norm

���L2 = �

B

�+
*�+dV�1/2

+ �

B

��−
*�−�dV�1/2

,

here �= � �+

�−
� and �+ ,�− are functions from B to C. The space L2�B��L2�B� equipped with this

orm is a complete normed linear space. The space L�H2�B��H2�B� ,L2�B��L2�B�� is equipped
ith the operator norm

�A�O = sup��A��L2�� � H2�B� � H2�B�, ���L2 � 1� ,

here A�L�H2�B��H2�B� ,L2�B��L2�B��. This makes the space L�H2�B��H2�B� ,L2�B�
L2�B�� into a complete normed linear space �see Theorem III.2.3 in Ref. 16�.

The function to be approximated by a Taylor series expansion is the function Ĥ, i.e., with

espect to Theorem II.1: P= Ĥ, U= Ĉ2, and V=L�H2�B��H2�B� ,L2�B��L2�B��. Depending on
hich element of D the deformed Hamiltonian is expanded about, the convexity requirement can

e fulfilled by restricting the domain of Ĥ to the largest open ball with respect to the norm7 that
ontains the element of expansion and is contained in D. This restriction normally poses no
roblems because Taylor series expansions are in general only accurate within small deviations
rom the element of expansion. The restricted domain is the set S in Theorem II.1. That the
âteaux derivatives exists and that DnP�u1+ �u2−u1�r� · �u2−u1�n fulfills the given requirements
as to be verified for each specific potential V�.

. Second-order deformed Hamiltonian

In this section, the second-order Taylor series expansion of the deformed Hamiltonian around
he identity map id on B is presented. In order to find the second-order Taylor series expansion, it
s necessary to find the first- and second-order Gâteaux derivatives. This is done in Appendix A.
t is assumed that V� is well enough behaved such that Theorem II.1 can be used. The Taylor
eries expansion of the deformed Hamiltonian to the second order in � around id is then given by

H� � Hid + D�1��� − id� + DSO
�1��� − id� + D�2��� − id,� − id� + DSO

�2��� − id,� − id� , �8�

here

Hid = −
�2

2m
��2 + Vid − i

�2

4m2c2 ���Vid � ��� · � ,

D�1��� − id� =
�2

2m��F + FT − 2I� jk
�

�xj�

�

�xk�
+

�

�xi�
��F − I�ki�

�

�xk�
� + DVid · �� − id� ,

DSO
�1��� − id� = − i

�2

4m2c2 �����DVid · �� − id�� � ��� · � − ��F − I�T��Vid � ��� · �

T
− ���Vid � �F − I� ��� · �� ,
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D�2��� − id,� − id� = −
�2

2m���F − I��F − I�T + �F − I�2 + �FT − I�2� jk
�

�xj�

�

�xk�

+ ��F − I�� ji
�

�xj�
��F − I�ki�

�

�xk�
+

�

�xi�
��F − I�2�ki

�

�xk�
�

+
1

2
D2Vid · ��� − id�,�� − id�� ,

DSO
�2��� − id,� − id� = − i

�2

4m2c2�− ��F − I�T���DVid · �� − id�� � ��� · �

− ����DVid · �� − id�� � �F − I�T��� · �

+ ��F − I�T��Vid � �F − I�T��� · �

+
1

2
����D2Vid · ��� − id�,�� − id��� � ��� · �

+ ��FT − I�2��Vid � ��� · � + ���Vid � �FT − I�2��� · �� ,

nd F=���.
To connect these expressions with the strain tensor, note that the Green–Lagrange–St. Venant

train tensor is given by

� =
1

2
�FTF − I� ,

nd the linear strain tensor is given by

� lin =
1

2
�F + FT − 2I� . �9�

n the case where F is symmetric, Eq. �9� becomes

� lin = F − I .

f only the first-order terms of the Taylor series expansion are used, and if the linear strain is used
ith a symmetric deformation gradient, then the herein derived first-order approximation to the
eformed Hamiltonian is identical to the one proposed by Zhang.5 In the case where the defor-
ation is homogeneous, the first-order approximation is the same as the one derived by Bir et al.4

. Weak formulation

The preceding sections are all concerned with deformations that are twice differentiable, but
here are many situations where the deformations do not satisfy this. For example, in the quantum-
ell case the deformation is piecewise linear with different slopes inside and outside the well.17

herefore, to be able to handle this kind of deformations, an extension of the theory to a larger
lass of deformations is needed.

Let A be the set of injective functions from B to R3 that are once differentiable on B \ with
oth a finite C1 norm �Eq. �7�� and a positive Jacobian determinant, where  is a finite set of
iecewise smooth surfaces �two-dimensional manifolds�. This set of functions includes the defor-
ations considered in quantum-well, as well as quantum-wire and quantum-dot structures �ac-

ording to continuum mechanical models9–11�. The problem with the functions belonging to A is

hat they are not necessarily once differentiable on B because the first derivative can have discon-
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inuities at interfaces. Therefore, caution is needed when “pulling back” the deformed Hamiltonian
o coordinates on B �Eq. �3��. The correct formalism to use in this case is the weak formalism, i.e.,
nstead of solving the eigenvalue equation

H��̃ = E�̃ ,

ubject to some boundary conditions �in this work either Dirichlet or periodic boundary condi-
ions�, a solution to the weak equation



��B�

�+
*�H��̃�+dV + 


��B�
�−

*�H��̃�−dV = 

��B�

�+
*E�̃+dV + 


��B�
�−

*E�̃−dV , �10�

or all �+ ,�−�Cc

���B� ,C� �smooth functions with compact support; see, e.g., Ref. 16� is found,

here �H��̃�+ is the first factor of H��̃ and �H��̃�− is the last factor. The solution still has to
atisfy the boundary conditions. Introducing

K �
±��±,�� =

�2

2m



B\
��F −1 � ���F −1 � ��T�ij

���±�*

�xi�

��±

�xj�
det FdV�, �11�

V �
±��±,�� = 


B
�±

*V� � ��± det FdV�, �12�

H�
SO,±��±,�� = − i

�2

4m2c2

B\

�±
*�FT� � ��V� � � · ����±dV�, �13�

W���,�;E� = K �
+��±,�� + V �

+��±,�� + HSO,+
���±,�� − 


B
�+

*E�+ det FdV� + K �
−��±,�� + V �

−��±,��

+ HSO,−
���±,�� − 


B
�−

*E�− det FdV�, �14�

here �= � �+

�−
�, �= � �+

�−
�, �+ ,�−�H2�B�, and �+ ��−1 ,�− ��−1�Cc


���B� ,C�, the weak formulation

Eq. �10�� can be put in the form: Find �̃ and E such that

W��� � �,�̃ � �;E� = 0,

or all �+ ,�−�Cc

���B� ,C�. The expression for the kinetic part �Eq. �11�� is found by integrating

y parts, using that �+ and �− have compact support, changing coordinates, and using the chain
ule. The integral is restricted to B \ for the chain rule to apply. This is possible because  has
easure zero �zero volume�. Finding the expression for the potential part �Eq. �12�� is straight-

orward, and the expression for the spin-orbit part �Eq. �13�� is found again by changing coordi-
ates and using the chain rule; in addition, the rule that Av1�Av2 ·Av3=det�A�v1�v2 ·v3, for a
�3 matrix A and v1 ,v2 ,v3�R3 is used.

According to Theorem B.1 in the Appendix, the above weak formulation is equivalent to
nding � and E such that

W���,�;E� = 0, �15�

or all �+ ,�−�Cc

�B ,C�, in which case �̃=� ��−1. Equation �15� is a weak formulation of the

roblem with respect to the domain B.
The operator W defined in Eq. �14� can be viewed as an operator W :A→L�H2�B�
2 
 

H �B� ,Cc �B ,C��Cc �B ,C� ;A�R ,R��, where L�F1 ,F2 ;G� is the space of bilinear mappings
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rom F1�F2 to G and A�R ,R� is the space of affine mappings from R to R. The space A�R ,R� is
finite-dimensional normed vector space, and because of this it is complete. It follows that the

ange of W is complete so, according to Theorem II.1, the Taylor series expansion of W exists,
ssuming that the Gâteaux derivative exists and fulfills given requirements. The domain of W can
e restricted to an open convex set using similar arguments as in Sec. II A.

In Appendix B the derivatives needed to write out the second-order Taylor series expansion of
are found, giving

W� � Wid + W�1��� − id� + WSO
�1��� − id� + W�2��� − id,� − id� + WSO

�2��� − id,� − id� ,

here

W�1��� − id���,�;E� = �
s=+,−

�−
�2

2m



B\
�F + FT − 2I�ij

���s�*

�xi�

��s

�xj�
−

���s�*

�xi�

��s

�xi�
Tr�F − I�dV�

+ 

B

�s
*�DVid · �� − id� + �Vid − E�Tr�F − I���sdV�� ,

W�2��� − id,� − id���,�;E� = �
s=+,−

� �2

2m



B\
��F − I�2 + �FT − I�2 + �F − I��F − I�T�ij

���s�*

�xi�

��s

�xj�
dV�

−
�2

2m



B\
�F + FT − 2I�ij Tr�F − I�

���s�*

�xi�

��s

�xj�
dV�

+
�2

2m



B\

���s�*

�xi�

��s

�xi�
Tr��F − I�co�dV�

+
1

2



B
�s

*D2Vid · �� − id,� − id��sdV,

+ 

B

�s
*�DVid · �� − id�Tr�F − I� + �Vid − E�Tr��F − I�co���sdV�� ,

WSO
�1��� − id���,�� = �

s=+,−
− i

�2

4m2c2

B\

��s
*��F − I�T� � ��Vid · ����s

+ �s
*�� � ���DVid · �� − id�� · ����s�dV�,

nd

WSO
�2��� − id,� − id���,�� = �

s=+,−
�− i

�2

4m2c2

B\

�s
*��F − I�T� � ���DVid · �� − id�� · ����sdV�

− i
�2

4m2c2

B\

�s
*�� � ���1

2
D2Vid · �� − id,� − id�� · ����

s
dV�� .

In contrast to the previous deformed Hamiltonian models by Bir and Pikus,4 Zhang,5 and
uzuki,6 the present model describes a general rigoristic mathematical model for incorporating

onsmooth �and of course, smooth� deformation fields in Hamiltonians.
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. Strong formulation with interface boundary conditions

The weak form can, as long as the deformations lie in A and are twice differentiable on B \,
e reformulated in a strong form with interface boundary conditions. This is done using integra-
ion by parts in the kinetic term �Eq. �11��. Let n= �n1 ,n2 ,n3� be a unit normal vector field on the
nterface ; then

K�
±��±,�� =

�2

2m





ni����F −1 � ���F −1 � ��T�ij��±�*��±

�xj�
det F�

m1

− ���F −1 � ���F −1 � ��T�ij��±�*��±

�xj�
det F�

m2
�dA�

−
�2

2m



B\
��±�*�F −1 � �� ji

�

�xj�
��F −1 � ��ki

��±

�xk�
�det FdV�, �16�

here the subscripts m1 and m2 symbolize that the expression in brackets is found as the limit
aken from the region that the normal vector points out of and into, respectively. To get this result,
t has also been used that

�

�xi
�F ik

−1 det F� =
�

�xi
��Fco�ki� = 0,

or k=1,2 ,3, where Fco is the matrix of cofactors of F. This result can easily be verified. From Eq.
16� it can be inferred that the weak formulation is equivalent to solving the eigenvalue equation

H�� = E� ,

n B \, where H� is given in Eq. �3�, subject to the interface boundary condition

ni���F −1 � ���F −1 � ��T�ij
��±

�xj
det F�

m1
= ni���F −1 � ���F −1 � ��T�ij

��±

�xj�
det F�

m2

. �17�

otice that the interface boundary condition should be satisfied simultaneously for both �+ and �−

n order for the surface integral appearing in �16� to vanish.
The advantage of formulating the problem in strong form with interface boundary conditions

Eq. �17�� is that solution methods no longer are restricted to weak methods. Hence, it is possible
o find solutions by any convenient numerical or exact method. This kind of procedure can be used
n most situations involving derivatives of discontinuous quantities, e.g., k · p theory.

II. ONE- AND TWO-DIMENSIONAL EXAMPLES

. Sinusoidal potential

The one-dimensional sinusoidal potential is chosen as a first example. This potential is given
y

Vid�x�� = V0 + A cos�2�

a
x�� ,

or x�� �−Na ,Na� �see Fig. 1�. The real number a is the distance between the maximal value of
he potential, and N�N is a fixed number. In this example the values V0=0 eV and A=5 eV are
hosen. In addition, periodic boundary conditions are used. Assuming that the whole potential is

eformed when subjected to some deformation �, the deformed potential is given by
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V��x� = Vid��−1�x�� = V0 + A cos�2�

a
�−1�x�� .

o get an idea of the influence of the deformation on the energies, the deformation is chosen such
hat

�−1�x� = x + �a sin� 2�

10a
x� , �18�

here it is assumed that N /10�N and ��R is chosen such that ��−1 /�x	0 for all
� �−Na ,Na�. In Fig. 1 the deformed potential is shown for N=10 and �=0.1. The inverse is
pecified because this insures that it is possible to solve the exact eigenvalue equation and, as a
onsequence, the first- and second-order approximations can be compared against the exact solu-
ion.

This example can be extended to a three-dimensional example by assuming that there is
ranslational symmetry in the y� and z� directions, and that the system is only deformed in the x�
irection. The undeformed region can, in this case, be chosen as B= �−Na ,Na���−Na ,Na���
Na ,Na� with periodic boundary conditions. The potential can then be viewed as originating from
periodic array of plates perpendicular to the x� direction. The number a is, in this case, the period
f the structure. Ignoring spin, the deformed Hamiltonian is given by

H� = −
�2

2m
� + V�.

ccording to Eq. �8�, the second-order Taylor series expansion is

H� � Hid + D�1��� − id� + D�2��� − id,� − id� .

ecause of the translational symmetry, the solutions to the eigenvalue problem �Eq. �1�� can
lways be chosen such that

�̃�x�,y�,z�� = ��x��eiky�y�eikz�z�.

FIG. 1. �Color online� A figure showing the undeformed and deformed sinusoidal potential for N=10 and �=0.1.
olving at the zone center, i.e., for ky�=0 and kz�=0, it is found that Eq. �8� takes the form
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H� � −
�2

2m
��1 − 2� ��

�x�
− 1� + 3� ��

�x�
− 1�2� �2

�x�2 + �−
�2�

�x�2 + 3� ��

�x�
− 1� �2�

�x�2� �

�x�
� + Vid�x�� .

he reason why the Taylor series expansion of the potential is exact is that V��x�=Vid��−1�x��
Vid�x��. Another way of arriving at Eq. �19� is to derive a theory similar to the one in this article

ust for the one-dimensional case.
The eigenvalue equation has been solved numerically using FEMLAB, i.e., using a finite-

lement method, both for the first- and second-order approximation of the deformed Hamiltonian
ith respect to ���� /�x��−1�. The exact problem, i.e., without making the Taylor series expan-

ion, was also solved using FEMLAB. In Fig. 2 a plot of the error in using the first- and second-
rder approximation as a function of � and the maximum of the linear strain is presented �the solid
ines�, where the linear strain is given by ���� /�x��−1�. The errors of the first- and the second-
rder Hamiltonians are given by

Errorx = �E1
x − E1

Exact

E1
x � ,

=1st ,2nd, respectively, where E1
Exact, E1

1st, and E1
2nd are the energy of the ground state calculated

ith the exact, first-order, and second-order Hamiltonians, respectively. From this graph it can be
een that the second-order approximation �crossed red line� is considerably more accurate then the
rst-order approximation �black line�. The first-order approximation has an error of less than 1%
or a max linear strain of up to 6.7%, whereas the second-order approximation is accurate to with
n 1% up to a max linear strain of 18.6%.

Even though it is not necessary to use the weak formulation for the problem in this example
because the deformation is smooth over the whole domain�, it is still interesting to see how
ccurate the results are using the weak approach. First of all, it should be noted that the exact
esults obtained with the weak formulation are identical to the exact results obtained with the
trong formulation. This should also be the case because the formulations are equivalent when
verything is smooth. Which formulation is used does however matter when the Taylor series
xpansion is made. In the weak formulation the Jacobian is present as a consequence of the
oordinate transformation of the integral, and it is not present in the strong formulation. So, it is
ctually the influence of the Jacobian that is under investigation in the following.

According to Sec. II C, the second-order Taylor series expansion of the weak eigenvalues
˜

IG. 2. �Color online� Graph showing the error in the energies for the sinusoidal potential when using the first- and
econd-order approximations.
roblem has the following form disregarding spin: Find � and E such that
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W�����,�̃,E� = 0, �19�

or all ��Cc

�B ,C�, where

W�����,�̃,E� �
�2

2m



−Na

Na �1 − � ��

�x�
− 1� + � ��

�x�
− 1�2� ��̂*

�x�

��

�x�
�dx�

+ 

−Na

Na �Vid − E�
��

�x�
�̂*��dx�,

nd

�̂ = 

−Na

Na 

−Na

Na

� dy� dz�.

The first- and second-order approximation of the eigenvalue equation �19� with respect to
��� /�x��−1� is again solved using FEMLAB. The dashed lines in Fig. 2 show the error introduced
y using the first- and second-order approximation �black and boxed red lines, respectively�. From
his figure, it is seen that the second-order approximation is again substantially better than the
rst-order approximation. In this case, the first-order approximation has an error of less then 1%
or a max linear strain of up to 12%, and the second-order approximation is within an error of 1%
n the whole interval shown, i.e., at least up to a max linear strain of 33.6%. It is also seen that the
rst- and second-order approximations of the weak problem are considerably more precise than

he first- and second-order approximations of the strong problem. The reason for this goes back to
he presence of the Jacobian in the weak formulation in the following way.

First, observe that ��−1 /�x ��=1/ ��� /�x�� and det�����=�� /�x�. From this it is seen that
�−1 /�x �� det�����=1. Because of this, Eq. �14� reduces to

W�����,�̃,E� =
�2

2m



−Na

Na  ��−1

�x
� �

��̂*

�x

��

�x�
+ �Vid − E�

��

�x�
�̂*��dx�.

he reason why the Taylor approximations of this equation is more precise than the Taylor
pproximations of the strong problem is simply that the first- and second-order Taylor series
xpansion of ��−1 /�x ��=1/ ��� /�x�� is more accurate than the first- and second-order Taylor
eries expansion of ����−1 /�x� ���2= �1/ ��� /�x���2. Hence, the reason why the approximations of
he weak formulation are more accurate than the approximations of the strong formulation is that
his example is, in essence, a one-dimensional problem. This will be confirmed in the quantum-
ire example analyzed later.

. Quantum well

In this section the influence of deformations on the quantum-well problem is investigated.
his is done in order to give an example of a situation where the weak formulation is needed. The
uantum-well problem is the one-dimensional problem where the undeformed potential is given
y the step function

Vid�x�� = �V0, �x� � � − d,− a��
V1, x� � �− a,a�
V0, �x� � �a,d��

� .

o simplify matters, spin is again neglected. In this example the following values are used: V0

5 eV, V1=0 eV, a=5 nm, and d=25 nm, and Dirichlet boundary conditions are imposed. Again,
t is assumed that the whole potential is deformed when it is subjected to a deformation �, i.e.,

−1

��x�=Vid�� �x��. In nanoscale semiconductor quantum wells, the well material will be de-
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ormed homogeneously, whereas the barrier material will stay undeformed �see, e.g. �18��, i.e., the
eformation will have the form

��x�� = �x� − a�b − 1� , �x� � � − d,− a��
bx�, x� � �− a,a�
x� + a�b − 1� , �x� � �a,d��

� ,

or some b	0. The deformation is not differentiable at the interfaces and, as a consequence, the
eak formulation is needed. Proceeding as in the sinusoidal example above, it is found that the

econd-order Taylor series expansion of the weak eigenvalue problem takes the form given in Eq.
19� and the equations that follow.

The first- and second-order approximations have again been solved using FEMLAB. The in-
erse of the deformation is easily found and, as a consequence, it is also possible to solve the exact
eak eigenvalue problem, i.e., without making a Taylor series expansion. The error in the energy
f the ground state in using the first- and second-order approximation is shown in Fig. 3 �dashed
lack and boxed red lines�. Here, it is seen that the error introduced by using the first-order
pproximation is within 1% for a linear strain of up to 11.6%, whereas the error introduced by
sing the second-order approximation lies within 1% for a linear strain of up to 23.8%. Again, it
s seen that the second-order approximation is substantially better than the first-order approxima-
ion.

In the sinusoidal example above, it was seen that the approximations of the weak formulation
ave considerably more accurate results than the approximations of the strong formulation. In
rder to investigate whether this is the case for the quantum-well problem also, the strong form of
he problem with interface boundary conditions �Sec. II C 1� has been solved, again using
EMLAB. It should be noted that the exact solution to the strong form with interface boundary
onditions, i.e., without making a Taylor series expansion, is equal to the exact solution to the
eak form. This has to be the case because the two formalisms are equivalent as long as no

pproximations have been made. The second-order approximation of the strong form is given by
q. �19� above, and the interface boundary conditions are as follows:

� ��−1

�x
� ��x0�

��

�x�
�x0��

L
= � ��−1

�x
� ��x0�

��

�x�
�x0��

R
,

or x0=−a ,a, where L�R� indicates that the expression in brackets is taken in the limit from the left
right�. The second-order Taylor series expansion of the interface boundary conditions takes the

IG. 3. �Color online� Graph showing the error in the energies for the quantum well when using the first- and second-order
pproximations.
orm
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��1 − � ��

�x�
�x0� − 1� + � ��

�x�
�x0� − 1�2� ��

�x�
�x0��

L

= ��1 − � ��

�x�
�x0� − 1� + � ��

�x�
�x0� − 1�2� ��

�x�
�x0��

R
,

or x0=−a ,a.
The solid black and crossed red lines in Fig. 3 show the error introduced by using the first-

nd second-order approximation of the strong form with interface boundary conditions, denoted
Form-first and SForm-second, respectively. Here, we see that the error in using SForm-first is

ess than 1% for a linear strain of up to 5.9%, whereas the error introduced using SForm-second
s within 1% for a linear strain of up to 13.5%. So again, it is seen that the second-order approxi-

ation is more accurate than the first-order approximation. In addition, it can be seen that the
pproximations of the weak form are substantially more accurate than the approximations of the
trong form with interface boundary conditions. This is expected because this is also a one-
imensional problem, so the same reasoning as in the sinusoidal example can be applied.

. Quantum wire

In this section a square-shaped, two-dimensional quantum-wire problem with infinite barrier is
nvestigated. This is done in order to see whether or not the approximations of the weak problem
re more accurate than the approximations of the strong form for a two-dimensional problem.

The undeformed two-dimensional domain under investigation is given by �−5,5���−5,5� �in
anometers� and the potential is zero. Dirichlet boundary conditions must be applied because of
he infinite barrier. To simplify matters, the following homogeneous deformation is chosen:

��ẋ�,y�� = �b b − 1

0 b
��x�

y�
� ,

here b�0 �this ensures that the Jacobian determinant is positive�. The second-order Taylor series
xpansion of the Strong formulation of the eigenvalue equation takes the form: Find � and E such
hat

H�� = E� ,

here

H� � −
�2

2m
� �2�

�x��x�
+

�2�

�y��y�
− 2�b − 1�� �2�

�x��x�
+

�2�

�y��y�
+

�2�

�x��y�
�

+ �b − 1�2�4
�2�

�x��x�
+ 3

�2�

�y��y�
+ 6

�2�

�x��y�
�� .

his can either be derived in a similar manner to the three-dimensional case, or the quantum-wire
roblem can be extended to a three-dimensional problem by assuming translational symmetry in
he third direction. If it is then solved at the zone center in the third direction, the second-order
pproximation of the deformed Hamiltonian will have the above form. In the latter case the
roblem is actually closer to a real problem, although a idealized version, because such quantum-
ire structures can be grown in reality �see Ref. 18�.

The solid lines in Fig. 4 show the error resulting from using the first- and second-order
pproximations �the black and crossed red lines, respectively�. Here, it is seen that the first-order
pproximation is within an error of 1% for b−1 between −0.058 and 0.055, whereas the energies
f the second-order approximation are within an error of 1% for b−1 between −0.197 and 0.098.
gain, it can be seen that the second-order approximation gives substantially better results.

The second-order Taylor series expansion of the weak formulation of the problem takes the

orm: Find � and E such that
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W�����,�,E� = 0,

or all ��Cc

��−5,5���−5,5� ,C�, where

W�����,�̃,E� � 

−5

5 

−5

5 � �2

2m
 ��*

�x�

��

�x�
+

��*

�x�

��

�x�
+ �− �b − 1� + �b − 1�2�� ��*

�x�

��

�y�
+

��*

�y�

��

�x�
�

+ �b − 1�2��*

�x�

��

�x�
� + �Vid − E��1 + 2�b − 1� + �b − 1�2��̂*��dx�dy�.

rom this, the energies can be calculated with respect to a first- and a second-order approximation
f the weak form. The dashed lines in Fig. 4 show the error in the energy introduced by using the
rst- and the second-order approximation of the weak form as a function of both b and b−1 �black
nd boxed red lines, respectively�. Here, it is seen that the first-order approximation of the weak
orm has an error of less than 1% for b−1 between −0.089 and 0.114, whereas the error of the
econd-order approximation of the weak form is within an error of 1% for b−1 between −0.139
nd 0.14. It is seen, as expected, that the second-order approximation of the weak form is much
etter than the first-order approximation of the weak form. But, when the approximations of the
eak form are compared to the approximations of the strong form, it is seen that the second-order

pproximation of the strong form is actually more accurate than the second-order approximation
f the weak form in the negative direction, whereas it is the second-order approximation of the
eak form which is more accurate in the positive direction. Hence, for this two-dimensional
roblem it is not easy to say which of the two formulations gives the best results. This differs from
he observations made in the one-dimensional examples above, where it was seen that the approxi-

ations of the weak formulation always were more accurate than the approximations of the strong
ormulation.

V. CONCLUSION

In this article a method to incorporate deformation effects in Hamiltonians has been presented
ased on a Taylor series expansion with respect to the deformation. This method was exemplified
ith a Hamiltonian of an inhomogeneous crystal structure including spin. For this Hamiltonian,

he second-order Taylor series expansion of the eigenvalue problem was found both in a strong
nd a weak formulation. The weak formulation was needed in order to be able to handle defor-
ations that might not be differentiable at interfaces. It was also shown that the weak formulation

IG. 4. �Color online� Graph showing the error in the energies for the quantum wire when using the first- and second-order
pproximations.
ould be transformed into a strong formulation with interface boundary conditions.
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One- and two-dimensional examples were presented, where it was shown that the Taylor
eries approximations give quite accurate results. In actual fact, an error in the energy within 1%
or a linear strain of up to 5.5% for the first-order approximations and 9.8% for the second-order
pproximations was obtained. For the one-dimensional examples, it was also seen that the ap-
roximations of the weak formulation gave considerably more accurate results than the approxi-
ations of the strong formulation. But, for the two-dimensional example, this was not the case.
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PPENDIX A: TAYLOR EXPANSION „STRONG FORMULATION…

First, it should be noted that all the functions under investigation in this appendix, except the
otential V�, are Frechet differentiable. As a consequence, all the usual rules normally associated
ith derivatives can be applied.

In the course of finding the Gâteaux derivative of Ĥ, the following lemma will be used:
Lemma A.1. Let F: D→C�B ,M�3,R�� be given by F���=���, G�C�B ,M�3,R��, and �

Ĉ2, where M�3,R� is the set of 3�3 matrices with real coefficients; then

DF��� · � = ��� ,

DF−1�I� · G = − G ,

D det F�I� · G = Tr�G�

here I�C�B ,GL�3,R�� is given by I�r��ij =�ij, F−1 is the mapping F�F −1 for F
C�B ,GL�3,R��, and det F is the mapping F�det F. In addition

D2F −1�I� · �G,G� = 2�G�2,

nd

D2 det F�I� · �G,G� = 2 Tr��G�co� = 2�G11G22 − G12G21 + G11G33 − G13G31 + G22G33 − G23G32� ,

here �G�co is the matrix of cofactors of G.
Proof of Lemma A.1. Using Eq. �6�, it is seen that

DF��� · � =
d

dt
������ + t����t=0 = ��� .

et F0, G�C�B ,M�3,R��, F0 invertible, and let ��R be given such that F0+ tG is invertible for
ll t� �−� ,��. Observe that

�F0 − tG�−1 − F 0
−1

t
=

F 0
−1

t
��I + tGF 0

−1�−1 − I� = − F 0
−1�I + tGF 0

−1�−1GF0
−1.

rom this it follows that the limit for t→0 exists and

DF −1�F0� · G = − F 0
−1GF 0

−1. �A1�
ith F0= I the second result in Lemma A.1 is found. From Eq. �A1� it is also found that

                                                                                                            



W

w

i

U

g

1

w
d

T

T
D

112102-17 A Treatment of Deformation Effects in Hamiltonians J. Math. Phys. 46, 112102 �2005�

                        
D2F −1�F0� · �G,G� = D�− F −1GF −1��F0� · �G� = 2F 0
−1GF 0

−1GF 0
−1.

ith F0= I, the third result is obtained.
It is known that

det F = F1 � F2 · F3, �A2�

here Fi is the ith column of F. From Eq. �A2�, it is seen that

D det F�F0� · G = G1 � �F0�2 · �F0�3 + �F0�1 � G2 · �F0�3 + �F0�1 � �F0�2 · G3, �A3�

.e.,

D det F�I� · G = Tr G .

sing Eq. �A3�, it is found that

D2 det F�F0� · G = 2�G1 � G2 · �F0�3 + �F0�1 � G2 · G3 + G1 � �F0�2 · G3� ,

iving

D2 det F�I� · G = 2 Tr Gco.

�

. The kinetic part K„F…

The second-order Taylor series expansion is given by

KF � KI + DKI · �F − I� +
1

2
D2KI · �F − I,F − I� ,

here KF is given in Eq. �4�. Using the chain rule, Lemma A.1, and the definition of the Gâteaux
erivative, it can be shown that

DKF0
· G =

�2

2m��DF −1�F0� · G� ji
�

�xj�
��F 0

−1 � �0�ki
�

�xk�
� + �F 0

−1 � �0� ji
�

�xj�
��DF −1�F0� · G�ki

�

�xk�
�� ,

�A4�

hat is

DKI · G =
�2

2m��G + GT� jk
�

�xj�

�

�xk�
+

�

�xi�
��G�ki�

�

�xk�
� .

he second derivative of the kinetic part K�F� can be found from Eq. �A4� using that
2F��0� ·�=0 for all � and �0, giving

D2KI · �G,G� = −
�2

m ��GGT� jk
�

�xj�

�

�xk�
+ �G� ji

�

�xj�
��G�ki�

�

�xk�
+ �G2 + �GT�2� jk

�

�xj�

�

�xk�

+
�

�x�
��G2�ki�

�

�x�
� .
i k
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. The spin-orbit part, HSO

The second-order Taylor series expansion of the spin-orbit part is given by

H�
SO � Hid

SO + DHid
SO · �� − id� +

1

2
D2Hid

SO · �� − id,� − id� ,

here H�
SO is given in Eq. �5�. Again using �6�, Lemma A.1, and the chain rule, it is straightfor-

ard to show that

DH�0

SO · � = − i
�2

4m2c2 ���F 0
−1 � �0�T���DV�0

· ��� � ��F 0
−1 � �0�T��� · �

+ �D�F −1�T�F0� · �������V�0
� � ��F 0

−1 � �0�T��� · �

+ ��F 0
−1 � �0�T��V�0

� � �D�F −1�T�F0� · �������� · �� , �A5�

here F0=���0. That is

DHid
SO · � = − i

�2

4m2c2 �����DVid · ��� � �� · � − ����T��Vid� � �� · � − ���Vid� � ���T�� · �� .

rom Eq. �A5�, the second derivative of HSO is found, arriving at

D2Hid
SO · ��,�� = − i

�2

2m2c2�− ����T���DVid · ��� � �� · � − ����DVid · ��� � ����T��� · �

+
1

2
����D2Vid · ��,���� � ���� · � + ����T��Vid� � ����T��� · �

+ �����T�2��Vid� � �p� · � + ���Vid� � �����T�2��� · �� .

PPENDIX B: TAYLOR EXPANSION „WEAK FORMULATION…

In the course of determining the weak formulation, Theorem B.1 was used. First, two prob-
ems are introduced.

I� Find � and E such that

W����� � �,�,E� = 0,

for all �+ ,�−�Cc

���B� ,C�.

II� Find � and E such that

W�����,�,E� = 0,

for all �+ ,�−�Cc

�B ,C�.

Theorem B.1. Problem I and II are equivalent.
Proof. Let � and E be a solution to problem �II�, and assume that there exists a �= ��+ ,�−�T,

ith �+ ,�−�Cc

���B� ,C�, such that W����� �� ,� ,E��0. It is easily seen, using a regularizer �see

ef. 19�, that there exists two sequences of functions in Cc

�B ,C�, denoted �+� and �−�, such that

�+� ,�−��T→� �� for �→0. Using the dominated convergence theorem �see Ref. 16�, it can be
hown that

lim
�→0

�W������+�,�−��T,�,E�� = W����� � �,�,E�;
t the same time using that � and E is a solution to problem �II�, it is found that
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lim
�→0

�W������+�,�−��T,�,E�� = 0.

ut, this contradicts the assumption that W����� �� ,� ,E��0. From this it is seen that
����� �� ,� ,E�=0 for all �+ ,�−�Cc


���B� ,C�, showing that � and E is also a solution to problem
I�.

That a solution to problem �I� is also a solution to problem �II� is shown in a similar manner
y changing to coordinates on ��B� in the integrals. �

. The kinetic part, K �
±

Using the expressions in Lemma A.1, it is found that

�DK�0

± · ����±,�� =
�2

2m



B\
���DF −1�F0� · �����F 0

−1 � ��T�ij
���±�*

�xi�

��±

�xj�
det F0

+ ��F 0
−1 � ���DF −1�F0� · ����T�ij

���±�*

�xi�

��±

�xj�
det F0 dV�

+ ��F 0
−1 � ���F 0

−1 � ��T�ij
���±�*

�xi�

��±

�xj�
D det F�F0� · ����dV�, �B1�

here F0=���0, giving

�DKid
± · ����±,�� = −

�2

2m



B\
���� + ���T�ij

���±�*

�xi�

��±

�xj�
−

���±�*

�xi�

��±

�xi�
Tr�����dV�.

ontinuing from Eq. �B1�, it is seen that

�D2K id
± · ��,�����±,�� =

�2

m



B\
�������2 + ����T�2 + ����������T�ij

���±�*

�xi�

��±

�xj�
dV�

− ���� + ���T�ij
���±�*

�xi�

��±

�xj�
Tr�����dV� +

���±�*

�xi�

��±

�xi�
Tr������co��dV�.

. The potential part, V �
±

Again using Lemma A.1, it is found that

�DV�0

± · ����±,�� = 

B

�±
*�DV�0

· � det F0 + V�0
� �0D det F�F0� · �����±dV�, �B2�

hat is

�DV id
± · ����±,�� = 


B
�±

*�DVid · � + Vid Tr�������±dV�.

he second-order derivative is found using Eq. �B2� and Lemma A.1, giving

�D2V �0

± · ����±,�� = 
 �±
*�D2Vid · ��,�� + 2DVid · � Tr����� + 2Vid Tr������co���±dV�.
B
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. The spin-orbit part, H �
SO,±

Finding the derivatives of the spin-orbit part is straightforward, giving

�DHid
SO,± · ����±,�� = − i

�2

2m2c2

B\

�±
*����T� � ��Vid · ��� + � � ���DVid · �� · ����±dV�

nd

�D2Hid
SO,± · ��,�����±,�� = − i

�2

2m2c2

B\

�±
*�2���T� � ���DVid · �� · ����±dV�

− i
�2

2m2c2

B\

�±
*�� � ���D2Vid · ��,��� · ����±dV�.
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We present an estimate for the space-time integral of classical solutions to the
repulsive Wigner-Poisson system. We use Markowich’s formalism between
Wigner-Possion and Schrödinger-Poisson systems. Through this formalism and
Morawetz interaction potentials, we derive the same a priori estimate given by
Chae and Ha for the repulsive Vlasov-Poisson system. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2101068�

. INTRODUCTION

In this paper, we are interested in the Wigner-Poisson �WP� system in the absence of colli-
ions,

�tw + v · �xw −
i

�
��V�w = 0, x � R3, v � R3, t � 0,

�V = − 4�n, n ª �
R3

w�x,v,t�dv ,

w�x,v,t = 0� = w0�x,v� , �1.1�

here w and � denote the Wigner density distribution function of a system of quantum mechanical
articles and a constant proportional to the Planck constant, respectively, and the pseudodifferen-
ial operator ��V� is given as

���V�w��x,v,t� ª
1

�2��3 � �
R3�R3

�V�x +
�

2
�,t� − V�x −

�

2
�,t��w�x,v�,t�ei�v−v��� dv� d� .

�1.2�

ere we have taken the mass of an electron to be unit for simplicity.
The quantum Liouville system �1.1� models the quantum mechanical motion of a large elec-

ron ensemble in a vacuum under the action of the Coulomb force generated by the charge of the
lectrons, and was first derived by Wigner32 in 1932 from the Schrödinger equation as the quan-
um analog of the classical Liouville equation �see Refs. 3 and 24 for details�. Recent miniatur-
zation process of semiconductor devices has led to the need for a quantum transport model that
an be used for numerical simulations.12,13,26,31

The global existence of one- and two-dimensional WP system was first established by
teinrück30 and Anold-Nier,2 respectively. For the case of three dimension, the global existence
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�
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as obtained using the Markowich’s reformulation23 of the WP system as a system of infinitely
any Schrödinger equations coupled with the Poisson system by Brezzi-Markowich5 for the

epulsive case. Ilner-Zweifel-Lange later extended the result of Ref. 5 to both repulsive and
ttractive potentials in Ref. 19 and also gave some dispersion estimates of the solutions.

On the other hand, the classical limit �→0 from �1.1� to the Vlasov-Poisson system �1.3� was
ettled by Lions-Paul21 and Markowich-Mauser,24

�t f + v · �xf − �xV · �vf = 0, x � R3, v � R3, t � 0,

�1.3�

�V = − 4��
R3

f dv, f�x,v,t = 0� = f0�x,v� ,

here f�x ,v , t� is the distribution function for charged particles at time t, at a phase space position
x ,v�. Recently Chae and Ha8 derived an estimate for the space-time integral for the classical
olutions to �1.3�. More precisely, they explicitly constructed a Lyapunov functional which is
onincreasing along smooth solutions and satisfies the identity

D�f�t�� + �
0

t � � �
R3�R3�R3

f�x,v,s�f�x,v*,s�dv* dv dx ds = D�f0�, t � 0.

his yields

�
0

	 � � �
R3�R3�R3

f�x,v,t�f�x,v*,t�dv* dv dx 
 	 , �1.4�

hich might be useful to analyze the time-asymptotic behavior of solutions as in Ref. 16. The key
ngredients of their constructions are the time decay of local density and detailed analysis of the
haracteristics, which is not useful to �1.1� due to the pseudodifferential operator ���V�w�.

The purpose of this paper is to derive the estimate �1.4�, incorporating two key ingredients.
irst, we use Markowich’s formalism which establishes the equivalence between the Wigner-
oisson system and Schrödinger-Poisson system under some reasonable initial data assumption.
econd, we employ Morawetz interaction potential which has been widely used for the study on
ispersive equations especially on the nonlinear defocusing Schrödinger equation as listed in Ref.
. Below we briefly explain Markowich’s formalism between WP system and countably many
chrödinger-Poisson systems following the presentation of Ref. 17. In the sequel we set the
enormalized Planck constant to be unity ��=1�.

Let Fv�f� be the Fourier transform of f in v variable and F�
−1�f� be its inverse Fourier

ransform,

Fv�f��x,�� = �
R3

f�x,v�e−iv·� dv and F�
−1�g��x,v� =

1

�2��3�
R3

g�x,��eiv·� d� .

e take the Fourier transform of �1.1� to get

�tFv�w� + i�� · �xFv�w� − i�VFv�w� = 0, �1.5�

here �V is the symbol of the pseudodifferential operator ���V�w��x ,v , t�,

�V ª V�x +
�

2
,t� − V�x −

�

2
,t� .
e now introduce a set of coordinates,
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r = x +
�

2
, s = x −

�

2
,

nd one-particle density matrix z defined as

z�r,s,t� ª
1

�2��3Fv�w��x,�,t� .

hen �1.1� is transformed to the Heisenberg equation,

izt − � 1
2�s + V�s,t��z + � 1

2�r + V�r,t��z = 0. �1.6�

ote that

n�x,t� = �
R3

w�x,v,t�dv = Fv�x,0,t� = �2��3z�x,x,t� .

Suppose that datum w0 in �1.1� satisfies the following assumption.
�A� :z�r ,s ,0��L2�R3�R3� is the kernel of a non-negative self-adjoint trace class operator in

2�R3�,

�
R3

z�r,r,0� = 1 �trace class�, z�r,s,0� = z̄�s,r,0� �self-adjoint� .

hen it follows from the spectral theorem that

z�r,s,0� = �
k=1

	

�kk�r�k�s� , �1.7�

here �k and �k satisfy

�k � 0, �
k=1

	

�k = 1, k � L2�R3�, 	k	L2 = 1, for k � 1,

nd the series converges in L2�Rr
3�Rs

3�. Hence it is easy to see that

z�r,s,t� ª �
k=1

	

�k�k�r,t��k�s,t� �1.8�

s the solution of �1.6�, when the functions 
�k�x , t��k�N are solutions of the Schrödinger-Poisson
ystem,

i�t�k + 1
2��k = V�k, x � R3, t � 0,

�1.9�
�k�x,t = 0� = k�x� ,

here V is an electric potential,

V�x,t� =
1

4�
�

R3

n�y,t�
�x − y�

dy
ith the density n given by
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n�x,t� = �
k=1

	

�k��k�x,t��2. �1.10�

he solution w of �1.1� is given by

w�x,v,t� = F�
−1�z�x +

�

2
,x −

�

2
�� , �1.11�

nd local mass density n�· , t� defined by �1.10� is in L1�Rx
3� and non-negative under the assumption

A�. The main result of this paper is as follows.
Theorem 1.1: Suppose that initial datum �0�L2�Rx

3�Rv
3� is real-valued and its correspond-

ng initial density matrix z0=z�· , · ,0� satisfies �A� and

�
m=1

	

�m	m	H2�R3� 
 	 .

hen the classical solution of �1.1� satisfies

�
0

	 � � �
R3�R3�R3

w�x,v,t�w�x,v*,t�dv* dv dx dt 
 	 . �1.12�

Remark 1.1: �1� The above covariance-type estimate has been obtained for other classical
inetic models such as the Boltzmann equation, Vlasov-Poisson system in Refs. 8 and 16 for small
lgebraically decaying initial data by using appropriate Lyapunov functionals. However, it seems
hat such a functional approach does not give an explicit time-decay rate for solutions of afore-
entioned models including the Wigner-Poisson system (1.1). For the Vlasov-Poisson system
escribing collisionless plasma, there are estimates yielding explicit time-decay rates of the elec-
ric field E and the local density � with smooth, compactly supported initial data in three
imensions.18,29

�2� The asymptotic behavior of the repulsive Wigner-Poisson system was studied in many
iteratures, for example, the explicit time-decay rates of solution, local density, and the potential
ere studied in Ref. 6 for initial data satisfying

�
m=1

	

�m�	m	L2�R3� + 	xm	L2�R3�� 
 	 . �1.13�

he dispersion estimate was first considered in Ref. 19 for H2-initial data with the second condi-
ion of (1.13) using the methods from Ref. 11. In particular, the following dispersion estimate for
he local density n�x , t� was obtained in Refs. 6 and 9.

	n�· ,t�	L2�R3� � C�1 + t�−3/4, for t � 0,

ence this implies the space-time estimate (1.12), apart that the initial data in Theorem 1.1 does
ot need the one moment condition in x variable as above. On the other hand, there is a quali-
ative study on asymptotic behavior of the three-dimensional Schrödinger-Poisson equation (pure
uantum state) using a scaling group,22 where the limit behavior of the solution is described by the
olutions of the corresponding linear equation.

The rest of this paper is organized in the following manner. In Sec. II, we address time-
volution estimate of Morawetz interaction potential for the defocusing Schrödinger-Poisson sys-
em. Finally in Sec. III, we present the proof of Theorem 1.1. In the Appendix we see that the
nequality �2.7� also holds for Hartree-type equations and can provide a simpler proof of scattering
esult for Hatree-type equations.
Notations: Throughout the paper, we use the following notations:
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f � g ⇔ f � Cg for some generic positive constant C ,

	u�t�	Lp ª 	u�· ,t�	Lp�R3�, 	u�t�	Hk ª 	u�· ,t�	Hk�R3�.

I. PRELIMINARIES

In this section we present the time-evolution estimate of the Morawetz interaction potential to
chrödinger-Poisson system �see Refs. 21, 23, and 26 for details�.

Consider first pure quantum state or the Hartree equation which corresponds to the case �1

1, �m�1=0 in the Schrödinger-Poisson system,

i�t� + 1
2�� = V����2��, x � R3, t � 0,

�2.1�
��x,t = 0� = �0�x� ,

here V����2� is the Newtonian potential of ���2, i.e.,

V����2� ª
1

4�
�

R3

���y,t��2

�x − y�
dy .

ore generally we set

V����2��x,t� =� v�x − y����y,t��2 dy

or a non-negative function v with some integrability condition. We refer to Eq. �2.1� with such a
eneral potential to be of Hartree type, which will be considered in the Appendix. In the sequel,
e often drop the ���2 dependence in V����2� for notational simplicity, i.e., VªV����2�. The

onservation of L2-norm and the energy defined as

E�t� ª �
R3

�����t��2 + V���t��2�dx

ollow from the lemma below.
Lemma 2.1: Let � be a classical solution of (2.1) and decay fast enough at infinity. Then the

ollowing conservation laws hold:

�t���2 + div�Im �̄ � �� = 0,

�t�����2 + V������2� + div�2 Re���̄�t�� −
1

2�
V � �tV −

1

4�
�t�� · �V � V��� = 0.

Proof: For the detailed proof, we refer to Ref. 7. �

We next turn to the Morawetz interaction potential introduced in Ref. 9. For given classical
olution � of �2.1�, define Morawetz interaction potential M���t�� by

�2.2�

e note that

�M ���t��� � 	��t�	 2	���t�	 2 � 	� 	 2E�0� .
x L L 0 L
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his yields a priori bound for M���t��,

�M���t��� � 	�0	L2
3 E�0� .

e first study the time evolution of the weight Mx���t��.
Lemma 2.2: Let � be the classical solution of (2.1). Then we have

�1�
d

dt
Mx���t�� = 2����x,t��2 + �

R3

��” x��y,t��2

�y − x�
dy + �

R3

1

�y − x�� y − x

�y − x�
· �V�y,t��2

dy ,

�2� �xMx���t�� = − 2�
R3

Im��̄�y,t� � ��y,t��
�y − x�

dy ,

here V�x , t�=V����2� and �” x� denotes the angular part of ��, i.e.,

�” x� = �� −
y − x

�y − x�� y − x

�y − x�
· ��� .

Proof: �1� We first rewrite

Mx���t�� = Im �
R3

�̄�y,t��r��y,t�dy = Im �
R3

�̄�y,t���r +
1

r
���y,t�dy = Im �

0

	 �
S2

r�̄�r�r��d� dr ,

�2.3�

here we used

r = �y − x�, S2 = 
y � R3:�y − x� = 1� and Im �
R3

1

r
���y,t��2 dy = 0.

e use integration by parts and the equation �2.1� to see

d

dt
Mx�t� = Im �

0

	 �
S2

�r���r�r�t� + �r�t��r�r��d� dr

= − 2 Im �
0

	 �
S2

�r�r���r�t�d� dr

= − 2 Im �
0

	 �
S2

�r�r��� i

2
�r

2�r�� +
i

2r
��� − irV��d� dr

= − Re �
0

	 �
S2

�r�r���r
2�r��d� dr − Re �

0

	 �
S2

�r�r��
1

r
��� d� dr

+ 2 Re �
0

	 �
S2

�r�r��rV� d� dr ª I1 + I2 + I3,

here we used

�� = �r
2� +

2

r
�r� +

1

r2�w� .
y the same arguments given in Ref. 9, I1 and I2 satisfy
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I1 + I2 = 2����x,t��2 + �
R3

1

�y − x�
��” x��y,t��2 dy .

or the quantity I3, we have

2 Re �
0

	 �
S2

�r�r��rV� d� dr = �
0

	 �
S2

�r�r2���2�V d� dr

= �
R3

y − x

�y − x�3
· ��r2���2�V dy

= − �
R3

���2
y − x

�y − x�
· �V dy = �

R3
�V

y − x

�y − x�
· �V dy ,

here we used

2 Re
�r�r��rV�� = �r�r2���2�V and − ���y,t��2 = �V .

ote that

�
R3

�V
y − x

�y − x�
· �V�y,t�dy =�

R3
� j� jV

yi − xi

�y − x�
�iV�y,t�dy .

n the other hand, if i� j we have

�
R3

� j� jV
yi − xi

�y − x�
�iV�y,t�dy = �

R3

�yi − xi��yj − xj�
�y − x�3

�iV� jV +
1

2
� 1

�y − x�
−

�yi − xi�2

�y − x�3 �� jV� jV dy .

�2.4�

f i= j, then

�
R3

�i�iV
yi − xi

�y − x�
�iV�y,t�dy = �

R3
−

1

2
� 1

�y − x�
−

�yi − xi�2

�y − x�3 ��iV�iV dy . �2.5�

dding �2.4� and �2.5� and considering i , j=1,2 ,3 we obtain

− �
R3

���y,t��2
y − x

�y − x�
· �V�y,t�dy =�

R3

1

�y − x�� y − x

�y − x�
· �V�y,t��2

dy .

�2� We use

�x · � y − x

�y − x�� = −
2

�y − x�

o find

�xMx���t�� = �x��
R3

Im��̄�y,t� � ��y,t�� ·
y − x

�y − x�
dy� = − 2�

R3

1

�y − x�
Im��̄�y,t� � ��y,t��dy .

�

Remark 2.1: �1� The above Morawetz interaction potential was introduced to simplify the
ell-known Morawetz-type estimate by Lin-Strauss22 for the nonlinear Schrödinger equation in
ef. 9.

4,8,16
�2� The Morawetz interaction potential is in spirit similar to the interaction potentials in
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lassical kinetic theory. As described in Ref. 10 when u satisfies a defocusing nonlinear
chrödinger equation

iut + �u = �u�p−1u, p � 1,

e can define Morawetz interaction potential more generally by Ma�t�ª�tV
a, where

Va�t� ª� �
R3�R3

T00�t,x�T00�t,y�a�x − y�dx dy

ith mass density T00= �u�2 for an arbitrary real valued function a�x�. We let a�x�= �x� for the
bove Morawetz interaction potential M�t�.

Since the linear Schrödinger equation is transformed to the linear transport equation through
igner transformation,

f�x,v,t� =
1

�2��n�
R3

e−iv·yu�x +
y

2
,t�ū�x −

y

2
,t�dy ,

nd mass density �u�2 corresponds to f�x ,v , t�dv in the phase space, we would define

or a phase space density function f . If f satisfies the Boltzmann equation,

�t f�x,v,t� + v · �xf�x,v,t� = Q�f , f��x,v,t� ,

e have

ith b�x�=�xa�x�, employing conservation of mass and momentum. If we let b�·�=�x�0�·� for the
ne-dimensional case, we obtain the celebrating Bony’s interaction potential for the one-
imensional Boltzmann model,

hich enjoys

�tI�f��t� =
1

2
� � �

R�R�R
�v − v*�2f�x,v,t�f�y,v*,t�dx dv dv*.

he interaction potentials D�f�t�� in Refs. 8 and 16 can be considered as a generalization of
ony’s potential.

Proposition 2.1: Let � be a classical solution of (2.1) with finite mass and energy. Then we
ave

�1�
dM���t��

dt
� 2��

3
���x,t��4 dx +� �

3 3

���x,t��2

y − x
� y − x

�y − x�
· �V�y,t��2

dy dx ,

R R �R
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�2� �
0

	 �
R3

���x,t��4 dx dt � 	�0	L2�R3�
3

E�0� .

Proof: �1� We use Lemma 2.2 to see

d

dt
M�t� = �

R3
���t���x,t��2�Mx�t� + ���x,t��2�tMx�t��dx = �

R3
���t���x,t��2�Mx�t��

+ 2��
R3

���x,t��4 dx +� �
R3�R3

���x,t��2��” x��y,t��2

�y − x�
dy dx

+� �
R3�R3

���x,t��2

�y − x� � y − x

�y − x�
· �V�y,t��2

dy dx ª J1�t� + J2�t� + J3�t� + J4�t� .

e next show

J1�t� + J3�t� � 0. �2.6�

t follows from Lemma 2.1 that

�t���x,t��2 = − �x · �Im��̄�x,t� � ��x,t��� .

hen J1�t� becomes

J1�t� = −� �
R3�R3

�x · �Im��̄�x,t��x��x,t���Im��̄�y��x��y,t�� ·
y − x

�y − x�
dy dx .

efine the momentum vector P�x , t�=Im��̄�x , t����x , t��. We use integration by parts in y and the
dentity

�xj
� yi − xi

�y − x�� = −
� ji

�y − x�
+

�yj − xj��yi − xi�
�y − x�3

o obtain

J1�t� = −� �
R3�R3

�P�x,t� · P�y,t� − �P�x,t� ·
y − x

�y − x���P�y,t� ·
y − x

�y − x��� dy dx

�y − x�

� −� �
R3�R3

���x,t����” x��x,t�����y,t����” x��y,t��
dy dx

�y − x�
.

e apply the inequality �ab�� 1
2 �a2+b2� with a= ��” x��x , t�����y , t�� and b= ���x , t����” x��y , t�� to

ee �2.6�. Finally we have

d

dt
M���t�� � 2��

R3
���x,t��4 dx +� �

R3�R3

���x,t��2

�y − x� � y − x

�y − x�
· �V�y,t��2

dy dx .

�2� We integrate the above inequality from t=0 to t=T to see

2��
0

T �
R3

���y,t��4 dy dt � 2 sup
t��0,T�

�M���t��� � 2	�0	L2
3 E�0� . �2.7�
�
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II. A PRIORI DISPERSION ESTIMATE

In this section, we present the proof of the Theorem 1.1 via Markowich’s formalism between
P system and SP system and Morawetz’s interaction potential in Sec. II.

Let w be the classical solutions to �1.1� with initial data satisfying the assumption of Theorem
.1. Then we have

w�x,v,t� = �
k=1

	

�kw��k�, �k � 0,

here �k�k=1,2 ,3 , . . . � is the solution of the Schrödinger-Poisson system

i�t�k + 1
2��k = V�k, k � N ,

�3.1�
�k�x,t = 0� = k,

here the electric potential V is defined by the Newtonian potential of n,

V =
1

4�
�

R3

n�y,t�
�y − x�

dy and n�x,t� = �
k=1

	

�k��k�x,t��2. �3.2�

n the similar manner to the preceding section, we define a Morawetz interaction potential M�t�
or �3.1�,

M�t� ª �
k,m=1

	

Mkm�t� ,

Mkm�t� ª �
R3

��k��k�x,t��2���mMx��m�t���dx = �k�m�
R3

��k�x,t��2Mx��m�t��dx ,

here Mx��m�t�� is the functional defined in Sec. II. Then we have a priori estimates

�M�t�� � ��
k=1

	

�k	k	L2�R3�
2 ���

m=1

	

��m	m	L2�R3�
2 + �m	�m	L2�R3�

2 �� � ��
k=1

	

�k	k	L2�R3�
2 �E�0� 
 	 .

�3.3�

elow we study the time evolution of M�t�.
Lemma 3.1: Let �k ,k=1,2 ,3 , . . . be a classical solutions of (3.1) decaying at infinity in x.

hen we have

d

dt
M�t� � 2� �

k,m=1

	

�k�m�
R3

��k�x,t��2��m�x,t��2 dx

+ �
k,m=1

	

�k�m� �
R3�R3

��k�x,t��2

�y − x� � y − x

�y − x�
· �V�y,t��2

dy dx .
Proof: Let k ,m�N, then it follows from Proposition 2.1 that
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d

dt
�

R3
��k�x,t��2Mx��m�t��dx = �

R3
��t��k�x,t��2�Mx��m�t��dx + �

R3
��k�x,t��2��tMx��m�t���dx

= �
R3

��t��k�x,t��2�Mx��m�t��dx

+� �
R3�R3

��k�x,t��2��” x�m�y,t��2

�y − x�
dy dx

+ 2��
R3

��k�x,t��2��m�x,t��2 dx

+� �
R3�R3

��k�x,t��2

�y − x� � y − x

�y − x�
· �V�y,t��2

dy dx .

e multiply the above inequality by �k�m and sum up over k, m to find the desired result. �

The proof of Theorem 1.1: Define an interaction production functional ��w� introduced in
ef. 8,

��w�t�� ª� � �
R3�R3�R3

w�x,v,t�w�x,v*,t�dv dv* dx . �3.4�

his can be regarded as functionals measuring imaginary collisions between quantum particles,
lthough the physical situation is not clear unlike to the classical analogous case.8 Then for given
�0, we have

�
0

T

��w�t��dt = �
0

T � � �
R3�R3�R3

�
k,m=1

	

�k�mw��k��x,v,t�w��m��x,v*,t�dv dv* dx dt

= �
k,m=1

	 �
0

T �
R3

�k�m�
R3

w��k��x,v,t�dv dt�
R3

w��m��x,v*,t�dv* dx

= �
k,m=1

	 �
0

T �
R3

�k�m��k�x,t��2��m�x,t��2 dx dt �
1

2�
��M�t�� + �M�0���

� ��
k=1

	

�k	�k0	L2�R3�
2 �E�0� .

his completes the proof.
Remark 3.1: The computation in Secs. II and III is also valid assuming ��H1�R3� for Hartree

quation and �k�H1�R3�, k=1,2 ,3 , . . . such that 
�k :�k=1
	 �k	�k	H1�R3��
	 for the Schrödinger-

oisson system. In fact, the global well-posedness in H1�R3� space can be easily proved combining
he energy conservation and the Stricharz estimate for the Schrödinger equation, as in the same
anner in Ref. 6.
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PPENDIX: ENERGY SCATTERING FOR HARTREE-TYPE EQUATIONS

In this section we provide a simpler proof of the scattering result of Refs. 14 and 27 for
artree-type equations in dimension 3,

i�tu + 1
2�u = �v � �u�2�u, x � R3, t � 0,

�A1�
u�x,t = 0� = u0�x� .

ore precisely we obtain the same space-time estimate in Proposition 2.1 for �A1� to prove the
symptotic completeness part of the scattering result. The initial value problem of �A1� is globally
ell-posed for data u0�H1�R3� if v�Lp1 +Lp2 with 1� p1� p2�	 �Ref. 14�.

Lemma A.1: Let u be the classical solution of �A1� with v�Lp1 +Lp2, 1� p1� p2�	, and
�x�=v��x��. If we define the Morawetz interaction potential for u by �2.2�, then we have

�1�
d

dt
Mx�u�t�� = 2��u�x,t��2 + �

R3

��” xu�y,t��2

�y − x�
dy

−
1

2
� �

R3�R3
v���y − z��

y − z

�y − z�
· � y − x

�y − x�
−

z − x

�z − x���u�y��2�u�z��2 dz dy ,

e note that if v��x�� is nonincreasing in �x�, then the third terms in the item �1�, �2� are non-
egative since v��0 and

y − z

�y − z�
· � y − x

�y − x�
−

z − x

�z − x�� � 0.

Proof: We only need to modify the estimate of the quantity I3 in Lemma 2.2 as

2 Re �
0

	 �
S2

�r�ru�rVu d� dr = �
0

	 �
S2

�r�r2�u�2�V d� dr

= �
R3

y − x

�y − x�3
· ��r2�u�2�V dy = − �

R3
�u�2

y − x

�y − x�
· �V dy

= − �
R3

�u�y��2
yi − xi

�y − x��R3
v���y − z��

yi − zi

�y − z�
�u�z��2 dz dy

= −
1

2
� � v���y − z��

y − z

�y − z�
· � y − x

�y − x�
−

z − x

�z − x���u�y��2�u�z��2 dz dy .

�

The energy defined by

E�t� ª �
R3

��u�2 + �v � �u�2��u�2 dx

nd 	u�t�	L2 are conserved for Eq. �A1�. Therefore under the same condition in the above lemma,

e have
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�
0

	 �
R3

�u�4�x,t�dx dt � M�u�t�� � 	u�0�	L2
3 E�0� �A2�

f v��x�� is non-negative and nonincreasing in �x�.
Theorem A.1: Assume that a non-negative v�Lp1 +Lp2 satisfying 1� p1� p2
3/2 and

�x�=v��x�� with v��x�� nonincreasing in �x�. Then there is scattering for H1 solutions. Precisely, for
ny solution u of �A1� with u�0��H1�R3�, there exists a solution w of the free Schrödinger
quation with w�0��H1�R3� such that 	u�t�−w�t�	H1→0 as t→	. In other words, the equation is
symptotically complete in H1�R3�. Moreover, the correspondence u�0��w�0� defines a homeo-
orphism in H1�R3�.

According to Sec. 4 in Ref. 14, asymptotic completeness will follow once we establish that the
lobal solution belongs to X1�R�, where

X1�R� = 
u:u and � u � X�R�� ,

X�R� = 
u:u � C�R,L2� and u � Lq�R,Lr� for admissible pair �q,r�� .

e refer to �q ,r� as the admissible pair when q ,r�2, and

1

q
+

3

2r
=

3

4
.

e recall the Strichartz estimates of the Schrödinger equation in three space dimension.
Proposition A.1: Suppose that �q ,r�, �q̃ , r̃� are any two Schrödinger admissible pairs as the

bove. Suppose that u�x , t� is a solution of the problem

i�tu�x,t� + �u�x,t� = F�x,t�, �x,t� � R3 � �0,T� ,

or some data u�0� and T�0. Then we have the estimate

	u	Lt
qLx

r��0,T��R3� � 	u�0�	L2�R3� + 	F	Lt
q̃�Lx

r̃���0,T��R3�, �A3�

here

1

q̃
+

1

q̃�
= 1,

1

r̃
+

1

r̃�
= 1.

Let us define Z�t� as

Z�t� = sup
�q,r� admissible

	���u	Lt
qLx

r��0,t��R3�. �A4�

A�= �1+A2�1/2, and ���s for the operator with Fourier multiplier �1+ ���2�s/2. We omit the index in
ase that s=1.

We claim that

Z�t� � C�	u�0�	H1�

nd this will settle the asymptotic completeness. Following the same manner in Ref. 9, we can
ecompose thanks to �A2� the time interval �0,	� into a finite number of disjoint intervals

1 ,J2 , . . . ,JK where for i=1, . . . ,K we have

	u	Lx,t
4 �Ji�R3� � � �A5�

or a constant � depending only on 	u�0�	H1 to be chosen later.
˜ ˜ 10
Choosing q� ,r�= 7 , the estimate �A3� gives for all t�J1,
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Z�t� � 	u�0�	H1�R3� + 	�v � �u�2�u	Lt,x
10/7��0,t��R3� + 	���v � �u�2�u�	Lt,x

10/7��0,t��R3�.

n the following we assume p1= p2=3/ �2+�� for some �� �0,1� and denote both by p without
oss of generality.

�i� Estimate of 	�v���u�2�u	L
t,x

10
7 .

By using the Hölder and Young inequality, we have

	�v � ��u�2�u	L
t,x

10
7 ��0,t��R3� � 	v � ��u�2	L

t,x

20
9 ��0,t��R3�	u	Lt,x

4 ��0,t��R3�.

hen 0
�

1
4 ,

v � � �u�2	L
t,x��0,t��R3�

20
9 � 	v	L

x

3
2+��� 	u � u	

L
x

60
47-20�

20
9 dt� 9

20

� C�	v	L
x

3
2+� ,	 � u	Lt

	Lx
2��0,t��R3���� 	u	

L
x

60
17-20�

20
9 dt� 9

20

�C�	v	L
x

3
2+� ,	 � u	Lt

	Lx
2��0,t� � R3�,	u	Lt

	L
x

12
1−4� ��0,t��R3��	u	L

t

20
9

Lx
5��0,t��R3�

hen 1
4 ���1,

	v � � �u�2	L
t,x

20
9 ��0,t��R3� � 	v	L

x

3
2+�	�u	L

t

20
9 Lt

5��0,t��R3�	u	Lt
	L

x

12
7−4� ��0,t��R3�.

ote that 	u	Lt
	Lx

m��0,	���R3� is bounded by 	u�0�	Lx
2 and the energy for any 2�m
	, and that �20

9 ,5�
s admissible. Thus we have

	�v � ��u�2�u	L
t,x

10
7 ��0,t��R3� � �	v	Lx

pZ�t� .

�ii� Estimate of 	�v� �u�2��u	Lt,x
10/7��0,t��R3�.

By using the Hölder and Young inequality, we have

	�v � �u�2� � u	Lt,x
10/7��0,t��R3� � 	v � �u�2	Lt,x

5/2��0,t��R3�	�u	Lt,x
10/3��0,t��R3�

� 	v � �u�2	Lt,x
5/2��0,t��R3�Z�t� � 	v	Lx

p	u	
Lt

5Lx
2p̃��0,t��R3�

2
Z�t� ,

here

1

p
+

1

p̃
− 1 =

2

5
.

ote that p̃=15/ �11−5��. By Lp interpolation and Hölder inequality, we have

	u	Lt
5Lx

2p̃ � ��
0

t

	u	Lx
4

5a	u	Lx
q

5�1−a� dt�1/5

� 	u	Lt
5acLx

4��0,t��R3�
a 	u	

Lt
5�1−a�c�Lx

q��0,t��R3�
�1−a�

,

here

1

2p̃
=

a

4
+

1 − a

q
, 0 � a � 1,

1

c
+

1

c�
= 1.
f we let 5ac=4,
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	u	Lt
5Lx

2p̃ � 	u	Lt,x
4 ��0,t��R3�

a 	u	Lt
�20�1−a��/�4−5a�Lx

q��0,t��R3�
�1−a� for 0 
 a �

4
5 .

he pair ��20�1−a�� / �4−5a� ,r� is admissible for 3 /r=1+1/ �10�1−a��. On the other hand, the
orm 	u	Lx

q is bounded by Sobolev embedding,

	u	Lx
q � 	���su	Lx

r for s =
3

r
−

3

q
.

ince

1

q
=

11 − 5�

30�1 − a�
−

a

4�1 − a�
,

e have

s = 1 −
4 − 3a − 2�

4�1 − a�
.

e locate s� �0,1� if a is smaller than min ��4−2�� /3 ,2�� so that

	�v � �u�2� � u	Lt,x
10/7��0,t��R3� � 	v	Lx

p�2aZ�t�3−2a.

hus we have

	�v � �u�2�u	Lt,x
10/7��0,t��R3� + 	�v � �u�2� � u	Lt,x

10/7��0,t��R3� � ��1Z�t�1+�2

or �1 ,�2�0 and finally

Z�t� � 	u�0�	H1 + �	v	Lx
pZ�t� + ��1Z�t�1+�2. �A6�

or sufficiently small choice of �, the bound �A6� yields

Z�t� � C�	u�0�	H1�

or all t�J1. Since 	u�t�	H1 is bounded by the initial energy, we may repeat this argument to cover
he whole intervals. �Also see Refs. 1, 15, 20, 25, 28, and 33.�
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We consider the thermal equilibrium distribution at inverse temperature �, or
canonical ensemble, of the wave function � of a quantum system. Since L2 spaces
contain more nondifferentiable than differentiable functions, and since the thermal
equilibrium distribution is very spread out, one might expect that � has probability
zero to be differentiable. However, we show that for relevant Hamiltonians the
contrary is the case: with probability 1, � is infinitely often differentiable and even
analytic. We also show that with probability 1, � lies in the domain of the
Hamiltonian. © 2005 American Institute of Physics. �DOI: 10.1063/1.2109767�

. INTRODUCTION

We address the question whether the wave function � of a typical system from the canonical
nsemble of thermodynamics with inverse temperature � is differentiable. As pointed out in Ref.
, the thermal equilibrium distribution of the wave function, corresponding to the canonical en-
emble, is the “Gaussian adjusted projected measure” GAP���, a probability measure on the unit
phere in Hilbert space whose definition we recall in Sec. II, for �=��, the density matrix of the
anonical ensemble, given by �see, e.g., Refs. 8 and 10�

�� =
1

Z��,H�
e−�H, with Z��,H� = Tr e−�H. �1�

hus, we take � to be a random unit vector with distribution GAP����. The surprising result is
hat in many relevant cases � has probability 1 to be infinitely often differentiable and even
nalytic, i.e., GAP�����C��=GAP�����C��=1.

We explore four kinds of arguments concerning the smoothness of �, each requiring some-
hat different assumptions on the Hamiltonian H and leading to somewhat different conclusions.
ome of the arguments do not depend on the special measure GAP���� but show that, for suitable
amiltonians H, every distribution whose density matrix is �� will be concentrated on the smooth

respectively, analytic� functions; other arguments use the way the measure GAP��� is constructed
rom a Gaussian measure. The measure GAP��� is discussed in detail in Ref. 7. It has density
atrix � and is stationary if � is.

The first argument aims at showing that the Fourier coefficients of � go to zero so fast that
hey are still square summable after multiplication by any power of the wave number k. This can
e easily applied to cases in which the eigenfunctions of H are plane waves, such as for the free
chrödinger equation in a box. The second argument is based on the assumption that the eigen-
unctions of H are smooth, and the theorem asserting that, for a series of functions, summation and
ifferentiation commute if the series of the derivatives converges uniformly. We formulate a
ondition on H that entails this kind of convergence almost surely �a.s.� for the expansion of � in

�Electronic mail: tumulka@everest.mathematik.uni-tuebingen.de
�
Electronic mail: zanghi@ge.infn.it
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igenfunctions of H. The third argument, which supposes that � is a function on an interval I�R,
ims at showing that the increments are not too large, ���q+�q�−��q����q, which suggests
ifferentiability; however, the rigorous version of this argument provides only a very weak result.
he fourth argument, the simplest and most elegant one, is of a more abstract nature: it concerns
ot the question ��C� but instead the related question ��domain�H�� for ��N; indeed, we
btain without further assumptions on H that a.s. ��C��H�ª��=1

� domain�H�� for almost all �
or which thermal equilibrium exists at all. We also provide a variant of this argument concerning
he space of analytic vectors of H.

The paper is organized as follows. In Sec. II, we recall from Ref. 7 the definition of the
easure GAP���� representing the canonical ensemble. In Sec. III, we study as an example of H

he Laplacian on the circle. We conclude smoothness and analyticity of � from an analysis of the
ecay behavior of the Fourier coefficients of �. In Sec. IV, we apply the same argument to the
relativistic or nonrelativistic� ideal gas in a box. In Sec. V, we take into account the symmetri-
ation of the wave function for describing bosons or fermions. In Sec. VI, we give the second kind
f argument, providing a general criterion on the Hamiltonian that is sufficient for concluding that

is a.s. smooth. The criterion concerns bounds on the derivatives of the eigenfunctions of H. In
ec. VII, we discuss the third argument, which concerns the direct estimation of the difference
uotients of �. In Sec. VIII, we describe the fourth argument, which allows to conclude that �
ies in the domain of H and all its powers. In Sec. IX, we conclude, as an application of our results,
hat � a.s. possesses a Bohmian velocity field.

I. CANONICAL ENSEMBLE

In this section we give the definition of the measure GAP��� on the unit sphere S�H� of
ilbert space H, as introduced in Ref. 7.

The measure GAP��� is defined for every density matrix � �positive operator with Tr�=1� on
. We obtain the thermal equilibrium measure GAP���� by using the canonical density matrix �1�

or a self-adjoint operator H �the Hamiltonian� and a number ��0 �the inverse temperature� such
hat

Z��,H� = Tr e−�H 	 � . �2�

The measure GAP��� is defined as the distribution of the random vector

�GAP = �GA/��GA� , �3�

here �GA is a random vector with distribution GA��� �the “Gaussian adjusted measure”� defined
y

GA����d
� = �
�2G����d
� , �4�

here G��� is the Gaussian measure on H with covariance matrix �.
More explicitly, for a random vector �G to be G���-distributed means that for any �1 ,�2

H the components Z1= ��1 ��G� and Z2= ��2 ��G� of �G are complex Gaussian random vari-
bles with mean zero and covariance

EZ1Z2
* = E��1��G���G��2� = ��1����2� , �5�

here E denotes expectation. In particular, if 	��n�
 is an orthonormal basis of H consisting of
igenvectors of � with eigenvalues pn, then the coefficients ��n ��G� of �G are independent
omplex Gaussian random variables with mean zero and variances

E���n��G��2 = pn. �6�
f � is of the form �1� then the �n are also eigenvectors of H.

                                                                                                            



n
f

o
=
t
t
p
w
o

n
G

T
r
�
�

I

H

w
f

m


L

t
a
d

a
t

W
t

112104-3 Smooth wave functions in thermal equilibrium J. Math. Phys. 46, 112104 �2005�

                        
Although we are interested only in those � of the form �1� for physically relevant Hamilto-
ians, we will sometimes, when this makes the mathematics clearer and more elegant, formulate
acts or conditions in terms of an arbitrary density matrix �.

For any probability measure  on S�H�, its density matrix is given by

� = �
S�H�

�d
��
��
� , �7�

r �=E�
��
�, where E denotes the expectation with respect to . In particular, E��� �
��2

�� �� ��� for every fixed ��H. �If a probability measure  on H is not concentrated on S�H�,
he notion of density matrix of  does not make sense any more; however �7�, or E�
��
�, is still
he covariance matrix of .� As mathematically expressed by E�
�P�
�=Tr��P� for every
rojection P, � provides the distribution of outcomes of any quantum experiment on a system
ith -distributed random wave function. The density matrix of GAP��� is indeed �. This and
ther fundamental properties of the measure GAP��� are discussed in Ref. 7.

The following simple fact will sometimes be useful, as it reduces the task of showing smooth-
ess of �=�GAP to showing smoothness of the Gaussian random vector �G with distribution
���. For any subspace W of H, we have that

if G����W� = 1 then GAP����W� = 1. �8�

o see this, note that GA��� has the same null sets as G��� �as it is absolutely continuous with
espect to G��� with a density that vanishes only at one point�, so that, if G����W�=1, 0=G���
H \W�=GA����H \W�and thus GA����W�=1; but, by definition �3�, if �GA�W then also

GAP�W.

II. CASE STUDY: LAPLACIAN ON THE CIRCLE

In this section we consider a single particle moving on a circle S1 with the free Schrödinger
amiltonian

H = −
�2

2m

�2

�q2 , �9�

here m denotes the mass of the particle, q the angular coordinate on the circle, and wave
unctions are written as periodic functions of q. The result we derive is that relative to any measure

on S�H� with density matrix �� with ��0 �or, in fact, any measure  on H with covariance
atrix ���, almost every wave function 
 is smooth, 
�C��R�; we then go on to show that
-almost every wave function is analytic, 
�C��R�.

We begin with considering, instead of differentiability, a closely related property: existence �in
2� of the distributional derivative. In other words, we consider the property of a wave function 


hat �k�
̂�k� is still square integrable, where 
̂ is the Fourier transform of 
. Since the functions we
re considering are 2�-periodic in q, the appropriate property is that the Fourier coefficients ck,
efined by


�q� = �
k�Z

cke
ikq, �10�

re still square summable after multiplication with �k�. Let W� denote the �th Sobolev space, i.e.,
he subspace of L2��0,2��� containing those functions whose Fourier coefficients ck satisfy

�k��ck is square summable,i.e., �
k�Z

�k�2��ck�2 	 � . �11�

e ask whether 
�W� for a random wave function 
 with distribution . Since the eigenfunc-

ions of H are the plane waves
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�n�q� =
1

2�
einq, n � Z , �12�

he energy coefficients of a wave function are just the Fourier coefficients. The eigenvalues are

En =
�2

2m
n2, n � Z . �13�

hus, our question about 
 amounts to asking for which ��N we have

�
n�Z

n2����n�
��2 	 � . �14�

his indeed holds -a.s. for all ��N for every probability measure  on S�H� with density
atrix ��; to see this, note that �with numbers on top of equality signs indicating which equation

s being applied�

E �
n�Z

n2����n�
��2 = �
n�Z

n2�E���n�
��2 �15a�

=
�7�

�
n�Z

n2� e−�En

Z��,H�
=

�13� 1

Z��,H� �
n�Z

n2�e−���2/2m�n2
	 � , �15b�

ecause for any constant ��0 and for sufficiently large �n�

�2� + 2�log�n� 	 ��n�2 and thus �n�2�e−��n�2 	
1

�n�2
. �16�

f the expectation �15� of a �0,��-valued random variable is finite, the variable is a.s. finite. Thus

��
n�Z

n2����n�
��2 = �� = 0 or �W�� = 1, �17�

or all ��N.
We now make the connection between W� and C�, i.e., with classical differentiability: by the

obolev lemma �Ref. 9, p. 52�, every function in W� is equal Lebesgue-almost-everywhere to a
unction in C�−1. Hence, every function in ��=1

� W� is equal Lebesgue-almost-everywhere to a
unction in C�. In particular, -a.s. there is a ��C� such that 
�q�=��q� Lebesgue-almost-
verywhere.

We now turn to analyticity. By a similar argument as given in �15� and �16�, one can see that

��
n�Z

e2��n����n�
��2 = �� = 0, �18�

or every ��0, so that

e��k�ck is a.s. square summable. �19�

egarding the variable q in �10� as complex, we observe that the right-hand side of �10� con-
erges, as a consequence of �19�, uniformly in every strip −�+�	 Im q	�−� with 0	�	�. �To
ee this, we use that square-summable sequences are bounded, e��k��ck��C, so that for q in the
trip, �cke

ikq�= �ck�e−k Im q	 �ck�e�k���−���Ce−�k��, which is summable over k�Z.� Since the uniform
imit of analytic functions on an open set in the complex plane is analytic �by virtue of the Cauchy
ntegral formula�, 
 is analytic in the strip −�	 Im q	�; since � was arbitrary, 
 is entire �i.e.,
nalytic on the whole complex plane�. More precisely, -a.s. there is an entire function � such that

�q�=��q� Lebesgue-almost-everywhere in R.
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V. IDEAL GAS IN A BOX

In a similar way, we can treat any Hamiltonian whose eigenfunctions are plane waves. A
articularly relevant case is that of the ideal gas: N noninteracting particles in a d-dimensional box
0,��d with Hamiltonian

H = − �
i=1

N
�2

2m
�i, �20�

ith Dirichlet boundary conditions, where �i is the Laplacian acting on the coordinates of the ith
article. Our conclusion will again be that �C��=�C��=1 for every measure  on H whose
ovariance matrix is ��, and in particular for =GAP����. For the moment, we ignore the sym-
etrization postulate; we will treat bosons and fermions in Sec. V.

The Hamiltonian H on H=L2��0,��Nd� has eigenfunctions �Ref. 3 p. 78�

�n�q� = � 2

�
�Nd/2

�
i=1

N

�
a=1

d

sin�ni,aqi,a� , �21�

here n= �n1,1 , . . . ,nN,d��NNd and q= �q1,1 , . . . ,qN,d�� �0,��Nd, and eigenvalues

En = �
i=1

N

�
a=1

d
�2

2m
ni,a

2 =
�2

2m
�n�2. �22�

The right-hand side of �21� extends in an obvious way to a function on RNd that is 2�-periodic
n every variable, which we also call �n; using the coefficients ��n �
� of the energy expansion we
ave a natural extension of any 
�H to a function � on RNd that is 2�-periodic in every variable,
=�n��n �
��n. Its Fourier coefficients are

ck = �− i�Nd��
i=1

N

�
a=1

d

sign�ki,a�����k1,1�,. . .,�kN,d��
� , �23�

here k= �k1,1 , . . . ,kN,d��ZNd and we set sign�0�=0.
We begin with the existence in L2 of the �-fold distributional derivative. We assert that -a.s.

or all ��N

�
k�ZNd

�k�2��ck�2 	 � . �24�

his follows from

E �
k�ZNd

�k�2��ck�2 = 2Nd �
n�NNd

�n�2�E���n�
��2 �25a�

=
�7� 2Nd

Z��,H� �
n�NNd

�n�2�e−�En =
�22� 2Nd

Z��,H� �
n�NNd

�n�2�e−���2/2m��n�2
�25b�

�
�26� 2Nd

Z��,H� �
Nd

�1 + n1,1�2�
¯ �1 + nN,d�2�e−���2/2m��n�2

�25c�

n�N
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=
1

Z��,H��2 �
��N

�1 + ��2�e−���2/2m��2�Nd
	
�16�

� , �25d�

here we used

�n�2 = �
i,a

ni,a
2 � �

i,a
�1 + 2ni,a + ni,a

2 � = �
i,a

�1 + ni,a�2. �26�

Inequality �24� means that � lies in the Sobolev space W�, and by the Sobolev lemma �Ref. 9,
. 52� also in Cm for all m	�−Nd /2. Since � was arbitrary, � is -a.s. smooth, and thus so is 
,
ts restriction to �0,��Nd.

The same argument can be applied to the relativistic case, in which the Hamiltonian is the free
irac operator

H = − �
i=1

N

�ic��i · �i + mc2�i� , �27�

ith c the speed of light, m the mass, and �i and �i the Dirac alpha and beta matrices acting on
he ith spin index of the wave function. Again, one obtains that �C��=1 for all  with covariance

atrix ��.
We turn to analyticity, and to this end assert that -a.s. for all ��0

�
k�ZNd

e2��k��ck�2 	 � . �28�

his follows from the fact that, by the same reasoning as in �25�,

E �
k�ZNd

e2��k��ck�2 =
2Nd

Z��,H� �
n�NNd

e2��n�e−���2/2m��n�2
	 � ,

ecause for any constant ��0 and for all but finitely many n�NNd, 2��n�−��n�2	−�� /2��n�2,
hile e−��/2��n�2

is summable over NNd by �16�. By the same argument as in the last paragraph of
ec. III, one can conclude from �28� that � is analytic in the cylinder 	q�CNd : �Im q�	�
. Since

was arbitrary, � is entire. Thus, -a.s. there is an entire function � such that 
�q�=��q�
ebesgue-almost-everywhere in �0,��Nd. �For the Dirac equation, since the energy eigenvalues
row like c��k�, 
 a.s. possesses an analytic continuation to the cylinder �Im q�	�c� /2.�

. BOSONS AND FERMIONS

In the previous section, we ignored the symmetrization of the wave function for systems of
osons or fermions. If one takes the symmetrization into account, one reaches the same conclu-
ion: smoothness is almost sure. But, instead of going through the calculation of the previous
ection again, we provide a simple argument why GAP���� must be concentrated on C� for
ndistinguishable particles �with symmetrized wave functions� if it is concentrated on C� for
istinguishable particles �with unsymmetrized wave functions�.

The symmetric �respectively, antisymmetric� state vectors form a subspace of H
L2��0,��Nd�; let P denote the projection to that subspace; the subspace can be written PH. Since

he Hamiltonian �20� is invariant under permutations, we have that HP= PH= PHP. Thus, the
anonical density matrix for indistinguishable particles is

���PH,PH� = cP���H,H�P , �29�

here we have made explicit the dependence of �� on the given Hamiltonian and Hilbert space,

nd c=Z�� ,H� /Z�� , PHP�.
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Now, observe that for a Gaussian measure with covariance �, we have that G�P�P�=G���
P−1, where P−1 is understood as mapping subsets of PH to their preimages in H, in other words

G�P�P�= P�G��� in distribution.
In our case, P is the symmetrization �respectively, antisymmetrization� operator, which maps

mooth functions to smooth functions. Since �G is a.s. smooth �by the result of the previous
ection�, so is P�G; with �8� we conclude that GAP����PH , PH���C��=1. The same argument
orks with analyticity.

I. GENERAL SUFFICIENT CONDITION FOR SMOOTHNESS

We now present a second kind of argument, different from the one used in the previous
ections; it applies to the measure GAP��� but not to all measures with density matrix �. The
rgument provides us with a condition �see �30� below� on any given density matrix � �and thus,
or �=��, on the Hamiltonian� ensuring that GAP����C��=1.

Theorem 1: Let Q be an open subset of Rd. Suppose that the density matrix � on H
L2�Q ,Cm� has C� eigenfunctions �n�q� with ��n�=1 and eigenvalues pn, such that for all n and
ll �=0,1 ,2 ,3 , . . ., the �th derivative of �n is bounded

����n�� = sup
q�Q

����n�q�� 	 � ,

here by absolute values we mean

���
�q��2 = �
i1,. . .,i�=1

d

�
s=1

m � ��
s

�qi1
¯ �qi�

�q��2

.

f for all �=0,1 ,2 ,3 , . . .

�
n

����n��
pn 	 � , �30�

hen GAP����C��Q ,Cm��=1.
Proof: To begin with, for a complex Gaussian random variable Z with EZ=0 and E�Z�2=�2,

ne can determine that

E�Z� = �
R2

dx dy
x2 + y2

��2 exp�−
x2 + y2

�2 � =
�

2
� . �31�

etting Z= ��n ��G�, we obtain that

E�
n

����n��n��G��� = E�
n

���n��G������n�� = �
n

E���n��G������n�� =
�31�

�
n

�

2
pn����n�� 	

�30�

� ,

nd therefore

Prob��
n

����n��n��G��� 	 �� = 1.

ince this is true of every �, we have that in the expansion

�G�q� = �
n

�n�q���n��G� �32�

having C� partial sums�, a.s. the �th derivatives of the partial sums converge uniformly; and in
articular �32� itself converges uniformly. It is a standard theorem �see, e.g., Ref. 4, p. 118� that,

f a sequence fn of functions converges pointwise and the derivatives �fn uniformly, then the limit
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unction f is differentiable and has derivative �f =lim� fn. Therefore, a.s. �G�C��Q�, and the
erivatives are

���G�q� = �
n

���n�q���n��G� . �33�

y �8�, a.s. �GAP�C��Q�, which completes the proof. �

By applying this proof to local coordinates, we can generalize the result to Riemannian
anifolds and vector bundles as follows. Let Q be a Riemannian C� manifold, E a C� complex

ector bundle over Q with positive-definite C� Hermitian inner products on the fiber spaces, and
et � be the covariant derivative operator corresponding to a C� connection on E. Let H
L2�E� be the Hilbert space of square-integrable (with respect to the Riemannian volume) mea-

urable cross sections of E, and C��E� the space of smooth cross sections. Suppose that the
ensity matrix � on H has C� eigen-cross sections �n�q� with ��n�=1 and eigenvalues pn, such
hat for all n and all �=0,1 ,2 ,3 , . . ., the �th covariant derivative of �n is bounded

����n�� = sup
q�Q

����n�q�� 	 � , �34�

here the absolute values are taken with respect to the Riemannian inner product on tangent
paces and the Hermitian inner product on fiber spaces. If for all �=0,1 ,2 ,3 , . . .

�
n

����n��
pn 	 � , �35�

hen GAP����C��E��=1.
Another easy generalization of Theorem 1 concerns analyticity: Let QC be an open subset of

d and Qª 	�q1 , . . . ,qd��QC :q1 , . . . ,qd�R
�Rd. Suppose that the density matrix � on H
L2�Q ,Cm� has eigenvalues pn with normalized eigenvectors �n�C��QC�, with C��QC� the space
f L2 functions on Q that possess analytic continuations to QC. If for every compact set K�QC

�
n

���n�K��
pn 	 � �36�

writing also �n for the analytic continuation and ��n�K for its restriction to K), then GAP���
C��QC��=1.

Proof: By �36� and �31�

E�
n

���n�K�����n��G�� = �
n

���n�K��

�

2
pn 	 � ,

nd thus a.s. �n���n�K�����n ��G��	�. As a consequence, the expansion

�G�q� = �
n

�n�q���n��G� , �37�

onverges not only for q�Q but also for q�QC, in fact uniformly on every compact set K�QC.
ince uniform limits of analytic functions are analytic, �G and thus also �GAP are a.s. analytic.�

In order to demonstrate that the conditions �30�, �35�, and �36� are not unreasonably strong,
e show that they are satisfied for the Laplacian on the circle. Here, the eigenfunctions are given
y �12�, and their derivatives, respectively, analytic continuations to disks K= 	q�QC=C : �q�
�
, have bounds

����n�� =
�n��

2�
, ���n�K�� =

1
2�

e��n�.
n this case, �30�, respectively �35�, is satisfied since
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�
n�Z

����n��e−�1/2��En =
1

2�
�
n�Z

�n��e−���2/4m�n2
	 � ,

y �16�, and similarly �36�, since

�
n�Z

���n�K��e−�1/2��En =
1

2�
�
n�Z

e��n�e−���2/4m�n2
	 � .

II. ESTIMATING DIFFERENCE QUOTIENTS

In this section, we follow another line of reasoning for studying regularity properties of �,
ased on a standard theorem on the regularity of sample paths of a Gaussian process. However, the
esult is much weaker than what we obtained in the previous section.

Assume for simplicity that the configuration space is an open interval I�R, and that H
L2�I ,C�. The idea in this section is to consider the increments �G�q+�q�−�G�q� of the Gauss-

an process �G, and to argue that for reasonable Hamiltonians they are of the order of magnitude
f �q�0

��G�q + �q� − �G�q�� � �q , �38�

hich suggests that difference quotients converge to differential quotients as �q→0, i.e., that �G

e differentiable. However, what can rigorously be concluded from a statement about the variance
f the increment analogous to �38� is less than differentiability, namely Hölder continuity with
xponent 1−�.

We now describe the argument in detail. We pretend that �G is everywhere defined in I
although, strictly speaking, vectors in Hilbert space are equivalence classes of functions coincid-
ng Lebesgue-almost-everywhere� in such a way that it is a Gaussian process in the sense that, for
ny choice of q1 , . . . ,qn� I, the joint distribution of �G�q1� , . . . ,�G�qn� in Cn is Gaussian. It
ollows that for any �q�0, the increment �G�q+�q�−�G�q� is a Gaussian variable, and we can
ompute its variance

E��G�q + �q� − �G�q��2 = ��q + �q,q + �q� − 2 Re ��q,q + �q� + ��q,q� , �39�

here ��q ,q��= �q���q�� are the “matrix elements” in the position representation of the density
atrix �=��. Assuming that

��q,q�� is a smooth function, �40�

hich would appear to be a reasonable assumption on the Hamiltonian, we can employ a Taylor
xpansion of � to the second order around �q ,q� and obtain from �39� that

E��G�q + �q� − �G�q��2 = � �2�

�q�q�
�

q�=q
�q2 + O��q3� . �41�

t is a standard result �Ref. 6, Theorem 8 of Chap. III� that for a Gaussian process �G with the
ollowing bound on the variances of the increments:

E��G�q + �q� − �G�q��2 � K�qp, �42�

here K�0 and p�0 are constants, the realization a.s. satisfies

��G�q + �q� − �G�q�� � K��qp/2�log �q�1+�, �43�

or arbitrary ��0 and a suitable constant K�=K�����0. Inserting �41� into �42�, we obtain from
2
43�, in the case � � /�q�q��0, that a.s.
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��G�q + �q� − �G�q�� � K��q1−�, �44�

or arbitrary ��0, i.e., Hölder continuity of degree 1−�.
In order to obtain a stronger estimate than �44�, one might hope that

� �2�

�q�q�
�

q�=q
= 0 for all q � I . �45�

his would allow us to replace the exponent in �44� by 3/2−�, which would give us in particular
ocal Lipschitz continuity, so that �G would be differentiable Lebesgue-almost-everywhere. But,
ny exponent greater than 1 is too good to be true. Indeed, as we shall show presently �45� holds
nly for one particular density matrix �0, the projection to the one-dimensional subspace of
onstant functions. For �=�0, ��q� is constant with modulus determined by normalization and
andom phase.

To see �=�0, write � in terms of its eigenfunctions �n�q� and eigenvalues pn, ��q ,q��
�npn�n�q��n

*�q��, and observe that

� �2�

�q�q�
�

q�=q
= ��

n

pn�n��q��n�
*�q���

q�=q

= �
n

pn��n��q��2,

here �n� denotes the derivative of �n. The only way this quantity can vanish for all q is that all

n have identically vanishing derivative and thus are constant, which implies �=�0.

III. CONCENTRATION ON THE DOMAIN OF H

In this section we utilize a fourth kind of argument, different from those of the previous
ections. It is our most elegant argument, particularly simple and direct, as it deals only with the
igenvalues and eigenvectors, but also more abstract. This argument applies not only to GAP����
ut to every probability measure  on S�H� with density matrix ��.

The question we address is whether �domain�H��=1. The answer is yes. Even more, we
how that, for any self-adjoint H and almost all � for which Z�� ,H�	�, any  with density
atrix �� is supported by the domain of H� for every ��N. �Whether 
�domain�H� implies

ifferentiability depends of course on H.� After that, we show further that GAP���� for sufficiently
arge � is concentrated on the subspace of analytic vectors1 of H.

Theorem 2: Let � be a density matrix on the Hilbert space H,  a probability measure on
�H� with density matrix �, and f : �0,1�→R a measurable function. If

Tr��f���2� 	 � , �46�

hen �domain�f�����=1, where the domain of f��� can be defined, in terms of an orthonormal
asis 	��n�
 of eigenvectors of � with eigenvalues pn, by

domain�f���� = �
 � H:�
n

�f�pn���n�
��2 	 �� . �47�

Proof: From �46�, it follows that

E�
n

�f�pn���n�
��2 = �
n

f�pn�2E���n�
��2 = �
n

f�pn�2pn 	 � .

herefore, -a.s. �n�f�pn���n �
��2	�, or �domain�f�����=1. �

Corollary 1: Let H be a self-adjoint operator on the Hilbert space H. Suppose Z��0 ,H�
� for some �0�0, which implies Z�� ,H�	� for every ���0. Then, for every ���0 and

very probability measure  on S�H� with density matrix ��, �C��H��=1, where C��H�
��=1

� domain�H��.

Proof: For � given by �1�, we have that H=−�1/��log �+E0id for some constant E0. Define
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f�x�= �−�1/��log x+E0�� for x�0 and f�x�=0 for x=0. Since f���=H�, Theorem 2 yields the
laim if we can confirm the condition �46�, which we do now.

Since Tr exp�−�0H�	�, there is a basis 	��n� :n�N
 of eigenvectors of H with eigenvalues

n. Furthermore, only finitely many of the eigenvalues lie below zero, so that the set Nª 	n
N :En�0
 contains all except finitely many numbers. Observe that for every ���0

� � Tr e−�0H = �
n�N

e−�0En � �
n�N

e−�0En � �
n�N

e−�En,

nd thus Z�� ,H�	�. For ��0 with �	�−�0, we find, for any ��N

� � �
n�N

e−��−��En = �
n�N

e−�Ene�En � �
n�N

e−�En�
k=0

2�
�kEn

k

k!
= �

k=0

2�
�k

k! �
n�N

En
ke−�En.

n particular

�
n�N

En
2�e−�En 	 � ,

hich implies Tr���H2��	�. �

If ��2�0 �with Z��0 ,H�	��, we obtain the stronger result for the measure GAP���� that it
s concentrated on the subspace C��H� of analytic vectors of H, i.e., those vectors 
�C��H� with

�
�=0

�
�H�
���

�!
	 � , �48�

or some ��0.1 It is sufficient for 
�C��H� that

�
n

e��En����n�
�� 	 � , �49�

ecause then

�
�=0

�
��

�!
�H�
� = �

�=0

�
��

�!��n

En
���n���n�
�� � �

n
�
�=0

�
��

�!
�En�����n�
�� = �

n

e��En����n�
�� 	 � .

or 0	�	� /2−�0 �49� is a.s. true of 
=�G, and thus also of 
=�GAP, because, assuming
ithout loss of generality that all En�0, we have by �31� that

E�
n

e�En���n��G�� = �
n

e�En
�

2Z���
e−�En/2 �

�

2Z���
�

n

e−�0En 	 � .

X. EXISTENCE OF BOHMIAN VELOCITIES

As a final remark, we mention an application of smoothness of the wave function: differen-
iability is needed in Bohmian mechanics,2 a theory ascribing trajectories to the particles of
onrelativistic quantum mechanics. This is because the Bohmian law of motion, which for N
articles with masses m1 , . . . ,mN at the configuration Q�t�= �Q1�t� , . . . ,QN�t�� reads

dQi

dt
= vi


�Q� =
�

mi
Im


*�i



*

�Q� ,

nvolves the derivative of the wave function. Suppose the wave function 
 is chosen at random
ccording to the canonical distribution GAP���� with inverse temperature �. Then, any condition

n the Hamiltonian entailing that 
 is a.s. smooth also implies that the Bohmian velocity vector
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eld v
 on configuration space Q=R3N, whose ith component is vi

, is a.s. well defined every-

here outside the nodes of 
.
The analogous conclusion holds, as we shall explain presently, for the numerous further

ariants of Bohmian mechanics that have been considered �such as Bohmian mechanics on curved
paces, on the configuration space of a variable number of particles,5 for wave functions that are
ross sections of a complex vector bundle, and variants suitable for the Dirac equation or for
hotons�. The laws of motion of these variants

dQ

dt
= v
�Q� ,

re defined by giving the appropriate expression for the velocity vector field v
 on the manifold Q,
nd these definitions of v
 can be summarized by the formula5

v
�q� · �f�q� = Re


*�q�� i

�
�H, f�
��q�


*�q�
�q�
∀ f � C0

��Q� . �50�

ere, f :Q→R is an arbitrary smooth function with compact support playing the role of a coor-
inate function, and numerator and denominator involve inner products in the value space of 

which may be a fiber space of a vector bundle of which 
 is a cross section�. For 


domain�H� and f �C0
��Q�, the right-hand side of �50� will be well defined since multiplication

y f maps the domain of H to itself, since H is the sum of a differential operator �of up to second
rder� and a multiplication operator. Since the f’s from C0

��Q� suffice for determining v
 �up to
hanges on a null set�, one obtains indeed a vector field v
, defined on Q \ 	q :
�q�=0
, for every

from the domain of H.
Hence, every wave function 
 from the domain of H is sufficiently regular to define a

ohm-type velocity field. By Corollary 1, the random wave function � with the thermal equilib-
ium distribution GAP���� possesses a velocity field v� with probability 1, provided that there is

0	� with Z��0 ,H�	�.
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We derive recursively the perturbation series for the ground-state energy of the
D-dimensional anharmonic oscillator and resum it using variational perturbation
theory �VPT�. From the exponentially fast converging approximants, we extract the
coefficients of the large-D expansion to higher orders. The calculation effort is
much smaller than in the standard field-theoretic approach based on the Hubbard-
Stratonovich transformation. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2116247�

. INTRODUCTION

The properties of nontrivial physical systems can only be calculated via efficient approxima-
ion schemes. Most easily accessible are perturbation expansions, but they are usually divergent
nd need resummation. To this end, a variational approach was developed by Feynman and
leinert,1 which has been systematically extended to an efficient nonperturbative approximation

cheme called variational perturbation theory �VPT�.2–5 It allows the conversion of divergent
eak-coupling into convergent strong-coupling expansions and has been applied successfully in
arious fields, such as quantum mechanics, quantum statistics, condensed matter physics, and
ritical phenomena. In fact, the most accurate critical exponents come from this theory,6 as has
een verified by recent satellite experiments.7

The convergence of VPT has been analyzed up to very high orders for the ground-state energy
f the one-dimensional anharmonic oscillator,

V�x� = 1
2�2x2 + gx4, �1�

nd was found to be exponentially fast.8,9 This surprising result has been confirmed later by
tudying other physical systems and was proven to hold on general grounds.3,4 Furthermore, the
xponential convergence seems to be uniform with respect to other system parameters. In this
anner, the variational resummation of perturbation series yields approximations which are ge-

erically reasonable for all temperatures,10–12 space and time coordinates,13–16 magnetic field
trengths,17 coupling constants,18–20 etc.

In this paper, we show that the exponential convergence of VPT is uniform with respect to the
pace dimension D. To this end, we consider the D-dimensional generalization of the anharmonic
scillator �1�, i.e.,

V�x� = 1
2�2x2 + g�x2�2 �2�

ith x= �x1 , ¯ ,xD�, and determine its ground-state energy as a function of the coupling constant
. In Sec. II, we derive the corresponding weak-coupling series by evaluating connected vacuum

�Electronic mail: sbrandt@physics.wustl.edu
�
Electronic mail: pelster@uni-essen.de

46, 112105-1022-2488/2005/46�11�/112105/16/$22.50 © 2005 American Institute of Physics
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iagrams. In Sec. III, we show how this perturbation series can be obtained more efficiently by
eans of Bender-Wu-type recursion relations.21 In Sec. IV, we resum the weak-coupling series by

pplying VPT and examine the resulting convergence, which is again exponentially fast and
mproves uniformly with increasing dimension D. In Sec. V, we show that the latter observation is
ot surprising, since the ground-state energy of the anharmonic oscillator �2� can be determined
ith the help of a systematic large-D expansion. In Sec. VI, we apply VPT to extract the large-D

xpansion to higher orders, which have so far been inaccessible to other methods.

I. PERTURBATION THEORY

The perturbation series for the ground-state energy of the anharmonic oscillator �2� can be
alculated from connected vacuum diagrams. Up to the second order in the coupling constant g,
he ground-state energy is given by the Feynman diagrams

�3�

ith the propagator

�4�

nd the vertices

�5�

he connected vacuum diagrams �3� are derived most easily by an efficient graphical recursion
ethod.22 Evaluating these Feynman diagrams produces the following analytic expression for the

round-state energy:

E =
D�

2
+

D�D + 2�g
4�2 −

D�2D2 + 9D + 10�g2

8�5 + ¯ . �6�

nly low perturbation orders are accessible by this procedure. If we want to study higher orders,
e better use Bender-Wu-type recursion relations.21

II. BENDER-WU-TYPE RECURSION RELATIONS

The potential �2� of the D-dimensional anharmonic oscillator is rotationally symmetric.
ence, the ground-state wave function depends only on the distance x= �x�. We solve the corre-

ponding Schrödinger eigenvalue equation

�−
1

2
� �2

�x2 +
D − 1

x

�

�x
� +

1

2
�2x2 + gx4	��x� = E��x� �7�

s follows. We write the wave function ��x� as

��x� = ��

�
�1/4

exp�−
1

2
x̂2 + ��x̂�	 , �8�

ith the abbreviation x̂=x
�, and expand the exponent in powers of the dimensionless coupling
ˆ 3
onstant g=g /� by using
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��x̂� = �
k=1

�

�k�x̂�ĝk. �9�

he �k�x̂� are expanded in powers of the rescaled coordinate x̂,

�k�x̂� = �
m=1

k+1

cm
�k�x̂2m. �10�

or the ground-state energy we make the ansatz

E = ��D

2
+ �

k=1

�

�kĝ
k� . �11�

nserting �8�–�11� into �7�, we obtain to first order

c1
�1� = −

D + 2

4
, c2

�1� = −
1

4
, �1 =

D�D + 2�
4

. �12�

or k�2, we find the following recursion relation for the expansion coefficients in �10�:

cm
�k� =

�m + 1��D + 2m�
2m

cm+1
�k� + �

l=1

k−1

�
n=1

m
n�m + 1 − n�

m
cn

�l�cm+1−n
�k−l� , �13�

ith cm
�k��0 for m�k+1. The expansion coefficients of the ground-state energy follow from

�k = − Dc1
�k�. �14�

able I shows the resulting coefficients �k up to the fifth order. For D=1, they reduce to the
ell-known one-dimensional results.21

V. VARIATIONAL RESUMMATION

Now we consider the strong-coupling limit of the perturbation series �11�. Rescaling the
oordinate according to x→xg−1/6, the Schrödinger equation �7� becomes

�−
1

2
� �2

�x2 +
D − 1

x

�

�x
� +

1

2
g−2/3�2x2 + x4	��x� = g−1/3E��x� . �15�

xpanding the wave function and the ground-state energy in powers of the coupling constant
ields

ˆ ˆ ˆ−2/3 ˆ ˆ−4/3

TABLE I. Expansion coefficients for the ground-state energy of the anharmonic oscillator �2� up to the fifth
order.

k �k

1 D�D+2� /4

2 −D�2D2+9D+10� /8

3 D�8D3+59D2+146D+120� /16

4 −D�168D4+1773D3+7144D2+12960D+8840� /128

5 D�1024D5+14325D4+82222D3+241464D2+360736D+216960� /256
��x� = �0�x� + �1�x�g + �2�x�g + ¯ , �16�
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E = �ĝ1/3�b0 + b1ĝ
−2/3 + b2ĝ

−4/5 + ¯ � . �17�

y considering �15� in the limit g→�, we find that the leading strong-coupling coefficient b0

quals the ground-state energy associated with the Hamilton operator

H = − 1
2� + �x2�2. �18�

recise numerical values for this ground-state energy for different dimensions D are listed in Table
I.

The weak-coupling series �11� is of the form

E�N��g,�� = ��D

2
+ �

k=1

N

�k� g

�3�k	 . �19�

he alternating signs and fast growing coefficients in Table I suggest that �19� is a divergent Borel
eries which is resummable by VPT.2–5 In order to perform the variational resummation, an
rtificial frequency parameter 	 is introduced in the perturbation series most easily by Kleinert’s
quare-root trick,

� → 	
1 + gr , �20�

ith

r =
�2 − 	2

g	2 . �21�

ne replaces the frequency � in the weak-coupling series �19� according to �20� and reexpands the
esulting expression in powers of g up to the order gN. Afterwards, the parameter r is replaced
ccording to �21�. This procedure has the effect that the power series of order N for the ground-
tate energy becomes dependent on the variational parameter 	,

E�N��g,�,	� = �
k=0

N

�kg
k	1−3k�

l=0

N−k ��1 − 3k�/2
l

���2

	2 − 1�l

. �22�

he influence of 	 is then optimized according to the principle of minimal sensitivity,23 the
round-state energy to Nth order is approximated by

E�N� = E�N��g,�,	�N�� , �23�

here 	�N� denotes that value of the variational parameter for which E�N��g ,� ,	� has an extre-
um or a turning point.

As an example, consider the weak-coupling series �19� to first order,

E�1� =
D�

2
+

D�D + 2�
4�2 g . �24�

TABLE II. Numerical results for the leading strong-coupling coefficient b0

of the ground-state energy �17�.

b0�D=2� 1.4771497535779972�31�
b0�D=3� 2.3936440164822970�37�
b0�D=10� 10.758265165443755�69�
Inserting �20�, reexpanding in g to first order, and taking into account �21�, we find
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E�1��g,�,	� =
D	

4
+

D�2

4	
+

D�D + 2�
4	2 g . �25�

xtremizing this and going to large coupling constants, we obtain the strong-coupling behavior of
he variational parameter

	�1� = �ĝ1/3�	0
�1� + 	1

�1�ĝ−2/3 + 	2
�1�ĝ−4/3 + ¯ � , �26�

ith

	0
�1� = �2D + 4�1/3, 	1

�1� =
�2

3�2D + 4�1/3 , 	2
�1� =

�4

108�D + 2�
, ¯ . �27�

nserting the result �26� and �27� into �25�, we obtain the strong-coupling series �17� with the
rst-order coefficients

b0
�1� =

3D

8
�2D + 4�1/3, b1

�1� =
D�2

4�2D + 4�1/3 , b2
�1� = −

D�4

48�D + 2�
, ¯ . �28�

or D=1, this reduces to earlier VPT results in Refs. 8 and 9.
In order to determine the strong-coupling coefficient b0 in �17� to higher orders, we proceed as

ollows. We observe that the strong-coupling behavior of the variational parameter is for any order
of the form

	�N� = �ĝ1/3�	0
�N� + 	1

�N�ĝ−2/3 + 	2
�N�ĝ−4/3 + ¯ � , �29�

hich corresponds to �26�. Inserting �29� into �22�, the leading strong-coupling coefficient turns
ut to be given by

b0
�N��	0

�N�� = �
k=0

N

�
l=0

N−k ��1 − 3k�/2
l

��− 1�l�k�	0
N�1−3k, �30�

here the inner sum can be further simplified by using24

�
l=0

m

�− 1�l�


l
� = �− 1�m�
 − 1

m
� . �31�

hus, the leading strong-coupling coefficient reduces to

b0
�N��	0

�N�� = �
k=0

N ��1 − 3k�/2 − 1

N − k
��− 1�N−k�k�	0

�N��1−3k. �32�

etermining the optimized 	0
�N� for which b0

�N��	0
�N�� has an extremum or a turning point then

eads to the approximation b0
�N��	0

�N�� of the leading strong-coupling coefficient b0.
By carrying the expansion to high orders, VPT yields approximations whose relative deviation

rom the exact value vanishes exponentially.3,4 In our case, we have for large N

�b0
�N��D� − b0�D��

b0�D�
 exp�A�D� − B�D�N1/3� , �33�

here the exponent 1/3 is determined by the structure of the strong-coupling series �17�. Due to
he exponential convergence of VPT, it turns out that the accuracy of our numerical results for the
eading strong-coupling coefficients b0 in Table II is not sufficient for a useful examination of the
onvergence behavior of VPT in high orders. Therefore, we use our results from the 80th VPT
rder as a more precise approximation for b0. Table III summarizes our high-precision VPT

esults, where in each case the uncertainty of b0 has been estimated by examining the deviation
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rom the result of the previous order. For D=2 and D=10, the VPT results lie within the error
argins of the numerical results. However, this is not the case for D=3, where the VPT result lies

ust outside of the corresponding numerical error margins. We attribute this discrepancy to an
verly optimistic error estimate for the numerical result. The precision of the results shown in
able III improves with increasing dimension, which already indicates that the calculation con-
erges faster in higher dimensions. Figure 1 shows the convergence of the VPT results for the
hree different cases. Fitting the data to straight lines yields for the parameters A�D� and B�D� in
33�,

A�D = 2� = 5.98�72�, B�D = 2� = 9.89�23� , �34�

A�D = 3� = 7.43�48�, B�D = 3� = 10.67�15� , �35�

A�D = 10� = 11.89�63�, B�D = 10� = 13.33�20� . �36�

Thus, we find that the convergence of the VPT result indeed improves uniformly with increasing
dimension D. This tendency does not come as a surprise, since for D→� the ground-state energy
of an oscillator with quartic anharmonicity can be determined exactly as we will see in the
ollowing section.

. LARGE-D EXPANSION

Now, we elaborate the systematic large-D expansion for the ground-state energy of the an-
armonic oscillator �2� based on standard field-theoretic methods �see, for instance, Refs. 3, 25,
nd 26�.

. Effective potential

We start with the path integral representation of the quantum-statistical partition function at
nite temperature T,

TABLE III. High-precision VPT results from the 80th order for the leading
strong-coupling coefficient b0 of the ground-state energy �17�.

b0�D=2� 1.477149753577994356�33�
b0�D=3� 2.3936440164823030895�77�
b0�D=10� 10.758265165443797408091�18�

IG. 1. Logarithm of the relative deviation of the VPT result for the leading strong-coupling coefficient b0�D� for D=2
circles�, D=3 �diamonds�, and D=10 �triangles� plotted as a function of the cubic root of the perturbation order up to the

0th order. The dashed lines represent least squares fits of the data to straight lines.
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Z = � Dx e−A�x�, �37�

here the Euclidean action reads

A�x� = �
0

�

d� �1

2
ẋ2��� +

1

2
�2x2��� + g�x2����2� . �38�

he paths are periodic in the imaginary time � with period ��1/T. Applying a Hubbard-
tratonovich transformation,

� D exp�− �
0

�

d��1

g
2��� + 2ix2������	� = exp�− g�

0

�

d��x2����2� , �39�

he x���-path integral �37� and �38� becomes harmonic and leads to

Z = � D e−DA��, �40�

here we have introduced the Euclidean action

A�� =
1

Dg
�

0

�

d� 2��� +
1

2
Tr ln�−

d2

d�2 + �2 + 4i���	 . �41�

he remaining path integral �40� and �41� over ��� is then performed in the limit of large D by
egarding the modified coupling constant g̃=Dg as being independent of D, and by applying the
ackground method.3,27,28 Thus, we take into account order by order the effect of the fluctuations
�������−0 of the paths ��� from the background 0. This determines the effective poten-
ial

Veff�0� = −
1

�
ln Z �42�

n the form of the loop expansion

Veff�0� = �
l=0

�

Veff
�l� �0� , �43�

here the term of loop order l turns out to be of order D1−l.

. Loop orders l=0 and l=1

The leading term is the tree-level and follows from evaluating �41� for the background 0,

Veff
�0��0� = D�0

2

g̃
+

1

�
ln�sinh

�	

2
�	 , �44�

ith the auxiliary frequency

	 = 
�2 + 4i0. �45�

he one-loop correction is given by

Veff
�1��0� =

1

2�
Tr ln G−1��1,�2� , �46�
here the operator
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G−1��1,�2� = � �2A��
���1����2�

�
���=0

�47�

urns out to be

G−1��1,�2� =
2

g̃
���1 − �2� + 8G	

2 ��1,�2� . �48�

ere, the correlation function G	��1 ,�2� has the spectral representation

G	��1,�2� = �
m=−�

�
e−i�m��1−�2�

���m
2 + 	2�

, �49�

ith the Matsubara frequencies �m=2�m /�. Inserting �49� in �48� yields

G−1��1,�2� =
1

�
�

m=−�

�

Gm
−1e−i�m��1−�2�, �50�

ith the coefficients

Gm
−1 =

2

g̃
+

8

�
�

m�=−�

�
1

��m�
2 + 	2���m−m�

2 + 	2�
. �51�

or the quantum-mechanical ground-state energy to be calculated we only need the zero-
emperature limit �→� of the above quantum statistical expressions. Thus, we obtain from �44�,

Veff
�0��0� → D�0

2

g̃
+

	

2
� , �52�

nd the Matsubara sum �51� reduces to an integral,

�
m=−�

�

f��m� →
�

2�
�

−�

�

d�m f��m� , �53�

ielding

Gm
−1 =

2

g̃
+

8

	��m
2 + 4	2�

. �54�

orrespondingly, Eq. �46� becomes

Veff
�1��0� =

1

2�
�

m=−�

�

ln Gm
−1 →

1

4�
�

−�

�

d�m ln Gm
−1 =

	̃

2
− 	 , �55�

here

	̃ = 2
	2 +
g̃

	
�56�

enotes another auxiliary frequency.

. Loop order l=2

The higher loop orders of the effective potential with l�2 consist of all one-particle irreduc-

ble vacuum diagrams with the propagator
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�57�

efined by the identity

�
0

�

d�2 G−1��1,�2�G��2,�3� =
1

D
���1 − �3� �58�

nd the vertices

�59�
or instance, the two-loop contribution is given by the Feynman diagrams

�60�

n order to evaluate �60�, we need the third and fourth functional derivatives of the Euclidean
ction �41�. They are given by

� �3A��
���1����2����3�

�
���=0

= − 64iG	��1,�2�G	��2,�3�G	��3,�1� �61�

nd

� �4A��
���1����2����3����4�

�
���=0

= − 256�G	��1,�2�G	��2,�3�G	��3,�4�G	��4,�1�

+ G	��1,�2�G	��2,�4�G	��4,�3�G	��3,�1�

+ G	��1,�3�G	��3,�2�G	��2,�4�G	��4,�1�� , �62�

here the explicit form of the correlation function G	��1 ,�2� at zero temperature follows from
49� and �53�:

G	��1,�2� =
1

2	
e−	��1−�2�. �63�

urthermore, we must solve �58� for the propagator �57�. Performing at arbitrary temperature the
ecomposition

G��1,�2� =
1

�
�

m=−�

�

Gme−i�m��1−�2�, �64�

he coefficient Gm turns out to be

Gm =
1

DGm
−1 . �65�

sing �54� and �65�, we evaluate the Matsubara sum �64� at zero temperature according to �53�

nd obtain
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G��1,�2� =
g̃

2D����1 − �2� −
2g̃

		̃
e−	̃��1−�2�	 . �66�

rom �59� we read off that each vertex is of order D, whereas each propagator is of order 1 /D due
o �66�. Thus both Feynman diagrams in �60� are, indeed, of order 1 /D. The first and second
eynman diagram in �60� lead to the expressions

Veff
�2,1��0� =

1

�D�−
g̃2

2	4 �2I2�2	� + I2�4	�� +
2g̃3

	5	̃
�2I3�	,	,	 + 	̃� + I3�2	,2	,	̃��

−
2g̃4

	6	̃2
�2I4�	 + 	̃,0,	,	,0,	 + 	̃� + I4�	̃,	,	,	,	,	̃��� , �67�

eff
�2,2��0�

=
1

�D� 2g̃3

3	6 I3�2	,2	,2	� −
4g̃4

	7	̃
I4�	,	,	̃,2	,	,	�

+
8g̃5

	8	̃2
I5�	,	,	̃,0,	,0,	̃,	,	,	� −

16g̃6

3	9	̃3
I6�	,	,	̃,0,0,	,0,	̃,0,0,0,	̃,	,	,	�	 ,

�68�

espectively. Here we have introduced an abbreviation for multiple integrals with respect to imagi-
ary times,

In�	12, . . . ,	1n,	23, . . . ,	2n, . . . � = �
0

�

d�1�
0

�

d�2 ¯ �
0

�

d�n exp�− �
i=1

n

�
j=i+1

n

	ij��i − � j�� .

�69�

onsidering the low-temperature limit �→�, the first three of these integrals read in closed
orm29

I2�	12� =
2�

	12
, �70�

I3�	12,	13,	23� =
4��	12 + 	13 + 	23�

�	12 + 	13��	12 + 	23��	13 + 	23�
, �71�

4�	12,	13,	14,	23,	24,	34�

= 2� � � 1

	12 + 	13 + 	24 + 	34
� 1

	12 + 	13 + 	14
+

1

	14 + 	24 + 	34
	

� � 1

	12 + 	23 + 	24
+

1

	13 + 	23 + 	34
	 +

1

	12 + 	14 + 	23 + 	34

� � 1

	12 + 	23 + 	24
+

1

	14 + 	24 + 	34
	� 1

	12 + 	13 + 	14
+

1

	13 + 	23 + 	34
	

+
1 � 1

+
1 	
	13 + 	14 + 	23 + 	24 	13 + 	23 + 	34 	14 + 	24 + 	34
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� � 1

	12 + 	13 + 	14
+

1

	12 + 	23 + 	24
	� . �72�

urthermore, in order to evaluate �68�, we need one particular integral with respect to five and six
maginary times, respectively,

I5�	,	,	̃,0,	,0,	̃,	,	,	� =
��3	̃5 + 42	̃4	 + 227	̃3	2 + 568	̃2	3 + 656	̃	4 + 288	5�

2	2�	̃ + 	�2�	̃ + 2	�4�	̃ + 4	�
,

�73�

I6�	,	,	̃,0,0,	,0,	̃,0,0,0,	̃,	,	,	�

=
3��	̃5 + 14	̃4	 + 73	̃3	2 + 160	̃2	3 + 136	̃	4 + 32	5�

	̃	2�	̃ + 	�2�	̃ + 2	�4�	̃ + 4	�
. �74�

rom �44� and �67�–�74� we read off the effective potential for zero temperature up to the order
/D,

Veff�0� = D�0
2

g̃
+

	

2
� +

	̃

2
− 	 +

1

D�−
5g̃2

4	5 +
g̃3�	̃3 + 4	̃2	 + 44	̃	2 + 128	3�

4	8	̃�	̃ + 2	�2

−
g̃4�3	̃5 + 31	̃4	 + 150	̃3	2 + 392	̃2	3 + 656	̃	4 + 480	5�

	9	̃2�	̃ + 	��	̃ + 2	�3�	̃ + 4	�

+
4g̃5�3	̃5 + 42	̃4	 + 227	̃3	2 + 568	̃2	3 + 656	̃	4 + 288	5�

	10	̃2�	̃ + 	�2�	̃ + 2	�4�	̃ + 4	�

−
16g̃6�	̃5 + 14	̃4	 + 73	̃3	2 + 160	̃2	3 + 136	̃	4 + 32	5�

	11	̃4�	̃ + 	�2�	̃ + 2	�4�	̃ + 4	�
	 + O� 1

D2� .

�75�

he ground-state energy of the anharmonic oscillator �2� is found by extremizing the effective
otential �75� with respect to the background 0 while taking into account the auxiliary frequen-
ies �45� and �56�.

. Weak coupling

In order to cross-check our large-D result, we specialize now to the weak-coupling regime
here the extremal background is expanded according to

0 = − i�s1g̃ + s2g̃
2 + s3g̃

3 + s4g̃
4 + s5g̃

5 + ¯ � . �76�

nserting �76� into the vanishing first derivative of �75� and reexpanding in g̃, we obtain a system
f equations which are solved by

s1 =
1

2�
, �77�

s2 = −
1

2�4 −
1

�4D
, �78�

s3 =
5

7 +
45

7 +
25

7 2 , �79�

4� 8� D 4� D
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s4 = −
4

�10 −
59

2�10D
−

73

�10D2 , �80�

s5 =
231

16�13 +
19503

128�13D
+

9823

16�13D2 +
275

2�13D3 , ¯ . �81�

nserting �76�–�81� into �75� and reexpanding in g̃=Dg yields again the weak-coupling series �11�,
here the weak-coupling coefficients �k of Table I are reproduced in the first three terms of order
k+1, Dk, and Dk−1.

. Strong coupling

We now derive the large-D expansion for the ground-state energy in the strong-coupling
egime. There, we use for the extremal background the ansatz

0 = − ig̃2/3�S1 + S2g̃
−2/3 + ¯ � �82�

nd find for the leading coefficient the expansion

S1 =
1

24/3 + �21/6 � 31/2 − 25/3�
1

6D
+ �27 � 61/2 −

73

2
�1/3 1

18D2 + O� 1

D3� . �83�

rom �75�, �82�, and �83� we then obtain the strong-coupling series �17� where the leading strong-
oupling coefficient has the large-D expansion

b0 = �
k=0

�

BkD
4/3−k, �84�

ith

B0 =
3 � 21/3

8
, �85�

B1 =
31/2 − 21/2

21/6 � 0.283 160 794 322 179 118 844 664 604 794 882 036 512 3, �86�

B2 = −
239

18 � 22/3�25 + 12 � 61/2�
� − 0.153 776 055 939 928 491 319 576 108 549 970 570 159 0.

�87�

igure 2 shows the leading strong-coupling coefficient �84�–�86� up to the first two orders plotted
s a function of the dimension D.

I. LARGE-D EXPANSION FROM VPT

In this section, we study how the large-D expansion �84� follows from VPT. Thereby, we
umerically determine the large-D expansion coefficients up to B6 with high precision.

. Coefficients B1 and B2

To first order, VPT gives �28�, and we obtain the expansion �84� simply by expanding the

ubic root in �28� in powers of 1 /D. The first three coefficients in the expansion �84� read
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B0
�1� =

3 � 21/3

8
, B1

�1� =
21/3

4
, B2

�1� = −
21/3

6
. �88�

he leading coefficient �85� is reproduced exactly, while the next two subleading coefficients B1

nd B2 are missed by 11.2% and 36.6%, respectively. In the second order of VPT, Eq. �32� yields

b0
�2��	0

�2�� =
3D	0

�2�

16
+

D�2 + D�
2�	0

�2��2 −
D�10 + 9D + 2D2�

8�	0
�2��5 , �89�

hich must be extremized with respect to the variational parameter 	0
�2�. Setting the derivative of

89� to zero, the large-D expansion

	0
�2� = D1/3�C0

�0,2� +
C1

�0,2�

D
+

C2
�0,2�

D2 + ¯ � �90�

eads to a system of equations for the expansion coefficients whose solutions read

C0
�2� = 21/3, C1

�2� =
13 � 21/3

12
, C2

�2� = −
113 � 21/3

288
, ¯ . �91�

hus, by inserting the optimized variational parameter �90� and �91� into �89� and expanding in
/D we obtain the first three coefficients in �84� to second order of VPT,

B0
�2� =

3 � 21/3

8
, B1

�2� =
7 � 21/3

32
, B2

�2� = −
71 � 21/3

768
. �92�

he leading large-D coefficient B0 remains the same, whereas the error of the subleading coeffi-
ient B1

�2� is reduced to 2.67% and the next subleading coefficient B2
�2� now comes out with an error

f 24.2%. Figure 3 shows that the VPT approximants B1
�N� and B2

�N� converge exponentially fast to
heir exact values B1 and B2 in �86� and �87�. If we had not known the exact analytic result for the
ubleading coefficients B1 and B2, we could have extracted its value from the VPT approximants
s follows. Figure 3 shows that the VPT approximants for odd and even orders converge towards
he exact value independently. Extrapolating the values of B1

�odd� and B1
�even� for N→� leads to the

imiting values

B�odd� � 0.283 160 794 322 179 118 844 664 604 794 882 038 08, �93�

IG. 2. Strong-coupling coefficient b0�D� versus dimension D. Solid and dashed lines represent leading and subleading
esults of the large-D expansion �84�–�86�, respectively. For D=1, the dot represents the earlier result from Refs. 8 and 9;
or D=2,3 ,10, the dots indicate the highly accurate VPT values obtained from the 80th order, as given in Table III.
1
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B1
�even� � 0.283 160 794 322 179 118 844 664 604 794 882 035 75. �94�

ssuming that the exact value lies within this interval, we obtain from this extrapolation method
he result

B1
�extrap� = 0.283 160 794 322 179 118 844 664 604 794 882 036 9�24� . �95�

n analogous procedure can be applied to extract a numerical value for the subsequent coefficient

2. Applying the extrapolation method for odd and even orders, we obtain the result

B2
�extrap� = − 0.153 776 055 939 928 491 319 576 108 549 961�60� . �96�

. Coefficients up to B6

Figure 4 shows that the VPT approximants for B1 and B2 rapidly converge towards their exact
alues. For the large-D expansion coefficients of higher orders in 1/D, however, the VPT approxi-
ants first fluctuate and then enter the regime of exponentially fast convergence. If we want to

btain the coefficients of the expansion �84� to higher orders and with good accuracy, we must
herefore drive our VPT calculation to high orders. To this end, we specialize the expression for

IG. 3. Deviation of the VPT approximants for �a� B1
�N� and �b� B2

�N� from their exact values B1 and B2 in Eqs. �86� and �87�,
espectively. Odd orders are represented by circles; even orders by triangles. The dashed lines represent fits of the data to
xponential functions.

IG. 4. Logarithm of the relative deviation of the VPT results Bk
�N� for the coefficients B1 through B6 in the large-D

xpansion �84� versus the order N of VPT. The lowest curve �circles� is for B1
�N�; the uppermost curve �squares� is for B6

�N�;
ntermediate curves are for B2

�N� through B5
�N� �B2

�N�, triangles; B3
�N�, diamonds; B4

�N�, pentagons; B5
�N�, upside-down triangles�.

or B1
�N� and B2

�N� the exact values from �86� and �87� were used in order to determine the relative deviation. For B3
�N�

�N�
hrough B6 we used our extrapolation results from Table IV.
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he leading strong-coupling coefficient as given in �32� in such a way that we can read off the
orresponding large-D expansion. The weak-coupling coefficients for the ground-state energy �k

an be expanded in powers of the spatial dimension D,

�k = �
j=1

k+1

� j
�k�Dj , �97�

hereas the variational parameter 	0
�N� can be expanded in 1/D,

	0
�N� = D1/3�

j=0

M

Cj
�0,N�D−j . �98�

ere, M denotes the highest order to which we seek to drive the large-D expansion �84�. Further-
ore, recall the multinomial expansion

�x1 + x2 + ¯ + xm�n = �
a1=0

n

�
a2=0

n

¯ �
am=0

n

��n,�
k=1

m

ak� n!

a1!a2! ¯ am!�l=1

m

xl
al, �99�

here n is an integer and where the Kronecker delta �ij is written as ��i , j�. This multinomial
xpansion can be generalized to hold for real exponents and infinite series as follows:

�1 + x1 + x2 + ¯ �
 = �
m=0

� � �
a1=0

�

�
a2=0

�

¯ �
am=0

�

��m,�
l=1

m

lal�
�

��
 + 1�
��
 − a1 − a2 − ¯ − am + 1�a1!a2! ¯ am!�l=1

m

xl
al	 . �100�

sing �97� and �98� in �32� and applying the multinomial expansion �100�, we obtain

b0
�N��	0

�N�� = D1/3�D

2 �
j=0

M

Cj
�0,N�D−j + �

k=1

N ��1 − 3k�/2 − 1

N − k
��− 1�N−kD−k�C0

�0,N��1−3k

� ��
j=1

k+1

� j
�k�Dj + �

j=2

M+k

�
m=1

Min�j−1,��M+j−k�/2�−1�

� j−m
�k� Km,k

�N�Dj−2m	� , �101�

here the coefficients Km,k
�N� are given by

Km,k
�N� = �

a1=0

M

�
a2=0

M

¯ �
am=0

M

��m,�
l=1

m

lal� �3k − 2 + a1 + a2 + ¯ am�!
�3k − 2�!a1!a2! ¯ am!

�− 1�a1+a2+¯+am�
l=1

m �Cl
�0,N�

C0
�0,N��al

.

�102�

he summation boundaries in �101� are determined by the two conditions that �i� � j
�k�=0 for

j�1∨ j�k+1 and �ii� we can neglect contributions containing coefficients Ck
�0,N� with k�M.

ote that a similar expansion holds for the derivative of the leading strong-coupling coefficient
ith respect to the variational parameter db0

�N� /d	0
�N�. Using �101� and �102� we can efficiently

alculate the VPT approximants to high orders. In each order of VPT, the leading large-D coef-
cient B0 comes out exactly. Furthermore, the expansion coefficients Ck

�0,N� for the variational
arameter are found by solving linear equations. Figure 4 shows the convergence behavior of our
PT approximants for B1 through B6 up to N=100. By extrapolating the VPT results Bk

�N� for k
3 in the limit N→�, we are able to determine the coefficients in the large-D expansion to high
ccuracy. The numerical results are shown in Table IV.
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II. SUMMARY

We have determined the weak-coupling series of the ground-state energy for the
-dimensional anharmonic oscillator �2� and used variational perturbation theory to extract the

oefficients of the large-D expansion to higher orders than accessible by standard field-theoretic
ethods based on the Hubbard-Stratonovich transformation.
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We prove the existence of two-cluster threshold resonances in N-body problems
and study their perturbation by intercluster interactions. As application, we con-
struct concrete examples based on Yukawa potentials for which the N-body Efimov
effect happens with N�4. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2118467�

. INTRODUCTION

In Ref. 15, the first author of the present work proved the existence of the N-body Efimov
ffect for N�4 which says that if the bottom of essential spectrum is attained by a unique
hree-cluster decomposition and if the three resulting two-cluster sub-Hamiltonians possess a
hreshold resonance at this threshold, then the number of discrete eigenvalues is always infinite
ven if the interaction potentials decay rapidly at the infinity. This phenomenon is similar to the
amous three-body Efimov effect, discovered by the physicist. Efimov4 and studied in mathematics
iterature by many authors. See, for example, Refs. 2, 8–12 and 17. For N-body quantum systems
ith N�4, it has been unknown for a long time whether the Efimov effect exists. In Ref. 1,
mado and Greenwood argued that the zero eigenvalue and zero resonance of �N−1�-particle

ubsystems do not produce an infinite number of eigenvalues in N-body problems when N�4.
ote that in spite of the title, the result of Ref. 15 is not in discrepancy with Ref. 1, because it

orresponds to a different spectral configuration, and that a mathematical proof of the affirmation
f Ref. 1 is always lacking. After the work,15 a question has then naturally been raised as how to
ive concrete examples such that all conditions acquired in Ref. 15 are satisfied, especially the
xistence of two-cluster threshold energy resonances with any number of particles. Trivial ex-
mples can be constructed from two-body zero resonance by adding some particles with indepen-
ent variables. The goal of this work is to show the existence of two-cluster threshold resonances
nd the Efimov effect for a class of nontrivial interactions. We will show that mathematically, one
an produce the N-body Efimov effect by adjusting parameters in Yukawa-type interactions of the
orm −�e−���x� / �x�, �, ��0. Yet, even for such concrete potentials, our proof for the existence of
wo-cluster N-body threshold resonance is abstract. We leave the interested reader to make nu-

erical simulation or physical experiment.
Our example will be given in terms of atomic type four-body Schrödinger operators. This

eads us to consider generalized N-body Schrödinger operators which include both atomic-type
nd regular N-body operators. Let P denote a generalized N-body Schrödinger operator of the
orm P=−�+�a�AVa�xa� in L2�X�, where A denotes the set of all cluster decompositions of the
-particle system labeled by �1, . . . ,N�, xa�Xa and �Xa� is a family of linear subspaces of X

�Electronic mail: xue-ping.wang@univ-nantes.fr
�
Electronic mail: yfwang@math.amss.ac.cn
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atisfying some axioms. See Ref. 3. A typical example of such operators is regular N-body
chrödinger operator obtained by removing the mass-center from the operator

− �
j=1

N
1

2mj
�xj

+ �
1�i�j�N

Vij�xi − xj�, xj � R3, �1.1�

here xj and mj denote the position and mass of the jth particle. P is regarded as a self-adjoint
perator in L2�X�, where X is the 3�N−1�-dimensional real vectorial space, X= ��x1 , . . . ,xN�
R3N ;� j=1

N mjxj =0�. For a�A, let #a denote the number of clusters in a and Pa the sub-
amiltonian associated with a. For i , j� �1, . . . ,N�, i� j, we write �ij��a if i and j belong to a

ame cluster in a. If a ,b are two cluster decompositions, we write b�a if b is a refinement of a.
If a be a k-cluster decomposition a= �a1 , . . . ,ak�, then Xa= �x�X ;�l�aj

mlxl=0, j=1, . . . ,k� the
ntracluster space and Xa= �x�X ;xi=xj if �ij��am for some m� �1, . . . ,k�� the intercluster
pace. Xa and Xa give an orthogonal decomposition for X relative to the quadratic form q�x�
� j2mj�xj�2, x�X. For x�X, we have the orthogonal decomposition, x=xa+xa with xa�Xa and

a�Xa. The N-body Schrödinger operator, P, obtained above can be written in the form P= P0

V�x� where P0=−� is the Laplace-Beltrami operator on the Euclidean space �X ,q� and V�x�
�a�AVa�xa� with Va�xa�=Vij�xi−xj� if a is an �N−1�-cluster decomposition and �ij��a;

a�xa�=0, otherwise. The atomic-type N-body operators can also be written in the form of gen-
ralized N-body operators. Let −�a �−�a, respectively� denote the restriction of P0 on Xa �on Xa,
espectively�. For a�A, denote Pa=−�a+�b�aVb�xb� , Pa= Pa−�a , Ia�x�=�b�aVb�xb�. Pa is the
ub-Hamiltonian associated with the cluster decomposition a and Ia is the sum of all intercluster
nteractions. Assume that Va�xa� is real and relatively form-compact with respect to −�a in L2�Xa�,
atisfying the decay

�Va�xa�� � C	xa
−�0, �0 � 2, �1.2�

or xa outside some compact of Xa. P is regarded as self-adjoint operator in L2�X� with form
omain H1�X�. Let T=�a�A,#a�2�p�Pa� be the set of thresholds of P. The HVZ theorem says that
he bottom of the essential spectrum, E0� inf �ess�P�, of P is given by

E0 = min
a�A,#a�2

inf ��Pa� = min
a�A,#a=2

inf ��Pa� .

Assume that E0 is attained by a unique three-cluster decomposition, b, with b= �b1 ,b2 ,b3�

inf ��Pb� = E0 = inf �ess�P� . �1.3�

et ak= �bi�bj ,bk�, where i, j, and k take different values in �1, 2, 3�. Throughout this paper, we
uppose that dim Xaj �Xb=3, which is always satisfied for the operator obtained from �1.1�. By
VZ theorem, one has ��Pak�= �E0 ,	�. We assume that these are the only cluster decompositions

ttaining E0,

inf ��Pa� = E0,a � �b,a1,a2,a3�, inf ��Pa� � E0, a � �b,a1,a2,a3�, # a � 2. �1.4�

ssume that the intercluster interactions related to b are attractive,

Va�xa� � 0 for a � b . �1.5�

Definition: Let Q be a generalized N-body Schrödinger operator with N�3. Let E0

inf �ess�Q�. �a� Q is called unique two-cluster if there exits only one two-cluster decomposition

0 such that inf ��Qa0�=E0. �b� E0 is called a threshold resonance of Q if the equation Qu=E0u
as a solution u�H1,−s�X� \L2�X� for any s�

1
2 .

In our work, Q plays the role of one of the two-cluster sub-Hamiltonians Paj and a0=b. Under
he assumptions �1.2� and �1.4�, the analysis of threshold resonances made in Ref. 14 is valid for

Paj. One knows that if E0 is a resonance of Paj, then it is simple and the corresponding resonant

tate u behaves like
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u�xaj� = O�e−
�xb��xb
aj�−1�, �xaj� → 	, 
 � 0. �1.6�

ote the threshold resonances studied in Ref. 14 are two-cluster in nature and it is an interesting
pen question to study the many-cluster threshold resonances. See Ref. 16 for threshold reso-
ances in geometric setting.

Theorem 1.1 (Ref. 15): Let N�4. Let the conditions (1.2) with ��2, (1.4) and (1.5) be
atisfied. Assume that each of the two-cluster sub-Hamiltonians Paj, j=1,2 ,3, have a threshold
esonance at E0. Let N��� denote the number of the eigenvalues of P below ��E0. Then, there
xists C0�0 depending only on the reduced masses of b1, b2, b3 such that

N��� � C0�log�� − E0��, � → E0. �1.7�

Assumption �1.4� may be realized when some particles are remarkably distinct from the
thers. In this work, we study the existence of two-cluster threshold resonances by varying some
oupling constant. We will prove the following.

Theorem 1.2: Let Q be an N-body operator with potentials Vc satisfying (1.2) and let a be a
wo-cluster decomposition. Assume that Vc�0 for all c�a, Ia=�c�aVc�0, E0=inf ��Qa�

�d�Qa�. Denote Q�g�=Qa+gIa. Let g0 be the critical coupling constant defined by

g0 = sup�g � 0;inf ��Q�g�� = inf �ess�Q�g�� = E0� . �1.8�

hen, if Q�g0� is unique two-cluster, E0 is a threshold resonance of Q�g0�.
We will also give a sufficient condition to guarantee the unique two-cluster property of Q�g0�

nd study the perturbation of threshold resonance �Theorem 3.1�, which is in some sense a
onverse of Theorem 1.2.

The idea of varying coupling constant limit is used in Ref. 7 for the study of absorption of
iscrete eigenvalues into a unique two-cluster threshold. In Ref. 7, the authors deduced their
esults by splitting some reduced operator into sum of a compact continuous part and a bounded
olomorphic part. Our proof of Theorem 1.2 relies on the idea of Ref. 14, where the notion of
-body threshold resonance is introduced. In the proof of existence of resonant state �Proposition
.3�, the compactness of the whole reduced operator is essential.

Using Theorem 1.2, we will show that for appropriate constant �1�0, ��0 small enough,
here exists gj � �0,1� , j=1,2 ,3, such that Theorem 1.1 holds for the atomic-type four-body
chrödinger operator with Yukawa potentials

P = − �x1
− �x2

− �x3
−

�1e−��1�x1�

�x1�
− g1

e−��x2−x3�

�x2 − x3�
− g2� e−��x2�

�x2�
+

e−��x1−x2�

�x1 − x2� � − g3� e−��x3�

�x3�

+
e−��x1−x3�

�x1 − x3� �, xj � R3. �1.9�

The plan of this work is as follows. In Sec. II, we prove the existence of two-cluster threshold
esonance. In Sec. III, we show that if E0 is a two threshold resonance of Q�g� for g=g0, it is
hifted to the left to become a nondegenerate discrete eigenvalue when g increases. These results
re applied to the study of the N-body Efimov effect in Sec. IV; we give more explicit sufficient
onditions under which Theorem 1.1 holds and establish a lower bound on the number of discrete
igenvalues of P�g� as g→g0 and g�g0, where P= P�g0� satisfies the assumptions of Theorem
.1.

Notation: For s�R and k�Z, we denote by L2,s and Hk,s the weighted-L2 and weighted-
obolev spaces L2�	x
2s dx� and Hk�	x
2s dx�, respectively, and by L�s ;s�� and L�k ,s ;k� ,s�� the

pace of bounded operators from L2,s to L2,s� and from Hk,s to Hk�,s�, respectively.

I. EXISTENCE OF TWO-CLUSTER THRESHOLD RESONANCES

The N-body Hamiltonian Q=−�+�c�AVc studied in Secs. II and III corresponds to a two-

luster sub-Hamiltonian in the Efimov effect with four or more particles. Thus let N�3. Let a be
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two-cluster decomposition such that dim Xa=3. Set E0=inf ��Qa�. Assume that E0 is in �d�Qa�.
et a be an associated eigenfunction, Qaa=E0a, a=1. We want to show that by varying the
oupling constant g in Q�g�=Qa+gIa�x�, we can find a critical value g0 such that E0 is a threshold
esonance of Q�g0�. Let � denote the orthogonal projection in L2�X� induced by a,

�u = �a,u�a � a, u � L2�X� ,

here �, · , · �a denotes the scalar product in xa-variables. Let ��=1−�. Assume that for any b
A, b�a, Vb�0, and Vb is −�-form compact and outside some bounded set in Xb,

�Vb�xb�� � C�xb�−�0, �0 � 2. �2.1�

ssume that the intercluster interaction Ia is not identically zero. Set

Q�g� = Qa − �a + gIa, Q��g� = ��Q�g���, �2.2�

here g�0 is a coupling constant. It is natural to expect that for g small, the bottom of the
ssential spectrum of Q�g� remains to be E0, while for g large, it may be shifted to the left.

Lemma 2.1: Let Vb be −�xb-form compact. There exists �0�0 such that if

g�− �xb + 1�−1/2Vb�− �xb + 1�−1/2 � �0, �2.3�

hen inf �ess�Q�g��=E0 and a is the unique two-cluster decomposition which attains E0 : ∀a�
A, #a�=2 and a��a, inf ��Qa���E0.

Proof: Since E0 is the discrete spectrum of Qa, by HVZ theorem, for any b�A, b�a �which
eans that b is a decomposition finer than a�, one has

Qb � E0 + �b

or some �b�0. Let a� be another two-cluster decomposition of the N-body system with a��a.
ake b=a�a�. Then, b�a and the sub-Hamiltonian associated to a� can be decomposed as

Qa��g� = Qb + g �
c�a�,c�a

Vc. �2.4�

n argument of perturbation shows that if �0 is small enough, one has Qa��E0+�b /2. By HVZ
heorem, inf �ess�Q�g��=min#c=2 inf ��Qc�g��=inf ��Qa�=E0. �

For potentials satisfying �2.1�, with Lemma 2.1, one can apply the result on finiteness of
iscrete spectrum in N-body problems �Refs. 5 and 13� to conclude that Q�g� has only a finite
umber of discrete eigenvalues for g�0 small. In particular, if g�0 is small enough, there is no
iscrete spectrum and E�g�� inf ��Q�g�� verifies E�g�=inf �ess�Q�g��=E0. Set

g0 = sup�g � 0;E�g� = E0,inf �ess�Q�g�� = E0� . �2.5�

y Lemma 2.1, one has g0�0. Since Ia�0 and Ia�0, one can show that for g large enough, there
xists some sub-Hamiltonian Qa��g�, a��a, such that inf ��Qa��g���E0. Therefore g0��0, +	� is
ell defined. It may happen that when g increases from 0 to g0, the bottom of the essential

pectrum, E0, of Q�g0� is attained by several two-cluster sub-Hamiltonians. In the following, we
ive the proof of Theorem 1.2, under the condition that Q�g0� is still unique two-cluster. By
heorem 3.3 �a� of Ref. 15, E0 is not an eigenvalue of Q�g0�. Therefore, to prove Theorem 1.2, we
eed only to construct a nontrivial solution for the equation �Q�g0�−E0�u=0 with u�H1,−s for any
�

1
2 . Then E0 is a threshold resonance of Q�g0�. The construction of a resonant state is based on

he reduction made in Ref. 14.
According to whether or not E0 is in �p�Q��g��, the spectral property of Q�g� at E0 is
etermined either by an operator of the form −�xa
+V0 or by an operator of the form
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�− �xa
+ V0 C

C* 0
� ,

here V0 is some effective potential and C some finite rank operator. Part �b� of the following
emma shows that we are actually in the first simpler situation.

Lemma 2.2: Assume that Qa is the unique two-cluster Sub-Hamiltonian of Q�g0� which attains
he bottom of its spectrum. There exists 
0�0 such that for �g−g0��
0, one has

a� inf �ess�Q�g��=E0;
b� Q��g�� �E0+�0���, for some �0�0.

Proof: �a� By the unique two-cluster assumption for Q�g0�, one has for any two-cluster
ecomposition b�aQb�g0�� �E0+�b� for some �b�0. The same argument as in Lemma 2.1
hows that

inf �ess�Q�g�� = inf
#b=2

��Qb�g�� = inf ��Qa� = E0

or g near g0.
�b� We note that E0��p�Q��g0��. In fact, if E0��p�Q��g0��, the associated eigenfunction �

ith �=1, would verify ���=� and

E0 = 	Q��g0��,�
 = 	Q�g0��,�
 .

ince Q�g0��E0, this would imply Q�g0��=E0�, which is impossible because by �a� of Theorem
.3,15 E0 is not an eigenvalue of Q�g0�. By Lemma 2.1 of Ref. 14, one has inf �ess�Q��g0��
�E0+
� for some 
�0. Since Q��g0��E0�� and E0��p�Q��g0��, one sees that Q��g0�� �E0

���� for some ��0. An easy argument of perturbation shows that for g sufficiently near g0,
��g�=Q��g0�+ �g−g0���Ia��� �E0+� /2���. �

Lemma 2.2 �a� shows that for g� �g0 ,g0+
0� ,
0�0 small, E�g� is in the discrete spectrum of
�g�. It is clear that E�g�→E0 as g→g0.

With Lemma 2.2 �b�, we can apply the reduction of Sec. III in Ref. 14 which says that for E
ear E0, E is an eigenvalue �respectively, threshold resonance� of Q�g� if and only if 0 is an
igenvalue �respectively, threshold resonance� of operator �+−���,

�+−��,g� = � − �− �xa
+ V��,g�� , �2.6�

here �=E−E0, R��z ,g�= �Q��g�−z�−1�� and

V��,g� = ��gIa − g2IaR��� + E0,g�Ia��a � · �,a�a.

ote that Ia�0 and R���+E0 ,g��0 for � near 0. V�� ,g� is a negative self-adjoint operator,
nalytic in � near 0 and g near g0. Set

K��,g� = �− �xa
− ��−1V��,g� . �2.7�

hen, K�� ,g� :H1,−s→H1,−s is compact operator-valued for 1 /2�s� ��0−1� /2 and is continuous
n � near 0 and g near g0. Clearly, u belongs to the kernel of �+−�� ,g� in H1,−s if and only if

�1 + K��,g��u = 0. �2.8�

Proposition 2.3: One has dim ker�1+K�0,g0��H1,−s =1.
Proof: By the assumption on Q�g0�, for any g�g0 sufficiently close to g0, E�g� is an eigen-

alue of Q�g� with E�g��E0 and E�g�→E0 as g→g0. Therefore, there exists a family of func-
1
ions u�g��H such that
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u�g� = − K���g�,g�u�g�, u�g�H1,−s = 1, ��g� = E�g� − E0.

he compactness of K���g� ,g� allows to extract a subsequence �u�gk�� of �u�g�� such that u�gk�
−K���gk� ,gk�u�gk� converges �strongly� in H1,−s. Let u0 denote its limit. It is clear that u0=
K�0,g0�u0, u0H1,−s =1. This proves that 0 is an eigenvalue of 1+K�0,g0�. Theorem 3.3 �a� of
ef. 15 implies that 0 is not an eigenvalue of −�xa

+V0, where V0=V�0,g0�. Therefore u0�H1.
ince the threshold resonance of −�xa

+V0 at zero is at most simple,6,14 one sees that ker�1
K�0,g0�� in H1,−s is of dimension one and is spanned by u0. �

Proof of Theorem 1.2: Since �−�xa
+V0�u0=0, a direct calculation shows that

�0 = a � u0 − g0R��E0,g0�Ia�a � u0� � 0

erifies �Q�g0�−E0��0=0. See Ref. 14. Since u0�H1,−s�Xa� \H1�Xa� ,�0�H1,−s�X� \H1�X� for any
�1/2. E0 is thus a threshold resonance of Q�g0�. �

Corollary 2.4: Let Q=Qa+ Ia, where a is a two-cluster decomposition, Ia=�b�aVb ,Vb�0,
uch that E0� inf ��Qa���d�Qa� and that Qa��E0 for any other two-cluster decompositions a�

a. Assume in addition that Q has at least one discrete eigenvalue strictly below E0. Then, E0 is
threshold resonance of Q�g0�.

Proof: It suffices to remark that g0 defined by �2.5� is given by

g0 = inf�g � �0,1 � ;inf ��Q�g�� � E0, �2.9�

nd g0� �0,1�. Q�g0� is still unique two-cluster, because for any a��A with #a�=2 and a��a,
2.4� shows that the sub-Hamiltonian of Q�g0� associated with a� satisfies Qa��g0��Qa��1��E0

or g0� �0,1�. Theorem 1.2 gives the desired result. �

As an application of Corollary 2.4, we give a concrete example for the existence of two-
luster threshold resonance for three-body atomic-type Schrödinger operator with Yukawa-type
otentials. Similar examples can be constructed for any number of particles.

Example: Consider an atomic-type three-body Schrödinger operator with Yukawa potentials,

Q�g� = − �x1
− �x2

−
�1e−��1�x1�

�x1�
− g��2e−��2�x2�

�x2�
+

�3e−��3�x1−x2�

�x1 − x2� � , �2.10�

here the nucleus is fixed at the origin, xj �R3, �i, �, and g are suitable positive constants with

1�max��2 ,�3�. We want to show Corollary 2.4 can be applied with a= ��01� , �2��. Consider first
he two-body operator

Q��,�� = − � −
�e−���x�

�x�
, x � R3,

ith � ,��0. By the change of variables y=�x, one sees that Q�� ,�� is unitarily equivalent with
2Q1��� where

Q1��� = − �y −
e−��y�

�y�
.

sing the perturbation theory around Q1�0�=−�y − �1/ �y��, one sees that for ��0 small,

inf ��Q1���� = − 1
4 + c0� + O��2� .

his shows that there exists �0�0 such that

inf ��Q��,��� = �2�− 1
4 + c0� + O��2�� � 0 �2.11�

or all 0����0 ,��0. For g=1, let Pj denote the three two-body sub-Hamiltonians of Q�1�
ssociated with the cluster decompositions ��01�, 2�, ��02�, �1��, ��12�, �0��, respectively. Using

2.11�, one sees that their respective bottoms of spectrum are given by
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Ej = aj
2�− 1

4 + O����, j = 1,2, E3 = �3
2�− 1

8 + O���� ,

hich are all negative if ��0 is small enough. So Q�1� is unique two-cluster, since
nf �ess�Q�1��=E1�min�E2 ,E3�. By minimax principle, one can easily check that Q�1� has at
east one discrete eigenvalue e0 with e0�E1+E2�E1. By Corollary 2.4, there exists some g0

�0,1� such that E0=E1 is a two-cluster threshold resonance of Q�g0�.

II. PERTURBATION OF TWO-CLUSTER THRESHOLD RESONANCES

In this section, we want to show that under intercluster perturbation, a two-cluster threshold
esonance may be shifted to the left to produce discrete eigenvalue of the N-body system. Let a
A be a two-cluster decomposition of an N-body system such that dim Xa=3. With the notation

f Sec. II, assume that

i� E0� inf ��Qa���d�Qa�;
ii� for any b�a, Vb�xb�=O�	xb
−�0�, �0�2, and Vb�0 with Ia��b�aVa�0;
iii� let Q�g�=Qa+gIa. Assume that there exists g0�0 such that Q�g0� unique two-cluster at

E0 , Q�g0��E0 and that E0 is a threshold resonance of Q�g0�.

Note that different from Sec. II, here we do not assume that g0 is the critical coupling constant
uch that inf ��Q�g���E0 for any g�g0.

Theorem 3.1: Under the above assumptions, there exists 
0�0 such that for g� �g0 ,g0


0� ,Q�g� possesses only one eigenvalue E�g�� �E0−
0 ,E0� which is nondegenerated and satis-
es

E�g� = E0 + E1�g − g0�2 + o��g − g0�2� , �3.1�

s g→g0, where E1�0.
Proof: We use the idea of Ref. 14 and only sketch the proof. Under the assumptions of

heorem 3.1, as in Sec. II, one has Q��g�� �E0+�0 /2��� for g near g0. We can then apply the
eduction made in Sec. III of Ref. 14 which implies that for 
0�0 small enough such that E

�E0−
0 ,E0+
0�, �g−g0��
0, E is an eigenvalue or threshold resonance of Q�g� if and only if 0
s an eigenvalue or threshold resonance of �+−�� ,g� with the same multiplicity, where �=E−E0

nd �+−�� ,g� is given by �2.6�. Let

G0 = lim
z→0,Iz�0

�− �xa
− z�−1:H−1,s → H1,−s�,s,s� � 1/2,s + s� � 2.

enote V0=V�0,g0�. The zero resonance of �+−�0,g0� is simple6,14 and Theorem 3.3 �a� of Ref. 15
hows that 0 is not an eigenvalue of �+−�0,g0�. Therefore the kernel of �+−�0,g0� in H1,−s is of
imension one. Let u0 be the resonant state of �+−�0,g0� normalized by 	u0

* ,u0
a=1, where u0
*

−V0u0. Let W�� ,g�=1+K�� ,g� with K�� ,g� defined as in Sec. II. Study the Grushin problem
ssociated with the operator

P��,g� = �W��,g� T

S 0
�:H1,−s � C → H1,−s � C ,

here s�1/2 ,T :C�c→cu0�H1,−s and S :H1,−s� f → 	u0
* , f
�C. Define Q :H1,−s→H1,−s by

f = 	u0
* , f
au0. Denote F=Range�1+G0V0�. Then, Q�=1−Q is a projection from H1,−s onto F and

��1+G0V0�Q� is invertible on F. For � near 0 and g near g0, one has

Q�W��,g�Q��Q��1 + G0V0�Q��−1Q� = Q� + Q��K��,g� − K�0,g0��Q��Q��1 + G0V0�Q��−1Q�

= Q� + O����� + �g − g0��, � � 0, �3.2�
n L�1,−s ;1 ,−s�. We deduce that Q�W�� ,g�Q� is invertible on F for ��� small and g near g0. Let
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D��,g� = �Q�W��,g�Q��−1Q�.

hen for any s�1/2, one has

D��,g� = �Q�W�0,g0�Q��−1Q� + O����� + �g − g0�� , �3.3�

s operator on H1,−s. Using D�� ,g� to construct an approximate inverse, one can show that for �
ear 0 and g near g0, the operator P�� ,g� is invertible from H1,−s�C to H1,−s�C with the inverse
iven by

P��,g�−1 = � E��,g� E+��,g�
E−��,g� E+−��,g�

� ,

here

E��,g� = D��,g�, E+��,g� = T − D��,g�Y , �3.4�

E−��,g� = S − SX, E+−��,g� = − SW��,g�T + SXY , �3.5�

ith

X = QW��,g�Q�D��,g�, Y = Q�W��,g�T .

ote that E+−�� ,g� is a scalar and that 0 is an eigenvalue of 1+K�� ,g� if and only if

E+−��,g� = 	V0u0,�1 − W��,g�Q�D��,g�Q��W��,g�u0
 = 0.

ne has the asymptotic expansion

�− �a − ��−1 = G0 + i�1/2G1 + O����1/2+
�

s operator from H−1,s to H1,−s with s�3/2, for some 
�0. Set �=g−g0, V0=V�0,g0�. One has

V��,g� = V0 + �B1 + �C1 + O����� + ����2�

s operator from H1,s to H1,s+�0, where

B1 = ��Ia − 2g0IaR��E0,g0�Ia��a � · �,a�a �3.6�

+ �g0
2IaR��E0,g0��IaR���E0,g0�Ia�a � · �,a�a � 0 �3.7�

s a sum of three negative self-adjoint operators in xa variables. Since u0�H1,−s for any s�1/2,

0u0�H−1,s0 for some 3/2�s0��0−1/2. By a direct calculation, one obtains

E+−��,g� = b1� + c1i�1/2 + O��2 + ����1/2 + ���1/2+
0� , �3.8�

here

b1 = − 	u0,B1u0
a, c1 =
1

4�
�	V0�u0�,1
a�2.

1�0 because u0 is a resonant state so that 	V0�u0� ,1
a�0 �Ref. 14�, and

b1 � − 	Ia�a � u0�,�a � u0�
 � 0,

ecause Ia�0 and is not identically zero. It follows from �3.8� that for each ��0 small enough,

→E+−�� ,g0+�� has a zero ��g0+���0 satisfying
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��g0 + �� = E1�2 + O��2+�� , �3.9�

here E1�0. This shows that the generalized eigenvalue problem �Q�g�−E�u=0, E� �E−
0 ,E

0�, u�H1,−s, has only one solution �E�g� ,u�g�� with E�g�=E0+��g�. Since E�g�
inf �ess�Q�g��, by the method of a priori energy estimate, one can show that u�g��H1. Thus,

�g� is the unique eigenvalue of Q�g� in �E−
0 ,E+
0� and E�g� is simple. This proves Theorem
.1. �

If g0 be defined as in Sec. II, under the conditions of Theorem 1.2, one can apply Theorem 3.1
o conclude that E�g�=inf ��Q�g�� satisfies

E�g� = E0 + E1�g − g0�2 + o��g − g0�2� , �3.10�

s g→g0 and g�g0. Equation �3.10� is known for C0
	 potentials.7 If all potentials are dilation

nalytic, one can show that E+−�� ,g� has homomorphic extension for ��C in a small rotated
alf-disk around 0 and for g near g0. From �3.8�, we can derive that for g�g0 and g near g0, �

E+−�� ,g� has a zero ��g��C with R��g��0 and I��g��0. E0+��g� is then a resonance of
�g� as pole of its resolvent.

V. APPLICATIONS TO THE N-BODY EFIMOV EFFECT

Let P=−�+�aVa�xa� be an N-body Schrödinger operator, N�4. Let b�A with #b=3, E0

inf ��Pb�. Assume that

i� �1.5� is satisfied and inf ��Pa��E0, a� �b ,a1 ,a2 ,a3�;
ii� each Paj admits a discrete eigenvalue strictly below E0.

Note that Ib can be decomposed as Ib= I1+ I2+ I3 with Ij =�c�b,c�aj
Vc�xc�.

Theorem 4.1: Under the above conditions, let Paj�g�=Pb−�x
b
aj +gIj, where −�x

b
aj

�−��xaj�xb
. Then there exists gj � �0,1� such that E0 is a threshold resonance of Paj =Paj�gj�, j

1,2 ,3. In particular, Theorem 1.1 holds for the N-body operator P=Pb+� j=1
3 gjIj.

Proof: Theorem 4.1 follows easily from Corollary 2.4. In fact, Pb can be regarded as a
wo-cluster sub-Hamiltonian of Paj =Pb−�x

b
aj + Ij, j=1,2 ,3. The assumptions made on Pb imply

hat Pb is the only two-cluster sub-Hamiltonian of Paj such that inf ��Pc�=inf �ess�Paj�, c�aj,
�aj, that is, Paj is unique two-cluster. Since Paj admits at least one discrete eigenvalue strictly
elow E0=inf ��Pb�, Corollary 2.4 with Q=Paj, j=1,2 ,3, says that there exists gj � �0,1� such
hat Paj =Paj�gj�=Pb−�x

b
aj +gjIj satisfies that inf ��Paj�=E0 and that E0 is a threshold resonance of

Paj. Now, for the N-body Hamiltonian P=Pb+� j=1
3 gjIj, one has inf ��Pc�� inf ��Pc��E0 for

� �b ,a1 ,a2 ,a3�. Therefore, �1.4� is satisfied for P. It is clear that all conditions of Theorem 1.1
re verified for P. �

Let us give an example of atomic-type four-body Schrödinger operator with Yukawa poten-
ials such that all conditions of Theorem 1.1 are satisfied. Consider an atomic-type four-body
uantum system labeled by �0, 1, 2, 3�, where the particle 0 denotes the nucleus with position at
he origin in R3. Let xj �R3 denote the relative position between the jth electron and the nucleus.
onsider the four-body Schrödinger operator with Yukawa potentials,

P��,�,�� = �
j=1

3

�− �xj
+ Vj�xj�� + �

1�j�k�3
Vjk�xj − xk� , �4.1�

here

V��y� = −
����e−�����y�

�y�

ith �= ����, �= ����, �= ����, the subscript � taking values in i or �jk� for i , j ,k� �1,2 ,3� , j

k. Here �� ,���0 and ��� �0,1�. Let b= ��01� , �2� , �3�� be the three-cluster decomposition of
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he four-body system. The three resulting two-cluster decompositions are

a1 = ��01�,�23��, a2 = ��012�,�3��, a3 = ��013�,�2�� .

et Q��� be the four-body Schrödinger operator with Coulomb potentials

Q��� = �
j=1

3

�− �xj
+ Wj�xj�� + �

1�j�k�3
Wjk�xj − xk� , �4.2�

here

W��y� = −
��

�y�
.

et E�=min�inf���Qc����� ; c�A ,#c=2,c�b�. E� is independent of �1. Take

�1 � 2�− E� and �1 = 1. �4.3�

enote

Pb = − �x1
−

�1e−�1�1�x1�

�x1�
, E0 = inf ��Pb� . �4.4�

et ���0 be small enough such that the infimum of the spectrum of each two-particle sub-
amiltonian,

− �y −
��e−�����y�

�y�

s a negative eigenvalue. Then

E0 = inf ��Pb� =
�1

2

4
�− 1 + O��1�� �4.5�

or �1 small enough. Since Pa�� ,� ,���Qa��� for any a�A and for any ��� �0,1�, one has

inf ��Pb� � E� � min�inf���Pc��,�,���;c � A, # c = 2,c � b�� . �4.6�

his shows that for any ��� �0,1�, ��1, inf �ess�P�� ,� ,���=E0 and that it can only be attained
y the sub-Hamiltonians associated with a� �b ,a1 ,a2 ,a3�. Note that Pb�� ,� ,�� can be regarded
s a two-cluster sub-Hamiltonian of Paj�� ,� ,��. By the example given in Sec. II, for k=2,3, there
xists �k=�1k=gk� �0,1� such that

Pak = − �x1
− �xk

−
�1e−�1�1�x1�

�x1�
− gk��ke

−�k�k�xk�

�xk�
+

�1ke
−�1k�1k�x1−xk�

�x1 − xk�
�

atisfies

inf ��Pak� = inf ��Pb� = E0 and E0 is a threshold resonance of Pak, k = 2,3. �4.7�

sing y=x2−x3 as part of intracluster coordinates, one can write Pa1 as

Pa1 = − �x1
− 2�y −

�1e−�1�1�x1�

�x1�
−

�23�23e
−�23�23�y�

�y�
.

his is a particular case of the example of Sec. II. Let g1 be defined
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g1 = sup��23 � 0;− 2�y −
�23�23e

−�23�23�y�

�y�
� 0� .

hen, �4.7� is also satisfied for k=1 with �23=g1. All assumptions of Theorem 1.1 are thus
atisfied and Theorem 1.1 affirms that the Efimov effect takes place for P�� ,� ,�� with the pa-
ameters adjusted as above. In particular, if ��=1 for ��1, and ��=�, our result claims that for
ny �1�2�−E� and for any ��0 small enough, there exists gj � �0,1�, j=1,2 ,3, such that the
fimov effect happens at the energy E0=−��1

2 /4�+O��� for the atomic-type four-body
chrödinger operator,

P = − �x1
− �x2

− �x3
−

�1e−��1�x1�

�x1�
− g1

e−��x2−x3�

�x2 − x3�
− g2� e−��x2�

�x2�
+

e−��x1−x2�

�x1 − x2� � − g3� e−��x3�

�x3�
+

e−��x1−x3�

�x1 − x3� � .

�4.8�

As application of Theorem 3.1, we give the following result which is an improvement of
heorem 5.1 of Ref. 15, where the additional condition Vc�C0

	 for c�b was needed.
Theorem 4.2: Let b�A with #b=3 and P�g�= Pb+gIb. Assume the conditions of Theorem 1.1

atisfied for P= P�g0�. Then for g�g0 and g near g0, the total number of discrete eigenvalues,
�g�, of P�g� is finite and satisfies

N�g� � 2C0�log�g − g0�� − C1, �4.9�

s g→g0. Here C0�0 is the same as in Theorem 1.1 and C1 is a constant independent of g.
With the results of Secs. II and III, one has for g�g0 and g near g0,

�3�g� � min
#c=3

inf ��Pc�g�� = E0

nd

�2�g� � min
#c=2

inf ��Pc�g�� = min
1�j�3

inf ��Paj�g�� .

pplying Theorem 3.1 to Paj�g� with Pa replaced by Pb, one has

inf ��Paj�g�� = E0 + E1,j�g − g0�2 + o��g − g0�2�, E1,j � 0.

his shows that

�2�g� = E0 + E1�g − g0�2 + o��g − g0�2� � �3�g� ,

here E1=minj�E1,j��0. Since �0�2, the number of discrete eigenvalues of P�g� is finite. No-
icing that P�g�� P�g0� for g�g0, one has N�g��N��2�g��. Theorem 1.1 gives the desired result.
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We consider a model of quantum electrodynamics �QED� on a graph as the gener-
alization of dimensional deconstruction with the Abelian symmetry. Arbitrary struc-
tures of the theory space correspond to the graphs consisting of vertices and edges.
The mass spectrum of the model is expressed in terms of eigenvalues of the La-
placian for the graph. We also find that physical massless scalar modes are associ-
ated with the fundamental tie set matrix on the graph. We further investigate the
one-loop divergences in the model by use of the background field method. © 2005
American Institute of Physics. �DOI: 10.1063/1.2109687�

. INTRODUCTION

One of the most important problems in modern particle physics is to understand the existence
f largely different mass scales within a unified theory. On many occasions, we use the idea of
upersymmetry �SUSY� to control the quantum correction in order to understand the mass hier-
rchy.

Recently, the scenario for the electroweak symmetry breaking without SUSY has been sug-
ested and studied by many authors. The seminal paper in recent development is Ref. 1. The
ivergent diagrams are mutually canceled among contributions from a number of bosonic fields.

The basic idea of such a mechanism is now attributed to dimensional deconstruction,2 where
opies of a four-dimensional “theory” as well as a new set of fields linking pairs of these “theo-
ies” are considered. Then, the resulting whole theory given by the “theory space” may be equiva-
ent to a higher-dimensional theory with discretized extra dimensions.

The present authors considered previously a generalization of the deconstruction.3 A gener-
lization of deconstruction is also argued in Ref. 4. We identify the theory space as a graph
onsisting of vertices and edges. In the present paper, we further investigate the divergences in the
eld theory on a graph, particularly focusing on an Abelian theory. Although the non-Abelian
tructure and alignment of fields in a certain representation may be essential for realistic models,
he substantial behavior of divergences can be viewed from a simpler model. Recently, a model
ith extra massive vector boson was studied by Körs and Nath,5 where the Stueckelberg formal-

sm was utilized. Our model can be applied to a generalization of their work.
We organize the present paper in the following way. In Sec. II, we review graph theory and

atrices associated with a graph, including the Laplacian of a graph. The Lagrangian for gauge
elds on a graph is described in Sec. III. The Lagrangian for fermion fields is described in Sec. IV.
n Sec. V, the one-loop logarithmical divergences in effective Lagrangian density are discussed. In

�Electronic mail: b1834@sty.cc.yamaguchi-u.ac.jp
�
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ec. VI, we study the one-loop finiteness of the effective potential for a constant background link
calar fields. Comment on the non-Abelian generalization is given in Sec. VII. We close with Sec.
III, where summary and prospects are given.

I. GRAPH THEORY AND MATRICES ASSOCIATED WITH A GRAPH

In this section, after a brief description of “graph,”6 some matrices associated with a graph are
ntroduced.

Let G�V ,E� be a graph with vertex set V and edge set E. The set of edges connects the
ertices. A graph which does not have multiple edges �edges connecting the same two vertices�
nd self-loops �edges from a vertex to itself� is called a simple graph. We only consider simple
raphs in the present paper. The order of G, denoted by p in this paper, is the number of vertices
n the graph, while the size of G, denoted by q in this paper, is the number of edges in the graph.

pair of vertices u and v is said to be adjacent, denoted u�v, if there exists an edge e�E which
onnects u and v. Such edge is denoted as e= �u ,v�.

The adjacency matrix A is defined as

�A�vv� = �1 if v � v� �v is adjacent to v��
0 otherwise

	 . �1�

The degree of a vertex v, denoted deg�v�, is the number of edges directly connected to �in
ther words, is incident with� v. The �diagonal� degree matrix D is defined as

�D�vv� = �deg�v� if v = v�

0 otherwise
	 . �2�

The graph Laplacian �or combinatorial Laplacian� ��G� is defined7 by

�vv� = �D − A�vv� = 
deg�v� if v = v�

− 1 if v and v� are adjacent �v � v��
0 otherwise

� , �3�

here v ,v��V, and deg�v� denotes the degree of v.
The �mass�2 matrix for vector fields in the Hill-Leibovich model8 is proportional to � for a

ycle graph6 with N vertices �denoted as CN�.
Next, we consider a directed graph. An oriented edge e= �u ,v� �u ,v�V�G�� connects the

rigin u=o�e� and the terminus v= t�e� �and an unoriented edge does not distinguish its origin and
erminus�.

The incidence matrix �for a directed graph� E is defined by

�E�ve = 
 1 if v = o�e�
− 1 if v = t�e�
0 otherwise

� . �4�

Our important observation is

� = EET, �5�

or any given graph.

II. VECTOR FIELDS „+SCALAR FIELDS…

The simplest model with the Abelian symmetry is studied by Hill and Leibovich.8 We consider
ere the extension of the model constructed on a general graph.

We associate vector fields with vertices of a graph G. Further, we introduce a link field Ue on
2 5
ach edge. We can write the Lagrangian density for vector fields whose �mass� matrix is ��G� as
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LV = −
1

4g2 �
v�V

Fv
��Fv�� +

1

2
v2 �

e�E

D�Ue2, �6�

here g is a gauge coupling and Fv
��=��Av

� −��Av
� �� ,�=0,1 ,2 ,3� stands for the field strength. In

his section the metric signature is ������. The covariant derivative is defined as D�Ue

��Ue− i�Ao�e�
� Ue−UeAt�e�

� �.
The Lagrangian is invariant under the following gauge transformations:

Av
� → Av

� + ���v,

�7�
Ue → exp�i�o�e��Ue exp�− i�t�e�� .

Now, we assume that the absolute value of each link field Uk has a common value 1. If we
xpress Ue as exp�−i�e�, the Lagrangian �6� becomes

LV = −
1

4g2 �
v�V

Fv
��Fv�� +

1

2
v2 �

e�E

����e + Ao�e�
� − At�e�

� �2

= −
1

4g2 �
v�V

Fv
��Fv�� +

1

2
v2 �

e�E

����e + �ETA��e�2, �8�

here �ETA��e is an abbreviated form of �v�V�ET�evAv
�.

We find that the term including �e resembles the gauge kinetic term of the extra “fifth” index,
�F�5�2, when we regard gv�At�e�

� −Ao�e�
� � as a discretization of differentiation and A5��. Then, the

auge transformation on �e is �e→�e+	�e, with

	�e = �t�e� − �o�e� = − �ET��e. �9�

he degrees of freedom in this gauge transformation are p−1, and �p−1� scalar fields can be
auged away from the Lagrangian. Therefore, there are �q−p+1� physical, massless scalar fields.
s explained in Ref. 8, the vector fields absorb massive modes of the link scalar fields, and the

ero modes of the link fields survive as physical fields. Thus, except for the zero modes, the
assive modes of link fields �e are nothing but the Stueckelberg fields.9

The physical massless scalar modes �0
�i��i=1, . . . ,q−p+1� are orthogonal to the gauge trans-

ormation, i.e., �e�E�0e
�i��ET��e=0. Thus, the zero modes satisfy �E�0

�i��v=0. Actually, the graph
ncludes �q−p+1� fundamental circuits, that is, independent �undirected� cycles as subgraphs. The
umber of fundamental circuit n�G� is called the cyclomatic number of the graph G, or its nullity.
or the ith fundamental circuit C�i�

�0e
�i� � �±1 if e � E�C�i��

0 otherwise
	 , �10�

here the minus sign is chosen when the edge has the opposite direction to an orientation of the
undamental circuit, satisfies �E�0

�i��v=0. Then, �0
�i� is represented by rows of the fundamental tie

et matrix Ff, since rank Ff =n�G�. For the definition of fundamental circuits and fundamental tie
et matrix, in other words, fundamental circuit matrix, and for a related theorem, see Ref. 6. For
xample, for the graph including a �directed� fundamental circuit of length three, the incidence
atrix includes

� 1 0 − 1

− 1 1 0

0 − 1 1
� , �11�
s a submatrix. Then, �0� �1,1 ,1 ,0 , . . . ,0� is a zero mode.

                                                                                                            



fi
f

U
g
t

w

b

w
N
l
f

s
h
g

d

I

fi
c

T

112301-4 N. Kan and K. Shiraishi J. Math. Phys. 46, 112301 �2005�

                        
Now and then the part of the Lagrangian for the link fields gives a mass term for the vector
elds. For example, we consider a cycle graph C5. The �mass�2 matrix for vector fields takes the
orm

�gv�2��C5� = �gv�2�
2 − 1 0 0 − 1

− 1 2 − 1 0 0

0 − 1 2 − 1 0

0 0 − 1 2 − 1

− 1 0 0 − 1 2
� . �12�

p to the dimensionful coefficient g2v2, this matrix is identified with the Laplacian matrix for the
raph Cp, the cycle graph with p vertices. We find, indeed, any theory space can be associated with
he graph.

Next, we will manage to perform gauge fixing. We choose the gauge fixing term as

Lgf = − �
v�V

1

2g2

���Av

� − 
�gv�2�E��v�2, �13�

here �E��v means �e�EEve�e.
For this gauge choice, we introduce the ghost field and its Lagrangian

Lghost = �
v�V

c̄v�− ��2 + 
�gv�2EET�c�v, �14�

ecause 	���Av
�−
�gv�2�E��v�=�2�v+
�gv�2�EET��v.

The gauge-fixed Lagrangian LV
=LV+Lgf +Lghost becomes

LV
 = −
1

2g2 �
v�V

����Av
��2 − �1 −

1



����Av

��2� +
1

2
v2 �

v�V

Av
��EETA��v +

1

2 �
e�E

���Xe�2

−
1

2

�gv�2 �

e�E

Xe�ETEX�e + �
v�V

c̄v�− ��2 + 
�gv�2EET�c�v, �15�

here we rewrite the scalar fields as Xe�v�e. The massive scalar modes are the would-be
ambu-Goldstone bosons that become a longitudinal component of vector fields, while the mass-

ess modes are physical massless scalars. The massive scalar modes are associated with the
undamental cutset matrix Cf, since FfCf

T=0.10

If we choose 
=1 gauge, we can apparently find that vector fields �physical and unphysical�,
calar fields, and ghost fields have the same mass spectrum up to zero modes, since EET and ETE
ave the same nonzero eigenvalues. Indeed, Tr e−EETt−Tr e−ETEt=p−q is an “index theorem” in
raph theory as well as the theory of non-negative matrices.

The treatment of the “unexpected” scalars in the phenomenological point of view will be
iscussed after considering the coupling to fermions in the successive section.

V. FERMIONS ON A GRAPH

We associate right-handed fermion fields with vertices of a graph G, and left-handed fermion
elds with edges of G. The Lagrangian density for Dirac fields associated with the directed graph
an be written by

L f = �
v�V

�̄Rvi�
����Rv + �

e�E

�̄Lei�
����Le − m��

e�E
�
v�V

�̄LeEev
T �Rv + H.c.� . �16�
he equations of motion are derived from this Lagrangian as
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�2�Rv + m2�EET�R�v = 0,

�17�
�2�Le + m2�ETE�L�e = 0.

ere, we already know that the graph Laplacian matrix ��EET has a single zero eigenvalue for
simple connected graph.7 Moreover, it is well known that the matrix ETE has the same eigen-

alues as EET and �q−p� zero modes. Therefore, the particle spectrum contains one right-handed
eyl fermion, �q−p+1� left-handed Weyl fermions �or, one massless Dirac fermion and �q−p�

eft-handed fermion�, and �p−1� massive Dirac fermions.
Now, we introduce the coupling between gauge and link fields. In addition to �7�, we will

mpose the gauge symmetry and assume the following gauge transformation on fermions:

�Rv → exp�i�v��Rv,

�18�
�Le → exp�i�o�e���Le.

he invariant Lagrangian is

L f = �
v�V

�̄Rvi����� − iAv
���Rv + �

e�E

�̄Lei����� − iAo�e�
� ��Le − m��

e�E

�̄Le��Ro�e� − Ue�Rt�e�� + H.c.�
= �

v�V

�̄Rvi��Dv
��Rv + �

e�E

�̄Lei��De
��Le − m��

e�E
�
v�V

�̄LeÊev
† �Rv + H.c.� , �19�

here the weighted incidence matrix Ê is defined as

�Ê�ve = 
 1 if v = o�e�
− Ue

† if v = t�e�
0 otherwise

� . �20�

he �mass�2 matrix, or modified graph Laplacian, can be read as

��̂�vv� = �ÊÊ†�vv� = 

deg�v� if v = v�

− Ue
† e = �v�,v� � E�G�

− Ue e = �v,v�� � E�G�
0 otherwise

� . �21�

Getting the gauge field Lagrangian in the previous section and the fermion Lagrangian to-
ether, we have a QED-like theory on a graph. When we investigate the model in view of quantum
heory, we find that there appears chiral anomaly in general except for the p=q case. The cancel-
ation of anomaly requires more charged fermion species. We do not treat the problem of anomaly
n the present paper. Another problem for phenomenologically viable models is the existence of
xactly massless fermions. Even in the p=q case a massless Dirac field appears. Of course,
dditional mass terms can be introduced into the model, but the origin of such a small “electron
ass” is not discussed here.

Now, we study the coupling between zero-mode fields, which describes the low-energy phys-
cs Ev ,m. The lowest-order interactions can be read as

Lint = �
v�V

�̄Rv��Av
��Rv + �

e�E

�̄Le��Ao�e�
� �Le −

m

v ��
e�E

�̄LeiXe�Rt�e� + H.c.� . �22�

We consider here the simplest case, p=q. Then, the graph contains one circuit C̃p̃ with length
�
p��p�. The zero-mode fields of A and �R are expressed as
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Av
� =

1
�p

A0
�, �Rv =

1
�p

�R0, ∀ v � V�G� . �23�

n the other hand, the zero-mode fields of X and �L are expressed as

Xe =
1
�p̃

X0, �Le =
1
�p̃

�L0, ∀ e � E�C̃p̃� . �24�

hen, the zero-mode interactions can be written as

Lint0 =
1
�p

�̄R0��A0
��R0 +

1
�p

�̄L0��A0
��L0 −

1
�p

m

v
��̄L0iX0�R0 + H.c.� . �25�

he gauge coupling is g /�p, while the link scalar coupling is �m /v� /�p, which is the same order
s the gauge coupling if the fermion mass equals the vector boson mass, m=gv.

We do not know the massless scalar interaction in the real world. One way to avoid the
ifficulty in the existence of scalars is to assume that the massless scalar interacts very weakly
ith matter fields. Unfortunately, here we found that the suppression of the scalar interaction due

o the choice of a graph cannot be expected in general. We can only arrange the two scales m and
for this purpose.

A special case is the choice of a graph with p=q+1, called the tree �graph�.6 All link scalar
elds are absorbed by massive vector bosons, leaving a massless vector field. The simplest tree
raph, path graph Pp,6 corresponds to the dimensional deconstruction of an orbifold S1 /Z2.

Another method to discard the massless scalar is incorporation of the plaquette-type term,
e�Ue1

¯Ueq�
� where e1 , . . . ,eq��E�C� and C is a cycle in a graph, in the Lagrangian. The

laquette-type term will be studied elsewhere.
In the rest of the present paper, we will concentrate on the study of one-loop UV divergence

f the model.

. ONE-LOOP DIVERGENCES IN EFFECTIVE ACTION

We investigate the one-loop divergence in the model by calculating the effective action by the
eat-kernel method with background fields.11 In this section, we use the Euclidean signature for
he metric. The gamma matrices satisfy ��� ,���=−2	��. We assemble the fermion fields as

� � ��R

�L
� , �26�

nd define a derivative operator

iD �� iDV − mÊ

− mÊ† iDE
� , �27�

nd

iD† � � iDV mÊ

mÊ† iDE
� , �28�

here DV=diag���Dv1

� ,��Dv2

� , . . . ,��Dvp

� � and DE=diag���De1

� ,��De2

� , . . . ,��Deq

� �. Then, the Eu-
lidean Lagrangian is expressed as L f =�†iD�.

†
As a preparation, we write the quadratic operator D D explicitly as
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D†D = � DV
2 + m2ÊÊ† i m�DVÊ − ÊDE�

i m�DEÊ† − Ê†DV� DE
2 + m2Ê†Ê

� , �29�

here

�DV
2�vv� = 
− �Dv

��2 −
i

2
����Fv

�� if v = v�

0 otherwise
� , �30�

�DE
2�ee� = 
− �De

��2 −
i

2
����Fo�e�

�� if e = e�

0 otherwise
� , �31�

�DVÊ − ÊDE�ve = �− ���D�Ue�† if v = t�e�
0 otherwise

	 , �32�

nd

�DEÊ† − Ê†DV�ev = �− ���D�Ue� if v = t�e�
0 otherwise

	 . �33�

The effective action at the one-loop level can be written as �see Ref. 11 and references
herein�.

� = −
1

2
Tr ln�D†D� =

1

2
�

0

� dt

t
Tr e−D†Dt =

1

2
�

0

� dt

t
� d4x Tr�xe−D†Dtx� . �34�

ere, we use

�xf�D��x� =� d4k

�2��4 �xf�D� + ik��0� , �35�

here 0� is a zero momentum state ��x 0�=1�, to calculate the effective Lagrangian.11

To evaluate the t2 term in the expansion of the integrand, we need the following explicit form:

Tr�DV
2�2 = 2 �

v�V
��Dv

��2�Dv
��2 +

1

2
Fv

��Fv
��� , �36�

nd

Tr�DE
2�2 = 2 �

e�E
��De

��2�De
��2 +

1

2
Fo�e�

�� Fo�e�
�� � , �37�

here the coefficient 2 comes from the projection to the left/right-handed fermions.
Therefore, the logarithmically divergent part �with the Euclidean signature� turns out to be

1

24�2 � dt

t ��
v�V

1

4
�Fv

���2 + �
e�E

1

4
�Fo�e�

�� �2 +
3

2
m2 �

e�E

D�Ue2 + ¯ � . �38�

he coefficients of kinetic terms of gauge and link fields are logarithmically divergent.
In particular, the gauge coupling runs logarithmically. If every vertex is an origin of an edge
or p=q graph, the beta function is the same as the usual QED
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�
dg

d�
=

g3

12�2 . �39�

n the general case, if we define the individual gauge coupling for each gauge field on a vertex,
uch that the kinetic term becomes �v�V�1/4gv

2�F�� vFv
��, their beta functions are

�
dgv

d�
=

�1 + d+�v��gv
3

24�2 , �40�

here d+�v� is the outgoing degree of a vertex v, which is the number of edges whose origin is v.
ote that the average of d+�v� is q /p.

The running of the individual gauge coupling is interesting for the possibility of variating the
ass spectrum. However, the existence of zero modes is still unchanged, expressed as in �23�.
hus, this running-coupling effect is not useful for symmetry breaking even when the model is
eneralized to the non-Abelian one.

For the non-Abelian case, the quantum fluctuation of the gauge fields and link fields also
nduces the logarithmic divergent contribution to the gauge and link field kinetic terms.

I. ONE-LOOP FINITENESS IN EFFECTIVE POTENTIAL

The effective potential for constant background link field can be written as

V = −
1

2
�

0

� dt

t
� d4k

�2��4e−k2t2�Trp exp�− m2ÊÊ†t� + Trq exp�− m2Ê†Êt��

= −
1

�4��2�
0

� dt

t3 �Trp exp�− m2ÊÊ†t� + Trq exp�− m2Ê†Êt�� , �41�

here TrM means the trace only on �M �M� matrices.

Since Trp�ÊÊ†�n=Trq�Ê†Ê�n for n�1, the integrand can be expanded as

1

2
�Trp exp�− m2ÊÊ†t� + Trq exp�− m2Ê†Êt�� =

p + q

2
− m2 Trp �̂t +

1

2
m4 Trp �̂2t2 + O�t3� .

�42�

Owing to UeUe
†=1, Trp �̂=Trp D obviously and Trp �̂2=Trp D2+Trp D. In other words, the

ame relation as that on � holds. The expression �41� includes divergences, but they not depend on
he background link fields.

This is the origin of the one-loop finiteness of the scalar potential in the deconstructed theory.
his nature is preserved for non-Abelian generalization.

In the present Abelian case, the zero-mode field of the link variable acquires mass by the
ne-loop quantum effect. The explicit calculation for models with a cycle graph CN can be carried
ut as in Refs. 8 and 12.

II. GRAPH HOSOTANI MECHANISM?

If some non-Abelian gauge symmetry is introduced, a symmetry-breaking mechanism be-
omes possible in the theory on a graph, just as in the case of the Hosotani mechanism.13

Let the length of the shortest cycle c= �e1 , . . . ,eN� in G be N��3�. The trace of the kernel of
ˆ , Tr exp�−�̂t�, for matter fields coupled to the link fields, includes a term Re Tr Ue1

¯UeN
and its

oefficient is O�tN�. Therefore, the one-loop effective potential for the zero mode of link fields is
nite �up to a field-independent divergence�.

If we take a graph Cn into a model and consider the limit n→�, the model reduces to the
riginal Hosotani model13 �it should be read A5��, where U=e−i��.
The realization of non-Abelian symmetry breaking in the field theory on a graph may not be

                                                                                                            



s

w

−
a
=
a
r

w

V

g

m
fi
p
t

a
c

A

1

1

1

1

112301-9 Divergences in quantum electrodynamics on a graph J. Math. Phys. 46, 112301 �2005�

                        
o easy as in the Hosotani models. The simplest idea is that we abandon the local symmetry on a

hole graph. Suppose that we dare to replace such a term �̄Le��Ro�e�−Ue�Rt�e�� by �̄Le��Ro�e�

�Rt�e�� on some edges. Then, the local symmetry on a graph disappears but global symmetry on
graph such as �Rv→exp�i���Rv, �Le→exp�i���Le �where �v�x�=��x� for all v�V and �e�x�
��x� for all e�E� remains. Thus, the model still has usual local gauge symmetry in space–time,
t the classical level. In this case, the induced term like Re Tr Ue1

¯UeN
, where some Us are

eplaced by unity, may lead to a novel phase structure of vacuum.
We will study the dynamical symmetry breaking in field theory on a graph which has edges

ith and without some weight functions elsewhere.

III. SUMMARY AND PROSPECTS

In conclusion, we clarified the divergences of the one-loop effective Lagrangian in the Abelian
auge field theory on graphs.

We must consider the following possibilities. To consider the generalization of the Hosotani
odel, we should investigate non-Abelian gauge theory on a graph. We also need adjoint matter
elds or fields in other representations on vertices or edges. At the same time, we should study the
ossible inclusion of plaquette-like self-interaction of link fields in bare Lagrangian. By the way,
o consider superfields on a graph is also an interesting subject.

We are interested also in the two-loop effective action. We still hope that the knowledge of
lgebraic graph theory may be useful to investigate higher-loop divergence as well as tree-level
alculation of reaction amplitude mediated by the excited modes.
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Solutions of types N and III with twisting rays are derived in the linear approxi-
mation by means of complex coordinate transformations. Some solutions are shown
to have Riemann tensors which vanish asymptotically and are everywhere
regular. © 2005 American Institute of Physics. �DOI: 10.1063/1.2113412�

. INTRODUCTION

Over the past 40 years, a great deal of progress has been made in studying the spacetimes with
egenerate Weyl tensors.2 For type III fields built around expanding and hypersurface orthogonal
ays, the field equations reduce to a single one which specifies that, on each wavefront, the
aplacian of the Gaussian curvature should vanish. An example of this solution was given by
obinson and Trautman in 1962.7 Stephani8 has analyzed the symmetries of this equation and

ound that this method did not lead to any new solutions simply because the only known one,
obinson-Trautman, is a fixed point for the set of symmetry transformations.

For metrics with twisting rays, a class has been identified by Robinson and Robinson,6 in
hich the system of field equations separate into a nonlinear background and a linear equation.
he only known solution for this background equation is the old Robinson-Trautman solution; and
ince this is a stationary solution, so are all the spaces determined from it. Therefore these are
xamples of a rather restricted type of radiation. In any case, all solutions obtained this way appear
o have directional singularities.

The lack of exact solutions and methods of discovering them increased the interest for ap-
roximate ones. For example, in the twisting type N case, only Kundt’s solution was known until
ecently; Ivanov1 found another one. However, both solutions are more difficult to understand,
nalyze or to work with than the regular approximate ones found by MacAlevey in Ref. 3.

In this paper we obtain approximate type III solutions in the case of pure radiation with
wisting rays. The method we use was described and used by Trautman9 to obtain solutions to
inear special relativistic partial differential equations. One starts with a solution analytic in all
our coordinates, continues it for complex values of the coordinates, makes a complex inhomo-
eneous Lorentz transformation and restricts the resulting solution to real values of the coordi-
ates. Applying this method to Maxwell’s equations and the linearized Einstein’s equations one
orks throughout with the complex self-dual form of the field. The transformation then leaves

nvariant the algebraic structure of the field, i.e., the distinctness or coincidence of the principal

�Electronic mail: nitab@mail.montclair.edu
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ull directions. By these means Trautman obtained the null electromagnetic field built around the
obinson congruence given explicitly a year later. The method has also been applied extensively
y Newman �see, e.g., Ref. 4�.

We carry out this procedure explicitly starting with a linear approximation of a type III
pace-time built around the Robinson congruence. After complexifying and setting conditions for
elf-duality, we apply a complex transformation to obtain the most general expression for type III
olutions built around what might be described as a generalized Kerr congruence. A large subclass
f these solutions are shown to be regular using a scalar obtained from their Bel-Robinson tensor.

I. SELF-DUAL ROBINSON-TRAUTMAN SPACES

We can complexify the Robinson-Trautman metric given in Ref. 7, in a purely formal way, by

aking the coordinates �, �, �, �̃ to be independent complex variables and the defining functions

��� and p�� ,� , �̃� to be complex. It is easy to see that the Weyl tensor is self-dual if, and only if,

=0 and p−1p,�̃�̃ is a function of �̃ only. By means of a coordinate transformation we can
trengthen the last condition to p,�̃�̃=0. The line element is then given by

ds2 = 2 d� d� + �K − 2�
p,�

p
�d�2 −

2�2

p2 d� d�̃ , �1�

K = 2�AB,� − A,�B�, p = A + �̃B , �2�

here A and B are arbitrary functions of � and �. The Weyl tensor is

Cklmn =
p

2�2K,��MklNmn + NklMmn� −
1

2�2 �p2K,��,�NklNmn +
p2

�
�p−1p,���,�NklNmn, �3�

here

Nkl = 2
�

p
� ,�k�,l�, �4�

Mkl = 2�� ,�k�,l� −
�2

p2� ,�k�̃,l��. �5�

II. COMPLEX COORDINATE TRANSFORMATION

It is worth remarking that, at least in a special case, one can put this line element into the

tandard form for one with twisting rays. The special case is defined by p=A���+ �̃B���. The
ransformation

� = r − i�,

� = z , �6�

�̃ =
r + ia

r − ia
z̃ ,
here
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� = a
A�z� − z̃B�z�

P
�7�

nd

P = A�z� + z̃B�z� , �8�

being a real parameter, transforms �1� into

ds�2 = 2�� − 2��̃ , �9�

here

� = d� � 2L dz , �10�

� = P−1�r − i��dz , �11�

�̃ = P−1�r + i��dz̃ , �12�

� = dr + i��z dz − �z̃ dz̃� + 1
2K� , �13�

nd

L =
aiz̃

P2 . �14�

n the coordinates, the bivectors N and M are given by

Nkl =
r − ia

r − i�
Nkl� , �15�

Mkl = Mkl� +
2PKL

r − i�
Nkl� , �16�

here

N�kl = 2
�

p
��k�l�, �17�

�18�
M�kl = 2���k	l� − ��k�̃l��.

aking this transformation on the flat space line element

ds0
2 = 2 d� d� � 2k d�2 −

2�2

p0
2 d� d�̃ , �19�

p0 = 1 + k��̃ , �20�

riting z̄ for z̃ and setting

� = u − ia
zz̄

P0
�21�
ith
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P0 = 1 + kzz̄ �22�

e get

ds2 = 2��dr + i�z dz − i�z̄ dz̄ + k�� −
2�r2 + �2�

P0
2 dz dz̄ , �23�

here

� = du + iaP0
−2�z̄ dz − z dz̄� �24�

nd

� = a
1 − kzz̃

1 + kzz̃
. �25�

or k=0, this is the transformation given in Trautman;9 for k
0, it is equivalent to that of
ewman.4

V. LINEAR APPROXIMATION

Suppose that in the line element given by Eqs. �1� and �2�, the function p is expanded as a
ower series

p = p0 + �p1 + �2p2 + ¯ , �26�

here p0 is given by �20� and

p1 = �,� + �̄ + k�̄���,� − 2�� , �27�

and  being arbitrary functions of � and �. In the expansion of the Weyl tensor we have

C0 klmn = 0, �28�

C1 klmn =
1

�2 p0��MklNmn + NklMmn� − � 1

�2�p0
2��,� −

1

�
p0��p0 + �,��̃��NklNmn, �29�

here �=,�� and �=�,����.
Next we transform to the coordinates u, r, z, z̄, restrict ourselves to the space-time in which u

nd r are real and in which z and z̄ are complex conjugates. Consider the line element

ds2 = ds0
2 + ��ds1

2 + ds̄1
2� . �30�

n the lowest approximation the line element is given by �23�, �24�, and �25�. The next approxi-
ation to the line element is more complicated; fortunately, the Weyl tensor in the linear approxi-
ation is quite simple, using �29� and our expression for the transformed bivectors, we get

Cklmn = ��X�Mkl� Nmn� + Nkl� Mmn� � + YNkl� Nmn� � + complex conjugate, �31�

here

X =
P

�r − ia��r − i��
� , �32�

Y = −
P

�r − ia�2�2kz̄�r + ia�
r − i�

� + P�,z − �P�r − i�� − �,��r + ia�z̄� . �33�
he Bel-Robinson tensor can then be written as
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1
2 Pabcd = +C

1
amnc

−C
1

b
mn

d = 4	�	2���a�b�c�d� + 3��a�b�c�̄d�� + 4��̄��a�b�c�̄d� + 4�̄���a�b�c�d�

+ 	�	2�a�b�c�d, �34�

here

� = X
r − ia

r − i�
, �35�

� =
2XPKL�r − ia�

�r − i��2 + Y� r − ia

r − i�
�2

. �36�

. THE GRAVITATIONAL DENSITY

A well-known measure of the strength of the gravitational field is the density

D = Pabcdt
atbtctd, �37�

here ta is a unit timelike vector field. Here, we can reduce the arbitrariness of D by requiring that
a should be covariantly constant with respect to the Minkowskian metric of the linear approxi-
ation. D then has the following interpretation: it is the sum of squares of the components of the
eyl tensor in Minkowskian coordinates with ta as the time direction. For these components to be

ll regular and/or asymptotically vanishing, it is necessary and sufficient that D should have the
ame properties. We shall show that both these conditions can be satisfied by certain solutions with
=0. In this case the tetrad given by

�̂ = � , �38�

�̂ = � + z� , �39�

�̂ = � + z̄� + z�̄ + zz̄� �40�

s constant. We may take, for example, ta= �1/
2���̂a+ �̂a�. Then

D = 1
2 �1 + zz̄�2�4	�	2 + 	4z̄� − �1 + zz̄��	2� �41�

nd

� =
�

�r − ia�2 , �42�

� = Y	k=0 = −
1

�r − ia�2 ��,z − ��r − ia� − �,��r + ia�z̄� . �43�

and � are disposable functions of z and � �=u− iazz̄�. We may take, for example,

� = c1�� − i�−n, � = c2�� − i�−m, �44�

here n�2, m�3 and c1, c2 are constants. It is easy to verify that D is then regular and
symptotically vanishing.

I. CONCLUSIONS

In this paper we have described the construction of pure radiative solutions of Einstein’s field

quations in the linear approximation. A large subclass of these �i.e., for k=0� were shown to be

                                                                                                            



r
s
t
u

A

h

112501-6 Nita, MacAlevey, and Downes J. Math. Phys. 46, 112501 �2005�

                        
egular and asymptotically vanishing using a scalar obtained from their Bel-Robinson tensor. The
econd approximation was also studied in Ref. 5 and, although only a partial result, it was shown
o exhibit nice regularity properties. For solutions with k
0 the directional singularities were
navoidable �see Ref. 5�.
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We reexamine here the issue of consistency of minimal action formulation with the
minimal coupling procedure �MCP� in spaces with torsion. In Riemann-Cartan
spaces, it is known that a proper use of the MCP requires that the trace of the
torsion tensor be a gradient, T�=���, and that the modified volume element ��

=e��gdx1∧ ¯ ∧dxn be used in the action formulation of a physical model. We
rederive this result here under considerably weaker assumptions, reinforcing some
recent results about the inadequacy of propagating torsion theories of gravity to
explain the available observational data. The results presented here also open the
door to possible applications of the modified volume element in the geometric
theory of crystalline defects. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2121207�

. INTRODUCTION

The use of modified volume elements in physical models has been receiving considerable
nterest in recent years. In the context of the Einstein-Cartan theory of gravity,1 for instance, the
ntroduction of a new volume element gave rise to some models possessing several interesting
haracteristics, such as propagation of torsion,2,3 interaction between torsion and gauge fields
ithout violation of the gauge symmetry,4 and a geometrical interpretation of string-theory in-

pired models of gravity.5 Noncanonical volume elements have also proved to be useful in other
ontexts. For recent applications in field and string theory, see, for instance, Ref. 6.

Geometries with torsion, on the other hand, have a long tradition in Physics. For instance, in
instein-Cartan theory of gravity,1 space-time is assumed to be a Riemann-Cartan manifold, i.e., a
anifold endowed with a Lorentzian metric and a nonsymmetrical metric-compatible linear con-

ection. The anti-symmetrical part of the connection �the torsion tensor� is also relevant to field
heory, mainly with respect to renormalization issues.7 The very active area of defects in crystal

icrostructures also takes advantage of these non-Riemannian geometries: disclinations and dis-
ocations in a crystal can be described by means of curvature and torsion �for a revision, see Refs.

and 9�. Dislocations, in particular, are described by the Burgers vector, which has the torsion
ensor as its surface density �see Fig. 1�.

The motivation for the introduction of the modified volume element proposed in Ref. 10 was
he observation that, in the presence of torsion, the minimal coupling procedure �MCP� performed
t the action level is not equivalent to that performed directly at the corresponding field equations,
conflict known since long before, see, for instance, Ref. 11. The same volume element is shown

n Ref. 12 to be mandatory in order to assure unitary evolution of a Klein-Gordon field in spaces
ith torsion. In Ref. 12, it is also shown that the introduction of a nonholonomic version of the
inimal action principle can cure these problems. As shown in Ref. 10, in Riemann-Cartan spaces

he equivalence between the MCP performed at the action and at the field equations can be
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�
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ecovered, with the usual minimal action principle, provided that the trace of the torsion tensor be
gradient, T�=���, and that the usual volume element �0=�g dx1∧ ¯ ∧dxn be deformed to

�� = e��0. �1�

n Ref. 3, Fiziev reinterpreted the model based in volume element �1� as a Transposed-Equi-Affine
heory of Gravity, since, as we will see, the covariant derivative of densities used in Ref. 10 can
e related to a certain “transposed” connection. Such a transposed connection, however, is a highly
rtificial object, being generically not metric-compatible even when the initial connection is.
esides, at first glance, the very motivation of demanding equivalence between the MCP as
pplied to the action level and to the field equations may be contested on physical grounds. In fact,
ven in the case of General Relativity �where the connection is torsion-free�, the naive minimal
oupling between the electromagnetic field and gravity does not satisfy such equivalence require-
ent if one does not choose carefully in which set of equations the MCP should be applied. In

uch a case, the field equations contain partial derivatives of higher order, which renders the MCP,
f applied directly to some field equations, ill-defined.13 The usual solution for this kind of diffi-
ulty is to assume that the MCP should always be applied at the Lagrangian level.

The aim of this paper is to show that the modified volume element �1� follows from a more
undamental hypothesis, reinforcing its mathematical and physical relevance. We will show that

IG. 1. We show, for illustrative purposes only, a lattice with two edge dislocation defects �upper right� and a reference one
upper left�. A closed rectangular path in the reference lattice becomes unclosed in the presence of the defects. The vector
B�, the so-called Burgers vector, measures how the path fails to close. In the associated geometrical description of the
ath generated by the �infinitesimal� vectors X� and Y� at the point A, the vector CB is obtained by parallel transport of Y�

long X�, and DB� is obtained by transporting X� along Y�. The Burgers vector in this case is given by BB�=T��
�X�Y�.
he existence of the modified volume element �1� is a necessary and sufficient condition to render
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he MCP well-defined even when considered solely at the action level. In particular, we will show
hat the results presented in Ref. 10 can be obtained without recourse to transposed connections.
ur conclusions apply to any physical model where torsion is regarded as a dynamical entity that

ouples to the remaining fields via the MCP. In this way, one can expect that the results presented
ere can also be useful in the geometric theory of crystalline defects,9,14 since the expressions for
he free and interaction energies of defects and the equations for phonons and other test fields can
e obtained by arguments very similar to the MCP.

We observe that the model proposed in Ref. 2 was carefully studied in Refs. 15 and 16. By
onsidering solutions describing compact �neutron� stars and some solar system experiments, it
as shown15 that the predictions of the model2 are in contradiction with General Relativity and,
ore important, with the available observational data. The propagating torsion model proposed in
ef. 2, therefore, is not a viable alternative to General Relativity. As we will see, the results
resented here make the conclusions of Ref. 15 much stronger, since we will show that the
xistence of �1� is required to ensure the very consistency of the action formulation via the MCP.
n other words, the results of Ref. 15 would allow us to conclude that the very reasonable
equirement of consistency of the action formulation with the MCP imply, on account of the
bservational data, that the trace of the torsion tensor of space-time should vanish.

This work is organized as follows. The next section is a brief review of the mathematical
ramework necessary to set up the problem. Section III contains our main results, and the last
ection is devoted to some final remarks. Mathematical proofs are left to the Appendix, where we
lso discuss how the results presented here relate to the earlier approach of Refs. 2–5 and 10.

I. NOTATION

In order to introduce the problem, we briefly recall some definitions. For the sake of clarity,
e employ here a more mathematically oriented notation, which slightly differs from that used in

he original works.2–5,10 Let M be an n-dimensional manifold. In the following, the components of
he covariant derivative of a vector field A=A�e�, with respect to a local basis in TM, are denoted
y D�A�, so that ��A= �D�A��e�, with D�A�=��A�+���

�A�. The components of the torsion
ensor associated with the connection �,

T�X,Y� = �XY − �YX − �X,Y� , �2�

re given, in a coordinate basis, by

T��
� = ���

� − ���
�. �3�

Whenever the manifold M is endowed with a metric g��, the connection coefficients ���
� can

e decomposed as

���
� = � �

��� + K��
� + V��

�, �4�

here � �
��

� are the Christoffel symbols associated with the underlying Levi-Civita connection
uniquely defined metric-compatible connection without torsion on �M ,g��,

K��� = − 1
2 �T��� + T��� − T���� �5�

s the contorsion tensor associated with �, and

V��� = − 1
2 �D�g�� + D�g�� − D�g��� �6�

rovides a measure of the nonmetricity associated with �. Relevant quantities here are the trace of
he above-defined tensors and their associated one-forms

T� = T��
�, t = T� dx�,

�7�
� �
V� = V�� , v = V� dx .
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A volume element on an n-dimensional manifold M is a nowhere vanishing n-form on M.17

f M is endowed with a metric, an arbitrary volume element � can be written as

� = f�0, �8�

here f is a nowhere vanishing smooth function on M and �0 is the canonical volume element

�0 = �1 ∧ ¯ ∧ � n = �g dx1 ∧ ¯ ∧ dxn, �9�

here ��i� is a local orthonormal basis.

II. MINIMAL COUPLING AND EQUIVALENT LAGRANGIANS

Let L be a Lagrangian density describing a given physical model defined on flat space or
pace-time M. There is a natural equivalence relation � on the set of such Lagrangians, defined
y L1�L2 if and only if L1 and L2 give rise to identical field equations on M. Except for scale
ransformations, we then have

L1 � L2 ⇔ L1 − L2 = div�X� �10�

or some vector field X, where, for flat M,

div�X� = ��X�. �11�

his follows trivially from Gauss theorem, since integration of the Lagrangian density immedi-
tely yields

	 div�X��0 = �surface term� , �12�

ith no contribution to the Euler-Lagrange equations. We emphasize that, in the context of flat
pace �and of Special Relativity�, any choice L in a given class �L� of Lagrangians leads to
ompletely equivalent physical models.

Suppose now that the metric and connection on M become dynamical, describing in this way
hysical fields interacting with test particles or fields on M. This would be the case, for instance,
f General Relativity, in which gravity is described by a dynamical metric g�� with its associated
evi-Civita connection. Other examples are the Einstein-Cartan theory of gravity,1 where torsion
ecomes an additional dynamical quantity, and the geometric theory of defects,8,9 where curvature
nd torsion are related to the density of dislocations and disclinations of the crystalline lattice
tructure.

The MCP is the standard prescription to obtain the curved space equations from the flat space
nes. It states that one needs merely to substitute ordinary derivatives by covariant ones and the
inkowskian metric tensor by its nonflat counterpart. It is worth noting that the MCP is used with

uccess in nearly all physically relevant gauge theories, including General Relativity.18

Let us denote the Lagrangian density obtained from L, via MCP, by L�. Similar to the
at-space case discussed above, the condition for L1

� and L2
� to be equivalent �i.e., to yield the

ame Euler-Lagrange equations� is given by

L1
� − L2

� = div� �X� �13�

or some vector field X, with the definition of divergence now being given by17

�div� X�� = £X� , �14�

here � is a volume form on M and £X denotes the Lie derivative along the vector field X. This
s the most natural definition of divergence in this context, since £X�=diX� �where d denotes the

17
xterior derivative and iX the contraction by X� leads directly to Gauss theorem
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M

div� �X�� = 	
�M

iX� = �surface term� . �15�

If L1 and L2 are equivalent Lagrangians in flat-space, we get, after applying the MCP,

L1 − L2 = ��X� ——→
MCP

L1
� − L2

� = D�X�. �16�

herefore, if the equivalence class of Lagrangians �L� is required to be preserved under the MCP,
e need to have

D�X� = div� �X� , �17�

r, equivalently,

£X� = �D�X��� . �18�

The necessary and sufficient conditions to the existence of solutions for �17� can be obtained
rom the following proposition, whose �simple� proof is left to the Appendix.

Proposition 1: Let M be a differentiable manifold endowed with a metric g and a connection
. Let �= f�0 be a volume form on M. Then, for every vector field X on M,

D�X� = div� X + t�X� + v�X� − X�ln f� ,

here t and v are defined in Eq. �7�.

CP in affine manifolds

In order to illustrate the previous results, let us recall their application to the case of the
etric-affine theory of gravity,19 where space-time is represented by a manifold endowed with a

onnection with possibly nonzero curvature, torsion, and nonmetricity. We note that this contains,
s a particular case, the Einstein-Cartan theory of gravity, where the associated connection pre-
ents curvature and torsion but is still metric-compatible �i.e., D�g��=0�.

For this case, Proposition 1 implies that the canonical volume form �0 yields

D�X� − div�0
X = �T� + V��X�. �19�

t follows from our previous discussion that equivalent Lagrangian densities of Special Relativity
ill be mapped, via MCP, to nonequivalent Lagrangian densities in the corresponding nonflat

pace-time. Therefore, since there is no canonical representative of �L� in Special Relativity, the
CP turns out to be essentially ill-defined in this context.

This difficulty can be circumvented with the help of Proposition 1 itself. The above-mentioned
ncompatibility arises only when D�X��div� X. However, admitting a more general volume form
= f�0 on M, one can get D�X�=div� X by choosing f such that

t���� + v���� − ��ln f = 0, �20�

hich is equivalent to

T� + V� = ���, � = e��0. �21�

herefore, the MCP is well defined �preserves equivalence classes of Lagrangians� precisely
hen:
1. t+v is an exact form, say t+v=d�, and
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2. the volume element on M is given by �=e��0.

gain, since in the context of flat space �Special Relativity� there is no canonical choice of
epresentative of a given class of Lagrangians, our results imply that the MCP is well defined only
n the presence of the modified volume element �1�.

This is our main result: in order to preserve a given class �L� of Lagrangians under the MCP,
ne must have T�+V�=��� and, obligatorily, to use the modified volume element �1�. If the sum
f traces T�+V� is not a gradient, the MCP turns out to be ill-defined, since it produces non-
quivalent theories out of equivalent flat-space Lagrangians, even at the classical level.

he �-symmetry

In an affine manifold, the Riemann tensor is invariant under the transformation

���
� → ���

� + ��
���	 , �22�

here 	 is an arbitrary function. This is the so-called 	-symmetry,20 introduced by Einstein in his
ioneering work on unified field theory, which has been proved to be very useful in the analysis of
ffine theories of gravity.21 In a 	-invariant theory, the function 	 can be properly chosen in order
o cancel some parts of the torsion tensor and/or of the nonmetricity, simplifying the overall
nalysis. Under �22�, the torsion tensor and V��� are changed as

T��� → T��� + �g����	 − g����	� ,

�23�
V��� → V��� + �g����	 + g����	 − g����	� ,

mplying to their traces

T� → T� − �n − 1���	, V� → V� + n��	 . �24�

ne sees from �23� that a 	-transformation does not preserve the spaces of symmetric or metric-
ompatible connections. However, the condition ensuring the consistency of MCP, namely that

�+V� be a gradient, is indeed preserved under �22�. The Einstein-Hilbert action is, obviously,
lso preserved under �22�. Hence, provided that the matter content action is also 	-invariant, the
-transformation will map distinct solutions in a metric-affine theory of gravity governed by the
instein-Hilbert action, preserving all the isometries if 	 is properly chosen.

An interesting consequence arises from the transformation of the modified volume element
nder a 	-transformation,

e��0 → e�+	�0. �25�

tarting with, for instance, a Riemann-Cartan manifold with a gradient torsion trace and an
instein-Hilbert action with the modified volume element, it is possible to choose 	=−� and to get
n equivalent theory, where the MCP is also well-defined, formulated in an affine manifold �the
onnection is not metric-compatible anymore� but with the usual volume element. In other words,
n this new manifold, D�X�=div�0

X for any vector field X.

V. FINAL REMARKS

Before discussing possible applications of the results presented here to the study of crystalline
efects, let us recall how they reinforce the results of Ref. 15 about the inadequacy of the
ropagating torsion model proposed in Ref. 2 to explain the available observational data. The
odified volume element �1� was introduced in the model of Ref. 2 by means of exclusively

eometrical arguments, and, hence, there is no free parameter associated with the field �, which is
esponsible for the propagating components of the torsion. Moreover, by employing the MCP, no
xtra parameters, besides the Newtonian constant G, should arise in any gravitational model. Thus,

he only way of fitting the available observational data described in Ref. 15 is to have � constant,
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eading to the already mentioned conclusion that the results of Ref. 15 would allow us to deduce
hat the observational data and the very reasonable requirement of consistency of the action
ormulation with the MCP imply that the trace of the torsion tensor of space-time should vanish.

Condensed matter is a vast subject but, to the best of our knowledge, the ideas presented here
ere not yet applied to the study of crystalline defects, which possess a geometrical description

ince the seminal works of Kondo in the fifties �see, for references, Ref. 8�. The physics of
rystalline defects is a promising arena to test experimentally the ideas of the last sections, with
pecial emphasis on new effects that might be associated with the modified volume element �1�.
he first conclusion about the modified volume element in this context is that, in principle, it has
o relation to the real volume �area, in this case� of the polygon depicted in Fig. 1. As discussed
n Ref. 8, contributions to the elementary area coming from the Burgers vector are of higher order
nd should vanish in the linear continuum limit. Incidentally, for X� and Y� orthogonal in a
iemann-Cartan manifold �D�g��=0�, the area of the polygon of Fig. 1 is given, up to higher
rder terms, by

A = 
X

Y
�1 − 1
2 �X� + Y��T�� , �26�

rom where one sees that, despite being unclosed, its area coincides with the area of the paral-
elogram with sides X� and Y� if T�=0. However, the modified volume element �1� cannot
epresent a physical area since any geometrical property of the crystalline lattice should be invari-
nt under a transformation of the type �→�+
, with constant 
, and the modified volume
lement, under this transformation, behaves as �→e
�. This behavior, on the other hand, is
llowed in the minimal action formulation, since, as was already noted, a scale transformation of
Lagrangian preserves the dynamics. The dynamics of defects, on the other hand, are governed by

heir free energy, which can be expressed by means of a Lagrangian density related to the Einstein-
ilbert Lagrangian.14,22 The use of the modified volume element in the action of the free energy
ould define a new dynamics to the torsion and metric tensors, analogous to that proposed in Ref.
in the context of Einstein-Cartan theory of gravity. An immediate consequence would be the

ropagation of the trace of the torsion tensor and, consequently, of the associated Burgers vector.
The free energy plays the role of the kinetic term in the geometrical action formulation of

efects. However, kinetic terms are not, a priori, specified by the MCP. Our analysis seems more
uitable to the study of fields/particles propagating on the crystalline lattice, such as phonons,
mpurities, and vacancies.14 If the perturbation energy associated with these objects is small
nough, their backreaction on the lattice may be ignored, and they can be considered test fields.
honons are nothing more than small elastic �sound� excitations in the crystal; in the geometrical
escription, they correspond to gauge independent linearized perturbations of the metric.9 On the
ther hand, one can also consider impurities or vacancies moving on the background medium
efined by the solid with crystalline defects. The effect of the background on such test fields/
articles can be gotten from the MCP by demanding that the corresponding equations for phonons,
mpurities, and vacancies be obtained, from the equations for the regular lattice, by changing the
rdinary derivative to the covariant one and the Euclidean metric to the metric associated with the
ackground medium. With use of MCP and the modified volume element, testable predictions for
he propagation of phonons, impurities, and vacancies could arise. For instance, the modified
olume element should affect the wave functions and energy spectrum of impurities and
acancies14 in the presence of a crystalline defect. The occurrence of bound states due to
islocations23 can also be studied in light of the present results. One probably, however, needs to
o beyond the eikonal approximation for the test fields, since in this case the trajectory of the
ssociated particle is assumed to be a geodesic curve,14 a good approximation for high-frequency
elds, but with no contributions from the torsion tensor. These points are now under investigation.
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PPENDIX

Let us first discuss how the results of this paper relate to the earlier approach of Refs. 2–5 and
0. Unlike the approach presented here, the analysis of these works explicitly uses the concept of
ovariant derivative of densities, which are defined as follows. Let h be a scalar density on M.
ne can define the covariant derivative of h in two different ways:

D�h = ��h − ���
�h , �A1�

r

D̃�h = ��h − ���
�h . �A2�

he definition �A1� can be called the usual covariant derivative, since, as we show in the follow-
ng,

�X�h dx1 ∧ ¯ ∧ dxn� = �X�D�h�dx1 ∧ ¯ ∧ dxn. �A3�

he covariant derivative �A2�, used also, for instance, in Ref. 24, is the so-called transposed
erivative,3 since it can be interpreted as the covariant derivative with respect to the transposed

onnection �̃��
�=���

� �see, in this context, the volume-preserving connection introduced in Ref.

9�. Note that, according to Eq. �3�, D̃�h=D�h provided that the trace of the torsion tensor
anishes so that, in this case, no ambiguity concerning the definition of the covariant derivative of
ensities arises. The covariant derivative �A2� is closer to the Lie derivative on M, since it
atisfies, as we will see,

£X�h dx1 ∧ ¯ ∧ dxn� = ��D�X��h + X��D̃�h��dx1 ∧ ¯ ∧ dxn. �A4�

The mathematical property that distinguishes the volume element �1� in Ref. 10 is that,
hereas the canonical volume element �9� is covariantly constant with respect to the usual de-

ivative,

D�
�g = 0, �A5�

he volume element �1� is covariantly constant with respect to the transposed derivative,

D̃��e��g� = 0, �A6�

rovided that

T� + V� = ��� . �A7�

y comparing with Eq. �A4�, we see that �18� holds if and only if one chooses a volume form
= f�0 such that

D̃��f�g� = 0, �A8�

hich has a solution only if T�+V�=��� and f =e�.10 This shows how the earlier approach of
efs. 2–5 and 10 relates to the present work, which, as discussed in the previous sections, is based
n weaker physical assumptions.

We end by providing proofs of identities �A3� and �A4�, and of Proposition 1. Identity �A3�

an be proved as follows:
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�X�h dx1 ∧ ¯ ∧ dxn� = ��Xh�dx1 ∧ ¯ ∧ dxn + h��
dx1 ∧ ¯ ∧ �Xdx� ∧ ¯ ∧ dxn

= X�h�dx1 ∧ ¯ ∧ dxn + h��
dx1 ∧ ¯ ∧ �− X����

� dx�� ∧ ¯ ∧ dxn

= X����h − ���
��dx1 ∧ ¯ ∧ dxn. �A9�

s for �A4�, since £X and d commute, we have

£X dx� = d£Xx� = dX� = ��X� dx�, �A10�

hich leads to

£X�h dx1 ∧ ¯ ∧ dxn� = £X�h�dx1 ∧ ¯ ∧ dxn + h��
dx1 ∧ ¯ ∧ £X dx� ∧ ¯ ∧ dxn

�A11�

=�X�h� + h��X��dx1 ∧ ¯ ∧ dxn �A12�

=�hD�X� + X����h − h���
���dx1 ∧ ¯ ∧ dxn. �A13�

Finally, Proposition 1 can be proved as follows. We first notice that

D�X� = ��X� + ���
�X� �A14�

=��X� + �� �
��� + K��

� + V��
��X� �A15�

=��X� + ��� ln�g + T� + V��X�. �A16�

n the other hand, it follows from Eq. �A12� that

£X� f�g dx1 ∧ ¯ ∧ dxn� = �X��� ln�f�g� + ��X��� . �A17�

hus, from definition �14�,

div� X = X��� ln�f�g� + ��X�, �A18�

hich finally yields

D�X� = div� X + �T� + V� − �� ln f�X�. �A19�
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We prove that the mathematical framework for the de Sitter top system is the
de Sitter fiber bundle. In this context, the concept of soldering associated with a
fiber bundle plays a central role. We comment on the possibility that our formalism
may be of particular interest in different contexts including MacDowell-Mansouri
theory, two time physics, and oriented matroid theory. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2121227�

In 1974, Hanson and Regge proposed a Lagrangian theory for a relativistic top.1,2 One year
ater the importance and advantage of this formulation was shown when the equations of motion
f a top in a gravitational field were derived by using the equivalence gravitational principle.3

urthermore, one of the original motivations for the Lagrangian formulation of the top was to
uantize the system by means of Dirac’s method for constraint Hamiltonian systems. Moreover,
ith the idea of making supersymmetric the Lagrangian of the system the square root of a bosonic

op was proposed.4 In this direction it was shown that the quantum top also allows a BFV5 and
RST quantization.6 It turned out that these pioneer developments motivated a generalization of

he original theory to the so-called superstringtop theory7,8 which combines, in a Lagrangian
ontext, the concepts of string and top.

Recently, the de Sitter top theory9 has been proposed �see also Ref. 10� which is a higher
imensional Lagrangian formulation of a special kind of a spherical relativistic top characterized
y a Regge trajectory constraint of the de Sitter form m2+ �1/2r2��2+m0

2=0, where m is the mass
f the top, � is the internal angular momentum, and r and m0 are constants. One of the interesting
spects of the de Sitter top system is that by using the Kaluza-Klein mechanism11,12 the equation
f motion of the top in a gravitational field can be derived. Since Kaluza-Klein theory is closely
inked to the fiber bundle concept13,14 one should expect a geometric formulation of the de Sitter
op in terms of such a concept. Although this idea has been outlined in Refs. 9 and 10 the precise
onnection between fiber bundle structure and the de Sitter top needs to be addressed. In this work,
e claim that the soldered fiber bundle structure is the natural mathematical framework for a

ormal description of the de Sitter top. It turns out that the soldered bundle concept has been
xtensively used by Drechsler �see Ref. 15, and references therein� in particle physics. In particu-
ar, Drechsler has proposed a gauge theory for extended elementary objects based in the soldered
undle concept. These applications of the soldered bundle concept are, however, more focused on
gauge field scenario of the systems16,17 rather than in a gravitational context. Moreover, part of

he motivation of these applications are at the level of hadrons18–21 and not a deeper level as is the
ase of the de Sitter top. Nevertheless, in this work we show that some of the mathematical tools
n the soldered bundle theory can be used for describing the de Sitter top. We complement our

�
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nalysis of the de Sitter top by observing that the soldered bundle concept may provide the
athematical tool to clarify some aspects of the MacDowell-Mansouri formalism22 �see also Ref.

3� and two time physics.24

Let us start writing the de Sitter top Lagrangian9

L = − m0�− 1
2�M

AB�NABẋMẋN�1/2, �1�

here m0 is a constant measuring the inertia of the system and ẋM = �d/d��xM, with M ,N running
rom 0 to 9 and � is an arbitrary parameter. Here, �M

AB=−�M
BA denotes a connection associated with

he de Sitter group SO�1,4� �or anti de Sitter group SO�2,3��. Indeed, �M
AB is determined by the

nsatz

�M
AB = ���

5a�x� ��
ab�x�

0 �i
ab�y�

� . �2�

hen writing �2� the coordinates xM were separated in the form �x ,y�, with x corresponding to the
our-dimensional base manifold M4 and y parametrizing the group manifold SO�1,4�. The La-
rangian �1� is interesting because it leads to a Regge trajectory constraint of the de Sitter form
2+ �1/2r2��2+m0

2=0 �see Refs. 1 and 2 and also Refs. 25 and 26� connecting the mass m and the
pin � of the system.

Consider the antisymmetric pair �ab� of the four valued indices a ,b in the form a�
��12� , �13� , �14� , �23� , �24� , �34��. Using this notation one discovers that if one makes the iden-

ifications ���,

��
5a�x� � e�

a �x� , �3�

��
ab�x� � E�

a��x� , �4�

�i
ab�y� � Ei

a��y� , �5�

nd

�M
AB → EM

Â , �6�

hen the ansatz �2� becomes

EM
Â = �e�

a �x� E�
a��x�

0 Ei
a��y�

� , �7�

hich may be recognized as the typical form of the Kaluza-Klein ansatz.11,12 This suggests intro-
ucing the metric

�MN = EM
Â EN

B̂�ÂB̂, �8�

hich according to �7� can be separated in the form

��� = g�� + E�
a�E�

b��a�b�,

��i = E�
a�Ei

b��a�b�, �9�

�ij = Ei
a�Ej

b��a�b� = gij�y� ,
here
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g���x� = e�
a �x�e�

b�x��ab. �10�

ere, �ab and �a�b� are flat metrics corresponding to M4 and B, respectively.
From of the point of view of Kaluza-Klein theory the splitting �9� is the result of compacti-

ying a 4+D-dimensional space-time manifold M4+D in the form M4+D→M4�B, where M4 is a
our-dimensional base space manifold and B is a group manifold whose dimension is D. In the
ase of the de Sitter top it is not clear what the meaning of M4+D and B is. Moreover, the meaning
f the identification �3� is unclear. One may choose M4+D as SO�1,4� and B as SO�1,3� but in this
ase M4 will be completely determined without using the gravitational field equations. Thus,
lthough the identifications �3�–�6� are suggestive they are not complete requiring a deeper analy-
is. We shall show that these aspects of the de Sitter top can be clarified through the so-called
oldered fiber bundle notion. In order to achieve our goal we first observe that the object �M

AB may
e identified with the fundamental one-form

� = g−1dg + g−1	g , �11�

here

� = 1
2�M

ABSABdxM �12�

nd

	 = 1
2��

ABSABdx�. �13�

ere, g�SO�1,4� and SAB are the generators of the de Sitter group SO�1,4� �or anti de Sitter
roup SO�2,3��. In turn, �13� can be understood as a one-form connection in the cotangent space
*�P�, where P is a principal bundle P�M4 ,SO�1,4��. Locally, P�M4 ,SO�1,4�� looks like M4

SO�1,4� but once again this picture is incomplete in the sense that it leaves without answer the
eaning of the relation �3�. Nevertheless, this analysis motivates one to find a framework beyond

he simple principal bundle P�M4 ,SO�1,4��.
In general, it is well known that given a principal bundle P�M ,G� one may construct an

ssociated fiber bundle E�M ,F ,G� where F is a fiber manifold and conversely, a fiber bundle
�M ,F ,G� naturally induces a principal bundle P�M ,G� associated with it �see Ref. 27, Sec.

9.4.2, for details�. Thus, the principal bundle P�M4 ,SO�1,4�� may have an associated fiber bundle
�M4 ,F ,SO�1,4��. In principle F can be any vector space but in the case of the de Sitter top one
ay think of SO�1,4� as a group acting transitively over F. Moreover, by Inönü-Wigner contrac-

ion one should expect that de Sitter top is reduced to the usual relativistic top which is invariant
nder the Lorentz transformations determined by the Lorentz group SO�1,3� �see Ref. 2�. Now,
ince SO�1,3� is an isotropy subgroup of SO�1,4� this suggests considering the coset space
O�1,4� /SO�1,3�. Applying a well-known theorem �see Ref. 28, Sec. 1.6, and see also Ref. 29�
ne can establish the homeomorphism F�SO�1,4� /SO�1,3�. Therefore, the fiber bundle which
e are interested to relate to the de Sitter top is

E�M4,F � SO�1,4�/SO�1,3�,SO�1,4�� . �14�

his is a fiber bundle of the Cartan type possessing as a fiber de Sitter space dS4	F which is
omeomorphic to the noncompact coset space

SO�1,4�/SO�1,3� .

ince dim G /H=dim G−dim H we find that

dim SO�1,4�/SO�1,3� = dim SO�1,4� − dim SO�1,3� = 4

nd therefore the dimension of dS4 is four, the same as M4. This result is an indication that the

undle �14� may admit a soldered fiber bundle structure. But before we present the definition of a
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oldered fiber bundle let us motivate further the idea of soldering in connection with the de Sitter
op.

Let us introduce a gauge parameter 
= 1
2
AB�x�SAB. The transformation associates with �,

iven in �12�, can be written as

�� = g�g−1 + g−1dg , �15�

hich as an infinitesimal gauge transformation reads as

�� = d
 + �
,�� . �16�

n components �16� leads to the expression

��AB = d
AB + �AC
C
B + �AC
C

B , �17�

hich can be separated in the form

��5a = D
5a + �5c
c
a �18�

nd

��ab = D
ab + �a5
5
b + �b5
5

a. �19�

ere, D means covariant derivative with �ab as a connection. Thus, if we set

��
5a = e�

a �20�

ne sees that the expressions �18� and �19� lead to

�e�
a = D��a + e�

c 
c
a �21�

nd

���
ab = D�
ab + e�

a �b − e�
b �a, �22�

espectively. But formulas �21� and �22� indicate that neither e�
a nor ��

ab transform properly under
orentz transformations SO�1,3� and therefore in general they cannot be identified with the Lor-
ntz tetrad and connection, respectively. For this to be possible it is required that the parameter �a

anishes in �21� and �22�. In turn this implies that the de Sitter group SO�1,4� is broken leading to
he Lorentz group SO�1,3�. To set the parameter �a equal to zero in a consistent way is not so
imple and in fact requires one to introduce the soldering concept which we shall now formally
efine.

A bundle E�M ,F=G /H ,G� over a base manifold M with homogeneous fiber F=G /H and
ssociated principle bundle P�M ,G� is soldered if15

i� G acts transitively on F,
ii� dim F=dim M,
iii� E admits a global cross section  and the structural group G of E can be reduced to H.
iv� The tangent bundle T�M� over M and the bundle T�E�=T�F� of all tangent vectors to F at

the section  are isomorphic.

It is clear that the bundle E�M4 ,F�SO�1,4� /SO�1,3� ,SO�1,4�� which we try to associate to
he de Sitter top satisfies �i�, �ii�, and �iii�. The only remaining point is to impose condition �iv�. It
urns out that �iv� is equivalent to the two properties15
a� ��X��=0 for X��T�P��M ,H�� if and only if X� is vertical.
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b� ��dRhX��=h−1X�h for X��T�P��M ,H�� and h�H,

hich are satisfied for the so-called one-form of soldering �. The reason to be interested in the
ne-form � is because a connection � in P�M ,G� can be written in terms of a connection in

P��M ,H� and the soldering one-form � as follows:

� = �� + � . �23�

ctually, the equivalence between �iv� and �a�–�b� is achieved when one assumes the reductive
lgebra

�L�H�,�� � � , �24�

ssociated with the decomposition L�G�=L�H� � � of the Lie algebra of G, where L�H� corre-
ponds to the subalgebra of H and � is required to be a vector subspace of G with dimension
im M =dim G−dim H. In fact such equivalence is obtained when one assumes the existence of
-valued one-form � satisfying �a� and �b� �see Refs. 15 and 30 for details�. In connection with

23� two observations are necessary. First, the decomposition �23� does not require the additional
ondition

��,�� � L�H� , �25�

mplying that F�SO�1,4� /SO�1,3� is a symmetric space, and second, since � is a L�G�-valued
ne-form in the cotangent bundle T*�P� we can write �=��x ,y�, where the coordinates x and y
arametrize locally M and F, respectively, and consequently, in general, we should have ��
���x ,y� and �=��x ,y�. However, �a� and �b� imply that we can write �=��x�.

Let us now specialize �23� to the case of the de Sitter fiber bundle E�M4 ,F
SO�1,4� /SO�1,3� ,SO�1,4��. First let us observe that since SAB are the generators of the

e Sitter group SO�1,4� �or anti de Sitter group SO�2,3�� we can write the algebra

− i�SAB,SCD� = �ACSBD − �ADSBC + �BDSAC − �BCSAD, �26�

here �AC=diag�−1,1 ,1 ,1 ,1�. From �26� we get

− i�Sab,Scd� = �acSbd − �adSbc + �bdSac − �bcSad, �27�

− i�S5b,Scd� = �bdS5c − �bcS5d, �28�

nd

− i�S5b,S5d� = Sbd. �29�

hus, we conclude that Sab are the generators of the subgroup SO�1,3� and that �28� is in agree-
ent with �24�. This in turn implies that the SO�1,4� valued one-form connection � given in �12�

an be written in terms of a SO�1,3� valued one-form connection �ab and the one-form �5b as

� = 1
2�abSab + �5bS5b. �30�

omparing �30� with �23� one discovers that one can make the identifications ��ab=�ab and �b

�5b. Since in general �AB=�AB�x ,y� �see expressions �11� and �12��, one finds that �AB can be
plit into the form

�a = ��
5adx� + �i

5adyi �31�
nd
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�ab = ��
abdx� + �i

abdyi. �32�

ow, the condition �a�–�b� for � means that the soldering concept allows one to set �i
5a=0 and

herefore we have

�a = ��
5adx�. �33�

his is consistent with �iv� and in fact one should be able to write �a in terms of the base e�
a

T�M4�. In particular one can set ��
a =e�

a , that is, ��
5a=e�

a . Consequently, one discovers that the
omplete connection �M

AB can be written as

�M
AB = �e�

a �x� ��
ab�x,y�

0 �i
ab�x,y�

� , �34�

hich by using the Kaluza-Klein mechanism can be reduced to �2�. Summarizing, we have
xplicitly shown that the geometrical framework for the de Sitter top is the de Sitter soldering fiber
undle E�M4 ,F�SO�1,4� /SO�1,3� ,SO�1,4�� as Fukuyama had anticipated.9

Until now we have focused more on the de Sitter top description determined by the line
lement �1� rather than in the dynamics of the background itself where the system moves. In other
ords, besides the mathematical framework for the de Sitter top one may be interested in the field

quations which govern the evolution of the connection �M
AB given in �2�. Since e�

a and �M
ab�x� are

onsidered as independent variables one may think in Einstein-Cartan theory �linear in the curva-
ure�, as the more appropriate candidate. However, there exists another gravitational theory which
eems to be closer to the spirit of the ansatz �2� than the Einstein-Cartan theory. We refer to the
o-called MacDowell-Mansouri theory22 �see also Ref. 23� which is one of the closest proposals
or achieving a gauge theory for gravity. The idea in this theory is precisely to consider the field
ariables e�

a and ��
ab�x� as part of a bigger connection ��

AB�x� associated with the de Sitter group
O�1,4�. In fact, by taking e�

a =��
5a�x� one verifies that the action

S =
 d4x�����R��
ab R��

cd �abcd, �35�

here

R��
ab = R��

ab + e�
a e�

b − e�
b e�

a, �36�

ith R��
ab the curvature in terms of ��

ab, leads to the two terms: the Euler-Pontrjagin topological
nvariant and the Einstein Hilbert action with a cosmological constant. One observes that the
ction �35� is intrinsically four dimensional and therefore there seems to be enough room for the
dditional part �i

ab�y�. However, recently31 in an effort to generalize the Ashtekar formalism to
igher dimensions a generalization of �35� to eight dimensions has been proposed which may
llow full background description of the connection �2�. In fact, in Ref. 31 it was proposed the
ction

S =
 d8x�MNRSRMN
ÂB̂ RMN

ĈD̂ �ÂB̂ĈD̂, �37�

here the object �MNRS is connected with the algebra of octonions �see Ref. 31 for details�. Our
onjecture is that the background field equations, where the de Sitter top evolves, can be derived
rom the action �37�. Assuming that the action �37� describes the evolution of the de Sitter

onnection �M
ÂB̂ we observe that an interesting possibility arises. This has to do with the fact that

theory based on the action �30� would lead to a de Sitter vacuum solution for the base manifold
M4 rather than the Minkowski space. Consequently, the de Sitter soldering fiber bundle

�M4 ,F�SO�1,4� /SO�1,3� ,SO�1,4�� will be such that both M4 and the fiber F are de Sitter �or

nti-de Sitter� type spaces. Besides these observations our formalism may help one to understand
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hy the choice e�
a =��

5a�x� works in this context. In general this has been a mystery, but according
o our discussion such a choice is the result of a soldering process associated with the fiber bundle

E�M4,F � SO�1,4�/SO�1,3�,SO�1,4�� .

Our observation that the de Sitter top may be described by the de Sitter soldering bundle may
lso be useful for a possible connection between the de Sitter top and two time physics. In fact, it
urns out that two time physics is determined by the action24

S = 

�i

�f

d��1

2
�abẋa

�xb
���� −

1

2

ab�xa

�xb
���� + mab

2 �� , �38�

here x1
�=xa

�, x2
�= p�, 
ab=
ba is a Lagrange multiplier and mab

2 are constants which can be zero
r different from zero. If mab

2 =0 then the action �38� has the manifest Sp�2,R� �or SL�2,R��
nvariance and the action is consistent if the flat metric ��� admits signature with two time.
owever if mab

2 �0 this symmetry is broken and the action leads to the constraint

	ab = xa
�xb

���� + mab
2 = 0 �39�

see Ref. 32 for details�. Choosing m11
2 =−R2, m22

2 =m0
2, and m12

2 =0 one discovers that �39� gives

x�x� − R2 = 0, �40�

x�p� = 0, �41�

nd

p�p� + m0
2 = 0. �42�

he formula �40� describes an anti-de Sitter space-time and therefore in a sense the system can be
nderstood as a relativistic point particle moving in an anti-de Sitter background which is pre-
isely the idea underlying the de Sitter top.

Finally, there are at least two possible interesting generalizations of our formalism for the
e Sitter top. In the first case one may think in the de Sitter top as a result of Clifford geometry as
resented by Castro �see Ref. 33, and references therein�. The second possibility may arise from
he so-called oriented matroid theory.34 It has been shown that oriented matroid theory can be
onnected not only to string theory but also to any p-brane, supergravtiy and Chern-Simons
heory.35–39 These connections were possible thanks to the notion of matroid bundle introduced
rst by MacPherson40 and generalized by Anderson and Davis41 and Biss.42 It turns out that
atroid bundle is a generalization of the concept of a fiber bundle. Thus, it seems natural to

ssociate with the bundle E�M4 ,F�SO�1,4� /SO�1,3� ,SO�1,4�� some kind of the de Sitter ma-
roid bundle and therefore a de Sitter matroid top or a de Sitter “topoid.” At present all these
ossibilities concerning the background �2� are under investigation and we expect to report our
esults somewhere in the not too distant future.

J.A.N. would like to thank E. Sezgin and Texas A&M University Physics Department for their
ind hospitality, where part of this work was developed.
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Finite-dimensional reductions of the two-dimensional dispersionless Toda hierarchy
constrained by the “string equation” are studied. These include solutions deter-
mined by polynomial, rational, or logarithmic functions, which are of interest in
relation to the “Laplacian growth” or Hele-Shaw problem governing interface dy-
namics. The consistency of such reductions is proved, and the Hamiltonian struc-
ture of the reduced dynamics is derived. The Poisson structure of the rationally
reduced dispersionless Toda hierarchies is also derived. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2104307�

. INTRODUCTION

This paper concerns rational and logarithmic reductions of the two-dimensional dispersionless
oda hierarchy of integrable equations �henceforth 2dToda�. The subject is motivated by important
pplications to problems in interface dynamics and statistical physics.

Laplacian growth is a process that governs the dynamics of the boundary in the plane sepa-
ating two disjoint, open regions D+ and D− in which harmonic �scalar� fields are defined. These
ay be interpreted as the pressure fields for two incompressible viscous fluids �Hele-Shaw prob-

em�. The movement of the boundary is determined �according to Darcy’s law, in the case of
iscous fluids� by equating the normal velocity of the boundary to the boundary values of the
radients of the fields. In particular, one region �say, the “interior” region D+� may be chosen to be
ounded and have constant harmonic field �corresponding to zero viscosity� with the boundary
ondition for the “exterior” D+ region at infinity such that there is a unit sink, implying that the
rea of the interior region grows linearly in time.15 Denoting the harmonic field �e.g., the pressure�
n the exterior region by P�X ,Y�, this satisfies the conditions:

�P�X,Y� = 0, �1�

P → �4��−1 ln�X2 + Y2� as X2 + Y2 → � �2�

n the Cartesian coordinates �X ,Y�. The normalized exterior normal velocity at the boundary is
iven by
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vn = − �P . �3�

n the case where the boundary is an analytic curve it is usual to use the Riemann mapping
heorem to introduce a time-dependent conformal map from the exterior of the unit circle in the
omplex w plane to the exterior region D− in the “physical” plane z=X+ iY taking the unit circle
o the boundary �D+.

z = z�w,x�, w = exp�i��, 0 � � � 2� , �4�

here x stands for the physical time of the Hele-Shaw problem. We choose this unusual notation
or time for consistency with that used in the literature on the dispersionless integrable systems.

Simple considerations14,4,11 show �see Appendix A� that Eqs. �1� and �3� are equivalent to

Im� �z

��

� z̄

�x
� = w� �z�w,x�

�w

� z̄�1/w,x�
�x

−
�z�w,x�

�x

� z̄�1/w,x�
�w

� = 1, �5�

here bar stands for complex conjugation �and w̄=w−1 on the boundary curve�. In our notations
�w�=�iz̄iw

i if z�w�=�iziw
i, while z�w�=�iz̄iw̄

i.
Known as the Galin-Polubarinova equation6,14 in the Hele-Shaw problem, Eq. �5� plays an

ssential role in the theory of infinite-dimensional integrable hierarchies in the dispersionless limit.
he relation between the boundary dynamics above and the dispersionless limit of the integrable
oda hierarchy constrained by �5� was shown in Refs. 11 and 19.

Equation �5� may be interpreted as a constraint on an infinite commuting set of dynamical
ystems defined in the space z�x ,w� of one-parameter families of conformal maps. This constraint
epresents fixed points of an “additional symmetry”12 and is called the “string equation” in the
heory of integrable systems. The most interesting aspect of such constrained dToda flows is that
hey admit finite-dimensional reductions, which include so-called “multi-finger” solutions.7 These
olutions are of great importance in practical applications and describe numerous phenomena,
uch as viscous fingering in a Hele-Shaw cell7,9,16 and pattern formation in the quantum Hall
ffect.1

In what follows, we consider finite-dimensional reductions of �5� in the context of the 2dToda
ierarchy. We first study algebraic solutions of the problem, ignoring the real structure and treating
, z̄ as independent functions, and w as a formal variable. Returning to the applications to interface
ynamics we identify bar with complex conjugation.

I. 2DTODA HIERARCHY AND STRING EQUATION

The 2dToda hierarchy is a dispersionless limit17 of the two-dimensional Toda hierarchy and is
efined in terms of two functions z�w ,x� and z̄�w−1 ,x� of the form:

z�w,x� = r�x�w + �
k=0

�

uk�x�w−k, �6�

z̄�w−1,x� = r�x�w−1 + �
k=0

�

ūk�x�wk. �7�

he 2dToda flow equations are

�tk
z = �Hk,z	, �t̄k

z̄ = �H̄k, z̄	 ,

�tk
z̄ = �Hk, z̄	, �t̄k

z = �H̄k,z	 , �8�
here the “Poisson-Lax” bracket notation here denotes
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�f ,g	 ª w
� f

�w

�g

�x
− w

� f

�x

�g

�w
�9�

nd the coefficients r�x� ,uk�x� , ūk�x� are viewed as coordinate functions on the phase space. The
volution functions are defined as follows:

Hk = �zk�+ + 1/2�zk�0, H̄k = �z̄k�− + 1/2�z̄k�0, �10�

here subscripts ± ,0 denote the negative/positive and zero parts of the formal Laurent expansion
n w �i.e. f+=�i�0f iw

i , f−=�i�0f iw
i if f =�i f iw

i�.
It is important to note that, despite the notation, �9� is not really a Poisson bracket defined on

he infinite-dimensional phase space of the 2dToda system �8� �with coordinates r ,uk , ūk�, but
ather a “quasiclassical” �→0 limit of commutators in the Lax representation of the dispersive
ersion of �8� �where � stands for the lattice spacing, see Ref. 17�. Values �10� are dispersionless
nalogs of the upper or lower diagonal parts of the powers of Lax matrices.

The 2dToda system is nevertheless an integrable Hamiltonian system of PDEs for the func-
ions r�x , t1 ,… , t̄1…� ,uk�x , t1 ,… , t̄1…� , ūk�x , t1 ,… , t̄1…�, obtained by equating coefficients of �8�
s Laurent polynomials in the dummy variable w. One can easily verify that vector fields �8�
ommute, i.e.,

�2

�ti � tj
�z

z̄
� =

�2

�tj � ti
�z

z̄
�,

�2

� t̄i � tj

�z

z̄
� =

�2

�tj � t̄i

�z

z̄
�,

�2

� t̄ j � t̄i

�z

z̄
� =

�2

� t̄i � t̄ j

�z

z̄
�

ue to the “zero curvature” condition

�Hi

�tj
−

�Hj

�ti
− �Hi,Hj	 = 0,

�Hi

� t̄ j

−
�H̄j

�ti
− �Hi,H̄j	 = 0,

�H̄i

� t̄ j

−
�H̄j

� t̄i

− �H̄i,H̄j	 = 0,

hich follows from equations of motion �8� and definitions �9� and �10�.
The Galin-Polubarinova equation �5� for the Hele-Shaw problem written in terms of the

oisson-Lax bracket �9�

�z�w,x�, z̄�w−1,x�	 = 1, �11�

s the string equation.
It is fundamental that Eq. �11� is invariant under the flows generated by �8�. Indeed

�tk
�z, z̄	 = ��tk

z, z̄	 + �z,�tk
z̄	 = ��Hk,z	, z̄	 + �z,�Hk, z̄		 = ��z̄,z	,Hk	 = 0, �12�

here we have used �8� and �11�, and the Jacobi identity for the Lax-Poisson bracket �9�.
Thus the string equation �11� defines an invariant manifold under the Toda flows �8� and a

eduction of the Toda hierarchy. On the other hand, the Toda flows may be viewed as symmetries
enerating new solutions of Eq. �11�.

II. REDUCTIONS OF THE 2DTODA HIERARCHY CONSTRAINED BY THE STRING
QUATION

The reduction of the 2dToda hierarchy by the string equation is still a compatible set of
nfinite-dimensional dynamical systems.

Indeed, as seen from �6� and �7� the string equation �11� is a system of ODEs of the form

dr/dx = R�r,u1,…, ū1,…�, dui/dx = Ui�r,u1,…, ū1,…�, dūi/dx = Ūi�r,u1,…, ū1,…� .

�13�

In what follows we will be interested in further “functional” reductions where z , z̄ are poly-

omial, rational, or logarithmic functions of w. As shown in the following, such reductions are
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onsistent with �8� �i.e., the corresponding ansatz for z is preserved by the two-dimensional Toda
ows� if the string equation �11� holds. Thus, for consistency we need a double �“functional” plus
string”� reduction. These pairs of reductions define finite-dimensional invariant sub-manifolds in
he phase space of the general 2dToda hierarchy. Indeed, functional reduction leaves a finite
umber of discrete indices in the ansatz for z as a function of w, while the string equation fixes the
ependence of z on x, leaving finite number of degrees of freedom. These degrees of freedom are
onnected with the integration constants of system �13�, which becomes finite-dimensional after
unctional reductions.

. Polynomial reductions

We begin with polynomial reductions of the 2dToda hierarchy

z�w� = rw + �
i=−N

0

uiw
i, �14�

z̄�w−1� = rw−1 + �
i=0

N

ūiw
i �15�

onstrained by the string equation �11�.
The following proposition states the consistency of the polynomial reductions under the Toda

ows:
Proposition 1: If the string equation (11) holds, then (14) and (15) is a finite dimensional

eduction invariant under the ti and t̄i 2dToda flows, 0� i�N+2 (8). This manifold has dimension
N+3 with local coordinates chosen as the initial values of the solutions r=r�x� ,ui=ui�x� , ūi

ūi�x� to the reduced string equation (13).

Proof: We must prove that z remains of the form �14�, under the flows generated by Hk , H̄k

rovided the string equation �11� holds. In other words, we have to show that the evolution does
ot change the highest and lowest degrees of the Laurent polynomial �14�. The proof for z̄ is
nalogous.

1. First we proceed with the projections to z of the flows which are identical to those appear-
ng in 1dToda system, i.e., those generated by Hk. These flows will be referred to as the “proper”
ows.

The lowest degree of w in z is −N. Since

Hk = �zk�+ + 1/2�zk�0 = hkw
k + hk−1wk−1 + … + h0 �16�

s a Laurent polynomial of positive degree in w, the lowest degree of the bracket �z ,Hk	 is not less
han −N, as follows from �9�. On the other hand, the complement zk−Hk of �16� is a polynomial
n 1/w and so,

�Hk,z	 = − �zk − Hk,z	

s a Laurent polynomial whose highest degree in w does not exceed 1.

2. Unlike the Hk-flows, the form-invariance of z �14� under the flows generated by H̄k requires
xtra restrictions on derivatives �xui �the string equation�. These flows will be referred as the
cross-flows.”

Since

H̄k = �z̄k�− + 1/2�z̄k�0

s a Laurent polynomial of nonpositive degree, it conserves the highest degree of z�w� under the

volution �8�, but not the lowest degree, in general. Indeed,
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H̄k = z̄k − ��z̄k�+ + 1/2�z̄k�0�

s a difference between z̄k and a polynomial of nonnegative degree, so that

�H̄k,z	 = �z̄k,z	 − ���z̄k�+ + 1/2�z̄k�0�,z	 .

he second bracket in the last expression preserves the lowest degree of z. Thus the lowest degree

f �H̄k ,z	 equals the lowest degree of �z̄k ,z	=kz̄k−1�z̄ ,z	. Imposing the extra restriction �11� �string
quation�, we see that the lowest degree does not exceed that of z̄k−1. Since the lowest degree of
is −1 and that of z is −N, it follows that k�N+2.

Therefore, the form of �14� is preserved by ti , t̄i Toda flows with i=1,… ,N+1, provided the
tring equation �11� holds. This completes the proof.

It is easy to prove the converse to Proposition 1, i.e.,
Proposition 2: The string equation (11) is a necessary condition for the existence of integrable

olynomial flows of the form (10), (14), and (15)
Proof: This essentially uses the same arguments as those leading to the result of Proposition

. For the first N+1 z flows to be consistent with the polynomial reduction it is necessary that the
aurent expansion of �z̄ ,z	 be of the form �z̄ ,z	= f�x�+�i�0Ui�x� /wi. The corresponding condition

or the z̄ flows is �z̄ ,z	= f̄�x�+�i�0Ūi�x�wi. Both can be simultaneously satisfied only if

�z̄,z	 = f�x� = f̄�x�

s independent of w. Differentiating with respect to ti �or t̄i�, i.e., along the flow lines, using the
quations of motion �8�, and the Jacobi identity we get

� f

�ti
= �Hi, f	 = w

� f

�x

�Hi

�w
.

ince w��Hi /�w� is w-dependent, while f is not, it follows that �f /�x=�f /�ti=0 and similarly
f /�t̄i=0. Therefore f is a constant in x and also constant along the flows, implying �up to a
onstant scaling� that the string equation �11� holds.

In the following we consider rational and logarithmic reductions as well as their Hamiltonian
tructures. Polynomial solutions can then be viewed as a special case. Nevertheless the corre-
ponding limiting procedures are rather cumbersome and it is easier to consider the polynomial
ase separately. A derivation of the canonical linearizing variables in the polynomial case is given
n Appendix B. This closely follows the analogous procedure given in Sec. IV for the logarithmic
ase. Local canonical linearizing variables, which are constant and linear in the hierarchy times,
urn out to be “Richardson’s harmonic moments” of the Hele-Shaw �Laplacian growth� problem
hen z�w� and z̄�w̄� are identified with the conformal mapping from the w to the z plane. This is
simple proof of the relation �originally established in Ref. 11� between the “times” of the 2dToda
ierarchy and harmonic moments of the exterior Hele-Shaw problem.

An important consequence of the present section is the fact that the string equation �11�
ecessarily holds for reduced conformal mappings evolving under a sufficient number of 2dToda
ows �i.e., sufficient for complete integrability�. In the context of interface dynamics, Darcy’s law

hus turns out to be a corollary of integrability for reduced systems.

. Rational reductions

We now consider a rational reduction for z�w� and z̄�w� ,N�1 given by

z�w� =
qN+1�w�
pN�w�

=
rwN+1 + �i=0

N aiw
i

wN + �N−1biw
i , �17�
i=0
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z̄�w−1� =
q̄N+1�w−1�
p̄N�w−1�

=
rw−�N+1� + �i=0

N āiw
−i

w−N + �i=0
N−1b̄iw

−i
. �18�

he following Lemma states the consistency of such rational reductions under the ti Toda flows for
17� and the t̄i flows for �18�.

Lemma 1: The form of the function z�w� in �17� is invariant under the ti flows and the form
18� of z̄�w−1� is invariant under the t̄i flows for any i�0.

Proof: Consider the flows generated by Hk. Since

Hk = �zk�+ + 1/2�zk�0 �19�

s a polynomial of non-negative degree in w, its complement zk−Hk is a polynomial in 1 /w. The
aurent expansion of brackets �9� �Hk ,z	=−�zk−Hk ,z	 around infinity therefore has the following

orm:

�Hk,z	 = k1�T�w + k0�T� + k−1�T�w−1 + ¯ . �20�

owever the Lax bracket �9� also implies that it is rational of the form

�Hk,z	 = Q�w�/pN�w�2.

t follows from �20� that the degree of polynomial Q�w� does not exceed 2N+1.
On the other hand,

�tk
z = P�w�/pN

2�w�, P�w� = pN�tk
qN+1 − qN+1�tk

pN,

here the degree of the polynomial P�w� also does not exceed 2N+1. Equating the coefficients of
olynomial P�w�−Q�w� to zero, we get a system of differential equations for r ,a ,b. The number
f equations is 2N+2. Thus we get a compatible system of differential equations for 2N+2
nknowns r ,a ,b. A similar argument shows the form invariance of �18� under the t̄k flows.

The consistency of the rational reduction defined in �18� under the ti flows and �17� under t̄i

ows, respectively, requires additional restrictions such as the string equation. But this only
uffices to ensure form invariance under t1 and t̄1 flows, respectively.

Lemma 2: The string equation (11) is a sufficient condition for z�w� and z̄�w� [(17) and (18)]

o be form invariant under the first two-Toda flows. Flows generated by Hk , H̄k with k�1 are
nconsistent with the rational reduction (17) and (18).

Remark: In the next section, we will show how to choose 4N+2 independent commuting
ows preserving the rational form of z �17� and z̄ �18�, generated by vector fields that are infinite

inear combinations of those generating the 2dToda hierarchy.
Proof: In order to prove that z remains of the same form �17� under the t̄i Toda flows we

ould have to find a compatibility condition for a system of differential equations for
�T� ,a�T� ,b�T�, induced by �8�.

These “cross” flows are generated by H̄k. Again we write

�z/� t̄k = S�w�/pN
2�w�, S�w� = pN�t̄k

qN+1 − qN+1�t̄k
pN

ith S�w� a polynomial in w of order at most 2N+1.
Since

H̄k = �z̄k�− + 1/2�z̄k�0 = h̄kw
−k + h̄k−1w−k+1 + … + h̄0 �21�

s a Laurent polynomial of non-positive degree in w, the Laurent expansion of the corresponding

racket has the following form:
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�H̄k,z	 = k1�T�w + k0�T� + k−1�T�w−1 + ¯ .

he definition of the Lax bracket �9� and the expansion �21� implies that

�H̄k,z	 = �U�w� + R�1/w��/pN�w�2,

here U�w� is a polynomial of degree at most 2N+1 and R=w−1��k−1�T�w−k+1+…+�0� is a
olynomial in w−1. If R�1/w�=0, the number of equations will not exceed the number of un-
nowns. However, as we show in the following, the string equation does not imply the vanishing
f R.

Introduce the new variable y=w−1. The vanishing of R is equivalent to the following form of
xpansion in y

�H̄k,z	 = f0�T� + f−1�T�y−1 + ¯ . �22�

onsider this as a function of y and, as before, express H̄k as a difference of z̄k and a polynomial
f no-negative degree. Then

�H̄k,z	 = �z̄k,z	 − ���z̄k�+ + 1/2�z̄k�0�,z	 = kz̄k−1�z, z̄	 − ���z̄k�+ + 1/2�z̄k�0�,z	 . �23�

mposing the string equation �11� we see that the only flow that allows the above expansion �22�
orresponds to k=1. A similar argument shows that only the t1 flow preserves the form �18� of z̄
ven if the string equation is imposed.

As seen from the above-presented proof, there are only two flows generated by evolution
perators of the form �10� compatible with the rational reduction. In fact, we should not expect
ore invariant flows associated with the simple poles at w=0 and w=�. In the polynomial case,

he number of invariant flows was equal to the number of variables �polynomial coefficients�,
ince one can associate n invariant flows to a pole of nth order, and the poles at zero and infinity
re immovable.

However, in the following we introduce additional flows related to movable singularities of
�w� and z̄�w−1� which do preserve the rational reduction �17� and �18�, extending results of
richever for the KP case.

. Additional flows for rational reductions of dKP hierarchy

In this section we recall the theory of flows related to poles at a finite number of finite points
pplying an approach previously used by Krichever for dKP hierarchy. In the dispersionless limit,
he dKP and 1dToda hierarchies are quite similar, while in 2dToda the existence of finite-
imensional reductions requires extra constraints.

Let us start by recalling5 that on the phase space of extended Benney systems, i.e., rational
KP, there arise some new flows related to the pole structure of the corresponding maps. These
dditional flows were introduced by Krichever �see Ref. 8�.

Consider the partial fraction expansion under the above-noted assumptions and the flows of
he ti type only. For the dKP hierarchy5,18 these reductions have the form

z�w� = w + u0 + �
	=1

N
u	

w − w	

. �24�

he new flows associated with the poles are defined similarly to the polynomial case

�tk,	
z = �Bk,	,z	, 	 = �,1,2,…, k = 0,1,2,… . �25�
he evolution functions associated with the pole structure of z are as follows :

                                                                                                            



f
w

H

T
�

D

m
z
f

b

w

W

t
�̄

T

112701-8 Harnad, Loutsenko, and Yermolayeva J. Math. Phys. 46, 112701 �2005�

                        
Bk,� = �z�w�k�
0, ��
0 ª ��+ + ��0

or an immovable pole at infinity, while for each finite-distance pole there appear additional flows
ith evolution functions:

Bk,	 = �z�w�k�	, B0,	 = log�w	 − w� .

ere z�w�	 denotes the negative part of a formal Laurent expansion of z�w� near the pole w	:

f�w�	 = �
i�0

f i

�w − w	�i if f = �
i�Z

f i

�w − w	�i . �26�

hese additional flows commute amongst themselves and with the ordinary 1dToda or dKP flows
associated with poles at infinity�.

. Additional invariant flows of 2dToda system

In the following, we will look at reductions of the 2dToda systems analogous to the above-
entioned Benney-Krichever reductions of KP. We will thus choose the rational functions

�w� , z̄�1/w� appearing in �17� and �18� to have only simple poles and express these in the partial
raction form

z�w� = rw + u0 + � j=1

n uj

w−wj
,

�27�
z̄�1/w� = r/w + ū0 + � j=1

n ūj

1/w−w̄j
.

Now, introduce a new set of 4n+2 evolution functions H0,j ,H1,j ,H1,� , H̄0,j , H̄1,j , H̄1,� defined
y

Hk,j�w� = Bk,j�w� − 1
2Bk,j�w = 0�, H̄k,j�y� = B̄k,j�y� − 1

2 B̄k,j�y = 0� , �28�

here k=0,1 , j=1,… ,n and

B1,��w� = �z�w��
0, B0,j = log�r�wj − w��, B1,j�w� = �z�w�� j

�29�
B̄1,��y� = �z̄�y��
0, B̄0,j = log�r�w̄j − y��, B̄1,j�y� = �z̄�y�� j, y = 1/w .

e denote the flow variables associated with H0,j as �2j, those associated with H1,j as �2j−1, and

hat associated with H1,� as �0. The flow variables associated with H̄0,jH̄1,j, and H̄0,� are denoted

2j , �̄2j−1 , �̄0, respectively. Correspondingly, we denote the evolution functions

h0 = H1,� = rw + u0/2, h̄0 = H̄1,� = r/w + ū0/2,

h2j−1 = H1,j =
uj

w−wj
+

uj

2wj
, h̄2j−1 = H̄1,j =

ūj

w̄j−1/w + 1
2 ūj/w̄j

h2j = H0,j = log�wj − w� + 1/2 log�r/wj�, h̄2j = H̄0,j = log�w̄j − 1/w� + 1/2 log�r/w̄j� . �30�

hen the following proposition holds

Proposition 3: The 4n+2 commuting Toda-Krichever flows
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��j
z = �hj,z	 , ��̄j

z = �h̄j,z	

j = 0,…,2n

��j
z̄ = �hj, z̄	 , ��̄j

z̄ = �h̄j, z̄	

�31�

reserve the rational form of z�w� and z̄�1/w� (27) [or equally (17) and (18)] provided the string
quation (11) holds. The dimension of the reduced phase space equals 4n+3.

We defer the proof, since this follows as a limiting case of the more general logarithmic
eduction introduced in Sec. III E.

As in the polynomial case, the total number of form invariant flows preserving the string
quation equals the dimension of the reduced phase space minus one. In what follows we show
hat these flows are Hamiltonian. Since the dimension of the phase space is odd and equals 4n
3, it is in fact a Poisson manifold whose symplectic leafs have dimension 4n+2, which is exactly

he number of commuting Toda-Krichever flows.
The above-presented result holds for a more general setting. In the following we introduce a

ogarithmic reduction of the 2dToda hierarchy and prove an analog of proposition 3 for logarith-
ic functions. Proposition 3 follows as a limiting case.

. Logarithmic flows

It is easier to prove the consistency of the rational reductions with the dynamics of the 2dToda
ystem by first considering the more general logarithmic functions and then taking limits in which
he branch points degenerate in pairs. Let us set

z = r�x�w + u�x� + �i=1

n+1
ai log�wi�x� − w� ,

�32�
z̄ = r�x�w−1 + ū�x� + �i=1

n+1
āi log�w̄i�x� − w−1� ,

here ai , āi are arbitrary constants, subject to the conditions

�
i=1

n+1

ai = 0, �
i=1

n+1

āi = 0, �33�

hich ensure absence of logarithmic singularities at infinity.
Introduce evolution functions as follows:

H0 = r�x�w + 1
2u�x�, H̄0 = r̄�x�w−1 + 1

2 ū�x� ,

H j = log�wj�x� − w� + 1
2 log�r�x�/wj�x��, j = 1,…,n + 1 �34�

H̄ j = log�w̄j�x� − w−1� + 1
2 log�r�x�/w̄j�x�� .

e then have
Proposition 4: The string equation (11) is a necessary and sufficient condition for the exis-

ence of 2n+4 commuting flows on the 2n+5 dimensional space of functions of the form (32)

��i
z = �Hi,z	, ��̄i

z = �H̄i,z	 ,
i = 0,…,n + 1, �35�
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��i
z̄ = �Hi, z̄	, ��̄i

z̄ = �H̄iz̄	 .

n other words, the flows generated by �34� and �35� are tangential to the manifold of such
ogarithmic functions if the string condition is imposed �and conversely�. We therefore have 2n
4 flows leaving invariant a 2n+5 dimensional sub-manifold of the 2dToda system. These will be

hown to be infinite linear combinations of vector fields generating the 2dToda flows �8�. See Eq.
46� and �47� in which we show how to express corresponding 2dToda times ti , t̄i in terms of the
ogarithmic flow parameters �i , �̄i.

Proof:
1. Commutativity : This will be shown to follow as Corollary 1 to Proposition 5 below.
2. Consistency of (32) with equations of motion (35): As in the polynomial and rational cases

he consistency of the ��i
z and ��̄i

z̄ equations with the logarithmic reduction �32� follows from the

act that the structure of the Lax-Poisson brackets �Hi ,z	 , �H̄i , z̄	 is identical to the infinitesimal
eformations in z and z̄ induced by ones in the functions r , ū ,u , w̄i ,wi. However the consistency of
he ��i

z̄ and ��̄i
z equations with the logarithmic reduction requires an extra constraint, the string

quation. First, we prove this for ��̄i
z.

Differentiating z in �32� with respect to �̄i using the equation of motion �35�, we get

��̄i
z = w��̄i

r + ��̄i
u + �

j=1

n+1 ai��̄i
wj

w − wj
= �H̄i,z	 . �36�

he left-hand side of �36� may contain any terms that are linear in w at w=� and simple poles at
=wj , j=1,… ,n+1. Since the Lax-Poisson bracket �9� is a bi-derivation, the singularities in w

hat may occur in �Hi ,z	 consist either of simple poles at w=wj , j=1,… ,n+1, linear terms at
=� or a simple pole at w=1/ w̄i. We show that the latter is absent.

Note that z̄ can be represented as a sum over H̄i , i=0,… ,n+1 plus a w-independent function
f�x�;

z̄ = �
i=0

n+1

āiH̄i + f�x� , �37�

here ā0ª1, f�x�= 1
2 �ū�x�−�i=1

n+1ailog w̄i�x��. Now, using �37� we get

āi�H̄i,z	 = �z̄ − �
j�i

ājH̄ j − f�x�,z	 = �z̄,z	 − �
j�i

āj�H̄ j,z	 − �f�x�,z	 . �38�

ince f�x� is independent of w, the last term in �38� contains only linear terms in w plus simple

oles at wj , j=1,… ,n+1. The term � j�iāj�H̄ j ,z	 could, in principle, contain poles at w=1/ w̄j for

j� i, but these must cancel since �H̄i ,z	 contains no such poles. Furthermore, this term contains no

ole at w=1/ w̄i, because H̄i is omitted in the sum. Since the string equation �11� holds by assump-
ion, we see that the right-hand side of �36� only contains terms of the type induced by infinitesi-
al deformations in the functions r ,u ,wj, showing that the ��̄i

z equation, together with the string
quation, is compatible with the reduction �32�. The proof for the ��i

z̄ equation is similar.
The above proves the sufficiency of the string equation for the validity of Proposition 4. The

ecessity is proved similarly to Proposition 2. By Eq. �38�, if the rational reduction �32� is
reserved under the �̄i flows, �z̄ ,z	 can have no pole at w=1/ w̄i for any i or at zero. Similarly to
reserve �32� under the �i flows it can have no poles at wi , i=1,… ,n+1 or �. But since the only
ossible poles in �z̄ ,z	 are at these points, we conclude that �z̄ ,z	 is constant in w and hence can

¯
nly be a function �say q� of x ,� ,�,
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�z̄,z	 = q .

ifferentiating the last equation with respect to �i �or �̄i� using the equation of motion �35�, the
acobi identity and the definition of the Lax-Poisson bracket we get

�q

��i
= w

�q

�x

�Hi

�w
.

ince w��Hi /�w� is w-dependent, while q is not, it follows that �q /�x=�q /��i=0 �similarly
q /��̄i=0�. Therefore q=const and the string equation �11� holds.

The demonstration that the reduced phase space is of dimension 2n+5 is similar to the
olynomial case. We view the string equation �11� together with the logarithmic reduction �32� as

set of �2n+5� first-order ODEs for the �2n+5� functions r�x� ,u�x� , ū�x� ,wi�x� , w̄i�x� , i
1,… ,n+1,

dr

dx
= R�r,u, ū,w1,…,w̄1,…�,

du

dx
= U�r,u, ū,w1,…,w̄1,…�,

dū

dx
= Ū�r,u, ū,w1,…,w̄1,…� ,

dwi

dx
= Wi�r,u, ū,w1,…,w̄1,…�,

dw̄i

dx
= W̄i�r,u, ū,w1,…,w̄1,…�, i = 1,…,n + 1

hich, at least locally, determine the dependence of these functions uniquely in terms of their
alues r0 ,u0 , ū0 ,wi0 , w̄i0 , i=1,… ,n+1 at some initial value x=x0,

r = r�r0,u0, ū0,w1,0,…,w̄1,0,…,x�, u = u�r0,u0, ū0,w1,0,…,w̄1,0,…,x�,

ū = ū�r0,u0, ū0,w1,0…w̄1,0…,x� ,

wi = wi�r0,u0, ū0,w10…,w̄1,0…,x�, w̄i = w̄i�r0,u0, ū0,w1,0, . . ,w̄1,0…,x�, i = 1,…,n + 1.

he 2n+5 initial values r0 ,u0 , ū0 ,wi0 , w̄i0 , i=1,… ,n+1 may be viewed as coordinates of the
educed phase space.

Proof of Proposition 3: This follows from taking limits in which the logarithmic branch points

2i ,w2i−1 coalesce in pairs.
Setting

a2i−1 = 1/�, a2i = − 1/�, w2i = w2i−1 + �ui,

�39�
ā2i−1 = 1/�, ā2i = − 1/�, w̄2i = w̄2i−1 + �ūi

n �32� we get �27� in the �→0 limit.
The evolution functions �30�, generating flows on the space of rational reduction �27�, are then

btained as follows:

h0 = lim
�=0

H0, h̄0 = lim
�=0

H̄0,

h2i−1 = lim
�=0

1
� �H2i − H2i−1�, h̄2i = lim

�=0

1
� �H̄2i − H̄2i−1� ,

h2i = lim H2i−1, h̄2i−1 = lim H̄2i−1.

�=0 �=0
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We thus obtain evolution functions for the rational reductions, where z , z̄ have simple poles
nly, as a limiting degenerating logarithmic case. One may deduce structures related to general
ational reductions by degenerating arbitrary numbers of logarithmic singularities at different finite
oints as well as at infinity.

V. POISSON STRUCTURE OF LOGARITHMIC REDUCTIONS OF THE 2TODA
IERARCHY

In the following we study the Poisson structure of logarithmic reductions of the 2dToda
ierarchy, which will be shown to define finite-dimensional completely integrable systems. We
nd explicit expressions leading to a canonical Hamiltonian structure on the phase space of
ational reductions of the 2dToda system.

The Poisson structure of rational reductions of the 1dToda hierarchy �which are infinite-
imensional, having no string equation constraint� is described in Appendix C. It is related to the
oisson structure of the Benney system considered in Ref. 13.

Hamiltonians, action-angle variables. Let us now introduce the following 2n+5 functions on
he reduced phase space defined by �32� with z , z̄ solutions to �11�, extended by the auxiliary
ariable x,

r,u, ū,w1,…,wn+1,w̄1,…,w̄n+1 → Q,I0,I1,…,In+1, Ī0, Ī1,…, Īn+1, �40�

here the new variables are defined as follows:

I0 = 1
2i�


�

z̄d ln z, Ī0 = 1
2i�


0
zd ln z̄ ,

Ij = 1
2i�


wj

z̄dz, Ī j = 1
2i�


1/w̄j

zdz̄, j = 1,…,n + 1

Q = 1
4i� �

i=0

n+1 

1/w̄i

zdz̄ + 

wi

z̄dz .

Using �32�, we may evaluate the contour integrals in the last equation, expressing these
xplicitly in terms of the old parametrization r ,u , ū ,wj , w̄j , j=1,… ,n+1,

I0 = z̄�1/w = 0� = ū + � j=1

n+1
āj ln�w̄j�, Ī0 = z�0� = u + � j=1

n+1
aj ln�wj� ,

Ij = ajz̄�wj
−1� = aj�rwj

−1 + ū + �k=1

n+1
āk ln�w̄k − wj

−1�� ,

�41�
Ī j = ājz�w̄j

−1� = āj�rw̄j
−1 + u + �k=1

n+1
ak ln�wk − w̄j

−1��, j = 1,…,n + 1,

Q = 1
2r�� �z�w�

�w �w=0 + � �z̄�1/w�
��1/w� �1/w=0� − 1

2� j=1

n+1
�Ij + Ī j� = r2 − 1

2� j=1

n+1 �r� aj

wj
+

āj

w̄j
� + Ij + Ī j� .

�42�

Proposition 5:The functions Ik , Īk ,Q �41� and �42� are linearizing variables of the system �35�
atisfying

�� Q = 0, ��̄ Q = 0,

j j
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��j
Ik =  jk, ��̄j

Ik = 0, �43�

��j
Īk = 0, ��̄j

Īk = −  jk.

Proof: We first calculate derivatives of each Ik with respect to the times � j , j=0,… ,n+1.
pplying integration by parts, we get

2�i
�Ik

�� j
=

�

�� j



wk

z̄
�z

�w
dw = 


wk

�

�w
�z̄

�z

�� j
�dw + 


wk

� � z̄

�� j

�z

�w
−

�z

�� j

� z̄

�w
�dw .

y the equations of motion �35� and the definition of the Lax-Poisson brackets �9� this equals



wk

�

�w
�z̄

�z

�� j
�dw + 


wk

��H j, z̄	
�z

�w
− �H j,z	

� z̄

�w
�dw

= 

wk

�

�w
�z̄

�z

�� j
�dw + 


wk

�H j

�w
w� �z

�w

� z̄

�x
−

�z

�x

� z̄

�w
�dw ,

hich by the string equation �11� reduces to



wk

�

�w
�z̄

�z

�� j
�dw + 


wk

�H j

�w
dw = 2�ikj,  jk = �1, j = k

0, j � k
� .

he first term on the left-hand side vanishes, because z̄��z /�� j� is univalent in a neighborhood of

k ,k=1,… ,n+1 �and at � due to �33�� and the remaining integral is evaluated by substituting
xpression �34� for Hj. We have thus proved that

�Ii

�� j
= ij .

he rest of the proposition is proved by similar computations.
Corollary 1:The vector fields defining (35) commute.

Proof: Since z , z̄ are completely determined by the new coordinates Q , I , Ī, infinitesimal de-
ormations of the former under the �i flows can be expressed via the chain rule through the
nfinitesimal deformations of the latter. It follows from Proposition 5 that



�i
�z

z̄
� =

�

�Ii
�z

z̄
�,



�̄i
�z

z̄
� =

�

� Īi

�z

z̄
�

o we have

� 

�i



� j
−



� j



�i
��z

z̄
� = � �

�Ii

�

�Ij
−

�

�Ij

�

�Ii
��z

z̄
� = 0.

he commutativity of the other flows is seen to similarly follow from Proposition 5.
Choosing Poisson structure for Eq. �43� in a canonical way

�Ii, Ī j	p = ij, �Ii,Ij	p = �Īi, Ī j	p = 0, �Q, Ī j	p = �Q,Ij	p = 0 �44�

e may interpret I , Ī as canonical linearizing variables and Q as a Casimir invariant. The equations

f motion induced by the evolution operators Hi or H̄i are seen to be Hamiltonian and generated
y the Hamiltonians

¯ ¯
Hi = Ii, Hi = Ii. �45�
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The Poisson brackets �,	p in �44� are different from �,	 in �9�; they define a Poisson structure
n the finite dimensional space of logarithmic reductions of the phase space satisfying the string
quation, while the latter �the Lax-Poisson bracket� is a dispersionless limit of the commutator.

Remark: Linearizing coordinates similar to �41� appeared in Ref. 10 in connection with the
aplacian Growth problem as integrals of the Laplacian Growth �string� equation, without the

ntroduction of the compatible �i and �̄i flows considered here.
The following proposition makes explicit the fact that the string equation implies the finite

imensionality of the reduced phase space.
Proposition 6:The functions (41) form a set of integrals of the string equation (11). The string

quation (11) implies

�Ii

�x
=

� Īi

�x
= 0,

�Q

�x
= 1.

quivalently, this may be integrated to

Q − x = c0, Ii = ci, Īi = c̄i, i = 0,…,n = 1,

here ci ,ci are constants in x, which may be interpreted as coordinates on the 2n+5 dimensional
educed phase space.

Proof: This is similar to the proof of proposition �5�; one simply differentiates with respect to
and evaluates corresponding residues.

As mentioned in Sec I, the Laplacian growth problem is recovered by identifying z̄ as the
omplex conjugate of z. As seen from Proposition 6, the Casimir Q, which is proportional to the

rea of D+, grows with unit speed in physical time x, while Ik , Īk are functions of the harmonic
oments of the boundary curve.

To obtain similar results for the rational case we take a limit as in �39�.
Corollary 2: Let z , z̄ be of the rational reduction form (27). Then the following 2n+3 quan-

ities

I0 = ū0 − �i=1

n
ūi/w̄i, Ī0 = u0 − �i=1

n
ui/wi,

I2i−1 = rwi
−1 + ū0 + � j=1

n ūj

1/wi − w̄j

, Ī2i−1 = rw̄i
−1 + u0 + � j=1

n uj

1/w̄i − wj

, i = 1,…,n

I2i = �r − � j=1

n ūj

�1/wi − w̄j�2� ui

wi
2 , Ī2i = �r − � j=1

N uj

�1/w̄i − wj�2� ūi

w̄i
2 ,

Q = r2 −
1

2�
i=1

n �r� ūi

w̄i
2 +

ui

wi
2� + Ī2i + I2i�

he linearizing canonical variables for the rational reduction, i.e., variables in terms of which the
quations of motion (31) for the rational reduction (27) have the canonical form (43).

The logarithmic or rational flows are infinite linear combinations of the 2dToda flows �8�. As
hown in Appendix B, harmonic moments of the conformal mapping z�w� are linear in the 2dToda
imes. Therefore to express ti , t̄i , i=1, 2… through �i , �̄i , i=0,… ,n+1 one has to evaluate the

ntegrals
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Mk�z, z̄� =
1

2k�i



�

z̄z−k �z

�w
dw, M̄k�z, z̄� =

1

2k�i



0
zz̄−k � z̄

�w
dw , �46�

hich are functions of coordinates z , z̄ of the reduced phase space �32�, and then express z , z̄

hrough Q , Ii , Īi , i=0,… ,n+1. Then

Mk�Q,I, Ī� = Mk�z�Q,I, Ī�, z̄�Q,I, Ī��, M̄k�Q,I, Ī� = Mk�z�Q,I, Ī�, z̄�Q,I, Ī�� . �47�

ince, modulo integration constants

Mi = ti, M̄i = t̄i, i � 0,

Ii = �i, Īi = �̄i, i = 0,…,n + 1

nd Q=x, it follows that Eq. �47� expresses ti , t̄i in terms of �i , �̄i.

. CONCLUSIONS

We have derived consistent finite dimensional logarithmic and rational reductions of certain
ows related to the 2dToda hierarchy. The requirement for the consistency of these reductions was

he string equation. Since the latter may also be viewed as the Galin-Polubarinova equation for the
ele-Shaw �Laplacian growth� process, this also established the latter as a compatible constraint

or such reduced 2dToda flows.
More generally, it would be of interest to determine all finite dimensional reductions of the

dToda hierarchy that imply fulfillment of the Darcy law in various forms.
Also, it would be useful to study integrable systems connected to various kinds of Hele-Shaw

ows. This could include boundary conditions which are more general than a point sink at infinity.
or instance, one can consider an exterior problem with a steady and uniform viscous flow at

nfinity. This can describe the evolution of a bubble surrounded by a viscous liquid moving
hrough a wide channel, or a bubble within a viscous flow generated by a source and a sink of
qual magnitude separated by a large distance. In such models, the constraint on z , z̄ �6� and �7�
as the form

�z�w,x�, z̄�w−1,x�	 = �1/w + w�r�x� .

his is an exterior analog of the interior problem with a dipole source inside the domain. In
ontrast to a monopole sink, this implies that the first harmonic moment changes with the time x,
hile the others �including area� remain unchanged. In general any combination of n-pole sources

ould be considered:

�z�w,x�, z̄�w−1,x�	 = f�x,w� ,

here f is defined by the asymptotics of the hydrodynamic potential.
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PPENDIX A: STRING EQUATION AND DARCY LAW

We recall here the derivation of the Galin-Polubarinova equation. Consider evolution of the

xterior D− of a simply connected planar domain bounded by an analytic curve on z plane. The
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urve is an image of the unit circle in the w plane under a conformal mapping �4�. As stated in the
ntroduction the pressure field P�X ,Y� is constant in the interior domain D+ and at the boundary
D+, so that at �D+,

0 = dP/dx = �P/�x + vn � P = �P/�x − ��P�2,

here we used Darcy law �3� and the pressure gradient is taken in the exterior vicinity of the
urve. Since P is harmonic in D− �cf. �1��, it is the real part of a homomorphic function �hydro-
ynamic potential� P=Re ��z�. It follows that

0 = Re� ��

�x
−

��

�z
� ��

�z
�� .

he hydrodynamic potential can be chosen as ��z ,x�=1/2� log w�z ,x� due to the logarithmic
symptotic in �1�. Then

0 = Re�w�z,x�
�w�z,x�

�x
−

�w�z,x�
�z

� �w�z,x�
�z

�� ,

here w�z ,x� stands for the map inverse to z�w ,x�. Using the facts that z=z�w�z ,x� ,x�, i.e.,

�z�w,x�
�w

�w�z,x�
�x

+
�z�w,x�

�x
= 0,

�w�z,x�
�z

= 1 �z�w,x�
�w

nd w̄=1/w on �D+, we arrive at �5�.

PPENDIX B: POISSON STRUCTURE OF POLYNOMIAL REDUCTIONS

Following steps similar to the proof of Proposition 5, one arrives at the following result for
olynomial reductions �10�, �14�, and �15� of the 2dToda system.

Proposition 7: The following quantities

Mk =
1

2i�k



�

z̄z−kdz, M̄i =
1

2i�k



0
zz̄−kdz̄ ,

Q =
1

4i��
�

z̄dz − 

0

zdz̄�
re canonical linearizing variables of the (polynomially) reduced 2dToda system (8), (10), (14),
nd (15):

Mk�z, z̄� = tk + const, M̄k�z, z̄� = t̄k + const, Q�z, z̄� = x + const.

olutions to the string equation (11) are then defined by the set of algebraic equations

Q�z, z̄� = x + c0, Mk�z, z̄� = ck, M̄k�z, z̄� = c̄k,

here ck , c̄k are arbitrary constants.
Proof: Evaluating �Mj /�tk ,�Mj /�t̄k by arguments similar to those of Proposition 5, we get

�Mj

�tk
= −

1

2i�j



�

�Hk

�w
z−idw,

�Mi

� t̄ j

=
1

2i�j



�

�H̄k

�w
z−idw .
sing the fact that
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Hk = �z�w�k�+ + 1
2 �z�w�k�0 = z�w�k − �z�w�k�− − 1

2 �z�w�k�0

nd the negative part of the Laurent expansion does not contribute to the integral, we obtain

�Mj

�tk
=

1

2i�j



�

z�w�−i�z�w� j

�w
dw = kj .

sing the fact that the evolution functions H̄j = �z̄ j�−+1/2�z̄ j�0 generating the �̄i flows are polyno-
ials of non-negative degrees in 1/w, we obtain

�Mi

� t̄ j

= 0.

In the context of the Hele-Shaw problem, the first N+1 Richardson moments15 equal the first
+1 dToda times. Indeed, in the Hele-Shaw problem z�w� has the meaning of a conformal
apping from w to the z plane. In the exterior problem, the exterior of the unit circle �i.e., domain

w��1� is mapped to the exterior D− of the boundary curve z�w�. The exterior harmonic moments
re, by Green’s theorem,

1

2j�i
�

�w��1
z−jdz dz̄ =

1

2j�i



�w�=1
z̄�1/w�z�w�−jdz .

ince the mapping z�w� is univalent in D−, all zeros of z�w� are located in D+ and we can move
he integration contour to infinity if i
1. Thus, we get

1

2j�i



�

z̄�1/w�z�w�−jdz = Mi

hich, by Proposition 7 equals ti modulo an integration constant.

PPENDIX C: POISSON STRUCTURE OF 1DTODA HIERARCHY.

In this section we consider the Poisson structure of rational reductions of 1dToda system.
Recall that for the 1dToda system one takes into account only the ti flows,

�ti
z = �Hi,z	, Hi = �z�w�i�+ + 1/2�z�w�i�0, i = 0, . . . � . �C1�

his system is bi-Hamiltonian �for general information, e.g., see Ref. 3� with two �linear and
uadratic� compatible Poisson structures. For generic Toda system �6�, the dispersionless linear
oisson brackets for the “field variables” ui , i=1, . . . ,� �6� have the following form:2

�un�x�,um�y�	1 = 2�cn + cm − 1���n + m�un+m�x���x − y� + mun+m� �x��x − y�� , �C2�

here

ck = �1 if k � 0

1/2 if k = 0

0 if k � 0
�

hile the quadratic brackets are

�un�x�,um�y�	2 = �1

2
�n − m�un�x�um� �x� + ��

k=1

1−n

�n − m + k�un+k�x�um−k� �x� + kun+k� �x�um−k�x���
��x − y� + �1/2�n − m�unum + ��

1−n

�n − m + 2k�un+kum−k���x − y� . �C3�

k−1
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As seen from Lemma 1, the rational functions

z�w� =
qN+1�w�
pN�w�

=
wN+1 + �i=0

N aiw
i

�i=0
N biw

i �C4�

re form-invariant under all the 1dToda flows �C1�, without any extra restriction �e.g., no string
quation is needed�.

We obtain corresponding Poisson structures for the variables ai ,bi, by using result �C3�,
xpressing ui in terms of ai ,bi , i=0, . . .N. Both the linear �C2� and the quadratic �C3� Poisson
tructures lead to quadratic brackets for ai ,bi . Namely, the second Poisson structure for �C4��
ecomes

�ak�x�,al�y�	2 = ��
n=1

�l + n − k�ak−n�x�al+n�y� + nak−n�y�al+n�x� + �l − N − 1�ak�x�al�y����x − y� ,

�C5�

�bk�x�,bl�y�	2 = ��
n=1

�k − l − n�bk−n�x�bl+n�y� − nbk−n�y�bl+n�x� +
k − �

2
bk�x�bl�y����x − y� ,

�C6�

�ak�x�,bl�y�	2 =
k − N − 1

2
ak�x�bl�y���x − y� . �C7�

he first Poisson structure can be obtained from �C5�–�C7� with the help of a linear transformation
shift by constant�

ai → ai + �bi, z�w,x� → z�w,x� + �

nd using a bi-Hamiltonian nature of �C2� and �C3�,

�ak�x�,al�y�	1 = ��
n=1

�k − l − n��ak−n�x�bl+n�y� + bk−n�x�al+n�y�� − n�ak−n�y�bl+n�x� + bk−n�y�al+n�x��

+
N + 1 − l

2
bk�x�al�y� +

k + N + 1 − 2l

2
ak�x�bl�y����x − y� , �C8�

�ak�x�,bl�y�	1 = ��
n=1

��k − l − n�bk−n�x�bl+n�y� − nbk−n�y�bl+n�x�� +
N + 1 − l

2
bk�x�bl�y����x − y� ,

�C9�

�bk�x�,bl�y�	1 = 0. �C10�

n all the above expressions aN+1=1 and ai=0 if i goes beyond the range i=0, . . .N+1 �and bj

0 if j�0, . . . ,N�.
These brackets form a bi-Hamiltonian structure for rational reductions of 1dToda hierarchy:

�ti
z = �Hi,z	1 = �Hi−1,z	2 �C11�

ith the following Hamiltonians:

H =
1

�zi+1�x�� dx �C12�
i i + 1
� 0

                                                                                                            



1

1

1

1

1

1

1

1

1

1

112701-19 Constrained reductions of 2dToda hierarchy J. Math. Phys. 46, 112701 �2005�

                        
1 Agam, O., Bettelheim, E., Wiegmann, P., and Zabrodin, A., “Viscous fingering and a shape of an electronic droplet in the
Quantum Hall regime,” Phys. Rev. Lett. 88, 236801 �2002�, cond-mat/0111333.

2 Carlet G., “Extended Toda hierarchy and its Hamiltonian structure,” Ph.D. thesis, SISSA preprint 2003/FM.
3 Dickey, L. A., Soliton Equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, Vol. 26
�World Scientific, River Edge, NJ, 2003�.

4 “Dynamics of curved fronts”, edited by P. Pelc, in Perspectives in Physics �Academic, Boston, MA, 1988�, Vol. xvi,
514 pp.

5 Enriques, B., Orlov, A., and Rubtsov, V., “Dispersionful analogues of Benney’s equations and N-wave systems,” Inverse
Probl. 12, 241–250 �1996�.

6 Galin, L. A., “Unsteady filtration with a free surface,” C. R. �Dokl.� Acad. Sci. URSS 47, 246–249 �1945�.
7 Howison, S. D., “Fingering in Hele-Shaw cells,” J. Fluid Mech. 167, 439–453 �1986�.
8 Krichever, I., “The �-function of the universal Whitham hierarchy, matrix models and topological field theories,” Com-
mun. Pure Appl. Math. 47, 437–475 �1994�.

9 Mineev-Weinstein, M., “Selection of the Saffman-Taylor finger width in the absence of surface tension: An exact result,”
Phys. Rev. Lett. 80, 2113–2116 �1998�.

0 Mineev-Weinstein M., and Dawson, S. P., “A new class of nonsingular exact solutions for Laplacian pattern formation,”
Phys. Rev. E 50, R24–R27 �1994�, patt-sol/9305010; 57, 3063–3072 �1998�.

1 Mineev-Weinstein, M., Wiegmann, P., and Zabrodin, A., “Integrable structure of interface dynamics,” Phys. Rev. Lett.
84, 5106–5109 �2000�.

2 Orlov, A. Yu., and Schulman, E. I., “Additional symmetries for integrable equations and conformal algebra representa-
tion,” Lett. Math. Phys. 12, 171–179 �1986�.

3 Pavlov, M. V., “Exact integrability of a system of Benney equations,” Dokl. Akad. Nauk 339, 311–313 �1994�; trans-
lation in Phys. Dokl. 39, 745–747 �1994�.

4 Polubarinova-Kotschina, P. J., “On the displacement of the oil-bearing contour,” C. R. �Dokl.� Acad. Sci. URSS 47,
250–254 �1945�.

5 Richardson S., “Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel,” J. Fluid
Mech. 56, 609–618 �1972�.

6 Saffman, P. G., and Taylor, G., “The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more
viscous liquid,” Proc. R. Soc. London, Ser. A 245, 312–329 �1958�. �2 plates�.

7 Takasaki, K., and Takebe, T., “Integrable hierarchies and dispersionless limit,” Rev. Math. Phys. 7, 743–808 �1995�.
8 Takebe, T., “Toda lattice hierarchy and conservation laws,” Commun. Math. Phys. 129, 281–318 �1990�.
9 Wiegmann, P. B., and Zabrodin, A., “Conformal maps and integrable hierarchies,” Commun. Math. Phys. 213, 523–538
�2000�.
                                                                                                            



T
fl

I

b
c
n
m

n
l
f
i

i
s
a
i

e
p
r
h
c

s

a

b

JOURNAL OF MATHEMATICAL PHYSICS 46, 112901 �2005�

0

                        
he effects of nonlocality on the evolution of higher order
uxes in nonequilibrium thermodynamics

V. A. Cimmellia�

Department of Mathematics, University of Basilicata, Campus Macchia Romana,
85100 Potenza, Italy

P. Vánb�

Department of Chemical Physics, Budapest University of Technology and Economics,
Budafoki út 8, 1521 Budapest, Hungary

�Received 8 July 2005; accepted 7 September 2005; published online 9 November 2005�

The role of gradient dependent constitutive spaces is investigated on the example of
Extended Thermodynamics of rigid heat conductors. Different levels of nonlocality
are developed and the different versions of extended thermodynamics are classified.
The local form of the entropy density plays a crucial role in the investigations. The
entropy inequality is solved under suitable constitutive assumptions. Balance form
of evolution equations is obtained in special cases. Closure relations are derived on
a phenomenological level. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2101087�

. INTRODUCTION

Weakly nonlocal thermodynamic theories are those that introduce the space derivatives of the
asic variables into constitutive functions.1 Second law restricts considerably the form of the
onstitutive quantities and gives a genuine insight into the structure of the theories. Weakly
onlocal constitutive functions are mostly investigated in relation of material microstructure in
echanics2,3 or to find nonlocal extensions of classical theories.1

In this paper we investigate nonlocal constitutive spaces with different levels of nonlocality,
amely of different order of derivatives. However, we derive also the restrictions that are due to
ocality assumptions on different levels. In our analysis we assume a nonequilibrium entropy
unction that can be approximated by its values measured at the equilibrium. Such an assumption
s referred to as local state hypothesis.4

We restrict ourselves to extended thermodynamic theories of rigid heat conductors5–7 and
ntroduce the heat flux together with a second order tensor as internal variables. The balance
tructure of the evolution equations is not postulated. Furthermore, the entropy current is regarded
s a constitutive quantity and we are to give a complete solution of the thermodynamic constraints,
.e., both the equalities and the residual dissipation inequality.

In a previous work8 the local theory has been developed in the details and the evolution
quations for fluxes of higher tensorial order have been obtained. Also it was proved that under
articular assumptions on the entropy density and the entropy current the balance form can be
ecovered. Moreover, the system of equations was closed, in that the evolution equations for the
ighest order variable in the hierarchy—ordinary differential equations—can be interpreted as a
losure relation.

In the present paper we extend our investigation to the case of weakly nonlocal constitutive
tate spaces. The solutions are derived with the help of minimal assumptions on the form of the

�Electronic mail: cimmelli@unibas.it
�
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ntropy, on its flux or on the evolution equations of the internal variables. In this way the different
olutions of the entropy inequality are clearly classified. The most general assumption, that covers
ll existing phenomenological theories lies on the concept of current multipliers, which represent
ome constitutive functions entering the entropy current. We will see that the final evolution
quations are more general than the traditional balance ones. The conditions to recover the clas-
ical cases are clarified.

In Sec. II we investigate first order nonlocality by applying Liu procedure9,10 for the exploi-
ation of second law.

In Sec. III we solve the Liu equation in the case of local state and local evolution equations for
he dynamic variables. These assumptions result in a set of rather unusual restrictions from which
e argue that some kind of nonlocality, either of the constitutive space or of the evolution

quations, seems to be unavoidable. On the other hand, if we face with nonlocal state but local
volution equations then the entropy current is local, provided that the entropy density does not
epend on the gradient of the internal energy.

In Sec. IV we investigate the traditional assumptions of Extended Irreversible Thermodynam-
cs based on the following form of the local entropy:11

s�e,qi,�ij� = s0 − 1
2mijqiqj − 1

2nijkl�ij�kl, �1.1�

here the matrices mij and nijkl are constitutive functions and s0 is the equilibrium entropy, that
epends only on the internal energy. We first suppose the entropy current is given as12

ji = Aijqj + Bijk� jk, �1.2�

here Aij and Bijk are constitutive functions, the so-called current multipliers. Then we explore the
ess general case,13 too

ji =
�s

�e
qi +

�s

�qk
�ki. �1.3�

t is worth noticing that the general form of the entropy current �1.2� reduces to �1.3� when Aij

��s /�e��ij and Bijk= ��s /�qj��ik. We investigate different assumptions that can be compatible
ith the balance form of the evolution equations.

In Sec. V we consider second order nonlocality but conserve the form �1.1� of the entropy
ensity and the expression �1.2� of the entropy current. In such a case, due to the enlargement of
he state space, the balance form can be obtained even if the general constitutive equation �1.2�
olds true. We show that all previous examples can be recovered under simple special assump-
ions.

In Sec. VI we point out some nonlocal effects arising in thermal wave propagation at low
emperature, which are described by the celebrated Guyer-Krumhansl equation.14–16 Such an equa-
ion has been derived by the authors by solving a linearized Boltzmann equation for phonon gas
ydrodynamic. Here we prove that it can be obtained in the classical macroscopic framework of
onlocal irreversible thermodynamics.

The previous results are discussed in Sec. VII, where a table shows the connections between
he constitutive assumptions and the thermodynamic restrictions, as far as the locality and nonlo-
ality are concerned.

I. FIRST ORDER NONLOCALITY—EXPLOITATION OF THE SECOND LAW

In a rigid heat conductor at rest we start from the following local balance equation of the
nternal energy:

ė + qi�i = 0, �2.1�

here e is the density of internal energy, qi i=1,2 ,3 are the components of the heat flux, ḟ

�f /�t, f

�i��f /�xi, xi i=1,2 ,3 are the Cartesian coordinates of the points of the body and the
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instein convention of summation over the repeated indices has been applied. The only equilib-
ium variable will be the internal energy e, while the first dynamic variable is supposed to be the
eat flux qi. As a further dynamic variable let us choose a second order tensor, whose components
ill be denoted by �ij, i , j=1,2 ,3. Hence the basic state space �the wanted fields� in our inves-

igations will be spanned by the variables �e ,qi ,�ij�. This is a 13 field theory, because the number
f the independent fields is 13. However, some reductions are possible. For instance in Extended
hermodynamics tensor �ij is identified with the symmetric momentum flux N�ij� coming from
inetic theory.7 Then the unknown fields reduce to 10 and we are left with a 10-field theory.
urthermore it is possible to decompose N�ij� into an isotropic part, which is related to the internal
nergy, and a deviatoric part according to the equation N�ij�=

1
3e��ij�+N�ij�, where N�ij� is symmetric

nd traceless.17 In such a particular case the internal energy coincides with one of the six inde-
endent components of N�ij� and we deal with a 9-field theory. We are investigating a first order
eak nonlocality in all variables of the basic state, therefore the constitutive space is spanned by

he basic state and its spacial derivatives, that is the fields �e ,qi ,�ij ,e�i ,qi�j ,�ij�k�. We assume
hat the evolution equations for the heat current qi and for �ij can be written in the following
ather general form:

q̇i = gi, �2.2�

�̇ij = f ij , �2.3�

here gi and f ij are constitutive functions. With the assumption of first order nonlocality the
pacial derivatives of the above equations give further restrictions,18,19

ė
�i + qj�ji = 0, �2.4�

q̇i�j − gi,j = 0, �2.5�

�̇ij�k − f ij�k = 0. �2.6�

hese equations are sometimes referred to as prolonged forms of the evolution equations
2.1�–�2.3�.

The local balance of entropy is given by

ṡ + ji�i = �s, �2.7�

ith s standing for the entropy density, ji, i=1,2 ,3 for the components of the entropy current and

s for the density of entropy production. Second law of thermodynamics forces �s to be non-
egative.

In the following we will investigate the restrictions from the inequality of the second law with
he general assumption that both the entropy and the entropy flux are constitutive quantities. The

ethod of the exploitation is given by the Liu procedure.9 However, according to our calculations,
n the present case a generalized Coleman-Noll20 procedure gives identical results.

Let us introduce the Lagrange-Farkas multipliers9,10 �1, �i
2, and �ij

3 for the evolution equations
2.1�–�2.3�, respectively. The multipliers �i

4, �ij
5 , and �ijk

6 are for the prolonged evolution equations
2.4�–�2.6�, respectively.

Now, Liu procedure gives

�1sė + ��2s�iq̇i + ��3s�ij�̇ij + ��4s�iė�i + ��5s�ijq̇i�j + ��6s�ijk�̇ij�k + ��1ji�e�i + ��2ji� jqj�i + ��3ji� jk� jk�i

+ ��4ji� je�ij + ��5ji� jkqj�ki + ��6ji� jkl� jk�li − �1�ė + qi�i� − �i
2�q̇i − gi� − �ij

3 ��̇ij − f ij� − �i
4�ė

�i

+ q � − �5 �q̇ − �� g �e − �� g � q − �� g � � − �� g � e − �� g � q
j�ji ij i�j 1 i �j 2 i k k�j 3 i kl kl�j 4 i k �kj 5 i kl k�lj
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− ��6gi�klm�kl�lmj� − �ijk
6 ��̇ij�k − ��1f ij�e�l − ��2f ij�lql�k − ��3f ij�lm�lm�k − ��4f ij�le�lk

− ��5f ij�lmql�mk − ��6f ij�lmn�lm�nk� � 0.

Here �n, n=1,2 ,3 ,4 ,5 ,6 denotes the partial derivatives of the constitutive functions accord-
ng to the variables �e ,qi ,�ij ,e�i ,qi�j ,�ij�k�, respectively. After some rearrangements of the in-
quality one obtains the Lagrange-Farkas multipliers from the first set of the Liu equations. These
re obtained by imposing that the coefficients of the time derivatives vanish,

�1s = �1, �2.8�

��2s�i = �i
2, �2.9�

��3s�ij = �ij
3 , �2.10�

��4s�i = �i
4, �2.11�

��5s�ij = �ij
5 , �2.12�

��6s�ijk = �ijk
6 . �2.13�

The second set of Liu equations is obtained by taking equal to zero the multipliers of the
econd order space derivatives. By applying �2.8�–�2.13� one can write them as

��4ji� j + ��5s�il��4gl� j + ��6s�kli��4fkl� j = 0, �2.14�

��5ji� jk − ��4s�i� jk + ��5s�mi��5gm� jk + ��6s�mni��5fmn� jk = 0, �2.15�

��6ji� jkl + ��5s�mi��6gm� jkl + ��6s�mni��6fmn� jkl = 0. �2.16�

Finally the residual dissipation inequality can be written in the following form:

��1ji + ��5s� ji�1gj + ��6s� jki�1f jk�e�i + ���2j j�i − �1s�ij + ��5s�kj��2gk�i + ��6s�klj��2fkl�i�qi�j + ���3jk�ij

+ ��5s�lk��3gl�ij + ��6s�lmk��3f lm�ij��ij�k + ��2s�igi + ��3s�ij f ij � 0. �2.17�

t is easily seen that the Liu system �2.14�–�2.16� is composed by 117 differential equations
onstraining the set of the 832 partial derivatives of the constitutive functions s , ji ,gi , f ij with
espect to the elements of the constitutive space �e ,qi ,�ij ,e�i ,qi�j ,�ij�k�. Without some simplifi-
ations there is no hope to solve such a system.

In the following sections we are looking for special simplifying assumptions to solve the Liu
quations �2.14�–�2.16� and the dissipation inequality �2.17�. First we will investigate cases where
ome of the constitutive functions are assumed to be local.

II. SOLUTIONS OF THE LIU EQUATIONS—LOCALITY ASSUMPTIONS

. Local state

Let us start the assumption of the local state in the form that the entropy is independent of the
radients,

s ª s�e,qi,�ij� . �3.1�

In this case the Liu equations �2.14�–�2.16� are simplified considerably and as a solution we

btain a local entropy current,
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ji = ji�e,qi,�ij� . �3.2�

The dissipation inequality �2.17� also simplifies,

�1jie�i + ���2j j�i − �1s�ij�qi�j + ��3jk�ij�ij�k + ��2s�igi + ��3s�ij f ij

= �ji��i − �1sqi�i + ��2s�igi + ��3s�ij f ij � 0. �3.3�

. Local state and local evolution

Let us investigate now the case when the evolution equations of the internal variables are
rdinary differential equations, that is we assume that the constitutive quantities gi and f ij take the
ocal form,

gi ª gi�e,qj,� jk� , �3.4�

f ij ª f ij�e,qj,� jk� . �3.5�

Now the dissipation inequality simplifies further the possible constitutive functions, because
he coefficients of the derivatives should disappear. These restrictions result in a rather unusual

aterial, since we get

ji = ji�qj�,
�ji

�qj
=

�s

�e
�ij . �3.6�

On the other hand, the dissipation inequality can be written in a force-current form and can be
olved for the constitutive functions gi and f ij,

��2s�igi + ��3s�ij f ij � 0.

y �3.6� it follows that the temperature of the material �s /�e is independent of the internal energy.
uch a property is in contrast with the physical reality. We conclude that some nonlocality is
ecessary in modelling rigid heat conductors.

. Local evolution

Let us assume now that the evolution of the internal variables is local, but there is no local
tate, therefore we require �3.4� and �3.5�, but �3.1� is not assumed. In this case the entropy current
s nonlocal, but the nonlocality is rather reduced. The Liu equations �2.14� and �2.16� give that the
ntropy current does not depend on the gradients of e and �, and �2.15� simplifies to

�ji

�qj�k
=

�s

�e
�i

� jk.

he nonlocality in the qi is due to balance form of the evolution equation of the internal energy
2.1�. From the above constraint one can easily see, that the entropy current is local if we further
ssume that the entropy is local in the internal energy,

s ª s�e,qi,�ij,qi�j,�ij�k� .

V. SOLUTIONS OF THE ENTROPY INEQUALITY IN CASE OF LOCAL STATE

As we have seen above, the Liu equations are trivially solvable in the local state. However, the
olution of the dissipation inequality can be achieved only with further assumptions. Moreover,
here are different assumptions to have physical models, to introduce suitable gradient dependen-
ies. In Classical Irreversible Thermodynamics5 and in Rational Thermodynamics20 the mentioned

equirement of nonlocality is achieved by introducing the gradient of temperature �or, equiva-
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ently, of the internal energy� into the constitutive space. In Extended Thermodynamics6,7 the
onstitutive space is local but the evolution equations are balances, they have a special nonlocal
orm. All kinds of theories of Extended Thermodynamics resulted in more or less satisfactory
odels of different phenomena, but they provide different solutions of the entropy inequality.

. Local state and special nonlocal evolution: linear nonlocality

In this case the evolution equations depend linearly on the gradients,

gi ª Aije�j + Bijkqk�j + Cijkl�kl�j , �4.1�

f ij ª Dijke�k + Eijklql�k + Fijklm�lm�k, �4.2�

here Aij ,Bijk ,Cijkl ,Dijk ,Eijkl ,Fijklm are local constitutive functions.
Now the dissipation inequality �2.17� reduces to a solvable form as

��1ji + ��2s� jAjk + ��3s� jkDjki�e�i �4.3�

+ ���2j j�i − �1s�ij + ��2s�kBkji + ��3s�klEklji�qi�j �4.4�

+ ���3jk�ij + ��2s�lClkij + ��3s�lmFlmkij��ij�k � 0. �4.5�

As the quantities in the parentheses are local functions they should be zero, respectively.
herefore we get

�1ji = − ��2s� jAjk − ��3s� jkDjki, �4.6�

��2j j�i = �1s�ij − ��2s�kBkji − ��3s�klEklji, �4.7�

��3jk�ij = − ��2s�lClkij − ��3s�lmFlmkij . �4.8�

These equations cannot be solved without any further ado. However, we can see that even if
e do not know anything on the entropy current ji they result in strong correlations on the entropy
erivatives and the evolution equation, as the mixed partial derivatives of ji should be equal. On
he other hand, let us observe that in this case the entropy production is zero, there is no dissipa-
ion.

. Local state and special local evolution: balance form

In this case one assumes, that the evolution equations have a special balance form. Therefore
here are potentials Qij and Hijk of the fields �Aij ,Bijk ,Cijkl��e ,qi ,�ij� and �Dijk ,Eijkl ,Fijklm�

�e ,qi ,�ij�, respectively. The evolution equations can be written as

gi ª �1Qije�j + ��2Qij�kqk�j + ��3Qij�kl�kl�j , �4.9�

f ij ª �1Hijke�k + ��2Hijk�lql�k + ��3Hijk�lm�lk�k. �4.10�

The conditions �4.6�–�4.8� can be written as

�1ji = − ��2s� j�1Qij − ��3s� jk�1Hijk, �4.11�

��2j j�i = �1s�ij − ��2s�k��2Qij�k − ��3s�kl��2Hijk�l, �4.12�
��3jk�ij = − ��2s�l��3Qij�kl − ��3s�lm��3Hijk�lm. �4.13�

                                                                                                            



p

d

e
t
s
r

t
i
t

l
f
p
v

C

b
o
s
b

o
t
c

t
b

112901-7 Nonlocality in the evolution of fluxes J. Math. Phys. 46, 112901 �2005�

                        
As a consequence the above system of equations can be solved, as the entropy current is a
otential of the field �qi ,Qij ,Hijk�, therefore it can be conveniently written as

ji�e,qi,�ij� = j̃i�qi,Qij,Hijk� . �4.14�

This fact can be expressed also with differential forms, according to the traditions of thermo-
ynamics

d j̃i = �1s dqi + ��2s� j dQji + ��3s� jk dHjki = �1 dqi + � j
2 dQji + � jk

3 dHjki. �4.15�

The derivatives of the entropy current are identical to the intensives, the derivatives of the
ntropy functions. However, the variables are different. This form results in serious restrictions of
he entropic intensives, and the currents Qij and Hijk because the mixed second partial derivatives
hould be equal in these variables, too. Expressed in the basic variables the above requirements are
ather ugly

��22s�kj�1Qki + ��23s�lkj�1Hlki = �11s�ij + ��12s�k��2Qik� j + ��13s�lk��2Hlki� j , �4.16�

��32s�ljk�1Qli + ��33s�lmjk�1Hlmi = ��12s�l��3Qli� jk + ��13s�lm��3Hlmi� jk, �4.17�

��31s�kl�ij + ��32s�mkl��2Qim� j + ��33s�mnkl��2Hmni� j = ��22s�ml��3Qmi� jk + ��32s�mnl��3Hmni� jk.

�4.18�

The property �4.15� is an important consequence of the balance form of the evolution equa-
ions. It is independent of the choice of the basic variables. If one assumes, e.g., that the chosen
nternal variable is the current of the heat flux, �ij =Qij, as it is usual in extended thermodynamics,
hen the above system of requirements simplifies but does not disappear.

In Rational Extended Thermodynamics it was shown that the above result of the phenomeno-
ogical theory can be in accordance with the kinetic theory of gases, at least with a classical
ormulation of kinetic physics. A crucial step in the different systems was the choice of the
henomenological variables �we will see that all of the currents cannot be chosen as internal
ariables without any further ado� and the use of source terms in the balances.

. Local state and balance form evolution: isotropy

The system �4.16�–�4.18� does not have a general solution for the currents. Qij and Hijk cannot
e determined by the entropy function in general. Therefore we have lost one of the basic flavors
f irreversible thermodynamics, that the requirements of the second law can be exploited con-
tructively to find the appropriate evolution equations. Now the dissipation inequality was solved,
ut the evolution equations cannot be determined constitutively.

Jou et al. gave some simplifying conditions to have a solution of the conditions �4.16�–�4.18�
n the phenomenological level.21 They have assumed a local state, balance form evolution equa-
ions and a simpler set of variables, they introduced only qi as an additional variable. Then only
ondition �4.16� applies in a simplified form as

��22s�kj�1Qki = �11s�ij + ��12s�k��2Qik� j .

Moreover they have assumed isotropic materials, when all scalar valued functions, including
he entropy, depend only on q2=qiqi and the flux of the heat current and the entropy current can
e written as

Qij = ��e,q2� + ��e,q2�qiqj , �4.19�

2
ji = 	�e,q �qi. �4.20�
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Now the requirement �4.15� results in the following system of equations, as �4.2�–�4.4� in Ref.
1:

�e	 = 2�q2s��e� + �e�q2� , �4.21�

	 = �es + 2�q2s�q2, �4.22�

�q2	 = 2�q2s��q2� + �q2�q2� . �4.23�

Therefore the entropy current can be written as

ji = ��es + 2�q2s�q2�qi. �4.24�

After further calculations, considering also the requirement �4.16�, one can get explicit solu-
ions for the functions � and � together with some additional restriction on the form of the entropy
unction.

. LOCAL STATE AND SPECIAL ENTROPY CURRENT

A different solution of the dissipation inequality can be given with the help of the entropy
urrent. As in our previous work8 we consider the local entropy of the form �1.1�. This general
orm is motivated by the requirement of the thermodynamic stability, or, equivalently the require-
ent of the concavity of the entropy function on the nonequilibrium part of the state space

spanned by qi and �ij�. Therefore, mij and nijkl are positive definite constitutive functions. More-
ver, let us assume the entropy current takes the form �1.2� and let us introduce the convenient
otations m̂ , n̂ , ñ , m̃ as follows:

��2s�i = − mijqj − 1
2 ��2mlj�iqlqj − 1

2 ��2nrjkl�i�rj�kl = − m̂ijqj − ��2ñjk�i� jk, �5.1�

��3s�ij = − 1
2 ��3mlk�ijqlqk − nijkl�kl − 1

2 ��3nlkrs�ij�lk�rs = − ��3m̃k�ijqk − n̂ijkl�kl. �5.2�

f mij and nijkl are constant, then m̂ij =mij, n̂ijkl=nijkl, ��3m̃k�ij =0, and ��2ñjk�i=0.
Let us emphasize again that the entropy, written in the Gyarmati form �1.1� and the entropy

urrent, written in �1.2� are only convenient notations as long as the corresponding inductivities
nd current multipliers are general constitutive functions.

With the �1.2� form of the entropy current and using the notations of �5.1� and �5.2� the
issipation inequality �3.3� in local state can be written in the following form:

�Aji�j − m̂ijgj − ��3m�kjif ik�qi + �Aij − �1s�ij�qj�i + �Bkij�k − ��2n�kjigk − n̂ijklfkl��ij + Bijk� jk�i � 0.

�5.3�

Seemingly the system is a normal force-current system, because the coefficients of the ther-
odynamic forces qi ,qi,j ,�ij ,�ijk all contain undetermined constitutive quantities Aij ,gi , f ij ,Bijk,

espectively. However, let us observe that in local state gi and f ij are nonlocal but all other terms
re local in the above inequality. This fact introduces degeneracy since, although the coefficients
f the derivatives qi�j and �ij�k cannot disappear, their possible couplings are rather reduced, e.g.,

ijk is local, therefore cannot depend on its own force �ij�k.
In this degenerate case the solution of the dissipation inequality is not straightforward.
Fortunately we can avoid the treatment of degeneracy, e.g., by assuming that mij and nijkl

epend only on the internal energy and introducing the form �1.3� of the entropy current with the
ssumptions Aij =�1s�ij and Bijk= ��2s�k�ij. In this particular case the dissipation inequality reduces

o
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���1s�
�i − mijgj − mki� jk�j�qi + �− mjlql�i − nijklfkl��ij � 0. �5.4�

his is a force-current system, with the following Onsagerian solution:

− mij�q̇j + �kj�k� + ��1s�
�i = Lij

11qj + Lijk
12� jk, �5.5�

− nijkl�̇kl − mjlql�i = Lijk
21qk + Lijkk

22 �kl. �5.6�

The system above conserves the structure already obtained in Ref. 8 in the case of local state.
ne should emphasize the central role of the invertibility of the matrices mij and nijkl in order to
btain the balance form. Such a property is not trivial since there exist real materials for which it
s not guaranteed. A classical example is given in Ref. 22, where an electric circuit described by
ynamic variables is considered.

As it was observed in Ref. 8 the second equation is a phenomenological closure of the system
2.1� and �5.5�. It is remarkable that we have recovered the usual phenomenological structure of
xtended irreversible thermodynamics keeping the entropy current of the form �1.3�. The same is
ot true for the constitutive equation �1.2� which, in the case of first order nonlocality, seems to be
uch too general. However, the compatibility of the entropy current of Verhás �1.3� and the

equirements of the balance form �4.15� is valid only with the restriction that the conductivities
epend only on the internal energy. The mentioned solution of Jou et al. �4.24� clearly does not
ave the Verhás form and indicates the necessity of a more general treatment.

In the next section we study the same problem in the presence of second order nonlocality.

I. SECOND ORDER NONLOCALITY—SOLUTION IN LOCAL STATE

Now we will extend our investigations to consider second order nonlocalities. However, for
he sake of simplicity we will investigate only the case of local entropy, i.e., systems in local state.
he basic state is spanned by the variables �e ,qi ,�ij� as previously. However, the constitutive
pace contains the second order space derivatives and is spanned by
e ,qi ,�ij ,e�i ,qi�j ,�ij�k ,e

�ij ,qi�jk ,�ij�kl�. Therefore, in the exploitation of the entropy inequality
2.7� we should consider as constraints the evolution equations �2.1�–�2.3�, their first prolongations
2.4�–�2.6� and also their second prolongations as follows:

ė
�ij + qj�jik = 0, �6.1�

q̇i�jk − gi,jk = 0, �6.2�

�̇ij�kl − f ij�kl = 0. �6.3�

Our simplifying condition of local entropy can be written as

s = s�e,qi,�ij� .

Let us introduce again the Lagrange-Farkas multipliers �1, �i
2, �ij

3 , �i
4, �ij

5 , and �ijk
6 for the

volution equations �2.1�–�2.3� and their prolonged forms �2.4�–�2.6�, respectively. The multipliers

ij
7 , �ijk

8 , and �ijkl
9 stand for the second prolongations �6.1�–�6.3�, respectively. The Liu procedure

ives

�1sė + ��2s�iq̇i + ��3s�ij�̇ij + ��1ji�e�i + ��2ji� jqj�i + ��3ji� jk� jk�i + ��4ji� je�ij + ��5ji� jkqj�ki

+ ��6ji� jkl� jk�li + ��7ji� jke�ijk + ��8ji� jklqj�kli + ��9ji� jklm� jk�lmi − �1�ė + qi�i� − �i
2�q̇i − gi�

− �3 ��̇ − f � − �4�ė + q � − �5 �q̇ − �� g �e − �� g � q − �� g � � − �� g � e
ij ij ij i �i j�ji ij i�j 1 i �j 2 i k k�j 3 i kl kl�j 4 i k �kj
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− ��5gi�klqk�lj − ��6gi�klm�kl�mj − ��7gi�kle�klj − ��8gi�klmqk�lmj − ��9gi�klmn�kl�mnj� − �ijk
6 ��̇ij�k

− ��1f ij�e�k − ��2f ij�lql�k − ��3f ij�lm�lm�k − ��4f ij�le�lk − ��5f ij�lmql�mk − ��6f ij�lmn�lm�nk

− ��7f ij�lme
�lmk − ��8f ij�lmnql�mnk − ��9f ij�lmno�lm�nok� − �ij

7 �ėij + qk�kij� − �ijk
8 �q̇i�jk − gi�jk�

− �ijkl
9 ��̇ij�kl − f ij�kl� � 0.

Here �n, n=1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 denotes the partial derivatives of the constitutive functions
ccording to the variables of the constitutive space �e ,qi ,�ij ,e�i ,qi�j ,�ij�k ,e

�ij ,qi�jk ,�ij�kl�, re-
pectively. The first set of Liu equations defines the Lagrange-Farkas multipliers as the derivatives
f the entropy and gives that the last six multipliers are zero, due to the local state,

�1s = �1, �6.4�

��2s�i = �i
2, �6.5�

��3s�ij = �ij
3 , �6.6�

�i
4 = 0, �6.7�

�ij
5 = 0, �6.8�

�ijk
6 = 0, �6.9�

�ij
7 = 0, �6.10�

�ijk
8 = 0, �6.11�

�ijkl
9 = 0. �6.12�

Considering �6.7�–�6.12� the second set of Liu equations are also simple,

��7ji� jk = 0, �6.13�

��8ji� jkl = 0, �6.14�

��9ji� jklm = 0. �6.15�

Therefore the entropy current presents only first order nonlocalities

ji = ji�e,qi,�ij,e�i,qi�j,�ij�k� .

Considering the above conditions the dissipation inequality can be written exactly in the same
orm as it was in case of first order nonlocal constitutive space �3.3�,

�ji��i − �1sqi�i + ��2s�igi + ��3s�ij f ij � 0. �6.16�

On the other hand, now the constitutive quantities are higher orderly nonlocal, the entropy
urrent is a first order nonlocal quantity and gi and f ij are second order nonlocal quantities. Let us

ntroduce the same assumptions on the form of the entropy and of the entropy current as previ-
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usly with assuming �1.1� and �1.2� with the notations �5.1� and �5.2� but letting the current
ultipliers Aij and Bijk to contain first order nonlocalities. The dissipation inequality can be written

n the same form as above

�Aji�j − m̂ijgj − ��3m�kjif ik�qi + �Aij − �1s�ij�qj�i + �Bkij�k − ��2n�kjigk − n̂ijklfkl��ij + Bijk� jk�i � 0.

�6.17�

However, in this case it is a nondegenerate force-current system, due to the extension of the
onstitutive state space. All additive terms contain unknown functions. Therefore one can give an
nsagerian solution as follows:

− m̂ijgj − ��3m�ijkf jk + Aji�j = Lij
11qj + Lijk

12qj�k + Lijk
13� jk + Lijkl

14 � jk�l, �6.18�

Aij − �1s�ij = Lijk
21qk + Lijkl

22 qk�l + Lijkl
23 �kl + Lijklm

24 �kl�m, �6.19�

− ��2n�kjigk − n̂ijklfkl + Bkij�k = Lijk
31qk + Lijkl

32 qk�l + Lijkl
33 �kl + Lijklm

34 �kl�m, �6.20�

Bijk = Lijkl
41 ql + Lijklm

42 ql�m + Lijklm
43 �lm + Lijklmn

44 �lm�n. �6.21�

Here L11,L12,L13,L14,L21,L22,L23,L24,L31,L32,L33,L34,L41,L42,L43,L44 are constitutive
unctions with the suitable definiteness restrictions. Moreover �6.18� and �6.20� are the candidates
f balances under suitable restrictions. It is worth noticing, that the current multipliers Aij and Bijk

re given explicitly. Therefore, they can be easily eliminated from the above system substituting
6.19� into �6.18� and �6.21� into �6.20�. The resulting set of equations is closed and contains first
nd second order derivatives of the basic state,

− m̂ijq̇j − ��3m�ijk�̇ jk + ��1s�ij + Lijk
21qk + Lijkl

22 qk�l + Lijkl
23 �kl + Lijklm

24 �kl�m�
�j

= Lij
11qj + Lijk

12qj�k + Lijk
13� jk + Lijkl

14 � jk�l, �6.22�

− ��2n�kjiq̇k − n̂ijkl�̇kl + �Lijkl
41 ql + Lijklm

42 ql�m + Lijklm
43 �lm + Lijklmn

44 �lm�n�
�k

= Lijk
31qk + Lijkl

32 qk�l + Lijkl
33 �kl + Lijklm

34 �kl�m. �6.23�

As one can see, the evolution equations are rather general. They are more general than those
iven with the help of the entropy currents �1.3�. On the other hand, the entropy current �4.24� is
lso a special case of the general �1.2�. However, the compatibility to the current potential struc-
ure, expressed by �4.15�, cannot be expressed explicitly in general. Equation �1.2� is definitely

ore general regarding the nonlocality, moreover, �4.24� proves, that it can be compatible with the
otential structure in special cases. However, it definitely restricts the functional form of the
urrent multipliers Aij and Bijk.

Moreover, the potential structure is unavoidable requiring locality and balance form evolution
quations. If mij and nijkl are constant a balance structure similar to that obtained in Ref. 8 is
ecovered. This fact represents the main effect of the enlargement of the state space since the
alance structure is compatible with more general entropy fluxes.

II. NONLOCAL SECOND SOUND: THE GUYER-KRUMHANSL EQUATION

Thermal wave propagation, sometime referred to as second sound, is a low temperature
henomenon which can be observed, for instance, in dielectric crystals such as sodium fluoride
NaF� and bismuth �Bi�.23,24,17 It requires an extension of the classical Fourier’s theory in order to
emove the paradox of infinite speed of propagation of thermal disturbances.25 Phonon gas

26,27
ydrodynamics supplies a satisfactory explanation of heat transport at low temperature.
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honons are quasiparticles which obey the Bose-Einstein statistics. In a solid crystal they form a
arefied gas whose kinetic equation can be derived similarly to that of an ordinary gas. Phonons
ay interact among themselves and with lattice imperfections through two different types of

rocesses:

i� normal �N� processes, that conserve the phonon momentum;
ii� resistive �R� processes, in which the phonon momentum is not conserved.

The frequencies 
N and 
R of normal and resistive processes determine the characteristic
elaxation times �N=1/
N and �R=1/
R. Diffusive processes take over when there are many more

processes than N processes. If instead there are only a few R processes and many more N
rocesses, then a wavelike energy transport may occur.

Such a phenomenology is satisfactorily described by the Guyer-Krumhansl equation,14 Eq.
57� �see also Refs. 28 and 15�.

q̇i +
1

�R
qi +

1

3
c2cVT

�i =
1

5
�Nc2�qi�j j + 2qj�ji� , �7.1�

here T= T̂−T0 is the temperature variation �T is the temperature and T0 is the average tempera-
ure�. cV is the specific heat and c means the Debye phonons velocity. Such an equation, which
eneralizes the Maxwell-Cattaneo-Vernotte equation25

�Rq̇i + qi = − �R
1
3c2cVT

�i, �7.2�

as the first in the literature to include both relaxation times. It can be obtained by the linearized
oltzman equation for phonons in the Debye approximation, if one maintains terms O��N�.14 The
aterial coefficients �N, �R, and cV are all dependent on the temperature. According to experimen-

al observations16 one can get

cV = aT3, �R = de−�/T, �N = bT−m.

Here a ,b ,d ,� are constant coefficients and m� �3,4 ,5	 depending on the material. Let us
emark that the last function, a temperature dependent �N is clearly contradictory to the assump-
ions made by Guyer and Krumhansl,14 and did not consider, that �7.1� is a linearized equation.

In extended thermodynamics the Guyer-Krumhansl equation can be recovered in a 4-field
heory provided one assumes weakly nonlocal constitutive equations for the internal energy e and
or the momentum flux.17

However, such an approach seems to be questionable because

i� a nonlocal constitutive space is in contrast with the basic assumptions of extended thermo-
dynamics,

ii� a nonlocal internal energy does not assure that the specific heat cV=�e /�T is positive,
iii� a nonlocal internal energy would modify also the energy balance.

The last observation was pointed out also by Dreyer and Struchtrup and they suggested to
onsider higher order moments.6,7 The other important question is the temperature dependency of
he coefficients. A phenomenological theory cannot predict the exact form to the constitutive
unctions, but gives restrictions and interrelations. These restrictions on the temperature depen-
encies are frequently treated rather loosely to get the compatibility with the linearized kinetic
heory.14,6

These problems do not arise in the present theory. In fact, we can obtain the equation �7.1� by
onsidering a 4-field model with second order nonlocality, namely the balance equation �6.22�

ith �ij =0 and mij depending only on the internal energy. It yields
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− mijq̇j + ��1s�ij + Lijk
21qk + Lijkl

22 qk�l��j = Lij
11qj + Lijk

12qj�k. �7.3�

t is convenient to choose as equilibrium thermodynamic variable the absolute temperature Ta

nstead of the internal energy e. Let us assume the constitutive equations Lijk
21 =Lijk

12 =0. We may
xploit the thermodynamic relation 1/Ta=�s /�e and introduce the temperature perturbation T by

a=T0+T, where T0 is a background �average� temperature. Now, Eq. �7.3� reduces to

mijq̇j + Lij
11qj +

1

T2T
�i = Lijkl

22 qk�lj . �7.4�

ere mij, Lij
11, and Lijkl

22 can depend on the background temperature T0. Finally, equation �7.1� is
asily obtained by �7.4� under the further constitutive assumptions,

mij =
3

c2aT5�ij , �7.5�

Lij
11 =

3

c2aT5e�/T�ij , �7.6�

Lijkl
22 =

3b

5aT5+m�ij�kl. �7.7�

hat way, the Guyer-Krumhansl theory may be obtained in a classical macroscopic framework.
et us remark, that the previous phenomenological linearization is only a last step in the calcula-

ion based on the linearization of the Boltzmann equation �Eq. �57�–Eq. �59� in Ref. 14�. A similar
esult has been obtained in Ref. 29.

III. CONCLUSIONS

We have shown that Classical Irreversible Thermodynamics supplemented with dynamic de-
rees of freedom is consistent with the idea of higher order fluxes as independent thermodynamic
ariables. In such a framework the balance form of the evolution equations can be obtained under
uitable constitutive assumptions. The locality of the entropy density, i.e., the local state assump-
ion, plays a central role. Moreover, the nonlocality of the constitutive functions results in a wide
lass of materials including the classical Cattaneo and Guyer-Krumhansl heat conductors, which
ormally are derived from kinetic theory. Let us observe that the model above encompasses all
xtended thermodynamic models, since the balance structure represents a very particular form of
onlocal evolution equations �2.2� and �2.3�.

Considering that the balance is not the only possible form of the evolution equations, the
omination of the internal variable as a “higher order flux” can be misleading. However, if the
ensorial order of the internal variables increases and we are in a local state, the evolution equa-
ions are close to a balance form �except the closure� and the flux interpretation is straightforward.
owever, the exploitation method of the second law reveals applications far beyond the heat

onduction problem. An internal variable can be responsible for different microstructural effects
ith a well-defined microphysical interpretation where one must consider the most general ex-
ression of the entropy current �and sometimes it is not enough�. Here we only want to call the
ttention to the role of the entropy current in the thermodynamic derivations of the Ginzburg-
andau equation where the microstructure have a definite meaning.3,30,31,19

Although in the present investigations the highest order flux is only the flux of the heat flux
�ij�, there is no principal reason of restricting ourselves to the second order case. One can easily
xtend the ideas of the recent investigation to the higher order cases and to derive, e.g., closure
elations at a higher level of the hierarchy.

Figure 1 shows the connections between the constitutive assumptions and the thermodynamic

estrictions, as far as the locality and nonlocality are concerned. The last column refers to the
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orresponding section of the paper. LA denotes a locality assumption. The double-headed arrows
enote specific interrelations, e.g., the black double-headed arrows in the first row denote equa-
ions �2.14�–�2.16�, that give conditions between the entropy and entropy current functions and
volution equations. The fifth row refers to Rational Extended Thermodynamics and the sixth row
o the specific solution of the potential restriction given by Jou et al. As in Extended Thermody-
amics the dissipations inequality is fulfilled as an equality, we cannot conclude anything on the
issipative constitutive functions �that is why there are no white arrows in these rows�. Let us
bserve, that assumptions on the form of the entropy current makes possible to build all require-
ents of the second law into the evolution equations in general �last two rows�. In this case the

econd law becomes a material property, satisfied independently of the initial conditions and the
esulted constitutive functions depend only on the material.

It is worth noticing that the potential form of the entropy current and the balance structure is
ompatible with the general form of the entropy current, such as that proposed by Nyíri, which
ields �1.3� when Aij =�1s�ij and Bijk= ��2s�k�ij. In this case the balance structure results in restric-
ions for the current multipliers from the potential requirement �4.15�.

We obtained closure relations both with local and nonlocal entropy current and in the first case
he closure for the highest order flux was an ordinary differential equation. The obtained thermo-
ynamic closure of the hierarchical structure stresses some deeper relations between the thermo-
ynamic and the more detailed kinetic structure, similar to that recognized, e.g., in Ref. 32.

We reinspected the thermal wave propagation at low temperature and proved that the Guyer-
rumhansl theory of second sound can be derived in the framework of macroscopic nonlocal

rreversible thermodynamics.
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In this paper we examine the existence of Lie groups, whose canonical geodesic
flows are variational with respect to a left-invariant regular—but not necessarily
quadratic �i.e., metric�—Lagrange function. We give effective necessary and suffi-
cient conditions for the existence of an invariant variational principle generating the
canonical flow. With these results, taken in conjunction with the classification of
Lie algebras, we solve the inverse problem of invariant Lagrangian dynamics in
dimensions up to four. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2118487�

. INTRODUCTION

One of the basic objects of classical physics is the equation of motion of a system. In the most
elevant cases it can be derived as the Euler-Lagrange equation of a regular Lagrange function. An
ld, and in the general case still unsolved problem, posed first in 1887 by Helmholtz, is the
etermination and classification of second order differential equations derivable from a variational
rinciple. This is the inverse problem of the calculus of variations. Moreover, since the Euler-
agrange equation inherits the symmetries of the Lagrangian, one can also consider the invariant
ersion of the inverse problem of the calculus of variations, determine if an equation of motion
ossessing some symmetry property can be derived as the Euler-Lagrange equation of a regular
agrangian having the same symmetry.

There are interesting examples of this phenomena in the cases of motions on Lie groups
overned by the canonical symmetric, linear connections of the Lie group.1 We remark that the
orresponding canonical flow occurs in the one-dimensional reductions of well-known models of
heoretical physics, like the � or chiral models. One can say that all possible situations occur in
hese deceptively simple systems. This claim is illustrated by the following examples: �1� on a
emisimple Lie group the canonical flow can be derived from the Lagrangian corresponding to the
i-invariant Killing metric of the Lie algebra. In this case the Lagrangian is obviously invariant;
2� on the Heisenberg group or on the affine group of the line the canonical flows are variational,
ut the Lagrangians are not invariant with respect to the natural action of the groups �see para-
raph 5�; �3� on the four-dimensional Lie groups A4,7, A4,9b, and A4,11a the canonical flows are not
ariational.9

Moreover, one can investigate the unicity of the Lagrangian �up to an inessential total deriva-
ive term�. The unicity problem and the existence of invariant variational principle might be
elated to each other in some cases, as if the equation of motion has some symmetry, but the
agrangian does not possess that one, then the Lagrangian is necessarily nonunique, as a new
agrangian obtained from the old one by a symmetry transformation must give the same Euler-
agrange equation.

In this paper we examine the existence of Lie groups, other than the semisimple groups, where
he geodesic flow associated to the canonical connection is variational with respect to a left-
nvariant regular �but not necessarily quadratic, i.e., metric� Lagrange function. In this case we

�
Electronic mail: muzsnay@math.klte.hu
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ill say that there exists a G-invariant variational principle for the canonical flow of the group G.
e give an effective necessary and sufficient condition for the existence of a G-invariant varia-

ional principle for the canonical flow. Using this result, we determine the Lie groups up to four
imensions for which the canonical flow is variational with respect to a nondegenerate left-
nvariant Lagrangian.

I. INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS ON LIE GROUPS

On a Lie group G there are three kinds of natural linear connections, the plus, minus, and zero
onnections introduced first by Cartan and Schouten.1 A simple way to define these connections is
o give their values on left-invariant vector-fields X ,Y by

�X
+Y = �X,Y�, �X

−Y = 0, �X
0Y = 1

2 �X,Y� ,

nd extend them to arbitrary vector fields by making them tensorial in the X argument and satisfy
he Leibniz rule in the Y argument. The curvature tensors of the minus and plus connections are
ero, but in general, the corresponding torsion tensors are nonvanishing. All three of the natural
onnections have the same geodesics. We shall denote �0 simply by � and refer to it as the
anonical symmetric, linear connection.

Let E :TG→R be a smooth function on the tangent bundle of a Lie group G, called the
agrange function. For an arbitrary curve g�t� : �t0 , t1�→G one can consider the functional I�g�
�t0

t1E�g�t� , ġ�t��dt. A standard argument shows that the functions g�t� giving extrema of this
unctional �in the class of variations preserving the endpoints� satisfy the Euler-Lagrange equa-
ions. In standard local coordinates �gi� on G they are

d

dt
� �E

�ġi	 −
�E

�gi = 0. �1�

f the Lagrangian E is regular, then �1� is a second order ordinary differential equation.
In a series of papers, Thompson and his co-workers investigated the inverse problem of

agrangian dynamics for the geodesic flow associated to � �see Refs. 2, 7, and 9�. Here one
ishes to decide if there exists a Lagrangian function defined on an open subset of the tangent
undle of the Lie group whose Euler-Lagrange equations coincide with the geodesic equations of
. In this paper we consider the invariant version of this problem. We examine the existence of Lie
roups, whose canonical geodesic flows are variational with respect to a left-invariant regular—
ut not necessarily quadratic—Lagrange function.

II. DIFFERENTIAL GEOMETRIC BACKGROUND OF THE INVERSE PROBLEM
F THE CALCULUS OF VARIATIONS

We present here the basic objects that play a role in the theory. More details can be found in
efs. 5 and 7

If M is a manifold TM denotes its tangent space and � the natural submersion. Let J :TTM
TTM be the canonical vertical endomorphism, and let C�X�TM� be the Liouville vector field,

f �x�� is a local coordinate system on M and �x� ,y�� is the induced coordinate system on TM,
hen

J = dx�
�

�

�y� , C = y� �

�y� . �2�

(non-linear) connection on M is a tensor field of type �1-1� � on TM such that J�=J and �J
−J �see Ref. 4�. If � is a connection, then �2= idTTM and the eigenspace corresponding to the
igenvalue −1 is the vertical space Vz. Then, at any z�TM, we have the splitting TzTM =Hz

� Vz, where Hz is the eigenspace corresponding to +1. The subspace Hz is called the horizontal

pace. In the sequel we will write
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h ª

1
2 �I + ��, v ª

1
2 �I − �� ,

or the horizontal and vertical projectors.
Definition 1: A Lagrangian is a map E :TM→R that is smooth on at least an open subset of

M. The Lagrangian E is said to be regular if

det� �2E

�y��y�	 � 0. �3�

he Lagrangian E is regular if and only if the 2-form �EªddJ E has maximal rank. In this case,
he vector field S on TM defined by the equation

iS�E = d�E − LCE� �4�

s a spray �that is JS=C�, and the paths of S are the solutions of the Euler-Lagrange equations,3

d

dt

�E

�ẋ�
−

�E

�x� = 0, � = 1, . . . ,n . �5�

Let us fix a second order differential equation, or in other words a spray S on the manifold M.
hen, to every Lagrangian E a scalar 1-form �E can be associated by

�E ª iS�E + dLC E − dE , �6�

hich is called Euler-Lagrange form. According to Eq. �4� we have �E
0 if and only if the path
f the spray is the solution of the Euler-Lagrange equation �5� associated to E. �See Refs. 5 and 7.�

V. LEFT-INVARIANT VARIATIONAL PRINCIPLE FOR THE CANONICAL
ONNECTION

In the sequel we will consider the case, where MªG is a Lie group. We will denote by Lxg
r simply by xg the left translation of g�G by x�G. Let �x� be coordinates on G, and let �x ,y�
e the standard associated coordinate system on TG. We will also use the “left invariant” coordi-
ates �x ,�� on TG�G�g, where �= �Lx−1�*y is the Maurer-Cartan form. The corresponding
oordinates on TTG are �x ,� ,X ,A�, that is,

�x,�,X,A� = X� �

�x
�

�x,��
+ A� �

��
�

�x,��
.

ince the coordinates �= ��i� and A= �Ai� are left-invariant coordinates, we find that the left
ranslation by a group element g induces on TTG the following action:

Lg�x,�,X,A� = �gx,�,gX,A� = gX� �

�x
�

�gx,��
+ A� �

��
�

�gx,��
.

he canonical projection � :TG→G is �x ,��→x, therefore �* :TTG→TG is given by
x ,� ,X ,A�→ �x ,x−1X� and the vertical subspace on �x ,���TG is

V�x,��TG ª Ker �* = ��x,�,0,b�b � g� .

econd order differential equations are described by vector-fields S �called spray� on the tangent
pace, that have the characteristic property JS=C. On a Lie group the geodesic flow of the
anonical connection is described by the system

ẍ = ẋx−1ẋ , �7�

nd the vector field on the tangent space, corresponding to the geodesic flow of the canonical

onnection is the spray S where
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S�x,�� = �x,�,x�,0� = x�� �

�x
�

�x,��
. �8�

hen 	t is a geodesic of � if and only if the equation S	̇= 	̈ holds. The horizontal and vertical
rojections of the connection �ª �J ,S� associated the spray S are h and v where

v�x,b,xa,c� = �x,b,0,
1

2
�a,b� + c	 = �1

2
�a,b� + c	� �

��
�

�x,b�
,

h�x,b,xa,c� = �x,b,xa,−
1

2
�a,b�	 = xa� �

�x
�

�x,b�
−

1

2
�a,b�� �

��
�

�x,b�
,

herefore the horizontal and vertical lifts of a left-invariant vector field X= �x ,a� are

X�x,��
h = �x,�,xa,−

1

2
�a,��	 = xa� �

�x
�

�x,��
−

1

2
�a,��� �

��
�

�x,��
, �9�

X�x,��
v = �x,�,0,a� = a� �

��
�

�x,��
. �10�

oreover, with �x ,�� as a local coordinate system, the vertical endomorphism and the Liouville
ector fields are

J = �x−1 dx� �
�

��
, C = �

�

��
.

ndeed,

C�x,�� = � d

dt
�

t=0
�x,et�� = �x,�,0,�� ,

J�x,�,A,B� = � d

dt
�

t=0
�x,� + tx−1A� = �x,�,0,x−1A� .

or more details see Ref. 7.
Let us examine the existence of a left-invariant variational principle for the canonical flow of

ie groups. We have the following.
Proposition 2: The canonical flow of the Lie group G is variational with respect a left-

nvariant Lagrangian if and only if there exists an ad-invariant function E :g→R with nondegen-
rate Hessian.

To prove the proposition, we compute the Euler-Lagrange equation for the canonical flow of
. Using the notation introduced in �6�, the Euler-Lagrange partial differential equation associated

o a spray S can be written as

�E 
 0, �11�

here the unknown is the Lagrangian E. Let us compute explicitly the equation �11�. If X
�x ,a� denotes a left-invariant vector field on G corresponding to a�g, and Xv, Xh are its vertical

v
nd horizontal lifts, then we have �E�X �
0, since �E is semibasic. Moreover, we have
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�E�Xh� = �iS ddJE + dLC E − dE��Xh� = ddJ E�S,Xh� + dLC E�Xh� − dE�Xh�

= S�JXh�E�� − Xh�JS�E�� − J�S,Xh�E + Xh�C�E�� − XhE

= S�Xv�E�� − J�S,Xh�E − XhE .

aking into account �8� and the local expression �9� of Xh we have

�Xh,S� = �xa
�

�x
−

1

2
�a,��

�

��
,x�

�

�x
� =

1

2
x�a,��

�

�x
,

J�Xh,S� =
1

2
J�x�a,��

�

�x
	 =

1

2
�a,��

�

��
,

nd

�E�Xh� = x�
�

�x
�a

�

��
�E�	 −

1

2
�a,��

�

��
�E� − �xa

�

�x
−

1

2
�a,��

�

��
	E

= x�a
�2E

�x��
+

1

2
�a,��

�E

��
− xa

�E

�x
+

1

2
�a,��

�E

��

= �a,��
�E

��
+ x�a

�2E

�x��
− xa

�E

�x
.

f the Lagrangian is left-invariant, then �E /�x=0 and we obtain that

��Xh� = �a,��
�E

��
,

onsequently the canonical connection of the group G is variational with respect to a left-invariant
egular Lagrangian E if and only if

�E

�x
= 0, �12�

�a,��
�E

��
= 0, ∀ a � g , �13�

here �12� expresses the fact that E is left-invariant and �13� expresses that E is a solution of the
uler-Lagrange equation �11�. Therefore the canonical flow is variational with respect to an

nvariant Lagrangian if and only if the Frobenius differential system �12� and �13� has a solution
:TG�G�g→R satisfying the regularity condition, or equivalently, there exists a function
:g→R satisfying the equation

�a,��
�E
��

= 0, �14�

or all a�g, such that the Hessian matrix ��2E /��i�� j� is nondegenerate. The equation �14� is
dentically satisfied if and only if E is constant on the orbit of the ad representation of g.

�

Let �e1 , . . . ,en� be a basis of g. Then the structure constants C��
	 of the Lie algebra g are

efined by

�e�,e�� = C��
	 e	. �15�
e denote by ��i� the coordinate of ��g. We have the following.
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Theorem 3: There exists a left-invariant variational principle for the canonical flow of the Lie
roup G in a neighborhood of a generic element ��g if and only if the linear system

Cij
k � jxk = 0, i = 1, . . . ,n , �16�

Cij
k xk + Cjm

k �mxik = 0, i, j = 1, . . . ,n , �17�

as a solution �xi=
i, xij =
ij� satisfying the condition det�
ij��0.
Proof: Let us consider the distribution � in the tangent space of g defined as

�� ª �Xa ª �a,��� �

��
�

�

a � g� ,

or ��g. If a and b are two elements of the Lie algebra g, then

��a,��
�

��
,�b,��

�

��
� = ���,a�,b�

�

��
− ���,b�,a�

�

��
= ��,�a,b��

�

��
,

hat is for every Xa�� and Xb�� we have �Xa ,Xb�=X�a,b���. This shows that � is involutive
nd the system �14� is integrable.

Let us denote by J1�g ,R� and by J2�g ,R� the first and second order jet spaces of real valued
unctions on g. As usual, a local coordinates system on J1�g ,R� and J2�g ,R� can be given as
ollows: if E :g→R, then

j1,��E� = ��,
,
i�, j2,��E� = ��,
,
i,
ij� ,

here


 = E���, 
i = � �E
��i
�

�

, 
ij = � �2E
��i�� j

�
�

.

ince �14� is integrable, the first prolongation of �14� is also integrable. Therefore for every initial
ondition j2,��J2�g ,R� at �, there exists a solution E :g→R in the neighborhood of � such that

j2�E�= j2,�. On the other hand, the jet j2,�= �� ,
 ,
i ,
ij� is a second order initial condition of the
rolongated system if and only if �
i ,
ij� is a solution of the system composed by �16� and �17�.
oreover the solution E corresponding to j2,� is nondegenerate if and only if det�
ij��0.

�

Corollary 1: The canonical connection of a commutative Lie group is variational with respect
o a left-invariant Lagrangian.

In that case Cij
k =0 for all i , j ,k=1, . . . ,n, and there is no obstruction to choose a nondegen-

rate initial condition for the system �14�. �

Corollary 2: If the derived Lie algebra is one dimensional, then there is no left-invariant
ariational principle for the canonical flow.

In that case all the solutions �xi=
i, xij =
ij� of the system composed by �16� and �17� are
egenerate, and therefore there is no nondegenerate initial condition for the differential system
14�. �

Remark: The Lagrangian E���=K�� ,��, where K is the Killing form of G, is always a
olution to the equations �12� and �13�. That way we rediscover the well-known property of
emisimple Lie groups: the canonical connection is variational with respect to a left-invariant
agrangian.

Indeed, E is left-invariant, it is not dependent on the x coordinates in the �x ,�� system, and

12� is satisfied. Moreover, at every ��g and a�g we have
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�a,��
�E

��
= � d

dt
�

t=0
K�� + t�a,��;� + t�a,��� = K��a,��,�� + K��,�a,��� = 0

nd Eq. �13� is satisfied. �

. SOLUTION OF THE GROUP-INVARIANT INVERSE PROBLEM IN DIMENSIONS UP TO
OUR

The variationality of the geodesic flow of the canonical connection of Lie groups was studied
n Refs. 9 and 2, where the inverse problem for Lie groups up to dimension 4 were solved. Here
e determine if there exits group-invariant variational principle for canonical geodesic flows.
heorem 3 formulates a necessary and sufficient condition for the Lie algebra so that the canonical
ow is variational with respect to a group-invariant Lagrangian.

Jacobson in Ref. 6 gives the classification of Lie algebras of dimension 3 or less. The classi-
cation of Lie algebras of dimensions 4 and 5 can be found in Ref. 8.

. Two-dimensional Lie groups

There are, up to isomorphism, two algebras distinguished according to whether or not �,� is
rivial or not. In the former case we have the Abelian Lie algebra, and according to Corollary 1 it
s variational with respect to a G-invariant Lagrangian.

The latter one is the Lie algebra of the affine group of the line. Up to isomorphism the Lie
lgebra of the affine group of the line is the only non-Abelian two-dimensional Lie algebra. A
epresentation of the group G is given by g= � x y

0 1
� where x�0. The corresponding Lie algebra is

iven by the 2�2 matrices � x y
0 0

�. Let us consider the basis �e1 ,e2�, where e1ª � 1 0
0 0

� and e2
� 0 1

0 0
�. Then �e1 ,e2�=e2, i.e., the nonzero structure constants are C12

2 =−C21
2 =1. If �a1 ,a2� and

�1 ,�2� denote the coordinates of a and � with respect to this basis, then Eq. �13� is �a ,��
�a1�2−a2�1�e2 which gives �E /��2=0. Since any solution of the prolongations is nonregular we
onclude that there is no invariant variational principle for the canonical connection of the affine
roup of the line.

. Three-dimensional Lie groups

In Ref. 9, Thompson proved that all the canonical connections on Lie groups of dimension 3
ave variational locally geodesic equations. On the other hand, Jacobson’s classification of the
hree-dimensional Lie algebras depends primarily on the dimension of the first derived algebra g�1�

here g is the original algebra. We have the following possibilities.
If dim�g�1��=0, then g is Abelian and, according to Corollary 1, the canonical connection of a

ommutative Lie group is variational with respect to a left-invariant Lagrangian. If dim�g�1��=3,
hen g is simple and we have g=s��2,R� or g=so�3�. In both cases the Killing form provides a

etric and so the connections are variational.
If dim�g�1��=1 there are, up to isomorphism, two algebras distinguished according to whether

�1� lies inside the center of g. In the former case g may be realized as the Lie algebra of the group

f matrices of the form �1 x y

0 1 z

0 0 1 �, �x ,y ,z�R� and g is the Heisenberg algebra. Its canonical

onnection is a flat connection and so it is variational. The latter case g is isomorphic to the Lie
lgebra of the group of nonsingular 2�2 upper triangular matrices and so it is again variational.

Let us consider the Heisenberg group. A basis of the Lie algebra is given by �e1 ,e2 ,e3�, where

e1 ª �0 1 0

0 0 0

0 0 0
�, e2 ª �0 0 1

0 0 0

0 0 0
�, e3 ª �0 0 0

0 0 1

0 0 0
� .
f �a1 ,a2 ,a3� and ��1 ,�2 ,�3� denotes the coordinates of a and � with respect to this basis, then
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�a1�3 − a3�1�
�E

��2
= 0

nd Eq. �13� gives �E /��2=0. Since any solution of the prolongations is nonregular we conclude
hat there is no invariant variational principle for the canonical connection of the Heisenberg
roup.

Next we consider the Lie group of 2�2 upper triangular matrices � x y
0 z

� where xz�0. Here
e1 ,e2 ,e3� is a basis of the Lie algebra, where

e1 ª �1 0

0 0
	, e2 ª �0 1

0 0
	, e3 ª �0 0

0 1
	 .

f �a1 ,a2 ,a3� and ��1 ,�2 ,�3� are the coordinates of a and �, then

�a1�2 + a2�3 − a1�2 − a3�3�
�E

��2
= 0,

nd Eq. �14� gives again �E /��2=0. Therefore any solution will be nonregular. Consequently
here is no invariant variational principle in this case.

. Four-dimensional Lie groups

There are 12 classes of Lie algebras in dimension 4 denoted in Ref. 8 as A4,i, i=1, . . . ,12. The
enerators of the algebras are listed as �e1 ,e2 ,e3 ,e4� and in each case we list the nonzero Lie
rackets. Several of the Lie algebras have parameters denoted by a or b or both. The generic
olution of the linear system �16� at a point �=�iei will be denoted by 
ª �
i ,
ij�.

In Ref. 2, Thompson and his co-workers computed all the canonical connections on Lie
roups of dimension 4 and determined whether the connection is variational or not. He has shown
hat the Lie groups with Lie algebras A4,7, A4,9b, and A4,11a, where the brackets are defined as

A4,7, �e2,e3� = e1, �e1,e4� = 2e1, �e2,e4� = e2, �e3,e4� = e2 + e3,

A4,9b, �e2,e3� = e1, �e1,e4� = �1 + b�e1, �e2,e4� = e2, �e3,e4� = be3,

A4,11a, �e2,e3� = e1, �e1,e4� = 2ae1, �e2,e4� = ae2 − e3, �e3,e4� = e2 + ae3,

1�b�1 and 0�a, are not variational.
A4,2a, the brackets are

�e1,e4� = ae1, �e2,e4� = e2, �e3,e4� = e2 + e3, a � 0.

quation �16� leads to a solution �
i ,
ij�, where 
ij =0 for every �i , j�� �4,4�. Therefore the
ondition �13� entails that the matrix 
ij is singular, whatever is the value of a. Therefore the
anonical flow is variational, but there is no left-invariant regular Lagrangian for its geodesics.

In the case of the Lie groups with Lie algebras A4,1, A4,3, A4,4, A4,9, and A4,12, the nontrivial
rackets of the algebras are determined as

A4,1, �e2,e4� = e1, �e3,e4� = e2,

A4,3, �e1,e4� = e1, �e3,e4� = e2,

A4,4, �e1,e4� = e1, �e2,e4� = e1 + e2, �e3,e4� = e2 + e3,
A4,9, �e2,e3� = e1, �e1,e4� = 2e1, �e2,e4� = e2, �e3,e4� = e3,
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A4,12, �e1,e3� = e1, �e2,e3� = e2, �e1,e4� = − e2, �e2,e4� = e1.

e can find that the general solution of Eq. �16� can be described as follows: 
33,
34,
44 are
rbitrary numbers and the other components are all zero. Therefore


ij =�
0 0 0 0

0 0 0 0

0 0 
33 
34

0 0 
34 
44

� .

ince 
ij is singular, there is no left-invariant regular Lagrangian for the geodesics of the canonical
onnection. The situation is analogous in the following.

A4,5ab, the Lie algebra relations are

�e1,e4� = e1, �e2,e4� = ae2, �e3,e4� = be3.

epending on the value of a and b we have four cases,

if a = 0, b = 0, then 
ij =�
0 0 0 0

0 
22 
23 
24

0 
23 
33 
34

0 
24 
34 
44

� ,

if a = 0, b � 0, then 
ij =�
0 0 0 0

0 
22 0 
24

0 0 0 0

0 
24 0 
44

� ,

if a � 0, b = 0, then 
ij =�
0 0 0 0

0 0 0 0

0 0 
33 
34

0 0 
34 
44

� ,

if a � 0, b � 0, then 
ij =�
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 
44

� .

n all three cases the Lagrangian must be nonregular, and therefore there is no left-invariant
egular Lagrangian for the geodesics of the canonical connection.

A4,6ab, the Lie algebra relations are

�e1,e4� = ae1, �e2,e4� = be2 − e3, �e3,e4� = be3,
ith a�0, b0. Depending on the value of a and b we have two cases,
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if b � 0, then 
ij =�
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 
44

� ,

if b = 0, then 
ij =�
0 0 0 0

0 
22 0 
24

0 0 0 0

0 
24 0 
44

� .

n both cases the Lagrangian must be degenerate and therefore there is no left-invariant regular
agrangian for the geodesics of the canonical connection.

A4,8, the Lie algebra relations are

�e2,e3� = e1, �e2,e4� = e2, �e3,e4� = − e3.

3 ,
4 ,
3,2 ,
4,1 ,
4,4 are free and the matrix �
ij� is

�
�4

2��2
32 − 
3�
�2

2�3

−
�4��2
23 − 
3�

�2
2 −

�4��2
32 − 
3�
�2�3


14

−
�4��2
23 − 
3�

�2
2

�3��2
32 − 
3�
�2

2 
23 −
�3��2
14 + 
3�

�2�4

−
�4��2
32 − 
3�

�2�3

23

�2
23 − 
3

�3
−

�2
41 + 
3

�4


14 −
�3��2
14 + 
3�

�2�4
−

�2
41 + 
3

�4

44

� .

n Ref. 9 Thompson showed that A4,8 admits a bi-invariant metric. In order to give a regular initial
ondition we can choose the free components as


3 ª �2
32, 
4,1 ª − 
23,

4, 
4,4 arbitrary, 
3,2 arbitrary nonzero and compute the other components. Then we obtain a
olution 
= �
i ,
ij� of the system �16�,

�
0 0 0 − 
23

0 0 
23 0

0 
23 0 0

− 
23 0 0 
44

� ,

here det�
ij�= �
23�4�0. According to Theorem 3 there exists an invariant regular Lagrangian
enerating the canonical geodesic flow.
A4,10, the Lie algebra relations are
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�e2,e3� = e1, �e2,e4� = − e3, �e3,e4� = e2.

he 
3, 
4, 
3,3, 
4,2, and 
4,4 are free components and the matrix �
ij� is

�
�4

2��3
33 − 
3�
�3

3

�2�4��3
33 − 
3�
�3

3

�4��3
33 − 
3�
�3

2

�4�3
24 + �2
3

�2�3

�2�4��3
33 − 
3�
�3

3

�2
2�3
33 + ��3

2 − �2
2�
3

�3
3

�2��3
33 − 
3�
�3

2 
4,2

�4��3
33 − 
3�
�3

2

�2��3
33 − 
3�
�3

2 
33
�3
24

�2

�4�3
24 + �2
3

�2�3

24

�3
24

�2

44

� .

nondegenerate initial condition can be chosen as follows:


3 ª x3
33, 
4,2 ª 0,

4, 
4,1, 
4,4 arbitrary, 
3,2 arbitrary nonzero and the other components zero. We have

�
0 0 0 
33

0 
33 0 0

0 0 
33 0


33 0 0 
44

�
nd det�
ij�=−�
33�4�0. As in the previous case, Theorem 3 guarantees the existence of an
nvariant regular Lagrangian generating the canonical geodesic flow.

We remark that in Ref. 9 Thompson has already shown that a Lie group with A4,8 or A4,10 as
ie algebra has a bi-invariant metric which generates its canonical geodesic flow.
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We present a general classification of Hamiltonian multivector fields and of Poisson
forms on the extended multiphase space appearing in the geometric formulation of
first order classical field theories. This is a prerequisite for computing explicit
expressions for the Poisson bracket between two Poisson forms. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2116320�

. INTRODUCTION AND GENERAL SETUP

The present paper is a continuation of previous work on Poisson brackets of differential forms
n the multiphase space approach to classical field theory.1,2 Our aim is to specialize the general
onstructions of Ref. 2 from abstract �exact� multisymplectic manifolds to the extended multi-
hase spaces of field theory, which at present seem to be the only known examples of multisym-
lectic manifolds, to clarify the structure of Hamiltonian multivector fields, of Hamiltonian forms
nd of Poisson forms on these spaces and to give explicit formulas for the Poisson bracket
etween the latter introduced in Refs. 1 and 2.

The structure of this paper is as follows. In the remainder of this introduction, we briefly
eview the geometric constructions needed in the paper. We put particular emphasis on the con-
equences that arise from the existence of a certain vector field, the scaling or Euler vector field.
lso, we fix the notation to be used in what follows. In Sec. II, we present an explicit classification
f locally Hamiltonian multivector fields on extended multiphase space in terms of adapted local
oordinates and, following the logical inclusion from locally Hamiltonian to �globally� Hamil-
onian to exact Hamiltonian multivector fields, show how the last two are situated within the first.
ec. III is devoted to the study of Hamiltonian forms and Poisson forms that are associated with
globally� Hamiltonian multivector fields. In Sec. IV, we use the outcome of our previous analysis
o derive expressions for the Poisson bracket between two Poisson forms. In Sec. V, we summarize
ur main conclusions and comment on the relation of our results to other approaches, as well as on
erspectives for future research. Finally, in order to make the paper self-contained, we include in
n appendix a proposition that is not new but is needed in some of the proofs.

We begin with a few comments on the construction of the extended multiphase space of field
heory,3–7 which starts out from a given general fiber bundle over space-time, with base space

�Electronic mail: forger@ime.usp.br
�Electronic mail: pcp@theophys.kth.se
�
Electronic mail: hartmann.roemer@physik.uni-freiburg.de
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M �dim M =n�, total space E, bundle projection � :E→M and typical fiber Q �dim Q=N�. It is
sually referred to as the configuration bundle since its sections constitute the possible field
onfigurations of the system. �Of course, the manifold M represents space-time, whereas the
anifold Q plays the role of a configuration space.� The extended multiphase space, which we

hall simply denote by P, is then the total space of a larger fiber bundle over M and in fact the total
pace of a vector bundle over E which can be defined in several equivalent ways, e.g., by taking
he twisted affine dual J�E of the first order jet bundle JE of E or by taking the bundle �n−1

n T*E
f �n−1�-horizontal n-forms on E; see Refs. 2, 5, and 7 for details. Therefore, there is a natural
lass of local coordinate systems on P, namely those that arise from combining fiber bundle charts
f E over M with vector bundle charts of P over E: these so-called adapted local coordinates
x� ,qi , pi

� , p� are completely fixed by specifying local coordinates x� for M �the space-time coor-
inates�, local coordinates qi for Q �the position variables� and a local trivialization of E over M,
nd are such that the induced local coordinates pi

� �the multimomentum variables� and p �the
nergy variable� are linear along the fibers of P over E. For details, we refer to Ref. 2, where one
an also find the explicit transformation law for the multimomentum variables and the energy
ariable induced by a change of the space-time coordinates, of the position variables and of the
ocal trivialization.

A first important feature of the extended multiphase space P is that it carries a naturally
efined multicanonical form � whose exterior derivative is, up to a sign, the multisymplectic form
,

� = − d� . �1�

he global construction can be found in Refs. 2, 5, and 7, so we shall just state their explicit form
n adapted local coordinates,

� = pi
� dqi ∧ dnx� + pdnx . �2�

� = dqi ∧ dpi
� ∧ dnx� − dp ∧ dnx . �3�

ere, we have already employed part of the following conventions concerning local differential
orms defined by a system of adapted local coordinates, which will be used systematically
hroughout this paper,

dnx = dx1 ∧ ¯ ∧ dxn, dnx�1. . .�r
= i��r

¯ i��1
dnx .

or later use, we also recall the definition of the Lie derivative of a differential form � along an
-multivector field X,

LX� = diX� − �− 1�riX d� , �4�

hich leads to the following relations, valid for any differential form � and any two multivector
elds X and Y of tensor degrees r and s, respectively,

dLX� = �− 1�r−1LX d� , �5�

i�X,Y�� = �− 1��r−1�sLXiY� − iYLX� , �6�

L�X,Y�� = �− 1��r−1��s−1�LXLY� − LYLX� , �7�

LX∧Y� = �− 1�siYLX� + LYiX� , �8�

here �X ,Y� denotes the Schouten bracket of X and Y. For decomposable multivector fields
=X1∧ ¯ ∧Xr and Y =Y1∧ ¯ ∧Ys, it can be defined in terms of the Lie bracket of vector fields
ccording to the formula
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�X,Y� = �
i=1

r

�
j=1

s

�− 1�i+j�Xi,Xj� ∧ X1 ∧ ¯ Xi
ˆ
¯ ∧ Xr ∧ Y1 ∧ ¯ Y j

ˆ
¯ ∧ Ys,

here as usual the hat over a symbol denotes its omission. We shall also write

LXY = �X,Y� ,

or any two multivector fields X and Y. For properties of the Schouten bracket, we refer to Ref. 8.
proof of the above identities relating the Schouten bracket and the Lie derivative of forms along
ultivector fields can be found in the appendix of Ref. 2.

A second property of the extended multiphase space P which provides additional structures
or tensor calculus on this manifold is that it is the total space of a fiber bundle, which implies that
e may speak of vertical vectors and horizontal covectors. In fact, it is so in no less than three
ifferent ways. Namely, P is the total space of a fiber bundle over M �with respect to the so-called
ource projection�, the total space of a vector bundle over E �with respect to the so-called target
rojection� and the total space of an affine line bundle over the ordinary multiphase space P0.2

herefore, the notions of verticality for multivector fields and of horizontality for differential
orms on P admit different interpretations, depending on which projection is used. In any case, one
tarts by defining tangent vectors to the total space of a fiber bundle to be vertical if they are
nnihilated by the tangent map to the bundle projection, or what amounts to the same thing, if they
re tangent to the fibers. Dually, a k-form on the total space of a fiber bundle is said to be
-horizontal if it vanishes whenever one inserts at least k− l+1 vertical tangent vectors; the stan-
ard horizontal forms are obtained by taking l=k. Finally, an r-multivector on the total space of a
ber bundle is said to be s-vertical if its contraction with any �r−s+1�-horizontal form vanishes.
t is not difficult to show that these definitions are equivalent to requiring that, locally, an
-horizontal k-form should be a sum of exterior products of k one-forms, among which there are at
east l horizontal ones, and that an s-vertical r-multivector field should be a sum of exterior
roducts of r tangent vectors, among which there are at least s vertical ones. Using this rule,
roperties of verticality for multivectors or horizontality for forms are easily derived from the
orresponding properties for vectors or one-forms, respectively. In what follows, the terms “ver-
ical” and “horizontal” will usually refer to the source projection, except when explicitly stated
therwise.

A third important feature of the extended multiphase space P is that it carries a naturally
efined vector field �, the scaling vector field or Euler vector field, which exists on any manifold
hat is the total space of a vector bundle. In adapted local coordinates,

� = pi
� �

�pi
� + p

�

�p
.

t is then easy to verify the following relations �see Proposition 2.1 of Ref. 2�:

i�� = 0, i�� = − �, L�� = �, L�� = � . �9�

he main utility of � is that taking the Lie derivative L� along � provides a device for controlling
he dependence of functions and, more generally, of tensor fields on P on the multimomentum
ariables and the energy variable, that is, along the fibers of P over E: L� has only integer
igenvalues, and eigenfunctions of L� with eigenvalue k are homogeneous polynomials of degree
in these variables.

As we shall see soon, homogeneity under L� plays a central role in the analysis of various
lasses of multivector fields and differential forms on P.

Let us recall a few definitions. An r-multivector field X on P is called locally Hamiltonian if

X� is closed, or equivalently, if
LX� = 0. �10�
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t is called globally Hamiltonian if iX� is exact, that is, if there exists an �n-r�-form f on P such
hat

iX� = df . �11�

n this case, f is said to be a Hamiltonian form associated with X. Finally, it is called exact
amiltonian if

LX� = 0. �12�

f course, exact Hamiltonian multivector fields are globally Hamiltonian �to show this, set
f = �−1�r−1iX� and apply Eqs. �4� and �1��, and globally Hamiltonian multivector fields are obvi-
usly locally Hamiltonian. Conversely, an �n-r�-form f on P is called a Hamiltonian form if there
xists an r-multivector field X on P such that Eq. �11� holds; in this case, X is said to be a
amiltonian multivector field associated with f . Moreover, f is called a Poisson form if in addi-

ion, it vanishes on the kernel of �, that is, if for any multivector field Z, we have

iZ� = 0 ⇒ iZf = 0. �13�

trivial example of a Poisson form is the multisymplectic form � itself. Another example is
rovided by the multicanonical form �, since it can be written as �=−i��.

Concerning stability under the Lie derivative along the scaling vector field �, we have the
ollowing.

Proposition 1.1: The space XLH
∧ �P� of locally Hamiltonian multivector fields, the space XH

∧�P�
f globally Hamiltonian multivector fields, the space XEH

∧ �P� of exact Hamiltonian multivector
elds and the space X0

∧�P� of multivector fields taking values in the kernel of � are all invariant
nder the Lie derivative along the scaling vector field �,

LX� = 0 ⇒ L��,X�� = 0, �14�

iX� = df ⇒ i��,X�� = d�L�f − f� , �15�

LX� = 0 ⇒ L��,X�� = 0, �16�

i�� = 0 ⇒ i��,��� = 0. �17�

Proof: All these relations can be shown by direct calculation. �

Dually, we have the following.
Proposition 1.2: The space 	H�P� of Hamiltonian forms, the space 	0�P� of forms that vanish

n the kernel of � and the space 	P�P� of Poisson forms are all invariant under the Lie derivative
long the scaling vector field �,

df = iX� ⇒ d�L�f� = iX+��,X�� . �18�

Proof: The first statement is a consequence of Eq. �18�, which follows directly from combin-
ng Eqs. �5� and �6� with Eq. �9�. For the second statement, assume that f vanishes on the kernel
f �. Then if � is any multivector field 
 taking values in the kernel of �, the multivector field
� ,�� takes values in the kernel of � as well �cf. Eq. �17��, so that according to Eq. �6�,

i��L�f� = L�i�f − i��,��f = 0.

ut this means that L�f vanishes on the kernel of �. Finally, the third statement follows by
ombining the first two. �

A special class of multivector fields and of differential forms on P which will be of particular
mportance in what follows is that of fiberwise polynomial multivector fields and of fiberwise

olynomial differential forms on P: their coefficients are polynomials along the fibers of P over E,
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r in other words, polynomials in the multimomentum variables and the energy variable. The main
dvantage of working with tensor fields on the total space of a vector bundle which are fiberwise
olynomial is that they allow a unique and globally defined �or in other words, coordinate inde-
endent� decomposition into homogeneous components, according to the different eigenspaces of
he Lie derivative L� along �; the corresponding eigenvalue will in what follows be called the
caling degree �to distinguish it from the ordinary tensor degree�. In doing so, it must be borne in
ind that, in an expansion with respect to an adapted local coordinate system, the scaling degree

eceives contributions not only from the coefficient functions but also from some of the coordinate
ector fields and differentials since the vector fields � /�x�, � /�qi, � /�pi

�, and � /�p carry scaling
egree 0, 0, −1, and −1, respectively, while the differentials dx�, dqi, dpi

�, and dp carry scaling
egree 0, 0, +1, and +1, respectively; moreover, the scaling degree is additive under the exterior
roduct, since L� is a derivation. Therefore, a fiberwise polynomial r-multivector field on P
dmits a globally defined decomposition into a finite sum

X = �
s�−r

Xs,

here Xs is its homogeneous component of scaling degree s,

L�Xs = sXs.

ach Xs can be obtained from X by applying a projector which is itself a polynomial in L�,

Xs = �
s��−r

s��s

1

s − s�
�L� − s��X .

imilarly, a fiberwise polynomial �n-r�-form f on P admits a globally defined decomposition into
finite sum

f = �
s�0

fs,

here fs is its homogeneous component of scaling degree s,

L�fs = sfs.

gain, the fs can be obtained from f ,

fs = �
s��0
s��s

1

s − s�
�L� − s��f .

The relevance of these decompositions for locally Hamiltonian multivector fields and for
amiltonian forms on the extended multiphase space P stems from the following theorem, whose
roof will follow from statements to be derived in the course of the next two sections, by means
f explicit calculations in adapted local coordinates.

Theorem 1.3: For 0��n and up to trivial contributions (-multivector fields taking values
n the kernel of � and closed (n−r)-forms, respectively), locally Hamiltonian -multivector fields
nd Hamiltonian (n−)-forms on P are fiberwise polynomial and have non-trivial homogeneous
omponents of scaling degree s only for s=−1,0 , . . . ,r−1 and for s=0,1 , . . . ,r, respectively. More
recisely, we have

i� Every fiberwise polynomial locally Hamiltonian (Hamiltonian, exact Hamiltonian)
r-multivector field X on P, admits a unique, globally defined decomposition into homoge-
neous components with respect to scaling degree, which can be written in the form (we

abbreviate X−1 as X−�
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X = X− + X+ + � with X+ = �
s=0

r−1

Xs, �19�

where each Xs is locally Hamiltonian (Hamiltonian, exact Hamiltonian) and

� = �
−r�s�−2

�s + �
s�r

�s �20�

is a fiberwise polynomial r-multivector field on P taking values in the kernel of �.
ii� Every fiberwise polynomial Hamiltonian form (Poisson form) f of degree n−r on P, admits

a unique, globally defined decomposition into homogeneous components with respect to
scaling degree, which can be written in the form

f = f0 + f+ + fc with f+ = �
s=1

r

fs, �21�

where each fs is Hamiltonian (Poisson) and

fc = �
s�r+1

�fc�s �22�

is a fiberwise polynomial closed �n−r�-form on P.

The cases r=0 and r=n are exceptional and must be dealt with separately; see Propositions
.2 and 3.2 for r=0 and Propositions 2.3 and 3.1 for r=n.

In view of this theorem, it is sufficient to study locally Hamiltonian multivector fields and
amiltonian forms which are homogeneous under the Lie derivative along the scaling vector field
. This condition of homogeneity is also compatible with the correspondence between globally
amiltonian multivector fields X and Hamiltonian forms f established by the fundamental relation

11�, because � itself is homogeneous: according to Eq. �9�, � has scaling degree 1. Indeed, except
or the ambiguity inherent in this correspondence �f determines X only up to a multivector field
aking values in the kernel of � and X determines f only up to a closed form�, Eq. �11� preserves
he scaling degree, up to a shift by 1: X is homogeneous with scaling degree s−1 if and only if f
s homogeneous with scaling degree s,

L�X = �s − 1�X
modulo multivector fields

taking values in the kernel of �

⇔
L�f = sf

modulo closed forms
. �23�

or a proof, note that the condition on the left-hand side �lhs� amounts to requiring that i��,X��

�s−1�iX�, while the condition on the right-hand side �rhs� amounts to requiring that dL� f
s df , so the equivalence stated in Eq. �23� is an immediate consequence of Eq. �18�. A particular
ase occurs when s=1, since the locally Hamiltonian multivector fields which are homogeneous of
caling degree 0 are precisely the exact Hamiltonian multivector fields: for LX�=0,

L�X = 0

modulo multivector fields

taking values in the kernel of �

⇔ LX� = 0. �24�

ndeed, the properties of � and � give

LX� = − LXi�� = �− 1�r�i�X,��� − i�LX�� = �− 1�r−1i��,X�� . �25�

ore generally, the fundamental relation �11� preserves the property of being fiberwise polyno-
ial, in the following sense: If X is a fiberwise polynomial Hamiltonian r-multivector field and f
s a Hamiltonian �n−r�-form associated with X, then modifying f by addition of an appropriate
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losed �n−r�-form if necessary, we may always assume, without loss of generality, that f is
berwise polynomial as well. Conversely, if f is a fiberwise polynomial Hamiltonian �n−r�-form
nd X is a Hamiltonian r-multivector field associated with f , then modifying X by addition of an
ppropriate r-multivector field taking values in the kernel of � if necessary, we may always
ssume, without loss of generality, that X is fiberwise polynomial as well.

I. HAMILTONIAN MULTIVECTOR FIELDS

Our aim in this section is to determine the explicit form, in adapted local coordinates, of
ocally Hamiltonian r-multivector fields on the extended multiphase space P, where 0�r�n+1.
Multivector fields of tensor degree �n+1 are uninteresting since they always take their values in
he kernel of �.�

As a first step towards this goal, we shall determine the explicit form, in adapted local
oordinates, of the multivector fields on P taking values in the kernel of �; this will also serve to
dentify, in the next section, the content of the kernel condition �13� that characterizes Poisson
orms. To this end, note first that � being a homogeneous differential form �of degree n+1�, its
ernel is graded, that is, if an inhomogeneous multivector field takes values in the kernel of �, so
o all its homogeneous components.

Proposition 2.1: Every r-multivector field X on P admits, in adapted local coordinates, a
nique decomposition of the form

X =
1

r!
X�1¯�r

�

�x�1
∧ ¯ ∧

�

�x�r
+

1

�r − 1�!
Xi,�2¯�r

�

�qi ∧
�

�x�2
∧ ¯ ∧

�

�x�r

+
1

r!
Xi

�1¯�r
�

�pi
�1

∧
�

�x�2
∧ ¯ ∧

�

�x�r
+

1

�r − 1�!
X̃�2¯�r

�

�p
∧

�

�x�2
∧ ¯ ∧

�

�x�r
+ � ,

�26�

here all coefficients are totally antisymmetric in their space-time indices and � takes values in
he kernel of �.

Proof: This is an immediate consequence of the particular form of � in adapted local coor-
inates, Eq. �3�. For more details, see Ref. 9. �

With this local coordinate representation at hand, we are in a position to analyze the restric-

ions imposed on the coefficients X�1¯�r, Xi,�2¯�r, Xi
�1¯�r, and X̃�2¯�r by requiring X to be

ocally Hamiltonian. �Of course, it makes no sense to discuss the question which locally Hamil-
onian multivector fields are also globally Hamiltonian when working in local coordinates.� As a
arm-up exercise, we shall settle the extreme cases of tensor degree 0 and n+1.

Proposition 2.2: A function on P, regarded as a 0-multivector field, is locally Hamiltonian if
nd only if it is constant; it is then also exact Hamiltonian. Similarly, an �n+1�-multivector field
n P, with standard local coordinate representation

X = X̃
�

�p
∧

�

�x1 ∧ ¯ ∧
�

�xn + � , �27�

here � takes values in the kernel of �, is locally Hamiltonian if and only if the coefficient function

is constant and is exact Hamiltonian if and only if it vanishes.
Proof: For functions, we use the fact that the operator i1 corresponding to the constant

unction 1 on a manifold is defined to be the identity, so that the operator if corresponding to an
rbitrary function f on a manifold is simply multiplication by f . Therefore, we have for any
ifferential form �

Lf� = d�if�� − if d� = d�f�� − f d� = df ∧ � ,

mplying that if f is constant, Lf�=0 no matter what � one chooses. On the other hand, an explicit

alculation in adapted local coordinates shows that the condition Lf�=0 forces all partial deriva-
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ives of f to vanish; see Ref. 9. Similarly, for multivector fields of degree n+1, it is clear that, as
equals n+1, the first three terms in Eq. �26� also take values in the kernel of � and can thus be

ncorporated into �. Therefore, by setting X̃�1¯�n =��1¯�nX̃, we see that iX�=−X̃. But LX�
d�iX��− �−1�niX d�=d�iX�� and LX�=d�iX��− �−1�n+1iX d�= �−1�n+1iX�, so the proposition fol-

ows. �

The intermediate cases �0�r�n� are much more interesting. However, the situation for
ensor degree n is substantially different from that for tensor degree �n and hence will be dealt
ith first. To simplify the notation, we write

X�1¯�n = ��1¯�nX̃, Xi,�2¯�n = ��2¯�n�X�
i ,

Xi
�1¯�n = ��1¯�nXi, X̃�2¯�n = ��2¯�n�X�,

o that we obtain

iX� = �− 1�n−1X̃ dp + X�
i dpi

� − �− 1�n−1Xi dqi − X� dx�, �28�

nd

iX� = pX̃ + �− 1�n−1pi
�X�

i ,

espectively.
Proposition 2.3: An n-multivector field X on P is locally Hamiltonian if and only if, locally

nd modulo terms taking values in the kernel of �, it can be written in terms of a single function
f , as follows:

X = −
1

�n − 1�!
��2¯�n�� �f

�x�

�

�p
−

1

n

�f

�p

�

�x�� ∧
�

�x�2
∧ ¯ ∧

�

�x�n

+
1

�n − 1�!
��2¯�n�� �f

�pi
�

�

�qi −
1

n

�f

�qi

�

�pi
�� ∧

�

�x�2
∧ ¯ ∧

�

�x�n
. �29�

oreover, X is exact Hamiltonian if and only if f is a linear function of the multimomentum
ariables pr

� and the energy variable p.
Proof: Obviously, X is locally Hamiltonian if and only if, locally, iX�=df for some function

f , which in view of Eq. �28� leads to the following system of equations for the coefficients X̃, X�
i ,

i, and X� of X:

X̃ = �− 1�n−1 �f

�p
, X�

i =
�f

�pi
� , Xi = �− 1�n �f

�qi , X� = −
�f

�x� .

nserting this back into X, we arrive at Eq. �29�. Note also that then,

iX� = �− 1�n−1p
�f

�p
+ �− 1�n−1pi

� �f

�pi
� = �− 1�n−1L�f .

ext, X will be exact Hamiltonian if and only if, in addition,

f = �− 1�n−1iX� ,

hich in view of the preceding equation means that f must be an eigenfunction of the scaling
perator L� with eigenvalue 1, this is well known to be the case if and only if f is linear in the
ultimomentum variables pr

� and the energy variable p. �

Now we turn to multivector fields of tensor degree �n. Here, the main result is the following.

Theorem 2.4: An r-multivector field X on P, with 0�r�n, is locally Hamiltonian if and only
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f the coefficients X�1¯�r, Xi,�2¯�r, Xi
�1¯�r, and X̃�2¯�r in its standard local coordinate represen-

ation (26) satisfy the following conditions:

1� The coefficients X�1¯�r depend only on the local coordinates x� for M and, in the special
case N=1, also on the local fiber coordinates qr for E,

2� The coefficients Xi,�2¯�r are “antisymmetric polynomials in the multimomentum variables”
of degree r−1, i.e., they can be written in the form

Xi,�2¯�r = �
s=1

r

Xs−1
i,�2¯�r, �30�

with

Xs−1
i,�2¯�r =

1

�s − 1�!
1

�r − s�! �
��Sr−1

�− 1��pi2

���2�
¯ pis

���s�Ys−1
ii2¯is,���s+1�¯���r�, �31�

where Sr−1 denotes the permutation group of 	2, . . . ,r
 and the coefficients Ys−1
ii2¯is,�s+1¯�r

depend only on the local coordinates x� for M as well as the local fiber coordinates qr for E
and are totally antisymmetric in i , i2 , . . . , is as well as in �s+1 , . . . ,�r.

3� The remaining coefficients Xi
�1¯�r and X̃�2¯�r can be expressed in terms of the previous ones

and of new coefficients X−
�1¯�r depending only on the local coordinates x� for M as well as

the local fiber coordinates qr for E and are totally antisymmetric in �1 , . . . ,�r, according to

Xi
�1¯�r = − p

�X�1¯�r

�qi + pi
��X�1¯�r

�x� − �
s=1

r

pi
�s

�X�1¯�s−1��s+1¯�r

�x�

− �−1��
s=1

r

�− 1�s−1pj
�s

�Xj,�1¯�s−1�s+1¯�r

�qi � +
�X−

�1¯�r

�qi , �32�

(the first term being absent as soon as N�1) and

X̃�2¯�r = �− 1�rp
�X�2¯�r�

�x� − �−1�pi
��Xi,�2¯�r

�x� − �
s=2

r

pi
�s

�Xi,�2¯�s−1��s+1¯�r

�x� �
− �− 1�r�X−

�2¯�r�

�x� . �33�

t is exact Hamiltonian if and only if, in addition, the coefficents Xi,�2¯�r depend only on the local
oordinates x� for M as well as the local fiber coordinates qr for E and the coefficients X−

�1¯�r

anish.
Proof: The proof will be carried out by “brute force” computation.9 We obtain for the Lie

erivative of � along X the expression

LX� = −
1

�r − 2�!
�X̃�3¯�r�

�x� dnx�3¯�r
−

1

�r − 1�!
� �X̃�2¯�r

�qi − �− 1�r−1�Xi
�2¯�r�

�x� �dqi ∧ dnx�2¯�r

−
1

�r − 1�!� �X̃�2¯�r

�pi
� +

�Xi,�2¯�r

�x� − �
s=2

r

��
�s

�Xi,�2¯�s−1��s+1¯�r

�x� �dpi
� ∧ dnx�2¯�r

−
1

�r − 1�!
� �X̃�2¯�r

�p
+ �− 1�r−1�X�2¯�r�

�x� �dp ∧ dnx�2¯�r

−
�− 1�r� �X�1¯�r

i +
�Xi

�1¯�r�dqi ∧ dp ∧ dnx�1¯�r
r! �q �p
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−
�− 1�r

r!
� �X�1¯�r

�pi
� − �

s=1

r

�− 1�s−1��
�s

�Xi,�1¯�s−1�s+1¯�r

�p
�dpi

� ∧ dp ∧ dnx�1¯�r

+
�− 1�r

r!
��i

k��
��X�1¯�r

�x� − �
s=1

r

�i
k��

�s
�X�1¯�s−1��s+1¯�r

�x�

− �
s=1

r

�− 1�s−1��
�s

�Xk,�1¯�s−1�s+1¯�r

�qi −
�Xi

�1¯�r

�pk
� �dqi ∧ dpk

� ∧ dnx�1¯�r

−
�− 1�r

r!

�Xi
�1¯�r

�qj dqi ∧ dqj ∧ dnx�1¯�r
+

�− 1�r−1

�r − 1�!
�Xl,�2¯�r

�pk
� dpk

� ∧ dpl
� ∧ dnx��2¯�r

−
1

r!

�X�1¯�r

�qj dqi ∧ dqj ∧ dpi
� ∧ dnx��1¯�r

−
1

r!

�X�1¯�r

�pk
� dql ∧ dpk

� ∧ dpl
� ∧ dnx��1¯�r

+
1

r!

�X�1¯�r

�p
dqi ∧ dpi

� ∧ dp ∧ dnx��1¯�r
.

Note that the last three terms would have to be omitted if r=n.�
Let us number the terms in this equation from 1 to 12. As we shall see, each of these terms

ust vanish separately.
Term No. 12: After contraction with a suitably chosen �n−r+2�-multivector field, we see that

�1¯�r cannot depend on p.
Term No. 11: Given indices i, � and mutually different indices �1 , . . . ,�r, we choose indices

j and �� 	�1 , . . . ,�r
 �here we use the hypothesis that r�n� such that either j� i or ��� and,
hen r�n−1, a complementary set of indices �1 , . . . ,�n−r−1 to contract this term with the multi-
ector field � j ∧��

i ∧��
j ∧��1

∧ ¯ ∧��n−r−1
�no sum over j�, concluding that X�1¯�r cannot depend

n pi
�. Obviously, there is one case where this argument does not work, namely when N=1,

=n−1, and �� 	�1 , . . . ,�r
. This situation will however be covered in the next item.
Term No. 6: Given indices k, � and mutually different indices �1 , . . . ,�r such that

� 	�1 , . . . ,�r
, we choose a complementary set of indices �1 , . . . ,�n−r−1 to contract this term with
he multivector field ��

k ∧�0∧��∧��1
∧ ¯ ∧��n−r−1

, concluding that X�1¯�r cannot depend on pk
�,

ince in this case the second term in the bracket gives no contribution. In particular, this settles the
emaining case of the previous item.

Term No. 10: After contraction with a suitably chosen �n−r+2� - multivector field, we see that
�1¯�r cannot depend on ql if N�1. For N=1, the whole term vanishes identically, and no
onclusion can be drawn.

This proves the statements in item �1� of the theorem. Moreover, it allows to simplify term No.
, as follows:

−
�− 1�r−1

�r − 1�!
�Xi,�2¯�r

�p
dpi

� ∧ dp ∧ dnx��2¯�r
.

s before, contraction with a suitably chosen �n−r+2�-multivector field shows that Xk,�2¯�r

annot depend on p.
Next we analyze term No. 9, which will give an important restriction on the coefficients

i,�2¯�r. Given indices i , j ,� ,� and mutually different indices �2 , . . . ,�r, we choose a set of
ndices �1 , . . . ,�n−r such that 	�2 , . . . ,�r
� 	�1 , . . . ,�n−r
=� to contract this term with the multi-

i j
ector field ��∧��∧��1
∧ ¯ ∧��n−r

, obtaining
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�Xj,�2¯�r

�pi
� ���2¯�r�1¯�n−r

=
�Xi,�2¯�r

�pj
� ���2¯�r�1¯�n−r

. �34�

ow assume the index � to be chosen such that �� 	�2 , . . . ,�r ,�1 , . . . ,�n−r
. Then if
� 	�2 , . . . ,�r
, we can take �=�1, say, to conclude that Xj,�2¯�r cannot depend on pi

�,

�Xj,�2¯�r

�pi
� = 0 if � � 	�2, . . . ,�r
 . �35�

oreover, if �� 	�2 , . . . ,�r
, this result implies that applying an operator ��
i� �with arbitrary i�� to

q. �34� gives zero since on the right-hand side �rhs�, the �-tensor kills all terms in the sum over
he indices �2 , . . . ,�r in which the index � appears among them,

�2Xj,�2¯�r

�pi1
��pi2

� = 0 if � � 	�2, . . . ,�r
 �no sum over �� . �36�

he general solution to Eqs. �35� and �36� can be written in the form

Xj,�2¯�r = �
s=1

r
1

�s − 1�!
1

�r − s�! �
��Sr−1

�− 1��pj2

���2�
¯ pjs

���s�Ys−1
j,j2¯js,���s+1�¯���r�,

here Sr−1 denotes the permutation group of 	2, . . . ,r
 and the newly introduced coefficients

s−1
i,j2¯js,�s+1¯�r are local functions on E, they do not depend on the multimomentum variables pk

� or
he energy variable p and are totally antisymmetric both in j2 , . . . , js and in �s+1 , . . . ,�r. Differ-
ntiating this expression with respect to pi

� with �=�2 gives

�Xj,��3¯�r

�pi
� ����3¯�r�1¯�n−r

�no sum over ��

= �
s=2

r
1

�s − 2�!
1

�r − s�! �
��Sr−2

�− 1��pj3

���3�
¯ pjs

���s�Ys−1
j,ij3¯js,���s+1�¯���r�����3¯�r�1¯�n−r

,

here Sr−2 denotes the permutation group of 	3, . . . ,r
, which shows that Eq. �34� will hold
rovided that

Ys−1
j,ij3¯js,���s+1�¯���r� = − Ys−1

i,j j3¯js,���s+1�¯���r�.

his proves the statements in item �2� of the theorem.
We proceed with terms Nos. 4 and 5 which imply

�X̃�2¯�r

�p
= �− 1�r�X�2¯�r�

�x� ,
�Xi

�1¯�r

�p
= −

�X�1¯�r

�qi . �37�

e observe first of all that the rhs of both equations does not depend on the energy variable, so
hey can be immediately integrated with respect to p.

From term No. 3 we infer

�X̃�2¯�r

�pi
� = −

�Xi,�2¯�r

�x� + �
s=2

r

��
�s

�Xi,�2¯�s−1��s+1¯�r

�x� . �38�

n explicit calculation shows that the rhs of this equation does not depend on the pj
�, not only

hen �� 	�2 , . . . ,�r
 but even when �� 	�2 , . . . ,�r
. �Of course, it also does not depend on p.�
hus, according to Lemma A.2 formulated in the appendix, we can integrate Eq. �38� explicitly to

−1
btain �recall that � is the operator that acts on polynomials in the multimomentum variables
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nd the energy variable without constant term by multiplying the homogeneous component of
egree s by 1/s�

X̃�2¯�r = �− 1�rp
�X�2¯�r�

�x� − �−1�pi
��Xi,�2¯�r

�x� − �
s=2

r

pi
�s

�Xi,�2¯�s−1��s+1¯�r

�x� � + Ỹ�2¯�r,

�39�

here the Ỹ�2¯�r are local functions on E: they do not depend on the multimomentum variables
r on the energy variable.

The same procedure works for term No. 7. There, we are left with

�Xi
�1¯�r

�pk
� = �i

k��
��X�1¯�r

�x� − �
s=1

r

�i
k��

�s
�X�1¯�s−1��s+1¯�r

�x� − �
s=1

r

�− 1�s−1��
�s

�Xk,�1¯�s−1�s+1¯�r

�qi .

�40�

sing the same argument as before, we show that the rhs does not depend on the pl
�, not only

hen �� 	�1 , . . . ,�r
 but even when �� 	�1 , . . . ,�r
, and neither does it depend on p. Therefore,
e can integrate Eq. �40� explicitly to obtain

Xi
�1¯�r = − p

�X�1¯�r

�qi + pi
��X�1¯�r

�x� − �
s=1

r

pi
�s

�X�1¯�s−1��s+1¯�r

�x�

− �−1��
s=1

r

�− 1�s−1pk
�s

�Xk,�1¯�s−1�s+1¯�r

�qi � + Yi
�1¯�r, �41�

here the Yi
�1¯�r are local functions on E: they do not depend on the multimomentum variables

r on the energy variable.
Finally, we turn to terms Nos. 1, 2, and 8. They imply

�X̃�3¯�r�

�x� = 0,
�X̃�2¯�r

�qi = �− 1�r−1�Xi
�2¯�r�

�x� ,
�Xi

�1¯�r

�qj =
�Xj

�1¯�r

�qi ,

espectively. With the help of �39�, these reduce to

�Ỹ�3¯�r�

�x� = 0,
�Ỹ�2¯�r

�qi = �− 1�r−1�Yi
�2¯�r�

�x� ,
�Yi

�1¯�r

�qj =
�Y j

�1¯�r

�qi ,

hich is easily solved by setting

Ỹ�2¯�r = �− 1�r−1�X−
�2¯�r�

�x� , Yi
�1¯�r =

�X−
�1¯�r

�qi . �42�

ere, the X−
�1¯�r are local functions on E: they do not depend on the multimomentum variables or

n the energy variable. This completes the proof of the statements in item �3� of the theorem.
All that remains to be shown are the final statements concerning exact Hamiltonian multivec-
or fields. To this end, we calculate
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LX� =
1

�r − 1�!� �X�2¯�r�

�x� p − �− 1�r�Xi,�2¯�r

�x� pi
�

+ �− 1�r�
s=2

r
�Xi,�2¯�s−1��s+1¯�r

�x� pi
�s − �− 1�rX̃�2¯�r�dnx�2¯�r

−
1

r!
� �X�1¯�r

�x� pi
� − �

s=1

r
�X�1¯�s−1��s+1¯�r

�x� pi
�s −

�X�1¯�r

�qi p

− �
s=1

r

�− 1�s−1�Xj,�1¯�s−1�s+1¯�r

�qi pj
�s − Xi

�1¯�r�dqi ∧ dnx�1¯�r

+
1

r!
� �X�1¯�r

�pj
� p + �

s=1

r

�− 1�s−1�Xi,�1¯�s−1�s+1¯�r

�pj
� pi

�s�dpj
� ∧ dnx�1¯�r

+
1

r!
� �X�1¯�r

�p
p + �

s=1

r

�− 1�s−1�Xi,�1¯�s−1�s+1¯�r

�p
pi

�s�dp ∧ dnx�1¯�r
,

here we have omitted four terms that vanish because X is locally Hamiltonian. Moreover, using
he expressions derived above for locally Hamiltonian multivector fields, we see that the other
erms vanish as well if and only if we have

��−1 − 1���
s=1

r

�− 1�s−1pj
�s

�Xj,�1¯�s−1�s+1¯�r

�qi � = 0,

��−1 − 1��pi
��Xi,�2¯�r

�x� − �
s=2

r

pi
�s

�Xi,�2¯�s−1��s+1¯�r

�x� � = 0,

nd

�X−
�1¯�r

�qi = 0,
�X−

�2¯�r�

�x� = 0.

ut this means that the coefficients of the multimomentum variables in the above expressions must
e independent of the multimomentum variables and that the coefficients X−

�1¯�r can without loss
f generality be assumed to vanish, which completes the proof of the theorem. �

Proof of Theorem 1.3, part 1: The statements of Theorem 1.3 about multivector fields are, in
heir local form, based on the local decomposition given in Proposition 2.1, taking into account the
caling behavior of the coefficient functions that follows from Theorem 2.4, together with that of
he coordinate vector fields. The global version of these statements can be obtained by glueing
ogether such local decompositions using appropriate partitions of unity. To see that the homoge-
eous components Xs, s=−1, . . . ,r−1, of a fiberwise polynomial locally Hamiltonian
-multivector field X are locally Hamiltonian, we compute

0 = �L��k diX � = �
s=0

r−1

�s + 1�k diXs
�, k = 1, . . . ,r − 1.

ogether with diX�=0, this leads to a Vandermonde matrix equation with entries 0 ,2 ,3 , . . . ,
−1 annihilating the vector �diX−1

� , . . . ,diXr−1
��T. As the determinant of a Vandermonde matrix

oes not vanish, the above vector must vanish. �

The following proposition clarifies the interpretation of homogeneous locally Hamiltonian

ultivector fields.
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Proposition 2.5: Let X be a locally Hamiltonian r-multivector field on P. Then

1) X is exact Hamiltonian iff �� ,X� takes values in the kernel of �.
2) If �� ,X�−sX takes values in the kernel of �, for some integer s between 0 and r−1, then X

is globally Hamiltonian with associated Poisson form

�− 1�r−1

s + 1
iX� .

3) If �� ,X�+X takes values in the kernel of �, then iX�=0.

Proof: The first statement follows immediately from Eq. �25�. Similarly, the second claim can
e proved by multiplying Eq. �25� by �−1�r−1 / �s+1� and combining it with Eq. �1� and Eq. �4� to
ive

d� �− 1�r−1

s + 1
iX�� =

�− 1�r−1

s + 1
LX� +

1

s + 1
iX� =

1

s + 1
i��,X�+X� ,

hich equals iX� since, by hypothesis, i��,X�−sX�=0. Finally, the third statement follows by ob-
erving that the kernel of � is contained in the kernel of � and hence according to the hypothesis
ade,

0 = i��,X�+X� = L�iX� − iXL�� + iX� = L�iX� ,

here we have used the invariance of � under �. Therefore, according to Proposition A.1, iX� is
he pull-back to P of an n-form on E via the projection that defines P as a vector bundle over E,
hich in turn can be obtained as the pull-back to E of iX� via the zero section of P over E. But this
ull-back is zero, since � vanishes along the zero section of P over E. �

It may be instructive to spell all this out more explicitly for locally Hamiltonian vector fields
r=1�.

We begin by writing down the general form of a locally Hamiltonian vector field X: in adapted
ocal coordinates, it has the representation

X = X� �

�x� + Xi �

�qi + Xi
� �

�pi
� + X̃

�

�p
,

here according to Theorem 2.4, the coefficient functions X� and Xi depend only on the local
oordinates x� for M and on the local fiber coordinates qr for E �the X� being independent of the

atter as soon as N�1�, whereas the coefficient functions Xi
� and X̃ are explicitly given by

Xi
� = − p

�X�

�qi + pi
��X�

�x� − pi
��X�

�x� − pj
��Xj

�qi +
�X−

�

�qi �43�

the first term being absent as soon as N�1� and

X̃ = − p
�X�

�x� − pi
� �Xi

�x� +
�X−

�

�x� �44�

ith coefficient functions X−
� that once again depend only on the local coordinates x� for M and on

he local fiber coordinates qr for E. Regarding the decomposition �19�, the situation here is
articularly interesting and somewhat special since � is nondegenerate on vector fields, so there
re no nontrivial vector fields taking values in the kernel of � and hence the decomposition �19�
an be improved.

Corollary 2.6: Any locally Hamiltonian vector field X on P can be uniquely decomposed into
he sum of two terms,
X = X− + X+, �45�
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here

i) X− has scaling degree −1, i.e., �� ,X−�=−X−, and is vertical with respect to the projection
onto E.

ii) X+ has scaling degree 0, i.e., �� ,X+�=0, is exact Hamiltonian, is projectable onto E and
coincides with the canonical lift of its projection onto E.

Proof: In adapted local coordinates, the two contributions to X are, according to Eqs. �43� and
44�, given by

X− =
�X−

�

�qi

�

�pi
� +

�X−
�

�x�

�

�p

nd

X+ = X� �

�x� + Xi �

�qi − � �Xj

�qi pj
� −

�X�

�x� pi
� +

�X�

�x� pi
� +

�X�

�qi p� �

�pi
� − � �Xi

�x� pi
� +

�X�

�x� p� �

�p
.

hus all statements of the corollary follow from what has already been shown, except for the very
ast one, which is based on the following remark. �

Remark: Every bundle automorphism of E �as a fiber bundle over M� admits a canonical lift
o a bundle automorphism of its first order jet bundle JE �as an affine bundle over E� and, by
ppropriate �twisted affine� dualization, to the extended multiphase space P �as a vector bundle
ver E�. Similarly, passing to generators of one-parameter groups, one sees that every vector field

E on E that is projectable to a vector field XM on M admits a canonical lift to a vector field XJE

n JE and, by appropriate �twisted affine� dualization, to a vector field XP on P. �See, for example,
ef. 7, Sec. 4B.� When N=1, lifting to P is even possible for arbitrary diffeomorphisms of E and
rbitrary vector fields on E, since in this case P can be identified with the nth exterior power of the
otangent bundle of E. Explicitly, in terms of adapted local coordinates �x� ,qi , pi

� , p�, we may
rite

XM = X� �

�x� and XE = X� �

�x� + Xi �

�qi ,

here, except for N=1, the X� do not depend on the qr; then the coordinate expression for the
ifted vector field, XP, is precisely given by the expression for X+ above. Obviously, XP has scaling
egree 0 and hence is not only locally but even exact Hamiltonian. Conversely, starting with an
xact Hamiltonian vector field X+, we can obtain XM and XE by projection onto M and E, respec-
ively. Thus, the coordinate expression for X+ shows that precisely all exact Hamiltonian vector
elds are obtained by this lifting procedure. Similarly, one can show that all diffeomorphisms of

P that preserve the multicanonical form � are obtained by lifting of automorphisms or, for N=1,
iffeomorphisms of E, this is the field theoretical analog of a well-known theorem in geometric
echanics, according to which all diffeomorphisms of a cotangent bundle that preserve the ca-

onical form � are induced by diffeomorphisms of its base manifold.
To conclude this section, let us note that the definition of projectability of vector fields can be

mmediately generalized to multivector fields: an r-multivector field XE on the total space E of a
ber bundle over a manifold M with bundle projection � :E→M is called projectable if for any

wo points e1 and e2 in E,

�rTe1
� · XE�e1� = �rTe2

� · XE�e2� if ��e1� = ��e2� ,

r in other words, if there exists an r-multivector field XM on M such that

�rT� � XE = XM � � .
n adapted local coordinates, this amounts to requiring that if we write
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XE =
1

r!
X�1¯�r

�

�x�1
∧ ¯ ∧

�

�x�r
+ ¯ ,

here the dots denote 1-vertical terms, the coefficients X�1¯�r should depend only on the local
oordinates x� for M but not on the local fiber coordinates qr for E. Now we introduce the
ollowing terminology.

Definition 2.7: An r-multivector field on P is called projectable if it is projectable with respect
o any one of the three projections from P: to P0, to E, and to M.

With this terminology, Theorem 2.4 states that for 0�r�n, locally Hamiltonian r-multivector
elds on P are projectable as soon as N�1 and are projectable to E but not necessarily to P0 or

o M when N=1. �Inspection of Eq. �32� shows, however, that they are projectable to P0 if and
nly if they are projectable to M.�

Considering the special case of vector fields �r=1�, we believe that vector fields on the total
pace of a fiber bundle over space-time which are not projectable should be regarded as patho-
ogical, since they generate transformations which do not induce transformations of space-time. It
s hard to see how such transformations might be interpreted as candidates for symmetries of a
hysical system. By analogy, we shall adopt the same point of view regarding multivector fields of
igher degree, since although these do not generate diffeomorphisms of E as a manifold, they may
erhaps allow for an interpretation as generators of superdiffeomorphisms of an appropriate su-
ermanifold built over E as its even part.

II. POISSON FORMS AND HAMILTONIAN FORMS

Our aim in this section is to give an explicit construction of Poisson �n−r�-forms and, more
enerally, of Hamiltonian �n−r�-forms on the extended multiphase space P, where 0�r�n.
Note that Eq. �11� only makes sense for r in this range.� A special role is played by closed forms,
ince closed forms are always Hamiltonian and closed forms that vanish on the kernel of � are
lways Poisson, these are in a sense the trivial examples. In other words, the main task is to
nderstand the extent to which general Hamiltonian forms deviate from closed forms and general
oisson forms deviate from closed forms that vanish on the kernel of �.

As a warm-up exercise, we shall settle the extreme cases of tensor degree 0 and n. The case
=n has already been analyzed in Ref. 2, so we just quote the result.

Proposition 3.1: A function f on P, regarded as a 0-form, is always Hamiltonian and even
oisson. Moreover, its associated Hamiltonian n-multivector field X is, in adapted local coordi-
ates and modulo terms taking values in the kernel of �, given by Eq. (29).

The case r=0 is equally easy.
Proposition 3.2: An n-form f on P is Hamiltonian or Poisson if and only if it can be written

s the sum of a constant multiple of � with a closed form which is arbitrary if f is Hamiltonian and
anishes on the kernel of � if f is Poisson.

Indeed, if f is a Hamiltonian n-form, the multivector field X that appears in Eq. �11� will in
act be a function which must be locally Hamiltonian and hence, by Proposition 2.2, constant.
hus df must be proportional to � and so f must be the sum of some constant multiple of � and
closed form.

The intermediate cases �0�r�n� are much more interesting. To handle them, the first step is
o identify the content of the kernel condition �13� in adapted local coordinates �for completeness,
e also include the two extreme cases�.

Proposition 3.3: An �n−r�-form f on P, with 0�r�n, vanishes on the kernel of � if and only
f, in adapted local coordinates, it can be written in the form

f =
1

r!
f�1¯�rdnx�1¯�r

+
1

�r + 1�!
f i

�0¯�r dqi ∧ dnx�0¯�r
+

1

r!
f i,�1¯�r dpi

� ∧ dnx��1¯�r

+
1

f��0¯�r�dp ∧ dnx�0¯�r
− dqi ∧ dpi

� ∧ dnx�0¯�r�
� , �46�
�r + 1�!
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here the second term in the last parentheses is to be omitted if r=n−1 whereas only the first term
emains if r=n.

Note that for one-forms �just as for functions�, the kernel condition �13� is void, since � is
ondegenerate. Also, it is in this case usually more convenient to replace Eq. �46� by the standard
ocal coordinate representation

f = f� dx� + f i dqi + f�
i dpi

� + f0 dp . �47�

Proof: From the particular expression for � in adapted local coordinates, we see first of all
hat forms of degree n−r vanishing on the kernel of � must be �n−r−2�-horizontal �since they
anish on 3-vertical multivector fields� and that the only term which is not �n−r−1�-horizontal is

dqi ∧ dpk
� ∧ dnx�0¯�r�

.

urthermore, f must vanish on the bivectors

�

�qi ∧
�

�pk
� + �i

k �

�p
∧

�

�x� and
�

�pi
� ∧

�

�x� +
�

�pi
� ∧

�

�x�

hich yields the statement of the proposition. For more details, see Ref. 9 �

The proposition above can be used to prove the following interesting and useful fact.
Proposition 3.4: An �n−r�-form f on P, with 0�r�n, vanishes on the kernel of � if and only

f there exists an �r+1�-multivector field X on P such that

f = iX� . �48�

hen obviously,

df = LX� . �49�

n particular, f is closed if and only if X is locally Hamiltonian.
At every point of P, the statement that the inclusion of the kernel of � in the kernel of f

mplies that there is a multivector Y such that iY�= f at this point, can be shown without reference
o the particular form of �.10 However, the expression for � in adapted local coordinates shows
hat we can even obtain a multivector field Y with this property.

Proof: The “if” part being obvious, observe that it suffices to prove the “only if” part locally,
n the domain of definition of an arbitrary system of adapted local coordinates, by constructing the
oefficients of X from those of f . �Indeed, since the relation between f and X postulated in Eq. �48�
s purely algebraic, i.e., it does not involve derivatives, we can construct a global solution patching
ogether local solutions with a partition of unity.� A comparison of iX�, where X is an
r+1�-multivector field �!� given by Eq. �26�, with �46� shows that when r�n, this can be
chieved by setting

X�0¯�r = �− 1�rf��0¯�r, Xi,�1¯�r = �− 1�rf i,�1¯�r, �50�

Xi
�0¯�r = �− 1�r+1f i

�0¯�r, X̃�1¯�r = − f�1¯�r, �51�

hile for r=n, only the last equation is pertinent �for r=n−1, the same conclusion can also be
eached by comparing �28� and �47��. �

Corollary 3.5: An �n−r�-form f on P, with 0�r�n, is a Hamiltonian form if and only if df
anishes on the kernel of � and is a Poisson form if and only if both df and f vanish on the kernel
f �.

With these preliminaries out of the way, we can proceed to the construction of Poisson forms
hich are not closed. As we shall see, there are two such constructions which, taken together, will

e sufficient to handle the general case.
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The first construction is a generalization of the universal multimomentum map of Ref. 2,
hich to each exact Hamiltonian r-multivector field F on P associates a Poisson �n−r�-form J�F�
n P defined by Eq. �52� below. What remained unnoticed in Ref. 2 is that this construction works
ven when X is only locally Hamiltonian. In fact, we have the following generalization of Propo-
ition 4.3 of Ref. 2.

Proposition 3.6: For every locally Hamiltonian r-multivector field F on P, with 0�r�n, the
ormula

J�F� = �− 1�r−1iF� �52�

efines a Poisson �n−r�-form J�F� on P whose associated Hamiltonian multivector field is
+ �� ,F�, that is, we have

d�J�F�� = iF+��,F�� . �53�

Proof: Obviously, J�F� vanishes on the kernel of � since this is contained in the kernel of �.
oreover, since LF� is supposed to vanish, we can use the algebraic relations for the Lie deriva-

ive along multivector fields and �=−i�� to compute

d�J�F�� = �− 1�r−1d�iF�� = �− 1�r−1LF� − iF d� = �− 1�rLFi�� + i�LF� + iF� = − i�F,��� + iF� .

�

The second construction uses differential forms on E, pulled back to differential forms on P
ia the target projection  : P→E. Characterizing which of these are Hamiltonian forms and which
re Poisson forms is a simple exercise.

Proposition 3.7: Let f0 be an �n−r�-form on E, with 0�r�n. Then

i) *f0 is a Hamiltonian form on P if and only if df0 is �n−r�-horizontal.
ii) *f0 is a Poisson form on P if and only if f0 is �n−r−1�-horizontal and df0 is

�n−r�-horizontal.

Proof: In adapted local coordinates �x� ,qi� for E and �x� ,qi , pi
� , p� for P, we can write

f0 =
1

r!
f0

�1¯�rdnx�1¯�r
+

1

�r + 1�!
�f0�i

�0¯�r dqi ∧ dnx�0¯�r
+ ¯ , �54�

here the dots denote higher order terms containing at least two dq’s. Now applying Proposition
.3 to *f0, we see that *f0 will vanish on the kernel of � if and only if the terms denoted by the
ots all vanish, i.e., if f0 can be written in the form

f0 =
1

r!
f0

�1¯�rdnx�1¯�r
+

1

�r + 1�!
�f0�i

�0¯�r dqi ∧ dnx�0¯�r
. �55�

ut this is precisely the condition for the �n−r�-form f0 to be �n−r−1�-horizontal. �Note that this
quivalence holds even when r=n−1, provided we understand the condition of being 0-horizontal
o be empty.� Similarly, since Proposition 3.4 implies that a form on P is Hamiltonian if and only
f its exterior derivative vanishes on the kernel of �, the same argument applied to d�*f0�
* df0 shows that, irrespectively of whether *f0 itself vanishes on the kernel of � or not and
ence whether we use Eq. �54� or Eq. �55� as our starting point, *f0 will be Hamiltonian if and
nly if

df0 =
1

�r − 1�!
�f0

�2¯�r�

�x� dnx�2¯�r
+

1

r!
� �f0

�1¯�r

�qi −
��f0�i

�1¯�r�

�x� �dqi ∧ dnx�1¯�r
.

ut this is precisely the condition for the �n−r+1�-form df0 to be �n−r�-horizontal. Moreover, it

s easy to write down an associated Hamiltonian r-multivector field X0,
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X0 =
�− 1�r

r!
� �f0

�1¯�r

�qi −
��f0�i

�1¯�r�

�x� � �

�pi
�1

∧
�

�x�2
∧ ¯ ∧

�

�x�r

−
1

�r − 1�!
�f0

�2¯�r�

�x�

�

�p
∧

�

�x�2
∧ ¯ ∧

�

�x�r
.

�

Note also that if f0 is �n−r−1�-horizontal and thus has the form stated in Eq. �55�, df0 would
ontain just one additional higher order term, namely

1

�r + 1�!
��f0� j

�0¯�r

�qi dqi ∧ dqj ∧ dnx�0¯�r
.

ts absence means that

��f0� j
�0¯�r

�qi =
��f0�i

�0¯�r

�qj ,

o there exist local functions f0
�0¯�r on E such that

�f0�i
�0¯�r =

�f0
�0¯�r

�qi .

his implies that f0 can be written as the sum

f0 = fh + fc �56�

f a horizontal form fh and a closed form fc, defined by setting

fh =
1

r!
� f0

�1¯�r −
�f0

�1¯�r�

�x� �dnx�1¯�r

nd

fc =
1

r!

�f0
�1¯�r�

�x� dnx�1¯�r
+

1

�r + 1�!
�f0

�0¯�r

�qi dqi ∧ dnx�0¯�r
.

he same kind of local decomposition into the sum of a horizontal form and a closed form can
lso be derived if f0 is arbitrary and thus has the form stated in Eq. �54�; this case can be handled
y decreasing induction on the number of dq’s that appear in the higher order terms denoted by the
ots in Eq. �54�. We shall refrain from working this out in detail, since unfortunately the decom-
osition �56� depends on the system of adapted local coordinates used in its construction: under
oordinate transformations, the terms fh and fc mix. Therefore, this decomposition has no coor-
inate independent meaning and is in general valid only locally.

Finally, we note that in the above discussion, we have deliberately excluded the extreme cases
=0 �n-forms� and r=n �functions�. For n-forms, the equivalences stated above would be incorrect
ince if f0 has tensor degree n and hence X0 has tensor degree 0, iX0

� would by Proposition 2.2 be
constant multiple of � whereas d�*f0� would be reduced to a linear combination of terms of the

orm dqi∧dnx, implying that *f0 can only be Hamiltonian if it is closed. For functions, the
onstruction is uninteresting since according to Proposition 3.1, all functions on P are Poisson,
nd not just the ones lifted from E.

Now we are ready to state our main decomposition theorem. �In what follows, we shall simply
rite f0 instead of *f0 when there is no danger of confusion, the main exception being the proof
f Theorem 3.8 below.�

Theorem 3.8: Any Hamiltonian �n−r�-form and, in particular, any Poisson �n−r�-form f on

P, with 0�r�n, admits a unique decomposition
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f = f0 + f+ + fc with f+ = �
s=1

r

fs, �57�

here

1) f0 is (the pull-back to P of) an �n−r�-form on E whose exterior derivative is
�n−r�-horizontal and which is otherwise arbitrary if f is Hamiltonian whereas it is restricted
to be �n−r−1�-horizontal iff f is Poisson.

2) f+ is of the form

f+ = J�F� = �− 1�r−1iF� with F = �1 + L��−1X+, �58�

and correspondingly, for s=1, . . . ,r, fs is of the form

fs =
�− 1�r−1

s
iXs−1

� , �59�

where X is any fiberwise polynomial Hamiltonian r-multivector field associated with f ,
decomposed according to Eq. (19).

3) fc is a closed �n−r�-form on P which vanishes on the zero section of P (as a vector bundle
over E) and which is otherwise arbitrary if f is Hamiltonian whereas it is restricted to vanish
on the kernel of � iff f is Poisson.

e shall refer to Eq. (57) and to Eq. (60) below as the canonical decomposition of Hamiltonian
orms or Poisson forms on P.

Proof: Let f be a Poisson �n−r�-form and X be a Hamiltonian r-multivector field associated
ith f . As already mentioned in the introduction, we may without loss of generality assume X to
e fiberwise polynomial and decompose it into homogeneous components with respect to scaling
egree, according to Eq. �19�,

X = X− + X+ + � with X+ = �
s=1

r

Xs−1.

hen defining F as in the theorem, or equivalently, by

F = �
s=1

r

Fs−1 with Fs−1 =
1

s
Xs−1,

e obtain

F + ��,F� = X+,

nd hence according to Eq. �53�, the exterior derivative of the difference f −J�F� is given by

d�f − J�F�� = df − d�J�F�� = iX� − iX+
� = iX−

� .

pplying the equivalence stated in Eq. �23�, we see that since X− has scaling degree −1, iX−
� must

ave scaling degree 0 and hence, according to Proposition A.1, is the pull-back to P of some
n−r�-form f0� on E,

d�f − J�F�� = iX−
� = *f0�.

ext, we define f0 to be the restriction of f −J�F� to the zero section of P, or more precisely, its

ull-back to E with the zero section s0 :E→P,
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f0 = s0
*�f − J�F�� ,

nd set

fc = f − *f0 − J�F� .

hen

dfc = d�f − J�F�� − d�*s0
*�f − J�F��� = d�f − J�F�� − *s0

*d�f − J�F�� = *f0� − *s0
**f0� = 0,

nd

s0
*fc = s0

*�f − J�F�� − s0
**f0 = f0 − s0

**f0 = 0,

howing that indeed, fc is closed and vanishes on the zero section of P. �

Proof of Theorem 1.3, part 2: The statements of Theorem 1.3 about differential forms are
mmediate consequences of Theorem 3.8. �

Remark: It should be noted that despite appearances, the decompositions �57� of Theorem 3.8
nd �21� of Theorem 1.3 are not necessarily identical: for s=1, . . . ,r, the fs of Eq. �57� and the fs

f Eq. �21� may differ by homogeneous closed �n−r�-forms of scaling degree s. But the decom-
osition �57� of Theorem 3.8 seems to be the more natural one.

Theorem 3.8 implies that Poisson forms have a rather intricate local coordinate representation,
nvolving two locally Hamiltonian multivector fields. Indeed, if we take f to be a general Poisson
n−r�-form on P, with 0�r�n, we can apply Propositions 3.4 and 3.6 to rewrite Eq. �57� in the
orm

f = f0 + �− 1�r−1iF� + �− 1�riFc
� , �60�

here f0 is as before while F and Fc are two locally Hamiltonian multivector fields on P of tensor
egree r and r+1, respectively, satisfying F−=0 and �Fc�−=0. �The condition �Fc�−=0 will guar-
ntee that iFc

� vanishes on the zero section of P.� In terms of the standard local coordinate
epresentations �46� for f , �55� for f0, �26� for F and for Fc, and for � and �, Eqs. �2� and �3�, we
btain

f�1¯�r = �− 1�r−1pF�1¯�r + �
s=1

r

�− 1�r−spi
�sFi,�1¯�s−1�s+1¯�r + f0

�1¯�r + �− 1�r−1�F̃c��1¯�r,

�61�

f i
�0¯�r = − �

s=0

r

�− 1�spi
�sF�0¯�s−1�s+1¯�r + �f0�i

�0¯�r − �Fc�i
�0¯�r, �62�

f i,�1¯�r = �Fc�i,�1¯�r, �63�

f��0¯�r = �Fc��0¯�r, �64�

here the coefficients of F and of Fc are subject to the constraints listed in Theorem 2.4; in

articular, the coefficients �Fc�i
�0¯�r and �F̃c��1¯�r can be completely expressed in terms of the

oefficients �Fc��0¯�r and �Fc�i,�1¯�r, according to Eqs. �32� and �33� �with r replaced by r+1, X
eplaced by Fc, and X− replaced by 0�. In particular, we see that the coefficients f�1¯�r are
antisymmetric polynomials in the multimomentum variables” of degree r. More explicitly, we

an rewrite Eq. �61� in the form
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f�1¯�r = �− 1�r−1pF�1¯�r + �
s=1

r

fs
�1¯�r + f0

�1¯�r + �− 1�r−1�F̃c��1¯�r,

here inserting the expansion �31� �with X replaced by F, Xs−1 replaced by Fs−1 and Ys−1 replaced
y Gs−1= �1/s�gs� gives, after a short calculation,

fs
�1¯�r = �− 1�r−1 1

s!

1

�r − s�! �
��Sr

�− 1��pi1

���1�
¯ pis

���s�gs
i1¯is,���s+1�¯���r�.

Finally, we want to clarify the relation between Poisson forms and Hamiltonian multivector
elds in terms of their standard local coordinate representations.

Theorem 3.9: Let f be a Poisson �n−r�-form and X be a Hamiltonian r-multivector field on
P associated with f . Assume that, in adapted local coordinates, f and X are given by Eqs �46� and
26�, respectively. Then

X�1¯�r = �− 1�r−1� �f�1¯�r

�p
−

�f��1¯�r�

�x� � , �65�

Xi,�2¯�r =
1

n − r + 1

�f�2¯�r�

�pi
� , �66�

Xi
�1¯�r = �− 1�r� �f�1¯�r

�qi −
�f i

�1¯�r�

�x� � , �67�

X̃�2¯�r = −
�f�2¯�r�

�x� , �68�

hat is, locally and modulo terms taking values in the kernel of �, X is given by

X = −
1

�r − 1�!
� �f�2¯�r�

�x�

�

�p
−

1

r

�f�2¯�r�

�p

�

�x� +
1

r

�f��2¯�r��

�x�

�

�x�� ∧
�

�x�2
∧ ¯ ∧

�

�x�r

+
1

�r − 1�!� 1

n − r + 1

�f�2¯�r�

�pi
�

�

�qi −
1

r

�f�2¯�r�

�qi

�

�pi
� +

1

r

�f i
�2¯�r��

�x�

�

�pi
�� ∧

�

�x�2
∧ ¯ ∧

�

�x�r
.

�69�

f, in the canonical decomposition �57� and �60� of f , the closed term fc= �−1�riFc
� is absent, then

f��0¯�r =0. If f is horizontal with respect to the projection onto M, then fi
�0¯�r =0. In these cases,

he above formulas simplify accordingly.
Proof: There are several methods for proving this, with certain overlaps. Let us begin with the

trivial” case of closed forms f , for which we must have X=0. Assuming f to be of the form fc

�−1�riFc
� and using Eqs. �61�–�64� to rewrite the expressions on the rhs of the above equations

n terms of the components of Fc, we must show that

��F̃c��1¯�r

�p
+ �− 1�r��Fc��1¯�r�

�x� = 0,
��F̃c��2¯�r�

�p� = 0,

i
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��F̃c��1¯�r

�qi − �− 1�r��Fc�i
�1¯�r�

�x� = 0,
��F̃c��2¯�r�

�x� = 0.

ut this follows directly from the pertinent relations for locally Hamiltonian multivector fields
erived in the proof of Theorem 1.3 which hold since Fc is locally Hamiltonian. To handle the
emaining cases where f is of the form f = f0+ �−1�r−1iF�, it is easier to proceed by direct inspec-
ion of Eq. �11�. Indeed, we may for a general Poisson form f apply the exterior derivative to Eq.
46� and compare the result with the expression for iX�. In this way, Eqs. �68�, �67�, and �65� can
e obtained directly by equating the coefficients of dnx�2¯�r

, of dqi∧dnx�1¯�r
and of

p∧dnx�1¯�r
, respectively. The only case which requires an additional argument is Eq. �66�, since

ollecting terms proportional to dpi
�∧dnx�1¯�r

leads to

�− 1�r−1

�r − 1�!
Xi,�2¯�r dpi

� ∧ dnx��2¯�r

=
1

r!

�f�1¯�r

�pi
� dpi

� ∧ dnx�1¯�r
−

1

�r − 1�!
�f i,�2¯�r�

�x� dpi
� ∧ dnx��2¯�r

−
�− 1�r

r!

�f i,�1¯�r

�x� dpi
� ∧ dnx�1¯�r

.

ut when f is of the form f = f0+ �−1�r−1iF�, Eq. �63� implies that the last two terms on the rhs of
he equation above vanish. Moreover, since F is Hamiltonian, we know from Theorem 2.4 that the

�1¯�r depend on the pi
� only if �� 	�1 , . . . ,�r
, and hence according to Eq. �61�, the same is

rue for the f�1¯�r. This reduces the first term on the rhs of the above equation to an expression
hich, when compared with the lhs, leads to the conclusion that for any choice of mutually
ifferent indices � and �2 , . . . ,�r, we have

Xi,�2¯�r =
�f�2¯�r�

�pi
� if � � 	�2, . . . ,�r
 �no sum over �� .

umming over � gives Eq. �66�. �

V. POISSON BRACKETS

In the characterization of locally Hamiltonian multivector fields and of Poisson forms derived
n the preceding two sections, the decomposition into homogeneous terms with respect to scaling
egree plays a central role. It is therefore natural to ask how this decomposition complies with the
chouten bracket of Hamiltonian multivector fields and with the Poisson bracket of Poisson forms.
o this end, let us first recall the definition of the Poisson bracket between Poisson forms given in
ef. 1 for �n−1�-forms and in Ref. 2 for forms of arbitrary degree.

Definition 4.1: Let f and g be Poisson forms of tensor degree n−r and n−s on P, respectively.
heir Poisson bracket is the Poisson form of tensor degree n−r−s+1 on P defined by

	f ,g
 = �− 1�r�s−1�iYiX� + d��− 1��r−1��s−1�iY f − iXg − �− 1��r−1�siYiX�� , �70�

here X and Y are Hamiltonian multivector fields associated with f and g, respectively.
We find the following properties of the two mentioned bracket operations with respect to

caling degree.
Proposition 4.2: Let X and Y be homogeneous multivector fields on P of scaling degree k and

, respectively. Then their Schouten bracket �X ,Y� is of scaling degree k+ l,

L�X = kX, L�Y = lY ⇒ L��X,Y� = �k + l��X,Y� . �71�
8
Proof: The proposition is a consequence of the graded Jacobi identity for multivector fields,
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hich can be rewritten as the statement that the Schouten bracket with a given multivector field Z
f odd/even tensor degree acts as an even/odd superderivation,

�Z,�X,Y�� = ��Z,X�,Y� + �− 1��t−1��r−1��X,�Z,Y�� .

n particular, since � has tensor degree 1,

��,�X,Y�� = ���,X�,Y� + �X,��,Y�� ,

rom which the proposition follows immediately. �

Corollary 4.3: Let X and Y be locally Hamiltonian multivector fields on P of scaling degree
1. Then their Schouten bracket �X ,Y� takes values in the kernel of �.

Proof: From the preceding proposition, �X ,Y� is a locally Hamiltonian multivector field of
caling degree −2. and hence, by Theorem 1.3, must take values in the kernel of �. �

For the Poisson bracket of Poisson forms, we have the following property.
Proposition 4.4: Let f and g be homogeneous Poisson forms on P of scaling degree k and l,

espectively. Then their Poisson bracket 	f ,g
 is of scaling degree k+ l−1:

L�f = kf , L�g = lg ⇒ L�	f ,g
 = �k + l − 1�	f ,g
 . �72�

Proof: As explained in the last paragraph of Sec. I �see, in particular, Eq. �23��, we can
nd homogeneous Hamiltonian multivector fields X of scaling degree k−1 and Y of scaling degree
−1 such that iX�=df and iY�=dg. We shall consider each of the terms in the definition of the
oisson bracket separately. We find

L��iYiX�� = iYL�iX� + i��,Y�iX� = iYiXL�� + iYi��,X�� + i��,Y�iX� = �k + l − 1�iYiX� .

he same calculation works with � replaced by �, so that, since L� commutes with d,

L��d�iYiX��� = �k + l − 1�d�iYiX�� .

oreover,

L��d�iY f�� = d�L�iY f� = d�iYL�f + i��,Y�f� = �k + l − 1�d�iY f� ,

nd similarly L��d�iXg��= �k+ l−1�d�iXg�. Putting the pieces together, the proposition follows. �

Having shown in what sense both the Schouten bracket and the Poisson bracket respect
caling degree, let us use the canonical decomposition of Poisson forms to express their Poisson
racket in terms of known operations on the simpler objects from which they can be constructed.
o start with, we settle the case of homogeneous Poisson forms of positive scaling degree.

Proposition 4.5: Let Xk−1 be a homogeneous locally Hamiltonian r-multivector field on P of
caling degree k−1, with 1�k�r, and Yl−1 be a homogeneous locally Hamiltonian s-multivector
eld on P of scaling degree l−1, with 1� l�s. Set

fk =
�− 1�r−1

k
iXk−1

�, gl =
�− 1�s−1

l
iYl−1

� .

hen

	fk,gl
 =
�− 1�r+s

k + l − 1
i�Yl−1,Xk−1�� − �− 1��r−1�s �k − 1��l − 1��k + l�

kl�k + l − 1�
d�iXk−1

iYl−1
�� .
Proof: From the defining equation �70� for the Poisson bracket, we find
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	fk,gl
 = �− 1�r�s−1�iYl−1
iXk−1

� + d� �− 1��r−1�s

k
iYl−1

iXk−1
� −

�− 1��s−1�

l
iXk−1

iYl−1
� − �− 1��r−1�siYl−1

iXk−1
��

= �− 1�r�s−1�iYl−1
iXk−1

� + �− 1��r−1�s�1

k
+

1

l
− 1�d�iYl−1

iXk−1
�� .

n the other hand, one verifies that diXk−1
�=k�−1�r−1iXk−1

� and hence

i�Yl−1,Xk−1�� = �− 1��s−1�rLYl−1
iXk−1

� − iXk−1
LYl−1

�

= �− 1��s−1�r diYl−1
iXk−1

� + �− 1�s�r−1��k + l − 1�iYl−1
iXk−1

� .

hus,

	fk,gl
 =
�− 1�r+s

k + l − 1
i�Yl−1,Xk−1�� −

�− 1��r−1�s

k + l − 1
d�iYl−1

iXk−1
�� + �− 1��r−1�s�1

k
+

1

l
− 1�d�iYl−1

iXk−1
�� ,

�73�

hich implies the asserted relation. �

As a special case, consider homogeneous Poisson forms of scaling degree 1, which arise by
ontracting � with a Hamiltonian multivector field of scaling degree 0, that is, with an exact
amiltonian multivector field �see the first statement in Proposition 2.5�. These Poisson forms
ave been studied in Ref. 2 under the name “universal multimomentum map.”

Corollary 4.6: The space of homogeneous Poisson forms on P of scaling degree 1 closes
nder the Poisson bracket.

Obviously, it also follows from the proposition that no such statement holds for homogeneous
oisson forms of scaling degree �1, since the second term in the expression in Proposition 4.5
anishes only for k=1 or l=1.

Turning to homogeneous Poisson forms on P of scaling degree 0, which come from forms on
by pull-back, we have the following.

Proposition 4.7: The space of homogeneous Poisson forms on P of scaling degree 0 is Abelian
nder the Poisson bracket,

	f0,g0
 = 0. �74�

Proof: Without loss of generality, we may assume the Hamiltonian multivector fields X− and

− associated with f0 and with g0, respectively, to be homogeneous of scaling degree −1. There-
ore, using the fact that if a multivector field X is homogeneous of scaling degree k and a
ifferential form � is homogeneous of scaling degree l, then the differential form iX� is homoge-
eous of scaling degree k+ l,

L�X = kX, L�� = l� ⇒ L�iX� = �k + l�iX� ,

hich follows immediately from the formula L�iX�= iXL��+ i��,X��, we see that all four terms in
he definition �70� of the Poisson bracket between f0 and g0 are differential forms of scaling degree
1 and hence must vanish. �

For the mixed case of the Poisson bracket between a homogeneous Poisson form of strictly
ositive scaling degree with one of scaling degree zero, we find the following result.

Proposition 4.8: Let Xk−1 be a homogeneous locally Hamiltonian r-multivector field on P of
caling degree k−1, with 1�k�r, and let g0 be a homogeneous Poisson �n−s�-form on P of
caling degree zero, with associated Hamiltonian s-multivector field Y−. Set

fk =
�− 1�r−1

k
iXk−1

� . �75�
hen
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	fk,g0
 = − LXk−1
g0. �76�

Proof: By Proposition 2.5, iY−
� vanishes. Hence only two of the four terms in the defining

quation �70� for the Poisson bracket survive,

	fk,g0
 = �− 1�r�s−1�iY−
iXk−1

� − diXk−1
g0 = − �diXk−1

g0 − �− 1�riXk−1
dg0� = − LXk−1

g0.

�

Finally, let us consider closed Poisson forms, whose associated Hamiltonian multivector fields
anish. Still, the Poisson bracket of a closed Poisson form with an arbitrary Poisson form does not
anish, but it is once again a closed Poisson form.

Proposition 4.9: Let f be a Poisson �n−r�-form on P, with associated Hamiltonian
-multivector field X, and let g be a closed Poisson �n−s�-form on P. Set

g = �− 1�siGc
� . �77�

hen

	f ,g
 = �− 1�r+s−1i�Gc,X�� . �78�

Proof: As the Hamiltonian multivector field associated with g vanishes, only one of the four
erms in the defining equation �70� for the Poisson bracket survives,

	f ,g
 = − d�iXg� = �− 1�s−1d�iXiGc
�� = �− 1�rs−1i�X,Gc�� = �− 1�r+s−1i�Gc,X�� .

For the penultimate equation, see, e.g., Proposition 3.3 of Ref. 2.� �

In view of the canonical decomposition for Poisson forms stated in Theorem 3.8, the above
ropositions exhaust the possible combinations for the computation of Poisson brackets.

. CONCLUSIONS AND OUTLOOK

In this paper, we have achieved three goals. First, we have determined the general structure of
ocally Hamiltonian multivector fields on the extended multiphase space of classical first order
eld theories. According to Theorem 2.4, the basic structure that arises from explicit calculations

n adapted local coordinates is the decomposition of any such multivector field X, of tensor degree
�0�r�n�, into a sum of terms of homogeneous scaling degree plus a remainder � which is a
ultivector field taking values in the kernel of �,

X = X−1 + X0 + ¯ + Xr−1 + � with L�Xk = kXk. �79�

oreover, according to Proposition 2.5, all homogeneous locally Hamiltonian multivector fields
f non-negative scaling degree are in fact globally Hamiltonian, and they are exact Hamiltonian if
nd only if they have zero scaling degree. At the level of local coefficient functions, this decom-
osition arises because the coefficient functions must be antisymmetric polynomials in the multi-
omentum variables; see Eqs. �30� and �31�.

Second, we have extended the scaling degree analysis to the study of Hamiltonian forms by
eans of the formula

L�iX� = iX+��,X�� .

s shown in Theorem 3.8, this leads to a canonical decomposition of any Hamiltonian �n−r�-form
f �0�r�n� into a sum of terms of homogeneous scaling degree plus a remainder fc which is a
losed form,

f = f0 + f1 + ¯ + fr + fc with L�fs = sfs. �80�
oreover, if X is a Hamiltonian multivector field associated with f , then
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fs =
�− 1�r−1

s
iXs−1

� for s � 0, �81�

here the Xs−1 are the homogeneous components of X of non-negative scaling degree as described
efore, whereas f0 arises by pull-back from a form on the total space of the configuration bundle
f the theory. Locally, this form can be decomposed into the sum of a horizontal form and a closed
orm �we prove this explicitly only for Poisson forms�, but this decomposition has no global,
oordinate invariant meaning. The canonical decomposition of Poisson forms is also useful for
eriving local formulas for X in terms of f; these are given in Theorem 3.9. They clearly show that
he situation in multisymplectic geometry resembles that encountered in symplectic geometry but
xhibits a significantly richer structure. In particular, the notion of conjugate variables requires a
onceptual extension.

Third, we have used the canonical decomposition of Poisson forms to derive explicit formulas
or the Poisson bracket between Poisson forms. The resulting Lie algebra shows an interesting and
ontrivial structure. It has a trivial part, namely the space of closed Poisson forms, which consti-
utes an ideal that one might wish to divide out; this ideal is Abelian but not central. It commutes
ith the most interesting and useful part, namely the subalgebra of homogeneous Poisson forms of

caling degree 1, which by means of Eq. �81�, specialized to the case s=1, correspond to the exact
amiltonian multivector fields, and in such a way that the Poisson bracket on this subalgebra

orresponds to the Schouten bracket for exact Hamiltonian multivector fields �up to signs�. The
ontrivial mixing occurs through the spaces of homogeneous Poisson forms of scaling degree 0
nd of scaling degree �1, they close under the operation of taking the Poisson bracket with a
omogeneous Poisson forms of scaling degree 1 but not under the operation of taking mutual
oisson brackets, since these contain contributions lying in the ideal of closed Poisson forms.

An important aspect of our results is that they confirm, once again, the apparently unavoidable
ppearance of strong constraints on the dependence of Hamiltonian multivector fields and Hamil-
onian forms on the multimomentum variables and the energy variable in extended multiphase
pace, expressed through the “antisymmetric polynomial” structure of their coefficient functions.
his strongly suggests that there should be some product structure complementing the Poisson
racket operation. So far, such a structure seems to exist only for a very restricted class of Poisson
orms, namely the horizontal forms studied by Kanatchikov.11 Also, one might wonder whether the
tructural properties derived here still hold in the multisymplectic formulation of higher order field
heories.6

Finally, a central question that remains is how the various proposals of Poisson brackets in the
ultisymplectic formalism that can be found in the literature, including the one proposed in Refs.
and 2, relates to the Peierls-DeWitt bracket that comes from the functional approach based on

he concept of covariant phase space. Briefly, covariant phase space is defined as the space S of
olutions of the equations of motion and, formally viewed as an infinite-dimensional manifold,
arries a naturally defined symplectic form 	.12–14 A systematic general investigation of the
eierls-DeWitt bracket in the multisymplectic framework, including a proof of the fact that it is
recisely the canonical Poisson bracket for functionals on S derived from the symplectic form 	
n S, has been carried out recently.15,16 In order to establish the desired relation, we must restrict
his bracket to a certain class of functionals, namely functionals F obtained by using fields to pull
amiltonian forms or Poisson forms f on extended multiphase space back to space-time and then

ntegrate over submanifolds � of the corresponding dimension. Explicitly, using the notation of
ef. 16, we have

F��� = �
�

�FL � ��,����*f �82�
n the Lagrangian framework and
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F��� = �
�

�H � ��,���*f �83�

n the Hamiltonian framework. Now using the classification of Hamiltonian vector fields and
amiltonian �n−1�-forms obtained in this paper, it has been shown recently that the Peierls-
eWitt bracket 	F ,G
 between two functionals F and G derived from Hamiltonian �n−1�-forms

f and g, respectively, is the functional derived from the Hamiltonian �n−1�-form 	f ,g
;17 details
ill be published elsewhere. The question of how to extend this result to Poisson forms of other
egree is currently under investigation.
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PPENDIX

Proposition A.1: Let V be a vector bundle over a manifold M with projection � and let � be
he scaling or Euler vector field on V. A differential form � on the total space V will be the
ull-back of a differential form �0 on the base space M to V via � if and only if it is scale
nvariant,

� = �*�0 ⇔ L�� = 0.

Proof: Assume first that the form � on V is the pull-back of a form �0 on M; then �=�*�0 and
ence d�=�* d�0. Therefore, � and d� are both horizontal. This means that for any vertical
ector field X on V, including �, we have iX�=0 as well as iX d�=0, so LX�=0.

Conversely, assume that the form � on V, of degree r, say, satisfies L��=0, so � is invariant
nder the flow F of �,9

d

d�
F�

*� = 0.

his means that given v�V and w1 , . . . ,wr�TvV, the expression

�F�
*��v�w1, . . . ,wr� = �F��v��TvF� · w1, . . . ,TvF� · wr�

oes not depend on �, so its value �v�w1 , . . . ,wr� at �=0 is equal to its value �v0
��w1�0 , . . . , �wr�0�

btained in the limit �→−�, where v0 denotes the zero vector in the fiber of v. But this means that
is equal to �*�0 where �0 is defined with the help of the zero section i0 :M→V of V

s �0= i0
*�. �

The following lemma is used in the proof of Theorem 2.4.
Lemma A.2: Let f be a polynomial of degree s in a set of variables x�. Let fr, 0�r�s, be the

omogeneous component of degree r of f . Then

f = �
r=1

s
1

r
x� �fr

�x� + f0.

Proof: For the operator x��� /�x��, the homogeneous polynomials fr are eigenvectors with
� �
igenvalue r. Writing this as fr= �1/r�x ��fr /�x � for 0�r�s, we obtain
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f = �
r=0

s

fr = f0 + �
r=1

s
1

r
x� �fr

�x� .

�
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deality criterion for unilateral constraints
n time-dependent impulsive mechanics
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We construct a new geometric framework based on the concepts of left and right
jet-bundles of a classical space-time V in order to analyze the impulsive behavior of
a unilateral constraint S. The setup allows deep insights into how one can choose
an ideality criterion for the constraint S when the hypothesis of conservation of
kinetic energy is assumed. We show that the conservation of kinetic energy alone
univocally determines the impulsive reaction when the codimension of S is 1, and
that it leaves the impulsive reaction partially undetermined when the codimension
of S is greater than 1. If the codimension of S is greater than 1, we prove that an
additional minimality requirement determines a physically meaningful constitutive
characterization of S. We show that both the Newton-like and the Poisson-like
approaches to the description of the reactive impulse are equivalent, in the sense
that both give the same results about the ideality criterion. Moreover, we prove that
the same results hold using the classical approach based on reflection operators,
possible only in case of codimension 1. We present also several physically mean-
ingful examples. © 2005 American Institute of Physics. �DOI: 10.1063/1.2121247�

. INTRODUCTION

The geometric approach to Impulsive Mechanics played a role of minor interest in the study
f Classical Mechanics until the last decade of the last century. There were essentially two main
easons for this: first, the difficulty, due to the intrinsic nonsmoothness of its problems, of framing
mpulsive Mechanics in a differential geometric context without involving the technicalities of
unctional Analysis or Differential Geometry of manifolds with boundary. This difficulty effec-

ively stopped, with very few exceptions, the evolution of the geometric studies of Impulsive
echanics at the level of the first half of the last century, while Analytical Mechanics fruitfully

nd continuously applied the techniques of smooth Differential Geometry along the years �see, for
xample, among the many resources, Refs. 1–5, and references therein�. The second reason for the
inor role of the geometric approach is the deep and fruitful insights in Impulsive Mechanics

btained by the standard local approach �see, for example, once again among the many resources,
efs. 6–11, and the references therein�.

However, in recent years, a clever use of classical differential geometric techniques �see Refs.
2–16� and, later, the introduction of new differential geometric setups particularly suited for
mpulsive Mechanics �see Refs. 17–19�, have shed new light on the potential effectiveness of a
ormal geometric approach. Such an approach could allow a deeper understanding and produce
ignificant results about the concept of free impulse,17 the classification of constraints,14,18 and the
nergy balance15,19 in both time-independent and time-dependent cases.

This paper goes precisely in this direction: we embody in the geometric setup of the �left and
ight� jet-bundles associated to the classical space-time bundle V of a time-dependent mechanical
ystem the presence of a unilateral constraint S, viewed as a subbundle of V. The fibered immer-

�
Electronic mail: stefano.pasquero@unipr.it

46, 112904-1022-2488/2005/46�11�/112904/20/$22.50 © 2005 American Institute of Physics
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ion i :S→V allows the construction, using the concept of pull-back bundle, of a new environment
uitable for a strictly geometric study of the concepts of impulsive reaction and of constitutive
haracterization of the constraint. The new environment inherits several structures and properties
f the jet-extensions of V. Among them are the affine or vector structures of the bundles, the
ertical metric, the nonrigid frames of reference viewed as special vector fields, and the corre-
ponding concepts of relative velocity and relative kinetic energy associated to a frame. Moreover,
he immersion i :S→V produces natural splits of the velocity spaces of the system. This enriches
he structure with projection operators that turn out to be related to the classical Gauss minimality
equirement �see, for example, Refs. 20 and 21�.

Due to the explicit time dependence of the context, the condition of conservation of kinetic
nergy, naturally required in order to determine ideality criterion for S, selects a special class H of
rames of reference. This class coincides with the class of frames of reference tangent to S, that,
ogether with an obvious geometric meaning, also has a clear physical meaning: it is the set of all
ossible frames “of rest” of the constraint or, what is the same, the set of all possible “internal
otions” of S. Heuristically speaking, the requirement of conservation of kinetic energy in the

mpact process for all the frames in H parallels the well-known situation that the reactive behavior
f a bilateral smooth surface constraining a point mass is not affected by the internal motions of
he surface itself.

The main result of the paper is essentially based on this idea: we prove that the requirement
f conservation of kinetic energy for all the frames in H drastically reduces the possible ideal
onstitutive characterizations of S. In particular, when codim�S�=1 �as submanifold of V� the
ondition selects a unique possible constitutive characterization. This case covers almost all the
hysically meaningful situations, such as point masses or balls bouncing on walls, rods impacting
ith the floor and so on.

Some specific, but somewhat artificial, problems, such as the simultaneous impact of a ball
ith two different walls, or a point mass moving in three-dimensional space and impacting with a

hread, give rise to constraints for which codim�S��1. In this case the condition on kinetic energy
lone does not determine a unique constitutive characterization but splits the reaction into two
ell-defined parts. An additional, but natural, requirement of minimality of one of these parts of

he reaction once again univocally determines a physically meaningful constitutive characteriza-
ion.

In the paper, the main analysis of the impulsive problem is based on a Newton-type approach,
.e., considering the impulsive reaction as a single object. Nevertheless, it is also shown that the
ame results can be obtained following a Poisson-type approach, based on the separation of the
mpulsive reaction into two parts with different physical meaning. Moreover, when codim�S�=1,
he geometric formulation of the problem allows yet another approach based on reflection opera-
ors. We show that even this third possibility gives the same results.

Before concluding the introduction, a brief remark should be made about the geometric
pproach to Impulsive Mechanics. In Analytical Mechanics the correspondence between the physi-
al problem in study �such as point particles moving on a surface, or balls moving respecting
olling conditions� and the geometric objects involved in its description �such as manifolds,
undles, and smooth maps� is clearly stated and formalized. In Impulsive Mechanics we are great
t the beginning of our understanding of this correspondence, even for very simple mechanical
roblems, such as nonconvex rigid bodies impacting with walls, balls impacting with threads, or
n case of articulated mechanical systems.

This problem of correspondence will not be analyzed in detail in this paper. However in Sec.
some examples �one is the ball impacting with the thread� will be briefly presented in order to

llustrate this problem.
The paper is divided into four main sections: Section II contains the basic ideas and results

bout the geometric approach to time-dependent Mechanics, both in the Lagrangian and in the
mpulsive cases. This is a well-known material that we recall in order to fix notation and to keep
he paper self-contained.
Section III presents the construction of the geometric setup for unilateral constraints in Im-
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ulsive Mechanics, in both the coordinate-free and the coordinate-dependent cases. It contains the
inematical aspects of the problem, such as the splits of the velocity spaces, the corresponding
rojectors and their relations with assigned frames of reference.

Section IV introduces the concept of constitutive characterization in the Newton-type ap-
roach and presents the results about the choice of an ideality criterion, in both the codim�S�
1 and the codim�S��1 cases. Moreover, it presents the discussion about the Poisson-type and

he “reflection operators” approaches.
Section V is devoted to examples. Four physically meaningful examples are presented, all of

hem with some peculiarities: the first is a disk moving in the plane and impacting with a straight
ine; the second is a rod moving in the plane and impacting with a straight line; the third is a ball

oving in the space and impacting with a thread; the last is an articulated system with three
ifferent possible kinds of impact.

I. PRELIMINARIES

In the following we recall, also in order to fix notation, the structures and the principal
roperties of the geometric environments of Lagrangian and Impulsive Mechanics. The following
ontains standard material that is presented, very briefly, to keep the paper self-contained. More
mple discussions can easily be found in literature �see, for example, Refs. 22–24, 5, and 25, and
eferences therein for additional commentary on Lagrangian Mechanics and Refs. 17 and 18 for
dditional background on Impulsive Mechanics�.

. The classical Lagrangian environment

The geometric setup generally used to study the time-dependent Lagrangian Mechanics of a
ystem with a finite number n of degrees of freedom is constructed starting from the configuration
pace-time bundle, i.e., an �n+1�-dimensional fiber bundle � :V→E1 where E1 denotes the one-
imensional Euclidean space, and the first and second jet-extensions of this bundle.4,21,24,5 All the
bers of � :V→E1 are diffeomorphic to an n-dimensional manifold M, usually thought of as the
onfiguration space of the system. The configuration space-time takes into account, intrinsically,
he positional bilateral constraints acting on the mechanical system. Its first jet-extension
:J1�V�→V represents the absolute velocity bundle of the system, which takes into account the

estrictions on the velocities of the mechanical system due to the positional bilateral constraints.
ince Impulsive Mechanics mainly deals with velocities, it is not necessary, in this paper, to

ntroduce higher jet-extensions.
The following properties and notation �see Refs. 21, 24, 22, and 25� will be extensively used

hroughout.

� The composition t �� :V→R of the projection � :V→E1 and the Cartesian coordinate t
defined on E1 is the absolute time function, expressing the Absolute Time Axiom of Clas-
sical Mechanics in this context. With a mild abuse of language, it will be briefly denoted by
t :V→R. It selects admissible coordinate systems �t ,x1 , . . . ,xn� having t as first coordinate.
The rules of variation of such a system

� t̄ = t ,

x̄i = x̄i�t,xk� , i = 1, . . . ,n ,
�

distinguish V from R�M �see Ref. 25�. Henceforth, the restriction to admissible coordi-
nates will be always assumed.

i� The velocity bundle � :J1�V�→V is an affine bundle modeled on the vertical vector bundle
� :V�V�→V of the tangent vectors X�T�V� satisfying the condition t*�X�=0. Admissible
coordinates �t ,xi� in V determine admissible jet-coordinates �t ,xi , ẋi�, in J1�V�, whose use
will be always assumed. Both J1�V� and V�V� can be viewed as subbundles of the tangent

bundle T�V� as follows:
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J1�V� = �X � T�V��	dt,X
 = 1� ,

�1�
V�V� = �X � T�V��	dt,X
 = 0� ,

where 	,
 denotes the usual pairing between one-forms and tangent vectors. The elements
x�J1�V� then admit a representation of the form x=� /�t+ ẋi�� /�xi�, while the elements
U�V�V� have the form U=Ui� /�xi.

ii� The Absolute Space Axiom is introduced in this context by assigning a Riemannian metric
on each fiber of t :V→R, i.e., we introduce a differentiable positive definite scalar product
� :V�V��VV�V�→R, where �V denotes the usual fiber product of bundles on V. The scalar
product � will be called the vertical scalar product of V. As usual, we denote by gij the
functions

gij�p� = ��� �

�xi
p
,� �

�xj
p
, p � V , �2�

and we recall that the gij take intrinsically into account the mass properties of the system
�see Ref. 24�.

v� Each global section H :V→J1�V� can be represented as a vector field H=� /�t
+Hi�t ,xj�� /�xi and, due to the affine structure �1� of the velocity bundle J1�V�, it deter-
mines a diffeomorphism �H defined by

�H:J1�V� → V�V� such that �H�x� = x − H���x�� . �3�

A global section H :V→J1�V� represents a frame of reference for the system �without any
assumption of rigidity. See Refs. 25 and 5�. Given a frame H, the vertical vector Hv�x�
=�H�x� is the relative velocity of x�J1�V� with respect to H. Moreover, the function

HK:J1�V� → R such that HK�x� = 1
2��Hv�x�,Hv�x�� �4�

is the kinetic energy of the system with respect to H.

Additional positional constraints acting on the system can be introduced in this context by
ssigning a globally time-fibered subbundle i :S→V, where the manifold S has dimension �r
1�, r�n. Of course, the bundle t :S→R is the space-time bundle of the system that takes into
ccount the constraint S acting bilaterally on the system. As with the bundle t :V→R, the bundle
:S→R admits its own admissible coordinates �t ,q1 , . . . ,qr�. Moreover, it determines its own first
et-extension � :J1�S�→S, that is described by admissible jet-coordinates �t ,q� , q̇��, �=1, . . . ,r
nd that is an affine bundle modeled on the vertical bundle � :V�S�→S. The elements q of J1�S�
dmit the vector representation q=� /�t+ q̇�� /�q�, while the elements V�V�V� have the form
=V�� /�q�.

The restrictions of the tangent map i* :T�S�→T�V� determine the fibered immersions

* :J1�S�→J1�V� and i* :V�S�→V�V�. As a consequence, the vertical scalar product � of V can be
ulled back to V�S�, defining the vertical scalar product � of S.

The entire geometric context can be summarized with the following diagram:
�5�
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. The bilateral impulsive environment

The explicit construction of the velocity bundle J1�V� made by considering the equivalence
lasses of sections 	 :R→V having a first-order contact in a point p�V �see, for example, Ref.
2� can be repeated using the left and the right derivatives of 	 in p separately.17 This procedure
ives rise to the bundles � :L1�V�→V of the left velocities of the system and � :R1�V�→V of the
ight velocities which are each canonically isomorphic to J1�V� in the geometric sense, but whose
hysical interpretation is slightly different from that of J1�V�. The following properties are
traightforward consequences of the definitions of L1�V� and R1�V�.

� � :L1�V�→V and � :R1�V�→V are affine bundles modeled on the vertical bundle V�V�. The
canonical isomorphisms with J1�V� will be denoted by IdL and IdR, respectively, and their
action will be from now on implicitly understood when necessary. We use the jet-
coordinates �t ,xi , ẋL

i � to describe L1�V� and the jet-coordinates �t ,xi , ẋR
i � to describe R1�V�.

The elements xL of L1�V� can then be represented in the vector form xL=� /�t+ ẋL
i � /�xi and,

analogously, xR�R1�V� can be written as xR=� /�t+ ẋR
i � /�xi.

i� The natural action of the modeling vector bundle V�V� on the affine bundle J1�V� and the
natural isomorphisms IdL, IdR allow the definition of fibered maps


: L1�V��VV�V� → R1�V� such that 
�xL,U� = xL + U ,

�6�
�: L1�V��VR1�V� → V�V� such that ��xL,xR� = xR − xL.

The entire geometric context can be summarized by the following diagram:

�7�

II. THE UNILATERAL IMPULSIVE ENVIRONMENT

In the following we construct a geometric setup adapted to the study of the impulsive behavior
f the system due to the presence of a unilateral constraint acting on the system itself. From the
eometric point of view, the following do not present new ideas, since the setup is constructed
hrough the standard concept of pull-back. However, from the point of view of Impulsive Me-
hanics of unilateral constraints, the setup allows a different approach from those usually found in
iterature �see, for example, Refs. 14 and 15, and references therein�.

Section III A presents the coordinate free construction of the setup and the coordinate free
escription of its properties. Section III B shows, using admissible coordinates, the explicit coor-
inate representations of the spaces and the properties of the setup itself.

. The coordinate free description

The geometric framework of unilateral problems can be constructed, starting from the bundle
and the assignment of an additional positional constraint S, through the concept of pull-back

undle.26,27

The standard pull-back bundle construction applied to J1�V�, L1�V�, R1�V�, gives three affine
* * * � ˙i
undles i �J1�V��, i �L1�V��, i �R1�V�� locally described by admissible coordinates �t ,q ,x �,
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�t ,q� , ẋL
i ��, �t ,q� , ẋR

i �. By construction � : i*�J1�V��→S is the bundle of all possible velocities of
he system in a configuration of S, and analogously the bundles � : i*�L1�V��→S and
: i*�R1�V��→S are the bundles of all possible left and right velocities of the system in a con-
guration of S.

The pull-back bundle construction can also be applied to the vertical bundle V�V� giving rise
o the bundle � : i*�V�V��→S of the vectors that are vertical with respect to V and with base point
n S. The vertical scalar product �2� of V can be pulled back to a vertical scalar product

: i*�V�V���Si*�V�V��→R.
The immersion i* :J1�S�→J1�V� can be split into two maps J1�S�→ i*�J1�V��→J1�V�, that

with a mild abuse of language� will both be called i*. The image i*�J1�S�� is an affine subbundle
f i*�J1�V��. The same splitting can also be applied to the maps i* :L1�S�→L1�V�, i* :R1�S�

R1�V� and i* :V�S�→V�V�. The images i*�L1�S�� and i*�R1�S�� are then affine subbundles of
*�L1�V�� and i*�R1�V��, respectively, while i*�V�S�� is a vector subbundle of i*�V�V��.

Any assigned frame of reference H of V, viewed as a section of the velocity bundle J1�V�, can
e restricted to a section H :S→ i*�J1�V�� and gives a diffeomorphism �H : i*�J1�V��→ i*�V�V��.
he kinetic energy �4� relative to a frame H can be restricted to a kinetic energy function

HK : i*�J1�V��→R.
The whole construction, taking into account diagrams �5� and �7� can be synthesized by the

ollowing diagram

�8�

The slice in the middle of diagram �8�, together with its own subbundles given by the slice in
he left part of the diagram, is, in a very natural way, the correct geometric environment for the
tudy of the impulsive behavior of S viewed as unilateral constraint acting on the system. There-
ore, in the next part of this section, we focus our attention on these parts of the diagram. We recall
nce again that, using the �restrictions of the� isomorphisms between i*�J1�V��, i*�L1�V��, and

*�R1�V��, all the geometric properties of the bundle i*�J1�V�� have corresponding properties in
*�L1�V�� and i*�R1�V��.

The simultaneous presence of the vertical metric � and of the vector subbundle i*�V�S��
llows the splitting of the vector bundle i*�V�V�� into

i*�V�V�� = i*�V�S�� � �i*�V�S����. �9�

he vertical scalar product � can then be decomposed into the sum of a scalar product � acting
n i*�V�S�� and a scalar product � acting on �i*�V�S����, so that

� = � � � . �10�

ecalling that both i*�J1�S�� and i*�J1�V�� have an affine nature, an analogous splitting can be
*
erformed on the affine bundle i �J1�V��, so that
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i*�J1�V�� = i*�J1�S�� � �i*�V�S����, �11�

here in this case the meaning of the symbol � is related to the action of the modeling bundle
*�V�V�� on the affine bundle i*�J1�V�� and will be clarified by the coordinate expression in Sec.
II B. The decompositions �9� and �11� allow the definitions of projection operators

PV: i*�V�V�� → i*�V�S��, PV
�: i*�V�V�� → �i*�V�S����,

�12�
PJ: i*�J1�V�� → i*�J1�S��, PJ

�: i*�J1�V�� → �i*�V�S����.

ote that �see, for example, Refs. 21 and 14�, from the computational point of view, the operators

J and PJ
� can be determined through a minimum principle, since, for every point x� i*�J1�V��,

he projection PJ�x� realizes the minimum of the scalar function

fx:i*�J1�S�� → R such that fx�y� = ��x − y,x − y� .

Proposition 3.1: For each x1 ,x2� i*�J1�V��, for each v� i*�V�V��, the following properties
old:

i) PV�x1−x2�=PJ�x1�−PJ�x2�,
ii) PV

��x1−x2�=PJ
��x1�−PJ

��x2�,
iii) PJ�x1+v�=PJ�x1�+PV�v�,
iv) PJ

��x1+v�=PJ
��x1�+PV

��v�.

Proof: Obviously (iii) implies (i) and (iv) implies (ii) choosing v=x2−x1. The proof of (iii)
nd (iv) is straightforward using admissible coordinates �see also Sec. III B� and is left to the
eader. �

The vertical vector PJ
��x�� �i*�V�S���� associated to a velocity x� i*�J1�V�� is the natural

andidate for the orthogonal component of the velocity x with respect to the constraint S. Unfor-
unately, the concept of velocity as vertical vector is intrinsically related to the knowledge of a
rame of reference H: the following discussion shows that PJ

��x� actually is the orthogonal
omponent of the relative velocity �H�x�, not only for a single frame, but even for all the frames
n a wide �and geometrically important� class.

Proposition 3.2: Given a frame of reference H, the following conditions are equivalent

) ∃K :S→J1�S� such that H= i*�K�,
) PJ�H�=H,
) PJ

��H�=0.

Proof: The equivalence b� ⇔ c� and the arrow a� ⇒ b� are obvious. The arrow b� ⇒ a� is a
onsequence of the fact that i* is an isomorphism between T�S� and its image, so that K
�i*�*�H�. �

Definition 1: A frame of reference H :S→ i*�J1�V�� will be called tangent to S if it obeys one
f the equivalent conditions of Proposition (3.2). The set of frames tangent to S will be denoted by
.

Taking into account the splitting �9�, for each velocity x� i*�J1�V�� and frame H we have
with the obvious meaning of the symbol v�� the decomposition

�H�x� = Hv�x� = PV�Hv�x�� + PV
��Hv�x�� = Hv��x� + Hv��x� . �13�

At first glance, there appears to be no relation between the relative “orthogonal” velocity
Hv��x�, that is, in general, dependent on H, and the vertical vector PJ

��x�. The following result
hows however that the class of frames for which the identity Hv��x�=PJ

��x� holds coincides with
he class of the frames tangent to S.

Theorem 3.1: Given a frame H, the condition Hv��x�=PJ
��x�∀x� i*�J1�V�� holds if and only
f H obeys one of the equivalent conditions of Proposition (3.2).

                                                                                                            



t
n

r
t

B

t

o

m

a
r

a

a
q

→

i

A

112904-8 Stefano Pasquero J. Math. Phys. 46, 112904 �2005�

                        
Proof: The proof follows easily from property (ii) of Proposition �3.1� applied to the vector
Hv�x�=�H�x�=x−H. �

Definition 3.2: For each x� i*�J1�V��, the vertical vector PJ
��x�� �i*�V�S���� will be called

he orthogonal velocity of x with respect to S, and will be denoted by v��x� (or briefly v� when
o confusion can arise�.

The set H will play a crucial role in the choice of an ideal constitutive characterization of the
eactive impulse of S. We will see that in Sec. IV. Moreover, note that a meaningful definition of
he concept of frame of rest of the constraint S must involve the set H �see Ref. 25�.

. The coordinate description

All the immersions, projection operators, and properties described in Sec. III A can be rewrit-
en using local admissible coordinates.

The immersion i :S→V can be described in local admissible coordinates as

�t = t ,

xi = xi�t,q�� � �14�

r by its Cartesian representation

gA�t,x1, . . . ,xn� = 0, A = 1, . . . ,n − r . �15�

Using the vector representation �in admissible coordinates�, the bundles of the slice in the
iddle of diagram �8� are described by

i*�J1�V�� = �x = � �

�t


�t,q��
+ ẋi� �

�xi
�t,q��

� ,

�16�

i*�V�V�� = �U = ui� �

�xi
�t,q��

� ,

nd similar expressions hold for the bundles i*�L1�V�� and i*�R1�V��, substituting ẋi with ẋL
i and ẋR

i ,
espectively.

The corresponding subbundles obtained through the map i*, omitting the coordinates of the
pplication point of the vectors, are described by

i*�J1�S�� = �q =
�

�t
+ � �xi

�t
+ q̇� �xi

�q� �

�xi� ,

�17�

i*�V�S�� = �V = q̇� �xi

�q�

�

�xi� ,

nd similar expressions hold for the bundles i*�L1�S�� and i*�R1�S��, substituting q̇i with q̇L
i and

˙R
i , respectively.

Note that expression �17� points out the affine nature of the injection i* : i*�J1�S��
i*�J1�V�� and the linear nature of i* : i*�V�S��→ i*�V�V��.

The vertical metric � in i*�V�V�� is described by the functions gij�t ,q��=gij�t ,xk�t ,q���, while
ts restriction � to i*�V�S�� is described by

	�� = gij
�xi

�q�

�xj

�q� . �18�

s usual, we denote by gij and 	�� the inverse matrices of gij and 	��, respectively.
*
The projection operator PV : i �V�V��→ i*�V�S�� has the �linear� coordinate description
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PV: i*�V�V�� → i*�V�S�� ,

�19�

Ui �

�xi � 	�grs
�xr

�q

�xi

�q�Us �

�xi ª As
iUs �

�xi .

sing �for conciseness� the matrix As
i =	�grs��xr /�q���xi /�q��, the other projection operators

12� are described by

PV
�: i*�V�V�� → �i*�V�S����,

Ui �

�xi � ��s
i − As

i�Us �

�xi ;

PJ: i*�J1�V�� → i*�J1�S�� ,

�20�
�

�t
+ ẋi �

�xi � �

�t
+ � �xi

�t
+ As

i�ẋs −
�xs

�t
 �

�xi ;

PJ
�: i*�J1�V�� → �i*�V�S����,

�

�t
+ ẋi �

�xi � ��s
i − As

i��ẋs −
�xs

�t
 �

�xi .

hese expressions allow a tedious but straightforward check of properties (iii) and (iv) of Propo-
ition 3.1. Moreover, the computation PJ+PJ

�=Ident clarifies the decomposition �11�.
Once a frame H is assigned, relations �20� allow an easy check of the condition

Hv��x� = PJ
��x� ∀ x � i*�J1�V�� ⇔ PJ

��H� = 0.

his gives an alternative proof of Theorem �3.1�.

V. IMPULSIVE MECHANICS

In the following the environment previously introduced is applied to give a constitutive
haracterization of S, based on the simplest criterion of conservation of kinetic energy, particularly
uitable to be assumed as an ideality criterion for S. Although very simple, the criterion is strong
nough to be directly applied to the wide class of constraints of codimension 1. The case of
odimension greater than 1 is, in general, very artificial and physically irrelevant, but can also be
reated by adding a very natural requirement of minimality of the impulsive reaction. The discus-
ion is presented following a Newton-type approach, but it is proved that the Poisson-type ap-
roach gives the same results. Also the classical approach using reflection operators is applicable
o the particular case of constraints of codimension 1. Once again it is proved that it is equivalent
o the Newton-type and Poisson-type approaches.

From now on, unless otherwise specified, each frame of reference H will be considered as
angent to S.

. Ideality criterion

A constitutive characterization of the impulsive action of the constraint S is a map

: i*�L1�V��→ i*�R1�V�� assigning to each “entrance” or left velocity xL� i*�L1�V�� of the system

n the constraint S a corresponding “exit” or right velocity xR= Ĩ�xL�� i*�R1�V��. Alternatively, and
referably in order to preserve some structural analogies with the force acting on the system �see
efs. 24 and 17�, a constitutive characterization of S is a map I : i*�J1�V��→ i*�V�V�� assigning to

ach velocity x a corresponding jump I�x�.
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The equivalence of the definitions is obtained through the isomorphisms IdL, IdR, noting that

L=IdL�x� and xR=IdR�x+I�x��. Alternatively, recalling �6�, we have that I�x�=��xL , Ĩ�xL��. We
ill often use the brief �mild abuse of� notation xR=xL+I.

Usually, an “impenetrability” condition of the form ��v��xL� ,v��Ĩ�xL����0∀xL

i*�L1�V��, or equivalently ��v��x� ,I�x���0∀x� i*�J1�V��, is further assumed to ensure the
nilaterality of S. Even with this condition, a trivial constitutive characterization I0 : i*�J1�V��

i*�V�V�� assigning to each velocity x the null jump I0�x��0 is theoretically admissible, but its
hysical meaning is that S is not a constraint for the system.

In order to define an ideal constitutive characterization of the impulsive reaction, two require-
ents are very natural. The first, parallelizing the analogous problem in Analytical Mechanics, is

hat the ideality criterion should have a geometric nature: something like orthogonality with
espect to some natural spaces, maybe in addition with a “minimality” criterion �see, for example,
efs. 21, 24, 14, and 15�. This requirement then suggests that one avoids the introduction of
dditional structures, such as, for example, the frame of reference of the rest of the constraint. To
larify this idea, consider for example a point particle bilaterally constrained to the surface of a
phere. The ideal constitutive characterization does not take into account the internal motion of the
oints of the sphere, on condition that the shape of the sphere does not vary. Moreover, the
eaction is orthogonal to the constraint and it has minimum norm. Differently, a constitutive
haracterization taking into account the presence of friction implies the necessity of knowing the
elocity of the point particle with respect to the points of the sphere, and then the knowledge of
he frame of the rest of the sphere.

The second natural requirement for an ideal characterization is the conservation of kinetic
nergy before and after impact. Unfortunately, in contrast to the time-independent approach where
n intrinsic choice of a frame of reference is done a priori �see Refs. 25 and 19�, in a time-
ependent environment, kinetic energy is indissolubly related to the knowledge of a frame of
eference.

It can be easily proved that is not possible to impose the conservation of kinetic energy in the
mpact process for every frame of reference, due to the law of variation of kinetic energy with the
rame �see Refs. 25 and 18�. The conservation of kinetic energy could be imposed in a specific
rame of reference tangent to S chosen as the frame of rest of the constraint, but in this case we
hould select �arbitrarily� one of the tangent frames. This is in contradiction with the first require-
ent.

We analyze, then, the consequences of imposing the conservation of kinetic energy before and
fter the impact in every frame of reference in the class H. With this aim, we state the following.

Lemma 4.1: Let V be a finite dimensional vector space, � a positive definite scalar product on
, and let � :V→V be a map such that

��v + ��v�,v + ��v�� = ��v,v�, ∀ v � V . �21�

et � � denote the norm induced on V by � and let B�u ,�� the ball with center u and radius � in
. Then the following conditions hold:

) ��v���B�−v ,���v ,v��∀v�V;
) there exists a map � :V→V obeying the conditions

���v� = − 2v + ��v� ,

����v�,��v�� = 0,
� ∀ v � V , �22�

) the map �min obeying (21) and having minimum norm is �min�v��0;
) the map �max obeying (21) and having maximum norm is �max�v�=−2v.

Proof:
� Using the norm function � �, condition �21� can be rewritten as
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�v + ��v��2 = �v�2,

that is the thesis.
� Condition �21� can be rewritten as

��2v + ��v�,��v�� = 0,

so that ��v�ª2v+��v� obeys condition ����v� ,��v��=0.
,4� Independent of the fact that 3� is obvious, and of the geometric meaning of the first statement

of the lemma, conditions 3,4� can be simultaneously proved using coordinates in V. We have

����v�,��v�� = ���v��2 = gij�
i� j ,

��2v + ��v�,��v�� = 0 ⇔ gij�2vi + �i�� j = 0.

The standard Lagrange multipliers minimization procedure applied to the function F��i ,��
gij�

i� j +�gij�2vi+�i�� j gives the conditions

��i = −
�

1 + �
vi,

� = 0 or � = − 2
�

nd then both the conclusions. �

We can now prove the following:
Theorem 4.1: Let I : i*�J1�V��→ i*�V�V�� be a nontrivial constitutive characterization of S

atisfying the condition

HK�x + I�x�� = HK�x�, ∀ x � i*�J1�V��, ∀ H � H . �23�

hen:

) PV�I�x��=0∀x� i*�J1�V�� or, equivalently, I�x�=PV
��I�x��∀x� i*�J1�V��.

) there exists a map Z : i*�J1�V��→ �i*�V�S���� satisfying the conditions

�I�x� = − 2v��x� + Z�x� ,

��I�x�,Z�x�� = 0.
� ∀ x � i*�J1�V�� , �24�

Proof: 1� By definition, recalling the decomposition �10� and omitting the dependence on x,
e have

HK�x + I� = 1
2��x − H + I,x − H + I� = 1

2��Hv + I,Hv + I�

= 1
2��Hv� + v� + PV�I� + PV

��I�,Hv� + v� + PV�I� + PV
��I��

= 1
2��Hv� + PV�I�,Hv� + PV�I�� + 1

2��v� + PV
��I�,v� + PV

��I��

nd analogously

HK�x� = 1
2��x − H,x − H� = 1

2��Hv�,Hv�� + 1
2��v�,v�� .

y comparison, Eq. �23� implies

��Hv�,PV�I�� + 1
2��PV�I�,PV�I�� + ��v�,PV

��I�� + 1
2��PV

��I�,PV
��I�� = 0.

ince both x� i*�J1�V�� and H�H are arbitrary, the vector Hv� � i*�V�S�� is also arbitrary. There-

ore we have that
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���Hv�,PV�I�� = 0,
1
2��PV�I�,PV�I�� + ��v�,PV

��I�� + 1
2��PV

��I�,PV
��I�� = 0

�
nd then

�PV�I� = 0 ⇔ I = PV
��I� ,

��v�,PV
��I�� + 1

2��PV
��I�,PV

��I�� = 0.
�

he conclusion follows immediately from Lemma �4.1�. �

The theorem has an immediate application to the class of constraints S of codimension 1.
Corollary 4.1: Let S be such that codim�S�=1 and let I : i*�J1�V��→ i*�V�V�� be a nontrivial

onstitutive characterization for S satisfying the hypotheses of Theorem (4.1). Then

I�x� = − 2v��x�, ∀ x � i*�J1�V�� . �25�

Proof: Since dim��i*�V�S�����=1, conditions �24� imply that Z�x�=0∀x� i*�J1�V��. More-
ver, the impenetrability condition ��v��x� ,I�x���0∀x� i*�J1�V�� has a straightforward verifi-
ation. �

The case codim�S��1 is not particularly significant from the physical point of view: a simple
xample is given by a point particle moving in a three-dimensional space and colliding with a
ne-dimensional straight line. Anyway, Theorem �4.1� allows a simple treatment of such cases by
equiring an additional “minimality” criterion. Of course, due to results 3,4� of Lemma �4.1�, the
inimality must be required for the part Z�x� of the reactive impulse I�x� or, alternatively, a

maximality” condition must be required for I�x�. A minimality requirement on I�x� would give in
act the trivial �null� reaction.

The described procedure applied to a point particle moving in a three-dimensional space and
olliding with a one-dimensional straight line gives a very natural result: the impulsive reaction
elongs to the plane determined by v� and the constraint. The detailed calculation will not be
resented in the following, since we prefer to discuss more significant examples.

. The Poisson-type approach

The Poisson-type approach to impulsive problems divides the reactive impulse I due to S into
wo parts Iin and Iout with different physical meanings �see, for example, Ref. 28, and references
herein�.

The part Iin : i*�J1�V��→ i*�V�V�� is related to the “entrance” of the system in the constraint S
iewed, roughly speaking, as a “suddenly appearing positional constraint.” Then, with the previ-
us discussion about the natural requirements to ask of an ideal constitutive characterization kept
n mind, we see that Iin must satisfy the property

x + Iin�x� � i*�J1�S��, ∀ x � i*�J1�V�� �26�

nd Iin should be dependent only on the geometric objects of the setup. The most natural choice of
constitutive characterization for Iin follows from the requirement x+Iin�x�=PJ�x�. Moreover,

his is the same result given by the application of the usual minimality principle. The requirement
+Iin�x�=PJ�x� implies Iin�x�=−v��x�.

The part Iout : i*�J1�V��→ i*�V�V�� is related to the “exit” of the system from the constraint S,
nd it is subject to additional requirements, which, in general, express mechanical properties of the
mpulsive problem. For example, one such property could be the conservation of kinetic energy.
nce again the conservation of energy cannot be required for every frame of reference and should
ot be required for a single rest frame. The discussion of a constitutive characterization for Iout can
e phrased in terms of the properties of the total reactive impulse Itot=Iin+Iout as presented in

heorem 4.1. Alternatively, it can be presented ex novo starting from the condition
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HK�x − v��x� + Iout�x�� = HK�x�, ∀ x � i*�J1�V��, ∀ H � H

nd repeating the procedure of Theorem 4.1. In both cases it easily follows that

Iout�x� + v��x� = Z�x�, ∀ x � i*�J1�V�� . �27�

he latter gives results completely analogous to the ones of the Newton-type approach both when
odim�S�=1 and when codim�S��1.

. The reflection operator approach

The case codim�S�=1 can be approached in a classical, but different, way through the use of
eflection operators.

We recall that once a scalar product � is known in a vector space V, it is possible to associate
o each assigned vector N�V, with �N�=1, a reflection operator

RN: V → V such that v � RN�v� = v − 2��v,N�N . �28�

hen codim�S�=1 we can introduce a unitary generator N of �i*�V�S���� and then we can define
ts associated reflection operator RN : i*�V�V��→ i*�V�V��, that will be denoted simply by R.

Recalling that each frame of reference H determines the diffeomorphism �H : i*�J1�V��
i*�V�V��, a possible choice of a constitutive characterization of S can be given by the rule

ĨR: i*�L1�V�� → i*�R1�V�� such that xL � xR = �H
−1�R�Hv�xL��� . �29�

straightforward calculation shows that this characterization is the same as

IR: i*�J1�V�� → i*�V�V�� such that x � IR�x� = − 2��x − H,N�N . �30�

nfortunately, following this line of argument brings us to the same difficulty we mentioned
arlier, since any constitutive characterization of type �30� depends on the frame H. The relation
ith the constitutive characterization of Sec. IV A is clarified by the following.

Corollary 4.2: The constitutive characterization IR does not depend on the frame H if and
nly if H is chosen in the class H of the frames tangent to S. In this case, the characterization IR
oincides with the characterization I of Sec. IV A.

Proof: Since the single vector N forms a unitary basis of �i*�V�S����, the vector ��x
H ,N�N is the component Hv�� �i*�V�S���� of the velocity x. Then Theorem �3.1� gives the first

tatement of the corollary. Once H�H, then

IR�x� = − 2��x − H,N�N

= − 2��v��x�,N�N = − 2��v��x�,N�N = − 2v�

rom which the result follows. �

. EXAMPLES

The main reason for the choice of the examples in the following is to show in detail the
pplication of the ideal constitutive characterization for impulsive constraints acting on some
ignificant mechanical systems. Secondarily, in order to prove the naturalness of the ideal charac-
erization, our choice of examples is based on the intention of illustrating the clear physical
nterpretation of some peculiar results regarding specific mechanical systems. A third reason is the
ossibility of returning to some arguments, such as the geometric representation of constraints in
mpulsive Mechanics, that were only skimmed in the previous discussions.

For these reasons, the simplest example of a point particle moving in a plane and impacting

ith a straight line is left to the reader.
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. Example 1

A homogeneous disk of mass m and radius R is moving in a plane and impacts with a smooth
traight line.

The space-time bundle V is a four-dimensional manifold. Local admissible coordinates can be
hosen as �t ,x ,y ,�� where x ,y are the Cartesian coordinates of the center of the disk in the plane
f the motion and � is the orientation of the disk �see Fig. 1�. The configuration space is R2

S1. The vertical scalar product � on V is described by the matrix gij =diag�m ,m ,A� with A
1
2mR2. The constraint S can be described by the condition y=R or, choosing admissible coordi-

ates �t ,x ,�� in S, by the injection

i:S → V such that �t,x,�� � �t,x,R,�� . �31�

herefore in this example codim�S�=1. The scalar product � on S is described by the matrix

��=diag�m ,A�. The velocity and vertical spaces are:

i*�J1�V�� = �x =
�

�t
+ ẋ

�

�x
+ ẏ

�

�y
+ �̇

�

��
� ,

i*�V�V�� = �U = ẋ
�

�x
+ ẏ

�

�y
+ �̇

�

��
� ,

i*�J1�S�� = �q =
�

�t
+ ẋ

�

�x
+ �̇

�

��
� ,

i*�V�S�� = �V = ẋ
�

�x
+ �̇

�

��
� ,

�i*�V�S���� = �W = w
�

�y
� .

unit vector generating �i*�V�S���� is N= �1/�m�� /�y.

Given a left velocity xL=� /�t+ ẋL� /�x+ ẏL� /�y+ �̇L� /��, we have v��xL�=PJ
��xL�= ẏL� /�y

� ˙

FIG. 1. Example 1.
nd the corresponding ideal reactive impulse is I�xL�=−2v �xL�=−2yL� /�y. It follows that
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xR = xL + I�xL� =
�

�t
+ ẋL

�

�x
− ẏL

�

�y
+ �̇L

�

��
. �32�

he result has a clear physical interpretation: both the velocity along the x axis and the angular
elocity of the disk do not vary with the impact, while the velocity of the disk along the y axis
imply reverses. This is of course in perfect agreement with the reflection operator approach.

. Example 2

A homogeneous rod of mass m and length 2L is moving in a plane and one of its ends impacts
ith a smooth straight line.

The space-time bundle V is again a four-dimensional manifold with local admissible coordi-
ates �t ,x ,y ,��, where x ,y are the Cartesian coordinates of the center of mass of the rod in the
lane of the motion and � is the angle formed by the rod with the x axis �see Fig. 2�. Once again,
he configuration space is R2�S1. The vertical scalar product � on V is described by the matrix

ij =diag�m ,m ,A� with A= 1
3mL2. The constraint S can be described by the condition y−L sin �

0 or, choosing admissible coordinates �t ,x ,�� in S, by the injection

i:S → V such that �t,x,�� � �t,x,L sin �,�� . �33�

herefore codim�S�=1. We avoid the possibility that all the points of the rod simultaneously
mpact with S by requiring �� �0,��. The scalar product � on S is described by the matrix

��=diag�m ,A�1+3 cos2 ���. The velocity and vertical spaces are:

i*�J1�V�� = �x =
�

�t
+ ẋ

�

�x
+ ẏ

�

�y
+ �̇

�

��
� ,

i*�V�V�� = �U = ẋ
�

�x
+ ẏ

�

�y
+ �̇

�

��
� ,

i*�J1�S�� = �q =
�

�t
+ ẋ

�

�x
+ L�̇ cos �

�

�y
+ �̇

�

��
� ,

i*�V�S�� = �V = ẋ
�

+ L�̇ cos �
�

+ �̇
� � ,

FIG. 2. Example 2.
�x �y ��
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�i*�V�S���� = �W = w� �

�y
−

3

L
cos �

�

��
� .

Given a left velocity xL=� /�t+ ẋL� /�x+ ẏL� /�y+ �̇L� /��, we have

v��xL� = �ẏL −
mLẏL cos � + A�̇L

�A�1 + 3 cos2 ���
L cos � �

�y
+ ��̇L −

mLẏL cos � + A�̇L

�A�1 + 3 cos2 ���
 �

��
.

t follows that

xR = xL + I�xL� =
�

�t
+ ẋL

�

�x
+ �2

mLẏL cos � + A�̇L

�A�1 + 3 cos2 ���
L cos � − ẏL �

�y

+ �2
mLẏL cos � + A�̇L

�A�1 + 3 cos2 ���
− �̇L �

��
.

simple test of reasonableness of the result follows from the analysis of the particular case of
mpact configuration with the rod orthogonal to the constraint, that is when �=� /2. A straight-
orward substitution gives v��xL�= ẏL� /�y, from which follows the expected result xR=� /�t

ẋL� /�x− ẏL� /�y+ �̇L� /��.
Another possible test follows from an analysis of the dependence on the “impact angle” � of

he behavior of the rod when the rod collides with left velocity xL=� /�t+ ẋL� /�x+ ẏL� /�y, that is
ith null angular velocity. A first result, once again easily predicted, is that the component ẋR of

he right velocity along the x axis coincides with ẋL, that is the component of the velocity of the
enter of mass along the x axis is not affected by the impact. A second result is the existence of
wo symmetric angles, determined by the condition ẏR=0 and given by cos2 �= 1

3 . It can be easily
een that, for impact angles � with cos2 ��

1
3 , the component ẏR of the right velocity along the y

xis has the opposite sign of ẏL �the rod “rebounds” off the constraint� while for impact angles �
ith cos2 ��

1
3 , the component ẏR of the right velocity along the y axis has the same sign of ẏL

the center of mass of the rod “continues its approach” to the constraint�. However in both cases

n angular velocity �̇R�0 appears �with a sign correctly determined by the impact angle�.

. Example 3

A homogeneous sphere of mass m and radius R is moving in a three-dimensional space and
mpacts with a smooth straight line �see Fig. 3�.

In this example the space-time bundle V is a seven-dimensional manifold with local admis-
ible coordinates �t ,x ,y ,z ,� ,� ,��, where x ,y ,z are the Cartesian coordinates of the center of
ass of the sphere and � ,� ,� are the usual Euler angles. The configuration space is R3

SO�3�. The vertical scalar product � on V is described by the matrix

gij =�
m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 A 0 A cos �

0 0 0 0 A 0

0 0 0 A cos � 0 A

�
ith A= 2

5mR2. The constraint S can be described by the condition y2+z2=R or, choosing admis-
ible coordinates �t ,x ,� ,� ,� ,�� in S, by the injection

i:S → V such that �t,x,�,�,�,�� � �t,x,R cos �,R sin �,�,�,�� . �34�
gain codim�S�=1. With the additional condition sin ��0, the velocity and vertical spaces are:

                                                                                                            



I

112904-17 Ideal constraints in impulsive mechanics J. Math. Phys. 46, 112904 �2005�

                        
i*�J1�V�� = �x =
�

�t
+ ẋ

�

�x
+ ẏ

�

�y
+ ż

�

�z
+ �̇

�

��
+ �̇

�

��
+ �̇

�

��
� ,

i*�V�V�� = �U = ẋ
�

�x
+ ẏ

�

�y
+ ż

�

�z
+ �̇

�

��
+ �̇

�

��
+ �̇

�

��
� ,

i*�J1�S�� = �q =
�

�t
+ ẋ

�

�x
− �̇R sin �

�

�y
+ �̇R cos �

�

�z
+ �̇

�

��
+ �̇

�

��
+ �̇

�

��
� ,

i*�V�S�� = �V = ẋ
�

�x
− �̇R sin �

�

�y
+ �̇R cos �

�

�z
+ �̇

�

��
+ �̇

�

��
+ �̇

�

��
� ,

�i*�V�S���� = �W = w�cos �
�

�y
+ sin �

�

�z
� .

Given a left velocity xL=� /�t+ ẋL� /�x+ ẏL� /�y+ żL� /�z+ �̇L� /��+ �̇L� /��+ �̇L� /��, we have

v��xL� = ��ẏL cos � + żL sin ��cos ��
�

�y
+ ��ẏL cos � + żL sin ��sin ��

�

�z
.

FIG. 3. Example 3.
t follows that
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xR = xL + I�xL� =
�

�t
+ ẋL

�

�x
+ �ẏL − 2 cos ��ẏL cos � + żL sin ���

�

�y

+ �żL − 2 sin ��ẏL cos � + żL sin ���
�

�z
+ �̇L

�

��
+ �̇L

�

��
+ �̇L

�

��
.

nce again, simple tests of reasonableness of the result follow from the analysis of particular cases
f impact configurations. For example, an impact with ẏL�0, żL=0, �=� /4 gives ẏR=0, żR

=−ẏL and leaves invariant the other component of the left velocity.
However, one important peculiarity of this example is that it points out the fact, only alluded

o in the introduction of the paper, that the translation of the physical problem with its constraints
the ball impacting with the line� into the geometric context can transform the thread y=z=0, that
s a constraint with codimension greater than 1, into a constraint with codimension 1 �the “cylin-
er” S�.

. Example 4

A mechanical system is formed by two rods of mass 2m and m and length 2L and L, respec-
ively, moving in a plane. The first rod has one of its ends fixed at a point O of the plane �so that
t can only rotate around O�, the second rod has one of its ends fixed at the second end of the first
od. A nail N is fixed in the plane at a distance �3L from O �see Fig. 4�. Then there are three
ifferent kinds of impact: the first rod impacts with the nail while the second rod is far from the
ail; the second rod impacts with the nail while the first rod is far from the nail; both the rods
mpact simultaneously with the nail.

In this example the space-time bundle V is a three-dimensional manifold with local admissible
oordinates �t ,� ,��, where � is the angle formed by the first rod and the straight line determined
y O and N while � is the angle formed by the second rod and the direction of the straight line
N. The configuration space of the system is the two-dimensional torus T2 and the vertical scalar
roduct � on V is described by the matrix

gij =�
10

3
mL2 mL2 cos�� − ��

mL2 cos�� − ��
1

6
mL2 � .

he constraint S is the union of the zero sets described by the two conditions S1 ,S2, where

FIG. 4. Example 4.
S1: � = 0,
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S2: �� =
3�

2
+ arctan� �3

2
− cos �

sin �
� if � � �0,

�

6


� =
�

2
+ arctan� �3

2
− cos �

sin �
� if � � �11�

6
,2�� .�

he codimension of the constraint requires a discussion, due to the three different kinds of impact:
he impact with S1, the impact with S2, and the impact with S1�S2.

We leave it to the reader to verify that in the first two situations the codimension of the
onstraint is 1 and the behavior of the system is very natural. In the third case the codimension of
he constraint is 2 and Corollary 4.1 cannot be applied.

One might hope that to analyze the third case it would be enough to first consider Case 1 and
hen follow it by Case 2 �or vice versa�. Unfortunately, the conclusion one obtains depends on the
rder in which we consider the cases. Consequently, the hope remains unrealized. On the contrary,
he additional “minimality” requirement discussed at the end of Sec. IV A applied to the third case
ives rise to a well-defined and naturally interpretable right velocity.

I. OUTLOOKS AND WISHES

The results and techniques described in the paper to approach the study of time-dependent
nilateral constraints could be �we hope…� useful tools to investigate several other aspects of
mpulsive Mechanics. The most natural step in the direction traced out by the paper seems to be
he study of the so-called kinetically constrained impulsive motion, i.e., the impulsive motion of a

echanical system subject to kinetic constraints, possibly of permanent or instantaneous nature.
he most classical example is the billiard ball, rolling on a rough plane �and then subject to a
ermanent kinetic constraint� and impacting with a rough wall �and then subject to the unilateral
mpulsive constraint given by the wall and the instantaneous kinetic impulsive constraint due to
he roughness of the wall�.

Another possible application of the results of the paper is the study of impacts between
ifferent parts of the same mechanical system �or between two different systems, such as two
illiard balls�, and the analysis of the conservation of linear and angular momenta.

It goes without saying that the most interesting development of this geometric approach to
mpulsive Mechanics consists in the study of the behavior of time-dependent systems subject to
onideal unilateral impulsive constraints. Surely, at the present time, this problem is almost totally
pen, but, in our opinion, a possible first step is a consistent definition of the coefficient of
estitution, that, in the time-dependent case, seems to be strictly related to the concept of frame of
est of the constraint.
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We introduce the notion of Gauss-Landau-Hall magnetic field on a Riemannian
surface. The corresponding Landau-Hall problem is shown to be equivalent to the
dynamics of a massive boson. This allows one to view that problem as a globally
stated, variational one. In this framework, flowlines appear as critical points of an
action with density depending on the proper acceleration. Moreover, we can study
global stability of flowlines. In this equivalence, the massless particle model cor-
responds with a limit case obtained when the force of the Gauss-Landau-Hall
magnetic field increases arbitrarily. We also obtain properties related with the com-
pleteness of flowlines for general magnetic fields. The paper also contains results
relative to the Landau-Hall problem associated with a uniform magnetic field. For
example, we characterize those revolution surfaces whose parallels are all normal
flowlines of a uniform magnetic field. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2136215�

. INTRODUCTION

Classically, the Landau-Hall problem consists of the motion study of a charged particle in the
resence of a static magnetic field, H. In this setting, free of any electric field, a particle, of charge
and mass m, evolves with velocity v satisfying the Lorentz force law,1

dP

dt
=

e

c
v � H ,

here c denotes the light speed, P= �� /c2�v stands for the momentum of the particle, and �
mc2�1− ��v�2 /c2��−1/2 is its energy. Since dP /dt is orthogonal to P, then �d /dt���P�2�=0. This

mplies the constancy of both �v� and �. Assume H is stationary, i.e., H is a time-independent
ector of the Euclidean space R3. With the choice of a suitable orthonormal reference system, we
ay assume that H=h�0,0 ,1�, for some h�R. In this framework, we have

d

dt
v1�t� = �v2�t�,

d

dt
v2�t� = − �v1�t�,

d

dt
v3�t� = 0,

here �= �ehc� /� is constant. Then
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x1�t� = x1
0 + r sin��t + ��, x2�t� = x2

0 + r cos��t + ��, x3�t� = x3
0 + v3

0t ,

here r= �v� /�. In particular, if v3
0=0, then the particle describes a circle in the plane x3=x3

0, with
enter �x1

0 ,x2
0 ,x3

0� and radius r. Now, in this plane we consider the 2-form F defined by F�X ,Y�
��X�Y ,H�, where �= ±1 is the sign of h /�. It is clear that F is covariantly constant, and

herefore it is a constant multiple of the area element, indeed F=�h dx1∧dx2. Now, consider the
etric g on the plane defined by gª��h /��g0, where g0= �,� denotes the Riemannian metric on

he plane induced by the usual one of R3. Define the operator �, g-equivalent to F, by
���X� ,Y�=F�X ,Y�. Then, the Lorentz force law can be expressed in terms of this form by

d

dt
v�t� = ��v�t�� . �1�

This approach to the classical picture can be obviously extended to a more general setting. In
act, it seems natural to define a magnetic field on a n��2�-dimensional Riemannian manifold
M ,g�, as a closed 2-form F on M. The Lorentz force of a magnetic background �M ,g ,F� is
efined to be the skew-symmetric operator, �, given by

g���X�,Y� = F�X,Y� , �2�

for any couple of vector fields X, Y on M. Let us remark that � is metrically equivalent to F, so
no information is lost when � is considered instead of F. In classical terminology, it is said that
� is obtained from F by raising its second index, and � and F are then said to be physically
equivalent. On the other hand, there exists another operator �� defined from F via g in a similar

ay, namely g�X ,���Y��=F�X ,Y�, but it is easily seen that ��=−�. So, the choice from among
or �� to represent F, using g, is not relevant. Along this paper, we will use � to denote the

orentz force induced from �M ,g ,F�.
A �smooth� curve � in �M ,g� is called a flowline of the dynamical system associated with the

agnetic field F �or simply a flowline of F, or a magnetic curve of �M ,g ,F��, if its velocity vector
eld, ��, satisfies the following �Landau-Hall� differential equation:

�LH� ����� = ����� ,

here � is the Levi-Civita connection of g �compare with Eq. �1��.
For the trivial magnetic field, F=0, the case without the force of a magnetic field, magnetic

urves correspond with the geodesics of �M ,g�. As it is well known, they are nicely characterized
s critical points of an energy action and so they represent the trajectories for free fall particles
moving under the influence of only gravity�. In the general case, however, magnetic flows are
mportant examples of dynamical systems on Riemannian manifolds whose flowlines, being the
rajectories of charged particles in �nontrivial� magnetic fields, are not geodesics �Proposition 2.1�
ut, as we will see later, they are closely related with the Riemannian structure.

Nevertheless, the magnetic curves of �M ,g ,F� can be also viewed, at least locally, as the
olutions of a variational principle. In fact, let U be an open subset of M where F=d� for some
otential 1-form � �this open subset could be the whole M when H2�M�=0�. For any two fixed
oints p, q�U, we consider the space 	pq of smooth curves in U that connect these two points.
ow, we choose the action LH :	pq→R defined by

LH��� =
1

2
�

�

g���,���dt − �
�

�����dt . �3�

he tangent space of 	pq in � is made up of the smooth vector fields, V, along � that vanish at the
ndpoints p, q�U. A standard computation involving integration by parts allows one to compute

he first variation of this action to be
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�LH�����V� = − �
�

g������ − �����,V�dt .

s a consequence, we get


�LH�����V� = 0, for any V � T�	pq if and only if � is a solution of �LH� .

his argument shows that the differential equation �LH� is indeed the Euler-Lagrange equation
ssociated with the functional LH.

However, it seems natural to realize the old idea of characterizing magnetic curves from a
lobal variational principle. In other words, to obtain the magnetic trajectories of �M ,g ,F� as
olutions of a variational problem that neither it does not involve any local potential nor it does not
onstraint the topology of M. This is, in general, an interesting open problem. One of the main
ims of this paper is just to solve it for certain magnetic fields on surfaces.

To be precise, we introduce the notion of a Gauss-Landau-Hall magnetic field �in brief, GMF�
n an oriented Riemannian surface �M ,g�. First, we do it in the natural context that surfaces are
mmersed in Euclidean space R3 using the Gauss map. However, we notice that the notion of GMF
s absolutely intrinsic so it can be considered on surfaces even if they are not regarded in R3. Then,
e are able to obtain an amazing result which characterizes the normal flowlines of a GMF as the

olutions of a variational principle globally stated. Therefore, those flowlines appear as critical
oints of an action whose Lagrangian density involves the proper acceleration of particles �rela-
ivistic particles with rigidity of order one, in the sense of Plyushchay2,3�. A priori, these actions
escribe a massive relativistic boson. However, massless particles with arbitrary helicity are ob-
ained as a limit case, just when the Lorentz force of the GMG increases arbitrarily.

Other details on the paper are the following. We first provide in Sec. II an analysis of the
xistence, uniqueness, extendibility, and completeness of the magnetic curves associated with a
iven �M ,g ,F�. Section III deals with uniform magnetic fields on Riemannian surfaces, while the
articular case when �M ,g� is a revolution surface is studied in Sec. IV. In Sec. V, a one-parameter
amily Fm of functionals is considered on an appropriate space of curves � in the surface. The
uler-Lagrange equation associated to the variational problem is then obtained. In Sec. VI we
efine a Gauss-Landau-Hall magnetic field on a surface, first in R3, and then in general. In this
ection, we obtain the main result, Theorem 6.1, which asserts that the normal flowlines of a GMF
oincide with the critical points of the appropriate functional Fm. Stability of the field equation
olutions is also studied. In Sec. VII, we show a characterization theorem for those revolution
urfaces whose parallels are all normal magnetic curves associated to a GMF. We close the section
tudying some particular examples.

I. COMPLETENESS OF MAGNETIC CURVES AND MORE

An early property of the magnetic curves is the following conservation’s law. Particles evolve
ith constant speed, and so constant energy, along the magnetic trajectories

d

dt
g���,��� = 2g������,��� = 0. �4�

In particular, a magnetic curve � is said to be normal if it has unit energy, i.e., ����2	1.
The existence and uniqueness of geodesics, remains true when one considers magnetic curves.

hus, for each p�M and v�TpM there is exactly one inextendible �i.e., maximal� magnetic
urve, � : �−a ,a�→M, of �M ,g ,F� with ��0�= p and ���0�=v �see for instance Ref. 4, p. 91�.
ince the proof of this result does not make use of neither the definiteness of g nor the skew-
ymmetry of �, one has a present determines the future type result for an indefinite metric,
orentzian in particular, and for any smooth operator. Even more, the result also works for

5
olutions of a differential equation that extends that of Landau-Hall in the following terms:
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����� = ����� + X � � ,

here X is a vector field on a semi-Riemannian manifold. This setting includes the important case
n Mechanics where X=−�V, and V standing for smooth function on M �Ref. 6, Proposition
.7.4�.

Nevertheless, the well-known homogeneity result for geodesics, works quite different in non-
rivial magnetic fields. Therefore, if � is the inextendible magnetic curve of �M ,g ,F� determined
rom the initial data �p ,v�, the curve �, defined by ��t�=��t�, �R \ 
0�, is a magnetic trajectory
f �M ,g ,F� and also, when �0, of �M , �1/�g ,F�, in both cases determined from initial data
p ,v�. Furthermore, the whole families of magnetic curves of �M ,g ,F� and �M ,g ,F� coin-
ides, for any constant �0. Consequently, we have the following.

Proposition 2.1: Let F be a nontrivial magnetic field on a Riemannian manifold �M ,g�. Then,
here exists no affine connection on M whose geodesics are the magnetic curves of �M ,g ,F�.

A magnetic field �M ,g ,F� with Lorentz force �, provides, in a similar way as in Ref. 7,
Proposition 3.28, with a unique vector field Q� on the tangent bundle TM. This is defined to have
ntegral curves being the lifting to TM of the magnetic curves, that is, t� ���t� ,���t��, where � is
magnetic curve of �M ,g ,F� �compare with Ref. 8�. Certainly this vector field is nothing but the
eodesic flow when F=0. Once more, neither the definiteness of g nor the skew symmetry of �
s needed to define Q�.5 On the other hand, the fact that any integral curve of Q� is the velocity
f its projection on M, allows us to think of Q� as a nice example of the classically so-called
econd order differential equation on M. Because the comment previous to Proposition 2.1, Q� is
ot a spray, in general.

A dynamical system with complete trajectories is often thought in Physics to be persisting
ternally. But in many circumstances one must deal with incompleteness. So, because of its
mportance, we next give criteria to assert when it holds true. An important tool to study the
ompleteness of the inextendible magnetic curves, i.e., under what assumptions all the inextend-
ble magnetic curves are defined on all R, is the vector field Q�. By using Lemma 1.56 in Ref. 7,
t is easily seen as the following result.

Proposition 2.2: Let �M ,g� be a Riemannian manifold, F a magnetic field on M, and
: �a ,b�→M, a�b, a magnetic curve of F. The following are equivalent:

a� � is extendible to b as a magnetic curve.
b� There exists a sequence 
tn�→b, tn� �a ,b� such that the sequence of velocities 
���tn��

converges in TM.

Accordingly, a magnetic curve � : �a ,b�→M, a, b�R, a�b, of �M ,g ,F� can be extended to
ome open interval I, �a ,b�� I, if and only if ��a ,b� is contained in a compact subset of M.
herefore, we get �compare with Theorem 2.1.18 in Ref. 6� the following.

Proposition 2.3: Let � be an inextendible magnetic curve of �M ,g ,F� such that ��a ,b� lies in
compact subset of M, for every finite interval �a ,b� in its domain. Then, � must be complete.

In particular, if M is assumed to be compact, then we get that any inextendible magnetic curve
f �M ,g ,F� must be complete. This fact can be also obtained as a consequence of Corollary 2.4,
nd it will be stated in Remark 2.5 �a�, from a different approach.

Now, let � : �a ,b�→M be a magnetic curve. Its length L��� satisfies L���� �b−a��e, where e
s the �constant� energy of �. For each t� �a ,b�, the distance between ��a� and ��t� satisfies
���a� ,��t���L���a,t��� �b−a��e, which shows that ���a ,b�� is contained in the closed metric
all B centered at ��a� and with radius �b−a��e. Therefore,

����a,b�� � 
�p,v� � TM:p � B, g�v,v� = e� � TM .

Then, we have the following:
Corollary 2.4: Let F be any magnetic field on a geodesically complete Riemannian manifold

M ,g�. Then, all the inextendible magnetic curves of �M ,g ,F� are complete.
Proof: If �M ,g� is assumed to be geodesically complete, then the Hopf-Rinow theorem im-
plies that B must be compact. Hence 
�p ,v��TM : p�B, g�v ,v�=e� is a compact subset of TM.
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ake now a sequence 
tn�→b, tn� �a ,b�, then 
���tn�� lies in a compact subset of TM. So, by
assing to a subsequence of 
tn�, we are under the assumption �b� of Proposition 2.2, concluding
hat � is extendible to b as a magnetic curve.

Remark 2.5:

a� If M is assumed to be compact �therefore �M ,g� is geodesically complete for any Riemann-
ian metric g on M�, then we can give an alternative proof of Corollary 2.4. In fact, the
previous conservation’s law �Eq. �4�� for the length of velocity vectors of magnetic curves,
implies that the vector field Q� on TM can be restricted to each spherical tangent bundle
UeM
�p ,v��TM :g�v ,v�=e��TM, e�0. But UeM is compact whenever M is compact,
and hence the restriction of Q� to UeM is a complete vector field. This proves that all the
inextendible magnetic curves of F are complete.

b� Proposition 2.1 has shown a remarkable difference between magnetic curves and geodesics.
The following nonconnectness fact complements that result. Let us consider the unit
2-sphere S2�1� endowed with its standard round metric g, and let F be the magnetic field
F=��2, where �2 is the area 2-form and ��R, ��0. As we will show later �see the
comment after Proposition 3.2�, the associated magnetic curves with energy e are circles on
S2�1� with radius r= �1+ ��2 /e��−1/2. Then, as r�1, any two antipodal points cannot be
connected by a magnetic curve of �S2 ,g ,F�. Moreover, for any p�S2, all the inextendible
magnetic curves � of �S2 \ 
−p� ,g ,F� such that ��0�= p are complete.

c� Let �M ,g� be a Riemannian manifold where g is an incomplete metric. If F is a magnetic
field on �M ,g�, then there exists a pointwise conformal metric f2g such that the inextendible
magnetic curves of �M , f2g ,F� are complete. In fact, there exists f �C��M�, f �0, such that
f2g is geodesically complete.9 Therefore, Corollary 2.4 gives that the magnetic curves of
�M , f2g ,F� are complete.

d� It should be observed that the closedness assumption on the 2-form F in Corollary 2.4 was
not used. On the other hand, the skew symmetry of the tensor field F has played a crucial
role �recall the conservation’s law �4��. In fact, consider the tensor field F=−2x dx2 on the
Euclidean plane �R2 ,g0=dx2+dy2�. If � denotes the operator defined from F using Eq. �2�,
then ��� /�x�=−2x�� /�x� and ��� /�y�=0. Therefore, ��t�= �x�t� ,y�t�� satisfies the equation
�LH� if and only if x��t�+2x�t�x��t�=0 and y��t�=0. So, ��t�= �1/ t , t� is an inextendible
incomplete trajectory of �R2 ,g0 ,F�.

e� Finally, let us point out that Corollary 2.4 cannot be also extended to the indefinite case. In
fact, consider R2 endowed with the Lorentzian metric gL=dx2−dy2, and define the magnetic
field F=−x dx∧dy. A curve �x�t� ,y�t�� is a magnetic curve of �R2 ,gL ,F� if and only if it
satisfies x��t�=x�t�y��t�, y��t�=x�t�x��t�. Then, ��t�= �2/ t ,−2/ t� is an inextendible magnetic
curve which is defined on �0, ��.

II. UNIFORM MAGNETIC FIELDS

From now on, M will be an oriented Riemannian surface with standard complex structure J,
nd area element �2 so that �2�X ,JX�=1 for any unit vector field X in M.

Given a curve � in M such that g��� ,���=e�0 is constant, its Frenet apparatus is 
T
�1/�e���, N=JT�. If � denotes the curvature function, we have the following well-known Frenet
quations

���T = ��eN, ���N = − ��eT .

Obviously, any magnetic field on a surface, M, is determined from a smooth function, f �the

trength�, by F= f�2. Therefore, the matrix of � in any orthonormal frame, 
X ,JX� is given by
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�0 − f

f 0
� .

n particular, along a magnetic curve � of �M ,g ,F�, with energy e, and relative to its Frenet frame,
he Lorentz force is obtained to be

� 0 − ��e

��e 0
� .

herefore, we get the following.
Proposition 3.1: The curvature of the magnetic curves with energy e is given by �= f /�e. So,

he curvature of the normal magnetics curves completely determines the Lorentz force, i.e., f =�
long these flowlines.

A parallel magnetic field F, i.e., a magnetic field with constant strength f =�, is called a
niform magnetic field. This class of magnetic fields has been extensively considered in the
iterature from different points of view �Refs. 8 and 10–16, etc.�. The geometric partner of the
andau-Hall problem, for uniform magnetic fields, is nothing but the computation of curves with
onstant curvature. To be precise, we have the following.

Proposition 3.2: Let F=��2 be a uniform magnetic field, with constant strength �, on a
iemannian surface �M ,g�. A curve � in M, with constant energy e, is a magnetic curve of
M ,g ,F� if and only if it has constant curvature �=� /�e.

On surfaces of constant Gauss curvature, the feature of the normal flowlines of a nontrivial
niform magnetic field F=��2 is well known for any uniform magnetic field. On the Euclidean
lane, R2, they are circles with radius 1/ �. On the 2-sphere of radius r, S2�r�, flowlines with
nergy e are circles with radius �r�e� /�e+r2�2��r�. In these two backgrounds, the flowlines are
lways closed.

On the other hand, the situation in a hyperbolic plane is quite different. Let H2�−G� be the
pper half-plane �in R2� endowed with the Lobatchevski metric of curvature −G, G�0, that is, the
oincaré plane. We use Proposition 3.2 with the basic knowledge of the curves of constant
urvature in H2�−G� �see any basic text of Riemannian geometry� to make trivial the following
escription of the flowlines which is due to Comtet,11 and has been mentioned along a large list of
eferences. The behavior of normal magnetic curves changes according to the ratio between the
trength, �, and the curvature of H2�−G�. Namely,

i� If � /�G�1, then the trajectories are geodesic circles, and therefore they are closed
curves.

ii� If � /�G�1, then the trajectories are nonclosed curves which intersect the boundary line,
�H2�−G�, of the upper half-plane. In particular, they are tangent to this boundary, and so
they are horocycles when �=�G.

Remark 3.3:

a� Let � be a curve with constant geodesic curvature ��0 in any of the three previous constant
curvature surfaces. Then, for a given uniform magnetic field F=��2, a suitable fitting of the
constant speed �and hence, the energy� of � makes this curve to be a magnetic curve of F.

b� Let �M ,g� be again one of the three above space forms and F=��2 a uniform magnetic field
on �M ,g�. Then, any magnetic curve � with energy e of �M ,g ,F� can be then considered as
a normal magnetic curve of �M , �1/e�g , �1/e�F� �see the comment previous to Proposition

2.1�.
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V. THE LANDAU-HALL PROBLEM IN A SURFACE OF REVOLUTION

Let ��s�= �f�s� ,h�s��, a�s�b, f�s��0, be a parameterization by the arclength of a curve, C,
contained in the 
xz�-plane of R3. We rotate C around the z-axis to obtain a surface of revolution,
ay M�, with canonical parametrization in R3,

X�s,v� = �f�s�cos v, f�s�sin v,h�s��, 0 � v � 2� . �5�

f course we consider that M� is endowed with the induced metric g of the Euclidean one of R3.
Each point of C describes a parallel, �s, which can be parametrized by arclength in the

ollowing way:

�s�t� = � f�s�cos
t

f�s�
, f�s�sin

t

f�s�
, h�s�� ,

here 0� t�2�f�s�.
The curvature, �s, of �s in M�, is computed to be

�s�t� = ��Ts
Ts� =

f��s�
f�s�

,

here Ts=�s� and � is the Levi-Civita connection of M�. In particular, �s is constant along �s, and
o this curve is a good candidate to be a flowline of a suitable uniform magnetic field on M�.

Let F=��2 be a uniform magnetic field on M� with constant strength �. Then �s is a normal
agnetic flowline of �M� ,g ,F=��2� if and only if �s=� �Proposition 3.2�. Therefore, the set of
agnetic parallels of �M� ,g ,F=��2� can be identified with the following subset of the interval

a ,b�:

	� = 
s � �a,b�:f��s� = �f�s�� .

To determine those surfaces of revolution whose parallels are all normal magnetic curves of a
iven uniform magnetic field �that is, those with 	�= �a ,b�� we need to solve the ordinary differ-
ntial equation

f��s� = �f�s� .

bviously, we have two possibilities. The trivial one, corresponding with the case of a trivial
agnetic field �the strength vanishes�, the flowlines are then geodesics, and the surface of revo-

ution is a right circular cylinder. Otherwise, since the Gauss curvature of a surface of revolution
in the canonical parametrization� is given by

G�s,t� = −
f��s�
f�s�

, �6�

e get that G�s , t�=−�2, and hence the surface has constant negative curvature. In particular, we
ave the following.

Proposition 4.1: The parallels of a surface of revolution, M�, are all normal magnetic flow-
ines of a uniform magnetic field, F=��2, if and only if either

1� M� is a right circular cylinder �when �=0�, or
2� M� is a bugle surface with Gaussian curvature −�2.

Let us consider the torus of revolution, T�r ,R�, obtained by rotating the circle, C, centered at
R ,0 ,0� and with radius r�R�r�, around the z axis. The circle can be arclength parametrized by
�s�= �R+r cos�s /r� ,0 ,r sin�s /r��. Therefore, f�s�=R+r cos�s /r�, with 0�s�2�r.

Given a uniform magnetic field F=��2 on T�r ,R�, the set of normal magnetic parallels is

dentified to
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	� = 
s � �0,2�r�:H��s� = 0� ,

here

H��s� = R� + r� cos� s

r
� + sin� s

r
� .

o study 	�=H�
−1�0�, we use elemental calculus. First, we assume that ��0, otherwise 	0

H0
−1�0� is made up of the two parallels that are geodesics in T�r ,R�. In this setting, we see that

� has exactly two critical points on C �the maximum and the minimum� which are antipodal. In
act, H�� �s�=0 if and only if cot�s /r�=r� and it happens just in the following two antipodal points:

p� = �cos
s

r
, sin

s

r
� = � r�

�1 + r2�2
,

1
�1 + r2�2� ,

q� = �cos
s

r
, sin

s

r
� = − � r�

�1 + r2�2
,

1
�1 + r2�2� .

he values of H� in p� and q� are

H��p�� = R� + �1 + r2�2, the maximum of H�,

H��q�� = R� − �1 + r2�2, the minimum of H�.

e call D� the diameter in C determined by p� and q�, and let �= �R2−r2�−1/2. We distinguish two
ases.

�A� If ��0, then the point p�, where H� gets its maximum, lies in the first quadrant of the
ircle C. Since H��p���0, then 	��0” if and only if H��q���0 �the minimum is nonpositive�
hat is ���. Certainly if the equality holds, then H� vanishes only at q�= �−r /R ,−1/ ��R��.
therwise, H� vanishes exactly in two points, say z� and w�, which are separated by D� so they

ie in different half circles.
�B� If ��0, then the point p�, where H� gets its maximum, lies in the second quadrant of the

ircle C. Since the minimum is negative, H��q���0, then 	��0” if and only if H��p���0 and it
appens if and only if ��−�. It is clear that when the equality holds, then H� vanishes just at

p�= �−r /R ,1 / ��R��. However, if ��−�, then H� has exactly two zeroes, say z�� and w�� , which are
bviously separated by D� so they lie in different half circles.

All this information can be summarized in the following statement.
Proposition 4.2: Let F=��2 be a uniform magnetic field on a torus of revolution, T�r ,R�.

hen �T�r ,R� ,g ,��2� has normal magnetic parallels if and only if �� �−� ,��. Furthermore,

1� If �=−�, then there is one normal magnetic parallel obtained by rotating the point �R
+ �r2 /R� ,r / ��R���C.

2� If �=�, then there is one normal magnetic parallel obtained by rotating the point �R
− �r2 /R� ,−r / ��R���C.

3� If �� �−� ,��, then H� has exactly two normal magnetic parallels obtained by rotating two
points of C that are separated by D�.

Example 4.3: Let C be the cathenoid generated by revolving the cathenary curve ��t�
�cosh t ,0 , t�, t�R around the z axis. Let F be a uniform magnetic field with constant strength
�0, defined on C. Then, it can be shown that there exist magnetic parallels if and only if �
�−1/2 ,1 /2�. Moreover, we have the following.

1� If �=1/2 �respectively, �=−1/2�, there exists only a normal magnetic parallel correspond-
� �
ing to t=ln�1+ 2� �respectively, t=−ln�1+ 2��.
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2� If �� �−1/2 ,0� �respectively, �� �0,1 /2��, then C has two normal magnetic parallels which
are located in the region t�0 �respectively, t�0�.

Example 4.4: Let S be the revolution surface obtained by rotating the cycloid curve ��t�
�a�1−cos t� ,0 ,a�t−sin t��, t� �0,2�� around the z axis. It is easy to see the following.

1� If ��0, then S has only a normal magnetic parallel corresponding to the parameter value
t0=2 arccos��−1+�1+16a2�2� / �4a���.

2� If ��0, then S has also only a normal magnetic parallel corresponding to t1=2�− t0.

Example 4.5: Finally, let us consider the cone M generated by the line ��t�= �at ,0 ,bt�, a2

b2=1, t�0 around the z axis. Then, it can be seen that for any ��0, there exists a unique
ormal magnetic parallel given by t=1/�.

. RELATIVISTIC PARTICLES WITH RIGIDITY OF ORDER ONE

The search for Lagrangians describing spinning particles �both massive and massless� has a
ong history. An interesting and unconventional approach is to provide the necessary extra degrees
f freedom by actions whose densities depend on higher order geometrical invariants. In particu-
ar, this means that those extra bosonic variables must be encoded in the geometry of the world
rajectories. The simplest models are those involving density Lagrangians that depend on the
urvature, �, of the worldlines �Refs. 17–19, etc.�. In particular, actions that depend linearly from
�Refs. 2 and 18–22, etc.� will be considered in this section. These models describing a massive

elativistic boson.3

Suppose that � is a suitable space of curves �closed curves or clamped curves, for instance� in
Riemannian surface �M ,g�. Define a one-parameter family of functionals Fm :�→R, m�R, by

Fm��� = �
�

�� + m�ds , �7�

here s stands for the arclength parameter of curves ���. In order to obtain the first variation of
hese actions, we use the following standard machinery �see for instance Ref. 20�. For a curve
: �0,L�→M, we take variations �=��t ,r� : �0,L�� �−� ,��→M with ��t ,0�=��t�. Then, we
ave the variation vector field W=W�t�= ��� /�r��t ,0� along the curve �. We also set V=V�t ,r�
��� /�t��t ,r�, W=W�t ,r�, v=v�t ,r�= �V�t ,r��, T=T�t ,r�, N=N�t ,r�, with the obvious meanings.
he corresponding reparametrizations will be denoted by V�s ,r�, W�s ,r�, etc. The variations of v
nd � in �, in the direction of W, can be obtained to be

W�v� = g��TW,T�v , �8�

W��� = g��T
2,W,N� − 2g��T,W,T�� + Gg�W,N� , �9�

ere G denotes the Gauss curvature of �M ,g� and � its Levi-Civita connection.
To obtain the first derivative of Fm, we use �8� and �9� and proceed as follows:


Fm����W� = �
�

W���ds + �
0

L

�� + m�W�v�dt = �
�

W���ds + �
�

�� + m�g��TW,T�ds

= �
�

�g��T
2W,N� − �� − m�,g��TW,T� + Gg�W,N��ds .
hen, we use, as usual, suitable integrations by parts to get
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Fm����W� = �
�

g�����,W�ds + �B��,W��0
L, �10�

here ���� and B�� ,W� denote the Euler-Lagrange and the boundary operators and they are,
espectively, given by

���� = �G − m��N ,

B��,W� = g��TW,N� + mg�W,T� .

Proposition 5.1 (Clamped curves): Given points q1, q2�M and unit vectors x1�Tq1
M and

2�Tq2
M, define the space of curves

� = 
�:�t1,t2� → M:��ti� = qi, T�ti� = xi, N�ti� = Jxi, 1 � i � 2� .

hen, the critical points of the functional Fm :�→R are characterized by the following Euler-
agrange equation:

G� = m� ,

here G� denotes the Gauss curvature of �M ,g� along �.
Proof: Let ��� and W�T��, then W defines a curve in � associated with a variation � of

. Since V=d���t� and W=d���r�, then �V ,W�=0 along �. Furthermore, we use V=vT to have

�TW = W�ln v�T + �WT ,

long �. We evaluate this formula along � by making r=0 and use that � is a curve in the space
to obtain

�B��,W��t1

t2 = 0.

herefore, using Eq. �10�, we have that � is a critical point of Fm :�→R, that is 
Fm����W�=0
or any W�T�� if and only if ����=0 which proves the statement.

Similarly, we can obtain the following.
Proposition 5.2 (Closed curves): Let C be the space of immersed closed curves in �M ,g�. The

ritical points of the functional Fm :C→R are those closed curves that are solutions of the fol-
owing Euler-Lagrange equation:

G� = m� .

I. GAUSSIAN MAGNETIC FIELDS

Let M be a surface immersed in the Euclidean three-space, R3, so the metric, g is the induced
ne. We denote by N :M→S2 its Gauss map and d�2 will stand for the area element on the unit
ound sphere S2. The two form N*�d�2� on M can be used, for example, to measure areas of the
pherical images or topological total charges of solitons in the O�3� nonlinear sigma model �see
or instance Refs. 23 and 24, and references therein�. In this section we will consider magnetic
elds of the type

F =
1

m
N*�d�2� ,

here m is a nonzero constant. We call them Gaussian magnetic fields �GMF�. It is well known
hat N*�d�2�=G�2, G denoting the Gaussian curvature of �M ,g� and this, in particular, implies
hat we can consider these kinds of magnetic fields with no mention to the surrounding space.

amely, a GMF is always of the type
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F =
G

m
�2. �11�

The Lorentz force of a GMF is computed to be �= �G /m�J, where J is the standard complex
tructure in M. In particular, for any unit vector field, X, on M, the matrix of �, in the terminology
f Sec. III, with respect to an orthonormal frame 
X ,JX� is given by

� 0 −
G

m

G

m
0 � .

In this framework, we can combine Proposition 3.1 and the field equations of the particle
odels defined from Fm, see Eq. �7�, to obtain the following amazing relationship between the
ow of a GMF and the worldline trajectories of relativistic particles with order one. To be precise,
e have the following.

Theorem 6.1: Let ��� be a curve �clamped or closed� in �M ,g�. Then it is a normal flowline
f �M ,g ,F= �G /m��2� if and only if it is a critical point �worldline� of the action Fm :�→R given
y

Fm��� = �
�

�� + m�ds .

t this point, we can take advantage of the variational approach to study stability of the GMF
owlines. Therefore, we need the second derivative of Fm in a critical point, say � in a suitable
pace of curves, � �recall closed or clamped curves�. After some long computations �see Ref. 17
or details� one can obtain the following expression:


2Fm����W� = �
�

g�W,�W��� ds , �12�

here � denotes the vector field, along a variation of �, given by �= �G−m��N. Now, we choose
=�N to obtain

g�W,�W��� = �2N�G − m�� ,

here the right-hand term is restricted to �. However the variation of � was given in Eq. �9�; so,
n particular, we have N���=�2+G. Then, one gets from Eq. �12�,


2Fm����W� = �
�

�2�N�G� −
1

m
�G2 + m2G��ds .

Hence, we have the following useful test of stability.
Proposition 6.2: A critical point, ���, of Fm is stable if and only if the function N�G�

�1/m��G2+m2G� is signed along �.
It should be observed that the previous test has the following geometrical meaning. Set �

G−m�, then ���−1�0�, because it is a critical point of Fm, and then stability means that � is
ade up of regular points of �. Moreover, observe that this happens if 0 is a regular value of �.

Now, let us use all this information in the following elemental setting. We consider M
S2�1� the unit round sphere. Then any GMF, F= �G /m��2= �1/m��2, is uniform. However, when

tudying uniform magnetic fields on a round sphere, we cannot talk about stability of magnetic
rajectories. This is not the case of our approach.

In this setting, the magnetic curves are, according to Theorem 6.1, the critical points of the

unctional
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Fm��� = �
�

�� + m�ds = �
�

� ds + mL��� ,

nd they are nothing but those curves that satisfy 1=m�, that is geodesic circles with geodesic
urvature �=1/m.

On the other hand, we can use the Gauss-Bonnet formula to see that this variational problem
s equivalent to that associated with the action Dm :D→R defined by

Dm��� = �
�

G�2 + m�
��

ds = Area��� + mL���� ,

cting on the space �D� of simply connected domains, � in S2, with the same boundary �=��.
his is nothing but the isoperimetric problem in the round sphere. The solution is a couple of
omains �1 and �2 �the maximum and the minimum� with common boundary a geodesic circle, �,
f curvature �=1/m. Since N�G�=0 then, −�1+m2� /m has obvious sign for any choice of the
oupling constant m. Consequently, calling to Proposition 6.2, the solutions are stable.

The case where m=0 deserves a few words. First of all GMF with m=0 could be considered
s a limiting case, however, after our variational approach, it can be identified with the massless
lyushchay model,21 which is governed by the Lagrangian

F0��� 	 �
�

� ds .

his model has been considered with detail in Ref. 18. For example, the sphere does not admit,
on-only minima �maxima� for this model but also critical points. However, an anchor ring has
wo critical points corresponding to the two parallels of parabolic points.

II. GMF FLOWLINES ON SOME NONCONSTANT GAUSS CURVATURE SURFACES

In this section we would like to analyze when certain relevant curves on some nonconstant
auss curvature surfaces are in fact magnetic.

We recalled the explicit expression of the Gauss curvature, G�s ,v�, of a surface of revolution,
M�, see Eq. �6�. Consequently, we can assert now that a parallel, �s, is a normal flowline of the

MF given by �G /m��2 on M� if and only if

f��s� + mf��s� = 0. �13�

ext, we will obtain the surfaces of revolution whose parallels are all normal flowline of a GMF.
n contrast to the case of a uniform magnetic field, where only the bugle surface appeared as a
olution �see Proposition 4.1�, now the general solution is made up of a three parameter family of
urfaces which includes the bugle surface too.

Theorem 7.1: The normal flow of a GMF, �G /m��2, in a surface of revolution, M�, is
nvariant under rotations if and only if the profile curve of M� lies in the following three param-
ter family of arclength parametrized plane curves:

��s� = � f�s�,�
0

s

�1 − f��s�2 ds� ,

here

f�s� =
1

�a + c exp�− ms + b��, a,b,c � R with a � 0.

m
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Observe that the general solution of the ordinary differential equation �13� has the form
f�s�= �a+c exp�−ms+b�� /m, so the proof of the last result becomes obvious. Observe also that the
bove characterized class of surfaces of revolution includes the bugle surface �a=0� and the right
ircular cylinder �c=0� too.

It should be noticed the following coupling phenomenon in a surface of revolution, M�,
etween the GMF, F1= �G /m��2 and the uniform magnetic field F2=−m�2, for some values of
he coupling constant m. Suppose, for example, that M�=T�r ,R� is a torus of revolution and �
�R2−r2�−1/2 �notation as in Sec. IV�. Then, F1 always has two parallels being normal magnetic
urves, no matter the value of m. Now, we use Proposition 4.2 to obtain the following statement.

Proposition 7.2: If −m� �−� ,��, then both F1 and F2 have two normal magnetic parallels
oming from points alternatively placed in the profile circle. Moreover they collapse when −m
oes to −� or �.

Proof: For any value of m in R, �T�r ,R� ,g ,F1� has two normal magnetic parallels obtained by
otation of the two antipodal points in C, defined by cot�s /r�=−rm. These two points are just those
etermining the diameter D−m that separates the two magnetic parallel of �T�r ,R� ,g ,F2� when
m� �−� ,��. The second part of this statement follows similarly when we use points 1 and 2 of
roposition 4.2.

We finish the paper showing several examples.
Example 7.3: Let ��s� be an arclength parametrized curve contained in a plane, � �with unit

ormal vector B0�, in R3. We denote by 
T�s� ,N�s�� a Frenet frame along ��s�, so that
�s�∧N�s�=B0, and ��s� will stand for its curvature function. For a suitable r�0, we define a tube
f radius r, say T��r�, as the surface given by

X�s,v� = ��s� + r�cos�v�N�s� + sin�v�B0� .

e denote by ��= 
�v , :v� �0,2��� the family of curves in the tube obtained when we make v
onstant. The curvature of these curves in T��r� can be obtained, from a direct computation, to be

�v�s� =
��s�sin�v�

1 − r��s�cos�v�
.

otice that it is not constant unless ��s� is chosen to be constant curvature.
On the other hand, the Gauss curvature of the tube T��r� is computed to be

G�s,v� = −
��s�cos�v�

r�1 − r��s�cos�s��
.

ow, we can apply these formulas together with the Euler-Lagrange equations associated with the
MF, F= �G /m��2 �Propositions 5.1 and 5.2�, to see that there exist exactly two curves �clamped
r closed� in �� that are normal magnetic trajectories. They are obtained for cot�v�=−rm and this
s, formally, the same result that we have obtained for a torus of revolution �Proposition 4.2� which
an be regarded as a tube around a circle.

Example 7.4: Similarly, for a curve, ��s�, in R3 with Frenet frame 
T�s� ,N�s� ,B�s��, curvature
�s� and torsion ��s�, one can define the tube T��r� by

X�s,v� = ��s� + r�cos�v�N�s� + sin�v�B�s�� .

n particular, if ��s� is a helix �� and � are both constant� then the curvature function, �v�s� of the
urves in ��= 
�v , :v� �0,2��� satisfy

�v
2 =

�2 sin2�v�
�1 − r� cos�v��2 + r2�2 .

ow, the curves in �� that are normal flowlines of �G /m��2 on the helicoidal tube T��r� corre-
1
pond with the zeroes of the function � :S →R defined by
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��v� = �1 − r� cos�v��2�cos2�v� − r2m2 sin2�v�� + r2�2 cos2�v� .

owever, we have

��0� = ���� = �1 − r��2 + r2�2 � 0 and ���

2
� = ��3�

2
� = − r2m2 � 0.

herefore, there exist four curves of �� in the flow of �G /m��2.
Example 7.5: On the cathenoid �Example 4.3�, the GMF given by �G /m��2 has a unique

ormal magnetic parallel for all m. If m�0, it is obtained for a t0�0. If m�0, then it is obtained
or a t0�=−t0�0.

Example 7.6: On the hyperboloid of revolution obtained from Eq. �5� by setting f�t�=cosh t
nd h�t�=sinh t, the GMF given by �G /m��2 has also a unique normal magnetic parallel for all m,
nalogously to the previous case.

Example 7.7: On the cicloidal surface �Example 4.4�, the GMF given by �G /m��2 has a
nique normal magnetic parallel for m� �−� ,−1/ �4a��� �1/ �4a� ,��. If m�0, t0

arccos��1/ �4am���, whereas if m�0, then t0�=2�− t0.

III. CONCLUSIONS

Oriented surfaces, M, in R3 admit two natural 2-forms. First, the area element, �2, associated
ith the induced metric, g. Second, the area element, N*�d�2�, of its spherical image under the
auss map, N :M→S2. It is well known that these 2-forms are nicely related by

N*�d�2� = G�2,

here G denotes the Gaussian curvature of g. In particular, both 2-forms are intrinsic and then
hey are defined once we know a Riemannian metric, g, on M. Associated with these 2-forms
ppear two classes of magnetic fields on �M ,g�.

1� The class made up of the constant multiples of the former one, C1= 
��2 :��R�, provides
that of uniform magnetic fields, with strength �, on �M ,g�. The corresponding Landau-Hall
problem has been widely studied along the literature. Even in this paper, we have obtained
some new information relative to uniform magnetic field essentially in a surface of revolu-
tion. For example, we have characterized right circular cylinders and bugle surfaces as the
only surfaces of revolution whose parallels are all normal magnetic flowlines of uniform
magnetic fields.

2� The class of the constant multiples of the latter one, C2= 
�N*�d�2� :��R�, constitutes a
class of magnetic fields that in this paper are introduced under the terminology of Gauss-
Landau-Hall magnetic fields. In this case the strength is given by �G and obviously both
classes coincide when �M ,g� has constant curvature.

In this paper, we wish to state the importance and nice interest of GMF on surfaces. In fact,
he chief result of the paper appears when we study the Landau-Hall problem associated with a
MF �which we call the Gauss-Landau-Hall problem�. Then, we are able to show that this
roblem is equivalent to the dynamics of a massive relativistic boson. This provides an amazing
elationship between two, a priori, quite different physical phenomena.

Therefore, we can use two points of view to study each of the two involved problems. On the
ne hand, one can study completeness, homogeneity and so on, in the dynamical study of bosonic
orldlines. By the way, we have introduced a section with results on these topics. But on the other
and, the Gauss-Landau-Hall problem can be regarded as a variational problem globally stated. In
his setting, flowlines are critical points of an action which has been used to model relativistic
articles with order one rigidity. In particular, we can talk about, and so we study, global stability
f normal flowlines of a GMF. Say finally that under this equivalence, the model to describe a
assless particle with arbitrary helicity corresponds with a limit case obtained when the force of
he GMF increases arbitrarily.
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We believe that this point of view in the study of GMF is physically remarkable and it could
e extended to other classes of magnetic fields.
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A kinetic model for a granular gas interacting with a given background by binary
dissipative collisions is analyzed, with particular reference to the derivation of
macroscopic equations for the fundamental observables. Particles are modelled as
inelastic hard spheres under the assumption of collision dominated regime �small
mean free path�. Closure of the relevant moment equations is achieved by resorting
to a maximum entropy principle, and two specific entropy functionals have been
worked out in detail, in the class of the admissible ones for the relevant linear
extended Boltzmann equation. Considered macroscopic fields include density, mass
velocity, and granular temperature. In the hydrodynamic limit when the mean free
path tends to zero, a single drift-diffusion equation of Navier-Stokes type is recov-
ered for the only hydrodynamic variable of the physical problem. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2118468�

. INTRODUCTION

In the last few years, kinetic models for granular materials have attracted significant interest in
he mathematical and physical communities.13,8 The largest attention has been devoted to nonlin-
ar models for dilute flows based on generalizations of the Boltzmann-Enskog equation describing
nergy dissipation in binary encounters. Most of the analytic investigation has been performed in
he frame of the so-called pseudo-Maxwellian inelastic particles,6 both in the free case in which
ranular temperature decays to zero, and in the driven case in which there is an external energy
upply. Some results are available also for the more realistic, but much more difficult to deal with,
nelastic hard sphere model.7

Very important for practical applications are also linear kinetic equations for dissipative in-
eractions of dilute granular matter with a given background, though this kind of inelastic process
as been much less addressed. The relevant physical problem may be considered as limiting case
f a binary mixture made up by species with different masses and densities, and describes typi-
ally the diffusion of fine polluting powders in a much denser medium �like air�.

Though grains are in principle macroscopic objects, and their interaction with background
olecules is a complex process that would require an adequate treatment,23 we shall stick here to

he standard approximation of extremely tiny grains undergoing localized and instantaneous me-
hanical encounters with a single partner. Collision integrals in the kinetic equation describe then
inary interactions of a test particle of the granular gas with a field particle of the fixed back-
round. The most significant recent results, together with the general existence and stability
nalysis by Pettersson,24 concern the unique determination of collision equilibria as Maxwellian
istributions, with number density as the only free parameter, whereas mass velocity coincides
ith the background drift, and granular temperature is smaller than the temperature of the host
edium, with a reduction factor depending on the crucial control parameters, namely mass ratio

nd coefficient of inelasticity.21,25,1,19 It has also been possible to prove19 an essential ingredient of

�
Electronic mail: giampiero.spiga@unipr.it

46, 113301-1022-2488/2005/46�11�/113301/20/$22.50 © 2005 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2118468
http://dx.doi.org/10.1063/1.2118468
http://dx.doi.org/10.1063/1.2118468


a
d
t

i
o
i
v
v
s
N
c
a
M
t
q
m
e
v
h
b
o
w
i
m
m
i
c

m
s
e
i
s
m
a
t
a
p
f
f
t
i
a
n
t
s
e
w
n
t
l

113301-2 M. Bisi and G. Spiga J. Math. Phys. 46, 113301 �2005�

                        
ny kinetic-type approach, namely a space homogeneous H-theorem, in terms of an entire class of
ifferent possible entropy functionals, each of them being determined by a suitable convex func-
ion, as indeed typical in linear kinetic theory.20

On the other hand, what people are interested in for practical applications is mainly availabil-
ty of consistently derived and justified macroscopic equations for the observable fields, moments
f the distribution function. Peculiar feature of the linear Boltzmann equation, both elastic and
nelastic, is that there exists only one collision invariant, and consequently only one hydrodynamic
ariable �number density�. With respect to the nonlinear case of rarefied gas dynamics, “conser-
ation” equations for momentum and energy become balance equations, with nonvanishing colli-
ion contributions describing exchange rates with the background. Hydrodynamic closure at the
avier-Stokes level may be still achieved by a Chapman-Enskog asymptotic expansion in the

ollision dominated regime, and results in a single drift-diffusion equation for density, available
lready also in the inelastic frame,25 but only, to our knowledge, for the simplified pseudo-
axwellian model.6 However, it would be obviously desirable to include also drift velocity and

emperature as unknown fields into the macroscopic equations, though they are not conserved
uantities, as they would be in the nonlinear case. Such equations should then be regarded as
oment equations for higher order moments, and would play a role similar to that of Grad’s

quations16 of gas dynamics,10,17 where the additional nonhydrodynamic moments are instead
iscous stress tensor and heat flux vector. To our knowledge, first numerical results in this respect
ave been worked out, and not yet published, in very recent times.12 This is the problem that will
e dealt with in the present paper, by resorting to a suitable expansion technique in a neighborhood
f the collision equilibrium. We consider in fact a hard sphere granular gas, inelastically scattering
ith a given background, and with a mean free path much smaller than the macroscopic scale. The

nvestigation will be developed in the spirit of the maximum entropy principle �MEP�18,22,15 as
oment closure strategy. In addition, using the Knudsen number �ratio of the mean free path to the
acroscopic length� as small parameter, a standard Chapman-Enskog algorithm allows to achieve

n the simplest way the pertinent hard-sphere diffusive hydrodynamic equation with first order
orrections �thus, at the Navier-Stokes level�.

The paper is organized as follows. The governing kinetic Boltzmann-type equation and its
ain features are presented and discussed in Sec. II, where also previous results needed in the

ubsequent investigation are recalled. Then, the existence of an infinite number of admissible
ntropy functionals implies of course an ample choice of disparate normal form expansions sat-
sfying a MEP to be used for closing the exact nonclosed set of moment equations. For the sake of
implicity, in this work we shall confine ourselves to the consideration of the most important
oments, the first five �density, the three components of mass velocity, and temperature�, though

dditional fields, like the viscous stress tensor �completing the second order moments�, could be
reated with only technical extra difficulties. Also, only two �the most common� entropy function-
ls will be worked out, the quadratic entropy, probably the simplest one, in Sec. III, and the very
opular logarithmic entropy in Sec. IV. The resulting closed moment equations differ of course
rom each other, though exhibiting a common structure. Other macroscopic equations would
ollow of course from other functionals. Such indeterminacy is obvious consequence of the exis-
ence, in the linear framework, of an infinite set of entropies, as mentioned above. Clearly, an
mmediate question arises: which of the closed sets of partial differential equations gives the best
pproximations with respect to the kinetic results? A detailed comparative analysis, including
umerical calculations, is scheduled as future work. However, the relevant hydrodynamic equa-
ions in the asymptotic limit coincide exactly up to the first order corrections. Of course, this is not
urprising, since Navier-Stokes equations could be determined, independently from any chosen
ntropy, by the Chapman-Enskog algorithm applied directly to the kinetic equation. Unfortunately
e have not been able to prove yet a universality result in this respect, namely that the hydrody-
amic limit of the closed set of moment equations is the same for any admissible entropy func-
ional, and this also will be the matter of further studies. When needed, manipulations whose

ength and heaviness could compromise presentation and clarity are shifted to the Appendix.
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I. KINETIC EQUATION

We start from the linear dissipative Boltzmann equation for granular test particles �tp� sub-
ected to hard-sphere collisions against the field particles �fp� of a fixed �in general, nonuniform�
ackground, labelled by a superscript B in the following notation. The host medium is supposed in
ocal thermodynamical equilibrium with given density nB, drift velocity uB, and temperature TB,
hus with a Maxwellian distribution function fB=nBMB, where MB=M�v ;mB ,uB ,TB� and M is a
ormalized Gaussian. Symbols m and d are used to denote particle mass and diameter, and �tp , tp�
nteractions are negligible. All �binary� �tp , fp� encounters, with ingoing velocities �v ,w�, preserve

omentum but dissipate kinetic energy of the relative motion according to the rule �a prime
enotes post-collision values�

g� · n̂ = − e�g · n̂�, g� − �g� · n̂�n̂ = g − �g · n̂�n̂ , �1�

here g=v−w is the relative velocity, n̂ the unit vector of the apse line, and e, with 0�e�1, is
the so-called restitution coefficient �supposed to be constant in this paper�, which measures the
amount of inelasticity. As is well known, test particles exchange momentum and energy with the
background even in the elastic case e=1. The collision mechanism and the apse line determine
uniquely the post-collision velocities associated to v and w as

v� = v − 2��1 − ���g · n̂�n̂, w� = w + 2�1 − ���1 − ���g · n̂�n̂ , �2�

here the dimensionless parameters � and �, with 0���1, 0���
1
2 , are defined as

� =
mB

m + mB , � =
1 − e

2
�3�

nd represent, respectively, mass ratio and degree of inelasticity. Dissipation implies that the dual
ollision associated to �v ,w� �i.e., the one which produces v and w as final output� may not be
btained starting from �v� ,w��, and in fact the precollision velocities associated to v and w turn
ut to be

v� = v − 2�
1 − �

1 − 2�
�g · n̂�n̂, w� = w + 2�1 − ��

1 − �

1 − 2�
�g · n̂�n̂ . �4�

standard phase-space balance, under the usual assumptions underlying the Boltzmann equation,
eads to the linear integro-differential equation

�f

�t
+ v · �xf = nB�d + dB

2
�2�

R3
�

S+
2

�g · n̂�� 1

e2 f�v��MB�w�� − f�v�MB�w�	d3wd2n̂ , �5�

here explicit dependence on x and t is not shown just for simplicity, and S+
2 is the positive unit

phere, defined by g · n̂�0. As usual, it is convenient to introduce suitable scalings and make �5�
imensionless. Assuming the Strouhal number of order unity, and measuring distances in units of
characteristic length L, if n̄B denotes a typical value of background density, manipulations single
ut in a spontaneous way the mean free path

� = �n̄B��d + dB

2
�2	−1

�6�

nd the Knudsen number

Kn =
�

L

 � , �7�

here the symbol � is used as a reminder of the fact that we are mainly interested here in the

ontinuum limit Kn	1, in which the process is dominated by collisions. If the same dimensional
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ymbol is retained for all scaled quantities, the kinetic equation may be rewritten as

�f

�t
+ v · �xf =

nB

2��
�

R3
�

S2
�g · n̂�� 1

e2 f�v��MB�w�� − f�v�MB�w�	d3wd2n̂ =
nB

�
Q�f� , �8�

here � labels the importance of the collision integral, nB may be set equal to unity for a
omogeneous steady background, and

MB�v� = � mB

2�TB�3/2

exp�−
mB

2TB �v − uB�2	 . �9�

he macroscopic parameters nB, uB, TB fulfill the classical Euler equations valid in local thermo-
ynamical equilibrium,9

�nB

�t
+

��nBuk
B�

�xk
= 0,

�ui
B

�t
+ uk

B�ui
B

�xk
= −

1

nBmB

��nBTB�
�xi

, �10�

�TB

�t
+ uk

B�TB

�xk
= −

2

3
TB�uk

B

�xk
.

The most convenient tool of investigation is the weak form associated to �8�. Taken any
mooth test function 
=
�v�, if �·,· denotes the usual dual product with respect to the kinetic
ariable v, under standard smoothness assumptions we may write

�

�t
�
, f + �x · �v
, f =

nB

�
�
,Q�f� �11�

ith

�
,Q�f� =
1

2�
�

R3
�

R3
�

S2
�g · n̂�f�v�MB�w��
�v�� − 
�v��d3vd3wd2n̂ . �12�

his expression of the weak form of the collision operator, where the effects of collisions are
ccounted for only by the test function evaluated at the post-collision velocity v�, is crucial for
uture developments. It is easy to see that 
�v�=1 is the only collision invariant, and thus density

is the only conserved quantity. Moreover, macroscopic fields in which we are interested are
imply amenable to the first power moments of f , namely

n = �1, f =�
R3

f�v�d3v ,

nu = �v, f = �
R3

vf�v�d3v ,

n�u2 +
3T

m
� = �v2, f = �

R3
v2f�v�d3v , �13�

ence transport equations for the first five moments of the distribution function are nothing but the
2
pecialization of �11� to 
=1,v ,v . Unfortunately, power moments of Q�f� are not amenable to
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he corresponding power moments of f , as it would occur for pseudo-Maxwellian molecules,6,25

nd not even to higher order moments. More precisely, collision contributions �12� relevant to the
eights 
=v ,v2 involve the differences:

v� − v = − 2��1 − ���g · n̂�n̂ ,

�14�
�v��2 − v2 = − 4��1 − ���g · n̂��v · n̂� + 4�2�1 − ��2�g · n̂�2.

hey exhibit simple dependencies on the unit vector n̂, so that the required angular integrations
ay be performed explicitly as

�
S2

�g · n̂��g · n̂�2d2n̂ = �g3,

�15�

�
S2

�g · n̂��g · n̂�n̂d2n̂ = �gg ,

here g= �g�. By collecting such results, the macroscopic equations for the first five moments may
e finally cast, in indicial notation, as

�n

�t
+

�

�xk
�nuk� = 0,

�

�t
�nui� +

�

�xk
�nukui +

Pki

m
�

= −
nB

�
��1 − ���

R3
�

R3
ggif�v�MB�w�d3vd3w, i = 1,2,3,

�

�t
�nu2 +

3nT

m
� +

�

�xk
�uk�nu2 +

3nT

m
� +

2

m
Pkjuj +

2

m
qk	 = −

nB

�
2��1 − ��

���
R3
�

R3
ggivi f�v�MB�w�d3vd3w − ��1 − ���

R3
�

R3
g3f�v�MB�w�d3vd3w	 , �16�

here P is the pressure tensor, and q the heat flux. As anticipated, only the first, the continuity
quation, represents a conservation law, and the complete set is not closed because of the presence
f viscous stress pij = Pij −nT�ij and heat flux qi in the streaming terms, and because of the three
ollision integrals on the right-hand sides, describing exchange of momentum and energy with the
ackground. They are affected by the inelasticity parameter �, but would be nonzero even in the
lastic case �=0. For future convenience, macroscopic equations �16� can be rewritten in convec-
ive form, by taking into account in each equation the ones relevant to lower moments, in order to
ingle out exactly the time derivatives of n ,u ,T,

�n

�t
+

�

�xk
�nuk� = 0,

n
�ui

�t
+ nuk

�ui

�xk
+

1

m

�nT

�xi
+

1

m

�pij

�xj
= −

nB

�
��1 − ���

3
�

3
ggif�v�MB�w�d3vd3w ,
R R
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n
�T

�t
+ nuk

�T

�xk
+

2

3
nT

�uk

�xk
+

2

3
phk

�uh

�xk
+

2

3

�qk

�xk

= −
nB

�
��1 − ��

2

3
m��

R3
�

R3
ggi�vi − ui�f�v�MB�w�d3vd3w

− ��1 − ���
R3
�

R3
g3f�v�MB�w�d3vd3w� . �17�

Concerning well posedness of the mathematical problem, existence and uniqueness have been
stablished in general in Ref. 24. In order to proceed further towards closed macroscopic equa-
ions, two important theorems, that we quote from the literature, mainly from Ref. 19, are essen-
ial. More precisely we will resort to the following result, which extends to hard-sphere collisions
theorem already established for the pseudo-Maxwellian model.25

Theorem 1: The Maxwellian distribution

M*�v� = M�v;m,uB,T*� = � m

2�T*�3/2

exp�−
m

2T* �v − uB�2	 �18�

ith temperature

T* =
�1 − ���1 − ��
1 − ��1 − ��

TB �19�

s collision equilibrium for (8), i.e., f =nM* solves the integral equation Q�f��v�=0, ∀v�R3.
The proof goes through a clever exploitation of the Fourier transformed collision operator Q

nd of Bobylev’s lemma,5 and quantifies the fact that the granular gas is in equilibrium under
ollisions if, irrespective of density, it has a Gaussian distribution at the background velocity and
t a suitable temperature ranging in the interval �0,TB�. Such temperature T* is determined by the
ontrol parameters � and �, as a balance of the competing processes of energy dissipation �driving
ranular temperature to 0� and of energy exchange with the medium by scattering �driving granu-
ar temperature to TB�. The other result is the H-theorem appropriate in this context.

Theorem 2: Take the space-homogeneous version of (8). Let  :R+→R be any convex C1

unction and define the functional

H�f� = �
R3

M*�v�� f�v�
M*�v�	d3v . �20�

onsider the initial value problem in a stationary background, with initial datum f0 such that

�f0���, and let f�v , t� be its (unique) solution, necessarily with constant number density
�t�=n0. Then H�f� is a Lyapunov functional, in the sense that

a� H�f��H�n0M*� for f �n0M*,

b�
d

dt
H�f�t���0, ∀t�0.

The proof resorts to suitable applications and generalizations of typical convexity arguments.
simple corollary is that n0M* is the unique stationary solution of the considered initial value

roblem, and the whole theorem implies, as discussed in Ref. 19, that the overall effect of
ollisions is pushing the shape of test particle distribution function towards the normal distribution

M* defined by �18� and �19�. This will strongly affect of course the hydrodynamic description of
he space-dependent problem �8� in the continuum limit, since collisions are the dominant process

overning evolution in such a regime.
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In the next sections we shall deal with the closure problem and the asymptotic limit for the
oment equations �17� on the basis of the previously established collision equilibria and entropy

unctionals.

II. QUADRATIC ENTROPY

The simplest choice in �20� to get a Lyapunov functional is of course �z�=z2 /2, and its
pposite provides then a suitable entropy for the MEP. Since our approximate distribution function

f must reproduce the actual density, velocity, and temperature fields, we introduce Lagrange
ultipliers and apply the variational principle to

Uq�f� = −
1

2
�

R3

f�v�2

M*�v�
d3v + �1��

R3
f�v�d3v − n� + �2 · ��

R3
vf�v�d3v − nu�

+ �3��
R3

v2f�v�d3v − nu2 −
3nT

m � . �21�

tandard manipulations yield then

f̄�v� = M*�v���1 + �2 · v + �3v
2� , �22�

here the Lagrange multipliers are uniquely determined in terms of n ,u ,T by the constraints

�1, f̄ = n, �v, f̄ = nu, �v2, f̄ = nu2 +
3nT

m
. �23�

t is now only a matter of some algebra to obtain

�1 = n −
m

T*n�u − uB� · uB +
m2

6�T*�2n��u − uB�2 +
3�T − T*�

m
	��uB�2 −

3T*

m
� ,

�2 =
m

T*n�u − uB� −
m2

3�T*�2nuB��u − uB�2 +
3�T − T*�

m
	 ,

�3 =
m2

6�T*�2n��u − uB�2 +
3�T − T*�

m
	 , �24�

o that we end up with

f̄�v� = nM*�v��1 +
m

T* �u − uB� · �v − uB� +
m

3T*��u − uB�2 +
3�T − T*�

m
	� m

2T* �v − uB�2 −
3

2
	� .

�25�

s for Grad’s 13-moments expansion, this polynomial correction to the collision equilibrium does
ot fulfill positivity, but may be considered as a complete polynomial expansion truncated after
ew addends, where correction terms are small in the considered hydrodynamic regime, since, out
f initial and boundary layers, u and T are close to their equilibrium values uB and T*. Now, as
egards the streaming contributions to �17�, higher order moments can be computed easily by

sing �25� in their definitions
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P = m�
R3

�v − u� � �v − u�f�v�d3v, q =
1

2
m�

R3
�v − u�2�v − u�f�v�d3v . �26�

t turns out convenient to translate the integration variable v−uB→v, so that, neglecting the terms

hose integration vanishes simply by parity arguments, the pressure tensor corresponding to f̄ is
rovided by

Pij = mn� m

2�T*�3/2��1 −
1

2T* �m�u − uB�2 + 3�T − T*��	�
R3

�viv j + �ui − ui
B��uj − uj

B��

�exp�−
m

2T*v2	d3v −
m

T* �uh − uh
B��

R3
��ui − ui

B�v jvh + �uj − uj
B�vivh�exp�−

m

2T*v2	d3v

+
m

6�T*�2 �m�u − uB�2 + 3�T − T*���
R3

�v2viv j + v2�ui − ui
B��uj − uj

B��exp�−
m

2T*v2	d3v� .

y resorting now to the Gaussian integrals �A1� reported in the Appendix, we get

Pij = nT�ij − ���ui − ui
B��uj − uj

B� − 1
3�ij�u − uB�2� , �27�

here �=mn denotes mass density and � is the Kronecker symbol. Analogous computations allow
he evaluation of the heat flux vector, which results in

qi = n�ui − ui
B�� 1

6m�u − uB�2 − 5
2 �T − T*�� . �28�

s remarked in the preceding section, the scattering contributions appearing on the right-hand
ides of �17� are in general not directly amenable to macroscopic fields. However, with the
articular assumption �25� for the distribution function, all collision integrals may be solved
xplicitly, and we shall end up with a closed set of five �approximated� macroscopic evolution
quations. More precisely, in �17� we must evaluate three integrals of the form

nB�
R3
�

R3
��g,G� f̄�v�MB�w�d3vd3w , �29�

here g=v−w is the relative velocity, while G= �1−��v+�w represents the center of mass
elocity. Let us perform again the usual translation v−uB→v, w−uB→w; consequently, the
ntegral �29� becomes

nnB

�2��3�mmB

T*TB�3/2�
R3
�

R3
�̂�g,G�exp�−

m

2T*v2	exp�−
mB

2TBw2	
��1 +

m

T* �u − uB� · v + �m�u − uB�2 + 3�T − T*��� m

6�T*�2v2 −
1

2T*	�d3vd3w , �30�

nd the three functions �̂ involved in our macroscopic equations are �̂�g ,G�=ggi ,g
3 ,ggi�Gi

�gi− �ui−ui
B��. At this point, it seems convenient to use �g ,G� as integration variables; bearing

n mind also the relation �19� between T* and TB we have

exp�−
m

2T*v2	exp�−
mB

2TBw2	
= exp�−

m

2T*

1

1 − ��1 − ��
�G2 + ���� + �1 − ���1 − ���g2 + 2��G · g�� . �31�
ince a little algebra yields
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G2 + ���� + �1 − ���1 − ���g2 + 2��G · g = �G + ��g�2 + ��1 − ���1 − ��1 − ���g2,

etting g̃=g and G̃=G+��g the integral �30� can be finally cast as

nnB

�2��3�mmB

T*TB�3/2�
R3
�

R3
�̃�g̃,G̃�exp�−

m

2T*

1

1 − ��1 − ��
G̃2	exp�−

m

2T*��1 − ��g̃2	
��1 +

m

T* �u − uB� · �G̃ + ��1 − ��g̃� + �m�u − uB�2 + 3�T − T*��

�� m

6�T*�2 �G̃ + ��1 − ��g̃�2 −
1

2T*	�d3G̃d3g̃ . �32�

Now we can make it explicit for the three weight functions �̃ appearing in our collision

ontributions. For �̃�g̃ ,G̃�= g̃g̃i, the unique term in �32� that provides a nonvanishing result is

nnB

�2��3�mmB

T*TB�3/2 m

T*��1 − ���uh − uh
B�

��
R3

g̃g̃ig̃h exp�−
m

2T*��1 − ��g̃2	d3g̃�
R3

exp�−
m

2T*

1

1 − ��1 − ��
G̃2	d3G̃ .

y resorting to the integrals �A2� reported in the Appendix we get

nB�
R3
�

R3
ggi f̄�v�MB�w�d3vd3w =

1
���1 − ��

8

3
nnB�2T*

m�
�ui − ui

B� , �33�

hat shows a linear dependence on the macroscopic unknown fields n and u. Analogous compu-

ations lead to the evaluation of the contributions relevant to �̃�g̃ ,G̃�= g̃3 and �̃�g̃ ,G̃�= g̃g̃i�G̃i

��1−��g̃i− �ui−ui
B��. Skipping further technical details, they finally result in

nB�
R3
�

R3
g3 f̄�v�MB�w�d3vd3w = � 1

��1 − ��	3/2 4

m
nnB�2T*

m�

��2T* + ��1 − ���m�u − uB�2 + 3�T − T*��� , �34�

nB�
R3
�

R3
gg · �v − u� f̄�v�MB�w�d3vd3w =� 1

��1 − ��
8

m
nnB�2T*

m�

��T +
1

6
��1 − ���m�u − uB�2 + 3�T − T*��� ,

�35�

resenting both a linear dependence on the variables n, T and a quadratic dependence on the
elocity u.

In conclusion, by inserting the results �27�, �28�, and �33�–�35� into the macroscopic equations
17� we obtain the following closed set of evolution equations:

�n
+

�
�nuk� = 0,
�t �xk
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n
�ui

�t
+ nuk

�ui

�xk
+

1

m

�

�xi
�nT� +

1

3

�

�xi
�n�u − uB�2� −

�

�xk
�n�ui − ui

B��uk − uk
B��

= −
1

�
���1 − ��

8

3
nnB�2T*

m�
�ui − ui

B�, i = 1,2,3,

n
�T

�t
+ nuk

�T

�xk
+

2

3
nT

�uk

�xk
+

2

9
nm�u − uB�2�uk

�xk
−

2

3
nm�uh − uh

B��uk − uk
B�

�uh

�xk

+
1

9
m

�

�xk
�n�uk − uk

B��u − uB�2� −
5

3

�

�xk
�n�uk − uk

B��T − T*��

= −
1

�
���1 − ��

16

3
nnB�2T*

m�
��1 − ��1 − ����T − T*� −

1

3
��1 − ��m�u − uB�2� . �36�

hey are five equations for the fundamental moments n ,u ,T appearing in the expression of f̄ . The
ption �=0 corresponds to elastically scattering hard spheres: as anticipated above, even in this
articular frame collision contributions do not vanish. As for classical Grad’s equations,14,2 the
acroscopic system �36� is of course approximated, since in the whole procedure the distribution

unction f has been replaced by the truncated polynomial expansion f̄ , but it provides a “robust”
pproximation of the evolution, in the sense that the right-hand sides of �36� are vanishing if and
nly if u=uB and T=T*, which reproduce the macroscopic moments of the Maxwellian equilib-
ium M*. In space homogeneous conditions the equilibrium �uB ,T*� is asymptotically stable, and
he relaxation to the equilibrium values is as fast as the convergence of the distribution function
owards M*. It is easily checked in fact that eigenvalues of the relevant Jacobian matrix are all
egative, and that the asymptotic trend is exponential with relaxation times of order � for both u
nd T.26 This behavior differs from other nonconservative kinetic frames, for instance chemical
eacting mixtures,2 in which the distribution evolves very rapidly towards a local Maxwellian,
hose macroscopic parameters reach more slowly the corresponding equilibrium values. Indeed,
e can even show that the dynamical system originated by �36� in space homogeneous conditions

dmits a Lyapunov function �finite dimensional entropy�, proving convergence to equilibrium
n0 ,uB ,T*� from any initial datum �n0 ,u0 ,T0�. With n=constant=n0 it is sufficient in fact to
onsider, for the evolution of u and T by effects of collisions, the function

Vq�u,T� =
m

T* �u − uB�2 +
1

6
� m

T* �u − uB�2 + 3
T − T*

T* 	2

. �37�

t is immediately seen that Vq is positive definite with respect to u=uB and T=T*, and some simple
lgebra provides its time derivative along solutions

V̇q�u,T� = �uVq · u̇ +
�Vq

�T
Ṫ = −

16

3

���1 − ��
�

nB�2T*

�m

�� m

T* �u − uB�2 +
1 − ��1 − ��

3
� m

T* �u − uB�2 + 3
T − T*

T* 	2� .

�38�

his function is everywhere nonpositive, and vanishes only when both its nonpositive addends

anish, which leads again to the unique point �uB ,T*�. Therefore V̇q is negative definite and
yapunov’s theorem is proved.

In order to achieve a hydrodynamic equation at the Navier-Stokes level for the unique hydro-
ynamic variable n, we shall perform an asymptotic analysis of Chapman-Enskog type to the
ystem �36�, following the main steps outlined in Refs. 9 and 11 and already applied in Refs. 3 and
in different �dissipative� physical contexts. The small parameter is the Knudsen number Kn
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�, that appears in the kinetic equation �5� as a consequence of the adimensionalization. As
lready pointed out in the literature,17 it is not necessary to apply the classical Chapman-Enskog
rocedure directly to the kinetic level, expanding f in powers of � and determining the relevant

oefficients, since we already have a polynomial expansion f̄ for f , hence the corresponding
acroscopic system �36� may be considered as a useful intermediate step between the kinetic and

he hydrodynamic level. Keeping unexpanded n, the field corresponding to the unique collision
nvariant, we expand the other macroscopic variables in powers of �,

u = �0 + ��1, T = �0 + ��1, �39�

nd we insert these expansions into the equations �36�. Neglecting O��2� terms, the continuity
quation becomes

�n

�t
+

�

�xk
�n�k

0� + �
�

�xk
�n�k

1� = 0. �40�

o close this equation, we must determine the first two coefficients of the expansion of u. Going
n in the asymptotic analysis of �36�, from the evolution law for u the leading order �O��−1��
erms provide the equality

− ���1 − ��
8

3
nnB�2T*

m�
��i

0 − ui
B� = 0 ∀ i , �41�

ence

�0 = uB. �42�

hen, taking into account this result, equating the coefficients of the power �0 we get

�i
1 = −

1
���1 − ��

3

8nnB�m�

2T*�n
�ui

B

�t
+ nuk

B�ui
B

�xk
+

1

m

�

�xi
�n�0�	 ∀ i . �43�

herefore the determination of the coefficient �1 requires also the evaluation of �0. Leading terms
f the equation for temperature in �36� give

− ���1 − ���1 − ��1 − ���
16

3
nnB�2T*

m�
��0 − T*� = 0, �44�

hat yields immediately

�0 = T*. �45�

inally, bearing in mind that the host medium fulfills the Euler equations �10�, the mass velocity
f granular test particles turns out to be, up to O��� accuracy,

u = uB − �
1

���1 − ��
3

8nB�m�

2T*� 1

nm
�x�nT*� −

1

nBmB�x�nBTB�	 . �46�

y inserting this expression into the continuity equation �40�, we find the hydrodynamic “Navier-
tokes” equation for the number density of hard spheres inelastically �elastically only for �=0�
olliding with a fixed background

�n

�t
+ �x · �nuB� = �

3

8
�m�

2
�x · � 1

nB�T*��1 − ��
� 1

m
�x�nT*� −

n

nBmB�x�nBTB�	� . �47�

he time evolution of n involves spatial derivatives �up to the second order� of n itself, together

ith gradients of the known �but in general nonconstant� background macroscopic fields

                                                                                                            



n
v
t

a

w

T
M
−
f

a

h
v

a
m
a

I

=
i
e

N

s
fi

w
d
M

113301-12 M. Bisi and G. Spiga J. Math. Phys. 46, 113301 �2005�

                        
B ,uB ,TB. Equation �47� is of “drift-diffusion” type, the convective term depends on the mean
elocity of the host medium, while the diffusive part involves the two �different� kinetic tempera-
ures T* �equilibrium temperature� and TB.

In the particular case of spatially homogeneous background, if in the adimensionalization we
ssume nB as typical density, then �46� simplifies to

u = uB − �
1

���1 − ��
3

8n
��T*

2m
�xn , �48�

hile the drift-diffusion equation �47� becomes

�n

�t
+ uB · �xn = �

3

8
� �

2m
� T*

��1 − ��
�x

2n . �49�

he main difference with respect to the corresponding hydrodynamic equation relevant to pseudo-
axwellian particles, derived in detail in Ref. 25, is the factor �T* /��1−�� instead of T* /��1
��, as typical for the temperature dependence of transport coefficients relevant to the two dif-

erent collision models.11

Finally, it is worth to remark that considering O�1� terms of the temperature equation in �36�,
nd recalling again Euler equations �10�, we get

�1 = 0, �50�

ence the granular temperature T in the hydrodynamic description coincides with its equilibrium
alue T* apart from O��2� corrections.

In low inelasticity regimes, with the inelasticity parameter � of the same order of magnitude
s the Knudsen number ��=���, the hydrodynamic diffusive equation �47� does not contain any
ore inelastic corrections, that would appear only at the Burnett level, namely to the second order

ccuracy.

V. LOGARITHMIC ENTROPY

The most popular choice in kinetic theory to get a Lyapunov functional out of �20� is �z�
z log z, from which the familiar relative entropy of the linear framework follows. Again, taking

nto account the same constraints of the preceding section, the variational principle in order to
nforce the MEP closure concerns the functional

Ul�f� = − �
R3

f�v�log
f�v�

M*�v�
d3v + �1��

R3
f�v�d3v − n� + �2 · ��

R3
vf�v�d3v − nu�

+ �3��
R3

v2f�v�d3v − nu2 −
3nT

m � . �51�

ow manipulations lead to an approximate distribution f̃ of the form ��1−1→�1�,

f̃�v� = M*�v�exp��1 + �2 · v + �3v
2� , �52�

o that one immediately realizes that the requirement of recovering from f̃ the exact fundamental
elds amounts simply to

f̃�v� = n� m

2�T
�3/2

exp�−
m

2T
�v − u�2	 = nMloc�v� , �53�

here by Mloc�v�=M�v ;m ,u ,T� we denote the well-known local Maxwellian associated to the
istribution function f . This entropy leads then to a 5-moments closure in terms of the local

axwellian. The exponential form of �52� implies also positivity for the approximate normal form
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istribution �53�. It remains a perturbation of collision equilibrium when u and T are close to uB

nd T*, as in the physical situation we are interested in. Immediate implication of the Maxwellian
hape is then that viscous stress and heat flux vanish, so that �27� and �28� may be simply replaced
y

Pij = nT�ij, qi = 0. �54�

s concerns the scattering contributions, we consider at first the general form

nB�
R3
�

R3
��g,G� f̃�v�MB�w�d3vd3w , �55�

pecializing then the function � to the ones appearing in �17�. Unlike the corresponding integral
29� of the preceding section, now the two integration variables are not affected by the same

ranslation in the exponentials, since the mean value of the Gaussian function f̃ is the granular drift
elocity u instead of the background velocity uB. It is again convenient to resort to the change of
ariables �v ,w�→ �G ,g�, providing

nnB

�2��3�mmB

TTB �3/2�
R3
�

R3
��g,G�exp�−

m

2T
�G + �g − u�2	

�exp�−
mB

2TB �G − �1 − ��g − uB�2	d3Gd3g . �56�

etting now

s = a�G + �g − u� + b�u − uB − g� , �57�

here

a =�mTB + mBT

TTB and b =
mB

TB� TTB

mTB + mBT
,

imple manipulations show that the integral �56� takes the form

nnB

�2��3� �m

�1 − ��TB + �T
	3/2�

R3
�

R3
�̃�g,s�exp�−

1

2
s2�

�exp�−
1

2

�m

�1 − ��TB + �T
�g + uB − u�2	d3gd3s . �58�

At this point, the contributions corresponding to the weight functions �̃�g ,s�=ggi ,g
3 can be

asily made explicit by using the integrals �A3a� and �A3b�, respectively, getting

nB�
R3
�

R3
ggi f̃�v�MB�w�d3vd3w = nnB4

3
� 2

�
� �m

�1 − ��TB + �T
�2

�1 − ��TB + �T

�m
+

1

5
�u − uB�2	

��ui − ui
B� , �59�

nB�
R3
�

R3
g3 f̃�v�MB�w�d3vd3w = nnB1

5
� 2

�
� �m

�1 − ��TB + �T
��u − uB�4 + 20

�1 − ��TB + �T

�m
�u

− uB�2 + 40� �1 − ��TB + �T

�m
	2� . �60�
imilar computations allow to evaluate the other collision term in the evolution equation �17� for
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ranular temperature: its weight function can be rearranged in terms of the variables �g ,s� as

�̃�g,s� = gg · �1

a
s +

b

a
�g − �u − uB��� ,

o that by resorting again to �A3a� and �A3b� it finally results in

nB�
R3
�

R3
gg · �v − u� f̃�v�MB�w�d3vd3w

= nnB�2�m

�

�T

��1 − ��TB + �T�3/2

��−
1

15
�u − uB�4 +

4

3

�1 − ��TB + �T

�m
�u − uB�2 + 8� �1 − ��TB + �T

�m
	2� . �61�

ll integrals �59�–�61� depend, obviously, on n ,u ,T, in particular, they present a polynomial
ependence on the drift velocity u, which may be cast in terms of the scaled variable �m�u
uB�2 / ��1−��TB+�T�.

By inserting the results �54� and �59�–�61� into the equations �17�, we find the following
losed set of balance laws for the macroscopic fields n ,u ,T:

�n

�t
+

�

�xk
�nuk� = 0,

n
�ui

�t
+ nuk

�ui

�xk
+

1

m

�

�xi
�nT� = −

��1 − ��
�

4

3
nnB� 2

�
� �m

�1 − ��TB + �T

��1

5
�u − uB�2 + 2

�1 − ��TB + �T

�m
	�ui − ui

B�, i = 1,2,3,

�62�

n
�T

�t
+ nuk

�T

�xk
+

2

3
nT

�uk

�xk
=

��1 − ��
�

2

3
mnnB� 2

�
� �m

�1 − ��TB + �T

��1

5
���1 − �� +

1

3

�T

�1 − ��TB + �T
	�u − uB�4 + 4

�1 − ��TB + �T

�m

����1 − �� −
1

3

�T

�1 − ��TB + �T
	�u − uB�2 + 8� �1 − ��TB + �T

�m
	2

����1 − �� −
�T

�1 − ��TB + �T
	� .

ike �36�, this system is in general not exact, since it has been achieved assuming that during the
volution the granular medium is accomodated at a local thermodynamical equilibrium �LTE�
onfiguration. Notice that �62� is more difficult than �36� to be studied analytically, since collision
ontributions depend on u and T in a more complicated fashion. In space homogeneous condi-
ions, collision equilibria of equations �62� reproduce the results of the kinetic level, namely u
uB and T=T*, as in the preceding section. Again this is a good indication of robustness, and also

hows that equilibrium can be reached through LTE states. In fact, convergence to the equilibrium
uB ,T*� from any initial point �u0 ,T0� in the space homogeneous case can be proved again by

eans of Lyapunov’s theorem. As a tentative entropy we may select H� f̃�, which, upon discarding

nessential constants, turns out to be
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Vl�u,T� =
m

2T* �u − uB�2 +
3

2

T − T*

T* −
3

2
log

T

T* . �63�

t is clearly positive definite with respect to u=uB and T=T* as sum of two separate positive

efinite functions of a single variable. The computation of time derivative along trajectories V̇l

�uVl · u̇+ ��Vl /�T�Ṫ requires some patient manipulations, due to the heavy structure of the right-
and sides of equations �62�. A careful rearrangement yields

V̇l�u,T� = −
2

3
� 2

�

��1 − ��
�

nB� �m

�1 − ��TB + �T

��A�T,T*��u − uB�4 + B�T,T*��u − uB�2 + C�T,T*��T − T*�2� , �64�

here A�T ,T*� is proportional, by a positive factor, to

3��1 − ���1 − ��1 − ���� T

T*�2

+ 2�2 − 3��1 − �� + 3�2�1 − ��2�
T

T* + 3��1 − ���1 − ��1 − ��� ,

hich in turn is positive for any pair �T ,T*� since also the prefactor of T /T* can be easily seen to
e positive. Therefore we have A�T ,T*��0. Analogously, B�T ,T*� is given by a positive quantity
imes the quadratic term

3��1 − ���1 − ��1 − ���� T

T*�2

+ 2�1 − 3��1 − �� + 3�2�1 − ��2�
T

T* + 3��1 − ���1 − ��1 − ��� ,

nd the same reasoning holds for this slightly different expression, so that also B�0. Finally we
et simply

C�T,T*� = 12
�1 − ��1 − ����T* + ��1 − ���T − T*��

�m�1 − ��TT* ,

hich is clearly positive ∀T, T*, and therefore V̇l, as given by �64�, is the sum of three nonpositive
ddends, and vanishes if and only if u=uB and T=T*. This completes the required proof that Vl is
strict entropy function for �62�.

Let us apply now a Chapman-Enskog asymptotic procedure to the system �62�, in order to
uild up a fluid-dynamic Navier-Stokes equation for the number density n. Proceeding as in the
receding section, we substitute into �62� the expansions of the nonhydrodynamic variables u and
in powers of the chosen small parameter Kn
�, as given in �39�. In order to close the continuity

quation we must determine the coefficients �0 and �1. The main difference with respect to the
revious closure approach is the presence in �62� of quantities of the kind ��1−��TB+�T�−� �with
=1, 1 /2� which, containing T, must be expanded in powers of �,

��1 − ��TB + �T�−� = ��1 − ��TB + ��0�−��1 − �
��1

�1 − ��TB + ��0� + O��2�	 .

ence, by considering O��−1� terms appearing in the equation for u we have

− ��1 − ��
4

3
nnB� 2

�
� �m

�1 − ��TB + ��0�1

5
��0 − uB�2 + 2

�1 − ��TB + ��0

�m
	

���i
0 − ui

B� = 0 ∀ i , �65�

hus we get again

�0 = uB. �66�
hen, the next step �O�1� terms� of the asymptotic procedure yields
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�i
1 = −

1

��1 − ��
3

8nnB��

2
� �m

�1 − ��TB + ��0�n
�ui

B

�t
+ nuk

B�ui
B

�xk
+

1

m

�

�xi
�n�0�	 , �67�

o that we need also the coefficient �0. As before, we must consider the leading order of the
emperature evolution equation, and this provides

�2�1 − ��
16

3
nnBm� 2

�
� �1 − ��TB + ��0

�m
	3/2��1 − �� −

�0

�1 − ��TB + ��0	 = 0, �68�

ence

�0 =
�1 − ���1 − ��
1 − ��1 − ��

TB = T*. �69�

y inserting this result into �67� and recalling the Euler equations �10� for the background me-
ium, finally we get for the drift velocity u the same approximation �46�, accurate to O���,
chieved in the previous approach. Consequently, the present fluid-dynamic equation for the
umber density n coincides with �47�. Moreover, equating zero order terms in the equation for T,
e find again, after some algebra, �1=0, hence T=T*+O��2�.

. DISCUSSION AND CONCLUSIONS

The two different closure strategies performed in this work have provided then, as anticipated,
ifferent moment equations but the same fluid-dynamic limit, at least up to the first order in the
mall parameter �. Both closures are approximations justified by a maximum entropy principle
pplied to a specific choice of entropy functional, and, in the considered collision dominated
egime, describe relaxation towards collision equilibrium, which maximizes all possible entropies.
he different entropies imply different constraints on the evolutions, which explain the different
acroscopic equations. However, in the hydrodynamic limit, it is conceivable that closeness to

ollision equilibrium, valid outside initial and boundary layers, implies the same fluid-dynamic
quation of drift-diffusion type at the Navier-Stokes level. This matter will be the object of future
eparate investigations. Validation of the trends provided by the different closures by comparison
ith kinetic calculations will also be one of the first steps in the scheduled future work. This will
e essential in order to ascertain which macroscopic equations best approximate the solution of the
inetic problem, and to possibly investigate whether there exists an optimal entropy in this sense,
mong the infinite possible ones. For now, it is worth concluding this paper with some observa-
ions arising from the general structure of the analytical results and from the simple numerical
xperiments that are easily performed in space homogeneous conditions. A sample of them is
eported here just for illustrative purposes, with randomly selected numerical values of the in-
olved parameters, chosen on their physically pertinent ranges. The presented results are relevant
o physical situations in which the discrepancies between the two entropies are large enough to be
een in the figures. No discrepancy would occur for the pseudo-Maxwellian model, since moment
quations would be exact in the absence of spatial gradients. In any case, evolution reduces now
o relaxation to �the correct� equilibrium, which is reached after few collision times, so that
ifferences can be seen only in such small initial layer. Computed velocities and temperatures are
hown in Figs. 1 and 2 for m=1, uB= �1,2 ,3�, TB=2, starting from initial conditions u0=0, T0

3. The Knudsen number Kn is only a scaling factor and does not affect the evolution if time is
easured in mean collision times. For this reason results are plotted versus the microscopic time

cale t /Kn and are universal with respect to Kn. A quantity like nB is also merely a scaling factor
nd its value may be considered as included into Kn. Crucial control parameters are here mass
atio � and inelasticity coefficient �, that in fact have been varied in Figs. 1 and 2, respectively.
ncreasing � for fixed � amounts to enhancing the rate of exchange of momentum and energy with
he background, and at the same time makes the equilibrium temperature T* lower and lower. In

B * *
act, a faster relaxation of both u to u and T to T , accompanied by a slight decrease of T , may
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e observed in Fig. 1. Notice that, just because a higher � implies a stronger impact of collisions,
iscrepancies in the plots become larger and larger for increasing �. Similar arguments apply to
he effects of the parameter �, based again on physical grounds, and quantitatively described by
ollision contributions in Eqs. �36� and �62�. Results are shown in Fig. 2. Now increasing � makes
he relaxation rate slightly smaller, and at the same time causes a sensible decrease of the equi-
ibrium temperature. A general feature that has been observed systematically is that the logarithmic
ntropy produces a faster relaxation than the quadratic one. Of course it will be interesting to
ompare these trends with kinetic computations.
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PPENDIX

We collect here for convenience some Gaussian integrals needed in the evaluation of collision
ontributions performed in Secs. III and IV. With ��0 we have

�
3

exp�− �x2�d3x = ��

�
�3/2

, �A1a�

IG. 2. Evolution of mass velocity u and temperature T for varying � in the microscopic time scale t /� for the values of
arameters given in the text: quadratic entropy �solid line� versus logarithmic entropy �dashed dotted line�.
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�
R3

xi
2 exp�− �x2�d3x = ��

�
�3/2 1

2�
, �A1b�

�
R3

xi
2xj

2 exp�− �x2�d3x = ��

�
�3/2� 1

2�
�2

, i � j , �A1c�

�
R3

xi
4 exp�− �x2�d3x = ��

�
�3/2

3� 1

2�
�2

, �A1d�

�
R3

xxixh exp�− �x2�d3x =
4

3
�

1

�3�ih ∀ i,h , �A2a�

�
R3

x5 exp�− �x2�d3x = 12�
1

�4 , �A2b�

�
R3

xxi exp�− ��x + a�2�d3x = −
8�

3�
ai� 1

�
+

1

5
a2� , �A3a�

�
R3

x3 exp�− ��x + a�2�d3x =
2�

5�
�a4 +
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�
a2 +
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We extend to the K-SAT and p-XOR-SAT optimization problems the results
recently achieved, by introducing the concept of random multi-overlap structure,
for the Viana-Bray model of diluted mean field spin glass. More precisely we can
prove a generalized bound and an extended variational principle for the free energy
per site in the thermodynamic limit. Moreover a trial function implementing ultra-
metric breaking of replica symmetry is exhibited. The ultrametric structure exhibits
the same factorization property as the optimal structures for the Viana-Bray model
and the Sherrington-Kirkpatrick nondiluted model. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2121267�

. INTRODUCTION

In the case of nondiluted spin glasses, Aizenman, Sims, and Starr1 introduced the idea of
andom overlap structure �ROSt� to express in a very elegant manner the free energy of the model
s an infimum over a rich probability space, to exhibit an optimal structure �the so-called Boltz-
ann one�, to write down a general trial function through which one can formulate various ansatzs

or the free energy of the model. It was also described how to formulate in particular the Parisi
nsatz within this formalism. In Refs. 2 and 3 we extended those results to the case of diluted spin
lass �Viana-Bray model�. Here we extend the same results to optimization problems, the K-SAT
nd the p-XOR-SAT. The latter is the simple extension to p-body interactions of the Viana-Bray
odel, which is the diluted version of the famous model of Sherrington and Kirkpatrick �SK� of
ean field spin glass. We also prove that the optimal structures must enjoy a certain factorization

roperty, known as invariance with respect to the cavity step, that was first found by Guerra in
ef. 5 for the SK model, and that turned out to be valid also for the Viana-Bray dilute spin glass
odel.2 The ultrametric ansatz we propose verifies such a property.

Many of the calculations in the present paper are quite simple and standard, and as a general
eference with many details the reader can take for instance Refs. 4 and 7.

I. MODEL, NOTATIONS, DEFINITIONS

Consider configurations of Ising spins �: i→�i= ±1, i=1, . . . ,N. Let P� be a Poisson random
ariable of mean �, and �i�

�� be independent identically distributed random variables, uniformly
istributed over points �1, . . . ,N�. If �J�

�� are independent identically distributed copies of a sym-
etric random variable J= ±1, then the Hamiltonian of random K-SAT is

�
Electronic mail: lde@math.princeton.edu

46, 113302-1022-2488/2005/46�11�/113302/8/$22.50 © 2005 American Institute of Physics
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H = − �
�=1

P�N 1

2
�1 + J�

1�i
�
1� ¯

1

2
�1 + J�

K�i
�
K� .

ere ��0 is the degree of connectivity and K is assumed to be even. We do not consider the
resence of an external field, but all the results trivially extend to this case as well. By � we mean
he Bolztmann-Gibbs average

��O� = ZN
−1�

���
O���exp�− �H�, ZN = �

���
exp�− �H� .

We will denote by E the average over all the other �quenched� random variables, and the free
nergy fN per site and its thermodynamic limit are defined by

− �fN =
1

N
E ln ZN, f = lim

N→	
fN.

he existence of the above-mentioned limit has been proven in Ref. 4 �see also Ref. 2 for the proof
n the framework of overlap structures�. We will use the notation 
 for the product of the needed
umber of independent copies �replicas� of � and �·	 for the composition of an E-type average
ver some quenched variables and some sort of Boltzmann-Gibbs average over the spin variables,
hich will be clear from the context. The multi-overlaps are defined �using replicas� by

q1,¯,n =
1

N
�
i=1

N

�i
�1�

¯ �i
�n�.

Definition 1: A random multi-overlap structure �RaMOSt� R is a triple �� , �q̃n� ,�� where

. � is a discrete space;

. �: �→R+ is a system of random weights;

. q̃r1,¯,r2l
: �r1

 ¯ �rl
→ �0,1�, l�N, 
q̃
�1 is a positive definite multi-overlap kernel.

II. THE STRUCTURE OF THE MODEL

In order to understand what is the underlying structure of the model, it is well known that it
s useful to compute the derivative of the free energy with respect to the somewhat basic param-
ter. In the case of nondiluted spin glasses such a parameter is the strength of the couplings �and
t is equivalent to differentiating with respect to the inverse temperature�. In the case of diluted
pin glasses such a parameter is the connectivity.

It is very easy to show �see, e.g., Ref. 4� by pretty standard calculation that

d

d�

1

N
E ln �

�

exp�− �H� = �
n�0

�− 1�n+1

n
� e−� − 1

2K �n

��1 + Qn�q��K	 , �1�

here

Qn�q� = �
l=1

�n/2�

�
r1�¯�r2l

1,n

qr1,. . .,r2l
.

he fundamental quantities governing the model are therefore the multi-overlaps, like for diluted
pin glasses.2,3 That is why we use RaMOSt in this context as well. The main difference is that
ere the function 1+Qn takes the place of the mere multi-overlaps.

As should be clear from Refs. 1–3 we must therefore introduce also two random variables
˜ ˜ ˆ ˆ
.�� ,� ;J� and H�� ,� ;J� such that

                                                                                                            



F

w
L

I

w

N
s

T
i

e
R
t

1
2

113302-3 RaMOSts for Optimization Problems J. Math. Phys. 46, 113302 �2005�

                        
d

d�
E ln �

�

�� exp�− �H̃.� = K�
n�0

�− 1�n+1

n
� e−� − 1

2K−1 �n

��1 + Qn�q̃��K−1	 , �2�

d

d�

1

N
E ln �

�

�� exp�− �Ĥ� = �K − 1��
n�0

�− 1�n+1

n
� e−� − 1

2K �n

��1 + Qn�q̃��K	 . �3�

inally, we introduce as expected the following trial function:

GN�R,H̃,Ĥ� =
1

N
E ln

��,��� exp�− ��i=1
N H̃i

1
2 �1 + Ji�i��

���� exp�− �Ĥ�
,

here H̃i are independent copies of H̃.. We will construct explicitly H̃. and Ĥ in the next sections.
astly, let us define

H̃ = �
i=1

N

H̃i
1

2
�1 + Ji�i� .

V. GENERAL THEOREMS

Let us state the extension to the K-SAT model of the results presented in Refs. 1, 5, and 2.
The first result is a general bound for the free energy per spin.
Theorem 1 (Generalized Bound):

− �fN � inf
R

GN.

Proof: Consider the interpolating Hamiltonian

H��t� = H�t� + H̃�1 − t� + Ĥ�t�, t � �0,1� ,

here t is understood to multiply the connectivity, and consider also

R�t� =
1

N
E ln

��,��� exp�− �H��t��

���� exp�− �Ĥ��
.

ow observe that R�1�=−�fN, R�0�=GN, and compute the t-derivative of R�t� using the expres-
ions in Sec. III,

d

dt
R�t� = − ��

n�0

1

n
� e−� − 1

2K �n

 ��1 + Qn�q��K − K�1 + Qn�q���1 + Qn�q̃��K−1 + �K − 1��1 + Qn�q̃��K	 .

herefore the derivative above is nonpositive since the function xK−KxyK−1+ �K−1�yK of x and y
s non-negative. This completes the proof of the theorem. �

The second result is the explicit construction of a RaMOSt which provides the proof of the
xistence of such structures and a reversed bound to the one in the previous theorem. This
aMOSt is called Boltzmann, and it is equivalent to the existence of the thermodynamic limit for

he free energy per site.6

Definition 2 (Boltzmann RaMOSt): The Boltzmann RaMOSt RB�M� is the triple

. �= �−1,1�M ��,
. ��=exp�−�HM����,
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. q̃r1¯rl
=1/M� j� j

�r1�
¯� j

�rl�.

e choose

H̃� = − �
�=1

PK�N 1

2
�1 + J̃�

1� j
�
1� ¯

1

2
�1 + J̃�

K−1� j
�
K−1�

1

2
�1 + J�

K�i�
� ,

Ĥ� = − �
�=1

P�K−1��N
1

2
�1 + Ĵ�

1� j
�
1� ¯

1

2
�1 + Ĵ�

K� j
�
K� ,

here the independent random variables j.
. are uniformly distributed over 1 , . . . ,M and J̃.

. , Ĵ.
. are

ndependent copies of J.
Theorem 2 (Reversed Bound):

− �f � lim
N→	

lim inf
M→	

GN�RB�M�� .

Proof: It is clearly enough to show

− �f = C lim
M

1

N
E ln

ZM+N

ZM
� lim inf

N
lim inf

M
GN�RB�M�� , �4�

here the limit C lim is in the Cesàro sense. We can rewrite GN as

1

N
E ln��,�e−��HM+H̃�

ZN+M����
ZN+M����
ZN+M���

ZN+M���
ZM���

ZM���

��e
−��HM+Ĥ��

nd therefore we have four terms. If we now take

�� = ��1 + �K − 1�
N

M
�

e see that the fourth fraction is the same as ZM��� /ZM����, and it cancels out with the second in
he limit of large M �just like in Ref. 2�. We also know that the third fraction tends to −�f .

Now we keep proceeding like in Ref. 2. In the denominator of the first fraction we can split
he mean ���N+M� into the sum of three means such that HN+M splits into the sum of three
amiltonians with the first depending only on cavity spins �, the second containing exactly one

pin from the original system in its interactions, the third has the interactions with at least two
pins �. Hence the three coefficients of the connectivities, up to corrections vanishing when M is
arge, will be MK , KMK−1, and a negligible third �of order MK−2�, respectively. Incidentally, this
eans that when the cavity is large the added spins do not interact with one another �asymptoti-

ally�.
The choice of �� we made guarantees that numerator and denominator contain two �up to a

egligible third in the denominator� identical Hamiltonians with the same connectivities. As a
onsequence, the first fraction in GN vanishes in the limit and the theorem is proven. �

An immediate consequence of the two bounds is clearly the following
Theorem 3 (Extended Variational Principle):

− �f = lim
N→	

inf
R

GN.

All the RaMOSts yielding the correct value of the free energy per site in the thermodynamic
imit are called optimal, and they enjoy the same factorization property that is found for both
ondilute spin glasses and the Viana-Bray model of dilute spin glass.2 This statement is made

2
recise by factorizing the cavity part of the trial free energy
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c1 ¯ cN = �
�

exp�− �H̃� , �5�

n the next
Theorem 4: In the whole region where the parameters are uniquely defined, the following

esàro limit is linear in N and �̄:

C lim
M

E ln 
M��
�

c1 ¯ cN exp�− ��Ĥ��̄/N���� = N�− �f + �A� + �̄A , �6�

here

A = �
n�0

�− 1�n+1

n
� e−� − 1

2K �n

��1 + Qn�q��K	 .

Proof: As expected, the proof is similar to that of the analogous theorem in Ref. 2 and to that
f Theorem 2 above, except here we will choose

�� = � + �K − 1�
1

M
��N + �̄�

nd use only three fractions, re-writing the left-hand side of �6� as

1

N
E ln��,� exp�− ��HM + H̃��

ZN+M����
ZN+M����
ZN+M���

ZN+M���
ZM���

� .

otice that this choice of �� reduces to the previous one of Theorem 2 for �̄=0, as it should do.
�

. REPLICA SYMMETRY BREAKING AND ULTRAMETRIC RaMOSt

Now we are equipped with the main theorems about the random multi-overlap structures in
he case of the K-SAT problem, and we are about to extend the results of Ref. 3 to the K-SAT. We
ant to construct a trial function depending on ultrametric trial multi-overlaps, that fulfills the
eneralized bound and obeys the factorization property of the optimal structures.

Definition 3 (Ultrametric RaMOSt): The R-level replica symmetry breaking ultrametric Ra-
OSt RU is the triple

. �=NR��= ��1 , . . . ,�R�;

. ���m1 , . . . ,mR� from the random probability cascades;

. q̃r1¯rl
= �q̃r1,¯,rl

�1� − q̃r1¯rl

�0� ���
1
r1,¯,�

1
rl + ¯ + �q̃r1,¯,rl

�R� − q̃r1,¯,rl

�R−1� ���
1
r1
¯�

1
rl¯��

R
r1
¯�

R
rl is the ultrametric

multi-overlap, given partitions qr1,¯,rl

�a� , 0�a�R of the interval [0,1].

enoting by X the map

X:�̃a → ma

atisfying �7�, we can consider the trial function G�RU� as a function G�X� of X.

Theorem 5: There exist H̃ , Ĥ satisfying �2� and �3� with q̃ ultrametric and the ultrametric
rial function G�X� satisfying the bound

− �f��,�� � inf
X

G�X�

s a special case of the generalized bound. Moreover, the Ultrametric RaMOSt enjoys the same
actorization property as in Theorem 4.
Proof: Take
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H̃� = �
�=1

PK�N

ũ�
�1

2
�1 + J��i�

� −
1

�
ln cosh��ũ�

�� ,

Ĥ� = �
�=1

P�K−1��N

û�
� −

1

�
ln cosh��û�

��

ith ũ� , û� defined by

tanh��ũ�� = �e−� − 1� 1
2 �1 + J̃1W�

1� ¯ 1
2 �1 + J̃K−1W�

K−1� ,

tanh��û�� = �e−� − 1� 1
2 �1 + Ĵ1W�

1� ¯ 1
2 �1 + ĴKW�

K�

n which W� is the same as in Ref. 3

W� = �̃�̃1
��k�

�J̄�1
+ ¯ + �̃�̃R

��k�
�J̄�1,¯,�R

,

here �̃�̃��k�
� is the infinite volume limit of the Boltzmann-Gibbs average of a random spin from

n auxiliary system with a Viana-Bray one-body interaction Hamiltonian at connectivity �̃3 and

= ±1 is symmetric. Notice that

E�̃�̃
n��k.

� = �q̃n	�̃ = q̃n��̃� .

he indices, the bar, the tilde, and the caret mean independent copies of the corresponding vari-
bles. Let us now report a comment from Ref. 2. Given any partition �xa�a=0

R of the interval �0, 1�,
here exists a sequence ��̃a�a=0

R � �0,	� such that q̃1,¯,n��̃a�=xa−xa−1. In other words, a sequence
�̃a�a=0

R � �0,	� generates for each n�N a partition of �0, 1� considered as the set of trial values
f q̃1,¯,n, provided the �̃a are not too large

�
a�R

q̃1,¯,n��̃a� � 1. �7�

We limit our trial multi-overlaps to belong to partitions generated in this way. This implies
hat the points of the generated partitions tend to get closer to zero as n increases. This is good,
ince in any probability space �q̃n	 decreases as n increases and therefore the probability integral
istribution functions tend to grow faster near zero. Now put inductively

E
̃�̃a
��k�

�r1�
¯ �k�

�rl�� = q̃r1,¯,rl
��̃a� = q̃r1,¯,rl

�a� − q̃r1,¯,rl

�a−1� , q̃r1,¯,rl

�0� = 0,

hen an elementary calculation shows that

E tanhn��ũ�� = � e−� − 1

2K−1 �n

�1 + Qn�q̃��K−1,

E tanhn��û�� = � e−� − 1

2K �n

�1 + Qn�q̃��K

ith q̃ ultrametric,3 i.e.,

q̃r1,¯,rl
= �q̃r1,¯,rl

�1� − q̃r1,¯,rl

�0� ���
1
r1
¯�

1
rl + ¯ + �q̃r1,¯,rl

�R� − q̃r1,¯,rl

�R−1� ���
1
r1
¯�

1
rl ¯ ��

R
r1
¯�

R
rl.

ence we reproduced the setting of the generalized bound in the particular case of ultrametric

ulti-overlap, and therefore we just proved that
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− �f � inf
X

G�X� .

At this point we only need to make sure that the ultrametric RaMOSt passes the invariance
est prescribed by Theorem 4. Notice that G�X� does not depend on N �see Lemma 1 in Appendix

of Ref. 3�. Moreover W̃ and Ŵ are chosen to be independent, therefore the factorization property
f the optimal RaMOSts holds:

E ln 
��c1 ¯ cN exp�− �Ĥ��̄/N��� = NB + �̄A

or some B, and we are again using the definition �5�. �

I. CONCLUSIONS

The RaMOSt is the minimal generalization of the ROSt, and what we showed here and in Ref.
is that the minimal generalization is enough to formulate the variational principle and also

xhibit a concrete RaMOSt analogous to the Parisi one for SK. As a consequence, it is enough to
estrict the space of trial functions to those expressible in terms of fixed multi-overlaps �i.e., a set
f numbers, not random variables to be averaged�.

Unfortunately the case of odd K still escapes our approach.
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PPENDIX: THE p-XOR-SAT

The Hamiltonian of the random p-XOR-SAT coincides with the one of the diluted p-spin glass

H = − �
�=1

P�N

J��i
�
1 ¯ �i

�
p.

t is therefore elementary, assuming p even, to extend all the results of Refs. 2 and 3 to this case,
lso when in the presence of an external field. Since it is easy to show2

d

d�

1

N
E ln �

�

exp�− �H� = �
n�0

1

2n
E tanh2n��J��1 − �q2n

p 	� ,

he structure of the model is the same RaMOSt valid for the case of the Viana-Bray model, but the
bove-mentioned equality suggests to try and get the non-negative convex function xp− pxyp−1

�p−1�yp whenever we got the square x2−2xy+y2 in the Viana-Bray case. That is why here H̃ and
ˆ are chosen such that

d

d�
E ln �

�

�� exp�− �H̃.� = p �
n�0

1

2n
E tanh2n��J��1 − �q̃2n

p−1	� ,

d

d�

1

N
E ln �

�

�� exp�− �Ĥ� = �p − 1��
n�0

1

2n
E tanh2n��J��1 − �q̃2n

p 	�
nd plugged into
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GN�R,H̃,Ĥ� =
1

N
E ln

��,��� exp�− ��i=1
N H̃i�i�

���� exp�− �Ĥ�
.

he generalized bound clearly holds, the Boltzmann RaMOSt is the one with ��=exp�−�HM� and

H̃� = − �
�=1

Pp�N

J̃�� j
�
1 ¯ � j

�
p−1�i�

, Ĥ� = − �
�=1

P�p−1��N

Ĵ�� j
�
1 ¯ � j

�
p

same couplings as the original system� and it is optimal so that we can also state the extended
ariational principle. The broken replica symmetry ultrametric RaMOSt �which includes as a
rivial case the replica symmetric one� relies on the weights �� of the random probability cascades
s in Ref. 7 and on

H̃� = − �
�=1

Pp�N � 1

�
ln

cosh��J�

cosh��J̃�
��

+ J̃�
��i�� ,

Ĥ� = − �
�=1

P�p−1��N � 1

�
ln

cosh��J�

cosh��Ĵ�
��

+ Ĵ�
��

ith

tanh��J̃�� = tanh��J�W̃�
1
¯ W̃�

p−1,

tanh��Ĵ�� = tanh��J�W̃�
1
¯ W̃�

p ,

here W̃�
. are independent copies of

W̃��J̄,k�� = �̃�̃1
��k�

�J̄�1
+ ¯ + �̃�̃R

��k�
�J̄�1,¯,�R

ith J̄.= ±1 symmetric.
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armonic fields on the extended projective disk
nd a problem in optics
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The Hodge equations for 1-forms are studied on Beltrami’s projective disk model
for hyperbolic space. Ideal points lying beyond projective infinity arise naturally in
both the geometric and analytic arguments. An existence theorem for weakly har-
monic 1-fields, changing type on the unit circle, is derived under Dirichlet condi-
tions imposed on the noncharacteristic portion of the boundary. A similar system
arises in the analysis of wave motion near a caustic. A class of elliptic-hyperbolic
boundary-value problems is formulated for those equations as well. For both
classes of boundary-value problems, an arbitrarily small lower-order perturbation
of the equations is shown to yield solutions which are strong in the sense of
Friedrichs. © 2005 American Institute of Physics. �DOI: 10.1063/1.2098529�

. INTRODUCTION

The projective disk was introduced by Beltrami3 in 1868. His construction was an early
xample of a Euclidean model for a non-Euclidean space, in this case, a space having curvature
qual to −1. The projective disk has the striking property that even points infinitely distant from
he origin are enclosed by the Euclidean unit circle centered at the origin of R2. This implies the
ossibility of points in projective space which lie beyond the curve at infinity. It is known that
uch ideal points arise naturally in the process of constructing normal and translated lines for
hords of the projective disk. In this sense ideal points may be said to be intrinsic to the model,
ather than only a theoretical possibility allowed by the model. We call the union of the conven-
ional projective disk P2 and its ideal points the extended projective disk.

Hua9 considered a second-order partial differential equation for scalar functions on the ex-
ended projective disk. He proved the existence of solutions to certain boundary-value problems of
ricomi type, in which data are given on characteristic curves, which represent trajectories of
eneralized wavefronts. Hua’s work was extended to other problems of Tricomi type by Ji and
hen.10,11 The existence of a class of weak solutions to the Hodge equations for harmonic 1-fields
n extended P2, with data prescribed only on the noncharacteristic part of the boundary, was
roven in Ref. 23. Locally, the Hodge equations reduce in the smooth scalar case to the equation
tudied by Hua.

This communication provides a geometric and analytic context for such results �Sec. I�. In
ddition, we prove an existence theorem for weakly harmonic 1-fields which includes the results
f Ref. 23 as a special case �Sec. II A�, and consider a similar system that arises in optics �Secs.
II A and III B�. Boundary-value problems are formulated for both systems, in which the boundary
ontains points in both the elliptic and hyperbolic regions of the equations. These problems are
hown in Secs. II B and III C to be an arbitrarily small, lower-order perturbation away from
roblems possessing a unique, strong solution.

�
Electronic mail: otway@ymail.yu.edu
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Because both scalar equations and systems are discussed, we distinguish a vector-valued
olution by writing it in boldface. However, for typographic simplicity, coefficient matrices and
perators are not written in boldface.

. A geometric classification of linear second-order operators

The highest-order terms of any linear second-order partial differential equation on a domain
�R2 can be written in the form

Lu = ��x,y�uxx + 2��x,y�uxy + ��x,y�uyy ,

here �x ,y� are coordinates on � and �, �, and � are given functions. �A subscripted variable
enotes partial differentiation in the direction of the variable.�

If the discriminant

��x,y� = �� − �2

s positive, then the equation associated with the operator L is said to be of elliptic type. The
implest example is Laplace’s equation, for which �=�=1 and �=0. If the discriminant is nega-
ive, then the equation associated with the operator L is said to be of hyperbolic type. The simplest
xample is the normalized wave equation, for which �=1, �=−1, �=0; other forms are �=−1,
=1, �=0, or �=�=0, �=1. If �=0, then the equation associated with the operator L is said to
e of parabolic type; examples are equations which model diffusion. If the discriminant is positive
n part of � and negative elsewhere on �, then the equation associated with the operator L is said
o be of mixed elliptic-hyperbolic type. A simple example of an elliptic-hyperbolic equation is the
avrent’ev–Bitsadze equation, for which �=sgn�y�, �=0, and �=1.

If we take � to be a smooth but curved surface, then we may not be able to cover � by a
ingle system of Cartesian coordinates. However, we can always introduce Cartesian coordinates
x1 ,x2� locally on any smooth surface, in the neighborhood of a point on the surface. In terms of
uch coordinates, the distance element ds on � can be written in the form

ds2 = �
i=1

2

�
j=1

2

gij�x1,x2�dxi dxj ,

here gij is a symmetric 2�2 matrix, the metric tensor on �. �In the sequel we will understand
epeated indices to have been summed from 1 to dim��� without writing out the summation
otation each time.� A natural differential operator on functions u defined on such a space is the
aplace-Beltrami operator

Lu =
1

��g�
�

�xi�gij��g�
�u

�xj	 ,

here gij is the inverse of the matrix gij and g is its determinant.
Laplace’s equation can be associated with the Laplace-Beltrami operator on the Euclidean

etric for which gij is the identity matrix. The wave equation for �=0 can be associated with the
aplace-Beltrami operator on the two-dimensional Minkowski metric g11=1, g22=−1, g12=g21

0. The Lavrent’ev–Bitsadze equation can be associated with the Laplace-Beltrami operator on a
etric which is Euclidean above the x-axis and Minkowskian below the x-axis.

In this classification, the type of a linear second-order equation is not a function of the
ssociated linear operator at all; that operator is always the Laplace-Beltrami operator. Rather, the
ype of the equation is a feature of the metric tensor on an underlying surface. A Riemannian

etric, in which the distance between distinct points of � is always positive, corresponds to an
lliptic equation, whereas a pseudo-Riemannian metric, for which the distance between distinct
oints may be zero, corresponds to a hyperbolic equation. The Laplace-Beltrami operator on a

urface for which the metric is Riemannian on part of a surface and pseudo-Riemannian elsewhere
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ill be of mixed elliptic-hyperbolic type. However, any sonic—or parabolic—curve on which the
hange of type occurs will necessarily represent a singularity of the metric tensor, as the determi-
ant g will vanish along that curve. �The term sonic curve is borrowed from compressible fluid
ynamics, in which the equations for the velocity field of a steady ideal flow change from elliptic
o hyperbolic type at the speed of sound. The underlying pseudo-Riemannian metric in that case is
alled the flow metric.4�

One definition of the signature of a metric is the sign of the diagonal entries of the metric
ensor. Any change in the signature which results in a change in sign of the determinant g will
hange the Laplace-Beltrami operator on the metric from elliptic to hyperbolic type. The Laplace-
eltrami operator on surface metrics for which such a change occurs along a smooth curve will
orrespond to planar elliptic-hyperbolic operators in local coordinates.

If we consider the distance element

dsL
2 
 ��x,y�dy2 − 2��x,y�dx dy + ��x,y�dx2,

hen null geodesics on the corresponding surface are solutions of the ordinary differential equation

dsL
2 = 0.

he graphs of these solutions are called characteristic curves of the equation Lu=0. Hyperbolic
perators, which are associated with wave propagation, always have real-valued characteristics, or
ull geodesics.

In determining the qualitative behavior of solutions to partial differential equations we often
gnore lower-order terms, but this neglect is only justified when considering purely second-order
roperties such as the nature of the sonic curve. The importance to this paper of lower-order terms
s related to the fact that the Laplace-Beltrami equations on the extended projective disk are not of
eal principal type in the sense of Ref. �6�; see Ref. 27 for an accessible discussion of scalar
lliptic-hyperbolic operators of real principal type and their properties.

. The geometry and analysis of ideal points

Here we review basic properties of Laplace-Beltrami equations on Beltrami’s hyperbolic
etric on the projective disk:

ds2 =
�1 − y2�dx2 + 2xy dx dy + �1 − x2�dy2

�1 − x2 − y2�2

see, e.g., Ref. 32, Vol. I, Sec. 65 and Vol. II, Sec. 138, for a derivation�. In this metric the unit
ircle is the absolute: the locus of points at infinity.

The existence of points lying beyond the curve at infinity on the projective disk is natural from
geometric point of view. For example, choose a point p in the interior of the projective disk and
raw a vertical line �v through it. A hyperbolic line in the Beltrami metric is any open chord of the
nit circle, so �v is a hyperbolic line plus two points at infinity and an ideal extension to points
utside the unit circle. Denote by F�p� the family of hyperbolic lines created by rotating �v about

p. Move p along the horizontal line �h through p, and consider the effect of this motion on the
amily F�p�. As p passes through the boundary of the unit circle � into the R2 complement of �,
he family of hyperbolic rotations becomes a family of hyperbolic translations. For this reason,
yperbolic translations inside the unit disk can be interpreted as rotations about a point in R2 lying
eyond the unit disk.

As another example, consider that the pole of a hyperbolic line � is the intersection of those
wo tangents to the unit circle which intersect � at the two points of its contact with the unit circle.
We call these the polar lines of �.� Thus, any two hyperbolic lines �1 and �2 are orthogonal if and
nly if the pole of �2 lies on the ideal extension of �1 and vice versa.

These and other geometric constructions on extended P2 are described in more detail in Chap.

of Ref. 28.
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In order to see that ideal points also arise naturally in analysis, consider the Laplace-Beltrami
perator on the projective disk with Beltrami’s metric. We have

L�u� = �1 − x2 − y2���1 − x2�uxx − 2xyuxy + �1 − y2�uyy + lower order terms� .

The characteristics of the equation L�u�=0 satisfy the ordinary differential equation

�1 − y2�dx2 + 2xy dx dy + �1 − x2�dy2 = 0. �1�

his equation has solutions

x cos � + y sin � = 1, �2�

here, as is conventional, we take � to be the angle between the radial vector and the positive
-axis. Solutions of Eq. �2� correspond geometrically to the family of tangent lines to the unit
ircle centered at the origin of R2.

Thus the characteristic lines always include ideal points, and wave propagation can only occur
n regions composed of such points.

The Laplace-Beltrami equations on extended P2 come with a natural gauge theory in the
ollowing sense: The characteristic equation is obviously invariant under the projective group. So
lthough the equations in the form in which we study them change type on the unit circle in R2,
hey are projectively equivalent to a system which changes type on any conic section. Note that
hereas classical gauge theories are invariant under groups of Euclidean motions, which are

nertial transformations, this kind of gauge invariance is with respect to a group of non-Euclidean
otions, which are noninertial. Also, the gauge theories which are familiar from particle physics

ct “upstairs” on a fiber bundle of physical states. The transformation group under which the
aplace-Beltrami equations are invariant acts “downstairs” on the underlying metric, in the man-
er of the gauge group of general relativity. Indeed, analysis of wave motion on extended P2 has
ertain similarities to the analysis of wave motion in the vicinity of a light cone �cf. Ref. 30�. The
imelike and spacelike regions are inverted, and characteristic lines for the Laplace-Beltrami
quation are analogous to the paths of photons.

I. HARMONIC 1-FIELDS ON THE EXTENDED PROJECTIVE DISK

We can solve, instead of the Laplace-Beltrami equation, a system of two first-order equations
f the form

�g�−1/2�i�gij��g�uj� = 0, �3�

1

2
��iuj − � jui� = 0, �4�

here ui=ui�x1 ,x2�, i=1,2. As in the second-order equation, gij is a metric tensor on the under-
ying surface. Solutions u= �u1 ,u2� of this first-order system are �locally� harmonic 1-fields. Notice
hat if the scalar function 	�x1 ,x2� satisfies 	x1 =u1 and 	x2 =u2, then 	 satisfies the Laplace-
eltrami equations. But there are solutions 	 of the Laplace-Beltrami system for which the pair

	x1 ,	x2� is not a harmonic 1-field.
Consider a system of first-order equations on R2 having the form

Lu = f , �5�

here
L = �L1,L2�, f = �f1, f2� ,
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u = �u1�x,y�,u2�x,y��, �x,y� � � � R2.

et u satisfy �5� with

�Lu�1 = ��1 − x2�u1�x − 2xyu1y + ��1 − y2�u2�y + k1xu1 + k2yu2, �6�

nd

�Lu�2 = �1 − y2��u1y − u2x� + k3xu1 + k4yu2, �7�

here � is chosen so that y2�1 there. Here k1, k2, k3, and k4 are constants representing lower-
rder coefficients. In this section we consider three particular distributions of lower-order terms,
tudied in Ref. 23:

Case 1: k1=k2=−2, k3=k4=0. The domain of Eqs. �5�–�7� in this case will be called �1.
Case 2: k1=−2, k2=k3=0, k4=2. The domain of Eqs. �5�–�7� in this case will be called �2.
Case 3: k1=k2=k3=k4=0. The domain of Eqs. �5�–�7� in this case will be called �3. This case

orresponds to Eqs. �3� and �4�.
The union of the domains �1, �2, and �3 will be called �.
A system of first-order equations can also be said to be of elliptic or hyperbolic type, and thus

ay change type along a singular curve. See, e.g., Ref. 5, Chap. III.2. The higher-order terms of
he preceding system can be written in the form A1ux+A2uy, where

A1 = �1 − x2 0

0 − �1 − y2� � �8�

nd

A2 = �− 2xy 1 − y2

1 − y2 0
� . �9�

If y2�1, the characteristic equation

�A1 − 
A2� = − �1 − y2���1 − y2�
2 + 2xy
 + �1 − x2��

ossesses two real roots 
1 ,
2 on � precisely when x2+y2�1. Thus the system is elliptic in the
ntersection of � with the open unit disk centered at �0, 0� and hyperbolic in the intersection of �
ith the complement of the closure of this disk. The boundary of the unit disk, along which this

hange in type occurs, is the line at infinity on the projective disk and a line singularity of the
ensor gij.

Denote by � a region of the plane for which part of the boundary �� consists of a family of
urves � composed of points satisfying Eq. �1� and the remainder C=�� \� of the boundary
onsists of points �x ,y� which do not satisfy Eq. �1�. We seek solutions of Eqs. �5�–�7� which
atisfy the boundary condition

u1
dx

ds
+ u2

dy

ds
= 0, �10�

here s denotes arc length, on the noncharacteristic part C of the domain boundary. Because the
angent vector T on C is given by

T =
dx

ds
i +

dy

dx
j ,

geometric interpretation of this boundary condition is that the dot product of the vector u
�u1 ,u2� and the tangent vector to C vanishes, i.e., u is normal to the boundary �� on the

oundary section C. We call these homogeneous Dirichlet conditions.
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. Weak solutions

In Ref. 23, weak solutions to �5�–�7� and �10� are shown to exist in certain weighted L2 spaces
n a class of domains. Here we extend that result to the case in which the domain is formed by the
olar lines of a hyperbolic line � and a smooth curve C extending between the two polar lines of
. The curve C must have the property that dy�C0 when �� is traversed in a counterclockwise
irection. However, as long as this condition is met, C need not intersect the polar lines of � at
heir points of tangency with the unit circle. Thus C may extend into both the elliptic and the
yperbolic regions.

This domain is the analog of the “ice-cream cone”-shaped domain associated to the Tricomi
quation31

yuxx + uyy = 0,

here in our case the curve C is the boundary of the ice-cream part and the polar lines, which are
haracteristics of Eqs. �5�–�7�, are the boundary of the cone part. The unit circle is the analog of
he x-axis, which is the sonic curve for the Tricomi equation.

We initially consider the distribution of lower-order terms in case 1 of Eqs. �6� and �7�. Let �
ie in the interval �0,� /4�, and denote by �1 the region of the first and fourth quadrants bounded
y the characteristic line

�1:x cos � + y sin � = 1,

he characteristic line

�2:x cos � − y sin � = 1,

nd a smooth curve C. Let C intersect the lines �1,�2 at two distinct points c1 ,c2, respectively.
ssume that ∀�x ,y���1, 1 /�2x��2 and −1/�2y�1/�2 and that dy0 on C. A cusp is
ermitted for �=� /4 at the points c1 ,c2= �1/�2, ±1/�2�. Otherwise, the boundary will have
iecewise continuous tangent �so that Green’s theorem can be applied to it�. Note that the domain
onsidered in Sec. 3 of Ref. 23 is equivalent to this domain in the degenerate special case �=0.

Define U to be the vector space consisting of all pairs of measurable functions u= �u1 ,u2� for
hich the weighted L2 norm

u* = �� �
�1

��2x2 − 1�u1
2 + �2y2 − 1�u2

2�dx dy�1/2

s finite. Notice that this expression vanishes at the intersection of � with its polar lines at the value
=� /4. Denote by W the linear space defined by pairs of functions w= �w1 ,w2� having continuous
erivatives and satisfying:

w1dx + w2 dy = 0 �11�

n �=�1��2;

w1 = 0 �12�

n C; and

� �
�1

��2x2 − 1�−1�L*w�1
2 + �2y2 − 1�−1�L*w�2

2�dx dy � � .

ere

�L*w�1 = ��1 − x2�w1�x − 2xyw1y + ��1 − y2�w2�y + 2xw1,
nd
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�L*w�2 = �1 − y2��w1y − w2x� + 2yw1.

efine the Hilbert space H to consist of pairs of measurable functions h= �h1 ,h2� for which the
orm

h* = �� �
�1

��2x2 − 1�−1h1
2 + �2y2 − 1�−1h2

2�dx dy�1/2

s finite.
We say that u is a weak solution of the system �5�–�7� and �10� in case 1 on �1 if u�U and

or every w�W

− �w,f� = �L*w,u� ,

here

�w,f� =� �
�1

�w1f1 + w2f2�dx dy .

In case 2, we restrict the domain �2 to lie in the fourth quadrant of the Cartesian plane. Define

1 ,�2�� to be characteristic lines which are tangent to the unit circle at distinct points in the
ourth quadrant and which intersect at a point in the complement of the unit disk in R2. The curve

is defined analogously to the corresponding curve of �1. In particular, dy�C0 on �2 when C
s traversed in a counterclockwise direction. Replace U by the space U� of all pairs u of measur-
ble functions �u1 ,u2� for which the weighted L2 norm

u*� = �� �
�2

�xu1
2 + �y�u2

2�dx dy�1/2

s finite. Replace W by the space W� defined by pairs of continuously differentiable functions w
�w1 ,w2� satisfying Eq. �11� on �, Eq. �12� on C, and

� �
�2

�x−1�L*w�1
2 + �y�−1�L*w�2

2�dx dy � � .

n this case

�L*w�1 = ��1 − x2�w1�x − 2xyw1y + ��1 − y2�w2�y + 2xw1,

nd

�L*w�2 = �1 − y2��w1y − w2x� − 2yw2.

inally, we replace H by the space H� of measurable functions h= �h1 ,h2� for which the norm

h�* = �� �
�2

�x−1h1
2 + �y�−1h2

2�dx dy�1/2

s finite.
Because k4 is nonzero in case 2, the consistency condition �4� is violated and u cannot be the

radient of a scalar potential, even locally. Harmonic fields in which condition �4� is violated arise
n various contexts—see Sec. 4 of Ref. 25 for a nonlinear example—and correspond physically to
tationary fields having sources.

In case 3, we restrict the domain, �3, to lie in the first quadrant. Define �1 ,�2�� to be
haracteristic lines which are tangent to the unit circle at distinct points in the first quadrant, and

2
hich intersect at a point in the complement of the unit disk in R . In this case we replace U and
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by L2. We replace W by the space of pairs of L2 functions �w1 ,w2� which satisfy �11� on � and
12� on C. Note that L is self-adjoint in case 3. In addition, we fix positive numbers ��1/2 and
�1/2, and require �3 to lie in the semi-infinite rectangle

1
�2

� x,
1

�2 − �
� y  �1 − � .

Weak solutions in cases 2 and 3 are defined exactly analogously to case 1, with appropriate
eplacement of the domain and function spaces.

Theorem 1: Let the lower-order terms in Eqs. (6) and (7) be distributed as in cases 1, 2, or
, on the domains �1, �2, or �3, respectively. Then there exists a weak solution of the boundary-
alue problem (5)–(7) and (10) for every f�H.

Proof: The proof is an extension of the arguments in Ref. 23, so we will be brief. We derive
basic inequality, that there is a K�R+ such that ∀w�W

Kw*  L*w*

with the norms appropriately adjusted in cases 2 and 3�. We derive this inequality by choosing a
calar multiplier a, computing the L2 inner product �L*w ,aw�, and integrating by parts. Denoting
he coefficients of w1

2 off the boundary by �, those of w2
2 by �, and those of w1w2 by 2�, we

hoose, in case 1, a=x2 and obtain

� = x�3x2 − 1�, � = x�1 − y2� ,

nd

� = yx2,

here

2�w1w2 � − 2x�xw1��yw2� � − �x3w1
2 + xy2w2

2� .

In case 2 we choose a=1 and obtain

� = 2x, � = − 2y ,

nd �=0.
In case 3 we choose a=xy and obtain

� =
y

2
�3x2 − 1�, � =

y

2
�1 − y2� ,

nd

2� = − �1 − y2�x .

he quadratic form ��−�2 can be shown to be non-negative in case 3 by noticing that the
rgument in Sec. 6.2 of Ref. 23 does not use the restriction x1 and thus extends to our more
eneral case.

The remainder of the proof is essentially the same for all three cases. Applying Green’s
heorem to derivatives of products in �L*w ,aw�, we obtain a boundary integral I having the form

�
��

a

2
��1 − x2�w1

2 dy + 2xyw1
2 dx� − �

��

a��1 − y2�w1w2 dx +
1

2
�1 − y2�w2

2 dy� .

ecause w1 vanishes identically on C, the boundary integral is non-negative on C by the hypoth-
sis on dy�C. On the characteristic curves, we no longer have the property that dx=0, which we

sed in deriving the basic inequality of Ref. 23. However,
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I�� = �
�

a

2
��1 − x2�w1

2 dy + �2xyw1
2 − �1 − y2�w1w2�dx� ,

here we have used the fact that

w2 dy = − w1 dx

n characteristic lines. In fact, we have

I�� = �
�

a

2
��1 − x2�w1

2�dy

dx
	 + 2xyw1

2 − �1 − y2�w1w2�dx

= �
�

a

2
�− �1 − x2�w1w2�dy

dx
	2

+ 2xyw1
2 − �1 − y2�w1w2�dx ,

y the same identity. Equation �1� implies that

− �1 − x2��dy

dx
	2

= 2xy
dy

dx
+ 1 − y2,

o we can write

I = �
�

a

2
�2xy

dy

dx
+ 1 − y2�w1w2 dx + �

�

a

2
�2xyw1�− w2

dy

dx
	 − �1 − y2�w1w2�dx = 0.

his establishes the basic inequality.
Proceeding as in Ref. 19, we use the basic inequality to apply the Riesz representation

heorem and obtain an element h�H for which

− �w,f� = − �L*w,h�*,

here the product on the right is the inner product on H �or on H� or L2 in cases 2 or 3,
espectively�. Writing h1 and h2 of h in terms of appropriate rescalings of u1 and u2,23 we obtain

− �L*w,h�* = �L*w,u� ,

hich completes the proof.

. Strong solutions

By a strong solution of the boundary-value problem �5� and �10� we mean an element u
L2��� for which there exists a sequence u� of continuously differentiable vectors satisfying the

oundary condition �10�, for which

lim
�→�

u� − uL2 = 0,

nd

lim
�→�

Lu� − fL2 = 0.

For u= �u1�x ,y� ,u2�x ,y��, �x ,y����R2, define the operator L= �L1 ,L2� by the matrix equa-
ion

Lu = A1ux + A2uy + Bu , �13�

or matrices A1, A2, and B. We say that L is symmetric positive7,15,16 if the matrices A1 and A2 are

ymmetric and the matrix
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Q 
 2B* − Ax
1 − Ay

2

s bounded below by a positive multiple of the identity matrix. Here

B* =
1

2
�B + Bt� ,

here for a matrix W= �wij�, Wt= �wji�.
In cases for which L is not symmetric positive, there may be a nonsingular matrix E such that

L is symmetric positive. In that case we replace the equation

Lu = f

y the equation

ELu = Ef ,

nd try to show that the operator EL is symmetric positive. �The conversion of L into a symmetric-
ositive operator by the construction of a suitable multiplier E will not be used in this section, but
ill be used in Sec. III C.�

Suppose that N�x ,y�, �x ,y����, is a linear subspace of the vector space V, where u is
egarded as a mapping u :����→V, and that N�x ,y� depends smoothly on x and y. Define the
atrix

� = n1A���
1 + n2A���

2 ,

here n= �n1 ,n2� is the outward-pointing normal vector to ��. The boundary condition that u lie
n N is said to be admissible15 if N is a maximal subspace of V and if the quadratic form �u ,�u�
s non-negative on ��.

A sufficient condition7 for admissibility is that there exist a decomposition

� = �+ + �−,

or which the direct sum of the null spaces for �+ and �− spans the restriction of V to the
oundary, the intersection of the ranges of �+ and �− have only the vector u=0 in common, and
he matrix �=�+−�− satisfies

�* =
� + �t

2
� 0.

n this case the boundary condition

�−u = 0 on ��

s admissible for the boundary-value problem

Lu = f in � .

oreover, the boundary condition

�+
t w = 0 on ��

s admissible for the adjoint problem

L*w = h in � .

hese two problems possess unique, strong solutions whenever the differential operators are
7,15
ymmetric positive and the boundary conditions are admissible.
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In this section we give sufficient conditions for the existence of certain strong solutions arising
rom an arbitrarily small lower-order perturbation of the Laplace-Beltrami equations on extended
2. We do so by showing that the differential operator L given by �5�–�7� with k1=k2=k3=k4=0 is
rbitrarily close to a symmetric-positive operator and by stating an admissible boundary condition.
he existence of strong solutions to a different perturbation on an explicit domain will be shown

n Sec. III C.
If the matrices A1 and A2 of Eq. �13� are given by Eqs. �8� and �9�, and the matrix B is given

y

�− 2x − 2y

0 0
	 ,

hen the quantity Q is zero. Thus we replace the matrix B by a matrix B�, which differs from B by
n arbitrarily small perturbation and takes the form

B� = � − 2x + �1 − 2y + �2

�1 − y2��3 �1 − y2��4
	 , �14�

here �1�0, �4�0, and �2+ �1−y2��3�0. If we choose the domain of L in such a way that y2

1 there, then this replacement converts Q into a positive-definite matrix and L into a symmetric-
ositive operator.

Denote by �4 a domain having C2 boundary ��4=E�F such that y2�1 on �4. Let the
omponents of the normal vector n on ��4 be given by �n1 ,n2�. Assume that n1 and n2 never
anish at the same point of ��4. We place conditions on n1 ,n2, and ��4 sufficient to guarantee
dmissibility of the boundary condition

u1n2 − u2n1 = 0 �15�

n F, with no condition given on E.
Let n1�0,n20 on F and n10,n2�0 on E. Defining the adjoint space as in Sec. II A, for

�V* we take w= �0,w2� on F and

w1n2 − w2n1 = 0

n E. Define

� = �− �1 − y2�n2/n1 + 2xy − �1 − x2�n1/n2�n2.

ssume that �=0 on E, and that �0 on F.
Theorem 2: The boundary-value problem

Lu = A1ux + A2uy + B�u = f ,

or �x ,y���4, with A1, A2, and B� given by Eqs. (8), (9), and (14), respectively, and with
ondition (15) imposed on the curve F of ��4, possesses a unique, strong solution u�x ,y� for every
�L2��4�.

Proof: Because the matrix B� has been constructed in such a way that L is symmetric positive,
t remains only to show that the boundary condition �15� is admissible on �4.

We have

� = �− � − �1 − y2�n2
2/n1 �1 − y2�n2

�1 − y2�n2 − �1 − y2�n1
	 .

ote that the apparent singularities in � at n1=0 and in � at n2=0 are removable.

On F, choose
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�+ = �− � 0

0 0
	

nd

�− = �1 − y2�n2�− n2/n1 1

1 − n1/n2
	 .

n E, choose

�+ = �1 − y2�n2�− n2/n1 1

1 − n1/n2
	

nd

�− = �− � 0

0 0
	 .

If u�V�F, then �15� implies that �−u=0. The properties of V* imply that wt�+=0 for w
V�F

* . If u�V�E, then �−u=0 for all values of u and wt�+=0 by the properties of V* and �. So the
irect sum of the null spaces of �− and �+ spans V on ��4. Moreover, the hypotheses guarantee
hat the ranges of �− and �+ have only the zero vector in their intersection. Finally,

�+ − �− = �* � 0

n both E and F.
This completes the proof of Theorem 2.

II. AN ANALOGOUS PROBLEM FROM OPTICS

Geometrical optics is a zero-wavelength approximation to classical wave mechanics in which
he governing differential equations are replaced by the Euclidean geometry of rays. The limita-
ions of the geometrical optics approximation are apparent in the neighborhood of caustics, which
re envelopes of a family of rays. It is not simply that geometrical optics predicts infinite intensity
n such regions, whereas diffractive effects reduce the predicted intensity to a finite number. Even
n applications for which the agreement between the predictions of geometrical optics and experi-

ent is generally good, the former may predict singularities, e.g., cusps, which are entirely
moothed out by diffraction. A dramatic example of this for the case of water waves is illustrated
n Figs. 5.6.1 and 5.6.2 of Ref. 29. This is, of course, far from the only drawback of the geometri-
al optics approximation. See, for example, the discussion of the rainbow caustic in Sec. 6.3 of
ef. 22.

The accuracy of the geometrical optics approximation can be improved by considering waves
f arbitrarily high frequency obtained by uniform asymptotic approximation of solutions to the
elmholtz equation �Sec. III A�. While the older of these approximations also fail at caustics, an

symptotic formula introduced independently by Kravtsov12 and Ludwig17 retains its meaning
ven in the neighborhood of a caustic; see Ref. 13 for a review.

Recently, Magnanini and Talenti studied a nonlinear elliptic-hyperbolic equation, implied by
he Ludwig-Kravtsov approximation, having the form18

���v�4 − vy
2�vxx + 2vxvyvxy + ���v�4 − vx

2�vyy = 0, �16�

here v=v�x ,y�, �x ,y��R2. Those authors were able to show the existence of weak solutions to
he full Dirichlet problem for the linear elliptic-hyperbolic equation

��p2 + q2�2 − p2�Vpp − 2pqVpq + ��p2 + q2�2 − q2�Vqq = 0, �17�
hich is related to Eq. �16� by the Legendre transformation
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VL�p,q� = xp + yq − v�x,y� . �18�

Magnanini and Talenti’s result is remarkable in that it is difficult to formulate a full Dirichlet
roblem which is well-posed for a given elliptic-hyperbolic equation, even in the weak sense. �By
ull we mean that data are prescribed on the entire boundary.� Morawetz’s proof of the existence
f weak solutions to the full Dirichlet problem for the Tricomi equation, the most intensively
tudied elliptic-hyperbolic equation, required a delicate argument.20,27 The full Dirichlet problems
or other important elliptic-hyperbolic equations remain unknown. For example, the full Dirichlet
roblem has not been correctly formulated even for weak solutions to a scalar elliptic-hyperbolic
quation associated to electromagnetic wave propagation in cold plasma, although a well-posed
irichlet problem for weak solutions has been formulated for data prescribed only on part of the
oundary.24

The existence of a well-posed Dirichlet problem is important because physical reasoning often
uggests that the full Dirichlet problem is the correct problem even in the case of equations for
hich mathematical reasoning suggests otherwise.

Two questions suggested by Magnanini and Talenti’s paper are

i� The transformation �18� itself fails at caustics �which are not generally identical to the
caustics of the physical model�. One would like to characterize regions at which this
linearization method fails and the nature of the singularities that arise in such regions. See,
for example, Proposition 2 of Ref. 26.

ii� The result proven in Ref. 18 requires the domain boundary to lie entirely within the elliptic
region of the equation. It is an important quality of Eq. �17� that the elliptic region sur-
rounds the hyperbolic region, a property not shared by other elliptic-hyperbolic equations.
Thus there is some mathematical interest in asking whether solutions of �17� exist with
boundary points lying in both the elliptic and hyperbolic regions, a situation in which this
special condition is no longer applicable. We consider this question in Sec. III C.

Equation �16� is a special case of the system

��p2 + q2�2 − q2�px + 2pqpy + ��p2 + q2�2 − p2�qy = 0, �19�

py − qx = 0. �20�

This system is equivalent to Eq. �16� if there is a continuously differentiable scalar function
�x ,y� for which vx= p and vy =q. �Such a function always exists locally, by Eq. �20�.�

Consider any two-dimensional quasilinear system of two equations having the form

�a11 a12

a21 a22
� �

�x
�p

q
	 + �b11 b12

b21 b22
� �

�y
�p

q
	 = �0

0
	 , �21�

here the entries of the coefficient matrices depend only on p and q. Then the coordinate trans-
ormation �x ,y�→ �p ,q� takes Eq. �21� into the linear form

�b12 − a12

b22 − a22
� �

�p
�x

y
	 + �− b11 a11

− b21 a21
� �

�q
�x

y
	 = �0

0
	 ,

rovided the Jacobian of the transformation

J =
��x,y�
��p,q�

=
�x

�p

�y

�q
−

�y

�p

�x

�q

s nonzero. This special case of the Legendre transformation is called a hodograph map, and the
pace having coordinates �p ,q� is called the hodograph plane; see, e.g., Sec. V.2.2 of Ref. 5.
The coordinate systems �p ,q� and �x ,y� are related by Eq. �18�, where
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�x,y� = � �V

�p
,
�V

�q
	

nd

�p,q� = � �v
�x

,
�v
�y
	 .

Applying a hodograph transformation to Eqs. �19� and �20� yields the system

��p2 + q2�2 − p2�xp − 2pqxq + ��p2 + q2�2 − q2�yq = 0, �22�

xq − yp = 0. �23�

his system is equivalent to Eq. �17� if there is a continuously differentiable scalar function V�x ,y�
or which Vp=x and Vq=y. �Again, this can always be arranged locally.�

As in Sec. II, we write the second-order terms of Eqs. �22� and �23� in the form A1ux

A2uy, where u=u�x ,y� and in this case

A1 = ��x2 + y2�2 − x2 0

0 − 1
�

nd

A2 = �− 2xy �x2 + y2�2 − y2

1 0
� .

he characteristic equation

�A1 − 
A2� = − ���x2 + y2�2 − y2�
2 + 2xy
 + ��x2 + y2�2 − x2��

ossesses two real roots 
1 ,
2 precisely when x2+y2� �x2+y2�2, that is, when x2+y2�1. Thus the
ystem is hyperbolic at points lying inside the open unit disk centered at �x ,y�= �0,0� and elliptic
utside the closure of this disk. The circle x2+y2=1, along which the change in type occurs, is the
arabolic region of the system.

. Uniform asymptotic approximations

Substitution of the simplest formula for an oscillatory wave into the wave equation results in
he Helmholtz equation

�U�x� + k2�2U�x� = 0, �24�

here we take x to be a vector in R2, and where k and � are physical constants. In the standard
pplication, � is the refractive index of the medium and k is inversely proportional to wavelength.
n the region of visible light, the wavelength is sufficiently small that k dominates over all other
athematically relevant parameters, an undesirable property known as stiffness.

For this reason, short-wave solutions of �24� are usually approximated by uniform asymptotic
xpansions12,17 which satisfy �24� to arbitrarily high order in k−1. These approximations are valid
n regions which contain smooth and convex caustics such as a circular caustic. The size of the
egion of validity is independent of k. Take �
1 and approximate the solution to �24� by an
xpansion having the form

Uapprox�x,y� = �Z�k2/3u���
j=0

�

Wj�r� · �ik�−j	 +
i

k1/3Z��k2/3u���
j=0

�

Xj�r� · �ik�−j	� � exp�ikv�x,y�� ,
here u�x ,y�, v�x ,y�, Wj�r�, and Xj�r� are functions which do not depend on k and which are to
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e determined with the solution; the function Z�t� is a solution of the Airy equation

Z��t� − tZ�t� = 0,

ith initial conditions

Z�0� =
3−2/3

��2/3�

nd

Z��0� = −
3−1/3

��1/3�
,

here �� � is the gamma function.
This model implies the following system of equations for u and v:

u�ux
2 + uy

2� − �vx
2 + vy

2� + 1 = 0,

uxvx + uyvy = 0.

In Ref. 18 three possible solutions of this system are enumerated:

u = 0, ��v�2 = 1;

��u� = 0, ��v�2 = 1;

he third possibility is that Eq. �16� is satisfied.
Obviously, the third alternative is the most interesting, and this case is studied in Ref. 18. This

ase is linearized to Eq. �17� by a hodograph transformation.

. A first-order system

Thus we are led to a system resembling Eqs. �5�–�7�:

Lu = g , �25�

here

L = �L1,L2�, g = �g1,g2� ,

u = �u1�x,y�,u2�x,y��, �x,y� � � � R2,

�Lu�1 = �f�x,y� − x2�u1x − 2xyu1y + �f�x,y� − y2�u2y , �26�

nd

�Lu�2 = �f�x,y� − y2��u1y − u2x� , �27�

or

f�x,y� = �x2 + y2�2. �28�
he domain is chosen so that
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f�x,y� − y2 � 0,

nder which system �25�–�28� becomes an inhomogeneous generalization of Eqs. �22� and �23�. If,
n particular, g1=g2=0, u1=Vx, and u2=Vy, where V�x ,y� is a scalar function, then Eqs. �25�–�28�
educe to Eq. �17�.

As in the preceding sections, the second-order terms of Eqs. �25�–�28� can be written in the
orm A1ux+A2uy, where

A1 = � f�x,y� − x2 0

0 − �f�x,y� − y2� �
nd

A2 = � − 2xy f�x,y� − y2

f�x,y� − y2 0
� .

e find that the system is hyperbolic in the intersection of � with the open unit disk centered at
0,0� and elliptic in the intersection of � with the complement of the closure of this disk.

. Strong solutions in an annulus

Writing Eq. �17� in polar coordinates �r ,�� ,r�0,−����, we obtain18

�r2 − 1�Vrr + rVr + V�� = 0. �29�

etting u1=Vr and u2=V� transforms Eq. �29� into a first-order system of the form

Lu = A1ur + A2u� + Bu = f , �30�

ith u= �u1�r ,�� ,u2�r ,��� , f= �0,0�,

A1 = �r2 − 1 0

0 − 1
	, A2 = �0 1

1 0
	 , �31�

nd

B = �r 0

0 0
	 .

As in Sec. II B, the matrices are symmetric and we find that Q=2B*−Ar
1−A�

2 is exactly zero,
uggesting that an arbitrarily small perturbation of the matrix B will result in a symmetric-positive
perator. However we find that we can retain the consistency condition u1�−u2r=0 if we employ
multiplier E as described in Sec. II B. Thus we define

E = �a c�1 − r2�
c a

	 ,

here a=a�r ,�� and c=c�r ,�� are continuously differentiable functions to be chosen. We replace
by the matrix

B� = �r + �1 �2

0 0
	 , �32�

here �1 ,�2 are arbitrarily small, strictly negative constants.

Replacing Eq. �30� by the system
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EL = EA1ur + EA2u� + EB�u = Ef , �33�

ith A1, A2, and B� given by Eqs. �31� and �32�, we find that EL is a symmetric-positive operator
rovided we choose 0��0rR��, a=−r, and

c = − �M

r
+ �	 ,

here M is a large, positive constant.
We will solve Eq. �33� in the annulus �5 given by �0rR, where R�1, imposing Dirichlet

onditions on the outer boundary and composite boundary conditions on the inner boundary.
nnular domains are natural when numerical methods are used to study an equation, such as Eq.

17�, which is known to be singular at the origin, with the singular point excluded. The problem
s also of some historical interest. An equation differing from �17� only in its lower-order terms
as one of the first elliptic-hyperbolic equations to be studied, more than 75 years ago, by Bate-
an �Sec. 9 of Ref. 1�. That equation arose from the solution of Laplace’s equation in toroidal

oordinates.2 At the time, Bateman raised the question of the existence and uniqueness of solutions
n an annular region containing the unit circle, in which the outer boundary lies in the elliptic
egion and the inner boundary lies in the hyperbolic region of the equation. Finally, the boundary-
alue problem in an annulus highlights the similarity between Eqs. �25�–�28� and �5�–�7�, as we
ill use virtually the same argument to solve annular boundary-value problems in the two cases.

Although the system that we consider is a small perturbation of the one studied in Ref. 18, we
ote that the original equation is itself an approximation, as described in Sec. III A.

Theorem 3: Equation (33), with boundary conditions

����u1 + ����u2 = 0, �34�

here ���������0 at r=�0 and �=0, �=1 at r=R, possesses a unique, strong solution on the
nnulus �5.

Proof: Although the equations are different, the argument is similar to the proof by Torre30 of
he corresponding assertion for the helically reduced wave equation.

The matrices E and B� have been constructed in such a way that the operator EL is manifestly
ymmetric positive �for large M�, and the proof again reduces to a demonstration that the boundary
onditions are admissible. At the inner boundary, choose

ninner = ��0
2 − 1�−1dr .

hen

�inner = �a c

c − ��0
2 − 1�−1a

	dr .

hoose

�inner− =
1

�2 + �2� ��c + �2a �2c + ��a

− ����0
2 − 1�−1a + �2c − �2��0

2 − 1�−1a + ��c
	dr .

hen

�inner+ =
1

�2 + �2� − ��c + �2a �2c − ��a

����0
2 − 1�−1a + �2c − �2��0

2 − 1�−1a − ��c
	dr .

otice that �inner+ +�inner− =�inner and that �inner−u=0, as �34� implies that u2=−�� /��u1 on the

ircle r=�0. Moreover,
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� =
1

�2 + �2� ��2 − �2�a − 2��c ��2 − �2�c − 2��a

��2 − �2�c + 2����0
2 − 1�−1a ��2 − �2���0

2 − 1�−1a − 2��c
	dr ,

mplying that

�* =
1

�2 + �2� ��2 − �2�a − 2��c ��a���0
2 − 1�−1 − 1�

��a���0
2 − 1�−1 − 1� ��2 − �2���0

2 − 1�−1a − 2��c
	dr .

ut this matrix is non-negative for our choices of a and c, given that 0��0�1,���0, provided
hat we choose M sufficiently large.

On the upper boundary we choose

nouter = �R2 − 1�−1dr .

hen

�outer = �a c

c − �R2 − 1�−1a
	dr .

hoose

�outer− = �a 0

c 0
	dr .

hen

�outer+ = �0 c

0 − �R2 − 1�−1a
	dr .

pplying �34� with the Dirichlet condition �=0, �=1, we find that �outer−u=0 on the circle r
R. Moreover,

� = �− a c

− c − �R2 − 1�−1a
	dr ,

o

�* = �− a 0

0 − �R2 − 1�−1a
	dr .

his matrix is positive, as a�0 and R�1.
Because conditions have been imposed on all of ��5, in this case the null space of �− alone

pans V on the boundary.
This completes the proof of Theorem 3.
As expected, this proof fails if the outer boundary is taken to lie inside the unit circle.
We note that we can prove an analogous result for a generalization to systems of an arbitrarily

mall perturbation of the Laplace-Beltrami equations on extended P2. As in the case of Theorem
, we do not need to perturb the compatibility equations in order to obtain strong solutions on the
nnulus �5. A similar problem was considered in the scalar case by Hua �Sec. III, heuristic
onsideration 2, of the supplement to Ref. 9�; that scalar problem was solved using Fourier
xpansions.

Write the second-order form of Eqs. �3� and �4� in the polar form

r2�1 − r2�	rr + r�1 − 2r2�	r + 	�� = 0.

et u1=r2	r and u2=	� on the annulus �5. We obtain a first-order system of the form �30� with

=0,
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A1 = �1 − r2 0

0 − r2 	, A2 = �0 1

1 0
	 , �35�

nd

B = �− 1/r 0

0 0
	 .

his operator L is symmetric, but fails to be symmetric positive for r1. So we replace B by the
atrix

B� = ��1 − 1/r �2

0 0
	 , �36�

or �1�0 and �2�0.
Theorem 4: Define the matrices A1 ,A2 ,B�, as in Eqs. (35) and (36). Impose boundary con-

ition (34), taking ���0 on the outer boundary and �=0, �=1 on the inner boundary. Then there
xists a unique, strong solution to Eq. (33) on �5 for every f�L2��5�.

Proof: Choose

E = �a c�1 − r2�/r2

c a
	 ,

here a=1/r and c= �M /r�+�, for a sufficiently large constant M. Because �1 and �2 are positive,
he operator EL is symmetric positive.

Choose

ninner = ��0
2 − 1�−1dr

nd

nouter = �R2 − 1�−1dr .

hen

��r� = � − a�r� − c�r,��
− c�r,�� �r2/�1 − r2��a

	dr ,

here r=�0 on the inner radius and r=R on the outer radius. Choose �inner+, �inner−, �outer+, and

outer− analogously to the choices made in the proof of Theorem 3, with coefficients of the form
2−1 in those matrices replaced by coefficients of the form r2 / �1−r2�. The proof is then completed
s in the proof of Theorem 3.

We note that if the outer boundary is taken to lie within the elliptic region, then the proof of
heorem 4 will work with Dirichlet conditions imposed on both the inner and outer boundaries, as
xpected.14

V. A REMARK ON TERMINOLOGY AND NOTATION

Hodge8 originally considered a p-form � to be harmonic if it satisfies the first-order equations

d� = �� = 0, �37�

here d:�p→�p+1 is the exterior derivative and � :�p+1→�p is the adjoint of d. If the underlying
2
pace is R and � is a 1-form given by
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� = p dx + q dy ,

here p and q are continuously differentiable functions, then the Hodge equations �37� reduce to
he Cauchy-Riemann equations for p and −q. However, although d is independent of the under-
ying metric, its adjoint � has a different local form for different metrics. Thus for a surface having

etric tensor gij, the Hodge equations for 1-forms are equivalent to the system �3� and �4�. A
iscussion of exterior forms and their properties is given in, e.g., Ref. 21.

The standard definition of a harmonic form is given in terms of a second-order operator: it is
solution of the form-valued Laplace-Beltrami equations

�d� + �d�� = 0.

f the domain has zero boundary �either no boundary or the prescribed value �
0 on the bound-
ry�, then the definitions in terms of first- and second-order operators are equivalent. Otherwise,
ne distinguishes them by calling a form that satisfies Eq. �37� a harmonic field. In words, the
odge equations assert that a harmonic field � is both closed �d�=0� and coclosed ���=0� under

he exterior derivative d. Obviously, every harmonic field is a harmonic form, but the converse is
alse.

Notice that in Eqs. �6� and �7�, L1�� and L2�d. For example, L2 includes a factor of 1
y2 whereas d does not, and � includes determinants of the metric tensor, whereas L1 does not. In
ddition, cases 1 and 2 of �6� and �7� include additional lower-order terms. Thus for example � and
are self-adjoint, whereas L1 and L2 are not unless k1=k2=k3=k4=0.
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. INTRODUCTION

The theory of algebraic curves is a fundamental ingredient in the analysis of integrable
onlinear differential equations as it is shown, for example, by its relevance in the description of
he finite-gap solutions or the formulation of the Whitham averaging method.1–8 A particularly
nteresting problem is characterizing and classifying integrable deformations of algebraic curves.
ndeed, as it is shown in a series of recent papers,9–12 these deformations lie at the crossroads of
ntricate connections between the theory of random matrices and several models of Laplacian
rowth processes. It turns out that the integrable models underlying these applications are mem-
ers of the Whitham hierarchies of dispersionless integrable models introduced by Krichever in
efs. 6 and 7. Moreover, the corresponding solutions are usually characterized in terms of solu-

ions of hydrodynamic systems.
Natural deformations of algebraic curves arise in the dynamics of the algebraic orbits7 of the

hitham hierarchies. For example, algebraic orbits of the Zabolotskaya-Khokhlov dispersionless
P �dKP� hierarchy

�k

�tn
= �Qn,k�, n � 1, �1�

here

k = p + �
n=1

�
an�x,t�

pn , Qn ª �kn��0, t ª �t1,t2, . . . � �2�

re deformations of algebraic curves

f�k� = E�p,x,t� , �3�

here E=E�p ,x , t� is a meromorphic function of p, such that �3� determines a reduction of the
dKP hierarchy. In the Gelfand-Dikii case the function E depends on the variables �x , t� through a

finite number of functions which evolve according to a system of hydrodynamic type. Neverthe-

46, 113502-1022-2488/2005/46�11�/113502/15/$22.50 © 2005 American Institute of Physics
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ess, other deformations of algebraic curves have been formulated which do not correspond to
lgebraic orbits of the standard dispersionless hierarchies. For example, the integrable hierarchy
ssociated to the energy-dependent Schrödinger problem13 admits a dispersionless limit which
eads to a family of deformations of the curves14,15

p2 = k2N+1 + �
n=1

N

unk2n−1. �4�

hese curves do not constitute any reduction of the dKP hierarchy and, as it is shown in Ref. 14,
heir deformations must be formulated in terms of the singular sectors of a dKdV Grassmannian
tructure.

A different approach for determining integrable deformations of general algebraic curves C
efined by monic polynomial equations,

C:F�p,k� ª pN − �
n=1

N

un�k�pN−n = 0, un � C�k� , �5�

as proposed in Refs. 14 and 15. It applies for finding deformations C�x , t� of C with the defor-
ation parameters �x , t�, such that the multiple-valued function p=p�k� determined by �5� obeys

n equation of the form of conservation laws

�tp = �xQ , �6�

here the flux Q is given by an element from C�k , p� /C,

Q = �
r=1

N

ar�k,x,t�pr−1, ar � C�k� .

tarting with �6�, changing to the dynamical variables un and using Lenard-type relations �see Ref.
5� one gets a scheme for finding consistent deformations of �5�. One should also note that �6�
rovides an infinite number of conservation laws, when one expands p and Q in Laurent series in
with k=zr for some r. In this sense, we say that Eq. �6� is integrable.

Our strategy can be applied to the generic case where the coefficients �potentials� un of �5� are
eneral polynomials in k,

un�k� = �
i=0

dn

un,ik
i,

ith all the coefficients un,i being considered as independent dynamical variables, i.e., un,i

un,i�x , t�. However, with appropriate modifications, the scheme can be also applied to cases in
hich constraints on the potentials are imposed. A complete description of these deformations for

he generic case of hyperelliptic curves �N=2� was given in Ref. 15.
The present paper is devoted to the deformations of cubic curves �N=3�,

p3 − wp2 − vp − u = 0, u,v,w � C�k� , �7�

nd it considers not only the generic case but also the important constrained case w�0. Although
ome of the curves may be conformally equivalent �with, for example, the dispersionless Miura
ransformation�, we will not discuss the classification problem under this equivalence in this paper
we will discuss the details of the problem elsewhere�. In Sec. II a general approach to construct
ntegrable deformations of algebraic curves is reported briefly. Section III is devoted to the analy-
is of the cubic case �7�. We emphasize the role of Lagrange resolvents, describe the Hamiltonian
tructure of integrable deformations and present several illustrative examples including Whitham-

ype deformations.
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I. SCHEMES OF DEFORMATIONS OF ALGEBRAIC CURVES

In order to describe deformations of the curve C defined by �5�, one may use the potentials un,
s well as the N branches pi= pi�k� �i=1, . . . ,N� of the multiple-valued function p=p�k� satisfying

F�p,k� = 	
i=1

N

�p − pi�k�� . �8�

The potentials can be expressed as elementary symmetric polynomials sn �Refs. 16–18� of the
ranches pi,

un = �− 1�n−1sn�p1,p2, . . . � = �− 1�n−1 �
1�i1�¯�in�N

pi1
¯ pin

. �9�

owever, notice that, according to the famous Abel theorem,16 for N�4 the branches pi of the
eneric equation �5� cannot be written in terms of the potentials un by means of rational operations
nd radicals.

There is an important result concerning the branches pi which is useful in our analysis. Let
����� denote the field of Laurent series in � with at most a finite number of terms with positive
owers,

�
n=−�

N

cn�n, N � Z .

hen we have the following.19,20

Theorem 1 (Newton theorem): There exists a positive integer l such that the N branches

pi�z� ª 
�pi�k��
k=zl, �10�

re elements of C��z��. Furthermore, if F�p ,k� is irreducible as a polynomial over the field C��k��
hen l0=N is the least permissible l and the branches pi�z� can be labelled so that

pi�z� = pN��iz�, � ª exp
2�i

N
.

Notation convention: Henceforth, given an algebraic curve C we will denote by z the variable
ssociated with the least positive integer l0 for which the substitution k=zl0 implies pi

C��z�� , ∀ i.The number l0 will be referred to as the Newton exponent of the curve.
For the generic case the method proposed in Ref. 15 may be summarized as follows: Given an

lgebraic curve �5�, we define an evolution equation for uª �u1 , . . . ,uN� in the form

�tu = J0�T�uR�+, R�z,p� = �
i

f i�z�pi, �11�

here �·�+ indicates the part of non-negative powers of a Laurent series in k and

f i � C��z��, �uR ª � �R

�u1
. . .

�R

�uN
�T

,

�12�
T T
J0 ª T V �xV ,
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T ª
1 − u1 ¯ − uN−1

0 1 ¯ − uN−2

¯

0 ¯ 1
�, V ª

1 p1 ¯ p1
N−1

¯

¯

1 pN ¯ pN
N−1
� . �13�

et dnm and dn be the degrees of the matrix elements �J0�nm and the potentials un as polynomials
n k, respectively. Then �11� defines a deformation of the curve, if dnm and dn satisfy the consis-
ency conditions

max�dnm,m = 1,2,3� � dn + 1, n = 1,2,3, �14�

nd the components of �uR are in C��k�� with k=zl0.
Equivalently, in terms of branches

p ª �p1, . . . ,pN�T,

he system �11� can be written as

�tp = �x�Vr+� , �15�

here

r ª T�uR�z,p� = V−1f�z� , �16�

ith f�z�ª �f1�z� , . . . , fN�z��T. Notice that r is a solution of the Lenard relation

J0r = 0. �17�

Although there is not a general procedure for analyzing constrained cases, one may try a
imilar strategy. First, we start from the equation for branches �6� and then, by expressing the
otentials in terms of the independent branches only, we look for a formulation of the flows as

�tu = J0a, a ª �a1, . . . ,aN�T, �18�

or a certain operator J0. Finally, we use solutions r of Lenard relations �17� and set a=r+.
Another scheme for defining integrable deformations of algebraic curves of genus zero �i.e.,

ational curve� is implicit in the theory of integrable systems of dispersionless type developed in
efs. 7 and 8 which we refer to them as the Whitham deformations. It is concerned with algebraic
urves characterized by equations of the form

k = pN + vN−2pN−2 + ¯ + v0 + �
r=1

M

�
i=1

nr vr,i

�p − wr�i , �19�

here vn, vr,i, wr are k-independent coefficients. These curves arise in the theory of algebraic
rbits of the genus-zero Whitham hierarchy,7,8 where the function k represents the Landau-
inzburg potential of the associated topological field theory. We may rewrite the equation of the

urve �19� in the polynomial form �5� with potentials un of degrees dn�1 and satisfying a certain
ystem of constraints.

To describe the deformations of �19� determined by Whitham flows we introduce local coor-
inates �z0 ,z1 , . . . ,zM� of the extended p-plane at the punctures �w0ª� ,w1 , . . . ,wM� such that

k = z0
N = z1

n1 = ¯ = znM

nM . �20�

t is clear that there are N branches of p which have expansions in powers of k1/N and that, for each
uncture wr, �r=1, . . . ,M�, there are nr branches of p having expansions in powers of k1/nr.

herefore, the Newton exponent l0 is given by the least common multiple of the set of integers
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N ,n1 , . . . ,nM�. Furthermore, it is clear that only in the absence of finite punctures �M =0� the
urve �19� is irreducible over C��k��.

At each puncture in �� ,w1 , . . . ,wM�, there is an infinite family of Whitham deformations of
19�. They can be expressed by equations of the form �see Refs. 7 and 8�

�tp = �xQ	,n, �21�

here

Q	,n = �z	
n���p�, 	 = 0,1, . . . ,M, n � 1,

Qr,0 = ln�p − wr�, r = 1, . . . ,M .

ere �z	
n�� stands for the singular part of z	

n�p� at the puncture w	, with �zr
n�����=0 for 1�r

M. There exist also commuting flows for the negative n in �21� with logarithmic terms which
orrespond to the descendant flows of Qr,0 �see Ref. 8 for the details�.

In the absence of finite punctures �M =0�, Whitham deformations become the dispersionless
elfand-Dikii flows. They can be described by our scheme15 as the reductions u1�0, uN=k−v0 of

he generic case corresponding to dn=
Nn. However, for M �1 it can be seen that, in general,
hitham deformations of �19� are not reductions of the flows �11� provided by our method. Some

xamples of this situation for cubic curves are shown below.

II. DEFORMATIONS OF CUBIC CURVES

For our subsequent analysis we introduce a basic tool of the theory of third order polynomial
quations,16 the so-called Lagrange resolvents, defined by

Li ª �
j=1

3

��i� jpj, i = 1,2,3, � ª e2�i/3, �22�

r, equivalently,

L1 ª �p1 + �2p2 + p3,

L2 ª �2p1 + �p2 + p3,

L3 ª p1 + p2 + p3.

hey can be expressed in terms of the potentials u= �w ,v ,u�T by using the identities

L1 · L2 = 3v + w2, L3 = w ,

L1
3 + L2

3 = 27u + 9vw + 2w3,

hich lead to

2L1
3 = 27u + 9vw + 2w3 + ��27u + 9vw + 2w3�2 − 4�3v + w2�3,

2L2
3 = 27u + 9vw + 2w3 − ��27u + 9vw + 2w3�2 − 4�3v + w2�3.

he fundamental advantage of Lagrange resolvents is that they provide explicit expressions of the

ranches pi in terms of the potentials according to Cardano formulas
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3pi = �
j=1

3

��−i� jL j, i = 1,2,3, �23�

r, equivalently,

3p1 = �2L1 + �L2 + L3,

3p2 = �L1 + �2L2 + L3,

3p3 = L1 + L2 + L3.

s we will prove below, the Lagrange resolvents are essential to determine consistent deforma-
ions of cubic equations.

. Generic case

As it was found in, Ref. 15 for N=3 the operator J0 reads

J0 =  3�x w�x + wx �2v + w2��x + �2v + w2�x

− 2w�x 2v�x + vx �3u + vw��x + 2ux + 2vwx

− v�x 3u�x + ux uw�x + 2uwx
� . �24�

hus if d1, d2, and d3 are the degrees in k of the potential functions w, v, and u, respectively, the
onsistency conditions �14� are

d1 � 1, d2 � d1 + 1,

d3 � d2 + 1, d2 � d3 + 1,

hich lead to the following 12 nontrivial choices for �d1 ,d2 ,d3�:

�0,0,1�, �0,1,0�, �0,1,1�, �0,1,2� ,

�1,0,0�, �1,0,1�, �1,1,0�, �1,1,1� , �25�

�1,1,2�, �1,2,1�, �1,2,2�, �1,2,3� .

By using �23� and �24� it is straightforward to determine the Newton exponent l0 for each of
he cases �25�. Thus one finds three categories

l0 3 2 1

�0,0,1�, �0,1,2� �0,1,0�, �0,1,1,� �1,0,1�, �1,1,0�
�1,0,0�, �1,1,2� �1,1,1�, �1,2,1�

�1,2,2�, �1,2,3�

Only the cases with l0=3 correspond to irreducible curves over the field C��k��. We also note
ere that our deformations for the trigonal curves �5� in the generic case allow one to have only the
urves with genus less than or equal to 1 �the details will be discussed elsewhere�.

Once the Newton exponent l0 is known, in order to derive the associated hierarchy of inte-
rable deformations according to our scheme, two steps are still required:

1� To determine the functions R�z ,p�=�i f i�z�pi such that the components of �uR are in C��k��
with k=zl0.
2� To find the explicit form of the gradients �uR in terms of the potentials.
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Both problems admit a convenient treatment in terms of Lagrange resolvents. Thus by intro-
ucing the following element �0 of the Galois group of the curve:

�0�pi��z� ª pi��0z�, �0 ª e2�i/l0, �26�

e see that our first problem can be fixed by determining functions R invariants under �0, i.e.,
��0z ,�0p�=R�z ,p�. In this way, we have the following forms of R.

For the case l0=3, the element �0 is given by the permutation

�0 = �p1 p2 p3

p2 p3 p1
� , �27�

r, in terms of Lagrange resolvents,

�0 = � L1 L2 L3

�2L1 �L2 L3
� . �28�

hus we get the invariant functions

R = zf1�z3�L1 + z2f2�z3�L2 + f3�z3�L3, �29�

ith f i�z3� being arbitrary functions in C��z3��.
For the case l0=2, �0

2 is the identity permutation, so that under the action of �0 two branches
re interchanged while the other remains invariant. If we label the branches in such a way that

�0 = �p1 p2 p3

p2 p1 p3
� , �30�

hen

�0 = �L1 L2 L3

L2 L1 L3
� , �31�

nd we obtain the invariant functions

R = f1�z2��L1 + L2� + zf2�z2��L1 − L2� + f3�z2�L3, �32�

here f i�z2� are arbitrary functions in C��z2��.
For the case l0=1, we have z=k and �0 is the identity, so that any function R�k ,p� is invariant

nder �0.
Now the problem of finding the gradients of R reduces to determine the gradients of the

agrange resolvents. To this end we differentiate �23� and obtain

L2�uL1 + L1�uL2 = �2w,3,0�T,

L1
2�uL1 + L2

2�uL2 = �2w2 + 3v,3w,9�T,

o that

�L1
3 − L2

3��uL1 = ��2w2 + 3v�L1 − 2wL2
2,3�wL1 − L2

2�,9L1�T,

�L2
3 − L1

3��uL2 = ��2w2 + 3v�L2 − 2wL1
2,3�wL2 − L1

2�,9L2�T.

ence the gradients of the generic density R for �29� and �32� are given as follows.

For l0=3, we have
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�uR =
zf1�z3�
L1

3 − L2
3�2w2 + 3v�L1 − 2wL2

2

3�wL1 − L2
2�

9L1
� −

z2f2�z3�
L1

3 − L2
3�2w2 + 3v�L2 − 2wL1

2

3�wL2 − L1
2�

9L2
� + f3�z3�1

0

0
� .

For l0=2, we get

�uR =
f1�z2�

L1
3 − L2

3�2w2 + 3v��L1 − L2� + 2w�L1
2 − L2

2�

3�wL1 − L2
2� − 3�wL2 − L1

2�

9�L1 − L2�
�

+
zf2�z2�
L1

3 − L2
3�2w2 + 3v��L1 + L2� − 2w�L1

2 + L2
2�

3�wL1 − L2
2� + 3�wL2 − L1

2�

9�L1 + L2�
� + f3�z2�1

0

0
� .

rom these expressions and �28� and �31� it follows that the corresponding components of �uR are
n C��k��.

Example 1: The case l0=3 with �d1 ,d2 ,d3�= �0,0 ,1�. Taking into account �24� and �23� it is
lear that there are two trivial equations corresponding to w0 and u1. Then, we take for the
otentials

w = 1, v = v0�x,t�, u = k + u0�x,t� .

hus, by using �29� with

f1 � f3 � 0, f2�z3� =
27�1 − �3i�

4
z3,

e obtain

v0t = 5
3 �2 + 27u0 + 9v0�u0x + 5

18�7 + 54u0 + 36v0 + 27v0
2�v0x,

u0t = 5
18�− 1 − 54u0 + 27v0

2�u0x + 5
9v0�2 + 27u0 + 9v0�v0x.

It can be checked that this system corresponds to the one obtained by setting M =0, N=3 in
19�, and 	=0, n=5 in �21�.

Example 2: The case l0=2 with �d1 ,d2 ,d3�= �0,1 ,0�, �l0=2�. From �24� and �23� we see that

1t=0. We then take

w = w0�x,t�, v = k + v0�x,t�, u = u0�x,t� ,

nd

f1�z2� = z4, f2 � f3 � 0.

hus it follows

w0t = 4�w0u0x + v0v0x + u0w0x� ,

v0t = − 2�w0
2u0x − 2u0v0x + u0w0w0x� + 2v0�2u0x − w0v0x� ,

u0t = − 2�v0w0u0x + u0�− 2u0x + w0v0x + v0w0x�� .

t turns out that this system can also be found among the Whitham deformations, by setting M

1, N=2 in �19�, and 	=0, n=4 in �21�.
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Example 3: The case l0=2 with �d1 ,d2 ,d3�= �1,0 ,0�. From �23� and �24� it is easy to see that
u0 /w1�t=0. If we choose

w�k,x,t� = w1�x,t�k + w0�x,t�, v�k,x,t� = v0�x,t� ,

u�k,x,t� = w1�x,t� ,

nd set

f1�z2� = z4, f2 � f3 � 0

n �32�, then the following system arises:

w1t = 2w1
−2�w1w0x − w0w1x� ,

w0t = 2w1
−3�w1�v0x + w0w0x� − �2v0 + w0

2�w1x� ,

v0t = w1
−3�− 4w1w1x + 2v0�w1w0x − w0w1x�� .

his is one of the flows in the dispersionless Dym hierarchy corresponding to the curve, w1k= p
w0−v0p−1−w1p−2. Also note that the linear flow, i.e., w1t=cw1x, etc., with c=constant, can be
btained by the choice f2�z−2 with f1= f3=0.

Example 4: The case l0=1 with �d1 ,d2 ,d3�= �1,0 ,1�. From �23� and �24� one finds that
u1 /w1�t=0. By setting

w�k,x,t� = w1�x,t�k + w0�x,t�, v�k,x,t� = v0�x,t� ,

u�k,x,t� = w1�x,t�k + u0�x,t� ,

nd

R =
2�1 + �3i�

�3
kL1,

e obtain

w1t = u0x + w0x,

w0t = w1
−2�w1�v0x + u0w0x� − �3 + v0�w1x − w0

2w1x + w0�w1�u0x + 2w0x� − u0w1x�� ,

v0t = w1
−2�w1�2�2 + v0�u0x + u0v0x + w0v0x + 2v0w0x� − 2�u0�3 + v0� − �1 − v0�w0�w1x� ,

u0t = w1
−2�− w0w1u0x − 3u0

2w1x + v0�w1v0x + �1 − v0�w1x� + u0�w1�4u0x + w0x� + w0w1x�� .

e also note that the linear flow is obtained by choosing R�L1, and the higher flows in the
ierarchy can be obtained by R�knL1.

Example 5: The case l0=1 with �d1 ,d2 ,d3�= �1,1 ,0�. From �23� and �24� we deduce that
v1 /w1�t=0. Now we take

w�k,x,t� = w1�x,t�k + w0�x,t�, v�k,x,t� = w1�x,t�k + v0�x,t� ,

u�k,x,t� = u0�x,t�
nd set
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R =
�3 + i

2�3
kL2.

hen the following system is obtained:

w1t = 2u0x − v0x,

w0t = w1
−2�w1��3 + 2w0�u0x − �2 + w0�v0x + �2u0 − v0�w0x� + �v0�2 + w0� − u0�3 + 2w0��w1x� ,

v0t = w1
−2�w1��− 2 + 4v0 − 2w0�u0x + �2u0 − 3v0 + w0�v0x� + �v0�2v0 − w0� + u0�3 − 4v0 + 2w0��w1x� ,

u0t = w1
−2��− 2v0 + w0�w1u0x − 6u0

2w1x + u0�w1�8u0x − 3v0x + w0x� + 2�2v0 − w0�w1x�� .

. Hamiltonian structures

The general structure of integrable deformations �11� does not exhibit a direct Hamiltonian
orm. However, the analysis of particular cases reveals the presence of certain Hamiltonian struc-
ures. We look for a Hamiltonian operator J such that for certain appropriate densities R it verifies

J0�T�uR�+ = J��uR�+, �33�

here

T ª 1 − w − v

0 1 − w

0 0 1
� .

hus, if �33� holds then the flows �11� can be written in the pre-Hamiltonian form

�tu = J��uR�+. �34�

To achieve our aim we require a k-independent operator T0 verifying

T�uR = T0�uR , �35�

o that JªJ0 ·T0 is a Hamiltonian operator.
Let us consider first the case l0=3. It involves two classes of cubic curves.
For the case with �d1 ,d2 ,d3�= �0,0 ,1�, the potentials are of the form

w = w0�x�, v�x� = v0�x�, u = u0�x� + ku1�x� .

he matrix T is k independent so that by setting J=J0 ·T we find the Hamiltonian operator

J =  3�x − 2�x · w − �x · v

− 2w�x 2w�x · w + 2v�x + vx �3u + vw��x + 2ux + wvx

− v�x �3u + vw��x + vwx + ux v�x · v − 2uw�x − �uw�x
� . �36�

t represents the dispersionless limit of the Hamiltonian structure of the Boussinesq hierarchy.
For the case with �0,1,2� the potentials now are

w = w0�x�, v�x� = v0�x� + kv1�x� ,

u = u0�x� + ku1�x� + k2u2�x� .
rom �33� one deduces
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T�uLi = T0�uLi, i = 1,2,

T�uL3 = L3, �37�

here T0 is the k-independent matrix

T0 = − 2 w 0

0 1 − w

0 0 1
� . �38�

oreover JªJ0 ·T0 takes the Hamiltonian form

J = − 6�x 4�x · w 2�x · v

4w�x − 2w�x · w + 2v�x + vx �3u − vw��x + 2ux − wvx

2v�x �3u − vw��x − vwx + ux − 2uw�x − �uw�x
� . �39�

hus by setting

R = zf1�z3�L1 + z2f2�z3�L2,

quation �11� reduces to the form �34�.
For the remaining cases of l0=2 and l0=1, the situation is as follows:

1� For the sets of degrees �0,1,0� and �0,1,1� for l0=2, the identities �37� with the same operator
�38� hold, so that by setting

R = f1�z2��L1 + L2� + zf2�z2��L1 − L2� ,

Eq. �11� reduces to the form �34� with the Hamiltonian operator �39�.
2� For the sets of degrees �two cases of l0=2 and all the cases of l0=1�,

�1,0,0�, �1,0,1�, �1,1,0�, �1,1,1� ,

�1,1,2�, �1,2,1�, �1,2,2�, �1,2,3� ,

there is no k-independent operator T0 satisfying �36� for �uLi, �i=1,2�.

. Deformations of cubic curves with w=0

Deformations of cubic curves of the form

p3 − vp − u = 0, �40�

annot be obtained simply by setting w=0 in the above analysis. Indeed, as it is clear from the
xpression �24� for J0, the constraint w=0 does not constitute a reduction of the flows �11�.
herefore, we must apply our deformation scheme to �40� directly.

In terms of the branches pi the condition w=0 reads

p1 + p2 + p3 = 0,

hich is preserved by deformations

�tpi = �x�a1 + a2pi + a3pi
2� �41�
atisfying
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3a1 = − �p1
2 + p2

2 + p3
2�a3. �42�

y expressing the potentials as functions of the branches p1 and p2,

v = p1
2 + p2

2 + p1p2, u = − �p1
2p2 + p1p2

2� , �43�

nd using �41� and �42�, we obtain

�tu = J0a, u ª �v u�T, a ª �a1 a2�T, �44�

here

J0 = � 2p1 + p2 2p2 + p1

− 2p1p2 − p2
2 − 2p1p2 − p1

2 ��x�p1
1
3 p1

2 − 2
3 �p2

2 + p1p2�

p2
1
3 p2

2 − 2
3 �p1

2 + p1p2�
� = �2v�x + vx 3u�x + 2ux

3u�x + ux
1
3 �2v2�x + 2vvx�

� .

�45�

According to our strategy for finding consistent deformations, we use Lenard-type relations

J0R = 0, R ª �r1 r2�T, ri � C��k�� ,

o generate systems of the form

ut = J0a, a ª R+. �46�

ere �·�+ and �·�− indicate the parts of non-negative and negative powers in k, respectively. Now
rom the identity

J0a = J0R+ = − J0R−,

t is clear that a sufficient condition for the consistency of �46� is that the degrees d2 and d3 of v
nd u as polynomials of k satisfy

d3 � d2 + 1, 2d2 � d3 + 1.

ence only four nontrivial cases arise for �d2 ,d3�

�0,1�, �1,1�, �1,2�, �2,3� . �47�

e notice that they represent the dispersionless versions of the standard Boussinesq hierarchy and
ll three hidden hierarchies found by Antonowicz, Fordy, and Liu for the third-order spectral
roblem.21

Solutions of the Lenard relation can be generated by noticing that the operator J0 admits the
actorization

J0 = UT ·
1

3
� 2 − 1

− 1 2
��x · U , �48�

here

U ª �2p1 + p2 − 2p1p2 − p2
2

2p2 + p1 − 2p1p2 − p1
2 � =

�v
�p1

�u

�p1

�v
�p2

�u

�p2

� . �49�

his shows two things,

i� J0 is a Hamiltonian operator.

ii� The gradients �upi of the branches p1 and p2 solve the Lenard relations.
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Thus our candidates to deformations are the equations of the form

�tu = J0��uR�+, R�z,p� = f1�z�p1 + f2�z�p2. �50�

At this point one applies the same strategy as that used for the curves �7� Sec. III A. We first
etermine the Newton exponents of the four cases �47� which turn out to be given by

l0 3 2 1

�0,1� �1,1� �2,3�
�1,2�

hen, with the help of Lagrange resolvents, we characterize the functions R�z ,p� verifying �uR
C��k�� with k=zl0. In summary, one finds the following.

For the case l0=3,

R = zf1�z3�L1 + z2f2�z3�L2, k = z3. �51�

For the case l0=2,

R = f1�z2��L1 + L2� + zf2�z2��L1 − L2�, k = z2. �52�

For the case l0=1, we have z=k, so that any function R�k ,p�= f1�k�L1+ f2�k�L2 is appropriate.
Example 1: The case l0=3 with �d2 ,d3�= �1,2�. From �44� and �45� we have that u2t=0. Then

f one takes

u�k,x,t� = k2 + u1�x,t�k + u0�x,t�, v�k,x,t� = v1�x,t�k + v0�x,t� ,

nd sets

f1�z3� = 1
2 �1 + i�3�z3, f2 � 0,

n �51�, one gets

v1t = − 2u1x + 5
9v1

2v1x,

v0t = 1
9 �− 18u0x + v1

2v0x + 4v0v1v1x� ,

u1t = 1
9 �v1

2u1x − 6v0v1x − 6v1v0x + 6v1u1v1x� ,

u0t = 1
9 �v1

2u0x − 6v0v0x + 6u0v1v1x� ,

.e., the dispersionless version of the coupled Boussinesq system �3.20b� in Ref. 21.
Example 2: The case l0=2 with �d2 ,d3�= �1,1�. Now, one can see that v1t=0. By setting

u�k,x,t� = u1�x,t�k + u0�x,t�, v�k,x,t� = − k + v0�x,t� ,

nd

f1�z2� = − z2, f2 � 0,

n �52�, we find the system,

v0t = − 2u0x − 2v0u1x − u1v0x,

u1t = − 4u1u1x + 2v0x,
3
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u0t = − u1u0x − 3u0u1x − 2
3v0v0x.

his is the dispersionless version of the system �4.13� in Ref. 21.

. Whitham deformations of cubic curves

There are four types of cubic curves of the form �19� given by the following equations:

M 0 1 2

k= p3+v1p+v0 k = p2 + v0 +
v1

p − w1
k = p +

v1,1

p − w1
+

v2,1

p − w2

k = p +
v1

p − w1
+

v2

�p − w1�2

ote here that the Newton exponent l0 is given by l0=3−M. Also in Ref. 18, two cases in
M =1 are shown to be conformally equivalent, i.e., p=�↔p=w1.

For M =0 the Whitham deformations are reductions of our flows with w�0. But, in general,
ther Whitham deformations are not of that form. To illustrate this point let us take the class with

M =1 and N=2. The corresponding Newton exponent is l0=2 and there the branches of p have the
ollowing asymptotic behavior as z→�:

p1�z� = z + O�1

z
� ,

p2�z� = p1�− z� = − z + O�1

z
� ,

p3�z� = w1 + O�1

z
� .

et us consider now the Whitham flows �21� associated with the puncture at p=�,

Q0,n = �zn���p� .

n terms of the potentials u= �w ,v ,u�T they read

�tu = J0a , �53�

here

a = V−1�zn���p1�
�zn���p2�
�zn���p3�

��
+

.

ne easily sees that all matrix elements of V−1 are of order O�1/z� with the exception of

�V−1�13 = 1 + O�1

z
� .

n the other hand, we have

�zn���p1� = zn + O�1� ,

z
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�zn���p2� = �− z�n + O�1

z
� ,

�zn���p3� = �zn���w1� + O�1

z
� .

herefore one gets

a = znV−1 1

�− 1�n

0
��

+

+ �zn���w1�e3,

here e3= �0,0 ,1�T, so that Eq. �53� becomes

�tu = J0�T�u�zn�p1 + �− 1�np2���+ + J0��zn���w1�e3� . �54�

imilar expressions can be obtained for the deformations generated by the Whitham flows �21� for
=1 and n�1.
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We find pairs of solutions to a differential equation which is obtained as a special
limit of a generalized spheroidal wave equation �this is also known as confluent
Heun equation�. One solution in each pair is given by a series of hypergeometric
functions and converges for any finite value of the independent variable z, while the
other is given by a series of modified Bessel functions and converges for �z�� �z0�,
where z0 denotes a regular singularity. For short, the preceding limit is called Ince’s
limit after Ince who have used the same procedure to get the Mathieu equations
from the Whittaker-Hill ones. We find as well that, when z0 tends to zero, the Ince
limit of the generalized spheroidal wave equation turns out to be the Ince limit of a
double-confluent Heun equation, for which solutions are provided. Finally, we
show that the Schrödinger equation for inverse fourth- and sixth-power potentials
reduces to peculiar cases of the double-confluent Heun equation and its Ince’s limit,
respectively. © 2005 American Institute of Physics. �DOI: 10.1063/1.2104267�

. INTRODUCTION

First, we construct two linear differential equations whose solutions behave at infinity as the
o-called subnormal Thomé solutions, in contrast to solutions of a confluent and double-confluent
eun equations,1 from which the former equations are obtained by a limit process. Second, we
rovide solutions which afford the expected asymptotic behavior for these equations. Finally, we
nd that the Schrödinger equation with inverse fourth- and sixth-power potentials reduces to
articular instances of the double-confluent Heun equation and its Ince limit, respectively.

In the first place, let us introduce the two equations under consideration. Our starting point is
he generalized spheroidal wave equation �GSWE� in the form used by Leaver,2 namely,

z�z − z0�
d2U

dz2 + �B1 + B2z�
dU

dz
+ �B3 − 2���z − z0� + �2z�z − z0��U = 0, �� � 0� , �1�

here Bi ,�, and � are constants �notice that, if �=0 and � is fixed, the equation may be
ransformed into a hypergeometric equation�. The points z=0 and z=z0 are regular singularities
ith indices �0,1+B1 /z0� and �0,1−B2−B1 /z0�, respectively, while the infinity is an irregular

ingularity in which the behavior of U�z�, inferred from the normal Thomé solutions,3 is given by

lim
z→�

U�z� � e±i�zz�i�−�B2/2�. �2�

ince its parameters are not specified, the above noted GSWE is equivalent to the confluent Heun
quation,1 an equation that is more general than the original Wilson GSWE.4 Furthermore, as
oted by Leaver, for z0=0 we obtain a double-confluent Heun equation �DCHE� having five
arameters, rather than four as in other contexts,5,6 namely,

�
Electronic mail: barto@cbpf.br
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z2d2U

dz2 + �B1 + B2z�
dU

dz
+ �B3 − 2��z + �2z2�U = 0, �� � 0,B1 � 0� , �3�

here the singular points z=0 and z=� are both irregular. For �=0 and/or B1=0 �with � fixed�
his equation degenerates into confluent hypergeometric equations �see Appendix A�. At infinity,
he behavior of U�z� is again given by �2�, while at z=0 we find in the usual way3 that

lim
z→0

U�z� � 1 or lim
z→0

U�z� � eB1/zz2−B2. �4�

he Leaver procedure also allows us to obtain solutions to the DCHE from solutions to the GSWE
hen z0 goes to zero. The known Leaver-type solutions2,7 are appropriate to solve, for instance,

he Teukolsky equations for the extreme upper limit of the rotation parameter,2 the time depen-
ence of Dirac test fields in dust-dominated Friedmann-Robertson-Walker spacetimes, and the
chrödinger equation with asymmetric double-Morse potentials.7 They are suitable for handling

he Schrödinger equation with inverse fourth-power potentials, as we will see.
Now, to get the equations we are interested in, the Leaver limit is combined with a limit that

nce8 had used to derive the Mathieu equation from the Whittaker-Hill equation. The Ince limit is
btained by taking

� → 0, � → �, such that 2�� = − q , �5�

here q is a constant. Thus, the Ince limit of the GSWE is

z�z − z0�
d2U

dz2 + �B1 + B2z�
dU

dz
+ �B3 + q�z − z0��U = 0, �q � 0� . �6�

his is a generalization of the Mathieu equation, for by setting

z0 = 1, B1 = − 1/2, B2 = 1, z = cos2��u�, W�u� = U�z� , �7a�

e obtain

d2W

du2 + �2�2q − 4B3 − 2q cos�2�u��W = 0, �7b�

hat is, the Mathieu equation if �=1, and the modified Mathieu equation if �= i.9 In fact, inserting

0=1,B1=−1/2, and B2=1 into Eq. �6�, one recovers the algebraic Lindemann form for the
athieu equation.10 Nevertheless, the trigonometric form �7b� with 4B3=2q−a is useful to verify

hat our solutions for the Ince limit of the GSWE give solutions already known for the Mathieu
quation.

On the other hand, the Ince limit of the DCHE—or Leaver limit of Eq. �6�—is

z2d2U

dz2 + �B1 + B2z�
dU

dz
+ �B3 + qz�U = 0, �q � 0,B1 � 0� , �8�

hich degenerates into simpler equations if q=0 and/or B1=0 �see Appendix A�. Solutions are
btained for this special DCHE by taking the Leaver limit of solutions for Eq. �6�. By the way, we
hall see that the Schrödinger equation for an inverse sixth-power potential is a particular case of
q. �8�, as stated in the first paragraph.

We emphasize that the Ince limits of the GSWE and DCHE, unlike the original GSWE and
CHE, require solutions behaving according to the subnormal Thomé solutions,3 that is,

lim
z→�

U�z� � e±2i�qzz�1/4�−�B2/2�. �9�

espite this, our main mathematical issue consists in deriving pairs of series solutions to Eqs. �6�

nd �8�—having the behavior stipulated above at the singular points—from pairs of solutions to
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he GSWE. For this we shall again employ the Ince and Leaver limits. The solutions in each pair
ave the same series coefficients and these satisfy three-term recurrence relations.

In Sec. II, a pair of solutions for the Ince limit of the GSWE is obtained by taking the Ince
imit �5� of a known pair of solutions for the GSWE. One solution is given by an expansion in
eries of hypegeometric functions and converges for any finite z; the other solution is given by an
xpansion in series of modified Bessel functions and converges for �z�� �z0�. Other pairs are
enerated by using transformation rules. These rules result from variable substitutions that pre-
erve the form of the differential equations but modify their parameters and/or arguments.

In Sec. III, we find pairs of solutions for the Ince limit of the DCHE by taking the Leaver limit
z0→0� of solutions for the Ince limit of the GSWE. Solutions in series of irregular confluent
ypergeometric functions result from expansions in series of hypergeometric functions and con-
erge for any finite z. The other solution in each pair is given by a series of modified Bessel
unctions and converges for �z��0.

In both of these sections we deal with solutions with and without a phase parameter �. In
eneral, this � is introduced in order to assure the convergence of the series when there is no free
onstant in the differential equation, as in some scattering problems or in equations where z is a
ariable related to the time.2,7 Solutions with a phase parameter are two-sided in the sense that the
ummation index n runs from −� to �. However, if there is an arbitrary parameter in the equation,
e can truncate the series by requiring that n�0. In this manner, we obtain � in terms of
arameters of the differential equation.

In Sec. IV, we show that the Schrödinger equation with inverse fourth- and sixth-power
otentials in fact leads to the DCHE and its Ince limit. Some additional considerations are pro-
ided in Sec. V, while in Appendix A we discuss the degenerate cases of the DCHEs, in Appendix

we present an alternative derivation of the expansions in Bessel functions, and in Appendix C
e rewrite the Leaver-type solutions for the DCHE in a form appropriate to solve the Schrödinger

quation with an inverse fourth-power potential.

I. INCE’S LIMITS FOR THE GENERALIZED SPHEROIDAL WAVE EQUATION

In the following we use transformation rules that permit us to generate new solutions from a
iven solution for the Ince limit of the GSWE. The rules T1 ,T2, and T3 in the following are
erived from the ones valid for the GSWE7 and can be checked by substitution of variables. If
�z�=U�B1 ,B2 ,B3 ;z0 ,q ;z� denotes one solution for Eq. �6�, the effects of these rules are as

ollows

T1U�z� = z1+B1/z0U�C1,C2,C3;z0,q;z�, z0 � 0,

T2U�z� = �z − z0�1−B2−B1/z0U�B1,D2,D3;z0,q;z�, z0 � 0, �10a�

T3U�z� = U�− B1 − B2z0,B2,B3 − qz0;z0,− q;z0 − z� ,

here

C1 = − B1 − 2z0, C2 = 2 + B2 +
2B1

z0
, C3 = B3 + �1 +

B1

z0
	�B2 +

B1

z0
	 ,

D2 = 2 − B2 −
2B1

z0
, D3 = B3 +

B1

z0
�B1

z0
+ B2 − 1	 . �10b�

e use only T1 and T2. The rule T3 exchange the position of the regular singular points z
z0↔z=0 and may be used to get an alternative representation for the solutions, but these are not
roper for getting the limit z0→0.

In Sec. II A we derive two pairs of solutions for the Ince limit of the GSWE—denoted by
0 �
Ui� ,Ui�� , i=1,2—with a phase parameter �. The superscript “zero” indicates that the series con-
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erges in any finite part of the complex plane, while the superscript “infinity” indicates conver-
ence for �z�� �z0�. The second pair of solutions results from the first by means of the rule T2. In
ec. II B, we truncate these series by taking n�0 and obtain four pairs of solutions without phase
arameter.

. Solutions with a phase parameter

Denoting by bn the series coefficients of a solution, their recurrence relations will have the
eneral form

	nbn+1 + 
nbn + �nbn−1 = 0, �− � � n � �� , �11a�

here 	n ,
n ,�n, and bn depend on a phase parameter � which may be determined from a char-
cteristic equation given as a sum of two infinite continued fractions, namely,


0 =
	−1�0


−1−

	−2�−1


−2−

	−3�−2


−3−
¯ +

	0�1


1−

	1�2


2−

	2�3


3−
¯ . �11b�

or a specific pair of solutions we add a superscript in each of these quantities.
The first pair of solutions for the Ince limit of the GSWE comes from the following pair of

olutions of the GSWE7

U1�
0 �z� = ei�z 


n=−�

�

bn
�1�F�B2

2
− n − � − 1,n + � +

B2

2
;B2 +

B1

z0
;1 −

z

z0
	 ,

�12a�

U1�
� �z� = ei�zz1−�B2/2� 


n=−�

�

bn
�1��− 2i�z�n+��n + � + 1 + i�,2n + 2� + 2;− 2i�z� ,

here F�a ,b ;c ;y� and �a ,b ;y� denote, respectively, the hypergeometric functions and the ir-
egular confluent hypergeometric functions.11,12 The solution U1�

0 converges for any finite z,
hereas U1�

� converges for �z�� �z0�. In the recurrence relations �11a� for bn
�1� we have

	n
�1� = i�z0

�n + � + 2 −
B2

2 ��n + � + 1 −
B2

2 −
B1

z0
��n + � + 1 − i��

2�n + � + 1��n + � + 3
2� ,


n
�1� = − B3 − ��z0 − �n + � + 1 −

B2

2
	�n + � +

B2

2
	 −

��z0�B2

2 − 1��B2

2 +
B1

z0
�

�n + ���n + � + 1�
, �12b�

�n
�1� = − i�z0

�n + � +
B2

2 − 1��n + � +
B2

2 +
B1

z0
��n + � + i��

2�n + � − 1
2��n + ��

.

ote that � cannot be integer or half-integer in order to avoid vanishing denominators in the
oefficients of the recurrence relations. Moreover, for an integer or half-integer �, we would have
wo equal hypergeometric or confluent hypergeometric functions �for different values of n�, con-
rary to the hypothesis that all the terms of the series are independent. On the other hand, the
ypergeometric functions are not defined if B2+ �B1 /z0� is zero or a negative integer. Nonetheless,
transformation rule supplies another solution which is valid for these values of B2+ �B1 /z0�.

The three-term recurrence relations �11a� constitute an infinite system of homogeneous linear
quations for which nontrivial solutions for the coefficients bn demand that the determinant of
espective tridiagonal matrix vanishes. Equivalently, the characteristic equation must be satisfied
nd this is a condition necessary also to assure the convergence of the series by means of a

13
oincaré-Perron theorem. However, there are two possibilities to satisfy this requirement.
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On the one hand, if there is some free constant in the differential equation, that constant must
e determined so that the characteristic equation is fulfilled for the admissible values of � �that is,
either integer nor half-integer�. In this case, the freedom of choosing � may be used in two
ifferent ways: �i� to obtain two-sided solutions �−��n��� by ascribing appropriate values for
, or �ii� to obtain one-sided solutions by choosing � such that n�0. At the end of the present
ection, we use the first alternative to rederive some Poole’s solutions14,15 for the Mathieu equa-
ion, having period 2�m, where m is any integer equal or greater than 2. In Sec. II B, we use the
econd alternative for the general case. These latter solutions afford solutions with period � or 2�
or the Mathieu equation, in contrast to the solutions obtained in the first alternative.

On the other hand, if there is no arbitrary parameter in the differential equation, the parameter
takes the role of free parameter in the sense that it must be adjusted to ensure the validity of the

haracteristic equation and, consequently, the convergence of the series. For this reason, � is also
alled characteristic index or parameter.16 Examples of equations requiring a phase parameter are
iscussed in Sec. IV.

From the above-noted pair of solutions for the GSWE, by using the Ince limit �5�, we readily
nd the solution U1�

0 �z� written in the first pair in the following. To get the Ince limit of the
olution U1�

� �z�, we define cn as

bn
�1� = �i��n+���i� − n − ��cn.

his implies that

U1�
� �z� = ei�zz1−�B2/2� 


n=−�

�

cn��i� − n − ���− qz�n+��n + � + 1 + i�,2n + 2� + 2;−
qz

i�
	 ,

here q=−2��. The recurrence relations for cn are

	̄ncn+1 + 
n
�1�cn + �̄ncn−1 = 0, �− � � n � ��

ith

	̄n =
i�

i� − n − � − 1
	n

�1�, �̄n =
i� − � − 1

i�
�n

�1�.

n the other hand, we have12

lim
a→�

���a + 1 − c��a,c;x/a�� = 2x�1−c�/2Kc−1�2�x� , �13�

here K���� denotes the modified Bessel function of the second kind17 whose definition in terms
f irregular confluent hypergeometric functions is12

K���� = K−���� = ��e−��2����� + 1
2 ,2� + 1;2�� . �14�

hen, using �13� we find that for i�→� �n fixed and q=constant�

��i� − n − ���− qz�n+��n + � + 1 + i�,2n + 2� + 2;−
qz

i�
	

→ 2�− qz�1/2K2n+2�+1�±2i�qz�, lim 	̄n → lim 	n
�1�,lim �̄n → lim �n

�1� ⇒ lim cn → lim bn
�1�.

Using these results, we find the Ince limit of U1�
� , written in the first pair in the following.

lthough this is a formal derivation, the solution may be checked by inserting it into Eq. �6� �see
17
ppendix B�. In addition, from the relation
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lim
���→�

K���� �� �

2�
e−�, −

3�

2
� arg � �

3�

2
�15�

e see that the expansions in series of Bessel functions have the behavior given by

lim
z→�

Uj�
� �z� � e±2i�qzz�1/4�−�B2/2�, −

3�

2
� arg�±2i�qz� �

3�

2
, �j = 1,2�

n accordance with Eq. �9�. The second pair of solutions follows from the first one through the rule

2, as mentioned before. Moreover, solutions for the Mathieu equation are obtained by using Eq.
7a� and by noting that in this case the hypergeometric functions can be rewritten in terms of
rigonometric functions.

First pair:

U1�
0 �z� = 


n=−�

�

bn
�1�F�B2

2
− n − � − 1,n + � +

B2

2
;B2 +

B1

z0
;1 −

z

z0
	 ,

�16a�

U1�
� �z� = z�1−B2�/2 


n=−�

�

bn
�1�K2n+2�+1�±2i�qz� ,

here in the recurrence relations �11a�

	n
�1� = qz0

�n + � + 2 −
B2

2 ��n + � + 1 −
B2

2 −
B1

z0
�

�n + � + 1��n + � + 3
2� ,


n
�1� = 4B3 − 2qz0 + 4�n + � + 1 −

B2

2
	�n + � +

B2

2
	 − 2qz0

�B2

2 − 1��B2

2 +
B1

z0
�

�n + ���n + � + 1�
, �16b�

�n
�1� = qz0

�n + � +
B2

2 − 1��n + � +
B2

2 +
B1

z0
�

�n + � − 1
2��n + ��

.

f B2+ �B1 /z0� is zero or a negative integer we have the solution U2�
0 instead of U1�

0 .
For the Mathieu equation we use Eq. �7a� and the formula11

F�− a,a;�1/2�;sin2��u�� = cos�2a�u� .

hen, we obtain even solutions with respect to u, namely,

W1�
0 �u� = 


n=−�

�

bn
�1�cos��2n + 2� + 1��u�, �cos��u�� � � ,

W1�
� �u� = 


n=−�

�

bn
�1�K2n+2�+1�±2i�q cos��u��, �cos��u�� � 1, �17a�

ith the simplified recurrence relations �a=2q−4B3�

qbn+1
�1� + ��2n + 2� + 1�2 − a�bn

�1� + qbn−1
�1� = 0. �17b�
Second pair:
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U2�
0 �z� = �z − z0�1−B2−B1/z0z1+B1/z0 


n=−�

�

bn
�2�

� F�− n − � −
B2

2
+ 1,n + � + 2 −

B2

2
;2 − B2 −

B1

z0
;1 −

z

z0
	 ,

U2�
� �z� = �z − z0�1−B2−B1/z0zB1/z0+B2/2− 1

2 

n=−�

�

bn
�2�K2n+2�+1�±2i�qz� , �18a�

here

	n
�2� = qz0

�n + � +
B2

2 ��n + � + 1 +
B2

2 +
B1

z0
�

�n + � + 1��n + � + 3
2� , 
n

�2� = 
n
�1�,

�18b�

�n
�2� = qz0

�n + � + 1 −
B2

2 ��n + � −
B2

2 −
B1

z0
�

�n + � − 1
2��n + ��

,

n the recurrence relations �11a� for bn
�2�. If B2+ �B1 /z0� is a positive integer equal or greater than

we have the solution U1�
0 instead of U2�

0 . Note that, in writing the solution U2�
0 , we have used

F�a,b;c;y� = �1 − y�c−a−bF�c − a,c − b;c;y� . �19�

For the Mathieu equation we use11

F�a,1 − a;
3

2
;sin2��u�	 =

sin��2a − 1��u�
�2a − 1�sin��u�

nd, in addition, define cn as bn
�2�= �2n+2�+1�cn. So, we find that the recurrence relations for cn

ecome identical to the ones for bn
�1�, giving the odd solutions

W2�
0 �u� = 


n=−�

�

bn
�1�sin��2n + 2� + 1��u� ,

�20�

W2�
� �u� = tan��u� 


n=−�

�

�2n + 2� + 1�bn
�1�K2n+2�+1�±2i�q cos��u�� ,

here �cos��u���� and �cos��u���1, respectively.
As we have explained earlier, if there is a free parameter in the differential equation, it is

ossible to satisfy the characteristic equation for any noninteger or half-integer �. We use this fact
o rederive some Poole’s solutions14,15 to the Mathieu equation. For this, in the previous W1�

0 �u�
nd W1�

0 �u� we take

2� + 1 = l/m, � = 1, �21�

here l and m are integers prime to one another, l�m. Then, we find the two-sided Poole
P P
olutions W1 �u� and W1 �u� given by
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W1
P�u� = 


n=−�

�

bn
�1�cos��2n +

l

m
	u� ,W2

P�u� = 

n=−�

�

bn
�1�sin��2n +

l

m
	u� . �22�

he first is even with respect to u and the second is odd, and both of them have period 2�m ,m
1. Since they have the same series coefficients, we can combine them to find another Poole

olution, that is,

WP�u� = 

n=−�

�

bn
�1�exp�i�2n +

l

m
	u� . �23�

urthermore, for an arbitrary � we find

W�u� = 

n=−�

�

bn
�1�exp�i�2n + 2� + 1�u� , �24�

hich is also a solution already known in the literature.11,15

. Solutions without phase parameter

Now we truncate the solutions obtained in Sec. II A by taking n�0. This gives � in terms of
ome parameters of the differential equation. The resulting solutions are convergent only if there
s a free parameter to be determined from the characteristic equation.

This truncation reverses the procedure by which the solution U1�
0 �z� for the GSWE, given in

q. �12a�, was obtained. Indeed, that solution was constructed18 as a generalization of a one-sided
eries of Jacobi polynomials, constructed by Fackerell and Crossman19 to solve the angular Teu-
olsky equations of the relativistic astrophysics. Despite this, the truncated solutions found in Ref.
are more general than the Fackerell-Crossman ones because no particular values are attached to

he parameters of the GSWE and also because the truncation was extended to the Leaver expan-
ion U1�

� �z�. In addition, these one-sided series are suitable to get solutions in finite series, the so
alled quasi-polynomial solutions. In effect, a solution whose coefficients bn obey recurrence
elations as

	nbn+1 + 
nbn + �nbn−1 = 0, n � 0, b−1 = 0

ecomes a quasi-polynomial solution with 0�n�N−1 whenever �N=0 for some n=N.20

For the truncated solutions—denoted by �Ui
0 ,Ui

�� , i=1,2,3,4—the recurrence relations and the
haracteristic equations have one of the three forms written in the following. The first case �	−1

0� is the general one and the others �	−1�0� may occur only for special cases,

 	0b1 + 
0b0 = 0

	nbn+1 + 
nbn + �nbn−1 = 0�n � 1� � ⇒ 
0 =
	0�1


1−

	1�2


2−

	2�3


3−
¯ . �25�

� 	0b1 + 
0b0 = 0

	1b2 + 
1b1 + �	−1 + �1�b0 = 0

	nbn+1 + 
nbn + �nbn−1 = 0�n � 2�
� ⇒ 
0 =

	0�	−1 + �1�

1−

	1�2


2−

	2�3


3−
¯ . �26�

 	0b1 + �
0 + 	−1�b0 = 0

	nbn+1 + 
nbn + �nbn−1 = 0�n � 1� � ⇒ 
0 + 	−1 =
	0�1


1−

	1�2


2−

	2�3


3−
¯ . �27�

ote that we have n�−1 in 	n ,n�0 in 
n and n�1 in �n.
These forms for the recurrence relations are the same that appear in truncation of the expan-

7
ions �12a� for the GSWE. As a matter of fact, the solutions of the present section are the Ince
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imit of solutions for the GSWE given in Sec. 3 of Ref. 7. However, in order to illustrate how these
ecurrence relations are obtained, we insert the solution U1�

� given in �16a� into the Ince limit of
he GSWE. Then, for n�0, from Eq. �B4� we find that



n=0

�

	n−1
�1� bn

�1�K2n+2�−1��� + 

n=0

�


n
�1�bn

�1�K2n+2�+1��� + 

n=0

�

�n+1
�1� bn

�1�K2n+2�+3��� = 0.

etting m=n−1,m=n, and m=n+1 in the first, second, and third terms, respectively, this equation
ecomes

	−1b0K2�−1��� + �	0b1 + 
0b0�K2�+1��� + �	1b2 + 
1b1 + �1b0�K2�+3���

+ 

n=2

�

�	nbn+1 + 
nbn + �nbn−1�K2n+2�+1��� = 0, �28�

here we have dropped the upper suffixes. Therefore, if we can choose � so that 	−1=0, we find
he first set of recurrence relations. However, notice that

	−1 =
qz0�� + 1 −

B2

2 ��� −
B1

z0
−

B2

2 �
2��� + 1/2�

= 0 if� =
B2

2 − 1 for B2 � 1,2;

� =
B1

z0
+

B2

2 for
B1

z0
+

B2

2 � 0, 1
2 .
�

ence we see that there are two possible choices for � and, for each of them we have two cases
n which 	−1 may differ from zero. Let us consider only the case �= �B2 /2�−1. Then, for the
xceptional case B2=1��=−1/2�, we find K2�−1=K2�+3=K2 �since K�=K−�� and therefore the
essel functions in the first and third terms of Eq. �28� are equal, giving the recurrence relations

26�. Similarly, if B2=2��=0� we find K2�−1=K2�+1=K1 and this leads to the recurrence relations
27�. In this manner we obtain the first pair given in the following. The remaining can be derived
rom this by using the transformations rules T1 and T2 as

�U1
0,U1

��↔
T1

�U2
0,U2

��↔
T2

�U3
0,U3

��↔
T1

�U4
0,U4

��↔
T2

�U1
0,U1

�� .

he condition on each pair is imposed in order to assure that the special functions are independent
n both solutions; it guarantees that there is no vanishing denominator in the recurrence relations.
urthermore, we have additional restrictions on the parameters of the solutions Ui

0. Thus, if B2

�B1 /z0� is zero or a negative integer, the hypergeometric functions are not defined in U1
0 and U2

0

ut are defined in U3
0 and U4

0, and vice versa. The results for the Mathieu equations are already
nown,9 but note that the recurrence relations for this case come from the three equations
25�–�27� above.

First pair: B2�0,−1,−2,… . This first pair corresponds to �= �B2 /2�−1 in �U1�
0 ,U1�

� �,

U1
0�z� = 


n=0

�

bn
�1�F�− n,n + B2 − 1;B2 +

B1

z0
;1 −

z

z0
	 ,

�29a�

U1
��z� = z�1−B2�/2


n=0

�

bn
�1�K2n+B2−1�±2i�qz� ,

ith the following coefficients

	n
�1� =

qz0�n + 1��n −
B1

z0
�

�n +
B2��n +

B2 + 1� ,

2 2 2
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n
�1� = 4B3 − 2qz0 + 4n�n + B2 − 1� −

2qz0�B2

2 − 1��B2

2 +
B1

z0
�

�n +
B2

2 − 1��n +
B2

2 � , �29b�

�n
�1� =

qz0�n + B2 − 2��n + B2 +
B1

z0
− 1�

�n +
B2

2 − 3
2��n +

B2

2 − 1� ,

n the recurrence relations for the bn
�1�, namely: Eq. �25� if B2�1, 2; Eq. �26� if B2=1; Eq. �27� if

2=2.
For the Mathieu equation we find solutions

W1
0�u� = 


n=0

�

bn
�1�cos�2n�u�, �cos��u�� � � ,

�30a�

W1
��u� = 


n=0

�

bn
�1�K2n�±2i�q cos��u��, �cos��u�� � 1,

ith the simplified recurrence relations

qb1
�1� − ab0

�1� = 0, qb2
�1� + �4 − a�b1

�1� + 2qb0
�1� = 0,

�30b�
qbn+1

�1� + �4n2 − a�bn
�1� + qbn−1

�1� = 0�n � 2� .

hese solutions are even with respect to u and, for �=1, the solution W1
0�u� has period �.

Second pair: �B2 /2�+ �B1 /z0��−1,−3/2 ,−2 ,−5/2¯ . This pair of solutions can also be ob-
ained by taking �= �B2 /2�+ �B1 /z0� in �U1�

0 ,U1�
0 �,

U2
0�z� = z1+�B1/z0�


n=0

�

bn
�2�F�− n,n + 1 + B2 +

2B1

z0
;B2 +

B1

z0
;1 −

z

z0
	 ,

�31a�

U2
��z� = z�1−B2�/2


n=0

�

bn
�2�K2n+1+B2+�2B1/z0��±2i�qz� ,

here

	n
�2� =

qz0�n + 1��n + 2 +
B1

x0
�

�n + 1 +
B2

2 +
B1

z0
��n + 3

2 +
B2

2 +
B1

z0
�

,


n
�2� = 4B3 − 2qz0 + 4�n + 1 +

B1

x0
	�n + B2 +

B1

x0
	 −

2qz0�B2

2 − 1��B2

2 +
B1

z0
�

�n +
B2

2 +
B1

x0
��n + 1 +

B2

2 +
B1

x0
�

,

�n
�2� =

qz0�n + B2 +
B1

x0
− 1��n + B2 +

2B1

z0
�

�n − 1
2 +

B2

2 +
B1

z0
��n +

B2

2 +
B1

z0
�

, �31b�

n the recurrence relations for bn
�2�: Eq. �25� if �B2 /2�+ �B1 /z0��0,−1/2; Eq. �26� if �B2 /2�

�B1 /z0�=−1/2; Eq. �27� if �B2 /2�+ �B1 /z0�=0.

For the Mathieu equation we again have even solutions
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W2
0�u� = 


n=0

�

bn
�2�cos��2n + 1��u�, �cos��u�� � � ,

�32a�

W2
��u� = 


n=0

�

bn
�2�K2n+1�±2i�q cos��u��, �cos��u�� � 1,

ith the recurrence relations

qb1
�2� + �q + 1 − a�b0

�2� = 0,

�32b�
qbn+1

�2� + ��2n + 1�2 − a�bn
�2� + qbn−1

�2� = 0�n � 1� .

f �=1 the solution W2
0�u� has period 2�.

Third pair: B2�4, 5, 6,¯ . This corresponds to �=1− �B2 /2� in �U2�
0 ,U2�

� �,

U3
0�z� = �z − z0�1−B2−B1/z0z1+B1/z0


n=0

�

bn
�3�F�− n,n + 3 − B2;2 − B2 −

B1

z0
;1 −

z

z0
	 ,

�33a�

U3
��z� = �z − z0�1−B2−B1/z0zB1/z0+B2/2−1/2


n=0

�

bn
�3�K2n+3−B2

�±2i�qz� ,

ith the coefficients

	n
�3� =

qz0�n + 1��n + 2 +
B1

z0
�

�n + 2 −
B2

2 ��n + 5
2 −

B2

2 � ,


n
�3� = 4B3 − 2qz0 + 4�n + 1��n + 2 − B2� −

2qz0�B2

2 − 1��B2

2 +
B1

z0
�

�n + 1 −
B2

2 ��n + 2 −
B2

2 � , �33b�

�n
�3� =

qz0�n + 2 − B2��n + 1 − B2 −
B1

z0
�

�n + 1
2 −

B2

2 ��n + 1 −
B2

2 � .

n the recurrence relations: Eq. �25� if B2�2, 3; Eq. �26� if B2=3; Eq. �27� if B2=2.
For the Mathieu equation we redefine the coefficients bn

�3� as bn
�3�→ �2n+2�bn

�3�. Then we find
he odd solutions

W3
0�u� = 


n=0

�

bn
�3�sin��2n + 2��u�, �cos��u�� � � ,

W3
��u� = tan��u�


n=0

�

�2n + 2�bn
�3�K2n+2�±2i�q cos��u��, �cos��u�� � 1, �34a�

ith the recurrence relations

qb1
�3� + �4 − a�b0

�3� = 0,

�34b�
qbn+1

�3� + �4�n + 1�2 − a�bn
�3� + qbn−1

�3� = 0, �n � 1� .

0
or �=1 the solution W3�u� has period �.
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Fourth pair: �B2 /2�+ �B1 /z0��1,3 /2 ,2 ,5 /2¯ . This can also be obtained by setting
=−�B2 /2�− �B1 /z0� in �U2�

0 ,U2�
� �,

U4
0 = �z − z0�1−B2−B1/z0


n=0

�

bn
�4�F�− n,n + 1 − B2 −

2B1

z0
;2 − B2 −

B1

z0
;1 −

z

z0
	 ,

�35a�

U4
� = �z − z0�1−B2−B1/z0zB1/z0+B2/2− 1

2 

n=0

�

bn
�4�K2n+1−B2−�2B1/z0��±2i�qz� ,

ith coefficients

	n
�4� =

qz0�n + 1��n −
B1

z0
�

�n + 1 −
B2

2 −
B1

z0
��n + 3

2 −
B2

2 −
B1

z0
�

,


n
�4� = 4B3 − 2qz0 + 4�n −

B1

z0
��n − B2 + 1 −

B1

z0
� −

2qz0�B2

2 − 1��B2

2 +
B1

z0
�

�n −
B2

2 −
B1

z0
��n + 1 −

B2

2 −
B1

z0
�

, �35b�

�n
�4� =

qz0�n + 1 − B2 −
B1

z0
��n − B2 −

2B1

z0
�

�n − 1
2 −

B2

2 −
B1

z0
��n −

B2

2 −
B1

z0
�

,

n the recurrence relations: Eq. �25� if �B2 /2�+ �B1 /z0��0,1 /2; Eq. �26� if �B2 /2�+ �B1 /z0�
1/2; Eq. �27� if �B2 /2�+ �B1 /z0�=0.

For the Mathieu equation we redefine bn�4� according to bn
�4�→ �2n+1�bn

�4� and find the odd
olutions

W4
0�u� = 


n=0

�

bn
�4�sin��2n + 1��u�, �cos��u�� � � ,

�36a�

W4
��u� = tan��u�


n=0

�

�2n + 1�bn
�4�K2n+1�±2i�q cos��u��, �cos��u�� � 1,

ith the recurrence relations

qb4
�4� + �1 − q − a�b0

�4� = 0,

�36b�
qbn+1

�4� + ��2n + 1�2 − a�bn
�4� + qbn−1

�4� = 0�n � 1� .

ow, for �=1,W4
0�u� has period 2�.

II. INCE’S LIMITS FOR THE DOUBLE-CONFLUENT HEUN EQUATION

As in the case of the Ince limit of the GSWE, we have found no solution in the literature for
he Ince limit of the DCHE. The solutions in the following are obtained by taking the limit z0

0 �Leaver limit� of the solutions given in Sec. II for the Ince limit of the GSWE. For this we use
he formulas12

lim F�a,b;c;1 −
c

y
	 = ya�a,a + 1 − b;y� , �37a�
c→�
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lim
	→�

�1 +
y

	
		

= ey ⇒ lim
z0→0

�1 −
z0

z
	−B1/z0

= eB1/z. �37b�

ctually, it is not necessary to use the second equation above, since we can get one pair of
olutions as the limit of the first pair of Sec. II A and, then, generate the other pair by means of the
ransformation rule

�U�z� = eB1/zz2−B2U�− B1,4 − B2,B3 + 2 − B2;q;z� , �38�

here U�z�=U�B1 ,B2 ,B3 ;q ;z� denotes known solutions of Eq. �8�. On the other hand, to check
hat the solutions Ui

0�z� exhibit the behavior given in Eq. �4� when z→0, we may use the relation12

lim
�y�→�

�a,b;y� � y−a�1 + O��y�−1�, −
3�

2
� arg y �

3�

2
. �39�

. Solutions with a phase parameter

For the solution U1�
0 of Sec. II A, we find that the limit of the hypergeometric functions when

0 tends to zero, B2 and B1 being fixed �c=B2+B1 /z0→��, is given by

lim
z0→0

F�n + � +
B2

2
,− n − � − 1 +

B2

2
;B2 +

B1

z0
;1 −

z

z0
	

� z−�−
B2
2 �B1

z
	n

�n + � +
B2

2
,2n + 2� + 2;

B1

z
	 .

hen, considering also the solution U1�
� and the limits for the coefficients in the recurrence

elations, we get the first pair of solutions with a phase parameter � �different of integer or
alf-integer�. The rule � leads to the second pair.

First pair:

U1�
0 �z� = z−�−B2/2 


n=−�

�

bn
�1��B1

z
	n

�n + � +
B2

2
,2n + 2� + 2;

B1

z
	 ,

�40a�

U1�
� �z� = z�1−B2�/2 


n=−�

�

bn
�1�K2n+2�+1�±2i�qz� ,

here in the recurrence relations �11a��

	n
�1� = −

qB1�n+�+2−
B2

2
	

�n+�+1��n+�+3
2� ,


n
�1� = 4B3 + 4�n + � + 1 −

B2

2 ��n + � +
B2

2 � −
qB1�B2−2�

�n+���n+�+1� ,

�n
�1� =

qB1�n+�+
B2

2
−1	

�n+�−1
2��n+��

. �40b�

Second pair:

U2�
0 �z� = eB1/zz−�−B2/2 


n=−�

�

bn
�2��−

B1

z
	n

�n + � + 2 −
B2

2
,2n + 2� + 2;−

B1

z
	 ,

�41a�
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U2�
� �z� = eB1/zz�1−B2�/2 


n=−�

�

bn
�2�K2n+2�+1�±2i�qz� ,

here

	n
�2� =

qB1�n+�+
B2

2
	

�n+�+1��n+�+3
2� , 
n

�2� = 
n
�1�, �n

�2� = −
qB1�n+�+1−

B2

2
	

�n+�−1
2��n+��

, �41b�

n the recurrence relations �11a� for bn
�2�.

. Solutions without phase parameter

These solutions may be derived by truncating the solutions of Sec. III A. In this case, we see
hat there is only one choice for � in each pair. Alternatively, the solutions can be found by
pplying the Leaver procedure to the first and third pairs of Sec. II B.

First pair: B2�0,−1,−2,¯ . This corresponds to �= �B2 /2�−1 in �U1�
0 ,U1�

� �.

U1
0�z� = z1−B2


n=0

�

bn
�1��B1

z
	n

�n + B2 − 1,2n + B2;
B1

z
	 ,

�42a�

U1
��z� = z�1−B2�/2


n=0

�

bn
�1�K2n+B2−1�±2i�qz� ,

ith the following coefficients:

	n
�1� = −

qB1�n + 1�

�n +
B2

2 ��n +
B2

2 + 1
2� ,


n
�1� = 4B3 + 4n�n + B2 − 1� −

qB1�B2 − 2�

�n +
B2

2 − 1��n +
B2

2 � , �42b�

�n
�1� =

qB1�n + B2 − 2�

�n +
B2

2 − 3
2��n +

B2

2 − 1� .

n the recurrence relations for the bn
�1�: Eq. �25� if B2�1,2; Eq. �26� if B2=1; Eq. �27� if B2=2.

Second pair: B2�4, 5, 6, ¯ . It corresponds to �=1− �B2 /2� in �U2�
0 ,U2�

� � but can also be
btained from the first pair via the rule �.

U2
0�z� = eB1/zz−1


n=0

�

bn
�2��−

B1

z
	n

�n + 3 − B2,2n + 4 − B2;−
B1

z
	 ,

�43a�

U2
��z� = eB1/zz�1−B2�/2


n=0

�

bn
�2�K2n+3−B2

�±2i�qz� ,

here

	n
�3� =

qB1�n+1�

�n+2−
B2

2
	�n+5

2
−

B2

2
	 ,


n
�3� = 4B3 + 4�n + 1��n + 2 − B2� −

qB1�B2−2�

�n+1−
B2 	�n+2−

B2 	 , �43b�

2 2
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�n
�3� = −

qB1�n+2−B2�

�n+1
2

−
B2

2
	�n+1−

B2

2
	 .

n the recurrence relations for bn
�2�: Eq. �25� if B2�2,3; Eq. �26� if B2=3; Eqs. �27� if B2=2.

V. POTENTIAL APPLICATIONS

As we have mentioned, the Schrödinger equation with inverse fourth- and sixth-power poten-
ials can be reduced, respectively, to the double-confluent Heun equation �3� and its Ince limit �8�.
ingular potentials like these have appeared in the description of intermolecular forces21 and in the
cattering of ions by polarizable atoms. For the sake of illustration, we consider the last problem.

Before discussing these examples, let us present the so-called normal forms of the DCHE, that
s, the forms in which there is no first-order derivative terms in the differential equations. The
eneral procedure for this, consists in writing the equation as

d2U

dz2 + p�z�
dU

dz
+ q�z�U = 0.

hen, the substitution

U�z� = F�z�exp�−
1

2
� p�z�dz	

ives a first normal form, namely,

d2F

dz2 + I�z�F = 0, I�z� = q�z� −
1

2

dp�z�
dz

−
1

4
�p�z��2.

rom this, other normal forms are obtained by the transformations

z = h���, F�z� =� dh

d�
G���

hich yield

d2G

d�2 + J���G = 0, J��� = I�h����� dh

d�
	2

+
1

2

d3h

d�3 /
dh

d�
−

3

4
� d2h

d�2 /
dh

d�
	2

.

By employing this procedure, Lemieux and Bose22 have derived several normal forms for the
eneral Heun equation and its confluent cases, excepting the triconfluent equation. These forms
re useful to recognize whether a given equation belongs to the Heun class. Nevertheless, to find
he solutions for the equation, we have to come back to the form for which the solutions were
stablished, as in the following. The three Lemieux-Bose normal forms for the DCHE, together
ith the transformations of variables, are the following:

U�z� = z−B2/2eB1/�2z�F�z� ,

�44�
d2F

dz2 + ��2 −
2��

z
+

1

z2�B3 −
B2

2

4
+

B2

2
	 +

B1

z3 �1 −
B2

2
	 −

B1
2

4z4�F = 0;

z = �2, U�z� = ��1−2B2�/2eB1/�2�2�G��� ⇔ G��� = z�2B2−1�/4e−B1/�2z�U�z� ,

�45�
d2G

2 + �4�2�2 − 8�� +
4
2�B3 −

B2
2

+
B2 −

3 	 +
4B1

4 �1 −
B2	 −

B1
2

6�G = 0;

d� � 4 2 16 � 2 �
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z = e�u, U�z� = H�u�exp�1

2
��1 − B2�u +

B1

2
e−�u� ⇔ H�u� = z�B2−1�/2e−B1/�2z�U�z� ,

�46�
d2H

du2 + �2�B3 − �1 − B2

2
	2

−
B1

2

4
e−2�u − B1�B2

2
− 1	e−�u − 2��e�u + �2e2�u�H = 0,

here � is a constant at our disposal, for example, �=1 or �= i. Note that, since these transfor-
ations involve neither � nor �, their Ince limits are obtained by putting �2=0 and 2��=−q.

Now we proceed with the scattering problem. The radial part R�r�=��r� /r of the wave func-
ion for the Schrödinger equation in three dimensions, for a particle with mass � and energy E, is

d2��r�
dr2 + �k2 −

l�l + 1�
r2 −

2�

�2 V�r����r� = 0, �47�

here k2=2�E /�2 , l is the angular momentum, and V�r� is the potential. Now, according to
leinman, Hahn, and Spruch,23 for the interaction of a light particle of charge e� with a fixed atom
f charge Zē containing z� electrons, we have

V�r� =
�Z − z��ēe�

r
−

	1��e��2

2r4 − �	2� − 6a0
1��
�e��2

2r6 , �48�

here r is the distance from the incident ion to the atom, a0=�2 / ��ē2� is the Bohr radius, 	1�, and

2� are, respectively, the electric dipole and quadrupole polarizabilities of the atom and 
1� is a
arameter resulting from a nonadiabatic correction �	1� ,	2�, and 
1� are constants which describe
he properties of the target only�. For this potential, the Schrödinger equation becomes

d2�

dr2 + �k2 −
2��Z − z��ēe�

�2r
−

l�l + 1�
r2 +

�	1��e��2

�2r4 +
��	2� − 6a0
1���e��2

�2r6 �� = 0. �49�

herefore, for neutral targets �Z=z�� this is a particular case of the Ince limit of the DCHE, as we
ee from Eq. �45� with �2=0 ,2��=−q, and z=�2=r2. On the other hand, if the inverse sixth-
ower term vanishes �	2�=6a0
1��, this radial Schrödinger equation is a particular case of the
CHE as seen from Eq. �44� with B2=2, for neutral or ionized targets. In both cases the energy of

he incident particle �k2� is given and, consequently, there is no free parameter in these equations
ince the other constants are also fixed. Then, convergent solutions require a phase parameter �,
nalogous to the scattering by the field of an electric dipole.2 To obtain the radial dependence R�r�
e must convert Eq. �49� into the DCHE �3� and its limit �8�. In the following we discuss only the

symptotic behaviors of solutions for each case. For this reason, we do not write the recurrence
elations for the coefficients.

Potential with inverse fourth- and sixth-power terms. Equation �45� suggests the substitutions

z = r2, ��r� = e−B1/�2r2�rB2−�1/2�U�z = r2� with

B1 = ±
e�

�
���6a0
1� − 	2��, B2 = 2 −

	1��e��2

2�2B1
, �6a0
1� � 	2�� ,

hich transform the Schrödinger equation �49� into

z2d2U

dz2 + �B1 + B2z�
dU

dz
+ ��B2

2
−

1

4
	�B2

2
−

3

4
	 −

l�l + 1�
4

+
k2

4
z −

�

2
�Z − z���z�U = 0.

hen, for Z�z�, the Schrödinger equation is more general than the Ince limit of DCHE. However,

ssuming a neutral target, we may form two pairs of solutions according to
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Ri��r� =
1

r
�i��r� = e−B1/�2r2�rB2−�3/2�Ui��z = r2� �i = 1,2� , �50�

here on the right-hand side the Ui� represent the solutions with a phase parameter for the Ince
imit of the DCHE, given in Sec. III A. Then, taking into account that for this case q=k2 /4
�E / �2�2� and z=r2, we find

R1�
0 �r� = e−B1/�2r2�r−2�−3/2 


n=−�

�

bn
�1��B1

r2 	n

�n + � +
B2

2
,2n + 2� + 2;

B1

r2 	 ,

�51�

R1�
� �r� = e−B1/�2r2�r−1/2 


n=−�

�

bn
�1�K2n+2�+1�±ikr�;

R2�
0 �r� = eB1/�2r2�r−2�−3/2 


n=−�

�

bn
�2��−

B1

r2 	n

�n + � + 2 −
B2

2
,2n + 2� + 2;−

B1

r2 	 ,

�52�

R2�
� �r� = eB1/�2r2�r−1/2 


n=−�

�

bn
�2�K2n+2�+1�±ikr� .

rom these expressions we obtain

lim
r→�

R1�
� �r� � lim

r→�
R2�

� �r� �
e�ikr

r
, −

3�

2
� arg�±ikr� �

3�

2
, �53�

here we have employed the limit �15� for the modified Bessel functions. Thus, when r→�, the
olutions Ri�

� are bounded even if k is a pure imaginary, since in this case exp�ikr� or exp�−ikr�
oes to zero. At r=0, Eq. �39� implies that

lim
r→0

R1�
0 �r� � e−B1/r2

rB2−�3/2�, −
3�

2
� arg

B1

r2 �
3�

2
,

�54�

lim
r→0

R2�
0 �r� � eB1/r2

r�5/2�−B2, −
3�

2
� arg�−

B1

r2 	 �
3�

2
.

hen, if B1 is a positive real number, the first limit goes to zero; if B1 is a negative real number,
he second limit goes to zero. However, if B1 is a pure imaginary, we write

B1 = iC, B2 = 2 +
i	1��e��2

2�2C
,

here C is real. Thus we find

�R1�
0 �r�� � �R2�

0 �r�� � �r → 0.

herefore, it is possible to find at least one pair of solutions for which both the solutions are
ounded at the singularities.

Potential without inverse sixth-power term. From Eq. �44� we find that the substitutions

z = r, ��r� = e−B1/�2r�rB2/2U�z = r� with �2B1
2 = − 4��e��2, B2 = 2
ransform the Schrödinger equation �49� into
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r2d2U

dr2 + �B1 + 2r�
dU

dr
+ �− l�l + 1� −

2�

�2 �Z − z��ēe�r + k2r2 +
��	2� − 6a0
1���e��2

�2r4 �U = 0.

�55�

hus, in the absence of the inverse sixth-power term, the radial Schrödinger equation, even if we
ave a Coulomb term in the potential, may be solved by

Ri��r� = e−B1/�2r�Ui��z = r� , �56�

here Ui��z=r� are solutions with a phase parameter for the DCHE with z=r and B2=2 �see
ppendix B�. As

� = ± k ↔ ± � = ±
�

k�2 �Z − z��ēe�, k =
�2�E

�
, �57�

hose solutions give

R1�
0 �r� = e±ikr−B1/2r 


n=−�

�

bn�B1

r
	n+�+1

�n + � + 1,2n + 2� + 2;
B1

r
	 ,

�58�

R1�
� �r� = e±ikr−B1/2r 


n=−�

�

bn��2ikr�n+��n + � + 1 ± i�,2n + 2� + 2; � 2ikr�;

R2�
0 �r� = e±ikr+B1/2r 


n=−�

�

bn�−
B1

r
	n+�+1

�n + � + 1,2n + 2� + 2;−
B1

r
	 ,

�59�

R2�
� �r� = e±ikr+B1/2r 


n=−�

�

bn��2ikr�n+��n + � + 1 ± i�,2n + 2� + 2; � 2ikr� .

sing Eq. �39�, we find

lim
r→�

R1�
� �r� � lim

r→�
R2�

� �r� � r�i�e±ikr

r
, −

3�

2
� arg��ikr� �

3�

2
. �60�

hus, when r→�, the solutions Ri�
� are bounded even if k is a pure imaginary number, since in

his case the behavior of exp�ikr� or exp�−ikr� predominates over the other factor. At r=0, by
sing Eq. �39� we get

lim
r→0

R1�
0 �r� � e−B1/�2r�, −

3�

2
� arg

B1

r
�

3�

2
,

�61�

lim
r→0

R2�
0 �r� � eB1/�2r�, −

3�

2
� arg�−

B1

r
	 �

3�

2
.

s B1 is a pure imaginary number, we find that

�R1�
0 �r�� � �R2�

0 �r�� � 1.

herefore, in this case we can form two pairs of solutions which are regular at the singular points,
oth pairs having the same series coefficients. For neutral targets ��=0� the previous results have
lready been found by Bühring who has treated the Schrödinger equation as a DCHE.16,24 Before
his author, the Schrödinger equation �for neutral targets and an inverse fourth-power polarization

25,26
otential� had been transformed into a Mathieu equation. Thus, the Bühring approach is
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rofitable since it works for ionized targets, too. In addition, as we have seen, for inverse sixth-
ower polarization potential, the Schrödinger equation may be transformed to the Ince limit of the
CHE, provided that the target is neutral.

. FINAL REMARKS

We have constructed the differential equation �6� by applying the Ince limit, defined in Eq. �5�,
o a generalized spheroidal wave equation �GSWE�. The Leaver limit �z0→0� of that equation has
fforded Eq. �8� that turns out to be the Ince limit of a double-confluent Heun equation �DCHE�
s well. The subnormal Thomé behavior at z=�, for the solutions of the these Ince limits of the
SWE and DCHE, distinguishes such equations from the original GSWE and DCHE hitherto

onsidered in the literature.
In sec. II, a pair of solutions �with a phase parameter� for the Ince limit of the GSWE have

een found as the Ince limit of a pair of solutions for the original GSWE. One solution is given by
series of hypergeometric functions and the other by a series of modified Bessel functions of the

econd kind. Both solutions in that pair have the same series coefficients but different regions of
onvergence, as in solutions for the Mathieu equations. Another pair has followed from the first
ne by means of a transformation rule. Hence, four pairs of solutions without phase parameter
ave resulted from the truncation of the series with a phase parameter, that is, by restricting the
ummation index of the series to n�0.

In Sec. III, solutions for the Ince limit of the DCHE have been established by taking the
eaver limit of solutions for the Ince limit of the GSWE. These solutions, given by series of

rregular confluent hypergeometric functions and modified Bessel functions, present the appropri-
te behavior at the irregular singularities z=0 and z=�. Note, nonetheless, that in Secs. III and IV
e have dealt with expansions in series of modified Bessel functions only. Other possibilities may
e investigated, especially solutions in series of Bessel function products, as these could have
mportant properties as regards the convergence of the series.

In the solutions without phase parameter for the Ince limits of the GSWE and DCHE, there
re three possible forms to the recurrence relations for the series coefficients. This fact is relevant
n itself and, in particular, is essential to recover solutions for the Mathieu equation from the ones
or the Ince limit of the GSWE.

The solutions we have obtained for the Mathieu equation are already known and exhibit the
sual parity and periodicity properties. This includes also the solutions found by Poole, given by
wo-sided series �−��n��� and having period 2�m, where m is any integer greater than 1.
owever, we note that other types of solutions for the Mathieu equations �and also for the
hittaker-Hill equations� are possible, since these equations may be considered as particular cases

f both the GSWE and double-confluent Heun equations as well.27

At last, notice that we have pointed out no application for Ince limit of the GSWE. Never-
heless, in Sec. IV we have seen that the Schrödinger equation �49� for the scattering of low-
nergy particles by polarizable targets leads to a DCHE and its Ince limit. The exception is the
chrödinger equation with Coulomb and inverse sixth-power terms which requires solutions for
more general equation, possibly similar to an equation considered by Kurth and Schmidt in
ef. 28.
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PPENDIX A: DEGENERATE DCHEs
Let us show that DCHE
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z2d2U

dz2 + �B1 + B2z�
dU

dz
+ �B3 − 2��z + �2z2�U = 0, �B1 � 0,� � 0� ,

or B1=0 and/or �=0 degenerates into a confluent hypergeometric equation or an equation with
onstant coefficients. Thus, if B1=0 and ��0, the substitutions

y = − 2i�z, U�z� = e−y/2y	f�y�, 	2 − �1 − B2�	 + B3 = 0

ive the confluent hypergeometric equation

y
d2f

dy2 + ��2	 + B2� − y�
df

dy
− �i� + 	 +

B2

2
	 f = 0.

f B1�0 and �=0, the change of variables

y = B1/z, U�z� = y
g�y�, 
2 − �B2 − 1�
 + B3 = 0

eads to

y
d2g

dy2 + ��2
 + 2 − B2� − y�
dg

dy
− 
g = 0.

f B1=�=0, we find an equation with constant coefficients by taking z=exp y.
Now let us show that the Ince limit of the DCHE

z2d2U

dz2 + �B1 + B2z�
dU

dz
+ �B3 + qz�U = 0, �q � 0,B1 � 0�

lso gives degenerate cases if q�0 and/or B1�0. In fact, if q=0 and B1�0, this equation is
quivalent to the DCHE with �=0 and B1�0. If q�0 and B1=0, the substitutions

� = ± 2i�qz, U�z� = �1−B2T���

educe the equation to the modified Bessel equation

�2d2T

d�2 + �
dT

d�
− ��1 − B2�2 − 4B3 + �2�T = 0.

inally, for q=B1=0, we find again an equation with constant coefficients by taking z=exp y.

PPENDIX B: THE SOLUTIONS IN SERIES OF BESSEL FUNCTIONS

The solution U1�
� �z� in series of Bessel functions can also be constructed as follows. We

erform the substitutions

� = ± 2i�qz, U�z� = �1−B2Y��� �B1�

n the Ince limit of the GSWE �6�. This yields

�2d2Y

d�2 + �
dY

d�
− �2Y = − 4qz0

d2Y

d�2 −
4q�z0 − 2B1 − 2B2z0�

�

dY

d�

+ �4q�1 − B2�
2B1 + B2z0 + z0

�2 + �1 − B2�2 + 4qz0 − 4B3�Y . �B2�
ow we expand Y��� according to
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Y��� = 

n=−�

�

bn
�1�K����, � = 2n + 2� + 1, �B3�

here K���� denotes the modified Bessel function of the second kind.17 The last equation and �B1�
fford the solution U1�

� �z�.
When we insert �B3� into �B2�, we use some difference-differential relations derived from the

roperties of K�.17 Thus, we have

�2d2K����
d�2 + �

dK����
d�

− �2K���� = �2K����

n the left-hand side and

4
d2K����

d�2 = K�+2��� + 2K���� + K�−2���,
4

�

dK����
d�

= −
4�

�2 K���� +
2

� − 1
�K�−2��� − K�����

n the right-hand side. This gives

qz0 

n=−�

� �1 +
2�1 − 2B2 − �2B1/z0��

� − 1
�bn

�1�K�−2��� + 

n=−�

� ��2 + 4B3 − 2qz0 − �1 − B2�2

−
2qz0�1 − 2B2 − �2B1/z0��

� − 1
�bn

�1�K���� + qz0 

n=−�

�

bn
�1�K�+2���

= qz0 

n=−�

� ��1 − 2B2 −
2B1

z0
	� + �1 − B2��1 + B2 +

2B1

z0
	�bn

�1�4K����
�2 .

o remove the term 4K���� /�2 on the right-hand side we use the relation

4K����
�2 =

K�−2���
��� − 1�

−
2K����

�� − 1��� + 1�
+

K�+2���
��� + 1�

.

hen, recalling that �=2n+2�+1, we find



n=−�

�

	n−1
�1� bn

�1�K2n+2�−1��� + 

n=−�

�


n
�1�bn

�1�K2n+2�+1��� + 

n=−�

�

�n+1
�1� bn

�1�K2n+2�+3��� = 0, �B4�

here the coefficients 	n
�1� ,
n

�1�, and �n
�1� are just the ones given in Eq. �16b��. To get the recurrence

elations with the form given in �11a�, we change n→m+1 and n→m−1 in the first and third
erms, respectively. After this, we equate to zero the coefficients of each independent K2m+2�+1���.

On the other hand, to study the convergence of the series, we apply a Perron-Kreuser
heorem13 for the minimal solutions of the recurrence relations for bn

�1� and obtain �if z0�0�

lim
n→�

bn+1
�1�

bn
�1� = lim

n→−�

bn−1
�1�

bn
�1� = −

qz0

4n2 . �B5�

sing also the relation17

lim
�→�

K���� =
1

2
����� �

2
	−�
nd K−����=K����, we get
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lim
n→�

K2n+2�+3���
K2n+2�+1���

= lim
n→−�

K2n+2�−1���
K2n+2�+1���

= −
4n2

qz
.

ence, we have

lim
n→�

bn+1
�1� K2n+2�+3���

bn
�1�K2n+2�+1���

= lim
n→−�

bn−1
�1� K2n+2�−1���

bn
�1�K2n+2�+1���

=
z0

z
.

herefore, by the ratio test the series converges for �z�� �z0�. In �B5� we have supposed that z0

0 but, if z0=0, we find

lim
n→�

bn+1
�1�

bn
�1� = lim

n→−�

bn−1
�1�

bn
�1� = −

B1

4n3 ⇒ lim
n→�

bn+1
�1� K2n+2�+3���

bn
�1�K2n+2�+1���

= lim
n→−�

bn−1
�1� K2n+2�−1���

bn
�1�K2n+2�+1���

=
B1

nz
.

hus, in this limit the series converges for �z��0 and per se this result is already included in �z�
�z0�.

PPENDIX C: SOLUTIONS FOR THE DCHE OF SEC. IV

The Leaver-type solutions for the DCHE �3� present some simplifications for B2=2. The
olutions given in Ref. 7 are expansions in series of regular and irregular confluent hypergeometric
unctions. However, to obtain the expected behavior at the singular points z=0 and z=�, we have
o choose the irregular functions. Then, by using the same notation of Secs. II A and III A, we find
hat for B2=2 the first pair of solutions with a phase parameter is given by

U1�
0 �z� = ei�z 


n=−�

�

bn�B1

z
	n+�+1

�n + � + 1,2n + 2� + 2;
B1

z
	 ,

�C1�

U1�
� �z� = ei�z 


n=−�

�

bn�− 2i�z�n+��n + � + 1 + i�,2n + 2� + 2;− 2i�z� ,

nd the second pair takes the form

U2�
0 �z� = ei�z+B1/z 


n=−�

�

bn�−
B1

z
	n+�+1

�n + � + 1,2n + 2� + 2;−
B1

z
	 ,

�C2�

U2�
� �z� = ei�z+B1/z 


n=−�

�

bn�− 2i�z�n+��n + � + 1 + i�,2n + 2� + 2;− 2i�z� .

hen, we see that the two pairs have the same series coefficients bn and the coefficients in the
ecurrence relations �11a� are simply

	n = i�B1�n + � + 1 − i�

2n + 2� + 3
	, 
n = B3 + �n + ���n + � + 1�,�n = i�B1� n + � + i�

2n + 2� − 1
	 . �C3�

n these solutions � cannot be integer or half-integer and the Ui�
0 converge for any finite z, whereas

he Ui�
� converge for �z��0. Note, moreover, that the irregular confluent hypergeometric functions

hat appear in Ui�
0 could be rewritten in terms of modified Bessel of the second kind by using the

efinition �14�. In the solutions Ui�
� the confluent hypergeometric functions could be rewritten in

erms of the Hankel functions H�
�1� but only if �=0 �neutral target, in the problem of Sec. IV. For

12
his we have to use the relation
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�� +
1

2
,2� + 1;− 2ix	 =

i

2��
ei���−x�H�

�1��x�,� = n + � +
1

2
.

he asymptotic behaviors of the solutions given in �C1� and �C2� may be found by using Eq. �39�.
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classification of generalized quantum statistics
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Generalized quantum statistics such as para-statistics is usually characterized by
certain triple relations. In the case of para-Fermi statistics these relations can be
associated with the orthogonal Lie algebra Bn=so�2n+1�; in the case of para-Bose
statistics they are associated with the Lie superalgebra B�0 �n�=osp�1 �2n�. In a
previous paper, a mathematical definition of “a generalized quantum statistics as-
sociated with a classical Lie algebra G” was given, and a complete classification
was obtained. Here, we consider the definition of “a generalized quantum statistics
associated with a basic classical Lie superalgebra G.” Just as in the Lie algebra
case, this definition is closely related to a certain Z-grading of G. We give in this
paper a complete classification of all generalized quantum statistics associated with
the basic classical Lie superalgebras A�m �n� ,B�m �n� ,C�n�, and D�m �n�. © 2005
American Institute of Physics. �DOI: 10.1063/1.2104287�

. INTRODUCTION

A historically important extension of Bose and Fermi statistics has been known for 50 years,
amely the para-Bose and para-Fermi statistics as developed by Green.1 In para-statistics, the
sual bilinear commutators or anti-commutators for bosons and fermions are replaced by certain
rilinear or triple relations. For example, for n pairs of para-Bose creation and annihilation opera-
ors Bi

� ��=± and i=1,… ,n�, the defining relations are

��Bj
�,Bk

��,Bl
�� = �� − ��� jlBk

� + �� − ���klBj
�, �,�,� = ± or ± 1; j,k,l = 1,…,n . �1.1�

imilar triple relations hold for the para-Fermi operators Fi
�,1 see �1.1� in Ref. 2. Both for para-

ose and para-Fermi statistics, there is a group theoretical setting. It was shown3 that the Lie
lgebra generated by the 2n elements Fi

�, with �=± and i=1,… ,n, subject to the para-Fermi
elations is Bn=so�2n+1� �as a Lie algebra defined by means of generators and relations�.

Twenty years after the connection between para-Fermi statistics and the Lie algebra so�2n
1�, a new connection, between para-Bose statistics and the orthosymplectic Lie superalgebra
�0 �n�=osp�1 �2n�4 was discovered.5 The Lie superalgebra generated by 2n odd elements Bi

�, with
=± and i=1,… ,n, subject to the triple relations �1.1�, is osp�1 �2n� �as a Lie superalgebra defined
y means of generators and relations�. Moreover, there is a certain representation of osp�1 �2n�, the
o-called Bose representation B, that yields the classical Bose relations, i.e., where the represen-
atives B�Bi

�� satisfy the relations of classical Bose statistics. For more general para-Bose statistics,
class of infinite dimensional osp�1 �2n� representations needs to be investigated.

These examples show that para-statistics, as introduced by Green1 and further developed by
thers �see Ref. 6 and references therein�, can be associated with representations of the Lie
super�algebras of class B �namely Bn and B�0,n��. Whether alternative types of generalized

�Permanent address: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 1784 Sofia,
Bulgaria; electronic mail: neli.stoilova@ugent.be

�
Electronic mail: joris.vanderjeugt@ugent.be
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uantum statistics can be found in the framework of other classes of simple Lie algebras or
uperalgebras has been considered in particular by Palev.7–15 Building upon his examples and
nspired by the definition of creation and annihilation operators in Ref. 11, a mathematical defi-
ition of “generalized quantum statistics” was given in Ref. 2. Furthermore, a complete classifi-
ation was given of all the classes of generalized quantum statistics for the classical Lie algebras

n ,Bn ,Cn, and Dn,2 by means of their algebraic relations. In the present paper we make a similar
lassification for the basic classical Lie superalgebras.

For certain examples of quantum statistics associated with Lie superalgebras, see Refs. 14 and
5. However, a complete classification was never made. A particularly interesting example was
escribed for the Lie superalgebra sl�1 �n�=A�0 �n−1�.15 For this superalgebra, a set of odd cre-
tion and annihilation operators was given,11 and it was shown that these n pairs of operators ai

�,
ith �=± and i=1,… ,n, subject to the defining relations

��ai
+,aj

−�,ak
+� = � jkai

+ − �ijak
+,

��ai
+,aj

−�,ak
−� = − �ikaj

− + �ijak
−,

�ai
+,aj

+� = �ai
−,aj

−� = 0, �1.2�

i , j ,k=1,… ,n�, generate the special linear Lie superalgebra sl�1 �n� �as a Lie superalgebra de-
ned by means of generators and relations�. Just as in the case of para-Bose relations, �1.2� has

wo interpretations. On the one hand, it describes the algebraic relations of a new kind of gener-
lized statistics, in this case A-superstatistics or a statistics related to the Lie superalgebra
�0 �n−1�. On the other hand, �1.2� yields a set of defining relations for the Lie superalgebra

A�0 �n−1� in terms of generators and relations. Observe that certain microscopic and macroscopic
properties of this statistics have already been studied.15

A description similar to �1.2� for the Lie algebra An was given for the first time by Jacobson16

n the context of “Lie triple systems.” Therefore, this type of generator is often referred to as
Jacobson generators.” In this context, we shall mainly use the terminology “creation and anni-
ilation operators �CAOs� for sl�1 �n�.”

Following the mathematical definition of “generalized quantum statistics associated with a Lie
lgebra,” given in Ref. 2, this notion will be extended to Lie superalgebras G. This definition, and
he corresponding classification method, are described in Sec. II. Just as for the case of Lie
lgebras, the method leads to a classification of certain gradings of G, and to regular subalgebras
f G. In this process, Dynkin diagram techniques play a crucial role. For the basic classical Lie
uperalgebras however, the description by means of a Dynkin diagram is not unique: besides the
o-called distinguished Dynkin diagram, other nonequivalent Dynkin diagrams exist.4,17 This fea-
ure will make it harder to obtain a complete classification of all generalized quantum systems. In
he remaining sections, the classification results are presented for all basic classical Lie superal-
ebras. A final section discusses some possible applications.

For the basic classical Lie superalgebras,4 we use the notation A�m �n�=sl�m+1 �n
1� ,B�m �n�=osp�2m+1 �2n� ,C�n�=osp�2 �2n−2�, and D�m �n�=osp�2m �2n�. The algebra

B�0 �n�=osp�1 �2n� has a different structure and is usually considered separately �also here�. For
the classical simple Lie algebras, we use the notation An=sl�n+1� ,Bn=so�2n+1� ,Cn=sp�2n� and

n=so�2n�; note the difference between Cn and C�n�. Note also that for trivial values of m or n,
Lie superalgebra coincides with a Lie algebra: sl�r �0�=sl�0 �r�=sl�r� ,B�m �0�=Bm ,D�m �0�
Dm ,D�0 �n�=Cn.
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I. DEFINITION AND CLASSIFICATION METHOD

Let G be a basic classical Lie superalgebra. G has a Z2-grading G=G0̄ � G1̄; an element x of

0̄ is an even element �deg�x�=0�, an element y of G1̄ is an odd element �deg�y�=1�. The
lements which are purely even or odd are called homogeneous elements. The Lie superalgebra
racket is denoted by �x ,y	. In the universal enveloping algebra of G, this stands for

�x,y	 = xy − �− 1�deg�x�deg�y�yx ,

f x and y are homogeneous. So the bracket can be a commutator or an anti-commutator.
Just as for a Lie algebra,2 a generalized quantum statistics associated with G is determined by

set of N creation operators xi
+ and N annihilation operators xi

−. Following the ideas of para-Bose
tatistics and those of Ref. 2, these 2N operators should generate the Lie superalgebra G, subject
o certain triple relations. Let G+1 and G−1 be the subspaces of G spanned by these elements:

G+1 = span�xi
+;i = 1,…,N�, G−1 = span�xi

−;i = 1,…,N� . �2.1�

e do not require that these subspaces are homogeneous. The space �G+1 ,G+1	 can be zero �in
hich case the creation operators mutually supercommute, as in �1.2�� or nonzero �as in �1.1��. A

imilar statement holds for the annihilation operators and �G−1 ,G−1	. Putting G±2= �G±1 ,G±1	 and

0= �G+1 ,G−1	, the condition that G is generated by the 2N elements subject to triple relations
nly, leads2 to the requirement that G=G−2 � G−1 � G0 � G+1 � G+2, and this must be a Z-grading
f G. Since these subspaces are not necessarily homogeneous, this Z-grading is in general not
onsistent with the Z2-grading.

Just as in Ref. 2, we shall impose two further requirements: first of all, the generating ele-
ents xi

± must be root vectors of G. Second, ��xi
+�=xi

−, where � is the standard antilinear anti-
nvolutive mapping of G �in terms of root vectors e� ,� satisfies ��e��=e−��. This leads to the
ollowing definition, completely analogous as in Ref. 2:

Definition 1: Let G be a basic classical Lie superalgebra, with antilinear anti-involutive
apping �. A set of 2N root vectors xi

±�i=1,… ,N� is called a set of creation and annihilation
perators for G if:

• ��xi
±�=xi

�,
• G=G−2 � G−1 � G0 � G+1 � G+2 is a Z-grading of G, with G±1=span�xi

± , i=1,… ,N� and
Gj+k= �Gj ,Gk	.

he algebraic relations R satisfied by the operators xi
± are the relations of a generalized quantum

tatistics (GQS) associated with G.
This is a mathematical generalization of quantum statistics. Whether all such GQS actually

ead to physically acceptable quantum statistics remains to be seen; in this sense one should
nterpret our GQS as “candidates for generalizations of quantum statistics.”

A GQS is characterized by a set �xi
±� of CAOs and the set of algebraic relations R they satisfy.

consequence of this definition is that G is generated by G−1 and G+1, i.e., by the set of CAOs,
nd since Gj+k= �Gj ,Gk	, it follows that

G = span�xi
�,�xi

�,xj
�	; i, j = 1,…,N,�,� = ± � . �2.2�

his implies that it is necessary and sufficient to give all relations of the following type:
R1� The set of all linear relations between the elements �xi

� ,xj
�	�� ,�= ± , i , j=1,… ,N�.

R2� The set of all triple relations of the form ��xi
� ,xj

�	 ,xk
�	=linear combination of xl

	.
o R consists of a set of quadratic relations and a set of triple relations. Also, as a Lie superal-
ebra defined by generators and relations, G is uniquely characterized by the set of generators xi

±

ubject to the relations R.
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A consequence of this definition is that G0 itself is a subalgebra of G spanned by root vectors
f G.2 It follows that G0 is a regular subalgebra containing the Cartan subalgebra H of G. By the
djoint action, the remaining Gi’s are G0-modules. Thus the technique of Ref. 2 can be used in
rder to obtain a complete classification of all GQS associated with G:

. Determine all regular subalgebras G0 of G. If not yet contained in G0, replace G0 by G0
+H.

. For each regular subalgebra G0, determine the decomposition of G into simple G0-modules
gk �k=1, 2,…�.

. Investigate whether there exists a Z-grading of G of the form

G = G−2 � G−1 � G0 � G+1 � G+2, �2.3�

where each Gi is either directly a module gk or else a sum of such modules g1 � g2 �¯, such
that ��G+i�=G−i.

If the Z-grading is of the form �2.3� with G±2�0, we shall say that it has length 5; if G+2

0 �then G−2=0, but G±1�0�, then the Z-grading is of length 3.
To find regular subalgebras one can use the method of �extended� Dynkin diagrams.18 The

econd stage is straightforward by means of representation theoretical techniques. The third stage
equires most of the work: one must try out all possible combinations of the G0-modules gk, and
ee whether it is possible to obtain a grading of the type �2.3�. In this process, if one of the simple

0-modules gk is such that ��gk�=gk, then it follows that this module should be part of G0. In
ther words, such a case reduces essentially to another case with a larger regular subalgebra.

In the following sections we shall give a summary of the classification process for the basic
lassical Lie superalgebras A�m �n� ,B�m �n� ,B�0 �n� ,D�m �n�, and C�n�. Note that, in order to

identify a GQS associated with G, it is sufficient to give only the set of CAOs, or alternatively, to
give the subspace G−1 �then the xi

− are the root vectors of G−1, and xi
+=��xi

−��. The set R then
onsists of all quadratic relations �i.e., the linear relations between the elements �xi

� ,xj
�	� and all

riple relations, and all of these relations follow from the known supercommutation relations in G.
ecause, in principle, R can be determined from the set �xi

± ; i=1,… ,N�, we will not always give
t explicitly.

Finally, observe that two different sets of CAOs �xi
± ; i=1… ,N� and �yi

± ; i=1… ,N� �same N�
re said to be isomorphic if, for a certain permutation 
 of �1,2 ,… ,N�, the relations between the
lements x
�i�

± and yi
± are the same. In that case, the regular subalgebra G0 spanned by ��xi

+ ,xj
−	� is

somorphic �as a Lie superalgebra� to the regular subalgebra spanned by ��yi
+ ,yj

−	�.

II. THE LIE SUPERALGEBRA A„m 
n…

Let G be the special linear Lie superalgebra A�m �n��sl�m+1 �n+1�, consisting of traceless
m+n+2�� �m+n+2� matrices. The Cartan subalgebra H of G is the subspace of diagonal ma-
rices. The root vectors of G are known to be the elements ejk�j�k=1,… ,m+n+2�, where ejk is

matrix with zeros everywhere except a 1 on the intersection of row j and column k. The

2-grading is such that deg�ejk�=	 jk=	 j +	k, where

	 j = �0 if j = 1, . . . ,m + 1

1 if j = m + 2, . . . ,m + n + 2.
 �3.1�

he root corresponding to ejk�j ,k=1,… ,m+1� is given by � j −�k; for em+1+j,m+1+k�j ,k=1,… ,n
1� it is � j −�k; and for ej,m+1+k, respectively, em+1+k,j�j=1,… ,m+1,k=1,… ,n+1�, it is � j −�k,

espectively, �k−� j. The anti-involution is such that ��ejk�=ekj. The distinguished set of simple
oots and the distinguished Dynkin diagram of A�m �n� are given in Table I, and so is the extended
istinguished Dynkin diagram.

To find regular subalgebras of G=A�m �n�, one should delete nodes from the Dynkin diagrams
f A�m �n� �first the ordinary, and then the extended�. This goes in systematic steps. For each step,

e shall investigate whether it leads to a grading of type �2.3�.
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ABLE I. Classical Lie superalgebras, their �extended� Dynkin diagrams with a labeling of the nodes and the correspond-
ng simple roots.
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Step 1. Delete node i from the distinguished Dynkin diagram. Then the corresponding diagram
s the Dynkin diagram of G0=sl�i� � sl�m+1− i �n+1� for i=1,… ,m+1 and of G0=sl�m+1 � i
m−1� � sl�n+m+2− i� for i=m+2,… ,m+n+1. There are only two G0-modules and

G−1 = span�ekl;k = 1,…,i, l = i + 1,…,m + n + 2� , �3.2�

G+1 = span�elk;k = 1,…,i, l = i + 1,…,m + n + 2� . �3.3�

herefore A�m �n� has a grading of length 3, A�m �n�=G−1 � G0 � G+1, and the number of creation
nd annihilation operators is N= i�m+n+2− i�.

The most interesting realizations are those with i=1, i=m+n+1, i=2 and i=m+n. We shall
give the explicit supercommutation relations between the CAOs for some of these cases.

For i=1,N=m+n+1. Putting

aj
− = e1,j+1, aj

+ = ej+1,1, j = 1,…,m + n + 1,

he relations R are

�aj
+,ak

+	 = �aj
−,ak

−	 = 0,

��aj
+,ak

−	,al
+	 = �− 1�	j+1� jkal

+ + �klaj
+, �3.4�

��aj
+,ak

−	,al
−	 = − �− 1�	j+1� jkal

− − �− 1�	j+1,k+1	l+1� jlak
−.

or m=0, these are the relations of A-superstatistics,11,15 see �1.2�. Also for general m and n, these
elations have been considered in another context.14

For i=m+n+1,N=m+n+1. Putting

aj
− = ej,m+n+2, aj

+ = em+n+2,j, j = 1, . . . ,m + n + 1

ne finds:

�aj
+,ak

+	 = �aj
−,ak

−	 = 0,

��aj
+,ak

−	,al
+	 = � jkal

+ − �− 1�	k�klaj
+, �3.5�

��aj
+,ak

−	,al
−	 = − � jkal

− − �− 1��	j+1��	k+1�� jlak
−.

he relations �3.4� and �3.5� are similar; however the corresponding GQS are not isomorphic. For
nstance, in �3.4� there are m even and n+1 odd pairs of CAOs, and in �3.5� there are n even and

+1 odd pairs of CAOs.
For i=2,N=2�m+n�. One puts

a−,j
− = e1,j+2, a+,j

− = e2,j+2, j = 1,…,m + n ,

a−,j
+ = ej+2,1, a+,j

+ = ej+2,2, j = 1,…,m + n .

hen the corresponding relations read �� ,� ,�= ± ; j ,k , l=1,… ,m+n�:

�a�j
+ ,a�k

+ 	 = �a�j
− ,a�k

− 	 = 0,

�a�j
+ ,a−�k

− 	 = 0, j � k ,

�a+ ,a− 	 = �a+ ,a− 	, j � k ,
−j −k +j +k
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�a+j
+ ,a−j

− 	 = �a+k
+ ,a−k

− 	, for 	 j = 	k,

�a−j
+ ,a+j

− 	 = �a−k
+ ,a+k

− 	, for 	 j = 	k,

��a�j
+ ,a�k

− 	,a�l
+ 	 = �− 1�deg�a�j

+ �deg�a�k
− �+��,−�	12deg�a�l

+ ����� jka�l
+ + ����kla�j

+ ,

��a�j
+ ,a�k

− 	,a�l
− 	 = − �− 1�deg�a�j

+ �deg�a�k
− ����� jka�l

− − �− 1�	j+2,k+2deg�a�l
− ����� jla�k

− . �3.6�

uch relations are definitely more complicated than �3.4� or �3.5�. However, they are still proper
efining relations for A�m �n�.

Step 2. Delete node i and j from the distinguished Dynkin diagram. We have G0=H+sl�i�
� sl�j− i� � sl�m+1− j �n+1� for 1� i j�m+1,G0=H+sl�i� � sl�m+1− i � j−m−1� � sl�m+n+2

j� for 1� i�m+1,m+2� j�m+n+1 and G0=H+sl�m+1 � i−m−1� � sl�j− i� � sl�m+n+2− j�
or m+2� i j�m+n+1. There are six simple G0-modules. All the possible combinations of
hese modules give rise to gradings of length 5. There are essentially three different ways in which
hese G0-modules can be combined. To characterize these three cases, it is sufficient to give only

−1:

G−1 = span�ekl,elp; k = 1,…,i, l = i + 1,…, j, p = j + 1,…,m + n + 2�,

with N = �j − i��m + n + 2 − j + i�; �3.7�

G−1 = span�ekl,epk; k = 1,…,i, l = i + 1,…, j, p = j + 1,…,m + n + 2�,

with N = i�m + n + 2 − i�; �3.8�

G−1 = span�ekl,elp; k = 1,…,i, p = i + 1,…, j, l = j + 1,…,m + n + 2�,

with N = j�m + n + 2 − j� . �3.9�

Note that a part of the solutions in �3.8� and �3.9� is isomorphic to some of those given by �3.7�.
The isomorphic cases can be recognized as those having the same Dynkin diagram of G0 and the
ame N-value.

For reasons explained earlier, we shall no longer give the corresponding set of relations
xplicitly for all possible cases. As an example, we consider here the case j− i=1 and �3.7�. Then
here are N=m+n+1 pairs of CAOs, which we can label as follows:

ak
− = ek,i+1, ak

+ = ei+1,k, k = 1,…,i;

ak
− = ei+1,k+1, ak

+ = ek+1,i+1, k = i + 1,…,m + n + 1.

sing

�k� = �0 if k = 1,…,i

1 if k = i + 1,…,m + n + 1,
 �3.10�

he quadratic and triple relations now read:

�ak
+,al

+	 = �ak
−,al

−	 = 0, k,l = 1,…,i or k,l = i + 1,…,m + n + 1,

�a−,a+	 = �a+,a−	 = 0, k = 1,…,i, l = i + 1,…,m + n + 1,
k l k l
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��ak
+,al

−	,ap
+	 = �− 1��l�+�p�+�k�	k+1,i+1�klap

+ + �− 1��l�+�p�+�1−�l��	l,i+1�	lk+	k,i+1��lpak
+, k,l = 1, ¯ ,i,

or k,l = i + 1,…,m + n + 1,

��ak
+,al

−	,ap
−	 = − �− 1��l�+�p�+deg�ak

+���k�	k+1,l+1+�1−�l��	l,i+1��kpal
− − �− 1��l�+�p�+�k�	k+1,i+1�klap

−,

k,l = 1,…,i,or k,l = i + 1,…,m + n + 1,

��ak
�,al

�	,ap
−�	 = − �− 1�

1
2

	p,i+1��1+��	l+1,i+1+�1−��	k,l+1��kpal
� + �− 1�

1
2

�1+��	l+1,i+1�	k,i+1+	k,l+1��lpak
�,

k = 1,…,i, l = i + 1,…,m + n + 1,

��ak
�,al

�	,ap
�	 = 0, � = ± ; k,l,p = 1,…,m + n + 1. �3.11�

Step 3. If we delete three or more nodes from the distinguished Dynkin diagram, the resulting
-gradings of A�m �n� are no longer of the form �2.3�. So these cases are not relevant for our
lassification.

Step 4. Next, we move on to the extended distinguished Dynkin diagram, also given in Table
. If we delete node i from this extended diagram, the remaining diagram is again �a nondistin-
uished Dynkin diagram� of type A�m �n�, so G0=G, and there are no CAOs.

Step 5. If we delete node i and j �i j� from the extended distinguished Dynkin diagram, then
�m �n�=G−1 � G0 � G+1 with G0=H+sl�m �n+1� or H+sl�m+1 �n� when the nodes are adjacent,
nd G0=H+sl�k � l� � sl�p �q� with k+ p=m+1 and l+q=n+1 when the nodes are nonadjacent.
ote that p or q can be zero: sl�r �0�=sl�0 �r�=sl�r�. Now

G−1 = span�ekl; k = i + 1…, j, l � i + 1,…, j� . �3.12�

he number of annihilation operators is N= �j− i��n+m+2− j+ i�. A part of these solutions is
somorphic to some of those of Step 1. The isomorphic cases are again characterized by the fact
hat their G0’s are isomorphic Lie superalgebras and their N-values coincide.

Step 6. If we delete nodes i , j, and k from the extended distinguished Dynkin diagram �i j
k�, then the corresponding Z-gradings are of the form �2.3�. If the three nodes are adjacent

0=H+sl�m−1 �n+1� ,H+sl�m �n�, or H+sl�m+1 �n−1�. When two adjacent and one nonadjacent
nodes are deleted, G0=H+sl�l � p� � sl�q �r� with l+q=m , p+r=n+1 or l+q=m+1, p+r=n. If all
three nodes are nonadjacent then G0=H+sl�l � p� � sl�q �r� � sl�s � t� with l+q+s=m+1, p+r+ t=n

1. One or two of these three Lie superalgebras is sl�r �0�=sl�0 �r�=sl�r�. There are three different
ways in which the corresponding G0-modules can be combined. We give here only G−1:

−1 = span�eps,esq; p = 1,…,i,k + 1,…,n + m + 2, s = i + 1,…, j, q = j + 1,…,k�,

with N = �j − i��n + m + 2 − j + i�; �3.13�

G−1 = span�eps,eqp; p = 1,…,i,k + 1,…,n + m + 2, s = i + 1,…, j, q = j + 1,…,k�,

with N = �k − i��n + m + 2 + i − k�; �3.14�

G−1 = span�epq,eqs; p = 1,…,i,k + 1,…,n + m + 2, s = i + 1,…, j, q = j + 1,…,k�

with N = �k − j��n + m + 2 + j − k� . �3.15�

Again a part of these solutions is isomorphic to some of those in Step 2 �characterized by an
isomorphic G0 and the same N�.

Step 7. If we delete four or more nodes from the extended distinguished Dynkin diagram, the
orresponding Z-grading of A�m �n� no longer has the required properties �i.e., there are non zero
ubspaces Gi with �i��2�.
Step 8. Next, one should repeat the process for all non distinguished Dynkin diagrams of G
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nd their extensions. This is what makes the work harder than the corresponding classification for
ie algebras �which have only one Dynkin diagram and one extension�. A general Dynkin diagram

s determined by a general simple root system. All the systems of simple roots �S,T of A�m �n� are
etermined by two increasing sequences4,17

S = �s1  s2  …� and T = �t1  t2  …�

nd a sign:

�S,T = ± ��1 − �2,�2 − �3,…,�s1
− �1,�1 − �2,…,�t1

− �s1+1,…� .

he Dynkin diagram itself looks like

here each dot can be a white or gray circle �depending upon whether the corresponding simple
oot is even or odd�. Let ±��i−� j�� be the last element of �S,T �� and �� can be � or ��. Then the
ero node of the extended Dynkin diagram corresponds to ±�� j�−�1� and it is uniquely determined.

If we repeat the whole procedure with the nondistinguished Dynkin diagrams �ordinary and
xtended�, the only new result corresponds to Step 6 deleting three nonadjacent nodes from the
xtended Dynkin diagram. We have G0=H+sl�l � p� � sl�q �r� � sl�s � t� with l+q+s=m+1, p+r+ t
n+1 and in some cases none of the three algebras is sl�r �0�=sl�0 �r�=sl�r�. Just as in Step 2 or

6, there are three different ways in which the G0-modules can be combined; the explicit expression
s left to the reader.

V. THE LIE SUPERALGEBRAS B„m 
n…

G=B�m �n��osp�2m+1 �2n� is the subalgebra of sl�2m+1 �2n� consisting of matrices of the
orm:

�
a b u x x1

c − at v y y1

− vt − ut 0 z z1

y1
t x1

t z1
t d e

− yt − xt − zt f − dt
� , �4.1�

here a is any �m�m�-matrix, b and c are antisymmetric �m�m�-matrices, u and v are �m
1�-matrices, x ,y ,x1 ,y1 are �m�n�-matrices, z and z1 are �1�n�-matrices, d is any

n�n�-matrix, and e and f are symmetric �n�n�-matrices. The even elements have x=y=x1

y1=0 ,z=z1=0 and the odd elements are those with a=b=c=0,u=v=0,d=e= f =0. We shall
onsider m=0 separately in the next section. The Cartan subalgebra H of G is again the subspace
f diagonal matrices D. Putting �i�D�=Dii , i=1, ¯ ,m and �i�D�=D2m+i+1,2m+i+1 , i=1,… ,n, the
ven root vectors and corresponding roots of G are given by,

ejk − ek+m,j+m ↔ � j − �k, j � k = 1,…,m ,

ej,k+m − ek,j+m ↔ � j + �k, j  k = 1,…,m ,

ej+m,k − ek+m,j ↔ − � j − �k, j  k = 1,…,m ,

ej,2m+1 − e2m+1,j+m ↔ � j, j = 1,…,m ,
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ej+m,2m+1 − e2m+1,j ↔ − � j, j = 1,…,m ,

e2m+1+j,2m+1+k − en+2m+1+k,n+2m+1+j ↔ � j − �k, j � k = 1,…,n ,

e2m+1+j,2m+1+k+n + e2m+1+k,2m+1+j+n ↔ � j + �k, j � k = 1,…,n ,

e2m+1+n+j,2m+1+k + e2m+1+n+k,2m+1+j ↔ − � j − �k, j � k = 1,…,n ,

nd the odd ones by

ej,2m+1+k − e2m+1+n+k,j+m ↔ � j − �k, j = 1,…,m, k = 1,…,n ,

em+j,2m+1+k − e2m+1+n+k,j ↔ − � j − �k, j = 1,…,m, k = 1,…,n ,

e2m+1,2m+1+k − e2m+1+n+k,2m+1 ↔ − �k, k = 1,…,n ,

ej,2m+1+n+k + e2m+1+k,m+j ↔ � j + �k, j = 1,…,m, k = 1,…,n ,

em+j,2m+1+n+k + e2m+1+k,j ↔ − � j + �k, j = 1,…,m, k = 1,…,n ,

e2m+1,2m+1+n+k + e2m+1+k,2m+1 ↔ �k, k = 1,…,n .

The distinguished set of simple roots and the corresponding Dynkin diagram of B�m �n� are
iven in Table I.

Step 1. Delete node i from the distinguished Dynkin diagram. The corresponding diagram is
he Dynkin diagram of G0=H+sl�i� � B�m �n− i� for i=1,… ,n and of G0=H+sl�j �n� � Bm−j for
=n+ j , j=1,… ,m. There are four simple G0-modules and B�m �n�=G−2 � G−1 � G0 � G+1 � G+2,
here for i=1,…n:

G−1 = span�e2m+1,2m+1+n+k + e2m+1+k,2m+1,e2m+1+k,2m+1+n+l + e2m+1+l,2m+1+n+k,e2m+1+k,2m+1+l

− en+2m+1+l,n+2m+1+k,ep,2m+1+n+k + e2m+1+k,m+p,em+p,2m+1+n+k + e2m+1+k,p;

k = 1,…,i, l = i + 1,…,n, p = 1,…,m�, with N = 2i�m + n� − i�2i − 1�; �4.2�

nd for i=n+ j , j=1,…m:

G−1 = span�e2m+1,2m+1+n+k + e2m+1+k,2m+1,ep,2m+1 − e2m+1,m+p,ep,m+q − eq,m+p,epq

− em+q,m+p,eq,2m+1+n+k + e2m+1+k,m+q,em+q,2m+1+n+k + e2m+1+k,q;

k = 1,…,n, p = 1,…, j, q = j + 1,…,m�, with N = 2i�m + n� − i�2i − 1� . �4.3�

It is interesting to give R for i=n+m, because then the number of creation or annihilation
operators is N=n+m. One can label �and rescale� the CAOs as follows:

bj
− � Bj

− = − �2�e2m+1,2m+1+n+j + e2m+1+j,2m+1�, j = 1,…,n ,

bj
+ � Bj

+ = �2�e2m+1,2m+1+j − e2m+1+n+j,2m+1�, j = 1,…,n , �4.4�

b− � F− = �2�ej,2m+1 − e2m+1,m+j�, j = 1,…,m ,
n+j j
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bn+j
+ � Fj

+ = �2�e2m+1,j − em+j,2m+1�, j = 1,…,m . �4.5�

ote that

deg�bj
±� = �j� = �1 if j = 1,…,n

0 if j = n + 1,…,n + m .
 �4.6�

here are no quadratic relations, and R consists of triple relations only:

��bj
�,bk

�	,bl
�	 = − 2� jl��,−��

�l��− 1��k��l�bk
� + 2��l��kl��,−�bj

�,

�4.7�
�,�,� = ± or ± 1; j,k,l = 1,…,n + m .

ote that Bj
± , j=1,… ,n �respectively, Fk

± ,k=1,… ,m� are para-Bose �respectively, para-Fermi�
AOs, namely

��Bj
�,Bk

��,Bl
�� = �� − ��� jlBk

� + �� − ���klBj
�,

�4.8�
�,�,� = ± or ± 1; j,k,l = 1,…,n;

��Fj
�,Fk

��,Fl
�� = 1

2 �� − ��2�klFj
� − 1

2 �� − ��2� jlFk
�,

�4.9�
�,�,� = ± or ± 1; j,k,l = 1,…,m .

he fact that B�m �n� can be generated by n pairs of para-Bose and m pairs of para-Fermi operators
as been discoved in Ref. 19.

Step 2. If we delete two or more nodes from the distinguished Dynkin diagram, the resulting
-gradings of B�m �n� are no longer of the form �2.3�.

Step 3. Now we continue with the extended Dynkin diagram, also given in Table I. Delete
ode i=0,1 ,… ,n+m from the extended distinguished Dynkin diagram. The remaining diagram is

that of G0=B�m �n� ,A1 � B�m �n−1� ,C2 � B�m ,n−2� ,… ,Cn−1 � B�m �1� ,Cn � Bm ,C�n+1�
� Bm−1 ,D�2 �n� � Bm−2 ,… ,D�m−1 �n� � A1 ,D�m �n�. In all these cases there is only one

0-module, so there are no contributions to the classification.
Step 4. Delete the adjacent nodes �i−1� and i , i=2,3 ,… ,n from the extended distinguished

ynkin diagram. The remaining diagram is that of G̃0=A1 � B�m �n−2� for i=2, of G̃0=Ci−1

� B�m �n− i� for i=3,… ,n−1 and of G̃0=Cn−1 � Bm for i=n. In each case there are seven
˜

0-modules gk, one of which is invariant under � �say g1�. Then one has to put G0=H+ G̃0+g1,
nd in each case one finds G0�H+B�m �n−1�. Now there are four G0-modules and B�m �n�
G−2 � G−1 � G0 � G+1 � G+2 with

G−1 = span�e2m+1,2m+1+n+i + e2m+1+i,2m+1,e2m+1+i,2m+1+n+j + e2m+1+j,2m+1+n+i,e2m+1+i,2m+1+j

− en+2m+1+j,n+2m+1+i, i � j = 1,…,n;ek,2m+1+n+i + e2m+1+i,m+k,em+k,2m+1+n+i + e2m+1+i,k,

k = 1,…,m� ,

nd N=2�m+n�−1. Observe that in this case G−2=span�e2m+1+i,2m+1+n+i�, and all these cases are
somorphic to that of Step 1 with i=1.

Step 5. Delete the adjacent nodes �i−1� and i , i=n+ j , j=1,2 ,… ,m from the extended dis-

inguished Dynkin diagram. The remaining diagram is that of G̃0=Cn � Bm−1 for j=1, of G̃0

C�n+1� � Bm−2 for j=2, of G̃0=D�j−1 �n� � Bm−j for j=3,… ,m−2, of G̃0=D�m−2 �n� � A1 for

j=m−1, and of G̃0=D�m−1 �n� for j=m. In each case there are five G̃0-modules gk, one of which

s invariant under � �say g1�. Then one has to put G0=H+ G̃0+g1, and in each case one finds
0�H+B�m−1 �n�. Now there are two G0-modules and B�m �n�=G−1 � G0 � G+1 with
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G−1 = span�ej,2m+1 − e2m+1,j+m,ej,k+m − ek,j+m,ejk − ek+m,j+m, j � k = 1,…,m;ej,2m+1+n+l

+ e2m+1+l,m+j,ej,2m+1+l − e2m+1+n+l,j+m, l = 1,…,n� , �4.10�

nd N=2�m+n�−1. All these cases are mutually isomorphic.
Step 6. Delete the nonadjacent nodes i , j , i j−1, j=3,… ,n from the extended distinguished

Dynkin diagram. The remaining diagram is that of G̃0=Ci � sl�j− i� � B�m �n− j� �for i=1 instead

f Ci we have A1�. In each case there are seven G̃0-modules gk, one of which is invariant under �

say g1�. Then one has to put G0=H+ G̃0+g1, and in each case one finds G0�H+sl�j− i�
� B�m �n− j+ i�. Now there are four G0-modules and B�m �n�=G−2 � G−1 � G0 � G+1 � G+2. All
hese cases are isomorphic to those in Step 1 with i=2,… ,n−1.

Step 7. Delete the nonadjacent nodes i , j , i=1,… ,n , j=n+1,… ,n+m �but �i , j�� �n ,n+1��
from the extended distinguished Dynkin diagram. The remaining diagram is that of G̃0=Ci

� sl�j−n �n− i� � Bn+m−j �for i=1 instead of Ci we have A1�. In each case there are seven
˜

0-modules gk, one of which is invariant under � �say g1�. Then one has to put G0=H+ G̃0+g1,
nd one always finds G0�H+sl�j−n �n− i� � B�n+m− j � i�. Now there are four G0-modules and
�m �n�=G−2 � G−1 � G0 � G+1 � G+2, where

G−1 = span�ek,2m+1 − e2m+1,k+m,e2m+1,2m+1+n+l + e2m+1+l,2m+1,ek,2m+1+n+p + e2m+1+p,m+k,ek,2m+1+p

− e2m+1+n+p,m+k,e2m+1+l,2m+1+n+p + e2m+1+p,2m+1+n+l,e2m+1+l,2m+1+p

− e2m+1+n+p,2m+1+n+l,es,2m+1+n+l + e2m+1+l,m+s,em+s,2m+1+n+l + e2m+1+l,s,

k = 1,…, j − n, l = i + 1,…,n, p = 1,…,i, s = j + 1 − n,…,m� , �4.11�

ith N=2�j− i��m+n�− �j− i��2�j− i�−1�. All these cases are new �i.e., not isomorphic to an earlier
case�.

Step 8. Delete the nonadjacent nodes i , j , i j−1, i=n+1,… ,n+m−2, j=n+3,n
+4,… ,n+m from the extended distinguished Dynkin diagram. The remaining diagram is that of
˜

0=D�i−n �n� � sl�j− i� � Bn+m−j �for i=n+1 instead of D�i−n �n� we have C�n+1��. In each case

here are seven G̃0-modules gk, one of which is invariant under � �say g1�. Then one has to put

0=H+ G̃0+g1, and one finds G0�H+sl�j− i� � B�m− j+ i �n�. Now there are four G0-modules,
nd B�m �n�=G−2 � G−1 � G0 � G+1 � G+2, where

G−1 = span�ek,2m+1 − e2m+1,k+m,ek,m+l − el,m+k,ekl − em+l,m+k,ek,2m+1+n+p + e2m+1+p,m+k,ek,2m+1+p

− e2m+1+n+p,m+k,

k = i − n + 1,i − n + 2,…, j − n, l = 1,2,…,i − n, j − n + 1, j − n + 2,…,m, p = 1,2,…,n� ,

�4.12�

with N=2�j− i��m+n�− �j− i��2�j− i�−1�. All these cases are isomorphic to cases of Step 7.
Step 9. If we delete three or more nodes from the extended distinguished Dynkin diagram, the

corresponding Z-grading of B�m �n� no longer has the required properties �i.e., there are non zero
subspaces Gi with �i��2�.

The next step consists of repeating this procedure for the nondistinguished Dynkin diagrams
nd their extensions. Following Ref. 17 one can obtain all such Dynkin diagrams of B�m �n�. We
ave repeated this procedure for all of them, leading to a lot of case studies but not leading to any
ew results �i.e., each case is isomorphic to one described already by means of the distinguished
iagram�.

. THE LIE SUPERALGEBRAS B„0 
n…

We consider the Lie superalgebra B�0 �n� separately because the distinguished choice of the
imple roots for B�0 �n� is different than that of B�m �n�. In Table I the distinguished simple roots,

he distinguished Dynkin diagram, and the extended distinguished Dynkin diagram are given.
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Step 1. Delete node i , i=1,… ,n from the distinguished Dynkin diagram. The corresponding
iagram is the Dynkin diagram of G0=H+sl�i� � B�0 �n− i�. There are four simple G0-modules and
�0 �n�=G−2 � G−1 � G0 � G+1 � G+2, where

G−1 = span�e1,1+n+k + e1+k,2m+1,e1+k,1+n+l + e1+l,1+n+k,e1+k,1+l − en+1+l,n+1+k,

k = 1,…,i, l = i + 1,…,n,� , �5.1�

ith N=2i�n− i�+ i. We give R for i=n, because then the number of creation or annihilation
perators is N=n. One can label the CAOs as follows:

Bj
− = − �2�e1,1+n+j + e1+j,1�, j = 1,…,n ,

�5.2�
Bj

+ = �2�e1,1+j − e1+n+j,1�, j = 1,…,n .

hese are all odd generators of B�0 �n� and the relations R consist of the triple para-Bose relations
iven already in �4.8�.

Step 2. If we delete two or more nodes from the distinguished Dynkin diagram, the resulting
-gradings of B�0 �n� are no longer of the form �2.3�.

Step 3. Delete node i , i=0,1 ,… ,n from the extended distinguished Dynkin diagram. The
remaining diagram is that of G0=B�0 �n� ,A1 � B�0 �n−1� ,C2 � B�0,n−2� ,… ,Cn−1 � B�0 �1� ,Cn.
n all these cases there is only one G0-module, so there are no contributions to the classification.

Step 4. Delete the adjacent nodes �i−1� and i , i=2,3 ,… ,n from the extended distinguished

ynkin diagram. The remaining diagram is that of G̃0=A1 � B�0 �n−2� for i=2, of G̃0=Ci−1

� B�0 �n− i� for i=3,… ,n−1, and of G̃0=Cn−1 for i=n. In each case there are seven G̃0-modules

k, one of which is invariant under � �say g1�. Then one has to put G0=H+ G̃0+g1, and in each
ase one finds G0�H+B�0 �n−1�. Now there are four G0-modules and B�0 �n�=G−2 � G−1 � G0

� G+1 � G+2 with

G−1 = span�e1,1+n+i + e1+i,1,e1+i,1+n+j + e1+j,1+n+i,e1+i,1+j − en+1+j,n+1+i, i � j = 1,…,n� ,

=2n−1, and G−2=span�e1+i,1+n+i�. All these cases are isomorphic to those of Step 1 with i=1.
Step 5. Delete the nonadjacent nodes i , j from the extended distinguished Dynkin diagram.

he remaining diagram is that of G̃0=Ci � sl�j− i� � B�0 �n− j� �for i=1, G̃0=A1 � sl�j−1�
� B�0 �n− j�; for j=n , G̃0=Ci � sl�n− i��. In each case there are seven G̃0-modules gk, one of which

s invariant under � �say g1�. Then one has to put G0=H+ G̃0+g1, and in each case one finds

0�H+sl�j− i� � B�0 �n− j+ i�. Now there are four G0-modules and B�0 �n�=G−2 � G−1 � G0

� G+1 � G+2. All these cases are isomorphic to those in Step 1 with i=2,… ,n−1.
Step 6. If we delete three or more nodes from the extended distinguished Dynkin diagram, the

orresponding Z-grading of B�0 �n� no longer has the required properties �i.e., there are nonzero
ubspaces Gi with �i��2�.

In the case of B�0 �n� any other choice of simple roots is equivalent to the distinguished
hoice, so there are no more cases to study.

I. THE LIE SUPERALGEBRAS D„m 
n…

G=D�m �n��osp�2m �2n� is the subalgebra of sl�2m �2n� consisting of matrices of the form
4.1� with the middle row and column deleted. The Cartan subalgebra H of G is again the subspace
f diagonal matrices D. Putting �i�D�=dii , i=1,… ,m ,�i�D�=d2m+i,2m+i , i=1,… ,n, the even root
ectors and corresponding roots of G are given by

ejk − ek+m,j+m ↔ � j − �k, j � k = 1,…,m ,
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ej,k+m − ek,j+m ↔ � j + �k, j  k = 1,…,m ,

ej+m,k − ek+m,j ↔ − � j − �k, j  k = 1,…,m ,

e2m+j,2m+k − en+2m+k,n+2m+j ↔ � j − �k, j � k = 1,…,n ,

e2m+j,2m+k+n + e2m+k,2m+j+n ↔ � j + �k, j � k = 1,…,n ,

e2m+n+j,2m+k + e2m+n+k,2m+j ↔ − � j − �k, j � k = 1,…,n ,

nd the odd root vectors and roots by

ej,2m+k − e2m+n+k,j+m ↔ � j − �k, j = 1,…,m, k = 1,…,n ,

em+j,2m+k − e2m+n+k,j ↔ − � j − �k, j = 1,…,m, k = 1,…,n ,

ej,2m+n+k + e2m+k,m+j ↔ � j + �k, j = 1,…,m, k = 1,…,n ,

em+j,2m+n+k + e2m+k,j ↔ − � j + �k, j = 1,…,m, k = 1,…,n .

The distinguished set of simple roots, the corresponding Dynkin diagram and its extension are
iven in Table I.

Step 1. Delete node i , i=1,… ,m+n−2 from the distinguished Dynkin diagram. The corre-
ponding diagram is that of G0=H+D�m �n−1� for i=1, of G0=H+sl�i� � D�m �n− i� for i
2,… ,n−1, of G0=H+sl�n� � Dm for i=n, of G0=H+sl�i−n �n� � Dm+n−i for i=n+1,… ,m+n
3, and of G0=H+sl�m−2 �n� � A1 � A1 for i=m+n−2. There are four simple G0-modules and
�m �n�=G−2 � G−1 � G0 � G+1 � G+2, where for, i=1,… ,n:

G−1 = span�e2m+j,2m+n+k + e2m+k,2m+j+n,e2m+j,2m+k − en+2m+k,n+2m+j,el,2m+n+j + e2m+j,m+l,em+l,2m+n+j

+ e2m+j,l; j = 1,…,i, k = i + 1,…,n, l = 1,…,m� �6.1�

ith N=2i�m+n− i�; whereas for i=n+1,… ,m+n−2:

G−1 = span�ek,2m+n+j + e2m+j,m+k,em+k,2m+n+j + e2m+j,k,el,m+k − ek,m+l,elk − em+k,m+l;

j = 1,…,n, k = i − n + 1,…,m, l = 1,…,i − n,� , �6.2�

ith N=2i�m+n− i�.
Step 2. Delete node m+n−1 or m+n from the distinguished Dynkin diagram. The correspond-

ing diagram is the Dynkin diagram of G0=H+sl�m �n�. There are two simple G0-modules and
�m �n�=G−1 � G0 � G+1, where, for m+n−1:

G−1 = span�ej,m+k − ek,m+j, j  k = 1,…,m − 1, e2m+q,2m+n+s + e2m+s,2m+n+q, q � s = 1,…,n,

elm + e2m,m+l,el,2m+n+p + e2m+p,m+l,e2m,2m+n+p + e2m+p,m,

l = 1,…,m − 1, p = 1,…,n�; �6.3�

nd for m+n:

G−1 = span�ej,m+k − ek,m+j, j  k = 1,…,m, e2m+p,2m+n+s + e2m+s,2m+n+p, p � s = 1,…,n,

ej,2m+n+l + e2m+l,m+j, j = 1,…,m, l = 1,…,n� . �6.4�

oth cases have N= �m+n��m+n+1� /2−m, and they are isomorphic.

Step 3. Upon deleting two nodes i and j �except i=m+n−1, j=m+n� or more from the
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istinguished Dynkin diagram of D�m �n�, the corresponding Z-gradings no longer have the re-
uired property �there are nonzero Gi with �i��2�.

Step 4. Delete node m+n−1 and m+n from the distinguished Dynkin diagram. We have G0

H+sl�m−1 �n�. There are six simple G0-modules. All the possible combinations of these mod-
les give rise to gradings of the form �2.3�. There are essentially three different ways in which
hese G0-modules can be combined. To characterize these three cases, it is sufficient to give only

−1:

G−1 = span�ejm − e2m,m+j,ej,2m − em,m+j,em,2m+k − e2m+n+k,2m,em,2m+n+k + e2m+k,2m;

j = 1,…,m − 1, k = 1,…,n� , �6.5�

ith N=2�m+n−1�;

G−1 = span�ejm − e2m,m+j,e2m,2m+n+k + e2m+k,m,em+j,l − em+l,j,em+j,2m+k − e2m+n+k,j,e2m+n+k,2m+p

+ e2m+n+p,2m+k; j = 1,…,m − 1, k = 1,…,n, j  l = 1,…,m − 1, k � p = 1,…,n� ,

�6.6�

ith N= �m+n��m+n+1� /2−m;

G−1 = span�ej,m+l − el,m+j,ej,2m+n+k + e2m+k,m+j,e2m+k,2m+n+p + e2m+p,2m+n+k,em+j,m − e2m,j,e2m,2m+k

− e2m+n+k,m; j = 1,…,m − 1, k = 1,…,n, j  l = 1,…,m − 1, k � p = 1,…,n� ,

�6.7�

ith N= �m+n��m+n+1� /2−m. The cases �6.6� and �6.7� are isomorphic.
Step 5. Delete node i , i=0,1 ,… ,n+m from the extended distinguished Dynkin diagram. The

remaining diagram is that of G0=D�m �n� ,A1 � D�m �n−1� ,C2 � D�m �n−2� ,… ,Cn−1

� D�m �1� ,Cn � Dm ,C�n+1� � Dm−1 ,D�2 �n� � Dm−2 ,… ,D�m−2 �n� � A1 � A1 ,D�m �n� ,D�m �n�.
n all these cases there is only one G0-module, so there are no contributions to the classification.

Step 6. Delete the adjacent nodes �i−1� and i , i=2,3 ,… ,n from the extended distinguished

ynkin diagram. The remaining diagram is that of G̃0=A1 � D�m �n−2� for i=2, of G̃0=Ci−1

� D�m �n− i� for i=3,… ,n−1 and of G̃0=Cn−1 � Dm for i=n. In each case there are seven
˜

0-modules gk, one of which is invariant under � �say g1�. Then one has to put G0=H+ G̃0+g1,
nd in each case one finds G0�H+D�m �n−1�. Now there are four G0-modules and D�m �n�
G−2 � G−1 � G0 � G+1 � G+2 with

G−1 = span�e2m+k,2m+n+i + e2m+i,2m+n+k,e2m+i,2m+k − e2m+n+k,2m+n+i, i � k = 1,…,n,

el,2m+n+i + e2m+i,m+l,em+l,2m+n+i + e2m+i,l, l = 1,…,m� ,

=2�m+n−1� and G−2=span�e2m+i,2m+n+i�. All these cases are isomorphic to that of Step 1 with
=1.

Step 7. Delete the adjacent nodes �i−1� and i , i=n+1,… ,m+n−1 from the extended distin-

uished Dynkin diagram. The remaining diagram is that of G̃0=Cn � Dm−1 for i=n+1, of G̃0

C�n+1� � Dm−2 for i=n+2, of G̃0=D�i−n−1 �n� � Dm+n−i for i=n+3,… ,m+n−3, of G̃0=D�m
3 �n� � A1 � A1 for i=m+n−2 and of G̃0=D�m−2 �n� � A1 for i=m+n−1. In each case there are

ve G̃0-modules gk, one of which is invariant under � �say g1�. Then one has to put G0=H+ G̃0

g1, and in each case one finds G0�H+D�m−1 �n�. Now there are two G0-modules and
�m �n�=G−1 � G0 � G+1 with

G−1 = span�ei−n,2m+n+j + e2m+j,m+i−n,ei−n,2m+j − e2m+n+j,m+i−n, j = 1,…,n,

ek,m+i−n − ei−n,m+k,ei−n,k − em+k,m+i−n, i − n � k = 1,…,m� �6.8�
nd N=2�m+n−1�. All these cases are mutually isomorphic.
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Step 8. Delete the adjacent nodes m+n−1 and m+n from the extended distinguished Dynkin
iagram. The remaining diagram is that of G0�D�m−1 �n�. There are two G0-modules and
�m �n�=G−1 � G0 � G+1 with

G−1 = span�em,2m+n+j + e2m+j,2m,em,2m+j − e2m+n+j,2m, j = 1,…,n,

ek,2m − em,m+k,em,k − em+k,2m, k = 1,…,m − 1� , �6.9�

ith N=2�m+n−1�. This case and all cases from Step 7 are isomorphic.
Step 9. Delete the nonadjacent nodes i , j , i j−1, j=3,… ,n from the extended distin-

guished Dynkin diagram. The remaining diagram is that of G̃0=Ci � sl�j− i� � D�m �n− j� �for i

1 instead of Ci we have A1�. In each case there are seven G̃0-modules gk, one of which is

nvariant under � �say g1�. Then one has to put G0=H+ G̃0+g1, and in each case one finds G0

H+sl�j− i� � D�m �n− j+ i�. Now there are four G0-modules and D�m �n�=G−2 � G−1 � G0

� G+1 � G+2. All these cases are isomorphic to those of Step 1 with i=2,… ,n−1.
Step 10. Delete the nonadjacent nodes i , j , i=1,… ,n , j=n+1,… ,n+m−2 �but �i , j�� �n ,n

+1�� from the extended distinguished Dynkin diagram. The remaining diagram is that of G̃0=Ci

� sl�j−n �n− i� � Dm+n−j �for j=n+m−2 instead of Dn+m−j we have A1 � A1�. In each case there are

even G̃0-modules gk, one of which is invariant under � �say g1�. Then one has to put G0=H

G̃0+g1, and in each case one finds G0�H+sl�j−n �n− i� � D�m+n− j � i�. Now there are four

0-modules and D�m �n�=G−2 � G−1 � G0 � G+1 � G+2 with

G−1 = span�ekl − em+l,m+k,ek,m+l − el,m+k,er,2m+n+s + e2m+s,m+r,em+l,2m+n+p + e2m+p,l,

ek,2m+q − e2m+n+q,m+k,e2m+q,2m+n+p + e2m+p,2m+n+q,e2m+p,2m+q − e2m+n+q,2m+n+p,

k = 1,…, j − n, l = j − n + 1,…,m, r = 1,…,m, s = 1,…,n, q = 1,…,i, p = i

+ 1,…,n� , �6.10�

with N=2�j− i��m+n− j+ i�.
Step 11. Delete the nonadjacent nodes i , j , i=1,… ,n, and j=n+m−1 or n+m from the

extended distinguished Dynkin diagram. The remaining diagram is that of G0=Ci � sl�m �n− i�.
here are four G0-modules and D�m �n�=G−2 � G−1 � G0 � G+1 � G+2 with

G−1 = span�ek,2m+p − e2m+n+p,m+k,ek,2m+n+p + e2m+p,m+k,e2m+p,2m+n+q + e2m+q,2m+n+p,e2m+q,2m+p

− e2m+n+p,2m+n+q; k = 1,…,m, p = 1,…,i, q = i + 1,…,n� �6.11�

or j=m+n and a similar expression for j=m+n−1. Naturally, both cases are isomorphic and N
=2i�m+n− i�.

Step 12. Delete the nonadjacent nodes i , j , i=n+1,… ,m+n−2, j=n+m−1 or n+m from the
extended distinguished Dynkin diagram. The remaining diagram is that of G0=D�i−n �n� � sl�m

n− i� �if i=n+1 instead of D�i−n �n� we have C�n+1��. There are four G0-modules and
�m �n�=G−2 � G−1 � G0 � G+1 � G+2 with

G−1 = span�ekl − em+l,m+k,em+k,l − em+l,k,em+l,2m+n+p + e2m+p,l;em+l,2m+p − e2m+n+p,l,

k = 1,…,i − n, l = i − n + 1,…,m, p = 1,…,n� , �6.12�

or j=m+n and a similar expression for j=m+n−1, both having N=2i�m+n− i�. The cases here
and in Step 10 with one and the same G0 and N are isomorphic.

Step 13. Delete the nonadjacent nodes i , j , i j−1, i=n+1,… ,n+m−4, j=n+3,… ,n+m

−2 from the extended distinguished Dynkin diagram. The remaining diagram is that of G̃0=D�i
n �n� � sl�j− i� � Dm+n−j �for i=n+1 instead of D�i−n �n� we have C�n+1�, for j=m+n−2 in-

stead of Dm+n−j we have A1 � A1�. In each case there are seven G̃0-modules gk, one of which is
˜
nvariant under � �say g1�. Then one has to put G0=H+G0+g1, and in each case one finds G0
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H+sl�j− i� � D�m− j+ i �n�. Now there are four G0-modules and D�m �n�=G−2 � G−1 � G0

� G+1 � G+2 with

G−1 = span�ekl − em+l,m+k,em+k,l − em+l,k,em+l,2m+n+q + e2m+q,l,em+l,2m+q − e2m+n+q,l,

k = 1,…,i − n, j − n + 1,…,m, l = i − n + 1,…, j − n, q = 1,…,n�

with N=2�j− i��m+n− j+ i�. All of these are isomorphic to cases in Step 12.
Step 14. If we delete three or more nodes from the extended distinguished Dynkin diagram,

the corresponding Z-grading of D�m �n� has no longer the required properties �i.e., there are
non-zero subspaces Gi with �i��2�.

Step 15. Also here, we have considered all the nondistinguished Dynkin diagrams and their
xtensions, following Ref. 17. Repeating our procedure for all of them leads again to a lot of case
tudies, most of which are isomorphic to results of the previous steps. There is, however, one extra
ase that is not covered in the previous steps, and that we shall briefly describe. Consider the
ondistinguished Dynkin diagrams of D�m �n� of the following form:

n this diagram, each dot stands for a white or gray circle, depending upon whether the corre-
ponding simple root is even or odd. All these other simple roots are of the form �−��, where �
nd �� can be a �i or a � j. For example, root m+n−1 is either �n−1−�n �in which case the circle
s white� or �m−�n �in which case it is gray�. Deleting node i �i=1,… ,m+n−2� yields the
nondistinguished� Dynkin diagram of G0=sl�k � l� � D�m−k �n− l�. Most of these cases are iso-
orphic to those already found in Step 10 or 11. However, the case G0=H+sl�m−1 � l� � D�1 �n
l�=H+sl�m−1 � l� � C�n− l+1� �l=0,… ,n−1� did not occur before. This adds a new case to the
lassification, for which the length of the grading is 5. From a detailed analysis, it follows that this
s the only extra case that can be obtained from the nondistinguished Dynkin diagrams �extended
r not�.

II. THE LIE SUPERALGEBRAS C„n…

Let G=C�n�=D�1 �n−1�=osp�2 �2n−2�. For a description of the root vectors, we refer to Sec.
VI. The even roots are of the form ±� j ±�k�j ,k=1,… ,n−1� and the odd roots are ±�±�k�k

1,… ,n−1�. This Lie superalgebra is treated separately from D�m �n� because its distinguished
ynkin diagram is different �see Table I�, and its structure is also different �it is a type I Lie

uperalgebra4�.
Step 1. Delete node 1 from the distinguished Dynkin diagram. Then the corresponding dia-

ram is that of G0=Cn−1. There are only two G0-modules and C�n� has the grading C�n�=G−1

� G0 � G+1, where

G−1 = span�e1,i+2 − en+1+i,2,e1,n+1+i + ei+2,2, i = 1,…,n − 1� ,

�7.1�
G+1 = span�e2,n+1+i + ei+2,1,e2,i+2 − en+1+i,1, i = 1,…,n − 1� ,

ith N=2�n−1�. Putting

c−,i
− = e1,2+i − en+1+i,2, c+,i

− = e1,n+1+i + e2+i,2,

c−,i
+ = e2,n+1+i + e2+i,1, c+,i

+ = e2,2+i − en+1+i,1,

he operators c�i
± ,�= ± , i=1,… ,n−1, satisfy the following relations:

��c− ,c+ �,c+ � = �����ijc
+ − �����ikc

+ + ��−��� jkc
+ ,
�i �j �k �k �j −�i
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��c�i
− ,c�j

+ �,c�k
− � = − �����ijc�,k

− + ����� jkc�i
− + ��−���ikc−�j

− ,

�c−i
− ,c+j

+ � = �c−j
− ,c+i

+ �, �c+i
− ,c−j

+ � = �c+j
− ,c−i

+ � ,

�c�i
− ,c�j

− � = �c�i
+ ,c�j

+ � = 0. �7.2�

Here and throughout, by convention, � ,� ,� are written as ± when used as subscripts, and as ±1
hen used algebraically as multipliers.�

Step 2. Delete node i , i=2,… ,n−1, from the distinguished Dynkin diagram. The correspond-
ng diagram is the Dynkin diagram of G0=H+sl�1 � i−1� � Cn−i �if i=n−1,Cn−i=A1�. There are
our simple G0-modules and C�n�=G−2 � G−1 � G0 � G+1 � G+2 where

G−1 = span�ej+2,k+2 − en+1+k,n+1+j,ej+2,n+1+k + ek+2,n+1+j,e1,k+2 − en+1+k,2,e1,n+1+k + ek+2,2, ;

j = 1,…,i − 1, k = i,…,n − 1� , �7.3�

ith N=2i�n− i�. An interesting case is that with i=n−1 and N=2�n−1�.
Step 3. Delete node n from the distinguished Dynkin diagram. Then the corresponding dia-

gram is that of G0=sl�1 �n−1�. There are only two G0-modules and C�n� has grading C�n�
G−1 � G0 � G+1, where

G−1 = span�ek+2,n+1+l + el+2,n+1+k, k � l = 1,…,n − 1, e1,n+1+j + ej+2,2, j = 1,…,n − 1� .

�7.4�

his is also an interesting case, since there are

N =
n�n + 1�

2
− 1

upercommuting annihilation �respectively, creation� operators.
Step 4. Upon deleting two nodes i and j �except i=1, j=n� or more from the distinguished

ynkin diagram of C�n�, the corresponding Z-gradings no longer have the required property �there
re nonzero Gi with �i��2�.

Step 5. Delete node 1 and n from the distinguished Dynkin diagram. We have G0=H+sl�n
1�. There are six simple G0-modules. All the possible combinations of these modules give rise to
radings of the form C�n�=G−2 � G−1 � G0 � G+1 � G+2. There are essentially three different ways
n which these G0-modules can be combined. To characterize these three cases, it is sufficient to
ive only G−1:

G−1 = span�ej+2,n+k+1 + ek+2,n+j+1, j � k = 1,…,n − 1, e1,i+2 − en+i+1,2, i = 1,…,n − 1� ,

�7.5�

ith N=n�n+1� /2−1;

G−1 = span�e1,k+2 − en+k+1,2,e2,k+2 − en+k+1,1, k = 1,…,n − 1� , �7.6�

ith N=2�n−1�;

G−1 = span�e1,n+k+1 + ek+2,2, k = 1,…,n − 1, en+l+1,p+2 + en+p+1,l+2, l � p = 1,…,n − 1� ,

�7.7�

ith N=n�n+1� /2−1. It is interesting to give the algebraic relations for �7.6�, since the number of
reation and annihilation operators is N=2�n−1�. One can label the CAOs as follows �k
1,… ,n−1�:

c− = e1,k+2 − en+k+1,2, c− = e2,k+2 − en+k+1,1,
−k +k
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c−k
+ = e2,n+k+1 + ek+2,1, c+k

+ = e1,n+k+1 + ek+2,2.

he CAOs c�k
± ,�= ± ,k=1,… ,n−1, satisfy the relations �� ,� ,�=± or ±1; j ,k , l=1,… ,n−1�:

�c�j
� ,c�k

� � = �c−j
− ,c+k

+ � = �c+j
− ,c−k

+ � = 0,

�c+j
− ,c+k

+ � = �c−j
− ,c−k

+ �, j � k ,

�c�j
� ,c−�k

� � = �c�k
� ,c−�j

� � ,

��c�j
� ,c�k

� �,c�l
� � = 0,

��c�j
� ,c−�k

� �,c�l
−�� = − ��klc−�j

� − �� jlc−�k
� ,

��c�j
− ,c�k

+ �,c�l
− � = − �klc�j

− − �− 1����� jkc�l
− ,

��c�j
− ,c�k

+ �,c�l
+ � = �− 1����� jkc�l

+ + � jlc�k
+ . �7.8�

Step 6. Delete node i , i=0,1 ,… ,n, from the extended distinguished Dynkin diagram. The
emaining diagram is that of G0=C�n� ,C�n� ,sl�2 �1� � Cn−2 ,C�3� � Cn−3 ,… ,Cn−1 � A1 ,C�n�. In
ll these cases there is only one G0-module, so there are no contributions to the classification.

Step 7. Delete the adjacent nodes i and i+1, i=2,3 ,… ,n−2, from the extended distinguished

ynkin diagram. The remaining diagram is that of G̃0=H+sl�2 �1� � Cn−3 for i=2 and of G̃0=H

C�i� � Cn−i−1 for i=3,… ,n−2. In each case there are seven G̃0-modules gk, one of which is

nvariant under � �say g1�. Then one has to put G0=H+ G̃0+g1, and in each case one finds G0

H+C�n−1�. Now there are four G0-modules and C�n�=G−2 � G−1 � G0 � G+1 � G+2 with

G−1 = span�ei+2,n+k+1 + ek+2,n+i+1,ei+2,k+2 − en+k+1,n+i+1,e1,n+i+1 + ei+2,2,e2,n+i+1 + ei+2,1;

k � i = 1,…,n − 1� �7.9�

nd N=2�n−1�. All these cases are mutually isomorphic.
Step 8.Delete the adjacent nodes n−1 and n from the extended distinguished Dynkin diagram.

he remaining diagram is that of G0�H+C�n−1�. This case turns out to be isomorphic to those
f Step 7.

Step 9. Delete the nonadjacent nodes i , i=2,3 ,… ,n−2, and j=n from the extended distin-
uished Dynkin diagram. The remaining diagram is that of G0=H+C�i� � sl�n− i� �for i=2 instead
f C�i� we have sl�2 �1��. In each case there are four G0-modules and C�n�=G−2 � G−1 � G0

� G+1 � G+2 with

G−1 = span�ek+2,l+2 − en+1+l,n+1+k,en+1+k,l+2 + en+l+1,k+2,e1,l+2 − en+l+1,2,e2,l+2 − en+l+1,1;

l = i,…,n − 1, k = 1,…,i − 1� �7.10�

nd N=2i�n− i�. These are all new cases.
Step 10. Delete the nonadjacent nodes i j−1, i=2,3 ,… ,n−2, j=4,… ,n−1 from the ex-

ended distinguished Dynkin diagram. The remaining diagram is that of G̃0=H+C�i� � sl�j− i�
� Cn−j �for i=2 instead of C�i� we have sl�2 �1�, for j=n−1 instead of Cn−j we have A1�. In each

ase there are seven G̃0-modules gk, one of which is invariant under � �say g1�. Then one has to

ut G0=H+ G̃0+g1, and in each case one finds G0�H+sl�j− i� � C�n− j+ i�. Now there are four
0-modules and C�n�=G−2 � G−1 � G0 � G+1 � G+2 with
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G−1 = span�ek+2,l+2 − en+1+l,n+1+k,en+1+k,l+2 + en+l+1,k+2,e1,l+2 − en+l+1,2,e2,l+2 − en+l+1,1;

l = i,…, j − 1, k = 1,…,i − 1, j,…,n − 1� �7.11�

nd N=2�j− i��n− j+ i�. All these cases are amongst those of Step 10.
Step 11. Upon deleting three or more nodes from the extended distinguished Dynkin diagram

f C�n�, the corresponding Z-gradings no longer have the required property �there are nonzero Gi

ith �i��2�.
The other nondistinguished choices for the simple root systems give no new results.

III. SUMMARY AND CONCLUSIONS

Our analysis has led to a complete classification of all GQS associated with the basic classical
ie superalgebras. Some cases in our classification have appeared earlier as examples, e.g., para-
ose statistics �5.1�, A-superstatistics �3.4� in Refs. 11 and 15, and the combined para-Bose/para-
ermi case �4.7� in Ref. 19. Some other examples are also rather simple, e.g., the alternatives to
-superstatistics in �3.5�, a statistics with two kinds of particles in �3.6�, and the statistics related

o C�n� superalgebras �7.2� and �7.8�.
Although the detailed analysis in the previous sections was necessary to present the complete

olution, it is convenient to summarize the final results in a table. Table II recapitulates the
lassification of all GQS. From this table, it follows that many of the earlier cases can be some-
hat unified in a simple form, provided one makes use of the common isomorphisms for Lie

lgebras and Lie superalgebras �such as D1=C1=A1 ,D2=A1 � A1 ,B�m �0�=Bm ,D�1 �1�=C�2�
sl�1 �2� etc.�. For A�m �n�, there are essentially two distinct cases. Either G0=H+sl�k � l�

� sl�p �q�, in which case the grading has length 3 and G±1 is fixed by G0. Or else G0=H
sl�k � l� � sl�p �q� � sl�r �s�, in which case the grading has length 5. In this second case, there are
lways three ways of combining the G0-modules in order to give some G−1. For B�m �n�, all the
ases are characterized by a G0 of the form G0=H+sl�k � l� � B�m−k ,n− l�. This includes cases
uch as sl�l� � B�m �n− l� ,sl�k �n� � Bm−k �Step 1�, B�m �n−1� �Step 4� and B�m−1 �n� �Step 5�.
lso the results for the remaining Lie superalgebras can be neatly summarized. Note that for
�m �n� �and for C�n�=D�1 �n−1�� there is one G0 which gives rise not only to different possi-
ilities for G−1 but even for N.

A striking property, see Table II, is that all basic classical Lie superalgebras, except B�0 �n�,
llow a GQS with a grading of length 3; in other words, a GQS with supercommuting creation and
nnihilation operators.

Note that a set of CAOs together with a complete set of relations R unambiguously describes
he Lie superalgebra. So each case of our classification also gives the description of a Lie super-
lgebra in terms of a number of generators subject to certain relations. This can also be reformu-
ated in terms of the notion of Lie supertriple systems.20 In fact, in our case the subspace G−1

� G+1 �i.e., the subspace spanned by all CAOs� is a Lie supertriple system for the universal
nveloping algebra U�G�.

Just as in Ref. 2, we have dealt only with a mathematical definition of generalized quantum
tatistics. In order to talk about a quantum statistics in the physical sense, one should take into
ccount additional requirements for the CAOs, related to certain quantization postulates.8 These
onditions are related to the existence of state spaces �Fock spaces�, in which the CAOs act in such
way that the corresponding observables are Hermitian operators. We refer to Sec. VII of Ref. 2

or a discussion on this. We hope that some cases of our classification will yield interesting GQS
lso from this point of view.

As a second application, we mention the possible solutions of Wigner quantum systems.21

oughly speaking, the compatibility conditions �CCs� to be satisfied by a Wigner quantum oscil-
ator system �see formula �3.7� in Ref. 22� are written in terms of certain odd operators Ai

±;
urthermore, these CCs are special triple relations. So it is of importance to investigate which
riple relations R of our current classification of GQS could provide special solutions of these

21–23 24
Cs. It is known, for instance, that there is a sl�1 �n� solution or a sl�n �3� solution. Obvi-
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usly, for a possible candidate solution all the CAOs of R should be odd operators. Let us briefly
escribe the GQSs of the current classification which have only odd CAOs. Then G−1 and G+1 are
dd subspaces, and by the grading condition it follows automatically that the GQS grading �2.3� is
onsistent with the Z2-grading. So our problem reduces to selecting those GQS from our classi-
cation with a consistent Z-grading. This is not too difficult.

For A�m �n�, one can consider i=m+1 in Step 1. Then all elements of G−1 in �3.2� are odd;

0=H+sl�m+1� � sl�n+1�, and the grading has length 3 �the case m=0 corresponds to Refs. 11
nd 21–23�. Alternatively, one can consider the cases �i , j�= �i ,m+1� or �i , j�= �m+1, j��i j� of

Step 2. In the case �i , j�= �i ,m+1�, the elements of G−1 given by �3.9� are all odd, and G0=H
sl�i� � sl�m+1− i� � sl�n+1�. In the case �i , j�= �m+1, j�, the elements of G−1 given by �3.8� are
ll odd, and G0=H+sl�m+1� � sl�k� � sl�n+1−k� with k= j−m−1. For B�m �n�, the case i=n in
tep 1 leads to a G−1 with only odd elements in �4.2�. Note that in this case G0=H+sl�n� � Bm. For
�0 �n�, this corresponds to taking i=n in Step 1, so that G−1 in �5.1� has odd elements only and

0=H+sl�n� �this is the para-Bose case�. For D�m �n�, the case i=n in Step 1 leads to a G−1 in
6.1� with odd elements only, and with G0=H+sl�n� � Dm. There is a second solution here, namely
he case i=n in Step 11; then G−1, given by �6.11� has odd elements only and G0=H+sl�m�

TABLE II. Summary of the classification: all nonisomorphic GQS associated with a classical Lie superalgebra
�LSA� are given. For each GQS, we list: the subalgebra G0 �each G0 contains the complete Cartan subalgebra
H, so we only list the remaining part of G0=H+¯�; the length � of the Z-grading; the number N of annihilation
operators; the equation in the text where �an example of� G−1 can be found.

LSA G0=H+¯ � N G−1

A�m �n� sl�k � l� � sl�p �q� 3 �k+ l��p+q� �3.2� and �3.12�
�k+ p=m+1, l+q=n+1,
k+ l�0, p+q�0�
sl�k � l� � sl�p �q� � sl�r �s� 5 �k+ l��p+q+r+s� �3.7� and �3.13�
�k+ p+r=m+1
l+q+s=n+1,
k+ l�0, p+q�0,r+s�0�

5 �p+q��k+ l+r+s� �3.8� and �3.14�

5 �r+s��k+ l+ p+q� �3.9� and �3.15�

B�m �n� sl�k � l� � B�m−k �n− l� 5 �k+ l��2m−2k+2n−2l+1� �4.2� and �4.3�,
�k=0,… ,m ; l=0,… ,n ;
�k , l�� ��0,0� , �1,0���

�4.11� and �4.12�

B�m−1 �n���k , l�= �1,0�� 3 2m+2n−1 �4.10�

B�0 �n� sl�i� � B�0 �n− i� 5 i�2n−2i+1� �5.1�
�i=1,… ,n�

D�m �n� sl�k � l� � D�m−k �n− l� 5 2�k+ l��m+n−k− l� �6.10� and �6.11�,
�k=0,1 ,… ,m ;
l=0,1 ,… ,n ;
�k , l�� ��0,0� , �1,0� , �m−1,n� , �m ,n���

�6.1� and �6.2�,

�6.12�

D�m−1 �n���k , l�= �1,0�� 3 2�m+n−1� �6.8� and �6.9�
sl�m �n���k , l�= �m ,n�� 3 �m+n��m+n+1� /2−m �6.3� and �6.4�
sl�m−1 �n���k , l�= �m−1,n�� 5 �m+n��m+n+1� /2−m �6.6� and �6.7�
sl�m−1 �n���k , l�= �m−1,n�� 5 2�m+n−1� �6.5�

C�n� sl�k � l� � D�1−k �n−1− l� 5 2�k+ l��n−k− l� �7.3� and �7.9�,
�k=0,1 ; l=1,… ,n−2� �7.10� and �7.11�
Cn−1��k , l�= �1,0�� 3 2�n−1� �7.1�
sl�1 �n−1���k , l�= �1,n−1�� 3 n�n+1� /2−1 �7.4�
sl�n−1���k , l�= �0,n−1�� 5 n�n+1� /2−1 �7.5� and �7.7�
sl�n−1���k , l�= �0,n−1�� 5 2�n−1� �7.6�
� Cn. Finally for C�n� the solution provided in Step 1 has only odd elements for G−1, see �7.1�,
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ith G0=H+Cn−1. Also here there is a second solution given in Step 5 with G−1 of the form �7.6�
nd G0=H+sl�n−1�. To conclude, all the basic classical Lie superalgebras have GQSs with odd
AOs only. Whether all these cases provide special solutions to the CCs of the Wigner quantum
scillator will be treated elsewhere.
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Properly specializing the parameters in “Schnizer modules,” for types A,B,C, and
D, we get its unique primitive vector. Then we show that the module generated by
the primitive vector is an irreducible highest weight module of finite dimensional
classical quantum groups at roots of unity. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2107307�

. INTRODUCTION

The representation theory of quantum groups at roots of unity are divided into the following
wo types: one is for U� defined by DeConcini-Kac �=nonrestricted type�3 and the other is for U�

res

efined by Lusztig�=restricted type�.6 In the latter case, the classification of irreducible modules is
he same as the generic case, that is, they are classified by highest weights.6,7 In the former case,
owever, most irreducible modules are no longer highest or lowest weight modules and they are
haracterized by several continuous parameters.3 For type A, such modules are constructed very
xplicitly in Ref. 2, which are called maximal cyclic representations. For any simple Lie algebra,
chnizer introduced an alternative construction of such modules in Refs. 9 and 10, which we also
all maximal cyclic representations or “Schnizer modules.”

In Ref. 8, T. N. found that for type An-case if the continuous parameters in a maximal cyclic
epresentation are specialized properly, then there exists a unique primitive vector and the sub-
odule generated by the primitive vector is irreducible as a module of finite dimensional quantum

roup at roots of unity�denoted by U�
fin�. In this paper, we shall show that this method is applicable

o the Schnizer modules of types An ,Bn ,Cn, and Dn.
In order to explain what we shall do in this paper, let us see An-case explicitly: Let N

1
2n�n+1� be the number of positive roots, l be an odd integer greater than 3, and � be the

rimitive lth root of unity. Set Vª �Cl��N and for each a� �C��N ,b�CN, and ��Cn, we can
efine a U��sl�n+1,C��-module structure on V as follows.

Theorem 1.1 (Ref. 10): For any a= �ai,j�1�i�j�n� �C��N ,b= �bi,j�1�i�j�n�CN ,�
��1 , ¯ ,�n��Cn, we obtain a U��sl�n+1,C��-module structure on V :�� :U��sl�n+1,C��
End�V�. For any i� I,

���f i��u�m�� = �
j=i

n

�mi,j − mi+1,j + bi,j − bi+1,j − �i,j−1
m,b �u�m + �i,j� ,

���ti��u�m�� = ��i,n
m,b

u�m� ,

�
In memory of W. A. Schnizer
�Electronic Mail: yu-abe@hoffman.cc.sophia.ac.jp
�
Supported in part by JSPS Grants in Aid for Scientific Research, electronic-mail: toshiki@mm.sophia.ac.jp
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���ei��u�m�� = �
j=1

i

�mj−1,n−i+j − mj,n−i+j + bj−1,n−i+j − bj,n−i+j�

� aj,n−i+j
−1 �

k=j+1

i

�ak−1,n−i+kak.n−i+k
−1 �u�m + �

k=j+1

i

��k−1,n−i+k − �k,n−i+k� − � j,n−i+j� ,

here

�i,j
m,b = �i + mi−1,i−1 + bi−1,i−1 + �

k=i

j

�mi−1,k − 2mi,k + mi+1,k + bi−1,k − 2bi,k + bi+1,k� ,

�1 � i � n,i − 1 � j � n� ,

nd we understand that mi,jª0 if the index �i , j� is out of range and � j=k
i �¯�ª0,	 j=k

i �¯�ª1 for

 i.

Let us define a�0�= �ai,j
�0��1�i�j�n� �C��N ,b�0�= �bi,j

�0��1�i�j�n�CN, by

ai,j
�0� = 1, bi,j

�0� = 0, �1 � i � j � n� .

or any ��Cn, let us denote by V��� the U��sl�n+1,C��-module defined by ��a�0�,b�0�,� ,V�.
Proposition 1.2: For any ��Cn, there exists a unique (up to nonzero scalar multiplication)

onzero vector u0, such that eiu=0 in V��� for any i� I.
Finally, it turns out that the submodule U�u0�V��� is an irreducible highest weight

�
fin-module. By this method, we obtain all finite dimensional irreducible U�

fin-modules:
Theorem 1.3: Let ��Zl

n�Zlª �0,1 , ¯ , l−1��. Then U�u0 is a finite dimensional irreducible

�
fin�sl�n+1,C��-module of type 1 with highest weight �.

The proofs of the above-noted statements are done in a similar way to the ones in Ref. 8.
The organization of the paper is as follows: in Sec. II, we prepare notations and review the

heory of quantum groups at roots of unity briefly. In Sec. III, we introduce Schnizer modules and
how the uniqueness of primitive vectors. In the last two sections, we show that the submodule
enerated by the primitive vector is regarded as a module for the finite dimensional quantum
roup at roots of unity U�

fin of types �A�, B, C, and D. At last, we obtain that such submodule is an
rreducible U�

fin-module and all finite dimensional irreducible U�
fin-modules are obtained as such

odules.

I. QUANTUM ENVELOPING ALGEBRA Uq„g…

. Definition of quantum enveloping algebra

In this section, we define the quantum enveloping algebra Uq�g� for a generic q. Let C�q� be
he rational function field in an indeterminate q. Define

�a�qd ª
qda − q−da

qd − q−d , �a� ª �a�q,

�a�qd ! ª �a�qd�a − 1�qd ¯ �1�qd, �0� ! ª 1,

or any a ,d�Z+ª �0,1 ,2 ,…�. Let g be a finite dimensional simple Lie algebra over C of rank n
nd ��1 ,… ,�n� be the set of simple roots, Iª �1,2 ,… ,n� ,� be the set of roots �respectively, �+

e the set of positive roots�. Define the root lattice Q= � i=1
n Z�i �respectively, Q+= � i=1

n Z+�i�. Let
aij�i,j=1

n be the Cartan matrix associated with g, and d= �d1 ,… ,dn� be an element in Nn such that

iai,j =dja j,i for any i , j� I and g.c.d �d1 , ¯ ,dn�=1. In particular, d= �1, ¯ ,1� for g=sl�n

1,C� ,so�2n ,C� ,d= �1,… ,1 ,2� for g=sp�2n ,C� ,d= �2, ¯ ,2 ,1� for g=so�2n+1,C�, We denote
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he Weyl group of g by W which is generated by the simple reflections �s1 ,… ,sn�. Now, we define
he quantum enveloping algebra Uq�g� over C�q�.

Definition 2.1.: Quantum enveloping algebra Uq�g� is an associative C�q�-algebra generated
y �ei , f i , ti

±1 	 i� I� with the relations

titi
−1 = ti

−1ti = 1, titj = tjti,

tiejti
−1 = qi

aijej ,

tif jti
−1 = qi

−aijej ,

eif j − f jei = ij�ti�qi
,

�k=0

1−aij �− 1�kei
�k�ejei

�1−aij−k� = �k=0

1−aij �− 1�kf i
�k�f j f i

�1−aij−k� = 0 �i � j� ,

here

qi ª qdi,ei
�k�

ª

1

�k�qdi!
ei

k, f i
�k�

ª

1

�k�qdi!
f i

k,�ti�qi
ª

ti − ti
−1

qi − qi
−1 .

et Uq
+�g� �respectively, Uq

−�g� ,Uq
0�g�� be the C�q�-subalgebra of Uq�g� generated by �ei�i=1

n �re-
pectively, �f i�i=1

n , �ti
±1�i=1

n �.

. Non restricted specialization

In this section, we define the non restricted specializations U� for a root of unity �.
Definition 2.2.: Let AªC�q ,q−1� be the Laurent polynomial ring, UA be the A-subalgebra of

q�g� generated by �ei , f i , ti
±1 , �ti�qi

�i=1
n , l be an odd integer greater than 3, and � be a primitive lth

oot of unity such that �2di�1 for any i� I. We regard C as A-algebra by f�q�cª f��� ·c for any
f�q��A ,c�C and we denote it by C�. Now we define

U� ª UA�AC�,

nd we call U� “non-restricted specialization of Uq�g�.” By a similar manner to Definition 2.1, we
efine U�

+ ,U�
−, and U�

0, and we denote u � 1 as u for any u�UA.
Remark. (Ref. 3): One can also describe U� in terms of generators and relations. That is, U� is

n associative C-algebra generated by �ei , f i , ti
±1�i=1

n with the relations of Definition 2.1 replacing q
y �.

. Root vectors

In this section, we introduce the root vectors and their properties.
Proposition 2.3 (Refs. 3 and 4): (i) For any i� I, there exists an automorphism of U�, denoted

y Ti, such that

Ti�ei� = − f iti, Ti�ej� = �s=0

−aij �− 1�s−aijqi
−sei

�−aij−s�ejei
�s� �i � j� ,

Ti�f i� = − ti
−1ei, Ti�f j� = �s=0

−aij �− 1�s−aijqi
sf i

�s�f j f i
�−aij−s� �i � j� ,

Ti�tj� = tjti
−aij .
(ii) For w�W, let w=si1
¯sir

be a reduced expression of w, and set TwªTi1
¯Tir

. Then Tw
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s well-defined (that is, Tw does not depend on a choice of reduced expression of w�.
Definition 2.4.: Let w0 be the longest element of W ,w0=si1

¯siN
be a reduced expression of

0, and we set

�1 ª �i1
,�2 ª si1

��i2
�,…,�N ª si1

¯ siN−1
��iN

�

by the theory of the classical Lie algebra, �+= ��1 , ¯ ,�N�� and

e�k
ª Ti1

¯ Tik−1
�eik

�, f�k
ª Ti1

¯ Tik−1
�f ik

� �1 � k � N� .

e call these e�k
, f�k

“root vectors of U�.”
Definition 2.5.: Set deg�ei�ª�i ,deg�f i�ª−�i ,deg�ti�ª0.
These are compatible with the relations of U�. Therefore, we can regard U� as Q-graded

lgebra and we have

U� = �
��Q

�U���, �U����U���� � �U���+��,

or any � ,���Q, where �U���ª �u�U� 	deg�u�=��. We also use the following propositions
ater.

Proposition 2.6: (Ref. 4): We have e��U�
+� �U��� , f��U�

−� �U��−� ����+�.
Proposition 2.7 (Ref. 3):Let Z�U�� be the center of U�. We have e�

l , f�
l , ti

l�Z�U�� for any �
�+ ,1� i�n.

Next, we introduce the PBW theorem and the triangular decomposition. They will be used in
he subsequent sections. Let ��1 ,… ,�N� be as in Definition 2.4, then �+= ��1 ,… ,�N�.

Theorem 2.8 (Ref. 3): (i) �e�1

m1
¯e�N

mN 	m1 ,… ,mN�Z+� is a C-basis of U�
+.

(ii) �f�1

m1
¯ f�N

mN 	m1 ,… ,mN�Z+� is a C-basis of U�
−.

(iii) �k1
m1
¯kn

mn 	m1 ,… ,mn�Z� is a C-basis of U�
0.

(iv) Let � be the multiplication map � :U�
−

� U�
0

� U�
+→U��u− � u0 � u+�u−u0u+�. Then � is

n isomorphism of C-vector space.

II. PRIMITIVE VECTORS

We keep the settings and notations as in Sec. II.

. Schnizer modules

In this section, we introduce the Schnizer modules of U��sp�2n ,C�� ,U��so�2n+1,C�� and

��so�2n ,C��.
First, we fix the following notations. Let N be the number of positive roots, that is, N=n2 for

=sp�2n ,C� ,so�2n+1,C�, and N= �n−1�n for g=so�2n ,C�. We set

M ª �m = �mi,j�1�i��N/n�,1�j�n � ZN	0 � mi,j � l − 1 for any i, j� .

et V be the lN-dimensional C-vector space with the basis �u�m� 	m�M� and �i,j�1� i�N /n ,1
j�n� be an element in ZN such that the �i , j�-component of �i,j is 1 and the other components of

i,j are 0. �We regard u�−�i,j� as u��l−1��i,j�.� For any a= �ai,j�i,j � �C��N ,b= �bi,j�i,j �CN, and m
�mi,j�i,j �ZN, we define

a�m� = �
i,j

ai,j
mi,j, mb = �mi,j

b �i,j ª �mi,j + bi,j�i,j . �3.1�

Theorem 3.1 (Ref. 9 Theorem 3.8): Let g=sp�2n ,C� �n�2�. For any a= �ai,j�i,j=1
n

� N n N n
�C � ,b= �bi,j�i,j=1�C , and �= ��1 ,… ,�n��C , we obtain the U�-module structure on V by
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he following algebra homomorphism �a,b,� :U�→End�V�. We call these modules “Schnizer mod-
le.” For any m= �mi,j�i,j=1

n �M,

�a,b,��ej�u�m� = a�� j,j��− mj,j
b ��j

u�m + � j,j� + �
i=1

j−1

a��i,j���mi,j−1
b − mi,j

b ��j
u�m + �i,j�

+ ai,j−1aj,i
−1�mj+1,i

b − mj,i
b ��j

u�m + �i,j + �i,j−1 − � j,i�� �1 � j � n − 1� ,

�3.2�

�a,b,��en�u�m� = a��n,n��− mn,n
b ��n

u�m + �n,n� + �
i=1

n−1

a��i,n���mi,n
b − mn,i

b ��n
u�m + �i,n�

+ ai,n−1an,i
−1�mi,n−1

b − mn,i
b ��n

u�m + �i,n + �i,n−1 − �n,i�

+ ai,n−1
2 an,i

−2�mi,n
b − mn,i

b ��n
u�m + �i,n + 2�i,n−1 − 2�n,i�� , �3.3�

�a,b,��tj�u�m� = � j
−�1,j

mb
+�ju�m� �1 � i � n� , �3.4�

�a,b,��f j�u�m� = �
i=1

j

�ai,j��i,j
mb

+ �i+1,j
mb

− � j��j
u�m + �i,j�

+ aj+1,i�� j+1,i
mb

+ �i+1,j
mb

− � j��j
�u�m + � j+1,i� �1 � j � n − 1� , �3.5�

�a,b,��fn�u�m� = �
i=1

n

ai,n��i,n
mb

+ �i+1,n
mb

− �n��n
u�m + �i,n� . �3.6�

ere we set

�i,j = − �i,j + �
k=1

i−1

�− � j,k + � j+1,k − �k,j + �k,j−1� �1 � i � j � n − 1� ,

�3.7�

�i,n = − �i,n + 2�
k=1

i−1

�− �n,k + �k,n−1� �1 � i � n� ,

�i,j
mb

= �
k=i

j

�k,j
mb

�1 � i � j � n� , �3.8�

here

�i,j
mb

= − mi,j−1
b + 2mi,j

b − mi,j+1
b − mj+2,i

b + 2mj+1,i
b − mj,i

b �1 � i � j � n − 2� ,

� j,j
mb

= 2mj,j
b − mj,j+1

b − mj+2,j
b + 2mj+1,j

b − mj+1,j+1
b − mj+2,j+1

b �1 � j � n − 2� ,

�i,n−1
mb

= − mi,n−2
b + 2mi,n−1

b − 2mi,n
b − 2mn,i

b − mn−1,i
b �1 � i � n − 1� ,

�3.9�
�mb

= 2mb − 2mb + 2mb − 2mb ,
n−1,n−1 n−1,n−1 n−1,n n,n−1 n,n
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�i,n
mb

= − mi,n−1
b + 2mi,n

b − mn,i
b �1 � i � n� �n,n

mb
= 2mn,n

b ,

�i,j
mb

= − mi,j+1
b − mj+2,i

b + 2mj+1,i
b − mj,i

b + mi,j
b ,

� j+1,i
mb

= − mj,i
b + mj+1,i

b �1 � i � j � n − 2� ,

� j,j
mb

= mj,j
b − mj,j+1

b − mj+2,j
b + 2mj+1,j

b − mj+1,j+1
b − mj+2,j+1

b ,

�3.10�
� j+1,j

mb
= mj+1,j

b − mj+1,j+1
b − mj+2,j+1

b �1 � j � n − 2� ,

�i,n−1
mb

= − 2mi,n
b − mi,n−1

b + 2mn,i
b − mn−1,i

b , �n,i
mb

= − mn−1,i
b + mn,i

b �1 � i � n − 1� ,

�n−1,n−1
mb

= mn−1,n−1
b − 2mn−1,n

b + 2mn,n−1
b − 2mn,n

b , �n,n−1
mb

= mn,n−1
b − 2mn,n

b ,

�i,n
mb

= mi,n
b − mn,i

b , �1 � i � n�, �n,n
mb

= mn,n
b ,

here we understand that �i,j =�i,j =0 if the index �i , j� is out of the range.
Theorem 3.2 (Ref. 9 Theorem 3.10): Let g=so�2n+1,C� �n�3�. For any a= �ai,j�i,j=1

n

�C��N ,b= �bi,j�i,j=1
n �CN, and �= ��1 ,… ,�n��Cn, we obtain the U�-module structure on V by

he following algebra homomorphisms �a,b,� :U�→End�V�. �a,b,��ej� , �1� j�n
1� ,�a,b,��tj� ,�a,b,��f j� , �1� j�n�, as in (3.2) and (3.4)–(3.6)), and for any m= �mi,j�i,j=1

n �M,

�a,b,��en�u�m� = a��n,n��− mn,n
b ��n

u�m + �n,n� + �
i=1

n−1

a��i,n���2mi,n−1
b − mi,n

b ��n
u�m + �i,n�

+ ai,n−1an,i
−1�mi,n

b − 2mn,i
b ��n

u�m + �i,n + �i,n−1 − �n,i�� , �3.11�

here, �i,j�1� i� j�n−1�, as in (3.7), and

�i,n = − �i,n + �
k=1

i−1

�− �n,k + �k,n−1� �1 � i � n� , �3.12�

i,j
mb

�1� i� j�n� ,�i,j
mb

�1� i� j�n−2� as in (3.8) and (3.9), and

�i,n−1
mb

= − mi,n−2
b + 2mi,n−1

b − mi,n
b − 2mn,i

b − mn−1,i
b �1 � i � n − 1� ,

�n−1,n−1
mb

= 2mn−1,n−1
b − mn−1,n

b + 2mn,n−1
b − mn,n

b , �3.13�

�i,n
mb

= − mi,n−1
b + mi,n

b − mn,i
b �1 � i � n − 1� �n,n

mb
= mn,n

b ,

i,j
mb

,� j+1,i
mb

�1� i� j�n−2�, as in (3.10), and

�i,n−1
mb

= − mi,n
b + mi,n−1

b + 2mn,i
b − mn−1,i

b , �n,i
mb

= − mn−1,i
b + mn,i

b �1 � i � n − 1� ,

�3.14�
�n−1,n−1

mb
= mn−1,n−1

b − mn−1,n
b + 2mn,n−1

b − mn,n
b , �n,n−1

mb
= mn,n−1

b − mn,n
b ,

�i,n
mb

= mi,n
b − 2mn,i

b �1 � i � n�, �n,n
mb

= mn,n
b ,
here we understand that �i,j =�i,j =0 if the index �i , j� is out of the range.
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Theorem 3.3 (Ref. 9 Theorem 3.11): Let g=so�2n ,C� �n�4�. For any a
�ai,j�1�i�n−1,1�j�n� �C��N ,b= �bi,j�1�i�n−1,1�j�n�CN, and �= ��1 ,… ,�n��Cn, we obtain the

�-module structure on V by the following algebra homomorphisms �a,b,� :U�→End�V�.
�a,b,��ej� , �1� j�n−2� ,�a,b,��tj� ,�a,b,��f j� , �1� j�n�, as in (3.2) and (3.4)–(3.6), and for

ny m= �mi,j�1�i�n−1,1�j�n�M, if n=2n��n��Z�, then

�a,b,��en−1� = a��2n�−1,n−1��− mn−1,n−1
b ��n−1

u�m + �2n�−1,n−1� + �
i=1

n�−1

�a��2i−1,n−1��m2i−1,n−2
b

− m2i−1,n−1
b ��n−1

u�m + �2i−1,n−1� + a2i−1,n−2an−1,2i−1
−1 a��2i−1,n−1��m2i−1,n

b − mn−1,2i−1
b ��n−1

� u�m + �2i−1,n−1 + �2i−1,n−2 − �n−1,2i−1� + a��2i,n��m2i,n−2
b − m2i,n

b ��n−1
u�m + �2i,n�

+ a2i,n−2an−1,2i
−1 a��2i,n��m2i,n−1

b − mn−1,2i
b ��n−1

u�m + �2i,n + �2i,n−2 − �n−1,2i�� , �3.15�

�a,b,��en�u�m� = a��2n�−1,n��− mn−1,n
b ��n

u�m + �2n�−1,n� + �
i=1

n�−1

�a��2i,n−1��m2i,n−2
b − m2i,n−1

b ��n
u�m

+ �2i,n−1� + a2i,n−2an−1,2i
−1 a��2i,n−1��m2i,n

b − mn−1,2i
b ��n

u�m + �2i,n−1 + �2i,n−2 − �n−1,2i�

+ a��2i−1,n��m2i−1,n−2
b − m2i−1,n

b ��n
u�m + �2i−1,n� + a2i−1,n−2an−1,2i−1a��2i−1,n�

��m2i−1,n−1
b − mn−1,2i−1

b ��n
u�m + �2i−1,n + �2i−1,n−2 − �n−1,2i−1�� . �3.16�

f n=2n�+1�n��Z�, then

�a,b,��en−1�u�m� = a��2n�,n��− mn−1,n
b ��n−1

u�m + �2n�,n�

+ �
i=1

n�

a��2i−1,n−1���m2i−1,n−2
b − m2i−1,n−1

b ��n−1
u�m + �2i−1,n−1�

+ a2i−1,n−2an−1,2i−1
−1 �m2i−1,n

b − mn−1,2i−1
b ��n−1

� u�m + �2i−1,n−1 + �2i−1,n−2 − �n−1,2i−1��

+ �
i=1

n�−1

a��2i,n���m2i,n−2
b − m2i,n

b ��n−1
u�m + �2i,n�

+ a2i,n−2an−1,2i
−1 �m2i,n−1

b − mn−1,2i
b ��n−1

u�m + �2i,n + �2i,n−2 − �n−1,2i�� ,

�3.17�

�a,b,��en�u�m� = a��2n�,n−1��− mn−1,n−1
b ��n

u�m + �2n�,n−1� + �
i=1

n�−1

a��2i,n−1���m2i,n−2
b − m2i,n−1

b ��n
u�m

+ �2i,n−1� + a2i,n−2an−1,2i
−1 �m2i,n

b − mn−1,2i
b ��n

u�m + �2i,n−1 + �2i,n−2 − �n−1,2i��

+ �
i=1

n�

a��2i−1,n���m2i−1,n−2
b − m2i−1,n

b ��n
u�m + �2i−1,n� + a2i−1,n−2an−1,2i−1

−1 �m2i−1,n−1
b

− mn−1,2i−1
b ��n

� u�m + �2i−1,n + �2i−1,n−2 − �n−1,2i−1�� , �3.18�

here �i,j , �1� j�n−2�, as in (3.7), and
�2i−1,n−1 = �2i−1,n−1 + �2i,n − �2i−1,n−1,
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�2i,n−1 = �2i,n−1 + �2i+1,n − �2i,n−1,

�3.19�
�2i−1,n = �2i,n−1 + �2i−1,n − �2i−1,n,

�2i,n = �2i+1,n−1 + �2i,n − �2i,n, �1 � 2i,2i − 1 � n� ,

�2i−1,n−1 = �
k=1

i−1

��2k−1,n−2 − �2k−1,n−1 + �2k−1,n − �n−1,2k−1� ,

�2i,n−1 = �
k=1

i−1

��2k,n−2 − �2k,n−1 + �2k,n − �n−1,2k� ,

�3.20�

�2i−1,n = �
k=1

i−1

��2k−1,n−2 − �2k−1,n−1 + �2k−1,n − �n−1,2k−1� ,

�2i,n = �
k=1

i−1

��2k,n−2 − �2k,n−1 + �2k,n − �n−1,2k� ,

i,j
mb

�1� i� j�n� ,�i,j
mb

�1� i� j�n−3�, as in (3.8) and (3.9), and

�i,n−2
mb

= − mi,n−3
b + 2mi,n−2

b − mi,n−1
b − mi,n

b + 2mn−1,i
b − mn−2,i

b , �1 � i � n − 2� ,

�n−2,n−2
mb

= 2mn−2,n−2
b − mn−2,n−1

b − mn−2,n
b + 2mn−1,n−2

b − mn−1,n−1
b − mn−1,n

b ,

�3.21�
�i,n−1

mb
= − mi,n−2

b + 2mi,n−1
b − mn−1,i

b , �1 � i � n − 1�, �n−1,n−1
mb

= 2mn−1,n−1
b ,

�i,n
mb

= − mi,n−2
b + 2mi,n

b − mn−1,i
b , �1 � i � n − 1�, �n−1,n

mb
= 2mn−1,n

b .

i,j
mb

,� j+1,i
mb

�1� i� j�n−3�, as in (3.10), and

�i,n−2
mb

= mi,n−2
b − mi,n−1

b − mi,n
b + 2mn−1,i

b − mn−2,i
b ,

�n−1,i
mb

= mn−1,i
b − mn−2,i

b , �1 � i � n − 3� ,

�n−2,n−2
mb

= mn−2,n−2
b − mn−2,n−1

b − mn−2,n
b + 2mn−1,n−2

b − mn−1,n−1
b − mn−1,n

b ,

�3.22�
�n−1,n−2

mb
= mn−1,n−2

b − mn−1,n−1
b − mn−1,n

b ,

�i,n−1
mb

= mi,n−1
b − mn−1,i

b , �n−1,n−1
mb

= mn−1,n−1
b ,

�i,n
mb

= mi,n
b − mn−1,i

b , �1 � i � n − 2�, �n−1,n
mb

= mn−1,n
b ,
here we understand that �i,j =�i,j =0 if the index �i , j� is out of the range.
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. Existence and uniqueness of primitive vector in V

In this section, we show the existence and uniqueness of primitive vector in the specialized
chnizer modules.

We define a�0�= �ai,j
�0��i,j � �C��N ,b�0�= �bi,j

�0��i,j �CN, by

ai,j
�0� = 1, bi,j

�0� = 0 �1 � i � N/n,1 � j � n� . �3.23�

bviously, by �3.1�, for any c�ZN and m�M, we have

a�0��c� = 1, mb = m, mi,j
b = mi,j . �3.24�

or any ��C, we denote the U�-module defined by ��a�0�,b�0�,� ,V� by V���.
Proposition 3.4: Let g=sp�2n ,C��n�2� and �= ��1 ,… ,�n��Cn. A vector u�V��� satisfies

hat eiu=0 for any i� I if and only if u�Cu0, where u0=u�0,… ,0��V���. (We call these vectors
primitive vectors.”)

Proof: “If part” is obvious by �3.2� and �3.3�. So we prove “only if part.” First, we define
ri�1�i�n2�=I� I� inductively as follows: r1ª �1,1� and if rs= �i , j�, then

rs+1 ª �n,i� �1 � i � j = n� ,

rs+1 ª �i − 1, j� �1 � j � i � n,and i − 1 � j� , �3.25�

rs+1 ª �i, j + 1� �otherwise� .

nd we define Msª �m�M 	mr1
=mr2

¯ =mrs
=0��1�s�n2�. So we have

��0�� = Mn2 � Mn2−1 � ¯ � M1 � M .

ow, assume that eiu=0 for any i� I and set u=�m�Mcmu�m��V�cm�C�. We shall prove that
=�m�Ms

cmu�m� for any 1�s�n2 by the induction on s. Indeed, if we can prove this, then we
ave u=�m�Mn2cmu�m�=c0u0�Cu0.

Since e1u=0, by �3.2�, we have 0=�m�Mcm�−m1,1�u�m−�1,1�. Since the vectors �u�m
�1,1� 	m�M� are linearly independent, cm�−m1,1�=0 for any m�M. Therefore if 0�m1,1

=mr1
�, then cm=0. Hence u=�m�M1

cmu�m�. Now we assume that u=�m�Ms
cmu�m� for 1�s

n2, and rs= �is , js�.
Case 1: 1� is� js�n−2: In this case rs+1= �is , js+1�. Let m�Ms then

mi,js
= mi,js+1 = mjs+2,i = mjs+1,i = 0�1 � i � is − 1� .

ence, by �3.2�, we have

0 = ejs+1u = �
m�Ms

cm�− mjs+1,js+1��js+1
u�m + � js+1,js+1� + �

m�Ms

�
i=is

js

cm�mi,js
− mi,js+1��js+1

u�m + �i,js+1�

+ �
m�Ms

�
i=is

js

cm�mjs+2,i − mjs+1,i��js+1
u�m + �i,js+1 + �i,js

− � js+1,i� . �3.26�

On the other hand, by �3.7�, for any m�Ms, we have

�m + � js+1,js+1�is,js
= 
m − � js+1,js+1 + �

k=1

js

�− � js+1,k + � js+2,k − �k,js+1 + �k,js
��

is,js

= �m + �is,js
�is,js

= mis,js
+ 1 = 1.
imilarly , for any i�is� i� js�, we have
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�m + �i,js+1�is,js
= �m − �i,js+1 + �

k=1

i−1

�− � js+1,k + � js+2,k − �k,js+1 + �k,js
��is,js

= 1 − i,is
,

�m + �i,js+1 + �i,js
− � js+1,i�is,js

= �1 − i,is
� + i,is

= 1,

here i,j is the Kronecker’s delta. Thus

�
m�Ms

�
i=is

js+1

Cu�m + �i,js+1� + �
m�Ms

�
i=is

js

Cu�m + �i,js+1 + �i,js
− � js+1,i�

= � �
m � Ms

Cu�m + �is,js+1��

� � �
m�Ms

�
i=is+1

js+1

Cu�m + �i,js+1� + �
m�Ms

�
i=is

js

Cu�m + �i,js+1 + �i,js
− � js+1,i�� .

hen, by �3.26�, we have that

0 = cm�mis,js
− mis,js+1� = cm�− mis,js+1�

or any m�Ms, which implies if 0�mis,js+1=mrs+1
then cm=0 . Therefore u=�m�Ms+1

cmu�m�.
ase 2—1� is� js=n−1: In this case , rs+1= �is ,n�. Let m�Ms then

mi,n = mn,i = mi,n−1 = 0 �1 � i � is − 1� .

hus, by �3.3�,

0 = enu = �
m�Ms

cm�− mn,n��n
u�m + �n,n� + �

m�Ms

�
i=is

n−1

cm�mi,n − mn,i��n
u�m + �i,n� + �

m�Ms

�
i=is

n−1

cm�mi,n−1

− mn,i��n
u�m + �i,n + �i,n−1 − �n,i� + �

m�Ms

�
i=is

n−1

cm�mi,n − mn,i��n
u�m + �i,n + 2�i,n−1 − 2�n,i� .

n the other hand, in a similar way to Case 1, for any i�is� i�n�, we have

�m + �i,n�is,n−1 = 2 − 2i,is
, �m + �i,n + �i,n−1 − �n,i�is,n−1 = 2 − i,is

,

�m + �i,n + 2�i,n−1 − 2�n,i�is,n−1 = 2.

hus, �m+�is,n
�is,n−1=0, �m+�is,n

+�is,n−1−�n,is
�is,n−1=1, and the others are 2. Hence, by the

inearly independence, we have that

0 = cm�mis,n
− mn,is

��n
= cm�mis,n−1 − mn,is

��n
= cm�− mn,is

��n

or any m�Ms. Therefore u=�m�Ms+1
cmu�m�=�m�Ms+2

cmu�m�.
Case 3—1� is� js=n. This case is already shown in Case 2.
Case 4—1� js� is�n and js� is−1: In this case rs+1= �is−1, js�. For m�Ms, we have

mj,is−2 = mj,is−1 = 0 �1 � j � js�, mis,j
= mis−1,j = 0 �1 � j � js − 1� .
hus, by �3.2�,
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0 = eis−1u = �
m�Ms

cm�− mis−1,is−1��is−1
u�m + �is−1,is−1�

+ �
m�Ms

�
j=js+1

is−2

cm�mj,is−2 − mj,is−1��is−1
u�m + � j,is−1�

+ �
m�Ms

�
j=js

is−2

cm�mis,j
− mis−1,j��is−1

u�m + � j,is−1 + � j,is−2 − �is−1,j� .

n the other hand,

�m + � j,is−1�is,js
= 1 �js + 1 � j � is − 1� ,

�m + � j,is−1 + � j,is−2 − �is−1,j�is,js
= 1 −  j,js

�js � j � is − 2� .

Thus, by the linearly independence, 0=cm�mis,js
−mis−1,js

�=cm�−mis−1,js
�=0 for any m�Ms.

herefore u=�m�Ms+1
cmu�m�.

Case 5—1� js� is�n and js= is−1: In this case rs+1= �is , is�. For any m�Ms, we have

mj,is−1 = mj,is
= mis,j

= mis+1,j = 0 �1 � j � is − 1� .

hus, by �3.2� and �3.3�,

0 = eis
u = �

m�Ms

cm�− mis,is
��is

u�m + �is,is
� .

Hence, cm�−mis,is
�=0 for any m�Ms. Therefore u=�m�Ms+1

cmu�m�. �

In a similar way to the proof of Proposition 3.4, we can prove the following propositions.
Proposition 3.5: Let g=so�2n+1,C� ,so�2n ,C�, and �= ��1 , ¯ ,�n��Cn. A vector u

�m�Mcmu�m��V����cm�C� satisfies the condition eiu=0 for any i� I if and only if u�Cu0.
In the case of g=so�2n ,C�, the proof of Proposition 3.5 is slightly different from the one of

roposition 3.4.
Proof: �so�2n ,C�-case�: “If part” is obvious from �3.2� and �3.15�–�3.18�. So we prove “only

f part.” We define �ri�i=1
�n−1�n by a similar way to the previous cases: r1ª �1,1� and if rs= �i , j�, then

rs+1 ª �n − 1,i� �1 � i � j = n� ,

rs+1 ª �i − 1, j� �1 � j � i � n − 1,i − 1 � j� ,

rs+1 ª �i, j + 1� �otherwise� .

e set Ms= �m�M 	mr1
= ¯ =mrs

=0� for any s�1�s� �n−1�n�.
Now we shall prove that u=�m�Ms

cmu�m� for any 1�s� �n−1�n by the induction on s. By
sing e1u=0, we can prove u=�m�M1

cmu�m�. Next, we assume that u=�m�Ms
cmu�m� for s�1

s� �n−1�n�, and rs= �is , js�. Then we prove by a similar manner to the proof of Proposition 3.4.
In case js�n−2,n−1,n, we only use ejs

�1� j�n−2� to prove u=�m�Ms+1
cmu�m�. Since the

ction of ej is the same as the one of g=sp�2n ,C� for 1� j�n−2, the proof is also the same. So
e prove the case of js=n−2,n−1,n.

Let 1� is� js=n−2. In this case, rs+1= �is ,n−1� ,rs+2= �is ,n� and rs+3= �n−1, is�. We assume
hat is=2is�−1,n=2n��i� ,n��Z�. Then, for any m�Ms,

m2i−1,n−2 − m2i−1,n−1 = m2i−1,n − mn−1,2i−1 = m2i,n−2 − m2i,n = m2i,n−1 − mn−1,2i = 0 �1 � i � is�� .
hus, by �3.15�,
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en−1u = �
m�Ms

cm�− mn−1,n−1�u�m + �2n�−1,n−1� + �
m�Ms

�
i=is�

n�−1

cm��m2i−1,n−2 − m2i−1,n−1�u�m + �2i−1,n−1�

+ �m2i−1,n − mn−1,2i−1�u�m + �2i−1,n−1 + �2i−1,n−2 − �n−1,2i−1� + �m2i,n−2 − m2i,n�u�m + �2i,n�

+ �m2i,n−1 − mn−1,2i�u�m + �2i,n + �2i,n−2 − �n−1,2i�� ,

n the other hand, by �3.20�,

��2i−1,n−1�2is�−1,n−2 = 1 − i,is�
, ��2i,n�2is�−1,n−2 = 0, �is� � i � n�� .

ence, by �3.19�,

��2i−1,n−1�2is�−1,n−2 = 1 − i,is�
, ��2i−1,n−1 + �2i−1,n−2 − �n−1,2i−1�2is�−1,n−2 = 1,

��2i,n�2is�−1,n−2 = 1, ��2i,n + �2i,n−2 − �n−1,2i�2is�−1,n−2 = 1, �is� � i � n�� .

o ��2is�−1,n−1�2is�−1,n−1=0, and the others are 1. Thus, for any m�Ms we have

0 = cm�m2is�−1,n−2 − m2is�−1,n−1� = cm�mis,n−2 − mis,n−1� = cm�− mis,n−1� .

herefore u=�m�Ms+1
cmu�m�.

Furthermore, for any m�Ms, we have

m2i,n−2 − m2i,n−1 = m2i,n − mn−1,2i = m2i−1,n−2 − m2i−1,n = m2i−1,n−1 − mn−1,2i−1 = 0 �1 � i � is�� .

hus, by �3.16�,

enu = �
m�Ms

cm�− mn−1,n�u�m + �2n�−1,n� + �
m�Ms

�
i=is�

n�−1

cm��m2i,n−2 − m2i,n−1�u�m + �2i,n−1� + �m2i,n

− mn−1,2i�u�m + �2i,n−1 + �2i,n−2 − �n−1,2i� + �m2i−1,n−2 − m2i−1,n�u�m + �2i−1,n� + �m2i−1,n−1

− mn−1,2i−1�u�m + �2i−1,n + �2i−1,n−2 − �n−1,2i−1�� .

n the other hand, by �3.20�,

��2i,n−1�2is�−1,n−2 = 0, ��2i−1,n�2is�−1,n−2 = 1 − i,is�
, �is� � i � n�� .

ence, by �3.19�,

��2i,n−1�2is�−1,n−2 = 1, ��2i,n−1 + �2i,n−2 − �n−1,2i�2is�−1,n−2 = 1,

��2i−1,n�2is�−1,n−2 = 1 − i,is�
, ��2i−1,n + �2i−1,n−2 − �n−1,2i−1�2is�−1,n−2 = 1, �is� � i � n�� .

o ��2is�−1,n�2is�−1,n−2=0, and the others are 1. Thus, for any m�Ms we have

0 = cm�m2is�−1,n−2 − m2is�−1,n� = cm�mis,n−2 − mis,n
� = cm�− mis,n

� .
herefore u=�m�Ms+2
cmu�m�. Then,
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enu = �
m�Ms+2

cm�− mn−1,n�u�m + �2n�−1,n� + �
m�Ms+2

�
i=is�

n�−1

cm��m2i,n−2 − m2i,n−1�u�m + �2i,n−1�

+ �m2i,n − mn−1,2i�u�m + �2i,n−1 + �2i,n−2 − �n−1,2i� + �m2i−1,n−1 − mn−1,2i−1�u�m + �2i−1,n

+ �2i−1,n−2 − �n−1,2i−1�� + �
m�Ms+2

�
i=is�+1

n�−1

cm�m2i−1,n−2 − m2i−1,n�u�m + �2i−1,n� .

n the other hand, by �3.20�,

��2i,n−1�2is�−1,n = 0, ��2i−1,n�2is�−1,n = 1 − i,is�
, �is� � i � n�� .

ence, by �3.19�,

��2i,n−1�2is�−1,n = 1, ��2i,n−1 + �2i,n−2 − �n−1,2i�2is�−1,n = 1,

��2i−1,n + �2i−1,n−2 − �n−1,2i−1�2is�−1,n = 1 − 2i,is�
, �is� � i � n�� ,

��2i−1,n�2is�−1,n = 1, �is + 1 � i � n�� .

o ��2is�−1,n+�2is�−1,n−2−�n−1,2is�−1�2is�−1,n=−1, and the others are 1. Thus, for any m�Ms+2 we have

0 = cm�m2is�−1,n−1 − mn−1,2is�−1� = cm�mis,n−1 − mn−1,is
� = cm�− mn−1,is

� .

herefore u=�m�Ms+3
cmu�m�. So we also obtain the case 1� is�n−2, js=n−1,n , �n=2n� , is

2is�−1�.
Similarly, we can prove the cases �n=2n� , is=2is�� , �n=2n�+1, is=2is�−1� and �n=2n�+1, is

2is��.
The remaining cases are �is , js�= �n−1,n−2� , �n−1,n−1�. But these cases are proved simi-

arly. �

V. IRREDUCIBLE U�
fin-MODULE U�u0

We keep the settings and notations as in Secs. II and III.

. Restricted specializations

In this section, we introduce the restricted specializations and their properties.
Definition 4.1: Let AªC�q ,q−1� and UA

res be the A-subalgebra of Uq�g� generated by
ei

�k� , f i
�k� , ti

±1 	 i� I ,k�Z+�. Let l be an odd integer greater than 3 and � be a primitive lth root of
nity such that �2di�1 for any i� I. We regard C as A-algebra by f�q� .cª f��� ·c for any f�q�
A ,c�C and we denote it by C�. We define

U�
res

ª UA
res

�AC�,

hich is called “restricted specialization of Uq�g�.” Similarly, we define �U�
res�+ , �U�

res�− , �U�
res�0.

e denote u � 1 by u for any u�UA
res. Let U�

fin be the subalgebra of U�
res generated by �ei , f i , ti

±1�i=1
n .

Similarly, we define �U�
fin�+ , �U�

fin�− and �U�
fin�0�.

Next we review the representation theory of U�
res.

Definition 4.2: Let L be a finite dimensional U�
res-module. If ti

lv=v for any v�L , i� I �that is,

i
l is the identity map�, we call L “U�

res-module of type 1.”
Remark (Ref. 1): In general, finite dimensional irreducible U�

res-modules are divided into 2n

ypes according to �� :Q→ �±1� ; homomorphism of group �. Without a loss of generality, we may
res
ssume that finite dimensional irreducible U� -modules are of type 1.
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Definition 4.3: For �= ��1 ,… ,�n��Z+
n, let I� be the left ideal of Uq�g� generated by

ei , f i
�i+1 , ti−qi

�i 	 i� I� and L���ªUq�g� / I�. We set v�=1+ I��L���. Let VA
res��� be the

A
res-submodule of L��� generated by v� ,V�

res���ªVA
res����AC�, and W�

res��� be the maximal
roper U�

res-submodule of V�
res���. We define

L�
res��� ª V�

res���/W�
res��� .

Theorem 4.4 (Refs. 6 and 7): (i) For any ��Z+
n ,L�

res��� is a finite dimensional irreducible

�
res-module of type 1 (We call � “highest weight of L�

res���”�.
(ii) Let L be a finite dimensional irreducible U�

res-module of type 1. Then, there exists a unique
lement ��Z+

n such that L�L�
res���.

(iii) Let ��= ��1� ,… ,�n���Zl
n�Zlª �0,1 ,… , l−1�� ,���Z+

n, and �ª��+ l��. Then we have

L�
res��� � L�

res���� � L�
res�l��� .

Next, we give the relation between the representations of U�
res and U�

fin.
Proposition 4.5 (Ref. 6 and 7): (i) For any �= ��1 ,… ,�n��Zl

n, we regard L�
res��� as

�
fin-module and denote it by L�

fin���. Then L�
fin��� is a finite dimensional irreducible U�

fin-module of
ype 1. Conversely, let L be any finite dimensional irreducible U�

fin-module of type 1, then there
xists a unique element �= ��1 ,… ,�n��Zl

n such that L�L�
fin���.

(ii) Let U�g� be the universal enveloping algebra of g. Then for any ��Z+
n, we can regard

�
res�l�� as a finite dimensional irreducible U�g�-module of the highest weight �.

. Finite dimensional quantum algebra U�
fin

In this section, we introduce the properties of U�
fin to prove Theorem 4.10 below. First, we

ntroduce PBW theorem and the triangular decomposition of U�
fin.

Theorem 4.6 (Ref. 7): Let �1 ,… ,�N be as in Definition 2.4 ��+= ��1 ,… ,�N��. We assume
hat l0 (mod 3) if g is type G2. Then we have

i� �e�1

m1
¯e�N

mN 	0�mi� l−1 for any 1� i�N� is a C-basis of �U�
fin�+.

ii� �f�1

m1
¯ f�N

mN 	0�mi� l−1 for any 1� i�N � is a C-basis of �U�
fin�−.

iii� �t1
m1
¯ tn

mn 	0�mi�2l−1 for any 1� i�n � is a C-basis of �U�
fin�0.

iv� Let � be the multiplication map

�:�U�
fin�−

� �U�
fin�0

� �U�
fin�+ → U�

fin u− � u0 � u+ � u−u0u+.

Then � is an isomorphism of C-vector space.

By Theorem 4.6, we know that the dimension of U�
fin is 2nln+2N.

Proposition 4.7(Ref. 1): We have e�
l = f�

l =0 in U�
fin for any ���+, and ti

2l=1 in U�
fin for any

� I.
Lemma 4.8: We assume that l0 (mod 3) if g is type G2. Let J be the two-sided ideal of U�

enerated by �e�
l , f�

l 	���+�� �ti
2l−1 	 i� I�. Then we have U�

fin�U� / J.
Proof: By the definition of U�

fin , �ei , f i , ti
±1� satisfies the relations in U�. Therefore, there exists

he following surjective C-algebra homomorphism �,

�:U� → U�
fin �ei, f i,ti

±1� � �ei, f i,ti
±1� .

y Proposition 4.7, we obtain the surjective C-algebra homomorphism ��,

��:U�/J → U�
fin �ei, f i,ti

±1� � �ei, f i,ti
±1� .
n the other hand, by Proposition 2.7 and Theorem 2.8, U� / J is spanned by
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�e�1

m1
¯ e�N

mNf�1

mN+1
¯ f�N

m2Nt1
m2N+1

¯ tn
m2N+n	0 � mi � l − 1�1 � i � 2N�,0 � mi � 2l − 1�2N + 1 � i

� 2N + n�� .

o, by Theorem 4.6, �� is an injective homomorphism. Therefore �� is an isomorphism of
lgebra. �

. U�
fin-module structure on the U�u0

In this section, we construct U�
fin-module by using the Schnizer modules.

Lemma 4.9: Let g=sp�2n ,C� ,so�2n+1,C� or so�2n ,C�. For any �= ��1 , ¯ ,�n��Zn, we
enote the U�-submodule of V��� generated by u0 by U�u0. Then we have

i� e�
l =0 on U�u0 for any ���+.

ii� ti
l=1 on U�u0 for any i� I.

iii� f�
l =0 on U�u0 for any ���+.

Proof: We prove the case of g=sp�2n ,C�. The other cases are shown similarly.
By Proposition 2.7, it is enough to prove that e�

l u0= f�
l u0= �ti

l−1�u0=0.
�i� By Proposition 3.4, eiu0=0 for any i� I. On the other hand, by Proposition 2.6, e�

U�
+� �U��� for any ���+. Therefore e�u0=e�

l u0=0.
�ii� By �3.4�, �3.8�, and �3.9��, tiu0=�i

�iu0 in V���. Since �i�Z , ti
lu0=u0. We shall prove �iii� in

he next section. �

We call the U�-modules such that ei
l= f i

l=0 “nilpotent module.” By Lemma 4.9, U�u0 is a
ilpotent module. In general, Schnizer modules are not necessarily nilpotent unless we specialize
heir parameters properly.

Theorem 4.10: Let g=sp�2n ,C� ,so�2n+1,C� or so�2n ,C�, and ��Zl
n. Then we have

i� U�u0 is a U�
fin-module.

ii� U�u0 is isomorphic to L�
fin��� as U�

fin-module. That is, U�u0 is a finite dimensional irreduc-
ible U�

fin-module of type 1 with highest weight �.

Proof: We prove the case of g=sp�2n ,C�. The other cases are shown similarly. By Lemma
.8, 4.9, we obtain �i�.

�ii� Finite dimensionality of U�u0 is obvious. U�u0 is type 1 with the highest weight � by
emma 4.9 �ii� and its proof. So we shall prove the irreducibility of U�u0.

We can regard U�
fin as a well-defined Q-graded algebra by the following way �cf. Definition

.5�.

�U�
fin�d ª �u + J	u � �U��d��d � Q� ,

here J is the two-sided ideal as in Lemma 4.8. Hence

ei1
¯ eir

� �U�
fin��i1

+¯+�ir
�i1,…,ir � I� .

n the other hand, by Proposition 4.7, if �U�
fin�d�0 then

d � �l − 1� �
���+

�

or any d�Q, where d�d�⇔d−d��Q+. So, there exists r0�Z+ such that ei1
ei2

¯eir
=0 for any

�r0 and i1 , i2¯ , ir� I. Thus, for any nonzero U�
fin-submodule L of U�u0, there exists a nonzero

lement v�L such that eiv=0 for any i� I. Therefore, by the uniqueness of primitive vector of
roposition �3.4�, U�u0�L. Then we have L�U�

finu0=U�u0�L. Therefore, U�u0 is irreducible.
�

Comment: We expect that we can treat infinitesimal Verma modules for orthogonal and sym-

lectic cases in a similar way to Ref. 5.
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. PROOF OF LEMMA 4.9„III…

. Case of �l−1

In this section we shall show Lemma 4.9 �iii� for the special case : �=�l−1ª �l−1, ¯ , l−1�.
or �= ��1 ,… ,�n��Zl

n, in case g=sp�2n ,C�, we define m�= �mi,j
� �i,j=1

n �M by

mi,i
� = �i �1 � i � n� ,

mi,j
� = �i + ¯ + � j �1 � i � j � n� ,

mj,i
� = �i + ¯ + � j−1 + 2� j + ¯ + 2�n �1 � i � j � n� .

bviously, we have

mi,j+1
� − mi,j

� = � j+1 �1 � i � j � n� ,

mn,i
� − mi,n

� = �n �1 � i � n� , �5.1�

mj,i
� − mj+1,i

� = � j �1 � i � j � n − 1� .

imilarly, in case g=so�2n+1,C�, for �= ��1 ,… ,�n��Zl
n, we define m�= �mi,j

� �i,j=1
n �M by

mi,i
�
ª �i �1 � i � n� ,

mi,j
�
ª �i + ¯ + � j �1 � i � j � n − 1� ,

mi,n
�
ª 2�i + ¯ + 2�n−1 + �n �1 � i � n − 1� ,

mj,i
�
ª �i + ¯ + � j−1 + 2� j + ¯ + 2�n−1 + �n �1 � i � j � n − 1� ,

mn,i
�
ª �i + ¯ + �n �1 � i � n − 1� ,

nd in case g=so�2n ,C�, we define m�= �mi,j
� �1�i�n−1,1�j�n

n �M by

mi,i
�
ª �i �1 � i � n − 1� ,

mn−1,n
�

ª �n,

mi,j
�
ª �i + ¯ + � j �1 � i � j � n − 2� ,

mi,n−1
�

ª �i + ¯ + �n−2 + �n �1 � i � n − 2� ,

mi,n
�
ª �i + ¯ + �n−2 + �n−1 �1 � i � n − 2� ,

mj,i
�
ª �i + ¯ + � j−1 + 2� j + ¯ + 2�n−2 + �n−1 + �n �1 � i � j � n − 2� ,

mn−1,i
�

ª �i + ¯ + �n �1 � i � n − 2� .

Lemma 5.1: (i) For any ��Zl
n and ���+, we have f�u�m��=0 in V���.
(ii) For any ���+ and v�V��l−1�, write
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f�v = �
m�M

c��m�u�m� in V��l−1� �c��m� � C� .

Then c��0�=0, i.e., the vector u0 never occurs in f�v.
Proof: We only show for g=sp�2n ,C�. The other cases are shown similarly. By Proposition

.6, f��U�
−� �U���. So, it is enough to prove the case of �=� j�j� I�.

�i� For any 1� i� j�n−2, by �3.9� and �5.1�,

�i,j
m� = − mi,j−1

� + 2mi,j
� − mi,j+1

� − mj+2,i
� + 2mj+1,i

� − mj,i
�

= �mi,j
� − mi,j−1

� � − �mi,j+1
� − mi,j

� � + �mj+1,i
� − mj+2,i

� � − �mj,i
� − mj+1,i

� �

= � j − � j+1 + � j+1 − � j = 0.

imilarly, we obtain

�i,n−1
m� = 0 �1 � i � n − 2�, �i,n

m� = 0 �1 � i � n − 1� .

urthermore, for any 1� i�n−2,

� j,j
m� = 2mj,j

� − mj,j+1
� − mj+1,j+1

� − mj+2,j
� + 2mj+1,j

� − mj+2,j+1
�

= 2� j − �� j + � j+1� − � j+1 − �� j + � j+1 + 2� j+2 + ¯ 2�n� + 2�� j + 2� j+1 + 2� j+2 + ¯ 2�n�

− �� j+1 + 2� j+2 + ¯ 2�n� = 2� j

imilarly, we obtain

�n−1,n−1
m� = 2�n−1, �n,n

m� = 2�n.

hus, it follows from �3.8� that for any 1� i , j�n,

�i,j
m�

= �
k=i

j

�k,j
m�

= � j,j
m�

= 2� j .

ence, for any 1� i� j�n−2, by �3.10�,

�i,j
m�

+ �i+1,j
m�

− � j = − �mi,j+1
� − mi,j

� � + �mj+1,i
� − mj+2,i

� � − �mj,i
� − mj+1,i

� � + � j

= − � j+1 + � j+1 − � j + � j = 0,

� j+1,i
m�

+ �i+1,j
m�

− � j = − �mj,i
� − mj+1,i

� � + � j = − � j + � j = 0,

� j,j
m�

− � j = mj,j
� − mj,j+1

� − mj+1,j+1
� + �mj+1,j

� − mj+2,j
� � + �mj+1,j

� − mj+2,j+1
� � − � j

= � j − �� j + � j+1� − � j+1 + � j+1 + �� j + � j+1� − � j = 0,

� j+1,j
m�

− � j = − mj+1,j+1
� + �mj+1,j

� − mj+2,j+1
� � − � j = − � j+1 + �� j + � j+1� − � j = 0.

So, f ju�m��=0 in V����1� j�n−2�. Similarly, we obtain fn−1u�m��= fnu�m��=0.
�ii� Let ��Zl

n. Since for any 1� i� j�n−2,mi,j does not appear in �i+1,j
m and �i , j�� �i , j
1� , �j+2, i� , �j+1, i� , �j , i�, for any c�m��C, we have
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�
m�M

c�m���i,j
m + �i+1,j

m − � j� = �
m�M

c�m��mi,j − mi,j+1 − mj+2,i + 2mj+1,i − mj,i + �i+1,j
m − � j�u�m + �i,j�

= �
m�M

c�m − �i,j���mi,j − 1� − mi,j+1 − mj+2,i + 2mj+1,i − mj,i + �i+1,j
m

− � j�u�m� .

y �3.8� and �3.9�, if m�0, we have �i+1,j
m =0. Thus, we obtain that the coefficient of u0 is equal

o

c�− �i,j��− 1 − � j� .

ence, if �=�l−1, then this is 0. Similarly, we obtain that the coefficient of u0 in f jv is equal to
�−� j −1� �for some c�C�. So, if �=�l−1, then it is equal to 0. �

Lemma 5.2: We have f�
l u0=0 in V��l−1� for any ���+.

Proof: By Proposition 2.7, for any ���+ , f�
l is a central element of U�. Thus,

ei�f�
l u0� = f�

l �eiu0� = 0 �i � I� .

o, f�
l u0 is a primitive vector. Therefore, by the uniqueness of primitive vector �see Proposition

.4�, f�
l u0�Cu0. On the other hand, by Lemma 5.1�ii�, the coefficient of u0 in f�

l u0 is 0. Hence
f�

l u0=0. �

. Proof of e�
l =0 on V„�…

Definition 5.3: Let �= ��1 ,… ,�n��Zl
n , I� be the left ideal of U� generated by �ei , ti

�i
�i , f�

l 	 i� I ,���+�. We set M���ªU� / I�.
Proposition 5.4 (Ref. 3, Proposition 3.2, Corollary 3.2(b)):

i� If �=�l−1, then M��� is an irreducible U�-module.

ii� For any ��Zl
n ,dimM���= ln2

�=dimV����.

Proposition 5.5: If �=�l−1, then M����V��� (as U�-module).
Proof: By Lemma 5.2 and the property of u0, we have

eiu0 = 0, tiu0 = �i
�iu0, f�

l u0 = 0 �i � I,� � �+� .

o, by the universality of M���, there exists an U�-module homomorphism � :M���→V��� such
hat ��1+ I��=u0. By Proposition 5.4�i�, M��� is an irreducible U�-module if �=�l−1, and �0.
ence � is injective.

On the other hand, by Proposition 5.4�ii�, dimM���=dimV���. Thus � is surjective. Therefore
is an isomorphism of U�-module. �

Lemma 5.6: For any ��Zl
n and ���+ ,e�

l =0 on V���.
Proof: By Proposition 5.5 and Proposition 5.4�i�, V��l−1� is an irreducible U�-module and then

e have U�u0=V��l−1�. Thus,

e�
l V��l−1� = e�

l �U�u0� = U��e�
l u0� = �0� .

ence e�
l =0 on V��l−1�. Due to �3.2� and �3.3�, we know that the action of ei on V��� does not

epend on �. Therefore, for any ��Zl
n ,e�

l =0 on V���. �

. General case

Lemma 5.7: For any ��Zl
n and v�V����v�0�, there exists u+�U�

+ such that u+v=u0.
Proof: By Lemma 5.6, we can regard V��� as a �U�

fin�+-module �see proof of Lemma 4.8�. So,
y the similar manner to the proof of Theorem 4.10�ii�, we can take u+�U�

+ such that u+v is a
onzero primitive vector. Therefore, by the uniqueness of the primitive vector, we have u+v

�
C u0. �
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Proof of Lemma 4.9(iii): Let us show that for any ��Zl
n and ���+ , f�

l u0=0 in V���. By
emma 5.7, there exists u+�U�

+ such that u+u�m��=u0. Since f�u�m��=0, by Lemma 5.1�i�, we
btain

f�
l u0 = f�

l �u+u�m��� = u+�f�
l u�m��� = 0.

�
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iscrete and continuous cosine transform generalized to
ie groups SU„3… and G„2…

J. Pateraa� and A. Zaratsyanb�

Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128 Succ. Centre-ville,
Montréal, Québec H3C 3J7, Canada
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In the paper we complete the development and description of the four variants of
two-dimensional generalization of the cosine transform started in �Patera and Zar-
atsyan, J. Math Phys. 46, 053514 �2005��. Each variant is based on a compact
semisimple Lie group G of rank 2. Here, the groups are SU�3� and G�2�. The
cosines are generalized as the corresponding C-functions of the Lie group. A
C-function is the contribution to an irreducible character from one orbit of the
appropriate Weyl group. An explicit description is provided for expansions of func-
tions given on the fundamental region F of the two compact simple Lie groups into
series of C-functions. The fundamental region F is an equilateral triangle for SU�3�
and half of such a triangle for G�2�. Expansion coefficients are calculated using
orthogonality of C-functions on F. Discrete expansions are set up on a grid FM �F.
The grid is defined group theoretically for all positive integers M. It consists of
points in F that represent conjugacy classes of elements of the finite maximal
Abelian subgroup of G generated by its elements of order M. The C-functions are
orthogonal on such a grid; hence, coefficients of discrete expansions are calculated
independently of the continuous expansions. Processing digital data, sampled on
triangular lattices, is the motivating application here. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2109707�

. INTRODUCTION

This is the second of a series of three articles.1,2 In this paper we complete our consideration
f the four versions of generalization of cosine transform �discrete and continuous ones�, each
ased on one semisimple compact Lie group of rank 2. The third paper of the series is devoted to
wo-dimensional discrete and continuous generalizations of the sine transform for the four groups.

In the first paper,1 the cases of the group SU�2��SU�2� and O�5� or Sp�4� were considered.
raditional cosine transform would be the discrete version of our SU�2� case. It was discovered
ome 30 years ago and has been extensively used ever since. Its straightforward generalization to
wo dimensions is, in our notation, the case of A1�A1 �equivalently, SU�2��SU�2��; see Refs.
3,4�. The O�5� case is apparently not found elsewhere in the literature other than in Ref. 1. We use
ie algebraic notation for the cases, respectively, A1�A1 and C2. The two cases have in common

he fact that the discrete transforms are played on square lattices.
In the present paper, the cases of SU�3� and G�2� groups are considered in an analogous way.

quivalently, we call the cases A2 and G2. Here, the discrete transforms exploit triangular lattices.
For general comments, motivation, and additional remarks, as well as for uniform description

f the four cases, we refer the reader to Ref. 1. Also, the rank 1 case of SU�2� group �equivalently

1� is found there, as well as in Ref. 5.

�Electronic mail: patera@crm.umontreal.ca
�
Electronic mail: zaratsyan@crm.umontreal.ca
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The discrete general version of the method was laid down in Ref. 6. Subsequently, it was used
o solve some challenging eight-dimensional decomposition problems.7–9 Most recently, two of the
iscrete lowest cases were described in Ref. 10. The continuous version of the method was
pparently ignored in the literature until Ref. 1.

Useful properties of the continuous extensions of the discrete method were noticed in Ref. 5
nd further exploited in Refs. 11, 1, and 12, as well as here.

Lattices in physics are often taken as computationally manageable models of a continuous
pace. Increasing density of lattice points, one often rightfully expects to approach the continuous
eality. In doing that, it hardly matters what type of lattice one chooses, the square one usually
eing easier to deal with. However, there are problems where such choice is not available. Indeed,
ecognition of the need to work on triangular lattices is not new �cf. Ref. 13�. As a specific
rgument, one may point to the analysis of data from existing major installations of hexagonal
atteries of particle counters in high-energy experimental astrophysics and/or particle physics.11

The method we describe here is a versatile approach to the treatment of such data, which has
een mostly unexplored so far, although it originates in the general case of Ref. 6. Apparently, the
rst exploitation of the case A2 �equivalently SU�3�� is quite recent.10–12 The G�2� case is not
ound in the literature. One of our objectives is to make our approach as ready to use as possible
lso for triangular lattices.

Finally, let us point out some notations used throughout the paper. The symbols R, Z, and N
enote real numbers, integers, and positive integers, respectively. The scalar product of a ,b
R2 in a real Euclidean space R2 of dimension 2 is denoted by �a �b�. We denote the Hermitian

roduct of class functions in the functional space spanned by irreducible characters �or
-functions� in a similar way. We will frequently refer to equations already given in Ref. 1, and

herefore not repeated here. When we need to make such a reference, we use a notation �paper,
equation��. For example, �1, �4.8�� is a reference to Eq. �4.8� of Ref. 1. In general, this paper
hould be read with Ref. 1 at hand.

In the following sections we consider the expansion of class functions on the two compact Lie
roups of rank two in terms of their C-functions, and the inversion of such expansions. In both
ases triangular lattices of weights and roots are involved. For more about our goal in general, as
ell as for more technical details, see Refs. 1, Secs. II–IV. Since similar applications of
-functions are very recent14,15,5,11,12 for A2 and are apparently nowhere to be found for G2, we
escribe also other properties of C-functions, which do not serve our immediate goals.

Secs. II and III of this paper contain, respectively, all the details for exploitation of the method
or the cases A2 and G2. Discretization of these cases is the subject of Sec. IV. Some motivating
xamples are shown in Sec. V, and concluding remarks and related problems are brought forward
n Sec. VI.

I. THE CONTINUOUS CASE OF A2

. Root and weight lattices

All roots of A2 are of the same length. The two simple roots with the relative angle 120°
etween them are given by the scalar products in R2:

��1��2� = − 1, ��1��1� = ��2��2� = 2.

onsequently, the A2 Cartan matrix and its inverse are the following:

C = � 2 − 1

− 1 2
	, C−1 =

1

3
�2 1

1 2
	 .

he �- and �-bases are defined through

�� j��k� = � j,k, where j,k = 1,2,
which amounts to the explicit relations
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�1 = 2�1 − �2, �1 =
1

3
�2�1 + �2� ,

�2 = − �2 + 2�2, �2 =
1

3
��1 + 2�2� .

The root system �= 
±��1+�2� , ±�1 , ±�2� geometrically represents vertices of a regular
exagon. The highest root �h=�1+�2 �see Fig. 1�.

The weight lattice P consists of three copies of the root lattice Q shifted relative to each other.
oth P and Q are triangular. One has

P = Q � �Q + �1� � �Q + �2� .

y P+ one denotes the “positive chamber” of P, containing all the points a�1+b�2 with a ,b
Z�0.

. Fundamental region

The fundamental region of A2 is an equilateral triangle with vertices in 0, �1, and �2, as
hown in Fig. 1. Equivalently

F = 
x�1 + y�2 � 0 � x,y and x + y � 1� .

ach of its sides is orthogonal either to �1 or �2, or to the highest root �h=�1+�2 �see Fig. 1�.

. Weyl group orbits of A2

Set 	=a�1+b�2= �a ,b�� P+. Then, A2-Weyl group orbit W	�W�a,b� consists of either 1, 3,

IG. 1. The simple roots, the fundamental weights, along with their duals, and the fundamental region for the cases A2 and

2. The thick line hexagon encloses the proximity cell to origin of the dual root lattice in each case.
r 6 points generated from 	 by repeated action of the reflections r1 and r2, according to: �1, �4.4��
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W�a,b� = 

�0,0�� , if a = b = 0,


�a,0�,�− a,a�,�0,− a�� , if a � 0 and b = 0,


�0,b�,�b,− b�,�− b,0�� , if a = 0 and b � 0,


�a,b�,�− a,a + b�,�a + b,− b�,�− b,− a�,�b,− a − b�,�− a − b,a�� , if a,b � 0.
�

ach weight/point of P belongs to precisely one W-orbit.

. C-functions of A2

C-functions 
�a,b��x ,y�, with 	=a�1+b�2� P+ and z=x�1+y�2�R2, are defined in �1,
4.7�� In the A2-case they are in general complex valued. Only for a=b they are real


�0,0��x,y� = 1,


�a,0��x,y� = e�2�i/3��2x+y�a + e�2�i/3��y−x�a + e−�2�i/3��x+2y�a,


�0,b��x,y� = e−�2�i/3��2x+y�b + e�2�i/3��x−y�b + e�2�i/3��x+2y�b,

�2.1�

�a,b��x,y� = e�2�i/3���2a+b�x+�a+2b�y� + e�2�i/3���b−a�x+�a+2b�y� + e�2�i/3���2a+b�x+�a−b�y�

+ e−�2�i/3���a−b�x+�b+2a�y� + e−�2�i/3���a+2b�x+�b−a�y� + e−�2�i/3���2b+a�x+�b+2a�y�,


�a,a��x,y� = 2 cos�2�ax� + 2 cos�2�ay� + 2 cos�2�a�x + y�� ,

ssuming that 0�a ,b�Z and x ,y�R.
In Ref. 1 we introduced a convenient normalization of C-functions, which simplifies the

alculations. The normalized C-functions, as defined in �1, �4.8��, are given for the case A2 for all
,b�Z�0 in one expression

�a,b��x,y� = e�2�i/3���2a+b�x+�a+2b�y� + e�2�i/3���b−a�x+�a+2b�y� + e�2�i/3���2a+b�x+�a−b�y�

+ e−�2�i/3���a−b�x+�b+2a�y� + e−�2�i/3���a+2b�x+�b−a�y� + e−�2�i/3���2b+a�x+�b+2a�y�. �2.2�

. Decomposition of products of C-functions

Products of C-functions are decomposable into finite sums of C-functions


�1,0�
�1,0� = 
�2,0� + 2
�0,1�,


�1,0�
�0,1� = 
�1,1� + 3
�0,0�,


�1,1�
�1,1� = 
�2,2� + 2
�0,3� + 2
�3,0� + 2
�1,1� + 6
�0,0�,

]

In general,


�a,b�
�c,d� = 
�a+c,b+d� + ¯ + 
�a−d,b−c�.

he weight �a−d ,b−c� may not be from P+. Nevertheless, it belongs to just one C-function.
ence, it can be used to label the C-function.

It is possible to build up recursively the C-functions of A2, starting from the three lowest ones:
�1,0�, 
�0,1�, and 
�0,0�=1.

                                                                                                            



F

�

G

w

i

H

I
i

I

113506-5 Cosine transform on SU�3� and G�2� J. Math. Phys. 46, 113506 �2005�

                        
. Weyl group symmetries of C-functions of A2

The affine Weyl group Waff, generated by the reflections r1�r�1
, r2�r�2

, and RN�

RN��1+�2�, describes the symmetries of C-functions


	�r1z� � 
�a,b��r1�x�1 + y�2�� = 
�a,b���− x�1 + �x + y��2�� ,


	�r2z� � 
�a,b��r2�x�1 + y�2�� = 
�a,b���x + y��1 − y�2� , �2.3�


	�RN�z� � 
�a,b��RN��x�1 + y�2�� = 
�a,b���N − y��1 + �N − x��2� .

. Laplace operator

Direct calculation verifies that 
	�z� is an eigenfunction of the Laplace operator L

L
	�z� =
def

��1�x + �2�y�2
	�z� = 2��xx − �xy + �yy�
	�z�

= − 4��	�	�
	�z� = −
8�

3
�a2 + ab + b2�
	�z� , �2.4�

here z=x�1+y�2 and 	=a�1+b�2.
As a consequence of �2.3�, C-functions satisfy the Neumann condition at the boundary of F,

.e., their normal derivatives vanish.

. Orthogonality of C-functions of A2

The C-functions are orthogonal when integrated over the fundamental region F of A2

�
F


�a,b��x,y�
�c,d��x,y�dF =
1
�3
�

0

1

dx�
0

1−x


�a,b��x,y�
�d,c��x,y�dy

=
0, if a � c or b � d ,

1

2�3
, if a = b = c = d = 0,

�3

2
, if a = c � 0 and b = d = 0,

or a = c = 0 and b = d � 0,

�3, if a = c � 0 and b = d � 0.

� �2.5�

n the case of A2, the complex conjugation, denoted here by an overbar, is also achieved by
nterchange of the subscripts, 
�d,c��x ,y�=
�c,d��x ,y�.

Note the special case �2.5�, namely c=d=0 and a+b�0

�
F


�a,b��x,y�dF =
1
�3
�

0

1

dx�
0

1−x


�a,b��x,y�dy = 0. �2.6�

. Decomposition of class functions
Finally, a decomposition
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f�x,y� = �
	�P+

a	
	�x,y� ,

an be inverted using �2.5�, i.e., expansion coefficients a	 can be found

a	 =
1

�
	�
	��F

f�x,y�
	�x,y�dx dy ,

ith the scalar product of orbit functions, already defined in Ref. 1

�
	�
	� = �
F


	�x,y�
	�x,y�dx dy .

. Branching rules for C-functions of A2

Reduction of C-functions with respect to a subgroup of the same rank is achieved by a
orresponding change of basis and by subsequently rearranging the exponential functions accord-
ng to W-orbits of the subgroup. In general, a C-function of the group splits into a sum of
-functions of the subgroup. The splitting is called the branching rule.

There is only one subgroup of rank 2 in A2, namely U1�A1. General structure of its
-functions is particularly simple


	�v� = 2e2�im1�1 cos �m2�2, m1 � Z; m2 � Z�0; �1,�2 � R .

ere, 	=m1�1+m2�2 and v=�1�1+�2�2 are given relative to an orthogonal basis 
�1 ,�2�, where �2

s the “�-basis” of A1 �compare with �1, �2.2�� and �1, �3.2���.
An A2-weight a�1+b�2��a b� is transformed into a weight of the subgroup in 
�1 ,�2�-basis

y the matrix multiplication

�a b��1 1

1 − 1
	 = �a + b a − b� .

onsequently, the scalar product �	 �z� is

�	�z� = ��a b���x y��

= ��a + b a − b���x + y x − y�� = �a + b��x + y� + �a − b��x − y� = 2ax + 2by

II. THE CONTINUOUS CASE OF G2

. Root and weight lattices

Relative length and angles of the simple roots are given by

��1��2� = − 1, ��1��1� = 2, ��2��2� =
2

3
.

he Cartan matrix and its inverse are

C = � 2 − 3

− 1 2
	, C−1 = �2 3

1 2
	 .

onsequently

ˇ ˇ
�1 = 2�1 − 3�2, �1 = 2�1 + 3�2, �1 = �1, �1 = �1,
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�2 = − �1 + 2�2, �2 = �1 + 2�2, �̌2 = 3�2, �̌2 = 3�2.

ote that in this case, �1 ,�2� P. Hence, the root and weight lattices coincide: P=Q.
There are 12 roots in ��G2�, namely the following:

� = 
±�2�1 + 3�2�, ± ��1 + 3�2�, ± ��1 + 2�2�, ± ��1 + �2�, ± �1, ± �2� .

eometrically the roots are vertices of a regular hexagonal star �see Fig. 1�. The long roots are
�1, ±��1+3�2�, and ±�2�1+3�2�, and the short roots are ±�2, ±��1+�2�, and ±��1+2�2�. The
ighest root of G2 is �h=2�1+3�2.

. Fundamental region

The fundamental region F of G2 is a triangle with vertices 0, 1
2 �̌1, and 1

3 �̌2. Geometrically F
s half of an equilateral triangle. It is shown in Fig. 1. One has the fundamental region F�G2�

F�G2� = 
x�̌1 + y�̌2 � 0 � x,y ;1 � 2x + 3y� .

. Weyl group orbits of G2

Consider the weight lattice P and its subset P+ of weights Z�0�1+Z�0�2, called dominant
hamber. Let

	 = a�1 + b�2 � �a,b� � P+. �3.1�

Weyl group orbit W	=W�a,b� consists of 1, 6, or 12 weights that are generated by the reflections
1, �4.4�� and therefore are equidistant from the origin

W�a,b� =

�0,0�� , if a = b = 0,


±�a,0�, ± �− a,3a�, ± �2a,− 3a�� , if a � 0 and b = 0,


±�0,b�, ± �b,− b�, ± �− b,2b�� , if a = 0 and b � 0,


±�a,b�, ± �− a,3a + b�, ± �a + b,− b��
±�2a + b,− 3a − b�, ± �− a − b,3a + 2b� ,


 ± �2a + b,− 3a − 2b�� if a,b � 0.

�
n particular, the root system of G2 is a union of two W-orbits, namely the orbit of long roots with
= �1,0� and the orbit of short roots with 	= �0,1�

. C-functions of G2

In the G2 case, any C-function with 	=a�1+b�2 and z=x�̌1+y�̌2 is real because for each
eight ��W	 one finds also −��W	, so that corresponding exponential functions in 
	�z�

ombine into 2 cos 2��� �z�.


�0,0��x,y� = 1,


�a,0��x,y� = 2 cos�2�a�2x + 3y�� + 2 cos�2�ax� + 2 cos�2�a�x + 3y�� ,


�0,b��x,y� = 2 cos�2�b�x + y�� + 2 cos�2�by� + 2 cos�2�b�x + 2y�� , �3.2�


�a,b��x,y� = 2 cos�2���a + b�x + by�� + 2 cos�2��ax + �3a + b�y�� + 2 cos�2���2a + b�x

+ �3a + b�y�� + 2 cos�2���2a + b�x + �3a + 2b�y�� + 2 cos�2��ax − by��
+ 2 cos����a + b�x + �3a + 2b�y�� .
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The C-functions, normalized as defined in �1, �4,8��, are given for G2 for all a ,b�Z�0 in one
xpression

�a,b��x,y� = 2 cos�2���a + b�x + by�� + 2 cos�2��ax + �3a + b�y�� + 2 cos�2���2a + b�x

+ �3a + b�y�� + 2 cos�2���2a + b�x + �3a + 2b�y�� + 2 cos�2��ax − by��

+ 2 cos����a + b�x + �3a + 2b�y�� . �3.3�

. Weyl group symmetries of C-functions of G2

The affine Weyl group Waff, generated by the reflections r1�r�1
, r2�r�2

, and RN�h
RN�2�1+3�2�, describes the symmetries of C-functions


	�r1z� � 
�a,b��r1�x�̌1 + y�̌2�� = 
�a,b���− x�̌1 + �x + y��̌2�� ,


	�r2z� � 
�a,b��r2�x�̌1 + y�̌2�� = 
�a,b���x + 3y��̌1 − y�̌2� , �3.4�


	�RN�h
z� � 
�a,b��RN�h

�x�̌1 + y�̌2�� = 
�a,b���N − x − 3y��̌1 + y�̌2� .

Note that variable z is given relative to a dual basis 
�̌1 , �̌2�. Its lengths are interchanged.

. Laplace operator

Direct calculation verifies that 
	�z� is an eigenfunction of the Laplace operator L

L
	�z� =
def

��1�x + �2�y�2
	�z� = 2��xx − �xy +
1

3
�yy	
	�z�

= − 4��	�	�
	�z� = − 8��a2 + ab +
1

3
b2	
	, �3.5�

here z=x�̌1+y�̌2 and 	=a�1+b�2. The operator L is positive definite. By a change of variables
t can be brought to a sum of second derivative with coefficients of the same sign. That justifies its
ame.

. Orthogonality of C-functions of G2
Orthogonality property of the C-functions in the case of G2
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�
F


�a,b��x,y�
�c,d��x,y�dF = �3�
0

1/2

dx�
0

1/3−2/3x


�a,b��x,y�
�c,d��x,y�dy

=
0, if a � c or b � d ,

1

4�3
, if a = b = c = d = 0,

�3

2
, if a = c � 0 and b = d = 0,

or a = c = 0 and b = d � 0,

�3, if a = c � 0 and b = d � 0.

� �3.6�

. Decomposition of products of C-functions of G2

Since a product of W-orbits is a union of W-orbits, one has a corresponding decomposition of
-functions. Here are some G2-examples:


�0,1�
�0,1� = 
�0,2� + 2
�1,0� + 2
�0,1� + 6
�0,0�,


�1,0�
�0,1� = 
�1,1� + 2
�0,2� + 2
�0,1�,


�1,0�
�1,0� = 
�2,0� + 2
�0,3� + 2
�1,0� + 6
�0,0�.

There is a possibility to calculate C-functions one by one by judiciously choosing the se-
uence of products, starting from the lowest three: 
�0,0�=1, 
�0,1�, and 
�1,0�.

. Branching rules for C-functions of G2 to the subgroups A1ÃA1 and A2

A branching rule is the reduction of a C-function of G2 to a sum of C-functions of a subgroup.
n order to do that, one needs to write any 	� P�G2� in a basis of P of the subgroups. The
ransformations are performed as follows, relative to respective �-bases:

�a b�G2
�1 3

1 1
	 = �a + b 3a + b�A1�A1

,

�a b�G2
�1 1

1 0
	 = �a + b a�A2

.

Each C-function of G2 then splits into C-functions of the subgroup. The following relations
escribe all the branching rules:

G2 � A1 � A1: �
�a,0��z��G2
= �
�a,3a� + 
�2a,0��A1�A1

,

�
�0,b��z��G2
= �
�b,b� + 
�0,2b��A1�A1

,

�
�a,b��z��G2
= �
�2a+b,3a+b� + 
�2a+b,b� + 
�a,3a+2b��A1�A1

,

G2 � A2: �
�a,0��z��G2
= �
�a,a��A2

,

�
�0,b��z��G = �
�b,0� + 
�0,b��A ,

2 2
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�
�a,b��z��G2
= �
�a+b,a� + 
�a,a+b��A2

.

V. DISCRETIZATION OF A2- AND G2-TRANSFORMS

In this section we specialize the general results of Ref. 6 to A2 and G2, and follow it by their
ontinuous extensions. For more information about discretization in the case of rank n=2, we refer
o Sec. VII of Ref. 1 Here, only a minimum is recalled to make the paper reasonably self-
ontained.

In general, we proceed as follows. First, we set up a triangular lattice of points of any density.
he set of its points in the fundamental region F is denoted FM. Action of the affine Weyl group
aff on F allows one to tile the entire space R2 by copies of F. By the same action, FM is

ransformed into a lattice in R2. Density of points in FM is chosen by fixing a positive integer M.
ubsequently, the set FM is used in two roles: �i� it is the stage on which digital data are given; �ii�

t identifies the set SM of pairwise orthogonal C-functions on FM.
Second, we consider any function f�s� sampled digitally on the points s�FM and its expan-

ion in terms of normalized C-functions

f�s� = �
	�SM

d		�s�, s � FM, M � Z�0. �4.1�

Expansion �4.1� is inverted using the discrete orthogonality of C-functions

��a,b���a�,b���M = �
s�FM

cs�a,b��s��a�,b���s� = �a,a��b,b���a,b���a,b��M . �4.2�

hus, we calculate the coefficients d	 of the expansion according to

d	 =
1

�	�	�M
�

s�FM

cs f	�s� · 	�s� . �4.3�

Here, cs and �	 �	�M are constants specific for each Lie group.
Our final step is the continuous extension of �4.1�. It is accomplished very simply: the discrete

ariable s�FM is replaced by a continuous one, z�F

f�z� = �
	�SM

d		�z�, z � F � R2. �4.4�

oefficients d	 and the set SM remain as in �4.1�. Through them, the continuous extension depends
n the discrete expansion.

. Discretization in the case of A2

The density of points s�FM is chosen by fixing a positive integer M. Individual points s
FM are given by triplets s= �s0 ,s1 ,s2���s1 /M ,s2 /M� of non-negative integers, which must not

e all zero simultaneously and have to satisfy the following A2-sum rule:

M = s0 + s1 + s2 � 0, s0,s1,s2 � Z�0. �4.5�

All points of FM �F are obtained by letting the three non-negative integers run through all the
alues compatible with �4.5�. Equivalently

FM =
def� s1

M
�1 +

s2

M
�2 � s0,s1,s2 � Z�0, s0 + s1 + s2 = M � 0� . �4.6�

For example, the vertices of F belong to FM for all M in the case of A2. More precisely, the

hree vertices are
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�M,0,0� = �0,0�, �0,M,0� = �1,0�, �0,0,M� = �0,1� ,

or any positive integer M. Every side of the equilateral triangle F contains M +1 equidistant
oints of FM. See Fig. 3.

Discrete orthogonality of C-functions �4.2� is valid for a finite number of C-functions. More
recisely, C-functions 	 and 	� are orthogonal provided 	 ,	��SM � P+, where

SM = �s1�1 + s2�2 �
s1

M
�1 +

s2

M
�2 � FM� . �4.7�

Coefficients cs in �4.3� and �4.2� take the following values in the case of A2:

cs � c�s1/M,s2/M� =
1, if s1 = s2 = 0,

or s1 = 0 and s2 = M ,

or s1 = M and s2 = 0,

3, if s1 = 0 and 0 � s2 � M ,

or s2 = 0 and 0 � s1 � M ,

or s1,s2 � 0 and s1 + s2 = M ,

6, if s1,s2 � 0 and s1 + s2 � M .

� �4.8�

From �4.2� we have

��a,b���a�,b���M = 0, if a � a� and b � b�;

therwise, for the set of the lowest pairwise orthogonal normalized C-functions

��a,b���a,b��M = 18M2 �
1, if 0 � a,b and a + b � M ,

2, if a = 0 and 0 � b � M ,

or 0 � a � M and b = 0,

or 0 � a,b and a + b = M ,

6, if a = b = 0,

or a = 0 and b = M ,

or a = M and b = 0,

� �4.9�

ith the higher C-functions repeating the values of the lowest ones.
Example. F2�A2� consists of the following six points given as �s0 ,s1 ,s2���s1 /M ,s2 /M�:

F2 = 
�2,0,0� = �0,0�, �0,2,0� = �1,0�, �0,0,2� = �0,1�, �1,1,0� = � 1
2 ,0�,

�1,0,1� = �0, 1
2�, �0,1,1� = � 1

2 , 1
2�� . �4.10�

n Table I the values of several normalized C-functions are shown at the points of F2�A2�. The first
ix belong to S2�A2�. However, a closer inspection reveals the presence of another orthogonal set
btained from S2�A2� by affine reflection R�2,2� applied to all its elements. See Fig. 2.

Using the entries of Table I, let us calculate several examples in the discretized A2-case

�
�2,0��
�0,0��2 = �
�0,0��
�0,2��2 = 3�1 + 3�4 + 3�2 + �2 + 3 + �4� = 0;

�
�1,1��
�1,2��2 = 12�3 − �5 − � + 3�4 + 1 + 3�2� = 0;

�
 �
 � = 6 · 6 + 3 · 2�5 · 2� + 3 · 2� · 2�5 + 6�4 · 6�2 + 3 · �− 2� · �− 2� + 6�2 · 6�4 = 144.
�2,1� �2,1� 2
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The sesquilinear form �f �g�M can be used to multiply any class functions f and g sampled on

M of A2. Moreover, dependence of �4.2� on A2 comes only through FM, SM, and the sum rule for
M. Otherwise, the discrete orthogonality does not change from one group to another.

TABLE I. Values of several normalized C-functions of A2 at the points of the grid F2. Note that only the first
six C-functions are pairwise orthogonal. The higher ones repeat the values of the lowest six. The cs are the
coefficients from �4.8�. Here, �=e2�i/6.

s �0,0� �1

2
,0� �0,

1

2 � �1,0� �1

2
,
1

2 � �0,1�

�0,0��s� 6 6 6 6 6 6

�1,0��s� 6 2�5 2� 6�4 −2 6�2

�0,1��s� 6 2� 2�5 6�2 −2 6�4

�2,0��s� 6 6�4 6�2 6�2 6 6�4

�1,1��s� 6 −2 −2 6 −2 6

�0,2��s� 6 6�2 6�4 6�4 6 6�2

�3,0��s� 6 −2 −2 6 −2 6

�4,2��s� 6 6�4 6�2 6�2 6 6�4

�1,2��s� 6 2� 2�5 6�2 −2 6�4

�2,1��s� 6 2�5 2� 6�4 −2 6�2

�2,2��s� 6 6 6 6 6 6

cs 1 3 3 1 3 1
FIG. 2. The set of six lowest normalized C-functions of A2 which are pairwise orthogonal on the grid F2.
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. Discretization in the case of G2

Similarly as before, M is the positive integer fixing the density of the discrete points s
FM �F. The fundamental region F is a triangle, half of an equilateral one �see Fig. 1�. The G2

um rule differs from that of A2 of �4.5�

M = s0 + 2s1 + 3s2 � 0, s0,s1,s2 � Z�0. �4.11�

t restricts the choice of the triples �s0 ,s1 ,s2� to a finite set of possible values. Each triple stands
or one point s�FM, where s= �s0 ,s1 ,s2���s1 /M ,s2 /M�. In particular, origin belongs to FM for
ny M, while �1, 0� and �0,1��FM only if M is divisible by 2 and 3, respectively. See Fig. 3.

A few more examples are the sets

F8:�6,1,0� = � 1
8 ,0�, �5,0,1� = �0, 1

8�, �3,1,1� = � 1
8 , 1

8�, �1,2,1� = � 1
4 , 1

8�, + points of F4;

F5:�5,0,0� = �0,0�, �2,0,1� = �0, 1
5�, �3,1,0� = � 1

5 ,0�, �0,1,1� = � 1
5 , 1

5�, �1,2,0� = � 2
5 ,0�;

F4:�1,0,1� = �0, 1
4�, �2,1,0� = � 1

4 ,0�, + points of F2;

F3:�3,0,0� = �0,0�, �0,0,1� = �0, 1
3�, �1,1,0� = � 1

3 ,0� .

Discrete orthogonality �4.2� holds for the set of C-functions 
	�z� of G2 with 	 in the set
4.7�, where M is now given by the sum rule �4.11�. The set of pairwise orthogonal C-functions of

2 is again given by �4.7�. Hence, we have �4.1� and �4.3�, where coefficients cs in the G2 case are
he following ones:

cs � c�s1/M,s2/M� =
1, if s1 = s2 = 0,

2, if s1 = 0 and s2 =
M

3
,

3, if s1 =
M

2
and s2 = 0,

6, if s1 = 0 and 0 � s2 �
M

3
,

or s2 = 0 and 0 � s1 �
M

2
,

or s1,s2 � 0 and 2s1 + 3s2 = M ,

12, if s1,s2 � 0 and 2s1 + 3s2 � M .

�

FIG. 3. The lattice points of F2, F3, and F4 on the fundamental region F for A2 and G2.
The discrete orthogonality is
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��a,b���a�,b���M = 0, if a � a� and b � b�;

therwise, for the set of the lowest pairwise orthogonal normalized C-functions

��a,b���a,b��M = 12M2 �
1, if 0 � a,b and 3a + 2b � M ,

2, if a = 0 and 0 � b �
M

2
,

or 0 � a �
M

3
and b = 0,

or 0 � a,b and 3a + 2b = M ,

4, if a = 0 and b =
M

2
,

6, if a =
M

3
and b = 0,

12, if a = b = 0,

� �4.12�

ith the higher C-functions repeating the values of the lowest ones. See Fig. 4.

. MOTIVATING EXAMPLES

Comparison of expansions of class functions into series of C-functions of both groups con-
idered here, as well as the two additional groups of Ref. 1, will require further study. Related
esults/questions are illustrated by the following examples.

There are two examples shown in this section, involving decomposition of the same function
f�x ,y� into series of C-functions of A2 and G2. Goal of the examples is �i� to illustrate discrete
ecomposition of a given function followed by the continuous extension, and �ii� to compare the
ontinuous extensions in both cases.

In order to make the comparison, we set up the vertices of the two fundamental regions as
ollows �relative to an orthonormal basis�:

F�A2� = ��0,0�,�1,0�,�1
,
�3	� , �5.1�

FIG. 4. The set of seven lowest normalized C-functions of G2 which are pairwise orthogonal on the grid F6.
2 2
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F�G2� = ��−
1

4
,
�3

4
	,�3

4
,
�3

4
	,�3

4
,
�3 − 2

4
	� . �5.2�

hus, the area of F�G2� is exactly half of the area of F�A2�.
We choose for f�x ,y� a triangular step function with sharp edges with vertices in �1/4 ,�3/4�,

3 /4 ,�3/4�, and �1/2 ,0�

f�x,y� = 1 for �x,y� � ��1

4
,
�3

4
	,�3

4
,
�3

4
	,�1

2
,0	� ,

0 elsewhere in F .
� �5.3�

Chosen as such, f�x ,y� fits into the fundamental regions F of the two groups as shown in Fig.
. Furthermore, in order to have the same density of grid points, the orders of the grids are taken
ith the ratio MG2

=2MA2
. Figure 3 demonstrates the difference of densities of the grids of the

ame order for the two cases. It also helps to demonstrate the reason of the choice of f�x ,y� and
ts placement into the fundamental region of G2 in order to ensure a fair comparison of the two
ases.

Figures 6 and 7 contain results of our two examples. The values of the function f�x ,y� are
ampled at the points s of the grids FM �1, �7.2�� and taken as our digital data f�s�. Then, the
unctions are expanded �1, �7.7�� into C-functions of A2 and of G2 on the corresponding grid FM,
.e., expansion coefficients are calculated �1, �7.8��. After that, continuous extensions of the dis-
rete expansions of f�s� are made �1, �7.9�� by replacing the C-functions of the discrete argument
in the expansions by the same functions of the continuous argument, while keeping the expan-

ion coefficients unchanged. Each figure shows the function fcont�x ,y� resulting from the continu-

FIG. 5. The triangular step function �5.3� placed in the fundamental regions of A2 and G2.

IG. 6. Decomposition and continuous extension of a triangular step function placed in the fundamental region of A2 on

he grids of orders M =4, 8, 16, and 32.
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us extension of discrete expansions. More precisely, four different continuous extensions are
hown in each figure. They differ by the densities of the grid FM, namely MA2

=4, 8, 16, 32, and
MG2

=8, 16, 32, and 64, from which the continuous extension is made. For these values the
ensities of grid points of A2 and G2 in the sample function are the same. The points of the grids
re not shown in the figures.

Inspecting and comparing the two results, one readily observes the following:

i� As in Ref. 1, increasing density of the grid, i.e., increasing the value of M, makes the
continuous extension match more closely the given model function f�x ,y� of �5.3�.

ii� Quality of the extension, i.e., the match between the continuous extension fcont�x ,y� and the
original function f�x ,y�, is comparable for the same density of the grid in both cases,
though G2 expansion may be slightly superior, as noticeable by comparing the two at
MA2

=32 and MG2
=64.

iii� The calculations of complex-valued functions in the case of A2 took a much longer time
compared to the case of G2, which gives G2 an obvious advantage in the discretization of
real-valued functions, while A2 is more useful for processing complex-valued information.

I. CONCLUDING REMARKS

A number of concluding comments of Ref. 1 are equally pertinent for us here. In addition to
hose, we would like to point out the following:

1� The versatile way of setting up the triangular grid FM in the fundamental region, and,
consequently, a lattice of corresponding symmetry in R2, should prove useful in other appli-
cations where lattices are essential. Note that the density of the lattice is chosen by a single
natural number 0�M ��. Also, general results of Ref. 6 allow one to set up a grid FM and
the corresponding lattice in any dimension n, using a semisimple Lie groups of rank n.

2� Practically the most interesting question that remains is the characterization of functions f�z�,
z�R2, which are most advantageously expanded in C-functions of each of the four groups of
rank 2.

3� In general, one may expect that triangular lattices offer advantages in comparable problems
due to their higher density of points. Indeed, given an equal distance between first neighbors,
the ratio of densities of points �sphere packing densities� of square and triangular lattices is
1 :�2.

4� There are other curious properties of C-functions we did not exploit either here or in Ref. 1.
For example, the following assertion is valid for any compact semisimple Lie group.

IG. 7. Decomposition and continuous extension of a triangular step function placed in the fundamental region of G2 on
he grids of orders M =8, 16, 32, and 64.
Among the infinity of possible grid points in F, i.e., points with rational coordinates relative
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to the �-basis, there are finitely few, say z1 , . . . ,zk, such that all C-functions take integer
values on them


	�zj� � Z 1 � j � k, for all 	 � P+.

Such grid points identify the conjugacy classes of elements of the group G consisting of
elements called rational.16 For rank 2 groups, the rational conjugacy classes were found in
Ref. 17.

5� The last of the concluding remarks in Ref. 1 identifies the C-functions of that paper as two
infinite families of orthogonal polynomials in two variables. Similar substitution of variables
allows one to interpret the C-functions here as another two families of orthogonal polyno-
mials in two variables. A distinguishing feature of the four families is the structure of their
polynomials. Indeed, their degrees grow without limits, but the number of monomials com-
prising such a polynomial is equal to the order �W� of the corresponding Weyl group or to one
of the divisors of �W�. More precisely, an 
�a,b��z� is identified as the polynomial consisting
of monomials with degrees varying between a+b and −a−b. The number of terms in such a
polynomial is equal to �W� precisely if a�0 and b�0. Recall that �W�=4,6 ,8 ,12, respec-
tively, for A1�A1, A2, C2, and G2.

6� A systematic comparison of the quality and computational efficiency of continuous exten-
sions, as described here and in Ref. 1 with the current methods of interpolation of digital data
�for example, Refs. 18 and 19� is of considerable practical interest, but it is outside of the
scope of this series of papers.
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We give sufficient conditions for ergodicity of the Markovian semigroups associ-
ated to Dirichlet forms on standard forms of von Neumann algebras constructed by
the method proposed by Park. We apply our result to show that the diffusion type
Markovian semigroups for quantum spin systems are ergodic in the region of high
temperatures where the uniqueness of the KMS state holds. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2113067�

. INTRODUCTION

The purpose of this work is to investigate ergodic property of the Markovian semigroups
ssociated to Dirichlet forms on the standard form of a von Neumann algebra1,2 M acting on a
ilbert space H with a cyclic and separating vector �0. Denote by �t , t�R, the modular automor-
hism on M associated with the pair �M ,�0� and M1/2 the dense subset of M consisting of every

t-analytic element on a domain containing the strip �z�C : �Im z��1/2�.3 Let �xk :k� I� be a
finite or countable� family of elements in M1/2 which generates M. Let �E ,D�E�� be the Dirichlet
orm constructed with �xk :k� I� and an admissible function by means of Refs. 1 and 2. For the
etails, see Sec. II. Denote by Tt , t�0, the Markovian semigroup associated to �E ,D�E��. Let N be
he fixed point space of Tt,

N = �� � H:Tt� = �, ∀ t � 0� .

e show that N= �Z�M��0�, where Z�M� is the center of M; Z�M�=M�M�, and �Z�M��0�
s the closure of Z�M��0. As a consequence, Tt is ergodic if and only if M is a factor. We apply
ur result to the translation invariant Markovian semigroups for quantum spin systems,1 and show
hat the semigroups are ergodic in the region of high temperatures where the uniqueness of the
MS state holds.

Let us describe the background of this study briefly. The need to construct Markovian semi-
roups on von Neumann algebras, which are �KMS� symmetric with respect to nontracial states, is
lear for various applications to open systems,4 quantum statistical mechanics3 and quantum
robability.5,6 Although on the abstract level we have quite well-developed theory,7–9 the progress
n concrete applications is relatively slow. For construction of Dirichlet forms and associated

arkovian semigroups, we refer to Refs. 1 and 10–14 and the references there in.
During the last 10 years, systematic methods to construct Dirichlet forms and associated

arkovian semigroups of jump and diffusion types have been developed. Nontrivial translation
nvariant symmetric semigroups of jump type for quantum spin systems have been constructed and
he strong ergodicity of the semigroups has been established in Refs. 12 and 13. See also Ref. 14
nd the references therein. In Ref. 1, we gave a general construction method of Dirichlet forms of
iffusion type in the framework of the general theory of Dirichlet forms and Markovian semi-
roups on standard forms of von Neumann algebras developed by Cipriani.7 The method has been
sed successfully to construct Dirichlet forms and associated Markovian semigroups for quantum

�
Electronic mail: ympark@yonsei.ac.kr
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pin systems,1 CCR and CAR algebras with respect to quasifree states,10,11,15 and quantum me-
hanical systems.16 Recently, in Ref. 2 we have shown that the symmetric embedding of a general
indblad type �bounded� generator of a quantum dynamical semigroup satisfying KMS symmetry
an be written in the form of a Dirichlet operator associated to a Dirichlet form given in Ref. 1.

The next step in this research area would be the investigation of detailed properties of Mar-
ovian semigroups, such as ergodicity, mixing property and convergence to the equilibrium, etc. In
he case of CCR and CAR algebras with respect to quasifree states, the spectrum of the generators
f the Markovian semigroups constructed in Refs. 17, 10, 11, and 15 has been analyzed. However,
n general the detail properties of the Markovian semigroups associated to Dirichlet forms in Refs.

and 2 are hard to be established. Thus it would be nice to have a simple criteria whether the
arkovian semigroup under study is ergodic or not in the sense of Cipriani.18

We organize the paper as follows: In Sec. II, we introduce notations and terminologies, and
hen list our results �Theorem 2.1 and Corollary 2.1�. We also give comments �Remark 2.1� on
ossible applications of our results. Section III is devoted to the proof of Theorem 2.1. We first
escribe the basic ideas of the proof and then establish some technical lemmas �Lemma 3.1–
emma 3.5� which are needed in the sequel. Using the lemmas we complete the proof of Theorem
.1. In Sec. IV, we apply our main results to prove that the diffusion type translation invariant
arkovian semigroups for quantum spin systems constructed in Ref. 1 are ergodic in the region of

igh temperature where the uniqueness of the KMS state holds.

I. NOTATION, TERMINOLOGIES AND MAIN RESULTS

We first introduce necessary terminologies in the theory of Dirichlet forms and Markovian
emigroups on standard form of von Neumann algebras.7 Next we give a brief review on the
onstruction of Dirichlet forms developed in Ref. 1 and then list our main results.

Let M be a �-finite von Neumann algebra acting on a complex Hilbert space H with an inner
roduct �·,·	 which is conjugate linear in the first and linear in the second variable. Let �0 be a
yclic and separating vector for M. We use � and J to denote, respectively, the modular operator
nd the modular conjugation associated with the pair �M ,�0�.3 The associated modular automor-
hism is denoted by �t:�t�A�=�itA�−it, A�M. Finally, j :M→M� is the antilinear
-isomorphism defined by j�A�=JAJ, A�M, where M� is the commutant of M. By the Tomita-
akesaki theorem �Theorem 2.5.14 of Ref. 3�, it follows that �t�M�=M and j�M�=M�.

The natural positive cone P associated with the pair �M ,�0� is the closure of the set

�Aj�A��0:A � M� .

y a general result, the closed convex cone P can be obtained by the closure of the set

��1/4AA*�0:A � M�

nd this cone P is self-dual in the sense that

�� � H:��,�	 � 0, ∀ � � P� = P .

or the details we refer to Ref. 19 and Sec. 2.5 of Ref. 3.
The form �M ,H ,P ,J� is the standard form associated with the pair �M ,�0�. We shall use the

act that H is the complexification of the real subspace HJ= ���H : �� ,�	�R , ∀��P�, whose
lements are called J-real: H=HJ � iHJ. The cone P gives rise to a structure of ordered Hilbert
pace on HJ �denoted by �� and to an antilinear involution J on H, which preserves P and HJ:
��+ i��=�− i�, ∀�, ��HJ. Also note that any J-real element ��HJ can be decomposed
niquely as a difference of two mutually orthogonal, positive and negative part of �, respectively,
=�+−�−, �+ ,�−�P, and ��+ ,�−	=0.

A bounded operator A on H is called J-real if AJ=JA and positive preserving if AP�P. A
emigroup �Tt�t�0 is said to be J-real if Tt is J-real for any t�0 and it is called positive preserving

f Tt is positive preserving for any t�0. A bounded operator A :H→H is called sub-Markovian
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with respect to �0� if 0����0 implies 0�A���0. A is called Markovian if it is sub-Markovian
nd also A�0=�0. A semigroup �Tt�t�0 is said to be sub-Markovian �with respect to �0� if Tt is
ub-Markovian for every t�0. A semigroup �Tt�t�0 is called Markovian if Tt is Markovian for
very t�0.

Next, we consider a sesquilinear form on some linear manifold of H :E�· , · � :D�E��D�E�
C. We also consider the associated quadratic form: E�·� :D�E�→C, E���ªE�� ,��. A real valued

uadratic form E�·� is said to be semibounded �or bounded below� if inf�E��� :��D�E� ,‖�‖=1�
−b�−	. A quadratic form �E ,D�E�� is said to be J-real if JD�E��D�E� and E�J��=E��� for any
�D�E�. For a semibounded quadratic form E, one considers the inner product given by �� ,�	


E�� ,��+
�� ,�	, for 
�b. The form �E ,D�E�� is closed if D�E� is a Hilbert space for some of
he above inner products. The form �E ,D�E�� is called closable if it admits a closed extension.

Associated to a semibounded closed form �E ,D�E��, there are a self-adjoint operator
H ,D�H�� and a strongly continuous, symmetric semigroup �Tt�t�0. Each of the above objects
etermines uniquely the others according to well-known relations �see Ref. 20 and Sec. 3.1 of Ref.
�.

Let us denoted by Proj�� ,Q� the projection of the vector ��HJ onto the closed, convex cone
�HJ. For � ,��HJ, define

� ∨ � ª Proj��,� + P� ,

� ∧ � ª Proj��,� − P� .

J-real, real-valued, densely defined quadratic form �E ,D�E�� is called Markovian with respect to

0�P if

� � D�E�J implies � ∧ �0 � D�E� and E�� ∧ �0� � E��� ,

here D�E�J
ªD�E��HJ. A closed Markovian form is called a Dirichlet form.

Next, we collect main results of Ref. 7. Let �E ,D�E�� be a J-real, real valued, densely defined
losed form. Assume that the following properties hold:

�a� �0 � D�E� ,

�b� E��,�� � 0 for � � D�E� , �2.1�

�c� � � D�E�J implies �± � D�E� and E��+,�−� � 0.

hen �E ,D�E�� is a Dirichlet form if and only if E�� ,�0��0 for all ��D�E��P. The above result
ollows from Proposition 4.5 �b� and Proposition 4.10 �ii� of Ref. 7. The following is one of main
esults �Theorem 4.11� of Ref. 7: Let �Tt�t�0 be a J-real, strongly continuous, symmetric semi-
roup on H and let �E ,D�E�� be the associated densely defined J-real, real valued quadratic form.
hen the following are equivalent:

�a� �Tt�t�0 is sub-Markovian.

�b� �E,D�E�� is a Dirichlet form.

e refer the reader to Ref. 7 for the details.
Next, we describe the construction of Dirichlet forms developed in Ref. 1. See also Ref. 2. For

ny 
�0, denote by I
 the closed strip given by

I
 = �z:z � C, �Im z� � 
� . �2.2�

ecall that an analytic function f :D→C on a domain D containing the strip I1/4 is called admis-

ible if the following properties hold:
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�a� f�t� � 0 for ∀ t � R ,

�b� f�t + i/4� + f�t − i/4� � 0 for ∀ t � R ,

�c� there exist M � 0 and p � 1 such that the bound �2.3�

�f�t + is�� � M�1 + �t��−p

holds uniformly in s � �− 1/4,1/4� .

e also consider the function f0 :R→R given by

f0�t� = 2�e2�t + e−2�t�−1. �2.4�

ne can see that f0 has an analytic extension, denoted by f0 again, to the interior of I1/4.
For any 
�0, denote by M
 the dense subset of M consisting of every �t-analytic element

ith a domain containing I
. By Proposition 2.5.21 of Ref. 3, any A�M
 is strongly analytic on


. We denote by M0 the dense subset of M consisting of every �t-entire analytic element, i.e.,
=�
M
.
Let I be a finite or countable �index� set. For given family �xk :k� I��M1/2 of self-adjoint

lements in M1/2 and an admissible function f or f = f0, define a sesquilinear form by

D�E� = 
� � H:�
k�I

Ek��,�� � 	� , �2.5�

E��,�� = �
k�I

Ek��,�� , �2.6�

here for each k� I,

Ek��,�� = ���t−i/4�xk� − j��t−i/4�xk����,��t−i/4�xk� − j��t−i/4�xk����	f�t�dt . �2.7�

or each k� I, the above form is positive and bounded. In fact, the form �Ek ,H� is a Dirichlet form
or each k� I by Theorem 3.1 of Ref. 1. See also Theorem 2.1 of Ref. 2 for f = f0. Moreover, if
�E� is dense in H, then the form �E ,D�E�� given in �2.6� is a Dirichlet form by Theorem 5.2 of
ef. 7.

Before proceeding further, we would like to make a few remarks. The function f0 given in
2.5� played a special role in Ref. 2. The symmetric embedding of a general Lindblad type
bounded� generator of a quantum dynamical semigroup �satisfying KMS symmetry� on M can be
ritten as the Dirichlet operator associated to a Dirichlet form in �2.6� with f = f0. Next, we would

ike to mention that it is not necessary to assume that each xk in �xk :k� I� is self-adjoint if one
efines the Dirichlet form �Ek ,H� in �2.7� appropriately as in �2.6� of Ref. 2. Note that, by a simple
ransformation, one can write Ek�� ,�� as a sum of two Dirichlet forms corresponding with two
elf-adjoint elements. See Remark 2.1 �a� in Ref. 2. Thus without loss of the generality, we assume
hat each xk is self-adjoint.

A family �xk :k� I� is said to generate M if the �-algebra generated by �xk :k� I� is dense in
. For given �xk :k� I��M1/2 of self-adjoint elements and either an admissible function f or

lse f = f0, let �E ,D�E�� be the Dirichlet form defined as in �2.5�–�2.7�. Denote by �H ,D�H�� and
Tt�t�0 the Dirichlet operator and Markovian semigroup associated to �E ,D�E��, i.e., Tt=e−tH. We

enote by N the fixed point space of Tt,
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N ª �� � H:Tt� = �� = �� � H:H� = 0� . �2.8�

he following is the main result in this paper.
Theorem 2.1: For a family �xk :k� I��M1/2 of self-adjoint elements and an admissible

unction f or else f = f0, let �E ,D�E�� be the densely defined Dirichlet form given as in (2.5)–(2.7).
ssume that �xk :k� I� generates M. Then the equality

N = �Z�M��0�

olds, where Z�M� is the center of M, i.e., Z�M�=M�M�, and �Z�M��0� is the closure of
�M��0.

Recall that a symmetric, strongly continuous, positive preserving semigroup �Tt�t�0 on H is
alled ergodic if for each � ,��P ,� ,��0, there exists t�0 such that �� ,Tt�	�0.18 Assume that
nf ��H� is an eigenvalue of the generator H of �Tt�t�0. Then the ergodicity of �Tt�t�0 is equivalent
o that inf ��H� is a simple eigenvalue of H with a strictly positive �cyclic and separating�
igenvector �Theorem 4.3 of Ref. 18�. As a consequence of Theorem 2.1, we have the following.

Corollary 2.1: Let M be a factor, i.e., Z�M�=C1. Let �E ,D�E�� be the densely defined
irichlet form as in Theorem 2.1 and Tt the associated Markovian semigroup. Under the assump-

ions as in Theorem 2.1, �Tt�t�0 is ergodic in the sense that zero is a simple eigenvalue of the
enerator H of Tt with eigenvector �0.

Proof: Under the assumptions, N=C�0 by Theorem 2.1. Since j��t−i/4�x���0=�t−i/4�x��0, it
ollows from �2.7� that Ek��0 ,�0�=0 for each k� I and so E��0 ,�0�=0, which implies that H�0

0. See also Theorem 3.1 �a� of Ref. 1. Hence zero is a simple eigenvalue of H with eigenvector

0.
�

We will produce the proof of Theorem 2.1 in the next section. Before closing this section, it
ay be worth to give comments on possible applications of Theorem 2.1.

Remark 2.1: (a) In order to apply Theorem 2.1 (and Corallary 2.1) to concrete models, one
ust choose a family �xk :k� I��M1/2 which generates M. Recall that the condition xk

M1/2�M1/4 for each xk is needed for �Ek ,H� to be well defined. If H is a finite dimensional
ilbert space, then the modular operator � is bounded and so every element x of M is �t-entire
nalytic. In general, it would be not easy to choose a generating family �xk :k� I� from M1/2

irectly.
(b) For quantum spin systems in the region of high temperatures, every local observable

elongs to M1/2. In this case, the choice of �xk :k� I� is easy. See Sec. IV for the details.
(c) Let �fn :n�N� be an orthonormal basis for L2�Rd� and let a*�fn� and a�fn�, n�N, be the

reation and annihilation operators which generate a CAR algebra A. Let  be a quasifree state
n A and �H ,��A� ,�� be the cyclic representation associated to �A ,�. Let M=��A�� and

0=�. Then for each n�N, ��a�fn�� and ��a*�fn�� are �t-entire analytic element.11 Thus one
an apply Theorem 2.1 and Corollary 2.1 directly in this case.

(d) In applications to open systems4 and quantum statistical mechanics,3 one may need to
onstruct a Dirichlet form for a given �xk :k� I�, where each xk is unbounded (self-adjoint) op-
rator affiliated with M. By employing appropriate approximation procedures, one may be able to
onstruct the Dirichlet form associated to �xk :k� I� (Refs. 16 and 10) and then extend Theorem
.1 by modifying the method used in this paper.

II. PROOF OF THEOREM 2.1

Before producing the proof of Theorem 2.1, we first describe the basic ideas used in the proof,
nd then establish necessary technical lemmas which will be needed in the proof. Using the
emmas, we complete the proof at the last part of this section.

The inclusion �Z�M��0��N is easy to check. See the proof of Theorem 2.1. Thus we
1/2 1/2
oncentrate to the inclusion N� �Z�M��0�. Note that ��N if and only if E���= �H � ,H �	
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0. Since Ek����0 for ��H, k� I, ��N if and only if Ek���=0 for any k� I. Since f is an
dmissible function or else f = f0, it is easy to show that Ek���=0 if and only if

���t−i/4�xk� − j��t−i/4�xk����� = 0

or any t�R and k� I. See Lemma 3.1. The above implies that

���−i/4�xk� − j��−i/4�xk����� = 0, k � I . �3.1�

uppose that � is of the form �=�1/4Q�0, Q�M. Then the above equality implies that

�xk,Q��0 = 0, ∀ k � I

nd so

�xk,Q�A��0 = 0, ∀ k � I

or any A��M�. Since M��0 is dense in H, we conclude that �xk ,Q�=0 for k� I. Since �xk :k
I� generates M, Q�M�. Thus Q�M�M� and �=�1/4Q�0=Q�0. However, in general �
N cannot be written as �=�1/4Q�0, Q�M.

Note that H is J-real, JH=HJ, and so JN=N. Any ��H can be written as �=�r+ i�i, where

r= ��+J�� /2 and �i=−i��−J�� /2. Thus ��N implies �r, �i�N. Hence we may suppose that
�N�HJ. Because of the Dirichlet property, �2.1� �c�, of E���, it can be shown that �
N�HJ implies �+, �−�N�P �Lemma 3.2 �d��. Thus the problem is reduced to the case �
N�P.

Any ��D��−1/4��P can be written as �=�1/4Q�0 where Q is positive self-adjoint operator
ffiliated with M �Lemma 3.4�. For any ��D��−1/4�� �N�P�, �=�1/4Q�0, we use �3.1� to
how that

�xkQ − Qxk��0 = 0.

sing the facts that M��0 is dense in H and that �xk :k� I� generates M, we will show that Q is
ffiliated with M�. Since ��=� for any �� �Z�M��0�, we conclude that �� �Z�M��0�. Next, we
se the fact that D��−1/4�� �N�P� is dense in �N�P� �Lemma 3.3� to complete the proof of
heorem 2.1.

Next, we collect technical lemmas which will be used in the sequel. In the rest of this section,
e assume that the conditions in the theorem hold.

Lemma 3.1: A vector ��H belongs to N if and only if the equality

��t−i/4�xk� − j��t−i/4�xk���� = 0

olds for any t�R and k� I.
Proof: Since

��,H�	 = E��,�� = �
k�I

Ek��,�� ,

nd Ek�� ,���0 for ��H and k� I, H�=0 if and only if Ek�� ,��=0. Recall the expression of

k�� ,�� in �2.7�. Notice that f0�t��0 for any t�R by �2.4�. If f is an admissible function, f�t�
0 by �2.3� �a�. Since f is analytic on a domain containing I1/4, f�t��0 except on a countable set
ith no accumulation points. Thus the left-hand side of the expression in the lemma is zero except
n a countable set of t�R. Since �t−i/4�xk� is strongly continuous with respect to t�R, we proved
he lemma. �

Lemma 3.2: (a) N is a closed subspace of H.
(b) �itN=N, ∀t�R.
(c) JN=N.
(d) ��N�HJ implies �+, �−�N�P.

Proof: �a� Since H is self-adjoint �closed�, �a� is obvious.
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�b� Notice that

H�−is� = �−is��isH�−is��

nd �isH�−is is the Dirichlet operator associated to the Dirichlet form constructed with
�s�xk� :k� I�. Note that �t−i/4��s�xk��=�t+s−i/4�xk�. Thus, if ��N, �−is��N by Lemma 3.1.
ence �−isN�N for any s�R, which also implies N��isN for any s�R.

�c� Since each Ek is J-real �Theorem 2.1 �b� of Ref. 2�, it is easy to check that H is J-real,
H=HJ. Thus HJ�=JH�=0 if ��N and so JN�N. Since J2=1, we also have that N�JN.

�d� Let ��N�HJ, and �=�+−�−. Notice that

0 = E��,�� = E��+,�+� − 2E��+,�−� + E��−,�−� .

ere we have used the fact that ��D�E� implies �+, �−�D�E�. Since E��+ ,�−��0 by �2.1� �c�
Theorem 2.1 �c� of Ref. 2�, we have that E��+ ,�+�=E��− ,�−�=0, which imply H�+=H�−=0.

�

Lemma 3.3: (a) For any bounded, positive definite, continuous function f :R→R,

f�log ���N � P� � N � P .

b) ����RD������ �N�P� is dense in N�P.
Proof: �a� Let f be a bounded, positive definite, continuous function on R. Then f can be

ritten as

f�x� = eitx d��t� ,

here � is a positive finite Borel measure on R. Thus

f�log �� = �it d��t� .

he inclusion

f�log ��P � P

olds by the fact that �itP�P �Proposition 2.5.26 of Ref. 3�. Due to Lemma 3.2 �b�, the inclusion

f�log ��N � N

lso holds. This proved the part �a� of the lemma.
�b� Let

fn�x� ª e−x2/2n2
.

hen by the part �a� of the lemma,

fn�log ���N � P� � N � P .

or any ��N�P, fn�log ����D���� for any ��R, and fn�log ���→� as n→	. This proved
he part �b�.

�

Lemma 3.4: Let ��D��−1/4��P. Then there is a positive self-adjoint operator Q affiliated
ith M such that Q�0�D��1/4� and �=�1/4Q�0.

Proof: We use the method similar to that employed in the proof of Proposition 2.5.27 �1� of
−1/4 −1/4 *
ef. 3. Let ��D�� ��P. For any A�M, � j�A �j�A��0�P and so
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��−1/4j�A*�j�A��0,�	 � 0, ∀ A � M ,

hich implies

�j�A*�j�A��0,�−1/4�	 � 0, ∀ A � M .

efine an operator Q̃, D�Q̃�=M��0, by

Q̃j�B��0 = j�B��−1/4�, ∀ B � M .

hen for any unitary U��M�,

U�Q̃j�B��0 = U�j�B��−1/4� = Q̃U�j�B��0,

nd so

U�*Q̃U� = Q̃ .

or any A�M,

�j�A��0,Q̃j�A��0	 = �j�A��0, j�A��−1/4�	 = ��−1/4j�A*�j�A��0,�	 � 0.

hus Q̃ is a positive symmetric operator. Notice that for any unitary U��M�, U�D�Q̃��D�Q̃�.
et Q be the Friedrichs extension of Q̃. By the uniqueness of Friedrichs extension

U�*QU� = Q

or any unitary U��M�. Thus Q is affiliated with M. Since Q�0=�−1/4�, Q�0�D��1/4�, and
=�1/4Q�0.

�

Lemma 3.5: Let ��D��−1/4�� �N�P� and �=�1/4Q�0 as in Lemma 3.4. Then xk�0

D�Q� and xkQ�0=Qxk�0 for any k� I.
Proof: Since ��N, it follows from Lemma 3.1 that

��−i/4�xk� − j��−i/4�xk����1/4Q�0 = 0, k � I .

ecall that M0 is the dense subset of M consisting of �t-entire analytic elements. For any A
M0,

0 = ��i/4�A��0,��−i/4�xk� − j��−i/4�xk�����1/4Q�0 	 = ��i/4�xk��i/4�A��0,�1/4Q�0	

− �j��i/4�xk���i/4�A��0,�1/4Q�0	 . �3.2�

or any A�M0,

�i/4�xk��i/4�A��0 = �i/4�xkA��0 = �−1/4xkA�0 �3.3�

nd

j��i/4�xk���i/4�A��0 = j��i/4�xk��j��−3i/4�A*���0 = �−1/4j��i/2�xk��j��−i/2�A���0 = �−1/4j��i/2�xk��A�0.

�3.4�

ubstituting �3.3� and �3.4� into �3.2�, we have

�A�0,�xk − j��−i/2�xk���Q�0	 = 0
or any A�M0 and k� I. Since M0�0 is dense in H,

                                                                                                            



S
x

a

S

f

N

L

T

F

D
x

f

B

a

L
f

113507-9 Ergodic property of Markovian semigroups J. Math. Phys. 46, 113507 �2005�

                        
�xk − j��−i/2�xk���Q�0 = 0.

ince Q is affiliated with M, j��−i/2�xk��Q�0=Qj��−i/2�xk���0=Qxk�0, and so xk�0�D�Q� and

kQ�0=Qxk�0.
�

Next, we use Lemma 3.4 and Lemma 3.5 to prove the following result.
Proposition 3.1: Let ��D��−1/4�� �N�P�. Then there is a positive self-adjoint operator Q

ffiliated with Z�M� such that �=Q�0.
Proof: Let �=�1/4Q�0 as in Lemma 3.4. Due to Lemma 3.5,

xkQ�0 = Qxk�0, ∀ k � I .

ince xk�M1/2�M and Q is affiliated with M,

xkQj�A��0 = j�A�xkQ�0 = j�A�Qxk�0 = Qxkj�A��0

or any A�M, and so

xkQj�A��0 = Qxkj�A��0, ∀ A � M .

otice that for any xk1
,xk2

� �xk :k� I�

xk1
xk2

Qj�A��0 = xk1
Qxk2

j�A��0 = xk1
Qj�A�j��−i/2�xk2

���0 = Qxk1
j�A�j��−i/2�xk2

���0 = Qxk1
xk2

j�A��0.

�3.5�

et M̃ be the �-algebra generated by �xk :k� I�. Then M̃ is dense in M by the assumption in

heorem 2.1. The relation �3.5� implies that for any x�M̃,

xQj�A��0 = Qxj�A��0, ∀ A � M .

or given x�M, choose a sequence xn�M̃ such that xn→x strongly. Then

Qxnj�A��0 = xnQj�A��0 → xQj�A��0 as n → 	 .

ue to the closedness of Q and the fact that xnj�A��0→xj�A��0 as n→	, we conclude that
j�A��0�D�Q� and

xQj�A��0 = Qxj�A��0 �3.6�

or any x ,A�M.
Denote by

�M � M���0 ª �AA��0:A � M,A� � M�� .

y �3.6�, �M�M���0�D�Q� and for any A1 ,A2�M and A1� ,A2��M�,

A1QA2A2��0 = A1A2QA2��0 = QA1A2A2��0 �3.7�

nd

A1�QA2A2��0 = QA2A1�A2��0 = QA1�A2A2��0. �3.8�

et Q0 be the restriction of Q on �M�M���0. Then Q0 is a positive symmetric operator. It
ollows from �3.7� and �3.8� that for any unitary U�M , U��M�,

*
U Q0U = Q0,
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U�*Q0U� = Q0. �3.9�

otice that U and U� leave �M�M���0 invariant. Let Q̂ be the Friedrichs of Q0. By the
niqueness of Friedrichs extension,

U*Q̂U = Q̂ ,

U�*Q̂U� = Q̂ ,

or any unitary U�M , U��M�. Thus Q̂ is affiliated with Z�M�. By the inclusions

��0� �M�M���0�D�Q� and the uniqueness of the Friedrichs extension, Q̂=Q. Since ��
� for any �� �Z�M��0�, �=�1/4Q�=Q�0. This completes the proof of the proposition.

�

We are ready to prove Theorem 2.1.
Proof of Theorem 2.1: The inclusion

�Z�M��0� � N �3.10�

s easy to prove as follows: Let ��Z�M��0. Then �=A�0 for some A�Z�M�. Thus

��t−i/4�xk� − j��t−i/4�xk���A�0 = A��t−i/4�xk� − j��t−i/4�xk����0 = 0.

y Lemma 3.1, ��N. Since N is closed by Lemma 3.2 �a�, the closure of Z�M��0 is a subspace
f N. This proved the inclusion �3.10�.

Next, we prove the inclusion

N � �Z�M��0� . �3.11�

ny ��N can be written as �=�r+ i�i, where �r= ��+J�� /2 and �i=−i��−J�� /2. By Lemma
.2 �c�, �r ,�i�N. Note that ���2= ��r�2+ ��i�2. Thus we may assume that � is J-real, �
N�HJ. � is decomposed uniquely as �=�+−�−, �+, �−�P and �+��−. See Proposition

.5.28 �3� of Ref. 3. By Lemma 3.2 �d�, �+ ,�−�N�P. Lemma 3.3 �b� implies that
��−1/4�� �N�P� is dense in N�P. Thus Lemma 3.3 �b� and Proposition 3.1 imply that �+,

−� �Z�M��0�, and so �� �Z�M��0�. This completes the proof of Theorem 2.1.
�

V. ERGODICITY OF MARKOVIAN SEMIGROUPS FOR QUANTUM SPIN
YSTEMS

In this section, we first describe the translation invariant Markovian semigroups for quantum
pin systems constructed in Ref. 1, and then apply Theorem 2.1 �and Corollary 2.1� to show the
rgodicity of the semigroups in the region of high temperatures where the uniqueness of the KMS
tate holds.

Let us describe quantum spin systems briefly. For details, we refer to Sec. 6.2 of Ref. 3. Let
d be a d-dimensional lattice space and let F denote the family of all finite subsets of Zd. Let A
e a C*-algebra with norm �·� defined as the inductive limit over a finite-dimensional matrix
lgebra M. For any X�F, let AX denote the subalgebra localized in X, i.e., the subalgebra in A
somorphic to MX. An element A�A will be called local if there is some Y �F such that A
AY. By A0 we denote the subset of all local elements, i.e., A0=�X�FAX.

Let �ª ��X�X�F be an interaction, i.e., a family of self-adjoint element in A. Suppose that

���
 ª sup
i�Zd

�
X�F:i�X

e
�X���X� � 	 �4.1�
or some 
�0, where �X�=card�X�. Define a derivation � by
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D��� = A0,

�4.2�
��A� = − i �

X����
��X,A�, A � A�.

hen A0 is a norm-dense �-subalgebra of analytic element of the closure �̄ of �. Thus �̄ generates
ne-parameter group of �-automorphism � of A. Let  be a �-KMS state corresponding to the
nteraction �.

Let �H ,� ,�� be the GNS representation of �A ,�. For the standard form, we choose
=H, M=��A��, and �0=�. By the uniqueness of the modular automorphism �see Theorem

.3.10 of Ref. 3�, one may identify �t=�t, t�R, on M. In this section, we denote by M0 the
lgebra of local elements, i.e., M0=��A0�. Every element A�M0 is an analytic element for �t.
or a given 
�0, set �=
 /2���
. Then for any s� �−� ,�� the series

�is�A� = �
n=0

	
�− is�n

n!
�n�A�, A � M0, �4.3�

onverges absolutely, where � is the derivation given by �4.2�. See the proof of Theorem 5.2.4 of
ef. 3. From now on, we assume that � is chosen sufficiently small so that ��1/2.

We now turn to Dirichlet form for quantum spin systems.1 Let �� j� j�Zd be the translational
utomorphism on M corresponding to the translation of the lattice by vectors j�Zd. Let xa

��M�, a=1,2 , . . . ,D, be a basis of ��M� consisting of self-adjoint elements of norm one and
et xj

a=� j�xa�, j�Zd. For the family �xj
a : j�Zd, a=1,2 , . . . ,D� and an admissible function f �or

lse f0�, let �E ,D�E�� be the quadratic form defined as in �2.5�–�2.7�,

D�E� =
� � H: �
j�Zd

�
a=1

D

Ea,j��� � 	� ,

�4.4�

E��� = �
j�Zd

�
a=1

D

Ea,j���, � � D�E� ,

here

Ea,j��� = ���t−i/4�xj
a� − j��t−i/4�xj

a�����2f�t�dt . �4.5�

he following is Theorem 5.1 of Ref. 1.
Theorem 4.1 (Theorem 5.1 of Ref. 1): Let f be an admissible function such that p in (2.3) (c)

s greater than d+1, i.e., p�d+1. Let the interaction � be of finite range and translation
nvariant. Then the form �E ,D�E�� defined as in (4.4) and (4.5) is a densely defined Dirichlet form
hich generates a translation invariant, symmetric, Markovian semigroup.

Remark 4.1: The strongly decay property of i.e., p�d+1, has been used to show that D�E� is
ense in H. See the proof of Theorem 5.1 of Ref. 1. The function f0 given in (2.4) decays
xponentially fast and so the conclusion in Theorem 4.1 holds for f = f0.

In order to describe the main result, we need to replace � by ��, where � is the inverse
emperature. Then the condition ��1/2 is equivalent to �
 /2����
��

1
2 . This is, ����
�
. The

ollowing is the main result in this section.
Theorem 4.2: Let f be either an admissible function satisfying the decay property in Theorem

.1 or else f = f0. Let the interaction � be of finite range and translation invariant. For �xj
a : j

Zd ,a=1,2 , . . . ,D�, let �Tt�t�0 be the translation invariant Markovian semigroup associated to
he Dirichlet form defined as in (4.4) and (4.5). Assume that ����
 is sufficiently small so that

� ,��-KMS state for � is unique. Then the Markovian semigroup �Tt�t�0 is ergodic.

                                                                                                            



c
m
o

r
S
T
�
s

A

K

1

1

1

1

1

1

1

1

1

1

2

113507-12 Yong Moon Park J. Math. Phys. 46, 113507 �2005�

                        
Remark 4.2: The region of high temperatures where the uniqueness of �� ,��-KMS state holds
an be given explicitly. For an instance, see Proposition 6.2.25 of Ref. 3. For one-dimensional
odels with uniform bounded surface energies, the uniqueness of �� ,��-KMS state is independent
f temperature (Theorem 6.2.47 of Ref. 3). However, we still need the condition ����
�
.

Proof of Theorem 4.2: By the condition ����
�
, the series �4.3� converges absolutely on a
egion containing �−� /2 ,� /2�. Thus it is easy to see that �xj

a : j�0Zd ,a=1,2 , . . . ,D��M�/2.
ince the �-algebra generated by the family is M0, which is dense in M, the condition in
heorem 2.1 hold. The uniqueness of the �� ,��-KMS state  implies that  is an extremal

� ,��-KMS state, and hence a factor state by Theorem 5.3.30 of Ref. 3. Thus M is a factor, and
o �Tt�t�0 is ergodic by Corollary 2.1.

�
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We investigate the behavior of the Green functions of Schrödinger operators near
the diagonal. The only nontrivial cases, where the on-diagonal singularities are
nonzero and do not depend on the spectral parameter, are two and three dimensions.
In the case of two dimensions we show that the singularity is independent of both
the scalar and the gauge potentials. In dimension three, we obtain conditions for
preserving the singularity under perturbations by nonregular potentials. Some ex-
amples illustrating dependence of the singularity on general scalar and gauge po-
tentials are presented. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2113087�

. INTRODUCTION

Singularities of the Green functions of quantum-mechanical operators play a crucial role in
any branches of theoretical and mathematical physics, from which one should mention first the

enormalization procedure of the quantum field theory.1,2 From the point of view of the high-
erivative quantum gravity, the corresponding problem was considered, e.g., in Ref. 3. In particu-
ar, in the case of nonminimal coupling of quantum matter to the gravitational background with
onical singularities, an operator of the form H=−�+V arises on a Riemannian manifold X. Here

is the Laplace-Beltrami operator on X and V represents the nonminimal coupling term �R with
he Ricci scalar R. The scalar curvature possesses a distributional behavior at conical
ingularities,4 R=Rreg+4��1−���M, where �M is a Dirac �-like potential supported by a sub-
anifold M �X and 2��1−�� is the angle deficit. As a result, an operator

HM = − � + U + a�M �1.1�

rises where U=�Rreg and the coupling constant a=4���1−�� characterizes the interaction with
he background field concentrated on M. Operators of such form appear in the investigation of
calar fields with nonminimal coupling on the cosmic string background, in the Euclidean ap-
roach to the black hole thermodynamics, in the study of the particle scattering at the Planck scale
see Ref. 4 and references therein�. Moreover, in the context of the scattering theory, the potential

can have singularity �e.g., of the Coulomb type� even in the case of a flat manifold X.
We are interested here in the question how to add the singular term �M concentrated on a

ero-dimensional submanifold M of X to the operator HU=−�+U �this case covers not only
uantum fields with point interactions, but also the case when X is a Cartesian product of two

�
Author to whom correspondence should be addressed. Electronic mail: const@mathematik.hu-berlin.de

46, 113508-1022-2488/2005/46�11�/113508/16/$22.50 © 2005 American Institute of Physics
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anifolds, X=X0�Y, and M has the form M0�Z with M0 being a discrete subset of X0�. If M is
uniformly discrete subset of X and dim X�3, then the Green function GM�x ,y ;�� of HM can be
btained through the Krein resolvent formula in terms of the Green function GU�x ,y ;�� for HU.5,6

n important ingredient of this formula is the so-called “Krein Q-matrix” �a kind of the Dirichlet-
o-Neumann map� Qmn�z�, m ,n�M; under the name “Wigner R-matrix” it appears in the scat-
ering theory7 and is used in the charge transport theory.8 To define the diagonal elements of Q for
im X	1 a renormalization procedure is needed. For smooth U, the renormalized Green function

U
ren�x ,y ;��, which must be continuous in the whole X�X, is defined as

GU
ren�x,y ;�� = GU�x,y ;�� − S�x,y� , �1.2�

here the “standard singularity” S has the form S�x ,y�=−�1/2��log d�x ,y� if dim X=2, and
�x ,y�=1/4�d�x ,y� if dim X=3 �here d�x ,y� is the geodesic distance on X�. Now one can set

mm���=GU
ren�m ,m ;��. The corresponding renormalization procedure in the Euclidean case is

nown long ago, see, e.g., Refs. 9 and 10 for the history and the quantum mechanical treatment.
t is important to note that usually one obtains GU

ren�x ,y ;�� by a momentum cutoff �an ultraviolet
egularization procedure�; the result is equivalent to that obtained with the help of a dimensional
egularization. In the case of brane coupling to gravity or to a gauge field it is necessary to use a
imensional regularization.11 It is worthy to add that the strict mathematical treatment of the
perators �1.1� has its origins in the paper12 by Berezin and Faddeev. In the case dim X
4 there
s no regularization procedure involving a singularity independent of the energy parameter � �see
xample 7 below�. Moreover, if U has a Coulomb-type singularity or if an interaction with a
auge field is present, then the function S in �1.2� is different from the standard one, i.e.,
�x ,y��1/4�d�x ,y� �see Examples 12 and 14 below�; similar phenomena related to propagation
f waves in strongly inhomogeneous media have been studied recently in Ref. 13.

The main goal of our paper is to investigate in detail the singularity of the Green function for
he operator HU=H0+U where H0 is the Bochner-Laplace operator on a Riemannian manifold of
imension �3 and U is a scalar potential from a wide class of measurable functions. As an
mportant consequence we conclude that the operator of the form �1.1� is well defined in this case.
t should be stressed that the operators of this form are used not only in the quantum field theory
ut they occur often in the single-electron theory of condensed matter physics where H0 represents
he Hamiltonian of an electron in the presence of a time-independent magnetic field, U is a
onfinement electric potential, and �M is an additional potential �e.g., the potential of impurities or
f a crystal lattice�. The Riemannian manifold with nontrivial curvature can appear in this situa-
ion, e.g., as a result of the reduction of a few-electron problem to the single-electron one.14

nother example of using nontrivial three-dimensional Riemannian manifolds is the simulation of
he confinement potential of a quantum dot.15 The defects in solids were investigated previously
y methods of quantum gravity in Ref. 16. New technologies of manufacturing two-dimensional
anostructures with nontrivial geometry17,18 caused the appearance of mathematical models of
uch structures where, in particular, the Hamiltonian has the form �1.1� with the �-term simulating
he potential of a short range impurity19 �if the nanostructure is placed in a magnetic field we must
eplace � in �1.1� by the Bochner Laplacian as above�. Moreover, the properties of the Green
unction GU are needed for investigation of explicitly solvable models of the geometric scattering
heory20 or spectral theory of periodic hybrid manifolds.21

Our analysis of the singularity for the Green function GU shows that in dimension two the
ingular term has the standard form even in the presence of an additional U�1�-gauge potential
Theorem 15�. On the other hand, in dimension three, S depends on U modulo a Lebesgue class of
unctions on X �see Theorem 16� and is defined up only to a continuous additive term �the
ituation here is completely similar to that for the Krein Q-functions, they are defined up to an
dditive constant�. The concrete value of this term is subject of analysis of a given physical
roblem and is out of the scope of the present work. We mention only that a possible way to fix
he corresponding additive constant is to compare the integrated density of states with the trace of

U
ren. At last but not at least we stress that our main results are new even for the case of Euclidean

n
paces X=R .
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I. DEFINITIONS AND PRELIMINARIES

Throughout the paper we denote by X a complete connected Riemannian manifold of bounded
eometry, which means that the injectivity radius rinj of X is positive and every covariant deriva-
ive of the Riemann curvature tensor is bounded. Examples are provided by homogeneous spaces
ith invariant metrics �in particular, Euclidean spaces�, compact Riemannian manifolds and their

overing manifolds; for discussion of various properties of such manifolds in the context of
ifferential operators we refer to Ref. 22. The dimension of X we denote by �; the geodesic
istance between x ,y�X will be denoted by d�x ,y�. For x�X and r
0 we use the notation
�x ,r�= �y�X :d�x ,y��r�; throughout the paper, we suppose r�rinj for radiuses r of all consid-
red sufficiently small balls. For a measurable function f on X, we denote by �f�p the Lp-norm of

f . If K is a bounded operator from Lp�X� to Lq�X�, 1� p ,q�, then its norm will be denoted by
K�p,q.

Let A=Aj dxj be a 1-form on X, for simplicity we suppose here Aj �C�X�. The functions Aj

an be considered as the components of the vector potential of a magnetic field on X. On the other
and, A defines a connection �A in the trivial line bundle X�C→X, �Au=du+ iuA; by −�A

�A
*�A we denote the corresponding Bochner Laplacian. In addition, we consider a real-valued

calar potential U of an electric field on X. This potential will be assumed to satisfy the following
onditions:

U+ ª max�U,0� � Lloc
p0 �X�, U− ª max�− U,0� � �

i=1

n

Lpi�X� ,

2 � pi �  if � � 3, �/2 � pi �  if � 
 4, 0 � i � n;

e stress that pi as well as n are not fixed and depend on U. The class of such potentials will be
enoted by P�X�. Below we will need an approximation of singular potentials by smooth ones; for
his purpose the following lemma is useful.

Lemma 1: Let f �Lloc
p �X�, where 1� p�, and f 
0. Then there is g�C�X� such that g

0 and f −g�Lq�X� for all 1�q� p.

Proof: Fix a�X and for integers n, n
1, denote Yn=B�a ,n� \ / B̄�a ,n−1�. Fix a real se-
uence an, an	0 such that �an�1 and denote by fn the restriction of f to the set Yn. Since the
easure of Yn is finite, for every n we can find a function gn, gn�C0

�X�, such that gn
0,
upp�gn��Yn, and max��fn−gn�p

p , �fn−gn�1��an. Since the family �Yn� is locally finite, the point-
ise sum g=�gn exists and g�C0

�X�. It is clear that g
0 and max��f −g�p , �f −g�1��1, i.e., f
g�Lp�X��L1�X�. �

We denote by HA,U the operator acting on functions ��C0
�X� by the rule HA,U�=−�A�

U�. This operator is essentially self-adjoint in L2�X� and semibounded below,23 its closure will
e also denoted by HA,U. By spec�HA,U� we denote the spectrum of HA,U and by res�HA,U� the set
f regular points: res�HA,U�=C \ spec�HA,U�. Let us denote the resolvent of HA,U by RA,U���, i.e.,

A,U���= �HA,U−��−1.
Here we introduce two classes of integral kernels used in the paper. First class, Kcont�p�, 1

p�, consists of all continuous on X�X functions K�x ,y� satisfying for any r	0 the condi-
ion

�K�p,r ª max�sup essx�X��X\B�x,r�K�x, · ��p,sup essy�X��X\B�y,r�K�· ,y��p� �  , �2.1�

here �A stands for the characteristic function of the set A�X. The second class, K�� , p�, 0
���, 1� p�, consists of all measurable functions K on X�X obeying the condition �2.1�

nd

	K�x,y�	 � c max�1,d�x,y�−�� for a constant c = c�K� 	 0. �2.2�
e set Kcont�� , p�ªK�� , p��C�X�X \D�, where D is the diagonal ��x ,y��X�X :x=y�.

                                                                                                            



p
i

t
�
�

t
f
“
d
p

a

L
t

C
f

n
=

o

F

h

B

a

f

113508-4 Brüning, Geyler, and Pankrashkin J. Math. Phys. 46, 113508 �2005�

                        
The above introduced classes of integral kernels are important due to their relations to the
roperties of the resolvents RA,U���; these relationships are stated in the following theorem which
s our starting point �see Ref. 23, for the proof�.

Theorem 2: For any �� res�HA,U� the resolvent RA,U��� has an integral kernel GA,U�x ,y ;��,
he Green function, which belongs to Kcont�� ,q�, where q, 1�q�, is arbitrary, and �=�−2 for
	2, �� �0,�� is arbitrary for �=2, �=0 for �=1; moreover, GA,U is continuous in X�X for
=1.

We should point out that the Green function of a Schrödinger operator can violate the condi-
ions �2.1� and �2.2�, if the potential U is not from the class P�X�. Even the decay of the Green
unction for large distances between x and y �the off-diagonal behavior� can be different from the
standard” exponential one coming from the comparison with the Laplacian; a good example is
elivered by the one-dimensional inverse harmonic oscillator, whose Green function has only a
olynomial decay at infinity �see Appendix A�.

Our further calculations will involve a couple of operations with integral kernels introduced
bove; here we collect some useful estimates which will be used very intensively.

The well-known Gelfand-Dunford-Pettis theorem claims that if K is a bounded operator from
p�X� to L�X� with some p, 1� p�, then it is an integral operator and its kernel K�x ,y� satisfies

he estimate

sup essx�X�K�x, · ��q � , q = �1 − p−1�−1. �2.3�

onversely, if a kernel K�x ,y� satisfies �2.3�, then it is an integral kernel of a bounded operator
rom Lp�X� to L�X�.

Lemma 3: Let Kj :Lqj�X�→L�X�, 1�qj �, be bounded linear operators with integral ker-
els Kj�x ,y�, j=1,2, and W�Lq1�X�, then for a.e. �x ,y��X�X the integral J�x ,y�

XK1�x ,z�W�z�K2�z ,y�dz exists and J�x ,y� is an integral kernel of the operator K1WK2.

Proof: The operator K1WK2 is bounded from Lq2�X� to L�X�, therefore, it is an integral
perator. Let f �Lq2�X��C�X� such that f�x�	0 for all x�X. Then there holds

K1WK2f�x� = �
X

K1�x,z�W�z��
X

K2�z,y�f�y�dy dz . �2.4�

rom the other side, according to the estimates �2.3� for K1 and K2, there holds

�
X

	K2�· ,y�f�y�	dy � L�X�, 	W�·�	�
X

	K2�· ,y�f�y�	dy � Lq1�X� ,

ence,

�
X

	K1�x,z�	�	W�z�	�
X

	K2�z,y�f�y�	dydz �  .

y the Fubini

�
X
��

X

	K1�x,z�W�z�K2�z,y�	dz f�y�dy �  ,

nd since f�x�	0, the inner integral exists for a.e. �x ,y��X�X.
Let now f be an arbitrary function from Lq2�X�. Repeating the arguments above, we get

K1WK2f�x� = �
X
��

X

K1�x,z�W�z�K2�z,y�dz f�y�dy �2.5�

or a.e. x�X. Therefore J is an integral kernel for K1WK2. �
We will often use the estimate given by the lemma below �cf. Ref. 23�.

                                                                                                            



t

w

o

F

T

�
J

	
�
a

W

A
x

c

t
z

a

w
c
�

113508-5 Singularities of Green functions J. Math. Phys. 46, 113508 �2005�

                        
Lemma 4: There exists r0	0 such that for any � ,r with 0�r�r0, 0����, and a ,x�X
here holds

�
B�a,r�

dy

d�x,y�� � cr�−� �2.6�

ith some c	0 depending only on �.
Our next auxiliary result is the following lemma.
Lemma 5: Let K�K�� , p�, 1� p�, p���, and 1/ p+1/q=1, then K is an integral kernel

f a bounded operator from Lq�X� to L�X�.
Proof: According to the Gelfand-Dunford-Pettis theorem we must prove

sup essx�X�
X

	K�x,y�	p dy �  .

ix r, 0�r�r0, and for x�X expand the integral into two parts,

�
X

	K�x,y�	p dy = �
B�x,r�

	K�x,y�	p dy + �
X\B�x,r�

	K�x,y�	p dy .

he first term is estimated by Lemma 4, and the second one is majorated by �K�p,r
p . �

Lemma 6: Let three measurable functions K1�x ,y�, K2�x ,y� and W�x� be given, where x ,y
X. Denote F�x ,y ,z�ªK1�x ,z�W�z�K2�z ,y�, and if the integral 
XF�x ,y ,z�dz exists, denote it by

�x ,y�.
�A� Let Kj �Kcont�� j , pj�, j=1,2, and W�Lp�X�, such that 1/ p1+1/ p2+1/ p=1 and p

� / ��−max��1 ,�2��. Then F�x ,y , · ��L1�X� for x�y, hence J is well defined. Moreover, J
Kcont�� ,�, where �=max�p���1+�2�−� ,0� with 1/ p+1/ p�=1, if p���1+�2���, and � is an

rbitrary number from �0,�� otherwise.
�B� Let the conditions of the item �A� be satisfied. Assume additionally that �1+�2�� and

�Lloc
q �X� with q	� / ��−�1−�2�. Then F�x ,y , · ��L1�X� for any x ,y�X and J�C�X�X�.

�C� Let W�Lp�X�, and K1�Kcont�p1�, K2�Kcont�� , p2� or K1�Kcont�� , p1�, K2�Kcont�p2�.
ssume additionally that 1/ p+1/ p1+1/ p2=1 and p	� / ��−��. Then F�x ,y , · ��L1�X� for any
,y�X, and J�C�X�X�.

Proof: The proof of the items �A� and �B� is given in Ref. 23.
�C� We give a proof for the case K1�Kcont�p1� and K2�Kcont�� , p2�; the second case can be

onsidered exactly in the same way.
Let x ,y�X; we show first that F�x ,y , · ��L1�X�. Let r	0, then for z�B�y ,r� we have

	F�x,y,z�	 � ck1�x,y�W�z�d�y,z�−�, k1�x,y� ª sup
z�B�y,r�

K1�x,z� � , c 	 0, �2.7�

herefore, F�x ,y , · ��L1�B�y ,r�� due to the Hölder inequality and our conditions on p. For
�B�y ,r� due to the Hölder inequality we have the estimate

�
X\B�y,r�

	F�x,y,z�	dz � ��
X\B�y,r�

	K1�x,z�	p1 dz1/p1

�K2�p2,r�W�p,

nd

�
X\B�y,r�

	K1�x,z�	p1 dz � �
X

	K1�x,z�	p1 dz = �
B�x,r�

	K1�x,z�	p1 dz + �
X\B�x,r�

	K1�x,z�	p1 dz ,

here the first term on the right-hand where the first term on the right-hand side is finite due to the
ontinuity of K1, and the second one is estimated by �2.1�. This proves the inclusion F�x ,y , · �

1
L �X�.
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Now let x0 ,y0�X, 0�r�R, and x�B�x0 ,r /2�, y�B�y0 ,r /2�, then

	J�x,y� − J�x0,y0�	 � �
B�y0,r�

	F�x,y,z�	dz + �
B�y0,r�

	F�x0,y0,z�	dx + �
X\B�y0,R�

	F�x,y,z�	dz

+ �
X\B�y0,R�

	F�x0,y0,z�	dz + �
B�y0,R�\B�y0,r�

	F�x,y,z� − F�x0,y0,z�	dz .

�2.8�

ake �	0 and assume r�r0. For z�B�y0 ,r� we estimate F�x ,y ,z� as in �2.7�, then we get using
emma 4

�
B�y0,r�

	F�x,y,z�	dz � c sup
x�B�x0,r�,
y�B�y0,r�

K1�x,y��W�p��
B�y0,r�

d�y,z�p�/�1−p� dz��p−1�/p

� Cr�−�−�1/p� = o�1�

s r→0. On the other hand,

�
X\B�x0,R�

	F�x,y,z�	dz � �K1�p1,r�K2�p2,r��X\B�x0,R�W�p = o�1� as R →  .

inally, we conclude that r can be taken sufficiently small and R sufficiently large, such that the
um of the first four terms on the right-hand side of �2.8� is less than � /2. Now it is sufficient to
rove that at these fixed r and R the function

�
B�y0,R�\B�y0,r�

F�x,y,z�dz

s continuous as x�B�x0 ,r /2� and y�B�y0 ,r /2�. To do this, we note that with some C�	0 the
ollowing estimate 	F�x ,y ,z�	�C�	W�z�	 takes place for all x�B�x0 ,r /2�, y�B�y0 ,r /2�, and z

B�y0 ,R� \B�y0 ,r�. Since W�L1�B�y0 ,R� \B�y0 ,r��, the requested continuity follows from the
ebesgue majorization theorem. �

As it was mentioned in the Introduction, we are going to present the Green function in the
orm

GA,U�x,y ;�� = SA,U�x,y� + GA,U
ren �x,y ;�� ,

here the second term must be continuous in X�X. Such a representation is trivial in the one-
imensional case, the Green function is continuous, and one can set SA,U�0. In dimensions �
4 the problem makes no sense, as the following example shows.

Example 7 (four-dimensional Laplace operator): Consider the simplest case of the Laplacian
n L2�R4�. The Green function takes the form

G�x,y ;�� =
�− �

4�2	x − y	
K1��− �	x − y	� ,

here K1 is the modified Bessel function of the first order. Near the diagonal x=y one has

G�x,y ;�� =
1

4�2	x − y	2
−

� log	x − y	
8�2 + k�x,y ;��
ith a continuous k. Therefore, for �1 ,�2� res�−��, �1��2, the difference
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G�x,y ;�1� − G�x,y ;�2� �
�2 − �1

8�2 log	x − y	

s a discontinuous function, so that the singularity cannot be chosen independent of the spectral
arameter.

Therefore, the only nontrivial cases remain �=2 and �=3, which we will consider in the
resent paper.

Example 8 (on-diagonal singularity for the Laplace operator): Here we consider the case A
0 and U=0, i.e., the case of the Laplace-Beltrami operator −� on the manifold X with �=2 or
=3. Denote the Green function of −� by G�x ,y ;��. Take y�X and introduce polar coordinates

ry ,��, ry =d�x ,y�, ��S�−1, centered at y, then we have in a normal neighborhood Wy of y,

− �� = −
�2�

�ry
2 + �� − 1

ry
+ �y

−1��y

�ry
 ��

�ry
,

here the function �y =�y�ry ,�� is defined in such a way that in Wy, we have dx
ry

�−1�y�ry ,��dry d�. Since ry
�−1��ry ,�� is the Jacobian for the inverse to the exponential map in

y, there holds �y�0,��
cy 	0 and �� /�r��y�0,��=0 for all ��S�−1. Moreover, inf cy 	0 as y
uns over a compact set in X.

Denote now

S�x,y� = �
1

2�
log

1

d�x,y�
, � = 2,

1

4�d�x,y�
, � = 3,�

nd for a fixed �� res�−�� denote K�x ,y�ªG�x ,y ;��−S�x ,y�. Then there holds

�− � − ��K�· ,y� = �y
−1��y

�ry

�

�ry
S�· ,y� − �S�· ,y� ¬ L�x,y� . �2.9�

t is clear that L�· ,y��L2�Wy�, hence due to the Sobolev embedding theorem, x�K�x ,y� is
ontinuous in Wy. Let us show that really K�x ,y� is continuous in �x ,y�. To do this, we fix y0

X and take r0	0 such that B�y0 ,2r0��Wy0
. We prove the following assertion:

�CM� the map B�y0,r0� � y � L�· ,y� � L2�B�y0,r0�� is continuous with respect to the norm

topology of the space L2�B�y0,r0�� .

Let ��C�X� such that supp ��B�y0 ,2r0�, ��x�=1 for x�B�y0 ,r0�, and 0���x��1 for all
�X. Note that B�y0 ,2r0� is a normal neighborhood of y for all y�B�y0 ,2r0�, therefore we can
ssume that L�x ,y� is defined for all x�X and y�B�y0 ,2r0�. Extend L by zero for y�B�y0 ,2r0�
nd set T�x ,y�=��x���y�L�x ,y�. It is clear that T�Kcont�� , p� where p is arbitrary number with
� p�, and �=1 for �=3, � is any strictly positive number for �=2. Using items �A� and �B�
f Lemma 6 we can easily show that for every f �L2�X� the mapping B�y0 ,r0��y


B�y0,r0�L�x ,y�f�y�dy is continuous and the mapping B�y0 ,r0��y→
B�y0,r0�	L�x ,y�	2 dy is also
ontinuous. This proves the assertion �CM�. Returning to Eq. �2.9� we see that K�· ,y� tends to
�· ,y0� with respect to the topology of W2

2�B�y0 ,r0��. Due to the Sobolev embedding theorem, this
mplies a uniform convergence in the ball B�y0 ,r�, i.e.,

lim
y→y0

sup
x�B�y0,r0�

	K�x,y� − K�x,y0�	 = 0.

his together with the continuity in x proves the required joint continuity in �x ,y�. Therefore, the

unctions S�x ,y� are suitable on-diagonal singularities of the Laplace operator.
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Note that the proof of the separate continuity of the function K�x ,y� is considerably simpler
nd can be found, e.g., in Ref. 24.

II. ON-DIAGONAL BEHAVIOR FOR SINGULAR SCALAR POTENTIALS

Below we will use the notation Lloc
p+�X�=�q	pLloc

q �X�.
Lemma 9 (singularity is independent of the spectral parameter): Let �=2 or 3, A

�C�X���, U�P�X�, �1 ,�2� res�HA,U�, then the difference GA,U�x ,y ;�1�−GA,U�x ,y ;�2� is con-
inuous in X�X.

Proof: The proof follows from the Hilbert resolvent identity for the kernels, RA,U��1�
RA,U��2�= ��1−�2�RA,U��1�RA,U��2�. The integral kernel 
XGA,U�x ,z ;�1�GA,U�z ,y ;�2�dz of

A,U��1�RA,U��2� is continuous due to Lemma 6�B�. �

The preceding lemma shows that for fixed A and U, the on-diagonal singularity in question
xists; for example, as a singularity one can take GA,U�x ,y ;�0� for a fixed �0� res�HA,U�. Our aim
s to understand how the singularity depends on A and U.

The following lemma shows that Green functions of Schrödinger operators with smooth
otentials have the same on-diagonal singularity.

Lemma 10 (singularity for operator with smooth potentials): Let �=2 or 3, A� �C�X���,
,V�P�X��C���, where � is a domain in X, then the difference GA,U�x ,y ;��−GA,V�x ,y ;��

as a continuous extension to all points �x ,x�, x��. In particular, if �=X, then GA,U�x ,y ;��
GA,V�x ,y ;���Kcont�p� with arbitrary p
1.

Proof: Fix a real E sufficiently close to − and take x0��. We show that in a neighborhood
f �x0 ,x0� in X�X, the difference F�x ,y ;E�=GA,U�x ,y ;E�−GA,V�x ,y ;E� is the restriction of a
ontinuous function in this neighborhood. Due to Lemma 9 the same will hold for all values of the
pectral parameter.

Let �0 be a bounded subdomain of � and contain x0; denote W=U+��0
�V−U�; it is clear that

�P�X�. Since W−U is bounded with compact support, one has RA,U���−RA,W���=RA,U����W
U�RA,W���, so that the difference

GA,U�x,y ;E� − GA,W�x,y ;E� = �
X

GA,U�x,z;E��W�z� − U�z��GA,W�z,y ;E�dz

s continuous in X�X according to Lemma 6�B�. It remains to show that the function L�x ,y�
GA,V�x ,y ;E�−GA,W�x ,y ;E� is continuous on �0��0. To do this, let us note that in the sense of
istributions the following equality holds:

��HA,V�x − E + �HA,V�y − E�L�x,y� = �W�x� − V�x��GA,W�x,y ;E� + �W�y� − V�y��GA,W�x,y ;E� ,

�3.1�

here �HA,V�x �respectively, �HA,V�y� means that HA,V acts on the first �respectively, the second�
rgument in L; the bar means that we change the coefficients in HA,V by the complex conjugate
nes. The operator in the left-hand side of �3.1� is elliptic in �0��0 with smooth coefficients,
hile the right-hand term vanishes in �0��0. According to the elliptic regularity theorem L is

ontinuous in �0��0. �

The following Proposition contains our main result on the dependence of the on-diagonal
ingularity on singularities of the scalar potential.

Proposition 11 (preserving the on-diagonal singularity under singular perturbations): Let �
2 or 3, A� �C�X���, and U1 ,U2�P�X�. If �=3, assume additionally that U1−U2�Lloc

3+�X�.
hen the difference GA,U1

�x ,y ;��−GA,U2
�x ,y ;�� is continuous in X�X for any �

res�HA,U1
�� res�HA,U2

�.
Proof: For the sake of brevity we fix A and remove it from the notation, i.e., instead of GA,U

e will write GU, etc.
First of all, using Lemma 1 we choose functions V1 ,V2�C�X� semibounded below such that

nj pj,s

jªUj −Vj =�s=1Wj,s, where Wj,s�L with 2� pj,s�, s=1, . . . ,nj, j=1,2.
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For �� res�HU1
�� res�HU2

� the sets D jª �HUj
−��C0

�X� are dense in L2�X�, because C0
�X� is

n essential domain of both HU1
and HU2

. As ��D j, one has

RUj
���� − RVj

���� = RVj
���WjRUj

���� . �3.2�

s the operators on both sides of �3.2� are bounded and coincide on a dense subset, they coincide
verywhere, i.e., �3.2� holds for any ��L2�X�. Combining Lemma 3 and Lemma 6�B� we con-
lude that in the dimension two, the operator on the right-hand side of �3.2� has a continuous
ntegral kernel, which together with Lemma 10 implies the conclusion of the proposition.

Let us consider the dimension three more carefully. To be shorter, we remove the dependence
f the resolvents on � from the notation. We have the following chain of equalities:

RU1
− RU2

= RV1
− RV2

+ RV1
W1RU1

− RV2
W2RU2

= RV1
− RV2

+ RV1
W1RU1

+ RV2
W2�RU1

− RU2
�

− RV2
W2RU1

= RV1
− RV2

+ RV2
W2�RU1

− RU2
� + RV2

�W1 − W2�RU1
+ �RV1

− RV2
�W1RU1

.

herefore, �1−RV2
W2��RU1

−RU2
�¬L=A+B+C, where AªRV1

−RV2
, BªRV2

�W1−W2�RU1
, C

�RV1
−RV2

�W1RU1
.

Due to Lemma 10, the operator A has an integral kernel from Kcont�p� with arbitrary p, p
1. Since W1−W2�Lloc

3+�X�, the operator B has an integral kernel from Kcont�� due to Theorem
and the items �A�, �B� of Lemma 6. As RV2

−RV1
�Kcont�p� with arbitrary p
1 �Lemma 10�, the

ntegral kernel for C is from Kcont�� due to Theorem 2 again and the items �A�, �C� of Lemma 6.
herefore, the operator L has an integral kernel L�x ,y�=L�x ,y ;���Kcont��. Now we note that

he multiplication by W2,s is a continuous mapping from L�X� to Lp2,s�X�. At the same time, as

V2
�Kcont�1, p�, p
1, the resolvent RV2

is a bounded operator from each Lp2,s�X� to L�X� due to
emma 5. Since L= �1−RV2

W2��RU1
−RU2

�, we can combine Theorem 2 and Lemma 5 to show that
he operator L is a bounded map from Lp�X� to L�X� for any p with 3/2� p�. Since

L�x ,y ;��	= 	L�y ,x ; �̄�	, we see from �2.3� that L�x ,y��Kcont�q� for any q with 1�q�3.
One can find � such that �RV2

���W2�,¬��1 �see Ref. 23�, therefore, the operator 1
RV2

W2 acting in L�X� is invertible and for any n�N there holds

RU1
− RU2

= �
k=0

n−1

�RV2
W2�kL + �1 − RV2

W2�−1�RV2
W2�nL . �3.3�

pplying iteratively Lemmas 3 and 6�A� and taking into account Theorem 2, we can show that the
perators �RV2

W2�kRV2
have integral kernels from Kcont��k ,� with �k�1. At the same time, all

hese operators are bounded from Lp�X� to L�X� for any p with 3/2� p�. Using the same
rguments as for L above, we conclude that these kernels are in Kcont��k ,q� for any q with 1
q�3. Applying now Lemma 6 �C� one proves that the first term on the right-hand side has a

ontinuous integral kernel.
Denote Tnª �1−RV2

W2�−1�RV2
W2�n−1RV2

; this operator is bounded from each Lpj,s�X� to
�X�; due to the Gelfand-Dunford-Pettis theorem, this is an integral operator with an integral
ernel Tn�x ,y�. The second term in �3.3� takes the form TnW2L, and by virtue of Lemma 3 this is
lso an integral operator with the kernel Sn�x ,y�ª
XTn�x ,z�W2�z�L�z ,y�dz. From the other side,
ne can write Sn�x ,y�=TnW2ly�x�, where ly�x�ªL�x ,y�. Note that for each y�X there holds ly

L�X�, and the operator TnW2 is a bounded mapping from L�X� to L�X� with the norm
TnW2�,� ��1−RV2

W2�−1�, · �RV2
W2�,

n ��n / �1−��.
Now let us fix x0�X and take a bounded open neighborhood � of x0. It is clear that �ly�

c� for all y�� with a certain c�	0. Therefore supx,y�� 	Sn�x ,y ;��	�c��n / �1−��. Take �
0 and choose n such that c��n / �1−����. From Eq. �3.3� we have in ��� the relation

U1
�x ,y ;��−GU2

�x ,y ;��=Kn�x ,y�+�n�x ,y�, where Kn is continuous and 	Sn	��. As � is arbitrary,
his means that GU1

�x ,y ;��−GU2
�x ,y ;�� is continuous in ���. Since x0�X is arbitrary, the
emma is proven. Due to Lemma 9, this holds for all �� res�HV1
�� res�HV2

�. �
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The following example shows that the condition U1−U2�Lloc
3+�X� cannot be omitted in di-

ension three.
Example 12 (Coulomb potential in three dimensions): Let X=R3, A=0, and U=q / 	x	, i.e.,

�HA,U=−�+q / 	x	. Clearly, U�Lloc
3+�R3�. The Green function can be calculated explicitly,25

G�x,y ;�� =
��1 − ��
4�	x − y	

�W�,1/2��− ���M�,1/2� ��− ��� − W�,1/2� ��− ���M�,1/2��− ���� , �3.4�

here �ª 	x	+ 	y	+ 	x−y	, �ª 	x	+ 	y	− 	x−y	, �=−q /�−4�, M�,1/2 and W�,1/2 are the Whittaker
unctions,

M�,1/2�x� = ex/2x��a,2;x�, W�,1/2�x� = ex/2x��a,2;x� . �3.5�

ere ��a ,c ;x� and ��a ,c ;x� are the Kummer function and the Tricomi function, respectively. We
rove in Appendix B the asymptotics

G�x,0;�� =
1

4�	x	
+

q

4�
log	x	 −

�− �

4�
+

q

4�
���1 +

q

2�− �
 + log �− � + log�2/e� + 2CE

+ O�	x	log	x	� . �3.6�

herefore, the singularity for G�x ,y ;�� contains an unavoidable logarithmic term and is different
rom the standard three-dimensional singularity.

V. DEPENDENCE OF THE SINGULARITY ON THE MAGNETIC FIELD

Lemma 13 (singularity due to the magnetic field in two dimensions): Let �=2, then for any
� �C�X��� the difference GA,0�x ,y ;��−G0,0�x ,y ;�� is continuous in X�X if �
res�HA,0�� res�H0,0�.

Proof: Let x0 be an arbitrary point of X. We show that the difference GA,0�x ,y ;��
G0,0�x ,y ;�� is continuous in a neighborhood of �x0 ,x0� for at least one value of the spectral
arameter �; due to Lemma 9 this difference is continuous for all admissible spectral parameters.

Take two sufficiently small numbers r and r0 with 0�r�r0. Fix a function ��C0
�X� such

hat supp ��B�x0 ,r0�, ��x�=1 as x�B�x0 ,r�. Denote for brevity H0ªH0,0, H1ªHA,0, H2

H�A,0; the corresponding Green functions will be denoted by G0, G1, and G2, respectively.
In B�x0 ,r��B�x0 ,r� for real � sufficiently close to − one has in the sense of distributions

���H1�x − �� + ��H2�y − ����G1�x,y ;�� − G2�x,y ;��� = 0,

herefore, due to the elliptic regularity, the difference G1�x ,y ;��−G2�x ,y ;�� is continuous in
�x0 ,r��B�x0 ,r�. Now we are going to show that G2�x ,y ;��−G0�x ,y ;�� is continuous. Since H0

nd H2 are uniformly elliptic operators with C-bounded coefficients, we are able to use estimates
or the Green functions and their derivatives obtained in Ref. 22. First of all,

G0�x,y ;��, G2�x,y ;�� � Kcont��,q� �4.1�

or arbitrary �	0 and q� �1,� �see Theorem 2�. Moreover, for � close to − both these kernels
re smooth outside the diagonal x=y, and according to �Ref. 22, Theorem A1.3.7� we have

	�xG0�x,y ;��	 � C�1 +
	log d�x,y�	

d�x,y�
e−�d�x,y�, j = 1,2,

here � is any first order derivative taken in canonical coordinates, and C ,�	0. Additionally, by

Ref. 22, Theorem A1.2.3� for any p
1 there exist � ,C�	0 such that
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sup
x
�

d�x,y�	r

	�xG0�x,y ;��	pe�d�x,y� dy + sup
y
�

d�x,y�	r

	�xG0�x,y ;��	pe�d�x,y� dx � C�, j = 1,2.

his implies the inclusion

�xG0�x,y ;�� � Kcont�1+�,q�, �4.2�

ith the same � and q as in �4.1�.
In canonical coordinates in B�x0 ,r0� both H0 and H2 are given by symmetric second-order

lliptic expressions with the same principal symbol, in particular, the difference TªH2−H0 is
efined by a first order differential expression, T=b1�x��1+b2�x��2+c�x�, where b1, b1, c are
ompactly supported smooth functions. For the functions of the form �= �H0−��� with �
C0

�X� we have �H2−���= �H0+T−��R0����= �1+TR0�����, therefore, R0����−R2����
R2���TR0����. In terms of integral kernels this means

�
X

G0�x,y ;����y�dy − �
X

G2�x,y ;����y�dy = �
X

G2�x,z;���b1�z��1 + b2�z��2 + c�z��

��XG0�z,y ;����y�dy dz

= �
X

G2�x,z;���
X

�b1�z�K1�z,y ;�� + b2�z�K2�z,y ;��

+ c�z�G0�z,y ;�����y�dy dz , �4.3�

here

K1�z,y ;�� ª �z1
G0�z,y ;��, K2�z,y ;�� ª �z2

G0�z,y ;�� .

ccording to the general theory of elliptic operators, the set �H0−��C0
�X� is dense in all Lp�X�

ith any p, 1� p�, if � is sufficiently close to − �Ref. 22, Sec. A1.2�. Due to the estimates
4.1� and �4.2�, and Lemma 5, the kernels K1 and K2 define bounded operators from Lq�X� to
�X� for arbitrary q	2; denote these operators by K1��� and K2���. In this notation, the expres-
ion on the right-hand side of �4.3� can be rewritten as

R0���� − R2���� = �R2���b1K1��� + R2���b2K2��� + R2���cR����� .

he operators in both sides are bounded from Lq�X� to L�X� with any q	2 and coincide on a
ense subset, therefore, the corresponding kernels coincide, i.e.,

G0�x,y ;�� − G2�x,y ;�� = �
X

G2�x,z;��b1�z�K1�z,y ;��dz + �
X

G2�x,z;��b2�z�K2�z,y ;��dz

+ �
X

G2�x,z;��c�z�G0�z,y ;��dz . �4.4�

y Lemma 6 �B�, the function on the right-hand side of �4.4� is continuous. �

The three-dimensional analog of Lemma 13 is not true as the following example shows.
Example 14 (three-dimensional Landau Hamiltonian): Consider in L2�R3� the vector potential

f a nonzero uniform magnetic field. By a suitable choice of coordinates one can assume that the
eld is directed along the x3 axis, i.e., the magnetic strength vector is B= �0,0 ,2��x3�, where �
0 is the density of the magnetic flux through the plane �x1 ,x2�. Choose the symmetric gauge for

1
he magnetic vector potential, A�x�= 2B�x, then HªHA,0 takes the form
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H = �i
�

�x1
− ��x22

+ �i
�

�x2
+ ��x12

−
�2

�x3
2 ,

nd the corresponding Green function is G�x ,y ;��=��x ,y�F�x−y ;��, where

F�x;�� = �
0

 exp�− �	�	�x�
2 �et − 1�−1 + x�

2t−1��

�1 − e−t�exp��1

2
−

�

4�	�	t��t

dt , �4.5�

�= �x1 ,x2 ,0� and x� = �0,0 ,x3�.26 In Appendix C we prove the asymptotics

G�x,y;�� =
ei���x�∧y��

4�	x − y	
+

1

4
� 	�	

�
1/2

Z�1

2
;
1

2
−

�

4�	�	 + o�	x − y	� �4.6�

s 	x−y	→0; here Z�z ;u� is the generalized Riemann �-function �also known as the Hurwitz
-function�. Therefore, the on-diagonal asymptotics is

S�x,y� =
ei���x�∧y��

4�	x − y	
=

1

4�	x − y	
exp� iB�x � y�

2
 .

. SUMMARY OF RESULTS

We summarize some corollaries from the proven assertions in the following two theorems.
Theorem 15 (on-diagonal singularities of the Green functions in dimension two): On a

wo-dimensional manifold of bounded geometry X, for any vector potential A� �C�X��2 and
calar potential U�P�X�, the Green function GA,U of the Schrödinger operator HA,U=−�A+U
as the same on-diagonal singularity as that for the Laplace-Beltrami operator, i.e.,

GA,U�x,y ;�� =
1

2�
log

1

d�x,y�
+ GA,U

ren �x,y ;�� ,

here GA,U
ren is continuous on X�X.

Proof: Proposition 11 shows that the singularity does not depend on the scalar potential U
P�X�, and Lemma 13 shows that it is independent of the magnetic potential. Therefore, the

ingularity coincides with that for the Laplacian, see Example 8. �

Theorem 16 (on-diagonal singularities of the Green functions in dimension three): Let X
e a three-dimensional manifold of bounded geometry. For U�P�X� and A� �C�X��3 consider
he Schrödinger operator HA,U=−�A+U and its Green function GA,U�x ,y ;��. If U1 ,U2�P�X� and

1−U2�Lloc
3+�X�, then the Green functions GA,U1

and GA,U2
have the same on-diagonal singularity

i.e., GA,U1
−GA,U2

is continuous in X�X). In particular, for any U�P�X��Lloc
3+�X� there holds

G0,U�x,y ;�� =
1

4�d�x,y�
+ G0,U

ren �x,y ;�� , �5.1�

here G0,U
ren is continuous in X�X.

Proof: The theorem is a simple corollary of Proposition 11, and the formula �5.1� follows from
xample 8. �

Remark 17: Contrary to the two-dimensional case, the singular term of the Green function for
he three-dimensional Schrödinger operator HA,U does depend on the scalar potential U as well as
n the magnetic vector potential A. In particular, if A is the vector potential of a uniform magnetic

3
eld B in X=R , then instead of �5.1� we have
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GA,0�x,y;�� =
1

4�	x − y	
exp� iB�x � y�

2
 + GA,0

ren �x,y;�� ,

ee Example 14. On the other hand, the dependence on scalar potentials is shown in Example 12.
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PPENDIX A: OFF-DIAGONAL ASYMPTOTICS FOR THE INVERSE HARMONIC
SCILLATOR IN DIMENSION ONE

The Green function G�x ,y ;�� for the inverse harmonic oscillator H=−d2 /dx2−�2x2 /4, has the
orm

G�x,y ;�� =
ei�/4�� 1

2 − i��
�2��

� U�− i�/�,e−i�/4�1/2 max�x,y�� � U�− i�/�,e−i�/4�1/2 max�− x,− y�� ,

�A1�

here I�	0 and U�a ,x� is the Weber function, see �Ref. 27, Chap. 19�. Using �Ref. 27, No.
9.8.1�, for large z one obtains U�a ,z�=e−z2/4z−1/2−au�z�, where limz→ u�z�=1. Returning to the
reen function we see that for fixed x and large y one has �assuming y	x�

G�x,y ;�� =
ei�/4�� 1

2 − i��
�2��

U�− i�/�,− e−i�/4�1/2x�
ei�y2/4

�e−i�/4�1/2y�−i�/�+�1 � 2�v�y� ,

here limy→ v�y��0. Therefore, for large 	x−y	 the Green function has only a polynomial decay.

PPENDIX B: ON-DIAGONAL SINGULARITY FOR THE COULOMB HAMILTONIAN

Here we prove the asymptotics �3.6�.
We are interested in asymptotics of the functions x�G�x ,x0 ;�� as x→x0 at fixed �

res�H� and x0�R3. As the potential is smooth outside the origin, the Green function has the
tandard on-diagonal asymptotics if x0�0. We consider the case x0=0. We have M�,1/2�0�=0,

M�,1/2� �0�=1, therefore,

G�x,0;�� =
��1 − ��

4�	x	
W�,1/2�2�− �	x	� .

onsider the following expansions �cf. items 6.1�1� and 6.8�13� in Ref. 28�:

��a,2;x� = 1 +
a

2
x +

a�a + 1�
12

x2 + ¯ ,

��a,2;x� =
1

x��a�
+ ��a,2;x�log x + �

k=0


��a + k����a + k� − ��1 + k� − ��2 + k��

��a��k + 1�!k!
xk

= A−1x−1 + A0 + A1x + A2x2 + ¯ + B0 log x + B1x log x + B2x2 log x + ¯ ,

here

A−1 =
1

, A0 =
��a� − ��1� − ��2�

, A1 =
a���a + 1� − ��2� − ��3��

,

��a� ��a − 1� 2��a − 1�
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A2 =
a�a + 1����a + 2� − ��3� − ��4��

12��a − 1�
, B0 =

1

��a − 1�
, B0 =

a

2��a − 1�
, B2 =

a�a + 1�
12��a − 1�

.

sing �3.5�, we get

W�,1/2�x� = A−1 + �A0 −
1

2
A−1x + B0x log x + O�	x2 log x	�

=
1

��a�
+ ���a� − ��1� − ��2�

��a − 1�
−

1

2��a�x +
1

��a − 1�
x log x + O�	x2 log x	� .

ince ��1�=−CE, ��2�=1−CE, where CE is the Euler constant, we get �3.6� after some trivial
lgebra.

PPENDIX C: ON-DIAGONAL SINGULARITY OF THE THREE-DIMENSIONAL LANDAU
AMILTONIAN

In this appendix, we are going to prove the asymptotics �4.6�.
Set in the integral �4.5� x�=0 and denote x� =z. Then after the change of variables t→ t2 in

his integral, we obtain

G�0,0,z;0,0,0;�� =
	�	1/2

2�
�

0

 exp�− az2t−2 − ct2�

1 − e−t2
dt , �C1�

here a=�	�	 and c= �1/2�− �� /4�	�	�. Represent now G�0,0 ,z ;0 ,0 ,0 ;��= f1�z ;��+ f2�z ;��,
here

f1�z;�� =
	�	1/2

2�
�

0

 exp�− az2t−2 − ct2�
t2 dt ,

f2�z;�� =
	�	1/2

2�
�

0

 � 1

1 − e−t2
−

1

t2exp�− az2t−2 − ct2�dt . �C2�

hanging the variable t→ t−1 and using the relation

�
0



exp�− bt2 − c/t2�dt =
1

2
��/b�1/2 exp�− 2�bc�1/2�

see Ref. 29, Sec. V. I, formula 2.3.16.3�, we obtain f1�z ;��=exp�−�2� 	� 	−��1/2 	z 	 � / �4� 	z 	 �, or
�0,0 ,z ;0 ,0 ,0 ;��= �4� 	z 	 �−1+g�z ;��, where

g�z;�� = −
1

4�
�2�	�	 − ��1/2 + f2�z;�� . �C3�

t is clear that the function g is continuous with respect to z and analytic with respect to �, �
res�HA,0�. We can rewrite �C1� in the form

	�	1/2

2�
�

0

 exp�− �	�	z2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t�t

dt =
1

4�	z	
+ g�z;�� . �C4�

et h�t�= �et−1�−1− t−1; the function h is real analytic on the whole line, h�t�→0 as t→ + and

�t�→−1 as t→−. Therefore, h is bounded on R. Let us represent F�x ;�� in the form
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F�x;�� = �
0

 exp�− �	�	x2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t��t

dt + �
0

 exp�− �	�	x2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t��t

��exp�− �	�	x�h�t�� − 1�dt � I1�x,�� + I2�x,�� . �C5�

t is easy to show that I2 is a continuous function in the domain x�R3, Re ��2�	�	. Let us show
hat I2�x ,��→0 locally uniformly with respect to �, Re ��2�	�	, as x→0. It is sufficient to show
hat

A�x,�� � �
0

 exp�− �	�	x2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t��t

	exp�− �	�	x�
2 h�t�� − 1	dt → 0

ocally uniformly with respect to ��R, ��2�	�	, as x→0. Fix ��R, ��2�	�	. Since x�
2 �x2,

e have 	exp�−�	�	x�
2 h�t��−1	�const x2 in a neighborhood of the point �0,0 ,z�. Therefore, using

C4�, we get

A�x,�� � cx2�
0

 exp�− �	�	x2t−1�

�1 − e−t�exp��1

2
−

�

4�	�	t��t

dt �
	x	

	�	1/2 +
cx2

	�	1/2 f�	x	,�� ,

nd we get the required limit. Using �C4� again, we obtain

I1�	x	,�� =
1

	�	1/2	x	
+ f�	x	,�� . �C6�

sing �C5� and �C6� we get

G�x,y;�� =
1

4�

exp��i��x� ∧ y���
	x − y	

+ F̃�x,y;�� ,

here F̃�x ,y ;�� is jointly continuous with respect to �x ,y��R3�R3 for all �� res�HA,0�.
Denote Q���=lim	x−y	→0 F̃�x ,y ;��; this limit is independent of x and y since F̃�x ,y ;�� is

nvariant with respect to magnetic translations Ta, a�R3 :Taf�x�=exp��i��a�∧x���f�x−a�. From
4.5� we obtain

�

��
Q��� =

1

16�2	�	1/2�
0



exp��1

2
−

�

4�	�	t��1 − e−t�−1�t dt .

sing Eq. �1.10.4� from Ref. 28 we get 
0
ts−1e−vt�1−e−t�−1 dt=��s�Z�s ,v� and the obvious rela-

ion �Z�s ,v� /�v=−sZ�s+1,v� implies immediately

Q��� =
1

4
� 	�	

�
1/2

Z�1

2
;
1

2
−

�

4�	�	 + C �C7�

ith a constant C�R. To determine C we compare �C7� with �C3� in the limit R�→−. Since
���=g�0;��, we have from �C3� and �C2�,

Q��� −
1

4�
�2�	�	 − ��1/2 → 0 as R� → −  .

n the other hand, by the Hermite relation �see �1.10.7� from Ref. 28� there holds Z�1/2 ,v�
1/2
2v →0 as Rv→ +. Comparing the two last relations with �C7�, we get C=0. Thus, �4.6� is
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roven. Note that the expression for Q��� was obtained at the physical level of rigor in Ref. 30 and
an be found also in Ref. 9.

1 S. Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations �Cambridge University Press, Cambridge, 1996�.
2 N. N. Bogoliubov and D. V. Shirkov, Quantum Fields �Benjamin/Cummings, Reading, MA, 1983�.
3 I. G. Avramidi, J. Math. Phys. 39, 2889 �1998�.
4 S. N. Solodukhin, Nucl. Phys. B 54, 461 �1999�.
5 B. S. Pavlov, Russ. Math. Surveys 42, 127 �1987�.
6 V. A. Geyler, V. A. Margulis, and I. I. Chuchaev, Sib. Math. J. 36, 714 �1995�.
7 E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 �1947�.
8 U. Wulf, J. Kučera, P. N. Racec, and E. Sigmund, Phys. Rev. B 58, 16209 �1998�.
9 Yu. N. Demkov and V. N. Ostrovskii, Zero-Range Potentials and their Applications in Atomic Physics �Plenum, New
York, 1988�.

0 S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2nd ed. with an
Appendix by P. Exner �American Mathematical Society, Providence, RI, 2005�.

1 W. D. Goldberger and M. B. Wise, Phys. Rev. D 65, 025011 �2002�.
2 F. A. Berezin and L. D. Faddeev, Sov. Math. Dokl. 2, 372 �1961�.
3 Z. Haba, J. Phys. A 37, 9295 �2004�.
4 M. Marcolli and V. Mathai, cond-mat/0502356; in Noncommutative Geometry, Arithmetic, and Physics, edited by C.
Consani and M. Marcolli, Aspects of Mathematics �Vieweg Verlag, Wiesbaden, in press�.

5 V. V. Gritsev and Yu. A. Kurochkin, Phys. Rev. B 64, 035308 �2001�.
6 M. O. Katanaev and I. V. Volovich, Ann. Phys. �N.Y.� 216, 1 �1992�.
7 S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, and N. Hatakenaka, Nature �London� 417, 397 �2002�.
8 V. Ya Prinz, D. Grützmacher, A. Beyer, C. David, B. Ketterer, and E. Deckardt, Nanotechnology 12, 399 �2001�.
9 S. Albeverio, V. A. Geyler, and V. A. Margulis, Tech. Phys. Lett. 26, 99 �2000�.
0 J. Brüning and V. A. Geyler, J. Math. Phys. 44, 371 �2003�.
1 J. Brüning, P. Exner, and V. A. Geyler, J. Phys. A 36, 4875 �2003�.
2 M. A. Shubin, Asterisque 207, 35 �1992�.
3 J. Brüning, V. Geyler, and K. Pankrashkin, math-ph/0410042.
4 Y. Colin de Verdière, Ann. Inst. Fourier 32, 275 �1982�.
5 C. Grosche and F. Steiner, Handbook of Feynman Path Integrals �Springer, Berlin, 1998�.
6 V. A. Geyler and V. V. Demidov, Z. Anal. ihre Anwend. 15, 851 �1996�.
7 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables �Wiley, New York, 1984�.

8 H. Bateman and A. Erdelyi, Higher Transcendental Functions �McGraw-Hill, New York, 1981�.
9 A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marychev, Integrals and Series �Gordon and Breach, New York, 1986�, Vol.
1.

0 Yu. N. Demkov and G. F. Drukarev, Zh. Eksp. Teor. Fiz. 49, 257 �1965� �Sov. Phys. JETP 22, 182 �1966��.
                                                                                                            



O
m

I

e
b
t
s
s

o
s
i
t
a
e
t
o
t
c
D
m
�
D
G
o
i
p

a

b

JOURNAL OF MATHEMATICAL PHYSICS 46, 113509 �2005�

0
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In this paper we apply the Cartan-Kähler theory of exterior differential systems to
solve the Cauchy problem for the integrable system of Lie minimal surfaces and
discuss the underlying geometry. One purpose for this work is to show how meth-
ods and language from the theory of exterior differential systems may prove to be
useful in the study of real analytic initial value problems, especially for gaining
insight into the geometric aspects of the initial conditions and the solutions.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2116267�

. INTRODUCTION

The study of surfaces in the framework of Lie sphere geometry was developed to a large
xtent during the 1920s, mainly by Blaschke and Thomsen. A great deal of material about it can
e found in Ref. 1. Over the past years, there has been some renewed interest in the subject due
o the fact that many classes of surfaces in Lie geometry have been recognized as integrable
ystems.11,12,5 Examples include, among others, diagonally cyclidic surfaces and Lie minimal
urfaces.

To put our discussion in context, we recall some facts about Lie geometry. Consider the set of
riented spheres in Euclidean space. If we add to this set the set of oriented planes, the set of point
pheres, and the point at infinity, we obtain the space of Lie sphere geometry. This space can be
dentified with the standard projective quadric Q�P5 of signature �3,1�—the conformal comple-
ion of Minkowski 4-space. Any smooth immersion of an oriented surface in Euclidean space has

contact lift to the unit sphere bundle of R3 called the Legendre lift. The unit sphere bundle
mbeds as an open and dense subset into the five-dimensional space � of lines lying on Q. Thus
he Lie transformation group, that is the projective transformations of P5 fixing Q, acts on the set
f Legendre surfaces. Lie geometry studies the properties of immesions which are invariant under
his action. One way to do this is to think of the surface as an envelope of an appropriate
ongruence of invariant model surfaces. In this case, one attaches to each point p of the surface a
upin cyclide D�p� having second order contact with the immersion, a so-called Lie cyclide. The
ap D plays the role of a generalized Gauss map and is the analogue of the conformal Gauss map

central sphere congruence� in Möbius geometry. It defines an immersion into the space D of
upin cyclides, which is identified with the pseudo-Riemannian symmetric space given by the
rassmannian of three-dimensional subspaces of signature �2, 1� in R4,2. The geometric invariants
f D are exactly the Lie invariants of the original surface. In particular, its area defines a Lie
nvariant functional, whose critical points are called Lie minimal surfaces. Actually, the critical
oints of this functional are characterized by the harmonicity of the generalized Gauss map D,5 so

�Electronic mail: musso@univaq.it
�
Electronic mail: lorenzo.nicolodi@unipr.it

46, 113509-1022-2488/2005/46�11�/113509/15/$22.50 © 2005 American Institute of Physics
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s Willmore surfaces in Möbius geometry are characterized by the harmonicity of the central
phere congruence3 and L-minimal surfaces in Laguerre geometry by the harmonicity of the
iddle sphere congruence.15

In this paper we discuss the Cauchy problem for Lie minimal surfaces. Application of the
artan-Kähler theory leads to a description of the space of local real analytic Lie minimal surfaces

n terms of six functions in one variable. In addition to the existence and uniqueness result for Lie
inimal surfaces satisfying given initial conditions, our main contribution here is that of clarifying

he geometry of the Cauchy problem, providing a neat geometric description of the real analytic
nitial data and of the corresponding solution surface. To do this we use the method of moving
rames9 and the theory of exterior differential systems.4

We turn now to a more detailed description of the main result of the paper. Consider an
riented Legendre surface X�R3�S2. Under suitable nondegeneracy conditions, we can intro-
uce on X a canonical Lie-invariant coframe �1 ,�2 �see Ref. 1 and 11�. This induces two distin-
uished geometric structures on the surface, namely the Lorentzian metric �=�1 ·�2 and the
-web �we refer to Ref. 8 for more details on web geometry� formed by the two families of
urvature lines and the family of cyclidic curves, defined, respectively, by the equations

�1 = 0, �2 = 0, �1 − �2 = 0.

et ��R3�S2 be a Legendrian curve, and � :�→Q a one-parameter family of osculating

pheres along �. For each �P ,b���� ,��P ,b�� denotes the sphere in oriented contact at P with the

lane through P orthogonal to b� . We are now in a position to state the following.
Theorem 1.1: Let ��R3�S2 be a real-analytic Legendre curve, � a generic real-analytic

ne-parameter family of osculating spheres along �, and k ,K :�→R real-analytic functions. Then,
here exists a unique real-analytic Lie minimal surface X�R3�S2 containing � such that

i� � is anticyclidic, i.e., intersects the cyclidic curves of X orthogonally;
ii� k is the web-curvature of � �the web-curvature of � is the function k� :�→R defined by

k�=��D��
w ���� ,���, where Dw denotes the covariant derivative operator associated with the

connection of the 3-web and �� is a unit tangent vector along ��;
iii� ���� is a curvature sphere of X at �, for each ���;
iv� K��� is the curvature of the 3-web of X at the point �, for each ���.

According to this theorem, the appropriate Cauchy data for the problem are

i� a curve � of R3 and a field b� :�→S2 of unit normals along � ;
ii� a smooth function r :�→R which gives the signed radii of the osculating spheres;
iii� other two additional functions k ,K :�→R3.

The paper is organized as follows. In Sec. II, we briefly overview some general facts about
urface theory in Lie geometry. In Sec. III, we set up an exterior differential system whose integral
anifolds can be regarded as framed Lie minimal surfaces. Then, we apply the techniques of the
artan-Kähler theory to prove the main theorem. In the Appendix we provide the details of the
onstruction of the canonical frames used in the proof of the theorem.

I. SURFACE THEORY IN LIE SPHERE GEOMETRY

In this section, we briefly recall some background material about Lie sphere geometry and
evelop the method of moving frames for immersed surfaces in this context. A complete treatment
f Lie sphere geometry can be found in the classical treatise of Blaschke and Thomsen1 or in the
ore recent monograph of Cecil.6

. Basic definitions

4,2 6
Let R be the vector space R endowed with the nondegenerate scalar product
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�X,Y� = − �x0y5 + x5y0� − �x1y4 + x4y1� + x2y2 + x3y3 = XtgY , �2.1�

here x0 ,… ,x5 and y0 ,… ,y5 are the coordinates of the vectors X and Y with respect to the
tandard basis �	0 ,… ,	5� of R6. Let SO�4,2� be the identity component of the group that preserves
2.1� and let G be the quotient of SO�4,2� by its center Z2= �±Id�. For each A�SO�4,2�, we
enote by AJ=A ·	J ,J=0,… ,5, the column vectors of A. Thus �A0 ,… ,A5� is a positive, time-
riented basis of R4,2 such that

�AI,AJ� = gIJ, I,J = 0,…,5.

xpressing the exterior derivatives dAJ in terms of the basis �A0 ,… ,A5�, we obtain

dAJ = AI � 
J
I , J = 0,…,5, �2.2�

here 
= �
J
I� is the o�4,2�-valued Maurer-Cartan form A−1 dA. Taking the exterior derivative of

2.2� yields the structure equations

d
 + 
 ∧ 
 = 0. �2.3�

he elements of G=SO�4,2� /Z2 are equivalence classes �A� of matrices A�SO�4,2�. Since the
aurer-Cartan form 
 is bi-invariant under the action of Z2, we identify the Lie algebra g of G
ith o�4,2� and we think of 
 as the Maurer-Cartan form of G.

The group G acts transitively on the following three spaces:

i� the four-dimensional space Q�RP5 of isotropic one-dimensional linear subspaces of
R4,2 ;Q is known as the Lie quadric;

ii� the five-dimensional Grassmannian ��G2�R6� of two-dimensional totally isotropic linear
subspaces of R4,2;

iii� the nine-dimensional Grassmannian D=G2,1�R4,2� of all theree-dimensional linear sub-
spaces of signature �2,1� in R4,2.

The geometric meaning of these spaces is the following.

i� The Lie quadric Q identifies with the set of oriented spheres in R3, including point spheres,
oriented planes and the “point at infinity.” Given a point P= �p1 , p2 , p3��R3 and a real
number r, let ��P ,r� denote the oriented sphere with center P and signed radius r. Simi-
larly, for each P�R3 and every unit vector n� �S2, let ��P ,n�� denote the oriented plane
through P orthogonal to n� . The correspondence between the points of Q and oriented
spheres is given by

��P,r� � 	
1,
r + p1

�2
,p2,p3,

r − p1

�2
,
�P�2 − r2

2 � ,

��P,n�� � 	
0,
1 + n1

2
,

n2

�2
,

n3

�2
,
1 − n1

2
,
n� · P
�2

� ,

� � 	5.

ii� To each contact element �= �P ,n���R3�S2 we associate the null plane

���� = �F0�P� ∧ F1�P,n���

generated by the null vectors

F0�P� = 
1,
1

p1,p2,p3,−
1

p1,
�P� ,
�2 �2 2
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F1�P,n�� = 
0,
1 + n1

�2
,n2,n3,

1 − n1

�2
,n� · P . �2.4�

The mapping

� � R3 � S2 → ���� � �

embeds R3�S2 as an open and dense subset of ��T1S3. Thus, � is obtained from R3

�S2 by adding the 2-sphere of null planes through �	5� at infinity. Correspondingly, the Lie
sphere group G can be viewed as a pseudogroup of contact transformations acting on R3

�S2. �See also Ref. 14�
iii� Let V�D and consider the two-dimensional torus

T�V� = ���x�,�y�� � P�V� � P�V��:�x�2 = �y�2 = 0� � S1 � S1.

The map ��x� , �y���T�V�� �x∧y��� is a Legendre immersion and determines a cyclide
of Dupin in R3. �We recall that a surface is called a cyclide of Dupin if each principal
curvature is constant along its own line of curvature. A torus of revolution is a Dupin
cyclide. Dupin cyclides are algebraic surfaces of the fourth order. For more details we refer
to Ref. 6.� In the framework of Lie-geometry any cyclide of Dupin arises in this way. Thus,
the manifold D can be viewed as the space of all Dupin cyclides of R3. Note that D is a
pseudo-Riemannian symmetric space G /K of the group G, whose G-invariant pseudo-
Riemannian metric gD is represented by the tensorial quadratic form

2
0
1
1

0 + 2
0
4
4

0 + 2
0
2
2

0 + 2
3
1
1

3 − 
2
3
2

3. �2.5�

. Legendre surfaces

Definition 2.1: An oriented immersed surface X�R3�S2 is said to be Legendre if df ·n� =0,
here f :X→R3 and n� :X→S2 denote the restrictions to X of the natural projections.

Remark 2.2: The basic examples are the contact lifts of oriented immersed surfaces X̃�R3. In

his case n� is the usual Gauss map and the embedding is given by X̃� P� �P ,n� �P��R3�S2.
Given a Legendre surface, we consider the quadratic forms

I = df · df , III = dn� · dn� .

Definition 2.3: We say that X has no umbilical points if I�� and III�� are linearly independent,
or every ��X.

Remark 2.4: If X is the contact lift of an oriented surface X̃�R3, then I and III are the first and

he third fundamental forms, respectively. Thus, X has no umbilical points if and only if X̃ is
mbilic free in the usual sense.

If X is umbilic free, there exist curvature line coordinates, that is, positive-oriented charts
U ,x1 ,x2� with respect to which I and III are in diagonal form. We have

df = 1 dx1e�1 + 2 dx2e�2,

dn� = �1 dx1e�1 + �2 dx2e�2, �2.6�

here �e�1 ,e�2 ,n�� is a positive-oriented frame field and i ,�i , i=1, 2, are smooth functions such that
�12−�21��p�0, for every p�X.

Definition 2.5: The curvature spheres at the point �= �P ,n�� of X are the oriented spheres

i����Q , i=1, 2, represented by the null vectors

Si��� = iF0�P� + �iF1�P,n��, i = 1,2.

˜ 3 �
Remark 2.6: If X is the contact lift of an immersed surface X�R , then �i�P ,n�P� , i=1, 2, give
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ack the curvature spheres of X̃ at P corresponding to the principal curvatures.
Definition 2.7 (nondegeneracy condition): We say that a Legendre surface X is nondegenerate

f it is umbilic free and both the curvature sphere mappings

�i:X � � � �i��� � Q, i = 1,2

re immersions into the Lie quadric Q.
For each ��X there are two osculating Dupin cyclides Di��� , i=1, 2 �the Lie cyclides� rep-

esented by the three-dimensional linear subspaces,

Di��� = �Si�� ∧ �iSi�� ∧ �ii
2Si��� � D .

Definition 2.8: The map D :��X�D1����D is called the generalized Gauss map of the
egendre surface �see Ref. 1 and 5�.

. Moving frames

Following the usual practice in the method of moving frames, we can construct a canonical lift
o the group G for any nondegenerate Legendre surface.

Theorem 2.9: Let X�R3�S2�� be a nondegenerate Legendre surface. Then there exists a
nique lift �A� :X→G satisfying the Pfaffian equations

�0
4 = �0

2 = �1
3 = �2

3 = �0
1 − �1

2 = �1
0 − �0

3 = �2
0 = �3

1 = 0, �2.7�

ith the independence condition

�0
3 ∧ �1

2 � 0. �2.8�

The proof of this theorem is given in the Appendix. Our canonical frame is related the “Wilc-
ynski frame” introduced by Blaschke1 and reconsidered by Ferapontov in Ref. 11 and 12. The
ain difference is a final normalization, which makes our frame independent of the choice of the

urvature line coordinates.�
We call �1

ª�0
3 ,�2

ª�1
2 canonical or Blaschke’s coframe of X �Ref. 1 and 11�. It is given by

�1 = 3�3�2� dx1, �2 = 3�3�2� dx2, �2.9�

here

� =
1�1�1 − �11�1

2�2�2 − �22�2
, � =

�22�2 − 2�2�2

2�2�2 − �22�2
.

Remark 2.10: Geometrically, the equations �1=0 and �2=0 define the curvature lines of the
urface. The curvature spheres of the surface at ��X are represented by the null lines �A0���� and
A1����, respectively, while the two Lie cyclides are represented by the three-dimensional sub-
paces �A0���∧A3���∧A5���� and �A1���∧A2���∧A4����, respectively. Note also that �ªD*�gD�
�1 ·�2.

The only nonzero components of the Maurer-Cartan form � of the canonical frame are �1

�0
3 ,�2=�1

2, and �0
0 ,�1

1 ,�2
1 ,�1

1 ,�3
0 ,�4

0. From the exterior differentiation of �2.7� and the structure
quations, it follows that there exist smooth functions q1 ,q2 , p1 , p2, and r1 ,r2 such that

�0
0 = − 2q1�1 + q2�2, �1

1 = − q1�1 + 2q2�2,

�3
0 = r1�1 + p2�2, �2

1 = p1�1 + r2�2,

�0 = − r2�1 + r1�2. �2.10�
4
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e call q1 ,q2 , p1 , p2 and r1 ,r2 the invariant functions of the Legendre surface. Again using the
tructure equations, we obtain

d�1 = �0
0 ∧ �1, d�2 = �1

1 ∧ �2, d�2
1 = − �1

1 ∧ �2
1, d�3

0 = − �0
0 ∧ �3

0, �2.11�

d�0
0 = ��2 − �3

0� ∧ �1, d�1
1 = ��1 − �2

1� ∧ �2, d�4
0 = − ��0

0 + �1
1� ∧ �4

0, �2.12�

hich in terms of the invariant functions read

d�1 = − q2�1 ∧ �2, d�2 = − q1�1 ∧ �2, �2.13�

− 2 dq1 ∧ �1 + dq2 ∧ �2 = �p2 − q1q2 − 1��1 ∧ �2,

− dq1 ∧ �1 + 2 dq2 ∧ �2 = �− p1 + q1q2 + 1��1 ∧ �2, �2.14�

dr1 ∧ �1 + dp2 ∧ �2 = �2q2r1 + 3q1p2��1 ∧ �2,

dp1 ∧ �1 + dr2 ∧ �2 = �2q1r2 + 3q2p1��1 ∧ �2,

− dr2 ∧ �1 + dr1 ∧ �2 = 4�q1r1 − q2r2��1 ∧ �2. �2.15�

e may consider �2.13�–�2.15� as the Lie sphere analogues of the Gauss and Codazzi-Mainardi
quations.

Remark 2.11: If �x1 ,x2� are curvature line coordinates, then

q1 = −
1

3�3 �2�
��1�log �� + 2�1�log ��� ,

q2 =
1

3�3 ��2
�2�2�log �� + �2�log ��� ,

p1 = −
1

��
�12�log �� + 1,

p2 = −
1

��
�12�log �� + 1.

rom this and from �2.15�, we infer that the invariant functions p1 , p2 ,r1 ,r2 coincide, up to
nessential normalizations, with the local differential invariants k , l ,a ,b defined by Ferapontov in
ef. 11.

Remark 2.12: With respect to the Blaschke coframe, the connection form of the 3-web is
epresented by the 1-form

�w = − q1�1 + q2�2,

hile the Levi-Civita connection of the Lorentzian metric �=�1 ·�2 is given by the 1-form

�� = q1�1 + q2�2.

omputing the exterior derivatives of �w and ��, we obtain

d�w = 1 �p2 − p1��1 ∧ �2, d�� = �2 − p1 − p2��1 ∧ �2.
3
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he respective sectional curvatures Kw and K� are given by

Kw = 1
3 �p2 − p1�, K� = 2 − p1 − p2.

Definition 2.13: Let ��X be a nonisotropic curve and �� a unit vector field tangent to �. The
eb-curvature of � is the function k� :�→R defined by

k� ª ��D��
w ����,��� ,

here Dw denotes the covariant derivative operator associated to the connection of the 3-web.
Remark 2.14: If � is an anticyclidic curve, that is a solution of the Pfaffian equation �1

�2=0, then

k� = � 1
�2

�q1 + q2��
�

.

. Lie minimal surfaces

Following Blaschke �see Ref. 1, Sec. 94�, we say that a nondegenerate Legendre surface
�R3�S2 is a Lie minimal surface �K-Minimalfläche� if the differential equations

dr1 ∧ �2 − 4q1r1�1 ∧ �2 = 0,

dr2 ∧ �1 − 4q2r2�1 ∧ �2 = 0 �2.16�

re satisfied. Actually, due to the integrability conditions �2.15�, either one of the above differential
quations implies the other. Lie minimal surfaces are characterized as critical points of the area
unctional defined by the generalized Gauss map D �see Ref. 1, Sec. 94, and also Ref. 20�.

Recently, this result has been taken up by Burstall and Hertrich-Jeromin,5 who proved that a
ondegenerate Legendre surface X is Lie minimal if and only if its generalized Gauss map D is a
onformal harmonic map into the pseudo-Riemannian symmetric space D=G /K. In the same
rticle, the authors apply the theory of harmonic maps of surfaces to explain the integrable
tructure of Lie minimal surfaces that was first recognized by Ferapontov in Ref. 11.

Remark 2.15: Note that the canonical frame field �A� :X→G is also a frame along the gener-
lized Gauss map D. Following Ref. 5, we write �=�k+�p according to the symmetric decom-
osition g=k � p of the Lie algebra g and set

�p = �p� + �p�,

here �p� and �p� are the components of �p along the null directions of the quadratic form �. The
ey observation �this follows from the characterization of conformal harmonic maps of Riemann-
an or Lorentzian surfaces into pseudo-Riemannian symmetric spaces, see for instance Refs. 17,
1, and 22� is that D is conformal and harmonic if and only if the one-parameter family of
-valued 1-forms

�� ª �k + e��p� + e−��p�, � � R ,

atisfies the Maurer-Cartan equations

d�� + �� ∧ �� = 0. �2.17�

t is now an easy matter to check that �2.17� holds true if and only if the invariant functions, in
ddition to the Gauss-Codazzi-Mainardi equations �2.13�–�2.15�, satisfy also the equations �2.16�.

Example 2.16: Examples of Lie-minimal surfaces include the analogues of Demoulin surfaces
n projective differential geometry �see Refs. 13 and 11�. These surfaces are defined by the

quations r1=r2=0. From a geometrical viewpoint, they are characterized by the property that D
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as only two distinct enveloping surfaces, the original surface X and the dual surface X̂ param-
trized by the Legendre map X��� �A4���∧A5������. Locally, with respect to curvature line
oordinates �x1 ,x2�, such surfaces satisfy

�12
2 �log �� = �� +

1

�
, �12

2 �log �� = �� +
1

�
.

f, in addition, we require that the 3-web is exagonal �i.e., Kw=0�, then �=� and � is a solution
f Tzitzéica equation,

�12
2 �log �� = �2 +

1

�
. �2.18�

quation �2.18� possesses finite-gap solutions that can be written in terms of Baker-Akhiezer
unctions.7,19 It is interesting to notice that �2.18� appears in various contexts such as affine
pheres,18 classical projective geometry,2 hypercomplex four-manifolds10 and minimal Legendre
ori in S5.19

Another remarkable class of Lie minimal surfaces is represented by the contact lifts of sur-
aces in R3 with plane curvature lines �see Ref. 16�. These surfaces can be characterized by having
urvature line coordinates �x1 ,x2� such that �=�, where � is a solution of the Liouville equation

�12
2 �log �� = �2.

II. THE CAUCHY PROBLEM

. Setting up the system

Let P=G�R6 and let �q1 ,q2 , p1 , p2 ,r1 ,r2� denote the coordinates on R6. On P we consider
he differential ideal I��*�P� generated by the differential 1-forms

�1 = 
0
4, �2 = 
0

2, �3 = 
1
3,

�4 = 
2
3, �5 = 
0

1 − 
2, �6 = 
1
0 − 
1,

�7 = 
2
0, �8 = 
3

1, �3.1�

�9 = 
0
0 + 2q1
1 − q2
2,

�10 = 
1
1 + q1
1 − 2q2
2, �3.2�

�11 = 
3
0 − r1
1 − p2
2,

�12 = 
2
1 − p1
1 − r2
2,

�13 = 
4
0 + r2
1 − r1
2, �3.3�

nd by the exterior differential 2-forms

�1 = dr1 ∧ �2 − 4q1r1�1 ∧ �2, �2 = dr2 ∧ �1 − 4q2r2�1 ∧ �2, �3.4�

ith the independence condition �=
1∧
2, where 
1=
0
3 and 
2=
1

2. Taking the exterior de-
ivatives of �3.1�–�3.3� and using the structural equations of G, we obtain the quadratic equations

1 8 13
d� � ¯ � d� � ¯ � d� � 0 mod�I� , �3.5�
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�3.6�

here �I� denotes the algebraic ideal generated by �1 ,… ,�13,�1 ,�2 and where

�i = dqi, � i = dpi, �i = dri �i = 1,2� .

f we set

�3.7�

hen

��1,…,�13,�1,�2,�1,�2,�3,�4,d�1,d�2� �3.8�

s a set of algebraic generators of the differential ideal I.

An integral manifold of this system is a two-dimensional submanifold X̃� P such that

�a = 0, �1 = �2 = �1 = �2 = �3 = �4 = 0, � � 0.

hus, if X̃ is an integral manifold, the map

F:��A�,q1,q2,p1,p2,r1,r2� � X̃ � �A1 ∧ A2� � � �3.9�

efines a Lie minimal surface. Conversely, if X�R3�S2 is a Lie minimal surface with normal
rame field �A� :X→G and invariant functions q1 ,… ,r2, then

��A�,q1,q2,p1,p2,r1,r2�:X → P , �3.10�

s an integral manifold of the differential system �I ,��. Thus we have the following.
Proposition 3.1: Lie minimal surfaces may be regarded as the integral submanifolds of the

xterior differential system �I ,��.
On P, consider the parallelization


 �

�
i ,
�

��a ,
�

��i ,
�

�� i ,
�

��
 �i = 1,2;a = 1,…,13�

ual to the coframe �
i ,�a ,� i ,� i ,�i�. The one-dimensional integral elements of �I ,�� are of the
orm

E1 = 	a1 �

�
1 + a2 �

�
2 + yi �

�� i + ui �

�� i + vi �

��i� ,

here �a1�2+ �a2�2�0. Contracting �1 ,�2 ,�1 ,… ,�4 with E1, we deduce the polar equations

�a = 0 �a = 1,…,13� ,

1 1 2 2 1 2 1 2 1 2
2a � − a � − �2y + a �1 − p2 + q1q2��
 + �y + a �1 − p2 + q1q2��
 = 0,
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a1�1 − 2a2�2 − �y1 − a2�1 − p1 + q1q2��
1 + �2y2 − a1�1 − p1 + q1q2��
2 = 0,

a1�1 + a2�2 − �u1 + a2�3p1q2 + 2r2q1��
1 − �v2 − a1�3p1q2 + 2r2q1��
2 = 0,

a2�2 + a1�1 − �v1 + a2�2r1q2 + 3q1p2��
1 − �u2 − a1�2r1q2 + 3q1p2��
2 = 0,

a2�1 − 4a2q1r1
1 + �4a1q1r1 + v1�
2 = 0,

a1�2 − �4a2q2r2 + v2�
1 + 4a1q2r2
2 = 0.

rom this we see that if E1 is noncharacteristic �i.e., a1a2�0�, then the polar space H�E1� is two
imensional. Thus, from the Cartan-Kähler theorem we obtain the following.

Proposition 3.2: If �̃ is a real-analytic integral curve of �I ,�� such that 
1
2��̃�0, then

here exists a unique real-analytic integral manifold X̃ such that �̃� X̃.

. Proof of Theorem 1.1

Let ��R3�S2�� be a Legendre curve and � :�→Q a one-parameter family of osculating
pheres along �. Then we may parametrize the curve by ���� �V0���∧V1����, where

0 ,V1 :�→R4,2 are smooth maps such that

�V0� = �V1� = �V0,V1� = 0, �V0,dV1� = 0, � = �V0� . �3.11�

f �we use the notation dV=V��, where � is a nowhere vanishing 1-form on ��

V0��� ∧ V1��� ∧ V0���� ∧ V1���� ∧ V0���� ∧ V1���� � 0,

V0��� ∧ V0���� ∧ ¯ ∧ V0
�v���� � 0, �3.12�

or every ���, then �V0���∧V0����∧V0������R4,2 is a three-dimensional linear subspace of sig-
ature �2, 1�, for every ���.

Definition 3.3: If, in addition to �3.12�, the map � :���� �V0���∧V0����∧V0������D is
onisotropic �i.e., �*�gD��0�, then � is said to be generic.

Using standard moving frame techniques, we obtain �see the Appendix for a proof of this
tatement� the following.

Lemma 3.4: Let � and � be as above, then there exists a unique map �B� :�→G such that

� = �B0��� ∧ B1����, ���� = �B0����, ∀ � � � �3.13�

nd that

B−1 dB = �B−1 + k0B0 + k1B1 + k2B2 + k3B3�� , �3.14�

here � is a nowhere vanishing 1-form, k0 ,k1 ,k2 ,k3 are real-valued functions and the matrices

J�g are given by B−1=−E1,0+E3,0+E0,1−E2,1−E4,2+E5,3+E5,4−E4,5 ,B0=E0,0−E1,1+E4,4

E5,5 ,B1=E0,3+E3,5 ,B2=E1,2+E2,4 ,B3=E0,4−E1,5, being Ei,j �0� i , j�5� the matrix with 1 in
he �i , j� place and 0 elsewhere.

Proof of Theorem 1.1: Let � and � as above and let �B� :�→G be the canonical frame
onstructed in Lemma 3.4. We set h=−3�2k and we let �C� :�→G be defined by

C = Id6�6 +
h

2
C1 +

h2

8
C2, �3.15�

here C1=E1,2−E0,3+E0,4+E2,4−E1,5−E3,5 and C2=E1,4+E0,5. We then consider the frame field
˜
B�= �B� ·C. It is now a computational matter to check that
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B̃−1 dB̃ = 
B−1 + k0B0 + k̂1B1 + k̂2B2 + k̂3B3 +
h

2
B4� , �3.16�

here B4=E0,0+E1,1−E4,4−E5,5 , k̂2=k2+ 1
2h�− 1

2
�hk0− 1

4h2� , k̂1=k1− 1
2h�− 1

2
�hk0+ 1

4h2� and k̂3=k3
1
2h�− 1

4h2. We then define the function q̄i , p̄i , r̄i :�→R as follows:

q̄1 = − k̂0 − 1
6h ,

q̄2 = k̂0 − 1
6h ,

p̄1 = − 1
2�k̂1 − k̂2 − k̂3 − 3K� ,

p̄2 = − 1
2�k̂1 − k̂2 + k̂3 + 3K� ,

r̄1 = 1
2�k̂1 + k̂2 − k̂3 − 3K� ,

r̄2 = − 1
2�k̂1 + k̂2 + k̂3 − 3K� . �3.17�

onsider now the embedding �̃= ��B̃� , q̄ , p̄ , r̄� :�→P. From �3.16� and �3.17� it follows that �̃ is a
ne-dimensional integral manifold of the differential system �I ,��. If we set dq̄j = q̄j

*� ,dp̄j

p̄j
*�, and dr̄ j = r̄ j

*�, then �3.16� implies that

�

�
1 −
�

�
2 + q̄i
* �

�� i + p̄i
* �

�� i + r̄i
* �

��i �3.18�

s a tangent vector field along �̃. This yields that �̃ is a noncharacteristic K-regular integral curve

f �I ,��. Therefore, there exists a unique two-dimensional integral manifold X̃� P such that

� X̃. Consider the Legendre immersion

F:��A�,q,p,r� � X̃ � �A0 ∧ A1� � � . �3.19�

ince our reasoning is of local nature, we may suppose that F is one-to-one and that X=F�X̃� is

ontained in R3�S2��. If we identify X̃ and X , ��A� ,q , p ,r��X� �A��G is the canonical
frame and q1 ,q2 , p1 , p2 ,r1 ,r2 are the invariant functions of X. From this we deduce that X is a Lie

inimal surface. By construction, the curve � is contained in X and

�1�� = − �2�� = �, q̄i = qi��, p̄i = pi��, r̄i = ri��, i = 1,2. �3.20�

n particular, the 1-form �1+�2 vanishes identically along �. This implies that � is an anti-cyclidic
urve of X. Combining �3.17� and �3.20� we obtain

K =
1

3
�p1 − p2��� = Kw��, k =

1
�2

�q1 + q2��� = k�, � = �A0��� = �1��.

rom this we infer that X satisfies the required properties. The uniqueness of X follows from the
˜ ˜
niqueness of the real-analytic integral manifold X containing �.
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PPENDIX: THE FRAME CONSTRUCTIONS

roof of Theorem 2.9

Consider the fiber bundle

F0�X� = ���,A� � X � G:� = �A0 ∧ A1�� → X .

ocal cross sections of F0�X� are called local frame fields along X. They can be considered as
mooth maps �A� :U→G, where U is an open subset of X, such that �= �A0���∧A1����, for every
�U. For every local frame field �A� :U→G we let �= ��J

I� be the pull-back of the Maurer-Cartan

orm. Any other local frame field �Ã� on U is given by �Ã�= �A� · �B�, where �B� :U→G0 is a
mooth map into the isotropy subgroup

G0 = ��A� � G:�A0 ∧ A1� = �	0 ∧ 	1�� .

hus, the 1-forms � and �̃ are related by the gauge transformation

�̃ = B−1 dB + B−1�B . �A1�

frame field �A� :U→G is of first order if

�0
3 ∧ �0

2 � 0, �0
2 = �1

3 = 0. �A2�

rom �A1� it follows that first order frames exist on a neighborhood of any point of X. The totality
f first order frames is a principal G1-bundle F1�X�→X where

G1 = ��X�D,S,Y,b�� � G0:S = 	Id2�2, D = 
r 0

0 s
, 	 = ± 1, rs � 0� .

Notation: The elements of G1 will be denoted by �Y	�r ,s ,Y ,b��, where 	= ±1,Y
gl�2,R� ,b ,r ,s�R and rs�0.

If �A� :U→G is a first order frame then, the linear differential forms �1=�0
3 and �2=�1

2 give
positive-oriented coframing on U so that we may write

� = P1�1 + P2�2,

here P1 , P2 :U→g are smooth maps. The components of Pa are denoted by PJa
I , where a=1,2

nd where I, J=0,…, 5. If �A� , �Ã� :U→G are first order frames on U and if the corresponding
ransition function is of the form �Y	�r ,s ,Y ,b�� :U→G1, then

�̃1 = 	r�1, �̃2 = 	s�2,

�̃0
1 = r�s−1�0

1 − Y1
2�1�, �̃1

0 = s�r−1�1
0 − Y2

1�2� . �A3�

his implies

P̃1 = 	�s−1P1 − Y2�, P̃1 = 	rs−2P1 ,
01 01 1 02 02
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P̃12
0 = − 	�r−1P12

0 + Y2
1�, P̃11

0 = 	sr−2P11
0 . �A4�

rom �A4� we see that for every point ��X there exist a first order frame field A :U→G defined
n an open neighborhood U of � with respect to which P01

1 = P12
0 =0. Such first order frame fields

re said to be of second order. In addition, any other second order frame field on U is of the form

Ã�= �A� · �B�, where �B� :U→G2 is a smooth map and

G2 = ��Y	�r,s,Y,b�� � G1:Y = 
p 0

0 q
,p,q � R� .

Notation: The elements of G2 will be denoted by Y	�r ,s , p ,q ,b�, where 	= ±1, p ,q ,r ,s ,b
R and rs�0.

Second order frame fields are the cross sections of a reduced sub-bundle F2�X� of F1�X� with
tructural group G2. Differentiating �0

2=�1
3=0 and applying the structure equations and Cartan’s

emma, we have that �2
3=0, for every second order frame field A. Taking the exterior derivative of

2
3=0 and using again the structure equations and the Cartan’s lemma we have �2

0∧�1−�3
1∧�2

0. This implies P22
0 =−P31

1 and hence we may write

�2
0 = P21

0 �1 + P22
0 �2, �3

1 = − P22
0 �1 + P32

1 �2. �A5�

f �A� and �Ã� are second order frame fields on U�X and if �Y	�r ,s , p ,q ,b�� :U→G2 is the
orresponding transition function, we then have

�̃2
0 = 	r−1sp�1

0 + 	r−1�2
0 − sb�2, �̃3

1 = 	s−1rq�0
1 + 	s−1�3

1 + rb�1. �A6�

rom this we obtain

P̃21
0 = r−2�P21

0 + spP11
0 �, P̃22

0 =
1

rs
P22

0 − 	b, P̃32
1 = s−2�P32

1 + rqP02
1 � . �A7�

hus, for every point ��X there exist a second order frame field U→G defined on an open
eighborhood of � with respect to which

P22
0 = P31

1 = 0. �A8�

uch frame fields are said to be of third order. Now, �A7� implies that these frame fields are the
ocal cross sections of a reduced sub-bundle F3�X� of F2�X�. The structure group of F3�X� is

G3 = ��Y	�r,s,p,q,b�� � G2:b = 0� .

ince X is nondegenerate, then the functions P02
1 and P11

0 are nowhere vanishing. Thus, from �A4�
e infer that for every ��M there exist a third order frame field �A� :U→G defined on an open
eighborhood U of � such that

�1
0 = �1, �0

1 = �2. �A9�

third order frame field satisfying �A9� is said to be of fourth order. If �A� is a fourth order frame

eld on U, then any other is given by �Ã�= �A��B�, where �B� :U→G4 and

G4 = ��Y	�r,s,p,q,0�� � G3:r = s = 	� .

he elements of G4 are denoted by �Y	�p ,q��, where p ,q�R. From this we immediately see that
he fourth order frame fields define a G4 sub-bundle F4�X� of F3�X�. Now, using �A7� we see that
or every ��X there exist a unique fourth order frame �A� :X→G such that

�2
0 = �3

1 = 0.
hen, �A� is the unique frame along X satisfying the required properties.
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roof of Lemma 3.4

Let G0 be the fiber bundle defined by

R0 = ���,R� � � � G:� = �R0 ∧ R1�,�R0� = ����� → � .

he cross sections of R0 are smooth maps R :U→G defined on an open subset U��, such that

� = �R0��� ∧ R1����, �R0���� = ����, ∀ � � U .

or each frame field R :U→G we let � be the g-valued 1-form R−1 dR. We say that R :U→G is of
rst order if

�0
3 � 0, �0

2 = �1
3 = �0

3 + �1
2 = �0

4 = 0. �A10�

ince � satisfies �3.11� and �3.12� then, first order frames do exist near any point of � and they
efine a sub-bundle R1 of R0 with fiber

H1 = �X � G0:X = X�r	I,	I,Y,b�,	 = ± 1,r,b � R,r � 0,Y � gl�2,R�� .

f R and R̃ are first order frames related by R̃=RX�r	I ,	I ,Y ,b� then

�̃1
0 = �1

0 + rY1
2�0

3, �̃0
1 = �0

1 − rY2
1�0

3, �̃2
3 = �2

3 + 	r�Y2
1 + Y1

2��0
3. �A11�

his shows that near any point of � there exist first order frames such that

�0
1 + �1

0 = �2
3 = 0. �A12�

rame fields satisfying �A12� are said to be of second order. From �A11� it follows that the totality
f second order frames defines a fiber bundle R2 with fiber

H2 = �X = X�r	I,	I,Y,b� � H1:Y2
1 = Y1

2 = 0� .

otice that the 1-form �1
0 is independent of the choice of the second order frame and hence there

xist ���1��� such that ��U=�1
0. Since � :�→D is nonisotropic and since �*�gD�=−�2 we may

onclude that � is nowhere vanishing. From �A11� it follows that, locally, there exist second order
rames such that

�0
3 = − �1

2 = − �0
1 = �1

0 = � . �A13�

rame fields satisfying �A13� are of third order. The totality of third order frames originates a
rincipal fiber bundle R3 with structural group

H3 = �X = X�r	I,	I,Y,b� � H2:r = 1� .

f R̃ and R are third order frame fields then

�̃0
0 = �0

0 − 	Y2
2�0

3, �̃1
1 = �1

1 + 	Y1
1�0

3.

herefore, near any point of � there exist a third order frame field R such that

�1
1 + �0

0 = 0. �A14�

rame fields satisfying �A14� define a reduced sub-bundle R4 with structure group

H4 = �X = X�	I,	I,Y,b� � H3:Y1
1 = Y2

2� .

˜
onsider two local cross sections R and R of R4, we then have
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�̃2
0 = �2

0 + 	
Y1
1 +

b

2
�, �̃3

1 = �3
1 − 	
Y1

1 −
b

2
� . �A15�

his implies that there exist fourth order frame fields with respect to which

�2
0 = �3

1 = 0. �A16�

ourth order frame fields satisfying �A16� are said to be of fifth order. The totality of fifth order
rames generates a reduced sub-bundle R5 with fiber Z2= �±I� and henceforth R5 is generated by
unique map �B� :�→G satisfying the required properties.
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Integrable systems are usually given in terms of functions of continuous variables
�on R�, in terms of functions of discrete variables �on Z�, and recently in terms of
functions of q-variables �on Kq�. We formulate the Gel’fand-Dikii �GD� formalism
on time scales by using the delta differentiation operator and find more general
integrable nonlinear evolutionary equations. In particular they yield integrable
equations over integers �difference equations� and over q-numbers �q-difference
equations�. We formulate the GD formalism also in terms of shift operators for all
regular-discrete time scales. We give a method allowing to construct the recursion
operators for integrable systems on time scales. Finally, we give a trace formula on
time scales and then construct infinitely many conserved quantities �Casimirs� of
the integrable systems on time scales. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2116380�

. INTRODUCTION

Integrable systems are well studied and well understood in 1+1 dimensions.1–3 Here one of
he dimensions denotes the time �evolution� variable and the other one denotes the space variable
hich is usually taken as continuous. There are also important examples where this variable takes
alues in Z, i.e., integer values. In both cases the Gel’fand-Dikii �GD� approach is quite effective.
ne can generate hierarchies of integrable evolution equations, both on R and on Z �see Ref. 3 for
D applications and related references�. In addition one can construct the conserved quantities,
amilton operators, and recursion operators. Investigation of integrable systems on q-discrete

ntervals started in Refs. 4–6. They considered GD formalism on Kq and found q-integrable
ierarchies including the q-KdV equation.

In this work we extend the Gel’fand-Dikii approach to time scales where R, Z, and Kq are
pecial cases. In the next section we give a brief review of time scales calculus. See Refs. 7–13 for

more detailed review of the subject. In GD formalism, in obtaining integrable systems the
ssential tools are the differential and shift operators and their inverses. For extending the GD
ormulation to time scales we give the necessary means to construct in the sequel the algebra of
seudo-�-differential operators and the algebra of shift operators. In Sec. III we assume
-differential Lax operators and derive the �-Burgers hierarchy with its recursion operator. We
resent special cases of the Burgers equation for T=hZ and T=Kq. In Sec. IV, we consider the
egular time scales where the inverse of jump operators can be defined. Here we assume a pseudo-
-differential algebra and give the corresponding GD formulation. As an example we present a
-KdV hierarchy. We first find n=1 member of the hierarchy and write out it explicitly for T
R ,Z ,Kq and for T= �−� ,0��Kq. Then we give the n=3 member and call it as the �-KdV

ystem. We call it �-KdV equation, because the corresponding Lax operator is a second order

-differential operator. It involves two fields u and v, but the second field v can be expressed in

46, 113510-1022-2488/2005/46�11�/113510/22/$22.50 © 2005 American Institute of Physics
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erms of the first filed u. When T=R, this system reduces to the standard KdV equation. In Sec. V,
e consider the regular-discrete time scales and introduce the algebra of shift operators on them

nd give the corresponding GD formulation for all such time scales. Here several examples are
resented. We first generalize the examples of discrete systems on Z given in Ref. 3 �one field, two
elds, and four fields examples in Ref. 3� to arbitrary discrete time scales. In all these examples
hen T=Z we get the discrete evolutions given in Ref. 3. We construct the recursion operators of

hese systems on time scales. We generalize the Frenkel’s KdV system4 introduced on Kq to
rbitrary discrete time scales and we construct its recursion operator. In this section, we finally
ive an example of the KP hierarchy on discrete time scales. In Sec. VI, we extend the standard
ay of constructing the conserved quantities of integrable systems to time scales by introducing a

race form on the algebra of �-pseudo-differential operators. The trace form introduced in this
ection reduces, in particular cases, to the standard trace forms on R and Z. In the Appendix we
ive the recursion operators of two four-fields systems introduced in Sec. V. We end up with a
onclusion.

I. TIME SCALE CALCULUS

The time scale calculus is developed mainly to unify differential, difference, and q-calculus. A
ime scale �T� is an arbitrary nonempty closed subset of the real numbers. The calculus of time
cales was initiated by Aulbach and Hilger7,8 in order to create a theory that can unify and extend
iscrete and continuous analysis. The real numbers �R�, the integers �Z�, the natural numbers �N�,
he non-negative integers �N0�, the h-numbers �hZ= �hk :k�Z�, where h�0 is a fixed real num-
er�, and the q-numbers �Kq=qZ� �0���qk :k�Z�� �0�, where q�1 is a fixed real number� are
xamples of time scales, as are �0,1�� �2,3�,�0,1��N, and the Cantor set, where �0,1� and �2,3�
re real number intervals. In Refs. 7 and 8 Aulbach and Hilger introduced also dynamic equations
n time scales in order to unify and extend the theory of ordinary differential equations, difference
quations, and quantum equations9 �h-difference and q-difference equations based on h-calculus
nd q-calculus, respectively�. For a general introduction to the calculus on time scales we refer the
eader to the textbooks by Bohner and Peterson.10,11 Here we give only those notions and facts
onnected to time scales which we need for our purpose in this paper.

Any time scale T is a complete metric space with the metric �distance� d�x ,y�= �x−y� for
,y�T. Consequently, according to the well-known theory of general metric spaces, we have for

the fundamental concepts such as open balls �intervals�, neighborhood of points, open sets,
losed sets, compact sets, and so on. In particular, for a given number r�0, the r-neighborhood

Ur�x� of a given point x�T is the set of all points y�T such that d�x ,y��r. By a neighborhood
f a point x�T is meant an arbitrary set in T containing an r-neighborhood of the point x. Also

we have for functions f :T→R the concepts of the limit, continuity, and properties of continuous
functions on general complete metric spaces �note that, in particular, any function f :Z→R is
continuous at each point of Z�. The main task is to introduce and investigate the concept of
derivative for functions f :T→R. This proves to be possible due to the special structure of the
metric space T. In the definition of derivative, the so-called forward and backward jump operators
play special and important roles.

Definition 1: For x�T we define the forward jump operator � :T→T by

��x� = inf�y � T:y � x� , �1�

hile the backward jump operator � :T→T is defined by

��x� = sup�y � T:y � x� . �2�

In this definition we set in addition ��max T�=max T if there exists a finite max T, and
�min T�=min T if there exists a finite min T. Obviously both ��x� and ��x� are in T when x
T. This is because of our assumption that T is a closed subset of R.

Let x�T. If ��x��x, we say that x is right-scattered, while if ��x��x we say that x is

eft-scattered. Also, if x�max T and ��x�=x, then x is called right-dense, and if x�min T and
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�x�=x, then x is called left-dense. Points that are right-scattered and left-scattered at the same
ime are called isolated. Finally, the graininess functions � ,� :T→ �0, � � are defined by

��x� = ��x� − x, and ��x� = x − ��x� for all x � T . �3�

Example 1: If T=R, then ��x�=��x�=x and ��x�=��x�=0. If T=hZ, then ��x�=x+h, ��x�
x−h, and ��x�=��x�=h. On the other hand, if T=Kq then we have

��x� = qx, ��x� = q−1x, ��x� = �q − 1�x, and ��x� = �1 − q−1�x . �4�

Let T	 denote Hilger’s above truncated set consisting of T except for a possible left-scattered
aximal point. Similarly, T	 denotes the below truncated set obtained from T by deleting a

ossible right-scattered minimal point.
Definition 2: Let f :T→R be a function and x�T	. Then the delta derivative of f at the point

is defined to be the number f��x� (provided it exists) with the property that for each 
�0 there
xists a neighborhood U of x in T such that

�f���x�� − f�y� − f��x����x� − y�� � 
���x� − y� , �5�

or all y�U.
Remark 1: If x�T \T	, then f��x� is not uniquely defined, since for such a point x, small

eighborhoods U of x consist only of x and besides we have ��x�=x. Therefore �5� holds for an
rbitrary number f��x�. This is a reason why we omit a maximal left-scattered point.

We have the following: �i� If f is delta differentiable at x, then f is continuous at x. �ii� If f is
ontinuous at x and x is right-scattered, then f is delta differentiable at x with

f��x� =
f���x�� − f�x�

��x�
. �6�

�iii� If x is right-dense, then f is delta differentiable at x iff the limit

lim
y→x

f�x� − f�y�
x − y

�7�

xists as a finite number. In this case f��x� is equal to this limit. �iv� If f is delta differentiable at
, then

f���x�� = f�x� + ��x�f��x� . �8�

Definition 3: If x�T	, then we define the nabla derivative of f :T→R at x to be the number
f��x� (provided it exists) with the property that for each 
�0 there is a neighborhood U of x in T
uch that

�f���x�� − f�y� − f��x����x� − y�� � 
���x� − y� , �9�

or all y�U.
We have the following: �i� If f is nabla differentiable at x, then f is continuous at x. �ii� If f is

ontinuous at x and x is left-scattered, then f is nabla differentiable at x with

f��x� =
f�x� − f���x��

��x�
. �10�
�iii� If x is left-dense, then f is nabla differentiable at x if and only if the limit
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lim
y→x

f�x� − f�y�
x − y

�11�

xists as a finite number. In this case f��x� is equal to this limit. �iv� If f is nabla differentiable at
, then

f���x�� = f�x� − ��x�f��x� . �12�

Example 2: If T=R, then f��x�= f��x�= f��x�, the ordinary derivative of f at x. If T=hZ, then

f��x� =
f�x + h� − f�x�

h
and f��x� =

f�x� − f�x − h�
h

. �13�

f T=Kq, then

f��x� =
f�qx� − f�x�

�q − 1�x
and f��x� =

f�x� − f�q−1x�
�1 − q−1�x

, �14�

or all x�0, and

f��0� = f��0� = lim
y→0

f�y� − f�0�
y

�15�

rovided that this limit exists.
Among the important properties of the delta differentiation on T we have the Leibnitz rule, if

f ,g :T→R are delta differentiable functions at x�T	, then so is their product fg and

�fg���x� = f��x�g�x� + f���x�g��x� �16�

= f�x�g��x� + f��x�g���x�� . �17�

lso, if f ,g :T→R are nabla differentiable functions at x�T	, then so is their product fg and

�fg���x� = f��x�g�x� + f���x�g��x� , �18�

= f�x�g��x� + f��x�g���x�� . �19�

n the next proposition we give a relationship between the delta and nabla derivatives �see Ref.
2�.

Proposition 4: (i) Assume that f :T→R is delta differentiable on T	. Then f is nabla differ-
ntiable at x and

f��x� = f����x�� , �20�

or x�T	 such that ����x��=x. If, in addition, f� is continuous on T	, then f is nabla differen-
iable at x and (20) holds for any x�T	.

(ii) Assume that f :T→R is nabla differentiable on T	. Then f is delta differentiable at x and

f��x� = f����x�� , �21�

or x�T	 such that ����x��=x. If, in addition, f� is continuous on T	, then f is delta differentiable
t x and (21) holds for any x�T	.

Now we introduce the concept of integral for functions f :T→R.
Definition 5: A function F :T→R is called a �-antiderivative of f :T→R provided F��x�

	
f�x� holds for all x in T . Then we define the �-integral from a to b of f by
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a

b

f�x��x = F�b� − F�a� for all a,b � T . �22�

Definition 6: A function � :T→R is called a �-antiderivative of f :T→R provided ���x�
f�x� holds for all x in T	. Then we define the �-integral from a to b of f by

	
a

b

f�x� � x = ��b� − ��a� for all a,b � T . �23�

If a ,b�T with a�b we define the closed interval �a ,b� in T by

�a,b� = �x � T:a � x � b� . �24�

Open and half-open intervals, etc., are defined accordingly. Below all our intervals will be time
scale intervals

Example 3: Let a ,b�T with a�b. Then we have the following.
�i� If f :T=R then

	
a

b

f�x��x = 	
a

b

f�x� � x =	
a

b

f�x�dx , �25�

here the integral on the right-hand side is the ordinary integral.
�ii� If �a ,b� consists of only isolated points, then

	
a

b

f�x��x = 

x��a,b�

��x�f�x� and 	
a

b

f�x� � x = 

x��a,b�

��x�f�x� . �26�

n particular, if T=Z, then

	
a

b

f�x��x = 

k=a

b−1

f�k� and 	
a

b

f�x� � x = 

k=a+1

b

f�k� . �27�

f T=hZ, then

	
a

b

f�x��x = h 

x��a,b�

f�x� and 	
a

b

f�x� � x = h 

x��a,b�

b

f�x� �28�

nd if T=Kq, then

	
a

b

f�x��x = �1 − q� 

x��a,b�

xf�x� and 	
a

b

f�x� � x = �1 − q−1� 

x��a,b�

xf�x� . �29�

The following relationship between the delta and nabla integrals follows from Definitions 5
nd 6 by using Proposition 4.

Proposition 7: If the function f :T→R is continuous, then for all a ,b�T with a�b we have

	
a

b

f�x��x = 	
a

b

f���x�� � x and 	
a

b

f�x� � x =	
a

b

f���x���x . �30�

ndeed, if F :T→R is a �-antiderivative for f , then F��x�= f�x� for all x�T	, and by Proposition
we have f���x��=F����x��=F��x� for all x�T	, so that F is a �-antiderivative for f���x��.
herefore
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a

b

f���x�� � x = F�b� − F�a� =	
a

b

f�x��x . �31�

rom �16�–�21� and �30� we have the following integration by parts formulas: If the functions
f ,g :T→R are delta and nabla differentiable with continuous derivatives, then

	
a

b

f��x�g�x��x = f�x�g�x��a
b − 	

a

b

f���x��g��x��x , �32�

	
a

b

f��x�g�x� � x = f�x�g�x��a
b − 	

a

b

f���x��g��x� � x , �33�

	
a

b

f��x�g�x��x = f�x�g�x��a
b − 	

a

b

f�x�g��x� � x , �34�

	
a

b

f��x�g�x� � x = f�x�g�x��a
b − 	

a

b

f�x�g��x��x . �35�

For more general treatment of the delta integral on time scales �Riemann and Lebesgue delta
ntegrals on time scales� see Ref. 13 and Chap. 5 of Ref. 11.

II. BURGERS EQUATION ON TIME SCALES

The Gel’fand-Dikii approach is very effective in studying the symmetries, bi-Hamiltonian
ormulation, and in constructing the recursion operators of integrable nonlinear partial differential
quations. In this approach one takes the Lax operator L in an algebra like a differential or
seudodifferential algebra, a matrix algebra, a polynomial algebra, or the Moyal algebra. In this
ection we take L in the algebra of delta-differential operators.

Let T be a time scale. We say that a function f :T→R is �-smooth if it is infinitely
-differentiable �and hence infinitely �-differentiable�. By � we denote the delta-differentiation
perator which assigns to each �-differentiable function f :T→R its delta derivative ��f� defined
y

���f���x� = f��x� for x � T	. �36�

he shift operator E is defined by the formula

�Ef��x� = f���x�� �37�

or x�T, where � :T→T is the forward jump operator. It is convenient, in the operator relations
o denote the delta-differentiation operator by  rather than by �. For example, f will denote the
omposition �product� of the delta-differentiation operator  and the operator of multiplication by
he function f . According to formula �16� we have

f = f� + E�f� . �38�

onsider the Nth order -differential operator given by

L = aNN + aN−1N−1 + ¯ + a1 + a0, �39�

here the coefficients ai �i=0,1 , . . . ,N� are some �-smooth functions of the variable x�T. These
unctions are assumed to depend also on a continuous variable t�R, however, we will not �for
implicity� indicate explicitly the dependence on t.

n n 0
Proposition 8: Let L be given as in (39) and An= �L ��0 be the operator L missing the 
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erm. Then the Lax equation

dL

dtn
= �An,L� = AnL − LAn �40�

or n=1,2 , . . . produces a consistent hierarchy of coupled nonlinear evolutionary equations.
Example 4. Burgers equation on time scale: Let L=v+u, where u and v are functions of x

T and t�R. Then for an appropriate operator A the Lax equation

dL

dt
= �A,L� �41�

efines a system of two differential equations for the functions u and v. We find the operator A by
sing the Gelfand-Dikii formalism. Let us start with the second power of L and assume A
�L2��0, where

L2 = vE�v�2 + �vv� + vE�u� + uv� + vu� + u2. �42�

e can assume A=−�L2�0 �the part of −L2 without the  terms�. With this choice, �41� gives

dv
dt

= �v�vu� + u2��, �43�

du

dt
= v�vu� + u2��, �44�

here ��x�=��x�−x for x�T.
Equations �43� and �44� given above are not independent of each other. It is easy to see that

=�u+�, where � is an arbitrary real function depending only on x�T. Then these two equations
educe to a single equation, a Burgers equation on time scales,

du

dt
= ��u + ���u2 + ��u + ��u���. �45�

et us present some special cases: �i� When T=R then �=0 and =D, the usual differentiation.
ence we can let �=1 and �45� reduces to the standard Burgers equation on R. �ii� When T
hZ then ��m�=h and f��m�= �1/h��f�m+h�− f�m�� for any f . Then taking �=0 in �45� we find

du�m�
dt

= u�m�u�m + h��u�m + 2h� − u�m�� , �46�

here m�hZ. The evolution equation given above in �46� represents a difference version of the
urgers equation. �iii� Let T=qZ, where q�1 and q�0. Then we have ��x�= �q−1�x and f��x�
�f�qx�− f�x�� / �q−1�x and taking �=0 we get from �45�

du�x�
dt

= u�x�u�qx��u�q2x� − u�x�� . �47�

aking An=−�Ln�0 with L given as in Example 4 we get a hierarchy of evolution equations
Burgers hierarchy on time scales� from

dL

dtn
= − ��Ln�0,v + u� �48�

n n
or all n=1,2 ,3 , . . . . Since �L �0 is a scalar function, letting �L �0=�n we obtain
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dv
dtn

= �v��n��, �49�

du

dtn
= v��n��, �50�

here the first three �n are given by

�1 = u , �51�

�2 = vu� + u2, �52�

�3 = vE�v�u�� + �vv� + vE�u� + uv�u� + �vu� + u2�u . �53�

he above hierarchy reduces to a single evolution equation with v=�u+�,

du

dtn
= ��u + ����̃n��, n = 1,2, . . . , �54�

here �̃n is equal to �n with v=�u+�. When T is a regular-discrete time scale, the first three �̃n

re given for �=0 by

�̃1 = u , �55�

�̃2 = uE�u� , �56�

�̃3 = uE�u�E2�u� . �57�

It is possible to construct the recursion operator R by using the Lax representation.14–16 The
ierarchy satisfies a recursion relation like

dL

dtn+1
= L

dL

dtn
+ �Rn,L�, n = 1,2, . . . , �58�

here Rn is the remainder operator which has the same degree as the Lax operator L. We shall
onstruct this operator for the Burgers equation with �=0 on regular-discrete time scales. Choos-
ng Rn=�n we get �by choosing v�x�=��x�u�x��

R = uE + �u�E�u� − u���E − 1�−1 E

E�u�
. �59�

ne can generate the hierarchy �54� by application of the recursion operator R to the lowest order
ymmetry u1=u�E�u�−u�,

du

dtn
= Rn−1u1, n = 1,2, . . . . �60�

V. ALGEBRA OF PSEUDO-DELTA-DIFFERENTIAL OPERATORS
N REGULAR TIME SCALES

Let us define the notion of regular time scales.
Definition 9: We say that a time scale T is regular if the following two conditions are satisfied
imultaneously:
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�i� ����x�� = x for all x � T �61�

nd

�ii� ����x�� = x for all x � T , �62�

here � and � denote the forward and backward jump operators, respectively.
From �61� it follows that the operator � :T→T is “onto” while �62� implies that � is “one-

o-one.” Therefore � is invertible and �−1=�. Similarly, the operator � :T→T is invertible and
−1=� if T is regular.

Let us set x*=min T if there exists a finite min T, and set x*=−� otherwise. Also set x*

max T if there exists a finite max T, and x*=� otherwise. It is not difficult to see that the
ollowing statement holds.

Proposition 10: A time scale T is regular if and only if the following two conditions hold:

�i� The point x*=T is right-dense and the point x*=max T is left-dense.
�ii� Each point of T \ �x* ,x*� is either two-sided dense or two-sided scattered.

In particular, R, hZ, and Kq are regular time scales, as are �0,1�, �−1,0�� �1/k :k
N�� �k / �k+1� :k�N�� �1,2�, and �−� ,0�� �1/k :k�N�� �2k :k�N�, where �−1,0�, �0,1�,

�1,2�, �−� ,0� are real line intervals.
If f :T→R is a function we define the functions f� :T→R and f� :T→R by

f��x� = f���x�� and f��x� = f���x�� for all x � T . �63�

efining the shift operator E by the formula Ef = f� we have

�Ef��x� = f��x� = f���x�� for all x � T . �64�

he inverse E−1 exists only in case of regular time scales and is defined by

�E−1f��x� = f��−1�x�� = f���x�� for all x � T . �65�

n the operator relations, for convenience, we will denote the shift operator by E rather than by E.
or example, Ef will denote the composition �product� of the shift operator E and the operator of
ultiplication by the function f . Obviously, for any integer m�Z, we have

Emf = �Emf�Em. �66�

Remember that  denotes the delta-differentiation operator acting in the operator relations by
f = f�+E�f�. The following proposition is an immediate consequence of the formulas �8� and
16�.

Proposition 11: The operator formulas

E = I + � �67�

nd

f = f� + E�f� �68�

old, where the function � :T→R is defined by ��x�=��x�−x for all x�T, and I denotes the
dentity operator.

In this section we will assume that all our considered functions from T to R are �-smooth and
end to zero sufficiently rapidly together with their �-derivatives as x goes to x* or x*, where x*

min T if there exists a finite min T and x*=−� otherwise, x*=max T if there exists a finite max T
nd x*=� otherwise. The inverse operator −1 exists on such functions. If g :T→T is such a

unction, then
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��−1�g���x� = 	
x*

x

g�y��y . �69�

Proposition 12: Let f :T→R be a �-smooth function such that f and all its �-derivatives
anish rapidly at x* and x*. Then the operator −1f being the composition (product) of −1 and f
as the form of the formal series in powers of −1,

−1f = �0−1 + �1−2 + ¯ , �70�

here �0=E−1f , and �k= �−1�k�E−1f��k
for k=1,2 , . . . .

Proof: Multiplying �68� on the left and right by −1 we obtain

−1E�f� = f−1 − −1f�−1. �71�

eplacing here f by E−1f we get

−1f = �E−1f�−1 − −1�E−1f��−1. �72�

urther, applying this rule to the function �E−1f�� and taking into account that by Proposition 4�i�

E−1�E−1f�� = �E−1f��, �73�

e find

−1�E−1f�� = �E−1f��−1 − −1��E−1f����−2. �74�

ubstituting this into the second term on the right-hand side of �72� we obtain

−1f = �E−1f�−1 − �E−1f��−2 + −1��E−1f����−2. �75�

ontinuing this procedure repeatedly we arrive at the statement of the proposition.
Definition 13: By � we denote the algebra of pseudo-delta-differential operators. Any opera-

or K�� of order k has the form

K = 

�=−�

k

a��, �76�

here a�’s are �-smooth functions of x�T. For K given by (76) we will use the following
otations:

K�0 = 

�=0

k

a�� and K�0 = 

−�

−1

a��. �77�

As an example we let

L = aNN + aN−1N−1 + ¯ + a1 + a0, �78�

here ai�i=0,1 , . . . ,N� are some �-smooth functions on T. Then we have the following.
Proposition 16: Let L be given in (78). For each fixed N the Lax equation

dL

dtn
= �An,L�, An = �Ln/N��0, �79�

or n=1,2 , . . . not divisible by N, produces a (consistent) hierarchy of evolution equations (a KdV
ierarchy on time scales).

n/N n/N n/N
Proof: Since �L ��0=L − �L ��0, we get
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dL

dtn
= ��Ln/N��0,L� = − �Ln/N��0,L � . �80�

vidently the commutator ��Ln/N��0 ,L� involves only non-negative powers of , while the com-
utator ��Ln/N��0 ,L� has the form 
 j=−�

N−1 bj
j. Therefore, we get by �80� that, for all n not divisible

y N, �79� produces nontrivial consistent N+1-number of evolutionary coupled �-differential
quations for ai, i=0,1 , . . . ,N. Note that aN turns out to be a fixed �i.e., time independent� function
f x.

Example 5: A KdV hierarchy on time scales. Let

L = 2 + v + u , �81�

here u and v are �-smooth functions. It is straightforward to find that

L1/2 =  + �0 + �1−1 + �2−2 + ¯ , �82�

here

E��0� + �0 = v , �83�

E��1� + �1 + ��0�� + ��0�2 = u , �84�

E��2� + �2 + �1E−1��0� + ��1�� = 0. �85�

hoosing n=1,3 , . . . we get the members of the KdV hierarchy.
(1) Let n=1. Then Lax equation �79� becomes

dv
dt

 +
du

dt
= ��L1/2��0,L� �86�

nd gives coupled equations for u and v,

du

dt
= u� − v��0�� − ��0���, �87�

dv
dt

= v� + E�u� − u − v�E��0� − �0� − E��0
�� − E��0�� = ��u� − v��0�� − ��0���� . �88�

omparing the above equations we get

dv
dt

− �
du

dt
= 0, �89�

nd therefore

v = �u + � , �90�

here � is an arbitrary real function depending only on x�T. Thus, two equations �87� and �88�
educe to the following single equation:

du

dt
= u� − ��u + ����0�� − ��0���, �91�
here �0 is expressed, according to �83�, from
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E��0� + �0 = �u + � . �92�

f we take �=0, then �91� and �92� become

du

dt
= u� − �u��0�� − ��0���, �93�

E��0� + �0 = �u . �94�

e shall now give �0, for illustration, for particular cases of T.
�i� In the case T=R we have �=0 and �94� gives �0=0 and �93� becomes

du

dt
=

du

dx
, �95�

hich is a linear equation explicitly solvable,

u�x,t� = ��x + t� , �96�

here � is an arbitrary differentiable function.
�ii� In the case T=Z we have �=1 and �94� is satisfied by

�0�n� = − 

k=−�

n−1

�− 1�n+ku�k�, n � Z �97�

nd therefore the Eq. �93� becomes

du�n�
dt

= − u2�n� + 2u�n� + 2�− 1�n�2 + u�n�� 

k=−�

n−1

�− 1�ku�k� , �98�

or n�Z.
(iii) In the case T=Kq we have ��x�= �q−1�x and �94� is satisfied by �0�0�=0 and

�0�x� = − �q − 1� 

y��0,q−1x�

�− 1�logq�xy�yu�y� �99�

or x�Kq and x�0. Substituting �99� into �93� we can get an evolution equation for u.
(iv) Let T= �−� ,0��Kq= �−� ,0��qZ. In this case ��x�=0 if x� �−� ,0� and ��x�= �q

1�x if x�qZ. The equation �94� is satisfied by the function �0 given by

�0�x� = �0 x � �− � ,0� ,

− �q − 1��y��0,q−1x��− 1�logq�xy�yu�y� x � qZ.
�100�

herefore �93� will yield an evolution equation coinciding on �−� ,0� and qZ with the evolution
quations described in the examples �i� and �iii�, respectively. Now an essential complementary
oint is that the solution u must satisfy at x=0 the smoothness conditions

u�0−� = u�0+�, u��0−� = u��0+� . �101�

(2) Letting n=3, first we get

L3/2 = 3 + p2 + q + r + �terms with negative powers of � , �102�

here
p = �0 + E�v� , �103�
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q = v� + E�u� + �0v + �1, �104�

r = u� + �0u + �1E−1�v� + �2, �105�

nd the Lax equation

dv
dt

 +
du

dt
= ��L3/2��0,L� , �106�

ives the coupled equations for u and v,

du

dt
= u��� + pu�� + qu� − r�� − vr�, �107�

dv
dt

= v��� + E�u��� + �E�u���� + E�u��� + p�v�� + E�u�� + E�u��� + q�v� + E�u� − u� + rv − q��

− E�r�� − E�r�� − vq� − vE�r� . �108�

s in the first member of the hierarchy �n=1 case�, the above �-KdV equations reduce to a single
quation for the function u. Below in Corollary 23 we found that v=��x�u+��x�. Letting �=
onstant we get

du

dt
= u��� + pu�� + qu� − r�� − vr�. �109�

t is possible to write the above equation more explicitly in terms of u for T=R, T=Z, and for
=Kq but they are quite lengthy. For the discrete case we give a KdV hierarchy in Example 8,
ext section.

. SHIFT LAX OPERATORS ON REGULAR-DISCRETE TIME SCALES

Let T be a time scale. Let us set x*=min T if there exists a finite min T and x*=−� otherwise.
lso set x*=max T if there exists a finite max T and x*=� otherwise. We will briefly write x*

min T and x*=max T.
Definition 17: We say that a time scale T is regular-discrete if the following two conditions are

atisfied:

�i� The point x* is right-dense and the point x* is left-dense.
�ii� Each point of T \ �x* ,x*� is two-sided scattered (isolated).

The shift operator E is defined on functions f :T→R by the formula

�Ef��x� = f���x�� for x � T , �110�

here � :T→T is the forward jump operator.
In this section we deal only with regular-discrete time scales T. For such time scales T we

ave

��x� = ��x� − x � 0 for all x � T \ �x*,x*� �111�

nd, therefore, on functions given on T \ �x* ,x*� we have the operator relationship

 =
1

�
�E − 1� . �112�

ll our functions will be assumed to be defined on T \ �x* ,x*� and tends to zero sufficiently rapidly
*
s x goes to x* or x .

                                                                                                            



i

H

a

w

t

p
t

f
r

t
t
e
c

T

113510-14 Gurses, Guseinov, and Silindir J. Math. Phys. 46, 113510 �2005�

                        
This shift operator E, should be quite useful in the application of the Gel’fand-Dikii formal-
sm. The reason is that for any integer m we have the simple product rule

Emu = �Emu�Em. �113�

ence, for regular-discrete time scales, we can define an algebra of E operators.
Definition 18: An algebra, ��, of E operators satisfying the operator equation (113) is defined

s follows: Any operator K in �� with degree k is of the form

K = 

−�

k

a�E�, �114�

here a� are functions of x�T that depend also on t�R.
Hence we can form Lax operators in ��, and produce integrable equations on regular-discrete

ime scales. Following3 we obtain two classes of Lax representations.
Proposition 19: The Lax equation

dL

dt�

= ��L���k,L�, k = 0,1 �115�

roduces consistent hierarchy of equations for �=1,2 , . . . with the following suitable Lax opera-
ors:

L = E�+n + u�+n−1E�+n−1 + ¯ + u�E�, �116�

L = v�+nE�+n + v�+n−1E�+n−1 + ¯ + v�+1E�+1 + E�, �117�

or k=0 and k=1, respectively. Here ui and vi are functions defined on T and the integer � is
estricted to satisfy the inequality −n���−1.

Remark: Lax operators above and the following examples are given on any regular-discrete
ime scale T �we can take in particular T=Z or Kq�. This means that for any function u on such a
ime scale E�u�=u���x�� where � is the jump operator defined in the second section. Hence our
xamples and results should be considered as more general than those considered in Ref. 3. In the
ase of Ref. 3 time scale is just the integers �T=Z� where E�u�n��=u�n+1�.

Example 6: Two field equations. Let k=0, �=−1 and

L = u−1E−1 + u0 + E � vE−1 + u + E . �118�

hen we find

� = 1
dv
dt1

= v�u − E−1�u�� , �119�

du

dt1
= E�v� − v , �120�

� = 2
dv
dt2

= u2v + E�v�v − vE−1�v� − vE−1�u2� , �121�

du
= uE�v� + E�u�E�v� − vE−1�u� − uv , �122�
dt2
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� = 3,
dv
dt3

= uv2 + u3v − vE−1�v�E−2�u� − 2vE−1�u�E−1�v� − vE−1�u3� + 2uvE�v� − v2E−1�u�

+ vE�u�E�v� , �123�

du

dt3
= E�v��u2 + uE�u� + E�u2� + E�v� + �E2�v��� − v�E−1�v� + E−1�u2� + uE−1�u� + u2 + v� .

�124�

his is a Toda hierarchy on discrete time scales. The recursion relation between the n+1th and nth
lements of the hierarchy is given by

vn+1 = uvn + vun + vE−1�un� + v�E−1�u� − u��1 − E�−1vn

v
, �125�

un+1 = E�vn� + uun + v�1 − E�−1vn

v
− E�v��1 − E�−1E

vn

v
. �126�

rom this recursion relation the recursion operator of the hierarchy follows.
Example 7: Four-field system on time scale. We give two examples which are studied in Ref.

for the case T=Z.
(1) Let k=0 and �=−2 and

L = E2 + wE + v + uE−1 + pE−2. �127�

hen we get the four-field equations

� = 1
dp

dt1
= vp − pE−2�v� , �128�

du

dt1
= vu + wE�p� − pE−2�w� − uE−1�v� , �129�

dv
dt1

= wE�u� + E2�p� − uE−1�w� − p , �130�

dw

dt1
= E2�u� − u . �131�

(2) Let k=1 and �=−2 and

L = q̄E2 + w̄E + v̄ + ūE−1 + E−2. �132�

hen we get another four-field equations,

� = 1
dū

dt1
= w̄ − E−2�w̄� , �133�

dv̄
= w̄E�ū� + q̄ − E−2�q̄� − ūE−1�w̄� , �134�
dt1
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dw̄

dt1
= w̄E�v̄� + q̄E2�ū� − ūE−1�q̄� − v̄w̄ , �135�

dq̄

dt1
= q̄E2�v̄� − v̄q̄ . �136�

So far we considered the hierarchies coming from Proposition 19 with integer powers of the
ax operators. Now we consider the rational powers of the Lax operator.

Proposition 22: Let

L = wEN + uN−1EN−1 + ¯ + u0, �137�

here w�x� is a function of x which is not a dynamical variable dw /dt=0, ui, i=0,1 , . . . ,N−1 are
unctions of t and x�T. Then

dL

dtn
= ��Ln/N��0,L�, n = 1,2, . . . �138�

roduces hierarchies of integrable systems. Here n is a positive integer not divisible by N. Fur-
hermore the function u0 is also not dynamical, i.e., u0=u0�x�, not depending on t.

Corollary 23: When N=2 and w= �1/��E�1/�� then the �-KdV Lax operator (81) reduces to
he above form with

u0 = −
v
�

+
1

�2 + u , �139�

u1 = −
1

�
�E 1

�
� +

1

�
� +

v
�

. �140�

ence in part (2) of Example 5 we have a single equation with v=−�u0+ �1/��+�u.
In the following example we study the N=2 case in more detail.
Example 8: KdV on discrete time scales. Let

L = wE�w�E2 + uE + v . �141�

hen

L1/2 = wE + �0 + �1E−1 + �2E−2 + ¯ , �142�

here first three �i are given as

w�E��0� + �0� = u , �143�

wE��1� + E−1�w��1 = v − ��0�2, �144�

wE��2� + E−2�w��2 = −
�1E−1�u�
E−1�w�

. �145�

hen we calculate L3/2 by

L3/2 = wE�w�E2�w�E3 + p2E2 + p1E + p0 + negative powers of E , �146�

here

2
p2 = E�w��wE ��0� + u� , �147�
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p1 = wE�w�E2��1� + uE��0� + wv , �148�

p0 = wE�w�E2��2� + uE��1� + v�0, �149�

=wE−1�w��E−1�w� + E�w�E�−1E��1�
u

w
� + v�1 + E�−1 u

w
. �150�

hen �138� with N=2 produces a hierarchy of evolution equations. It turns out that v becomes a
onstant in the whole hierarchy. We give the first two members of the hierarchy �for n=1 and n
3�,

ut1
= u�1 − E��1 + E�−1 u

w
, �151�

ut3
= u�1 − E�p0, �152�

here p0 is given above. The next members of the hierarchy can be found by taking n=5 in �138�
r by applying the recursion operator R to ut3

. For T=Kq and w=1 the above hierarchy and its
amilton formulation were given by Frenkel.4 The recursion operator of this hierarchy with w
1 can be found by using �58� with Rn=�nE+�n. We find that

�E2 − 1��n = E2�un� , �153�

�E2 − 1��n = uE�un� + E�u��n − uE��n� �154�

nd the equation which determines the recursion operator is

un+1 = vun − u�E − 1��n, n = 0,1,2, . . . . �155�

e find that

R = v − u�E + 1�−1�− u + E�u�E��E2 − 1�−1E . �156�

When the Lax operator is of degree one and has an infinite power series in operator E−1 the
orresponding system is called the KP hierarchy.

Proposition 24: Let

L = E + u0 + u1E−1 + u2E−2 + ¯ . �157�

hen

dL

dtn
= ��Ln��0,L�, n = 1,2, . . . , �158�

roduces the following hierarchy:

n = 1
du0

dt1
= �E − 1�u1, �159�

du1

dt1
= �E − 1�u2 + u1�u0 − E−1�u0�� , �160�

duk = �E − 1�uk+1 + uk�u0 − E−k�u0��, k = 0,1, . . . . �161�

dt1
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n = 2
du0

dt2
= �E2 − 1�u2 − u1E−1�E + 1�u0 + E�u1��E�u0� + u0� , �162�

du1

dt2
= �E2 − 1�u3 + �1E�u2� − u2E−2��1� + �0u1 − u1E−1��0� , �163�

duk

dt2
= �E2 − 1�uk+2 + �1E�uk+1� − uk+1E−k−1��1� + �0uk − ukE

−k��0�, k = 0,1, . . . , �164�

here �0= �E+1�u1+ �u0�2 and �1= �E+1�u0. The case T=Z of this hierarchy is discussed in Ref.
�see also the references therein� and the case T=Kq is discussed in Refs. 4 and 5.

I. TRACE FUNCTIONAL AND CONSERVATION LAWS

Let T be a regular time scale and � be the algebra of pseudo-delta-differential operators. Any
perator F�� of order k has the form

F = ak
k + ak−1k−1 + ¯ + a1 + a0 + a−1−1 + a−2−2 + ¯ , �165�

here a�’s are �-smooth functions of x�T �they are also functions of t�R�. The coefficients a0

nd a−1 we call, respectively, the free term �zero order term� and the residue of F associated with
ts “-expansion” �165� and write

Free F = a0�x� and Res F = a−1�x� . �166�

n case of regular-discrete time scales T we have

 =
1

�
�E − I� =

1

�
E −

1

�
�167�

nd therefore the same operator F can be expanded in series with respect to the powers of E of the
orm

F = bkEk + bk−1Ek−1 + ¯ + b1E + b0 + b−1E−1 + b−2E−2 + ¯ . �168�

e write

FreeE F = b0�x� and ResE F = b−1�x� . �169�

ubstituting �167� and

−1 = �E − I�−1� = �E−1 + E−2 + ¯ �� = E−1���E−1 + E−2���E−2 + ¯ , �170�

nto �165� and taking into account that

E−1��� = ����x�� = ����x�� − ��x� = x − ��x� = ��x� , �171�

e find that

ResE F = � Res F . �172�

Definition 25: The trace of an operator F�� is defined by

Tr�F� =	
T

Res�F�I + ��−1� � x , �173�

here the nabla integral is defined according to Sec. II.

Proposition 26: Let F be given as in (165). In case of regular-discrete time scales we have
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Res�F�I + ��−1� =
1

��x�
FreeE F �174�

or x�T \ �x* ,x*�, where x*=min T and x*=max T. Therefore in this case

Tr�F� = 	
T

�FreeE F�
�x

��x�
= 


x�T
b0�x� . �175�

Proof: Since I+�=E we have, by using �172� and �168�,

� Res�F�I + ��−1� = ResE�F�I + ��−1� = ResE�FE−1� = ResE�bkEk−1 + ¯ + b1 + b0E−1 + ¯ �

= b0 = FreeE�F� . �176�

Proposition 27: For all F1 ,F2��,

Tr��F1,F2�� = Tr�F1F2 − F2F1� = 0, �177�

n other words the pairing �F1 ,F2�=Tr�F1F2� is symmetric.
We prove �177� only for particular cases of time scales T. They indicate a way to the proof in

he general case of regular time scales.
(i) If T=R, then =�= �d /dx�· and ��x�=0,

F = ak�
k + ¯ + a1 � + a0 + a−1�

−1 + ¯ �178�

nd

Tr�F� = 	
R

Res�F�dx = 	
R

a−1�x�dx . �179�

t is well known that �for example, see Ref. 3� for such functional Tr�F� the statement �177� holds.
(ii) Let T be a regular-discrete time scale. Then by Proposition 26 we have

Tr��F1,F2�� = 	
T

Res��F1,F2��I + ��−1� � x = 	
T

�FreeE�F1,F2��
�x

��x�
= 0. �180�

t is enough to check �180� for monomials F1=AEk and F2=BE�. By the use of the property �113�
f E we have

F1F2 = A�EkB�Ek+� and F2F1 = B�E�A� . �181�

herefore FreeE�F1 ,F2� is either zero or

FreeE�F1,F2� = A�EkB� − B�E−kA� = �Ek − I��E−kA�B

=�I − E−1��Ek + Ek−1 + ¯ + E��E−kA�B = ��x����A,B���,

here ��A ,B�= �Ek+Ek−1+ ¯ +E��E−kA�B. Hence

	
T

FreeE�F1,F2�
�x

��x�
= 	

T
���A,B��� � x = ��A,B��x*

x*
= 0 �182�

o that �177� is proved for regular-discrete time scales.
(iii) Let T be a mixed time scale, say, of the form T= �−� ,0��Kq, where �−� ,0� denotes the
eal line interval. Then for any F1 ,F2�� we have, taking into account Proposition 26, that
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Tr��F1,F2�� = 	
T

Res��F1,F2��I + ��−1� � x = 	
−�

0 Res���F1,F2��dx + 	
Kq

�FreeE�F1,F2��
�x

��x�
.

�183�

ake for instance F1=A and F2=B−1. Then

Res��F1,F2� = Res��A � ,B�−1� = AB� + A�B = �AB��,FreeE�F1,F2� = FreeE�A

�
�E − I�,B�E − I�−1��

= AE�B� − BE−1�A� . �184�

herefore

	
−�

0

�Res��F1,F2��dx = 	
−�

0

�AB�� dx = A�0−�B�0−� , �185�

	
Kq

FreeE�F1,F2�
�x

��x�
= 	

Kq

�AE�B� − BE−1�A��
�x

��x�

= 

x�Kq

�A�x�B�qx� − A�q−1x�B�x�� = − A�0+�B�0+� . �186�

ence

Tr��F1,F2�� = A�0−�B�0−� − A�0+�B�0+� = 0, �187�

here A and B are �-smooth functions on T and hence they are continuous at x=0.
Proposition 28: Equation (79) implies that

d

dtn
Lk = �An,Lk�, An = �Ln/N��0, �188�

or all k= � /N, where � is any positive integer.
Propositions 27 and 28 imply the next proposition.
Proposition 29: For all �=0,1 , . . . the functionals

H� = Tr�L�/N� , �189�

re common constants of motion for the hierarchy (79) and (115).
Note that in proof of Proposition 29 it is, in particular, used the fact that the flows �vector

elds� defined by the different members of the hierarchy all commute with each other �see Refs.
and 17�.

II. CONCLUSION

We have developed the Gel’fand-Dikii approach to time scales. So far the integrable systems
ere studied on R ,Z or on Kq. Here we gave a unified and extended approach. In particular cases
hen T=R ,Z ,Kq we find several examples of the integrable systems. We developed the algebra of
-pseudo differential and E-shift operators. We established the GD formalism on these algebras
nd introduced several Lax representations on these algebras. All these Lax representations are
traightforward generalizations of the Lax representations on pseudodifferential algebras of inte-
rable systems on R and the Lax representations of the algebra of shift operators on Z. The
urgers and KdV hierarchies on time scales that we found are the special cases of these Lax
epresentations. We also generalized the Frenkel KdV hierarchy introduced on Kq to arbitrary
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iscrete time scales. We constructed the recursion operators of each example considered in this
aper and gave a way of constructing the constants of motions by introducing an appropriate trace
orm on time scales.

In this work we did not consider the r-matrix construction and the Hamiltonian formulation of
ntegrable systems on time scales. The trace form on a general time scale needs a little care. Such
work is in progress and will be communicated in a separate paper.
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PPENDIX: RECURSION OPERATORS OF FOUR-FIELD SYSTEMS

We give the recursion operator of the four-field systems on time scale which are studied in
xample 7.

(1) For the case k=0, �=−2, we obtain the recursion relation between the n+1th and nth
lements of the hierarchy as follows:

wn+1 = w�E + 1�−1E�vn� + E�v��E2 − 1�−1E2�wn� − v�E2 − 1�−1wn

+ w�E + 1�−1�1 − E�w�E2 − 1�−1E�wn� + E2�un� + �1 − E2��n, �A1�

vn+1 = wE�un� + vvn − u�E2 − 1�−1E−1�wn� + E�u��E2 − 1�−1E2�wn�

+ �1 − E2�p�1 − E2�−1 pn

p
+ E2�pn� + �E−1�w� − wE��n, �A2�

un+1 = wE�pn� + u�E + 1�−1�E + 1 + E−1�vn − p�E2 − 1�−1E−2�wn�

+ u�E + 1�−1�E − 1�E−1�w��E2 − 1�−1wn + E�p��E2 − 1�−1E2�wn�

+ �E−2�w� − wE�p�1 − E2�−1 pn

p
+ vun + �E−1�v� − v��n, �A3�

pn+1 = uE−1�un� + p�1 + E−2�vn + p�E−1 − E−2�w�E2 − 1�−1E�wn�

+ �E−2�v� − v�p�1 − E2�−1 pn

p
+ vpn + �E−1�u� − uE−1��n, �A4�

here

n = �E2�p� − E�p�E2�−1�E2�u�E�pn� + E2�p�un + �uE2�p� − E2�u�E�p�E−1��1 − E2�−1E2 pn

p
�� .

(2) For the case k=1, �=−2, the recursion relation between the n+1th and nth elements of the
ierarchy is given by

ūn+1 = E−2�w̄n� + ū�1 + E�−1�E − 1�ū�1 − E2�−1E�ūn� + v̄ūn + ū�1 + E�−1v̄n

+ �E−1�v̄� − v̄��1 − E2�−1ūn + �1 − E−2��̄n, �A5�

w̄n+1 = ūE−1�q̄n� + w̄�1 + E�−1�E2 + E + 1�v̄n + �E−1�q̄� − q̄E4��1 − E2�−1ūn + w̄�1 + E�−1�1 − E�E�ū�

��1 − E2�−1E2�ūn� + v̄w̄n + �E�v̄� − v̄��̄n + �E2�ū� − ūE−1�q̄�E2 − 1�−1E2 q̄n

¯
� , �A6�
q
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q̄n+1 = v̄q̄n + w̄E�w̄n� + q̄�1 + E2�v̄n + �E2�v̄� − v̄�q̄�E2 − 1�−1E2 q̄n

q̄
�

+ q̄�1 + E�−1�1 − E2�E�ū��1 − E2�−1E2�ūn� + �E�w̄� − w̄E��̄n, �A7�

v̄n+1 = E−2�q̄n� + ūE−1�w̄n� + �E−1�w̄� − w̄E3��1 − E2�−1ūn + v̄v̄n + �E�ū� − ūE−1��̄n

+ �1 − E−2�q̄�E2 − 1�−1E2 q̄n

q̄
� , �A8�

here

�̄n = �q̄E2 − E�q̄��−1�q̄E2�w̄n� + �E2�w̄�q̄E − w̄E�q̄���E2 − 1�−1E q̄n

q̄
�� . �A9�

rom the recursion relations obtained in both cases, we can construct the recursion operators of the
ierarchies.
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igenfunctions of the curl in cylindrical geometry
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Eigenfunctions of the equation �� �B� =�B� are found for finite cylindrical geometry

with normal boundary condition B� · n̂=0 and nonaxisymmetric modes �eim� ,m

�0. The vector field B� can be represented by a scalar generating function of the
Chandrasekhar-Kendall type with radial Bessel functions for the nondegenerate
cases. A general set of solutions can also be generated by transformation of vari-
ables. A series solution in terms of radial Bessel functions is found which has
excellent convergence properties �an�1/n4� and a robust method of locating ei-
genvalues is described. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2118447�

. INTRODUCTION

The equation �� �B� =�B� appears in many treatments of hydrodynamics and magnetohydro-
ynamics. It was first noted by Beltrami1 in 1889 and the form with �=constant was used by
rkal2 in 1919. In the context of magnetohydrodynamics it was identified as a special force-free
agnetic field by Woltjer3 and was associated with a variational principle by Taylor4 and thus

cquired the name “Taylor state” when describing its lowest eigenvalue in a magnetostatic equi-

ibrium. The eigenfields B� n of the nth eigenmode �n of this equation form a complete Hilbert space
or decomposition of divergence-free vector fields,5 such as the magnetic field or the velocity field
n an incompressible fluid. The decomposition of magnetic and velocity field components into the
igenfunctions of the curl has proven useful as a method of studying magnetohydrodynamics
sing a Galerkin spectral representation of these fields in dynamic simulations.6,7

In this paper the solution of the eigenfunction equation �� �B� =�B� is discussed for the case of

nite cylindrical geometry with boundary conditions B� · n̂=0 for nonaxisymmetric modes. A brief
reatment of the symmetric m=0 case is given for completeness as a special case.

I. SYMMETRIC CASE, m=0

The solution of the curl-eigenfunction equation in cylindrical geometry for symmetrical �m
0� modes is relatively straightforward. Using a scalar generating function first shown by Chan-

rasekhar and Kendall,8 the vector field B� can be generated by

B� = �� � �ẑ��R,Z�� + �1/���� � �� � �ẑ��R,Z��

nd these solutions are eigenfunctions of the curl provided that ��R ,Z� is a solution of the
elmholtz equation

�2��R,Z� + �2��R,Z� = 0.

For these axisymmetric modes, the magnetic field components are given in cylindrical coor-

inates �R ,� ,Z� by

46, 113511-1022-2488/2005/46�11�/113511/13/$22.50 © 2005 American Institute of Physics
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BR = �1/��
�2��R,Z�

�R�Z
,

B� = −
���R,Z�

�R
,

BZ = ���R,Z� + �1/��
�2��R,Z�

�Z2 .

Normal boundary conditions B� · n̂=0 with boundaries R=a and Z= ±1/2 imply that

R�a ,Z�=0 and BZ�R , ±1/2�=0. Separable solutions to the scalar Helmholtz equation in this
eometry which fit the boundary condition on BZ are

��R,Z� = J0���2 − ��2n� − 1���2R�cos��2n� − 1��Z�

nd

��R,Z� = J0���2 − �2n��2R�sin�2n�Z�

nd the radial boundary condition BR�a ,Z�=0 is then given by

J0��k�a� = 0,

here k�= ���2− �2n��2 ,��2− ��2n�−1���2� for the modes. �The use of both sines and cosines to
escribe the modes may seem artificial but will simplify the description of the m�0 modes later
n.� For these modes, the general eigenvalue equation is then written as

�pq
2 = �1/a�2�zp��

2 + q2�2,

here p and q are integers and zp� is the pth root of the derivative of the zeroth order Bessel
unction, J0��zp��=0. The integer q simply replaces the set of even integers 2n and odd integers
n�−1 given above.

II. NONSYMMETRIC CASE, mÅ0

The equation �� �B� =�B� can be recursively applied to obtain the “squared” version �� ���

B� =�2B� . The eigenfunctions of this equation are not directly applicable to the first-order equa-

ion because the eigenfunctions of �� ��� �B� =�2B� contain the eigenfunctions of �� �B� =−�B� as

ell as the eigenfunctions of �� �B� = +�B� . However examination of the system �� ��� �B� =�2B� is
seful because it reveals the underlying elliptic nature of the equation, with the first-order equation

orming connections between the three dependent variables in the vector B� .

We note that the equation �� ��� �B� =�2B� can be manipulated for solenoidal fields with
� ·B� =0 into the form

LBR =
+ 2im

R2 B�,

LB� =
− 2im

2 BR,

R
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LBZ = −
1

R2BZ,

here

L =
�2

�R2 +
1

R

�

�R
+

�2

�Z2 −
�m2 + 1�

R2 + �2.

he equations are of the form Lu=Cu, with the matrix C being nondiagonal. Following Ref. 9, we
hen perform a Jordan decomposition on C by finding a unitary transformation such that C
pC�p−1 with C� diagonal. Applying the operator matrix p−1 to both sides of the equation, we
ave

p−1Lu = p−1Cu = p−1�pC�p−1�u ,

L�p−1u� − �L,p−1�u = C��p−1u� .

The transformation matrix p−1 is given by

p−1 = � 0 0 1

i/2 1/2 0

− i/2 1/2 0
�

nd the commutator �L ,p−1�=0 for this system. Introducing a set of variables w=p−1u then gives
w=C�w with the matrix C� given by

C� = �− 1/R2 0 0

0 − 2m/R2 0

0 0 + 2m/R2� .

We can relabel the variables w in a more suggestive way. We write

BZ�R,�,Z� = wm�R,Z�eim�,

B��R,�,Z� = 	wm+1�R,Z� − wm−1�R,Z�
2i


eim�,

BR�R,�,Z� = 	wm+1�R,Z� + wm−1�R,Z�
2


eim�.

he transformed equations then become

Lm+1wm+1 = 0,

Lmwm = 0,

Lm−1wm−1 = 0

ith

Ln =
�2

2 +
1 �

+
�2

2 −
n2

2 + �2.

�R R �R �Z R
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The first-order equations �� �B� =�B� and �� ·B=0 then can be manipulated into a set of first-
rder relations between the variables w. These relations can be written in a suggestive form of
aising and lowering operators with the definitions

D− = i� − �/�Z ,

D+ = i� + �/�Z ,

R−
n = �− 1�n+m+1�n/R + �/�R� ,

R+
n = �− 1�n+m+1�n/R − �/�R� .

The first-order equations then form a set of connection relations between the components wn

hich each must satisfy the elliptic conditions given above. The connection diagram is shown in
ig. 1.

The Chandrasekhar-Kendall form may be employed to generate solutions to the m�0
igenequation10, although this method does not directly translate the vector problem into a scalar
roblem. The Chandrasekhar-Kendall fields for m�0 are given by

BR = 	 im

R
��R,Z� + �1/��

�2��R,Z�
�R�Z


eim�,

B� = 	 im

�R

���R,Z�
�Z

−
���R,Z�

�R

eim�,

BZ = 	���R,Z� + �1/��
�2��R,Z�

�Z2 
eim�.

or the m�0 case, the radial boundary condition is complicated by the additional term �im /R��,

FIG. 1. Connection diagram for m�0 transformed variables.
hich is of course zero in the symmetric case. The radial boundary condition,
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�	 im

R
��R,Z� + �1/��

�2��R,Z�
�R�Z


�
R=a

= 0,

s not a standard boundary condition for an elliptic equation and in fact cannot yield
istinct eigenmodes without some additional restriction. The generating function
=Rm exp�−i�Z�exp�im�� solves the boundary equations independent of �, although it does so

rivially by generating zero vector field. While the Chandrasekhar-Kendall form does not compose
proper elliptic scalar problem, the Chandrasekhar-Kendall eigenfields can be used to solve the

ector eigenproblem, which is well posed.5

Partial-term solutions to the boundary problem can be found by expansion of � into modes
ith radial Bessel functions and axial sines and cosines in the usual manner for cylindrical
roblems. It is important to note, however, that an alternative to the Bessel-function solution to the
ylindrical Helmholtz equation exists, and this is the set of Sonine polynomials,

S�n,m,R,Z� = Rmeim�ei�Z �− 1�n

��n + 2�
L�n,m,i���R2 + Z2 − Z��L�n,m,− i���R2 + Z2 + Z�� .

Here L�n ,m ,x� represents the Laguerre polynomial. For integer n and m, the above expression
enerates solutions to the Helmholtz equation which are expressed in polynomials in R and Z
imes an exponential ei�m�+�Z�. As an example, the n=0 term is anharmonic in Z and satisfies BZ

0 everywhere,

� = Rm exp�i�Z�exp�im�� .

The Sonine polynomials become important for calculation of degenerate solutions to the
igenequation, as shall be shown later.

V. SERIES SOLUTION FOR mÅ0 MODES

As discussed above, the transformation of the vector problem into a scalar problem using the
handrasekhar-Kendall form generates a radial boundary condition which is perhaps unusual for
lliptic equations but it has a suggestive form. The appearance of this operator �i¯ + �� /�Z¯ ��
uggests that we seek a solution of form

� = exp�im���F�R,Z� + iG�R,Z�� ,

here F�R ,Z� and G�R ,Z� are real functions and where, say, F�R ,Z� is an even function of Z and
�R ,Z� is an odd function of Z. The boundary condition can then be written as a separate pair of

conditions,

�	 a

m�

 �2F�R,Z�

�R�Z
�

R=a
= G�a,Z� ,

�	 a

m�

 �2G�R,Z�

�R�Z
�

R=a
= − F�a,Z� .

Using this form for a solution, and noting that the anharmonic term already has this form, we
im�
ave a general series expression for the generating function �=e ��R ,Z�,
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��R,Z� = Rmei�Z + �
n�=1

�

bn�
Jm�R��2 − �2n� − 1�2�2�

Jm�a��2 − �2n� − 1�2�2�
cos��2n� − 1��Z�

+ i�
n=1

�

an
Jm�R��2 − 4n2�2�

Jm�a��2 − 4n2�2�
sin�2n�Z� .

ere we have normalized the Bessel functions to their value at R=a because at some n and n� the
rgument of the Bessel function becomes imaginary and thus the Bessel functions become expo-
entially large, since Jm�ix�= Im�x��exp�x� when x�1. �This normalization produces spurious
oles in the matrix representation at values of � which reflect zeroes in the low-order Bessel
unctions. This has been found not to interfere with the calculation near an eigenvalue, which is
ot typically near one of these zeroes. In any case, it would be possible to leave this normalization
ff for the first few Bessel functions with a real argument.�

The Z derivative appearing in the boundary condition causes some complication in the Fourier
ecomposition. The odd-integer cosine terms when differentiated become terms in sin��2n�
1��Z�, and these are not independent of the functions sin�2n�Z�. A Fourier decomposition of

hese terms into terms in sin�2n�Z� thus is done in order to generate a set of matching equations
hich are orthogonal to one another. The Z derivatives of the even-integer sine terms also are
apped into the basis of odd-integer cosine terms. Similarly, the anharmonic term ��cos��Z�
i sin��Z�� is mapped into the appropriate basis, the real part into the basis of odd-integer cosines
nd the imaginary part into the basis of even-integer sines.

This strategy then generates a set of 2N matching equations for the boundary condition, where
is the number of even-integer terms in the expansion, typically taken equal to the number of

dd-integer terms. The radial differentiation operator and the Z differentiation and basis remapping
perator are given here separately. �Note that in the notation that follows, the superscripts “odd”
nd “even” relate to the integer appearing in the trigonometric expression, not to the Z-parity of �.
n fact the “odd” terms have even Z-parity and vice versa.� It is interesting to note that by
ombining the Z-differentiation and basis remapping operations a symmetrical expression for this
perator is obtained, as can be demonstrated by integrating by parts.

An expression for the radial differentiation operator is

Qp =
��2 − p2�2�Jm−1�a��2 − p2�2� − Jm+1�a��2 − p2�2��

2Jm�a��2 − p2�2�

ere p takes on even values 2n and odd values 2n�−1.
The Z-differentiation and basis remapping �“sine-to-cosine”� operator is given by

SC�n,n�� =
8�− 1�n�+n�1 − 2n��n

�2n� − 1�2 − 4n2 .

e can now construct a set of matrix equations which form the 2N total boundary conditions. We
rite this equation in the form

M · x = u ,

here the forcing vector u is given by the Fourier decomposition of the anharmonic term as
escribed above. The operator corresponding to the term �a /m���2 /�R�Z is given by

Mn,n�
even =

a SC�n,n��Qn
even

m�
nd
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Mn�,n
odd =

a SC�n,n��Qn�
odd

m�
.

The forcing vector u is then given by

u = u1
even,u2

even, . . . ,uN
even,u1

odd,u2
odd, . . . ,uN

odd� ,

here

un
even =

8�− 1�nn� sin��/2�
�2n��2 − �2

nd

un�
odd =

4�− 1�n��1 − 2n��� cos��/2�
�1 − 2n��2�2 − �2 .

The vector x is the union of an and bn�,

x = �a,b� = �a1,a2, . . . ,aN,b1,b2, . . . ,bN�

nd the matrix M is given by

M = 	Meven I

I Modd
 .

Some comments about the structure of the matrix equation M ·x=u are in order. The radial
perator generates terms which are proportional to n as they become large. The terms near the
iagonal of the sine-to-cosine matrix SC also are proportional to n, and thus the matrices Meven

nd Modd have terms that increase as n2. The alternating nature of the terms �−1�n+n� does result in
ess difficulty in inverting the matrix M than would be required otherwise. However, the matrix
quations can become better conditioned by inverting the individual components Meven and Modd.
his can be done since each can be decomposed into the product of a diagonal matrix and the basis

ransformation matrix SC. The SC matrix has an inverse which is given by

SC−1�n�,n� =
− 8�− 1�n+n�n�

�− 1 + 2n���1 − 2n�2 − 4n�2��2 .

�This expression can be arrived at by considering that differentiating a function f�x� �and
btaining function g�x�� in basis �n� and transforming into a new basis �n�� must have the inverse
perator formed by integrating the function g�x� termwise in basis �n�� and transforming the result
nto basis �n�.� Also, upon multiplication and substitution, the matrix equations can be separated
nto two matrix equations each of rank N rather than 2N. If we form auxiliary matrices z1 and z2

hich are the inverses of Meven and Modd,

z1�n,n�� = Meven−1
=

m�

a
SC−1�n,n��/Qeven�n� ,

z2�n�,n� = Modd−1
=

m�

a
SC−1�n,n��/Qodd�n�� ,

Zeven = I − z1 · z2, u� = z1 · u1 − z1 · z2 · u2,
1
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Zodd = I − z2 · z1, u2� = z2 · u2 − z2 · z1 · u1,

hen the transformed set of matrix equations is

Zeven · a = u1�,

�4.1�
Zodd · b = u2�.

When these are solved for some finite N as a function of �, a proper eigenfield is obtained
nly when the coefficients an and bn form a convergent series representation of the field compo-
ents BR, B�, and BZ. Since the operator M for the field components has terms proportional to n2,
t would seem that the minimum convergence criterion for the an and bn is that n2�an ,bn�→0 as
→�. However, because of the additional constraints imposed by the connection relations out-

ined above, the an and bn	1/n4 when � is an eigenvalue. In fact the eigenvalue problem can be
efined as solutions to �4.1� above with the limiting forms limn→� n3�an ,bn�=0. However, a
tronger eigenvalue criterion can be formed by observing that solutions to the odd series bn always
ave a 1/n4 characteristic independent of � and the terms an have a 1/n2 characteristic when � is
ot an eigenvalue and a 1/n4 characteristic as � approaches an eigenvalue. The reason for this
nequal behavior arises from the following observation regarding the trigonometric series of terms
roduced by the odd and even Fourier series when differentiation is included. To wit, the series of
erms in cos��2n−1��Z�, n=1,2 , . . . ,� form a complete space on �−1/2 ,1 /2� for even functions
f Z, as do the terms sin�2n�Z�, n=1,2 , . . . ,� for odd functions of z. These are used as the
-basis functions for the functions � used as the generator. However, the derivatives of these
eries are also used in the method outlined above, and whereas sin��2n−1��Z�, n=1,2 , . . . ,� is
omplete for odd functions, the series cos�2n�Z�, n=1,2 , . . . ,� is not complete for even functions
n �−1/2 ,1 /2� since the n=0 term, i.e., a constant function, would be necessary to make this
eries complete. Since this function is not generated by the differentiation operation, a constraint
or the convergence of the series solution is that the even function F�R ,Z� does not contain a
onstant part in the Fourier decomposition, i.e., �−1/2

1/2 F�a ,Z�dZ=0. The function F is represented
y the anharmonic term 	cos��Z� and by the Fourier terms in bn cos��2n−1��Z� and thus the
igenvalue criterion becomes


��� = �
n=1

�
bn�− 1�n

2n − 1
− �

sin��/2�
�

= 0. �4.2�

The summation appearing in this equation contains terms decreasing as 1/n5 independent of
, so that this equation has robust convergence as a function N, the total terms used in the series
xpansion. The error term caused by truncation is thus proportional to 1 /N4. It is also important to
ote that for eigenvalue-only studies, only one of the matrix equations need be solved, since only
he bn are needed in �4.2�. In practice the matrix Zodd is diagonally dominant �with the possible
xception of the first few entries in the upper left-hand corner� and so the linear solve operation is
apidly convergent.

. NUMERICAL STUDIES

The eigenvalues � can be located by solving the eigenvalue equation 
���=0 with a finite
eries of terms bn using a linear matrix solution. Figure 2 shows a numerical solution of the
igenequation �4.2� given above for a length-to-radius ratio 1 /a of unity with 100 terms kept in the
rthonormal expansion, and Fig. 3 shows the spectrum of partial terms an and bn for the lowest
igenmode at �=1.734 26�. Note that the smooth zero crossings of 
��� at values of the eigen-
alue parameter � which are not integer multiples of � represent actual eigenvalues for the
ystem. Spurious zeroes of the eigenequation occur at �=p�, with p integer, because at these
oints the anharmonic solution used as the forcing term is identical to one of the partial eigen-

�
elds, and this redundancy forces a trivial solution which has vector fields B=0 everywhere.
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Details of the construction of an eigenfield for degenerate cases where � actually attains an
nteger value are discussed later.� It is a simple matter to vary the number of terms N kept in the
xpansion of �, and thus an extrapolated value �� can be calculated by applying this technique to
series of N values. The error in eigenvalue �N−�� can then be computed. Figure 4 shows that the

rror in � is of order 1 /N4 using this approach. The robust characteristics of the matrices involved
llow computation to machine accuracy on a personal computer. For example, iterative calcula-
ions with N=2000 can be performed on a machine with 256 MB memory that yield the eigen-
alue to machine accuracy ��15 digits� in a matter of minutes. A numerical predictor for the error
erm remainder, 
�N�−
���, can be added, and this has been found to speed convergence some-
hat.

I. SPECIAL CASES

It is interesting to explore the range of parameter space in the aspect ratio 1 /a and in azi-
uthal mode number m in order to find simple analytical models for the behavior of the eigen-

roblem in extreme cases. First we examine the behavior of the eigenvalue problem when a
�, i.e., for a “thin disk” case. Here the eigenvalues ��p�, with integer p. For this case, a

ingle Bessel function plus the anharmonic term can be used to approximate the solution

IG. 2. Behavior of the eigenvalue parameter 
��� for m=1 mode at 1 /a=1 for a 100-term expansion of the eigenvalue
olution as a function of eigenvalue parameter �.

IG. 3. Spectral plot of �an� and �bn� vs axial wave number kZ for the lowest m=1 mode with aspect ratio 1/a=1.0.

igenvalue � is marked.
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��R,Z� � �R/a�mei�Z − Jm���2 − p2�2R�/Jm���2 − p2�2a�	 cos

i sin

�p�Z�

ith the cos �sin� term used when p is odd �even�. The expression automatically satisfies the
oundary condition at Z= ±1/2 and the radial boundary condition is approximately satisfied when

m

a
Jm���2 − p2�2a� = ��2 − p2�2Jm� ���2 − p2�2a� .

As an example, for the m=1, p=1 case, this is satisfied when the argument of the Bessel
unction is r1=5.135 62 and thus the eigenvalue equation becomes

�2 � �2 + 	5.135 62

a

2

.

For the opposite extreme where a→0, the “long tube” case, we first consider the case when
here is no Z-boundary, i.e., the infinitely long tube. In this case we ignore the anharmonic term
nd look at a complex solution of the form

��R,Z� = eikZZJm���2 − kZ
2R� .

The radial boundary condition is satisfied when

m/aJm���2 − kZ
2a� + kZ/����2 − kZ

2a�Jm� ���2 − kZ
2a� = 0.

This equation has roots in kZ which depend on �a. There is a critical value of �a above which
wo distinct real roots in kZ appear, and thus a continuum of eigenvalues are possible. For the m=1
ase, the critical root �ca�3.112 36. The eigenvalue spectrum becomes discrete in the finite-
ength case. The asymptotic value of the lowest eigenvalue for finite a→0 is thus �c. A refined
stimate of the lowest eigenvalue for small a becomes apparent when the spectrum of the partial
erms an and bn is examined numerically. Figure 5 shows the partial term spectrum for the m=1
ase with 1/a=20. One notes that there is a large spectral content around the eigenvalue � which
ffectively cancels the contribution for the anharmonic term. There is also a large contribution
rom spectral terms at the two values of kZ which satisfy the equation above when the eigenvalue
s slightly above the critical value of �c. The significance of the separated modes can be seen by
xamining the Z-boundary condition. Since the radial argument ��2−kZ

2R appearing in the Bessel
unction is nearly the same for kZ=kZ

+ and for kZ=kZ
− when a is small, the modes corresponding to

he two roots kZ
+ and kZ

− have nearly identical radial structure. The Z-boundary equation is satisfied

FIG. 4. Convergence study of computed eigenvalue � as a function of number or terms N.
pproximately when the two terms cancel at Z= ±1/2. Since
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eikZ
+Z + eikZ

−Z = 2 cos��kZ
+ − kZ

−�Z/2�ei��kZ
++kZ

−�/2�Z,

e have cancellation of these terms when cos��kZ
+−kZ

−� /4�=0. Thus the eigenvalue equation for the
owest mode becomes kZ

+−kZ
−=2�. Since the roots kZ appear close to a parabolic minimum, the

eparation of these roots is proportional to the square root of ��−�c�. For the m=1 case, one finds
he approximate form

�kZ
+ − kZ

−�2 � 9.523�� − �c� .

We wish to fit this approximate expression into a canonical form �2=r3
2+r2

2 /a2, i.e., the usual
yperbolic relationship between � and 1/a, and then for an approximate expression for the lowest
=1 eigenvalue with a�1 we find r2=3.1126, r3

2=2r2�2��2 /9.523 and thus

�2 = �3.1126/a�2 + 25.8454.

Figure 6 shows a plot of the lowest m=1 eigenvalue for cylinders with aspect ratio 1 /a
anging from 10−2 to 103 with these two asymptotic limits drawn. One sees that the eigenvalue �
s somewhat lower than either estimate near length-to-radius ratios 1 /a near unity, as expected
rom physical arguments.

It is also interesting to note the special case formed by m→�. In this case the term containing
/�R�Z becomes small compared to the other term in the boundary equation. Thus the solutions
ecome similar to the solution of the scalar Helmholtz equation with Dirichlet boundary condi-

IG. 5. Spectral plot of �an� and �bn� vs axial wave number kZ for the lowest m=1 mode with 1/a=20. Upper and lower
nfinite-cylinder eigenmodes are marked. �kZ

+−kZ
−� / �2��=1.000 96 for this case.

IG. 6. Lowest m=1 eigenvalue as a function of aspect ratio 1/a, with asymptotic values. Parameters r1=5.135 62, r2
3.112 36, r3=5.083 83.
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ions as m→�. This is illustrated by Fig. 7, where a plot of the ratio of the eigenvalue � for the
url-eigenfunction problem to the scalar Helmholtz eigenvalue �s is shown for all values from
=0 to m=20. This figure shows that the ratio approaches unity rather quickly, and also illustrates

hat noninteger values of m can be accounted for.
Last, we treat the case where the eigenvalue �=p�, p=2,3 , . . .. This is a degenerate case for

he algorithm described above because the “anharmonic” term 	ei�Z is equivalent to one of the
asis functions when �=n� and thus the matrix equation, while nonsingular, returns a trivial
olution �=0. To avoid this situation, we observe that in this case there is a special mode which
s a curl eigenfunction and has BZ=0 at Z= ±1/2 that can be constructed starting with the funda-
ental solutions BZ=wm=Rmei�Z and BZ=wm=Rme−i�Z. This solution is not obtainable from the
handrasekhar-Kendall form with solutions of the elliptic equation with separation of variables in

R ,Z� but can be derived from the connection diagram shown in Fig. 1 with the use of Sonine
olynomials as solutions to the elliptic equations, or by use of the n=2 Sonine polynomial
�2,m ,R ,Z� in the Chandrasekhar-Kendall form. For example, for the m=1 case, with �
2� ,4� , . . ., i.e., for even p, a curl eigenfunction satisfying the Z boundary condition is

BR = − 4 cos��Z� − �4i�Z + 2�2R2�ei�Z − �2R2e−i�Z,

B� = − 4i cos��Z� + �4�Z − 2i�2R2�ei�Z + i�2R2e−i�Z,

BZ = 8�R sin��Z� .

IG. 7. Ratio of lowest eigenvalue � to the lowest eigenvalue �s for the scalar Helmholtz equation with Dirichlet boundary
onditions, as a function of azimuthal mode number m, for aspect ratio 1/a=1.0.

IG. 8. Spectral plot of �an� and �bn� vs axial wave number kZ for the degenerate m=1 eigenmode with �=2�. The aspect

atio 1/a=1.3272 for this case.
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Here the ei� dependence has been suppressed. The BR�R=a� component of this eigenfield is
hen decomposed into Fourier terms in sin�2n�Z� and cos��2n−1��Z� as before, and this column
f Fourier components is substituted into the matrix M at the appropriate column to replace the
edundant mode. Convergence of this algorithm is obtained for the choice of radius a correspond-
ng to the degenerate eigenvalue. Figure 8 shows the partial term spectrum for the case m=1, p
2.
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Through fractional calculus and following the method used by Dirac to obtain his
well-known equation from the Klein-Gordon equation, we analyze a possible inter-
polation between the Dirac and the diffusion equations in one space dimension. We
study the transition between the hyperbolic and parabolic behaviors by means of
the generalization of the D’Alembert formula for the classical wave equation and
the invariance under space and time inversions of the interpolating fractional evo-
lution equations Dirac like. Such invariance depends on the values of the fractional
index and is related to the nonlocal property of the time fractional differential
operator. For this system of fractional evolution equations, we also find an associ-
ated conserved quantity analogous to the Hamiltonian for the classical Dirac
case. © 2005 American Institute of Physics. �DOI: 10.1063/1.2121167�

. INTRODUCTION

Following the well-known Dirac’s approach,19 the free Dirac equation can be considered as
he square root of the Klein-Gordon equation. In a more general context Morinaga and Nono11

nalyzed the integer s-root of the partial differential equations of the form

�
�I�=s

aI
��I�

�xI� = � , �1�

y defining them as the first-order system

�
i=1

n

�i
��

�xi
= � , �2�

here �1 , . . . ,�n are matrices. From the physical point of view the �k describe internal degrees of
reedom of the associated system.

In the above-mentioned context, Vázquez et al. recently considered in Refs. 21 and 22 the
ractional diffusion equations with internal degrees of freedom. They can be obtained as the
-roots of the standard scalar linear diffusion equation. Thus, a possible definition of the square
oot of the standard diffusion equation �SDE� in one space dimension, ut−uxx=0, is the following:

�Electronic mail: Teresa�Pierantozzi@mat.ucm.es
�
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�A
�1/2

�t1/2 + B
�

�x
���x,t� = 0, �3�

here A and B are 2�2 matrices satisfying Pauli’s algebra

A2 = I, B2 = − I, AB + BA = 0, �4�

being the identity operator.
It is worthy of mention that Oldham and Spanier12,13 were the first authors to derive a formu-

ation involving the mathematical operation of semidifferentiation in replacement of Fick’s laws in
work of 1970.

Here ��x , t� is a multicomponent function with at least two scalar space-time components.
lso, each scalar component satisfies the SDE. Such solutions can be interpreted as probability
istributions with internal structure associated to internal degrees of freedom of the system. They
re named diffunors in analogy with the spinors in Quantum Mechanics.

In this paper we deal with a further generalization of Dirac’s method, considering the system
f fractional evolution equations

�A�t
� + B�x���t,x� = 0, ��t,x� = �u1�t,x�

u2�t,x�
� , �5�

ith 0���1, A and B satisfying �4�, as the square root of the time fractional diffusion-wave
quation

�t
2�u�t,x� − �xxu�t,x� = 0. �6�

Equation �6�, associated with anomalous diffusion, has been widely studied in the literature by
any authors, including Schneider and Wyss,18 Metzler et al.,7,9,23 Mainardi et al.,4–6 Sokolov

t al.,20 Saichev et al.16 A more physical discussion of this equation was given by Metzler and
lafter in Ref. 8 and it is worthwhile mentioning that they proved that the resulting probability
ensity is bimodal in character. In this sense, Schneider and Wyss18 showed that, for dimensions
igher than 1, the character of the solution of the fractional wave equation �when 1/2���1� as
proper probability density is lost.

Each component of ��t ,x� satisfies �6� while the index property �t
��t

�u=�t
2�u holds. Thus, in

he interval 1 /2���1, the decomposition �5� of �6�, expressed in terms of fractional evolution
quations of Dirac-type, represents a fractional interpolation between the diffusion ��=1/2� and
ave ��=1� equations.

The applications of the fractional calculus range in a wide spectrum of areas like material
ciences �viscoelasticity, polymers, etc.�, circuits, diffusion processes, Biology, Economy, Geol-
gy, traffic problems, data analysis, and others, as illustrated, for example, in the textbooks by
ilfer,2 Ross,15 and Samko et al.17 Many of the associated models amount to replacing the time
erivative in an evolution equation with a fractional derivative of real order.

The fractional derivative operator �t
� appearing in �5� can be specified according to several

efinitions available in the literature �see, for example, Refs. 17 and 14�; we will refer to the two
ommonly used definitions of Riemann-Liouville and Caputo.

The Riemann-Liouville derivative of order ��0 is defined as

�a
RLDx

�f��x� =
dn

dxn

1

	�n − ��	a

x

�x − t�n−�−1f�t�dt , �7�

ith x�a, n=−�−��, whereas the Caputo fractional derivative, usually considered as a regularized
ersion of the Riemann-Liouville fractional differential operator, takes the form

�x
CDx

�f��x� =
1

	�n − ��	
x fn�
�

�x − 
��−n+1d
 . �8�

a
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There exists the following relation between the above-noted definitions:

�a
CDx

�f��x� = a
RLDx

�
 f�x� − �
j=0

n−1

f �j��a + �
�x − a� j

j! � , �9�

nd, a condition under which both derivatives hold is that f �ACn−1�a ,��. Equivalence �9� allows
ne to use only initial conditions of the classical type when dealing with fractional equations
nvolving Riemann-Liouville or Caputo derivatives. The integral approach pursued by Schneider
nd Wyss in Ref. 18 is probably the most physical way of incorporating these initial values to the
orresponding equation.

Definitions �7� and �8� reproduce the classical derivative dn /dxn when �=n �n�N� and the
dentity operator for �=0, and they are nonlocal operators being given by a definite integral.

It is important to highlight that, in general �see Refs. 10 and 14, for example� the index
roperty aDx

�
aDx

�f = aDx
�+�f does not hold using the definitions of fractional derivative of Riemann-

iouville �7� or Caputo �8�, unless the function f verifies

f �j��a + � = 0, j = 0,1,2, . . . ,m − 1, �10�

henever f�x��ACm−1�a ,�� and fm�x��Lloc
1 �a ,��, m−1���m.

Reference 10, Chap. 4 analyzes a restricted class of functions C for which the Riemann-
iouville fractional derivative satisfies the cited index property. Some examples of functions in C
re: x with �−1, the polynomials, the exponentials, the sine and cosine functions, and all the
inear combinations of them.

The structure of the paper is as follows. In Sec. II, a physical meaning to the solutions of �5�
s given, showing how they generalize the behavior of the solutions of the Dirac system, recovered
hen �=1, in relation with the D’Alembert solution. Following the analogy with the classical
irac case, the internal symmetries of the system �5� under inversions and translations in time

nd/or space, and Galileo transform are considered in Sec. III, whereas in Sec. IV a conserved
uantity for �5�, analogous to the Hamiltonian for the classical Dirac equation, is found.

I. PHYSICAL MEANING OF THE SOLUTIONS OF THE SYSTEM OF FRACTIONAL
VOLUTION EQUATIONS

It is well known that the general solution of the wave equation with zero initial velocity,

��ttu�t,x� − c2�xxu�t,x� = 0,

u�0,x� = ��x�, � � C2,

ut�0,x� = 0,
 �11�

s given by the D’Alembert Formula

u�t,x� = 1
2 ���x − ct� + ��x + ct�� . �12�

From a physical point of view, we can interpret this fact as that the amplitude at time t of a
erturbation created by a given starting deformation at rest, ��x�, is the superposition of two
aves, ��x+ct� and ��x−ct�, whose shape is identical to the starting one’s and traveling in
pposite directions. The two waves are solutions of the following first-order problems:

��tu�t,x� − c�xu�t,x� = 0,

u�0,x� = ��x�, � � C2, � �13�
nd
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��tu�t,x� + c�xu�t,x� = 0,

u�0,x� = ��x�, � � C2, � �14�

nd the D’Alembert solution is a linear combination of them with coefficients equal to 1/2.
Now, if we only shrink the study to the pure real matrices leading to a system �5� of separated

quations, then we have two possible choices:

A = �0 1

1 0
�, B = � 0 1

− 1 0
� , �15�

nd the second pair of matrices given by the same A and −B.
Substituting �15� in �5�, it reduces to the following system of equations:

��t
�u1�t,x� − �xu1�t,x� = 0,

�t
�u2�t,x� + �xu2�t,x� = 0,

� �16�

here 0���1, and the equations appearing in �13� and �14� are devolved for the limiting case of
=1 and c=1.

We want to show that the solution u�t ,x� of the time fractional diffusion equation �6� is still a
inear combination of the solutions u1�t ,x� and u2�t ,x� of �16�, for each 0���1 and, therefore,
hat the relation existing between the Dirac solutions and the D’Alembert expression is extended
o the fractional case.

In Ref. 3 the following initial value problem

�CDt
�u��t,x� = �xu�t,x� �t � 0,x � R; 0 � � � 1� ,

�17�
lim

�x�→�
u�t,x� = 0, u�0 + ,x� = g�x� ,

as been solved and the general solution, expressed in terms of the inverse of its Fourier trans-
orm, is given by

u�t,x� = ug,�t,x� =
1

2�
	

−�

+�

E�,1�− ikt��G�k�e−ikxdk , �18�

here E�,��z� is the biparametric Mittag-Leffler special function.1 This solution is said to be
ocalized due to the property lim�x�→�u�t ,x�=0.

On the other hand, the general localized solution of the Cauchy problem for the time fractional
iffusion equation,

�CDt
2�f��t,x� = 2�xxf�t,x� ,

�19�
lim

�x�→�
f�t,x� = 0, f�0 + ,x� = g�x�, ��t f�t,x��t=0 = 0 �t � 0,x � R� ,

here 0���1, can be found in Ref. 5 and it reads

f�t,x� = fg�t,x� =
1

2�
	

−�

+�

E2�,1�− �k�2t2��G�k�e−ikxdk . �20�

Now, if we apply the duplication formula1 for the Mittag-Leffler function,

E2�,1�z� = 1
2 �E�,1�+ z1/2� + E�,1�− z1/2�� , �21�
hen we can rewrite �20� as follows:
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fg�t,x� = 1
2 �ug,−�t,x� + ug,�t,x�� , �22�

here ug, is given in �18�.
So, we can conclude that the general solution of the Cauchy problem �19� for the time

ractional diffusion equation turns out to be a linear combination, with coefficients equals to 1/2,
f the two general solutions of the Cauchy problems for the fractional Dirac-type equations
epresented by �17� and by the problem obtained when  is replaced by − in �17�.

In particular, the fundamental solution of �19�, when g�x�=��x�, turns out to be

f�t,x� =
1

2t�W�−
�x�
t�

;− �,1 − �� �0 � � � 1� , �23�

here W�z ;� ,�� is the Wright special function �Ref. 1, �18.1�27��.
Therefore, if we assume =1 in �19�, we obtain

f�t,x� =
1

2t�W�−
�x�
t� ;− �,1 − �� =

1

2
�u1�t,x� + u2�t,x�� , �24�

here

u1�t,x� = � 1

t�W� x

t� ;− �,1 − �� , x � 0

0, x � 0
 �25�

nd

u2�t,x� = �0, x � 0

1

t�W�−
x

t� ;− �,1 − �� , x � 0  �26�

re the functions appearing in �16�, fundamental solutions of �17� when =1 and =−1, respec-
ively �see Ref. 3�.

II. INVARIANCE WITH RESPECT TO INVERSIONS AND TRANSLATIONS IN TIME
ND/OR SPACE

The aim of this section is to establish whether the system �5� turns out to be invariant under
nversions and translations in time and/or space, and Galileo transform, and how the nonlocal
roperty of the time fractional differential operator affects these results.

Let us first consider the spatial inversion P :x�=−x of the system �5�, and set

���t,x�� = S��t,x�x��� . �27�

We look for a matrix S so that the transformed multicomponent function ���t ,x�� is still a
olution of the system �5�, this is:

A�t
����t,x�� + B�x����t,x�� = 0, ���t,x�� = S�u1�t,x�x���

u2�t,x�x���
� , �28�

here the fractional derivative �t
� could be specified in this context either through �7� or �8�.

We calculate

�x����t,x�� = S�x���t,x�x��� = − S�x��t,x� �29�

nd this allows us to write:

A�����t,x�� + B� ���t,x�� = AS����t,x� − BS� ��t,x� .
t x� t x
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Therefore, in order for �28� to be verified, it has to turn out

S−1AS�t
���t,x� − S−1BS�x��t,x� = 0,

nd, according to �4�, when S=A, this requirement is fulfilled, being ��t ,x� solution of �5�. Thus,
he system of fractional evolution equations �5� is invariant under spatial inversion, as well as the
ime fractional diffusion equation �6� with respect to this transformation.

Let us now consider the time inversion T : t*=−t and set

�*�t*,x� = T��t�t*�,x� . �30�

Then, as for the spatial inversion, we have to find a matrix T such that �*�t* ,x� is solution of
he system of equations �5�, where now it is necessary to specify the used definition of fractional
erivative �t

�.
If we assume the Caputo fractional derivative �8� in �5�, then we have

Aa
CDt*

��*�t*,x� + B�x�
*�t*,x� = 0, �*�t*,x� = T�u1�t�t*�,x�

u2�t�t*�,x�
� . �31�

It results

a
CDt*

��*�t*,x� = T�− 1��
−a
C Dt

���t,x� . �32�

nd, in particular, when a=0:

0
CDt*

��*�t*,x� = T�− 1��
0
CDt

���t,x� . �33�

Therefore, in general, the left-hand side of the equation in �31� takes the form

�− 1��AT−a
C Dt

���t,x� + BT�x��t,x� ,

nd we only can have invariance of �5�, with respect to time inversion, if a=0 and the matrix T
erifies

��− 1��AT = TA ,

BT = TB .
�

The matrix T=B fulfills the above-noted conditions while �−1��=−1, which means

�− 1�� = ei��+2n��� = − 1 = ei��+2k��,

ith n ,k� �N� �0��, and this implies

� =
1 + 2k

1 + 2n
, k = 0,1,2, . . . , n = k + 1,k + 2,k + 3, . . . ,

s the hypothesis 0���1 has to be preserved.
Some particular values of �, for which the invariance of the system �5� under time inversion

olds, are the following:

� = 1
3 , 1

5 , 1
7 , . . . , 3

5 , 3
7 , 3

9 , . . . , 5
7 , 5

9 , 5
11 ,… .

Note that the time fractional diffusion equation �6� is invariant under time inversion while
−1�2�=1, which holds and it is well defined for

� =
k

1 + 2n
, n = 1,2,3, . . . , k = 1,2, . . . ,2n ,
his is,
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� = 1
3 , 2

3 , 1
5 , 2

5 , 3
5 , 4

5 , 1
7 , 2

7 ,…, 6
7 , 1

9 , . . . ,

n agreement with known results for the classical one-dimensional time diffusion equation ��
1/2�.

The invariance properties under time inversion of systems �5� and �6� are a partial character-
zation of the transition between the parabolic ��=1/2� and hyperbolic ��=1� behaviors.

If we repeat the computations when �t�= a
RLDt*

� in �5�, we obtain the same results so that we
an deal in this context with any of the two definitions of fractional derivative without losing
enerality.

Now, if we consider the space-time inversion PT : t*=−t, x�=−x and we assume

�̄�t*,x�� = R��t�t*�,x�x��� , �34�

ver the system of equations �5�, repeating exactly the same calculations as above the system turns
ut to be invariant under space-time inversion if we still restrict our study to the case of a=0 in the
ower extreme of integration of the fractional derivative and when the matrix R fulfills

��− 1��AR = RA ,

BR + RB = 0.
�

herefore it must be distinguished between two cases:

1� If �−1��=−1 that means

� =
1 + 2k

1 + 2n
, k = 0,1,2, . . . , n = k + 1,k + 2,k + 3, . . . ,

then for R=AB=−BA the system �5� is invariant under space-time inversion.
2� If �−1��=1, that means

� =
2k

1 + 2n
, k = 1,2,3, . . . , n = k,k + 1,k + 2, . . . ,

then the space-time invariance only holds when R=A.

The invariance property of system �5� fails, in general, with respect to space-time translation
nd Galileo transform. In fact, if we operate with a space-time translation on the system �5�,
ssuming the changes of variable t*= t+ t0, x�=x+x0, where t0 and x0 are constants, and setting

�̃�t*,x�� = V��t�t*�,x�x��� , �35�

he system turns out to be invariant under this space-time transformation just for the trivial case of

0=0 and V= I. Actually, for the Caputo derivative, for example, it results

a
CDt*

��̃�t*,x�� = Va−t0
C Dt

���t,x� .

In the case of the Galileo transform: x�=x+vt, t�= t, with v�0 constant, we set

�̂�t,x�� = W��t,x�x�,t�� �36�

n �5�. In general, we do not have invariance of system �5� with respect to Galileo transform, as
ell as it occurs with the classical Dirac equation. Indeed, it is

a
CDt

��̂�t,x�� = Wa
CDt

���t,x� − vWaIt
1−��x�t,x� ,

�
here It is the Riemann-Liouville fractional integral defined as
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�aIx
�f��x� =

1

	���	a

x

�x − t��−1f�t�dt ,

ith x�a, ��0, f �Lloc
1 �a ,�� and �aIt

0f��x�= f�x�.
Then, the transformed multicomponent function �̂�t ,x�� is still a solution of �5� if the system

Aa
CDt

��̂�t,x�� + B�x��̂�t,x�� = AWa
CDt

���t,x� − vAWaIt
1−��x�t,x� + BW�x��t,x� �37�

s equal to the zero vector, which implies

AWaIt
1−��x�t,x� = 0. �38�

Therefore, in general, we do not have invariance of the system �5� with respect to Galileo
ransform because, in view of the evaluation of the beta integral,1 valid for all p�0 and q�0 �or
e�p��0 and Re�q��0�, namely

B�p,q� ª	
0

1

up−1�1 − u�q−1du =
	�p�	�q�
	�p + q�

,

he following property for the Riemann-Liouville fractional integral can be proved

aIt
��t − a�� =

	�� + 1�
	�� + � + 1�

�t − a��+� �39�

hen ��−1. As a consequence, it results aIt
1−��x�t ,x�=0 just in case �x�t ,x�=0 for any 0��

1, which means ��t ,x�=��t�, constant function in x. If this condition is not fulfilled, as occurs
n general, then, being A= � 01

10
� in our case, we can obtain a restricted class of functions u1 and u2

or which �5� is invariant under Galileo transform.
Given W= � w11w12

w21w22
�, the system �38� can be reduced to

�w21aIt
�−1 �

�x
u1�t,x� + w22aIt

�−1 �

�x
u2�t,x� = 0,

w11aIt
�−1 �

�x
u1�t,x� + w12aIt

�−1 �

�x
u2�t,x� = 0 

nd, if det�W�=0, which means w12w21−w11w22=0, then it has the solution �� /�x�u1�t ,x�=
�w22/w21��� /�x�u2�t ,x� which implies u1�t ,x�=−�w22/w21�u2�t ,x�+c�t�, where c�t� is a constant

unction in x.
The general noninvariance of the fractional evolution equations under time translation and

alileo transform is due to the nonlocal property of the time fractional derivative and it is in
ontrast with the invariance results holding for the Dirac equation, with respect to the time
ranslation, as a fundamental requirement to be the relativity principle verified.19

V. A CONSERVED QUANTITY: THE FRACTIONAL HAMILTONIAN

The invalidity of the invariance of the fractional Dirac-type system �5� under time translation
oes not prevent it from possessing a fractional conserved quantity, analogous to the Hamiltonian
or the classical Dirac system.

It is well known �see, for example, Ref. 19� that the Lagrangian density for the classical Dirac
quation obtained from �5� when �=1 is given by

L�t,x� = �̄A�t� + �̄B�x� ,

ith �=��t ,x�= �u1�t ,x� ,u2�t ,x��T, �̄= �̄�t ,x�=�+A, and �+=�+�t ,x�= �u1
*�t ,x� ,u2

*�t ,x��, complex

onjugate of � that verifies the conjugated equation of �5� with �=1:
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�t�
+A+ + �x�

+B+ = 0.

Therefore, the Hamiltonian density will be

H�t,x� =
�L�t,x�
���t��

�t� − L�t,x� = �̄A�t� − L�t,x� = − �+C�x� , �40�

ith C=AB=−BA, the Hamiltonian

H�t,x� =	
−�

+�

H�t,x�dx = − 	
−�

+�

�+C�x�dx , �41�

nd, its time derivative,

d

dt
H�t,x� = 	

−�

+�

�x��+�x��dx , �42�

rovided that we restrict ourselves to the pure real matrices A and B so that the equivalence

t�
+=−�x�

+C is verified. In this case, if we assume, for example, the initial condition �+�x�
0 when �x�→�, we can conclude that there exists a conserved quantity associated with Eq. �5�

ith �=1, given by the Hamiltonian �41�.
In what follows, we want to show that, as well as we did earlier, it is possible to find a

onserved quantity associated with the system of fractional Dirac-type equations �5� for general
���1, even if it does not present invariance with respect to time translation.

We start defining, by analogy with the classical Dirac case, a formal “fractional Lagrangian
ensity” related to �5�,

L��t,x� = �̄A�t
�� + �̄B�x� , �43�

nd a formal “fractional Hamiltonian density,”

H��t,x� =
�L��t,x�

���t
���

�t
�� − L��t,x� = �̄A�t

�� − L��t,x� = − �+C�x� . �44�

The final expression in �44� is equivalent to �40� and can be simplified observing that, A and
being pure real matrices, if � is a solution of �5�, then also �+ has to solve it, the reason why a

ure real solution of �5� can always be found. Therefore, we will assume that � is a pure real
olution of �5� and this allows us to write the “fractional Hamiltonian” as

H��t,x� = 	
−�

+�

H��t,x�dx = − 	
−�

+�

�TC�x� dx �45�

nd, consequently,

d

dt
H��t,x� = − 	

−�

+�

��t�
TC�x� + �TC�x�t��dx = − 	

−�

+�

�x��TC�t��dx . �46�

The equivalence �t�
TC�x�=�x�

TC�t�, due to the fact that the matrix C=AB, with pure real A
nd B, can only be of two types:

C1 = �c11 0

0 − c11
�, C2 = � 0 c12

c12 0
� ,

here c11 and c12 take the values ±1.

At this point it is necessary to specify the definition of the fractional derivative in use.
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When 0���1 the Riemann-Liouville fractional derivative �t
�= RLDt

�, according to �9�, ful-
lls the following identity:

�RLDt
����t,x� = �It

1−��t���t,x� +
t−�

	�1 − ��
��0,x� , �47�

eing �RLDt
���0,x���t ,x�= t−� / �	�1−�����0,x� and �CDt

����t ,x�= �It
1−��t���t ,x� by definition �8�.

Now, if we introduce the Riemann-Liouville fractional derivative in �5�, using the fact that this
erivative is the left inverse operator of the Riemann-Liouville fractional integral, we can write

��t���t,x� = − C�x�
RLDt

1−����t,x� − A�RLDt
1−� t−�

	�1 − ��
��0,x���t,x� = − C�x�

RLDt
1−����t,x�

− A�t��0,x� = − C�x�
RLDt

1−����t,x� . �48�

In a similar straightforward way it can be proved that result �48� holds exactly the same when
he Caputo derivative appears in �5�.

Therefore, when �=1/2 both derivatives verify

��t���t,x� = C2��x
2���t,x� = ��x

2���t,x� . �49�

In agreement with �48�, the expression for the Hamiltonian time derivative �46� takes the
orm:

d

dt
H��t,x� = − 	

−�

+�

�x��TC�t��dx = 	
−�

+�

�x��T�x
RLDt

1−��� , �50�

hen 0���1 and, in particular,

d

dt
H1/2�t,x� = 	

−�

+�

− �x��TC�x
2��dx , �51�

or �=1/2, when the fractional derivative is either of the Riemann-Liouville or of the Caputo
ype.

Therefore, we can conclude that, when 0���1, if the condition

d

dt
H��t,x� = 	

−�

+�

�x��T�x
RLDt

1−���dx = ��u1�x
RLDt

1−�u1 + u2�x
RLDt

1−�u2��x=−�
x=+� = 0, �52�

s fulfilled, then a conserved quantity exists associated with Eq. �5� and it is given by the fractional
amiltonian �45�.

For the particular case of �=1/2, we deduce from �51� an alternative condition, equivalent to
52�, to provide the existence of the conserved quantity H1/2�t ,x�:

d

dt
H1/2 = 	

−�

+�

− �x��TC�x
2��dx = − �TC�x

2���x=−�
x=+� = 0,

hich means

��u1�x
2u1 − u2�x

2u2��x=−�
x=+� = 0, �53�

hen C=C1, and

��u1�x
2u2 + u2�x

2u1��x=−�
x=+� = 0, �54�

hen C=C2. Both conditions �53� and �54� come true when, for example, �uh�→0 and �x
2uh is
ounded when �x�→�, for h=1,2.
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We can conclude this section recalling some results obtained in Ref. 3
If we consider the system of fractional equations of Dirac-type �5� when �t

�= CDt
�, when A

nd B are given by �15� so that it turns out to be

C = C1 = �− 1 0

0 1
� ,

nd we complete �5� with the initial conditions

lim
�x�→�

��t,x� = 0, ��0 + ,x� = ��x� ,

hen the localized fundamental solutions are given by �25� and �26�.
In Ref. 6 the asymptotic behavior of the Wright function W�z ;� ,��, for the case of �=−� and

=1−�, has been studied. In particular, if the function M�z ;��=W�−z ;−� ,1−�� is introduced,
hen the argument z=r�0 is real and positive and r→ +�, it holds

M� r

�
;�� � a���r��−1/2�/�1−�� exp�− b���r1/�1−��� , �55�

here a���=1/�2��1−��, b���= �1−�� /�.
This implies an asymptotic exponential decay of our solutions u1 and u2, and, consequently,

hat �uh�→0 when �x�→� for h=1,2.
In order to ensure the existence of the conserved quantity �45� when 0���1, we also have

o analyze the asymptotic behavior of �x
RLDt

1−xuh for h=1,2.
It turns out to be

RLDt
1−�� 1

t�W�−
�x�
t� ;− �,1 − ��� = �tIt

�
�
k=0

+�
− ��x��kt−�k−�

k!	�− �k + 1 − ��� = �t
�
k=0

+�
− ��x��kt−�k

k!	�1 − �k��
= 
�

k=0

+�
− ��x��kt−�k−1

k!	�− �k� � =
1

t
W�−

�x�
t� ;− �,0�

=
��x�
t�+1 W�−

�x�
t� ;− �,1 − ��

f we use the property W�−z ;−� ,1−��= �1/�z�W�−z ;−� ,0�; therefore, �55� implies that RLDt
1−�uh,

s well as �x
RLDt

1−�uh, will also decay exponentially when �x�→� for h=1,2.

. CONCLUSIONS

We have treated a generalization of the classical free Dirac equations, namely the fractional
volution equations of Dirac-type. For the localized solutions of these equations we have derived
heir relation with the corresponding solution of the fractional diffusion equation, showing how
he latter turns out to be a linear combination of the formers, similarly to the D’Alembert solution
f the classical wave equation is a linear combination of the solutions of the first-order equations
erived from the decomposition of the second-order wave operator into its corresponding square-
oot operators.

Following the analogy existing between the fractional evolution equations and the classical
irac equation, we have studied their internal symmetries with respect to certain transformations

n space and/or time. The system of fractional Dirac-type equations is invariant under spatial
nversion for each 0���1, whereas it possesses invariance under time inversion only for certain
alues of the fractional index �, so enclosing the hyperbolic behavior of the classical Dirac
quation or of the time fractional diffusion equation �6� when 1

2 ���1 �including the classical
ave equation corresponding to �=1�, and the parabolic one of the time fractional diffusion

1
quation �6� when 0��� 2 �including the classical diffusion equation corresponding to �=1/2�.
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n keeping with the joint space-time inversion, a range of validity for the invariance is located, still
epending on the index �, but wilder than the one corresponding to time inversion only.

The system proves to be never invariant under time translation and Galileo transform due to
he nonlocal property of the time fractional derivative. This lack of invariance of the fractional
volution equations under time translation is in contrast to the invariance results holding for the
lassical Dirac equation, with respect to the same transformation, as a fundamental requirement to
e the relativity principle verified, but does not prevent the fractional Dirac-type system from
ossessing a fractional conserved quantity, analogous to the Hamiltonian for the classical Dirac
ystem.
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The paper is devoted to the dissipative Schrödinger-Poisson system. We indicate
conditions in terms of the Schrödinger-Poisson data which guarantee that there is a
unique solution. Moreover, it is shown that if the system is sufficiently small
shrunken, then it always admits a unique solution. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2121187�

. INTRODUCTION

Schrödinger-Poisson systems describe for instance the nonlinear interaction between an elec-
ric field and charged carriers �electrons and holes� in a semiconductor device, within this electric
eld. We investigate a model which intrinsically allows—in contrast to self-adjoint Schrödinger-
oisson systems, see Refs. 8, 19–21, 27, and 28—an interaction with the environment. In particu-

ar, in the open quantum system under consideration here �see also Refs. 10 and 29� a nontrivial
urrent is possible. In Ref. 20 non-self-adjoint boundary conditions for the Schrödinger operators
3� were proposed which are induced by a potential flow acting on the boundary of the domain �
hich is occupied by the quantum system. The spectral theory for the associated non-self-adjoint
chrödinger-type operators has been developed in Ref. 16. For a one-dimensional device this
nsatz—called dissipative Schrödinger-Poisson system—was analyzed in detail in Refs. 2, 16–18.

hile the existence of a solution was shown in Ref. 2 it is the aim of this paper to prove
niqueness of the solution under certain conditions. This result should be interpreted from the
hysical point of view as follows: it is known that uniqueness cannot be expected in general
ecause there are physical situations where the existence of several solutions explains well ob-
erved hysteresis phenomena14,30. However, if the parameters of the system are chosen in accor-
ance with our uniqueness condition of Theorem 5.4, then hysteresis phenomena cannot occur. In
articular, hysteresis is absent if the device is sufficiently small, cf. Theorem 5.6. By the way, this
ituation is quite parallel to that of self-adjoint Schrödinger-Poisson systems with exchange cor-
elation potentials, see Ref. 31.

In the form considered in this paper a Schrödinger-Poisson system can be regarded as a
onlinear Poisson equation

− � · �� � �� = C + N+�V0
+ + �� − N−�V0

− − �� �1�

n an interval �a ,b� of the real axis, combined with Dirichlet boundary conditions

��a� = �a, ��b� = �b. �2�

y � and C the dielectric permittivity and the doping profile are denoted, respectively, while V0
±

re fixed potentials for a given device. The particle densities N±�V� are associated to one-electron
amiltonians in effective mass approximation �Ben-Daniel-Duke form�

�Electronic mail: neidhard@wias-berlin.de
�
Electronic mail: rehberg@wias-berlin.de

46, 113513-1022-2488/2005/46�11�/113513/28/$22.50 © 2005 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2121187
http://dx.doi.org/10.1063/1.2121187


a

�
t

d
e

I
a
K
n
t

H
m

g
�

d
p
R

m
t
t
+
c
p
d

P
b
b
p
s

d
d
w
w
w
l
t

113513-2 H. Neidhardt and J. Rehberg J. Math. Phys. 46, 113513 �2005�

                        
H±�V�� = −
1

2
� · � 1

m± � �� + V� , �3�

cting on L2�a ,b� and supplemented by dissipative boundary conditions of the form

1

2m±�a�
���a� = − �a

±��a�,
1

2m±�b�
���b� = �b

±��b� , �4�

a
± ,�b

±�C+ª�z�C :Im�z��0�. By m± the position dependent effective masses of holes and elec-
rons are denoted �Planck’s constant � and the elementary charge q are scaled to one�.

The collective behavior of holes and electrons �and, hence, the particle densities N±�V�� is
escribed by density operators �±�V� which are given in case of closed quantum systems by
quilibrium states, i.e., non-negative trace class operators of the form

�±�V� = f±�H±�V�� .

n the case of open quantum systems, which is of interest here, the density operators are obtained
s follows: one finds—by an explicit construction, see Ref. 17—a so-called �self-adjoint� dilation
±�V� of H±�V� on a larger Hilbert space K�L2�a ,b�. As density operators now serve certain
on-negative self-adjoint operators ��V�, commuting with K±�V� and enjoying the property that
heir product with the orthogonal projection PL2�a,b�

K from the dilation space K onto the original

ilbert space L2�a ,b� is of trace class. �In fact, these operators ��V� are induced by density
atrices �±�L	�R ,B�C2�� with certain decaying properties.� Thus, the definition

	



dxN±�V��x� ª tr�PL2�a,b�
K

�±�V��
�, 
 any Borel subset of �a,b�

ives rise to the carrier density operators N± which assigns to each electrostatic potential V
LR
	�a ,b� carrier densities from LR

1 �a ,b�, see Refs. 2, 3, and 18.
The main technical tool for our uniqueness proof is to show that the carrier density operators

o depend in fact locally Lipschitz continuous on the potentials—and not only continuously as
roven in Ref. 3. The proof of this property relies on the theory of Kato-smooth operators, see
efs. 22 and 23. We show that the orthogonal projection PL2�a,b�

K is Kato-smooth with respect to the

inimal self-adjoint dilations K±�V� and we calculate their smoothness constants, which allows us
o compute the local Lipschitz constants for the carrier density operators. For this purpose we have
o strengthen the assumptions on the effective masses m±. In Ref. 3 it was assumed that m±

�1/m±��LR
	���. In addition, we demand now that m± has a finite total variation. This admits

ountably many discontinuities, what is sufficient for applications to heterogeneous material com-
ositions. At the end, the solution becomes unique, if the local Lipschitz constants of the carrier
ensity operators are small enough.

It turns out that uniqueness always takes place if we shrink the dissipative Schrödinger-
oisson system to a sufficiently small subdevice ����. That means, we consider the same
oundary conditions �4� and �2�, the same density matrices �± but replace the mass functions m±

y m±���, the potentials V0
± by V0

±���, the dielectric permittivity � by ���� and the doping
rofile C by C���. If �� will be sufficiently small, then the shrunken Schrödinger-Poisson
ystems admits a unique solution.

This has implications for dissipative hybrid models considered in Ref. 4 which use a mixed
escription by a drift-diffusion model and a dissipative Schrödinger-Poisson system. In more
etail, one divides the device �= �a0 ,b0� into two regions �c= �a0 ,a�� �b ,b0� and �q= �a ,b�,
hich are called “classical zone” and “quantum zone,” respectively. On the “classical zone” �c,
hich is disconnected, one uses a classical drift diffusion description, cf. Refs. 11, 25, and 32,
hile on the “quantum zone” �q a dissipative Schrödinger-Poisson system is considered. The

ength 
�q
 of the quantum zone �q is crucial for the hybrid model. Indeed, if �q is very large,

hen we have nearly a quantum description of the device which increases the costs of the numeri-
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al treatment of the model. If the quantum zone �q is very small, then by the above-noted result
t can happen that the hybrid model has only one solution in contradiction to a pure classical
escription which usually allows several solutions. This shows us that one has to very carefully
hoose the quantum zone in hybrid models.

The paper is organized as follows. In Sec. II we introduce constants repeatedly used in the
ollowing. If the Schrödinger-Poisson data are fixed, then the constants are fixed. The dissipative
chrödinger-type operator is introduced and in detail investigated in Sec. III. Crucial are the
otions of the characteristic function, see Sec. III C, and the phase shift, see Sec. III D. The
elf-adjoint dilations and Lax-Phillips scattering theory are recalled in Secs. III F and III G. The
arrier density operator is defined in Sec. IV. Its local Lipschitz continuity is verified in Sec. IV B.
he dissipative Schrödinger-Poisson system is considered in Sec. V. The existence proof is
ketched in Sec. V B, the uniqueness is proven in Sec. V C, the uniqueness for a sufficiently small
hrunken Schrödinger-Poisson system is established in Sec. V D. We end with some remarks in
ec. VI.

I. NOTATION, ASSUMPTIONS, AND CONSTANTS

By Lp�� ,X ,m�, 1p�	, �= �a ,b�, we denote the space of m-measurable and p-integrable
unctions over � with values in a Banach space X. By L	�� ,X ,m� the space of essentially
ounded functions is denoted. If m is the Lebesgue measure, then we write Lp���=Lp�� ,C ,m�
nd LR

p ���ªLp�� ,R ,m�, 1p	. The Lebesgue measure of a set is denoted by 
 · 
.
The norm of a Banach or Hilbert space X is indicated by � · �X or simply by � · �, the scalar

roduct of a Hilbert space X by �· , · �X or simply by �· , · � where the first argument is the linear one.
he dual space is indicated by X*. By B�X ,Y� the space of all linear bounded operators from the
anach space X to the Banach space Y is denoted with norm � · �B�X,Y�. If X=Y, then B�X ,X�
B�X� and � · �B�X,Y�= � · �B�X�. If X is a Hilbert spaces, then B1�X� and B2�X� denote the spaces of

race class and Hilbert-Schmidt operators, respectively. For a densely defined linear operator
:X→Y we denote by A*, spec�A� and res�A� its adjoint, spectrum, and resolvent set, respectively.
e write X�V� if we have in mind a parameter dependence on V and X�V� if a functional

ependence on V is considered. Of course, it is quite possible that a parameter dependence
ecomes a functional one and vice versa.

Furthermore, we denote by W1,2��� the usual Sobolev spaces of complex-valued functions on
. The subspace of elements with homogeneous Dirichlet boundary conditions at the end points of

he interval ��R is denoted by W0
1,2���. Its dual with respect to the L2-pairing is denoted by

0
−1,2���= �W0

1,2����*. If we have in mind only real-valued functions, then we write WR
1,2��� and

0,R
1,2 ���.

With respect to the Schrödinger-type operators we made the following assumptions.
Assumptions 2.1 (Schrödinger assumptions):
�Q1� There are constants m±�0 and m̄±�0 such that m±m±�x� m̄± for x��.
�Q2� �a

± ,�b
±�C+= �z�C :Im�z��0�.

�Q3� V0
±�LR

	���.
�Q4� The matrix valued-functions �±�·��L	�R ,B�C2�� obey 0�±���=�±���*. There are real,

ontinuous differentiable, even functions g±�·� :R→R+ such that

0 �±��� g±���IC2, �� R , �5�

sign���
d

d�
g±��� 0, �� R , �6�

	
0

	

d�
g±���
��

� 	 , �7�
nd
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 d

d�
g±���  c±g±���, �� R , �8�

here c± are given real constants. In particular, the functions

g±��� = c0
±�1 + �2�−1/2, �� R ,

sed in Ref. 2 satisfy assumptions �6�–�8� with c±=c0
±.

The parameter set Qª�m± ,�a
± ,�b

± ,V0
± ,�±� is called the Schrödinger data of the device �. The

chrödinger data are fixed in the following.
With respect to the Poisson equation we made the following assumptions.
Assumptions 2.2 (Poisson assumptions):
�P1� The doping profile C is from W0

−1,2���.
�P2� The dielectric permittivity � is positive and satisfies �+ �1/���LR

	���.
The quadruple Pª�C ,� ,�a ,�b� is called the Poisson data of the device � which are also

xed through the paper. The union DªQ�P is called the Schrödinger-Poisson data of the
evice �.

For the convenience of the reader we collect here important constants which are composed of
he Schrödinger-Poisson data and which are needed in the following. We set

B0
±
ª 2g±�0� +

1

2�
�
�
m̄±	

0

	

d�
g±���
��

�9�

nd

B1
±
ª

1

�
g�0��
�
m̄±. �10�

We note that the quantities B0
± and B1

± depend only on the Schrödinger data and on the length
�
 of the device.

The embedding operators from W0
1,2��� into L	��� and L1��� into W0

−1,2��� are denoted by

	 and E1, respectively. We note that E1=E	
* �L1���. Their norms are equal and are denoted by �1

n the sequel. A straightforward computation shows that �1�
�
. Let �̂ be the function

�� x →
1

	
a

b

dt
1

��t�

��a	
a

x

dt
1

��t�
+ �b	

x

b

dt
1

��t�� . �11�

learly, �̂�W1,2����L	���. We set

D0 ª �1�1/��L	
�1 + 
�
��C�W0

−1,2 + �1�B0
+ + B0

− + B1
+��V0

+ + �̂�L	 + B1
−��V0

− − �̂�L	�� �12�

nd

D1 ª �1
2�1/��L	

�1 + 
�
�B1
+ + B1

−� . �13�

sing D0 and D1 we introduce the radii

r0 ª
1

2
�D1 + �D1

2 + 4D0� �14�
nd
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r1
±
ª �V0

± + �̂�L	 + r0. �15�

f h : �a ,b�→R is a function of finite total variation and x ,y� �a ,b�, then the total variation of

�x,y� is denoted by Vx

yh. If 1 /m± has a finite total variation, then we set

M±
ª

�m̄± exp� m̄±

2
V
a

b 1

m±� . �16�

ext we introduce the functions

Rj
±�y� ª M±�1 + 
� j

±
� 2

m±�exp�y
�
�M±�2� 2

m� ±� �17�

or y�0 and j=a ,b. Further we set

L±�y� ª� 2

�
�Ra

±�2y + 2 + �0
±�2

��a
±�2 +

Rb
±�2y + 2 + �0

±�2

��b
±�2 �1/2

�18�

or y�0 where the representation

�a
± = qa

± + i
��a

±�2

2
, �b

± = qb
± + i

��b
±�2

2
�19�

s used. The constants �0
± are given by

�0
±
ª 2m̄±�q±�2�1

2
+

1

q±
�
m̄± +�1

4
+

1

q±
�
m̄±� , �20�

here

q±
ª max�0,qa

±,qb
±� . �21�

e define

G±�y� = �B0
± + B1

±�y, y� 0. �22�

nd

L±�x,y� ª c±�G±�x� + G±�y��2 + 4�
�
L±�x�L±�y�G±�x�G±�y� , �23�

or x ,y�0. Finally, we introduce the constant

L ª L+�r1
+,r1

+� + L−�r1
−,r1

−� . �24�

nd we set

U ª �1
2�1/��L	

�1 + 
�
L . �25�

e note again that the introduced constants �9�–�25� depend only on the Schrödinger-Poisson data
hich means that they are fixed for fixed Schrödinger-Poisson data.

II. SCHRÖDINGER-TYPE OPERATORS

Since it is unimportant in the following whether we have to do with electrons or with holes we
dmit the superscript ± in this section. Further, throughout we assume that Schrödinger data Q
�m ,�a ,�b ,V0 ,�� satisfy the Schrödinger assumptions mutatis mutandis.
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. Definitions

Following the suggestion of Refs. 20 and 21 we consider the non-self-adjoint Schrödinger-
ype operator H�V� on the Hilbert space H defined by

dom�H��a,�b,V�� =� f � W1,2:

1

m�x�
f��x� � W1,2��� ,

1

2m�a�
f��a� = − �af�a� ,

1

2m�b�
f��b� = �bf�b�

�
nd

�H��a,�b,V�g��x� = �l�V�g��x�, g � dom�H��a,�b,V�� ,

here

�l�V�g��x� ª −
1

2

d

dx

1

m�x�
d

dx
g�x� + V�x�g�x� ,

f. Refs. 16 and 17, where V�LR
	��� and �a ,�b�C+ª �z�C :Im�z��0�, are called the boundary

oefficients. The operator H��a ,�b ,V� is maximal dissipative if either �a�C+ or �b�C+. In both
ases the operator is completely non-self-adjoint, see Ref. 16. In the following we consider the
ase �a ,�b�C+. In this case we usually write H�V� instead of H��a ,�b ,V�. The spectrum of H�V�
onsists of isolated eigenvalues in the lower half-plane with the only accumulation point at infin-
ty, i.e., spec �H�V���C−ª �z�C :Im�z�0�. Since the operator H�V� is completely non-self-
djoint, its eigenvalues are non-real.

Besides the operator H�V� we consider the operator HR�V�ªH�qa ,qb ,V�, V�LR
	���, qa ,qb

R. The operator HR�V� is self-adjoint and semi-bounded from below. In some sense the operator

R�V� can be regarded as the real part of the maximal dissipative H�V�. By ��V� we denote the
ottom of the spectrum of HR�V�, i.e., ��V�ª inf spec�HR�V��.

Lemma 3.1: Let the Schrödinger assumptions Q1 be satisfied. If qa ,qb�R, then

��V�� − �0 − �V−�L	, �26�

here V−�x�ª 1
2 �
V�x�
−V�x��, x��, and �0 is given by �20�.

Proof: We consider the quadratic form h�qa ,qb��· , · �,

h�qa,qb��f , f� ª − qa
f�a�
2 − qb
f�b�
2 + 	
a

b 1

2m�x�

f��x�
2dx ,

f �dom�h�qa ,qb ,V��=W1,2���, which is associated with the self-adjoint operator H�qa ,qb ,0�.
he quadratic form h�qa ,qb��· , · � admits the estimate

h�qa,qb��f , f�� ĥ�f , f� ª − q�
f�a�
2 + 
f�b�
2� +
1

2m̄
	

a

b


f��x�
2dx ,

here qªmax�0,qa ,qb�, cf. �21�. The quadratic form ĥ corresponds to the self-adjoint operator
ˆ ,

�Ĥf��x� = −
1

¯

d2

dx2 f�x�, f � dom�Ĥ� ,

2m
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dom�Ĥ� = � f � W2,2���:
1

2m̄
f��a� = − qf�a�,

1

2m̄
f��b� = qf�b�� .

straightforward computation shows that �=−�2, ��q�2m̄, is an eigenvalue of Ĥ if and only if
satisfies

�
�
�2m̄ = ln�� + q�2m̄

� − q�2m̄
� .

ence, if �=−�2 is an eigenvalue, then the estimate

�
�
�2m̄
2q�2m̄

� − q�2m̄

olds. This yields

� = − �2� − 2m̄q2�1

2
+

1

q
�
m̄
+�1

4
+

1

q
�
m̄� .

sing this estimate we immediately verify �26�. �

. Elementary solutions and estimates

An important tool to investigate the dissipative operator H�V� is the so-called elementary
olutions defined by

l�V��va�x,z�� = zva�x,z�, va�a,z� = 1,
1

2m�a�
va��a,z� = − �a, �27�

l�V��vb�x,z�� = zvb�x,z�, vb�b,z� = 1,
1

2m�b�
va��b,z� = �b. �28�

he existence of these solutions for each z�C can be proved by writing �27� and �28� in integral
orm

va�x,z� = 1 − 2�aMa�x� + 2	
a

x

dt�Ma�x� − Ma�t���V�t� − z�va�t,z� �29�

nd

vb�x,z� = 1 − 2�bMb�x� + 2	
x

b

dt�Mb�x� − Mb�t���V�t� − z�vb�t,z� �30�

here

Ma�x� ª 	
a

x

dt m�t�, Mb�x� ª 	
x

b

dt m�t�.

ince �29� and �30� are Volterra-type equations they have always solutions for any z�C, in
articular, for z=��R. Moreover, one gets that va and vb as well as �1/m�va� and �1/m�vb� are
bsolutely continuous.

In the following the estimates are based on Gronwall’s lemma which we need in a slightly
eneralized form.

Lemma 3.2 (Gronwall’s lemma): Let � be a finite Borel measure on �a ,b�. If the non-negative

ontinuous function g�·� : �a ,b�→R obeys
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0 g�x� C +	
�a,x�

g�t�d��t�, x � �a,b�, C� 0, �31�

hen the estimate

g�x� C exp�	
�a,x�

d��t��, x � �a,b� , �32�

olds.
The proof follows immediately from Lemma 5 of Ref. 15. Using Gronwall’s lemma we are

oing to establish bounds for the elementary solutions if ��0. At first we prove this for the
pecial case V=0 and later on we extend the result to V�0.

Let V=0. We consider the boundary value problem

l�0�w�x,�� = �w�x,��, w�a,�� = p,
1

2m�a�
w��a,�� = q ,

here p ,q�C.
Lemma 3.3: Let the Schrödinger assumption Q1 be satisfied. If m has a finite total variation,

hen


w�x,��
�
p
2 +
2

�m�a�

q
2M , �33�

or x� �a ,b� and ��0, where M is defined by �16�.
Proof: We note that

−
1

2

d

dx

1

m�x�
d

dx
w�x,�� = �w�x,��

s satisfied for a.e. x� �a ,b� with respect of the Lebesgue measure. Multiplying by
1/m�x �w��x ,�� we get

−
1

2

1

m�x�
w��x,��

d

dx

1

m�x�
w��x,�� = �w�x,��

1

m�x�
w��x,��

hich yields

1

2

d

dx
 1

m�x�
w��x,��2

= −
�

m�x�
d

dx

w�x,��
2

or a.e. x� �a ,b�. Since �1/m�x��w��x ,�� is absolutely continuous we obtain

1

2
 1

m�x�
w��x,��2

=
1

2
 1

m�a�
w��a,��2

− �	
a

x 1

m�t�
d

dt

w�t,��
2dt

or x� �a ,b�. Since m has a finite total variation, the limits m�x−0�ª limy↑xm�y� for x� �a ,b� and
�x+0�ª limy↓xm�y� for x� �a ,b� exist. Further, we set m�a−0�ªm�a� and m�b+0�ªm�b�.
otice that m�x� and m�x−0� are different only on a countable set. Hence we can replace 1/m�t�
by 1/m�t−0� above. Using the boundary conditions we get

                                                                                                            



f
i
v

w
f
1

w

I

w

f

A

f

f

w

113513-9 Uniqueness J. Math. Phys. 46, 113513 �2005�

                        
 1

m�x�
w��x,��2

= 4
q
2 − 2�	
�a,x�

1

m�t − 0�
d
w�t,��
2

or all x� �a ,b� where the integral on the right-hand side is regarded as a Lebesgue-Stieltjes
ntegral. If m has a finite total variation, then by assumption Q1 the function 1/m has a finite total
ariation, too. By Theorem 21.67 and Remark 21.68 of Ref. 13 we get

 1

m�x�
d

dx
w�x,��2

+
2�

m�x + 0�

w�x,��
2 = 4
q
2 +

2�

m�a�

w�a,��
2 + 2�	

�a,x�

w�t,��
2d��t� ,

�34�

here � is the signed measure associated with 1/m. Since 1/m is of bounded variation, the
unctions��x�ªVa

x�1/m� and ��x�ª��x�−1/m�x�, x� �a ,b�, are non-decreasing. Notice that
/m�x�=��x�−��x�. Thus we find

	
�a,x�


w�t,��
2d��t� = 	
�a,x�


w�t,��
2d���t� − 	
�a,x�


w�t,��
2d���t� ,

here �� and �� the measures associated with � and �, respectively. Hence

	
�a,x�


w�t,��
2d��t� 	
�a,x�


w�t,��
2d���t�, x � �a,b� .

nserting this estimate into �34� and using the boundary condition w�a ,��= p we get

1

m�x + 0�

w�x,��
2

2

�

q
2 +

1

m�a�

p
2 + 	

�a,x�

w�t,��
2d���t�, x � �a,b� ,

hich yields


w�x,��
2 m�x + 0�� 2

�

q
2 +

1

m�a�

p
2� + m�x + 0�	

�a,x�

w�t,��
2d���t�

or x� �a ,b�. Since m�x� m̄, x� �a ,b�, we obtain


w�x,��
2 m̄� 2

�

q
2 +

1

m�a�

p
2� + m̄	

�a,x�

w�t,��
2d���t�.

pplying Lemma 3.2, we immediately get


w�x,��
2 � 2

�

q
2 +

1

m�a�

p
2�exp�m̄	

�a,x�
d���t��

or x� �a ,b�. Hence


w�x,��
�
p
2 +
2

�m�a�

q
2�m̄ exp� m̄

2
	

�a,x�
d���t��

or x� �a ,b�. Finally, taking into account

	
�a,x�

d���t� 	
�a,b�

d���t� V
a

b 1

m

e prove �33�. �
We note that a similar lemma holds if the end point a is replaced by b.
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In the following we consider the solutions w0�x ,�� and w1�x ,�� of the boundary value prob-
ems

�l�0�w1��x� = �w1�x,��, w1�a,�� = 1,
1

2m�a�
w1��a,�� = 0,

�l�0�w0��x� = �w0�x,��, w0�a,�� = 0,
1

2m�a�
w0��a,�� = 1.

y Lemma 3.3 we have the estimates


w1�x,��
M, 
w0�x,��
� 2

�m�a�
M, x � �a,b�, � � 0.

Lemma 3.4: Let the Schrödinger assumption Q1 be satisfied and let V�LR
	���. If m has a

nite total variation, then


v j�x,��
 �Rj��V�L	� , � � 1,

Rj��V + 1 − ��L	� , � � 1,
�, j = a,b, x �� , �35�

here Rj�·� is defined by �17�
Proof: The solution va�x ,�� satisfies the integral equation

va�x,�� = w1�x,�� − �aw0�x,�� + 	
a

x

dt �w0�x,��w1�t,�� − w0�t,��w1�x,���V�t�va�t,�� ,

�� and ��R. Therefore, we have the estimate


va�x,��
M�1 + 
�a
� 2

�m�a�
� + M2� 2

�m�a�	a

x

dt 
V�t�

va�t,��
 ,

�� and ��0. Applying Gronwall’s lemma we find


va�x,��
M�1 + 
�a
� 2

�m�a�
�exp�M2� 2

�m�a�	a

x

dt 
V�t�
�
or x�� and ��0. If ��1, then we immediately verify the first part of �35�.

If ��1, then v j�x ,�� satisfies the equation l�V+1−��va�x ,��=va�x ,��. Taking into account
he first estimate of �35� we prove the second estimate. The proof for j=b is similar. �

. Characteristic function

Let us introduce the operator-valued function T�z� :H→C2,

T�V��z�f ª � �b��H�V� − z�−1f��b�
− �a��H�V� − z�−1�f�a�

�, �a,�b� 0,

or z� res�H�V�� and f �L2���. Using Theorem 2.1 of Ref. 17, we find

T�V��z�f =
1

W�z��− �b	
a

b

dy va�y,z�f�y�

�a	
a

b

dy vb�y,z�f�y� �
2
or f �L ��� where W�z� denotes the Wronskian of the solutions va�x ,z� and vb�x ,z�,
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W�z� ª va�x,z�
1

2m�x�
vb��x,z� − vb�x,z�

1

2m�x�
va��x,z� ,

hich is independent from x��. The adjoint operator is given by

�T�V��z�*���x� =
1

W�z�
�− �bva�x,z�,�avb�x,z��� , �36�

��, where

� = ��b

�a � � C2. �37�

nd the right-hand side is regarded as a matrix multiplication. Similarly, we set

T*�V��z�f ª � �b��H�V�* − z�−1f��b�
− �a��H�V�* − z�−1f��a�

�
or z� res�H*� and f �L2���. Using again Theorem 2.1 of Ref. 17 we find

T*�V��z�f =
1

W*�z��− �b	
a

b

dy v*a�y,z�f�y�

�b	
a

b

dy v*b�y,z�f�y� � ,

here W*�z� is the Wronskian of the solutions v*a�x ,z�ªva�x , z̄� and v*b�x ,z�ªvb�x , z̄�,

W*�z� ª v*a�x,z�
1

2m�x�
v*b� �x,z� − v*b�x,z�

1

2m�x�
v*a� �x,z� ,

hich also independent from x��. The adjoint operator has the representation

�T*�V��z�*���x� =
1

W*�z�
�− �bv*a�x,z�,�av*b�x,z��� ,

��, ��C2.
The operator H�V� can be �up to unitary equivalence� characterized by its characteristic

unction z→��V��z�, with z� res�H�V��� res�H�V�*�, cf. Ref. 9. The characteristic function
�V��·� of the maximal dissipative operator H�V� is a two-by-two matrix-valued function which

atisfies the relation

��V��z�T�V��z�f = T*�V��z�f , z � res�H�V�� � res�H�V�*� ,

f �h. In terms of the adjoint elementary solutions the characteristic function can be expressed as
ollows:

��V��z� = IC2 + i
1

W*�z���b
2v*a�b,z� − �b�a

− �b�a �a
2v*b�a,z�

� ,

hich can be written as

��V��z� = IC2 − i�T�V��z̄�*,

* 2
� res�H�V��� res�H�V� �, where the operator � :L ���→C, is defined by
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�f ª � �bf�b�
− �af�a�

�, f � dom��� ª C��̄� .

otice that the operator � is not closed and not closable. The characteristic function ��V���� is a
olomorphic on res�H�V��� res�H�V�*� and contractive on C−�R, i.e., it satisfies

���V��z�� 1 for z � C− � R .

n particular, it is well-defined and continuous on R, cf. Ref. 17. We note that by Lemma 2.2 of
ef. 26 one has lim�→−	���V����− IC2�B�C2�=0.

. Phase shift

The phase shift 
�V� is defined by

e2�i
�V����
ª det���V�����, �� R ,

here it is assumed that 
�V��·� :R→R is continuous. Notice that the phase shift is determined
odulo Z. Since lim�→−	 det���V�����=1 by Lemma 2.2 of Ref. 26 we fix the phase shift by the

ondition

lim
�→−	


�V���� = 0.

Lemma 3.5: [Ref. 26, Lemma 4.1] Let the Schrödinger assumptions Q1 and Q2 be satisfied. If
�LR

	���, then the phase shift is holomorphic in a neighborhood of R and satisfies


��V���� ª
d

d�

�V���� = −

1

2�
tr�T�V����T�V����*� 0 �38�

or ��R.
Lemma 3.5 shows that the phase shift is non-increasing. Moreover, since 
�V��−	�=0 the

hase shift is always non-positive, i.e., 
�V����0 for ��R. Let us introduce the counting
unction

��V���� ª card�s �:det���V��s�� = 1�, �� R .

t turns out that the ��V��·� is comparable with the counting function ND�V��·�,

ND�V���� ª card�s �:s � spec�HD�V���, �� R .

here HD�V� denotes the Schrödinger-type operator with Dirichlet boundary conditions.
Theorem 3.6: [Ref. 26, Theorem 4.7] Let the Schrödinger assumption Q1 and Q2 be satisfied.

f V�LR
	���, then

ND�V������V���� ND�V���� + 1, �� R .

Corollary 3.7: Let the Schrödinger assumption Q1 and Q2 be satisfied. If V�LR
	���, then

0 − 
�V���� 2 +
1

�
�2m̄
�
��� + �V−�L	�+ �39�

or ��R.
Proof: Since −
�V���� is non-decreasing by Lemma 3.5 the estimate −
�V����1+��V����,
�R, holds. By Remark 4.8 of Ref. 26 and Theorem 3.6 one gets
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ND�V����
1

�
�2m̄
�
��� + �V−�L	�+, �� R ,

hich yields �39�. �

. Lipschitz continuity of the phase shift

We are going to verify the Lipschitz continuity of the phase shift by giving bounds for the
erivative of 
�V�.

Proposition 3.8: Let the Schrödinger assumptions Q1 and Q2 be satisfied and let V�LR
	���. If

has a finite total variation, then



�V���� − 
�V�����
 
�
L��V�L	�2
� − ��
 , �40�

,���R where L�·� is defined by �18�.
Proof: Since the phase shift is continuously differentiable it is sufficient to show −
��V����


�
L��V�L	�2, ��R. Taking into account Lemma 3.5 we get


��V���� = −
1

2��
j=1

2

�T�V����*ej�L2
2 , �� R , �41�

here

e1 ª �1

0
�, e2 ª �0

1
� .

y �36� we find

�T�V����*e1�L2
2 =

�b
2


W���
2	a

b

dx
va�x,��
2.

et

E ª �0 1

1 0
� .

e note that �E��V�����B�C2�1, ��R, and

tr�E��V����� = − 2i
�a�b

W���
, �� R ,

hich yields

�a�b


W���

 1, �� R .

ence

�T�V����*e1�L2
2


1

�a
2	

a

b

dx
va�x,��
2, �� R .
pplying Lemma 3.4 we get the estimate
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�T�V����*e1�L2
2
 
�


Ra��V + 2 − �0�L	�2

�a
2 , �� ��0 − 1,	� . �42�

here �0ª−�V�L	−�0 and �0 is given by �20�. By Lemma 3.1 one immediately gets that
−	 ,�0�� res�H�V��. Using the resolvent formula

�H�V� − ��−1 = �H�V� − �0�−1�I + �� − �0��H�V� − ��−1� ,

� �−	 ,�0�, we find the representation

T�V���� = T�V���0��I + �� − �0��H�V� − ��−1� , �43�

� �−	 ,�0�. By ��V� we denote the numerical range of H�V�. One easily verifies that
�V�� �z�C :Re�z���0�. Applying Theorem 3.1 of Ref. 16 we get the estimate

��H�V� − ��−1�B�L2����
1

dist���V�,��


1


� − �0

 1

or �� �−	 ,�0−1�. Hence we find the estimate

�I + �� − �0��H�V� − ��−1�B�L2���� 1 +

� − �0


� − �0


= 2

or �� �−	 ,�0−1�. Further, from �43� we get

T�V����*e1 = �I + �� − �0��H�V�* − ��−1�T�V���0�*e1

or �� �−	 ,�0−1�. Using �42�

�T�V����*e1�L2
2
 4�T�V���0�*e1�L2

2
 4
�


Ra��V + 2 − �0�L	�2

�a
2 , �44�

� �−	 ,�0−1�. Taking into account �42� and �44� we finally get

�T�V����*e1�L2
2
 4
�


Ra��V + 2 − �0�L	�2

�a
2 , �� R . �45�

imilarly, we prove

�T�V����*e2�L2
2
 4
�


Rb��V + 2 − �0�L	�2

�b
2 , �� R . �46�

rom �41�, �45�, and �46� we obtain

− 
��V����
2

�

�
�Ra��V + 2 − �0�L	�2

�a
2 +

Rb��V + 2 − �0�L	�2

�b
2 �

or ��R. Inserting �0=−�V�L	−�0 into this formula and using the definition �18� we obtain
40�. �

. Dilations

Since H�V� is a maximal dissipative operator there is a larger Hilbert space K�H and a

elf-adjoint operator K�V� on K such that
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PH
K�K�V� − z�−1 � H = �H�V� − z�−1, Im�z�� 0, �47�

ee Ref. 9. The operator K�V� is called a self-adjoint dilation of the maximal dissipative operator
�V�. Obviously, from the condition �47� one gets

PH
K�K�V� − z�−1 � H = �H�V�* − z�−1, Im�z�� 0.

f the condition

clospan�z � C \ R:�K�V� − z�−1H� = K

s satisfied, then K�V� is called a minimal self-adjoint dilation of H�V�. Minimal self-adjoint
ilations of maximal dissipative operators are determined up to an isomorphism, in particular, all
inimal self-adjoint dilations are unitarily equivalent. The self-adjoint operator K�V� is absolutely

ontinuous and its spectrum coincides with the real axis, i.e., spec�K�=R. The multiplicity of its
pectrum is two. For more details the reader is referred to Ref. 17.

Definition 3.9: �cf. Ref. 22� Let K be a self-adjoint, absolutely continuous operator on a
ilbert space H and A be a bounded operator on H. Then A is called K-smooth if there is a

onstant CA�0 such that

	
−	

+	

dt�Ae−itKf��H2  2�CA
2�f��H2 �48�

or all f��H. The smallest constant CA is denoted by �A�K.
Let us verify that the projection PH

K is K�V�-smooth. To this end we need the following lemma
hich was proved in Ref. 26.

Lemma 3.10: [ Ref. 26, Lemma 5.3] Let the Schrödinger assumptions Q1 and Q2 be satisfied.
f V�LR

	���, then

d

d�
�EK�V����PH

K f�,PH
Kg��K = �T�V����PH

K f�,T�V����PH
Kg��C2

or a.e ��R and f� ,g� �K where EK�V��·� denotes the spectral measure of the the self-adjoint
ilation K�V�.

Proposition 3.8 and Lemma 3.10 imply the smoothness of PH
K:

Theorem 3.11: Let the Schrödinger assumptions Q1 and Q2 be satisfied and let V�LR
	���. If

has a finite total variation, then the projection PH
K is K�V�-smooth and the estimate

�PH
K�K�V� �
�
L��V�L	� �49�

olds where L�·� is defined by �18�.
Proof: In accordance with Ref. 22 we set

a2 ª sup
��R,f��K,f��0

�EK�V����PH
K f��2


�
 �f�2
,

here �= ��1 ,�2��R are bounded intervals of R and 
�
ª�2−�1 denotes their length. Then
heorem 5.1 of Ref. 22 states �PH

K�K�V��=�a2. Thus, the K�V�-smoothness of the projection PH
K

ncluding the estimate �49� is shown if we verify

a2 
�
L��V�L	�2.
sing Lemma 3.10 we get that
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�EK�V����PH
K f��K

2 =
1

2�
	
�

d��T�V����f�H
2 .

e note that

�T�V����f�H
2  �f�H

2 tr�T�V����*T�V����� = �f�H
2 tr�T�V����T�V����*� ,

�R. Hence

�EK�V����PH
K f��K

2  �f��K
2 1

2�
	
�

d� tr�T�V����T�V����*� .

aking into account Lemma 3.5 we obtain the estimate

�EK�V����PH
K f��K

2  − �f��K
2 	

�

d� 
��V���� .

ence we obtain

�EK�V����PH
K f��K

2

�f��K
2

 �
�V���1� − 
�V���2��

sing �40� we find the estimate

�EK�V����PH
K f��K

2


�
 �fK
2  
�
L��V�L	�2.

�

. Lax-Phillips scattering theory

The dilation space K admits the decomposition

K = D− � H � D+.

here D±=L2�R± ,C2�, see Ref. 17. Since

e−itK�V�D− � D−, t 0,

e−itK�V�D+ � D+, t� 0

s well as

�
t�R

e−itK�V�D− = �
t�R

e−itK�V�D+ = �0� ,

�50�
�

t�R
e−itK�V�D− = �

t�R
e−itK�V�D+ = K

he subspaces D− and D+ are called incoming and outgoing subspaces with respect to e−itK�V�, cf.
ef. 1, Chap. XII or Ref. 24. Further, introducing the Hilbert space K0,

K0 = L2�R,C2� = D− � D+ � K = D− � H � D+,
nd the self-adjoint differentiation operator K0,
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�K0f��x� = − i
d

dx
f�x�, f � dom�K0� = W1,2�R,C2� ,

ne easily verifies that D− and D+ are incoming and outgoing subspaces with respect to e−itK0. The
ax-Phillips wave operators are defined by

W±�K�V�,K0;J±� ª s − lim
t→±	

eitK�V�J±e−itK0,

here the identification operators J± :K0→K are given by

f� = J−f ª PD−

K0 f � 0 � 0, f � K0,

f� = J+f ª 0 � 0 � PD+

K0 f , f � K0.

ince

e−itK�V�
D− = e−itK0
D−, t 0,

e−itK�V�
D+ = e−itK0
D+, t� 0,

he wave operators W±�K�V� ,K0 ;J±� exist. Using �50� one proves the completeness of the wave
perators, i.e., ran�W±�K�V� ,K0 ;J±��=K. For details see Ref. 1, Chap. XII or Ref. 24. Defining the

ourier transform F :K0→K̂0=L2�R ,C2� by

�Ff���� ª
1

�2�
	

R
dx e−ix�f�x�, f � K0, �� R ,

ne defines the generalized Fourier transform ��V� :K→K̂0 by

��V� ª FW−�K�V�,K0;J−�*, �51�

f. Remark 5.2 of Ref. 18, which is an isometry. Moreover, if M is the multiplication operator
efined by

�Mf̂� = � f̂���, f̂ � dom�M� = � f̂ � K̂0:� f̂��� � K̂0� .

n the Hilbert space K0, then M =��V�K�V���V�−1.
Lemma 3.12: Let the Schrödinger assumptions Q1 and Q2 be satisfied and let V ,W�LR

	���.
f m has a finite total variation, then the estimate

��W−�K�W�,K�V�� − IK��B�K� 2�
�
L��V�L	�L��W�L	��V − W�L	 �52�

olds where L�·� is given by �18�.
Proof: Similar to formula �X.3.24� of Ref. 22 one has

��W−�K�W�,K�V�� − IK�f�,g��K = − i	
−	

0

dt��W − V�PH
Ke−itK�V�f�,PH

Ke−itK�W�g�� ,

or f� ,g� �dom�K�V��=dom�K�W��. Hence, we obtain the estimate


��W−�K�W�,K�V�� − IK�f�,g��K
 �V − W�L	�	
R

dt�PH
Ke−itK�V�f��2�1/2�	

R
dt�PH

Ke−itK�W�g��2�1/2

,

�
f ,g�K. Applying �48� and �49� we obtain
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��W−�K�W�,K�V�� − IK�f�,g��K
 2�
�
L��V�L	�L��W�L	��V − W�L	�f�� �g�

or f� ,g� �K which proves �52�. �

V. CARRIER DENSITY OPERATOR AND CONTINUITY

. Carrier density operator

In the following an operator � :K→K is called a density operator if � is a bounded, non-
egative, self-adjoint operator. The operator � is called a steady state, if � commutes with K�V�,
ee Ref. 18. Thus any steady state � is unitarily equivalent to a multiplication operator �̂ on the
ilbert space L2�R ,C2� induced by a density matrix ��·��L	�R ,B�C2��. In the following we

ssume that the function ��·� is fixed. This leads to a steady state of the form

��V� =��V�−1�̂��V� , �53�

hich depends on V. The reduced density operator �H�V��B�H� is defined

�H�V� ª PH
K��V� � H .

imilarly, we define the reduced density operator gH�K�V���B�H� by

gH�K�V�� ª PH
Kg�K�V�� � H .

otice that by the Schrödinger assumption �5� one has

0 �H�V� gH�K�V�� . �54�

Lemma 4.1; Let the Schrödinger assumptions Q1, Q2, and Q4 be satisfied. If V�LR
	 ���, then

H�K�V�� is a trace class operator such that

0 tr�gH�K�V���G��V−�L	�2 �55�

here G�·� is defined by �22�.
Proof: Let ��k�k=1

	 be an orthonormal basis in H. By the spectral theorem

�
k=1

n

�gH�K�V���k,�k� = �
k=1

n

�g�K�V���k,�k� = 	
R

d� g����
k=1

n
d

d�
�EK�V�����k,�k� ,

here we have used that the spectral measure EK�V��·� of K�V� is absolutely continuous with
espect to the Lebesgue measure. Applying Lemma 3.10 we find

	
R

d� g���
d

d�
�EK�V�����k,�k� =

1

2�
	

R
d� g����T�V�����k,T�V�����k�, k � N ,

hich yields

�
k=1

n

�g�K�V���k,�k� =
1

2�
	

R
d� g����

k=1

n

�T�V�����k,T�V�����k� .

ence we obtain

�
k=1

n

�g�K�V���k,�k�
1

2�
	

R
d� g���tr�T�V����*T�V�����
r
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�
k=1

n

�g�K�V���k,�k�
1

2�
	

R
d� g���trC2�T�V����T�V����*�. �56�

y �38� we get

1

2�
	

R
d� g���trC2�T�V����T�V����*� = −	 d� g���
��V����, �� R ,

hich yields

1

2�
	

R
d� g���trC2�T�V����T�V����*� = 
 − g���
�V����
�=−	

�=+	 + 	
R

d� g����
�V���� .

y Corollary 3.7 we have

− 
�V���� 2 +
1

�
�m̄
�
��� + �V−�L	�+

or ��R. We note that the conditions �6� and �7� imply

lim
�→	

��g��� = 0.

aking into account this property we obtain

1

2�
	

R
d� g���trC2�T�V����T�V����*� = 	

R
d� g����
�V���� .

ince g�����0 for �0 and g����0 for ��0 as well as 
�V����0, ��R, we get

1

2�
	

R
d� g���trC2�T�V����T�V����*� 	

0

+	

d� g����
�V����

 − 	
0

	

d� g�����2 +
1

�
�m̄
�
�� + �V−�L	� .

ntegrating by parts we find

1

2�
	

R
d� g���trC2�T�V����T�V����*� g�0��2 +

1

�
�m̄
�
��V−�L	�

+
1

2�
�m̄
�
	

0

	

d�
g���

�� + �V−�L	
,

hich yields the estimate

1

2�
	

R
d� g���trC2�T�V����T�V����*� �2g�0� +

1

2�
�m̄
�
	

0

	

d�
g���
�� � +

1

�
g�0��m̄
�
��V−�L	.

rom �56� we get the estimate

�
k=1

n

�g�K�V���k,�k� �2g�0� +
1

2�
�m̄
�
	

0

	

d�
g���
�� � +

1

�
g�0��m̄
�
��V−�L	

or n�N which shows that �k=1
	 �g�K�V���k ,�k� is finite for any orthonormal basis of H. Hence,
he restriction gH�K�V�� is a trace class operator. Using the notation �9�, �10�, and �22� we obtain

                                                                                                            



�

f
→
o
L

T
�

i

t

w

U

F

B

N
i

T

h

w

113513-20 H. Neidhardt and J. Rehberg J. Math. Phys. 46, 113513 �2005�

                        
55�. �

In the Hilbert space H let us introduce the multiplication operator

�M�h�f��x� ª h�x�f�x�, f � dom�M�h�� = H ,

or functions h�L	���. Since �H�V� is a trace class operator the functional �� given by h
tr��H�V�M�h�� is well-defined on L	���. Moreover, setting �����ª����� for Borel subsets �

f � one defines a Borel measure on � which is absolutely continuous with respect to the
ebesgue measure, cf. Ref. 18. Its Radon-Nikodym derivative u��V��L1��� obeys the relation

tr���V�M�h�� = 	
a

b

dx u��V��x�h�x�, h � L	��� . �57�

he function u��V��·� is not negative and is called the carrier density for a given potential V
L	. The operatorN��V� :LR

	���→LR
1 ��� defined by

N��V� ª u��V�, V � dom�N�� ª LR
	��� ,

s called the carrier density operator.
Proposition 4.2: Let the Schrödinger assumptions Q1, Q2, and Q4 be satisfied. If V�LR

	���,
hen

�N��V��L1G��V−�L	�2 �58�

here G�·� is defined by �22�.
Proof: From �57� one gets the estimate

�u��V��L1 ��H�V��B1�H� = tr��H�V�� .

sing �54� we obtain the estimate

�u��V��L1 tr�gH�K�V��� .

inally, taking into account Lemma 4.1 we verify �58�. �

. Lipschitz continuity

Further, it was shown that the carrier density operator is continuous, i.e., if Vn→
L	

V, then

��Vn�→
L1

N��V�. We are going to show that the continuity of the carrier density operator can be
mproved to bounded Lipschitz continuity, cf. Definition III.1.2 of Ref. 12.

At first let us prove the following lemma.
Lemma 4.3: Let g�·� be non-negative, continuously differentiable even functions obeying �6�.

he condition �8� is satisfied if and only if


g��� − g���
 c max�g���,g����
� − �
 �59�

olds for � ,��R.
Proof: We assume ��. Obviously, we have

g��� − g��� = 	
�

�

g��t�dt, �,�� R ,
hich yields
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g��� − g���
 c	
�

�

g�t�dt

here we have used �8�. Let ��R+. Since g���, ��R+, is decreasing by �6� we find


g��� − g���
 cg����� − ��, 0 � � ,

hich yields �59�. If �0�, then


g��� − g���
 = 
g��� − g�− ��
 c max�g���,g�− ���
� + �
 c max�g���,g����
� − �


hich also yields �59�. The case ��0 follows from the case 0��.
Conversely, if �59� is satisfied, then tending � to � we obtain


g����
 c max�g���,g���� = cg���, �� R ,

hich proves �8�. �

Next we consider the operator G�V�ª�g�K�V���H acting from H into H.
Lemma 4.4: Let the Schrödinger assumptions Q1, Q2, and Q4 be satisfied. If V�LR

	���, then
�V��B2�H ,K� and

�G�V��B2�H,K�G��V−�L	� , �60�

here G�·� is defined by (22). If V ,W�LR
	���, then

�G�V� − G�W��B2�H,K� c�G��V−�L	� + G��W−�L	���V − W�L	. �61�

Proof: By

�G�V��B2�H,K�
2 = tr�G�V�*G�V�� = tr�gH�K�V���

nd Lemma 4.1 one gets �60�. Further, from �8� and Lemma 4.3 we obtain that


g��� − g���
 c max�g���,g����
� − �
 c�g��� + g����
� − �
, �,�� R ,

hich yields


�g��� − �g���
��g��� + �g���� c��g��� + �g����2
� − �
 . �,�� R.

herefore we get


�g��� − �g���
 c��g��� + �g����
� − �
, �,�� R .

ence, if we put

h��,�� ª
�g��� − �g���

�� − ����g��� + �g����
, �,�� R ,

hen 
h�� ,��
c, � ,��R. Since the operators V and W act only on the subspace H we get
G�V��V−W�+ �V−W��G�W��B2�K�. Applying the technique of double operator spectral

ntegrals5–7 we find the representation

�g�K�V�� − �g�K�W�� = 	
R
	

R
h��,��dEK�V�����G�V��V − W� + �V − W�G�W�*�dEK�W���� ,

� �
hich yields g�K�V��− g�K�W���B2�K�. Moreover, we find the estimate
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��g�K�V�� − �g�K�W���B2�K� c��G�V��B2�H,K� + �G�W��B2�H,K���V − W�B�H�.

ince G�V�ª�g�K�V���H and G�W�ª�g�K�W���H we obtain

�G�V� − G�W��B2�H,K� c��G�V��B2�H,K� + �G�W��B2�H,K���V − W�B�H�.

sing �60� we finally get �61�. �

Proposition 4.5: Let the Schrödinger assumptions Q1, Q2, and Q4 be satisfied. If m has a finite
otal variation and V ,W�LR

	���, then

�N��V� − N��W��L1L��V�L	,�W�L	��V − W�L	 �62�

here L�· , · � is given by �23�.
Proof: By �57� we get

	
a

b

dx�u��V��x� − u��W��x��h�x� = tr���H�V� − �H�W��M�h��

or any h�L	��� where ��V� and ��W� are defined in accordance with �53�. By �51� we have

��V� = W−�K�V�,K0�F*�̂FW−�K�V�,K0�*

nd

��W� = W−�K�W�,K0�F*�̂FW−�K�W�,K0�*.

he wave operators W−�K�V� ,K0� and W−�K�W� ,K0� exist and are complete; consequently, the
ave operator W−�K�W� ,K�V�� exists and is complete. Moreover, the representation

W−�K�W�,K0� = W−�K�W�,K�V��W−�K�V�,K0�

olds. For brevity we set W−�W ,V�ªW−�K�W� ,K�V�� as well as W−�W�ªW−�K�W� ,K0� and

−�V�ªW−�K�V� ,K0�. Let us introduce the matrix valued function

�0��� ª g���−1����, �� R .

y assumption Q4 one has

0 �0��� IC2, �� R .

sing this notation we find the representation

�H�V� − �H�W� = G�V�*�0�V�G�V� − G�W�*�0�W�G�W� = �G�V�* − G�W�*��0�V�G�V�

+ G�W�*�0�V��G�V� − G�W�� + G�W���0�V� − �0�W��G�W� .

ence, we get the estimate

��H�V� − �H�W��B1�H,K� ��G�V��B2�H,K� + �G�W��B2�H,K���G�V� − G�W��B2�H,K�

+ �G�W��B2�H,K��G�W��B2�H,K���0�V� − �0�W��B�H�.

y the representation

�0�V� − �0�W� = �0�V� − W−�W,V��0�V�W−�W,V�*

= �IK − W−�W,V���0�V�W−�W,V�* + �0�V��IK − W−�W,V�*�
nd Lemma 3.12 we obtain the estimate
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��0�V� − �0�W��B�K� 4�
�
L�V�L�W��V − W�L	.

y Lemma 4.4 we get

��H�V� − �H�W��B1�H,K� �c�G��V�L	� + G��W�L	��2

+ 4�
�
L��V�L	�L��W�L	�G��V�L	�G��W�L	���V − W�L	

hich proves �62�. Taking into account the definition �23� we verify �62�. �

. DISSIPATIVE SCHRÖDINGER-POISSON SYSTEM

. Rigorous definition

By W0
1,2��� we denote the subspace of W1,2��� given by W0

1,2���ª �f �W1,2��� : f�a�= f�b�
0�. Its dual space with respect to the scalar product �·, ·� of L2��� is denoted by W0

−1,2���.
At first we will give a rigorous definition of Poisson’s equation and afterwards define what we

ill call a solution of the dissipative Schrödinger Poisson system. We define the Poisson operator
:WR

1,2���→W0,R
−1,2��� as usual by

�P�,�� = 	
a

b

dx �
d�

dx

d�

dx
, �� WR

1,2���, �� W0,R
1,2 ��� .

urther, we set P0ªP�W0,R
1,2 ���. The operators P and P0 are linear and bounded. We have


�P�,��
 ���L	���W1,2���W0
1,2.

ence P is continuous. Furthermore, one has the estimate

���W0
1,2 �1 + 
�
����L2, �� W0

1,2��� .

hus, we get by �5.1�

���W0
1,2

2
 �1/��L	

�1 + 
�
�P0�,��, �� W0
1,2��� .

y the Lax-Milgram lemma the inverse operator P0
−1 exists and its norm does not exceed

1/��L	
�1+ 
�
, i.e.,

�P0
−1�B�W0

−1,2,W0
1,2� �1/��L	

�1 + 
�
 . �63�

Definition 5.1: Let u±�L1. We say that ��WR
1,2 satisfies Poisson’s equation with boundary

onditions ��a�=�a and ��b�=�b if �ª�− �̂�W0
1,2��� and the equation

P0� = C + E1u+ − E1u−

s fulfilled, where �̂ is defined by �11�.
Definition 5.2: We say that��WR

1,2��� is a solution of the dissipative Schrödinger-Poisson
ystem if

. the carrier densities u±�L1��� are given by u±=N�±
± �V0

±± �̂±E	��, �ª�− �̂, and
. � satisfies the Poisson equation with boundary conditions ��a�=�a and ��b�=�b.

. Existence of solutions and estimates
	 1,2
Let us introduce the non-linear mappings Q :LR���→W0,R���,
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Q��� ª P0
−1�C + E1N�+

+ �V0
+ + �̂ + �� − E1N�−

− �V0
− − �̂ − ��� , �64�

�dom�Q�=LR
	���, and Q	 :LR

	���→LR
	���,

Q	��� = E	Q��� ,

�dom�Q	�=LR
	���. It was shown in Ref. 2 that the dissipative Schrödinger-Poisson system

dmits a solution if and only if Q	 admits a fixed point. Moreover, if �	�LR
	��� is a fixed point,

.e., Q	��	�=�	, then �ª �̂+Q��	� is a solution of the dissipative Schrödinger-Poisson system. If

	�LR
	��� is a fixed point, i.e., �	=Q	��	�, then one has the estimate

��	�L	 = �Q	��	��L	��� �1�P0
−1�B�W0

−1,2,W0
1,2� ��C�W0

−1,2 + �1�N�+
+ �V0

+ + �̂ + �	��L1

+ �1�N�−
− �V0

− − �̂ − �	��L1� .

aking into account �63� we obtain

��	�L	 = �Q	��	��L	��� �1�1/��L	
�1 + 
�
 ��C�W0

−1,2 + �1�N�+
+ �V0

+ + �̂ + �	��L1

+ �1�N�−
− �V0

− − �̂ − �	��L1� . �65�

pplying Proposition 4.2 we find

�N�+
+ �V0

+ + �̂ + �	��L1 B0
+ + B1

+���V0
+ + �̂ + �	�−�L	,

hich yields

�N�+
+ �V0

+ + �̂ + �	��L1 B0
+ + B1

+��V0
+ + �̂�L	 + B1

+���	�L	.

imilarly, we obtain

�N�−
− �V0

− − �̂ − �	��L1 B0
− + B1

−��V0
− − �̂�L	 + B1

−���	�L	.

nserting these estimates into �65� we find

��	�L	  D0 + D1���	�L	, �66�

here D0 and D1 are given by �12� and �13�. From �66� we obtain the estimate

��	�L	  r0 �67�

or any fixed point of the map Q	 where r0 is defined by �14�. So the following theorem is proven:
Theorem 5.3: [Ref. 3, Theorem 4.8] If the Schrödinger and Poisson assumptions are satisfied,

hen the dissipative Schrödinger-Poisson system always admits a solution. Moreover, for any
olution ��WR

1,2��� the estimate ��	− �̂�L	r0 holds.
e note that the radius r0 depends only on the Schrödinger and Poisson data. Therefore, if the

chrödinger and Poisson data are fixed, then the radius r0 is fixed.
However, Theorem 5.3 does not answer the question whether this solution is unique.

. Uniqueness

Now we are going to give conditions under which the solution of the dissipative Schrödinger-
oisson system is unique.

Theorem 5.4: Let the Schrödinger and Poisson assumptions be satisfied. If m± have finite
otal variations and the condition U�1 is valid, where U is given by �25�, then the dissipative
chrödinger-Poisson system admits only one solution.
Proof: Let �	 and �	� be two fixed points of Q	. From �64� we get the representation
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�	 − �	� = E	P0
−1E1��N�+

+ �V+� − N�+
+ �W+�� − �N�−

− �V−� − N�−
− �W−���

here

V+
ª V0

+ + �̂ + �	 and W+
ª V0

+ + �̂ + �	�

nd

V−
ª V0

− + �̂ + �	 and W−
ª V0

− + �̂ + �	� .

ence we find

��	 − �	� �L	  �1
2�P0

−1�B�W0
−1,2,W0

1,2� ��N�+
+ �V+� − N�+

+ �W+��L1 + �N�−
− �V−� − N�−

− �W−��L1�.

sing �63� we obtain

��	 − �	� �L	  �1
2�1/��L	

�1 + 
�
 ��N�+
+ �V+� − N�+

+ �W+��L1 + �N�−
− �V−� − N�−

− �W−��L1�.

pplying Proposition 4.5 we get

��	 − �	� �L	  �1
2�1/��L	

�1 + 
�
 �L+��V+�L	,�W+�L	� + L−��V−�L	,�W−�L	����	 − �	� �L	.

e have

�V+�L	  �V0
+ + �̂�L	 + ��	�L	  r1

+,

here we have used the estimate �67� and r1
+ is defined by �15�. Similarly we prove that

�W+�L	  r1
+

nd

�V−�L	  r1
− and �W−�L	  r1

−,

here we have used the definitions �15�. Since

L±��V±�L	,�W±�L	�L±�r1
±,r1

±�

e obtain

��	 − �	� �L	  �1
2�1/��L	

�1 + 
�
L��	 − �	� �L	,

here L given by �24�. Hence, if condition �25� is satisfied, then ��	−�	� �L	 has to be zero which
roves the uniqueness. �

. Uniqueness and shrinking

Our next aim is to show that a dissipative Schrödinger-Poisson system admits always a
olution if 
�
 is small. To this end we introduce the following

Definition 5.5: Let ���� and let D=Q�P be Schrödinger-Poisson data of the device �.
e say D�ªQ��P� are shrunken Schrödinger-Poisson data of D if

Q� ª �m± ���,�a
±,�b

±,V0
± ���,�±� and P� ª �C ���,� ���,�a,�b� .

he corresponding dissipative Schrödinger-Poisson system is called a shrunken dissipative
chrödinger-Poisson system.

Definition 5.5 means that we leave unchanged the boundary coefficients �a
± ,�b

± of the dissi-

ative Schrödinger operators and the density matrices as well as the boundary values of the
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nhomogeneous Poisson equation but we restrict the effective masses m±, the external potentials

0
±, the doping profile C, and dielectric permittivity � to the subinterval ��.

We note that the quantities �9�–�25� except �19� in fact depend on the interval �. We express
his fact by adding in notation the term ���, for instance, B0

±���, B1
±���, �̂����x� , . . . ,U���.

Theorem 5.6: Let the Schrödinger and Poisson assumptions be satisfied and let m± have finite
otal variations. A shrunken dissipative Schrödinger-Poisson system admits a unique solution if
��
, ����, is sufficiently small.

Proof. By Theorem 4 it is sufficiently to show that lim sup
��
→0U����=0. Since

m� ± m±�x� m̄±, x ���,

e obtain from �9� and �10� that

lim

��
→0

B0
±���� = 2g±�0� and lim


��
→0

B1
±���� = 0.

ince

��̂�����L	����max�
�a
, 
�b
�

e find

�V0
± ��� + �̂�����L	���� �V0

±�L	��� + max�
�a
, 
�b
� .

aking into account this estimate and using �C����W−1,2 �C�W−1,2, �1�����
��
 we obtain

lim

��
→0

D0
±���� = 0 and lim


��
→0

D1
±���� = 0

hich yields

lim

��
→0

r0
±���� = 0

nd

lim sup

��
→0

r1
±���� �V0

±�L	��� + max�
�a
, 
�b
� . �68�

ince ∨a�
b��1/m±����∨a

b1/m±, ��= �a� ,b��, we get

lim sup

��
→0

M±����M±��� .

urther, we have

lim sup

��
→0

Rj
±�r1

±�����M±����1 + 
� j
±
� 2

m� ±�, j = a,b .

sing Lemma 3.1, �20� and �68� one gets

lim

��
→0

�2r1
±���� + 2�0�����
�
 = 4q±m̄±
hich yields
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lim sup

��
→0

Rj
±�2r1

±���� + 2�0�����M±����1 + 
� j
±
� 2

m� ±�
 exp�4q±m̄±�M±����2� 2

m� ±�, j = a,b .

sing that we obtain

lim sup

��
→0

L±�r±�����M±���exp�4q±m̄±�M±����2� 2

m� ±�  � 1

��a
±�2�1 + 
�a

±
� 2

m� ±�
+

1

��b
±�2�1 + 
�b

±
� 2

m� ±�� .

y

lim

��
→0

G±�r1
±����� = �2g±�0� .

e have

lim

��
→0

L±�r±����,r±����� = 8c±g±�0� .

herefore, we finally obtain

lim

��
→0

L���� = 8�c+g+�0� + c−g−�0��

here

L���� ª L+�r1
+����,r1

+����� + L−�r1
−����,r1

−����� .

ince lim
��
→0�1����=0 we find lim
��
→0U����=0 where

U���� ª �1
2�����1 + 
��
L���� .

pplying Theorem 5.4 we see that for sufficiently small domains ���� the solution of the
issipative Schrödinger-Poisson system is unique. �

I. REMARKS

Let us comment on the results.

. Comparing the existence Theorem 5.3 with Theorem 4.8 of Ref. 2 one observes that Theo-
rem 5.3 proves the existence under weaker assumptions. In particular, the Schrödinger as-
sumption Q4 is weaker than Assumption 4.2 A4

± of Ref. 2. The assumption Q4 is close to a
necessary condition. However, both proofs use the Schauder fixed point theorem.

. In contrast to Ref. 2 the proof of the crucial estimate �58� of Proposition 4.2, cf. Theorem 3.1
of Ref. 2 is now based on the phase shift and its asymptotic behavior at −	 and +	.

. The asymptotic properties of the phase shift are established by a detailed investigation in
Ref. 26.

. The uniqueness proof is essentially based on the Lipschitz continuity of the carrier density
operator, cf. Proposition 4.5 which heavily rests on the Lipschitz continuity of the Lax-
Phillips wave operators, cf. Sec. III C. This continuity relies on Kato’s theory of smooth
operators, cf. Refs. 22 and 23.

. The results of the paper, in particular the results of Sec. V D, suggest the possibility that the
solution of the dissipative hybrid model, cf., Ref. 4, is also unique provided the quantum

zone is sufficiently small.
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Polyhedral realization of crystal bases is one of the methods for describing the
crystal base B��� of a quantized enveloping algebra explicitly. This method can be
applied to symmetrizable Kac-Moody types. We can also apply this method to the
crystal bases B��� of integrable highest weight modules and of modified quantum
algebras. But, the explicit forms of the polyhedral realizations of crystal bases
B��� and B��� are only given in the case of arbitrary rank 2, of An and of An

�1�.
So, we will give the polyhedral realizations of crystal bases B��� and B���
for all simple Lie algebras in this paper. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2121308�

. INTRODUCTION

The quantum algebra Uq�g�ª �ei , f i ,q
h�i�I�I= �1,2 , . . . ,n�� which was introduced in the study

f solvable lattice models is applied to the several kinds of study of mathematical physics and
lays important roles. The nilpotent part Uq

−�g��=�f i�i�I� of Uq�g� has a crystal base B��� which
as constructed by Kashiwara1 and the irreducible integrable highest weight representaion of

q�g� also has crystal base B���.
The crystal base has been realized by several methods but it is not so easy to obtain the

xplicit form. Polyhedral realization of crystal bases is one of the methods for realizing crystal
ases explicitly, which was introduced by Nakashima and Zelevinsky.2 We can describe a vector
n the crystal base B��� as a lattice point of certain convex polyhedron in an infinite Z-lattice by
his method. This method can be applied to symmetrizable Kac-Moody types and applied to the
rystal base B��� of the irreducible integrable highest weight module. In Ref. 2, polyhedral
ealizations of B��� are given when g is arbitrary of rank 2, when g is of type An and when g is
f type An−1

�1� and in Ref. 3, Nakashima gave the polyhedral realizations of the crystal base B���
�� P+� of irreducible integrable highest weight module when g is the same cases as the men-
ioned earlier. He and the author4 applied this method to the modified quantum algebras and gave
he polyhedral realizations of B�Uq�g�a�� and also for some specific connected component B0���
�� P� containing u� � t� � u−� for g of type An under certain assumptions on the weight � and for
of type A1

�1� on positive level � and in Ref. 5 the author gave polyhedral realization for B0��� for
rbitrary rank 2 cases on positive level �. After Nakashima and Zelevinsky’s work, Littelmann6

escribed the crystal base B��� by some inequalities �which are called “cones”� for all simple Lie
lgebras and B��� for classical Lie algebras for a special choice of a reduced word for a longest
lement of Weyl group. Gleizer and Postnikov7 described the canonical base for An and any
educed word. They also obtained Littlewood-Richardson coefficients C�,�

� . Berenstein and
elevinsky8 described the canonical bases for any reduced word and C�,�

� for Bn, Cn, and Dn

xplicitly, which imply that the weight multiplicity formula of B��� is given. As a result, they
escribed the canonical bases and the crystal base B��� by similar expression to our results, but it

�
Electronic mail: a-hoshin@mm.sophia.ac.jp
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eems to be different from ours. In this paper, we will give the polyhedral realizations of crystal
ases B��� and B��� for all simple Lie algebras. In order to treat the cases, we improve the
heorem in Ref. 3 and obtain the polyhedral realizations.

This paper is organized as follows: in Sec. II, we review the theory of crystal base and
ethods of polyhedral realizations of B��� and B���. In Sec. III, we improve the method which is

iven in Ref. 2 and obtain the explicit forms of the polyhedral realizations of B��� and B��� for
ll simple Lie algebras. But, we do not write in this paper about the B��� for E7 and E8 since
umerous inequalities appear.

I. PRELIMINARIES

. Crystal bases and crystals

In this section, we review the theory of crystal bases and crystals. We fix a finite index set I
nd let A= �aij�i,j�I be a generalized symmetrizable Cartan matrix, �t , ��i�i�I , �hi�i�I� the associated
artan data, and g the associated Kac-Moody Lie algebra where �i �respectively, hi� is called a

imple root �respectively, simple coroot�. Let P be a weight lattice with a Q-valued symmetric
ilinear form �·,�, P* a dual lattice including �hi��I, and Qª� i�IQ�q��i a root lattice. The quan-
um algebra Uq�g� is the associative algebra with 1 over Q�q� generated by ei , f i ,q

h �i� I ,h
P*� with the usual relations. Let Uq

−�g�ª �f i�i�I be the subalgebra of Uq�g� and V��� be the
rreducible integrable highest weight module. Uq

−�g� �respectively, V���� have a crystal base
L��� ,B���� �respectively, �L��� ,B����� satisfying some properties. Let �� :Uq

−�g�→V���
Uq

−�g� /
iUq
−�g�f i

1+�hi,�� be the canonical projection and �̂� :L��� /qL���→L��� /qL��� be the
nduced map from ��. We note that �̂��B����=B���� �0�.

The notion of crystal is obtained by abstracting the combinatorial properties of crystal bases.

crystal B has maps wt :B→P ,�i ,�i :B→Z� �−�� and ẽi , f̃ i :B� �0�→B� �0� with some axioms.
n fact, crystal bases B��� and B��� are also crystals. The tensor product of the crystal bases is
gain crystal base and so we can consider the tensor product of crystals.

. Polyhedral realization of B„�…

In this section, we review the polyhedral realization of the crystal B��� �see Ref. 3�.
First, we recall the crystal structure of Z�. We consider the following additive groups:

Z�
ª ��¯ ,xk, ¯ ,x2,x1��xk � Z and xk = 0 for k 	 0� .

e will denote by Z
0
� �Z� the semigroup of non-negative sequences. Take an infinite sequence

f indices �= �. . . , ik , . . . , i2 , i1� from I such that

ik � ik+1 for any k, and � �k � 0:ik = i� = � for any i � I . �2.1�

he crystal structure on Z� associated with � is defined as follows. Let x� = �. . . ,x2 ,x1��Z�. We set
or k
1

k�x�� ª xk + 

j�k

�hik
,�ij

�xj . �2.2�

ince xj =0 for j	0, k is well-defined. Let �i��x��ªmaxk:ik=i k�x�� and

M�i� = M�i��x�� ª �k:ik = i,k�x�� = �i��x��� . �2.3�

ote that �i��x��
0, and that M�i�=M�i��x�� is finite set if and only if �i��x���0. Now, we define

he map ẽi :Z�→Z�� �0�, f̃ i :Z�→Z�, by ẽi�0�= f̃ i�0�=0 and

� f̃ �x��� = x + � �i�, �2.4�
i k k k,min M
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�ẽi�x���k = xk − �k,max M�i� if �i��x�� � 0 otherwise ẽi�x�� = 0, �2.5�

here �i,j is Kronecker’s delta. We also define the weight function and the function �i and �i on
� as follows:

wt�x�� ª − 

j=−�

�

xj�ij
, �i�x�� ª �i��x��, �i�x�� ª �hi,wt�x��� + �i�x�� . �2.6�

e denote this crystal by Z�
�.

Proposition 2.1 (Ref. 9): There is a unique embedding of crystals according to �,

��:B��� � Z
0
� � Z�

� �u� � �¯ ,0,0�� . �2.7�

his embedding is called Kashiwara embedding.
Next, we review the polyhedral realization of B��� for describing the image of Kashiwara

mbedding. We consider the following infinite dimensional vector spaces and their dual spaces:

Q�
ª �x� = �. . . ,xk, . . . ,x2,x1�:xk � Q and xk = 0 for k 	 0� ,

�Q��*
ª Hom�Q�,Q� .

e will write a linear form �� �Q��* as ��x��=
k
1�kxk �� j �Q�. For the sequence �= �ik�k
1 and

1, we set

k�+�
ª min�l:l � k and ik = il� ,

k�−�
ª max�l:l � k and ik = il� if it exists otherwise k�−� = 0.

e define a linear form �k �k
1� on Q� by

�k�x�� = k�x�� − k�+��x�� = xk + 

k�j�k�+�

�hik
,�ij

�xj + xk�+�. �2.8�

y using these linear forms, let us define a piecewise-linear operator Sk=Sk,� on �Q��* as follows:

Sk��� ª �� − �k�k if �k � 0,

� − �k�k�−� if �k � 0,
 �2.9�

or ��x��=
�kxk� �Q��*. Here we set

�� ª �Sjl
¯ Sj2

Sj1
�xj0

��l 
 0, j0, j1, . . . , jl 
 1� , �2.10�

�� ª �x� � Z� � Q����x�� 
 0 for any � � ��� . �2.11�

e impose on � the following “positivity assumption” �P�:

�P� for �, if k�−� = 0 then �k 
 0 for any ��x�� = 

k

�kxk � ��. �2.12�

Theorem 2.2 (Ref. 2): Let � be the sequence of indices satisfying (2.1) and the
ositivity assumption �P�. Let �� :B����Z�

� be the Kashiwara embedding. Then, we have
m�����	B����=��.

We call �� the polyhedral realization of B���.

. Polyhedral realization of B„�…
In this section, we review the polyhedral realization of the crystal B��� �see Ref. 3�.
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Let R�ª �r�� be the crystal for �� P+ �P+: set of dominant integral weights� defined in Ref.
. For the crystal B��� � R�, we define the following map:

��:�B��� � R�� � �0� → B��� � �0� �2.13�

y ���0�=0 and ���b � r��= �̂��b� for b�B���. We set

B̃��� ª �b � r� � B��� � R�:���b � r�� � 0� .

Theorem 2.3 (Ref. 3): (i) The map �� becomes a surjective strict morphism of crystals
��� � R�→B���.

(ii) B̃��� is a subcrystal of B��� � R�, and �� induces the isomorphism of crystals B̃���
B���.

Let us denote Z� � R� by Z����. Here note that we can identify Z���� with Z�
� as a set since the

rystal R� has only one element but their crystal structures are different. By Theorem 2.3, we have

he strict embedding of crystals �� :B����	B̃�����B��� � R�. Combining �� and Kashiwara
mbedding ��, we obtain the following:

Theorem 2.4 (Ref. 3): There exists the unique strict embedding of crystals

��
���:B��� � B��� � R� � Z�

�
� R� ¬ Z�

����

uch that ��
����u��= �. . . ,0 ,0� � r�.

We fix an infinite sequence of indices �= �. . . , ik , . . . , i2 , i1� satisfying �2.1� and �� P+. We
efine a linear form �k

�±��k
1� on Q� by

�k
�+��x�� = xk + 


k�j�k�+�
�hik

,�ij
�xj + xk�+�, �2.14�

�k
�−��x�� = �xk�−� + 


k�−��j�k

�hik
,�ij

�xj + xk if k�−� � 0

− �hik
,�� + 


1�j�k

�hik
,�ij

�xj + xk if k�−� = 0.� �2.15�

ere note that �k
�+�=�k and �k

�−�=�k�−� if k�−��0. By using these linear forms, let us define a

iecewise-linear operator Ŝk= Ŝk,� on �Q��* as follows:

Ŝk��� ª �� − �k�k
�+� if �k � 0

� − �k�k
�−� if �k � 0,

 �2.16�

or ��x��=c+
�kxk �c ,�k�Q� on Q�. For the fixed sequence �= �ik�, in case k�−�=0 for k
1, there
xists unique i� I such that ik= i. We denote such k by ��i�, namely, ��i� is the first number k such
hat ik= i. Here we set for �� P+ and i� I,

��i��x�� ª − ���i�
�−��x�� = �hi,�� − 


1�j���i�
�hi,�ij

�xj − x��i�. �2.17�

or � and �� P+, let ����� be the set of all linear functions generated by Ŝk from the functions xj

j
1� and ��i� �i� I�, namely,

����� ª �Ŝjl
¯ Ŝj2

Ŝj1
�xj0

�:l 
 0, j0, j1, . . . , jl 
 1�

� �Ŝjk
¯ Ŝj2

Ŝj1
���i��x��:k 
 0,i � I, j0, j1, . . . , jk 
 1� .
ow we set
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�� ª �x� � Z�
���� � Q�:��x�� 
 0 for any � � ������ . �2.18�

For � and �� P+, a pair �� ,�� is called ample if ������0� = �¯ ,0 ,0�.
Theorem 2.5 (Ref. 3): Suppose that �� ,�� is ample. Let ��

� :B����Z�
���� be the embedding

s in Theorem 2.4. Then we have Im���
�����	B����=�����.

We call ����� the polyhedral realization of B���.
In the rest of this section, we discuss Ŝk and Sk. We define the linear form ��i� �i� I� on Q by

��i��x�� ª − 

1�j���i�

�hi,�ij
�xj − x��i� = − �hi,�� + ��i��x�� �2.19�

nd set of linear forms ��
�i� by

��
�i�
ª �Sjl

¯ Sj2
Sj1

��i�:l 
 0, j0, j1, . . . , jl 
 1� . �2.20�

ere we introduce the strict positivity assumption for � as follows:

if k�−� = 0 then �k 
 0 for any ��x�� = 

k

�kxk � ��� � � j�I��
�j�� \ ���i�:i � I� , �2.21�

here �� is defined by �2.10�. Then we have the following Lemma:
Lemma 2.6 (Ref. 3): Under the strict positivity assumption for �, we have

Ŝjl
¯ Ŝj2

Ŝj1
xj0

= Sjl
¯ Sj2

Sj1
xj0

, �2.22�

or any l
0, j0 , j1 , . . . , jl
1, and

Ŝjl
¯ Ŝj2

Ŝj1
��i��x�� = �hi,�� + Sjl

¯ Sj2
Sj1

��i��x�� , �2.23�

or any l
0, j0 , j1 , . . . , jl
1 and i� I, if the left-hand side of �2.23� is nonzero.

II. EXPLICIT FORMS OF POLYHEDRAL REALIZATION OF B„�… AND B„�…

The polyhedral realizations of B��� and B��� are already known in the case of all rank 2
ac-Moody types, of An and of An−1

�1� .2,3 In this section, we treat other simple types. We obtain the
ollowing Theorem by Nakashia and Zelevinsky.

Theorem 3.1: Let ��� be a set of the linear forms in �Q��* and set

��� ª �x� � Z�
����x�� 
 0 for any � � ����

atisfying the following conditions:

i) ��� is closed under the action of Sk’s,
ii) � satisfies the positivity assumption �P�,
iii) all entries of x� = �¯ ,x2 ,x1����� are non-negative.

hen we have

Im�����	B���� = ���.

Proof: We recall that the following two facts for certain ����Z�
�� �see Nakashia and

elevinsky’s Theorem 3.1�:
A� If �� is closed under the action of f̃ i, then Im�������.
B� If �� is closed under the action of ẽi and all the entries of x� ��� are non-negative, then

�� Im���� since every x� ��� can be transformed to 0� by the action of ẽi’s �i� I�.
We assume condition �i�. Condition �i� means that ��� is closed under the action of ẽi’s. Using

˜
ii�, we obtain that ��� is closed under the action of f i’s and this shows Im��������. Using �iii�, we
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btain that ���� Im����. �

Remark 3.2: Theorem 3.1 implies that we need not consider a set of linear functions �� which
s closed under the action of the Sk’s to xj for any j�0. We only need to find a set of linear
unctions �� which is closed under the action of the Sk’s to xj for some j�0 and which satisfies
he two conditions �ii�, �iii�.

It will be convenient for us to change the indexing set for Z� from Z
1 to Z
1� �1,n�. We will
o this with the help of the bijection Z
1� �1,n�→Z
1 given by ��j ; i�� �j−1�n+ i�. Thus, we
ill write an element x� �Z� as doubly indexed family �xj;i� j
1,i��1,n� of non-negative integers.
herefore, we can write that x� �Z� as �. . . ,x1;2 ,x1;1�. We will adopt the convention that xj;i=0
nless i� �1,n�. Hereafter, we fix the infinite sequence � as follows:

here n is the size of Cartan matrix. We use the same Cartan data as the one in Ref. 10 except for
he cases F4 and E7.

. Bn case

We consider the case of type Bn and give the explicit forms of �� and �����. First, we give the
olyhedral realization ��. We define for any j
1,0�k�2n−1,

� j;k ª �id �k = 0�
Sj;kSj;k−1 ¯ Sj;2Sj;1 �1 � k � n − 1�
Sj+k−n;2n−kSj+k−1−n;2n−k+1 ¯ Sj+1;n−1Sj;n� j;n−1 �n � k � 2n − 1� .

� �3.1�

Lemma 3.3:

� j;k�xj;1� = �xj;k+1 − xj+1;k �0 � k � n − 1�
xj+k−n+1;2n−k−1 − xj+k−n+1;2n−k �n � k � 2n − 1� .

 �3.2�

Proof: By the induction on k. The case of k=0 is trivial.
Case I� 1�k�n−1.
If k=1, we have

Sj;1�xj;1� = xj;1 − �xj;1 − xj;2 + xj+1;1� = xj;2 − xj+1;1 = � j;1�xj;1� .

f 1�k�n−1, we assume that � j;k−1�xj;1�=xj;k−xj+1;k−1. Then we have

Sj;k� j;k−1�xj;1� = Sj;k�xj;k − xj+1;k−1� = xj;k − xj+1;k−1 − �xj;k − xj;k+1 − xj+1;k−1 + xj+1;k�

= xj;k+1 − xj+1;k = � j;k�xj;1� .

Case II� n�k�2n−1.
If k=n, using the result of Case I�, we have

Sj;n� j;n−1�xj;1� = Sj;n�xj;n − xj+1;n−1� = xj;n − xj+1;n−1 − �xj;n − 2xj+1;n−1 + xj+1;n�

= xj+1;n−1 − xj+1;n = � j;n�xj;1� .

f n�k�2n−1, we assume that � j;k−1�xj;1�=xj+k−n;2n−k−xj+k−n;2n−k+1. Then we have

Sj+k−n;2n−k� j;k−1�xj;1� = Sj+k−n;2n−k�xj+k−n;2n−k − xj+k−n;2n−k+1�

= xj+k−n;2n−k − xj+k−n;2n−k+1 − �xj+k−n;2n−k − xj+k−n;2n−k+1 − xj+k−n+1;2n−k−1

+ xj+k−n+1;2n−k�
= xj+k−n+1;2n−k−1 − xj+k−n+1;2n−k = � j;k�xj;1� .
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�

Lemma 3.4: The set �� j;k�xj;1� :1� j ,0�k�2n−1� is closed under the actions of all trans-
ormations Sm;l for any m
1, l
1.

Proof: Using the definition of � j;k �3.1� and the formula �3.2� in Lemma 3.3, if k=0, � j;0

id and we have

Sm;l�� j;0�xj;1�� = �� j;1�xj;1� if �m;l� = �j ;1�
xj;1 otherwise.


f 1�k�n−1, we have

Sm;l�� j;k�xj;1�� = �� j;k−1�xj;1� if �m;l� = �j ;k�
� j;k+1�xj;1� if �m;l� = �j ;k + 1�
� j;k�xj;1� otherwise.

�
f n�k�2n−1, we have

Sm;l�� j;k�xj;1�� = �� j;k−1�xj;1� if �m;l� = �j + k − n;2n − k� ,

� j;k+1�xj;1� if �m;l� = �j + k − n + 1;2n − k − 1� ,

� j;k�xj;1� otherwise.
�

�

Now, we define

�� ª �� j;k�xj;1�:j 
 1,0 � k � 2n − 1� ,

�� ª �x� � Z�
�:��x�� 
 0 for any � � ��� .

Theorem 3.5: The polyhedral realization �� of B��� for type Bn is described as follows:

xj;i = 0 for j,i � �1,n� , �3.3�

x1;i 
 x2;i−1 
 ¯ 
 xi;1 
 0 for 1 � i � n − 1, �3.4�

xj;n 
 xj+1;n−1 
 ¯ 
 xn;j 
 0 for 1 � j � n , �3.5�

xj;n−j+1 
 xj;n−j+2 
 ¯ 
 xj;n 
 0 for 2 � j � n . �3.6�

Proof: First, we show that �� is the polyhedral realization of B���, so we shall check the
onditions of Theorem 3.1. �� is closed under the action of Sk by Lemma 3.4. The coefficients of

1;i �i=1,2 , . . . ,n� are positive for ���� by Lemma 3.3, and this shows that � satisfies the
positivity assumption.”

We will show that all entries of x� ��� are non-negative. In the case of m
1, 0� l�n−1 for

m;l�xm;1�, we have

xm;l+1 
 xm+1;l �3.7�

nd we consider the cases that �m ; l�= �j ; i−1� , �j+1; i−2� , . . . , �j+ i−2;1� , �j+ i−1;0� for any j

1, 1� i�n. We obtain

xj;i 
 xj+1;i−1 
 ¯ 
 xj+i−2;2 
 xj+i−1;1 
 0.

his shows that xj;i
0 for any j
1, 1� i�n. Therefore, �� is the polyhedral realization of B���.
Next we show that �� has the form of Theorem 3.5. We determine when xj;i�0 for j
1, 1
i�n. In the case of m
1, n� l�2n−1 for �m;l�xm;1� we have
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xm+l−n+1;2n−l−1 
 xm+l−n+1;2n−l �3.8�

nd consider the cases that �m ; l�= �j ;2n−1� , �j+1;2n−2� , . . . , �j+n−1;n�. Then we have

0 
 xj+n;1 
 xj+n;2 
 ¯ 
 xj+n;n−1 
 xj+n;n 
 0

nd xj+n;i�0 for any j
1, 1� i�n. We shall show �3.4�. In �3.7�, by setting �m ; l�= �1; i
1� , �2; i−2� , . . . , �i ;0� for any 1� i�n−1 then we obtain �3.4�. Similarly, in �3.7� if �m ; l�

= �j ;n−1� , �j+1;n−2� , . . . , �n ; j−1� for any 1� j�n, then we have �3.5�. Let us see �3.6�. In
�3.8�, we consider the cases that �m ; l�= �1;n+ j−2� , �2;n+ j−3� , . . . , �j−1;n� for any 2� j�n.
Then we have �3.6�. �

Next, we give the polyhedral realization ����� for �ª
k=1
n �k�k, where �k�Z
0, �k are the

undamental weights. Here we set

��
�1,n−1�

ª �Sjk
¯ Sj2

Sj1
��i��x��:k 
 0,1 � i � n − 1, j1, . . . , jk 
 1� ,

��
�n�

ª �Sjk
¯ Sj2

Sj1
��n��x��:k 
 0, j1, . . . , jk 
 1� ,

��
�1,n−1���� ª �Ŝjk

¯ Ŝj2
Ŝj1

��i��x��:k 
 0,1 � i � n − 1, j1, . . . , jk 
 1� ,

��
�n���� ª �Ŝjk

¯ Ŝj2
Ŝj1

��n��x��:k 
 0, j1, . . . , jk 
 1� ,

����� ª �� � ��
�1,n−1���� � ��

�n���� = �� j;k�xj;1�:j 
 1,0 � k � 2n − 1� � �Ŝjk
¯ Ŝj2

Ŝj1
��i��x��:k


 0,1 � i � n − 1, j1, . . . , jk 
 1� � �Ŝjk
¯ Ŝj2

Ŝj1
��n��x��:k 
 0, j1, . . . , jk 
 1� ,

����� ª �x� � Z����:��x�� 
 0 for any � � ������ .

In order to show that ����� is the polyhedral realization of B���, we give the explicit forms of

�
�1,n−1���� and ��

�n����. Since the Dynkin diagrams for An and Bn are the same for 1
 i
n−1, we
ive the explicit form of ��

�1,n−1� by the result in Ref. 2 as follows:

��
�1,n−1� = �xj;i−j − xj;i−j+1:1 � i � n − 1,1 � j � i� . �3.9�

or giving the explicit form of ��
�n�, we say that an integer sequence �1 ,�2 , . . . ,�n is an admis-

ible pattern if:

�
1 � �1 � n ,

0 � �2 � �1 − 1,

¯ ,

0 � �k � �k−1 − 1,

¯ ,
� �3.10�

here if �k does not exist, we define �k=0, and

S��1�
ª �id ��1 = 1�

S�1;n−�1
¯ S2;n−2S1;n−1 ��1 
 2� ,

S��k�
ª �id ��k = 0�

S� +k−2;n−� +1 ¯ Sk;n−1Sk−1;n ��k 
 1�  for k 
 2,

k k

                                                                                                            



W

F

w

�
p

X
t

a
=

t
h

T

I

o
c

T

113514-9 Polyhedral realization of crystal bases J. Math. Phys. 46, 113514 �2005�

                        
����
ª S��k�

¯ S��2�S��1� for � = ��1,�2, . . . ,�k,0,0, . . . � .

e prepare the symbol X as follows:

X ª 2x1;n−1 − x1;n�=��n��x��� . �3.11�

or convenience, we define

Xj;i ª �2xj;i if i � n

xj;n if i = n .
 �3.12�

Theorem 3.6: Let �= ��1 ,�2 , . . . ,�k ,0 ,0 , . . . � be an admissible pattern.
�i� The forms ����X are given by

����X = 

k=1

l

�X�k+k−1;n−�k
− X�k+k−1;n−�k+1� , �3.13�

here

L ª max�k:�k � 0� ,

l ª �L if �L = 1,

L + 1 if �L 
 2.


ii� ��
�n� is the set of all linear forms which are of the form ����X, where � are the admissible

atterns.
Proof: �i� First, we give a remark. When �k−�k+1=1, the terms X�k+k−1;n−�k+1 and

�k+1+k;n−�k+1
in the sum �3.13� are canceled as −X�k+k−1;n−�k+1+X�k+1+k;n−�k+1

=0. We show the
heorem by induction on ���=�1+�2+ ¯ +�i for �= ��1 ,�2 , . . . ,�i ,0 ,0 , . . . �.

If ���=1, then l=1 and the sum of the right-hand side of �3.13� is X1;n−1−X1;n=2x1;n−1−x1;n

nd equal to ����X by �3.11�. We assume that ���=�1+�2+ ¯ +�i=k−1 for �
��1 ,�2 , . . . ,�i ,0 ,0 , . . . �. We consider the two cases: I� �i→�i+1, II� “�i+1=0”→“�i+1=1”.

I� �i→�i+1.
In this case, l= i+1 and we note that 1��i��i−1−2 since � is an admissible pattern and the

erm X�i+i−1;n−�i
in the sum �3.13� is not canceled. We set ��ª��1 ,�2 , . . . ,�i+1,0 ,0 , . . . �. We

ave

�����X = S�i+i−1;n−�i
����X .

he right-hand side of �3.13� is

S�i+i−1;n−�i�

k=1

l

�X�k+k−1;n−�k
− X�k+k−1;n−�k+1�� = 


k=1

l

�X�k+k−1;n−�k
− X�k+k−1;n−�k+1� − �X�i+i−1;n−�i

− X�i+i−1;n−�i+1 − X�i+i;n−�i−1 + X�i+i;n−�i
� = �����X .

I� “�i+1=0”→“�i+1=1”.
We set ��ª��1 ,�2 , . . . ,�i ,1 ,0 , . . . � �i.e., �i+1=1� and then l= i+1. By the admissible pattern

f �, we have 0��i+1��i−1. This shows that �i
2 and the term Xi;n in the sum �3.13� is not
anceled. We have

�����X = Si;n����X .
he right-hand side of �3.13� is
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Si;n�

k=1

l

�X�k+k−1;n−�k
− X�k+k−1;n−�k+1�� = 


k=1

l

�X�k+k−1;n−�k
− X�k+k−1;n−�k+1� − �Xi;n − Xi+1;n−1

+ Xi+1;n� = �����X .

ii� It is sufficient to show that �����X �� : admissible pattern� is closed under the actions of all Sj;i.
e set for 1�k� l+1,

� = ��1,�2, . . . ,�l,0,0, . . . �, �+ = ��1,�2, . . . ,�k + 1, . . . ,�l,0,0, . . . � ,

�− = ��1,�2, . . . ,�k − 1, . . . ,�l,0,0, . . . � .

hen we have

Sj;i�
���X = ����+�X if �j ;i� = ��k + k − 1;n − �k� and �k−1 − �k � 1

���−�X if �j ;i� = ��k + k − 1;n − �k + 1� and �k − �k+1 � 1

����X otherwise.
�

�

Therefore, � satisfies the strict positivity assumption by the explicit forms of ��
�1,n−1� and ��

�n�.
y Lemma 2.6, this shows that

��
�1,n−1���� = ��i + xj;i−j − xj;i−j+1:1 � i � n − 1,1 � j � i� ,

��
�n���� = ��n + 


k=1

l

�X�k+k−1;n−�k
− X�k+k−1;n−�k+1�:� are the admissible patterns

y �3.9�, �3.13� and ����� is the polyhedral realization of B���.

. Cn case

We consider the case of type Cn. First, we give the polyhedral realization �� of B���. We
efine for j
1, 0�k�2n−1

� j;k ª �id �k = 0�
Sj;kSj;k−1 ¯ Sj;2Sj;1 �1 � k � n − 1�
Sj+k−n;2n−kSj+k−1−n;2n−k+1 ¯ Sj+1;n−1Sj;n� j;n−1 �n � k � 2n − 1� .

�
Lemma 3.7:

� j;k�xj;1� = �
xj;k+1 − xj+1;k �0 � k � n − 2�
2xj;n − xj+1;n−1 �k = n − 1�
xj+1;n−1 − 2xj+1;n �k = n�
xj+k−n+1;2n−k−1 − xj+k−n+1;2n−k �n + 1 � k � 2n − 1� .

�
Proof: By the induction on k. The case of k=0 is trivial.
Case I� 1�k�n−2.
If k=1, we have

Sj;1�xj;1� = xj;1 − �xj;1 − xj;2 + xj+1;1� = xj;2 − xj+1;1 = � j;1�xj;1� .
f 1�k�n−2, we assume that � j;k−1�xj;1�=xj;k−xj+1;k−1. Then we have
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Sj;k� j;k−1�xj;1� = Sj;k�xj;k − xj+1;k−1� = xj;k − xj+1;k−1 − �xj;k − xj;k+1 − xj+1;k−1 + xj+1;k�

= xj;k+1 − xj+1;k = � j;k�xj;1� .

Case II� k=n−1,n.
If k=n−1, using the result of Case I�, we have

Sj;n−1� j;n−2�xj;1� = Sj;n−1�xj;n−1 − xj+1;n−2�

= xj;n−1 − xj+1;n−2 − �xj;n−1 − 2xj;n − xj+1;n−2 + xj+1;n−1�

= 2xj;n − xj+1;n−1 = � j;n−1�xj;1� ,

nd then if k=n,

Sj;n� j;n−1�xj;1� = Sj;n�2xj;n − xj+1;n−1� = 2xj;n − xj+1;n−1 − 2�xj;n − xj+1;n−1 + xj+1;n�

= xj+1;n−1 − 2xj+1;n = � j;n�xj;1� .

Case III� n+1�k�2n−1.
If k=n+1, using the result of the case of k=n, we have11,12

Sj+1;n−1� j;n�xj;1� = Sj+1;n−1�xj+1;n−1 − 2xj+1;n�

= xj+1;n−1 − 2xj+1;n − �xj+1;n−1 − 2xj+1;n − xj+2;n−2 + xj+2;n−1�

= xj+2;n−2 − xj+2;n−1 = � j;n+1�xj;1� .

f n+1�k�2n−1, we assume that � j;k−1�xj;1�=xj+k−n;2n−k−xj+k−n;2n−k+1. Then we have

Sj+k−n;2n−k� j;k−1�xj;1� = Sj+k−n;2n−k�xj+k−n;2n−k − xj+k−n;2n−k+1�

= xj+k−n;2n−k − xj+k−n;2n−k+1 − �xj+k−n;2n−k − xj+k−n;2n−k+1 − xj+k−n+1;2n−k−1

+ xj+k−n+1;2n−k�

= xj+k−n+1;2n−k−1 − xj+k−n+1;2n−k = � j;k�xj;1� .

�

Lemma 3.8. The set �� j;k�xj;1� :1� j ,0�k�2n−1� is closed under the actions of all trans-
ormations Sm;l for any m
1, l
1.

Proof. Using the definition of � j;k �3.14� and the formula �3.14� in Lemma 3.7, if k=0, � j;0

id and we have

Sm;l�� j;0�xj;1�� = �� j;1�xj;1� if �m;l� = �j ;1�
xj;1 otherwise.


f 1�k�n−1, we have

Sm;l�� j;k�xj;1�� = �� j;k−1�xj;1� if �m;l� = �j ;k�
� j;k+1�xj;1� if �m;l� = �j ;k + 1�
� j;k�xj;1� otherwise.

�
f n�k�2n−1, we have

Sm;l�� j;k�xj;1�� = �� j;k−1�xj;1� if �m;l� = �j + k − n;2n − k�
� j;k+1�xj;1� if �m;l� = �j + k − n + 1;2n − k − 1�
� j;k�xj;1� otherwise.

�
�

Now, we define
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�� ª �� j;k�xj;1�:j 
 1,0 � k � 2n − 1� ,

�� ª �x� � Z�
����x�� 
 0 for any � � ��� .

Theorem 3.9: The polyhedral realization �� of B��� for type Cn is described as follows:

xj;i = 0 for j,i � �1,n� , �3.14�

x1;i 
 x2;i−1 
 ¯ 
 xi;1 
 0 for 1 � i � n − 1, �3.15�

2xj;n 
 xj+1;n−1 
 ¯ 
 xn;j 
 0 for 1 � j � n − 1, �3.16�

xj;n−j+1 
 xj;n−j+2 
 ¯ 
 xj;n−1 
 2xj;n 
 0 for 2 � j � n . �3.17�

Proof: We shall show that �� is the polyhedral realization of B��� and check the conditions of
heorem 3.1. �� is closed under the action of Sk by Lemma 3.8. The coefficients of x1;i �i
1,2 , . . . ,n� are positive for ���� by Lemma 3.7. This shows that � satisfies the positivity
ssumption.

We shall show that all entries of x� ��� are non-negative. In the case of m
1, 0� l�n−2 for

m;l�xm;1�, we have

xm;l+1 
 xm+1;l �3.18�

nd we consider the cases that �m ; l�= �j ; i−1� , �j+1; i−2� , . . . , �j+ i−2;1� , �j+ i−1;0�. We obtain

xj;i 
 xj+1;i−1 
 ¯ 
 xj+i−2;2 
 xj+i−1;1 
 0. �3.19�

his shows that xj;i
0 for any j
1, 1� i�n−1. Similarly, for any j
1 and l=n−1, we have

2xj;n 
 xj+1;n−1�
0� . �3.20�

his shows xj;n
0 for any j
1. Therefore, �� is the polyhedral realization of B���.
We show that �� has the form of Theorem 3.9. In the case of �m ; l�= �j+n−1;n� for �m;l�xm;1�,

e obtain

xj+n;n−1 
 2xj+n;n �3.21�

nd in the case of m
1, n+1� l�2n−1, we have

xm+l−n+1;2n−l−1 
 xm+l−n+1;2n−l. �3.22�

e consider the cases that �m ; l�= �j ;2n−1� , �j+1;2n−2� , . . . , �j+n−2;n+1�, then we have

0 
 xj+n;1 
 xj+n;2 
 ¯ 
 xj+n;n−2 
 xj+n;n−1 
 2xj+n;n 
 0.

his shows that xj+n;i�0 for any j
1, 1� i�n. We shall show �3.15�. In �3.18�, by setting
m ; l�= �1; i−1� , �2; i−2� , . . . , �i ;0� for any 1� i�n−1 then we have �3.15�. Let us see �3.16�. In

�3.18�, we consider the cases that �m ; l�= �j+1;n−2� , �j+2;n−3� , . . . , �n ; j−1� for any 1� j�n.
Combining �3.20�, we have �3.16�. We shall show �3.17�. We consider the cases that �m ; l�

�1;n+ j−2� , �2;n+ j−3� , . . . , �j−2;n+1� for any 2� j�n in �3.22� and the case k=n for 2� j in
Lemma 3.14. Then we obtain �3.17�. �

Next, we give the polyhedral realization ����� of B���. We prepare the following symbols:

�n� �
X ª x1;n−1 − x1;n�=� �x�� , �3.23�
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Xj;i ª �xj;i if i � n

2xj;n if i = n .
 �3.24�

hen, we can show that the polyhedral realization ����� is given by replacing xj;i of Bn with Xj;i.

. Dn case

We consider the case of type Dn. First, we give the polyhedral realization �� of B���. We
efine for j
1, 0�k�2n−2,

� j;k ª �id �k = 0�
Sj;kSj;k−1 ¯ Sj;2Sj;1 �0 � k � n�
Sj+k−n;2n−k−1Sj+k−1−n;2n−k ¯ Sj+2;n−3Sj+1;n−2� j;n �n + 1 � k � 2n − 2� .

�

� j;k� ª�
id �k = 0�
Sj;kSj;k−1 ¯ Sj;2Sj;1 �1 � k � n − 2�
Sj;n� j;n−2� �k = n − 1�
Sj;n−2� j;n−1� �k = n�
Sj+k−n;2n−k−1Sj+k−1−n;2n−k ¯ Sj+2;n−3Sj+1;n−2� j;n� �n + 1 � k � 2n − 2� .

�
Lemma 3.10:

� j;k�xj;1� =�
xj;k+1 − xj+1;k �0 � k � n − 3�
xj;n−1 + xj;n − xj+1;n−2 �k = n − 2�
xj;n − xj+1;n−1 �k = n − 1�
xj+1;n−2 − xj+1;n−1 − xj+1;n �k = n�
xj+k−n+1;2n−k−2 − xj+k−n+1;2n−k−1 �n + 1 � k � 2n − 2� ,

�
� j;k� �xj;1� = �xj;n−1 − xj+1;n �k = n − 1�

� j;k�xj;1� otherwise.


Proof: We shall prove the case � j;k by the induction on k since the other case can be proved
y the same argument. The case of k=0 is trivial.

Case I� 1�k�n−3.
If k=1, we have

Sj;1�xj;1� = xj;1 − �xj;1 − xj;2 + xj+1;1� = xj;2 − xj+1;1 = � j;1�xj;1� .

If 1�k�n−3, we assume that � j;k−1�xj;1�=xj;k−xj+1;k−1. Then we have

Sj;k� j;k−1�xj;1� = Sj;k�xj;k − xj+1;k−1� = xj;k − xj+1;k−1 − �xj;k − xj;k+1 − xj+1;k−1 + xj+1;k�

= xj;k+1 − xj+1;k = � j;k�xj;1� .

Case II� k=n−2,n−1,n.
If k=n−2, using the result of Case I�, we have

Sj;n−2� j;n−3�xj;1� = Sj;n−2�xj;n−2 − xj+1;n−3�

= xj;n−2 − xj+1;n−3 − �xj;n−2 − xj;n−1 − xj;n − xj+1;n−3 + xj+1;n−2�

= xj;n−1 + xj;n − xj+1;n−2 = � j;n−2�xj;1� ,
nd then if k=n−1,
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Sj;n−1� j;n−2�xj;1� = Sj;n−1�xj;n−1 + xj;n − xj+1;n−2� = xj;n−1 + xj;n − xj+1;n−2 − �xj;n−1 − xj+1;n−2 + xj+1;n−1�

= xj;n − xj+1;n−1 = � j;n−1�xj;1� .

f k=n, then we have

Sj;n� j;n−1�xj;1� = Sj;n�xj;n − xj+1;n−1� = xj;n − xj+1;n−1 − �xj;n − xj+1;n−2 + xj+1;n�

= xj+1;n−2 − xj+1;n−1 − xj+1;n = � j;n�xj;1� .

Case III� n+1�k�2n−2.
If k=n+1, using the result of the case of k=n, we have

Sj+1;n−2� j;n�xj;1� = Sj+1;n−2�xj+1;n−2 − xj+1;n−1 − xj+1;n�

= xj+1;n−2 − xj+1;n−1 − xj+1;n − �xj+1;n−2 − xj+1;n−1 − xj+1;n − xj+2;n−3 + xj+2;n−2�

= xj+2;n−3 − xj+2;n−2 = � j;n+1�xj;1� .

f n+1�k�2n−2, we assume that � j;k−1�xj;1�=xj+k−n;2n−k−1−xj+k−n;2n−k. Then we have

Sj+k−n;2n−k−1� j;k−1�xj;1� = Sj+k−n;2n−k−1�xj+k−n;2n−k−1 − xj+k−n;2n−k�

= xj+k−n;2n−k−1 − xj+k−n;2n−k − �xj+k−n;2n−k−1 − xj+k−n;2n−k − xj+k−n+1;2n−k−2

+ xj+k−n+1;2n−k−1�

= �xj+k−n+1;2n−k−2 − xj+k−n+1;2n−k−1� = � j;k�xj;1� .

�

Lemma 311: The set �� j;k�xj;1� :1� j ,0�k�2n−2�� �� j;k� �xj;1� :1� j ,0�k�2n−2� is closed
nder the actions of all transformations Sm;l for any m
1, l
1.

Proof: First, we consider the action of Sm;l to � j;k�xj;1�. If k=0, � j;0= id and we have

Sm;l�� j;0�xj;1�� = �� j;1�xj;1� if �m;l� = �j ;1�
xj;1 otherwise.


f 1�k�n−3, we have

Sm;l�� j;k�xj;1�� = �� j;k−1�xj;1� if �m;l� = �j ;k�
� j;k+1�xj;1� if �m;l� = �j ;k + 1�
� j;k�xj;1� otherwise.

�
f k=n−2, we have

Sm;l�� j;n−2�xj;1�� = �
� j;n−3�xj;1� if �m;l� = �j + 1;n − 2�
� j;n−1�xj;1� if �m;l� = �j ;n − 1�
� j;n−1� �xj;1� if �m;l� = �j ;n�
� j;n−2�xj;1� otherwise.

� �3.25�

If k=n−1, we have

Sm;l�� j;n−1�xj;1�� = �� j;n−2�xj;1� if �m;l� = �j + 1;n − 1�
� j;n�xj;1� if �m;l� = �j ;n�
� j;n−1�xj;1� otherwise.

�

f k=n, we have
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Sm;l�� j;n�xj;1�� = �
� j;n−1�xj;1� if �m;l� = �j + 1;n�
� j;n−1� �xj;1� if �m;l� = �j + 1;n − 1�
� j;n+1�xj;1� if �m;l� = �j + 1;n − 2�
� j;n�xj;1� otherwise.

� �3.26�

f n+1�k�2n−2, we have

Sm;l�� j;k�xj;1�� = �� j;k−1�xj;1� if �m;l� = �j + k − n + 1;2n − k − 1�
� j;k+1�xj;1� if �m;l� = �j + k − n + 1;2n − k − 2�
� j;k�xj;1� otherwise.

�
Next, we consider the action of Sm;l to � j;k� �xj;1�. Since the difference of � j;k�xj;1� and � j;k� �xj;1�

s only the case of k=n−1 and by �3.25� and �3.26�, we consider the case of k=n−1,

Sm;l�� j;n−1� �xj;1�� = �� j;n−2� �xj;1��=� j;n−2�xj;1�� if �m;l� = �j + 1;n�
� j;n� �xj;1��=� j;n�xj;1�� if �m;l� = �j ;n − 1�
� j;n−1� �xj;1� otherwise.

�
�

Now, we define

��� ª �� j;k�xj;1�:j 
 1,0 � k � 2n − 2� � �� j;k� �xj;1�:j 
 1,0 � k � 2n − 2� ,

��� ª �xj;n−1:j 
 1� � �xj;n:j 
 1� ,

�� ª ��� � ���,

�� ª �x� � Z�
�:��x�� 
 0 for any � � ��� .

Theorem 3.12: The polyhedral realization �� of B��� for type Dn is described as follows:

xj;i = 0 for j � �1,n − 1� or i � �1,n� , �3.27�

x1;i 
 x2;i−1 
 ¯ 
 xi;1 
 0 for 1 � i � n − 2, �3.28�

xj;n−1 + xj;n 
 xj+1;n−2 
 xj+2;n−3 ¯ 
 xn−1;j 
 0 for 1 � j � n − 2, �3.29�

xj;n−j 
 xj;n−j+1 
 ¯ 
 xj;n−2 
 xj;n−1 + xj;n 
 0 for 2 � j � n − 1, �3.30�

�x1;n−1 
 x2;n 
 x3;n−1 
 x4;n 
 ¯ 
 xn−1;n 
 0

x1;n 
 x2;n−1 
 x3;n 
 x4;n−1 
 ¯ 
 xn−1;n−1 
 0
 �n:odd� �3.31�

��x1;n−1 
 x2;n 
 x3;n−1 
 x4;n 
 ¯ 
 xn−1;n−1 
 0

x1;n 
 x2;n−1 
 x3;n 
 x4;n−1 
 ¯ 
 xn−1;n 
 0
 �respectively, n:even�� .

�3.32�

Proof: Since �� is not closed under the action of Sk, we shall show that

i� �� is closed under the action of f̃ i,
˜
ii� �� is closed under the action of ei,
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iii� all the entries of x� ��� are non-negative
These show that �� is the polyhedral realization of B����,
iv� �� has the form of Theorem 3.12.

i� We show that �� is closed under the action of f̃ i.
ote that � satisfies the positivity assumption by Lemma 3.11. Let x� = �. . . ,x2 ,x1���� and i� I,

nd suppose that f̃ ix� = �. . . ,xk+1, . . . ,x2 ,x1� for ik= i. We need to show that

�� f̃ ix�� 
 0

or any �=
� jxj ���. First, we consider the case of �����. Since �� f̃ ix��=��x��+�k, it is enough
o consider the case when �k�0. Since � satisfies the positivity assumption, we have k�−�
1. By
2.4�, we have k�x���k�−��x�� and by �2.9�, we conclude that

�k�−��x�� = k�−��x�� − k�x�� � − 1.

t follows that

�� f̃ ix�� = ��x�� + �k 
 ��x�� − 1 · �k�−��x�� = �Sk���x�� �3.33�


0 �3.34�

ince Sk�����. This shows that �� is closed under the action of f̃ i for �����. Next, we consider
he case of �=xj;n−1����. We have

�� f̃ ix�� = xj;n−1 + 1 
 0.

he case of �=xj;n���� can be proved by the same argument.
ii� We show that �� is closed under the action of ẽi.

e need to show that

��ẽix�� 
 0

or any ����. First, we consider the case of �����. Since ��ẽix��=��x��−�k, it is enough to
onsider the case when �k�0. By �2.5�, k�x���k�+��x�� and by �2.9� we conclude that

�k�x�� = k�x�� − k�+��x�� 
 1.

t follows that

��ẽix�� = ��x�� − �k 
 ��x�� − 1 · �k�x�� = �Sk���x�� 
 0

ince Sk�����. This shows that �� is closed under the action of ẽi for �����. Next, we consider
he case of �=xj;n−1����. It follows that

��ẽix�� = xj;n−1�x�� − 1 
 xj;n−1�x�� − 1 · � j;n−1�x�� = �Sj;n−1xj;n−1��x��

= �xj+1;n−2 − xj+1;n−1��x�� 
 xj+1;n�x�� �by Lemma 3.10�


 0 �by xj+1;n � ���� .

he case of �=xj;n���� can be proved by the same argument.
iii� We show that all the entries of x� ��� are non-negative.
n the case of 1�m, 0� l�n−3 for �m;l�xm;1�, we have

xm;l+1 
 xm+1;l, �3.35�
nd we consider the cases that �m ; l�= �j ; i−1� , �j+1; i−2� , ¯ , �j+ i−2;1� , �j+ i−1;0�. We obtain
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xj;i 
 xj+1;i−1 
 ¯ 
 xj+i−2;2 
 xj+i−1;1 
 0.

his shows that xj;i
0 for any j
1, 1� i�n−2. By the definition of ���, we have xj;n−1 and

j;n
0 for j
1 and these show xj;n
0 for any j
1.
iv� We show that �� has the form of Theorem 3.12.

e determine when xj;i�0 for j
1, 1� i�n. In the case of 1�m, n+1� l�2n−2 for �m;l�xm;1�,
e have

xm+l−n+1;2n−l−2 
 xm+l−n+1;2n−l−1 �3.36�

nd in the case of 0�m, l=n,

xm+1;n−2 
 xm+1;n−1 + xm+1;n 
 0 �since xm+1;n−1 
 0 and xm+1;n 
 0� . �3.37�

e consider the cases that �m ; l�= �j ;2n−2� , �j+1;2n−3� , . . . , �j+n−2;n�, then we have

0 
 xj+n−1;1 
 xj+n−1;2 
 ¯ 
 xj+n−1;n−3 
 xj+n−1;n−2 
 xj+n−1;n−1 + xj+n−1;n 
 0.

ombining xj+n−1;n−1
0,xj+n−1;n
0 this shows that xj+n−1;i�0 for any j
1, 1� i�n. We shall
how �3.28�. In �3.35�, by setting �m ; l�= �1; i−1� , �2; i−2� , . . . , �i ;0� for 1� i�n−2 then we have

�3.28�. Let us show �3.29�. We consider the cases that �m ; l�= �j+1;n−3� , �j+2;n−4� , . . . , �n
−1; j−1� for 1� j�n−2 in �3.35� and the case k=n−2 in Lemma 3.10. We have �3.29�. We shall
show �3.30�. We consider the cases that �m ; l�= �1;n+ j−2� , �2;n+ j−3� , . . . , �j−2;n+1� for 2
� j�n−1 in �3.36� and �m ; l�= �j−1;n� for 2� j�n−1 in �3.37�. This shows �3.30�. Let us see
�3.31�. We consider the cases that k=n−1 for � j;k, � j;k� in Lemma 3.10. We obtain �3.31�. Here,
3.32� can be proved by the same argument as �3.31�. Therefore, �� has the form of Theorem
.12. �

Next, we give the polyhedral realization ����� of B��� for �ª
k=1
n �k�k, where �k�Z
0, �k

re the fundamental weights. Here we set

��
�1,n−2�

ª �Sjk
¯ Sj2

Sj1
��i��x��:k 
 0,1 � i � n − 2, j1, . . . , jk 
 1� ,

��
�n−1�

ª �Sjk
¯ Sj2

Sj1
��n−1��x��:k 
 0, j1, . . . , jk 
 1� ,

��
�n�

ª �Sjk
¯ Sj2

Sj1
��n��x��:k 
 0, j1, . . . , jk 
 1� ,

��
�1,n−2���� ª �Ŝjk

¯ Ŝj2
Ŝj1

��i��x��:k 
 0,1 � i � n − 2, j1, . . . , jk 
 1� ,

��
�n−1���� ª �Ŝjk

¯ Ŝj2
Ŝj1

��n−1��x��:k 
 0, j1, . . . , jk 
 1� ,

��
�n���� ª �Ŝjk

¯ Ŝj2
Ŝj1

��n��x��:k 
 0, j1, . . . , jk 
 1� ,

����� ª �� � ��
�1,n−2���� � ��

�n−1���� � ��
�n����

= �� j;k�xj;1�:j 
 1,0 � k � 2n − 1�

� �Ŝjk
¯ Ŝj2

Ŝj1
��i��x��:k 
 0,1 � i � n − 2, j1, . . . , jk 
 1�

� �Ŝj ¯ Ŝj Ŝj ��n−1��x��:k 
 0, j1, ¯ , jk 
 1� � �Ŝj ¯ Ŝj Ŝj ��n��x��:k 
 0, j1, . . . , jk 
 1� ,

k 2 1 k 2 1
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����� ª �x� � Z����:��x�� 
 0 for any � � ������ .

n order to show that ����� is the polyhedral realization of B���, we give the explicit forms of

�
�1,n−2����, ��

�n−1����, and ��
�n����. Since the Dynkin diagrams for An and Dn are the same for 1

i�n−2, we give the explicit form of ��
�1,n−2� as follows:

��
�1,n−2� = �xj;i−j − xj;i−j+1:1 � i � n − 2,1 � j � i� . �3.38�

or giving the explicit form of ��
�n−1� and ��

�n�, we say that an integer sequence �1 ,�2 , . . . ,�n is
n admissible pattern if:

�
1 � �1 � n − 1,

0 � �2 � �1 − 1,

¯ ,

0 � �k � �k−1 − 1,

¯ ,
� �3.39�

here if �k does not exist, we define �k=0, and

S��1�
ª �id ��1 = 1�

S�1−1;n−�1
¯ S2;n−3S1;n−2 ��1 
 2� ,

S��k�
ª �id ��k = 0�

S�k+k−2;n−�k
¯ Sk+1;n−3Sk;n−2Sk−1;n ��k 
 1 and k:even�

S�k+k−2;n−�k
¯ Sk+1;n−3Sk;n−2Sk−1;n−1 ��k 
 1 and k:odd�

� for k 
 2,

S��k��
ª �id ��k = 0�

S�k+k−2;n−�k
¯ Sk+1;n−3Sk;n−2Sk−1;n ��k 
 1 and k:odd�

S�k+k−2;n−�k
¯ Sk+1;n−3Sk;n−2Sk−1;n−1 ��k 
 1 and k:even�

� for k 
 2,

����
ª S��k�

¯ S��2�S��1� for � = ��1,�2, . . . ,�k,0,0, . . . � ,

������
ª S��k��

¯ S��2��S��1� for � = ��1,�2�, . . . ,�k�,0,0, . . . � .

e prepare the symbol X as follows:

X ª x1;n−2 − x1;n−1�=��n−1��x��� , �3.40�

X� ª x1;n−2 − x1;n�=��n��x��� . �3.41�

or convenience, we define

Xj;i ª �xj;n if j:even and i = n − 1

xj;n−1 if j:even and i = n

xj;i otherwise,
� �3.42�

Xj;i� ª �xj;n if j:odd and i = n − 1

xj;n−1 if j:odd and i = n � �3.43�

xj;i otherwise.
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Theorem 3.13: Let �= ��1 ,�2 , . . . ,�k ,0 ,0 , . . . � be an admissible pattern.

i) The forms ����X are given by

����X = �

k=1

l

�X�k+k−1;n−�k−1 − X�k+k−1;n−�k
� if �l = 1



k=1

l

�X�k+k−1;n−�k−1 − X�k+k−1;n−�k
� + Xl;n if �l 
 2.� �3.44�

where lªmax�k :�k�0�.
ii) The forms ������X� are given by

������X� = �

k=1

l

�X�k+k−1;n−�k−1� − X�k+k−1;n−�k
� � if �l� = 1



k=1

l

�X�k+k−1;n−�k−1� − X�k+k−1;n−�k
� � + Xl;n� if �l� 
 2.� �3.45�

where lªmax�k :�k��0�.
iii) ��

�n−1� (respectively, ��
�n�) is the set of all linear forms which are of the form ����X (respec-

tively, ������X�), where � (respectively, ��) are the admissible patterns.

Proof: We shall show �i�, the case �ii� can be proved by the same argument. First, we give a
emark. When �k−�k+1=1, the terms X�k+k−1;n−�k

and X�k+1+k;n−�k+1−1 in the sum �3.44� are can-
eled as −X�k+k−1;n−�k

+X�k+1+k;n−�k+1−1=0. We show the theorem by induction on ���=�1+�2

¯ +�i for �= ��1 ,�2 , ¯ ,�i ,0 ,0 , . . . �.
If ���=1, then l=1 and the sum of the right-hand side of �3.44� is X1;n−2−X1;n−1=x1;n−2

x1;n−1 and equal to ����X by �3.41�. We assume that ���=�1+�2+ ¯ +�i=k−1 for �
��1 ,�2 , . . . ,�i ,0 ,0 , . . . �. We consider the two cases: I� �i→�i+1, II� “�i+1=0” → “�i+1=1”.

I� �i→�i+1.
We shall prove the case �i=1, the case �i
2 can be proved by the same argument. We have

= i and note that 1��i��i−1−2 by the fact that � is admissible pattern and the term

�i+i−1;n−�i−1 in the sum �3.13� is not canceled. We set ��ª ��1 ,�2 , . . . ,�i+1,0 ,0 , . . . �. We have

�����X = S�i+i−1;n−�i−1����X .

he right-hand side of �3.44� is

S�i+i−1;n−�i−1�

k=1

l

�X�k+k−1;n−�k−1 − X�k+k−1;n−�k
�� = 


k=1

l

�X�k+k−1;n−�k−1 − X�k+k−1;n−�k
�

− �X�i+i−1;n−�i−1 − X�i+i−1;n−�i
− X�i+i;n−�i−2

+ X�i+i;n−�i−1� = �����X .

I� “�i+1=0” → “�i+1=1.”
We set ��ª ��1 ,�2 , . . . ,�i ,1 ,0 , . . . � �i.e. �i+1=1� and then l= i+1. By the fact that � is

dmissible pattern, we have 0��i+1��i−1. This shows that �i
2 and the term Xi;n in the sum
3.44� is not canceled. If i is odd, then we have

�����X = Si;n����X .
The right-hand side of �3.44� is
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Si;n�

k=1

l

�X�k+k−1;n−�k−1 − X�k+k−1;n−�k
� + Xi;n� = 


k=1

l

�X�k+k−1;n−�k−1 − X�k+k−1;n−�k
�

+ Xi;n − �Xi;n − Xi+1;n−2 + Xi+1;n� = �����X .

f i is even, we can prove II� by the same argument.
�iii� It is sufficient to show that �����X ��:admissible pattern� is closed under the actions of all

j;i, the other case can be proved by the same argument. We set for 1�k� l+1, �
��1 ,�2 , . . . ,�k , . . . ,�l ,0 ,0 , . . . �, �+= ��1 ,�2 , . . . ,�k+1, . . . ,�l ,0 ,0 , . . . �, �−= ��1 ,�2 , . . . ,�k

1, . . . ,�l ,0 ,0 , . . . �.
Then we have

Sj;i�
���X = ����+�X if �j ;i� = ��k + k − 1;n − �k� and �k−1 − �k � 1

���−�X if �j ;i� = ��k + k − 1;n − �k + 1� and �k − �k+1 � 1

����X otherwise.
�

�

Therefore, � satisfies the strict positivity assumption by the explicit forms of ��
�1,n−2�, ��

�n−1�,
nd ��

�n�. By the Lemma 2.6, this shows that

��
�1,n−2���� = ��i + xj;i−j − xj;i−j+1:1 � i � n − 1,1 � j � i� ,

��
�k���� = ��k + ��x��:��x�� � ��

�k�:� are the admissible patterns� for k = n − 1,n

y �3.38� and �3.44� and ����� is the polyhedral realization of B���.

. F4 case

We use the different Cartan data from the one in Ref. 10, where the Cartan matrix �aij�1�i,j�4

s given by

aij ª �
2 if i = j

− 1 if �i − j� = 1 and �i, j� � �2,3�
− 2 if �i, j� = �2,3�
0 otherwise.

�
e fix � as follows:

e define

�� ª �Sml
¯ Sm2

Sm1
�xj;1�:l 
 0,m1, . . . ,ml 
 1,1 � j � 6� ,

�� ª �x� � Z�
����x�� 
 0 for any � � ��� .

Using Theorem 3.3, we shall give the polyhedral realization of B���. We give the explicit
orm of �� by direct calculation and show that the polyhedral realization of B��� is equal to ��

sing the following three steps:

i� We check the positivity assumption,
ii� For x� = �. . . ,x1;2 ,x1;1����, we check that xj;i
0 for all i, j
1,

��i�, �ii� shows that �� is the polyhedral realization of B����,

iii� We determine when xj;i�0 for convenience.
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Theorem 3.14: We give the explicit form of �� as follows:

�
xj;1 xj;2 − xj+1;1 2xj;3 − xj+1;2 2xj;4 − xj+3;1

xj+1;2 − 2xj+1;4 xj+2;2 − xj+3;2 xj+2;1 − xj+4;1 2xj+2;4 − xj+4;2

xj+3;1 − xj+3;4 xj+4;2 − 2xj+4;3 xj+5;1 − xj+5;2 − xj+6;1

2xj;4 + xj+1;2 − 2xj+1;3 2xj;4 − xj+2;1 − xj+2;2 2xj+1;3 − 2xj+1;4 − xj+3;1

xj+2;1 + xj+2;2 − 2xj+2;3 2xj+2;2 − 2xj+2;3 − xj+3;1 xj+2;1 + xj+3;1 − xj+3;2

2xj+2;3 + xj+3;1 − 2xj+3;2 2xj+2;4 + xj+3;1 − 2xj+3;3 2xj+2;3 − xj+3;2 − xj+4;1

xj+2;2 − xj+3;1 − xj+4;1 xj+3;2 − 2xj+3;4 − xj+4;1 2xj+3;3 − 2xj+3;4 − xj+4;2

2xj+1;3 + xj+2;1 − 2xj+1;4 − xj+2;2 2xj+2;4 + xj+3;2 − 2xj+3;3 − xj+4;1

� .

Proof: �i� By the form of ��, coefficients of x1;1, x1;2, x1;3, x1;4 are positive. This shows that the
positivity assumption” is satisfied.

�ii� We assume xj;1
0 for any j
1. We show that xj;2, xj;3, xj;4
0 for any j
1. By the
esults of �i�, we have

xj;2 
 xj+1;1, 2xj;3 
 xj+1;2, 2xj;4 
 xj+3;1.

hen we have xj;2
0 for j
1 since xj;2
xj+1;1. Similarly, we obtain xj;3
0, xj;4
0 for j
1
ince 2xj;3
xj+1;2, 2xj;4
xj+3;1, respectively. �i� and �ii� show that �� is the polyhedral realization
f B���.

�iii� We determine when xj;i�0. By the forms of �� and �ii�, we have

0 
 xj+6;1 
 0.

his shows xm;1�0 for m
7. Similarly, we obtain

xm;2 � 0, xm;3 � 0, xm;4 � 0 for m 
 7

ince xj+5;1
xj+5;2, xj+4;1
xj+4;3, xj+3;1
xj+3;4, respectively. In particular, the parameter j in ��

uns over 1� j�6. �

Next, we give the polyhedral realization of B��� for �ª�1�1+ . . . +�4�4. Here we set for
� i�4,

��
�i�
ª �Sjk

¯ Sj2
Sj1

��i��x��:k 
 0, j1, . . . , jk 
 1� ,

��
�i���� ª �Ŝjk

¯ Ŝj2
Ŝj1

��i��x��:k 
 0, j1, . . . , jk 
 1� ,

����� ª �� � ��
�1���� � ¯ � ��

�4����

����� ª �x� � Z����:��x�� 
 0 for any � � ������ .

n order to show that ����� is the polyhedral realization of B���, we give the explicit forms of ��
�i�

or 1� i�4 by direct calculation as follows:

��
�1� = �− x1;1� ,

��2� = �x1;1 − x1;2,− x2;1� ,
�
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��
�3� =�

x1;2 − x1;3 x1;3 − x3;1 x2;1 − x2;4 x2;3 − x3;3

x1;4 − x3;4 x2;4 − x5;1 x4;1 − x4;3 x4;3 − x5;2

x4;4 − x5;3 − x5;4

x1;3 + x2;1 − x2;2 x1;4 + x2;1 − x2;3 x1;4 + x2;3 − x3;2

x1;4 + x2;4 − x3;3 x2;4 + x3;2 − 2x3;3 x2;4 + x4;1 − x4;2

x2;2 − x2;4 − x3;1 2x2;3 − x2;4 − x3;2 x3;2 − x3;3 − x3;4

x2;3 − x2;4 − x3;4 x3;3 − x3;4 − x5;1 x4;2 − x4;3 − x5;1

x1;4 + x2;2 − x2;3 − x3;1 x3;3 + x4;1 − x3;4 − x4;2

� ,

��
�4� =�

x1;3 − x1;4 x2;2 − x2;3 x2;3 − x4;1 x3;1 − x3;4

x3;3 − x4;3 x2;4 − x4;4 x3;4 − x6;1 x5;1 − x5;3

x5;3 − x6;2 x5;4 − x6;3 − x6;4

x2;3 + x3;1 − x3;2 x2;4 + x3;1 − x3;3 x2;4 + x3;3 − x4;2

x2;4 + x3;4 − x4;3 x3;4 + x4;2 − 2x4;3 x3;4 + x5;1 − x5;2

x3;2 − x3;4 − x4;1 2x3;3 − x3;4 − x4;2 x4;2 − x4;3 − x4;4

x3;3 − x3;4 − x4;4 x4;3 − x4;4 − x6;1 x5;2 − x5;3 − x6;1

x2;4 + x3;2 − x3;3 − x4;1 x4;3 + x5;1 − x4;4 − x5;2

� .

herefore, � satisfies the strict positivity assumption by the explicit forms of ��
�i� for 1� i�4. This

hows that

��
�1���� = ��1 − x1;1� ,

��
�2���� = ��2 + x1;1 − x1;2,�2 − x2;1� ,

��
�k���� = ��k + �k�x��:�k�x�� � ��

�k�� for k = 3,4

y Lemma 2.6 and ����� is the polyhedral realization of B���.

. E6 case

We fix � as follows:

e define

�� ª �Sml
¯ Sm2

Sm1
�xj;1�:l 
 0,m1, . . . ,ml 
 1,1 � j � 8� ,

�� ª �x� � Z�
�:��x�� 
 0 for any � � ��� .

We give the explicit form of �� by direct calculation and show that the polyhedral realization
f B��� is equal to �� using the following steps similar to the case of F4:

i� We check the positivity assumption.
ii� For x� = �. . . ,x1;2 ,x1;1����, we check that xj;i
0 for all i, j
1.
iii� We determine when xj;i�0 for convenience.
Theorem 3.15: We give the explicit form of �� as follows:
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�
xj;1 xj;2 − xj+1;1 xj;3 − xj+1;2 xj;4 − xj+1;6

xj;6 − xj+1;5 xj+2;2 − xj+2;4 xj;5 − xj+4;1 xj+3;1 − xj+3;6

xj+2;6 − xj+2;2 xj+3;4 − xj+4;3 xj+3;5 − xj+4;4 − xj+4;5

xj;4 + xj;6 − xj+1;3 xj;5 + xj;6 − xj+1;4 xj;5 + xj+2;2 − xj+2;3

xj;5 + xj+3;1 − xj+3;2 xj+2;6 + xj+3;1 − xj+3;3 xj+1;3 − xj+1;5 − xj+1;6

xj+1;4 − xj+1;5 − xj+4;1 xj+2;3 − xj+2;4 − xj+4;1 xj+3;2 − xj+3;6 − xj+4;1

xj+3;3 − xj+3;6 − xj+4;2 xj;5 + xj+1;3 − xj+1;4 − xj+1;6

xj+1;4 + xj+2;2 − xj+1;5 − xj+2;3 xj+1;4 + xj+3;1 − xj+1;5 − xj+3;2

xj+2;3 + xj+3;1 − xj+2;4 − xj+3;2 xj+2;6 + xj+3;2 − xj+3;3 − xj+4;1

� .

Proof: �i� By the form of ��, coefficients of x1;1, x1;2, x1;3, x1;4, x1;5, x1;6 are positive. This
hows that the “positivity assumption” is satisfied.

�ii� We assume xj;1
0 for any j
1. We show that xj;2, xj;3, xj;4, xj;5, xj;6
0 for any j
1. By
he form of ��, we have

xj;2 
 xj+1;1, xj;3 
 xj+1;2, xj;5 
 xj+4;1, xj;6 
 xj+1;5, xj;4 
 xj+1;6.

his shows xj;2
0 for j
1 since xj+1;1
0 and similarly, we have xj;3
0, xj;5
0, xj;6
0, xj;4

0 for j
1 since xj;3
xj+1;2, xj;5
xj+4;1, xj;6
xj+1;5, xj;4
xj+1;6, respectively.
�iii� We determine when xj;i�0. We have

0 
 xj+4;5 
 0.

his shows xm;5�0 for m
5. Similarly, we have xm;4�0 for m
6, xm;3�0 for m
7, xm;6�0
or m
7, xm;2�0 for m
8, xm;1�0 for m
9 since xj+3;4
xj+4;3, xj+3;5
xj+4;4, xj;4
xj+1;6,

j;3
xj+1;2, xj;2
xj+1;1, respectively. In particular, the parameter j in �� runs over 1� j�8. �

Next, we give the polyhedral realization of B��� for �ª�1�1+ . . . +�6�6. Here we set for
� i�6

��
�i�
ª �Sjk

¯ Sj2
Sj1

��i��x��:k 
 0, j1, . . . , jk 
 1� ,

��
�i���� ª �Ŝjk

¯ Ŝj2
Ŝj1

��i��x��:k 
 0, j1, . . . , jk 
 1� ,

����� ª �� � ��
�1���� � ¯ � ��

�6����

����� ª �x� � Z����:��x�� 
 0 for any � � ������ .

n order to show that ����� is the polyhedral realization of B���, we give the explicit forms of ��
�i�

or 1� i�6 by direct calculation as follows:

��
�1� = �− x1;1� ,

��
�2� = �x1;1 − x1;2,− x2;1� ,

��3� = �x1;2 − x1;3,x2;1 − x2;2,− x3;1� ,
�
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��
�4� =�

x1;3 − x1;4 x2;2 − x2;6 x1;6 − x4;1 x3;1 − x3;5 x2;4 − x4;2 x2;5 − x4;6 x3;6 − x4;4

x5;2 − x5;3 x6;1 − x6;2 − x7;1

x1;6 + x2;2 − x2;3 x1;6 + x3;1 − x3;2 x2;4 + x3;1 − x3;3 x2;5 + x3;1 − x3;4

x2;5 + x3;6 − x4;3

x2;3 − x2;6 − x4;1 x3;2 − x3;5 − x4;1 x3;3 − x3;5 − x4;2 x3;4 − x3;5 − x4;6

x4;3 − x4;4 − x4;6

x2;3 + x3;1 − x2;6 − x3;2 x2;4 + x3;2 − x3;3 − x4;1 x2;5 + x3;2 − x3;4 − x4;1

x2;5 + x3;3 − x3;4 − x4;2 x3;4 + x3;6 − x3;5 − x4;3

� ,

��
�5� =�

x1;4 − x1;5 x2;3 − x2;4 x3;2 − x3;6 x2;6 − x5;1 x4;1 − x4;5 x3;4 − x5;2 x3;5 − x5;6

x4;6 − x5;4 x6;2 − x6;3 x7;1 − x7;2 − x8;1

x2;6 + x3;2 − x3;3 x2;6 + x4;1 − x4;2 x3;4 + x4;1 − x4;3 x3;5 + x4;1 − x4;4

x3;5 + x4;6 − x5;3 x3;3 − x3;6 − x5;1 x4;2 − x4;5 − x5;1 x4;3 − x4;5 − x5;2

x4;4 − x4;5 − x5;6 x5;3 − x5;4 − x5;6

x3;3 + x4;1 − x3;6 − x4;2 x3;4 + x4;2 − x4;3 − x5;1 x3;5 + x4;2 − x4;4 − x5;1

x3;5 + x4;3 − x4;4 − x5;2 x4;4 + x4;6 − x4;5 − x5;3

� ,

�
�6�

=

⎩
⎪
⎨
⎪
⎧

x1;3 − x1;6 x2;2 − x2;5 x1;4 − x4;1 x3;3 − x4;3 x3;1 − x6;1 x2;6 − x4;6 x1;5 − x4;5

x5;1 − x5;4 x3;5 − x6;2 x5;6 − x6;3 − x6;1

x1;4 + x2;2 − x2;3 x1;5 + x2;2 − x2;4 x1;4 + x3;1 − x3;2 x1;5 + x3;1 − x3;6

x2;6 + x3;1 − x2;4 x1;5 + x2;6 − x4;2 x2;1 + x4;2 − x4;3 x1;5 + x3;4 − x4;3

x3;1 + x5;1 − x5;2 x2;6 + x3;6 − x4;3 x1;5 + x3;5 − x4;4 x3;5 + x5;1 − x5;3

x2;3 − x2;5 − x4;1 x3;2 − x4;1 − x6;1 x3;3 − x3;6 − x4;6 x2;4 − x2;5 − x4;5

x3;3 − x4;2 − x6;1 x3;3 − x3;4 − x4;5 x4;2 − x4;5 − x4;6 x3;4 − x4;6 − x6;1

x3;6 − x4;5 − x6;1 x5;2 − x5;4 − x6;1 x4;4 − x4;5 − x6;2 x5;3 − x5;4 − x6;2

x2;3 + x3;1 − x2;5 − x3;2 x1;5 + x2;3 − x2;4 − x4;1 x2;4 + x3;1 − x2;5 − x3;6

x1;5 + x3;2 − x3;6 − x4;1 x3;1 + x3;3 − x3;4 − x3;6 x2;6 + x3;2 − x3;4 − x4;1

x2;4 + x2;5 − x2;6 − x4;2 x1;5 + x3;3 − x3;6 − x4;2 x2;6 + x3;3 − x3;4 − x4;2

x3;2 + x4;2 − x4;1 − x4;3 x2;4 + x3;4 − x2;5 − x4;3 x3;2 + x5;1 − x4;1 − x5;2

x2;4 + x3;5 − x2;5 − x4;4 x3;4 + x4;2 − x4;3 − x4;6 x3;3 + x4;2 − x5;1 − x5;2

x3;3 + x3;5 − x3;4 − x4;4 x3;6 + x4;2 − x4;3 − x4;5 x3;5 + x4;2 − x4;4 − x4;6

x3;4 + x5;1 − x4;6 − x5;2 x3;4 + x3;6 − x4;3 − x6;1 x3;6 + x5;1 − x4;5 − x5;2

x3;5 + x3;6 − x4;4 − x6;1 x4;4 + x5;1 − x4;5 − x5;3 x3;5 + x5;2 − x5;3 − x6;1

x1;5 + x2;6 + x3;1 − x3;3 x3;4 + x3;6 + x4;2 − 2x4;3 2x3;3 − x3;4 − x3;6 − x4;2

x4;3 − x4;5 − x4;6 − x6;1

x2.4 + x2;6 + x3;2 − x2;5 − x3;3 − x4;1 x3;5 + x4;3 + x5;1 − x4;4 − x4;6 − x5;2

x1;5 + x2;3 + x3;1 − x2;4 − x3;2 x2;4 + x2;6 + x3;1 − x2;5 − x3;3

x1;5 + x2;6 + x3;2 − x3;3 − x4;1 x3;5 + x3;6 + x4;2 − x4;3 − x4;4

x3;4 + x3;6 + x5;1 − x4;3 − x5;2 x3;5 + x3;6 + x5;1 − x4;4 − x5;2

x2;4 + x3;2 − x2;5 − x3;6 − x4;1 x3;2 + x3;3 − x3;4 − x3;6 − x4;1

x2;4 + x3;3 − x2;5 − x3;6 − x4;2 x4;3 + x5;1 − x4;5 − x4;6 − x5;2 ⎭
⎪
⎬
⎪
⎫

x3;5 + x4;3 − x4;4 − x4;6 − x6;1 x4;4 + x5;2 − x4;5 − x5;3 − x6;1
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herefore, � satisfies the strict positivity assumption by the explicit forms of ��
�i� for 1� i�6. This

hows that

��
�1���� = ��1 − x1,1� ,

��
�2���� = ��2 + x1;1 − x1;2, �2 − x2;1� ,

��
�3���� = ��3 + x1;2 − x1;3, �2 + x2;1 − x2;2, �3 − x3;1� ,

��
�k���� = ��k + �k�x��:�k�x�� � ��

�k�� for k = 4,5,6

y Lemma 2.6 and ����� is the polyhedral realization of B���.

. E7 case

We use the different Cartan data from the one in Ref. 10, where the Cartan matrix �aij�1�i,j�7

s given by

aij ª �2 if i = j

− 1 if �i − j� = 1 and �i, j� � �6,7�,�7,6�, or �i, j� = �4,7�,�7,4�
0 otherwise.

�
e fix � as follows:

e define

�� ª �Sml
¯ Sm2

Sm1
�xj;1�;l 
 0, m1, ¯ ,ml 
 1, 1 � j � 9� ,

�� ª �x� � Z�
�:��x�� 
 0 for any � � ��� .
Theorem 3.16: We give the explicit form of �� as follows:
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⎩
⎪
⎨
⎪
⎧

xj;1 xj;2 − xj+1;1 xj;3 − xj+1;2 xj;4 − xj+1;3

xj;5 − xj+1;7 xj;7 − xj+1;6 xj+2;3 − xj+2;5 xj;6 − xj+5;1

xj+3;2 − xj+3;7 xj+2;7 − xj+5;2 xj+4;1 − xj+4;6 xj+3;5 − xj+5;3

xj+3;6 − xj+5;7 xj+4;7 − xj+5;5 xj+6;3 − xj+6;4 xj+7;2 − xj+7;3

xj+8;1 − xj+8;2 − xj+9;1

xj;5 + xj;7 − xj+1;4 xj;6 + xj;7 − xj+1;5 xj;6 + xj+2;3 − xj+2;4

xj;6 + xj+3;2 − xj+3;3 xj;6 + xj+4;1 − xj+4;2 xj+2;7 + xj+3;2 − xj+3;4

xj+2;7 + xj+4;1 − xj+4;3 xj+3;5 + xj+4;1 − xj+4;4 xj+3;6 + xj+4;1 − xj+4;5

xj+3;6 + xj+4;7 − xj+5;4 xj+1;4 − xj+1;6 − xj+1;7 xj+1;5 − xj+1;6 − xj+5;1

xj+2;4 − xj+2;5 − xj+5;1 xj+3;3 − xj+3;7 − xj+5;1 xj+3;4 − xj+3;7 − xj+5;2

xj+4;2 − xj+4;6 − xj+5;1 xj+4;3 − xj+4;6 − xj+5;2 xj+4;4 − xj+4;6 − xj+5;3

xj+4;5 − xj+4;6 − xj+5;7 xj+5;4 − xj+5;5 − xj+5;7

xj;6 + xj+1;4 − xj+1;5 − xj+1;7 xj+1;5 + xj+2;3 − xj+1;6 − xj+2;4

xj+1;5 + xj+3;2 − xj+1;6 − xj+3;3 xj+2;4 + xj+3;2 − xj+2;5 − xj+3;3

xj+1;5 + xj+4;1 − xj+1;6 − xj+4;2 xj+2;4 + xj+4;1 − xj+2;5 − xj+4;2

xj+3;3 + xj+4;1 − xj+3;7 − xj+4;2 xj+2;7 + xj+3;3 − xj+3;4 − xj+5;1

xj+3;4 + xj+4;1 − xj+3;7 − xj+4;3 xj+2;7 + xj+4;2 − xj+4;3 − xj+5;1

xj+3;5 + xj+4;2 − xj+4;4 − xj+5;1 xj+3;6 + xj+4;2 − xj+4;5 − xj+5;1

xj+3;5 + xj+4;3 − xj+4;4 − xj+5;2 xj+3;6 + xj+4;3 − xj+4;5 − xj+5;2

xj+3;6 + xj+4;4 − xj+4;5 − xj+5;3 xj+4;5 + xj+4;7 − xj+4;6 − xj+5;4

xj+2;7 + xj+3;3 + xj+4;1 − xj+3;4 − xj+4;2 xj+3;4 + xj+4;2 − xj+3;7 − xj+4;3 − xj+5;1
⎭
⎪
⎬
⎪
⎫

.

roof: �i� By the form of ��, coefficients of x1;1, x1;2, x1;3, x1;4, x1;5, x1;6, x1;7 are positive. This
hows that the “positivity assumption” is satisfied.

�ii� We assume xj;1
0 for any j
1. We show that xj;2, xj;3, xj;4, xj;5, xj;6, x1;7
0 for any j
1. By the form of ��, we have

xj;2 
 xj+1;1, xj;3 
 xj+1;2, xj;4 
 xj+1;3, xj;6 
 xj+5;1, xj;7 
 xj+1;6, xj;5 
 xj+1;7.

his shows xj;2
0 for j
1 since xj+1;1
0 and similarly, we have xj;3
0, xj;4
0, xj;6
0, xj;7

0, xj;5
0 for j
1 since xj;3
xj+1;2, xj;4
xj+1;3, xj;6
xj+5;1, xj;7
xj+1;6, xj;5
xj+1;7, respec-
ively.

�iii� We determine when xj;i�0. We have

0 
 xj+9;1 
 0.

his shows xm;1�0 for m
10. Similarly, we have xm;2�0, xm;3�0, xm;4�0, xm;5�0, xm;6�0,

m;7�0 for m
10 since xj+8;1
xj+8;2, xj+7;2
xj+7;3, xj+6;3
xj+6;4, xj+2;3
xj+2;5, xj+4;1
xj+4;6,

j+3;2
xj+3;7, respectively. In particular, the parameter j in �� runs over 1� j�9. �

. E8 case

We fix � as follows:

e define

�� ª �Sm ¯ Sm Sm �xj;1�:l 
 0,m1, . . . ,ml 
 1,1 � j � 15� ,

l 2 1
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�� ª �x� � Z�
�:��x�� 
 0 for any � � ��� .

Theorem 3.17: We give the explicit form of �� as follows:

xj;1 xj;2 − xj+1;1 xj;3 − xj+1;2 xj;4 − xj+1;3 xj;5 − xj+1;4

xj;6 − xj+1;8 xj;7 − xj+6;1 xj;8 − xj+1;7 xj+2;4 − xj+2;6 xj+2;8 − xj+6;2

xj+3;3 − xj+3;8 xj+3;6 − xj+6;3 xj+3;7 − xj+6;7 xj+4;2 − xj+4;7 xj+4;8 − xj+6;8

xj+5;1 − xj+10;1 xj+5;5 − xj+6;5 xj+5;7 − xj+10;2 xj+7;3 − xj+7;6 xj+7;8 − xj+10;3

xj+8;2 − xj+8;8 xj+8;6 − xj+10;4 xj+8;7 − xj+10;8 xj+9;1 − xj+9;7 xj+9;8 − xj+10;6

xj+11;4 − xj+11;5 xj+12;3 − xj+12;4 xj+13;2 − xj+13;3 xj+14;1 − xj+14;2 − xj+15;1

2xj+5;5 − xj+5;6 − xj+5;8 − xj+6;4 xj+6;5 − xj+6;7 − xj+6;8 − xj+10;1

xj+3;7 + xj+4;8 + xj+5;1 − xj+5;5 xj+5;6 + xj+5;8 + xj+6;4 − 2xj+6;5

xj;6 + xj;8 − xj+1;5 xj;7 + xj;8 − xj+1;6 xj;7 + xj+2;4 − xj+2;5

xj;7 + xj+3;3 − xj+3;4 xj;7 + xj+4;2 − xj+4;3 xj;7 + xj+5;1 − xj+5;2

xj+2;8 + xj+3;3 − xj+3;5 xj+2;8 + xj+4;2 − xj+4;4 xj+2;8 + xj+5;1 − xj+5;3

xj+3;6 + xj+4;2 − xj+4;5 xj+3;6 + xj+5;1 − xj+5;4 xj+3;7 + xj+4;2 − xj+4;6

xj+3;7 + xj+4;8 − xj+6;4 xj+3;7 + xj+5;1 − xj+5;8 xj+3;7 + xj+5;6 − xj+6;5

xj+3;7 + xj+5;7 − xj+6;6 xj+4;8 + xj+5;1 − xj+5;6 xj+4;8 + xj+5;8 − xj+6;5

xj+5;1 + xj+6;4 − xj+6;5 xj+5;1 + xj+7;3 − xj+7;4 xj+5;1 + xj+8;2 − xj+8;3

xj+5;1 + xj+9;1 − xj+9;2 xj+5;7 + xj+7;3 − xj+7;5 xj+5;7 + xj+8;2 − xj+8;4

xj+5;7 + xj+9;1 − xj+9;3 xj+7;8 + xj+8;2 − xj+8;5 xj+7;8 + xj+9;1 − xj+9;4

xj+8;6 + xj+9;1 − xj+9;5 xj+8;7 + xj+9;1 − xj+9;6 xj+8;7 + xj+9;8 − xj+10;5

xj+1;5 − xj+1;7 − xj+1;8 xj+1;6 − xj+1;7 − xj+6;1 xj+2;5 − xj+2;6 − xj+6;1

xj+3;4 − xj+3;8 − xj+6;1 xj+3;5 − xj+3;8 − xj+6;2 xj+4;3 − xj+4;7 − xj+6;1

xj+4;4 − xj+4;7 − xj+6;2 xj+4;5 − xj+4;7 − xj+6;3 xj+4;6 − xj+4;7 − xj+6;7
xj+5;2 − xj+6;1 − xj+10;1 xj+5;3 − xj+6;2 − xj+10;1 xj+5;4 − xj+6;3 − xj+10;1
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xj+5;5 − xj+5;6 − xj+6;7 xj+5;5 − xj+6;4 − xj+10;1 xj+5;5 − xj+5;8 − xj+6;8

xj+5;6 − xj+6;8 − xj+10;1 xj+5;8 − xj+6;7 − xj+10;1 xj+6;4 − xj+6;7 − xj+6;8

xj+6;6 − xj+6;7 − xj+10;2 xj+7;4 − xj+7;6 − xj+10;1 xj+7;5 − xj+7;6 − xj+10;2

xj+8;3 − xj+8;8 − xj+10;1 xj+8;4 − xj+8;8 − xj+10;2 xj+8;5 − xj+8;8 − xj+10;3

xj+9;2 − xj+9;7 − xj+10;1 xj+9;3 − xj+9;7 − xj+10;2 xj+9;4 − xj+9;7 − xj+10;3

xj+9;5 − xj+9;7 − xj+10;4 xj+9;6 − xj+9;7 − xj+10;8 xj+10;5 − xj+10;6 − xj+10;8

xj+3;5 + xj+4;3 + xj+5;1 − xj+3;8 − xj+4;4 − xj+5;2 xj+3;6 + xj+4;4 + xj+5;2 − xj+4;5 − xj+5;3 − xj+6;1

xj+3;7 + xj+4;4 + xj+5;2 − xj+4;6 − xj+5;3 − xj+6;1 xj+3;7 + xj+4;5 + xj+5;2 − xj+4;6 − xj+5;4 − xj+6;1

xj+3;7 + xj+4;5 + xj+5;3 − xj+4;6 − xj+5;4 − xj+6;2 xj+4;6 + xj+4;8 + xj+5;2 − xj+4;7 − xj+5;5 − xj+6;1

xj+4;6 + xj+4;8 + xj+5;3 − xj+4;7 − xj+5;5 − xj+6;2 xj+4;6 + xj+4;8 + xj+5;4 − xj+4;7 − xj+5;5 − xj+6;3

xj+5;7 + xj+6;5 + xj+7;3 − xj+6;6 − xj+6;8 − xj+7;4 xj+5;7 + xj+6;5 + xj+8;2 − xj+6;6 − xj+6;8 − xj+8;3

xj+5;7 + xj+6;5 + xj+9;1 − xj+6;6 − xj+6;8 − xj+9;2 xj+6;6 + xj+7;4 + xj+8;2 − xj+6;7 − xj+7;5 − xj+8;3

xj+6;6 + xj+7;4 + xj+9;1 − xj+6;7 − xj+7;5 − xj+9;2 xj+6;6 + xj+8;3 + xj+9;1 − xj+6;7 − xj+8;4 − xj+9;2

xj+7;5 + xj+8;3 + xj+9;1 − xj+7;6 − xj+8;4 − xj+9;2 xj+7;8 + xj+8;4 + xj+9;2 − xj+8;5 − xj+9;3 − xj+10;1

xj+7 + xj+1;5 − xj+1;6 − xj+1;8 xj+1;6 + xj+2;4 − xj+1;7 − xj+2;5 xj+1;6 + xj+3;3 − xj+1;7 − xj+3;4

xj+1;6 + xj+4;2 − xj+1;7 − xj+4;3 xj+1;6 + xj+5;1 − xj+1;7 − xj+5;2 xj+2;5 + xj+2;6 − xj+3;3 − xj+3;4

xj+2;5 + xj+4;2 − xj+2;6 − xj+4;3 xj+2;5 + xj+5;1 − xj+2;6 − xj+5;2 xj+2;8 + xj+3;4 − xj+3;5 − xj+6;1

xj+2;8 + xj+4;3 − xj+4;4 − xj+6;1 xj+2;8 + xj+5;2 − xj+5;3 − xj+6;1 xj+3;4 + xj+4;2 − xj+3;8 − xj+4;3

xj+3;4 + xj+5;1 − xj+3;8 − xj+5;2 xj+3;5 + xj+4;2 − xj+3;8 − xj+4;4 xj+3;5 + xj+5;1 − xj+3;8 − xj+5;3

xj+3;6 + xj+4;3 − xj+4;5 − xj+6;1 xj+3;6 + xj+4;4 − xj+4;5 − xj+6;2 xj+3;6 + xj+5;2 − xj+5;4 − xj+6;1

xj+3;6 + xj+5;3 − xj+5;4 − xj+6;2 xj+3;7 + xj+4;3 − xj+4;6 − xj+6;1 xj+3;7 + xj+4;4 − xj+4;6 − xj+6;2

xj+3;7 + xj+4;5 − xj+4;6 − xj+6;3 xj+3;7 + xj+5;2 − xj+5;8 − xj+6;1 xj+3;7 + xj+5;3 − xj+5;8 − xj+6;2
xj+3;7 + xj+5;4 − xj+5;8 − xj+6;3 xj+3;7 + xj+5;5 − xj+5;8 − xj+6;4 xj+4;3 + xj+5;1 − xj+4;7 − xj+5;2
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xj+4;4 + xj+5;1 − xj+4;7 − xj+5;3 xj+4;5 + xj+5;1 − xj+4;7 − xj+5;4 xj+4;6 + xj+4;8 − xj+4;7 − xj+6;4

xj+4;6 + xj+5;1 − xj+4;7 − xj+5;8 xj+4;6 + xj+5;6 − xj+4;7 − xj+6;5 xj+4;6 + xj+5;7 − xj+4;7 − xj+6;6

xj+4;8 + xj+5;2 − xj+5;6 − xj+6;1 xj+4;8 + xj+5;3 − xj+5;6 − xj+6;2 xj+4;8 + xj+5;4 − xj+5;6 − xj+6;3

xj+4;8 + xj+5;5 − xj+5;6 − xj+6;4 xj+5;1 + xj+5;5 − xj+5;6 − xj+5;8 xj+5;2 + xj+6;4 − xj+6;1 − xj+6;5

xj+5;2 + xj+7;3 − xj+6;1 − xj+7;4 xj+5;2 + xj+8;2 − xj+6;1 − xj+8;3 xj+5;2 + xj+9;1 − xj+6;1 − xj+9;2

xj+5;3 + xj+6;4 − xj+6;2 − xj+6;5 xj+5;3 + xj+7;3 − xj+6;2 − xj+7;4 xj+5;3 + xj+8;2 − xj+6;2 − xj+8;3

xj+5;3 + xj+9;1 − xj+6;2 − xj+9;2 xj+5;4 + xj+6;4 − xj+6;3 − xj+6;5 xj+5;4 + xj+7;3 − xj+6;3 − xj+7;4

xj+5;4 + xj+8;2 − xj+6;3 − xj+8;3 xj+5;4 + xj+9;1 − xj+6;3 − xj+9;2 xj+5;5 + xj+5;7 − xj+5;6 − xj+6;6

xj+5;5 + xj+7;3 − xj+6;4 − xj+7;4 xj+5;5 + xj+8;2 − xj+6;4 − xj+8;3 xj+5;5 + xj+9;1 − xj+6;4 − xj+9;2

xj+5;6 + xj+5;8 − xj+6;5 − xj+10;1 xj+5;6 + xj+6;4 − xj+6;5 − xj+6;8 xj+5;6 + xj+7;3 − xj+6;8 − xj+7;4

xj+5;6 + xj+8;2 − xj+6;8 − xj+8;3 xj+5;6 + xj+9;1 − xj+6;8 − xj+9;2 xj+5;7 + xj+5;8 − xj+6;6 − xj+10;1

xj+5;7 + xj+6;4 − xj+6;6 − xj+6;8 xj+5;7 + xj+7;4 − xj+7;5 − xj+10;1 xj+5;7 + xj+8;3 − xj+8;4 − xj+10;1

xj+5;7 + xj+9;2 − xj+9;3 − xj+10;1 xj+5;8 + xj+6;4 − xj+6;5 − xj+6;7 xj+5;8 + xj+7;3 − xj+6;7 − xj+7;4

xj+5;8 + xj+8;2 − xj+6;7 − xj+8;3 xj+5;8 + xj+9;1 − xj+6;7 − xj+9;2 xj+6;6 + xj+7;3 − xj+6;7 − xj+7;5

xj+6;6 + xj+8;2 − xj+6;7 − xj+8;4 xj+6;6 + xj+9;1 − xj+6;7 − xj+9;3 xj+7;4 + xj+8;2 − xj+7;6 − xj+8;3

xj+7;4 + xj+9;1 − xj+7;6 − xj+9;2 xj+7;5 + xj+8;2 − xj+7;6 − xj+8;4 xj+7;5 + xj+9;1 − xj+7;6 − xj+9;3

xj+7;8 + xj+8;3 − xj+8;5 − xj+10;1 xj+7;8 + xj+8;4 − xj+8;5 − xj+10;2 xj+7;8 + xj+9;2 − xj+9;4 − xj+10;1

xj+7;8 + xj+9;3 − xj+9;4 − xj+10;2 xj+8;3 + xj+9;1 − xj+8;8 − xj+9;2 xj+8;4 + xj+9;1 − xj+8;8 − xj+9;3

xj+8;5 + xj+9;1 − xj+8;8 − xj+9;4 xj+8;6 + xj+9;2 − xj+9;5 − xj+10;1 xj+8;6 + xj+9;3 − xj+9;5 − xj+10;2

xj+8;6 + xj+9;4 − xj+9;5 − xj+10;3 xj+8;7 + xj+9;2 − xj+9;6 − xj+10;1 xj+8;7 + xj+9;3 − xj+9;6 − xj+10;2

xj+8;7 + xj+9;4 − xj+9;6 − xj+10;3 xj+8;7 + xj+9;5 − xj+9;6 − xj+10;4 xj+9;6 + xj+9;8 − xj+9;7 − xj+10;5

xj+2;8 + xj+3;4 + xj+4;2 − xj+3;5 − xj+4;3 xj+2;8 + xj+3;4 + xj+5;1 − xj+3;5 − xj+5;2
xj+2;8 + xj+4;3 + xj+5;1 − xj+4;4 − xj+5;2 xj+3;6 + xj+4;3 + xj+5;1 − xj+4;5 − xj+5;2
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xj+3;6 + xj+4;4 + xj+5;1 − xj+4;5 − xj+5;3 xj+3;7 + xj+4;3 + xj+5;1 − xj+4;6 − xj+5;2

xj+3;7 + xj+4;4 + xj+5;1 − xj+4;6 − xj+5;3 xj+3;7 + xj+4;5 + xj+5;1 − xj+4;6 − xj+5;4

xj+3;7 + xj+4;8 + xj+5;2 − xj+5;5 − xj+6;1 xj+3;7 + xj+4;8 + xj+5;3 − xj+5;5 − xj+6;2

xj+3;7 + xj+4;8 + xj+5;4 − xj+5;5 − xj+6;3 xj+4;6 + xj+4;8 + xj+5;1 − xj+4;7 − xj+5;5

xj+5;6 + xj+5;8 + xj+7;3 − xj+6;5 − xj+7;4 xj+5;6 + xj+5;8 + xj+8;2 − xj+6;5 − xj+8;3

xj+5;6 + xj+5;8 + xj+9;1 − xj+6;5 − xj+9;2 xj+5;7 + xj+5;8 + xj+6;4 − xj+6;5 − xj+6;6

xj+5;7 + xj+5;8 + xj+7;3 − xj+6;6 − xj+7;4 xj+5;7 + xj+5;8 + xj+8;2 − xj+6;6 − xj+8;3

xj+5;7 + xj+5;8 + xj+9;1 − xj+6;6 − xj+9;2 xj+5;7 + xj+7;4 + xj+8;2 − xj+7;5 − xj+8;3

xj+5;7 + xj+7;4 + xj+9;1 − xj+7;5 − xj+9;2 xj+5;7 + xj+8;3 + xj+9;1 − xj+8;4 − xj+9;2

xj+7;8 + xj+8;3 + xj+9;1 − xj+8;5 − xj+9;2 xj+7;8 + xj+8;4 + xj+9;1 − xj+8;5 − xj+9;3

xj+3;5 + xj+4;3 − xj+3;8 − xj+4;4 − xj+6;1 xj+3;5 + xj+5;2 − xj+3;8 − xj+5;3 − xj+6;1

xj+4;4 + xj+5;2 − xj+4;7 − xj+5;3 − xj+6;1 xj+4;5 + xj+5;2 − xj+4;7 − xj+5;4 − xj+6;1

xj+4;5 + xj+5;3 − xj+4;7 − xj+5;4 − xj+6;2 xj+4;6 + xj+5;2 − xj+4;7 − xj+5;8 − xj+6;1

xj+4;6 + xj+5;3 − xj+4;7 − xj+5;8 − xj+6;2 xj+4;6 + xj+5;4 − xj+4;7 − xj+5;8 − xj+6;3

xj+4;6 + xj+5;5 − xj+4;7 − xj+5;8 − xj+6;4 xj+5;2 + xj+5;5 − xj+5;6 − xj+5;8 − xj+6;1

xj+5;3 + xj+5;5 − xj+5;6 − xj+5;8 − xj+6;2 xj+5;4 + xj+5;5 − xj+5;6 − xj+5;8 − xj+6;3

xj+5;7 + xj+6;5 − xj+6;6 − xj+6;8 − xj+10;1 xj+6;5 + xj+7;3 − xj+6;7 − xj+6;8 − xj+7;4

xj+6;5 + xj+8;2 − xj+6;7 − xj+6;8 − xj+8;3 xj+6;5 + xj+9;1 − xj+6;7 − xj+6;8 − xj+9;2

xj+6;6 + xj+7;4 − xj+6;7 − xj+7;5 − xj+10;1 xj+6;6 + xj+8;3 − xj+6;7 − xj+8;4 − xj+10;1

xj+6;6 + xj+9;2 − xj+6;7 − xj+9;3 − xj+10;1 xj+7;5 + xj+8;3 − xj+7;6 − xj+8;4 − xj+10;1

xj+7;5 + xj+9;2 − xj+7;6 − xj+9;3 − xj+10;1 xj+8;4 + xj+9;2 − xj+8;8 − xj+9;3 − xj+10;1

xj+8;5 + xj+9;2 − xj+8;8 − xj+9;4 − xj+10;1 xj+8;5 + xj+9;3 − xj+8;8 − xj+9;4 − xj+10;2

Proof: �i� By the form of ��, coefficients of x1;1, x1;2, x1;3, x1;4, x1;5, x1;6, x1;7, x1;8 are positive.

his shows that the “positivity assumption” is satisfied.
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�ii� We assume xj;1
0 for any j
1. We show that xj;2, xj;3, xj;4, xj;5, xj;6, x1;7, x1;8
0 for any
j
1. By the form of ��, we have

xj,2 
 xj+1;1, xj,3 
 xj+1;2, xj;4 
 xj+1;3, xj;5 
 xj+1;4,

xj;7 
 xj+6;1, xj;8 
 xj+1;7, xj;6 
 xj+1;8.

his shows xj;2
0 for j
1 since xj+1;1
0 and similarly, we have xj;3
0, xj;4
0, xj;5
0, xj;7

0, xj;8
0, xj;6
0 for j
1 since xj;3
xj+1;2, xj;4
xj+1;3, xj;5
xj+1;4, xj;7
xj+1;6, xj;8
xj+1;7,

j;6
xj+1;8, respectively.
�iii� We determine when xj;i�0. We have

0 
 xj+15;1 
 0.

his shows xm;1�0 for m
16. Similarly, we have xm;2�0, xm;3�0, xm;4�0, xm;5�0, xm;6�0,

m;7�0, xm;8�0 for m
16 since xj+14;1
xj+14;2, xj+13;2
xj+13;3, xj+12;3
xj+12;4, xj+11;4
xj+11;5,

j+7;3
xj+7;6, xj+9;1
xj+9;7, xj+8;2
xj+8;8, respectively. In particular, the parameter j in �� runs
ver 1� j�15. �

Remark 3.18: For all simple Lie algebras, the number of xj;i’s such that xj;i�0 is equal to the
ength of the longest element of Weyl group.
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omment on “Central potentials on spaces of constant
urvature: The Kepler problem on the two-
imensional sphere S2 and the hyperbolic plane H2”
J. Math. Phys. 46, 052702 „2005…‡

A. V. Shchepetilova�

Department of Physics, Moscow State University, 119992 Moscow, Russia

�Received 20 May 2005; accepted 12 September 2005; published online 10 November 2005�

Cariñena, Rañada, and Santander consider a classical Kepler problem in constant
curvature spaces and related theory of conics in these spaces. Here we point out
that earlier results exist in the literature. Some of these results date back to the
nineteenth and the beginning of the twentieth century. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2107267�

In Ref. 1, Cariñena, Rañada, and Santander deal with a classical Kepler problem on constant
urvature spaces. In the Introduction they cite Refs. 2–9 concerning quantum-mechanical version
f this problem and related topics. After that they note: “since then, a certain number of authors
ave studied this question from both the classical �Kepler problem� and the quantum �hydrogen
tom� point of view” �here they cite 16 papers from 1985 to 2003�. It should be pointed out
owever that the classical Kepler problem on constant curvature spaces is naturally much older
han its quantum analog.

Indeed, the analog of Newton force for the hyperbolic space H3 was proposed already by
obachevski �in 1835–1838�10 as the value F��� which is inverse to the area of the sphere of

adius � in the space H3 with an attractive body in the center. An analytical expression for the
ewtonian potential in H3 was written in 1870 by Schering11 �see also his paper12 of 1873�.

In 1873 Lipschitz considered a one-body motion in a central potential on the sphere S2.13

lthough he knew the central potential, satisfying the Laplace equation in the space S3, he
referred to consider another central potential V����sin−1�� /R�, where R is the curvature radius.
e found a general solution to this problem in terms of elliptic functions.

In 1885 Killing found a generalization of all three Kepler laws to the case of a sphere S3.14 He
onsidered an attractive force as an inverse area of a two-dimensional sphere in S3, as Lobachev-
ki did before. In 1886, similar results were published by Neumann.15

The extension of these results to the hyperbolic case was carried out by Liebman in Ref. 16 in
902, and later in 1905 in his book on non-Euclidean geometry.17 Note that he started from
llipses in S3 or H3, and derived a potential in such a way that the first Kepler law would be valid.
e also derived the generalization of the oscillator potential for these spaces from the requirement

hat a particle motion occur along the ellipse with its center coinciding with the center of the
otential.

The well-known Bertrand theorem18 states that there are only two central potentials in Eu-
lidean space that make all bounded trajectories of a one-particle problem closed. Its generaliza-
ion for spaces S2 and H2 was proved by Liebman in 1903.19

One may regard classical mechanics in spaces of constant curvature as a predecessor of
pecial and general relativity. After the rise of these theories the above-mentioned papers of
chering, Killing, and Liebmann were almost completely forgotten. Note that the description of a
article motion in central potentials in spaces S3 and H3 was shortened in the second and third

�
Electronic mail: quant@phys.msu.su
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ditions of the Liebman book17 with respect to the first one in favor of special relativity. Similar
odels attracted attention later from the point of view of quantum mechanics and theory of

ntegrable systems.
Equation �4� from Ref. 1, which is used there for an analysis of trajectories, is not a new one.

ts equivalent form for different types of trajectories is presented in Ref. 16 �hyperbolic case� and
ater in Ref. 20 �spherical case�.

Two ideas appearing in Ref. 1—the description of the spherical, hyperbolic and Euclidean
ases in a uniform way with the sectional curvature � as a parameter, and the conic nature of
rajectories for the Kepler problem in constant curvature spaces—can be found in earlier literature.
he first one is presented in Ref. 21, where one can also find a history of the problem prior to
chrödinger’s paper.2 The second idea was explored in Liebmann’s paper,16 and is also presented

n Ref. 21.
Section V of Ref. 1 describes a theory of conics in constant curvature two-dimensional spaces,

ut the authors do not provide references. Note that this theory was developed as early as 1883.22

lot of relevant information on this theory can be found also in Refs. 16, 17, 21, and 23.

The author is grateful to A. Starinets, whose help made the author’s access to many old cited
apers possible, and to I. E. Stepanova, who helped with translation from German.
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esponse to “Comment on ‘Central potentials on spaces
f constant curvature: The Kepler problem on the

wo-dimensional sphere S2 and the hyperbolic plane H2’ ”
J. Math. Phys. 46, 052702 „2005…‡

J. F. Cariñena and M. F. Ranada
Departamento de Física Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain

M. Santander
Departamento de Física Teórica, Universidad de Valladolid, 47011 Valladolid, Spain

�Received 12 September 2005; accepted 12 September 2005;
published online 10 November 2005�

�DOI: 10.1063/1.2107287�

Shchepetilov starts pointing out that many references in Ref. 3 are related to Quantum Me-
hanics. Nevertheless this is a characteristic, not only of Ref. 3, but of many of the research papers
ritten along the second half of the twentieth century, because it is well known that, in the study
f integrable systems, classical and quantum properties are very closely related.

The first part of the comment provides historical precision on research made on the Kepler
roblem in the second half of the nineteenth century. This is interesting information that, unfor-
unately, has remained as completely forgotten for many years �we are talking of Mathematical
hysics, perhaps the situation is different in the History of Science circles�. This is indeed a matter
f fact. Look at the paper “Dynamical symmetries in a spherical geometry I”8 by Higgs that has
een considered, since its publication 25 years ago, as one of the most important and cited papers
n this matter: it has 20 references but no mention of any of the old papers of Lobachevski,
chering, Lipschitz, Killing, etc. Moreover, we did not find any of these references in Rosenfeld’s
ook.14 In any case, this question seems more related with the history of mathematics than with
he actual mathematics or physics.

It seems that corresponds to Dombrowski and Zitterbarth’s “rediscovery” of all these nine-
eenth century results in Ref. 6 that seems to be a summary of the Ph. D. thesis16 of the second
uthor �the comment by Shchepetilov is very closely related with the first part of this paper�.
hese authors start with a fully detailed survey, quoting results by Bolyai, Dirichlet, Lipschitz,
eltrami, Schering, Killing, and Liebmann �spanning from 1848 to 1905�, and then write “In many
ases these statements are . . . rather incomplete, sometimes not presented in an optimal form, or
heir proofs are not quite sufficient resp. rather ‘out of date’ since several appropriate tools . . . were
ot available . . . . So we thought it to be worthwhile to make these �wonderful, classical� results
nd proofs of them accessible in a rather rigid and complete version . . . .” The situation they
escribe is thus the following: whereas some old results on the non-Euclidean Kepler problem
ere stated or demonstrated at different places in the literature prior to 1905, no complete,

ccessible and modern presentation was available when Ref. 6 was written.
Concerning the last three paragraphs, focused on three particular aspects of Ref. 3, we must

rst say that Ref. 3 has, roughly speaking, two parts �as mentioned in the paper’s title�: the first
ne devoted to the geodesic motion, the theory of symmetries and the general theory of central
otentials with constant curvature ��0, and the second one, more specific, devoted to the Kepler
roblem as a particular case. We consider Secs. II and III as important, not only from the structure
f the paper but also because of the results obtained �the equation of Binet is obtained for all the

entral potentials and for all the values of � and not just for the Kepler problem on a particular

46, 114102-1022-2488/2005/46�11�/114102/2/$22.50 © 2005 American Institute of Physics
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pace�. Shchepetilov restricts his comments to the second part of Ref. 3 and completely ignores
he first one; we think that this can give a partial image of Ref. 3. Next we consider the last three
aragraphs.

�i� All the mathematical expressions are presented using the curvature � as a parameter. Thus,
ome previous results, obtained in some cases for the sphere and in others for the hyperbolic plane,
rise now as particular cases of this more general �-dependent situation. Section II of Ref. 9
ontains some equations that coincide �after the appropriate changes of notation� with the �=1
alue of �-dependent expressions in Ref. 3 �by the way, Ref. 9 has five references and none of
hem are related with the above-mentioned mathematicians of the second half of the nineteenth
entury�.

�ii� The technique of introducing the curvature � as a parameter for the joint analysis of the
ynamics in the three manifolds �S�

2 ,E2 ,H�
2� has been systematically used in some of our previous

apers �see, e.g., Refs. 11–13� not only for the Kepler problem but for other superintegrable
ystems. Moreover, in some previous papers of one of the authors, which are related to the
ayley-Klein geometries �they start with Refs. 1 and 2 and continue until recent papers such as
efs. 7 and 10�, this technique is used, not just with one single parameter �, but with two
arameters, �1, �2, which correspond to a space M�1,�2

with constant curvature �1 and signature
+1,�2�. This formalism is more general and it includes the �-dependent formalism used in Ref.
as the particular case �1=� and �2=1 �the “Lorentzian” version of the Kepler problem depend-

ng on the two parameters, �1 and �2, is studied in Ref. 4�.
�iii� It is true that Sec. V does not have references but it is also true that the total number of

eferences in Ref. 3 is 44 �not only the references mentioned by Shchepetilov in his introductory
aragraph�. The article of Story is written from a geometrical projective viewpoint and without
ny mechanical application, and its approach is very different from the metric approach to conics
resented in Ref. 3. The situation is similar to the book by Coolidge,5 so it seems out of place to
uote them. The Liebmann books include a study of hyperbolic conics, but, aside from its role in
he history of geometry, Dombrowski and Zitterbarth suggest that the list of types of Kepler orbits
iven by Liebmann for the hyperbolic plane was not known for sure to be complete �we recall that
hey consider this book as important but “rather incomplete, sometimes not presented in an
ptimal form, . . .” for the present time reader�. Finally, we note that Dombrowski and Zitterbarth,
n spite of their interest in old references, do not mention either the paper by Story15 or the book
f Klein.
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4 Cariñena, J. F., Rañada, M. F., Santander, M., and Sanz-Gil, T., “Separable potentials and triality in 2d-spaces of constant
curvature,” J. Nonlinear Math. Phys. 12, 230–252 �2005�.
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8 Higgs, P. W., “Dynamical symmetries in a spherical geometry I,” J. Phys. A 12, 309–323 �1979�.
9 Kozlov, V. V. and Harin, A. O., “Kepler’s problem in constant curvature spaces,” Celest. Mech. Dyn. Astron. 54,
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A mixed state may be represented in many different ways as a mixture of pure
states �=�pi��i���i�. The mixing problem in quantum mechanics asks the charac-
terization of the probability distribution �pi� and the mixed states ��i� such that �
=�pi�i for any given mixed state �. Some constraints based on eigenvalues of the
mixed states are established in uni-party case �see Nielsen, Phys. Rev. A. 63,
052308 �2000�, 63, 022144 �2000�, Nielsern and Vidal Quantum Inf. Comput. 1 76
�2001��. We develop some new invariant sets for bipartite mixed states under local
unitary operations, which are independent of eigenvalues, and prove some strong
constraints based on these invariant sets for the mixing problem in bipartite case.
This exhibits a remarkable difference from the uni-party case. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2138048�

. INTRODUCTION

A feature of quantum mechanics is that every mixed state can be represented as an ensemble
f pure states 	pi , ��i�
 in many different ways. An important problem in quantum mechanics is the
ollowing mixing problem: for any given mixed state � to characterize the probability distribution
pi� and the mixed states ��i� such that �=�pi�i. In the context of quantum information process-
ng, the action of mixing 	pi ,�i
→�=�pi�i corresponds to the erasure of information concerning
he identity of a member of the ensemble �see Refs. 1 and 2�. Thus it is interesting to characterize
his process of mixing of quantum states. In the uni-party case there is the so-called “ensemble
lassification theorem” of Schrödinger, which established a connection via a unitary matrix be-
ween two ensembles representing the same mixed state�Refs. 1 and 3�. From the work in Refs. 4,
, and 1, we know the constraint �pi������ on the ensemble 	pi , ��i�
 such that �=�pi��i���i�,
here ���� is the eigenvalue vector of the mixed state � and � is the majorization. Here we recall

he definition of the majorization �Refs. 4, 5, and 1�. �pi� and ���� are rearranged in decreasing
rder as �p1

↓ ,… ,pd
↓� and ��1

↓ ,… ,�d
↓�, we say �pi������ if

p1
↓ � �1

↓,

p1
↓ + ¯ + pk

↓ � �1
↓ + ¯ + �k

↓ �1�

p1
↓ + ¯ + pd

↓ = �1
↓ + ¯ + �d

↓.

or the process of mixing of general quantum states 	pi ,�i
→�=�pi�i the constraint ����
�pi���i� must be hold. Further analysis about the ensemble 	pi , ��i�
 representing � was pre-

ented in Ref. 6.
It is natural to consider the mixing problem in bipartite �or general multipartite� case from the

heoretical view and the motivation of quantum information processing. As is well known, much
f the difficulty for a complete understanding of the bipartite mixed state entanglement can be

�
Electronic mail: chenhao1964cn@yahoo.com.cn
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raced to the basic fact that there are infinitely many ways of viewing a bipartite mixed state � as
n ensemble of pure states �=�pi��i���i�. For the purpose of understanding the entanglement of
he bipartite mixed state � it is always useful to know the constraints on the pure states ��i�’s in the
nsemble. Thus we hope to find as many constraints as possible on the mixing process of bipartite
uantum states 	pi ,�i
→�=�pi�i, where pi is a probability distribution and ��i� ,� are mixed states
n HA

m
� HB

n .
We can have some constraints of the mixing problem for bipartite states from some previous

nown results and invariants. First we can trace over A or B for the mixing of bipartite states �
�pi�i and then apply the known constraints in the uni-party case to get the constraints in the
ipartite case. On the other hand, it is clear that there is at least one entangled pure state ��i� in the
nsemble 	pi , ��i�
 representing an entangled bipartite mixed state �. For a bipartite mixed state �,
t has Schmidt number k if and only if for any decomposition �=�ipi�vi��vi� for positive real
umber pi’s and pure state �vi�’s, at least one the of �vi�’s has its Schmidt rank at least k, and there
xists such a decomposition with all pure state �vi�’s Schmidt rank at most k �see Ref. 7�. Gener-
lly speaking if the Schmidt number of � is k, then there is at least one pure state ��i� with Schmidt
ank at least k for the ensemble 	pi , ��i�
 representing �. This kind of constraint is a feature of the
ipartite case. Of course people can have more constraints on the mixing of bipartite states based
n, e.g., formation of entanglement, etc. However it is difficult to calculate invariants such as
chmidt number and formation of entanglement, thus these kinds of constraints in the bipartite
ase are quite restrictive in application.

For the mixing process 	pi ,�i
→�=�pi�i, it is clear U�U†=�piU�iU
† �† is the adjoint� for

ny unitary operation U on the system. Thus the mixing problem in the uni-party case is actually
bout the equivalence classes of mixed states under unitary operations, and the constraints should
e based on the invariants of mixed states under unitary operations. It is clear that for bipartite
ixed states �=�pi�i is equivalent to �U1 � U2���U1 � U2�†=�pi�U1 � U2��i�U1 � U2�† for any

ocal unitary operation U1 � U2 on the bipartite system. Thus when the mixing problem is consid-
red in the bipartite case, it is actually about the equivalence classes of mixed states under local
nitary operations, and the constraints should be based on the invariants of bipartite mixed states
nder local unitary operations. In the uni-party case it is well known that there are exactly n−1
nvariants �i.e., n eigenvalues sum up to 1� of a mixed state on Hn under the group of unitary
perations �i.e., n−1=dim �the space of all mixed states�-dim�the group of unitary operations�
n�n+1� /2−1−n�n−1� /2�. Thus it is natural that the previous known constraints in Refs. 4, 5,
nd 1 are based on these invariants. For bipartite mixed states on HA

m
� HB

n , it is known that there
re m2n2−m2−n2+1 nonlocal invariants under local unitary operations.8 These nonlocal invaraints
ave not been constructed explicitly, however we can speculate that there would be many con-
traints on the mixing of bipartite states based on the nonlocal invariants.

In this paper we develop some new invariant sets of bipartite mixed states under local unitary
perations, which are independent of eigenvalues. These invariant sets are natural from the physi-
al consideration of measuring mixed states by separable pure states. Some strong constraints
thus independent of eigenvalues� on the mixing of bipartite states based on these invariant sets are
roved. From these constraints based on invariant sets it is easy to have constraints based on
umerical quantities derived from these invariant sets �here we note that these numerical quantities
re invariant under local unitary operations�. Since these invariants can be computed easily it is
onvenient to use these constraints as illustrated in the examples to follow. Moreover the con-
traints are imposed on each member �i appearing in �=�pi�i and are independent of the prob-
bility distribution �pi�. Therefore they are essentially a feature of the bipartite case.

I. CONSTRAINTS BASED ON LA„�… AND LB„�…

For any given bipartite mixed state � on HA
m

� HB
n , we can define LA��� �respectively, LB����

the subspaces of HA
m and HB

n� as follows.
Definition 1:

m n
LA��� = 	�a� � HA :�a � x���a � x� = 0, ∀ �x� � HB
 , �2�
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LB��� = 	�b� � HB
n :�x � b���x � b� = 0, ∀ �x� � HA

m
 . �3�

t is clear �a � x���a � x�=0 if and only if �a� � �x� is orthogonal to the range of � since � is
ermitian. Thus LA��� �respectively, LB���� is the linear subspace of HA

m �respectively, HB
m�. We

hould note that LA��� �respectively, LB���� is completely determined by the range of the mixed
tate �, thus it only depends on the eigenstates of � and does not depend on the nonzero eigen-
alues of �.

Since

�a � b��UA � UB���UA � UB�†�a � b� = ��UA
†a� � �UB

†b�����UA
†a� � �UB

†b�� , �4�

e have

LA��UA � UB���UA � UB�†� = UA
†�LA���� . �5�

imilarly LB��UA � UB���UA � UB�†�=UB
†�LB�����, i.e., the dimensions of LA��� and LB��� are

nvariant under local unitary operations. It is easy to verify that LA���=ker�TrB���� and LB���
ker�TrA����. These subspaces have been used to give lower bound for Schmidt numbers of

ow-rank bipartite mixed states in Ref. 9.
For a pure state �= ������, from the invariance under local unitary operations, we can compute

A��� and LB��� from the Schmidt decomposition of ���=�i=1
k pi�ai� � �bi�. We have �a � b���a

� b�=�i=1pi
2��a �ai��b �bi��2=0 implies that LA��� �respectively, LB���� is the orthogonal comple-

entary in HA
m of the space span by pure states �ai�’s �respectively, �bi�’s�. Thus the Schmidt rank

of the pure state � is just the codimensions of the linear subspaces of LA��� and LB���.
If �=�pi��i���i� with pi�0, we have the following equation �a � x���a � x�=�pi��a � x ��i��2.

hus

LA��� = � LA���i���i�� ,

�6�
LB��� = � LB���i���i�� .

The following result is the main result of this section.
Theorem 1: For any given mixed state � on HA

m
� HB

n and an ensemble 	pi , ��i�
 such that
=�pi��i���i�, we have:

� Let s��v�� be the Schmidt rank of the pure state �v�,

s���i�� � min	m − dim�LA����,n − dim�LB����
 . �7�

� For any r=rank��� linearly independent pure states ��i1
� ,… , ��ir

� in the ensemble,

� j=1

r
s���ij

� � max	m − dim�LA����,n − dim�LB����
 . �8�

Proof: We have LA���= �L���i���i��, thus dim�LA�����dim�LA���i���i��� and the Schmidt
ank s���i��=m−dim�LA���i���i���m−dim�LA����. Similarly we have the Schmidt rank s���i��

n−dim�LB����. The conclusion of 1 is proved.
Because ��i1

� ,… , ��ir
� are linearly independent, they span the range of �. From the fact that

a � x���a � x�=0 is equivalent to the fact that �a� � �x� is orthogonal to the range of �, we have

A���=� j=1
r LA���ij

���ij
��. Thus codim�LA������ j=1

r codim�LA���ij
���ij

���, then m−dim�LA����
� j=1

r s���ij
�. Similarly we have n−dim�LB������ j=1

r s���ij
�. The conclusion is proved.

We can have another proof of conclusion 1 of Theorem 1 from the previous known constraint
n uni-party case �see Ref. 5 and 1�. First by the trace over B of �=�pi��i���i�, we get TrB����
�piTrB���i���i��. Thus ��TrB������pi��TrB���i���i��� from the constraint in the uni-party case.

f the codimension of LA���i���i��=ker�TrB���i���i��� is bigger than the codimension of LA���

ker�TrB����, there are more non zeros in the vector �pi��TrB���i���i��� than in the vector
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�TrB����. This is a contradiction to the fact ��TrB������pi��TrB���i���i���. Thus Theorem 1.1
an be derived from the previous known constraint, however our proof here is more transparent.

Example 1: We consider the mixed state �=T1 � T2 on HA
m

� HB
n , where T1 and T2 are the

ixed states on HA
m and HB

n , respectively, satisfying the condition that the rank of T1 is 1 �or the
ank of T2 is 1�. It is clear that � is separable. However we know from Theorem 1.1 that for any
nsemble 	pi , ��i�
 representing �, the pure states ��i�’s are separable. It is easy to verify that the
ank of TrB��� �or of TrA���� is 1, thus the conclusion follows from Theorem 1.1 immediately.

Example 2: Let �= 1
2 ���1���1�+ ��2���2�� be a mixed state of rank 2 on HA

m
� HB

n �assume m
n without loss of generality�, where ��1� is a pure state with Schmidt rank m and ��2� is an

rbitrary pure state not equal to ��1�. From the fact LA���1���1��= 	0
 we know LA���= 	0
. From
heorem 1.2�, for any ensemble 	pi , ��i�
 representing �, we know that the sum of the Schmidt

anks of any two distinct pure states in the ensemble is at least m, that is, except for one pure state,
ll other pure states in the ensemble have their Schmidt ranks at least m /2. This implies that the
chmidt number of � is at least m /2.

II. CONSTRAINTS BASED ON LA
k
„�… AND LB

k
„�…

We can see that the invariance of the dimensions of the linear subspaces LA��� and LB���
nder the local unitary operations is derived from the symmetry of the bilinear form �a � x���a

� x� under local unitary operations. Thus the idea about LA��� �respectively, LB���� can be ex-
ended as follows.

Definition 2: Let � be a mixed state on HA
m

� HB
n . For non-negative integers k=0,1 ,… ,n−1,

e define LA
k ��� to be the set �a��HA

m, such that the Hermitian semi-positive bilinear form �a
� x���a � x� ��x��HB

n is considered as the variable, �a� is fixed� has its rank at most k. That is

LA
k ��� = 	�a� � HA

m:rank��a � x���a � x�� � k
 . �9�

ere �a � x���a � x� for a fixed �a� is considered as a bilinear form on HB
n .

Similarly the set LB
k ����HB

n can be defined for k=0,1 ,… ,m−1. It is clear that LA
0���

LA��� and LB
0���=LB���. From �4� we have LA

k ��UA � UB�����UA � UB�†�=UA
†�LA

k ���� �respec-
ively, LB

k ��UA � UB�����UA � UB�†�=UB
†�LB

k �����. LA
k ��� �respectively, LB

k ���� is the subset of HA
m

respectively, HB
n�, which is invariant �up to unitary transformations of the ambient space� under

ocal unitary operations.
Now we want to see how to calculate these invariant subsets by coordi nate forms. We use the

tandard basis 	�11� , �12� ,…�1n� ,… , �m1� ,… , �mn�
 of H=HA
m

� HB
n . Take

� = �l=1

t
pl�vl��vl� �10�

o be any given representation of � as a convex combination of projections with p1�0,… ,pt

0. Suppose

�vl� = �i,j=1

m,n
aijl�ij� . �11�

onsider

A = �aijl�1�i�m,1�j�n,1�l�t �12�

s the mn� t matrix with mn rows corresponding to the standard basis
�11� ,… , �1n� ,… , �m1� ,… , �mn�
 and t columns corresponding to the expansions of �v1� ,…�vt�
ith respect to this basis as in �11�. It is clear that the matrix of � with respect to the standard basis

s APA†, where P is the t� t diagonal matrix with diagonal entries p1 ,… ,pt.
Let Ai be the ith block n� t submatrix of A corresponding to the A�i1� ,… , �in� rows. For any

m m
a�=�i=1ri�i��HA , we have
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�a � x���a � x� = �x���i=1

m
riAi�P�� j=1

m
rjAj�†

�x� . �13�

hus for any fixed �a�=�i=1
m ri�i��HA

m the matrix of the bilinear form �a � x���a � x� �considered as
bilinear form on �x��HB

n , with respect to the base 	�1� ,… , �n�
� is �i,j=1
m rirj

†AiPAj
†

��i=1
m riAi�P��i=1

m riAi�†. On the other hand, we know that rank���i=1
m riAi�P��i=1

m riAi�†���k is
quivalent to rank��i=1

m riAi��k because P is strictly positive definite. Therefore

LA
k ��� = 	r1�1� + ¯ + rm�m� � HA

m:rank��i=1

m
riAi� � k
 . �14�

hus LA
k ���=	 r1�1�+…+rm�m��HA

m: the determinants of all �k+1�� �k+1� submatrices of
�i=1

m riAi� are zero
. Similarly we have

LB
k ��� = 	r1�1� + ¯ + rn�n� � HB

n :rank��i=1

n
riBi� � k
 . �15�

Thus LB
k ���=	 r1�1�+ ¯ +rn�n��HB

n : the determinants of all �k+1�� �k+1� submatrices of
�i=1

n riBi� are zero 
, where Bi , i=1,… ,n, are defined similarly. In this way we can see that LA
k ���’s

nd LB
k ���’s are the zero locus of some homogeneous polynomials in HA

m and HB
n .

These kinds of subsets can be understood as subsets in the complex projective spaces
P�HA

m�=CPm−1 and P�HB
n�=CPn−1 since their defining equations are homogeneous, and are called

eterminantal varieties in Algebraic Geometry �see Ref. 10�. We should emphasize that these
omogeneous polynomials are independent of these positive real numbers pi’s and only dependent
n the pure states �vl�’s. In the case k=0 the defining homogeneous polynomials of LA

0��� and

B
0��� are of degree 1, thus they are subspaces. For general k ,LA

k ��� and LB
k ��� are just �algebraic�

ubsets of HA
m and HB

n defined as the zero locus of some homogeneous polynomials. From the
nvariance under local unitary operations we know that the geometric properties of LA

k ��� �respec-
ively, LB

k ���, considered as subset of the complex projective spaces�, such as their volumes,
imensions, etc., are invariants of the mixed states under local unitary operations.

If we take the spectral decomposition of �=�i�i��i��� j�, where �i’s and ��i�’s are eigenvalues
nd eigenstates, and then compute LA

k ��� ,k=0,1 ,…n−1 �respectively, LB
k ��� ,k=0,1 ,… ,m−1� as

bove, it is clear that these invariant sets under local unitary operations are computed from the
igenstates and thus independent of eigenvalues of the mixed state. Therefore the following
onstraints on the mixing of bipartite mixed states are independent of eigenvalues.

Theorem 2: Let � ,�i be bipartite mixed states on HA
m

� HB
n and pi’s be positive real numbers.

uppose �=�pi�i. Then LA
k ����LA

k ��i� ,k=0,1 ,… ,n−1 and LB
k ����LB

k ��i� ,k=0,1 ,… ,m−1 for
ny possible index i.

Proof: Let �i=�� j
i�� j

i��� j
i� be the spectral decomposition of the mixed state �i. Then �

�pi�i=�i,jpi� j�� j
i��� j

i� with pi� j�0. We know that LA
k ��� can be computed from the matrix �riAi,

here Ai’s are defined from the pure states �� j
i�’s as in �13�. On the other hand LA

k ��i� can be
omputed from the matrix �riAi�, where Ai�’s are defined from the pure states �� j

i�’s for the fixed i
s in �13�. Thus it is clear that the matrix �riAi� is the submatrix of �iriAi and rank��riAi��k
mplies rank��riAi���k. We have LA

k ����LA
k ��i�. The conclusion LB

k ����LB
k ��i� can be proved

imilarly.
If we consider the LA���’s as algebraic subsets of the projective space, then the constraints

volume�LA
k ���� � volume�LA

k ��i�� ,

�16�
dimension�LA

k ���� � dimension�LA
k ��i��

respectively, about LB
k ���� if �=�pi�i with pi�0 follows from Theorem 2 directly. Here we

hould note that the volume and dimension of LA
k ��� �respectively, LB

k ���� are invariants of the
ixed states � under local unitary operations.

Example 3: Let �BP= 1
4 ���1���1�+ ¯ + ��4���4�� be a mixed state on HA

3
� HB

3 of rank 4, where
��1� = m�11� + s�31� + n�22� ,
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��2� = b�12� + a�21� + c�32� ,

�17�
��3� = n*�11� + t�13� − m*�22� ,

��4� = − a*�12� + b*�21� + d�23�

or suitable chosen parameters. This is just the mixed states constructed in Ref. 11. It is proved
here that for randomly chosen parameters �BP is PPT entangled mixed state.

From the above noted computation we know that LA
2��BP� is defined by the condition

ank��riAi��2, where �riAi can be computed from the above four pure states as the following:

�mr1 + sr3 ar2 n*r1 b*r2

nr2 br1 + cr3 − m*r2 − a*r1

0 0 tr1 dr2
� . �18�

We can check that the point �r1 ,r2 ,r3�= �0,1 ,−1� is not in LA
2��BP� for randomly chosen

arameters.
Consider the following five pure states ��1� ,… , ��5� in HA

3
� HB

3 , where

��1� =
1
2

��11� − �12�� ,

��2� =
1
2

��13� − �23�� ,

��3� =
1
2

��32� − �33�� , �19�

��4� =
1
2

��21� − �31�� ,

��5� = 1
3 ��1� + �2� + �3�� � ��1� + �2� + �3�� .

hey form an UPB �Unextendible Product Base� as shown in Ref. 12. Let T be the orthogonal
omplementary space and �UPB= �1/D�PT, where D is a normalizing constant and PT is the
rojection to T. It is known that �UPB is PPT entangled mixed state from the UPB context �Ref.
2�.

Generally speaking we need four orthogonal pure states in T to compute LA
2��UPB�. However

or any four linearly independent pure states in T, it is observed that the corresponding �riAi and
riAi� defined from these two sets of pure states only differ with a non-singular 4�4 matrix on the

ight side, thus the conditions rank��riAi��2 and rank��riAi���2 are equivalent. This makes our
omputation simpler. Let �v1� ,… , �v4� be the following four linearly independent pure states in T:

�v1� = 1
2 ��11� + �12� − �21� − �31�� ,

�v2� = 1
2 ��11� + �12� − �13� − �23�� ,

�20�
�v3� = 1 ��11� + �12� − �32� − �33�� ,
2
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�v4� =
1

20
��11� + �12� + �13� + �23� − 4�22�� .

Therefore LA
2��UPB� as defined by the rank of the following matrix is at most 2:

�r1 − r2 − r3 r1 r1 r1

r1 r1 r1 − r3 r1 − 4r2

0 − r1 − r2 − r3 r1 + r2
� . �21�

It is easy to check that the point �r1 ,r2 ,r3�= �0,1 ,−1� is in LA
2��UPB�. Thus LA

2��UPB� is not a
ubset of LA

2��BP�, and from Theorem 2 we know that it is impossible to find positive real pi’s and
ixed state �i’s with �1=�BP on HA

3
� HB

3 such that �UPB=�pi�i.
Example 4: Let ��= 1

3 ��v1��v1�+ �v2��v2�+ �v4��v4�� be a mixed state on HA
3

� HB
3 where

v1� , �v2� , �v4� are as above. This is a rank 3 mixed state. We want to know if there exist positive
eal pi’s and mixed state �i’s with �1=�� such that �BP=�pi�i. It is easy to check the point �0; 1;
� is in the set LA

2��BP� �for randomly chosen parameters�. From the above-described computation
he set LA

2���� is defined by the condition that the following matrix has its rank at most 2:

�r1 − r2 − r3 r1 r1

r1 r1 r1 − 4r2

0 − r1 − r2 r1 + r2
� . �22�

Thus it is easy to check that the point �0; 1; 0� is not in the set LA
2����. From Theorem 2 we

now that it is impossible to find positive real pi’s and mixed state �i’s with �1=�� such that

BP=�pi�i.
From these examples we can see that it is not necessary to locate the set LA

k ��� �or LB
k ����

xactly when we use Theorem 2 to decide whether a mixed state is mixed by some special mixed
tates. Because Theorem 2 gives strong constraints on the mixing problem of bipartite states, it is
onvenient to use it to get the negative result for mixing problem in bipartite case.

In conclusion, we have developed new invariant sets of bipartite mixed states under local
nitary operations and proved some strong constraints on the mixing problem of bipartite states
ased on these new invariant sets. The invariant sets and the constraints based on them are
ndependent of the eigenvalues of the mixed states. This exhibits the feature that the mixing
roblem in bipartite case is essentially different from the uni-party case. These constraints can be
sed easily to decide if a given bipartite mixed state is mixed by some other mixed states.
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adder operators and coherent states for the Jaynes-
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Using algebraic techniques, we realize a systematic search of different types of
ladder operators for the Jaynes-Cummings model in the rotating-wave approxima-
tion. The link between our results and previous studies on the diagonalization of the
associated Hamiltonian is established. Using some of the ladder operators obtained
before, examples are given on the possibility of constructing a variety of interesting
coherent states for this Hamiltonian. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2137718�

. INTRODUCTION

The Jaynes-Cummings model describes the interaction between one mode of a quantized
lectromagnetic field and a simplified version of an atomic system with two levels.1,2 It is a
onlinear model of great interest in atomic physics and quantum optics, where it is the fundamen-
al theoretical tool in the study of cavity QED for analyzing ion traps.3 Hence, it has become very
aluable for researchers working in the quickly developing domain of quantum information
rocessing.4 The solution of the complete system �including the counter-rotating terms� is not yet
nown in a closed form, although there has been some conjectures never proved.5 Using the
o-called rotating-wave approximation, the Hamiltonian remains nonlinear, but it turns out to be
xactly solvable; its eigenvalues and eigenvectors can be computed in a closed form.6 In this work
e are going to focus on the possibility of constructing ladder operators for this simplified model,
sing some of them to obtain the associated coherent states.

In Sec. II, we will recall the essential features of the Jaynes-Cummings Hamiltonian in the
otating-wave approximation using a notation which is well adapted to the purpose of this pre-
entation. When solving this quantum mechanical problem, we will see that two “towers” of
igenstates appear. The explicit construction of ladder operators will be given in Sec. III. They are
ssumed to act on the eigenstates to move them up or down in one of the “towers” of eigenstates
ut do not mix them. We will prove that this condition is not enough to determine them com-
letely, and some extra requirements are needed to fully accomplish our goal. Therefore, in Sec.
V, the commutator of these operators will be fixed to be either the identity operator or the
aynes-Cummings Hamiltonian itself. In this context, some of the solutions are related with al-
eady known results on the diagonalization of the Jaynes-Cummings Hamiltonian in the rotating-
ave approximation. In Sec. V we will assume the factorization of the Jaynes-Cummings Hamil-

onian by these ladder operators, analyzing two of such possible factorizations. In all the cases
onsidered in Secs. IV and V we will also study two situations of particular interest, the case in
hich the field and the atom are uncoupled and the case when they are in resonance. In Sec. VI,

�Electronic mail: veronique.hussin@umontreal.ca; On leave of absence from Centre de Recherches Mathématiques et
Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal
�Québec�, H3C 3J7 Canada.

�
Electronic mail: luismi@metodos.fam.cie.uva.es
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sing some of the ladder operators obtained in the preceding sections, examples are given on the
ossibility of constructing a wide variety of coherent states for the Jaynes-Cummings Hamil-
onian. Finally, some concluding remarks will be given in Sec. VII.

I. THE JAYNES-CUMMINGS HAMILTONIAN AND ITS ENERGY SPECTRUM

We begin with the Hamiltonian of the Jaynes-Cummings model in the rotating-wave
pproximation6–9

HJC = ���a+a + 1
2�I + 1

2��0�3 + ���a+�− + a�+� . �2.1�

n this expression, a+ and a are the photon creation and annihilation operators �the usual ladder
perator for the harmonic oscillator�, I is the 2�2 identity matrix, ��1 ,�2 ,�3� are the Pauli
atrices, and �±=�1± i�2. The parameters that appear in Eq. �2.1� are the following: � is the field
ode frequency, �0 is the atomic frequency and � is the coupling constant between the radiation

nd the atom. It must be noticed that the rotating-wave approximation is reliable only if9

��0 − �� � �0,� . �2.2�

n a realistic experiment we can imagine that the atomic frequency �0 is fixed �the atomic species
o not change, and the same is true for the transition levels we are considering� and that we can
odulate the field mode frequency �. Hence, let us introduce the following “detuning” parameter

, which can be positive or negative, and is such that

� = �0�1 + �� . �2.3�

n terms of it, the rotating-wave approximation condition �2.2� is thus

��� � 1,1 + �, or ��� � 0. �2.4�

For simplicity, in the sequel we will use the following dimensionless form of the Hamiltonian
2.1�, in which we use � and a new parameter �=� /�0,

H�,� =
HJC

��0
= �1 + ��	a+a +

1

2

I +

1

2
�3 + ��a+�− + a�+� . �2.5�

s we already pointed out, this model is exactly solvable. The main results can be presented in a
uite elegant form if we use the following Fock space, built as the tensor product of the Hilbert
pace associated to the field, times the Hilbert space associated to the spin,

F = Fb � Ff = ��n,− � = 	 0

�n� 
, �n, + � = 	�n�
0

,n = 0,1, . . .  , �2.6�

ith ��n�� the eigenstates of the photon number operator

N = a+a . �2.7�

orking in the Fock space F given in �2.6�, we can find the following matrix representation of the

imensionless Jaynes-Cummings Hamiltonian H�,�:
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H�,� =��1 + ��a+a + 1 +
�

2
�a

�a+ �1 + ��a+a +
�

2
� =��1 + ��N + 1 +

�

2
�a

�a+ �1 + ��N +
�

2
� .

�2.8�

t is very easy to see that this Hamiltonian leaves invariant the following subspaces of F: the
ne-dimensional subspace F0 generated by the vector ��0,−�� and the two-dimensional subspaces

n+1
n generated by the vectors ��n , + � , �n+1,−��n=0

	 . Therefore,

F = F0 �
n=0

	

Fn+1
n . �2.9�

aking this fact into account, it is easy to prove that the normalized energy eigenstates of H�,� are

�E*� = �0,− � , �2.10�

�En
+� = sin 
�n��n, + � + cos 
�n��n + 1,− � , �2.11�

�En
−� = cos 
�n��n, + � − sin 
�n��n + 1,− � , �2.12�

here we have set

sin 
�n� = ��
�q�n + 1� −

�

2

2q�n + 1�
, cos 
�n� =�q�n + 1� +

�

2

2q�n + 1�
, �2.13�

hat satisfy the usual identity cos2 
�n�+sin2 
�n�=1. In the previous expressions, �� denotes the
ign of the coupling constant � and we have introduced the following auxiliary function of n:

q�n� =�	 �

2

2

+ �2n =
���
2
�1 + 	2�

�

2

n . �2.14�

n all these formulas and in the following, if no indication is given in another sense, it is under-
tood that n=0,1 , . . .. Morevover, we will frequently make use of the following limits:

lim
�→0

q�n� = ����n, lim
�→0

q�n� =
���
2

= q�0� , �2.15�

lim
�→0

sin 
�n� =
��

�2
, lim

�→0
cos 
�n� =

1
�2

, �2.16�

nd

lim
�→0

sin 
�n� = ��H�− �� = sin 
�− 1�, lim
�→0

cos 
�n� = H��� = cos 
�− 1� , �2.17�

here H��� is the Heaviside function. Note that in �2.17�, there is a trace of the sign of � after
aking the limit.

The “dimensionless energy” eigenvalues corresponding to the eigenstates in Eqs.
2.10�–�2.12� are

E* =
�

, �2.18�

2
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En
+ = �1 + ���n + 1� + q�n + 1� , �2.19�

En
− = �1 + ���n + 1� − q�n + 1� . �2.20�

We also introduce the diagonalized version of the Hamiltonian in H�,�, which may be realized
s

H�,� = U�,�
+ H�,�U�,� = 	�1 + ���N + 1� + q�N + 1� 0

0 �1 + ���N + 1� − q�N + 1�

 , �2.21�

here q�N+1� is the function defined in �2.14�, changing the number n for the number operator N,
he operator U�,� is given by

U�,� = � sin 
�N� cos 
�N�

a+cos 
�N�
�N + 1

− a+sin 
�N�
�N + 1

� �2.22�

nd U�,�
+ is its adjoint. The eigenstates of �2.21� are �n , ± �, with H�,��n , ± �=En

±�n , ± �, justifying the
otation used for the energy eigenstates �2.11� and �2.12�. They are related to the states �En

±� by the
ollowing formulas

�En
±� = U�,��n, ± �, �n, ± � = U�,�

+ �En
±�, n = 0,1, . . . . �2.23�

ote that the eigenstate �E*� is not included in this scheme, and it satisfies

U�,�
+ �E*� = 0. �2.24�

ue to this fact, the operator U�,� is not unitary in the whole space F, but only when it is restricted
o the subspace F−F0.

Let us now make some comments concerning the energy spectrum. First, the eigenstates can
e arranged in two groups or “towers” denoted by ��Ek

+��k=0
	 and ��Ek

−��k=0
	 , defined in �2.11� and

2.12�, as shown in Figs. 1 and 2. Second, we see that the energies Ek
+ are strictly increasing with

�N while for the energies Ek
−, there can be some values of � and � for which the spectrum is not

trictly increasing and even may present some degeneracies.10,11 Our definition of raising and
owering operators will require that both energy spectra will be strictly increasing. It is easy to
how that, for example, when �=0, this is always true if we take ��1+�2. The two examples
hown in Figs. 1 and 2 correspond precisely to strictly increasing energy spectra. A more detailed
nalysis of the spectrum is carried out in Ref. 11.

FIG. 1. The two towers of states in the Jaynes-Cummings Hamiltonian for �=0.1, �=1
Let us analyze now two limit cases which are significant.
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. Uncoupled system

If we first take the limit for �→0 of the Jaynes-Cummings Hamiltonian H�,�, we get imme-
iately, from �2.8�,

H0,� =��1 + ��N + 1 +
�

2
0

0 �1 + ��N +
�

2
� = �1 + ��	N +

1

2

I +

1

2
�3, �2.25�

hich is the usual diagonal supersymmetric harmonic oscillator Hamiltonian. The limit process
oes properly in the formulas �2.11� and �2.12� and �2.19� and �2.20�,

�En
+� = ���H�− ���n, + � + H����n + 1,− ��, En

+ = �1 + ���n + 1� +
���
2

, �2.26�

�En
−� = �H����n, + � − ��H�− ���n + 1,− ��, En

− = �1 + ���n + 1� −
���
2

, �2.27�

ven if the operator U0,� is not the identity. Indeed, the Hamiltonian H0,� is given by

H0,� =��1 + ���N + 1� +
���
2

0

0 �1 + ���N + 1� −
���
2
� �2.28�

nd, using �2.17�, the operator U0,� is

U0,� = � ��H�− �� H���

a+ H���
�N + 1

− ��a+ H�− ��
�N + 1

� . �2.29�

. Zero detuning

The second special case is obtained when �→0, i.e., when the detuning between the atom and

FIG. 2. The two towers of states in the Jaynes-Cummings Hamiltonian for �=0.1, �=2
he field is zero. The Hamiltonian in �2.8� thus becomes
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H�,0 = 	N + 1 �a

�a+ N

 . �2.30�

sing �2.17�, we easily find, from �2.10�–�2.12�, the eigenstates and eigenvalues of H�,0 as

�E*� = �0,− �, E* = 0, �2.31�

�En
+� =

�2

2
����n, + � + �n + 1,− ��, En

+ = n + 1 + ����n + 1, �2.32�

�En
−� =

�2

2
��n, + � − ���n + 1,− ��, En

− = n + 1 − ����n + 1. �2.33�

he diagonalized version of H�,0 is now

H�,0 = U�,0
+ H�,0U�,0 = 	N + 1 + ����N + 1 0

0 N + 1 − ����N + 1

 �2.34�

nd the operator U�,0 is given by

U�,0 =
�2

2 � �� 1

a+ 1
�N + 1

− a+ 1
�N + 1

��� . �2.35�

Let us mention finally that the iteration of the two limits �→0 and �→0 is consistent since
e have

lim
�→0

H0,� = lim
�→0

H�,0 = �N + 1�I � H0,0 �2.36�

nd

lim
�→0

H0,� = lim
�→0

H�,0 = 	N + 1 0

0 N

 � H0,0. �2.37�

0,0 and H0,0 can be related through the operator given in �2.29�. Let us mention that the limit
amiltonian H0,0 admits a degenerated energy spectrum, since in this particular case we have

n
+=En

−=n+1.

II. RAISING AND LOWERING OPERATORS FOR THE JAYNES-CUMMINGS MODEL

. General results

Since the energy eigenstates are organized in two towers, we want to find ladder operators
hich move them up or down without mixing them. This means that a lowering operator M�,�

−

ill satisfy the following relations:

M�,�
− �E*� = 0, �3.1�

nd

− ± ±
M�,��En� = k±�n��En−1�, n � N . �3.2�
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e are assuming that k±�0�=0 as a kind of initial condition for determining k±�n�. The corre-
ponding raising operator M�,�

+ will be the adjoint of the lowering operator. To realize this task, it
s useful to work with the diagonalized version of the model since the corresponding lowering
perator M�,�

− =U�,�
+ M�,�

− U�,� satisfies

M�,�
− �n, ± � = k±�n��n − 1, ± �, n � N . �3.3�

et us mention that the condition �3.1� may be written as

M�,�
− �E*� = U�,�M�,�

− U�,�
+ �E*� = 0, �3.4�

hich is identically satisfied due to the relation �2.24�.
Using the well-known relationships

a�n� = �n�n − 1�, a+�n� = �n + 1�n + 1� , �3.5�

g�N�a = ag�N − 1�, g�N�a+ = a+g�N + 1� , �3.6�

t is easy to get, from �3.3�,

M�,�
− =�

k+�N + 1�
�N + 1

a 0

0
k−�N + 1�
�N + 1

a� . �3.7�

he expression of M�,�
− in the original model will be

M�,�
− = U�,�M�,�

− U�,�
+ = 	m1�N�a m2�N�a2

m3�N� m4�N�a

 , �3.8�

here the functions mi�n� are given by

m1�n� =
sin 
�n�sin 
�n + 1�k+�n + 1� + cos 
�n�cos 
�n + 1�k−�n + 1�

�n + 1
, �3.9�

m2�n� =
sin 
�n�cos 
�n + 1�k+�n + 1� − cos 
�n�sin 
�n + 1�k−�n + 1�

�n + 1�n + 2
, �3.10�

m3�n� = cos 
�n − 1�sin 
�n�k+�n� − sin 
�n − 1�cos 
�n�k−�n� , �3.11�

m4�n� =
cos 
�n − 1�cos 
�n�k+�n� + sin 
�n − 1�sin 
�n�k−�n�

�n + 1
. �3.12�

ote that the relations on the functions m3�n� and m4�n� are, in principle, valid only for n0, due
o the presence of cos 
�n−1� and sin 
�n−1�. Nevertheless, the quantities cos 
�−1� and

in 
�−1�, make also sense, as it was shown in �2.17�.
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. Particular cases

In the special case �=0, we easily find

M0,�
− =�

H���k−�N + 1� + H�− ��k+�N + 1�
�N + 1

a 0

0
H���k+�N� + H�− ��k−�N�

�N + 1
a� . �3.13�

When we take �=0, the annihilator M�,0
− is

M�,0
− =�

k+�N + 1� + k−�N + 1�
2�N + 1

a ��

k+�N + 1� − k−�N + 1�
2�N + 1�N + 2

a2

��

k+�N� − k−�N�
2

k+�N� + k−�N�
2�N + 1

a � . �3.14�

The results presented up to now are completely general, but the two functions k±�n� are not
xed at all. Therefore, in order to solve this problem, in the next section some extra requirements
ill be imposed to determine the functions k±�n�, which are supposed to be complex in general.
hese will be related to conditions on the products of the ladder operators which we write as

M�,�
+ M�,�

− = 	�k+�N��2 0

0 �k−�N��2

, M�,�

− M�,�
+ = 	�k+�N + 1��2 0

0 �k−�N + 1��2

 . �3.15�

V. CONDITIONS ON THE COMMUTATOR OF THE LADDER OPERATORS

In this section, ladder operators are obtained by imposing two different constraints on the
alue of the commutator of the two ladder operators. First, the commutator is assumed to be the
dentity operator, and second, it is assumed to be the Hamiltonian itself.

. The commutator is the identity operator

That situation will be the most similar to the harmonic oscillator, and taking

�M�,�
− ,M�,�

+ � = I , �4.1�

e get the following relations:

�k±�n + 1��2 − �k±�n��2 = 1, �4.2�

ogether with the initial condition k±�0�=0. The general solution is thus

k±�n� = ei�±�n��n , �4.3�

here the phases �±�n� are not yet fixed. Therefore the annihilation operator �3.7� is nothing else
han

M�,�
− = 	ei�+�N+1�a 0

0 ei�−�N+1�a

 . �4.4�

he explicit expression of the original operator M�,�
− is thus given by �3.8� where the functions
i�N� are now
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m1�N� =
1

2

ei�+�N+1��q�N + 1� −
�

2
�q�N + 2� −

�

2
+ ei�−�N+1��q�N + 1� +

�

2
�q�N + 2� +

�

2
�q�N + 1�q�N + 2�

,

m2�N� =
��

2

ei�+�N+1��q�N + 1� −
�

2
�q�N + 2� +

�

2
− ei�−�N+1��q�N + 1� +

�

2
�q�N + 2� −

�

2
�N + 2�q�N + 1�q�N + 2�

,

m3�N� =
��

2
�N

ei�+�N��q�N� +
�

2
�q�N + 1� −

�

2
− ei�−�N��q�N� −

�

2
�q�N + 1� +

�

2
�q�N�q�N + 1�

,

m4�N� =
1

2
� N

N + 1

ei�+�N��q�N� +
�

2
�q�N + 1� +

�

2
+ ei�−�N��q�N� −

�

2
�q�N + 1� −

�

2
�q�N�q�N + 1�

.

et us also mention that, due to �4.4�, we have M�,�
+ M�,�

− =NI and M�,�
− M�,�

+ = �N+1�I. The original
nnihilation and creation operators thus satisfy

M�,�
+ M�,�

− = 	N 0

0 N − 1

, M�,�

− M�,�
+ = 	N + 1 0

0 N

 . �4.5�

n the absence of coupling between the atom and the field ��=0�, using �3.13� and �4.3� we get the
ollowing diagonal annihilation operator:

M0,�
− = �G−�N + 1�a 0

0 � N

N + 1
G+�N�a� , �4.6�

here

G+�N� = ei�+�N�H��� + ei�−�N�H�− ��, G−�N� = ei�−�N�H��� + ei�+�N�H�− �� . �4.7�

oreover, we have

H0,� = �1 + ��M0,�
+ M0,�

− +�1 +
�

2
0

0 1 +
3�

2
� = �1 + ��M0,�

− M0,�
+ +�−

�

2
0

0
�

2
� . �4.8�

n the case of zero detuning ��=0�, using �3.14� and �4.3�, we easily get

M�,0
− =�

1

2
�ei�+�N+1� + ei�−�N+1��a

��

2�N + 2
�ei�+�N+1� − ei�−�N+1��a2

��

2
�N�ei�+�N� − ei�−�N��

1

2
� N

N + 1
�ei�+�N� + ei�−�N��a � . �4.9�

. The commutator is the Hamiltonian
An alternative choice for k±�n� is obtained when we take
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�M�,�
− ,M�,�

+ � = H�,� �4.10�

r equivalently

�M�,�
− ,M�,�

+ � = H�,�. �4.11�

e thus must solve

�k±�n + 1��2 − �k±�n��2 = En
±. �4.12�

he general solution is

k±�0� = 0, k±�n� = ei�±�n���
�=0

n−1

E�
±, n  0. �4.13�

he last expresssion can also be written as follows:

k±�n� = ei�±�n��1

2
�1 + ��n�n + 1� ± �

�=0

n−1

q�� + 1�

= ei�±�n��1

2
�1 + ��n�n + 1� ± ����

�=0

n−1

�� + � + 1

= ei�±�n��1

2
�1 + ��n�n + 1� ± ���	�	−

1

2
,�
 − �	−

1

2
,� + n

 , �4.14�

here �= �� /2��2 and ��s ,a� is the generalized Riemann zeta function.
In the case �=0, the annihilation operator takes the form �3.13� with

�M0,�
− �11 =

1
�2

G−�N + 1���1 + ���N + 1� + 1a , �4.15�

�M0,�
− �22 =

1
�2

G+�N���1 + ��N +
N�

N + 1
a , �4.16�

here G±�N� were defined in �4.7�.
In the case where �=0, we get, from �4.14�, the following expressions for k±�n�:

k±�n� = ei�±�n��1
2 �n + 1�n + 1 ± ���Hn

�−1/2�, n  0, �4.17�

here H
n

�− 1
2

�
=��=1

n �
1
2 is a harmonic number of order �− 1

2
�.

. FACTORIZATION OF THE JAYNES-CUMMINGS HAMILTONIAN

Another special set of ladder operators, which will be consider next, is the one that leads to the
actorization of the Hamiltonian.

. First type of factorization

Assuming that we have first

M�,�
− M�,�

+ = H�,� − 	�+ 0

0 �−

, �+,�− � R , �5.1�
e immediately get from �3.15�,
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k±�n + 1� = ei�±�n+1��En
± − �±, k±�0� = 0. �5.2�

If we now take the special case �=0, the annihilator takes the form �3.13�, with

�M0,�
− �11 = �H���ei�−�N+1��1 + � −

� + 2�−

2�N + 1�
+ H�− ��ei�+�N+1��1 + � −

� + 2�+

2�N + 1�
�a ,

�M0,�
− �22 = �H���ei�+�N��1 + � −

� + 2 + 2�+

2�N + 1�
+ H�− ��ei�−�N��1 + � −

� + 2 + 2�−

2�N + 1�
�a ,

hich leads to the following factorization of the original Hamiltonian:

H0,� = M0,�
− M0,�

+ + 	H����− + H�− ���+ 0

0 H����+ + H�− ���−

 . �5.3�

e also have in this case

�M0,�
− ,M0,�

+ � = �1 + ��I . �5.4�

et us observe that if we choose �+=�−=−�1+��, then the Hamiltonian is exactly factorized as

0,�=M0,�
+ M0,�

− , and we get

�M0,�
− �11 = G−�N + 1��1 + � +

1 + �/2

N + 1
a , �5.5�

�M0,�
− �22 = G+�N��1 + � +

�/2

N + 1
a , �5.6�

ith G±�N� given in �4.7�
When �0, the special choice �−=−� /2 and �+=−�1+ �� /2�� gives rise to a particularly

imple form of the annihilator, i.e.,

M0,�0
− = �1 + �	ei�−�N+1�a 0

0 ei�+�N�a

 . �5.7�

omething similar can be done when ��0, choosing now �−=−�1+ �� /2�� and �+=−� /2. In both
ases, we can thus write the Hamiltonian as

H0,� = M0,�
− M0,�

+ −�
�

2
0

0 	1 +
�

2

 � = M0,�

+ M0,�
− +�	1 +

�

2

 0

0
�

2
� . �5.8�

e get here a result similar to the one obtained in the preceding section when we ask for the
ommutator of the ladder operators to be the identity. It is expected due to the relation �5.4� but the
adder operators are essentially different because of the presence of the operator �N / �N+1� in
4.6�.

When we take �=0, we get, from �5.2�,

k±�n + 1� = ei�±�n+1��n + 1 − �± ± ����n + 1, �5.9�

nd the form of M�,0
− is obtained from �3.14�. Since we are interested in a factorization of the

riginal Hamiltonian which is nondiagonal in this case, further constraints must be imposed on the

nknown quantities �±. Indeed, a diagonal matrix does not remain diagonal, in general, when we
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ransform it by the operator U�,0. The simplest choice is to take �±=0. Thus we get an exact
actorization

H�,0 = M�,0
− M�,0

+ . �5.10�

hanging the order of the factors, we get a new Hamiltonian H�,0� =M�,0
+ M�,0

− , whose explicit
orm in the subspace F−F0 is

H�,0� = M�,0
+ M�,0

− =� N �� N

N + 1
a

a†�� N

N + 1
N − 1 � . �5.11�

he Hamiltonian H�,0� is in fact isospectral12 to H�,0. Indeed, its eigenstates are M�,0
+ �En

±� with
igenvalues En

± and also the state �E*�= �0,−� with eigenvalue 0. Note that M�,0
+ �E*�=0 and

herefore it is not an eigenstate of H�,0� .

. Second type of factorization

It is obtained when we take

M�,�
+ M�,�

− = H�,� − 	�+ 0

0 �−

 . �5.12�

ndeed, the diagonal matrix is now fixed due to the initial condition on the k±�n�. From �3.15�, we
et

k±�n� = ei�±�n��En
± − E0

±, �± = E0
±, �5.13�

o that k±�0�=0 as expected, although the phases �±�n� are not yet fixed.
Here again, if we take �=0, we easily get the annihilator M0,�

− of �3.13� on the form

�M0,�
− �11 = ��1 + ��G−�N + 1�a, �M0,�

− �22 =��1 + ��
N

N + 1
G+�N�a .

e thus have

H0,� = M0,�
+ M0,�

− +�1 +
�

2
0

0 1 +
3�

2
� = M0,�

− M0,�
+ +�−

�

2
0

0
�

2
� . �5.14�

When �=0, we have En
±−E0

±=n± �����n+1−1� and

M�,0
− =�ei�+�N+1��N + 1 + �����N + 2 − 1�

N + 1
a 0

0 ei�−�N+1��N + 1 − �����N + 2 − 1�
N + 1

a� ,

�5.15�

ut the original Hamiltonian cannot be factorized in this case �except when � is also equal to zero�
ince the transformation by the operator U�,0 affects the constant diagonal matrix appearing in

5.12�.
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Note that the exact factorization for the zero detuning �=0 and strong coupling �=1 encoun-
ered in the literature13 does not contradict our result. Indeed, we can show that for �=1+� the
aynes-Cummings Hamiltonian can be written as

H�1+��,� = �1 + ��A+A− −
�

2
�3 �5.16�

ith

A− = 	a 0

1 a

 . �5.17�

he operators A+ and A− have been introduced as some ladder operators for supersymmetric
armonic oscillator.13,14 The operator A− has a form similar to the general M�,�

− in �3.8�. Never-
heless, it is not an annihilation operator for our model, as it could be easily checked from �3.2�,
ven if �=0.

I. GENERAL SETS OF COHERENT STATES

Our annihilation operators M�,�
− may be used to construct new sets of coherent states for the

aynes-Cummings system. A detailed analysis of these sets and the corresponding physical prop-
rties is beyond the scope of this paper and will be presented elsewhere. Nevertheless, we will
nsist here on the general construction taking place into the Gazeau-Klauder scheme15 and also its
ector coherent states generalization.16 We will also illustrate it with some specific examples
hich connect the new states with preceding approaches.7,10,17

. General results

Let us introduce the following notation for the coherent states: �z ;� ;���,�, where z�C is the
sual label for a coherent state, �= ��+ ,�−� and �= �� ,�� are two sets of real parameters that will
e specified later, � related to the temporal evolution and � related to the normalization. As usual,
hese states are defined as the eigenstates of the annihilator, that is

M�,�
− �z;�;���,� = z�z;�;���,�. �6.1�

nce we decompose �z ;� ;���,� in the basis of the eigenstates �2.10�–�2.12� of H�,� as

�z;�;���,� = C*�z��E*� + �
n=0

	

�Cn
+�z��En

+� + Cn
−�z��En

−�� �6.2�

nd insert this expression in �6.1�, using �3.1� and �3.2�, we find C*�z�=0 and

Cn
±�z� =

zn

�±�n�
C0

±�z�, n  0, �6.3�

ith

�±�n� = k±�1�k±�2� ¯ k±�n� . �6.4�

he coherent states take the form

�z;�;���,� = �
n=0

	

zn	C0
+�z�

�+�n�
�En

+� +
C0

−�z�
�−�n�

�En
−�
 , �6.5�

f we set �±�0�=1. Let us mention now that there are three coherent states associated to the value
+ +
=0, �E*�, �E0�, and �E0�.
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Taking into account that from �2.5� the time-dependent Schrödinger equation for the Hamil-
onian H�,� is

H�,���� = − i
�

���0t�
��� , �6.6�

he temporal evolution of these coherent states is obtained as

U�t��z;�;���,� = e−i�0tH�,��z;�;���,�

= �
n=0

	

zn	C0
+�z�

�+�n�
e−i�0tEn

+
�En

+� +
C0

−�z�
�−�n�

e−i�0tEn
−
�En

−�
 . �6.7�

Additional constraints can now be imposed to fix the undetermined functions appearing in
uch states. First, let us recall that the functions k±�n� in �6.4� have been determined up to a phase

±�n�, and a way to fix them is to ask for the temporal stability15 of the coherent states �6.5�,
hich in our case means that

U�t��z;�;���,� = U�t��z;�+,�−;���,� = �z;�+ + t,�− + t;���,�. �6.8�

ndeed, taking into account what has been done in the two preceding sections, we first write

k±�n� = ei�±�n�k±
0�n� , �6.9�

here k±
0�n� are now real functions, and then, from �6.4�, we get

�±�n� = ei��=1
n �±����

�=1

n

k±
0��� = ei��=1

n �±����±
0�n�, �±�0� = 1, �6.10�

±
0�n� being real functions. The states �6.5� may be written as

�z;�+,�−;���,� = C0
+�z��E0

+� + C0
−�z��E0

−� + �
n=1

	

zn	C0
+�z�

�+
0�n�

e−i��=1
n �+����En

+� +
C0

−�z�
�−

0�n�
e−i��=1

n �−����En
−�
 ,

�6.11�

here the presence of the phases is now explicit. It can be proved that the temporal stability �6.8�
s assured by choosing the, up to now, arbitrary phases to be linear functions of the real parameters

±, more precisely,

�±��� = �0�±�E�
± − E�−1

± � = �0�1 + � ± �q�� + 1� − q������±, �6.12�

o that

�
�=1

n

�±��� = �0�±�En
± − E0

±� . �6.13�

f we redefine

K0
±�z� = C0

±�z�ei�0�±E0
±
, �6.14�

he coherent states �6.11� will now take the form

�z;�+,�−;���,� = �
	

zn	K0
+�z�

�0�n�
e−i�0�+En

+
�En

+� +
K0

−�z�
�0�n�

e−i�0�−En
−
�En

−�
 . �6.15�

n=0 + −
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Note first that, due to the form of the eigenstates �En
±� in the Fock space F, we deal with vector

oherent states.16 More precisely, using �2.23�, we can observe that the states �6.15� may be
ritten using similar matrix decomposition as in Ref. 16, i.e.,

�z;�+,�−;���,� = �
n=0

	

U�,��
1

�+
0�n�

0

0
1

�−
0�n�

�	z 0

0 z

n

exp�− i	�0�+En
+ 0

0 �0�+En
− 
�

� �K0
+�z�	�n�

0

 + K0

−�z�	 0

�n� 
 , �6.16�

here U�,� is the operator given in �2.22�.
Second, the normalization to unity of the states �6.15� leads to the following condition on the

uantities K0
±�z�:

�K0
+�z��2	�

n=0

	 �z�2n

��+
0�n��2
 + �K0

−�z��2	�
n=0

	 �z�2n

��−
0�n��2
 = 1. �6.17�

ntroducing now the positive real functions K+�z� and K−�z�, defined as

K±�z� = 	�
n=0

	 �z�2n

��±
0�n��2
−1/2

, �6.18�

here

K0
+�z� = K+�z�cos �, K0

−�z� = K−�z�ei� sin �, � � �0,��, � � �0,2�� . �6.19�

e can write the final form of the general coherent states �6.15�, which now contain the variables
= �� ,���S2 parametrizing the unit sphere, as

�z;�+,�−;�,���,� = K+�z�cos �	�
n=0

	
zn

�+
0�n�

e−i�0�+En
+
�En

+�
 + K−�z�ei� sin �	�
n=0

	
zn

�−
0�n�

e−i�0�−En
−
�En

−�
 .

�6.20�

t this moment it is important to insist on the fact that the coherent states we have do not depend
nly on the complex number z, as it is usual, but also on the variables ��S2. Therefore, the space
arametrizing our coherent states is C�S2.

Let us mention also that the mean value of the Jaynes-Cummings energy in those states is
iven by

�H�,�� = �K+�z��2 cos2 �	�
n=0

	

En
+ �z�2n

��+
0�n��2
 + �K−�z��2 sin2 �	�

n=0

	

En
− �z�2n

��−
0�n��2
 . �6.21�

o be more precise on the results, it is necessary to fix the values of the functions K±�z�; and to do
hat, it is necessary to consider the particular examples studied in the previous section, some of
hich are studied next.

. Examples

Example 1: The commutator of the ladder operators is the identity. Let us take the ladder
perators such that the commutator is the identity. In this case, from �6.3�, �6.9�, and �6.10�, we

nd
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�±
0�n� = �n!, K±�z� = e−�z�2/2 �6.22�

nd the coherent states �6.20� may be written as

�z;�+,�−;�,���,� = e−�z�2/2�cos �	�
n=0

	
zn

�n!
e−i�0�+En

+
�En

+�
 + sin �ei�	�
n=0

	
zn

�n!
e−i�0�−En

−
�En

−�
� .

�6.23�

aking into account the explicit form �2.19� and �2.20� of the energies En
±, the mean value �6.21�

s thus

�H�,�� = �1 + ���1 + �z�2� + e−�z�2	�
n=0

	

q�n + 1�
�z�2n

n!

cos 2� . �6.24�

For a large number of photons, i.e., �z�→	, it has been shown7 that we get

�H�,0� → 1 + �z�2 + ����z�cos 2� . �6.25�

ote that the coherent states given in Ref. 7 are a special case of �6.30� when �±=0. This means
hat they do not satisfy the temporal stability given in �6.8�. Let us mention that other relevant

ean values have been given also in Ref. 7.
For the special case when �=0 and �0 �the case ��0 will be similar�, we get explicitly the

nnihilation operator �6.6�,

M0,�
− = �ei�1+���0�−a 0

0 ei�1+���0�+� N

N + 1
a� . �6.26�

oreover, since we have En
±= �1+���n+1�± �� /2� and the energy eigenstates are given by

�En
+�= �n+1,−� , �En

−�= �n , + ��, we get

�z;�+,�−;�,��0,� = e−�z�2/2�cos �e−i�0�1+�3�/2���+	�
n=0

	
�ze−i�0�1+���+�n

�n!
�n + 1,− �


+ sin �ei�e−i�0�1+��/2���−	�
n=0

	
�ze−i�0�1+���−�n

�n!
�n, + �
� . �6.27�

hese are generalized coherent states of the supersymmetric harmonic oscillator H0,� and the
ean value of the energy is directly obtained through �6.24� �or through the factorization �6.8�� as

�H0,�� = �1 + ���1 + �z�2� +
�

2
cos 2� . �6.28�

For the special case when �=0 the eigenstates and eigenvalues are given in �2.31�–�2.33� and
sing �6.12�

�±�n� = �0�1 ± �����n + 1 − �n���±. �6.29�
he annihilator is given as �4.9� and the coherent states �6.23� thus take the form
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�z;�+,�−;�,���,0 =
�2

2
e−�z�2/2�cos �e−i�0�+	�

n=0

	
�ze−i�0�+�n

�n!
e−i�0����n+1�+����n, + � + �n + 1,− ��


+ sin �ei��−�0�−�	�
n=0

	
�ze−i�0�−�n

�n!
ei�0����n+1�−��n, + � − ���n + 1,− ��
� �6.30�

nd the mean value of the energy is given as

�H�,0� = 1 + �z�2 + ���e−�z�2 cos 2�	�
n=0

	

�n + 1
�z�2n

n!

 . �6.31�

Example 2: The Hamiltonian is factorized. Next, some annihilators dealing with the factor-
zation of the Jaynes-Cummings Hamiltonian will be considered. Indeed, we first take the anni-
ilator �5.7� which led to the factorization �5.8�. In this case, we have �±���=�0�1+���±. Thus,
rom �5.2� with �−=−� /2 and �+=−�1+ �� /2��, we get

k+�n� = ei�0�1+���+��1 + ���n + 1�, k−�n� = ei�0�1+���−��1 + ��n �6.32�

nd

�+
0�n� = �1 + ��n/2��n + 1�!, �−

0�n� = �1 + ��n/2�n!. �6.33�

oreover, we have

K+�z� = 	 ���2

e���2 − 1

1/2

, K−�z� = e−���2/2, �6.34�

ntroducing the new variable �=z /�1+�. The coherent states are explicitly given as

�z;�+,�−;�,��0,� = 	 �̄/�

e���2 − 1

1/2

cos �e−i�0��/2��+	�
n=1

	
��e−i�0�1+���+�n

�n!
�n,− �


+ e−�z�2/2 sin �ei�e−i�0�1+��/2���−	�
n=0

	
��e−i�0�1+���−�n

�n!
�n, + �
 , �6.35�

hich are closely related to the usual harmonic oscillator coherent states. The mean value of the
nergy in these coherent states is easily obtained through the factorization �5.8�,

�H0,�� = �z�2 +
1 + �

2
−

1

2
cos 2� . �6.36�

Let us finally mention that when the ladder operators factorize the diagonalized Hamiltonian

�,�, as in �5.12�, we find the coherent states constructed in Ref. 10. In this case, we have

±
0�n�=�En

±−E0
± and

�±
0�n� =��

�=1

n

�E�
± − E0

±� . �6.37�

. The resolution of the identity

To end this section, we will analyze the completeness �in fact, the overcompleteness� of the
ystems of coherent states we have studied before. In order to accomplish this goal, we must

10,12,15
ompute the resolution of the identity, which can be written here as
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I = �E*��E*� +� ��z;�;���,����,��z;�;���d��z;�;�� , �6.38�

here the measure d��z ;� ;�� could be determined through different special cases. The matrix
perator appearing here can be written as follows:

��z;�;���,����,��z;�;��� = �K+�z��2 cos2 ��
n=0

	 �z�2n

��+
0�n��2 �En

+��En
+� �6.39�

+ �K−�z��2 sin2 ��
n=0

	 �z�2n

��−
0�n��2 �En

−��En
−� �6.40�

+ �K+�z��2 cos2 � �
n�m

	
znz̄m

�+
0�n��+

0�m�
e−i�0�+�En

+−Em
+ ��En

+��Em
+ � �6.41�

+ �K−�z��2 sin2 � �
n�m

	
znz̄m

�−
0�n��−

0�m�
e−i�0�−�En

−−Em
− ��En

−��Em
− � �6.42�

+ K+�z�K−�z�e−i� cos � sin � �
n,m=0

	
znz̄m

�+
0�n��−

0�m�
e−i�0��+En

+−�−Em
− ��En

+��Em
− � �6.43�

+ K+�z�K−�z�ei� cos � sin � �
n,m=0

	
znz̄m

�−
0�n��+

0�m�
e−i�0��−En

−−�+Em
+ ��En

−��Em
+ � . �6.44�

he integration of this operator with respect to the measure d��z ;� ;�� should include an inte-
ration over the complex plane �z�C� and also an integration over the sphere S2 with respect to
� �0,�� and �� �0,2��, as indicated in �6.19�, with the usual measure d�=sin � d� d�. To be
recise, d��z ;� ;��=W��z��dz d�, where W��z�� is an appropriate “weight matrix” to be deter-
ined later. The integration with respect to d� completely eliminates the terms in �6.43� and

6.44�. Moreover, we can show that the terms �6.41� and �6.42� also disappear. Indeed, using polar
oordinates �r= �z� ,�� on the complex plane and assuming that K±�z� depends only on r �as it
appens in the two examples considered in the preceding section�, that is, K±�z��K±�r�, it is very
asy to see that the integration on �� �0,2�� eliminates all the terms in which n�m. Therefore,
e get

� ��z;�;���,����,��z;�;���d��z;�;�� =
8�2

3 �
n=0

	
1

��+
0�n��2 �En

+��En
+��

0

	

�K+�r��2W�r�r2n+1 dr

�6.45�

+
16�2

3 �
n=0

	
1

��−
0�n��2 �En

−��En
−��

0

	

�K−�r��2W�r�r2n+1 dr . �6.46�

o go further, we remark that in the diagonal basis the operators �En
+��En

+� and �En
−��En

−� are pro-

ortional to the matrices
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	1 0

0 0

, 	0 0

0 1

 ,

espectively. Hence, the “weight matrix” W�r� should be taken diagonal, in the form

W�r� = 	W+�r� 0

0 W−�r�

 , �6.47�

nd then Eqs. �6.45� and �6.46� take the form

� ��z;�;���,����,��z;�;���d��z;�;�� = �
n=0

	 �
0

	

h+�u�un du

��+
0�n��2 �En

+��En
+� + �

n=0

	 �
0

	

h−�u�un du

��−
0�n��2 �En

−��En
−� ,

�6.48�

here u=r2 and

h+�r2� =
4�2

3
�K+�r��2W+�r�, h−�r2� =

8�2

3
�K−�r��2W−�r� . �6.49�

herefore, in order to have a resolution of the identity on the subspace F−F0, we must have the
ollowing conditions:

�
0

	

h±�u�un du = ��±
0�n��2, �6.50�

here the functions �±
0�n� are known �in particular, they can be some of the functions determined

n the preceding section�. What we have here is a couple of “moment problems,” i.e., given
�±

0�n��2 we must find the functions h±�u� satisfying �6.50�.
To show that this construction admits explicit solutions, let us consider now the two examples

onsidered in the preceding section.
Example 1: The commutator of the ladder operators is the identity. In this case, the functions

±
0�n� and K±�r� were given in �6.22�. Hence, the momentum problem is unique,

�
0

	

h±�u�un du = bnn!, b = 1. �6.51�

e have introduced here the constant b in order to give a solution to the momentum problem
hich will be useful for the next example too. Indeed, the solution of �6.51� is well known,

h±�u� = �1

b
e−u/b�

b=1
= e−u, �6.52�

nd therefore

W+�r� =
3

4�2 , W−�r� =
3

8�2 . �6.53�

Example 2: The Hamiltonian is factorized. In the present case, the functions �±
0�n� are given

n �6.33� and the functions K±�r� in �6.34�. The two momentum problems are now different,

�
0

	

h−�u�un du = bnn!, �
0

	

h+�u�un du = bn�n + 1�!, �6.54�
here in both cases b=1+�. The solutions are
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h−�u� = �1

b
e−u/b�

b=1+�

=
1

1 + �
e−u/�1+��, �6.55�

h+�u� = � u

b2e−u/b�
b=1+�

=
u

�1 + ��2e−u/�1+��. �6.56�

he weight matrix elements are then

W−�r� =
3

8�2

1

1 + �
, W+�r� =

3

4�2

1 − e−r2/�1+��

1 + �
. �6.57�

The two examples previously considered show that in every particular case, it is possible to
btain the “weight matrix” associated to the measure d��z ;� ;�� in such a way that the resolution
f the identity �6.38� is satisfied by the corresponding family of coherent states.

II. FINAL REMARKS

The main objective of this paper was to make a systematic study of the ladder operators
ssociated to the Jaynes-Cummings model. We notice that several authors have considered some
actorization of the corresponding Hamiltonian and then used the factor operators to build up
oherent states, for example. Sometimes, these factors turned out to be either special cases of our
adder operators10 or, sometimes, they had no relation with our work because they are not raising
r lowering operators at all.13,17

Let us recall that the ladder operators M�,�
+ and M�,�

− have been defined so they move up and
own the energy eigenstates ��En

−�� and ��En
+�� without mixing them. We see in Figs. 1 and 2 that

he energy levels are in fact intercalated into each other and the way they are mixed depends on
he values of � and �. Using the fact that for the diagonalized Hamiltonian H�,� in �2.21�, the
nergy eigenstates are given by the two sets ��n ,−�� and ��n , + ��, the operator which exchanges the
wo sets is nothing else but the matrix �1 and the corresponding operator for the original Hamil-
onian H�,� in �2.8� is

��,� = U�,��1U�,�
+ = � �

�N + 1

q�N + 1�

�/2

q�N + 1��N + 1
a

a† �/2

q�N + 1��N + 1
− �

�N

q�N�
� . �7.1�

he limit when �→0 gives the operator

�0,� =� 0
�/���

�N + 1
a

a† �/���
�N + 1

0 � , �7.2�

hile for �→0, we get ��,0=���3. Let us mention that it acts correctly on the eigenstates, i.e.,

��,0�En
±� = �En

��, ��,0�E*� = 0. �7.3�

sing the operators ��,�, M�,�
+ , and M�,�

− , we can connect all the different eigenstates of the
ystem, as it is shown in Fig. 3. With all of them it will be possible to make a comprehensive
nalysis of the Jaynes-Cummings model using in particular our new sets of coherent states. This

ork is in progress.
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For a quantum particle interacting with a short-range potential, we estimate from
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. INTRODUCTION

Recently, the question of enhanced binding in nonrelativistic QED has been extensively stud-
ed in several presentations.10,9,6,4,2,3 Dressing a charged particle with photons increases the ability
f a potential to confine it. For the Pauli-Fierz operator which describes a nonrelativistic particle
nteracting with a radiation field, this effect was proved for small values of the fine structure
onstant �, first under the simplifying assumption that the spin of the particle is absent,9 and later
eneralized to the case of a particle with spin.6,4 In Ref. 2, it was shown that the effect of the
nhanced binding is asymptotically small in � in the sense that the binding threshold for the
auli-Fierz operator tends to the binding threshold for the corresponding Schrödinger operator as
tends to zero. Some quantitative estimates on this effect were obtained in Ref. 3 where it was

roved that the difference between the binding threshold for the Schrödinger operator and the
orresponding Pauli-Fierz operator with spin zero is at least of the order �. In the work at hand,
sing a different method, we prove similar results for the more general case of a particle with spin
ero or one-half. Notice that studying the enhanced binding effect in the case of a particle with
pin requires recovering one more term of the energy’s expansion in powers of � than in the
pinless case.

The method of the proof is a further development of a method used in Refs. 9 and 6. We prove
hat the Pauli-Fierz operator has a ground state even for some value of the potential coupling
onstant that is smaller than the binding threshold for the corresponding Schrödinger operator. To
o so, we construct a trial function for which the quadratic form of the Pauli-Fierz operator with
his coupling constant takes a value strictly less than the self-energy. Then we apply �Ref. 8,
heorem 2.1� which tells us that this implies the existence of a ground state. The trial function we
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se is similar to the one in Ref. 6 with some modifications necessary to obtain quantitative
stimates in the case with spin. It is constructed using the ground state of the self-energy operator
ith total momentum zero.

As in all previous papers,9,6,4,2,3 our method is asymptotic in �. Therefore, the problem of
stablishing the enhanced binding effect and estimating its strength for the physical value of �
1/137 still remains open.

I. DEFINITIONS AND MAIN RESULT

The Pauli-Fierz Hamiltonian H for a charged particle with or without spin in an external
lectrostatic potential and coupled to the quantized electromagnetic radiation field is defined by

H = �− i�x � If + ��A�x��2 + g��� · B�x� + �W�x� � If + Iel � Hf − cn.o.� . �1�

he operator H acts on the Hilbert space HªHel � F. The Hilbert space Hel of the nonrelativistic
article is L2�R3� � C2 in the case g=1 and L2�R3� in the case g=0. Here R3 is the configuration
pace of a single particle, while C2 accommodates its spin in the case g=1.

We will describe the quantized electromagnetic field by use of the Coulomb gauge condition.
ccordingly, the one-photon Hilbert space is given by L2�R3� � C2, where R3 denotes either the
hoton momentum or configuration space, and C2 accounts for the two independent transversal
olarizations of the photon. The photon Fock space is then defined by

F = �
n=0

�

Fs
�n�,

here the n-photons space Fs
�n�= � s

n�L2�R3� � C2� is the symmetric tensor product of n copies of
2�R3� � C2.

We use units such that q=c=1, and where the mass of the particle equals m=1/2. The particle
harge is then given by e=��. As usual, we will consider � as a small parameter.

The operator that couples a particle to the quantized vector potential is given by

A�x� = �
�=1,2

�
R3

��	k	�
2�	k	1/2���k��eikx

� a��k� + e−ikx
� a�

*�k��dk

¬D�x� + D*�x� ,

here div A=0 by the Coulomb gauge condition. The operators a�, a�
* satisfy the usual commu-

ation relations

�a��k�,a�
*�k��� = 	�k − k��	�,�, �a��k�,a��k��� = 0.

he vectors ���k��R3 are the two orthonormal polarization vectors perpendicular to k,

�1�k� =
�k2,− k1,0�
�k1

2 + k2
2

and �2�k� =
k

	k	
∧ �1�k� . �2�

he function ��	k 	 � describes the ultraviolet cutoff on the wave numbers k. We assume � to be of
lass C1 and to have compact support.

The constant cn.o. is

cn.o. = �D,D*� =
2

�
�

0

�

r	��r�	2 dr ,

nd subtraction of the constant cn.o.� amounts to normal ordering of the operator A2.

The operator that couples a particle to the magnetic field B=curl A is given by
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B�x� = �
�=1,2

�
R3

��	k	�
2�	k	1/2k 
 i���k��eikx

� a��k� − e−ikx
� a�

*�k��dk

¬K�x� + K*�x� .

n Eq. �1�, �= ��1 ,�2 ,�3� is the three-component vector of Pauli matrices

�1 = 
0 1

1 0
�, �2 = 
0 − i

i 0
�, �3 = 
1 0

0 − 1
� .

he photon field energy operator Hf is given by

Hf = �
�=1,2

�
R3

	k	a�
*�k�a��k�dk .

The multiplicative potential W is assumed to be short range and in Lloc
4 �R3�, and � is a positive

oupling constant. If the negative part of W is nontrivial, then there exists a critical value �0 such
hat the Schrödinger operator −�+�W has discrete spectrum for all ���0, but does not have any
iscrete spectrum for 0���0. Analogously, the Pauli-Fierz operator also has a critical coupling
onstant �1, which depends on the fine structure constant �. It is known2 that �1 converges to �0

rom below as � goes to zero.
Before stating our main result, let us introduce some notations. For v a measurable function in

3, we define

dv =
1

2�

� 	v�x�		v�y�	

	x − y	2
dx dy�1/2

, �3�

f v is not spherically symmetric and

dv = min� 1

2�

� 	v�x�		v�y�	

	x − y	2
dx dy�1/2

,�
0

�

t	v�t�	dt �4�

f v is spherically symmetric.
Our main result is the following.
Theorem 2.1: Assume that W�x� satisfies the following conditions: W�Lloc

4 �R3� and there
xists a�0, c�0, and 	�0, such that for all 	x 	 �a, 	W�x� 	 c�1+ 	x 	 �−2−	. Then

�1  �0�1 − ��2 + O��5/4��

ith

�2 =
1

6�2�
R3

��	k	�
	k	�k2 + 	k	 + CW�

dk ,

nd

CW = �0
2�1 + �0dW+

�dW2 and W+ = �	W	 + W�/2.

II. PROOF OF THE MAIN THEOREM

In this section, we will prove the main theorem in the case of particle with spin g=1. The
roof for g=0 can easily be deduced with several simplifications.
We start with establishing some useful preliminary estimates.
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. Properties of the self-energy operator T„0… with zero total momentum

This section addresses the main properties of the self-energy operator T�0�. Let us consider
he case of a free particle coupled to the quantized electromagnetic field. The self-energy operator

is given by

T = �− i�x � If + ��A�x��2 + g��� · B�x� + Iel � Hf − cn.o.� .

e note that this system is translationally invariant, that is, T commutes with the operator of total
omentum,

Ptot = pel � If + Iel � Pf ,

here pel and Pf =��=1,2�ka�
*�k�a��k�dk denote the particle and the photon momentum operators.

Let HP�C2 � F denote the fiber Hilbert space corresponding to conserved total momentum P.
or any fixed value P of the total momentum, the restriction of T to the fiber space HP is given by
see, e.g., Ref. 5�

T�P� = �P − Pf + ��A�0��2 + g��� · B�0� + Hf − cn.o.� . �5�

e denote �0ª inf ��T�0��.
For the reader convenience, we first collect in the following theorem different known facts

egarding the ground state of the operator T�0�, which will be used in the proof of the main
heorem.

From now on, we will denote by �n the projection onto the subspace of C2 � F corresponding
o vectors which have all components zero except the n-photon components. We also define �n

�

1−�i=1
n−1�n.

For vectors in C2 � F, the norm � . � will refer to the standard norm in C2 � F.
Theorem 3.1: �Refs. 7, 5, 6, and 1� For � sufficiently small we have
�0 is an eigenvalue bordering to continuous spectrum of T�0� and �0=inf ��T�.
For any �0�Ker�T�0�−�0�, its projection �0�0 onto the zero-photon sector of C2 � F fulfills

�0�0 � �0. If �0 is normalized by ��0�0 � =1, then the following inequalities are satisfied:
�0 � =1+O��1/2�, �D�0��0 � =O��1/2�, and �Hf

1/2�0 � =O��1/2�.
For the photon number operator Nfª��=1,2�a�

*�k�a��k�dk, we have �Nf
1/2�0 � =O��1/2�.

Corollary 3.2: For any vector �0�Ker�T�0�−�0� normalized by ��0�0 � =1, we have
�0 � =1+O���, �D*�0��1

��0 � =O��1/2� and �� ·K*�0��1
��0 � =O��1/2�.

In the following, we consider two 4-vectors in C2 � �L2�R3� � C2�, of the form
��↑ ,k ,�1� ,��↑ ,k ,�2� ,��↓ ,k ,�1� ,��↓ ,k ,�2��, where ↑ and ↓ refer to the spin-up and spin-down of
he particle, and �1, �2 refer to the two polarizations of the transverse photons,

�a,b ª�
��↑ ,k,�1�
��↑ ,k,�2�
��↓ ,k,�1�
��↓ ,k,�2�

�ª�
���k�
	k	1/2 
− a�k1

2 + k2
2 + b

�k1 − ik2�k3

�k1
2 + k2

2 �
b���k�

− k2 − ik1

�k1
2 + k2

2
	k	1/2

���k�
	k	1/2 
b�k1

2 + k2
2 + a

�k1 + ik2�k3

�k1
2 + k2

2 �
a���k�

− k2 + ik1

�k1
2 + k2

2
	k	1/2

� .

et

�a,b = ��
i

�a,b. �6�

2�	k	�1 + 	k	�
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Proposition 3.3 �approximate ground state of the Pauli-Fierz operator�: For a and b in C such
hat 	a	2+ 	b	2=1, we consider the family of real-valued functionals La,b defined on C2 � L2�R3�

� C2 by

La,b��� = ��k2 + 	k	��,�� + 2�� Re��,�1� · K*�0�

a

b
�0,0, ¯ �� ,

here as before B�0�=K�0�+K*�0�. Then we have

�i� The vector �a,b defined by �6� is the unique minimizer of La,b.
�ii� 	�0−inf La,b��� 	 =O��3/2�.
�iii� Let �0�Ker�T�0�−�0� be normalized by ��0�0 � =1. Let us denote by �a ,b�ª�0�0.

We define the scalar product �. , . �1 onto the one-photon sector �1�C2 � F�=C2

� L2�R3� � C2 by �f ,g�1= ��k2+ 	k 	 �f ,g��1�C2�F�. Then for ��R and R�C2 � L2�R3�
� C2 such that

�1�0 = ��a,b + R

and ��a,b ,R�1=0, we have

�R,R�1 = O��3/2� and 	� − 1	 = O��3/4� . �7�

Remark 3.4: In the above proposition, and in the sequel, we use the same notation for �1�0

s a vector in C2 � F which has all components zero except its one-photon component ��1�0��1�,
s well as for the vector ��1�0��1� in C2 � L2�R3� � C2.

Proof: In this proof, for the sake of simplicity of notations, we will drop the argument 0 in the
perators A�0�, B�0�, D�0�, K�0� and their adjoint. We first prove �i�. Denoting

ga,b ª
1

�k2 + 	k	�
�1� · K*

a

b
�,0,0, . . . � ,

e have

La,b��� = ��,��1 + 2�� Re��,ga,b�1 = �� + ��ga,b�1
2 − ���ga,b�1

2, �8�

here � . �1 is the norm associated to the scalar product �. , . �1. Therefore, the minimizer of La,b is
��ga,b. A straightforward computation shows that −��ga,b=�a,b. This implies that

inf La,b = La,b��a,b� = − ��a,b�1
2. �9�

We now prove �ii�. We have

�T�0��0,�0� = �Pf
2�0,�0� − ��2 Re�Pf�0,A�0� + ��A2�0,�0�

+ ���� · B�0,�0� + �Hf�0,�0� − cn.o.� . �10�

et us estimate the terms in the above equality in order to identify those who are of order �3/2 and
igher,

�Pf
2�0,�0� = �Pf

2�0�0,�0�0� + �Pf
2�1�0,�1�0� + �Pf

2�2
��0,�2

��0�

= �Pf
2�1�0,�1�0� + �Pf

2�2
��0,�2

��0� , �11�

�Hf�0,�0� = �Hf�0�0,�0�0� + �Hf�1�0,�1�0� + �Hf�2
��0,�2

��0�

= �Hf�1�0,�1�0� + �Hf�2
��0,�2

��0� . �12�

ow, using the fact that n-photon sectors are invariant under Pf, Pf�0�0=0, and �Pf�0 ,A�0�
� � � �
�APf�1 �0 ,�0�= �A�1 �0 , Pf�0�= �A�1 �0 , Pf�1 �0�, we get
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�Pf�0,A�0�	 = 	�Pf�1
��0,A�1

��0�	

 	�Pf�1
��0,D�2

��0�	 + 	�Pf�2
��0,D*�1

��0�	

 	�Pf�1�0,D�2�0�	 + 	�Pf�2
��0,D�3

��0�	

+ 	�Pf�2
��0,D*�1

��0�	

��Pf�1�0��D�2�0� + 1
2 �Pf�2

��0�2

+ 2�D�3
��0�2 + 2�D*�1

��0�2.

sing Theorem 3.1 and Corollary 3.2 and the fact that �Pf�1�0 � c��� ��1�0 � =O��1/2�, where
��� depends only on the ultraviolet cutoff, yields

	�Pf�0,A�0�	 
1
2 �Pf�2

��0�2 + O��� . �13�

e also have

�A2�0,�0�

=��D + D*�2�0,�0�

=2 Re�DD�0,�0� + 2�D�0�2 + ��D,D*����0�2

=O��1/2� + O��� + ��D,D*���1 + O���� ,

here we used from Theorem 3.1 that ��0 � =1+O��� and �D�0 � =O��1/2�. Since the commutator
D ,D*� equals cn.o. we arrive at

�A2�0,�0� = cn.o. + O��1/2� . �14�

inally we have, writing B=K+K*,

�� · B�0,�0� = �� · K�1�0,�0�0� + �� · K�2
��0,�1

��0�

+ �� · K*�0�0,�1�0� + �� · K*�1
��0,�2

��0�

=2 Re�� · K�1�0,�0�0� + 2 Re�� · K*�1
��0,�2

��0�

sing Theorem 3.1 and Corollary 3.2 we obtain

�� · B�0,�0� = 2 Re�� · K�1�0,�0�0� + O��� . �15�

ollecting �10�–�15� and using �Hf�2
��0 ,�2

��0��0 we obtain

�T�0��0,�0� � �Pf
2�1�0,�1�0� + �Hf�1�0,�1�0� + 2�� Re�� · K�1�0,�0�0� + O��3/2� .

�16�

ince on the one-photon sector the operator Pf
2 reduces to multiplication by k2, and the operator Hf
educes to multiplication by 	k	, we obtain
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�0 =
�T�0��0,�0�

��0�2 � La,b��1�0� + O��3/2� � inf La,b + O��3/2� . �17�

n the other hand, using �i�, and for �a,b= �� a
b

� ,�a,b ,0 ,0 , . . . � we have

inf La,b = La,b��a,b� = �T�0��a,b,�a,b� � �0��a,b�2 = �0�1 + O���� � �0 + O��2� . �18�

nequalities �17� and �18� conclude the proof of �ii�.
Eventually, we prove �iii�. Due to the inequalities �17� and �18�, we have inf La,b+O��3/2�

La,b��1�0�. Using �8�, the fact that −��ga,b=�a,b, and �9�, we thus get

inf La,b + O��3/2� = La,b��1�0� = ���a,b + R − �a,b�1
2 − ��a,b�1

2 = �� − 1�2��a,b�1
2 + �R�1

2 + inf La,b,

�19�

hich proves �7�. �

. Proof of Theorem 2.1

As it was mentioned in the Introduction, we prove the theorem by constructing a trial function
for which the quadratic form of H takes a value strictly smaller than �0 ���2.

Let us start by proving an auxiliary result. For �� �0,1�, we define f��L2�R3� to be a
ormalized real valued eigenfunction, with associated eigenvalue e�, of the Schrödinger operator:

h� ª − �1 − ��� + �0W�x� .

ere �0 is the critical coupling constant defined in Sec. II.
Lemma 3.5: Then for ��0, we have

�
i
��− � + �W�

� f�

�xi
,
� f�

�xi
�  CW��f��2 + o��1���f��2,

ith CWª�0
2�1+�0dW+

�dW2, where W+= �W+ 	W 	 � /2 and dW2 and dW+
are defined by �3� and �4�.

Proof: For a potential V such that V�Lloc
2 and short range we have

	�V�,��	  dV����2.

oreover, we know that f� is an eigenfunction of −�1−���+�0W and that the associated eigen-
alue e� tends to zero as � tends to zero, since �0 is the critical coupling constant. Therefore we
btain the following sequence of inequalities:

�
i
��− � + �W�

� f�

�xi
,
� f�

�xi
�  �

i
��− � + �W+�

� f�

�xi
,
� f�

�xi
�

 �
i
��− � + �0W+�

� f�

�xi
,
� f�

�xi
�  �

i
�− �

� f�

�xi
,
� f�

�xi
��1 + d�0W+

�

= �1 + d�0W+
��− �f�,− �f�� = �1 + d�0W+

�� e� − �0W

1 − �
f�,− �f��

=
e��1 + d�0W+

�

1 − �
�f�,− �f�� −

�0�1 + d�0W+
�

1 − �
�Wf�,− �f�� . �20�
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e estimate the last term on the right-hand side by

− �Wf�,− �f�� = �Wf�,
�0W − e�

1 − �
f��

−
e�dW+

1 − �
��f��2 +

�0

1 − �
dW2��f��2. �21�

he inequalities �20� and �21� imply for ��0,

�
i
��− � + �W�

� f�

�xi
,
� f�

�xi
�  ��0

2�1 + �0dW+
�dW2 + o��1����f��2. �22�

�

In the rest of this section, we will mainly work in the space representation for both particle
nd photons. Following,6 let us introduce, for given x�R3, the shift operator on the photon space
ariables �x :C2 � F→C2 � F. For �= ��0 ,�1 , . . . ,�n , . . . ��C2 � F, we have writing by abuse of
otation �x�= ��x�0 ,�x�1 , . . . �,

�x�n�s;y1, . . . ,yn;�1, . . . ,�n� = �n�s;y1 − x, . . . ,yn − x;�1, . . . ,�n� ,

here s is the spin of the particle and takes value in �↑ , ↓ �.
We denote by �0

x the ground state �0 written in space representation and shifted by x, i.e.,

�0
x
ª �xF−1�0,

here F stands for the Fourier transform.
Recall that D*�0� is an operator valued vector with three components which we denote by

*�0�i �i=1,2 ,3�. Then we consider the functions

�i = �0,�i
�1�,0, . . . � � C2

� F �23�

ith

�i
�1� = 
k2 + 	k	 + CW�−1�1D*�0�i

a

b
�,0, . . . � �24�

nd

�i
x = �xF−1�i. �25�

e first state some properties of �i.
Lemma 3.6:

�i� For i� j we have

��i,� j� = 0 and ��i,� j�1 = 0.

�ii� For i=1,2 ,3 holds

��i
�k2 + 	k	 + CW�2 =

1

6�2�
R3

��	k	�
	k	�k2 + 	k	 + CW�

dk .

�iii� For i=1,2 ,3 �ki�a,b ,�1�i�=0.

Proof: To prove this lemma we remind that �i has only a nonzero component �1�i in the

ne-photon sector, and
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�1�i =�
a

�1,i�k���	k	�
	k	1/2�k2 + 	k	 + CW�

a
�2,i�k���	k	�

	k	1/2�k2 + 	k	 + CW�

b
�1,i�k���	k	�

	k	1/2�k2 + 	k	 + CW�

b
�2,i�k���	k	�

	k	1/2�k2 + 	k	 + CW�

� ,

here the two polarization vectors �1�k� and �2�k� are defined in �2�. The properties stated in the
emma follow straightforwardly from computations of the corresponding integrals. �

We consider the trial function ��L2�R3� � C2 � F,

� ª �1 + �2 ª f��x��0
x + i���

i=1

3

�i
x� f��x�

�xi
. �26�

Now we compute the expectation value of H in the state �. We have

�H�,�� = �H�1,�1� + �H�2,�2� + 2 Re�H�1,�2� .

s usual,6 due to the orthogonality �f ,�f /�xi�=0, we have

�H�1,�1� = �0��1�2 + ��− � + �W�x��f�, f����0�2. �27�

Since �2 has only a nonzero component in the one photon sector, in the quadratic form
H�2 ,�2�, all the terms involving A�0� or B�0� vanish. Moreover, using Lemma 3.6 and the
rthogonalities ��f� /�xi ,�f� /�xj�=0 and ��f� /�xi ,�

2f� /�xi�xj�=0, for i� j, we arrive at

�H�2,�2� = ��
l

��l
x�2��− � + �W�

� f�

�xl
,
� f�

�xl
� + O��2���f��2

+ ��
l
� � f�

�xl
�2

��	k	 + k2��1�l
x,�1�l

x� . �28�

o compute the last term �H�1 ,�2�, we first note that

��− � + �W�f�,
� f�

�xi
� = ��− �1 − ��� + �W�f�,

� f�

�xi
� − ���f�,

� f�

�xi
�

=e�� f�,
� f�

�xi
� + ��

j
� �2f�

�xj
2 ,

� f�

�xi
� = 0.

he last equality holds since f� is a real function vanishing at infinity. Moreover, all other terms in
he quadratic form �H�1 ,�2� which contain �f� ,�f� /�xi� vanish also. So we arrive at

2 Re�H�1,�2� = − 2 Re�P · �Pf − ��A�0���1,�2� = 2���
i
� � f�

�xi
�2

Re��Pf − ��A�0��i�0,�i� .

�29�
he term with Pf on the right-hand side is estimated as follows:
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Re��Pf�i�0,�i�C2�F = Re��1�Pf�i���a,b + R�,�1�i�C2�L2�R3��C2

= Re�ki���a,b + R�,�1�i�C2�L2�R3��C2

 �R�1�	k	1/2�1�i� + � Re�ki�a,b,�1�i�C2�L2�R3��C2. �30�

sing Proposition 3.3 yields the following bound for the first term on the right-hand side of �30�:

�R�1�	k	1/2�1�i� = O��3/4� . �31�

ccording to Lemma 3.6 �iii�, the second term on the right-hand side of �30� equals zero. There-
ore, collecting �29�–�31�, we arrive at

2 Re�H�1,�2� = − 2��
i
� � f�

�xi
�2

Re�A�0�i�0,�i� + O��5/4���f��2. �32�

ow we have, using Theorem 3.1 and the fact that D�0� restricted to the two-photon sector is a
ounded operator,

Re�A�0�i�0,�i� = Re�D�0�i�2�0,�i� + Re�D*�0�i�0�0,�i�

= O��1/2� + Re�D*�0�i�0�0,�i� . �33�

ue to the definition �24� of �i, the second term on the right-hand side of �33� is
�i

�k2+ 	k 	 +CW�2. Therefore, collecting the equalities �27�, �28�, �32�, and �33� we obtain

�H�,�� = �0��1�2 + ��0�2��− � + �W�f�, f�� + ��
l

��l�2 ��− � + �W�
� f�

�xl
,
� f�

�xl
�

− 2��
l
� � f�

�xl
�2

��i
�k2 + 	k	 + CW�2 + O��5/4���f��2 + ��

l
� � f�

�xl
�2

��l�1
2. �34�

rom Lemma 3.6, we know that ��l
�k2+ 	k 	 +CW�2 is independent of l. We denote this constant by

2. With Lemma 3.5 we thus arrive at

�H�,��  �0���2 − �0��2�2 + ��0�2���f��2 + ��Wf�, f���

− ��
l
� � f�

�xl
�2

�2 + �o��1���f��2 + O��1/2���f��2. �35�

ote that �0 ��2�2=O��2� ��f��2. We thus obtain

�H�,�� − �0���2

 ��0�2

1 −
�

��0�2�2 +
�

��0�2 �o��1� + O��1/4�����f��2 + ��Wf�, f��� . �36�

sing from Corollary 3.2 that ��0�2=1+O���, we obtain

�H�,�� − �0���2

 ��0�2��1 − ��2 + �o��1� + O��5/4����f��2 + ��Wf�, f��� . �37�
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herefore

�H�,�� − �0���2  ��0�2�1 − ��2 + �o��1� + O��5/4��


���f��2 + �1 + ��2 + �o��1� + O��5/4��−1��Wf�, f��� . �38�

f ���0�1−��2+O��5 � 4��, choosing � �depending on �� small enough, we arrive at �H� ,��
�0 ���2�0. Due to Griesemer et al.,8 this implies the existence of a ground state for H.
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Using a complete basis set we have obtained an analytic expression for the matrix
elements of the Coulomb interaction. These matrix elements are written in a closed
form. We have used the basis set of the three-dimensional isotropic quantum
harmonic oscillator in order to develop our calculations, which can be useful when
treating interactions in localized systems. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2146187�

. INTRODUCTION

Having an analytic expression for the Coulomb matrix elements is an important step for
everal numerical methods, like, for example, exact diagonalization method. In order to describe
he Coulomb interaction in three dimensions, we have chosen the basis set of the isotropic har-
onic oscillator for the single-particle wave functions, which, in one dimension, is written as

�nx
�x� = �a��2nxnx!�−1/2e−�1/2�x2/a2

Hnx
�x/a� , �1�

here a=�� /m� is taken as the characteristic unit length. One of the reasons for the election of
his particular basis set is the Gaussian Product Theorem, which guarantees that the product of two
aussian type orbitals �a linear combination of them in our case� centered on two different atoms

s a finite sum of Gaussians centered on a point along the axis connecting them.
In previous works, several ways to evaluate the two-dimensional matrix elements using dif-

erent approaches have been studied,1–3 such as restricting to the lowest Landau level due to
implicity reasons.4,5

The purpose of this paper is to report an analytic formula for the Coulomb interaction written
n closed form. It can be easily implemented by computer means and could help to improve the
erformance of solid state simulations in which interactions are taken into account.

I. MATRIX ELEMENTS

In order to derive an analytical expression for the Coulomb interaction matrix elements we
ill proceed starting with the same approach as the one used in Ref. 6, i.e., writing the single-

lectron wave function and the Coulomb potential as their Fourier transform integrals:

���r� =
1

�2��3/2 � ���q�e−iq·rdq , �2�

V�r� =
1

�2��3/2 � Ṽ�q�e−iq·rdq , �3�

here � stands for a set of quantum numbers �ni� and V�r1−r2�=r12
−1 is the Coulomb potential.

ow, the two-particle matrix element, which, in real space is written as

�
Electronic mail: jaime.zaratiegui@oulu.fi
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V�3�4

�1�2 =� ��1

* �r1���2

* �r2�V�r1 − r2�

� ��3
�r2���4

�r1�dr1r2, �4�

s now expressed, in momentum space, as

V�3�4

�1�2 =
1

�2��3/2 � ��1

* �q1���4
�q1 − q�

� ��2

* �q2���3
�q2 + q�Ṽ�q�dq1dq2dq . �5�

quation �5� can be rewritten in a more convenient and compact form. Let us define C��
� �q� and

��
� �q� as the following convolution integrals:

C��
� �q� =� ��

*�k�����k − q�dk �6�

=� ��
*�r�����r�e−iq·rdr , �7�

D��
� �q� =� ��

*�k�����k + q�dk �8�

=� ��
*�r�����r�eiq·rdr �9�

=C��
� �− q� . �10�

ubstituting Eqs. �6� and �8� into Eq. �5� we obtain

V�3�4

�1�2 =
1

�2��3/2 � C�4

�1�q�D�3

�2�q�Ṽ�q�dq . �11�

Now, it is straightforward to perform the integral appearing in Eq. �7�.7 Using Cartesian
oordinates, it is possible to separate all three variables and integrate independently. For simplicity
easons, let us integrate only along the x variable, the result then reads:

C
nx

4
nx

1

�qx� = 	 2nx+
14

nx+
14!

nx−
14!

2nx−
14
1/2

inx
1+nx

4
�− 1�nx+

14

� e−qx
2a2/4	aqx

2

�nx

1−nx
4�

L
nx−

14
�nx

1−nx
4��a2qx

2/2� , �12�

here ni
j is the quantum number referring to the i axis of the particle j. We have also used the

erms ni+
jk and ni−

jk, which are defined as max�ni
j ,ni

k� and min�ni
j ,ni

k� respectively. The final form for

�4

�1�q� will be

C
nx

4ny
4nz

4
nx

1ny
1nz

1

�q� = �
i��x,y,z�

C
ni

4
ni

1

�qi� . �13�

sing the relation between D and C shown in Eq. �10�, it is trivial to find out the value of the

ormer convolution integral.
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It still remains to calculate the Fourier transform Ṽ�q� of the spherically symmetric interaction
otential V�r�,

Ṽ�q� =� 2

�

1

q2 . �14�

ut it will be more convenient to substitute it by

Ṽ�q� =� 2

�
�

0

�

e−�qx
2+qy

2+qz
2�udu . �15�

The integration over variables qx, qy, and qz can be performed all in the same fashion. Using
he symmetry of the problem we only need to integrate over one variable, i.e., qx and then use the
ame result for qy and qz. Therefore, integrating over qx yields

�
−�

�

e−�u+a2/2�qx
2	aqx

2

�nx

1−nx
4�+�nx

2−nx
3�

� L
nx−

14
�nx

1−nx
4��a2qx

2/2�L
nx−

23
�nx

2−nx
3��a2qx

2/2�dqx. �16�

his integral does not vanish if and only if

�nx
1 − nx

4� + �nx
2 − nx

3� = 2sx, �17�

here sx=0,1 ,2 , . . . . Therefore, using the previous selection rule and the power series for the
ssociated Laguerre polynomial

Ln
l �x� = 

k=0

n
1

k!
	n + l

n − k

�− x�k, �18�

e can write Eq. �16� as


kx=0

nx−
14

�− 1�kx

kx!
	 nx+

14

nx−
14 − kx



kx=0

nx−
14

�− 1�kx�

kx�!
	 nx+

23

nx−
23 − kx�


 � 2kx+kx�	a

2

2sx+2kx+2kx�

�
�2sx + 2kx + 2kx� − 1�!!

�2u + a2�s+kx+kx�+1/2
�2� . �19�

Taking into account only the u-dependent part in Eq. �19� and its symmetric extension for y
nd z variables, we end up with the last integral which will lead to the final result. This last
ntegral is expressed as:

�
0

�

�2u + a2�−	−3/2du =
1

1 + 2	

1

a1+2	 , �20�

here 	=sx+sy +sz+kx+ky +kz+kx�+ky�+kz�.
Finally, collecting all the terms, we end up with the analytic expression for the Coulomb
nteraction matrix elements:
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V
nx

3ny
3nz

3nx
4ny

4nz
4

nx
1ny

1nz
1nx

2ny
2nz

2

=
1

a
� 2

�
�− 1�nx

1+ny
1+nz
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II. RECURRENCE

Due to the six summatories appearing in Eq. �21�, if the indices start to grow to values say,
ust of the order of tenths, the process for calculating a single matrix element can be quite
ime-consuming, and thus, a real bottleneck for any numerical simulation. Using the recurrence
elations that the Hermite polynomials obey, it is possible to find a simple iterative formula for the
atrix elements which will accelerate the process of calculating the matrix elements.

Let �n− ,n+� be any pair of quantum numbers �ni−
jk ,ni+

jk� with i� �x ,y ,z� and jk� �14,23�,
atisfying n+
n−. Then, the Coulomb matrix elements will satisfy �remaining indices ommitted
or clarity�
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or n−�0. If we consider the unnormalized matrix elements
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q. �22� can be transformed to

V̄n−+1
n+ = V̄n−

n++1 + 2n+V̄n−

n+−1 − 2n−Vn−−1
n+ . �24�

nother interesting recurrence relation which, this time involves four indices �0,n+� and �m− ,m+�,
s the following:

V̄0,m−

n+,m++1 = V̄0,m−

n++1,m+ + V̄0,m−−1
n+,m+ . �25�
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We develop graph theoretic methods for analyzing maximally entangled pure states
distributed between a number of different parties. We introduce a technique called
bicolored merging, based on the monotonicity feature of entanglement measures,
for determining combinatorial conditions that must be satisfied for any two distinct
multiparticle states to be comparable under local operations and classical commu-
nication. We present several results based on the possibility or impossibility of
comparability of pure multipartite states. We show that there are exponentially
many such entangled multipartite states among n agents. Further, we discuss a new
graph theoretic metric on a class of multipartite states, and its implications. © 2005
American Institute of Physics. �DOI: 10.1063/1.2142840�

. INTRODUCTION

Given the extensive use of quantum entanglement as a resource for quantum information
rocessing,6,19,23 the theory of entanglement, in particular, entanglement quantification, is a topic
mportant to quantum information theory. However, apart from a limited number of cases like low
imension Hilbert spaces and for pure states, the mathematical structure of entanglement is not yet
ully understood. The entanglement properties of bipartite states have been widely explored �see
efs. 8 and 12 for a comprehensive review�. This has been aided by the fact that bipartite states
ossess the nice mathematical property in the form of the Schmidt decomposition,19 the Schmidt
oefficients encompassing all their nonlocal properties. No such simplifying structure is known in
he case of larger systems. Approaches using certain generalizations of Schmidt
ecomposition4,14,20 and group theoretic or algebraic methods,15–17 have been taken in this direc-
ion. A number of methods for comparing or quantifying or qualifying entanglement have been
roposed for bipartite systems and/or pure states such as entanglement of formation,3 entangle-
ent cost,3,26 distillable entanglement,3,21 relative entropy of entanglement,11 negativity,27
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oncurrence,28 and entanglement witnesses.13 However, these quantifications do not always lend
hemselves to being computed, except in some restricted situations. As such, a general formulation
s still an open problem.

It is known that state transformations under local operations and classical communication
LOCC� are very important to quantifying entanglement because LOCC can at the best increase
nly classical correlations. Therefore a good measure of entanglement is expected not to increase
nder LOCC. A necessary and sufficient condition for the possibility of such transformations in
he case of bipartite states was given by Nielsen.18 An immediate consequence of his result was the
xistence of incomparable states �the states that cannot be obtained by LOCC from one another�.
ennett et al.,4 formalized the notions of reducibility, equivalence and incomparability to multi-
artite states and gave a sufficient condition for incomparability based on partial entropic criteria.

In this work, our principal aim is not to quantify entanglement, but to develop graph theoretic
echniques to analyze the comparability of maximally entangled multipartite states of several
ubits distributed between a number of different parties. We obtain various qualitative results
oncerning reversibility of operations and comparability of states by observing the combinatorics
f multiparitite entanglement. For our purpose, it is sufficient to consider the graph theoretic
epresentation of various maximally entangled states �represented by specific graphs built from
PR, GHZ, and so on�. Although this might at first seem overly restrictive, we will in fact be able

o demonstrate a number of new results. Furthermore, being based only on the monotonicity
rinciple, it can be adapted to any specific quantification of entanglement. Therefore, our approach
s quite generic, in principle applicable to all entanglement measures. Since the entanglement of

aximally entangled states is usually represented by integer values, it turns out that we can
nalyze entangled systems simply by studying the combinatorial properties of graphs and set
ystems representing the states. The basic definitions and concepts are introduced through the
ramework set in Sec. II. We introduce a technique called bicolored merging in Sec. III, which is
ssentially a combinatorial way of quantifying maximal entanglment between two parts of the
ystem, and inferring transformation properties to be satisfied by the states.

In Sec. IV, we present our first result: the impossibility of obtaining two Einstein-Podolsky-
osen �EPR� pairs among three players starting from a Greenberger-Horne-Zeilinger �GHZ� state

Theorem 2�. We then show that this can be used to establish the impossibility of implementing a
wo-pronged teleportation �called selective teleportation� given preshared entanglement in the
orm of a GHZ state. We then demonstrate various classes of incomparable multipartite states in
ec. V. Finally, we discuss the minimum number of copies of a state required to prepare another
tate by LOCC and present bounds on this number in terms of the quantum distance between the
wo states in Sec. VII.

We believe that our combinatorial approach vastly simplifies the study of entanglement in
ery complex systems. Moreover, it opens up the road for further analysis, for example, to
nterpret entanglement topologically. In future works, we intend to apply and extend these insights
o nonmaximal and mixed multipartite states, and to combine our approach with a suitable mea-
ure of entanglement.

I. THE COMBINATORIAL FRAMEWORK

In this section we introduce a number of basic concepts useful to describe combinatorics of
ntanglement. First, an EPR graph G�V ,E� is a graph whose vertices are the players ��V� and
dges ��E� represent shared entanglement in the form of an EPR pair. Formally, we have the
ollowing.

Definition 1: EPR graph. For n agents A1 ,A2 , . . . ,An an undirected graph G= �V ,E� is con-
tructed as follows: V= �Ai : i=1,2 , . . . ,n�, E= ��Ai ,Aj� :Ai and Aj share an EPR pair, 1� i , j .

n ; i� j�. The graph G= �V ,E� thus formed is called the EPR graph of the n agents.
A spanning tree is a graph which connects all vertices without forming cycles �i.e., loops�.

ccordingly, we have the following.
Definition 2: Spanning EPR tree. A spanning tree is a connected, undirected graph linking all
ertices without forming cycles. An EPR graph G= �V ,E� is called a spanning EPR tree if the
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ndirected graph G= �V ,E� is a spanning tree.
The above notions are generalized to more general multipartite entanglement by means of the

oncept of a hypergraph. A usual graph is built up from edges, where a normal edge links
recisely two vertices. A hyperedge is a generalization that links r vertices, where r�2. A graph
ndowed with at least one hyperedge is called a hypergraph. From the combinatorial viewpoint, a
imple and interesting connection can be made between entanglement and hyperedges, an n-cat
tate �also sometimes called an n-GHZ state� corresponds to a hyperedge of size n. In particular,
n EPR state corresponds to a simple edge connecting only two vertices. Formally, we have the
ollowing.

Definition 3: Entangled hypergraph. Let S be the set of n agents and F= �E1 ,E2 , . . . ,Em�,
here Ei�S ; i=1,2 , . . . ,m and Ei is such that its elements (agents) are in �Ei�-CAT state. The
ypergraph (set system) H= �S ,F� is called an entangled hypergraph of the n agents.

A graph is connected if there is a path �having a length of one or more edges� between any two
ertices. Accordingly, we have the following.

Definition 4: Connected entangled hypergraph. A sequence of j hyperedges E1 ,E2 , . . . ,Ej in a
ypergraph H= �S ,F� is called a hyperpath (path) from a vertex a to a vertex b if

1� Ei and Ei+1 have a common vertex for all 1� i� j−1,
2� a and b are agents in S,
3� a�E1, and
4� b�Ej.

If there is a hyperpath between every pair of vertices of S in the hypergraph H, we say that H
s connected.

Analogous to a spanning EPR tree we have the following.
Definition 5: Entangled hypertree. A connected entangled hypergraph H= �S ,F� is called an

ntangled hypertree if it contains no cycles, that is, there do not exist any pair of vertices from S
uch that there are two distinct paths between them.

Further, we have the following.
Definition 6: r-uniform entangled hypertree: An entangled hypertree is called an r-uniform

ntangled hypertree if all of its hyperedges are of size r for r�2.
In ordinary graphs, a vertex that terminates, i.e., has precisely a single edge linked to it is

alled a terminal or pendent vertex. This concept is extended to the case of hypergraphs.
Definition 7: Pendant vertex. A vertex of a hypergraph H= �S ,F� such that it belongs to only

ne hyperedge of F is called a pendant vertex in H. Vertices which belong to more than one
yperedge of H are called nonpendant.

In the paper we use polygons for pictorially representing an entangled hypergraph of multi-
artite states. �There should be no confusion with a closed loop of EPR pairs because we consider
nly tree structured states.� A hyperedge representing an n-CAT amongst the parties �i1 , i2 , . . . , in�
s pictorially represented by an n-gon with vertices distinctly numbered by i1 , i2 , . . . , in. We write
hese vertices i1 , i2 , . . . , in corresponding to the n vertices of the n-gon in the pictorial representa-
ion in arbitrary order. This only means that out of n qubits of the n-CAT, one qubit is with each
f the n parties.

A result we will require frequently is that there exist teleportation2 protocols to produce
-partite entanglement starting from pairwise entanglement shared along any spanning tree con-
ecting the n parties. That is, there exist LOCC protocols to turn a n-party spanning EPR tree into
n n-regular hypergraph consisting of a single hyperedge of size n. The protocol is detailed in
efs. 24 and 23, but the basic idea is readily described. It is essentially a scheme to determinis-

ically create a maximally entangled n-cat state from n−1 EPR pairs shared along a spanning tree.
riefly, the protocol consists in teleporting entanglement along a spanning tree. Players not on

erminal vertices along the tree execute the following subroutine. Suppose player Alice shares an
-cat with �m−1� preceding players along the tree and wishes to create an �m+1�-cat state
ncluding Bob, the next player down the tree. First she entangles an auxiliary particle with her
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article in the m-cat state by means of local operation. She then uses her EPR pair shared with Bob
o teleport the state of the auxiliary particle to Bob. The �m+1� players, including Alice and Bob,
ow share an �m+1�-cat state, as desired.

Another result we will require in some of our proofs, given as the theorem below, is that the
panning EPR tree mentioned above is also a necessary condition to prepare an n-CAT state
tarting from shared EPR pairs.

Theorem 1: Given a communication network of n agents with only EPR pairs permitted for
airwise entanglement between agents, a necessary condition for creation of a n-CAT state is that
he EPR graph of the n agents must be connected.

Proof of the theorem is given in Appendix A using our method of bicolored merging devel-
ped in Sec. III.

II. BICOLORED MERGING

Monotonicity is easily the most natural characteristic that should be satisfied by all entangle-
ent measures.12 It requires that any appropriate measure of entanglement must not change under

ocal unitary operations and more generally, the expected entanglement must not increase under
OCC. We should note here that in LOCC, LO involves unitary transformations, additions of
ncillas �that is, enlarging the Hilbert space�, measurements, and throwing away parts of the
ystem, each of these actions performed by one party on his or her subsystem. CC between the
arties allows local actions by one party to be conditioned on the outcomes of the earlier mea-
urements performed by the other parties.

Apart from monotonicity, there are certain other characteristics required to be satisfied by
ntanglement measures. However, monotonicity itself vastly restricts the choice of entanglement
easures �for example, marginal entropy as a measure of entanglement for bipartite pure states or

ntanglement of formation for mixed states�. In the present work, we find that monotonicity, where
roven for a particular entanglement measure candidate, restricts a large number of state transfor-
ations and gives rise to several classes of incomparable �multipartite� states. So, in order to study

he possible state transformations of �multipartite� states under LOCC, it would be interesting to
ook at the kind of state transforms under LOCC which monotonicity does not allow. We can
bserve that monotonicity does not allow the preparation of n+1 or more EPR pairs between two
arties starting from only n EPR pairs between them. In particular, it is not possible to prepare two
r more EPR pairs between two parties starting only with a single EPR pair and only LOCC. This
s an example of impossible state transformation in the bipartite case as dictated by the monoto-
icity postulate. We anticipate that a large class of multipartite states could also be shown to be
ncomparable by using impossibility results for the bipartite case through suitable reductions. For
nstance, consider transforming �under LOCC� the state represented by a spanning EPR tree, say

1, to that of the state represented by another spanning EPR tree, say T2 �see Fig. 1�. This

FIG. 1. Spanning EPR trees T1 and T2.
ransformation can be shown to be impossible by reducing to the bipartite case as follows: We
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ssume for the sake of contradiction that there exists a protocol P which can perform the required
ransformation. It is easy to see that the protocol P is also applicable in the case when a party A
ossesses all the qubits of parties 4, 5, 6, and 7 and another party B possesses all the qubits of the
arties 1, 2, and 3. This means that party A is playing the role of parties 4, 5, 6, and 7 and B is
laying the role of parties 1, 2, and 3. Clearly, any LOCC actions done within group �1, 2, 3� ��4,
, 6, 7�� is a subset of LO available to B �A� and any CC done between one party from �1, 2, 3�
nd the other from �4, 5, 6, 7� is managed by CC between B and A.

Therefore, starting only with one edge �e3� they eventually construct T1 just by LO �by local
reation of EPR pairs representing the edges e1, e2, e4, e5, and e6 ��e1 ,e2� by B and �e4 ,e5 ,e6� by
�. They then apply protocol P to obtain T2 with the edges f1, f2, f3, f4, f5, and f6 �refer to Fig.
�. All edges except f2 and f3 are local EPR pairs �that is, both qubits are with the same party, A
r B�. Now the parties A and B share two EPR pairs in the form of the edges f2 and f3, even
hough they started sharing only one EPR pair. But this is in contradiction with monotonicity, that
xpected entanglement should not increase under LOCC. Hence, we can conclude that such a
rotocol P cannot exist.

The approach we took in the above example could also be motivated from the marginal
ntropic criterion �noting that this criterion in essence is also a direct implication of monotonicity�.
s clear from the above example, the above scheme aims to create a bipartition among the n
layers in such a way that the marginal entropy of each partition is different for the two states. In
any cases, this difference will simply correspond to different number of EPR pairs shared

etween the two partitions. Given two multipartite states, the relevant question is, “is there a
ipartition such that the marginal entropy for the two states is different?” If yes, then the state
configuration of entanglement� corresponding to the higher entropy cannot be obtained from that
o lower entropy by means of LOCC. It is convenient to imagine the two partitions being colored
istinctly to identify the partitions which they make up.

In general, suppose we want to show that the multipartite state ��� cannot be converted to the
ultipartite state ��� by LOCC. This can be done by showing an assignment of the qubits �of all

arties� to only two parties such that ��� can be obtained from n �n=0,1 ,2 , . . . � EPR pairs

FIG. 2. Converting T1 to T2 under LOCC.
etween the two parties by LOCC while ��� can be converted to more than n EPR pairs between
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he two parties by LOCC. This is equivalent to saying that each party is given either of two colors
say A or B�. Finally all qubits with parties colored with color A are assigned to the first party �say
� and that with parties colored with the second color to the second party �say B�. This coloring

s done in such a way that the state ��� can be obtained by LOCC from less number of EPR pairs
etween A and B than that obtained from ��� by LOCC. Local preparation �or throwing away� of
PR pairs is what we call merging in combinatorial sense. Keeping this idea in mind, we now

ormally introduce the idea of bicolored merging for such reductions in the case of the multipartite
tates represented by EPR graphs and entangled hypergraphs.

Suppose that there are two EPR graphs G1= �V ,E1� and G2= �V ,E2� on the same vertex set V
this means that these two multipartite states are shared amongst the same set of parties� and we
ant to show the impossibility of transforming G1 to G2 under LOCC, then this is reduced to a
ipartite LOCC transformation which violates monotonicity, as follows:

1� Bicoloring, assign either of the two colors A or B to every vertex, that is, each element of V.
2� Merging, for each element �vi ,v j� of E1, merge the two vertices vi and v j if and only if they

have been assigned the same color during the bicoloring stage and assign the same color to
the merged vertex. Call this graph obtained from G1 as BCM �bicolored-merged� EPR graph
of G1 and denote it by G1

bcm. Similarily, obtain the BCM EPR graph G2
bcm of G2.

3� The bicoloring and merging is done in such a way that the graph G2
bcm has more number of

edges than that of G1
bcm.

4� Give all the qubits possessed by the vertices with color A to the first party �say, party A� and
all the qubits possessed by the vertices with color B to the second party �say, party B�.
Combining this with the previous steps, it is ensured that in the bipartite reduction of the
multipartite state represented by G2, the two parties A and B share more number of EPR pairs
�say, state ��2�� than that for G1 �say, state ��1��.

We denote this reduction as G1�G2. Now if there exits a protocol P which can transform G1

o G2 by LOCC, then P can also transform ��1� to ��2� just by LOCC as follows: A �B� will play
he role of all vertices in V which were colored as A �B�. The edges which were removed due to

erging can easily be created by local operations �local preparation of EPR pairs� by the party A
B� if the color of the merged end vertices of the edge was assigned color A �B�. This means that
tarting from ��1� and only LO, G1 can be created. This graph is virtually amongst �V� parties even
hough there are only two parties. The protocol P then, can be applied to G1 to obtain G2 by
OCC. Subsequently ��2� can be obtained by the necessary merging of vertices by LO, that is by

hrowing away the local EPR pair represented by the edges between the vertices being merged.
ince the preparation of ��2� from ��1� by LOCC violates the monotonocity postulate, such a
rotocol P cannot exist. An example of bicolored merging for EPR graphs has been illustrated in
ig. 3.

The bicolored merging in the case of entangled hypergraphs is essentially the same as that for
PR graphs. For the sake of completeness, we present it here. Suppose there are two entangled
ypergraphs H1= �S ,F1� and H2= �S ,F2� on the same vertex set S �that is, the two multipartite
tates are shared amongst the same set of parties� and we want to show the impossibility of
ransforming H1 to H2 under LOCC. Transformation of H1 to H2 can be reduced to a bipartite
OCC transformation which violates monotonicity thus proving the impossibility. The reduction is
one as follows:

1� Bicoloring, assign either of the two colors A or B to every vertex, that is, each element of S.
2� Merging, for each element E= �vi1 ,vi2 , . . . ,vij� of F1�F2�, merge all vertices with color A to

one vertex and those with color B to another vertex and give them colors A and B, respec-
tively. This merging collapses each hyperedge to either a simple edge or a vertex and thus the
hypergraph reduces to a simple graph with vertices assigned with either of the two colors A
or B. Call this graph obtained from H1 as BCM EPR graph of H1 and denote it by H1

bcm.
Similarily obtain the BCM EPR graph H2

bcm of H2.
3� The bicoloring and merging is done in such a way that the graph H2

bcm has more number of
bcm
edges than that of H1 .
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4� Give all the qubits possessed by the vertices with color A to the party one �say party A� and
all the qubits possessed by the vertices with color B to the second party �say party B�.

We denote the above reduction as H1�H2. The rest of the discussion is similar to that for the
ase of EPR graphs given before. In Fig. 4, we demostrate the bicolored merging of entangled
ypergraphs. Note that the two entangled hypergraphs H1 and H2 are LOCC comparable only if
ne of H1�H2 and H2�H1 is not true. Equivalently, if both of H1�H2 and H2�H1 hold, then
he entangled hypergraphs H1 and H2 are incomparable.

It is also interesting to note at this point that LOCC incomparability shown by using the
ethod of bicolored merging is in fact strong incomparability as defined in Ref. 1. We would also

ike to stress that any kind of reduction �in particular, various possible extensions of bicolored
erging� which leads to the violation of any of the properties of a potential entanglement measure,

s pertinent to show the impossibility of many multipartite state transformations under LOCC.
ince the bipartite case has been extensively studied, such reductions can potentially provide many

deas about multipartite case by just exploiting the results from the bipartite case. In particular, the
efinitions of EPR graphs and entangled hypergraphs could also be suitably extended to capture
ore types of multipartite pure states and even mixed states and a generalization of the idea of

FIG. 3. Bicolored merging of EPR graphs.
icolored merging as a suitable reduction for this case could also be worked out.
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V. LOCC INCOMPARABILITY AND SELECTIVE TELEPORTATION

We know that a GHZ state amongst three agents A, B, and C can be prepared from EPR pairs
hared between any two pairs of the three agents using only LOCC.24,7,29,30 We consider the
roblem of reversing this operation, that is, whether it is possible to construct two EPR pairs
etween any two pairs of the three agents from a GHZ state amongst the three agents, using only
OCC. By using the method of bicolored merging, we answer this question in the negative by
stablishing the following theorem.

Theorem 2: Starting from a GHZ state shared amongst three parties in a communication
etwork, two EPR pairs cannot be created between any two sets of two parties using only LOCC.

Proof: Suppose there exists a protocol P for reversing a GHZ state into two EPR pairs using
nly LOCC. In particular, suppose protocol P starts with a GHZ state amongst the agents A, B,
nd C, and prepares EPR pairs between any two pairs of A, B, and C �say, �A ,C�, and �B ,C�,
orresponding to configuration G1 as shown in Fig. 5�. Since we can prepare the GHZ state from
PR pairs between any two pairs of the three agents, we can prepare the GHZ state starting from
PR pairs between A and B, and A and C. Once the GHZ state is prepared, we can apply protocol

P to construct EPR pairs between A and C and between B and C using only LOCC �i.e., configu-
ation G2	��A ,C� , �B ,C���. So, we can use only LOCC to convert a configuration where EPR
airs exist between A and C and between A and B, to a configuration where EPR pairs are shared
etween A and C and between B and C. The possibility of P means that the marginal entropy of

can be increased using only LOCC, which is known to be impossible. �

The same result could also be achieved by similar bicolored merging directly applied on the
HZ state and any of G1 or G2 but we prefer the above proof for stressing the argument on the

FIG. 4. Bicolored merging of entangled hypergraphs.
ymmetry of G1 and G2 with respect to the GHZ. Moreover, this proof gives an intuition about
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ossibility of incomparability amongst spanning EPR trees as G1 and G2 are two distinct spanning
PR trees on three vertices. We prove this general result in the Theorem 8.

The above theorem motivates us to propose some kind of comparison between a GHZ state
nd two pairs of EPR pairs in terms of the nonlocal correlations they possess. In this sense,
herefore, a GHZ state may be viewed as less than two EPR pairs. It is easy to see that an EPR pair
etween any two parties can be obtained starting only from a GHZ state shared amongst the three
arties and LOCC. The third party will just do a measurement in the diagonal basis and send the
esult to the other two. By applying the corresponding suitable operations they get the required
PR pair. From Theorem 1, we observe that a single EPR pair, between any two of the three
arties, is not sufficient for preparing a GHZ state amongst the three parties using only LOCC.
hese arguments can be summarized in the following theorem.

Theorem 3: 1-EPR pair �LOCC a GHZ state �LOCC 2-EPR pairs.
An interesting problem in quantum information theory is that of selective teleportation.22

iven three agents A, B, and C, and two qubits of unknown quantum states ��1� and ��2� with A,
he problem is to send ��1� to B and ��2� to C selectively, using only LOCC and a priori
ntanglement between the three agents. A simple solution to this problem is applying standard
eleportation,2 in the case where A shares EPR pairs with both B and C. An interesting question is
hether any other form of a priori entanglement can help achieving selective teleportation. In
articular, is it possible to perform selective teleportation where the a priori entanglement is in the
orm of a GHZ state amongst the three agents? The following theorem answers this question using
he result of the Theorem 2.

Theorem 4: With a priori entanglement given in the form of a GHZ state shared amongst
hree agents, two qubits cannot be selectively teleported by ane of the three parties to the other
wo parties.

Proof: Suppose there exists a protocol P which can enable one of the three parties �say A� to
eleport two qubits ��1� and ��2� selectively to the other two parties �say B and C�. Now A takes
our qubits; she prepares two EPR pairs one from the first and second qubits and the other from the
hird and fourth qubits. He then teleports the first and third qubits selectively to B and C using P
consider first qubit as ��1� and the third qubit as ��2��. We can note here that in this way A is able
o share one EPR pair each with B and C. But this is impossible because it allows A to prepare two
PR pairs starting from a GHZ state and only using LOCC. This contradicts Theorem 2. Hence

FIG. 5. LOCC irreversibility of the process �2 EPR→GHZ�.
ollows the result. �
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. COMBINATORIAL CONDITIONS FOR LOCC INCOMPARABILITY
F EPR GRAPHS

An immediate result comparing an n-CAT state with EPR pairs follows from noting that,
iven a spanning EPR tree among n parties, an n-CAT state can be constructed using only LOCC
sing the teleportation protocol described in Sec. II. The result we present below generalizes
heorem 3.

Theorem 5: 1-EPR pair �LOCC n-CAT �LOCC �n−1�-spanning EPR tree.
We can argue in a similar manner that an n-CAT state amongst n-parties cannot be converted

y just using LOCC to any form of entanglement structure which possesses EPR pairs between
ny two or more different sets of two parties. Assume this is possible for the sake of contradiction.
hen the two edges could be in either of the two forms: �1� �i1 , i2� and �j1 , j2� and �2� �i1 , i2� and

i2 , j2�, where i1 , i2 , j1 , j2 are all distinct. In bicolored-merging assign the colors as follows. In case
1�, give color A to i2 and j2 and give the color B to the rest of the vertices. In case �2�, give color

to i2 and color B to the rest of the vertices. Since both the cases are contrary to our assumption,
he assertion follows. Moreover, from Theorem 1 �see Appendix A for proof�, no disconnected
PR graph would be able to yield n-CAT just by LOCC. These two observations combined

ogether lead to the following theorem which signifies the fact that these two multipartite states
annot be compared.

Theorem 6: A CAT state amongst n agents in a communication network is LOCC incompa-
able to any disconnected EPR graph associated with the n agents having more than one edge.

The above result indicates that there are many possible forms of entanglement structures
multipartite states� which cannot be compared at all in terms of nonlocal correlations they may
ave. This simple result is just an implication of the necessary combinatorics required for the
reparation of CAT states. One more interesting question with respect to this combinatorics is to
ompare a spanning EPR tree and a CAT state. A spanning EPR tree is combinatorially sufficient
or preparing the CAT state and thus seems to entail more nonlocal correlations than in a CAT
tate. The question whether this ordering is strict needs to be further investigated. It is easy to see
hat an EPR pair between any two parites can be obtained starting from a CAT state shared
mongst the n agents just by LOCC �Theorem 5�. Therefore, given n−1 copies of the CAT state
e can build all the n−1 edges of any spanning EPR tree just by LOCC. But whether this is the

ower bound on the number of copies of n-CAT required to obtain a spanning EPR tree is even
ore interesting. The following theorem shows that this is indeed the lower bound.

Theorem 7: Starting with only n−2 copies of n-CAT state shared amongst its n agents, no
panning EPR tree of the n agents can be obtained just by LOCC.

Proof: Suppose it is possible to create a spanning EPR tree T from �n−2� copies of n-CAT
tates. As we know, an n-CAT state can be prepared from any spanning EPR tree by
OCC.24,7,29,30 Thus, if �n−2� copies of n-CAT can be converted to T, then �n−2� copies of any
panning EPR tree can be converted to T just by LOCC. In particular, �n−2� copies of a chain
PR graph �which is clearly a spanning EPR tree, Fig. 6� can be converted to T just by LOCC.
ow, we know that any tree is a bipartite connected graph with n−1 edges across the two parts.
et vertices i1 , i2 , . . . , im be the members of the first group and the rest be in the other group.
onstruct a chain EPR graph where the first m vertices are i1 , i2 , . . . , im in the sequence, and the

est of the vertices are from the other group in the sequence �Fig. 6�. In bicolored merging, we
ive the color A to the parties �i1 , i2 , . . . , im� and the rest of the parties are given the color B. This
ay we are able to create �n−1� EPR pairs �note that there are n−1 edges in T across the two
roups� between A and B starting from only �n−2� EPR pairs �considering the n−2 chainlike
panning EPR trees�. So, we conclude that �n−2� copies of n-CAT cannot be converted to any
panning EPR tree just by LOCC. See Fig. 6 for illustration of the required bicolored merging. The
roof could also be acheived by similar kind of bicolored merging directly applied on n-CAT
nd T. �

In the preceding results we have compared spanning EPR trees with CAT states. We discuss
he comparability/incomparability of two distinct spanning EPR trees in the next theorem and

orollary.
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Theorem 8: Any two distinct spanning EPR trees are LOCC incomparable.
Proof: Let T1 and T2 be the two distinct spanning EPR trees on the same n vertices. Clearly,

here exist two vertices �say i and j� which are connected by an edge in T2 but not in T1. Also by
irtue of connectedness of spanning trees, there will be a path between i and j in T1. Let this path
e ik1k2¯kmj with m�0 �see Fig. 7�. Since m�0, k1 must exist.

Let Ti
1	subtree in T1 rooted at i except for the branch which contains the edge �i ,k1�, Tj

1

subtree in T1 rooted at j except for the branch which contains the edge �j ,km�, Tkr
	subtree in

1 rooted at kr except for the branches which contain either of the edges �kr−1 ,kr� and �kr ,kr+1�
k0= i, km+1= j�, Ti

2	subtree in T2 rooted at i except for the branch which contains the edge �i , j�,
nd Tj

2	subtree in T2 rooted at j except for the branch which contains the edge �i , j�.
It is easy to see that the set Ti

2�Tj
2 is nonempty as T1 and T2, being distinct, must contain

ore than two vertices. Also Ti
2 and Tj

2 must be disjoint; for, otherwise there will be a path
etween i and j in T2 which does not contain the edge �i , j�. Thus there will be two paths between
and j in T2 contradicting the fact that T2 is a spanning EPR tree �Fig. 7�. With these two

haractistics of Ti
2 and Tj

2, it is clear that k1 will lie either in Ti
2 or in Tj

2. Without loss of generality,
et us assume that k1�Ti

2. Now we do bicolored merging where the color A is assigned to i and all
ertices in Ti

1 and the color B is assigned to the rest of the vertices �refer to Fig. 7 for illustration�.
ince T1 and T2 were chosen arbitrarily, the same arguments also imply that there cannot exist a
ethod which converts T2 to T1. This leads to the conclusion that any two distinct spanning EPR

rees are LOCC incomparable.
Corollary 1: There are at least exponentially many LOCC-incomparable classes of pure

ultipartite entangled states.
Proof: We know from results in graph theory9 that on a labelled graph on n vertices, there are

n−2 posible distinct spanning trees. Hence there are nn−2 distinct spanning EPR trees in a network
f n agents. From Theorem 8 all these spanning EPR trees are LOCC incomparable. It can be
oted here that the most general local operation of n qubits is an element of the group U�2�n �local
nitary rotations on each qubit alone�. So, if two states are found incomparable, this means that

FIG. 6. n−2 copies of n-CAT are not sufficient to prepare a spanning EPR tree.
here are actually two incomparable equivalence classes of states �where members in a class are
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elated by a U�2�n transformation�. Thus we have at least exponentially many LOCC-
ncomparable classes of multipartite entangled states. �

I. COMBINATORIAL CONDITIONS FOR LOCC INCOMPARABILITY OF ENTANGLED
YPERGRAPHS

Since entangled hypergraphs represent more general entanglement structures than those rep-
esented by the EPR graphs �in particular spanning EPR trees are nothing but 2-uniform entangled
ypertrees�, it is likely that there will be even more classes of incomparable multipartite states and
his motivates us to generalize Theorem 8 for entangled hypertrees. However, remarkably this
ntuition does not work directly and there are entangled hypertrees which are not incomparable.
ut there are a large number of entangled hypertrees which do not fall under any such partial
rdering and thus remain incomparable. To this end we present our first imcomparability result on
ntangled hypergraphs.

Theorem 9: Let H1= �S ,F1� and H2= �S ,F2� be two entangled hypertrees. Let P1 and P2 be
he set of pendant vertices of H1 and H2, respectively. If the sets P1 \ P2 and P2 \ P1 are both
onempty then the multipartite states represented by H1 and H2 are necessarily LOCC incompa-
able.

Proof: Using bicolored merging we first show that H1 cannot be converted to H2 under LOCC.
mpossibility of the reverse conversion will also be immediate. Since P1 \ P2 is nonempty, there
xists u�S such that u� P1 \ P2. That is, u is pendant in H1 but nonpendant in H2 �Fig. 8�.

In the bicolored merging assign the color A to the vertex u and the color B to all other vertices.
his reduces H1 to a single EPR pair shared between the two parties A and B whereas H2 reduces

o at least two EPR pairs shared between A and B. The complete bicolored merging is shown in

FIG. 7. Spanning EPR trees are LOCC incomparable.
ig. 8. �
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We note that this proof does not utilize the fact that H1 and H2 are entangled hypertrees, and
hus the theorem is indeed true even for entangled hypergraphs satisfying the conditions specified
n the set of pendant vertices.

The conditions specified on the set of pendant vertices in Theorem 9 cover a very small
raction of the entangled hypergraphs. However, these conditions are not necessary and it may be
ossible to find further characterizations of incomparable classes of entangled hypergraphs. We
resent two examples where the conditions of Theorem 9 are not satisfied.

Example 1: �Figs. 9 and 10� P1� P2 but either P1� P2 or P2� P1.
Example 2: �Fig. 11� P1= P2.
In the first example, the entangled hypergraphs H1 and H2 staisfy P1� P2 and P1� P2. H1 and

2 are comparable in Fig. 9 but incomparable in Fig. 10. In Fig. 10, the incomparability has been
roved by showing that H1 is not convertible to H2 under LOCC because the impossibility of
everse conversion follows from the proof of Theorem 9 �P2 \ P1���. Figure 11 gives examples of
omparable and incomparable entangled hypergraphs with condition P1= P2.

Theorem 8 shows that two distinct EPR spanning trees are LOCC incomparable and the
panning EPR trees are nothing but 2-uniform entangled hypertrees. Therefore, a natural gener-
lization of this theorem would be to r-uniform entangled hypertrees for any r�3. As we show
elow, the generalization indeed holds. It should be noted that Theorem 9 does not necessarily

FIG. 8. Entangled hypergraphs with P1 \ P2 nonempty.
apture such entanglement structures �multipartite states� �Fig. 12�. However, in order to prove
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FIG. 9. Comparable with P1� P2 and P1� P2.
FIG. 10. Incomparable with P1� P2 and P1� P2.
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FIG. 11. P = P .
1 2
FIG. 12. r-uniform entangled hypertrees not captured in Theorem 9.
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hat two distinct r-uniform entangled hypertrees are LOCC incomparable, we need the following
mportant result about r-uniform hypertrees. See Appendix B for the proof.

Theorem 10: Given two distinct r-uniform hypertrees H1= �S ,F1� and H2= �S ,F2� with r
3, there exist vertices u ,v�S such that u and v belong to the same hyperedge in H2 but

ecessarily to different hyperedges in H1.
Now we state one of our main results on LOCC incomparability of multipartite entangled

tates in the following theorem.
Theorem 11: Any two distinct r-uniform entangled hypertrees are LOCC incomparable.
Proof: Let H1= �S ,F1� and H2= �S ,F2� be the two r-uniform entangled hypertrees. If r=2 then

1 and H2 happen to be two distinct spanning EPR trees and the proof follows from Theorem 8.
herefore, let r�3.

Now from Theorem 10, there exist u ,v�S such that u and v belong to the same hyperedge in

2 but necessarily to different hyperedges in H1. Let the same hyperedge in H2 be E�F2. Also,
ince H1, being hypertree, is connected, there exists a path between u and v in H1. Let this path be
E1E2¯Ek+1v. Clearly k�0 because u and v necessarily do not belong to the same hyperedge in

1.
We introduce the following notations �Fig. 13�.
Tu

1, subhypertree rooted at u in H1 except the branch that contains E1. Tv
1, subhypertree rooted

t v in H1 except the branch that contains Ek+1. Twi
, subhypertree rooted at wi in H1 except

ranches containing Ei and Ei+1. TEi
, Collection of all subhypertrees in H1 rooted at some vertices

n Ei other than wi−1 and wi �where w0=u and wk+1=v� except for the branches which contain Ei.
= ��E1�E2� ¯ �Ek+1�� �TE1

�TE2
� ¯ �TEk+1

�� �Tw1
�Tw2

� ¯ �Twk
�� \ �u ,v�=set of all

ertices from S \ �u ,v� which are not contained in Tu�Tv. Tu
2, subhypertree rooted at u in H2

xcept the branch that contains E. Tv
2, subhypertree rooted at v in H2 except the branch that

ontains E. TE, collection of all subhypertrees in H2 rooted at some vertices in E \ �u ,v� except for
he branches which contain E.

In order to complete the proof we consider the following cases.
2 2

FIG. 13. Two distinct r-uniform entangled hypertrees.
Case 1: ∃w�T such that w� �Tu�Tv�.
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Without loss of generality let us take w�Tu
2. Now since w�T, w� exactly one of Ei, Twi

, or

Ei
for some i. Accordingly there will be three subcases. Case 1.1, w�Ei for some i �take such

inimum i�.
Do bicolored merging where the vertex u along with all the vertices in

Tu
1,E1,E2, . . . ,Ei−1,Tw1

,Tw2
, . . . ,Twi−1

,TE1
,TE2

, . . . ,TEi−1

re given the color A and the rest of the vertices are given the color B.
Case 1.2: w�Twi

for some i.
Do the bicolored merging while assigning the colors as in the above case.
Case 1.3: w�TEi

for some i.
Bicolored merging in this case is also the same as in Case 1.1.
Case 2: There does not exist any w�T such that w�Tu

2�Tv
2.

Clearly, Tu
2�Tv

2 �Tu
1�Tv

1 and T�TE� �E \ �u ,v��. Note that whenever we are talking of set
elations like union, containment, etc., we are considering the trees, edges, etc., as sets of appro-
riate vertices from S which make them. First we establish the following claim.

Claim: ∃t� �E1 \ �u ,w1��� �E2 \ �w1 ,w2�� such that t�TE.
We have k�0. Therefore, both E1 and E2 exist and since H1 is r-uniform �E1�= �E2�=r. Also

E1 \ �u ,w1��� �E2 \ �w1 ,w2�� is empty, for, otherwise there will be a cycle in H1 which is not
ossible as H1 is a hypertree.5,10 Therefore,

��E1 \ �u,w1�� � �E2 \ �w1,w2��� = ��E1 \ �u,w1�� + �E2 \ �w1,w2��� = �r − 2� + �r − 2� = 2r − 4.

Also �E�=r implies that �E \ �u ,v��= �r−2�.
It is clear that u ,v� �E1 \ �u ,w1��� �E2 \ �w1 ,w2��. Therefore,

��E1 \ �u,w1�� � �E2 \ �w1,w2��� − �E \ �u,v�� = �2r − 4� − �r − 2� = r − 2 � 1

ince r�3.
Also �E1 \ �u ,w1��� �E2 \ �w1 ,w2���T�TE� �E \ �u ,v��, and so by pigeonhole principle,25

∃t � �E1 \ �u,w1�� � �E2 \ �w1,w2�� and t � TE���E \ �u,v���

Hence our claim is true.
Now we have t� �E1 \ �u ,w1��� �E2 \ �w1 ,w2�� such that t�TE. Since t�TE, by the definition

f TE it is clear that there must exist w�E \ �u ,v� such that t�Tw, the subhypertree in H2 rooted
t w except for the branch containing E. Depending on whether t�E1 \ �u ,w1� or t�E2 \ �w1 ,w2�,
e break this case into several subcases and futher in sub-subcases depending on the part in H1

here w lies.
Case 2.1: t�E1 \ �u ,w1� �Fig. 14�.
Case 2.1.1: w�Tu

1.
Do the bicolored merging where u and the vertices in Tu

1 are assigned the color A and the rest
f the vertices from S are given the color B.

Case 2.1.2: w�Tv
1.

Bicolored merging is done where v as well as all the vertices in Tv
1 are assigned the color B

nd rest of the vertices from S are given the color A.
Case 2.1.3: w�T.
Here in this case, depending on whether w is in Tt or not, there can be two cases.
Case 2.1.3.1: w�Tt.
Bicolored merging is done where all the vertices in Tt are given the color A and the rest of the

ertices are assigned the color B.
Case 2.1.3.2: w�Tt.
w�Tt implies that either w�Ei for some i, or w�Tq, where q�Ei for some i and q� t. For

oth of these possibilities, bicolored merging is the same and is done as follows.

Assign the color A to u as well as all vertices in
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FIG. 14. Case 2.1.
FIG. 15. Case 2.2.
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Tu
1 � E1 � TE1

� Tw1
� ¯ � Ei−1 � TEi−1

� Twi−1
� �Ei \ �q,w,wi�� � �TEi

\ Tq�

nd assign the color B to rest of the vertices.
Case 2.2: t�E2 \ �w1 ,w2� �Fig. 15�.
Case 2.2.1: w�Tu

1�E1�TE1
�Tw1

.
Do the bicolored merging where all the vertices in Tu

1�E1�TE1
�Tw1

including u are given
he color A and rest of the vertices are assigned the color B.

Case 2.2.2: w�Tv
1 �TEk+1

�Ek+1�Twk
� ¯ �TE3

�E3�Tw2
.

In bicolored merging give the color B to all the vertices �including v� in

v
1 �TEk+1

�Ek+1�Twk
� ¯ �TE3

�E3�Tw2
and color A to the rest of the vertices.

Case 2.2.3: w�E2�TE2
.

In this case depending on whether w�Tt, or w�Tt the bicolored merging will be different.
Case 2.2.3.1: w�Tt.
Bicolored merging is done where all the vertices in Tt are given the color A and rest of the

ertices are assigned the color B.
Case 2.2.3.2: w�Tt.
w�Tt implies that either w�E2, or w�Tq for some q��t��E2. In any case do the bicolored

erging where the color A is assigned to all the vertices in

Tu
1 � E1 � TE1

� Tw1
� �E2 \ �w,q,w2�� � �TE2

\ Tq�

nd the rest of the vertices are assigned the color B.
Now that we have exhausted all possible cases and shown by the method of bicolored merging

hat the r-uniform entangled hypertree H1 cannot be LOCC converted to the r-uniform entangled
ypertree H2. The same arguments also work for showing that H2 can not be LOCC converted to

1 by interchanging the roles of H1 and H2. Hence the theorem follows. �

Before ending our section on LOCC incomparability of multipartite states represented by EPR
raphs and entangled hypergraphs, we note that partial entropic criteria of Bennett et al.4 which
ives a sufficient condition for LOCC incomparability of multipartite states, does not capture the
OCC incomparability of spanning EPR trees or entangled hypertrees in general. Consider two
panning EPR trees T1 and T2 on three vertices �say 1, 2, 3�. T1 is such that the vertex pairs 1, 2
nd 1, 3 are forming the two edges where as in T2 the vertex pairs 1, 3 and 2, 3 are forming the
wo edges. It is easy to see that T1 and T2 are not marginally isentropic.

II. QUANTUM DISTANCE BETWEEN MULTIPARTITE ENTANGLED STATES

In the proof of Theorem 8, we have utilized the fact that there exist at least two vertices which
re connected by an edge in T2 but not in T1. This follows as T1 and T2 are different and they also
ave equal number of edges �namely n−1, if there are n vertices�. In fact, in general there may
xist several such pairs of vertices depending on the structures of T1 and T2. Fortunately, the
umber of such pair of vertices has some nice features giving rise to a metric on the set of
panning �EPR� trees with fixed vertex set and thus giving a concept of distance.9 The distance
etween any two spanning �EPR� trees T1 and T2 denoted by QDT1,T2

on the same vertex set is
efined as the number of edges in T1 which are not in T2. Let us call this distance to be the
uantum distance between T1 and T2. We have proved in Theorem 8 that obtaining T2 from T1 is
ot possible just through LOCC, so we need to do quantum communication. The minimum
umber of qubit required to be communicated for this purpose should be an interesting parameter
elated to state transformations amongst multipartite states represented by spanning EPR trees; let
s denote this number by qT1,T2

. We note that qT1,T2
�QDT1,T2

. This is because each edge not
resent in T2 can be created by only one qubit communication. The exact value of qT1,T2

will
epend on the structures of T1 and T2 and, as we can note, on the number of edge disjoint paths
n T1 between the vertex pairs which form an edge in T2 but not T1.

We can say more about quantum distance. Recall Theorem 7 where we show that a lower

ound on the number of copies of n-CAT to prepare a spanning EPR tree by LOCC, is n−1. Can
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e obtain a similar lower bound in the case of two spanning EPR trees and relate it to the quantum
istance? The answer is indeed yes. Let CT1,T2

denote the minimum number of copies of the
panning EPR tree T1 required to obtain T2 just by LOCC. We claim that 2�CT1,T2

, CT2,T1
QDT1,T2

+1. The lower bound follows from Theorem 8. The upperbound is also true because of
he following reason. QDT1,T2

is the number of �EPR pairs� edges present in T2 but not in T1. For
ach such edge in T2 �let u, v be the vertices forming the edge�, while converting many copies of

1 to T2 by LOCC an edge between u and v must be created. Since T1 is a spanning tree and
herefore connected, there must be a path between u and v in T1 and this path can be well
onverted �using entanglement swapping� to an edge between them �i.e., EPR pair between them�
nly using LOCC. Hence one copy each will suffice to create each such edges in T2. Thus QDT1,T2
opies of T1 will be sufficient to create all such QDT1,T2

edges in T2. One more copy will supply
ll the edges common in T1 and T2. Even more interesting point is that both these bounds are
aturated. This means to say that there do exist spanning EPR trees satifying these bounds �Fig.
6�.

It is important to note that a similar concept of distance also holds in the case of r-uniform
ntangled hypertrees.
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PPENDIX A

Proof of Theorem 1: We use the method of bicolored merging to prove the fact that any
isconnected EPR graph G on n-vertices cannot be converted to an n-CAT state on those vertices
nder LOCC. We first note that the BCM EPR graph of an n-CAT state, irrespective of the
icoloring done, is always a graph which contains exactly one edge. Now as G is disconnected it
ill have more than one connected components. Let these components be C1 ,C2
Ck, where k
2. The bicoloring is done as follows: assign the color A to all the vertices in the component C1

nd the color B to all other vertices, i.e., all vertices in G \C1. After merging, therefore, G reduces
o a disconnected graph with no edges, i.e., the BCM EPR graph of G is a graph with k isolated
ertices and no edges. Now if we are able to prepare an n-CAT state from G just using LOCC, we
ould also prepare an EPR pair between two parties who were never sharing an EPR pair just

FIG. 16. Saturating bounds on copies required to go from one EPR spanning tree to another via LOCC.
sing LOCC. This violates monotonicity and hence the theorem is proved. �
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PPENDIX B

Proof of Theorem 10: We first establish the following claim.
Claim: ∃E1�F1 ,E2�F2 such that E1�E2�� and E2�F1�F2.
Proof of the claim: We first show that on the same vertex set, the number of hyperedges in any

-uniform hypertree is always same. Let n and m be the number of vertices and hyperedges in a
-uniform hypertree. We show by induction on m that n=m� �r−1�+1.

For m=1, n=1� �r−1�+1=r which is true because all possible vertices �since no one can be
solated� fall in the single hyperedge and it has exactly r vertices.

Let us assume that this relation between n and m for a fixed r holds for all values of the
nduction variable up to m−1. We show that it holds good for m.

Now take a r-uniform hypertree with m hyperedges. Remove any of the hyperedges to get
nother hypergraph �which may not be connected� having only m−1 edges. This removal may
ntroduce k connected components �subhypertrees�; 1�k�r. Let these components have, respec-
ively, m1 ,m2 , . . . ,mk number of hyperedges. Therefore, �i=1

k mi=m−1. The total number of verti-
es in the new hypergraph �with the k subhypertrees as components�, n1=�ni where ni is the
umber of vertices in the component i. Therefore, n1=�ni=�i=1

k �mi�r−1�+1�= �m−1��r−1�+k
under induction assumption�.

Now the number of vertices in the original hypertree, n=n1+ �r−k� because k vertices were
lready covered, one each in the k components. Therefore, n= �m−1��r−1�+k+ �r−k�= �m−1��r
1�+r= �m−1��r−1�+ �r−1�+1=m�r−1�+1. The result is thus true for m and hence for any

number of hyperedges by induction. This result implies that any r-uniform hypertree on the same
vertex set will always have the same number of hyperedges.

Let F=F1�F2 and m= �F1�= �F2�. Obviously m� �F� otherwise H1=H2. This implies that
E�F2 such that E�F.

Take any vertex say w�E. Since w�S and H1 is a hypertree therefore connected, w can not
e an isolated vertex and therefore ∃E1�F1 such that w�E1. Take E1=E1 and E2=E. This proves
ur claim.

Now we prove the theorem. Choose E1 and E2 so as to satify the above claim.
Let E1= �u1 ,u2 , . . . ,ul ,wl+1 ,wl+2 , . . . ,wr� and E2= �u1 ,u2 , . . . ,ul ,vl+1 ,vl+2 , . . . ,vr�.
Since E1�E2��, l�1 and E1�E2 implies that l�r−1.
Hence 1� l�r.
Now based on the value of l, we have the following different cases.
Case 1: l�1.
Case 1.1: ∃vi such that u1 and vi are not in the same hyperedge in H1.
Take u=u1 and v=vi in the statement of the theorem.
Case 1.2: Each vi is in some hyperedge in H1 in which u1 also lies.
None of these vi’s can belong to the hyperedges in H1 in which u2 lies.
This is due to the fact that if, say, v j happens to be in same hyperedge as of u2 in H1 then

1u2v ju1 will be a cycle in H1, which is absurd as H1 is a hypertree.
Note that at least one such vi must exist as l�r. Take u=u2 and v=any vi.
Case 2: l=1.
Case 2.1: ∃vi such that u1 and vi are not in same hyperedge in H1.
Take u=u1 and v=vi.
Case 2.2: Each vi is in some hyperedge in H1 in which u1 also lies.
Since vi’s are r−1 in number and E2�F1�F2, these vi’s will be distributed in at least two

istinct hyperedges in H1 in which u1 also lies.
Therefore, ∃vi, v j such that they are in the same hyperedge in H2 �namely in E2� but in

ecessarily different edges in H1, otherwise �that is, if they lie in the same hyperedge in H1�
1viv ju1 will be a cycle in H1, which is absurd as H1 is a hypertree.

Also note that both vi and v j will exist as r�3.
Take u=vi and v=v j.

Thus we have proved Theorem 10 in all possible cases. �
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We would like to point out that the result of Theorem 10 could follow from some standard
esults in combinatorics. We have however not found literature proving this result.
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The control problem for linear and nonlinear Schrödinger equations is considered.
The controls are given by applying a spatially homogeneous field or varying the
frequency of a quadratic trapping potential. It is demonstrated that the existence of
�exact or approximate� coherent-state-type solutions may severely limit the degree
to which the system can be controlled. © 2005 American Institute of Physics.
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. INTRODUCTION

In 1926 Erwin Schrödinger1 discovered harmonic-oscillator quantum states with quasiclassi-
al, particle-like properties, which have become known as coherent states. Schrödinger’s original
dea has since been generalized in many ways; in this paper we will focus on one of these
eneralizations, called “trajectory-coherent states.”2 Later, in the 1980s, questions of controlling
uantum systems and engineering quantum states began to be addressed systematically.3 The
urpose of this paper is to expose a link between these developments.

Our main thesis is that the existence of coherent structures in quantum systems may limit the
egree of controllability with respect to control by means of spatially homogeneous external fields
coherent control�. Roughly speaking, �generalized� coherent states present “obstacles” to the
ontrol process which can be difficult to overcome.4 The basic mechanism is that, in a first-order
pproximation, the application of a homogeneous field will only affect the position �x� of a wave
acket, but will leave its higher moments, and hence its shape, �essentially5� unaffected. To
llustrate this phenomenon we will consider Bose–Einstein condensates �BEC� in a quadratic trap,
hose dynamics is described by a nonlinear Schrödinger equation, the Gross–Pitaevskii equation,

nd we will discuss trajectory-coherent states, which are Gaussian-shaped approximate solutions
o the �linear� Schrödinger equation with a general potential.

Specifically, we will show that �a� the Gross–Pitaevskii equation supports �generalized� co-
erent states, which restrict the set of states that, given an initial state, can be “engineered” �by
anipulating the spatially homogeneous control field� to a finite-dimensional manifold �see “Ob-

ervation I” below�; �b� the dominant effect of varying the frequency of a quadratic trap is a
escaling of the wave packet �“Observation II”�; �c� access to the inherently quantum �nonclassi-
al� degrees of freedom can only be gained indirectly by means of higher-order effects involving
he external potential �“Observation III”�; �d� the existence of trajectory-coherent states may
ender the time required to reach �or approximate� a given target state very large—essentially
nfinite—if the control field is not designed very carefully �“Observation IV”�.

These observations seem to provide a rather poor prognosis for the “dream”6 of quantum
ontrol. However, it should be noted that the existence of “exact” coherent states is a rather
xceptional occurrence,7 very intimately linked to the harmonic oscillator potential �or, more
enerally, to the fact that the Hamiltonian is quadratic in its variables�. For instance, the definition
f coherent states for other quantum systems, such as the hydrogen atom, remains difficult,

�
Electronic mail: hteisman@acadiau.ca
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ontrary to Schrödinger’s belief that quasiclassical states analogous to the ones he found for the
armonic oscillator could certainly be defined for other quantum systems as well.1

In this sense, this paper does not undermine the notion that coherent control of quantum
ystems is feasible for “the majority” of quantum systems, as they will typically not possess exact
oherent states.8 However, the existence of trajectory-coherent states for general, not necessarily
uadratic, potentials shows that special care must be taken in designing the control fields if
nrealistically large control times are to be avoided.

This paper is organized as follows: In Sec. II we give the basic definitions and introduce the
uantum control problem. Section III presents two transformations designed to capture the domi-
ant effects of the linear �in x� and quadratic control terms E�t�x and 1

2��t��x�2. In Sec. IV we
nvestigate the consequences of these transformations for the control problem; this section in-
ludes Observations I–III mentioned earlier. In Sec. V we introduce trajectory-coherent states and
tudy their effect on the control process �Observation IV�. We conclude the paper with a number
f remarks �Sec. VI�. Many of the calculations we present here have appeared elsewhere �if often
ot for nonlinear equations such as the GPE�; our objective here is to present them under unifying
spects, in particular concerning their significance for the quantum control problem.

I. QUANTUM CONTROL

We consider quantum systems whose dynamics can be described by �possibly nonlinear�
chrödinger equations of the form

i��t = −
�2

2m
�� + V�x�� +

1

2
��t��x�2� + �E�t� · x�� + f����2�� �1�

�=��t ,x��C , t� �0,T��R , x�RD , D=1, 2, 3, V=V�x��R� where the time-dependent fields
=E�t��RD and �=��t��R will play the role of controls. We will assume that Eq. �1� is
lobally well-posed in some reasonable function space H�L2�RD�, such as Hª ���x�
H2�RD� � �x�2��x��L2�RD�	, where L2�RD� and H2�RD� denote the usual Lebesgue and Sobolev

paces.9 The nonlinearity f����2��R may be local or nonlocal as we have the following examples
n mind.

a� BEC in a quadratic trap. Here �1� is the Gross–Pitaevskii equation with the nonlinearity
f���2��= ±a2���2 �a�R�.10 The time-independent part, V, of the external potential, will typi-
cally be zero or a periodic function or may contain an additional quadratic term.11 Obviously,
in the case V
0 and f 
0 Eq. �1� reduces to the well-known quantum-mechanical time-
dependent, driven harmonic oscillator. The functions E�t� and ��t� model the manipulation
of the system by “shaking” the trap �i.e., changing its position� and varying its frequency,
respectively.

b� Molecular dynamics. Here we set �
0 as the external potential will typically be noncon-
fining; V may be thought of as something like the Coulomb potential. Equation �1� may be
linear or nonlinear. An important example is the Hartree equation with the �nonlocal� non-
linearity ��−1���2���R�. Molecular systems are usually controlled by means of laser light;
hence E represents an electric field. The special form of the control term �E�t� ·x� in �1� is
due to the dipole approximation.

he control problem12 associated with Eq. �1� consists of the question of whether, given an initial
tate �0 and a target state �T, control fields E�t� and/or ��t� can be found that will steer the
ystem from �0 to �T, i.e., whether there exist functions E=E�t� and/or �=��t� such that the
olution �=��t ,x� of �1� satisfies

��0,x� = �0�x� and ��T,x� = �T�x� .

ote that, in this formulation of the control problem, the control time—or horizon—, T, is finite.
2
ote also that Eq. �1� conserves the L norm, i.e.,
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���t��L2
2 = �

RD
���t,x��2dx = �

RD
���0,x��2dx = ���0��L2

2 .

he appropriate state manifold is therefore given by the sphere S= ���H � ���L2 =1	, and the
ontrol problem will have to be restricted to this state manifold. The degree to which the system
s controllable for a given initial state �0�S is measured by the “size” of the set, RT��0��S, of
tates that are reachable from �0:

RT��0� ª ��T � S� ∃ E�t�,��t�:��0� = �0,��T� = �T	

II. TWO TRANSFORMATIONS

Our point of departure is a generalized Wentzel–Kramers–Brillouin-style ansatz

��t,x� = eiS�t,x���t,x� �S = S�t,x� � R,� = ��t,x� � C� �2�

or solutions � of �1�—“generalized” because the function � is allowed to take on complex values.
or convenience we set �=m=1 until further notice. Then � is a solution to �1� iff the pair �S ,��

s a solution to the system

St + 1
2 ��S�2 = − V1�t,x� − 1

2��t��x�2 − E�t� · x , �3a�

i��t + ���� · ��S�� = −
1

2
�� + V2�t,x�� + f����2�� −

i

2
��S�� , �3b�

here V�t ,x�=V1�t ,x�+V2�t ,x� is an arbitrary decomposition of V.
A linear �with respect to x� ansatz for the phase function S will allow us to capture the

ominant effect of the linear control term E�t� ·x by essentially removing the control field from the
quation; a quadratic ansatz for S will have a similar effect for the quadratic control term ��t��x�2.

. Linear phase function

In this section we assume that

� 
 0.

quation �3a� is the Hamilton–Jacobi equation for the Hamiltonian function

Hc�t,x,p� = 1
2 p2 + V1�t,x� + E�t� · x; �4�

e denote by �xc , pc�= �xc�t� , pc�t���R2D the solution of the corresponding Hamiltonian system

ẋc�t� =
�Hc

�p
�t,xc�t�,pc�t��, ṗc�t� = −

�Hc

�x
�t,xc�t�,pc�t��, xc�0� = x0, pc�0� = p0. �5�

ow we define the phase function S=Sc by

Sc�t,x� = �
0

t

�ẋc�s� · pc�s� − Hc�s��ds + pc�t� · �x − xc�t�� �6�

where Hc�t�ªHc�t ,xc�t� , pc�t���; we write ��t ,x�=�c�t ,x−xc�t��, and obtain coherent-state-type
olutions �=�c of �1�,

�c�t,x� = eiSc�t,x��c�t,x − xc�t�� �7�

The superscript “c” stands for “controlled;” it will be applied to quantities that depend on the

ontrol field E�t�.�
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Then it is easy to see that �c is a solution to �1� iff the function �c=�c�t ,x� is a solution to

i�t
c = − 1

2��c + V2�t,x + xc�t���c + Wc�t,x��c + f���c�2��c, �8�

here

Wc�t,x� ª V1�t,x + xc�t�� − V1�t,xc�t�� − �V1�t,xc�t�� · x .

here are two obvious choices for the decomposition V�t ,x�=V1�t ,x�+V2�t ,x�.

. V1
0, V2
V. In this case, the equation for the classical trajectory, xc, reads

ẍc�t� = − E�t� ,

i.e., the “classical particle,” xc, only feels the control field E�t� but no other external poten-
tial. Equation �8� takes the form

i�t
c = − 1

2��c + V�t,x + xc�t���c + f���c�2��c. �9�

As mentioned earlier, this means that the effect of the control term E�t� ·x is to move
�“shake”� the external potential V by −xc�t�.

. V2
0, V1
V. Here the classical trajectory, xc, satisfies

ẍc�t� = − �V�t,xc�t�� − E�t� , �10�

i.e., the classical particle, xc, feels the control field E�t� and the external potential V. Equa-
tion �8� reads

i�t
c = − 1

2��c + Wc�t,x��c + f���c�2��c. �11�

Remarks:

a� The term (generalized) coherent states for solutions of the form �7� is motivated by the
�time-independent, undriven� harmonic-oscillator case given by

f 
 0, E 
 0, V 
 0, � 
 1.

If the solution � of Eq. �8� are chosen to be stationary solutions ��t ,x�=ei	t��x�, where ��x�
is the ground state of the harmonic oscillator Hamiltonian 1

2 �−�+ �x�2�, then the solutions �
in �7� coincide with the quasiclassical states discovered by Schrödinger that are now called
coherent states.

b� All formulas would remain the same if we were to allow the potential V to be time-
dependent as well.

. Quadratic phase function

We assume

E 
 0

nd choose the phase function as

S�t,x� = 1
2Q�t�x2 �12�

here Q : �0,T*�→R is the solution of the ODE

Q̇�t� + Q2�t� + ��t� = 0, Q�0� = 0. �13�
hen the equation for � takes the form
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i��t + Q�t����� · x� = −
1

2
�� + V�x�� + f����2�� −

iD

2
Q�t�� , �14�

hich can be transformed further by writing

��t,x� = e−�D/2�R�t���
�t�,e−R�t�x� , �15�

here the functions R=R�t� and 
=
�t� satisfy the ODEs

Ṙ�t� = Q�t�, 
̇�t� = e−2R�t�, R�0� = 
�0� = 0, �16�

nd � is a solution to

i�t = − 1
2�� + e2R���V�eR���x�� + e2R���f�e−DR������2��, � ª 
−1�t� . �17�

o summarize, the solution � of �1� �with E
0� can be written as

��t,x� = e�1/2��iQ�t�x2−DR�t����
�t�,e−R�t�x� , �18�

here the functions Q, R, 
, and � are defined as above.
Remarks:

a� The solution Q�t� of the ODE �13� may not exist for all t�0 �i.e., T*��. For instance, for
��t�
��0 the solution can be found explicitly:

Q�t� = − �tan��t� ⇒ T* =
�

2�
.

The above noted transformation is therefore only valid on the interval �0,T*�.
b� It is easy to see that the solution Q�t� does exist for all t�0 �i.e., T*=�� if ��t��0 for all

t�0.
c� Even if Q does blow up in finite time T*, due to the dispersive properties of the function �,

the solution � may still be regular at t=T*. As an example, consider the case �
�, V
0,
f 
0, and �0�x�=e−x2/2.

d� It can be shown that Eq. �13� possesses global solutions if they are allowed to be complex-
valued and satisfy Im�Q�0���0. This fact will become important in the construction of
trajectory-coherent states.

Critical power nonlinearity. If we assume that

f����2� = ����4/D �� � R� ,

q. �17� takes the form

i�t = − 1
2�� + e2R���V�eR���x�� + ����4/D� . �19�

V. IMPLICATIONS FOR THE CONTROL PROBLEM

. Homogeneous control field and quadratic exterior potential

In the following we consider a general quadratic potential, which we write as

� 
 0, V�x� = 1
2xTAx , �20�

here A is a symmetric D�D matrix. This includes the Gross–Pitaevskii equation with a time-

ndependent quadratic trapping potential,
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i�t = −
1

2
�� +

�

2
x2� + �E�t� · x�� ± a2���2�

� ,a�R�. Since

Wc�t,x� ª V�x + xc�t�� − V�xc�t�� − �V�xc�t�� · x = V�x� ,

q. �11� is independent of the control field E,

i�t = − 1
2�� + V�x�� + f����2�� . �21�

his has the following important consequence.
Observation I: Let �0�S and x0= p0=0.13 Then, for any control field E=E�t�, the solu-

ion �c=�c�t ,x� of Eq. (1) (with (20)) satisfying ��0,x�=�0�x� is given by �c�t ,x�=eiSc�t,x�

�t ,x−xc�t��, where � is the unique solution of (the control-independent) Eq. (21) that satisfies the
nitial condition ��0,x�=�0�x�. As a result, the set of reachable states, RT��0�, is given by

RT��0� = �ei�ei�·�x−����T,x − ���� � R;�,� � RD	 . �22�

nd thus finite-dimensional.
Remarks:

a� In terms of the controllability problem, the significance of the “coherent-state transforma-
tion” �7� lies in the fact that it transforms the control problem �1� �with �20�� into the
control-independent equation �21�. The controlled state �c can therefore essentially �i.e., up
to the classical degrees of freedom—see the following� be precomputed by solving Eq. �21�.
Specifically, since the “shape,” ��c�T ,x��, of the terminal state is given by ���T ,x−xc�T��� it
cannot be changed by the application of the control field E. All that can be affected by the
homogeneous exterior field is a shift of the function ���T ,x��.

b� In physical terms, one might interpret this by saying that the centre-of-mass degrees of
freedom are decoupled from the remaining degrees of freedom. This was previously
observed in Refs. 14 and 15.

c� The terminal state �T=�c�T� is given by

�c�T,x� = eiLT
c
eipc�T�·�x−xc�T����T,x − xc�T�� ,

where LT
c
ª�0

T�ẋc�t� · pc�t�−Hc�t��dt denotes the classical action. The set of reachable states
may therefore be parametrized by the classical degrees of freedom �cf. �22��.

d� It is illuminating to look at the special case where the function � is chosen to be a stationary
solution of �21�,

��t,x� ª ei�t���x� ,

where �� is a �real� solution to the nonlinear eigenvalue problem

�− � + 1
2 �� − x2� − f��2��� = 0. �23�

�here we assume V�x�= 1
2x2�. For �0=�� the set of reachable states then has the form

RT���� = �ei��+T��ei�·�x−�����x − ���� � R;�,� � RD	 ,

in particular,

��x� � RT���� ⇒ ���x�� = ����x − ��� , �24�

which again highlights the fact that the shape of the state cannot be influenced by the
�spatially homogeneous� control fields E.

e� It is not difficult to show that no transitions between nonlinear eigenstates �corresponding to

different values of �� can be affected by the spatially homogeneous control field E�t�. This
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is even more obvious in the linear case as the node structure of the eigenstates for the
harmonic oscillator Hamiltonian 1

2 �−�+x2� cannot be changed.
f� The fact that the manifold of controllable states, RT��0�, is finite-dimensional is well-known

in the linear case �quantum-mechanical driven harmonic oscillator DHO�. It is a conse-
quence of an important result in �geometric� control theory due to Huang, Tarn, and
Clark.16,17

This “noncontrollability property” of the DHO was also observed in Ref. 18, using essen-
tially the transformation �7�. The DHO is a classical problem in quantum mechanics. As a
result, the amount of literature on the DHO is enormous. To the best of the author’s knowl-
edge, the first version of the transformation �7�, applied to the DHO, appeared in Ref. 19; see
also Ref 20.

g� Let �x�� denote the expectation value of the position operator with respect to the state �, i.e.,

�x�� = �
RD

x���x��2dx .

Then we have

�x�c�t� ª �x��c�t� = xc�t� + �x���t�.

Ehrenfest relations give

d2

dt2 �x���t� = − ��V���t� = − �V��x���t�� �25a�

d2

dt2 �x��c�t� = − ��V − E�t���c�t� = − �V��x��c�t�� − E�t� �25b�

and so

d2

dt2xc�t� = − �V�xc�t�� − E�t�

�since �V�x�=Ax�, which is consistent with �10�.

. Time-dependent trap frequency and critical nonlinearity

We now consider the situation in which the control is applied by varying the trap frequency,
=��t�. We assume that the external potential, V, has the right scaling, i.e., satisfies

�2V��x� = V�x�, � � 0,

hich obviously includes V
0 as well as the inverse square potential V�x�=� / �x�2���R�. So our
ontrol problem is

i�t = − 1
2�� + V�x�� + 1

2��t�x2� + ����4/D� �� � R� . �26�

s seen in Sec. III B, applying the transformation �18� results in �19�, which is independent of the
ontrol ��t� due to the scaling invariance of the potential,

i�t = − 1
2�� + V�x�� + ����4/D� . �27�

e are therefore in the position to make the following observation.
Observation II: Let �0�S be given. Then, for any control ��t�, the unique solution of Eq.

26) is given by

�i/2�Q�t�x2 −DR�t�/2 −R�t�
��t,x� = e e ��
�t�,e x� �28�
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for t� �0,T*��, where Q, R, and 
 are given by (13) and (16), and � is the unique solution of
control-independent) Eq. (27) satisfying ��0,x�=�0�x�. As a result, on the interval �0,T*� all the
tates that can be reached from �0 have the form

��t,x� = e�i/2�Qx2 1

�D/2��
,
x

�
�, Q,�,
 � R, � � 0. �29�

Remarks:

a� In terms of the controllability problem, the main point here is that the solution trajectory,
�ª��R��S, for Eq. �27� can be determined independently of the control �. Thus, the
states ��t��S that are engineered by varying the trap frequency coincide, up to a phase
factor, with rescaled versions of states on �.

b� More specifically, the geometric meaning of the function

��t� ª eR�t�

is readily revealed by computing the appropriate expectation values. From

���t,x��2 =
1

���t��D���
�t�,
x

��t�
��2

,

we get

�x���t� = �
RD

x���t,x��2dx = ��t��x���
�t��, �30a�

��x�2���t� = �
RD

�x�2���t,x��2dx = ��t�2��x�2���
�t��. �30b�

Moreover, it is easy to see from �13� that ��t� satisfies the second-order initial value problem

�̈�t� + ��t���t� = 0, ��0� = 1, �̇�0� = 0. �31�

c� Our conclusion is that varying the trap frequency allows us to control the spread, ��x�2���t�, of
a wave packet �see �30b��; Eq. �31� can be used to determine an appropriate control function
��t�. However, in general we do not have control over the position, �x���t�, of the wave
packet, as, for instance, �x���
�t�� in �30a� may be zero so that the control of �x���t� is lost
completely.

d� It should be kept in mind that the transformation is only valid locally in time as Q�t� may
blow up.

e� It has been noticed before that time-independent quadratic potentials can be removed from
the critical nonlinear Schrödinger equation by the transformation �28�; see Refs. 21 and 22
and the literature therein �see also Refs. 23 and 24�.

. Homogeneous control field and general external potential „second-order
pproximation…

For simplicity we restrict our attention to the 1D linear case:

i�t = − 1
2�xx + V�x�� + �E�t�x�� �x � R� . �32�

pplying the coherent-state-transformation �7�, ��t ,x�=eiSc�t,x��c�t ,x−xc�t��, yields

i�t
c = − 1

2�xx
c + Wc�t,x��c, �33�
here
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Wc�t,x� = V�x + xc�t�� − V�xc�t�� − V��xc�t��x =
1

2
V��xc�t��x2 + �

��3

V����xc�t��
�!

x�

y Taylor expansion. If we truncate the Taylor series after the quadratic term and set �=�c�t�
V��xc�t��, we can apply the transformation in Sec. III B to obtain the approximate solution

��t,x� � e�i/2�Qc�t�x2
e−�1/2�DRc�t��̃�
c�t�,e−Rc�t�x� ,

�c�t,x� � �̃c�t,x� = ei�Sc�t,x�+�1/2�Qc�t��x − xc�t��2�e−1/2DRc�t��̃�
c�t�,e−Rc�t��x − xc�t��� , �34�

here the functions xc�t�, Sc�t ,x�, Qc�t�, Rc�t�, and 
c�t� are defined by �5�, �6�, �13�, and �16�,
espectively �with ��t�=�c�t�=V��xc�t���, and �̃ is a solution to the free Schrödinger equation
�̃t=− 1

2 �̃xx. From

��̃c�t,x��2 =
1

��c�t��D��̃�
c�t�,
x − xc�t�

�c�t�
��2

,

he expectation values are readily computed.

�x�c�t� ª �x��c�t� � �
RD

x��̃c�t,x��2dx = xc�t� + �c�t��x��̃�
c�t��, �35a�

��xc�2�t� ª ��x − xc�t��2��c�t� � �
RD

�x − xc�t��2��̃c�t,x��2dx = �c�t�2�x2��̃�
c�t��, �35b�

���x�c�2�t� ª ��x − �x�c�t��2��c�t� � ��x − xc�t� − �c�t��x��̃�
c�t���2��c�t�

� �c�t�2�x2��̃�
c�t�� − �c�t�2�x�
�̃�
c�t��
2 = �c�t�2���x��̃�
c�t���2. �35c�

he functions xc�t� and �c�t� depend on the control E�t� by way of the system

ẍc�t� = − V��xc�t�� − E�t�, xc�0� = x0, ẋc�0� = p0, �36a�

�̈c�t� = − V��xc�t���c�t�, �c�0� = 1, �̇c�0� = 0. �36b�

Remarks:

a� If we choose the initial conditions for �36a� to be

x0 = �x���0� and p0 = �p���0�,

we get �x��̃�
c�t��
0 and hence

�x�c�t� = �x��c�t� � �x��̃c�t� = xc�t� ,

i.e., the position of the wave packet coincides with the classical trajectory xc�t�.
b� Note that, although Eq. �36b� may have global solutions, in view of �35c� �and the definition

of �c�t� as an exponential�, its solutions �c�t� are only relevant as long as they are positive.
c� Note also that ��x��̃�
c�t�� is known in principle. The spread, ��x�c�t�, of the wave packet is

therefore essentially given by the function �c�t�.
d� Clearly “everything” is accurate �i.e., we may replace “�” with “=” everywhere� if the

potential V is a quadratic function.

Observation III. Let �0�S. In a second-order approximation and for times tT*, the solu-

ion is given by (34) and is therefore, up to a phase factor, a translated and rescaled version of the
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tate �̃�t�=U�t��̃0, where �̃0�x�ªe−ip0·x�0�x+x0� and U�t� denotes the Schrödinger evolution
roup. In this approximation, the effect of the control term E�t�x is “direct” control of the position,
x�c, of the wave packet (cf. (36a)); the influence on the spread, ��x�c�t���c�t���x��̃�
c�t��, is
ndirect and depends on the properties of V� (cf. (36b)). In particular, if V�=const , ��x�c cannot
e controlled, which is consistent with “Observation I.”

. TRAJECTORY-COHERENT STATES

We now turn to a class of approximate solutions to the Schrödinger equation with quasiclas-
ical and particle-like properties, introduced by Bagrov et al.,2 which are closely related to the
pproximate solutions constructed in Sec. IV C. Trajectory-coherent states �TCS� have actually
een constructed for arbitrary dimension and even for certain nonlinear equations.25–29 However,
o demonstrate the implications for the control problem, it will be sufficient to consider the
implest case: “vacuum TCS” for the 1D linear Schrödinger equation. After reintroducing the
hysical constants � and m, our control problem reads

L� ª i��t +
�2

2m
�xx − V�x�� − �E�t�x�� = 0 �x � R� . �37�

. Construction of vacuum TCS

We proceed exactly as in Sec. IV C to obtain approximate, second-order accurate, solutions,
iven by �34�,

�̃c�t,x� = e�i/���Sc�t,x�+�1/2�Qc�t��x − xc�t��2�e−Rc�t�/2�̃�
c�t�,e−Rc�t��x − xc�t��� . �38�

s in Sec. IV C, the functions xc�t�, Sc�t ,x�, Rc�t�, 
c�t�, and �c�t�=V��xc�t�� are defined by �5�,
6�, and �16�, respectively, and �̃ is a solution to the free Schrödinger equation i��̃t

−��2 /2m��̃xx. The main shortcoming of the construction consists of the fact that the function
c�t�, given by �13�, may not be defined globally. We remedy this by allowing Qc�t� to take on

omplex values. Specifically, the function Qc=Qc�t��C is now defined as the solution of the IVP

Q̇�t� + Q�t�2 + �c�t� = 0, Re�Q�0�� = 0, Im�Q�0�� = b � 0, �39�

here b�0 is a positive number which we will keep fixed. It can be shown that the solution,
c=Qc�t��C, of �39� exists globally and satisfies Im�Q�t���0 for all t�0. Note that the func-

ions 
c�t�, Rc�t�, and �c�t� are now complex-valued as well; we write Qc=Q1
c + iQ2

c , Rc=R1
c

iR2
c, etc. for the decompositions in real and imaginary parts. Moreover, the functions 
c�t� and

c�t� now exist globally and the function �c�t� is nonzero everywhere. The function �̃c satisfies

L�̃c = − �V�x� − V�xc�t�� − V��xc�t���x − xc�t�� − 1
2V��xc�t���x − xc�t��2��̃c

¬ r . �40�

ow “vacuum” TCS are constructed by simply choosing the function �̃ to be constant—with the
onstant to be chosen such that the resulting state is normalized, �̃
�b /���1/4,

�̃c�t,x� = �̃e�i/���Sc�t,x�+�1/2�Qc�t��x − xc�t��2�e−Rc�t�/2

= �̃ ��c�t��−1/2e�i/���Sc�t,x�+�1/2�Q1
c�t��x − xc�t��2�e−�1/2��Q2

c�t��x − xc�t��2
. �41�

hese are Gaussian-shaped states,

��̃c�t,x��2 = �̃2��c�t��−1e−�1/��Q2
c�t��x − xc�t��2

,

hich satisfy
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��̃c�t��L2
2 =

��̃�2��

��c�t��Q2�t�b
= 1, �42a�

�x��̃c�t� = xc�t� , �42b�

���x�2��̃c�t� = ��x − �x��̃c�t��2��̃c�t� =
�

2Q2�t�
. �42c�

Lemma: Assume that V��x� is bounded, supx�R�V��x���M, and let �0�x�ª �̃�0,x�
e−�b/2��x2

. Then

i� �Ref. 2�

�r�t��L2
2

�
5M2�3

96�Q2
c�t��3 .

ii� If � is the (actual) solution of (37) corresponding to the initial condition �0 and Qc

ªmint��0,t�Q2
c�t�, then

���t� − �̃�t��L2 �
M�1/2T

2�Qc�3/2 .

Proof.

i� �Ref. 2�. �The estimate may also be derived directly from �40�.�
ii� Let ��ª�− �̃, hence

L�� = − r .

Then, by standard calculations,

����t��L2
2 = −

2

�
Im�

0

t

�r�s�,���s��L2ds �
2

�
�

0

t

�r�s��L2����s��L2ds

�
�i�

2
5M�1/2

26�Qc�3/2�
0

t

����s��L2ds

and so, by Gronwall’s lemma,

����t��L2 � t
5M�1/2

26�Qc�3/2
�

M�1/2T

2�Qc�3/2 �

. Consequences for the control problem

We now demonstrate a mechanism by which TCS might “hamper” the control process. To this
nd, we choose a target state �T�S such that

���−1/2ei��·�x−��+�1/2�Q�x − ��2�,�T�x��L2� �
1
2 for all �,� � R,�,Q � C*,Im�Q� � 0, ���Im�Q� = 1.

�43�

ur task is to try to steer the system from the initial state �0�x�ª �̃�0,x�=e−�b/2��x2
to the target

tate �T. If we are successful, i.e., if we do find a control field E�t� such that ��T�=�T, we

bviously have
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���T�,�T�L2 = 1.

his suggests to estimate the overlap, ���T� ,�T�L2, between the states ��T� and �T. Note that

ssumption �43� implies that ���̃�T� ,�T�L2�� 1
2 . Thus,

����T�,�T�L2� � ���̃�T�,�T�L2� + ����T� − �̃�T�,�T�L2��
�ii�1

2
+

M�1/2T

2�Qc�3/2 .

ote that the right hand side of this inequality contains the factor �1/2.

����T�,�T�L2�  1 ⇒ �T � RT��0� ,

e obtain an estimate for the control time, which can be unreasonably large if the control field is
ot designed carefully.

Observation IV: There are states �T�S which cannot be attained in times T less than

�Qc�3/2

M�1/2 .

o obtain realistic control times the control field E�t� should thus be designed such that

Qc = O��1/3� .

Remarks:

a� The dependence of Q2�t� on the control E�t� is given by the system

Q̇1
c�t� =

1

m
�Q2

c�t��2 −
1

m
�Q1

c�t��2 − V��xc�t��, Q1
c�0� = 0, �44a�

Q̇2
c�t� = −

2

m
Q1

c�t�Q2
c�t�, Q2

c�0� = b � 0, �44b�

where the controlled classical trajectory xc�t� is determined by Eq. �36a�. The properties of
this system and strategies for accomplishing the condition Qc=O��1/3�, such as resonance,
will be discussed elsewhere.

b� In view of �42c�, the geometric interpretation of the condition Qc=O��1/3� is that we have to
make the state spread out in order to be able to access the nonclassical degrees of freedom.

I. CONCLUDING REMARKS

. The discussion in Secs. III A and IV A can be extended to include homogeneous magnetic
fields30 and rotating condensates. For spherically symmetric external potentials, this will
produce the “missing degrees of freedom” �angular momentum� in the parametrization �22�.

. It has been shown recently31 that the “particle-in-the-box problem,” i.e., the control problem
�37� with potential

V�x� = �0, �x� 
1
2

� , �x� �
1
2
�

is locally controllable in the vicinity of the ground state. On the other hand, the present paper
shows that �37� is certainly not controllable �not even locally� if V is the harmonic oscillator
potential V= �� /2�x2. This raises the very interesting �and difficult� question of how the
controllability properties of Eq. �37� depend on the external potential. There is evidence to

suggest that the harmonic oscillator potential may be some sort of threshold. One might
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conjecture that �local� controllability holds for potentials that are steeper than the HO poten-
tial, whereas it fails for potentials that are shallower.

. In a first approximation, the presence of a nonlinear term of the form f����2� does not change
the controllability properties with respect to spatially homogeneous control fields. This is
due to the translation invariance of f����2�.

. While the linear potential V is the dominant factor in the bilinear control problem with the
control E�t�x, the nonlinear term turns out to be the main difficulty in control problems with
additive control. See Ref. 32 for a small-data result in this direction.

. Solitons may be interpreted as “nonlinear coherent structures.” Continuing the theme of this
paper, it will be shown elsewhere that they, too, constitute obstacles to the control process.33
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Every completely positive map G that commutes with the Hamiltonian time evo-
lution is an integral or sum over �densely defined� CP-maps G� where � is the
energy that is transferred to or taken from the environment. If the spectrum is
non-degenerate each G� is a dephasing channel followed by an energy shift. The
dephasing is given by the Hadamard product of the density operator with a �for-
mally defined� positive operator. The Kraus operator of the energy shift is a partial
isometry which defines a translation on R with respect to a non-translation-
invariant measure. As an example, this decomposition is explicitly calculated for
the rotation invariant Gaussian channel on a single mode. The question of under
what conditions a covariant channel destroys superpositions between mutually or-
thogonal states on the same orbit is addressed. For channels which allow mutually
orthogonal output states on the same orbit, a lower bound on the quantum capacity
is derived using the Fourier transform of the CP-map-valued measure �G��. © 2005
American Institute of Physics. �DOI: 10.1063/1.2142839�

. INTRODUCTION

It was an important insight in the early days of quantum computing and quantum cryptogra-
hy research that quantum theory should not be considered as a purely physical theory, but it
ather defines a new kind of information, called quantum information. The decisive feature is its
ragility since quantum information is destroyed whenever one tries to copy it.1

The question of which physical processes and information channels preserve quantum infor-
ation therefore plays a crucial role in the theory of quantum communication. A central concept

or addressing this issue is the notion of a channel. Here we consider a channel or �“operation”� to
e a completely positive trace preserving map ��G��� where � and G��� are positive operators
f trace one acting on Hilbert spaces Hin and Hout, respectively.2 Analyzing quantum or classical
hannel capacities is in general a difficult task. Here we consider a certain kind of channels or
perations, namely those which are time-covariant. For simplicity, we will assume that the input
nd the output state is a state of the same physical system. Then we have Hin=Hout¬H. Further-
ore we have a Hamiltonian time evolution on H generated by a densely defined self-adjoint

perator H which reads

�t��� ª e−iHt�eiHt, �1�

here � is a positive operator with trace one. We call a channel G time-covariant if it satisfies

�t � G = G � �t. �2�

�
Electronic mail: janzing@ira.uka.de
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�Note that in the context of classical linear systems the corresponding property is usually
eferred to as time-“invariance.”� It is a special case of the requirement

G�Ug�Ug
†� = UgG���Ug

†, �3�

here g�Ug is an arbitrary unitary group representation.
For compact groups, each covariant CP-map G has a representation �see Ref. 3, which refers

artly to Ref. 4�

G��� = �
j

Lj�Lj
†,

here the Kraus operators Lj satisfy

UgLjUg
† = �

k

djk�g�Lk, �4�

nd g� �djk�g�� j,k�d is a d-dimensional unitary representation with arbitrary d �in Ref. 3 it is
ainly focused on the case that g�Ug is an irreducible representation�. Note that the time

volution can only be described by a compact group if it is periodic, which cannot be guaranteed
ven in the finite dimensional case. In Ref. 5 the case is considered that G is replaced by a whole
ynamical semigroup �Gt�t�R+ which is covariant with respect to a group representation.

Condition �2� appears naturally, for instance, in the following situations:

. Theory of timing information: Assume that the density matrix � is subjected to an arbitrary
quantum operation G at a completely unknown time instant. Then the statistical description
of this operation leads to a map G� which necessarily satisfies �2�. This is the key idea in Ref.
6 where condition �2� defines a “quasiorder of clocks,” which classifies systems with respect
to their timing information. The time-covariant maps are exactly those which can be imple-
mented without using external clocks. Given a nonstationary state �, the set of states that can
be obtained from � using time-covariant operations are those which have at most as much
timing information as �.

. Decoherence: Dephasing of systems is described by a decay of the off-diagonal entries with
respect to the energy eigenbasis. This channels satisfy clearly condition �2�.

. Scattering processes/quantum generalization of transfer functions: Time-covariant opera-
tions appear naturally in the description of scattering processes. Then G generalizes the
scattering operator by including classical or quantum stochastic fluctuations. Here scattering
is understood in a rather general sense. Apart from the situation that a particle is scattered by
the potential of another particle, one may, for instance, also think of a light beam that passes
a filter. One may consider time-covariant maps as quantum generalization of classical time-
invariant linear devices which are described by their transfer functions.

The paper is organized as follows. In Sec. II we recall briefly how to describe classical
ime-invariant linear systems in signal processing by a transfer function.7 Figuring out the extent
o which this concept can be generalized to the quantum stochastic setting is the key motivation of
his paper. In Sec. III we recall abstract scattering theory in Hilbert spaces and explain in Sec. IV
hy time-covariant channels are also considered as a natural generalization of scattering theory. In
ec. V we consider CP-maps which are given by the Hadamard product of the density matrix with
positive matrix. These maps will turn out as a building block of our decomposition. In Sec. VI
e derive the general form of a time-covariant CP-map. The main result is that every time-

ovariant CP-map acting on a system with nondegenerate Hamiltonian has a �densely defined�
ecomposition as an integral or sum over �densely defined� CP-maps G� is a dephasing followed
y an energy shift. In Sec. VII we address the question of whether and to what extent covariant
hannels can destroy superpositions between states on the same orbit �with respect to the time-

volution�. We use the general decomposition to derive a lower bound on the quantum capacity of
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specific type of time-covariant channels, namely those which have as output mutually orthogonal
ensity operators on the same orbit. In Sec. VIII we apply the decomposition to a single mode
aussian channel.

I. CLASSICAL TIME-INVARIANT LINEAR SYSTEMS

To show the differences and the analogies to the theory of classical linear time-invariant
hannels we briefly rephrase the concept of transfer functions, which is among the most important
ools in classical signal processing.

Consider a classical channel with an incoming and an outgoing signal. These may, for in-
tance, be light pulses or electrical pulses, acoustical or other signals. Let t�Y�t� be the incoming
ignal where Y�t� is the value of an arbitrary physical quantity at the time instant t. Let Y��t�
enote the outgoing signal. In order to avoid problems with undefined Fourier transforms we
ssume that Y and Y� are vectors in L2�R�, the Hilbert space of square-integrable functions on R.
e assume that the system is described by a linear bounded operator A on L2�R� with

Y� = AY .

Assuming time-invariance of the channel we have Y��t+s�= �AY��t+s�. Defining the group of
hifts �St�t�R by

�StY��s� = Y�t − s� �5�

e have

StA = ASt, ∀ t � R .

he implications of this condition can easily be derived by applying Fourier transformation to both
ides of the equation: The shift operators St act then as the multiplication operators Mt,

Ŷ � MtŶ

ith

�MtŶ���� = ei�tŶ��� .

linear operator commuting with all operators Mt is necessarily a multiplication operator as well
see Ref. 8, 12.1.5�. Therefore A can be characterized by a so-called transfer function a with

Ŷ���� = a���Ŷ��� . �6�

ote that it is essential that the quantity Y�t� is a scalar. If Y�t� is a vector of dimension d greater

han 1 the spectrum of the time-evolution group St is degenerate and Ŷ��� is an element of a
ector space Cd or Rd and the transfer function a had to be replaced by a d�d-matrix. It is
traightforward to ask whether time-covariant quantum operations allow a natural generalization
f the transfer function. However, one should recall that the situation with nondegenerate spectrum
s possible on the Hilbert space level �this is well-known in abstract scattering theory, as will be
ephrased in Sec. III� but not on the level of density matrices, where the dynamics is generated by
he super-operator −i�H , . �. The latter always has degenerate spectrum.

II. ABSTRACT SCATTERING THEORY

A similar approach as presented earlier applies to a scattering process of a quantum mechani-
al particle: a particle which comes from the infinity and passes a scattering potential. After it has
eft the potential it disappears to infinity. Here we only recall some standard results of scattering
heory8,9 which are essential for this paper. Let H=Hi+H0 be the total Hamiltonian of the system

hich consists of the free Hamiltonian H0 and the interactions term Hi. One assumes that the
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article moves approximatively according to its free Hamiltonian H0 for t→ ±�. For potentials
hich decay sufficiently with the distance between particle and the scattering center, the limits

��±� ª lim
t→±�

exp�iHt� exp�− iH0t���� �7�

xist9 on an appropriate subspace of wave functions ���. There is a rich literature addressing the
uestion under which circumstances and on which subspaces one can define a unitary scattering
perator

��−� � ��+� ¬ S��−� .

It is usual to denote the scattering operator with S. On the other hand, it is usual to denote shifts
y St with some index t. It is hoped that this will not lead to confusion.� However, if it exists it
ommutes with the free Hamiltonian evolution exp�−iH0t�. Therefore the free time evolution and
he scattering operator S can simultaneously be described by multiplication operators. The analogy
o Sec. II can even be closer in a scattering process with so-called Lax-Phillips evolution.8 Assume
hat there exist subspaces H−�H and H+�H �“incoming and outgoing subspaces,” respectively�
uch that

e−iHtH− � H−

or all negative t �the particle comes from the infinity� and

e−iHtH+ � H+

or all positive t �the particle disappears to the infinity�. Assume furthermore that the intersection

�t�Rexp�− iHt�H±

anishes and that the span of all spaces exp�−iHt�H+ as well as the span of all exp�−iHt�H− is
ense in H. Then one can assume without loss of generality that H is the set of square integrable
unctions on R with respect to the Lebesgue measure, and H is the multiplication operator �H��

���=�����. The scattering operator is then �like the transfer function in Sec. II� given by
S�����=s������� with an appropriate function s.

V. QUANTUM CHANNELS FROM SCATTERING PROCESSES

The unitary scattering operator S in Sec. III defines a channel G���=S�S† which satisfies
bviously the time-covariance condition �2� with respect to the free evolution �t���

=exp�−iH0t�� exp�iH0t� due to SH0=H0S. It is clear that scattering with an unknown potential
ould lead to an operation which is a statistical mixture of maps S�S†. But not only classical
uctuations of the scattering potential lead to a mixture of output wave functions; due to quantum
uctuations of the potential one may also have a CP-map which is not a mixture of unitary
cattering processes. To see this, consider a bipartite quantum system with Hilbert space HA

� HB that evolves according to a joint Hamiltonian HAB. Assume that the joint evolution coincides
symptotically with the separate evolution generated by HA+HB and that the limits

��±� ª lim
t→�

exp�itHAB� exp�− iHAt� exp�− iHBt����

xist in an appropriate sense. Then we have formally the same situation as in Sec. III with the
ubstitution

H0 � HA + HB, H � HAB.
f a scattering operator U on HA � HB exists we have
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�U,HA + HB� = 0. �8�

et �A be an arbitrary initial density matrix of system A. Then the scattering process defines a
ompletely positive map on the system B by

G��B� ª trA�U��A � �B�U†� .

Due to Eq. �8� it is easy to verify that G is time-covariant if the initial state �A is stationary
ith respect to the time evolution exp�−iHAt�. Here we do not address the difficult question in
hich situation the above-noted limits exist. The problem of the existence of scattering operators

n the quantum stochastic setting is addressed in Ref. 10. This will not be our subject. The
bove-presented remarks were only to show that time-covariant channels appear naturally also in
he description of �possibly inelastic� scattering processes. Another situation where time-
ovariance appears is when the energy spectrum is discrete and a weak interaction with the
nvironment is switched on. Then the interaction implements clearly a unitary U on system +
nvironment such that U satisfies �8�.

. QUANTUM CHANNELS FROM HADAMARD-PRODUCTS

Here we consider a simple type of time-covariant CP-maps which will play a crucial role in
he description of general time-covariant CP-maps.

The Hadamard product A�B of two n�n- matrices A ,B is defined as the entry-wise product
A�B�ijªAijBij. Remarkably, the Hadamard product between a density matrix � with any positive
atrix M of the same size n defines a completely positive map:

If Mª	 jrj�dj��dj� is a spectral decomposition of M then we may define diagonal matrices Dj

hich have the coefficients of the vector dj �Cn as diagonal entries. Then the map

� � Dj�Dj
† = ��dj��dj�� � � �9�

s obviously completely positive. So is the positive linear combination of those maps. Channels of
his type have already be considered in Ref. 11. Also Ref. 12 has already used them to describe
ecoherence. It is clear that they commute with the Hamiltonian time evolution if the Hadamard
roduct is calculated with respect to the energy basis. In the finite dimensional case, we also obtain
ime-covariant channels by the following construction: Let 	ª 	�1 ,… ,�n
 be the eigenvalues of

acting on Cn. Let �� j� be the corresponding eigenstates. For any ��R let j1 ,… , jk be all indices
j such that � j +� is in the spectrum 	. Define the “partial shift” by

S� ª� �� ji
+ ���� ji

� , �10�

here the sum runs over all spectral values � with �+��	.
The map ��S��S�

† is time-covariant and also every map of the form

� � �
�

S��M� � ��S�
† , �11�

here the sum runs over all � for which a nonzero partial shift exists. Each M� is an arbitrary
ositive matrix. It is easy to check that this map is trace-preserving if and only if

�
�

M���,�� = 1, ∀ � � 	 , �12�

here the sum runs over all values � for which there exist an ��	 such that �+��	.
In the following we will show that this is the most general form of time-covariant CP-maps.

s will be shown, this holds in principle even for the infinite dimensional case with continuous
pectrum when the sum is replaced by an integral over a potentially uncountable number of energy

hifts.
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I. THE GENERAL FORM OF TIME-COVARIANT CHANNELS

To understand our construction it is helpful to consider the finite dimensional case first. Using
he Kraus representation2

G��� = �
j

Aj�Aj
†, �13�

ne may choose Aj such that they are eigenvectors of �t. �Since the derivation for the finite
imensional case follows actually from the general derivation later in this section we only mention
riefly that this can be derived as follows. One shows that the representations t� �dkj�t�� of �R , + �
n Eq. �4� corresponding to time-translations can be chosen such that they are irreducible, i.e.,
ne-dimensional�. The eigenvalue is exp�−i� jt�, where � j may be any possible frequency differ-
nce �−��. For each possible value � we obtain a CP-map

G���� ª �
�=�j

Aj�Aj
†.

et Aj =Uj�Aj� be the polar decomposition of Aj where the partial isometry Uj is computed from
he pseudo-inverse �Aj�−1 by

Uj ª Aj�Aj�−1.

ne has �t�Uj�=exp�−i� jt�Uj and equivalently

�H,Uj� = � jUj, �H, �Aj�� = 0, �14�

ince �Aj� is �t-invariant according to �t�Aj��t�Aj
†�=e−i�jtei�jt. Using Eq. �14� one checks easily

hat

Uj��� = Vj�� + ��, ∀ � � 	 ,

here Vj is an appropriate diagonal operator. Hence we can write

Aj = S�j
Dj

ith the diagonal matrix Djª �Aj�Vj. Using the remarks of Sec. V we may write

G���� = S��M� � ��S�
† ,

here M�=	 j�dj��dj� is defined as in Sec. V from the vectors �dj� of diagonal entries of Dj.
We conclude:
Theorem 1 (Decomposition in finite dimensions): Let G be a CP-map on Cn which com-

utes with the time evolution �t corresponding to a nondegenerate diagonal Hamiltonian. Then G
as the form:

G��� = �
�

S��M� � ��S�
† , �15�

here the sum runs over all possible energy differences �. Here S� denotes partial shifts and M�

ositive matrices.
The map �� �M���� preserves the energy of every state and destroys to some extent the

oherent superpositions between them. This is shown by the following two extreme cases: M�

1 where 1 denotes the identity matrix. Then we have complete dephasing and obtain a mixture
f energy eigenstates. If M� has only 1 as entries it is the trivial channel which does not affect the
tate at all. The map G consists of decohering channels followed by different energy shifts.

To see the relation of our decomposition to the transfer function note that all rank-one opera-

ors ��+����� span the eigenspace of �H , . � with eigenvalue �. A time-covariant operation has to
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eave this subspace invariant. Therefore one could decompose G into a direct sum of linear maps

� acting on these eigenspaces. However, in this decomposition one would have restrictions on the
amily B� in order to yield a completely positive map. Therefore we have preferred a decompo-
ition where each component is completely positive. However, the Hadamard multiplication for
ach frequency pair �� ,��� reminds to the multiplication with the value of the transfer function
or each frequency �.

To generalize the decomposition to infinite dimensions we will need several vector-valued
easures. Therefore we recall the precise definition:13

Definition 1 (Vector-valued measures and densities):

. Let 
 be a set and M the �-algebra of measurable subsets of 
. For a Banach space B a
mapping � :M→B is called a vector measure if

��� jmj� = �
j

��mj�

for all finite collections of mutually disjoint sets mj. It is called countably additive when the
same holds for countable sums.

. Let � be a measure on the measure space �
 ,M�. A measurable function f :
→B is the
Radon-Nikodym derivative of � with respect to � if

�
m

fd� = ��m�, ∀ m � M .

We also say that f is the (vector-valued) density of � with respect to �.
For trace-class operator-valued measures we will have countable additivity in the weak sense,

.e., that the scalar measure that is given by evaluation on observables is countably additive. For
P-map valued measures we demand countable additivity only after applying the maps to states
nd evaluating them on observables.

In order to construct the infinite dimensional analog of G� we define a function

fK,��t� ª tr�KG��e−iHt�eiHt� �16�

or every observable K and state �. First consider the simple case that G=A�A†, where A is an
perator satisfying �t�A�=e−i�tA. Then we have

fK,��t� = ei�t fK,��0� .

f G is defined by several Kraus operators Aj which are eigenvectors with different eigenvalues � j

he function fK,� would consist of harmonic functions with all these frequencies � j. Even though
e do not expect in the infinite dimensional case that we have Kraus operators which are eigen-
ectors of �t it will turn out that we can nevertheless construct a decomposition of G based on the
ourier transform of fK,�. We show that for each positive bounded operator K and density operator
the function fK,� is positive semidefinite, i.e., it satisfies

�
k,l

xkx̄lfK,��tk − tl�  0

or all vectors x�Cm and m-tuples t1 ,… , tm�R with arbitrary m:

fK,��tk − tl� = tr�K�
j

Aj�e−iH�tk−tl�Aj
†e−iH�tl−tk� = �

j

tr�KeiHtkAje
−iHtk�eiHtlAj

†e−iHtl� ,
here we have used
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�
j

Aj�e−iHtkAj
†eiHtk = �

j

eiHtkAje
−iHtk�Aj

†,

hich is just another version of the time-invariance condition. We have therefore

�
k,l

xkx̄lf�tk − tl� = �
j

tr�K��
k

xke
iHtkAje

−iHtk���
l

x̄le
iHtlAj

†e−iHtl = �
j

tr�KCj�Cj
†�  0

ith the abbreviation

Cj ª �
k

xke
iHtkAje

−iHtk.

ince fK,� is positive semidefinite it defines a unique positive scalar measure �K,� on R by Boch-
er’s theorem.14 For every measurable set m�R the map K��K,��m� is a positive linear func-
ional. It is norm-continuous �with respect to the operator norm� since the norm of a positive
unctional is given by its value on the identity,15 i.e., by �1,��m�. Now we restrict the functional to
he set of compact operators where every norm-continuous functional is given by a trace-class
perator.16 Therefore we may define a positive trace-class operator �m by

tr��mK� = �K,��m� .

ence the map Gm defined by Gm���ª�m is a positive map on the trace-class operators. One can
asily check that Gm is also completely positive: one substitutes G and e−iHt by an arbitrary tensor
roduct extension G � id by and e−iHt � 1 and considers � and K as operators on the extended
pace. Then it is obvious that the above-noted positivity argument works similarly. We have GR
G due to

tr�K�R� = �K,��R� = fK,��0� = tr�K�� .

ince the trace of each Gm��� is at most tr�G����=tr���=1, each map Gm is a bounded operator on
, the set of trace-class operators. Since GR is trace-preserving the map m�Gm is formally an

nstrument in the sense of Davies �see Ref. 17, Chap. 4�. Think of Gm��� / tr�Gm���� as the post-
easurement state given the knowledge that the measurement outcome � is in m. Then ��G���

s formally the effect of the measurement if the measured outcome is completely ignored. Even
hough this interpretation refers to a virtual measurement the virtual result � has an observable
nterpretation: Assume one observes the energy of the environment before and after it has inter-
cted with the system. Due to energy conservation � is the energy loss of the environment. Note
hat the initial energy of the environment can be observed without disturbing its state since we
ave assumed that it is in a stationary state. �The idea to observe the environment in order to have
less mixed output state �which increases information capacities� can already be found in Refs. 18

nd 19�. We shall call the probability measure ��,1 the “energy shift probabilities” in the state �.
Each map Gm is also time-covariant: The obvious equation

fK,� = f�t�K�,�t���

mplies that it is irrelevant for the measure �K,� if �t is applied to � and �−t to the output state
which is equivalent to applying �t to K�.

We summarize the results:
Theorem 2: For each time-covariant channel G there is a unique CP-map-valued-measure

m � Gm

uch that

. Each Gm is a time-covariant bounded operator on T.
ˆ
. The Fourier transform of m�Gm is the function t�Gt with
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Ĝt��� ª G��e−iHt�eiHt

in the sense that

t � tr�KĜt����

is for all K�0 and all states � the Fourier transform of the (non-negative) measure

m � tr�KGm���� .

The positive-map-valued measure defines a positive operator-valued-measure �POVM�17

�Qm by

tr�Qm�� ª tr�Gm���� .

n contrast to CP-map valued measures, POVMs describe only the probabilities for the measure-
ent outcome without referring to the post-measurement state. The Fourier transform of this
OVM will play a crucial role later.

In order to have a stronger analogy to Theorem 1 we would like to write G as an integral

G =� G�d����

ith an appropriate measure �. Then the function ��G� would be the CP-map valued Radon-
ikodym derivative of the measure m�Gm, i.e., G� would be the density of the measure with

espect to the measure �. The general problem of Radon-Nikodym derivatives of instruments
CP-map valued measures� has already been considered in Ref. 20. It is shown that it exists in the
ollowing sense:

There is a �-finite measure �, a dense domain D�H, and a countable family of functions

� � Ak
�

efined for �-almost all � such that Ak
� are linear operators D→H �not necessarily closable� such

hat

� �
k

�Ak
�����2 = �����2, ∀ ��� � D �17�

nd

tr�KGm���� = �
m
�

k

�Ak
���KAk

���d����, ∀ ��� � D . �18�

ote that Ak
� could formally be considered as the Kraus operators of a CP-map G� with the “only”

ifference being that Kraus operators are not only closable but even bounded.
Equation �17� states implicitly that

�
k

�Ak
���KAk

��� � � �19�

or �-almost all �. Since it even converges for K=1, expression �19� defines a bounded positive

unctional on the operators K. We can find a unique positive trace-class operator �� such that
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tr�K��� = �
m
�

k

�Ak
���KAk

���

or all compact K. The proof in Ref. 20 states furthermore that D can be the finite span of any
rthogonal system of H. Summarizing these results, we have:

Theorem 3 (Radon-Nikodym derivative of the instrument): For every orthonormal system
�xj�� of H there is a family of CP-maps G� defined on the finite span of all rank-one operators
xi��xj� such that

Gm��� = �
m

G����d���� �20�

or all � in the domain of G� and an appropriate �-finite measure �.
However, the domain of the maps G� can be extended:
Lemma 1 (Extended domains): Let ��T be arbitrary and � be an arbitrary measure. If the

race-class operators G���� are consistently defined (in the sense that they define the density of the
easure m�Gm���) then we have:

. The domain of G� can consistently be extended to �e−iHt by

G���e−iHt� ª G����e−iHtei�t.

Consistency means that it is the density of the measure m�Gm��e−iHt�. Similarly, we may
define G��exp�iHt���ªexp�−i�t� exp�iHt�G����.

. Let l be a measurable subset of R and Pl be the projection onto the space of functions
vanishing on the complement of l. Then one may extend the domain of G� consistently to �Pl
by setting

G���Pl� ª G����Pl+�,

and similarly G��Pl��ªPl+�G����.

Proof: The Fourier transform of the measure

m � tr�KGm��e−iHt��

s given by

f�r� ª tr�KĜr��e−iHt�� = tr�KĜt+r���e−iHt� �21�

=� tr�KG����e−iHt�ei�r+t��d���� . �22�

he last equality holds since Ĝr+t is the Fourier transform of m�Gm evaluated at r+ t. Set ��

G����. We write �22� as

� tr�K��e−iHteit��eir�d���� ,

hich is the Fourier transform of a measure with density

� � tr�K��e−iHteit�� .

his proves statement �1�.

To prove �2� we have to show that
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tr�KGm��Pl�� = �
m

G����Pl+�d���� �23�

olds for all K and measurable m. Consider the scalar complex-valued measure

l � tr�KGm��Pl�� .

ts Fourier transform is

f�t� ª tr�KGm��eiHt�� = �
m

tr�K��e−iHteit��d���� ,

here the last equality is due to statement �1�. By

e−iHteit� = ei�H+�1�t

he last expression is the Fourier transform of the measure

l � �
m

G����Pl+�d���� .

his proves that both sides of Eq. �23� coincide. �

We would like to characterize the maps G� more explicitly. We already have done this in
heorem 1 for the finite dimensional case when the spectrum of H is nondegenerate. Now we
ssume that H is the set of square integrable functions on R,

H ª L2�R,�� ,

here � is an arbitrary measure on R defined on the Lebesgue measurable sets. To formalize the
ssumption of nondegenerate spectrum we define H as the multiplication operator

�H����� = �����, ∀ � � R . �24�

ote that the Hadamard product can be generalized to infinite dimensions since every density
perator � has a representation �=	 jpj�� j��� j� with eigenvectors �� j�. Then we may interpret

���,��� ª �
j

pj� j����̄ j����

s the entries of �. This is also the representation of � by its integral kernel, i.e.,

������� =� ���,��������d����� .

ccordingly, we define:
Definition 2 (Hadamard product in infinite dimensions): For two trace-class operators � ,��

nd a function M :R�R→C we write

�� = M � � �25�

f

����,��� = M��,������,��� . �26�

To generalize the concept of partial shifts to L2�R ,�� is less straightforward. Since they
hould be partial isometries, the problem is twofold: Assume first that � is given by a nonconstant
nd nonzero density with respect to the Lebesgue measure. Then it is intuitively clear that the
eneralized “shift” rescales the function to compensate the different densities at different points in

rder to be isometric. Assume, second, that H has discrete and continuous spectrum, i.e., �
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onsists of singular and absolutely continuous parts with respect to the Lebesgue measure. Then
ne cannot expect that the discrete part of the wave function can be shifted to the continuous part
nd vice versa. The part of the wave function where this is the case has to be mapped to zero.

Despite these difficulties, the following lemma shows that our concept makes sense even in
he general situation:

Lemma 2 (Partial shifts): For every ��R there is a unique partial isometry S� with the
ollowing properties:

. For all f �H we have

�S�f���� ª s��� − ��f�� − �� , �27�

where s� is an appropriate measurable “scaling” function.

. Under all partial isometries S̃� which have a representation as in (1) with an appropriate
scaling function s̃� the operator S� has minimal kernel, i.e., its kernel is contained in the

kernel of all those S̃�.

Proof: Define the translated measure ���m�ª��m+��. Then there is a unique decomposition

� = �c + �s, �28�

here �c is absolutely continuous with respect to �� and �s is orthogonal to ��.21 Here, orthogo-

ality means that there is a measurable set B such that �s�B�=0 and ���B̄�=0 where B̄ denotes the
omplement of B. Let p be the density of �c with respect to ��. Set s�ª

�p. First we show that

� is an isometry of the subspace Hc given by all functions f with f���=0 for �� B̄:22,23

� �s��� − ��f�� − ���2d���� =� �s�����2�f����2d����� =� �f����2p���d����� =� �f����2d�c.

�29�

his integral is equal to ��f����2d� if f vanishes on B̄. On the other hand, it is zero if f vanishes
n B. This shows that the space can be decomposed into the kernel of S� and a subspace where S�

s an isometry. Hence we have �S�f�� �f� on the whole space. Note that the equations showing
his inequality show furthermore that S� is well-defined with respect to the equivalence classes in
2�R ,��.

Let S̃� be another isometry satisfying condition �1� with the scaling function s̃�. Set D

s̃ −1�0�. Clearly, condition �1� implies �H , S̃��=�S̃� and �H , S̃�
†�=−�S̃�

† . Hence the initial pro-

ection S̃�
† S̃� commutes with H and is therefore the multiplication operator with the characteristic

unction �D of a measurable set D. Let f vanish on D̄. Since S̃� preserves its norm we have

� �f����2d���� =� �f����2s̃�
2���d����� .

ince this holds for all functions which vanish on D̄ �-almost everywhere it shows that the
estriction of � to D is absolutely continuous with respect to �� �with the density s̃�

2�. Hence the
ingular part of � �with respect to ��� vanishes on D and we have

� �f����2d���� =� �f����2d�c��� .

s can be seen in Eq. �29�, this shows that the norm of f is also preserved by S�. Hence the

sometric subspace of S̃� is a subspace of the isometric subspace of S� and the kernel of S� is a

ubspace of the kernel of S̃�. �
Fortunately, these shifts have the following property:
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Lemma 3: The partial shift of Lemma 2 satisfies

S�
† = S−�. �30�

Proof: Rewriting the inner product of H as an integral one checks easily that S�
† has to be a

ranslation by −� with an appropriate scaling function. It is easy to see that S−�S�=S�
†S�: On the

ernel of S� both products coincide trivially. On its orthogonal complement, i.e., the isometric
ubscape of S� the operator S�

†S� is the identity. But this must also be true for S−�S� because the
sometric subspace of S−� must contain the isometric subspace of S�

† since S−� has minimal kernel
n the set of all partially isometric translations �see property �2� in Lemma 2�. Using general
roperties of partial isometries22,23 the image of S�

† satisfies therefore

Im S�
† = Im�S�

†S�� = Im�S−�S�� � Im S−�.

eversing this inequality by taking the orthogonal complement we obtain

ker S�  ker S−�
† .

ecause this holds for all ��R we have

ker S−�  ker S�
† .

ince S−� has minimal kernel we conclude

ker S−� = ker S�
† .

ue to the uniqueness of the maximal element in the set of all partially isometric translations we
ave

S�
† = S−�.

�

Note that we can only write G���� in the form S��M����S�
† if the density operator G���� acts

nly on the image of S� �which coincides with the image of the projection S�S�
†�. But this is indeed

he case:
Lemma 4: If � is in the domain of G� its output ��ªG���� satisfies

S�S�
†��S�S�

† = ��. �31�

Proof: We will show G����S�S�
† =G����. The statement S�S�

†G����=G���� follows similarly.
ue to Lemma 3 we have S�S�

† =S−�
† S−�, which is the projection onto the isometric subspace of

−�. It can explictly be given as follows �see proof of Lemma 2�: Let �ª�c � �s be the decom-
osition into the absolutely continuous and singular part of � with respect to �−�. Let C be a set

uch that �−��C̄�=0 and �s�C�=0. Then S−�
† S−�= PC. Due to ��C̄−��=�−��C̄�=0 we have

PC̄−�=0. This implies

G����PC̄ = G���PC̄−�� = 0.

�

For the construction in the sequel we choose the ONS in Theorem 3 such that its finite span
ontains a vector ��� with �����0 for �-almost all �.

Now we can define a function

M�:R � R → C
y

                                                                                                            



w
w

W

w

f
c

�

a

h

p
s

B
t

s
f

i

w
n
a
m
w

122107-14 Dominik Janzing J. Math. Phys. 46, 122107 �2005�

                        
M���,��� ª
k��,���

�����̄����
, �32�

here the function k represents the trace-class operator S�
†��S�. Even though this function is not

ell-defined, the calculations to follow show that the freedom of choosing M� is irrelevant.
By construction and using Lemma 4, we have

G���� = �� = S��M� � ���S�
† .

e conclude

G�������� =� S��M� � ���������S�
†d����

ith ��� as above. Using Lemma 1, part �1�, we have

� G��e−iHt������eiHs�d���� =� S��M� � �e−iHt������eiHs��S�
†d���� ,

or all s , t�R. The finite span of these rank-one operators is dense in T since H is the multipli-
ation with the identity and the span of all exp�−iHt���� is therefore dense in H. We conclude:

Theorem 4 (Dephasing—energy shift representation): There is a family of functions
M����R,

M�:R � R → C , �33�

nd a �-finite measure � on R such that for a dense set of density operators � the decompostion

G��� =� S��M� � ��S�
†d����

olds.
We would like to have an analogy to the statement that M� is in the finite dimensional case a

ositive matrix. However, we have specified M� only as a function and not as an operator. It seems
traightforward to consider it as an operator by

�M������ ª� M���,��������d����� .

ut it is easy to see that this is not in general well-defined. Let, for instance, G be the identity on
he density operators on l2�Z�. Then the decomposition of G reduces to G���=M0�� with

M0�� ,���=1. The formal matrix multiplication of this “all-one” matrix with any square-integrable
equence leads to infinite coefficients. However, formally it is like a positive operator in the
ollowing sense.

M� � ��������

s by construction the trace-class operator ��. Translated to finite dimensions this expression to

DM�D†,

here D is a nonsingular diagonal matrix �in analogy to the statement that ���� vanishes almost
owhere�. Such a matrix can only be positive if M� is itself positive. In this sense we consider M�

s positive even though it is not an operator. In analogy to the finite dimensional case, an exact
easurement of the energy of the environment �before and after the interaction has taken place�

ould lead to a map
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S��M� � ��S�
† ,

hich is only a dephasing channel up to the known energy shift.
It should be noted that �depending on �� the integral may represent a finite, or countable

nfinite sum, or a continuous integral even though the Kraus representation of G is always possible
ith a countable sum.2

II. SUPERPOSITIONS BETWEEN STATES IN THE SAME ORBIT

The “Hadamard-channel” ��M �� with a positive matrix M allows perfect classical infor-
ation transfer by using energy eigenstates as logical states. Its quantum capacity depends on the

estruction of off-diagonal elements, i.e., whether the output states are more or less stationary
tates. Explicitly one has the following lower bound on the quantum capacity:

Lemma 5: In dimension n, the quantum capacity Q of the channel ��M �� with M�� ,��
1 for all ��
 satisfies

Q  log2�n� − S�M/n� ,

here S�.� denotes the von-Neumann entropy.
Proof: Let

M ª �
j

�mj��mj� �34�

e a decomposition into mutually orthogonal rank-one operators with non-normalized vectors �mj�.
et Dj be the diagonal matrices having the coefficients of �mj� as entries. Then we have

G��� = �
j

Dj�Dj
†.

he quantum capacity is given by the supremum of the coherent information24 over all input states
or arbitrarily many copies of the channel. Let ������ be a state on Cn � Cn and � its restriction to
he right component. Then the coherent information is defined as

S�G���� − S��id � G���������� ,

here S denotes the von Neumann entropy. Consider the maximally entangled state

��� ª
1
�n

�
j

�j� � �j� . �35�

ote that � is the maximally mixed state and that it is preserved by the channel. Hence we have
�S����=log2�n� and

�id � G��������� = �
j

�1 � Dj��������1 � Dj
†� . �36�

urthermore we have

����1 � Dj
†��1 � Di���� = tr�Dj

†Di� = �mj�mi� = 0.

herefore the sum �36� is already the spectral decomposition of �id � G���������. The eigenvalues
re the square of the length of each vector �1 � Dj����. It is given by �mj �mj� /n. Hence the entropy
f the output state is the von Neumann entropy S�M /n�. �

Here the destruction of quantum information coincides with the destruction of timing infor-
ation in the sense that states on the same orbit of �t become less distinguishable. It is obvious

hat decoherence with respect to the energy eigenbasis leads always destroys timing information in

his sense. Here we want to address the question of what happens when one considers orthogonal
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tates on the same orbit of the time evolution as reference basis. Is it possible that a time-covariant
hannel destroys superpositions between them without affecting the basis states? Consider two
ector states ��0� and ��s�ªexp�−iHs���0�. Clearly, G���0���0��= ��0���0� implies

S��M� � ���0���0���S�
† = 0

or all ��0. This follows from the observation that the output state can only be pure if all output
perators are linearly dependent. Every ��0 would lead to a different output state. Furthermore
e have

M0 � ���0���s�� = M0 � ���0���0��eiHs = ��0���s� .

ne can conclude easily that every density operator acting on the subspace spanned by ��0� and
�s� is preserved by G. A little bit more general, one has:

Theorem 5: Let G be a time-covariant CP-map on a system with nondegenerate Hamiltonian.
f there is any pure state ������ with

G�������� = ������

hen G leaves all density operators invariant which act on the Hilbert subspace spanned by all
xp�−iHt����.

The essential argument above is that there exist no states which are invariant with respect to

� for some ��0. An analog statement would not be true for covariance with respect to a
iscretized time evolution:

Consider the Hilbert space l2�Z� of square summable two-sided sequences and the discrete
ime evolution given by the translation �U���n�ª��n+1�. Let ��en��n�Z be the canaonical basis of
2�Z�. Then the channel

� � �
n�Z

�en��en���en��en�

eaves all basis states �en� invariant but destroys all superpositions.
The assumption that a pure state is preserved by G is rather strong. Actually we want to figure

ut whether distiguishability of different states in the same orbit may be conserved even though
heir superpositions are destroyed. We consider the following extreme case:

Definition 3 (Reliable timing): A time-covariant channel G has the “reliable timing property”
with respect to the time s) if there exists an input density operator � and a real number s such that
or �sª�s��� the outputs G��� and G��s� are perfectly distinguishable, i.e., the density matrices
re mutually orthogonal.

It is easy to verify that the input state � can be chosen to be pure. To justify the definition, we
how that this property appears in the following situation: Assume a sender, say Alice, wants to
end a signal to a receiver, say Bob. Assume furthermore that it should be guaranteed that Bob
eceives the signal in the time interval �t1 , t2�. This requires that the physical state � of the signal
when it is sent� is perfectly distinguishable from the time evolved state �s with sª t1− t2. This is
ue to the fact that the following “measurement” distinguishes between them: wait the time t1 and
sk Bob whether he has already received the signal. If the medium between Alice and Bob
odifies the signal, we may model this by a time-covariant operation G which has clearly to

reserve the distinguishability of the states � and �s.
It is clear that reliable transfer of classical information requires two states � and � such that

��� and G��� are mutually orthogonal. The above-noted remark shows that there are situations in
lassical information processing where two orthogonal output states should exist on the same orbit
ince reliable timing requires this feature. To see that nontrivial channels with this property exist

ne may construct a channel of the form
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� � �
j

pjS�j
�S�j

† ,

here the � j are chosen such that �� �S�i

† S�j
��=0 for i� j. This condition is, for instance, satisfied

f the minimal distance between the values � j exceeds the spectral bandwidth of the input state.
eal physical channels will satisfy condition 3 at most approximately.

In order to consider the quantum capacity of reliable timing channels we choose � and �s

Us�Us
† with Usªexp�−iHs� such that � and �s are mutually orthogonal. For simplicity we

ssume that the dynamical evolution of G��� is periodic. We obtain a set

G��0�,G��s�,G��2s�,…,G��s�N−1��

f N mutually perfectly distinguishable density matrices. Let P be the support of G���, i.e., the
mallest projection with PG���=G���. Then the projections UsjPUsj

† with j=0,… ,N−1 are mu-
ually orthogonal.

Now we consider the channel with input

CN � span	��sj�
 j=0,…,N−1.

t is clear that there exist pure input states ��0� ,… , ��s�N−1�� for which the orthogonality of the
utput states is satisfied. By sending either of these N states G can transfer log2 N bits of classical
nformation. We want to derive sufficient conditions under which G allows one to send superpo-
itions between the chosen basis states. For doing so, we restrict G to a channel K on
�N-density matrices as follows.

The input is restricted to the span of all ��sj� with j=0,… ,N−1. The corresponding output
pace is

Hr ª � j=0
N−1UsjPUsj

† H . �37�

e may consider this space as the tensor product

Hr = CN
� PH

f we identify the spaces UsjPUsj
† H for j�0 with PH via arbitrary unitaries. It is straightforward

nd convenient to choose the isomorphisms Usj with j=0,… ,N−1. For any output density op-
rator � acting on Hr the entry corresponding to �j��k� of its restriction to CN is given by

tr�UskPUsj
† �� .

o determine the channel K we have to compute all values

tr�UskPUsj
† G���sl���sm��� ,

or k , j , l ,m� 	0,… ,N−1
. Due to the reliable timing property we know that each state ��sj���sj�
eads to the output state �j��j�. Furthermore the operator ��sl���sm� leads with certainty to a mul-
iple of �l��m�. Roughly speaking, the reason is that a CP-map which maps the states �m��m� and
l��l� onto itself maps also �l��m� onto multiples of itself. This could, for instance, be shown by
eformulating the CP-map as the restriction of an appropriate unitary map �see Ref. 15�. Hence we
ave only to determine which factors the off-diagonal terms obtain. Due to the symmetry of the
hannel with respect to time translations Usj we have only to evaluate

v�j� ª tr�UsjPG���0���sj��� = tr�PG���0���sj�Usj�� .
hen K is explicitly given by
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K��
jk

cjk�j��k� = �
jk

cjkv�j − k��j��k� .

his shows that the channel K is a “Hadamard channel” even though we have not chosen the
nergy states as reference basis but the states ��sj� instead. Furthermore, K is given by Hadamard
ultiplication with a circulant matrix V with entries Vijªv�i− j�. In order to calculate v we use

he explicit form of G according to Theorem 3. Using Lemma 1 this yields

v�j� =� tr�G����0���0��e−i�sjd���� = f ��0���0�,1�− sj� ,

.e., the Fourier transform of the energy shift probability measure ���0���0�,1 evaluated at the points
sj. The eigenvalues q0 ,… ,qM−1 of V /n are given by the inverse Fourier transform of v:

qk ª
1

N
�
j=0

N−1

v�j�e−ijk.

sing Lemma 5 we conclude:
Theorem 6 (Q-capacity of channels with reliable timing): Let G be a time-covariant chan-

el with reliable timing property with respect to the time s and the initial state ��0�. Let the
ynamics be periodic with period length sN. Then the quantum capacity can only be zero if the
ourier transform p̂ of the probability measure p�m�ª tr�Gm���0���0��� has zeros at sj for j
1,… ,N−1. Otherwise the quantum capacity is at least

log2 N − �
k

qk log2 qk, , �38�

here q= �q0 ,… ,qN−1� is the discrete Fourier transform of the evaluation of f ��0���0�,1 on the N
oints 0, −s ,−2s ,… ,−�N−1�s.

Of course there are many possibilities to define finite dimensional channels from the original
ne. However, to study whether G destroys superpositions between different states in the orbit
“different pointer states of a clock”� one has always to consider

G���0���sj�� = Ĝ−sj���0���0��eiHsj .

his shows that the Fourier transform of the measure �Gm� is decisive. For deriving the lower
ound above we have evaluated it for the observable 1 which leads to the Fourier transform of the
OVM �Qm� defined in the last section. However, 1 is not necessarily optimal for detecting
uperpositions between the output states.

III. GAUSSIAN CHANNEL ON A SINGLE MODE

The Hilbert space of a single mode in quantum optics is l2�N0�, the set of square summable
equences. It can also be interpreted as the energy levels of a harmonic oscillator. A time-covariant
hannel which is often considered is the following. As usual, we introduce the creation operator a†

nd the annihilation operator a by a�j�ª�j�j−1� for j1 and a�0�=0. Using position and mo-
entum observables X and P, respectively, we define a translation �a1 ,a2��R2 by the unitary

ransformation exp�i�a1X+a2P��, where Xªa†+a and Pª �a†−a� / i. It is convenient to introduce
ariables r�R0

+ and z on the complex unit circle � by a1+ ia2=rz. Rewriting the translation with
perators a† and a and the parameters z ,r we obtain the translation operator �compare Ref. 25� by

D�z,r� ª exp�r�z̄a† − za�� = eir2/2erz̄a†
e−rza.

ince the global phase factor is irrelevant we will, in abuse of notation, use D�z ,r� for the term

ithout this factor.
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Let the Gaussian channel be given by a random displacement rz according to the two-
imensional rotation invariant Gauss distribution. Note that rotation symmetry is necessary in
rder to obtain a time-covariant channel since the Hamiltonian Hªdiag�0,1 ,2 ,…� corresponds
o a rotation in the “phase space.” Note that the possible energy shifts are in Z, hence we expect
countable sum of G� which are �in contrary to the general case� not only densely defined.

The whole channel is given by �see Ref. 26�

G��� =� �
�

D�z,r��D�z̄,r�dzp�r�dr

ith p�r�ªexp�−r2 / �2s2��r /s2 and s denotes the standard deviation.
Then we write D�z ,r� as the power series

D�z,r� = erz̄a†
e−rza = �

m0

�rz̄�n�a†�m

m! �
n0

�− rz�nan

n!
. �39�

t decomposes canonically into terms D��z ,r� with ��Z satisfying the commutation relation
H ,D��z ,r��=�D��z ,r� if we define

D��z,r� ª �
n−�,0

�rz̄�n+��a†�n+�

�n + ��!
�− rz�nan

n!
= z̄�r� �

n−�,0
�− 1�n �a†�n+�

�n + ��!
an

n!
�r2�n.

ote that D��z ,r� maps states with energy j onto states with energy j+�. This suggests already
hat they may correspond to the maps G� of Sec. VI. The operator

D��r� ª D��z,r�z��2�

s independent of z. We conclude therefore that terms of the form D��z̄ ,r��D���z ,r� cancel for
��� after integration over all z��. We obtain

G��� = �
��Z

� D��r��D��r�p�r�dr .

onsider the case �0 first. Then we have

�a†�n+�an�j� = ��j + ��…�j + 1�j�j − 1�…�j − n + 1��j + �� =
1

��j + 1�…�j + ��
�j + ��!
�j − n�!

�j + �� ,

or all n� j. For the case ��0 we obtain

�a†�n+�an�j� = �j�j − 1�…�j + � + 1�
�j + ��!
�j − n�!

�j + �� .

or �0 we conclude

D��r��j� =
r�

��j + 1�…�j + ��
�
n=0

j

�− 1�n �j + ��!
�j − n� ! �n + �� ! n!

�r2�n�j + ��

=
r�

��j + 1�…�j + ��
Lj

��r2��j + �� ,

here

Lj
����x� ª �

n=0

j

�− 1�n �j + ��!
�j − n� ! �n + �� ! n!

�x�

27
s a Laguerre polynomial.
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Hence we have

M��j, j�� =� �r2��

��j + 1�…�j + ���j� + 1�…�j� + ��
Lj

����r2�Lj�
����r2�p�r�dr .

or negative � we may express M� similarly by Laguerre polynomials together with a different
actor. Hence the decomposition of the single mode Gaussian channel can be given in a closed
orm even though it leads to a less familiar representation.

X. CONCLUSIONS

We have shown that every time-covariant CP-map has a representation as an integral over a
amily of CP-maps. If the spectrum of the system Hamiltonian is nondegenerate, each of these
omponents consists of a Hadamard multiplication with a positive operator followed by an energy
hift. Formally, the output of the channel is an unselected post-measurement state. The measured
and ignored� quantity is the energy which has been transferred to or from the environment.
onditional to the measurement outcome a different dephasing channel is applied.

Furthermore we have addressed the question to what extent covariant channels can destroy
uperpositions between N mutually orthogonal states on the same orbit of the time evolution. For

specific type of channels �with “reliable timing property”� we have shown that the general
ecomposition helps to derive lower bounds on the quantum capacity.

The decomposition presented here may be a helpful approach to describe a rather general type
f decoherence and relaxation phenomena.

We have calculated the decomposition explicitly for a rotation invariant Gaussian channel
cting on the state space of a single mode Fock space. The dephasing operations can then be
escribed using Laguerre polynomials.
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uantum states
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Consider a symmetric quantum state on an n-fold product space, that is, the state is
invariant under permutations of the n subsystems. We show that, conditioned on the
outcomes of an informationally complete measurement applied to a number of
subsystems, the state in the remaining subsystems is close to having product form.
This immediately generalizes the so-called de Finetti representation to the case of
finite symmetric quantum states. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2146188�

. INTRODUCTION

The analysis of physical experiments is often based on the assumption that the same experi-
ent can be repeated many times independently. In particular, one usually assumes that the results

1 , . . . ,Zn obtained from n repetitions of the same experiment are distributed according to some
roduct distribution, i.e., PZ1¯Zn

= �PZ�n. In practical situations, however, the independence of the
ndividual outcomes Zi can usually not be guaranteed.

The so-called de Finetti representation theorem6 can be seen as a solution to this problem.
See Ref. 15 for a collection of de Finetti’s original papers.� Basically, it states that the assumption
n the product structure of PZ1¯Zn

can be replaced by a seemingly weaker assumption, namely that
he distribution of the outcomes of infinitely many repetitions of the experiment is invariant under
eordering. For instance, this is the case if the n samples Z1 , . . . ,Zn are randomly chosen from
nfinitely many repetitions of the experiment.

Let us briefly explain this result on a more formal level. We say that an n-partite probability
istribution PZ1¯Zn

is symmetric if it is invariant under any permutation of the random variables

1 , . . . ,Zn. If PZ1¯Zn
is the marginal of a symmetric distribution PZ1¯Zm

of m�n random vari-
bles, then PZ1¯Zn

is called m-exchangeable. Moreover, PZ1¯Zn
is infinitely exchangeable if it is

-exchangeable for all m�n. The result of de Finetti now states that any infinitely exchangeable
robability distribution PZ1¯Zn

can be written as a convex combination of products �PZ�n of n
dentical distributions.

This result has been generalized in different directions. Diaconis and Freedman7 analyzed the
tructure of m-exchangeable probability distributions of n random variables, for n�m��. This is
f particular interest for practical applications, where the number of experiments is only finite.
hey found that, for appropriate values of n and m, these distributions are still close to the convex
ull of the set of product distributions �PZ�n.

The result of de Finetti has also been extended to quantum states, to which the notion of
ymmetry and exchangeability can be adapted in an obvious way. Hudson and Moody13 showed
hat any infinitely exchangeable quantum state �n̄ over n subsystems is a convex combination of
roduct states, i.e., �n̄=�zpz��z��n, for appropriate weights pz �see also Ref. 11�. An alternative
roof of this claim has recently been presented by Caves, Fuchs, and Schack4 �see also Ref. 8�,
elying on the original result of de Finetti.

�Electronic mail: rkoenig@inf.ethz.ch
�
Electronic mail: renner@inf.ethz.ch
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In this paper, we analyze the structure of m-exchangeable quantum states over n subsystems,
or n�m��. In a sense, our result combines the two mentioned directions of generalizing de
inetti’s result. Note that any m-exchangeable state �n̄ over n subsystems can be extended to an
-exchangeable state �n + k over n+k subsystems, for n+k�m. We show that the state �z

n̄ of the
rst n subsystems, conditioned on the outcomes z= �z1 , . . . ,zk� of an informationally complete
easurement applied to each of the remaining k subsystems, is close to the n-fold product state

�z
1̄��n, where �z

1̄ is the state �z
n̄ restricted to one subsystem. �The density operator �z

1̄ is obtained
rom �z

n̄ by taking the trace over n−1 subsystems.� In particular, since �n̄ can be written as a
onvex combination of the states �z

n̄, i.e., �n̄=�zpz�z
n̄, this immediately implies that �n̄ is close to

he convex combination �zpz��z
1̄��n. As in the classical case, the distance between the

-exchangeable state �n̄ and the convex hull of the set of product states depends on the values m
nd n. In particular, for any fixed m, as n tends to infinity, we recover the result of Refs. 13 and
. �A somewhat different generalization of the de Finetti theorem has been proposed in Ref. 16,
here it is shown that the set of states on an infinite tensor product satisfying a weaker symmetry

ondition than exchangeability is identical to the convex hull of m-dependent states �which cor-
esponds to product states if m=0�.�

Quantum de Finetti-style theorems are crucial for a Bayesian interpretation of quantum me-
hanics �see Ref. 8�. Moreover, they can be used in various applications such as entanglement
urification3 and the study of entanglement in general.12 In fact, many information-theoretic tasks,
.g., entanglement purification or quantum key distillation, are well understood in the special case
here the states to be considered have product form. According to the de Finetti theorem, this is

quivalent to saying that the state is a part of a state on infinitely many subsystems which is
nvariant under reordering of the subsystems. Our result relaxes this requirement to a finite number
f subsystems only. This is important for realistic situations, where such a symmetry can be
btained by applying a randomly chosen permutation. �A remarkable example illustrating the
ower of the quantum de Finetti theorem is in the context of quantum cryptography.1 Many
ecurity proofs for quantum key distribution �QKD� schemes only hold against so-called collective
ttacks,2 where one assumes that the states generated by an adversary have product form. On the
ther hand, the ultimate goal is to prove security against the most general, so-called coherent,
ttacks. Because any state on a product system can be turned into a symmetric state by applying
random permutation, the finite quantum de Finetti representation theorem can be used to show

hat coherent attacks are not stronger than collective attacks.�
Outline of the paper: In Sec. II, we introduce some basic notation and definitions, including

he notion of symmetry and exchangeability. Additionally, we briefly review the properties of the
ariational distance between probability distributions, as well as its quantum analogue, the trace
istance between density operators. Sections III–VI are devoted to the proof of our main results on
he structure of symmetric quantum states. Generally speaking, our proof is based on the analysis
f the statistics obtained when applying informationally complete POVMs to symmetric quantum
tates. We will thus be interested in good POVMs in the sense that the measurement statistics
ives maximal information about the measured state. Constructing such POVMs is the main
urpose of Sec. III, which is somehow independent of the remaining part of the paper. In Sec. IV,
e analyze classical symmetric probability distributions and derive bounds on their distance to
roduct distributions. In Sec. V, it is shown how to deduce structural properties of quantum states
rom the corresponding properties of the measurement statistics, using the POVMs constructed in
ec. III. Finally, in Sec. VI, we combine these results to obtain our main statements, including a
e Finetti representation for finitely exchangeable quantum states. Additionally, in the Appendix,
e present an alternative version of these statements which might be more suitable for certain

pplications.

I. PRELIMINARIES
. Density operators, POVMs, and probability distributions

Throughout this paper, we will restrict our attention to finite-dimensional Hilbert spaces,

enoted by H or HA, for some index A. Let Herm�H� the set of Hermitian endomorphisms on H.
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n element ��Herm�H� is called a density operator or, equivalently, a quantum state on H if it
s positive semidefinite, ��0, and has trace one, tr���=1. We denote by S�H� the set of density
perators on H. A positive operator valued measure (POVM) on H is a family Z= �Fz�z�Z of
on-negative operators Fz�Herm�H�, Fz�0, such that �z�ZFz=idH. The POVM Z is called
nformationally complete if it is a basis of Herm�H�.

To improve the readability of formulas involving density operators on product spaces, we use
uperscripts to indicate which subsystems an operator acts on, e.g., we write �ABC for a density
perator on HA � HB � HC. Operators with the same name but different superscripts are related to
ach other by the partial trace. For example, �AB is the partial state obtained from �ABC by tracing
ver HC, i.e., �AB=TrC��ABC�, and, similarly, �A=TrBC��ABC�. This notation is consistent since
artial traces over different subsystems commute, e.g., we have �A=TrB��AB�=TrC��AC�
TrBC��ABC�.

A similar formalism can be used to denote conditional quantum states. Let �AB be a density
perator on HA � HB and let Z= �Fz�z�Z be a POVM on HB. Then �A

�Z=z denotes the quantum state
n HA conditioned on the event that the outcome of the measurement Z applied to the subsystem

B equals z�Z, i.e.,

�A
�Z=z ª

1

tr��idA � Fz��AB�
TrB��idA � Fz��AB� .

he notation can be extended to density operators over three and more subsystems in an obvious
ay. Note that, since the partial trace and the operation of conditioning on a measurement result

ommute, this is compatible with our notation for partial states. For instance, if �ABC is a tripartite
ensity operator, then the conditional states �A

�Z=z and �AC
�Z=z are related by the partial trace, i.e.,

A
�Z=z=TrC��AC

�Z=z�.
We will use a similar formalism to denote the probability distributions resulting from mea-

urements of quantum states. Let �A be a density operator and let Y= �Ey�y�Y be a POVM on HA.
hen �Y

A denotes the distribution of the outcome of the measurement Y applied to �A, i.e.,

�Y
A �y� = tr�Ey��, for all y � Y .

his can easily be generalized to product systems. For example, if Y and Z are POVMs on HA and

B, respectively, then �YZ
A B is the probability distribution of the outcome of the product measure-

ent Y � Z applied to �AB.
Note that the operation of taking the partial trace of a density operator has a classical ana-

ogue, namely taking the marginal distribution. Similarly, the operation of conditioning a quantum
tate on a measurement result corresponds to conditioning a probability distribution on the value
f a random variable. Our formalism is consistent with respect to these operations in the sense that
he following diagram commutes:

�A
�Z=z ←——

cond.
�AB

——→
trace

�A

meas.↓ meas.↓ meas.↓

�Y�J=z
A

←——
cond.

�YZ
A B

——→
marginal

�Y
A

Let P be a probability distribution on Z and let, for each z�Z, �z be a density operator on H.
e will often write the weighted sum of �z as an expectation value, i.e.,

E
z←P

��z� ª �
z�Z

P�z��z.

f the probability distribution is clear from the context, we only write Ez��z�. For example, using

ur formalism, we have
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E
z←�

Z
B
��A

�Z=z� = �A, �1�

or any bipartite quantum state �AB on HA � HB. This is a simple reformulation of the fact that the
artial state �A on HA does not change when a measurement is applied to the subsystem HB.

. Distance measures

Let Distr�Z� be the set of probability distributions on the set Z. The variational distance
etween two probability distributions P ,Q�Distr�Z� is defined by

��P,Q� ª
1

2 �
z�Z

�P�z� − Q�z�� .

he variational distance is a metric on Distr�Z�. In particular, ��P ,Q�=0 if and only if P=Q, � is
ymmetric, ��P ,Q�=��Q , P�, and the triangle inequality holds, ��P ,R����P ,Q�+��Q ,R�. For
wo bipartite distributions PXY andPX�Y�, the variational distance cannot increase when taking the
arginals,

��PX,PX�� � ��PXY,PX�Y�� . �2�

f PXY and PX�Y� have the same marginals PX= PX�, their distance can be expressed as the expec-
ation value of the distance between their conditional probability distributions,

��PXY,PX�Y�� = E
x←PX

���PY�X=x,PY��X�=x�� ª �
x

PX�x���PY�X=x,PY��X�=x� . �3�

n particular, if the distributions have product form

��PX � PY,PX � PY�� = ��PY,PY�� . �4�

A similar distance measure can be defined on the set Herm�H� of Hermitian operators on H,
sing the trace norm 	 · 	1 on Herm�H�, which is defined as 	W	1ª tr��W�� for every W
Herm�H�. �For an operator T�Herm�H�, the operator norm of T is the value 	T	
supv�H:	v	�1 	Tv	, where 	v	ª
�v �v� for every v�H. It is easy to see that

	W	1 = sup
T:	T	�1

�tr�WT�� , �5�

here the supremum is over all operators T�Herm�H� with 	T	�1. From �5�, it follows that 	 · 	1

s a norm, as the right-hand side �rhs� of �5� is the norm of the linear functional tr�W · � in the dual
pace Herm�H�* and the embedding W� tr�W · � is an isomorphism of Herm�H� to its dual.� The
race distance between two operators U ,V�Herm�H� is then given by

��U,V� ª 1
2 	U − V	1.

Many properties of the variational distance also hold for the trace distance. In particular, the
race distance is a metric on Herm�H�. Moreover, similarly to �2�, the trace distance cannot
ncrease when taking the partial trace, i.e., for U ,V�Herm�HA � HB�,

��TrB�U�,TrB�V�� � ��U,V� . �6�

More generally, ��E�U� ,E�V�����U ,V� for any trace-preserving quantum operation
:Herm�H�→Herm�H��, which can most generally be written as E�U�ª�kEkUEk

† for operators

k :H→H�. To prove this, it suffices to show that 	E�W�	1� 	W	1, for every W�Herm�H�. Note
hat the operator norm of an operator T�Herm�H� can equivalently be written as 	T	
sup��S�H� tr�T��. Defining the operation E† :Herm�H��→Herm�H� by E†�T��ª�kEk

†T�Ek for
†
��Herm�H��, we have the identity tr�E �T��W�=tr�T�E�W�� for any operators W
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Herm�H� ,T��Herm�H��. Hence 	E†�T��	=sup��S�H� tr�E†�T����=sup��S�H� tr�T�E����� 	T�	
ince E����S�H�� for any ��S�H�. Using �5�, this implies that 	E�W�	1

supT�:	T�	�1�tr�E�W�T���=supT�:	T�	�1�tr�WE†�T�����supT:	T	�1 tr�WT�= 	W	1, as required.� We
ill also use the strong convexity of the trace distance, which follows directly from the triangle

nequality of 	 · 	1, i.e., for any U ,U� ,V ,V��Herm�H� and p ,q� �0,1� with p+q=1,

��pU + qU�,pV + qV�� � p��U,V� + q��U�,V�� .

The following lemma gives a simple expression for the trace distance between two product
perators U � V and U� � V with a common factor V.

Lemma II.1: Let U ,U��Herm�HA� and V�Herm�HB�. Then

��U � V,U� � V� = ��U,U�� · tr��V�� .

Proof: By definition,

��U � V,U� � V� = tr��U − U�� � V� . �7�

e use the following general fact, which can be verified easily using the appropriate definitions.
et f :C→C be a function satisfying

f�a · b� = f�a� · f�b� for all a,b � C .

Then

f�A � B� = f�A� � f�B�

or all A ,B�Herm�H�. Applying this to Eq. �7� yields

��U − U�� � V� = ��U − U��� � �V� .

he assertion then follows from the identity tr�A � B�=tr�A� · tr�B�. �

As an immediate consequence of Lemma II.1, we obtain the equation

��� � �,�� � �� = ���,��� , �8�

or states � ,���S�HA� and ��S�HB�, which is the quantum analogue of �4�. The trace distance
etween two density operators � and � on H corresponds to the variational distance between the
robability distributions �Z and �Z of the outcomes of a measurement applied to � and �, respec-
ively, for an optimal POVM Z on H, i.e.,

���,�� = max
Z

���Z,�Z� . �9�

. Symmetry and exchangeability

. Symmetric probability distributions and symmetric functions

Let z= �z1 , . . . ,zn��Zn and z�= �z1� , . . . ,zm� ��Zm be tuples of elements from a set Z. We
enote by �z ,z�� the �n+m�-tuple obtained by concatenating z and z�, i.e., �z ,z��

�z1 , . . . ,zn ,z1� , . . . ,zm� �.
The frequency distribution Qz of an n-tuple z= �z1 , . . . ,zn��Zn is the function with domain Z

efined by �we denote by �n� the set of natural numbers between 1 and n, i.e., �n�ª �1, . . . ,n��

Qz�z� ª
1

n
��i � �n�:zi = z��, for every z � Z ,

.e., Qz�z� is the relative number of occurrences of the symbol z in z. Note that Qz is a probability

istribution on Z, Qz�Distr�Z�.
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A symmetric function f on Zn is a function such that f�z� is invariant under permutations of
he entries in z. The value f�z� then only depends on the frequency distribution Qz of z. For a
ormal definition, let Sn be the set of permutations on �n�, and let, for any 	�Sn, 	Z be the
ijection on Zn defined by

	Z:�z1, . . . ,zn� � �z	�1�, . . . ,z	�n��, for all �z1, . . . ,zn� � Zn.

Definition II.2: A function f with domain Zn is called symmetric if

f = f � 	Z, for all 	 � Sn.

In particular, a probability distribution PZ�Distr�Zn� on Zn is called symmetric if PZ is a
ymmetric function. The following lemma is an immediate consequence of these definitions.

Lemma II.3: Let Z be an n-tuple of random variables over a set Z such that PZ is symmetric,
nd let Y be a random variable over Y defined by a channel PY�Z such that for every y �Y, the
unction z� PY�Z=z�y� is symmetric. Then, for every y �Y, the conditional probability distribution

PZ�Y=y is symmetric.
In particular, if f :Zn→Y is a symmetric function and PZ is symmetric, then, for any y�Y,

PZ�f�Z�=y is symmetric. An example is the function mapping any n-tuple z to the frequency distri-
ution Qz, i.e., PZ�QZ=q is symmetric. �QZ is the random variable defined by Qz, for z randomly
hosen according to PZ, that is, PQZ

�q�ªPz←PZ
�Qz=q�.� The following lemma is an immediate

onsequence of this fact.
Lemma II.4: Let Z= �Z1 , . . . ,Zn� be an n-tuple of random variables over a set Z such that PZ

s symmetric. Then, for any q�Distr�Z�,

PZi�QZ=q = q, for every i � �n� .

. Symmetric and exchangeable density operators

For any permutation 	�Sn, let 	H be the unique endomorphism on H�n satisfying

	H��
1� � ¯ � �
n�� = �
	�1�� � ¯ � �
	�n��, for all �
1�, . . . , �
n� � H .

t is easy to verify that 	H is unitary. Let �B1¯Bn be a density operator on HB1
� ¯ � HBn

where,
or all i� �n�, HBi

=H, i.e., �B1¯Bn �S�H�n�. The state �B1¯Bn is called symmetric if �B1¯Bn

	H�B1¯Bn	H
† for every 	�Sn. The following definition generalizes this concept to include an

dditional system HA.
Definition II.5: A density operator �AB1¯Bn �S�HA � H�n� is called symmetric relative to HA

f

�AB1¯Bn = �idA � 	H��AB1¯Bn�idA � 	H
† �, for all 	 � Sn.

Let �AB1¯Bn �S�HA � H�n� be symmetric relative to HA. Then, for any choice of r distinct
ndices i1 , . . . , ir� �n�, r� �n�, the state �ABi1

¯Bir is symmetric relative to HA. Since it only depends
n the number r of distinct indices, we will write �Ar̄ instead of �ABi1

¯Bir.
Similarly, for every z�Zs, the density operator � �Z�s=z

ABi1¯Bin−s obtained by conditioning a

ymmetric state �An̄=�AB1¯Bn on the outcomes of a POVM Z= �Fz�z�Z applied to s subsystems is
ndependent of the indices i1 , . . . , in−s. Additionally, as an immediate consequence of Lemma II.6
elow, this conditional state is still symmetric relative to HA. We will thus use the abbreviation

�Zs=z
An − s .

Lemma II.6: Let �ABn̄�S�HA � HB � H�n� be symmetric relative to HA � HB. Then, for any
OVM N= �Ey�y�Y on HA and every y�Y, � �N=y

Bn̄ is symmetric relative to HB.

Proof: It suffices to show that, for any 	�Sn and any y�Y
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�idB � 	H�TrA��Ey � idBn̄��ABn̄��idB � 	H
† � = TrA��Ey � idBn̄��ABn̄� ,

here idBn̄ª idB � idH
�n. We use the general identity,

U TrA�W�U� = TrA��idA � U�W�idA � U���

or endomorphisms U ,U� on HB and W on HA � HB, which follows from the fact that the identity
s trivial for product operators W=S � T and the linearity of the partial trace. Setting Uª idB

� 	H, U�ª idB � 	H
† , and Wª �Ey � idBn̄��ABn̄ leads to

�idB � 	H�TrA��Ey � idBn̄��ABn̄��idB � 	H
† � = TrA��idAB � 	H��Ey � idBn̄��ABn̄�idAB � 	H

† ��

= TrA��Ey � idBn̄��idAB � 	H��ABn̄�idAB � 	H
† �� .

he assertion then follows since �ABn̄ is symmetric relative to HA � HB, that is,

�idAB � 	H��ABn̄�idAB � 	H
† � = �ABn̄.

�

The notation for symmetric quantum states introduced above can also be used to denote
ymmetric probability distributions resulting from measuring a symmetric quantum state. Let, for
nstance, �An̄=�AB1¯Bn �S�HA � H�n� be symmetric relative to HA. Then, for POVMs Y and Z on

A and H, respectively, we write �
YZn
A n̄ instead of �YZ¯Z

A B1¯Bn.
To formulate our theorems in a compact way, we will make use of the notion of exchange-

bility. A symmetric density operator �n̄�S�H�n� is said to be m-exchangeable, for m�n, if there
xists a symmetric density operator �m̄�S�H�m� such that �n̄ is the partial trace of �m̄, i.e., �n̄

�n̄. Similarly to Definition II.5, the definition of exchangeability can be generalized to include an
dditional system HA.

Definition II.7: A density operator �An̄�S�HA � H�n� which is symmetric relative to HA is
alled m-exchangeable relative to HA if there exists a density operator �Am̄�S�HA � H�m� such
hat �An̄ is symmetric relative to HA and �An̄=�An̄. We refer to �Am̄ as an extension of �An̄.

In the following, we will often use the same label for an extension of a state. For example, we
ill denote an extension of �An̄ to m systems �for m�n� by �Am̄.

. Dual basis and quantum tomography

Let �ei�i�N be a family of vectors in a Hilbert space H. A family �f i�i�N is called a dual of
ei�i�N if v=�i�N�f i �v�ei for all v�H, where �f i �v� denotes the inner product of f i and v.

Note that the set of endomorphisms on H forms a complex Hilbert space with inner product
U ,V�� tr�UV†�. Similarly, the set Herm�H� of Hermitian operators on H is a real Hilbert space
ith inner product �U ,V�� tr�UV�. Hence, a family �Fz�z�Z of elements from Herm�H� is a dual
f a family �Fz

*�z�Z if

U = �
z�Z

tr�FzU�Fz
*, for all U � Herm�H� . �10�

n particular, expression �10� states that the operator U is fully determined by the values of the
races tr�FzU�. The following lemma generalizes this fact to product spaces.

Lemma II.8: Let �Fz�z�Z and �Fz
*�z�Z be families of elements from Herm�HB� such that

Fz�z�Z is the dual of �Fz
*�z�Z. Then, for any W�Herm�HA � HB�,

W = �
z�Z

Wz � Fz
*,
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here WzªTrB��idA � Fz�W�, for all z�Z.
Proof: It is easy to verify that Herm�HA � HB�=Herm�HA� � Herm�HB�. Hence there exist

perators Ui�Herm�HA� and Vi�Herm�HB� such that W=�iUi � Vi. By the linearity of the sum
nd the trace operator, it thus suffices to show that

U � V = �
z�Z

TrB��idA � Fz��U � V�� � Fz
*

or any U�Herm�HA� and V�Herm�HB�. Since TrB can be written as TrB=idA � trB �where

A � C is identified with HA� we find

TrB��idA � Fz��U � V�� = TrB�U � �FzV�� = tr�FzV�U ,

nd thus

�
z�Z

TrB��idA � Fz��U � V�� � Fz
* = U � �

z�Z
tr�FzV�Fz

*� .

he assertion then follows from �10�. �

Let Z= �Fz�z�Z be a POVM on HB and let �Fz
*�z�Z be a family of elements from Herm�HB�

uch that �Fz�z�Z is the dual of �Fz
*�z�Z. Definition 10 directly implies that any density operator �B

n HB can be written as

�B = E
z←�

Z
B
�Fz

*� , �11�

.e., �B is fully determined by the probability distribution �Z
B of the outcomes when applying the

easurement Z on �B. On the other hand, it is an immediate consequence of Lemma II.8 that, for
ny density operator �AB on HA � HB,

�AB = E
z←�

Z
B
��A

�Z=z � Fz
*� . �12�

The above formulas are useful for quantum state tomography, that is, the reconstruction of an
nknown quantum state � given only the statistics of measurement applied to identical copies of
. For example, it follows from �11�, the strong convexity of the trace distance and Lemma II.1
hat the estimate �̃B

ªEz←P̃Z
�Fz

*� is close to �B,

���B, �̃B� � �
z�Z

�PZ�z� − P̃Z�z�� · tr�Fz
*� . �13�

n particular, in order to obtain good estimates, one should choose a POVM Z such that the traces
r�Fz

*� are small.

II. INFORMATIONALLY COMPLETE POVMs AND DUALS

. Symmetric informationally complete POVMs

Intuitively, a POVM Z= �Fz�z�Z is useful for tomography if the distance between any two
perators Fz and Fz� is large. This is for instance the case for symmetric POVMs as defined below,
here the operators Fz are symmetrically distributed over the space of positive operators.

Definition III.1: Let H be a d-dimensional Hilbert space. A symmetric informationally com-
lete POVM Z= �Fz�z��d2� on H is an informationally complete POVM that consists of rank-one
rojectors

Fz ª
1

d
��z���z� for all z � �d2�
ith the property that
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tr�FzFz�� = �d for all z � z�.

or some �d�C.
Analytic constructions of symmetric informationally complete POVMs are known for dimen-

ions d=2,3 ,4 ,6 ,8 �see, e.g., Refs. 17 and 9�. It can be shown that if a symmetric informationally
omplete POVM exists in dimension d, then �d is a universal constant which is independent of the
articular symmetric informationally complete POVM. It equals

�d =
1

d2�d + 1�
.

Lemma III.2: Let Z= �Fz�z��d2��POVMH be a symmetric informationally complete POVM on
d-dimensional Hilbert space H. Then there is a set of operators �Fz

*�z��d2��Herm�H� that
atisfies

i� Z is a dual of �Fz
*�z��d2�.

ii� For every z� �d2�, the eigenvalues of Fz
* and their multiplicities are

0 ª d, n0 ª 1,

1 ª − 1, n1 ª d − 1.

Proof: Let us define �ªd2+d−1. It is straightforward to verify that the operators

Fz
*
ª �Fz − �

z��z

Fz�, z � �d2�

atisfy tr�Fz
*Fz��=�zz�, where �zz� denotes the Kronecker delta, which equals one if z=z� and 0

therwise. This implies property �i�. To obtain their eigenvalues, consider the matrix

B ª Fz
* + id = �� + 1�Fz.

ecause Fz= �1/d���z���z�, the eigenvalues of B are ��+1� /d and 0, occurring with multiplicities
and d−1, respectively. Hence statement �ii� follows. �

. A construction for arbitrary dimensions

As mentioned in the preceding section, symmetric informationally complete POVMs are
uitable for tomography. Unfortunately, their existence is only proven for certain dimensions. In
his section, we will give a construction of informationally complete POVMs for any dimension.
t is, however, not symmetric in the sense of Definition III.1, but still useful for tomography. Our
onstruction is motivated by a general group-theoretic technique for finding such POVMs �see
.g., Ref. 5�.

Note that a construction of an informationally complete POVM in any dimension is also given
nd applied in Ref. 4. Ours is more symmetric and allows us to construct a family of operators
uch that the informationally complete POVM is a dual of the family.

Let H be a d-dimensional Hilbert space and let �ªe2	i/d be the dth primitive root of unity.
efine the operators

Djk ª � j�k/2 �
m�Zd

� jm�k � m��m� for all �j,k� � Zd � Zd,

here �, � denotes addition and multiplication modulo d, respectively. Furthermore, define

c��j,k�,�l,m�� ª jm − kl for all �j,k�,�l,m� � Zd � Zd.
e will use the simple identity
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�
��Zd�Zd

�c��,�� = d2 · ��,0 for all � � Zd � Zd, �14�

here ��,� denotes the Kronecker delta, which equals 1 if �=� and 0 otherwise. Note that this
dentity directly follows from

�
m�Zd

�km = d · �k,0 for all k � Zd. �15�

Lemma III.3: The operators �D����Zd�Zd
have the following properties:

i� D� is unitary for every ��Zd�Zd.
ii� For every ��S�H�, ���Zd�Zd

D��D�
† =d · id.

iii� D�D�D�
† =�c��,��D�, for all � ,��Zd�Zd.

iv� D�
† =D−�, for all ��Zd�Zd.

v� tr�D�
†D��=d ·��,�.

Proof: These properties are well known �see e.g., Ref. 5� and can also be verified by direct
alculation. The proof is omitted here. �

Lemma III.4: Define

� ª

d

d2 + 1
id +

1

2d�d2 + 1� �
��Zd�Zd

�D� + D�
†� .

hen � is a state, i.e., ��S�H�.
Proof: To show that the operator � is non-negative, we make use of the following operators.

et

��km
� � ª

1

2

���/2�k � m� + �−�/2�m��

nd

�km
�

ª ��km
� ���km

� � for � � R,k,m � Zd, k � 0,

�0m
�

ª 1 +
�� + �−�

2
��m��m� .

ote that �0m
� is not normalized, but non-negative �if �� mod d�=d /2 it equals 0�.

With the definition

��j,k,m� ª
j�k

2
+ jm ,

t is easy to verify that

�
m

�km
��j,k,m� = id + 1

2 �Djk + Djk
† � ,

nd hence

� =
1

d�d2 + 1��j,k �
m

�km
��j,k,m�.

his implies that � is indeed positive. Let us show that � given by this expression is correctly

ormalized. Note that
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�
j,k,m

tr��km
��j,k,m�� = �

j,m
�
k�0

tr��km
��j,k,m�� + �

j,m
tr��0m

��j,0,m�� = d2�d − 1� + �
j,m

1 +
���j,0,m� + �−��j,0,m�

2
� .

ecause of

�
j,m

���j,0,m� = �
j,m

� jm = d ,

here the second equation follows from �15�, we obtain

�
j,k,m

tr��km
��j,k,m�� = d�d2 + 1� .

his concludes the proof. �

Lemma III.5: Let

�� ª
1

d2 + 1
id +

1

2d2�d2 + 1� �
��Zd�Zd

��c��,��D� + �−c��,��D�
†� .

hen Zª ������Zd�Zd
is a POVM on H.

Proof: We show that ��ª �1/d�D��D�
† where ��S�H� is the state given in Lemma III.4. The

tatement then follows from Lemma III.3 �i� and �ii� because these imply that the operators are
on-negative and resolve the identity.

We claim that

D�D�
†D�

† = �−c��,��D�
† . �16�

his can be verified as follows using the fact that the operators are unitary, Lemma III.3 �iii�, and
he identity c�� ,��=−c�� ,��,

D�D�
†D�

† = D�
†D�D�D�

†D�
† = D�

†�c��,��D�D�
† = �−c��,��D�

† .

y inserting the state � given in Lemma III.4, we obtain

1

d
D��D�

† =
1

d2 + 1
id +

1

2d2�d2 + 1� �
��Zd�Zd

�D�D�D�
† + D�D�

†D�
†� .

sing Lemma III.3 �iii� again as well as the identity �16� establishes the fact that this equals ��.�
To simplify the notation, let us introduce the Hermitian operators

�� ª
1

2d
�

��Zd�Zd

��c��,��D� + �−c��,��D�
†� .

ith these operators, the POVM in question has the simple form

�� ª
1

d2 + 1
· id +

1

d
· ��� for all � � Zd � Zd. �17�

et us first compute two useful identities concerning the trace of these operators.
Lemma III.6: For all � ,��Zd�Zd,

tr���� = 1,

tr���
†��� = d · ��,�.
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roof: As D0=id, we have from Lemma III.3 �v� the identity tr�D��=d ·��,0. With

tr�A†� = tr�A� �18�

his gives

tr���� = 1
2 ��c��,0� + �−c��,0�� = 1.

ecause of

��
†�� =

1

4d2�
�

�−c��,��D�
† + �c��,��D���

�

�c��,��D� + �−c��,��D�
†�

nd identity �18� we have

tr���
†��� =

1

4d2�
�,�

��c��,��−c��,�� tr�D�
†D�� + �c��,��+c��,�� tr�D�D��� + H.c. ,

here H.c. denotes the complex conjugate of the previous expression. Applying Lemma III.3 �iv�
nd �v� gives

tr���
†��� =

1

4d
· �

�

��c��,��−c��,�� + �c��,��+c��,−��� + H.c.

ut c�� ,−��=−c�� ,�� and c�� ,��−c�� ,��=c��−� ,��, hence we obtain

tr���
†��� =

1

4d
· �

�

��c��−�,�� + �c��−�,��� + H.c.

nd thus finally

tr���
†��� = d · ��,�,

s a consequence of Eq. �14�. �

Lemma III.7: The POVM Z is a dual of the family of Hermitian operators

�� ª − did −
d2 + 1

d
· ���, � � Zd � Zd.

roof: The operators �� are Hermitian since, by definition, the operators �� are Hermitian. The
act that Z is a dual of the family of operators �� follows from the representation �17� of the
OVM operators and Lemma III.6. �

Lemma III.8: For every ��Zd�Zd, tr�������d ·
d4+d2−1.
Proof: Let 1 , . . . ,d be the eigenvalues of �� �including multiplicities�. Then using Cauchy-

chwartz,

tr������ = �
i=1

d

�i� � d1/2
�
i=1

d

�i�2 = d1/2
tr���
†��� .

ut tr���
†���=d�d4+d2−1� as can be computed directly using Lemma III.6. �

V. ANALYSIS OF SYMMETRIC PROBABILITY DISTRIBUTIONS

In this section, we derive a number of useful properties of symmetric probability distributions.
hese results will later be applied to probability distributions resulting from measurements of a

ymmetric quantum state.
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It is worth noting that our proof of the finite quantum de Finetti representation does not rely
n a classical de Finetti-style theorem �as opposed to Ref. 4�. It is, however, straightforward to
btain a de Finetti representation for �classical� probability distributions based on the results
resented in the sequel.

. Estimating the frequency distribution of a subsequence

Let �z , z̄� be the concatenation of an n-tuple z and a k-tuple z̄ of elements from Z. We show
hat, if �z , z̄� is randomly chosen according to a symmetric probability distribution P�Z,Z̄�, then the
requency distribution Qz̄ of the subtuple z̄ is a good estimate for the frequency distribution Qz of
he remaining subsequence z.

We need the following simple relation between the distances of frequency distributions of
ubsequences obtained from a sequence of elements from Z.

Lemma IV.1: Let Z be a set and let z and z̄ be elements of Zn and Zk, respectively. Then

��Qz,Qz̄� �
n + k

n
��Qz̄,Q�z,z̄�� .

roof: By the definition of the frequency distribution,

�n + k�Q�z,z̄� = nQz + kQz̄.

ence, using the convexity of the variational distance,

��Q�z,z̄�,Qz� = � n

n + k
Qz +

k

n + k
Qz̄,Qz� �

k

n + k
��Qz̄,Qz� .

he triangle inequality then leads to

��Qz̄,Qz� � ��Qz̄,Q�z,z̄�� + ��Q�z,z̄�,Qz� � ��Qz̄,Q�z,z̄�� +
k

n + k
��Qz̄,Qz� ,

rom which the assertion follows.
We now show that Qz is close to Qz̄ by showing that the expression on the rhs of the

nequality in Lemma IV.1 is small in expectation.

Lemma IV.2: Let Z be an n-tuple and Z̄ a k-tuple of random variables over a set Z of size
Z�= t such that P�Z,Z� is symmetric. Then, for �z , z̄�←P�Z,Z�,

E
�z,z̄�

���Qz̄,Q�z,z̄��� �
1

2

 t

k
.

roof: Let Zª �Z1 , . . . ,Zn� and Z̄ª �Z̄1 , . . . , Z̄k�. It suffices to show that, for all probability distri-
utions q�Distr�Z�,

E
z̄←PZ�Q�Z,Z�=q

���Qz̄,q�� �
1

2

 t

k
. �19�

he assertion then follows from

E
�z,z̄�←P�Z,Z�

���Qz̄,Q�z,z̄��� = E
q←PQ�Z,Z�

� E
z̄←PZ�Q�Z,Z�=q

���Qz̄,q��� .

et thus q�Distr�Z� be fixed. For every z�Z, let �z be the function from Z to �0, 1� defined by
z�z��=1 if z�=z and �z�z��=0 otherwise. Then
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��Qz̄,q� =
1

2 �
z�Z

�dz�z̄�� , �20�

here, for any z̄= �z̄1 , . . . , z̄k��Zk,

dz�z̄� ª
1

k
�
i=1

k

��z�z̄i� − q�z�� .

sing Jensen’s inequality,

E
z̄←PZ�Q�Z,Z�=q

��dz�z̄��� �
 E
z̄←PZ�Q�Z,Z�=q

�dz�z̄�2� . �21�

e claim that for any i� j,

E
�z̄i,z̄ j�←P�Zi,Zj��Q�Z,Z�=q

���z�z̄i� − q�z����z�z̄ j� − q�z��� � 0. �22�

o prove this identity, first note that the expectation value can be written in the form

E
z̄i←PZi�Q�Z,Z�=q

� E
z̄ j←PZj�Q�Z,Z�=q,Zi=z̄i

���z�z̄i� − q�z����z�z̄ j� − q�z���� .

ince 0�q�z��1, it suffices to show that

E
z̄ j←PZj�Q�Z,Z�=q,Zi=z̄i

��z�z̄ j� − q�z����0 if z̄i = z ,

�0 otherwise.
� �23�

ecause of Lemma II.3, the probability distribution PZ�Q�Z,Z�=q,Zi=z̄i
is symmetric. Hence by the

efinition of the frequency distribution, we have

E
z̄ j←PZj�Q�Z,Z�=q,Zi=z̄i

��z�z̄ j�� = PZj�Q�Z,Z�=q,Zi=z̄i
�z� = �

nq�z� − 1

n − 1
if z = z̄i,

nq�z�
n − 1

otherwise.�
his proves �23� and thus �22�.

Using �22� and Lemma II.4, we obtain

E
z̄←PZ�Q�Z,Z�=q

�dz�z̄�2� �
1

k2�
i=1

k

E
z̄i←PZi�Q�Z,Z�=q

���z�z̄i� − q�z��2� =
1

k2�
i=1

k

�q�z� − q�z�2� �
q�z�

k
.

�24�

ombining �20�, �21�, and �24� leads to

E
z̄←PZ�Q�Z,Z�=q

���Qz̄,q�� =
1

2 �
z�Z


q�z�
k

.

he bound �19� then follows from the Cauchy-Schwartz inequality, which concludes the proof.�
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. The product structure of symmetric probability distributions

Let z be an n-tuple over Z randomly chosen according to a probability distribution PZ and let
�Distr�Z� be an estimate for the frequency distribution Qz of z. To quantify the quality of this
stimate, it is convenient to introduce the abbreviation Dq�PZ� for the expected distance between
he actual frequency distribution Qz and the estimate q, that is

Dq�PZ� ª E
z←PZ

���Qz,q�� .

he main result of Sec. IV A can then be rephrased as follows.
Lemma IV.3: Let Z be an n-tuple and Z a k-tuple of random variables over a set Z of size

Z�= t, for k�n, such that P�Z,Z� is symmetric. Then, for z̄←PZ,

E
z̄
�DQz̄

�PZ�Z=z̄�� �
 t

k
.

roof: From Lemma IV.2 and Lemma IV.1,

E
�z,z̄�←P�Z,Z�

���Qz,Qz̄�� �
 t

k
.

he assertion then follows from the definition of D . �·�.
�

Lemma IV.4 establishes a connection between the quantity Dq�PZ� and the product structure
f symmetric probability distributions.

Lemma IV.4: Let Y be a random variable over Y and let Z= �Z1 , . . . ,Zr� be an r-tuple of
andom variables over Z, such that the conditional probability distribution PZ�Y=y is symmetric for
very y�Y. Then, for all q�Distr�Z�,

��PYZi
,PY � q� � Dq�PZ�, for every i � �r� .

roof: Using the strong convexity of the variational distance, we have

��PYZi
,PY � q� � E

q̃←PQZ

���PYZi�QZ=q̃,PY�QZ=q̃ � q�� . �25�

ince PZ�Y=y is symmetric, Lemma II.4 implies PZi�Y=y,QZ=q̃= q̃, for every y�Y. In particular,
onditioned on Qz= q̃, Zi is independent of Y. Hence,

��PYZi�QZ=q̃,PY�QZ=q̃ � q� = ��PY�QZ=q̃ � q̃,PY�QZ=q̃ � q� = ��q̃,q� , �26�

here the last equality follows from �4�. Combining �25� and �26� leads to

��PYZi
,PY � q� � E

q̃←PQZ

���q̃,q�� = E
z←PZ

���Qz,q�� = Dq�PZ� .

. ANALYSIS OF SYMMETRIC QUANTUM STATES

The goal of this section is to derive results on symmetric quantum states, based on the
orresponding results on symmetric probability distributions given in the preceding section. In
ec. V A, we first show how certain properties of the measurement statistics imply structural
roperties of the corresponding quantum states. Then, in Sec. V B, we combine these results with

hose of Sec. IV B in order to prove statements about the structure of symmetric quantum states.
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. Deducing the state structure from measurement results

Consider a state of a bipartite system conditioned on a measurement on one of the systems.
e first prove an upper bound on the amount of dependence between this conditional state and the
easurement outcome.

Lemma V.1: Let �AB�S�HA � HB� and let Z= �Fz�z�Z be a POVM on HB. Then, for all q
Distr�Z� and z�Z,

���A
�Z=z,�

A� �
2

�Z
B�z�

max
Y

���YZ
A B,�Y

A � q� ,

here the maximization is over all POVMs Y on HA.
Proof: Let Yª �Ey�y�Y be a POVM on HA. Then, from the triangle inequality, �2� and �4�,

���YZ
A B,�Y

A � �Z
B� � ���YZ

A B,�Y
A � q� + ���Y

A � q,�Y
A � �Z

B� = ���YZ
A B,�Y

A � q� + ��q,�Z
B� � 2D ,

�27�

here

D ª max
Y�

���
Y�Z
A B,�

Y�
A

� q� ,

ith the maximization ranging over all POVMs Y� on HA. Using Eq. �3�, we have

�Z
B�z� · ���Y�Z=z

A ,�Y
A� � E

z←�
Z
B
����Y�Z=z

A ,�Y
A�� = ���YZ

A B,�Y
A � �Z

B� .

ith �27�, it follows that

���Y�Z=z
A ,�Y

A� �
2D

�Z
B�z�

or every z�Z and every POVM Y on HA. Therefore, using �9�, we conclude that

���A
�Z=z,�

A� = max
Y

���Y�Z=z
A ,�Y

A� �
2D

�Z
B�z�

.

�

For a POVM Z= �Fz�z�Z on a Hilbert space H, we define the constants

C1�Z� ª min
�Fz

*�z�Z

2 · �
z�Z

tr��Fz
*��� ,

C2�Z� ª 
�Z� · C1�Z� ,

here the minimum ranges over all families �Fz
*�z�Z of elements from Herm�H� such that Z is the

ual of �Fz
*�z�Z. If no such family �Fz

*�z�Z exists, we set Ci�Z�ª�, for i=1,2.
It is clear �from linear algebra, it is well known that whenever a family �f i�i�N forms a basis

f H, there exists a unique family �ei�i�N such that �f i�i�N is a dual of �ei�i�N� that Ci�Z���, for
=1,2, if Z is an informationally complete POVM. By the interpretation given to the values
r��Fz

*�� in Sec. II D, the value C1�Z� can be seen as a measure for the resulting accuracy when
stimating an unknown state � given the statistics obtained by the measurement Z.

For a d-dimensional Hilbert space H, let C̄i�d� be the minimum of Ci�Z�, minimized over all
OVMs Z on H, that is

C̄i�d� ª min Ci�Z� for i = 1,2.

Z
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The following corollary is a direct consequence of Lemma III.2 and Lemma III.8.
Corollary V.2: Let H be a d-dimensional Hilbert space. Then

C̄1�d� � 2
2 · d5,

C̄2�d� � 2
2 · d6.

f symmetric informationally complete POVMs exist in dimension d, then

C̄1�d� � 2d2�2d − 1� .

C̄2�d� � 2d3�2d − 1� .

The main result of this section expresses the intuitive fact that a bipartite state has product
orm if every bipartite measurement yields a product distribution.

Theorem V.3: Let �AB�S�HA � HB� and let Z be a POVM on HB. Then, for any q
Distr�Z�,

���AB,�A
� �B� � C1�Z� · max

Y

���YZ
A B,�Y

A � q� .

n particular, if HB is d-dimensional, then

���AB,�A
� �B� � C̄1�d� · max

Y,Z
���YZ

A B,�Y
A � �Z

B� .

The maxima are taken over all POVMs Y on HA and Z on HB, respectively.�
Proof: Let �Fz

*�z�Z be a family of elements from Herm�HB� such that Z= �Fz�z�Z is the dual
f �Fz

*�z�Z. Then, according to �12�,

�AB = E
z←�

Z
B
��A

�Z=z � Fz
*� and �B = E

z←�
Z
B
�Fz

*� .

sing these identities, the strong convexity of the trace distance, and Lemma II.1, we obtain

���AB,�A
� �B� = �� E

z←�
Z
B
��A

�Z=z � Fz
*�, E

z←�
Z
B
��A

� Fz
*�� � E

z←�
Z
B
����A

�Z=z � Fz
*,�A

� Fz
*��

= E
z←�

Z
B
����A

�Z=z,�
A� · tr��Fz

*��� .

he assertion then follows from Lemma V.1 and the definition of C1�Z�. �

. The product structure of symmetric quantum states

We now combine the results of Sec. IV and Sec. V A. We start with a quantum analogue of
emma IV.4.

Lemma V.4: Let �Ar̄�S�HA � H�r� be symmetric relative to HA and let Z= �Fz�z�Z be a
OVM on H. Then, for any q�Distr�Z�,

���A1̄,�A
� �1̄� � C1�Z�Dq��

Zr
r̄ �

nd

���Z
1̄ ,q� � Dq��

Zr
r̄ � .
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Proof: Let Y be a POVM on HA. Since, by Lemma II.6, � �Y=y
r̄ is symmetric, the probability

istribution �
Zr�Y=y
r̄ is also symmetric, for all y�Y. Lemma IV.4 thus implies

���YZ
A 1̄,�Y

A � q� � Dq��
Zr
r̄ � . �28�

he first assertion of the lemma then follows from Theorem V.3.
The second assertion of the lemma follows directly from �28� and property �2� of the varia-

ional distance, i.e., ���Z
1̄ ,q�����YZ

A1̄ ,�Y
A �q�. �

The next lemma shows that symmetry imposes severe constraints on the structure of quantum
tates. More precisely, if a symmetric quantum state has �almost� product structure with respect to
ne of its subsystems, this directly implies that the state has �almost� product structure with respect
o all its subsystems.

Lemma V.5: Let �An̄�S�HA � H�n� be symmetric relative to HA. Then

���An̄,�A
� ��1̄��n� � n · ���An̄,�An − 1

� �1̄� .

Proof: Using the triangle inequality for the trace distance, we get

���An̄,�A
� ��1̄��n� � �

i=0

n−1

���An − 1
� ��1̄�� i,�An − i − 1

� ��1̄���i+1�� . �29�

ince, by Eq. �8�, the trace distance does not change when tracing out the product state ��1̄�� i, we
ave, for any i� �n�,

���An − i
� ��1̄�� i,�An − i − 1

� ��1̄���i+1�� = ���An − i,�An − i − 1
� �1̄� . �30�

sing the fact that the trace distance can only decrease when taking a partial trace �see �6��, we get

���An − i,�An − i − 1
� �1̄� � ���An̄,�An − 1

� �1̄� . �31�

ombining �30� with �31� and inserting this into �29� concludes the proof. �

Combined with Lemma V.4, we obtain an upper bound on the distance between a symmetric
tate on n subsystems and an n-fold product state.

Corollary V.6: Let �An + m�S�HA � H�n+m� be symmetric relative to HA and let Z= �Fz�z�Z be
POVM on H. Then, for any q�Distr�Z�,

���An̄,�A
� ��1̄��n� � nC1�Z�Dq��

Zm+1
m + 1� .

Proof: Obviously, the density operator �An + m is symmetric relative to HA�ªHA � H�n−1.

hus, with rªm+1, we can write �A�r̄ instead of �An + m, and, similarly, �An̄=�A�1̄ and �An − 1

�A�. Hence, by Lemma V.4,

���An̄,�An − 1
� �1̄� = ���A�1̄,�A� � �1̄� � C1�Z�Dq��

Zr
r̄ � .

pplying Lemma V.5 concludes the proof. �

Finally, we give an upper bound on the expected value of the quantity appearing on the rhs. in
orollary 6. For this, we need a quantum analogue of Lemma IV.3.

Lemma V.7: Let �n + k�S�H�n+k�, for k�n, be symmetric and let Z= �Fz�z�Z be a POVM on H
ith �Z�= t. Then, for z̄←�

Zk
k̄ ,

E
z̄
�DQz̄

��
Zn�Zk=z̄
n̄ �� �
 t

k
.

Proof: The assertion follows directly from Lemma IV.3 and the fact that the probability
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istribution �
Zn
n̄

Zk
k̄ =�

Zn+k
n + k is symmetric. �

I. MAIN RESULTS

Our main results immediately follow from the characterizations of symmetric quantum states
iven in the preceding section. Basically, we consider the quantum state �z̄

An̄
ª�An̄

�Zk=z̄ on HA

� H�n obtained by conditioning an exchangeable state �An + k on the outcomes z̄= �z1 , . . . ,zk� of a

OVM Z applied to k subsystems. We show that �z̄
An̄ is close to a product state �z̄

A
� ��z̄

1̄��n where

z̄
1̄ is a density operator on a single subsystem H. Moreover, �z̄

1̄ is almost determined by the
bserved measurement statistics.

Theorem VI.1: Let �An + k�S�HA � H�n+k� be �n+2k−1�-exchangeable relative to HA and let

= �Fz�z�Z be a POVM on H with �Z�= t. For every z̄�Zk, let �z̄
An̄
ª�An̄

�Zk=z̄. Then for z̄←�
Zk
k̄ ,

E
z̄
����z̄

An̄,�z̄
A

� ��z̄
1̄��n�� � C2�Z�

n

k

here �z̄
1̄=�1̄

�Zk=z̄ is determined by

E
z̄
����

Z�Zk=z̄
1̄ ,Qz̄�� �
 t

k
.

Proof: Let mªk−1. According to the definition of exchangeability, there exists an extension
An + k + m�S�HA � H�n+k+m� of �An + k which is symmetric relative to HA. For every z̄�Zk, let
�z̄�An + m

ª�An + m
�Zk=z̄.

By Lemma II.6, ��z̄�An + m is symmetric relative to HA. Hence, from the second bound of
emma V.4, with rªm+1,

����z̄�Z
1̄ ,Qz̄� � DQz̄

���z̄�Zm+1
m + 1� �32�

nd, from Corollary V.6,

����z̄�An̄,��z̄�A
� ���z̄�1̄��n� � nC1�Z�DQz̄

���z̄�Zm+1
m + 1� . �33�

ince k=m+1, we can apply Lemma V.7 to the state ��m + 1� + k, i.e.,

E
z̄
�DQz̄

���z̄�Zm+1
m + 1�� �
 t

k
.

he assertion follows by taking the expectation on both sides of �32� and �33�, respectively. �

Using Markov’s inequality, it is straightforward to turn Theorem VI.1, which expresses close-
ess in terms of expected distance, into a statement providing a bound on the probability that the
istance is larger than a given value �. However, by adapting the auxiliary results derived so far
nd using a tail inequality by Hoeffding, we obtain a tighter bound. The interested reader is
eferred to the Appendix for a derivation of an alternative version of Theorem VI.1.

Finally, as a simple corollary of Theorem VI.1, we obtain the following representation for
nitely exchangeable quantum states.

Corollary VI.2 (finite quantum de Finetti representation): Let H be a d-dimensional Hilbert
pace and let �n̄�S�H�n� be �n+s�-exchangeable. Then �n̄ is �-close to the convex hull of the set

f n-fold product states ���n :��S�H��, for �=
2C̄2�d�n /
s.
Proof: Let kª �s /2� and let �n + k�S�H�n+k� be an �n+2k−1�-exchangeable extension of �n̄.

et Z be an informationally complete POVM on H and let, for any z̄�Zk, �z̄
n̄
ª�n̄

�Zk=z̄. We show

hat
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���n̄,E
z̄
���z̄

1̄��n�� � 
2C̄2�d�
n

s

, �34�

here z̄←�
Zk
k̄ . Since, by �1�,

E
z̄
��z̄

n̄� = �n̄,

e obtain, using the strong convexity of the trace distance

���n̄,E
z̄
���z̄

1̄��n�� = ��E
z̄
��z̄

n̄�,E
z̄
���z̄

1̄��n�� � E
z̄
����z̄

n̄,��z̄
1̄��n�� . �35�

nequality �34� then follows directly from Theorem VI.1. �

While this result is of interest in its own right, we point out that taking the limit s→� directly
ives the well-known quantum de Finetti representation for infinitely exchangeable quantum
tates,13 thus providing yet another new �compare Ref. 4� and conceptually simple proof.
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PPENDIX: MARKOV-STYLE VERSION OF THEOREM VI.1

While Theorem VI.1 provides a bound on the expected distance between the conditional state

z̄
An̄ and the product state �z̄

A
� ��z̄

1̄��n, Theorem A.1 below gives an expression for the minimum
robability such that this distance is smaller than some given value.

Theorem A.1: Let �An + k�S�HA � H�n+k� be �n+2k−1�-exchangeable relative to HA and let
= �Fz�z�Z be a POVM on H with �Z�= t. For every z̄�Zk, let �z̄

An̄
ª�An̄

�Zk=z̄. Then, for all 

0, and for z̄←�
Zk
k̄ , with probability at least 1−2ke−2/8,

���z̄
An̄,�z̄

A
� ��z̄

1̄��n� �
n


k
C2�Z�

nd

���
Z�Zk=z̄
1̄ ,Qz̄� �
 t

k
 .

The proof of this theorem essentially follows the lines of the proof of Theorem VI.1. The main
ifference is that Lemma IV.2 is replaced by a statement based on a tail inequality due to
oeffding10 which applies to hypergeometric distributions as defined below �for more details, see,

.g., Ref. 14�.
Definition A.2: The hypergeometric distribution Hyp�n ,m ,k� with parameters n, m, and k is

efined as the probability distribution of the random variable Sª ��� �m�� where � is a randomly
hosen subset of �n� of size ���=k.

Lemma A.3. Hoeffding: Let S be a random variable with PS=Hyp�n ,m ,k�. Then, for all �
0,

P
s
�s � k

m

n
− �� � e−�2n/2km.

Lemma A.4 and Lemma A.5 are adapted versions of Lemma IV.2 and Lemma IV.3, proven in

ec. IV A and Sec. IV B, respectively.
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Lemma A.4: Let Z be an n-tuple and Z a k-tuple of random variables over a set Z of size
Z�= t such that P�Z,Z� is symmetric. Then, for any ��0 and for �z , z̄�←P�Z,Z�,

P
�z,z̄�

���Qz̄,Q�z̄,z�� � �� � te−k�2/2t.

Proof: It suffices to show that, for all probability distributions q�Distr�Z�,

P
z̄←PZ�Q�Z,Z�=q

���Qz̄,q� � �� � te−k�2/2t. �A1�

he assertion of the lemma then follows from

P
�z,z̄�←P�Z,Z�

���Qz̄,Q�z,z̄�� � �� = E
q←PQ�Z,Z�

� P
z̄←PZ�Q�Z,Z�=q

���Qz̄,q� � ��� .

et thus q�Distr�Z� with PQ�Z,Z�
�q��0 be fixed. The variational distance between Qz̄ and q can

e written as

��Qz̄,q� = �
z�Z�

max�q�z� − Qz̄�z�,0� , �A2�

here Z�ª �z�Z :q�z��0�. It is easy to see that, for any z�Z, the random variable Sz

k ·QZ�z�, conditioned on the event Q�Z,Z�=q, is distributed according to Hyp�n+k , �n
k�q�z� ,k�. For any z�Z�, let �zª�
q�z� / t. Lemma A.3 �with �=k�z� then implies

P
z̄←PZ�Q�Z,Z�=q

�q�z� − Qz̄�z� � �z� � e−k�z
2/2q�z� = e−k�2/2t,

nd thus, using the union bound,

P
z̄←PZ�Q�Z,Z�=q

�∀z � Z�:q�z� − QZ�z� � �
q�z�
t
� � 1 − tek�2/2t. �A3�

ince, by the Cauchy-Schwartz inequality,

�
z�Z�

�
q�z�
t

� � ,

he event in �A3� implies that the sum on the rhs of �A2� is smaller than �, that is, ��Qz̄ ,q���.
nequality �A1� thus follows directly from the bound �A3�. �

Lemma A.5: Let Z be an n-tuple and Z̄ a k-tuple of random variables over a set Z of size
Z�= t, for k�n, such that P�Z,Z� is symmetric. Then, for all ��0 and for z̄←PZ,

P
z̄
�DQz̄

�PZ�Z=z̄� � �� � 2ke−k�2/8t.

Proof: Let �ª t /k and �̄ª�−�. Note that, if ���, the rhs of the inequality in the lemma
ecomes larger than 1 because ��1, i.e., the assertion is trivially true. Thus we can assume that
�0. For all z̄�Zk, let

pz̄ ª P
z←PZ�Z=z̄

���Qz,Qz̄� � �̄� .
e then have, by Lemma A.4 and Lemma IV.1,
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E
z̄←PZ

�pz̄� = P
�z,z̄�←P�Z,Z�

���Qz,Qz̄� � �̄� � P
�z,z̄�←P�Z,Z�

���Qz̄,Q�z,z̄�� �
�̄

2
� � te−k�̄2/8t,

nd, by Markov’s inequality,

P
z̄←PZ

�pz̄ � �� �
t

�
e−k�̄2/8t. �A4�

ith the definition

� ª �z̄ � Zk:pz̄ � �� ,

he bound �A4� can be rewritten as

P
z̄←PZ

�z̄ � �� �
t

�
e−k�̄2/8t � 2ke−k�2/8t,

here the second inequality follows from the observation that �̄2= ��−��2��2−2� and �= t /k.
It thus remains to be shown that, for any z̄��,

DQz̄
�PZ�Z=z̄� = E

z←PZ�Z=z̄

���Qz,Qz̄�� � � . �A5�

et thus z̄�� be fixed. Then

E
z←PZ�Z=z̄

���Qz,Qz̄�� = �
z�Zn

��Qz,Qz̄���̄

PZ�Z=z̄�z���Qz,Qz̄� + �
z�Zn

��Qz,Qz̄���̄

PZ�Z=z̄�z���Qz,Qz̄� � �̄ + pz̄

rom which the bound �A5� follows by the definition of � and �̄+�=�. �

Finally, using Lemma A.5, we directly obtain Lemma A.6 below which corresponds to Lemma
.7 of Sec. V B.

Lemma A.6: Let �n + k�S�H�n+k�, for k�n, be symmetric and let Z= �Fz�z�Z be a POVM on

with �Z�= t. Then, for all ��0 and for z̄←�
Zk
k̄ ,

P
z̄
�DQz̄

��
Zn�Zk=z̄
n̄ � � �� � 2ke−k�2/8t.

The proof of Theorem A.1 is now similar to the proof of Theorem VI.1, where, instead of
emma V.7, Lemma A.6 is used to bound the rhs of �32� and �33�.
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Under SU�2� gauge transformation, the non-Abelian Chern-Simons action is invari-
ant on a class of three dimensional manifold—3 simple knot. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2137721�

. INTRODUCTION

The Chern-Simons gauge theory provides a topological field theoretic framework for the study
f knots and links in a given three manifold.1,2 It was Schwarz who first conjectured3 that the now
amous Jones polynomial4 may be related to Chern-Simons theory. Witten in his pioneering paper5

et up the general framework to study knots and links through Chern-Simons field theories. Wilson
oop operators are the topological operators of this theory. Expectation value of these operators are
he topological invariants for knots and links. It is well known that the Abelian Chern-Simons
ction

I =
1

4�
�

M

A ∧ F =
1

8�
�

M

�ijkAiFjkd
3x �1�

s the topological invariant on one-dimensional knots.5,6 As for the non-Abelian Chern-Simons
ction

� =
1

8�2 Tr�A ∧ F −
2

3
A ∧ A ∧ A� , �2�

lthough mathematical development suggests that the link invariants provide a method of obtain-
ng topological invariants for three-manifold,7,8 there is still no work which can give the relation
etween the non-Abelian Chern-Simons action and 3-knot manifold �it is three-dimensional knot,
nd is totally different from the knots in Jones polynomial and in the mathematical method
entioned above�.

The 3-knot has a very important application in modern physics. According to the closed
niverse model, our universe can also be treated as a 3-sphere in modern cosmology theory, since
ur universe is viewed as embedding in a higher dimensional world, in which, the observed
lementary particles are the light particles trapped on the �3+1�-dimensional defect. Since the
-sphere S3 is the most trivial 3-knot, it is natural to generalize the closed and oriented manifold
hich are homeomorphic to S3. This may provide us with insight into modern cosmology.

In knot theory, a knotted �closed, oriented� n-manifold M, i.e., n-knot is a smoothly embedded
-sphere in Sn+2, K= f�Sn��Sn+2. Obviously the 3-knot is a knotted three-dimensional manifold

M = f�S3��S5. It is well known that every classical knot bounds a compact orientable surface,
nown as a Seifert surface for the knot.9 A Seifert surface for a 3-knot K is defined to be a compact
rientable four-manifold W in S5, such that

�
Electronic mail: sity@itp.ac.cn

46, 122301-1022-2488/2005/46�12�/122301/4/$22.50 © 2005 American Institute of Physics

                                                                                                            

http://dx.doi.org/10.1063/1.2137721
http://dx.doi.org/10.1063/1.2137721
http://dx.doi.org/10.1063/1.2137721


T

k
t
o

w
W

g

w
p
a

t
H
m
n
o
d

I

c

i
a

H
s

S
=
o
�

122301-2 Tieyan Si J. Math. Phys. 46, 122301 �2005�

                        
�W = K . �3�

he simple n-knots10 are those for which �i�X̄�=0 �Ref. 11� for i�m with n=2m or n=2m−1.
On the mathematical side, odd dimensional simple knots have a tendency to look like classical

nots. We will show that the non-Abelian Chern-Simons action is invariant under SU�2� gauge
ransformation on the simple 3-knot, just like the Abelian Chern-Simons action which is invariant
n one-dimensional knots under U�1� transformation.6

Our discussion is based on Levine’s theorem,10 which states, for any simple knot K�S2m+1,
ith a �m−1�-connected Seifert surface W, as dim W=2m the only nontrivial homology group of
is Hm�W�, where the coefficient is integer.

Applying this theorem to 3-knot, for which m=2, we arrive that the only nontrivial homology
roup of Seifert surface W of 3-knot is H2�W .z�. Therefore, we have H4�W .z�=0” .

If we denote the non-Abelian Chern-Simons action under SU�2� gauge transformation as �S,
e arrive at the quantity I=�S−� which appeared in the many topological field theory.12 As
ointed out by many physicists, this quantity just represents the second Chern number C2.12 While
ccording to the characteristic class theory, the nonzero Chern class must follow12

Ci�p� � H2i�M� , �4�

his immediately leads to C2�p��H4�W�. As we know, on the Seifert surface W of 3-knot,

4�W .z�=0” . Recall the De Rahm cohomology theory,13 the cohomology groups H4�W� are iso-
orphic to homology groups H4�W�, so we have C2�p�=0. It means �S−�=0, therefore the

on-Abelian Chern-Simons action is an invariant under gauge transformation. It must be pointed
ut here that this conclusion only holds for a special class of knot—3 simple knot, which is
efined by Levine.10

In the following we will present a more exhaustive discussion.

I. THE NON-ABELIAN CHERN-SIMONS IS AN INVARIANT ON 3 SIMPLE KNOT

Under SU�2� gauge transformation, the non-Abelian Chern-Simons action,

I =� � =
1

8�2�
K

Tr�A ∧ dA −
2

3
A ∧ A ∧ A� �5�

an be denoted as

Is =
1

8�2�
K

Tr�As ∧ Fs +
1

3
As ∧ As ∧ As� , �6�

n which As=SAS−1+dS S−1 and Fs=SFS−1, S is an element of SU�2�. After some algebra, one can
rrive at12

Is − I =
1

24�2�
K

Tr�dS S−1 ∧ dS S−1 ∧ dS S−1� . �7�

ere K is a 3 simple knot. It is well known that the right-hand side of Eq. �7� just represents the
econd Chern class which describes the winding number of the manifold.

Since S�SU�2� and Spin�3� is homeomorphic to SU�2�, we can replace S with an element of
pin�3�; n; it can be expressed in terms of Clifford algebra14 as n=na�a �a=0,1 ,2 ,3�, where �
�I , i�� �, �†= �I ,−i�� � with �� denotes the Pauli matrices. It is easily seen that n is just the element
f Spin�3� in terms of geometric algebra. Obviously nn†=1, from the formula n† dn=−dn† n, Eq.

7� can be written as
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Is − I = −
1

24�2�
K

Tr�dn ∧ dn† ∧ dn n†� . �8�

onsidering �W=K, following Duan’s work on second Chern class,15 it can be proved that

C2 = Is − I =
1

24�2�
W

Tr�dn ∧ dn† ∧ dn ∧ dn†� . �9�

Now we see, for the non-Abelian Chern-Simons action on a 3 simple knot, after the SU�2�
auge transformation, it becomes Is= I+C2, where C2 is the second Chern number on the Seifert
urface W of the 3 simple knot.

It will be shown in the following that, the second Chern number on the Seifert surface W of
he 3 simple knot is zero. This conclusion can be deduced from Levine’s theorem.10 For any
imple knot K�S2m+1, a �m−1�-connected Seifert surface W, as dim W=2m the only nontrivial
omology group of W is Hm�W�, where the coefficient is integer.

For 3 knot, m=2. Levine’s theorem suggests the only nontrivial homology group of the Seifert
urface of a 3 simple knot H2�W .z�. The other homology group must be empty, then H4�W .z�
0” .

Recall the De Rahm cohomology theory,13 the cohomology groups are isomorphic to homol-
gy groups, i.e.,

bk = dim Hk�M� = bk = dim Hk�M� , �10�

here bk=dim Hk�M� is the co-Betti number, and bk=dim Hk�M� is the Betti number. From

4�W .z�=0” and �10�, one sees that

b4 = dim H4�W� = dim H4�W� = 0. �11�

ccording to the characteristic class theory, the possible nonzero Chern class must follow12

Ci�p� � H2i�M� . �12�

or the second Chern class C2, we have C2�p��H4�W�. Considering Eq. �11�, we arrive at

C2�p� = 0. �13�

o the second Chern number on the 3-knot’s Seifert surface is

Is − I = 0. �14�

herefore, the non-Abelian Chern-Simons action is invariant over 3-knot. In fact, according to
uan’s �-mapping topological current theory, it is easy to prove that15 C2�p�=��=1

l W�, where W�

s the winding number around instantons in space-time; this may provide us with a deep under-
tanding of the 3-brane world theory.16

Now we can conclude that the non-Abelian Chern-Simons action is invariant under SU�2�
auge transformation over a 3 simple knot.
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We study the Chern-Simons topological quantum field theory with an inhomoge-
neous gauge group, a non-semi-simple group obtained from a semisimple one by
taking its semidirect product with its Lie algebra. We find that the standard knot
observable �i.e., trace of the holonomy along the knot� essentially vanishes, and
yet, the non-semi-simplicity of the gauge group allows us to consider a class of
unorthodox observables which breaks gauge invariance at one point and leads to a
nontrivial theory on long knots in R3. We have two main morals. �1� In the non-
semi-simple case there is more to observe in Chern-Simons theory. There might be
other interesting non-semi-simple gauge groups to study in this context beyond our
example. �2� In the case of an inhomogeneous gauge group, we find that Chern-
Simons theory with the unorthodox observable is actually the same as
three-dimensional BF theory with the Cattaneo-Cotta-Ramusino-Martellini knot
observable. This leads to a simplification of their results and enables us to gener-
alize and solve a problem they posed regarding the relation between BF theory and
the Alexander-Conway polynomial. We prove that the most general knot invariant
coming from pure BF topological quantum field theory is in the algebra generated
by the coefficients of the Alexander-Conway polynomial. © 2005 American Insti-
tute of Physics. �DOI: 10.1063/1.2146190�

. INTRODUCTION

We would like to address the question of the most general knot invariant coming from BF
opological quantum field theory �TQFT�. In the mid-1990s, Cattaneo et al.9–12 showed that while
F theory with cosmological constant produces the same invariants of knots as the Chern-Simons

CS� theory, the BF theory with no cosmological constant �pure BF theory� and SU�2� gauge
roup produces invariants that lie in the algebra generated by the coefficients of the Alexander-
onway polynomial. The BF TQFT is completely equivalent to CS theory, however, while the
quivalence with nonzero cosmological constant maintains the semisimplicity property of the
auge group, the equivalence when the cosmological constant is set to zero shifts us to a CS theory
ith a non-semi-simple gauge group. Thus, starting with a gauge group G in the pure BF theory
e end up on the CS side with a semidirect product of the group with its Lie algebra G›G, also
nown as the inhomogeneous group of G �denoted IG�. Eventually, the question we want to
ddress is as follows: What is the most general knot invariant (or knot observable) in a CS theory
ith an inhomogeneous gauge group?

The natural thing to begin with is the standard gauge invariant observable, the trace of the
olonomy of the gauge connection along the knot, in some chosen representation. As we shall see
n Sec. II, this observable gives us no information regarding the knot �except for framing infor-
ation that can be normalized to zero anyway�. This fact seems to pose a contradiction since in

�
Electronic mail: gnaot@math.toronto.edu
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he equivalent pure BF theory one can extract some nontrivial information regarding the knot �at
east in the case of SU�2� gauge�. Therefore, there must be a procedure that will give us nontrivial
nformation regarding the knot in this setting.

In this paper we will introduce the following procedure �Sec. III A�: We take an observable
hich is not gauge invariant at one single point on the knot �holonomy along the knot without the

race�. By doing that, we get a CS theory on S3 with broken gauge symmetry at one point on the
not. Then, we declare this point to be infinity by taking the point out of our space �i.e., puncturing
3 at that point�. Since the gauge transformations are taken to vanish at infinity, we get a com-
letely invariant CS theory on R3 with a long knot embedded in it. Since knot theory in S3 and
ong knot theory in R3 are “isomorphic” theories we lose no information as far as knot theory is
oncerned and we get “legal” CS theory in which we can consider a new and wider class of
bservables.

Using perturbation theory, we will show that our observable gives nontrivial information
bout the knot �Sec. III B�. Continuing with perturbation theory in our setting �CS with IG gauge
roup and the new observable� we will be able to prove that the most general knot invariant
oming from such a construction is in the algebra generated by the coefficients of the Alexander-
onway polynomial �Sec. III C�. Returning to BF theory �Chap. IV� we will create an observable

hat reproduces the Cattaneo et al. result for SU�2� and generalize it to every metrizable gauge
roup and representation thereof used in the construction of the pure BF theory.

Our construction detects, in some sense, the difference between the invariant subspace of the
niversal enveloping algebra of the non-semi-simple gauge group and the coinvariant quotient of
he universal enveloping algebra. This enables us to extract nontrivial information regarding the
not �a difference which does not exist in the semisimple case�. We discuss this issue in Chap. V.

I. PERTURBATION THEORY FOR THE STANDARD OBSERVABLE
ITH AN INHOMOGENEOUS GAUGE GROUP

In this section we will show that the perturbation theory of Chern-Simons �CS� theory with an
nhomogeneous gauge group and the standard knot observable is almost trivial. We start �2.1� with
ome reminders about perturbation theory �in CS context�. Unfortunately, due to the size of the
opic this reminder is not meant to teach the theory. For recent detailed pedagogic reviews see
efs. 19 and 18. This will be followed by introduction of the inhomogeneous gauge group and our
otations for it �Sec. II B�. We continue with giving more details about perturbation theory using
his gauge group �Sec. II C�. Section II C will describe the consequences of using such a gauge
roup on the knot invariants coming from the standard observable. Finally, in Sec. II D, we
ill show that the standard construction in this setting is trivial, leading to �almost� trivial knot

nvariants.

. Some reminders about perturbation theory and Chern-Simons theory

We recall the setting for knot invariants in the framework of CS theory �in this section a knot
s an embedding of S1 into S3�. We take S3 to be the three-dimensional manifold on which the CS
heory is defined. We choose any gauge group G whose Lie algebra is metrizable �e.g., semisimple
auge group�. Denote the metric on the Lie algebra by �,� and let A be a G-connection. We
onsider the following action functional:

Chern - Simons action CS�A� = k · 2��
S3
�A ∧ dA +

2

3
A ∧ A ∧ A	 ,

here k is a coupling constant which satisfies a quantization condition �e.g., for semisimple gauge
roups it must be an integer�. In what follows, however, we will work perturbatively with formal
ower series in k−1.

Now, recall the standard knot observable, TrR hol�A� where hol�A� stands for the holonomy of
he connection A along the knot �the path-ordered exponent of the integral of A along the knot�

nd the trace is taken in some chosen representation R of the gauge group.
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One obtains a knot invariant by taking the path integral over all connections with the observ-
ble plugged into the integrand,

Z�knot� =� DAeiCS�A� TrR hol�A� .

his integral is usually referred to as the expectation value of the standard observable and it is
iewed as a function from knots to the base field �the complex numbers from now on�. One is
sually interested in Z�knot� /Z���, where Z��� is the path integral with no observable plugged in
no knot�.

Calculating the integral using perturbation theory we get the following sum:



D�DCS

k−deg D · �CS�D� · WG�D� ,

here DCS is defined to be the set of all trivalent connected graphs based on S1 �Feynman
iagrams based on a Wilson loop�, �CS is the integration of the corresponding propagators over the
iagram �that is, the integration over the appropriate configuration space� and WG is the Lie-
lgebraic part of the expectation value which holds all the information coming from the Lie group

and its representation R �that is, the weight system, reviewed quickly below�.
In the CS perturbation theory calculation, every internal edge contributes 1 /k and every

nternal vertex contributes k to the total power of k of the diagram �recall that an internal edge/
ertex is an edge/vertex which is not on the Wilson loop�. The total power of 1 /k is called the
egree of the diagram. A convenient way of counting the degree is labeling each internal vertex
ith −1 and each edge with +1 and then summing all the labels to get the degree of the diagram.
his number is denoted deg D.

We want to factorize the perturbation theory calculation in order to get a better hold on the
bove knot invariant. As a first step, we can drop the weight system and replace it with the
iagram D on which it is calculated. We get the following invariant:



D�DCS

k−deg D · �CS�D� · D .

his invariant is viewed as taking values in A�S1�, where we define A�S1� as follows.
Definition 2.1: A�S1� is the algebra of all connected trivalent graphs based on a circle �i.e.,

CS� quotient by the IHX relation

he STU relation

nd the antisymmetry relation

When we apply the weight system WG to this invariant we get the first sum. Next we will
pply the weight system by parts, in order to get a further factorization.

Weight systems are described and explored in Ref. 6. We recall the main construction of a
eight system coming from a Lie algebra, which includes three parts, labeling, contracting, and

he trace part. In the labeling part, after choosing a basis for the Lie algebra, one labels each
nternal edge of a given diagram �i.e., edges that are not contained in the base circle� with a

ifferent index on each end of the edge. In the second part, one writes the structure constants
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ensor for each internal vertex and the metric tensor for each internal edge �using the indices on
hese vertices/edges and the chosen basis� and proceeds to contract matching indices �using the
etric to raise and lower indices�. At that point, one is left with an invariant tensor in the

nveloping algebra of G whose indices are the ones on the vertices on the base loop. In the final
art, the trace part, one represents this tensor using a chosen representation of G and takes the
race. This concludes the construction of the weight system.

Taking a diagram �more precisely a class representative but we will not make these distinc-
ions throughout the paper� in A�S1� and applying to it the labeling and contracting parts of the
eight system gives us a tensor in the universal enveloping algebra. This tensor is invariant under

he adjoint action �all the tensors used in building it are invariant under the action and contractions
re G-maps� and therefore it is in the invariant subspace of the universal enveloping algebra
�G�G. Although we did not apply the trace part of the weight system yet, we still have a trace of

he trace that appears in the standard observable we started with, which comes about diagram-
atically in the fact that we are looking at diagrams based on S1. The ability to move legs around

yclically �which is the trace property� forces us to quotient the resulting tensor in U�G�G into the
oinvariant quotient of the algebra, thus getting an invariant in �U�G�G�G. Finally, one can apply
he trace part to get elements of C.

To summarize, when we use perturbation theory for the standard observable, we get a knot
nvariant in the form of a series �in 1 /k� with coefficients in C, which factorize in the following
ay:

�knots� → A�S1���k−1�� → �U�G�G�G��k−1�� → C��k−1�� . �1�

Although there is much more to say about Chern-Simons theory and the use of perturbation
heory in this context, we will stop at this point. We recommend Refs. 5, 4, 3, 2, 1, and 15 for
arious approaches �physically and/or mathematically inclined� in addition to the reviews cited
bove. The fact that we actually get a knot invariant in every step of the factorization above is an
xample of an important issue which we completely ignored here.

. The inhomogeneous gauge group

We now present a specific type of gauge group that we wish to focus on in the context of
erturbation theory of CS theory.

Start with a semisimple gauge group G and take a semidirect product of it with its Lie algebra
the semidirect action is the adjoint action�. Look at the Lie algebra of this semidirect product and

enote it L0. As a vector space, L0 is a double copy of the original algebra, G � Ḡ, where we use

pper bar notation to distinguish the second copy. For any X�G let X� X̄ be the identity map

etween the two copies. Thus X̄ is the element X in the second copy of G. Let Xi be a basis for G,

i the corresponding basis for Ḡ and �.,.� the original bracket structure on G. We have the following
racket structure on L0:

�Xi,Xj�L0
= �Xi,Xj�, �Xi,Xj�L0

= �Xi,Xj�, �Xi,Xj�L0
= 0.

e see now that the second copy is the Abelianization of the original algebra.
Letting the metric on G be �,� �the one coming from the trace of the adjoint representation,

ay� we take the following �invariant� metric on L0:

�Xi,Xj�L = 0 = �Xi,Xj�L , �Xi,Xj�L = �Xi,Xj� .

0 0 0
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. The structure of the perturbation theory expansion with the inhomogeneous
auge group

Let us look at the perturbation theory expansion using the inhomogeneous gauge group L0. As
e will show, the factorization �1� factors even further as the weight system using this type of Lie

lgebra is more refined. We will define the space of directed “legal” diagrams and construct a
actorization of the weight system WL0

through a map into it.
As known from standard perturbation theory of quantum gauge theories, the algebraic contri-

utions of vertices and edges in a Feynman diagram are determined by the structure constants and
he metric on the Lie algebra. These contributions are encoded in the weight system, as described
arlier.

Given a diagram, choose a basis Xi to G, take the corresponding basis Xi to Ḡ �obtaining a
asis to the entire algebra� and apply the weight system using the following steps.

1�pre�. Sum over all the ways of labeling the ends of the edges of the diagram with different

ndices i and ī representing the basis for G and Ḡ, respectively. Therefore, instead of labeling with
ne type of indices running over the entire basis of the algebra, label with two types of indices,
ach running over one summand in the direct sum that forms the algebra.

2�pre�. Write the structure constants tensor and the metric tensor �as before� with indices
ccording to the labeling, and contract the matching indices �thus in each summand of step 1�pre�
nly a part of the algebra basis is contracted�.

Since the summations are finite, one can see that this way of applying the labeling and
ontraction parts of the weight system �i.e., in two summation steps having two types of algebra
ndices instead of one� is equivalent to the usual way of applying the weight system.

Furthermore, we know that certain combinations of indices vanish in the second step. By
ooking at the metric we observe that the only edges which are nonzero are the ones that have a
onbar index on one end and a bar index at the other end. By looking at the bracket structure we
bserve that the only combination of indices on a vertex that will not be zero at step 2�pre� is a
ombination of two nonbar indices and one bar index. This allows us to revise step 1�pre� above
nto the following.

1�revised�. Sum over all ways of labeling the ends of the edges of the diagram with indices i

nd ī, representing the basis for G and Ḡ, respectively, in such a way that each edge has one bar
ndex and one nonbar index at its ends, and each vertex has two nonbar indices and one bar index
t its legs.

Let us introduce a notation. Wherever we have an edge after step 1�revised� we direct the edge
by setting an arrow head� from the nonbar index to the bar index and drop the bar on top of the
ar index. Thus the two steps for applying the weight system of L0 on a diagram can be finalized
nto the following form.

�1� Sum over all ways of directing the edges of the diagram �internal edges only� in such a
ay that each vertex has two outgoing legs and one ingoing leg �we call it a “legal” directing and

t looks like �.

�2� Set a different index on each end of all the directed edges, write down the appropriate
ensors and contract indices according to the arrow convention above �i.e., the arrow’s direction
ndicates if the index is considered bar or nonbar, and we use the appropriate basis accordingly�.

Step �1� is a map from the space of all Feynman diagrams DCS to the space of all directed

eynman diagrams DCS� , defined to be all trivalent connected graphs based on a circle with arrows
n the internal edges �the edges which are not a part of the base circle� such that each vertex is
legal” in the above sense. This map takes a diagram to the sum of all possible “legal” directing
f it. In order to extend this map to A�S1� we need to treat the STU/IHX/AS relations. For that
urpose we define the directed STU, directed IHX, and directed AS relations which we will use in

aking a quotient of DCS� . These relations reflect the algebraic structure of L0 and can be read

irectly from the bracket structure.

                                                                                                            



w

j

A
W

�
r

a
w
f
g

l
i

m

D

n
m

w
d

i

122302-6 Gad Naot J. Math. Phys. 46, 122302 �2005�

                        
Definition 2.2: The directed STU relations in DCS� are the following relations:

here the bottom nondirected arc is a part of the base circle.

The directed IHX relations are actually a consequence of the directed STU relations in DCS� ,
ust as in Ref. 6. We draw one example here and the rest are just rotations thereof

The directed AS relation is defined just as the usual AS relation,

Definition 2.3: The space of all “legally” directed diagrams modulo the directed STU/IHX and

S relations, denoted A�S1�� , is the space of all trivalent connected graphs based on a circle �the
ilson loop� with arrows on the internal edges such that each vertex looks like

i.e., the space DCS
� defined above�, quotient by the directed STU, directed IHX and directed AS

elations defined above.
Armed with these definitions we can see that step �1� of the factorization above is well defined

s a map A�S1�→A�S1�� . Composed with step �2� above �labeling and contracting of indices� and
ith taking the trace of the resulting tensor in some chosen representation, we get the following

actorization of the perturbation theory expansion of CS theory with an inhomogeneous gauge
roup and the standard observable:

�knots� → A�S1���k−1�� → A�S1�� ��k−1�� → �U�L0�L0�L0
��k−1�� → C��k−1�� . �2�

Note that the directed STU relations �which reflect the structure of L0� tell us that two adjacent
egs which touch the base circle and have arrows pointed towards it, are commutative �as the bar
ndices are commutative�. On the other hand, if they originate from one vertex they are anticom-

utative according to the AS relation. Thus one gets an important relation in A�S1�� :

This relation will be used in the arguments presented in the next section.

. But A� „S1
… is „almost… empty

We will now prove that there are only few nonzero diagrams in A�S1�� and the ones that are
ot zero encode a very specific type of information regarding the knot—the framing. This infor-
ation can actually be normalized to zero showing that the entire weight system WL0

is trivial. We

ill prove that the only primitive element which is nonzero in A�S1�� is the directed single chord
iagram � �drawn without the arrow here� and thus the only degree n diagram which is nonzero

1� n
n A�S � is � . We will do that by first showing that the only primitive elements that are possibly
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onzero are the wheel diagrams and �. We will then present an argument as to why
he wheel diagrams are actually zero. We remind the reader that whenever we mention a diagram
e mean a �representative of� diagram class.

Lemma 2.4: Every degree n diagram in A�S1�� has at least n external vertices (vertices that are
n the base loop).

Proof: As already mentioned, to every diagram we attach a power of 1 /k which is called the
egree. A convenient way of counting the degree is labeling each internal vertex with −1 and each
dge with +1 and then summing up all the labels to get the degree of the diagram. Given a degree

diagram in A�S1�� , label it with +1 and −1 according to the above. “Push” the labels on the edges
n the direction of the arrows. Whenever a label hits a vertex it stops and the labels at the vertex
re added. An example of this procedure for a degree 3 diagram is given by

According to the “legal” directing rules, each internal vertex will have one label +1 hitting the
ertex label −1 thus summing to a zero label. All other labels are pushed to the external vertices
on the Wilson loop�. Since the total sum of labels is conserved and equal to the degree of the

iagram, what we have just proven is that a degree n diagram in A�S1�� has at least n vertices on
he Wilson loop �in other words at least n external legs�.

This lemma has immediate consequences in terms of the primitive elements that generate the

lgebra A�S1�� . The primitive elements of the nondirected algebra A�S1� are these diagrams which
emain connected when the Wilson loop is removed from them. Let Pn be the space of primitive
iagrams in A�S1� of degree n. Filter the primitive spaces �of different degrees� according to the
umber of external legs and write Pn,d for the space of primitive diagrams in A�S1� of degree n
nd at most d external legs.

Lemma 2.5 (Refs. 14 and 13): If n is even, then Pn=Pn,n and the quotient space Pn,n /Pn,n−1 is
ne dimensional generated by the n-degree wheel. If n is odd, then Pn=Pn,n−1 (with the exception
f P1 being generated by �).

Proof: See Refs. 14, 13, and 6 for proof and much more details on the subject. Again, we
ention that a wheel diagram looks like the following: the two wheel the four wheel

and so on.

This lemma transfers over to A�S1�� where the primitives are the primitives of A�S1� directed
n all possible ways. Combining the previous two lemmas we obtain the following.

Corollary 2.6: The only primitive diagrams that might possibly be nonzero are the wheel
iagrams and �.

However, we have the following.

Lemma 2.7: The wheel diagrams are zero in A�S1�� .
Proof: We start by looking at a directed wheel diagram. There are only two directed wheel

iagrams of each degree, one for each of the two ways of directing the inner loop, and it does not
atter which one we choose to look at. Due to the “legal” directing rules, it is not hard to see that

he external legs are always pointing towards the base loop. We apply a directed STU relation on
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ne of these legs obtaining two tree diagrams �i.e., diagrams which con-

ain no internal loops�. A tree diagram will always have exactly one leg pointing from the base
oop inwards. The tree diagram that corresponds to the first summand on the right-hand side of the
elation has a vertex which looks like This means the tree diagram is equal to zero �see the

omment at the end of Sec. II C�. The second tree diagram, corresponding to the second summand
n the right-hand side of the directed STU relation, is “leg crossed.” This crossing can be un-
angled by moving the crossed leg around the base circle using the directed AS relation when
ecessary and the commutativity of outward pointing legs. Moving the leg around the circle will
ield a diagram which again has a vertex which looks like �up to a sign� and thus equals to

ero. Apply this argument to any n-wheel diagram and the lemma is proven.
We demonstrate the entire argument on the four wheel:

Combining all of the above lemmas we finally get the following.

Proposition 2.8: The only possible nonzero primitive element in A�S1�� is the directed single-

hord diagram �. Thus, the only diagrams of degree n that are possibly nonzero in A�S1�� are
irected �.

Proof: The proof is a corollary of all the above lemmas. The only primitive element which is
onzero is � and it generates powers of itself and sums of such powers.

In CS perturbation theory it is well known that the single-chord diagram has the framing
self-linking� of the knot as its integral �CS��� �see, for example, Ref. 15�. Higher degree dia-
rams, which are merely power of the single-chord diagram, will hold information encoded in
owers of the framing of the knot. Moreover, this framing number can be normalized as we wish,
ncluding normalization to zero, thus we can summarize this chapter with the following proposi-
ion.

Proposition 2.9: CS topological quantum field theory with an inhomogeneous gauge group
nd the standard knot observable (expectation value of the trace, in some representation, of the
olonomy along the knot) holds no more than the framing information (which can be trivialized
nyway).

CS theory with an inhomogeneous gauge group and the standard observable fail to recognize
notting in S3. As a gauge theory, CS theory with inhomogeneous gauge group is equivalent to
ure BF theory and should therefore “see” knots at least for ISU�2� gauge group, as was shown by
attaneo et al.10–12 Therefore, we need a procedure that will extract some nontrivial information

egarding the knot in our setting. This is what we will be presenting in the next section.

II. EXTRACTING NONTRIVIAL INFORMATION REGARDING THE KNOT

. Breaking gauge symmetry at one point—puncturing the space

As seen in the preceding section, the reason we got zero information when the standard

bservable is used is the “emptiness” of A�S1�� . Working with the inhomogeneous gauge group
llows us to factor through the “legally” directed diagrams space when applying perturbation
heory thus there is no way of avoiding the consequences of Lemmas 2.3 and 2.4 of the preceding
ection which state that the only possible nonvanishing contribution in perturbation theory comes
rom the wheel diagrams. The best we can do is try and avoid the reasons Lemma 2.5 is true.

hen we look at the proof of Lemma 2.5 we can realize that the cause for the vanishing contri-

ution of the wheel diagrams is the fact that legs can be moved around the Wilson loop �the base

                                                                                                            



c
�
t

g

i
C
a
i
b

t
e
a
d
o
t
i

t
t
a

l
i
r
s
i

I

o
d

m

i
c

a
n
f
i

w

B

n

122302-9 Chern-Simons theory with an inhomogeneous gauge J. Math. Phys. 46, 122302 �2005�

                        
ircle of the diagram�. Dealing with the loop translates �observablewise� to dealing with the trace
and its cyclic properties� in the standard observable. In diagrammatic terms �perturbationwise�
his means trying to cut the base circle open.

Assume first that we just remove the trace from the standard observable of a knot in S3. We
et an expectation value which is formally a tensor in the universal enveloping algebra
DAeiCS�A� hol�U�L0�. This expression, though, is not well defined since the holonomy by itself
s not well defined and transforms nontrivially by conjugation under gauge transformation ��x�.
hoosing �in advance� one point on the knot, say x0, the conjugation is done by the gauge element
t that point �hol→��x0�hol �−1�x0��. The remedy for that would be to view this �not well defined�
nvariant in the coinvariant quotient U�L0�L0

. The way this is done �observablewise� is of course
y bringing back the trace. We have done nothing then.

This leads us to try and have special considerations for x0 �the chosen point on the knot� and
he gauge symmetry at that point. Let us break the gauge symmetry at x0. There are a few
quivalent ways of looking at that process. The first is by declaring that the gauge transformation
t x0 is always the identity element. This might seem to be a bit artificial but an equivalent way of
oing it is taking x0 out of the space on which the theory is defined by puncturing S3 on x0. In
ther words, “send” x0 to infinity where gauge transformations are taken to vanish. This shifts us
o a theory on a long knot �embedding of R� in R3 with an invariant DAeiCS�A� hol�U�L0� which
s well defined in the framework of CS theory.

To summarize, we move from a CS theory on S3 and a knot (embedding of S1) in it to a CS
heory on R3 and a long knot (embedding of R) in it. This is done by choosing a special point on
he knot, puncturing the space there and declaring the puncture as infinity. The standard observ-
ble TrR hol is replaced by a more general observable hol.

As far as knots are concerned, “regular” knots and long knots are equivalent and we do not
ose any information regarding the knot in the process above. Moreover, hol �and functions of it�
s actually the most general observable in this framework since the connection can always be
ecovered �up to gauge transformations� from the holonomy information. Thus we work in the
etting which allows us to extract maximum information regarding the knot when using the
nhomogeneous gauge group.

We take now DAeiCS�A� hol and apply the same perturbation theory factorization as in Sec.
I. There are several differences to note.

First, we work with a long knot. Thus, all the Feynman diagrams are not based on a loop but
n an interval �representing the embedding of our long knot R�. The other properties of the
iagrams do not change, though. We define the following.

Definition 3.1: A�I� is the algebra of all connected trivalent graphs based on an interval,

odulo the STU, IHX and AS relations �i.e., A�S1� with the circle replaced by an interval�. A�I��

s defined the same way as A�S1�� , except that the diagrams are based on an interval and not on a
ircle.

Second, the knot invariant factors through the invariant subspace of the universal enveloping
lgebra U�L0�L0. This time there is no necessity in taking the coinvariant quotient of that space, a
ecessity that came about because of the base circle �or the trace in the observable�. Note that the
act that we indeed get a tensor in the invariant subspace tells us that the construction was
ndependent of the choice of the special point x0.

Third, we do not have a map to C yet.
All together we get the following factorization for the perturbation theory of CS theory on R3

ith a long knot in it �we denote by l the last map�:

�knots� → A�I���k−1�� → A�I����k−1��→
l

U�L0�L0��k−1�� . �3�

. Building an observable and extracting nontrivial information

We have not shown so far that the algebra A�I�� is nonzero and that our construction is indeed

ontrivial in the sense that it fixes the problems encountered with the standard observable. We

                                                                                                            



h
t

A�
f

w
t
f

s

I
c
e

d

U

a

m

g

l
T

Ḡ
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ave also not defined a scalar observable, i.e., a map U�L0�L0→C which completes the perturba-
ion theory factorization. We will now achieve both goals by finding an explicit functional from

�I� to C that does not vanish when composed with the above factorization. We will give a
ormula for a scalar function U�L0�L0→C that is not zero on the part of U�L0�L0 which comes from

heel diagrams in A�I�� . This observable cannot possibly be any trace of hol in some representa-
ion, since that will bring us back to the case of Sec. II. Thus we need to find some other scalar
unction of hol.

Start with an n-dimensional representation of G and denote it B. Define the following repre-
entation R of L0:

R�g� = �B�g� 0

0 B�g�
�, g � G, R�ḡ� = �0 B�g�

0 0
�, ḡ � Ḡ . �4�

t is straightforward to verify that the commutation relation for R is indeed compatible with the
ommutation relations of the semidirect product and that R is indeed a representation of L0. We
xtend R to U�L0� in the usual way.

Definition 3.2: We have the following.
�1� Let � denote the comultiplication of the universal enveloping algebra U�L0� and let �m

enote the map U�L0�→U�L0��m we get by composing m−1 times the map �.
�2� Given the representation R above, denote by R�m the m-tensored representation

�L0��m→End�C2n��m defined by u1 � ¯ � um�R�u1� � ¯ � R�um�.
�3� Define a transformation �, End�C2n��m→End�C2n� by �1 � �2 � ¯

� �m��1 ·C ·�2 ·C¯ ·�m ·C, where C is the following 2n�2n matrix:

� 0 0
I 0 �

nd · is matrix multiplication.
�4� The “half-trace,” denoted Tr1/2, is the trace over the upper-left n�n block of a 2n�2n

atrix,

Tr1/2�A B

C D
� = Tr�A� .

Armed with the above definitions and notations we can finally build the following.
Definition 3.3: Let �m denote the following composition of maps �� is used for composition�:

Tr1/2 � � � R�m � �m:U�L0�L0 ——→
�m

C .

Lemma 3.4: The map �m � l is nonzero on the m-wheel diagram for at least one choice of
auge group L0 and representation R.

Proof: We start by looking at a directed wheel diagram �i.e., a wheel in A�I���. All the external
egs �the ones that touch the base interval� point towards the interval, as we have already seen.
his means that after applying l, the tensor w that we get in U�L0� will have all its components in

. After applying �m to w we get a tensor in U�L0��m such that each of its summands actually

ooks like u1 � ¯ � um�U�Ḡ��m�U�L0��m.

Now, the only type of tensors u1 � ¯ � um�U�Ḡ��m that will possibly not result in zero after

pplying � �R�m to it, is the type in which each component ui is actually an element of Ḡ �i.e.,

ensors of length one in U�L0� with entry from Ḡ�. This is immediate from the definition of R �4�
n U�Ḡ�, the definition of � and the definition of C.

We summarize then—given a wheel diagram we apply l to it and get a tensor w in U�L0�.
m�w� is a tensor in U�L0��m but the only nonzero contributions to � �R�m��m�w�� come from the

m
ummands of � �w� that look like w or any permutations of its entries,
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w = l�directed m − wheel� = 

i1,. . .,im=1

dim G

Ci1,. . .,imX̄i1
� ¯ � X̄im

,

� � R�m��m�w�� = � � R�m� 

i1,. . .,im=1

dim G



	�Sm

Ci1,. . .,imX̄i	�1�
� ¯ � X̄i	�m�� ,

here we made a distinction between the tensor product � of U�L0� and the product � of
�L0��m for the sake of clarity.

The calculation of Tr1/2 �� �R�m ��m � l�directed m−wheel� is almost the same as the calcula-
ion of the weight system WG,B on the nondirected m-wheel diagram �i.e., the directed m-wheel
ith its arrows forgotten�. The only difference is the summation over all permutations of the

omponents of the tensor w above, but that can be done on the diagram level by permuting all
xternal legs of the nondirected diagram. Thus we have

Tr1/2 � � � R�m � �m � l�directed m − wheel� = WG,B���m − wheel�� ,

here ��D� is defined to be the sum over all diagrams which differ from D by permutation of the
xternal legs.

In order to show that �m � l�directed m−wheel� is nonzero for at least one choice of L0 and
epresentation R we let L0=gl�n� � gl�n� with B taken to be the defining representation and
alculate the highest order in n of Wgl�n�,B���m−wheel��. Using simple counting arguments one
ay show that all the highest order contributions are positive and sum up to a nonzero contribu-

ion: �m � l�directed m−wheel�=mnm+1+lower order terms �in n�. We leave the exact calculation
nd arguments to the interested reader. These can be done using exercise 6.36 in Ref. 6.

Proposition 3.5: In A�I�� , the wheel diagrams (and possibly the directed �) are nonzero.

Proof: We already know that the only possible nonzero directed generators in A�I�� are the

heel diagrams and possibly � �following the exact same arguments for A�S1�� as in Sec. II�.
pplying the lemma above for all possible m implies the proposition.

The actual observable: The proposition and lemma above tell us that the perturbation theory
3� for the long knot in R3 factors through a nontrivial space, and that there is a way of extracting
ontrivial information regarding the knot. We can now build an actual quantum observable �func-
ion of hol� to plug in the path integral such that the map Tr1/2 �R�m�m will be the last part of the
actorization �U�L0�L0→C� in its perturbation theory calculation of the expectation value. This
bservable is Tr1/2��R�hol� ·C�m�, where R�hol� stands for representing the holonomy using the
epresentation R as defined above.

The expectation value DAeiCS Tr1/2��R�hol� ·C�m� has a perturbation theory factorization
with �m as the last map�,

�knots� → A�I���k−1�� → A�I����k−1��→
l

U�L0�L0��k−1�� ——→
�m

C��k−1�� . �5�

. The most general knot invariant in this setting—the Alexander-Conway
olynomial

We have just seen in the preceding section that we can extract all the information contained in
he wheel diagrams by using CS theory with the inhomogeneous gauge group on long knots in R3

with the new class of observables�. This is opposed to the fact that the standard observable in CS
heory with the inhomogeneous gauge group will not see these knots in S3. We now turn to the task
f recognizing the nontrivial information we extracted.

Theorem 1: The most general knot invariant coming from Chern-Simons topological quantum
eld theory with an inhomogeneous gauge group is nontrivial and is in the algebra generated by

he coefficients of the Alexander-Conway polynomial (together with possible framing information).
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Proof: In Ref. 16, following motivations from Refs. 17 and 7, it is proven that any weight
ystem which is zero on the kernel of the deframing operator and zero on all the primitive spaces
hich are not wheels, belongs to a knot invariant which is in the algebra generated by the

oefficients of the Alexander-Conway polynomial. Since we showed that the only diagrams that
ontribute to our weight system are the wheel diagrams, and since we can always choose our knot
o be of �standard� zero framing, the theorem follows. Other choices of framing will show up
hrough �.

Notice that it is possible to take the semidirect product of G with G*, the dual of the Lie
lgebra. We can follow the exact same considerations and get the same results, this time without
he need of the metric on G �just use the natural dual pairing to get a metric on L0�. Therefore our
esults are true for any Lie algebra G, not necessarily a metrizable one.

V. PURE BF THEORY AND THE ALEXANDER-CONWAY POLYNOMIAL

Recall that the pure BF theory has the following action SBF=S3 Tr�B∧F�, where F is the
urvature of the G-connection A and B is a one form taking values in the algebra G. In Refs. 10–12
attaneo et al. took TrR�Exp��
1�� as the most general observable one can consider in pure BF

heory, as long as the standard �zero� framing of the knot is chosen. Here R is any representation
f G, 
1 is �xHol�A�B�x�Hol�A� �the first degree element in the Taylor expansion of Hol�A
�B� around �=0� and � is a “coupling” constant counting orders.

Using this observable, QFT techniques and the Melvin-Morton conjecture �MMR, see Ref. 7�,
t was proven10 that the set of unframed knot invariants we get from the pure BF theory, using
U�2� gauge group, is generated by the coefficients of the Alexander-Conway polynomial.

In this paper we proved the following.
Theorem 2: The most general knot invariant coming from pure BF topological quantum field

heory with any gauge group whose Lie algebra is metrizable and with any representation, is in
he algebra generated by the coefficients of the Alexander-Conway polynomial.

Proof: Using the fact that the pure BF theory with gauge group G is just CS theory with gauge
roup IG �Ref. 8� this theorem is just a corollary of Theorem 1.

The same generalization for nonmetrizable Lie algebras, as right after Theorem 1, applies here
s well.

A closer look at our observable Tr1/2��R�hol� ·C�m� shows that it is actually the mth degree in
he expansion of the BF observable TrR�Exp��
1�� �up to numerical factors coming from the
xponent expansion�. The fact that the BF observable also breaks the gauge symmetry of the pure
F theory at one point �it must be assumed that the special BF gauge symmetry is identity at one
oint on the knot� was not emphasized much before �though observed of course in Refs. 10–12�.
ur setting gives a natural explanation as to why this is indeed the most general observable for BF

heory without any need for taking various limits or referring to MMR. We also get a somewhat
learer explanation as to why one can ignore the 
0 part of the Taylor expansion above.

One can now say that as far as knot theory and three-dimensional BF topological quantum
eld theory �with or without cosmological constant� are concerned, there is nothing new beyond
hern-Simons theory, which can reproduce the same knot theoretical results.

. DISCUSSION: NON-SEMI-SIMPLICITY

Algebraically, the main difference between our construction and the standard one is getting
nvariants in the invariant subspace U�L0�L0 instead of the coinvariant quotient space �U�L0�L0�L0
f the universal enveloping algebra.

Our construction gives no new extra information if we work with a semisimple gauge group
nstead of L0. This is true because for semisimple groups, U�G�G is isomorphic to �U�G�G�G

U�G�G. We get no new information from applying our procedure and working in A�I� instead of
�S1�, since these spaces are isomorphic �the diagram-space way of expressing the previous
somorphism�. Our construction seems to detect the difference between the invariant subspace and
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he coinvariant quotient of the non-semi-simple Lie algebra we have worked with. In other words,

t uses the fact that A�I�� is not isomorphic to A�S1�� �the map A�I��→A�S1�� that closes the base
nterval into the base circle has a kernel�.

We saw that there is more to observe in Chern-Simons theory when dealing with a non-semi-
imple gauge group. A question to be raised is whether other non-semi-simple gauge groups can
old the same property as the inhomogeneous group—meaning that the above procedure can
xtract more information about the knot than what was given by the standard observables.
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We present a model unifying general relativity and quantum mechanics based on a
noncommutative geometry. This geometry is developed in terms of a noncommu-
tative algebra A which is defined on a transformation groupoid � given by the
action of a noncompact group G on the total space E of a principal fiber bundle
over space-time M. The case is important since to obtain physical effects predicted
by the model we should assume that G is a Lorentz group or some of its represen-
tations. We show that the generalized Einstein equation of the model has the form
of the eigenvalue equation for the generalized Ricci operator, and all relevant
operators in the quantum sector of the model are random operators; we study their
dynamics. We also show that the model correctly reproduces general relativity and
the usual quantum mechanics. It is interesting that the latter is recovered by per-
forming the measurement of any observable. In the act of such a measurement the
model “collapses” to the usual quantum mechanics. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2137720�

. INTRODUCTION

Noncommutative geometry plays an increasingly important role in the present search for
uantum gravity �from a host of papers let us quote at least a few3,4,2,1,6,14–16,19�. It has also
ecently been recognized that it is a useful tool in superstring theory �the classical paper is Ref. 18,
nd a book, Ref. 13�. In a series of papers,10–12 we have proposed our own approach to the
nification of general relativity and quantum mechanics based on noncommutative geometry. Our
tarting point is the standard method of changing a differential manifold �space-time� M into a
oncommutative space �Ref. 5, p. 86�. It is done by implementing the following steps: �1� we
epresent M as a quotient space N /R where N is a suitable space and R a suitable equivalence
elation; �2� then we change from N /R to a suitably organized subset R of N�N; we call this the
pairing process;” �3� we define a suitable algebra on R; and finally, �4� we extract information
bout N /R from this algebra.

We implement this strategy as follows. Let M be a space-time manifold. The natural way to
resent M as a quotient space is with the help of the frame bundle over M. Let �M :E→M be the
rame bundle with the structure group G, then M =E /G. To perform the “pairing process” let us
otice that the group G acts �to the right� on E �along the fibers�, E�G→E. We can equip E
G with the groupoid structure. This groupoid is called a transformation groupoid, and will be

enoted by � �its description is given in Sec. II�. Now, we define a �noncommutative� compactly
upported, smooth, complex valued algebra A on � with convolution as multiplication. Then we
onstruct, in terms of this algebra, the �noncommutative� geometry of the groupoid � which is a

�Author to whom correspondence should be addressed: ul. Powstańców Warszawy 13/94, 33-110 Tarnów, Poland. Elec-

tronic mail: mheller@wsd.tarnow.pl
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http://dx.doi.org/10.1063/1.2137720
http://dx.doi.org/10.1063/1.2137720
http://dx.doi.org/10.1063/1.2137720


g
A

i
h
G
f
H
t
a
i
a
p

g
s
t
o
t
V
o
u
a
t

w

I

s
n
n
c
t

f

Z
c

w
o

122501-2 Heller, Pysiak, and Sasin J. Math. Phys. 46, 122501 �2005�

                        
eneralization of the usual space-time geometry �on M�. The regular representation of the algebra
on a bundle of Hilbert spaces gives us the “quantum sector” of the model.

To smooth out some inaccuracies and avoid conceptual traps in which our previous work was
nvolved we have tested the method on a simpler model in which the group G was finite.8,9,17 It
as turned out that this simplified model works well. Let us notice, however, that if a finite group
acts freely on a space E then G must be a cyclic group isomorphic with Zn where n= �G�. Indeed,

or G�g�e the set �gp ,g2p , . . . ,gnp� is bijective with G and, as it can be easily seen, gn=e.
owever, we should notice that the fact that the group G is Abelian does not entail the commu-

ativity of the groupoid algebra A. Therefore, our model with a finite group G could serve well as
n “exercise model,” but to have a more physically realistic approach we must change to an
nfinite group G. This is exactly what we do in the present paper. Throughout this paper it is
ssumed that G is a noncompact group. This is an important case since to obtain physical effects
redicted by our model we should assume that G is a Lorentz group or some of its representations.

In Sec. II, we briefly present the groupoid � and its algebra A, and we establish notation. The
eometry of the groupoid � is based on the module of derivations of the algebra A. In Sec. III, we
tudy the structure of this module and, in Secs. IV and V, we develop the differential geometry of
he groupoid �. This enables us to formulate, in Sec. VI, generalized Einstein’s equation. It turns
ut that it has the form of the eigenvalue equation for the generalized Ricci operator. We also show
hat the standard space-time geometry is obtained by suitably “averaging” elements of A. In Sec.
II, we study the quantum sector of the model, and show that all relevant operators are random
perators. We also investigate their generalized dynamics. The transition from our model to the
sual quantum mechanics is presented in Sec. VIII. Interestingly, it is the act of measurement of
ny observable that reduces our model to the usual quantum mechanics. We thus can say that from
he perspective of our model quantum mechanics is but a theory of making measurements.

The present paper focuses on mathematical aspects of the proposed model; its physical aspects
ill be discussed in a forthcoming paper.

I. PRELIMINARIES

Let �=E�G, where E is the frame bundle over space-time M with the structural group G,
uch that G is a noncompact semisimple Lie group �let us notice that the Lorentz group is
oncompact and semisimple� acting on E, be a transformation groupoid, and A=Cc

��� ,C� the
oncommutative algebra of smooth, compactly supported, complex valued functions on � with
onvolution as multiplication. Let further �1= �p1 ,g1�, �2= �p2 ,g2���, and p2= p1g. We assume
he convention �1 ��2= �p1 ,g1g2�, and consequently

�f1 � f2���� = �
�d���

f1��1�f2��1
−1��d�1

or f1 , f2�A, where d���=d�p ,g�= p.
Let us notice that the center of the algebra A vanishes, Z�A�= �0�, but A is a module over

=�M
* �C��M�� �here �M :E→M is the bundle projection�. Functions of Z, in general, are not

ompactly supported. However, they do act on A in the following way: � :Z�A→A by

��f ,a��p,q� = f�p�a�p,g� ,

f �Z, a�A. Now, let us define the distribution

f̃�p,g� = f�p��e�g� ,

here � is the Dirac distribution, g�G, and e is the unit of G. f̃ convolutes well with functions

f A. Indeed, let a�A; we have
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� f̃ � a��p,g� = �
G

f̃�p,g1�a�pg1,g1
−1g�dg1 = f�p�a�p,g� � A .

Here we have used the integral notation for the distribution action on test functions.�
Let G=E�E be the space of the pair groupoid, where E is, as before, the total space of the

rame bundle over space-time M, i.e., G= ��x , p1 , p2� : p1 , p2�E and �M�p1�= ��M�p2��=x�, and

he algebra Ã=C��G ,C� with convolution as multiplication. The composition law reads
x , p1 , p2� � �x , p2 , p3�= �x , p1 , p3� , p1 , p2 , p3�Ex ,x�M, and the convolution is defined accordingly.

Proposition 1: The mapping J :Ã→A, given by

J�f���� = f��M�p�,p,pg� ,

or f �Ã ,�= �p ,g�, is an isomorphism of algebras.

Proof: Let f̃1 , f̃2�Ã, we have

� f̃1 � f̃2��x,p1,p2� = �
Ex

f̃1�x,p1,p3� f̃2�x,p3,p2�dp3.

e notice that the fiber Ex, for every x�M, is diffeomorphic with the group G, and consequently
here is a measure on Ex induced from the Haar measure on G. After making the substitution p3

p1g1, p2= p1g, we obtain

� f̃1 � f̃2��x,p1,g� = �
G

f̃1�x,p1,p1g1� f̃2�x,p1g1,p1g�dg1

hich can be rewritten as

�f1 � f2���� = �
�d���

f1��1�f2��1
−1 � ��d�1.

�

II. MODULE OF DERIVATIONS

Among derivations of the algebra A on the groupoid �=E�G we can distinguish three types,
orizontal derivations, vertical derivations, and inner derivations of A; we denote them by
erHor A, DerVer A, and Inn A, respectively. We shall study them in turn.

Lemma 1: Let X̄�X�E� be a right invariant vector field (on a principal bundle), i.e.,

Rg�*pX̄�p�= X̄�pg� for every g�G. Its lifting to �, X� �p ,g�= ��g�*pX̄�p�, where the inclusion

g :E�E�G is defined by �g�p�= �p ,g�, is a derivation of the algebra �A , � �.
Proof:

X� ��p,g��f � h���p,g� = �X̄�p��f � h����g�p��

= �
G

�X̄�p�f�p,g1��h�pg1,g1
−1g�dg1 + �

G

f�p,g1���X̄��p�h�pg1,g1
−1g��dg1

= �
G

���X� ���p,g1�f��p,g1�h�pg1,g1
−1g�dg1

+ �
G

f�p,g1��X� �pg1,g1
−1g��h�pg1,g1

−1g�dg1

� �
= �Xf � h + f � Xh��p,g� .
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e have employed here the right invariance property. �

. Horizontal derivations

The group G acts freely and transitively on the fibers of E. Consequently, the G-right-invariant
ector fields on E are determined by their values at a single point of every fiber. Therefore, they
an be identified with the cross sections of the bundle 	=TE /G. Let us consider the mapping

��M�*:TE → TM .

ince ��M�* is G-invariant, it induces the mapping

�M:	 → TM .

et us denote 
= ��̄M�*, and consider the exact sequence of vector bundles

0 → ker 
→
j

	

→



←
�

TM → 0.

he mappings j and 
 are homomorphisms of vector bundles, and j is an inclusion. The homo-
orphism of vector bundles � :TM→	 is a connection in the principal bundle �M :E→M if it

plits this sequence, i.e., if 
 ��=idTM. In our case, such � always exists although it is not unique.

ith the help of � we lift a vector field X�X�M� from M to 	, i.e., X̄�p�=��X ��M�p�� ,�M�p�
x�M, and we consider X̄ as a G-right-invariant vector field on E. Finally, we lift this field, with

he help of the inclusion �g, to the groupoid �. We thus obtain

X� �p,g� = ��g�*pX̄�p� � X�E � G�

or every �p ,g���. Vector fields X� �X���, obtained in this way, inherit from � the right invari-
nce property. Lemma 1 evidently applies to such vector fields. Moreover, we have the following
roposition.

Proposition 2: Vector fields X� �X��� form a Z-submodule of the Z-module Der A of deriva-
ions of the algebra A. They will be called horizontal derivations of A and denoted by DerHor A.

Proof: Let a ,b�A. One readily checks, taking into account the right invariance of X� , that

fX� �a�b�, f �Z ,a ,b�A, satisfies the Leibniz rule. We shall show that fX� �DerHor A. Indeed, let
f0�C��M� be such that f =�M

* f0, and X�ª f0X , X�X�M�. We have

X̄� = �M
* f0X̄ = fX̄ ,

nd by acting on both sides with �g we obtain X� �= fX� . �

. Vertical derivations

Let us consider all right invariant vertical vector fields on E, i.e., all right invariant vector

elds X̄�X�E� such that ��M�*�X̄�=0. Such vector fields lifted to � are, on the strength of Lemma
, derivations of the algebra �A , � �; we shall call them vertical derivations of this algebra, i.e.,

X� �p,g� = ��g�*pX̄�p� � DerVer A

or every g�G.

Let us notice that X̄�X�E� can be regarded as cross sections of the vector bundle ker 
 and,

s it can be easily seen, DerVer A is a Z-submodule of the Z-module Der A.
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. Inner derivations

The set of inner derivations of the algebra A is defined as follows:

Inn A = �ad a:a � A� ,

here �ad a��b�ªa�b−b�a.
Lemma 2: The mapping � :A→ Inn A, given by ��a�=ad a, is an isomorphism of Lie alge-

bras (and also of Z-moduli).
Proof: It can be easily seen that

�ad a,ad b� = ad�a,b� � A ,

i.e., Inn A is a Lie algebra and � is a Lie algebra homomorphism. Then we have ��a�
=��b�⇒ �a ,c�= �b ,c�, for every c�A. Hence �a−b ,c�=0 since a−b�Z�A�= �0�. Therefore, a

b. We also see that

��fa� = ad�fa� = f ad a = f��a�

for every f �Z. �

As we have seen in the proof of this lemma, the fact that Z�A�= �0� plays an important role
in the entire structure.

. Some properties of derivations

By differential algebra we understand a pair �A , Der A� where A is a not necessarily com-
utative algebra and Der A a �sub�module of its derivations. In the following, we will base the

onstruction of a noncommutative geometry of the transformation groupoid � on the differential
lgebra �A , Der A� where A is, as above, Cc

��� , C�, and

Der A = DerHor A � DerVer A � Inn A .

Let X� 1 ,Y� 1�DerHor A, X� 2 ,Y� 2�DerVer A, ad a , ad b� Inn A. We have the following proper-
ies:

1� �X� 1 ,Y� 1�= �X1 ,Y1�� . This follows from the fact that X̄=��X� which implies that �X̄1 , Ȳ1�
=�X1 ,Y1�.

2� �X� 2 ,Y� 2�= �X2 ,Y2�� .
3� �ad a , ad b�=ad�a ,b�� Inn A, see proof of Lemma 2.

4� �X� 1 ,X� 2�=0, since cross sections of the vector bundle 	 form a Lie algebra which splits into

the sum of two Lie subalgebras, and the fields X̄1 and X̄2 belong to different subalgebras.

5� �X� 1 ,ad a�=ad X� 1�a�, by simple computations.

6� �X� 2 ,ad a�=ad X� 2�a�, by simple computations.

V. GEOMETRY OF DerVer A AND Inn A

Because of the decomposition of the Z-module Der A into three parts, the metric on Der A,

G:Der A � Der A → Z

lso decomposes into three parts. If u=u1+u2+u3, and u1�DerHor A, u2�DerVer A, u3� Inn A,

nd analogously for v=v1+v2+v3, then
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G�u,v� = ḡ�u1,v1� + k̄�u2,v2� + h�u3,v3� ,

here ḡ :DerHor A�DerHor A→Z is evidently the lifting of the metric g :X�M��X�M�
C��M� on space-time M, i.e.,

ḡ�u1,v1� = �M
* �g�x,y�� ,

here x ,y�X�M�. We assume that the metrics k̄ :DerVer A�DerVer A→Z and h : Inn A
Inn A→Z are of the Killing type. Their form will be determined below.

The preconnection is given by the Koszul formula,

��u
*v�w = 1

2 �u�G�v,w�� + v�G�u,w�� − w�G�u,v�� + G�w,�u,v�� + G�v,�w,u�� − G�u,�v,w��� .

�1�

Let us now consider a more general situation which will later be specified to that in our model.
et �A , � � be an algebra over C, Z=Z�A� its center, and V a Z-module of derivations of the
lgebra A. What follows is also valid if Z�A�= �0� and Z=�M

* �C��M�� as in our model. We further
ssume that elements of Z play the role of constants for derivations of V, i.e., V�Z�= �v�f�=0:v
V , f �Z�. Let us consider a metric g :V�V→Z; we assume the Z−2 linearity and symmetry of

, but not necessarily its nondegeneracy. Let us denote V*=Hom�V ,Z�, and u*=g�u , · �=�g�u� is
one-form corresponding to the derivation v�V.

The symmetric two-form g determines the preconnection �* :V�V→V* by the Koszul for-
ula �1� �with G replaced by g�. Since, by assumption, V�Z�= �0�, one has �u

*�fv�= f�u
*v, and �*

s a Z−2 linear mapping, i.e., a tensor of �2,1� type. Moreover, from the Koszul formula it follows
even if g is degenerate� that

w�g�u,v�� = ��w
* u��v� + ��w

* v��u� .

n the Koszul formula the first three terms vanish, and if we assume that

g�v,�w,u�� = g�u,�v,w�� , �2�

hich—as we shall see below—is valid in our case, we obtain an interesting result

��u
*v��w� = g� 1

2 �u,v�,w�
howing that there is a strict dependence between the �pre�connection and the metric. We should
nly look for a mapping � :V�V→V that would be g-consistent with �* :V�V→V*, i.e., satis-
ying the condition

��u
*v��w� = g��uv,w�

or every u ,v ,w�V. By comparison with �2�, it immediately follows that

�uv = 1
2 �u,v�

or every u ,v�V. Moreover, for a nondegenerate tensor g the mapping �, g-consistent with �*,
s unique. Indeed, since from

��u
*v��w� = g��

1

uv,w� = g��
2

uv,w� ,

or every u ,v�V, it follows that

�
1

uv = �
2

uv .

It turns out that if g is nondegenerate, it has all properties required for connection. Let us

heck, for instance,
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��u1+u2

* v��w� = ��u1

* v��w� + ��u2

* v��w� = g��u1
v + �u2

v,w� = g��u1+u2
− �u1

v − �u2
v,w� = 0,

nd, from the nondegeneracy of g, one has

�u1+u2
v = �u1

v + �u1
v .

Therefore, we have proved the following proposition.
Proposition 3: Let V be a Z-module of derivations of an algebra �A , � � such that V�Z�= �0�.

or every symmetric nondegenerate tensor g :V�V→Z, there exists one and only one connection
-consistent with the preconnection �*. It is given by

�uv = 1
2 �u,v� .

�

In the following, we shall assume the metric of the Killing form

g�u,v� = Tr�u � v� .

t satisfies the g-consistency condition. Indeed, from the trace definition we have

Tr�w � u,v � u� = Tr��w,u� � v� + Tr��w,v� � u� = 0.

We now return to our model, and assume the above kind of metric for both DerVer A and
nn A, but in both these cases the trace should be defined differently.

We first define the metric for DerVer A. We assume that G is a semisimple group. In this case,
he Killing form reads

B�V,W� = Tr�ad V � ad W� ,

or V ,W�g� , where g� is the Lie algebra of the group G, and B is nondegenerate. The tangent space

o any fiber Ex ,x�M, is isomorphic to g� . Therefore, the metric k̄ :DerVer A�DerVer A→Z is
iven by

k̄�X� ,Y� � = B�X��M�p�,��Y���M�p��� .

To define the metric for Inn A, let us first define the trace for the algebra Ã �which, by
roposition 1, is isomorphic to the algebra A�, Tr:A→Z, by

�Tr a��x� = �
G

a�x,g,g�dg .

t has the following properties: �i� Tr�a+b�=Tr a+Tr b, �ii� Tr�fa�= f Tr a, �iii� Tr�a�b�
Tr�b�a�, for a ,b�A, f �Z. From the last property it follows that

Tr��a,b�� = 0,

and, of course, Tr�ad a=0.
Let us now turn to the submodule Inn A. We should notice that, on the strength of Lemma 2,

we also have the connection �̃ :A�A→A on A given by

�̃ab = 1
2 �a,b� .

We define the metric h : Inn A� Inn A→Z by

h�ad a,ad b� = Tr�a � b� ,
nd the corresponding connection is
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�ad a ad b = 1
2 �ad a,ad b� .

We shall show that the metric h is nondegenerate. Indeed, let us assume that

Tr�a � b� = �
G
�

G

a�x,g1,g2�b�x,g2,g1�dg2 dg1 = 0.

f a�0, then the support of this function is not of the measure zero, and by choosing the function
�x ,g2 ,g1�=a�x ,g1 ,g2�, we obtain

�
G
�

G

a2�x,g1,g2�dg2 dg1 � 0.

e conclude that if the metric is of the trace type �either B or Tr�, the formula �2� is valid �for

= k̄, or g=h�.

. CURVATURE

Let us introduce the following abbreviations:

V1 = DerHor A, V2 = DerVer A, V3 = Inn A .

e continue to develop the geometry for Vi , i=1,2 ,3. The curvature is

R
i

:Vi � Vi � Vi → Vi,

R
i

�u,v�w = �
i

u�
i

vw − �
i

v�
i

uw − �
i

�u,v�w .

f j=2,3, we have

R
j

�u,v�w = 1
2�u, 1

2 �v,w�� − 1
2�v, 1

2 �u,w� − 1
2 ��u,v�,w� = − 1

4 ��u,v�,w� .

ere we have made use of the Jacobi identity.
For every endomorphism T :Vi→Vi, i=1,2, there exists Tr T�Z satisfying the usual trace

onditions. We thus can define

R
i

m
uwm:Vi → Vi,

R
i

uw�v� = R
i

�u,v�w ,

nd

ric
i

:Vi � Vi → Z

ric
i

�u,v� = Tr R
i

uw.
We also define the adjoint Ricci operator,
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ric
i

�u,w� = G
i

�R
i

�u�,w� , �3�

here we have introduced the notation ḡ=G
1

, k̄=G
2

. If the metric G
i

is nondegenerate, there exists

he unique R
i

satisfying Eq. �3� for every v�Vi.
The curvature scalar is

r
i

= Tr R
i

� Z .

In the module V2 there exists the usual trace operator which, in the local basis, can be written
s the trace of the operator matrix. Therefore,

R
2

uv�w� = 1
4 �w,�u,v�� = 1

4 �ad w � ad u��v� ,

nd we have

R
2

uw = 1
4 �ad w � ad u�

or every u ,w�V2, and

Tr R
2

uw = 1
4Tr�ad w � ad u� .

ence,

ric
2

�u,w� = 1
4 k̄�u,w� �4�

or every u ,w�V2, which can be regarded as a generalized Killing form. By analogy, we postulate

ric
3

�u,w� = �h�u,w� , �5�

�Z, for every u ,w�V3.
The “Ricci scalar” can be determined from the generalized Einstein equation

ric
3

�u,v� − 1
2rh�u,v� = 0

r

�h�u,v� − 1
2rh�u,v� = 0.

ence we obtain

�� − 1
2r�h�u,v� = 0,

nd

� = 1
2r .

e can symbolically regard r�Z as a trace of the Ricci operator R. The Ricci 2-form is thus
roportional to the metric tensor h, and the proportionality coefficient �up to factor 2� is a coun-
erpart of the Ricci curvature scalar.
A counterpart of Eq. �3� for V3 is
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ric
3

�u,v� = h�R
3

�u�,v� . �6�

ence

�h�u,v� = h�R
3

�u�,v� ,

r

h��u,v� = h�R
3

�u�,v� ,

nd finally,

R
3

�u� = �u .

Let us notice that for a commutative algebra we have �=0, and the sector corresponding to V3

anishes. Therefore, the coefficient � could be regarded as a “measure” of noncommutativity.
This concludes the construction of the noncommutative groupoid geometry. The transition

rom this geometry to the usual space-time geometry can be done by the following “averaging”
rocedure. If a�A then we have the isomorphism a�p ,g�= ã�x ,g1 ,g2�, and we define

	ã
�x� = �
G

ã�x,g,g�dg .

t is clear that 	ã
�Cc
��M�, and from the algebra Cc

��M� one can reconstruct the usual space-time
eometry together with the usual Einstein equations.7

I. GENERALIZED EINSTEIN’S EQUATION

We have all geometric quantities necessary to write the counterpart of Einstein’s equation on
he groupoid �. We stipulate that in the noncommutative regime at the fundamental level, there is
nly a “pure noncommutative geometry,” and all necessary “matter terms” will somehow emerge
ut of it. We thus assume that there is no counterpart of the energy-momentum tensor and,
onsequently, the generalized Einstein’s equation is of the form

R − 1
2r idV = 0, �7�

here R is the Ricci operator defined by Eq. �3� �superscipt i=1,2 is omitted but presupposed�,
nd r=Tr R.

It is clear that Eq. �7�, for V=V1, is a “lifting” of the usual Einstein equation on space-time M
o the groupoid �, and if g solves this equation on M then ḡ solves Eq. �7�.

Let us now consider the case V=V2. By comparing Eq. �3� with Eq. �4� and noticing that
1
4 k̄�u ,v�= k̄� 1

4u ,v�, one obtains

R
2

= 1
4 idV2

.

Similarly, for V=V3, by taking into account Eq. �5� and comparing it with Eq. �4�, we obtain

R
3

= � idV3
.

Let us consider the G-orthogonal sum V=V1 � V2 � V3. For the Ricci operator R :V→V we
i

ave R�Vi��Vi, i=1,2 ,3, and R �Vi=R. This leads to the eigenvalue equation
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R�u� = u

or u�V. This eigenvalue problem has the following solutions:

1� 1= 1
2r where r is the Ricci scalar curvature for the metric tensor ḡ. We thus have the

equation

R�u� − 1
2ru = 0

for u�V1, and each such u satisfies this equation. It can be easily checked that this equation
reduces to the equation R=0 on space-time M.

2� 2= 1
4 which leads to the equation

R�u� − 1
4u = 0

for u�V2.
3� 3=� leading to the equation

R�u� − �u = 0

for u�V3. In the commutative case �=0 and we obtain R�u�=0 �on the groupoid ��.

II. QUANTUM SECTOR

The quantum sector of our model is obtained by the regular representation of the groupoid
lgebra A in a Hilbert space Hp=L2��p�, p�E,

�p:A → B�Hp� ,

here B�Hp� denotes the algebra of bounded operators on Hp, given by

��p�a������ = �
�d���

a��1����1
−1 � ��d�1,

here a�A, ��Hp, �, �1��. Let us notice that the Haar measure on the group G, transferred
o the fibers of �, forms a Haar system on �.16

We shall show that every element a�A generates a random operator ra on �Hp�p�E. By a
andom operator r we mean a family of operators �rp�p�E, i.e., a function

r:E → �
p�E

B�Hp�

uch that

1� the function r is measurable in the following sense: if �p ,�p�Hp then the function

E � p � �r�p��p,�p� � C

is measurable with respect to the manifold measure on E;
2� the function r is bounded with respect to the norm,

�r� = ess sup�r�p�� ,

where ess sup means the “supremum modulo zero measure sets.”

Random operator r acts, in fact, on cross sections of the Hilbert bundle H=�p�EHp.
It can be easily seen that the family of operators ra= ��p�a��p�E is a random operator. Indeed,

2 p
f �p ,�p�L �� � then we have the scalar product
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��
�p

�p�a��p,�p = �
�p
��

�d���

a��1��p��1
−1 � ��d�1�p���d� ,

nd the Haar measure is transferred from G to �p for each p�E. Therefore, condition �1� is
atisfied.

To check condition �2� let us introduce the isomorphisms of Hilbert spaces Ip :L2�G�→Hp

iven by the formula

�Ip���pg−1,g� = ��g�

or ��L2�G�. Let us consider the operators �̃p�a�= Ip
−1 ��p�a� � Ip. It is clear that ��p�a��

��̃p�a��. Let us also notice that

�̃pg�a� = Rg−1 � �̃p�a� � Rg

where Rg denotes the right translation operator in the space L2�G��, which entails the �unitary�
nvariance of the norm

��pg�a�� = ��p�a�� .

ence, the norm ��p�a�� depends only on x=�M�p��M; therefore, the function x� ��p�a�� is
ell defined, compactly supported, and continuous �in its dependence on x� on M.

Let M denote the set of all equivalence classes �modulo equality almost everywhere� of
andom operators ra ,a�A. It forms a von Neumann algebra; we shall call it the algebra of
andom operators of the groupoid �, or simply the von Neumann algebra of the groupoid �. We
hall show that M is a semifinite algebra and, consequently, that it admits a “modular evolution,”
ust like in the model with a finite group G.17 To this end, let us first recall some important
oncepts.

A von Neumann algebra M is semifinite if there exists a faithful, normal, semifinite weight �
n M which is a trace.

i� A linear functional � :M→C is a state on M if ��r��0 for every r�M+, where M+

= �x ·x* :x�M� is the subset of positive elements of M and ��1�=1.
ii� A functional � :M+→ �0,�� is a weight if � is additive, i.e., ��x+y�=��x�+��y�, and

positively homogeneous, i.e., ��x�=��x�, for R��0,x ,y�M. We additionally as-
sume +�=�,  ·�=� if �0, and  ·�=0 if =0. Let us notice that every state defines
a weight.

�iii� A weight � is faithful if for r�M+ one has ��r�=0⇒r=0.
iv� The sufficient and necessary condition for a weight � to be normal is ��x�=�i�i for a

family ��i� of normal states, i.e., ��r�=Tr�
r�, Tr�
�=1.20

v� Let us define D�ª �x�M+ :��x���� and M�ªSpanC�D��, i.e., M� is the space of
C-linear combinations of elements of D�. A weight � is semifinite if M� is � weakly dense
in M �Ref. 20, p. 56�.

vi� A weight � is a trace if ��r* ·r�=��r ·r*�, for every r�M.

Proposition 4: The von Neumann algebra M of the groupoid � is semifinite.
Proof: We can consider the von Neumann algebra M as an algebra of bounded operators on

he Hilbert space H=LG
2 �E ,H� of G-covariant square-integrable sections of the bundle H. H is

somorphic to LG
2 �E ,L2�G���L2�M �G�. The latter space is separable �M �G is a locally com-

act manifold�. We choose the Hilbert basis ��k�k=1
� in H, and define the weight � :M+→ �0,�� by

��r� = �
k=1

�

�r�k,�k� .

This weight is clearly faithful and trace. It is also normal since �i=�i=1
� �i where �i is given
y �i�r�=Tr�r
i� with 
i being the projection onto the basis vector �i�H.
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To show that � is semifinite, let us notice that we have the net of finite-dimensional projec-
ions P� such that ��P���� and lim P�=1, in strong topology, i.e., for every h�H one has

P�h=h. And this is the necessary and sufficient condition for � to be semifinite �Ref. 20, p. 57�.�
The fact that the von Neumann algebra M is semifinite ensures that it admits a modular group

f automorphisms �Ref. 20, Chap. 2�. In our case, this group can be defined for a state �the
ssumption that � is a weight was necessary only to prove that M is semifinite�. Let us consider
functional of the form

��r� = �
E

tr�
̂�p�r�p��d�E�p� ,

here 
̂�p� is a positive operator of trace class in B�Hp�, for every p�E. Let �ei� be a basis in Hp

uch that 
̂�p�ei=i�p�ei, i�0. We also postulate

�
i=0

�

i�p� = �p� � �

or almost every p�E, and �·��L1�E� with

�
E

�p�d�E�p� = 1.

ith these conditions the functional � is a state, and it satisfies all conditions of the Tomita-
akesaki theorem. We thus can write the state dependent evolution of random operators r�M as

�s
��r�p�� = eisH��p�r�p�e−isH��p�,

here H�p�=ln 
̂�p� and ln 
̂�p�ei= �ln i�p��ei. After differentiating the above equation it can be
ewritten as

� d

ds
�

s=0
ra�p,s� = i�H��p�,ra�p�� . �8�

his is a generalization of the Heisenberg equation of the standard quantum mechanics with the
nly difference that now the dynamics depends on the state �. The fact we have just proved that
he von Neumann algebra M is semifinite, has serious consequences in this respect. The Dixmier-
akesaki theorem �Ref. 5, p. 470� states that if M is semifinite then every state-dependent evo-

ution is inner equivalent to the trivial one, i.e.,

Us�s
��r�p��Us

* = r�p�

or every s�R, where Us is a unitary element of M. This means that the state-independent
volution, obtained by the Connes-Nikodym-Radon construction �Ref. 20, p. 74�, is trivial. To
vercome this difficulty we should assume that the group G is a locally compact nonunimodular
roup. We will return to this problem in a forthcoming paper.

However, a dependence of dynamics on a state need not be a drawback when we are dealing
ith the Planck level. The theory of von Neumann algebras can be regarded as a noncommutative

ounterpart of the measure theory. In the commutative case there is only one interesting measure
the Lebesgue measure�, whereas in the noncommutative case there is a great variety of measures
see, for instance Ref. 21�. Each pair �M ,��, where M is a von Neumann algebra and � a state
n M �usually assumed to be faithful and normal�, is both a dynamic object and a probabilistic
bject. In this context, the fact that there are as many �-dependent dynamics as are generalized

robabilistic measures � seems quite natural.
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III. TRANSITION TO QUANTUM MECHANICS

Let a*���=a��−1�, a�A, ���, and let us denote by AH the subset of all Hermitian elements
f A, i.e., such that a*=a. If a�AH then �p�a�� �B�Hp��H since �p is a �-representation of the
lgebra A. In the following we shall consider the random operators of the form ra�p�=�p�a�. Such
perator is Hermitian if �ra�p�� ,��= �� ,ra�p���. Moreover, it is a compact operator for a�A,
ince a has compact support. On the strength of the spectral theorem for Hermitian compact
perators in a separable Hilbert space, there exists in Hp an orthonormal countable Hilbert basis of
igenvectors ��i�i�I of the Hermitian operator ra�p�. We can write its eigenvalue equation as

ra�p��i�p� = i�p��i�p� .

et us notice that this equation is valid “for every p�E” which reflects the fact that the random
perator ra is a family of functions indexed by p�E. Therefore, with respect to a random operator
t is meaningful to speak only about its eigenfunction i :E→R �not about its eigenvalue�. How-
ver, every concrete measurement is always performed in a given local frame p�E, and when
uch a measurement has been done the eigenfunction i collapses to the eigenvalue i�p�. Let us
bserve that from the perspective of the local measurement it looks as if the measurement result
ere a random effect, but in fact it is but a value of a well determined function i�p� at a given p.

ts “randomness” comes from a subtler source, namely from the fact that ra is a random operator.
his is our model’s version of the so often discussed “collapse of the wave function.”

Let us also notice that a very act of measurement, performed at p, singles out the isomorphism

p
−1 :Hp→L2�G� which reproduces the usual quantum mechanics �on G�. For instance, to obtain
he quantum evolution for a�A, we apply Ip

−1 to the left-hand side of Eq. �8�, and Ip to its
ight-hand side. In this way, we obtain

� d

dt
�

t=o

�̃�a�t�� = i�H̃�,�̃�a�t��� ,

here �̃�a�= Ip
−1 ��p � Ip and H̃�= Ip

−1 �Hp
� � Ip, we have also set s= t. This is the Heisenberg equation

f the standard quantum mechanics with the only difference that it depends on the state �. In more
ealistic models, to which the Connes-Nikodym-Radon construction applies, even this difference
isappears �see remarks at the end of the preceding section�.

The above results seem to be important as far as the interpretation of quantum mechanics is
oncerned. Its peculiarities are largely due to the fact that it is but a part of a larger structure, out
f which it is cut off by every act of measurement. When such an act is performed the larger
tructure “collapses” to its substructure known as quantum mechanics. Quantum mechanics turns
ut to be but a theory of making measurements within our model.
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We propose a structure called a causal site to use as a setting for quantum geometry,
replacing the underlying point set. The structure has an interesting categorical form,
and a natural “tangent 2-bundle,” analogous to the tangent bundle of a smooth
manifold. Examples with reasonable finiteness conditions have an intrinsic geom-
etry, which can approximate classical solutions to general relativity. We propose an
approach to quantization of causal sites as well. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2138043�

. INTRODUCTION AND PHYSICAL MOTIVATION

This paper is part of a program to found quantum gravity in relational topology, more pre-
isely, to replace point set topology with a special type of category as the underlying structure on
hich to put geometrodynamics.

Physically, the idea is that what we actually observe are interactions between bounded regions
f space-time. These could be either material systems or regions of empty space whose causal
ffects can be directly or indirectly distinguished by material systems. There should be a direct
athematical description of the flow of information between the regions, and points should appear

nly relative to an observer, as minimal distinguished regions. We will propose a specific axiom-
tic structure for a type of category which would contain the regions as objects and the relation-
hips between them as different types of morphisms. The hope is that this would lead to a
escription of quantum physics free from ultraviolet divergences, by eliminating the underlying
oint set continuum.

Since categories as generalizations of topological spaces are well known in mathematics,
here they are referred to as sites �Artin, 1962; Mac Lane and Moerdijk, 1992�, we are calling our
ew structures causal sites. Strictly speaking, a site is a category together with a structure called
“Grothendieck topology,” which is the analog of a topology for an ordinary space. We will

xplain below that our axioms also involve a structure very similar to a Grothendieck topology.
This paper will mainly discuss the “topological” side of the problem, i.e., the structure of the

ausal sites themselves. We discover that, unlike manifolds, causal sites with suitable finiteness
onditions have an intrinsic geometry. Thus the distinction between topology and geometry is
ridged over in our new picture. Examples are described which reproduce the classical solutions
o general relativity above the Planck scale. We briefly consider the possibility of directly quan-
izing causal sites, thus directly producing a quantum theory of general relativity.

We will then briefly consider the appropriate classes of presheaves over causal sites, namely
nitary and bisimplicial prestacks. We hope this can serve as a bridge between the topological
spects of causal site theory and the problem of constructing quantum physics over them. We will
ake some remarks as to how to construct a model for quantum gravity at the end.

�Electronic mail: jdc@uwo.ca
�
Electronic mail: crane@math.ksu.edu
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A very important feature of the topology of causal sites is that they have a tangent 2-bundle,
hich is analogous to the tangent bundle of a manifold. We believe this will serve as a setting for

pplications to quantum geometry and physics.
The structure of causal sites is a synthesis of two constructions, one well known from homo-

opy theory and algebraic geometry, the other familiar in the relativity literature. A site �Artin,
962� is a category thought of as a generalization of the lattice of open sets of a topological space,
ith a distinguished family of covers for objects. �We warn the reader that our construction does
ot fully conform to the accepted definition of a site, since the covers in it do not satisfy the
xioms of a Grothendieck topology, as explained below.� The morphisms of the category represent
n abstract version of containment. Doing sheaf theory over such generalized spaces is an impor-
ant part of modern mathematics.

On the other hand, a causal set �Sorkin, 2003; Hawkins et al., 2003�, or partially ordered set,
s a discrete point set approximating the causal structure of a space-time manifold.

Now, since up to this point nobody has tried to use sites as a foundation for relativity, the
atural structure that occurs when we combine the two ideas has never been considered. We will
how that it is surprisingly rich and elegant.

Since causal sets are well known as models for general relativity, let us mention some of their
imilarities and differences with causal sites. Causal sites with a suitable finiteness condition have
n intrinsic metric structure, as mentioned above. It is defined by counting the length of a maximal
ausal chain. This is quite similar to the intrinsic metric of a discrete causal set �Sorkin, 2003�. We
elieve the greater flexibility of the families of regions in a causal site will mean they give much
etter approximations to the geometry of space-times than causal sets do. There can be infinitely
any regions intermediate between two given ones in a causal site, and yet causal paths can have
finite maximal length, as we show in examples below. While random causal sets which approxi-
ate Minkowski space are believed to reproduce Lorentz invariance in the infinite volume limit,

xamples of causal sites which approximate Minkowski space have an invariance under germs of
he Lorentz group on bounded regions as well. As models for general relativity, causal sites can be
tudied in many of the same ways as causal sets. Mathematically, causal sites are a “categorifica-
ion” of causal sets.

The fundamental mathematical observation is that both the containment structure of a site and
he causal structure of a causal set can be described as partial orders. As we will explain in Sec. V,
hese two partial orders give rise to a natural bisimplicial set which we call the elementary
lassifying space of the causal site. From this point of view, certain collections of regions can be
iewed as products of simplices, and these products are glued together in a well-defined way.

We also construct another bisimplicial set, which we call the physical classifying space. This
urns out to be a “special” bisimplicial set, a type of bisimplicial set which corresponds to a weak
-category �Tamsamani, 1995�. This means that causal sites fall into a class of structure which is
lready studied, and that the family of simplicial presheaves over it is well understood.

We will argue at the end that this suggests an approach to doing quantum general relativity
ver causal sites, by putting state sum models on their tangent 2-bundles.

This paper is meant to open a number of lines of research. The contents are as follows: in Sec.
I we present the axioms for a causal site and some simple consequences. In Sec. III we show how

causal site with suitable finiteness conditions can have an intrinsic geometry. In Sec. IV, we
riefly discuss quantization of sites, and in Sec. V we discuss the simplicial and bisimplicial
tructures inherent in a causal site. In Sec. VI, we translate this into a bicategorical structure.
ections VII and VIII discuss the structure of the tangent spaces and tangent bundle, while Sec. IX
iscusses the general analog of a bundle for a causal site, namely a prestack. In Secs. X and XI we
iscuss how state sum models could emerge in a causal site. Section XII contains conclusions and
utlook.

Categorical background: We freely make use of terminology and ideas from category theory.
n particular, we assume basic familiarity with weak 2-categories, which are also called bicatego-
ies. Good references for this topic are Leinster, 2004, Chap. 1; Leinster, 1998; and Bénabou,

967. We also give more specific references as needed.
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I. THE AXIOMATIC STRUCTURE OF CAUSAL SITES

We are now going to axiomatize the structure of regions in a causal space-time.
Example 2.1: Let M be a Lorentzian manifold with no closed timelike curves and a global

ime orientation. For points p and r in M, write p�r if there is a future-directed timelike curve
rom p to r, and let D�p ,r� be the set of all points q with p�q�r. We call D�p ,r� a diamond, and
e say that a subset A of M is bounded if it is contained in a finite union of diamonds. For A and
bounded regions, write A�B when A is a subset of B, and write A�B when every point in

egion A is in the causal past of every point in region B. That is, for each a in A and b in B,
�b.

The motivation for the above definition of “bounded” is the following. If a subset A has
compact closure, then it is bounded in the above sense. And if the manifold M is globally
hyperbolic, then the converse holds. So for globally hyperbolic manifolds, bounded is equivalent
to compact closure. However, in general, our completion axiom below is only satisfied if one
allows regions without compact closure.

Below we list some properties that this set of regions has. We then want to consider more
general systems satisfying the axioms. We believe the interesting examples will actually have
fewer regions than the example above coming from a Lorentzian manifold.

Definition 2.2: A causal site is a set of “regions” with two binary relations denoted � and �
atisfying the axioms below. If A�B we say that A is a subset of B or that B contains A.
f A�B we say that A precedes B.

1� � is a partial order on the set of regions. This means that for all regions A, B, and C,

�a� A�B and B�C implies A�C,
�b� A�A,
�c� A�B and B�A implies A=B.

�2� The partial order � has a minimum element �. This means that � is contained in every
region A. This uniquely determines �, and � is called the empty region.

3� The partial order � has unions. This means that for all regions A and B, there exists a region
A�B such that

�a� A�A�B and B�A�B;
�b� if A�C and B�C then A�B�C.

These requirements uniquely determine A�B, and the binary operation � is automatically
associative and commutative.

�4� � induces a strict partial order on the nonempty regions. This means that for all nonempty
regions A, B, and C,

�a� A�B and B�C implies A�C,
�b� A does not precede A.

�5� For all regions A, B, and C, A�B and B�C implies A�C.
6� For all regions A, B, and C, A�B and C�B implies C�A.

�7� For all regions A, B, and C, A�C and B�C implies A�B�C.
�8� For all regions A and B, there exists a region BA such that

�a� BA�A and BA�B,
�b� if D�A and D�B then D�BA.

These requirements uniquely determine BA, and BA is called the cutting of A by B. Note that
BA can be empty.

9� If A and C are nonempty regions such that A�C, and there exists a D with A�D�C, then
there exists a B complete with respect to A�C. The definition of “complete” is below
�Definition 2.5�.
Definition 2.3: Regions A and B in a causal site are disjoint if the only region which is
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ontained in both A and B is the empty region. More generally, a set of regions is disjoint if each
air of regions it contains is disjoint.

Note that if A�B then A and B are disjoint.
Definition 2.4: Suppose S and T are sets of disjoint regions. If every region in S contains some

egion in T, we say that T is a refinement of S. That is, T is obtained from S by shrinking some
egions and adding new regions.

A causal path P is a sequence A1�A2� ¯ �Am of nonempty regions. If A�A1 and Am

B, we say that P is a causal path from A to B and has length m+1. There is exactly one causal
ath of length 1.

A refinement of the causal path A1�A2� ¯ �Am is a causal path C1�C2� ¯ �Cn such
hat �Cj� is a refinement of �Ai�.

If P is a causal path from A to B, and A��A, then P is also a causal path from A� to B.
nalogous statements can be made when A��A, B�B� and B��B. See Sec. VIII for more
etails.

Definition 2.5: If A�B�C, we say that B is complete for the causal pair A�C if every causal
ath from A to C can be refined to a causal path from A to C one of whose members is contained
n B. B is called a completion of A�C.

See Fig. 1 for an example of a completion. The final axiom of a causal site requires that
ompletions exist. But note that they are rarely unique.

There are some elementary consequences whose proofs we leave to the reader.
Proposition 2.6: The following are true in any causal site.

�1� For every region A, ��A and A��.
�2� BA=B iff B�A.
�3� B�C implies BA�CA.
�4� BA�CA� �B�C�A. �The reverse inclusion fails for some of our examples.�
�5� The collection of regions of a causal site which precedes a region B forms another causal

site. When B is nonempty, this causal site is called the local site of B.

Example 2.7: Let M be as in Example 2.1. Then the bounded regions in M, with the relations
and � defined earlier, satisfy the axioms.

We will check the nontrivial axioms. For the cutting axiom �Axiom 8�, let BA be the set of all
oints p such that �p��A and p�B. This is bounded �contained in a finite union of diamonds�
ince B is.

FIG. 1. �Color online� Comparing completions. �a� Completion. �b� Strong completions.
For the completion axiom �Axiom 9 and Definition 2.5�, a completion of A�C can be taken
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o be the set of all points p such that A� �p��C. This is bounded because it is a subset of the
iamond D�a ,c� for any points a�A and c�C. �In general, this completion may not have

compact closure.�
The remaining axioms are straightforward.
Example 2.8: Let �M , � � be any poset �partially ordered set� and let P�M� be the set of all

subsets of M. We define � to be the usual subset relation, and for A and B subsets of M, we say
that A�B iff ∀a�A∀b�B a�b. �Note that we use the strict inequality a�b.� Then P�M�, �,
and � form a causal site. A completion of A�B can be taken to be �m�M � ∀a�A∀b�B

�m�b�.
Example 2.9: Let �M , � � be a poset such that �n�M �m�n�m�� is finite for each m and m�

n M. Such a poset is called locally finite or a causal set �Sorkin, 2003�. Let P��M� be the set of
nite subsets of M. Then P��M� is a causal site using relations defined as in the previous example.
he hypothesis on M ensures that completions exist.

While the axioms for a causal site were modelled on the example where regions are bounded
ubsets of a causally well-behaved Lorentzian manifold, and A�B iff every element of A is in the
ausal past of every element of B, we can use the structure we have to define a weaker relation.

Definition 2.10: For regions A and B, write A�B if there exist nonempty subsets A��A and
��B with A��B� or A�=B�. We say that A weakly precedes B.

In the example of a Lorentzian manifold �Example 2.1�, A�B iff some point of A is in the
ausal past of some point of B.

Note that � is not transitive. That is, A�B and B�C does not imply A�C.
Definition 2.11: For regions A and B with A�B, we say that C is strongly complete for A and

B if for all nonempty A��A and B��B, any causal path from A� to B� can be refined to a causal
ath from A� to B� one of whose members is contained in C.

Note that we do not require that A�C�B, since a strong completion will rarely satisfy this.
strong completion is “wider” than an ordinary completion. See Fig. 1.

Definition 2.12: A region B is a cover of a region A if B�A and if every causal path ending
n A can be refined to a causal path ending in A one of whose elements is contained in B.

A finite set of regions �Bi� is a cover of A if the union is a cover of A.
Remark 2.13: We can regard a causal site as a category whose objects are the regions by

aying that there is one morphism from A to B if A�B or A=B, and no morphisms otherwise. The
ollection of covers defined above has the feel of being a Grothendieck topology �Mac Lane and
oerdijk, 1992�. But even if pullbacks exist in this category �they do, for example, in the case of

xample 2.1�, the pullback of a cover is not necessarily a cover.
Below we shall define a 2-category whose 1-arrows are all composable strings of arrows in

his category, i.e., causal paths.
Definition 2.14: A causal site is Noetherian if every chain of strictly descending regions

1�A2�A3�¯ is finite. It is locally Noetherian if every local site is Noetherian.
Noetherian implies locally Noetherian.
The causal site P��M� described in Example 2.9 is always Noetherian. If M =N with the usual

rder, then the causal site P�M� described in Example 2.8 is locally Noetherian but not Noethe-
ian.

Definition 2.15: A nonempty region A in a causal site is an absolute point if it contains no
ubregions besides � and A. If A and B are nonempty regions in a causal site, we say that A is a
elative point for B if A�B and for any C with C�B either A=AC �i.e., A�C� or AC=�.

If A is an absolute point and A�B, then A is a relative point for B. And if A is a relative point
or B, then any nonempty subregion of A is also a relative point for B.

In Example 2.1, an absolute point is just a point in the usual sense, and every relative point is
n absolute point.

In Examples 2.8 and 2.9, the absolute points are just the elements of the poset, but the relative
oints can be larger. For example, let Q be the poset �a ,b ,b� ,c� with a�b�c, a�b��c and with
and b� unrelated. Then in the causal site P�Q�, the subset B= �b ,b�� is a relative point for C

�c�. It is a union of the absolute points �b� and �b��.
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We believe that because of the theorems that only a finite dimensional space of information
an flow across horizons in general relativity �Flanagan et al., 2000� there should be causal sites
ssociated to Lorentzian manifolds which have interesting examples of relative points. The infor-
ation contained in the relative position of a finite set of regions should exhaust what an external

bserver can see.
Definition 2.16: If A and B are regions in a causal site, we say that A is amply pointed with

espect to B if A�B and if C ,D�A then either C or D contains a relative point for B which the
ther does not, or C=D. A causal site is amply pointed if all causal pairs in it are.

Definition 2.17: A causal site which is locally Noetherian and amply pointed is a grained
orld.

In addition to the examples coming from causal sets, we believe that the family of Noetherian
ausal sites described in Sec. III produces grained worlds whenever there are no pairs of points
onnected by more than one Planck-scale geodesic. This still needs proof.

Although one can think of the regions in a causal site as like the bounded subsets of a causal
pace-time, we believe the interesting cases will be very different from such classical examples.
he Noetherian property discussed above is an approach to imposing a Planck scale cutoff on the
tructure of a causal site.

II. THE INTRINSIC GEOMETRY OF CAUSAL SITES

It turns out that a causal site can contain more information than just the causal structure of a
anifold. The reason is that a causal site may have a fundamental graininess which sets a length

nd time scale. Physically, this graininess is expected to occur at the Planck scale, and serves as a
easuring rod or clock. Heuristically, a measurement at a smaller scale would result in the

ormation of black hole, so the maximum possible number of successive measurements along a
imelike path gives its duration in Planck units.

Definition 3.1: A causal site is causally finite if for any two regions A�B, the length of any
ausal path from A to B is bounded above by a constant MA,B.

We now want to interpret the least upper bound for the length of a causal path between two
ausally related regions as the discretized timelike separation between them in Planck units. This
s quite similar to the notion of length in a discrete causal set in Sorkin, 2003.

We now give examples to show that the resulting geometry can be quite interesting.
Example 3.2: Consider Minkowski space. Recall from Example 2.1 that a diamond is a region

�p ,r�= �q � p�q�r�. Define a fundamental diamond to be a region D�p ,r� where the proper time
from p to r is 1. Consider the set of bounded regions which are unions of fundamental diamonds.
Define � and � as in Example 2.1. This forms a causal site.

Let us check the nontrivial axioms. For the cutting axiom �Axiom 8�, let BA be the union of all
undamental diamonds D such that D�A and D�B. This is bounded �contained in a finite union
f diamonds� since B is. Note that it can happen that BA is empty even though there are points of
which are in the past of A.

For the completion axiom �Axiom 9 and Definition 2.5�, a completion of A�C can be taken
o be the union of all fundamental diamonds D such that A�D�C. This is bounded because it is

subset of the diamond D�a ,c� for any points a�A and c�C.
The remaining axioms are straightforward.
Figure 2 gives two examples of fundamental diamonds. The timelike vectors shown have

proper length 1.
The following theorem explains how this causal site captures the geometry of Minkowski

space.
Theorem 3.3: Let � be a finite timelike geodesic segment in Minkowski space, starting at the

oint s and ending at t. In the causal site of Example 3.2, consider the causal paths A1� ¯

Am with s�A1 and t�Am. Then the proper length of �, rounded up to an integer, is equal to the
east upper bound of the lengths of these causal paths.
The key element of the proof is the observation that using fundamental diamonds in any other
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est frame than the one determined by the geodesic produces a shorter chain. This is clear from the
bove picture. In physical applications we would use units in which the Planck time is 1.

To handle curved space-times, we need to introduce the concept of stable causality. A Lorent-
ian manifold M is stably causal if it has no closed timelike curves, and every small perturbation
f the metric g also has this property. This can be expressed by saying that there exists a metric h
hose light cones are wider than those of g and such that h has no closed timelike curves. This

ondition is more physical than simply requiring no closed timelike curves, since measurements
ave only finite accuracy.

It is a nontrivial result �Hawking and Ellis, 1973, Prop. 6.4.9� that stable causality is equiva-
ent to the existence of a global time function. In particular, a stably causal space-time is auto-

atically time orientable.
Suppose that M is stably causal and we have chosen a time orientation. It is shown in Penrose,

972 that since M is stably causal, the diamonds D�p ,r� determine the topology of M.
Example 3.4: Generalizing the previous example, let M be a stably causal Lorentzian mani-

old. Define a fundamental diamond to be a region D�p ,r� such that there is a future-directed
imelike geodesic of length 1 from p to r. Consider the set of bounded regions which are unions
f fundamental diamonds. Define � and � as in Example 2.1. This forms a causal site. The proof
s the same as Example 3.2.

The following conjecture explains how these causal sites capture the large-scale geometric
nformation of the manifold.

Conjecture 3.5: Let M be a stably causal Lorentzian manifold whose sectional curvatures are
uch less than 1, and let � be a timelike curve from s to t in M whose radius of curvature and

ength are large. In the causal site of Example 3.4, consider the causal paths A1� ¯ �Am such
hat each region Ai intersects �. Then the proper length of � is well approximated by the least
pper bound of the lengths of these causal paths, with an error which is small compared to the
ength of �.

Of course, the precise statement of the error of the approximation in terms of the curvatures
ill require a more delicate analysis.

We believe this causal site reflects classical geometry more accurately than a causal set can.
his is because we have enough relative points to adjust to any direction to get the best fit.

It is well known that the lengths of timelike curves �clock times�, are enough to describe the
eometry of a Lorentzian manifold completely. Thus our conjecture implies that any solution to
eneral relativity whose sectional curvature is small compared to the Planck scale, with any type
f matter whatsoever, can be approximated by the intrinsic geometry of a causally finite causal site
ith accuracy on the order of the Planck scale.

The causal sites discussed in this section have a fundamental graininess, but are nevertheless
ot Noetherian or locally Noetherian. It is not hard to invent modifications of our examples which

FIG. 2. �Color online� Fundamental diamonds.
ould have stronger finiteness conditions and still recover interesting geometrodynamics. For

                                                                                                            



e
t
w
i
i
d
t
N
s
d

p
t

s
b
1

I

r

t

o
a

s
r
b
f

V

g

t
s
e
g
t

m
m
m

d
o
i
h
b

122502-8 J. D. Christensen and L. Crane J. Math. Phys. 46, 122502 �2005�

                        
xample, fix a discrete closed subspace L of Minkowski space and a discrete closed subspace S of
he hyperboloid of unit timelike vectors. Now consider bounded regions R in Minkowski space
hich are unions of fundamental diamonds D�l−s /2 , l+s /2� centered on points l of L and point-

ng in directions s in S. Since R is bounded, it contains only finitely many points in L. Moreover,
n any sufficiently boosted coordinate system, it would be too contracted to contain a fundamental
iamond. Thus it only contains finitely many fundamental diamonds whose directions are con-
ained in S and which are centered on points of L. Therefore this collection of regions forms a
oetherian causal site which reproduces the space-time geometry of Minkowski space at a large

cale. Such a model is computationally accessible, and is a good candidate for quantization, as
iscussed below.

The discrete subspace L of Minkowski space could be chosen to be a random sprinkling of
oints, or a lattice. In a general manifold, L would have to be an irregular collection of points. If
he manifold is globally hyperbolic, then one again obtains a Noetherian causal site.

Note that the use of fundamental diamonds is not crucial to any of the discussion in this
ection. One could use other shapes, such as “fundamental cylinders,” which are regions formed
y working in normal coordinates and taking the Cartesian product of a timelike interval of length
with a ball of radius 1 in the hyperplane orthogonal to the chosen timelike direction.

As yet, we do not know how to impose Einstein’s equation on a causal site purely intrinsically.

V. QUANTUM SITES

A causal site can be thought of as a large number of answers to questions, either telling us one
egion is inside another, or that one region can observe another.

The answers to these questions can be grouped together in certain good examples and rein-
erpreted as describing physically interesting geometries.

Therefore it is natural to reinterpret the statements that define a causal site as quantum
bservables and attempt to extract a quantum geometry from them. This could be a new avenue of
ttack on the problem of quantizing gravity.

It is not hard to see how to begin such a program. We could tensor together a finite dimen-
ional Hilbert space for each pair of regions, and construct operators for containment and causal
elatedness on each. The interesting part would be to see if suitable commutation relations could
e found on the operators to reproduce Einstein’s equation in the classical limit for suitable
amilies of causal sites. We have not yet investigated this.

. SIMPLICIAL STRUCTURES AND CAUSAL SITES

We first remind the reader of the relationship between partial orders and simplicial sets. A
ood reference for simplicial sets is Goerss and Jardine, 1999.

Roughly speaking, a simplicial set is a set of abstract simplices �points, edges, triangles,
etrahedra, etc.� with the faces of the simplices of dimension n identified with simplices of dimen-
ion n−1, thus gluing the simplices together into a combinatorial model of a space. The math-
matically natural definition of a simplex includes an ordering of its vertices, and includes “de-
enerate” simplices in which some vertices are repeated. If X is a simplicial set, we write Xn for
he set of n-simplices.

Associated to a given partially ordered set is a simplicial set which contains all of the infor-
ation. An n-simplex of this simplicial set is a weakly ascending chain of length n+1. The face
aps come from omitting one member of the chain, and the degeneracies from repeating one
ember.

Since the regions of a causal site have two partial orders on them, they have a natural
escription as the vertices of a bisimplicial set. Roughly speaking, a bisimplicial set is a collection
f abstract cartesian products of pairs of simplices, with attachments along face maps correspond-
ng to both simplicial factors separately. The product of a triangle with a tetrahedron, for example,
as three faces which are edge � tetrahedron, and four which are triangle � triangle. If X is a

isimplicial set, we write Xm,n for the set of �m ,n�-bisimplices.
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Let us give an explicit description of the bisimplicial set of a causal site. An �m ,n�-bisimplex
s a family Ai,j of regions in the site, i=0, . . . ,m, j=0, . . . ,n, such that if a�b then Aa,j �Ab,j or

a,j =Ab,j and if c�d then Ai,c�Ai,d. The two types of face maps come from omitting one value
f i or j, and the two types of degeneracies from repeating items in the sequences.

Definition 5.1: The bisimplicial set associated to a causal site above is called its elementary
lassifying space.

Note that if X is any bisimplicial set, and we fix m, then there is a natural simplicial set Xm,·

hose n-simplices are the �m ,n�-bisimplices of X. We call Xm,· the simplicial set of m-simplices.
It is now an important observation that the elementary classifying space of a causal site

atisfies the Segal condition �Leinster, 2002, Defn. Ta; Tamsamani, 1995�. The Segal condition for
bisimplicial set has two parts. Translated into our situation, the first part states that the simplicial

et of m-simplices is the subset of the product of m copies of the simplicial set of 1-simplices,
here the adjacent 0-simplex objects are equal. More explicitly, it says that for each m and n, the
atural map

Xm,n → Xm,1�Xm,0
¯ �Xm,0

Xm,1

ust be a bijection. This is true for the elementary classifying space essentially because giving a
hain Ai,0� ¯ �Ai,n is the same as giving n chains Ai,0�Ai,1, Ai,1�Ai,2 , . . . , Ai,n−1�Ai,n.

The second part of the Segal condition for bisimplicial sets is more subtle in general. The first
art of the Segal condition tells us that for each m, the simplicial set Xm,· can be regarded as a
ategory. The second part of the Segal condition then requires that for each m, the natural map

Xm,· → X1,·�X0,·
¯ �X0,·

X1,·

ust be an equivalence of categories. In our case, something stronger is true: for each m and n, the
atural map

Xm,n → X1,n�X0,n
¯ �X0,n

X1,n

s a bijection. The reason this is true is similar to the reason that the first part of the Segal
ondition holds. And from this it follows that the categories above are equivalent.

Now let us describe the Segal condition for a simplicial set A. It simply states that there is
xactly one n-simplex for each chain of n 1-simplices with the second vertex of the ith 1-simplex
qual to the first vertex of the i+1st. That is, it states that the natural map

An → A1�A0
A1 ¯ �A0

A1

s a bijection. This is true, for example, for the simplicial set associated to any partially ordered
et. We will explain the importance of this condition below, when we study the relationship with
ategory theory.

One point of all this is that we can completely capture the structure of a causal site as a
ombinatorially described space. This allows us to translate the problem of constructing physical
heories on a causal site into the construction of presheaves over such a space, a problem which is
ell understood. Another is to join the concept of causal sites to the field of higher category

heory.
Now we need to construct a modification of the elementary classifying space of a causal site.

he modification will allow us to associate to a causal site a “special” bisimplicial set; see
amsamani, 1995, where it is referred to as axiom C1, and Leinster, 2002, Defn. Ta.

Definition 5.2: A bisimplicial set X is special if the simplicial set X0,· of 0-simplices is a
isjoint union of points. In other words, all of the face and degeneracy maps between sets of the
orm X0,n are bijections.

This condition is important in category theory, because it is necessary for a bisimplicial set to
e the nerve of a weak 2-category. As we shall see, this condition also plays a natural role when

e try to construct models for quantum physical systems.
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Now we want to define a new version of the classifying space of a causal site.
Definition 5.3: The physical classifying space of a causal site is the bisimplicial set whose

m ,n�-bisimplices correspond to the following data:

�a� a sequence A0 , . . . ,Am of regions with Ai�Ai+1
�b� for each i=0, . . . ,m−1 and j=0, . . . ,n a causal path Ci

j from Ai to Ai+1

uch that for each i and j, the causal path Ci
j is a refinement of Ci

j+1. The two types of face maps
re given by composition of rows and columns, respectively.

In this definition, refinements of causal paths play a central role. The physical motivation for
his is the goal of writing discrete analogs of Feynman path integrals by summing effects of
ropagation along causal paths with the same beginning and end. Mathematically, we will see
elow that the �m ,n�-bisimplices of the physical classifying space fit together to form a weak
-category, because the initial and final paths of a refinement share a common initial and final
egion.

We would like to formulate the idea that all the information of a causal site is contained in its
hysical classifying space. We therefore make the following tentative definition.

Definition 5.4: A causal site is tractable if its elementary and physical classifying spaces are
omotopy equivalent.

We do not know which causal sites are tractable, or whether this will prove to be a useful way
o formulate the idea that the physical classifying space “suffices.”

Proposition 5.5: The physical classifying space of a causal site is a special bisimplicial set
atisfying the Segal condition.

The proof is similar to the argument given for the elementary classifying space, including the
act that a stronger form of the second part of the Segal condition holds.

Thus, as we explain below, the physically natural idea of focussing on the causal paths of a
ausal site supplies the missing mathematical ingredient to replace a space-time with a weak
-category. We think this is suggestive for our program of applying higher categorical ideas of
opology to quantum physics.

I. THE WEAK 2-CATEGORY STRUCTURE OF A CAUSAL SITE

There is a very strong connection between simplicial and multisimplicial sets and higher
ategories. We begin with a standard theorem about �1-�categories �Leinster, 2002, p. 34; Tamsa-
ani, 1995�.

Theorem 6.1: There is a one-to-one correspondence between categories and simplicial sets
atisfying the Segal condition.

The connection can be described by taking the nerve of the category. This is a simplicial set
ith one n-simplex for each string of n composable morphisms in the category, with face maps
iven by compositions of pairs of adjacent morphisms and degeneracies given by inserting identity
aps.

This theorem has recently been extended from categories to 2-categories by Tamsamani �Lein-
ter, 2002, Defn. Ta; Tamsamani, 1995�; he proved that there is a natural one-to-one correspon-
ence between special bisimplicial sets satisfying the Segal condition and weak 2-categories.

The connection proceeds by taking the “2-nerve” of the 2-category. This is the bisimplicial set
ith �0,0�-bisimplices the objects of the 2-category, �1,0�-bisimplices the 1-morphisms in the
-category, �1,1�-bisimplices the 2-morphisms in the 2-category. A general �m ,n�-bisimplex is a
oubly indexed array of mn 2-morphisms along with some additional data.

The analogy with the structure of the physical classifying space prompts the following defi-
ition.

Definition 6.2: If the causal path A� P1� P2� ¯ � Pp�B is a refinement of the causal path
�Q1�Q2� ¯ �Qq�B then we say that there is a chain inclusion from the causal path �Qj� to

he causal path �Pi�.
The inclusion 2-category of a causal site is the 2-category whose objects are regions,
-morphisms are causal paths, and 2-morphisms are chain inclusions.
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The inclusion 2-category of a causal site connects regions, processes between regions, and
nclusions of processes. These are the elements which would go into a description of an experi-
ent. A 2-functor on this 2-category would then give us a mathematical language in which to

ssociate calculations to an experiment, by associating concrete mathematical structures and rela-
ions to the objects and processes.

As we shall discuss below, the state sum models for quantum gravity have a natural formu-
ation in terms of 1- or 2-categories. Any two 2-categories are connected by a 2-category of
unctors, natural transformations and modifications. This means the categorical structure we have
escribed gives us a sort of calculus for constructing physical models over causal sites using the
tate sum models as local physical data.

To put things simply, one could easily feel that passing from point sets to regions leads to a
athematical wilderness. The structure we have discovered has geometric, categorical and alge-

raic aspects which make available to us a large framework of definitions and theorems which can
uide us to natural constructions of physical models. The natural definition of a physical model on
causal site is a type of functor on it. The definition could in principle be found without the

ategorical language, but it is a foolish cave explorer who throws away a light.

II. BISIMPLICIAL PATCHES

The geometrical and physical applications of smooth manifolds largely grow out of the fact
hat to every smooth manifold we can naturally associate a tangent bundle. This develops from the
ore elementary fact that every point of a manifold has a neighborhood which can be described as
space of a fixed and familiar kind. In this section we propose such a neighborhood structure. In

he next, we show how to construct an analog of the tangent bundle, but a relational, or
-categorical one.

Definition 7.1: If A is a region in a causal site, the bisimplicial set of regions contained in it is
ts bisimplicial patch. This bisimplicial set sits naturally inside the elementary classifying space
Definition 5.1�.

With this definition in place, it is possible to treat causal sites in a manner analogous to
anifolds, by working on the local bisimplicial patches thought of as coordinate patches.

Simplicial and bisimplicial sets have a homotopy theory equivalent to the homotopy theory of
opological spaces. This subtle mathematical fact should allow us to use the combinatorics of the
isimplicial patch as an approximation to the local topology of a region.

Definition 7.2: Let R�R� be regions. The bisimplicial patch of the complement is the bisim-
licial set of regions A which are contained in R� and disjoint from R. The relative homotopy type
f R in R� means the homotopy type of the pair �X ,Y� where X is the bisimplicial patch of R� and
is the bisimplicial patch of the complement of R in R�.

Definition 7.3: A region R is an n-ball if it is contained in a region R� such that the relative
omotopy type is that of an n-sphere.

A causal site is a grained n-manifold if every region is contained in a union of a finite number
f n-balls.

III. THE TANGENT 2-BUNDLE

In a physical model on a causal site, we would like to think of information being transferred
long causal paths. We will now describe a construction of a version of a tangent bundle for causal
ites in which the regions contain just such information as can be observed along the causal paths,
hile the compositions and inclusions of causal paths have a natural action.

8.1. Causal paths: For A�B we define Path�A ,B� to be the set of causal paths from A to B.
or any A�B�C there is a natural composition map Path�A ,B��Path�B ,C�→Path�A ,C� which

sends A� P1� ¯Pm�B and B�Q1� ¯Qn�C to A� P1� ¯Pm�B�Q1� ¯Qn�C. The
omposition map is injective.

For a region A, define the future cone of A to be A↑= �B �A�B� and define the future tangent

pace of A to be A⇑= �A�↑ �A��A�, the poset of future cones of subregions of A, ordered by
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nclusion. The future cone A↑ is a minimum element of A⇑. For a region B, define the past cone
f B to be B↓= �A �A�B� and define the past tangent space of B to be B⇓= �B�↓ �B��B�, ordered
y inclusion. The past cone B↓is a minimum element of B⇓.

The relevance of these cones is that if A1↑=A2↑, then Path�A1 ,B�=Path�A2 ,B� for any B.
This is an equality rather than a bijection because a path from A to B doesn’t include the regions

and B.� More generally, if A1↑�A2↑, then Path�A1 ,B��Path�A2 ,B� for any B. Similarly,

1↓�B2↓ implies that Path�A ,B1��Path�A ,B2� for any A. Writing Fut for the poset �A↑� of all
uture cones and Past for the poset �B↓� of all past cones, this says that Path�−,−� is an order
reserving map from the poset Fut�Past to the poset Inc of sets and inclusions. In fancier
anguage, Path�−,−� is a functor.

This has various consequences. For example, if A��A, then A�↑�A↑ and so
ath�A� ,B��Path�A ,B� for any B. And if A��A, then A�↑�A↑ and so again
ath�A� ,B��Path�A ,B� for any B. Similar reasoning shows that if B��B or B��B �note the
eversal�, then B�↑�B↑ and so Path�A ,B���Path�A ,B� for any A.

8.2. Causal paths subordinate to a given path: If we are given a causal path P from A to B, we
an assign to any pair of subregions A��A and B��B the set PathP�A� ,B�� of causal paths from
� to B� which are refinements of P. As above, this defines a functor, in this case from A⇑
B⇓ to Inc.

We next describe a 2-category which is a natural target for this construction.
Definition 8.1: Define a weak 2-category PP in the following way. The objects are pairs �F , P�

f posets with minimum elements mF and mP. A 1-morphism from �F1 , P1� to �F2 , P2� is a functor
rom F1� P2 to Inc. The composite of S :F1� P2→ Inc with T :F2� P3→ Inc is the functor
S :F1� P3→ Inc defined by TS�f , p�=S�f ,mP2

��T�mF2
, p�. If S and T are 1-morphisms from

F1 , P1� to �F2 , P2�, i.e., functors from F1� P2 to Inc, a 2-morphism from S to T is a natural family
f injections S�f , p�→T�f , p�.

Note that the composites �TS�R and T�SR� of 1-morphisms are in general not equal. Instead,
here is a natural bijection between them. Thus PP is a weak 2-category. This also explains why
he 2-morphisms allow arbitrary injections rather than just inclusions.

The horizontal and vertical compositions of the 2-morphisms of PP are given by Cartesian
roduct and composition of injections, respectively. The coherence of PP is natural.

The discussion above can be summarized by saying that there is a weak 2-functor from the
nclusion 2-category of our causal site to the weak 2-category PP. This can be thought of as a
restack. It sends a region A to the pair �A⇑ ,A⇓� of posets. It sends a causal path P from A to B
o the functor PathP�−,−� from A⇑�B⇓ to Inc. And it sends a chain inclusion from P� to P
which means that P and P� are both causal paths from A to B, and P� is a refinement of P� to the
atural family of inclusions PathP��A� ,B���PathP�A� ,B��. If P is a causal path from A to B and

is a causal path from B to C, there is a natural injection PathP�A� ,B��PathQ�B ,C��
PathQ�P�A� ,C��, where Q � P denotes the composite of P and Q.

Definition 8.2: We call this weak 2-functor the tangent 2-bundle of the causal site.
The tangent 2-bundle contains information about how causal paths can link the observable

angent spaces together. Since we can also refine causal paths, expansions into discretized path
ums will be possible by decomposing intermediate regions into unions and summing over the
amilies of refined paths which occur.

We think the analogy between smooth manifolds and causal sites may be a good guide to
pplications. We use the tangent bundle as a setting in order to apply calculus to the geometry of
anifolds. Similarly, the local simplicial or bisimplicial structures on a site may enable us to apply

he calculus of categorical state sums to quantum geometry on them. In constructing a quantum
heory over a causal site, it should be possible to use the connecting complexes as discretized
nalogs of a Feynman path integral, and their 2-categorical structure should help constrain such a

onstruction, allowing us to find interesting models just from the requirement of 2-functoriality.
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X. UNITARY PRESTACKS ON A CAUSAL SITE

In the next few sections, we investigate a more conventional approach to constructing geo-
etrical or physical models on causal sites, namely, putting suitable presheaves and prestacks over

hem.
We will begin with a preliminary investigation of the type of physical model which the

athematical structure of a causal site suggests. We will not attempt to construct specific physi-
ally realistic models in this paper.

The original idea of a site was motivated by the fact that a presheaf over a topological space
is equivalent to a contravariant functor from the category of open subsets of X.

Since a bundle, including the tangent bundle of a manifold, can be regarded as a type of sheaf,
e have a language for describing analogs of the basic structures underlying Yang-Mills theory

nd general relativity available for sites, although we will probably need stronger regularity
ssumptions to be able to create more precise analogs.

It is interesting that including a causal structure in our model, which traditionally is expressed
y changing from a Riemannian to a Lorentzian metric, is expressed here by passage from a
-category to a 2-category, a process which has been called categorification �Crane and Frenkel,
994; Baez-Dolan, 1998�.

This has the immediate consequence that rather than looking for models over a causal site
ithin an ordinary category, such as the category of Hilbert spaces, we must turn to a 2-category,

uch as the category of 2-Hilbert spaces �Baez, 1996�. Instead of a presheaf of Hilbert spaces, we
ork with a prestack of 2-Hilbert spaces. A prestack is a weak 2-functor from our causal site to a
-category �Breen, 1994�. In a prestack, a triangle of restriction morphisms only needs to commute
p to a 2-morphism.

This means that rather than thinking of an assignment of a single Hilbert space to a region
something like the space of quantum states propagating through it�, we assign to it a category of
ilbert spaces. Physically, we can think of this as related to the idea that the state space of a region
as dimension related to the area of its boundary, so that if the geometry is itself a quantum
ariable, then the Hilbert space itself cannot be unique.

Indeed, if we tried to construct a physical theory over a causal site, we would quickly discover
hat we couldn’t find a natural linear map to associate to containment, because of the nonlocal
orrelations in quantum theories. We would be trapped trying to map pure states to mixed states.

It actually provides an interesting new slant on the interpretation of quantum mechanics
ewriting this process in terms of the different choices of Hilbert spaces in the categories corre-
ponding to two regions, one of which contains the other.

Let us explain in a very simple situation, using the category 2-Vect �Kapranov and Voevodsky,
994� rather than 2-Hilb, how this would look. Objects in 2-Vect are n-vector spaces, i.e., the
ategory of all n-tuples of vector spaces for some n. Arrows in 2-Vect are functors defined by
ensoring by some column of vector spaces. Thus, a �contravariant� functor from a causal site to
-Vect would find the vector spaces which could appear on a subregion being combined into
ensor products of vector spaces associated to a larger region.

Now there is neither a natural map A→A � B nor A � B→A, so there would be no way to
epresent inclusion as a map on individual Hilbert spaces. This is a mathematically elegant way to
xpress the existence of nonlocal correlations in compound systems in quantum mechanics. The
verall rule which tells us how the different Hilbert spaces associated to regions are related has an
legant functorial form, which cannot be recovered on the individual Hilbert spaces. In Hawkins
t al., 2003, a similar problem was studied for models on causal sets, and it was discovered that
aps between causally related points must be expressed as completely positive maps on spaces of
ixed states �i.e., Hermitian operators over the Hilbert spaces, rather than the Hilbert spaces

hemselves�. The setting we are exploring, combining both causality and containment, should
ontain examples of this, but set in a broader algebraic context.

Now we can ask ourselves which of the models which have appeared in mathematical physics

ould be good candidates for extending to a causal site. An obvious choice would be 2-Yang-
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ills theory �Baez, 2002; Girelli and Pfeiffer, 2003�, which is a theory which puts a nonlinear
artial differential operator on a 2-form, by analogy with the Yang-Mills equation on a 1-form.

Since 2-Yang-Mills theory has the interpretation of physics on the curvature of a gerbe, which
s really a special type of stack of categories, it will have a direct generalization to causal sites.

. A BRIEF REVIEW OF CATEGORICAL STATE SUM MODELS

Categorical state sums �Crane et al., 1994; Barrett and Crane, 1998; Crane and Yetter, 2003;
oui and Roche, 2003; Crane et al., 2001� are models of quantum geometry on simplicial com-
lexes. They are constructed out of unitary representations of Lie groups or quantum groups,
ntertwining maps of these representations, and in some cases, 2-intertwiners. The maps are
omposed in closed patterns related to the combinatorics of the simplicial complex, traced, and
ummed over. The result is a discrete version of a path integral for quantum geometry, with the
nitary representations acting as Hilbert spaces on which geometric quantities are represented as
perators.

For example, in the model of Barrett and Crane, 1998, we have a four-dimensional simplicial
omplex. The 2-simplices �triangles� are labelled with unitary representations of the Lorentz
roup. We think of these as quantizations of the oriented area elements a geometry would assign
o the faces, because oriented area elements can be identified with elements of the Lie algebra of
he Lorentz group.

In fact, in order to impose the necessary constraints on the geometry, we restrict ourselves to
class of representations called the balanced ones. We then label the tetrahedra with a sum over

he balanced intertwining maps between the four representations, trace over each 4-simplex, mul-
iply, then sum over all possible choices of representations.

There are a number of models of this type, differing by the dimension, choice of symmetry
roup, constraints, etc. These amount to different choices of the geometry to be quantized.

This type of model is closely related to the ideas discussed above describing simplicial sets as
ategories. They can be written as sums of functors from the category associated to the complex
o the category of representations of the geometrical symmetry group or quantum group.

In short, the categorical state sum picture makes it natural to assign a quantum geometry to a
implicial complex.

In the context of causal sites, this can be thought of as a candidate for local quantum geometry
n a tangent space, analogously to the use of inner products on tangent spaces in classical Rie-
annian geometry.

One of the reasons that manifold theory was so important to the development of relativity was
hat it gives a natural concrete expression for the equivalence principle: laws must be expressed in
ensor form. The categorical underpinning of the structure of causal sites suggests a similar
rinciple in quantum gravity: laws must be expressed in functorial form. This simple and attractive
rinciple will cut down the possibilities greatly.

Given that we already have subcategories which express the relational world seen by an
bserver, it is also a natural expression of the idea behind the equivalence principle, if we take the
oint of view that coordinate systems are idealized observers.

I. STATE SUM MODELS ON CAUSAL SITES

The physically interesting examples of Sec. III all possess local symmetries. �Since a bounded
egion which is boosted too far no longer contains fundamental diamonds, a mathematical formal-
zation of this would need to use actions of germs of the Lorentz or Poincare groups. We will not
ork this out in this paper.�

It therefore seems that the Hilbert spaces in a quantum site would group together in unitary
epresentations of the Lorentz group.

Now one of the great challenges for our proposal is to find a way to derive Einstein’s equation
s a classical limit for some formulation of the dynamics on a quantum site. Categorical state sum

odels are interesting because the laws of combination of the representations produce a classical
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imit which implies Einstein’s equation. In other words, Einstein’s equation is actually determined
y the symmetry of the model, expressed in the tensor category of unitary representations of the
orentz group.

Now is it possible that we can introduce categorical state sum models into a suitable family of
ausal sites with local symmetries? Let us try to imagine how that could arise.

In order to define a class of causal sites which would be physically realistic near the Planck
cale, we have defined “grained worlds” above as locally Noetherian, amply pointed causal sites.
e think of this as a way to embed facts about the limited amount of information which can flow

etween regions in general relativity into the fabric of spacetime itself.
The combination of these two properties means that given a causally related pair of regions

�B, we can find a finite set of relational points for B in A which in some sense exhaust the
nformation which B can see in A. This would mean that the relational tangent space would be
dequately described by a simplicial set, assuming the set of points did not contain one another.

This suggests that the state sum model of Barrett and Crane, 1998, or some similar model,
ight appear as a good approximation to the quantum theory of the part of a quantum site

ontained in a region.
This is probably a better setting for state sum models than direct application to a whole

niverse, since the finiteness of the simplicial set becomes better motivated.
Then, when we wanted to express the flow of information from one region, described by a

tate sum on a simplicial set, to another, along a given causal path, we would know that the map
hich described it would have to behave well when we included one causal path in another.

This includes the information flow law in a 2-categorical structure, which might be rich
nough to allow us to determine it.

So a program suggests itself, to make a suitable set of assumptions on a prestack over a
rained world, so that if we pass to a set of relational points the relative position information ends
p containing all the transferred information, and takes the form of a state sum model.

At this point, we realize that our new point of view is making us ask a series of new questions
bout state sums which had no motivation in the past when they were thought of as stand alone
odels. We need to express the relationship between two state sum models when the complex of

ne is embedded in the other, we need to work out expressions for causal flows of information
etween state sums, and we need to investigate in what sense they approximate points with
uantum variables between them as they grow far apart. If nothing else, the causal sites proposal
as widened our perspective on state sum models.

II. CONCLUSIONS AND FUTURE DIRECTIONS

We now have defined a new class of mathematical objects, which are not point sets, but which
an function as a topological foundation for classical general relativity. We have families of
xamples corresponding to classical space-times, which include descriptions of the geometrody-
amics of classical spacetimes above the Planck scale, without the inclusion of a metric tensor as
mathematical datum separate from the underlying space-time structure.

The representation of geometry by a causal site is analogous to the representation by a discrete
ausal set, but as we have discussed, it seems to give a much closer approximation. Our relative
nd absolute points should not be confused with ordinary points, either in manifolds or causal sets.
hey are not “atomic.” For example, a union of a finite family of fundamental diamonds in a
orentzian manifold can contain an infinite number of other fundamental diamonds. Nevertheless,

he causality relationship between them gives rise to a finiteness or discreteness in the structure. It
herefore makes a bridge between continuous and discrete structures in a new way. The hypothesis
f overlapping minimal regions seems more physically natural to us than the discrete point sets of
ausal sets or categorical state sum models. It also means that the continuous or discrete symmetry
roperties of a causal site can be more robust than a causal set. In the examples we have con-
tructed, the symmetry with respect to the Lorentz group is not broken, because we have funda-
ental diamonds in all reference frames. In the theory of causal sets, by contrast, it is only
ossible to recover the symmetry on the average in the infinite volume of Minkowski space
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Sorkin, 2003�. The fact that we are able to produce a mathematical construction which combines
fundamental graininess with symmetry in local regions gives our construction added interest.

We think it will be interesting to try to find further families of examples, for instance to try to
onstruct quantum n-manifolds neither related to causal sets nor directly derived from manifolds.
ifferent classes of these might give new examples of “space-time textures,” which could be

xplored as new settings for physical models. It may well be that the physical intuition expressed
n the phrase “space-time foam” can find better expression in our setting that when constrained by
he necessity of considering only families of smooth manifolds.

Causality and time are integrated into the mathematical structure of a causal site in a striking
ashion: space-time appears as a categorification of space. The fact that causal sites can be con-
idered either as bisimplicial sets or as 2-categories means we have a number of well-understood
ools at our disposal for constructing examples.

In addition, the structure of a causal site seems to lend itself readily to quantization. We have
ot yet examined this in any detail.

We have, at this point, many more questions than answers. Can the geometric picture of
xample 3.4 be generalized to more intrinsic models, i.e., models which have definitions not so
irectly dependent on a classical space-time? Can it be quantized? Since it seems natural to
pproach quantization by beginning with the family of containments of a particular causal site, it
ill be easier to find semiclassical states in this approach than in other approaches to quantum
ravity.

It would seem that the Hilbert spaces arising from quantization of a causal site with local
ymmetries would decompose into unitary representations of the Lorentz group. Do the state sum
odels arise in such a picture? We should remind ourselves that Einstein’s equation is almost

etermined by symmetry considerations. Would a quantization of a causal site with Lorentz sym-
etry which was required to respect the symmetry be nearly determined as well?

We also have not yet studied the description of curvature in causal sites, nor searched for a
eometric way to impose Einstein’s equation.

General relativity is intimately bound up with our ideas about space-time and geometry.
hanging the foundation of these creates a situation in which all the questions of classical and
uantum relativity can be reexamined. The large family of accessible examples we have con-
tructed means that a fairly broad program can be practically implemented.
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Causal sets are particular partially ordered sets which have been proposed as a
basic model for discrete space-time in quantum gravity. We show that the class C of
all countable past-finite causal sets contains a unique causal set �U , � � which is
universal �i.e., any member of C can be embedded into �U , � �� and homogeneous
�i.e., �U , � � has maximal degree of symmetry�. Moreover, �U , � � can be
constructed both probabilistically and explicitly. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2147607�

. INTRODUCTION

The causal set hypothesis asserts that the ultimate structure of space-time in quantum gravity
s discrete, and that a fundamental relationship between points in space-time is causality, enabling
s to say that x is in the past of y. Such a structure can be naturally modeled by partially ordered
ets �S , � � which are locally finite �i.e., any interval �x ,y� between two points x ,y is finite� or
hich are even past-finite �i.e., the past of each point x is finite�. Locally finite partially ordered

ets are called causal sets and have been investigated in detail, cf. e.g., Refs. 3,14 and 16.
oreover, an interesting sequential growth dynamics for finite causal sets was investigated in
efs. 15, 5, and 4: a finite causal set can be extended by a single element z by adding it to the
iven partial order as a new maximal element �naturally, z cannot be in the past of any given
lement�. Continuing in this way, one obtains a countable past-finite causal set. Conversely, any
ountable past-finite causal set can be built up this way. For further work on this dynamics, see,
.g., Refs. 1,10 and 12.

It is the goal of this paper to investigate the class of countable past-finite causal sets. We will
how that there is a countable past-finite causal set �U , � � which is universal and homogeneous.
ere, universal means that �U , � � contains an isomorphic copy of any countable past-finite causal

et as a natural substructure. Homogeneous means that any isomorphism between two finite
ubstructures �stems� of �U , � � extends to an automorphism of �U , � �. Thus homogeneity intu-
tively says that �U , � � has the highest possible degree of structural symmetry. Moreover, with
hese two properties, universality and homogeneity, �U , � � is unique up to isomorphism in the
lass of all countable past-finite causal sets. Our proof employs the Fraïssé-Jónsson theorem
ell-known in model theory for constructions of homogeneous relational structures. We also give

n explicit order-theoretic construction of the universal homogeneous past-finite causal set, and we
how that the larger class of all countable causal sets �not requiring “past-finite”�, in contrast, does
ot contain a universal object.

In our second result, we will describe a probabilistic construction of the universal homoge-
eous past-finite causal set �U , � �. Probabilistic procedures for constructing one-point extensions
f finite causal sets were crucial for Refs. 15 and 10 and investigated in detail. Here we also
ropose a probabilistic construction. It is motivated by a classical construction of Erdös and
ényi8 of the random graph �which is universal and homogeneous in the class of all countable
raphs�. More recently, a similar construction of the universal homogeneous countable partial

�
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rder was given in Ref. 7. If we employ the present probabilistic one-point extensions of finite
ausal sets successively, we obtain an infinite sequence of causal sets whose union is a countable
ast-finite causal set, the random past-finite causal set. Then we show that with probability 1, this
andom causal set is universal and homogeneous �hence unique up to isomorphism�. Our con-
truction of one-point extensions differs from the ones investigated in Ref. 15 in technical details,
hich we discuss briefly, and it would be interesting to investigate the relationship further. Finally,
e describe a simple explicit number-theoretic construction of �U , � �. This is motivated by a

lassical construction of the random graph.13 We close with a short discussion.

I. UNIVERSAL CAUSAL SETS

First we establish some terminology. For a fuller introduction to causal sets, see Ref. 16.
A partially ordered set �poset� is a pair �S , � � where S is a set and � is a binary relation on

which is reflexive, antisymmetric, and transitive. Let �S , � � be a poset. For x ,y�S we write
�y to denote that x�y and x�y. If x�y, we let �x ,y�= �s�S �x�s�y�, and for x�S let

pastS�x�= �s�S �s�x�. Then �S , � � is called locally finite, if each interval �x ,y� �x ,y�S ,x�y� is
finite, and past-finite, if pastS�x� is finite for each x�S. Clearly, any past-finite poset is locally

nite �but not conversely as seen by the set of negative integers with their natural order�. A causal
et �or causet� is a locally finite poset. If X�S is a subset, let pastS�X�=�x�Xpast�x�. If S is clear
rom the context, we also write past�x� and past�X�. Then X is called a stem of S, denoted
X , � ���S , � � or X�S, if past�X��X �note that here, in slight generalization of Ref. 16, we do
ot require X to be finite�.

In Refs. 15 and 16, constructions of countable causal sets �S , � � are given as unions of chains
f finite posets �A1 ,�1���A2 ,�2�� . . . . Indeed, given such a chain, let S=�i�NAi, and for
,y�S put x�y if for some i�N we have x ,y�Ai and x�iy. Then �S , � � is a past-finite
ountable poset and Ai�S for each i�N. Such constructions will also be crucial for this paper.

Let �S , � � and �S� , � � be two posets. A mapping f :S→S� is called an �order-� embedding of
S , � � into �S� , � �, if for any x ,y�S we have x�y iff f�x�� f�y�. Clearly, any embedding is
ne-to-one. An embedding f : �S , � �→ �S� , � � is called an isomorphism, if f is onto, and a stem-
mbedding, if f�S��S�. So, f is a stem-embedding iff f is an isomorphism from �S , � � onto a stem
f �S� , � �. An isomorphism of �S , � � onto itself is called an automorphism of �S , � �.

Let C be a class �collection� of posets. A poset �S , � ��C will be called stem-universal in C,
f each poset �C , � ��C is isomorphic to some stem in �S , � �, i.e., there exists a stem-embedding
f : �C , � �→ �S , � �. We call �S , � � homogeneous, if each isomorphism f : �A , � �→ �B , � � be-
tween two finite stems of �S , � � extends to an automorphism of �S , � �; equivalently, for any
finite poset �A , � � and any two stem-embeddings f , f� : �A , � �→ �S , � � there exists an automor-
hism g of �S , � � such that f�=g � f . �We mention that in the literature there are other concepts
alled homogeneity. Our homogeneity, for instance, does not mean that Aut�S�, the automorphism
roup of �S , � �, acts transitively on S�.

We say that �S , � � realizes all one-point stem-extensions of finite stems of S, if whenever
A , � � , �B , � � are finite posets such that �A , � ���S , � � , �A , � ���B , � � and �B�= �A�+1, then

there exists a stem-embedding g : �B , � �→ �S , � � such that �g�A=idA, the identity on A �this
ondition includes the case A=��.

The first main goal of this paper will be the following result.

Theorem 2.1: Let C be the class of all past-finite countable causal sets.

a) A poset �U , � ��C is stem-universal and homogeneous in C iff �U , � � realizes all one-point
stem-extensions of finite stems of U.

b) There exists a stem-universal homogeneous past-finite causet �U , � � in C. Moreover,
�U , � � is unique up to isomorphism with these properties.

One approach to the proof of Theorem 2.1 would be to use a category-theoretic generalization

f the Fraïssé-Jónsson theorem from model theory, see Ref. 6, and to argue directly for past-finite
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ausal sets and stem embeddings. In order to avoid the category-theoretic machinery needed for
his, here we will base our argument on a more classical version of the Fraïssé-Jónsson theorem,
f. Refs. 9, 2, and 11, which describes the existence of universal homogeneous objects for various
lasses of, e.g., relational structures. This also has the advantage of showing how to regard
ast-finite causal sets and stem-embeddings as relational structures and relational embeddings. For
he convenience of the reader, we recall these notions. Let �= �ni�i�I be a fixed I-indexed sequence
f natural numbers ni�1 �a relational signature� denoting prescribed arities of relations. A tuple
= �A , �Ri�i�I� is called a �-structure, if A is a set �possibly empty� and Ri is an ni-ary relation on

, i.e., Ri�Ani, for each i� I. Given two �-structures A= �A , �Ri�i�I� and B= �B , �Qi�i�I�, a map-
ing f :A→B is called an embedding of A into B, if f is one-to-one and for each i� I and

1 , . . . ,xni
�A we have �x1 , . . . ,xni

��Ri iff �f�x1� , . . . , f�xni
���Qi. An embedding which is onto is

alled an isomorphism. An isomorphism of A onto itself is called an automorphism of A. Further,
is said to be a substructure of B, if A�B and Ri=Qi�Ani for each i� I, i.e., A�B and the

dentity mapping id:A→B is an embedding of A into B; this is denoted by A�B.
Now let C be a class �collection� of �-structures. A structure U�C is called universal in C, if

or each A�C there exists an embedding f :A→U. Further, U is homogeneous, if each isomor-
hism f :A→B between two finite substructures A ,B of U with A ,B�C extends to an automor-
hism of U. The structure U realizes all finite extensions of finite substructures, if when-
ver A ,B�C are finite structures such that A�U and A�B, then there exists an embedding
:B→U such that �g�A=idA. The class C is said to be an �-class, if it satisfies the following
onditions:

0� Any A�C is countable.
1� Whenever A�C and B is a structure isomorphic to A, then B�C.
2� If A1�A2� . . . are finite structures from C, forming a chain of substructures under inclu-

sion, then their union A=�i�NAi �whose domain and relations are defined as the union of
the domain respectively corresponding relations of the structures Ai� also belongs to C.

3� If A�C and F is a finite subset of the domain of A, then there exists a finite substructure
S�A with S�C whose domain contains F.

An object A�C is called weakly initial in C, if for each B�C there exists an embedding
f :A→B. �Often, this is the empty or a singleton structure.� The class C is said to have

• the joint embedding property, if for any A ,B there exists C�C and embeddings
f :A→C ,g :B→C

• the amalgamation property, if for any A ,B1 ,B2�C and embeddings f i :A→Bi �i=1,2�
there exists C�C and embeddings gi :Bi→C �i=1,2� such that g1 � f1=g2 � f2, i.e., the subse-
quent diagram ”commutes.”

Theorem 2.2 (Refs. 2, 9, and 11): Let � be a relational signature and C an �-class of

-structures.
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a) Let C contain a weakly initial structure. Then a structure U�C is universal and homoge-
neous in C if and only if U realizes all finite extensions of finite substructures.

b) The following are equivalent:

(1) C contains a universal homogeneous structure U.
(2) Cfin, the class of all finite structures in C, has the joint embedding and the amalgamation

property and contains up to isomorphism only countably many structures.

Moreover, in this case U is unique up to isomorphism.

We just note that the proof of Theorem 2.2�a� as well as of the uniqueness of U in part �b�
mploys a standard “back-and-forth argument.” The construction of the universal homogeneous
tructure U given condition �2� of part �b� uses a suitable enumeration of all possible embeddings
f the finite structures in C.

In order to be able to apply Theorem 2.2 to causal sets, we have to enrich them to rela-
ional structures such that stem-embeddings become relational embeddings as above. Given

poset �A , � �, we define its relational expansion to be �A , � ,R� where R= �Ri�i�1

nd Ri= ��x�A��past�x��= i� �i�1�. Hence � is a binary and each Ri a unary relation on A, so
A , � ,R� is a �-structure for the signature �= �2,1 ,1 ,1 , . . . �. Observe that if A is finite, then each
f the relations Ri where i� �A� is empty. Next we show that for past-finite causal sets, this
xpansion achieves our first goal:

Proposition 2.3: Let �A , � � and �B , � � be two past-finite causal sets and let �A , � ,R�
espectively �B , � ,Q� be their relational expansions.

a) �A , � � is a stem of �B , � � iff �A , � ,R� is a substructure of �B , � ,Q�.
b) Let f :A→B be a mapping. Then f : �A , � �→ �B , � � is a stem-embedding iff f : �A , � ,R�

→ �B , � ,Q� is an embedding of relational structures.

Proof: �a� We have R= �Ri�i�1 and Q= �Qi�i�1 with Ri= ��x�A��pastA�x��= i� and

i= ��y�B��pastB�y��= i� �i�1�.
First, let A�B. Let x�A. By A�B we get pastA�x�=pastB�x�, so x�Ri iff x�Qi, for

ach i�1. Hence �A , � ,R�� �B , � ,Q�. Conversely, assume the latter. Let x�A and y�B with
y�x. By assumption, we have pastA�x��pastB�x� and �pastA�x��= �pastB�x���N, so pastA�x�

pastB�x��y showing y�A. Hence A�B.
�b� Straightforward by �a�, using that the image of A under f is an isomorphic copy of A and

stem respectively a substructure of B. �

This result allows us to translate all notions concerning stem-embeddings �like universality,
omogeneity, etc.� into corresponding ones for the relational expansions and their embeddings.

Let C be the class of all countable past-finite causal sets and let Crel be the collection of all
elational expansions �A , � ,R� where �A , � ��C. Next we give an easy application of Proposi-
ion 2.3 to show how this translation of notions works:

Remark 2.4: Crel is an �-class of �-structures.
Proof: Conditions �0� and �1� of the definition of �-class are trivial. For �2�, let

A1 , � ,R1�� �A2 , � ,R2�� . . . be a chain of finite structures from Crel, and let �A , � ,R�� be
heir union. Then �A1 , � ���A2 , � ��. . . is a sequence of stems by Propositions 2.3 �a�, and
A , � � is a past-finite causal set whose expansion �A , � ,R� coincides with �A , � ,R��. Hence
A , � ,R���Crel. To check �3�, let �A , � ,R��Crel and let F be a finite subset of A. Then past�F�
s a finite stem of �A , � �, so by Proposition 2.3 �a� its relational expansion is a finite substructure
f �A , � ,R� belonging to Crel. �
Next we show:
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Lemma 2.5: Let �A , � � , �B , � � be two finite posets such that A�B. Then there is a sequence
f stems

A = A0�A1� . . . �Am = B

uch that �Ai+1�= �Ai�+1 for each i=0, . . . ,m−1.

Proof: By induction on �B \A�. Choose a minimal element x of B \A, and put A1=A� �x�.
hen A�A1�B, and by induction we obtain a sequence of stems and one-point extensions from A1

o B. �

Now we can give the

Proof of Theorem 2.1: By Remark 2.4, Crel is an �-class of �-structures.
�a� The empty structure is a weakly initial object of Crel. Lemma 2.5 shows that if U realizes

ll one-point extensions of finite stems, it also realizes all finite stem-extensions of finite stems.
ow the result is a translation of Theorem 2.2 �a�.

�b� Again we use Proposition 2.3. We check condition �2� of Theorem 2.2 �b�. It is clear that

rel contains up to isomorphism only countably many finite structures �A , � ,R�, since if A is
nite, only finitely many of the relations Ri are nonempty. It remains to show that the collection of
nite posets satisfies the joint embedding and the amalgamation properties with respect to stem-
mbeddings. Since this collection contains the empty poset, it suffices to check the amalgamation
roperty. For this, let �Ai ,�i� �i=0,1 ,2� be three finite posets such that �A0 ,�0���Ai ,�i� for
=1,2. We may assume that A0=A1�A2. Put A=A1�A2 and �=�1��2, i.e., for x ,y�A let
�y iff either x ,y�A1 and x�1y or x ,y�A2 and x�2y. Then � is transitive, since if, e.g.,
�1y and y�2z, we have y�A1�A2=A0 and x�A1. Since A0�A1, we get x�A0 and x�0y, so
�2y�2z which implies x�z. Hence � is a partial order on A. Observe that if x�A1 \A0 and

y�A2 \A0, then neither x�y nor y�x. Also note that if x ,y�A1�A2 and x�1y, say, then this
mplies x�0y, hence also x�2y. We claim that �Ai ,�i���A , � � for i=1,2. By the remark just

ade, �i is just the restriction of � to Ai. So, it only remains to show that Ai is a stem of
A , � �.

Indeed, let x�A and y�A1 with x�y. We claim that x�A1. This is trivial if x�1y. So let
�2y. Then x ,y�A2 and y�A0. Now A0 is a stem of �A2 , � �, so x�A0�A1. Hence A1 is a stem
f �A , � � and for A2 we argue analogously. This proves the amalgamation property.

Now the result follows from Theorem 2.2 �b�. �

Next we wish to describe the structure of the universal homogeneous past-finite causet
U , � � further. A poset �S ,�� is called directed, if for any a ,b�S there is c�S with a�c and
�c. Two elements a ,b�S are incomparable, if neither a�b nor b�a; this is denoted by a �b.
subset A�S is called an antichain, if any two elements of A are incomparable. An element

�S is called maximal, if there is no y�S with x�y. Together with Theorem 2.1 �a�, the
ollowing provides an order-theoretic characterization of the structure of the universal homoge-
eous past-finite causal set.

Proposition 2.6: Let �U , � � be a past-finite causal set. The following are equivalent:

1) �U , � � realizes all one-point stem-extensions of finite stems of U.
2)

(i) �U , � � is directed, and
(ii) For any finite antichain A�U (including the case that A=�) and any y�U \A with

A�past�y� there is x�U \A such that x � y and past�x�=past�A�� �x�.
n this case, no element of �U , � � is maximal.
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Note that the condition past�x�=past�A�� �x� means that a�x for each a�A, and whenever
�U with u�x, then u�a for some a�A.

Proof: �1�→ �2�: To show �i�, let a ,b�U. We claim that there is c�U with a�c and b�c.
learly, we may assume that a �b. Let A=past��a ,b��, choose an element z�A, and put
=A� �z�. We define a partial order �* on B such that it extends the order � on A and
�*z ,b�*z, so z is the greatest element of �B ,�*�. Then �A , � ���B ,�*�, a one-point extension
f the finite stem A of U. Hence, there exists a stem-embedding g : �B ,�*�→ �U , � � with
�g�A=idA. Now put c=g�z� to obtain the claim.

For �ii�, choose a finite antichain A�U and u�U \A with A�pastU�y�. Put A�=pastU�y�,
hoose an element z�A�, and put B=A�� �z�. Define a partial order �* on B such that it extends
he order � on A, such that each x�pastU�A� satisfies x�*z, but each x�A� \pastU�A� is incom-
arable to z in �B ,�*�. Then �A� , � ���B ,�*�, a one-point extension of the finite stem A� of U.
gain, there is a stem-embedding g : �B ,�*�→ �U , � � with �g�A�=idA�. Then x=g�z� satisfies
�A� and x � y, and by g�B��U we obtain

pastU�x� = pastg�B��x� = g�pastB�z�� = g�pastB�A� � �z��

= pastg�B��A� � �x� = pastU�A� � �x� , �1�

s required.
�2�→ �1�: We first show that no element of �U , � � is maximal. Let y�U. Applying assump-

ion �ii� to the empty antichain, we obtain x�U with x � y. Now by �i� there is z�U with x�z and
y�z. Then y�z.

Now let �A� , � � and �B ,��� be finite posets such that �A� , � ���U , � � , �A� , � ���B ,���,
nd B=A�� �z�, say. Let A comprise all elements a�A� maximal with respect to
��z in �B ,���. So, A is an antichain and pastB�z�=pastB�A�� �z�. Since �U , � � is directed and
� is finite, there exists y�U with a�y for each a�A�. Choose y��U with y�y�; then y��A�.
ow by assumption �ii�, there is x�U \A such that in �U , � � we have x � y� and pastU�x�
pastU�A�� �x�. Define g :B→U by �g�A�=idA� and g�z�=x. By x � y�, we obtain x�A�, and
oreover, x is incomparable to each element of A� \pastU�A�. Hence g is an embedding, and we

how that g�B��U. We have A��U, and so pastU�x�=pastU�A�� �x��A�� �x�=g�B�. Thus g is a
tem-embedding. �

Next we wish to use Theorem 2.2 �a� and Proposition 2.6 to give a direct construction
avoiding Theorem 2.2 �b�� of the universal homogeneous past-finite causal set �U , � �.

Construction 2.7 (of the universal homogeneous past-finite causal set �U , � �): We construct
sequence of finite posets �A1 ,�1���A2 ,�2��. . . as follows. Let �A1 ,�1� be any singleton set,
ith the trivial order. Now let i�N and assume we have constructed a finite poset �Ai ,�i�. Let A

omprise all antichains in �Ai ,�i�, and choose pairwise different elements xA�A�A� not belong-
ng to Ai. Then put Ai+1=Ai� �xA �A�A�, and define a partial order �i+1 on Ai+1 such that it
xtends �i and for any z�Ai+1, if z�pastAi

�A�� �xA� then z�i+1xA, but if z�pastAi
�A�� �xA�

hen z and xA are incomparable in �Ai+1 ,�i+1�. Hence each element xA�A�A� is maximal
n �Ai+1 ,�i+1�, and thus �Ai ,�i���Ai+1 ,�i+1�. Finally, let �U , � �=�i�N�Ai+1 ,�i+1�. Clearly,
Ai ,�i���U , � � for each i�N, and �U , � � is a countable past-finite causal set.

Claim: �U , � � is universal and homogeneous.
Proof: We show that �U , � � satisfies condition �2� of Proposition 2.6; then this proposition

nd Theorem 2.1 �a� imply the result. For condition �2��i�, let a ,b�U with a �b. Then
= �a ,b��Ai for some i�N, and xA�Ai+1 satisfies a�xA and b�xA. For condition �2��ii�, let
�U be a finite antichain and y�U \A with A�pastU�y�. Again, A� �y��Ai for some i�N.

hen xA�Ai+1 and by Ai+1�U and construction of �i+1 we obtain

                                                                                                            



F
c

i
g

c

(

W
i
e
A

x
=
f

P
n

t
�
�
f
S
�
e
=

u
p
p

I

c
R
fi

122503-7 Universal homogeneous causal sets J. Math. Phys. 46, 122503 �2005�

                        
pastU�xA� = pastAi+1
�xA� = pastAi+1

�A� � �xA� = pastU�A� � �xA� .

urthermore, since y�pastAi+1
�A�, we get xA � y in �Ai+1 ,�i+1� and in �U , � �, as required. Our

laim follows. �

This argument is more direct and intuitive than the previous one using Theorem 2.2 �b� with
ts proof. However, Theorem 2.2 puts the result into a general context, and checking the amal-
amation property required for condition �2� of Theorem 2.2 �b� was also uncomplicated.

Next we mention two further structural properties of the universal homogeneous past-finite
auset �U , � �.

Corollary 2.8: Let �U , � � be the universal homogeneous countable past-finite causet.

a) For any finite subset F�U, �U , � � is isomorphic to the poset �U \F , � �. In particular,
�U , � �	�U \past�z� , � � for each z�U.

(b) For each z�U, �U , � � is isomorphic to ��u�U �z�u� , � �, the proper future of z.

Proof: �a� We may assume that F��. Trivially, �U \F , � � is a countable past-finite causet.
e wish to check that �U \F , � � satisfies condition �2� of Proposition 2.6; then the result is

mmediate by Proposition 2.6 and Theorem 2.1. Since �U , � � is directed and contains no maximal
lement, �U \F , � � is directed. So, let A�U \F be a finite antichain and y� �U \F� \A with
�pastU\F�y�. Again, since �U , � � is directed and contains no maximal element, there is

y��U \F with F� �y��pastU�y��. By Proposition 2.6, for �U , � �, there is x�U \A such that
� y� and pastU�x�=pastU�A�� �z�. Then x�F and neither x�y nor y�x, and clearly pastU\F�x�
pastU\F�A�� �x�, as required for condition �ii�. The final claim is immediate, since past�z� is finite

or each z�U.
�b� Let z�U and U�= �u�U �z�u�. Again we show that �U� , � � satisfies condition �2� of

roposition 2.6. If the antichain A chosen is empty, replace it by �z�. Then, and also in case A is
onempty, apply condition �ii� for �U , � � to obtain the element x�U� as required. �

Finally, we wish to show that the restriction to past-finite causets in Theorem 2.1 is essential:

Proposition 2.9: The class of all countable causets does not contain a universal causet.

Proof: We will exploit that this class also contains posets which are not past-finite. Suppose
here was a countable causet �U , � � such that each countable causet can be stem-embedded into
U , � �. Let −N denote the set of negative integers. We denote the natural partial order on −N by
, so n−1�n for each n�−N. For each subset A�−N let �SA , � � be the causet obtained

rom �−N , � � by replacing each element n�A by a 2-element antichain �n ,n*�. That is,

A=−N� �n* �n�A�, n and n* are incomparable for each n�A, and m�n* iff m�n iff m�n
m�−N ,n�A�, likewise for m*�n*, respectively, m*�n. By assumption, there is a stem-
mbedding fA : �SA , � �→ �U , � �. Let xA= fA�−1�. Then fA�SA� is a stem of U, and fA�SA�
past�xA�.

As is easily seen, for A ,A��−N we have �SA , � �	�SA� , � � iff A=A�. Hence there are
ncountably many nonisomorphic causets of the form �SA , � �; these are isomorphic to the
osets �past�xA� , � �. But U is countable and contains only countably many posets of the form
ast�x��x�U�, a contradiction. �

II. PROBABILISTIC CONSTRUCTIONS

In this section, we wish to provide probabilistic constructions of the universal homogeneous
ausal set �U , � � of Sec. II. Probabilistic constructions of causal sets were already investigated in
efs. 10 and 15. This employed successive one-point extensions �“generalized percolations”� of

nite posets; such extensions will also be used here. Suppose we are given a finite poset �A , � �
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nd want to extend it to a poset �B , � � such that B=A� �z�, say, and �A , � � is a stem in
B , � �. Then we just have to define the order relations between z and the elements of A; moreover,
ince A should become a stem of B, z has to become a maximal element of �B , � �, thus for each
�A we can only put a�z or a � z, and this can be decided probabilistically. Let us now give the
etails of this construction for our case. We will discuss a technical difference to Refs. 10 and 15
fterwards. For sake of concreteness, we will take the underlying set of our causet to be N �as in
ef. 15, but the construction would work for any countably enumerated set�. Hence we will
onstruct a partial order � on N. Recall that we write x�y if x�y and x�y. We denote the
atural order on N by �, i.e., n�n+1 for each n�N. Our basic construction will depend on a
arameter p� �0,1�.

Construction 3.1 (Probabilistic one-point extension of an enumerated finite poset): Let
p� �0,1�. Let �A , � � be a finite poset with A= �1, . . . ,n� for some n�1, and let B=A� �n+1�.
Furthermore, letting Aj = �1, . . . , j� for 1� j�n, assume that A1� . . .�An=A. As noted before, we

ish to extend the order � to a partial order �� on B such that �A , � � is a stem of �B ,���. We
roceed as follows. First choose, with equal probability, some j� �1, . . . ,n�. If j was chosen, this
eans that we will restrict ourselves to having pastB�n+1��Aj � �n+1�. We define a binary

elation R in �1, . . . ,n�� �n+1� as follows. Decide independently for each i� �1, . . . , j� with
robability p that �i ,n+1��R, and with probability 1− p that �i ,n+1��R. Now let �� on B be
he reflexive transitive closure of the relation ��R. That is, we have n+1��n+1, for x ,y�A we
ave x��y iff x�y, and for any x�A we have x��n+1 iff there is i� �1, . . . , j� such that x� i
nd �i ,n+1��R; in this case x�Aj by Aj�A. Clearly, �B ,��� is a partial order, n+1 is maximal
n �B ,���, pastB�n+1��Aj � �n+1�, and �A , � ���B ,���.

Next we wish to construct our random past-finite countable causal set structure on N.
Construction 3.2 (of a probabilistic order � on N): Let p� �0,1�. Let An= �1,2 , . . . ,n�

n�N�. For n=1, put 1�1. Now use Construction 3.1 to successively extend the order � from An

o An+1. We obtain a sequence of stems A1�A2� . . .�An�. . ., and we put �N , � �=�n�N�An ,
�. Then each An is a stem of �N , � � and �N , � � is a past-finite causal set.

Next we will show:

Theorem 3.3: Let p� �0,1�. With probability 1, the above construction produces a partial
rder � on N such that �N , � � is a stem-universal homogeneous past-finite causal set.

Proof: As noted before, �N , � � is a past-finite causal set. By Theorem 2.1 �a�, it suffices to
how that with probability 1, �N , � � realizes all one-point stem-extensions of finite stems of
N , � �. There are countably many such stem-extensions. Since the intersection of countably many
vents of probability 1 again has probability 1, it suffices to consider an arbitrary fixed one-point
tem-extension A��B ,��� with B=A� �y�, A finite and A��N , � �. We claim that with probabil-
ty 1 there exists z�N such that the mapping g :B→N with �g�A=idA and g�y�=z is a stem-
mbedding, i.e., for each a�A we have a��y in B iff a�z in N and A� �z���N , � �.

For each j�N let Aj = �1,2 , . . . , j�. Since A is finite, there is m�N such that A�Am. Then
�Am. Now choose any integer n�m and consider the extension of the order � from An to An+1

iven by Construction 3.1. We wish to compute a lower bound for the probability that we can put
=n+1 to obtain the required stem A� �z���N , � �. First, the probability that we choose the
umber m from �1, . . . ,n� is 1 /n. Then by Construction 3.1 for each i�A, if i��y in �B ,��� we
ut �i ,n+1��R with probability p, and if i��y we put �i ,n+1��R with probability 1− p; further
ith probability 1− p we put �i ,n+1��R for each i�Am \A. Hence, given m, there is
�small but� fixed r�0, depending only on the structure of �Am , � �, on A�B and on y

but not on n�, such that at least with probability r all i�Am satisfy the above conditions, so
� �n+1��Am� �n+1��An+1 and n+1 realizes the one-point stem extension of A as required.

Thus the probability that in �An+1 , � �, the structure of �Am� �n+1� , � � is as required is
t least r ·1 /n. Hence the probability that n+1 and �Am� �n+1� , � � do not satisfy these

onditions is at most 1−r /n. Consequently, the probability that for no integer n�m ,n+1 and
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Am� �n+1�� realize this one-point extension of A is �n=m
	 �1−r /n�. Since the series 
n=m

	 �r /n�
iverges, we obtain �n=m

	 �1−r /n�=0. Hence with probability 1, this one-point extension of A is
ealized inside �N , � � as required, and the result follows. �

We just note that the above “intuitive” probabilistic statements can easily be made exact by a
recise �but technical� definition of the employed probability space; this can be done analogously
o the case of the random graph, cf. Refs. 8 and 11, or to the procedure in Refs. 15, 5, and 4 for
onstructing the probability space of completed labeled causets: The sample space of this prob-
bility space is the collection of all past-finite causets �N , � � �hence the underlying set, N, is
xed, but the order � can vary�, and Construction 3.1 yields a corresponding probability measure.
heorem 3.3 can then be rephrased by saying that in this probability space the collection of all
ausets which are universal and homogeneous has measure 1.

The above construction would work also for other probability distributions on �1, . . . ,n�, in
onstruction 3.1, than the uniform one. However, they would have to be chosen with some care in
rder to ensure the final argument in the proof of Theorem 3.3.

Our construction of �U , � � uses and depends on the given enumeration of N, respectively, in
onstruction 3.1, of the poset A= �1, . . . ,n�, and not only on the structure of the poset �A , � �:
fter choosing j� �1, . . . ,n�, we decided to possibly put �i ,n+1��R only for elements

i� �1, . . . , j�. This is a bit unfortunate, since, in the notions of Ref. 15, it would correspond to
some externally given time. Apart from this, our construction is very similar to the ones proposed
in Refs. 10 and 15. It even shares with it a property of the “gregarious child transition,” cf. Ref.
15, Lemma 2:

Remark 3.4: Let p� �0,1�, let �A , � � be a finite poset with A= �1, . . . ,n�, and let
=A� �n+1�. The probability to obtain by Construction 3.1 the poset �B , � � with �A , � ���B ,
� and n+1 �a for each a�A depends only on the cardinality of A.

Proof: Given j� �1, . . . ,n�, for each i� �1, . . . , j� we have to put �i ,n+1��R. The probability
of this equals 1 /n ·
j=1

n �1− p� j. �

Furthermore, our construction apparently satisfies a weak form of the Bell causality condition,
ut not the condition of discrete general covariance of Refs. 10 and 15. It would be interesting to
nvestigate this further. Also, this raises the question whether the universal homogeneous past-
nite causet �U , � � can be constructed without referring as in Construction 3.1 to a given enu-
eration, with positive probability, say. This would require a more intricate analysis of the prob-

bilities of the finite posets occurring.
Finally, we wish to present also a number-theoretic representation of the universal homoge-

eous past-finite causet �U , � �. As underlying set, we take again the natural numbers N.

Construction 3.5 (of a partial order � on N): We define a binary relation R on N as follows.
or any j ,n�N, put �j ,n��R iff j�n and in the unique ternary expansion of n as a sum of
istinct powers of 3, 3j occurs with coefficient 1. That is, �j ,n��R iff

n = 3 j + 

0�i�n

i�j

xi · 3i

or some xi� �0,1 ,2�. Then let � be the transitive reflexive closure of R.
Since �j ,n��R implies j�n, clearly �N , � � is a past-finite causal set, for An= �1, . . . ,n� we

ave An�N, and n is a maximal element of �An , � �. We show:

Theorem 3.6: The poset �N , � � constructed above is a stem-universal homogeneous past-
nite causal set.
Proof: By Theorem 2.1 �a�, it suffices to show that �N , � � realizes all one-point extensions.
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o let �A , � ���N , � �, with A finite, �A , � ���B ,��� and B=A� �y�, say, with y�A. We claim
hat there exists z�N such that the mapping g :B→N with �g�A=idA and g�y�=z is a stem-
mbedding. Choose m�N such that A�Am. Put

z = 

a�A

a��y

3a + 2 · 3m.

hen z�A and z is maximal in �A� �z� , � �. The construction of � shows that if a�A with a
�y, then �a ,z��R, so a�z. Conversely, let a�N and a�z. Since � is the transitive reflexive

losure of R, there is a��N such that a�a� and �a� ,z��R. By definition of R and of z, we
mmediately get a��A and a���y. Since A�N, we obtain a�A and a��y. It follows that g,
efined as above, is an order-embedding of �B ,��� into �N , � � and that g�B� is a stem of N, as
equired. �

V. DISCUSSION

We studied the class of all countable causal sets. In algebra, many classes of structures have
een investigated with respect to the existence of universal or homogeneous objects. Most often,
his completely depends on the given class of structures. Here, we could show that the class of all
ountable past-finite causets, in contrast to the class of all causets, contains a universal object.
omehow surprisingly, a random �intuitively: “chaotic”� construction produces, in the end, almost
urely a universal causet bearing maximal degree of symmetry.

A basic idea behind causal set theory is that a manifold M may emerge from a causal set
S , � � by some sprinkling of a coarse-grained version of �S , � � densely into M �cf. Ref. 16�.
hen it would be interesting to see how symmetry properties of �S , � � are reflected in the
tructure of M. It is tempting to recall, in this context, Noether’s close correspondence between
ymmetries and conservation laws. A bold question: Can conservation laws be founded on sym-
etry properties of causal sets and, ultimately, traced to some random constructions of causal sets?

1 Ash, A., and McDonald, P., “Moment problems and the causal set approach to quantum gravity,” J. Math. Phys. 44,
1666–1678 �2003� �arXiv: gr-qc/0209020�.

2 Bell, J. L., and Slomson, A. B., Models and Ultraproducts: An Introduction �North Holland, Amsterdam, 1969�.
3 Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D., “Spacetime as a causal set,” Phys. Rev. Lett. 59, 521–524 �1987�.
4 Brightwell, G., Dowker, F., Garcia, R. S., Henson, J., and Sorkin, R. D., “‘Observables’ in causal set cosmology,” Phys.
Rev. D 67, 084031 �2003� �arXiv: gr-qc/0210061�.

5 G. Brightwell, Dowker, H. F., García, R. S., Henson, J., and Sorkin, R. D., “General covariance and the ‘Problem of
Time’ in a discrete cosmology,” Correlations, edited by K. G. Bowden, Proceedings of the ANPA 23 Conference, 2001,
Cambridge, England �Alternative Natural Philosophy Association, London, 2002�, pp. 1–17 �arXiv: gr-qc/0202097�.

6 Droste, M., and Göbel, R., “Universal domains and the amalgamation property,” Math. Struct. in Comp. Science 3,
137–159 �1993�.

7 Droste, M., and Kuske, D., “On random relational structures,” J. Combinatorial Theory, A 102, 241–254 �2003�.
8 Erdös, P., and Rényi, A., “Asymmetric graphs,” Acta Math. Acad. Sci. Hung. 14, 295–315 �1963�.
9 Fraissé, R., “Sur l’extension aux relations de quelques propriétés des ordres,” Ann. Sci. Ec. Normale Super. 71, 363–388
�1954�.

0 Georgiou, N., “A random binary order: A new model of random partial orders,” CDAM research report, London School
of Economics, UK, 2003.

1 Hodges, W., Model Theory �Cambridge University Press, Cambridge, 1993�.
2 Martin, X., O’Connor, D., Rideout, D., and Sorkin, R. D., “On the ‘renormalisation’ transformations induced by cycles
of expansion and contraction in causal set cosmology,” Phys. Rev. D 63, 084006 �2001� �arXiv: gr-qc/0009063�.

3 Rado, R., “Universal graphs and universal functions,” Acta Arith. 9, 331–340 �1964�.
4 Reid, D. D., “Discrete quantum gravity and causal sets,” Can. J. Phys. 79, 1–16 �2001� �arXiv: gr-qc/9909075�.
5 Rideout, D., and Sorkin, R., “A classical sequential growth dynamics for causal sets,” Phys. Rev. D 61, 024002 �2000�
�arXiv: gr-qc/9904062�.

6 Sorkin, R. D., “Causal sets: discrete gravity,” in Proceedings of the Valdivia Summer School, Valdivia, Chile, 2002,

edited by A. Gomberoff and D. Marolf �to be published� �arXiv: gr-qc/0309009�.

                                                                                                            



N

I

o
f
t

b
t
m
b

t
n
s

t
t
t

a

b

c

JOURNAL OF MATHEMATICAL PHYSICS 46, 122901 �2005�

0

                        
onstandard connections in k-cosympletic field theory
Miguel-C. Muñoz-Lecandaa�

Departamento de Matemática Aplicada IV, Edificio C-3, Campus Norte UPC,
C/Jordi Girona 1, E-08034 Barcelona, Spain

Modesto Salgadob�

Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade
de Santiago de Compostela, 15706-Santiago de Compostela, Spain

Silvia Vilariñoc�

Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade
de Santiago de Compostela, 15706-Santiago de Compostela, Spain

�Received 25 July 2005; accepted 26 October 2005; published online 28 December 2005�

In the jet-bundle description of time-dependent mechanics there are some elements,
such as the Lagrangian energy and the construction of the Hamiltonian formalism,
which require the prior choice of a connection. This situation is analyzed by
Echeverría-Enríquez et al. �J. Phys. A 28, 5553–5567 �1995��. The aim of this
paper is to extend the results in that paper to first order field theory, using the
k-cosymplectic formalism described by de León and co-workers �J. Math. Phys.
39, 876–893 �1998�; 42, 2092–2104 �2001��. If the trivial configuration bundle of
a Lagrangian system is endowed with one connection, different from the trivial one
given by the product structure, we study the consequences on the geometric ele-
ments of the theory, the dynamical equations and the variational principles. © 2005
American Institute of Physics. �DOI: 10.1063/1.2146191�

. INTRODUCTION

There are several ways to state first order classical field theories in a geometrical setting. All
f them are a generalization of time-dependent mechanics in its different formulations, see Ref. 1
or a detailed account of these formulations. These formulations come from contact formulation,
hat is from symplectic or presymplectic approaches.

In the jet bundle description of time depending mechanics, one begins with the configuration
undle over R, that is a trivial bundle � :R�Q→R, being R the “time.” In the case of field
heory, the most similar to this description is the k-cosymplectic formulation. Here, the base

anifold of mechanics is changed by Rk, described as “several times,” and the configuration
undle is a trivial one, � :Rk�Q→Rk. See Refs. 2 and 3 for details.

The consideration of a trivial bundle hides the use of a connection in several parts of the
heory: there is a natural one given by the product structure. It is natural to ask about the changes
eeded in the development of the theory if one takes another connection. In the case of mechanical
ystems, these changes are analyzed in Ref. 4.

In this paper we try to give insight into the consequences of taking another different connec-
ion in the configuration bundle to build the k-cosymplectic approach to classical field theory. On
he one hand, the Lagrangian energy, and hence the Hamiltonian, are connection depending. But
he dynamical equations are the same for different connections.

�Electronic mail: matmcml@ma4.upc.edu
�Electronic mail: modesto@zmat.usc.es
�
Electronic mail: svfernan@usc.es
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On the other hand, it is usual to find the theory on a variational principle, both in Lagrangian
nd Hamiltonian settings, and we study what are the changes to be introduced in these principles
n order to get the dynamical equations.

The structure of the work is as follows.
Sections II and III are devoted to the elements of the theory. In particular, in Sec. II, we review

he k-cosymplectic formalism in field theory introduced in Refs. 2 and 3. The relationship between
hese formalisms and the multisymplectic formalism has been studied in Ref. 5 and it will be
ommented at the end of this section.

In Sec. III, we introduce first the basic ideas about connections in the configuration bundle

Rk :Rk�Q→Rk and the definition and properties of the Lagrangian energy function, EL
�, associ-

ted with a Lagrangian L and a connection �. Under some assumptions, we obtain that EL
� is

onstant along the solutions of the classical Euler-Lagrange equations. Some of the results ob-
ained have as a particular case the results of Ref. 4.

Sections IV and V are devoted to the analysis of the deformed dynamical equations and
olutions, both in Hamiltonian and Lagrangian settings. In Sec. IV, we construct the Hamiltonian
ormalism depending on the choice of an arbitrary connection �, and we show that if the curvature
f the connection vanishes then the Hamilton equations of the modified Hamiltonian and classical
amiltonian equations have the same solutions. In Sec. V we begin by constructing the vertical

ndomorphisms associated to a connection, which enables us to the construction of the Lagrangian
ormalism depending on the connection �. If the Lagrangian L is regular, we obtain again that if
he curvature of � vanishes then the Lagrangian equations of the modified Lagrangian and clas-
ical Lagrangian equations have the same solutions.

In Sec. VI, by means of other new geometrical elements in Rk�Q, we establish a character-
zation of the Lagrangian energy function based on variational principles. We conclude that the
nergy function EL

� is the only function that performs the equivalence between the Hamiltonian
rinciple of minimal action and the Hamilton-Jacobi principle. Section V in Ref. 4 is a particular
ase of this section.

Manifolds are real, paracompact, connected and C�. Maps are C�. Sum over crossed repeated
ndices is understood.

I. THE k-COSYMPLECTIC FORMALISMS IN FIELD THEORY

The concepts and results of this section are given in Refs. 2 and 3.

. The Hamiltonian approach „Ref. 2…

. The geometric elements

Let Q be a differentiable manifold, dim Q=n, and �Q
* :T*Q→Q its cotangent bundle.

Denote by �Tk
1�*Q=T*Q � . . .

k

� T*Q, the Whitney sum of k copies of T*Q. The manifold
Tk

1�*Q can be identified with the manifold J1�Q ,Rk�0 of 1-jets of mappings from Q to Rk with
arget at 0�Rk, that is

J1�Q,Rk�0 � T*Q � . . .
k

� T*Q ,

jq,0
1 � � �d�1�q�, . . . ,d�k�q�� ,

here �A=�A �� :Q→R is the Ath component of �, and �A :Rk→R is the canonical projection
nto the A component, for 1�A�k. �Tk

1�*Q is called the bundle of k1-covelocities of the manifold

, see Ref. 6.
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The manifold J1�Q of 1-jets of sections of the trivial bundle �Q :Rk�Q→Q is diffeomorphic
o Rk� �Tk

1�*Q, via the diffeomorphism given by

J1�Q → Rk � �Tk
1�*Q ,

jq
1� = jq

1��Q,IdQ� � ��Q�q�,�q
1, . . . ,�q

k� ,

here �Q :Q→
�

Rk�Q→
�Rk

Rk, �q
A=d��Q�A�q�, 1�A�k and ��Q�A :Q→

�Q

Rk→
�A

R is the Ath compo-
ent of �Q.

Throughout the paper we shall use the following notation for the canonical projections:

Rk � �Tk
1�*Q ——→

��Q�1,0

Rk � Q ——→
��Q�

Q

nd ��Q�1=�Q � ��Q�1,0, where

�Q�t,q� = q, ��Q�1,0�t,�q
1, . . . ,�q

k� = �t,q�, ��Q�1�t,�q
1, . . . ,�q

k� = q ,

ith t�Rk, q�Q and ��q
1 , . . . ,�q

k�� �Tk
1�*Q.

If �qi� are local coordinates on U�Q, then the induced local coordinates �qi , pi�, 1� i�n, on
�Q

* �−1�U�=T*U�T*Q, are given by

qi��q� = qi�q�, pi��q� = �q�� �

�qi�
q
� , �1�

nd, in the same way, the induced local coordinates �tA ,qi , pi
A� on ���Q�1�−1�U�=Rk� �Tk

1�*U are
iven by

tA�jq
1�� = ��Q�q��A, qi�jq

1�� = qi�q�, pi
A�jq

1�� = d��Q�A�q��� �

�qi�
q
� ,

r equivalently

tA�t,�q
1, . . . ,�q

k� = tA, qi�t,�q
1, . . . ,�q

k� = qi�q�, pA
i �t,�q

1, . . . ,�q
k� = �q

A�� �

�qi�
q
� ,

here 1� i�n, 1�A�k.
On Rk� �Tk

1�*Q, we define the differential forms

	0
A = ��1

A�* dtA, 
0
A = ��2

A�*
0, �0
A = ��2

A�*�0, 1 � A � k , �2�

here �1
A :Rk� �Tk

1�*Q→R and �2
A :Rk� �Tk

1�*Q→T*Q are the projections defined by

�1
A�t,��q

1, . . . ,�q
k�� = tA, �2

A�t,��q
1, . . . ,�q

k�� = �q
A, 1 � A � k ,

nd �0=−d
0=dqi∧dpi is the canonical symplectic form on T*Q and 
0= pi dqi is the Liouville
-form on T*Q. Obviously �0

A=−d
0
A.

In local coordinates we have

	0
A = dtA, 
0

A = 	
i=1

n

pi
Adqi, �0

A = 	
i=1

n

dqi ∧ dpi
A, 1 � A � k . �3�
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oreover, let V0=ker T��Q�1,0. Then

V = 
 �

�pi
1 , . . . ,

�

�pi
k�

i=1,. . .,n

.

A simple inspection of their expressions in local coordinates shows that the forms 	0
A and �0

A

re closed and the following relation hold:

1� 	0
1∧ ¯ ∧	0

k �0, �	0
A��V=0 ��0

A��V�V=0,
2� ��A=1

k ker 	0
A�� ��A=1

k ker �0
A��= �0, dim��A=1

k ker �0
A�=k.

Remark: From the above geometrical model, the following definition is introduced in Ref. 2.
Definition 2.1: Let M be a differentiable manifold of dimension k�n+1�+n. A family

	A ,�A ,V ;1�A�k�, where each 	A is a 1-form, each �A is a 2-form and V is an nk-dimensional
istribution on M, such that

1� 	1∧ ¯ ∧	k�0, 	A�V =0, �A�V�V
=0,

2� ��A=1
k ker 	A�� ��A=1

k ker �A�= �0, dim��A=1
k ker �A�=k,

s called an almost k-cosymplectic structure, and the manifold M an almost k-cosymplectic mani-
old.

The following theorem has been proved in Ref. 2.
Theorem 2.2 �Darboux theorem�: If the forms 	A and �A are closed and V is integrable then

round each point of M there exist local coordinates �tA ,qi , pi
A ;1�A�k ,1� i�n� such that

	A = dtA, �A = dqi ∧ dpi
A, V = 
 �

�pi
1 , . . . ,

�

�pi
k�

i=1,. . .,n

.

n this case M will be called a k-cosymplectic manifold.
The canonical model of these geometrical structures is �Rk� �Tk

1�*Q ,	0
A ,�0

A ,V0�.
For any k-cosymplectic structure �	A ,�A ,V� on M, there exists a family of k vector fields

RA ,1�A�k characterized by the following conditions:

�RA
	B = AB, �RA

�B = 0, 1 � A,B � k . �4�

hey are called the Reeb vector fields associated to the k-cosymplectic structure. In the canonical
odel RA=� /�tA, 1�A�k.

. k-vector fields and integral sections

Let M be an arbitrary manifold, Tk
1M the Whitney sum TM � . . .

k

� TM of k copies of TM and
:Tk

1M→M its canonical projection. � :Tk
1M→M is usually called the tangent bundle of k1 ve-

ocities of M, the reason for this name will be explained in Sec. II B 1.
Definition 2.3: A section X :M→Tk

1M of the projection � will be called a k-vector field on M.

Since Tk
1M is the Whitney sum TM � . . .

k

� TM of k copies of TM, we deduce that to give a
-vector field X is equivalent to giving a family of k vector fields X1 , . . . ,Xk on M by projecting

onto every factor. For this reason we will denote a k-vector field by �X1 , . . . ,Xk�.
Definition 2.4: An integral section of the k-vector field �X1 , . . . ,Xk� passing through a point

�M is a map � :U0�Rk→M, defined on some neighborhood U0 of 0�Rk, such that

��0� = x, �*�t��� �

�tA�
t
� = XA���t�� for all t � U0, 1 � A � k . �5�

e say that a k-vector field �X1 , . . . ,Xk� on M is integrable if there is an integral section passing

hrough each point of M.
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In the k-cosymplectic formalism, the solutions of the field equations are described as integral
ections of some k-vector fields. Observe that, in case k=1, this definition coincides with the
efinition of integral curve of a vector field.

. Hamiltonian formalism

Let �M ,	A ,�A ,V� be a k-cosymplectic manifold, H :M→R a Hamiltonian function. Let X
�X1 , . . . ,Xk� be a k-vector field solution to the following equations:

	A�XB� = AB, 1 � A,B � k ,

	
A=1

k

�XA
�A = dH − 	

A=1

k

RA�H�	A. �6�

sing natural coordinates, given by Darboux theorem, if X= �X1 , . . . ,Xk� is an integrable k-vector
eld

XA = �XA�B �

�tB + �XA�i �

�qi + �XA�i
B �

�pi
B

hen

�XA�B = A
B,

�H

�pi
A = �XA�i,

�H

�qi = − 	
A=1

k

�XA�i
A, �7�

nd if � :Rk→M, given by ��t�= ��A�t� ,�i�t� ,�i
A�t��, is an integral section of X, then

��A

�tB = B
A,

��i

�tB = �XB�i,
��i

A

�tB = �XB�i
A.

herefore, from �7� we obtain that ��t� is solution to the Hamilton field equations

�H

�qi = − 	
A=1

k
��i

A

�tA ,
�H

�pi
A =

��i

�tA ,

here 1�A�k, 1� i�n.
So, Eqs. �6� can be considered a geometric version of the Hamilton field equations.
Remark: It should be noticed that, in general, Eqs. �6� do not have a single solution. In fact,

f �M ,	A ,�A ,V� is a k-cosymplectic manifold we can define the vector bundle morphism,

��: Tk
1M → T*M

�X1, . . . ,Xk� � ���X1, . . . ,Xk� = 	
A=1

k

�XA
�A + 	A�XA�	A. �8�

nd, denoting by Mk�C��M�� the space of matrices of order k whose entries are functions on M,
he vector bundle morphism

	�: Tk
1M → Mk�C��M��

�X1, . . . ,Xk� � 	��X1, . . . ,Xk� = �	A�XB�� �9�

hen the solutions of �6� are given by �X1 , . . . ,Xk�+ �ker ���ker 	��, where �X1 , . . . ,Xk� is a

articular solution.
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From the local conditions �7� we can define in a neighborhood of each point x�M a k-vector
eld that satisfies �6�. For example, we can set

�XA�B = A
B, �X1�i

1 =
�H

�qi , �XA�i
B = 0 for A � 1 � B, �XA�i =

�H

�pi
A .

ow one can construct a global k-vector field, which is a solution of �6�, by using a partition of
nity in the manifold M. See Ref. 2.

. The Lagrangian approach „Ref. 3…

. The geometric elements
The manifold Rk�Tk

1Q:
Let �Q :TQ→Q be the tangent bundle of Q. Let us denote by Tk

1Q the Whitney sum TQ

� . . .
k

� TQ of k copies of TQ. Next we shall see that the manifold Rk�Tk
1Q is a cosymplectic

anifold when a regular Lagrangian L :Rk�Tk
1Q→R is given.

Tk
1Q can be identified with the manifold J0

1�Rk ,Q� of the k1 velocities of the manifold Q, that
s, the manifold of 1-jets of maps � :Rk→Q with source at 0�Rk, say

J0
1�Rk,Q� � TQ � . . .

k

� TQ ,

j0,q
1 � � �v1q, . . . ,vkq� ,

here q=��0�, and vAq=�*�0���� /�tA��0��, 1�A�k. For this reason Tk
1Q is called the tangent

undle of k1-velocities of Q, see Ref. 7.
The manifold J1�Rk of 1-jets of sections of the trivial bundle �Rk :Rk�Q→Rk is diffeomor-

hic to Rk�Tk
1Q, via the diffeomorphism given by

J1�Rk → Rk � Tk
1Q ,

jt
1� = jt

1�IdRk,�Q� → �t,v1, . . . ,vk� , �10�

here �Q :Rk→
�

Rk�Q→
�Q

Q, and

vA = ��Q�*�t��� �

�tA�
t
�, 1 � A � k .

Let us denote by � :Rk�Tk
1Q→Q the canonical projection. If �qi� are local coordinates on

�Q, then the induced local coordinates �qi ,vi�, 1� i�n, on ��Q�−1�U�=TU�TQ, are given by

qi�vq� = qi�q�, vi�vq� = vq�qi� �11�

nd then the induced local coordinates �tA ,qi ,vA
i � on �−1�U�=Rk�Tk

1U are given by

tA�jt
1�� = tA, qi�jt

1�� = qi��Q�t��, vA
i �jt

1�� =
��qi � �Q�

�tA �t

r equivalently

tA�t,v1q, . . . ,vkq� = tA, qi�t,v1q, . . . ,vkq� = qi�q�, vA
i �t,v1q, . . . ,vkq� = vAq�qi� ,

here 1� i�n, 1�A�k.

Throughout the paper we shall use the following notation for the canonical projections:
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Rk � �Tk
1�Q ——→

��Rk�1,0

Rk � Q ——→
��Rk�

Rk

nd ��Rk�1=�Rk � ��Rk�1,0, where

�Rk�t,q� = t, ��Rk�1,0�t,v1q, . . . ,vkq� = �t,q�, ��Rk�1�t,v1q, . . . ,vkq� = q ,

ith t�Rk, q�Q and �v1q
, . . . ,vkq

��Tk
1Q.

Canonical vector fields on Rk�Tk
1Q:

Let us denote by C the canonical vector field (Liouville vector field) of the vector bundle
�Rk�1,0 :Rk�Tk

1Q→Rk�Q. This vector field C is the infinitesimal generator of the following
ow:

R � �Rk � Tk
1Q� → Rk � Tk

1Q ,

�s,�t,v1q, . . . ,vkq�� → �t,esv1q, . . . ,esvkq� ,

nd in local coordinates it has the form

C = 	
i,A

vA
i �

�vA
i , �12�

is sum of the vector fields

C = 	
A=1

k

CA,

here each CA is the generator infinitesimal of the following flow:

R � �Rk � Tk
1Q� → Rk � Tk

1Q ,

�s,�t,v1q, . . . ,vkq�� → �t,v1q, . . . ,vA−1q,esvAq,vA+1q, . . . ,vkq� .

Canonical tensor fields on Rk�Tk
1Q:

The canonical k-tangent structure on Tk
1Q is the set �S1 , . . . ,Sk� of tensor fields of type �1, 1�

ocally given by

SA =
�

�vA
i � dqi, 1 � A � k . �13�

he tensor fields SA can be regarded as the �0, . . . ,0 ,1
A

,0 , . . . ,0�-lift of the identity tensor on Q to

k
1Q defined in Ref. 7.

In an obvious way we shall consider the extension of SA to Rk�Tk
1Q, which we also denote by

A and it has the same local expression �13�.
The k-tangent manifolds were introduced as a generalization of the tangent manifolds by de

eón et al. �Refs. 8 and 9�. The canonical model of these manifolds is Tk
1Q with the structure given

y �S1 , . . . ,Sk�.
As in the case of mechanical systems, these tensor fields SA allow us to introduce the forms 
L

A

nd �L
A on Rk�Tk

1Q as follows:


L
A = dL � SA, �L

A = − d
L
A, 1 � A � k ,
ith local expressions
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L
A =

�L

�vA
i dqi, �L

A = dqi ∧ d� �L

�vA
i �, 1 � A � k . �14�

These forms play an important role in the Lagrangian formulation.
Second order partial differential equations on Tk

1Q:
The aim of this section is to characterize the integrable k-vector fields on Rk�Tk

1Q such that
heir integral sections are canonical prolongations of maps from Rk to Q.

In general, if F :M→N is a differentiable map, then the induced map Tk
1�F� :Tk

1M→Tk
1N

efined by Tk
1�F��j0

1g�= j0
1�F �g� is given by

Tk
1�F��v1q, . . . ,vkq� = �F*�q�v1q, . . . ,F*�q�vkq� ,

here v1q
, . . . ,vkq

�TqQ, q�Q, and F*�q� :TqM→TF�q�N is the induced map.
Definition 2.5: A k-vector field X= �X1 , . . . ,Xk� on Rk�Tk

1Q is said to be a second order
artial differential equation (SOPDE for short) if

dtA�XB� = B
A, ��Rk � idTk

1Q� � Tk
1���Rk�1,0� � X = idRk�Tk

1Q,

here

�Rk � idTk
1Q: Tk

1�Rk � Q� � Tk
1�Rk� � Tk

1Q → Rk � Tk
1Q ,

�tA,qi,vA
B,vA

i � � ��tA,vA
B�,�qi,vA

i �� → �tA,qi,vA
i � .

Let �qi� be a coordinate system on Q and �tA ,qi ,vA
i � the induced coordinate system on Rk

Tk
1Q. From a direct computation in local coordinates we obtain that the local expression of a

OPDE �X1 , . . . ,Xk� is

XA�t,qi,vB
i � =

�

�tA + vA
i �

�qi + �XA�B
i �

�vB
i , 1 � A � k , �15�

here �XA�B
i are functions on Rk�Tk

1Q. As a direct consequence of the above local expressions,
e deduce that the family of vector fields �X1 , . . . ,Xk are linearly independent.

Definition 2.6: Let � :Rk→Q be a map, we define the first prolongation ��1� of � as the map

��1�:Rk → Rk � Tk
1Q

t → �t, j0
1�t� � �t,�*�t�� �

�t1�, . . . ,�*�t�� �

�tk�� ,

here �t�s�=��t+s�. In local coordinates

��1��t1, . . . ,tk� = �t1, . . . ,tk,�i�t1, . . . ,tk�,
��i

�tA �t1, . . . ,tk�� , �16�

here 1�A�k, 1� i�n.
Remark: Let �X1 , . . . ,Xk� be an SOPDE. From �15� we obtain: a map � :Rk→Rk�Tk

1Q, given
y ��t�= ��B�t� ,�i�t� ,�A

i �t��, is an integral section of �X1 , . . . ,Xk� if and only if

� ��B

�tA �
t
= A

B, � ��i

�tA �
t
= �A

i �t�, � �2�i

�tA�tB�
t
= �XA�B

i ���t�� . �17�

Then if �X1 , . . . ,Xk� is integrable, from �17� we deduce that �XA�B
i = �XB�A

i .
Let us observe that the map

�id k,pr � ��: Rk → Rk � T1Q
R 2 k
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t → �t,�i�t�,�A
i �t��

oincides with the first prolongation ��1� of the map �=� �� :Rk→
�

Rk�Tk
1Q→

�

Q, that is ��t�
��i�t��.

Conversely if � :Rk→Q is any map such that

� �2�i

�tA�tB�
t
= �XA�B

i ���1��t�� ,

hen ��1� is an integral section of �X1 , . . . ,Xk�.
On Rk�Tk

1Q we consider the tensor fields of type �1,1� defined by

ŜA = SA − CA � dtA,

or each A=1, . . . ,k. A characterization of the SOPDE using these tensors is the following.
Proposition 2.7: A k-vector field �X1 , . . . ,Xk� on Rk�Tk

1Q is a SOPDE if

dtA�XB� = B
A, ŜA�XB� = 0

or all 1�A, B�k.

. The Legendre transform and Lagrangian forms

Given a Lagrangian L :Rk�Tk
1Q→R the Legendre map

FL:Rk � Tk
1Q → Rk � �Tk

1�*Q

s defined as follows:

FL�t,v1q, . . . ,vkq� = �t, . . . ,�FL�t,v1q, . . . ,vkq��A, . . . � ,

here

�FL�t,v1q, . . . ,vkq��A�wq� =
d

ds
L��t,v1q, . . . ,vAq + swq, . . . ,vkq���s=0,

or each A=1, . . . ,k; and it is locally given by

FL:�tA,qi,vA
i � → �tA,qi,

�L

�vA
i � . �18�

From �14� and �18� one deduces the following identities:


L
A = FL*
0

A, �L
A = FL*�0

A, 1 � A � k . �19�

Definition 2.8: A Lagrangian function L :Rk�Tk
1Q→R is said to be regular (respectively,

yperregular) if the corresponding Legendre map FL is a local (respectively global) diffeomor-
hism.

From �18� we obtain that L is regular if and only if det��2L /�vA
i �vB

j ��0, 1� i, j�n, 1�A,
�k.

The following proposition has an important role in the Lagrangian formulation. See Ref. 3.
Proposition 2.9: The following conditions are equivalent:

1� L is regular.
2� FL is a local diffeomorphism.

A A 0 k 1
3� �dt ,�L ,V � is a k-cosymplectic structure on R �TkQ where
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V0 = ker T��Rk�1,0 = 
 �

�v1
i , . . . ,

�

�vk
i �

i=1,. . .,n

is the vertical distribution of the bundle ��Rk�1,0 :Rk�Tk
1Q→Rk�Q.

�

. Lagrangian formalism

Given a Lagrangian function L=L�tA ,qi ,vA
i �, and by using a variational principle, the Euler-

agrange field equations for L are obtained:

	
A=1

k
d

dtA� �L

�vA
i � −

�L

�qi = 0, vA
i =

�qi

�tA . �20�

n this section we give a geometrical description of the above equations �20�.
Let L :Rk�Tk

1Q→R be a regular Lagrangian, and let �dtA ,�L
A ,V0� be the k-cosymplectic

tructure on Rk�Tk
1Q defined by L. Let �RL�A be the Reeb vector fields corresponding to this

-cosymplectic structure. They are characterized by

i�RL�A
dtB = A

B, i�RL�A
��L�B = 0.

Since �RL�A�EL�=−�L /�tA, writing Eqs. �6� for this k-cosymplectic structure we have the
ollowing result.

Theorem 2.10: Let L be a regular Lagrangian and let ��XL�1 , . . . , �XL�k� be a k-vector field
uch that

dtA��XL�B� = B
A, 1 � A,B � k ,

	
A=1

k

i�XL�A
�L

A = dEL + 	
A=1

k
�L

�tAdtA, �21�

here EL=C�L�−L. Then
�1� ��XL�1 , . . . , �XL�k� is an SOPDE.
�2� If it is integrable, and ��1� :Rk→Rk�Tk

1Q is an integral section, then � :Rk→Q is a
olution of the Euler-Lagrange equations (20).

The k-vector field

�XL�A = ��XL�A�B �

�tB + ��XL�A�i �

�qi + ��XL�A�B
i �

�vB
i , 1 � A � k

s a solution to the equations �21� if and only if it satisfies the following identities:

��XL�A�B = A
B, ��XL�A�i = vA

i , 	
A=1

k

�XL�A� �L

�vA
k � =

�L

�qk . �22�

Remark: If we rewrite the equations �21� for the case k=1, we have

dt�XL� = 1, iXL
�L = dEL +

�L

�t
dt �23�
hich are equivalent to the dynamical equations
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dt�XL� = 1, iXL
�L = 0,

here �L=�L+dEL∧dt is the Poincaré-Cartan 2-form associated to the Lagrangian L, see Ref. 1.
emember that this describes the nonautonomous mechanics.

Remark: The above forms 
L
A and �L

A are related with the multisymplectic Poincaré-Cartan
orms 
L and �L in the Lagrangian jet formalism of field theory in a similar way as indicated in
ef. 5, Sec. V B.

The k-vector fields ��XL�1 , . . . , �XL�k� allow us to construct a decomposable multivector field
= �XL�1∧ . . . ∧ �XL�k, which is related with the multivector field solution to the Lagrangian equa-

ion described in Ref. 10, Sec. 7, and they give the same solutions to the Lagrangian equations.

II. CONNECTIONS AND LAGRANGIAN ENERGY

. Connections in �Rk :RkÃQ\Rk

The following Proposition can be found in Ref. 11 for an arbitrary fiber bundle � :E→M, or
n different sections in Ref. 12. The following is stated in our setting.

Proposition 3.1: Let �Rk :Rk�Q→Rk be the trivial bundle and ��Rk�1,0 :J1�Rk�Q��Rk

Tk
1Q→Rk�Q the corresponding first-order jet bundle. The following elements can be canoni-

ally constructed one from the other:

1� A global section of ��Rk�1,0 :J1�Rk �Rk�Tk
1Q→Rk�Q; that is, a mapping � :Rk�Q

→Rk�Tk
1Q such that ��Rk�1,0 ��= IdRk�Q.

2� A subbundle H of T�Rk�Q� such that T�Rk�Q�=V��Rk� � H.
3� A �Rk-semibasic 1-form � on Rk�Q with values on T�Rk�Q�, such that �*�=�, for every

�Rk-semibasic form ���1�Rk�Q�.

Definition 3.2: A connection in the bundle �Rk :Rk�Q→Rk is one of the above-mentioned
quivalent elements. H is called the horizontal sub-bundle of T�Rk�Q� associated with the con-
ection � and its sections are the horizontal vector fields. � is called the connection form.

Let �qi� be a coordinate system on U�Q and let �tA ,qi� be the induced coordinate system on
k�U. The local expression of the connection form is

� = dtA
� � �

�tA + �A
i �

�qi� ,

here �A
i �C��Rk�U�.

Let � :Rk�Q→J1�Rk�Q��Rk�Tk
1Q be a section, then ��t ,q�= jt

1�= jt
1�IdRk ,�Q� where

Q=�Q �� :Rk→
�

Rk�Q→
�Q

Q, with ��t�= �t ,q� and �Q�t�=q.
If ��t ,q�= �t ,q ,�A

i �t ,q�� from �10� we have

�A
i �t,q� =

��qi � �Q�
�tA �t.

Then we define

H�t,q� ª Im �*�t� and H = �
�t,q��Rk�Q

H�t,q�

o the basis of H�t,q� is

�*�t�� �

�tA �t� =
�

�tA ��t,q� +
��qi � �Q�

�tA �t
�

�qi ��t,q�, 1 � A � k

i
nd the components of the connection �A are given by
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�A
i �t,q� =

��qi � �Q�
�tA �t = �A

i �t,q� ,

here ��t ,q�= jt
1�IdR

k ,�Q� with �Q�t�=q.
For a vector field

X = fA �

�tA + �i �

�qi � X�Rk � Q�

e have the splitting

X = �X − ��X�� + ��X� = ��
v �X� + ��

h �X� �24�

nd so the horizontal and vertical projections are given by

��
h �X� = fA� �

�tA + �A
i �

�qi�, ��
v �X� = ��i − fA�A

i �
�

�qi .

Remark: Every connection in the bundle �Rk :Rk�Q→Rk induces a horizontal lift of a vector
eld X on Rk to a horizontal vector field XH, on Rk�Q, which projects on X.

Let � be a connection and let us suppose that ��t ,q�= jt
1�, where �= �idRk ,�Q� :Rk→Rk

Q, with ��t�= �t ,�Q�t�� and �Q�t�=q. If

X�t� = XA�t�
�

�tA
�t

hen

XH�t,q� = �*�t��X�t�� = XA�t�� �

�tA
��t,q�

+
�qi � �Q

�tA �t
�

�qi
��t,q�

� = XA�t�� �

�tA
��t,q�

+ �A
i �t,q�

�

�qi
��t,q�

� .

. Vector fields in RkÃQ associated to a connection �

Given a connection � on Rk�Q→Rk, we consider the horizontal lifts ỸA of the global
enerators �� /�tA ,A=1, . . . ,k ,  of X�Rk�,

ỸA�t,q� = � �

�tA�
��t,q�

H

=
�

�tA
��t,q�

+ �A
i �t,q�

�

�qi
��t,q�

, 1 � A � k . �25�

Definition 3.3: The vector fields ỸA will be called the associated vector fields to the connection
.

If �0 is the standard connection on �Rk :Rk�Q→Rk, then, since �A
i �0, the associated vector

elds to �0 are given by

� �

�tA�
��t,q�

H

= � �

�tA�
��t,q�

, 1 � A � k .

. Lagrangian energy functions

As is well known from Saunders12 �p. 156�, in the bundle �Rk :Rk�Q→Rk and associated to
he form dtA, we have a natural vector-valued 1-form SdtA with coordinate expression

SdtA = �dqi − vB
i dtB� �

�

�vi , 1 � A � k . �26�

A
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Let L :Rk�Tk
1Q→R be a Lagrangian. By means of the geometrical structures of Rk�Tk

1Q we
an construct the Lagrangians forms and the energy function associated to L.

Definition 3.4: The Poincaré-Cartan 1-forms associated with the Lagrangian function L are
he forms in Rk�Tk

1Q defined by

�L
A
ª dL � SdtA +

1

k
L dtA, 1 � A � k . �27�

rom �26� we deduce that �L
A is locally given by

�L
A
ª �1

k
B

AL − vB
i �L

�vA
i �dtB +

�L

�vA
i dqi. �28�

These forms only depend on the Lagrangian and the natural structures in the bundle, and we
an write

�L
A = 
L

A + �1

k
B

AL − vB
i �L

�vA
i �dtB, 1 � A � k . �29�

The Lagrangian energy function EL=CL−L is locally given by

EL = vA
i �L

�vA
i − L .

e can intrinsically define this Lagrangian energy function in the following way: Consider the
tandard connection �0 in the bundle �Rk :Rk�Q→Rk, and the prolongation, j1�� /�tA�, of the
orizontal lifting of � /�tA given by the connection, from Rk to Rk�Q, which will be denoted as
sual by � /�tA, then

EL = − 	
A=1

k

i�/�tA�L
A.

One of the most significant aspects of the above expression for the Lagrangian energy is that
t is obtained by contraction of the associated vector fields to the standard connection with the
agrangian forms.

If we consider a nonstandard connection, then in order to define the Lagrangian energy
unction associated to � we must lift � /�tA from Rk to Rk�Tk

1Q to be contracted with �L
A in the

ollowing way.

Definition 3.5: Let � be a connection in �Rk :Rk�Q→Rk, and ỸA, A=1, . . . ,k, the associated
ector fields to the connection � given by (25).

Let j1ỸA�X�Rk�Tk
1Q� the prolongation of the vector fields ỸA�X�Rk�Q�, defined in Ref.

2, p. 133.
The Lagrangian energy function associated with the Lagrangian L and the connection � is

EL
� = − 	

A=1

k

ij1ỸA
�L

A.

n a local chart, if

ỸA =
�

�tA + �A
i �

�qi
hen, see Ref. 12,
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j1ỸA =
�

�tA + �A
i �

�qi + � ��A
i

�tB + vB
j ��A

i

�qj � �

�vB
i �30�

nd from �28� and �30� we obtain

EL
� = 	

A=1

k
�L

�vA
i �vA

i − �A
i � − L . �31�

It is obvious from this expression that the Lagrangian energy EL
� is connection dependent.

In the following lemma, we will suppose that a Lagrangian function L and a connection � are
iven.

Lemma 3.6: Let �X1 , . . . ,Xk� be a SOPDE on Rk�Tk
1Q. If

�1� XB��A
i � = XA��B

i �, �2� XA� �L

�vB
i � = B

A �L

�qi , A,B = 1, . . . ,k �32�

hen

XA�EL
�� = − j1ỸA�L�, A = 1, . . . ,k .

Proof: From the local expressions �15�, �30�, and �31� we obtain

XA�EL
�� + j1ỸA�L� = � ��A

i

�tB −
��B

i

�tA � �L

�vB
i + �vB

j ��A
i

�qj − vA
j ��B

i

�qj � �L

�vB
i + � �2L

�tA�vC
k + vA

i �2L

�qi�vC
k

+ �XA�B
j �2L

�vB
j �vC

k − C
A �L

�qk��vC
k − �C

k �

= �� �

�tB + vB
j �

�qj���A
i � − � �

�tA + vA
j �

�qj���B
i �� �L

�vB
i

+ � �2L

�tA�vC
k + vA

i �2L

�qi�vC
k + �XA�B

j �2L

�vB
j �vC

k − C
A �L

�qk��vC
k − �C

k �

= �XC��A
i � − XA��C

i ��
�L

�vC
i + � �2L

�tA�vC
k + vA

i �2L

�qi�vC
k

+ �XA�B
j �2L

�vB
j �vC

k − C
A �L

�qi��vC
k − �C

k �

= �XC��A
i � − XA��C

i ��
�L

�vC
i + �XA� �L

�vC
k � − C

A �L

�qk��vC
k − �C

k � .

�

We know that if L is a regular Lagrangian and ��XL�1 , . . . , �XL�k� is an integrable solution of
21�, then it is a SOPDE. Then we have the following.

Corollary 3.7: Suppose that the Lagrangian L is regular and let ��XL�1 , . . . , �XL�k� be an
ntegrable solution of (21) satisfying the conditions (32).

If L is invariant by the prolongations j1ỸA then the associated energy function EL
� is invariant

y the vector fields �XL�A, A=1, . . . ,k. That is, EL
� is constant along the integral sections of

�XL�1 , . . . , �XL�k�.
�

Remark: In the case k=1, if XL is the dynamical vector field on R�TQ, then XL is an SODE
nd satisfies �1� trivially, and �2� �in Lemma 3.6� because it is a solution to the dynamical

quations �23�. Therefore, in this case we have
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XL�EL
�� = − j1Ỹ�L� ,

hich is the assertion of Theorem 1 in Ref. 4.
Proposition 3.8: Let L be a Lagrangian function such that the components �FL�t ,wq��A, of the

egendre transformation FL are different from zero at every point �t ,wq�= �t ,v1q
, . . .vkq

��Rk

Tk
1Q.
Let f :Rk�Tk

1Q→Rk be a mapping, then there exists a connection � such that the energy
unction EL

� associated to this connection is given by

EL
� = 	

A=1

k

fA,

here fA=�A � f :Rk�Tk
1Q→

f

Rk→
�A

R.
If L is a regular Lagrangian and ��XL�1 , . . . , �XL�k� is an integrable solution of (21) that

atisfies the conditions (32), and �XL�A�	BfB�=0, then j1ỸA�L�=0 for A=1, . . . ,k.
Proof: Let � be the connection such that its associated vector fields YA verify

ij1ỸA
�L

A = − fA, 1 � A � k .

rom �28� and �30� we deduce that this connection is given by

− fA = �1

k
L − vA

i �L

�vA
i � +

�L

�vA
i �A

i

nd thus

EL
� = 	

A=1

k
�L

�vA
i �vA

i − �A
i � − L = 	

A=1

k

fA.

ow from Lemma 3.6 we obtain

0 = �XL�A�	
B=1

k

fB� = �XL�A�EL
�� = − j1ỸA�L� .

�

This Proposition in the case k=1 coincides with Proposition 4 in Ref. 4.

V. HAMILTONIAN FORMALISM WITH NONSTANDARD FLAT CONNECTIONS

In this section, we will suppose a given connection � in the bundle �Rk :Rk�Q→Rk. First,
ssociated to this connection, we are going to construct a k-cosymplectic structure �dtA ,�A

� ,V0� on
k� �Tk

1�*Q. Second, if we have a Lagrangian, L, then a Hamiltonian function will be associated
o L and �. With these ingredients, we study the Hamiltonian formalism and the dynamical
quations.

For the k-cosymplectic structure, let us consider the canonical projections �Q
* :T*Q→Q and

2
A :Rk� �Tk

1�*Q→T*Q given by �2
A�t ,�q

1 , . . . ,�q
k�=�q

A, 1�A�k.
Since 
0

A= ��2
A�*
0, using the definition of 
0 we obtain that


0
A�wt,q� = �q

A � ��Q
* �*��q

A� � ��2
A�*�wt,q� ,

here wt,q= �t ,�q
1 , . . . ,�q

k��Rk� �Tk
1�*Q.

The connection � enables other 1-forms on Rk� �Tk
1�*Q to be constructed in the following

ay.

Definition 4.1: The composition
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Twt,q
�Rk � �Tk

1�*Q� ——→
���Q�1,0�*wt,q

T�t,q��Rk � Q� ——→
��

v

V�t,q���Rk�

�T�t,q��Rk � Q� ——→
��Q�*�t,q�

TqQ ——→
�q

A

R ,

efine the 1-forms 
�
A on Rk� �Tk

1�*Q by


�
A�wt,q� = �q

A � ��Q�*�t,q� � ��
v � ���Q�1,0�*wt,q. �33�

From �24� we deduce that


�
A = pi

A dqi − pi
A�B

i dtB = pi
A�dqi − �B

i dtB� . �34�

The difference 
0
A−
�

A �	�
A is a 1-form on Rk� �Tk

1�*Q whose local expression is

	�
A = pi

A�B
i dtB. �35�

From �3�, �25�, and �35� we deduce the following proposition.

Proposition 4.2: If � is a connection on �Rk :Rk�Q→Rk and YÃ are the associated vector
elds then

	�
A = 	

B=1

k


0
A�ỸB�dtB.

�

In the sequel, in order to develop the Lagrangian and Hamiltonian formalisms, we need that
he curvature of � vanishes. Observe that this condition always holds in the mechanical case
ecause the horizontal distribution is one dimensional, hence involutive. The same condition will
e necessary in Sec. V, where we study the Lagrangian counterpart.

Proposition 4.3: Let V0 be the vertical distribution of the bundle ��Q�1,0 :Rk� �Tk
1�*Q→Rk

Q and ��
A =−d
�

A. If the curvature of � vanishes then �Rk� �Tk
1�*Q ,dtA ,��

A ,V0� is a
-cosymplectic manifold.

Proof: Conditions �1�. in Definition 2.1 are straightforward. To prove conditions �2�., let X be
vector field with local expression

X = XA �

�tA + Xi �

�qi + Xi
A �

�pi
A . �36�

As

��
A = − d�pi

A�dqi − �B
i dtB�� = dqi ∧ dpi

A + d�pi
A�B

i � ∧ dtB,

e have that iX��
A =0,1�A�k, if and only if X has the following local expression:

X = XB� �

�tB + �B
i �

�qi −
��B

j

�qi pj
A �

�pi
A� ,

nd the following condition holds

	
B=1

k

XBpj
A� ��C

j

�tB −
��B

j

�tC + �B
i ��C

j

�qi − �C
i ��B

j

�qi � = 0, 1 � A,C � k,1 � i � n

B
ith X free. Observe that
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��C
j

�tB −
��B

j

�tC + �B
i ��C

j

�qi − �C
i ��B

j

�qi �37�

re the components of the curvature of the connection �, see Ref. 12, p. 91.
Since the curvature vanishes, then �A=1

k ker ��
A is locally spanned by the following family of

independent local vector fields:

� �

�tB + �B
i �

�qi −
��B

j

�qi pj
A �

�pi
A ;1 � B � k�

nd second condition �2�. is finished.
Moreover, if dtA�X�=0, for all A, then XA=0, for all A, hence

��A=1
k ker dtA� � ��A=1

k ker ��
A� = �0

nd the result is proved.
�

Now we shall introduce the Hamiltonian function associated with a Lagrangian L and a
onnection � with curvature zero.

In the standard situation, assuming that the Lagrangian function is hyperregular, the Hamil-
onian function is defined by the equation EL= �FL�*H. In the general case we define the follow-
ng.

Definition 4.4: The Hamiltonian function associated with the Lagrangian L and the connec-
ion � is the function H��C��Rk� �Tk

1�*Q� such that

EL
� = �FL�*H�.

s in the standard case, the existence and uniqueness of this function is assured �at least locally�
f we assume that L is a hyperregular �or regular� Lagrangian. A simple computation using �18�
nd �35� shows that

H� = H − 	
A=1

k

	�
A� �

�tA� . �38�

Now we consider the Hamiltonian formalism on Rk� �Tk
1�*Q considering the k-cosymplectic

tructure �Rk� �Tk
1�*Q ,dtA ,��

A ,V0� and the Hamiltonian H�, that is, we consider Eq. �6� for this
articular k-cosymplectic structure and this Hamiltonian,

dtA�XB� = B
A,

	
A=1

k

�XA
��

A = dH� − 	
A=1

k

RA
��H��dtA, �39�

here RA
� are the Reeb vector fields of the k-cosymplectic structure �Rk� �Tk

1�*Q ,dtA ,��
A ,V0�, that

s

�RA
�dtB = A

B, �RA
���

B = 0. �40�

Conditions �40� are equivalent to the equations

�RA
��B = A

B, �RA
��i = �A

i , �RA
��i

B = − pj
B��A

j

�qi �41�
nd
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pj
B� ��C

j

�tA −
��A

j

�tC + �A
i ��C

j

�qi − �C
i ��A

j

�qi � = 0, �42�

or all 1�A ,B ,C�k.
Taking into account that the curvature of � is zero one obtains that the Reeb vector fields are

ocally given by

RA
� =

�

�tA + �A
i �

�qi − pj
B��A

j

�qi

�

�pi
B . �43�

From �34�, �35�, �38�, and �43�, we obtain that �X1 , . . . ,Xk�, locally given by

XA = �XA�B �

�tB + �XA�i �

�qi + �XA�i
B �

�pi
B ,

s a solution to �39� if and only if, �XA�B , �XA�i , �XA�i
B verify

�XA�B = B
A, �XA�i =

�H

�pi
A , 	

A=1

k

�XA�i
A = −

�H

�qi , �44�

here we have used that the curvature of � is zero.
Observe that Eqs. �7� coincide with Eqs. �44�, thus we obtain the following proposition.
Proposition 4.5: If the curvature of � vanishes, the Hamiltonian equations (6) and (39),

orresponding to H and H�, respectively, have the same solutions.
�

. LAGRANGIAN FORMALISM WITH NONSTANDARD FLAT CONNECTIONS

. The vertical endomorphism S�
A

The aim of this section is to give the guidelines to construct the vertical endomorphism S�
A,

hich depends on the connection � and coincides with the vertical endomorphism SA when the
onnection is the standard one. With this endomorphism we construct the Lagrangian formalism
ith a nonstandard connection.

First of all we have the following natural diffeomorphisms.

1� As J1�Rk =Rk�Tk
1Q is a vector bundle on Rk�Q, we have the natural diffeomorphism:

J1�Rk → �Rk
* T*Rk

� �Q
* TQ

in fact, given by its inverse

��t,q�,�B
i �B

� ui� � ��t,q�,�B
i �B� �

�t1�ui, . . . ,��B
i �B� �

�tk�ui� .

2� �Q
* �TQ�→V��Rk� because �Q :Rk�Q→Q is a vector bundle.

3� As a consequence of the above two, we have the following diffeomorphisms:

V���Rk�1,0� � ���Rk�1,0�*�Rk � Tk
1Q� � ���Rk�1,0�*��Rk

* T*Rk
� V��Rk�� .

The first is because J1�Rk is a vector bundle. The second is a direct consequence of the above
tems.

They are diffeomorphisms of vector bundles on Rk�Tk
1Q.

There is a section V�Sec����Rk�1,0�*��Rk
* TRk � V��Rk�* � V���Rk�1,0��, associated to these dif-
eomorphisms, in particular to the third. In local natural coordinates we have
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V =
�

�tA � �i
�

�

�vA
i ,

here ��i , i=1, . . . ,n is a local basis for Sec V��Rk�*, dual to the local basis �� /�qi.
Observe that, although V��Rk� is a subbundle of T�Rk�Q�, V��Rk�* is not a subbundle of

*�Rk�Q�, unless we have given a connection in the bundle �Rk :Rk�Q→Rk.
In fact, let � be one such connection. � gives a decomposition T�Rk�Q�=H��� � V��Rk�,

ence we have the induced projection ��
v :T�Rk�Q�→V��Rk� and the injection t���

v � :V��Rk�*

T*�Rk�Q�.
In natural local coordinates, if

� = dtA
� � �

�tA + �A
i �

�qi�
hen

��
v� �

�tA� = − �A
i �

�qi , ��
v� �

�qi� =
�

�qi

nd

t�
�
v ��i� = dqi − �B

i dtB.

In this way, the connection � acts on the section V giving, locally,

S� =
�

�tA � �dqi − �B
i dtB� �

�

�vA
i

aking S� an element of Sec����Rk�1,0�*��Rk
* TRk � T*�Rk�Q� � V���Rk�1,0��.

Now to obtain S�
A, we have

S�
A = S��dtA� = �dqi − �B

i dtB� �
�

�vA
i �45�

hich concludes this part.
From �45� we see that when � is the standard connection then S�

A =SA.

. Lagrangian formalism with nonstandard connections

Since in the Lagrangian formalism �
L�A=dL �SA, as we have the connection �, we now
ntroduce the forms

�
L��
A = dL � S�

A, 1 � A � k ,

hich are locally given by

�
L��
A =

�L

�vA
i �dqi − �B

i dtB�, 1 � A � k ,

rom �18� and �34� it is obvious that �
L��
A = �FL�*
�

A. We define ��L��
A =−d�
L��

A and of course
�L��

A = �FL�*���
A�.

In local coordinates we have

��L��
A = dqi ∧ d� �L

�vA
i � + d��B

i �L

�vA
i � ∧ dtB. �46�
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Consider now the Lagrangian formalism on Rk�Tk
1Q replacing EL by EL

� and �L
A by ��L��

A.
From a long, but straightforward, computation, similar to the proof of Proposition 4.3, we

btain the following proposition.
Proposition 5.1: Let L :Rk�Tk

1Q→R be a regular Lagrangian, and let V0 be the vertical
istribution of the bundle ��Rk�1,0 :Rk�Tk

1Q→Rk�Q. If � is a flat connection then �Rk

Tk
1Q ,dtA , ��L��

A ,V0� is a k-cosymplectic manifold.
�

The equations,

i�RL�A
�dtB = A

B, i�RL�A
���L��

B = 0, 1 � A,B � k , �47�

efine the Reeb vector fields on Rk�Tk
1Q corresponding to the k-cosymplectic structure

dtA , ��L��
A ,V0�.

These equations are equivalent to

��RL�A
���B = A

B, ��RL�A
���i = �A

i , �48�

�2L

�tA�vC
k + �A

j �2L

�qj�vC
k +

��A
i

�qk

�L

�vC
i + ��RL�A

��B
i �2L

�vB
i �vC

k = 0, �49�

nd

�L

�vB
j � ��C

j

�tA −
��A

j

�tC + �A
i ��C

j

�qi − �C
i ��A

j

�qi � = 0, �50�

or all 1�A ,B ,C�k.
Since the curvature vanishes then the Reeb vector fields are locally given by

�RL�A
� =

�

�tA + �A
i �

�qi + ��RL�A
��B

i �

�vB
i , �51�

here the functions ��RL�A
��B

i satisfy Eq. �49�.
Since L is regular, from �49� we can define, in a neighborhood of each point a k-vector field

hat satifies �47�. Next, a global k-vector field �RL��= ��RL�1
� , . . . , �RL�k

�� can be constructed, which
s a solution of �47�, by using a partition of unity.

As in the standard Lagrangian formalism, by writing the equations �6� for the k-cosymplectic
tructure �dtA , ��L��

A ,V0� and by replacing H by EL
�, we have

dtA�YB� = B
A,

	
A=1

k

iYA
��L��

A = dEL
� − 	

A=1

k

�RL�A
��EL

��dtA, �52�

or some k-vector field �Y1 , . . . ,Yk�.
Using the regularity of L, from �46�, �49�, �51�, and �52� we deduce that if �Y1 , . . . ,Yk� is a

olution of �52� then

�YA�B = A
B, �YA�i = vA

i , 	
A=1

k

YA� �L

�vA
k � =

�L

�qk �53�

nd

�L

�vi � ��C
i

�tA + �A
j ��C

i

�qj −
��A

i

�tC − �C
j ��A

i

�qj � = 0. �54�

A
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Observe that Eqs. �22� coincide with Eqs. �53�, thus since �54� holds we obtain the following
roposition.

Proposition 5.2: Let L :Rk�Tk
1Q→R be a regular Lagrangian. If the curvature of the con-

ection � vanishes then the Lagrangian equations (21) and (52) have the same solutions.
Remark: In the case k=1, Propositions 4.5 and 5.2 generalize the results obtained in Ref. 1.

I. VARIATIONAL PRINCIPLES, EQUIVALENCIES AND ANOTHER CHARACTERIZATION
F THE ENERGY

In this section we prove that the energy EL
� is the unique function establishing the equivalence

etween the variational principles associated to the Hamiltonian and Lagrangian formalisms.

. Some other geometrical elements in RkÃQ

Definition 6.1: We introduce the following k-forms on Rk� �Tk
1�*Q:


0 = 	
A=1

k


0
A ∧ dk−1tA, 
� = 	

A=1

k


�
A ∧ dk−1tA, 	� = 	

A=1

k

	�
A ∧ dk−1tA,

�L = 	
A=1

k

�L
A ∧ dk−1tA, �55�

nd

�0 = 
0 − Hdkt, �� = 
� − H�dkt , �56�

here dkt=dt1∧ ¯ ∧dtk and dk−1tA= i�/�tAdkt.
The relationship between these forms is given in the following proposition.
Proposition 6.2:

1� �L= �FL�*�0.
2� 
0−
�=	�= �H−H��dkt.
3� �FL�*
�=�L+EL

�dkt.

Proof:

1� Since �FL�*
0
A=
L

A we obtain

�FL�*�0 = �FL�*�
0 − Hdkt� = �FL�*�	
A=1

k


0
A ∧ dk−1tA − Hdkt�

= 	
A=1

k

�FL�*
0
A ∧ dk−1tA − �FL�*Hdkt = 	

A=1

k


L
A ∧ dk−1tA − ELdkt .

On the other hand, from �29�,

�L = 	
A=1

k

�L
A ∧ dk−1tA = 	

A=1

k �
L
A + �1

k
B

AL − vB
i �L

�vA
i �dtB� ∧ dk−1tA

= 	
A=1

k


L
A ∧ dk−1tA + 	

A=1

k ��1

k
B

AL − vB
i �L

�vA
i �dtB� ∧ dk−1tA = 	

A=1

k


L
A ∧ dk−1tA + Ldkt − �CL�dkt

= 	
k


L
A ∧ dk−1tA − ELdkt .
A=1
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2� The first identity is a consequence of 
0
A−
�

A =	�
A. For the second identity, from �34� and

�35�, we have

	� = 	
A=1

k

	�
A ∧ dk−1tA = pi

A�B
i dtB ∧ dk−1tA = �	

A=1

k

	�
A� �

�tA��dkt = �H� − H�dkt .

3� From �2�,

�FL�*
� − �L = �FL�*
� − �FL�*�0 = �FL�*�
� − �0�

= �FL�*��H� − H�dkt + Hdkt� = �FL�*�H�dkt� = EL
�dkt .

�

. Characterization of the energy by sections of the bundle �Rk :RkÃQ\Rk

Lemma 6.3: Let � be a k-form and let f be a function on Rk�Tk
1Q. For each map

:U�Rk→Q, where U is a compact set, the following conditions are equivalent:

i� ���1��*�fdkt�= ���1��*�,
ii� ���1��U�fd

kt=���1��U��.

Proof: Trivially �i�⇒ �ii� because

�
��1��U�

fdkt = �
U

���1��*�fdkt� .

Conversely, if �i� is not true, then there exists a function � :U�Rk→Q such that
��1��*�fdkt−���0 and hence there exist s�U and a closed neighborhood V of s such that, taking
:V→Q then

�
��1��U�

�fdkt − �� � 0,

o �ii� is false.
�

Proposition 6.4: The Lagrangian energy function introduced in Definition 3.5 is the only
unction on Rk�Tk

1Q satisfying the condition

���1��*�EL
�dkt� = ���1��*��FL�*
� − Ldkt�

or every function � :U→Q.
Proof: Uniqueness. Let f and g be two functions verifying this condition. Obviously 0

���1��*��f −g�dkt�= ��f −g� ���1��dkt then 0= �f −g� ���1��t�= �f −g��jt
1��, and this implies that f

g=0, because every point in Rk�Tk
1Q is in the image of some map ��1�.

Existence: From �3� in Proposition 6.2, we obtain

���1��*��FL�*
� − Ldkt� = ���1��*��L + EL
�dkt − dkt�

= ���1��*�	
A=1

k �dL � SdtA +
1

k
L dtA� ∧ dk−1tA + EL

�dkt − Ldkt�
= ���1��*�	

A=1

k

�dL � SdtA ∧ dk−1tA�� + ���1��*�EL
�dkt� = ���1��*�EL

�dkt�
ecause
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���1��*�	
A=1

k

�dL � SdtA ∧ dk−1tA�� = 0.

n fact, from �26� we have

dL � SdtA =
�L

�vA
i �vB

i dtB − dqi�

hen

	
A=1

k

�dL � SdtA ∧ dk−1tA� = 	
A=1

k
�L

�vA
i �vB

i dtB − dqi� ∧ dk−1tA

ut

���1��*�	
A=1

k
�L

�vA
i �vB

i dtB − dqi� ∧ dk−1tA� = 	
A=1

k � �L

�vA
i � ��1����vB

i � ��1��d�tB � ��1��

− d�qi � ��1��� ∧ dk−1�tA � ��1��

= 	
A=1

k � �L

�vA
i � ��1��� ��i

�tB dtB − d�i� ∧ dk−1tA = 0.

�

From Proposition 6.4 we deduce that for every � :U�Rk→Q with U compact, we have

�
��1��U�

EL
�dkt = �

��1��U�
�FL�*
� − Ldkt

nd therefore, from Proposition 6.2, we obtain

�
��1��U�

Ldkt = �
��1��U�

�FL�*
� − EL
�dkt

= �
��1��U�

�FL�*�
� − H�dkt� = �
��1��U�

�FL�*�
0 − Hdkt�

= �
��1��U�

�FL�*�0 = �
FL���1��U�

�0.

This equality shows the equivalence between the Hamilton principle of minimal action and
he Hamilton-Jacobi principle, see later �57� and �58�. Therefore, taking into account Proposition
.4, we must conclude that the energy EL

� is the only function that performs the equivalence
etween both variational principles which now we recall.

. The Hamilton principle of minimal action

Each section of �Rk :Rk�Q→Rk can be identified as a map � :Rk→Q. Denote its first
rolongation by ��1� :Rk→Rk�Tk

1Q. With this in mind, we can define the following.
Definition 6.5: Let Cc

��Rk ,Q� be the set of compact support maps from Rk to Q. This set can
e identified with �c�Rk ,Rk�Q�, the set of compact support sections of �Rk. Consider the map

� k k k
L: Cc �R ,Q� � �c�R ,R � Q� → R ,
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� � �IdRk,�� � �
Rk

���1��*�Ldkt� . �57�

he variational problem posed by the Lagrangian function L is the problem of searching for the
ritical or stationary sections of the functional L.

Remark: The sections must be stationary with respect to the variations of �IdRk ,�� given by
IdRk ,��s=�s � �IdRk ,�� �because �s�tA ,qi�= �tA ,�i�s , t ,q���, or equivalently �s=�Q ��s � �IdRk ,��,
here ��s is a local flow of any vector Z�X�Rk�Q� which is �Rk vertical, that is

d

ds �s=0
�

Rk
��s

�1��*�Ldkt� = 0.

The proof of the following Proposition can be found in Ref. 4 for an arbitrary fiber bundle
:E→M.

Proposition 6.6: Let L be a Lagrangian function. The following assertions on a map �
Cc

��Rk ,Rk�Q� are equivalent:

1� � is a critical section for L,
2� ��1� satisfy the Euler-Lagrange equations,

	
A=1

k
d

dtA� �L

�vA
i

���1��t�
� −

�L

�qi
���1��t�

= 0, vA
i ���1��t�� =

��i

�tA �t�

in any natural local coordinate system.

. The Hamilton-Jacobi principle

Definition 6.7: Let � :Rk�Q→Rk�Q be a bundle isomorphism and �Q :Q→Q the induced
iffeomorphism in Q. The prolongation of � to Rk� �Tk

1�*Q is the diffeomorphism

j1*�: Rk � �Tk
1�*Q � J1�Q → Rk � �Tk

1�*Q � J1�Q,

jq
1� → j1*��jq

1�� = j�Q�q�
1 �� � � � �Q

−1� .

Definition 6.8: Let �c�Rk ,Rk� �Tk
1�*Q� be the set of compact support sections of

Rk � �Tk
1�*Q � J1�Q ——→

��Q�1,0

Rk � Q ——→
�Rk

Rk

nd consider the map

H: �c�Rk,Rk � �Tk
1�*Q� → R ,

� � �
Rk

�*�0. �58�

he associated variational problem is the search for the critical or stationary sections of the
unctional H, with respect to the variations of � given by �s= j1*�s ��, where ��s is a local flow
f any vector field Z�X�Rk�Q� which is �Rk vertical. That is

d

ds �s=0
�

Rk
�s

*�0 = 0.

The proof of the following Proposition can be found in Ref. 13 for an arbitrary fiber bundle

:E→M.
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Proposition 6.9: The following assertions on a section ���c�Rk ,Rk� �Tk
1�*Q� are equivalent.

1� � is a critical section for H.
2� � satisfy, in any natural local coordinate system, the Hamilton-De Donder-Weyl equations of

the Hamiltonian formalism,

�qi

�tA
��

=
�H

�pi
A

���t�
,

�pi
A

�tA
���t�

= −
�H

�qi
���t�

,

where H is the Hamiltonian function. �Also see Refs. 14–19.�

CKNOWLEDGMENTS

The authors acknowledge the financial support of Ministerio de Ciencia y Tecnología,
FM2002-03493. The authors thank Jeff Palmer for his assistance in preparing the paper.

1 A. Echeverría-Enríquez, M. C. Muñoz-Lecanda, and N. Román-Roy, Rev. Math. Phys. 3, 301 �1991�.
2 M. de León, E. Merino, J. A. Oubiña, P. R. Rodrigues, and M. Salgado, J. Math. Phys. 39, 876 �1998�.
3 M. de León, E. Merino, and M. Salgado, J. Math. Phys. 42, 2092 �2001�.
4 A. Echeverría-Enríquez, M. C. Muñoz-Lecanda, and N. Román-Roy, J. Phys. A 28, 5553 �1995�.
5 M. de León, M. McLean, L. K. Norris, A. Rey-Roca, and M. Salgado, math-ph/0208036.
6 I. Kolář, P. Michor, and J. Slovák, Natural Operations in Differential Geometry �Springer-Verlag, New York, 1993�.
7 A. Morimoto, Prolongations of Geometric Structures �Math. Inst., Nagoya University, Nagoya, 1969�.
8 M. de León, I. Méndez, and M. Salgado, Handb. Heat Transfer 37, 282 �1988�.
9 M. de León, I. Méndez, and M. Salgado, Acta Math. Acad. Sci. Hung. 58, 45 �1991�.
0 A. Echeverría-Enríquez, M. C. Muñoz-Lecanda, and N. Román-Roy, J. Phys. A 32, 8461 �1999�.
1 A. Echeverría-Enríquez, M. C. Muñoz-Lecanda, and N. Román-Roy, Fortschr. Phys. 44, 235 �1996�.
2 D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Series, 142 �Cambridge University
Press, Cambridge, 1989�.

3 A. Echeverría-Enríquez, M. C. Muñoz-Lecanda, and N. Román-Roy, J. Math. Phys. 41, 7402 �2000�.
4 R. Abraham and J. E. Marsden, Foundations of Mechanics �Benjamin, New York, 1978�.
5 M. C. Muñoz-Lecanda, N. Román-Roy, and F. J. Yániz, Lett. Math. Phys. 57, 107 �2001�.
6 F. Munteanu, A. M. Rey, and M. Salgado, J. Math. Phys. 45, 1730 �2004�.
7 C. Günther, J. Diff. Geom. 25, 23 �1987�.
8 D. J. Saunders, J. Phys. A 20, 339 �1987�.
9 D. J. Saunders, J. Phys. A 20, 3261 �1987�.
                                                                                                            



O

I

S
T
T
h
q
t
S
a

t
t
e
m
l
s
p
s
e
i
e

t

a

b

JOURNAL OF MATHEMATICAL PHYSICS 46, 123301 �2005�

0

                        
n the sharpness of the zero-entropy-density conjecture
S. Farkasa�

Department of Physics, University of Chicago, Chicago, Illinois 60637

Z. Zimborásb�

Research Institute for Particle and Nuclear Physics, Budapest, H-1525 Budapest,
P.O. Box 49, Hungary

�Received 15 July 2005; accepted 7 October 2005; published online 15 December 2005�

The zero-entropy-density conjecture states that the entropy density defined as
sª limN→�SN /N vanishes for all translation-invariant pure states on the spin chain.
Or equivalently, SN, the von Neumann entropy of such a state restricted to N
consecutive spins, is sublinear. In this paper it is proved that this conjecture cannot
be sharpened, i.e., translation-invariant states give rise to arbitrary fast sublinear
entropy growth. The proof is constructive, and is based on a class of states derived
from quasifree states on a CAR algebra. The question whether the entropy growth
of pure quasifree states can be arbitrary fast sublinear was first raised by Fannes et
al. �J. Math. Phys. 44, 6005 �2003��. In addition to the main theorem it is also
shown that the entropy asymptotics of all pure shift-invariant nontrivial quasifree
states is at least logarithmic. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2138047�

. INTRODUCTION

Quantum spin chains belong to the most studied models of quantum statistical mechanics.1

till, only for a few types of models have the thermal and ground state structures been determined.
his is mainly the consequence of the complicated correlations that can appear in quantum states.
hese strong correlations can even be present in pure states, while classical pure states can only
ave a trivial product state structure. Unlike the classical case, the restrictions of pure states on the
uantum spin chain to local subsystems are typically mixed states. This type of correlation be-
ween subsystems is commonly referred to as entanglement. The von Neumann entropy, defined as
ª−Tr � log �, is a natural measure of the nonpurity of the restricted density matrix �, thus it is
very useful quantity in the description of entanglement.

The entropy of a restricted density matrix is also a basic measure when mixed states are
reated, however, in this case it cannot be interpreted as a measure of entanglement. Let SN denote
he von Neumann entropy of a translation-invariant state restricted to N consecutive spins. The
ntropy density sª limN→�SN /N is considered to quantify the “strong nonpurity” of the entire
ixed state, and it plays a central role in the characterization of Gibbs states.1 A natural and

ong-standing conjecture is that the entropy density vanishes for all translation-invariant pure
tates on a quantum spin chain, i.e., for such states, SN is sublinear. In the present paper we will
rove that if this zero-entropy-density conjecture is true, then it is sharp in the sense that for any
ublinear function fN �limN→�fN /N=0�, there exists a translation-invariant state so that SN� fN, for
very sufficiently large N. This has already been conjectured by Fannes, Haegeman, and Mosonyi
n Ref. 2. Moreover, they proved that any sublinear power function can be exceeded by the
ntropy growth of an appropriate pure translation-invariant state.

It also should be mentioned that there is a revived interest in studying entropy asymptotics for
wo other reasons. First, SN seems to be a good indicator of quantum criticality. Several ground

�Electronic mail: farkas@uchicago.edu
�
Electronic mail: cimbi@rmki.kfki.hu

46, 123301-1022-2488/2005/46�12�/123301/8/$22.50 © 2005 American Institute of Physics
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tates of Hamiltonians with local interactions were studied, and in these models, SN was found to
e bounded for noncritical systems, while for critical systems, it turned out to diverge
ogarithmically.3–6 The prefactor of this logarithmic growth was argued to be one-third of the
entral charge.7 Also higher dimensional lattice models have been investigated in this respect.8–11

econd, entropy is supposed to play an important role in the quantification of the “essential
ubspace” of a restricted density matrix. The possibility of compressing the restricted density
atrix from its full dimension to a much smaller subspace without loss of much information is the

tarting point of the DMRG calculations.12 For ergodic translation-invariant states, with nonvan-
shing entropy density s, the density matrix pertaining to N consecutive spins, �N, is essentially
oncentrated on a subspace of dimension proportional to exp�Ns�.13 In more general situations,
umerical calculations suggest that the dimension of the “essential subspace” of �N is proportional
o exp�SN�.14 This could lead to a very efficient compression of states with bounded or slowly
iverging entropy asymptotics.

In the present paper we give a constructive proof of the sharpness of the zero-entropy-density
onjecture. The states that are studied are translation-invariant pure states on the spin chain
erived from quasifree states on the CAR algebra. In Sec. II we recapitulate the construction of
uch states in order to be self-contained. In Sec. III we prove our main theorem. The argument is
ased on the approach to quasifree states developed in Ref. 2. Finally, we include a proof of the
tatement that the entropy growth for all nontrivial gauge-invariant quasifree states are bounded
rom below by a logarithmic growth.

I. QUASIFREE STATES ON THE SPIN CHAIN

. The Araki-Jordan-Wigner construction

The algebra of observables of a quantum spin chain �more precisely, spin 1
2 chain� is the UHF

lgebra

M ª �
k=−�

+�

M2,

here M2 denotes the algebra of 2�2 matrices. Let �a
k �a=1,2 ,3 ; k�Z� denote the Pauli ma-

rices embedded into the kth factor of M. They satisfy the well-known relations:

�a
k�b

l = �b
l �a

k, when k � l,

�a
l �b

l = i�abc�c
l + �ab1.

he Pauli matrices and 1 generate M. The translation automorphism � on M is defined by
��a

k�=�a
k+1.

The states we are investigating in this paper are translation-invariant pure states on M derived
rom quasifree states of a fermion chain. The C* algebra describing a fermion chain is the CAR
lgebra corresponding to the one-particle Hilbert space �2�Z�, i.e., it is the C* algebra generated by
and the operators �ck �k�Z� satisfying the canonical anticommutation relations:

ckcl
* + cl

*ck = �k,l1, ckcl + clck = 0.

enote this C* algebra by A. The translation automorphism 	 is defined by 	�ck�=ck+1.
The C* algebras M and A are isomorphic. However, there exists no isomorphism

:M→A that satisfies the property 
 ��=	 � 
. This is clear if we note that �M ,�� is asymptoti-
ally Abelian, while �A ,	� is not. This intertwining property is needed to derive the translation
nvariance of a state � � 
 on M from that of � on A. This problem can be circumvented by Araki’s
onstruction.15 In this section we will present a modified but equivalent formulation of this con-

truction.
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First, let us introduce the parity automorphism � on A. It is defined by ��ck�=−ck. The
lements of A+ª �a�A ���a�=a� are called even, while those of A−ª �a�A ���a�=−a� are
alled odd. Any element a�A can uniquely be written in the form a=a++a−, where a+�A+, and

−�A−. Thus, A=A++A−.
Second, let M+ be the C* subalgebra of M generated by 1, �3

k, and �1
k�1

l �k , l�Z�. M+ is
somorphic to A+, an explicit isomorphism  is given by the restricted Jordan-Wigner transfor-
ation:

��3
k� ª 2ck

*ck − 1,

��1
k�1

l � ª − �
m=k

l−1

�2cm
* cm − 1��ck

* + ck��cl
* + cl� when k � l.

Since M+ and A+ are invariant under the translations, � and 	 can be restricted to M+ and

+, respectively. Let us denote these restrictions by �+ and 	+. Although there is no isomorphism
hat intertwines the translations on M and A,  is an isomorphism that intertwines the translations
n the subalgebras M+ and A+:  ��+=	+ �.

Now, let �+ be the restriction of a state � on A to A+. If � is a translation-invariant state, i.e.,
�	=�, then �+ �, which is a state on M+, is invariant under �+. The state �+ � can be

xtended to a state �̃ on M by �̃�a�= �̃�a++a−�ª�+��a+��, where a+�A+, and a−�A−. This
ay a translation-invariant state �̃ on M is obtained. Moreover, if � is an even state, i.e.,
��=�, then �̃ is pure if and only if � is pure.2

To summarize, a translation intertwining automorphism  has been given not between the
lgebras M and A, but between their appropriate subalgebras M+ and A+. Any translation-
nvariant state on M+ can be straightforwardly extended to a translation-invariant state on M.
hus the isomorphism  makes it possible to transport the translation-invariant states from A to

.

. Quasifree states on CAR algebras

Following Araki’s construction presented in Sec. II A, a class of states will be derived from
uasifree states on the CAR algebra A. Here we will shortly recapitulate the most important
efinitions and facts concerning these states, more details and the proofs of the statements can be
ound in Refs. 1 and 16.

Let Q be an operator on the Hilbert space �2�Z�, 0�Q�1. Let Qijª 	�i ,Q� j
 be the matrix
lements of Q in the standard basis ��k �k�Z� of �2�Z�, where �k is the characteristic function of
he number k. The �gauge-invariant� quasifree state �Q on A is defined through the following
ormula:

�Q�ci1
* . . . cim

* cjn
. . . cj1

� = �m,ndet��Qikjl
�k,l=1

n � .

he operator Q is called the symbol of the state. Quasifree states are by definition even states.
A quasifree state �Q is translation-invariant if and only if its symbol Q is a Toeplitz operator

n the basis �k, i.e., there exists a sequence �qk�k�Z such that Qkl= 	�k ,Q�l
=qk−l. Let us introduce
he Fourier transform:

q̃��� ª �
k�Z

qke
i2�k�, where � � �0,1� .

he function q̃ satisfies 0� q̃����1 almost everywhere. A translation-invariant quasifree state �Q

s pure if and only if the Fourier transform q̃ is a characteristic function, i.e., there exists a
easurable set K� �0,1� such that q̃���=�K���.

Now, applying the Araki-Jordan-Wigner construction to a translation-invariant quasifree state

Q, one obtains a translation-invariant state �̃Q on the spin chain algebra M. Since quasifree˜
tates are even, the state �Q is pure if and only if the corresponding quasifree state �Q is also pure.
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Let �N denote the reduced density matrix obtained by restricting the state �̃Q to an interval of
spins. The von Neumann entropy of the restricted state is defined as SNª−Tr �N log �N. An

xplicit formula of this entropy is known for quasifree states:

SN = − Tr�QNlog QN + �1 − QN�log�1 − QN�� , �1�

here QN is the restriction of Q to the N-dimensional space spanned by the set ��k �0�k�
−1�.

On the basis of the Szegő theorem one can prove that the entropy density sª limN→�SN /N of
ure translation-invariant quasifree states vanishes.2 In Sec. III we will prove that this statement is
harp in the sense that for any fN sublinear function there is a quasifree state for which SN� fN for
ufficiently large N.

II. QUASIFREE STATES GIVE RISE TO ARBITRARY FAST SUBLINEAR ENTROPY
ROWTH

An explicit formula of the entropy function SN for quasifree states was given in Sec. II by Eq.
1�. In order to simplify further computations, we work with a quadratic lower bound of SN

ntroduced in Ref. 2:

qN ª Tr QN�1 − QN� .

hat qN is a lower bound of SN=−Tr�QN log QN+ �1−QN�log�1−QN�� can be proved by the aid of
he inequality x�1−x��−x ln x− �1−x�ln�1−x�, which holds for 0�x�1.

As derived in Ref. 2, qN can be rewritten in the form:

qN = �
0

1

d�
sin2 N��

sin2 ��
�K��� , �2�

here K denotes the measurable set K that characterizes the symbol Q, and �K is the function:

�K��� = ��K + �� \ K� .

· � denotes the Lebesgue measure. By reducing the region of the integration in �2� to �0,1 / �2N��,
nd substituting the trigonometric factor with its lower bound on this restricted region, we obtain
lower estimate for qN:

qN �
4N2

�2 �
0

1/2N

�K���d� . �3�

his is the starting point in the proof of the following proposition.
Theorem: For any sublinear function f :N→R+, there exists a pure translation-invariant

uasifree state for which SN is bounded from below by fN, that is SN� fN for every sufficiently
arge N.

Proof: By �3�, the problem has been reduced to showing the existence of a set K� �0,1� for
hich the right-hand side of �3� grows not slower than the given fN as N goes to infinity.

The construction of K is based on two non-negative sequences: a sequence of integers �ni�i�N
nd another one of real numbers ��i�i�N, where �i�2�i+1. Let K be the union of infinitely many
isjoint intervals, the end points of which are determined by these two sequences as follows:

K = � �
ni

Ii
k, Ii

k = �ai
k,bi

k�, bi
k − ai

k = �i,

i�N k=1
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a0
1 = 0, ai

1 = bi−1
ni−1 + �i−1 if i � 0, �4�

ai
k = bi

k−1 + �i if k � 1.

he ��i�i�N and �ni�i�N are chosen so that the above-constructed set K is bounded, and for
onvenience, we suppose additionally that ni�i is monotonically decreasing, and

�
i=0

�

ni�i �
1

4
.

hus K� �0,1 /2�. With construction �4�, �K takes the form

�K��� = �
i=0

�

�
k=1

ni

��Ii
k + �� \ K� � �

i=i�

�

�
k=1

ni

��Ii
k + �� \ K� ,

here i� is the smallest index for which 2ni�i�� for all i� i�. Each translated interval �Ii
k+��

ith i� i� is situated in a region where the original intervals in the construction of K and the gaps
etween them are not longer than �i /2 �or where K has no point at all�. For this reason

�Ii
k+�� \K � ��i /3 for every term in the last summation. Therefore we obtain

�K��� �
1

3 �
i=i�

�

ni�i.

ow, let fN be an arbitrary sublinear function, i.e., limN→�fN /N=0. Obviously, there exists a
onotonically increasing continuously differentiable function g : �0,1 /2�→R+ with the properties:

g�0� = 0,
�2

2
g 1

2N
� �

fN

N
.

et us define function h as h�x�= �d/dx��xg�x��. h is continuous, and h�0�=0. We suppose that h
s strictly monotonically increasing in the neighborhood of zero. If not, we choose a continuous,

trictly monotonically increasing ĥ such that ĥ�h, and ĥ�0�=0. �A possible choice is ĥ�x�
max�h�y� �y� �0,x��+x�. This ĥ can be derived from a ĝ for which ĝ�g, and then the argument

an be continued with ĥ instead of h.
The next step is to specify �ni�i�N and ��i�i�N so that

�K��� �
1

3 �
i=i�

�

ni�i � h��� �5�

hould hold for sufficiently small �.
Let si be the solution of the following recursive equation, starting from a given s0 �0�s0

1 /2�:

h�6�si − si+1�� = si+1. �6�

t is clear from the required properties of h that there is a solution that satisfies the equalities
�si+1�si for every i. Since �si�i�N is bounded from below and monotonically decreasing, it has
limit at infinity. Suppose that this limit differs from zero, say it is s��0. Taking an arbitrary

mall ��0, there is an i for which ��6�si−si+1�, and we find that h����h�6�si−si+1��=si+1

s� for any �, so h�0��s� in contradiction with h�0�=0. Thus limi→�si=0.

Now we are ready to specify the values of �i and ni by
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si =
1

3�
j=i

�

nj� j . �7�

onsidering that �si�i�N is a monotonically decreasing sequence tending to zero, these equalities
an be satisfied by some series �ni�i�N and ��i�i�N. Starting with a particular �i, we can always
etermine the next term by choosing some �i+1��i /2. The only restriction on the choice of �i is
hat si−si+1 should be an integral multiple of �i. This requirement can undoubtedly be met, and
hen si−si+1= 1

3ni�i yields the value of ni. The inclusion K� �0,1 /2� can be assured by choosing
ufficiently small s0.

Recall that �ni�i�i�N has been required to be monotonic. We can easily convince ourselves that
ni�i�i�N constructed from �si�i�N has this property. Indeed, it follows immediately from the strict
onotonicity of h: h�2ni�i�=h�6�si−si+1��=si+1�si=h�6�si−1−si��=h�2ni−1�i−1�.

Monotonicity of �si�i�N and its behavior at infinity entail that for any � below a certain bound,
here is an index i for which 6�si−si+1����6�si−1−si�. Notice that this index is nothing but i�.
hus putting together �6� and �7�, we arrive at the desired estimate �5�. Consequently, for suffi-
iently large N, in the region of the integration in �3�, �K����h��� holds. Performing the inte-
ration in �3� completes the proof:

SN � qN �
4N2

�2 �
0

1/2N

�K���d� �
4N2

�2 �
0

1/2N

h���d� =
4N2

�2 �
0

1/2N

d

d�
��g����d� =

2N

�2 g 1

2N
� � fN.

�

We have just shown that pure translation-invariant quasifree states give rise to arbitrary fast
ublinear entropy growth. In the trivial cases, �K � =0 or �K � =1, the entropy is identically zero. The
uestion naturally arises whether it is possible to achieve arbitrary slow nonbounded entropy
rowth by such states.

Theorem: Apart from the trivial cases, pure �gauge- and� translation-invariant quasifree
tates give at least logarithmic entropy growth.

Proof: It has been shown in Ref. 2 that if

�K��� � c� for some c � 0 �8�

n the vicinity of zero, then SN is bounded from below by a logarithmic growth. We will prove that
8� holds for any measurable set K� �0,1� �apart from the trivial cases, where �K���=0�.

It is known from the Lebesgue density theorem that for any measurable set K, �K � = �Kd� holds,
here Kd denotes the set of the density points of K:

Kd = �x � K� lim
�→0

�x − �,x + �� � K

2�
= 1� .

t can be inferred from this theorem that for any K of positive measure, there is such a point
�K that

∀� � 0: ∃ � � 0 so that for every interval I that satisfies x � I, and �I� � �, �K � I� � �1 − ���I� .

�9�

isregarding the trivial cases, the measure of Kc �the complement of K�, is also positive:
Kc � �0. It means that Kc also has a point that satisfies �9�. We denote this point by y. For a given
, we can choose a common � to x and y. Let I be an interval shorter than this �: �I � ��, and
� I. There is an integer n such that y� �I+n � I � �. The set �I+n � I � � can be assured to be disjoint

rom I by choosing a sufficiently small �. The following inequalities hold for I:
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�K � I� � �1 − ���I�, �Kc � �I + n�I��� � �1 − ���I� . �10�

he following estimate, though seemingly weak, is the core of the proof:

�K��I�� � ��
k=0

n−1

�I + k�I�� � �K + �I���\K� = �
k=0

n−1

���I + k�I�� � �K + �I��� \ ��I + �k + 1��I�� � K��

� �
k=0

n−1

���I + k�I�� � �K + �I����− ��I + �k + 1��I�� � K� = �I � K�− ��I + n�I�� � K� .

Having a look at �10�, we obtain that for arbitrary positive �,

�K��I�� � �1 − 2���I� ,

f �I� is sufficiently small. This inequality entails �8�. �

V. CONCLUSION AND OUTLOOK

We have shown that for any sublinear growth fN, there exist shift-invariant pure states that
ave faster entropy growth than fN. However, the question if the entropy asymptotics of any
ranslation-invariant pure state is sublinear, that is whether they have a vanishing entropy density,
s still unsolved. It is difficult to address this problem generally. One can instead take into con-
ideration only special classes of translation-invariant states. For instance, finitely correlated states
urn out to lead to bounded entropy growth.17 A further step could be to explore the entropy
rowth and the entropy density of pure algebraic states, which are the generalizations of the
nitely correlated states.

Another question that can be raised is whether there exists for each sublinear growth fN a state
ith local von Neumann entropies SN such that limN→�SN / fN=c, where c�0. As we can learn

rom the last proposition in Sec. III, in the case of pure translation-invariant quasifree state the
nswer is negative.

In the case of local Hamiltonians only ground states with bounded or logarithmic entropy
rowth have been found. From a mathematical point of view, our construction is not sophisticated.
ny given sublinear asymptotics is exceedable by the entropy growth of a state characterized by
set of rather simple structure: a set built from countably many intervals. Nevertheless, it is still

n open question whether these asymptotics can be physically realized, or entropy asymptotics
tronger than logarithmic �or some other sublinear� function can never occur for ground states in
he presence of only local interactions.
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We present the result of calculations of the Witten index for a supersymmetric
lattice model on lattices of various type and size. Because the model remains
supersymmetric at finite lattice size, the Witten index can be calculated using row-
to-row transfer matrices and the calculations are similar to calculations of the
partition function at negative activity −1. The Witten index provides a lower bound
on the number of ground states. We find strong numerical evidence that the Witten
index grows exponentially with the number of sites of the lattice, implying that the
model has extensive entropy in the ground state. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2142836�

. INTRODUCTION

In Ref. 1 a spinless fermion lattice model was proposed that is N=2 supersymmetric �SUSY�
egardless of lattice size or shape. The �fine-tuned� Hamiltonian of this model is written in terms
f fermion creation and annihilation operators, as follows:

H = �
i

�
j next to i

P�i�ci
†cjP�j� + �

i

P�i�, �1�

ith i numbering the lattice sites, ci and ci
† obeying �ci ,cj

†	=�ij and where we have introduced
rojection operators P for convenient notation. The latter have the form

P�i� 
 �
j next to i

�1 − cj
†cj� . �2�

hese projection operators ensure that no two neighboring sites can be occupied simultaneously.
herefore, we will work with a restricted Hilbert space where these states are excluded.

The SUSY model is closely related to more conventional lattice models, like the Heisenberg
XZ chain. This relation, which holds if we take a one-dimensional �1D� chain with special
oundary conditions for the lattice, was demonstrated in Ref. 2. There it was also shown how
USY could aid a Bethe Ansatz computation of the spectrum of the XXZ chain. Indeed, it is
ruitful to see how SUSY can facilitate calculations on the lattice model specified by �1�, espe-
ially since the symmetry holds on arbitrary graphs while exact results on higher dimensional
attices are notoriously difficult to obtain using conventional methods.

The supersymmetry can be viewed as a multiple site generalization of supersymmetric quan-
um mechanics. The two generators Q+ and Q− are given explicitly in Ref. 1,

�
Electronic mail: hveerten@science.uva.nl
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Q+ = �
i=1

N

ci
†P�i�, Q− = �

i=1

N

ciP�i�. �3�

e have the following algebraic structure �with F the fermionic number operator�:

�F,Q±� = ± Q±, �F,H� = 0, �Q+,H� = 0, �Q−,H� = 0, �Q+,Q−	 = H . �4�

In this paper we will focus on the ground states of a variety of two-dimensional �2D� lattices.
e will treat the triangular and hexagonal lattice and their counterparts with dimer configurations

s well as the dimer version of the square lattice. The square lattice was treated in a separate
resentation.3 All the lattices treated here have an interesting common feature, the number of
round states of the SUSY Hamiltonian on these lattices increases exponentially with increasing
attice size. This directly implies an extensive entropy of the ground state, a rare property exhib-
ted by only a few condensed matter systems. The lattices are shown in Figs. 1–3.

All excited states in the SUSY model occur pairwise, because for every bosonic configuration
e have an accompanying fermionic configuration. Here, lattice configurations with an even �odd�
umber of fermions are termed bosonic �fermionic� configurations. The ground states need not
ccur pairwise but are restricted otherwise, for their energies are all zero. All this means that we
an use the Witten index operator to obtain a lower limit on the number of ground states,

W = Tr�− 1�Fe−�H. �5�

he pairwise cancelling of all excited states allows us to look just at the limiting case �→0,
specially when calculating W for finite size lattices where convergence is not an issue, and we
ill do so for the remainder of this paper.

The operator W is completely equivalent to the well-known grand canonical partion function
=Tr zF exp�−�H� of the classical hard particle model in the same dimension, only with a nega-

ive value for the activity z. It is this equivalence that puts a calculation of the Witten index for
USY lattice models in a broader context and allows us to use well-known approaches for the

FIG. 1. The square lattice and the square dimer lattice.
FIG. 2. The triangular lattice and the triangular dimer lattice.

                                                                                                            



c
a

l
w

I

s
i
c

T
s
a
T
T
l
n

t
c
a
w

c
i
e
s
m
n
b

c
v
c
t
e

123302-3 SUSY lattice models ground states J. Math. Phys. 46, 123302 �2005�

                        
alculation of Z—especially the use of transfer matrices that allows us to write W as the trace of
matrix product.

We have calculated the Witten index for finite sized lattices up to 15�15 �the triangular
attice� using transfer matrices. Before discussing the resulting values for the Witten indices, we
ill first explain how these matrices were constructed.

I. THE TRANSFER MATRICES

Transfer matrices can be constructed in various ways, as long as they provide a means of
ystematically summing over all possible configurations on the lattice �see Ref. 4 for an exhaustive
ntroduction�. For the N-site chain with periodic boundary conditions, the Witten index operator
an be written in terms of transfer matrices as

W = Tr�1 i

i 0
N

= Tr�1 − 1

1 0
N

. �6�

he upper left entry of the matrix corresponds to adding an empty site to the chain with an empty
ite at the end, the upper right entry to adding a filled site to an empty site, the lower left entry to
dding an empty site to a filled site and the lower right entry to adding a filled site to a filled site.
his last entry must be zero because no configurations with neighboring sites filled were allowed.
o avoid an overcounting per fermion we can either use −1,1 or i , i for the off-diagonal entries, as

ong as their product is equal to −1. The resulting transfer matrices can be made symmetric, but
ever Hermitian.

The procedure can easily be generalized to higher dimensional lattices. The easiest strategy is
o use row-to-row transfer matrices and have each matrix entry correspond to a specific row
onfiguration. Because the size of these matrices increases fast with increasing lattice size, the
ctual constructions of the matrices are best left to a computer �which we did�. In the following,
e will briefly explain how the matrices were constructed for the various lattices.

The square lattice is the simplest. For each matrix entry �i , j� the computer program just
ompares the configuration denoted by i with the one denoted by j. The matrix entry will be zero
f the two configurations have one or more neighboring vertices occupied when viewed next to
ach other. If the combination of i and j is allowed, a factor �−1�f�j� is written down, where f�j�
tands for the number of fermions in configuration j. This means we obtain a non-symmetric
atrix with real numbers only. Using a mapping from the different configurations to binary

umbers simplifies matters even further �e.g., � � � � �→10 100, etc.�. The comparison
etween the ith and jth configuration can now be performed using a binary AND instruction.

The program is easily modified for the triangular lattice. There are two extra edges per vertex
onnecting to vertices on a higher or lower row. They are similar to the vertical edge, but with all
ertices of the lower row shifted one position to the right. In terms of the computer code, when
omparing the ith and jth configuration, we apply a binary right shift on the jth binary represen-
ation before using AND. The program now performs two tests instead of one to ascertain if it can

FIG. 3. The hexagonal lattice and the hexagonal dimer lattice.
nter a nonzero value.
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For the hexagonal lattice we need to use two transfer matrices instead of one. Viewing the
exagonal lattice as a horizontal brick wall, we see that we have two different rows. If we work in
nits of 2�2 sites, we can take the transfer matrix that adds two rows at once as the matrix
roduct of the two different matrices of the single rows.

The dimer lattices offer another complication. The square dimer lattice has both horizontal and
ertical dimers. When constructing the transfer matrix we will sum over the horizontal dimer
ontributions. We can do this without problems because the horizontal dimers make no contact
ith the next row. For the triangular dimer lattice, we calculate the transfer matrices in a similar
ay.

For the hexagonal dimer lattice we will use yet another trick. As can be seen in Fig. 3, the
ven rows contain only half the number of vertices �after switching dimers and vertices in the
riginal hexagonal lattice�. As a first step we shall double this number of vertices in the even rows,
s shown in Fig. 4. We must make certain that the resulting pairs consistently have the same value.
hen we can formulate the transfer matrix once more as the product of two transfer matrices.

II. RESULTS

The resulting values for the Witten index on various lattice sizes are summarized in the tables
n the Appendix.

The Witten index for the M �N lattice is given by Tr �TN�M. Because we are taking the trace,
he transfer matrices can be diagonalized without changing the resulting value for the Witten
ndex. As a consequence, in the limiting case where the number of rows goes to infinity we can
estrict ourselves to the largest roots of the characteristic polynomial of TN �we would have used
he term eigenvalue if the transfer matrix was not defective�. Because the characteristic roots turn
ut to come in complex pairs, we must look at two largest roots and we get the following
pproximation for the Witten index:

WM,N � a�t1,N�M + ā�t̄1,N�M , �7�

here t1,N and t̄1,N denote the complex pair that form the largest roots of the N-column transfer
atrix.

We can define a contribution per site w by

w 
 lim
N→�

t1,N

t1,N−1
. �8�

f we do not take the limit to infinite N, but study finite size lattices of increasing size, we find
trong numerical evidence that the contribution to the Witten index per site rapidly tends to a fixed
omplex number that is different for each lattice that was considered. These numbers are shown in
able I. When calculating these numbers we must select the correct phase factors manually from

he two possibilities offered by the complex pairs. The quickly appearing convergence to a fixed
alue then justifies our choice. The square lattice is treated elsewhere,3 but has the special property
hat all characteristic roots have norm equal to 1. All other lattice types have a single complex pair
f largest roots.

FIG. 4. Doubling sites on the even rows of the hexagonal dimer lattice.
This convergence to a complex number greater than 1 has an important consequence, for it
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ndicates an extensive ground state entropy. The Witten index can by approximated by

W � wMN + w̄MN = 2rMN cos�MN� + �0� , �9�

ith w=r exp�i��. The index provides a lower bound on the number of ground states. �Indeed it is
ery well possible that the actual number of ground states greatly exceeds �W�. The reasoning
resented here offers us no information on this. See Refs. 3 and 6 for an example �the square
attice�.� In our understanding the oscillating �cosine� factor is due to partial cancelations in W of
ontributions coming from bosonic and fermionic ground states. We thus expect that the mono-
onically growing factor rMN sets a lower bound for the actual ground state entropy S0

ln�#ground states� according to

S0 � MN ln r . �10�

or example, for the triangular lattice we find

S0 � MN ln 1.14 = 0.131MN . �11�

It is interesting to see whether the Witten index per site can be calculated analytically. The
riangular lattice case, for example, is equivalent to the hard hexagon model �see Ref. 5� with
ctivity −1 and even fits the Yang-Baxter equation at this value. Unfortunately one cannot simply
odify the reasoning from Ref. 4 for the z�0 regime because the transfer matrices are defective,

o this question remains open for the moment. It might still be possible to obtain analytical
olutions using other methods. In Ref. 6, for example, an exact solution for the nonagon-triangle
attice was found by showing that it is equivalent to the number of closed packed dimer coverings
n the honeycomb lattice.

The fact that we have a complex number indicates that the Witten index does not necessarily
row with increasing lattice size, like the partition sum of the corresponding hard particle model
n the z�0 regime would. The phase factor can be used to obtain a rough first estimate on the
ermion density of the ground states. The phase factor in the cosine term of W shows us how many
ites we need to add to get from a majority of fermionic ground states to a majority of bosonic
round states and vice versa. �For example, the 1D chain has roots exp�±i /3	� and only two
round states both with filling factor 1 /3�. But it is only useful as such when combined with a
ore advanced approach to calculating the spectrum like the spectral sequence technique used in
ef. 3. After all, the phase factor is determined by all ground states and they do not necessarily all
ave the same filling factors.
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PPENDIX: WITTEN INDEX TABLES

The hexagonal lattice tables correspond to the vertical brick wall. It has been confirmed that

TABLE I. Witten index per site, various lattice types.

Lattice type Modulus �w� per site Phase arg w per site

Square dimer 1.33±0.01 �0.363�	�±0.01

Triangular 1.14±0.01 �0.178�	�±0.01

Triangular dimer 1.261±0.01 �0.189�	�±0.001

Hexagonal 1.2±0.1 Insufficient data

Hexagonal dimer 1.4±0.1 �0.310�	�±0.001
he tables for the horizontal brick wall are equal to the transposed tables. �See Tables II–VIII.�
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TABLE II. Witten index for M �N square dimer lattice.

1 2 3 4 5

1 1 −1 −2 −1 1

2 −1 1 8 −15 19

3 −2 8 −26 44 −92

4 −1 −15 44 129 −361

5 1 19 −92 −361 −2344

6 2 4 188 −912 −9158

7 1 −57 −338 4479 −24 219

8 −1 129 572 4417 −8241

9 −2 −136 −818 −46 612 362 068

10 −1 −39 668 5665 2 617 744
TABLE III. Witten index for M �N square dimer lattice �continued�.

6 7 8 9 10

1 2 1 −1 −2 −1

2 4 −57 129 −136 −39

3 188 −338 572 −818 668

4 −912 4479 4417 −46 612 5665

5 −9158 −24 219 −8241 362 068 2 617 744

6 −54 584 −239 790 −630 384 1 243 052 31 152 804

7 −239 790 1 495 453 9 803 807 −95 946 944 −363 241 257

8 −630 384 9 803 807 −130 406 911 1 458 639 932 −1 665 351 583

9 1 243 052 −95 946 944 1 458 639 932 −980 392 698 −436 754 324

10 31 152 804 −363 241 257 −1 665 351 583 −436 754 324 1 741 554 048
TABLE IV. Witten index for M �N triangular lattice.

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 1 −3 −5 1 11 9 −13 −31 −5 57

3 1 −5 −2 7 1 −14 1 31 −2 −65

4 1 1 7 −23 11 25 −69 193 −29 −279

5 1 11 1 11 36 −49 211 −349 811 −1064

6 1 9 −14 25 −49 −102 −13 −415 1462 −4911

7 1 −13 1 −69 211 −13 −797 3403 −7055 5237

8 1 −31 31 193 −349 −415 3403 881 −28 517 50 849

9 1 −5 −2 −29 881 1462 −7055 −28 517 31 399 313 315

10 1 57 −65 −279 −1064 −4911 5237 50 849 313 315 950 592

11 1 67 1 859 1651 12 607 32 418 159 083 499 060 2 011 307

12 1 −47 130 −1295 −589 −26 006 −152 697 −535 895 −2 573 258 −3 973 827

13 1 −181 1 −77 −1949 67 523 330 331 −595 373 −10 989 458 −49 705 161

14 1 −87 −257 3641 12 611 −139 935 −235 717 5 651 377 4 765 189 −232 675 057

15 1 275 −2 −8053 −32 664 272 486 −1 184 714 −1 867 189 134 858 383 −702 709 340
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TABLE V. Witten index for M �N triangular lattice �continued�.

11 12 13 14 15

1 1 1 1 1 1

2 67 −47 −181 −87 275

3 1 130 1 −257 −2

4 859 −1295 −77 3641 −8053

5 1651 −589 −1949 12 611 −32 664

6 12 607 −26 006 67 523 −139 935 272 486

7 32 418 −152 697 330 331 −235 717 −1 184 714

8 159 083 −535 895 −595 373 5 651 377 −1 867 189

9 499 060 −2 573 258 −10 989 458 4 765 189 134 858 383

10 2 011 307 −3 973 827 −49 705 161 −232 675 057 −702 709 340

11 5 102 879 12 409 123 18 205 045 −129 877 296 −1 457 956 169

12 12 409 123 232 286 890 1 851 105 439 1 476 815 313 −1 132 095 426

13 18 205 045 1 851 105 439 −1 938 183 221 1 466 459 831 1 016 873 233

14 −129 877 296 1 476 815 313 1 466 459 831 139 861 123 −1 366 302 204

15 −1 457 956 169 −1 132 095 426 1 016 873 233 −1 366 302 204 1 417 898 645
TABLE VI. Witten index for M �N triangular dimer lattice.

2 4 6 8 10 12 16 18

2 1 −3 −5 1 11 9 −13 −31

4 −3 1 21 −79 157 −71 −731 3105

6 −5 21 −44 −47 995 6576 32 279 −131 167

8 1 −79 −47 3329 3801 −134 959 −217 671 5 439 681

10 11 157 995 3801 −37 009 −1 110 731 −17 397 663 −217 844 591

12 9 −71 −6576 −134 959 −1 110 731 11 324 392 538 444 825 105 699 937

14 −13 −731 32 279 −217 671 −17 397 663 538 444 825 −600 643 992 −914 519 359

16 −31 3105 −131 167 5 439 681 −217 844 591 105 699 937 −914 519 359
TABLE VII. Witten index for M �N hexagonal lattice.

2 4 6 8 10 12 14 16 18

2 −1 −1 2 −1 −1 2 −1 −1 2

4 3 7 18 47 123 322 843 2207 5778

6 −1 −1 32 −73 44 356 −1387 2087 2435

8 3 7 18 55 123 322 843 2215 5778

10 −1 −1 152 −321 −171 7412 −26 496 10 079 393 767

12 3 7 156 1511 6648 29 224 150 069 1 039 991 6 208 815

14 −1 −1 338 727 −5671 1850 183 560 −279 497 −4 542 907

16 3 7 1362 12 183 31 803 379 810 5 970 107 55 449 303 327 070 578
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TABLE VIII. Witten index for M �N hexagonal dimer lattice.

2 4 6 8 10 12 14 16

2 0 −8 0 32 0 −128 0 512

4 −4 8 32 −224 896 −2176 1536 16 896

6 12 88 576 3296 17 472 77 056 194 304 −1 139 200

8 4 −496 −3056 118 912 1 287 744 −25 732 864 −439 656 192 626 526 208

10 −40 1832 −42 400 1 088 352 −19 939 840 205 139 072 −878 495 232 1 612 654 080

12 44 −2872 −425 344 −23 115 488 84 888 704 420 235 264 335 598 080 −1 677 852 160

14 84 −12 440 −3 459 792 −336 941 664 −936 816 704 1 524 979 328 1 080 971 264 1 869 085 184
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We address this work to analyze a nonlinear diffusion equation in the presence of
an absorption term taking external forces and spatial time-dependent diffusion
coefficient into account. The nonlinear terms present in this equation are due to a
nonlinear generalization of the Darcy law and the presence of an absorbent �source�
term. We obtain new exact solutions and investigate nonlinear effects produced on
the solutions by these terms. We also connect the results found here within the
Tsallis formalism. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2142838�

. INTRODUCTION

Recently, generalizations of the diffusion equation based on nonlinear diffusion equations
ave been extensively investigated due to the broadness of applications covering almost every
eld. One of them is the porous medium equation,

�

�t
��x,t� = D �2

�x2 ���x,t���, �1�

hat has been applied in several situations such as percolation of gases through porous media,1 thin
aturated regions in porous media,2 a standard solid-on-solid model for surface growth, thin liquid
lms spreading under gravity,3 the axisymmetric flow of a very viscous fluid,4 turbulent diffusion,5

n adsorption-desorption equilibrium locally maintained through a permeable solid6 and the non-
inear diffusion in hard and soft superconductors.7

The formal properties of this equation have also been analyzed. For instance, in Ref. 8 is
stablished a connection between Eq. �1� and the Tsallis formalism,9 in Ref. 10 the presence of a
patial time-dependent diffusion coefficient is studied, in Ref. 11 a Verhuslt-type reaction term in
q. �1� is introduced and, in Ref. 12 an anisotropic case is analyzed. Others applications of Eq. �1�
an be found in Ref. 13.

Another interesting nonlinear extension of the usual diffusion equation is based on the non-
inear Darcy �or Fourier� law.14 In particular, the diffusion equation that emerges from this con-
ideration is given by

�

�t
��x,t� = D �

�x
����x,t��m� �

�x
��x,t��n �

�x
��x,t�� . �2�

ote that the above equation simplifies to Eq. �1� for a particular conditions and for m=0 the
urrent density that emerges from the above equation is known as Gorter-Melling law. Equation
2� has also been employed in several situations such as nonlinear heat conduction,14 nonlinear

15
hear flows of non-Newtonian fluids, gravity flows of non-Newtonian fluid through a porous

46, 123303-1022-2488/2005/46�12�/123303/7/$22.50 © 2005 American Institute of Physics
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edium and the axial mixing generated by the buoyancy effect due to the injection of a denser
uid into a less dense one.16 The properties of Eq. �2� have also been analyzed, for instance, a
onlinear conduction equation based on a generalized Fourier law is studied in Ref. 14 and in
efs. 17 and 18 a nonlinear diffusion in fractal structures is considered. However, Eq. �2� was not
roperly worked in the presence of external forces with an absorbent �source� term. In this
irection, we dedicate this work to analyze Eq. �2� in the presence of external forces and taking
bsorbent �source� term into account in order to understand the changes produced by an external
orce and an absorbent �source� term. Thus, we investigate the following nonlinear diffusion
quation:

�

�t
��x,t� = D�t�

�

�x
��x�−�� �

�x
��x,t��n �

�x
���x,t���� −

�

�x
	F�x,t���x,t�
 − �̄�t����x,t���, �3�

here D�t� is a time diffusion coefficient, F�x , t� represents an external force �drift� and �̄�t� plays
he role of an absorbent �or source� rate related to a reaction-diffusion process. It is interesting to
ote that the above diffusion equation can be applied to describe several scenarios such as heat
onduction by electrons in a plasma, heat conduction by radiation in a fully ionized gas �Marshak
aves�, axisymmetric flow of a very viscous fluid,4 turbulent diffusion,5 an adsorption-desorption

quilibrium locally maintained through a permeable solid6 and the nonlinear diffusion in hard and
oft superconductors.7 The presence of the reaction term like the one given in the above equation
as been studied in several situations. Here, for example, we may recall the so-called species
oagulation, that is A+A→0 or mA→ lA, catalytic processes in regular, heterogeneous, or disor-
ered systems.19 Another example is an irreversible first-order reaction of transported substance so
hat the rate of removal is �̄�.20 This extra term may also appear when a tracer undergoing
adioactive decay is transported through a porous medium,21 in heat flow involving heat
roduction.22

For �̄�t�=0, it can be verified that �−�
� dx ��x , t� is time independent �hence, if � is normalized

t t=0, it will remain so forever�. Indeed, if we write Eq. �3� as �t�=−�xJ and assume the
oundary condition J�x→ ±� , t�→0, it can be shown that �−�

� dx ��x , t� is a constant of motion.
quation �3� recovers, for �� ,� ,n ,��= �0,1 ,0 ,1�, the standard Fokker-Planck equation23 in the
resence of a drift with an absorbent �source� term. For �� ,��= �0,m+1�, F�x , t�=0, D�t�
D / �m+1� and �̄�t�=0 Eq. �2� is obtained from Eq. �3�. The particular case F�x , t�=0 �no drift�,
�x , t�=const. and n=0 in the absence of source �absorbent� term, has been considered by
pohn.24 Other aspects of Eq. �3� with n=0 have also been considered in Refs. 8 and 25. Note that
s we mentioned above our present discussion involves extensions of these cases by taking a wide
ariety of situations into account. In particular, we obtain solutions for the above equation by
onsidering the presence of external forces and absorbent �source� terms. We also establish a
onnection between the results found here and the distribution that emerges from the Tsallis
hermostatics.9

The remainder of this paper goes as follows. In Sec. II, we consider several situations for Eq.
3� as well as the connection of the solutions with the ones obtained within the maximum entropy
rinciple by employing the Tsallis entropy. In Sec. III, we present our conclusions.

I. NONLINEAR DIFFUSION EQUATION

Now, let us investigate time-dependent solutions for Eq. �3�. We use similarity methods to
educe Eq. �3� to ordinary differential equations. The explicit form for these ordinary differential
quations depends on the boundary conditions or on restrictions in the form of conservation laws.
n this direction, we restrict our analysis to find a solution that can be expressed as a scaled

unction of the type
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�̄�x,t� =
1

��t�
�̃� x

��t� . �4�

hese solutions satisfy the initial, the boundary conditions, and the normalization condition when
�t�=0. Before analyzing the solutions of Eq. �3�, we consider �=1 and that the solution is given
y ��x , t�=exp�−�0

t dt̃ �̄�t̃���̄�x , t�, where �̄�x , t� is a function to be determined and it is given by
q. �4�. The case ��1 is discussed at the end of this section. By using the above statement, we
btain

�

�t
�̄�x,t� = D̄�t�

�

�x
��x�−�� �

�x
�̄�x,t��n �

�x
��̄�x,t���� −

�

�x
	F�x,t��̄�x,t�
 , �5�

ith D̄�t�=D�t�exp�−��+n−1��0
t dt̃ �̄�t̃��. In the following, we discuss the solutions by consider-

ng the absence of external force, the presence of a linear external force and, after we incorporate
power law external force.

We start by studying Eq. �5� in the absence of external force. For this case we have that

�

�t
�̄�x,t� = D̄�t�

�

�x
��x�−�� �

�x
�̄�x,t��n �

�x
��̄�x,t���� . �6�

his equation can also be formulated in the context of heat diffusion. In the heat conduction
ontext, to obtain the above equation, we need to consider a temperature-dependent thermal
onductivity26 and a nonlinear generalization of the Fourier law.14

By applying Eq. �4� in Eq. �6�, thus, the last equation can be reduced to

d

dz
��z�−�� d

dz
�̃�z��n d

dz
��̃�z���� = − k̄

d

dz
�z�̃�z�� �7�

nd

���t��� d

dt
��t� = k̄D̄�t� , �8�

here �=�+�+2n, z=x /��t� and k̄ is an arbitrary constant. By solving Eq. �8�, we found

��t� = ����0��1+� + k��
0

t

dt̃ D̄�t̃�1/�1+��

, �9�

ith k�= �1+��k̄ determined by the normalization condition. Performing an integration in Eq. �7�,
e have that

�z�−�� d

dz
�̃�z��n d

dz
��̃�z��� = − k̄z�̃�z� + C , �10�

here C is an integration constant. To find a solution for Eq. �10�, we consider the following
nsatz: �̃�z�= �1−��z�	�
 and, for simplicity, we take C=0 to satisfy the ��x→ ±� , t�→0. By
ubstituting the ansatz in Eq. �10� we verify that

� =
� + n − 1

2 + � + n
� k̄

�
�1/�n+1�

, 
 =
n + 1

� + n − 1
, 	 =

2 + � + n

n + 1
. �11�
hus, the solution found to Eq. �6� can be expressed as
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�̄�x,t� =
1

��t�
expq�−

1

2 + � + n
� k̄

�
�1/�n+1�� �x�

��t�
� 2+�+n

n+1 n+1

, �12�

see Fig. 1� with q=2− ��+n� where expq�x� is defined as follows: expq�x�= �1+ �1−q�x�1/�1−q� for
+ �1−q�x�0 and by expq�x�=0 for 1+ �1−q�x�0.

Notice that the expq�x� is the q-exponential which emerges from the Tsallis formalism9 by
aximizing the Tsallis entropy

Sq =

1 −� dx��̄�x��q

q − 1
�13�

ith appropriated constraints. For this reason, the q-exponential may be considered a signature of
he Tsallis formalism and the presence of this function in the solutions indicates a connection
etween the solutions of Eq. �3� and Tsallis formalism. In fact, by considering suitable constraints
t is possible to obtain these solutions by employing the maximum principle of entropy. Similar
ituation is considered in Refs. 27 and 28 for the porous medium equation. Thus, the parameter q
hich in the Tsallis formalism is not determined, here it is obtained in terms of the parameters of

he nonlinear diffusion equation.
It is also interesting to note that the solution �12� can have a compact or a long tail behavior

epending on the parameters �, n, and �. In addition, for the long tail behavior, we can asymp-
otically relate the solution with the Lévy distributions. In fact, the asymptotic limit for Eq. �12�

IG. 1. Behavior of ��t���x , t� versus x /��t� for a typical value of �, �, and n taking �̄�t�=0 into account. Note that,
epending on the parameters �, �, and n, ��x , t� can have compact or long tail.
or large x and �+n�1 is
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�̄�x,t� �
1

��t�
� �x�

��t�
�−�2+�+n�/�1−�−n�

. �14�

ow, by comparing the above result with the asymptotic limit that emerges from the Lévy distri-
ution for large x, i.e., ��1/ �x�1+�̄, we obtain that �̄= �1+�+�+2n� / �1−�−n�. Thus, for suitable
arameters �, �, and n such that 0��̄�2, Eq. �12� behaves asymptotically like a Lévy distribu-
ion. For the case �̄�t�=0 and D�t�=D, depending on the choice of the parameters �� ,� ,n�, we

ay have an anomalous spreading of the distribution given by Eq. �12�, which may characterize
n anomalous diffusion or an anomalous conduction. In fact, for this case, the second moment is
iven by �x2� t2/�1+��, where 2/ �1+���1, =1, �1 characterize a sub, normal or superdiffusive
ehavior.

Following, we analyze the implications of considering drift terms in Eq. �3�. In this direction,
e first study the effects produced in the solution by a linear external force. By applying Eq. �4�

n Eq. �5� and taking the drift term F�x , t�=−k1�t�x into account, Eq. �5� can be written as

�

�t
�̄�x,t� = D̄�t�

�

�x
��x�−�� �

�x
�̄�x,t��n �

�x
��̄�x,t���� + k1�t�

�

�x
�x�̄�x,t�� . �15�

y using the previous procedure, we can reduce Eq. �15� to

d

dz
��z�−�� d

dz
�̃�z��n d

dz
��̃�z���� = − k̄

d

dz
�z�̃�z�� �16�

nd

���t���̄ d

dt
��t� + k1�t����t��1+�̄ = k̄D̄�t� , �17�

here �̄=�+�+2n. The spatial solution for this case is the same that the one obtained for the free
ase, i.e., Eq. �12�. In fact, Eq. �16� is equal to Eq. �7�. The difference is present only on the
ime-dependent function ��t� which in this case is given by Eq. �17�. By solving Eq. �17�, we
ound

��t� = ����0��1+�̄ + k��
0

t

dt̃ D̄�t̃�e�1+�̃��0
t̃ dt� k1�t��1/�1+�̄�

e−�0
t dt� k1�t��, �18�

ith k�= �1+ �̄�k̄. For �̄�t�=0 and D�t�=const, we have a stationary solution, in contrast, to the
ase characterized by the absence of external force, and it is given by ��x� �1−���x�	�
 where ��
s a constant.

Let us extend the above situation by assuming the external force F�x , t�=−k1�t�x−k�x�x��−1

ith, for simplicity, D�t�=const and �̄�t�=0. We do not know what happens in the general case for
� ,� ,� ,n�, but there is a special situation for which the scaled solution of the type indicated in Eq.
4� is still valid. This special case corresponds to �=−�−�−2n, i.e., �+�+�+2n=0. For this case,
y using the previous procedure, we can reduce Eq. �3� to

− k̄
d

dz
�z�̃�z�� = D d

dz
��z�−�� d

dz
�̃�z��n d

dz
��̃�z���� + k�

d

dz
�z�z��−1�̃�z�� �19�

nd

���t���̄ d

dt
��t� + k1�t����t��1+�̄ = k̄ . �20�
he solution for Eq. �20� is given by
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��t� = ����0��1+�̄ + k��
0

t

dt̃ e�1+�̄��0
t̃ dt� k1�t��1/�1+�̄�

e−�0
t dt� k1�t�. �21�

n order to obtain the solution for Eq. �19�, we perform an integration leading to

D�z�−�� d

dz
�̃�z��n d

dz
��̃�z��� = − �k̄z + k�z�z��−1��̃�z� + C�, �22�

here C� is constant. To solve this equation, we also employ the boundary condition ��x
±� , t�→0 which implies in C�=0. Thus, the solution for this equation is given by

�̃�z� = expq�−
1

n + 1
� k̄

D�
�1/�n+1���z�

dz̄�z̄1+� +
k�

k̄
z̄−�−2n�1/�n+1�n+1

. �23�

or n=0, we recover the solutions found in Ref. 29 after making an integration.
Now, let us study Eq. �3� by taking the general case ��1 into account. For this case, Eq. �3�

an be written as

�

�t
��x,t� = D �

�x
��x�−�� �

�x
��x,t��n �

�x
���x,t���� − �̄���x,t��� �24�

hen the external forces are absent for a time-independent diffusion coefficient and �̄�t�= �̄.
ollowing Ref. 30, we consider that a solution for this equation may be given by ��x , t�
��t�P���t�x�, where ��t� and ��t� are time-dependent functions to be found. In this direction, by
nalyzing the simple kinetic equation that emerges from the above equation for D=0, i.e.,

t��t�=−�̄���t���, whose solution is ��t� �1− �1−���̄t�1/�1−��, we are suggested to employ ��t�
�1− �1−��kt�1/�1−��. To obtain ��t�, we substitute the proposed solution ��x , t� in Eq. �24� with
�t� defined above. This replacement lead us to obtain ��t�= �1− �1−��kt��n+�−��/���−1��2+n+��� and

− kP��� − �� − n − �

2 + � + n
�k�

d

d�
P��� = D d

d�
����−�� d

d�
P����n d

d�
�P������ − �̄�P�����,

�25�

ith �=��t�x and k being a constant. To find an explicit solution in the function of � for the above
quation is a hard task, however, it is possible to obtain an implicit solution when �=2+2n+�
�. It is formally given by

P��� = expq�−
1

n + 1
� k

�D�1/�n+1�����

d�̄ �̄�/n+1��̄ −
�̄

kP��̄�
��̄

d���P������� 1
n+1n+1

.

�26�

e notice that the above equation simplified to Eq. �12� for �̄=0 after performing an integration.
y using the above results, we can obtain for �, n, �, and � arbitraries the nth moment of this
istribution. In fact, we have that

�x2n� = �� dx x2n��x,t���� dx ��x,t� = ��t�−2n�� d� �2n������� d� ����  ��t�−2n

�27�

nd �x2n+1�=0, yielding ��x− �x��2�� t�2�n+�−���/��1−���2+n+���. Note that to obtain the last results we
ave assumed that the nth moment is defined and that the diffusive process can be subdiffusive,
ormal, or superdiffusive, depending on the value of 2�n+�−�� / ��1−���2+n+��� to be less,

qual or greater than 1.
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II. CONCLUSIONS

In summary, we have worked on a generalized diffusion equation �Eq. �3�� for several situa-
ions by incorporating some space- and time-dependent classes of external drifts and diffusion
oefficients. We have shown that it admits exact solutions where the space scales with a function
f time. Another interesting point is the presence of the q-exponential function of the Tsallis
ormalism in the solutions found here. This fact indicates a connection between the solutions
ound here and the distributions that emerges from the Tsallis formalism, leading to an identifi-
ation of the Tsallis entropic index with the parameters of the nonlinear diffusion equation. In
articular, this explicit identification may be useful to explore the sensitivity of q to the details of
he physical model. In addition, this feature could be helpful in a deeper connection between
onlinear diffusion and Tsallis entropy. We have also extended the results obtained in Refs. 8 and
5 in a unified approach. Finally, we expect that the results presented here bring new aspects and
hey open new possibilities of applications to the nonlinear diffusion equations and the Tsallis
ormalism.
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igenvalues of Casimir invariants for Uq†osp„m �n…‡
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For each quantum superalgebra Uq�osp�m �n�� with m�2, an infinite family of
Casimir invariants is constructed. This is achieved by using an explicit form for the
Lax operator. The eigenvalue of each Casimir invariant on an arbitrary irreducible
highest weight module is also calculated. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2137712�

. INTRODUCTION

Representations of quantum superalgebras are known to provide solutions to the Yang-Baxter
quation and represent the symmetries that underly supersymmetric exactly solvable �or inte-
rable� models. Many such examples have arisen in the context of modelling systems of strongly
orrelated electrons.1–5 More recently, the properties of solvability and supersymmetry have been
pplied to other areas, such as the solution of the Kondo model,6 integrable superconformal field
heory7 and disordered systems.8 Developing the representation theory of the quantum superalge-
ras is a useful step towards the complete understanding of such models. However, in many
espects the representation theory of quantum superalgebras is not a straightforward generalization
f the quantum algebra case, principally because not all representations of quantum superalgebras
re unitary.9 This leads, for example, to the existence of indecomposable representations not
rising in the quantum algebra case, which generally make the analysis of supersymmetric models
roblematic �e.g., see Ref. 8�.

In this paper we construct the Casimir invariants �central elements� of quantized orthosym-
lectic superalgebras. Our method of construction follows from the general results of Ref. 10 and
he explicit form of the Lax operator obtained in Ref. 11. A fundamental problem is to determine
he eigenvalues of the Casimir invariants when acting on an arbitrary finite-dimensional irreduc-
ble module. To date, the eigenvalues have only been calculated for the type I quantum
uperalgebras,12,13 while the results for Uq�osp�1 �n�� follow from an isomorphism derived in Ref.
4. In this paper we perform the calculations for the remaining nonexceptional quantum superal-
ebras, namely Uq�osp�m �n�� for m�2. The procedure we use for calculating the eigenvalues of
he Casimir invariants when acting on any irreducible module is based on the early work by
erelomov and Popov15,16 and Nwachuku and Rashid.17 In doing so we follow the method used in
efs. 18 and 19 for the classical general and orthosymplectic superalgebras, respectively, which
as adapted in Ref. 13 to cover Uq�gl�m �n��. Although the concepts are much the same as in those

ases, the combination of the q-deformation and the more complex root system of Uq�osp�m �n��
akes the calculations in this paper more technically challenging.

In the following section we introduce our notation for Uq�osp�m �n�� and state the Lax opera-
or. In Sec. III we develop the formulas for the Casimir invariants of Uq�osp�m �n��. The bulk of
he calculations are in Sec. IV where the eigenvalues of the Casimir invariants are derived in
etail.

�Electronic mail: dancer@maths.uq.edu.au
�Electronic mail: mdg@maths.uq.edu.au
�
Electronic mail: jrl@maths.uq.edu.au
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I. THE QUANTIZED ORTHOSYMPLECTIC SUPERALGEBRA Uq†osp„m �n…‡

The quantum superalgebra Uq�osp�m �n�� is a q-deformation of the classical orthosymplectic
uperalgebra. A brief explanation of Uq�osp�m �n�� is given below, with a more thorough intro-
uction to osp�m �n� and the q-deformation to be found in Ref. 11.

First we need to define the notation. The grading of a is denoted by �a�, where

�a� = �0, a = i , 1 � i � m ,

1, a = � , 1 � � � n .
� �1�

hroughout this paper we use greek letters � ,�, etc., to denote odd indices and italic letters i , j,
tc., for even indices. If the grading is unknown, the usual a ,b ,c, etc., are used. Which convention
pplies will be clear from the context. Throughout the paper we also use the symbols ā and �a,
hich are given by

ā = �m + 1 − a , �a� = 0,

n + 1 − a , �a� = 1,
�

nd

�a = �1, �a� = 0,

�− 1�a, �a� = 1.
�

As a weight system for Uq�osp�m �n�� we take the set 	�i ,1� i�m
� 	�� ,1���n
, where

ī=−�i and ��̄=−��. Conveniently, when m=2l+1 this implies �l+1=−�l+1=0. Acting on these
eights, we have the invariant bilinear form defined by

��i,� j� = � j
i, ���,��� = − ��

�, ��i,��� = 0, 1 � i, j � l,1 � �,� � k .

hen describing an object with unknown grading indexed by a the weight will be described
enerically as �a. This should not be assumed to be an even weight.

The even positive roots of Uq�osp�m �n�� are composed entirely of the usual positive roots of
�m� together with those of sp�n�, namely,

�i ± � j, 1 � i � j � l ,

�i, 1 � i � l when m = 2l + 1,

�� + ��, 1 � �,� � k ,

�� − ��, 1 � � � � � k .

he root system also contains a set of odd positive roots, which are

�� + �i, 1 � � � k, 1 � i � m .

hroughout this paper we choose to use the following set of simple roots:

	i = �i − �i+1, 1 � i � l ,

	l = ��l + �l−1, m = 2l ,

�l, m = 2l + 1,
�
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	� = �� − ��+1, 1 � � � k ,

	s = �k − �1.

ote this choice is only valid for m�2.
In Uq�osp�m �n�� the graded commutator is realized by

�A,B� = AB − �− 1��A��B�BA

nd tensor product multiplication is given by

�A � B��C � D� = �− 1��B��C��AC � BD� .

sing these conventions, we have the following:
Definition 2.1: The quantum superalgebra Uq�osp�m �n�� is generated by simple generators

a , fa ,ha subject to the relations

�ha,eb� = �	a,	b�eb,

�ha, fb� = − �	a,	b�fb,

�ha,hb� = 0,

�ea, fb� = �b
a �qha − q−ha�

�q − q−1�
,

�ea,ea� = �fa, fa� = 0 for �	a,	a� = 0,

e remark that Uq�osp�m �n�� has the structure of a quasitriangular Hopf superalgebra. In par-
icular, there is a linear mapping known as the coproduct, 
 :Uq�osp�m �n��→Uq�osp�m �n���2,
hich is defined on the simple generators by


�ea� = q1/2ha � ea + ea � q−1/2ha,


�fa� = q1/2ha � fa + fa � q−1/2ha,


�q±1/2ha� = q±1/2ha � q±1/2ha,

nd extends to arbitrary elements according to the homomorphism property, namely,


�AB� = 
�A�
�B� .

here are further defining relations such as the q-Serre relations, but they are not needed in this
aper.

The quasitriangular property guarantees the existence of a universal R-matrix, which provides
solution to the Yang-Baxter equation. Before elaborating, we need to introduce the graded twist
ap.

The graded twist map T :Uq�osp�m �n���2→Uq�osp�m �n���2 is given by

T�a � b� = �− 1��a��b��b � a� .

or convenience, T �
, the twist map composed with the coproduct, is denoted 
T. Then a uni-
ersal R-matrix, R, is an even, nonsingular element of Uq�osp�m �n���2 satisfying the following

roperties:
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R
�a� = 
T�a�R, ∀ a � Uq�osp�m�n�� ,

�id � 
�R = R13R12,

�
 � id�R = R13R23. �2�

ere Rab represents a copy of R acting on the a and b components, respectively, of U1 � U2

� U3, where each U is a copy of the quantum superalgebra Uq�osp�m �n��. When a�b the usual
rading term from the twist map is included, so, for example, R21= �RT�12, where RT=T�R� is the
pposite universal R-matrix.

The R-matrix is significant because it is a solution to the Yang-Baxter equation, which is
rominent in the study of integrable systems,20

R12R13R23 = R23R13R12.

superalgebra may contain many different universal R-matrices, but there is always a unique one
elonging to Uq�osp�m �n��− � Uq�osp�m �n��+, with its opposite R-matrix in Uq�osp�m �n��+

� Uq�osp�m �n��−. Here Uq�osp�m �n��− is the Hopf subsuperalgebra generated by the lowering
enerators 	fa
 and Cartan elements 	ha
, while Uq�osp�m �n��+ is generated by the raising genera-
ors 	ea
 and the Cartan elements. These particular R-matrices arise out of the Z2-graded version of
rinfeld’s double construction.21 In this paper we consider the universal R-matrix belonging to

q�osp�m �n��− � Uq�osp�m �n��+.
We also need to define the vector representation for Uq�osp�m �n��. Let End V be the space of

ndomorphisms of V, an �m+n�-dimensional vector space. Then the irreducible vector represen-
ation � :Uq�osp�m �n��→End V acts on the Uq�osp�m �n�� generators as given in Table I, where Eb

a

s the elementary matrix with a 1 in the �a ,b� position and zeroes elsewhere.
One quantity that repeatedly arises in calculations for both classical and quantum Lie super-

lgebras is �, the graded half-sum of positive roots. In the case of Uq�osp�m �n�� it is given by

� =
1

2�
i=1

l

�m − 2i��i +
1

2 �
�=1

k

�n − m + 2 − 2����.

his satisfies the property �� ,	�= 1
2 �	 ,	� for all simple roots 	.

The Lax operator for Uq�osp�m �n��: Let R be the universal R-matrix of Uq�osp�m �n�� and �
he vector representation. The Lax operator associated with R is given by

R = �� � id�R � �End V� � Uq�osp�m�n�� .

TABLE I. The action of the vector representation � on the simple genera-
tors of Uq�osp�m �n��.

	a ��ea� ��fa� ��ha�

	i ,1� i� l Ei+1
i −E

ī

i + 1
Ei

i+1−Ei + 1
ī

Ei
i−E

ī

ī
−Ei+1

i+1+Ei + 1
i + 1

	l ,m=2l E
l̄

l−1
−El − 1

l
El−1

l̄ −El
l − 1

El−1
l−1+El

l−El − 1
l − 1−E

l̄

l̄

	l ,m=2l+1 El+1
l −E

l̄

l+1
El

l+1−El+1
l̄

El
l−E

l̄

l̄

	� ,1���k E�+1
� +E�̄

� + 1 E�
�+1+E� + 1

�̄ E�+1
�+1−E� + 1

� + 1−E�
�+E�̄

�̄

	s Ei=1
�=k+ �−1�kE� = k

i = 1 −E�=k
i=1 + �−1�kEi = 1

� = k
−Ei=1

i=1+E
ī=1̄

ī=1̄
−E�=k

�=k+E
�̄=k̄

�̄=k̄
t has been shown in Ref. 11 that the Lax operator is given by
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R = �
a

Ea
a

� qh�a + �q − q−1� �
�a��b

�− 1��b�Eb
a

� qh�âba,

here the simple operators ̂ba are given by

̂ii+1 = − ̂i + 1ī = q1/2eiq
1/2hi, 1 � i � l ,

̂l−1l̄ = − ̂ll − 1 = q1/2elq
1/2hl, m = 2l ,

̂ll̄ = 0, m = 2l ,

̂ll+1 = − q−1/2̂l+1l̄ = elq
1/2hl, m = 2l + 1,

̂��+1 = ̂� + 1�̄ = q−1/2e�q1/2h�, 1 � � � k ,

̂�=ki=1 = �− 1�kq̂i=1̄�̄=k̄ = q1/2esq
1/2hs;

nd the remaining operators can be calculated using the following:

i� the q-commutation relations,

q�	c,�b�̂baecq
1/2hc − �− 1���a�+�b���c�q−�	c,�a�ecq

1/2hĉba = 0, �b � �a,

where neither �a−	c nor �b+	c equals any �x; and
ii� the induction relations

̂ba = q−��b,�a�̂bĉca − q−��c,�c��− 1���b�+�c����a�+�c��̂câbc, �b � �c � �a,

where c� b̄ or ā.

To define the opposite Lax operator RT= �� � id�R we require the graded conjugation action
, which is defined on the simple generators by �see Ref. 11�

ea
† = fa, fa

† = �− 1��a�ea, ha
† = ha.

t is consistent with the coproduct and extends naturally to all remaining elements of

q�osp�m �n��, satisfying the following properties:

�̂ab�† = �− 1��a���a�+�b��̂ba,

�ab�† = �− 1��a��b�b†a†,

�a � b�† = a†
� b†,


�a�† = 
�a†� .

hen the opposite R-matrix is given by

RT = �
a

Ea
a

� qh�a + �q − q−1� �
�b��a

�− 1��a�Ea
b

� ̂abqh�a,

here

̂ab = �− 1��b���a�+�b��̂† , �b � �a.
ba
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II. CASIMIR INVARIANTS OF Uq†osp„m �n…‡

We now use the Lax operator to construct a family of Casimir invariants and then to calculate
heir eigenvalues when acting on an irreducible highest weight module. Before constructing the
asimir invariants, however, we need to define a new object. Let h� be the unique element of the
artan subalgebra H satisfying

	i�h�� = ��,	i�, ∀ 	i � H*.

hen from Ref. 10 we have the following theorem.
Theorem 3.1: Let V be the representation space of �, an arbitrary finite-dimensional repre-

entation of Uq�osp�m �n��. If �� �End V� � Uq�osp�m �n�� satisfies

��a�� = ���a�, ∀ a � Uq�osp�m�n�� , �3�

here ���� � id�
, then

C = �str � id��� �q2h�� � I�� ,

elongs to the center of Uq�osp�m �n��. Above str denotes the supertrace.
Now choose � to be the vector representation �. Recalling that the universal R-matrix satisfies

R
�a� = 
T�a�R, ∀ a � Uq�osp�m�n�� ,

t is clear that

��a�RTR = RTR��a�, ∀ a � Uq�osp�m�n�� .

ence if we set A� �End V� � Uq�osp�m �n�� to be

A =
�RTR − I � I�

�q − q−1�
,

he operators Al will satisfy condition �3� for all non-negative integers l. Thus the operators Cl

efined as

Cl = �str � id����q2hp� � I�Al, l � Z+,

orm a family of Casimir invariants. Here A coincides with the matrix of Jarvis and Green22 in the
lassical limit q→1, as do the invariants Cl.

Now write the Lax operator R and its opposite RT in the form

R = I � I + �q − q−1� �
�b��a

Eb
a

� Xa
b,

RT = I � I + �q − q−1� �
�b��a

Eb
a

� Xa
b.

n terms of the operators ̂ba, this implies

Xa
b = 

qh�a − I

q − q−1 , a = b ,

�− 1��b�qh�âba, �a � �b,

�− 1��b�̂baqh�b, �a � �b.
�

riting A as
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A = �
a,b

Eb
a

� Aa
b,

e obtain

Aa
b = �1 + �b

a�Xa
b + �q − q−1� �

�c��a,�b

�− 1���a�+�c����b�+�c��Xa
cXc

b.

his produces a family of Casimir invariants

Cl = �
a

�− 1��a�q�2�,�a�A a
�l�a,

here the operators A a
�l�b are recursively defined as

A a
�l�b = �

c

�− 1���a�+�c����b�+�c��A a
�l−1�cAc

b. �4�

Note that A corresponds to the matrix A given for the nongraded case in Ref. 23. Following a
ine of reasoning similar to that in Ref. 24 it can be shown that when acting on an irreducible

odule V���, A satisfies the following polynomial identity:

�
a=1

m+n

�A − 	a���I� = 0,

here

	a��� =
q��a,�a+2�+2��−C��0� − 1

q − q−1

nd C��0�= ��1 ,�1+2��=m−n−1. In the limit q→1 this reduces to the identity given in Ref. 24.

V. EIGENVALUES OF THE CASIMIR INVARIANTS

Now that we have found a family of Casimir invariants, we wish to calculate their eigenvalues
n a general irreducible finite-dimensional module. Let V��� be an arbitrary irreducible finite-
imensional module with highest weight � and highest weight state ���. Define ta

�l� to be the
igenvalue of A a

�l�a on this state, so

A a
�l�a��� = ta

�l���� .

nce we have calculated ta
�l� we will use this result to find the eigenvalues of the Casimir invari-

nts Cl.
To evaluate ta

�l�, note that if �b��a then A a
�l�b is a raising operator, implying A a

�l�b���=0. Thus
rom Eq. �4� we deduce

ta
�l���� = ta

�l−1�ta
�1���� + �

�a��b

�− 1��a�+�b�A a
�l−1�bAb

a���

= ta
�l−1�ta

�1���� + �
�a��b

�− 1��a�+�b�A a
�l−1�b�Xb

a + �q − q−1�Xb
aXa

a����

= ta
�l−1�ta

�1���� + �
�a��b

�− 1��a�+�b�q��,�a�A a
�l−1�bXb

a��� .
ow we know that
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Al��Xb
a� = ��Xb

a�Al. �5�

his can be used to calculate A a
�l�bXb

a��� for �a��b. First we need an expression for 
�Xb
a�. The

-matrix properties give

�
 � I�R = R13R23 ⇒ �I � 
�RT = R12
T R13

T .

n terms of Xb
a, this implies

I � I � I + �q − q−1� �
�a��b

Ea
b

� 
�Xb
a�

= �I � I � I + �q − q−1� �
�a��b

Ea
b

� Xb
a

� I��I � I � I + �q − q−1� �
�a��b

Ea
b

� I � Xb
a�

= I � I � I + �q − q−1� �
�a��b

Ea
b

� �Xb
a

� I + I � Xb
a�

+ �q − q−1�2 �
�a��c��b

�− 1���a�+�c����b�+�c��Ea
b

� Xb
c

� Xc
a.

ence for all �a��b,


�Xb
a� = Xb

a
� I + I � Xb

a + �q − q−1� �
�a��c��b

�− 1���a�+�c����b�+�c��Xb
c

� Xc
a.

We also need an expression for ��Xb
a� for �a��b. In Ref. 11 we found the generators for RT

n the vector representation are given by

̂abqh�a = Eb
a − �− 1��a���a�+�b���a�bq��,�a−�b�Eā

b̄, �a � �b.

rom this we deduce that

��Xb
a� = �− 1��a�Eb

a − �− 1��a��b��a�bq��,�a−�b�Eā
b̄, �a � �b.

lso, we know

��Xa
a� = �q − q−1�−1��qh�a − I� = �q − q−1�−1�q��a,�a��Ea

a−Eā
ā� − I� .

pplying these, we find that if �a��b then

��Xb
a� = �� � I�
�Xb

a� = ��Xb
a� � �I + �q − q−1�Xa

a� + �I + �q − q−1���Xb
b�� � Xb

a

+ �q − q−1� �
�a��c��b

�− 1���a�+�c����b�+�c����Xb
c� � Xc

a

= ��− 1��a�Eb
a − �− 1��a��b��a�bq��,�a−�b�Eā

b̄� � qh�a + q��b,�b��Eb
b−E

b̄

b̄
�

� Xb
a

+ �q − q−1� �
�a��c��b

�− 1���a�+�c����b�+�c��

� ��− 1��c�Eb
c − �− 1��b��c��b�cq

��,�c−�b�Ec̄
b̄� � Xc

a.
ubstituting this expression into Eq. �5� and equating the �a ,b� entries, we find
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�− 1��a�A a
�l�aqh�a − �

b̄

a�− 1��a��b��a�bq��,�a−�b�A a
�l�aqh�a + q��b,�b�A a

�l�bXb
a

+ �q − q−1� �
�a��c��b

��− 1��c�A a
�l�cXc

a − �c̄
b�− 1��b��c��b�cq

��,�c−�b�A a
�l�b̄Xc

a�

= �− 1��a�qh�aA b
�l�b − �

b̄

a�− 1��a��b��a�bq��,�a−�b�qh�aA b
�l�b + �− 1��a�+�b�q��a,�b�Xb

aA a
�l�b

− �q − q�−1�
b̄

a �
�a��c��b

�− 1��b��c��b�cq
��,�c−�b�Xc

aA c̄
�l�b.

implifying gives

�− 1��a�+�b�q��a,�b�Xb
aA a

�l�b − q��b,�b�A a
�l�bXb

a

= ��− 1��a� − �
b̄

a
q��,�a−�b��qh�a�A a

�l�a − A b
�l�b�

+ �q − q−1� �
�a��c��b

��− 1��c� − �c̄
bq��,�c−�b��A a

�l�cXc
a

+ �q − q−1��
b̄

a �
�a��c��b

�− 1��b��c��b�cq
��,�c−�b�Xc

aA c̄
�l�ā.

emembering that �a��b, we apply this to the highest weight state ��� to obtain

− q��b,�b�A a
�l�bXb

a��� = q��,�a���− 1��a� − �
b̄

a
q2��,�a���ta

�l� − tb
�l�����

+ �q − q−1� �
�a��c��b

��− 1��c� − �c̄
bq2��,�c��A a

�l�cXc
a��� . �6�

The next step is to calculate A a
�l�bXb

a��� for �a��b. It is first convenient to order the indices
ccording to b�c⇔�b��c. With this ordering we say an element a�0 if �a�0, a=0 if �a=0,
nd a�0 if �a�0. Using this convention, it is apparent the solution to �6� will be of the form

A a
�l�bXb

a��� = q��,�a��− 1��a� �
a�c�b

	bc
a �ta

�l� − tc
�l����� , �7�

here 	bc
a is a function of a, b, and c. Now from Eq. �6� we have

�q − q−1� �
a�c�b

�− 1��c�A a
�l�cXc

a���

= − q��b,�b�A a
�l�bXb

a��� + �q − q−1� �
a�c�b

�c̄
bq−2��,�b�A a

�l�cXc
a���

− �− 1��a�q��,�a��1 − �
b̄

a�− 1��a�q2��,�a���ta
�l� − tb

�l�����

= − q��b+1,�b+1�A a
�l�b+1Xb+1

a ���

+ �q − q−1� �
a�c�b+1

�c̄
b+1q−2��,�b+1�A a

�l�cXc
a���

− �− 1��a�q��,�a��1 − �ā
b+1�− 1��a�q2��,�a���ta

�l� − tb+1
�l� ����

+ �q − q−1��− 1��b+1�A a
�l�b+1Xb+1

a ��� .
ubstituting in the form of the solution given in Eq. �7� produces
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q��b,�b� �
a�d�b

	bd
a �ta

�l� − td
�l�����

= �q��b+1,�b+1� − �q − q−1��− 1��b+1�� �
a�d�b+1

	�b+1�d
a �ta

�l� − td
�l�����

− �1 − �
b̄

a�− 1��a�q2��,�a���ta
�l� − tb

�l����� + �1 − �b + 1
a �− 1��a�q2��,�a���ta

�l� − tb+1
�l� ����

+ �q − q−1� �
a�c�b

�c̄
bq−2��,�b� �

a�d�c

	
b̄d

a �ta
�l� − td

�l�����

− �q − q−1� �
a�c�b+1

�c̄
b+1q−2��,�b+1� �

a�d�c

	�b + 1�d
a �ta

�l� − td
�l����� . �8�

et

	bd
a = 	̄bd�1 − �

d̄

a�− 1��a�q2��,�a�� .

hen from Eq. �8� we obtain

	̄bb = − q−��b,�b�

nd

	̄b�b+1� = q−��b,�b���q��b+1,�b+1� − �q − q−1��− 1��b+1��	̄�b+1��b+1� + 1 + �q − q−1��b + 1
b q−2��,�b�	̄b̄�b+1��

= q−��b,�b�−��b+1,�b+1��q − q−1���− 1��b+1� − �b + 1
b q−2��,�b�� .

o simplify this expression note that q2��,�b+1−�b�=q−��b,�b�−��b+1,�b+1� in all cases except for �b�=0,
= l, m=2l, in which case q2��,�b+1−�b�=q2q−��b,�b�−��b+1,�b+1�. However �b�=0, b= l, m=2l if and
nly if �b + 1

b =1, and in that case we find 	̄b�b+1�=0. Hence for all values of b we can write

	̄b�b+1� = �q − q−1�q−2��,�b���− 1��b+1�q2��,�b+1� − �b + 1
b � .

Now that we have found 	̄bb and 	̄b�b+1�, they can be used to calculate the remaining 	̄bd.
rom Eq. �8� we observe that if d�b+1 then

	̄bd = q−��b,�b��q��b+1,�b+1� − �q − q−1��− 1��b+1��	̄�b+1�d + �q − q−1�q−��b,�b� �
d�c�b

�c̄
bq−2��,�b�	̄b̄d

− �q − q−1�q−��b,�b� �
d�c�b+1

�c̄
b+1q−2��,�b+1�	̄�b + 1�d. �9�

ow define �xy by

�xy = �1, x � y ,

0, x � y .
�

hen Eq. �9� can be rewritten as

	̄bd = q−��b,�b��q��b+1,�b+1� − �q − q−1��− 1��b+1��	̄�b+1�d

+ �q − q−1�q−��b,�b�q2��,�c���bc�c�d+1��c̄
b − ��b+1�c�c�d+1��c̄

b+1�	̄cd, d � a + 1. �10�

¯ ¯
onsider 	bd for any b� l. Both �bb and ��b+1��b + 1� will equal 0, so
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	̄bd = q−��b,�b��q��b+1,�b+1� − �q − q−1��− 1��b+1��	̄�b+1�d
a

= q−��b,�b�q−��b+1,�b+1�	̄�b+1�d = q2��,�b+1−�b�	̄�b+1�d.

ince

	̄�d−1�d = �− 1��d��q − q−1�q2��,�d−�d−1�,

e obtain

	̄bd = �− 1��d��q − q−1�q2��,�d−�b�, d � b � l .

ubstituting this together with our expression for 	̄bb into Eq. �10�, we find

	̄bd = q−��b,�b��q−��b+1,�b+1� − �b + 1
b+1 �q − q−1��	̄�b+1�d

+ �q − q−1�2q−��b,�b��− 1��d�q2��,�d���bb̄�b̄d − ��b+1��b + 1���b + 1�d�

− �q − q−1�q−��b,�b�q−��d,�d�q2��,�d���d
b̄ − �d

b + 1�, d � b + 1. �11�

ut for d�b+1,

�bb̄�b̄d − ��b+1��b + 1���b + 1�d = �l
b�l̄d − �d

b̄�bl

= �l
b�1 − �

l̄

d� − �d
b̄�1 − �l

b� = �l
b − �d

b̄.

lso, −��−1��d��q−q−1�+q−��d,�d���d
b̄=−q��d,�d��d

b̄, so Eq. �11� reduces to

	̄bd = �q2��,�b+1−�b�q−2�b + 1
b

− �b + 1
b+1 q−1�q − q−1��	̄�b+1�d + �l

bq−1�q − q−1�2�− 1��d�q2��,�d�

− �d
b̄�q − q−1�q2��,�d� + �d

b + 1�q − q−1�q2��,�b+1−�b�q−2�b + 1
b

q2��,�d�

= �q2��,�b+1−�b�q−2�b + 1
b

− �b + 1
b+1 q−1�q − q−1��	̄�b+1�d + �l

bq−1�q − q−1�2�− 1��d�q2��,�d�

+ �q − q−1�q−2��,�b���d
b + 1 − �d

b̄�, d � b + 1.

ecall that for b� l we have

	̄bd = �− 1��d��q − q−1�q2��,�d−�b�, d � b .

hen when b= l we find

	̄bd = �q2��,�b+1−�b�q−2�b + 1
b

− �b + 1
b+1 q−1�q − q−1���− 1��d��q − q−1�q2��,�d−�b+1�

+ q−1�q − q−1�2�− 1��d�q2��,�d� − �q − q−1�q−2��,�b��d
l̄

= �− 1��d��q − q−1�q2��,�d−�b���b + 1
b+1 �1 − �q − q−1� + �q − q−1��

+ �b + 1
b �q−2 + q−1�q − q−1��� − �q − q−1�q−2��,�b��d

l̄

= �q − q−1�q−2��,�b���− 1��d�q2��,�d� − �
d̄

b�

or all d�b+1. Comparing this with our earlier results for d=b+1 and b� l, we have

	̄bd = �q − q−1�q−2��,�b���− 1��d�q2��,�d� − �
d̄

b�, ∀ b � l, d � b .
ut for b� l we know
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	̄bd = q2��,�b+1−�b�	̄�b+1�d + �q − q−1�q−2��,�b���d
b + 1 − �d

b̄�, d � b + 1.

ence for all b we obtain

	̄bd = �q − q−1�q−2��,�b���− 1��d�q2��,�d� − �
c=b

d−1

�d
c̄ + �

c=b

d−2

�d
c + 1�

= �q − q−1�q−2��,�b���− 1��d�q2��,�d� − �d
b̄�, d � b .

hus for all a�b

A a
�l�bXb

a��� = q��,�a��− 1��a� �
a�c�b

	bc
a �ta

�l� − tc
�l����� , �12�

here 	bc
a is given by

	bc
a =�− q−��b,�b��1 − �

b̄

a�− 1��a�q2��,�a�� , c = b ,

�q − q−1�q−2��,�b���− 1��c�q2��,�c� − �c
b̄��1 − �c̄

a�− 1��a�q2��,�a�� , c � b .
�

. Constructing the Perelomov-Popov matrix equation

The expression �12� can now be substituted into the equation

ta
�l���� = ta

�l−1�ta
�1���� + �

�a��b

�− 1��a�+�b�q��,�a�A a
�l−1�bXb

a���

o find a matrix equation for the various ta
�l�. The matrix factor is an analogue of the Perelomov-

opov matrix introduced in Refs. 15 and 16, which was used to calculate the eigenvalues of the
asimir invariants of various classical Lie algebras.

First recall that

Aa
b = �1 + �b

a�Xa
b + �q − q−1� �

c�a,b
�− 1���a�+�c����b�+�c��Xa

cXc
b,

here

Xa
b = 

qh�a − I

q − q−1 , a = b ,

�− 1��b�qh�âba, �a � �b,

�− 1��b�̂baqh�b, �a � �b.
�

hen

Aa
a��� = 2Xa

a��� + �q − q−1�Xa
aXa

a��� = �q − q−1�−1�2�qh�a − 1� + �qh�a − 1�2����

ta
�1� =

q2��,�a� − 1

q − q−1 .
ence we obtain
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ta
�l� =

�q2��,�a� − 1�
�q − q−1�

ta
�l−1� + �

b�a

�− 1��a�+�b�q��,�a��q��,�a��− 1��a� �
b�c�a

	bc
a �ta

�l−1� − tc
�l−1���

=
�q2��,�a� − 1�

�q − q−1�
ta
�l−1� − q2��,�a� �

b�a

�− 1��b�q−��b,�b��1 − �
b̄

a�− 1��a�q2��,�a���ta
�l−1� − tb

�l−1��

+ �q − q−1�q2��,�a� �
c�b�a

�− 1��c�q−2��,�c��1 − �
b̄

a�− 1��a�q2��,�a��

� ��− 1��b�q2��,�b� − �c̄
b��ta

�l−1� − tb
�l−1�� .

Now consider the function �b defined by

�b = �− 1��b�q−��b,�b� − �q − q−1��
c�b

�− 1��c�q−2��,�c���− 1��b�q2��,�b� − ��c̄
b�� .

e evaluate this for all b, remembering that C��0�= ��1 ,�1+2��=m−n−1 and

� =
1

2�
i=1

l

�m − 2i��i +
1

2 �
�=1

k

�n − m + 2 − 2����.

e find

�b = �− 1��b�q2��,�b�q−C��0�

or all values of b. We also consider the function

�a = 1 − �q − q−1��
b�a

�b�1 − �
b̄

a�− 1��a�q2��,�a�� ,

o that

ta
�l� =

�q2��,�a��a − 1�
�q − q−1�

ta
�l−1� + q2��,�a� �

b�a

�b�1 − �
b̄

a�− 1��a�q2��,�a��tb
�l−1�. �13�

gain, by considering the various cases individually we find

�a = q��a,2�+�a�−C��0�

or any a, regardless of whether m is even or odd. Substituting this result together with that for �b

nto Eq. �13� gives

ta
�l� =

�q��a,2�+2�+�a�−C��0� − 1�
�q − q−1�

ta
�l−1� + q�2�,�a�−C��0� �

b�a

�− 1��b�q�2�,�b��1 − �
b̄

a�− 1��a�q�2�,�a��tb
�l−1�.

his can be written in the matrix form

t��l� = Mt��l−1�,

here M is a lower triangular matrix with entries

Mab = 0, a � b ,

�q − q−1�−1�q��a,2�+2�+�a�−C��0� − 1� , a = b ,

q�2�,�a�−C��0���− 1��b�q�2�,�b� − �
b̄

a� , a � b .�

hen we have
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t��l� = Mlt��0�, with ta
�0� = 1 ∀ a ,

here M is an analogue of the Perelomov-Popov matrix.

. Solving the matrix equation

This matrix equation for ta
�l� can now be used to calculate the eigenvalues of Cl. Loosely

peaking, the problem reduces to diagonalizing the matrix M. Recall

Cl = �
a

�− 1��a�q�2�,�a�A a
�l�a.

enote the eigenvalue of Cl on V��� as ���Cl�. Then we have

���Cl� = �
a

�− 1��a�q�2�,�a�ta
�l� = �

a,b
�− 1��a�q�2�,�a��Ml�ab.

o calculate this we wish to diagonalize M. We assume the eigenvalues of M,

	a
� =

�q��a,2�+2�+�a�−C��0� − 1�
�q − q−1�

,

re distinct. Then we need a matrix N satisfying

�N−1MN�ab = �b
a	a

�,

hich implies

���Cl� = �
a,b,c

�− 1��a�q�2�,�a��	b
��lNab�N−1�bc. �14�

Now

�MN�ab = 	b
�Nab.

ubstituting in the values for Mab gives

	a
�Nab + q�2�,�a�−C��0��

c�a

��− 1��c�q�2�,�c� − �c̄
a�Ncb = 	b

�Nab. �15�

ince the eigenvalues 	a
� are distinct, this implies

Nab = 0, ∀ a � b .

et

Pab = �
c�a

�− 1��c�q�2�,�c�Ncb. �16�

hen Eq. �15� becomes

2�	b
� − 	a

��Nab = q�2�,�a�−C��0�P�a−1�b − �0aq�2�,�a�−C��0�Nāb

⇒ �	b
� − 	a

���− 1��a�q�−2�,�a��Pab − P�a−1�b�

= q�2�,�a�−C��0�Pa−1b − �0aq�2�,�a�−C��0�Nāb,
hich simplifies to
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Pab =
�	b

� − 	a
� + �− 1��a�q2��+�,�a�−C��0��

�	b
� − 	a

��
P�a−1�b −

�0a�− 1��a�q2��+�,�a�−C��0�

�	b
� − 	a

��
Nāb.

et

�a
b = 	b

� − 	a
� + �− 1��a�q2��+�,�a�−C��0�,

o this becomes

Pab =
�a

b

�	b
� − 	a

��
P�a−1�b −

�0a�− 1��a�q2��+�,�a�−C��0�

�	b
� − 	a

��
Nāb. �17�

ithout loss of generality we can choose Naa=1∀a, so Pbb= �−1��b�q2��,�b�. Then in the cases 0
a�b and a�b�0 the last term in Eq. �17� vanishes, giving

Pab = �− 1��b�q2��,�b� �
c=b+1

a
�c

b

�	b
� − 	c

��
.

imilarly, for a� b̄�0 we obtain

Pab = Pb̄b �
c=b̄+1

a
�c

b

�	b
� − 	c

��
. �18�

t remains to find Pab for b̄�a�0. In this case, the last term in Eq. �17� contributes, giving

Pab = �− 1��b�q2��,�b� �
c=b+1

a
�c

b

�	b
� − 	c

��
−

�− 1��a�q2��+�,�a�−C��0�

�	b
� − 	a

��
Nāb

− �
d=l̄

a−1
�− 1��d�q2��+�,�d�−C��0�

�	b
� − 	d

��
Nd̄b �

c=d+1

a
�c

b

�	b
� − 	c

��
. �19�

ecall that if b�a�0, then

Nab =
q�2�,�a�−C��0�

�	b
� − 	a

��
P�a−1�b

=
�− 1��b�q2��,�a�+2��,�b�−C��0�

�	b
� − 	a

�� �
c=b+1

a−1
�c

b

�	b
� − 	c

��
.

ubstituting this into Eq. �19�, we find

Pb̄b = �− 1��b�q2��,�b� �
c=b+1

b̄
�c

b

�	b
� − 	c

��
−

�− 1��b�q−2��+�,�b�−C��0�

�	b
� − 	

b̄

��

− �
d=l̄

b̄−1
�− 1��d�+�b�q2��,�d+�b�−2C��0�

�	b
� − 	d

���	b
� − 	

d̄

��
�

c=b+1

d̄−1
�c

b

�	b
� − 	c

�� �
c=d+1

b̄
�c

b

�	b
� − 	c

��
,

hich can also be simplified to
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Pb̄b �
c=b+1

b̄
�	b

� − 	c
��

�c
b = �− 1��b�q2��,�b��1 − �

d=l̄

b̄
�− 1��d�q2��,�d�−2C��0�

�d
b�

d̄

b �
c=d̄+1

d−1
�	b

� − 	c
��

�c
b � . �20�

From this point we will consider the case m=2l+1. This is marginally more complicated than
he case with even m. Define �d

b to be

�d
b = �

c=l̄

d−1 �	b − 	c��	b − 	c̄�

�c
b�c̄

b

=
�	b − 	d−1��	b − 	d − 1�

�d−1
b �d − 1

b �d−1
b , �

l̄

b
= 1.

hen Pb̄b can be written as

Pb̄b = �− 1��b�q2��,�b� �
c=b+1
c�0

b̄
�c

b

�	b
� − 	c

��� �0
b

	b − 	0
− �

d=l̄

b̄
�− 1��d�q2��,�d�−2C��0�

�d
b�

d̄

b �d
b� .

ote that for c�0,

�c
b =

q−C��0�

�q − q−1�
�q��b,2�+2�+�b� − q��c,2�+2�+�c� + �q − q−1��− 1��c�q��c,2�+2���

=
q−C��0��̃c

b

�q − q−1�
,

here

�̃c
b = q��b,2�+2�+�b� − q��c,2�+2�−�c�.

o

�
d=l̄

b̄
�− 1��d�q2��,�d�−2C��0�

�d
b�

d̄

b �d
b = �q − q−1��

d=l̄

b̄
�− 1��d��q − q−1�q2��,�d�

�̃d
b�̃

d̄

b
�d

b

= �q − q−1��
d=l̄

b̄
�q2��d,�d� − 1�q2��,�d�−��d,�d�

�̃d
b�̃

d̄

b
�d

b �21�

nd

�d+1
b =

�	b − 	d��	b − 	d̄�

�d
b�

d̄

b �d
b

=
�q��b,�b+2�+2�� − q��d,�d+2�+2����q��b,�b+2�+2�� − q��d,�d−2�−2���

�̃d
b�̃

d̄

b
�d

b

or d� l̄. Now

�q��b,�b+2�+2�� − q��d,�d+2�+2����q��b,�b+2�+2�� − q��d,�d−2�−2���

= q2��d,�d��q��b,�b+2�+2�� − q��d,−�d+2�+2����q��b,�b+2�+2�� − q−��d,�d+2�+2���
2��b,�b+2�+2�� 2��d,�d� 2��d,�d�
+ q �1 − q � + q − 1
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= q2��d,�d��̃d
b�̃

d̄

b
− �q2��b,�b+2�+2�� − 1��q2��d,�d� − 1� .

hen, for d� l̄,

�d+1
b

�q2��b,�b+2�+2�� − 1�
= � q2��d,�d�

�q2��b,�b+2�+2�� − 1�
−

�q2��d,�d� − 1�

�̃d
b�̃

d̄

b ��d
b. �22�

ow for d= b̄,

�q2��d,�d� − 1�q2��,�d�−��d,�d�

�̃d
b�̃

d̄

b
=

�q2��b,�b� − 1�q2��,�b̄�−��b,�b�

�q��b,2�+2�+�b� − q−��b,2�+2�+�b��q��b,2�+2���q��b,�b� − q−��b,�b��

=
q2��,�b̄�+��b,�b�

�q2��b,�b+2�+2�� − 1�
,

hich can be written as

�q2��d,�d� − 1�q2��,�d�−��d,�d�

�̃d
b�̃

d̄

b
=

q2��,�b̄−1�−��b̄−1,�b̄−1�

�q2��b,�b+2�+2�� − 1�

hen b� l. Hence Eq. �22� can be used to pairwise cancel the terms in the sum in Eq. �21�. Adding

he first two terms �d= b̄ , b̄−1�, we find

q2��,�b̄−1�−��b̄−1,�b̄−1�� �
b̄

b

�q2��b,�b+2�+2�� − 1�
+

�q2��b̄−1,�b̄−1� − 1�

�̃
b̄−1

b
�̃b+1

b
�

b̄−1

b �
= q2��,�b̄−1�−��b̄−1,�b̄−1� q2��b̄−1,�b̄−1�

�q2��b,�b+2�+2�� − 1�
�

b̄−1

b

=
q2��,�b̄−2�−��b̄−2,�b̄−2�

�q2��b,�b+2�+2�� − 1�
�

b̄−1

b
.

ontinuing to apply Eq. �22� in this manner gives

�
d=l̄

b̄
�q2��d,�d� − 1�q2��,�d�−��d,�d�

�̃d
b�̃

d̄

b
�d

b =
q2��,�l̄�+��l,�l�

�q2��b,�b+�+�� − 1�
�

l̄

b

=
q2l+1−m

�q2��b,�b+2�+2�� − 1�
. �23�

ence in the case m=2l+1,

Pb̄b = �− 1��b�q2��,�b�� �0
b

	b − 	0
−

�q − q−1�
�q2��b,�b+2�+2�� − 1�� �

c=b+1
c�0

b̄
�c

b

�	b
� − 	c

��
.

y substituting in the formulas for �c
b and 	b and simplifying we obtain

Pb̄b = �− 1��b�q2��,�b��1 + �q − q−1�
q��b,�b+2�+2��

�q2��b,�b+2�+2�� − 1�� �
c=b+1

b̄
�q��b,2�+2�+�b� − q��c,2�+2�−�c��
�q��b,2�+2�+�b� − q��c,2�+2�+�c��

,

¯
nd thus for a�b�0,
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Pab = �− 1��b�q2��,�b��1 + �q − q−1�
q��b,�b+2�+2��

�q2��b,�b+2�+2�� − 1�� �
c=b+1

a
�q��b,2�+2�+�b� − q��c,2�+2�−�c��
�q��b,2�+2�+�b� − q��c,2�+2�+�c��

.

imilarly, we find from Eqs. �18�, �20�, �21�, and �23� that when m is even then

Pab = �− 1��b�q2��,�b��1 −
q�q − q−1�

�q2��b,�b+2�+2�� − 1�� �
c=b+1

a
�q��b,2�+2�+�b� − q��c,2�+2�−�c��
�q��b,2�+2�+�b� − q��c,2�+2�+�c��

or a� b̄�0. Hence we have found expressions for Pab for all a ,b satisfying a� b̄�0. At the end
f the paper these, together with the earlier results for Pab, will be used to calculate ���Cl�.

Now we return to the diagonalization of the matrix N. We know

�N−1M�ab = 	a
��N−1�ab.

ubstituting in the values for Mab gives

	b
��N−1�ab + �− 1��b�q�2�,�b�−C��0��

c�b

q�2�,�c��1 − �
b̄

c�− 1��b�q−2��,�b���N−1�ac = 	a
��N−1�ab.

�24�

et

Q̂ab = �
c�b

q2��,�c��N−1�ac.

e then solve for Q̂ab, with the calculations being very similar to those for Pab. For 0�b�a and
�a�0 we find

Q̂ab = q2��,�a��
c=b

a−1
�c

a

�	a
� − 	c

��
.

or m=2l+1 we obtain

Q̂ab = q2��,�a��1 + �q − q−1�
q��a,�a+2�+2��

�q2��a,�a+2�+2�� − 1���c=b

a−1
�q��a,2�+2�+�a� − q��c,2�+2�−�c��
�q��a,2�+2�+�a� − q��c,2�+2�+�c��

or b� ā�0. Similarly, for even m we find

Q̂ab = q2��,�a��1 −
q�q − q−1�

�q2��a,�a+2�+2�� − 1���c=b

a−1
�q��a,2�+2�+�a� − q��c,2�+2�−�c��
�q��a,2�+2�+�a� − q��c,2�+2�+�c��

.

or b� ā�0.
To use these results to calculate ���Cl� we introduce a new function Qab, defined by

Qab = �
c�b

�N−1�ac.

hen from Eqs. �14� and �16� we deduce

���Cl� = �
a

�	a
��lP��=1̄�aQa��=1�. �25�
owever we know
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ta
�l� =

q2��,�a� − 1

q − q−1 ,

nd

�
b

�N−1�abtb
�1� = �

b,c
�N−1�abMbctc

�0�

⇒ �
b

�N−1�ab
�q2��,�b� − 1�

�q − q−1�
= �

b

�N−1M�ab

�
b

	a
��N−1�ab = �

b

�N−1�ab
�q��a,2�+2�+�a�−C��0� − 1�

�q − q−1�
.

hus

Qa��=1� = qC��0�−��a,2�+2�+�a�Q̂a��=1�.

. Explicit formulas for the eigenvalues

Substituting our formulas for P��=1̄�a and Qa��=1� into Eq. �25�, noting that for a�0 exactly
ne of a�0 or a�0 is true, we find the eigenvalues of the Casimir invariants Cl are given by

���Cl� = �
a

�− 1��a�qC��0�−��a,�a�f�a�� �q��a,2�+2�+�a�−C��0� − 1�
�q − q−1� �l

� �
b�a

�q��a,2�+2�+�a� − q��b,2�+2�−�b��
�q��a,2�+2�+�a� − q��b,2�+2�+�b��

,

here

f�a� =1 − �q − q−1�
q

�q2��a,�a+2�+2�� − 1�
, m = 2l ,

1 + �q − q−1�
q��a,�a+2�+2��

�q2��a,�a+2�+2�� − 1�
, a � 0, m = 2l + 1,

1, a = 0, m = 2l + 1.
�

hroughout we assumed the eigenvalues were distinct. If they are not, the calculations are more
omplicated but the result is the same. Thus we have found the following.

Theorem 4.1: The quantum superalgebra Uq�osp�m �n��, for m�2, has an infinite family of
asimir invariants of the form,

Cl = �str � I����q2hp� � I�Al, l � Z+,

here

A =
�RTR − I � I�

�q − q−1�
.

he eigenvalues of the invariants when acting on an arbitrary irreducible finite-dimensional

odule with highest weight � are given by
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���Cl� = �
a

�− 1��a�qC��0�−��a,�a�f�a�� �q��a,�a+2�+2��−C��0� − 1�
�q − q−1� �l

� �
b�a

�q��a,2�+2�+�a� − q��b,2�+2�−�b��
�q��a,2�+2�+�a� − q��b,2�+2�+�b��

,

here

f�a� =1 − �q − q−1�
q

�q2��a,�a+2�+2�� − 1�
, m = 2l ,

1 + �q − q−1�
q��a,�a+2�+2��

�q2��a,�a+2�+2�� − 1�
, a � 0, m = 2l + 1,

1, a = 0, m = 2l + 1.
�

This completes the calculation of the eigenvalues of an infinite family of Casimir invariants of

q�osp�m �n�� when acting on an arbitrary irreducible highest weight module, provided m�2.
his had already been done for Uq�osp�2 �n��, using a different method, in Ref. 12. Also every
nite-dimensional representation of Uq�osp�1 �n�� is isomorphic to a finite-dimensional represen-

ation of U−q�o�n+1��,14 whose central elements are well understood. Hence the eigenvalues of a
amily of Casimir invariants, when acting on an arbitrary irreducible finite-dimensional highest
eight module have now been calculated for all quantized orthosymplectic superalgebras. To-
ether with the results for Uq�gl�m �n��,13 this covers all nonexceptional quantized superalgebras.
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Nehari techniques are used to prove the existence of multiple �indeed infinitely
many� nodal type bound states for the quasilinear Schrödinger equation izt−V0z
+z�+q�x� �z�2z+k��z�2��z=0 with prescribed number of nodes. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2138045�

. INTRODUCTION

Let R+= �0, + � � and zªz�x , t� :R+�R+→C be a complex-valued function. In this paper we
re concerned with the existence of multiple nodal type bound states for the following quasilinear
chrödinger equation:

izt − V0z + z� + q�x��z�2z + k��z�2��z = 0,

�1.1�
i2 = 1, k � R, x � R+, t � R+, q:R+ → R+,

here z�= ��2 /�x2�z�x , t�. A bound state is a solution of �1.1� of the form z�x , t�=ei�tu�x� and real
unction u�x� satisfies

u� − Vu + k��u�2��u + q�x��u�2u = 0,

�1.2�
u�0� = 0, limx→+� u�x� = 0, x � R+,

here we have set V=V0+� and assume throughout this paper that V�x� is positive and continuous
n R+ and

�V� lim
x→0+

V�x� = V�0� � 0, lim
x→+�

V�x� = + � .

quation �1.1� has been derived in the study of plasma physics, see Refs. 9, 11, and 13. When k=0
nd q�x�=x−�, �1.2� has also been derived as a model in the nuclear physics.5,7 Also when k=0,
oth �1.1� and �1.2� have been studied extensively, see Refs. 6 and 10–12 and the references
herein. When k�0, the problem is much more natural and interesting from the physical point of
iew, but more difficulty in the mathematical treatment due to the presence of the quasilinear term.
n a series of works, Ambrosetti-Liu-Wang-Wang have shown the existence results for such kind
f problems, see Refs. 1, 3, and 4 and the references therein. But we do not see any results about
he existence of multiple nodal �sign changing� solutions for the problem considered here. Our

�
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oal here is to investigate the existence of multiple nodal solutions of �1.2� with prescribed
umber of nodes. More precisely, we have the following.

Theorem 1.1: Let k�0, q�x�=x−� with 0���1 and �V� holds. Then for any m�2, there
xists a solution u of �1.2� such that u has precisely m−1 zero points in �0, + � �.

Note that in the statement of Theorem 1.1, m can be arbitrary. Hence if Theorem 1.1 is proved,
hen we have that �1.1� has multiple �indeed infinitely many� nodal type bound states. The proof
f Theorem 1.1 is by variational methods. Let H0

1�R+�= �u�L2�R+� ;u��L2�R+� ,u�0�
0, limx→+� u�x�=0,�0

+�V�x�u2� � � be a Sobolev space under the norm 	u	2=�0
+���u��2

V �u�2�dx, on which we define the following functional:

J�u� = 

0

+� �1

2
��u��2 + V�u�2� + ku2�u��2 −

1

4
x−��u�4� . �1.3�

hen J�C1�H0
1�R+� ,R� �for the proof see, e.g., Ref. 8, Lemma 1 on p. 331�. We say that u

H0
1�R+� is a solution of �1.2� if and only if for any ��D�R+� �the collections of all smooth

unctions with compact support in R+�, there holds J��u� ,��=0. Hence to find multiple solutions
f �1.2�, it suffices to find multiple critical points of J on H0

1�R+�. The idea of the proof is
ssentially due to Nehari,6 which has also been used in Ref. 10, but we need to overcome the
dditional difficulty created by the quasilinear term.

This paper is organized as follows. The forthcoming section is some preliminaries. In Sec. III,
e prove Theorem 1.1.

I. PRELIMINARIES

Let 0	
��	 +�. Denote H
,�=H0
1��
 ,��� with the norm 	u	2=�


���u��2+V �u�2�dx and we
imply write H0

1��0, + � �� as H. Lp��
 ,��� is the standard Lebesgue space with the standard norm
· �p. M, Mj denote various positive constants whose exact values are not important. For �→0, we
lso use the standard notations o��� and O��� and o�1� is a generic infinitesimal. Consider the
ehari manifold

N�
,�� ª �0 � u � H
,�;




�

��u��2 + Vu2 + 4ku2�u��2 − x−�u4� = 0�
nd define

c�
,�� = inf
u�N�
,��

J�u� . �2.1�

hen we have the following.
Proposition 2.1: If 0	
��	 +�, then N�
 ,�� is a manifold and �if N�
 ,����� one has

�i� there exists M1�0 such that 	u 	 �M1, ∀u�N�
 ,��;
�ii� if u*�N�
 ,�� is a constrained critical point of J on N�
 ,��, then J��u*�=0.

Proof: We only show the case of 
=0 and �= +� since other cases are similar but simpler.
or any u�N�0, + � �, we have that



0

+�

��u��2 + Vu2 + 4ku2�u��2� = 

0

+�

x−�u4.
n the other hand, 0���1 implies that
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0

+�

x−�u4 = 

0

1

x−�u4 + 

1

+�

x−�u4

	 �u��
4


0

1

x−� dx + 

1

+�

u4

	M	u	4.

t follows from k�0 that 	u	2�M1�0. The rest part of the proof can follow step by step as those
n the proof of Ref. 1, Lemma 2.2. �

Proposition 2.2 (Ref. 1, Theorem 2.4): If 0	
��	 +�, then c�
 ,�� is always achieved at
ome positive u�N�
 ,��, which is a positive solution of �1.2�. Clearly, the symmetric nature of
he problem implies that −u is a negative solution of �1.2� at this time.

Lemma 2.3: For u obtained in Proposition 2.2, we have u�C2�0, + � �.
Proof: From Ref. 8, Theorem 1, we know that u is C1 in �0, + � �. J��u� ,��=0 for any �

D�R+� and Ref. 2, p. 138, Theorem 6.5 imply that

u� − Vu + k��u�2��u + x−��u�2u = 0 a.e. in �0, + � � .

quivalently,

− �1 + 2ku2�u� + Vu = 2k�u��2u + x−��u�2u a.e. in �0, + � � .

t now follows from k�0 and u being C1 in �0, + � � that u� is continuous in �0, + � �. The proof
s complete. �

Lemma 2.4: Under the assumptions of Theorem 1.1, one has

�a� if 0	
	
1��1	�	 +�, then c�
 ,��	c�
1 ,�1�;
�b� c�
 ,��→ +� as �−
→0;
�c� c�
 , + � �→ +� as 
→ +�;
�d� c�
 ,�� is a continuous function of 
 and � �of � if 
=0 and of 
 if �= +��.

Proof: �a� If 0	
	
1��1	�	 +�, then N�
1 ,�1��N�
 ,�� and so that c�
 ,��
c�
1 ,�1�.

�b� For every u�N�
 ,��, �u�ª 	u	2+4k �uu��2
2−�


�x−� �u�4=0. Thus

J�u� =
1

2
	u	2 + k�uu��2

2 −
1

4






�

x−��u�4 =
1

4
	u	2. �2.2�

ince for u�N�
 ,��,

	u	2 + 4k�uu��2
2 = 





�

x−��u�4 	 �u��
4





�

x−� dx

	M2	u	4�� − 
�1−�,

e have from k�0 and that

	u	2 � M3�� − 
��−1.

herefore c�
 ,��→ +� as �−
→0 by �2.2� and 0���1.
�c� Suppose to the contrary, there is 
n→ +� but c�
n , + � �	M for some M �0. Using
roposition 2.2, we know that there are un�N�
n , + � � such that

                                                                                                            



O

o

w

I

w

→
+
�

S

w

T

M
N

123502-4 J. Chen and B. Guo J. Math. Phys. 46, 123502 �2005�

                        
J�un� = c�
n, + � � 	 M .

n the one hand, un�N�
n , + � � implies that �the computations are similar to those in �2.2��

M � J�un� = 1
4 	un	2;

n the other hand, from �
n

+�x−� �u�4= 	u	2+4k �uu��2
2, k�0 and

1
4 	un	2 = J�un� = c�
n, + � � � c�0, + � � � M0 � 0

e know that there is � �� is independent of n� such that




n

+�

x−��un�4 � � � 0.

t follows that

� 	 


n

+�

x−��un�4 	 
n
−�



n

+�

�un�4 	 
n
−��un��

2


n

+�

�un�2

	M4
n
−��	un	2�2 → 0 as 
n → + � ,

hich is impossible.
�d� We only treat the case of �= +� since the other cases are similar. We assume that 
n


�0 and want to show c�
n , + � �=c�
 , + � �+o�1�. For every n, there exists un�N�
n ,
� � such that J�un�=c�
n , + � �. We define vn on �
 , + � � by vn�x�ªun�
nx /
�. First using un

N�
n , + � � and the expression of J�un� we know that for some M5,

lim inf
n→+�




n

+�

��un��
2 + V�un�2� � M5 � 0. �2.3�

ince for any n,






+�

vn
2�x��vn��x��2 dx = 



n

+�

un
2�x��un��x��2


n



dx ,






+�

x−��vn�x��4 dx = 


n

+�

x−��un�x��4� 



n
�1−�

dx ,

e have from �2.3� and �
n

+���un��
2+Vun

2+4kun
2 �un��

2−x−� �un�4�=0 that

lim inf
n→+�

�




+�

�4k�vn�x��2�vn��x��2 − x−��vn�x��4�� � 0.

herefore there is a unique tn�0 such that tnvn�N�
 , + � � with

tn
2 = 





+�

��vn��
2 + V�vn�2��





+�

�x−��vn�x��4 − 4k�vn�x��2�vn��x��2� .

oreover we know from the above calculations that tn→1 as n→ +�. Now from the definition of

�
 , + � � and tnvn�N�
 , + � � that
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+�

���tnvn���2 + V�tnvn�2� = tn
2





+�

��vn��
2 + Vvn

2�

=tn
2



n

+� �
n
2


2 �un��
2 + V� 



n
x�un

2� 



n
2

=


n

+�

��un��
2 + Vun

2� + o�1� ,

hich implies that J�tnvn�=J�un�+o�1� �n→ + � �. The conclusion follows. �

II. PROOF OF THEOREM 1.1

Proof of Theorem 1.1: �1� We fix some integer m�2 and want to find a solution u of �1.2�
uch that u has precisely m−1 zero points in �0, + � �. For any 0	
��	 +�, we obtain from
roposition 2.2 that c�
 ,��=infu�N�
,�� J�u� is a critical value of J which has a pair of critical
oints which define one positive and one negative solution of �1.2�.

�2� Define

c�
0, . . . ,
m� = �
j=0

m−1

c�
 j,
 j+1�, 0 = 
0 � 
1 � ¯ � 
m−1 � 
m = + � ,

y property �d� of Lemma 2.4, c�
0 , . . . ,
m� is continuous on 
1 , . . . ,
m−1. Properties �b� and �c�
f Lemma 2.4 imply that �
 j� must be bounded away from each other and from infinity in any
equences of sets, for which c�
0 , . . . ,
m� tends to its greatest lower bound. It is thus sufficient to
onfine the values 
1 , . . . ,
m−1 to a sufficiently large finite interval �0,T� and therefore the mini-
um of c�
0 , . . . ,
m� is actually attained for some set of m−1 finite distinct values 
 j with 0

 j �
 j+1.

�3� Define

wm�x� ª uj�x�, 
 j 	 x � 
 j+1, j = 0, . . . ,m − 1, �3.1�

here uj is chosen such that

�i� uj is a positive solution of �1.2� for 
 j 	x�
 j+1, 0	 j	m−1 and j even;
�ii� uj is a negative solution of �1.2� for 
 j 	x�
 j+1, 0	 j	m−1 and j odd.

Now the conclusions of Theorem 1.1 follows from Lemma 3.1. �

Lemma 3.1: Under the assumptions of Theorem 1.1, wm satisfies

u� − Vu + k��u�2��u + x−��u�2u = 0. �3.2�

oreover wm has precisely m−1 nodes.
Proof: Clearly, uªwm satisfies �3.2� for x� �0�x� + � ;x�
 j , j=1,2 , . . . ,m−1�. Following

ehari,6 it suffices to prove that

u+� ª lim
x↓
j

u��x� = lim
x↑
j

u��x� ª u−�, j = 1,2, . . . ,m − 1. �3.3�

e prove this by contradictions. Assuming u+��u−� and setting 
ª
 j−1, �ª
 j, �ª
 j+1 for con-
enience, we may assume that u�0 on �
 ,�� and u	0 on �� ,��. Now we fix a sufficiently small

�0 and define v : �
 ,��→R by
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v�x� ª u�x� if �x − �� � � ,

ªu�� − �� +
�x − � + ���u�� + �� − u�� − ���

2�
if �x − �� 	 � .

learly, v is continuous on �
 ,��. Let �0=����� ��−� ,�+�� be defined by v��0�=0, indeed
here holds

�0 = � − � −
2�u�� − ��

u�� + �� − u�� − ��
.

e now obtain from Lemma 3.2 that there is �=�����0 such that �v�N�
 ,�0� with

�2 = 




�0

��v��2 + Vv2��




�0

�x−��v�4 − 4k�v�2�v��2� .

imilarly, we have �=�����0 such that �v�N��0 ,�� with

�2 = 

�0

�

��v��2 + Vv2��

�0

�

�x−��v�4 − 4k�v�2�v��2� .

Next, we define w : �
 ,��→R by setting

w�x� ª ��v�x� if 
 	 x 	 �0,

�v�x� if �0 	 x 	 � .

eeping the expression of J in mind, we obtain from the relation 1
4 �w4+u4��

1
2w2u2 and the fact

hat −u�u+Vu2−k�u2��u2=x−�u4 holds up to finite points that

J�w� = 




� �1

2
��w��2 + V�w�2� + kw2�w��2 −

1

4
x−��w�4�

	 




� �1

2
��w��2 + V�w�2� + kw2�w��2 −

1

4
x−��u�4 −

1

2
x−�w2u2 +

1

2
x−�u4�

= 




� �1

2
��w��2 + V�w�2� + kw2�w��2 −

1

4
x−��u�4 −

1

2
x−�w2u2� +

1

2






�

�− u�u + Vu2 − k�u2��u2�

= J�u� + k




�

u2�u��2 + 




� �1

2
��w��2 + V�w�2� + kw2�w��2 −

1

2
x−�w2u2�

= J�u� + k




�

u2�u��2 + 




�

B1. �3.4�

ote that on �
 ,�−��, w�x�=�v�x�=�u�x�, then






�−�

B1 = 




�−� ��2

2
��u��2 + V�u�2� + �4ku2�u��2 −

�2

2
x−�u4� . �3.5�

ince






�−�

x−�u4 = 




�−�

�− u�u + Vu2 − k�u2��u2�
nd
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�−�

�− u�u� = − u�� − ��u��� − �� + 




�−�

�u��2, �3.6�






�−�

�− k�u2��u2� = − 2ku3�� − ��u��� − �� + 4k




�−�

u2�u��2, �3.7�

e obtain from

u�� + �� = u+�� + o��� and u�� − �� = − u−�� + o���

hat






�−�

B1 = 




�−� ��2

2
��u��2 + Vu2� + �4ku2�u��2� −

�2

2






�−�

�− u�u + Vu2 − k�u2��u2�

= 




�−� ��2

2
��u��2 + Vu2� + �4ku2�u��2� −

�2

2 �− u�� − ��u��� − �� + 




�−�

��u��2 + Vu2�

− 2ku3�� − ��u��� − �� + 4k




�−�

u2�u��2� = ��4 − 2�2�k




�−�

u2�u��2

+
�2

2
u�� − ��u��� − �� + ku3�� − ��u��� − ��

= ��4 − 2�2�k




�−�

u2�u��2 −
�2

2
��u−��2 + o��� . �3.8�

n ��+� ,�� and w�x�=�v�x�=�u�x�, we obtain from a similar calculation that



�+�

�

B1 = ��4 − 2�2�k

�+�

�

u2�u��2 −
�2

2
��u+��2 + o��� . �3.9�

e now estimate the right-hand side of equality ��−�
�+� B1=��−�

�+� 1
2 ��w��2+V �w�2�+kw2 �w��2

1
2x−�w2u2. Since when �x−� � 	� and � small,

v�x� = − u−�� + o��� + 1
2 �x − � + ���u+� + u−� + o���� , �3.10�

e know from �3.10� and �3.17� that



�−�

�+� w2

2
�V − x−�u2� = 


�−�

�0 �2v2

2
�V − x−�u2� + 


�0

�+� �2v2

2
�V − x−�u2� = o��� . �3.11�

imilarly,

k

�−�

�+�

w2�w��2 = o��� . �3.12�

or the term ��−�
�+� 1

2 �w��2, we use the fact that

�w��x��2 = ��v��x��2 =
�2

4
�u+� + u−� + o����2, ∀ � − � � x � �0
nd
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�w��x��2 = ��v��x��2 =
�2

4
�u+� + u−� + o����2, ∀ �0 � x � � + �

o get that



�−�

�+� 1

2
�w��2 =

�2

4
�u+� + u−� + o������u−� + o���� +

�2

4
�u+� + u−� + o������u+� + o����

=
�

4
�u+� + u−��2 + o��� , �3.13�

here we use �3.21� and �3.22�. For the term k��−�
�+� u2 �u��2, since when �→0,

u�x� ª �x − ��u−� + o�x − �� for � − � � x � � ,

ª�x − ��u+� + o�x − �� for � � x � � + �

nd

u��x� ª u−� + O�x − �� for � − � � x � � ,

ªu+� + O�x − �� for � � x � � + � ,

e know that

k

�−�

�+�

u2�u��2 = O��2� . �3.14�

hus we have from �3.19� and �3.20� that

J�w� 	 J�u� + k




�

u2�u��2 + 




�

B1 = J�u� + k




�

u2�u��2 + �




�−�

+ 

�+�

�

+ 

�−�

�+� �B1

= J�u� + k




�

u2�u��2 + ��4 − 2�2�k




�−�

u2�u��2 + ��4 − 2�2�k

�+�

�

u2�u��2

+ 

�−�

�+� �1

2
�w��2 + kw2�w��2 +

w2

2
�V − x−�u2��

= J�u� + �1 + �4 − 2�2�k




�−�

u2�u��2 + �1 + �4 − 2�2�k

�+�

�

u2�u��2

−
�2

2
��u−��2 −

�2

2
��u+��2 + o��� +

�

4
�u+� + u−��2. �3.15�

t follows from �3.21� and �3.22� that

J�w� 	 J�u� + o��� −
�

4
�u+� − u−��2.

+��u−� implies that

J�w� � J�u� for � � 0 small,

hich is a contradiction to the construction of uªwm. The proof is complete. �
Lemma 3.2: For 
, �0, v, and u as in Lemma 3.1, there exists M �0 such that
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�4k




�0

v2�v��2 − 




�0

x−�v4� � M for � � 0 small enough .

Proof: Suppose to the contrary, we assume that

4k




�0

v2�v��2 − 




�0

x−�v4 = o�1� �� → 0� ,

.e.,

4k




�−�

u2�u��2 + 4k

�−�

�0

v2�v��2 = 




�−�

x−�u4 + 

�−�

�0

x−�v4 = o�1� . �3.16�

ince for �→0,

u�� + �� = u+�� + o���, u�� − �� = − u−�� + o��� ,

e have that

�0 = � − � +
2u−��

u+� + u−�
+ o��� , �3.17�

nd

v�x� = − u−�� + o��� + 1
2 �x − � + ���u+� + u−� + o���� . �3.18�

irect computations show that



�−�

�0

v2�v��2 =
�u+� + u−��2

4



�−�

�0 �− u−�� + o��� +
1

2
�x − � + ���u+� + u−� + o�����

=
�u+� + u−��2

4
�− u−�� + o����2� 2u−��

u+� + u−�
+ o����

+
�u+� + u−��2

8
�− u−�� + o�����u+� + u−� + o����� 2u−��

u+� + u−�
+ o����2

+
�u+� + u−��2

24
�u+� + u−� + o����2� 2u−��

u+� + u−�
+ o����3

=o��2� .

imilarly



�−�

�0

x−�v4 = o��2� .

herefore

4k




�−�

u2�u��2 = 




�−�

x−�u4 + o�1� .
hus
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�−�

��u��2 + Vu2� = o�1� ,

hich contradicts to the fact that u�0 on �
 ,��. The proof is complete. �

Lemma 3.3: Let 
, �, �0, �, �, v, and u be as in the proof of Lemma 3.1. Then we have that

1 + �4 − 2�2 = O��2� �� → 0� , �3.19�

1 + �4 − 2�2 = O��2� �� → 0� . �3.20�

Proof: Denote E=�

���u��2+Vu2�, F=�


��x−�u4−4ku2 �u��2� and keep the definition of v in
ind, we have that






�0

��v��2 + Vv2� = 




�

��u��2 + Vu2� + 

�−�

�0

��v��2 + Vv2� − 

�−�

�

��u��2 + Vu2�

=E +
1

4



�−�

�0

�u+� + u−� + o����2

+ �− u−�� + o��� + �x − � + ���u+� + u−� + o�����2

− 

�−�

�

��u��2 + Vu2�

=E +
1

4



�−�

�0

�u+� + u−� + o����2 + o���

− 

�−�

�

�u−� + o�x − ���2 + �u−��x − �� + o�x − ���2

=E +
�

2
�u+� + u−� + o�����u−� + o���� − ��u−��2 + o��� .

imilarly,






�0

�x−�v4 − 4kv2�v��2� = F + o��� .

ombining these with the fact that E=F we get that

�2 = �E +
�

2
�u+� + u−� + o�����u−� + o���� − ��u−��2 + o����� F + o��� = 1 +

�

2F
�u+� − u−��u−� + o��� .

�3.21�

ence

1 + �4 − 2�2 = O��2� �� → 0� .

imilar arguments give

�2 = 1 + O��� �3.22�
4 2 2
nd therefore 1+� −2� =O�� �. The conclusions follow. �
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In this paper we classify invariant noncommutative connections in the framework
of the algebra of endomorphisms of a complex vector bundle. It has been proven
previously that this noncommutative algebra generalizes in a natural way the
ordinary geometry of connections. We use explicitly some geometric constructions
usually introduced to classify ordinary invariant connections, and we expand them
using algebraic objects coming from the noncommutative setting. The main result
is that the classification can be performed using a “reduced” algebra, an associated
differential calculus and a module over this algebra. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2131206�

. INTRODUCTION

Symmetries in gauge fields theories play an important role in physics. For instance, they have
een used as possible procedures to introduce scalar Higgs fields using dimensional reductions.
olitons, as well as instantons and monopoles, have often been introduced and/or recognized as
ymmetric solutions of gauge fields equations. Extensive mathematical and physical studies of
uch symmetries have been proposed, using various approaches, and many examples have been
iven �see for instance Refs. 1 and 2 for a mathematical point of view, and Refs. 3–8 for a more
hysical point of view�.

On the other hand, gauge fields have been generalized in the noncommutative framework, in
ome very natural ways. For a large class of examples developed so far, noncommutative connec-
ions incorporate at the same time, and without too much arbitrariness, not only ordinary non-
belian gauge fields, but also some scalar fields which can be naturally interpreted as Higgs fields

see Refs. 9 and 10 for reviews, and references therein�.
In the present paper, we study invariant noncommutative connections in a noncommutative

ramework which is very strongly connected to ordinary differential geometry. We take as our
tarting point a noncommutative algebra equipped with the derivation based differential calculus
ntroduced in Ref. 11. This algebra is the algebra of endomorphisms of a SU �n�-vector bundle. Its
tructure and its relations to ordinary differential geometry have been extensively studied in Refs.
2 and 13, where it has been proven to play a very similar role to a SU �n�-principal fiber bundle.
n this framework, noncommutative connections extend in a very natural and tractable way ordi-
ary connections on the underlying principal fiber bundle. This permits us to generalize some of
he analysis performed in previous works about invariant �ordinary� connections, in particular it is
ossible to use explicitly some of the geometric constructions related to their classification. More-
ver, mixing those geometrical tools and the algebraic approach underlying noncommutative
eometry, the classification of invariant noncommutative connections forces us to introduce math-

matical objects which are more natural than in the ordinary case.

46, 123503-1022-2488/2005/46�12�/123503/25/$22.50 © 2005 American Institute of Physics
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We have tried to make this paper as self-contained as possible. It is organized as follows. In
ec. II we summarize previous works about classification of invariant �ordinary� connections.
hese results are not new, but we have tried to make a synthesis of the main approaches to this
roblem. In particular, we introduce there some geometrical constructions which are extensively
sed later. Section III is devoted to the noncommutative framework. There, we expose the main
esults about the algebra we will consider, and we try to explain its relations to ordinary differ-
ntial geometry. New results about the relations between this noncommutative geometry and the
nderlying ordinary geometry are exposed. Then comes the section which is the main part of this
aper. We expose the classification of invariant noncommutative connections, emphasing what is
ommon to the ordinary case and what is new. In particular, we show that the classification can be
erformed using objects inspired by noncommutative geometry: a “reduced” algebra, an associ-
ted differential calculus and a module over this algebra. At last, we study two important ex-
mples. One of our motivations for this work was to classify the degrees of freedom of spherically
ymmetric fields involved in noncommutative models. In the first example, we implement this
pherical symmetry in a noncommutative situation which would correspond to an ordinary �trivial�
U �2�-principal fiber bundle. The results obtained lead to a natural generalization of the so-called
itten’s anzatz.14,3 The second example is a purely noncommutative situation based on a matrix

lgebra.

I. INVARIANT CONNECTIONS ON PRINCIPAL FIBER BUNDLES

In this section, we would like to summarize previous works on invariant connections in
rdinary differential geometry. First, we introduce some notations and some general geometrical
onstructions which are useful to characterize invariant connections. Two approaches are then
roposed, a global one, investigated in Refs. 6, 5, and 4, and a “local” one, investigated in Refs.
and 8. The constructions presented here will be used again in Sec. IV where we characterize

oncommutative invariant connections.

. Reduction of fiber bundles

Let us introduce the notations and the hypothesis we make. The analysis presented here is
ssentially based on the work of Jadczyck et al.5

We consider a principal fiber bundle E�M ,H�, denoted by the following diagram of fibrations

H → E ——→
�

M ,

ith structure group H. We then consider a compact Lie group G which acts on the left on E. We
enote this action by G�E. We naturally assume that the two actions G�E and E�H do
ommute. In other words, G will be considered in the following as a subgroup of Aut�E�, the
roup of automorphisms of E. The fiber bundle E is called a G-symmetric fiber bundle. Then the
rojection � induces an action G�M which is characterized by the following diagram:

natural problem to consider at this stage is to try to classify all the possible lifts of an action
�M to an action G�E. This problem is for instance investigated in Ref. 7. We will not touch

pon it in the present paper.
We further require the action of G to be simple �see Refs. 4 and 5�, which means that we
ssume M has the following fiber bundle structure:
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G/G0 → M → M/G .

hen, by hypothesis, the quotient space M /G is a smooth manifold and the fibers are all isomor-
hic to the homogeneous space G /G0, where G0 is a subgroup of G. All isotropy groups for the
ction G�M are isomorphic to G0, which will denote, once for all, such a chosen reference
sotropy group.

Consider now the space P= �x�M ,Gx=G0�, where Gx is the isotropy group associated to any
oint x�M. It can be shown that P is a principal fiber bundle with structure group N�G0� /G0,
here N�G0� is the normalizer of G0 in G. This fiber bundle is denoted by

N�G0�/G0 → P → M/G .

ne can then consider the fiber bundle M�M /G ,G /G0� as an associated fiber bundle to the
rincipal fiber bundle P�M /G ,N�G0� /G0� for the natural left action N�G0� /G0�G /G0.

A similar construction can be performed on the space E on which the group S=G�H acts on
he right by

G � H � E → E ,

�g,h,p� � g−1ph .

irst note that at each point p�E there exists a canonical homomorphism,

�p:G��p� → H ,

efined by the relation g0 ·p=p ·�p�g0� for all g0 in G��p�. The isotropy group Sp of a point p in E
or the action E�S can be completely characterized, and a straightforward computation shows
hat Sp= ��g0 ,�p�g0�� /g0�G��p��. Then Sp is isomorphic to a generic group S0 for any p in E,
here S0 is the isotropy group of a certain point p0 in E. So E inherits the following fiber bundle

tructure:

S/S0 → E → M/G .

his means that the action of S on E is also simple. Using the same approach as before, one can
ee that E contains the principal fiber sub-bundle Q= �p�E ,Sp=S0� given by the diagram of
brations

N�S0�/S0 → Q → M/G ,

here N�S0� is the normalizer of S0 in S. Notice that on Q the application �p is independent of the
oint p�Q, and we denote it by � :G0→H.

The restriction of the projection � to Q will be called �Q. It is obvious that ��Q�� P. The
ernel of �Q is isomorphic to Z0=Z���G0� ,H�, the centralizer of ��G0� in H, and

Z0 → Q ——→
�Q

��Q�

s a principal fiber bundle. By the very definition one has

N�S0� = ��g,h� � S/g � N�G0�, h−1��g0�h = ��g−1g0g�, ∀ g0 � G0� .

here is then a natural inclusion of Z0 in N�S0� /S0 given by the following composition of maps:

Z0 � �e� � Z0 � N�S0� → N�S0�/S0.

urthermore Z0 is a normal subgroup in N�S0� /S0, and one can finally show that �N�S0� /S0� /Z0 is
subgroup of N�G0� /G0.
All the previous constructions can be summarized in the following commutative diagram:
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�1�

n this diagram, some arrows represent true applications and other arrows are part of diagrams of
brations, most of them explicitly given before. Some horizontal arrows correspond to the action
f H �or subgroups of H� and some vertical arrows correspond to actions of groups related to G
nd S. One can verify that the kernel of the projection ��Q�→M /G is isomorphic to
N�S0� /S0� /Z0.

. Invariant connections

The action G�E induces an action of G on the space �1�E� of 1-forms over E. Because the
ctions of G and H commute, this action extends naturally to an action on the affine space of
onnections on E included in the space �1�E� � H, where H is the Lie algebra of H. For any �
�1�E� � H and any g�G, we denote this action by �g=g*�. We are now interested to charac-

erize the G-invariant connections, those which satisfy �g=� for any g�G.
In order to do that, it is convenient to make some natural decompositions of the tangent spaces

o the various manifolds introduced previously. These decompositions are performed along the
ifferent actions that these spaces support. Let us introduce in the following table the notations for
he Lie algebras corresponding to the groups introduced so far

et,

G = N0* L and H = Z0*M ,

e some reductive decompositions of Lie algebras �a decomposition of a Lie algebra g=h* l is
eductive when h�g is a sub-Lie algebra and l a reductive complementary subspace, i.e.,
h , l�� l� which we suppose to be also orthogonal decompositions of vector spaces for the Killing
etrics. It is easy to show that there is an orthogonal decomposition of Lie algebras

N0 = G0 � K .

hen, by the very definitions, one has

S0 = ��X0,�*X0�/X0 � G0� ,

here �* :G0→H is the tangent application to � :G0→H, which implies that S0 is isomorphic to
0. Using this identification, one can easily show that
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NS0
= S0 � K � Z0

s an orthogonal decomposition of Lie algebras. In fact any element �X ,���NS0
�G�H can be

ritten in the form �X ,��= �X0+XK ,�*X0+�Z0
�, where X0�G0, XK�K and �Z0

�Z0.
With these decompositions and the induced maps of the group actions on manifolds at the

evel of Lie algebras and tangent spaces, we can decompose the different tangent spaces of the
undles introduced previously. We then get an infinitesimal version of diagram �1�

or a point q�Q�E with ��q�=x. Hence we have

TqE = TqQ � L�q�
Q

� M�q
Q , �2�

here L�q�
Q �respectively, M�q�

Q � is the subvector space obtained from the values Xq
E at q�E of the

undamental vector fields XE on E associated to vectors X�L �respectively, X�M�.
Let us now consider a G-invariant connection 1-form ���1�E� � H. We are interested to

haracterize the degrees of freedom of �. First, note that it is possible to study � only at points in
owing to the fact that by construction G ·Q=E. Then for any q�Q, ��q� can be evaluated on the

hree vector spaces TqQ, L�q�
Q , and M�q�

Q .

i� The restriction to Mq
Q�Hq

Q is fixed by the relation ��q��Xq
E�=X, for any X�M. So there is

no degree of freedom in this direction.
ii� The restriction to TqQ gives a 1-form � defined by ��X�=��X�, for any X�TQ. It satisfies

the following equivariance property

R�q,h�
* � = Adh−1�, ∀ �g,h� � N�S0� ,

where R�g,h� is the right action of N�S0� on Q. Considering this equivariance property for an
element �g0 ,��g0���S0, one can show that � is a Z0-valued 1-form. Together with the
equivariance property restricted to Z0, this implies in particular that � is a connection on
the principal fiber bundle Q���Q� ,Z0�.

iii� The restriction to Lq
Q induces a map

�q:L → H

X � �q�X� = �q�Xq
E� .
It satisfies the following equivariance property:
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Adh � �q � Adg−1 = �gqh−1 ∀ �g,h� � S .

Then, for any �g ,h��S0, one has Ad��g0� ��q �Adg0
−1 =�q. The equivariant map q��q

from Q to F, defines a section of the associated vector bundle FL=Q�N�S0�/S0
FL, where

the fiber is defined to be the vector space of covariant maps

FL = ��:L → H,Ad��g0� � � � Adg0
−1 = �� .

So � is completely characterized by the two objects � and � described above. Notice that �
nd � can be interpreted as genuine objects on fiber bundles related to the two principal fiber
undle structure on Q, either in the “horizontal” direction for � or in the “vertical” direction for

on diagram �1�. It is possible to make reference to only one of these principal fiber bundles
tructures. In order to do that, one needs a reference connection A on the principal fiber bundle

�N�S0�/S0�/Z0 → ��Q� → M/G .

hen one can make � in one-to-one correspondence with a couple �B ,	� where

i� B is a connection on the principal fiber bundle Q�M /G ,N�S0� /S0�,
ii� 	 is a section of the vector bundle FK, where FK=Q�N�S0�/S0

FK is associated to
Q�M /G ,N�S0� /S0�. The vector space FK is defined by

FK = �k:K → H,Ad��g0� � k � Adg0
−1 = k� .

Notice the similarity between FL and FK.�
The correspondence between � and the pair �B ,	� is given explicitly by the relations

B = � + �*A − ���*A�Q,

	q = �q�Kq
.

n particular we have that prKB=�*A, where prK is the orthogonal projection from K � Z0 to K.
e refer to Ref. 5 for further details and the works by Coquereaux et al.15 for the link with
aluza-Klein theories.

. Relation with Wang’s approach

Because we have assumed that the action of the group G is simple, the space M is locally
somorphic to the product space M /G�G /G0. The study of invariant connections is greatly
implified if one considers the space M to be exactly equal to the space M /G�G /G0. This is also
quivalent to restrict the study only to local objects around an orbit of G in M. So, in the
ollowing, we will assume that M =M /G�G /G0, and we will expose the main results obtained in
efs. 4, 3, and 8. This is what we call the “local” approach.

The simpler structure of the space M allows us to do a construction similar to the one
erformed previously, replacing the space P by the space M /G. This simplifies the bundle struc-
ure in the G’s directions and also greatly simplifies the decomposition of invariant connections.
urthermore, it is possible to classify the G-symmetric fiber bundles, and the results in this special
ase can be compared more easily with the ones obtained by Wang.1

First, because of the decomposition M =M /G�G /G0, one can imbed M /G into M, identify-
ng it with M /G� �eG0�. Then, G-symmetric principal H-bundles can be classified by pairs

��� , Q̃�, where ��� is a conjugacy class of homomorphisms � :G0→H for the action of G on G0

y conjugation, and Q̃ is a principal fiber bundle over M /G with structure group Z0
Z���G0� ,H�.
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Indeed, one can construct a pair ���� , Q̃� from a G-symmetric principal H-bundle E over M

M /G�G /G0 considering the restriction E�M/G� of E over M /G. Then, define Q̃= �p
E�M/G� /�p=��, for � a chosen reference map �p0

for a p0�E.

Conversely, one can associate a G-invariant principal H-bundle to any pair ���� , Q̃�. In order
o do that, it is convenient to introduce the following diagram of fibrations:

Z0 � G0 → Q� = Q̃ � G → M/G � G/G0

hich defines a principal fiber bundle Q� for the action �z ,g0 , q̃ ,g�� �q̃ ·z0 ,g ·g0�. Consider now
he following left action of Z0�G0 on H defined by �notice that the induced actions of the
ubgroups Z0 and G0 commute�


:Z0 � G0 � H → H ,

�z,g0,h� � z · ��g0� · h .

enote by Ẽ=Q���Z0�G0�H the associated fiber bundle to Q� with fiber H for this action. It can be

hown that Ẽ is a G-invariant principal H-bundle characterized by the following commutative
iagram �some arrows are part of diagram of fibrations�

�3�

here Q��H is also a G-invariant principal H-bundle for the horizontal structure.

It is easy to prove that the composition of these two maps, E� ���� , Q̃� and ���� , Q̃�� Ẽ,

ives us a map E� Ẽ, for which E and Ẽ are isomorphic G-invariant principal H-bundles. Indeed,

n isomorphism between E and Ẽ is given explicitly by the following relation: to any point

�q̃ ,g ,h�� Ẽ, associate the point g · q̃ ·h�E where q̃� Q̃ is considered to be in E.
Using this isomorphism, it is possible to map a G-invariant connection on E to a G-invariant

onnection � on Ẽ. Now, owing to the fact that the projection � of the principal �Z0�G0�-bundle
��H is also a G-equivariant map of G-symmetric principal H-bundles, one can show �see Refs.
and 8� that �*� can be written in the generic form

�*���q̃,g,h� = Adh−1���q̃ � �g
G + �̃�q̃� + �h

H , �4�

here �̃ is a connection 1-form on Q̃�M /G ,Z0�, G and H are the usual Cartan 1-form on G and

, respectively, and ��C��Q̃� � G* � H satisfies the equivariance property,

Rz0

* � = Adz0
�, ∀ z0 � Z0

nd the two relations

Ad��g0� � � � Adg−1 = �, ∀ g0 � G0,

0
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�q̃�X0� = �*�X0�, ∀ X0 � G0 and ∀ q̃ � Q̃ .

sing standard techniques in differential geometry, this equivariant map � : Q̃→G* � H charac-

erizes a section of a vector bundle over M /G, with fiber G* � H, associated to Q̃ for the adjoint
ction of Z0 on H.

We would like to conclude this section by the following remark. In the two situations pre-
ented here, the “global” one and the “local” one, it is possible to characterize the G-invariant
onnections on the G-symmetric principal H-bundle E using geometric objects related to the
uotient space M /G, and not to the whole space M. Nevertheless, for the “global” approach, this
equires an extra arbitrary connection A.

II. THE NONCOMMUTATIVE DIFFERENTIAL CALCULUS

In this section, we introduce the derivations based differential calculus defined for any asso-
iative algebra11 and describe more precisely this calculus for the algebra of endomorphisms of a
omplex vector bundle introduced and studied in Refs. 12 and 13. Some new results extending
hese previous studies are presented here. It is in the framework of this noncommutative geometry
hat we will study G-invariant noncommutative connections in the next section. The notion of
-invariant noncommutative connection is introduced at the end of this section, as well as some

upplemental mathematical structures that will be used later.

. Derivation-based differential calculus

In the following, A will denote an associative algebra with unit. Then the vector space Der�A�
f derivations of A is a Lie algebra and a module over the center Z�A� of A. The vector space of
nner derivations, Int�A�, is a Lie ideal and a Z�A�-submodule. The quotient Der�A� / Int�A� will
e denoted by Out�A�. This is a Lie algebra and a module over Z�A�.

Define the complex �� Der�A� to be the set of Z�A�-multilinear antisymmetric maps from

er�A� to A. It is naturally a N-graded algebra on which one can define a differential d̂ �of degree
� by setting, for any derivations X1 , . . . ,Xn+1 and any ���� Der

n �A�,

d̂��X1, . . . ,Xn+1� = 	
i=1

n+1

�− 1�i+1Xi��X1, . . . .
∨
i

. . . ,Xn+1�

+ 	
1�i�j�n+1

�− 1�i+j���Xi,Xj�, . . . .
∨
i

. . . .
∨
j

. . . ,Xn+1� . �5�

n the following, for all the associative algebras we will consider, this graded differential algebra
�� Der�A� ,d� coincides with the smallest differential subalgebra of �� Der�A� generated by A, which
s usually denoted by �Der�A�.

Let G be a Lie subalgebra of Der�A�. Then G defines a natural operation in the sense of
artan16 on ��� Der�A� ,d�. Indeed, for any X�G and n�1, let us introduce

iX:�� Der
n �A� → �� Der

n−1�A�

y

�iX���X1, . . . ,Xn−1� = ��X,X1, . . . ,Xn−1�

or any ���� Der
n �A� and Xi�Der�A�. This interior product is defined to be 0 on �� Der

0 �A�=A. It is

asy to show that iX is a graded derivation of degree −1 on �� Der�A�. The application
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LX = iXd̂ + d̂iX:�� Der
n �A� → �� Der

n �A�

efined for any n�0 is then a graded derivation of degree 0 on the graded algebra �� Der�A�. This

s the Lie derivative associated to the operation of G on ��� Der�A� , d̂�. One can compute the usual
elations

iXiY + iYiX = 0, LXiY − iYLX = i�X,Y�,

LXLY − LYLX = L�X,Y�, LXd̂ − d̂LX = 0.

n the same way, it is possible to define a natural Cartan operation of G on ��Der�A� , d̂�.
With such an operation of G on ��� Der�A� , d̂�, one can introduce the basic subspace of �� Der�A�,

hich is the common kernel of all the iX and LX for all X�G. This basic subspace can be shown
o be a graded differential subalgebra. The common kernel of all the LX for all X�G is called the
nvariant subspace of the operation. This is also a graded differential subalgebra.

In the case where A is the algebra C��M� of smooth complex-valued functions on a finite

imensional regular manifold M, ��Der�A� , d̂� is just the de Rham complex ���M� ,d� and
er�C��M��=��TM� is the ordinary Lie algebra of vector fields on M.

Let us consider the case where A is the algebra MnªMn�C� of n�n complex matrices.17 This
lgebra has only inner derivations, and the Lie algebra Der�Mn�=Int�Mn� can be identified with
he Lie algebra slnªsl�n ,C�. One can show that

�Der�Mn� � Mn � ∧ sln
* , �6�

here sln
* is the dual of sln. We denote by d� the differential on this complex.

In this situation, there exists a particular 1-form  defined by

i:Der�Mn� → sln

ad� � � −
1

n
Tr���1

or any ��Mn. This 1-form satisfies the relation

d�i − �i�2 = 0

nd for any ��Mn=�Der
0 �Mn�, one has d��= �i ,��. This 1-form  can also be viewed as a kind

f fundamental 1-form in this noncommutative space, which permits one to explicitly identify the
ie algebras Der�Mn� and sln.

Let us now mix the two previous examples in a trivial way, taking the matrix valued functions
n a manifold M :A=C��M� � Mn. The derivations based differential calculus for this algebra has
een studied in Ref. 18. Here are the main results. The center of the algebra A is exactly C��M�,
nd the Lie algebra of derivations Der�A� splits canonically as a C��M�-module into

Der�A� = �Der�C��M�� � 1� � �C��M� � Der�Mn�� . �7�

his implies the canonical decomposition for the complex of forms

�Der�A� = ��M� � �Der�Mn� .

he differential d̂ on �Der�A� is the sum d̂=d+d� where d and d� has been defined in the two
revious examples. The 1-form  is well defined in �Der

1 �A� if we extend it on Der�A� by zero on

he ��TM� terms.
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. Algebra of endomorphisms of a vector bundle

Let us now consider a nontrivial version of the previous example. Let E be a SU �n�-vector
undle over a regular finite dimensional smooth �i.e., paracompact, etc.� manifold M equipped
ith an Hermitian structure. We denote by End�E� the fiber bundle of endomorphisms of E. The

ections of this fiber bundle in matrix algebras define a unital algebra, which we denote by A. The
ermitian structure gives a natural involution on this algebra, denoted by S�S*. The center of

his algebra is exactly C��M�, identifying f �C��M� with f1�A. The trace map and the deter-
inant, defined on each fiber of End�E�, give natural maps

Tr:A → C��M� and det:A → C��M� .

y restriction to the center, there is also a natural map


:Der�A� → Der�C��M�� = ��TM� . �8�

his map is the quotient map in the short exact sequence of Lie algebras and C��M�-modules

0 → Int�A� → Der�A� ——→



Out�A� � ��TM� → 0. �9�

his short exact sequence generalizes the decomposition �7� in the trivial case. Notice that in the
ontrivial case, one cannot split canonically this short exact sequence of C��M�-modules.

For any derivation X�Der�A�, let us denote by X���TM� the associated vector field on M.
he 1-form i defined in the two previous examples is well defined here on Int�A� only, by the

elation

i�ad�� = � −
1

n
Tr���1

or any ��A. In the following, for any inner derivation ad�, we suppose that the element � is
raceless. It can be considered as a section of the fiber bundle of traceless endomorphisms of E. We
enote by A0 the space of traceless elements in A. The Lie subalgebra Int�A� operates in the sense
f Cartan on the differential complex �Der�A�.11 The horizontal forms for this operation are
xactly the differential forms on M with values in End�E�, and the basic forms are ordinary
ifferential forms on M. In the following, horizontality will refer to this operation.

It was shown in Ref. 12 that the two differential calculi �Der�A� and �� Der�A� coincide. We

ill denote by d̂ the differential on �Der�A�=�� Der�A�.
Now, let �E be any connection on E. Then it was shown in Ref. 12 that there exists a

oncommutative 1-form 	 in �Der
1 �A� such that any derivation X�Der�A� can be decomposed as

X = �X − ad	�X�, �10�

here � is the naturally associated connection to �E on the fiber bundle End�E�. Indeed, one can
efine 	 by the relation 	�X�=−i�X−�X�. We recall that � is the tensor product of the connec-

ions �E on E and �E*
on the dual vector bundle E* of E where �E*

satisfies X
� ,e�= 
�X
E*

� ,e�

� ,�X

Ee� for any sections � of E* and e of E.
The noncommutative 1-form 	 takes its values in the traceless elements of A and can be

onsidered as an extension of −i to all derivations. One has obviously 	�ad��=−�, with the
onvention that Tr���=0.

This result gives us a splitting of the short exact sequence �9� as C��M�-modules. This
plitting is not canonical and is only defined through a choice of a connection on E, by the
��M�-linear map X��X from ��TM� into Der�A�. This must be compared with the usual

commutative� situation where one can interpret a connection as a map from vector fields on M
nto vector fields on a principal bundle over M. These maps will be used and generalized in

ec. III F.
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The algebra A plays a similar role to a principal bundle, and the above canonical map �E�	
s an isomorphism of affine spaces from the affine space of SU �n�-connections on E onto the
ffine space of traceless anti-Hermitian noncommutative 1-forms on A satisfying 	�ad��=−�. If
E denotes the curvature of �E, then one can show that

RE�X,Y� = d̂	�X,Y� + �	�X�,	�Y��

or any X, Y�Der�A�, X, Y being their images in ��TM�. In particular, the expression d̂	+	2 is
horizontal element of �Der

2 �A�.
Now, the Lie algebra of real derivations on A acts naturally on the space of SU

n�-connections through the Lie derivative defined on �Der�A�. If one restricts this action to inner
eal derivations, the Lie derivative corresponds to infinitesimal gauge transformations on connec-
ions. Indeed, one has

Lad�
	 = − d̂� − �	,��

or any ��A, with Tr �=0 and �*+�=0 �ad� is then a real inner derivation�. Such �’s are exactly
he elements of the Lie algebra of the group of gauge transformations on E.

. Noncommutative connections

In the following, we will only consider noncommutative connections for the algebra A defined
bove on the right module A itself �this definition could be given for any associative algebra A�.

noncommutative connection is an application

�̂X:A → A

uch that �̂X�SS��=SX�S��+ �̂X�S�S� and �̂ fXS= f�̂XS for any X�Der�A�, S, S��A and f

C��M�. The curvature of a noncommutative connection is defined by R̂�X ,Y�S= ��̂X , �̂Y�S
�̂�X,Y�S for any S�A and X, Y�Der�A�, which is a right A-module homomorphism.

Any noncommutative connection �̂ on A is completely given by �̂X1=��X�, where � is a
oncommutative 1-form in �Der

1 �A�. Indeed, one then has

�̂XS = XS + ��X�S

or any S�A. The curvature of �̂ is then the left multiplication by the noncommutative 2-form,

d̂��X,Y� + ���X�,��Y�� .

There is a natural Hermitian structure on the right module A given by 
S ,S��=S*S��A. A
onnection is said to be compatible with an Hermitian structure if

X
S,S�� = 
�̂XS,S�� + 
S,�̂XS��

or any S, S��A and real �a derivation X�Der�A� is real if �Xa�*=Xa* for any a�A� X
Der�A�. This compatibility condition is equivalent to

��X�* + ��X� = 0

or any real X�Der�A�. Such connections will be called anti-Hermitian connections. Then any
nitary element U�A with det�U�=1 defines on A a right module endomorphism S�US which
reserves the Hermitian structure and the det application. We denote by SU�A� the group of such
lements of A. In our particular case, this is exactly the gauge group of the SU �n�-vector bundle

. We denote by U�A� the group of unitary elements of A. For any U�U�A�, the gauge trans-
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ormation of a noncommutative connection �̂ is defined by the relation �̂X
US=U*�̂X�US�. The

oncommutative 1-form � is then transformed as

� � U*�U + U*d̂U .

Any ordinary connection on E defines canonically a noncommutative connection on A. In-
eed, such a connection is given by a noncommutative 1-form 	. One then defines a noncommu-

ative connection �̂	 by

�̂X
	S ª �XS + S	�X� = XS + 	�X�S

or any X�Der�A� and S�A. The curvature of this connection coincides with the ordinary

urvature R̂	�X ,Y�=RE�X ,Y� and this noncommutative connection �̂	 is compatible with the
ermitian structure on A. Finally, a gauge transformation on �E induces a SU �A�-gauge trans-

ormation on �̂	.
This means that noncommutative connections on A are extensions of ordinary connections of

. In Refs. 18–20 and 12, it was shown that the extra degrees of freedom can be interpreted as
iggs fields. We refer to these papers for details.

Because A and C��M� are Morita equivalent, their projective right modules are in bijection
the K-groups are the same�. From the physical point of view this means that the matter contents
f any associated theory does not permit one to distinguish between C��M� and A.

. Symmetries and noncommutative connections

In the following section, we will be interested in noncommutative connections invariant under
he action of a Lie group G. Here we give a precise definition of this concept.

Let G be the Lie algebra of G. An action of G on A is a Cartan operation of G on the graded
ifferential algebra �Der�A�. In particular, any element G can be considered as an element in
er�A�, which means that we will always look at G as a Lie subalgebra of Der�A�.

A G-invariant noncommutative connection on the right module A is a noncommutative con-

ection �̂ satisfying

Y��̂Xa� = �̂�Y,X�a + �̂X�Ya�

or any Y �G, X�Der�A� and a�A. If �̂ is given by the noncommutative 1-form �, this is
quivalent to

LY� = 0

or any Y �G.

. �Der„A… and �„E…

In the next section, we will characterize the G-invariant connections on the right module A,
here A is the algebra of endomorphisms of a SU �n�-vector bundle E. In order to do that, it is
ery convenient to look at �Der�A� in a different way, using a result proved in Ref. 13. There,

Der�A� was shown to be some basic subalgebra of a bigger differential graded algebra. Let us
escribe this algebra and give new results about this very useful construction.

Let us denote by E the principal SU �n�-bundle over M for which E is associated, and denote
y C��E� the �commutative� algebra of smooth functions on E. Then one has a map ���E which
ends any ��su�n� into the associated vertical vector field on E. Let us introduce the algebra

=C��E� � Mn of matrix valued functions on E. Denote by ��Der�B� , d̂�= ���E� � �Der�Mn� ,d
E
d�� its differential calculus based on derivations. It is easy to see that �� +ad� /��su�n�� is a Lie
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ubalgebra of Der�B� which is isomorphic to su�n�. This Lie subalgebra defines a Cartan opera-
ion of su�n� on �Der�B�, whose basic subalgebra we denote by �Der,Bas�B�. Then it was proved
n Ref. 13 that �Der�A�=�Der,Bas�B�.

A SU �n�-connection on E is given by a 1-form �E on E with values in su�n��Mn. This
onnection defines a connection on E �denoted by ��, which itself gives rise to a noncommutative
-form 	��Der

1 �A�. From the previous result, this form comes from a basic 1-form 	E in

Der,Bas�B�, which is nothing but 	E=�E− i, where ��Der
1 �Mn� is the canonical 1-form defined

reviously. The basicity of this 1-form is a consequence of properties of �E and i, in particular
he equivariance of �E.

At the level of derivations, the relations between the algebras A and B can be summarized in
he following exact commutative diagram which combines derivations on A, derivations on B and
ector fields on E:

�11�

he lower row is just the ordinary short exact sequence which relates vector fields on M, deriva-
ions on A and inner derivations on A. In the middle column, NDer�A��Der�B� is the subset of
erivations on B which preserve the basic subalgebra A�B, and ZDer�A��Der�B� is the subset
f derivations on B which vanishes on A. These two Lie algebras were defined for more general
lgebras in Ref. 21. The short exact sequence they define is the one used to prove that A is a
oncommutative quotient manifold of the noncommutative algebra B.13 The Lie algebra ZDer�A�
s generated as a C��E�-module by the particular elements �E+ad� for any ��su�n�.

The right most column involves only geometrical objects. The space �M�E� is defined to be

�M�E� = �X̂ � ��E�/�*X̂�p� = �*X̂�p�� ∀ p,p� � E such that ��p� = ��p��� . �12�

his is the Lie algebra of vector fields on E which can be mapped to vector fields on M using the
angent maps �*: TpE→T��p�M.

In the following, for any �= f � ��C��E� � su�n�, we will denote by �E���TV E� the vector
eld f�E on E. Using this notation, any element in ZDer�A� can be written as �E+ad� where �
C��E� � su�n�. The isomorphism between ZDer�A� and ��TV E� maps any element �E+ad� into

E.
The diagram �11� bears some strange similarities with the diagram presented on page 12 in

ef. 12 which involved Lie algebroid structures. We will not make further comments about this
oint here.

A connection �E on E splits three short exact sequences in this diagram, in a compatible way.
irst, this connection can be used to lift vector fields X on M into horizontal vector fields Xh on E.

his gives us a splitting map of
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0 → ��TVE� → �M�E� → ��TM� → 0 �13�

s C��M�-modules. It was shown in Ref. 12, and recalled in Sec. III B, that the connection �E

plits the short exact sequence �9� of C��M�-modules using the map X��X. Now, using notations
ntroduced so far, there is a splitting of the middle column by the map X�XE=
�X�h−ad	�X�E

here 	�X�E is the basic element in B associated to 	�X��A �notice that 	�X�E=	E�XE��.
These splittings can be used to decompose any element in NDer�A� into four parts, making

xplicit the kernels of the two short exact sequences in which this space is involved. Any deriva-

ion X�NDer�A� can be written, as a derivation on B, in the form X= X̂+ad�, where X̂���E�
nd ��C��E� � sln. At this stage, it is easy to directly show that X̂ is in �M�E� using the
estriction of X on the center C��M� of A considered as a subalgebra of B. A derivation X belongs
o NDer�A� if and only if L�X�ZDer�A� for any ��su�n�. This means that there must exist �

C��E� � su�n� such that

��E,X̂� = �E, �14�

L�� = � . �15�

pplying a connection �E on the first relation, and using the equivariance of �E, one gets

���E�X̂��=�. Let us introduce Z=−	E�X�=�−�E�X̂��C��E� � sln. Then L�Z=0 for any �
su�n�, which implies that Z�A0, or adZ� Int�A�. Using this result, the derivation X can be

ritten as X= X̂+ad�=Xh+ X̂v+ad�E�X̂�+Z. With our notations, one has X̂v=�E�X̂�E �vertical part of

he vector field X̂�. So, one can write finally

�16�

he situation can be summarized in the following diagram where all the splittings are explicit:

�17�

In the following �Der�A� will be identified with the corresponding basic subalgebra of

Der�B�. Let us now look at the consequences of this construction on a noncommutative connec-
ion given by a 1-form ���Der

1 �A�. Such a 1-form can be decomposed as

� = a − � � ��1�E� � Mn� � �C��E� � Mn � sln
*�

ith the basic conditions

�L�E + Lad �a = 0, �L�E + Lad �� = 0,

� �
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i�Ea − iad�
� = 0

or any ��su�n�. Here we use obvious notations for geometrical and algebraic parts of the Lie
erivative L and the interior product i.

At this level, some general comments about these relations are in order. First, the invariant
elation on a is nothing but the covariance relation of an ordinary connection on E. But the last
elation prevents a to be such a connection. Indeed, this last relation generalizes the vertical
ondition on ordinary connections, and connect the value of a on vertical vector fields to the
alues of �. For ordinary connections on E, � being replaced by i, the usual vertical condition on
is recovered. The second relation, the invariance of �, has a natural geometric interpretation. By

ts very definition, � can be viewed as a map E→Mn � sln
*. Using standard results in differential

eometry, the invariance relation on � permits one to interpret � as the section of a vector bundle
ver M, associated to E, whose fiber is Mn � sln

*. In this identification, the Lie derivative Lad�
on

Mn � sln
* is nothing but the infinitesimal action of the Lie group H on Mn � sln

* involved in the
onstruction of this associated vector bundle. We will use such an identification in similar cases
everal times in the following.

Let us now consider the following situation, which will be the starting point for the next
ection and which generalizes to the noncommutative connections that has been presented in Sec.
I on ordinary connections. Assume we have an action of a compact connected Lie group G on the
rincipal fiber bundle E which commutes with the natural right action of the Lie group H
SU�n� on E. Then for any Y �G, the Lie algebra of G, one can associate a vector field YE on E.
his vector field induces a Cartan operation of G on ��E�. This operation extends naturally to an
peration on �Der�B�=��E� � �Der�Mn� where G acts only on the E part. Because the actions of

and H commute, the operation of G respects the basic subalgebra A of B, and restricts to an
peration on �Der�A�. Then the original action of G on E gives rise to a �noncommutative� action
f G on A. This action is the one we will use to characterize G-invariant noncommutative con-
ection on A.

. Local point of view

In this section, we want to study more precisely the relation between the algebras A and B

rom the local point of view.
Let us first characterize local objects in A. Such a discussion was preformed in Refs. 12 and

3 and we recall essential points here. Over an open subset U over which the fiber bundle End�E�
s trivialized, the algebra A is isomorphic to AlocªC��U� � Mn, and one can associate to any
lement a�A an element aloc�Aloc. Over an intersection U�U��� of two such open sets U
nd U�, one has a transition function g :U�U�→SU�n� which relates aloc� to aloc in the following
ay:

aloc� = Adg−1aloc.

One can also associate to any derivation X�Der�A� a local derivation Xloc�Der�C��U�
� Mn�. Such a derivation can be decomposed into two parts Xloc=X�U�+ad�loc, where X=
�X� �see

q. �8��, and X�U� is its restriction to the open subset U. It is possible to give an explicit expression
or �loc if one considers a connection on End�E�, to which one can associate the noncommutative
-form 	 and the local 1-form Aloc��1�U� � H. Then one has

�loc = Aloc�X�U� − 	�X�loc.

ver an intersection U�U���, Xloc� and Xloc are related in the following way:

X�U� = X�U,

�� = Ad −1� + g−1X �g� .
loc g loc �U
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Finally, let us consider local 1-forms, and associate to an element ���Der
1 �A� over U, an

lement �loc��Der
1 �C��U� � Mn�. Such an element can be decomposed into two parts, �loc=a

� � i where a��1�U� � Mn, and ��C��U� � Mn � sln
*. Then over an intersection U�U���,

loc and �loc� are related in the following way:

a� = Adg−1 � a − Adg−1 � � � Adg � g*H,

�� = Adg−1 � � � Adg, �18�

here H is the usual Cartan form on the group H, and g*H=g−1 dg. One can remark that these
ransition relations look like the one encountered in usual commutative gauge theories, but in the
resent case these relations are “twisted” by the scalar field �. It was shown in Ref. 13 that if one
hooses a reference connection, then one can express local forms in terms of tensors which
ransform in a much more manageable way.

Let us now make some remarks about the relations between these local objects and the local
nes associated to the algebra B=C��E� � Mn. First, let us consider a local section s :U→E. One
an associate to it a trivial extension of the pullback application s* :B→C��U� � Mn. Then by
efinition, the image of BH-basic�U� by the application s* is the algebra Aloc obtained from the
ocalization of A over U.

For derivations, it was shown previously that with the help of an ordinary connection, one can
ssociate to any element X�Der�A� an element XE�N�A��Der�B�, where explicitly XE


�X�h−ad	�X�E. In a similar way, using the inclusion �Der�A���Der�B�, one can associate to
ny element ���Der�A� an element �in opposition to the rest of this paper, we use here explicit
ifferent notations � and �� ���Der�B�H-basic. Then one can compare the expressions ��XE�
nd ��X�. Over an open subset U�M over which the principal fiber bundle E is trivialized, using
he local expression of the connection, one has

��s�x�
E = s*X�x − Aloc�X��x − ad	����s�x�

E ,

here x�U. From the basicity of the 1-form �, one can then show that �loc�Xloc�
s*���U��X�U�

E ��=s*��U��Xloc�, so that s*��U�=�loc. This result generalizes the previous result about
lements of the algebras, and one has s*�Der�B�H-basic�U�=�Der�Aloc�. This relation shows that one
an obtain the local expression �loc either from the 1-form ���Der

1 �A�, or from the 1-form �
�Der

1 �B�H-basic. Finally, notice that the transition relations �18� could have been obtained by
onsidering the 1-form � over the intersection U�U��� of two open sets, with the transition
elation s�=s ·g between local sections s :U→E and s� :U�→E.

V. INVARIANT NONCOMMUTATIVE CONNECTIONS

Here, we characterize the degrees of freedom of invariant noncommutative connections in the
etting exposed in the preceding section. The results obtained are generalizations of the results
ummarized in Sec. II for ordinary invariant connections. In particular, the constructions presented
n Sec. II are explicitly used in the present case. Indeed, it is possible to make reference to the
tructure of diagram �1� thanks to the trick exposed at the end of the preceding section, which
onsists to look at A as the basic subalgebra of B=C��E� � Mn for a well chosen Cartan operation
f H=su�n��Mn. The starting ingredients of this section are the following. A G-invariant non-
ommutative connection �� ��Der

1 �A��G-inv is written as a basic element

� = a − � � ��1�E� � Mn� � �C�
� Mn � Der�Mn�*� .

hen the objects a and � satisfy the three relations
L��a − �� = 0, �19�
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i��a − �� = 0, �20�

LX�a − �� = 0 �21�

or any ��H=su�n� and any X�G. Recall that the ordinary connections are those for which �
i, which is a straightforward way to recover all the results of Sec. II from the results presented
ere.

. Global approach

This approach is similar to the one performed in Sec. II, and it uses essentially the same
echnics. With the help of the G-invariance conditions �21�, we can restrict the dependence of a
nd � to Q�E. Then a is completely determined from its values on TqE for all q�Q. The
pplication aq :TqE→Mn can be decomposed into several parts. Let us call ���1�Q� � Mn the
estriction of the 1-form a to the tangent space TQ. By relation �20�, one has �q��q

E�=�q��� for any
�Z0. This 1-form satisfies the equivariance property

L�X,��� = �LX + L��� = 0, ∀ �X,�� � NS0
� G � H

there, we use notations of Sec. II B�. �Recall also that L� contains a geometric and an algebraic
art.�

Then, using S0-invariance on Q, it is easy to show that � takes its value in the vector space

W0 ª Z��*G0,Mn� ,

he centralizer of �*G0 in Mn. As a trivial consequence, �qª�q�Z0� has also its values in W0.
A simple analysis shows that W0 is an associative subalgebra of Mn on which the Lie algebra

0 acts by the adjoint action. It is natural and useful for the following to associate to it the
ifferential calculus �Z0

�W0�=W0 � ∧Z0
* which mimics the differential calculus �Der�Mn�=Mn

� ∧sln
*. On �Z0

�W0�, the differential is defined as in formula �5�, where now the Lie algebra Z0

lays the role of the derivations on the algebra W0. Another important useful feature of W0 is that
here is a natural application,

NS0
→ Der�C��Q� � W0� ,

�X,�� � XQ + �Q + ad�.

otice that S0 is sent to zero in this application. This implies that this application factorizes
hrough an application NS0

/S0→Der�C��Q� � W0�, which permits us to define a Cartan operation
f NS0

/S0 on ��Q� � �Z0
�W0�, whose Lie derivation is denoted by

L�X,�� = LXQ+�Q + Lad�
, ∀ �X,�� � NS0

/S0 = K � Z0.

n particular, this operation induces an operation on the Lie algebra Z0, denoted by L�, for any
�Z0.

The difference �−� is naturally an element of degree 1 in ��Q� � �Z0
�W0�. Using relations

19�–�21�, it is easy to verify that

i��� − �� = 0, ∀ � � Z0,

L�X,���� − �� = 0, ∀ �X,�� � NS0
.

his implies that �−�� ���Q� � �Z0
�W0��Z0-basic

1 .
� *
Now, let us introduce 	�C �Q� � W0 � ∧K , defined by
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	�X� = ��XQ�, ∀ X � K .

ne can show that 	�W0 � �C��Q� � ∧K*�K-inv, where the K-invariance is defined by the in-
uced Lie derivative of the operation of NS0

on the C��Q� part and by the standard Lie derivative
n the ∧K* part �the differential and the Lie derivative on ∧K* are naturally induced by the Lie
lgebra structure of K�.

Let us now introduce the bigger differential calculus

�Z0+K�M/G,W0� ª ���Q� � �Z0
�W0� � ∧ K*��Z0+K�−basic

quipped with the natural differential which is the sum of the differentials on each component.
ater, we will make some comments about this differential algebra, in particular we will explain
hy M /G makes its appearance in the notation.

The main result of the previous discussion is that we can show that �−�−	
�Z0+K

1 �M /G ,W0�. This relation permits one to characterize in a common algebraic 1-form the
estrictions of a and � to TQ.

Let us now look at the other parts of the space TqE, that is L�q�
Q and M�q�

Q . Using similar
rguments as in Sec. II B, the restriction �ªa�LQ� defines a section of the vector bundle associated
o Q�M /G ,N�S0� /S0� whose fiber is the vector space

FL ª �Mn � L*�S0−inv = ��:L → Mn/L�X,�*X�
L � = 0 ∀ X � G0� ,

here �L�X,��
L ���Y�=−���X ,Y��+ �� ,��Y�� for any �X ,���N�S0�. This relation is the natural action

f NS0
on the space Mn � L*. For this action, FL�Mn � L* is invariant. The fact that �

C��Q� � FL is a section of a vector bundle comes from the equivariance property

L�X,��� = �LXE+�E + L�X,��
L �� = 0 ∀ �X,�� � NS0

.

herefore, one has �� �C��Q� � FL��Z0+K�-inv.
In the same way, the restriction �ªa�MQ�=��M�, considered as an element in C��Q� � Mn

� M*, is a section of the vector bundle associated to Q�M /G ,N�S0� /S0� whose fiber is the vector
pace

FM ª �Mn � M*�S0−inv = �m:M → Mn/L�X,�*X�
M m = 0 ∀ X � G0�

here �L�X,��
M m��Y�=−m��X ,Y��+ �� ,m�Y�� for any �X ,���N�S0�. As before, � satisfies the equi-

ariance property

L�X,��� = �LXE+�E + L�X,��
M �� = 0 ∀ �X,�� = NS0

nd so �� �C��Q� � FM��Z0+K�-inv.
Now, noticing that

�Mn � L*�S0−inv � �Mn � M*�S0−inv = �Mn � �L*
� M*��S0−inv ¬ F

+� can be considered as a section of the associated vector bundle to Q�M /G ,N�S0� /S0�, where
he fiber is the bigger vector space F. Collecting all the previous degrees of freedom, we have
roven that

��Der
1 �A��G−inv � �Z0+K

1 �M/G,W0� � P ,
here
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P = �C��Q� � F��Z0+K�−inv.

enote by C the algebra �C��Q� � W0��Z0+K�-inv. Then �Z0+K�M /G ,W0� is a differential calculus
ssociated to C in the sense that �Z0+K

0 �M /G ,W0�=C. This algebra can be interpreted as the
ections of a fiber bundle associated to Q�M /G ,N�S0� /S0� whose fibers are modeled over the
lgebra W0. The algebra C can be considered as a “reduction”of the algebra A. As a matter of fact,
t is easy to verify that the elements in SU �C� define noncommutative gauge transformations on
he space of G-invariant connections on A. Equipped with the differential calculus

Z0+K�M /G ,W0� and the module P, this algebra is the natural building block, in a noncommu-
ative viewpoint, for the G-invariant connections on A.

As a last remark, notice that all the objects introduced here are naturally related to fiber
undles over the reduced space M /G, as it was also the case for ordinary G-invariant connections.
s a matter of fact, the situation is rather similar to the classical one, but here, there are new scalar
elds coming from noncommutative geometry in addition to those coming from dimensional
eduction. We can also notice that in the noncommutative framework, we do not need a reference
onnection to obtain objects which “live” over M /G.

. Local approach

As in the classical case, we will study invariant connections in the case where M =M /G
G /G0. We will use the notations introduced in Sec. II C. The idea developed in Sec. II C is to

ull back an invariant connection on Ẽ to a bigger space Q��H. There, an invariant connection
an be written in a very compact and elegant generic form using in particular the Cartan 1-forms
n the groups G and H. Here we generalize this construction. In order to do that, we need to find
he “good” space on which pulling back the invariant noncommutative connection. Because we
ork in a noncommutative framework, we must deal with algebras instead of spaces. The follow-

ng diagram summarizes the relations between the spaces and algebras we consider

The algebra we are looking at must replace the algebra A, in the same way the space Q�

H replaces the space Ẽ. It is natural to look at this algebra as a basic subalgebra of C��Q�
H� � Mn for the Cartan operation of H. Then the pull back �*� of a G-invariant connection

-form ���Der�A����Ẽ� � �Der�Mn� belongs to ��Q��H� � �Der�Mn�. Thanks to the facts
hat Z0 and G0 do not act on the Mn part of these algebras, that �* preserves the G-invariance and
he H-basicity, one has

�*� � ���Q̃� � ��G� � ��H� � �Der�Mn��
G−inv
H−basic
�Z0�G0�−basic

.

The advantage to work at the level of the space ��Q̃� � ��G� � ��H� � �Der�Mn�, is that,
here, we can decompose in an easy way the actions of the group G, G0, Z0, and H. These actions
re shown in the following suggestive diagram:
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here symbols L and R mean, respectively, left and right multiplication. Notice that the actions of

0 and G0 on ��H� commute.
Then, using H-basicity and G-invariance, a straightforward computation shows that �*� can

e written in the generic form

�*���q̃,g,h� = Adh−1��̃�q̃ + �q̃ � �g
G + �q̃ � Adh � ��h

H − i�� , �22�

here G and H are the Cartan 1-forms on the groups G and H and i is the algebraic 1-form
ntroduced in Sec. III. It is very natural to use the 1-form i in this relation in order to make
xplicit the identification �6�. Notice that H and i are known to look very similar in their
tructure,17 and that they appear together in this very compact expression. In formula �22�, on has

�̃ � �1�Q̃�, � � C��Q̃� � Mn � G*, � � C��Q̃� � Mn � sln
*

nd the Z0-invariance implies that

Rz0

* �̃ = Adz0
−1 � �̃, Rz0

* � = Adz0
−1 � �, Rz0

* � = Adz0
−1 � � � Adz0

or any z0�Z0. Then � and � can be considered as sections of some associated vector bundles to
˜ �M /G ,Z0�. On the other hand, the G0-invariance implies that

Ad��g0�−1�̃ = �̃, Ad��g0�−1 � � � Adg0
= �, Ad��g0�−1 � � � Ad��g0� = � . �23�

or any g0�G0, and the �G0�Z0�-horizontality gives us that

��X0� = ���*X0� ∀ X0 � G0 and �̃�Z0
Q̃� = ��Z0� ∀ Z0 � Z0. �24�

The ordinary G-invariant connections are recovered in formula �22� when �=1. Indeed, in this
ase one gets

�*���q̃,g,h� = Adh−1��̃�q̃ + �q̃ � �g
G� + �h

H − i

hich is to be compared to formula �4�. As already explained, the extra term i is exactly what is
eeded to imbed ordinary connections into the noncommutative framework.

By means of the equivariance relation �23�, � �respectively, �� intertwines the representation
f G0 on GC �respectively, HC� with the representation of G0 on the algebra Mn�VectC�1 ,H� and
y virtue of the Schur lemma, it can be decomposed in a direct sum of isomorphisms between
ommon irreducible blocks of GC �respectively, HC� and Mn�VectC�1 ,H�. Furthermore, if one
equires that the connection is anti-Hermitian, one must identify isomorphisms which correspond
o complex conjugate representations, or directly look at real representations.

This “local” characterization of invariant noncommutative connections can be shown to be
quivalent to the “global” approach. In order to do that, one needs to decompose the degrees of
reedom and rearrange them in a different way.

From �22�, it is easy to write down local expressions on M. A section S :M→ Ẽ can be

actorized through a local section s=sQ̃�sG on the fiber bundle Q�= Q̃�G, and a section sH on
he trivial fiber bundle Q��H. The application S=� �sH �s is represented in the following com-

utative diagram:
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hen, the local 1-form connection is just S*�=s* �sH
* ��*�̃���M� � �Der�Mn�. It is useful to

rite the section S in the following way:

S:M → Ẽ ,

m � ��sQ̃�m�,sG�m�,h�m�� .

hen, one finally obtains

S*� = Adh−1�s
Q̃

*
�̃ + s

Q̃

*
� � sG

* G + s
Q̃

*
� � Adh � �h*H − i�� . �25�

One can look at passive gauge transformations which preserve symmetries of the local 1-form
*�. We have three ways to perform such a passive gauge transformation. We can multiply on the
ight sH by an element h��H, sQ̃ by an element z0�Z0 or sG by an element g0�G0. Then S is
odified in the following way:

S � S� = � � �sQ̃ · z0,sG · g0,h · h�� .

ne can report the action on Q̃ and G to an action on H by means of the equivariance of the
pplication �, and one has

� � �sQ̃ · z0,sG · g0,h · h�� = � � �sQ̃,sG,��g0
−1� · z0

−1 · h · h�� .

e will illustrate this three kind of gauge transformations in the next section.

. EXAMPLES

In this section we apply the results found in the preceding section to two examples. The first
ne is a noncommutative extension of a case extensively studied and used in the literature,3,14 that
s, the spherical symmetry for SU �2�-gauge fields �see Ref. 22 and references therein for examples
f applications�. We will show that our framework generalizes in a straightforward way the results
ound in the ordinary case.

The second example is a purely noncommutative case. It consists to look at some symmetries
n the matrix algebra. In this case, no geometry is involved.

. Spherical symmetry

Consider the interesting example where M =R�R3 \ �0�, the first factor being parametrized by
he time coordinate t and the second factor by spacial coordinates �x ,y ,z�=r�. The symmetry group
s taken to be G=SU �2� and it acts on R3 \ �0� by rotation matrices. �We consider the space R3 \ �0�
ecause we want a simple action.� Then G0 is isomorphic to U �1�, G /G0 is isomorphic to the
-sphere S2 and M /G=R�R+*. We look at a gauge theory with structure group H=SU �2�, and so
or the noncommutative part, we take Mn=M2�C�.

We first treat this example in the approach developed in Sec. IV A. Notice that any principal
U �2�-fiber bundle over M is trivial due to the fact that M =R�R+*�S2, where R�R+* is
ontractible and dim�S2�=2. Then we will take E in the trivial form

E = M � SU �2� = M/G � S2 � SU �2� .

ow, we can lift the action of G on the base space M to an action on the fiber bundle E defining
n action of G on the structure group H. One can extend this action in a trivial way by considering
he action �g ,h��h∀g�G, ∀h�H. Then the reduced theory is a SU �2�-gauge theory over M /G
hich means that nothing very interesting is happening. A more complex case is to consider the

ollowing action:
G � H → H ,
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�g,h� � g · h ,

hich is possible here because G=H. With this action, one can see that the application � is an
somorphism and then one can take the reduced bundle Q in such a way that �=1. Then one has

0=G0=U�1�z, where

U �1�Z ª �exp�2�T3�,� � R�

nd �T1 ,T2 ,T3� is a basis of anti-Hermitian generators of su�2� satisfying

�T1,T2� = T3, �T2,T3� = T1, �T3,T1� = T2.

he reduced fiber bundle Q is isomorphic to M /G� �N ,S��U �1�, where N and S are the north
nd south poles of the 2-sphere S2. Without loss of generality, we can restrict the fiber Q to the
oint N, the symmetry relations coming from this Z2 structure being just conjugation relations over
omplex numbers. In this case, the diagram �1� becomes

ere, we have L=M=VectR�T1 ,T2�, K=0 and W0=VectC�1 ,T3�. It is then easy to see that F
LC � MC. Finally a SU �2�-invariant connection is characterized by two sections � and � over

M /G with values in VectC�T1 ,T2� and a noncommutative 1-form �−�� ���M /G� � ��W0��1.
ere �1�W0� is simply W0 because Z0 is one dimensional. If only anti-Hermitian connections are

aken into account, then one can consider vector spaces over R, and � and � can be interpreted as
omplex scalar fields �because L=M�C�. In this case, one has C=C��M /G� � W0, and SU�C�
�e�T3 =cos�� /2�1+sin�� /2�T3 ,��C��M /G���U�1�.

In this particular example, the “local” approach of Sec. IV B is very well adapted because of
he structure of the base space M. Then, we will perform the rest of its analysis using these
echnics. The SU �2�-principal bundle E can be constructed from a principal U �1�-fiber bundle and
he conjugacy class ���= �1�.

An invariant connection is given explicitly by formula �22�, and for the simplicity of the
nalysis, we will consider only traceless anti-Hermitian connections in the following. �The trace
erm in a connection corresponds to the term 1 in the algebra Mn=VectC�1 ,H�, and it can be
tudied independently of the traceless part.� Using notations and results of Sec. IV B, we are led
o study the decomposition of the adjoint representation of SU �2� in irreducible representations of
�1�Z. The adjoint representation of SU �2� is decomposed into the fundamental representation of
�1� on VectRT3 and the two-dimensional representation on VectR�T1 ,T2�, corresponding to the

undamental representation of SO�2�. The invariance properties �23� implies that

��T1� = �1T1 + �2T2, ��T1� = �1T1 + �2T2,

��T2� = − �2T1 + �1T2, ��T2� = − �2T1 + �1T2,
nd using �23� and �24�
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��T3� = ��T3� = �T3,

here � is a function over M /G. Now let us write the local expression �25� of the connection
-form by considering two different useful gauges. First let us introduce what we call the “singu-
ar” gauge in which we take the constant section

sH:Q� → Q� � H ,

q� � �q�,e� .

e will choose the usual spherical coordinates �� ,�� for the local system of coordinate on S2.
hen we consider the natural local section,

sG:S2 → SU�2� ,

��,�� � g = e�T3e�T2

we have in mind the Euler parametrization of SU �2�, where � and � are two of the three Euler
ngles�. Then a straightforward computation gives

S*� = aT3 + ��1T1 + �2T2�d� + ��1T2 − �2T1�sin � d� + �T3 cos �d� − ���1T1 + �2T2�1

+ ��1T2 − �2T1�2 + �T33� , �26�

here a=ar dr+at dt��1�R�R+*�, and i=Taa. This reduced 1-form connection generalizes in
n obvious way the so-called Witten’s anzatz14 which is recovered by setting �1=�=1 and �2

0 �i.e., �=1�. One can note that the monopole term �corresponding to the local 1-form cos � d��
s no more constant and is now factorized by a function �. Singularities happening in �26� are due
o the fact that we try to extend the system of spherical coordinates globally on S2. This extension
s not possible in this gauge and it is why it is called the “singular” gauge. However one can
ntroduce another gauge in which the extension of the local 1-form to a global one is possible. This
s the “regular,” or “radial” gauge, defined by the following section:

S:M → Ẽ , �27�

�r,�,�� � ��sQ̃�r�,e�T3e�T2,e−�T2e−�T3� . �28�

t can be obtained from the “singular” gauge by a �passive� gauge transformation which consist to
ultiply the section sH by the element h�=e−�T2e−�T3 �H. Then applying formula �25� leads to the

ollowing expression:

S*� = aTr + �1�Tr,dTr� − �2 dTr − �1�Tr, d̂Tr� + �2d̂Tr − �Tr
r, �29�

here

Tr = sin � cos �T1 + sin � sin �T2 + cos �T3,

r = sin � cos �1 + sin � sin �2 + cos �3,

nd d̂=d+d� is the noncommutative differential introduced in Sec. III. The absence of singularity
s clearly due to the fact that the spherical angles �� ,�� do not appear explicitly, and that every-
hing can be expressed in terms of the unique generator Tr. To illustrate the fact that we have
xtended the local 1-form to a global one, we will give some more explicit formulas using
uclidian coordinates. Let us introduce the notation S*�=a+Ai

aTadxi−�b
aTab. Then formula �29�
ives us
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Ai
a =

Re�� − i��
r

Pi
a +

Im�� − i��
r

gab�ibcn̂
c,

�b
a = Re���Pb

a + Im���gac�bcdn̂
d + �n̂an̂b,

ith n̂a=xa /r, Pb
a=�i

a− n̂an̂i, gab the Euclidian metric and �abc the totally antisymmetric tensor such
hat �123=1. We have introduced the useful notations �=−�2+ i�1 and �=�1+ i�2.

Finally, we would like to show how the two other passive gauge transformations �on sG and sQ̃

entioned at the end of Sec. IV B� can be performed. They will correspond to a U �1� residual
ymmetry. In terms of the two complex scalar fields � and �, Eq. �29� becomes

S*� = aTr + Re�� − i��dTr + Im�� − i���Tr,dTr� + Re�− i��d�Tr + Im�− i���Tr,d�Tr� − �Tr
r.

he U �1� passive gauge transformations correspond to the transformations on sG and sQ̃ given by

sG � sG · e�0T3,

sQ̃ � sQ̃ · e�1T3,

here �0�r , t� and �1�r , t� are two arbitrary functions of r and t. This leads to transformations on
he fields � and a,

� � ei��1+�0�� ,

a � a − �d��1 + �0� . �30�

ne can remark that the scalar fields � and � remain unchanged under this passive gauge trans-
ormation. One can also note the similarity with usual Abelian gauge transformations.

It is possible to consider a “true” symmetric gauge transformation �in the sense of noncom-
utative geometry, see Sec. III�. In order to do that, one must redefine the complex scalar field �

o �=1−��. Then a “true” symmetric gauge transformation parametrized by an element e�T3

SU �C�, where � is a function over M /G=R�R+*, leads to the transformations

�� � e−i���,

� � e−i�� ,

a � a + d� . �31�

ote that these transformations are much more similar to ordinary U �1� gauge transformations.

. A purely noncommutative example

We present in this section a purely noncommutative case in the sense that we consider a
ituation in which the base space is a point. Then one has G=G0, and � is an homomorphism from

to H. In this case, the noncommutative algebra is simply the algebra of matrices Mn, equipped
ith the noncommutative calculus exposed in Ref. 17 and summarized in Sec. III. In this situation,

he problem reduces to characterize G-invariant noncommutative connections in Mn. For simplic-
ty, as before, we will restrict in this section to traceless connections.

The general procedure to follow is to first study the representation � of G in Mn, and then
etermine how the representations AdH �� split into irreducible representations of G. These irre-
ucible representations give rise to the degrees of freedom of the invariant noncommutative

onnections, one scalar field for each intertwiner of equivalent irreducible representations.
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We want to illustrate this in the particular case G=SU �2�. It is well known that representa-
ions of SU �2� on Mn are parametrized by partitions of n.9 For instance, for A=M3�C�, the
epresentations are labeled by the partitions “1+1+1,” “2+1,” and “3” of 3. They are described in
he following way:

i� The “1+1+1” representation corresponds to the sum of three copies of the trivial repre-
sentation. The representation AdH �� is decomposed in a sum of eight copies of the trivial
representation of SU �2�. This gives rise to 64 scalar fields. This case is not interesting
because the group SU �2� does not act on M3�C�.

ii� The “2+1” representation corresponds to a reducible representation of SU �2� which is the
sum of the fundamental representation and the trivial one. The representation AdH �� is
decomposed into irreducible representations of SU �2� of dimensions 3, 2, 2, and 1 �six
scalar fields�.

iii� The “3” representation corresponds to the irreducible representation of dimension 3 of SU
�2�. In this case, the representation AdH �� can be decomposed into irreducible representa-
tions of SU �2� of dimensions 3 and 5 �two scalar fields�.

We will not perform the analysis any further because our goal is just to characterize the
egrees of freedom of a traceless noncommutative connection using the methods exposed in this
aper.
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onstruction of new solutions to the fully nonlinear
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An indirect F function method is introduced to solve the generalized Camassa-
Holm equation with fully nonlinear dispersion and fully nonlinear convection
C�l ,n ,p�. Taking advantage of elliptic equation, this F function is used to map the
solutions of the generalized Camassa-Holm equation to those of the elliptic equa-
tion. As a result, we can successfully obtain in a unified way and for special values
of the parameters of this equation, many exact solutions expressed by various
single and combined nondegenerative Jacobi elliptic function solutions and their
degenerative solutions �soliton, combined soliton solutions, and triangular solu-
tions� as the modulus m is driven to 1 and 0. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2137723�

. INTRODUCTION

It is well known that the investigation of the travelling wave solutions of nonlinear evolution
quations �NLEEs�, which is an important tool in characterizing many complicated phenomena
nd dynamical processes in physics, mechanics, chemistry, biology, etc., plays an essential role in
he study of these physical problems. Hence, seeking for solutions of the NLEEs may help enable
hysicists and engineers to better understand the mechanism that governs these physical problems.
specially, finding explicit solutions to nonlinear models has become one of the most exciting and
xtremely active areas of research investigation, since they may provide better knowledge to the
hysical problems and possible physical applications.

Recently, both mathematicians and physicists have made many attempts in this direction. A
umber of works have been done on the construction of exact solutions of NLEEs and effective
nd powerful methods have been developed, such as inverse scattering method,1 Bäcklund
ransformation,2 Darboux transformation,3,4 Hirota bilinear method,5 homogeneous balance
ethod,6 Jacobi elliptic function method,7 tanh-function method,8,9 extended tanh-function
ethod,10–13 improved extended tanh-function method,14–18 the sine-cosine function method.19

Very recently, a unified F-expansion method20–27 has been established to obtain Jacobi elliptic
unctions, solitons, and periodic functions to a large variety of NLEEs whose odd- and even-order
erivative terms do not coexist. The main idea of this method is to take full advantage of the
lliptic equation which has more solutions, to construct exact solutions to the NLEEs. Thus
ultiple exact solutions can be obtained in a unified way and much tedious and repeated calcu-

ation can be avoided.
In the present paper, a generalized Camassa-Holm equation with fully nonlinear dispersion

nd fully nonlinear convection term C�l ,n ,p� �Ref. 28� is considered

Ut + kUx + �1Uxxt + �2�Ul�x + �3Ux�Un�xx + �4U�Up�xxx = 0, �1�

here k, �1, �2, �3, and �4 are arbitrary real constants.
Equation �1� is a class of physically important equations. In fact, if one takes �1=−1, �2

3 /2, �3=−2, �4=−1, l=2, n=p=1, �1� becomes the shallow water equation, namely Camassa-

olm equation

46, 123504-1022-2488/2005/46�12�/123504/12/$22.50 © 2005 American Institute of Physics
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Ut + kUx − Uxxt + 3UUx = 2UxUxx + UUxxx, �2�

hich has been proposed by Camassa-Holm.29 They used Hamiltonian methods to derive the
ompletely integrable dispersive wave equation for water by retaining two terms that are usually
eglected in small amplitude shallow water limit. They showed that for all k, Eq. �2� is integrable,
nd for k=0, �2� has travelling solutions, which are called peakons. When �1=−1, �2=a, �3=
2, �4=−1, l=L+1, n=p=1, �1� becomes another form of generalized Camassa-Holm equation,

Ut + kUx − Uxxt + aULUx = 2UxUxx + UUxxx, �3�

tudied by Tian and Song.30 They derived some exact peaked solitary wave solutions. When k
0, �1=−1, �2=3/2, �3=−2�, �4=−�, l=2, n=p=1, �1� becomes

Ut − Uxxt + 3UUx = ��2UxUxx + UUxxx� , �4�

hich has been derived by Dai and Huo31 when they studied disturbances in an initially stretched
r compressed rod which is composed of a compressible Mooney-Rivlin material. By using a
ondimensionalization process and the reductive perturbation technique, they obtained a type of
onlinear dispersive equation �4�. They also showed that Eq. �4� has a variety of travelling waves
ncluding solitary shock waves, solitary waves, periodic shock waves, etc. Liu and Chen32 showed
hat Eq. �4� also generated compacton structures by using the bifurcation method of planar dy-
amical systems and numerical simulation of differential equations. When k=0, �1=−1, �2

3 /2, �3=�4=0, l=2, n=p=1, Eq. �1� becomes the BBM equation,33 a well-known model for
urface wave in channel.

More recently, by using four direct ansatze, Tian and Yin28 obtained abundant solutions,
ompactons �solutions with absence of infinite wings�, solitary patterns �solutions having infinite
lopes or cups�, solitary waves and singular periodic wave solutions and obtained kink compacton
olutions and nonsymmetry compacton solutions. In the same paper, they also studied other forms
f fully nonlinear generalized Camassa-Holm equation and showed that their compacton solutions
re governed by linear equations.

The present paper is motivated by the desire to extend the Tian and Yin work28 to make
urther progress. More importantly, it is the objective of this work to show that abundant families
f Jacobi, combined Jacobi elliptic functions, solitary wave and combined solitary wave solutions
nd triangular functions arise from Eq. �1�. To achieve our goal, instead of taking specific func-
ions as Tian and Yin did in Ref. 28, we will use a form of indirect F-function method �not the
-expansion method because the complexity of Eq. �1� cannot allow the use of this method�. But
ur indirect F method will be very close to the F-expansion method in the sense that, the indirect
-function method will also take advantage of nonlinear ordinary differential equation �ODE�.
hus, one will only need to calculate the function which is a solution of the ODE, instead of
alculating the Jacobi elliptic function one by one; second, the coefficients of the ODE can be
elected so that the corresponding solution is a Jacobi elliptic function, exactly as in the
-expansion method.

The paper is organized as follows: In Sec. II, a derivation of the proposed method for finding
xact solutions is presented. Finally, some discussions and conclusions are given in Sec. III.

I. GENERAL FORMULAS OF THE SOLUTIONS

We first make the following formal travelling wave transformation:

U�x,t� = U���, � = �1x + �2t , �5�

here �i, �i=1,2� are undetermined constants. Substituting �5� into Eq. �1�, we have the ODE for
���,

�2U� + k�1U� + �1�2�1
2U� + �2�1�Ul�� + �3�1

3U��Un�� + �4�1
3U�Up�� = 0. �6�
Then a suitable ansatz for the unknown U��� will solve Eq. �6�.
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Let us assume that Eq. �6� has the solution in the form

U��� = A�F����B, �7�

here A and B are parameters to be determined later. We also propose that the function F should
e mapped to the solutions of the following elliptic equation

F�2 = r + aF2 +
b

2
F4, �8�

, a, and b are constants. Substituting the ansatz �7� along with Eq. �8� into Eq. �6�, collecting
oefficients of power of F with the aid of Mathematica, we can deduce the following polynomial
quation:

2ABr�1�2�1
2�2 − 3B + B2�FB + 2AB�k�1 + �2 + aB2�1�2�1

2�FB+2 + ABb�1�2�1
2�2 + 3B + B2�FB+4

+ �2lBAl�2��F2+Bl + 2A1+nB2nr�3�1
3�nB − 1�FB�n+1� + �2aA1+nB3n2�3�1

3� � F2+B�n+1�

+ A1+nB2nb�3�1
3�nB + 1�F4+B�n+1� + 2A1+pBpr�4�1

3�2 − 3Bp + B2p2�FB�1+p�

+ �2aA1+pB3p3�4�1
3�F2+B�p+1� + A1+pBpb�4�1

3�2 + 3Bp + B2p2�F4+B�1+p� = 0. �9�

One may easily see that in the specific cases, where r=1, a=−1, and b=0 which lead to F
cos �, when r=1, a=−1, and b=0 which lead to F=sin �, when r=−1, a=1, and b=0 which lead

o F=cosh � and when r=1, a=1, and b=0 which lead to F=sinh �, then we are in the situation
f ansatz 1, ansatz 2, ansatz 3, and ansatz 4 in Ref. 28, respectively. We are interested in the
eneral case where r�a�b�0.

In view of the study of Eq. �9�, we may observe carefully the different powers of F interven-
ng in this equation. Then, it appears that it is powers 2+Bl, 2+B�n+1�, and 2+B�1+p� whose
oefficients are singles which may determine our discussion.

Thus, from Eq. �9�, we get the following possible cases to be discussed.
Case 1: 2+Bl=2+B�n+1�=2+B�1+p�, we have l=n+1, p=n,
Case 2: 2+Bl=2+B, 2+B�n+1�=2+B�1+p�, we have l=1, p=n,
Case 3: 2+Bl=2+B�1+p�, 2+B�n+1�=2+B, we have l=1+p, n=0,
Case 4: 2+Bl=2+B�1+n�, 2+B�p+1�=2+B, we have l=1+n, p=0.
But the cases 3 and 4 produce no solution.
From the case 1, choosing l=1+n and p=n, substituting in Eq. �9� and collecting all terms

ith same power of F, we obtain the following equation:

2ABr�1�2�1
2�2 − 3B + B2�FB + 2AB�k�1 + �2 + aB2�1�2�1

2�FB+2 + ABb�1�2�1
2�2 + 3B + B2�FB+4

+ 2A1+nBnr�1
3��3B�nB − 1� + �4�2 − 3Bn + B2n2��FB�n+1� + 2A1+nB��n + 1��2�1 + aB2n2�1

3��3

+ n�4��F2+B�n+1� + A1+nBnb�1
3�B�3�Bn + 1� + �4�2 + 3Bn + B2n2��F4+B�1+n� = 0. �10�

From �10� it appears that when setting to zero the coefficient of FB, i.e., 2ABr�1�2�1
2�2

3B+B2�=0 which leads to �2−3B+B2�=0 �B=1 or B=2� then the coefficient of power FB+4

hould be different than zero, i.e., ABb�1�2�1
2�2+3B+B2��0. Thus the power of FB+4 should be

hifted to another power; this may help the coefficient of this power to enter another relationship
ith other terms. Thus the following two subcases may be satisfied.

First subcase

B + 4 = B�n + 1� ↗ when B = 1, ⇒ n = 4; l = 5, p = 4 ↘ when B = 2, ⇒ n = 2; l = 3, p = 2.

Substituting the first type of relation of the first subcase in Eq. �10� and solving the set of a

given system of equations we obtain the following results:

                                                                                                            



a

a

a

�

o

�

c
t
f

�

123504-4 Emmanuel Yomba J. Math. Phys. 46, 123504 �2005�

                        
�1 =
�5

2

4
� �2

a�4
, �2 = −

k�1

1 + a�1�1
2 , A = ±

1

2
�b�1�2

r�4�1
�1/4

, �3 = − 6�4. �11�

, b, and r are arbitrary constants.
Substituting the second type of relation of the first subcase in Eq. �10� and solving the set of

given system of equations we obtain the following results:

�1 =
�3

4
� �2

a�4
, �2 = −

k�1

1 + 4a�1�1
2 , A2 = − � kb�1

r�3�1�2 + 4�4�� ,

�12�
�3 = − 3�4,

, b, and r are arbitrary constants.
Second subcase,

B + 4 = 2 + B�n + 1� ↗ when B = 1, ⇒ n = 2; l = 3, p = 2 ↘ when B = 2, ⇒ n = 1; l = 2, p = 1.

Substituting the first type of relation of the second subcase in Eq. �10� and solving the set of
a given system of equations we obtain the following results:

�2 = −
A2�3�2 − 8a�4�1

2�
3b�1�1

, A2 = �1
2� 3bk�1

3�2 + �1
2�a�3�1�2 − 8�4� + 8�1�4�1

2�3br − a2��
� ,

�13�
�3 = − 4�4,

1, a, b, and r are arbitrary constants.
Substituting the second type of relation of the second subcase in Eq. �10� and solving the set

f a given system of equations we obtain the following results:

�2 = −
�1�4ar�4�1

2 − k�
1 + 4a�1�1

2 , A =
3bk�1�1

2

�2 + �1
2�2a�2�1�2 − �4� + 4�1�2�1

2�3br − 2a2��
,

�14�
�3 = − 2�4,

1, a, b, and r are arbitrary constants.
Now, if we set the coefficient of FB+4 to zero, i.e., �2+3B+B2�=0 �B=−1 or B=−2� then the

oefficient 2ABb�1�2�1
2�2−3B+B2� of power FB+4 should be different than zero, in order to allow

his coefficient to enter relationship with other coefficients of the other power of F, we have the
ollowing two subcases.

Third subcase,

B = 2 + B�n + 1� ↗ when B = − 1, ⇒ n = 2; l = 3, p = 2 ↘ when B = − 2, ⇒ n = 1; l = 2, p = 1.

Substituting the first type of relation of the third subcase in Eq. �10� and solving the set of a
given system of equations we obtain the following results:

�2 = −
k�1�8a�4�1

2 − 3�2�
3�2 + a�1

2�3�1�2 − 8�4� + 8�1�4�3br − a2�
,

A2 =
6kr�1�1

2

3�2 + a�1
2�3�1�2 − 8�4� + 8�1�4�3br − a2�

, �15�

�3 = − 4�4,
1, a, b, and r are arbitrary constants.
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Substituting the second type of relation of the third subcase in Eq. �10� and solving the set of
given system of equations we obtain the following results:

�2 = −
k�1�2a�4�1

2 − �2�
12br�1�4�1

4 − �1 + 4a�1�1
2��2a�4�1

2 − �2�
,

A = � 6kr�1�1
2

12br�1�4�1
4 − �1 + 4a�1�1

2��2a�4�1
2 − �2�

� , �16�

�3 = − 2�4,

1, a, b, and r are arbitrary constants.
Fourth subcase,

B = 4 + B�n + 1� ↗ when B = − 1, ⇒ n = 4; l = 5, p = 4 ↘ when B = − 2, ⇒ n = 2; l = 3, p = 2.

Substituting the first type of relation of the fourth subcase in Eq. �10� and solving the set of a
given system of equations we obtain the following results:

�2 = −
k�1

1 + a�1�1
2 , A = ± � − rk�1

4b�4�1 + a�1�1
2�
�1/4

,

�17�
�3 = − 6�4,

here �1, satisfies the following relation:

�2 + a�5�1�2 − 32�4��1
2 − 32a2�1�4�1

4 = 0, �18�

, b, and r are arbitrary constants.
Substituting the second type of relation of the fourth subcase in Eq. �10� and solving the set

f a given system of equations we obtain the following results:

�2 = −
k�1

1 + 4a�1�1
2 , A2 = −

rk�1

b�4�1 + a�1�1
2�

,

�19�
�3 = − 3�4,

here �1, should satisfy the following relation:

3�2 + 4a�3�1�2 − 4�4��1
2 − 64a2�1�4�1

4 = 0, �20�

, b, and r are arbitrary constants.
From the case 2, taking l=1 and p=n, substituting these relations in Eq. �9� and collecting all

erms with the same power of F, we obtain the following equation:

2ABr�1�2�1
2�2 − 3B + B2�FB + 2AB��2�1 + k�1 + �2 + aB2�1�2�1

2�FB+2 + ABb�1�2�1
2�2 + 3B

+ B2�FB+4 + 2A1+nBnr�1
3��3B�nB − 1� + �4�2 − 3Bn + B2n2��FB�n+1� + 2aA1+nB3n2�1

3��3

+ n�4�F2+B�n+1� + A1+nBnb�1
3�B�3�Bn + 1� + �4�2 + 3Bn + B2n2��F4+B�1+n� = 0. �21�

Proceeding in the same manner as above, for �2−3B+B2�=0 �B=1 or B=2� then the coeffi-
ient of power FB+4 which should be different of zero, may enter into another relation if only we
ave the following relations.

First subcase,
B + 4 = B�n + 1� ↗ when B = 1, ⇒ n = 4; l = 1, p = 4 ↘ when B = 2, ⇒ n = 2; l = 1, p = 2.
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Substituting the first type of relation of the first subcase in Eq. �21� and solving the set of a
iven system of equations we have found that there is no solution for this first subcase.

Second subcase,

B + 4 = 2 + B�n + 1� ↗ when B = 1, ⇒ n = 2; l = 1, p = 2 ↘ when B = 2, ⇒ n = 1; l = 1, p = 1.

Substituting the first type of relation of the second subcase in Eq. �21� and solving the set of
given system of equations we obtain the following results:

�2 =
8aA2�4�1

3b�1
, A2 = − � 3b�1�k + �2�

8�2�a − �3br − a2��1�1
2�
� ,

�22�
�3 = − 4�4,

1, a, b, and r are arbitrary constants.
Substituting the second type of relation of the second subcase in Eq. �21� and solving the set

f a given system of equations we obtain the following results:

�2 =
2aA�4�1

3b�1
, A = − � 3b�1�k + �2�

2�2�a − 2�3br − 2a2��1�1
2�
� ,

�23�
�3 = − 2�4,

1, a, b, and r are arbitrary constants.
If now, it is �2+3B+B2�=0 �B=−1 or B=−2� then it is the coefficient of power FB which

hould be different of zero, may enter into another relation if only we have the following relations.
Third subcase,

B = 2 + B�n + 1� ↗ when B = − 1, ⇒ n = 2; l = 1, p = 2 ↘ when B = − 2, ⇒ n = 1; l = 1, p = 1.

Substituting the first type of relation of the third subcase in Eq. �21� and solving the set of a
given system of equations we have found the following results:

�2 = −
a�1�k + �2�

a − �3br − a2��1�1
2 , A2 = � 3r�1�2

4a�4�1
� ,

�3 = − 4�4, �24�

1, a, b, and r are arbitrary constants.
Substituting the second type of relation of the third subcase in Eq. �21� and solving the set of

given system of equations we obtain the following results:

�2 = − � a�1�k + �2�
a − 2�3br − 2a2��1�1

2�, A =
3r�4�2

a�4�1
,

�25�
�3 = − 2�4,

1, a, b, and r are arbitrary constants.
Fourth subcase,

B = 4 + B�n + 1� ↗ when B = − 1, ⇒ n = 4; l = 1, p = 4 ↘ when B = − 2, ⇒ n = 2; l = 1, p = 2.

Substituting the first type of relation of the second subcase in Eq. �21� and solving the set of

given system of equations we have found that there is no solution for this subcase.
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Since in all these cases, r, a, and b are arbitrary constants, we may choose them properly such
hat the corresponding solution F of the ODE �8� is one of the Jacobi elliptic, combined Jacobi
lliptic functions.

If r=1, a=−�1+m2�, b=2m2, then the solution is

U1 = A�sn���m��B, �26a�

r

U2 = A�cd���m��B 	 A
 cn���m�
dn���m��B

, �26b�

here 0�m�1, is called modulus of Jacobi elliptic functions, and sn�� �m� is the Jacobi elliptic
ine function, see Refs. 34 and 35.

If r=1−m2, a=2m2−1, b=−2m2, then the solution is

U3 = A�cn���m��B, �27�

here cn�� �m� is the Jacobi elliptic cosine function, see Refs. 34 and 35.
If r=m2−1, a=2−m2, b=−2, then the solution is

U4 = A�dn���m��B, �28�

here dn�� �m� is the Jacobi elliptic function of the third kind, see Refs. 34 and 35.
If r=m2, a=−�1+m2�, b=2, then the solution is

U5 = A�ns���m��B 	 A
 1

sn���m��B

, �29a�

r

U6 = A�dc���m��B 	 A
dn���m�
cn���m� �B

. �29b�

f r=−m2, a=2m2−1, b=2�1−m2�, then the solution is

U7 = A�nc���m��B 	 A
 1

cn���m��B

. �30�

If r=−1, a=2−m2, b=2�m2−1�, then the solution is

U8 = A�nd���m��B 	 A
 1

dn���m��B

. �31�

If r=1−m2, a=2−m2, b=2, then the solution is

U9 = A�cs���m��B 	 A
 cn���m�
sn���m� �B

. �32�

If r=1, a=2−m2, b=2�1−m2�, then the solution is

U10 = A�sc���m��B 	 A
 sn���m�
cn���m��B

. �33�

If r=1, a=2m2−1, b=2m2�m2−1�, then the solution is

U11 = A�sd���m��B 	 A
 sn���m�
dn���m��B

. �34�

2 2 2
If r=m �m −1�, a=2m −1, b=2, then the solution is
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U12 = A�ds���m��B 	 A
dn���m�
sn���m� �B

. �35�

If r=1/4, a= �1−2m2� /2, b=1/2, then the solution is

U13 = A�ns���m� ± cs���m��B. �36�

If r= �1−m2� /4, a= �1+m2� /2, b= �1−m2� /2, then the solution is

U14 = A�nc���m� ± sc���m��B. �37�

If r=m4 /4, a= �m2−2� /2, b=1/2, then the solution is

U15 = A�ns���m� + ds���m��B. �38�

If r=m2 /4, a= �m2−2� /2, b=m2 /2, i2=−1 then the solution is

U16 = A�sn���m� ± i cn���m��B. �39�

n addition, we see that other solutions are obtained in case of degeneracies, when m→0, the
acobi elliptic and combined Jacobi elliptic functions degenerate to the trigonometric functions of
he given NLPDE �1�, i.e., sn�� �m�→sin���, cn�� �m�→cos���, dn�� �m�→1, ns�� �m�

csc�� �m�, cs�� �m�→cot���, ds�� �m�→sec���, when m→1, the Jacobi elliptic and combined
acobi elliptic functions degenerate to the soliton and combined soliton wave solutions of the
iven NLPDE �1�, i.e., sn�� �m�→ tanh���, cn�� �m�→sech���, dn�� �m�→sech���, ns�� �m�

coth���, cs�� �m�→csch���, ds�� �m�→csch���.
So we can derive solutions expressed in terms of trigonometric functions and hyperbolic

unctions, we omit them for simplicity.
It is worth noticing that the Jacobi transformation dn�� �m�=cn��m� �m−1� �Ref. 36� implies

hat any solution found by the dn function may be transformed into an equivalent one that can be
btained by the cn function. Moreover, since other Jacobi elliptic function and combined Jacobi
lliptic function solutions obtained here from a mathematics point of view as solutions of Eq. �8�
ave singularities, and since it is well known from a physics point of view that the singular
olutions cannot have any meaning in the applications, we may focus only on nonsingular solu-
ions among the listed mathematical solutions. When B�0 �i.e., B=1 or B=2� nonsingular solu-
ions are given by �26a�, �27�, and �28�. When B�0 �i.e., B=−1 or B=−2� nonsingular solutions
re selected to be �29a�, �30�, and �31�. Another interesting fact here is that by selecting B=−1 �or
=−2�, the solutions �29a�, �30�, and �31� are reduced to the same family of solutions as �26a�,

27�, and �28�, respectively, when B=1 �or B=2�.
Taking into account the above-mentioned remarks, we have plotted for B=1 and B=2, Figs.

–6 to illustrate our study or to raise the physics value of our study.

II. CONCLUSION

In this work, we have applied an indirect F-function method very close to the F-expansion
ethod to solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully

onlinear convection term C�l ,n ,p�. By using this F-function method, we have been able to obtain
n a unified way simultaneously many periodic wave solutions expressed by various single and
ombined nondegenerative Jacobi elliptic function solutions and their degenerative solutions
when the modulus m is driven to 1 and 0�. This method gives elliptic solutions for specific values
f the parameters n , p , l and for arbitrary values of �1 and �2, but �3 and �4 must be proportional
ith the proportionality constants for various cases given explicitly. In the various Camassa-Holm

lasses listed below, �3 is replaced by the appropriate expression of �4. The following Camassa-
olm family of equations has been solved by this indirect F-function method,

5 4 4
Ut + kUx + �1Uxxt + �2�U �x = �4�6Ux�U �xx − U�U �xxx� ,
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IG. 1. The plot of sn, tanh, cn, and sech solutions, respectively. These nonsingular solutions are the structure graphs of
q. �11�, that is, Ut+kUx+�1Uxxt+�2�U5�x=�4�6Ux�U4�xx−U�U4�xxx�. The first two graphs are obtained for the values

1=−1.00, �2=1.50, �4=−0.75, k=−2.00, meanwhile the last two graphs have the same parameter values except that
=0.75.
4
IG. 2. The plot of sn2, tanh2, cn2, and sech2 solutions, respectively. These nonsingular solutions are the structure graphs
f Eq. �12�, that is, Ut+kUx+�1Uxxt+�2�U3�x=�4�3Ux�U2�xx−U�U2�xxx�. The first two graphs are obtained for the values

1=−1.00, �2=1.50, �4=−0.75, k=−2.00, meanwhile the last two graphs have the same parameter values except that
4=0.75, k=2.00.
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IG. 3. The plot of sn, tanh, cn, and sech solutions, respectively. These nonsingular solutions are the structure graphs of
q. �13�, that is, Ut+kUx+�1Uxxt+�2�U3�x=�4�4Ux�U2�xx−U�U2�xxx�. The first two graphs are obtained for the parameter
alues �1=−1.00, �2=1.5, �4=−0.75, k=−2.00, �1=0.65, meanwhile the last two graphs have the same parameter values

ut for �4=0.75, k=2.00.
IG. 4. The plot of sn2, tanh2, cn2, and sech2 solutions, respectively. These nonsingular solutions are the structure graphs
f Eq. �14�, that is, Ut+kUx+�1Uxxt+�2�U2�x=�4�2Ux�U�xx−U�U�xxx�. The first two graphs are obtained for the values

1=−1.00, �2=1.50, �4=−0.75, k=−2.00, �1=0.65, meanwhile the last two graphs have the same parameter values except

hat �4=0.75, k=2.00.
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IG. 5. The plot of sn, tanh, cn, and sech solutions, respectively. These nonsingular solutions are the structure graphs of
q. �22�, that is, Ut+kUx+�1Uxxt+�2�U�x=�4�4Ux�U2�xx−U�U2�xxx�. The first two graphs are obtained for the values �1

−1.00, �2=1.50, �4=−0.75, k=−2.00, �1=0.65, meanwhile the last two graphs have the same parameter values but for
=0.75, k=2.00.
4
IG. 6. The plot of sn2, tanh2, cn2, and sech2 solutions, respectively. These nonsingular solutions are the structure graphs
f Eq. �23�, that is, Ut+kUx+�1Uxxt+�2�U�x=�4�2Ux�U�xx−U�U�xxx�. The first two graphs are obtained for the values

1=−1.00, �2=1.50, �4=−0.75, k=−2.00, �1=0.65, meanwhile the last two graphs have the same parameter values except

hat �4=0.75, k=2.00.
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Ut + kUx + �1Uxxt + �2�U3�x = �4�3Ux�U2�xx − U�U2�xxx� ,

Ut + kUx + �1Uxxt + �2�U3�x = �4�4Ux�U2�xx − U�U2�xxx� ,

Ut + kUx + �1Uxxt + �2�U2�x = �4�2Ux�U�xx − U�U�xxx� ,

Ut + kUx + �1Uxxt + �2�U�x = �4�4Ux�U2�xx − U�U2�xxx� ,

Ut + kUx + �1Uxxt + �2�U�x = �4�2Ux�U�xx − U�U�xxx� .
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Let H=−�x
2+V�x� be a properly defined Schrödinger operator on L2�R� with real

potentials of the form V�x�=q�x�+ p��x� �the derivative is understood in the distri-
butional sense� with some p ,q�L2�R�. We prove that the absolutely continuous
spectrum of H fills �0, � � which was previously proven by Deift-Killip for V
�L2�R�. We also refine the 3/2-Lieb-Thirring inequality. © 2005 American Insti-
tute of Physics. �DOI: 10.1063/1.2142837�

. INTRODUCTION

The spectral L2-conjecture was stated first by Kiselev-Last-Simon in Ref. 7 for the one-
imensional case and later by Simon in Ref. 14 for the generic case. It says: let Hª−�+V�x�,
�Rd, be the Schrödinger operator on L2�Rd� and V is a real measurable function. If

� �V�x��2�x�1−ddx � � �1.1�

hen the absolutely continuous �a.c.� spectrum1 �a.c.�H� of H is R+ª �0, � �.
This conjecture has drawn considerable attention. To the best of our knowledge, the case d

1 remains an open problem. For d=1 it was affirmatively settled in 1999 by Deift-Killip with
revious contributions by Kiselev, Christ-Kiselev, Remling, and others �see, Refs. 14 and 15 for
xtended literature�. The Deift-Killip result is sharp in the scale of Lp spaces.7 In 2001 this result
as extended by Molchanov-Novitskii-Vainberg10 to read �p�N�

V � Hp−1�R� � Lp+1�R� ⇒ �a.c.�H� = R+,

here Hp−1 denotes the Sobolev space.
In all previous cases potentials are assumed to be regular �locally integrable� functions. At

bout the same time with the above-mentioned activity Savchuk-Shkalikov13,12 �with contributions
rom Hryniv-Mykytuyk5� were systematically studying Sturm-Liouville operators with singular
distributional� potentials. Among others, Savchuk-Shkalikov were able to properly define one-
imensional Schrödinger operators with potentials from the Sobolev space H−1�R�, i.e., the space
f all generalized functions f subject to

� � f̂����2
d�

�2 + 1
� � .

ere f̂ stands for the Fourier transform of f .
In the current note we combine the Savchuk-Shkalikov approach to distributional potentials

nd the Deift-Killip idea to use the Faddeev-Zhakharov trace formulas to prove

�Electronic mail: ffavr@uaf.edu
I.e. the essential support of the absolutely continuous component of the spectral measure of the operator H.

46, 123505-1022-2488/2005/46�12�/123505/8/$22.50 © 2005 American Institute of Physics
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V � H−1�R� ⇒ �a.c.�H� = R+.

Our main tool is a new sum rule �Theorem 1� which in a way can be interpreted as the second
addeev-Zhakharov trace formula �2.5� at a finite energy. This formula also allows one to gener-
lize the 3/2-Lieb-Thirring bounds to singular potentials. Note that in the distributional sense
very function V from H−1 has a form

V = q + p� where p,q � L2�R� . �1.2�

he main advantage of our approach is that it allows one to unify the study of slowly decaying
otentials with such potentials as oscillatory Wigner von Neumann type, Coulomb, delta, etc.,
hich have traditionally been treated separately.

I. REGULARIZED DISPERSION FORMULA AND A TRACE INEQUALITY

Through this section we deal with pairs �H ,H0� of operators

H0 = − �x
2, H = H0 + V�x� �2.1�

n L2�R� under a very generous assumption that V= V̄�C0
��R�, where C0

��R� is the class of
mooth compactly supported function on R. Observe that �Sp , p�0, denote Schatten-von Neu-
ann classes of linear operators A:

A � Sp ⇔ �A�Sp

p
ª tr�A*A�p/2 � � .

n particular S1 is the trace class and S2 is the Hilbert-Schmidt class. The norms of A in S1 ,S2

re, respectively, �A�S1
= tr�A*A�1/2 , �A�S2

= �tr�A*A��1/2�.

V � C0
��R� ⇒ VR�

0 � S1, R�
0
ª R��H0� ª �H0 − ��−1,

nd hence the perturbation determinant

���� ª det�H − ���H0 − ��−1 = det�I + VR�
0�

xists and is an analytic function on C \R+ with a finite number N of simple zeros −�n
2 on R−. The

ransmission coefficient t�k� can be analytically extended from R to C+ by

t�z� = �−1�z2�, z � C+, �2.2�

nd for sufficiently large z,

�t�z�� 	 C�z�−1.

or the spectra of H ,H0 one has

��H0� = �a.c.�H0� = R+, ��H� = �− �n
2	n=1

N � ��H0� ,

ll eigenvalues −�n
2 being simple and N��. What has been said actually implies the dispersion

ormula

log t−1�z� = 

n=1

N

log
z − i�n

z + i�n
+

1

i

� log�t�k��−1

k − z
dk , �2.3�

hich was used by Faddeev-Zhakharov �FZ�3 to derive their famous trace formulas �sum rules�:

− 

N

�n +
1

2

� log�t�k��−1dk =

1

4
� V�x�dx �2.4�
n=1
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�the first FZ trace formula� ,

2

3

n=1

N

�n
3 +

1



� k2 log�t�k��−1dk =

1

8
� V2�x�dx �2.5�

�the second FZ trace formula� ,

tc. Recall that �2.4� and �2.5� can merely be obtained by comparing the corresponding coeffi-
ients in the asymptotic expansions of both sides of �2.3� in z−n as �z � →�. Let V be the operator
f multiplication by V�C0

��R�. Introduce

Q��� ª �R�
0�1/2V�R�

0�1/2, � � C \ R+, �2.6�

here �R�
0�1/2 is the principle branch of R�

0. The operator Q��� is clearly bounded and represents
n analytic operator-valued function in C \R+. We will need the following technical lemma.

Lemma 1: If V= V̄�C0
��R� then for any a�0,

�Qa�S2

2 =
1

a
� �V̂����2

d�

�2 + �2a�2 = �V�a
2, �2.7�

here

Qa ª Q�− a2�, a � 0.

Proof: By straightforward computation. �

The following assertion is a derivation of �2.3�.
Theorem 1: Let �H ,H0� be defined by �2.1� and V= V̄ �C0

��R�. Then �z�C+�

log t−1�z� +
1

2iz
� V�x�dx = 


n=1

N �log
z − i�n

z + i�n
+

2i�n

z
� +

1

i
z
�

0

� k2 log�t�k��−1

k2 − z2 dk . �2.8�

n particular if we choose a�0 so that

�Qa� � 1 �2.9�

hen



n=1

N �log
a + �n

a − �n
−

2�n

a
� +

1


a
�

0

� k2 log�t�k��−1

k2 + a2 dk = log det�I + Qa�e−Qa 	 log�1 − �Qa�S2

2 �−1.

�2.10�

Proof: By the general properties �t�k� � 	1 and t�−k�= t�k� , k�R, of the transmission coeffi-
ient t�k�, the function

f�k� ª
1



log�t�k��−1

s integrable, non-negative, even and hence

� f�k�
k − z

dk = −
1

z
� f�k�dk +

1

z2 � k2f�k�
k − z

dk = −
1

z
� f�k�dk +

2

z
�

0

� k2f�k�
k2 − z2dk . �2.11�
e have used here the obvious identity
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1

k − z
= −

k

z2 −
1

z
+

1

z2

k2

k − z
.

y �2.4�

� f�k�dk = 2

n=1

N

�n +
1

2
� V�x�dx

nd �2.11� can be continued

� f�k�
k − z

dk = −
2

z


n=1

N

�n −
1

2z
� V�x�dx +

2

z
�

0

� k2f�k�
k2 − z2dk . �2.12�

lugging �2.12� into �2.3� one has

log t−1�z� = 

n=1

N

log
z − i�n

z + i�n
+

2

iz


n=1

N

�n −
1

2iz
� V�x�dx +

2

iz
�

0

� k2f�k�
k2 − z2dk ,

nd rearranging its terms yields �2.8�.
Evaluate now the left-hand side of �2.8�. For V�C0

��R� both operators VR�
0 and

R�
0�1/2V�R�

0�1/2, ��C \R+, are trace class and hence

tr�R�
0�1/2V�R�

0�1/2 = tr VR�
0 =� V�x�

− 1

2i�
dx = −

1

2i�
� V�x�dx .

ntroducing the regularized perturbation determinant

�2��� ª det��1 + Q����exp�− Q����	 ,

e have

�2��� = det�1 + Q���� · exp�− tr Q����

=det�1 + VR�
0� · exp�− tr VR�

0� = ����exp�− tr VR�
0� ,

hich for �=z2 , z�C+, due to �2.2� implies

log t−1�z� +
1

2iz
� V�x�dx = log �2�z2� .

et now z= ia , a�0, and choose a to satisfy �2.9�. One has

log �2�− a2� = log det�I + Qa�e−Qa

=tr log�I + Qa�−1eQa = tr�Qa − log�I + Qa��

=tr

n�2

1

n
�− Qa�n = tr


n�1
� 1

2n
Qa

2n −
1

2n + 1
Qa

2n+1�
=tr


n�1

1

2n
Qa

2n�1 −
2n

2n + 1
Qa� ,
hich implies
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log det�I + Qa�e−Qa 	 

n�1

1

2n
�1 −

2n

2n + 1
Qa� · tr Qa

2n

	 

n�1

1

n
�Qa

n�S2

2 = log�1 − �Qa�S2

2 �−1.

nd �2.10� is completely proven. �

Remark 1: �2.5� can be obtained from �2.10� by multiplying it by a3 and then taking a→�.
ote in this connection that a similar to �2.10� relation was recently used by Denisov2 in the case
f Krein systems.

Remark 2: Identity �2.10� can actually be viewed as the first formula in a certain chain of
race formulas. In the context of Jacobi matrices, similar relations were recently obtained by
aptev-Naboko-Safronov,8 who further developed some ideas due to Killip-Simon.6

II. IMPEDANCE FORM OF SCHRÖDINGER OPERATORS WITH SINGULAR POTENTIALS

Particular cases of singular potentials �i.e., not locally integrable� like delta and Coulomb
otentials were considered by many authors. However a systematical treatment of H−1 potentials
which include delta and Coulomb potentials� appears to have been originated by Savchuk-
hkalikov in about 1998 �see, e.g., Ref. 13, and the literature therein�. We emphasize that singular
erturbations of self-adjoint operators have been studied even earlier but the author was unable to
nd out if a general theory of singular perturbations was linked to singular potentials. Following
avchuk-Shkalikov, we rewrite

H = − �x
2 + V�x� on L2�R�

ith V�H−1�R� in the impedance form

H = − �x��x − p�x�� − p�x��x + q�x� �3.1�

ith some p ,q�L2�R� from decomposition �1.2�. On the domain

Dom H = �u � L2�R�:u, u� − p�x�u � ACloc�R�,Hu � L2�R�	 , �3.2�

here ACloc�R� denotes the set of locally a.c. functions on R� the operator H is self-adjoint in L2�R�
nd Dom H does not depend on a specific choice of p ,q�L2�R� in �1.2�. Moreover, if �Ṽ	 is a

equence of real valued functions from C0
��R� convergent in H−1�R� to V then the sequence �H̃	,

=−�x
2+ Ṽ�x�, converges in the uniform resolvent sense to H defined by �3.1�. That is

�V − Ṽ�H−1�R� → 0 ⇒ �R��H� − R��H̃�� → 0, Im � � 0. �3.3�

ere and in the sequel we agree to mark all objects related to Ṽ with a tilde. The corresponding
etails can be found in Ref. 13. We only note that the key ingredient here is the following
epresentation

Y� = � p�x� 1

q�x� − p2�x� − � − p�x�
�Y, Y ª � u

u�1� � �3.4�

f the Schrödinger equation

− u� + V�x�u = �u, V�x� = p��x� + q�x� ,

here u�1�
ªu�− p�x�u is the so-called quasiderivative of u. Since p ,q�L2�R� Eq. �3.4� is solv-

ble and Y = �u ,u�−V�x�u��ACloc�R� �although u� need not be continuous�. The definition of the

ronskian W�y1 ,y2� of two functions y1 ,y2 should be modified to read
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W�y1,y2� = y1y2
�1� − y1

�1�y2,

hich of course agrees with the usual Wronskian if y1 ,y2�ACloc�R�. With this in hand, one can
evelop the Weyl theory and prove the existence of the Weyl solutions �±�x ,���L2�R±�, Im �
0. The Titchmarsh-Weyl m-functions M±��� should then be defined as

M±��� = ±
�±

�1��0,��
�±�0,��

.

unctions M± are Herglotz �i.e., mapping C+ into C+� which representing measures are the spectral
easures of the corresponding half-line Schrödinger operators with a Dirichlet boundary condition

t 0. Note that if V�L1,loc�R� then

M±��� = m±��� − p�0� ,

here m± are the usual Titchmarsh-Weyl m-functions, and one can immediately see that

M+��� + M−��� = m+��� + m−���, Im M±��� = Im m±��� . �3.5�

The Weyl theory is parallel to its regular counterpart. In particular

�V − Ṽ�H−1�R� → 0 ⇒ M̃±�z� → M±�z� �3.6�

n compact subsets of C+. The arguments are similar to those of Lemma 1 in Ref. 1 with the
econd Hilbert resolvent identity replaced with

R� − R�
0 = �R�

0�1/2��I + Q����−1 − I	�R�
0�1/2, R� ª R��H� .

t follows from �3.6� that the spectral measure of H̃ defined on L2�R±� with the Dirichlet boundary
ondition u�±0�=0 weakly converges to the spectral measure of H defined on L2�R±� with the
ondition u�±0�=0, respectively.

V. THE MAIN RESULTS

Theorem 2: Let V= V̄�H−1�R� and H defined by �3.1� on domain �3.2�. Then

�a.c.�H� = R+. �4.1�

Theorem 3: Assuming conditions of Theorem 2, let �−�m
2 	m�1 be the set of negative eigenval-

es of H enumerated in the increasing order. Then for any a�sup �1 such that

�Qa�S2

2 =
1

a
� �V̂����2

d�

�2 + �2a�2 � 1

he following inequality holds:



n�1

2

2n + 1 

m�1

��m

a
�2n+1

	 log�1 −
1

a
� �V̂����2

d�

�2 + �2a�2�−1

. �4.2�

Proof: Let �Ṽ	 be sequence of C0
� potentials approximating V in H−1 and choose a to satisfy

Qã�S2
�1. Notice that if � � �1 then

log
1 + 

1 − 
− 2 = 2


n�1

2n+1

2n + 1
� 0 �4.3�
nd one easily sees that all terms in �2.10� are non-negative and hence
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1


a
�

0

� k2log�t̃�k��−1

k2 + a2 dk 	 log�1 − �Qã�S2

2 �−1, �4.4�



n=1

Ñ �log
a + �̃n

a − �̃n

−
2�̃n

a
� 	 log�1 − �Qã�S2

2 �−1. �4.5�

he conclusion of Theorem 2 now follows from �4.4� by adopting the Deift-Killip arguments �Ref.
, Theorem 1�. Indeed, a priori estimate �4.4� replaces

1



� k2 log�t̃�k��−1dk 	

1

8
� Ṽ2�x�dx ,

hich was a crucial ingredient of Ref. 1 �which, in turn, follows from �2.5��. Instead of �see also
ef. 4�

�t̃�k�� =
2Im m̃+�k2 + i0�Im m̃−�k2 + i0�

�m̃+�k2 + i0� + m̃−�k2 + i0��
,

e use

�t̃�k�� =
2Im M̃+�k2 + i0�Im M̃−�k2 + i0�

�M̃+�k2 + i0� + M̃−�k2 + i0��
,

hich, due to �3.5�, coincide for at least smooth potentials. Finally, with �3.6� in hand the Deift-
illip limiting arguments go through.

The conclusion of Theorem 3 follows from �4.5�. Indeed, due to �3.3�, �̃n→�n and hence
nequality �4.5� retains in the limit. Estimate �4.2� now follows in view of �4.3�. �

Remark 3: Inequality �4.2� is a generalization of the 1D Lieb-Thirring bound �see, e.g., Refs.
and 16�



n�1

�n
3 	 C� V−

2�x�dx, V−�x� ª min�0,V�x�	 ,

o the case of H−1 potentials. It is just enough to consider �4.2� for V−�x�=min�0,V�x�	�L2�R�
nd pass to the limit as a→ � . We especially note that in the H−1 setting we cannot in general
eparate V− and V+ since V�H−1�R� need not imply V−�H−1�R�.

Remark 4: One can easily see that the space l2�L1� defined as

l2�L1� ª � f:

n
��

n

n+1

�f�x��dx�2

� � �
s a proper subset of H−1�R� and Theorem 2 quickly recovers the main result of Ref. 11 stating that

V � l2�L1� ⇒ �a.c.�H� = R+.
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An algorithmic framework is presented to find an extended tree of nonlocally
related systems for a given system of differential equations �DEs�. Each system in
an extended tree is equivalent in the sense that the solution set for any system in a
tree can be found from the solution set for any other system in the tree. Useful
conservation laws play an essential role in the construction of an extended tree. A
useful conservation law yields potential variables and equivalent nonlocally related
potential systems and subsystems for any given system. Nonlocal symmetries for a
given system of DEs can arise from any system in its extended tree. We construct
extended trees for the systems of planar gas dynamics and nonlinear telegraph
equations, and in both cases obtain new nonlocal symmetries. More importantly,
due to the equivalence of solution sets, any coordinate-independent method of
analysis �qualitative, numerical, perturbation, etc.� can be applied to any system
within the tree, and may yield simpler computations and/or results that cannot be
obtained when the method is directly applied to the given system. © 2005 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2142834�

. INTRODUCTION

The potential symmetry approach1–5 is an algorithmic procedure for seeking nonlocal sym-
etries of systems of differential equations �DEs�. To be directly applicable, this approach re-

uires the existence of a conservation law of a given system. Each conservation law allows the
ntroduction of one or more auxiliary potential variables which are nonlocally defined with respect
o the original dependent variables.6–8 The resulting �extended� potential system yields nonlocal
ymmetries of the given system of DEs if it admits local symmetry generators that do not project
nto local symmetry generators of the given system.

A symmetry of a system of DEs is any transformation of its solution manifold into itself �i.e.,
symmetry transforms any solution to another solution of the same system�. Hence, in general,

ymmetry transformations are defined topologically and are not restricted to point or contact �more
enerally local� transformations acting on the given system’s dependent and independent vari-
bles. However, to perform calculations, a nonlocal symmetry transformation should be a local
ransformation acting on the space of variables of an auxiliary system equivalent to the given
ystem. As has been shown in many examples, local symmetries obtained directly by Lie’s algo-
ithm do not include all calculable symmetries of a given system. However, the application of
ie’s algorithm to related auxiliary systems systematically yields a search for nonlocal symmetries
f the given system.

Further extensions arise. Starting from a potential system of DEs, one may continue to obtain
grander potential system resulting from any conservation law of the potential system. Further-
ore, starting from a potential system, one may obtain nonlocally related subsystems �in addition

�Electronic mail: bluman@math.ubc.ca
�
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o the original given one� by “excluding” dependent variables from the potential system. For
xample, the �1+1�-dimensional system of planar gas dynamics equations E�x , t ,v , p ,��=0 in
ulerian coordinates with independent variables x=position, t=time, and dependent variables v
velocity, p=pressure, �=density, gives rise to potential systems G�x , t ,v , p ,� ,r�=0,
�x , t ,v , p ,� ,r ,w�=0, and Z�x , t ,v , p ,� ,r ,w ,z�=0 with auxiliary potential variables r ,w ,z and

o various subsystems with fewer dependent variables �Sec. III�. This allows one to introduce the
otion of a “tree of nonlocally related potential systems and subsystems” originating from a given
ystem of DEs. It is important to note that a given system, its related potential systems and
ubsystems contain all solutions of each other, i.e., any solution of a related potential system or
ubsystem yields a solution of the given system and, mutatis mutandi, any solution of the given
ystem yields a solution of any related potential system or subsystem. But the solution relationship
s nonlocal since it is never one-to-one.

In general, the admitted point symmetries of a given system, its related potential systems and
ubsystems can be very different �e.g., Ref. 9�. It can happen that a point symmetry of a given
ystem is a nonlocal symmetry of a related potential system and, conversely, a point symmetry of
related potential system is a nonlocal symmetry of the given system. Moreover, it can happen

hat a point symmetry of the given system which is a nonlocal symmetry of a related potential
ystem reappears as a point symmetry of a grander potential system.9,10 Within a tree of potential
ystems, a “grand” system may exist that incorporates all point symmetries of the related systems
ith fewer potential variables as point symmetries in the grand system. Moreover, the grand

ystem could admit point symmetries that are nonlocal symmetries of all related systems.9,10

The problem of finding trees of potential systems is particularly important when a given DE
ystem contains arbitrary �constitutive� functions where one is interested in the question of sym-
etry classification with respect to specific forms of such functions. For different forms of the

onstitutive functions, the sets of conservation laws and consequent trees of related potential
ystems and subsystems can be different. Here, isolating useful systems and subsystems is of great
mportance.

If a given system of DEs has one of its equations written as a conservation law, then the
onservation law equation is a natural way of leading to a related potential system and subsequent
ree. In general, for any system of DEs the algorithmic direct construction method11,12 yields its
onservation laws. In particular, this method obtains factors multiplying each DE in the system so
hat the resulting linear combination of equations leads to a conservation law whose conserved
ensities are found from an integral formula. A resulting potential system �and subsequent ex-
ended tree� is found by replacing one of the DEs in such a linear combination by the conservation
aw. The factor multiplying the replaced DE must have the property that the solution set will not
e modified when the conservation law replaces this DE. A useful conservation law for obtaining
potential system from any given system has at least one factor with this property.

The outline of this paper is as follows. In Sec. II, we present the general framework for the
lgorithmic construction of trees of potential systems and subsystems for a given system of DEs.
n Sec. III, as a first example we consider the �1+1�-dimensional system of planar gas dynamics
PGD� equations5,14 in detail within the potential system framework. Some nonlocal symmetries
or the PGD system were found by Akhatov et al.14 through a heuristic approach. Here, we use the
ystematic conservation law/potential symmetry framework to derive an extended tree of potential
ystems which includes the PGD systems in Euler and Lagrange coordinates. Our work clarifies
nd extends the work presented in Ref. 14. In particular, we obtain new nonlocal symmetries for
GD systems by a direct study of systems of the extended tree. In Sec. IV, as a second example
e consider the nonlinear telegraph �NLT� equation.9,13 Here, we show how to extend the results

n Ref. 9 by introducing further potential variables. Using conservation laws for particular forms
f the constitutive functions,13 we construct extended trees for each such form. Further remarks
re presented in Sec. V.

The analysis of systems of DEs through consideration of trees of potential systems and
ubsystems has evident practical value. First, it allows one to calculate systematically nonlocal

ymmetries using Lie’s algorithm, which in turn are useful for obtaining new exact solutions from
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nown ones, for constructing invariant and nonclassical solutions, for discovering and construct-
ng linearizations, etc. Second, and perhaps more importantly, any general method of analysis
qualitative, numerical, perturbation, conservation laws, etc.� that is being considered for a given
E system may be tried again on nonlocally related potential systems or subsystems, since all

uch related systems contain all solutions of the given system. In particular, since the systems are
elated in a nonlocal manner, new results may be obtained for any method of analysis that is not
oordinate dependent.

I. ALGORITHMIC CONSTRUCTION OF TREES OF POTENTIAL SYSTEMS
ND SUBSYSTEMS TO OBTAIN NONLOCAL SYMMETRIES

Consider a PDE system of m equations R�x , t ,u�= �R1�x , t ,u� , . . . ,Rm�x , t ,u��=0, with two
ndependent variables �x , t�, and n dependent variables u= �u1 , . . . ,un�.

Suppose that the first equation R1�x , t ,u�=0 of the system is written as a conservation law,

DtT�x,t,u� + DxX�x,t,u� = 0. �2.1�

Definition 2.1: The PDE system S�x , t ,u ,v�=0 given by

vx = T�x,t,u� ,

vt = − X�x,t,u� ,

R2�x,t,u� = 0,

. . . ,

Rm�x,t,u� = 0, �2.2�

s a potential system with a potential variable v=v�x , t� for R�x , t ,u�=0 related to the conservation
aw R1�x , t ,u�=0.

The potential system S�x , t ,u ,v�=0 given by �2.2� is equivalent to the given system
�x , t ,u�=0. In particular, if �u ,v�= �ũ�x , t� , ṽ�x , t�� solves �2.2�, then u= ũ�x , t� solves
�x , t ,u�=0. Conversely, for any solution u= ũ�x , t� of R�x , t ,u�=0, there exists a pair of func-

ions �u ,v�= �ũ�x , t� , ṽ�x , t�� that satisfies �2.2�, with ṽ�x , t� unique to within a constant.
Suppose the system S�x , t ,u ,v�=0 admits a Lie group of point transformations �point sym-

etry�,

x* = x + ��S�x,t,u,v� + O��2� ,

t* = t + ��S�x,t,u,v� + O��2� ,

u*i = ui + ��S
i �x,t,u,v� + O��2� ,

v* = v + ��S�x,t,u,v� + O��2� . �2.3�

X = �S�x,t,u,v�
�

�x
+ �S�x,t,u,v�

�

�t
+ �S

i �x,t,u,v�
�

�ui + �S�x,t,u,v�
�

�v
�2.4�

s the infinitesimal generator of the point symmetry �2.3�. �Throughout this paper, we assume
ummation over a repeated index�.

Definition 2.2: A point symmetry �2.3� is called a potential symmetry of the given system
�x , t ,u�=0 related to the potential system S�x , t ,u ,v�=0 if and only if ���S /�v�2+ ���S /�v�2

�i=1
n ���S

i /�v�2�0, i.e., the infinitesimals �S, �S, �S
i essentially depend on v. Any potential sym-

etry is a nonlocal symmetry of the given system R�x , t ,u�=0.4

Definition 2.3: An equivalent system S�x , t ,ui1 , . . . ,uip ,v�=0, p�n−1 that can be obtained by
xcluding one or more dependent variables uk of the potential system S�x , t ,u ,v�=0, is called a
ubsystem of the potential system S�x , t ,u ,v�=0.
Definition 2.4: A tree of potential systems and subsystems for a given PDE system
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�x , t ,u�=0, with some equations of R�x , t ,u�=0 written directly as conservation laws, is a set of
DE systems composed of R�x , t ,u�=0, all resulting potential systems, and all possible sub-
ystems. We will refer to the number of dependent variables in a subsystem as the level of that
ubsystem.

Remark 2.1: If a potential system, as it is written, includes conservation laws with an essential
ependence on potential variables, a higher potential system can be obtained, as will be illustrated
y examples.

Definition 2.5: A subsystem S�x , t ,ui1 , . . . ,uip−1�=0, obtained from a system
�x , t ,uj1 , . . . ,ujp�=0 by excluding a dependent variable u	, is locally related to
�x , t ,uj1 , . . . ,ujp�=0 if u	 can be directly expressed from the equations of S�x , t ,uj1 , . . . ,ujp�=0 in

erms of x , t, the remaining dependent variables and their derivatives. Otherwise the subsystem
�x , t ,ui1 , . . . ,uip−1�=0 is nonlocally related to S�x , t ,uj1 , . . . ,ujp�=0.

For example, the system

S�x,t,u,v� = 0: �vx − u = 0,

vt − �L�u��x = 0,
�2.5�

as two subsystems,

S1�x,t,u� = 0: ut − �L�u��xx = 0 and S2�x,t,v� = 0: vt = �L�vx��x, �2.6�

here S1�x , t ,u�=0 is nonlocally related to S�x , t ,u ,v�=0, and S2�x , t ,v�=0 is locally related to
�x , t ,u ,v�=0. �Throughout this paper, subindices denote corresponding partial derivatives.�

Definition 2.6: A tree of nonlocally related potential systems and subsystems is obtained from
tree of potential systems and subsystems by removing all locally related subsystems.

Remark 2.2: It is important to emphasize that a given system R�x , t ,u�=0, its related potential
ystems and subsystems, contain all solutions of each other. This directly follows from the way
otentials are introduced in the potential systems and the way dependent variables are excluded in
he subsystems since the integrability conditions always hold. Therefore, one may successfully
pply a method of analysis �qualitative, numerical, perturbation, symmetry, conservation laws,
tc.� to a potential system or a nonlocally related subsystem, even if it fails to be of use when
pplied to the given system R�x , t ,u�=0.

. Example 1: A tree of potential systems and subsystems for the nonlinear diffusion
quation

For the nonlinear diffusion equation, the given PDE system is the conservation law

R�x,t,u� = 0: ut − �L�u��xx = 0, �2.7�

here the constitutive function L�u� is related to the diffusion function K�u�=L��u�. Consequently,
he related potential system is given by

S�x,t,u,v� = 0: �vx − u = 0,

vt − �L�u��x = 0,
�2.8�

nd the subsystem S�x , t ,v�=0 is given by the equation

S�x,t,v� = 0: vt = �L�vx��x. �2.9�

The second equation of �2.8� is a conservation law, and hence it gives rise to another potential

ariable w, and higher potential system T�x , t ,u ,v ,w�=0 �Remark 2.1� given by
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T�x,t,u,v,w� = 0: 	vx − u = 0,

wx − v = 0,

wt − L�u� = 0,

�2.10�

nd subsystems T1�x , t ,u ,w�=0, T2�x , t ,v ,w�=0, T2�x , t ,w�=0 given by

T1�x,t,u,w� = 0: �wxx − u = 0,

wt − L�u� = 0,

T2�x,t,v,w� = 0: �wx − v = 0,

wt − L�vx� = 0,
�2.11�

T2�x,t,w� = 0: wt − L�wxx� = 0.

Since the subsystems S�x , t ,v�=0, T1�x , t ,u ,w�=0, T2�x , t ,v ,w�=0, and T2�x , t ,w�=0 are
ocally related to the potential systems �2.8� and �2.10�, they are not of any interest.

This tree of potential systems and subsystems is illustrated in Fig. 1 with arrows showing the
rigins of elements of the tree, with dashed lines used to denote locally related subsystems. The
roup classification of this tree of potential systems and subsystems is given in Ref. 5 and
eferences therein. In particular, for certain forms of the constitutive function L�u� the level two
ystem S�x , t ,u ,v�=0 yields nonlocal symmetries of the level one system R�x , t ,u�=0, and vice
ersa. The point symmetries of the “grand” level three system T�x , t ,u ,v ,w�=0 include all point
ymmetries of the lower level systems. Moreover, the “grand” system T�x , t ,u ,v ,w�=0 includes a
onstitutive function L�u� that yields symmetries that are nonlocal for the level one and level two
ystems.

. Direct construction method for finding conservation laws

A direct method for finding conservation laws using factors was presented in Refs. 11 and 12.
his method follows from the fact that a function f�x ,U ,�U , . . . ,�pU� is a divergence expression

f and only if it is annihilated by the Euler differential operators,

Ek =
�

�Uk − Di
�

�Ui
k + DiDj

�

�Uij
k + ¯ + �− 1�pDi1

¯ Dip

�

�Ui1¯ip
k , �2.12�

IG. 1. The tree of potential systems and subsystems for the nonlinear diffusion equation �2.7� for an arbitrary constitutive
unction L�u�.
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ssociated with each dependent variable Uk in f�x ,U ,�U , . . . ,�pU�, k=1, . . . ,n. In �2.12�, Di is the
otal derivative operator for the independent variable xi and Ui1¯ip

k =�pUk /�xi1
¯�xip

.
For a given PDE system R�x , t ,u�=0, when additional conservation laws are found within its

ree of potential systems and subsystems, the tree can be extended. Here x1= t ,x2=x.
The procedure to find additional conservation laws is as follows:

�A� Take a linear combination of the functions Rk�x , t ,U� associated with the system
R�x , t ,u�=0, with unknown factors 
k�x , t ,U ,�U , . . . ,�lU� �for some fixed l�,

M = 
k�x,t,U,�U, . . . ,�lU�Rk�x,t,U� . �2.13�

It is essential to note that in �2.13�, U is an arbitrary function. �U=u�x , t� is a solution of
R�x , t ,u�=0.�

�B� A set of factors �
k�x , t ,U ,�U , . . . ,�lU�� yields a conservation law �2.1� of R�x , t ,u�
=0 if and only if it satisfies the linear system of determining equations,

E1M = 0,

. . . , �2.14�

EnM = 0,

holding for arbitrary values of x , t and the components of U ,�U ,�2U , . . . .
�C� For each set of factors �
k�x , t ,�U , . . . ,�lU�� satisfying �2.14�, there is an integral formula

to find the density T and the flux X of the corresponding conservation law �2.1�.11,12

Remark 2.3: The procedure outlined above can be applied to find conservation laws for any
otential system or subsystem in a tree.

. Construction of extended trees of nonlocally related potential systems
nd subsystems using additional conservation laws

Definition 2.7: If for some additional conservation law, a factor 
k does not vanish or vanishes
nly on solutions U=u�x , t� of the given system R�x , t ,u�=0, then the resulting conservation law
2.1� is a useful conservation law and can replace the kth equation Rk�x , t ,u�=0 of the system
�x , t ,u�=0.

Consequently, the resulting system

R̃�x,t,u� = 0: 	
R1�x,t,u� = 0,

. . . ,

Rk−1�x,t,u� = 0,

DtT�x,t,u� + DxX�x,t,u� = 0,

Rk+1�x,t,u� = 0,

. . . ,

Rm�x,t,u� = 0

�2.15�

as the same solution set as the original DE system R�x , t ,u�=0. In particular, the system �2.15�
xplicitly contains a conservation law that leads to a related higher potential system. In determin-
ng conservation laws by the direct construction method for the related higher level potential
ystem S�x , t ,u ,v�=0 arising from �2.15�, for completeness it is essential to consider the potential

ystem S�x , t ,u ,v�=0 together with the replaced equation Rk�x , t ,u�=0, i.e., the system
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S̃�x,t,u,v� = 0: 	
R1�x,t,u� = 0,

. . . ,

Rk−1�x,t,u� = 0

Rk�x,t,u� = 0,

vx − T�x,t,u� = 0,

vt + X�x,t,u� = 0,

Rk+1�x,t,u� = 0,

. . . ,

Rm�x,t,u� = 0.

�2.16�

If a conservation law is not useful, then one would be too restricted in considering subsystems
with the same solution sets as R�x , t ,u�=0� that result from elimination of one or more dependent
ariables.

By incorporating the direct method for finding conservation laws, we are now able to outline
he algorithm for constructing the extended tree of nonlocally related potential systems and sub-
ystems for a given DE system R�x , t ,u�=0. Since u= �u1 , . . . ,un�, the level �number of dependent
ariables� of the given system in the tree is n.

�1� Construction of potential systems: Suppose R�x , t ,u�=0 includes explicit conservation
laws as written. For each of these conservation laws �2.1�, introduce a potential and
construct a potential system of level n+1. For each of the potential systems of level n
+1, repeat this step to obtain all potential systems of level n+2, etc., until higher potential
systems include no more explicit conservation laws. Let T1 denote the resulting tree. �If
R�x , t ,u�=0 does not include explicit conservation laws as written, then T1= �R�x , t ,u�
=0�.�

�2� Construction of subsystems: For all systems of the tree T1, exclude where possible, one by
one, dependent variables, to generate all subsystems of the systems in the tree T1. Elimi-
nate subsystems that are locally related to it. This yields a possibly larger tree T2.

�3� Additional conservation laws: Tree extension: For each system in T2, find multipliers that
yield useful conservation laws via the direct construction method. Use these additional
useful conservation laws to obtain higher potential systems and corresponding sub-
systems. Eliminate locally related subsystems. Continue until no further useful conserva-
tion laws are found for any nonlocally related potential system or subsystem. This yields
an extended tree of nonlocally related potential systems and subsystems.

. Construction of nonlocal symmetries from an extended tree of potential systems
nd subsystems

The extended tree obtained by the above procedure can be used for different methods of
nalysis. In particular, it is useful in the search for nonlocal symmetries of the given DE system
�x , t ,u�=0. Since each potential system and subsystem within the tree is nonlocally related to the
iven system, as well as other potential systems and subsystems in the tree, it follows that point
ymmetries of potential systems and subsystems may yield nonlocal �potential� symmetries of the
iven system, and/or other systems in the extended tree. Now we outline the algorithm to con-
truct nonlocal symmetries.

�1� Construction of extended trees of potential systems and nonlocally related subsystems:
For a given DE system R�x , t ,u�=0, construct the extended tree of nonlocally related
potential systems and subsystems. �If the given system contains constitutive functions,
different extended trees may be obtained for particular forms of constitutive functions.�

�2� Point symmetry analysis: For each system in the extended tree, use Lie’s algorithm to
obtain its point symmetries.
�3� Isolation of nonlocal symmetries: From the set of point symmetries of each system in the
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extended tree, isolate nonlocal symmetries of the given system R�x , t ,u�=0.

An example of the use of this algorithm follows.

. Example 2: Nonlocal symmetries and linearization of a nonlinear reaction-diffusion
quation

We apply the above-described algorithm of construction of nonlocal symmetries to the
eaction-diffusion equation

R�x,t,u� = 0: ut − u2uxx − 2bu2 = 0. �2.17�

First, we construct an extended tree of potential systems and subsystems. The equation �2.17�
s not written as a conservation law. We look for multipliers of the form 
1=
1�U� that yield
onservation laws of �2.17�. Here the determining equation �2.14� becomes

E1�
1�U��Ut − U2Uxx − 2bU2�� = 0,

nd has solution 
1�U�=−1/U2, with corresponding conservation law


1

u
�

t
+ �u + bx2�xx = 0. �2.18�

he multiplier 
1�U�=−1/U2 does not vanish. Hence the conservation law �2.18� is useful and
quivalent to the PDE �2.17�. We let u1=1/u and denote the resulting PDE by

R̃�x,t,u1� = 0: u1t + 
 1

u1
+ bx2�

xx
= 0. �2.19�

We introduce potential variables v and w and corresponding potential systems,

S�x,t,u1,v� = 0: 	vx − u1 = 0,

vt + 
 1

u1
+ bx2�

x
= 0,

�2.20�

T�x,t,u1,v,w� = 0: 	
vx − u1 = 0,

wx − v = 0,

wt + 
 1

u1
+ bx2� = 0.

The subsystems are

S�x,t,v� = 0: vt + 
 1

vx
+ bx2�

x
= 0,

T1�x,t,u,w� = 0: 	wxx − u1 = 0,

wt + 
 1

u1
+ bx2� = 0,

�2.21�

T2�x,t,v,w� = 0: 	wx − v = 0,

wt + 
 1
+ bx2� = 0,
vx
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T2�x,t,w� = 0: wt + 
 1

wxx
+ bx2� = 0.

The tree of potential systems and subsystems is illustrated in Fig. 2 with arrows showing the
rigins of elements of the tree. Locally related subsystems are outlined with dashed lines. For the
nalysis of nonlocal symmetries of the given system R�x , t ,u�=0 �2.17�, only systems
�x , t ,u1 ,v�=0 and T�x , t ,u1 ,v ,w�=0 need to be used, since all other subsystems are locally
elated to them.

One can show5 that the level three potential system T�x , t ,u1 ,v ,w�=0 admits an infinitesimal
enerator,

X�
T = eb�w−xv�
�F1 − bxF3�

�

�x
+ �2bxu1

2F1 − u1
2F2 + bu1�1 − bx2u1�F3�

�

�u1

+ �vF1 − �1 + bxv�F3�
�

�w
� , �2.22�

here

�F1�v,t�
�v

= F2�v,t�,
�F3�v,t�

�v
= F1�v,t�,

�F3�v,t�
�t

= F2�v,t� . �2.23�

The point symmetry generator �2.22� is infinite dimensional; it projects to a point symmetry of

2�x , t ,v ,w�=0, induces a contact symmetry of T2�x , t ,w�=0, a Lie-Bäcklund symmetry of

1�x , t ,u ,w�=0, and a nonlocal symmetry of R�x , t ,u�=0, R̃�x , t ,u1�=0, S�x , t ,u1 ,v�=0, and
�x , t ,v�=0. Consequently, T�x , t ,u1 ,v ,w�=0, T2�x , t ,v ,w�=0, and T2�x , t ,w�=0 are linearizable
y invertible mappings, and the other systems in the tree are linearizable by noninvertible
appings.4,5

II. TREES AND NONLOCAL SYMMETRIES FOR PLANAR GAS DYNAMICS EQUATIONS

We now use the algorithmic approach described in Sec. II to construct trees of potential
ystems and subsystems for the �1+1�-dimensional system of planar gas dynamics �PGD� equa-
ions. The point symmetries of some of these systems have been extensively considered in Ref. 14.

The two fundamental systems of differential equations that describe nonstationary
1+1�-dimensional gas motions are Euler and Lagrange systems. In the Eulerian description, x is

FIG. 2. The tree of potential systems and subsystems for the reaction-diffusion equation �2.17�.
Cartesian coordinate in a fixed coordinate frame. The Euler system is given by
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E�x,t,v,p,�� = 0: 	�t + ��v�x = 0,

��vt + vvx� + px = 0,

��pt + vpx� + B�p,1/��vx = 0.

�3.1�

ere v is the gas velocity, � is the gas density, and p is the gas pressure. In terms of the entropy
ensity S�p ,��, the constitutive function B�p ,1 /�� is given by

B�p,1/�� = − �2S�/Sp.

In many applications, however, it is more convenient to use Lagrange mass coordinates s
t , y=�x0

x ����d�. In these variables, the system �3.1� takes on the equivalent form

L�y,s,v,p,q� = 0: 	qs − vy = 0,

vs + py = 0,

ps + B�p,q�vy = 0,

�3.2�

nd is called the Lagrange system. Here the coordinate y essentially enumerates the fluid particles;
ts domain does not change with time. The partial time derivative � /�s=� /�t+v� /�x is the ma-
erial derivative. The use of Lagrange mass coordinates often significantly facilitates the formu-
ation of boundary conditions.15–17

We show that the potential system framework provides a direct connection between the Euler
ystem �3.1� and the Lagrange system �3.2�. Moreover, further extensions arise, and in particular,
ne can obtain other nonlocally related equivalent systems of equations.

We now construct a tree of nonlocally related potential systems and subsystems, with
�x , t ,v , p ,��=0 given by �3.1� serving as the given system, through the algorithm described in
ec. II.

Since the first equation of �3.1� is a conservation law, a potential variable r is naturally
ntroduced, and the resulting level four potential system has the form

G�x,t,v,p,�,r� = 0: 	
rx − � = 0,

rt + �v = 0,

rx�vt + vvx� + px = 0,

rx�pt + vpx� + B�p,1/rx�vx = 0.

�3.3�

An obvious subsystem I�x , t ,v , p ,r�G1�x , t ,v , p ,r�=0 is obtained by excluding the density
from �3.3�,

I�x,t,v,p,r� = 0: 	rt + vrx = 0,

rx�vt + vvx� + px = 0,

rx�pt + vpx� + B�p,1/rx�vx = 0.

�3.4�

n Ref. 14, �3.4� is referred to as the intermediate system. However, this system is locally related
o G�x , t ,v , p ,� ,r�=0.

Another subsystem is G2�x , t , p ,� ,r�=0, obtained by excluding the velocity v. This subsystem
s also not of interest since it is locally related to G�x , t ,v , p ,� ,r�=0.

Consider a local coordinate transformation of the system G�x , t ,v , p ,� ,r�=0 with r=y , t=s
reated as independent variables, and x ,v , p ,� as dependent variables. Without loss of generality,

�0. We let q=1/�, and obtain the system G0�y ,s ,x ,v , p ,��=0 given by
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G0�y,s,x,v,p,�� = 0: 	
q − xy = 0,

v − xs = 0,

vs + py = 0,

ps + B�p,q�vy = 0,

�3.5�

quivalent to the potential system G�x , t ,v , p ,� ,r�=0 and locally related to it.
A subsystem of G0�y ,s ,x ,v , p ,��=0 obtained by excluding x through xsy =xys is the Lagrange

ystem �3.2�, L�y ,s ,v , p ,q�G0�y ,s ,v , p ,q�=0. Thus the Euler and Lagrange systems of PGD
quations are connected through a common potential system �see Fig. 3�.

We continue the construction of the tree of potential systems and subsystems for the PGD
quations for a general constitutive function B�p ,1 /��. We first find possible higher potential
ystems arising for the potential system G�x , t ,v , p ,� ,r�=0 given by �3.3�.

The Euler system given by �3.1� with multipliers 
1=V, 
2=1, 
3=0 yields a useful conser-
ation law,

��v�t + �p + �v2�x = 0, �3.6�

hich also holds for the system G�x , t ,v , p ,� ,r�=0. Hence we use the conservation law �3.6� to
eplace the equation rx�vt+vvx�+ px=0, and introduce a potential variable w to obtain the level five
otential system W�x , t ,v , p ,� ,r ,w�=0 given by

W�x,t,v,p,�,r,w� = 0: 	
rx − � = 0,

rt + �v = 0,

wx + rt = 0,

wt + p + vwx = 0,

rx�pt + vpx� + B�p,1/rx�vx = 0.

�3.7�

The third equation of �3.7� is written as a conservation law, and accordingly we introduce a

IG. 3. The tree TPGD of nonlocally related PGD potential systems and subsystems, for an arbitrary constitutive function
�p ,1 /��; E�x , t ,v , p ,��=0 is the Euler system �3.1�, L�y ,s ,v , p ,q�=0 is the Lagrange system �3.2�.
otential variable z to obtain a level six potential system,

                                                                                                            



T

a
E
o

e
m
s

t
w
p
o
d

n
E
s
I
G
c

w
�

B
I

c

123506-12 G. Bluman and A. F. Cheviakov J. Math. Phys. 46, 123506 �2005�

                        
Z�x,t,v,p,�,r,w,z� = 0: 	
rx − � = 0,

rt + �v = 0,

zt − w = 0,

zx + r = 0,

wt + p + vwx = 0,

rx�pt + vpx� + B�p,1/rx�vx = 0.

�3.8�

The only nonlocally related subsystems of �3.7� and �3.8� arise from excluding r �see Fig. 3�.
he Lagrange system �3.2� has a nonlocally related subsystem obtained by excluding v,

L�y,s,p,q� = 0: �qss + pyy = 0,

ps + B�p,q�qs = 0.
�3.9�

The tree TPGD of useful �i.e., nonlocally related� potential systems and subsystems �for an
rbitrary constitutive function B�p ,1 /��� is illustrated by Fig. 3. Note that either the Euler system
�x , t ,v , p ,��=0 or the Lagrange system L�y ,s ,v , p ,q�=0 can be taken as the given system. Each
f these systems gives rise to the same tree of potential systems and subsystems.

All systems in the tree TPGD are nonlocally related and equivalent �i.e., contain all solutions of
ach other�. Therefore any general method of analysis �qualitative, numerical, perturbation, sym-
etry, conservation laws, etc.� may yield new results for any of these nonlocally related PGD

ystems. In particular, this is the case for the symmetry analysis given below.
In Ref. 14, point symmetries of three systems were studied in detail—the Euler system �3.1�,

he Lagrange system �3.2�, and the “intermediate” system �3.4�. The authors gave a classification
ith respect to the constitutive function B�p ,1 /�� and isolated the cases in which some of the
oint symmetries of E�x , t ,v , p ,��=0, L�y ,s ,v , p ,q�=0 or I�x , t ,v , p ,r�=0 were nonlocal for the
ther two systems. However, their approach was heuristic—the connections between their systems
id not involve a general constructive framework.

Using the algorithmic approach presented in this paper, one directly arrives at the tree TPGD of
onlocally related PGD potential systems and subsystems. To find nonlocal symmetries of systems
�x , t ,v , p ,��=0 and L�y ,s ,v , p ,q�=0, one should classify the point symmetries of all eight

ystems in the tree, with respect to the constitutive function B�p ,1 /��. �The system
�x , t ,v , p ,r�=0 discussed in Ref. 14 is of no interest since it is locally related to the system
�x , t ,v , p ,� ,r�=0 in the tree.� For example, the subsystem L�y ,s , p ,q�=0 given by �3.9�, in the

ase of a Chaplygin gas �B�p ,q�=−p /q�, admits a point symmetry with infinitesimal generator,

X = − y2 �

�y
− py

�

�p
+ 3yq

�

�q
, �3.10�

hich yields a nonlocal symmetry for both E�x , t ,v , p ,��=0 and L�y ,s ,v , p ,q�=0. The symmetry
3.10� was not obtained in Ref. 14, since the system �3.9� did not arise.

Furthermore, for some systems in the tree TPGD, particular forms of the constitutive function
�p ,1 /�� may yield useful conservation laws, which in turn would yield extended trees �cf. Sec.

I�. We now consider two examples.
Example A: For B�p ,1 /��=��1+ep�, the system G�x , t ,v , p ,� ,r�=0 has a family of useful

onservation laws,

Dt
 epf�r�
1 + ep� + Dx
vepf�r�

1 + ep � = 0, �3.11�
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or arbitrary f�r�. A conservation law of the form �3.11� can be used to replace the fourth equation
f G�x , t ,v , p ,� ,r�=0 to introduce a potential c and consequent family of potential systems

f�x , t ,v , p ,� ,r ,c�=0 in terms of an arbitrary function f�r�,

C f�x,t,v,p,�,r,c� = 0: 	
rx − � = 0,

rt + �v = 0,

rx�vt + vvx� + px = 0,

cx + epf�r�/�1 + ep� = 0,

ct − vepf�r�/�1 + ep� = 0.

�3.12�

he corresponding tree extension is exhibited in Fig. 4�a�.
Example B: For the Chaplygin gas B�p ,1 /��=−p�, the family of useful conservation laws

Dt
 f�r�
p
� + Dx
vf�r�

p
� = 0 �3.13�

or arbitrary f�r� yields a family of potential systems

D f�x,t,v,p,�,r,d� = 0: 	
rx − � = 0,

rt + �v = 0,

rx�vt + vvx� + px = 0,

dx + f�r�/p = 0,

dt − vf�r�/p = 0,

�3.14�

onlocally related to the other systems in the tree TPGD. The corresponding tree extension is
xhibited in Fig. 4�b�. One can show that nonlocal symmetries of the Euler system
�x , t ,v , p ,��=0 only arise in the cases where f�r�=r, f�r�=const. For f�r�=r, the system �3.14�
dmits

XD1 = 
−
t3

6
+ dt� �

�x
+ 
d −

t2

2
� �

�v
+ rt

�

�p
−

rt�

p

�

��
, �3.15�

XD2 = 
−
t2

2
+ d� �

�x
− t

�

�v
+ r

�

�p
−

r�

p

�

��
. �3.16�

Symmetry �3.15� is nonlocal for both the Euler system E�x , t ,v , p ,��=0 and the Lagrange
ystem L�y ,s ,v , p ,q�=0; symmetry �3.16� is nonlocal for the Euler system E�x , t ,v , p ,��=0 but
ocal for the Lagrange system L�y ,s ,v , p ,q�=0. In Ref. 14, symmetry XD1 was not obtained;
ymmetry XD2 was obtained by an ad hoc procedure.

Through the algorithmic framework given in this paper, the symmetry results in Ref. 14 can

IG. 4. PGD tree extensions for two particular forms of the constitutive function B�p ,1 /��. �a� B�p ,1 /��=��1+ep�. �b�
haplygin gas B�p ,1 /��=−p�.
e recovered systematically and substantially extended.
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V. EXTENDED TREES OF NONLOCALLY RELATED SYSTEMS FOR NONLINEAR
ELEGRAPH EQUATIONS

We now construct trees of nonlocally related potential systems and subsystems for the non-
inear telegraph �NLT� equation, as well as further tree extensions for particular forms of consti-
utive functions. This allows us to extend recent results that appeared in Refs. 9, 13, and 18.

. The tree for arbitrary constitutive functions

As a given system, we take the NLT equation,

U�x,t,u� = 0: utt − �F�u�ux�x − �G�u��x = 0. �4.1�

Equation �4.1� is an explicit conservation law and hence is equivalent to the level two poten-
ial system,

UV�x,t,u,v� = 0: �ut − vx = 0,

vt − F�u�ux − G�u� = 0.
�4.2�

NLT systems of the form �4.2� represent the equations of telegraphy of a two-conductor
ransmission line and equations of motion of a hyperelastic homogeneous rod whose cross-
ectional area varies exponentially along the rod. For further details, see Refs. 9 and 13 and
eferences therein.

Since the first equation of �4.2� is written as a conservation law, a level three potential system
s obtained,

UVW�x,t,u,v,w� = 0: 	wt − v = 0,

wx − u = 0,

vt − F�u�ux − G�u� = 0.

�4.3�

For arbitrary constitutive functions F�u� ,G�u�, there are no further potential systems.
The complete point symmetry classifications of the scalar equation �4.1� and system �4.2�

ppear, respectively, in Refs. 18 and 9. The point symmetries of �4.2� yield nonlocal symmetries
f �4.1� for a large class of constitutive functions.

The given equation �4.1� is the only subsystem of system �4.2�. The subsystems of potential
ystem �4.3� are obtained by excluding u and/or v, UW�x , t ,u ,w�=0, VW�x , t ,v ,w�=0, and

�x , t ,w�=0. However these subsystems are not interesting since they are locally related to the
otential system UVW�x , t ,u ,v ,w�=0 given by �4.3�.

The tree TNLT of useful �i.e., nonlocally related� potential systems and subsystems, for arbi-

FIG. 5. NLT tree for arbitrary constitutive functions F�u� ,G�u�.
rary constitutive functions F�u� ,G�u�, is exhibited in Fig. 5.
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. Tree extensions for particular constitutive functions

The complete conservation law classification of the potential system UV�x , t ,u ,v�=0 given by
4.2� was found in Ref. 13 for multipliers of the form 
i=
i�x , t ,U ,V� , i=1,2. The problem of
nding further potential systems from useful conservation laws of the system �4.2� was not
onsidered in Ref. 13.

Using the data presented in Ref. 13, one sees that the following useful conservation laws
Table I� arise for �4.2�.

In Table I, we exclude the cases �G�u�=u with F�u�=const, G�u�=0 with F�u� arbitrary� for
which system �4.2� is linear or linearizable by a point transformation.

The eight conservation laws in Table I are now used to obtain additional potential systems and
nonlocally related subsystems, and thus to extend the tree TNLT. In particular, each conservation
aw in Table I �except �I�� can be used to replace either equation of system UV�x , t ,u ,v�=0 given
y �4.2�, since in each of these seven cases both multipliers 
1 ,
2 are nonzero and have no
ependence on dependent variables.

Case 1: F�u�=G��u�. For conservation law �I� in Table I, one has 
1=0, and hence only the
econd equation of the system UV�x , t ,u ,v�=0 given by �4.2� can be replaced with this conser-
ation law. Accordingly, we introduce a potential variable ã and let a=e−xã. The corresponding
otential system is given by

UVA�x,t,u,v,a� = 0: 	vx − ut = 0,

a + ax − v = 0,

at − G�u� = 0.

�4.4�

Since the first equation of �4.4� is written as a conservation law, a level four potential system
s obtained,

UVWA�x,t,u,v,w,a� = 0: 	
wt − v = 0,

wx − u = 0,

a + ax − v = 0,

at − G�u� = 0.

�4.5�

ote that the system UVW�x , t ,u ,v ,w�=0 given by �4.3� is a subsystem of the system �4.5�

TABLE I. Conservation laws of the system �4.2� using the data presented in
Ref. 13.

Case Multipliers Conservation law

F�u�=G��u� 
1=0, 
2=ex �I� Dt�vex�−Dx�exG�u��=0

1=ex, 
2= tex �II� Dt�ex�u+ tv��−Dx�ex�tG�u�+v��=0

F�u�=G��u�+1 
1=
2=ex+t �III� Dt�ex+t�u+v��−Dx�ex+t�G�u�+u+v��=0

1=−
2=ex−t �IV� Dt�ex−t�u−v��+Dx�ex−t�G�u�+u−v��=0

F�u�=G��u�−1 
1=−i
2=ex+it �V,VI� Real and imaginary parts of
Dt�ex+it�iu+v��−Dx�ex+it�G�u�−u+ iv��=0

F�u� arbitrary,
G�u�=u


1=x− t2 /2, 
2= t �VII� Dt��x− t2 /2�u+ tv�
+Dx��t2 /2−x�v− t�F�u�du�=0


1=−t, 
2=1 �VIII� Dt�v− tu�+Dx�tv−�F�u�du�=0
hrough excluding the variable a. The subsystems
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VA�x,t,v,a� = 0: �a + ax − v = 0,

vx − H��at�att = 0 �H = G−1� ,

�4.6�
A�x,t,a� = 0: ax + axx − H��at�att = 0

re locally related to �4.4� and therefore not interesting.
The useful conservation law �II� is equivalent to a pair of equations bt= tG�u�+v, bx+b=u

tv, and hence yields the level three potential system,

UVB�x,t,u,v,b� = 0: 	
vx − ut = 0,

vt − G��u�ux − G�u� = 0,

bt − tG�u� − v = 0,

bx + b − u − tv = 0,

�4.7�

s well as the level four potential system,

UVWB�x,t,u,v,w,b� = 0: 	
wt − v = 0,

wx − u = 0,

bt − tG�u� − v = 0,

bx + b − u − tv = 0.

�4.8�

In Fig. 6 we exhibit the extended tree TNLT
1 of nonlocally related potential systems and

ubsystems of the NLT equation �4.1� in the case F�u�=G��u�.
In a similar manner, one can show that the three pairs of conservation laws for the other cases

F�u�=G��u�+1, F�u�=G��u�−1, F�u� arbitrary with G�u�=u� all yield extended trees of the form
xhibited in Fig. 6. For each of these three cases, the nonlocally related systems are as follows.

Case 2: F�u�=G��u�+1. The set of nonlocally related potential systems and subsystems is

IG. 6. The form of the extended tree of nonlocally related potential systems and subsystems of the NLT equations for
ase 1 �F�u�=G��u�, G�u� arbitrary�, Case 2 �F�u�=G��u�+1, G�u� arbitrary�, Case 3 �F�u�=G��u�−1, G�u� arbitrary�,
nd Case 4 �F�u� arbitrary with G�u�=u�.
iven by
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UVA�x,t,u,v,a� = 0: 	
vx − ut = 0,

vt − F�u�ux − G�u� = 0,

at + a − �G�u� + u + v� = 0,

ax + a − �u + v� = 0,

�4.9�

UVWA�x,t,u,v,w,a� = 0: 	
wt − v = 0,

wx − u = 0,

at + a − �G�u� + u + v� = 0,

ax + a − �u + v� = 0,

UVB�x,t,u,v,b� = 0: 	
vx − ut = 0,

vt − F�u�ux − G�u� = 0,

bt − b − �G�u� + u − v� = 0,

bx + b + �u − v� = 0,

�4.10�

UVWB�x,t,u,v,w,b� = 0: 	
wt − v = 0,

wx − u = 0,

bt − b − �G�u� + u − v� = 0,

bx + b + �u − v� = 0.

Case 3: F�u�=G��u�−1. The useful complex conservation law �V,VI� in Table I is equivalent
o two useful real conservation laws,

�V� Dt�ex�v cos t − u sin t�� + Dx�ex�v sin t − �G�u� − u�cos t�� = 0,

�VI� Dt�ex�u cos t + v sin t�� − Dx�ex��G�u� − u�sin t + v cos t�� = 0.

he set of nonlocally related potential systems and subsystems is given by

UVA�x,t,u,v,a� = 0: 	
vx − ut = 0,

vt − F�u�ux − G�u� = 0,

at + �v sin t − �G�u� − u�cos t� = 0,

ax + a − �v cos t − u sin t� = 0,

�4.11�

UVWA�x,t,u,v,w,a� = 0: 	
wt − v = 0,

wx − u = 0,

at + �v sin t − �G�u� − u�cos t� = 0,

ax + a − �v cos t − u sin t� = 0,

UVB�x,t,u,v,b2� = 0: 	
vx − ut = 0,

vt − F�u�ux − G�u� = 0,

bt + ��G�u� − u�sin t + vcos t� = 0,

bx + b + �u cos t + v sin t� = 0,

�4.12�
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UVWB�x,t,u,v,w,b� = 0: 	
wt − v = 0,

wx − u = 0,

bt + ��G�u� − u�sin t + v cos t� = 0,

bx + b + �u cos t + v sin t� = 0.

Case 4: F�u� arbitrary, G�u�=u. In this case, the set of nonlocally related potential systems
nd subsystems is given by

UVA�x,t,u,v,a� = 0: 	
vx − ut = 0,

vt − F�u�ux − u = 0,

ax − ��x − t2/2�u + tv� = 0,

at + 
�t2/2 − x�v − t� F�u�du� = 0,

UVWA�x,t,u,v,w,a� = 0: 	
wt − v = 0,

wx − u = 0,

ax − ��x − t2/2�u + tv� = 0,

at + 
�t2/2 − x�v − t� F�u�du� = 0

�4.13�

nd

UVB�x,t,u,v,b� = 0: 	
vx − ut = 0,

vt − F�u�ux − u = 0,

bx − �v − tu� = 0,

bt + 
tv −� F�u�du� = 0,

�4.14�

UVWB�x,t,u,v,w,b� = 0: 	
wt − v = 0,

wx − u = 0,

bx − �v − tu� = 0,

bt + 
tv −� F�u�du� = 0.

. FURTHER REMARKS

�1� The algorithmic framework for nonlocally related potential systems and subsystems has
een demonstrated to be useful for calculating new nonlocal symmetries and new nonlocal con-
ervation laws for a given system of PDEs. It should be important to study the applicability of
ther methods of analysis �qualitative, numerical, perturbation, etc.� to nonlocally related systems
n extended trees, especially coordinate-independent methods.

�2� In a PDE system with n�3 independent variables, a conservation law is equivalent to a set
f equations involving several potential variables.4 The corresponding potential system is under-
etermined, and requires suitable gauge constraints �in the form of additional equations on the
otential variables� to be imposed in order to find nonlocal symmetries.19

Although a potential system without constraints is underdetermined, its potential subsystems
ay be useful for analysis without gauge constraints.
�3� In the algorithm presented in Sec. II, the nonlocally related subsystems are obtained by
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xclusion of dependent variables as written. Alternatively any point transformation

U = U�x,t,u,v� ,

V = V�x,t,u,v� ,

X = X�x,t,u,v� ,

T = T�x,t,u,v� , �5.1�

ould be used to exclude a dependent variable U or V to obtain additional nonlocally related
ubsystems. Indeed this is the situation within the tree of potential systems and subsystems of the
GD equations �Sec. III�: the system G�x , t ,v , p ,� ,r�=0 as written has only a nonlocally related
ubsystem E�x , t ,v , p ,��=0. However after a local change of variables �to G0�y ,s ,x ,v , p ,��=0�,
t admits the Lagrange system L�y ,s ,v , p ,q�=0 as a nonlocally related subsystem �Fig. 3�.

�4� Using the algorithmic framework given in this paper, local and nonlocal symmetries for
he PGD equations obtained in Ref. 14 can be recovered systematically and substantially extended
some examples of new nonlocal symmetries are given in Sec. III�. The systematic classification of
seful conservation laws and consequent nonlocal extensions of the PGD tree TPGD will appear in
uture works, as well as concomitant nonlocal symmetry analyses.

�5� An exhaustive study of nonlocal symmetries and nonlocal conservation laws of NLT
quations resulting from extended trees of potential systems and subsystems is in progress. Pre-
iminary results show that for a large class of constitutive functions, namely, F�u�=G��u�, there
xist point symmetries of the potential system UVW�x , t ,u ,v ,w�=0 given by �4.3� that are non-
ocal for both the scalar NLT equation �4.1� and the system UV�x , t ,u ,v�=0 given by �4.2�. A
articular example is a symmetry

XUVW = v
�

�x
+ 
u +

w

3
� �

�t
−

uv
3

�

�u
−

v2

3

�

�v
+ uv

�

�w
�5.2�

or the case F�u�=u2 ,G�u�=u3 /3.
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We study a new hierarchy of equations containing the short pulse equation, which
describes the evolution of very short pulses in nonlinear media, and the elastic
beam equation, which describes nonlinear transverse oscillations of elastic beams
under tension. We show that the hierarchy of equations is integrable. We obtain the
two compatible Hamiltonian structures. We construct an infinite series of both local
and nonlocal conserved charges. A Lax description is presented for both systems.
For the elastic beam equations we also obtain a nonstandard Lax representation.
© 2005 American Institute of Physics. �DOI: 10.1063/1.2146189�

. INTRODUCTION

The cubic nonlinear Schrödinger equation is used in the description of the propagation of
ulses in nonlinear media such as optical fibers. Recently, technology progress for creating very
hort pulses was achieved, however, the description of the evolution of those pulses lies beyond
he usual approximations leading to the nonlinear Schrödinger equation. Various approaches have
een proposed to replace the nonlinear Schrödinger equation in these conditions. In Ref. 1 Schäfer
nd Wayne proposed an alternative model to approximate the evolution of very short pulses in
onlinear media. They derived the short pulse �SP� equation

uxt = u + 1
6 �u3�xx. �1�

hung et al.2 showed numerically that the SP equation provides a better approximation to the
olution of Maxwell’s equations than the nonlinear Schrödinger equation as the pulse length gets
hort. Also, Sakovich and Sakovich3 have studied the integrability of �1�.

In this paper we will study the integrability of the nonlocal representation of the SP equation
1�,

ut = ��−1u� + 1
2u2ux, �2�

s well as the hierarchy of equations associated with it. The equation in this form is more feasible
or a Hamiltonian description and can be obtained integrating �1� with respect to x. In what
ollows we will refer to the equation �2� simply as the SP equation.

The local nonlinear equation

ut = � uxx

�1 + ux
2�3/2�

x

, �3�

ill also appear in our hierarchy of equations. It can be embedded in the Wadati-Konno-Ichikawa
WKI� system4 and its x derivative can be shown to describe nonlinear transverse oscillation of
lastic beams under tension.5 Therefore, we will simply call �3� the equation for elastic beams
EB�.

Our paper is organized as follows. In Sec. II, we show that our system is integrable through its
i-Hamiltonian nature. We give the two Hamiltonian structures associated with the Hamiltonian

escription of Eqs. �2� and �3�. The method of prolongation is used to prove the Jacobi identity as

46, 123507-1022-2488/2005/46�12�/123507/9/$22.50 © 2005 American Institute of Physics
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ell as the compatibility of the Hamiltonian structures. In Sec. III, we construct the recursion
perator and its inverse to obtain the first local and nonlocal charges recursively. We also obtain
he first local and nonlocal equations of the hierarchy recursively, which includes the EB and SP
quations, respectively. In Sec. IV we obtain the Lax representation for the system. For the EB
quation, and for other local equations in the hierarchy, we also give a nonstandard Lax represen-
ation. In Sec. V, we summarize our results and present our conclusions.

The results in this paper are much like the ones obtained for the Harry Dym and Hunter-
axton hierarchy of equations,6 deformed Harry Dym and Hunter-Saxton hierarchy of equations7,
nd for the non-local gas hierarchy of equations.8 �In Refs. 6 and 7 the equation obtained by
unter and Saxton in SIAM J. Appl. Math. 51, 1498 �1991� was erroneously named, by the
resent author, Hunter-Zheng. We sincerely apologize to the authors about this mistake.� In these
orks we have as a main characteristic of a hierarchy of integrable equations with positive and
egative flows. Also, throughout this paper the calculations involving pseudodifferential operators
ere performed or checked by the computer algebra program PSEUDO.9

I. BI-HAMILTONIAN STRUCTURE

Following Ref. 7 let us introduce

F2 � 1 + ux
2, A �

ux

F
, �4�

hich satisfy the following useful properties:

F2�1 − A2� = 1,

Fx

F3 = AAx, �5�

uxx

F3 = Ax.

sing �4� the SP equation �2� assumes the forms

Ft = � 1
2u2F�x,

�6�

At =
u

F
+

1

2
u2Ax,

nd, similarly, the EB equation �3� can be written in one of the forms

ut = Axx,

Ft = AAxxx, �7�

At =
Axxx

F3 .

et us stress that the basic field is u and that A and F are just place holders used to make
xpressions more compact. Also, it is interesting to observe that the EB equation when written in
he form �7� has the same structural form of the deformed Harry Dym equation studied in Ref. 7,
owever, the definitions in �4� are different.
From �6� and �7� it is straightforward to note that
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H0 = −� dx F , �8�

s conserved under both the SP and EB flows.
Introducing the Clebsch potential

u = �x, �9�

he equation �2� can be written as

�t = ��−1�� + 1
6�x

3. �10�

his equation �10� can be obtained from a variational principle, �	dt dx L, with the Lagrangian
ensity

L = 1
2�t�x − 1

24�x
4 + 1

2�2. �11�

his is a first order Lagrangian density and, consequently, the Hamiltonian structure can be readily
ead out, or we can use, for example, Dirac’s theory of constraints10 to obtain the Hamiltonian and
he Hamiltonian operator associated with �11�. The Lagrangian is degenerate and the primary
onstraint is obtained to be

� = � − 1
2�x, �12�

here �=�L /��t is the canonical momentum. The total Hamiltonian can be written as

HT =� dx���t − L + ��� =� dx� 1
24�x

4 − 1
2�2 + ��� − 1

2�x�� , �13�

here � is a Lagrange multiplier field. Using the canonical Poisson bracket relation


��x�,��y�� = ��x − y� , �14�

ith all others vanishing, it follows that the requirement of the primary constraint to be stationary
nder time evolution,


��x�,HT� = 0,

etermines the Lagrange multiplier field � in �13� and the system has no further constraints.
Using the canonical Poisson bracket relations �14�, we can now calculate

K�x,y� � 
��x�,��y�� = 1
2�y��y − x� − 1

2�x��x − y� . �15�

his shows that the constraint �12� is second class and that the Dirac bracket between the basic
ariables has the form


��x�,��y��D = 
��x�,��y�� −� dz dz�
��x�,��z��J�z,z��
��z��,��y�� = J�x,y� ,

here J is the inverse of the Poisson bracket of the constraint �15�,

� dz K�x,z�J�x,y� = ��x − y� .

his last relation determines

�xJ�x,y� = − ��x − y�
r
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J�x,y� = D��x − y� ,

here

D = − �−1, �16�

nd can be thought of as the alternating step function in the coordinate space. We can now set the
onstraint �12� strongly to zero in �13� to obtain

HT =� dx� 1
24�x

4 − 1
2�2� . �17�

sing �9� and the transformation properties of Hamiltonian operators,11 we get

D1 = ��D����* = � , �18�

nd the SP equation �2� can be written in the Hamiltonian form as

ut = D1
�H2

�u
,

ith H2 given by

H2 =� dx� 1

24
u4 −

1

2
��−1u�2� , �19�

hich can be easily checked to be conserved by both the SP and EB equations.
We will show that the SP and EB equations belong to the same hierarchy of equations, at this

oint we note that

ut = D1
�H0

�u
,

ith H0 given by �8�, yields the EB equation �3�.
It is easy to show that the charges

H−1 =
1

2
� dx FAx

2, �20�

H1 =
1

2
� dx u2 �21�

re also conserved by both the SP and EB equations. Therefore, the SP equation �2� can be written
n the Hamiltonian form as

ut = D2
�H1

�u
,

nd the EB equation �3� as

ut = D2
�H−1

�u
,

here we have defined
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D2 = �−1 + ux�
−1ux = �F2 − ux�

−1uxx��−1. �22�

he skew symmetry of this Hamiltonian structure is manifest. The proof of the Jacobi identity for
his structure as well its compatibility with �18� can be shown through the standard method of
rolongation12 which we describe briefly.

We can construct the two bivectors associated with the two structures as

�D1
=

1

2
� dx
� ∧ D1�� =

1

2
� dx� ∧ �x,

�D2
=

1

2
� dx
� ∧ D2�� =

1

2
� dx
� ∧ ��−1�� + ux� ∧ ��−1ux��� .

sing the prolongation relations,

pr v�D1��u� = �x,

pr v�D2��u� = ��−1�� + ux��−1ux�� , �23�

pr v�D2��ux� = �pr v�D2��u��x,

t is straightforward to show that the prolongation of the bivector �D2
vanishes,

pr v�D2���D2
� = 0,

mplying that D2 satisfies the Jacobi identity. Using �23�, it also follows that

pr v�D1���D2
� + pr v�D2���D1

� = 0,

howing that D1 and D2 are compatible. Namely, not only are D1 ,D2 genuine Hamiltonian struc-
ures, any arbitrary linear combination of them is as well. As a result, the dynamical equations �2�
nd �3� are bi-Hamiltonian with the same compatible Hamiltonian structures and, consequently,
re integrable.12,13

II. THE SHORT PULSE HIERARCHY

When a system is bi-Hamiltonian, we can naturally define a hierarchy of commuting flows
hrough the relation

utn
= Kn�u� = D1

�Hn+1

�u
= D2

�Hn

�u
, n = . . . ,− 2,− 1,0,1,2, . . . . �24�

or n=1 and n=−1 we get the SP and EB equations, respectively. For n=0 we have

K0 = D1
�H1

�u
= ��u� = ux

nd

K0 = D2
�H0

�u
= ��F2 − ux�

−1uxx��−1Ax�

= �F2A − ux�
−1uxxA� = Fux − uxF = 0, �25�

here we have used �5�, i.e., F2A=Fux and uxxA=Fx. Therefore, we would be lead to conclude

hat H0 is a Casimir of D2. We can resolve this apparent contradiction being careful while per-
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orming calculations with the antiderivative �−1. We can use the following representation:

��x
−1f� � ��−1f��x� = �

−�

+�

dy 	�x − y�f�y� ,

here

	�x − y� = � 1/2 for x 
 y ,

− 1/2 for x � y .


hen, it can be shown that

��x
−1fx� = f − 1

2 �f�+ �� + f�− ��� . �26�

ow, if we assume u�n�→0 as �x�→� �which yields �A�±�=0 and �F�±�=1� then it follows:

��−1Ax� = A and ��−1Fx� = F − 1. �27�

sing this last result in the naive calculation �25� we obtain the desired term ux. This sort of
issing or “ghost” terms given rise to apparent contradictions in nonlocal theories were already

bserved in the literature �see Ref. 14 and references therein�.
Let us introduce the recursion operator following from the two Hamiltonian structures as:

R = D2D1
−1. �28�

hen, it follows from �24� that

�Hn+1

�u
= R†�Hn

�u
, n = 0,1,2, . . . , �29�

here

R† = �−2 + �−1ux�
−1ux = �−2�F2 + uxx�

−1ux� �30�

s the adjoint of R. The conserved charges for the hierarchy can, of course, be determined recur-
ively from �29� and give the infinite set of �nonlocal� conserved Hamiltonians

H0 = −� dx F ,

H1 =
1

2
� dx u2,

�31�

H2 =� dx� 1
24u4 − 1

2 ��−1u�2� ,

H3 =� dx� 1
720u6 + 1

2 ��−1u�2 + 1
6 ��−2u3�u − 1

4 ��−1u�2u2� ,

. . . .

he corresponding flows �the first few, since the equations become extremely nonlocal as we
roceed further in the recursion� have the forms

ut = ux,

0
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ut1
= ��−1u� + 1

2u2ux,

�32�
ut2

= ��−3u� + 1
6 ��−1u3� + ux��−1�ux��−2u��� + 1

24u4ux,

. . . .

For negative values of n, the gradients of the Hamiltonians will satisfy the recursion9

�Hn

�u
= �R†�−1�Hn+1

�u
, n = − 1,− 2, . . . . �33�

riting the recursion operator �28� in the form

R = �F2 − ux�
−1uxx��−2, �34�

nd using the identities �5� the inverse can be easily checked to be

R−1 = �2� 1

F2 + A�−1Ax� = �2 1

uxx
�F�−1uxx

F3 . �35�

ote that �35� can be recognized as the recursion operator obtained in Ref. 3 for the SP equation
n the form �1� using cyclic basis techniques. The corresponding conserved charges can now be
ecursively constructed from �33� and have the forms

H−1 =
1

2
� dx FAx

2,

H−2 =
1

8
� dx�FAx

4 − 4
Axx

2

F
� ,

�36�

H−3 =
1

16
� dx�FAx

6 + 8
AAxx

3

F
− 12

Ax
2Axx

2

F
+ 8

Axxx
2

F3 � ,

. . . .

he corresponding flows �the first few� have the forms

ut−1
= Axx,

ut−2
= �Axx

F2 +
1

2
Ax

2A�
xx

,

�37�

ut3
= �Axxxx

F4 +
1

2

Ax
2Axx

F2 − 2
AxxxAxA

F2 −
3

2

Axx
2 A

F2 − AxxAx
2A2 +

3

8
Ax

4A�
xx

,

. . . .V. THE LAX REPRESENTATION

Conserved charges for our systems can be determined in principle recursively from �29� and
33�. However, to construct the conserved charges directly we look for a Lax representation for the
ystem of SP and EB equations.

It is well known15,16 that for a bi-Hamiltonian system of evolution equations, utn
=Kn�u�, a
atural Lax description
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�M

�tn
= �B,M� ,

s easily obtained where, we can identify

M � R ,

B � Kn�.

ere R is the recursion operator �34� and Kn� represents the Fréchet derivative of Kn, defined by

Kn��u�v =
d

d	
Kn��u + 	v��	=0.

or the SP and EB system of equations in �2� and �3�, respectively, we have

BSP � K1� = �−1 + 1
2�u2,

BEB � K−1� = �2F−3� .

he two systems have the same M =R given in �28�. It can now be checked that

�M

�t
= �BSP,M� ,

�38�
�M

�t
= �BEP,M� ,

o indeed generate the SP and the EB equations and, thereby, provide a Lax pair for the system.
A Lax representation directly gives the conserved charges of the system. From the structure of

38�, it follows that Tr M�2n+1�/2 are conserved, where “Tr” represents the Adler’s trace.17 We note
hat

Tr M�2n+1�/2 = 0, n � 1,

Tr M1/2 =� dx F ,

Tr M−1/2 =
1

2
� dx FAx

2, �39�

Tr M−3/2 =
3

8
� dx�FAx

2 − 4
Axx

2

F
� ,

. . . .

hese charges correspond �up to multiplicative constants� to the ones given in �36�, constructed
arlier by recursion. In fact, all H−n with positive n�0 can be constructed from Tr M−�2n−1�/2 and
y construction �namely, because of the nature of �38��, they are conserved under both the SP and
B flows. However, as is clear from �39�, this procedure does not yield the nonlocal charges Hn

ith positive integer values. The construction of these nonlocal charges relies primarily on the
ecursion relation �29�. As in our papers6–8 it remains an interesting question to construct these

harges in a more direct manner.
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We can also obtain a Lax representation, in a Gelfand-Dikii form, for the EB hierarchy of
quations, in a straightforward way. It is well known �see Refs. 7 and 18 and references therein�
hat the recursion operator defines a eigenvalue problem of the type

�1 − �R†�� = 0, �40�

or the eigenfunction � with eigenvalue 1/�. Since we know the inverse of the recursion operator
e obtain from �40�,

��R†�−1 − ��� = 0, �41�

hich defines a Lax eigenvalue problem. Using �35� we identify the Lax operator for our system
o be

L � �R†�−1 =
1

F
�

1

F
� + Ax�

−1Ax� .

t can be readily checked that the hierarchy of EB equations �37� �up to multiplicative constants�
an be obtained from the nonstandard Lax equation,

�L

�t−n
= ��L�2n+1�/2��2,L�, n = 1,2,3, . . . .

he conserved quantities �36� and H0 in �31� for this system �up to multiplicative constants� can
e obtained from Tr L�2n−1�/2, n=0,1 ,2 , . . . .

. CONCLUSION

In this paper, the short pulse and elastic beam equations were shown to belong to the same
ierarchy corresponding to positive and negative flows. We have shown that these systems are
i-Hamiltonian and using recursion we construct infinite series of both local and nonlocal con-
erved charges as well as the respective hierarchy of equations. A Lax pair for the short pulse and
lastic beam equations was derived. The Lax operator yielded the local charges via Adler’s trace,
owever, the construction of the nonlocal charges through this Lax operator is unknown by us.
lso, a nonstandard Lax representation in a Gelfand-Dikii form for the elastic-beam hierarchy of

quation was described.
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epresentations of the q-deformed algebras Uq„so3…

nd Uq„so5… and q-orthogonal polynomials
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Orthogonal polynomials related to irreducible representations of the classical type
of the q-deformed algebras Uq�so3� and Uq�so5� are investigated. The main method
consists in the diagonalization of corresponding infinitesimal operators �generators�
of representations. For the algebra Uq�so3� this method leads to q-analogs of
Krawtchouk polynomials. The properties of these polynomials are considered, the
q-difference equation, the recurrence and explicit formulas. For the algebra
Uq�so5�, the diagonalization process of generators of representations leads to the
connection with some class of orthogonal polynomials in two discrete variables.
These variables are the so-called q-numbers �n�, where �n�= �qn−q−n� / �q−q−1�.
The introduced polynomials can be considered as two-dimensional q-analogs of
Krawtchouk polynomials. The q-difference equation of the Sturm-Liouville
type for these polynomials is constructed. The corresponding eigenvalues are
investigated including the explicit formulas for their multiplicities. The structure of
polynomial solutions is described. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2146192�

. INTRODUCTION

It is well known that representation theory of the group SO�3� of the rotations in three-
imensional Euclidean space relates to different types of classical special functions including
acobi, Krawtchouk, and Meixner polynomials �see, for example, Refs. 1–3�. It is shown in Ref.
that representations of the group SO�n� for n�5 �and other high-dimensional groups� lead to

rthogonal polynomials in many discrete and continuous variables. In particular, representations of
he group SO�5� are related to orthogonal polynomials in two variables that can be considered as
wo-dimensional analogs of the Krawtchouk and Hermite polynomials.

The aim of the present paper is to describe in a similar manner the relations between the
epresentations of the q-deformed algebras Uq�so3� and Uq�so5� and some classes of orthogonal
olynomials in one and two discrete variables. As for the classical groups SO�n� and U�n�, studied
n Refs. 4 and 5, the main method consists in the diagonalization of corresponding infinitesimal
perators �generators� of representations. To do this, we construct the realization of representation
pace as the space of polynomials in q-numbers �n�. Orthogonal polynomials we consider here
elate to eigenvectors of generators of representation and can be treated as one- and two-
imensional q-analogs of Krawtchouk polynomials. The results obtained for the group Uq�so3�
llow the construction in explicit form of the matrix of the operator connecting the bases in which
wo generators of a representation are diagonal.

I. REPRESENTATIONS OF THE ALGEBRA Uq„SO3… AND q-KRAWTCHOUK
OLYNOMIALS

Algebra Uq�so3� is the q-deformation of the universal enveloping algebra U�so3�. Algebra
q�so3� and its irreducible representations of the classical type �i.e., representations that are

46, 123508-1022-2488/2005/46�12�/123508/14/$22.50 © 2005 American Institute of Physics
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-deformations of irreducible representations of the algebra so3� were constructed in Ref. 6. It
ontains �similar to the algebra so3� three generators J12

q , J23
q , and J13

q that satisfy the relations:

�J12
q ,J23

q �q � q1/2 · J12
q · J23

q − q−1/2 · J23
q · J12

q = J13
q ,

�J23
q ,J13

q �q = J12
q , �J13

q ,J12
q �q = J23

q .

Let T be an irreducible representation of the algebra Uq�so3�. Then T is defined by a non-
egative integer or a half-integer l �the highest weight of the representation�. The representation
pace V contains the basis ��m�, m=−l , . . . , l, in which the operators Ijk

q =T�Jjk
q � act by the formulas

I12
q �m = i�m��m, i = �− 1, m = − l, . . . ,l ,

I13
q �m = iq1/2�qmA�m��m+1 + q−mA�m − 1��m−1� ,

I23
q �m = A�m��m+1 − A�m − 1��m−1, �1�

here

A�m� = 	 �m��m + 1�
�2m��2m + 2�

�l − m��l + m + 1�
1/2

. �2�

ere the q-numbers �n� are defined as

�n� = �qn − q−n�/�q − q−1� =
sinh�n ln q�
sinh�ln q�

.

f k=0, we assume that �2k� / �k�=2.
The basis ��m� consists of the eigenvectors of the operator I12

q . Similarly, one can consider
nother basis in representation space V consisting of the eigenvectors of the operator I23

q . We will
onstruct the matrix connecting these two bases, i.e., we will diagonalize the operator I23

q . The
ethod used is similar to the one developed for the classical groups SO�n� and U�n� �Refs. 4 and

� and is based on the realization of the representation space as a space of polynomial functions of
discrete variable. This approach leads to a class of orthogonal polynomials that can be consid-

red as q-analogs of the Krawtchouk polynomials.7,8 We will assume that the highest weight l of
he representation T is a non-negative integer.

Let L be the space of all complex-valued functions defined on the lattice �−l , l�. Then
im L=2l+1, and L is isomorphic to the representation space V. This isomorphism allows treating
ectors from V as functions of a discrete variable m that runs through the lattice �−l , l�. It follows
rom �1� that operator I23

q acts in the space L by the formula

�I23
q f��m� = − A�m�f�m + 1� + A�m − 1�f�m − 1�, f � L . �3�

et P̃�m� be an eigenfunction of the operator I23
q in the space L with the eigenvalue �,

�I23
q P̃��m� = � · P̃�m�, m = − l, . . . ,l . �4�

et us make the following substitutions in Eq. �4�:

P̃�m� = im���m�P�m� , �5�

here

��m� =
�2m� 1

, �6�

�m� �l − m�!�l + m�!
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�n�! = �n��n − 1� . . . �2��1�, �0�! = 1.

elow we will also use the notations

�2n�!! = �2n��2n − 2� . . . �2�, �2n − 1�!! = �2n − 1��2n − 3� . . . �1� .

The substitution �5� is equivalent to replacing the operator I23
q with the operator

J = A−1I23
q A ,

here A is the multiplication operator, �Af��m�= im���m�f�m�.
Then the function P�m� satisfies the equation �JP��m�=� · P�m�. Using �3� and �2�, this

quation can be written as

�m�
�2m�

��l − m�P�m + 1� + �l + m�P�m − 1�� = �P�m�, � = �i , �7�

r

1

�qm + q−m��q − q−1�
��ql−m − q−l+m�P�m + 1� + �ql+m − q−l−m�P�m − 1�� = �P�m� .

et us denote by Aq the operator from the left-hand part of Eq. �7�,

�Aqf��m� =
�m�

�2m�
��l − m�f�m + 1� + �l + m�f�m − 1�� .

he following statement can be proved.
Proposition 1: For any n=0,1 , . . . ,

Aq��m�n� = �l − n��m�n + Qn−2��m�� ,

here Qn−2�t� is a polynomial of t of the degree n−2, n�2; Q−1�t��Q−2�t��0.
It follows from Proposition 1 that the operator Aq acts in the space P��m�� of all polynomials

f �m�, and has in this space the eigenvalues of the form

� = �n = �l − n� =
ql−n − q−l+n

q − q−1 , n = 0,1, . . . .

ccordingly, the operator I23
q is diagonalizable in the representation space V and has eigenvalues,

� = �n = i�n − l� = i
qn−l − q−n+l

q − q−1 , n = 0,1, . . . ,2l .

roposition 1 allows one to realize the representation space V as the set of all polynomials in �m�,
efined on the lattice �−l , l�. This realization shows that Eq. �7� has polynomial solutions. More
xactly, the following statement is true:

Proposition 2: For any n=0,1 , . . . , the equation

�l − m�P�m + 1� + �l + m�P�m − 1� =
�2m�
�m�

�l − n�P�m� �8�

as a solution Pn�m� which is a polynomial of �m� of the degree n.

If we let q→1, then Eq. �8� is transformed into the following:
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�l − m�P�m + 1� + �l + m�P�m − 1� = 2�l − n�P�m� .

This equation describes the Krawtchouk polynomials.7 It relates to eigenvectors of the generator
f representation of the group SO�3�.4 We can treat the solutions of Eq. �8� as q-analogs of the
rawtchouk polynomials.

Similar to the classical case, Eq. �8� can be written in terms of finite differences,

�l + m�� � P�m� −
�2l�
�l�

�m��P�m� =
�2m�
�m�

��l − n� − �l��P�m� ,

here ��f��m�= f�m+1�− f�m�, ��f��m�= f�m�− f�m−1�.
Equation �8� can also be written in self-adjoint form

�m�
�2m�

�l − m�!�l + m�!�� 1

�l − m�!�l + m − 1�!
� P�m�� = ��l − n� − �l��P�m� .

he following theorem can be proved.
Theorem 1: Solutions of Eq. �8� are described by the formula

Pn�m� = 
k=0

n

�− 1�k �n�!�l − m�!�l + m�!
�k�!�n − k�!�l − m − k�!�l + m − n + k�!

= an�m�n + . . . , n = 0,1, . . . . �9�

he leading coefficient an of the polynomial Pn�m� is

an =
�2l�
�l�

�2l − 2�
�l − 1�

¯

�2l − 2n + 2�
�l − n + 1�

= �
k=0

n−1

�ql−k + q−l+k� .

ormula �9� can also be written in the following symbolic form. Denote

r = �m + l�, s = �m − l� .

efine the symbolic powers

r�k� = �m + l��m + l − 1� ¯ �m + l − k + 1�, r�0� = 1,

s�k� = �m − l��m − l + 1� ¯ �m − l + k − 1�, s�0� = 1.

hen

Pn�m� = �r + s��n� = 
k=0

n �n

k
�r�k�s�n−k�,

here � n
k
� are q-binomial coefficients,

�n

k
� =

�n�!
�k�!�n − k�!

.

Here are some examples of polynomials Pn�m�,

P0�m� � 1, P1�m� = �m + l� + �m − l� =
�2l�

�m� ,

�l�
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P2�m� = �m + l��m + l − 1� + �2��m + l��m − l� + �m − l��m − l + 1�

=
�2l��2l − 2�

�l��l − 1�
�m�2 − �2l� ,

P3�m� = �m + l��m + l − 1��m + l − 2� + �3��m + l��m + l − 1��m − l�

+ �3��m + l��m − l��m − l + 1� + �m − l��m − l + 1��m − l + 2�

=
�2l��2l − 2��2l − 4�

�l��l − 1��l − 2�
�m�3 −

�2l��2l − 2�
�l��l − 1�

��l + 1� + 2�l − 1���m� .

elow is a list of some properties of polynomials Pn�m�.
Proposition 3: Polynomials Pn�m� defined in �9�, satisfy the recurrence relation

Pn+1�m� =
�2l − 2n�

�l − n�
�m�Pn�m� − �n��2l − n + 1�Pn−1�m�, n = 0,1, . . . ; P−1�m� � 0.

Proposition 4: Polynomials Pn�m� are orthogonal on the lattice �−l , l� with the weight �6�,


m=−l

l

Pn�m�Pk�m���m� = 0 if n � k .

Proposition 5: The norm of the polynomial P0�m��1 is equal to

�P0� = 	 
m=−l

l
�2m�
�m�

1

�l − m�!�l + m�!
1/2

=
2�2l�!!

�l�!
� �l�

�2l��2l�!
. �10�

ormula �10� can be derived from the following formula for the sum of q-binomial coefficients:


k=0

n
�n�!

�k�!�n − k�!
= �

k=1

n
�n + 1 − 2k�

��n + 1 − 2k�/2�
= �

k=1

n

�1 + q2k−n−1� . �11�

ormula �11� can also be represented in the form


k=0

n
�n�!

�k�!�n − k�!
= �2	 �n − 1�!!

��n − 1�/2�!

2

if n is odd,

	 �n − 1�!!
�1/2��3/2� . . . ��n − 1�/2�


2

if n is even.�
ropositions 3 and 5 allow to calculate the norm of the polynomial Pn�m� for arbitrary n.

Proposition 6: The norm of the polynomial Pn�m� defined in �9�, is equal to

�Pn� =
2�2l�!!

�l�!
� �l − n�

�2l − 2n�
�n�!

�2l − n�!
, n = 0,1, . . . ,2l .

Proposition 7: “Middle” polynomials Pl�m� can also be represented by the formula

Pl�m� =
�2l�!!
�l�! �

k=1

l

�m − l − 1 + 2k�, �Pl� =
�2l�!!�2

�l�!
.

Proposition 8: Polynomial Pn�m� has the same parity as its power n,

Pn�− m� = �− 1�nPn�m� .
Proposition 9: Normalized polynomials Pn�m� have the properties
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P2l−n�m� = �− 1�l+mPn�m� ,

Pl+m�n − l� = �− 1�l+m+n� ��m�
��n − l�

Pn�m� ,

m = − l, . . . ,l; n = 0,1, . . . ,2l; ��m� is defined in �6� .

Propositions 8 and 9 allow to reduce the calculation of polynomials Pn�m� to the values of n
nd m from 0 to l such that n�m.

Consider the �2l+1�� �2l+1� matrix Pnorm, consisting �in columns� of the normalized poly-
omials Pn�m�,

Pnorm =�
P0�− l� P1�− l� ¯ P2l�− l�
P0�− l + 1� P1�− l + 1� ¯ P2l�− l + 1�

¯

P0�l� P1�l� ¯ P2l�l�
� .

hen the first column of the matrix Pnorm consists of elements

P0�m� �
�l�!

2�2l�!!
��2l��2l�!

�l�
, m = − l, . . . ,l .

The middle column consists of elements

Pl�m� =
�2

2 �
k=1

l

�m − l + 2k − 1�

= ��− 1��l−m�/2
�2

2
�l − m − 1�!!�l + m − 1�!! if l − m is even,

0 if l − m is odd.
�

ere m=−l , . . . , l; �−1�!!=1.
The last column consists of elements

P2l�m� = �− 1�l+m �l�!
2�2l�!!

��2l��2l�!
�l�

, m = − l, . . . ,l .

The first row consists of elements

Pn�− l� = �− 1�n �l�!�2l − 1�!!
2

��2l − 2n�
�l − n�

1

�n�!�2l − n�!
, n = 0,1, . . . ,2l .

The middle row consists of elements

Pn�0� = ��− 1�n/2 �n − 1�!!�l�!
2�2l − n�!!

��2l − 2n�
�l − n�

�2l − n�!
�n�!

if n is even,

0 if n is odd.
�

The last row consists of elements
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Pn�l� =
�l�!�2l − 1�!!

2
��2l − 2n�

�l − n�
1

�n�!�2l − n�!
, n = 0,1, . . . ,2l .

If we multiply mth row �m=−l , . . . , l� of the matrix Pnorm by im���m�, where ��m� is defined

n �6�, we will get unitary matrix P̃ consisting �in columns� of the orthonormal eigenvectors

P̃0 , P̃1 , . . . , P̃2l of the operator I23
q . This matrix connects bases in which operators I12

q and I23
q are

iagonal. Eigenvector P̃n corresponds to the eigenvalue �n− l�i of the operator I23
q �n

0,1 , . . . ,2l�.
Example: Let l=2. Then

I23
q =�

0 − 1 0 0 0

1 0 − a 0 0

0 a 0 − a 0

0 0 a 0 − 1

0 0 0 1 0
� , a =��3�

2
,

I12
q = diag�− �2�i,− i,0,i,�2�i� .

e have I12
q = P̃−1I23

q P̃, where P̃ is the unitary matrix,

P̃ =�
b c − d c b

− ci ci 0 − ci ci

d 0 e 0 d

ci ci 0 − ci − ci

b − c − d − c b
� , P̃−1 = P̃* = P̃

¯ t,

b = −
1

2�2�
, c =

1

2
, d =

�2�3�
2�2�

, e = −
1

�2�
.

II. REPRESENTATIONS OF THE ALGEBRA Uq„SO5… AND q-KRAWTCHOUK
OLYNOMIALS IN TWO VARIABLES

. Finite-difference equation related to eigenvectors of the infinitesimal operator

Algebra Uq�son� for arbitrary n and its irreducible representations of the classical type were
tudied in Ref. 9. Let us rewrite corresponding formulas for n=5. Finite-dimensional irreducible
epresentations of the algebra Uq�so5� are given by two integral or half-integral numbers n1 and n2

highest weight�, such that n1�n2�0. We will consider the case of integers. The representation
pace V has the dimension

dim V =
�2n1 + 3��2n2 + 1��n1 − n2 + 1��n1 + n2 + 2�

6
.

The q-analog of Gel’fand-Tsetlin basis in the representation space corresponds to successive
eduction of the representation of Uq�so5� to subalgebras Uq�so4�, Uq�so3�, and Uq�so2�. The basis
ectors �	 can be enumerated by the tableaux

	 = 	 l
k

m1,m2
 ,
here the components of 	 are integers that satisfy the conditions
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n1 � m1 � n2 � m2 � − n2,

m1 � l � m2 � − l ,

l � k � − l . �12�

ectors �	 are eigenvectors of the representation’s generator I1,2 which corresponds to the rotation
n the plane �e1 ,e2� in the five-dimensional space. The corresponding eigenvalues are 
	=
k

i�k� , k=−n1 , . . . ,n1.
Let I4,5 be the generator in the representation space V corresponding to the rotation in the

lane �e4 ,e5�. Then the operator I4,5 acts on the basic vector

�	 = �	 l
k

m1,m2

y the formula

I4,5��m1,m2

l

k
� = Ix,y

n1,n2,l��m1 + 1,m2

l

k
� − Ix−1,y

n1,n2,l��m1 − 1,m2

l

k
�

+ Iy,x
n1,n2,l��m1,m2 + 1

l

k
� − Iy−1,x

n1,n2,l��m1,m2 − 1

l

k
� . �13�

ere

x = m1 + 1, y = m2,

Ix,y
n1,n2,l = 	 �x��x + 1��n1 + x + 2��n1 − x + 1��x + n2 + 1��x − n2��x + l + 1��x − l�

�2x��2x + 2��x + y��x − y��x + y + 1��x − y + 1� 
1/2

. �14�

We consider the problem of diagonalization of the operator I4,5. Obviously, the operator I4,5

as the same eigenvalues 
k= i�k�, k=−n1 , . . . ,n1, as the operator I1,2. It is not difficult to show
hat the multiplicity dim 
k of the eigenvalue 
k in the representation space V is described by the
ormula

dim 
k = ��n1 − n2 + 1�	n2
2 − k2 +

�2n2 + 1��n1 − n2 + 2�
2


 if �k� � n2,

1

2
�2n2 + 1��n1 − �k� + 1��n1 − �k� + 2� if n2 � �k� � n1.�

k = − n1, . . . ,n1.

Let us fix the parameters l and k such that �k�� l�n1 and consider the subspace Wk
l �V

panned by the vectors

�	 = �	 l
k

m1,m2
 .
s it is seen from inequalities �12�, the parameters m1 and m2 run over the intervals
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max�n2,l� � m1 � n1,

�15�
�m2� � min�n2,l� .

herefore the subspace Wk
l has the dimension

dim Wk
l = �n1 − max�n2,l� + 1��2 min�n2,l� + 1� .

or fixed l �0� l�n1�, all subspaces Wk
l �k=−l , . . . , l� are isomorphic and the representation space

is decomposed into the direct sum of the subspaces Wk
l ,

V = 
l=0

n1


k=−l

l

Wk
l .

It is obvious from �13� that all subspaces Wk
l are invariant with respect to the operator I4,5.

herefore, the problem of diagonalization of the operator I4,5 in the representation space V can be
educed to its diagonalization in each subspace Wk

l . Let us denote basic vectors �	 belonging to the
ubspace Wk

l by ��x ,y�. Here the parameters x and y are defined in �14� and according to �15� run
hrough the set of integer points of the rectangle

� = ��x,y��− c � y � c � b � x � a� , �16�

where

a = n1 + 1,

b = max�n2,l� + 1,

c = min�n2,l� .

perator I4,5 acts in the space Wk
l by the formula

I4,5��x,y� = Ax,y
a,b,c��x + 1,y� − Ax−1,y

a,b,c ��x − 1,y� + Ay,x
a,b,c��x,y + 1� − Ay−1,x

a,b,c ��x,y − 1� ,

here

Ax,y
a,b,c = 	 �x��x + 1��a − x��a + x + 1��x − b + 1��x + b��x − c��x + c + 1�

�2x��2x + 2��x + y��x − y��x + y + 1��x − y + 1� 
1/2

.

Similar to the case of the group Uq�so3�, we can construct the following functional realization
f the space Wk

l . Consider the space L��� of all complex-valued functions in two discrete variables
and y, defined on the lattice �16�. Obviously, the space L��� is isomorphic to the space Wk

l , and
he operator I4,5 acts in L��� by the formula

∀ f � L��� ,

�I4,5f��x,y� = − Ax,y
a,b,cf�x + 1,y� + Ax−1,y

a,b,c f�x − 1,y� − Ay,x
a,b,cf�x,y + 1� + Ay−1,x

a,b,c f�x,y − 1� .

herefore, we can reduce the diagonalization problem of the operator I4,5 to that in the space
���. Let Q�L��� be an eigenfunction of the operator I4,5 with the eigenvalue 
,

�I4,5Q��x,y� = 
 · Q�x,y�, �x,y� � � . �17�
et us make the following substitution in Eq. �17�,
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Q�x,y� = ix+y���x,y�P�x,y� ,

here

��x,y� =
�2x��2y��x − y��x + y��x − c − 1�!�x + b − 1�!�b − y − 1�!�b + y − 1�!
�x��y��a − x�!�a + x�!�a − y�!�a + y�!�x + c�!�y + c�!�x − b�!�c − y�!

. �18�

Then the function P�x ,y� satisfies the equation

�x�
�2x�

��a − x��x + b��x − c�P�x + 1,y� + �x + a��x − b��x + c�P�x − 1,y��

+
�y�

�2y�
��a − y��y + b��c − y�P�x,y + 1� + �y + a��b − y��y + c�P�x,y − 1��

= ���x�2 − �y�2�P�x,y�, � = 
 · i . �19�

his equation can also be written in terms of finite differences in self-adjoint form using the
perators

��xf��x,y� = f�x + 1,y� − f�x,y�,��xf��x,y� = f�x,y� − f�x − 1,y� ,

nd similarly �y and �y. Equation �19� takes the form

�x�
�2x�

�a + x�!�a − x�!�x − b�!�x + c�!
�x + b − 1�!�x − c − 1�!

�x� �x + b − 1�!�x − c − 1�!
�a + x − 1�!�a − x�!�x − b − 1�!�x + c − 1�!

�xP�x,y��
+

�y�
�2y�

�a + y�!�a − y�!�c + y�!�c − y�!
�b + y − 1�!�b − y − 1�!

�y� �b + y − 1�!�b − y�!
�a + y − 1�!�a − y�!�c + y − 1�!�c − y�!

�yP�x,y��
= ���x�2 − �y�2�P�x,y�, � = � − �a − b + c� . �20�

f we let q→1 �case of the classical group SO�5��, Eq. �20� becomes

�a + x�!�a − x�!�x − b�!�x + c�!
�x + b − 1�!�x − c − 1�!

�x� �x + b − 1�!�x − c − 1�!
�a + x − 1�!�a − x�!�x − b − 1�!�x + c − 1�!

�xP�x,y��
+

�a + y�!�a − y�!�c + y�!�c − y�!
�b + y − 1�!�b − y − 1�!

�y� �b + y − 1�!�b − y�!
�a + y − 1�!�a − y�!�c + y − 1�!�c − y�!

�yP�x,y��
= 2��x2 − y2�P�x,y� . �21�

his equation describes eigenvectors of infinitesimal operators of irreducible representations of the
roup SO�5�. As is shown in Ref. 4, Eq. �21� can be considered as a two-dimensional analog of the
quation for Krawtchouk polynomials. In turn, Eq. �20� can be treated as two-dimensional
-analog of the equation for Krawtchouk polynomials.

Let us make the following substitution in Eq. �21�: x=h−1x1, y=h−1x2, where x1 and x2 are new
ariables, h0. If we let h→0, and a ,b ,c→� such that ah2→1, bh→	, b−c→s, then the
iscrete equation �21� is transformed into the following differential equation:

1

x2
2 − x1

2ex1
2
�x1

2 − 	2�−s �

�x1
�e−x1

2
�x1

2 − 	2�s+1�P�x1,x2�
�x1

�
+

1

x1
2 − x2

2ex2
2
�x2

2 − 	2�−s �

�x2
�e−x2

2
�x2

2 − 	2�s+1�P�x1,x2�
�x2

� = 2� · P�x1,x2� . �22�
quation �22� can be considered as a two-dimensional analog of the equation for Hermite poly-
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omials. The explicit formulas for the complete set of polynomial solutions of Eq. �22� were found
n Ref. 4.

. Orthogonality of solutions of Eq. „19…

Let A be the operator

AP�x,y� = u1�x,y��x�v1�x,y��xP�x,y�� + u2�x,y��y�v2�x,y��yP�x,y�� ,

be the lattice

� = �	 � x � �,� � y � �� ,

nd ��x ,y� be a positive function on �. Consider the Euclidean space L���� of all functions on �
ith the scalar product

�f ,g� = 
x=	

�


y=�

�

f�x,y�g�x,y���x,y� .

Proposition 10: Suppose that

1� ��x ,y�u1�x ,y� does not depend on x.
2� ��x ,y�u2�x ,y� does not depend on y.
3� v1�	 ,y��v1��+1,y��v2�x ,���v2�x ,�+1��0.

Then the operator A acts in the space L����, and is self-adjoint in it:

�Af ,g� = �f ,Ag�, ∀ f , g � L���� .

This proposition can be applied to Eq. �19�. Let B be the operator in the left part of �19�. By
epresenting Eq. �19� in self-adjoint form �20�, it is easy to verify that the operator

A = ��x�2 − �y�2�−1B �23�

atisfies the conditions of Proposition 10, where the weight function ��x ,y� is defined in �18�, and
he lattice � is in �16�. Therefore, the solutions of Eq. �19� corresponding to distinct eigenvalues
re orthogonal on the lattice �16� with the weight �18�.

. Spectrum and structure of the eigenfunctions of Eq. „19…

Let A be the operator defined in �23�.
Proposition 11: Let m and n be non-negative integers, having the same parity, and m�n. Then

A��x�m�y�n + �x�n�y�m� = �n��x�m�y�n + �x�n�y�m� + Q�x,y� ,

here �n= �a−b+c−n�, Q is a symmetric polynomial in �x� and �y�, such that all powers of �x�
nd �y� have the same parity as n, and are less than n. In particular, if n=0 or n=1, then Q�0.

Consider the liner space S of all symmetric polynomials in �x� and �y� such that ∀f �S any
onomial containing in f has powers of �x� and �y� of the same parity. It follows from Proposition

1 that the operator A acts in the space S.
Proposition 12: Operator A is diagonalizable in the space S and has in it the eigenvalues

�n = �a − b + c − n�, n = 0,1, . . . .

he multiplicity of �n is equal to the integer part of �n+2� /2.
Let S��� be the set of all polynomials from the space S restricted onto the lattice �16�.
Proposition 13: The space S��� is isomorphic to the space L��� of all functions on the lattice
.
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Realization of the space L��� as a space of symmetric polynomials S��� allows one to prove
he following main result regarding the multiplicities of eigenvalues of Eq. �19� and operator I4,5.

Theorem 2: In the space L���, Eq. �19� has 2�a−b+c�+1 distinct eigenvalues of the form

� = �n = �a − b + c − n�, n = 0,1, . . . ,2�a − b + c� .

he multiplicity of the values �n is equal to the number of integer points �r ,s� on the line r+2s
n that lie in the rectangle

� = ��r,s��0 � r � 2c, 0 � s � a − b� . �24�

The explicit formulas for the multiplicities dim �n are as follows. If c�a−b then

dim �n =��
n + 2

2
� if 0 � n � 2c ,

c +
�− 1�n + 1

2
if 2c � n � 2�a − b� ,

a − b + c − � n − 1

2
� if 2�a − b� � n � 2�a − b + c� .

�
ere �k� means the integer part of the number k. The multiplicity of eigenvalues �n can be

epresented by the diagram

f c�a−b then

dim �n =��
n + 2

2
� if 0 � n � 2�a − b� ,

a − b + 1 if 2�a − b� � n � 2c ,

a − b + c − � n − 1

2
� if 2c � n � 2�a − b + c� .�

he multiplicity of eigenvalues �n can be represented by the diagram

Proof: Consider the following two-parametric family of symmetric polynomials in �x� and �y�:

f �r,s��x,y� = ��r,s��x� · ��r,s��y� ,
here

                                                                                                            



�
a
i

w
e
w

w
l
P

w
r

t

T

s

T
S
�

A

A

C

123508-13 Representations of q-deformed algebras J. Math. Phys. 46, 123508 �2005�

                        
��r,s��x� = �x��1−�− 1�r�/2�
m=1

k

��x�2 − �c − m + 1�2��
n=1

s

��x�2 − �a − n + 1�2� ,

r ,s���, k is an integral part of r /2. It is obvious that f �r,s��S��� and the highest degrees of �x�
nd �y� in f �r,s� are equal to r+2s. It is not difficult to show that all polynomials f �r,s� are linear
ndependent, and, therefore, form a basis in the space S���. It follows from Proposition 11 that

Af �r,s� = �r+2sf
�r,s� + g ,

here g is a polynomial from S��� having the highest degree of �x� less than r+2s. From here, for
ach polynomial f �r,s� we can put into correspondence the eigenfunction P�r,s� of the operator A
ith the eigenvalue �r+2s of the form

P�r,s� = f �r,s� + Q , �25�

here Q�S���, and the highest degree of �x� in Q is less than r+2s. All eigenfunctions P�r,s� are
inear independent and form a basis in S��� when parameters r and s run through the lattice �24�.
olynomials P�r,s� in �25� can be described by the projection operator,

P�r,s��x,y� = �
k=0

r+2s−1
A − �kE

�r+2s − �k
f �r,s��x,y�, �r,s� � � , �26�

here E is an identical operator. All eigenfunctions �26� correspond to the same eigenvalue �n if
+2s=n. As follows from �24�, the maximum value of n is 2�a−b+c�. Theorem 2 is proved.

Corollary: Generator I4,5 of the representation of the algebra Uq�so5� has the following dis-
inct eigenvalues in the subspace Wk

l :


 = 
n = �n − n1 + �n2 − l�� · i, n = 0,1, . . . ,2�n1 − �n2 − l�� .

he multiplicity of 
n is the same as multiplicity of �n in Theorem 2.
One possible basis of solutions of Eq. �19� is indicated in �26�. The general structure of

olutions and another bases are described by the following theorem.
Theorem 3: In the space L���, Eq. �19� has �a−b+1��2c+1� linearly independent solutions.

he solutions are symmetric polynomials in �x� and �y�, which form a basis in the space S���.
olutions belonging to different eigenvalues are orthogonal on the lattice �16� with the weight
18�. A basis of solutions of Eq. �19� can be obtained by the orthogonalization of the sequence

nother basis can be constructed by the orthogonalization of the sequence
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We have published two papers on low-energy scattering in two space dimensions:1,2

We received an email from Professor Gezstesy drawing our attention to his work with Pro-
essor Bolle and other collaborators on the same subject, which consists of the following:3

This paper was quoted in Ref. 1. However, we did not quote the following papers and wish to
nform the readers of JMP of their existence:4–6

1 K. Chadan, N. N. Khuri, A. Martin, and T. T. Wu, Phys. Rev. D 58, 025014 �1998� for the central case.
2 N. N. Khuri, A. Martin, P. C. Sabatier, and T. T. Wu, J. Math. Phys. 46, 032103 �2003� for the noncentral case.
3 D. Bolle and F. Gesztesy, Phys. Rev. Lett. 52, 1469 �1984�.
4 D. Bolle and F. Gesztesy, Phys. Rev. A 30, 1279 �1984�.
5 D. Bolle, F. Gesztesy, C. Danneels, and S. F. J. Wilk, Phys. Rev. Lett. 56, 900 �1986�.
6 D. Bolle, F. Gesztesy, and C. Danneels, Ann. Inst. Henri Poincare, Sect. A 48, 175 �1988�.
46, 129901-1022-2488/2005/46�12�/129901/1/$22.50 © 2005 American Institute of Physics
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